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Preface

This manual describes the software architecture of the Chips and Technologies
Super386™ DX/DXE processors—38600DX, 38605DX, 38600DXE, and
38605DXE. These processors are software-compatible with the industry-standard
80386 processor. The manual is addressed to experienced assembly-level
programmers writing either application or system software. No previous knowledge
of the 80386 processor or any similar processor architecture is assumed.

Unless otherwise stated, the term “processor” refers to both the 38600DX/DXE and
38605DX/DXE processors. The descriptions throughout most of the manual assume
that the processor is running in its fully featured, 80386-compatible protected mode,
which is explained in Chapter 2. The processors support two other modes for 8086
programs: real mode and virtual-8086 mode. The functioning of these modes is
explained in the section entitled “Other Processor Modes” in Chapter 4.

Organization

The manual contains four chapters and three appendices:

o Chapter 1, Introduction—Overview of the Super386 pfocessors and a list of their
features, including the SuperState V feature of the DXE processors.

® Chapter 2, Programmer’s Model—Description of the Super386 processor as a
collection of resources available to software. The chapter discusses the three
execution modes, the data types directly supported by the instruction set, the
organization of external memory and I/O spaces, the registers visible to software,
and interrupts and exceptions. The chapter also describes the on-chlp instruction
cache of the 38605DX and DXE processors.

® Chapter 3, Instruction Set—Overview of the instruction set, organized by
function. The chapter discusses operand types, addressing modes, flags,
condition codes, and instruction encoding.

¢ Chapter 4, System Programming—Discussion of such operating-system issues
as memory management, protection, I/O access, multitasking, interrupt and
exception handling, and processor initialization. The chapter describes the use
of execution modes other than the processor’s native protected mode. It also
describes the SuperState™ V features of the DXE processors.
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B Notations and Conventions _ Preface

Application programmers need most of the material in the first three chapters.
In these chapters, items of interest only to system programmers are identified
as such. System programmers need all the material in the book.

Reference material is provided in three appendices:

Appendix A, Instruction Set Reference—List of the instructions arranged
alphabetically by assembler mnemonic. Gives detailed information on each
instruction.

Appendix B, Quick Reference Tables—Summary lists of opcodes, flag cross
references, status flags, condition codes, instruction formats, and timing.

Appendix C, Special Programming Considerations—Discussion of the effective
use of advanced features.

A glossary of acronyms is provided along with an index.

Notations and Conventions

iv

The following notations and conventions are used:

Processor Names—In general, the terms processor and Super386 processor apply
to all the Super386 DX and DXE processors. When only one of these processors
is referred to, or when the 80386 processor is referred to, the processor is named
explicitly.

Byte Quantities—XKilobytes is kB, megabytes is MB, gigabytes is GB.

Binary and Hexadecimal Numbers—Binary numbers are followed by a b and

hexadecimal numbers by an h. Numbers without a suffix are decimal. Thus,
00010001b = 17 = 11h.

L.SB—The least significant bit in the binary representation of a number is bit O.
In diagrams, bit O is at the right and the most-significant bit is at the left.

Little-Endian Format—The Super386 processor is a little-endian machine. That
is, a multiple-byte quantity is always stored with its least-significant byte at the
lowest byte address. In illustrations, words and doublewords are shown with the
least significant byte at the right. Byte addresses increase from right to left. Asa
consequence, strings are shown in reverse order.

Memory Addresses—In illustrations of data structures in memory, the lowest
memory address is at the bottom. ,

Addressable Quantities—An 8-bit quantity is referred to as a byte; a 16-bit
quantity is a word; and a 32-bit quantity is a doubleword or dword. The
precessors described herein use byte addressing, in which memory is accessed
as a sequence of addressable bytes.
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Preface

Related Documents M

¢ Segmented Addressing—When a segmented address contained in a register
is mentioned, the acronym for both the segment and the register are shown,
separated by a colon. For example, the address of a memory location contained
in the data segment (DS) with an offset contained in the EBX register would be
written as DS:EBX.

* Bit Ranges—When a range of bits is referred to, the highest and lowest bit
numbers are shown, separated by a colon. For example, when the range is bit
15 to bit 9, it is referred to as 15:9.

® Bit Values—Bits can either be set or cleared. The term set means the bit has a
binary value of 1. The term cleared means the bit has a binary value of 0.

® Reserved Bits—Some bits and bytes in register illustrations are marked not
available. Do not store or use data at these locations. These bits should be
masked out before testing, and the bit states should not be changed when the
rest of the register is accessed.

Related Documents

The following related documents are available from Chips and Technologies:

Super386™DX/DXE High Performance CMOS Microprocessor Data Book
Super386™DX Performance Test Report

Super386™/SuperMath Compatibility Brief

SuperState V'MArchitecture Manual.

In addition to these publications from Chips and Technologies, several commercial
books provide special insights and different perspectives on programming with the
Super386 processor. Rakesh Agarwal’s two-volume book, 80x86 Architecture &
Programming, is an excellent guide for system programmers, with many examples
of system routines written in pseudo-code. John Crawford and Patrick Gelsinger’s
book, Programming the 80386, provides another valuable viewpoint. This book is
well illustrated and provides pseudo-code examples of common system software
routines. Stephen Morse, Eric Isaacson, and Douglas Albert’s book, The 80386/387
Architecture, is a clearly written text that relates the basic concepts of 80386
architecture to the earlier versions of that architecture.
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CHAPTER 1

Introduction

The Super386 DX/DXE processors provide higher performance than the comparable
standard 80386 processors, with which they are code-compatible. Like the 80386
processors, the Super386 processors support multitasking operating systems and are
designed for use in computation-intensive applications. They operate faster than
standard 80386 processors due to their entirely redesigned internal architecture and
unique microcode.

There are currently four Super386 DX/DXE processors:

® 38600DX
* 38600DXE
* 38605DX
® 38605DXE.

These processors are discussed below.

The 38600DX processor is a high-performance, static CMOS implementation of
the 80386 DX processor’s 32-bit architecture, with hardware support for jump
instructions. It is pin-compatible with the 80386 DX processor and is a superset
of its functionality.

Processor 38600DXE is identical to the 38600DX but it incorporates the SuperState
V feature, a system for power management. This feature works in all modes and
makes the 38600DXE processor suitable for low-power applications.

The 38605DX processor has all the features of the 38600DX processor but adds a
512-byte instruction cache. The 144-pin package is a superset of the 38600DX
pinout. Systems designed for the 38605DX footprint can also use the 38600DX
processor in the same socket.

The 38605DXE features both the 512-byte instruction cache and SuperState V
mode for special applications. Two special pins are added to facilitate operation
in SuperState V. mode: ANMI¥, an alternate non-maskable interrupt input, and
AADS?*, an alternate address space output. See the section entitled “SuperState V
Mode” in Chapter 4 for a description of these signals.
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In general, the terms Super386 processor and processor apply to both the
38600DX/DXE and the 38605DX/DXE processors. When only one of these
processors is referred to, or when the 80386 processor is referred to, the processor
is named explicitly.

Features of All Super386 Processors

Features common to all processors in the Super386 family are:

® 80386 compatibility

® Memory management

® High-performance pipeline
® Advanced CPU clock design
e Static design

® Coprocessor suppott.

These features are discussed in the following paragraphs.

80386 Compatibility—The Super386 processors are object-code compatible with
the standard 80386 processor and support all operating modes supported by the
80386 processor.

Memory Management—The memory management features include segmentation
and paging. Segmentation allows programmers to create independent, protected
address spaces. Paging makes it possible to use virtual data structures that are larger
than the available memory space, by keeping the data partly in memory and partly
in a mass-storage device.

High-performance Pipeline—The new pipeline design permits overlapping of
instruction execution at CPU clock rates up to 40MHz.

Advanced CPU Clock Design—Systems designers can use a 1x or 2x CPU clock
running from O to 25, 33, or 40MHz.

Static Design— All on-chip registers, buffers, and instruction cache (38605 only) are
fully static, allowing the CPU clock to be stopped without losing data.

Coprocessor Support—For floating-point operations, the Super386 processors
support the SuperMath™ coprocessor and standard 80387 coprocessors.
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Special Features

Certain new features distinguish the 38605 processor from its predecessors: The
38605 processor prefetches instructions and stores them in a 512-byte instruction
cache located on the chip. The processor goes to the cache for the next instruction
and only fetches instructions from memory when the next instruction is not in the
cache.

Near jump instructions are handled by dedicated hardware, as in the 38600
processor. But in combination with the instruction cache, this jump hardware
improves near jump execution speed dramatically: two cycles with the jump
hardware and cache versus six cycles without.

The 38600DXE and 38605DXE processors both feature SuperState V Mode. This
special mode of operation is designed for power management and device emulation.
It is transparent to the normal operating environment, permitting a control program,
running at a more priviledged level, that allows the operating system to access the
processor for special power management and feature control purposes.
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CHAPTER 2

Programmer’s Model

The Super386 architecture offers software developers a variety of registers, data
structures, and other resources. This chapter describes the organization of memory,
mechanisms by which system-level resources are protected from use by application
software, and the different modes of instruction execution. It also defines the data
types supported by the instruction set, describes the processor registers available to
application programs, and introduces the basic types of interrupts and exceptions.
The concepts covered in this chapter are referred to throughout this manual. For
system programmers, the discussion continues in Chapter 4, “System Programming.

Memory Organization

The processor can directly access up to 4GB of physical address space, each byte
of which is separately addressable using a 32-bit physical address. During each
memory access (or for the 38605 processor, each non-cached memory access), a
physical address appears on the processor bus. External logic decodes the physical
address into control signals for external memory or peripheral devices.

Software does not supply physical addresses directly to the processor. Every
instruction that accesses memory supplies instead a logical (or virtual) address,
which is translated into a physical address by the processor’s memory-management
unit.

In the processor’s native, fully featured 32-bit mode—called protected mode—

the address-translation mechanism makes use of translation tables created and
maintained by the operating system. Thus, while the physical address space is a
simple one-dimensional sequence of bytes, the logical organization of the external
memory space—the way memory appears to software—can take on more complex
forms determined by the operating system.
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In particular, the processor supports segmented memory, in which a linear one-
dimensional memory space is broken up by the operating system into independent
linear, unbroken regions called segments. In protected mode, each program can
have up to 16,384 segments, possibly overlapping, with sizes up to 4GB. Segments
can be explicitly assigned to hold code, program stacks, or data. Segmentation

can preserve the integrity of program code and data during unanticipated software
accesses, such as erroneous or unauthorized access to one program’s data or stack
by another program. Figure 2-1 illustrates one way in which memory could be
organized into segments. -

]
Figure 2-1. Example of Segmented Memory
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Figure 2-2 shows how a logical address is used to locate an operand in a segmented
memory space. One part of the logical address identifies a segment; the other part
specifies an offset into that segment. In protected mode, the segment selector
provides an index into a descriptor table. Data in the descriptor table locates the
base address of the segment. The offset then locates the addressed byte within the
segment.

I ;
Figure 2-2. Logical Addressing of Segments
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Paging, which is illustrated in Figure 2-3, is another aspect of memory manage-
ment. Paging maps linear addresses generated by segmentation into physical
addresses in memory. It is a technique for simulating a large external memory by
swapping data between RAM and a mass-storage device such as a disk. Data is
swapped in units of 4kB called pages. The operating system keeps track of which
pages are in RAM at any given time and which are on a disk. A request for data
currently held on disk causes an exception. The service routine for the exception
loads the page with the requested data into RAM, swapping some other page out to
disk if necessary. ‘

I
Figure 2-3. Linear Addressing of Pages
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Address Translation

Address translation is part of the processor’s segmentation and paging mechanisms.
It has two stages, as illustrated in Figure 2-4.

Segmentation—In the segmentation stage, the processor’s segmentation unit
translates the logical address supplied by software into a linear address, which
specifies the location of a byte in a one-dimensional linear address space.

Paging—If paging is enabled, the linear address undergoes further translation.
This stage of address translation is carried out with information contained in

page directories and page tables. These data structures reside in memory and

are maintained by the operating system. If paging is disabled, or is unavailable in
the processor’s current execution mode, the linear address is used as the physical
address.

L
Figure 2-4. Overview of Address Translation
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Addressing Segmented Memory

While paging is transparent to application programs (except for occasional delays
when data needs to be swapped), segmentation is an everyday fact of life for even
the most casual assembly-language programmer. Every instruction that accesses
memory must indicate a segment for the intended access as well as an offset into
that segment.

At any given time, up to six segment selectors reside on-chip in the processor’s six
segment registers. A memory reference in an assembly language instruction must
specify—either explicitly or by default—one of these registegf. }51 Rggtected mode,
the high-order 13 bits in a segment register specify an offset fhto & segment
descriptor tablegfvhich in turn locates the segment. Segment descriptors are
described further in the next section.

Memory references also have an offset into the selected segment. This offset, or
effective address, can be specified in various ways known as the addressing modes
of the processor. Basically, up to three components can be added together to form
the offset: the contents of a specified base register, the scaled contents (multiplied by
1,2, 4, or 8) of a specified index register, and a constant value called a displacement.
The various addressing modes support complex data structures typically used in
high-level languages.

The ways in which instructions'address memory operands are discussed in detail in
Chapter 3, “Instruction Set Overview.”

Descriptor Tables and Memory Models

In protected mode, the offset into a segment descriptor table that the segment
selector provides locates an 8-byte segment descriptor associated with the selector.
The segment descriptor contains information about the corresponding segment,
including its base address (in the linear address space) and its size. This information
is used in logical-to-linear address translations. Segment descriptors, along with
descriptors of other kinds, are maintained by the operating system in data structures
called descriptor tables. By controlling the contents of the descriptor tables,
therefore, the operating system controls the logical organization of memory.
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The simplest memory organization is the flat model, in which all segment
descriptors point to the same base address and specify the same segment size.
Figure 2-5 illustrates a flat memory organization.

L
Figure 2-5. Flat Memory Model
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While there is no way to disable the processor’s segmentation mechanism, using the
flat model achieves the same result: memory is accessed as a single range of linear
addresses. The size of this range can be up to the 4GB maximum or restricted to the
actual size of the external memory. The latter approach has the advantage that
out-of-range addresses will be trapped by the segmentation unit. See the section
entitled “Protection.”
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Segmented memory models, on the other hand, can be quite complex. Each
application can be given its own descriptor table, defining up to 16,384 distinct
segments. Each of these segments can be of any size up to the 4GB maximum.
Some segments can be reserved for a given application, while others are shared.
The operating system can map segments to overlapping ranges in the linear
address space.

Figure 2-6 illustrates a moderately complex segmentation strategy in which each of
two applications has multiple data segments. The two applications also share a data
segment.

L
Figure 2-6. Segmentation Strategy: Example |
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Figure 2-7 illustrates a simpler segmentation strategy, in which each application has
a single segment to hold its stack and data. This arrangement has the advantage that
32-bit pointers can be used to access data (instead of 48-bit pointers). On the other
hand, the stack is not prevented from growing down into the region where the
program stores data. See the sections entitled “Resource Protection” and “Stack
Operations” for futher information.

I
Figure 2-7. Segmentation Strategy: Example 2

/’\//

Stack and Data
> Application 2

Code

JU

Stack and Data

Application 1

Data

o~ _J

Chips and Technologies, Inc. PRELIMINARY 2-9



B Memory Organization

Storing Data in Memory

Programmer’s Model

Data items held in memory or in processor registers can be of several different
lengths. A byte is an ordered sequence of 8 bits; it is the smallest addressable
quantity. A word is a sequence of 16 bits. A doubleword (or dword) is a sequence

of 32 bits. See Figure 2-8.

Figure 2-8.  Representation of Data in Memory
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The processor uses little-endian encoding, in which a multi-byte quantity is stored
with its least-significant byte at the lowest byte address. In the illustration, words
and doublewords are shown with the least significant byte at the right. Byte
addresses increase from right to left. As a consequence, numerical data reads
normally, with the most significant hexadecimal digits appearing at the left. Strings,

however, read in reverse order.
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Multi-byte quantities in memory are always addressed using the byte address of the
least-significant byte. A memory word is said to be aligned when this address is an
even number. A dword is aligned when the address of its least-significant byte is
divisible by 4. In general, any 2"-byte quantity is aligned if its address is a multiple
of its size in bytes. See Figure 2-9.

|
Figure 2-9. Data Alignment
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2-12

Physically, each external memory access transfers between one and four bytes of an
aligned dword between the processor and memory. To access a multi-byte quantity
that crosses a dword boundary, the processor performs multiple transfers. For
example, to transfer an unaligned dword requires two transfers, as illustrated in
Figure 2-10. While such accesses are handled automatically by hardware, they do

require extra bus cycles with a consequent penalty in performance.

L]
Figure 2-10. Unaligned Accesses
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Stack Operations

Several instructions directly manipulate the program stack (or simply stack).

Stacks implement a last-in first-out (LIFO) data structure. They are typically used
in situations that require nested storage such as subroutine calls and the evaluation
of complex expressions. Each stack can be contained in a separate memory
segment. One stack—the current stack—is directly addressable at any given time.
Its segment selector is the value in the Stack Segment (SS) register. The location

of the current top of stack (the last operand written to the stack) is the value in the
Stack Pointer (ESP) register. The ESP register specifies an offset into the current
stack segment. Data can be appended to the current stack using a PUSH instruction,
or removed from the stack using a POP instruction. When data is appended, the
stack grows toward lower memory addresses in the linear address space, as shown
in Figure 2-11 for 32-bit addresses.

Figure 2-11.

Memory Organization Il
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A procedure call automatically pushes its return address onto the stack. Upon
return from the procedure, the address is popped. The last-in-first-out allocation
rule makes it easy and efficient to handle nested subroutines, even when these are
recursive or re-entrant. A series of CALL instructions will leave a sequence of
addresses on the stack. The first RET instruction thus finds the return address of
the most recent CALL at the top of the stack. The stack can also be used to pass
parameters to a subroutine, or to store a subroutine’s local variables.

The registers used to implement stack operations are discussed in more detail in
the section entitled “Registers.” Details of the PUSH and POP instructions are
discussed in Appendix A, “Instruction Set Reference.”

Input/Output

Depending on system implementation, I/O peripheral devices can be accessed in
one of two address spaces: /O space and memory-mapped I/O.

I/O Space—In this arrangement, the control, status, and data ports for peripheral
devices are located in an addressable space that is separate from the memory space.
Special I/O instructions are used to transfer data between these ports and the
processor registers or memory.

Memory-Mapped I/O—In memory-mapped I/O, the control, status, and data ports
for peripheral devices share the normal memory space with all other memory
segments. Accesses to these I/O addresses work in the same way as normal
memory accesses.

Figure 2-12 shows these two alternative arrangements.
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I
Figure 2-12.  I/O Space and Memory-Mapped I/O
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I/O Space

The I/O space is a 64kB linear address space beginning at I/O address 0. Ports

can be 1, 2, or 4 bytes wide. Architecturally and physically, I/O space is separate
from memory space. Separation of memory and I/O space offers the most reliable
system protection: the I/O space has its own protection mechanisms, separate from
those applied to the memory space. For example, the system design can prevent
reads and writes to I/O space from being captured by a cache. When a separate I/O
space is used, however, it can only be accessed by the I/O instructions IN, INS,
OUT, and OUTS.

Memory-Mapped 1/0

The chief advantage of memory-mapped I/O is that the general-purpose arithmetic
and logical instructions, which operate on memory-space operands, can also be used
for I/O. For example, memory-mapped I/O allows application software to set bits in
a peripheral register without passing the contents of the peripheral register through a
processor register.

Resource Protection

Every memory segment has an associated privilege level represented as a number
between O (most privileged) and 3 (least privileged). The privilege level of the
code segment from which instructions are currently being fetched is called the
current privilege level (CPL). In general, protected resources can be used only by
sufficiently privileged code.

In a typical arrangement, the operating system kernel runs at level 0 and the rest of
the operating system runs at level 1. Applications run at level 3, and level 2 is left
free for special-purpose code requiring an intermediate degree of privilege. Figure
2-13 illustrates this arrangement.
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L
Figure 2-13.  Privilege Levels
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The operating system can implement protections for three types of resources:

® Privileged instructions
® Memory
* J/O.

These resources are discussed in the following paragraphs.

Privileged Instructions—Privileged instructions are machine instructions that can
be used only by code at privilege level 0. Examples are instructions that explicitly
modify system control registers.

Memory—The tables used in address translation (descriptor tables, page directories,
and page tables) contain bits that restrict access to individual segments and pages.
Attempted memory accesses by insufficiently privileged code are trapped.

I/O—The use of IO instructions and ports can be restricted by the operating system
to code of a given privilege level (or better). Global protection is applied through
the two-bit IO privilege level (IOPL) flag in the EFLAGS register. The IOPL
specifies the minimum privilege level required to execute I/O instructions. Port-
level protection is provided by an operating system data structure called the I/O
permission bitmap (IOPB), which controls access to individual I/O ports based

on privilege level.

Access rules for the various protected resources are discussed in detail in Chapter 4,
“System Programming.”
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Execution Modes

The processor has three mutually exclusive modes of instruction execution that are
selectable by system software:

® Protected mode
® Real mode
® Virtual-8086 mode.

These modes provide full 32-bit processing, protection, and virtual-memory features
for newly written code while ensuring compatibility with code written for 16-bit
processors. The modes also provide support for mixing 16-bit and 32-bit code.

Protected Mode—In protected mode, all of the processor’s segmentation, paging,
protection, and multitasking capabilities are available. Programs written for
protected mode on the 80386 and 80286 processors can be run in protected mode on
a Super386 processor. Maximum linear memory size is 4GB, and default operand
size can be 16 or 32 bits.

Real Mode—Real mode is the 8086 real-address emulation mode. Maximum
memory size (1IMB), default operand size (16-bit), address generation, and interrupt
handling are nearly identical to the 80286 real mode. Instruction prefixes allow use
of 32-bit operands, giving full use of the 32-bit registers. All code runs at privilege
level 0. Protected segmentation and paging are not available.

Virtual-8086 Mode—In virtual 8086 mode the processor generates 8086 real-mode
addresses, but with the virtual-memory paging capabilities of protected mode. Like
real mode, virtual-8086 mode has a maximum memory size of IMB. Programs run
as tasks. The processor can safely enter this mode from protected mode, run an 8086
program, and return to protected mode. All code runs at privilege level 3. Protected
segmentation is not available.

The descriptions in this manual assume protected-mode operation. The section
entitled “Other Processor Modes” in Chapter 4 focuses specifically on the real mode
and virtual-8086 mode. Most application instructions work the same way in all three
modes. The operational differences between the various modes are discussed briefly
below and in detail in Chapter 4, “System Programming.”
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Segmentation works differently, depending on the mode. In protected mode, the
segment selector is used as a pointer into a segment descriptor table. The descriptors
in the table specify the base and limit of the segment in linear address space, and
they enforce segment access restrictions based on privilege level. In real mode and
virtual-8086 mode, the segment selector is multiplied by 16 to form the base address
of the segment; each segment is therefore 64kB in size. There is no segment-level
protection.

Page translation, with full page-level protection, is available in protected mode and
virtual-8086 mode. Paging is not available in real mode.

The use of instructions that access I/O devices, like IN and OUT, can be restricted
in protected mode and virtual-8086 mode to code of a certain privilege level (the
IOPL). In virtual-8086 mode, instructions that reference the interrupt flag (IF) are
also sensitive to the IOPL.

Handling or service routines for interrupts and exceptions are located using a vector
into a data structure in memory. This table has two formats, one for real mode and
the other for protected and virtual-8086 mode. In real mode, the table is called an
interrupt vector table. In protected mode and virtual-8086 mode, the table is called
an interrupt descriptor table.

Data Types

The supported data types include unsigned and signed integers, binary-coded
decimal numberts, strings (including bit strings), and pointers. These types are
described later. Floating-point data types are supported by numerical coprocessors
that the Super386 processor in turn supports—such as the SuperMath and standard
80387 coprocessors—and by software packages that emulate coprocessors. For
details on these floating-point data types, refer to the documentation for the
coprocessors or emulation software.
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Integers

Programmer’s Model

The processor supports the representation of integers in unsigned and signed formats

of various widths.

Unsigned Integers

An unsigned integer represents a non-negative value in binary (radix-2) form.
Unsigned numbers can be a byte, word, or dword in length, as shown in Figure
2-14. An unsigned byte can represent integers between 0 and 255 (inclusive).
For unsigned words, the range is from 0 to 65,535; for unsigned dwords, from

0to 232-1,

]
Figure 2-14. = Unsigned Integers
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The various instructions that add or subtract integers work equally well with
unsigned and signed integers. Special instructions supporting unsigned numbers

are available for multiplication and division.
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Signed Integers

A signed number represents an integer in two 's-complement format, as shown in
Figure 2-15. In this format, the most-significant bit indicates the sign: 0 for
positive, 1 for negative. The remaining bits indicate the magnitude. For positive
numbers, these bits directly represent the magnitude in binary (radix-2) form. For
negative numbers, every bit of the absolute value in binary form is inverted (one’s
complement), and 1 is added to the result.

|
Figure 2-15. Two’s-Complement Integers

Two’s-Complement Decimal
00000011 |—-— -— 3
00000010 -—— -— 2
00000001 |-—— -—1 1

Positive
08000000 0
Negative
11111111 p—- -—— -1
11111110 p—- - -2
11111101 p—- -—-1 -3

Signed numbers can be a byte, a word, or a dword in length. An n-bit signed
number can represent integers between -2%! and +2™1-1. The signed number types
are illustrated in Figure 2-16.
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L]
Figure 2-16.  Signed Integers

l Doubleword

sign bit
7 ]
A |Byte
sign bit
15
7 | Word
High Byte
sign bit
31 24 23 16 15
7 ; ]
High Word
¢ J\ I\ J

ng v Y
byte 7+3 byte #+2 byte #+1

_ The various instructions that add or subtract integers work equally well with

unsigned and signed integers. Special instructions supporting signed numbers are

available for multiplication and division.

Quadword numbers (8 bytes long) also occur. They are generated by the 32-bit
multiply instructions. The low-order dword is normally stored in register EAX
and the high-order dword is stored in register EDX. Similarly, in a 32-bit divide
instruction, the dividend is a quadword taken from the EAX and EDX registers.

PRELIMINARY
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Binary-Coded Decimal (BCD) Numbers

In a BCD number, each digit of a decimal numeral is represented in binary form
(from O = 0000b to 9 = 1001b). In the unpacked BCD representation, each digit is
stored in a separate byte. Alternatively, two digits can occupy a single byte in
packed BCD format, where the digit represented by bits 7:4 is more significant
than the digit in bits 3:0. Figure 2-17 illustrates both varieties.

]
Figure 2-17. Binary-Coded Decimal Numbers

Decimal Packed BCD Unpacked BCD

6 900010110 900610110
24 9010:0100 |ecoo:ee10i0000 0100

Special BCD arithmetic instructions act directly on one-byte BCD numbers.
Multi-byte BCD numbers must be handled as strings (see “Strings” on page 2-24).
BCD strings do not have a set length and can therefore be used to represent numbers
of arbitrary precision.
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Strings

A string is a sequence of bits, bytes, words, or doublewords that occupies a single
contiguous block of memory. The processor operates on a string by applying a
specified string instruction to each successive element. There are instructions for
moving strings around in memory, filling a string with repetitions of a fixed value,
transferring strings between memory and I/O ports, and searching strings for specific
values. The string instructions are discussed in Chapter 3, “Instruction Set
Overview.” Bit strings can contain up to 232-1 bits. Other types of strings can

be up to 4GB in size.

ASCII

The American Standard Code for Information Interchange (ASCII) represents
alphanumeric and control characters in a 7-bit binary code. Sequences of ASCII-
encoded characters are among the most commonly used strings. Each byte of an
ASCII string contains a character in bits 6:0. Bit 7 is cleared to 0. The processor
can perform arithmetic operations on one-byte ASCII code numbers. Figure 2-18
shows an ASCII string. ~

I
Figure 2-18. ASCII String

byte 7 +4 byte ~+3 byte 7 +2 byte »+1 byte »
AL AL AL A A
4 N hYd N N B N
|e1o0i1001{010011001]0100:0011]0101:0011]0100:0001]
49 49 43 53 41 Hexadecimal
I I C S A Character
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Bit Strings

Bit operations support data that does not break down conveniently into bytes,
such as a display bitmap or a single-bit datum like a semaphore. In the former
case, it would be inconvenient to have to manipulate the data in byte-sized
pieces. In the latter case, it would waste memory to use an entire byte in
order to store a single bit.

Bit strings are indexed by a dword, and can therefore be up to 232 bits in length.
The index is a signed integer called the bit offset. It specifies the location of a
specific bit within the string. Figure 2-19 gives an example of bit addressing.

I
Figure 2-19. Addressing a Specific Bit

Address of String

A
r A

byte »+2 bytes+l bytesr byten-1 bytesn-2

—Ar——r
l 71 ZE 1

Bit Offset = +9 Bit Offset = -6
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Pointers

A pointer contains the address of a data item. Pointers can be used to build and
access complex data structures that can change in size and structure during
execution. Each element in a linked list, for example, contains a pointer to another
element. Elements can be linked and unlinked by writing new values to the pointers.

There are two types of pointers, a far pointer containing a segment selector as well
as an offset, and a near pointer containing just an offset. See Figure 2-20.

L]
Figure 2-20. Near and Far Pointers

lﬂ+5 n+ 4 I n+3 n+2 n+ 1l n I Memory Address
47 3231 ]
| Selector | Offset | Far Pointer
31 ]
| 0ffset | Near Pointer

Far Pointer—A far pointer contains a two-part address which is required for
accessing an element located in a different segment of memory. The offset part is
stored in the low-order 32 bits (16 bits in real and virtual-8086 modes), and the
segment selector is in the high-order 16 bits.

Near Pointer—A near pointer contains only an offset. Near pointers can only be
used when all pointer references lie in one segment.

Instructions exist for loading pointers from memory. The segment selector (for far
pointers) is loaded into a segment register. The offset is loaded into a general
register, to be used as the base in an address calculation.
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Application Registers

The 16 registers available to application programs are shown in Figure 2-21.
Application registers are of three kinds:

® General registers
e Status and control registers
* Segment registers.

The registers are discussed briefly in the following paragraphs. Full details are
given in Appendix A, “Instruction Set Reference.”

General Registers—The eight 32-bit general registers, also called general purpose
registers, are EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. They are used

for a variety of programming operations, such as holding intermediate results in
computations, holding base and index values for address computations, and holding
parameters and local variables during subroutine calls. Some instructions use one or
more of the general registers in a special way.

Status and Control Registers—Status and control registers, EFLAGS and EIP,
are 32-bit flag registers. EFLAGS contains bits that either modify the effect of
instruction execution, reflect the outcome of instruction execution, or configure
certain system-level resources. The 32-bit instruction pointer (EIP) register acts
as the program counter.

Segment Registers—The six 16-bit segment registers (CS, DS, SS, ES, FS, and GS)
contain selectors that identify the currently addressable code segment (CS), data
segment (DS), or stack segment (SS) of memory. The ES, FS, and GS are extra
data-type segments.

The general registers plus the status and control registers are sometimes called the
base register set in other literature. In addition to these application registers, the
processor also has several other registers—usually not available to application
programs—through which segmentation, paging, debugging, testing, and other
system operations are controlled. The registers typically used by application
programs are described below. Those typically used by system programs are
described in Chapter 4, “System Programming.”
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Figure 2-21.  Registers Available to Application Programs

Programmer’s Model

8-bit 8-bit 16-bit 32-bit
General Registers Registers Registers Registers Registers
31 16 15 87 0
General Purpose AH AL AX EAX
General Purpose BH BL BX EBX
General Purpose CH CL cX ECX
General Purpose DH DL DX EDX
Source Index SI SI ESI
Destination Index DI DI EDI
Stack-Frame Base
Pointer BP BP EBP
Stack Pointer sp sp ESP
Status and Control Registers
31 16 15 0
Flags Flags FLAGS EFLAGS
Instruction Pointer P P EIP
Segment Registers
15 0
Code Segment Selector Code cs
Data Segment Selector Data DS
Stack Segment Selector Stack SS
Extra Segment Selector Extra ES
Extra Segment Selector Extra FS
Extra Segment Selector Extra GS
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General Registers

The eight general registers shown in Figure 2-21 support doubleword, word, and
byte operands. The full 32-bit registers have names that begin with E (for extended).
To handle 16-bit operands, the lower word of each general register is separately
addressable. It has the same name as the full 32-bit register, minus the E. Four of
the general registers (those whose names end in X) also support 8-bit operands. In
these registers, each byte of the lower word is separately addressable. The high-order
bytes are AH through DH. The low-order bytes are AL through DL.

Some instructions operate on bytes, others on words or dwords. Those that operate
on words or dwords determine the operand size via a bit (the default size) in the
segment descriptor for the code segment. An instruction prefix called the operand-
size override allows switching between operand sizes. Byte and word operations
that modify a general register affect only the specified portion of that register. The
other bits remain unchanged. When a general register is pushed on or popped from
the sk, theopsrand sie maches the perand; (/= < cour 1o Liz ee
Most instructions can use any of the general registers as operands. Some
instructions, however, implicitly use one or more of the general registers in a

special way:

® String instructions

® Double-precision arithmetic
® Variable shifts

¢ Input/output instructions

® Stack manipulation.

These uses are discussed in the following paragraphs.

String Instructions—Strings are processed by applying a specified instruction to

’ "‘éggﬁ)gtring. The source index (ESI) register and destination index (EDI) register

indicate the operation’s source and destination strings. These registers are
incremented or decremented as each successive element of the string is processed.
The value in ECX is interpreted as the total length of the string.

Double Precision Arithmetic—EAX and EDX together hold the 64-bit product in a
double-precision multiplication. They hold the 64-bit dividend in a double-precision
division. -
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Variable Shifts—For some shift instructions, the CL register specifies the number of
bits to be shifted.

Input/Output—1I/O instructions use the EAX, AX, and AL registers as sources for
output data and as destinations to receive input data. Block I/O transfers use the DX
register to specify a port in I/O space, and they use the source and destination index
registers ESI and EDI as string indexes.

Stack Manipulation—The stack pointer (ESP) and stack-frame base pointer (EBP)
registers are used for stack manipulation. They contain offsets into the current stack
segment. The ESP register contains the offset of the current top of stack. It is
decremented when an item is added to the stack and incremented when an item is
removed. The stack thus grows down toward lower memory addresses. Figure 2-11
illustrates the stack storage-allocation discipline.

The entire structure of the stack, including the stack pointer and its stack-frame base
pointer, is called the stack frame. The base pointer in the EBP register is typically
used as a fixed reference point for accessing the stack in situations where the stack
pointer itself is changing. For example, suppose a data structure is passed on the
stack to a subroutine that also uses the stack for temporary storage of local variables,
as shown in Figure 2-22. In this situation, ESP-relative addresses for data in the
fixed data structure would have to change as the amount of temporary storage
allocated for local variables changed. By copying the initial ESP value into the EBP
register before pushing anything onto the stack, the subroutine can instead use fixed,
EBP-relative addresses to access the passed data structure.

The ENTER and LEAVE instructions automatically set up a stack frame for
procedures and exit from them. The instruction descriptions in Appendix A,
“Instruction Set Reference,” give full details concerning these instructions and
all of the implicit uses of general registers.
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]
Figure 2-22.  Use of the Stack-Frame Pointer

(EBP) Represents the
Initial ESP Value

-— EBP

Temporary
Storage/
Stack Pointer (ESP) / -— ESP

” F
b;f%;:assed Data Passed Data
Stack Frame Base Pointer Structure Structure
l—/

Unallocated Unallocated
15 2180
L %
Stack Segment Selector Stack Segment Before Stack Segment After
Pushing Temporary Data Pushing Temporary Data
Onto Stack Onto Stack
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Status and Control Registers

The two status and control registers, illustrated in Figure 2-21, are of significance to
application programmers. One points to the current or next instruction, and the other
contains control and status flags.

Instruction Pointer (EIP) Register

The EIP register contains an offset into the current code segment, which is the
segment pointed to by the value in the CS register. The EIP register is loaded
automatically by an interrupt, an exception, or a control-transfer instruction such
as JMP or RET. For 16-bit addressing, the lower word (IP) of the EIP register
provides the offset. When used independently, this portion of the EIP register

is called the IP register.

Status and Control Flags (EFLAGS)

The EFLAGS register, shown in Figure 2-23, has 13 non-reserved flag fields. There
are three kinds of flags:

e Status flags

® Control flags

® System flags.

These flags are discussed in the following paragraphs.

Status Flags—Status flags provide information concerning the result of the last
arithmetic instruction to be executed. The status flags show whether the result was
positive, negative, or zero; whether overflow occurred; and other similar conditions.
Conditional jumps and software interrupt INTO calls read and respond to these flags.

Control Flag—The DF flag is the only control flag. It controls the direction of string
operations. The direction flag can be explicitly set or cleared.

System Flags—There are several system flags for controlling I/O, interrupts,
debugging, multitasking, and operating mode. These flags are described in Chapter
4, “System Programming.”

Only the status and control flags are described. The effect of each instruction on the
flags is specified in Appendix A, “Instruction Set Reference.”
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I
Figure 2-23. EFLAGS Register

31 1716151413 1211169 8 7 6 5 4 3 2 1 @
lﬁ;ffé/ Reserved VUMIRF] @ INT IOPL|0F|DF IFJTF|SF}ZF| 0|AF 0 |PF 1|CF EFLAGS
1§ J
A4

Flags Register

e

bits: 11 OF Overflow Flag—;ilndlcates whether the upper;iost bit | . e
(sign blt) ofano erand is chan ed as a result of an

the O ﬂag is undefined: —> =1t g S mi*, el s
1 Overflow
0 No overflow

10 DF Direction Flag—Indicates whether a source or destination
address pointer of a string instruction (the contents of the
ESI and/or EDI register) should be incremented or
decremented after each iteration of the instruction execution.
The flag can be explicitly set or cleared by the STD and
CLD instructions.
1 Decrement
0 Increment

7 SF Sign Flag—Indicates whether an arithmetic operation had a
positive or negative result, as indicated by the high-order bit
of a byte, word, or doubleword (bit 7, 15, or 31):
1 Negative result
0 Positive result
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ZF

AF

PF

CF

Programmer's Model

Zero Flag—Indicates whether an arithmetic operation
resulted in zero:

1 Zero result

0 Nonzero result

Auxiliary Flag—Indicates whether a BCD arithmetic
operation resulted in a carry out (addition) or borrow
(subtraction) from bit 3 of the least-significant byte,
regardless of the operand size:

1 BCD carry out or a borrow occurred

0 No BCD carry out or a borrow occurred

Parity Flag—Indicates the number of 1s in the low-order
operand byte after an arithmetic operation, regardless of the
operand size:

1 Even number of 1s

0 Odd number of 1s

Carry Flag—Indicates whether an arithmetic operation
resulted in a carry out (addition) or borrow (subtraction) into
the high-order bit: bits 6, 14, and 30 for signed integers; bits
7, 15, and 31, respectively, for unsigned integers. The flag
can be explicitly set or cleared by the STC and CLC
instructions. The flag can be complemented with the CMC
instruction:

1 Carry out or borrow occurred

0 No carry out or borrow occurred
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Segment Registers

There are six 16-bit segment registers available to application programs. Each

Application Registers Wl

segment register contains the selector for one memory segment. The registers are
illustrated in Figure 2-24 and listed below.

Figure 2-24. Segment Register

15

Code

Data

Stack

Extra

Extra

Extra

cs

DS

SS

ES

FS

GS

Code Segment Selector Register
Data Segment Selector Register
Stack Segment Selector Register
Extra Segment Selector Register
Extra Segment Selector Register

Extra Segment Selector Register

CS
DS
SS

ES

FS
GS
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Code Segment—References the currently active executable code segment.

Data Segment—References the currently active data segment.

Stack Segment—References the currently active stack segment. The SS
register can be loaded explicitly, allowing application programs to set up
stacks. There can be as many stacks as the number of segments.

Extra Segment—References the currently active segment that must be used
to hold the destination operands for string instructions.

Same as ES—Extra data segment.

Same as ES—Extra data segment. This register is also used as an override
prefix to access user memory in SuperState V mode on the 38605

processor.

PRELIMINARY
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The six segments can be directly addressed by the processor. To access a segment,
the processor loads its selector into one of the segment registers. In real mode, the
selector is multiplied by 16 to locate the base address of the corresponding segment.
In protected mode, the selector points to a segment descriptor contained in a
memory-resident table. The descriptor contains information about the segment,
including its base address and its size limit. For the segments whose selectors are
currently in the segment registers, the descriptor information is automatically cached
on-chip in registers not directly accessible to software.

The processor fetches instructions from the segment located by the selector in the CS
register. The CS register cannot be explicitly loaded by software. Instead, its value
can be changed only by executing a far control transfer, in which a CALL or JIMP
instruction references a code segment other than the current code segment.

The selector for the current stack segment is in the SS register. All stack operations
access this segment. Unlike the CS register, the SS register can be loaded explicitly.
This feature allows application programs to set up stacks. The DS, ES, FS, and GS
registers hold selectors for data segments. Application programs can also load
values into these registers. When a selector has been loaded into its appropriate
register, an instruction needs only to provide an offset for the processor to form a
complete logical address.

Interrupts and Exceptions

2-36

Interrupts and exceptions are responses to exceptional events. The processor
temporarily suspends the flow of normal program execution, transferring control
to a handling routine that services the event and returns control to the suspended
program.

Interrupts
Interrupts occur in one of two ways:

® System hardware requests the attention of the processor by asserting a signal on
one of the interrupt input pins.

® Software requests an interrupt by means of an INT, INTO, or BOUND
instruction.

Hardware-initiated interrupts occur asynchronously with respect to instruction
execution. Interrupts are serviced either when the currently executing instruction is
completed, or, in the case of instructions that could conceivably run for a long time,
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when the instruction comes to a well-defined stopping point. String instructions,
for example, are interruptible between operations on successive string elements.

Applications can request service from an operating system interrupt handler by
using the INT n instruction, where # is the interrupt (or exception) vector. However,
interrupt vectors that do not correspond to an interrupt handler defined by the
operating system must be handled by the application program itself.

Exceptions

Exceptions are the result of abnormal conditions detected during the course of
instruction decoding or execution. For example, exceptions occur when instructions
are improperly coded, violate protection rules, or access pages that are not present in
memory. Exceptions and software-initiated interrupts occur synchronously with
respect to instruction execution. Exceptions differ from one another in the state of
the machine upon entering the service routine. There are three types: faults, traps,
and aborts.

Faults—A fault occurs when the instruction that caused the exception is nullified;
i.e., the machine state prior to that instruction is restored before the fault handler is
invoked. The instruction is typically retried after the fault condition is repaired.

Traps—A trap results when the instruction that caused the exception, but no other
instruction, is completed before the trap handler is invoked. Software interrupts can
be considered traps. Certain breakpoint exceptions used in debugging are also traps.

Aborts—In an abort, the instruction that caused the exception, and possibly several
others as well, complete before the handler is invoked. Or, an exception is reported
while another exception is being processed. If a double-fault abort is followed by
another exception, the processor will shut down and require a reset.

Page faults are common examples of fault exceptions. A page fault occurs when

an instruction accesses a page that does not currently reside in memory. The fault
handler swaps the required page into memory, updates the page-translation tables as
needed, and then retries the faulting instruction. Page faults are a normal occurrence
in a demand-paged system.

Like interrupts, most exceptions are handled by the operating system. However,
those that result from erroneous code or that are directly requested by an application
program must be handled by the application program itself. For example, a
supervisory program receiving a divide exception caused by an application will
probably be unable to do anything but terminate the application. Details of interrupt
and exception handling are discussed in Chapter 4, “System Programming.”
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On-Chip Instruction Cache

Instruction reads (fetches) from memory can be a bottleneck on the processor bus.
To minimize this, a 512-byte on-chip instruction cache is provided in the 38605
processor. Instruction prefetching into this cache reduces the effect of external
memory latency on prefetching, and reduces interference with operand accesses,
thus improving the processor’s performance. The cache works in conjunction with
a 12-byte instruction buffer that can accept instructions from the instruction cache
at the rate of four bytes per cycle. With the cache enabled, the processor fetches
instructions from memory only when the next instruction is not in the cache.

Jump instructions can be executed in two clocks if the destination instruction is in
the cache. By comparison, it requires five clocks to execute the jump instruction if
it is not in the cache, has a prefix, or does not have an 8-bit displacement.

To take full advantage of the instruction cache, the programmer should write
assembly language critical routines no longer than 512 sequential bytes, starting
at an address that is a multiple of 16. If a program sequence fits entirely in the
cache, sequential and near-jump instruction fetches will not interfere with operand
accessing. As a rule, a routine of up to approximately 150 assembly language
instructions can fit in the cache in protected mode (up to about 200 instructions in
réal mode).
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CHAPTER 3

Instruction Set Overview

The Super386 instruction set is a superset of the Intel® 80386 instruction set. It
includes a wide variety of arithmetic, logical, data-movement and control-transfer
operations. These operations can be performed using data in registers, memory, or
I/O space, or data that is encoded as an immediate operand in the instruction itself.

Most instructions can be used in application programs. Instructions dedicated to the
protection features of the processor, however, can only be used in system programs
with the appropriate privilege level. Instructions that access I/O space can be
restricted by the operating system on the basis of both privilege level and the
specific I/O port that is addressed.

Some instructions are restricted to operands of a particular type, or to data contained
in a particular register. An effective assembly language programmer should be
aware of these limitations.

This chapter discusses the basic instruction format, operand types, addressing
modes, flags, and condition codes. It gives an overview of the instruction set,
grouped by function, and provides guidelines for using the instructions efficiently.
Appendix A, “Instruction Set Reference,” contains the details of instruction
encoding. This appendex lists the instructions alphabetically by assembler
mnemonic and provides detailed information on the behavior of each instruction.
Appendix B, “Super386 Quick Reference,” contains an opcode summary.

Basic Instruction Format

An instruction specifies an operation to be performed, the location or value of the
source data to be used (if any), and the location where the result (if any) should be
stored. Figure 3-1 illustrates the syntax for constructing instructions from a menu of
parts. The entire instruction cannot exceed 15 bytes in length.
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Figure 3-1. Basic Instruction Format

0 to 4
bytes 1to2 8 tol 9 tol 0 to 1 0tol
bytes byte byte byte/word/dword  byte/word/dword
. . o | Address o ; o
Prefix Ar p 1 MODr/m ™| SIB #1 Displace- > (I)I'I:ig:‘gte I\
ment P
. Entire instruction cannot exceed 15 bytes -

Table 3-1 describes the parts of an instruction in the order of their appearance in the

instruction.

Table 3-1. The Parts of an Instruction

Number
Instruction Part Size Required Comments and Restrictions
Prefix byte Oto4
Opcode byte lor2 If the opcode is two bytes long, the first byte is OFh.
MODr1/m byte Oorl Also spelled ModR/M, MOD/RM, and MODRM.
Encodes a variety of attributes about source and
destination, displacement, addressing mode, and
instruction function. See Appendix B for the encoding.
SIB byte Oorl Specifies scale, index, and base in certain 32-bit addressing
modes. See Appendix B for the encoding.
Address byte, Oorl A constant value that is added to the base and index of a
displacement word, or decoded address to generate the effective address.
dword
Immediate operand  byte, Oorl The name is sometimes shortened to “immediate.”
word, or
dword
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Prefixes

A prefix overrides the defaults or behavior of the instructjon that follows. It has no
effect on subsequent instructions. There are five types of prefixes:

® Segment

® Operand size

® Address size

® Lock

® Repeat.

A segment prefix changes the default data segment for a memory operand.

An operand size prefix changes the default operand size specified in the descriptor
for the current code segment. Operands can be either 8 bits or 16 bits, or they can be
8 bits or 32 bits. See the section entitled “Operand Sizes.”

An address size prefix changes the default address offset specified in the descriptor
for the current code segment. Address offsets can be 16 or 32 bits wide.

The lock prefix causes a memory read/modify/write operation to be performed
indivisibly, as in updating a semaphore.

A repeat prefix is used with a string instruction to apply the instruction sequentially
to each element in a string. Up to two repeats can be used.

Appendix B includes a reference list of all prefix values.

Opcode

The operation code, or opcode, determines the operation to be performed and, in
many cases, the type of operands to be used. Every instruction has an opcode.
Some instructions consist solely of an opcode.

Because of the complexity of instruction encoding, many identical operations have
multiple encodings. For example, adding an immediate value to register AL can
be done with a direct form (ADD AL, imm) in which the destination register AL
is implied by the opcode, or with a longer form (ADD reg, imm) in which the
destination register AL is explicitly coded. In such cases, the shorter form reduces
code size.

Appendix B includes a reference list of all opcodes.

Chips and Technology, Inc. PRELIMINARY ' 33



B Basic Instruction Format Instruction Set Overview

MODr/m Encoding

Many instructions include a MODr/m byte following the opcode. This byte is used
either to determine two operands, or one operand and the operation to take place.
The MODr/m byte is divided into three fields:

® MOD (mode)
® REG (register)
® 1/m (register/memory).

These fields are discussed below.

MOD—The most-significant two bits form the MOD field. This field determines
whether the operand is a register or a memory location and how large a displace-
ment, if any, is present.

REG—The next two bits form the REG field. In one form of MODt/m encoding,
this field determines a second operand. In the other form of MODr/m encoding, the
REG field determines the operation to be performed by the instruction. Instructions
that take the latter form are considered group, or eleven-bit opcodes. The three bits
of the MODr/m field participate with the eight bits of the opcode to determine the
instructions operation.

r/m—The least-significant three bits form the r/m field. These bits determine the
addressing mode when the operand is a memory location (as indicated by the MOD
field). When the operand is a register, the r/m field specifies the register.

The interpretation of the MODr/m byte is also affected by the address size of the
instruction. Different encodings are used for 16-bit and 32-bit addresses. The
details of MODr/m encoding, for instructions which include this byte, are given
in Appendix B, Tables B-8 and B-9.

SIB Encoding

A MODr/m byte that specifies a 32-bit address for an operand may be followed by
an SIB byte to allow greater address generation flexibility. If this occurs, the MOD
and r/m fields determine only the size of the displacement, if any. The SIB byte
determines both the index and base registers for address generation. In addition, a
selectable amount of scaling can be applied to the index register. The three parts of
the SIB byte that control these functions are the 2-bit scale, 3-bit index, and 3-bit
base fields. The details of SIB encoding are given in Appendix B, Table B-10.
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Address Displacement

Displacements are used for address generation. They provide a constant value that is
added to the base and/or index portions of an address. If present, the displacement
can be either one, two, or four bytes in size. One-byte displacements are extended to
the size of the generated address by extending their sign bit.

Immediate Operand

Immediate operands are constants contained within the instruction itself. They may
be one, two, or four bytes in size, depending on the opcode and the operand size.

In some cases, the REG field of the MODr/m byte determines the presence of an
immediate operand. One-byte immediate operands are sign-extended to the size of
register or memory operands; that is, the value of their sign bit (the highest-order bit
in the byte) is used to fill the additional bit positions in the larger operand.

Operands

Most instructions require one or more operands that specify data values or locations
to be used by the instruction. Operands are either explicitly encoded in a field
within the instruction or are implied by the opcode. A source operand specifies

a data value or location that is used, but not modified, by the instruction. A
destination operand specifies a location whose value is changed by the instruction.
An operand belongs to one of four types, depending on its location:

® Register
® Memory
e J/O port
® Immediate.

The operand types are discussed below.

Register—The register operands include the general registers, control registers,
debug registers, test registers, flag register, and instruction pointer. These registers
are described in Chapter 2, “Programmer’s Model,” and Chapter 4, “System
Programming.”
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Memory—These operands specify a memory address as source or destination. The
various addressing modes for memory operands are discussed in the section entitled
“Memory Operands” in this chapter.

I/O Port—The I/O port operands reference a seperate space (different from memory
addresses or registers) in which I/O devices are located.

Immediate—These operands are constant values contained within the instructions.
An instruction can have multiple register operands and multiple memory operands,
but only one immediate operand.

Operand Sizes

Operand sizes are implied by the instruction and are further controlled by the
processor’s execution mode. Table 3-2 lists the possible operand types and sizes.
For many instructions, one of two operand sizes is determined by the opcode. The
shorter size is always one byte; the larger size is either two bytes or four bytes,
depending on the processor’s execution mode.

In real mode and virtual-8086 mode, the default for the larger size is two bytes.
In protected mode the default for the larger size is determined by the default (D)
bit (bit 22) in the upper dword of the code segment descriptor. If D = 0, the long
operand size is two bytes; if D = 1, the long operand size is four bytes. For a
diagram of the code segment descriptor, see the section entitled “Segmentation”
in Chapter 4, “System Programming.”

The operand size instruction prefix can switch to the non-default operand size. For
example, if the D bit indicates a long operand of four bytes, preceding the instruction
with the operand size prefix will cause it to access a two-byte quantity. Conversely,
if the D bit indicates a long operand of two bytes, or if the processor is in real mode
or virtual-8086 mode, preceding the instruction with the prefix will cause it to access
a 4-byte quantity.
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L]
Table 3-2. Operand Types and Sizes

Type Size (bytes)
Register: General 1,2,0r4

Control 2or4

Segment 2

EIP 2or4

EFLAGS 2or4

Debug 4

Test 4
Memory 1,2,0r4
Immediate 1,2,0r4
10 1,2,0r4
Register Operands

Application programmers are typically concerned only with the general registers
and the EFLAGS register. Some may also have reason to use the segment registers.
Most instructions operate only on those registers. The remaining registers are
provided for system control and debugging.

Some general registers can be accessed with byte, word, or dword operands. Within
such registers, smaller operands are a subset of the larger operand. For example,
loading the EAX general register with 00000000h and then loading the AX portion
of this register with 5A5Ah will result in a value of 00005A5Ah in the EAX register.
It is not possible to access the SI, DI, BP, or SP registers using byte operands. If this
is attempted, the DH, BH, CH, and AH registers, respectively, will be selected
instead.

Memory Operands

Memory operands are located at the address generated by the instruction. If the
operand is more than one byte wide, the least-significant byte is located at the
generated address, and each next-significant byte is located at each next successively
greater address. For many instructions, the opcode or the MOD1/m byte determines
whether an operand comes from memory or is provided by a register. The rules by
which the memory address is generated are complex. They take into account the
segment selected, the segment base address, the address size, and the components
used to generate the effective address.

Chips and Technology, Inc. PRELIMINARY 3-7



M oOperands Instruction Set Overview

Segment Selection

At any time, the processor can directly access six memory segments by loading the
DS, CS, SS, ES, FS and GS segment registers with selectors. The interpretation of
these selectors differs between the real and protected modes of operation, but the
effect in both cases is to enable access to six different regions of memory.

Selection of the segment depends on the instruction type and the addressing mode.
Program code must be located in the CS segment because the processor only fetches
instructions from there. The DS segment is the default segment for the operands of
most instructions, with the following exceptions:

¢ Stack instructions must use the SS segment register.

® String instructions must use the ES register for the operand that is pointed to by
the EDI register.

® Non-stack instructions that generate an address from a base located in either the
ESP or EBP register must use the SS register.

Instructions can include a segment prefix to override the default segment, as
described in the section entitled “Prefixes.” It is not possible, however, to override
the segment used for stack operands, string-destination operands, or code fetches.
Any attempt to do so is ignored. There are no instructions that access the FS
segment and GS segments directly; a segment prefix must be used to access them.

Address Size

The processor generates 16-bit or 32-bit addresses, depending on the setting of the
default (D) bit (bit 22) in the upper dword of the code segment descriptor. In real
mode, the D bit is cleared to 0, causing the default address size to be 16 bits. In
protected mode, the D bit can be cleared to O or set to 1. If it is set, the default
address size is 32 bits. The size of an address can be altered by preceding the
instruction with an address-size prefix.

For control-transfer instructions, the size of the target address is determined by the
D bit and the operand-size prefix, rather than the D bit and the address-size prefix.
The target-address size also determines the size of the displacement field in the
direct forms of control transfer.

For a diagram of the code segment descriptor, see the section entitled
“Segmentation” in Chapter 4, “System Programming.”
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Addressing Modes

An effective address must be generated before segmentation is applied. There
are six modes by which the effective address is generated: absolute, stack,
instruction-relative, string, complex, and register.

Absolute Addresses

A few instructions move the contents of the AL, AX or EAX register to or from a
location in memory that is pointed to by the displacement field of the instruction.
The default segment is DS, and the displacement is treated as an unsigned offset into
the segment. The long operand form of move can toggle between the AX and EAX
registers using the operand size prefix.

Stack Addresses

Stack addresses are generated by PUSH and POP instructions, including the PUSH
mem and POP mem instructions, as well as by instructions such as CALL, RET and
INT. The CALL instruction generates a stack address when it pushes its return
address on the stack. Similarly, the INT instruction generates stack addresses for
each of the operands it pushes on the stack.

The stack address size is determined by the the big (B) bit (bit 22) in the upper
dword of the stack segment descriptor. If B is 0, a 16-bit address is generated; if B
is 1, a 32-bit address is generated. (For a diagram of the stack segment descriptor,
see the section entitled “Segmentation” in Chapter 4, “System Programming.”)

The address size prefix does not work with stack addresses, just as it is not possible
to override the selection of the stack segment. The operand size prefix, however,
works with stack operands when the segment’s B bit is 0. Preceding a PUSH
instruction executing in a 16-bit code segment with an operand size prefix causes

a doubleword quantity to be placed on the stack and causes the stack pointer to be
updated to point to the next doubleword address.
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Instruction-Relative Addresses

Instruction-relative addresses are generated by control transfer instructions to access
their target. Such instructions either contain a displacement or fetch from memory a
similar value that is treated as a signed offset from the address of the instruction
following the transfer. The displacement and address are added together to
determine where the target instruction is located.

String Addresses

String instructions access operands in memory by generating addresses to the DS
and ES segment. Each string instruction has a source andfor destination operand.
The source operand is addressed by the ESI register, and the destination by the EDI
register. The destination operand is always located in the ES segment. This
condition cannot be overridden. Preceding a string instruction with a segment prefix
will cause the source operand segment to be changed. Both the address size and
operand size prefixes have their normal effect on string instructions.

Complex Addresses

The complex form of address generation is the most powerful and is available to
most instructions. Those instructions that use this form always contain a MODr/m
byte immediately following the opcode. When 32-bit addresses are generated,

the MODr/m byte may indicate that a SIB byte follows the MODr/m byte. The
MODr/m byte also indicates the presence and size of a displacement field. While
interpretation of the MODr/m byte depends on the size of the address generated, the
types of address generation are similar. In all cases, the segment defaults to the DS
segment unless the base component is either the ESP or EBP register, in which case
the SS segment is used. The MODr/m byte is also capable of selecting the operand
type. It can either access an operand in memory at a complex address or it can
access an operand in one of the eight general registers.
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Figure 3-2 shows how 32-bit effective addresses are generated from the base
address, displacement field, and index.

Figure 3-2.  Effective Address Generation
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The possible combinations of these components for generation of 8-bit, 16-bit, and
32-bit addresses are illustrated in Figures 3-3 and 3-4 and are discussed following
Figure 3-4. Figure 3-3 illustrates a register view of 8-bit and 16-bit effective address
generation.

I
Figure 3-3. Registers Used in 8-Bit and 16-Bit Effective Address Generation
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Figure 3-4 shows a register view of 32-bit effective address generation.

]
Figure 3-4. Registers Used in 32-Bit Effective Address Generation
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Base Address—The base address is selected from one of the general registers.
When 16-bit addresses are being generated, only the SI, DI, or BX register is used
(Figure 3-3).

Displacement Field—The displacement field points to an offset within the current
segment. Because no register is involved in the address generation, the segment
always defaults to DS. The displacement can either be short or long. Short
displacements are one byte in size. Long displacements are either two or four bytes
in size, depending on the address size being generated. Displacements shorter than
the generated address size are sign-extended.

Base and Displacement— When base is used with a signed displacement, 16-bit
addresses can only select the SI, DI, BP or BX register as the base register, with
a displacement of either one or two bytes in size (Figure 3-3). Addresses 32 bits
in size have no such restriction, but they cannot select a 16-bit displacement
(Figure 3-4).

Base and Index—When a base is added to an index for generation of a 16-bit
address, the base can only be the BX or BP register, and the index can only be the
SI or DI register (Figure 3-3). A base of BP selects the SS segment, and a base of
BX selects the DS segment. Addresses of 32 bits can scale the index portion of
the address (Figure 3-4). The scale operation multiplies the index by 1, 2, 4, or 8.
When scaled by 1, the address is not changed. Any other scale amount allows it be
interpreted as an ordinal pointer to 2, 4, or 8 byte quantities.

Base, Index and Displacement—When base, index, and displacement are combined,
16-bit addresses are restricted to using either the BX or BP registers for the base and
either the SI or DI registers for the index. The displacement is either one or two
bytes in size for 16-bit addresses, and 1 or 4 bytes in size for 32-bit addresses.

Index and Displacement—Index and displacement can be used only for 32-bit
addresses. No base is present. Instead of a base, a scaled index is added to a
one-byte or four-byte displacement. Selecting an index from the EBP register
will cause the stack segment to be selected instead of the data segment.

Register Addresses

This is not a memory address, but it is selectable by the MODr/m byte. Eight
MODr/m encodings are provided to select the eight general registers instead of
a memory location. When this occurs, the default address size and segment are
meaningless. The operand size instruction prefix can still be used to select the
size of register accessed.
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Immediate Operands

Immediate operands, or immediates, are contained within the instruction in the same
order in which memory operands are stored. They can be bytes, words, or dwords.
Because these operands are part of the instruction, their length directly affects the
length of the instruction.

I/O Operands

The behavior of I/O ports depends on the devices connected to them, which usually
makes them appear different from memory locations or registers. IfO port accesses
can be one, two, or four bytes long, but an access to a one-byte operand at a specific
port may not return a result that is a subset of a two-byte operand access at the same
port. An understanding of the IfO devices connected to the processor is essential
before I/O instructions can be used to access them.

The EFLAGS register is an implicit operand of many instructions, including the
arithmetic and logical operations. For example, an ADD instruction will set

the flags according to the result of the operation. Similarly, execution of some
instructions, like ADC, will include the setting of the flags both as an input to the
operation (a source) and an output from the operation (a destination). Refer to
Appendix A, “Instruction Set Reference,” for details of how flags are used and
updated.

In some cases, the setting of a flag is undefined after an instruction executes. For
example, the MUL instruction updates the carry flag (CF) and overflow flag (OF)
that correspond to the result of the operation, but it leaves the zero flag (ZF) in an
undefined state. Note that your code should not depend on the state of reserved
flags, as future implementations of the Super386 architecture may use these flags
for another purpose.
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Certain flags can be modified directly. The carry flag (CF), direction flag (DF), and
interrupt flag (IF) all have dedicated instructions to allow them to be set or cleared.
Other flags can be modified with the POPF or SAHF instructions.

2 The term condition codes is sometimes used to refer to certain flags in the EFLAGS
X! ol register such ch as the overflow, carry, zefG ; sign, and parity flags. These flags are used
L\f“ Q A by conditional jimp and byte-set instructions. The Jump if Zero (JZ) instruction
examines the zero flag, and if set, jumps to its target address. If the flag is not set,
the instruction completes and execution proceeds to the next instruction. Some
conditions are more complex. The Set if Less Than or Equal (SETLE) instruction

examines the sign, overflow, and zero flags.

If the SET or Jec (J = jump, cc = condition code) instruction is preceded by an
instruction that leaves in an undefined state any flags that are required to determine
the SET or Jcc condition, the result will be unpredictable.

Instruction Set

This section gives an overview of the instruction set, organized by function.
Appendix A, “Instruction Set Reference,” provides an alphabetical list of all
instructions and full details about the operation of each one.

Chips and Technology, Inc. PRELIMINARY 3-15



B Instruction Set Instruction Set Overview

Data Movement Instructions

The data movement instructions, listed in Table 3-3, transfer an operand from one
place to another. The operand may be located in a register, in memory, or in the
instruction as an immediate operand.

Other forms of data movement are provided by the PUSH and POP instructions.
These one-byte instructions move operands between the registers and the stack, and
automatically update the stack pointer. Still other instructions exchange operands in
two registers, or a register operand with an operand in memory. Sign-extending
instructions, like CBW and MOVS, can be used to expand the size of an operand.
These instructions fill the additional bit positions in a larger operand with the value
of the operand’s sign bit (the highest-order bit in the original operand). The IN and
OUT instructions move operands between the AL, AX, or EAX register and I/O
ports.

]
Table 3-3. Data Movement Instructions

Mnemonic Description

CBW/CWDE Sign-extend AL to AX, or AX to EAX.

CWD/CDQ Sign-extend AX to DX, or EAX to EDX.

MOV Transfer data between a general register or memory, between two general registers,

between a segment register and memory, or between a general register and any of a
segment register, control register, debug register, or test register.

MOVSX Sign-extend a byte to a word or dword, or sign-extend a word to a dword.

MOVzZX Zero-extend a byte to a word or dword, or zero-extend a word to a dword.

POP Pop the 80x86 stack into a general register, segment register, or memory location.

POPA[D] Pop the 80x86 stack into all general registers (word or dword size).

PUSH Push a general register, segment register, or memory location onto the 80x86 stack.

PUSHAI[D] Push all general registers (word or dword size) onto the 80x86 stack.

XCHG Exchange contents of two general registers, or contents of a general register and a
memory location.
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I/O Data Movement Instructions

Four instructions can read or write addresses in the I/O address space: IN, INS,
OUT, and OUTS. These are listed in Table 3-4. The INS and OUTS instructions
are string instructions, similar to MOVS. When used with the REP opcode prefix,
they transfer the number of string elements (bytes, words, or dwords) specified in
the CX register. These instructions can only be used in systems that implement a
standard I/O space that is separate from the memory space. They cannot be used in
systems that implement memory-mapped I/O.

L]
Table 3-4.  1/O Data Movement Instructions

Mnemonic Description

IN Reads an I/O port into the AL, AX, or EAX register, depending on whether the
operand size is byte, word, or doubleword. The address can be an 8-bit immediate
or the contents of the DX register.

ouT - Writes the AL, AX, or EAX register to an I/O port. The address can be an 8-bit
immediate or the contents of the DX register.
INS Reads from a port addressed by the DX register to the memory space addressed by a

pointer in ES:EDI (the EDI register in the ES data segment). The EDI register is then
incremented or decremented by 1, 2, or 4, depending on the operand size. The DF
flag in the EFLAGS register selects incrementing or decrementing.

OUTS Writes from the memory space addressed by a pointer in ES:EDI to a port addressed
by the DX register. The EDI register is then incremented or decremented by 1, 2,
or 4. The DF flag selects incrementing or decrementing.
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Arithmetic Instructions

Arithmetic instructions, listed in Table 3-5, include addition, subtraction,
multiplication, and division. Because the addition and subtraction operations are
identical on unsigned and signed numbers, only one form of instruction is required
for each. Other arithmetic instructions, such as multiply and divide, require unique
opcodes for each operand encoding. IMUL is used for signed operands, and MUL
is used for unsigned operands. The SBB and ADC instructions are provided for
cascading subtractions or additions to achieve larger operand sizes. Two 64-bit
quantities can be added by first performing an ADD on the lower 32 bits, which
will set the carry if the result is too large for the destination. An ADC on the upper
32 bits will then include this carry in the addition.

Dedicated instructions are provided for packed and unpacked BCD data. The
use of these instructions is restrictive, and specific programming practices must
be followed.

[ ]
Table 3-5. Arithmetic Instructions

Mnemonic Description

AAA ASCII adjust after add (unpacked BCD).
AAD ASCII adjust before divide (unpacked BCD).
AAM ASCII adjust after multiply (unpacked BCD).
AAS ASCII adjust after subtract (unpacked BCD).
ADC Add source operand and CF to destination.
ADD Add source operand to destination.

CMP Compare two operands and set flags.

DAA Decimal adjust after add (unpacked BCD).
DAS Decimal adjust after subtract (unpacked BCD).
DEC Decrement destination operand by 1.

DIV Unsigned divide.

IDIV Signed divide.

IMUL Signed multiply.

INC Increment destination operand by 1.

MUL Unsigned multiply.

NEG Compute two’s complement of destination..
SBB Subtract source operand and CF from destination.
SUB Subtract source operand from destination.
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Binary arithmetic instructions update the flags, shown in Table 3-6, to indicate
details of the result. These flags are tested by conditional instructions, such as Jcc
and SETcc.

L]
Table 3-6.  Binary Instruction Flag Setting

Flag Description
CF Set for 8-bit ADD where the sum of the operands exceeds 255; set for carry
(AAA, ADC, ADD, DAA) or borrow (AAS, CMP, NEG, SBB, SUB) with an
unsigned integer.
OF Set if the sign of the result changes due to an arithmetic instruction on signed integers.
SF Set if the result of an arithmetic instruction is negative.
ZF Signed and unsigned integer; set when all bits of the result are clear.

Logical Instructions

Logical instructions operate on one, two, or four-byte quantities. Each logical
operation performs a function on each bit position, independently of the other bit
positions. This differs from addition, for example, where one bit can propagate a
carry to the next bit.

There are five logical operations: AND, OR, XOR, TEST, and NOT. The TEST
instruction is identical to the AND instruction except that only the flags are altered.
Logical instructions are defined in Table 3-7.

|
Table 3-7. Logical Instructions

Mnemonic Description

AND Bitwise-AND source operand into destination
NEG Two’s complement negation

NOT Bitwise-negate destination

OR Bitwise-OR source operand into destination
TEST Bitwise-AND two source operands and set flags
XOR Bitwise-XOR source operand into destination

Chips and Technology, Inc. PRELIMINARY 3-19



B Instruction Set

3-20

Shift and Rotate Instructions

The shift and rotate instructions (Table 3-8) alter one, two, four, or eight-byte
operands by shifting or rotating them left or right by a selected number of bit
positions. An additional operation, rotate with carry, adds the carry to the length

of the operand. This rotates 9, 17 or 32-bit quantities.

Instruction Set Overview

The rotate value must be specified by a byte-long immediate in the instruction or
by the register CL, or it must be implied by the opcode to be 1.

I
Table 3-8.  Shift and Rotate Instructions
Mnemonic Description Mnemonic Description
RCL Rotate left through carry flag CF SHL Shift left arithmetic
RCR Rotate right through carry flag CF SAR Shift right arithmetic
ROL Rotate left SHLD Shift left logical double (funnel shift)
ROR Rotate right SHR Shift right logical
SHRD Shift right logical double (funnel shift)

Bit Manipulation Instructions

Bit manipulation instructions (Table 3-9) allow access to a single bit anywhere
within a register or a variable length field in memory. The bit location can be
specified either by a register or an immediate value. Two instructions, BSF and
BSR, are provided so that the first set bit in a 16 or 32-bit operand can be quickly
determined from the left and right, respectively.

I

Table 3-9.  Bit Manipulation Instructions

Mnemonic  Description Mnemonic Description

BSF Bit scan forward BTC Bit test and complement
BSR Bit scan reverse BTR Bit test and reset

BT Bit test BTS Bit test and set
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String Instructions

String instructions (Table 3-10) provide an efficient means of processing large
operands that occur sequentially in memory, each of which may be one, two, or four
bytes in size. By using the repeat instruction prefix, REP, a value loaded into ECX
determines how many operands there are. Each of the string instructions performs
its function on each operand sequentially in either the upward or downward
direction, depending on the setting of the direction flag, DF.

Instruction REP MOVS, for example, fetches an operand from memory addressed
by DS:ESI and stores it in another memory location addressed by ES:EDI. It then
increments both ESI and EDI by the operand length, decrements ECX, and if the
value of ECX is not zero, repeats the operation. If the direction flag is set, the string
is decremented and the quantity by which ESI and EDI are altered on each
instruction cycle is negative.

String instructions can also be used without the repeat prefix. In this case, only one
instruction cycle is performed, and the ECX register is not modified.

|
Table 3-10.  String Instructions

Mnemonic Description (Use With REP Prefixes)

CMPSx Compare string element

LODSx Load bytefword/dword string element into AL/AX/EAX
MOVSx Move string element from source to destination

SCASx Scan string element for match against AL/AX/EAX
STOSx Store AL/AX/EAX into string element

Chips and Technology, Inc. PRELIMINARY 3-21



M Instruction Set Instruction Set Overview

3-22

Control Transfer Instructions

There are many types of control transfer instructions, including jumps, calls,
interrupts, and exceptions. Table 3-11 lists these instructions. The functions of
some of them depend on the setting of the flags, which determine if they actually
perform control transfers or behave as no-operation instructions, such as conditional
instructions.

Jump instructions can be either conditional or unconditional. If conditional, the
instruction includes a signed displacement, which is added to the address of the
following instruction to determine the target instruction address. Unconditional
jumps can also locate their target in this way, but they can also operate by selecting
a register quantity instead of specifying a displacement.

Call and return instructions are similar to unconditional jumps, but they have the
additional function of using the program stack to keep track of the return address.

Other forms of control transfer include intersegment jumps and calls, which

allow execution to continue at a specific offset within a specific segment. These
operations behave differently, depending on the mode of operation, and one should
fully understand the segmentation rules of real and protected modes before
attempting to use them.

Finally, some instructions perform control transfers by accessing the interrupt
descriptor table. The INT 3 instruction is a good example. It fetches a new code
segment and instruction pointer from the fourth entry in the IDT; stores its old code
segment, instruction pointer, and flags on the stack; and begins execution in the new
segment. Other instructions perform this function conditionally. INTO transfers
control only if the overflow flag is set, and IDIV does so only if a divide exception is
encountered.
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Table 3-11.

Instruction Set

Control Transfer Instructions

Mnemonic

Description

CALL

Subroutine call or nested task switch

INT

Call to interrupt procedure

INTO

Call interrupt procedure on overflow

IRET

Interrupt return

Jce

Conditional jump (e.g., JZ jumps if ZF is set)

IMP

Unconditional jump or non-nested task switch

LooP

Loop [E]CX times

LOOPNZ

Loop [E]CX times or till ZF clear

LOOPZ

Loop [E]CX times or till ZF set

RET

Return from subroutine call

SETcond

Set byte on condition (e.g., SETZ set byte to 1 if ZF set)

Flag Instructions

Flag control instructions (Table 3-12) operate on the flags register, either the whole
register or specific flags. The STC instruction sets the carry flag without altering
any other bits. The POPF instruction reads an operand from the stack and stores it
into the flags.

Table 3-12.  Flag Instructions

Mnemonic Description Mnemonic Description

CLC Clear carry flag CF POPF[D] Pop into FLAGS/EFLAGS

STC Set carry flag CF PUSHF[D] Push FLAGS/EFLAGS onto stack
CMC Complement carry flag CF SAHF Store FLAGS into AH

CLD Clear direction flag DF STD Set direction flag DF

CLI Clear interrupt flag IF STI Set interrupt flag IF

LAHF Load AH into FLAGS
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Segment Manipulation Instructions

The function of instructions that operate on segment registers varies, depending on
the execution mode of the processor. A POP seg instruction, for example, will
function differently in protected mode than in real mode.

Instruction Set Overview

Among the instructions in this set (Table 3-13) are PUSH and POP seg, MOV seg,
and the {oad seg instructions (LxS). The LxS series of instructions is provided to
load both a segment selector and a general register pointer simultaneously.

T

Table 3-13. Load and Store Segment Instructions

Mnemonic Description Mnemonic Description

LDS Load pointer to DS LSS Load pointer to SS

LES Load pointer to ES MOV sreg Move to or from segment register
LFS Load pointer to FS POP sreg Pop from stack to segment register
LGS Load pointer to GS PUSH sreg  Push onto stack

The rules listed in Table 3-14 should be observed when selecting a segment.

I—
Table 3-14. Segment Selection Rules

Operation Default Segment Able to Override?
Code fetches CS No

Destination of string instructions ES No

Stack instructions SS No

Address generated with base from ESP or EBP SS Yes

All other address DS Yes

3-24
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Instruction Set W

Protection Control Instructions

This group of instructions, listed in Table 3-15, establishes and maintains system
protection features. LIDT loads the register that points to the interrupt descriptor

table, which normally only occurs when entering the protected mode. LLDT loads
the register that points to the local descriptor table.

I
Table 3-15.

Protection Control Instructions

Mnemonic

Description

ARPL

Adjust requestor privilege level

LAR

Load access rights

LGDT

Load global descriptor table register

LIDT

Load interrupt descriptor table register

LLDT

Load local descriptor table register

LMSW

Load machine status word (see also MOV)

LSL

Load segment limit

LTR

Load task register and its shadow descriptor register

SGDT

Store global descriptor table register

SIDT

Store interrupt descriptor table register

SLDT

Store local descriptor table register

SMSW

Store machine status word (see also MOV)

STR

Store task register

Verify a segment for read access

VERW

Verify a segment for write access

Chips and Technology, Inc.

PRELIMINARY

3-25



B Instruction Set

3-26

Miscellaneous Instructions

Instruction Set Overview

This group consists of the instructions shown in Table 3-16. It includes two
important instructions, NOP and LEA. The NOP instruction performs no function.
The LEA instruction calculates an address, but rather than access the operand at that
location, simply stores the calculated address in a general register.

]
Table 3-16. Miscellaneous Instructions

Mnemonic Description

BOUND Verify that value is in specified range
CLTS Clear task-switched flag TS

ENTER Enter nested procedure

HLT Cease execution until interrupt detected
INT Generate software interrupt

INTO Generate INT 4 software interrupt if OF set
IRET[D] Return from interrupt handler or nested task
LEA Load effective address into general register
LEAVE Leave nested procedure

NOP No operation

WAIT Wait for BUSY to deactivate

XLATB Look up AL in translate table

PRELIMINARY
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Programming Guidelines

This section discusses some special uses of the general registers and suggests ways
to optimize your code for the Super386 processor. See Appendix C for more
advanced programming issues.

Register Usage

The eight general registers have different requirements because of their implicit use
in different instructions. This uniqueness places important restrictions on their use.
When the functions for which a register is dedicated are not needed in a particular
instruction or sequence of instructions, the register can be used for other purposes.

EAX—This register has an instruction encoding that is one byte shorter for most
operations, including ADD, XOR, and MOV. EAX must also be used as an operand
for many instructions, including decimal arithmetic, multiply, and divide, as well as
IN and OUT.

EBX—This is the most convenient register for generating addresses in 16-bit code.

ECX—This register is used both as a bit index in shift instructions and as an
iteration count by LOOP and repeated string operations.

EDX—This register participates in multiply and divide operations, and specifies the
port number for IN and OUT instructions.

ESI—The ESI register determines the source operand memory address for string
instructions; can be used to index memory by 16-bit addresses.

EDI—This register determines the destination operand memory address for string
instructions; can be used to index memory by 16-bit addresses.

EBP—This register points to the base of the stack.

ESP—The ESP register points to the top of the stack.

Chips and Technology, Inc. PRELIMINARY 3-27
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Optimizing Execution Speed

A dramatic improvement in execution speed can be achieved by following a few
simple programming rules. Many instructions have been optimized to execute
quickly on the Super386 processor. On the 38605 processor, many instructions are
designed to take special advantage of the architecture of the instruction cache. The
following are a few guidelines that will optimize your execution time:

3-28

Favor Not-Taken Jumps— When conditional jumps are used, favor the not taken
case. All not-taken jumps execute in one clock.

Align Jump Targets— Align the target of jump instructions to doubleword
boundaries. This increases the probability that the full target instruction will be
available from the first instruction fetch.

Align Operands—Align operands so that they do not cross doubleword
boundaries. Unaligned operands require multiple bus accesses.

Use One-Byte Displacement Jumps— Whenever possible, use one-byte
displacement jump instructions. These are fast on all Super386 processors; the
38605 processor executes them more than twice as fast as their word or dword
displacement counterparts.

Interleave Memory Operations—Follow fetches or stores to slow memory,
such as video displays, by unrelated instructions without memory operands.
The processor can continue execution when no more than one memory
access is pending.

Shift Instructions— Use shift instructions when multiplying or dividing by
powers of 2.

Consider Timing of Register Loads—Avoid loading a register immediately
before using it to generate an address. The processor stalls when this happens.
Fetching the value two or more instructions before using the register will
eliminate this delay.

Avoid Loop Instructions— While loop instructions are convenient, the
two-instruction sequence DEC/JNZ is significantly faster.

Write 512-Byte Critical Routines for Instruction Cache— Write assembly
language routines of no more than 512 sequential bytes, starting at an address that
is a multiple of 16. If a program sequence fits entirely in the cache, sequential
and near-jump instruction fetches will not interfere with operand accessing. Asa
rule, a routine of up to roughly 150 assembly language instructions can fit in the
cache in protected mode (up to 200 instructions in real mode).

PRELIMINARY Chips and Technology, Inc.
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System Programming

Figure 4-1 presents a broad overview of the types of data structures that an
operating system can create in a full-featured system running in protected mode
on the Super386 processor. Starting from the bottom of the figure and moving
up, the data structures include the following:

Operating System Kernel— Consists of code and data segments. (In this figure,
the stack is in the data segment, but it could have a separate segment.)

Operating System—Consists of code and data segments, similar to the kernel.

Interrupt Descriptor Table (IDT)—Contains the control-gate descriptors for
interrupts and exceptions.

Global Descriptor Table (GDT)—Contains the control-gate descriptors and
segment descriptors for code, data, and task segments that are available globally.

Interrupt Handlers—Service interrupts and exceptions.

Local Descriptor Tables (LDTs)—Contain the control-gate descriptors and
segment descriptors for code and data segments that are available only to a
specific task or set of tasks.

Single Task or Program—Contains the following elements:
- Code segment

Data segment (stacks are sometimes included with the data)

Stack segment
Task state segment (TSS), which stores a task’s context during a task switch

Page Directory—Contains entries that locate page tables.
Page Tables—Contain entries that locate 4kB physical pages.

The SuperState V extensions include other resources that are not shown in this
figure. They are used for power management and device virtualization. The
SuperState V resources are transparent to existing operating systems, as described
in the section entitled “SuperState V mode.”

Chips and Technology, Inc.
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This chapter describes the methods of creating and maintaining the system
data structures. It expands on the discussions in Chapter 2 by explaining all
mechanisms from the viewpoint of system programming. It also includes
sections on multitasking, protection mechanisms, testing, and debugging.

]
Figure 4-1.  System Data Structures

Page Table Page Table Page Table

x Page Directory

Physical Memory

Linear Memory

X (Current task) Code
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Interrupt Handler
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X 07

0S Code
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p ¢ 0S Kernal Data ¥ = always in memory
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System Registers

Before exploring the details of segmentation, paging, and multitasking, this section
provides some background on the system registers. These registers are referred to
frequently throughout the sections that follow.

Figure 4-2 shows the processor’s register set. Some of these—the base register set
and the segment registers—are visible to application software. Others are either
visible only to system software or are invisible registers, called shadow registers.
The system-level registers include the following:

® Flags register: EFLAGS

® Segment registers and shadow registers: CS, DS, SS, ES, FS, and GS
® System segment registers and shadow registers: TR and LDTR

® System address registers: GDTR and IDTR

® Control registers: CR3, CR2, and CRO

® Debug registers: DR7:6 and DR3:0

® Test registers: TR6 and TR7.

These registers are discussed in the following paragraphs.

Flags Register (EFLAGS)—In addition to the bits that can be changed by
application programs, the EFLAGS register contains other bits that only the system
software can change.

Segment and Shadow Registers (CD, DS, SS, ES, FS, GS)—The six 16-bit segment
selector registers have invisible 64-bit shadow registers that are loaded automatically
with the corresponding segment descriptors when the segment selectors are loaded.

System Segment and Shadow Registers (TR and LDTR)—The two 16-bit system
segment registers contain system selectors: the task register (TR) references the
current task state segment (TSS), and the local descriptor table register (LDTR)
references the current local descriptor table (LDT). Both registers have invisible
64-bit shadow registers that are loaded automatically with the TSS and LDT
descriptors when the TR and LDTR are loaded.

System Address Registers (GDTR and IDTR)—The 48-bit global descriptor table
register (GDTR) and the interrupt descriptor table register (IDTR) reference the
global descriptor table (GDT) and the interrupt descriptor table (IDT).

Control Registers (CR3, CR2, and CR0)—Control registers are 32-bit registers that
are used to control and observe the status of segmentation, paging, task switching,
and coprocessor operations.

Chips and Technology, Inc. ; PRELIMINARY 4-3
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4-4

Debug Registers (DR7:6 and DR3:0)—The 32-bit debug registers are used to debug
programs.

Test Registers (TR6 and TR7)—Two 32-bit test registers, TR6 and TR7, are used to
test the translation lookaside buffer (TLB).

Figure 4-3 illustrates how some of these registers relate to data structures. In this
figure, the arrows show how the content of a register is used to access a data
structure, or how entries in a data structure (such as descriptors in a descriptor table)
are used to access other data structures. For example, the CS selector register, when
loaded by software with a code segment selector, points to a code segment descriptor
in either the LDT or GDT. This descriptor, in turn, locates the associated code
segment.

These registers and relationships are described in this section and in later sections
entitled “Segmentation”, “Multitasking,”, “Testing the TLB”, and “Debug Control
and Status,”

PRELIMINARY Chips and Technology, Inc.
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]
Figure 4-2.  System Registers
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Figure 4-3. Registers Associated With Segments and Tables
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General Registers

Figure 4-4 shows the general registers. When a general register is pushed on or
popped from the stack, the default operand size is specified by the D bit in the code
segment descriptor (see the section “Segment Descriptors™). If a destination register
has more bytes than the operand, the upper part of the register is left unchanged.

The binary sort order for instruction decoding is show in Figure 4-4.

]
Figure 4-4. General Registers

8-bit 8-bit 16-bit 32-bit Binary
Register Type Registers Registers Registers Registers Sort Order
31 16 15 87 e
General Purpose AH AL AX EAX 000
General Purpose BH BL BX EBX 011
General Purpose CH CL cX ECX 0ol
General Purpose DH DL DX EDX 010
Source Index SI ESI 110
Destination Index DI EDI 111
Base Painter BP EBP 101
Stack Pointer SP ESP 100

Flags Register (EFLAGS)

The 32-bit flags register, shown in Figure 4-5, has only the lower 18 bits defined.
The lower 16 bits constitute the 8086 flags register. Most of these bits reflect status
after an operation. Bits 17 and 16 enable virtual-8086 mode and control repeated
breakpoints. Chapter 2 describes the flags available to application software. The
description following Figure 4-5 describes all flags represented in the flags register
in greater detail.
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|
Figure 4-5. EFLAGS Register

31 17161514131211169 8 7 6 5 4 3 2 1 0

I/ Reserved %UM

RF} @ INT IOPLIOFIDF IFJTF|SF)ZF OlﬂF @ |PF} 1 JCF} EFLAGS

e

Flags Register

bits: 17 VM Virtual-8086 Mode—This bit indicates whether the processor
is in virtual-8086 mode. Protected mode must be enabled
(PE bit set to 1 in CRO) for this bit to have an effect, because
virtual-8086 mode is a sub-mode of protected mode:
1 Enable virtual-8086 mode
0 Disable virtual-8086 mode.

A general-protection fault is generated when executing a
privileged opcode in this mode. The VM bit can be set only
in protected mode, either with the IRET instruction from
privilege level 0 or by a task switch.

Note that the VM bit bears no relation to virtual memory,
as the acronym might imply. The VM relates only to
multitasking of 8086 programs.

16 RF Resume Flag—This bit indicates whether breakpoint
debugging should be resumed after a breakpoint is
encountered. When set to 1, it ensures that restarted
instructions do not generate repeated debug faults.

Instead, a debug fault is ignored for one instruction:
1 Ignore breakpoint for one instruction.
0 Do not ignore breakpoint.

Because RF is in the EFLAGS register, it is loaded whenever
an IRET instruction is performed. When the interrupt or
exception handler returns, it must do so with the IRETD
instruction to pop all 32 flag bits, including the RF. The RF
is not affected by the POPFD and IRET instructions. It is

set according to the EFLAGS memory image after an
IRETD instruction is performed, and after JMP, CALL,

and INT instructions have caused a task switch.
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Reserved—This bit is cleared to 0.
Nested Task—This bit indicates whether the current task is

4 ¢ o 41n¢ 1 nested within another task. It only applies to protected
cedut e (mode. If an IRET instruction is executed with NT set to 1,

the current task state is saved and a task switch is performed
to the task that invoked the current task. The back-link field
in the current task state segment (TSS) is used to access the
old task. If the IRET instruction executes successfully, NT
is cleared to 0. A CALL or INT instruction that causes a
task switch sets it to 1.

1 Task is nested

0 Task is not nested.

I/O Privilege Level—These two bits determine the IfO
privilege level required to perform I/O instructions. They
apply only to protected mode:

11 Privilege level 3 (lowest)
10 Privilege level 2
01 Privilege level 1

00 Privilege level O (highest).

In protected mode, if the current privilege level (CPL) is
numerically greater than the IOPL, the I/O permission
bitmap (IOPB) is interrogated. In virtual-8086 mode, the
IOPB is interrogated for any IOPL. The IOPL also
determines the maximum CPL value allowed to alter the
interrupt enable (IF) flag by following a pop into the
EFLAGS register. POPF and IRET instructions can alter the
IOPL bits when they are executed from privilege level 0. A
task switch always alters the IOPL bits when the new image
of the flags is loaded from the new task state segment (TSS).
Overflow Flag—This bit indicates whether the uppermost
bit (sign bit) of an operand is changed as a result of an
operation.

1 Overflow

0 No overflow.

PRELIMINARY 4-9
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10 DF Direction Flag—Bit DF indicates whether a source or
destination address pointer of a string instruction (the
contents of the ESI and/or EDI register) should be
incremented or decremented after each iteration of the
instruction execution. The increment is +1, +2, or +4
and the decrement is -1, -2, or -4, depending on the operand
size.

The flag can be explicitly set or cleared by the STD and
CLD instructions.

1 Decrement
0 Increment.
9 IF Interrupt Enable Flag—This bit indicates whether external

interrupt requests (INTR signal) are to be recognized. The
flag can be explicitly set or cleared by the STI and CLI
instructions. IOPL indicates the maximum CPL value
allowed to alter the IF flag:

1 Enable INTR.
0 Disable INTR.
8 TF Trap Flag—This bit indicates whether a single step debug
trap (exception 1) should be generated.
1 Trap on single steps
0 Do not trap on single steps.
7 SF Sign Flag—Bit SF indicates whether an arithmetic operation

had a positive or negative result, as indicated by the high-
order bit of a byte, word, or doubleword (bit 7, 15, or 31):
1 Negative result
0 Positive result.

6 ZF Zero Flag—This bit indicates whether an arithmetic operation
resulted in zero:
1 Zero result
0 Nonzero result.

5 —_ Reserved—This bit is cleared to 0.

AF Auxiliary Flag—This bit indicates whether an arithmetic
operation resulted in a carry out (addition) or borrow
(subtraction) from bit 3 of the least-significant byte,
regardless of the operand size. It is useful for BCD

arithmetic.
1 A BCD carry out or borrow occurred.
0 No BCD carry out or borrow occurred.
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3 —_— Reserved—This bit is cleared to 0.

PF Parity Flag—PF indicates the number of 1s in the low-order
operand byte after an arithmetic operation, regardless of the
operand size:

1 Even number of 1s
0 Odd number of 1s.

1 — Reserved—This bit is set to 1.

0 CF Carry Flag—This indicates whether an arithmetic operation
resulted in a carry (addition) or borrow (subtraction) beyond
| (a1 Tron the high-order bit of the operand. The flag can be set

uee A€ 2_' L explicitly or cleared by the STC and CLC instructions.
P 177 The flag can be complemented with the CMC instruction:
1 A carry out or borrow occurred.

0 No carry out or borrow occurred.

Control Registers (MSW and Paging Control)

The following four 32-bit control registers, shown in Figure 4-6, contain the paging
controls and the machine status word (MSW):

( ® CR3—Page directory base address

® CR2—Page fault linear address
® CR1—Reserved
® CRO—Page enable and machine status word (MSW).

These registers are discussed in the following paragraphs.

CR3, Page Directory Base Address—When paging is enabled in protected mode,
CR3 holds the most significant 20 bits of the page directory. The 12 lower
significant bits are ignored. CR3 is changed automatically during a task switch
if the new task has a different page directory.

CR2, Page Fault Linear Address—If a page-fault exception occurs, the processor
stores the 32-bit linear address that caused the exception in CR2. This address can
be used by the page-fault exception handler to determine which page to load from
mass storage.

CRO, Page Enable and Machine Status Word—Paging enable is the high-order bit.
The lower 16 bits are the MSW, which is used for mode control, task switching, and
coprocessor monitoring. The bits are defined following Figure 4-6.

Chips and Technology, Inc. PRELIMINARY 4-11
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]
Figure 4-6. Control Registers

31 12 11 . 0
Page Directory Page Address r / Reserved CR3
L 1
Page Fault Linear Address CR2
ipr. ' // // // Reserved // / / TSIEMIMP P cre
31 L 3210,
M
31 PG Page Enable—This bit enables paging, which allows the

virtual memory space of 4GB to be logically allocated
among 4kB pages in physical memory. It can only be set in
protected mode (PE = 1), and it must be set in virtual-8086
mode if more than one program will be run in that mode.

A jump instruction must be executed to clear the instruction
pipeline after changing this bit.

1 Paging enabled
0 Paging disabled.
3 TS Task Switched—Bit TS is set automatically whenever a task

switch is performed. It can be tested by a task to determine
whether a previous task may have had control of the
coprocessor. The bit can be cleared with the CLTS
instruction. When TS is set to 1, a coprocessor instruction
(ESC opcode) will cause a Coprocessor Not Available trap
(exception 7). If both the TS and MP bits ar a WAIT
instruction will also generate this exception. clear f
1 Task switch occurred since last cleared.

0 Task switch has not occutred since last cleared.

2 EM Emulate Coprocessor—When this bit is set, all coprocessor
instructions generate a Coprocessor Not Available trap
~ (exception 7). The exception handler can then emulate the
coprocessor instruction.
1 Exception handler emulates math opcode.
0 No emulation.
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1 MP Math Coprocessor Present—The MP bit is used in conjunction
with the task switched (T'S) bit to synchronize the processor
with a math coprocessor. It determines whether a WAIT
instruction will generate a Coprocessor Not Available trap
(exception 7).

1 Coprocessor present
0 Coprocessor not present.
0 PE Protection Enable—This bit selects protected mode or real

mode. If paging is enabled (PG = 1), protection must also
be enabled; otherwise, exception 13 is generated. A jump
instruction must be executed to clear the instruction pipeline

after changing this bit.
1 Protected mode
0 Real mode.

The processor is initialized in the real mode with both the PG and PE bits of CRO
cleared to 0. The CR3 and CRO registers can be loaded with MOVE instructions
(such as MOV CRO, reg), although the LMSW and SMSW instructions can also be
used to load CRO. After the PE bit is changed to its desired value, a JMP instruction
will clear the pipeline of any instructions that have been fetched.

Segmentation

Chapter 2 provides an overview of how segmentation partitions logical addresses
into linear address segments up to 4GB (232 bytes) in size. Segment registers hold
segment selectors, which reference segments via segment descriptors located in a
descriptor table. An instruction making a memory access references a segment
selector, and thereby indirectly locates the memory segment.

Several segmentation models can be implemented. Flat models map all segments

to the same linear memory, thereby effectively disengaging the segmentation
mechanism. UNIX®and other paged but non-segmented operating systems use this
environment. Multisegment protected models map segments into discrete, limited
parts of the memory, thereby isolating one segment from another and avoiding areas
of the linear address space that are not populated with RAM or ROM hardware.

It is possible and sometimes desirable to have two or more segments share the
same location in memory (that is, to have segments overlapping). For example,
ROM addresses often hold both code and data. These designs, as well as complex
segmented and demand-paged designs, can be supported within the framework of
the processor’s segmentation and paging architecture.
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Segment Registers and Their Shadows

The segment registers contain segment selectors. Some of the registers are reserved
for segment selectors of a specific type, as shown in Table 4-1. Each 16-bit segment
register has a corresponding 64-bit shadow register, invisible to software, which
holds the segment descriptor corresponding to its selector. When a selector is loaded
into a segment register, the segment descriptor is also loaded automatically into the
segment register’s shadow register.

] .
Table 4-1.  Types of Segments

Segment  Functon Required? (Protected Mode) Required? (Real Mode)

CS Code Yes Yes

DS Data and/or stack  Yes, to read or write data. Yes, to read or write data.

SS Stack Yes, if DS is used for stack, copy / Yes, to perform stack operations
the DS selector to SS. and handle interrupts. If DS is used

) for stack, copy the DS selector to
o \ss.

ES Extra Required for MOVS, CMPS, and  Required for MOVS, CMPS, and
STOS instructions. Initialize to STOS instructions. Initialize to
zero if not used. zero if not used.

FS Extra No, initialize to zero if not used. No, initialize to zero if not used.

GS Extra No, initialize to zero if not used. No, initialize to zero if not used.

It is possible to support aliases using segmentation. Code segments, which normally
store only executable code, may also store data if a data segment is mapped to the
same address space as the code segment. This is useful for ROM, which may need
to hold constants as well as code. It is also possible to write to code segments with
the same data-mapping arrangement. Protected mode prohibits modifications of the
code segment. However, by aliasing the code and data segments, a write to the data
segment will update the identical location in the code segment. It is possible to
implement partially overlapping aliases as well. The stack segment, for example,
may begin in the middle of the data segment and extend to the end of the data
segment. This makes the stack segment a subset of the data segment, while still
allowing the data segment direct access to the stack.

A special type of code segment, called a conforming code segment, is defined for
libraries, interrupt and exception handlers, and other types of code shared by many

. . W»_hyapplications. For conforming code segments, privilege-level checks are not
b _enforced; any privilege level can call or jump to such a segment. See the section

entitled “Conforming Code Segments” later in this chapter.
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In protected mode, the 16-bit segment selector contains a 13-bit offset that points
to a segment descriptor in the GDT or LDT. The segment descriptor defines the
base address, limit, and other properties of the segment. Figure 4-7 shows the
mechanism.

I
Figure 4-7. Segmentation Mechanism

Linear Address

31 22 21 12 11 0
Page Directory| Page Table Page
Offset Offset Offset
GDT or LDT \ ~ J

Shadow Register

—=1  Main Memory | --» Segment

Descriptor
| ——*
Local ITable
Address :Select
15 3! 0 31 0
0ffset = Offset
Segment Selector Instruction Effective Address

4\\{ / Segment selectors in protected mode have three functions: they indicate which table

| o3 yca Wy pat ¢4 contains the segment descriptor of interest, they index the descriptor in that table,
\/ \3 At f ot -and they establish a requestor privilege level (RPL) for any activity relating to that

ﬁ,’» selector. Selectors are normally assigned by the operating system. Application

m @ ﬁ) programs may see them in pointer variables. Figure 4-8 shows the format in
protected mode. , ~ e B
T pe 22 fectare o deotliwatiawn LeGurian’t oy @
St i yepcescer S T4 priviiege
O oriiei 8 S . - ¥
B T s I P - "o fr(._’:&
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Figure 4-8. Segment Selector

System Programming

15

TI RPL

4-16

bits:

15:3

Offset

Descriptor Table Offset—These bits are indexes into the
descriptor table defined by the TI bit. The base of the table
is contained in the GDTR or LDTR. A null selector is
defined as one which has all zeros in this field.

Table Indicator—This bit indicates whether the LDT or GDT
contains the descriptor.
1 Local descriptor table (LDT)
0 Global descriptor table (GDT). tg
a

Requestor Privilege Level —The RPL bi}( represen
privilege level used to override the CPL when a descriptor
is loaded. The RPL is normally used by the operating -
system to “weaken” (raise the privilege level number of)
the effective CPL at which a code segment executes.

11 Privilege level 3 (lowest)

10 Privilege level 2

01 Privilege level 1

00 Privilege level O (highest).

The RPL can be updated with the ARPL instruction. When
loading code segments, the RPL value in the CS register is
automatically overwritten by the processor with the CPL
after a privilege-level check is performed on the load
operation and the code segment is loaded.

The RPL weakens the CPL during the loading of a descriptor, when the descriptor’s
DPL is checked for valid access. The section entitled “Protection Mechanisms”
explains the CPL, DPL, and RPL checking rules. The CPL is loaded only into the
RPL field of the CS selector after the privilege checks for access are performed and
the selector is loaded. The operating system can examine the CPL by storing the CS
selector into a general register or memory.

PRELIMINARY Chips and Technology, Inc.
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In real mode, the segment register contains a 16-bit selector that is shifted to the left
by four bits to form a 20-bit base address for the segment. The result is then stored
as the 32-bit segment base address in the corresponding shadow register, whose
upper 12 bits are filled with zeros. The limit field is left unmodified, as are the other
properties of the segment. The limit field is set to 64kB on reset. Therefore, loading
a selector in real mode also loads the 32-bit segment base address in the shadow
register but leaves the remaining 32 bits of the shadow register unmodified. The
RPL is not defined.

Segment selectors are loaded with a move, pop, load full pointer, far jump, far call,
) interrupt or exception, or a return from an interrupt or procedure. A return to an
o Loriginating segment requires a reload of its selector. In using these instructions,
O the default segg}gp;t(mgister for data references is dependent on the base register
' u?ea] The DSirégister is the default segment-register for all selected basd registers *+ <=
(including no basete isrt%g except for the ESP or EBP bas@?egister. If the ESP or
EBP base register is e%gefcd, the defaulﬁﬂr@giﬁs(t\ér is SS. ESP cannot be used as an
index register. The choice of default segment register is not affected by using EBP

as an index register.
S @

THE default segment registel;'ican be overridden by using segment prefixes.
However, the implied segment selection used by string destinations and PUSH and
POP instructions cannot be overridden. In these cases, segment prefixes are ignored.

Segment Descriptors

Segment descriptors define the base address, limit, attributes, and access rights of a
segment. These elements are discussed in the following paragraphs.

Base Address—The base address is the starting address of the segment in the linear
address space.

Limit—The limit defines the upper bound for the byte effective address in this
segment or a lower bound in an expand-down segment. The target address is
defined by the base address plus an offset provided in the instruction. In expand-up
segments, the offset must not exceed the limit. In expand-down segments, the offset
must exceed the limit. During a reset, which initiates real mode, the limit is set to
64kB.

Attributes and Access Rights—Attributes and access rights are segment
characteristics such as code or data; default address and operand size; expand-up

or expand-down, accessed, conforming or non-conforming code; the privilege level
required for access; the presence of the segment in memory; and its read/write
access availability.

Chips and Technology, Inc. PRELIMINARY , 4-17
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Segment descriptors are stored in memory in descriptor tables, which are arrays of
segment descriptors. The segment selector identifies a segment by specifying the
location of the descriptor within the descriptor table. Figure 4-9 shows the memory
image of a descriptor. Stack segments are data (vs. code) segments.

I
Figure 4-9. Segment Descriptors

Type
31 2423 22 21 20 19 6151413121110 9 8 7 0
Base 31:24 sFdolz| timit e| opu|1fe s Base 23:16 -4
2| 19:16 eofw i ,
Base 15:0 Limit 15:0 +0

(+4 is high dword, +0 is low dword)

31:24
7:0
31:16
23

4-18

+4
(+4)
(+0)
(+4)

Base

Segment Base Address—These bits contain the 32-bit
linear address of the segments’s base memory.

Granularity—The G bit determines the maximum segment
size (limit):

0 Byte-granular limit; the maximum segment size
is 220 bytes.

1 Page-granular limit; the maximum segment size
is 232 bytes.

‘When the G-bit is set to 0, the 20-bit limit value, limit
19:0, is zero-extended to 32-bits. This provides the byte-
granular limit. When the G-bit is set to 1, the 20-bit limit
value is shifted left by 12 bits and OR’d with OFFFh, thus
providing a 32-bit limit value that is page-granular.

PRELIMINARY Chips and Technology, inc.
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22 (+4) D/B

1—
o= YN
L 227 Wt
t’\,;\bu‘{ﬁJK
=37V

20 (+4) AVL

19:16 (+4) Limit
15:0 (+0)

15 (+4) P

14:13 (+4) DPL

11 +4 E

Chips and Technology, Inc.
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Default Size or Upper Bound (Big bit)—For code
segments (E bit = 1), the D bit indicates the default
address and operand size. For the stack segments, the

B bit (sometimes called the big bit) controls whether the
stack address size is 16 bits or 32 bits. For expand- down

stack segments or any other type of expand-down data

/ segments (E bit = 0 and ED = 1), the B bit indicates the

upper bound for the segment. The bit is ignored in all
other cases. See Table 4-2 for the relationship between
the D/B, E, C/ED, and R/W bits.

Available to Software—This bit may be used by system
software. It is not interpreted by the processor.

Segment Limit—The segment limit is expanded to 32 bits
by interpreting the granularity (G) bit.

Present—If set, this attribute indicates that the descriptor
is present in memory and is therefore valid. If this bit is
clear, an attempt to access the segment causes an
exception.

1 Present (valid)

0 Not present (invalid).

Descriptor Privilege Level—Bit DPL indicates the
privilege level of the descriptor. The processor uses
the DPL to determine access rights to the segment
pointed at by the descriptor.

11 Privilege level 3 (least privileged)

10 Privilege level 2

01 Privilege level 1

00 Privilege level O (most privileged).

Note: Bits 12:8 of the upper dword are often referred to as
the type field.

Executable—This bit indicates whether the segment
contains code (which cannot be written) or data (which
can be written). See Table 4-2 for the relationship
between the D/B, E, C/ED, and R/W bits.

PRELIMINARY 4-19
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10 (+4) C/ED Conforming/Expahd Down—For code segments

< a
ngd'““ ,}

HW %
O:’V‘ Q‘é}{‘,@,’i"‘&g

i\ - ¢ QM
o - ef (ja(/td, \L(’

LT cf Fa”“

(E bit = 1), the C bit indicates whether the segment

is conforming or nonconforming. For data or stack

segments (E bit = 0), the ED bit indicates whether

the segment expands up or down. For expand-down
1 segments (such as stacks) the B bit specifies the upper

& o bound.  Table 4-2 shows the relationship between the

D/B, E, C/ED, and R/W bits.

9 +4) R/Wead/Write—For code segments (E bit = 1), the R bit

indicates whether the segment is readable. For data or
stack segments (E bit = 0), the W bit indicates whether

e
;’ ~==7 the segment is writable. Table 4-2 shows for the

relationship between the D/B, E, C/ED, and R/W bits.

Accessed—The processor sets this bit when the segment
is loaded. System software can clear the bit to 0 before
running a program to determine whether the segment was
loaded. After loading, read/write access to the segment
can be determined by examining the dirty and accessed
bits in the page directory and page tables.

1 Segment was read or written.
0 Segment was not read or written.

PRELIMINARY Chips and Technology, Inc.
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Table 4-2. Relation of the D/B, E, C/ED, and R/W Fields

Segmentation

Bit D/B
Bit Number 22

-
_.l'l'l

C/ED
10

Type of Segment

Code Segments 0

o

Nonconforming, nonreadable, default size = 16 bits

Nonconforming, nonreadable, default size = 32 bits

Nonconforming, nonreadable, default size = 16 bits

Nonconforming, nonreadable, default size = 32 bits

Conforming, nonreadable, default size = 16 bits

Conforming, nonreadable, default size = 32 bits

Conforming, readable, default size = 16 bits

= O |=]O|=]|O

Nonconforming, readable, default size = 32 bits

Data Segments xt

Expand up, nonwritable

X1

Expand up, writable

O | O | O rm [ | rm [ 4 | o [ rm | |

— QO[O mimim|Im= OO |O

R
9
0
0
1
1
0
0
1
1
0
1
0

Expand down, nonwritable,
upper bound = FFFFh, lower bound = limit

Expand down, nonwritable,
upper bound = FFFFFFFFh, lower bound = limit

Expand down, writable,
upper bound = FFFFh, lower bound = limit

Expand down, writable,
upper bound = FFFFFFFFh, lower bound = limit

Stack Segments?

Expand up, nonwritable, 16-bit stack address.3

Expand up, nonwritable, 32-bit stack address.*

Expand up, writable, 16-bit stack address.3

Expand up, writable, 32-bit stack address.4

olo|o|o|o

~lololeo|o

Oim | =100

Expand down, nonwritable, 16-bit stack address.3
Upper bound = FFFFh, lower bound = limit.

Expand down, nonwritable, 32-bit stack address.4
Upper bound = FFFFFFFFh, lower bound = limit.

Expand down, writable, 16-bit stack address.3
Upper bound = FFFFh, lower bound = limit.

Expand down, writable, 32-bit stack address.4
Upper bound = FFFFFFFFh, lower bound = limit.

X =Don’t care.

O

A 32-bit stack add

that all i

lini L rof
plicit stack

Chips and Technology, Inc.

The B bit (bit 22) determines the stack address size for all stack operations: 0 = 16-bit addresses; 1 = 32-bit addresses.
A 16-bit stack address implies that all implicit stack references will be 16-bit operations.
will be 32-bit operations.

PRELIMINARY
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Descriptor Tables and Their Registers

In protected mode, segment descriptors define all memory areas available to
programs. These descriptors are located in one of the following tables in memory:

¢ Global descriptor table
® Local descriptor table
¢ Interrupt descriptor table.

The tables are described in the following paragraphs.

Global Descriptor Table (GDT)—The GDT can hold all types of descriptors, except
descriptors for interrupt gates and trap gates. Descriptors are selected from the table
by the 13-bit offset in the segment selector. There can be only one GDT. It is
required and must be kept in memory at all times.

ced Vi e f Local Descriptor Table (LDT)—The LDT holds descriptors for code segments, data

o BT A0 { segments, call gates, and task gates associated with a task. Descriptors are selected
& . &V g0 from the table by the 13-bit offset in the segment selector. Only the current one

\(f‘(" o ’ bo 1e%" | needs to be kept in memory. LDTs are optional. A task’s LDT selector is stored in

6V S 6\» ﬂ\‘ \ its task state segment (TSS).

\.
ot Interrupt Descriptor Table (IDT)—The IDT holds descriptors for interrupt gates,

trap gates, and task gates. Descriptors are selected from the table by the interrupt
or exception vector. There is only one IDT. It is required and must be kept in
memory at all times.

Table 4-3 distinguishes the three types of descriptor tables. Descriptor tables are set
up and maintained by the operating system and referenced by the processor. The
tables stored in memory should be accessible only by the operating system.

4-22 PRELIMINARY Chips and Technology, Inc.
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Table 4-3. Descriptor Table Characteristics coy-2
o F b} of “Q
(o
Condition GDT LDT DT What They Point To
Maximum Number Possible 1 2131 1 —
Minimum Number Required 1 0 1 —
Maximum Size and Content 213-1 eight-byte 213 eight-byte 28 eight-byte vectors | —
entries (first entry entries. in protected mode.
is null). 28 four-byte vectors
in real mode.
Segment Code Segments | X X Code segment
Descriptors Data/Stack X X Data or stack
Segments segment
Task State X Task state segment
Segments (TSS)
LDT X LDT
Descriptors
Gate Call Gates X X CS descriptor
Descriptors Task Gates X X X TSS descriptor
Interrupt Gates X CS descriptor
Trap Gates X CS descriptor

If paging is enabled, the descriptors required by the page-fault handler must be kept
in memory. Other descriptors can be paged out of memory. For example, if the IDT
points to the page fault handler through a descriptor in the GDT, those entries in the
GDT and IDT must be present in memory. The operating system may do this by
keeping the first 4kB page of each table in memory and locating the descriptors for
the page fault handler in that page. If the IDT spans two pages, both must reside

in memory.

Chips and Technology, Inc.
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Global Descriptor Table and Register

Segments shared by many procedures and tasks in the system are mapped by
the global descriptor table (GDT), which is an array of segment and control-gate
descriptors. The segments mapped by the GDT typically include those of the
operating system. One system register is associated with the table: the 48-bit
global descriptor table register (GDTR). The register contains the 32-bit linear
base address and 16-bit limit of the GDT. Figure 4-10 shows the mechanism.
The GDTR is a system address register. This type of register is not loaded with
a segment descriptor, and the table is not defined as a segment.

The operating system must load the lowest-order descriptor slot with a null (zero)
descriptor. The table can contain up to 8k-1 descriptors, eight bytes each, plus

the null descriptor in the first slot, for a total size of 64kB. The processor never
accesses the null descriptor. A memory reference to the null descriptor will raise an
exception. The gates contained in the GDT are descride later in the section entitled
“Control Gates and System Calls.” "
! ¢ v : 4 &

|
Figure 4-10. GDT and GDTR

Global Descriptor Table (GDT)
/-\
(1) i

) -

8-byte

] Segment

Descriptor

First
Null Descriptor
‘ Lt is Null

|

GDTR
48 0

Base Limit
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The GDTR is loaded with the LGDT instruction. The argument passed in this load
instruction is a memory data structure consisting (from low to high addresses) of a
limit and base. Figure 4-11 shows the memory image of the argument, which has
the same form for the GDTR and the IDTR. For 32-bit operands, a two-byte limit
is followed by a four-byte base address. For 16-bit operands, a two-byte limit is
followed by a three-byte base address, and the upper byte of the last word is not
used. The SGDT instruction stores this value.

I
Figure 4-11. GDTR and IDTR Memory Images

Dword Operands
31 16 15 0

Bage (High Word) +4

Base (Low Word) Limit +0

Word Operands

15 87 0
Base +4
Basge +2
Limit +0
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Interrupt Descriptor Table (IDT) and Register

The interrupt descriptor table (IDT) is an array of interrupt, trap, and task gate
descriptors. The interrupt and trap gate descriptors hold a far pointer to an interrupt
handler. The task gate descriptor facilitates a task switch to an interrupt handler.

One system register is associated with the table: the 48-bit interrupt descriptor
table register (IDTR). The IDTR contains the 32-bit linear base address and 16-bit
limit of the IDT. Figure 4-12 shows the mechanism. The IDTR, like the GDTR, is
a system address register. This type of register is not loaded with a segment
descriptor, and the table is not defined as a segment.

I
Figure 4-12. IDT and IDTR

Interrupt Descriptor Table (IDT)

) [

77/ g‘Bz‘::t
7 Do

Descriptor

\,

IDTR
48 0

Base Limit

The IDT has a structure similar to the global descriptor table, except that all
descriptor slots of the IDT, including the first slot, may contain valid (non-null)
descriptors. The table can have up to 256 entries, one for each vector. Each entry
has the standard descriptor size of eight bytes. When indexing into the IDT, the
vector is scaled by 8, the number of bytes in each descriptor.

4-26 PRELIMINARY Chips and Technology, Inc.



System Programming Segmentation Il

The gates contained in the IDT are described in the section entitled “Control Gates
and System Calls.”

The IDTR is loaded with the LIDT instruction in real mode. The argument passed
in these load instructions is a memory data structure consisting (from low to high
addresses) of a limit and base. Figure 4-11 shows the memory image of the
argument, which is the same form for both the GDTR and the IDTR. For 32-bit
operands, a two-byte limit is followed by a four-byte base address. For 16-bit
operands, a two-byte limit is followed by a three-byte base address, and the upper
byte of the last word is not used. The SIDT instruction stores this value.

Local Descriptor Table (LDT), Register (LDTR), and Descriptor

The local descriptor table (LDT) contains descriptors used by a specific task, or by
the programs that run under that task. These descriptors may include code and data
segment descriptors, call gates, and task gates. The structure of an LDT is similar to
that of the GDT, except that all descriptor slots of the LDT (including the first slot)
may contain valid (non-null) descriptors. The table can contain up to 8k descriptors,
eight bytes each, for a total size of 64kB.

The LDT is unlike the GDT and IDT in that the LDT is defined as a segment, with
a segment descriptor, whereas the GDT and IDT are simply located by the base and
limit contained in the GDTR and IDTR, respectively. The selector for the LDT
segment descriptor is stored in the LDT field of the task’s task state segment (TSS).
During a task switch, this selector is loaded into the local descriptor table register
(LDTR), which points to an LDT segment descriptor in the GDT. The GDT
contains all LDT segment descriptors. Figure 4-13 shows the mechanism.

Several tasks can share a common LDT, so the same set of segments is available to
all of these tasks. Two tasks can also have a descriptor for a shared segment in both
of their LDTs; the descriptor does not have to be put in the GDT.

Chips and Technology, Inc. PRELIMINARY 4-27
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]
Figure 4-13. LDT and LDTR
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Figure 4-14 shows the format of an LDT descriptor. The LDT descriptor is loaded
automatically into the invisible 64-bit LDT shadow register when the LDTR selector
is loaded.

I
Figure 4-14.  Local Descriptor Table (LDT) Descriptor

Type
3 242322 21 28 19 161514 13121110 9 8 7 0
Base 31:24 clofofz| Limit fe]oecfefefe]1]o Base 23:16 +4
Base 15:0 Limit 15:0 +0

(+4 is high dword, +0 is low dword)

31:24
7:0
31:16
23

20

19:16
15:0
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(+4)
+4
(+0)

+4

+4

+4)
(+0)

Base

G

AVL

Limit

Segment Base Adress—These bits represent the 32-bit
linear address of the segment’s base in memory.

Granularity—The G bit determines the maximum segment
size (limit):

0 Byte-granular limit; the maximum segment size
is 220 bytes.

1 Page-granular limit; the maximum segment size
is 232 bytes.

When the G-bit is set to 0, the 20-bit limit value, limit
19:0, is zero-extended to 32-bits. This provides the byte-
granular limit. When the G-bit is set to 1, the 20-bit limit
value is shifted left by 12 bits and OR’d with OFFFh, thus
providing a 32-bit limit value that is page-granular.
Available to Software—This bit may be used by system
software. It is not interpreted by the processor.

Segment Limit—These bits indicate the 20-bit limit of the
segment. The limit is expanded to 32 bits by interpreting
the granularity (G) bit.

PRELIMINARY 4-29
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15 +4) P Present—If set, this attribute indicates that the descriptor
is present in memory and therefore valid. If this bit is
clear, an attempt to access the segment causes an

exception.
1 Present (valid)
0 Not present (invalid).

14:13 (+4) DPL Descriptor Privilege Level —These bits indicate the
privilege level of the descriptor. The DPL is used by
the processor to determine access rights to the segment
pointed at by the descriptor.

11 Privilege level 3 (least privileged)
10 Privilege level 2

01 Privilege level 1

00 Privilege level O (most privileged).

12:8 (+4) Type Type—These bits indicate the type of descriptor—An LDT
must have 00010 in this field.

A page is a fixed 4kB block aligned to a 4kB boundary in physical memory.
Paging translates the linear address provided by the segmentation system into
physical pages. It does this by using a two-level arrangement of page directories
and page tables. Figure 4-15 shows the paging mechanism.

Paging is enabled in protected mode when the PG bit in register CRO is set to 1.
The operating system normally keeps the segments relevant to its current task in
memory. When a segmented linear address is translated to a physical address that
is not in memory (as indicated by the present bit in either the corresponding page
directory entry or page table entry), a page-fault exception is generated. The
operating system’s handler then reads the page from disk into memory, sets the
present bit, and returns control. The system restarts at the instruction that generated
the page-fault exception, and the program continues.

The CR3 register contains the base address for the current page directory, which
must always be kept in physical memory. Register CR3 is changed during a task
switch to accommodate tasks with different page directories.

PRELIMINARY Chips and Technology, Inc.
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]
Figure 4-15. Paging Mechanism
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Entries in the Page Directories and Page Tables

The dword entries jn the page directories and page tables have identical formats,
except that one bitfis unused in page directory entries. Figure 4-16 shows the
format. Each page directory and page table can contain up to 219 four-byte entries,
each of which has the following fields:

® Base address for a page table or page.

¢ Dirty (D) bit—Indicates whether a page referenced by a page table entry
has been written.

® Accessed (A) bit—Indicates whether a page or page table referenced by a
page directory entry or page table entry has been read or written.

® User/Supervisor (U/S) bit—Indicates the privilege level required for access
to a page table or page.

® Read/Write (R/W) bit—Indicates the read/write privilege for the user level.
® Present (P) bit—Indicates whether the table is currently in memory.

The processor sets the dirty bits and accessed bits, but it does not clear them. If the
accessed bit is read and cleared periodically by the operating system, pages which
have not been accessed since the last clearing of the bit can be identified and moved
off to disk. If the dirty bit is cleared by the operating system before a page table or
page is copied from disk to memory, the operating system will know whether the
disk version needs to be updated when the page table or page is removed from
memory. '

Page tables and pages not in memory are identified by the present bit in their
corresponding page directory entry or page table entry. The following minimum
paging information must always be present in physical memory:

® Page directory pointing to the page-fault handling code

® Page table pointing to the page-fault handling code
® Page containing the page-fault handling code.

All other page directories, page tables, and pages can be left on disk and brought
into memory as needed. When a page table or page is not present, the high-order
31 bits of its corresponding page directory or page table entry can be used by the
operating system to store information, such as its location on disk. Figure 4-16
shows this format.
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Figure 4-16. Format of Page Directory and Page Table Entries

Page Directory Entry
31

12 11 987654321080

Page Table Base Address AUL jo|o Ajoje

u/s
R/W
©

Page Table Entry

|
Undef ined

31 12 11 987654321080
Page Table Base Address AVL jojejDjnla]e g 5 P
31:12 Base Page Table or Page Base Address—These bits contain the
I s 20-bit base address of the page table or page.

)\ir\o‘$< ) \)S! 11:9 AVL Available to Software—The three AVL bits are reserved
W 3. W for use by system software. They are not interpreted by
dot T the processor.

(An . s . . .

. 6 D Dirty—The D bit is undefined in page directory entries.

Chips and Technology, Inc.

In page table entries, it is set to 1 by the processor during
a write access to the page mapped by the page table
entry. The D bit is never cleared by the processor, but it
can be cleared by the operatmg &% before the page is
brought into memory to determinf/w ether a write-back
to disk is necessary during page swapping.

1 Dirty (write to page occurred)

0 Clean (no write to page).

Accessed—In page directory or page table entries, the
A bit is set to 1 by the processor during a read or write
access to the page table or page mapped by the entry.
The A bit is never cleared by the processor, but it can be
cleared by the operating system to obtain page table and
page usage data.

1 Accessed (read or write)

0 Not accessed.
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Uset/Supervisor—This bit is the maximum CPL that a
code segment can have to access the page table or page
mapped by the page directory or page table entry. The
U/S bit in a page directory entry applies to all page tables
(and associated pages) mapped by that entry.

1 User (privilege level 3)

0 Supervisor (privilege level 0, 1, or 2).

Read/Write—For the user privilege level (U/S = 1), this
bit indicates whether pages mapped by the page directory
or page table entry are read-only or read/write. The bit is
not interpreted for supervisor level.

1 Read or write

0 Read only.

Present—The P bit indicates that the page table or page
mapped by the entry is present in memory. It is set

and cleared by the operating system. The current page
directory must always be present in physical memory, but
the other page directories and the page tables (except the
one containing the entry for the page-fault handler code)
can be not-present. If not present, bits 31:1 of the entry
can be used by t the operatmg system to store information,

See Figure 4-17 for the not-present entry format.
1 Present in memory
0 Not present in memory.

Figure 4-17. Format of Not-Present Entries (Page Directory or Page Table)

31

Available to Software 0

4-34

PRELIMINARY Chips and Technology, Inc.



System Programming ‘ Paging |

Translation Lookaside Buffer (TLB)

The translation lookaside buffer (TLB) is an on-chip cache used by the processor to
store essential parts of the most recently used page directory and page table entries
(Figure 4-18). The processor reaches most accessed pages by using these entries in
the TLB. If the referenced page cannot be found using the TLB (called a TLB miss),
the processor attempts to create a translation using the page directory/page table
lookup mechanism shown in Figure 4-15.

Updating of the TLB from the page directory/page table translations available in
memory can take between 6 and 16 clocks, depending on the bits that need to be
updated. If the present bit is cleared in the relevant page directory entry, indicating
that the page table and page are not present in memory, or if the operation would
violate the settings of the U/S and R/W bits in either the page directory or page table
entry, a page-fault exception is generated.

A
Figure 4-18.  Translation Lookaside Buffer

Linear Address

31 15 14 12 11 0
. Y )\_\f—/\ Y /
Valid Attributes
Physical Data Block and Linear Tag Block LRU Block
Way 0 Way 1 Way 2 Way 3 Way 8 Way 1 Way 2 Way 3
Set @
Set 1
Set 2
Set 3
Set 4
- -— Set 5§
Set 6
Set 7
YV Y Y IR IR IR’
\ Select /4..\ v Compare /
Physical Address l
31 12 11 Y
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The page fault handler can then read the page from disk into memory, set the
present bit, and return control. The system restarts at the instruction that generated |
the page-fault exception, and the program continues.

The processor does not maintain coherence between the TLB entries and the
corresponding versions in memory. The operating system must therefore flush the
TLB after any software modification of the page tables. This is done by moving the
content of register CR3 to a general register and then moving it back again. For
example,

MOV EAX, CR3 ; Move CR3 value to EAX
MOV CR3, EAX ; And move it back to flush the cache

During a task switch, in which the new task has a different page directory than the
current task, the processor automatically updates the CR3 register with the stored
CR3 value in the TSS and flushes the page table entries in the TLB.

The processor has a special set of registers for testing the TLB page translations.
The section entitled “Testing the TLB” describes the mechanism.

Page Aliases

There are no restrictions on page aliasing. Translation tables can be constructed to
cause multiple linear addresses to map to a single physical page. When this is done,
however, multiple translation paths lead to a single physical page, complicating

the use of the accessed and dirty bits in the tables. Because this information is
somewhat linear-address dependent, it is necessary to examine all the translation
entries for each linear address range to determine whether a physxcal page has been
altered or referenced.

It is also possible to support inconsistent levels of protection. Two linear address
ranges can map to the same physical address. One range may provide a different
kind of protection than another. An operating system that determines which pages
to deallocate must be aware of all the aliases by which each physical page can be
accessed.
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Paging and Multiprocessing

In a system with multiple processors, special care must be taken if a program
executing on one processor modifies a page table that may be accessed
simultaneously by a second processor. The Super386 processor supports this
configuration by using indivisible read/modify/write cycles whenever it updates
a page table entry to set the D or A bit.

Software updates to the page table will work properly if the LOCK prefix is used
with instructions that modify the page table. Before changing a page table entry that
may be used by another processor, software should use a locked AND instruction to
clear the P bit in an indivisible operation. Then the entry can be changed as
required, and made available by setting the P bit to 1.

At some point in the modification of a page table entry, all processors in the system
that may have the entry cached must be notified (usually with an interrupt) to flush
their TLBs. Until these old copies are flushed, these processors continue to access

the old page, and may also set the D bit in the entry being modified. If this causes .-~ pi {\
the modification of the entry to fail, the paging caches should be flushed after the ;v

entry is marked not present, but before the entry is otherw1se modified. - .
Gares  bhave tuo prove le gc vapiablec : LPL and © PL fal cp {1:,,..5{3,3

(2 el /-fov;JP s offeet rwf”}‘ e fodﬁ wofen i e peed Aap
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Control Gates and System Calls

Control gates are descriptors. They are available only in protected mode and are
used in system calls or traps, task switches, and interrupts and exceptions. Unlike
segment descriptors, which point to a segment directly, control gates point to another
descriptor (a segment descriptor), which locates the destination segment. They are
} an indirect means of transferring execution control to other code segments at the
«* 1 same level or a more privileged level. The indirection provides an opportunity for
\_f the processor to thoroughly check attributes and access rights, switch stacks (call
K gates to a more privileged level), and switch tasks (task gates).

There are four types of gate descriptors:

,® Call gates - € o 40 woertry polid offzets fiin @ (
"o Task gated T dectie i cede _gegmept <ot e
e Interrupt gates i \‘ e (w‘f“ ‘*"67 coerk Hile pfle ctive

. Trap gates. - s d

:,\

These are described in the following paragraphs.
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Call Gates—Call gates facilitate inter-procedure calls and jumps. Calls can be made
to more privileged levels and are commonly used for system calls. Call gates can
reside in the LDT or GDT and can pass parameters.

Task Gates—Task gates implement task switching and can reside in the GDT, LDT,
or IDT. Task gates point to a TSS descriptor, which in turn points to a TSS.

Interrupt Gates—Interrupt gates facilitate access to interrupt handlers (service
routines). They reside only in the IDT and can be invoked with the INT n
instruction.

Trap Gates—Trap gates are identical to interrupt gates, except that the interrupt flag
(IF) in the EFLAGS register is not cleared. Like interrupt gates, they can reside only
in the IDT. le. INTR zignal - shll recognized.

Figure 4-19 shows how control gates work. Whereas segment descriptors contain
the base address and limit of a segment, control gates contain a selector and (except
for task gates) an offset. The selector points to a segment descriptor, which points to
a segment. The control gate’s offset indexes into the segment.

PRELIMINARY Chips and Technology, Inc.
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L]
Figure 4-19. Control Gate Mechanism
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Table 4-4 compares the four types of gates. The notation used in this table for
privilege level is defined in the section entitled “Protection Mechanisms.”

Table 4-4. The Four Types of Gate Descriptors

Ca»\fa,ve Table 4-3 (tif—'LZ)
Fig. 1% (r"ﬂ.zp\}

. o‘c’auig‘t(e O e* \;9“{ Task Gate Interrupt Gate Trap Gate

Purpose F Inter-segment jumps Inter-task jumps Interrupts, Interrupts,

and system calls and system calls exceptions,and  exceptions, and

system calls system calls
Location GDT or LDT GDT, LDT, or IDT DT IDT
=

Passes Yes No No No
parameters?
CALl-instructiol DPLgate 2 max(CPL, RPLgat)) =~ DPLgate 2 max(CPL, RPLgate) ~ Not available Not available
rule checkin and and
and actions DPLeodo < CPL Do task switch.

and

2 (TDPLeote< CPL,
" do stack switch using SS

and ESP in TSS, and copy

call parameters.
JMP-instruction; PLgate > max(CPL, RPLgate) ~ DPLgate > max(CPL, RPLgate) = Not available Not available
rule checkin and and
and actions . DPLeode < CPL Do task switch.
IN'Frrinstructior@sV Not available DPLgate 2 CPL DPLgate > CPL DPLgate 2 CPL
rule checking; and
and actions Clear IF flag,

The descriptor formats for all gates, as well as their general functions, are described

in the following section, “Control Gate Descriptors.” The call gate mechanism

is discussed in the section “Call Gates.” Task gates are described further in

“Multitasking,” and interrupt gates and trap gates are discussed in “Interrupts

and Exceptions.”
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Control Gate Descriptors

All four types of gates have a similar format, shown in Figure 4-20, although not

all fields are used by all gate types. All gates use the present bit, DPL, and T
segment selector. All but task gates also use the offset (entry point) into thefFode de chivaf fon
segment. The parameter (dword count) field is only used for call gates. This field

contains the number of dword parameters to copy from the calling procedure’s stack

to the called procedure’s stack.

Figure 4-52 in the section entitled “Interrupts and Exceptions” gives somewhat more
detailed images of the fields used by interrupt, trap, and task gates.

— _ ek 5N
Figure 4-20. Control Gate Descriptor o degt el
Twe (zv prl
[ o \I ~ N
— U7 - b P f?‘a'f‘(“?‘{ﬁls
A ¢ pe f » nos ,I
31 16 15/{ 1y 12 8 765 4 e
g > o
Offset 31:16 7P @ Type 0101 0| Param 4:0 JA4
/ ]
Selector 15:0 @ 0ffset 15:0 -0

(+4 is high dword, +0 is low dword)

31:16 (+4) Offset  Offset—The offset is the entry point index into the

15:0 +0) destination procedure. It is added to the base address of
the destination procedure’s code segment, obtained from
the segment’s descriptor, to determine the entry point. The
offset (operand) in a call instruction is ignored. In a task
gate, this field is not used.

15 +4) P Present—If set, this attribute indicates that the gate
descriptor is present in memory and is therefore valid.
If this bit is clear, an attempt to access the gate causes
an exception.
1 Present (valid)
0 Not present (invalid).
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14:13 (+4) DPL Descriptor Privilege Level —DPL gives the privilege level
of the descriptor. The DPL is used by the processor to
determine access rights to the segment that the descriptor
points to.

11 Privilege level 3 (least privileged)
10 Privilege level 2
01 Privilege level 1
00 Privilege level O (most privileged).
12:8 (+4) Type Type—The type field indicates the type of gate descriptor:

00100 Call gate (16-bit)
00101 Task gate

00110 Interrupt gate (16-bit) \
00111 Trap gate (16-bit) ¢ 4";4’
01100 Call gate (32-bit) o ¥
01110 Interrupt gate (32-bit) se
01111 Trap gate (32-bit).

4:0 (+4) Param  Parameter—This field is only used in call gates,/where it

specifies the number of doubleword parametersjto copy
from the caller’s stack to the called procedure’s stack.

31:16 (+0) Selector Segment Selector—These bits select the descriptor for the
destination segment. In call gates, interrupt gates, and
trap gates, they select a code segment descriptor in the
GDT or LDT. In a task gate, they select a TSS descriptor
in the GDT.

Call Gate

Call gates implement calls and jumps to code at the same or more privileged levels
(lower privilege numbers). Only CALL instructions can use gates to transfer to
atis /6 more privileged ‘levels. IMP in'st.ructions only use a gate to 'transfer control to a
g wet q.@\ __code segment with the same privilege level or to a conforming code segment.

o e i
Call gates are the onlyicontrol gates Jhat can pass parameters and switch stacks

without switching an entire task. During a call, the processor checks the DPL of
o\ the call gate. The call is executed only if the DPL is greater (less privileged) than
both the CPL and the RPL of the selector contained in the the call gate. If a more
privileged segment is being called, a new stack is created using the stack segment
and stack pointer for that privilege level, contained in the current TSS. (See the
section entitled “Multitasking” for more on task state segments.)

. - . { | e

5 'H‘u; wWA® v ‘ﬂf—){‘”-{- "ﬂﬂ {;"-a\*t@s’ e On ;/ ve ‘1599‘(\?
~ . .

'
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Protection Mechanisms

The processor provides protection mechanisms at the following levels:

N " & Segment descriptor -

08N

@ Control gate descriptor .
. @ Page
e Tj0.

: _—
I - MAA—
X i‘ ey Y ,WML

Lo
-At the §egment and gate descriptoﬂeuels,hit_ﬁelds-aleueed—m)/ §ontrol access by

segment type, limit, and access privilege. -At-the page ~th¢ page directories

and page tables control read or write access by privilege level.
Access to I/O resources can be controlled on the basis of global privilege level or
on a port-by-port basis. In addition, the SuperState V extensions provide a capture
mechanism that is transparent to existing operating systems and allows system
software to monitor and intercept specific interrupts and I/O accesses.

Figure 4-21 shows where these fields are stored. All of these mechanisms are
under system software control. The section entitled “Summary of Privilege-Level
Checking and the CPL” lists the checking rules that are associated with privilege
level. Other checking rules are enforced by the processor in a manner consistent
with the setting of their related control fields. The section entitled “SuperState V
Mode” describes the processor’s power management and device virtualization
functions.
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L
Figure 4-21.

System Programming
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Segment-Level Protection

Several fields in the segment descriptor and one field in the segment selector
control access by procedures and tasks to the system resources. The descriptor
fields include the segment type, its limit, and the descriptor’s privilege level. The
selector field contains a requestor privilege level, which is set by the operating
system as required for software access or protection.

Type

Bits 12:8 of the segment descriptor are often referred to as the type field. These bits
specify whether the segment is available to applications or the system, whether it is
code or data, how the segment is sized and how it expands, and its readfwrite access
privilege. These fields are written by the operating system at initialization and any
other time thereafter. They are compared with the processor’s access rules
whenever a segment is accessed.

Limit
The segment limit is specified in the segment’s descriptor. All ep@raﬂ%cesses to

the segment are checked against this limit. In expand-up segments, accesses must
not exceed the limit. In expand-down segments, accesses must exceed the limit.

Privilege Level

All descriptors, including descriptors for LDTs, contain a field specifying the DPL.
Privilege level 0 is the most privileged; level 3 is the least privileged. The operating
system uses privilege levels to protect shared resources and functions among tasks.
The operating system kernel is typically assigned privilege level 0. The processor
checks the privilege level of segment selectors and segment descrlptors durmg
segment loading, control transfers, and task switches. I/O accesses use a seperate
protection mechanism, namely, IOPL and IOPB. In most cases, the DPL of the code
segment determines access, because code segments contain the instructions that
could cause harm to system resources. Several variables related to privilege level

i are used. One of them, the CPL, is determined by the processor. The others are
¥ | determined by the operating system. -
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The variables associated with segment selectors and descriptors are

® Current privilege level
® Descriptor privilege level
® Requestor privilege level.

These are discussed in the following paragraphs.

Current Privilege Level—The CPL is the only privilege variable that is determined
by the processor. It is stored automatically in the RPL field of the code segment
selector register after the code segment has been privilege-checked and loaded. The
processor always considers the stack RPL to be equal to the CPL.

Descriptor Privilege Level—the DPL is the basic privilege level of a segment. It is
checked whenever a segment selector is loaded into a segment register.

Requestor Privilege Level—The RPL is an override privilege level for a segment.
It is checked whenever a segment selector is loaded into a segment register. The
processor always considers the stack RPL to be equal to the CPL.

Figure 4-22 shows where the CPL, DPL, and RPL fields are stored. The section
entitled “Summary of Privilege-Level Checking and the CPL” and Table 4-5 in that
section contain the details of rule checking. When executing in SuperState V mode,
the CPL is 0 and the processor can use SuperState V instructions and facilities,
{ including the SuperState V memory and capture facility. For details, see the section
%‘ entitled “SuperState V Mode.”
|

\\w,— I{,\ {_,,5(< s w Hﬂc&e; crmal_ rg'*uv"w ‘Qr@w’? ‘C"W‘ Crp“? o
%V%#crvnf‘{'s, Hie RPL becomers the new ceL
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]
Figure 4-22. CPL, DPL, and RPL Fields
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In general, the processor sets the CPL equal to the DPL of the current code segment
after checking the segment for privilege and loading it. The term CPL can therefore
be considered an acronym for code privilege level, as well as current privilege level.
For example, Figure 4-23 shows how the CPL is assigned for nonconforming code
segments after a segment load that involves a change in privilege level. In this
example, a CALL is made to an inner privilege level, and the CPL is taken from

the DPL of the destination code segment. Upon return, the CPL is taken from the
RPL of the code selector for the code segment to which control returns.
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L]
Figure 4-23. CPL Assignment for Nonconforming Code Segments

-

When going to an inner (more privileged) level:
CPL = DPL code
e.q., CALL

When going to an outer (less privileged) level:
CPL = RPL code
e.g., IRET
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Attempts to access a segment with improper privilege generates an exception.
Conforming code segments, however, can be accessed from less privileged levels.
These segments are typically used for shared libraries and interrupt handlers. Refer
to the section entitled “Conforming Code Segments.”
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Control Gate Protection

Control gates are descriptors that point to segment descriptors rather than directly
to segments. There are four types of control gates: task gates, interrupt gates, trap
gates, and call gates. Control gates implement transfers to code at the same or more
privileged levels, or to different tasks. Like segment descriptors, gate descriptors
have DPL and type fields that provide protection.

Control transfers are done with the jump, call, and return instructions, or by
interrupts and exceptions. Near jumps, calls, and returns receive only limit
checking. Far jumps, calls, and returns receive privilege-level checking. The rules
vary, depending on the type of transfer and the type of gate. The section entitled
“Summary of Privilege-Level Checking and the CPL” explains the rules.

Privilege level switching through call, interrupt, or trap gates also provides
protection of stacks. Each privilege level has its own stack. When a program
switches to a new CPL, the program creates a new stack at the new CPL using
the stack pointer and stack segment selector stored in the TSS.

For more on control gates, see the section entitled “Control Gates and System
Calls.”

Page-Level Protection

When paging is enabled, the operating system checks the following fields in each
entry of the page directories and the page tables:

¢ User/Supervisor CPL (U/S)
e Read/Write Access (R/W).

User level is privilege level 3; supervisor level is privilege level 0, 1, or 2. The
U/S field specifies the maximum CPL that can access the directory or table. The
operating system writes both U/S and R/W fields into each page directory entry,
and page table entry, and they are checked whenever a page directory or page table
is accessed.

When UJS privilege is combined with read and write access, the most restrictive
attributes from either level apply. The values in a page directory entry take
precedence over those in a page table. For example, if a page directory entry says
a page is read-only but the page table entry says readfwrite, the page is read-only.
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I/O Protection

When the I/O space is used instead of memory-mapped I/O, it has two levels of
protection:

® J/O Privilege Level (IOPL)—Two-bit field in the EFLAGS register that is
compared with the CPL.

® J/O Permission Bitmap (IOPB)—Data structure in each task’s TSS that grants
access on a port-by-port basis.

In protected mode, global protection is first applied through the IOPL. This
specifies the maximum CPL required to execute I/O instructions. If the CPL < IOPL
test fails, IfO port-level protection is optionally provided by the IOPB in the TSS.

The IOPB contains access-control bits for individual bytes (ports) in the I/O space.
To gain access to an I/O port, the executing code must have a CPL less than or equal
to the IOPL, and, if an IOPB is used, the bit mapped to that I/O port must be cleared
to 0. The mechanisms are described in more detail in the section entitled “I/O.”

IOPL also determines the maximum CPL allowed to alter the interrupt flag (IF).
POPF and IRET instructions can alter the IOPL when they are executed from
privilege level 0. A task switch always alters the IOPL when the new image of the
flags is loaded from the new TSS.
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Summary of Privilege-Level Checking and the CPL

Table 4-5 summarizes the processor’s privilege-level checking and CPL setting.
The following notation is used in the table:

CPL

DPLcode

DPLqata
DPLgate
DPLtss

RPLcode
RPLgata

RPLgate
- RPLTSS
gRL o petctink
U/Sdirectory
U/Stable
R/Wdirectory
R/Wtable
IOPL

I0PB

Woev(  does
ge e ‘Cv/

s

Vi e
J v o
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Current privilege level. It is determined by the processor and stored
automatically in the RPL field of the CS selector register after the
code segment has been loaded. The processor always considers the
stack RPL to be equal to the CPL.

Descriptor privilege level in a destination code segment’s descriptor.
It is checked whenever the segment selector is loaded.

DPL in a destination data segment’s descriptor.

DPL of a gate descriptor.

{ oo ’

DPL of a task state segment descriptor. -
Requestor (override) privilege level of a destination code segment’s
selector.

RPL of destination data segment’s selector. The processor always
considers the stack RPL to be equal to the CPL.

RPL of the selector contained in a gate descriptor.

RPL contained in the selector operand of an instruction that causes a_

task switch. This RPL is finally stored in the TR register after the
instruction executes.

User/supervisor field of a page directory entry.
User/supervisor field of a page table entry.
Read/write field of a page directory entry..

Read/write field of a page table entry..
I/O privilege level in the EFLAGS register.
I/O permission bitmap in a task’s TSS.
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|
Table 4-5. Privilege-Level Rules for Access or Control Transfer
) fav® {
Segment or Privilege-Level Check o ¢ L *
Function Access Type (True = Pass) i e CPL After Action
|~ Data Segment All DPLuata > max(CPL, RPLats) No change
.~ Stack Segment All DPLdata = CPL = RPLdata No change
_.Code Segment All DPLcode of gate < CPL No change
1" (Conforming) ’
Code Segment - Near jump or call None No change
(Non-Conforming) - gt junp or call (no gate) DPLocdo = CPL CPL - DPLeodo
and '
" DPLeodo> RPLeode & L 7 RPLo .
Far jump (call gate) DPLgate > max(CPL, RPLgatc) CPL = DPLeodo
L and
DPLecode = CPL
Far call (call gate) DPLgate 2 max(CPL, RPLgatc) CPL = DPLcode
o PO ey d
i'// SImp *m rondarwm Mg 5@ o , and __(;u.bﬁ-?m(vr ?
g segneut DPIGodd< CPL
Interrupt or exception (software) DPLgate 2 CPL CPL = DPLcode
Interrupt or exception (hardware) None CPL = DPLcode
L—"Return from far call or interrupt RPLcode 2 CPL CPL = RPLcode
£~ Task switch (direct) DPL1ss 2 max(CPL, RPLTsSs) CPL = RPLcode
¢ Task switch (task gate) DPLgate > max(CPL, RPLgatc) CPL = RPLcode
Paging All U/S = min (U/Sdirectory, U/fStable) No change
and 7
R/W = min (R/Wiirectory, RfWiable) T~ £€ =
1o All Pl ; IOPBport = 0 ; No change:
/o [ ad /T - [
i - L CPL <IOPE (protected-fiiode only)
Protected mode (32-bit tasks) CPL <IOPL No change
or :
IOPBport = 0
Protected mode (16-bit tasks) CPL <IOPL No change
Real mode CPL <IOPL No change
(always succeeds since CPL = 0)
Virtual-8086 mode I0BPport = 0 No change
(‘()w‘f\fﬁlfﬁ blie g}ﬂ\‘;fe &““3 Focrtt e ‘”‘C’
Y ?ém/ Peoriiam PR ML
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Privileged Instructions

The instructions listed in Table 4-6 are reserved for code segments at the highest
current privilege level (CPL = 0). These instructions will cause a general-protection
exception if used at a less privileged level.

I
Table 4-6.  Privileged Instructions

Mnemonic Description /

CLTS ‘Clear task-switched ﬂagéU S CRO

HLT Halt

LGDT Load GDT register

LIDT Load IDT register

LLDT Load LDT selector and shadow descriptor register
LMSW Load machine status word

LTR Load TSS selector register and TSS shadow descriptor register
MOV CR n Move toffrom control register

MOVDR Move to/from debug register

MOV TR n Move toffrom test register

Conforming Code Segments

Conforming code segments are accessible from any less privileged level. They are
used for such things as shared libraries and interrupt handlers. They can be created
by setting the C/ED bit and the E bit to 1 in the segment descriptor. For control to
be successfully transferred, the DPL of the conforming segment (or the gate used to

access it) must be less than or equal to the CPL. That is:

DPLcode 0or gate £ CPL
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Multitasking

In a multitasking environment, such as protected mode optionally provides, the
execution of several programs is interleaved so that the processor appears to run
all programs simultaneously. Programs that run in this manner are called tasks.
The processor supports the execution of multiple tasks with a combination of
instructions, registers, and task-switching data structures.

The interleaving of execution is accomplished by a zask switch. During task-
switching, the context of the current task is saved, a new context for the new task

is loaded, and the memory segments for the new task are made active. There are
typically two parts to the context information about a task: the machine state

(i.e., the contents of essential registers), and the software state. In the Super386
processor, the machine state is saved automatically during a task switch in a memory
data structure called a Task State Segment (TSS). The operating system may also
use the task state segment to store information about the software state during a

\- .
A l task switch.
7 [V
Val e _%4.’;"\ . . . .
\ : Task switches are similar to procedure calls, except that they save more information
p P y

o L {'e’i\ about the processor’s state. They do not, however, push the contents of saved

\ - registers on the stack, as procedures calls do; instead, they store this information in
their TSS at the completion of the task. Because of this, tasks are not re-entrant as
are procedures. Tasks cannot be called by other tasks if they are already running or
waiting to run.

The prioritizing of tasks is implemented by the operating system. Within these
constraints, software can request a task switch in one of the following ways:

® Far call or jump

® Interrupt or exception

® Interrupt return.

These procedures are discussed in the following paragraphs.

Far Call or Jump—A call or jump to a different segment is executed when the
instruction supplies a segment selector that references either a TSS descriptor or
a task gate, to_tasks-on-the-basis-of privilege-level

anages-ac

Interrupt or Exception—A task switch can be initiated during an interrupt or
exception in which a handling routine is called through a task gate descriptor in
the interrupt descriptor table (IDT).

Interrupt Return—A task switch can also occur when an IRET instruction is
executed with the nested task (NT) flag in the EFLAGS register set to 1.
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Registers and Data Structures

Task switching is supported by the followmg memory data structures and on-chip
registers:

® Task state segment

¢ Task state segment descriptor

® Task register

® Task gates.

These registers are discussed in the following paragraphs.

Task State Segment (TSS)—A TSS is a memory data structure that stores the
processor context and other information identifying a task. Each task has one TSS,
which is updated during each task switch.

" Task State Segment Descriptor—A TSS descriptor is a memory data structure that

. identifies the size and location of a task state segment and characterizes it on the
 basis of presence, availability, privilege level, and granularity. Each task has one

such descriptor, only a few bits of which are updated during each task switch.

» Task Register (TR)—A task register is a 16-bit visible register containing the TSS

|

i selector. The TR is accompanied by a 64-bit invisible shadow register that is loaded
automaticall}Ywith the TSS descriptor whenever the TR register is loaded. Together,

(via the global descriptor table) the TR and its shadow register locate the task state
segment.

Task Gates—Task gates are memory structures in the global descriptor table, local
descriptor tables, and/or interrupt descriptor table that manage access to TSS

descriptors based-on-privilege level-- <

These data structures and registers are described in more detail in the following
sections, and they are summarized in Appendix B, “Super386 Quick Reference.”

Task State Segment

Task state segments are data structures in memory. They must be at least 104 bytes
in size and may be up to 64kB in size. They hold the machine state (essential
register values) of a task as well as static information about the task. Each task has
one task state segment. Its structure is shown in Figure 4-24. The machine state
(dynamic fields) is updated automatically by the processor at every task switch. The
static fields are initialized by the operating system during creation of the TSS. The
processor reads and writes the TSS on task switches and reads it durmg changes in
privilege level. —= Fouote PPL o0 ol celechre 77,

. ~
{

oo de e e ﬁ.(tjig( (.;,?Iéf(-g(\f o ?:;;." L el RS ,"

7o
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Figure 4-24. Task State Segment (TSS) Structure
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The minimum size of the TSS is 104 bytes. If an I/O permission bitmap (IOPB) is
used to protect access to I/O ports by privilege level, it must occupy addresses above
the task state segment. In addition, the operating system may store other information
between address 67h and the IOPB.

Among the dynamic fields is a back-link field in which the segment selector of the
TSS descriptor for the previous task is stored. This allows an IRET instruction to
restore the previous processor context and continue an interrupted task.

The IOPB base displacement is the offset from the base of the TSS to the base of the
optional IOPB. The trap (T) bit can be set to cause a trap to the debug exception
handler when a task switch occurs.

Fields are also provided in the TSS for three stack segment selectors and three
stack pointers, which correspond to privilege levels 0, 1, and 2. These are used for
privilege-level changes (from less privileged to more privileged) such as system
calls, interrupts, or exceptions. When a privilege-level change occurs, the stack for
the more privileged level is used. This is done by loading the more privileged SS
and ESP registers from the TSS.

Static Fields

The static fields, read by the processor but not changed, are set up by the operating
system when the task is created. They include:

o Stack segment selectors: SS2, SS1, and SSO

o Stack pointers: ESP2, ESP1, and ESPO

® Local descriptor table (LDT) selector

e Trap (T) bit

¢ JOBP base displacement

® Page directory base address: CR3.

These fields are discussed in the following paragraphs.

Stack Segment Selectors (SS2, SS1, and SS0)— Stack segment selectors for
privilege levels 0, 1, and 2 must be initialized for all privilege levels that are used.
They are loaded along with ESP2, ESP1, and ESPO during system calls, interrupts
and exceptions involving changes to a greater privilege level, which causes a stack
switch.

Stack Pointers (ESP2, ESP1, and ESP0)—Stack pointers for privilege levels 0, 1,
and 2. These must be initialized for all privilege levels that are used. They are
loaded along with SS2, SS1, and SSO during system calls, interrupts, and exceptions
involving changes to a greater privilege level, which cause a stack switch.
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Local Descriptor Table (LDT) Selector—The LDT field should be initialized to the
task’s LDT selector, or to a null selector if no LDT is used.

Trap (T) Bit—The trap bit is used for debugging. When set to 1, it causes a trap
(exception 1) to the debug exception handler when a task switch to this task occurs.
The breakpoint trap (BT) bit (bit 15) of the DR6 register indicates the trap condition.

IOPB Base Displacement—The IOBP base displacement locates the I/O permission
bitmap, which contains one bit for every 8-bit I/O port. The map allows each task
to protect each IfO port on the basis of the task’s privilege level. This field must be
initialized with the displacement of the IOPB from the base address of the TSS. For
details, see the section entitled “I/O Permission Bitmap (IOPB).”

Page Directory Base Address (CR3)—If paging is enabled, the page directory
base address field must be initialized with the physical address of the task’s page
directory.

Dynamic Fields

The dynamic fields of the task state segment, which the processor updates during
each task switch, include:

Back-link to previous TSS

o Instruction pointer and flags registers: EIP and EFLAGS

General registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP
® Segment registers: CS, DS, SS, ES, FS, and GS.

Back-link to Previous TSS—The back link to the previous TSS is the segment
selector of the TSS descriptor for the previous task. This field allows an IRET
instruction to restore the previous task context so that nested, disjoint tasks can
be run. See the section entitled “Nested (Linked) Tasks.”

Instruction Pointer and Flags Registers—The EIP, EFLAGS, and general register
fields should be initialized to values that the task needs when it begins execution.

General Registers—The EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP fields
should be initialized to values that the task needs when it begins execution.
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Segment Registers—The CS, DS, SS, ES, FS, and GS segment register fields should
be initialized with selectors for their respective segments or with a null selector for

those not used. /befﬂ‘ e TR ~~‘;, a ,\;n‘ A selectar (Jref,\,r Lar
ipctroectoon

ATSS descrlpto}'gannot be referenced through a segment selector, so the TSS

cannot be initialized by writing udlréctly to it. Instead, a data segment alias
(synonym) must be used. This is a data segment that occupies the same linear
addresses as the TSS, or that occupies pages which, via the paging mechanism,
are mapped to the TSS pages. Figures 4-25 and 4-26 show how a TSS can be read
and written using an alias descriptor in the segmentation and paging mechanisms,
respectively.

I
Figure 4-25. Accessing a TSS With a Segmentation Alias
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I
Figure 4-26. Accessing a TSS With a Paging Alias
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TSS Descriptor

Multitasking

Each TSS has a descriptor that identifies the size and location of the segment and
characterizes it on the basis of presence, availability, privilege level, and granularity.
The descriptor is stored only in the GDT. A single bit is updated during each task
switch. The format of the TSS descriptor is illustrated in Figure 4-27.

—
Figure 4-27. 1TSS Descriptor
Type
31 2423222120 19 16151413121110 9 8 7 0
Base 31:24 alofelz]| Limt feloec|efrfefs]1]  Base 23:16 -4
Base 15:0 Limit 15:0 +0 |

(+4 is high dword, +0 is low dword)

3124 (+4)
7.0 (+4)
31:16  (+0)
23 (+4)

Chips and Technology, Inc.

Base

G

Segment Base Address—The base bits are the parts of the
32-bit linear address of the segments base in memory.

Granularity—The G bit determines the maximum segment
size (limit):
0 Byte-granular limit; the maximum segment size
is 220 bytes.
Page-granular limit; the maximum segment size
is 232 byte.
When the G-bit is set to 0, the 20-bit limit value,
limit 19:0, is zero-extended to 32-bits. This provides
the byte-granular limit. When the G-bit is set to 1, the
20-bit limit value is shifted left by 12 bits and OR’d
with OFFFFh, thus providing a 32-bit limit value that is
page-granular.
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20 (+4) AVL Available to Software—This bit may be used by system
software. It is not interpreted by the processor.

19:16 (+4) Limit Segment Limit—The two parts of the segment limit are

15:0 (+0) expanded to 32 bits by interpreting the G bit. The limit
must have a value of 67h or greater; it must always be
greater than 67h if an IOPB is used.

15 (+4) P Present—If set, this attribute indicates that the descriptor is
valid. If this bit is clear, an attempt to access the segment
causes an exception.

1 Present (valid)
0 Not present (invalid).

14:13 (+4) DPL Descriptor Privilege Level—DPL indicates the
privilege level of the descriptor. These bits determine
the minimum privilege level needed to access the
memory segment pointed at by the descriptor.

11  Privilege level 3 (lowest)
10  Privilege level 2

01  Privilege level 1

00 Privilege level O (highest).

12:8 +4) Bits 12:8 are sometimes referred to as the type field. The
individual bits are specified explicitly in Figure 4-27 and
in the T and B bits described below.

11 +4) T TSS Type—This bit indicates the type of descriptor.
1 32-bit (Super386) TSS
0 16-bit (80286) TSS.

9 (+4) B Busy—This bit indicates whether the task is busy (running
or waiting to run) or available:
1 Busy
0 Not busy (available).

The minimum limit of the TSS is 67h (104 bytes). This limit may be increased

to account for additional space used by the operating system to store the state of
software and/or the IOPB. If an IOPB is used, it must occupy addresses above the
task state segment. In addition, the operating system may store other information
between address 67h and the IOPB.

An indication of the task’s execution status is encoded in the busy bit (bit 9) of the
upper dword. This bit should be initialized to 0 by the operating system. The
processor sets this bit to 1 when the task is run so as to trap re-entrant attempts to
invoke the task. A general-protection exception is triggered if an attempt is made
to call a busy task.
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In non-nested task switching, the processor sets the busy bit of the new task and
clears it in the old task. In nested task switching, the processor sets the busy bit of
the new task and also leaves the old task’s busy bit set, to prevent re-entrant task
switching. When setting or clearing the busy bit, the processor locks the external
bus. This prevents two processors in a multiprocessing environment from accessing
the same task simultaneously. Table 4-7 shows the changes made by the processor
to the busy bit, NT flag, and TSS back-link field for both the old and new tasks.

L
Table 4-7. Processor Changes During Task Switch

Busy Bit (TSS Descriptor) | NT Flag (EFLAGS) Back-link Field (TSS)

Old Task New Task Old Task New Task Old Task New Task
Jumps 0 1 X 0 X X
Call X 1 X 1 X old TSS

) selector

Interruptsor | X 1 X 1 X old TSS
Exceptions selector
Return from |0 X 0 X X X
Interrupt

X = Nochange.

Task Register

The task register has a 16-bit visible part that holds the current TSS selector and

a 64-bit invisible shadow register that holds the base and limit of the TSS. During-
a task switch, the segment selector points to a TSS descriptor in the GDT, which is
then automatically loaded into the invisible (shadow) part of the task register and
used to locate the TSS of the new task.

The mechanism by which the task register points to the TSS is illustrated in
Figure 4-28.
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Figure 4-28. TSS Selection With the TR Register
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Two instructions are used to load and store the task register: LTR and STR.

LTR—The LTR instruction loads the visible part of the TR register with a register
or memory operand, a selector for a TSS, which must be an index to a TSS
descriptor in the GDT. The TSS descriptor addressed by the TR register is then
loaded automatically from the GDT into the TR shadow reglster, and the busy bit
(bit 9) of the TSS descriptor is set to 1.

STR—The STR instruction stores the visible part of the TR register (the segment
selector, but not the corresponding descriptor in the shadow register) in a register or
memory operand.
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Task Gates

Like interrupt gates, trap gates, and call gates, task gates are descriptors that point
to other descriptors. Task gates point to TSS descriptors and have their own DPL.
Thus, task gates manage indirect access to task state segments on the basis of

L privilege level.

Task gates can be stored in the GDT, the IDT, or an LDT, as shown in Figure 4-29.
Calls, jumps, interrupts, and exceptions can force task switches by accessing task
state segments either directly, by referencing the TSS descriptor, or indirectly by
referencing a task gate. When task gates are used to reference indirectly, the DPL
of the requested TSS descriptor is not used; instead, the task gate’s DPL is used.
The task gate bars access to the requested TSS descriptor, except when the CPL

or the gate’s RPL is less than or equal to the gate’s DPL:

Max (CPL, RPLgate) < DPLgate

When task gates are placed in the local descriptor tables with different DPLs, they
can provide access control from any task to any other task. Because they can be
stored in the interrupt descriptor table, they allow interrupts and exceptions to trigger
task switches. To allow a return to the interrupted task, the IRET instruction causes
a task switch, if the service routine was originally called with a task switch. This
will be indicated by the NT flag set to 1.
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Figure 4-29. Task Gate Mechanism
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The format of a task gate descriptor is shown in Figure 4-30. Like other control
descriptors, it has only a small subset of the fields found in segment descriptors;
among them are DPL and the present (P) bit. In addition, it has a segment selector
that indexes to a TSS descriptor, imposing an extra level of indirection during a task
switch. The RPL is never used for indexing in any segment selector. A check of the
task gate’s DPL is performed during a task switch through a task gate. This check
replaces the check of the TSS descriptor’s DPL.
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Figure 4-30. Task Gate Descriptor b . W
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Type
31 16151413 121110 9 8 7 6 S 4 0

Reserved Py DPLjojOj1]0]1]0]0]0 Reserved +4

%
Selector 15:0 Reserved ///// +0

(+4 is high dword, +0 is low dword)

15 +4) P Present—If set, this attribute indicates that the gate
descriptor is valid. If this bit is clear, an attempt to access
the gate causes an exception.

1 Present (valid)
0 Not present (invalid).

14:13 (+4) DPL Descriptor Privilege Level —These bits indicate the
privilege level of the descriptor. DPL determines the
minimum privilege level needed to access the segment
descriptor to which the gate descriptor points.

11 Privilege level 3 (lowest)
10 Privilege level 2

01 Privilege level 1

00 Privilege level O (highest).

12:8 (+4) Type Type—These bits indicate the type of gate descriptor:
00101 . Task gate

15:0 (+0) Selector TSS Segment Selector—This is a selector for a TSS
descriptor in the GDT.
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Task Switching (Dispatching)

Other than task-based interrupt and exception service routines, the processor does
not automatically schedule or dispatch (switch) tasks. This is left to the operating
system.

Following reset, there is no current task. System software writes an image of a TSS
in memory, loads its segment descriptor (marked “not busy”) into the the global
descriptor table, and executes the LTR instruction to load the task register with the
selector for this TSS (marked “busy™). The first task switch after the completion of
system initialization will then copy the current state into the task state segment.

~ After the operating system creates a TSS descriptor, the processor manages the

“busy/not busy” status of the TSS descriptor at task switches, although software can
later change the busy bit.

In any type of task switch, the processor performs the following actions:

1. Verifies privilege— Verifies that the DPL of the TSS descriptor or the task gate is
greater than or equal to the selector’s RPL and the processor’s CPL. Hardware
interrupts and exceptions do not require this check.

2. Verifies validity of TSS—Ensures that the new task’s TSS descriptor, segment,
and page are present, and that the TSS has a limit greater than or equal to 67h.

3. Stores current task state—Saves the current general register, segment registers,
EFLAGS, and EIP registers into the current TSS.

4. Loads new TR register—Loads the selector for the new TSS into the TR register.
The selector is either taken from a task gate, or it is the operand in the jump or
call instruction.

5. Loads new state registers—Loads the new values for the general registers,
EFLAGS, and EIP registers.

6. Loads new CR3 and LDT selector—Loads the new page directory base address
(CR3), if paging is enabled, and either the selector for the local descriptor table
or a null selector if no LDT is used.

7. Sets busy (B) or available (AVL) bit—Changes the type fields for both new
and old TSS descriptors to “busy” or “available,” depending on whether a
call/interrupt or jump instruction caused the task switch. If linkage (nesting)
to a suspended task is required, the NT bit of the EFLAGS register is set to 1
and the old TSS’s selector is written to the new TSS’s back-link field.

8.  Sets task switch bit (TS) in register CRO to 1—Sets the TS bit in register CRO
to 1 (software can use this bit to determine whether a task switch has occured).

9. Loads new segment descriptors into shadow registers—Loads each segment’s
descriptor into its corresponding shadow register.

10. Clears debugging break point in DR7—Clears all local breakpoint enable bits in
the debug control register, DR7. '
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A task switch will push an error code on the stack if certain types of exceptions
cause the task switch. Also, the processor does not switch the state of a coprocessor,
if present; instead, the setting of the TS bit in the CRO register can be used to
coordinate the task switch with a coprocessor or other external devices. Setting the
TS bit to 1 traps coprocessor instructions.

The GDTR, LDTR, IDTR, debug registers, test registers, and control registers are
not saved during a task switch. If the contents of the registers are useful to system
software, the software should save them. Specifically, a page-fault service routine
should save the contents of CR2, the page-fault linear address, before a task switch.

See Table 4-5 in the section entitled “Protection Mechanisms” and Table 4-4 in the
section entitled “Control Gates and System Calls” for summaries of the privilege-
level checking that takes place.

Table 4-8 shows the order of testing conditions during a task switch and the
exceptions generated. Any exceptions generated by the first three checks occur
in the context of the old task; all others occur in the context of the new task.

I
Table 4-8. Exception Conditions Verified During Task Switching

A r Number  Condition (If false, an exception is generated) Vector Exception
cer 1 TSS descriptor present 11 Segment not present
2 TSS descriptor not busy 13 General protection
T3 TSS limit > 67h 10 Tovalid TSS
T 4 Registers loaded from TSS —
5 New LDT selector valid 10
We VG“\{ X 6 New LDT present 10
ot 7 Code segment selector valid 10
8 Code segment present 11
9 CPL = RPLcode (of code just loaded from TSS) 10
10 Stack segment selector valid 10
11 Stack segment present 12 Stack fault
12 DPLstack = CPL 10
13 RPLstack = CPL 10
14 DS, ES, FS, GS selectors valid 10
15 DS, ES, FS, GS readable 10
16 DS, ES, FS, GS present 11
17 DS, ES, FS, GS segment DPL > RPLcode 10

(unless the code segment is conforming)
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Task Memory Space

Each task may have its own memory space, protected from other tasks.
Segmentation or paging (or both) can provide this protection; the task switching
mechanism supports both. A task switch reloads the LDTR, which points to the
current local descriptor table. The LDT defines the segments that are allocated to
the task, so referencing a new one is equivalent to moving to a new memory space.
A task switch also loads register CR3 with a new page directory base register
(PDBR), which points to the task’s page directory. This also has the effect of
moving to a new memory space.

- Tasks can have shared memory spaces at the segment or page level. At the segment

level, all tasks share the GDT; thus, any unprotected segment mapped by the GDT is
shared by all tasks. It is possible to load the same segment descriptor into more than
one LDT so that more than one task can have access to the same area of the linear
address space. However, because each task can have its own mapping of linear to
physical addresses, this by itself is not guaranteed to result in a shared memory
space, unless pages are mapped one-to-one or paging has been disabled.

At the page level, any virtual page can be mapped to any physical page. Thus,
shared memory can be implemented by mapping the same physical page to the
linear address space of more than one task.

Nested (Linked) Tasks

The TSS has a back-link field that contains the segment selector of the TSS
descriptor for the previous task. This allows one task to access another task via an
interrupt, exception, or call. Its most common use is for interrupt and exception
handling routines, so that an IRET instruction can restore the previous task state.

In non-nested task switching, the processor sets the busy bit (bit 9) of the new task’s
TSS descriptor and clears that bit in the old task. In nested task switching, however,
the processor leaves the old task’s busy bit set to 1.

The NT flag in the EFLAGS register provides the only indication of nested tasks.
When set to 1, it indicates that the back-link field in the TSS for the current task
contains a valid selector for the previous task. An IRET instruction will then switch
to the task pointed to by the back-link field. Figure 4-31 shows task nesting and the
state of the NT flag.
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Figure 4-31. Nested Tasks
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I/O can be implemented either in a separately addressable I/O space, using the
separate set of I/O instructions, or in a memory-mapped I/O space, using the full
set of general-purpose instructions.

The 1/0 Space

The processor’s separate I/O space is a single linear-address space of 64kB,
beginning at I/O address 0. Ports can be 1, 2, or 4 bytes wide. The processor
provides both global and I/O-port-specific protection mechanisms for this space.
Global protection is applied through two EFLAGS register bits that specify the I/O
privilege level (IOPL), i.e., the maximum CPL required to execute I/O instructions.
Byte-level protection is provided by the I/O permission bitmap (IOPB), a data
structure in the TSS that provides access control bits for individual bytes in the I/O
space. Both of these mechanisms can be used by the operating system to control
calls from an I/O device. The mechanisms are described further in the sections
that follow.

The chief advantage of keeping memory and I/O spaces separate is that separation
offers the most reliable system protection. The execution of an I/O instruction is
visible to external hardware through the M/IO* pin, and external hardware can treat
the bus cycle in a special way. Reads and writes to I/O space should not be captured
by a cache, because this would delay and possibly interfere with the activity of
peripherals.

The only reserved addresses in the 64kB I/O space are in the range reserved for

a coprocessor. When F8h and FCh are used for coprocessor accesses, the most
significant bit of the address A31 is asserted. This provides external hardware a
means of distinguishing a coprocessor access from an IfO access. This is because
the address space between 800000F8h and 800000FFh, which is outside the I/O
address space, is also used for coprocessor communication. Many system designs,
however, use an I/O space smaller thn 64kB. For example, the IBM PC/AT
implements a 1kB space. Specific system implementations may apply additional
restrictions. For example, the PC/AT reserves all of the addresses up to FFh for
standard system peripherals; user-defined peripherals must occupy the space from
100h to 3FFh. Table 4-9 shows the reserved I/O addresses on the PC/AT.
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Table 4-9. PC/AT Reserved /O Addresses

o M

1/O Address Device

00:0Fh 8237A DMA controller 1 (byte transfers, master)
20:21h 8259A interrupt controller 1 (master)
40:5Fh 8254 timer

60h and 64h 8042 keyboard logic

61h Port B

70h NMI mask (on writes) -

70:71h MC146818 real-time clock

80:8Fh DMA page registers

A0:Alh 8259A interrupt controller 2 (slave)
CO:DFh 8237A DMA controller 2 (word transfers, slave)
FOh Clear coprocessor busy

Flh Reset coprocessor

F8:FFh Coprocessor

100:3FFh Expansion bus

170:177h Hard disk 2 (WD 1010/1014/1015)
1F0:1F7h Hard disk 1 (WD 1010/1014/1015)
200:207h Game ports

278:27Fh Parallel port

2E8:2EF Serial port

2F8:2FFh Serial port (NS16450)

300:3F1h Prototype card

360:36Fh Reserved

372:377h Floppy controller 2 (NEC pPD765)
378:37Fh Parallel port

380:38Fh SDLC controller 2

3A0:3AFh SDLC controller 1

3B0:3BBFh Video (monochrome mode)
3BC:3BFh Printer

3C0:3CFh Video (EGA)

3D0:3DFh Video (CGA)

3E8:3EFh Serial Port

3F0:3F7h Floppy controller 1 (NEC pPD765)
3F8:3FFh Serial port (NS16450)
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Memory-Mapped I/O

In memory-mapped I/O, external hardware can route certain memory addresses

to I/O devices. From the viewpoint of software, accesses to these I/O addresses
then work in the same way as ordinary memory accesses. Typically, each memory-
mapped device is located in a segment of its own. Precautions must be taken,
however, because memory-mapped I/O lacks the protection features provided for
the I/O space.

The chief advantage of using memory-mapped I/O is that the general-purpose
arithmetic and logical instructions that operate on memory-space operands can be
used for accessing I/O. When a separate I/O space is used, it can be accessed only
by using the special 1/O instructions IN, INS, OUT, and OUTS. Memory-mapped
I/O allows application software to set bits in a peripheral register without passing the
contents of the peripheral register through a processor register. If memory-mapped
I/O is used, it may be necessary for software to take special precautions, such as
disabling a cache for regions of the memory space that are mapped to I/O
peripherals.

I/O Privilege Level (IOPL)

Global protection of the I/O space is provided by the IOPL field of the EFLAGS
register, shown in Figure 4-32. To execute an I/O instruction, the CPL must be less
than or equal to the IOPL.

R
Figure 4-32.  1/O Privilege Level (IOPL)
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The following instructions must have CPL < IOPL:

e IN

e OUT
e INS
* OUTS
e CLI
e STIL

In multitasking, each task has its own copy of the EFLAGS register and can
therefore have its own IOPL. The I/O protection level is not checked in real mode.

I/O Permission Bitmap (IOPB)

The I/O permission bitmap provides I/O-port-specific protection that may differ
from task to task. This byte-level protection map is stored above the TSS, which
contains an offset (the IOPB base offset) of the map’s base from the base of the TSS.
Since each task has its own TSS, access control can be mapped differently for each
task. The mechanism is available only in the multitasking environment of protected

mode or virtual-8086 mode. 1 je
The maximum IOPB base address is DFFFh if a full map is used:"If the IOPB base
address points at or past the end of the TSS, an exception is génerated for any I/O

operation. The map can have a permission bit for each I/Oaddress in the 64kB I/O
address space. The bits in the IOPB correspond to addresses for bytes in the I/O
space, starting from 0 and covering as many addresses as needed, up to a maximum
of 8kB. Access to I/O address 0 is controlled by bit 0 of the first byte of the bit map;
address 1 by bit 1, and so on. If a bit in the map is cleared to 0, no protection

“violation is reported when the corresponding I/O address is accessed. If the bit is
set to 1, any I/O reference to that address will trigger a general-protection exception.
On a word or doubleword access, a bit set to 1 for any of the bytes in the operand
will trigger an exception. The processor reads two bytes from the IOPB for every
I/O-port access, so the minimum IOPB size is two bytes. The map must end with a
byte whose bits are all 1s. Figure 4-33 illustrates the the IOPB.
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LI
Figure 4-33.  I/O Permission Bit Map (IOPB)
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When an I/O instruction is executed, the processor loads two bytes from the IOPB,
starting with the byte that contains the permission bit for the lowest IO address
referenced by the instruction. This gives the processor access to all the permission
bits that must be checked on a word or doubleword access, even if those bits straddle
a byte boundary.

| The last byte of the IOPB must have all bits that correspond to unirnplemented

addresses beyond the end of the I/O address space set to 1. In addition, this last byte

must be included within the segment limit for the TSS. These provisions keep

access to high I/O addresses from generating an exception when the processor loads
the second byte from the IOPB.
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Interrupts and Exceptions

Interrupts and exceptions change the normal sequence of instruction execution.
They occur at the boundaries of instructions or between repeated parts of string
instructions. Most of them occur transparently to the user program and force the
transfer of control to another procedure or task that handles the condition and then
returns control, if possible.

Interrupts are triggered primarily by hardware events, such as an IfO device request
for service. In typical systems, most interrupts are signaled through the processor’s
interrupt request (INTR) pin by external hardware. Some unusual events, such as a
power or other hardware failure, are signaled through the processor’s nonmaskable
interrupt (NMI) pin. In addition to these hardware events, software can also force
interrupts with the INT instruction.

Exceptions are triggered exclusively by events in the execution of instructions, such
as attempts to access a page that is not present in memory, or attempts to divide by
zero. There are three types of exceptions, distinguished by the point in the execution
stream at which the exception is reported: faults, traps, and aborts. These are
discussed in the following paragraphs.

Faults—Faults restore the processor state to the faulting instruction. The faulting
instruction appears not to have executed.

Traps—When a trap exception occurs, the current instruction or iteration of a
string instruction completes, and the processor is left pointing to the instruction
following the instruction that encountered the exception, unless the faulting trapped
instruction was a string instruction. In the latter case, the processor points to the
string instruction. In control-transfer instructions, the processor state is restored to
the destination of the transfer, not to the next instruction located after the
transferring instruction in the instruction queue.

Aborts—An abort leaves the processor at an indeterminate instruction following
the faulting instruction. Aborts reflect serious errors, and the instruction cannot
be restarted.

Figure 4-34 illustrates the state of instruction execution after a fault or trap.
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Figure 4-34.  State of Instruction Pointer After Exceptions
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An instruction that causes a trap is allowed to complete before an exception is
generated. An instruction that causes a fault is either not allowed to begin execution
or is restored to its pre-execution state before an exception is generated. In Figure
4-34, if the exception was a trap, instruction 2 caused it. If it was a fault, instruction
3 caused it. It is not possible to know which instruction caused an abort.

Fault exceptions permit software to restore the processor state to the instruction that
triggered the exception. They allow software to fix the cause of the exception and
make another attempt to execute the instruction. This feature, called instruction
restart, is necessary for implementing demand-paged virtual memory.

Demand-paged virtual memory allows parts of the memory space to be disk-
resident rather than memory-resident. For example, a page that is not present in
memory will have its P bit cleared to 0 in its page table entry. An attempt to read,
write, or execute this page will cause a fault. The operating system then has an
opportunity to allocate memory for the page, read the page from disk, update the
page table entry, and return execution to the faulting instruction.

While there are distinctions between interrupts and exceptions, there are also many
contexts in whlch mterrupts and exceptlons appear to be indistinguishable. For

ample, can be invoked in software with the
INT insttuction, and both exceptions and interrupts are linked to their handling
routines through the interrupt descriptor table.
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Registers and Data Structures

Interrupts and exceptions are supported by the following memory data structures and
on-chip registers:

® Vectors

¢ Interrupt descriptor table

¢ Interrupt descriptor register

® Control gates (interrupts, trap, and task).

These elements are discussed in the following paragraphs.

Vectors—A vector is a byte that identifies the cause of the event. Up to 256 vectors
can be defined. The first 16 are predefined by the processor.

Interrupt Descriptor Table (IDT)—In protected mode and virtual-8086 mode, the
IDT is a table containing descriptors for interrupt gates, trap gates, and task gates.
Any one of these three types of gates can be accessed to branch to an interrupt or
exception handler.

Interrupt Descriptor Table Register (IDTR)—The IDTR is a 64-bit register
containing the base and limit of the IDT.

Control Gates—In protected mode and virtual-8086 mode, these are descriptors
in the IDT that gate access to interrupt or exception handlers on the basis of
privilege level.

Vectors

Each of the 256 possible interrupts and exceptions has a vector number that
identifies the cause of the event. Interrupt vectors are generated by external
hardware such as an interrupt controller. The external hardware puts the vector
on the data bus, where it is read automatically by the processor during the
interrupt-acknowledge cycle. Exception vectors are generated internally by

the processor.

In protected mode, the processor uses either type of vector (multiplied by 8) as an
index into the IDT to locate the appropriate handling routine. The IDT provides the
link between interrupt or exception vectors and the service routines that handle the
events. In protected mode and virtual-8086 mode, the processor scales the vector by
8, the number of bytes in a descriptor, to obtain the index into the IDT. In real
mode, the processor scales the vector by 4 and reads a two-byte selector and offset
from the IDT.
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The section entitled “Summary of Interrupt and Exception Conditions” contains a
complete list of all vectors that are predefined by the processor Other vectors can
be defined by the operating system.

Interrupt Descriptor Table and Register

The interrupt descriptor table (IDT) contains up to 256 eight-byte descriptors for up
to three types of gates—interrupt gates, trap gates, and task gates. All descriptors
are optional, although systems are rarely designed without interrupt gate descriptors.
The IDT may be placed anywhere in memory. The bottom 16 descriptors, the 16
predefined interrupts and exceptions, are normally always present in physical
memory; page faults could not be handled otherwise. The table is located by the
32-bit linear base address and 16-bit limit contained in the interrupt descriptor table
register (IDTR). This register is loaded and stored with the LIDT and SIDT
instructions, each of which has a 6-byte operand for the base and limit.

The IDT is structured like the global descriptor table, which also contains
descriptors, except that all entries in the IDT contain gates; the first entry is not
reserved, as in the GDT. If the vector addressing the IDT exceeds the table’s limit,
a second attempt to execute the faulting instruction will be made. If a double fault
occurs, the processor will go into its shutdown mode and generate a special bus
cycle.

Gates

Interrupt, trap, and task gates, are eight-byte descriptors. Their structure is similar
to that of segment descriptors, but they themselves contain a segment selector (and
in two cases, an offset) rather than the base and limit found in segment selectors.
Instead of pointing directly to a segment, a gate points to another descriptor that
points to a segment. By doing so, gates provide indirect access based on privilege
level. The three types of gates are discussed in the following paragraphs.

Interrupt Gates—Interrupt gates contain both a selector and an offset for the
handling procedure. When an interrupt gate is accessed, the processor disables
instruction tracing by clearing the trap flag (TF) to O after pushing the current
EFLAGS register on the stack. For interrupt gates, the processor also disables
further maskable interrupts by clearing the interrupt flag (IF) to 0. This may be
required for certain types of events, such as page faults. All flag values are restored
during an IRET instruction.

Trap Gates—Trap gates are identical to interrupt gates, except that the IF flag is
not changed.
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Task Gates—These gates contain only a selector (not an offset) that points to a TSS,
not directly to a handling procedure. No flags are changed by the processor when

a task gate is used. The section entitled “Multitasking” describes task gates in more
detail.

The operating system controls access by setting the DPL of each gate. When gates
are used, the DPL of the requested descriptor is not used; instead, the gate’s DPL is
used. The gate then bars access to the requested descriptor, except when the CPL of
the requestor (or in the case of a task gate, the gate’s RPL) is less than or equal to the
gate’s DPL.

The gates are compared in Figure 4-35. For a detailed explanation of their bits,

see the section entitled “Registers and Descriptors.” For a details on privilege-level
checking rules, see the sections entitled “Protection Mechanisms” and “Control
Gates and System Calls.”

I
Figure 4-35. Three Types of Gates Used for Interrupts and Exceptions

Interrupt Gate
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Selector 15:0 1522222;/ Reserved +0
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Figure 4-36 shows the mechanism for interrupt gates and trap gates, which involves
gate descriptors in the IDT and code segment descriptors in the GDT. The processor
scales the vector by 8, the number of bytes in a descriptor, to obtain the index into

IDTR

the IDT.
I
Figure 4-36. Vectoring for Interrupt Gates and Trap Gates
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Figure 4-37 shows the analogous mechanism for task gates. Unlike the mechanism
for interrupt gates and trap gates, task gates point to a TSS descriptor rather than a
code-segment descriptor in the GDT. Also, task gates do not contain an offset; only
a base address is needed to access a TSS.

I
Figure 4-37.  Vectoring for Task Gates
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4-84

-Error Codes

During exceptions that relate to a specific segment or to a page fault, the processor
provides additional information about the event through an error code. Error codes
from 32-bit (Super386) gates are pushed onto the stack of the exception handler as
doublewords, to conform with the 32-bit stack pushes of the code segment and EIP.
Error codes from 16-bit (80286) gates are pushed onto the stack of the exception
handler as words. Table 4-10 lists the exceptions that provide error codes.

I '
Table 4-10.. Events With Error Codes

Vector Description Type

8 Double fault (error code = 0) Afault -0

10 Invalid task state segment fault

11 Segment not present ‘ fault

12 Stack fault fault

13 General protection fault /s

14 Page fault (cpoc ! facmat] fault

e N'V\ff”]’ ent Check Copear cade = o) Lo .
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The error codes have one of two formats. Figure 4-38 shows the format for
exceptions (10, 11, 12, and 13) that relate to a specific segment. Figure 4-39
shows the format for a page-fault exception (14).

P\) l'jch Lop S o [ T

— -garu/al.
Figure 4-38.  Error Code Formats (Except Page Faults) \r A0 of
e opow U L eeteTO
"i\\iﬂ“ ;','O{T(‘ ‘ ieﬂmf"\‘\ .
31 16 15 7 321 0
Reserved Offset TI| I JEX
. 2
I
PUEND [ ;‘"
bl
bits: 15:3  Offset Offset—These offset bits indicate the descriptor-table index

for the segment from which the event arose.

2 TI Table Indicator—This bit indicates the descriptor table in
which the descriptor is located; - lece te I bt o et
1 LDT
0 GDT

1 I IDT Override—This bit overrides the TI bit to indicate the
descriptor table in which the descriptor is located:

1 IDT

0 TI bit indicates the descriptor table. _

0 EX Exception Error—This bit indicates a secondary exception

generated by an atempt to access the IDT in order to invoke
another exception.

1 Secondary exception — double Lau 7 ’
0 All other cases.
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Figure 4-39. Error Code Format (Page Faults)
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bits: 2

U

User/Supervisor—This bit indicates the current privilege
level (CPL) when the event occurred.

1 User mode (privilege level 3)

0 Supervisor mode (privilege level 0, 1 or 2).

Write/Read—Bit W indicates whether the event was generated
by a write or a read.

1 Write

0 Read.

Present/Page-Protection—This bit indicates whether the event
was caused by a not-present page table or page directory
entry, or by a page-level protection violation.

1 Page-protection violation

0 Not-present table or directory entry.
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~— 0 Interrupt and Exception Handlers

( As illustrated in Figures 4-38 and 4-39,)an interrupt or exception servicing routine
(or handler) can be implemented as either a procedure or a task. These two
approaches can be characterized as follows:

Procedures—Accessing a handler through an interrupt gate or trap gate causes the
handler to be run as a procedure in the same context as the current task. Interrupt
and trap gates are dispatched by the processor and go directly to the handling
procedure. Exception handlers are typically implemented as procedures so that the
handling can be done in the context that generated the exception (although this has
the potential disadvantage of not guaranteeing a clean context). By avoiding the
overhead of a task switch, handling latency is minimized.

Tasks— Accessing a handler through a task gate causes the handler to be run as
a new task, in a new context with its own stack. Tasks are dispatched by the
processor. Registers are saved and restored automatically, without operating
system intervention.

Interrupt handlers often have the most to gain from implementation as tasks, because
most interrupts (such as I/O-device requests for service) do not need the data
available in the old context. Interrupt, exception, and IRET instructions can switch
tasks at any privilege level. Interrupt tasks have their own context, so they can issue
operating system calls and create resources freely, if resources are managed on a
task-by-task basis. Procedures, on the other hand, are dependent on the resources

of the tasks in which they are running. In spite of these advantages, the overhead

of a task switch imposes a latency that may not be acceptable for critical real-time
environments.

The following sections explain how each approach works.

Procedure-Based Implementation

When implemented as procedures, interrupt and exception handlers are treated by
the processor in much the same way as calls through a call gate. A privilege-level
comparison is made between the handler’s code segment (pointed to by the interrupt
or trap gate) and the current privilege level of the interrupted task or procedure. If
the handler’s code segment is more privileged than the accessor, a new stack is
created; otherwise, the handler uses the stack of the interrupted procedure.
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A The processor pushes several things on this stack, in the following order:

Old stack segment (SS) register, if there is a privilege-level change
Old stack pointer (ESP) register, if there is a pri\}ilege-lech change
Old EFLAGS register

Old code segment (CS) register

Old instruction pointer (EIP) register

S O

Error code for the event, if it is generated.

Figure 4-40 shows the top of the handler’s stack immediately following entry into
the handling routine when the privilege level changes and an error code is provided
(i.e., maximum-number of things from the above list pushed onto the stack). The
stack grows down. To keep the stack aligned to doubleword addresses, the 16-bit SS
and CS registers are pushed onto the stack as the lower half of doublewords, with the
upper words undefined.

N e
Figure 4-40.  Stack Frame for Interrupt or Exception Procedure

31

16 15 0

SS Register,

Undef ined . o
6# privilese e«eqtﬁﬂw%ﬁ

, ESP Registe
(e erivilege i8ve f&&wqfx

old  EFLAGS Register

Undef ined old\ €S Register

O\C&\& EIP Register

Undefined Error Code

4-88

PRELIMINARY Chips and Technology, Inc.




System Programming Interrupts and Exceptions

The handler returns by executing a 32-bit IRET instruction. Because IRET expects
to see the saved EIP on the top of the stack, the routine must pop the error code or
adjust the stack pointer before returning, if such an error code is on the stack. If the
routine involved no privilege-level change, the processor then pops the EIP, CS,
and EFLAGS values into their registers. If a privilege-level change occurred, the
processor also pops the ESP and SS values, thereby transitioning to the old stack.
At this point, the processor executes the next instruction of the old procedure, which
will be determined by the type of event that occurred. Fault exceptions restart the
instruction that caused the fault; trap exceptions and interrupts execute the next
instruction after the one causing the trap or interrupt.

Task-Based Implementation

The processor automatically dispatches a new task (that of the handler) when it
vectors to a task gate. The processor’s sequence is:
1. Save Old TSS—Save the suspended task’s context in its TSS.

2. Load New TSS—Load the handler’s TSS. The saved EFLAGS values of the
handler’s TSS determine whether further interrupts are enabled or disabled.

3. Set Nested Task Flag—Set the nested task (NT) flag to 1.

4. Fill Back-Link Field—Fill the back-link field of the handler s TSS with the
selector for the suspended task’s TSS.

5. Transfer—Transfer control to the handler.

To return to the suspended task, the handler pops any error codes that were pushed
onto the stack and issues a 32-bit IRET instruction. When this occurs, the
processor’s sequence is: the IRET

1. Clear Nested Task Flag—Copy the NT flag to an internal register and clear the
flag to 0.
2. Save Old TSS—Save the handler’s context in its TSS.

3. Load New TSS—Using the selector in the back-link field of the handler’s TSS,
find and load the suspended task’s TSS.

4. Transfer—Transfer control to the suspended task.

As with procedure-based handlers, the processor then executes the next instruction
of the old task. For fault exceptions, it restarts the instruction that caused the fault.
For trap exceptions and interrupts, it executes the next instruction after the one
causing the trap or interrupt.
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Task-based handlers must be implemented with care to avoid conflicts between the
processor’s dispatching and the operating system’s task dispatching. In particular,

the operating system may need to consider situations in which the handler makes a
system call that causes another task switch. Prior to doing so, the operating system
— \ must be informed that a new task is running.

]

{

i

«.\/Z/ O‘}) [4

Summary of Interrupt and Exception Conditions

Table 4-11 shows the vectors, types, level, and causes of all interrupts and
exceptions defined by the processor. Other vectors can be defined by the operating
system. Table 4-12 shows the same information for the IBM® PC/AT architecture.

The “Type” column in both tables indicates one of the following:

Interrupt— An interrupt caused by external hardware

Fault—An exception that is a fault
® Trap—An exception that is a trap

Abort—An exception that aborts execution.

The “Error Code” column in Table 4-11 indicates whether or not an error code is
pushed onto the stack of the interrupt or exception service routine. Error codes
provide more specific information about the cause of the event. The structure of
the error code is described in the section entitled “Error Codes.”
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L]
Table 4-11.  Super386 Interrupts and Exceptions

Error
Vector Description Type Code Cause
0 Division by zero Fault No Occurs when a DIV or IDIV divisor is 0, or the quotient is too long to fit
into the result operand.
1 Debug exception Fault/trap  No This is a fault when triggered by an instruction breakpoint or a general-

detect condition. It is a trap when triggered by a data address breakpoint,
single-step trap, or a task switch with a T bit set to 1 in the task state
segment. The DRG register indicates the fault or trap condition. More
than one exception condition may be indicated, with several bits set to 1
in DR6. Debug faults (not traps) are disabled for one instruction if the
RF flag in the EFLAGS register is set to 1.

2 NMI interrupt Interrupt No Occurs when external hardware asserts the nonmaskable interrupt signal
and an NMI handler is not already executing.

3 Breakpoint Trap No Occurs when an INT 3 instruction is encountered. This instruction is a

(INT 3) one-byte form of the INT n instruction that can be inserted into programs
as a breakpoint trap.

4 Ovetrflow Trap No Occurs when an INTO instruction is executed when the overflow flag
(INTO instruction) @F) issetto 1.

5 Bound range Fault No Occurs when a BOUND instruction determines that an array index is
exceeded outside the specified array bounds. )

6 Invalid opcode Fault No Occurs when a bit pattern is not recognized as an instruction. This could

be an invalid opcode, a register operand where a memory operand is
required, or a LOCK prefix before an instruction that cannot be locked.

7 Coprocessor Fault No Occurs on a WAIT or ESCAPE instruction when both the TS and MP
not available bits in the CRO register are set to 1. It also occurs if a WAIT or ESCAPE
instruction is executed when the EM bit in the CRO register is set to 1.

8 Double fault Abort Yes Occurs when an exception is reported while another exception is being
processed. The error code is 0. In real mode, a double fault always leads
to a shutdown. In protected mode, the processor will try executing yet
another instruction after a double fault before shutting down. Double
faults can be handled without a shutdown by switching tasks or otherwise

getting a new stack.
9 Coprocessor Abort No Indicates that a floating-point operand is triggering an unrecoverable
segment overrun segment limit violation. It occurs when the operand runs off the end

of the address space and wraps around from the top of the address space

o to the bottom. The coprocessor must be reinitialized with the FINIT
instruction before returning from the exception service routine. The CS
and EIP registers will point to the aborted instruction.

V\O+ ;l\ {flg;(j sl [J‘
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Super386 Interrupts and Exceptions (continued)

Vector

Description

Type ‘

Error
Code

Cause

10

Invalid task
state segment

Fault

Occurs when a task switch to an invalid TSS is attempted. The error
code contains the segment selector of the invalid TSS.

11

Segment not
present

Fault

Yes

Occurs when loading a segment selector for a segment descriptor with

a present bit (P bit) cleared to 0. The error code contains the segment
selector for the descriptor, with the P bit cleared to 0. This fault can also
be triggered when an LDT segment selector is loaded with the LLDT
instruction, or when any descriptor (other than a stack descriptor) is used
with the P bit cleared to 0.

12

Stack fault

Fault

Yes

Occurs when there is a limit violation during a stack segment reference
(error code is 0) or during a call or interrupt to a more privileged level
(error code is a selector for the stack at that level), or when loading into
the stack segment register a selector that references a descriptor with a P
bit cleared to O (error code contains the faulting segment selector). The
exception service routine can determine the cause by examining the
segment descriptor in question.

13

General protection

Fault

Yes

Occurs under miscellaneous circumstances, not covered by other
categories, when an application program executes a privileged
instruction or I/O reference. The major circumstances are listed in
the section “Conditions Causing General Protection” following this
table. The error code depends on the condition. If the fault was
triggered by loading a segment register, the error code contains

the faulting segment selector. All other conditions result in an error
code of 0.

14

Page fault

Fault

Yes

Occurs during address translation when the page directory or page table
entry has its present bit (P bit) cleared to 0 or when the access is not
allowed by the page attributes (e.g., an attempt to write on a read-only
page). The faulting linear address is placed in the CR2 register. The
error code for a page fault indicates (a) whether the exception was due to
a not-present page or an access rights violation, (b) the privilege level of
the task, and (c) whether the access was a read or write.

15

Reserved

=

16

Coprocessor error

Fault

ST

Occurs during a coprocessor or WAIT instruction when the result

of a floating-point operation causes the ERROR* signal to be asserted.
The fault can only be raised if the EM bit in CRO is cleared to 0 (no
emulation) and is not reported until the next coprocessor or WAIT
instruction (after the instruction that generated the error) is executed.

0-255

Interrupt
instructions

Trap

Generated by an INT n instruction (opcode CDh), which can also be used
to raise the predefined interrupts, 1 through 16.

~

o-197

Hardware maskable
interrupts

Interrupt

No

Generated by an active INTR pin. The vector is supplied by the external
interrupt controller. :
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Condtions Causing General-Protection Faults

Some conditions that cause general protection faults are the following:

Violating the rules of privilege

Loading a data segment register with a system segment selector
Loading a data segment register with a code segment selector
Loading the stack segment register with a read-only segment selector
Memory access with a null selector loaded in the segment selector
Reading an execute-only code segment

Writing a read-only segment

Transferring control to a non-code segment

Accessing beyond a segment limit

Accessing beyond a descriptor table limit

Enabling paging in CRO when protection mode is disabled
Issuing an instruction longer than 15 bytes

Task switch to a busy task

Interrupt/exception via a trap or interrupt gate to a service routine with a DPL > 0

in virtual-8086 mode.

Error codes in general-protection faults contain a selector that may be taken from the
operand of the faulting instruction, the gate referenced by the instruction, or a TSS.

IBM PC/AT Interrupt and Exception Vectors

The IBM PC/AT uses a different set of vectors, which (in some cases) conflict with
Super386 processor exception vectors. In PC/AT-compatible systems, software that
enables protected mode must first reprogram the interrupt controllers to relocate the

peripheral interrupt vectors to other addresses. Table 4-12 shows the standard

PC/AT interrupt and exception vectors.

Chips and Technology, inc.
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Table 4-12.  PC/AT Interrupt and Exception Vectors

System Programing

Vector Description Type

0 Division by zero Fault

1 Single-step exception Fault/trap
2 NMI interrupt Interrupt

3 Breakpoint (INT 3) Trap

4 Overflow (INTO instruction) Trap

5* Print screen System call
6 Invalid opcode Fault

7 Coprocessor not available Fault

8* 8254 timer Interrupt
o* 8042 keyboard Interrupt
0Ah Video vertical retrace routine Interrupt
0Bh IRQ3 (expansion bus, serial port 1) Interrupt
0Ch IRQ4 (expansion bus, serial port 2) Interrupt
0Dh IRQS5 (expansion bus, parallel port 1) Interrupt
OEh IRQ6 (expansion bus, floppy disk) Interrupt
OFh IRQ7 (expansion bus, parallel port 2) Interrupt
10-1Fh BIOS services System call
20-27h DOS services System call
28-3Fh Reserved for DOS —

40-5Fh Reserved —

60-67h Available for user programs —

68-6Fh Not used —

70h 6818 real-time clock ) Interrupt
71h IRQ9 (expansion bus, video retrace) Interrupt
72h IRQ10 (expansion bus) Interrupt
73h IRQ11 (expansion bus) Interrupt
74h IRQ12 (expansion bus) Interrupt
75h Coprocessor error interrupt Interrupt
76h IRQ14 (expansion bus, hard disk) Interrupt
7h IRQ15 (expansion bus) Interrupt
78-7Fh Not used Interrupt
80-85h Reserved for BASIC interpreter —

86-FOh Used by BASIC Interpreter —

F1-FFh Not used System call

*  Conflicts with the standard Super386 vectors in Table 4-11.
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The PC/AT architecture uses interrupt vectors to access the BIOS in the system
ROM, operating system, and BASIC interpreter services. These calls are made by
using the INT n instruction. For compatibility with the PC/XT, the PC/AT does not
use the standard coprocessor error exceptions (9h and 10h). Instead, it reports errors
though an interrupt request line (75h).

Simultaneous Interrupts or Exceptions

‘When the processor detects an interrupt or exception, it attempts to store the state
of the processor and jump to the interrupt or exception handler. It is possible that
the processor will encounter another interrupt or exception while attempting to do
these operations. When this happens, the interrupts or exceptions are checked and
reported in a priority sequence. The highest priority event is checked and reported,
and other events are either deferred (interrupts) or lost (exceptions). If any
exception condition is still true after the service routine of a higher priority event
executes, it may be reported on the next attempt to execute the faulting instruction.

Some exceptions are not possible while vectoring to a handler. For example, the
processor does not perform a divide operation, and hence cannot encounter a divide
exception. It is possible for the processor to encounter a stack fault, not-present, or
general-protection exception. These exceptions are considered contributory, and

if encountered during an attempt to process a contributory exception, they will
generate a double fault exception. Any exception encountered while the processor
is attempting to invoke the page fault handler (exception 14) will generate a double
fault.

Table 4-13 shows the sequence in which interrupts and exceptions are checked and
reported. '
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Table 4-13.  Interrupt and Exception Priority

Priority

Interrrupt/Exception

Description

Debug traps

Checks the instruction that has just completed. Include cases as follows:
a. The trap flag is set to cause a single-step.

b. An operand of the previous instruction had a debug match.

c. The T bit in the TSS was set for the task switch just completed.

Debug faults

Checks the instruction that is about to execute. Generates exception 1.

ANMI interrupt (SuperState V)

Checks the altemnate nonmaskable interrupt input signal. This is one of the
entry mechanisms to the Super386 processor’s SuperState V mode.

NMI interrupt

Checks the nonmaskable interrupt input signal.

INTR interrupt

Checks the maskable interrupt request input signal.

Segmentation fault

Checks for faults that prevent the next instruction from being fetched.
This check generates exceptions 11 and 13.

Translation fault

Checks for faults that prevent the next instruction from being fetched.
This check generates exception 14.

Decoding fault

Checks for faults encountered while decoding the next instruction.

Faults include:

a. Invalid opcode (exception 6 for opcodes that do not exist or are not valid
in the current execution mode);

b. Instructions that are longer than 15 bytes; or

c. Instructions that are not valid at the current privilege level (exception 13).

Coprocessor WAIT or ESCAPE

Checks for the following conditions, in this order:

a. If WAIT instruction, generates exception 7 if TS = 1 and MP = 1 in
the CRO register.

b. If WAIT or ESCAPE instruction (D8-DF), generates exception 7 if
TS = 1 and MP = 1 in the CRO register.

c. If WAIT or ESCAPE instruction (D8-DF), generates exception 16 if
ERROR signal from coprocessor is active.

INT3orn

Checks for INT 3 or n instruction and generates interrupt 3 or n.

INTO

Checks for INTO instruction and generates interrupt 4 if the overflow flag
is set.

10

Memory operand

Checks all portions of memory operands, including multiple operands, for the
following conditions, in the following order. If there are multiple operands,
steps a and b are performed on the first operand before any steps are performed
on subsequent operands:

a. Segmentation faults. Generates exception 11, 12, or 13.

b. Paging faults. Generates exception 14.

If a segmentation or translation fault is detected for only part of an operand,
no bus access is generated. Thus, an operand only partially existing on a
non-present page will not fetch or store the part of the operand that is on
the present page.
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Table 4-13.  Interrupt and Exception Priority (continued)

Priority  Interrrupt/Exception Description

11 DIV, IDIV, and AAM Checks for a DIV, IDIV, or AAM instruction. Generates exception 0 if a
divide by zero is attempted, or if the result cannot be represented in the
destination operand size.

11 BOUND Checks for a BOUND instruction, and generates exception 5 if the register
operand exceeds the bound indicated by the two memory operands.

11 Segment selectors in control transfer  If the operation is a control transfer, checks for segment selectors that

exceed table limits, are null, point to invalid or inappropriate descriptors,
are not present (including gates not present), violate privilege rules, or
have an instruction pointer that exceeds the segment’s limit. See Table 4-8,
“Exception Conditions Verified During Task Switching.”

Disabling Interrupts

Several conditions temporarily block the handling of some or all interrupts. These
conditions are the following:

IF Flag—The interrupt enable flag in the EFLAGS register (IF) disables maskable
interrupts when cleared to 0. Exceptions and NMI interrupts are not affected.

RF Flag—The resume flag in the EFLAGS register (RF) disables debug faults for
one instruction when set to 1. The RF flag is automatically cleared to O after one
instruction is executed.

NMI Interrupt—The NMI interrupt is disabled while the NMI service routine is

executing so that an NMI can never interrupt the processing of a previous NMIL.

After execution of an IRET instruction, NMI interrupts are automatically re-enabled.

MOV or POP Instruction—A move or pop instruction that loads the stack segment debug
(SS) register inhibits all interrupts and{exceptions until the end of the following —
instruction. This allows a new stack éegment and stack pointer to be loaded without

the risk of an interrupt between the two loads| If an interrupt were allowed to occur,

the instruction pointer could be pushed into a|space addressed with the new stack
segment and the old stack pointer. )
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Interrupt-Related Instructions

Several instructions are provided for calling, managing, and returning from
interrupts:

CLI—Clears the interrupt enable flag (IF) to O in the EFLAGS register, disabling
maskable interrupts.

STI—Sets the IF flag, enabling maskable interrupts.

INT n—Triggers an exception with a vector specified by an 8-bit immediate
operand.

INT 3—Triggers an exception with vector 3h.

INTO-;-Triggers an exception with vector 4h, if the overflow flag (OF) is set to 1.
BOUND—Triggers an exception with vector 5h, depending on the state of three
operands. One operand is an array index, and the other operands are the upper

and lower array bounds. If the index is outside of the bounds, the exception is
called.

JIRET—Terminates the service routine and passes control back to the procedure

or task that was interrupted. If the nested task flag (NT flag) is set to 1, a task
switch occurs. If NMIs are disabled, they are re-enabled.

LIDT—Loads the IDTR register from memory. This instruction is used to
initialize the register with a pointer to the IDT.

SIDT—Writes the IDTR register to memory.

POP SS and MOV SS—Inhibit interrupts until after the following instruction
completes execution. This prevents use of an invalid stack.
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Initialization

Initialization is a procedure that causes program execution to begin in a predictable
manner. The processor begins to execute in 8086-compatible real mode. System
code then establishes in memory the base registers and control tables needed to
support full operations.

Reset

Initialization begins with hardware external to the processor activating the RESET*
signal. Hardware typically holds the RESET™ signal active while

® Power is stabilizing.
® System software or the user is forcing a reset.

After reset, registers are set to the default values shown in Table 4-14. Both memory
protection (segmentation) and paging are disabled. Table 4-14 shows the states of
registers that have defined values after reset. The states of all other registers are
undefined.
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Table 4-14.  State of Registers After Reset

System Programing

Shadow Register
Register | Value Base Limit Function
EIP 0000FFFO — —
EFLAGS | XXXX0002 — — Interrupts and single-stepping disabled.
EAX 777777 — — Clear = passed; nonzero = failure signature.
EDX XXXX03?7? — — 80386-compatible; revision level.
Cs F000 FFFF0000  FFFF Addresses top 64kB of memory.
DS 0000 00000000  FFFF Addresses bottom 64kB of memory.
SS 0000 00000000 FFFF - Addresses bottom 64kB of memory.
ES 0000 00000000 FFFF Addresses bottom 64kB of memory.
FS 0000 00000000 FFFF Addresses bottom 64kB of memory.
GS 0000 00000000 FFFF Addresses bottom 64kB of memory.
IDTR — 00000000 03FF Compatible with 8086.
DR7 00000000 — — Breakpoints disabled.
CRO 277777771 — — Protection and paging disabled.

X Undefined; all registers not listed are also undefined.

?

Defined, but variable among Super386 processor types.

FFFFFFF2 if a math coprocessor is present; FFFFFEQ if there is no math coprocessor.

The default values in the EIP register, the code segment (CS) register, and the

data segment (DS) register, together with the segment descriptors in the segment
shadow registers, cause code execution to begin 16 bytes below the top of memory,
accessing data from address 0 at the bottom of memory. Normally, a 64kB ROM
with initialization code is at the top of memory and RAM is at the bottom, as shown
in Figure 4-41.

PRELIMINARY
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I
Figure 4-41. Typical Memory Use at Start of Execution
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After the registers are initialized, the processor executes the instruction at
FFFFFFFOh as its first operation. Normally, this operation will be a near jump in
ROM to the start of initialization code elsewhere in the ROM. The 12 high-order
address bits of the CS register remain set to 1 until one of the following occurs:

¢ The CS register is explicitly loaded with a segment selector.

® An inter-segment CALL, JMP, RET, or IRET instruction executes.

® An interrupt or exception occurs.

Any of these actions will reload the entire CS register and allow normal addressing
to begin.
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Real-Mode Initialization

Real-mode initialization only requires that interrupt handling routines be installed.
This involves loading the routines in memory, loading the interrupt vector table
(which starts at memory address 0), and enabling interrupts. Real mode does not
use other tables, such as descriptor tables.

Because the nonmaskable interrupt (NMI) is always enabled, there is a short period
of time between the end of reset and the completion of the NMI handling routine
installation, during which an NMI would not be managed properly if it were to
occur. The system hardware design must take this situation into account to prevent
an NMI from occurring during that time. System software may therefore have to
specifically enable the NMI after the NMI handling routine is installed. For
example, IBM-compatible systems provide NMI hardware that is enabled through
a write to I/O port 70h, bit 7.

Protected-Mode Initialization

Before switching to protected mode operation, the initialization code must establish
a GDT in memory and load its base address and limit into the GDTR. At least two
segment descriptors are required above the first (null) descriptor in this table: one
for code and one for data. Before executing any instructions that use the stack, the
stack pointer (SP) register must be initialized. The initialization stack can be
simplified by making it part of the data segment, thereby eliminating the need for a
separate stack segment and descriptor.

After the global descriptor table is established, the LGDT instruction is used to load
the table’s base address and limit into the GDTR. To prepare for interrupts, an IDT
and an interrupt gate descriptor must be created. The LIDT instruction loads the
IDT base address and limit to the IDTR.

The processor can then be switched to protected mode by setting the protection
enable (PE) bit in CRO to 1. To do this, the contents of CRO must be read, the PE
bit set, and the contents written back by means of the MOV CRO instruction or the
SMSW/LMSW instructions. The instruction immediately following this operation
should be a JMP, which will flush the instruction queue.

At this point, the processor is operating in protected mode at the highest current
privilege level (CPL = 0). The initialization code must reload all segment registers,
which still contain their old real mode values, with values that are appropriate for
protected mode.
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Memory Segmentation

In protected mode, the memory management features that are implemented
determine the types of data structures required. One GDT, with one code segment
descriptor and one data segment descriptor, is always required. This flat memory
model operates at the most basic level of segmentation.

A more flexible system uses multiple sets of such segments. The operating system
itself will probably require multiple descriptors. Then, each task operating under it
will require its own LDT, for which there must be a corresponding descriptor in the
GDT. The operating system can allocate memory and assign new descriptors and
descriptor tables as they are needed; or the initialization code can create them so that
they remain as stable data structures.

Paging Mechanism

The initialization code can also enable paging. Before doing so, a page directory
must be created and its base address must be loaded into the page descriptor base
register (PDBR), the CR3 register. At least one second-level page table must also
be created. Then the contents of CRO can be read, the paging enable (PG) and
protection enable (PE) bits can be set to 1, and the contents can be moved back

to CRO.

Paging can be enabled in protected mode, if the page directory and page table have
been installed. In any case, the instruction that sets or clears the PG and/or PE bits
must be followed by a JMP instruction, which flushes the instruction queue. For
proper operation, code that enables paging must exist in a region of memory that has
the same physical address whether or not paging is enabled.

Muititasking Environment

To support multitasking, create a task state segment (TSS) and load its descriptor
into the GDT, marking the descriptor as “not busy.” Use the LTR instruction to
load a segment selector for this TSS descriptor into the task register (TR). The LTR
instruction will mark the descriptor as “busy” without performing a task switch. In
this way, the first task switch that occurs will copy the current state into the TSS.

Use the LTR instruction once to prepare for the first task switch. After this, the
processor’s task-switching mechanism manages the “busy/not busy” status of the
TSS descriptor. Either the operating system can create, assign, and deallocate TSSs
dynamically, or they can be created by the initialization code and remain as stable
data structures.
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SuperState V Mode

SuperState V mode is a new and special extension of the Super386 micro-
processor’s architecture to provide OEMs with a method of creating product
differentiation (e.g., power management and device emulation). A SuperState V
program uses a separate address space called SuperSpace.

SuperState V mode allows a control program, running at a higher privilege level
than the operating system, access to the Super386 processor for special system
management and feature control purposes. SuperState V mode gives complete
control of the processor to the system management code without the assistance,
cooperation, or knowledge of the operating system.

In the 80386 processor, standard interrupts could be used for these system
management functions, but since the operating system typically sets up the interrupt
descriptor table (IDT), changes would be required to the operating system to gain

its cooperation. In addition, code would have to be written specifically for each
possible operating system. This would make the development costs of system
management features prohibitive, not to mention the enormous costs of maintenance.

Using SuperState V mode, OEMs can build system management features into a
system without having to interface with the operating system or change one line of
operating system code. OEMs can also use SuperState V mode to implement simple
multitasking between several operating systems, operating system independent

disk caches, performance measurement tools, real-time diagnostic routines, virtual
devices, or user-defined instructions. '

SuperState V mode has direct access to many of the Super386 internal functions and
registers. Much of the SuperState V application program is specific to the OEM’s
design. Consult the SuperState V Architectural Manual for specific information on
writing SuperState V software.

In the remaining sections, Super386 modes will be referred to as either SuperState V
mode or user mode. User modes are real mode, protected mode, and virtual-8086
mode.
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Entering SuperState V Mode

SuperState V mode is entered in one of the following ways:

Asserting the ANMI* pin (38605DXE processor only)

Using the SCALL instruction

Selecting one or more of the externally signaled interrupts

Selecting one or more of the internally generated interrupts or exceptions
Accessing a specific I/O port or a range of I/O ports

Detecting a shutdown condition but before generation of a shutdown cycle
Detecting an HLT instruction.

‘When the Super386 processor enters SuperState V mode, the processor reads a
segment descriptor from memory at physical address 000FFFCOh or 000EFFCOh.
The descriptor defines a region of memory where the user mode processor state will

be

saved and where SuperState V code resides.

SuperState V Segment Descriptor

The format of the SuperState V descriptor differs from the format of the descriptor
in an LDT or the GDT. The SuperState V descriptor sets up a read/write data
segment that is also an executable code segment.

In general, systems supporﬁng SuperState V mode are constructed with memory
subsystems that recognize the AADS* signal, which is generated only by the

38605DXE processor. When AADS* is not used, the SuperState V application

programmer should initialize the SuperState V descriptor to point to a region that
is available for SuperState V use within the normal user memory space.

Note: 'When SuperState V memory resides in user space, some of the system security
capabilities that SuperState V offers are diminished.

The Super386 extended instructions and SuperState V code use a reserved area to
save and restore portions of the CPU state. This area also may be used to contain
pointers to I/O port and interrupt/exception capture tables.
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Saved Information

‘When the Super386 processor enters SuperState V. mode, it saves certain
information into the SuperState V save area in order to free processor resources

for use by SuperState V code. The Super386 processor state is restored when
SuperState V mode is exited. To provide for a fast entry and exit from SuperState V
mode, only a small subset of the processor state is saved initially. If a SuperState V
application needs more registers than are initially saved, it must explicitly save and
restore the additional registers.

Because only the code segment descriptor is saved, all references to SuperState V
memory must use the CS: override prefix. If this is inconvenient, additional segment
descriptors can be saved to free them for SuperState V code use. Once the
information has been saved, the CS descriptor and EIP are loaded according to the
means of SuperState V entry. For certain entries, EDX and EBX are also loaded
“with useful information.

SuperState V Entry Vectors

When the Super386 processor determines that it is to enter SuperState V mode, it
loads the SuperState V descriptor; stores EIP, EFLAGS, EDX, EBX, and the CS
descriptor in the SuperState V segment; fetches a vector corresponding to the cause
of SuperState V entry; and begins execution at the location indicated by the vector.

When an IN, OUT, INS, or OUTS instruction causes SuperState V entry, the EDX
register is loaded with the port number that the instruction was accessing, the port
size is loaded into bits 31:8 EBX, and the instruction length (including any prefixes)
is loaded into BL. The EIP saved on the stack points to the I/O instruction.

The I/O instruction is faulted before the instruction enters the execution unit. This
means before an access to the I/O device is generated but after the processor has
performed all protected mode privilege checks on the instruction. This I/O fault
allows all operating system checks to be performed and any exceptions to be
reported to the operating system before control is passed to the SuperState V
program. The I/O fault also ensures that SuperState V mode is only invoked for
those instructions that actually generate an I/O access.

When an interrupt or exception causes a SuperState V entry, the DX register is
loaded with the zero-extended exception vector number. If an interrupt is caused by
software, the BL register is loaded with the zero-extended instruction length. If an
internally signaled interrupt causes a SuperState V entry, the instruction length value
is unrelated and should be ignored.
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Events, Ports, and Interrupt Capture (EPIC) Facility

The event capturing facility allows entry into SuperState V mode by the selection
of specific port or interrupt vector ranges. The EPIC facility consists of seven
Super386 registers that provide for six ranges of events, each of which can
selectively capture either a single port range or a single interrupt range. Because
the facility is implemented on the processor, it introduces no additional delay when
enabled, unlike the I/O permission bit-map used by protected mode.

The EPIC facility can be operated in either inclusive or exclusive mode. In inclusive
mode, SuperState V mode is entered when any match occurs between one of the six
ranges and the corresponding operation. In exclusive mode, SuperState V mode is
entered only when no range matches the corresponding operation. Control of the
EPIC is discussed in the SuperState V Architectural Manual.

When a range of ports or interrupts/exceptions are matched, the logic ignores one
or more of the least significant bits of the port or interrupt address. Matching 128
selected port numbers is accomplished by ignoring the least significant seven bits
of the port address in the EPIC register. This means that a range of four ports can
include port numbers 4 to 7 but not port numbers 2 to 5.

The EPIC facility should be operated in inclusive mode only when six or fewer
devices are to be monitored and/or emulated by software. If more than six devices
are required, the EPIC facility should be operated in exclusive mode. In exclusive
mode, only performance critical operations need be placed in the EPIC registers
when they are encountered. In this way, the EPIC facility can be operated much as
a cache or TLB, providing unlimited capture capabilities with little or no observable
performance loss.

SuperState V Programmer’s Environment

A number of processor features cannot be used or have functions that are altered in
the standard implementation of SuperState V mode. These features are discussed in
the following paragraphs.

Cache—Any instruction, data, or unified cache present on the processor is disabled.
Its contents are retained while in SuperState V mode, but no SuperState V code or
data will be placed in it.

Segmentation Rules—Real mode segmentation rules are followed, with the
exception that the default bit (D) can be set to 1, allowing for access to a full 32-bit
address range.
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Debugging—Debug exceptions are not generated.
Paging—Paging is disabled.

GS Segment—The GS: instruction prefix causes the associated memory reference to
go to user mode memory space rather than SuperSpace. This provides a means for
SuperState V code to examine user mode memory.

Hardware Interrupts—All hardware interrupts (INTR, NMI, and ANMI¥*) are
masked.

Invalid Opcodes —The invalid opcode exception is disabled. In some cases,
ordinarily undefined opcodes perform special functions specifically for SuperState V
software. These special instructions are defined in the SuperState V Architectural
Manual.

Software Interrupts—Software interrupts and exceptions require that an IDT be set
up in SuperSpace. The use of the IDT implies real mode inter-segment transfers,
which restrict addresses to the lower IMB.

Execution Starting Address—Execution begins at an address specified during the
SuperState V entry sequence. Execution may be defaulted to 16-bit code or 32-bit
code, depending on the SuperState V segment descriptor, and can be altered in
SuperState V mode. ‘Switching from one mode to the other requires careful
programming.

16-Byte Alignment of Segment Base Address

If inter-segment transfers occur in SuperState V mode, regardless of whether
execution is in 16-bit or 32-bit mode, the base address of the SuperState V segment
should be aligned to a 16-byte boundary, and it should be less than 1MB so that it
can be expressed as a real mode segment. This is necessary because the real mode
segmentation rules map selectors to base addresses by shifting left four bit positions.

The SCALL Instruction

The SCALL instruction is the only Super386 extended instruction available in
user mode. It is used as a SuperState V procedure call where the source operand
specifies the service requested of the SuperState V program. In some cases, the
CPU may provide services directly without having to establish and initialize a
SuperState V descriptor and its associated code.
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The SCALL operations supported directly by the CPU include enabling and
disabling any on-chip cache (the instruction cache in the case of the 38605);
obtaining the CPU identification (family, version, silicon stepping level); and
enabling SuperState V mode. Until SuperState V mode is enabled, any SCALL
not handled directly by the CPU will return with the carry flag set to indicate that
the service is not available.

System Security Issues

SuperState V mode provides mechanisms to circumvent operating system security.
To prevent application programs from having access to SuperState V capabilities,
the SCALL instruction can only be executed for enabling or disabling the cache,

or for enabling SuperState V mode when the processor is at CPL zero (most
privileged). Any other service request will return either CF = 1 if SuperState V
mode is not enabled, or a value corresponding to the requested service if SuperState
V mode is enabled.

To ensure system integrity, the SuperState V software must examine the CPL of the
CPU upon each entry from the SCALL instruction and determine if the requesting
program should be allowed access to the service it is requesting. For example, an
application program should not be allowed to request that it be invoked each time a
page fault occurs. This could cause serious performance problems.

SuperState V software allows system integrators to provide system BIOS level
support for SuperState V mode while maintaining the integrity of protected
operating systems such as UNIX. For system integrators that implement SuperState
V support, operating systems like UNIX can retain their integrity but still access the
features that the system manufacturer implemented in SuperState V mode.

Some applications may disable protection features while in SuperState V mode, and
protection violations may be fatal. For this reason, a limit of 4GB (limit = FFFFFh,
granularity = 1) on the SuperState V segment is recommended.
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Instruction Pipeline and Cache Consistency

A cache-consistency mechanism is provided to ensure that instructions contained

in the pipeline of both the 38600 and 38605 processors or in the instruction cache of
the 38605 processor accurately reflect the contents of memory. Because instructions
can be present in the pipeline without being present in the cache, both the 38600 and
38605 processors contain identical consistency checking hardware. This hardware
functions on the 38605 processor whether the cache is enabled or not.

The mechanism keeps a record of instructions contained in the cache or pipeline.
When a store is executed to an address that matches one recorded by the mechanism,
the instruction pipeline is flushed. External devices that store to memory located in
the instruction cache of the 38605 processor will also cause the corresponding cache
entry to be invalidated.

Instruction Cache (38605 Only)

4-110

The 512-byte instruction cache in the 38605 processor increases processor
performance for most operations. It contains 32 directly mapped 16-byte entries,
each of which has tag information allowing it to map to any address value for bits
31to 9. Each four bytes contains a valid bit, allowing for partial validity of each
16-byte entry. When instruction data is available from the cache, the external bus
is available for operand accesses. Four bytes can be read from the cache in a single
cycle, or eight bytes in the equivalent of one bus access. Special hardware is also
included to generate addresses for jump instructions.

In some cases, this combination of cache and hardware address generation
dramatically increases execution speed. On average, about 65 percent of all
instruction fetches are satisfied by the cache. The actual cache hit rate varies
dramatically, however, from zero to 100 percent, depending on the nature of the
executing code.

The 38605 processor can be operated with the instruction cache enabled or disabled.
The assertion of the KEN* signal enables the cache on each instruction fetch. When
asserted, the code fetch is written into the cache and the entry is made valid. Future
accesses to the same address will retrieve the data from the cache. Software cannot
depend on the contents of the cache being retained while it is disabled. Similarly,
software cannot assume that the entire contents of the cache is invalidated by the act
of disabling it.

To invalidate the entire cache, the FLUSH* signal must be asserted. Invalidating the
cache from software is unnecessary because the consistency mechanism ensures that
the cache always reflects an exact copy of what is in memory.
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Shutdown and Hélt

A shutdown occurs if a fault is raised during the servicing of a double-fault
exception. A halt occurs when a HLT instruction is executed. In either case, the
processor enters a halt cycle, in which it performs the following actions in the
sequence shown:

1. Stops executing instructions.

2. Places one of two addresses on the address bus:
00000000 = HLT instruction was executed.
00000002 = a shutdown (fault on double-fault) occurred.

3. Releases any locked resources.
4. Waits for an external interrupt.

As with normal interrupts, a nonmaskable interrupt or reset is needed if maskable
interrupts are disabled. After the interrupt signal is received, the processor will
service it normally, return control, and continue execution. If a halt occurred,
execution continues at the instruction that follows the HLT instruction. If a
shutdown occurred, execution continues from an uncertain point.
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Testing the TLB

The structure and function of the translation lookaside buffer (TLB) is described in
the “Paging” section of this chapter. While it is very unlikely that the TLB will fail,
two registers are provided for TLB testing:

o Test data register (TR7)—Holds a physical address and attributes.

® Test command register (TR6)—Holds a corresponding linear address
and attributes.

These registers, illustrated in Figure 4-42, can be used to write and read TLB
entries in a power-on self-test routine or at other times. The MOV instructions are
used to load and store the registers. In real mode, the MOV instructions are always
available. In protected mode, the MOV instructions are valid only when executed
at the highest current privilege level (CPL = 0). The instructions cause a general-
protection exception if used at a less privileged level.

Note: Paging must be disabled before TLB testing begins.
]
Figure 4-42. Test Registers TR7 and TR6
31 12 11 0
%
Physical Address Reserved PL] REP TR?7

<

Linear Address

DID*IUIU* WIN*E;Beserved CJTR6
Z
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Writing TLB Entries

To write TLB test entries, a physical address is first moved to TR7. Figure 4-43
shows the TR7 register setting. The pointer location (PL) must be 1, and the
replacement (REP) field must specify which of the four associative data blocks
(called ways) are to hold the address.

L]
Figure 4-43. TR7 Register Settings for Writing a TLB Entry
31 1211 ]
Physical Address Reserved PL} REP TR?7

Linear Address

<

D|D*|U|U* '] W*E;Beserved CJTR6

31:12

3.2
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PL

REP

Physical Address—For a TLB write, these bits specify the
physical address that corresponds to the linear address
specified in the TR6 register (Figure 4-44).

Pointer Location—For a TLB write, this bit is set to 1 if the
REP bits select the associative data blocks for the entry. If
this bit is clear, the internal pointer of the paging unit
indicates the selection:

1 Use REDP bits to select block.

0 Internal pointer selects associative block.

Replacement—For a TLB write with PL = 1, these bits

determines which of the four associative data blocks are
to hold the TLB entry being written. If PL = 0, these bits

have no meaning.
11 Way3
10 Way2
01 Wayl
00 Way0
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After TR7 is written, TR6 is written with the corresponding linear address, the
attribute bits, and the C bit = 0. Figure 4-44 shows the TR6 register settings.

L
Figure 4-44. TR6 Register Settings for Writing a TLB Entry

31 1211 0
-
Physical Address Reserved PL} REP TR?
Linear Address V| D|D*j U Ju*} W JWx} Reservedq C | TR6
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31:12

11

10:9

D, D*

Linear Address—For a TLB write, these bits specify the
linear address that corresponds to the physical address,
already written to TR7, in the TLB entry (see Figure 4-44).

Valid Data—For a TLB write, this bit indicates whether the
TLB entry contains valid data. When testing the TLB, this

bit is set to 1; otherwise the entry will be deemed invalid if

found on a TLB search. Writing to register CR3 clears the

V bit in all TLB entries.

1 Valid

0 Invalid.

Dirty Attribute Bit and Its Complement—For a TLB write,
these bits affect the setting of the D bit in the TLB entry tag.
The bit-pair meanings are:

D D* Meaning

0 0 Setting not defined.
0 1 Clear to D = 0.

1 0 SettoD = 1.

1 1 Setting not defined.
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8:7 U, U* User/Supervisor Attribute Bit and Its Complement—The U
bits are also called the U/S bits. For a TLB write, these bits
affect the setting of the U bit in the TLB entry tag.

U u* Meaning
0 0 Setting not defined.
0 1 Clearto U = 0.
1 0 SettoU = 1.
1 1 Setting not defined.
6:5 W, W* Read/Write Attribute Bit and Its Complement—The W bits

are also called the R/W bits. For a TLB write, these bits
affect the setting of the W bit in the TLB entry tag.

w w* Meaning
0 0 Setting not defined.
0 1 Clear to W =0.
1 0 Setto W = 1.
1 1 Setting not defined.
0 C Command—For a TLB write, this bit must be cleared.
1 Search the TLB.
0 Write to the TLB.
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Reading TLB Entries

In reading TLB entries, called a TLB search or lookup, the TR7 register returns

the physical address that corresponds to the linear address in the TR6 register. The
operation begins by moving a linear address to TR6, with the attribute bits set as
described following Figure 4-45 and with the C bit set to 1. Then TR7 is read. If
the pointer location (PL) in TR7 is set to 1, this indicates that the read was successful
and the corresponding physical address and REP field (indicating the associative
data block or way) can be read.

The TR6 segment settings for searching and after searching the TLB are shown in
Figure 4-45.

I
Figure 4-45.  TR6 Settings for Searching and After Searching the TLB

31

21 0

Physical Address Reserved PL] REP |~ TR?

Linear Address V ] D |D¥ UIU* W w*pkeserved C]TR6

4-116

31:12 Linear Address—On an entry search, the TLB is searched for
this 20-bit value. If a unique match is found, the entry is
returned in TR6 and TR7.

11 v Valid Data—After returning from a successful TLB entry
search, this bit indicates that the V bit of the TLB entry is set
to 1 (valid). '

1 Valid
0 Invalid
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109 D, D* Dirty Attribute Bit and Its Complement—For a TLB entry
search, these bits set conditions as shown below. After the
search, these bits reflect the comparable bit settings found in

the TLB entry.
D D* Meaning
0 0 Find no matches.
0 1 Find if D = 0.
1 0 Find if D = 1.
1 1 Find all, ignoring D.
8:7 U, U* User/Supervisor Attribute Bit and Its Complement—The U

bits are also called the U/S bits. For a TLB entry search,
these bits set conditions as shown below. After the search,
these bits reflect the comparable bit settings found in the

TLB entry.
u u* Meaning
0 0 Find no matches.
0 1 Find if U =0.
1 0 Findif U = 1.
1 1 Find all, ignoring U.
6:5 W, W* Read/Write Attribute Bit and Its Complement—The W bits

are also called the R/W bits. For a TLB entry search, these
bits set conditions as shown below. After the search, these
bits reflect the comparable bit settings found in the TLB

entry.
w w* Meaning
0 0 Find no matches.
0 1 Find if W = 0.
1 0 Find if W = 1.
1 1 Find all, ignoring W.
0 C Command—For a TLB entry search, this bit must be set to 1.
1 Search the TLB.
1 Write to the TLB.
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The TR7 segment in Figure 4-46 shows the values returned after the search.

] :
Figure 4-46. TR7 Return Values After TLB Search

31

21 ]

Physical Address Reserved PL} REP TR?

Linear Address

<

DlD*IUIU* W N*Eeserved CJTR6

4-118

31:12

PL

Physical Address— After a TLB search, this field returns
the physical address that corresponds to the linear address
specified in TR6.

Lookup—After a TLB search, this bit indicates whether the
search was successful or not.

1 Match found in TLB.

0 No match.

Report—After a TLB search in which PL = 1 indicates that
a match was found, these bits indicate which of the four
associative data blocks contained the tag that was found.

If PL = 0, these bits have no meaning.

11 Way3
10 Way2
01 Wayl
00 Way0
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Debugging

A set of debug registers is provided to assist debug programs. To use debugging,
the debug registers are loaded with the memory addresses whose access should
cause program execution to stop. These addresses are called breakpoints. They
can refer to either instruction or data locations. When a breakpoint is encountered,
the processor generates a debug exception so that a debug-exception handling
routine can service the event.

Traditional Debugging With Interrupt Vector 03

In the traditional method of setting breakpoints, without debug registers, the
instruction opcode at the breakpoint in memory is replaced by the INT 03 opcode.
When the INT 03 opcode is encountered, control is transferred to the breakpoint
trap handler for interrupt vector 3, which should maintain a copy of the original
instruction in memory. To resume program execution, the interrupt routine can
then execute the substituted instruction, restore it to its place in memory (at the
breakpoint), and perform an IRET to continue execution at the substituted
instruction in memory.

Breakpoints can be implemented more simply with the processor’s breakpoint
registers, as described below. However, the INT 03 vector is still reserved for
this traditional type of debug routine and can be useful when more than four
breakpoints are desired.

Using the Debug Registers

Breakpoint addresses can be entered directly into these registers; instructions in
memory need not be substituted with INT 03 opcodes. The registers also allow
breakpoints to be set in ROM, which is not possible in the traditional debugging
method. Figure 4-47 illustrates the eight 32-bit debug registers, two of which are
reserved. The MOV instruction is used to load and store the registers.
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]
Figure 4-47. Debug Register Set

313029282726252423222120191817161514131211109 8 2 6 5 4 3 2 1 @

LEN3] RW3 JLEN2 | RW2 JLEN1] RW1 | LEN | RWO Resqﬁﬂ R%GE LE G3|L3 G2fL2]G1 LlIGOILOIDR7

/// Reserved / BIIBSIBD Reserved /AMIBZIMIBO DRE
Reserved / //// R4

Breakpoint 3 Address DR3
Breakpoint 2 Address DR2
Breakpoint 1 Address DR1
Breakpoint @ Address DRO
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Table 4-15 shows the functions of the debug registers illustrated in Figure 4-47.

|
Table 4-15. Debug Register Functions

Register Description

DR7 Debug Control. This register determines the behavior of the four breakpoint registers,
DR3:0. See the “Debug Control and Status™ section.

DR6 Debug Status. When a debug exception has occurred, the register containing the breakpoint

- and other information about the exception is returned in this register. See the “Debug

Control and Status” section.

DR5:4 Reserved

DR3:0 Breakpoints. Up to four breakpoint addresses in linear memory can be specified in these
registers. The conditions under which each breakpoint will be valid are controlled through
DR7.

Debug Control and Status

Debug control register DR7 defines the type of access that will cause a debug
exception to be generated at each breakpoint address. When a debug exception
occurs, debug status register DR6 can be read to determine how it occurred. The
list following Figure 4-48 shows the organization of the DR7 register.
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313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
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LEN3] RW3 JLEN2 | RW2 JLEN1] RW1 | LEN | RWO Reﬁﬁﬂ%%ﬁlf LEJG3|L3]G2JL2}G1 LlIGOILOI DR?
bits: 31:30 LEN3 Length of Breakpoint—These bit pairs select the length
27:26 LEN2 of the data pointed to by the DR3:0 breakpoint address
23:22 LEN1 registers. The bit pairs correspond to the following address
19:18 LENO lengths:
11 Four bytes
10 Reserved
01 Two bytes
00 One byte.
If the corresponding RW bit pair for a breakpoint indicates
instruction execution (00), the LEN bit pair must be
cleared to 0.
29:28 RW3 Read/Write Break Condition—These bit pairs specify a
25:24 RW2 condition under which a break will occur for the opcode
21:20 RW1 or data that is pointed to by the DR3:0 breakpoint address
17:16 RWO registers. The bit pairs correspond to the following break
conditions:
11 Break on data read or write.
10 Reserved.
01 Break on data write.
00 Break on instruction execution.
13 GD Global Debug Access Detect—This bit controls whether

the BD bit (bit 13) of the DR6 will reflect read/write access
attempts to any of the debug registers DR0:7 while they
are in use by in-circuit emulation.

1 Enable access detection.

0 Disable access detection.

PRELIMINARY Chips and Technology, Inc.



System Programming

b & LE

G3
G2
G1
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L2
L1
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Global Breakpoint on Exact Match—On the Super386
processor, this bit has no effect. All matches are exact, and
execution overlapping is never disabled in order to achieve
this. The bit is defined here only for compatibility with the
80386 architecture. The bit is cleared on a task switch.

Local Breakpoint on Exact Match—On the Super386
processor, this bit has no effect. All matches are exact, and
execution overlapping is never disabled in order to achieve
this. The bit is defined here only for compatibility with the
80386 architecture. The bit is cleared on a task switch.

Global Breakpoint Enable—These bits enable the
corresponding breakpoint in the DR3:0 registers, on an
ongoing basis. The processor does not clear these bits
when it switches to a new task.

1 Enable breakpoint for all tasks.

0 Disable breakpoint.

Local Breakpoint Enable—These bits enable the
corresponding breakpoint in the DR3:0 registers for a
single task only. The processor clears these bits when it
switches to a new task.

1 Enable breakpoint for this task only.

0 Disable breakpoint.

Register DR6 returns information that was valid at the time the debug exception was
generated, allowing the debug handler to determine the reason for the exception.
The processor does not clear the contents of DR6. The register should be cleared by
the debug handling routine to avoid confusion on the next debug exception. The list
following Figure 4-49 gives the organization of DR6.

Chips and Technology, Inc.
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Figure 4-49. Debug Register DR6

313029282726252423222120191817161514131211109 8 72 6 5 4 3 2 1 0

/ %
/ Reserve/ %BT BS]BDW Reserved B3[s2|B1|Be] oRs
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bits: 15 BT
14 BS
13 BD
3 B3
2 B2
1 B1
0 BO

Breakpoint Trap—This bit is set to 1 if the debug 4
exception was generated when the processor switched to f}
the current task and found that the debug trap bit (bit T) o
the TSS was set to 1.

1 TSS trap bit was set during task switch.

0 Not a task-switch exception.

Breakpoint Single-Step—This bit is set to 1 if the debug
exception was generated because the trap flag (TF) in the
EFLAGS register was set to 1.

1 Single-step trap after instruction execution.

0 Not a single-step debug exception.

Breakpoint Debug—This bit is set to 1 if the next
instruction would perform a read or write access on one
of the debug registers DR0O:7 while they are in use by
in-circuit emulation.

1 Next instruction accesses one of DRO:7.

0 Next instruction not debug.

,

Breakpoint at Breakpoint Address—One or more of these
bits are set if the address in the corresponding breakpoint
address register DR3:0 could have caused the debug
exception. The bits will be set as long as the conditions
specified by the corresponding LEN and R/W bits are met,
and will be set regardless of the 1.3:1.0 and G3:0 settings.

1 Breakpoint at DR3 address

1 Breakpoint at DR2 address

1 Breakpoint at DR1 address

1 Breakpoint at DRO address.
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Conditions for Recognizing Breakpoints

Breakpoints that are set on instructions (RW bits = 00 in the debug control register)
must point to the first byte of the instruction opcode, or to the first prefix byte if the
instruction includes any prefixes. Breakpoint operation is unpredictable if the
LEN3:0 field is set to anything other than 00 for instruction breakpoints.

Breakpoints set on data (RW bits = x1 in the debug control register) must specify
the data size being accessed through the LEN3:0 field, which the processor uses to
mask out the low-order address bits in the DRO:3 registers. For this reason, only
data accesses on aligned boundaries (e.g., byte accesses on any boundary, 16-bit
accesses on word boundaries, and 32-bit accesses on dword boundaries) generate
useful results. Access to any of the bytes in the range specified by the LEN3:0 field
will generate a debug exception. If a breakpoint must be set on misaligned data, two
breakpoint addresses can be set to the adjacent byte locations.

Interrupt Vector 01

The processor reserves INT 01 for handling the debug exception. The exception
handling routine should first check the debug status register to determine what
type of debug exception occurred, as described in the following sections. A debug
exception that is generated upon encountering an instruction to be executed is a
fault, because the exception is generated before the instruction is executed. Debug
exceptions generated for any other reason are traps, because the exception is
generated after the instruction has executed.

Task-Switch Trap

When the program has transferred control to a new task, the processor checks the
trap bit (T bit) of the new task’s TSS. If the T bit is set and a debug exception
occurs, the BT bit will be set in the DR6 register.

A conflict occurs if the debug exception handling routine is itself a task and its T
bit is set. Trapping a task switch elsewhere will generate a debug exception, but
transferring control to the debug exception handling routine will cause generation
of another debug exception, starting an infinite loop.
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Single-Step Trap

When the trap flag (TF) bit is set in the EFLAGS register, a debug exception occurs
at the end of the current instruction execution. This is not true if the instruction is
one that sets the TF flag, or if switching to a new task causes the TF flag to be set
when EFLAGS is loaded. In both cases, the trap occurs on the next instruction.
When the exception occurs, the processor clears TF and then transfers control to the
debug exception handling routine. The EFLLAGS image on the stack can be used to
determine whether single-step execution should continue.

Single-stepping has a higher priority than INTR, so if they both occur at the same
time, single-stepping occurs first. The single-step handler may clear the IF flag
(through an interrupt gate, for example), preventing the INTR interrupt from
occurring until the IF flag is once again set. This precedence ensures that an
external interrupt will not be handled in single-step mode. All INTs clear the
single-step (TF) flag. To single-step an external interrupt, an INT 03 or debug
register must be used.

Developers of software debugging tools should note that the INT and INTO
instructions cause TF to be cleared. The debugger must detect these instructions
and replace them with equivalent code to effect the same transfer of control without
actually executing the INT or INTO instructions.

General-Detect Fault

If the debug registers are used by in-circuit emulation, a conflict could occur

if an instruction were to attempt access to the registers. To detect this type of
interference, the debug exception handling routine can check the state of the
breakpoint debug (BD) bit in debug register DR6. This bit is set to 1 if the next
instruction would perform a read or write access on one of the debug registers
DRO:7 while they are in use by in-circuit emulation.

Breakpoint Fault on Instruction Fetch

If an instruction is encountered at a valid breakpoint address, a debug exception is
generated before the instruction is executed. The resume flag (RF) in the EFLAGS
register can be used by the debug exception handling routine to restart instructions
that cause non-debug faults. The handling routine simply sets to 1 the RF bit in the
EFLAGS copy that has been pushed onto the stack local to the routine. In this way,
resuming execution at the same breakpoint address will not generate additional
debug exceptions due to breakpoint faults. Moreover, other exceptions such as
breakpoint traps and non-breakpoint faults will continue to be serviced.
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Certain Instructions

IRET and POPF—plus JMP, CALL, or INT instructions that cause a task
switch—change the RF flag according to its saved value in the EFLAGS register.
Except for these instructions, the processor always clears RF when an instruction
successfully completes. If the debug handling routine were to retry a faulting
instruction after a debug fault, the instruction could also cause other faults.

Each time the instruction is restarted after these other faults, RF remains set to 1.
Continued debug faults are avoided until the instruction successfully completes
and clears RF to 0.

Before executing a fault handling routine, the processor sets RF to 1 in the EFLAGS
copy that has been pushed onto the stack. In this way, the instruction that restores
EFLAGS values (such as RF) before returning from the routine will again set RF
and allow execution to resume at the same breakpointed instruction. No repeated
exceptions will be generated for the same instruction.

Breakpoint Trap On Data Access

The breakpoint registers allow data locations in memory to be monitored for
activity. When the processor has executed an instruction that accesses data at a
valid breakpoint address, it generates a debug exception. The debug exception
handling routine can immediately determine the data access that occurred.

Even if the processor is starting to execute the next instruction by the time the trap
occurs on the current memory access, the instruction trapped by the exception will
always be the current instruction, not the next one in the processing queue. On the
Super386 processor, the GE and LE bits in debug register DR7 have no effect. All
matches are exact, and execution overlapping is never disabled in order to achieve
this. The bit is defined only for compatibility with the 80386 architecture.

Because the processor completes instruction execution before generating a debug
exception, the data access being trapped has already occurred when the exception
handling routine sees the data. Therefore, debugging software might have to make
a copy of any necessary breakpointed data, in case the trapped access happens to
overwrite the data of interest.

Single-stepping a HLT instruction normally causes the single-step event to occur
after the halt state is exited, due to a pending interrupt. This is not the case. Instead,
a single step is taken immediately. A debugger must be aware that the instruction
following the halt should not be allowed to execute until a pending interrupt arrives.
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Because interrupts can occur before execution of an instruction with the RF flag set,
the RF flag may not function as expected when executing 16-bit code. The interrupt
will occur in this case, pushing only 16 bits of the EFLAGS register on the stack:
After the interrupt handler clears RF and returns to the original program, FLAGS
will be restored but RF will not, because it is in the upper 16 bits. As a result,
multiple instruction debug faults will occur.

Operand debug events in repeated string instructions are recognized after the
string iteration that matched the debug address completes, and before any further
iterations. If this event is not on the last iteration, the EIP saved on the stack will
point to the repeated string instruction. If this event is on the last iteration, the EIP
will point at the next instruction.

Other Processor Modes
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The previous sections of this manual have concentrated on protected mode, the
processor’s native execution mode. The following sections discuss real mode and
virtual-8086 mode, which are designed to accommodate programs written for 16-bit
processors like the 8086 and 80286.

Protected mode is the protected virtual-address mode in which all of the processor’s
segmentation (memory-protection) and/or paging (virtual-address) capabilities are
available. Programs written for protected mode on the 80386 and 80286 processors
can be run in protected mode on a Super386 processor, because 80386 and 80286
code are subsets of Super386 code. Maximum linear memory size is 4GB.

In real mode, the 8086 real-address emulation mode, none of the protected-mode
segmentation or paging functions are available. The processor is initialized to this
mode upon power-up or reset. Maximum memory size (1MB), default operand size
(16 bits), address generation, and interrupt handling are similar to the 80286 real
mode. Instruction prefixes allow use of 32-bit operands, giving full use of the 32-bit
registers. All code runs at privilege level 0.

In virtual-8086 mode, the processor generates addresses as in real mode, but with
the paging capabilities of protected mode. This is a sub-mode of protected mode.
Virtual-8086 mode allows you to run programs written for the 8086 processor as a
task on the Super386 processor. Like real mode, virtual-8086 mode has a maximum
memory size of IMB. Instruction prefixes allow use of 32-bit operands, giving full
use of the 32-bit registers. Under the control of system software, the processor can
enter virtual-8086 mode from protected mode, run a 16-bit program, and then return
to protected mode with no effect on protected code and data. Virtual-8086 programs
run at privilege level 3. The Super386 protected-mode code that runs the virtual-
8086 task executes at privilege level 0.
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Real Mode

This mode is selected when protection is disabled with the PE flag in the CRO
register. In this mode, the processor performs similarly to an 8086 processor,
except for the features and parameters described in this section. All segmentation
protection features are turned off. There is no task switching, and the protection
level is 0. All operands and addresses use the lower 16 bits of the general registers
described in Chapter 2, “Programmer’s Model.” Interrupts and exceptions are
treated differently than they are in protected mode. See “Interrupts and Exceptions”
in this chapter for the discussion.

Address Formation

In real mode, the Super386 processor derives linear addresses in the same way as
the 8086 processor. The 16-bit segment base address is shifted left by four bits
(multiplied by 16), resulting in a 20-bit value. This value is added to a 16-bit
offset to give a 20-bit linear address, which is also the physical address, for a
memory space of IMB. See Figure 4-50.

The default (D) bit (bit 22) in the CS segment descriptor’s shadow register is always
0 in real mode. This means that the default address and operand size is 16 bits. An
instruction prefix can override the default for operands or addresses, but the 32-bit
address cannot exceed the 64kB segment size or an exception is generated. The
address size attribute is automatically cleared to O following a system reset or
initialization. This attribute is under explicit user control in protected mode.

Segment descriptors are not used. All segments have a maximum size of 64kB and
a descriptor privilege level (DPL) of 0. A segment can start at any 16-byte boundary
within the linear address space. No exceptions are generated when a segment
register is loaded, because all possible values are valid.
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|
Figure 4-50. Real-Mode Linear Address Generation
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Address Limits and Boundary Crossing

Addresses higher than the 64kB limit generate a general protection exception (INT
13) or a stack fault exception (INT 12). This is unlike the 8086 processor, in which
the address wraps around and no indication is given.
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Instructions

All instructions operate in real mode except the following instructions, which are
used specifically in protected mode or in multitasking:

ARPL LSL STR
LAR LTR VERR
LLDT SLDT VERW

The Super386 processor limits the length of instructions to 15 bytes. A general-
protection exception caused by a long instruction usually indicates redundant
prefixes. Unlike the Super386 processor, the 8086 processor does not generate
an exception when the instruction exceeds 15 bytes.

The PUSH SP instruction works differently on the Super386 processor than on the
8086 processor. The Super386 processor pushes the stack pointer onto the stack
before, not after, the SP register is incremented in the push operation. For this
reason, PUSH SP instructions on the 8086 must be changed to the following:

PUSH BP

MOV BP,SP
XCHG BP, [BP]

In the 8086 processor, a PUSHF instruction sets bits 15:12 of the FLAGS register
(the NT and IOPL flags, plus a reserved bit). In the Super386 processor, bit 15 is
cleared to O (reserved), and bits 14:12 (the NT and IOPL flags) have the current
value unchanged.

There are also differences in the operation of the DIV and IDIV instructions. In the
Super386 processor, the instruction pointer points to the failed instruction, whereas
the 8086 instruction pointer points to the next instruction. The Super386 processor
generates the largest negative quotient for 80h or 8000h; the 8086 processor
generates a divide-by-zero error (exception 0).
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The LOCK Prefix

The LOCK prefix should only be used to protect data operations from interruption
by another bus master. In hardware system designs that observe the Super386
architecture, a locked instruction will lock only the memory area designated by the
destination operand. In the 80286 and 8086 architectures, the LOCK prefix causes
the entire physical memory space to be locked. See Appendix C for more details.

Use LOCK only with the following instructions, when these instructions write to
memory:

ADC BTS OR
ADD DEC SBB
AND INC SUB
BTC NEG XCHG
BTR NOT XOR

An invalid opcode (exception 6) will result from using LOCK with other instructions
or with these instructions when they do not write to memory.

Undefined Opcodes

The Super386 instruction set is a superset of the 8086 instruction set. Some 8086
undefined opcodes are valid on the Super386 processor. For opcodes undefined
on both processors, the Super386 processor generates an invalid opcode error
(exception 0).

Interrupts and Exceptions

In real mode, interrupts and exceptions are handled the same way the 8086 processor
handles them. The interrupt vector table contains dword entries that point to the
interrupt handler. The low-order 16 bits of this pointer are an offset (which is the
instruction pointer for the beginning of the handler), and the high-order 16 bits are a
segment selector for the code segment.
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All interrupt and exception vectors generated in protected mode are also generated in
real mode. For a complete list of the vectors, see the section entitled “Summary of
Interrupt and Exception Conditions.” The LIDT instruction, which loads the IDTR,
sets the base and limit of the interrupt vector table. The base should always be an
address 0. A double fault (exception 8) will occur if an interrupt tries to use a vector
outside the interrupt vector table.

‘When the Super386 processor is executing a nonmaskable interrupt, all other NMIs
are masked until an IRET instruction is executed.

On the 8086 processor, if an instruction accesses a memory operand beyond the
64kB maximum offset permitted, or if it accesses a memory operand with an offset
of zero, the instruction wraps around the boundary and does not generate an
exception. On the Super386 processor, instructions that cross offsets 0 or 64kB
generate a general protection exception (or a stack exception if a stack segment is
addressed). If a series of instructions pass the 64kB maximum offset, the 8086
processor retrieves the next byte of the instruction from the zero offset location. The
Super386 processor, on the other hand, generates a general-protection exception.

The 8086 external interrupt handler cannot be used for single-step operations when
an interrupt occurs. The Super386 processor will single-step through an interrupt
because the single-step interrupt has a higher priority than other interrupts.

Interfacing with a Coprocessor

When a coprocessor is installed, it must use the coprocessor error exception
(exception 16) when an error occurs. Code written for the 8086 may use another
exception in responding to an 8087 coprocessor error, but any such exception
vectors should call the coprocessor etror exception handler.

Entering and Leaving Real Mode

The processor enters real mode following a reset or power up. When it does so,
the paging (PG) bit (31) in CRO is automatically cleared to O to disable paging.
The section entitled “Initialization” describes the initial state in detail.
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Switching From Protected Mode to Real Mode
There are two ways to enter real mode from protected mode:

® Reset the processor from external hardware.
® Clear the PE bit.

The second method, clearing the PE bit, can be done in the following sequence:

1. Disable all interrupts.

2. Execute in a code segment that has the same address in both physical and linear
addresses, and use data that also has the same physical and linear addresses.

3. Load the DS, SS, ES, FS, and GS segment registers with selectors for a read/write
expand-up data segment of 64kB, using DPL = 0.

4. Clear the PG bit in CRO to disable paging, and clear the PE bit to disable
protection.

5. Execute a direct inter-segment JMP to flush the processor pipeline and transfer
to the real mode program in the lower megabyte of physical memory.

Step 4 can be done using the following commands:

MOV reg,CRO

AND reg,7FFFFFFEh

MOV CRO,reg

Switching From Real Mode to Protected Mode
To leave real mode and return to protected mode, follow this procedure:

1. Disable all interrupts.

2. Load the GDTR and IDTR with the base and limit addresses of the GDT and IDT.
The IDT must be in the format used by protected mode interrupts.

3. Initialize the GDT, IDT, TSS, and LDT.
Set the PE bit to 1 to enable protection.

5. Reload the CS register with an inter-segment jump. This flushes the execution
pipeline of instructions fetched and decoded in real mode. It may be a jump to
the next instruction.

6. Reload the segment registers with valid protected-mode selectors (or null
selectors).

. Load the TR register with a TSS selector.
8. Load the LDTR with a null selector or system segment of the LDT type.
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Virtual-8086 Mode

In virtual-8086 mode, the processor generates addresses as in real mode, but with the
paging capabilities of protected mode. This is a sub-mode of protected mode. In
virtual-8086 mode, programs written for the 8086, 8088, 80186 or 80188 processor
can run as a task on the Super386 processor. Like real mode, it has a maximum
memory size of IMB. Instruction prefixes allow use of 32-bit operands, giving full
use of the 32-bit registers. Under the control of system software, the processor can
enter virtual-8086 mode from protected mode, run a 16-bit program, then return

to protected mode with the assurance that protected code and data have not been
affected. Virtual-8086 programs run at privilege level 3, while Super386 protected
mode system code runs at privilege level 0, 1, or 2.

Determining Addresses

The processor determines linear addresses by shifting the base address in the
segment selector four bits to the left to form a 20-bit address. These two values
are then added to create a linear address in the task’s address space between 0 and
10FFEFh. Only the low-order 20 bits are mapped with page tables to a 32-bit
physical address. See Figure 4-50.

The Super386 processor can also generate a 32-bit effective address using the
address-size instruction prefix. However, the value of the address cannot exceed
65,535; if it does, an INT 12 or INT 13 interrupt will occur.

Entering Virtual-8086 Mode

Virtual-8086 mode is entered when a task switch loads the EFLAGS register with
the virtual mode (VM) bit set to 1. Mode transfers can take place in one of the
following ways:

® A task switch can load the EFLAGS register.

® An IRET instruction can load the new EFLAGS register from the stack.

The VM bit can only be changed when the current privilege level is 0. If a task
switch is done, the new task must use a Super386 TSS. The VM bit is in bit position
17, which does not exist in the 80286 FLAGS register.
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Exiting Virtual-8086 Mode

Virtual-8086 mode can be exited through an interrupt or trap gate, or by using an
interrupt or exception to force a task switch. The new TSS loads the EFLAGS
register with VM = 0 and executes the program under that TSS. You can also exit
virtual-8086 mode with an interrupt or exception that vectors to a program at
privilege level 0. This causes the processor to store current values of the EFLAGS
register on the stack, then clear the VM bit.

Instruction and Register Usage

Virtual-8086 mode programs can execute programs containing 80186, 80188,
80286, and Super386 instructions. Instruction prefixes can be used for instructions
with 32-bit operands. Unlike the 8086, two additional segment registers exist on the
Super386 processor: FS and GS. They act just like the DS register, but they are
never used by default for any operation. They must be requested explicitly with the
FS and GS segment overrides. If these segments are referenced in a program run on
an 8086 processor, an illegal opcode exception will be generated.

Instructions

Several considerations apply to the use of instructions in the virtual-8086 mode.
These are discussed in the following paragraphs.

Instruction-Length Exceptions

The 8086 processor does not generate an exception if the instruction exceeds 15
bytes. The Super386 processor generates a general-protection exception if this
happens. This same consideration applies to all modes.

PUSH SP Instruction

The 8086 processor increments the content of the SP register before the value is
pushed onto the stack, in contrast to the Super386 processor, which increments the
content of the stack pointer after the value is pushed onto the stack. The 8086 PUSH
SP instruction should be replaced with the following code:

PUSH BP

MOV BP, SP
XCHG BP, [BP]
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PUSHF Instruction

On the 8086 processor, bits 15 through 12 of the FLAGS register are undefined.
The PUSHF instruction on the 8086 processor sets these bits to 1. On the Super386
processor, bit 15 is cleared and bits 14 through 12 have the last values written to
them.

Current Privilege Level

Because the 8086 does not support protection by privilege level, the following
instructions that load descriptor tables cannot be executed in virtual-8086 mode:
e CLTS

e HLT

e LGDT

e LIDT

o LMSW

e MOV instructions that load or store the control registers.

These instructions cause a general-protection exception, which brings the processor
to protected mode to emulate the instruction.

LOCK Prefix

The LOCK instruction prefix in a Super386 program will lock only the memory area
designated by the destination operand. In 80286 and 8086 programs, LOCK causes
the entire physical memory space to be locked. Therefore, use LOCK only with the
following instructions, when the instruction writes to memory.

ADC BTS OR
ADD DEC SBB
AND INC SUB
BTC NEG XCHG
BTR NOT XOR

An invalid-opcode exception results from using LOCK with other instructions. See
Appendix C for more details.

Bus Hold

The 8086 does not respond to requests for bus control, whereas the Super386
process will respond to inputs on its HOLD signal.
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Interrupts and Exceptions

Some noteworthy interrupts and exceptions in virtual-8086 mode are discussed in
the following paragraphs.

NMI Interrupts

‘When the Super386 processor is executing a nonmaskable interrupt, all other NMIs
are masked until an IRET instruction is executed.

Instructions That Cross Offsets 0 or 65535

If an instruction accesses a memory operand beyond the 64kB maximum offset
permitted on the 8086 processor, or if it accesses a memory operand with an offset
of zero, the instruction wraps around the boundary and does not generate an
exception. The Super386 processor generates a general-protection exception (or

a stack exception, if a stack segment is addressed).

If a series of instructions pass the 64kB maximum offset, the 8086 processor
retrieves the next byte of the instruction from the zero offset location. The Super386
processor generates a general-protection exception.

Single-Step Interrupt Priority

The 8086 external interrupt handler cannot be used for single-step operations when
an interrupt occurs. The Super386 processor will single-step through an interrupt
because the single-step interrupt has a higher priority than other interrupts.

| Coprocessor Interrupt Controller

The coprocessor error signal, 8087 INT, passes through an interrupt handler. You
may have to delete some instructions in a coprocessor handler if they operate with
the interrupt controller.

DIV Instruction

For divide exceptions on the 8086 processor, the instruction pointer points to the
next instruction; on the Super386 processor, it points to the instruction that failed.
The 8086 generates a divide-error exception when IDIV generates a large negative
number. The Super386 processor can operate with these large quotients.
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Super386 Opcodes

Super386 opcodes generate an invalid-opcode exception if they are not defined in
the 8086 code.

Coprocessor Errors

If the 8086 program does not use interrupt 16 for the coprocessor-error exception,
the vector for both interrupt 16 and the one used by the 8086 program must point to
the same coprocessor-error exception handler.

Executing Protected-Mode 80286 Code

Programs written for the protected-mode 80286 processor run on a Super386
processor without modification, because 80286 object code is a subset of Super386
object code. However, you may need to make some programmatic changes to
ensure execution without exceptions. The differences between the two processors,
presented in this section, affect operating systems more than application programs.

Task State Segments

All 16-bit 80286 TSSs should be changed to 32-bit Super386 TSSs without changing
the object modules. This improves performance and allows paging to be used. We
recommend that all TSSs be changed, because there are potential operating system
problems if TSSs from both environments are used in the same program.

Paging

Paging can be used to map the first 64kB of address space beyond the 1MB limit
of the address space to the lower part of the segment. This will compensate for the
difference in wrap-around between the 80286 and Super386 processors. To use
paging, however, the TSSs should first be modified to Super386 TSSs, as described
in the section “Task State Segments”.

[
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The LOCK Prefix

The LOCK prefix should only be used to protect data operations from interruption
by another bus master. In hardware system designs that observe the Super386
architecture, a locked instruction locks only the memory area designated by the
destination operand. In the 80286 and 8086 architecture, the LOCK prefix causes
the entire physical memory space to be locked. See Appendix C for more details.

Use LOCK only with the following instructions, when the instruction changes
the contents of memory.

ADC BTS OR
ADD DEC SBB
AND INC SUB
BTC NEG XCHG
BTR NOT XOR

An invalid-opcode exception will result from using LOCK with other instructions.

Segment Descriptors

The Super386 processor supports all 80286 descriptors: code segments, data
segments, local descriptor tables, task gates, TSSs, call gates, interrupt gates,

and trap gates. For TSSs, call gates, interrupt gates, and trap gates, the Super386
supports its own 32-bit version of the descriptors as well as the 16-bit 80286
version. The default address/operand-size bit (D bit) in the code segment
descriptors denotes whether the code segment should behave as an 80286 or
Super386 segment. However, note the differences discussed in the following
paragraphs.

Code Segment Descriptor—Set the default address/operand-size bit (D bit) to 1 for
32-bit operation. Clear the bit to 0 for 16-bit operation.

Stack Segment Descriptor—Set the big bit (B bit) to 1 to select the 32-bit ESP
register. Clear it to O to select the 16-bit SP register.

Granularity—The G bit in all segment descriptors determines the maximum segment
size. When cleared to 0, it specifies a byte-granular segment to a limit of 220 bytes.
When set to 1, it specifies a page-granular segment to a limit of 232 bytes.

Base Address—In the 80286 format, the most-significant byte of the dword address
is all zeros. In the Super386 format, all 32 bits of a dword can be used.

PRELIMINARY Chips and Technology, Inc.



System Programming Other Processor Modes [l

Limit Field—The most-significant four bits of the 20-bit segment limit are cleared
to 0 in 80286 programs, which permits only a 64kB segment limit. In the Super386
format, segment limits can be 32 bits.

Type Field—There are differences between the type fields of segment descriptors on
the 80286 processor and the Super386 processor. See the section entitled “Segment
Descriptors” for details.

Reserved Word—In 80286 architecture, the most significant word of every 8-byte
descriptor is reserved. In 80286 code, this word should be used to store zeros.
Strange errors may occur if this upper word contains anything except zeros.

Mixing 32-bit and 16-bit Stacks

Do not use 16-bit gates. If a system call from privilege level 3 comes from a 32-bit
stack frame through a 16-bit gate, the most significant 16 bits of the ESP stack
pointer will be lost. To avoid this, all system calls should go through 32-bit gates.

Because interrupts can occur before execution of an instruction with the RF flag set,
the RF flag may not function as expected when executing 16-bit code. The interrupt
will occur in this case, pushing only 16 bits of the EFLAGS register on the stack.
After the interrupt handler clears RF and returns to the original program, FLAGS
will be restored but RF will not, because it is in the upper 16 bits. As a result,
multiple instruction debug faults will occur.

IOPL Check

On the 80286 processor, I/O instructions and the LOCK instruction prefix are
sensitive to the I/O privilege level (IOPL). A general-protection exception will
be generated if the CPL is higher than the IOPL. On the Super386 processor, no
checking is performed against the IOPL in real mode or virtual-8086 mode; such
checks are only performed in protected mode.
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Using Intermixed Word and Dword Operands

The Super386 processor is object-code compatible with the 8086, 8088, 80186,
80188, and 80286 and runs existing software written for these processors. This
requires the ability to operate with 16-bit and 32-bit operands and addresses in the
same program. However, the following principles and protocols of the Super386
processor must be observed for these programs to function properly.

Operand Size—Operand size is either byte or word/dword by default. To handle a
non-default operand size, use instruction prefixes.

Pointers—Code and data pointers have either 16-bit or 32-bit offsets, depending on
the setting of the D bit in the code segment descriptor.

Control Transfer—Control is transferred between 16-bit or 32-bit segments using
call gates, trap gates, and interrupt gates. The operand size is determined by the type
of gate.

Segment Limits—Segments can be up to 4GB, versus 64kB for a 16-bit
environment.

The following sections describe the methods that enable the Super386 processor to
operate with 16-bit and 32-bit operands and addresses.

Default Operand and Address Size

The default or D bit (bit 22) in code-segment descriptors sets the operand-size and
address-size default for all operations related to the segment. Using the D bit saves
an instruction prefix byte when all operands and addresses are one size. Setting D
to 1 specifies 32-bit size; clearing D to 0 specifies 16-bit size. All 8086 programs
have 16-bit attribute sizes. If a segment contains code of both sizes, 16-bit pointers
can only access the first 64kB of the segment. Data segments with a limit equal to
or less than 64kB can be shared by 32-bit and 16-bit pointers.
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Stack Pointer Size

The big or B bit (bit 22) in a stack data-segment descriptor specifies the size of the
stack pointer stored in the 32-bit ESP (or 16-bit SP) stack pointer register. When a
dword is pushed onto the stack, the ESP register is decremented by 4; when a word
is pushed onto the stack, the ESP register is decremented by 2.

The stack pointer size must be chosen carefully to accommodate these situations
in mixed 16-bit and 32-bit code. Use the guidelines listed below to keep the stack
pointer on word boundaries for 16-bit operation or on dword boundaries for 32-bit
operation.

® When a segment register is pushed or popped, the operand size always matches
the default size specified in the code segment (the D bit).

® When a 32-bit task state segment (TSS) is referenced, a dword is pushed onto
the stack.

® When a 16-bit TSS is referenced, a word is pushed onto the stack.

Other B-bit Parameters

A data segment descriptor’s B bit indicates the upper bound for a stack segment, the
descriptor limit, and the point where wrap-around occurs when an access reaches the
limit. The upper bound is FFFFFFFFh when B = 1, and FFFFh when B = 0.

Instruction Prefixes

The operand-size instruction prefix (66h) and the address-size instruction prefix
(67h) toggle the instruction’s default size, which is specified by the D bit in the code
segment descriptor. Instruction prefixes can be used in any execution mode. The
operand-size prefix is used where operands in a segment are of the non-default size.
The address-size prefix is used to address an operand in a segment with a limit that
exceeds 64kB when in 16-bit mode.
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16-bit and 32-bit Registers

The D bit in the code-segment descriptor should be set to either dword or word
size, depending on the size of the largest proportion of your code’s operands and
addresses. This saves an extra prefix byte in the instruction.

This choice, however, affects the way in which linear addresses are calculated.
A modulus of 64kB is used to calculate 16-bit linear addresses, whereas 32-bit
addresses do not use a modulus. The following comparison illustrates this

difference:
16-bit address: (index + base + displacement) MOD 64K + segment base
32-bit address: index + base + displacement + segment base

Trap Gates and Interrupt Gates

When an operand passes through a trap gate or an interrupt gate, the gate size (32 or
16 bits) controls the resulting operand size.
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APPENDIX A

The Super386 Instruction Set

This appendix contains an alphabetical list of all instructions and some prefixes
available to the Super386 microprocessors. Appendix B contains quick reference
tables covering exceptions and addressing modes. Refer to Appendix C for special
programming considerations.

Notations

The following list identifies notations and abbreviations used in the tabulated
instruction set throughout this appendix:

AF
AH
AL
BH
BL
CF
CH
CL
cr
CS
DF
DH
DL
dr
DS
dst

Chips and Technologies, Inc.

Augxiliary flag

Upper byte of the AX register
Lower byte of the AX register
Upper byte of the BX register
Lower byte of the BX register
Carry flag

Upper byte of the CX register
Lower byte of the CX register
Control register

Code segment register
Direction flag

Upper byte of the DX register
Lower byte of the DX register
Debug register

Data segment register
Destination operand, usually the first operand in the instruction.
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(B)AX
(E)BP
(B)BX
(E)CX
(E)DI
[(B)DI]
(E)DX
(B)IP
ES
(B)SI
[(E)ST]
(E)SP
FS

GS

IF
imm

imm8
imm16

[m]

ml6
m32
m64
m80

‘moff

OF
PF

r8
rl6
132

The Super386 Instruction Set

The AX or EAX general register

The BP or EBP general register

The BX or EBX general register

The CX or ECX general register

The DI or EDI general register

Same as (E)DI, except that this is an address contained in the register.
The DX or EDX general register

The IP or EIP instruction pointer

The ES segment register

The SI or ESI general register ‘

Same as (E)SI, except that this is an address contained in the register.
The SP or ESP general register

The FS segment register

The GS segment register

Interrupt flag 4

A value encoded into the last field of the instruction that can be
used directly

An imm value specified as byte-size
An imm value specified as word-size

A memory operand encoded in the r/m field of the MODr/m byte

 Same as m, except that this is an address contained in a memory operand.

A memory operand m specified as word-size

A memory operand m specified as dword-size

A memory operand m specified to be qword-size (quadword-size)
A memory operand m contained in 10 bytes

A word or dword offset for a data value; follows the opcode byte.
Nested task flag

Overflow flag

Parity flag

A general register encoded in the reg field of the MODr/m byte
A general register r specified as byte-size

A general register r specified as word-size

A general register r specified as dword-size
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reg A word or dword general register encoded in bits 2:0 of the opcode

rel A word or dword field added to the (E)IP to calculate the address for
a JMP or CALL

rel8 A rel value specified as byte-size

RF Resume flag

r/m A memory operand or general register, encoded in the r/m field of

the MODr/m byte. The operand can be byte-size, determined by the
opcode, or word/dword size depending on the operand size attribute.

[r/m] Same as r/m, except that this is an address or offset contained in a
memory operand or general register.

r/m8 An r/m value specified as byte-size

1/m16 An r/m value specified as word-size

r/m32 An r/m value specified as dword-size

sel Segment selector

SF Sign flag

sIc The source operand, usually the second operand in the instruction

SS Stack segment register

TF Trap flag

tr Test register

/x Where x is replaced with a digit 0-7; indicates that the reg field of the

MODr/m byte is used to further specify the opcode. For example, in
MUL opcode F6 /4 the opcode byte is F6h and the reg field of the

MODr/m byte is 4.
VE Virtual-8086 mode bit in the EFLAGS register
ZF Zero flag
{8} Indicates opcode for byte size operands.

{16,322} Indicates opcode for operand whose size is determined by the default
(D bit) and an included instruction prefix.
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Register Encoding

A-4

The Super386 Instruction Set

Tables A-1 and A-2 give the encodings used for registers in the MODr/m byte.

|

Table A-1. General Register Encoding

Register Code 32-Bit Register 16-Bit Register 8-Bit Register
000b EAX AX AL
001b ECX CcX CL
010b EDX DX DL
011b EBX BX BL
100b ESP SP AH
101b EBP BP CH
110b ESI SI DH.
111b EDI DI BH
I

Table A-2. Segment Register Encoding

Register Code

Segment Register

000b

ES

001b CS
010b SS
011b DS
100b FS
101b GS
110b Reserved
111b Reserved

PRELIMINARY
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Clock Counts

The clock parameters for each instruction indicate the number of clock cycles
required to execute the instruction. These clock counts are based on the assumptions
described below. Other inter-instruction events—including operand conflicts,
operand alignment, and external bus wait or hold states—may increase the number
of clock cycles required for execution. These events are also described below.

Notations

* When an asterisk (*) follows a clock count (e.g., 2*), the instruction
may require an additional cycle to decode. However, this additional
clock is only needed when (a) the preceding instruction executes in one
clock, or (b) the preceding instruction is a taken jump. Most instructions
are decoded in a pipeline, so that this additional decode clock does not
have an observable effect on execution speed.

/ When a slash (/) separates two clock counts (e.g., 11/13), the first count
applies to the operand in a register and the second applies to the operand
at a memory location.

n When the letter n follows a clock count (e.g., 13+6n*), the count to which
the n is appended must be multiplied by the number of iterations in the
operation.

rm Real mode

pm Protected mode

v Virtual-8086 mode
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Basic Assumptions

The assumptions behind the clock count values are the following:

The external bus is available for reads or writes. If it is not, add clocks to reads
and writes until the bus becomes available.

Accesses are aligned. If they are not, add two clocks.

Instruction-cache fills complete before subsequent cache accesses. If the
instruction being requested by the instruction prefetcher is currently being written
to the instruction cache, the cache will be bypassed. There is no operand cache,
so operand accesses are not delayed in this manner.

If an effective address is calculated, the base register is not the destination
register of a preceding fetch. If this occurs, add two clocks.

Effective address calculations do not use an index register. When they do, add
one clock.

The target of a jump is in the cache. If it is not, add four clocks. If the target is
not completely contained in the first dword read, add two clocks.

Writes are never delayed. There are no write buffers.

If an instruction contains a displacement or immediate operand, the latter is
contained within the first four bytes of the instruction. If it is not, add one clock.

Operand accesses are not delayed by invalidate cycles. The instruction prefetcher
may be delayed, but because the prefetch unit queues instructions, the effect is
not often seen.

Page translation hits in the TLB. If it does not, add 7, 12, or 17 clocks, depending
on whether the accessed and/or dirty bit in neither, either, or both the page
directory and page table need to be set.

No exceptions are generated during instruction execution.
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Operand Conflicts

Operand conflicts occur when an instruction’s operand is being altered by a previous
instruction. Due to the design of the instruction pipeline, these conflicts never occur
for memory operands. Register operands, however, can cause such conflicts. In
general, conflicts occur when an instruction moves an operand from memory into

a register (either a load or a pop), and the following instruction requires the register
and does not itself include a memory operand. If this occurs, add two clocks. The
computation of clock delays for other types of operand conflict are more complex.

External Bus Wait and Hold States

If the bus needs more than two clocks to process a request, wait states are inserted.
Alternatively, the bus may be unavailable. This can happen if instructions are being
fetched or if an external device controls the bus. In all such cases, the instruction
pipeline will wait until the operation can be completed. For store operations, the
pipeline will only wait for the operation to be initiated. This allows instruction
execution to continue even if the store needs many cycles.

Instruction Prefixes

The prefixes listed in Table A-3 can be used with instructions. If the prefixes can
only be used under certain conditions, these conditions are described in the table
and/or in the text of this appendix that describes specific instructions.

The address-size prefix is only meaningful for memory operands. Including
multiple segment-select prefixes is of no value, as only one memory operand of any
instruction can ever be overridden. The PUSH mem instruction has one memory
operand that is fixed (pointed to by the stack pointer), and one that can be altered
(the memory location pointed to as defined by the MODr/m byte). A segment select
prefix alters the operand segment specified by the MODr/m byte.

Some instructions access multiple memory operands from a single address.

BOUND reads two operands from memory, the first located at the address specified
by the MODr/m byte, and the second located at an address either 2 or 4 bytes higher,
depending on the operand size. If the default segment is overridden, both operands
will come from the same newly selected segment.
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T
Table A-3. Instruction Prefixes

Register or
Type Prefix Name Prefix Code Description
Segment Override ~ CS 2Eh Use CS segment for memory operand.
DS 3Eh Use DS segment for memory operand.
ES 26h Use ES segmenf for memory operand.
FS 64h Use FS segment for memory operand.
GS 65h Use GS segment for memory operand.
SS 36h Use SS segment for memory operand.
Operand Size 66h Make operand-size attribute the opposite of the default (16-bit or

32-bit). This attribute specifies the width of operands, whether

. word or dword. The default is determined by the default size bit
(bit 22) of the current code segment descriptor. The prefix is only
used with instructions that access words or dwords; it is ignored
if used on instructions that access bytes. In most assemblers, the
prefix is provided automatically for instructions whose implied
operand size does not match the default operand size for the
segment in which the operand appears.

Address Size 67h Make address-size attribute the opposite of the default (16-bit
or 32-bit). This attribute specifies the width of the offset for
instruction addresses. The default is determined by the default size
bit (bit 22) of the current code segment descriptor. The prefix is
only used with instructions that access memory; otherwise it is
ignored. In most aasemblers, the prefix is provided automatically
for instructions whose implied address size does not match the
instruction’s code-segment address size.

Lock LOCK FOh Assert the bus lock signal between memory read and write.
Repeat REP or REPE F3h Repeat following string instruction.
REPNE " F2h Repeat following string instruction.
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Instruction Descriptions

Instruction Descriptions Il

The instructions are described in the following pages, which are arranged
alphabetically according to the instruction mnemonic. Figure A-1 illustrates how
the information is presented for each instruction.

]
Figure A-1.

Instruction Example

Instruction Name—Mnemonic
and descriptive name of the
instruction

Assembly Syntax—General
instruction format followed
by an opcode example

Description—Text

Flag States—State of each
flag after execution of the
instruction

Instruction Action—Source,
destination, addressing
modes, size, etc.

\

describing the operaﬂ/
of the instruction

| . BSR—Bit Scan Reverse

Instruction Opoode Action / Clocks

| BSRr,1/m OFBD Bit scan in reverse on 1/m operand 4/9*

BSR scans the second operand from the high-order bit to th
low-order bit, searching for the first bit that is set to 1. If a/1 bit is
located, its bit position is stored in the first operand and the ZF flag

/ is cleared to 0. If there are no 1 bits in the second o] , the first
operand is not modified.

Flags Changed: ~AF  undefined

CF  undefined
OF  undefined
PF  undefined

SF  undefined
y43 1 if the source value is zero,
otherwise 0

/

Execution Times—Number
of elapsed clocks required
for instruction execution

Chips and Technologies, Inc.
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AAA —ASCII-Adjust AL After ADD

Instruction

Opcode Action Clocks

AAA

37 Convert result of addition in AL to allow conversion to ASCII 3

A-10

AAA converts two unpacked BCD digits to a valid unpacked BCD result after an
addition (ADD) operation. To convert the result of an AAA instruction to ASCII,
execute the instruction OR AL, 30h.

AAA checks to see whether the lower nibble in the AL register is greater than 9, or
whether the AF flag is set to 1. If either is true, (a) the result in AL is converted to
the correct BCD result by adding 6 to the lower nibble and clearing the upper nibble,
(b) the AH register is incremented by 1, and (c) the AF and CF flags are set to 1. If
the lower nibble in AL is less than 9, the AF and CF flags are cleared to 0 and the
AH register is not modified.

Flags Changed: AF  0if no decimal carry from low nibble, 1 if carry
CF  0if no decimal carry from low nibble, 1 if carry
OF  undefined
PF undefined
SF  undefined
ZF  undefined
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AAD —ASCII-Adjust AX Before Divide

Instruction Opcode Action Clocks

AAD D5 0A Convert contents of AX before division to allow an ASCII result 9*

AAD is used before an unsigned integer division (DIV) to convert two unpacked

BCD digits in the AX register to a valid unpacked BCD result in the AX register.
After the divide operation, the result can be converted to ASCII representation by
execution of the instruction OR AL, 30h.

The instruction assumes that the dividend is represented in the AX register by
two BCD digits, the upper digit in AH and the lower digit in AL. The dividend
is converted to its binary equivalent by placing the value AL + (10 * AH) in
the AL register and clearing AH to zero.

Flags Changed: AF  undefined
CF undefined
OF  undefined
PF  0if odd parity, 1 if even parity
SF AL bit 7
ZF 0 if result was nonzero, 1 if result was zero
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AAM —ASCII-Adjust AX After Multiplication

Instruction Opcode Action Clocks
AAM D4 0A Converts result of multiplication in AX to allow conversion ; 15*
to ASCII

AAM converts two unpacked BCD digits in the AX register to a valid unpacked
BCD result in the AX register after an unsigned integer multiplication (MUL). To
subsequently convert the result of an AAM instruction to ASCII, execute the
instruction OR AL, 30h.

The product of the multiplication is assumed to be between 0 and 81 and is therefore
contained entirely within the low-order byte of the AX register (the AL register).
The AAM instruction converts this product from a binary value into two unpacked
BCD digits by dividing the value in AL by 10, storing the resulting high-order BCD
digit (quotient) in AH, and storing the resulting low-order BCD digit (remainder)

in AL.

Flags Changed: AF  undefined
CF  undefined
OF  undefined
PF 0 if odd parity, 1 if even parity
SF AL bit 7
ZF 0 if result was nonzero, 1 if result was zero
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AAS —ASCII-Adjust AL After Subtract

Instruction

Opcode Action Clocks

AAS

3F Alter results of subtraction in AL to allow conversion back to ASCII 3

AAS converts two unpacked BCD digits to a valid unpacked BCD result after a byte
subtraction (the SUB, SBB, or NEG instructions only). To convert the result of an
AAS instruction to ASCII, execute the instruction OR AL, 30h. .

The instruction checks to see whether the lower nibble in the AL register is greater
than 9 or whether the AF flag is set to 1. If either is true, (a) the result in AL is
converted to the correct BCD result by subtracting 6 from the lower nibble and
clearing the upper nibble, (b) the AH register is decremented by 1, and (c) the AF
and CF flags are set to 1. If the lower nibble in AL is less than 9, the AF and CF
flags are cleared to O and the AH and AL registers are not modified.

Flags Changed: AF  0if no decimal carry from low nibble, 1 if carry
CF  0if no decimal carry from low nibble, 1 if carry
OF  undefined
PF undefined
SF undefined
ZF  undefined
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ADC —Signed and Unsigned Integer Addition, With Carry

Instruction " Opcode Action Clocks
ADCr,t/m 12 {8}, 13 {16,32} . Add operand from r/m to r; add carry 1/5
ADC r/m,r 10 {8}, 11 {16, 32} Add operand from r to 1/m; add carry 1/5
ADC 1/m, imm 80/2 {8},81/2 {16, 32} Add imm operand to same-size t/m; add carry 1/5
ADC 1/m, imm8 83 /2 {16, 32} Add imm8 operand to 1/m; add carry 1/5
ADC AL, imm8 14 Add imm8 operand to AL; add carry 1

ADC (B)AX,imm 15 {16, 32} Add imm operand to (E)AX; add carry 1

ADC adds the first operand, second operand, and carry flag and then stores the result
in the first operand. When an immediate byte is added to a word or dword operand,
it is sign-extended to the size of the operand.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

Flags Changed: AF  0if no carry from low nibble, 1 if carry
CF  0if no carry from high-order bit, 1 if carry
OF  0if no overflow, 1 if overflow
PF  0if odd parity, 1 if even parity
SF  high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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ADD —Signed and Unsigned Integer Addition

ADD W

Instruction Opcode Action Clocks
ADDr, t/m 02 {8},03 {16, 32} Add operand from r/m to r 1/5
ADD t/m, r 00 {8},01 {16, 32} Add operand from r to r/m 1/5
ADD 1/m, imm 80/0 {8},81/0 {16, 32} Add imm operand to same-size r/m 1/5
ADD 1/m, imm8 83 /0 {16, 32} Add imm8 operand to r/m 1/5
ADD AL, imm8 04 Add imm8 operand to AL 1

ADD (BE)AX,imm 05 {16, 32} Add imm operand to (E)AX 1

The ADD instruction adds the first and second operands and then stores the result in
the first operand. Before an immediate byte is added to a word or dword operand,
the byte is sign-extended to the size of the word or dword operand.

If ADD is used on packed BCD digits, the DAA instruction can be used

subsequently for decimal adjustment. If ADD is used on unpacked BCD digits,
the AAA instruction can be used subsequently for adjustment prior to ASCII

conversion.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

Flags Changed:

Chips and Technologies, Inc.

AF
CF
OF
PF
SF
ZF

0 if no carry from low nibble, 1 if carry

0 if no carry from high-order bit, 1 if carry
0 if no overflow, 1 if overflow

0 if odd parity, 1 if even parity

high-order bit of result

0 if result was nonzero, 1 if result was zero
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AND —@ Logical AND

Instruction Opcode Action Clocks
AND, r/m 22 {8},23 {16, 32} Logical AND of r/m and r operands, result in r 1/5
AND 1/m, r 20 {8}, 21 {16, 32} Logical AND of t/m and r operands, result in r/m 1/5
AND t/m, imm 80 /4 {8},81/4 {16,32} Logical AND of r/m and imm operands, result in r/m 1/5
AND 1/m, imm8 83 /4 {16, 32} Logical AND of 1/m and imm8 operands, result in r/m 1/5
AND AL, imm8 24 Logical AND of AL and imm8 operands, result in AL 1
AND (B)AX,imm 25 {16, 32} Logical AND of (E)AX and imm operands, result in (E)AX 1
The AND instruction performs a logical AND on the two operands. The result is
stored in the destination operand.
In AND operations, a 1 bit is written when both corresponding bits in the operands
are 1, otherwise 0 is written. The instruction is useful for masking (clearing to 0)
specific bits in a number. For example, ANDing the binary value 0111 1111 with
any number will clear its most-significant (sign) bit.
The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.
Flags Changed: AF  undefined
CF O
OF O
PF 0 if odd parity, 1 if even parity'
SF  high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
A-16
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ARPL —Adjust RPL Field of Selector

Instruction Opcode Action Clocks
ARPL r/m16, r16 63 If RPL of /m16 is less than RPL of r16, set RPL of 1/m16 equal to 11/13*
RPL of r16 )

ARPL compares the RPL field—the two low-order bits—of the two segment
selectors contained in the operands. If the first (destination) selector has a lower
numeric RPL (more privilege) than the second (source) selector, the source selector
RPL overwrites the destination selector’s RPL, and the ZF flag is set to 1.

The instruction is typically used in operating system procedures to ensure that a
far call by an application program does not pass a segment selector having an
RPL of greater privilege than the calling application’s CPL. The operating system
procedure can use the ARPL instruction by loading the selector to be passed in the
destination operand and the caller’s code segment selector (which contains the
caller’s CPL in its RPL field) in the source operand.

By using the ARPL instruction in this manner for each call procedure, the operating
system can ensure that the RPL of a selector passed by an application program will
not gain privilege if it is passed through a chain of procedures, some with higher
CPL than others. The ARPL instruction ensures this by applying the following
checking rule at each step of the chain:

RPL = Max(RPL_.1jers CPLcaiier)

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

Flags Changed: ZF = 1 if first-operand RPL is less than second-operand RPL,
otherwise 0
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BOUND —Check Array Index Against Bounds

Instruction Opcode Action Clocks

BOUNDr,m 62 Determine whether r is within bounds 15%

BOUND tests the first operand against upper and lower boundary values stored in
the second operand.

The first operand, stored in a register, is a signed array index. The second operand,
a data structure in memory, contains the high and low boundary values of the array.
The two boundary values occupy two consecutive locations in memory—one word
apart for 16-bit operands or one dword apart for 32-bit operands. The second oper-
and points to the low boundary value in memory, and the next word or dword is the
high value.

If the operation determines that the array index is out of bounds, a bound-range fault
(exception 5) is generated.

Flags Changed: None
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BSF —Bit Scan Forward

Instruction Opcode Action . Clocks
BSFr,1/fm OF BC Bit scan forward on r/m operand 4/9*

BSF scans the second operand from the low-order bit to the high-order bit, searching
for the first-bit that is set to 1. If a 1 bit is located, its bit position is stored in the first
operand and the ZF flag is cleared to 0. If there are no 1 bits in the second operand,
the first operand is not modified.

Flags Changed: AF  undefined
CF  undefined
OF  undefined
PF  undefined
SF  undefined
ZF 1 if the source operand value is zero, otherwise 0
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BSR —Bit Scan Reverse

Instruction

Opcode Action

Clocks

BSR 1, 1r/m

OF BD Bit scan in reverse on r/m operand 4/9%

A-20

BSR scans the second operand from the high-order bit to the low-order bit, searching
for the first bit that is set to 1. If a 1 bit is located, its bit position is stored in the first
operand and the ZF flag is cleared to 0. If there are no 1 bits in the second operand,
the first operand is not modified.

Flags Changed: AF
CF
OF
PF
SF
ZF

undefined

undefined

undefined

undefined

undefined

1 if the source operand value is zero, otherwise 0
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BT —Bit Test

Instruction Opcode Action Clocks
BT t/m, r OF A3 Copy bit r of operand t/m into CF 2/8*%
BT 1/m, imm8 OF BA /4 Copy bit imm8 of operand t/m into CF 2/6*

BT reads the bit in the first operand at the position specified by the second operand,
and assigns the bit’s value to the CF flag.

If the first operand is a register, the bit offset is specified by the value in the second
operand, module 16 or 32 (the destination’s register size). That is, only the lower
four bits (for 16-bit registers) or five bits (for 32-bit registers) of the second operand
are used as the binary pointer in the first operand.

If the first operand is a memory location, the effect depends on whether the second
operand is an 8-bit immediate value or a register, as discussed in the following
paragraphs.

If the second operand is an 8-bit immediate value, bit offsetting works as described
above, except that the modulus of 16 or 32 is determined by the destination
operand’s memory size rather than a register size.

If the second operand is a register, the memory is treated as a bitmap whose base
address is given by the first operand. The second operand provides a bit offset of
0 to 64kB for 16-bit registers, or 0 to 4GB for 32-bit registers. (The size of the
memory bitmap is, of course, also limited by the size of the data segment in which
it resides.) The processor will then determine which word or dword in memory
contains the bit to be tested, and the processor will read only that word or dword
before testing the bit.

The LOCK prefix cannot be used with this instruction.

Flags Changed: AF  undefined
CF  bit in selected position of destination operand
OF  undefined
PF undefined
SF  undefined
ZF  undefined
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BTC —Bit Test and Complement

Instruction Opcode Action Clocks
BTCr/m,r OF BB Copy bit r of operand r/m into CF; complement bit r 4/10*
BTC 1/m, imm8 OFBA /7 Copy bit imm8 of operand r/m into CF; complement bit imm8 4/8*
BTC reads the bit in the first operand at the position specified by the second
operand, assigns the bit’s value to the CF flag, and complements the bit in the
first operand.
See the description of the BT instruction for details on how the first and second
operands are interpreted.
The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.
Flags Changed: AF  undefined
CF  bit in selected position of destination operand
OF  undefined
PF undefined
SF undefined
ZF undefined
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BTR —Bit Test and Reset

Instruction Opcode Action Clocks
BTR r/m, r OF B3 Copy bit r of operand r/m into CF; clear bit r 4/10*
BTR r/m, imm8 OF BA /6 Copy bit imm8 of operand r/m into CF; clear bit imm8 4/8*

BTR reads the bit in the first operand at the position specified by the second
operand, assigns the bit’s value to the CF flag, and clears to O the bit in the first
operand.

See the description of the BT instruction for details on how the first and second
operands are interpreted.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

Flags Changed: AF  undefined
CF  bit in selected position of destination operand
OF  undefined
PF  undefined
SF undefined
ZF undefined
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BTS —Bit Test and Set

Instruction Opcode Action Clocks
BTS t/m, OF AB Copy bit r of operand r/m into CF; set bit r 4/10*
BTS 1/m, imm8 OFBA /5 Copy bit imm8 of operand r/m into CF; set bit imm8 4/8*
BTS reads the bit in the first operand at the position specified by the second operand,
assigns the bit’s value to the CF flag, and sets to 1 the bit in the first operand.
See the description of the BT instruction for details on how the first and second
operands are interpreted.
The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.
Flags Changed: AF  undefined
CF  bit in selected position of destination operand
OF  undefined
PF  undefined
SF undefined
ZF  undefined
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CALL (near) —Call Subroutine in Same Segment

Instruction Opcode Action Clocks
CALL rel E8 Call near procedure at offset rel from next instruction 7
CALL [r/m] FF 2 Call near procedure at address in [r/m] 9/11

A near CALL branches to a location within the current code segment. The branch
destination is specified by the operand. The branch is either direct (the operand is
an offset from the current instruction pointer) or indirect (the operand is a register
or memory location that contains the branch address). The instruction increments
the instruction pointer, pushes it onto the stack, and transfers control to the branch
location specified in the operand. '

In the instruction’s direct form, the branch destination is obtained by adding a signed
offset to the address of the next instruction after the CALL instruction. The offset is
stored in the 32-bit EIP register. If the operand size is 16 bits, the high word of EIP
is cleared to 0.

In the instruction’s indirect form, the branch destination is to a specified address
within the current code segment.

Use the far CALL instruction for branching to locations in different code segments.
Use the task CALL instruction to transfer control through a task gate or directly to a
different task state segment. Call instructions, like jump instructions, clear the
instruction pipeline.

Flags Changed: None
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CALL (far) —Call Subroutine in Different Segment

Instruction Opcode Action - " Clocks (by mode): rm,vm  pm
CALL sel:off %A Call far pfocedure at address sel:off ' ‘19 See Table A-4
CALL [m] FF /3 Call far procedure at address in [m] 21 See Table A-4

A far CALL branches to a location in a code segment different than the current code
segment. The operand specifies a far pointer—either 48 bits or 32 bits, depending
on the operand-size attribute. The pointing is either direct (the pointer is the
operand) or indirect (the pointer is contained in a memory location).

In protected mode, the number of clock cycles required for the instruction depends
on the destination of the call, as shown in Table A-4.

]
Table A-4. Far CALL Clocks

CALL sel:off CALL [m]
To a code segment 67 69
To a gate at same privilege level 69 71
To a gate at inner (more privileged) level 189 191

In real mode and virtual-8086 mode, the instruction increments the instruction
pointer, pushes the CS and (E)IP values onto the stack, loads CS with the far
pointer’s selector, sets the CS descriptor base register to selector *16, and loads the
(B)IP with the offset. For 16-bit operands, the upper word of EIP is cleared to 0.

In protected mode, the instruction increments the instruction pointer, pushes the
CS:(E)IP value onto the stack, and uses the segment selector as an offset into a
descriptor table. The descriptor to which the segment selector points may directly
specify a code segment, or it may specify a call gate. When the selector specifies a
call gate, the call gate selector and offset are used for the address, and the offset
value in the instruction is ignored. Call gates are described in the section entitled
“Control Gates and System Calls” in Chapter 4.
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For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

Near calls execute faster than far calls when branching to locations within the
current code segment. See the description of the task CALL, which is the same
opcode as the far CALL. Call instructions, like jump instructions, clear the
instruction pipeline.

Flags Changed: None
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CALL (task) —Call Different Task (Switch Task)

Instruction Opcode Action Clocks
CALL sel:off 9A Call task at address sel:off See Table A-5
CALL [m] FF /3 Call task at address in [m] See Table A-5

A task CALL instruction works like a protected-mode far CALL, except that the task
CALL selector specifies a TSS descriptor or a task gate descriptor, which in turn
specifies a TSS descriptor. See the description of far CALL.

The number of clocks required for the instruction, in both of its forms and for calls
to either a TSS descriptor or a task gate descriptor, depends on the type of source
and destination task, as shown in Table A-5.

I
Table A-5. Task CALL Clocks

From To Super386 Task To 80286 Task To Virtual-8086 Task
Super386 task 426 365 467

80286 task 419 358 460

If the new TSS descriptor is not busy, the current task state is saved in the existing
TSS, and the new task state is loaded. The segment selector of the old TSS is saved
in the back-link field of the new TSS, and the nested task (NT) flag is set to 1 in the
new TSS. The section entitled “Multitasking” in Chapter 4 describes this
mechanism, task gates, and TSSs.

Call instructions, like jump instructions, clear the instruction pipeline.

Flags Changed: All
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CBW —Convert Byte to Word

Instruction Opcode Action Clocks

CBW 98 Extend sign of AL through AX 2

CBW sign-extends the byte in the AL register to word length and places the result in
the AX register. The value of the sign bit (bit 7) in the AL register is used to fill all
bit positions of the AH register.

See the CDQ, CWD, and CWDE instructions.

Flags Changed: None
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CDQ—Convert Doubleword to Quadword

Instruction ~ Opcode Action Clocks
CDQ 9 Extend sign of EAX through register pair EDX:EAX 2

CDQ sign-extends the dword in the EAX register to qword length and places the
result in the EDX:EAX register pair. The value of the sign bit (bit 31) in the EAX
register is used to fill all bit positions of the EDX register.

See the CBW, CWD, and CWDE instructions.

Flags Changed: None
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CLC —Clear Carry Flag

Instruction Opcode Action Clocks

CLC F8 Clear CFto 0 2

CLC clears the carry flag (CF) to 0.

Flags Changed: CF =0
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CLD —Clear Direction Flag

Instruction Opcode Action Clocks
CLD FC Clear DF to 0 2

CLD clears the direction flag (DF) to 0.

Following a CLD instruction, string instructions increment their index registers,
(E)SI and/or (E)DI. The DF settings are:

DF = 1 Decrement (E)SI and (E)DI
DF = 0 Increment (E)SI and (E)DI

Flags Changed: DF = 0

A-32 PRELIMINARY Chips and Téchno!ogies, Inc.



The Super386 Instruction Set c W

CLI—Clear Interrupt Flag

Instruction Opcode Action Clocks
CLI FA Clear IF to 0 3

CLI clears the interrupt flag (IF) to 0. When CLI is executed, the processor will not
respond to external interrupt requests on the INTR signal until the IF flag is set to 1.
Software interrupts (the various INT instructions) and the NMI hardware signal are

not affected by the setting of this flag.

In protected mode and virtual-8086 mode, the CPL must be less than or equal to
IOPL.

The flag is set with the STI instruction.

Flags Changed: IF =0
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CLTS —Clear Task-Switched Flag in CRO

Instruction Opcode Action . Clocks

CLTS OF 06 Clear TS to 0 10*

CLTS clears bit 3 of the CRO register, the task-switched (TS) flag.

The processor sets TS to 1 during each task switch. It can be tested to monitor
coprocessor activity. ‘A coprocessor-not-available fault (exception 7) is generated
if a coprocessor ESC instruction is executed while the TS flag is set to 1, or if a
WAIT instruction is executed with the MP and TS flags both set to 1. See the
sections entitled “System Registers” and “Multitasking” in Chapter 4.

The instruction can only be executed at privilege level 0.

Flags Changed: TS (in CRO) = 0

A-34 PRELIMINARY Chips and Technologies, Inc.



The Super386 Instruction Set cme B

CMC —Complement Carry Flag

Instruction Opcode Action Clocks
CMC F5 Complement CF 2

CMC toggles the carry flag (CF). If it was set to 1, CMC clears it to 0, and vice
versa. :

For explicit setting of the flag, use the CLC or STC instructions.

Flags Changed: CF = complement of CF
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CMP —Compare Operands

The Super386 Instruction Set

Instruction Opcode Action Clocks
CMP 1, t/m 3A {8},3B {16, 32} Compare r/m and r 1/5
CMP 1/m, r 38 {8}, 39 {16, 32} Compare t/m and r 1/5
CMP 1/m, imm 80/7 {8},81/7 {16, 32} Compare r/m and imm 1/5
CMP 1/m, imm8 83 /7 {16, 32} Compare r/m and imm8 1/5
CMP AL, imm8 3C Compare AL and imm8 1
CMP (E)AX,imm 3D {16, 32} Compare (E)AX and imm 1
CMP subtracts the second operand from the first operand. The arithmetic flags are
set according to the result, but the result is not retained. If the operands are different
sizes, the shorter operand is sign-extended before the subtraction.
The instruction is commonly used before a Jcc or SETcc instruction.
Flags Changed: AF 0 if no borrow to low nibble, 1 if borrow
CF  0if no borrow to high-order bit, 1 if borrow
OF  0if no overflow, 1 if overflow ‘
PF 0 if odd parity, 1 if even parity
SF  high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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CMPSB, CMPSW, and CMPSD —Compare Strings

Instruction Opcode Action Clocks
CMPSB A6 Compare byte at address in ES:[(E)DI] to byte at address in DS:[(E)SI] 9
CMPSW A7 Compare word at address in ES:[(E)DI] to word at address in DS:[(E)SI] 9
CMPSD A7 Compare dword at address in ES:[(E)DI] to dword at address in DS:[(E)SI] 9

These instructions subtract two strings in memory that are indirectly addressed by
the contents of the ES:(E)DI and DS:(E)SI registers. The flags are set according to
the result of the subtraction. The subtraction result itself is discarded.

The first operand, found at the address contained in ES:(E)DI, is subtracted from the
second operand, found at the address contained in DS:(E)SI. This is opposite to the
normal destination-source convention used, for example, in the SUB instruction.

The default segment for the second operand, DS, can be overridden with an
instruction prefix, but the default for the first operand, ES, cannot.

If the DF flag is cleared to 0, the memory addresses contained in both the source and
destination registers are incremented by 1, 2, or 4 (depending on operand size) to
point to the next string element. If DF is set to 1, the registers are decremented. The
LOOP instruction or the REP instruction prefix can be used to repeat the operation.

See the SCASB, SCASW, and SCASD instructions.

Flags Changed: AF 0 if no borrow to low nibble, 1 if borrow
CF 0if no borrow to high-order bit, 1 if borrow
OF 0if no overflow, 1 if overflow
PF 0 if odd parity, 1 if even parity
SF high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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The Super386 Instruction Set

CWD—Convert Word to Dword
Instruction Opcode Action Clocks
CWD 929 Extend sign of AX through register pair DX:AX 2

A-38

CWD sign-extends the word in the AX register to dword length and places the result
in the DX:AX register pair. The high-order bit (bit 15) in the AX register is used to
fill all bit positions of the DX register.

See the CBW, CDQ, and CWDE instructions. CWD is the word operand version of
CDQ. CWDE performs the same sign extension as CWD, but it puts the results in
EAX instead of DX:AX.

Flags Changed: None
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CWDE —Convert Word to Dword Extended

Instruction Opcode Action Clocks

CWDE 98 Extend sign of AX through register EAX 2

CWDE sign-extends the word in the AX register to dword length and places the
result in the EAX register. The high-order bit (bit 15) in the AX register is used to
fill all bit positions of the upper word of the EAX register.

See the CBW, CDQ, and CWDE instructions. CBW is the byte version of CWDE.
CWD performs the same sign extension as CWDE, but it puts the results in DX:AX
instead of EAX.

Flags Changed: None
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DAA —Decimal Adjust AL After ADD

Instruction

Opcode Action Clocks

DAA

27 Convert packed BCD in AL to packed decimal after addition 3

DAA converts the result of binary addition on packed BCD digits to a valid decimal
result. The instruction is used after an ADD or ADC instruction adds two packed
BCD numbers and places the result in the AL register.

If the low-order nibble in AL is greater than 9,or the AF flag is set to 1, DAA adds 6
to the low-order nibble and sets the AF flag to 1. If AL is greater than 99h or the CF
flag is set to 1, DAA adds 60h to AL and sets the CF flagto1. -

Flags Changed: AF 1 when AL bits 3:0 are greater than 9
CF 1 when AL bits 7:4 are greater than 9
OF  undefined
SF  ALWbit7
PF  0if odd parity, 1 if even parity
ZF  0if result was nonzero, 1 if result was zero
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DAS —Decimal Adjust AL After Subtract

Instruction Opcode Action Clocks
DAS 2F Convert packed BCD in AL to packed decimal after subtraction 3

DAS converts the result of binary subtraction on packed BCD digits to a valid
decimal result. The instruction is used after a SUB or SBB instruction subtracts
two packed BCD numbers and places the result in the AL register.

If the low-order nibble in AL is greater than 9 or the AF flag is set to 1, DAS
subtracts 6 from the low-order nibble and sets the AF flag to 1. If AL is greater
than 99h or the CF flag is set to 1, DAS subtracts 60h from AL and sets the CF
flag to 1.

Flags Changed: AF 1 when AL bits 3:0 are less than 0
CF 1 when AL bits 7:4 are less than 0
OF  undefined
SF  ALDbIt7
PF  0if odd parity, 1 if even parity
ZF 0 if result was nonzero, 1 if result was zero
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DEC —Decrement by One

Instruction Opcode . Action . Clocks

DEC1/m FE/1 {8}, FF /1 {16,32} Decrement r/m by 1 - 1/5

DECreg 48+reg {16,32} Decrement reg by 1 1

A-42

DEC decrements the destination operand by 1.

Unlike decrements performed by the SUB instruction, DEC does not modify the CF
flag. The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation. ’

Flags Changed: AF  0if low nibble is nonzero, 1 if low nibble is zero
OF  0if no overflow, 1 if overflow
PF 0 if odd parity, 1 if even parity
SF  high-order bit of result
~ ZF 0 if result was nonzero, 1 if result was zero
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DIV —Unsigned Divide

piv

Instruction Opcode Action Clocks
DIV 1/m8 F6 /6 Divide AX by r/m8; quotient in AL, remainder in AH 15
DIV 1/m16 F7/6 Divide DX:AX by 1/m16; quotient in AX, remainder in DX 23
DIV r/m32 F7/6 Divide EDX:EAX by r/m32; quotient in EAX, remainder in EDX 39

DIV divides an unsigned dividend by an unsigned divisor and stores the resulting
quotient and remainder. The locations of the elements, organized by size of the
instruction operand, are shown in Table A-6. For dividends, the DX and EDX
registers store the most significant bits.

I
Table A-6. DIV Element Storage Locations

Element Byte Word Dword
Dividend AX DX:AX EDX:EAX
Divisor operand operand operand
Quotient AL AX EAX
Reminder AH DX EDX

Exception 0 is generated if a divide-by-zero fault occurs, or if the quotient does not
fit in the quotient register. When a divide error occurs, the return address points to

the divide instruction on entry to the exception handler.

See the IDIV instruction.

Flags Changed:
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OF
SF
ZF
AF
PF
CF

undefined
undefined
undefined
undefined
undefined
undefined
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ENTER —Create a Nested Stack Frame

Instruction Opcode Action Clocks
ENTER imm16,0  C8 {16, 32} Make stack frame of size imm16 12
ENTER imm16, 1 C8 {16, 32} Make stack frame of size imm16 at level 1 13
ENTER imm16, C8 {16, 32} Make stack frame of size imm16 at level imm8 13+6n
imm8

The ENTER instruction creates a stack frame for a recursively callable procedure.
It allocates the stack frame, creates pointers to the stack frames of procedures in
which the new procedure is nested (called the display), and inserts a dynamic link
to the calling procedure.

The first operand specifies the number of bytes needed for the procedure’s local
variables, not including the procedure’s display or dynamic link. The second
operand specifies the nesting level of the routine, from 0 (outermost) to 31
(innermost). The nesting level is the number of stack frame pointers in the display,
including all pointers copied from the current stack frame to the new stack frame,
plus one (which points to the newly created stack frame itself).

When the new stack frame is set up, the caller’s (E)BP is pushed onto the current
stack and the (E)BP register is updated to point to the new stack. The first operand
is then subtracted from (E)SP.

The ENTER instruction is used at the beginning of a procedure. A LEAVE
instruction is used to undo the effect of ENTER just prior to a return instruction.

Flags Changed: None
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ESC —Escape to Coprocessor

Instruction Opcode Action Clocks

ESCecode, r D8+fop/ext Transfer instruction execution to coprocessor See Coprocessor Document
ESC ecode, m D8+fop/ext Transfer instruction execution to coprocessor See Coprocessor Document

ESC is a special prefix for a floating-point instruction. It causes the processor to
pass the floating-point instruction to the coprocessor.

The number of clocks required for the instruction depends on the particular
coprocessor being used (see documentation for the coprocessor). A coprocessor-
not-available fault (exception 7) is generated if the code is encountered when no
coprocessor is present.

See the WAIT instruction.

Flags Changed: None
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HLT —Halt Processor

Instruction Opcode Action Clocks

HLT F4 Halt execution of instructions; restart on interrupt 4

HLT idles the processor, preventing it from executing instructions until the
processor receives an NMI, enabled interrupt, or reset. The address to which
control returns from an interrupt handler is contained in the CS:(E)IP register.
It points to the instruction following the HLT instruction.

The instruction can only be executed at privilege level 0. HLT operates in real
mode because the CPL is always 0, but it will generate a fault in virtual-8086
mode, which operates at privilege level 3.

Flags Changed: None
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IDIV —Signed Divide

ipiv B

Instruction Opcode Action Clocks
IDIV 1/m8 F6 /7 Divide AX by r/m8; result in AL, remainder in AH 16
IDIV r/m16 F7/7 Divide DX:AX by 1/m16; result in AX, remainder in DX 24
IDIV r/m32 F7/7 Divide EDX:EAX by r/m32; result in EAX, remainder in EDX 40

IDIV divides a signed dividend by a signed divisor and stores the resulting quotient
and remainder. The location of the elements, organized by size of the instruction
operand, are shown in Table A-7. For dividends, the DX and EDX registers store
the most significant bits. The remainder has the same sign as the dividend.

Quotients which are nonintegral are truncated toward 0.

I
Table A-7. IDIV Element Storage Locations

Element Byte Word Dword
Dividend AX DX:AX EDX:EAX
Divisor 1/m8 r/m16 1/m32
Quotient AL AX EAX
Reminder AH DX EDX

Exception 0 is generated if a divide-by-zero fault occurs, or if the quotient does not
fit in the quotient register. When a divide error occurs, the return address points to

the divide instruction on entry to the exception handler.

See the DIV instruction.

Flags Changed:
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AF
CF
OF
PF
SF
ZF

undefined
undefined
undefined
undefined
undefined
undefined
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IMUL —Signed Multiply

Instruction Opcode Action Clocks
IMUL AL, r/m8 F6/5 Multiply AL by r/m8; result in AX 8to 12
IMUL AX,1/m16  F7/5 Multiply AX by r/m16; result in DX:AX 8t0 16
IMUL EAX,1/fm32 F7/5 Multiply EAX by r/m32; result in EDX:EAX . 8to24
IMUL 1, t/m OF AF {16, 32} Multiply r by r/m; result in r 7t023
IMUL 1, t/m,imm 69 {16, 32} Multiply t/m by imm; result in r 9to 24

IMUL 1, t/m, imm8 6B {16, 32} Multiply t/m by imm8; result in r 9to 12

IMUL performs a signed multiplication and stores the result in a register or
register pair.

In the first three forms of the instruction (implied accumulator, two operands), the
two operands are multiplied and the result is stored in the registers AX, DX:AX,
and EDX:EAX, respectively. The CF and OF flags are cleared to O when the
multiplication produces the same result as would have been produced by sign-
extending the multiplicand in AL/AX/EAX.

In the fourth form (explicit accumulator, two operands) the two operands are
multiplied and the result is stored in the first operand. The CF and OF flags are
cleared to 0 when the result fits exactly in the first register.

In the last two forms (explicit accumulator, three operands) the second and third
operands are multiplied and the result is stored in the first operand. The CF and
OF flags are cleared to 0 when the result fits exactly in the first register.

Before starting the multiplication operation, the processor determines which bits

in the multiplier are significant to the value of the multiplier. The processor then
performs the multiplication by examining, summing, and shifting two bits at a time
in the multiplicand and multiplier, until all significant bits of the multiplier have
been operated on. This is referred to as an early-out algorithm, because it allows
the multiplication to terminate before all bits of the operands have been summed
and shifted.
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Clock counts for the instructions are given in ranges to reflect the effect of this
early-out algorithm. Lower clock counts apply to smaller multipliers; larger clock
counts apply to larger multipliers. The exact number of clocks can be calculated as
follows: for multipliers that are 0, 1, 2, or 3, the instruction requires 7 clocks; for
each two additional significant bits in the multiplier, add one clock.

See the MUL instruction.

Flags Changed: AF  undefined
CF 0 if conditions stated above are met, otherwise 1
OF  0if conditions stated above are met, otherwise 1
PF undefined
SF undefined
ZF  undefined
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IN—Input From I/O port

Instruction

Opcode Action Clocks (by mode): rm,vm pm

IN AL, imm8

E4 Load byte from port imm8 into AL 11

IN (E)AX, imm8

E5 Load word/dword from port imm8 into (E)AX 11

IN AL, DX

EC Load byte from port specified by DX into AL 11

IN (B)AX, DX

R[R|R|R

ED Load word/dword from port specified by DX 11
into (E)AX

A-50

IN copies data from an I/O port, specified by the second operand, and stores it in a
register, specified by the first operand. The port address can be specified either with
an 8-bit immediate operand, which can address up to 256 ports, or with the 16-bit
DX register, which can address the full 64kB range of ports.

Table A-8 shows which privilege-level checks are performed against the I/O
protection level (IOPL) and the I/O permission bitmap (IOPB) for each mode.

|
Table A-8. IN Privilege Level Checks

Protected Mode Real Mode Virtual-8086 Mode

IOPL yes yes no
IOPB yes (for 32-bit tasks) no yes

For I/O to succeed, the following must be true: In protected mode for 32-bit tasks,
CPL must be < IOPL, or the IOPB bit for the port must be cleared to 0; for 16-bit
(80286) tasks, CPL must be < IOPL, and the IOPB is not checked. In real mode,
CPL must be < IOPL, but since CPL is always 0, I/O always succeeds. In virtual-
8086 mode, IOPL is never checked; only the IOPB bit for the port is checked. The
IOPB bit must be cleared to 0.

For details, see the sections entitled “Protection Mechanisms” and “Other Processing
Modes” in Chapter 4.

See the INS, INSB, INSD, and INSW instructions for string inputs.

Flags Changed: None
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INC—Increment by One

Instruction Opcode Action Clocks
INC1/m FE /O {8}, FF /O {16, 32} Increment r/m by 1 1/3
INC reg 40+reg {16, 32} Increment reg by 1 1

INC increments its operand by 1. Unlike increments performed by the ADD
instruction, INC does not modify the CF flag.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

Flags Changed: AF
OF
PF
SF
ZF
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0 if low nibble is nonzero, 1 if low nibble is zero
0 if no overflow, 1 if overflow

0 if odd parity, 1 if even parity

high-order bit of result

0 if result was nonzero, 1 if result was zero

PRELIMINARY
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INS, INSB, INSD, and INSW—Input From I/O Port to String Element

Instruction

Opcode " Action ' Clocks (by mode): rm,vm pm

INSB -

6C - I.mdbyiefrcmportDXandstoreataddress . 12 44

in ES:[(E)DI]

INSD

6D Load word from port DX and store at address - - 12 44

in ES:[(E)DI]

INSW

6D - Load dword from port DX and store at address 12 44
in ES:[(E)DI] ’
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INS copies data from an I/O port, specified in the DX register, and stores it in
a memory string, specified indirectly as the memory address contained in the
ES:(E)DI register. Segment override prefixes are ignored for the destination
address, which must always be relatlve to the ES segment.

If the DF flag is cleared to 0 the destination register is incremented by 1, 2, or 4
(depending on the operand size) to point to the next string element. If DF is set

to 1, the destination register is decremented. The LOOP instruction or the REP

instruction prefix can be used to repeat the operation.

In protected mode, the CPL must be less than or equal to the IOPL, and the IOPB bit
for the port must be cleared to 0. In real mode, these I/O protections do not apply.

For details on privilege-level checking, see the description of the IN instruction.

The REP instruction prefix can be used to repeat the operation.

Flags Changed: None
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INT n—Software Interrupts 0 to 2, or 5 to 255

Instruction Opcode Action Clocks

INT imm8 CD Generate interrupt number imm8 See below

INT generates a call to an interrupt or exception handler. The instruction operand

is the interrupt vector, which is an offset into the IDT. In protected mode and virtual-
8086 mode, the IDT contains segment descriptors for interrupt gates, trap gates,
and/or task gates. In real mode, the IDT contains four-byte pointers. The clock
counts are summarized below for all modes of operation.

In real mode, and in virtual-8086 mode when CPL < IOPL, the number of clocks
is 41%*,

In non-task-switched protected mode, and in non-task-switched virtual-8086 mode
when CPL > IOPL, the number of clocks is:

To same privilege level 131
To inner (more privilege) level 211
From virtual-8086 mode 220

In task-switched protected mode, and in task-switched virtual-8086 mode when
CPL > IOPL, the number of clocks is as shown in Table A-9.

]
Table A-9. INT n Clock Counts in Task-Switched Protected Mode and in
Task-Switched Virtual-8086 Mode When CPL > IOPL

To Super386 Task To 80286 Task To Virtual-8086 Task
From Super386 task gate 427 366 468
From 80286 task gate 420 359 461
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The DPL of the interrupt, trap, or task gate must be greater than (less privileged
than) or equal to the CPL. The IF flag has no affect on software interrupts, although
the flag is cleared to O after an interrupt through an interrupt gate (vs. a trap or task
gate). If the interrupt handler is a procedure rather than a task, the processor pushes
essential data (including the EFLAGS, CS, and EIP registers) on the stack before
branching to the interrupt handler. The IRET or IRETD instruction is used to return
from an interrupt or exception handler. If the interrupt is an NMI, additional NMIs
are disabled until the handler returns.

See the section entitled “Interrupts and Exceptions™ in Chapter 4 for details on the
interrupt mechanism, interrupt handlers, and listings of the interrupt and exception
vectors as defined in the Super386 architecture and for the IBM PC/AT.

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

INT 3 and INT 4 are encoded as single-byte opcodes and are described separately.

Flags Changed: IF 0 if an interrupt gate is accessed, otherwise unchanged
TF 0
NT 1 if nested task switch, otherwise unchanged
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INT 3—Software Interrupt 3 (Breakpoint)

Instruction Opcode Action Clocks

INT 3 CcC Generate interrupt number 3 See below

INT 3 is a one-byte instruction that generates an interrupt to vector 3 (breakpoint),
providing an alternative method to using the debug registers. An unlimited number
of breakpoints can be created with this instruction. The debug registers, by
comparison, allow only a limited number of breakpoints, although they are more
powerful. The debug registers must be used, however, for certain debugging such
as in ROM-based programs, since the INT 3 opcode cannot replace an instruction
in ROM. The clock counts are summerized below for all modes of operation.

In real mode and in virtual-8086 mode, the number of clocks is 41*.

In non-task-switched protected mode, the number of clocks is:

To same privilege level 131
To inner (more privileged) level 211
From virtual-8086 mode 220

In task-switched proteced mode, the number of clocks is as shown in Table A-10.

|
Table A-10. INT 3 Clock Counts in Task-Switched Protected Mode

To Super386 Task To 80286 Task To Virtual-8086 Task
From Super386 task gate 427 366 468
From 80286 task gate 420 359 461

In all other respects, INT3 works identically in INT n.

Flags Changed: IF 0 if an interrupt gate is accessed, otherwise unchanged
TF O ‘
NT 1 if nested task switch, otherwise unchanged
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INTO—Software Interrupt 4 (Overflow)

Instruction Opcode Action Clocks

INTO CE Generate interrupt number 4 See below

INTO 4 is a one-byte instruction that generates an interrupt to vector 4 if the OF flag
is set to 1. If the OF flag is 0, the INTO instruction executes as a NOP. In all other
respects, INT 4 works identically to INT n. The clock counts are shown below for
all modes of operation. '

In real mode and in virtual-8086 mode, the number of clocks is 43* if the OF flag is.
set to 1, or 4* if the OF flag is cleared to 0. '

In non-task-switched protected kmode, the number of clocks is:

To same privilege level 131
To inner (more privileged) level 211
From virtual-8086 mode 220

In task-switched proteced mode, the number of clocks is as shown in Table A-11.

|
Table A-11. INTO Clock Counts in Task-Switched Protected Mode

To Super386 Task To 80286 Task To Virtual-8086 Task
From Super386 task gate 427 366 ‘ 468
From 80286 task gate 420 359 461
Flags Changed: IF 0 if an interrupt gate is accessed, otherwise unchanged
TF 0

NT  1if nested task switch, otherwise unchanged
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IRET and IRETD—Return from Interrupt Procedure or Task

Instruction Opcode Action Clocks
IRET CF Return from interrupt, word pop See Table A-12
IRETD CF Return from interrupt, dword pop See Table A-12

The IRET and IRETD instructions are used to return from an interrupt procedure,
or (in protected mode) from a interrupt-handling task. The value of the nested task
flag in protected mode determines whether the return is to a procedure (NT = 0) or
a task (NT = 1). The location to which control returns is determined by the type of
interrupt or exception that occurred (interrupt, fault, trap, or abort). See the section
entitled “Interrupts and Exceptions” in Chapter 4 for details. The clock counts are
summerized below for all modes of operation.

In real mode, and in virtual-8086 mode when CPL < IOPL, the number of clocks
is 20%*,

In non-task-switched protected mode, and in non-task-switched virtual-8086 mode
when CPL > IOPL, the number of clocks is:

To same privilege level 91
To inner (more privileged) level 169
To virtual-8086 mode 110

In task-switched protected mode, and in task-switched virtual-8086 mode when
CP1 > IOPL, the number of clocks is as shown in Table A-12.

L]
Table A-12. IRET and IRETD Clock Counts in Task-Switched Protected Mode

and in Task-Switched Virtual-8086 Mode When CPL > IOPL

To Super386 Task To 80286 Task To Virtual-8086 Task
From Super386 task gate 446 385 487
From 80286 task gate 439 378 480
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( ({e’f‘\

When returning, IRET pops word operands from the stack, wheyeas IRETD pops
dword operands. IRET and IRETD are similar to the far returnfin real and
virtual-8086 modes, except that IRET and IRETD pop the EFLAGS register in
q addition to the CS and EIP registers. If the return is to a procedure with less
'\/\’3 e privilege (higher DPL), IRET and IRETD also pop the stack segment selector and
!eegv(\:_ '\w"“ﬁ stack pointer for the less privileged procedure.

Privilege-level checks are made during the return. For returns from interrupt-
handling procedures, the RPL of the destination code segment selector must be
greater than or equal to the CPL. For returns from interrupt-handling tasks, the DPL
of the destination TSS or of the task gate (if used) must be greater than or equal to
both the CPL and the RPL. If the interrupt handler services an NMI, additional
NMIs are disabled until the handler is exited through an IRET or IRETD.

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

Flags Changed: = When handler is a procedure—Restored from EFLAGS of prior
' procedure’s stack, except that IOPL is restored only if CPL = 0,
and the RF and VM flags are restored only with the IRETD
instruction.
When handler is a task—Restored from EFLLAGS of prior
task’s TSS.

A-58 PRELIMINARY Chips and Technologies, Inc.



The Super386 Instruction Set

Jec—Conditional Jump

Jec H

Instruction Opcode Action Clocks

JE[IZ rel OF 84 Jump near by displacement rel if ZF = 1 See Table A-13
JE/JZ rel8 74 Jump short by displacement rel8 if ZF = 1 See Table A-13
INE/INZ rel OF 85 Jump near by displacement rel if ZF = 0 See Table A-13
INE/INZ rel8 75 Jump short by displacement rel8 if ZF = 0 See Table A-13
JA/INBE rel OF 87 Jump near by displacement rel if CF = 0 and ZF = 0 See Table A-13
JA/INBE rel8 77 Jump short by displacement rel8 if CF = 0 and ZF = 0 See Table A-13
JBE/INA rel OF 86 Jump near by displacement rel if CF = 1 or ZF = 1 See Table A-13
JBE/INA rel8 76 Jump short by displacement rel8 if CF = 1 or ZF = 1 See Table A-13
JB/INAE rel OF 82 Jump near by displacement rel if CF = 1 See Table A-13
JB/INAE rel8 72 Jump short by displacement rel8 if CF = 1 See Table A-13
JAE/INB rel OF 83 Jump near by displacement rel if CF = 0 See Table A-13
JAE/INB rel8 73 Jump short by displacement rel8 if CF = 0 See Table A-13
JG/INLE rel OF 8F Jump near by displacement rel if ZF = 0 and SF = OF See Table A-13
JG/INLE rel8 TF Jump short by displacement rel8 if ZF = 0 and SF = OF See Table A-13
JGE/INL rel OF 8D Jump near by displacement rel if SF = OF See Table A-13
JGE/INL rel8 7D Jump short by displacement rel8 if SF = OF See Table A-13
JL/INGE rel OF 8C Jump near by displacement rel if SF <> OF See Table A-13
JL/INGE:rel8 7C Jump short by displacement rel8 if SF <> OF See Table A-13
JLE/ING rel OF 8E Jump near by displacement rel if ZF = 1 or SF <> OF See Table A-13
JLE/ING rel8 7E Jump short by displacement rel8 if ZF = 1 or SF <> OF See Table A-13
JS rel OF 88 Jump near by displacement rel if SF = 1 See Table A-13
JS rel8 78 Jump short by displacement rel8 if SF = 1 See Table A-13
JINS rel OF 89 Jump near by displacement rel if SF = 0 See Table A-13
INS rel8 79 Jump short by displacement rel8 if SF = 0 See Table A-13
JOrel OF 80 Jump near by displacement rel if OF = 1 See Table A-13
JO rel8 70 Jump short by displacement rel8 if OF = 1 See Table A-13
JNO rel OF 81 Jump near by displacement rel if OF = 0 See Table A-13
JNO rel8 71 Jump short by displacement rel8 if OF = 0 See Table A-13
JP rel OF 8A Jump near by displacement rel if PF = 1 See Table A-13
JP rel8 7A Jump short by displacement rel8 if PF = 1 See Table A-13
INP rel OF 8B Jump near by displacement rel if PF = 0 See Table A-13
JNP rel8 7B Jump short by displacement rel8 if PF = 0 See Table A-13
JCXZ rel8 E3 Jump short by displacement rel8 if register CX = 0 See Table A-13
ECXZ rel8 E3 Jump short by displacement rel8 if register ECX = 0 See Table A-13
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A-60

The Super386 Instruction Set

The Jcc instructions cause a near jump (16-bit or 32-bit operand) or short jump
(8-bit operand) to the location, within the current code segment, that is specified by
the operand. The operand is an offset from the address in the EIP register. If the
operand size is 16, only the low word of the EIP register is used to obtain the address
displacement.

In protected, real, and virtual-8086 modes, the number of clock cycles required
for the execution of jump instructions depends on the type of processor, size of
displacement, whether or not the jump is taken, and whether there is a cache hit,
as shown in Table A-13.

]
Table A-13. Jcc Clock Counts

8-bit 16-bit or 32-bit
Jump Displacement Displacement
38605 Processor Jump taken, cache hit 2 6*!

Jump taken, cache miss 5 6*

Jump not taken 1 1*
38600 Processor Jump taken 5 6*

Jump not taken 1 1*

1 See “Clock Counts” in this appendix for an explanation of *.

Unlike CALL instructions, jump instructions do not push anything onto the stack in
anticipation of a return. There is no operation (other than another jump) that causes
a return.

The instruction tests the flags specified on page A-59 and transfers control if the
flag conditions are met. If flag conditions are not met, the jump instruction is
ignored and the program continues execution at the next instruction. The fastest
jump execution occurs in short jumps (within +128 bytes of the next instruction) in
the current code segment.
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Some opcodes have more than one mnemonic because their effects can be
interpreted different ways. In the mnemonics listing, the following abbreviations

are used:

A above (for comparing unsigned integers)

B below (for comparing unsigned integers)

C carry :
CX CX register

E equal to

ECX  ECXregister

greater than (for comparing signed integers)
less than (for comparing signed integers)
not
overflow
parity
E parity even
O parity odd
sign
Z Zero.

TeczZraQ

7205 Rgv]

To branch conditionally to a location in a different code segment, use the
complementary sense of the Jcc instruction, then use an unconditional far jump
to the other segment. The JCXZ and JECXZ instructions are used at the start of
conditional loops that end in conditional loops, to avoid executing the loops
unnecessarily if there is a zero in the CX or ECX register.

Jumps flush the instruction pipeline.

Flags Changed: None, if there is no task switch. See “JMP (task).”
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JMP (near)—Jump Within Same Segment

Instruction Opcode Action Clocks

JMP rel E9 Jump near by offset rel See Table A-14
JMP rel8 EB Jump short by offset rel8 See Table A-14
JMP [1/m] FF /4 Jump near by offset in [r/m] 8/10

A near JMP transfers control to the location, within the current code segment,
specified by the operand. The operand specifies an offset from the EIP either
directly (the offset is the operand itself) or indirectly (the offset is contained in a
register or memory location). In the direct form of the instruction, the operand size
it determined by the code segment. If the operand size is 16, the processor clears to
0 the upper word of the new EIP to enable a 32-bit jump to follow.

The number of clock cycles required in all operating modes for execution of the
first two forms of the instruction depends on the whether or not the jump is taken
and whether there is a cache hit, as shown in Table A-14.

[ ]
Table A-14. Near JMP rel and rel8 Clock Counts

Jump JMP rel JMP rel8
Jump not taken ' 1 1
Jump taken, cache hit 6 2
Jump taken, cache miss 6 5

Unlike CALL instructions, jump instructions do not push anything onto the stack in
anticipation of a return. There is no operation (other than another jump) that causes
a return.

Use the far JMP instruction when branching to a code segment that differs from the
current code segment. See the separate description of the task JMP, which is the
same opcode as the far JMP.

Jumps (near or far) flush the instruction pipeline.

Flags Changed: None
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JMP (far)—Jump to Different Segment

Instruction Opcode Action Clocks (by mode) rm,vm pm
JMP sel:off EA Jump far to address sel:off 13 See below
JMP [m] FF /5 Jump far to address in [m] 17 See below

The far JMP branches to a location in a different code segment than the current code
segment. (The instruction can also be used for branches within the current code
segment, but the near jump executes faster for such jumps.) The operand specifies a
far pointer of 48 bits or 32 bits, depending on operand size. The pointing is either
direct (the pointer is the operand itself) or indirect (the pointer is contained in a
register or memory location).

In protected mode, the number of clocks required depends on the destination of the
jump, as follows: '

To a code segment 46
To a call gate 61

In the direct form of the instruction, the operand size is determined by the code
segment. For both direct and indirect forms, if the operand size is 16, the processor
clears to 0 the upper word of the new EIP. Unlike CALL instructions, jump
instructions do not push anything onto the stack in anticipation of a return.

In protected mode, the instruction uses the segment selector as an offset into a
descriptor table. The descriptor to which the segment selector points may directly
specify a code segment, or it may specify a call gate, a task gate, or a task state
segment. When the selector references a call gate, the call gate selector and offset
are used for the address, and the offset value in the instruction is ignored. Call gates
are described in the section entitled “Control Gates and System Calls” in Chapter 4.

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

In real or virtual-8086 mode, the far pointer contains the new CS selector and
(E)IP value.

Jumps (near or far) flush the instruction pipeline.

Flags Changed: None
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The Super386 Instruction Set

JMP (task)—Jump to Different Task (Switch Task)

Instruction Opcode Action Clocks
JMP sel:off EA Jump to task at address sel:off See Table A-15
JMP [m] FF /5 Jump to task at address in [m] See Table A-15
A task JMP instruction works like a protected-mode far JMP, except that the task
JMP selector specifies a TSS descriptor or a task gate descriptor, which in turn
specifies a TSS descriptor. See the description of far JMP.
The number of clock cycles required for execution of the instruction depends on the
source and destination of the jump, as shown in Table A-15.
|
Table A-15. Task JMP Clock Counts
To Super386 Task To 80286 Task To Virtual-8086 Task
From Super386 task 438 C 377 479
From 286 task 431 370 472
If the new TSS descriptor is not busy, the current task state is saved in the existing
TSS, and the new task state is loaded. The segment selector of the old TSS is saved
in the back-link field of the new TSS, and the nested task (NT) flag is set to 1 in
the new TSS. The section entitled “Multitasking” in Chapter 4 describes this
mechanism, task gates, and TSSs.
In real mode, the selector provided in the operand does not refer to a segment
descriptor. Instead, the selector is simply shifted left four bits and written into
the descriptor-base field of the segment’s shadow register.
Flags Changed: All
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LAHF—Load Flags Into AH Register

LAHF W

Instruction Opcode

Action

Clocks

LAFH OF

Load low byte of flags word into AH

2*

LAHEF copies the low-order byte of the EFLAGS register into the AH register.
The resulting bits in the AH register are:

AHDbit7  SF
AHDbIt6  ZF
AHDbit5 0
AHUbit4  AF
AHbBit3 0
AHbit2 PF
AH bit 1 1
AHbit0 CF
Flags Changed:

Chips and Technologies, Inc.
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The Super386 Instruction Set

LAR—Load Access Rights Byte

Instruction

Opcode Action Clocks

LART, t/m

OF 02 Load access rights part of r/m to r 25%[28*

A-66

LAR loads the first operand with the access rights of the segment referenced by
the second operand (a segment selector). The instruction allows examination of a
segment descriptor’s access rights without revealing the physical address of the
descriptor’s base.

LAR copies the high dword of the two-dword segment descriptor referenced by the
selector and masks (ANDs) it with the value 00FxFFO00. If the descriptor can be
read, and it is of the proper type, the result is stored in the first operand and the ZF
flag is set to 1.

Masking prevents the base portion of the upper dword (bits 31:24 and 7:0) from
being seen and leaves the limit portion (bits 19:16) undefined. More important,
masking makes visible the access-rights bits defined in Table A-16:

I
Table A-16. LAR Access-Rights Bit Definitions

Bit Description : Bit Number

Type field 12:8

Descriptor privilege level (DPL) 14:13

Present bit 15

Available bit 20 (for dword operands)
Default sizefupper bound bit 22 (for dword operands)
Granularity bit 23 (for dword operands)

LAR operates on all code segments, data segments, TSSs, call gates, and task
gates—both 16-bit and 32-bit—but not on trap gates or interrupt gates. In protected
mode, LAR executes at all privilege levels. In real or virtual-8086 modes, LAR
generates an invalid-opcode fault (exception 6).

Flags Changed: ZF = 1 if the selector is visible and of the right type,
otherwise 0.
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LDS—Load Pointer into DS and a Register

Instruction Opcode  Action Clocks (by mode): rm,vm pm

LDSr,m C5 {16, 32} Load pointer from m into DS:r 11* 25*

LDS loads a far pointer (segment selector and offset) into the DS segment selector
register and a general purpose register. The pointer is copied from the memory
location specified by the second (source) operand. The 16-bit segment selector
portion of the pointer is loaded into the DS register. The 16-bit or 32-bit offset is
loaded into the register specified by the first (destination) operand.

The size of the destination register is determined by the operand-size attribute. The
processor loads the segment descriptor into the segment selector’s shadow register
when the segment selector is loaded.

Also see the LES, LSS, LFS, and LGS instructions.

Flags Changed: None
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LEA—Load Effective Address

Instruction Opcode Action Clocks

LEAr,m 8D Load effective address form in r 1 (2 if index is included)

LEA calculates the effective address (segment offset) of the second operand and
stores it in the first operand. '

The instruction simply calculates the address; it does not make an actual memory
reference or check the validity of the address. The instruction uses the same
MODr/m-byte (and optionally, SIB-byte) encoding of other instructions that
generate effective addresses from a base, index, displacement, and scaling factor.
Segment override prefixes in the instruction are ignored. If the operand size is less
than the address size, only the low-order bits of the offset are stored. If the address
size is less than the operand size, the offset value is zero-extended.

While the instruction is normally used to determine effective addresses, it can also
be used for a variety of register arithmetic. For example, it can be used to fill the
destination register with an immediate operand or with the sum of a base register
plus an index register. For this, the MODr/m byte of the instruction is selected to
specify only the parts of the effective address that are needed for the arithmetic, and
the second operand must have the form of a memory operand. The destination
register will be filled with the sign-extended result. In these applications, the
instruction differs from the ADD instruction in that the flags are not altered.

Flags Changed: None
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LEAVE—Leave Nested Procedure

Instruction Opcode Action Clocks

LEAVE c9 Set (E)SP value to (E)BP; pop frame pointer into (E)BP 4*

LEAVE reverses the action of its corresponding ENTER instruction. LEAVE
assigns the value of the (E)BP register to the (E)SP register, thereby releasing the
stack frame generated by ENTER. The top of the stack then contains the caller’s
(E)BP, which is popped into (E)BP.

By contrast, a RET instruction pops all of the parameters pushed on the stack by the
procedure that is being left.

LEAVE assumes the operand size of the code segment in which it resides.

Flags Changed: Noné

Chips and Technologies, Inc. ~ PRELIMINARY A-69



- LES v The Super386 Instruction Set

LES—Load Pointer Into ES and a Register

Instruction Opcode Action Clocks (by mode): rm,vm pm

LEStr,m C4 Load pointer from m into ES:r 11* 25*

LES loads a far pointer (segment selector and offset) into the ES segment selector
register and a general purpose register. The pointer is copied from the memory
location specified by the second (source) operand. The 16-bit segment selector
portion of the pointer is loaded into the ES register. The 16-bit or 32-bit offset is
loaded into the register specified by the first (destination) operand.

The size of the destination register is determined by the operand-size attribute. The
processor loads the segment descriptor into the segment selector’s shadow register
when the segment selector is loaded.

Also see the LDS, LSS, LFS, and LGS instructions.

Flags Changed: None
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LFS—Load Pointer Into FS and a Register

Instruction Opcode Action Clocks (by mode): rm,vm pm

LFSr,m OF B4 Load pointer from m into FS:r 11* 25*

LFS loads a far pointer (segment selector and offset) into the FS segment selector
register and a general purpose register. The pointer is copied from the memory
location specified by the second (source) operand. The 16-bit segment selector
portion of the pointer is loaded into the FS register. The 16-bit or 32-bit offset is
loaded into the register specified by the first (destination) operand.

The size of the destination register is determined by the operand-size attribute.
The processor loads the segment descriptor into the segment selector’s shadow
register when the segment selector is loaded.

See the LDS, LES, LSS, and LGS instructions.

Flags Changed: None
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LGDT—Load Global Descriptor Table

Instruction

Opcode Action Clocks

LGDTm

OF 01 /2 Load global descriptor table register from m 12*

A-72

LGDT initializes the GDT by loading the GDT register (GDTR) from a six-byte
memory location specified by the instruction’s operand.

For 32-bit operands, a two-dword memory structure is used. The first dword begins
with a word for the segment limit, which is followed by the low-order word of the
segment base. The second dword contains the high-order word of the segment base;
the upper word of the second dword is undefined.

For 16-bit operands, a three-word memory structure is used. The first word is the
segment limit. The second word is the low-order word of the segment base. The
first byte of the third word is the high-order byte of the segment base; the upper byte
of the third word is undefined.

See the section entitled “Descriptor Tables and Their Registers” in Chapter 4 for
details.

Unlike the SGDT instruction, LGDT is a privileged instruction and can only be used
from privilege level 0.

Flags Changed: None
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LGS—Load Pointer Into GS and a Register

Instruction Opcode Action Clocks (by mode): rm,vm pm

LGS, m OF B5 Load pointer from m into GS:r 11* 25*

LGS loads a far pointer (segment selector and offset) into the GS segment selector
register and a general purpose register. The pointer is copied from the memory
location specified by the second (source) operand. The 16-bit segment selector
portion of the pointer is loaded into the GS register. The 16-bit or 32-bit offset is
loaded into the register specified by the first (destination) operand.

The size of the destination register is determined by the operand-size attribute. The
processor loads the segment descriptor into the segment selector’s shadow register
when the segment selector is loaded.

Also see the LDS, LSS, LES, and LFS instructions.

Flags Changed: None
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LIDT—Load Interrupt Descriptor Table

Instruction Opcode Action ' Clocks

LIDTm 0F01/3 Load interrupt descriptor table register from m 12*

LIDT initializes the IDT by loading the IDT register (IDTR) from a six-byte
memory location specified by the instruction’s operand.

For 32-bit operands, a two-dword memory structure is used. The first dword begins
with a word for the segment limit, which is followed by the low-order word of the
segment base. The second dword contains the high-order word of the segment base.
The upper word of the second dword is undefined.

For 16-bit operands, a three-word memory structure is used. The first word is the
segment limit. The second word is the low-order word of the segment base. The
first byte of the third word is the high-order byte of the segment base; the upper byte
of the third word is undefined.

See the section entitled “Descriptor Tables and Their Registers” in Chapter 4 for
details. :

Unlike the SIDT instruction, LIDT is a privileged instruction and can only be used
from privilege level 0.

Flags Changed: None

A-74 PRELIMINARY Chips and Technologies, Inc.



The Super386 Instruction Set Lot W

LLDT—Load Local Descriptor Table

Instruction

Opcode Action Clocks

LLDT t/m16

OF 00/2 Load local descriptor table register from r/m16 27%[28*

LLDT loads the local descriptor table register (LDTR) with the segment selector
located in the instruction’s operand. The selector must point to an LDT segment
descriptor in the GDT. The field reserved for the LDT selector in the TSS is not
affected by this instruction.

LDTs are only used in protected mode. If the LDTR is loaded with a null (zero)
selector, references to the LDT descriptor generate a general-protection fault, except
references by the LSL, LAR, VERR, or VERW instructions.

The instruction can only be executed at privilege level 0. See the SLDT instruction.

Flags Changed: None
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LMSW-—Load Machine Status Word

Instruction

Opcode Action Clocks

LMSW 1/m16

OF 01 /6 Load machine status word from r/m16 19*/20*

A-76

LMSW is provided for compatibility with the 80286. It is not recommended for use
in new Super386 code. Instead, the MOV CRO, 1r instruction should be used.

LMSW copies the operand into the lower word of control register CRO, the machine
status word (MSW). The instruction must be followed by a jump or call to flush

the instruction pipeline. While the processor can be switched from real mode to
protected mode with LMSW, it cannot be switched back to real mode with LMSW;
this must be done with MOV CRO.

The instruction can only be executed at privilege level 0. See the SMSW
instruction.

Flags Changed: None
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LOCK—Lock Memory Bus (Instruction Prefix)

Instruction Opcode Action Clocks

LOCK FO Activate LOCK signal for subsequent instruction 0*

The LOCK instruction prefix provides secure access to memory locations. It
prevents access by other operations to the memory operand of the associated
instruction. The lock remains enabled for the duration of the instruction.

The LOCK prefix can be decoded independently of normal instruction pipeline
operations. A delay of one clock occurs if the locked instruction either follows a
one-clock instruction or is the target of a jump.

Memory accesses with the following instructions may be prefixed by LOCK:
ADD, ADC, AND, BTC, BTR, BTS, DEC, INC, NEG, NOT, OR, SBB, SUB,
XCHG, and XOR.

The XCHG instruction asserts a bus lock signal whether the instruction is preceded
by a LOCK prefix or not. Misalignment of memory operands does not affect the
lock operation.

Flags Changed: None
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LODSB, LODSW, and LODSD—Load String Operands

Instruction

Opcode Action Clocks

LODSB

AC Copy byte at address in DS:[(E)SI] to AL 6

LODSW

LODSD

AD Copy word at address in DS:[(E)SI] to AX 6
AD Copy dword at address in DS:[(E)SI] to EAX 6

A-78

The LODS instructions copy the operand at the memory location (source operand)
found in the DS:(E)SI register into a register. LODSB, LODSW, and LODSD copy

_ the source into the AL, AX, and EAX registers, respectively.

If the DF flag is cleared to 0, the source register is incremented by 1, 2, or 4
(depending on operand size) to point to the next string element. If DF is set to 1,
the source register is decremented. The LOOP instruction or the REP instruction
prefix can be used to repeat the operation.

Offset (E)SI is referenced to the DS segment register, unless a segment override
prefix changes this default.

Flags Changed: None

PRELIMINARY Chips and Technologies, Inc.



The Super386 Instruction Set LOOP and LOOPcc

LOOP and LOOPcc—Loop Control with CX Counter

Instruction Opcode Action Clocks

LOOP rel8 E2 Decrement (E)CX; jump short by displacement rel8 if (E)CX <> 0 3/8

LOOPNE/LOOPNZ rel8 EO Decrement (E)CX; jump short by displacement rel8 if (E)CX <> 0 3/8
andZF=0

LOOPE/LOOPZ rel8 Ei Decrement (E)CX; jump short by displacement rel8 if (E)CX <> 0 3/8
and ZF = 1

The LOOP instructions decrement the (E)CX register and check certain conditions.
If the conditions are all met, control transfers to the displacement specified by the
operand.

The number of clock cycles required for execution of loop instructions depends on
whether or not the loop is taken, as follows:

Loop taken 8
Loop not taken 3

The conditions for the loop are listed in Table A-17. The value of (E)CX is the
value after being decremented by 1 at the beginning of the operation.

I
Table A-17. Loop Conditions

Instruction Value of (E)CX ZF flag
LOOP <>0 Oorl
LOOPNE/LOOPNZ <>0 0
LOOPE/LOOPZ <>0 1

To code an iteration, put the LOOP instruction at the bottom of the loop and a label
for the operand (loop destination) at the top of the loop. Load the counter with an
unsigned integer. All LOOP instructions assume the operand-size and address-size
attributes from their related code segment, although they can be overridden with
instruction prefixes.

Flags Changed: None
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The Super386 Instruction Set

LSL—Load Segment Limit

Instruction

Opcode Action Clocks

LSLr,r/m

OF 03 Load r with segment limit for selector in r/m 23*26*

A-80

LSL loads the first operand with the limit for the segment whose selector is given in
the second operand.

The segment limit is copied and rearranged from the descriptor for the segment. The
resulting 32-bit limit is contiguously assembled and, if necessary, shifted so that it is
byte-granular. If the destination register is 16-bits, the limit is truncated to its low-
order 16 bits. The LAR instruction can be used to determine whether a segment is
expand-up or expand-down.

If the selector is visible and accessible according to the protection rules, the ZF
flag is set to 1. If the selector is not visible or accessible, or if the selector does not
contain a limit field, the ZF flag is cleared to 0 and the destination register is not
modified. See the sections entitled “Segmentation” and “Protection Mechanisms™
in Chapter 4.

LSL operates on all code segments, data segments, and TSSs—both 16-bit and
32-bit—but not on call gates, trap gates, interrupt gates, or task gates. It can only
be used in protected mode.

Flags Changed: ZF = 1 if the selector is visible and of the right type,
otherwise 0.
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The Super386 Instruction Set Lss W

LSS—Load Pointer Into SS and a Register

Instruction Opcode Action Clocks (by mode): rm,vm pm
LSS, m OF B2 Load pointer from m into SS:r 11* 24*

LSS copies a far pointer (segment selector and offset) stored at the memory address
given in the second operand, loads the selector part into the SS segment register, and
loads the offset part into the register specified by the first operand.

The size of the first operand (destination register) is determined by the operand-size
attribute. Dword operands have six-byte pointers (16-bit selector and 32-bit offset),
- and word operands have four-byte pointers (16-bit selector and 16-bit offset).

LSS is used to load SS and ESP simultaneously during the initialization of a new
stack, replacing a sequence of two MOVs. Also see the LDS, LSS, LES, and LFS
instructions.

Flags Changed: None
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The Super386 Instruction Set .

LTR—Load Task Register

Opcode Action . Clocks

Instruction
LTR 1/m16 0F 00 /3 Copy 1/m16 operand to task register 33%/34*
. \‘\ ake '}q LTR loads its operand, a selector for a TSS, into the Task Register (TR). The TSS
wiat Y & (! is then marked busy, but a task switch is not initiated. The selector must reference
tes a TSS descriptor in the GDT.
e
This instruction operates only at privilege level 0. A general-protection fault
(exception 13) occurs if the TSS is already busy.
Flags Changed: None
A-82
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The Super386 Instruction Set

MOV—Copy Data From/To General Registers

mov H

Instruction Opcode Action Clocks
MOV, t/m 8A {8},8B {16, 32} Copy value int/mtor 1/2
MOV t/m, r 88 {8}, 89 {16, 32} Copy value inr to t/m 12
MOV r/m, imm C6 {8),C7 {16, 32} Copy imm value to r/m 2/4
MOV reg, imm BO+reg {8}, B8+reg {16, 32} Copy imm value to reg 1
MOV AL, moff AO {8} Copy value at moff to AL 2
MOV (E)AX, moff Al {16, 32} Copy value at moff to (E)AX 2
MOV moff, AL A2 (8} Copy value in AL to moff 2
MOV moff, (E)AX A3 {16, 32} Copy value in (E)AX to moff 2

This form of MOV copies the second operand to the first operand. The operands

must be the same size. To copy values of different sizes, use MOVSX or MOVZX.
Also see the other forms of MOV.

The acronym MOV is a misnomer for this instruction; the operation is a copy, not a
move.

Flags Changed: None

Chips and Technologies, Inc.
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B wmov e S e T The Superags Instruction Set

MOV—Load Segment Registers

Instruction Opcode Action Clocks (by mode): rm,vm  pm

MOV DS, t/m 8E /3 Copy value in r/m to DS ) 6/8 23/25
MOV S8, t/m 8E /2 ‘Copy value in'r/m to SS : 6/8 23/25
MOV ES, 1/fm 8E /O Copy value in t/m to ES ‘ ) - 6/8 23/25
MOV FS, t/fm 8E /4 Copy value int/mto FS - 6/8 23/25
MOV GS, 1/m 8E /5 Copy value in r/m to GS 6/8 23/25

This form of MOV initializes a new segment so that it can be addressed. The
instruction copies the second operand, a 16-bit segment selector, to the first operand,
a segment selector register. The operation also causes the processor to load the
segment descriptor referenced by the selector into the selector’s shadow register.

If the second operand is a dword, its upper word is disregarded.

After stack segment loads, hardware interrupts (including NMI) are inhibited during
the next instruction. This allows the next instruction to load the ESP register. The
sequence should therefore be:

MOV SS r/m
MOV ESP top of_ stack

For data segment loads (except stack segments), a general-protection fault
(exception 13) is generated if the descriptor’s DPL is less than the maximum of
CPL and the selector’s RPL. For stack segment loads, a stack fault (exception 12)
is generated if the descriptor’s DPL, the selector’s RPL, and the CPL are not all
equal. The DS and ES registers can be loaded with a null selector. An access toa
segment with a null selector will generate a general-protection fault (exception 13).

An invalid-opcode fault (exception 6) is generated if an attempt is made to load

the CS segment register, since this would result in a CS value that is unrelated to its
associated EIP value. For code segment changes, the CS and EIP registers must be
loaded simultaneously. This is done with a far jump or call, return from call,
interrupt or exception, or task switch.
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The Super386 Instruction Set mov H

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4. Also see the several
other forms of MOV.

MOV is a misnomer for this instruction; the operation is a copy, not a move.

Flags Changed: None
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MOV —Store Segment Register

The Super386 Instruction Set

Instruction Opcode Action Clocks
MOV 1/m,CS 8C/1 Copy value in CS to r/m 2/3
MOV 1/m, DS 8C/3 Copy value in DS to t/m 2/3
MOV 1/m, SS 8C 2 Copy value in SS to t/m 2/3
MOV 1/m, ES 8C/0 Copy value in ES to r/m 2/3
MOV t/m, FS 8C/4 Copy value in FS to r/m 2/3
MOV 1/m, GS 8C/5 Copy value in GS to t/m 2/3
This form of MOV copies the second operand, a 16-bit segment selector, to the first
operand. If the first operand is a dword, its upper word is filled with zeros.
The instruction can be used for transfers between segment registers, in which case it
causes the processor to load the segment descriptor for the selector into the segment
shadow register.
See the several other forms of MOV.
Flags Changed: None
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The Super386 Instruction Set

MOV —Load Control, Debug, or Test Registers

mov

Instruction Opcode Action Clocks
MOV CRO, 132 OF 22 /0 Copy value in 132 to CRO 16*
MOV CR2, 132 0F 22 /2 Copy value in r32 to CR2 5%
MOV CR3, 132 O0F 22 /3 Copy value in 32 to CR3 110*
MOV DRO, r32 0F 23 /0 Copy value in 132 to DRO 19*
MOV DRI, 132 OF 23 /1 Copy value in 132 to DR1 19*
MOV DR2, 132 OF 23 /2 Copy value in r32 to DR2 19*
MOV DR3, r32 OF 23 /3 Copy value in 132 to DR3 19*
MOV DR6, 132 OF 23 /6 Copy value in 132 to DR6 10*
MOV DR7,132 OF 23 (7 Copy value in 132 to DR7 16*
MOV TR6, r32 OF 26 /6 Copy value in 132 to TR6 13*
MOV TR7, 132 0F 26 /7 Copy value in r32 to TR7 5*

This form of MOV copies the second operand into the first operand, which is a
control register, debug register, or test register. The dword size of the second

operand is not affected by the operand-size attribute.

The control register CRO stores the machine status word, and the processor mode

can be changed with MOV CRO r32, followed by a jump or call to clear the
instruction pipeline. This instruction should be used rather than LMSW.

For details of control, debug, and test register usage, see the sections entitled

“System Register,” “Debugging,” and “Testing the TLB” in Chapter 4.

This instruction operates only at privilege level 0. See the several other forms of

MOV.

The acronym MOV is a misnomer; the operation is a copy, not a move.

Flags Changed:

Chips and Technologies, Inc.

AF undefined

CF undefined

OF
PF
SF
ZF

undefined
undefined
undefined
undefined
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The Super386 Instruction Set

MOV —Store Control, Debug, or Test Registers

Instruction Opcode Action ) Clocks
MOV 132, cr 0F 20 Copy value in cr to 132 ' 2%
MOV 132, dr OF 21 Copy value in dr to r32 2* to 6%
MOV 132, tr OF 24 Copy value in tr to r32 ) 2%
This form of MOV copies the second operand (a control, debug, or test register) to
the first operand, a general register. The dword size of the second operand is not
affected by the operand-size attribute.
The range of clocks shown for storing debug registers is due to uncertainty about
external bus activity. If the bus is free, the instruction will execute in the least
number of clocks. If the bus is being used when the instruction executes, the
operation will take longer.
A debug fault or trap (exception 1) is generated if the GD bit (bit 13) in DR7 is set
to 1 and an attempt is made to access one of the debug registers. See the section
entitled “Debugging” in Chapter 4.
This instruction operates only at privilege level 0. Also see the several other forms
of MOV.
Flags Changed: AF  undefined
CF  undefined
OF  undefined
PF  undefined
SF undefined
ZF  undefined
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The Super386 Instruction Set MOVS, MOVSB, MOVSW, and MOvSD M

MOVS, MOVSB, MOVSW, and MOVSD—Copy String Data

Instruction Opcode Action Clocks
MOVSB Ad Copy byte at address in DS:[(E)SI] to byte at address in ES:[(E)DI] 8
MOVSW AS Copy word at address in DS:[(E)SI] to word at address in ES:[(E)DI] 8
MOVSD AS Copy dword at address in DS:[(E)SI] to dword at address in ES:[(E)DI] 8

This form of MOV copies data from the memory address contained in the second
register, DS:(E)SI, to the memory address contained in the first register, ES:(E)DI.
A segment override prefix can be used on the source segment (DS) but not on the
destination segment (ES).

If the DF flag is cleared to 0, the source and destination registers are incremented by
1, 2, or 4 (depending on operand size) to point to the next string element. If DF is
set to 1, the registers are decremented. The LOOP instruction or the REP instruction
prefix can be used to repeat the operation.

Also see the several other forms of MOV.

Flags Changed: None
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The Super386 Instruction Set

MOVSX—Copy Data With Sign Extension

Instruction Opcode Action ; Clocks
MOVSXr, 1/m8 OF BE Copy and sign-extend value in r/m8 as word/dword to r 2%[3*
MOVSXr, 1/m16 OF BF Copy and sign-extend value in t/m16 as dword to r 2%[3*
MOVSX copies the value addressed by the second operand, sign-extends it, and
stores it in the first operand. MOVSX sign-extends the second operand, which is
a byte or word, to a word or dword.
Also see the several other forms of MOV.
Flags Changed: None
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MOVZX—Copy Data With Zero Extend

Instruction Opcode Action Clocks
MOVZXr, r/m8 OF B6 Copy and zero-extend value in r/m8 as word/dword to r 2%[3*
MOVZXr32,r/fm16 OF B7 Copy and zero-extend value in 1/m16 as dword to 132 2%[3*%

MOVZX copies the value addressed by the second operand, zero-extends it, and
stores it in the first operand. MOVZX zero-extends the second operand, which is
a byte or word, to a word or dword.

Also see the several other forms of MOV.

Flags Changed: None
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MUL—Unsigned Integer Multiplication

Instruction Opcode Action Clocks

MUL AL, r/m8 F6 /4 Multiply AL by r/m8; result in AX 10to 14
MUL AX, r/m16 F7 /4 Multiply AX by 1/m16; result in DX:AX 10to 18
MUL EAX,1/fm32 F7/4 Multiply EAX by r/m32; result in EDX:EAX 10t0 26

MUL multiplies its two operands and stores the result in the AX, DX:AX,

or EDX:EAX register, depending on the size of the first operand. For word
multiplication, the DX register contains the high-order word of the result. For
dword multiplication, the EDX register contains the high-order word of

the result.

Clock counts for the instructions are given in ranges to reflect the effect of this
early-out algorithm. Lower clock counts apply to smaller multipliers, and larger
clock counts apply to larger multipliers. The exact number of clocks can be
calculated as follows: for multipliers that are 0, 1, 2, or 3, the instruction requires
7 clocks; for each two additional significant bits in the multiplier, add one clock.

All values are treated as unsigned integers. Also see the IMUL instruction for
signed multiplication.

Flags Changed: AF  undefined
CF 0 if upper half of result is 0; otherwise 1
OF 0 if upper half of result is 0; otherwise 1
PF  undefined '
SF  undefined
ZF  undefined
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NEG—Negate Using Two’s Complement

Instruction Opcode Action Clocks

NEG r/m F6 /3 {8}, F7/3 {16, 32} Negate r/m (two’s complement method) 1/5

NEG subtracts its operand from 0, using the two’s complement method. The result
replaces the original operand.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

Flags Changed: CF 0 if result was zero, 1 if result was nonzero
OF  0if no overflow, 1 if overflow
PF 0 if odd parity, 1 if even parity
SF  high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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NOP—No Operation

Instruction Opcode Action Clocks

NoP 90 No operation 2%

NOP performs no operation, other than to increment the EIP. It can be used for
delays in timing loops or to align labels to dword boundaries.

Flags Changed: None
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NOT—Bitwise Complement

Instruction Opcode Action Clocks

NOT r/m F6 /2 {8},F7/2 {16, 32} Negate r/m (one’s complement method) 1/5

NOT replaces the operand with its one’s complement.

In NOT operations, a 1 bit is written when the operand contains a 0, and a 0 bit is
written when the operand contains a 1.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

Flags Changed: None
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OR—Inclusive OR

The Super386 Instruction Set

Instruction Opcode Action Clocks
OR1, t/m 0A {8},0B {16, 32} Logical OR of 1/m and r operands, result in r 1/5
OR 1/m, r 08 {8}, 09 {16, 32} Logical OR of r/m and r operands, result in r/m 1/5
OR t/m, imm 80/1 {8},81/1 {16, 32} Logical OR of r/m and imm operands, result in r/m 1/5
OR 1/m, imm8 83 /1 {16, 32} Logical OR of r/m and imm8 operands, result in t/m 1/5
OR AL, imm8 0C {8} Logical OR of AL and imm8 operands, result in AL 1
OR (B)AX, imm 0D {16, 32} Logical OR of (E)AX and imm operands, result in (E)AX 1
OR performs a logical inclusive-OR on each bit of the two operands. The result is
stored in the first operand.
In inclusive-OR operations, a 1 bit is written when either corresponding bits in the
operands are 1, otherwise 0 is written. The instruction is used for setting specific
bits in a number. For example, ORing the binary value 1000 0000 with any number
will set its most-significant (sign) bit.
The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.
Flags Changed: AF  undefined
CF 0
OF O
PF  0if odd parity, 1 if even parity
SF  high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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OUT—Output to I/O Port

Instruction Opcode Action Clocks (by mode): rm,vm pm
OUT imm8, AL E6 Output byte in AL to port specified by imm8 11 43
OUT imm8, (E)AX E7 Output word/dword in (E)AX to port specified by imm8 11 43
OUT DX, AL EE Output byte in AL to port specified by DX 11 43
OUT DX, (E)AX EF Load word/dword in (E)AX from port specified by DX 11 43

OUT copies data from the second operand, a register, and transfers it to the first
operand, an IfO port. The second operand is a data byte, word, or dword stored

in the AL, AX, or EAX register. The port address is specified either as an 8-bit
immediate operand, which can address up to 256 ports, or in the DX register, which
can address the full 64kB range of ports.

Table A-18 shows which privilege-level checks are performed against the I/O
protection level (IOPL) and the I/O permission bitmap (IOPB) for each mode.

I
Table A-18. OUT Privilege Level Checks

Protected Mode Real Mode Virtual-8086 Mode
IOPL yes yes no
IOPB yes (for 32-bit tasks) no yes

For I/O to succeed, the following must be true: In protected mode for 32-bit tasks,
CPL must be < IOPL, or the IOPB bit for the port must be cleared to 0. For 16-bit
(80286) tasks, CPL must be < IOPL, and the IOPB is not checked. In real mode,
CPL must be < IOPL, but since CPL is always 0, I/O always succeeds. In virtual-
8086 mode, IOPL is never checked, and only the IOPB bit for the port must be
cleared to 0.

For details, see the sections entitled “Protection Mechanisms” and “Other Processing
Modes” in Chapter 4.

"Also see the OUTS, OUTSB, OUTSD, and OUTSW instructions for string outputs.

Flags Changed: None
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OUTS, OUTSB, OUTSW, and OUTSD—Output to an I/O Port
From a String Element

Instruction

Opcode Action Clocks (by mode): rm,vm pm

OUTSB

6E Copy byte at address in DS:[(E)SI] to port 16 47
specified by DX

OUTSW

6F Copy word at address in DS:[(E)SI] to port 16 47
specified by DX

OUTSD

6F Copy dword at address in DS:[(E)SI] to port 16 47
specified by DX
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OUTS copies data from a memory string, specified indirectly as the memory address
contained in the DS:(E)SI register, and transfers it to an I/O port, specified in the DX
register. A segment override prefix can be used to specify a source location other
than the DS segment.

If the DF flag is cleared to O, the source register is incremented by 1, 2, or 4
(depending on operand size) to point to the next string element; if DF is set to 1,
the source register is decremented. The LOOP instruction or the REP instruction
prefix can be used to repeat the operation.

In protected mode, the CPL must be less than or equal to the IOPL, and the IOPB bit
for the port must be cleared to 0. In real mode, these I/O protections do not apply.

For details on privilege-level checking, see the description of the OUT instruction.

Flags Changed: None
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The Super386 Instruction Set ror W

POP—Pop Operand From Stack

Instruction Opcode Action Clocks
POP mem 8F /O Pop value on top of stack into mem 10
POP reg 58+reg Pop value on top of stack into reg 2

This form of POP removes the word or dword at the top of the stack and stores it in
the register or memory location specified by the instruction’s operand. The stack
pointer, SS:(E)SP, is then incremented by 2 or 4, depending on operand size, to point
to the new top of stack.

Flags Changed: None
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The Super386 Instruction Set

POP—Pop Selector Into Segment Register From Stack

Instruction

Opcode Action : Clocks (by mode): rm,vm pm

POP DS

1F Pop value on top of stack into DS 8

POPES

07 Pop value on top of stack into ES 8

POP SS

17 Pop value on top of stack into SS 8

POP FS

RIRIRIR

*

OF Al Pop value on top of stack into FS 8*

POP GS

OF A9 Pop value on top of stack into GS 8* 24*
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This form of POP removes the word or dword (depending on operand size) at the
top of the stack and stores it in the specified segment register. If the item popped is
a dword, its upper word is disregarded; selector registers are only 16 bits wide.

The operation initializes the register with the selector value. In protected mode, the
operation also causes the processor to load the segment descriptor referenced by the
selector into the selector’s shadow register. The stack pointer, SS:(E)SP, is then
incremented by 2 or 4, depending on operand size, to point to the new top of stack.

After stack segment loads, hardware interrupts (including NMI) are inhibited during
the next instruction. This allows the next instruction to load the ESP register with
the stack pointer. The sequence should therefore be:

POP SS
POP Top_of_ stack pointer

For data segment loads (except stack segments), a general-protection fault
(exception 13) is generated if the descriptor’s DPL is less than the maximum of
CPL and the selector’s RPL. For stack segment loads, a stack fault (exception 12)
is generated if the descriptor’s DPL, the selector’s RPL, and the CPL are not all
equal. The DS and ES registers can be loaded with a null selector. An access to a
segment with a null selector will generate a general-protection fault (exception 13).

An invalid-opcode fault (exception 6) is generated if an attempt is made to load
the CS segment register, since this would result in a CS value that is unrelated to
its associated EIP value. For code segment changes, the CS and EIP registers must
be loaded simultaneously. This is done with a far jump or call, return from call,
interrupt or exception, or task switch.

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

Flags Changed: None
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POPA and POPAD—Pop Into All General Registers From Stack

Instruction Opcode Action Clocks
POPAD 61 Pop all general registers (dwords) 19*
POPA 61 Pop all general registers (words) 19%

These instructions remove all eight words (POPA) or dwords (POPAD) at the top
of the stack and store them in the general registers. By the end of the operation,

the stack pointer, SS:(E)SP, has been incremented by 16 or 32 to point to the new
top of stack.

The order of removal and storing is:

(E)DI

(B)SI

(E)BP

(E)SP « The stack pointer value is discarded
(E)BX

(E)DX

(E)CX

(BE)AX

The operation reverses the action of PUSHA and PUSHAD.

Flags Changed: None
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POPF and POPFD—Pop (E)FLAGS From Stack

Instruction Opcode Action ) Clocks
POPFD 9D Pop dword from stack into EFLAGS register 8*
POPF 9D Pop word from stack into FLAGS register 8*
POPFD removes the dword from the top of the stack and stores its low-order word
in the low-order word of the EFLAGS register. POPF does the same, except that a
word is removed from the top of the stack. Neither instruction updates the RF or
VM bits in the upper word of EFLAGS.
The stack pointer, SS:(E)SP, is then incremented by 2 or 4, depending on operand
size, to point to the new top of stack. The IOPL field is only copied if CPL = 0.
The IF field is updated only if CPL < IOPL.
Flags Changed: CF  restored
PF restored
AF  restored
ZF  restored
SF restored
TF  restored
IF restored only if CPL < IOPL
DF  restored
OF  restored
IOPL restored only if CPL =0
NT  restored
RF  not restored
VM  not restored
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PUSH—Push Operand Onto Stack

Instruction Opcode Action Clocks
PUSH r/m FF /6 Push r/m onto stack 6
PUSH reg 50+reg Push reg onto stack 2
PUSH imm 68 Push imm value onto stack 3
PUSH imm8 6A Push imm8 value onto stack 4
PUSH DS IE Push DS onto stack 3
PUSH ES 06 Push ES onto stack 3
PUSHCS OE Push CS onto stack 3
PUSH SS 16 Push SS onto stack 3
PUSHFS OF A0 Push FS onto stack 3%
PUSH GS OF A8 Push GS onto stack 3*

PUSH copies the operand—a general register, segment register, memory location,
or immediate byte—onto the top of the stack. The operation begins by decrement-
ing the stack pointer by 2 or 4 (depending on operand size). A word or dword,
depending on the operand-size attribute, is then pushed on the top of the stack.

If the destination is a segment register and a dword is pushed, the upper word is
undefined. If the operand is an 8-bit immediate, it is sign-extended to a word or
dword (depending on operand size).

In an instruction like PUSH (E)SP, the pushed value of (E)SP is the value prior to
the decrementing of (E)SP that takes place as part of the PUSH operation. This
differs from the convention on the 8086 processor.

Flags Changed: None
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PUSHA and PUSHAD—Push All General Register Contents

Instruction Opcode Action Clocks
PUSHA 60 Push all general registers onto stack (words) 21*
PUSHAD 60 Push all general registers onto stack (dwords) 21*
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These instructions copy all eight word (PUSHA) or dword (PUSHAD) general
registers onto the top of the stack. By the end of the operation, the stack pointer,
SS:(E)SP, has been decremented by 16 or 32 to point to the new top of stack.

The order of copying is:

(E)AX

(E)CX

(E)DX

(B)BX |

(E)SP « The value at the beginning of the instruction
(E)BP

(E)SI

(E)DI

Flags Changed: None
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PUSHF and PUSHFD—Push the Flags Register

Instruction Opcode Action Clocks
PUSHF 9C Push FLAGS onto the stack 3%
PUSHFD 9C Push EFLAGS onto the stack 3*

PUSHFD copies the complete dword EFLAGS register onto the top of the stack.
PUSHEF copies only the low-order word (the FLAGS register).

Flags Changed: None
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RCL, RCR, ROL, and ROR—Rotate Left/Right

The Super386 Instruction Set

Instruction Opcode Action Clocks
RCL t/m, CL D22 {8}, D3 /2 {16, 32} Rotate t/m and CF left CL times 6/10
RCL 1/m, imm8 C0/2 {8},C1/2 {16, 32} Rotate r/m and CF left imm8 times 6/10
RCL 1/m, 1 DO/2 {8}, D1 /2 {16, 32} Rotate r/m and CF left once 6/10
RCR 1/m, CL D2 /3 {8}, D3 /3 {16, 32} Rotate 1/m and CF right CL times 6/10
RCR 1/m, imm8 C0/3 {8}, C1/3 {16, 32) Rotate 1fm and CF right imms8 times 6/10
RCR 1/m, 1 DO0/3 {8},D1/3 {16, 32} Rotate r/m and CF right once 6/10
ROL 1/m, CL D2 /0 {8}, D3 /0 {16, 32} Rotate 1/m left CL times 15
ROL 1t/m, imm8 C0 /0 {8},C1/0 {16,32} Rotate r/m left imm8 times 1/5
ROL t/m, 1 DO0/0 {8}, D1/0 {16, 32} Rotate 1/m left once 15
ROR 1/m, CL D2/1 {8}, D3/1 {16, 32} Rotate t/m right CL times 15
ROR /m, imm8 C0/1 {8}, C1/1 {16, 32} Rotate 1/m right imm8 times 15
ROR 1/m, 1 DO0/1 {8},D1/1 {16, 32} Rotate r/m right once 1/5

These instructions move the bits of the first operand left or right, bit-by-bit, and store

the result in the same operand. At one end of the operand, the bits wrap around to

the opposite end of the operand. The second operand indicates how many bit

movements to perform. Only the low-order five bits of the second operand (32

rotates) are significant.

There are two basic groups of rotate instructions:

e Rotate Through Carry Flag (RLR and RCR)—The bit rotation goes through the
carry flag, using it as an additional bit in the rotation sequence, before wrapping
around to the other end of the operand.

¢ Simple Rotate (ROL and ROR)—The bit rotation does not go through the carry
flag, but the carry flag is given a copy of the bit value that wraps around to the
other end of the operand.

For example, RCR performs a right rotation, through carry. It moves bits toward

the least-significant position and shifts the lowest bit (bit 0) to the most-significant

position. The left rotation does the opposite. The CF flag is included in the

rotations performed by the RCR and RCL instructions. RCR shifts the CF flag into

the most-significant bit position, and the least-significant bit is shifted into the CF
flag. RCL does the reverse.
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After a one-bit rotation, if the high-order bit of the destination operand does not
match the carry flag, the OF flag is set to 1. For rotations greater than one bit, the
OF flag is undefined.

Flags Changed: CF  assigned according to the shift

OF 1 if mismatch with CF after one-bit shift, otherwise
undefined
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REP, REPE, REPZ, REPNE, and REPNZ—Repeat the String
Operation (Instruction Prefix)

Instruction Opcode Action Clocks
REPE CMPSx F3 A6 {8}, F3 A7 {16, 32} Compare strings until difference found 4+10n
REPNE CMPSx F2 A6 {8}, F2 A7 {16, 2} Compare strings until like elements found : 4+10n
REP INSx F3 6C {8},F3 6D {16, 32} Input multiple bytes/words/dwords from port 7+9n
REP LODSx F2 AC {8}, F2 AD {16, 32} Copy multiple bytes/words/dwords to AL/AX/EAX 5+6n
REP MOVSx F3 A4 {8},F3 A5 {16, 32} Copy multiple bytes/words/dwords between strings 19+4n
REP OUTSx F3 6E {8}, F3 6F (16, 32} Output multiple bytes/words/dwords to port 8+7n
REPE SCASx F3 AE {8}, F3 AF {16, 32} Search string until difference found from 5+8n
AL/AX/EAX

REPNE SCASx F2 AE {8}, F2 AF {16, 32} Search string until element in AL/AX/EAX found 5+8n
REP STOSx F3 AA {8},F3 AB {16, 32} Fill memory region with value in AL/AX/EAX 5+6n

The REP instruction prefix and its variants repeat the instruction they precede,
decrementing the count value in the (E)CX register until (E)CX = 0. The
distinctions between the prefixes are shown in Table A-19.

L]
Table A-19. REP Prefixes

Instruction Termination Condition
REP (E)XCX=0

REPE (BEXCX=0,0rZF =1
REPNE (E)CX=0,0rZF=0

In the clock counts, n refers to the number of iterations in the repeating operation.

Flags Changed: AF  depends on instruction being prefixed
CF  depends on instruction being prefixed
OF  depends on instruction being prefixed
SF  depends on instruction being prefixed
PF  depends on instruction being prefixed
ZF  depends on instruction being prefixed
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RET (near)—Return to Calling Procedure in Same Segment

Instruction Opcode Action Clocks
RET/RETN imm16 C2 Near return, pop number of bytes specified by imm16 10
RET/RETN C3 Near return 10

The near (intra-segment) return instruction passes control from a called procedure
back to the calling procedure within the same segment. Typically, the called
procedure was accessed with a CALL instruction. Upon return, execution continues
at the instruction following the CALL instruction.

The RET and RETN mnemonics are synonyms. The RET mnemonic, which refers
to either a near return or a far return, is interpreted properly by assemblers.

The instruction pops the (E)IP from the top of the stack and branches to that address,
which is the instruction following the original CALL instruction. RET/RETN
imm16 pops and discards imm16 parameter bytes after the return address is popped
and before branching, to remove the parameters pushed onto the stack by the caller.
The operand size of items popped from the stack depends on the operand-size
attribute.

Flags Changed: None
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The Super386 Instruction Set

RET (far)—Return to Calling Procedure in Different Segment

Instruction

Opcode Action Clocks (by mode): rm,vm pm

RET/RETF imm16

CA Far return, pop number of bytes 17* See Table A-20
specified by imm16

RET/RETF

CB Far return 17* See Table A-20
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The far (inter-segment) return instruction passes control from a called procedure
back to the calling procedure in a different code segment. Typically, the called
procedure is accessed with a CALL instruction. Upon return, execution continues
at the instruction following the CALL instruction.

In protected mode and virtual-8086 mode, the number of clocks required depends on
the destination of the return, as shown in Table A-20.

]
Table A-20. RET Clock Counts

Privilege Level RETF imm16 RETF

To same privilege level 55 53

To inner (more privileged) level 149 146

RET and RETF mnemonics are synonyms. The RET mnemonic, which refers to
either a near return or a far return, is interpreted properly by assemblers.

The instruction first pops the (E)IP, then a CS selector from the top of the stack.
RETF imm16 also pops and discards imm 16 parameter bytes. In real and virtual-
8086 modes, the program then branches to the address and code segment that were

popped.

In protected mode, the code segment descriptor’s access rights and the code
segment selector’s RPL are checked before branching to the popped address and
segment. If the return is to a more privileged level (lower RPL value for the
destination code-segment selector), the stack of the called procedure will have the
caller’s original (E)SP as its last entry. This entry is popped so that a stack switch
can be made before execution resumes in the calling procedure. See the sections
entitled “Segmentation,” “Protection Mechanisms,” and “Other Processing Modes™
in Chapter 4 for details on segment descriptor access rights and privilege-level
checking.
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The operand size of items popped from the stack depends on the operand-size
attribute. In protected-mode far returns, the operand size must match the size of
the call gate that accessed the procedure. If the procedure was accessed without
a gate—either through a conforming-segment call or a call at the same privilege
level—the operand size of the CALL instruction must match that of the RETF
instruction.

Flags Changed: None
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SAHF—Store AH Register Into EFLAGS
Instruction Opcode Action Clocks
SAHF 9E Copy AH into FLAGS register ' 3*

A-112

SAHF copies the contents of the AH register into the low-order byte of the EFLAGS
register. This byte contains all arithmetic flags except OF.

Flags Changed: OF
SF
ZF

AF

PF
CF

unchanged
AHbit 7
AH bit 6
AH bit 4
AH bit 2
AH bit 0
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SAL, SAR, SHL, and SHR—Shift Arithmetic Left/Right

Instruction Opcode Action Clocks
SAL/SHL r/m, CL D2 /4 {8},D3 /4 {16, 32} Shift r/m left CL times 1/5
SAL/SHL r/m, imm8 CO0/4 (8),Cl1 /4 {16, 32} Shift r/m left imm8 times 1/5
SAL/SHL r/m, 1 D0 /4 {8},D1 /4 {16, 32} Shift r/m left once 1/5
SAR 1/m, CL D2 /7 {8},D3/7 {16, 32} Shift arithmetic r/m right CL times 1/5
SAR r/m, imm8 C0/7 {8),C1/7 {16, 32} Shift arithmetic r/m right imm8 times 1/5
SAR 1/m, 1 D0 /7 {8},D1/7 {16, 32} Shift arithmetic r/m right once 1/5
SHR r/m, CL D2 /5 {8),D3/5 {16, 32} Shift r/m right CL times 1/5
SHR r/m, imm8 Co/5 {8}),C1/5 {16, 32} Shift r/m right imm8 times 1/5
SHR 1/m, 1 DO0/5 {8},D1/5 {16, 32} Shift r/m right once 1/5

These instructions shift the bits of the first operand left or right, bit-by-bit, and
store the result in the same operand. At one end of the operand, the shifted bits are
discarded; at the other end they are filled with zeros. The second operand indicates
how many bit shifts to perform. Only the low-order five bits of this operand
(indicating 32 bit shifts) are significant.

There are two basic groups of shift instructions:

¢ Shift Right (SAR and SHR)
e Shift Left (SAL/SHL)

The SAR and SHR instructions shift bits to the right, effectively dividing the
operand by 2 with each shift. The least-significant bit that is shifted out is copied
to the carry flag. The two instructions differ as follows:

SAR fills vacated high-order bits with the original sign bit. This results in a signed
two’s-complement divide with rounding toward negative infinity. The instruction
works differently than the IDIV instruction for negative numbers. When SAR gets
to -1, it cannot divide the number further, as IDIV can.

SHR fills vacated high-order bits with zeros and clears the sign bit. This results in
an unsigned two’s-complement divide and works like the DIV instruction.

Chips and Technologies, Inc. PRELIMINARY A-113



B SAL, SAR, SHL, and SHR

A-114

The Supér386 Instruction Set

SAL and SHL are synonyms. These instruction shift bits to the left, effectively
multiplying the operand by 2 with each shift. The vacated low-order bits are filled
with zeros. The most-significant bit that is shifted out is copied to the carry flag.
SAL/SHL work like the MUL instruction, except when the result does not fit

in the same operand size as the original multiplicands.

The OF flag is assigned the values shown in Table A-21.

I
Table A-21. OF Flag Values

Instruction One-bit shifts Muiti-bit shifts
SAL/SHL 1 undefined
SAR 0 undefined
SHR msb' undefined

1 msb—most significant bit of the first operand before the shift.

Flags Changed:

AF
CF

OF
PF
SF
ZF

undefined

SAL/SHL—high-order bit shifted out;
SAR/SHR—low-order bit shifted out

see Table A-21.

0 if odd parity, 1 if even parity

high-order bit of result

0 if result was nonzero, 1 if result was zero
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SBB—Subtract With Borrow

Instruction Opcode Action Clocks
SBBT, r/m 1A {8}, 1B {16, 32} Subtract CF + r/m operand from r 1/5
SBB t/m, r 18 {8}, 19 {16, 32} Subtract CF + r operand from r/m : 1/5
SBB 1t/m, imm 80/3 {8},81/3 {16, 32} Subtract CF + imm operand from same-size r/m 1/5
SBB 1/m, imm8 83 /3 {16, 32} Subtract CF + imm8 operand from r/m 1/5
SBB AL, imm8 1C Subtract CF + imm8 operand from AL 1

SBB (E)AX,imm 1D {16, 32} Subtract CF + imm opetand from (E)AX 1

SBB adds the CF flag to the source operand, subtracts that value from the
destination operand, and stores the result in the destination operand. The LOCK
prefix can be used with this instruction when a memory operand is modified as a
result of the operation.

Flags Changed: AF  0if no borrow to low nibble, 1 if borrow
CF  0if no borrow to high-order bit, 1 if borrow
OF  0if no overflow, 1 if overflow
PF  0if odd parity, 1 if even parity
SF high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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The Super386 Instruction Set

SCALL—Call SuperState V

Instruction Opcode Action ' ’ Clocks
SCALL 1/m OF 18 Invoke the SuperState V function indicate by r/m 21-103
SCALL is used to invoke either a SuperState V hardware function or a SuperState V
program. The hardware functions provide basic control over SuperState V enabling
and over the Super386 processor’s cache. SuperState V programs can be written to
manage power, virtual I/O, and other SuperState V functions independently of the
operating system and application programs that are running.
If a hardware function succeeds, a return parameter may be written to the operand,
and the carry flag is cleared to 0. If the function fails, an error code of -1 is written
to the operand and the carry flag is set to 1.
The vectors for the functions shown in Table A-22.
L]
Table A-22. SCALL Vector Functions
Vector Clocks Description
0 21 CPU Version—The processor returis, in the operand, a 32-bit code that is
divided into two 8-bit fields indicating the processor type and processor
stepping level, as follows:
Bits Meaning
31:16 Reserved
15:8 Processor stepping level
7:0 Processor type:
0 = 38600DXE
1 = 38600SXE
2 = 38605DXE
3 =38605SXE
1 71 Enable SuperState V Mode Using Primary Descriptor—Enables the
SuperState V operating mode, using the primary segment descriptor at
address 00OFFFCO. SCALL functions entering SuperState V mode must
not be executed until SuperState V mode is enabled. For proper operation,
SuperState V mode should first be initialized and then enabled using this
function. The CPL must be 0, and the code and data required for this call
must be initialized prior to the.call. If the required code and data are not
initialized prior to the call, the processor will probably crash.
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Table A-22. SCALL Vector Functions (continued)

Vector

Clocks

Description

78

Enable SuperState V Mode Using Secondary Descriptor—Enables the SuperState
V operating mode using the secondary segment descriptor at address 000EFFCO.
Otherwise, same as function 1.

97/100

Execute the SuperState V Program—For any vector with bit 31 setto 1,
SuperState V mode will be entered (if enabled) at the offset indicated by the
SCALL entry vector. Vectors with bit 31 cleared to O are reserved. Before
executing the instructions following the SCALL instruction, the processor
automatically (a) copies the SCALL vector into the EDX register, (b) copies the
instruction’s MODt/m byte into the BH register, and (c) stores the contents of the
EIP, EFLAGS, EDX, EBX, and CS registers into the SuperState V save area in
memory. The saved EIP point to the instruction following the SCALL.

33

Disable Cache—Disables the instruction cache, if CPL = 0.

37

Enable Cache—Enables the instruction cache, if CPL = 0.

35

Query Cache—Writes the following result to the operand:
1 = Instruction cache is enabled.
0 = Instruction cache is disabled.

7

84

Flush Cache—Flushes the contents of the instruction cache.

80000000 to  97/100

FFFFFFFF

Execute The SuperState V Program—For any vector with bit 31 set to 1,
SuperState V mode will be entered (if enabled) at the offset indicated by the
SCALL entry vector. Vectors with bit 31 cleared to O are reserved. Before
executing the instructions following the SCALL instruction, the processor
automatically (a) copies the SCALL vector into the EDX register, (b) copies the
instruction’s MODt/m byte into the BH register, and (c) stores the contents of the
EIP, EFLAGS, EDX, EBX, and CS registers into the SuperState V save area in
memory. The saved EIP point to the instruction following the SCALL.

The SCALL instruction is not included in the standard 80386 instruction set and will
generate an invalid opcode fault (exception 6) on processors other than the Super386

processor.

Flags Changed:

Chips and Technologies, Inc.
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CF = 0if function succeeds, 1 if it fails.
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SCASB, SCASW, and SCASD—Scan String Data

Instruction

Opcode Action Clocks

SCASB

AE Scan string at address in ES:[(E)DI] for AL 8

SCASW

AF Scan string at address in ES:[(E)DI] for AX 8

SCASD

AF Scan string at address in ES:[(E)DI] for EAX 8
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These instructions compare the contents of the AL, AX, or EAX register with the
memory location (byte, word, or dword) addressed indirectly by the ES:(E)DI
register. The flags are set in the same manner as the CMPB, CMPW, and CMPD
instructions.

If the DF flag is cleared to 0, the memory address in the destination register,
ES:(E)D], is incremented by 1, 2, or 4 (depending on operand size) to point to
the next string element. If DF is set to 1, the register is decremented. The LOOP
instruction or the REP instruction prefix can be used to repeat the operation.

The result of the comparison, which is done by subtraction, is discarded. The
address-size attribute determines whether the ES:DI or ES:EDI register stores the
memory location. The ES segment referenced by the (E)DI offset cannot be
overridden with an instruction prefix.

See the CMPB, CMPW, and CMPD instructions.

Flags Changed: AF  0if no borrow to low nibble, 1 if borrow
CF  0if no borrow to high-order bit, 1 if borrow
OF  0if no overflow, 1 if overflow
PF 0 if odd parity, 1 if even parity
SF  high-order bit of result

ZF 0 if result was nonzero, 1 if result was zero
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SETcc—Set Byte on Condition

SETcc W

Instruction Opcode Action Clocks
SETE/SETZ 1/m8 OF 94 r/m8 = 1 if ZF = 1 otherwise r/m8 = 0 2*%[7*
SETNE/SETNZ r/m8 OF 95 r/m8 = 1 if ZF = 0 otherwise r/m8 = 0 2%[7*
SETA/SETNBE r/m8 OF 97 r/m8 = 1 if CF = 0 and ZF = 0 otherwise r/m8 = 0 2%[7*
SETBE/SETNA r/m8 OF 96 r/m8 = 1if CF = 1 or ZF = | otherwise t/m8 = 0 2*[7*
SETB/SETNAE r/m8 OF 92 1/m8 = 1 if CF = 1 otherwise r/fm8 = 0 2*[7*
SETAE/SETNB r/m8 OF 93 r/fm8 = 1 if CF = 0 otherwise r/m8 = 0 2%[7*
SETG/SETNLE r/m8 OF OF 1/m8 = 1 if ZF = 0 or SF = OF otherwise r/m8 = 0 2*%[7*
SETGE/SETNL r/m8 OF 9D 1/m8 = 1 if SF = OF otherwise r/m8 = 0 2*%[T*
SETL/SETNGE r/m8 OF 9C 1/m8 = 1 if SF <> OF otherwise 1/m8 = 0 2%(7*
SETLE/SETNG t/m8 OF 9E 1/m8 = 1 if ZF = 1 or SF <> OF otherwise t/m8 = 0 2%[T*
SETS r/m8 OF 98 r/m8 = 1 if SF = 1 otherwise r/m8 = 0 2%[7*
SETNS 1/m8 OF 99 r/m8 = 1 if SF = 0 otherwise r/m8 = 0 2*[T*
SETO 1/m8 OF 90 r/m8 = 1 if OF = 1 otherwise r/m8 = 0 2%[7*
SETNO r/m8 OF 91 1/m8 = 1 if OF = 0 otherwise r/m8 = 0 2%/7*
SETP r/m8 OF 9A r/m8 = 1 if PF = 1 otherwise r/fm8 = 0 2%[7*
SETNP 1/m8 OF 9B 1/m8 = 1 if PF = 0 otherwise r/m8 = 0 2%[7*

These instructions set the byte operand to 1 if the condition listed above is true.
If the condition is false, the byte is cleared to 0. Some opcodes have more than
one mnemonic, because their effects can be interpreted in different ways. In the

mnemonics listed above, the following abbreviations are used:

above (for comparing unsigned integers)
below (for comparing unsigned integers)
carry

equal to

greater than (for comparing signed integers)
less than (for comparing signed integers)
not

overflow

parity

sign

Zero

NuwvwvoZamAaw >

Flags Changed: None
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SGDT—Store Global Descriptor Table Register

Instruction Opcode Action Clocks

SGDTm OF 01 /0 Copy global descriptor table register to m 10*

SGDT copies the contents of the GDTR to a six-byte memory structure that is
addressed by the destination operand.

For 32-bit operands, a two-dword memory structure is used. The first dword begins
with a word for the segment limit, followed by the low-order word of the segment
base. The second dword contains the high-order word of the segment base. The
upper word of the second dword is undefined.

For 16-bit operands, a three-word memory structure is used. The first word is the
segment limit. The second word is the low-order word of the segment base. The
first byte of the third word is the high-order byte of the segment base. The upper
byte of the third word is undefined.

See the section entitled “Descriptor Tables and Their Registers” in Chapter 4 for
details.

Unlike the LGDT instruction, SGDT can be executed from any privilege level.

Flags Changed: None
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SHLD—Shift Left Double

Instruction Opcode Action Clocks
SHLD r/m, r, CL OF AS Shift t/m + r left CL times; result in r/m 6*/9*
SHLD r/m, r,imm8 OF A4 Shift r/m + r left imm8 times; result in r/m 6*/9*

SHLD shifts the bits of the first operand left and stores the result in the second
operand. The vacated low-order bits are filled with the high-order bits of the second
operand. The third operand indicates how many bit shifts to perform; only the
low-order five bits of this operand (indicating 32 bit shifts) are significant.

The high-order bit shifted out of the first operand is copied to the CF flag. The OF
flag is set to 1 if the most-significant bit of the first operand (the sign bit of the
result) after the shift does not match the carry flag; otherwise, OF is cleared to 0.

Flags Changed: AF  undefined
CF  low-order bit shifted out
OF  undefined
PF  0if odd parity, 1 if even parity
SF  high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero

Chips and Technologies, Inc. PRELIMINARY A-121



M SsHRD

The Super386 Instruction Set

SHRD—Shift Right Double Precision

Instruction Opcode Action Clocks
SHRD r/m, 1, CL OF AD Shift r/m + r right CL times; result in r/m 6%/9%
SHRD 1/m, r, imm8 OF AC Shift r/m + r right imm8 times; result in r/m 6*/9*
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SHRD shifts the bits of the first operand right and stores the result in the second
operand. The vacated high-order bits are filled with the low-order bits of the second
operand. The third operand indicates how many bit shifts to perform; only the
low-order five bits of this operand (indicating 32 bit shifts) are significant.

The low-order bit shifted out of the first operand is copied to the CF flag.

Flags Changed: AF
| CF

OF

PF

SF

ZF

undefined

low-order bit shifted out

undefined

0 if odd parity, 1 if even parity

high-order bit of result

0 if result was nonzero, 1 if result was zero
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SIDT—Store Interrupt Descriptor Table Register

Instruction Opcode Action Clocks

SIDT 1/m16 OF01/1 Copy interrupt descriptor table register to r/m16 10*

SIDT copies the contents of the IDTR to a six-byte memory structure addressed by
the destination operand.

For 32-bit operands, a two-dword memory structure is used. The first dword begins
with a word for the segment limit, followed by the low-order word of the segment
base. The second dword contains the high-order word of the segment base. The
upper word of the second dword is undefined.

For 16-bit operands, a three-word memory structure is used. The first word is the
segment limit. The second word is the low-order word of the segment base. The
first byte of the third word is the high-order byte of the segment base. The upper
byte of the third word is undefined.

See the section entitled “Descriptor Tables and Their Registers” in Chapter 4 for
details.

Unlike the LIDT instruction, SIDT is not a privileged instruction and can be
executed from any privilege level.

Flags Changed: None

Chips and Technologies, Inc. PRELIMINARY A-123



MW sLoT The Super386 Instruction Set

SLDT—Store Local Descriptor Table Register

Instruction Opcode Action . Clocks

SLDT r/m16 OF 00 /O Copy local descriptor table register to r/m16 4%[5*

SLDT copies the 16-bit contents of the LDTR to the operand.

LDTs are only used in protected mode. Like the LLDT instruction, SLDT can only
be used from privilege level O.

See the section entitled “Descriptor Tables and Their Registers” in Chapter 4 for
details.

Flags Changed: None
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SMSW—Store Machine Status Word

Instruction Opcode Action Clocks

SMSW 1/m16 OF 01 /4 Copy machine status word to r/m16 3*[4*

SMSW is provided for compatibility with the 80286. It is not recommended for use
in new Super386 code. Use the MOV instruction instead. SMSW copies the lower
word of control register CRO, called the machine status word (MSW), into the
instruction’s operand.

Unlike the LMSW instruction, SMSW can be used from any privilege level.

Flags Changed: None
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STC—Set Carry Flag

Instruction Opcode Action Clocks
STC F9 SetCF=1 2

STC sets the carry flag (CF) to 1.

Flags Changed: CF =1
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STD—Set Direction Flag

Instruction Opcode Action Clocks

STD FD SetDF =1 2

STD sets the direction flag (DF) to 1. Following an STD instruction, string
instructions decrement their index registers (E)SI and/or (E)DI. The DF settings are:

DF =1 Decrement (E)SI and (E)DI
DF =0 Increment (E)SI and (E)DI

Flags Changed: DF = 1
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The Super386 Instruction Set

STI—Set Interrupt Flag

Instruction Opcode Action Clocks
STI FB SetIF=1 5
STI sets the interrupt flag (IF) to 1. When STI is executed, the processor will
respond to external interrupts after the instruction following STI has completed,
and until the IF flag is cleared to 0.
In protected mode, the CPL must be less than or equal to IOPL.
The flag is cleared with the CLI instruction.
Flags Changed: IF =1
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Ehore

STOSB, STOSW, and STOSDtring Operands

Instruction Opcode Action Clocks
STOSB AA Store byte in AL at address in ES:[(E)DI] 5
STOSW AB Store word in AX at address in ES:[(E)DI] 5
STOSD AB Store dword in EAX at address in ES:[(E)DI] 5

STOSB, STOSW, and STOSD copy the contents (byte, word, or dword) of the AL,
AX, or EAX register to the memory location addressed indirectly by the ES:(E)DI
register.

If the DF flag is cleared to 0, the destination register is incremented by 1, 2, or 4
(depending on operand size) to point to the next string element. If DF is set to 1, the
destination register is decremented. The LOOP instruction or the REP instruction
prefix can be used to repeat the operation.

Offset (E)DI is referenced to the ES segment register and cannot be overridden with
an instruction prefix.

Flags Changed: None
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STR—Store Task Register

Instruction Opcode Action k - = Clocks
STR 1/m16 ' OF 00 /1 Copy task register contents to r/m16 ‘ 4%[5%

STR copies the task register, which contains the selector for current TSS, into the
operand. The instruction operates only in protected mode.

Flags Changed: None
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SUB—Integer Subtraction

Instruction Opcode Action Clocks
SUBT, r/m 2A (8},2B {16, 32} Subtract r/m operand from r 1/5
SUB t/m, r 28 {8},29 {16, 32} Subtract r operand from r/m 1/5
SUB 1/m, imm 80/5 {8},81/5 {16, 32} Subtract imm operand from same-size r/m 1/5
SUB r/m, imm8 83 /5 {16, 32} Subtract imm8 operand from r/m 1/5
SUB AL, imm8 2C Subtract imm8 operand from AL 1

SUB AX/EAX, imm 2D {16, 32} Subtract imm operand from AX/EAX 1

SUB subtracts the second operand from the first operand and stores the result in the
first operand. The instruction operates on signed or unsigned integers.

The LOCK prefix can be used with this instruction when a memory operand is
modified as a result of the operation.

, Flags Changed: AF 0 if no borrow to low nibble, 1 if borrow
CF 0 if no borrow to high-order bit, 1 if borrow
OF 0 if no overflow, 1 if overflow
PF 0 if odd parity, 1 if even parity
SF high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero
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TEST—Logical Bit Test

Instruction Opcode Action Clocks
TEST t/m, r 84 {8},85 (16,32} Logical AND of 1/m and r operands 2/6
EST r/m, imm F6 /0 {8}, F7 /0 {16, 32} Logical AND of r/m and imm operands 1/5
TEST AL, imm8 A8 Logical AND of t/m and imms8 operands 2
TEST (E)AX, imm A9 {16, 32} Logical AND of (E)AX and imm operands 2

TEST does a logical AND of the two operands. The result is discarded but the
arithmetic flags (except AF) are valid.

The instruction can be used, for example, to determine if either operand is nonzero
(ZF = 0). Unlike the AND instruction, TEST does not alter the first operand.

Flags Changed: AF  undefined
CF 0
OF 0
PF 0 if odd parity, 1 if even parity
SF high-order bit of result
ZF 0 if result was nonzero, 1 if result was zero

A-132 PRELIMINARY Chips-and Technologies, Inc.



The Super386 Instruction Set VERR and VERW M

VERR and VERW—Verify Segment for Read/Write

Instruction Opcode Action Clocks
VERR 1r/m16 OF 00 /4 ZF = 1 if segment indicated by r/m16 is readable otherwise ZF = 0 23%26*
VERW 1/m16 OF 00 /5 ZF = 1 if segment indicated by r/m16 is writable otherwise ZF = 0 23*[26*

These instructions determine whether the segment referenced by the selector in the
operand is one of the following:

® Defined (within the limits of the GDT or an LDT)

® A code or data segment (not a TSS, gate, or descriptor table)

e Readable (VERR) or writable (VERW)

® Reachable according to the architecture’s privilege-level rules.

These instructions cannot be used in real or virtual-8086 mode.

For details on privilege-level checking, see the sections entitled “Protection
Mechanisms” and “Other Processing Modes” in Chapter 4.

Flags Changed: ZF = 1if all conditions are met; otherwise 0
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WAIT—Wait Until Not Busy

Instruction- k Opcode Action Clocks
WAIT 9B Wait for BUSY input signal to go inactive 2%

WAIT is designed for synchronizing processor and coprocessor interactions.

It idles the processor until the BUSY signal goes inactive, indicating that the
coprocessor is able to accept another command from the processor. The BUSY
signal can be asserted by other devices if the system does not have a coprocessor
installed, enabling the WAIT instruction to halt execution until the signal is
deasserted.

WAIT should be issued before accessing data stored by the coprocessor, and at the
end of any program that uses the coprocessor. The mnemonics WAIT and FWAIT
are equivalent.

Flags Changed: None
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XCHG—Exchange Register With Memory or Register

Instruction Opcode Action Clocks
XCHG 1, 1/m 86 (8}, 87 {16, 32} Exchange r and r/m values 417
XCHG (E)AX,reg  90+reg Exchange (E)AX and reg values 3%

XCHG exchanges the values in the first and second operands. The operands may
be in any order. If one operand is a memory operand, the LOCK signal is asserted
during the instruction operation. The LOCK prefix has no effect on this instruction.

Flags Changed: None

Chips and Technologies, Inc. PRELIMINARY A-135



H XLATB

The Super386 Instruction Set

XLATB—Translate Byte via Table Lookup

Instruction Opcode Action Clocks
XLATB D7 Copy byte at DS:(E)BX+AL into AL 5%
XLATB uses AL as an offset into a table in memory whose base is pointed to by
DS:(E)BX. The referenced entry (a byte) is copied into AL, overwriting the original
offset.
The address-size attribute determines whether EBX or BX points to the base of the
table. A segment-override instruction prefix can be used to reference a segment
other than DS.
Flags Changed: None
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XOR—Bitwise Exclusive-OR

xor W

Instruction Opcode Action Clocks
XORT, t/m 32 {8}, 33 {16,32}) XOR of t/m and r operands, result in r 1/5
XOR t/m, r 30 {8}, 31 {16,32} XOR of t/m and r operands, result in r/m 1/5
XOR r/m, imm 80/6 {8},81/6 {16,32} XOR of 1/m and imm operands, result in r/m 1/5
XOR r/m, imm8 83 /6 {16, 32} XOR of 1/m and imm8 operands, result in r/m 1/5
XOR AL, imm8 34 XOR of AL and imm8 operands, result in AL 1

XOR (E)AX,imm 35 (16,32} XOR of (E)AX and imm operands, result in (E)AX 1

XOR performs a logical exclusive-OR on each bit of the two operands. The result is

stored in the first operand.

In exclusive-OR operations, a 1 bit is written when the corresponding bits in the
operands consist of a 1 and a 0. If there are two 1s or two Os, a 0 is written. The
instruction is useful for setting specific bits in a number. For example, XORing a

value with itself clears the value to 0.

The LOCK prefix can be used with this instruction when a memory operand is

modified as a result of the operation.

Flags Changed: AF undefined
CF 0
OF 0
PF 0 if odd parity, 1 if even parity
SF  high-order bit of result

ZF 0 if result was nonzero, 1 if result was zero
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APPENDIX B

Super386 Quick Reference

This appendix summarizes the features of the Super386 microprocessor in the
following sections:

e System Register Reference
® Protected Mode Reference
® Instruction Reference

® Address Mode Reference

® Opcodes.

System Register Reference

Figure B-1 provides an overview of the Super386 registers. It includes the
instruction pointer, flag, general purpose, and segment registers.
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L]
Figure B-1.  System Register Overview

Instruction Pointer (IP)
31 16 15 0

1P ' EIP

Flag Register
31

18 1615 87 0
7 L |
Reserved §]‘;n;lmp ol hellgliiglul 1] EFLAGS
W Virtual 8086 Mode IF  Interrupt Enable Flag
RF Resume Flag TF  Trap Flag
NT  Nested Task Flag SF Sign Flag
I0PL 1/0 Privilege Level, ZF  Zero Flag
08 Highest Privilege AF  Auxiliary Carry Flag
11 Lowest Privilege PF  Parity Flag
OF  Overflow Flag CF Carry Flag
General Purpose Registers (GPR)
31 1615 87 9 (32-bit registers)
AX
i l i EAX Accumulator
B ﬁX BL EBX ~ Base
TH Cr oL ECX Count
DX
oA | oL EDX Data
ESI ESI Source Index
EDI EDI Destination Index
EBP EBP :Base Pointer
ESP ESP  Stack Pointer
Segment Registers
15 0
[ Code Segment Selector
N Data Segment Selector
SS Stack Segment Selector
ES Extra Segment Selector
FS Extra Segment Selector
GS Extra Segment Selector
System Segment
15 [
TR Task Register Selector
LDTR Local Descriptor Table
Register Selector
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System Register Overview (continued)

Super386 Quick Reference Il

Test Registers

LE

BD

Local Exact

GX (X = 0-3) Global x Enables

LX (X = 0-3) Local x Enables

BX (X = @-3) Breakpoint x Occurred
BT Debug Task Switch

Debug, Single-step
Debug Register Access

LENX

00
01

31 12 ]
Linear Address V|D DU V‘WM\O 0 0|0 C| TR6
Physical Address 0'6 e 0‘0 MO =|REP|o 0] TR?
System Address Registers
47 1615 ]
Base Linear Address Limit GDTR
Base Linear Address Limit IDTR
Control Registers
31 12 0
Page Directory Base Register 0!0 0|0 Olﬂlﬂlﬂ—[ﬂlﬂlﬂ[ﬂ[ﬂ CR3
Page Fault Linear Address CR2
EJa ojo nleloHa eloMa elgl? o) alnlo 0 o]a]o ol m.’:’lﬁ[&z Cre
PG Paging Enable MP Math Present
TS Task Switch PE Protection Enable
EM' Coprocessor Emulation
Debug Registers
31 1615 9
%zg%z‘*%;;%%ool@lalou. mmiaelel ory
IBlﬂBBﬂlﬂﬂﬂﬂOEIOGIBOJ?"ZQ‘SBIGOGOOBOO 2 DR6
Breakpoint 3 Linear Address DR3
Breakpoint 2 Linear Address DR2
Breakpoint 1 Linear Address DR1
Breakpoint @ Linear Address DRO
GE Global Exact RX/WK (X = 0-3)

Break On Instruction
Execution Only

Break On Data Writes
Only

Break On Data Reads
Or Data Writes

Break On Data Reads
Or Data Writes
= 03)

One-byte Length
Two-byte Length
Undefined

Four-byte Length
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Protected Mode Reference

Figure B-2 shows the selector register format and the segment registers. The
selectors point to the descriptors in the global descriptor table (GDTR) or the
local descriptor table (LDTR) as specified by the TI bit of the selector.

In Figures B-3 through B-6, the 16-bit descriptors specify the format for a 286
descriptor. The 32-bit descriptors specify the format for a Super386 descriptor.
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|
Figure B-2. Selector Register and Shadow

Selector Format
15 3210

I Descriptor Index |¢l§]

RPL Requestor Privilege Level
TI Table Index (@ =GDT, 1=1DT)

Local Descriptor

Segment Registers Table Reg (LDTR)
CS Selector | CS Shadow Reg
ge}ectors DS Selector | DS Shadow Reg
oint to
Descriptors ES Selector | ES Shadow Reg
in LDT or GDT FS Selector | FS Shadow Reg Task Register (TR)
as specified 6S Selector | GS Shadow Reg
in TI bit $S Selector | SS Shadow Reg
Interrupt Descriptor Global Descriptor
Table Register (IDTR) Table Register (GDTR)
CPU
Memory Interrupt Descriptor Table (IDT) -Global Decriptor Table (GDT)
Data
Structures
Interrupt Gates CS Descriptors
) DS Descriptors
Trap Gates Call Gate Descriptors
Tagk Gates Task Gate Descriptors
e TSS Descriptors
— LDT Descriptors —I

|-——I--Tassk State Segments (TSS)

—— | ocal Descriptor Table (LDT)

CS Descriptors

DS Descriptors
Call Gate Descriptors
Task Gate Descriptors
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I
Figure B-3. Non-System Segment Descriptors

Code Segment Descriptor (Super386 32-bit Type)
3130292827262524232221201918171615141312111069 8 7 6 54 3 2 10

Base 31:24 clofefz]| Limit feloecfif1|c|r]a Base 23:16 +4
Segment Base 15:0 Segment Limit 15:0 +0

Code Segment Descriptor (286 16-bit Type)
ojojojojojojojojejojojojojojejojP| DPLJ1J1JCJR|A] Segment Base 23:16 |+4
Segment Base 15:0 Segment Limit 15:0 +0

Data Segment Descriptor (Super386 32-bit Type)

Segment Base 31:24 |68 fo|3]| Limt fplopi|1fofe|ula] segnent Base 23:16 <4
Segment Base 15:0 Segment Limit 15:0 +@

Data Segment Descriptor (286 16-bit Type)
ejejojejojoejojojojojojojojejojePy DPL]1|OJE]JW]A Base 23:16 - J+4
Segment Base 15:0 Segment Limit 15:8 +0

Key:

A Accessed

AVL Available to Software

B Big (see Table B-1)

C  Conforming

D  Default Operand and Address Size
(16-bit or 32-bit)

DPL Descriptor Privilege Level

Expand Down (see Table B-1)
Granularity

Segment Present

Read Enable

Write Enable

EXDTUToM
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Table B-1 describes the E-bit and B-bit encodings in the data segment descriptor.

L]
Table B-1.  E-bit and B-bit Encoding

E Bit B Bit Descriptor’s Use Resulting Segment Characteristics
0 x! In non-stack data segment: Expand-up data segment
DS, ES, FS, or GS
0 0 In stack data segment: SS Expand-up 16-bit stack segment?
0 1 InSS Expand-up 32-bit stack segment?
0 In DS, ES, FS, or GS Expand-down data segment,

upper limit4 = (64k - 1)

1 0 In SS Expand-down 16-bit stack segment2,
upper limit4 = (64k - 1)

1 1 In DS, ES, FS, or GS Expand-down data segment,

uppet limit* = (4G - 1)

1 1 InSS Expand-down 32-bit stack segment3,
upper limit4 = (4G - 1)

1 Value of this bitis Oor 1.
Implicit stack references are 16-bit and SP register is updated.

Implicit stack references are 32-bit and ESP register is updated.

&~ W N

Valid offsets in an expand-down segment are between an upper limit, which is spcified by the B bit, and the
segment limit, which is defined by the segment descriptor’s segment limit field and G bit.
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I
Figure B-4.  System Segment Descriptors

Local Descriptor Table (LDT) Descriptor
313029282726252423222120191817161514131211109 8 72 6 5S 4 3 2 180

LOT Base 31:24  |6fofo|S| timit fp)oeife|ofef1]o| L7 Base 23:16 |4

LDT Base 15:0 LDT Limit 15:0 +0

Interrupt Gate (Super386 32-bit Type)

Offset 31:16 of the plorLfe|i]i]2]ele]e]ol Reserved/]+a

Entry Point "
Selector 15:0 of Offset 15:0 of the -0
Destination Code Segment Entry Point

Interrupt Gate (286 16-bit Type)

7
ojojojojojejojejejejojojojejejojP]DPLjejO}j1|1]0]0]0]|0f Reserved +4
Selector 15:0 of . .
Destination Code Segment foset 15:0 of the Entry Point +0
Call Gate (Super386 32-bit Type)
. Word
Offset 31:16 of the Entry Point PlopLjej1l1jejojejejolD) oot +4
Selector 15:0 of .
Destination Code Segment Offset 15:0 of the Entry Point +0

Call Gate (286 16-bit Type)

ojojojojojojojojo|lejojojojejojojPyDPLjOjOj1]0j0o]0]0]|0O| Word Count }+4

Selector 15:0 of

Destination Code Segment Offset 15:0 of the Entry Point +0

Key: AVL Available to Software
B TSS Busy
DPL Descriptor Privilege Level
G Granularity
P Segment Present
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Super386 Quick Reference

Figure B-4.  System Segment Descriptors (continued)

Trap Gate (Super386 32-bit Type)
31302928272625242322212019181716151413121110 98 72 6 54 3 2 10

Offset 31:16 Pl DPL O 1]1111]0]0]|0F  Reserved
Selector 15:0 of Offset 15:0 of the
Destination Code Segment Entry Point
Trap Gate (286 16-bit Type)
6jojojejojojojojojejejejejojojojPjDOPL|O 1]1]1}]0]0]0 ///;;served
Selector 15:0 of Offset 15:0 of the Entry Point

Destination Code Segment

Task Gate

/4225252?;;5er159 p| oL

—
=]
—
-]
S
(]

Reserved

sz

Selector 15:0 of the
Destination Code Segment

7 Reserved // /{.

TSS Descriptor (Super386 32-bit Type)

TSS Base 31:24 Gjojo

TSS Limit
19:16

AVL

P| DPL

01811 TSS Base 23:16

TSS Base 15:0

TSS Limit 15:0

1SS Descriptor (286 16-bit Type)

ojojejejojojojojoejojoejejejprPj orL|O

ojBj1 TSS Base 23:16

TSS Base 15:0

1SS Limit 15:0

B

G
P

Key: AVL Available to Software

TSS Busy

DPL Descriptor Privilege Level

Granularity
Segment Present

+0

+4

+0

4

4

+@

+4

+0
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]
Figure B-5. Super386 Task State Segment (TSS) Structure

C .87 ‘ 0

31 16 15 '
OFFh ~a—TSS Base Address +
1SS Limit

170 Permission Bitmap (IOPB) (Optional)
8kB Maximum )

- ~%— 1SS Base Address+

A Available to Software (Optional) & I0PB Base Offset

Task LDT Selector
GS
FS
DS
SS
CS
ES

T0PB Base Address

2777 7
007
200777
.
(i

EDI
ESI
EBP
ESP

_ EBX
EDX
ECX
EAX

EFLAGS

Instruction Pointer (EIP)

CR3

U "SS for CPL2 (552)

ESP for CPL2 (ESP2) [ +18h

T SS for CPLL (551D +14h

ESP for CPLL (ESP1) [ —] i

T SS for CPLO (550D +0Ch

ESP for CPLO (ESP@) 1 +08h

%//////////////////////////////% Back-link Selector to Previous TSS +04h

+@ ~— TSS Base
Key:

Address
Reserved

T Trap bit which, when set, causes
a debug exception to occur on a
task switch.

+64h
+60h
+5Ch
+58h
+54h
+50h
+4Ch
+48h
+44h
+40h
+3Ch
+38h
+34h
+30h
+2Ch
+28h
+24h
+20h
+1Ch

DN

N

N\

N

DN
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|
Figure B-6. 80286 Task State Segment (TSS) Structure

Super386 Quick Reference Il

15

LDT

DS

SS

CS

ES

DI

SI

BP

SP

BX

DX

CX

AX

Flags

Instruction Pointer (IP)

SS for CPL2

(S52)

SP for CPL2

(SP2)

SS for CPL1

(SS1)

SP for CPL1

(SP1)

SS for CPLO

(SS0)

SP for CPLO

(SP0)

Back-Link Selector to TSS

0
Byte Offset

+2Ah
+28h
+26h
+28h
+22h
+20h
+1Eh
+1Ch
+1Ah
+18h
+16h
+14h
+12h
+10h
+0Eh
+0Ch
+0fh
+08h
+06h
+04h
+02h

+0 ~— TSS Base
Address
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Super386 Programmer's Reference

Instruction Reference

Table B-2 is a summary of the Super386 instruction set. It presents the instruction
set in quick reference format to show the modified flags, modified locations, and
types of exceptions each instruction may encounter. Opcodes that have multiple
encodings share common entries in the table. ADD, for example, shows both a
register and a memory location being updated. Any single ADD operation can only
modify one of these operands.

Descriptions of the Table B-2 entries and definitions of the Flags, Registers,
Memory, Exceptions, and Other column headings are provided in Tables B-3
through B-7.

I
Table B-2. Super386 Instruction Summary

Flags (See Table B-3) Regs Memory Other
(See (See Exceptions (See

Instruction |V (R |N (IO |O (D |I |T |S |Z |A [P |C |TableB-4) |TableB-5) (See Table B-6) | Table B-7)
AAA u u |u |[Mju |M|AX
AAD u M|(Mju |[Mju [AX 1
AAM u M|M|u |[M|u |AX DO 1
AAS u u [u M|u |M[AX
ADC M M|M | M|M|M |GPR MODt/m MEM I
ADD M M|M|M|M M |GPR MODrt/m MEM I
AND M M|(M|u |M|M |GPR MODrt/m MEM 1
ARPL M GPR MODt/m R6, MEM
BOUND! 15, M6, MEM B, T
BSF u u (Mju |u [u |GPR MEM
BSR u u |[M|u [u |u [GPR MEM
BT u u |u |u |u |{M|GPR MODt/m MEM 1
BTC u u |u |u {u |M|GPR MODt/m MEM I
BTR u u [u |u |u |M|[GPR MODt/m MEM 1
BTS u u (u |u |u [M|GPR MODrt/m MEM I
CALL! ESP STACK T13,T10,MEM |T
CBW AX
CDQ EDX, EAX
CLC M
CLD M
CLI M P13
CLTS C13
CMC M )
CMP M M|M|M|M|M |GPR MODt/m MEM I

1 The flags are modified during these instruction only if a task switch occurs. If a task switch does not occur, the flags are affected

only as noted.
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L]
Table B-2. Super386 Instruction Summary (continued)

Flags (See Table B-3) Regs Memory \ Other
(See (See Exceptions (See

Instruction |V |R [N |IO|O |D |I |T |S |Z |A [P |C [TableB-4) |TableB-5) |(SeeTableB-6) |TableB-7)

CMPS M M M ESI, EDI MEM B

CWD DX, AX

CWDE EAX

DAA u M|M|M|M|M|AL

DAS u M|{M|M|M|M AL

DEC M MMM |M GPR MODt/m | MEM

DIV u u |[u |u |u |u |EDX,EAX D0, MEM

ENTER ESP,EBP |STACK MEM B

HLT C13

IDIV u u |u |u |u |u |EDX,EAX D0, MEM

IMUL M u |(u |u [u |M|GPR MEM 1

IN EAX TSS I

INC . M MMM M GPR MODt/m | MEM

INS EDI STRING | TSS, MEM

INT! M M T13,TI0,MEM |I, T

INTO! M M Ti3, T1I0,MEM | T

IRET? MMIMMIMIMIMIMIMIM/IM|M |[M T13, Ti0, MEM |B, T

Jeond J13 T

JCXZ J13 T

Mp! T13, T10, MEM, | T
J13

LAHF AH

LAR M GPR R6, MEM

LDS DS, GPR D13,M6,N11, |B
MEM

LEA GPR Mé6

LES ES, GPR D13, M6,N11, |B
MEM

LEAVE ESP, EPB MEM

LFS FS, GPR D13,M6,N11, |B
MEM

LGDT GDTR C6,MEM, M6 |B

LGS GS, GPR D13, M6,N11, (B

M
LIDT IDTR C6,M6,MEM |B

1 The flags are modified during these instruction only if a task switch occurs. If a task switch does not occur, the flags are affected
only as noted.

2 During an IRET, the V and R flags are not modified. The R-flag is modified during an IRETD. The V-flag is modified during an IRETD
when in protected mode and the CPL equals zero. The I/O flags are modified during IRET or IRETD when the CPL equals zeto. The I-flag
is modified when the current I/O Privilege Level (IOPL) is of equal or lesser privilege than the CPL privilege. The remaining flags are
always modified during an IRET or IRETD.
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Table B-2. Super386 Instruction Summary (continued)

Flags (See Table B-3) Regs Memory Other
(See (See Exceptions (See
Instruction |V |R |N (IOO |D |I |T |S |Z |A [P |[C |TableB-4) |TableB-5) (See Table B-6) | Table B-7)
LLDT LDTR R6,C6, MEM, |B
Ni11
LMSW : CRO MEM
LOCK L6
LODS ESI, EAX MEM
LOOP ECX J13 T
LSL M GPR R6, MEM
LSS SS, GPR S13,M6,N11, |B
MEM
LTR TR R6,C6, MEM, |B
N11
MOV SEL or MODt/m MEM I
GPR
MOV CR u u |u |(u |u |u [CRorGPR C6, G6
MOV DR u u {u |u |u |u |DRorGPR C6, G6
MOV TR u u {u (u |u |u |[TRorGPR C6, G6
MOVS ESI,EDI |STRING MEM B
MOVSX GPR MEM
MOVZX GPR MEM
MUL M u (u |u |u |M |EDX,EAX MEM
NEG M M M MMM |GPR MODrt/m MEM
NOP
NOT GPR MODt/m MEM
OR M M|M|u (M |M|GPR MODrt/m MEM I
ouT PORT TSS I
OuUTS ESI PORT TSS, MEM
POP SEL or MEM, N11
GPR
POPA all GPR MEM B
POPF? MIMIM|IM|IM|IM|IM|M M |M |M |ESP 113, MEM
PUSH ESP STACK MEM
PUSHA ESP STACK MEM B
PUSHF ESP STACK 113, MEM
RCL w M | GPR MODt/m MEM I
RCR w M | GPR MODt/m MEM 1
REP ECX B
RET! ESP T13, MEM LT

1 The flags are modified during these instruction only if a task switch occurs. If a task switch does not occur, the flags are affected
only as noted.

3 POPF or POPFD never modify the V and R flags. They only modify the I/O flags if the CPL equals zero, and only modify the I-flag if the
current IOPL is of equal or lesser privilege than the CPL privilege. The remaining flags are always modified during a POPF or POPFD.
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Table B-2. Super386 Instruction Summary (continued)
Flags (See Table B-3) Regs Memory Other
(See (See Exceptions (See
Instruction [V (R [N (IO |O S |Z |A |P |C |TableB-4) | Table B-5) (See Table B-6) | Table B-7)
ROL w M |GPR MODt/m MEM 1
ROR w M |GPR MODt/m MEM I
SAHF MIMIM|IM M
SAL w M|M|u |M M |GPR MODt/m MEM I
SAR w M (M |u (MM |GPR MODt/m MEM 1
SBB M M|M|M|M|M |GPR MODt/m MEM I
SCAS M M|M|M||M|M EDI MEM
SETcond GPR MODt/m MEM
SGDT MODt/m M6, MEM B
SHL w M |(M|u (MM |GPR MODt/m MEM I
SHR w M|M|u |[M|M |GPR MODt/m MEM 1
SHLD u MM |u |[MM|GPR MODt/m MEM I
SHRD u M|M|u |[M|M |GPR MODt/m MEM I
SIDT MODt/m M6, MEM B
SLDT GPR MODt/m R6, MEM
SMSW GPR MODt/m MEM
STC M
STD
STI P13
STOS EDI STRING MEM
STR GPR MODt/m R6, MEM
SUB M M MIM MM |GPR MODt/m MEM I
TEST M MIMiu MM MEM I
VERR M R6, MEM
VERW M R6, MEM
WAIT NPX
XCHG GPR MOD1/m MEM B
XLAT AL MEM
XOR M M|M|u |M|M |GPR MODt/m MEM 1
SCALL M | GPR new, MEM
Chips and Technologies, Inc. PRELIMINARY B-15
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Table B-3 defines the codes used in the Flags column of Table B-2.

LI :
Table B-3. Super386 Instruction Summary—Flags Description

Flag Description ' Bits Flag Description Bits
v Vittual-8086 flag 17 S Sign flag 7
R Resume flag 16 zZ Zeto flag 6
N Nested task flag 14 A Auxiliary catry flag 4
10 1/O privilege level 13:12 P Parity flag 2
(o] Ovetflow flag 11 [} Carry flag 0
D Ditection flag 10 M Flag is modified
I Interrupt flag u Flag is undefined
T Trap flag 8 ' Modified if rotate/shift amount

is 1; otherwise undefined

Table B-4 defines the codes used in the Registers (Regs) column of Table B-2.

]
Table B-4.  Super386 Instruction Summary—Registers Description

Name Description Name Description

GPR One of eight GPRs is modified SEL or GPR  Selector or GPR is modified

SEL One of six selectots-is modified CR or GPR Control registet or GPR is modified
CR One of three control registers is modified | DR or GPR Debug register or GPR is modified
DR One of six debug registers is modified TR or GPR Test register or GPR is modified
TR One of two test tegisters is modified

Table B-5 defines the codes used in the Memory column of Table B-2.

T
Table B-5. Super386 Instruction Summary—Memory Description

Type Memory Location

MODt/m Memory ot registet location pointed to by the MODt/m encoding is modified
STACK Memoty location pointed to by SS:(E)SP is modified

STRING Memoty location pointed to by ES:(E)DI is modified

PORT Output pott location pointed to by DX is modified
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Table B-6 defines the codes used in the Exceptions column of Table B-2.

]
Table B-6

Super386 Instruction Summary— Exceptions Description

Exception

Description

cé6

In protected mode, the instruction causes a general protection exception (13) if the CPL does
not equal zero.

C13

In protected mode, the instruction causes a general protection exception (13) if the CPL is not
equal to zero. The instruction causes a genetal protection exception (13) in virtual-8086 mode.

Do

Instruction will encounter a divide exception if the denominator is zero, or if the result is too
large to fit into the destination operand (0).

D13

In protected mode, a non-readable or data/nonconforming code segment where a requested
privilege level (RPL) or CPL has less privilege than the DPL will signal a genetal protection
exception (13).

G6

The instruction’s MOD field of the MODt/m byte must indicate a tegister operand; otherwise,
an undefined opcode exception (6) is signaled.

15

Instruction causes an interrupt 5 if the register operand does not lie between the memory
operands (5). Instruction is invalid if the MOD field of the MODt/m byte indicates a register
operand (6).

n3

In virtual-8086 mode, an instruction causes a general protection exception (13) if the I/O
privilege level does not equal 3.

n3

In protected mode, if the jump target addtess is beyond the code segment limit, a general
protection exception (13) is signaled.

The LOCK prefix can only occur with one of the following instructions; otherwise, an
undefined opcode exception (6) is signaled. Instructions that can use the LOCK prefix ate
ADC, ADD, AND, BTC, BTR, BTS, OR, SBB, SUB, or XOR with the operands (memory,
register), XCHG with the operands (memory, tegister), XCHG with the operands (register,
memory), and DEC, INC, NEG, or NOT with the operand (memory).

MEM

Instruction using memoty operands can encounter memoty opetand exceptions under the

following conditions:

a. When executing in teal or virtual-8086 mode, part ot all of the operand is not within the
effective address space of 0000h to OFFFFh. In this case, a general protection exception
(13) is signaled.

b. When executing in protected or virtual-8086 mode with paging enable, the translation
mechanism can signal a page fault exception (14).

c. In protected mode, an attempt to read or write beyond the segment limit, write a nonwritable
data segment, read a nonreadable code sigment, or write to a code segment signals a general
protection exception (13).

d. When executing in protected mode, an attempt to read or write beyond the segment limit or
write a nonwritable stack data segment signals a stack fault exception (12).

e. When the operand lies within the LDT, IDT, or GDT, and the operand does not lie within
the effective address space of the descriptor table’s limit value, a general protection
exception (13) is signaled.

M6

The instruction’s MOD field of the MODt/m byte must indicate a memoty operand; otherwise
an undefined opcode exception (6) is signaled.

hew

The SCALL instruction acts as a gateway into SuperState V. SuperState V software can reflect
exceptions back to the program containing the SCALL if it detetmines that the opetation is
invalid ot if the requesting program is insufficiently privileged.

NPX

The instruction causes a coptocessot not available exception (7) if the TS-bit and the MP-bit in
CRO are set. A math fault exception (16) occuts if the coprocessot’s ERROR pin is asserted.

Ni11

In protected mode, loading a segment with the Present bit off signals a not-present exception
(11) unless the instruction is loading the stack segment. Loading the stack segment with a
not-ptesent segment signals a stack fault (12).

Chips and Technologies, inc.
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Table B-6  Super386 Instruction Summary—Exceptions Description (continued)

Exception Description

P13 In protected mode, an instruction causes a genetal protection exception (13) if the I/O privilege
level has greater privilege than the CPL privilege. The instruction ignotes privilege level in teal
mode.

R6 Instruction is invalid in real and virtual-8086 modes (6).

S13 In protected mode, loading a null-selector, a nondata segment, or a data segment where the DPL
does not equal the CPL ot the RPL does not equal the CPL signals a general protection
exception (13).

TSS In protected mode, an instruction causes a general protection exception (13) if the I/O privilege
level has greater ptivilege than the CPL privilege or at least one.of the cotresponding TSS
1/O bits is set. The instruction ighotes privilege level and petmission bits in real mode. In
virtual-8086 mode, the instruction causes a genetal protection exception (13) if at least one of
the corresponding TSS I/O bits is set.

T13 During a task switch, loading a null-selector CS, a nonexecutable segment, a conforming CS
where the DPL is of less privilege that the CPL, ot a non-conforming CS whete the DPL does
not equal the destination CPL or RPL will signal a general protection exception (13). Having
an instruction pointer that does not lie within the effective address space of the CS limit will
signal an invalid TSS exception (10).

T10 In protected mode, the instruction that causes a task switch must not encounter any type of fault

ot exception when accessing the data from the TSS. If a fault or exception would occur, an

invalid TSS exception (10) is signaled.

Table B-7 defines the codes used in the Other column of Table B-2.

I

Table B-7. Super386 Instruction Summary—Other Description

Other Description

I Instruction encodings are available whete one of the source opetands is an immediate value
contained within the instruction. ‘

B Instruction requires multiple bus accesses to fetch memory operands.

T - Instruction tmay alter the notmal sequential execution of instructions and cause the instruction

buffet to be flushed.
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Address Mode Reference

- Figures B-7 through B-10 describe Super386 address modes and byte formats.
Tables B-8, B-9, and B-10 present the opcodes for the 16-bit address MODr/m,
32-bit address MODr/m, and 32-bit address SIB encodings, respectively.

Figure B-7. Registers Used in 16-Bit Effective Address Generation

Displacement

)\ [ 8-bit!
J 16-bit

>{16-bit}

! Sign-extended to 16-bit

Figure B-8. Registers Used in 32-Bit Effective Address Generation

)

Base Index * Scale Displacement
EAX EAX
EBX EBX
ECX . ECX 8 1 .
EDX »{ EDX 4 »J 8-bit
EDI () EDI 21 32-bit
ESI ESI 1
EBP EBP
ESP ===

\ W, \ L

\ P—{none}

P-4 none
J

1 Sign-extended to 32-bit

Chips and Technologies, Inc.
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Figure B-9. MODr/m Byte Format

Super386 Programmer’s Reference

7161]15]+4

\

J\\

v
MOD  REG/(Opcode)

~
r/m

Figure B-10.  SIB Byte Format

? 6 5 4 1
TIIT1I]
Scale Index Base

B-20
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|
Table B-8. Super386 16-Bit Address MODr/m Encodings

REG (Opcode)
000 001 010 o011 100 101 110 111
DWORD' EAX ECX EDX EBX ESP EBP ESI EDI
MODr/m Byte Format for WORD! AX CX DX BX SP BP SI DI
16-Bit Addressing Mode BYTE! AL CL DL BL AH CH DH BH
GRP12 (ADD) (OR) (ADC) (SBB) (AND) (SUB) (XOR) (CMP)
GRP22 (ROL) (ROR) (RCL) (RCR) (SHL) (SHR) (SHL) (SAR)
GRP32 (TEST) (TEST) (NOT) (NEG) (MUL) (IMUL) (DIV) (IDIV)
GRP4? (INC) (DEC) () O O O O O
GRP52 (INC) (DEC) (CALL) (CALL) JMP) (MP) (PUSH) ()
GRP62 (SLDT) (STR) (LLDT) (LTR) (VERR) (VERW) () O
GRP72 (SGDT) (SIDT) (LGDT) (LIDT) (SMSW) () LMSW) ()
GRP82 O O O O (BT) (BTS) (BTR) (BTC)
Effective Address r/m MOD Field MODr/m Byte Values
{BX + SI} 000 00 00h 08h 16h 18h 20h 28h 30h 38h
{BX + SI + disp8}3 01 40h 48h 50h 58h 60h 68h 70h 78h
{BX + SI + disp16}3 10 80h 88h 90h 98h AOh A8h BOh B8h
EAX/AX/AL 11 COh  C8h DOh D8h EOh E8h FOh F8h
{BX + DI} 001 00 01lh 0%h 11h 1%h 21h 2%h 31h 3%h
{BX + DI + disp8}3 01 41h 4%h 51h 5%h 61h 69h 71h 7%h
{BX + DI + disp16}3 10 81h 8%h 91h 9%h Alh A%h Blh BSh
ECX/CX/CL 11 Clh  C%h Dih D% Elh E%h Flh Foh
{BP + SI} 010 00 02h 0Ah 12h 1Ah 22h 2Ah 32h 3Ah
{BP + SI + disp8}3 01 42h 4Ah 52h 5Ah 62h 6Ah 72h TAh
{BP + SI + disp16)3 10 82h 8Ah 92h 9Ah A2h AAh B2h BAh
EDX/DX/DL 11 C2h  CAh D2h DAh E2h EAh F2h FAh
{BP + DI} 011 00 03h 0Bh 13h 1Bh 23h 2Bh 33h 3Bh
{BP + DI + disp8}3 01 43h 4Bh 53h 5Bh 63h 6Bh 73h 7Bh
{BP + DI + disp16}3 10 83h 8Bh 93h 9Bh A3h ABh B3h BBh
EBX/BX/BL 11 C3h  CBh D3h DBh E3h EBh F3h FBh
{S1} 100 00 04h 0Ch 14h 1Ch 24h 2Ch 34h 3Ch
{SI + disp8}3 01 44h 4Ch 54h 5Ch 64h 6Ch 74h 7Ch
{SI + disp16}3 10 84h 8Ch 94h 9Ch Adh ACh B4h BCh
ESP/SP/AH 11 C4h  CCh D4h DCh E4h ECh F4h FCh
{DI1} 101 00 05h 0Dh 15h 1Dh 25h 2Dh 35h 3Dh
{DI + disp8}3 01 45h 4Dh 55h 5Dh 65h 6Dh 75h 7Dh
{DI + disp16}3 10 85h 8Dh 95h 9Dh A5h ADh B5h BDh
EBP/BP/CH 11 C5h  CDh D5h DCh E5h EDh F5h FDh
{BP} 110 00 06h OEh 16h 1Eh 26h 2Eh 36h 3Eh
{BP + disp8}3 01 46h 4Eh 56h 5Eh 66h 6Eh 76h 7Eh
{BP + disp16}3 10 86h 8Eh 96h 9Eh A6h AEh B6h BEh
ESI/SI/DH 11 C6éh  CEh D6h DEh E6h EEh F6h FEh
{BX} 111 00 07h OFh 17h 1Fh 27h 2Fh 37h 3Fh
{BX + disp8}3 01 47h 4Fh 57h 5Fh 67h 6Fh 77Th 7Fh
{BX + disp16}3 10 87h 8Fh 97h 9Fh A7h AFh B7h BFh
EDI/DI/BH 11 C7h  CFh D7h DFh E7h EFh FTh FFh

1 ‘When the Super386 opcode indicates a Gb, Gv, or Gw as one of its operands, the register is specified by the REG field of the MODr/m byte
and the operand size, e.g. if the operand size is 16-bit, the Word registers are used.

‘When the Super386 opcode indicates a group instruction, the instruction within the group is specified by the REG (opcode) field of the
MODt/m byte, e.g., for Super386 opcode F7h having a MODr/m byte with the REG (opcode) field equal to 100 indicates a MUL.

3 disp8/16 indicates that an 8/16-bit, sign-extended displacement follows the MODs/m byte and must be added to the Base and/or Index Value.
For effective addresses using the EBP, the default selector is the SS. All other effective addresses use the DS as the default selector.
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Table B-9. Super386 32-Bit Address MODr/m Encodings

REG (Opcode)
000 001 010 o1 100 101 110 111
DWORD! EAX ECX EDX EBX ESP EBP ESI EDI
MODr/m Byte Format for WORD' AX X DX BX SP BP SI DI
32-Bit Addressing Mode BYTE! AL CL DL BL AH CH DH BH
GRP12 (ADD) (OR) (ADC) (SBB) (AND) (SUB) (XOR) (CMP)
GRP22 (ROL) (ROR) (RCL) (RCR) (SHL) (SHR) (SHL) (SAR)
GRP32 (TEST) (TEST) (NOT) (NEG) (MUL) (IMUL) (DIV) (IDIV)
GRP4? (INC) (DEC) () Q0 0 (@) O O
GRP52 (INC) (DEC) (CALL) (CALL) (JMP) (IMP) (PUSH) ()
GRP6? (SLDT) (STR) (LLDT) (LTR) (VERR) (VERW) () 0]
GRP72 (SGDT) (SIDT) (LGDT) (LIDT) (SMSW) () @LMSW) ()
GRP8? O 0 O O (BT) (BTS) (BTR) (BTC)
Effective Address r/m MOD Field | MODr/m Byte Values
{EAX} 000 |00 00h  08h 10h 18h 20h 28h 30h 38h
{EAX + disp8}3 01 40h  48h 50h 58h 60h 68h 70h 78h
{EAX + disp32}3 10 80h  88h 90h 98h AOh  ASh  BOh Bsh
EAX/AX/AL 11 COh  C8h DOh  D8h  EOh Egh FOh F8h
{ECX} 001 00 0lh 0% 11h 1%h 21h 2%h 31h 39h
{ECX + disp8}3 01 41h  4%h 51h 5%h 61h 69h 71h 7%h
{ECX + disp32}3 10 . 8lh ° 8%h 91h 9%h Alh  ASh  Bih B%h
ECX/CX/CL 11 Clh  CSh Di1h DSh . Etlh ESh Flh FSh
{EDX} 010 |00 02h  OAh 12h 1Ah  22h 2Ah 32h 3Ah
{EDX + disp8})3 01 42h  4Ah 52h 5Ah  62h 6Ah 72h 7Ah
{EDX + disp32}3 10 82h 8Ah  92h 9Ah  A2h  AAh  B2h BAh
EDX/DX/DL 11 C2h CAh D2h DAh  E2h EAh  F2h FAh
{EBX} 011 00 03h  OBh 13h 1Bh 23h 2Bh 33h 3Bh
{EBX + disp8}3 01 43h  4Bh 53h 5Bh 63h ©  6Bh 73h 7Bh
{EBX + disp32}3 10 83h  8Bh 93h 9Bh A3h  ABh  B3h BBh
EBX/BX/BL 11 C3h CBh D3h DBh E3h EBh  F3h FBh
{(—+ —)3 100 |00 04h  OCh 14h 1Ch 24h 2Ch 34h 3Ch
{— + — +disp8}3 01 44h  4Ch 54h 5Ch 64h 6Ch 74h 7Ch
{— + — +disp32)3 10 84h  8Ch 94h 9Ch Ad4h  ACh B4h BCh
ESP/SP/AH 11 C4h CCh D4h  DCh  Edh ECh  F4h FCh
{disp32} 101 00 05h  ODh 15h IDh  25h 2Dh 35h 3Dh
{EBP + disp8}3 01 45h  4Dh  55h 5Dh  65h 6Dh 75h 7Dh
{EBP + disp32)3 10 85h  8Dh  95h 9Dh  A5h  ADh  B5h BDh
ESP/BP/CH 11 C5h CDh D5h  DCh  E5h EDh  F5h FDh
{ESI} 110 {00 06h  OEh 16h 1Eh 26h 2Eh 36h 3Eh
{ESI + disp8})3 o1 46h  4Eh 56h 5Eh 66h 6Eh 76h 7Eh
{ESI + disp32)3 10 86h  8Eh 96h 9Eh A6h  AEh  B6h BEh
ESI/S/DH » 11 Céh CEh  DG6h DEh  E6h EEh  Fé6h FEh
{EDI} 111 00 07h  OFh 17h 1Fh 27h 2Fh 37h 3Fh
{EDI + disp8}3 01 ‘47Th  4Fh 57h 5Fh 67h 6Fh 77h 7Fh
{EDI + disp32}3 10 87h  8Fh 97h 9Fh A7h  AFh  B7h BFh
EDI/DI/BH 11 Ch CFh  D7h  DFh  E7h EFh F7h FFh

1 When the Super386 opcode indicates a Gb, Gv, or Gw as one of its operands, the register is speclﬂed by the REG field of the MODz/m byte
and the operand size, e.g. if the operand size is 16-bit, the Word registers are used.

2 ‘When the Super386 opcode indicates a group instruction, the instruction within the group is specified by the REG (opcode) field of the
MODt/m byte, e.g., for Super386 opcode F7h having a MODt/m byte with the REG (opcode) field equal to 100 indicates a MUL.

3 disp8/32 indicates that an 8/32-bit, sign-extended displacement follows the MOD1/m byte and must be added to the Base and/or Index
Value. For effective addresses using the EBP, the default selector is the SS. All other effective addresses use the DS as the default selector.
{— + —} indicates that a SIB byte follows the MODt/m byte.
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Table B-10.  Super386 32-Bit Address SIB Encodings

BASE

SIB Byte Format for EAX ECX EDX EBX ESP {'}! ESI EDI

32-Bit Addressing Mode 000 001 010 011 100 101 110 111

Scaled Index Index SCL SIB Values

{EAX} 000 00 00h  Olh 02h 03h 04h 05h 06h 07h
{EAX*2}) o1 40h  41h 42h 43h 44h 45h 46h 47h
(EAX*4) 10 80h  8lh 82h 83h 84h 85h 86h 87h
(EAX*8} 11 COh Cih C2h C3h C4h C5h C6h C7h
{ECX} 001 00 08h 0% 0Ah  OBh 0Ch O0Dh OEh OFh
{ECX*2} 01 48h  4%h 4Ah  4Bh 4Ch 4Dh 4Eh 4Fh
(ECX*4} 10 88h  8%h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh
{ECX*8} 11 Cs8h  C%h CAh CBh CCh CDh CEh CFh
{EDX} 010 00 10h  11h 12h 13h 14h 15h 16h 17h
(EDX*2} oL 50h  51h 52h 53h 54h 55h 56h 57h
{EDX*4} 10 90h  9th 92h 93h 94h 95h 96h 97h
{EDX*8} 11 DOh Dlh  D2h  D3h D4h  D5h  Dé6h D7h
{EBX} 011 00 18h 1% 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh
{EBX*2} 01 58h 59 5Ah  5Bh 5Ch 5Dh 5Eh 5Fh
(EBX*4} 10 98h 9% 9Ah  9Bh 9Ch 9Dh 9Eh 9Fh
{EBX*8} 11 Ds8h D9 DAh DBh DCh DDh DEh  DFh
{—)2 100 00 20h  21h 22h 23h 24h 25h 26h 27h

(—}? 01 60h  61h 62h 63h 64h 65h 66h 67h

{(—})? 10 AOh Alh  A2h  A3h A4h  AS5h A6h ATh
{—1)2 11 EOh  Elh E2h E3h E4h ESh E6h E7h
(EBP} 101 00 28h  2%h 2Ah  2Bh 2Ch 2Dh 2Fh 2Fh
{EBP*2} 01 68h 6% 6Ah  6Bh 6Ch 6Dh 6Eh 6Fh
(EBP*4) 10 A8h  A%h AAh  ABh ACh ADh AEh  AFh
(EBP*8} 11 E8h  ESh EAh EBh ECh EDh EEh  EFh
{ESI} 110 00 30h  31h 32h 33h 34h 35h 36h 37h

{ESI*2} 01 70h  7ih 72h 73h 74h 75h 76h 77h

(ESI*4} 10 BOh  Blh B2h B3h B4h  B5h B6h B7h
{ESI*8} 11 FOh  Flh F2h F3h F4h F5h F6h F7h
{EDI} 111 00 38h 3% 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh

{EDI*2} 01 78h 7% 7Ah  7Bh 7Ch  7Dh 7Eh 7Fh

(EDI*4} 10 Bsh  BSh BAh BBh BCh BDh BEh  BFh
{EDI*8} 11 F8h  F%h FAh FBh FCh FDh  FEh FFh

If the MOD field of the MODx/m byte equals 00, the BASE is a disp32; otherwise, the BASE is EBP.
2 {—} indicates that the BASE is scaled by the SS amount. This generates the following effective addresses:
{BASE*SCL} (MOD = 00)
{BASE*SCL} + disp8 (MOD = 01)
{BASE*SCL} + disp32 (MOD = 10)
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Table B-11.  Super386 Opcode Map!

Super386 Programmer’s Reference

o 1 2 3 4 5 6 7
ADD ADD ADD ADD ADD ADD PUSH POP
0 Eb, Gb Ev, Gv Gb, Ev Gv, Ev AL, Ib eAX, Iv ES ES
ADC ADC ADC ADC ADC ADC PUSH POP
1 Eb, Gb Ev,Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv SS SS
AND AND AND AND AND AND SEG DAA
2 Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv =ES
XOR XOR XOR XOR XOR XOR SEG AAA
3 Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv =SS
INC INC INC INC INC INC INC INC
4 aAX eCX eDX eBX eSP eBP eSI eDI
PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH
5 eAX eCX eDX eBX eSP eBP eSI eDI
PUSHA POPA BOUND ARPL SEG SEG OP ADR
6 Gv, Ev2 Ew, Gw =FS =GS SIZE SIZE
JO JNO JB JNB JZ INZ JBE JNBE
7 Jb Jb Jb Ib Jb Jb Ib Jb
GRP1 GRP1 GRP1 GRP1 TEST TEST XCHG XCHG
8 Eb, Ib Ev,Iv Eb, Ib Ev,Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv
NOP XCHG XCHG XCHG XCHG XCHG XCHG XCHG
9 eCX eDX eBX eSP eBP eSI eDI
MoV MOV MOV MOV MOVSB MOVSW/D CMPSB CMPDW/D
A AL, Ob eAX, Ov Ob, AL Ov, eAX Xb, Yb Xv, Yv Xb, Yb Xv, Yv
MOV MOV MoV MOV Mov Mov MOV MoV
B AL, Ib CL, Ib DL, Ib BL, Ib AH, Ib CH, Ib DH, Ib BH, Ib
GRP2 GRP2 RET RET LES LDS MOV MoV
[ Eb,Ib Ev,Ib Iw Gv,Mp Gv, Mp Eb, Ib Ev, Iv
(shift) (shift) near near
GRP2 GRP2 GRP2 GRP2 AAM AAD XLAT
D | Eb,d Ev, 1 Eb, CL Ev, CL
(shift) (shift) (shift) (shift)
LOOPNE LOOPE LOOP JCXZ IN IN ouT ouT
E Jb Jb Jb Jb AL, Ib eAX, Ib Ib, AL Ib, eAX
LOCK REPNE REP HLT CMC GRP3 GRP3
F REPE Eb Ev

1 See legend following Table B-13.
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Table B-11.  Super386 Opcode Map (continued)
8 9 A B [+ D E F
OR OR OR OR OR OR PUSH 2nd
Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX,Iv CS SET 0
SBB SBB SBB SBB SBB SBB PUSH POP
Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Tb eAX, Iv DS DS 1
SUB SUB SUB SUB SUB SUB SEG DAS
Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib eAX, Iv =CS 2
CMP CMP CMP CMP CMP CMP SEG AAS
Eb, Gb Ev, Gv Gb, Eb Ev, Gv AL, Ib eAX, Iv =DS 3
DEC DEC DEC DEC DEC DEC DEC DEC
eAX eCX eDX eBX eSP eBP eSI eDI 4
POP POP POP POP POP POP POP POP
eAX eCX eDX eBX eSP eBP eSI eDI 5
PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D
Iv Gv, Ev, Iv b Gv, Ev, Ib Yb, DX Yv, DX DX, Xb DX, Xv 6
IS JNS JP INP L INL JLE JNLE
Jb Jb Jb Jb Jb Jb Jb Jb 7
MoV MoV MOV MOV MOV LEA MoV POP
Eb, Gb Ev, Gv Gb, Eb Gv, Ev Ew, Sw Gv,M Sw, Ew Ev 8
CBW CWD CALL WAIT PUSHF POPF SAHF LAHF
Ap 9
TEST TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D
AL, Ib eAX, Iv Yb, AL Yv, eAX AL, Xb eAX, Xv AL, Xb eAX, Xv A
MOV MoV MOV MOV MOV MOV MoV MoV
eAX, Iv eCX, Iv eDX, Iv eBX, Iv eSP, Iv eBP, Iv eSL Iv eDI, Iv c
ENTER LEAVE RET RET INT INT INTO IRET
Dw, Ib Iw 3 b [
far far
ESC ESC ESC ESC ESC ESC ESC ESC
D
CALL IMP MP IMP IN IN ouT ouT
Jv Jv Ap Jb AL, DX eAX, DX DX, AL DX, eAX E
CLC STC CLI STI CLD STD GRP4 GRP5
F
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I
Table B-12. Super386 Opcode Map With OFh Prefix!

0 1 2 3 4 5 6 7
GRP6 GRP7 LAR LSL CLTS
0 Gv, Ew Gv, Ew k
1 Active only in SuperState V mode.
MOV MoV MOV MOV MoV MoV
2 Rd, Cd Rd, Dd Cd, Rd Dd,Rd Rd, Td Td, Rd
3
4
5
6
7
JOo JNO JB JNB JZ INZ JBE JNBE
8 Jv Iv v v Jv Iv v Jv
SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE
9 Eb Eb Eb Eb Eb Eb Eb Eb
PUSH POP . BT SHLD SHLDW/D
A FS FS Ev, Gv Ev,Gv,Ib Ev, Gv,CL
LSS BTR LFS LGS MOVZX MOVZX
B Mp : Ev, Gv Mp ' Mp Gv, Eb Gv, Ew
C
D
E
F Active only in SuperState V mode.

1 Seelegend following Table B-13.
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I
Table B-12.  Super386 Opcode Map With OFh Prefix (continued)

8 9 A B c D E F
0
SCALL
Gd, Ed 1
2
3
4
5
6
7
IS INS JP IJNP JL JNL JLE INLE
Jv Jv Jv Jv v Jv Jv Jv 8
SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE
Eb Eb Eb Eb Eb Eb Eb Eb 9
PUSH POP BTS SHRD SHRD IMUL
GS GS Ev, Gv Ev,Gv, Ib Ev,Gv,CL Gv,Ev A
GRP8 BTC BSF BSR MOVESX MOVSX
Ev, Gv Gv, Ev Gv, Ev Gv, Eb Gv, Ew B
c
D
E
Active only in SuperState V mode. F
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Table B-13. Super386 Opcode Map for Group Instructions

REG (Opcode) Field of the MODr/m Byte
GROUP
(Opcode) [] 1 2 3 4 5 6 7
GRP1! ADD OR ADC SBB AND SUB XOR . |CMP
GRP2? ROL ROR RCL RCR SHL SHR SHL SAR
GRP3 TEST TEST NOT NEG MUL IMUL DIV IDIV
(F6/F7) Eb/Ev, Ib/lv | Eb/Ev, Ib/lv | Eb/Ev Eb/Ev AH:AL/eDX: | AH:AL/eDX: | AH:AL/eDX: | AH:AL/eDX:
eAX, Eb/Ev |eAX, Eb/Ev |eAX, Eb/Ev |eAX, Eb/Ev
GRP4 INC DEC
(FE) Eb Eb
GRP5S INC DEC CALL CALL IMP MP PUSH
(FF) Ev Ev Mp Ev Mp Ev Ev
GRP6 SLDT STR - |LLDT LTR VERR VERW
“(OF 00) Ew Ew Ew Ew Ew Ew
GRP7 SGDT SIDT LGDT LIDT SMSW LMSW
(OF 01) Ms Ms Ms Ms Ew Ew
GRP8 BT BTS BTR BTC
(OF BA) Ev, Ib Ev,Ib Ev,Ib Ev, Ib

Group 1 opcodes are 80h, 81h, 82h, or 83h.
2 Group 2 opcodes ate COh, C1h, DOh, D1h, D2h, or D3h.
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The following legend applies to Opcode Tables B-11, B-12, and B-13:

Symbol
Ap

Cd
Dd
Dw
Eb
Ev

Ev2

Ew
Gb
Gv
Gw
Ib
Iv
Iw
Jb
Jv

M
Mp

Ms
Ob
Ov

Rd
Sw
Td
Yb
Yv
Xb
Xv

Chips and Technologies, Inc.

Description

Two operands encoded in instruction. The first one is either 16 or 32 bits,
depending on operand size, and the second one is 16 bits.

32-bit control register.

32-bit debug register.

Word sized displacement used by ENTER instruction.

Byte operand pointed to by the MOD and r/m fields of the MODr/m byte.

Word or dword operand pointed to by the MOD and r/m fields of the
MODr/m byte.

Pair of word or dword operands pointed to by the MOD and r/m fields of
the MODr/m byte.

Word operand pointed to by the MOD and r/m fields of the MODz/m byte.
Byte register pointed to by MODr/m REG field.

Word or dword register pointed to by MODr/m REG field.

Word register pointed to by MODr/m REG field.

Byte immediate encoded in instruction.

Word or dword operand encoded in instruction.

Word immediate encoded in instruction

Byte displacement encoded in instruction relative to instruction address.

Word or dword displacement encoded in instruction relative to instruction
address.

Memory address.

Two operands: the first one is either 16 or 32 bits, depending on operand
size, and the second one is 16 bits, pointed to by MODr/m, MOD, and
r/m fields.

Two operands: the first one is 32 bits, and the second one is 16 bits pointed
to by the MODr/m, MOD, and t/m fields.

Byte operand pointed to by displacement encoded in instruction relative
to segment base.

Word or dword operand pointed to by displacement encoded in instruction
relative to segment base.

32-bit register pointed to by the MODr/m REG field.
Segment selector.

32-bit test register.

Byte operand pointed to by ES:EDI.

Word or dword operand pointed to by ES:EDIL

Byte operand pointed to by DS:ESIL

Word or dword operand pointed to by ES:ESL
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APPENDIX C

Special Programming
Considerations

The processor has on-chip registers that enhance performance when you are using
frequently referenced data structures in memory. Figure C-1 shows these structures.
The 38605DX/DXE processors contain a 512-byte (128-dword) instruction cache
that contains previously fetched instructions. The instruction pipeline may have up
to four instructions in various stages of processing. When any of the six segment
selector registers (CS, DS, SS, ES, FS, and GS) are loaded, their associated shadow
register is also loaded automatically by the processor with the descriptor for that
segment. The TLB contains up to 32 previously determined linear-to-physical page
translations.

These features eliminate the need to refetch instructions, redetermine segment
information, and retranslate upon subsequent demand. However, because these
on-chip registers hold copies of information stored in memory, several things
must be considered before manipulating the memory structures from which the
information was copied.
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Figure C-1. On-Chip Data Structure Storage
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The Translation Lookaside Buffer

The TLB is implemented as a four-way set-associative address cache with eight
sets, for a total of 32 entries. Upon each generation of a linear address, the TLB is
examined to determine if it contains a linear-to-physical address translation entry.
Linear address bits 14 to 12 are used to select the TLB set, and the match circuitry
determines the appropriate physical-address associate. The TLB updating method
ensures that no more than one associate matches a presented linear address. If no
associates match, a request is made to the translator to create and place a new entry
in the TLB.

Table Filling Mechanism

Because linear address bits 14 to 12 are used to determine the TLB set, and
because each set contains four associates, at most four translations can be
contained for linear addresses that have identical values for bits 14 to 12. When

a fifth translation is required, one of the previous translations must be removed.
The hardware determines which translation to remove by using a pseudo-random
replacement algorithm. A 2-bit counter is incremented at the end of every memory
reference that uses the TLB, and the associate to be replaced is the current value of
this counter. The counter is cleared to zero by a hardware reset.

The instruction fetching mechanism can contain at most one translation for the
current 4kB page. The execution of the translation occurs independently of the
TLB. This translation will satisfy all instruction fetch requests until execution
enters another page, or a long displacement potentially causes execution to enter
another page. The instruction fetch translation is calculated by the translator and
simultaneously written into the TLB. The pseudo-random replacement algorithm
may later displace the translation from the TLB without displacing it from the
instruction fetching mechanism. At any time, this can allow for as many as five
translations to be valid for linear addresses with similar values for bits 14 to 12.

The translator may run even when a translation exists in the TLB. For example,
when a memory write is performed, the TLB entry for that area of memory may
indicate that the dirty bit in the corresponding page tables in memory is not set;
therefore, the translator must be invoked to update this bit in the TLB. The
translator can be invoked at other times to revalidate existing translations, or to
create translations that the processor predicts will be needed at a future point in
time. The translator can also be invoked in some cases when the translation tables
are modified.
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Because of the manner in which the TLB works, modification of the page translation
tables may not necessarily have an immediate effect on the translation process.

Also, because of the unpredictability of the pseudo-random replacement algorithm,
modification of the translation tables does not always have a predictable delay
effect. For example, an attempt to relocate a linear-addressed page by writing the
corresponding page table to indicate a different physical address will not have an
effect until all translations corresponding to the linear-addressed page are removed
from the TLB.

A TLB entry is only written when address translation is enabled and a valid
translation is produced from the translation tables. When address translation is
disabled, the TLB may or may not retain its previous information. If address
translation is again enabled, the previous information may still be valid. The TLB
copy of a translation may be retained indefinitely, even though the translation tables
have been altered.

Modification of Translation Tables

Linear-to-physical address translation requires two levels of translation—page
tables and page directories. Each of the two levels contains a present bit indicating
whether the next level is present. For page tables, the present bit indicates whether
the page is present in memory. For page directories, the present bit indicates
whether the page table (and its associated pages) is present in memory. A page

is considered not present if either its page directory or page table indicates that it

is not-present. If the page directory indicates that the page is not present, then its
associated page table is also considered not present. Creating a page in such a case
requires the creation of a page table and the placement of an entry in the page table
indicating that the page is present.

By modifying the translation tables in memory, linear-addressed pages can be made
present or not present, increased or decreased in protection, or relocated. The time at
which the processor begins recognizing these changes depends on the presence of a
translation in the TLB, the translation algorithm, and the means by which trans-
lations are removed from the TLB.

If a page is made present, the effect will be seen immediately. This is ensured
because no entry can as yet exist in the TLB for a nonexistent or not present page. If
a decrease in protection is made, that effect will also be seen on the next instruction.

This is also true for normal instruction fetching. When an exception would be
reported for a prefetched instruction, the processor is allowed to complete all
partially executed instructions before the translation is reattempted. This ensures
that all instructions that may have the opportunity to update the translations do so
before the translation exception is acknowledged.
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If a page is relocated, the translation algorithm will not attempt to revalidate

any corresponding translation that the TLB may contain. This will cause some
unpredictability as to the time when the relocated translation will take effect.

It may take effect immediately, or it may never take effect (if the TLB entry is
never displaced). It is also possible that the translation will take effect within

an instruction, including the instruction which altered the tables, if that instruction
has more than one memory operand.

If a page is made not-present or is increased in protection, the effect also will not be
seen as long as an old value corresponding to the linear address remains in the TLB.
As with page relocation, the effect can occur immediately. The effect, however, can
never occur during the execution of an instruction. To ensure proper operation, any
change that could alter a previously established valid translation in the TLB should
ensure that such an entry is removed from the TLB before the corresponding page is
accessed. All entries in the TLB can be invalidated by reloading the page directory
base address in register CR3.

The processor does not prefetch exceptions. The instruction fetch mechanism
ensures that all page tables are updated before a translation is attempted. Instruction
fetch may or may not query the TLB when attempting to access another page. In
cases where it does access the TLB, an indication of an exception causes the
translator to revalidate the translation. In cases where it does not access the TLB,
the translator will be invoked after all previous instructions have been completed.

Care should be exercised when updating translation tables. Because the TLB may
request a translation at almost any time, an intermediate value contained in the tables
may cause an otherwise invalid entry to be placed in the TLB and used as if it were
valid. This can occur while the instructions doing the updates are still executing, or
at any time when the tables are in an inconsistent state.

Insertion of an invalid entry in the TLB is also a concern during enabling of paging.
The PG bit of CRO is examined at each generation of a linear address to determine
whether translation should take place. Setting the PG bit to 1 may cause the .
translation to begin on the fetch of the very next instruction, or it may delay the
translation until some unpredictable number of instructions have begun execution.

Translation will begin for the next operand fetch, which ensures that all following
operands are accessed with translation on. But the presence of the instruction
prefetch queue and the instruction cache allows some instructions, that were fetched
before paging was enabled, to be available for execution. To ensure that translation
takes effect, a jump instruction to the new linear-addressed page where execution
continues should be executed immediately after paging is enabled in order to empty
the prefetch queue. Because translation may become active on the fetch of the
required jump instruction, the translation tables should be initialized to contain an
entry for the page containing the paging enable code. This entry should indicate an
identity mapping in which the linear and physical addresses are identical.
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Page Aliasing

There are no restrictions on page aliasing. Translation tables can be constructed to
cause multiple linear addresses to map to a single physical page. When this is done,
multiple translation paths read to a single physical page, complicating the use of the
reference and dirty information in the tables. Because this information is somewhat
linear-address dependent, it is necessary to examine all the translation entries for
each linear address range to determine whether a physical page has been altered

or referenced. It is also possible to support inconsistent levels of protection. Two
linear address ranges can map to the same physical address. One range may provide
a different kind of protection than another. An operating system that determines
which pages to deallocate must be aware of all the aliases by which each physical
page can be accessed.

Validating Multiple Translations

The execution of some instructions requires the validation of more than one
translation. This occurs most often for operands that cross page boundaries. Such
operands have an upper and a lower linear addressed page. The processor detects
such operands and validates the translations for the two pages before generating bus
accesses. The order in which these validations occur may not be the same as the
order in which the portions of the operands are accessed.

For example, the lower page may be checked for translations before the upper
page, but the upper page may be accessed first. Accesses generated on the bus by
the translator may be for the page that will not be accessed until some undefined
number of unrelated bus cycles have occurred. External hardware should not
depend on translation accesses to indicate which operands will be accessed in the
immediate future.

Another example is the INS instruction, which reads a value from an I/O port and
writes it to a memory location. The memory location is examined to ensure that it
has a valid translation before the request is made to the IO port. This ensures that
the value returned from the port can be placed in the destination immediately.
Because I/O devices function differently from memory, and because it is valid for
an I/O device to return different data for each read from the same port number, any
attempt to re-execute an instruction that has already retrieved a value from the port
may result in the loss of the value first retrieved. This is not a problem with memory
locations because they return the same value as long as the location remains
unmodified.
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Exceptions

If an exception is encountered in the translation process, either for a portion of a
page-crossing operand or for the destination of the INS instruction, the software
page-fault handler will be invoked. In all cases, the instruction causing the page
fault must do so before it has modified the state of any memory, I/O device, or
CPU register. This allows the instruction to be re-executed. The address reported
in register CR2 may not correspond to the first address accessed by the instruction,
which may encounter a page fault. In the case of the page-crossing operand where
both portions encounter a page fault, the first address reported will be the last
address actually accessed.

Addresses Not Translated

Some addresses are not subject to translation. These include addresses generated
for I/O accesses and accesses to the translation tables. Translation is never active in
real mode. Future implementations of the architecture may increase the number of
entries in the TLB or may use a different replacement algorithm.

Segment Descriptors

The virtual-memory environment created by segmentation is much coarser than

that created by paging. Software can use up to six segments at any one time, but
may use thousands of pages. Segmentation faults are encountered only by
instruction fetches or operand accesses that either exceed the segment limit or
violate segmentation rules. Page faults, on the other hand, can be encountered for
any page of any segment. Segment descriptors contain the information needed for
translating effective addresses to linear addresses. They are loaded automatically by
the processor whenever software loads segment selectors into the segment selector
registers. With the segment descriptors loaded, no additional segmentation
information is needed for processing.

Each segment descriptor contains a base, limit, and protection information for

the segment. A segment selector register is loaded only when a MOV segment,
POP segment, interrupt, exception, far JMP, far CALL, or protected-mode gate

is encountered. No replacement algorithm is used for the descriptors that are
automatically loaded. Old entries are simply replaced by new entries. A return to
the original segment requires a reload of the appropriate segment selector register.

Chips and Technologies, Inc. PRELIMINARY C-7



B Segment Descriptors Special Programming Considerations

In Real and Protected Modes

In real mode, a segment descriptor is equal to the segment selector shifted left by
four bits, and no tables are used to obtain the descriptor. In protected mode, a
segment descriptor is contained in the GDT or LDT; the selector for the segment
indicates the appropriate table and the entry within the table. The segment
descriptors in memory contain an accessed bit (bit 8) which is set to 1 by the
processor when the descriptor is loaded into its shadow register. To do this, the
processor performs a locked update on the descriptor’s appropriate doubleword in
the selected descriptor table. The processor may perform this operation even if the
accessed bit is already set.

Because no table is used in real mode, there are no consistency considerations
between it and the contents of the segment shadow registers. In protected mode,
however, the segment shadow registers represent a subset of the information in the
descriptor tables, and modification to the tables in memory requires awareness of
consistency considerations similar to those affecting the TLB.

Descriptor Table Modification

A modification to the descriptor tables is not reflected in a segment shadow register
until the selector pointing to the modified entry is reloaded by software. Attempts
to increase the size of the data segment, for example, by increasing the descriptor
limit in the table do not have an immediate effect. The segment shadow register
will continue to contain the old limit value, and exceptions will be generated for
any operand exceeding it. If the limit is increased transparently to the executing
program, the code that increases the limit must also reload the segment selector
register.

The point in time when changes to descriptors are reflected in the processor is
predictable: old segment descriptors are retained by the processor until they are
explicitly loaded by software. The contents of the TLB, by comparison, is not so
predictable: translations may be displaced by the LRU replacement algorithm at any
time. The delay associated with loading a descriptor shadow register is accounted
for in the clock counts of the instruction that caused the loading. A page translation,
on the other hand, may be required for each memory operand of any instruction,
accounting for the range of clock counts quoted for instructions. The execution time
of instructions is therefore more predictable when paging is disabled.
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Segment Aliasing

As with page translation, it is possible to support aliases using segmentation. This
may be useful in protected mode, for example, when an executing program needs to
modify data in the code segment. Protected mode normally prohibits modifications
of the code segment, but by aliasing the code and data segments, a write to the data
segment will update the identical location in the code segment.

It is possible to implement partially overlapping aliases as well. The stack segment,
for example, may begin in the middle of the data segment and extend to the end of
the data segment. This makes the stack segment a subset of the data segment, while
still allowing the data segment direct access to the stack. If the operating system
deallocates segments, it must be aware of all the users of each shared segment.

The 38605DX/DXE Instruction Cache

The 38605DX/DXE processors have a 512-byte instruction cache to increase
processor performance. The cache contains 128 directly mapped doublewords, each
of which has tag information allowing it to map to any address value for bits 31 to 9.
Because the cache is directly mapped, no special replacement algorithm is used. Old
entries are simply replaced by new entries.

On average, about 65 percent of all instruction fetches are satisfied by the cache.
The actual cache hit rate varies dramatically, from zero to 100 percent, depending
on the nature of the executing code. When instruction data is available from the
cache, the external bus is available for operand accesses. Four bytes can be read
from the cache in a single cycle, or eight bytes in the equivalent of one bus access.
Special hardware is also included to generate addresses for jump instructions. In
some cases, this combination of cache and hardware address generation dramatically
increases execution speed. Programs that are unusually sensitive to execution speed
may execute too fast when the cache is enabled. In these cases, the cache may need
to be disabled.

Cache Consistency Mechanism

A cache consistency mechanism is required to ensure that instructions contained
in the cache, as well as those currently executing in the processor pipeline,
accurately reflect the contents of memory. To this end, the 38605DX/DXE and
the 38600DX/DXE processors contain identical consistency checking hardware.
This hardware functions on the 38605DX/DXE processors whether the cache is
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enabled or not. Because instructions may be present in the pipeline without being
present in the cache, the 38600DX/DXE processors also implement the same
consistency mechanism.

The consistency mechanism functions by keeping a record of instructions contained
in the cache or pipeline. When a store is executed to an address that matches one

of those recorded by the mechanism, a pipeline serialization operation is generated.
This flushes the prefetch queue, and the subsequent code fetches retrieve the
updated information. Because of pipeline latency, it is not possible to prevent the
instructions immediately following the store from completing. Only the second (and
subsequent) instructions following the store instruction will be refetched. This
reduces the unobservable nature of code-space stores to a small amount.

Programs that attempt to determine the size of the prefetch queue by storing ahead
in the instruction stream will indicate a small to nonexistent queue. The nondecoded
prefetch queue is 12 bytes long. The consistency mechanism causes it to appear
smaller, but the performance benefits of a 12-byte queue are fully realized.

The consistency mechanism keeps track of physical addresses. This ensures that
stores to code space by way of segment or translation synonyms function exactly
as if no synonyms were used. External devices that store to memory located in the
instruction cache cause the corresponding cache entry to be invalidated and the
instruction queue to be flushed.

Future implementations of the architecture may take greater liberties as to when
modifications to the code segment are reflected in the code stream. A cache
consistency mechanism will be present in all implementations, but the nature of
future pipelines may increase the number of instructions that must execute before
the change is observable. In general, a programmer wanting to effect a change in
the code segment should execute a jump instruction to flush the prefetch queue.

Ehabling and Disabling the Instruction Cache

The 38605DX/DXE processors can be operated with the instruction cache enabled
or disabled. When the instruction cache is enabled, each code fetch is written into
the cache and the entry is made valid. Future accesses to the same address will
retrieve the data from the cache. When the cache is disabled, its contents may or
may not be displaced over time. Software cannot depend on the contents of the
cache being retained while it is disabled. Similarly, software cannot assume that
the entire content of the cache is invalidated by the act of disabling it. To invalidate
the entire cache, the FLUSH* pin must be asserted. Invalidating the cache from
software is unnecessary because the consistency mechanism ensures that the cache
always reflects an exact copy of what is in memory. '

PRELIMINARY Chips and Technologies, Inc.



Special Programming Considerations The Instruction Fetching Mechanism

The Instruction Fetching Mechanism

Instructions can be one to 15 bytes in length. The act of fetching the instruction
does not correspond to the size of the instruction. A 1-byte INC instruction may
not generate a 1-byte fetch. Similarly, a 15-byte instruction will not generate a
single fetch of a 15-byte quantity. Each processor supports a maximum fetch
size, and nearly all instruction fetches return this maximum amount of data.

The 38600DX/DXE processors support a 4-byte fetch every two cycles. The
38605DX/DXE processors support a 4-byte fetch every cycle from the instruction
cache. Future implementations may support greater maximums.

Because instructions are prefetched, not all that are fetched will be executed. Many
prefetched instructions are discarded when taken jumps are encountered. Future
implementations may support the concept of speculative execution, allowing
instructions following jumps to be prefetched before it is known whether the jumps
are taken or not. This will increase the number of discarded prefetches and cause
their addresses to be randomly distributed.

Instructions are prefetched only when no segmentation or page-translation violation
would be encountered. If such a violation were to occur in a prefetch, the instruction
fetching mechanism would wait until the processor had a chance to complete all
partially executed instructions before attempting the fetch. This would allow any
previous instruction to resolve the violation.

Instructions may be fetched in an order that is different from the order in which they
appear to execute. This happens most often in the 38605DX/DXE processors when
the cache is enabled. An example is a code fetch following a loop. Prefetch may
decide to fetch the instruction data upon first encountering the loop. This prefetch
will return instruction data that is not required immediately because the loop was
taken but may still be written into the instruction cache. When it is in the cache, no
further code is fetched from the same address. The observed effect is that the code
fetch for the instruction occurs on the first iteration of the loop instead of the last, as
would normally be expected.

In some cases, an instruction can be fetched many times. This may occur, for
example, when an exception is predicted to revalidate the exception status. When
instructions are fetched many times, any alteration of the location by another device
may or may not cause the instruction to be interpreted as modified.

The instruction prefetch queue can contain up to 12 bytes of instruction data. This
could be as many as 12 instructions or less than one. The prefetch mechanism may
generate a fetch for the bytes that would normally be placed into the queue, before
any room is available there. This is done under the assumption that by the time the
fetch returns data, room will have become available. If the queue is still full in such
a case, the fetched data is discarded. The combination of the queue and the ability
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to fetch beyond the end of the queue have the effect on the processor of making the
prefetch queue appear to external devices to be as much as 16 bytes in size. Future
implementations may increase this size without limit.

Sequence of Storage References

From an assembly language programmer’s viewpoint, the processor executes
instructions sequentially. The execution of one instruction precedes the execution
of the next. Within each instruction, operands appear to be accessed in a defined
order. The PUSH memory instruction, for example, first fetches the operand at the
memory location, then places it on the stack by storing it to a location indicated by
the stack pointer. The descriptions of instructions in Appendix A, “Instruction Set
Reference,” indicate the order in which operands appear to be accessed.

Factors Influencing the Order of Instruction Fetches

The processor may, at times, execute instructions and access operands in an order
other than already described. This may be done, for example, to ensure that no
exceptions are present on particular operands or to speed the execution of an
instruction. In other cases, an instruction that conceptually follows another
instruction may complete execution before the first instruction finishes. In all
cases, the appearance of the processor’s operation is guaranteed to agree with the
conceptual sequence. However, devices external to the processor may observe a
sequence of operations different from the conceptual sequence.

Unaligned operands require multiple bus accesses to fetch or store them. This can
present a problem if an external device is allowed to observe an unaligned operand
between the time when the first portion is modified and the the second portion is
modified. Also, because instructions with multiple memory operands may store
them in a nonconceptual order, the consistency of such operands is unreliable.

The PUSHA instruction, for example, may not write the entries to the stack in the
conceptual order, starting with EAX and ending with EDI. An external device may
be in error if it assumes that new values have been written for all registers when a
new value is observed for EDI
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Instruction Execution Ordering

The processor allows the execution of instructions to continue while the bus is busy
processing a request. A write to a slow memory device, for example, may keep

the bus busy for an extended period of time. When this happens, the processor is
allowed to execute instructions that follow, providing that these conditions are met:

® The memory access is to a present page, and no page protection faults are
detected.

® The memory access does not violate any segmentation protection rules.
® The memory access is the last operation performed by the instruction.
® The following instructions do not request a pipeline serialization operation.

® The following instructions do not depend on the data returned by the
memory access.

® The following instructions do not themselves require the bus.

No limit is placed on the number of instructions that follow the instruction using
the bus. Execution can continue for as long as the above rules are observed.

An instruction that contains one or more memory operands, but does so only late

in its execution, will execute up to the point where it requires the bus. The
38600DX/DXE processors limit this overlap to the number of instructions that

can be present in the pipeline following the instruction generating the slow memory
access (3), plus the number of instructions present in the prefetch queue (12). The
38605DX/DXE processors impose no absolute limit because the instruction cache
allows for the execution of loops. Jump instructions do not require use of the bus
when their target code is available from the instruction cache.

Instruction-Fetch Reordering

The 38605DX/DXE instruction cache alters the conceptual order of operand
accessing to the extent that it reduces the number of code prefetches. It is common
to execute code that generates no code prefetches for many thousands of cycles.

This is not true when the cache is disabled, and does not apply to the 38600DX/DXE
processors.

The ability to continue execution while a preceding instruction is still performing a
store or fetch does not alter the conceptual order of operand access, but it can have a
dramatic effect on the time between operand accesses. It is possible for a minimum
delay between accesses of 100 cycles to be reduced to zero cycles by the act of
enabling the cache. This might occur, for example, if a store to a slow memory
device is followed by a series of instructions within a loop, none of which access
memory. While the store operation is waiting, the following instructions execute
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until one of them requires the bus. When such an instruction is encountered, it will
wait until the store completes, and it may appear on the bus during the cycle
immediately following the store.

The 38605DX/DXE processors’ ability to overlap instruction execution in this
manner differs from the similar ability of a write buffer, because the 38605DX/DXE
can also overlap slow fetches. Instructions are allowed to continue execution
following a slow fetch as long as the operand being fetched is not required by the
instructions immediately following. Special register consistency hardware contained
in the processor ensures that when an instruction requiring this operand enters the
pipeline, it is held until the fetch is complete.

Certain operations require the pipeline to be serialized. I/O accesses ensure that
the actual sequence matches the conceptual sequence by forcing the pipeline to
complete all other memory operations first, and then delaying all further operations
until the I/O access is complete. Instructions that alter the ability to accept
interrupts—either enabling or disabling them (STI, CLI, POPF, task switches,

and IRET)—also perform a serialization.

Future implementations of the architecture may hide even greater deviations from
the conceptual sequence of operand accesses. Instructions or operands may be
fetched in nonsequential order, or may be fetched in smaller or larger pieces than
the conceptual picture indicates. The architecture will ensure that the conceptual
sequence appears to be followed from the processor’s viewpoint, but external
devices may be exposed to the changes. To allow for full compatibility with future
processors, any external device that is sensitive to the order in which operands are
accessed must use semaphores.

The result of some instructions depends on the order in which operands are accessed.
This is true for the REP MOVS instruction. A source operand that overlaps the
destination operand will alter the data being moved. It is possible for the overlap to
occur so that the source is retrieved from the previous iteration’s destination. In
such a case, a future implementation may allow the processor to determine that the
destination is identical for all iterations and alter the algorithm to eliminate the
fetches normally required. The single destination value is simply stored upon each
iteration. Again, this does not alter the conceptual sequence of operations, but to an
external device, memory reads disappear that would otherwise be observed.

Similarly, a future implementation may allow each repeated string iteration to

be consolidated into fewer iterations of larger quantities of data. A REP SCASB
instruction may be reduced to a quarter the number of iterations by interpreting it

as a special version of the REP SCASD instruction. In such an implementation, it
is unpredictable whether the operands are accessed as a byte, word, or doubleword
at a time. The order in which operands are accessed may also be unpredictable. No
matter how the actual sequence is altered, exception recognition will appear to be
identical to the conceptual picture.
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The processors’ ability to hold one memory access pending, while the following
instructions continue execution, may delay stores for an undefined period of time.
Future implementations may include store buffers that can hold more than one store
pending. There is no limit on the length of time that fetches or stores may be held
pending. It is possible for a pending store to be passed to a following fetch without
updating external memory by passing the value internally in the processor.

Operands are accessed in order, according to the rules listed in Table C-1.

]
Table C-1. Operand Accessing Rules

Always in Order May or May Not Be in Order Usually Out of Order

Stores between multiple instructions Fetches between multiple Instruction fetches
instructions

Fetches and stores that precede or follow Fetches and stores within

an I/O-space access instructions

Fetches and stores that precede or follow
an interrupt enabling or disabling operation

Semaphore Locking

Systems with more than one bus master must allow the use of semaphores.
Semaphores are used to communicate information between bus masters. To
function properly, they must support a read-modify-write operation as an
indivisible sequence. If this were not the case, another bus master could perform
the modification portion of the operation after the first bus master read the value.
In addition, as mentioned above, compatibility with future processors may only
be possible if semaphores are used with external devices that are sensitive to the
order in which operands are accessed.

The processor supports semaphores by providing the LOCK* signal. This signal
is asserted explicitly when the LOCK instruction prefix is executed. It is asserted
implicitly by page-table or descriptor updates, or by the XCHG instruction.
When asserted, external system hardware architecture prohibits bus masters other
than the one requesting the LOCK* from accessing the bus. For the typical
read-modify-write operation, LOCK* will be asserted when the operation begins,
and will remain asserted until the modification completes.
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Within certain bounds, the external system may lock specific memory regions
corresponding to the address presented on the bus when the LOCK?* is first asserted.
An unaligned bus access may generate an additional access outside the range of the
first access to satisfy the alignment requirements. A simple system would lock the
entire memory region, but this may result in troublesome performance
consequences.

Any system that attempts to lock specific memory locations, however, must

also lock adjacent doubleword-aligned doublewords. When the first access is
generated, it is unpredictable whether a second access will be required. Because
page translation can alter the appearance of “adjacent” locations, any system that
supports demand paging must also require the locking mechanism to ignore bits
31 to 12 of the address.
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AADS*

AF
ALU
ANMI*

BP

CF
CPL

CRn
CS

D31:0
DF
DI
DPL
DS

EAR
EAX
EBP
EBX
ECX
EDI

EDX

Chips and Technologies, Inc.

Alternate address space signal (output). Initiates a bus cycle in the
SuperState V mode (38605DXE only).

Auxiliary carry flag (bit 4 of EFLAGS register)

Arithmetic logic unit

Alternate non-maskable interrupt signal; indicates a request to process
a SuperState V interrupt (input pin, 38605DXE processor only).

Base pointer (GPR)

Carry flag (bit 0 of EFLAGS register)

Current privilege level, determined by the processor and stored in the
RPL field of the CS selector register.

Control register CR3, CR2, or CRO
Code segment register

Designates the 32 lines in the data bus.

Direction flag (bit 10 of EFLAGS)

Destination index (GPR)

Descriptor privilege level, stored in a segment’s descriptor
Base-address register of an active data segment

Effective-address register
Accumulator register (GPR)
Base pointer register (GPR)
Base register (GPR)

Count register (GPR)
Destination index register (GPR)
Data register (GPR)
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EFLAGS 32-bit flag register

EIP Instruction-pointer register

ERROR¥* Coprocessor error signal generated in previous instruction and nc
masked.

ESI Source index register (GPR)

ESP Stack pointer register (GPR)

F

FLAGS Lower 16 bits of EFLAGS register

FLUSH* Cache flush signal (input pin, 38605DX/DXE processors only)

G

GDT Global descriptor table

GDTR Global descriptor table register

GPR A general-purpose register. Acronyms that are marked (GPR) in this
glossary represent general-purpose registers.

I

IDT Interrupt descriptor table

IDTR Interrupt descriptor table register

IF Interrupt (INTR) enable flag (bit 9 of EFLAGS)

INTR Maskable interrupt request signal (input)

I0PB I/O privilege bitmap, located in the TSS

IOPL I/O privilege level (bits 12 and 13 of EFLAGS)

K

KEN* Cache enable signal (input pin, 38605DX/DXE processors only)

L

LDT Local descriptor table

LDTR Local descriptor table register

LOCK An instruction prefix that guarantees that the processor retains
control of the bus during the execution of the instruction. It asserts
the LOCK* signal.

M

MSW Machine status word, the lower word of the CRO register

N

NMI Nonmaskable interrupt

NT Nested task bit (bit 14 of the EFLAGS register)
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o
OF

P
PDBR
PF

R
RESET
RF
RPL

S
SF
SI
SIB
Sp
SS

T
Task

TF
TI

TLB
TR
TSS

VM
VM86

ZF
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Overflow flag bit (bit 11 of the EFLAGS register)

Page directory base register in the CR3
Parity flag; bit 2 of EFLAGS register

Microprocessor general reset
Resume flag bit (bit 16 of the EFLAGS reglster)
Requestor privilege level, stored in a segment’s selector

Sign flag bit (bit 7 of the EFLAGS register)
Source index (GPR)

Scale, index base byte

Stack pointer (GPR)

Current stack segment register

A protected-mode environment in which programs (and their
procedures) can run at one of four privilege levels. Each task has
its own segment in memory, called a task state segment (TSS),
which is accessed via a descriptor contained in the GDT.

Trap enable flag (bit 8 of the EFLAGS register)

Table indicator bit in selector field; 1 selects local descriptor table;
0 selects global descriptor table.

Translation lookaside buffer
Task register

Task state segment. It contains a copy of all the registers and values
that must be saved to preserve the state of a task when switching
between tasks. The contents of the CS and EIP registers are saved
separately for privilege levels 0, 1, and 2.

Virtual-8086 mode bit (bit 17 of EFLAGS register)
Virtual-8086 mode

Zero flag (bit 6 of the EFLAGS register)
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secial Characters

,A-5
A-5
E)AX, A-2
E)BP, A-69
(E)BX, A-2, A-136
(E)CX, A-2, A-79
(E)DI, A-2, A-32, A-37, A-52, A-89, A-118,
A-129
[(B)DI], A-2
(E)DX, A-2
1P, A-2, A-109 to A-110
(E)SI, A-2, A-32, A-37, A-78, A-89, A-98
[(B)SI], A-2 :
(E)SP, A-2, A-44, A-69, A-100to A-10
[m], A-2
[t/m], A-3
/X, A-3
38600DX, 1-1
38600DXE, 1-1
38605DX, 1-1to 1-3
38605DXE, 1-1
80286, 4-140
80386 compatibility, 1-2
8086, 4-129, 4-139
8087, 4-138
{8}, A-3
{16,32}, A-3

A

A, 4-20, 4-33, 4-37
AAA, A-10

AAD, A-11
AADS*, 4-105
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AAM, A-12
AAS, A-13
Aborts, 2-37, 4-77
Absolute addresses, 3-9
Access rights, 4-17, A-66
Accessed, 4-20, 4-33
ADC, A-14
ADD, A-15
Addition, A-14 to A-15, A-40
Address displacement, 3-2, 3-5, 3-11
Address size, 3-3, 3-8, 4-142, A-8
Address space, 2-1
Address translation, 2-5, C-3
Addressable quantities, iv
Address(es)

8086, 4-129

Aliases, C-6

Base, 2-3, 3-11

Default offset, 3-3

Effective, 2-5 to 2-6, 3-11, A-68

Generation, 3-11, 4-129, B-19
Index, 2-6, 3-11
Instruction-relative, 3-10
Linear, 2-5, C-3, C-6
Loading, A-68

Logical, 2-1, 2-5

Modes, 2-6, 3-9

Not translated, C-7
Offset, 2-3, 2-5

Page, 2-5

Page base, 2-5

Page directory, 2-5

Page table, 2-5

Page table base, 4-33
Physical, 2-1, 2-5, C-10
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Real mode, 4-129
Register, 3-13
Reserved, 4-72
Scale, 3-11
Segment selector, 2-3
Stack, 3-9
String, 3-10
SuperState V mode, 4-105
TLB entries, C-3
Virtual, 2-1
Virtual-8086, 4-135
Addressing modes, 2-6, 3-9
Addressing segmented memory, 2-6
AF, 2-34,4-10, A-1
AH, 2-28, A-1, A-4, A-29, A-43, A-47,
A-65, A-112
AL, 2-28, A-1, A4, A-10, A-13, A-29,
A-40to A-41, A-43, A-47, A-78, A-97,
A-118, A-129, A-136
Aliases, 4-36, C-6, C-9
Aliasing, 4-36, 4-59
Alignment, 2-11, 3-28, A-6
AND, A-16
ANMI*, 4-105
Application registers, 2-27
Arithmetic, A-68
Arithmetic instruction, 2-32, 3-18
ARPL, 4-131, A-17
Array bounds, 4-91
Array index, A-18
ASCII, 2-24
ASCII string, A-24
ASCII-adjust, A-10 to A-13
Attributes, 4-17
Augxiliary flag, 2-34, 4-10
Available bit, 4-62, A-66
Available to software, 4-29, 4-33, 4-61
AVL, 4-19, 4-29, 4-33, 4-61
AX, 2-28, A-1to A-2, A4, A-11 to A-12, A-29,
A-38 to A-39, A-43, A-47 to A-48, A-78,
A-92, A-97, A-118, A-129 '
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B

B,4-21,4-62,4-143
B3:0,4-124
Back-link field, 4-9, 4-58, 4-63, 4-70, 4-89
Base, 3-11, 4-15, 4-18, 4-29, 4-33, 4-61, 4-1
Address, 2-3, 3-13, 4-17, C-5
Register set, 2-27
Base and displacement, 3-13
Base and index, 3-13
Base, index and displacement, 3-13
BCD, 2-23
Arithmetic, 4-10
Arithmetic operation, 2-34
Digits, A-10 to A-13, A-15, A-40 to A-41
Packed, 2-23
Unpacked, 2-23
BD, 4-124,4-126
BH, 2-28, 4-106, A-1, A-4, A-117
Big bit, 4-18, 4-143
Binary-coded decimal (BCD) numbers, 2-23
Bit
Manipulation instructions, 3-20
Offset, 2-25
Ranges, v
Scan, A-19 to A-20
Strings, 2-25
Test, A-21
Test and complement, A-22
Test and reset, A-23
Test and set, A-24
Values, v
Bitmap, 2-25
BL, 2-28, 4-106, A-1, A-4
BOUND, 2-36, 4-91, 4-98, A-18
Bound range exceeded, 4-91
BP, 2-28, A-2, A-4
Breakpoint(s), 4-8, 4-91, 4-119, 4-122, 4-125,
A-55
At breakpoint address, 4-124
Debug, 4-124
Fault, 4-126
Single-step, 4-124
Trap, 4-58, 4-124, 4-127
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-124
,A-19
» A-20
4-58,4-124, A-21
Z, A-22
R, A-23
'S, A-24
is
Busy, C-13
External, A-7
Hold, 4-137
Locking, C-15
Masters, C-15
Busy, 4-62, A-134
Busy bit, 4-63, 4-70
BX, 2-28, 4-106, A-1to A-2, A-4
Byte, 2-10, 2-22

C

C,4-115,4-117

Cache, 2-38, 4-35, 4-107, 4-110, A-6
Consistency, 4-110, C-9
Disabling, A-117, C-10
Enabling, 4-110, A-117, C-10
Flush, 4-110, A-117
Hits, C-9
Instruction, 1-3
Invalidation, C-10
Organization, C-9
Query, A-117
Special considerations, C-1
Speedup, 4-110

CALL instruction, 2-14, 2-36, 3-9, 4-40, 4-42,

4-127, A-25 to A-26, A-28, A-109 to A-110

Call, 4-9, 4-38, 4-52, 4-54, 4-63
Far, A-26
Gates, 4-23, 4-37 to 4-38, 4-42
Near, A-25
Subroutine, A-25 to A-26
Task, A-28

Call SuperState V, A-116

Carry flag, 2-34, 4-11

CBW, A-29

CD, 4-3
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CDQ, A-30
C/ED, 4-20 to 4-21, 4-53
CF, 2-34, 4-11, 4-109, A-1, A-31, A-35, A-115,
A-121to A-122, A-126
CH, 2-28, A-1, A4
CL, 2-28, A-1, A-4
CLC, 2-34, A-31
CLD, A-32
Clear
Carry flag, A-31
Direction flag, A-32
Interrupt flag, A-33
Task-switched flag, A-34
Cleared, v
CLI, 4-98, A-33
Clock, 1-2
Clock counts, A-5
CLTS, 4-137, A-34
CMC, 2-34, A-35
CMP, A-36
CMPSB, A-37
CMPSD, A-37
CMPSW, A-37
Code
Modification, C-9
Segment, 2-35, 4-1, 4-42
Code segment selector register, 2-28, 4-46
Command, 4-115, 4-117
Compare operands, A-36
Compare strings, A-37
Compatibility, 1-2
Complement, A-95
Complement carry flag, A-35
Complex addresses, 3-10
Condition codes, 3-15
Conditional jump, A-59
Conforming code segments, 4-14, 4-21, 4-42,
4-48, 4-52 to 4-53
Conforming/expand down, 4-20
Control
Flag, 2-32
Gates, 4-37 to 4-41, 4-43, 4-49
Registers, 4-3, 4-5, 4-11
Transfer instructions, 3-22
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Control gate descriptors, 4-41
Control gate protection, 4-49
Conventions, iv
Convert byte to word, A-29
Convert doubleword to quadword, A-30
Convert word to dword, A-38
Convert word to dword extended, A-39
Coprocessor, 4-12 to 4-13, 4-69, 4-133,
4-138 to 4-139, A-34, A-45, A-134
Error, 4-92
Not available, 4-91
Segment overrun, 4-91
Support, 1-2
Copy data, A-83
With sign extension, A-90
With zero extend, A-91
Copy string data, A-89
CPL, 2-16, 4-9, 4-16, 4-42, 4-45 to 4-46, 4-51,
4-53, 4-65, A-52 to A-53, A-58
CPU version, A-116
cr, A-1
CRO, 4-3, 4-11
CR1,4-11
CR2,4-3,4-11, 4-69
CR3,4-3, 4-11, 4-30, 4-58
CS, 2-28, 2-35, 4-16, 4-59, 4-88, 4-91, A-1,
A-4, A-86
Current privilege level (CPL), 2-16, 4-46
Current stack, 2-13
CWD, A-38
CWDE, A-39
CX, 2-28, A-1to A-2, A4

D

D, 4-33, 4-37, 4-114, 4-117, 4-129, 4-140, 4-142
D*,4-114,4-117
D/B, 3-6, 3-8 to 3-9, 4-18, 4-21
DAA, A-40
DAS, A-41
Data, 2-10 to 2-12, 2-19
Alignment, 2-11
Segment, 2-35, 3-3, 4-1
Segment selector, 2-28
Storage, 2-10
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Structures, 4-1, 4-44, 4-55, 4-79, C-2
Types, 2-19
Data movement instructions, 3-16
Debug exception, 4-91
Debug registers, 4-3, 4-5
Debugging, 4-8, 4-58, 4-91, 4-119 to 4-128
Breakpoints, 4-122, 4-124 to 4-125
Control, 4-122
INT 01, 4-125
INT 3, A-55
Registers, 4-119
ROM, A-55
Status, 4-124
SuperState V mode, 4-108
DEC, A-42
Decimal adjust, A-40 to A-41
Decrement, A-42
Default
Address offset, 3-3
Bit, 3-6, 3-8 to 3-9
Data segment, 3-3
Operand size, 3-3
Size, 4-18, 4-140, 4-142, A-66
Descriptor(s), 4-17
80286, 4-140, B-6 to B-9
Access rights, A-66
Availability, 4-19
Base, 4-18, 4-29
Characteristics, 4-23
Code, 4-106
Code segment, B-6
Conforming, 4-19
Control gates, 4-41
Data segment, B-6 to B-7
Default size, 4-18
Executable, 4-19
Expand down, 4-19
Gates, 4-23, 4-37, 4-40, B-8 to B-9
Granularity, 4-29
In jumps, A-63 to A-64
Interrupt gate, 4-81
LDT, 4-23, 4-29, B-8
LDT segment, A-75
Limit, 4-19, 4-29
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Null, 4-24
Overview, B-4, B-6 to B-9
Present, 4-19, 4-30
Privilege level, 4-19, 4-30, 4-42,
4-45 to 4-46, 4-51, 4-62, 4-67
Protection mechanism, 4-43
Registers, 4-5, 4-22
Segments, 4-17, 4-23 to 4-24, C-7
SuperState V mode, 4-105, A-116
Table modification, C-8
Table offset, 4-16
Tables, 2-6, 4-22 to 4-23
Task gate, 4-67, 4-81
Trap gate, 4-81
TSS, 4-37, 4-55, 4-61, B-9
Type, 4-30
Upper bound, 4-18
Valid, 4-19, 4-30
Destination index, 2-28
Destination index (EDI) register, 2-29
DF, 2-33, 4-10, A-1, A-127
DH, 2-28, A-1, A-4
DI, 2-28, A-2
Direction flag, 2-32 to 2-33, 4-10
Directory, 2-5
Dirty, 4-33,4-114,4-117,C-3
Disable cache, A-117
Disabling interrupts, 4-97
Dispatching, 4-68
Displacement, 2-6, 3-2, 3-11, 3-28, A-6
Displacement field, 3-13
DIV, 4-131, 4-138, A-43
Divide, A-43, A-47
Division by zero, 4-91
DL, 2-28, A-1, A4
Documents, related, v
Double fault, 4-91
Double precision arithmetic, 2-29
Doubleword, 2-10, 2-22
DPL, 4-19, 4-30, 4-42, 4-44 to 4-46, 4-51, 4-62,
4-65, 4-67, A-54, A-58, A-66
dr, A-1
DR3:0, 4-4
DR6, 4-91,4-124
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DR7,4-122

DR7:6,4-4

DS, 2-28, 2-35, 3-10, 4-3, 4-17, 4-59, A-1, A-4

dst, A-1

Dword, 2-10

DX, 2-28, 4-106, A-1 to A-2, A-4, A-38, A-43,
A-47 to A-48, A-50, A-52, A-92,
A-97 to A-98

E

E, 4-19,4-21,4-53, A-2, A-44, A-52, A-98
EAX, 2-28, 3-27, 4-58, A-2, A-4, A-30, A-39,
A-43, A-47 to A-48, A-78, A-92, A-97,

A-118, A-129

(BE)AX, A-2

EBP, 2-28, 3-10, 3-27, 4-58, A-2, A-4

(E)BP, A-2, A-69

EBX, 2-28, 3-27, 4-58, 4-106, A-2, A-4

(E)BX, A-2, A-136

ECX, 2-28,4-58, A-2, A-4

(EBE)CX, A-2, A-7T9

ED, 4-19to 4-21

EDI, 2-28, 3-10, 3-27, 4-58, A-2, A-4,

(E)DI, A-2, A-32, A-37, A-52, A-89, A-118,
A-129

[(E)DI], A-2

EDX, 2-28, 3-27, 4-58, 4-106, A-2, A-4, A-30,
A-43, A-47 to A-48, A-92, A-117

(E)DX, A-2

Effective address, 2-5 to 2-6, 3-11, 4-15, 4-130,
A-6, A-68

EFLAGS, 2-28, 2-32 to 2-33, 3-14, 4-3, 4-44,
4-58, 4-74, 4-88, A-58, A-65, A-102, A-105,
A-112

EIP, 2-28, 2-32, 4-58, 4-88, 4-91, 4-106, A-2,
A-60, A-84, A-94

(B)IP, A-2, A-109 to A-110

EM, 4-12, 4-91 to 4-92

Enable cache, A-117

Endian format, iv, 2-10

ENTER, 2-30, A-44

EPIC, 4-107

Error code(s), 4-69, 4-84, 4-88, 4-92

ERROR* signal, 4-92
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ES, 2-28, 2-35, 3-10, 4-3, 4-59, A-2, A-4, A-70
ESC, A-34, A-45
ESCAPE, 4-91
ESI, 2-28, 3-10, 3-27, 4-58, A-2, A-4
(E)SL, A-2, A-32, A-37, A-78, A-89, A-98
[(B)SI], A-2
ESP, 2-28, 3-10, 3-27, 4-58, 4-88, 4- 141 A-2,
A-4, A-100
(E)SP, A-2, A-44, A-69, A-100 to A-103
ESPO, 4-57
ESP1, 4-57
ESP2, 4-57
Event capturing, 4-107
Events, ports, and interrupt capture (EPIC), 4- 107
EX, 4-85
Exception(s), 2-37, 4-52, 4-54, 4-63, 4-69, 4-77,
C-7
Error, 4-85
Error codes, 4-84
Handlers, 4-87
Instruction pointer, 4-78
Priority, 4-96
Real mode, 4-133
Simultaneous, 4-95
Summary, 4-91
SuperState V mode, 4-105
Vectors, 4-79 :
Virtual-8086, 4-138
Exchange register with memory or reg1ster,
A-135
Exculsive-OR, A-137
Executable, 4-19
Execution modes, 2-18
Expand down, 4-19
Expand-down
Segments, 4-45
Stack segments, 4-18
Expand-up segments 4-45
Extension
Sign, A-90
Zero, A-91
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External interrupt requests, 4-10
Extra segment, 2-35
Extra segment selector, 2-28

F

Family of processors, 1-1
Far pointer, 2-26, A-63, A-67, A-70 to A-71,
A-73, A-81
Faults, 2-37, 4-77
Features, processor, 1-2 to 1-3
FINIT, 4-91
Flag instructions, 3-23
Flags, 2-28, 3-14
Augxiliary, 2-34, 4-10
Carry, 2-34, 4-11, A-31, A-35, A-106,
A-115, A-126
Control, 2-32
DF, 2-32
Direction, 2-32 to 2-33, 4-10, A-32, A-127
1/O privilege level, 4-9 : :
Interrupt, 4-38, A-33, A-128
Interrupt enable, 4-10
Loading, A-65
Nested tasks, 4-9
Overflow, 2-33,4-9
Parity, 2-34, 4-11
Resume, 4-8, 4-141
Sign, 2-33, 4-10
Status, 2-32
System, 2-32
Task switch, A-34
Trap, 4-10
Virtual-8086 mode, 4-8
Zero, 2-34,4-10
Flags register (EFLAGS), 4-3, 4-5, 4-7, 4 58
Flat memory model, 2-7
Flush, 4-36, C-10
Flush cache, A-117
FLUSH* signal, 4-110, C-10
FS, 2-28, 2-35, 4-3, 4-59, A-2, A-4
FWAIT, A-134
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18, 4-29, 4-61, 4-140
, 4-123
s, 4-80

80286, 4-141

Call, 4-37 to 4-38, 4-42, A-26

Control, 4-37 to 4-43

Descriptors, 4-23, 4-37, 4-40 to 4-41

Mechanism, 4-37, 4-82

Privilege level, 4-40, 4-51

Protection, 4-49

Size, 4-144

Task, 4-55, 4-65

Type, 4-42
GD, 4-122
GDT, 4-15, 4-22 to 4-24, 4-27, 4-38, 4-42, 4-65,

4-82, 4-85, 4-102, A-72, A-75

GDTR, 4-3, 4-24, 4-102, A-72, A-120
GE, 4-123,4-127
General protection faults, 4-92 to 4-93
General registers, 2-27 to 2-31, 4-5, 4-7, 4-58
General-detect fault, 4-126
Global

Breakpoint enable, 4-123

Breakpoint on exact match, 4-123

Debug access detect, 4-122
Global descriptor table (GDT), 4-1, 4-22, 4-24
Global descriptor table register (GDTR), 4-24
GR3:0,4-123
Granularity, 4-18, 4-29, 4-44, 4-61, 4-140, A-66
GS, 2-28, 2-35,4-3,4-59, A-2, A-4

H

Halt, 4-111, A-46

Hardware maskable interrupts, 4-92
HLT, 4-111,4-127,4-137, A-46
Hold state, A-7

I

1,4-85
I/O, see Input/Output
IBM PC/AT

Chips and Technologies, Inc.
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BIOS, 4-95
1/O space, 4-72
Interrupt and exception vectors, 4-93
NMI, 4-102
IDIV, 4-131, A-47
IDT, 4-22 to 4-23, 4-26, 4-38, 4-54, 4-65,
4-79 to 4-80, 4-82, 4-85, 4-102, A-53, A-74
IDT override, 4-85
IDTR, 4-3, 4-25 to 4-26, 4-80, 4-102, A-74,
A-123
IF, 4-9 to 4-10, 4-80, 4-97, A-2, A-128
imm, A-2
imm16, A-2
imm8, A-2
Immediate operand, 3-2, 3-5, 3-14, A-6
IMUL, A-48
IN, 4-106, A-50
INC, A-51
Inclusive OR, A-96
Increment, A-51
Index, 2-3, 3-11
Index register, 2-6
Initialization, 4-99 to 4-103
Protected mode, 4-102
Real mode, 4-102
Input from IO port, A-50, A-52
Input/Output, 2-14 to 2-16, 4-72 to 4-76
Data movement instructions, 3-17
IBM PC/AT, 4-72
Instructions, 2-30, A-50, A-52,
A-97 to A-98
Memory-mapped, 2-14 to 2-16, 4-74
Operands, 3-5, 3-14
Permission bitmap, 4-50, 4-57, 4-72, 4-75
Ports, 3-5 to 3-6, 4-72
Privilege level, 4-9, 4-50, 4-52, 4-72,
4-74 to 4-75, A-50, A-97
Protection, 2-17, 4-50
Protection mechanism, 4-43, 4-45
Reserved addresses, 4-72
Restrictions, 2-19
Space, 2-14, 2-16, 4-72
SuperState V ports, 4-105
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INS, 4-106, A-52

INSB, A-52

INSD, A-52

Instruction set, 3-15 to 3-26, A-1to A—137
Instruction-relative addresses, 3-10

Instruction(s), 3-15 to 3-26, A-1 to A-137

Arithmetic, 2-32, 3-17
Bit manipulation, 3-20
Cache, 1-3, 2-38, 4-110,C-2,C-9
CALL, 2-14
Clock counts, A-5
Control transfer, 3-22
Data movement, 3-16
Debugging, 4-126
Descriptions, A-9 to A-137
Exceptions, B-12 to B-15
Fetch reordering, C-13
Fetching, C-3, C-11 to C-12
Flag, 3-23
Flags changed, B-12
Floating point, 4-91, A-45
Format, 3-1, A-9
I/0, 3-17, 4-72, 4-74, 4-106
Interrupt, 4-98
Jump, 1-3, 2-38, 3-28, 4-102
Logical, 3-19

" Loop, 3-28
Manipulation, 3-24
Miscellaneous, 3-26
Notations, A-1, A-5
Opcode, 3-3
Order, C-11 to C-12, C- 14
Overlapping execution, C-13
Overview, 3-1
Pipeline, 4-110, A-7, C-10
Pipeline serialization, C-14
Pointer, 4-5, 4-58, 4-78, A-26
Pointer (EIP) register, 2-27, 2-32
Prefetch queue, C-10to C-11

Super386 DX Programmer’s Referenc

Real mode, 4-131.

Register encoding, A-4

Register usage, B-12 to B-15
Restarted, 4-8

Return, 4-54

Segment manipulation, 3-24
Shift, 3-28

Shift and rotate, 3-20

Stack, 3-8

String, 3-8, 3-21

Summary, B-12 to B-15 .
SuperState V mode, 4-108, A-116
Virtual-8086, 4-136

INSW, A-52

INT, 2-36, 3-9, 4-9, 4-77, 4-127
INT 01, 4-125

INT 03, 4-119

INT 3,

4-91,4-98, A-55

INT n, 4-92, 4-98, A-53
Integers, 2-20 to 2-22

Signed, 2-21
Two’s complement, 2-21, A-93
Unsigned, 2-20

Interrupt and exception handlers, 4-87 ;

Interrupt descriptor table (IDT), 2-19, 4-1, 4-22,
4-26,4-80

Interrupt descriptor table register (IDTR), 4-26,
4-80

Interrupt(s), 2-36, 4-44

Prefixes, 3-3, 3-8 to 3-9, 4-143, A-7 to A-8,

A-77, A-108
Privileged, 4-53
Protection control, 3-25
Queue, 4-102
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After halt, A-46

Data structures, 4-79
Disabling, 4-97

Enable flag, 4-10

External, A-33

Gates, 4-23, 4-38, 4-80 ,
Handlers, 4-87, 4-102, A-54
IBM PC/AT, 4-93

IDT, 4-26

IDTR, 4-26

Instruction pointer, 4-78
Instructions, 4-92, 4-98
Mechanism, 4-82

Priority, 4-96

Privilege level, 4-52
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Procedure-based handlers, 4-87, A-54, A-58
Procedures, 4-87
Real mode, 4-132
Registers, 4-79
Return, 4-63
Simultaneous, 4-95
Software, A-33, A-53, A-55
Stack frame, 4-88
Summary, 4-91
SuperState V mode, 4-105, 4-108
Task switch, 4-54, 4-63
Task-based handlers, 4-89, A-58
Tasks, 4-87
Vector table, 2-19
Vectors, 4-79, A-53
Virtual-8086, 4-138
Interrupts and exceptions, 4-77 to 4-98
INT, 2-36, 4-9, 4-77
INTO, 2-36, 4-91, 4-98, A-56
INTR, 4-10, 4-77, 4-126, A-33
Invalid, 4-30
Invalid opcodes, 4-91, 4-108
Invalid task state segment, 4-92
IOPB, 4-9, 4-44 to 4-45, 4-50 to 4-51, 4-57,
4-62,4-72, 4-75, A-50, A-52, A-97
Base displacement, 4-58
Base offset, 4-76
IOPL, 4-9, 4-44 to 4-45, 4-50 to 4-51, 4-72,
4-74,4-141, A-50, A-52 to A-53, A-58, A-97,
A-102
1P, A-2
IRET, 4-8 to 4-9, 4-54, 4-57, 4-65, 4-70, 4-89,
4-98,4-127, A-57
IRETD, 4-8, A-57
Iteration, A-79

J

Jee, A-36, A-59
IMP, 2-36, 4-40, 4-42, 4-127, A-62 to A-64
Jump, 3-28, 4-38, 4-40, 4-52, 4-54, 4-63, A-6,
C-5,C-10
Displacement, 3-28, A-60
Far, A-63
Flag tests, A-59
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Instructions, 1-3, 2-38
Near, A-59, A-62
Short, A-59, A-62
Taken, A-60, A-62
Task, A-64

K

KEN%*, 4-110
Kernel, 4-1

L

L3:0,4-123
LAHF, A-65
LAR, 4-131, A-66
LDS, A-67
LDT, 4-15, 4-22 to 4-23, 4-27, 4-38, 4-42, 4-58,
4-65, 4-82, 4-85, A-75
LDTR, 4-3, A-75, A-124
LE, 4-123, 4-127
LEA, A-68
LEAVE, 2-30, A-69
LEN3:0, 4-122
Length of breakpoint, 4-122
LES, A-70
LFES, A-71
LGDT, 4-137, A-72
LGS, A-73
LIDT, 4-98, 4-137, A-74
Limit, 4-17, 4-19, 4-29, 4-44 to 4-45, 4-61, 4-141
Linear addresses, 2-5, 4-15, 4-129, 4-135
Linear memory, 2-4
Linked tasks, 4-70
Little-endian encoding, iv, 2-10
LLDT, 4-131, A-75
LMSW, 4-137, A-76
Load
Access rights, A-66
Control registers, A-87
Debug registers, A-87
Effective address, A-68
Flags, A-65
Global descriptor table, A-72
Interrupt descriptor table, A-74
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Local descriptor table, A-75 ~ Memory, 1-2
Machine status word, A-76 ‘ Address size, 3-8
Pointer, A-67, A-70 to A-71, A-73, A-81 Addresses, iv, 2-1
Segment limit, A-80 ‘ Alignment, 2-11, 3-28, 4-108
Segment registers, A-84 Coherence, 4-36
String operands, A-78, A-129 Data formats, 2-10, 2-19
Task register, A-82 I/O space, 2-14 to 2-16
Test registers, A-87 Linear, 2-4
Local Lockable accesses, A-77
Breakpoint enable, 4-123 Locking, C-16
Breakpoint on exact match, 4-123 Models, 2-6 to 2-7
Local descriptor table (LDT), 4-1, 4-22, Operands, 3-5 to 3-7
4-27,4-58 Operations, 3-28
Local descriptor table register (LDTR), 4-27 Organization, 2-1, 4-101
Lock, 3-3,4-37, 4-91, 4-137, 4-140, A-8, A-77, Paging, 2-4 to 2-5
C-15 Physical, 2-4
Lock memory bus, A-77 Segment selection, 3-8
LOCK prefix, 4-132, 4-137, 4-140, C-15 Segmentation, 2-2, 2-5, 4-13, 4-103, 4-107
LOCK* signal, C-15 to C-16 Segments, v
LODSB, A-78 Size, 4-13
LODSD, A-78 Slow access, C-13
LODSW, A-78 Space, 2-1
Logical Super Space, 4-104
Address, 2-1, 2-5 SuperState V mode, 4-104
Bit test, A-132 SuperState V save area, A-117
Instructions, 3-19 Tasks, 4-70
Loop, C-11 Memory-mapped /O, 2-14 to 2-16, 4-74
Loop coding, A-79 Microcode stepping level, A-116
LOOP instructions, A-52 MOD, 3-4
LOOPcc, A-79 Modes
LSB, iv 80286 protected, 4-139
LSL, 4-131, A-80 Addressing, 2-6, 3-9, B-19
LSS, A-81 Entering, 4-102, 4-133, 4-135
LTR, 4-64, 4-131, A-82 Execution, 2-18, 4-128
Interrupts, A-53
M Leaving, 4-102, 4-133, 4-135
Opcode decoding, A-28
m, A-2 Protected, 2-18, 4-6, 4-102, 4-128,
[m], A-2 4-133 to 4-134, B-4, C-8
ml6, A-2 Real, 2-18, 4-17, 4-102, 4-128 to 4-134,
m32, A-2 A-64, C-8
m64, A-2 . SuperState V, 1-1, 1-3, 4-104
m80, A-2 User, 4-104
Machine state, 4-55 Virtual-8086, 2-18, 4-28, 4-135 to 4-138

Machine status word (MSW), 4-11, A-76, A-125
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t/m, 3-2, 3-4, 3-10, 3-13, A-68, A-117,
20 to B-22
Byte format, B-20
Encodings, B-21 to B-22
f, A-2
IV, 4-97 to 4-98, 4-137, A-76, A-83 to A-84,
A-86 to A-88
Store segment register, A-86
OVS, A-89, C-14
IOVSB, A-89
{OVSD, A-89
AOVSW, A-89
MOVSX, A-90
MOVZX, A-91
MP, 4-13, 4-91, A-34
MSW, 4-11, A-76, A-125
MUL, A-92
Multiple translation, C-6
Multiplication, A-92
Multiply, A-48
Multiprocessing, 4-37
Multitasking, 4-54 to 4-71, 4-103

N

n, A-5

Near jump, A-60

Near pointer, 2-26

NEG, A-93

Negate, A-93

Nested, 4-57

Nested tasks, 4-9, 4-70

Nesting level, A-44

NMLI, 4-77, 4-91, 4-97, 4-102, 4-138, A-33, A-46

NMI interrupt, 4-91

NOP, A-94

NOT, A-95

Notations, iv, A-1, A-5

Notations and conventions, iv

NT, 4-9, 4-54, 4-63, 4-65, 4-70, 4-89, A-2

Numbers
BCD, 2-23, A-12 to A-13, A-15
Integers, 2-20
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PRELIMINARY

0]

OF, 2-33,4-9, A-2
Offset, 2-3, 2-5, 2-26, 4-15 to 4-16, 4-41
One’s complement, A-95
Opcodes, 3-2 to 3-3, B-21 to B-22, B-24 to B-28
Undefined, 4-132
Operands, 3-5, A-7
Access order, C-6, C-15
Compare, A-36 to A-37
Conflicts, A-7
1/0, 3-14
Immediate, 3-14
Loading, A-78
Memory, 3-7
Mixed size, 4-142
Register, 3-7
Size, 2-29, 3-3, 3-6, 4-142, A-8, A-29 to
A-30, A-38 to A-39, A-69, A-111
Strings, A-52, A-78, A-98, A-129
Operating system, 4-1
Optimizing execution speed, 3-28
OR, A-96
OUT, 4-106, A-97
Output to I/O port, A-97 to A-98
OUTS, 4-106, A-98
OUTSB, A-98
OUTSD, A-98
OUTSW, A-98
Overflow, 4-91, A-56
Overflow flag, 2-33, 4-9

P

P, 4-19, 4-30, 4-34, 4-37, 4-41, 4-62, 4-67, 4-86,
4-92
Packed BCD, 2-23
Page, 2-4 to 2-5
Base, 2-5
Directory, 4-1
Directory base address, 4-11, 4-58, C-5
Directory offset, 4-15
Enable, 4-11 to 4-12
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Fault linear address, 4-11
Faults, 2-37, 4-92
Offset, 4-15
Size, 2-4
Table base address, 4-33
Table entries, 4-1, 4-33, 4-35
Table offset, 4-15
Translation, 2-19
Page-fault linear address, 4-11, 4-69
Page-fault service routine, 4-69
Page-level protection, 4-49
Paging, 2-4 to 2-5, 4-30 to 4-37
80286, 4-139
Aliases, 4-36, 4-60, C-6
Directories, 4-32, C-4
Directory base address, 4-11
Enable, 4-11
Enabling, 4-30, 4-103
Exceptions, C-7
Fault address, 4-11
Faults, 4-30, 4-32, 4-35, 4-69, 4-92
Mechanism, 4-31, 4-103
Multiprocessors, 4-37
Page size, 4-30
Privilege level, 4-34, 4-52
Protection, 4-49, 4-86
Protection mechanism, 4-43
SuperState V mode, 4-108
Tables, 4-1, 4-32, C-4
Tasks, 4-70
TLB, 4-35
TLB hits, A-6
TLB miss, 4-35
Translation, C-3, C-5 to C-6
TSS, 4-60
Validation, C-6
Parameters, 4-42
Parity flag, 2-34, 4-11
PE, 4-13, 4-102, 4-134
PF, 2-34,4-11, A-2
PG, 4-12, 4-30, 4-133, C-5
Physical address, 2-1, 2-5
Physical memory, 2-4
Pipeline, 4-110, C-9
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Pipeline latency, C-10
PL,4-113,4-118
pm, A-5
Pointer location, 4-113
Pointers, 2-26
Far, 2-26, A-63, A-67, A-70 to A-71,
A-73, A-81
Load, A-67, A-70 to A-71, A-73, A-81
Near, 2-26
POP, 3-9, 4-97 to 4-98, A-99 to A-100
POPA, A-101
POPAD, A-101
POPF, 4-9, 4-127, A-102
POPFD, A-102
Ports, 4-107
Prefetch queue, C-10
Prefixes, 3-2 to 3-3, A-7
Present bit, 4-19, 4-30, 4-34, 4-41, 4-62, 4-67,
4-92, A-66, C-4
Present/page-protection, 4-86
Privilege level, 2-16 to 2-17, 2-19, 4-16, 4-34,
4-36, 4-42, 4-44 to 4-45, 4-57, 4-65, 4-68,
4-72,4-137, 4-141, A-17, A-50, A-52, A-58,
A-84, A-97 to A-98, A-100, A-110
Gates, 4-40
Summary, 4-51
Privileged instructions, 2-17, 4-53
Procedures, 4-87
Entering, A-44
Exiting, A-69
Interrupt, 4-87
Nested, A-44, A-69
Return, A-57, A-109 to A-110
Processors, iii to iv, 1-1
Features, 1-2 to 1-3
Program stack, 2-13
Programmer’s model, 2-1
Programming guidelines, 3-27
Protected mode, 2-18, 4-128
Protected mode reference, 4-6, B-4
Protection
Control instructions, 3-25
Enable, 4-13
Mechanisms, 4-43
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, 3-9,4-131, 4-136, A-103
A, A-104
1AD, A-104
dF, A-105
HFD, A-105

adword, 2-22
lery cache, A-117
ueue, C-10

nick reference, B-1

R

r, A-2

r/m, 3-4, A-3, A-5
[r/m], A-3

r/m8, A-3

1/m16, A-3
r/m32, A-3

R/W, 4-20 to 4-21, 4-34 to 4-35, 4-44, 4-49, 4-51

r8, A-2
rl6, A-2
132, A2
RCL, A-106
RCR, A-106
Read/write, 4-20, 4-34, 4-115, 4-117
Read/write break condition, 4-122
Real mode, 2-18, 4-128 to 4-134
Recursively callable procedure, A-44
reg, A-3
REG field, 3-4
Register addresses, 3-13
Register operands, 3-7
Registers, 4-3 to 4-13, 4-79
Addresses, 3-13
After reset, 4-100
Application, 2-27
Arithmetic, A-68
Base pointer (EBP), 2-30
Capture, 4-44
Code, 2-35
Control, 4-3, 4-5,4-11, A-87 to A-88
CRO, A-76, A-125
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CR3,C-5

CS, 4-6, A-84

Data, 2-35

Debug, 4-3 to 4-5

Debugging, 4-119, A-87 to A-88

Descriptor, 4-5

Descriptor table, 4-22

Destination index, 2-29

DR7:0,4-119

DS, 4-6, A-67

Encoding, A-4

ES, A-70

Flags (EFLAGS), 2-32, 3-14, 4-3, 4-7,
4-57 to 4-58, A-65, A-102, A-105, A-112

FS, A-71

GDTR, 4-6, 4-24, A-72, A-120

General, 2-27 to 2-31, 3-12, 4-5, 4-7,
4-57 to 4-58, A-101

GS, A-73

IDTR, 4-6, 4-26, 4-80, A-74, A-123

Implied, 2-29

Index, 2-6

Instruction pointer (EIP), 2-27, 2-32

LDTR, 4-6, 4-27, A-75, A-124

Operands, 3-5, 3-7

Organization, 4-3

Overview, B-1 to B-3

Protected mode, 4-6, B-4

Segment, 2-6, 2-27, 2-35 to 2-36, 3-12,
4-3,4-5,4-14, 4-46, A-84, A-86, A-100

Segment selector, 2-35, 4-57, 4-59

Selector, 2-35, 4-6

Shadow, 4-3, 4-6, 4-14, C-8

Size, 4-144, A-67

Source index, 2-29

Special considerations, C-1

SS, 4-6, A-4, A-81

Stack, 2-35

Stack pointer (ESP), 2-13, 2-30

Stack segment (SS), 2-13

Status and control, 2-27, 2-32 to 2-34

System, 4-3, 4-13

System address, 4-3

System descriptor, 4-5
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System segment, 4-3, 4-5
Task, 4-55, 4-63
Test, 4-3 to 4-5, 4-112, A-87 to A-88
TLB, 4-112
TR, 4-6, A-82, A-130:
TR6, 4-112
TR7,4-112
Usage, 3-27
Virtual-8086 mode, 4-136
rel, A-3
rel8, A-3
Related documents, v
REP, 4-113, 4-118, A-52, A-108
REPE, A-108
Repeat, 3-3, A-8, A-108
Replacement, 4-113
Replacement algorithm, C-3
REPNE, A-108
REPNZ, A-108
REPZ, A-108
Requestor privilege level (RPL), 4-15 to 4-16,
4-46
Reserved addresses, 4-72
Reserved bits, v
Reset, 4-99, A-46
RESET signal, 4-99
Resource protection, 2-16 to 2-17
Restarted instructions, 4-8
Resume flag, 4-8
RET, 3-9, A-109 to A-110
RETF, A-110
RETN, A-109
Return, 4-52, 4-54, A-57
Far, A-110
Near, A-109
RF, 4-8,4-91,4-97,4-126, 4-141, A-3, A-58
ROL, A-106
ROR, A-106
Rotate, A-106
Rotate through carry flag, A-106

RPL, 4-15 to 4-16, 4-42, 4-44, 4-46, 4-51, 4-65,

A-17, A-58, A-110
RW3:0, 4-122
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SAHF, A-112

SAL, A-113

SAR, A-113

SBB, A-115

Scale, 3-11

SCALL, 4-105, 4-108, A-116

. Scan string data, A-118

SCASB, A-118

SCASD, A-118

SCASW, A-118

Security, 4-109

Segment and shadow registers, 4-3, 4-14
Segment-level protection, 4-45
Segmentation, 2-5, 2-19, 4-13 to 4-30
Segmented addressing, v

Segmented memory models, 2-8

. Segment(s), 2-6, 3-3

8086, 4-129

Access rights, 4-17

After call, A-26

Aliases, 4-59, C-9

Attributes, 4-17

Availability, 4-19

Base, 4-18, 4-29, 4-61

Base address, 4-17 to 4-18, 4-29, 4-61

Code, 4-16, 4-19, 4-21, 4-23, 4-42, 4-46,
4-82

Code modification, C-9

Conforming, 4-14, 4-19, 4-21, 4-52

Data, 4-19, 4-21, 4-23

Default size, 3-3, 4-18

Descriptors, 2-6, 4-15, 4-17, C-7

Executable, 4-19

Expand-down, 4-19, 4-21, 4-45

Expand-up, 4-21, 4-45

Faults, 4-93

Granularity, 4-18, 4-29

Initialization, A-84

Jump, A-63

Limit, 4-17, 4-19, 4-29, 4-61, 4-142

Limit loading, A-80

Limit violation, 4-91 to 4-92

Loading, 4-46
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vianipulation, 3-24
Mechanism, 4-15
Not present, 4-92
Organization, 2-2, 2-7
Override prefixes, A-8, A-52
Present, 4-19, 4-30
Privilege level, 4-19, 4-30, 4-46, 4-52
Protection, 4-45
Register loads, A-84
Register stores, A-86
Registers, 2-6 to 2-7, 2-27 to 2-28,
2-35 to 2-36, 4-5, 4-58
Selection, 3-8
Selectors, 2-3, 2-5, 2-7, 4-15, 4-42, 4-44,
A-64
Selectors (LDT), A-75
Shadow registers, C-8
Stack, 2-13, 4-19, 4-21, 4-23, 4-42,
A-100 to A-101
SuperState V mode, 4-105, 4-108
Transfers, A-86
TSS, 4-23, B-10
TSS (80286), B-11
Upper bound, 4-18
Valid, 4-19, 4-30
Verify, A-133
sel, A-3
Selector registers, 2-35, 4-46
Selector(s), 2-26, 2-35, 4-6, 4-15, 4-42, 4-44,
4-67
Self-test, 4-99
Semaphore, 2-25, 3-3, C-15
Serialization, C-14
Service routines, 4-87
Set, v
Byte on condition, A-119
Carry flag, A-126
Direction flag, A-127
Interrupt flag, A-128
SETcc, A-36, A-119
SF, 2-33, 4-10, A-3
SGDT, A-120
Shadow registers, 4-3, 4-14
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Shift
Arithmetic, A-113
Instructions, 3-28
Left double, A-121
Right double precision, A-122
Shift and rotate instructions, 3-20
SHL, A-113
SHLD, A-121
Short jump, A-60
SHR, A-113
SHRD, A-122
Shutdown, 4-105, 4-111
SI, 2-28, A-2, A-4
SIB, 3-2, 3-4, 3-10, B-20, B-23
Byte format, B-20
Encoding, B-23
SIDT, 4-98, A-123
Sign extension, A-90
Sign flag, 2-33, 4-10
Signed integers, 2-21
Simultaneous interrupts and exceptions, 4-95
Single-step trap, 4-126
SLDT, 4-131, A-124
SMSW, A-125
Source index, 2-28
Source index (ESI) register, 2-29
SP, 2-28, A-2, A4
Special programming considerations, C-1
src, A-3
SS, 2-28, 2-35, 4-3, 4-17, 4-59, 4-88, A-3, A-81
SS0, 4-57
SS1, 4-57
S$82,4-57
Stack(s), 4-42, 4-87
16-bit, 4-141
80286, 4-141
Addresses, 3-9
After call, A-26
Base pointer (EBP), 2-30
Create, A-44
Expand-down, 4-18
Faults, 4-92
Frame, 2-30, 4-88, A-44
Initialization, 4-102
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Instructions, 3-8, A-99 to A-105
Interrupts, A-54

Loads, A-84

Manipulation, 2-30

Operations, 2-13

Organization, 2-13

Pointer, 2-28, 2-30, 4-57, A-100 to A-103

Pointer register (ESP), 2-13, 2-30
Pointer size, 4-143
POP, A-99 to A-102
Privilege level, 4-46
PUSH, A-103 to A-105
Release, A-69
Return, A-58, A-109 to A-110
Segment, 2-35
Segment loads, A-100
Segment selector, 2-28, 4-57
Top, A-100 to A-105
Stack segment (SS) register, 2-13
Stack-frame base pointer, 2-28
Status and control flags (EFLAGS), 2-32
Status and control registers, 2-27 to 2-28, 2-32
STC, 2-34, A-126
STD, A-127
STI, 4-98, A-128
Store
AH register, A-112
Control registers, A-88
Debugging register, A-88
Global descriptor table register, A-120
Interrupt descriptor table register, A-123
Local descriptor table register, A-124
Machine status word, A-125
Segment register, A-86
Task register, A-130
Test registers, A-88
STOSB, A-129
STOSD, A-129
STOSW, A-129
STR, 4-64,4-131, A-130
Strings, 2-24 to 2-25, A-37, A-52, A-78, A-89,
A-98, A-108, A-118, A-129
Addresses, 3-10
Bit, 2-25
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Instructions, 2-29, 3-8, 3-21
Operations, 2-32

SUB, A-131

Subtract with borrow, A-115
Subtraction, A-41, A-131
Super Space, 4-104
Super386 DX/DXE

Family, 1-1
Features, 1-2 to 1-3
Names, iv

SuperState V mode, 1-1, 1-3, 4-44, 4-96,

4-104 to 4-109
Entering, 4-105, A-116
Entry vectors, 4-106
EPIC facility, 4-107
Event capturing, 4-107
Save area, A-117
Saved information, 4-106-
Security, 4-109
Segment descriptor, 4-105
Vectors, A-116

Switch task, A-28, A-64
System

T

Address registers, 4-3, 4-5

Calls, 4-37

Descriptor registers, 4-5

Flags, 2-32

Management features, 4-104
Programming, 4-1

Registers, 4-3

Segment and shadow registers, 4-3
Segment registers, 4-5

T, 4-58, 4-62, 4-76, 4-91, 4-125
Table(s), 2-5
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Descriptor, 4-16, 4-22

Filling mechanism, C-3

GDT, 4-1, 4-24, 4-65, A-75, A-120
GDT load, A-72

IDT, 4-1, 4-26 to 4-27, 4-65, 4-80, A-123
IDT load, A-74

Indicator, 4-15 to 4-16, 4-85

Interrupt descriptor, 2-19
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[nterrupt vector, 2-19
LDT, 4-1, 4-27, 4-58, 4-65, A-124
LDT load, A-75
Lookup, A-136
Page, 2-5, 4-1, 4-32 to 4-33
Page directories, C-4
Page directory entries, 4-33
Page table entries, 4-33
Page tables, C-4
Page translation, C-5
Segment descriptor, 2-6
TLB, 4-35,4-112,C-3
TSS, 4-1
lask state segment (TSS), 4-1, 4-54 to 4-55
Task state segment (TSS) descriptor, 4-55
Task(s), 4-54, 4-87
80286, 4-62, 4-139
Back-link field, 4-55, 4-57 to 4-58
Flags, 4-58
Gate descriptor, 4-67
Gates, 4-23, 4-38, 4-55, 4-65, 4-80
Instruction pointer, 4-58
Interrupts, 4-89
Linked, 4-70
Machine state, 4-55
Memory space, 4-70
Nested, 4-9, 4-54 to 4-55, 4-63, 4-70
Privilege level, 4-52, 4-55, 4-57
Registers, 4-55, 4-58, 4-63, A-82
Return, A-57
Status, 4-63
Switch, 4-54
Switching, 4-12, 4-36, 4-38, 4-54, 4-68,
A-28, A-53, A-64
Task-switch trap, 4-125
TSS, 4-54 to 4-55
TSS descriptor, 4-61
TEST, A-132
Test registers, 4-4 to 4-5
Testing the TLB, 4-112
TF, 4-10, 4-80, 4-126, A-3
TI, 4-16, 4-85
TLB, 4-35, 4-112, A-6, C-1,C-3
TLB miss, 4-35
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TR, 4-3, 4-63, 4-68, A-3, A-130
tr, A-3
TR6, 4-4,4-112,4-114,4-116
TR7,4-4,4-112t0 4-113,4-118
Translate byte via table lookup, A-136
Translation lookaside buffer, C-3
Entries, 4-113, C-3
Flushing, 4-36
Invalidation, C-5
Lookup, 4-116
Modification of tables, C-4
Organization, 4-35
Reading, 4-116
Set, C-3
Table filling, C-3
Testing, 4-112
Writing, 4-113
Trap
Bit, 4-58, 4-76
Flag, 4-10
Gates, 4-23, 4-38, 4-80
Traps, 2-37, 4-77
Single-step, 4-126
Task switch, 4-126
TS, 4-12, 4-69, 4-91
TSS, 4-9, 4-23, 4-38, 4-42, 4-54, 4-76, 4-89,
4-139, A-58,B-10 to B-11
Descriptor, 4-61
Segment selector, 4-67
- Type, 4-62
Two’s complement, 2-21, A-93
Type, 4-30, 4-42, 4-44 to 4-45, 4-67, A-66
Type field, 4-62, 4-141, A-66

U

U, 4-86, 4-115, 4-117

U*, 4-115,4-117

U/S, 4-34 to 4-35, 4-44, 4-49, 4-51
Undefined opcodes, 4-132

Unpacked BCD, 2-23

Unsigned integers, 2-20

Upper bound, 4-18, A-66

User mode, 4-104

User/supervisor, 4-34, 4-86, 4-115, 4-117
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V, 4-116

Valid, 4-19, 4-30, 4-41, 4-62, 4-67, 4-114, 4-116

Variable shifts, 2-30

Vectors, 4-79, A-116

Verify segment, A-133

VERR, 4-131, A-133

VERW, 4-131, A-133

VF, A-3

Virtual address, 2-1

Virtual-8086 mode, 2-18, 4-8 to 4-9, 4-128,
4-135 to 4-139

VM, 4-8, 4-135, A-58

v, A-5

W

W, 4-86, 4-115,4-117

W*, 4-115, 4-117

WAIT, 4-91 to 4-92, A-7, A-34, A-134
Wait state, A-7

Word, 2-10, 2-22

Write/read, 4-86
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XCHG, A-135,C-15
XLATB, A-136
XOR, A-137

Z

Zero extension, A-91
Zero flag, 2-34, 4-10
ZF, 2-34,4-10, A-3
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Phone: 011-852-3450121

India, Bombay
Silicon Electronics
Phone: 011-91-22-243460

India, New Dehli
Ajay Jain
Phone: 011-91-11-6863044

Israel, Tel-Aviv
CVS
Phone: 011-972-3-5447475

Japan, Kawasaki
CTC Components Systems Co., Ltd.
Phone: 011-81-44-8525121

Japan, Tokyo
ASCII and Mitsui and Company
Phone: 011-81-33-5022251

Korea, Seoul
Nae Wae Semiconductor
Phone: 011-82-2-8429500

Malaysia, Penang
Dynamar
Phone: 011-60-4-363376

Singapore

Technology Distribution
PTE Ltd. .
Phone: 011-65-2997811

Taiwan, Taipei
Ally, Inc.
Phone: 011-886-2-7886270

Taiwan, Taipei

World Peace

Industrial Co., Ltd.

Phone: 011-886-2-7865311

Thailand, Bangkok
Grawinner
Phone: 011-66-2-2158742

Representatives-4

Super386 DX Programmer’s Referenm

Europe Americas
Belgium, Zaventem Brazil, Sao Paulo
ACAL Auriema Belguim Nishicom

Phone: 011-32-2-7205983 Phone: 011-55-11-5351755

Denmark, Herlev
Nordisk, Elektronik A/S
Phone: 011-45-4-2842000

Finland, Helsinki
OY Fintonic AB
Phone: 011-358-0-6926022

France, Le Chesnay
A2M
Phone: 011-33-1-39549113

Germany, Nettetal
Rein Elektronik GmbH
Phone: 011-49-2153-7330

Italy, Milano
Moxel S.R.L
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