——== CIRRUS LOGIC"

CL-PS7500FE Development Kit

Software User’'s Guide

Embedded Processors Division

Copyright © 1999 — Cirrus Logic Inc. All rights reserved.

This document describes sample code for the CL-PS7500FE provided by Cirrus Logic Inc. No warrantyfas given
the suitability of the program code described herein for any purpose otheletihanstrating functional operation
of the CL-PS7500FE. The information contained in this document is subject to change moticaut

Version 1.0 March 1999

CL-PS7500FE Development Kit — Software User’'s Guide

i

March 1999

Version 1.0

= CL-PS7500FE Development Kit — Software User’s Guide
Table of Contents
I [011 To 11 {1 1o o 1SR TPPRPP 5
2. ARM Software Development Toolkit
2 S S |V B = (o [=Tox g 1Y F= U =T T PRSPPI 5
2.2, ARM DEDUGOET ..ttt e oottt e e e oot e e oot e e e e o R b e e e e e e R e et e e e e e e b b e et e e e e e b r e e e e e e e nnees 6
T N 1o 1= LT PP P TP PRPPPPPPPIN 7
S = oY o ST =] (0] o PP P PP PPPPTO 8
B LID7500 i e e e e e e et ieeeeeeeeeeeeeettte—————.. . ————————11 e eeeeeeeteeererearaaan 8
LTS - U8 o [o T o PUUURPRRR 8
Lo O S N o [o] =] = =1 (o Lo « IR P PP U P USPPPPPP PP 8
L I AN (o [To] B 1= o T PSPPSRI 9
L0 R T AN o [To] 1 o F= 1 o[- TP RRPRTOTPPRP 9
Lo I S AN T [To] = = Y2 PSP 9
LN T N o [To] d =17 = o PP 9
LI o |- o PP RPPT 9
5.2.1. D= 11T @ 1 = PP UPRPPPPPPPPRP 9
5.2.2. (D =T O g T T U 9
5.2.3. D= T O] (o] RO 9
5.2.4. [= LT O L PUPRTPRN 10
5.2.5. D=\ 1| (O] (o] PP 10
5.2.6. DIaWGELPIXEL ...t e e e e e e e e e e e aaaaaaaeaeeearares 10
5.2.7. D= 111 R T TP PRPR 10
5.2.8. D (ST {3 = PR 10
5.2.9. - VLT 1 o PSR 10
L O B - N1V 1 T 7SR 10
LR T (= T o Y o PP 10
5.3.1. L F= U g1 7= 1= 1 10
5.3.2. [o] = T L= o1 (o | (P PTPRIt 11
5.3.3. FIASNNUMSECIONSvitiiiiiiiie e eee e e e e e e e e e e e e e e e e e e eesetb et an e s smmmmmmmmmm———t 1 1nan 11
5.3.4. FIaShPrOgramBIOCK..........ciiiiiiiiiieie ettt e e e st e e e et eemmneeeeeeen e anee 11
5.3.5. FIasShSECIOIINTO ... e e e e e e e e e e e s mm—— e 1118 11
L S | Y o UURPPPPPRRRIN 11
54.1. IRCIRAIREAAYottt e ettt e e s ek bbbt e e e s ekt e et e s s b e et e e e s annnneeeee s 11
L 1 2 B 1=][2 PP PSRROP 11
543, IRENADIE.....eeeeie e et re s 11
5.4.4. IRRECEIVECATeii i ettt e et e e e sttt e e e e e sttt e e e e e s s eeemmneeeean e e s nnees 12
5.4.5. 1 ST =] oo [o - | SO 12
LT (=] o o PP PRR 12
5.5.1. INEEITUPLINSTAIIISR. r e e e e et e e aeeeee e e s o nnnee 12
5.5.2. INTEITUPLIREMOVEISR et e e e e e e e e et meeemmmmmmmmmn e e 12
5.5.3. INtErTUPLSEIDACHANAIET ...ttt e eeeeeennnane e e 12
5.5.4. InterruptSetKeyboardHANAIEToouiiiiii e 12
5.5.5. INtErTUPISEIMOUSEHANAIETeiiiiiiiee e e e e e e e 12
L T 11 £ 1 1= |18 PP UUUO 13
L AR o o Y o PP PTR TP PSRR 13
5.7.1. KbdDisable
5.7.2. [0 To] =T o] = PP
L A TR 1 o T | =T Vo PSPPI OPPPRPR 13
L A S (o T | =T Vo | RPN 13
LTS T =T X o PO EPPOPPPPRRRN 13
LTS T8 O N 1 PSSR 13
LS 0 N 1] o PSSR 14
LS G T I D 1S 7=) 7 | (SRR 14
L | o o PO TP PP PP PPPPPPPPPPPRPPN 14
5.9.1. LPEENADIE ...ttt e et e e e e e e e e b et e e e e e e e e ees e e e e e e e e aane 14
Version 1.0 3 March 1999

CL-PS7500FE Development Kit — Software User’'s Guide =

5.9.2. 011 =T o= TV 4 - 14
5.9.3. 016571 o [4 - T 14
5.10. [TO T ST X o 14
LT 0 I A Y [10 Y=Y BT 17= 1 o] [T 14
LT O T2 Y (o 10 Y=Y = g T=1 o [T
LT O TR T Y [10 Y=Y = L=T= Lo T 14
B5.10.4. MOUSEREAAY.......uiiiiiiiiiitiii ettt e et e e e e et e e e e e e s n b bt e e eemmn e e e e e et e e e e nneee 15
5.11. L1 1 o PP 15
L0 U Y = I = g == Vo YR 15
L N0 5 2 U 7Y = I D T1=F=1 o | 15
LT 5 T U 1Y = I = T o] [N 15
5.11.4. UARTRECEIVECINA ..uuui ittt e et e e e e e e s e et e e e s eabb e e s eebbs s s emmmmmmmmae s es 15
LTI A T 7N = 3 ST Vo [o =Y N 15
5.12. A0 = T o PP UPPPPN 16
LT BV €7 N =l o T=1 o] [YT 16
LT 2V € 7 X @] 1 AT 16
LT R T Y/ € 7 X @ o W TR 16
LTS T 101 o] [PRSP PP PPTPTPPPPPP 16
LT - 10 (o [T TR 16

6.2. flashit

LS TR TR 11 (=0 V2 16
LS T S 15 {2 1| 17
LR TR =1/ o o T o [RN 17
LT TR 1< o R
L | 1T o 17
(ST TR 1141 11 1= 17
(STRS TR =] (== o 17
6.10. LU= T (<To] o Lo T 17

March 1999 4 Version 1.0

CL-PS7500FE Development Kit — Software User’s Guide

i

1. Introduction
The CL-PS7500FE evaluation kit example software is targeted at software develbpeptan to port operating
systems and applications to the CL-PS7500FE. A library of routines is provided agnifigure and operate all of

the peripherals on the CL-PS7500FE evaluation board. Additionally, there is a set of sample programs that use this

library to exercise the peripherals on the board.

To use the CL-PS7500FE evaluation kit example software, the ARM® SDToWe2ss0 containing the project
manager, ‘C’ compiler, assembiler, linker, debugger, and ARM instruction sedtemslrequired. The code in this
kit is for a PC running Windows 95® or Windows NT 4.0®. Familiarity with thiRM debugger and project

manager is assumed in this document.
2. ARM Software Development Toolkit
Included on the CD-ROM is a 60-day evaluation version of the ARM SDT Version ZHi8.is a fully functional
evaluation copy of the SDT that will cease to execute after 60 days. To obtain the full versiodmRMIEDT,

contact ARM Ltd. www.arm.con).
To install the ARM SDT, simply run setup.exe from #i&250 directory on the CD-ROM and follow the on-screen
directions. If you are unfamiliar with the ARM SDT, be sure to select the online manuals astbe components

to install.
The evaluation version of the SDT will create a seemingly useless directory called “c_dilla”; donowé rhis
directory or its contents else the evaluation version of the SDT will no longer waristall correctly, and

reinstalled on your system.
Once the SDT has been installed, there are two applications that will be used to build and debug applications: the
ARM Project Manager and the ARM Debugger. These applications are described fully in the online manuals, but

brief instructions for basic use of these applications is provided in the following sections.

2.1. ARM Project Manager
The ARM Project Manager is used to develop and build applications for the CL-PS7500FE evaluation bsard. It i
found in the “Start” menu under “Programs” then “ARM SDT v2.50”. Once run, it hdllvsan empty workspace.

The first thing to do is to open a project file (which has an extension of “.apj”). isT@ne by selecting “Open”

from the “File” menu.
Once a project has been opened, there are several basic operations that you can perform:
1) Edit the source code. To do this, click on the “+” beside the “ARM Executable Image” line in the project

window, then the “+” next to the “Debug” line, then the “+” next to the “Sesft line, and then double click on
the source file to be edited. The source file will be opened in another window.aiStaditing operations can

be performed on the source code in this window.

2) Build the executable. To do this, click on the “Build Debug” button at the bottom of tlecpwandow. You
can build either a debug, debug-release, or release version of the executable; selecting the “Debug”,
“DebugRel”, or “Release” line from the project window will change the buttorneabadittom to “Build Debug”,

“Build DebugRel”, or “Build Release” respectively. Alternately, you can select “Build” from the “Project”

menu or press Shift+F8 to build the executable. The debug version of an executable contains all the symbolic

information needed to debug the executable, the debug-release version contains some symbolic debugging
information and some optimizations, and the release version containanboligyinformation and is fully

optimized.
3) Debug the executable. To do this, select “Debug” from the “Project” menu, or press F5. This wiiltlzein
ARM Debugger, load the executable image, and set a breakpoint at the beginning of the “main” function.

March 1999

Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

4) Run the executable. To do this, select “Execute” from the “Project” menu, or press Ctrl+B5willTlaunch
the ARM Debugger, load the executable image, and begin execution of the program.

2.2. ARM Debugger

The ARM Debugger is used to debug applications on the CL-PS7500FE evaluation boardunt is fine “Start”

menu under “Programs” then “ARM SDT v2.50”. Once run, it will show three wisdtive “Execution Window”,
“Command Window”, and “Console Window". The execution window shows the clexecution context of the
target system. The command window allows you to type commands to the debugger, thowgh probably

rarely use this since the same functionality can be easily accessed via the GUI. The consoleshomdothe

output from the target system, including anything printed out from your application

If the ARM Project Manager launches the ARM Debugger, the image to be debwijgeel automatically loaded
into the target system’s memory. Otherwise, the image to heggeth must be loaded manually by selecting “Load
Image” from the “File” menu.

Once an image has been loaded into the target system’s memory, there are several basic operations that you can
perform:

1) View the source files in the program image. Select “Source Files” from the “View” menu, or press Ctrl+F, and
a window will be displayed showing all the source files in the program imagabl®olicking on one of the
file names in the “Source Files” window will open a new window that displays the seleated &le.

2) Set a breakpoint. In either the “Execution Window” or a source file window, place the cursor on tiecliee
you want to place a breakpoint. Then select “Toggle Breakpoint” from the “Execute” menu, or press F9.
Performing the same action after selecting a line that already has a breakpoint on it will remove the breakpoint.

3) Run the program. Select “Go” from the “Execute” menu, or press F5. The pragitamgin executing. It
will run until a breakpoint is reached, the program terminates, or a fatal error occurs.

4) Single-step the program. The program can be single-stepped in three different waysan$tep to the next
point within the program execution, stepping into any procedures called, by selecting “Step In” from the
“Execute” menu, or pressing F8. Think of this as stepping into the called procedure. You can step to the next
point within the program execution, allowing any called procedure to execute to completion, by selecting
“Step” from the “Execute” menu, or pressing F10. Think of this as stepping over any called prscedur
Finally, you can step to the first point within the program execution after thentuoutine has completed
executing by selecting “Step Out” from the “Execute” menu, or pressititBhi Think of this as stepping out
of the current procedure.

5) Run the program to a specific line. This is roughly equivalent tongedtbreakpoint, running the program, and
then removing the breakpoint. Once a line has been selected in the “Execution Window” or a source file
window, select “Run to cursor” from the “Execute” menu, or press F7.

6) View the ARM registers. Select “Registers\Current Mode” from the “View” menu. This will gispleindow
with the currently accessible register set. This is the most useful register view for typicaéustbetiregister
views would be useful for OS development.

7) View the local variables of the current procedure. Select “Variables\Local” from the “View” menu, or press
Ctrl+L. Right clicking on the variables allows you to change the way the lgisakmlue is displayed, or
changes the content of the variable. Double clicking on a pointer variable will open armiawwhowing the
contents of the memory pointed to by the variable. Double clicking on whiables will allow you to change
the variable’s value.

8) View the global variables of the current program. Select “Variables\Globali the “View” menu, or press
Ctrl+G. The global variable window can be manipulated in the exact same way as the local variable window.

March 1999 6 Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

9) View the contents of memory. Select “Memory...” from the “View'magor press Ctrl+M. A dialog will be
displayed allowing you to specify the memory address you wish to view. Once lgoti“&K”, a memory
window will be displayed. The memory window will always show @érth of data, starting on a 4K
boundary, and display the memory contents as hexadecimal 32-bit words.

w

. Angel™

The example software provided in the evaluation kit is designed to run undegl afrthe Angel debug monitor

version 1.20 from ARM. There are two versions of Angel provided with theatia@n kit: one communicates with

the host system debugger via COM1 and the other via COM2. The two versions are identical in every other respect.
The two versions exist since the IR port uses COM2, and having Angel communicate withtthia l0OM2

would prevent the use of the IR port. The version that uses COML1 is called cl7500_1.fl anditretiat uses

COM2 is called cl7500_2.fl. They reside in {s7500fe\angel directory of the CD-ROM. The evaluation board is
shipped with cl7500_1.fl programmed into the boot ROM.

Also contained in thes7500fe\angel directory is thesource directory, containing the source code for this version of
Angel. For this source code to be built, it must be placed in the same directory into vehisRNhSDT was
installed (i.e., in the same directory that contains the “bin”, “cl”, “demon”, “include”, “lib”, etc. directories of the
ARM SDT).

The ARM Project Manager file cl7500fe.apj under sherce\cl 7500fe.b\apm directory can be used to build Angel.
There are two variants of Angel that can be built: Imagel and Image2. The Imagel variant uses COM1 to
communicate with the host debugger and the Image2 variant uses COM2. Once built, the file
source\cl 7500fe.b\apm\imagel\cl 7500fe.fl corresponds to the c¢l7500 _1.fl on the CD-ROM, and the file
source\cl 7500fe.b\apm\image?\cl 7500fe.fl corresponds to cl7500_2.fl.

Angel enables the MMU on the CL-PS7500FE and uses it to rearrange the memory map of the prblcesaaim

reason this is done is to place the DRAM of the system at location 0. This has the advantage of placing the
exception vectors in DRAM such that they can be replaced (or chained) by an application that needs access to one of
the exception vectors. The memory map under Angel appears as follows:

0x1800:0000 ISA Bus Space
0x1400:0000 Reserved

0x1300:00000 I/O Space / CL-PS7500FE Registers
0x1200:0000 Reserved

0x1100:0000 *Flash SIMM
0x1000:0000 Flash SIMM / Boot ROM
0x0C00:0000 DRAM Bank 3
0x0800:0000 DRAM Bank 2
0x0400:0000 DRAM Bank 1
0x0000:0000 DRAM Bank 0

* only when Boot ROM is enabled

The basic change is that physical address 0x0yyy:yyyy appear eal laddress Ox1yyy:yyyy and physical address
Ox1yyy:yyyy appears as logical address 0x0yyy:yyyy.

Version 1.0 7 March 1999

CL-PS7500FE Development Kit — Software User’s Guide

i

4. Board Setup

Follow these steps to setup and communicate with the evaluation board.

1) Connect the supplied NULL modem cable between the “COM 1" connector on the evaluation board and any
available COM port on the host system.

2) Apply power to the evaluation board.

3) Start the ARM Debugger on the host system.

4) Select “Configure Debugger...” from the “Options” menu.
5) Select “remote_a” as the target environment.

6) Click on the “Configure...” button to select the host COM port to be uSeslspeed the debugging process,
select a baud rate of 115,200. Click on “OK” when done.

7) Click on “OK”. The ARM Debugger should connect to Angel on the evaluation board and thenuprant o
message similar to the following in the “Console Window”:
Angel Debug Monitor V1.20 (ARM Ltd. 1.20/Crrus Logic 1.00) for the CL-PS7500FE
Built for ARMZ Serial, IRQ cache on

Bui | d number 1
Serial Rate: 115200

If there is a problem (such as a bad serial cable, attempting to use the wrong serial port, etc.), the following
message will be displayed:

Cannot open target: the target is not responding.

The ARM Debugger can be changed between debugging programs on the CL-PS7500FE evaluationaboard (vi
Angel) and the ARMulator software ARM emulator at any time. Simply select “Configure Debugger..."hieom t
“Options” menu, select “remote_a” (for the CL-PS7500FE evaluation board) or “ARMulate” (for the ARN)wds

the target environment, and then click on “OK”.

If there are any communication problems between the host and the CL-PS7500FE evaluation board, the ARM tools
might revert to using the ARMulator as a result of an obscurely worded diaogdtithis happens, you will have to
use the “Configure Debugger...” option to switch back to debugging on the CL-PS7500FE endloatid.

5. Lib7500

Lib7500 is a library of routines for accessing the various peripherals on the CL-PS7500FE evaluation board. Thes
routines are not necessarily the most efficient in terms of execution time or code space; they siomjraienthe

proper operation of the peripherals. The library is divided into separate source files for each peripheral. The
lib7500.h file contains prototypes for all the functions in the library. The lib7506lags the ARM project
manager project file used to build the debug, debug-release, and release variants of the library.

The source code for this library is contained infg&00fe\lib7500 directory of the CD-ROM.
5.1.audio.c

This file contains routines for using the codec interface of the CL-PS7500FE. The codec interface is anlputput on
44.1-kHz, 16-bit stereo serial codec interface; on the evaluation board it is connected to a Crystal CS4333 DAC.

5.1.1.AudioBreakLoop

voi d Audi oBr eakLoop(voi d)

March 1999 8 Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

This routine stops the repeated playback of an audio buffer (started by calling AudioPldgBdRepeat non-
Zero).

5.1.2.AudioDisable
voi d Audi oDi sabl e(voi d)

This routine powers off the internal codec interface. The codec interrupt is masked and the interrupt handler is
removed.

5.1.3.AudioEnable
voi d Audi oEnabl e(voi d)

This routine configures the internal codec interface. An interrupt handler is installed to handle the codec interrupts.
The codec interrupt handler will write pointers to the next block of data to be plageth@hardware DMA
registers when there is data to be played.

5.1.4.AudioPlay
voi d Audi oPl ay(char *pcBuffer, long |Length)

This routine plays the given buffer of data via the codec interface. This routine will not reilitheuantire buffer
has been played out to the codec interface.

5.1.5.AudioPlayBg
voi d Audi oPl ayBg(char *pcBuffer, long |ILength, i Repeat)

This routine plays the given buffer of data via the codec interfacé.Rdpeat is non-zero, the buffer will be
played repeatedly until AudioBreakLoop is called. This routine will return immediately, playing the buffer in the
background while other processing continues.

5.2.draw.c

This file contains generic drawing primitives. None of these routines are aware of the dimensions of tha screen
its color depth (with the exception of DrawSetPixel and DrawGetPixel, which perfbemactual pixel
manipulations for all the other routines).

5.2.1.DrawChar

voi d DrawChar (char cChar, long | X, long IY, char cCol or)
This routine draws an ASCII character.
5.2.2.DrawCharX2

voi d DrawChar X2(char cChar, long I X, long |Y, char cColor)
This routine draws an ASCII character at twice its normal width and height (i.e., 16x16).
5.2.3.DrawCircle

void DrawCircle(long I X, long I'Y, long | Radius, char cColor)

This routine draws a circle.

Version 1.0 9 March 1999

i

CL-PS7500FE Development Kit — Software User’s Guide

5.2.4.DrawCls
voi d DrawC s(voi d)
This routine erases the frame buffer.
5.2.5.DrawFillCircle
void DrawFill Grcle(long I X, long IY, long | Radius, char cCol or)
This routine draws a filled circle.
5.2.6.DrawGetPixel
char DrawCet Pi xel (long I X, long 1Y)
This routine returns the current value of the specified pixel.
5.2.7.DrawLine
void DrawLine(long I X1, long IY1l, long I X2, long | Y2, char cColor)
This routine draws a line.
5.2.8.DrawSetPixel
voi d DrawSet Pi xel (long I X, long |IY, char cCol or)
This routine fills the specified pixel with the given color.
5.2.9.DrawsString
void Drawstring(char *pcBuffer, long | X, long I'Y, char cCol or)
This routine draws a string of ASCII characters.
5.2.10. DrawStringX2
void Drawstring(char *pcBuffer, long | X, long I'Y, char cColor)

This routine draws a string of ASCII characters at twice their normal width and height (i.e., 16x16).

5.3.flash.c

This file contains routines for programming data into the Sharp FLASH nyamtiie FLASH SIMM socket of the
CL-PS7500FE evaluation board. The implementation of these routines is spetifie $harp FLASH memory
specified in the CL-PS7500FE Hardware User’s Guide; if another FLASH memory is pdidhase routines will
need to be tailored to the programming model of the specific FLASH memory. A sector is an allgivaedase-

able block of memory within the FLASH memory.

5.3.1.FlashEraseChip
voi d Fl ashEr aseChi p(unsi gned | ong ul Fl ashBase)

This routine erases the FLASH memory located at the given base address. When completed, the entire contents of
the memory will be OXFF.

March 1999 10 Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

5.3.2.FlashEraseSector
voi d Fl ashEr aseSect or (unsi gned | ong ul Fl ashBase, |ong | Sector)

This routine erases a sector of the FLASH memory located at the given base address. The sector thatecontains th
offset ISector is erased. When completed, the entire contents of that sector of memory will be OxFF.

5.3.3.FlashNumSectors

| ong Fl ashNunfect or s(voi d)
Returns the number of sectors in the FLASH memory.
5.3.4.FlashProgramBlock

voi d Fl ashProgranmBl ock(unsi gned | ong ul Fl ashBase, long | O f set,
unsi gned char *pucData, |ong | NunBytes)

This routine programs data into the FLASH memory located at the given base address. The datnisnprbat
the specified offset into the FLASH memory. The FLASH memory (and therefore thisejowill hang if an
attempt is made to program a 0 bit to a 1...this can only be accomplished by an erase operation.

5.3.5.FlashSectorInfo

| ong Fl ashSectorlnfo(long | Sector, |long *pl Sector O fset,
I ong *pl Sect or Lengt h)

Returns information about the specified sector of the FLASH memory. The offset to the beginhangeaftor and
the length of the sector are returned.

5.4.ir.c

This file contains routines for using the IrDA compatible port on the CL-PS7500FEatealboard. The IrDA
port is a bi-directional infrared communication port that is capable of data trangiertoat 15200 baud. The IrDA
port is implemented as a post-processing of the COM2 data stream; therefore the IrDA port can adtibbe us
conjunction with COM2. For the IrDA routines to function propejumper JP13 must not be connected (this
disables the IrDA encoder).

5.4.1.IRCharReady
| ong | RChar Ready(voi d)

This routine determines if there is a character ready to be read from the IrDA port. Thevaéiarwill be non-
zero if there is a character waiting to be read.

5.4.2.IRDisable

voi d | RDi sabl e(voi d)
This routine disables the IrDA port.
5.4.3.IREnable

| ong | REnabl e(l ong | Dat aRat e)

This routine will configure the IrDA port to the specified data rate. The supported data rates afe 21600,
38400, 19200, and 9600 baud. The return value will be zero if the IrDA port has already been configured or the data
rate is invalid, and one otherwise.

Version 1.0 11 March 1999

i

CL-PS7500FE Development Kit — Software User’s Guide

5.4.4.IRReceiveChar

char | RRecei veChar (voi d)
This routine reads a character from the IrDA port and returns it to the caller.
5.4.5.IRSendChar

voi d | RSendChar (char cChar)

This routine sends a character to the IrDA port.

5.5.isr.c

This file contains routines for handling the IRQ interrupt on the ARM psacem the CL-PS7500FE. The
InterruptHandler routine is the actual interrupt handler; InterruptShell (containestsimell.s) calls it. It is
responsible for determining the cause of the interrupt, calling the appropriate handler (ibuiime has been
registered), and performing the necessary steps to clear the interrupt.

These routines are not called directly by an application. They are used by the other peripheratcujp@srin
lib7500.

5.5.1.InterruptinstalllISR
void Interruptlnstalll SR(void)

This routine registers the IRQ interrupt handler with Angel so that it can handl&k@ninterrupts to the ARM
processor. Calls to this routine are reference counted; if the ISR is already installed, the reference count is simply
incremented.

5.5.2.InterruptRemovelSR
voi d | nterrupt Renpvel SR(voi d)

This routine un-registers the IRQ interrupt handler with Angel so that it is no loaljed to handle IRQ interrupts
to the ARM processor. Calls to this routine are reference counted; the ISR is only un-registered when the reference
count reaches zero.

5.5.3.InterruptSetDACHandler
voi d | nt errupt Set DACHandl er (PFNI SR pf nDAC)

This routine is used to register the address of the routine that will be called when the codec interface interrupt is th
cause of the IRQ interrupt to the ARM processor.

5.5.4.InterruptSetKeyboardHandler
voi d | nt errupt Set Keyboar dHandl er (PFNI SR pf nKeyboar d)

This routine is used to register the address of the routine that will be called when the keyboard data receive interrupt
is the cause of the IRQ interrupt to the ARM processor.

5.5.5.InterruptSetMouseHandler
voi d | nt errupt Set MouseHand!| er (PFNI SR pf nMbuse)

This routine is used to register the address of the routine that will be called when the mouse data receive interrupt is
the cause of the IRQ interrupt to the ARM processor.

March 1999 12 Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

5.6.isrshell.s

This file contains a shell routine used in handling the IRQ interruph@®RM processor of the CL-PS7500FE.
Since the ARM Procedure Call Standard allows only some of the ARM registers to be destroyed by the called
routine, and the actual interrupt handler is in C and therefore will destroy some of those registeggstérs must

be saved to prevent the interrupted program from being corrupted. The k®bailipoutine in this file takes care

of saving and restoring those registers so that the C language interrupt handlertdogshrthe system. This
routine is also tailored to the interrupt sharing mechanism used by the Angelrdebiigr and as such would not

work in a fully embedded system (i.e., no Angel).

There are also routines (GetIRQ and SetlRQ) that get and set the IRQ interrupt handler address. They are used by
InterruptinstalllSR and InterruptRemovelSR and should not be directly called.

5.7.kbd.c

This file contains routines for reading data from the keyboard controller. These routines will perforplea sim
conversion of the keyboard scan code to the basic ASCII representation of the pressed key; therefore, special keys
such as the function keys and the arrow keys are ignored.

5.7.1.KbdDisable
voi d KbdDi sabl e(voi d)

This routine disables the keyboard controller and removes the interrupt handler for the keyboard receives data
interrupt.

5.7.2.KbdEnable
i nt KbdEnabl e(voi d)

This routine configures the keyboard controller and installs the interrupt handler for the keyboard receives data
interrupt. The return code will be one if the keyboard was successfully configured andttemeise. The
keyboard must be plugged into the keyboard port for this routine to succeed.

5.7.3.KbdRead
char KbdRead(voi d)

This routine will return the next key read from the keyboard. If there k@yaovaiting to be read, it will wait until a
key has been pressed and return that key.

5.7.4.KbdReady
i nt KbdReady(voi d)

This routine will return non-zero if there is a key waiting to be read from the keyboard and zero if there is no key
waiting to be read.

5.8.led.c
This file contains routines for manipulating the LEDs in the LED bar.
5.8.1.LEDOff

void LEDOf (i nt iLED)

This routine will turn off the specified LED.

Version 1.0 13 March 1999

i

CL-PS7500FE Development Kit — Software User’s Guide

5.8.2.LEDOn

voi d LEDOn(int iLED)
This routine will turn on the specified LED.
5.8.3.LEDSetState

void LEDSet State(int iState)

This routine will set the state of all 8 LEDs. Setting a bit$t at e to one will turn on the corresponding LED.

5.9.Ipt.c

This file contains routines for sending and receiving data via the parallel port. The parallel port is contained in the
SMSC 37C665 SuperlO chip and is capable of SPP, EPP, and ECP operation. These routines use sirogke SPP
to perform bi-directional data transfer.

5.9.1.LptEnable
voi d Lpt Enabl e(voi d)
This routine configures the parallel port for operation as a bi-directional SPP parallel port
5.9.2.LptReceiveChar
char Lpt Recei veChar (voi d)
This routine reads a character from the parallel port.
5.9.3.LptSendChar
voi d Lpt SendChar (char cChar)

This routine sends a character to the parallel port.

5.10. mouse.c

This file contains routines for reading data from the mouse controller. The mouse movement commands are
interpreted and returned as simple changes to the pointer in the X and Y axis, as well as the current state of the
mouse buttons.

5.10.1. MouseDisable

voi d MouseDi sabl e(voi d)
This routine disables the mouse controller and removes the interrupt handler for the mouse receives data interrupt.
5.10.2. MouseEnable

i nt MouseEnabl e(voi d)

This routine configures the mouse controller and installs the interrupt handler for the mouse receive data interru
The return code will be one if the mouse was successfully configured and zero otherwésenodde must be
plugged into the mouse port for this routine to succeed.

5.10.3. MouseRead

voi d MouseRead(int *iDx, int *iDy, int *iButtons)

March 1999 14 Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

This routine will return the next position update from the mouse. If there ipdaiaipresently waiting to be read,
it will wait until there is an update to be read.

5.10.4. MouseReady
i nt MouseReady(voi d)

This routine will return non-zero if there is a mouse position update waiting eatlend zero if there is not.

5.11. uart.c

This file contains routines for using the UARTs on the CL-PS7500FE evaluation board UERGhis a 16C550
compatible device capable of bi-directional asynchronous communication at up to 115200 baudo DARTS
are contained within the SMSC 37C665 SuperlO chip.

Two global variables are contained in this file: IPortlEnabled and IPort2Enabled. Thesedte determine
which ports are currently in use. Initially, it is assumed that port 1 is in use ¢iat is the port being used by
Angel for communication with the host debugger, and reusing that port would inteitferengel). If the hardware
configuration varies, the initial values of these two variables can be changed to accurately edil@aiiare.

5.11.1. UARTCharReady
| ong UARTChar Ready(| ong | Port)

This routine determines if there is a character ready to be read from the specified UART port. The return value will
be non-zero if there is a character waiting to be read.

5.11.2. UARTDisable

voi d UARTDI sabl e(l ong | Port)
This routine will unconfigure the specified UART.
5.11.3. UARTEnable

| ong UARTEnabl e(long | Port, long | DataRate, long | DataBits,
long | StopBits, long | Parity, long | EvenParity)

This routine configures the UART port to the specified data rate and format. The stipfzdaeates are 115200,

57600, 38400, 28800, 19200, 14400, and 9600 baud. The supported data bits are 5, 6, 7, and 8. The supported stop
bits are 1 and 2. If IParity is zero, there is no parity bit. If it is non-zero and |[EvenParity, iheerthere is an odd

parity bit, otherwise there is an even parity bit. The return value will be zero if ART Uhas already been
configured (or the IrDA port if UART2 is requested) or if the data rate and/or format iidiresad one otherwise.

5.11.4. UARTReceiveChar

char UARTRecei veChar (1 ong | Port)
This routine will read a character from the specified UART and return it to the caller.

5.11.5. UARTSendChar
voi d UARTSendChar (1 ong | Port, char cChar)

This routine will send a character to the specified UART.

Version 1.0 15 March 1999

CL-PS7500FE Development Kit — Software User’s Guide

i

5.12. vga.c

This file contains routines for using the VGA controller on the CL-PS7500FE. Thedd@troller is configured
for operation in 640x480 mode with 8 bits per pixel. The refresh rate is 31.47-kHz horizontal and G6iddk ve
(i.e., standard VGA refresh rate). This configuration depends upon the Chrontel CH9294 proviflihg-&Hz
pixel clock to the CL-PS7500FE VGA controller; the jumpers at JP2 are configured to plusidéotk rate by
default.

5.12.1. VGAEnable
voi d VGAEnabl e(voi d)

This routine configures the VGA controller for a 640x480, 256 color, 60-Hz refresh VGlayisphe color palette
is configured as ‘bbgggrrr’, where bb is two bits of blue, ggg is three bits of green, and rrr is threeréd.
Therefore, 0x07 is pure red, 0x38 is pure green, OxCO is pure blue, 0x00 is black, and 0xFF is white.

5.12.2. VGAOff

voi d VGAO f (voi d)
This routine turns off the VGA controller.
5.12.3. VGAON

voi d VGAOn(voi d)

This routine turns on the VGA controller.

6. Samples

There are several sample programs that use the routines in lib7500 to perform someesimypigtrations of the
peripherals on the CL-PS7500FE evaluation board. The source code for these routines is contdieed i
ps7500fe\samples directory of the CD-ROM.

6.1.audio

‘audio’ is a program that plays a 689-Hz sine wave. When run, it will play the sine wilve key is pressed on
the keyboard. The audio.apj project file will build this program.

6.2.flashit

‘flashit’ is a program that writes data into the FLASH SIMM. When run, it will ask for theenaf the file to be
programmed into the FLASH. It will then read that file into memory, erase the FLASH SIMM,ragim the
contents of the file into the FLASH SIMM. All user interactions with this program scttuough the ARM
Debugger. The flashit.apj project file will build this program.

Since this program uses the flash routines in lib7500, it is specific to #mp FhASH ROM specified in the
CL-PS7500FE Hardware User's Guide. If another FLASH ROM is purchased and the routire®00 lare
changed to match the programming model of the FLASH ROM, then this programoskilas is when linked
against the modified lib7500.

6.3.irrecv

‘irrecv’ is a program that receives data from the IrDA port and displays it on the VGA display. WhererilbDA
port is configured at 9600 baud. It will then print all characters received from the IrDA port onto the display. When
the “-* character is received, the program will exit. The irrecv.apj project file will build this program.

March 1999 16 Version 1.0

i

CL-PS7500FE Development Kit — Software User’s Guide

6.4.irxmit

‘irxmit’ is a program that sends data out to the IrDA port. When run, the IrDA port isgooadi at 9600 baud.
Data is then read from the host debugger using gets() (which uses tHamitighosting library). The data is then
sent out to the IrDA port. This will continue until a “-* character is sent, which willecthes program to exit. The
irxmit.apj project file will build this program.

6.5. keyboard

‘keyboard’ is a program that displays keyboard key presses on the VGA display. OnceASGIbkeys pressed
on the keyboard will be shown on the display. When the “ESC” key is pressedotranp will exit. The
keyboard.apj project file will build this program.

6.6.led

led is a program that demonstrates the use of the LEDs in the LED bar. When run, it will light a singleth&D in
LED bar, and move the lit LED from left to right. It therefore appears that there is a “light ball” which bounces
from one end of the LED bar to the other. This will continue until a key is pressed @aythoard. The led.apj
project file will build this program.

6.7.Iptrecv

‘Iptrecv’ is a program that demonstrates the use of the parallel port. Whenwilhdisplay on the VGA screen
each character that is read from the parallel port. When a “-“ character is read, the program will exit. The
Iptrecv.apj project file will build this program.

6.8. mouse

‘mouse’ is a program that tracks the movements of the mouse with an ‘X’ on thes&f@en. When run, it will

draw a large box in the middle of the screen and two small boxes beneath the large box. Anappedt in the

large box and will move around the box when the mouse is moved. An ‘Xampypkar in either of the two small
boxes when the corresponding mouse button is pressed. Pressing both nttousesbuultaneously will exit the
program. The mouse.apj project file will build this program.

6.9.screen

‘screen’ is a program that demonstrates the drawing capabilities of the VGA controllen rWh it will draw a
series of images on the display. Once each image is drawn, it will wait until a keyboard button is pre$sgdt caus
to proceed to the next image. After the last image is drawn and a keyboard button pressedratrevgtbexit.

The screen.apj project file will build this program.

6.10. uartecho

‘uartecho’ is a program that retransmits all data received on a COM port (i.e., echoes the data back to the sender).
When run, it will configure the COM port (which is configurable by the PORT #defineindtirce code) for 9600

baud, 8-N-1 data format. It will then read characters from the COM port, sending each character read back to the
same COM port. This will continue until a “-* character is received, which will cause the progrant. tor bzi
uartecho.apj project file will build this program.

Version 1.0 17 March 1999

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information
describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained
in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express
or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This
document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied,
reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written
consent of Cirrus Logic, Inc. ltems from any Cirrus Logic website or disk may be printed for use by the user. However, no part of the printout or electronic files may
be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior
written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or sale of any items without the prior written consent
of Girrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of
their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com.

	CL-PS7500FE Development Kit Software User’s Guide
	Table of Contents
	1. Introduction
	2. ARM Software Development Toolkit
	2.1. ARM Project Manager
	2.2. ARM Debugger

	3. Angel™
	Table: memory map under Angel

	4. Board Setup
	5. Lib7500
	5.1. audio.c
	5.1.1. AudioBreakLoop
	5.1.2. AudioDisable
	5.1.3. AudioEnable
	5.1.4. AudioPlay
	5.1.5. AudioPlayBg

	5.2. draw.c
	5.2.1. DrawChar
	5.2.2. DrawCharX2
	5.2.3. DrawCircle
	5.2.4. DrawCls
	5.2.5. DrawFillCircle
	5.2.6. DrawGetPixel
	5.2.7. DrawLine
	5.2.8. DrawSetPixel
	5.2.9. DrawString
	5.2.10. DrawStringX2

	5.3. flash.c
	5.3.1. FlashEraseChip
	5.3.2. FlashEraseSector
	5.3.3. FlashNumSectors
	5.3.4. FlashProgramBlock
	5.3.5. FlashSectorInfo

	5.4. ir.c
	5.4.1. IRCharReady
	5.4.2. IRDisable
	5.4.3. IREnable
	5.4.4. IRReceiveChar
	5.4.5. IRSendChar

	5.5. isr.c
	5.5.1. InterruptInstallISR
	5.5.2. InterruptRemoveISR
	5.5.3. InterruptSetDACHandler
	5.5.4. InterruptSetKeyboardHandler
	5.5.5. InterruptSetMouseHandler

	5.6. isrshell.s
	5.7. kbd.c
	5.7.1. KbdDisable
	5.7.2. KbdEnable
	5.7.3. KbdRead
	5.7.4. KbdReady

	5.8. led.c
	5.8.1. LEDOff
	5.8.2. LEDOn
	5.8.3. LEDSetState

	5.9. lpt.c
	5.9.1. LptEnable
	5.9.2. LptReceiveChar
	5.9.3. LptSendChar

	5.10. mouse.c
	5.10.1. MouseDisable
	5.10.2. MouseEnable
	5.10.3. MouseRead
	5.10.4. MouseReady

	5.11. uart.c
	5.11.1. UARTCharReady
	5.11.2. UARTDisable
	5.11.3. UARTEnable
	5.11.4. UARTReceiveChar
	5.11.5. UARTSendChar

	5.12. vga.c
	5.12.1. VGAEnable
	5.12.2. VGAOff
	5.12.3. VGAOn

	6. Samples
	6.1. audio
	6.2. flashit
	6.3. irrecv
	6.4. irxmit
	6.5. keyboard
	6.6. led
	6.7. lptrecv
	6.8. mouse
	6.9. screen
	6.10. uartecho

