
LOGIC

FEATURES

Asynchronous Features

• Software-programmable serial data rates up to
115.2 Kbit/sec. full-duplex'

• Twelve bytes of FI FO for each transm itter and each
receiver, with prog ram mabie th res hold for receive­
FIFO-interrupt generation

• Improved interrupt schemes: Good Data™
Interrupts eliminate the need for character status
check

• Independent bit rate selection for transmit and
receive on each channel

• User-programmable and automatic flow control
modes for the serial channels:
- In·band (software) flow control via single character

(XONIXOFF)
- Out-of-band (hardware) flow control via RTS/CTS and

DTR/DSR

• Special character recognition and generation
(cant.)

ctional Fun
Bloc
Diag

k
ram

HOST
INTERFACE

<:
~ ~

I RISC
PROCESSOR

t HOST
BUS

INTERFACE
LOGIC t

I RAM

CL-CD1400
Preliminary Data Sheet

Four-channel Serial/Parallel
Communications Engine with
UNIX® Character Processing

OVERVIEW

The CL-CD1400 is a flexible asynchronous
receiver/transmitter with four full-duplex serial
channels, or three full-duplex serial channels and
one high-speed bidirectional parallel channel. With
optional special character processing capabilities,
it is especially well-suited to UNIX applications.
The CL-CD1400 is fabricated in an advanced­
CMOS process and operates on a system clock of
up to 20.2752 MHz." Packaged in a 6a-pin PLCC,
its high throughput, low-power consumption and
high level of integration permit system designs with
minimum part-count, maximum performance and
maximum reliability.

r-

FIRMWARE I
ROM

f--

I
r--

~

USER-
CONFIGURABLE

CHANNEL 0
SERIAUPARALLEL

USER-
CONFIGURABLE

CHANNEL 1
SERIAL

USER·
CONFIGURABLE

CHANNEL 2
SERIAL

USER·
CONFIGURABLE

CHANNEL 3
SERIAL

SERIAUPARALLEL
INTERFACE
CHANNELS

March 1991

FEATURES (cont.)

• Special character processing, particularly useful
for UNIX-line-driver applications, optionally
handled automatlca"y by the CL-CD1400:
- Automatic Expansion of NL to CR-NL
- Supports LNEXT and ISTRIP
- Ignore Break
- UNIX parity handling options:

• Character removed from stream
• Passed as good data
• Replaced with null (00 hex)
• Preceded with FF-OO hex
• Passed as is with exception flagged

• Line break detection and generation, with
prog ram mabie choice of response/data pattern to
the host

• Insertion of transmit delays In data stream

• One timer per channel for receive data time-out
Interrupt

• Local and remote maintenance loop back modes

CONFIGURATION EXAMPLES

Figures 1-1 through 1-4 are functional block diagrams of
four possible configurations that can be implemented
with the CL-CD1400. The first is a typical workstation
with printer, mouse, keyboard and modem ports, a mode
which includes a single parallel port and three serial
channels with modem control. Figure 1-2 illustrates one
channel with complete modem control and three

CL-CD1400
UXART Serial/Parallel Controller

• Six modem control slgnals-per-channel (DTR,
DSR, RTS, CTS, CD, RI); CD and RI signals not
available If the para"el channel is used

• Five to elg ht data bits per character plus optional
parity

• Odd, even, no or forced parity

• 1,1.5 or 2 stop bits

Parallel Features

• Para"el data rate up to 20 Kbyte/sec.

• Thirty-byte FIFO

• Programmable strobe pulse widths

• Automatic generation and recognition of hand­
shake control signals

• Compatible with CentronicsQl)-lnterface
specifications

channels with partial modem control; the third configu­
ration is four serial channels and one bi-directional
general-purpose port with fou r input and fou r output pins.
Figure 1-4 shows a quad serial mode of four channels
with complete modem control. All modes of operation
are software programmable via control registers within
the CL-CD1400.

NOTES: 1 A minimum clock frequency is required to run all four serial channels at a 11S.2K Bits data rate. Refer to the AC characteristics
for complete information on device timing.

2

2 100% throughput is guaranteed up to 70K baud for full-duplex operation on all four channels simultaneously. IIS.2K baud is
achievable at reduced throughput. Refer to Section 4 for deteils.

March 1991

CL-CD1400
UXART Serial/Parallel Controller ~=ClRRUS LOGIC

TABLE OF CONTENTS

1. PIN INFORMATION ... 7
1.1 Pin Diagram ... 7
1.2 Pin Functions ... 8
1 .3 Pin List. .. 9
1.4 Pin Descriptions ... 10

2. REGISTERS ... 15
2.1 CL-CD 1400 Register Map ... 16
2.2 Register Definitions ... 18

3. ELECTRICAL SPECIFICATIONS ... 23
3.1 Absolute Maximum Ratings ... 23
3.2 Recommended Operating Conditions ... 23
3.3 DC Electrical Characteristics ... 23
3.4 AC Characteristics ... 25

4. FUNCTIONAL DESCRIPTION ... 37
4.1 Device Architecture ... 37
4.2 Host Interface .. 38
4.3 Service Requests .. 40
4.4 Serial Data Reception and Transmission 46
4.5 Flow Control .. 51
4.6 Receive Special Character Processing 55
4.7 Transmit Special Character Processing 61
4.8 Baud Rate Generation ... 65
4.9 Diagnostic Facilities - Loopback ... 66
4.10 Parallel Channel Operations .. 66
4.11 Hardware Configurations ... 69
4.12 Serial Data Performance ... 72

5. DETAILED REGISTER DESCRiPTIONS ... 75
5.1 Global Registers .. 75
5.2 Virtual Registers .. 79
5.3 Channel Registers ... 82

6. CL-CD1400 PROGRAMMING .. 105
6.1 Overview ... 105
6.2 Initialization .. 105
6.3 Poll Mode Examples .. 108
6.4 Hardware Activated Service Examples 112
6.5 Baud Rate Tables ... 116
6.6 ASCII Code Table ... 119

7. SAMPLE PACKAGE .. 120

8. ORDERING INFORMATION ... 121

March 1991 3

CL-CD1400
LOGIC UXART Serial/Parallel Controller

TABLE OF CONTENTS (cont.)

LIST OF FIGURES

Figure 1-1 ... 5
Figure 1-2 ... 5
Figure 1-3 ... 6
Figure 1-4 ... 6
Figure 3-1 ... 26
Figure 3-2 ... 26
Figure 3-3 ... 27
Figure 3-4 ... 28
Figure 3-5 ... 29
Figure 3-6 ... 31
Figure 3-7 ... 32
Figure 3-8 ... 33
Figure 3-9 ... 35
Figure 3-1 0 ... 36
Figure 4-1 ... 37
Figure 4-2 ... 38
Figure 4-3 ... 41
Figure 4-4 .. .45
Figure 4-5 ... 50
Figure 4-6 ... 58
~m~ ... ~
~m~ ... ~
~m~ ... ~
Figure 4-1 0 ... 69
Figure 4-11 70
Figure 4-12 ... 71
Figure 6-1 ... 106

4 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

PSTROBE'
PACK'

RESET" PSLlN'
PSLCT

CLK PBUSY'
PRINTER

RAM PINW OR
A[6:0J

& PERROW SCANNER
DB[7:0J FIFO. PPE

R/W' PAUTOFD'

CS' HOST
PD[7:0J

DS'

DTACK'
BUS TxD1

RxD1
MOUSE

SVCREOW INTERFACE
SVCREOT"

SVCREOM'
LOGIC

TxD2 KEYBOARD
DGRANT" RxD2

DPASS'
FIRMWARE

SVCACKW ROM TxD3

SVCACKT"
RxD3
RTS3'

SVCACKM' CTS3'
DTR3' MODEM

DSR3'
GPO[3:0J
GPI[3:0J

Figure 1-1. Workstation: Printer, Keyboard, Mouse and Modem Ports

PSTROBE'
PACK'

RESET'
PSLlN'
PSLCT

CLK PBUSY' PRINTER
RAM

A[6:0J PINIT' OR
& PERROR" SCANNER

DB[7:0J FIFO. PPE
RIW" PAUTOFD'

CS" HOST PD[7:0J

DS"
BUS TxD1

DTACK" RxD1
SVCREOR" INTERFACE RTS1'

SVCREOT" CTS1'
LOGIC DTR1'

SVCREOM" DSR1"
DGRANT"

RISC FIRMWARE
DPASS" SAME AS PROCESSOR ROM SVCACKR" CHANNEL 1

SVCACKT"

SVCACKM"
SAME AS

CHANNEL 1

Figure 1-2. Three Serial Ports and One Parallel Port

March 1991 5

6

RESET"

ClK

A[6:0J

D8[7:0J

R/W"

CS"

DS"

DTACK"

SVCREOW

SVCREOP

SVCREOM"

DGRANP

DPASS"

SVCACKW

SVCACKP

SVCACKM"

RESET"

ClK

A[6:0J

DB[7:0J

R/W"

CS"

DS"

DTACK"

SVCREOW

SVCREOP

SVCREOM"

DGRANP

DPASS"

SVCACKW

SVCACKT"

SVCACKM"

HOST

BUS

INTERFACE

LOGIC

LOGIC

RAM
&

FIFOs

RISC FIRMWARE

PROCESSOR ROM

r----------L~~ TxDO

SERIAL
CHANNEL 0

RxOO
RTSO"
CTSO"
DTRO"
DSRO"
COO"

.... ________ ..1' - RIO"

TxD1
RxD1
RTS1"
CTS1"
DTR1"
DSR1"

Figure 1-3. One Full-Modem Port, Three Serial Channels
and One Eight-Bit I/O Port

HOST

BUS

INTERFACE

LOGIC

RAM
&

FIFOs

RISC

PROCESSOR

FIRMWARE

ROM

r---------"'I .. __ TxDO

RxDO
RTSO"
CTSO"
DTRO"
DSRO"
CDO"

1-________ ".....- RIO"

Figure 1-4. Four Full-Modem Ports

SAME AS
CHANNEL 1

SAMEAS
CHANNEL 1

GPI[3:0]

GPO[3:0]

SAME AS
CHANNEL 0

SAME AS
CHANNEL 0

SAMEAS
CHANNEL 0

March 1991

CL-CD1400
UXART Serial/Parallel Controller

1. PIN INFORMATION

1.1 Pin Diagram for the 68-Pin PLCC Package

CTS2*
DSR2*

R12*
CD2*

DTR1*
RTS1*

GND
CTS1*
DSR1*

RI1 *
CD1*

DTRO*
RTSO*
CTSO*
DSRO*

RIO*
CDO*

March 1991

mro~~~~MN~~~~~~~~W

o

CL-CD1400
68-pin PLCC

60

59
58
57
56
55
54
53
52
51
50
49
48
47
46

45
44

~romo~NM~~~~oomO~NM
NNNMMMMMMMMMM~~~~

DB[O]
DB[1]
DB[2]
DB[3]
DB[4}
DB[5]
DB[6]
DB[7]
GND
A[O]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
RESEr

LOGIC

7

CL-CD1400
LOGIC UXART Serial/Parallel Controller

1.2 Pin Functions - Major Operational Modes

8

A[6:0]
DB[7:0]

ClK
CS*
DS*

R!W*
RESET*
DTACK*

DGRANT*
DPASS*

SVCREQR*
SVCREQT*
SVCREQM*

SVCACKR*
SVCACKT*
SVCACKM*

0>
()

- ro (/)'t:
o 0>
I-

E

>-c
(/) '-,- ro ro.s:;:
00

0> U5
() 0>

'2: ::J
CY

0> 0>
CfJa:

0>
,~ ex. c: ()
0>«

CfJ

0

Qi
c
c
ell .c
0

,....
C
ell
.c
0

C\I
c
ell .c
0

C')

C
ell .c
0

L ..

8
..... /
"'4 / ~

8
~ / ~
"'4/ ...

8
..... /
"'4/ ~

TxD
RxD
DTR
DSR
RTS
CTS
RI
CD

Pin Functions, Four Serial Channel Mode

A[6:0]
DB[7:0]

ClK
CS*
DS*

R!W*
RESET*
DTACK*

DGRANT*
DPASS*

SVCREQR*
SVCREQT*
SVCREQM*

SVCACKR*
SVCACKT*
SVCACKM*

..

...
::
~

...

...

0>
()

- ro (/)'t:
o 0> I_

E

>-c (/) ,-

'Cil~
00

0> U5
() 0>

'2: ::J
CY

0> 0>
CfJa:

0>
gex. c: ()
0>«

CfJ

0

Qi
c
c
ell .c
0

,....
C
ell
.c
0

C\I
c
ell
.c
0

C')

c
ell
.c
0

8
..... j
"'4 / ':. ..
...

6
.... / ..
""III / '"

6
..... / ..
""III / '"

PD[7:0]
PSTROBE*
PACK*
PSlCT
PBUSY
PPE
PERROR
PSLlN*
PINIT*
PAUTOFD*

TxD
RxD
DTR
DSR
RTS
CTS

Pin Functions, Three Serial/One Parallel Channel Mode

March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

1.3 Pin List

The (') after a name denotes an active low signal. Signal names in parenthesis are for the parallel
channel.

I = Input; I/O = Input/Output; 0 = Output;

00 = Open Orain

PIN NAME DIR #OF PINS PIN# PIN NAME DIR #OF PINS PIN #
RESEr I 1 44 TX01 0 1 63
ClK I 1 39 RX01 I 64
CS' I 1 43 RTS1* 0 15
OS' I 1 42 CTS1* I 17
RIW' I 1 41 OSR1' I 18
OTACK' 00 1 40 OTR1* 0 14
A[6:0] I 7 45-51 C01' I/O 20
OB[7:0] I/O 8 53-60 (PO[2])
SVCREQR' 00 1 33 RI1' i/O 19
SVCREQr 00 1 34 (PO[3])
SVCREQM* 00 1 35 TX02 0 65
SVCACKR* I 1 30 RX02 I 66
SVCACKT* I 1 31 RTS2' 0 9
SVCACKM* I 1 32 CTS2' I 10
OGRANr I 1 37 OSR2* I 11
OPASS' 0 1 38 OTR2' 0 8
TXOO 0 1 61 C02* I/O 13
(PSTROBE*) (PO[4])
RXOO 62 RI2' I/O 12
(PACK') (PO[5])
RTSO' 0 22 TX03 0 67
(PSLlN') RX03 I 68
CTSO' 23 RTS3' 0 2
(PSlCT) CTS3' I 4
OSRO'/ 24 OSR3* I 5
(PBUSY) OTR3* 0 1
OTRO* 0 21 C03' I/O 7
(PINlr) (PO[6])
COO' 26 RI3' I/O 6
(PERROR*) (PO[7])
RIO' 25 PO[O] I/O 1 28
(PPE) PO[1] I/O 1 29
PAUTOFO' 0 27 VCC I 2 3,36

GNO I 2 16,52

March 1991 9

WGIC

1.4 Pin Descriptions

Symbol Pin Number Type

RESET' 44

ClK 39

CS* 43

DS* 42

RIW* 41

DTACK* 40 OD

A[6:0] 45-51

DB[7:0] 53-60 1/0

SVCREQR* 33 OD

10

CL-CD1400
UXART Serial/Parallel Controller

Description

RESET - Asynchronously resets the CL-CD1400. RESET'
must be active for a minimum of ten system clocks. When RE­
SET' is removed, the CL-CD1400 will perform a software ini­
tialization of its registers, disable all transmitters and receivers,
and when complete, place the firmware revision number in the
GFRCR.

CLOCK - System clock. The CL-CD1400 requires a nominal
20.2752-MHz clock for proper operation. The system clock is
divided by two, internally, to generate all on-chip timing clocks.

Chip Select - When active, CS*, in conjunction with DS*, ini­
tiates a host 1/0 cycle with the Cl-CD1400.

Data Strobe - During an active 1/0 cycle, DS* strobes data into
on-chip registers during a write cycle or enables data onto the
data bus during read cycles.

ReadIWrite - RIW* sets the direction of the data transfer be­
tween the host and the CL-CD1400. When high, the cycle is a
Read, and when low, the cycle is a Write.

Data Transfer Acknowledge - When the Cl-CD1400 has com­
pleted internal operations associated with a host 1/0 cycle, it
activates DTACK* to indicate the end of the cycle. The host
may terminate the cycle as soon as DTACK* becomes active.

I

Address[6:0]- These signals select the on-chip register being
accessed during a host 110 cycle.

Data Bus[7:0]- These eight bidirectional Signals are the data
interface between the host and internal Cl-CD1400 registers.

Service Request Receive - When the CL-CD1400 needs host
service for one of the receivers, it activates this signal.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

1.4 Pin Descriptions (cont.)

Symbol Pin Type

SVCREOT* 34 OD

SVCREOM* 35 OD

SVCACKR* 30

SVCACKT* 31

SVCACKM* 32

DGRANT* 37

DPASS* 38 o

TxD[3:0] 67,65,63,61 o

March 1991

LOGIC

Description

Service Request Transmit - When the CL-CD1400 needs host
service for one of the transmitters, it activates this signal.

Service Request Modem - The CL-CD1400 activates this sig­
nal when an enabled change occurs.

Service Acknowledge Receive - The host activates this signal
to start a receive interrupt service. This is a special case read
cycle, during which the CL-CD1400 places the contents of the
receive interrupt vector register on the data bus.

Service Acknowledge Transmit - The host activates this signal
to start a transmit interrupt service. This is a special case read
cycle, during which the CL-CD1400 places the contents of the
transmit interrupt vector register on the data bus.

Service Acknowledge Modem - The host activates this signal
to start a modem interrupt service. This is a special case read
cycle, during which the CL-CD1400 places the contents of the
modem interrupt vector register on the data bus.

Daisy Grant - This input, qualified with DS* and a valid service
acknowledge (SVCACKR*, SVCACKT*, SVCACKM*), acti­
vates the CL-CD1400 service acknowledge cycle.

Daisy Pass - This output is driven low when no valid service
request exists for the type of service acknowledge active. In
multiple-CL-CD1400 designs, this signal is normally connect­
ed to the following CL-CD1400's DGRANT* input, forming a
service acknowledge daisy chain.

Transmit Data[3:0] - These output signals provide the serial
transmit data stream for all four channels. When channel 0 is
operating in parallel mode, TxDO becomes PSTROBE* (see
PSTROBE*).

11

LOGIC

1.4 Pin Descriptions (cont.)

Symbol Pin Type

RxD[3:0] 68,66,64,62

RTS[3:0]* 2,9,15,22 o

CTS[3:0]* 4,10,17,23

DSR[3:0]* 5,11,18,24

DTR[3:0]* 1,8,14,21 o

CD[3:0]* 7,13,20,26
PD[6], PD[4],
PD[2], PERROR

RI[3:0]* 6,12,19,25
PD[7], PD[5],
PD[3], PPE

12

CL-CD1400
UXART Serial/Parallel Controller

Description

Receive Data[3:0] - These input signals carry the serial bit
streams into the CL-CD1400. When channel 0 is programmed
for parallel operation, RxDO becomes PACK' (see PACK').

Request To Send[3:0]- The request to send output from each
channel. These signals are controlled by Modem Signal Value
Register 1 inside the CL-CD1400. RTSO' serves a dual pur­
pose based on the mode of operation of channel 0 (see PS­
LIN').

Clear To Send[3:0]- Clear To Send inputs for each channel. If
enabled, these signals can control the transmitter, enabling
transmission when active, and disabling transmission when in­
active. CTSO' serves a dual purpose based on the mode of op­
eration of channel 0 (see PSLCT*).

Data Set Ready[3:0] - Data Set Ready for each channel.
DSRO' serves a dual purpose based on the mode of operation
of channel 0 (see PBUSY*).

Data Terminal Ready[3:0] - Data Terminal Ready for each
channel. These signals are under control of Modem Signal Val­
ue Register 2. DTRO* serves a dual purpose based on the
mode of operation of channel 0 (see PINIT*).

Carrier Detect[3:0] - Carrier Detect for each channel. These
signals can be monitored via the Modem Signal Value Regis­
ters. CDO* serves a dual purpose based on the mode of oper­
ation of Channel 0 (see PERROR). CD1 *, CD2* and CD3*
serve dual purposes as parallel data bits 2, 4 and 6 (PD[2],
PD[4] and PO[6]) when channel zero is operating in parallel
mode.

Ring Indicator[3:0] - Ring Indicator for each channel. These
signals can be monitored via the Modem Signal Value Regis­
ters. RIO' serves a dual purpose based on the mode of opera­
tion of channel 0 (see PPE). RI1', RI2' and RI3' serve dual
purposes as parallel data bits 3, 5 and 7 (PD[3], PD[5] and
PD[7]) when channel zero is operating in parallel mode.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

1.4 Pin Descriptions (cont.)

Symbol

PSTROBE*

PACK*

PSLlN*
PINIT*
PAUTOFO*

PSLCT*
PPE*
PERROR

March 1991

Pin

61

62

22
21
27

23
25
26

Type

o

o
o
o

LOGIC

Description

Printer Strobe - This is the alternate function for TxOO when
channel 0 is programmed as a parallel port. When the port is
selected for output (printer), PSTROBE* is driven active by the
CL-C01400 after a proper data set up time. Oata is held for a
proper hold time after PSTROBE* is deactivated. When chan­
nel 0 is programmed as an input (scanner) port, PSTROBE*
acts as the acknowledge pin to signal completion of data re­
ception.

Printer Acknowledge - This is the alternate function of RxOO
when channel 0 is programmed as a parallel port. When the
port is selected to output (printer), this signal is used by the CL­
C01400 to signal completion of data reception by the printer,
and it will begin the next I/O cycle. When channel 0 is selected
as input (scanner), PACK" is treated as the strobe input. Prop­
er data set-up and hold times are required.

Printer Select in
Printer Initialize
Printer Autofeed

These three signals are general-purpose outputs. Their state
is controlled by the lower three bits of the PSVR register (see
the register descriptions for detailed information on register bit
assignments). PSLlN* and PINIT* are alternate functions for
RTSO" and OTRO", depending on the mode of operation on
channel O. PAUTOFO* is a single-function output pin.

Printer Select
Printer Paper Empty
Printer Error

These three signals are general-purpose inputs. Their state
can be monitored via the upper four bits of the PSVR register.
As with their modem input counterparts (CTSO", RIO" and
COO"), a change in state can be programmed to generate a
SVCREQM". The function of these signals is automatically se­
lected based on the mode of operation programmed for chan­
nelO.

13

LOGIC

1.4 Pin Descriptions (cant.)

Symbol Pin Type

PBUSY 24 I/O

PD[O) 28 I/O

PD[1) 29 I/O

14

CL-CD1400
UXART Serial/Parallel Controller

Description

Printer Busy

PBUSY is a bi-directional signal: input when transmit is en­
abled, and output when receive is enabled. During receive
data operations, the CL-CD1400 drives PBUSY active after re­
ceiving the strobe from the remote. When it has taken the data,
it deasserts PBUSY and activates PACK". During transmit
data operations, the state of PBUSY is made available to the
host via the PSVR register; however, it does not affect transfer
operation and is not a handshake signal for this direction.

Parallel Data bit 0 - When channel 0 is operating in parallel
mode, this pin provides the parallel data bit zero.

Parallel Data bit 1 - When channel 0 is operating in parallel
mode, this pin provides the parallel data bit one.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

2. REGISTERS

All communication with the CL-C01400 takes
place through a large array of registers. Registers
are considered to be one of three types: global, vir­
tual and per-channel. Global registers affect all
channels within the device. Per-channel registers
pertain only to the channel being referenced. Glo­
bal registers are always available for host access;
access to a particular channel's local registers re­
quires selecting that channel's register set. Virtual
registers are only available to the host during the
context of a service routine. There are four sets of
per-channel registers, one for each channel. Se­
lection of the register set is accomplished by writ­
ing the channel number (0 - 3) into the Channel Ac­
cess Register (CAR). This causes a "bank switch"
action, allowing the registers of the selected chan­
nel to be accessed. At any given time, only one
channel'S registers are available. Once selected,
this register set remains available until the CAR is
changed by the host.

The tables on the following pages define the regis­
ter symbols, names, read and write access modes,
and the internal offset address for each register in
the CL-C01400. The offset address is applied to
the address bus (A[6:0]) during a host I/O cycle to
select a particular register. A detailed description
of host interface is presented in Section 4.

In the register bit definitions immediately following
the register tables, some registers are shown with

March 1991

LOGIC

two functions. In these cases, the first definition
applies to channel O's serial operation mode, and
the second to parallel mode. For channels 1
through 3, only the function labeled "Serial" ap­
plies.

Section 5 presents a detailed description of regis­
ter programming.

Note that the addresses are shown relative to the
CL-C01400's definition of address lines. In 16-
and 32-bit systems, it is a common practice to con­
nect 8-bit peripherals to only one byte lane. Thus,
in 16-bit systems, the CL -CO 1400 appears at ev­
ery other address; for example, the CL-CD1400's
AO is connected to the host's A 1. In 32-bit systems,
the CL-C01400 appears at every fourth address;
(the CL-C01400's AO is connected to the host's
A2). In either of these cases, the addresses used
by the programmer will be different than what is
shown.

For instance, in a 16-bit Motorola 68000-based
system, the CL-C01400 is placed on data lines
00-07, which are at odd addresses in the Motorola
manner of addressing. The CL-C01400's AO is
connected to the 68000's A 1, etc. Thus, CL­
C01400 address x'40 becomes x'81 to the pro­
grammer. It is 'left-shifted' 1 bit, and AO must be '1'
for low-byte (00-07) accesses.

15

CL-CD1400
WGIC UXART Serial/Parallel Controller

2.1 Cl-CD1400 Register Map

2.1.1 Global Registers

Symbol Register Name RJW A[6:0] (Hex)

GFRCR Global Firmware Revision Code Register RIW 1000000 40

CAR Channel Access Register RIW 110 1000 68

GCR Global Configuration Register RIW 1001011 48

SVRR Service Request Register R 1100111 67

RICR Receive Interrupting Channel Register RIW 1000100 44

TICR Transmit Interrupting Channel Register RIW 1000101 45

MICR Modem Interrupting Channel Register RIW 1000110 46

RIR Receive Interrupt Register RIW 1101011 68

TIR Transmit Interrupt Register RIW 1101010 6A

MIR Modem Interrupt Register RIW 1101001 69

PPR Prescale Period Register RIW 1111110 7E

2.1.2 Virtual Registers

Symbol Register Name RIW A[6:0] (Hex)

RIVR Receive Interrupt Vector Register R 1000011 43

TIVR Transmit Interrupt Vector Register R 1000010 42

MIVR Modem Interrupt Vector Register R 1000001 41

TOR Transmit Data Register W 110 0011 63

RDSR Receive Data/Status Register R 1100010 62

MISR Modem Interrupt Status Register R 100 1100 4C

EOSRR End Of Service Request Register W 1100000 60

16 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

2.1.3 Channel Registers

Symbol Register Name RIW A[6:0] (Hex)

LlVR Local Interrupt Vector Register R/W 0011000 18

CCR Channel Command Register RIW 0000101 05

SRER Service Request Enable Register RIW 0000110 06

COR1 Channel Option Register 1 RIW 0001000 08

COR2 Channel Option Register 2 RIW 0001001 09

COR3 Channel Option Register 3 RIW 0001010 OA

COR4 Channel Option Register 4 RIW 0011110 1E

CaRS Channel Option Register 5 RIW 0011111 iF

CCSR Channel Control Status Register R 0001011 OB

ROCR Received Data Count Register R 0001110 OE

SCHR1 Special Character Register 1 RIW 0011010 1A

SCHR2 Special Character Register 2 RIW 0011011 1B

SCHR3 Special Character Register 3 RIW 0011100 1C

SCHR4 Special Character Register 4 RIW 0011101 10

SCRL Special Character Range, Low RIW 0100010 22

SCRH Special Character Range, High RIW 0100011 23

LNC LNext Character RIW 0100100 24

MCOR1 Modem Change Option Register 1 RIW 0010101 15

MCOR2 Modem Change Option Register 2 RIW 0010110 16

RTPR Receive Time-out Period Register RIW 0100001 21

MSVR1 Modem Signal Value Register 1 RIW 1101100 6C

MSVR2 Modem Signal Value Register 2 RIW 1101101 60

PSVR Printer Signal Value Register RIW 1101111 6F

RBPR Receive Baud Rate Period Register RIW 1111000 78

RCOR Receive Clock Option Register RIW 1111100 7C

TBPR Transmit Baud Rate Period Register RIW 1110010 72

TCOR Transmit Clock Option Register RIW 1110110 76

March 1991 17

CL-CD1400
UXART Serial/Parallel Controller

2.2 Register Definitions

2.2.1 Global Registers

Global Firmware Revision Code Register (GFRCR) 40 ReadIWrlte

Firmware Revision Code

Channel Access Register (CAR) 68 ReadIWrlte

n/u n/u n/u n/u n/u n/u C1 CO

Global Configuration Register (GCR) 48 ReadIWrlte

PIS· I n/u n/u
I

n/u n/u n/u n/u n/u

Service Request Register (SVRR) 67 Read Only

0 0 0 0 0 SRM SRT SRR

Receive Interrupting Channel Register RICR 44 ReadIWrite

X X X X C1 CO X X

Transmit Interrupting Channel Register TICR 45 ReadIWrite

X X X X C1 CO X X

Modem Interrupting Channel Register MICR 46 ReadIWrite

X X X X C1 CO X X

Receive Interrupt Register (RIR) 68 ReadIWrite

I rxireq
I

rbusy
I

runfair 0
I

ch[1]
I

ch[O]

Transmit Interrupt Register (TIR) 6A ReadIWrite

Itxireq
I

tbusy
I

tunfair 0 0
I

ch[1]
I

ch[O]

Modem Interrupt Register (MIR) 69 ReadIWrite

Imdireq
I

mbusy I munfair 0 0
I

ch[1]
I

ch[O]

Prescaler Period Register (PPR) 7E ReadIWrlte

Binary Value

18 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

2.2.2 Virtual Registers

Receive Interrupt Vector Register (RIVR) 43 Read Only

X X X X X IT2 IT1 ITO

Transmit Interrupt Vector Register (TIVR) 42 Read Only

X X X X X IT2 IT1 ITO

Modem Interrupt Vector Register (MIVR) 41 Read Only

X X X X X IT2 IT1 ITO

Transmit Data Register (TOR) 63 Write Only

Transmit Character

Receive Data/Status Register (RDSR) 62 Read Only

Received Character Character

Status

Modem Interrupt Status Register (MISR) 4C Read Only

I OSRch I CTSch I Rich I COch 0 I 0 0 I 0 I
End Of Service Request Register (EOSRR) 60 Write Only

X X X X X X X X

March 1991 19

CL-CD1400
LOGIC UXART Serial/Parallel Controller

2.2.3 Channel Registers

local Interrupt Vector Register (lIVR) 18 ReadIWrite

x x x x x IT2 IT1 ITO

Channel Command Register (CCR) 05 ReadIWrite

Format 1: Reset Channel Command

IRes chanl 0 0 0 0 0 FTF Type

Format 2: Channel Option Register Change Command

0 ICORChgl 0 0 I COR3 I COR2 COR1 n/u

Format 3: Send Special Character Command

o I 0 I Send SC I 0 I 0 I SSPC2 SSPC1 SSPCO

Format 4: Channel Control Command

o 0 0 I Chan Ctli XMT EN I XMT DIS I RCV EN I RCV DIS I
Service Request Enable Register (SRER) 06 ReadIWrite

Channel Option Register 1 (COR1) 08 ReadIWrite

Channel Option Register 2 (COR2) 09 ReadIWrite

IXM I TxlBE I ETC LLM RLM I RtsAO I CtsAE DsrAE I

Channel Option Register 3 (COR3) OA ReadIWrite

Serial

Parallel

Channel Option Register 4 (COR4) 1 E ReadIWrite

IIGNCR I ICRNL I INLCR IIGNBRK I-BRKINT I PEH[2] I PEH[1] I PEH[O] I

Channel Option Register 5 (COR5) 1 F ReadIWrite

ISTRIP I LNE CMOE n/u n/u n/u ONLCR I OCRNL

20 March 1991

CL-CD1400
UXART Serial/Parallel Controller ~1-~ClRRUS LOGIC

2.2.3 Channel Registers

Channel Control Status Register (CCSR) OB Read Only

Serial

RxEn n/u n/u n/u TxEn n/u n/u n/u Parallel

Received Data Count Register (ROCR) OE Read Only

a a a a CT3 CT2 CT1 CTa Serial

a a a CT4 CT3 CT2 CT1 CTa Parallel

Special Character Register 1 (SCHR1) 1A ReadlWrite

Special Character 1

Special Character Register 2 (SCHR2) 1B ReadlWrite

Special Character 2

Special Character Register 3 (SCHR3) 1C ReadlWrite

Special Character 3

Special Character Register 4 (SCHR4) 10 ReadlWrite

Special Character 4

Special Character Range Low (SCRL) 22 ReadlWrite

Character Range Low

Special Character Range High (SCRH) 23 ReadlWrite

Character Range High

LNext Character (LNC) 24 ReadlWrite

LNext Character

Modem Change Option Register 1 (MCOR1) 15 ReadlWrite

Serial

Parallel

March 1991 21

CL-CD1400
LOGIC UXART Serial/Parallel Controller

2.2.3 Channel Registers (cant.)

Modem Change Option Register 2 (MCOR2) 16 ReadlWrite

I DSRod I CTSod I Rlod I CDod o o o o Serial

Parallel

Receive Time-out Period Register (RTPR) 21 ReadlWrite

Binary Count Value

Modem Signal Value Register 1 (MSVR1) 6C ReadlWrite

I DSR
I

CTS
I

RI CD IpSTROBEtl 0 n/u RTS

Modem Signal Value Register 2 (MSVR2) 60 ReadlWrite

I DSR I CTS
I

RI CD IpSTROBEtl 0 DTR n/u

Printer Signal Value Register (PSVR) 6F ReadlWrite

Receive Baud Rate Period Register (RBPR) 78 ReadlWrite

Binary Divisor Value

Receive Clock Option Register (RCOR) 7C ReadlWrite

Transmit Baud Rate Period Register (TBPR) 72 ReadlWrite

Binary Divisor Value

Transmit Clock Option Register (TCOR) 76 ReadlWrite

t Bit 3 of MSVR1 and MSVR2 show the state of the PSTROBE output only on Channel O.

22 March 1991

CL-CD1400
UXART Serial/Parallel Controller

CIRRUSWGIC

3. ELECTRICAL SPECIFICATIONS

3.1 Absolute Maximum Ratings

Supply voltage (Veel: ... +7.0 Volts

Input voltages, with respect to ground: ... -0.5 Volts to Vee +0.5 Volts

Operating Temperature (T A): .. 0° C to 70° C

Storage Temperature: ... -65° C to 150° C

Power Dissipation: .. 0.25 Watt

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the de­
vice. This is a stress rating only, and functional operation of the device at these or any conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect device reliability.

3.2 Recommended Operating Conditions

Supply Voltage (Veel: 5V ± 5%
Operating Free Air Ambient Temperature: 0° C < TA < 70° C
System Clock: 20.2752 MHz

3.3 DC Electrical Characteristics

(@ Vee = 5V ± 5%, T A = 0° C to 70° C)

Symbol Parameter MIN MAX

Vil Input low Voltage -0.5 0.8

VIH Input High Voltage 2.0 Vee

VOL Output low Voltage 0.4

VOH Output High Voltage 2.4

III Input leakage Current -10 10

III Data Bus 3-state

leakage current -10 10

loe Open Drain Output

leakage current -10 10

lee Power Supply Current 100

CIN Input Capacitance 10

COUT Output Capacitance 10

Units Test Conditions

V

V (See Notes below)

V IOl = 2.4 mA; (see Notes)

V IOH = -400 !LA

!LA 0< VIN < Vee

~ 0< VOUT < Vee

IlA 0< VOUT < Vee

mA ClK = 20.2752 MHz

pF

pF

NOTES: 1) VOL for open drain signals is O.5V @ 16 mA sinking. VIH is 2.7 V minimum on RESEr and elK.

March 1991 23

CL-CD1400
WGIC UXART Serial/Parallel Controller

NOTES: (cont.) 2) While the CL-CD1400 is a highly dependable device, there are a few guidelines which
will help to insure that the maximum possible level of overall system reliability is
achieved. First, the PC board should be designed to provide maximum isolation of
noise. A four-layer board is preferable, but a two-layer board will work if proper power
and ground distribution is implemented. In either case, decoupling capaCitors mount­
ed close to the CL-CD1400 are strongly recommended. Noise typically occurs when
either the CL-CD1400's data bus drivers come out of tristate to drive the bus during a
read, or when an external bus buffer turns on during a write cycle. This noise, a rapid
rate-of-change of supply current, causes 'ground bounce' in the power distribution
traces. This ground bounce, a rise in the voltage of the ground pins, effectively raises
the input logic thresholds of all devices in the vicinity, resulting in the possibility of a
'1' being interpreted as a '0'.

To reduce the possibility of ground bounce affecting the operation of the CL-CD1400,
we have specified the input-high voltage (VIH) of the CLOCK and RESET pins at 2.7
volts, instead of the TTL-standard 2.0 volts. This eliminates any sensitivity to ground
bounce, even in very noisy systems.

Although 2.7 volts is higher than the industry-standard 2.4 volt output (VOH) specified
for TTL, there are several simple ways to meet this specification. One choice is to use
any of the available advanced-CMOS logic families (FACT, ACL, etc.). These CMOS
output buffers will pull up close to Vee when not heavily loaded. In addition, AS and
ALS TTL may be used if the output of the TTL device is only driving one or two CMOS
loads. As noted in the Texas Instruments ALSIAS LogiC Data Book (1986), pages 4-
18 and 4-19, the VOH output of these families exceeds 3.0 volts at low-current loading.
Other manufacturers publish similar data. Cirrus Logic recommends the use of one of
these two options for the CLK input, to insure fast, clean edges. Note that The RESET
pin may, if desired, be pulled up passively with a 1 K ohm (or less) resistor.

24 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC
3.4 AC Characteristics

3.4.1 Asynchronous Timing

Refer to the Figures 3-1 through 3-5 on the following pages for the reference numbers in the following
table.

(@ Vcc = 5V ± 5%, T A = 0° C to 70° C)

Ref. # Fig. Parameter MIN MAX Unit

t1 3-1 RESEr Low pulse width 10 TCLK

t2 3-3 Address setup time to CS' or OS' -20 ns

t3 3-3 R/w' setup time to CS' or OS' -10 ns

t4 3-3 Address hold time after CS' 0 ns

ts 3-3 R/w' hold time after CS' 0 ns

t6 3-3 OT ACK' low to read data valid 10 ns

t7 3-3 OT ACK' low from CS' or OS2 3 TCLK 5TcLK+40 ns

t8 3-3 Oata Bus Tri-state after CS' or OS' high 0 30 ns

t9 3-3 CS' or OGRANr high from OTACK' low 0 ns

tlO 3-3 OTACK' inactive from CS' or OGRANr and OS' high 40 ns

t11 3-3 OS' high pulse width 10 ns

t12 3-4 Write data valid from CS' and OS' low 2TcLK ns

t13 3-4 Write data hold time after OS' high 0 ns

t14 3-2 Clock period (TCLK) 1 49.32 Note 3 ns

t15 3-2 Clock low time 1 24.66±5"h ns

t16 3-2 Clock high time 1 24.66±5"h ns

t17 3-5 Propagation delay, OGRANT' and OS' to OPASS' 35 ns

t18 3-5 Setup time, SVCACK' to OS' and OGRANr 10 ns

NOTES: 1) Timing numbers for RESEr and ClK in the table above are valid for both asynchronous and
synchronous specifications.

2) On host I/O cycles immediately following SVCACK' cycles and writes to EOSRR, DTACK' will be
delayed by 1 /ls. On systems that do not use DT ACK' to signal the end of the I/O cycle, wait states or
some other form of delay generation must be used to assure that the Cl-CD1400 will not be accessed
until after this time period.

3) As TClK increases, device performance decreases. A minimum clock frequencey of 20 MHz is required
to guarantee performance as specified. The recommended maximum TClK is 1000 ns.

March 1991 25

26

CL-CD1400
LOGIC UXART Serial/Parallel Controller

VCC

elK

, ,
, i ta i tb i C1 C2, C1 , C2 , C1 i

Ii II II r''1 II Ii :r--t ri ri Ii n n
~WUUUUiW!LJWWWW~

I • • I

: ...
RESET* ___________ ----'1

Figure 3-1. Reset Timing

NOTE: For synchronous systems, it is necessary to know the clock cycle number so that interface
circuitry can stay in lock-step with the device. ClK numbers can be determined if RESET*
is released within the range ta - tb; ta is defined as 10 ns minimum after the falling edge of
the clock; tb is defined as 5 ns minimum before the next falling edge of the clock. If these
conditions are met, the cycle starting after the second falling edge will be known to be C1.
See the synchronous timing diagrams for additional information. Asynchronous systems
need not be concerned with clock numbers.

; ... 114 ...:

~t16 .; .. 115 --.j

/ \ I ""
Figure 3-2. Clock Timing

March 1991

CL-CD1400
UXART Serial/Parallel Controller

A[O:6)

R/W'

CS'
DS'

DB[O:7)

DTACK'

March 1991

WGIC

x~ __ ~ ________________ ~~x~ __ ~x~ __ _

___ --'f \'--____ --'X'--__ _
:

\'---------'/ L
Is ~

--------~----~~<~------~~>~---------
~i

~ /
~~--------~----~

~ t7~

Figure 3-3. Asynchronous Read Cycle Timing

27

28

A[0:6]

R/W*

CS*
OS*

08[0:7]

OTACK*

CL-CD1400
WGIC UXART Serial/Parallel Controller

~ t2 ~

===x~ __ ~ ______________ ~ __ ~X~ __ ~X~ __ _
----l t3 !--- +:ts!---

-------\ lr----------X~ __ _

\ Y
~~--------------~I:

~ t12----': ~ t13 ;..-

---------r------~<~ ______ ~~~>~---------
tg ~

\'-----..,-_---'1
: ... ---___..-+-; ... ___ tlO -..j

Figure 3-4. Asynchronous Write Cycle Timing

March 1991

CL-CD1400
UXART SeriaVParaIleI Controller

A[0:6]

A/w'

SVCACK'

OS'
OGAANr

08[0:7]

OTACK'

OPASS'

March 1991

LOGIC

~ __ ~ ____________ ~i~X~~X~_
~ts~

__ ---'7 · \I..-__ --JX'--__
: ...

~ I:: ~L-~----------~.

--..: 118 i'4-

\'----------'!
---..: t8 ~

<~ _____ ~--~>r--------
\]: y
~~. ------~--~I:

;4- t10 ------: · . · . · .

\-------------/

Figure 3-5. Asynchronous Service Acknowledge Cycle Timing

29

CL-CD1400
LOGIC UXART Serial/Parallel Controller

3.4.2 Synchronous Timing

Refer to Figures 3-6 through 3-8 on the following pages for the reference numbers in the table below.

Ref. # Fig. Parameter MIN MAX Unit

t1 . 3-6 Setup time, CS* and DS* to C1 falling edge 5 ns

t2 3-6 Setup time, R/W* to C1 falling edge -10 ns

t3 3-6 Setup time, address valid to C1 falling edge -20 ns

t4 3-6 C3 falling edge to data valid 60 ns

ts 3-6 DT ACK* low from C4 falling edge 40 ns

t6 3-6 CS* and DS* trailing edge to data bus high-impedance 30 ns

t7 3-6 CS* and DS* inactive between host accesses 10 ns

ts 3-6 Hold time, R/w* after C4 falling edge 20 ns

t9 3-6 Hold time, address valid after C4 falling edge 0 ns

tlO 3---7 Setup time, write data valid to C3 falling edge 0 ns

t11 3-8 Setup time, DS* and DGRANT* to C1 falling edge 20 ns

t12 3-8 Setup time, SVCACK* to DS* and DGRANT* 10 ns

t13 3-8 Hold time, write data valid after C4 falling edge 0 ns

t14 3-8 Propagation delay, DS* and DGRANT* to DPASS* 35 ns

NOTE: On host 1/0 cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* will be delayed
by 1 Ils. On systems that do not use DTACK* to signal the end of the 110 cycle, wait states or some other
form of delay generation must be used to assure that the CL-CD1400 will not be accessed until after this
time period.

30 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

C1 C2 C3 C4

elK

\ ! \ '----OS', CS'

RIW' ~ ,'-----

A[6:0] ==x
: X'-7-: --

f.-t6~
08[7:0] ------------------------------------~~(~

!\'---~;:

-.: ts *-
OTACK' \ /

Figure 3--6. Synchronous Read Cycle Timing

March 1991 31

CL-CD1400
LOGIC UXART Serial/Parallel Controller

C1 C2 C3 C4

ClK

: --...; t7 ;.-

OS', CS' \, /\----

R/W' !
-..; t3 :.-

A[6:0] ==x'-________ ~---__:_--'X'-----
-..; tlO 4- -..; t13 ~

OB[7:0] <'--_____ ~~>>-----

OTACK'

Figure 3-7. Synchronous Write Cycle Timing

32 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

C1 C2 C3 C4

ClK ~

~t12:.-i

SVCACK' ~ /
\~~~--------------------~--------~~.

OPASS'

OS'
OGRANr

. .
4-+- t14 ~ . .

~
\~----------~----~~

~t11~

\~~------------~------~~!
\

R/W' :--.'-----
!4-- t4 ~ ~t6~

08[7:0] ----------------------------~{ t--
'\~ __ ___JI

\ I L--_-'
OTACK'

Figure 3-8. Synchronous Service Acknowledge Cycle Timing

March 1991 33

CL-CD1400
LOGIC UXART Serial/Parallel Controller

3.4.3 Parallel Port Timing Specifications

Refer to Figures 3-9 and 3-10 for identification of reference numbers in the following table.

Note that the functions of PACK' and PSTROBE' are opposite depending on the direction of data move­
ment, however the direction of PSTROBE' and PACK' does not change. The PACK' signal on the CL­
CD1400 is always an input, and the PSTROBE' is always an output. The apparent function is changed
by the external signals they are connected to and the direction of data movement. The tables below use
the CL-CD1400 pin names for the signals.

The following table shows the timing specifications for the parallel port when it is programmed in the trans­
mit mode. The PSTROBE' output provides the data strobe function and the PACK' input is connected to
the acknowledge signal from the receiving device.

Transmit Timing (see Figure 3-9.)

Ref. # Fig. Parameter MIN MAX Unit

tp 1 3-10 Setup time, PD[7:0] to PST ROBE' falling edge 200 ns

tp2 3-10 Hold time, PD[7:0] after PSTROBE' rising edge2

tp3 3-10 PSTROBE' pulse width 1

tp4 3-10 PACK' pulse width3 0.5 f.Ls

The following table shows the timing specifications for the parallel port when it is programmed in the re­
ceive mode. The transmitting device connects its strobe output to the CL-CD1400 PACK' input and its
acknowledge input to the CL-CD1400 PSTROBE' output.

Receive Timing (see Figure 3-10.)

Ref. # Fig. Parameter MIN MAX Unit

tp5 3-9 Setup time, PD[7:0] to PACK' falling edge 0 ns

tp6 3-9 Hold time, PD[7:0] after PSTROBE' falling edge 8 f.Ls

tp7 3-9 PSTROBE' pulse width Note 1

tp8 3-9 PACK' to PSTROBE' delay time 50 (typ) f.Ls

tp9 3-9 PACK' pulse width3 0.5 f.Ls

NOTES: 1) The width of the PSTROBE' pulse is set by the programmed value in the TCORITBPR register pair
and will be equal to one bit-time. The recommended bit-time is approximately 10 f.Ls.

2) PD[7:0) will be held until the receiver acknowledges the transfer by activating PACK'.

3) For highest performance, RCOR/RBPR should be programmed for a bit rate equal to 115.2 Kb/sec.

34 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

PD[7:0) ==x~------------~~x~-------
---.i" tp2 r---.; tp1 ~

PSTROBE* \'------11
tp3 ~ tp4 ~

PACK* --------------------~\:. v~--------
'--. --~;

Figure 3-9. Parallel Port Transmit Timing

March 1991 35

CL-CD1400
LOGIC UXART Serial/Parallel Controller

PD[7:0] ~ _________ X~ __________ _
~ tp5 1... tp6 .. '

PACK* pin -,; :",--------------------

(Strobe function) ~ I:
~ tp9 ~ ~ tp7 ~

PSTROBE* pin

(Ack function) ;... tp8 \ !
-----I .. ~:

PBUSY \'--------

Figure 3-10. Parallel Port Receive Timing

36 March 1991

CL-CD1400
UXART Serial/Parallel Controller

4. FUNCTIONAL DESCRIPTION

4.1 Device Architecture

The C L -CD 1400 can be described as a small
computer system tailored to the function of send­
ing and receiving serial and parallel data. It is
made up of a RISC processor (MPU), RAM,
ROM, host bus interface logic and serial data
channels (one of which can function as a parallel
port). It has special instructions and hardware that
facilitate serial data manipulation.

The MPU is a true RISC processor. In addition to
having a compact, efficient set of instructions, it
has a 'windowed' architecture that allows it to
handle one channel and its registers at a time.
Before beginning any operations on a given
channel, it loads an internal index register that
forces all accesses to the appropriate set of
registers. The index register becomes part of the

MPU ..-

BUS

INTERFACE

t LOGIC

I RAM

LOGIC

internal address and allows direct addressing of
the register bank and all hardware resources of the
selected channel. No address computation is
required in order to select the proper channel.

This same windowed scheme is carried through to
the host interface as well (see Figure 4-2). For all
channel specific accesses, the host first loads the
Channel Access Register (CAR) with a pointer to
the channel it wants to access. Thereafter, all read
and write operations will take place with the proper
channel. Host software need only define a register
address once, and it will be valid for all channels
because the CAR is used as part of the internal
addressing.

CHANNEL a ,... LOGIC AND
BIT TIMING

ROM

CHANNEL 1

~ LOGIC AND
BIT TIMING

CHANNEL 2

I
--.. LOGIC AND

BIT TIMING

CHANNEL 3
-+- LOGIC AND

BIT TIMING

Figure 4-1. CL-CD1400 Functional Block Diagram

March 1991 37

LOGIC
CL-CD1400

UXART Serial/Parallel Controller

RAM Register
Array

Host

Address -- Addross /-

Ch annel 0 Registers

Ch annel 1 Registers -- Generation -
Ch annel 2 Registers

I CAR I
C hannel3 Registers

Figure 4-2. Internal Address Generation

The serial data channels are made of 'bit engines'
that off-load the task of receiving and transmitting
each bit from the MPU. The bit engines, after pro­
cessing a complete bit, interrupt the MPU so that
it can perform whatever task is required next. For
example, when receiving data, the MPU will take
the bit and add it to a character that is being as­
sembled. When transmitting, it will give the bit-en­
gine the next bit of the character being transmit­
ted. Thus, the MPU does not need to concern
itself with basic bit timing; this task is handled by
the bit engines leaving it free to perform higher­
level processing, such as detecting special char­
acters.

When channel 0 is programmed to be a parallel
port, the bit engines are used to set the timing of
the handshake signals (PSTROBE*, PACK*).

4.2 Host Interface

The host interface to the CL-CD1400 is made up
of an 8-bit bidirectional data bus, a 7 -bit address
bus and various strobes that identify the type of
I/O cycle that is taking place. In most system
designs, the I/O cycles will be merely normal host

38

read and write cycles that activate the appropriate
strobes. Although the strobe names and basic
timing match that of the Motorola 68000 family,
the CL-CD1400 easily fits into any CPU
environment.

In most cases, when the host reads or writes an
internal CL-CD1400 location, it actually accesses
a location in a RAM array that serves as a bank of
registers. Some locations, however, are mapped
to actual hardware resources; for example, when
a hard output signal is required, such as a seNice
request output (in the SVRR), or when it is neces­
sary to read the actual state of an input, such as a
modem input.

The CL-CD1400 is, by design, a synchronous de­
vice. All internal operations take place on edges
and levels (phases) of the internal clock. Note that
the internal clock is generated by dividing the ex­
ternal (system) clock by two. When the host per­
forms an I/O cycle with the CL-CD1400, its
strobes, address and data are sampled on falling
edges of the internal clock. As can be seen in the
timing diagrams in Section 3, external control sig­
nals must meet setup times with respect to clock
edges. Once a cycle has started, the sequence of

March 1991

CL-CD1400
UXART Serial/Parallel Controller

events is locked to the CL-C01400's clock, with
events (address setup, write data setup and read
data available) occurring at predictable times.

It is not necessary, however, to design a
synchronous interface to the CL-C01400. In an
asynchronous design, the Data Transfer
Acknowledge (OT ACK*) signal is used as an
indication that the CL-C01400 has completed the
requested data transfer. Thus OTACK* can be an
input to wait-state generation logic that will hold
the host CPU until the operation is complete. If
the strobes (Chip Select and Data Strobe - CS*
and OS*) do not meet the minimum setup time
with respect to a clock edge, the CL-C01400 will
not detect the I/O request, and the cycle will be
delayed two full-system clock cycles, thus
meeting the setup time. The I/O cycle will then
commence and follow the predictable timing, with
OTACK* signaling the end.

4.2.1 Host Read Cycles

Read cycles are initiated when the CL-C01400
senses that both the CS* and OS* inputs are ac­
tive and the Read/Write (R/w*) input is high. All
strobes and address inputs must meet setup
times as specified in the timing specifications in
Section 3. It is important to note that both the CS*
and OS* signals must be valid for a cycle to start,
thus cycle times are measured from whichever of
the two signals goes active last. The CL-C01400
signals the fact that it has completed the read cy­
cle (placing the data from the addressed register
on the data bus pins), by activating the OTACK*
signal. The read cycle is terminated when the
host removes CS* and OS*.

4.2.2 Host Write Cycles

Write cycles timing and strobe activity is nearly
identical to read cycles except that the R/w* sig­
nal must be held low. Write data, strobes and ad­
dress inputs must meet setup and hold times as
specified in the timing diagrams in Section 3.
Again, the OTACK* signal is used to indicate that

March 1991

LOGIC

the cycle is complete and the CL-C01400 has tak­
en the data. Removing both CS* and OS* termi­
nates the cycle.

4.2.3 Host Service Acknowledge Cycles

Service acknowledge cycles are a special-case
read cycle. Timing is basically the same as a nor­
mal read cycle, and one of the SVCACK* inputs is
activated instead of the CS* input (a little longer
setup time is required on the SVCACK* input than
on the CS* input). The data that the CL-CO 1400
provides during the read cycle is the contents of
the interrupt vector register associated with the
type of request being acknowledged (RIVR for re­
ceive, TIVR for transmit and MIVR for modem) of
the channel that is requesting service (see descrip­
tion of service request procedures later in this sec­
tion). As with read and write cycles, OTACK* will
indicate the end of the cycle and removing OS* and
SVCACK* terminates the cycle.

An important fact to note about timing and service
acknowledge cycles: when the host has completed
the service routine and writes to the EOSRR
register, a subsequent I/O cycle, if started
immediately, will be delayed by approximately 1
Ils. This is due to the time required by the internal
processor to complete housekeeping activities
associated with the switch out of the service
acknowledge context. These activities are
primarily FIFO painter updates and restoration of
the environment prior to the service request!
service acknowledge procedure and must be
completed before any internal registers are
modified by the host. If the situation occurs that the
host attempts an access before the internal
procedures are complete, the CL-C01400 will hold
off the cycle until it is ready. In system designs
which monitor OTACK*, this will not cause a
problem; the cycle is extended until OTACK*
becomes active, and the delay will automatically
be met. If a system design does not monitor
OT ACK*, a mechanism must be provided to
introduce the required delay.

39

WGIC

4.3 Service Requests

From the host point of view, the CL-CD1400
operates in one of two modes: normal operation
and service request/acknowledge. The normal
mode of operation allows the host system to
make changes and obtain current operating
status on a global and per-channel basis. The
service request/acknowledge mode is used when
a particular channel needs service, for example
when a receive FIFO has reached its
programmed threshold and requires emptying. A
unique behavior of the CL-CD1400 is that a
service request can only be responded to after it
has been placed in a service acknowledge
"context". This context switch takes place when
the request is acknowledged, either by activating
the appropriate SVCACK* input pin, or by proper
manipulation of two internal registers.

When the internal processor (MPU) detects a
condition on a channel that requires host atten­
tion, it posts a service request internally and ex­
ternally. The external request is the activation of
one of the SVCREO* output pins, depending on
whether the type of service needed is for receive,
transmit or modem Signal change. Included with
the internal request is a channel pOinter that
points to the channel requiring service. When the
host service acknowledge begins, this pointer is
loaded into the CAR, thus the request automati­
cally services the proper channel. This is the pur­
pose of the context switch, it prepares the CL­
CD1400 for servicing of the proper channel. At
the completion of the acknowledge procedure,
the CL-CD1400 must be taken out of the acknowl­
edge context by explicitly telling it that the proce­
dure is complete, thus restoring the internal state
to what it was before the context was switched.

It is important to remember that several of the reg­
isters within the CL-CD1400 can only be access­
ed when the context switch has been made and
are referred to as "virtual" registers. For example,
the host cannot directly place data in the transmit
FIFO at any arbitrary time. It must wait for a trans­
mit service request indicating that the FIFO is
empty, and then acknowledge it. Once the ac-

40

CL-CD1400
UXART Serial/Parallel Controller

knowledge procedure has started, the transmit
FIFO is available for loading.

The CL-CD1400 will make requests for service
whenever an enabled need exists. The two basic
ways in which the host can be made aware of
these service requests is through hardware (inter­
rupt), or software (polling internal CL-CD1400
registers). The method used will be dependent on
the hardware/software design of the system; the
CL-CD1400 functions well in both environments.
This section discusses the trade-ofts in choosing
one or the other of the basic methods, and how
the two can be combined for maximum perfor­
mance.

4.3.1 Interrupt

The term "interrupt" is used as a generalized de­
scription of the method by which the CL-CD1400
gains the attention of the host CPU. It is used in­
terchangeably with "service request" because the
two really are the same function. "Interrupt" is of­
ten used to describe an unconditional response
on the part of the host. Whether or not this is the
case, the source is still the same - a service re­
quest from the CL-CD1400. The hardware signals
generated by the CL-CD1400 (SVCREOR*,
SVCREOT* and SVCREOM*) can be connected
to the host CPU's interrupt generation/control fa­
cility and can cause it to invoke an interrupt ser­
vice routine. The service routine can then begin
servicing the CL-CD1400's request by starting an
acknowledge sequence.

The SVCREO* outputs can be connected to the
host interrupt circuitry individually, thus using
three unique interrupt level inputs, or they can be
logically ORed together into a single interrupt and
applied to one interrupt level input. In the latter
case, the host may examine the SVRR register to
determine which service requests are active. The
method (single or multiple interrupts) chosen by
the designer will be dependant on the system re­
quirements and hardware and/or board space lim­
itations; the CL-CD1400 places no restrictions on
it. It is likely that interrupt latency will be slightly

March 1991

CL-CD1400
UXART Serial/Parallel Controller

shorter with the first method since the individual
interrupt levels can cause a software vector di­
rectly to the correct service routine without first
checking for the source of the interrupt.

No matter which interrupt method is used, the
end result is the same. Once the host has recog­
nized that a service request is active, a service
acknowledge routine must be executed in order
to satisfy the request. There are two ways in
which to start the acknowledge and force the con­
text switch: via four hardware input pins or by
making specific modifications to internal regis­
ters.

4.3.1.1 Hardware-Activated Context Switch

The internal register manipulation that is involved
in the context switch can be forced via the
Service Acknowledge (SVCACK*) input pins on
the CL-CD1400. There is one SVCACK* for each
service request type: SVCACKR* for receive
service requests, SVCACKT* for transmit service
requests and SVCACKM* for modem signal
change service requests. Each of these inputs is

HOST

ADDRESS

HOST
1/0

CONTROL

.. ...
ADDRESS

DECODE

LOGIC

LOGIC

a special-case chip select that causes the MPU to
set up the CL-CD1400 for servicing that particular
service request type for the requesting channel.
Note that the CS* input is not activated on service
acknowledge cycles. Instead, the appropriate
SVCACK* input and the DGRANT* inputs are
used. DGRANT* will be discussed in the
description of daisy-chaining multiple CL­
CD1400s below. Figure 4-3 shows a generalized
logic diagram of the hardware interface to the
SVCACK* inputs. In the case of a service
acknowledge, one of the SVCACK* address
locations will be accessed instead of the CS*
location.

To the host, the service acknowledge cycle is a
read cycle. The data that the CL-CD1400 places
on the bus during the read cycle is the contents of
the interrupt vector register (RIVR, TIVR or MIVR)
associated with the service acknowledge input that
is active (SVCACKR*, SVCACKT* or
SVCACKM*). The upper five bits of the vector
register are whatever was previously loaded into
the LlVR by the host; the lower three bits will be
supplied by the CL-CD1400, indicating the type of
interrupt (vector) .

..
AD[6:0] ...

CL-CD1400

CS*

SVCACKR*
SVCACKT*
SVCACKM*

08[7:0]

~
DGRANT*

R/W*

DS*

.. -- -
HOST

DATA

Figure 4-3. Control Signal Generation

March 1991 41

LOGIC

At the time the CL-CD1400 is ready to post the
service request, it copies the upper five bits of the
LlVR into the appropriate vector register (RIVR,

Bit 2 Bit 1 Bit 0 Request Type

0 0 0 Not used

CL-CD1400
UXART Serial/Parallel Controller

TIVR, MIVR) and then places the request type
vector in the lower three bits. The following table
shows the assignment of the request type bits.

0 0 Group 1: Modem signal change service request

0 0 Group 2: Transmit data service request

0 Group 3: Received good data service request

0 0 Not used

0 Not used

0 Not used

Group 3: Received exception data service request

For transmit and modem service acknowledge
cycles, the data in the lower three bits will be re­
dundant to the host, since this information is
known by the fact that the corresponding ac­
knowledge has taken place. However, these bits
will be of importance in the case of a receive data
service acknowledge because they provide an in­
dication of whether the request is for "good" data
or exception data.

The value contained in the upper five bits of the
LlVR can be used for a number of purposes. The
primary purpose of the LlVR is as a source of a
software vector that can be used by the host sys­
tem as an index into a interrupt dispatch table.
However, systems that can't use this or don't
need it can use these bits for any purpose. In mul­
tiple-CL-CD1400 deSigns that use daisy-chain­
ing, a logical value to place in these bits is a chip
identification number. This will be discussed in
more detail in the daisy-chaining description be­
low. In a single-CL-CD1400 design or one that
does not use daisy-chaining (unique address
range for each device) and does not need the val­
ue in the LlVR as a vector for hardware interrupt
response, a convenient use for these bits is chan­
nel encoding. Since each channel has its own

42

LlVR, these five bits can have a unique value iden­
tifying the channel. By doing this, there is no need
to read the RICR, TICR or MICR to determine the
channel number, thus in a single 1/0 operation, the
host knows both the type of interrupt and the num­
ber of the channel requesting service. In fact, with
five bits available, systems with small numbers of
CL-CD1400s can encode both the channel num­
ber and chip identification number in the LlVR.

Once all of the above has been completed, the CL­
CD1400 is ready to be serviced for the type of in­
terrupt that has been acknowledged. For example,
if the interrupt was for receive good data, the host
would read the RDCR register to determine the
number of characters available in the receive
FIFO, then read that many characters by succes­
sive reads from the RDSR. Other work, such as
disabling future interrupts or changing channel pa­
rameters could also be performed at this time.
Once all tasks involved in servicing the interrupt
have been completed, one further operation must
be performed. In order to inform the CL-CD1400
that the service acknowledge is complete, the host
must write a dummy value to the EOSRR register.
The data written does not matter; any value will do.
What is important is the write operation itself. This

March 1991

CL-CD1400
UXART Serial/Parallel Controller

write forces the internal context switch back to
normal operating mode.

Summary of Interrupt Driven Service
Requests

In summary, the actions that take place during an
interrupt request/service are:

1. Host senses service request via its interrupt
request input from one of the CL-C01400
service request outputs.

2. Host responds by performing a read cycle
that activates the appropriate SVCACK* in­
put pin.

3. Host decodes the value read from the vector
register during step 2, making a decision on
the type of service request (if necessary).

4. Host reads {R, T, M} ICR to determine chan­
nel number.

5. Host services the request (load transmit
FIFO, read receive FIFO, etc.)

6. Host writes a dummy value to the EOSRR to
terminate the service routine.

4.3.1.2 Software Activated Context Switch

It is possible, via host manipulation of some inter­
nal registers, to cause the context switch without
activating any of the SVCACK* hardware inputs.
The method used is the same as that which is
used in a poll-mode-CL-CD1400 design. Once the
host has detected the service request via its inter­
rupt response circuitry, it can then follow the same
procedures that a polling method would use once
it had detected an active service request. Refer to
the context switching description in the following
section.

One reason a design might make use of this meth­
od is that there is limited board space available to
provide the additional hardware address decoding
required to generate the three SVCACK* and
DGRANT* control signals. The system gains the

March 1991

LOGIC

advantage of not having to constantly check for
active service requests by polling the CL-CD1400;
it will be interrupted when a request is posted and
can then examine internal CL-CD1400 registers
to determine the source and channel numbergen­
erating that request. If this method is chosen, the
three SVCACK* and OGRANT* input pins should
be tied inactive (logic '1 ') to prevent false activa­
tion of a service acknowledge cycle due to noise.

4.3.2 Polling

In poll mode, the hosts periodically checks the CL­
CO 1400 to see if there are any active service re­
quests. If it detects any, it proceeds to service
them via a software driven technique. There are
several registers within the CL-C01400 provided
specifically to facilitate poll mode service request
detection and acknowledgment. These are the
SVRR, RIR, TIR, MIR, RIVR, TIVR and MIVR.
Section 5 provides detailed bit definitions for these
registers.

The SVRR (Service Request Register) is the mas­
ter service request register. The least significant
three bits (bits 2-0, SRM, SRT, and SRR) reflect
the inverse of the state of the three service re­
quest output pins (SVCREQR*, SVCREQT* and
SVCREQM*). For example, if bit 0 (SRR) is a
"one", it indicates there is an active receive data
service request, and that the SVCREQR* output
pin is active (low). Thus, with a single read, the
host can determine if the CL-CD1400 needs any
service and, if so, which ones are active.

Each service request type has an interrupt
request register; RIR for receive, TIR for transmit
and MIR for modem. The RIR, TIR and MIR
registers are special purpose registers that are
used with the CAR to force the context switch and
start a service acknowledge procedure. When a
service request of a particular type is pending, the
corresponding interrupt request register is set by
the MPU with the appropriate data to cause the
context switch to the requested type and the
requesting channel. When the host is ready to
service the request, it reads the contents of the

43

LOGIC

request register and copies it into the CAR. The
action of writing this value into the CAR forces the
context switch, and the CL-CD1400 is ready to be
serviced. This is the same result as if a service
acknowledge cycle had been performed with the
SVCACK* pin. Each of the interrupt request
registers provides the channel number that is
requesting service in the least significant two bits.
The most significant three bits provide status and
control over internal interrupt sequencing. The
middle three bits contain a code that is used by
the MPU at the end of a hardware service
acknowledge cycles (write to the EOSRR) to tell it
which type of acknowledge cycle is ending. Each
of the three registers has a unique code in these
three bits that select the proper service
acknowledge type.

At the end of a service request operation, the host
must inform the CL-CD1400 that the request has
been satisfied and take it out of the service re­
quest context. This is done by writing the value
that was in the interrupt request register back into
it after first clearing the upper two bits.

As with the hardware-driven request/acknowl­
edge procedure, the virtual registers should only
be accessed after the context switch has been
made. Their contents are undefined until this time.

Summary of Poll Mode Service Requests

To summarize, the major steps involved in a poll
mode service request/service acknowledge se­
quence are:

44

CL-CD1400
UXART Serial/Parallel Controller

1. Host scans the SVRR periodically, checking
the three least significant bits. If any of them
are true ("1"), a service request is active.

2. Depending on which of the service request
bits is active, read the appropriate interrupt
request register (RIR, TIR or MIR) and copy
the contents into the CAR.

3. Perform service routine.

4. Write the original value of the interrupt re­
quest register back after clearing the upper
two bits.

4.3.3 Service Requests and Multiple CL­
CD1400s

Multiple CL-CD1400s can be combined to form
systems with more than four channels. There are
a number of ways that two or more can be con­
nected, but one way provides a more efficient ser­
vice request/service acknowledge sequence by
allowing the CL-CD1400s to arbitrate between
themselves. This mode only works if hardware ac­
tivated service acknowledges are being utilized.

The CL-CD1400 provides a means of "daisy­
chaining" the service request and service ac­
knowledgments of two or more devices together.
This allows them to arbitrate and set priorities be­
tween themselves regarding which may post a
particular type of service request. This is the Fair
Share interrupt scheme. The Figure 4-4 shows
the way in which two CL-CD1400s would be con­
nected to enable the Fair Share function.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

CIRRUS LOGIC

ADDRESS
SVCACKR* '---- SVCACKR*

DECODE SVCACKT* SVCACKT*

LOGIC SVCACKM* SVCACKM*

DGRANT* DGRANT* r- DPASS* U- CYCL
DPASS*

E

R - ERRO
SVCREOR* SVCREOR*

SVCREOT* I-- SVCREOT* "---
SVCREOM* f-- SVCREOM* f-

Figure 4-4. CL-CD1400 Daisy-Chain Connections

The open-drain request outputs of the two CL­
CD1400s (SVCREOR*, SVCREOT* and
SVCREOM*) are wire ORed together to form one
request for each type. This allows each to monitor
the state of the others' outputs. Also, each of the
service acknowledge inputs (SVCACKR*,
SVCACKT* and SVCACKM*) is also connected
together to form one acknowledge of each type.
The DGRANT* input of the first CL-CD1400 is
connected to ground; the DPASS* output of the
first CL-CD1400 drives the DGRANT* input of the
second.

Before a request for service of a particular type is
posted, the MPU checks the current state of the

March 1991

request output for that type. If it is inactive, indi­
cating that no other CL-CD1400 is driving that
level, a request can be posted, otherwise it will
wait. This guarantees that each CL-CD1400 will
have an opportunity to have this request type ser­
viced when needed. When the host acknowledg­
es the request, both CL-CD1400s will receive the
acknowledge via the SVCACK* input. However,
only the first will receive the DGRANT*. If it has
an active request of this type pending, it will take
the acknowledge and drive its vector register
(RIVR, TIVR, MIVR) onto the data bus.

If it does not have a request pending, it will pass
the DGRANT* input to the second CL-CD1400

45

LOGIC

via the DPASS' output. Assuming that the second
has an active request pending, it will take the ac­
knowledge and drive its vector register onto the
data bus.

As mentioned earlier, the upper five bits of the
LlVR will reflect whatever the host loaded into
them during its initialization of the CL-CD1400s.
These bits must be used as a unique chip identifi­
cation number so the host will know which CL­
CD1400 responded to the service acknowledge.
These five bits could be set to binary zero in the
LlVR of the first CL-CD1400, and to binary 1 in the
second. The host can easily test the bit to deter­
mine which device responded. Some examples of
host service acknowledge software routines that
show one way of performing this task are provided
in Section 6.

CAUTION: If neither CL-CD1400 has a pending
request, the DGRANT* will be passed by the
second and neither will respond, thus causing the
cycle to hang. The only time this could happen
would be due to an error condition outside the CL­
CD1400s that caused the host to respond to a
request that was not made. A mechanism should
be provided to terminate or abort the cycle if this
error should occur. This can be accomplished with
time-out circuitry or the DPASS' output of the
second CL-CD1400 can activate an abort
condition. Other devices may share the daisy­
chain mechanism and could be connected to the
DPASS' output of the second (or whichever is
last) CL-CD1400 in the chain. The actual
implementation is system-dependent, but it is
important to provide some way for the host to
know that the cycle did not complete normally, if
no device exists at the end of the chain.

4.4 Serial Data Reception and Transmission

The CL-CD1400 has four channels, each with a
receiver and a transmitter. Although a receiver
and a transmitter pair are associated with each
channel, in many respects they operate indepen­
dently, sharing only parameter settings regarding
character format, including length, parity type, if
any, and number of stop bits. Each receiver and

46

CL-CD1400
UXART Serial/Parallel Controller

transmitter has its own baud rate generation func­
tion, allowing a channel to send at one rate and re­
ceive at another. Shared and independent param­
eters are shown in the diagram below:

Receiver Transmitter

Baud Rate I Baud Rate

Parity
Character Length

Stop Bits
Prescale Period Register

FIFO Thresh I
Rcv Time-out I

Channel service needs, such as an empty trans­
mit FIFO, are indicated to the host by one of three
service request indicators: one for all receivers,
one for all transmitters and one for all modem sig­
nal changes. The internal processor (MPU) scans
each channel sequentially for service needs, post­
ing a request when it detects a particular type. It
continues the Fair Share scheme used in the ex­
ternal daisy-chain configuration by not allowing a
channel to post another request of one type until
all other channels have posted their requests of
that type, if any. For example, if channel 0 is cur­
rently being serviced for a transmit request and
channel 3 has one pending, the request from
channel 3 will be posted before channel 0 is able
to make another request for transmit service.

Each receiver and transmitter has a 12-character
FIFO. The receiver has two additional character
holding locations, the receive character holding
register and the receiver shift register. The
transmitter also has two additional locations, the
transmitter holding register and transmitter shift
register. The receive FIFO has a programmable
threshold that sets the level at which a service
request will be posted. When data reaches this
'high water' mark, a request will be made of the
host to empty the FIFO. More details on this are
provided later in the section describing receiver
operation. Receive FIFOs also have a
programmable threshold that, when reached, will

March 1991

CL-CD1400
UXART Serial/Parallel Controller

cause the DTR output to be deasserted (see the
flow-control description).

In the asynchronous serial data protocol, a mes­
sage consists of one 'character', made up of bits,
either high or low, representing a one or zero val­
ue. A character can be made up of from five to
eight bits plus an optional parity bit bracketed by a
start bit and a stop bit. Each bit has a time duration
that sets the data transmission rate, or baud rate.
The start bit indicates the beginning of a character
bit stream and is indicated by a transition from a
logic '1' to a logic '0' (mark to space) on the trans­
mission media. The start bit lasts one 'bit-time'
and is immediately followed by the data bits (5 to
8), the parity, if any, and the stop bit.

As discussed previously, the CL-CD1400 incorpo­
rates special hardware to receive and transmit
each bit. These are the 'bit engines'. They perform
all timing associated with sending or receiving one
serial data bit. A bit-engine behaves differently de­
pending on whether it is sending or receiving.
When a complete bit has been received, the bit­
engine interrupts the MPU so that it can handle
the bit on the character level. This usually entails
its addition to the character being assembled. For
transmitting, a transmit bit-engine interrupt caus­
es the MPU to give it the next bit to be transmitted.
The bit-engine interrupt happens at the end of a
bit time, which has been timed by the engine, thus
removing that duty from the MPU.

4.4.1 Receiver Operation

Each channel can be programmed to receive
characters with several different parameters, such
as character length, parity, number of stop bits,
FIFO threshold and baud rate. Each receiver is in­
dependent of any other receiver. It may also be
set to a different baud rate from its corresponding
transmitter.

Before valid data can be received, the host must
set up each channel by programming the desired
operational parameters in the Channel Option
Registers (COR1-COR5) and the baud rate gen­
erator registers (Receiver Clock Option Register

March 1991

~i~ClRRUS LOGIC

and the Receiver Baud Rate Period Register -
RCOR and RBPR). Once these are set, the chan­
nel is enabled by issuing the receiver enable com­
mand via the CCR and enabling service requests
in the Service Request Enable Register (SRER).

Once a receiver is enabled, its bit-engine begins
scanning the RxD input for a valid start bit. It does
this by detecting a falling edge transition on the in­
put. When the transition is detected, the bit-engine
delays until the middle of the programmed bit time
and checks the input again. If the input is still low,
then the start bit is considered valid and character
assembly begins. At each subsequent full bit time,
the input is checked and its level recorded as the
value of the next bit. If, at the center of the bit-time,
the RxD input has returned to a mark state, then
the start bit is considered invalid and the bit-en­
gine goes back to the start bit detect mode. Fol­
lowing a valid start bit, the bit-engine begins re­
ceiving data bits. At the end of the programmed
number of bits, following bits are checked for par­
ity (if enabled) and a valid stop bit. A valid stop bit
is defined as a mark or logic '1' on the input. If a
valid stop bit is not detected, a framing error will
be noted for the character. After a properly as­
sembled (no framing error) character has been re­
ceived, it is checked for several special conditions
(see the section on special character handling and
flow control), and the overrun condition before it is
placed in the receive FIFO. If no errors or special
character proceSSing are required, the character
is considered 'good' data and placed directly in
the FIFO. If errors exist, it is placed in the FIFO as
'exception' data along with status indicating the
type of error. As each good character is placed in
the FIFO, the Receive Data Count Register
(RDCR) is updated to reflect the number of good
characters currently in the FIFO.

The receive FIFO has a programmable threshold
that determines the level at which the CL-CD1400
will request receive data service. This level is
programmed via the RxTh3-RxThO bits in
Channel Option Register 3. The host may place
the threshold at any number of characters from 1
to 12. Note that this only sets the level atwhich the
CL-CD1400 will post a service request, not the

47

LOGIC

depth of the FIFO. When the host responds to a
receive good data service request, it may read
any number of characters out of the FIFO, from
zero up to the number indicated in the RDCR
before exiting the service routine. If the number
read is zero, the CL-CD1400 will post another
request for service almost immediately. If the
number of characters read is less than the number
indicated by the RDCR but enough such that the
number in the FIFO falls below the threshold, a
new request will not be made until the threshold is
once again exceeded. The term 'almost
immediately' is used above because, since the
MPU scans the channels in a 'round-robin'
fashion, another channel may post a receive
service request before this channel again has the
opportunity.

4.4.2 Receiver Timer Operations

Also associated with each receiver FIFO is a timer
whose duration is set by the Receive Time-out Pe­
riod Register (RTPR). This timer provides two ser­
vices in relation to receive FIFO operation: a time­
out to prevent 'stale' data in the FIFO and a time­
out after the last character is taken out of the
FIFO. The first type, type 1, will occur if the re­
ceive FIFO does not reach the set threshold be­
fore the programmed time period expires and the
second, type 2, will occur if the timer expires and
no new data has been placed in the FIFO after the
last character was removed; this is called the No
New Data Time-out (NNDT) service request.

The timer is driven by the prescaled clock gener­
ated by the Prescale Period Register (PPR) in the
global register set. The timer is loaded with the
value contained in the RTPR each time a charac­
ter is placed in the receive FIFO or when the last
character is removed from the FIFO. Each 'tick' of
the prescaler decrements the timer. If the timer
reaches zero and receiver interrupts are enabled,
the MPU will generate a receive data service re­
quest for one of the two time-out conditions, de­
pending on which is valid.

48

CL-CD1400
UXART Serial/Parallel Controller

Type 1: If there are characters in the FIFO but
the threshold level has not been
reached, a good data service request will
be posted when the timer expires. This
function is provided to prevent data from
remaining in the FIFO for long (potential­
ly infinite) periods of time because the
remote did not send enough data to fill
the FIFO to the threshold level. This
time-out cannot be disabled.

Type 2: If there is no data in the FIFO when the
timer expires and the No New Data
Time-out (NNDT) service request is en­
abled in the SRER, a receive exception
service request will be posted with status
indicating the time-out condition. This
time-out is optional, and is provided so
that host driver software can detect the
possible end of a block of data and al­
lows its buffers to be flushed to the high­
er, operating system level. The NNDT
will be posted only on the first occur­
rence of a time-out after the FIFO be­
comes empty. Also note that the NNDT
timer is not started if the last character
removed from the FIFO was an excep­
tion character.

The flow chart in Figure 4-5 shows the timer pro­
cess evaluation performed by the MPU when the
timer reaches zero.

4.4.3 Receive Exceptions

Several conditions can cause the CL-CD1400 to
evoke the receive exception service request. If an
exception condition occurs, two bytes are placed
in the receive FIFO. The first is the status indicat­
ing the type of error and the second is the data it­
self.

Exception data is given to the host one event at a
time. That is, there will be a separate service
request for each character that is received with
some special condition. If, when an exception

March 1991

CL-CD1400
UXART SeriaYParallel Controller

condition occurs, the receive FIFO has good data
in it, a good data receive service request will be
posted immediately upon receipt of the bad data,
regardless of the number of characters in the
FIFO and the programmed threshold. This allows
the host to remove the data in the FIFO ahead of
the exception data so that the CL-CD1400 can
post the service request for the error condition.
Once the host terminates the service
acknowledge procedure for the good data, a new
service request will be posted for the exception
data.

When the host acknowledges the receive excep­
tion service request, it reads the Receive Datal
Status Register (RDSR) first to get the status and
second to get the data. Reading the data is option­
al: if the host does not read the FIFO twice during
the service routine, the CL-CD1400 will update its
internal FIFO pOinters appropriately and discard
the second byte. (Actually, the host need not read
any data from the FIFO during an exception ser­
vice acknowledge - the FIFO pointers will be up­
dated correctly at the end of the service routine,
discarding both the status and the data. Thus, the
host must read at least the status, or it will be lost
forever.)

Another special case of the exception data han­
dling is for received line break conditions. A line
break is a character with zero data and no parity
or stop bit. In this case, a null (zero) character is
placed in the FIFO with the break condition indi­
cated in the accompanying status and a receive
exception service request will be posted. Howev­
er, regardless of the length of the break, only one
character will be placed in the FIFO. Resumption
of normal character reception will cause new data
to again be placed in the FIFO.

Refer to the register definitions in Section 5 for a
description of the status bits in the RDSR.

March 1991

LOGIC

4.4.4 Transmitter Operation

Each of the four channels on the CL-CD1400 are
capable of transmitting characters with a number
of programmable characteristics such as length,
parity and baud rate. The channels operate com­
pletely independently and settings in one will have
no effect on the operation of another.

After being reset, from either hardware (RESEr
input pin) or software (via the master reset com­
mand in the CCR), all transmitters are disabled
with the TxD output held at a logic '1' condition.
This is the off, or mark, condition of the asynchro­
nous protocol. Before any operation of the trans­
mitter can begin, the host must program the appro­
priate parameters in the Channel Option Registers
(COR), the Clock Option register (TCOR) and
Transmit Baud Rate Period register (TBPR). Once
these registers are set, the channel is enabled by
issuing a transmit enable command via the CCR
and enabling service requests by setting the ap­
propriate transmit enable request bit(s) in the Ser­
vice Request Enable register (SRER). The chan­
nel will immediately post a transmit service request
since its FIFO is empty. The host responds to the
request by loading up to 12 characters into the
transmit FIFO via the Transmit Data Register
(TDR) after it places the CL-CD1400 in the service
request acknowledge mode (see description of
service request/service acknowledge procedures
in Section 4.3). The transmitter does not begin
transmitting the characters until the host termi­
nates the service routine and writes the EOSRR.
Transmission begins by sending a start bit (logic
'0') followed by five to eight data bits (depending
on the programmed value), least significant bit
first. The last data bit is followed by the appropriate
parity bit, if enabled, and a minimum of one stop
bit. All bit transmission is handled by the transmit
bit-engine with the MPU giving it each bit as it is re­
quired. If there are still characters in the FIFO, the
next one will be transmitted immediately after the
last stop bit of the previous character. This process
continues until all characters in the FIFO have
been transmitted. The CL-CD1400 will then post a
service request for more data.

49

50

CL-CD1400
WGIC UXART Serial/Parallel Controller

put character in FIFO
reload timer

Figure 4-5. FIFO Timer Processing

March 1991

CL-CD1400
UXART Serial/Parallel Controller

There are actually 14 transmit character holding
locations for each channel: 12 in the FIFO, one in
the transmitter holding register and one in the
transmitter shift register itself. The CL-CD1400
can be programmed, on a per channel basis, to
request transmit data when one of two conditions
exist: when the last character in the FIFO is trans­
ferred to the holding register or when the last data
bit of the last character is shifted out of the trans­
mitter shift register. The first option allows the host
two character transmit times in which to reload the
FIFO and prevent a transmit data underrun. This
is the normal mode of operation. The second
mode can be used to make sure the transmitter is
empty before reconfiguring the channel. It is likely
that the transmitter will underrun if the second op­
tion is chosen unless the host is sufficiently fast
enough to respond to a transmit service request
and reload the FIFO during the transmission of the
stop bit(s) of the last character. If the transmitter
underruns, it will continue to send stop bits (mark)
until more data is placed in the FIFO. Normally,
when a string of characters greater than 12 is be­
ing transmitted, host software will program the CL­
CD1400 transmitter to post a service request
when the FIFO becomes empty. When the last of
the data to send has been placed in the FIFO, the
service request enable is changed so that re­
quests are made after the last character is sent.
This allows the host to know when all the data is
transmitted before disabling a channel. If a chan­
nel is disabled, any characters other than the one
currently being transmitted will be held and the
transmitter will enter the marking state. If the
channel is subsequently re-enabled, any remain­
ing data will be transmitted.

The transmitter is capable of performing several
special functions such as break generation, inter­
character delays and automatic flow control.
These functions are discussed in the sections de­
scribing special character handling (embedded
transmit commands) and flow control.

March 1991

~!-~CIRRUS LOGIC

4.4.4.1 Transmitter Timer Operations

As with the receiver, the transmitter has a timer
associated with it. This timer is used to generate
the timing for the embedded transmit commands
that send line breaks and inter-character delays.
Whenever the MPU detects an embedded trans­
mit command specifying the delay command, it
loads the timer with the value contained in the pa­
rameter byte. This timer is decremented on each
'tick' of the prescaler timer until it reaches zero. At
that time, the delay is terminated unless the next
character in the FIFO is the beginning of another
delay command sequence.

4.5 Flow Control

In all data communications applications, data is
sent from one system to another via some proto­
col. Most systems have some method of buffering
data for transmission and reception. In the asyn­
chronous protocol, there is no way, at the protocol
level, to determine the length of a data transmis­
sion therefore it is normally not possible to set
aside a buffer area that is known to handle the en­
tire length of the transmission. Also, the hardware
receiving the data generally has a limited amount
of buffer area, usually a FIFO, and if the host does
not unload data at a fast enough pace, the buffer
or FIFO may overflow. For these reasons, two
methods are provided that can be used to stop the
remote from sending data until room is once again
available to receive data. This is known as flow
control. Flow control can be in-band or out-of­
band. In-band flow control makes use of special
characters that can be sent to the host to stop
data transmission. Out-of-band flow control are
signals outside of the serial data channel that per­
form the same function. These are the Request To
Send (RTS), Clear To Send (CTS) pair and the
Data Set Ready (DSR) and Data Terminal Ready
(DTR) pair. The CL-CD1400 can make use of ei­
ther kind and has built in capabilities to do so au­
tomatically and/or semi-automatically (depending
on direction and options chosen) without host in­
tervention (or knowledge, if desired).

51

LOGIC

4.5.1 In-Band Flow Control

As mentioned, in-band flow control is implement­
ed by special characters that are imbedded in the
serial data stream, one to request that transmis­
sion stop and one to request resumption. The
characters chosen can be any characters al­
though conventionally the XON or DC1 (x'11) and
XOFF or DC3 (x'13) characters if the ASCII char­
acter set is being used. The XOFF value desig­
nates the character that is to be used to stop data
transmission and the XON character determines
the character that is to be used to resume trans­
mission. Whether or not the ASCII XON and
XOFF characters are used, the CL-CD1400 al­
lows the two characters to be set to any value that
is appropriate to the system design by the value
programmed in Special Character Registers 1 and
2 (SCHR1 and SCHR2). SCHR1 defines the XON
character and SCHR2 defines the XOFF charac­
ter.

4.5.1.1 Receiver In-Band Flow Control

When the host senses a need to flow control a
sender, due to its receive buffer filling too fast to
service, it can request that remote stop transmis­
sion by sending an XOFF character via the trans­
mitter. This is accomplished by issuing a send
special character 2 command via the Channel
Command Register (CCR). The CL-CD1400 will
then transmit whatever character is programmed

RxFloff RxFlon Encoded Status

CL-CD1400
UXART Serial/Parallel Controller

in SCHR2. As discussed earlier, the send special
character command is preemptive to data current­
ly in the transmit FIFO, and thus the XOFF char­
acter will be transmitted after the currently trans­
mitting character and the character in the
transmitter holding register have been sent, a
maximum delay of two character times. When the
host is again ready to start receiving characters, it
sends an XON character, also via a send special
character command. This time, the CL-CD1400 is
issued the command to send whatever is pro­
grammed in SCHR1. Send special character com­
mands will override the remotes' flow-controlling
of the CL-CD1400; in other words, even if the CL­
CD1400 transmitter has been shut off by the re­
mote, it can still send flow control characters.

The current state of the flow control condition is al­
ways made available to the host via the Channel
Control Status Register (CCSR). In addition to the
enabled/disabled status of the receiver and trans­
mitter, the CCSR displays the flow control status.
Two bits in the CCSR pertain to receiver flow con­
trol, RxFloff and RxFlon. Whenever the host is­
sues the send special character 2 (send XOFF),
the CL-CD1400 sets the RxFloff bit, indicating that
it has requested the remote to stop transmission.
When the host issues the send special character
1 (send XON) command, the RxFlon bit is set and
RxFloff is reset. RxFlon remains set until the first
character is received after the XON was transmit­
ted. The table below shows the bit encoding for
RxFloff and RxFlon.

o o Transmission has resumed, receiver has been enabled/disabled or
receiver is in default reset state

o XON has been sent, transmission not yet restarted

o XOFF has been sent

Not Used

The RxFlofflRxFlon bits are cleared whenever the receiver is disabled or enabled, regardless of the state
of flow control when the disable/enable occurred.

NOTE: Regardless of the current state of RxFloff, the CL-CD1400 continues to receive characters. If the remote
ignores or is slow to respond to the XOFF character, there is the possibility of overruns.

52 March 1991

CL-CD1400
UXART Serial/Parallel Controller

4.5.1.2 Transmitter In-Band Flow Control

The CL-CD1400 has the ability to automatically
flow control its own transmitter when it receives
the XON and XOFF characters, as programmed
in SCHR1 and SCHR2. Control bits in Channel
Option Registers 2 and 3 (COR2 and COR3) en­
able or disable various aspects of the automatic
flow control.

In order for flow control characters to be acted
upon, special character detection must be
enabled via bit 4 (Special Character Detect 1 & 2
- SCD12 of COR3). When this bit is set, the CL­
CD 1400 will scan received characters for a match
with one of the special characters programmed in
SCHR1-SCHR2. If enabled via SCD12, and it has
received a character matching the contents of
SCHR2 (the XOFF character), the CL-CD1400
will then check to see if automatic transmit in­
band flow control is enabled via bit 6 of COR2. If
this function is enabled, the CL-CD1400 will
cease transmission after the currently
transmitting character and the character in the

TxFloff TxFlon Encoded Status

~I-~CIRRUS LOGIC

transmitter holding register, if any. If enabled, the
CL-CD1400 will also attempt to match against
errored characters. This function is enabled via
the CMOE bit in COR5.

One other control bit in COR2 is involved in flow
control activities. This is bit 7, the Implied XON
mode, IXM. This bit determines what character
will restart transmission after an automatic flow
control has caused it to stop. If bit 7 is a zero, only
a programmed XON character (SCHR1) will re­
start the transmitter; all other characters will be re­
ceived and placed in the FIFO normally. If IXM is
set, any character received will restart data trans­
mission.

As with receiver flow control, the host can always
determine the current state of the transmitter via
two bits in the CCSR: TXFloff and TxFlon. When
automatic in-band flow control is enabled and the
CL-CD1400 receives and XOFF character, it sets
TxFloff. When an XON character is received, Tx­
Flon is set. Once transmission actually resumes,
TxFlon is cleared. The encoding is shown in the
table below.

o o Transmission has resumed, transmitter has been enabled/disabled
or transmitter is in default reset state

o XON has been received, transmission not yet restarted

o XOFF has been received, transmission has stopped

Not Used

The TxFlofflTxFlon bits are cleared whenever the
transmitter is disabled or enabled, regardless of
the state of flow control when the disable/enable
occurred. This feature can be used to force re­
sumption of transmission regardless of remote ini­
tiated flow control.

There is one final aspect of automatic in-band flow
control: Flow Control Transparency (FCT) which is
enabled/disabled by bit 5 in COR3. FCT deter­
mines whether or not remote flow control will be
transparent to the host. If this bit is not set, in ad­
dition to stopping transmission when an XOFF is

March 1991

received, the CL-CD1400 will place the received
XOFF character in the receive FIFO and inform
the host of the reception via a receive exception
service request. When the XON character is re­
ceived, it too will be given to the host via an excep­
tion service request as well as restarting data
transmission. If FCT is enabled, received flow
control characters will control transmission but
they will be discarded rather than be placed in the
FIFO. If the host system software does not need
to know when its transmit data has been stopped,
this bit can be set to reduce the number of service
requests that must be handled.

53

CL-CD1400
LOGIC UXART Serial/Parallel Controller

The following table summarizes the control bits in the Channel Option Registers that enable the various
modes of in-band flow control.

Bit Name Register Function

SCD12 COR3 Enables recognition of special characters 1 and 2

FCT COR3 Enables transparent flow control

TxlBE COR2 Enables automatic transmitter in-band flow control

IXM COR2 Enables implied XON mode

4.5.2 Out-of-Band Flow Control

Flow control can also be accomplished via the
modem handshake signal pairs RTS/CTS and
DSR/DTR. These are called out-of-band flow con­
trol because they are external to the data channel.
The CL-CD1400 can be programmed to automat­
ically respond to and generate out-ot-band flow
control via these signals.

4.5.2.1 Receiver Out-of-Band Flow Control

Along with the receiver FIFO threshold that sets
the level at which the CL-CD1400 will post a ser­
vice request, another threshold can be set that de­
termines when it will automatically assert/deas­
sert the DTR* output if so enabled. This is the
DTR threshold and is enabled via the DTRth3-
DTRthO bits in Modem Change Option Register 1
(MCOR1). The level can be set for any number of
characters from 0 to 12, with a threshold of 0 dis­
abling the function. If the function and the receiver
are enabled, the CL-CD1400 will automatically
assert the DTR* output whenever the number of
characters in the receive FIFO is less than the
programmed number. Once the level reaches the
threshold, DTR* will be deasserted. DTR* will be
held in the deasserted state until the host removes
enough characters from the FIFO to lower the lev­
el below the threshold.

In order for the receiver to operate properly, the
DTR threshold must be set to a value equal to or
higher than the receiver service request
threshold. If the levels were reversed, normal

54

character reception could not be completed
because DTR* would always be deasserted
'before the receive FIFO threshold is reached, thus
the host would not get a receive data service
request until the receive FIFO time-out is reached.
A serial data transmission performance limitation
would result.

The DTR* output may also be controlled manually
via bit 1 of Modem Signal Value Register 2
(MSVR2). Setting this bit to a '1' will assert the
DTR* output.

4.5.2.2 Transmitter Out-of-Band Flow
Control

Transmitter out-of-band flow control is implement­
ed with three modem control signals: the RTS*
output and the CTS* and DSR* inputs. The RTS*
output can be programmed to automatically be as­
serted whenever there is data in the transmit FIFO
and the transmitter is cleared to send. CTS* and
DSR* can be enabled to automatically control the
transmitter.

RTS Automatic Output (RtsAO) is enabled via bit
2 in COR2.lfthis bit is set, the CL-CD1400 will au­
tomatically assert the RTS* output when there is
data in the FIFO to send. When the data has been
sent and the FIFO is empty, RTS* will be deas­
serted until the host places more data in. If RtsAO
is not set, the host software must control the RTS*
output manually via Modem Signal Value Register
1 (MSVR1) if required by the remote.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

The CTS* and DSR* inputs can also be monitored
by the CL-CD1400 and used as a transmitter en­
able. The functions are enabled by setting bit 0
(DSR Automatic Enable - DsrAE) and/or bit 1
(CTS Automatic Enable - CtsAE) of COR2. These
two functions operate independently but their con­
trol over the transmitter is the same. If the function
is enabled, character transmission will occur only
when the corresponding input signal is asserted.
If the signal is de asserted during active transmis­
sion, the current character plus the character in
the transmitter holding register, if any, will be
transmitted and then transmission will cease.
Thus, a minimum of one and a maximum of two
characters may be transmitted after the control
signal is deasserted. Transmission will resume
when the signal(s) are reasserted.

The send special character command does not.
however, sample the CTS* or DSR* inputs. If the
host chooses to send one of the special charac­
ters, the character will be transmitted regardless
of the state of these inputs. In most cases, this is
desirable so that the host can flow control a re­
mote even if it is itself flow controlled. If the state
of CTS* and DSR* are important, they should be
tested via MSVR1 before the special character
send command is issued.

4.6 Receive Special Character Processing

The CL-CD1400 has several means of sending
special characters and ways in which it processes
these characters when it receives them. Some
special characters can have fixed definitions and
some can be user defined. The flow-chart at the
end of this section defines the processing that the
CL-CD1400 performs for receive data. The chart
may aid in understanding the special character
handling process.

4.6.1 UNIX Character Processing

The CL-CD1400 incorporates special character
proceSSing that can be of particular benefit in
systems designed to run the UNIX® operating
system. The processing performs some of the

March 1991

LOGIC

functions normally handled by the "line discipline"
part of a serial device driver program. The effect
of this is higher overall performance in serial
communication than would otherwise be obtained
because the character manipulation takes place
at the hardware level without host action. This
processing includes carriage return (CR) and new
line (NL) substitution, programmable response to
errored characters (framing, parity and overrun
errors), the LNext function and ISTRIP. Each of
the types of processing is optional; any, all or
none of them can be enabled/disabled via control
bits in the Channel Option Registers two, four and
five (see the detailed register descriptions for the
format of COR2, COR4 and COR5). This section
gives detailed descriptions of each of the
functions.

If channel 0 is programmed as a parallel channel,
only the transmit special character processing oc­
curs, such as repeat space and carriage return
and new line translation.

4.6.1.1 Line Terminating Characters

The CL-CD1400 can be programmed to perform
automatic substitution of carriage return (CR) and
new line (NL) characters on both received and
transmitted data. Received character processing
has five unique substitutions based on the value
of three bits in COR4 - IGNCR, ICRNL and INLCR
(some combinations cause identical actions):

000 Do nothing - function not enabled

001 Received NL changed to CR

010 Received CR changed to NL

011 Received CR change to NL and re­
ceived NL changed to CR

100 Received CR discarded

101 Received CR discarded and received
NL changed to CR

110 Received CR discarded

111 Received CR discarded and received
NL changed to CR

55

WGIC

4.6.1.2 Errored Character Processing

The CL-CD1400 provides a number of ways to
handle characters that are received with errors
(parity, framing and overrun errors). If none of the
special processing functions are enabled, errored
characters are delivered to the host via a receive
exception service request. Alternatively, these
characters can be handled in one of the following
ways, as defined by the PE[2:0] bits of COR4:

• Parity errors can be ignored - the character
is placed in the FIFO as good data and is
given to the host as any other received good
data.

• An errored character can be replaced with a
NULL (x'OO) character in the FIFO.

• An errored character can be replaced in the
FIFO with the three byte string x'FF - 00 -
character. If this mode is enabled and an
actual good x'FF character is received, it is
replaced in the FIFO by two x'FF characters.

• An errored character can be discarded.

Received breaks are handled a little differently
from other errored characters. They can be pro­
cessed, based on the settings of the IGNBRK and
-BRKINT bits in COR4, as:

56

• Reported as an errored character via a re­
ceived exception service request.

• Replaced with a good NULL (x'OO) character
in the FIFO.

• Discarded

CL-CD1400
UXART Serial/Parallel Controller

4.6.1.3 LNext

This function provides a means of "escaping" or
ignoring any special ""eaning of special charac­
ters and treat them as normal data. The escape
character is defined by the value in the LNC reg­
ister. If the CL-CD1400 receives this character, it
will put it and the next character in the FIFO with­
out further processing. This allows, for example, a
flow-control character to be received without it ac­
tually causing flow-control activity. LNext can be
enabled to operate even on characters that are re­
ceived with errors (parity, framing, overrun), oth­
erwise errored characters are handled normally
and the next character is not escaped.

4.6.1.4 ISTRIP

ISTRIP is a simple function that, if enabled, resets
the most significant bit (bit 7) of all received good
characters. If the character has a parity or framing
error, the ISTRIP function does nothing and the
character is given to the host via a normal receive
exception service request.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

4.6.2 Non-UNIX Receive Special Character
Processing

In addition to the UNIX special character process­
ing, the CL -CD 1400 provides other special char­
acter recognition capabilities. The CL-CD1400
has four registers that define special characters,
SCHR1-SCHR4. Two of these, SCHR1 and
SCHR2 are used in flow control activities and
were discussed in the flow control section.
SCHR3 and SCHR4 define two additional special
characters that the CL-CD1400 can scan for in
the receive data stream. Recognition of special
characters 3 and 4 are enabled by the SCD34 bit
of COR3 (bit 76). If either of these are received, it
is cause for a special character detect (receive
exception) service request. It should be noted that
if automatic in-band flow control is not enabled,
SCHR1 and SCHR2 can still be used as special
characters. They will be detected and reported as
receive exceptions, they just won't cause any flow
control activities to be invoked.

March 1991

CIRRUS LOGIC

Another special character function is the range
detect function. If this mode is enabled (via the
SCDRNG bit in COR3), the CL-CD1400 will
compare all received characters against the val­
ues in Special Character Range Low (SCRL)
and Special Character Range High (SCHL). If
the character received falls between these two
values (inclusive), a special character detect ser­
vice request will be posted.

The status shown in the RDSR indicates which
of the special character recognition conditions
were met and that caused the receive exception
service request. See the RDSR description in the
register definitions in Section 5 for the bit
encoding.

57

CL-CD1400
WGIC UXART Serial/Parallel Controller

Figure 4-6. CL-CD1400 Receive Character Processing

58 March 1991

CL-CD1400
UXART Serial/Parallel Controller

CIRRUS LOGIC

B

E

Figure 4--6. CL-CD1400 Receive Character Processing (cont.)

March 1991 59

60

CL-CD1400
WGIC UXART Serial/Parallel Controller

CASE:
000 • Do Nothing
001· NL to CR
010· CR to NL
011 • CR to NL; NL to CR
100 • Discard CR
101 - Discard CR; NL to CR
11 0 . Discard CR
111 • Discard CR; NL to CR

D

Figure 4-6. CL-CD1400 Receive Character Processing (cont.)

E

Done

March 1991

CL-CD1400
UXART Serial/Parallel Controller

4.7 Transmit Special Character Processing

The CL-CD1400 also provides some special char­
acter handling on the transmit side; embedded
transmit commands and direct commands that
cause transmission of predefined special charac­
ters. A flow chart (Figure 4-7) is included at the
end of this section to help describe the process of
special character handling.

4.7.1 Line Terminating Characters

On transmit, there are four possible substitutions
based on the setting of two flags in COR5 (bits 1
and 0 - ONLCR and OCRNL):

00 Do nothing - function not enabled

01

10

11

Change all <CR> characters to <NL>

Change all <NL> characters to <CR>
<NL>

CR characters changed to NL or NL
changed to <CR> <NL>

In the last case, where both flags are set, only one
of the translations will take place. In other words,
a CR that has been changed to NL will not then be
changed into CRNL.

4.7.2 Embedded Transmit Commands

The CL-CD1400 has a special feature that option­
ally allows specific 'escape' character sequences
in the transmit data stream to be interpreted as
commands. These are called Embedded Transmit
Commands (ETC) and are enabled by the ETC bit

March 1991

LOGIC

in Channel Option Register 2. They can be used
to insert programmed time delays between char­
acters and generate a line break on the transmit
data output.

If enabled, an ETC is detected when the two- or
three-character 'escape' sequence is detected in
the transmit FIFO. An escape-character se­
quence is made up of the special escape charac­
ter followed by the command character and an
optional count for the delay period. The escape
character is an all-zero (null) character. It should
not be confused with the ASCII ESC character,
which is 1 B hex; for this discussion, ESC refers to
the null character. Five commands are supported
in the ETC command set:

ESC ESC: Send one ESC character. This command
sequence is provided to allow the ESC character
be sent alone. Thus, this "escapes" the escape
when it is actually desired to send a null character.

ESC x'S1: Send BREAK. This causes the
transmitter to enter the line-break condition for at
least one character time. Several conditions
control the continuation and/or termination of the
line break. If there is no more data in the FIFO
following the send break command, the break will
continue indefinitely until terminated by a stop
break command. If there is an insert delay
command (see the next command) immediately
following the send break command, the break
duration will be set by the value programmed in the
delay command. Any other character in the FIFO
immediately following the send break command
carries an "implied" end of break condition,
causing the break to be terminated and the next
character to be sent.

61

LOGIC

ESC x'82 x'xx: Insert delay. This command will
cause a delay between the previous character
transmitted and the next character to be transmit­
ted. The hex value contained in the third byte of
the sequence determines the time of the delay
based on the basic time period set by the Pre scale
Period Register (PPR). The value is treated as an
unsigned binary value that is loaded into an inter­
nal counter. The counter is decremented once for
each ''tick'' of the prescale period timer. Thus, if
the PPR sets a basic timing period of 10 ms and
the value set by the command is 100 (x'64), then
a delay of 1 second will be generated. Multiple in­
sert delay commands can be placed in the FIFO if
time delays longer than that generated by a single
delay period are needed.

62

This command is useful when a delay is required
after sending a carriage return. A printer is an ex­
ample of this type of situation. Often, the carriage
return causes the printer to start a print cycle and
the sending device must wait for the print to com­
plete before sending the next line of text (unbuf­
fered input). Using the insert delay command al­
lows the delay to be performed automatically
without the need for the host to time it. The delay
command is placed in the FIFO directly following
the carriage return and preceding the first data for
the next line. The CL-CD1400 will automatically
execute the delay following the carriage return
and then start sending characters again.

Another useful application of the delay command
is as a built-in timer that the host can use as an in­
terrupt source causing it to periodically check its
internal buffers for data to transmit. This assumes
that the channel is not currently transmitting data.
When the host services the transmit FIFO service
request after a delay time-out, as set by the delay
value, it can start transmission of a buffer if data is
available or re-send the insert delay command
and wait for the next service request. This re­
moves the necessity of the host setting an internal
timer interrupt to perform the same function.

CL-CD1400
UXART Serial/Parallel Controller

ESC x'83: Stop BREAK. This command will termi­
nate a break in progress regardless of other con­
ditions. This command may be preceded by insert
delay commands to set a specific, programmed
break period if more than one character time is
needed. Any character in the FIFO will cause the
break to terminate. EXC x'83 is needed only if it is
necessary to stop the break and there is no more
data to be sent. A break will continue until another
character is sent or the ESC x'83 is encountered
in the FIFO.

ESC x'01- x'3F: Send Repeat Space. This com­
mand will cause the CL-CD1400 to send repeated
space characters. The character following the
ESC is interpreted as a binary count specifying the
number of ASCII space (x'20) characters to send.
The count must be in the range of x'01 through
x'3F (1 - 63 decimal), inclusive.

4.7_3 Send Special Character Command

The CL-CD1400 has, as one of its host
commands, a method of transmitting anyone of
the four special characters programmed in special
character registers SCHR1-SCHR4. The
command is issued via the CCR register with bit 5
set to a one and the least significant three bits
encoding a selection of one of the four characters
(see Section 5 for details of the bit-encoding). The
function is preemptive, meaning that the selected
character will be transmitted immediately
following the currently transmitting character and
a character in the transmitter holding register, if
any. This preempts any characters in the transmit
FIFO. If there are characters in the transmit FIFO,
transmission of those will resume after the special
character is sent.

One important use of this command is that it
allows the host to flow-control a remote without
having to wait for the transmit FIFO to empty
before the flow control character can be put in.
This is a special case of the normal transmitter
operation of the CL-CD1400 in that the character
can be sent without waiting for a transmit service
request. The only requirement is that the
transmitter be enabled (interrupts need not be
enabled).

March 1991

CL-CD1400
UXART Serial/Parallel Controller

March 1991

A

Command in
Progress

C

Figure 4-7. CL-CD1400 Transmit Character Processing

LOGIC

63

64

WGIC

A

N

CL-CD1400
UXART Serial/Parallel Controller

1. Initialize repeat
char count

2. Set repeat
char = "space"

3. Set repeat
char mode

Set Embedded
Command in
progress flag

C

E

Figure 4-7. CL-CD1400 Transmit Character Processing (cant.)

March 1991

CL-CD1400
UXART Serial/Parallel Controller

N

Perform CR, NL
processing as

specified

Send Char

Exit

LOGIC

E

Figure 4-7. CL-CD1400 Transmit Character Processing (cont.)

4.8 Baud Rate Generation

The Cl-CD1400 provides a separate baud rate
generator for each direction of each channel.
Each receive and transmit baud rate generator
can be driven from one of five available clock
sources. The source being used is selected by the
value in the Receive Clock Option Register
(RCOR) and Transmit Clock Option Register
(TCOR). The selected clock is divided by the val­
ue in the Receive Baud Rate Period Register
(RBPR) or Transmit Baud Rate Period Register
(TBPR) to yield the desired bit rate.

March 1991

The five clock sources are:

ClkO

Clk1

CIk2

Clk3

Clk4

System clock divided by 8,
RCORrrCOR = 0

System clock divided by 32,
RCORrrCOR = 1

System clock divided by 128,
RCORrrCOR = 2

System clock divided by 512,
RCORrrCOR = 3

System clock divided by 2048,
RCORrrCOR = 4

The system clock is the external clock driving the
ClK input of the Cl-CD1400. Two example baud
rate tables are provided at the end of Section 6.

65

LOGIC

4.9 Diagnostic Facilities - Loopback

The CL-CD1400 provides the capability to perform
loopback testing internally for both local and re­
mote loopback modes. Loopback mode is enabled
via the Local Loopback Mode (LLM) and Remote
Loopback Mode (RLM) bits of COR2.

In local loopback, the output of the transmitter bit
engine is connected directly to the input of the re­
ceiver bit engine and the input and output pins
(TxD and RxD) are disconnected. The TxD output
is left in the mark condition so that remote equip­
ment does not see any line activity. Input condi­
tions on the RxD are ignored. All channel param­
eters and service request functions are in effect
and operate normally. If enabled, special charac­
ters are detected and acted upon and UNIX®
translations take place.

Remote loopback mode causes the CL-CD1400
to echo any received data immediately back to the
transmit output. This is done on a character-by­
character basis rather than on a bit-by-bit basis; in
other words characters are echoed once they
have been completely received and assembled.
Received data will not be placed in the FIFO, thus
no data is given to the host. The received charac­
ter will be re-transmitted with parity and stop bit
options as defined by COR 1. It is important to note
that, if transmit baud rate is lower than receive
baud rate, overrun errors and loss of data are like­
ly to occur.

4.10 Parallel Channel Operations

Channel 0 is user-configurable as either a serial or
a parallel port. The selection of operating modes is
made by the value of the P/S* bit (bit 7) in the Glo­
bal Configuration Register (GCR). After reset,
channel 0 is configured as a serial port by default.
Host software reconfigures the port to the parallel
mode by setting this bit to a '1 '. The port is capable
of bi-directional operation, the direction being set
by the enabled mode: transmit or receive. In the
receive mode, the CL-CD1400 drives PBUSY as
well as PSTROBE* automatically. PBUSY, how­
ever, is not a bi-directional handshake control: in
transmit mode, it is not monitored by the CL-

66

CL-CD1400
UXART Serial/Parallel Controller

CD1400. PACK* is used as the acknowledge that
the transfer has been completed.

It is important to note that when channel 0 is con­
figured for parallel operation, several of the mo­
dem input signals of the other three channels are
taken over for use by the parallel channel provide
the necessary data and control/status signals re­
quired to support the parallel interface definition of
the Centronics parallel specifications. These are
the RI and CD inputs (Since they are used for bidi­
rectional data transfer, they are actually input/out­
put signals). These six signals (RI[3:1]* and
CD[3:1)*) and the two separate parallel data input/
output signals (PD[O] and PD[1]) form the bi-direc­
tional parallel data port. Other modem input/out­
put signals on channel 0 provide the control and
status signals. The data transfer handshake is
provided by the PSTROBE* output and the
PACK* input. Note also that these two signals
never change direction; PSTROBE* is always an
output and PACK* is always an input. This is the
normal signal name convention for parallel data
transmit. For receive, the PSTROBE* output ef­
fectively becomes the transfer acknowledge
(ACK) output function and the PACK* becomes
the data strobe (STROBE) input function.

Unlike some parallel interface devices which re­
quire the host to control and generate the timing
for the handshake signals directly, the CL­
CD1400 automatically generates the PSTROBE*
and PBUSY outputs and monitors the PACK* in­
put. This removes nearly all host overhead in data
transmission or reception other than putting data
in, or taking data out of, the FIFO. Since parallel
data movement is inherently half-duplex, the CL­
CD1400 combines the serial receive and transmit
FIFOs into one large, 30-byte FIFO. This further
reduces host overhead by providing larger buffer­
ing and thus reduced service request activity.

The width of the PSTROBE* pulse is set by the
programmed bit-time generated by the TCORI
TBPR register pair. The width can be any
duration, but in no case should it be set to a value
less than 15 Ilsec. For best overall performance,
the RCOR/RBPR register pair should be set to
generate a bit-time of 64K baud. PBUSY pulse
width is dependant on the duration between the

March 1991

CL-CD1400
UXART Serial/Parallel Controller

strobe input to the CL-CD1400 and the
acknowledge output (PACK' to PSTROBE' delay;
see Section 3).

General operation of the parallel port is the same
as the serial port. When the channel is in the
transmit mode and the transmitter and transmit
service requests are enabled, the CL-CD1400 will
request service when ever the FIFO is empty. The
host responds by writing up to 30 bytes into the
FIFO. Carriage return and newline mapping occur
on transmit data in the same manner as they do in
serial mode. Only the send repeated space com­
mand of the embedded transmit command set is
operative. The receiver also works the same way
in parallel mode as it does in serial. The FIFO
threshold can be set to trigger on any level be­
tween 1 and 30 inclusive. However, in the interest
of highest possible performance, no receive spe­
cial character processing occurs.

4.10.1 Transmit Operation

When the channel is enabled for transmit opera­
tion and service requests are enabled, the CL­
CD1400 will transmit data whenever characters
are in the FIFO. As with serial operation, service
requests can be programmed to occur when the
FIFO becomes empty or when the last character

CL-CD1400

PACK'

PSTROBE'

PD[7:0]

LOGIC

has been transmitted. The mode is determined by
the type of service request enabled in the SRER
register. Data transmission is controlled by the
CL-CD1400 via the handshake signals
PSTROBE' and PACK'.

When the FIFO has a byte to send, the CL­
CD1400 puts the 8 bits of data on the parallel port.
After a 200 nsec set-up time, the PSTROBE' sig­
nal is driven active (low) and remains active for
the time specified by the values programmed in
the TCORfTBPR registers. PSTROBE' is then
deactivated and the data is held until the PACK'
input is driven active (low) by the receiving device.
PACK' is the only signal monitored automatically
by the CL-CD1400 for flow control purposes.
PBUSY, however, is made available to the host
via the PSVR register. Host software can detect
the busy condition and disable the transmitter, if
necessary. Once PACK' becomes inactive, the
CL-CD1400 will place the next data byte on the
port (if the FIFO is not empty), and the cycle re­
peats. If the receiving device is not able to accept
the data, it may hold off the cycle indefinitely by
not activating PACK'. This provides the parallel
version of flow control.

Figure 4-8 shows a typical connection for a CL­
CD1400 parallel transmit interface, which is a
printer in this example.

PRINTER

ACK

STROBE

.. DATA -

Figure 4-3. CL-CD1400 Parallel Data Transmit Connections

March 1991 67

LOGIC

4.10.2 Receive Operation

Receive operation in parallel mode is also very
much like the serial mode. The receive FIFO has
a threshold setting that determines the level of
data required to cause a receive service re­
quest. The threshold can be set anywhere from
1 to 30 characters. When the number of charac­
ters in the FIFO equals the set value of the
threshold, the CL-CD1400 will post a receive
service request.

The sequence of events in receiving a byte is the
reverse of sending, the sending device places
the data on the parallel data port; after an appro­
priate set-up time, it activates its strobe out. The
strobe is connected to the PACK* input of the
CL-CD1400. When the CL-CD1400 senses the
active level on the P ACK* input, it activates
PBUSY to indicate that it is taking the data but is
not yet done. Once it has taken the data, the it

CL-CD1400

PACK*

PBUSY*

PSTROBE*

PD[7:0] ..-...

CL-CD1400
UXART Serial/Parallel Controller

will activate its PSTROBE* output, which should be
connected to the senders acknowledge input. At the
end of the programmed pulse width duration,
PSTROBE* and PBUSY are deactivated.

Flow control happens automatically in the receive
direction. If the FIFO and the holding register are full
when the next data byte is being received, the CL­
CD1400 will maintain PBUSY in the active (high)
state and will not activate PACK*. Once the host has
serviced the receive FIFO and has removed at least
one byte, thus making room for the current byte, the
CL-CD1400 will complete the receive cycle by ac­
knowledging the byte (activate PACK*) and deacti­
vating PBUSY.

Figure 4-9 shows the connections between the CL­
CD1400 and a sending device such as a scanner.
This connection might also be seen in an applica­
tion where the CL-CD1400 is the receiving device in
a printer application.

SCANNER

STROBE

BUSY

ACK

DATA

Figure 4-9. CL-CD1400 Parallel Data Receive Connections

68 March 1991

CL-CD1400
UXART Serial/Parallel Controller

4.11 Hardware Configurations

The simplicity of the host interface to the CL­
CD1400 allows it to be built into systems making
use of any of the microprocessors on the market,
such as the Intel 80x86 family (8086, 80286,
80386, etc.), the Motorola family (68000, 68010,
68020, etc.), the National 32x32 family (32CG16,
32332, 32532, 32GX32, etc.), and the
AMD29000.

80286
SYSTEM

LOGIC

4.11.1 Interfacing to an Intel Microprocessor-
Based System

With very little extra logic, the CL-CD1400 can be
interfaced to any system based on a processor in
the Intel 80x86 family. The figure below shows a
generalized view of an I/O mapped interface with
an 80286 based system. In order to provide the
proper strobes and controls, the 10R* and 10W*
control strobes are used to synthesize the DS*
and R/w* signals. DTACK* is used as an input to
wait state generation logic that will hold the pro­
cessor (if necessary) until the CL-CD1400 has
completed the I/O request.

CL-CD1400

-- CS*
A[23:7] ADDRESS SVCACKR*

ADDRESS -... .. SVCACKT*
DECODE

-..

...... SVCACKM*

A[6:0] .. -- A[6:0]

DATA D8[7:0] -- --
IOR* v

IOW* -- DS*

T R/w* --,.

IRQ
SVCREQR*

INPUTS SVCREQT*

SVCREQM*

WAIT-STATE
READY GENERATION DTACK*

LOGIC

Figure 4-10. Intel80x86 Family Interface

March 1991 69

CL-CD1400
LOGIC UXART Serial/Parallel Controller

4.11.2 Interfacing to a Motorola connection in most cases. With later versions
(68020. 68030). some additional logic is required
to generate the DSACKO" and DSACK1"
functions that replace the DTACK" on the earlier
devices. The example below is a generalized
interface to a 68020 device.

Microprocessor-Based System

Interfacing to a 68000 family devise is very
straight forward. The bus timing and the interface
signal definitions very closely match those of the
68000 microprocessor. thus allowing direct

68020
SYSTEM

AS"

FC[2:0]

ADDRESS

DATA

OS"

RIW"

IPL[2:0]

DSACK1*

DSACKO*

ADDRESS . -A[31:9] ... DECODE
A[8:2]

PRIORITY

ENCODING

TRANSFER

CONTROL

... -...

Figure 4-11. Motorola 68020 Interface

70

CL-CD1400

CS"

SVCACKR"

SVCACKT*

SVCACKM"

A[6:0]

08[7:0]

OS"

RIW*

SVCREOR*

SVCREOT*

SVCREOM*

DTACK*

March 1991

CL-CD1400
UXART Serial/Parallel Controller

4.11.3 Interfacing to a National
Semiconductor Microprocessor-Based
System

The connections between the CL-CD1400 and a
NS32000 (32GX320, 32CG16, etc.) embedded
controller is also relatively simple. As with the Intel
devices, cycles are controlled by the OS, CS and
RIW signals that have been synthesized from the
available I/O control signals and 1/0 cycle

32000
SYSTEM

DATA

~I-~CIRRUS LOGIC

extensions (wait states) are generated by logic
connected to the DTACK signal. Some additional
consideration is required to implement memory­
mapped 1/0 to prevent multiple read and write
cycles with the CL-CD1400 FIFOs due to the
pipelined architecture of the 32000 device but all
of the necessary controls are available.

The figure below depicts a simplified interface
example.

CL-CD1400

0[7:0] - ... TRANCEIVER - ..
DB[7:0] -- - AND INPUT -- -

LATCH

INTERRUPT
SVCREQR*

INPUTS SVCREQI' .. SVCREQM*

... A[6:0]

I
...

A[31 :0]
ADDRESS

101NH*
CS*

IODEC* DECODE
SVCACKR*

BWO AND
SVCACKI'

BW1 BUS SVCACKM*

CONF* CYCLE DS*

BMI' CONTROL DTACK*

RDY*

BCLK t
DDIN* .-'"' RIW*

Figure 4-12. National 32000 Interface

March 1991 71

LOGIC

4.12 Serial Data Performance

The maximum rate at which the CL-CD1400 can
move serial data in and out of its internal registers
is affected by many factors. The actual rate that is
achievable by the bit engines themselves is ap­
proximately 250,000 bits per second. This is
based on the smallest value of baud rate period at
which the bit engines can operate. However, this
is simply the speed that data can be shifted, not
how fast characters can be assembled/disassem­
bled and processed for any special character ma­
nipulation that is selected. The real limiting factor
in the maximum data rate is the MPU (not taking
into account host overhead in management of the
receive and transmit FIFOs, which does have an
impact on performance).

Recall that the bit engines operate at the bit level.
When a bit engine has completed operation on a
bit, whether it is related to receiving or transmit­
ting, it interrupts the MPU indicating it is done with
the task. The MPU performs the bit manipulation
at the character level. If, for example, the bit en­
gine interrupt is for a bit that has been received,
the MPU must add the bit to the character being
assembled and test for a complete character.
Tasks performed during a bit engine interrupt are
called foreground tasks. The background code will
perform further manipulation of the character,
such as checking parity or other error conditions,
placing the character in the FIFO, generating a
service request if appropriate, etc. All of these
tasks require time, and as the number of interrupts
from bit engines in a given time period increase
due to higher data rates, the MPU has less time for
the background tasks. This is compounded by re­
quiring it to perform additional special tasks, such
as UNIX character translations.

Internally, the MPU prioritizes its activities in the
order of receive, transmit, modem. At the higher
data rates, more time will be spent on receive
characters than on transmit characters simply be­
cause there is less time overall between interrupts.
When data rates reach a level at which the MPU
cannot keep up, the transmitter will begin to show
gaps between characters. This is the fail-safe con­
dition; no data is lost. As the data rate continues to

72

increase, inter-character gaps become longer
and longer. At extremely high rates, the MPU be­
gins to have trouble keeping up with receiver bit
engine interrupts and the whole system breaks
down and data is lost.

Extensive performance analysis has been per­
formed on the CL-CD1400. The analysis was
based on throughput at various serial data rates
at a nominal system clock of 20 MHz. Throughput
is measured as the amount of data transmitted
over a given time period versus the theoretical
maximum amount based on calculation. The dif­
ference between the two is made up of inter-char­
acter gaps.

This analysis has shown that the device can sup­
port 100% throughput at 115.2K baud on all four
channels in half-duplex mode (transmitting) and
minimum optional character processing. This
mode of operation might be found in terminal
servers, for example, which tend to be half-duplex
in operation. Nearly all high speed traffic is one di­
rection, server to terminal, with relatively little traf­
fic in the other direction, terminal keyboard to the
server. Occasionally, the data movement will be
reversed, such as for a file upload, but then the
low duty-cycle traffic is also reversed. In a true
full-duplex application, 100% throughput is
achieved on all four channels up through 70K
baud, also with minimum special options enabled.
As the number of operating channels decreases,
the maximum data rate at which 100% throughput
can be maintained increases. One channel oper­
ating full-duplex can maintain 115.2K baud at
93% throughput.

The performance achieved in an application is
dependent on a number of factors. As mentioned
above, host performance is also a factor. If the
host cannot respond to a transmit FIFO service
request in time to keep it from running out of data,
than the apparent throughput will decrease due to
the inter-character gaps caused by the underrun.
Of course, if the host cannot respond fast enough
to a receive FIFO service request, overruns will
result. High data rates increase the load on the
host system as well as the MPU within the CL­
CD1400. Another factor that has an obvious

March 1991

CL-CD1400
UXART Serial/Parallel Controller

affect on performance is system clock speed. At
the maximum recommended operating frequency
of 20.2752 MHz, the throughput numbers shown
in the diagrams will increase slightly. As system
clock frequency decreases, there is a linear
decrease in CL-CD1400 serial data performance,
since the MPU is operating at slower pace.

The data that has been collected on CL-CD1400
is diagrammed in the following graphs. In order to
show both best case and worst case conditions,
the tests were run in two modes. The first mode

LOGIC

turned on all possible special character
processing, thus loading the MPU with the
maximum amount of work necessary on each
received character. The second mode did not
enable any special character processing. The
host in use for these tests was a PC/AT-type
system based on a 25-MHz 80386 CPU. The
overhead of the host service routines has been
factored out of the data in order to show true CL­
CD1400 performance levels.

Throughput with maximum character processing options enabled:

100

90 1 channel running

t- 80
::::l
(L

I
G 70 ::::l

2 channels running

0
IT:
I
t- 60

3 channels running

50
4 channels running

40

~ ~ ~ ~
v <Xl <D LO
<D <ri 0)

r-..

BAUD RATE

March 1991 73

LOGIC

Throughput with minimum character processing options enabled:

100

90

I- 80
::J
a...
I
CJ 70 ::J
0
0::
I
I- 60

50

40

~ ~ ~
"<t co (!)
(!) <0 (j)

I"-

BAUD RATE

74

CL-CD1400
UXART Serial/Parallel Controller

~
l()

1 channel running

2 channels running

3 channels running

4 channels running

March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

5. DETAILED REGISTER DESCRIPTIONS

This section presents a complete, detailed description of each register. Registers have two formats: full
eight bits, where the entire content defines a single function; or, the register is a collection of bits, grouped
singly or in multiples, defining a function. In the second case, the descriptions break the register down
into its component parts and describe the bits individually. The order of register presentation follows that
given in the brief register descriptions in Section 2.

5.1 Global Registers

Global Firmware Revision Code Register (GFRCR) 40 Read Only

Firmware Revision Code

The GFRCR serves two purposes in the CL-CD1400. First, it displays the revision number of the firmware
in the chip. When a revision to the CL-CD1400 is required, the revision number of the firmware is incre­
mented by one. Beginning with Revision C, the code is 42. Later revisions will increment this by one; for
example, revision D will be 43, and so on.

Secondly, this register can be used by the system programmer as an indication of when the internal pro­
cessor has completed reset procedures, after either a power-on reset (via the RESEr input) or a soft­
ware global reset (via the reset command in the CCR). Immediately after the reset operation begins, the
internal CPU clears the register. When complete, and the CL-CD1400 is ready to accept host accesses,
the register is loaded with the revision code.

Channel Access Register (CAR) 68 ReadlWrlte

n/u n/u n/u n/u n/u n/u C1 CO

The CAR provides access to individual channels within the CL-CD1400. The least significant two bits of
the register selects one of the four channels. Before any operation that affects a channel, this register
must be loaded so that channel registers are available to the host. Bit 2 must always be O.

March 1991

C1
o
o
1
1

CO
o
1
o
1

Channel Selected
Channel 0
Channel 1
Channel 2
Channel 3

75

CL-CD1400
WGIC UXART Serial/Parallel Controller

Global Configuration Register (GCR) 4B ReadIWrlte

I PIS· n/u n/u n/u n/u n/u n/u n/u

The GCR is used to define the mode of operation for channel O. Resetting bit 7 will select serial mode;
setting bit 7 selects parallel. The default mode selection after reset is serial.

P/S* = 0
P/S* = 1

Service Request Register

o o o

Channel 0 mode is serial
Channel 0 mode is parallel

(SVRR)

o o SRM

67 Read Only

SRT SRR

The SVRR reflects the inverse of the state of the service request pins (SVCREQR*, SVCREQT* and
SVCREQM*). Its primary use is in polled systems, and it allows system software to determine what, if any,
service requests are pending.

Description
Always 0

Bit

7-3
2
1
o

Service Request Modem; 1 indicates request pending
Service Request Transmit; 1 indicates request pending
Service Request Receive; 1 indicates request pending

Receive Interrupting Channel Register

Transmit Interrupting Channel Register

Modem Interrupting Channel Register

x x x x

76

RICR

TieR

MICR

C1 CO

44

45

46

x

ReadIWrite

ReadIWrite

ReadIWrite

x

March 1991

CL-CD1400
UXART Serial/Parallel Controller

WGIC

These registers indicate the channel number that is currently being serviced by an active acknowledge
cycle (whether polled or interrupt). Bits 3-2 (C1 and CO) are valid only during the context of a channel
service routine; at any other time, their state is undefined. Host system software uses these registers to
determine the number of the channel that originated the particular service request (receive, transmit or
modem). The format of these registers is the same and the description is valid for each. The upper four
bits and lower two bits are user defined and may be set to any value desired. When the register is read,
these bits will be presented as defined by the user; C1 and CO will be set by the CL-CD1400 to reflect the
proper channel number.

Bit Description

7-4 User Defined
3-2 Defines Channel Number

C1
o
o

co
o
1
o
1

1-0 User defined

Receive Interrupt Register

I rdireq I rbusy I runfair

Transmit Interrupt Register

I tdireq I tbusy I tunfair

Modem Interrupt Register

Channel Number
Channel 0
Channel 1
Channel 2
Channel 3

mdireq mbusy munfair o

(RIR) 6B ReadIWrite

0 ch[1] ch[O]

(TIR) 6A ReadIWrite

0 0 ch[1] ch[O]

(MIR) 69 ReadIWrite

0 ch[1] ch[O]

These registers are used during poll mode operation of the CL-CD1400. All three provide the same type
of information for each of the three service requests. The functions of rxireq, txireq and mdireq have
identical meanings, as do the group rbusy, tbusy and mbusy and the group runfair, tunfair and munfair.
The least significant two bits indicate the number of the channel requesting service. Bits 2 through 4 are
used internally by the CL-CD1400 to set the context of the service acknowledge cycle. See the
description of poll mode operation in Section 4 for complete details.

March 1991 77

CL-CD1400
LOGIC UXART Serial/Parallel Controller

ReceivelTransmitlModem Interrupt Registers (cont.)

rxireq
txireq
mdireq

rbusy
tbusy
mbusy

runfair
tunfair
munfair

Bits 4-2

ch[1]- ch[O]

These bits are set by the internal processor when service is required by a channel. They are
a direct reflection of the inverse state of the SVCACK* pins, and they are not actually part of
the register but are the active high output of the latch that drives the SVCACK* pins. The bits
can be scanned by the host to detect an active service request. These bits are cleared by
the internal processor at the beginning of the service acknowledge cycle (hardware service
acknowledge) or by the host software when the poll mode cycle is terminated.

These bits are set by the internal processor and remain set until the end of the service ac­
knowledge cycle is indicated by either a write to the EOSRR (hardware service acknowl­
edge), or cleared by the host software when the poll mode cycle is terminated. They signal
the current state of the service acknowledge cycle. When cleared, the internal processor
knows that it can assert another service request of this type.

These bits are used by the internal processor to implement the "Fair Share" service request
function. If this bit is set, the CL-CD1400 will not assert another service request of this type
until the bit is cleared by a pulse on the external SVCACK* pin. These bits are not used in
poll mode.

These bits define the context of the current service acknowledge cycle during poll mode and
are fixed by hardware within the CL-CD1400. These bits must be replicated exactly when
the register is copied to the CAR when activating a service acknowledge cycle. See the dis­
cussion of poll mode operation in Section 4 for a more detailed description.

These two bits encode the channel number of the requesting channel. During poll mode op­
eration, when the RIR, TIR and MIR is copied into the CAR to start the service routine,
ch[1 :0] set the channel number that will be serviced.

Prescaler Period Register (PPR) 7E Read/Write

Binary Value

78 March 1991

CL-CD1400
UXART Serial/Parallel Controller

WGIC

The PPR sets the divisor that will be used to generate the time period for CL-CD1400 timer operations.
It can be set to any value between 0 and 255 (x'FF). The PPR is clocked by the system clock prescaled
(divided) by 512. Note that this value does not have any effect on baud rate generation. The time period
generated by this register drives the receive timer and is used to activate the "no new data" and "receive
data time-out" interrupts. See the receiver operation discussion in Section 4 for a description of receiver
timer functions.

5.2 Virtual Registers

The CL-CD1400 has two operational contexts, a normal context which allows host access to most regis­
ters and any channel, and a service acknowledge context, allowing host access to some registers specific
to the channel requesting service. This special set of registers is called virtual, because they are only
available to host access and valid during this service acknowledge context; at all other times, their con­
tents will be undefined and must not be written to by host software.

The use of virtual registers and context switching allows the CL-CD1400 to maintain all channel-specific
information. The host need not make any changes to chip registers in order to access the registers per­
tinent to the channel being serviced.

The service acknowledge context is entered into in one of two ways; either via activation of one of the
SVCACK* input pins (hardware activated), or via host software when the contents of anyone of TIR,RIR,
MIR is copied into the CAR by host software during a poll mode acknowledge cycle. See Section 4 for a
discussion of the differences between these two modes.

Receive Interrupt Vector Register (RIVR) 43 Read Only

X X X X X IT2 IT1 ITO

Transmit Interrupt Vector Register (TIVR) 42 Read Only

X X X X X IT2 IT1 ITO

Modem Interrupt Vector Register (MIVR) 41 Read Only

X X X X X IT2 IT1 ITO

These registers serve the same function for each of their respective service types - receive, transmit and
modem. They provide information about the service request that is being acknowledged.

March 1991 79

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Receive/TransmitlModem Interrupt Vector Registers (cont.)

The upper five bits are user defined, as programmed via the LlVR register of the channel being serviced;
the lower three bits provide the service acknowledge vector and are OR'ed in by the CL-CD1400 when
the register is read. The use of the TIVR and MIVR is optional if the value contained in the upper five bits
is not needed by host software. The vector provided will be as indicated for the particular interrupt. IT2-
ITO will indicate that the service is for transmit in the case of the TIVR and modem for the MIVR. The value
of these bits will be important when servicing a receive service request; IT2-ITO will indicate whether the
service request is for "good" data or "exception" data. The following table shows the encoding of IT2-ITO:

IT2 IT1 ITO Encoding

0 0 0 Not used

0 0 Group 1: Modem signal change service request

0 0 Group 2: Transmit data service request

0 Group 3: Received good data service request

0 0 Not used

0 Not used

0 Not used

Group 3: Received exception data service request

Transmit Data Register (TOR) 63 Write Only

Transmit Character

The transmit data register is the host's port for writing to the transmit FIFO. When a channel is being ser­
viced for a transmit service request, the host may write up to 12 characters into this register. The transmit
data register must only be written to during the context of a transmit service acknowledge. Writing data
to this location at any other time will have unpredictable results.

Receive Data/Status Register (ROSR) 62 Read Only

Received Character

80 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

Status

The receive data and status register serves two purposes. During a receiver service acknowledge for
good data, the RDSR provides access to the receive FIFO. The number of characters available in the
FIFO is indicated by the receive data count register (RDCR), which will be described in the channel
register section. Any number of characters, up to the value in the RDCR, may be read from the FIFO. All
internal FIFO pointers are updated by the on-chip processor.

During a receive exception service acknowledge, the RDSR provides both the received character and the
status that caused the exception condition. By definition, a receive exception service request will have
only one character available (multiple receive exceptions will produce mUltiple service requests). The first
read from the RDSR will provide the exception status, and the second read will provide the character. It
is not necessary to read either of these values. If the service acknowledge is terminated without reading
any data from the RDSR, the internal processor will update the FIFO pOinters as if the status/character
were read. The same is true if only the status is read. Overrun errors are an exception to this (see below).

Bit 7 Time-out - If the service request enable for time-out is set, this bit will indicate that no data has
been received within the receive time-out period set by the receive time-out period register
(RTPR) after the last character was removed.

Bits 6-4 Special Character Detect Encoding

SCDet2 SCDet1 SCDetO Status

0 0 0 None Detected

0 0 Special Character 1 matched

0 0 Special Character 2 matched

0 Special Character 3 matched

0 0 Special Character 4 matched

0 Not used

0 Not used

Range Detect

NOTE: No special character matching is performed if either parity error (PE) or framing error (FE) are set.

Bit 3 Break - Indicates that a break was detected.

Bit 2 Parity Error -Indicates that a character was received with parity other than that programmed
in COR 1.

Bit 1 Framing Error - Indicates that the character was received with a bad stop bit.

March 1991 81

CL-CD1400
WGIC UXART Serial/Parallel Controller

Receive Data/Status Register (cont.)

Bit 0 Overrun Error - This bit will be set if new data is received, but there is no space available in
the FIFO and holding register. In this case, the character data is lost, and the overrun flag is
applied to the last good data received before the overrun occurred. Thus, the character read
on the subsequent read from the RDSR is good data and should not be discarded.

Modem Interrupt Status Register (MISR) 4C Read Only

I DSRch I CTSch I Rich I CDch o o o o

The MISR provides the status indication of the reason for a modem service request. If either or both of
the modem change modes (zero-to-one or one-to-zero transition) are enabled, such a change will cause
a service request, and the signal that changed will be flagged in this register.

Bit 7 DSR change - An enabled transition on the Data Set Ready signal will cause this bit to be set
and a modem service request posted.

Bit 6 CTS change - An enabled transition on the Clear To Send signal will cause this bit to be set
and a modem service request posted.

Bit 5 RI change - An enabled transition on the Ring Indicator signal will cause this bit to be set and
a modem service request posted.

Bit 4 CD change - An enabled transition on the Carrier Detect signal will cause this bit to be set and
a modem service request posted.

Bits 3-0 These bits will always return zero.

End Of Service Request Register (EOSRR) 60 Write Only

x x x x x x x x

The EOSRR register is a dummy location and is used to signal the end of a hardware service acknowl­
edge procedure, activated via one of the SVCACK* pins. The data pattern written is a "don't care" value.
The action of writing this location causes the CL-CD1400 to perform its internal switch out of the service
acknowledge context. This register is only used during a hardware-activated service acknowledge and
must not be written during poll mode operation.

5.3 Channel Registers

Each of the four channels has a set of registers that control aspects of its operation. In the information
below, the register contents and offsets apply to any of the channels; the channel being accessed at any
given time is controlled by the CAR. This holds true even during a service acknowledge context; the CAR
points to the channel be serviced, whether it was loaded by the host (during poll mode operation) or by
the CL-CD1400 itself (during hardware activated service acknowledge).

82 March 1991

CL-CD1400
UXART Serial/Parallel Controller

WGIC

In a few of the following cases, some of the registers show two formats, one for serial and one for parallel.
In these cases, the parallel register format applies only to channel zero, and only when the GCR has been
programmed to place channel zero in parallel mode.

Local Interrupt Vector Register (LlVR) 18 ReadlWrlte

x x x x x IT2 IT1 ITO

The LlVR is used only during hardware-activated service acknowledge cycles. Host software loads any
information it wants into the most significant five bits; the least significant three bits are not used. When
the CL-CD1400 is setting up a service request, it overlays the five significant bits of the LlVR into appro­
priate interrupt vector register (RIVR, TIVR and MIVR) and sets the least significant three bits as required
for the service request vector type. (See RIVR, TIVR and MIVR description earlier in this section).

Channel Command Register (CCR) 05 ReadlWrite

Format 1: Reset Channel Command

IRes chanl a a a a a FTF Type

Format 2: Channel Option Register Change Command

a ICOR Chgl a a I COR3 I COR2 COR1 a

Format 3: Send Special Character Command

a a I Send SC I a a SSPC2 SSPC1 SSPCO

Format 4: Channel Control Command

a a a I Chan Ctil XMT EN I XMT DIS I RCV EN I RCV DIS I
The Channel Command Register is used to issue commands directly to the on-chip processor to control
or change some channel and, in one case, global functions of the channel selected by the CAR. The up­
per four bits indicate which of four command types is being issued, and the lower four bits are parameters
to those commands. At no time should more than one bit be set in the command type field. When the
command has been executed by the CL-CD1400, it will zero out the CCR. Therefore, two consecutive
commands must wait for the CCR to be cleared after the first is issued, before the second is issued.

March 1991 83

CL-CD1400
WGIC UXART Serial/Parallel Controller

Channel Command Register (cont.)

Format 1 - Reset Channel Command

Bit 7

Bits 6-2

Bits 1-0

When bit 7 is set, one of three types of reset operations are initiated, based on the value of
the least significant two bits. Bit 0 sets the type of reset, either channel-only or full-chip, and
bit 1 causes the FIFO of the selected channel to be flushed.

The two types of reset selected by bit 0 cause very different results. When bit 0 is a zero, the
reset command effects only the selected channel. Resetting a channel disables both the re­
ceiver and transmitter, and all FIFOs are flushed (cleared). If bit 0 is a one, a full-chip reset is
initiated. This reset will have the exact same results as a hardware reset caused by activation
of the RESET" input pin. All channels are disabled, all FIFOs are flushed and all control reg­
isters set to their power-on reset state. The completion of the reset operation can be detected
in the same manner as if a power-on or hardware reset had occurred; the GFRCR will change
from zero to the value of the firmware revision. It should be noted that, at the beginning of the
reset operation, the GFRCR will be cleared, but it may take some time for this to happen. Host
software should wait for the GFRCR to go to zero, and then wait for it to go non-zero to indicate
that the reset operation is complete.

The FTF (flush transmit FIFO) command, bit 1, will cause the transmit FIFO of the selected
channel to be cleared. Any data in the FIFO will be lost.

The encoding of the bits for the reset channel command is:

Must be 1

Must be 0

Encoded as:

FTF Type Function

o o Reset current channel

o Full CD1400 reset

o Flush transmit FIFO of current channel

Not used

Format 2 - Channel Option Register Change Command

84

Bit 6, in combination with any of bits 1 through 3, will inform the MPU that l3. change has oc­
curred in one of the Channel Option Registers, COR1, COR2 and/or COR3, respectively. It is
permissible to indicate that more than one COR has changed.

This command exists so that changes in the COR registers will be noted by the MPU, allowing
it to update its internal working register, since it keeps copies of the COR registers in its own
shadow registers.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

Bit 7 Must be a
Bit 6 Must be 1

Bits 5-4 Must be a
Bits 3-1 Encoded as:

COR3 COR2 COR1 Encoding

a a a Not used

a a COR1 Changed

a a COR2 Changed

a COR1 and COR2 Changed

a a COR3 Changed

a COR3 and COR1 Changed

a COR3 and COR2 Changed

COR1, COR2, and COR3 Changed

Bit a Must be 0

Format 3 - Send Special Character Command

This command causes one of the pre-programmed characters in the special character regis­
ters (SCHR1, SCHR2, SCHR3, SCHR4) to be sent preemptively. The character sent is select­
ed by the settings of bits 2 through O. "Preemptively" means that the special character will be
sent immediately following the character in the transmitter holding register; it will not wait until
the FIFO empties. Once the special character is sent, transmission of any characters remain­
ing in the FIFO will proceed normally. The encoding of the bits is:

Bits 7-6 Must be 0

Bit 5 Must be 1

Bits 4-3 Must be 0

March 1991 85

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Format 3 - Send Special Character Command (cont.)

Bits 2-0 Encoded as:

SSPC2 SSPC1 SSPCO Encoding

0 0 0 Not used

0 0 Send special character 1

0 0 Send special character 2

0 Send special character 3

0 0 Send special character 4

0 Not used

0 Not used

Not used

Format 4 - Channel Control Command

This command is used to activate or deactivate the transmitter and/or receiver of the selected
channel, based on the values in bits 3 through O. This command must be issued when a chan­
nel is being started for the first time. Once a channel is in use, it can be started and stopped
using this command, though it is more efficient to use of the appropriate SRER bit in the In­
terrupt Enable Register. Multiple control commands can be issued at the same time; for ex­
ample, both the transmitter and receiver can be enabled by setting both the XMT EN and ReV
EN bits at the same time.

Issuing an enable/disable command does not affect any register programming of the selected
channel. It does, however, affect the state of transmit flow-control. Issuing a disable or enable
command to a channel whose transmitter has been flow-controlled by a remote (see the Txl­
BE bit in eOR2) will restart transmission and clear the TxFloff bit in the eeSR. This ability is
provided so that the host can override remote-generated flow control.

Bits 7-5 Must be 0

Bit 4 Must be 1

86 March 1991

CL-CD1400
UXART Serial/Parallel Controller

WGIC

Bits 3-0 Select channel enable/disable activity:

XMT EN XMT DIS RCV EN RCVDIS Encoding

o 0 0 Disable receiver

o 0 0 Enable receiver

o 0 0 Disable transmitter

o 0 0 Enable transmitter

o 0 0 Disable transmitter and receiver

o 0 Disable transmitter, enable receiver

o 0 Enable transmitter, disable receiver

o 0 Enable transmitter and receiver

Service Request Enable Register (SRER) 06 Read/Wrlte

I MdmCh I 0 o I RxData o I TxRdy I TxMpty I NNDT I
This register is used to enable the conditions that will cause the CL-CD1400 to post a service request via
the SVRR and the SVCREQ* output pins. Each of the individual enable bits controls one type of service
request.

Bits 7 MdmCh

This bit enables the Modem Change service request. When this bit is a one, any selected mo­
dem signal change conditions (as programmed by the MCOR1 and MCOR2 registers) will
cause a Modem Service Request to be posted.

Bits 6-5 Must be zero.

Bit 4 RxData

Bit 3

Bit 2-1

The RxData enable bit enables the posting of receive service requests when characters have
been received, and either the FIFO has reached the programmed threshold (as set by COR3),
or the receive time-out period has expired.

Must be zero.

TxRdy and TxMpty

The transmitter can be enabled to post service requests on one of two conditions: either the
FIFO is empty, or the transmitter shift register is empty.

The TxRdy bit enables the service request on the condition that the FIFO is empty. In this
case, there are still two characters available for transmission before the transmitter underruns,
one in the shift register and one in the holding register.

March 1991 87

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Service Request Enable Register (cont.)

The TxMpty bit enables the service request on the condition that the shift register is empty.
The transmitter will underrun in this situation due to the latency that will be experienced be­
tween the time the service request is posted, and the time that the host is able to load the
FIFO. Under normal operating conditions, this bit will be set and the TxRdy reset, when there
is no more data to be transmitted, and the host wants to know when the last character has
been sent before disabling the transmitter.

Bit 0 NNDT

The No New Data Time-out enable bit activates the optional exception service request when
all data has been removed from the FIFO, and no new data has arrived after a pre-pro­
grammed delay period set by the value in the Receive Time-out Period Register (RTPR). The
LlVR (or RIVR) will indicate a receive exception in the IT2-ITO vector bits. There will be no data
associated with this exception service request. A status bit in the RDSR (bit 7) will indicate that
the service request is for an NNDT condition.

Channel Option Registers

The following five Channel Option registers are used to control many aspects of CL- CD1400 channel
operation and enable special character processing features. COR4 and COR5 are used specifically for
enabling the UNIX line discipline character handling functions.

Channel Option Register 1 (COR1) 08 ReadlWrite

Bit 7 Parity Type

This bit selects the type of parity that is generated and checked if parity is enabled. A "1" se­
lects odd parity and a "0" selects even parity.

Bits 6-5 Parity Mode 1 and Parity Mode 0

88

The parity mode bits define the parity operation for both the transmitter and receiver. The en­
coding is:

ParM1 ParMO Function

o o No parity

o Force parity (odd parity = force 1, even parity = force 0)

o Normal parity

Not used

March 1991

CL-CD1400
UXART Serial/Parallel Controller

WGIC

Bit 4 Ignore Parity

Bit 3-2

Bits 1-0

If this bit is set, the CL-CD1400 will ignore the parity on all incoming characters, thus not re­
ceive exception service requests will be generated if the parity is in error. If the bit is cleared,
parity is evaluated.

Stop Bit Length

These two bits set the length, in bit times, of the stop bit for each character.

Stop1 StopO Number of Stop Bits

0

0

0 1 Stop bit

1 .5 Stop bits

0 2 Stop bits

Not used

Character Length

ChL 1 and ChLO select the length of each character, in number of bits. The CL-D1400 receives
and transmits the same length character, on a given channel, in the range of five to eight bits.

ChL1 ChLO Character Length

o 0 5 bits

o 6 bits

o 7 bits

8 bits

Channel Option Register 2 (COR2) 09 Read/Write

IXM TxlBE ETC LLM RLM RtsAO CtsAE DsrAE"]

Bit 7 Implied X-ON Mode

The IXM bit enables the automatic resumption of character transmission upon the reception
of any character other than the programmed X-OFF character. This bit only has meaning if the
transmitter is in automatic in-band flow control mode as programmed by the TxlBE control bit.
If this bit is reset and TxlBE is enabled, only the reception of an X-ON character will restart
character transmission.

March 1991 89

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Channel Option Register 2 (cont.)

Bit 6 Enable Automatic In-band Transmit Flow-control

This bit enables the CL-CD1400's capability to examine error-free incoming characters look­
ing for an X-OFF character (as programmed by SCHR2), if the special character match func­
tion is enabled (COR3, bit 4). If a match occurs, transmission will cease after the current char­
acters in the transmitter shift register and transmitter holding register have been sent.
Transmission will resume when an X-ON character (or any character, depending on the value
of the IXM bit) is received or if a channel enable command is issued via the CCA.

Bit 5 Embedded Transmit Command Enable

If the ETC bit is set, the CL-CD1400 will examine characters in the transmit FIFO. If an em­
bedded command is detected, it will be processed. See the embedded transmit command de­
scription in Section 3 for details of valid commands.

Bit 4 Local Loopback Mode

The LLM bit enables localloopback of the channel. This mode is generally used during system
diagnostics. If this bit is set, the transmitter is internally "looped" back to the receiver and the
TxD pins will be in the marking state. Data sent will be immediately received by the receiver.
No data will appear on the TxD pin, and data on the RxD pin will be ignored.

Bit 3 Remote Loopback Mode

Remote loopback allows a remote system to test its serial data stream. If this function is en­
abled, the CL-CD1400 internally connects its receiver to the transmitter. Any data received is
immediately echoed back. This mode is enabled by setting the RLM bit and disabled by clear­
ing the bit.

Bit 2 Request To Send Automatic Output

The CL-CD1400 can automatically assert RTS when a channel is enabled (via transmit/re­
ceive enable command in the CCR). When the channel is disabled, RTS* will be negated. Set­
ting RtsAO enables the function.

Bit 1 Clear To Send Automatic Enable

This bit enables the CTS* input to control transmitter operation. If CtsAE is set, and CTS is not
asserted, character transmission will not proceed.

Bit 0 Data Set Ready Automatic Enable

As with CtsAE, DsrAE allows the DSR* input to control transmitter operation. Setting DsrAE
enables the function.

Channel Option Register 3 (COR3) OA Read/Wrlte

Serial

o o o RxTh4 RxTh3 RxTh2 RxTh1 RxThO Parallel

90 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

COR3 for Channel 0 has two formats, one for serial and one for parallel. Channels 3-1 have only the serial
format. Both formats are described as follows:

Channel Option Register 3 - Serial

Bit 7 Special Character Detect Range

This bit enables range checking on received characters. If the character falls between a lower
range set by the value stored in the SCRL register and an upper range set by the value stored
in the SCRH register, inclusive, a receive exception service request will be posted with the sta­
tus indicating a range detect (RDSR bits SCDet2-SCDetO = 111).

Bit 6 Enable Special Character Detect on SCHR4-SCHR3

Bit 5

Bit 4

Bit 3-0

This bit controls whether or not the CL-CD1400 performs comparison on received characters
against the values stored in registers SCHR4 and SCHR3. The comparison is enabled by a
"1" in this location.

Flow Control Transparency

The FCT bit enables and disables transparent response to flow control characters received by
the CL-CD1400. If FCT is set, received XON and XOFF characters will not be placed in the
FIFO for the host. If in-band flow control is enabled, the characters will be acted upon. If FCT
is not set, flow control characters will be acted upon, placed in the receive FIFO, and the host
will be notified via a receive exception service request.

Enable Special Character Detect on SCHR2-SCHR1

This bit controls whether or not the CL-CD1400 compares received characters with the values
stored in registers SCHR2and SCHR1. A "1" enables compare. This bit must be set to enable
automatic in-band flow control.

Receive FIFO Threshold

RxTh3 RxTh2 RxTh1 RxThO Receiver FIFO Threshold

o o o o Not used

o o o 1 Character

o o o 2 Characters

o 11 Characters

o o 12 Characters

o Not used

o Not used

Not used

March 1991 91

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Channel Option Register 3 - Parallel

Bit 7-5 Not used
Bits 4-0 Receive FIFO Threshold

RxTh4 RxTh3 RxTh2 RxTh1 RxThO Receiver FIFO Threshold

o o o o o Not used

o o o o 1 Character

o o o o 2 Characters

o 29 Characters

o 30 Characters

Not used

Channel Option Register 4 (COR4) 1 E Read/Write

IIGNCR I ICRNL I INLCR IIGNBRK I-BRKINT I PEH[2] PEH[1] PEH[O]

Bit 7-5 Carriage Return (CR) and New Line (NL) Processing

These three bits define the manner in which the CL-CD1400 will process received CR and NL
characters (x'OD and x'OA). The table below shows the actions performed:

IGNCR ICRNL INLCR Action

0 0 0 No action

0 0 Received NL changed to CR

0 0 Received CR changed to NL

0 Received CR changed to NL; NL changed to CR

0 0 Received CR discarded

0 Received CR discarded; NL changed to CR

0 Received CR discarded

Received CR discarded; NL changed to CR

92 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

Bit 4-3 Break Processing

The CL-CD1400 can handle received break characters in three ways:

IGNBRK -BRKINT Break Action

o
o

Bit 2-0

o Received break generates an exception service request

Received break treated as a good NULL character

o Not used

Received break discarded

Parity (P), Framing (F) and Overrun (0) Error Special Processing

As with break characters, the CL-CD 1400 can treat errored characters in several different
ways, if enabled:

PEH[2] PEH[1] PEH[O] Action

0 0 0

0 0

0 0

0

o o

o
o

Channel Option Register 5

ISTRIP LNE CMOE

March 1991

Received P/F/O errored characters treated as exception data

Received P/F/O errored characters treated as good data

Received P/F/O errored characters discarded

Received P/F/O errored characters replaced with good NULL
characters

Received P/F/O errored characters are replaced with the two
character sequence x'FF-NULL. Good x'FF characters are re­
placed with the two character sequence x'FF-x'FF

Not used

Not used

Not used

(COR5) 1F ReadIWrite

n/u n/u n/u ONLCR OCRNL

93

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Channel Option Register 5 (cont.)

Bit? ISTRIP

The ISTRIP bit enables stripping of the most significant bit (bit?) on all received characters. A
"1" in this position enables the function.

Bit 6 LNext Enable

When this bit is set, characters following an LNext character (as programmed by the LNC reg­
ister) will not be processed as a special character.

Bit 5 Character Matching on Error

If this bit is set, character matching will occur on both good and errored characters. If the bit
is cleared, matching will occur on good characters only.

Bits 4-2 Not used.

Bits 1-0 Carriage Return (CR) and New Line (NL) Processing - Transmit
These two bits define actions, if any, taken on characters in the transmit data stream.

ONLCR OCRNL Action

o o No action

o Transmit CR changed to NL

o Transmit NL changed to CR

Transmit CR changed to NL, NL changed to CRNL

Channel Control Status Register (CCSR) OB Read Only

Serial

RxEN n/u n/u n/u TxEN n/u n/u n/u Parallel

The CCSR provides current status of the selected channel. The CCSR for channel 0 has two formats,
one for serial operation and another for parallel operation.

Channel Control Status Register - Serial

Bit? Receiver Enabled

The RxEN bit is set when the receiver is enabled and cleared when it is disabled.

94 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

Bit 6 Receiver Flow Off

This bit indicates that the receiver has requested the remote to stop transmitting through the
use of a send XOFF character via a send special character two command in the CCR. The bit
will be cleared when a send special character one (XON) command is issued; the channel is
either enabled or disabled or the channel is reset.

Bit 5 Receiver Flow On

When a send special character one (XON) command is issued via the CCR, this bit will be set.
It will be cleared when one of three events has occurred: the first non-flow control character is
received, the receiver is either enabled or disabled or the channel is reset.

Bit 4 Not used.

Bit 3 Transmitter Enabled
This bit is set when the transmitter is enabled and cleared when it is disabled.

Bit 2 Transmitter Flow Off

This bit indicates that the CL-CD1400 has been requested to stop transmission by the remote
(received in-band flow control character XOFF). The bit is cleared when the CL-CD1400 re­
quested to restart transmission (receives an XON character), the channel is either enabled or
disabled or the channel is reset.

Bit 1 Transmitter Flow On

TxFlon is set when the CL-CD 1400 has been requested to restart transmission (received an
XON character). It is reset when transmission actually begins, when the channel is either en­
abled or disabled or when the channel is reset.

Bit 0 Not used.

Channel Control Status Register - Parallel

Bit 7 Receiver Enabled
The RxEN bit is set when the receiver is enabled and cleared when it is disabled.

Bits 6-4 Not used

Bit 3 Transmitter Enabled
This bit is set when the transmitter is enabled and cleared when it is disabled.

Bits 2-0 Not used

Received Data Count Register (RDCR) OE Read Only

o o o o CT3 CT2 CT1 CTO Serial

o o o CT4 CT3 CT2 CT1 CTO Parallel

March 1991 95

CL-CD1400
WGIC UXART Serial/Parallel Controller

Received Data Count Register (cont.)

The RDCR indicates the number of good characters currently in the received data FIFO. Host software
can use this value as a loop counter when taking characters out of the FIFO. The value in this register is
only valid during the context of a service request acknowledge. At other times, it mayor may not give a
true indication of the number of characters in the FIFO.

The register has two formats for channel 0, one for serial and one for parallel. Channels 1-3 have only
the serial format.

Received Data Count Register - Serial

Bit 7-4 Always zero

Bits 3-0 Character count CT3-CTO

CT3 CT2 CT1 eTO Number of characters in FIFO

o o o o Not used

o o o 1 Character

o o o 2 Characters

o 11 Characters

o o 12 Characters

o Not used

o Not used

Not used

Received Data Count Register - Parallel

Bit 7-5 Always 0

Bits 4-0 Character count CT4-CTO

96 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

CT4 CT3 CT2 CT1 CTO Number of Characters In FIFO

0 0 0 0 0 Not used

0 0 0 0 1 Character

0 0 0 0 2 Characters

o 29 Characters

o 30 Characters

Not used

Special Character Registers

The four special character registers, SCHR4-SCHR1, hold the character patterns that are used for vari­
ous character matching and flow control functions. Each 8-bit character is right justified, that is, compar­
ison takes place from right to left, and all bits are compared. Any unused bits must be zero. SCHR1 and
SCHR2 seNe the additional function of defining the XON and XOFF characters, respectively, used for in­
band flow control.

Special Character Register 1 (SCHR1) 1A ReadIWrite

Special Character 1

SCHR1 defines the XON character

Special Character Register 2 (SCHR2) 18 ReadIWrite

Special Character 2

SCHR2 defines the XOFF character

Special Character Register 3 (SCHR3) 1C ReadIWrite

Special Character 3

Special Character Register 4 (SCHR4) 10 ReadIWrite

Special Character 4

March 1991 97

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Received Character Range Detection

If enabled (via bit 7 of COR3), the CL-CD1400 will check received characters to see if they fall within a
range of values. Two registers set the range: SCRL and SCRH. Range checking occurs inclusive of the
values programmed into these registers. If a received character is determined to be within the range, a
special character detect exception service request will be posted. Bits 6-4 of the RDSR register will indi­
cate a range detect by being set to 111. It should be noted that this range checking is performed in addi­
tion to normal special character detection on SCHR4-SCHR1.

Special Character Range Low (SCRL) 22 ReadIWrlte

Character Range Low

SCRL set the lower inclusive value for range detection.

Special Character Range High (SCRH) 23 ReadIWrite

Character Range Low

SCRH sets the upper inclusive value for range detection.

LNext Character (LNC) 24 ReadIWrite

LNext Character

This register defines the LNext character. If the LNext function is enabled (bit 6 of COR5), the CL-CD1400
will examine received characters and compare them against this value. If a match occurs, this character
and the following will be placed in the FIFO without any special processing. In effect, the LNext function
causes the CL-CD1400 to ignore characters with special meaning, such as flow control characters. There
are two exceptions. If the character following the LNext character is either a break or an errored character,
LNext will be placed in the FIFO, and the following character will be treated as it normally would be for
these error conditions.

Modem Change Option Registers

The CL-CD1400 has two registers that control its response to changes on the modem input pins. It can
be programmed to respond to the low-to-high transition, the high-to-Iow transition or both. In addition, the
threshold at which the DTR signal will be negated can be set by the DTRth3-DTRthO bits in MCOR1.

Modem Change Option Register 1 (MCOR1) 15 ReadIWrite

Serial

98 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

o o o Parallel

Channel 0 has two formats for MCOR1 : one applies when the channel is in serial mode and the other
applies in parallel mode, as set by the GCR. Channels 3-1 have only the serial mode format.

Modem Change Option Register 1 - Serial

Bit 7 DSRzd

Bit 6 CTSzd

Bit 5 Rlzd

Bit 4 CDzd

Each of these bits controls its corresponding input pin. If the bit is set, the function is enabled
and transitions from one-to-zero will generate an SVCREQM* service request.

Bits 3-0 DTRth3-DTRthO

These bits form a binary value that determines when the DTR output will be negated, based
on the number of characters in the receive FIFO. When the FIFO holds more characters than
this value, DTR will be negated, informing the remote that it should stop transmission. This
value must be set to a value numerically larger than the value set for the receive FIFO thresh­
old in COR3.

DTRth3 DTRth2 DTRth1 DTRthO Number of characters in FIFO

o o 0 o Automatic DTR mode disabled

o o o 1 Character

o o o 2 Characters

o 11 Characters

o o 12 Characters

o Not used

o Not used

Not used

March 1991 99

CL-CD1400
WGIC UXART Serial/Parallel Controller

Modem Change Option Register 1 - Parallel

Bit 7 PBUSYzd

Bit 6 PSLCTzd

Bit 5 PPEzd

Bit 4 PERRORzd
Effectively, these four bits are identical to the equivalent bits in the serial format above. The
only difference is in the signal names. These inputs are renamed for convenience in working
with the register when channel 0 is programmed to be a parallel port. Setting any of these bits
will enable the detection of a one-to-zero transition on the corresponding input.

Bits 3-0 Not used; must be zero.

Modem Change Option Register 2 (MCOR2) 16 Read/Wrlte

OSRod I CTSod Rlod COod o o o o Serial

IPBUSYOdl PSLCTOdl PPEod IPERROROdl o o o o Parallel

Channel 0 has two formats for MCOR1: one applies when the channel is in serial mode and the other
applies in parallel mode, as set by the GCR. Channels 3~1 have only the serial mode format.

Modem Change Option Register 2 - Serial

Bit 7 OSRod

Bit 6 CTSod

Bit 5 Rlod

Bit 4 COod
Each of these bits controls its corresponding input pin. If the bit is set, the function is enabled
and transitions from zero-to-one will generate an SVCREQM* service request.

Bits 3-0 These bits are not used and must be programmed to zero.

Modem Change Option Register 2 - Parallel

Bit 7 PBUSYod

Bit 6 PSLCTod

Bit 5 PPEod

Bit 4 PERRORod

100 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

Effectively, these four bits are identical to the equivalent bits in the serial format. The only dif­
ference is in the signal names. As with the parallel format of MCOR 1, these inputs are re­
named for convenience in working with the register when channel 0 is programmed to be a
parallel port. Setting any of these bits will enable the detection of a zero-to-one transition on
the corresponding input.

Bits 3-0 Not used, must be programmed to zero.

Receive Time-out Period Register (RTPR) 21 ReadIWrite

Binary Count Value

The RTPR determines the time period that will be used for the No New Data Time-out (NNDT) and the
"no new data" time-out. The time-out counter is loaded from this register whenever a new character is
placed in, or the last character is removed from, the receive FIFO. The counter is decremented on each
"tick" of the prescaler counter (PPR). A service request will be generated if the count reaches zero; either
an NNDT if the FIFO is empty and the NNDT is enabled, or a good data service request if there is data
in the FIFO, but the time-out period has expired before the FIFO reaches the programmed threshold.

Modem Signal Value Register 1 (MSVR1) 6C ReadIWrite

DSR CTS RI CD IpSTROBE*1 o o RTS

Modem Signal Value Register 2 (MSVR2) 60 ReadIWrite

I DSR I CTS RI CD IpSTROBE*1 o DTR n/u

The MSVR1 and MSVR2 registers provide information regarding the state of the modem input pins
(DSR*, CTS*, RI* and CD*), the current state of Printer Strobe output pin (PSTROBE*) and allows control
of the modem output pins (DTR* and RTS*). The PSTROBE* bit is only valid for channel 0; on all other
channels it is not used. Writing to any of the input bits has no effect. With the exception of the least sig­
nificant two bits, the registers reflect identical data. The two are provided as a convenience for control of
the modem output pins. Host software need not keep a copy of the current state of either when controlling
the other. The actual signal level on the output is the inverse of the value placed in this register: setting
the DTR bit, for example, will cause the DTR output to become active low. The state of the modem input
pins also the inverse of the value in the corresponding bit in the registers.

March 1991 101

CL-CD1400
WGIC UXART Serial/Parallel Controller

Printer Signal Value Register (PSVR) 6F ReadlWrlte

This register groups all of the modem signals for channel 0 into one register. The PSVR is only valid for
channel O. The most significant five bits reflect the current signal value on the input pins PBUSY",
PSlCT", PPE", PERROR and PACK". Note that PERROR is unique in that it reflects the same signal
level as the actual input pin; the remainder of the bits reflect the inverse of the input signal values. The
least significant three bits can be used by the host software to control the modem output pins PAUTOFD,
PINIT and PSLlN. These bits directly control the outputs, and the values are not inverted.

Bit 7 Printer Busy - the current state of the printer busy input.

Bit 6 Printer Select - the current state of the printer select input.

Bit 5 Printer Paper Empty - the current state of the printer paper empty input.

Bit 4 Printer Error - the current state of the printer error input.

Bit 3 Printer Acknowledge - the current state of the printer acknowledge input.

Bit 2 Printer Autofeed - the current state of the printer autofeed output.

Bit 1 Printer Initialize - the current state of the printer initialize output.

Bit 0 Printer Selection - the current state of the printer selectin output.

Receive Baud Rate Period Register (RBPR) 78 ReadlWrlte

Binary Divisor Value

This register holds the baud rate divisor for the receiver. It is used in conjunction with the Receive Clock
Option Register (RCOR), which provides the clock that will be divided by this value. The time period pro­
duced must equal the value for one bit time of the receive data.

Receive Clock Option Register (RCOR) 7C ReadlWrlte

The RCOR selects the clock source which will drive the baud rate period register (RBPR). The value in
ClkSel2-ClkSel0 selects one of five possible clocks generated from the master clock (ClK).

102 March 1991

CL-CD1400
UXART Serial/Parallel Controller

WGIC

ClkSel2 ClkSel1 ClkSelO Clock Selected

0. 0. 0. clko. (ClK divided by 8)

0. 0. clk1 (ClK divided by 32)

0. 0. clk2 (ClK divided by 128)

0. clk3 (ClK divided by 512)

0. 0. clk4 (ClK divided by 20.48)

0. Not used

0. Not used

Not used

Transmit Baud Rate Period Register (TBPR) 72 ReadlWrite

Binary Divisor Value

This register holds the baud rate divisor for the transmitter. It is used in conjunction with the Transmit
Clock Option Register (TCOR), which provides the clock that will be divided by this value. The time period
produced must equal the value for one bit time of the transmit data.

Transmit Clock Option Register (TCOR) 76 ReadlWrlte

The TCOR selects the clock source which will drive the baud rate period register (TBPR). The value in
ClkSel2-ClkSelo. selects one of five possible clocks generated from the master clock (ClK).

March 1991 10.3

CL-CD1400
WGIC UXART Serial/Parallel Controller

Transmit Clock Option Register (cont.)

ClkSel2 ClkSel1 ClkSelO Clock Selected

0 0 0 clkO (ClK divided by 8)

0 0 clk1 (ClK divided by 32)

0 0 clk2 (ClK divided by 128)

0 clk3 (ClK divided by 512)

0 0 clk4 (ClK divided by 2048)

0 Not used

0 Not used

1 Not used

When channel 0 is programmed to be a parallel port, the TBPR/TCOR pair determine the pulse width of
the PSTROBE* output. The resulting pulse width must not be shorter than the one-bit time of 1 OOK baud.

104 March 1991

CL-CD1400
UXART Serial/Parallel Controller

6. CL-CD1400 PROGRAMMING

6.1 Overview

As shown in earlier sections, the CL-CD1400
host interface is made up of a large array of reg­
isters. These registers control aspects of chip
behavior; some affect overall chip operations,
and some affect only one channel. At first
glance, this can appear to be a bewildering num­
ber of registers that need to be manipulated.
However, most of the registers will only be set up
once, during initialization, and only rarely modi­
fied during normal operation. The purpose of this
section is to discuss these aspects, as well as
the methods of interacting with the CL-CD1400
for channel service needs.

6.2 Initialization

In order to properly bring up a CL-CD1400, sev­
eral procedures must be completed. These in­
clude chip initialization, programming global
functions and setting channel-specific parame­
ters. In most cases, initialization routines will only
be executed once, during overall system boot­
up. The following sections discuss these steps in
detail. The flow chart on the next page presents
this information in a visual format.

6.2.1 Chip Initialization

The procedures that perform chip reset will nor­
mally be executed after a power-up, system­
wide reset and, therefore, the CL-CD1400 will
have performed its own internal initialization,
caused by the hardware reset control Signal, RE­
SET*. It is good practice, however, to issue a
software chip reset anyway to make sure it has
been completed before chip initialization begins.
The following steps can be followed to accom­
plish this (following the text description, there is
a flow chart version of the same steps):

1) Wait for CCR to contain OxOO

The contents of the channel command regis­
ter (CCR) must be zero before a command is
issued. This is required so that any currently

March 1991

WGIC

executing command has completed before the
new one is started. Since this is probably the
first command being written to the CL-CD1400
after power-on initialization, the CCR is likely to
be zero, but it is good practice to always check
the CCR before writing a new command into it.

2) Write hexadecimal 81 (x'81) to the Channel
Command Register (CCR).

This command causes the CL-CD1400 to per­
form an all-channel and global reset. Its effect is
to cause the internal RISC processor to begin
execution from its power-up reset location. All
internal host interface registers are cleared, the
FIFOs are flushed, and all channels are dis­
abled.

The all-channel reset command is a special
case CCR operation. Normally, commands is­
sued to the CCR affect only the channel select­
ed by the CAR. In this case, the setting of the
CAR is not significant.

3) Wait for the firmware revision code to be written
into the GFRCR.

This operation is used by the internal firmware
to flag completion of the reset procedure. After
reset, the GFRCR is one of the first registers to
be cleared and is the last register set before nor­
mal run-time code execution begins. The initial­
ization routine must wait for this register to be­
come non-zero before beginning any other
programming of CL -CD1400 registers. Howev­
er, if the host code is sufficiently fast, it may be­
gin testing the GFRCR before the MPU clears it;
thus, the assumption made would be that the
CL-CD1400 has completed its internal initializa­
tion when, in fact, it has not. In order to avoid
this error, the host software should look for the
GFRCR to change to a zero and then to the cur­
rent revision code. Alternatively, the host can
clear the GFRCR just prior to issuing the global
reset and then poll for the correct revision code.
This would be useful in slow systems that can­
not guarantee that the host will be able to check
the register after it has been cleared, and before
it is loaded with the revision code.

105

LOGIC

This procedure can also be used as part of a
diagnostic test suite. The device will complete
internal initialization within 500 llSec. Therefore, a

Issue Reset
Command

Continue
Init Process

CL-CD1400
UXART Serial/Parallel Controller

timer (software or hardware) can be used to
detect that the operation does not complete within
this time and that the chip may not be functional.

• Revision Code for
revision C device = 42

Future revisions will
increment this by one;
for example, revision 0
would be 43, etc.

Figure 6-1. Flow Diagram of CL-CD1400 Master Initialization Sequence

106 March 1991

CL-CD1400
UXART Serial/Parallel Controller

6.2.2 Global Function Initialization

Once chip reset has been completed, the next
step is to set the global operating mode and timer
prescale. All other initialization will take place at
the channel level.

1) Set the Global Configuration Register (GCR).

The GCR setting determines the mode of oper­
ation of channel O. After reset, this register is
set to all 'a's. This sets channel a to be a serial
port. If this is the intended mode for channel 0,
nothing further needs to be done with this reg­
ister. If channel a will be used as a parallel port,
bit 7 must be set to a '1'.

2) Set the Prescaler Period Register (PPR).

The PPR sets the master time 'tick' for the CL­
CD1400. It is a binary value that sets the con­
stant by which the system clock is divided (after
a fixed prescale of 512) to produce the internal
clock for the on-chip timers (not the baud rate
generators, however). This clock is used for re­
ceiver FIFO time-out generation and delay tim­
ing for the insert delay command in the embed­
ded transmit command set. For example, to
generate a timer clock of 1 ms, the value is
computed as:

The value 39 would be loaded into the PPR. This
value, in effect, selects an approximate 1 KHz
clock as the source for the Receiver Time-out Pe­
riod Registers of each channel. Those registers
would, in turn, be loaded with an appropriate value
divisor to generate the desired character time-out
periods. This value, 39, is the recommended min­
imum value that should be placed in the PPR. Val­
ues that generate a time period of less than 1 ms
adversely affect the performance of the MPU and,
thus, overall serial data performance.

March 1991

LOGIC

6.2.3 Individual Channel Initialization

At this point, the basic operation of the CL­
CD1400 has been set up. The internal register
states have been cleared, the mode for channel a
is set, and basic timer operations initialized. The
next step is to program the operating modes of
each channel. This includes setting the values for
the interrupt vectors, the receive and transmit
baud rates, number of bits per character, number
of stop bits, parity, special characters, if any, etc.
Each channel can have a completely unique set of
operating characteristics or they can all be the
same. It is application dependent; the operating
modes of one channel have no effect on the oper­
ation of any other (operating channel a as a paral­
lel port does affect the available input/output sig­
nals associated with channels 1-3 (CD and RI are
borrowed) but not operating characteristics).

The following shows a typical initialization se­
quence to set up a single serial channel. In this ex­
ample, channel 1 is set up as:

9600 Baud, send and receive
8 bits per character, 1 stop bit1 .0 pt
No parity
Automatic In-Band (Xon/Xoff) flow control
Transparent flow control
Special character detect enabled
Eight character receive FIFO threshold
Receiver and transmitter enabled for inter­
rupt operation
Enable ISTRIP on incoming characters

107

CL-CD1400
LOGIC UXART Serial/Parallel Controller

The clearest way to show this initialization sequence is via a 'C' program fragment; the code shown is
compatible with Borland Turbo C TM:

/* Init channel. Channel number is included in call. Register names and addresses are defined in
* the header file (not shown).
* /

init_channel(chan)
char chan
{

outportb(CAR, chan);
outportb(TCOR, Ox01);
outportb(TBPR, Ox42);
outportb(RCOR, Ox01);
outportb(RBPR, Ox42);
outportb(COR1, Ox03);
outportb(COR2, Ox40);
outportb(COR3,Ox38);
while (inportb(CCR) != 0)

1* set channel number in CAR */
/* constants for 20.2752-MHz clock - clock option* /
1* - baud rate period * /
1* constants for 20.2752-MHz clock - clock option*/
/* - baud rate period * /
/* no parity, 1 stop bit, 8 bit chars */
1* auto. in-band flow control */
/* transp. flow-control, special char 1 & 2 detect, fifo thresh = 8 */
/* make sure that CCR is zero before issuing commands */

outportb(CCR, Ox4E);
outportb(COR5, Ox80);
outportb(SRER, Ox14);
while (inportb(CCR) != 0)

1* issue COR changed command for COR1, 2, 3 */
1* enable ISTRIP */
/* enable receive and transmit interrupts * /
/* make sure that CCR is zero before issuing commands */

outportb(CCR, Ox1 A); 1* issue receiver and transmitter enable command to CCR */

6.3 Poll Mode Examples

The CL-CD1400 provides a set of seven registers
that are dedicated to poll mode operation, as de­
scribed in Section 4. This section shows one of
many ways in which these registers can be used
to detect and service requests from any of the
channels receiver, transmitter or modem signal
change functions.

The primary registers involved in polling are the
SVRR, RIR, TIR, MIR and CAR; supplementary
registers are the RIVR, TIVR and MIVR. Of the
latter three, only the RIVR is actually used; it
provides the status about whether the service
request is for "good" data or exception data. The
TIVR and MIVR provide redundant information
and are rarely used. Other registers related to

108

service requests (TDR, RDSR, MISR, etc.)
perform the same functions as they would in a
hardware acknowledged service request.

Once again, "C" code fragments will be used to
describe the functions. As with other coding ex­
amples, it is assumed that register addresses are
defined elsewhere, such as in a header file, and
are not shown here. Also, the routines cannot be
considered complete. Some pieces will be depen­
dent on the system software design so liberties
are taken in the examples. They do, however,
show methods that can be used to implement the
poll mode service request/service acknowledge
sequence.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

6.3.1 Polling Routine Examples

6.3.1.1 Scanning Loop

/* Poll mode code fragment. This routine simply checks for any servicing requests and
* branches to the appropriate service routine. The code prioritizes service requests as
* receive, transmit and modem, in that order.
*j

poll()
{

char status;
char rx_stat = tx_stat = md_stat = 0;

if (status = inportb(SVRR)) {

LOGIC

switch (status) {
case 1:
case 3:
case 5:

/* all values that include a receive request *j

case 7:
rx_stat = service_rec();
return(rx_stat);
break;

case 2: /* all values that include transmit but not receive *j

case 6:
lx_stat = service_txm();
return(tx_stat);
break;

case 4: /* modem service request alone *j

md_stat = service_mdm();
return(md_stat);
break;

default: /* can't happen :-) *j

break;

Once the code above finds an active request posted in the SVRR, it calls the appropriate subroutine to
service the request. The service routines follow.

March 1991 109

CL-CD1400
LOGIC UXART Serial/Parallel Controller

6.3.1.2 Receive Service

/* The receive service acknowledge cycle begins by reading the RIR. This register contains the
* necessary information to switch the CL-CD1400 into the correct service acknowledge context. The
* RIR is saved for use at the end of the routine and then copied into the CAR. The act of copying the
* RIR into the CAR forces the context switch. The channel number requesting service is extracted from
* the RIR. The RIVR register indicates whether the request is for good data or exception data
* and is used to correctly handle the request. At the end of the service, the upper two bits in the
* RIR are cleared causing the switch out of the service acknowledge context.
* /

110

char serv_type, save_rir, save_car, channel, status, char;
int char_count, i;

save_rir = inportb(RIR);
channel = save_rir & Ox03;
save_car = inportb(CAR);
outportb(CAR, save_rir);
serv_type = inportb(RIVR) & Ox07;
switch (serv_type) {

/* retrieve and save receive interrupt value' /
/* extract channel number from the RIR'/
/* save CAR for restore */
/* switch CL-CD1400 to service ack. context */
/* read vector register; get type (good/exception)'/

case 3: /* good data service */
char_count = inportb(RDCR); /* get number of characters in FIFO */
for (i = 1; i <= char30unt; i++) { /* - read that number of chars */

char = inportb(RDSR); /* read char from FIFO ./

/* Code here would put the character in a buffer of some sort for each
* channel. That code would be dependent on system software design
* so it won't be shown here .• /

}
outportb(RIR, save_rir & Ox3f);
outportb(CAR, save_car);
return(O);
break;

/* terminate service ack. sequence */
/* restore original CAR* /

case 7: /* exception data service request */
status = inportb(RDSR); /* by definition, only one char; get status ./
outportb(RIR, save_rir & Ox3f); /* terminate service ack. sequence */
outportb(CAR, save_car); /* restore original CAR */
return(status); /* just return the error type */
break;

March 1991

CL-CD1400
U"XART Serial/Parallel Controller

WG/C

6.3.1.3 Transmit Service

r The transmit service acknowledge routine follows very nearly the same steps that the receive
* service routine follows. This time, the TIR is used to force the switch to a transmit service for
* the requesting channel.

*'
char save_tir, save_car, channel;
int char_count, i;

save_tir = inportb(TIR);
channel = save_tir & Ox03;
save_car = inportb(CAR);
outportb(CAR, save_tir);

r retrieve and save transmit interrupt value *'
r extract channel number from the TIR*'
r save CAR for restore *'
r switch CL-CD1400 to service ack. context *'

r Buffer management code would set-up pointers to the next 12
* characters (maximum) to be sent on this channel. Again, buffer
* layout is system design dependent and won't be shown here.

*'
for (i = 0; i < char30unt; i++) {

outportb(TDR, *next_char++);
/* transmit FIFO can take 12 characters *'

/* it is assumed that char_count and nexLchar is set up by buffer code *'

outportb(TIR, save_tir & Ox3f);
outportb(CAR, save_car);
return(O);

/* terminate service ack. sequence *'
/* restore original CAR; may not be necessary*'

March 1991 111

CL-CD1400
WGIC UXART Serial/Parallel Controller

6.3.1.4 Modem Service

r Code to handle modem signal change service request can be simple or complex depending
" on whether port control is handled directly in the service routine or simply noted with status
" returned. The following routine services the request and returns the status of which signals
" changed with the channel number OR'ed into the least significant two bits; the main driver
" software must perform the necessary functions. As with the receive and transmit routines,
" the interrupt register, this time the MIR, is used to force the CL-C01400 into the service context.

"'
service_mdm()
{

char save_mir, channel, save_car, mdm_status;

save_mir = inportb(MIR);
channel = save_mir & Ox03;
save_car = inportb(CAR);
outportb(CAR, save_mir);
mdm_status = inportb(MISR);
outportb(MIR, save_mir & Ox3f)
outportb(CAR, save_car);
return(mdm_status I channel);

6.4 Hardware-Activated Service Examples

In nearly all respects, the way in which the hosts
interacts with the CL-C01400 during hardware­
activated service acknowledge is the same as for
the software-activated methods. The main differ­
ence is that the SVCACK" input signals perform
the context switch automatically, thus relieving
that duty from the host. The result is the same; the
CAR is set to point to the correct channel, and the
chip is placed in the proper internal mode to ser­
vice the request. When the host activates the SV­
CACK" input, a read cycle is performed. The CL­
CO 1400 places the contents of the appropriate in­
terrupt vector reigster (RIVR, TIVR, MIVR) of the
channel requesting service on the data bus. The
host uses the information provided to determine
the type of service and the 10 number of the de­
vice being accessed in the case of multiple CL­
C01400s daisy-chained together. At the end of

112

/* retrieve and save modem interrupt value"'
r extract channel number from the MIR"'
/* save CAR for restore "'
r switch CL-C01400 to service ack. context"'
r get status of which modem signals changed "'
/* terminate the service ack. sequence "'
r restore CAR "'

the service routine, the host writes a dummy value
to the EOSRR register. This causes the switch out
of the service acknowledge context and restores
the environment to what it was before the service
began.

The following code fragments show the differenc­
es between this type of service acknowledge and
those shown above for the software-activated
context switch. Only the beginning and ending
steps are shown; the code in between would be
very similar to the previous examples. These rou­
tines could be executed as the result of a hard­
ware interrupt or via software polling, as in the
previous examples. For purposes of this discus­
sion, the method of arriving at the proper service
routine is not important.

March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

6.4.1 Receive Service

/* The receive service acknowledge cycle begins by executing a service acknowledge cycle that
* activates the SVCACKR* input. The data obtained as a result of this "read" cycle is the content
* of the LlVR register of the channel making the service request. The service routine decodes the
* vector in the least significant three bits to determine if the data is "good" or "bad" (exception).
* The context switch was done automatically when the SVCACKR* signal was activated so the
* CAR does not need to be loaded. The routine reads the RICR to determine the requesting
* channel number. If this were a multiple-CL-C01400 system using daisy-chaining, the routine would
* extract the chip 10 from the upper five bits of the RIVR.
*/

char serv_type, vector, channel, status, char;
int char_count, i;

vector = inportb(SVCACKR);
channel = inportb(RICR) » 2;
serv_type = vector & OxO?;
switch (serv_type) {

/* gen. ack and get vector (read LlVR) */
/* extract channel number from the RICR*/
/* mask RIVR to get type (good/exception)*/

}

case 3: /* good data service */

case ?:

char_count = inportb(ROCR); /* get number of characters in FIFO */
for (i = 1; i <= char_count; i++) { /* - read that number of chars */

char = inportb(ROSR); /* read char from FIFO */

/* Code here would put the character in a buffer of some sort for each
* channel. That code would be dependent on system software design
* so it won't be shown here; this code just shows how to manipulate the
* CL-C01400 registers to implement the poll mode service acknowledge. */

}
break;

status = inportb(ROSR);
break;

/* exception data service request * /
/* by definition, only one char; get status */

outportb(EOSRR, OxOO); /* write dummy value to EOSRR to terminate */

March 1991 113

CL-CD1400
~"'L.JO-ll WGIC UXART Serial/Parallel Controller

6.4.2 Transmit Service

r The transmit service acknowledge routine follows very nearly the same steps that the receive
* service routine follows. The SVCACKT* input is activated to start the service cycle and the TICR
" is read to get the channel number.
*/

service_txm()
{

114

char vector, channel;
int char_count, i;

vector = inportb(SVCACKT);
channel = inportb(TICR) » 2;

r retrieve and save transmit interrupt value "/
1* extract channel number from the RICR"/

1* Buffer management code would set-up pointers to the next 12
" characters (maximum) to be sent on this channel. Again, buffer
" layout is system design dependent and won't be shown here.

"/

for (i = 0; i < char_count; i++) {
outportb(TDR, "nexCchar++);

r transmit FIFO can take 12 characters */

1* it is assumed that char_count and nexLchar is set up by buffer code * /

}
outportb(EOSRR, OxOO); r write dummy value to EOSRR to terminate */

March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

6.4.3 Modem Service

/* The following routine services the modem change service request. Context switch is set up by
* activating the SVCACKM* input. reading the MIVR. Channel status is an externally defined variable
* that this routine updates.
*j

service_mdm()
{

char vector. channel;

vector = inportb(SVCACKM);
channel = inportb(MICR) » 2;
mdm_status[channelj = inportb(MISR);
outportb(EOSRR. OxOO);

March 1991

/* retrieve and save transmit interrupt value *j

/* extract channel number from the RICR*j
j* get status of which modem signals changed *j

j* write dummy value to EOSRR to terminate *j

115

CL-CD1400
WGIC UXART Serial/Parallel Controller

6.5 Baud Rate Tables

The tables on the following three pages show the values that need to be loaded into the RCOR/RBPR
and TCORITBPR registers to set the designated baud rate when using three standard frequency crystals.
The first one uses a 20.2752-MHz frequency which yields near-perfect bit rates. The second table uses
a 20-MHz frequency and shows error rates that are a little larger although still well within the limits set by
the various standards covering asynchronous communications. The third table also uses another stan­
dard communications base frequency (18.432 MHz) that yields divisors with nearly zero errors overall.
However, since this frequency is below 20 MHz, performance at the higher baud rates (76.8K and
115.2K) may be slightly lower. It is, of course, not necessary that both the receiver and transmitter of a
channel be programmed to the same baud rate; the CL-CD1400 can send and receive at different rates
on the same channel.

Baud Rate Constants, elK = 20.2752 MHz

Baud Rate ReOR/TeOR RBPR/TBPR Error
(Hex)

110 4 5A 0.00%

150 4 42 0.00%

300 3 84 0.00%

600 3 42 0.00%

1200 2 84 0.00%

2400 2 42 0.00%

4800 84 0.00%

9600 42 0.00%

19200 0 84 0.00%

38400 0 42 0.00%

56000 0 2D 0.57%

57600 0 2C 0.00%

64000 0 28 1.00%

76800 0 21 0.00%

115200 0 16 0.00%

116 March 1991

CL-CD1400
UXART Serial/Parallel Controller

LOGIC

Baud Rate Constants, ClK = 20.00 MHz

Baud Rate RCOR/TCOR RBPR/TBPR Error
(Hex)

110 4 59 0.25%

150 4 41 0.16%

300 3 82 0.16%

600 3 41 0.16%

1200 2 82 0.16%

2400 2 41 0.16%

4800 82 0.16%

9600 41 0.16%

19200 0 82 0.16%

38400 0 41 0.16%

56000 0 20 0.79%

57600 0 2B 0.94%

64000 0 27 0.16%

76800 0 21 1.36%

115200 0 16 1.36%

March 1991 117

CL-CD1400
WGIC UXART Serial/Parallel Controller

Baud Rate Constants, ClK = 18.432 MHz

Baud Rate RCORITCOR RBPRlTBPR Error
(Hex)

110 4 52 0.22%

150 3 FO 0.00%

300 3 78 0.00%

600 2 FO 0.00%

1200 2 78 0.00%

1800 2 50 0.00%

2000 2 48 0.00%

2400 FO 0.00%

4800 78 0.00%

9600 o FO 0.00%

19200 o 78 0.00%

38400 o 3C 0.00%

56000 o 29 0.35%

57600 o 28 0.00%

64000 o 24 0.00%

76800 o 1E 0.00%

115200 o 14 0.00%

118 March 1991

CL-CD1400
UXART Serial/Parallel Controller

6.6 ASCII Code Table

6.6.1 Hexadecimal - Character

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT OA NL OB VT OC NP 00 CR OE SO OF SI
10 OLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1C FS 10 GS 1E RS iF US
20 SP 21 22" 23 # 24 $ 25 % 26 & 27'
28 (29 2A' 2B + 2C 2D 2E 2F
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A 3B 3C < 3D 3E > 3F?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B [5C \ 5D] 5E" 5F
60 - 61 a 62 b 63 c 64 d 65 e 66 67 9
68 h 69 6A 6B k 6C 6D m 6E n 6F 0

70 P 71 q 72 r 73 s 74 75 u 76 v 77 w
78 x 79 y 7 A z 7B 7C 7D 7E 7F DEL

6.6.2 Decimal - Character

o NUL 1 SOH 2 STX 3 ETX
8 BS 9 HT 10 NL 11 VT

16 DLE 17 DC1 18 DC2 19 DC3
24 CAN 25 EM 26 SUB 27 ESC
32 SP
40 (
48 0
56 8
64 @

72 H
80 P
88 X

96 -
104 h

33
41
49
57 9
65 A
73 I
81 Q

89 Y
97 a

105

34 "
42 •

50 2
58
66 B
74 J
82 R
90 Z
98 b

106 j

35 #
43 +

51 3
59
67 C
75 K
83 S
91 [
99 c

107 k

4 EOT 5 ENQ 6 ACK 7 BEL
12 13 13 CR 14 SO 15 SI

20 DC4 21 NAK 22 SYN 23 ETB
28 FS 29 GS 30 RS 31 US
36 $ 37 % 38 & 39'
44 45 46 47 /
52 4 53 5 54 6 55 7
60 < 61 62 > 63?
68 D
76 L
84 T
92 \

100 d
108

69 E 70 F 71 G
77 M 78 N 79 0
85 U 86 V 87 W

93 1 94" 95
101 e 102 103 9
1 09 m 11 0 n 111 0

112 P 113 q 114 r 115 s 116 117 u 118 v 119 w
120 x 121 y 122 z 123 124 125 126 127 DEL

March 1991

LOGIC

119

CL-CD1400
LOGIC UXART Serial/Parallel Controller

7. SAMPLE PACKAGE - 68-pin PLCC

120

~------_ 0.985 Min ----------..... 1

~f__--------- 0.950 Min ______
0.958 Max

0.985 Min
0.995 Max

0.950 Min
0.958 Max

.165 M,"
,. .200 Max

050 T;; -:!:: 1 L,"
.021 Max

March 1991

CL-CD1400
UXART Serial/Parallel Controller

8. ORDERING INFORMATION

CL - CD 1400 - 10 PC - C

Product Line: ~
Communications, Data

~T L Revisiont

~ Temperature Range
C = Commercial

Package Type:

LOGIC

Cirrus Logic ~ TJ
Part Number P = Plastic Leaded Chip Carrier (PLCC)

Performance Grade (Not Applicable)
10 = 10 MHz internal clock frequency

t Contact CIRRUS LOGIC for up-Io-date information on revisions

March 1991 121

CL-CD1400
LOGIC UXART Serial/Parallel Controller

Notes

122 March 1991

CL-CD1400
UXART Serial/Parallel Controller

x .::::::::::::~:::::~~::~:~::::~::::::::: :·:-:·:·:·:·:·····:.:·:·z-:·:·:·:·:·:-:·:·;·;·:·:·:·;.:;:;:::::::::::::::::::::::::~.::::::.:::: LOGIC

Notes

March 1991 123

WGIC

Direct Sales Offices
Domestic
N. CALIFORNIA
San Jose
TEL: 408/436-7110
FAX: 408/437-8960

S. CALIFORNIA
Tustin
TEL: 714/258-8303
FAX: 714/258-8307

Thousand Oaks
TEL: 805/371-5381
FAX: 805/371-5382

ROCKY MOUNTAIN
AREA
Boulder, CO
TEL: 303/939-9739
FAX: 303/442-6388

The Company

NORTH CENTRAL
AREA
Westchester, IL
TEL: 708/449-7715
FAX: 708/449-7804

SOUTH CENTRAL
AREA
Austin, TX
TEL: 5121794-8490
FAX: 5121794-8069

NORTHEASTERN
AREA
Andover, MA
TEL: 508/474-9300
FAX: 508/474-9149

Philadelphia, PA
TEL: 215/251-6881
FAX: 215/651-0147

SOUTH EASTERN
AREA
Boca Raton, FL
TEL: 407/994-9883
FAX: 407/994-9887

Atlanta, GA
TEL: 404/263-7601
FAX: 404/729-6942

International
GERMANY
Herrsching
TEL: 49/8152-2030
FAX: 49/8152-6211

JAPAN
Kanagawa-Ken
TEL: 81/462-76-0601
FAX: 81/462-76-0291

CL-CD1400
Preliminary Data Sheet

SINGAPORE
TEL: 65/3532122
FAX: 65/3532166

TAIWAN
Taipei
TEL: 886/2-718-4533
FAX: 886/2-718-4526

UNITED KINGDOM
Berkshire, England
TEL: 441344-780-782
FAX: 44/344-761-429

Cirrus Logic®, Inc., produces high-integration peripheral controller circuits for mass storage,
graphics, and data communications. Our products are used in leading-edge personal computers,
engineering workstations, and office automation equipment.

The Cirrus Logic formula combines proprietary S /LA TM t IC design automation with system design
expertise. The S/LA design system is a proven tool for developing high-performance logic circuits in
half the time of most semiconductor companies. The results are better VLSI products, on-time, that
help you win in the marketplace.

Cirrus Logic's fabless manufacturing strategy, unique in the semiconductor industry, employs a
full manufacturing infrastructure to ensure maximum product quality, availability and value for our
customers.

Talk to our systems and applications specialists; see how you can benefit from a new kind of
semiconductor company.

t U.S. Patent No. 4,293,783 © Copyright, Cirrus Logic, Inc., 1991

Preliminary product information describes products which are in production, but for which full characterization data is not yet
available. Cirrus Logic, Inc. believes the information contained in this document is accurate and reliable. However, it is marked
Preliminary and is subject to change without notica. No responsibil~y is assumed by Cirrus Logic, Inc. for ~s use, nor for
infringements of patents or other rights of third parties. This document implies no license under patents or copyrights. Trademarks
in this document belong to their respective companies. Cirrus Logic, Inc. products are covered under one or more of the following
U.S. patents: 4,293,783; Re. 31,287; 4,763,332; 4,777,635; 4,839,896; 4,931,946; 4,979,173.

CIRRUS LOGIC, Inc., 3100 West Warren Ave. Fremont, CA 94538
TEL: 415/623~8300 FAX: 415/226-2160 541400-001

