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[57] ABSTRACT 

Apparatus and methods are disclosed for providing fast 
decoding of Reed-Solomon and related codes. Cases of 
one and two data symbol errors are decoded directly 
from the remainder using a large pre-computed. table 
without calculating syndromes. Techniques for decod­
ing cases of more than two errors are given where an 
optimized Chien search is used when more than four 
errors remain; when four or fewer errors remain, the 
Chien search is eliminated in favor of locating an error 
by direct solution of the error locator polynomial. The 
error locator and syndrome polynomials are adjusted 
after each error is found, and the error evaluator poly­
nomial need not be computed. 
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FAST REMAINDER DECODING FQ_R A 
REED-SOLOMON CODE 

nomial without generating the error evaluator polyno­
mial. 

Another object is to provide improved methods to 
decrease the correction time required for cases of more 

BACKGROUND OF THE INVENTION 5 than two errors by reducing the degree of the error 
locator polynomial and adjusting the syndrome polyno­
mial as each successive error is located. 

This invention relates to information storage and 
retrieval systems, and more particularly to means for 
decoding codewords for use in error detection and 
correction in such systems. Even more particularly, this 

10 invention relates to Reed-Solomon codes and related 
codes, and to improved methods for the decoding of 
such codes. 

In a typical decoder, the coefficients of the syndrome 
polynomial, called frequency-domain syndromes, are 

15 
first calculated by dividing the received codeword by 
each factor of the code generator polynomial. This 
process is hardware-intensive and/or time-consuming, 
depending on implementation. 

It is possible to efficiently generate the coefficients of 
20 

the remainder polynomial, called time-domain syn­
dromes, by dividing the received codeword by the 
entire code generator polynomial. The time-domain 
syndromes contain the same information as the frequen-
cy-domain syndromes. 25 

Methods of decoding using frequency-domain syn­
dromes are" known in the prior art, for example see 
Chapter 3 Practical Error Correction Design for Engi­
neers by Neal Glover and Chapter 5 of Error-Correc­
tion Coding for Digital Communications by Clark and 30 
Cain. For cases of one error, two frequency-domain 
syndromes can be used to generate an error location and 
value, which are then checked with other frequency­
domain syndromes using a "Newton's Identities" test. A 
similar procedure starting with four frequency-domain 35 
syndromes may be used to decode cases of two errors. 
The calculation of frequency-domain syndromes adds 
significant additional hardware and/or time delay to 
decoding of cases of one and two errors. 

For cases of more than two errors, the frequency- 40 
domain syndromes are typically used to iteratively gen­
erate an error locator polynomial and an error evaluator 
polynomial. The error locator polynomial is typically 
used in a "Chien" search to locate the symbols in error, 
and the error evaluator polynomial is used to calculate 45 
the values of the symbol errors. This process is ineffi­
cient when used to locate and evaluate errors in cases of 
less than five errors. 

It is thus apparent that there is a need in the art for 
improved decoding methods for Reed-Solomon codes 50 
and related codes. 

SUMMARY OF THE INVENTION 

Accordingly, it is an object of the present invention 
to provide improved decoding methods which decrease 55 
the correction time required for cases of one and two 
errors by decoding directly from time-domain syn­
dromes without generating frequency-domain syn­
dromes. 

Another object is to provide improved methods to 60 
decrease the correction time required for cases of more 
than two errors by eliminating the Chien search when 
the number of yet-to-be-located errors is or has been 
reduced to four or less. 

Another object is to provide improved methods to 65 
decrease the correction time required for cases of more 
than two errors by calculating error values directly 
from the syndrome polynomial and error locator poly-

Another object is to provide improved methods to 
decrease the correction time required for interleaved 
codewords of variable lengths by avoiding multiplica­
tions by maintaining a parameter for computing point-
ers to data symbols and remainder coefficients of the 
first such interleaved codeword and adjusting it as each 
successive codeword is corrected. 

The above and other objects are attained by the pres­
ent invention which comprises means and methods for 
fast decoding of Reed-Solomon and related codes. 
Cases of one and two symbols in error are decoded 
directly from the read remainder, without computing 
syndromes. The location of a single symbol in error is 
quickly determined using the result of a single finite 
field division as an index into a small precomputed ta­
ble. Using another larger precomputed table, the value 
is calculated and the validity of the location and value 
are confirmed. The larger precomputed table is also 
used to calculate and validate the locations and values 
of two symbols in error. Fast decoding of cases of more 
than two symbols in error is accomplished by employ­
ing direct solution of an error locator polynomial -to 
locate errors when four or fewer errors remain to be 
located and by employing an optimized Chien search to 
locate errors when more than four errors remain to be 
located. The invention further simplifies and speeds the 
decoding of all cases of more than two symbols in error 
by eliminating the need to compute an error evaluator 
polynomial and by adjusting the error locator and syn­
drome polynomials after each error is found. 

The above and other objects, features, and advan­
tages of the instant invention will be more apparent 
from the following more particular description thereof 
present in conjunction with the accompanying draw-
ings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows the environment in which the instant 
invention is used. 

FIG. 2 illustrates the steps required to decode Cases 
B, C.l, and C.2. 

FIG. 2A illustrates the steps required to validate the 
error location and value for Cases B, C.1, and C.2 using 
sequential repeated blocks. 

FIG. 3 illustrates the steps required to calculate 0-1 

and 0-2 for Case D using Ro through RJ. 
FIG. 4 illustrates the steps required .to decode Case A 

and calculate 0-1 and 0-2 for Case Dusing Rr.3 to Rr. 
FIG. 5 illustrates the steps required to calculate the 

error locations and values for Case D. 
FIG. 6 illustrates the steps required to validate the 

error locations and values for Case D. 
FIG. 6A illustrates the steps required to validate the 

error locations and values for Case D using sequential 
repeated blocks. 

FIG. 7 illustrates the steps required to decode Case 
C.3. 

FIG. 8 illustrates the steps required to calculate the 
coefficients of S(x) required to decode cases of three 
and four errors for Case E. 
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FIG. 9 illustrates the steps required to iteratively 
generate the error locator polynomial for Case E. 

FIG. 9A illustrates the steps required to calculate the 
nth discrepancy dn using sequential repeated blocks. 

FIG. 10 illustrates the steps required to calculate the 
additional coefficients of S(x) required to decode cases 
of more than four errors for Case E. 

4 
Note that for non-zero x, LOG [1/x]= -LOG 
[x]=LOG [x] XOR 2m- t. 

In a decoder for an error detection and correction 
system using a Reed-Solomon or related code of dis-

5 tance d for the detection and correction of a plurality of 
errors in codewords of n symbols comprised of 
n-(d-1) data symbols and d-1 check symbols, each 
symbol an element ofGF(2m), a codeword C(x) is given 
by 

FIG. 11 illustrates the steps required to locate and 
evaluate errors by searching for roots of o-(x) for Case 
E. 10 

C(x)=(x3- l •J(x))E!)((xd- l •J(x)) MOD G(x)) 
FIG. llA illustrates the modifications to FIG. 11 

required to evaluate a-ji*o-(x) at x=aiusing sequential 
repeated blocks. 

FIG. 12 illustrates the steps required to divide o-(x) 
by (xEJ;laL), compute the error value E, and adjust the 
coefficients of S(x) for Case E. 

FIG. 13 illustrates the steps required to transfer con­
trol to the appropriate special error location subroutine 

(l) 

where I(x) is an information polynomial whose coeffici­
ents are the n -( d- 1) data symbols and G(x) is the code 

15 generator polymomial 

d-2 (2) 

for Case E. 2o 
FIG. 14 illustrates the steps required to solve for a 

root X, and its log L, of a quadratic equation in a finite 
field. 

G(x) = -rr (x El) amO+~ 
i=O 

FIG. 15 illustrates the steps required to solve for a 
root X, and.its log L, of a cubic equation in a finite field. 25 

FIG. 16 illustrates the steps required to solve for the 
log L of one of the four roots of a quartic equation in a 
finite field. 

FIG. 17 illustrates the steps required to correct errors 
in interleaved codewords. 30 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

where mo is a parameter of the code. A code of distance 
d can be used to correct all cases of t=INT((d-1)/2) 
errors ·without pointers and is guaranteed to detect all 
cases of INT(d/2) errors. 

When e errors occur, the received codeword C'(x) 
consists of the EXCLUSIVE-OR sum of a transmitted 
codeword C(x) and the error polynomial E(x): 

C'(x)=C(x)E!)E(x) (3) 

where 
E(x)=E1 •xLlEJ) ... Ee•xLe (4) 

The following description is of the best presently 
contemplated mode of carrying out the instant inven­
tion. This description is not to be taken in a limiting 
sense but is made merely for the purpose of describing 
the general principles of the invention. The scope of the 
invention should be determined with reference to the 

L; and E; are the locations and values, respectively, of 
35 the e symbol errors. 

The remainder 

(5) 

appended claims. 40 is given by 

In a finite field GF(2m), elements are composed of m 
binary bits and addition (Etl) consists of MODULO 2 
summation of corresponding bits; this is equivalent to 
performing the bit-wise EXCLUSIVE-OR sum of op-

R(x)=C'(x) MOD G(x) (6) 

erands: 45 

that is, the remainder generated by dividing the re­
ceived codeword C'(x) by the code generator polyno­
mial G(x). 

By equation (1), 

xEJ)y=xXORy. C(x) MOD G(x)=O (7) 

Note that subtraction is equivalent to addition since the so from equation (3), 
MODULO 2 difference of bits is the same as their 50 
MODULO 2 sum. R(x)=E(x) MOD G(x) (8) 

Multiplication (*) may be implemented using finite 
field logarithm and antilogarithm tables wherein LOG 
[a']=i and A LOG [i]=ai: 

x•y = 0 if x = 0 or y = 0 

x*y = ALOG[LOG[x] + LOG[y]] if x =!= 0 and y =!= 0 

For codes wherein df;6, the time required to decode 
cases of one and two errors may be reduced by decod-

55 ing directly from the remainder by the use of a large 
pre-computed table f(i,L). The value of each element of 
f(i,L) is the coefficient of the xi term of the remainder 
generated when xL is divided by G(x), that is, 

where the addition of the finite field logarithms is per- 60 
formed MODULO 2m- t. LOG [O] is undefined. 

f{d-2,L)*xd-2E!) ... E!)j{O,L)=xL MOD G(x) (9) 

Division (/) may be implemented similarly: 

x/y is undefined if y = O 

x/y = 0 if x = 0 and y =!= 0 

x/y = ALOG[LOG[x] - LOG[y]] if x =I= O and y =I= 0. 

Note that f(i,L)=t!=O for all i=O to d-2 and L=d-1 to 
2m-2. 

Hereafter, expressions using elements of f(i,L) are 
65 written using the finite field antilogarithmic form of 

equation (9). Note however, that in the preferred em­
bodiment of this invention the elements of f(i,L) are 
stored in finite field logarithmic form for computational 
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efficiency. Without loss of generality, discussion is lim­
ited to codes wherein t~3. To reduce the amount of 
storage required for the f(i,L) table, the one and two 
error correction procedure is structured to require only 
those elements off(i,L) for L=d-1 to 2m-2 and i=O 5 
to T, where 

T=2t- I for t=3, 

more than one error; otherwise the ratio Rb!Ra may be 
used as an index into a pre-computed location table La,b 
derived according to 

T=MAX(7,t+ 1) for 1;;;4, since from equation (10), 
10 

and only such elements are stored. Rb E*tfb.L) _ •.JJ!!Jd_ 
'R;; = E*f{a,L) - f{a,L) . From equations (4), (8), and (9), a single error at 

location L with value E will generate a remainder with 
coefficients 

R;=E*f{i,L) (10) 

15 Location table values corresponding to L<d-1 are set 
to an invalid number, for example zero, to flag the exis­
tence of more than one error. 

when e errors occur in a codeword, the coefficients of 
the remainder are the EXCLUSIVE-OR sum of the 
coefficients of the remainders for each error taken sepa- 20 
rately: 

e 
R; = . ~ o Ej*f{i,Lj). 

j=l 

CASE A 

One or two check symbol errors 

(11) 

A.l: One error at location L<d-1 with value E. 

25 

From equation (10), the remainder R(x) has a single 30 
non-zero coefficient 

In the preferred embodiment of this invention, the 
time required to determine the error location is reduced 
by using LOG [Rb!Ra] as an index into a location table 
La,b derived according to 

When the location L is known, the error value E may 
be trivially computed from equation (10): 

Ra 
E = f{a,L) 

The computed error location and value may be rap-

35 
idly validated by gain using equation (10); test 

A.2: Two errors at locations L1 <d-1 and Lz<d-1 
with values E1 and Ez. From equation (11), the remain­
der R(x) has two non-zero coefficients 

R;=E*f{i,L) 

for values of i not equal to a or b, the indices of the 
coefficients R; used to determine the error location and 

40 value. 

Cases A.1 and A.2 may be decoded by inspection of 
the remainder by counting the number of non-zero 
coefficients R;. 

In the preferred embodiment of this invention, non- 45 

zero coefficients R; are counted for i=O tot+ 1. If the 
total is less or equal to two, we are assured that there are 
at most d-t-1 errors, all at locations Li<d-1, none 
of which must be corrected since none affects a data 
symbol. The time required to decode cases of one or 50 

more data errors is reduced by counting non-zero coef­
ficients only after a coefficient equal to zero has been 
detected in the course of decoding Cases B, C, or D. 

CASEB 

One error at location L~d-1 with value E. From 
equation (10), the coefficients of R(x) are given by 

55 

In the preferred embodiment of this invention, Ro and 
R1 are used to determine Land E, and coefficients R; 
are tested for i=2 to t. If all such coefficients are suc­
cessfully tested, we are assured that there is one error at 
location L~d-1 with value E and at most d-t-2 
errors at locations t+l<L;<d-1. 

CASEC 

Two errors, one error at location L1~d-l with 
value E 1 and a second error at location Lz < d- 1 with 
value Ez. From equation (11), the coefficients of R(x) 
are given by 

(12) 

R;=E*fl.i,L). 
In the preferred implementation of this invention, this 

· 60 case is divided into three subcases: 

For given a and b, a*b, the ratio 

.iJ!!Jd_ 
f{a,L) 

65 
is unique for each value of L such that 
d-1~L<2m - 1. This yields a fast method for locating 
a single error. If either Ra=O or Rb=O there must be 

C.l: t+l<L2<d-l 
Decoding proceeds as in Case B: error location and 

value computations using Ro and R1 yield L1 and Ei, 
and coefficients R; are tested successfully for i = 2 to t. 

C.2: 2~L2~t Error location and value computations 
proceed as in Case B, yielding L 1 and E i, ]Jut the test of 
RLi fails. If we perform one additional successful test of 
R1+ i, we are assured that there is one error at location 
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L1;§d-l with value E1 and at most d-t-2 errors at 
locations 2<Li<d- l. 

.8 
from four coefficients Ra, Rb, Re, and Rd according to 
the equations 

Aai>RaRb Ell AacRaRc Ell AadRaRd Ell AbcRi>Rc Ell AbdRi>Rd Ell AcdRcRd 

O'J = Cai>RaRb Ell CacRaRc Ell CadRaRd Ell CbcRi>Rc Ell CbdRi>Rd Ell CcdRcRd 

0"2 = 
BabRaRb Ell BacRaRc Ell BadRaRd Ell BbcRi>Rc Ell BbdRi>Rd Ell BcdRcRd 

Cai>RaRb Ell CacRaRc Ell CadRaRd Ell CbcRi>Rc Ell CbdRi>Rd Ell CcdRcRd 

C.3: O;§Lz;§ 1 
If either Ro or R1 is equal to zero, the procedure of 

Case B detects more than one error. If both Ro and R1 
are non-zero, the error location and value computations 
of Case B yield incorrect results and more than one test 15 
of the coefficients R; fails. In either case we branch to 
Case D. 

If either Ro or R1 is equal to zero and the computa­
tions of Case D are restricted to non-zero coefficients, 
the computation of the denominator of the coefficients 

20 
of O"(x) using RT-3 to RT will produce zero. If both Ro 
and R1 are non-zero or the computations of Case D are 
not restricted to non-zero coefficients, the error loca­
tion computations of Case D using Ro to R3 will cor­
rectly locate the two errors, with one having location 

25 
O~Li< I. In either case, we may then repeat the single 
error location and value computations of Case B but 
using Rr and Rr+ 1 in place of Ro and R1, determining L 
using from a location table Lr,r+ 1 derived from 
f(t+ l,L)/f(t,L)), and validating the results by testing 

30 the coefficients Ri for i=O to t-1, allowing one failure 
at i=O or i= 1. 

Case C.3 occurs with sufficiently low frequency that 
table storage space may be reduced without signficantly 
degrading performance by eliminating the L1,1+ 1 table 35 
and determining the location of the data symbol error 
by calculating L as a function of Rr+ 1/R1: 

[ 

G' R ] '"' t+h __ , _.--.!.:!:.!.._ 
awa G, R 

L =LOG , t+l 1 

G, R1+1 IE!)--*--
Gr+1' Rr 

where G;' is the coefficient of the xi term of 

d-3 
G'(x) = rr (x EB amO+~ 

i=O 

(13) 

40 

45 

50 
In the preferred implementation of this invention, L 

for Case C.3 is computed from equation (13) using a=t 
and b=t+ I. One validation testing failure is allowed 
for any i=O to t-1. If validation testing succeeds, we 
are assured that there is one error at location L 1 > d- 1 5 5 
with the value E1, a second error at location 
O;§Lz~t-1, and at most d-t-3 errors at locations 
t+2;§Li<d- l. 

CASED 

Two errors at locations L 1>d-1 and Lz?:; d-1 with 
values E1 and Ez. From equation (11), the coefficients of 
the remainder R(x) are given by 

60 

(14) 65 

The coefficients O"J = aL I EBaL2 and 0"2 = aL I *aL2 of 
the error locator polynomial O"(X) may be computed 

where the pre-computed constants Aab, Bab, Cab, etc. 
are (unctions of a, b, c, and d of the form 

Bab= (aa•a2b Ell ab•a2")*(G'i-1*Gi' Ell Gc''*G"d-1). 

Cab= (aa Ell a6}*(G",_ 1*Gi' Ell G,"*G"d-1). 

and G;" is tlie coefficient of the xi term of 

d-4 
G"(x) = rr (x Ell amo+~, 

i=O 

with G _ ( defined as zero. 
In the preferred embodiment of this invention, Ro to 

R3 are used in computing O"! and 0"2. For codes wherein 
t?:;4, the time required to compute O"! and 0"2 is reduced 
by choosing four non-zero zero coefficients of R(x): if 
any of Ro to R3 is equal to zero, O"! and 0"2 are computed 
using RT-3 to RT. If any of RT-3 to RT is also equal to 
zero, there exist more than two errors. 

We now have the coefficients of the error locator 
polynomial for the case of two errors 

Solution of a quadratic equation in a finite field is 
known in the prior art; for example, see Chapter 3 of 
Practical Error Correction Design for Engineers by 
Neal Glover. Substituting x=y*0"1 yields 

O'> .v2 Elly Ell c = 0, where c = --=;- . 
O'J" 

For each odd solution to this equation Y 1, there is an 
even solution Y2 = Y1EB1. Y 1 can be fetched from a 
pre-computed quadratic table derived according to 

QUAD[i2E!)1]=iE!ll for i=O, 2, ... 2m-2 

using c as an index. There are 2m- l such pairs of solu­
tions; the other elements of the table are set to an invalid 
number, for example zero, to flag the existence of more 
than two errors. When Y1=FO and Y2=FO have been 
determined, reverse substitution yields expressions for 
the two error locations 

L2=LOG [o-1*Y2] 

If both Li<d-1 and neither Li is not equal to a orb, 
the indices of the coefficients Ri used in Case B, there 
must exist more than two errors, otherwise the error 
situation of Case C.3 may exist. 

In the preferred implementation of this invention, 
Case C.3 is attempted if Li<d-1, whether or not Li is 
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equal to a orb; Case C.3 will detect cases of more than 
two errors. 

Solving the system of equations 

yields expressions for the error values 

5 

10 
(4) The calculation of coefficients S; required for the 

decoding of cases of more than four errors is de­
ferred until the iterative error locator polynomial 
generation routine determines the existence of 
more than four errors. 

ERROR LOCATOR POLYNOMIAL GENERA­
TION: The coefficients of S(x) are used to iteratively 
generate the coefficients of the error locator polynomial 
cr(x). Such iterative algorithms are known in the prior 

Ra*fib,L2) EB Rb*fia, L2) 
Ei. = -f{"'"a-.L,,...1"'")*'"''f{""b,""'L....,2)-EB.,......,f{"'b""'.L,....1),..,.*f{""a-.L-:-2"'")-

10 art; for example, see Chapter 5 of Error-Correction 
Coding for Digital Communications by Clark and Cain. 

Ra*fib,L1) EB Rb*f{a,L1) 
Ei = f{a,L1)*f{b,L2) EB f{b,L1)*f{a,L2) 

In the preferred embodiment of the invention, Ro and 
R1 are used in calculating error values if Ro to R3 were 
used in determining cr(x), while Rr.3 and Rr.2 are used 

In the preferred embodiment of this invention, the 
time required to evaluate each successive discrepancy 
value is reduced by using the current degree of cr(x) as 

15 an index into a table of software jump addresses of 
appropriate starting points for each evaluation in a se­
quence of repeated blocks. 

in calcuating error values if Rr.3 to Rr were used in 20 
determining cr(x). 

The computed error locations and values may be 
rapidly validated using equation (11); test 

ERROR LOCATION AND EVALUATION: If the 
degree of cr(x) indicates more than four errors exist, we 
evaluate cr(x) at x=aL for each L, O:§L<2m- t, until 
the result is zero, which signifies that aL is a root of cr(x) 
and L is an error location. 

In the preferred embodiment of this invention, the 

for values ofi not equal to a, b, c, or d, the indices of the 
coefficients R;used to determine the error locations and 
values. 

25 
time required to evaluate cr(x) at each successive loca­
tion is reduced by maintaining a software address 
pointer to the appropriate starting point for each evalu­
ation in a sequence of repeated blocks, and by evaluat-

In the preferred embodiment of this invention, coeffi- 30 
cients R; are tested for i = 4 to t + 1 if Ro to R3 were used 
in determining locations and values, and coefficients R; 
are tested for i=O to T-4 if Rr.3 to Rrwere used. If all 
such coefficients are successfully tested, we are assured 
that there are two errors at locations L1 >d-1 and 35 
L1>d- l with values E1 and E2 and at most d-t-3 
errors at locations t+2:§L;:§d-1. 

CASEE 

More than two errors, at locations L; with values E;. 40 
SYNDROME POLYNOMIAL GENERATION: 

We compute the coefficients S;ofthe frequency-domain 
syndrome polynomial 

ing aJL*cr(x) at x=a.-L where j is the degree of cr(x), 
rather than evaluating cr(x) at x=aL. 

When the location L of an error has been determined, 
cr(x) is divided by (xEE)aL), producing a new error loca­
tor polynomial of degree one less than that of the old: 

O"(x) = cr(x) 
x EB aL 

The error value E may be calculated directly from 
S(x) and the new cr(x) using 

.i cr;*Sj-i 
E = a-LmO * ~1=_0.___..,.­

cr(x) aL 

45 where j is the degree of the new cr(x). 

from the coefficients R;ofthe remainder R(x) according 
to 

In the preferred embodiment of this invention, the 
division of cr(x) by (xEE)aL) and the calculation of the 
numerator and denominator of E are all performed in a 
single software loop. d-2 

S· = l: R·•ai(m0+1). 
I j=O J 

50 When the location L and value E of an error have 

Sequential computation of each coefficient S; would 
require d- l references to each coefficient Rj. Physical 
constraints and interleaving of multiple codewords 55 
often make each reference to a coefficient Rj difficult 
and time-consuming. 

In the preferred embodiment of this invention, the 
time required to calculate the coefficients of S(x) is 
reduced by the following methods: 60 

(1) Each coefficient Rj is referenced once and its 
contribution to each coefficient S; is sequentially 
computed and added. 

(2) A partial result for the contribution of each coeffi­
cient Rj to each coefficient S;is maintained in finite 65 
field logarithmic form; 

(3) The use of software loops is minimized by using 
repeated sequential blocks. 

been determined, the coefficients of S(x) are adjusted to 
remove its contribution according to 

S;=S;EBE*a. L(m0+1) 

By reducing the degree of cr(x) and adjusting S(x) as 
the location and value of each error are determined, the 
time required to locate and evaluate each successive 
error is reduced. 

When the degree of j of cr(x) is four or less, the time 
required to locate the remaining errors is reduced by 
using the special error locating routines below, each of 
which locates one of the remaining errors without using 
the Chien search. After the location of an error has been 
determined by one of the special error locating routines, 
its value is calculated cr(x) is divided by (xEE)aL), and 
S(x) is adjusted in the same way as when an error is 
located by evaluating cr(x). 
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The resulting affine polynomial may be solved in the 
following manner: 

By inspection, the root of this equation is 0-1 =aL. Thus 5 

(1) Solve for a root Q of the equation 
q3EJ:lb2*q$b3=0 by the cubic method above. 

(2) Solve for a root S of the equation 
s2EJ:lb3/Q*sEJ:lb4=0 by the quadratic method above. 

(3) Solve for a root Z of the equation z2EBQ*zEBS=0 
by the quadratic method above. If cr1 =0, L =LOG 
[Z], otherwise reverse substitution yields 

L=LOG [O't]. 

When j = 2, the error locator polynomial is 

One of the roots of this equation may be found using the 
quadratic method of Case D: 

L = LOG [ O'J *QUAD [ ;
1

2
2 J. 

When j=3, the error locator polynomial is 

10 

15 Referring to FIG. 1, a data controller 100 having a 
host interface 102 is connected to a host computer 104. 
The data controller 100 also has a device interface 101 
which connects the data controller 100 to an informa­
tion storage device 108. 

20 In the process of reading data from information stor-

Solution of a cubic equation in a finite field is known in 
the prior art; for example, see Flagg, U.S. Pat. No. 

25 4,099, 162. Substituting 

age device 108, data bits from information storage de­
vice 108 .are transferred through device information 
channel 116, through the device interface 101, and into 
the decoder 110. At the same time the data bits are being 
transferred into the encoder and time domain syndrome 

x=wEBO'J, w=tEBB/t, and v=t/B3/B 

yields a quadratic equation in v: 

where 

A root V of this equation may be found by the qua­
dratic method above. Then by reverse substitution 

L =LOG [0'1 EB (B*V)l EB-A-]· 
(B*V)l 

When j=4, the error locator polynomial is 

Solution of a quartic equation in a finite field is known 
in the prior art; for example, see Deodhar, U.S. Pat. No. 
4,567,594. If cr1 =0, assign b;=cr; for i=2 to 4, other­
wise substitute 

to give 

where 

generator 110, they are transferred in parallel into the 
data buffer 106. As check bits are transferred into the 
decoder 110, remainder bits are generated by the de-

30 coder 110 and transferred to the remainder buffer 107. 
After the data bits have been transferred into the data 
buffer 106 and remainder bits transferred to the remain­
der buffer 107, the processor 105 uses the remainder bits 
from the remainder buffer 107 to detect and correct, if 

35 necessary, errors in the data bits in data buffer 106. 

40 

After correction of any errors in the data buffer 106, the 
data bits ·are transferred through the host interface 102, 
through the information channel 118 through the host 
computer 104. 

Referring to FIG. 2, if either Ro or R1 is equal to zero, 
Step 200 transfers control to FIG. 4, having detected 
more than one error. Otherwise Step 202 determines the 
location L=LO,l[R1/Ro]. IfL is invalid, that is, less than 
d-1, Step 204 transfers control to FIG. 3. Otherwise 

45 Step 206 calculates the error value E=Ro/f(O,L). Step 
210 prepares to validate Land Eby initializing counters 
i= l, j =t-1, and k=2. Step 212 increments counter i. 
If R,-:;t=E*f(i,L), Step 214 transfers control to Step 220. 
Otherwise Step 216 decrements counter j. If counter j is 

50 then still greater than zero, step 218 transfers control 
back to Step 212 to continue testing coefficients R;. 
Otherwise L and E have been validated and Step 250 
records them before transferring control to FIG. 17 for 
error correction. After a coefficient R; fails the test of 

55 Step 214, Step 220 decrements counter k. If counter k is 
then still greater than zero, Step 222 transfers control 
back to Step 212 to continue testing coefficients R;. 
Otherwise L and E are invalid and control is transferred 
to FIG. 3. 

60 The time required for executing looping control and 
maintaining counters in FIG. 2 may be eliminated by 
replacing Steps 210 to-222 of FIG. 2 with the repeated 
sequential blocks of FIG. 2A. Steps 230 through 23x 
sequentially test coefficients R; for i=2 to t. If all of 

65 these tests succeed, L and E have been validated and 
Step 23x transfers control to Step 250 of FIG. 2. Other­
wise control is transferred into Steps 240 to 24x, where 
sequential testing of coefficients R; continues through 
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Step 606 initializes counter j=t-2. If R;=/=E1 *fl.i,L1. 
)E9E2 *fl.i,L2), the computed error locations and values 
are invalid and Step 608 transfers control to FIG. 8. 
Otherwise Step 610 increments counter i and decre-

i=t+l. If all of the remaining tests in this second set 
succeed, L and E have been validated and Step 24x 
transfers control to Step 250 of FIG. 2.ff any of the 
tests of Steps 240 to 24x fails, L 'and E are invalid and 
control is transferred to FIG. 3. 5 ments counter j. If counter j is then still greater than 

zero, step 612 transfers control back to Step 608. Other­
wise the error locations and va,lues have been validated 
and Step 620 records them and transfers control to FIG. 

Referring to FIG. 3, on entry both Ro and R1 are 
known to be non-zero. If tf;:4 and either R1 or R3 is 
equal to zero, Step 300 transfers control to FIG. 4 to 
attempt calculation of cr1 and cr2 using Rr-3 through Rr. 
Otherwise Step 302 calculates the products of Ro to RJ JO 
taken two at a time. Step 304 computes the denominator 
of cr1 and cr2. If the denominator is equal to zero, Step 
306 transfers control to FIG. 8. Otherwise Step 308 
computes the log of the denominator, and the numera­
tor of cr1. If the numerator of cr1 is equal to zero, Step 15 
310 transfers control to FIG. 8. Otherwise Step 312 
computes the log of cri. and the numerator of cr2. If the 
numerator of cr2 is equal to zero, Step 314 transfers 
control to FIG. 8. Otherwise Step 316 calculates the log 
of cr2 and sets counter I= 0 to signify that Ro to RJ were 20 
used in computing cr1 and cr2, then transfers control to 
FIG. 5. 

Referring to FIG. 4, on entry at least one of Ro to RJ 
is known to be equal to zero. Step 400 counts the num­
ber of non-zero coefficients R; for i=O to t+ 1. If the 25 
result is less than three, there are no data symbols in 
error; Step 402 exits the correction procedure success­
fully without correcting any data symbols, having de­
coded Case A. Otherwise if any of RT-3 to RTare equal 
to zero, Step 404 transfers control to FIG. 8, having 30 
detected more than two errors. Otherwise Step 406 
calculates the products of Rr-3 to Rr taken two at a 
time. Step 408 computes the denominator of cr1 and cr2. 
If the denominator is equal to zero, Step 410 transfers 
control to FIG. 7, having possibly detected Case C.3. 35 
Otherwise Step 412 computes the log of the demonina­
tor, and the numerator cr1. If the numerator of cr1 is 
equal to zero, Step 414 transfers control to FIG. 8. 
Otherwise Step 416 computes the log of cr1, and the 
numerator of cr2. If the numerator of cr2 is equal to zero, 40 
Step 418 transfers control to FIG. 8. Otherwiste STep 
420 calculates the log of cr2 and sets counter I= T - 3 to 
signify that Rr-3 to Rr were used in computing cr1 and 
cr2, then transfers control to FIG. 5. 

In FIG. 5, which computes the error locations and 45 
values for Case D, Step 500 calculates the quantity 
c=cr2i(cr1)2 and fetches Y1 =QUAD[c1· Y1 is known to 
be not equal to one, since cr2 is known to be non-zero. If 
Y 1 is equal to zero, Step 502 transfers control to FIG. 8. 
Otherwise Step 504 calculates locations L1. If L1 is less 50 
than d-1, Step 506 transfers control to FIG. 7, having 
possibly detected Case C.3. Otherwise Step 508 calcu­
lates Y 2 and location L2; Y 2 is known to be not equal to 
zero since Y 1 is not equal to one. If L2 is less than d- 1, 
Step 510 transfers control to FIG. 7, having possibly 55 
detected Case C.3. Otherwise Step 514 computes the 
denominator of error values E1 and E2. If the denomina­
tor is equal to zero, Step 516 transfers control to FIG. 8. 
Otherwise Step 518 calculates the numerator of E1. If 
the numerator of E1 is equal to zero, Step 520 transfers 60 
control to FIG. 8. Otherwise Step 522 calculates the 
numerator of E2. If the numerator ofE2 is equal to zero, 
Step 524 transfers control to FIG. 8. Otherwise Step 
526 calculates E1 and E2, then transfers control to FIG. 

17 for error correction. 
The time required for executing looping control and 

maintaining counters in FIG. 6 may be eliminated by 
replacing FIG. 6 with the repeated sequential blocks of 
FIG. 6A. Steps 650 through 65x sequentially test coeffi­
cients R;for i=I to I+t-3. If any of these tests fails, the 
locations arid values are invalid and control is trans­
ferred to FIG. 8. Otherwise the locations and values 
bave been validated and Step 660 records them and 
transfers control to FIG. 17 for error correction. 

Referring to FIG. 7, if either R1 or R1+ 1 is equal to 
zero, Step 700 transfers control. to FIG. 8. Otherwise 
Step 702 calculates the location L from equation (13). If 
Lis invalid, Step 704 transfers control to FIG. 8. Other­
wise Step 706 calculates the error value E=R 1/f(t,L) 
and prepares to validate L and Eby initializing counters 
i=t, j=t-1, and k=2. Step 710 decrements counter i. 
If R1=FE*f(i,L), Step 712 transfers control to Step 720. 
Otherwise Step 714 decrements counter j. If counter j is 
then still greater than zero, step 716 transfers control 
back to Step 710. Otherwise L and E have been vali­
dated and Step 718 records them and transfers control 
to FIG. 17 for error correction. When a coefficient R; 
fails the test of Step 712, Step 720 decrements counter k. 
If counter k is then still greater than zero, Step 722 
transfers control back to Step 710. Otherwise L and E 
are invalid and control is transferred to FIG. 8. 

Referring to FIG. 8, Step 800 initializes all S;=Roand 
initializes counters j = 1 and JXM =mo. The purpose of 
counter JXM is to maintain the quantity j*mo for suc­
cessive values of j by repaeated additions of mo and not 
by multiplication. IfR1=0, Step 810 transfers control to 
Step 850 since RJ does not alter the coefficients S;. Oth-
erwise Step 820 computes k=LOG [R1]+JXM and 
adds akto So. Step 822 computes k=k+j and adds akto 
S1. Steps 824 to 8xx repeat the operations of Step 822 to 
compute and add the contribution ofR1to S;for i=2 to 
MIN(2t-l,ll). Step 850 increments counter j and com-
putes JXM =JXM +mo. If counter j is then still less than 
d-1, Step 860 transfers control back to Step 810. Oth­
erwise the coefficients S; for i=O to MIN(2t-l,ll) 
have been calculated and control is transferred to FIG. 
9. 

Referring to FIG. 9, Step 900 initializes the polyno-
mials, parameters, and counters. Step 910 computes the 
nth discrepancy value dn. If dn is equal to zero, Step 950 
transfers control to Step 960. Otherwise Step 952 up­
dates cr(x). If lnf;: lk+n-k, Step 954 transfers control 
to Step 958. Otherwise Step 956 updates O"k(x) and 
other parameters. Step 958 updates crp(x). Step 960 
increments counter n. If n<t+ In, Step 970 transfers 
control to Step 972. Ifn=/=12, Step 972 transfers control 
back to Step 910 to perform another iteration; otherwise 
FIG. 10 computes the remaining coefficients S; before 
transferring control back to Step 910. Otherwise if 111, 

the degree of cr(x), is greater than t, the number of 
6. 

Referring to FIG. 6, Step 600 initializes counter i=4. 
If counter I is equal to zero, Step 602 transfers control 
to Step 606. Otherwise Step 604 initializes counter i=O. 

65 errors the code can correct, Step 980 exits the correc­
tion procedure unsuccessfully. If ln=t, Step 980 trans­
fers control to Step 982; ifn=d-2, one additional itera­
tion is required before terminating the algorithm so Step 
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982 transfers control back to Step 910. Otherwise we 
are assured that we have generated a valid error locator 
polynomial and control is transferred to FIG. 11. 

subroutine of FIG. 16. If three errors remain, Step 1302 
transfers control to Step 1304, which sets parameters 
for and calls the cubic solution subroutine of FIG. 15. If 
two errors remain, Step 1302 transfers control to Step The evaluation of the nth discrepancy dn of step 920 

may be implemented with repeated sequential blocks as 
in FIG. 9A. Step 920 initializes dn=O. Step 930 uses ln 
as an index into a table of software jump addresses to 
transfer control to the appopriate starting point in Steps 
940 to 94x for the evaluation of dn. Multiplying Sn by 
CTpO is not required in Step 94x since CTpO is always equal 
to one. When dn has been computed, control is trans­
ferred to Step 950 of FIG. 9. 

5 1306, which sets parameters for and calls the quadratic 
solution subroutine of FIG. 14. Otherwise one error 
remains and Step 1302 transfers control to Step 1308. 

If CTJ is equal to zero, Step 1308 exits the correction 
procedure unsuccessfully, since the finite field loga-

10 rithm of zero is undefined. Otherwise Step 1310 deter­
mines L=LOG [CTI] and transfers control to FIG. 12. 

Likewise, if one of the subroutines successfully deter­
mines ·an error location, Step 1320 transfers control to 
FIG. 12. Otherwise, the correction procedure is exited -

Referring to FIG. 10, operation is similar to that of 
FIG. 8. After the remaining coefficients of S(x) have 
been calculated, control is transferred back to Step 910 
of FIG. 9. 

15 unsuccessfully. . 

Referring to FIG. 11, Step 1100 initializes counters 
i=O, j=ln=the degree of CT(x), and k=O=the number 
of error locations which have been found. If j is less 
than five, Step 1110 transfers control to FIG. 13. Other- 20 
wise Step 1130 evaluates a-ji*CT(x) at x=ai. If the 
result A is equal to zero, a root of CT(x) has been found 
and Step 1160 transfers control to Step 1170, which 
forms L= -i before transferring control to FIG. 12. 
Otherwise Step 1180 decrements counter i in the finite 25 
field. If counter i is then not equal to zero, Step 1190 
transfers control back to Step 1130 to evaluate CT(x) at 
the next location. Otherwise all possible locations have 
been tested without locating all the errors; therefore the 
correction correction procedure is exited unsuccess- 30 
fully. 

FIG. llA shows modifications to FIG. 11 necessary 
for efficient evaluation of a-ji*CT(x) using repeated 
sequential blocks. Step 1120 is added to use counter j to 
compute an initial software jump address PTR=ADR(- 35 
Step 1140)+(t-J)*K where K is the size of each Step 
1140 through 114x. Step 1130 initializes A=O, then Step 
1132 uses PTR to transfer control into Steps 1140 to 
·114x, which sequentially evaluate a-ji*CT(x) at x=ai 
using Homer's rule. Step 1170 is modified to update 40 
PTR=PTR+K to reflect the decrementing of j per­
formed in FIG. 12. 

Referring to FIG. 12, Step 1200 increments counter 
k, records L, decrements counter j, then initializes D= 1 
and N =Sj. Step 1202 divides CT(x) by (xEBaL) and cal- 45 
culates the numerator and denominator of E' -
=E*aL*mo. If the new CTjis equal to zero, the new CT(x) 
has a root equal to zero, which is not the finite field 
antilogarithm of any error location; Step 1204 exits the 
correction procedure unsuccessfully. If the numerator 50 
is equal to zero, the computed error value is equal to 
zero, which is not a valid error value, so Step 1204 exits 
the correction procedure unsuccessfully. If the denomi­
nator is equal to zero, the error value cannot be com­
puted, since division by zero in a finite field is unde- 55 
fined; Step 1204 exits the correction procedure unsuc­
cessfully. If CTj, the numerator, and the denominator are 
each not eaqual to zero, Step 1204 transfers control to 
Step 1206, which calculates and records 
E=a-LmO*N/D. If counter j is equal to zero, Step 60 
1208 transfers control to FIG. 17 for error correction. 
Otherwise Step 1210 adjusts the coefficients of S(x) to 
remove the effects of the error just found and transfers 
control to FIG. 13. 

Referring to FIG. 13, if more than four errors remain, 65 
Step 1300 transfers control to Step 1180 of FIG. 11 to 
search for another error location by evaluating CT(x). If 
four errors remain, Step 1300 calls the quartic solution 

On entry to FIG. 14, the parameters CJ and c2 de­
scribe the quadratic equation 

If CJ=O, the equation has a repeated root. If c2=0, one 
of the roots is zero, whose log is· undefined. If CJ =0 or 
c2=0, Step 1400 exits the subroutine unsuccessfully. 
Otherwise Step 1402 determines a transformed root Y l· 
If Y J is invalid, Step 1404 exits the subroutine unsuc­
cessfully. Otherwise Step 1406 calculates the root X and 
its log L and returns successfully. 

On entry to FIG. 15, the parameters CJ, c2, and c3 
describe the cubic equation 

Step 1500 calculates the transform parameters A and B. 
If B is equal to zero, Step 1502 exits the subroutine 
unsuccessfully. Otherwise Step 1504 determines a root 
V of the quadratic equation 

A3 
v2 EB *v EB -- = o. sz 

using the QUAD table. If no such root exists, Step 1504 
produces zero and Step 1506 exits the subroutine unsuc­
cessfully. Otherwise Step 1508 computes U. If U is not 
the cube of some finite field value T, Step 1510 exits the 
subroutine unsuccessfully. Otherwise Step 1512 calcu­
lates T and a roc:it X of the cubic equation. If X is equal 
to zero, Step 1514 exits the subroutine unsuccessfully. 
Otherwise Step 1516 calculates the log L of the root X 
and returns successfully. 

On entry to FIG. 16, the parameters CTJ, CT2, CTJ, and 
CT4 describe the quartic equation 

If CT! is equal to zero, Step 1600 transfers contol to Step 
1610; if CT3 is equal to zero, the quartic equation has 
repeated roots, so Step 1610 exits the subroutine unsuc­
cessfully. Otherwise Step 1612 assigns b;=CT;for i=2 to 
4 and transfers control to Step 1620. If CTJ is not equal to 
zero, Step 1600 transfers control to Step 1602, which 
calculates the numerator and denominator of transform 
parameter b4. If the denominator of b4 is equal to zero, 
Step 1604 exits the subroutine unsuccessfully. Other­
wise Step 1606 calculates the transform parameters b4, 
bJ, and b1 and transfers control to Step 1620. 

Step 1620 sets parameters for and calls the cubic 
solution subroutine of FIG. 15. If this returns unsuccess­
fully, Step 1622 exits the subroutine unsuccessfully. 
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Otherwise Step 1630 assigns Q=X and sets parameters 
. for and calls the quadratic solution subroutine of FIG. 

14. If this returns unsuccessfully, Step 1632 exits the 
subroutine unsuccessfully. Otherwise Step 1640 sets 
parameters for and calls the qulidratic solution subrou- 5 
tine of FIG. 14. If this returns unsuccessfully, Step 1642 
exits the subroutine unsuccessfully, Otherwise if cr1 is 
equal to zero, Step 1650 returns L successfully. Other­
wise Step 1660 computes X. If X is equal to zero, Step 
1662 exits the subroutine unsuccessfully. Otherwise 10 
Step 1670 computes and returns L successfully. 

Referring to FIG. 17, on entry counter k is equal to 
the number of errors found, arrays L(*) and E(*) hold 
the pairs of error locations and values, D is the number 
of symbols in the data buffer and parameter D MN holds 15 
the reverse displacement plus one from the last symbol 
in the data buffer to the last data symbol in the current 
interleave. Step 1700 calculates the forward displace-
ment from the first symbol in the data buffer to the last 
data symbol of the current interleave. Step 1710 fetches 20 

the location L = L(k) of the next error to be corrected. 
If L is less than d-1, the symbol in error is a check 
symbol and need not be corrected, so Step 1720 trans­
fers control to 1760. Otherwise Step 1730 calculates a 
forward displacement F within the data buffer from the 25 

reverse displacement L within the codeword interleave 
based on the data buffer length and number of inter­
leaved codewords. If F is less than zero and therefore 
invalid, Step 1740 exits the correction procedure unsuc- 30 
cessfully. Otherwise Step 1750 corrects the data symbol 
in error with the error value E(k). Step 1760 decrements 
counter k. If counter k is then still greater than zero, 
Step 1770 transfers control back to Step 1710 to correct 
additional errors. Otherwise all errors have been cor- 35 
rected and the correction procedure is· exited success­
fully. 

While the invention herein disclosed has been de­
scribed by means of specific embodiments and applica­
tions thereof, numerous modifications and variations 40 
could be made thereto by those skilled in the art with­
out departing from the spirit and scope of the present 
invention. It is therefore to be understood that within 
the scope of the appended claims, the invention may be 

. ·practised otherwise than as specifically described 45 
herein. 

What is claimed is: 
1. A decoder for an error detection and correction 

system using a Reed-Solomon code or related code of 
degree d- 1 for detection and correction of a plurality 50 
of errors in code words of n symbols comprised of k 
data symbols and d.;.. 1 check symbols, wherein each 
symbol is comprised of m binary bits of information and 

means for accessing said remainder buffer to re­
trieve said remainder, 

means for applying said remainder to index said 
first table means and retrieve said correction 
information, and 

means for applying said correction information to 
said data symbols in said data buffer to correct 
symbols that are in error. 

2. The decoder of claim 1 wherein each element of 
said first table means is comprised of a coefficient of the 
xi term of xL MOD G(x). 

3. The decoder of claim 1 wherein each element of 
said first table means is comprised of a finite field loga­
rithm of a coefficient of the xiterm of xL MOD G(x). 

4. The decoder of claim 1 further comprising a sec­
ond table means comprising a table La,b wherein each 
non-zero element is defined as 

wherein f(i,L) is a coefficient of the xi term of xL MOD 
G(x), L varies from d-1 to 2m -2 and further wherein 
O<a<d-1, O<b<d-1, and a*b. 

5. The decoder of claim 1 further comprising a third 
table means comprising a table La,b wherein each non­
zero element is defined as 

wherein f(i,L) is a coefficient of the xi term of xL MOD 
G(x), LOG [f(b,L)/f(a,L)] is the finite field logarithm of 
f(b,L)/f(a,L), L varies from d-1 to 2m-2 and further 
wherein O<a<d-1, O~b<d-1, and a*b. 

6. The decoder of claim 5 wherein said means for 
applying said remainder comprises: 

means for determining a loi:;ation L of a data symbol 
error; 

means for calculating a value E of said data symbol 
error; and 

means for validating said location Land said value E 
of said data symbol error. 

7. The decoder of claim 6 wherein said means for 
determining said location L comprises: 

means for calculating an index value 

d, k, m, and n are positive integers, and further wherein 
t=INT((d-1)/2)~3, said decoder comprising: 55 wherein Ra and Rb are two of said coefficients Ri; 

data buffer means for storing said k data symbols; means for applying said index value to said third table 
remainder generator means for dividing a codeword means to retrieve said location L of said data sym-

polynomial C(x) by a generator polynomial G(x) of bol error. 
said code and producing a remainder polynomial 8. The decoder of claim 6 wherein said means for 
R(x) having remainder coefficients Ri; 60 determining said location L comprises: 

remainder buffer means for storing said remainder means for calculating L according to 
coefficients Riproduced by said remainder genera-

· tor means; 
first table means comprising a table f(i,L) wherein 

each element is comprised of error correction in- 65 
formation, and wherein O~i<d-1, and d-l<­
L<2m-t; and 

processor means comprising 

[ 

b G'a Rb ] aaEBa *-.-•--Gb Ra 
L =LOG G' R I 

61
_a_._b_ 
G'b Ra 

(13) 
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wherein G/ is a coefficient of the xi term of 

d-3 
G'(x) = 1T (x EB amO+~. 

i=O 

9. The decoder of claim 6 wherein said means for 
calculating said value E comprises: 

5 

means for applying said location L to produce an 
index value for element f(a,L) of said first table 10 
means; 

means for applying said index value to said first table 
means to retrieve said element f(a,L); and 

means for dividing a coefficient Ra by said element 
f(a,L) to produce said value E of said data symbol 15 

error. 
10. The decoder of claim 6 wherein said means for 

validating said location L and said value E comprises 
means for calculating a finite field logarithm of said 

value E; 20 
means for testing a plurality t of said remainder coef­

ficients Riwherein i=l=a and i=l=b, each test compris­
ing a sequential repeated block comprising: 
means for adding said finite field logarithm of said 

error value E to an element f(i,L) of said first 25 

table means to produce a finite field logarithm of 
a test value; 

means for calculating a finite field antilogarithm of 
said finite logarithm of said test value; and 

means for comparing said finite field antilogarithm 30 

. of said test value to said coefficient R,; 
means for counting a number of said tests wherein 

said finite finite field antilogarithm of said test 
value is not equal to said remainder coefficient R,; 35 means for recording an indicium when said number is 
less than two; and 

means responsive to said indicium for using said loca­
tion L and value E to correct said data symbol 
~~ ~ 

11. The decoder of claim 5 wherein said means for 
applying said remainder comprises: 

means for computing parameters 0-1 and 0-2; 
means for determining locations Lt and Lz of two 

data symbol errors from 0-1 and 0-2; 45 
means for calculating values E1 and E2 of said two 

data symbol errors; and 
means for validating said locations and said values of 

said two data symbol errors. 
12. The decoder of claim 11 wherein said means for 50 

computing said parameters 0-1 and 0-2 comprises: 
means computing non-zero parameters D, N 1, and 

N2 according to 

BcdRcRd 60 

D = CatfiaRb EB CacRaRc EB CadRaRd EB CbcRtfic EB CbdRtfid EB 

wherein pre-computed constants Aab. Aae, Aad, 65 
Abe, Abd, Aed> Bab, Bae, Bad, Bbe, Bbd, Bed, Cab, Cae, 

Cad, Cbe, Cbd, and Ced are functions of a, b, c, and d 
given by: 

Aab = (a2a EB a 2°J*(G"c-1*G"d EB G"c*G"d-1). 

Aac = (a2a EB a 2')*(G"b-1*G"d EB G"b*G"d-1). 

Aad = (a2a EB a 21fi*(G"b-1*G"c EB G"b*G"c-1), 

Abd = (a2b EB a 21fi*(G"a-1*G"c EB G"a*G"c-1). 

Acd = (a2e EB a 21fi*(G"a-1*G"b EB G"a*G"b-1). 

Bab= (aa•a2b EB ab*a2")*(G"e-1*G"d EB G"e*G"d-1). 

Bbd = (ab•a2d EB ad•a2°J*(G"a-1*G"e EB G"a*G"e-1). 

Bed-= (a'*a2d EB ad•a2')*(G"a-1*G"b EB G"a*G"b-1). 

Cae = (aa EB a')*(G"b-1*G"d EB G"b*G"d-1), 

Cad= (aa EB aifi*(G"b~1*G"e EB G"b*G"e-1), 

Cbd =(ab EB aifi*(G"a-1*G"c EB G"a*G"e-1), 

Ced= (ae EB atfi*(G"a-1*G"b EB G"a*G"b-1), 

and G;" is a coefficient of the xi term of 

d-4 
G"(x) = rr (x il1 amO+~ 

i=O 

with G _ 1" defined as zero; and 
means for computing o-1=N1/D and o-2=N2/D. 
13. The decoder of claim 11 wherein ti;;4 and se­

lected coefficients Ra, Rb, Re, and Rd of said coefficients 
Ri are each not equal to zero. 

14. The decoder of claim 11 wherein said means for 
calculating said values E1 and E2 of said two data sym­
bol errors comprises: 

means for computing non-zero parameters D, N 1, and 
Ni according to 

D = f(a,L1)*j(b,L1) EB j(b,L1)*j(a.L2); 

N1 = Ra*f(b,L2) EB Rb*j(a,L2), 

N1 = Ra*f{b,L1) EB Rb*f(a.L1); and 

means for computing E1=N1/D and E2=N2/D. 
15. The decoder claim 11 wherein said means for 

validating said locations and said values comprises: 
means for calculating finite field logarithms of said 

values E1 and E2; 
means for testing a plurality t-2 of said remainder 

coefficients R; wherein i=l=a, i=l=b, i=l=c, and i=l=d, 
each test comprising a sequential repeated block 
comprising: 
means for adding said finite field logarithms of said 

values E1 and E2 to respective elements f(i,L1) 
and f(i,L2) of said first table means to produce 
finite field logarithms of test values, 

means for calculating finite field antilogarithms of 
said finite field logarithms of said test values; 
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means for calculating an EXCLUSIVE-OR sum of (12) means for repeating said means (3) through (11) 
said finite field antilogarithms of said test values; for said coefficients Rj wherein j = 2 to d- 2. 
and 20. The decoder of claim 18 wherein said means for 

means for co!Ilparing said EXCLUSIVE-OR sum generating said error locator polynomial comprises: 
of said finite field antilogarithms of said test val- 5 means for computing an nth discrepancy d11 compris-
ues to said coefficient R;; ing sequential repeated blocks, each said block 

means for recording an indicium when each said comprising means for calculating a MODULO 
EXCLUSIVE-OR sum o(said finite field antiloga- 2m-1 sum of said nth discrepancy d11 and a finite 
rithms of said test values is equal to said coefficient field product 'of a coefficient up; and a coefficient 
R,; and 10 S

11
_

1
; 

means responsive to said indicium for using said loca- means using a degree 111 of the nth error locator poly-
tions and values to correct said data symbol errors. nomial as an index into a table of software ad-

16. The decoder of claim 1 wherein said means for dresses of each said block; 
applying said remainder comprises: means for recording an indicium when said parameter 

means for counting a number of non-zero coefficients 15 n is equal to twelve; and 
R;in a plurality oft+ 1 of said coefficients R;in said means responsive to said indicium for generating 
remainder buffer and recording an indicium when coefficients S; for i = 11 to d- 2. 
said number is less than three; and 21. The decoder of claim 18 wherein said means for 

means responsive to said indicium for terminating 
20 

locating said errors comprises: 
error correction successfully. means for recording an indicium when said error 

17. The decoder of cfaim 1 wherein said means for locator polynomial cr(x) is of degree j greater than 
applying said remainder comprises: four; 

means for validating locations Lj and yalues Ej of e means responsive to said indicium for locating one of 
errors comprising means for testing a plurality of 
said remainder coefficients R; according to the 25 said errors comprising evaluating said error locator 

polynomial cr(x) for successive values of L until equations 

e 
R; = j°!;, I o E/f{i,Lj). 

18. The decoder of claim 1 wherein said processor 
means comprises: 

means for computing a syndrome polynomial S(x) 

30 

from said remainder polynomial R(x); 35 
means for generating an error location polynomial 

cr(x) from said syndrome polynomial S(x); 
means responsive to said error locator polynomial 

cr(x) for locating errors; and 
means responsive to said error locator polynomial 40 

cr(x) and said syndrome polynomial S(x) for evalu­
ating errors. 

19. The decoder of claim 18 wherein said means for 
computing said syndrome polynomial comprises: 

(1) means for initializing a coefficient So and all other 45 
coefficients S;ofsaid syndrome polynomial S(x) to 
a coefficient Ro of said remainder polynomial R(x); 

(2) means for initializing a countefj to l; 
(3) means for computing a finite field logarithmic 

partial result comprising a MODULO zm-1 sum 50 
of a finite field logarithm of a non-zero coefficient 
Rjandj*mo; 

(4) means for calculating a finite field antilogarithm of 
said partial result; 

(5) means for EXCLUSIVE-OR adding said finite 55 
field antilogarithm of said partial result to said 
coefficient So; 

(6) means for MODULO 2m-1 adding said counter j 
to said partial result; 

(7) means for calculating a finite field antilogarithm of 60 
said partial result; 

(9) means for EXCLUSIVE-OR adding said finite 
field antilogarithm of said MODULO 2m -1 sum 
and one of said coefficients S,; 

(10) means for repeating said means (6) through (9) 65 
for said coefficients S; wherein i=2 to 
MIN(d-2,11); 

(11) means for incrementing said counter j; and 

A = cJL.O'(x)la-L = 0, 

said means for evaluating comprising a sequence of 
repeated blocks each said block comprising means 
for calculating a finite field product of a-Land an 
EXCLUSIVE-OR sum of said parameter A and a 
coefficient cr;of said error locator polynomial cr(x); 
and 

means for maintaining a software address of a starting 
point for next said evaluation. 

22. The decoder of claim 18 wherein said means for 
locating said errors comprises: 

means for recording an indicium when said error 
locator polynomial cr(x) is of degree j less than or 
equal to four; and 

means responsive to said indicium for locating one of 
said errors comprising: 
means for calculating a finite field logarithm of a 

rqot of a quartic equation in a finite field; 
means for calculating a root and a finite field loga­

rithm of said root of a cubic equation in a finite 
field; 

means for calculating a root and a finite field loga­
rithm of said root of a quadratic equation in a 
finite field; and 

means for calculating a finite field logarithm of a 
root of a linear equation in a finite field. 

23. The decoder of claim 18 wherein said means for 
evaluating said errors comprises: 

means for dividing said error locator polynomial cr(x) 
by (x E&aL) to produce a new error locator polyno­
mial cr(x) and calculating an error value E from 
said syndrome polynomial S(x) and said new error 
locator polynomial cr(x), comprising a single soft­
ware loop comprising: 
(1) means for initializing a counter g= 1, a remain­

der R= 1, a denominator D= 1, and a numerator 
N=cr1; 

(2) means for calculating a MODULO 2m-1 sum 
of said remainder R and a finite field product of 
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a finite field antilogarithm of said location L and 
said remainder R; 

(3) means for storing said MODULO 2m-1 sum as 
said remainder R and as a coefficient erg of said 
error locator polynomial cr(x); 5 

(4) means for calculating a MODULO 2m-1 sum 
of said remainder R and a finite field product of 
a finite field antilogarithm of said location L and 
said denominator D; 

(5) means for storing said MODULO 2m-1 sum as 10 
said denominator D; 

(6) means for calculating a MODULO 2m-1 sum 
of said numerator N and a finite field product of 
said remainder R and a coefficient Sj-g of said 
syndrome polynomial S(x); 15 

(7) means for storing said MODULO 2m-1 sum as 
said numerator N; 

(8) means for incrementing said counter g; and 
(9) means for repeating said means (2) through °(8) 

for values of said counter g up to and including 20 
j; 

means for recording an indicium when R, D, or N is 
equal to zero after the operation of said means (1) 
through (9); 

means responsive to said indicium for terminating 25 
error correction unsuccessfully; · 

means for calculating a finite field quotient of said 
numerator N and said denominator D; 

means for recording a finite field logarithm of said 
finite field quotient as a parameter E'; 30 

means for calculating a finite field product of said 
finite field quotient and a finite field antilogarithm 
of -L*mo; 

means for recording said finite field product as said 
error value E; and 35 

means for adjusting coefficients of said syndrome 
polynomial S(x) comprising a software loop com­
prising: 
(a) means for initializing a counter g=O; 
(b) means for calculating a finite field antilogarithm 40 

of said parameter E'; 
(c) means for calculating a MODULO 2m-1 sum 

of said finite field antilogarithm and a coefficient 
S; of said syndrome polynomial S(x); 

(d) means for storing said MODULO 2m-1 sum as 45 
said coefficient S,; 

(e) means for calculating a MODULO 2m-1 sum 
of said parameter E' and said location L; 

15 
G(x) = 1T (x EB a'"o~~. 

i=O 

mo= 120, and ai are given by 

wherein betai are elements of a finite field generated 
by a GF(2) polynomial 

26. The decoder of claim 1 wherein m=8, t=4, G(x) 
is a GF(256) polynomial 

7 
G(x) = 1T (x EB amO+~. 

i=O 

mo= 124, and ai are given by 
ai = (beta1)88, 
wherein betai are elements of a finite field gener­

ated by a GF(2) polynomial 

27. The decoder of claim 1 wherein m=8, t=2, G(x) 
is a GF(256) polynomial 

3 
G(x) = 1T (x EB amO+~. 

i=O 

mo= 126, and ai are given by 

wherein betai are elements of a finite field gener­
ated by a GF(2) polynomial 

28. In a decoder for an error detection and correction 
system using a Reed-Solomon code or related code of 
degree d-1 for detection and correction of a plurality 
of errors in codewords of n symbols comprised of k data (f) means for storing said MODULO 2m-1 sum as 

said parameter E'; 
(g) means for incrementing said counter g; and 
(h) means for repeating said means (b) through (g) 

for values of said counter g up to and including 
j. 

50 symbols and d-1 check symbols, wherein each symbol 
is comprised of m binary bits of information and d, k, m, 
and n are positive integers, and further wherein 
t=INT((d-1)12)~3, an error decoding method com-

24. The decoder of claim 1 wherein m=8, t=8, G(x) 55 
is a GF(256) polynomial 

15 
G(x) = 1T (x EB a~, 

i=O 

and ai are elements of a finite field generated by a GF(2) 
polynomial 

25. The decoder: of claim 1 wherein m=8, t=8, G(x) 
is a GF(256) polynomial 

60 

65 

prising the steps of: 
storing said k data symbols in a data buffer; 
generating a remainder polynomial R(x) having re­

mainder coefficients R; by dividing a codeword 
polynomial C(x) by a generator polynomial G(x) of 
said code; 

storing said remainder coefficients in a remainder 
buffer; 

applying said remainder coefficients to index a first 
table f(i,L), each element of said table being com­
prised of a coefficient of the xi term of xL MOD 
G(x) wherein L varies from d-1 to 2m-2 and i 
varies from 0 to d-2, to produce correction infor-
ma ti on; 
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applying said correction information to said data 
symbols in said data buffer to correct symbols that 
are in error. 

29. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises the 
steps of: 

dividing a coefficient Ra by said element f(a,L) to 
produce said value E of said data symbol error. 

34. The method of claim 30 wherein said step of vali­
dating said location L and said value E comprises the 

5 steps of: 

counting a number of non-zero coefficients Ri in a 
plurality t + 2 of said coefficients Rdn said remain­
der buffer; and 

terminating error correction successfully when said 10 
number is less than three. 

30. The method of claim 28 wherein said step of ap­
plying- said remainder coefficients further comprises the 
steps of: 

determining a location L of a data symbol error; 
calculating a value E of said data ~ymbol error; and 
validating said location L and said value E of said 

data symbol error. 
31. The method of claim 30 wherein said step of de­

termining said location L comprises the steps of: 
· calculating an index value from two coefficients Ra 

and Rb of said coefficients R;: 

15 

20 

calculating a finite field logarithm of said value E; 
testing a plurality t of said remainder coefficients Ri 

wherein i:;z!=a and i:;z!=b, each test comprising a se­
quential repeated block comprising the steps of: 
adding said finite field logarithm of said error value 

E to an element f(i,L) of said first table to pro-
duce a finite field logarithm of a test value; 

calculating a finite field antilogarithm of said finite 
field logarithm of said test value; and 

comparing said finite field antilogarithm of said test 
value to said coefficient R,~ • 

counting a number of said tests wherein said finite 
finite field antilogarithm of said test value is not 
equal to said remainder coefficient R;; and 

correcting said data symbol error using said location 
L and said value E when said number is less than 
two. 

LOG [ ~! } and 

35. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises the 

25 steps of: 

applying said index value to a second table La,b 
wherein each non-zero element is given by 

30 

for L=d-1 to 2m- t to retrieve said location L of 35 
said data symbol error. 

32. The method of claim 30 wherein said step of de- 45 

termining said location L comprises calculating L ac­
cording to 

. [ b Ga' Rb ] 

(13) 50 

aa E0 a • --, • --
Gb Ra 

L=LOG G' R 
1 $-a_._b_ 

Gb' Ra 

wherein G/ is a coefficient of the xi term of 

d-3 
G'(x) = 1T (x $ amO+~. 

i=O 

33. The method of claim 30 wherein said step of cal­
culating said value E comprises the steps of: 

55 

60 

using said location L and a number a wherein 
O~a<d-1 to produce an index value for an ele- 65 
ment f(a,L) of said first table; 

retrieving said element f(a,L) of said first table refer­
enced by said index value; 

computing parameters 0:1 and 0-2; 
determining locations L1 and L2 of two data symbol 

errors from 0-1 and 0-2; 
calculating values E1 and E2 of said two data symbol 

errors; and 
validating said locations and said values of said two 

data symbol errors. 
36. The method of claim 35 wherein said step of com­

puting said parameters 0-1 and 0-2 comprises the steps of: 
computing non-zero parameters D, N1, and N2 ac­

cording to 

wherein pre-computed constants Aab. Aae. Aad. 
Abe. Abd, Aed. Bab, Bae. Bad. Bbe. Bbd, Bed, Cab. 
Cae. Cad. Che. Cbd. and Ced are functions of a, b, 
c, and d given by: 

.Aab = (a2a $ a 2h) * (G"e-1 * G"d $ G"e * G"d-1), 

Aae = (a2a $ a 2C) * (G"b-1 * G"d $ G"b * G"d-1), 

Aad = (a2a $ a 2"l * (G"b-1 * G"e $ G"b * G"e-1), 

Abe= (a2b $ a 2C) * (G"a-1 * G"d $ G"a • G"d-1), 

Abd = (a2b $ a 2"'J * (G"a-1 * G"e $ G"a * G"e-1), 

Aed = (a2e $ a 2"l * (G"a-1 * G"b $ G"a • G"b-1), 

Bab= (aa * a 2b $ab• a 20) * (G"e-1 * G"d $ G"e * G"d-1). 

Bae= (aa • a 2e $ ae • a 20) * (G"b-1 * G"d $ G"b • G"d-1), 

Bad= (aa * a 2d $ad* a 20) • (G"b-1 * G"e $ G"b • G"e-1), 

Bbe = (ab* a 2e $ ae • a2~ • (G"a-1 * G"d $ G"a * G"d-1). 

Bbd =(ab* a 2d $ad* a 2h) • (G"a-1 * 'G"e $ G"a • G"e-1). 

Bed= (ae • a 2d $ad• a 2C) • (G"a-1 • G"b $ G"a • G"b-1), 

Cab= (aa $ah)• (G"e-1 • G"d $ G"e • G"d-1), 
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-continued 

Cac = (aa EB a')• (G"b-1 * G"d EB G"b * G"d-1), 

Cad= (aa EB adj• (G"b-1 • G"c EB G"b * G"c-1), 5 

Cbc =(ab EB a')• (G"a-1 • G"d EB G"a • G"d-1), 

Cbd =(ab EB adj• (G"a-1 • G"c EB G"a • G"c-1), 

e 
R; = . ~ o E/fiJ,Lj). 

J=I 

41. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises the 
steps of: 

computing a syndrome polynomial S(x) from said 

Ced= (ac EB adj• (G"a-1 • G"b EB G"a * G"b-1), 10 
remainder polynomial R(x); 

generating an error locator polynomial o-(x) from 
said syndrome polynomial S(x); and G;" is a coefficient of the xi term of 

locating errors using said error locator polynomial 
o-(x); and 

d-4 
G"(x) = 7r (x EB amO+~ 

i=O 

15 evaluating errors using said error locator polynomial 

with G -1" defined as zero; and computing 
o-1=N1/D and o-2=Ni/D. 

20 37. The method of claim 35 wherein t > 4 and selected · 
coefficients Ra, Rb, Re, and Rd of said coefficients R; are 
each not equal to zero. 

38. The method of claim 35 wherein said step of cal­
culating said values E1 and E1 of said two data symbol 25 
errors comprises the steps of: 

computing non-zero parameters D, N 1, and N1 ac­
cording to 

D = j(a,L1)*j(b,L2) EB f(b,L1)*j(a,L2); 

N1· = Ra'f(b,Lz) EB Rb*fia,Lz), 

30 

o-(x) and said syndrome polynomial S(x). 
42. The method of claim 41 wherein said step of com­

puting said syndrome polynomial comprises the steps 
of: 

( 1) initializing a coefficient So and all other coeffici­
ents S; of said syndrome polynomial S(x) to a coef­
ficient Ro of said remainder polynomial R(x); 

(2) initializing a counter j to l; 
(3) computing a finite fie.Id logarithmic partial result 

comprising a MODULO 1m - 1 sum of a finite field 
logarithm of a non-zero coefficient Rj and j*mo; 

(4) calculating a finite field antilogarithm of said par­
tial result; 

(5) EXCLUSIVE-OR adding said finite field antilog­
arithm of said partial result to said coefficient So; 

(6) MODULO 2m-1 adding said counter j to said 
partial result; 

(7) calculating a finite field antilogarithm of said par­
tial result; 

wherein Ra, Rb, Re, and Rdare selected coefficients 35 (9) EXCLUSIVE-OR adding said finite field antilog-
arithm of said MODULO 2m-1 sum and one of 

of said coefficients R,; and computing E1=N1/D said coefficients S,; 

and E1=N2/D. (10) repeating said steps (6) through (9) for said coef-
39. The method of claim 35 wherein said step of vali- ficients S; wherein i=2 to MIN(d-2,11); 

dating said locations and said values of said two data 40 (ll) incrementing said counter j; and 
symbol errors comprises the steps of: (1 2) repeating said steps (3) through (11) for said 

calculating finite field logarithms of said values E1 coefficients Rj wherein j=2 to d-2. 
and Ez; 43. The method of claim 41 wherein said step of gen-

testing a plurality t-2 of said remainder coefficients erating said error locator polynomial comprises the 
R; wherein i*a, i*b, i*c, and i*d, and further 45 steps of: 
wherein each test comprises a sequential repeated computing an nth discrepancy dn using sequential 
block comprising the steps of: repeated blocks, each said block comprising calcu-
adding said finite field logarithms of said values E1 lating a MODULO 2m-1 sum of said nth discrep-

and Ez to respective elements f(i,L1) and f(i,L2) ancy dn and finite field product of a coefficient O"pi 

of said first table to produce finite field loga- 50 and a coefficient Sn-i; 
rithms of test values, using a degree ln of an nth error locator polynomial 

calculating finite field antilogarithms of said finite o-(x) as an index into a table of software addresses 
field logarithms of said test values; of each said block; 

calculating an EXCLUSIVE-OR sum of said finite 55 generating coefficients S;for i= 11 to d-2 when said 
field antilogarithms of said test values; parameter is equal to twelve. 

comparing said EXCLUSIVE-OR sum of said 44. The method of claim 41 wherein said step of lo-
finite field antilogarithms of said test values to eating said errors when said error locator polynomial 
said coefficient R,; o-(x) is of degree j greater than four comprises the steps 

correcting said two data symbol errors using said 60 of: 
locations and values when each said EXCLU- evaluating said error locator polynomial o-(x) for 
SIVE-OR sum of said finite field antilogarithms successive values of L until 
of said test values is equal to said coefficient R;. 

40. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises 65 
validating locations Lj and values Ej of a plurality e of 
symbol errors by testfog a plurality of said remainder 
coefficients R; according to the equations 

A = aJL•cr(x) la-L = 0, 

said step of evaluating comprising a sequence of 
repeated blocks, each said block comprising calcu­
lating a finite field product of a-Land an EXCLU-
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SIVE-OR sum of said parameter A and a coeffici­
ent CT; of said error locator polynomial CT(x); and 

maintaining a software address of a starting point for 
next said evaluation. 

45. The method of claim 41 wherein said step of lo- 5 
eating said errors when said error locator polynomial 
CT(x) is of degree j less than or equal to four comprises 
locating one of said errors using one of the steps of: 

when j is equal to four, calculating a finite field loga­
rithm of a root of a quartic equation in a finite field; 10 

when j is equal to three, calculating a root and a finite 
field logarithm of said root of a cubic equation in a 
finite field; 

when j is equal to two, calculating a root and a finite 
field logarithm of said root of a quadratic equation 15 
in a finite field; or • 

when j is equal to one, calculating a finite field loga­
rithm of a root of a linear equation in a finite field. 

46. The method of claim 41 wherein said step of eval-
uating said errors comprises the steps of: 20 

dividing said error locator polynomial CT(x) by 
(x$aL) to produce a new error locator polynomial 
S(x) and calculating an error value E from said 
syndrome polynomial S(x) and said new error loca­
tor polynomial CT(x), all in a single software loop 25 
comprising steps of: 
(1) initializing a counter g= 1, a remainder R= 1, a 

denominator D = 1, and a numerator N = CT1; 

(2) calculating a MODULO 2m-1 sum of said 
remainder R and a finite field product of a finite 30 
field antilogarithm of said location L and said 
remainder R; 

(3) storing said MODULO 2m -1 sum as said re­
mainder R and as a coefficient CT g of said error 
locator polynomial CT(x); 35 

(4) calculating a MODULO 2m-1 sum of said 
remainder R and a finite field product of a finite 
field antilogarithm of said location L and said 
denominator D; 

(5) storing said MODULO 2m-1 sum as said de- 40 
nominator D; 

(6) calculating a MODULO 2m-1 sum of said 
numerator N and a finite field product of said 
remainder R and a coefficient Sj-g of said syn-
drome polynomial S(x); 45 

(7) storing said MODULO 2m - 1 sum as said nu­
merator N; 

(8) incrementing said counter g; and 
(9) repeating said steps (2) through (8) for values of 

said counter g up to and including j; 50 
terminating error correction unsuccessfully when R, 

D, or N is equal to zero after completion of said 
steps (1) through (9); 

calculating a finite field quotient of said numerator N 
and said denominator D; 55 

recording said a finite field logarithm of said finite 
field quotient as a parameter E'; 

calculating a finite field product of said finite field 
quotient and a finite field antilogarithm of -L*mo; 

recording said finite field product as said error value 60 
E; and 

adjusting coefficients of said syndrome polynomial 
S(x) using steps of: 
(a) initializing counter g==O; 

65 

(b) calculating a finite field antilogarithm of said 
parameter E'; 

(c) calculating a MODULO 2m-1 sum of said 
finite field antilogarithm and a coefficient S; of 
said syndrome polynomial S(x); 

(d) storing said MODULO 2m-1 sum as said coef­
ficient S,; 

(e) calculating a MODULO 2m -1 sum of said 
parameter E' and said location L; 

(f) storing said MODULO 2m -1 sum as said pa­
rameter E'; 

(g) incrementing said counter g; and 
(h) repeating said steps (b) through (g) for values of 

said counter g up to and including j. 
47. In a decoder for an error detection and correction 

system using a Reed-Solomon code or related code of 
degree d-1 for detection and correction of a plurality 
of errors wherein a message block is comprised of N 
interleaved codewords of said code wherein codeword 
i is comprised of n;-(d-1) data symbols and d-1 
check symbols comprising a total of D data symbols 
stored in a data buffer means and N*(d-1) check sym­
bols stored in a remainder buffer means where d, i, N, 
and n;are positive integers, and further wherein the first 
check symbol in said remainder buffer means is remain­
der coefficient Rd-2 of codeword D MOD N and the 
last symbol in said remainder buffer means is remainder 
coefficient Roof codeword (D-1) MOD N, with other 
coefficients interleaved between, a method for access­
ing said data buffer means and said remainder buffer 
means for detection and correction of said errors com­
prising the steps of: 

(1) initializing a parameter DMN equal to said num­
ber of data symbols D MODULO said number of 
interleaves N and initializing a counter I to zero; 

(2) if said parameter DMN is equal to zero, resetting 
said parameter DMN to said number of interleaves 
N· 

' (3) computing a forward displacement within said 
remainder buffer means of coefficient Ro of code­
word I by calculating N*(d-1)-DMN; 

(4) computing forward displacements within said 
remainder buffer means of other coefficients R; of 
said codeword I by repeated subtraction of said 
number of interleaves N from said forward dis­
placement of said coefficient Ro of said codeword 
I; 

(5) determining location(s) L; and value(s) E; of er­
ror(s) in said codeword I; 

(6) computing a forward displacement within said 
data buffer means of a last data symbol within said 
codeword I as Fmax=d-DMN; 

(7) computing a forward displacement widrin said 
data buffer means of an error at a location L; > d- l 
as F;=Fmax-N*L,; 

(8) correcting said error at said forward displacement 
F; using error value E,; 

(9) repeating said steps (7) and (8) for all errors in said 
codeword I; 

(10) decrementing said parameter DMN and incre­
menting said counter I; and 

(11) repeating said steps (2) through (10) for values of 
said counter I up to and including N - 1. 

* * * * * 


