
United States Patent [19J

Glover et al.

[54] FAST REMAINDER DECODING FOR A
REED-SOLOMON CODE

[75] Inventors: Neal Glover, Broomfield; Trent
Dudley, Littleton, both of Colo.

[73] Assignee: Data Systems Technology Corp.,
Broomfield, Colo.

[21] Appl. No.: 12,824

[22] Filed: Feb. 10, 1987

[51] Int. Cl,4 .. G06F 11/10
[52] U.S. Cl .. 371/37; 371/39
[58] Field of Search 371/37, 38, 39, 40

[56] References Cited

U.S. PATENT DOCUMENTS

4,397,022 8/1983 Weng 371/37
4,468,769 8/1984 Koga 371/37
4,509,172 4/1985 Chen 371/38
4,644,543 2/1987 .Davis 371/37

104

[11] Patent Number:

[45] Date of Patent:

4,839,896
Jun. 13, 1989

Primary Examiner-Michael R. Fleming
Attorney, Agent, or Firm-James R. Young

[57] ABSTRACT

Apparatus and methods are disclosed for providing fast
decoding of Reed-Solomon and related codes. Cases of
one and two data symbol errors are decoded directly
from the remainder using a large pre-computed. table
without calculating syndromes. Techniques for decod­
ing cases of more than two errors are given where an
optimized Chien search is used when more than four
errors remain; when four or fewer errors remain, the
Chien search is eliminated in favor of locating an error
by direct solution of the error locator polynomial. The
error locator and syndrome polynomials are adjusted
after each error is found, and the error evaluator poly­
nomial need not be computed.

47 Claims, 21 Drawing Sheets

100

Oolo Conlroller u
106 110)

Do lo Decoder
Q)

0
Q)

Buffer ond u Remoinder
Q)

. o· Ol
L 103 lo-

105 Generolor 0
Q) L L ..., Q) a
J

..., ...,
0. c (fl

E
a 1 07

Q) c
u ..., u a

Ul
a Remoinder) ...,

..., I
Buff er

Q) 0
Ul 0 E
a L

I 0
lo-
c

U.S. Patent Jun.13,1989

..

l@::ir/\ao a60..Jo1s

ISl
ISl

(

"'I"
ISl

cb ~ ISl - --w

_[[a::io3:-ia1u1

ISl - I/ ' L L
OJ 0

L L lJ ..iJ

OJ OJ c 0
........ lJ L
........ _{ 0 0 Q)
0 ULJ E C
LISl QJCOJ QJ

..iJ - 0 00::'.: (_')
c-
0

u r---
l.!l L

0 ~ ISl 0
..iJ CD - U)
0 ISl L <.._ U)

o- OJ OJ
(0 ~ kc- u

..iJ ~ 0
0 J L

0 0) 0....

~J
/

~ : a::i~ 3...1a1u I
/f'

CD

~ -
1- ISl -w

Sheet 1of21

uor1ow..JOJU!

8::1 ! A8Q J

~

('i- L
ISl OJ

~
-0
C L

.... OJ

~
o~
E~
OJ J

a:::: 0)

1soH·]

(...1a1ndwoJ 1soH

4,839,896

•

LL

U.S. Patent Jun. 13, 1989 Sheet 2of21

Lll l= L
250 E(l l=E

K=l

ENTER

202 Bol:..h -:j:.

L=L0,1 (LOG [R1 /R0J]

210

212 1 = i + l

FIG. 2

Figure 17 Ftgure 3

4,839,896

U.S. Patent Jun. 13, 1989 Sheet 3of21

FIG. 2A

Figure 2
Sl:.ep 206

Figure 2
Si:.ep 250

4,839,896

Figure 3

U.S. Patent Jun.13,1989 Sheet 4of21

FIG.

ENTER

302

Co.mpule p. ·=R· *R· tor ijES
l J l J

where.S=(01,02,03, 12, 13,23}

304 O= ~ C· · *P· · . ES l J l J
lJ

=

308

LOGO = LOG[01

Ni= ~A· ·*P· · i ES lJ lJ

=

312

LOGS I G l =LOG[N1] -LOGO

N2= ~ B· · *P· ·
i ES 1 J 1 J

=

316

LOGS I G2 =LOG[N2] -LOGO

I = 0

3 Figure 5

4,839,896

Figure 8

U.S. Patent Jun.13,1989 Sheet 5of21

FIG.

ENTER
400

Counl non-zero Ri for 1=0 lo l•I

>---_,, Successf" u l
Exit.

=

406

Compule P1j=R1•Rj for ijES where

S=(T·3&T·2, T·3&T· I, T·3&T, T·2&T· J, T·2&T, T· I &T }

408 D= -.:::;.., C· · ,..p. ·
iTeS lJ lJ

412

LOGO = LOG(0]

Nt = ""::::::-. A· • llfP· • i~S iJ iJ

=

Figure 7

416

4

LOGSIG !=LOG[N1]-LOGO

N2 = '"50 B · · llEP • • I:itS 1J 1J

=

LOGS I G2 =LOG[N2 l -LOGO

I = T-3

Figure 5

4,839,896

Figure 8

U.S. Patent Jun.13,1989

Ent.er
500

c=~LOGSIG2-2•LOGSIGI

Y1 = OUAO(CI

=

504

Lt =LOG(Yt)•LOGSIGI

508

Y2 = YI • l

L2=LOG(Y2)•LOGSIGI

>

Figure 7

FIG. 5

Sheet 6of21

514

O=fl I , L l I * fl I • I , L2 I •

fl I• I ,L 1 I • fl I ,L2 l

E1 =NJ / 0

E2 = N2 / 0

Figure 6

4,839,896

Figure 8

U.S. Patent Jun. 13, 1989 Sheet 7of21

FIG.6

600

620

ENTER

1 = 4

1 = 0

J = 1:..-2

1 = 1 + 1
J = J - l

L(l l=L1 Ell l=E1
Ll2l=L2 El2l=E2

k = 2

Figure 17

4,839,896

Figure 8

U.S. Patent Jun.13,1989

Enler

LI l l=L1 EC I l=E1

Ll21=L2 E121=E2

k = 2

Sheet 8of21

Figure 17 Figure 8

FIG. 6A

4,839,896

U.S. Patent Jun. 13, 1989

71212

>

L(l l= L
718 E(ll=E

K=l

Figure 17

ENTER

i = l::.
708 J=l::.-1

k=2

FIG.

Sheet 9of21 4,839,896

G't. Rt.•l)] 1e--
G 't. • I Rl.

7

Figure 8

US. Patent Jun.13,1989 Sheet 10 of 21

800

2i:.- I
for

1=0

820

822

824

8XX

Ent.er

Si = R0

j=I .J x I\ = "0

k = LOG! R j l+.Jx/\

S0 = S0e <Xk

k = k + j

52 = 52 $ <Xk

k = k + j

5/\[N12i:.· l, I I 1=S/\lN12i:.· l, I I J$<Xk

850
j = j + I

.JX/\ = .JX/\ + /\0

860 <

FIG. 8
Figure 9

4,839,896

U.S. Patent Jun.13,1989 Sheet 11 of 21

910

952

Ent.er
900

n=0 k=0 dk=I ln=0 lk=0
<rlxl=l <rplxl=l <rk!xl=I

Temp=ln ln=lk+n·k lk=Temp

O'k C x l=<T PC x l dk =dn k =n

958 <7 Pl x l = <7! x I

960

FIG. 9
)

Unsucce•sful
Exit.

Fiour-e 11

4,839,896

U.S. Patent Jun.13,1989

Figure 9
Slep 9121121

92121

FIG. 9A

Sheet 12 of 21

'

Figure 9
Slep 95121

4,839,896

U.S. Patent Jun.13,1989 Sheet 13 of 21

1050

11211210
Ent.er

j = I
J x ,... = /\0 + 12

k = LOG(R j I + Jxl\

512 = 512 $ O(k

j = j + 1

Jx/\ = Jx/\ + /\0 + 12

< '

Exl t.

FIG. 10

4,839,896

U.S. Patent Jun.13,1989

Enler

1100 = 121

113121

j = ln

k = 0

A = e1: I J crl x JI .
oc'

116121

117121

118121

Figure 12

119121

Unsuccessful
Exil

F I G. l l

Sheet 14 of 21 4,839,896

Figure 13

U.S. Patent Jun.13,1989

Figure II
51:.ep 111121

PTR=AORI I 141211+ It.· jJ:1K

Figure II
St.ep 118121

FIG. l l A

A

A

Sheet 15 of 21

1140

= I A $ <T1:_ l • G(l

1142

= IA $ <Tt.-!l • G(i

L = ·i
PTR = PTR + K

Figure 12

4,839,896

Figure 11
St.ep I 170

U.S. Patent Jun. 13, 1989 Sheet 16 of 21

1202

for
g=I
lo j

1206

1210

for
g=0
lo j

Ent.er

k =k + 1
j=j • l

LC k l=L
D=l N=Sj

- "" - • <XL (1'Q- lj'Q "'vg•)

0 = 0 • o<L e u 9
N =Ne ug • Sj·g

E" = N/0
Elk l=E • •o< ·L/'\0

S = S e E • • <X gL
Q Q

Figure 13

FIG. 12

Unsucces;sful
Exit.

Figure 17

4,839,896

U.S. Patent Jun.13,1989

Enler

1304

c1=c:r1
c2=c:r2
c =c:r

1306

1310

L=LOG[c:r1l

FIG.

Sheet 17 of 21 4,839,896

Figure 15

Figure 14

Figure 12

I 3

U.S. Patent Jun. 13, 1989

ENTER

1402 .---.......___.___ _ __,

Y1 =QUAD[~]

1406

X=Y1 * eJi
L=LOG[X]

Successful
Rel.urn

FIG. 14

Sheet 18 of 21

Unsuccessful
Rel.urn

4,839,896

U.S. Patent Jun. 13, 1989

1500 A = C1 • C2
B = CJ • C2eC3

=

151214

V = OUAO[A3 / B2 J

1514

1516

L=LOG[X]

Successful
Rel urn

FIG. 15

Sheet 19 of 21

Un$UCCe$$ful
Rel urn

4,839,896

U.S. Patent Jun. 13,1989

Enl.er

=

1612

b4 = er 4

b3 = cr3

b2 = cr2

1620

c1=0 C2=b2

C3=b3 C4=b4

1622

Succ•••

1630 Q=X
C2 = b4

C1 = cr3 /Q.

1632

Succeaa

1640 s = x
C2 = Q

Cl = s

1642

FIG.

Sheet 20 of 21 4,839,896

1602

N = crf

0 = crl2 'l!cr4•cr1 'l!cr2•cr3•cr32

=

1606

b4 = ~
b3=b4 ,. "'I

b2 = b4•[(cr1 •cr3~«1cr2)

1660

z = x

x =("'3)t • l.
cr I Z

=

L = LOG(XI

Successful
Rel:. urn

Unsuccessful
Rel.urn

16

U.S. Patent Jun.13,1989 Sheet 21 of 21 4,839,896

1700

Ent.er

Fmox = 0-0/\N

L=Ukl 1710

1720

1730

F = Fmox- N•L

1750

>

<

1760

K = K - I

1770

Successful
Exit.

FIG.

Unsuccessful
Exil

17

4,839,896
2 1

FAST REMAINDER DECODING FQ_R A
REED-SOLOMON CODE

nomial without generating the error evaluator polyno­
mial.

Another object is to provide improved methods to
decrease the correction time required for cases of more

BACKGROUND OF THE INVENTION 5 than two errors by reducing the degree of the error
locator polynomial and adjusting the syndrome polyno­
mial as each successive error is located.

This invention relates to information storage and
retrieval systems, and more particularly to means for
decoding codewords for use in error detection and
correction in such systems. Even more particularly, this

10 invention relates to Reed-Solomon codes and related
codes, and to improved methods for the decoding of
such codes.

In a typical decoder, the coefficients of the syndrome
polynomial, called frequency-domain syndromes, are

15
first calculated by dividing the received codeword by
each factor of the code generator polynomial. This
process is hardware-intensive and/or time-consuming,
depending on implementation.

It is possible to efficiently generate the coefficients of
20

the remainder polynomial, called time-domain syn­
dromes, by dividing the received codeword by the
entire code generator polynomial. The time-domain
syndromes contain the same information as the frequen-
cy-domain syndromes. 25

Methods of decoding using frequency-domain syn­
dromes are" known in the prior art, for example see
Chapter 3 Practical Error Correction Design for Engi­
neers by Neal Glover and Chapter 5 of Error-Correc­
tion Coding for Digital Communications by Clark and 30
Cain. For cases of one error, two frequency-domain
syndromes can be used to generate an error location and
value, which are then checked with other frequency­
domain syndromes using a "Newton's Identities" test. A
similar procedure starting with four frequency-domain 35
syndromes may be used to decode cases of two errors.
The calculation of frequency-domain syndromes adds
significant additional hardware and/or time delay to
decoding of cases of one and two errors.

For cases of more than two errors, the frequency- 40
domain syndromes are typically used to iteratively gen­
erate an error locator polynomial and an error evaluator
polynomial. The error locator polynomial is typically
used in a "Chien" search to locate the symbols in error,
and the error evaluator polynomial is used to calculate 45
the values of the symbol errors. This process is ineffi­
cient when used to locate and evaluate errors in cases of
less than five errors.

It is thus apparent that there is a need in the art for
improved decoding methods for Reed-Solomon codes 50
and related codes.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention
to provide improved decoding methods which decrease 55
the correction time required for cases of one and two
errors by decoding directly from time-domain syn­
dromes without generating frequency-domain syn­
dromes.

Another object is to provide improved methods to 60
decrease the correction time required for cases of more
than two errors by eliminating the Chien search when
the number of yet-to-be-located errors is or has been
reduced to four or less.

Another object is to provide improved methods to 65
decrease the correction time required for cases of more
than two errors by calculating error values directly
from the syndrome polynomial and error locator poly-

Another object is to provide improved methods to
decrease the correction time required for interleaved
codewords of variable lengths by avoiding multiplica­
tions by maintaining a parameter for computing point-
ers to data symbols and remainder coefficients of the
first such interleaved codeword and adjusting it as each
successive codeword is corrected.

The above and other objects are attained by the pres­
ent invention which comprises means and methods for
fast decoding of Reed-Solomon and related codes.
Cases of one and two symbols in error are decoded
directly from the read remainder, without computing
syndromes. The location of a single symbol in error is
quickly determined using the result of a single finite
field division as an index into a small precomputed ta­
ble. Using another larger precomputed table, the value
is calculated and the validity of the location and value
are confirmed. The larger precomputed table is also
used to calculate and validate the locations and values
of two symbols in error. Fast decoding of cases of more
than two symbols in error is accomplished by employ­
ing direct solution of an error locator polynomial -to
locate errors when four or fewer errors remain to be
located and by employing an optimized Chien search to
locate errors when more than four errors remain to be
located. The invention further simplifies and speeds the
decoding of all cases of more than two symbols in error
by eliminating the need to compute an error evaluator
polynomial and by adjusting the error locator and syn­
drome polynomials after each error is found.

The above and other objects, features, and advan­
tages of the instant invention will be more apparent
from the following more particular description thereof
present in conjunction with the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the environment in which the instant
invention is used.

FIG. 2 illustrates the steps required to decode Cases
B, C.l, and C.2.

FIG. 2A illustrates the steps required to validate the
error location and value for Cases B, C.1, and C.2 using
sequential repeated blocks.

FIG. 3 illustrates the steps required to calculate 0-1

and 0-2 for Case D using Ro through RJ.
FIG. 4 illustrates the steps required .to decode Case A

and calculate 0-1 and 0-2 for Case Dusing Rr.3 to Rr.
FIG. 5 illustrates the steps required to calculate the

error locations and values for Case D.
FIG. 6 illustrates the steps required to validate the

error locations and values for Case D.
FIG. 6A illustrates the steps required to validate the

error locations and values for Case D using sequential
repeated blocks.

FIG. 7 illustrates the steps required to decode Case
C.3.

FIG. 8 illustrates the steps required to calculate the
coefficients of S(x) required to decode cases of three
and four errors for Case E.

4,839,896
3

FIG. 9 illustrates the steps required to iteratively
generate the error locator polynomial for Case E.

FIG. 9A illustrates the steps required to calculate the
nth discrepancy dn using sequential repeated blocks.

FIG. 10 illustrates the steps required to calculate the
additional coefficients of S(x) required to decode cases
of more than four errors for Case E.

4
Note that for non-zero x, LOG [1/x]= -LOG
[x]=LOG [x] XOR 2m- t.

In a decoder for an error detection and correction
system using a Reed-Solomon or related code of dis-

5 tance d for the detection and correction of a plurality of
errors in codewords of n symbols comprised of
n-(d-1) data symbols and d-1 check symbols, each
symbol an element ofGF(2m), a codeword C(x) is given
by

FIG. 11 illustrates the steps required to locate and
evaluate errors by searching for roots of o-(x) for Case
E. 10

C(x)=(x3- l •J(x))E!)((xd- l •J(x)) MOD G(x))
FIG. llA illustrates the modifications to FIG. 11

required to evaluate a-ji*o-(x) at x=aiusing sequential
repeated blocks.

FIG. 12 illustrates the steps required to divide o-(x)
by (xEJ;laL), compute the error value E, and adjust the
coefficients of S(x) for Case E.

FIG. 13 illustrates the steps required to transfer con­
trol to the appropriate special error location subroutine

(l)

where I(x) is an information polynomial whose coeffici­
ents are the n -(d- 1) data symbols and G(x) is the code

15 generator polymomial

d-2 (2)

for Case E. 2o
FIG. 14 illustrates the steps required to solve for a

root X, and its log L, of a quadratic equation in a finite
field.

G(x) = -rr (x El) amO+~
i=O

FIG. 15 illustrates the steps required to solve for a
root X, and.its log L, of a cubic equation in a finite field. 25

FIG. 16 illustrates the steps required to solve for the
log L of one of the four roots of a quartic equation in a
finite field.

FIG. 17 illustrates the steps required to correct errors
in interleaved codewords. 30

DESCRIPTION OF THE PREFERRED
EMBODIMENT

where mo is a parameter of the code. A code of distance
d can be used to correct all cases of t=INT((d-1)/2)
errors ·without pointers and is guaranteed to detect all
cases of INT(d/2) errors.

When e errors occur, the received codeword C'(x)
consists of the EXCLUSIVE-OR sum of a transmitted
codeword C(x) and the error polynomial E(x):

C'(x)=C(x)E!)E(x) (3)

where
E(x)=E1 •xLlEJ) ... Ee•xLe (4)

The following description is of the best presently
contemplated mode of carrying out the instant inven­
tion. This description is not to be taken in a limiting
sense but is made merely for the purpose of describing
the general principles of the invention. The scope of the
invention should be determined with reference to the

L; and E; are the locations and values, respectively, of
35 the e symbol errors.

The remainder

(5)

appended claims. 40 is given by

In a finite field GF(2m), elements are composed of m
binary bits and addition (Etl) consists of MODULO 2
summation of corresponding bits; this is equivalent to
performing the bit-wise EXCLUSIVE-OR sum of op-

R(x)=C'(x) MOD G(x) (6)

erands: 45

that is, the remainder generated by dividing the re­
ceived codeword C'(x) by the code generator polyno­
mial G(x).

By equation (1),

xEJ)y=xXORy. C(x) MOD G(x)=O (7)

Note that subtraction is equivalent to addition since the so from equation (3),
MODULO 2 difference of bits is the same as their 50
MODULO 2 sum. R(x)=E(x) MOD G(x) (8)

Multiplication (*) may be implemented using finite
field logarithm and antilogarithm tables wherein LOG
[a']=i and A LOG [i]=ai:

x•y = 0 if x = 0 or y = 0

x*y = ALOG[LOG[x] + LOG[y]] if x =!= 0 and y =!= 0

For codes wherein df;6, the time required to decode
cases of one and two errors may be reduced by decod-

55 ing directly from the remainder by the use of a large
pre-computed table f(i,L). The value of each element of
f(i,L) is the coefficient of the xi term of the remainder
generated when xL is divided by G(x), that is,

where the addition of the finite field logarithms is per- 60
formed MODULO 2m- t. LOG [O] is undefined.

f{d-2,L)*xd-2E!) ... E!)j{O,L)=xL MOD G(x) (9)

Division (/) may be implemented similarly:

x/y is undefined if y = O

x/y = 0 if x = 0 and y =!= 0

x/y = ALOG[LOG[x] - LOG[y]] if x =I= O and y =I= 0.

Note that f(i,L)=t!=O for all i=O to d-2 and L=d-1 to
2m-2.

Hereafter, expressions using elements of f(i,L) are
65 written using the finite field antilogarithmic form of

equation (9). Note however, that in the preferred em­
bodiment of this invention the elements of f(i,L) are
stored in finite field logarithmic form for computational

4,839,896
6 5

efficiency. Without loss of generality, discussion is lim­
ited to codes wherein t~3. To reduce the amount of
storage required for the f(i,L) table, the one and two
error correction procedure is structured to require only
those elements off(i,L) for L=d-1 to 2m-2 and i=O 5
to T, where

T=2t- I for t=3,

more than one error; otherwise the ratio Rb!Ra may be
used as an index into a pre-computed location table La,b
derived according to

T=MAX(7,t+ 1) for 1;;;4, since from equation (10),
10

and only such elements are stored. Rb E*tfb.L) _ •.JJ!!Jd_
'R;; = E*f{a,L) - f{a,L) . From equations (4), (8), and (9), a single error at

location L with value E will generate a remainder with
coefficients

R;=E*f{i,L) (10)

15 Location table values corresponding to L<d-1 are set
to an invalid number, for example zero, to flag the exis­
tence of more than one error.

when e errors occur in a codeword, the coefficients of
the remainder are the EXCLUSIVE-OR sum of the
coefficients of the remainders for each error taken sepa- 20
rately:

e
R; = . ~ o Ej*f{i,Lj).

j=l

CASE A

One or two check symbol errors

(11)

A.l: One error at location L<d-1 with value E.

25

From equation (10), the remainder R(x) has a single 30
non-zero coefficient

In the preferred embodiment of this invention, the
time required to determine the error location is reduced
by using LOG [Rb!Ra] as an index into a location table
La,b derived according to

When the location L is known, the error value E may
be trivially computed from equation (10):

Ra
E = f{a,L)

The computed error location and value may be rap-

35
idly validated by gain using equation (10); test

A.2: Two errors at locations L1 <d-1 and Lz<d-1
with values E1 and Ez. From equation (11), the remain­
der R(x) has two non-zero coefficients

R;=E*f{i,L)

for values of i not equal to a or b, the indices of the
coefficients R; used to determine the error location and

40 value.

Cases A.1 and A.2 may be decoded by inspection of
the remainder by counting the number of non-zero
coefficients R;.

In the preferred embodiment of this invention, non- 45

zero coefficients R; are counted for i=O tot+ 1. If the
total is less or equal to two, we are assured that there are
at most d-t-1 errors, all at locations Li<d-1, none
of which must be corrected since none affects a data
symbol. The time required to decode cases of one or 50

more data errors is reduced by counting non-zero coef­
ficients only after a coefficient equal to zero has been
detected in the course of decoding Cases B, C, or D.

CASEB

One error at location L~d-1 with value E. From
equation (10), the coefficients of R(x) are given by

55

In the preferred embodiment of this invention, Ro and
R1 are used to determine Land E, and coefficients R;
are tested for i=2 to t. If all such coefficients are suc­
cessfully tested, we are assured that there is one error at
location L~d-1 with value E and at most d-t-2
errors at locations t+l<L;<d-1.

CASEC

Two errors, one error at location L1~d-l with
value E 1 and a second error at location Lz < d- 1 with
value Ez. From equation (11), the coefficients of R(x)
are given by

(12)

R;=E*fl.i,L).
In the preferred implementation of this invention, this

· 60 case is divided into three subcases:

For given a and b, a*b, the ratio

.iJ!!Jd_
f{a,L)

65
is unique for each value of L such that
d-1~L<2m - 1. This yields a fast method for locating
a single error. If either Ra=O or Rb=O there must be

C.l: t+l<L2<d-l
Decoding proceeds as in Case B: error location and

value computations using Ro and R1 yield L1 and Ei,
and coefficients R; are tested successfully for i = 2 to t.

C.2: 2~L2~t Error location and value computations
proceed as in Case B, yielding L 1 and E i,]Jut the test of
RLi fails. If we perform one additional successful test of
R1+ i, we are assured that there is one error at location

4,839,896
7

L1;§d-l with value E1 and at most d-t-2 errors at
locations 2<Li<d- l.

.8
from four coefficients Ra, Rb, Re, and Rd according to
the equations

Aai>RaRb Ell AacRaRc Ell AadRaRd Ell AbcRi>Rc Ell AbdRi>Rd Ell AcdRcRd

O'J = Cai>RaRb Ell CacRaRc Ell CadRaRd Ell CbcRi>Rc Ell CbdRi>Rd Ell CcdRcRd

0"2 =
BabRaRb Ell BacRaRc Ell BadRaRd Ell BbcRi>Rc Ell BbdRi>Rd Ell BcdRcRd

Cai>RaRb Ell CacRaRc Ell CadRaRd Ell CbcRi>Rc Ell CbdRi>Rd Ell CcdRcRd

C.3: O;§Lz;§ 1
If either Ro or R1 is equal to zero, the procedure of

Case B detects more than one error. If both Ro and R1
are non-zero, the error location and value computations
of Case B yield incorrect results and more than one test 15
of the coefficients R; fails. In either case we branch to
Case D.

If either Ro or R1 is equal to zero and the computa­
tions of Case D are restricted to non-zero coefficients,
the computation of the denominator of the coefficients

20
of O"(x) using RT-3 to RT will produce zero. If both Ro
and R1 are non-zero or the computations of Case D are
not restricted to non-zero coefficients, the error loca­
tion computations of Case D using Ro to R3 will cor­
rectly locate the two errors, with one having location

25
O~Li< I. In either case, we may then repeat the single
error location and value computations of Case B but
using Rr and Rr+ 1 in place of Ro and R1, determining L
using from a location table Lr,r+ 1 derived from
f(t+ l,L)/f(t,L)), and validating the results by testing

30 the coefficients Ri for i=O to t-1, allowing one failure
at i=O or i= 1.

Case C.3 occurs with sufficiently low frequency that
table storage space may be reduced without signficantly
degrading performance by eliminating the L1,1+ 1 table 35
and determining the location of the data symbol error
by calculating L as a function of Rr+ 1/R1:

[

G' R] '"' t+h __ , _.--.!.:!:.!.._
awa G, R

L =LOG , t+l 1

G, R1+1 IE!)--*--
Gr+1' Rr

where G;' is the coefficient of the xi term of

d-3
G'(x) = rr (x EB amO+~

i=O

(13)

40

45

50
In the preferred implementation of this invention, L

for Case C.3 is computed from equation (13) using a=t
and b=t+ I. One validation testing failure is allowed
for any i=O to t-1. If validation testing succeeds, we
are assured that there is one error at location L 1 > d- 1 5 5
with the value E1, a second error at location
O;§Lz~t-1, and at most d-t-3 errors at locations
t+2;§Li<d- l.

CASED

Two errors at locations L 1>d-1 and Lz?:; d-1 with
values E1 and Ez. From equation (11), the coefficients of
the remainder R(x) are given by

60

(14) 65

The coefficients O"J = aL I EBaL2 and 0"2 = aL I *aL2 of
the error locator polynomial O"(X) may be computed

where the pre-computed constants Aab, Bab, Cab, etc.
are (unctions of a, b, c, and d of the form

Bab= (aa•a2b Ell ab•a2")*(G'i-1*Gi' Ell Gc''*G"d-1).

Cab= (aa Ell a6}*(G",_ 1*Gi' Ell G,"*G"d-1).

and G;" is tlie coefficient of the xi term of

d-4
G"(x) = rr (x Ell amo+~,

i=O

with G _ (defined as zero.
In the preferred embodiment of this invention, Ro to

R3 are used in computing O"! and 0"2. For codes wherein
t?:;4, the time required to compute O"! and 0"2 is reduced
by choosing four non-zero zero coefficients of R(x): if
any of Ro to R3 is equal to zero, O"! and 0"2 are computed
using RT-3 to RT. If any of RT-3 to RT is also equal to
zero, there exist more than two errors.

We now have the coefficients of the error locator
polynomial for the case of two errors

Solution of a quadratic equation in a finite field is
known in the prior art; for example, see Chapter 3 of
Practical Error Correction Design for Engineers by
Neal Glover. Substituting x=y*0"1 yields

O'> .v2 Elly Ell c = 0, where c = --=;- .
O'J"

For each odd solution to this equation Y 1, there is an
even solution Y2 = Y1EB1. Y 1 can be fetched from a
pre-computed quadratic table derived according to

QUAD[i2E!)1]=iE!ll for i=O, 2, ... 2m-2

using c as an index. There are 2m- l such pairs of solu­
tions; the other elements of the table are set to an invalid
number, for example zero, to flag the existence of more
than two errors. When Y1=FO and Y2=FO have been
determined, reverse substitution yields expressions for
the two error locations

L2=LOG [o-1*Y2]

If both Li<d-1 and neither Li is not equal to a orb,
the indices of the coefficients Ri used in Case B, there
must exist more than two errors, otherwise the error
situation of Case C.3 may exist.

In the preferred implementation of this invention,
Case C.3 is attempted if Li<d-1, whether or not Li is

4,839,896
9

equal to a orb; Case C.3 will detect cases of more than
two errors.

Solving the system of equations

yields expressions for the error values

5

10
(4) The calculation of coefficients S; required for the

decoding of cases of more than four errors is de­
ferred until the iterative error locator polynomial
generation routine determines the existence of
more than four errors.

ERROR LOCATOR POLYNOMIAL GENERA­
TION: The coefficients of S(x) are used to iteratively
generate the coefficients of the error locator polynomial
cr(x). Such iterative algorithms are known in the prior

Ra*fib,L2) EB Rb*fia, L2)
Ei. = -f{"'"a-.L,,...1"'")*'"''f{""b,""'L....,2)-EB.,......,f{"'b""'.L,....1),..,.*f{""a-.L-:-2"'")-

10 art; for example, see Chapter 5 of Error-Correction
Coding for Digital Communications by Clark and Cain.

Ra*fib,L1) EB Rb*f{a,L1)
Ei = f{a,L1)*f{b,L2) EB f{b,L1)*f{a,L2)

In the preferred embodiment of the invention, Ro and
R1 are used in calculating error values if Ro to R3 were
used in determining cr(x), while Rr.3 and Rr.2 are used

In the preferred embodiment of this invention, the
time required to evaluate each successive discrepancy
value is reduced by using the current degree of cr(x) as

15 an index into a table of software jump addresses of
appropriate starting points for each evaluation in a se­
quence of repeated blocks.

in calcuating error values if Rr.3 to Rr were used in 20
determining cr(x).

The computed error locations and values may be
rapidly validated using equation (11); test

ERROR LOCATION AND EVALUATION: If the
degree of cr(x) indicates more than four errors exist, we
evaluate cr(x) at x=aL for each L, O:§L<2m- t, until
the result is zero, which signifies that aL is a root of cr(x)
and L is an error location.

In the preferred embodiment of this invention, the

for values ofi not equal to a, b, c, or d, the indices of the
coefficients R;used to determine the error locations and
values.

25
time required to evaluate cr(x) at each successive loca­
tion is reduced by maintaining a software address
pointer to the appropriate starting point for each evalu­
ation in a sequence of repeated blocks, and by evaluat-

In the preferred embodiment of this invention, coeffi- 30
cients R; are tested for i = 4 to t + 1 if Ro to R3 were used
in determining locations and values, and coefficients R;
are tested for i=O to T-4 if Rr.3 to Rrwere used. If all
such coefficients are successfully tested, we are assured
that there are two errors at locations L1 >d-1 and 35
L1>d- l with values E1 and E2 and at most d-t-3
errors at locations t+2:§L;:§d-1.

CASEE

More than two errors, at locations L; with values E;. 40
SYNDROME POLYNOMIAL GENERATION:

We compute the coefficients S;ofthe frequency-domain
syndrome polynomial

ing aJL*cr(x) at x=a.-L where j is the degree of cr(x),
rather than evaluating cr(x) at x=aL.

When the location L of an error has been determined,
cr(x) is divided by (xEE)aL), producing a new error loca­
tor polynomial of degree one less than that of the old:

O"(x) = cr(x)
x EB aL

The error value E may be calculated directly from
S(x) and the new cr(x) using

.i cr;*Sj-i
E = a-LmO * ~1=_0.___..,.­

cr(x) aL

45 where j is the degree of the new cr(x).

from the coefficients R;ofthe remainder R(x) according
to

In the preferred embodiment of this invention, the
division of cr(x) by (xEE)aL) and the calculation of the
numerator and denominator of E are all performed in a
single software loop. d-2

S· = l: R·•ai(m0+1).
I j=O J

50 When the location L and value E of an error have

Sequential computation of each coefficient S; would
require d- l references to each coefficient Rj. Physical
constraints and interleaving of multiple codewords 55
often make each reference to a coefficient Rj difficult
and time-consuming.

In the preferred embodiment of this invention, the
time required to calculate the coefficients of S(x) is
reduced by the following methods: 60

(1) Each coefficient Rj is referenced once and its
contribution to each coefficient S; is sequentially
computed and added.

(2) A partial result for the contribution of each coeffi­
cient Rj to each coefficient S;is maintained in finite 65
field logarithmic form;

(3) The use of software loops is minimized by using
repeated sequential blocks.

been determined, the coefficients of S(x) are adjusted to
remove its contribution according to

S;=S;EBE*a. L(m0+1)

By reducing the degree of cr(x) and adjusting S(x) as
the location and value of each error are determined, the
time required to locate and evaluate each successive
error is reduced.

When the degree of j of cr(x) is four or less, the time
required to locate the remaining errors is reduced by
using the special error locating routines below, each of
which locates one of the remaining errors without using
the Chien search. After the location of an error has been
determined by one of the special error locating routines,
its value is calculated cr(x) is divided by (xEE)aL), and
S(x) is adjusted in the same way as when an error is
located by evaluating cr(x).

11
When j = 1, the error locator polynomial is

4,839,896
12

The resulting affine polynomial may be solved in the
following manner:

By inspection, the root of this equation is 0-1 =aL. Thus 5

(1) Solve for a root Q of the equation
q3EJ:lb2*q$b3=0 by the cubic method above.

(2) Solve for a root S of the equation
s2EJ:lb3/Q*sEJ:lb4=0 by the quadratic method above.

(3) Solve for a root Z of the equation z2EBQ*zEBS=0
by the quadratic method above. If cr1 =0, L =LOG
[Z], otherwise reverse substitution yields

L=LOG [O't].

When j = 2, the error locator polynomial is

One of the roots of this equation may be found using the
quadratic method of Case D:

L = LOG [O'J *QUAD [;
1

2
2 J.

When j=3, the error locator polynomial is

10

15 Referring to FIG. 1, a data controller 100 having a
host interface 102 is connected to a host computer 104.
The data controller 100 also has a device interface 101
which connects the data controller 100 to an informa­
tion storage device 108.

20 In the process of reading data from information stor-

Solution of a cubic equation in a finite field is known in
the prior art; for example, see Flagg, U.S. Pat. No.

25 4,099, 162. Substituting

age device 108, data bits from information storage de­
vice 108 .are transferred through device information
channel 116, through the device interface 101, and into
the decoder 110. At the same time the data bits are being
transferred into the encoder and time domain syndrome

x=wEBO'J, w=tEBB/t, and v=t/B3/B

yields a quadratic equation in v:

where

A root V of this equation may be found by the qua­
dratic method above. Then by reverse substitution

L =LOG [0'1 EB (B*V)l EB-A-]·
(B*V)l

When j=4, the error locator polynomial is

Solution of a quartic equation in a finite field is known
in the prior art; for example, see Deodhar, U.S. Pat. No.
4,567,594. If cr1 =0, assign b;=cr; for i=2 to 4, other­
wise substitute

to give

where

generator 110, they are transferred in parallel into the
data buffer 106. As check bits are transferred into the
decoder 110, remainder bits are generated by the de-

30 coder 110 and transferred to the remainder buffer 107.
After the data bits have been transferred into the data
buffer 106 and remainder bits transferred to the remain­
der buffer 107, the processor 105 uses the remainder bits
from the remainder buffer 107 to detect and correct, if

35 necessary, errors in the data bits in data buffer 106.

40

After correction of any errors in the data buffer 106, the
data bits ·are transferred through the host interface 102,
through the information channel 118 through the host
computer 104.

Referring to FIG. 2, if either Ro or R1 is equal to zero,
Step 200 transfers control to FIG. 4, having detected
more than one error. Otherwise Step 202 determines the
location L=LO,l[R1/Ro]. IfL is invalid, that is, less than
d-1, Step 204 transfers control to FIG. 3. Otherwise

45 Step 206 calculates the error value E=Ro/f(O,L). Step
210 prepares to validate Land Eby initializing counters
i= l, j =t-1, and k=2. Step 212 increments counter i.
If R,-:;t=E*f(i,L), Step 214 transfers control to Step 220.
Otherwise Step 216 decrements counter j. If counter j is

50 then still greater than zero, step 218 transfers control
back to Step 212 to continue testing coefficients R;.
Otherwise L and E have been validated and Step 250
records them before transferring control to FIG. 17 for
error correction. After a coefficient R; fails the test of

55 Step 214, Step 220 decrements counter k. If counter k is
then still greater than zero, Step 222 transfers control
back to Step 212 to continue testing coefficients R;.
Otherwise L and E are invalid and control is transferred
to FIG. 3.

60 The time required for executing looping control and
maintaining counters in FIG. 2 may be eliminated by
replacing Steps 210 to-222 of FIG. 2 with the repeated
sequential blocks of FIG. 2A. Steps 230 through 23x
sequentially test coefficients R; for i=2 to t. If all of

65 these tests succeed, L and E have been validated and
Step 23x transfers control to Step 250 of FIG. 2. Other­
wise control is transferred into Steps 240 to 24x, where
sequential testing of coefficients R; continues through

4,839,896
13 14

Step 606 initializes counter j=t-2. If R;=/=E1 *fl.i,L1.
)E9E2 *fl.i,L2), the computed error locations and values
are invalid and Step 608 transfers control to FIG. 8.
Otherwise Step 610 increments counter i and decre-

i=t+l. If all of the remaining tests in this second set
succeed, L and E have been validated and Step 24x
transfers control to Step 250 of FIG. 2.ff any of the
tests of Steps 240 to 24x fails, L 'and E are invalid and
control is transferred to FIG. 3. 5 ments counter j. If counter j is then still greater than

zero, step 612 transfers control back to Step 608. Other­
wise the error locations and va,lues have been validated
and Step 620 records them and transfers control to FIG.

Referring to FIG. 3, on entry both Ro and R1 are
known to be non-zero. If tf;:4 and either R1 or R3 is
equal to zero, Step 300 transfers control to FIG. 4 to
attempt calculation of cr1 and cr2 using Rr-3 through Rr.
Otherwise Step 302 calculates the products of Ro to RJ JO
taken two at a time. Step 304 computes the denominator
of cr1 and cr2. If the denominator is equal to zero, Step
306 transfers control to FIG. 8. Otherwise Step 308
computes the log of the denominator, and the numera­
tor of cr1. If the numerator of cr1 is equal to zero, Step 15
310 transfers control to FIG. 8. Otherwise Step 312
computes the log of cri. and the numerator of cr2. If the
numerator of cr2 is equal to zero, Step 314 transfers
control to FIG. 8. Otherwise Step 316 calculates the log
of cr2 and sets counter I= 0 to signify that Ro to RJ were 20
used in computing cr1 and cr2, then transfers control to
FIG. 5.

Referring to FIG. 4, on entry at least one of Ro to RJ
is known to be equal to zero. Step 400 counts the num­
ber of non-zero coefficients R; for i=O to t+ 1. If the 25
result is less than three, there are no data symbols in
error; Step 402 exits the correction procedure success­
fully without correcting any data symbols, having de­
coded Case A. Otherwise if any of RT-3 to RTare equal
to zero, Step 404 transfers control to FIG. 8, having 30
detected more than two errors. Otherwise Step 406
calculates the products of Rr-3 to Rr taken two at a
time. Step 408 computes the denominator of cr1 and cr2.
If the denominator is equal to zero, Step 410 transfers
control to FIG. 7, having possibly detected Case C.3. 35
Otherwise Step 412 computes the log of the demonina­
tor, and the numerator cr1. If the numerator of cr1 is
equal to zero, Step 414 transfers control to FIG. 8.
Otherwise Step 416 computes the log of cr1, and the
numerator of cr2. If the numerator of cr2 is equal to zero, 40
Step 418 transfers control to FIG. 8. Otherwiste STep
420 calculates the log of cr2 and sets counter I= T - 3 to
signify that Rr-3 to Rr were used in computing cr1 and
cr2, then transfers control to FIG. 5.

In FIG. 5, which computes the error locations and 45
values for Case D, Step 500 calculates the quantity
c=cr2i(cr1)2 and fetches Y1 =QUAD[c1· Y1 is known to
be not equal to one, since cr2 is known to be non-zero. If
Y 1 is equal to zero, Step 502 transfers control to FIG. 8.
Otherwise Step 504 calculates locations L1. If L1 is less 50
than d-1, Step 506 transfers control to FIG. 7, having
possibly detected Case C.3. Otherwise Step 508 calcu­
lates Y 2 and location L2; Y 2 is known to be not equal to
zero since Y 1 is not equal to one. If L2 is less than d- 1,
Step 510 transfers control to FIG. 7, having possibly 55
detected Case C.3. Otherwise Step 514 computes the
denominator of error values E1 and E2. If the denomina­
tor is equal to zero, Step 516 transfers control to FIG. 8.
Otherwise Step 518 calculates the numerator of E1. If
the numerator of E1 is equal to zero, Step 520 transfers 60
control to FIG. 8. Otherwise Step 522 calculates the
numerator of E2. If the numerator ofE2 is equal to zero,
Step 524 transfers control to FIG. 8. Otherwise Step
526 calculates E1 and E2, then transfers control to FIG.

17 for error correction.
The time required for executing looping control and

maintaining counters in FIG. 6 may be eliminated by
replacing FIG. 6 with the repeated sequential blocks of
FIG. 6A. Steps 650 through 65x sequentially test coeffi­
cients R;for i=I to I+t-3. If any of these tests fails, the
locations arid values are invalid and control is trans­
ferred to FIG. 8. Otherwise the locations and values
bave been validated and Step 660 records them and
transfers control to FIG. 17 for error correction.

Referring to FIG. 7, if either R1 or R1+ 1 is equal to
zero, Step 700 transfers control. to FIG. 8. Otherwise
Step 702 calculates the location L from equation (13). If
Lis invalid, Step 704 transfers control to FIG. 8. Other­
wise Step 706 calculates the error value E=R 1/f(t,L)
and prepares to validate L and Eby initializing counters
i=t, j=t-1, and k=2. Step 710 decrements counter i.
If R1=FE*f(i,L), Step 712 transfers control to Step 720.
Otherwise Step 714 decrements counter j. If counter j is
then still greater than zero, step 716 transfers control
back to Step 710. Otherwise L and E have been vali­
dated and Step 718 records them and transfers control
to FIG. 17 for error correction. When a coefficient R;
fails the test of Step 712, Step 720 decrements counter k.
If counter k is then still greater than zero, Step 722
transfers control back to Step 710. Otherwise L and E
are invalid and control is transferred to FIG. 8.

Referring to FIG. 8, Step 800 initializes all S;=Roand
initializes counters j = 1 and JXM =mo. The purpose of
counter JXM is to maintain the quantity j*mo for suc­
cessive values of j by repaeated additions of mo and not
by multiplication. IfR1=0, Step 810 transfers control to
Step 850 since RJ does not alter the coefficients S;. Oth-
erwise Step 820 computes k=LOG [R1]+JXM and
adds akto So. Step 822 computes k=k+j and adds akto
S1. Steps 824 to 8xx repeat the operations of Step 822 to
compute and add the contribution ofR1to S;for i=2 to
MIN(2t-l,ll). Step 850 increments counter j and com-
putes JXM =JXM +mo. If counter j is then still less than
d-1, Step 860 transfers control back to Step 810. Oth­
erwise the coefficients S; for i=O to MIN(2t-l,ll)
have been calculated and control is transferred to FIG.
9.

Referring to FIG. 9, Step 900 initializes the polyno-
mials, parameters, and counters. Step 910 computes the
nth discrepancy value dn. If dn is equal to zero, Step 950
transfers control to Step 960. Otherwise Step 952 up­
dates cr(x). If lnf;: lk+n-k, Step 954 transfers control
to Step 958. Otherwise Step 956 updates O"k(x) and
other parameters. Step 958 updates crp(x). Step 960
increments counter n. If n<t+ In, Step 970 transfers
control to Step 972. Ifn=/=12, Step 972 transfers control
back to Step 910 to perform another iteration; otherwise
FIG. 10 computes the remaining coefficients S; before
transferring control back to Step 910. Otherwise if 111,

the degree of cr(x), is greater than t, the number of
6.

Referring to FIG. 6, Step 600 initializes counter i=4.
If counter I is equal to zero, Step 602 transfers control
to Step 606. Otherwise Step 604 initializes counter i=O.

65 errors the code can correct, Step 980 exits the correc­
tion procedure unsuccessfully. If ln=t, Step 980 trans­
fers control to Step 982; ifn=d-2, one additional itera­
tion is required before terminating the algorithm so Step

4,839,896
16 15

982 transfers control back to Step 910. Otherwise we
are assured that we have generated a valid error locator
polynomial and control is transferred to FIG. 11.

subroutine of FIG. 16. If three errors remain, Step 1302
transfers control to Step 1304, which sets parameters
for and calls the cubic solution subroutine of FIG. 15. If
two errors remain, Step 1302 transfers control to Step The evaluation of the nth discrepancy dn of step 920

may be implemented with repeated sequential blocks as
in FIG. 9A. Step 920 initializes dn=O. Step 930 uses ln
as an index into a table of software jump addresses to
transfer control to the appopriate starting point in Steps
940 to 94x for the evaluation of dn. Multiplying Sn by
CTpO is not required in Step 94x since CTpO is always equal
to one. When dn has been computed, control is trans­
ferred to Step 950 of FIG. 9.

5 1306, which sets parameters for and calls the quadratic
solution subroutine of FIG. 14. Otherwise one error
remains and Step 1302 transfers control to Step 1308.

If CTJ is equal to zero, Step 1308 exits the correction
procedure unsuccessfully, since the finite field loga-

10 rithm of zero is undefined. Otherwise Step 1310 deter­
mines L=LOG [CTI] and transfers control to FIG. 12.

Likewise, if one of the subroutines successfully deter­
mines ·an error location, Step 1320 transfers control to
FIG. 12. Otherwise, the correction procedure is exited -

Referring to FIG. 10, operation is similar to that of
FIG. 8. After the remaining coefficients of S(x) have
been calculated, control is transferred back to Step 910
of FIG. 9.

15 unsuccessfully. .

Referring to FIG. 11, Step 1100 initializes counters
i=O, j=ln=the degree of CT(x), and k=O=the number
of error locations which have been found. If j is less
than five, Step 1110 transfers control to FIG. 13. Other- 20
wise Step 1130 evaluates a-ji*CT(x) at x=ai. If the
result A is equal to zero, a root of CT(x) has been found
and Step 1160 transfers control to Step 1170, which
forms L= -i before transferring control to FIG. 12.
Otherwise Step 1180 decrements counter i in the finite 25
field. If counter i is then not equal to zero, Step 1190
transfers control back to Step 1130 to evaluate CT(x) at
the next location. Otherwise all possible locations have
been tested without locating all the errors; therefore the
correction correction procedure is exited unsuccess- 30
fully.

FIG. llA shows modifications to FIG. 11 necessary
for efficient evaluation of a-ji*CT(x) using repeated
sequential blocks. Step 1120 is added to use counter j to
compute an initial software jump address PTR=ADR(- 35
Step 1140)+(t-J)*K where K is the size of each Step
1140 through 114x. Step 1130 initializes A=O, then Step
1132 uses PTR to transfer control into Steps 1140 to
·114x, which sequentially evaluate a-ji*CT(x) at x=ai
using Homer's rule. Step 1170 is modified to update 40
PTR=PTR+K to reflect the decrementing of j per­
formed in FIG. 12.

Referring to FIG. 12, Step 1200 increments counter
k, records L, decrements counter j, then initializes D= 1
and N =Sj. Step 1202 divides CT(x) by (xEBaL) and cal- 45
culates the numerator and denominator of E' -
=E*aL*mo. If the new CTjis equal to zero, the new CT(x)
has a root equal to zero, which is not the finite field
antilogarithm of any error location; Step 1204 exits the
correction procedure unsuccessfully. If the numerator 50
is equal to zero, the computed error value is equal to
zero, which is not a valid error value, so Step 1204 exits
the correction procedure unsuccessfully. If the denomi­
nator is equal to zero, the error value cannot be com­
puted, since division by zero in a finite field is unde- 55
fined; Step 1204 exits the correction procedure unsuc­
cessfully. If CTj, the numerator, and the denominator are
each not eaqual to zero, Step 1204 transfers control to
Step 1206, which calculates and records
E=a-LmO*N/D. If counter j is equal to zero, Step 60
1208 transfers control to FIG. 17 for error correction.
Otherwise Step 1210 adjusts the coefficients of S(x) to
remove the effects of the error just found and transfers
control to FIG. 13.

Referring to FIG. 13, if more than four errors remain, 65
Step 1300 transfers control to Step 1180 of FIG. 11 to
search for another error location by evaluating CT(x). If
four errors remain, Step 1300 calls the quartic solution

On entry to FIG. 14, the parameters CJ and c2 de­
scribe the quadratic equation

If CJ=O, the equation has a repeated root. If c2=0, one
of the roots is zero, whose log is· undefined. If CJ =0 or
c2=0, Step 1400 exits the subroutine unsuccessfully.
Otherwise Step 1402 determines a transformed root Y l·
If Y J is invalid, Step 1404 exits the subroutine unsuc­
cessfully. Otherwise Step 1406 calculates the root X and
its log L and returns successfully.

On entry to FIG. 15, the parameters CJ, c2, and c3
describe the cubic equation

Step 1500 calculates the transform parameters A and B.
If B is equal to zero, Step 1502 exits the subroutine
unsuccessfully. Otherwise Step 1504 determines a root
V of the quadratic equation

A3
v2 EB *v EB -- = o. sz

using the QUAD table. If no such root exists, Step 1504
produces zero and Step 1506 exits the subroutine unsuc­
cessfully. Otherwise Step 1508 computes U. If U is not
the cube of some finite field value T, Step 1510 exits the
subroutine unsuccessfully. Otherwise Step 1512 calcu­
lates T and a roc:it X of the cubic equation. If X is equal
to zero, Step 1514 exits the subroutine unsuccessfully.
Otherwise Step 1516 calculates the log L of the root X
and returns successfully.

On entry to FIG. 16, the parameters CTJ, CT2, CTJ, and
CT4 describe the quartic equation

If CT! is equal to zero, Step 1600 transfers contol to Step
1610; if CT3 is equal to zero, the quartic equation has
repeated roots, so Step 1610 exits the subroutine unsuc­
cessfully. Otherwise Step 1612 assigns b;=CT;for i=2 to
4 and transfers control to Step 1620. If CTJ is not equal to
zero, Step 1600 transfers control to Step 1602, which
calculates the numerator and denominator of transform
parameter b4. If the denominator of b4 is equal to zero,
Step 1604 exits the subroutine unsuccessfully. Other­
wise Step 1606 calculates the transform parameters b4,
bJ, and b1 and transfers control to Step 1620.

Step 1620 sets parameters for and calls the cubic
solution subroutine of FIG. 15. If this returns unsuccess­
fully, Step 1622 exits the subroutine unsuccessfully.

4,839,896
18 17

Otherwise Step 1630 assigns Q=X and sets parameters
. for and calls the quadratic solution subroutine of FIG.

14. If this returns unsuccessfully, Step 1632 exits the
subroutine unsuccessfully. Otherwise Step 1640 sets
parameters for and calls the qulidratic solution subrou- 5
tine of FIG. 14. If this returns unsuccessfully, Step 1642
exits the subroutine unsuccessfully, Otherwise if cr1 is
equal to zero, Step 1650 returns L successfully. Other­
wise Step 1660 computes X. If X is equal to zero, Step
1662 exits the subroutine unsuccessfully. Otherwise 10
Step 1670 computes and returns L successfully.

Referring to FIG. 17, on entry counter k is equal to
the number of errors found, arrays L(*) and E(*) hold
the pairs of error locations and values, D is the number
of symbols in the data buffer and parameter D MN holds 15
the reverse displacement plus one from the last symbol
in the data buffer to the last data symbol in the current
interleave. Step 1700 calculates the forward displace-
ment from the first symbol in the data buffer to the last
data symbol of the current interleave. Step 1710 fetches 20

the location L = L(k) of the next error to be corrected.
If L is less than d-1, the symbol in error is a check
symbol and need not be corrected, so Step 1720 trans­
fers control to 1760. Otherwise Step 1730 calculates a
forward displacement F within the data buffer from the 25

reverse displacement L within the codeword interleave
based on the data buffer length and number of inter­
leaved codewords. If F is less than zero and therefore
invalid, Step 1740 exits the correction procedure unsuc- 30
cessfully. Otherwise Step 1750 corrects the data symbol
in error with the error value E(k). Step 1760 decrements
counter k. If counter k is then still greater than zero,
Step 1770 transfers control back to Step 1710 to correct
additional errors. Otherwise all errors have been cor- 35
rected and the correction procedure is· exited success­
fully.

While the invention herein disclosed has been de­
scribed by means of specific embodiments and applica­
tions thereof, numerous modifications and variations 40
could be made thereto by those skilled in the art with­
out departing from the spirit and scope of the present
invention. It is therefore to be understood that within
the scope of the appended claims, the invention may be

. ·practised otherwise than as specifically described 45
herein.

What is claimed is:
1. A decoder for an error detection and correction

system using a Reed-Solomon code or related code of
degree d- 1 for detection and correction of a plurality 50
of errors in code words of n symbols comprised of k
data symbols and d.;.. 1 check symbols, wherein each
symbol is comprised of m binary bits of information and

means for accessing said remainder buffer to re­
trieve said remainder,

means for applying said remainder to index said
first table means and retrieve said correction
information, and

means for applying said correction information to
said data symbols in said data buffer to correct
symbols that are in error.

2. The decoder of claim 1 wherein each element of
said first table means is comprised of a coefficient of the
xi term of xL MOD G(x).

3. The decoder of claim 1 wherein each element of
said first table means is comprised of a finite field loga­
rithm of a coefficient of the xiterm of xL MOD G(x).

4. The decoder of claim 1 further comprising a sec­
ond table means comprising a table La,b wherein each
non-zero element is defined as

wherein f(i,L) is a coefficient of the xi term of xL MOD
G(x), L varies from d-1 to 2m -2 and further wherein
O<a<d-1, O<b<d-1, and a*b.

5. The decoder of claim 1 further comprising a third
table means comprising a table La,b wherein each non­
zero element is defined as

wherein f(i,L) is a coefficient of the xi term of xL MOD
G(x), LOG [f(b,L)/f(a,L)] is the finite field logarithm of
f(b,L)/f(a,L), L varies from d-1 to 2m-2 and further
wherein O<a<d-1, O~b<d-1, and a*b.

6. The decoder of claim 5 wherein said means for
applying said remainder comprises:

means for determining a loi:;ation L of a data symbol
error;

means for calculating a value E of said data symbol
error; and

means for validating said location Land said value E
of said data symbol error.

7. The decoder of claim 6 wherein said means for
determining said location L comprises:

means for calculating an index value

d, k, m, and n are positive integers, and further wherein
t=INT((d-1)/2)~3, said decoder comprising: 55 wherein Ra and Rb are two of said coefficients Ri;

data buffer means for storing said k data symbols; means for applying said index value to said third table
remainder generator means for dividing a codeword means to retrieve said location L of said data sym-

polynomial C(x) by a generator polynomial G(x) of bol error.
said code and producing a remainder polynomial 8. The decoder of claim 6 wherein said means for
R(x) having remainder coefficients Ri; 60 determining said location L comprises:

remainder buffer means for storing said remainder means for calculating L according to
coefficients Riproduced by said remainder genera-

· tor means;
first table means comprising a table f(i,L) wherein

each element is comprised of error correction in- 65
formation, and wherein O~i<d-1, and d-l<­
L<2m-t; and

processor means comprising

[

b G'a Rb] aaEBa *-.-•--Gb Ra
L =LOG G' R I

61
a._b_
G'b Ra

(13)

4,839,896
20 19

wherein G/ is a coefficient of the xi term of

d-3
G'(x) = 1T (x EB amO+~.

i=O

9. The decoder of claim 6 wherein said means for
calculating said value E comprises:

5

means for applying said location L to produce an
index value for element f(a,L) of said first table 10
means;

means for applying said index value to said first table
means to retrieve said element f(a,L); and

means for dividing a coefficient Ra by said element
f(a,L) to produce said value E of said data symbol 15

error.
10. The decoder of claim 6 wherein said means for

validating said location L and said value E comprises
means for calculating a finite field logarithm of said

value E; 20
means for testing a plurality t of said remainder coef­

ficients Riwherein i=l=a and i=l=b, each test compris­
ing a sequential repeated block comprising:
means for adding said finite field logarithm of said

error value E to an element f(i,L) of said first 25

table means to produce a finite field logarithm of
a test value;

means for calculating a finite field antilogarithm of
said finite logarithm of said test value; and

means for comparing said finite field antilogarithm 30

. of said test value to said coefficient R,;
means for counting a number of said tests wherein

said finite finite field antilogarithm of said test
value is not equal to said remainder coefficient R,; 35 means for recording an indicium when said number is
less than two; and

means responsive to said indicium for using said loca­
tion L and value E to correct said data symbol
~~ ~

11. The decoder of claim 5 wherein said means for
applying said remainder comprises:

means for computing parameters 0-1 and 0-2;
means for determining locations Lt and Lz of two

data symbol errors from 0-1 and 0-2; 45
means for calculating values E1 and E2 of said two

data symbol errors; and
means for validating said locations and said values of

said two data symbol errors.
12. The decoder of claim 11 wherein said means for 50

computing said parameters 0-1 and 0-2 comprises:
means computing non-zero parameters D, N 1, and

N2 according to

BcdRcRd 60

D = CatfiaRb EB CacRaRc EB CadRaRd EB CbcRtfic EB CbdRtfid EB

wherein pre-computed constants Aab. Aae, Aad, 65
Abe, Abd, Aed> Bab, Bae, Bad, Bbe, Bbd, Bed, Cab, Cae,

Cad, Cbe, Cbd, and Ced are functions of a, b, c, and d
given by:

Aab = (a2a EB a 2°J*(G"c-1*G"d EB G"c*G"d-1).

Aac = (a2a EB a 2')*(G"b-1*G"d EB G"b*G"d-1).

Aad = (a2a EB a 21fi*(G"b-1*G"c EB G"b*G"c-1),

Abd = (a2b EB a 21fi*(G"a-1*G"c EB G"a*G"c-1).

Acd = (a2e EB a 21fi*(G"a-1*G"b EB G"a*G"b-1).

Bab= (aa•a2b EB ab*a2")*(G"e-1*G"d EB G"e*G"d-1).

Bbd = (ab•a2d EB ad•a2°J*(G"a-1*G"e EB G"a*G"e-1).

Bed-= (a'*a2d EB ad•a2')*(G"a-1*G"b EB G"a*G"b-1).

Cae = (aa EB a')*(G"b-1*G"d EB G"b*G"d-1),

Cad= (aa EB aifi*(G"b~1*G"e EB G"b*G"e-1),

Cbd =(ab EB aifi*(G"a-1*G"c EB G"a*G"e-1),

Ced= (ae EB atfi*(G"a-1*G"b EB G"a*G"b-1),

and G;" is a coefficient of the xi term of

d-4
G"(x) = rr (x il1 amO+~

i=O

with G _ 1" defined as zero; and
means for computing o-1=N1/D and o-2=N2/D.
13. The decoder of claim 11 wherein ti;;4 and se­

lected coefficients Ra, Rb, Re, and Rd of said coefficients
Ri are each not equal to zero.

14. The decoder of claim 11 wherein said means for
calculating said values E1 and E2 of said two data sym­
bol errors comprises:

means for computing non-zero parameters D, N 1, and
Ni according to

D = f(a,L1)*j(b,L1) EB j(b,L1)*j(a.L2);

N1 = Ra*f(b,L2) EB Rb*j(a,L2),

N1 = Ra*f{b,L1) EB Rb*f(a.L1); and

means for computing E1=N1/D and E2=N2/D.
15. The decoder claim 11 wherein said means for

validating said locations and said values comprises:
means for calculating finite field logarithms of said

values E1 and E2;
means for testing a plurality t-2 of said remainder

coefficients R; wherein i=l=a, i=l=b, i=l=c, and i=l=d,
each test comprising a sequential repeated block
comprising:
means for adding said finite field logarithms of said

values E1 and E2 to respective elements f(i,L1)
and f(i,L2) of said first table means to produce
finite field logarithms of test values,

means for calculating finite field antilogarithms of
said finite field logarithms of said test values;

4,839,896
22 21

means for calculating an EXCLUSIVE-OR sum of (12) means for repeating said means (3) through (11)
said finite field antilogarithms of said test values; for said coefficients Rj wherein j = 2 to d- 2.
and 20. The decoder of claim 18 wherein said means for

means for co!Ilparing said EXCLUSIVE-OR sum generating said error locator polynomial comprises:
of said finite field antilogarithms of said test val- 5 means for computing an nth discrepancy d11 compris-
ues to said coefficient R;; ing sequential repeated blocks, each said block

means for recording an indicium when each said comprising means for calculating a MODULO
EXCLUSIVE-OR sum o(said finite field antiloga- 2m-1 sum of said nth discrepancy d11 and a finite
rithms of said test values is equal to said coefficient field product 'of a coefficient up; and a coefficient
R,; and 10 S

11
_

1
;

means responsive to said indicium for using said loca- means using a degree 111 of the nth error locator poly-
tions and values to correct said data symbol errors. nomial as an index into a table of software ad-

16. The decoder of claim 1 wherein said means for dresses of each said block;
applying said remainder comprises: means for recording an indicium when said parameter

means for counting a number of non-zero coefficients 15 n is equal to twelve; and
R;in a plurality oft+ 1 of said coefficients R;in said means responsive to said indicium for generating
remainder buffer and recording an indicium when coefficients S; for i = 11 to d- 2.
said number is less than three; and 21. The decoder of claim 18 wherein said means for

means responsive to said indicium for terminating
20

locating said errors comprises:
error correction successfully. means for recording an indicium when said error

17. The decoder of cfaim 1 wherein said means for locator polynomial cr(x) is of degree j greater than
applying said remainder comprises: four;

means for validating locations Lj and yalues Ej of e means responsive to said indicium for locating one of
errors comprising means for testing a plurality of
said remainder coefficients R; according to the 25 said errors comprising evaluating said error locator

polynomial cr(x) for successive values of L until equations

e
R; = j°!;, I o E/f{i,Lj).

18. The decoder of claim 1 wherein said processor
means comprises:

means for computing a syndrome polynomial S(x)

30

from said remainder polynomial R(x); 35
means for generating an error location polynomial

cr(x) from said syndrome polynomial S(x);
means responsive to said error locator polynomial

cr(x) for locating errors; and
means responsive to said error locator polynomial 40

cr(x) and said syndrome polynomial S(x) for evalu­
ating errors.

19. The decoder of claim 18 wherein said means for
computing said syndrome polynomial comprises:

(1) means for initializing a coefficient So and all other 45
coefficients S;ofsaid syndrome polynomial S(x) to
a coefficient Ro of said remainder polynomial R(x);

(2) means for initializing a countefj to l;
(3) means for computing a finite field logarithmic

partial result comprising a MODULO zm-1 sum 50
of a finite field logarithm of a non-zero coefficient
Rjandj*mo;

(4) means for calculating a finite field antilogarithm of
said partial result;

(5) means for EXCLUSIVE-OR adding said finite 55
field antilogarithm of said partial result to said
coefficient So;

(6) means for MODULO 2m-1 adding said counter j
to said partial result;

(7) means for calculating a finite field antilogarithm of 60
said partial result;

(9) means for EXCLUSIVE-OR adding said finite
field antilogarithm of said MODULO 2m -1 sum
and one of said coefficients S,;

(10) means for repeating said means (6) through (9) 65
for said coefficients S; wherein i=2 to
MIN(d-2,11);

(11) means for incrementing said counter j; and

A = cJL.O'(x)la-L = 0,

said means for evaluating comprising a sequence of
repeated blocks each said block comprising means
for calculating a finite field product of a-Land an
EXCLUSIVE-OR sum of said parameter A and a
coefficient cr;of said error locator polynomial cr(x);
and

means for maintaining a software address of a starting
point for next said evaluation.

22. The decoder of claim 18 wherein said means for
locating said errors comprises:

means for recording an indicium when said error
locator polynomial cr(x) is of degree j less than or
equal to four; and

means responsive to said indicium for locating one of
said errors comprising:
means for calculating a finite field logarithm of a

rqot of a quartic equation in a finite field;
means for calculating a root and a finite field loga­

rithm of said root of a cubic equation in a finite
field;

means for calculating a root and a finite field loga­
rithm of said root of a quadratic equation in a
finite field; and

means for calculating a finite field logarithm of a
root of a linear equation in a finite field.

23. The decoder of claim 18 wherein said means for
evaluating said errors comprises:

means for dividing said error locator polynomial cr(x)
by (x E&aL) to produce a new error locator polyno­
mial cr(x) and calculating an error value E from
said syndrome polynomial S(x) and said new error
locator polynomial cr(x), comprising a single soft­
ware loop comprising:
(1) means for initializing a counter g= 1, a remain­

der R= 1, a denominator D= 1, and a numerator
N=cr1;

(2) means for calculating a MODULO 2m-1 sum
of said remainder R and a finite field product of

4,839,896
24 23

a finite field antilogarithm of said location L and
said remainder R;

(3) means for storing said MODULO 2m-1 sum as
said remainder R and as a coefficient erg of said
error locator polynomial cr(x); 5

(4) means for calculating a MODULO 2m-1 sum
of said remainder R and a finite field product of
a finite field antilogarithm of said location L and
said denominator D;

(5) means for storing said MODULO 2m-1 sum as 10
said denominator D;

(6) means for calculating a MODULO 2m-1 sum
of said numerator N and a finite field product of
said remainder R and a coefficient Sj-g of said
syndrome polynomial S(x); 15

(7) means for storing said MODULO 2m-1 sum as
said numerator N;

(8) means for incrementing said counter g; and
(9) means for repeating said means (2) through °(8)

for values of said counter g up to and including 20
j;

means for recording an indicium when R, D, or N is
equal to zero after the operation of said means (1)
through (9);

means responsive to said indicium for terminating 25
error correction unsuccessfully; ·

means for calculating a finite field quotient of said
numerator N and said denominator D;

means for recording a finite field logarithm of said
finite field quotient as a parameter E'; 30

means for calculating a finite field product of said
finite field quotient and a finite field antilogarithm
of -L*mo;

means for recording said finite field product as said
error value E; and 35

means for adjusting coefficients of said syndrome
polynomial S(x) comprising a software loop com­
prising:
(a) means for initializing a counter g=O;
(b) means for calculating a finite field antilogarithm 40

of said parameter E';
(c) means for calculating a MODULO 2m-1 sum

of said finite field antilogarithm and a coefficient
S; of said syndrome polynomial S(x);

(d) means for storing said MODULO 2m-1 sum as 45
said coefficient S,;

(e) means for calculating a MODULO 2m-1 sum
of said parameter E' and said location L;

15
G(x) = 1T (x EB a'"o~~.

i=O

mo= 120, and ai are given by

wherein betai are elements of a finite field generated
by a GF(2) polynomial

26. The decoder of claim 1 wherein m=8, t=4, G(x)
is a GF(256) polynomial

7
G(x) = 1T (x EB amO+~.

i=O

mo= 124, and ai are given by
ai = (beta1)88,
wherein betai are elements of a finite field gener­

ated by a GF(2) polynomial

27. The decoder of claim 1 wherein m=8, t=2, G(x)
is a GF(256) polynomial

3
G(x) = 1T (x EB amO+~.

i=O

mo= 126, and ai are given by

wherein betai are elements of a finite field gener­
ated by a GF(2) polynomial

28. In a decoder for an error detection and correction
system using a Reed-Solomon code or related code of
degree d-1 for detection and correction of a plurality
of errors in codewords of n symbols comprised of k data (f) means for storing said MODULO 2m-1 sum as

said parameter E';
(g) means for incrementing said counter g; and
(h) means for repeating said means (b) through (g)

for values of said counter g up to and including
j.

50 symbols and d-1 check symbols, wherein each symbol
is comprised of m binary bits of information and d, k, m,
and n are positive integers, and further wherein
t=INT((d-1)12)~3, an error decoding method com-

24. The decoder of claim 1 wherein m=8, t=8, G(x) 55
is a GF(256) polynomial

15
G(x) = 1T (x EB a~,

i=O

and ai are elements of a finite field generated by a GF(2)
polynomial

25. The decoder: of claim 1 wherein m=8, t=8, G(x)
is a GF(256) polynomial

60

65

prising the steps of:
storing said k data symbols in a data buffer;
generating a remainder polynomial R(x) having re­

mainder coefficients R; by dividing a codeword
polynomial C(x) by a generator polynomial G(x) of
said code;

storing said remainder coefficients in a remainder
buffer;

applying said remainder coefficients to index a first
table f(i,L), each element of said table being com­
prised of a coefficient of the xi term of xL MOD
G(x) wherein L varies from d-1 to 2m-2 and i
varies from 0 to d-2, to produce correction infor-
ma ti on;

4,839,896
26 25

applying said correction information to said data
symbols in said data buffer to correct symbols that
are in error.

29. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises the
steps of:

dividing a coefficient Ra by said element f(a,L) to
produce said value E of said data symbol error.

34. The method of claim 30 wherein said step of vali­
dating said location L and said value E comprises the

5 steps of:

counting a number of non-zero coefficients Ri in a
plurality t + 2 of said coefficients Rdn said remain­
der buffer; and

terminating error correction successfully when said 10
number is less than three.

30. The method of claim 28 wherein said step of ap­
plying- said remainder coefficients further comprises the
steps of:

determining a location L of a data symbol error;
calculating a value E of said data ~ymbol error; and
validating said location L and said value E of said

data symbol error.
31. The method of claim 30 wherein said step of de­

termining said location L comprises the steps of:
· calculating an index value from two coefficients Ra

and Rb of said coefficients R;:

15

20

calculating a finite field logarithm of said value E;
testing a plurality t of said remainder coefficients Ri

wherein i:;z!=a and i:;z!=b, each test comprising a se­
quential repeated block comprising the steps of:
adding said finite field logarithm of said error value

E to an element f(i,L) of said first table to pro-
duce a finite field logarithm of a test value;

calculating a finite field antilogarithm of said finite
field logarithm of said test value; and

comparing said finite field antilogarithm of said test
value to said coefficient R,~ •

counting a number of said tests wherein said finite
finite field antilogarithm of said test value is not
equal to said remainder coefficient R;; and

correcting said data symbol error using said location
L and said value E when said number is less than
two.

LOG [~! } and

35. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises the

25 steps of:

applying said index value to a second table La,b
wherein each non-zero element is given by

30

for L=d-1 to 2m- t to retrieve said location L of 35
said data symbol error.

32. The method of claim 30 wherein said step of de- 45

termining said location L comprises calculating L ac­
cording to

. [b Ga' Rb]

(13) 50

aa E0 a • --, • --
Gb Ra

L=LOG G' R
1 $-a_._b_

Gb' Ra

wherein G/ is a coefficient of the xi term of

d-3
G'(x) = 1T (x $ amO+~.

i=O

33. The method of claim 30 wherein said step of cal­
culating said value E comprises the steps of:

55

60

using said location L and a number a wherein
O~a<d-1 to produce an index value for an ele- 65
ment f(a,L) of said first table;

retrieving said element f(a,L) of said first table refer­
enced by said index value;

computing parameters 0:1 and 0-2;
determining locations L1 and L2 of two data symbol

errors from 0-1 and 0-2;
calculating values E1 and E2 of said two data symbol

errors; and
validating said locations and said values of said two

data symbol errors.
36. The method of claim 35 wherein said step of com­

puting said parameters 0-1 and 0-2 comprises the steps of:
computing non-zero parameters D, N1, and N2 ac­

cording to

wherein pre-computed constants Aab. Aae. Aad.
Abe. Abd, Aed. Bab, Bae. Bad. Bbe. Bbd, Bed, Cab.
Cae. Cad. Che. Cbd. and Ced are functions of a, b,
c, and d given by:

.Aab = (a2a $ a 2h) * (G"e-1 * G"d $ G"e * G"d-1),

Aae = (a2a $ a 2C) * (G"b-1 * G"d $ G"b * G"d-1),

Aad = (a2a $ a 2"l * (G"b-1 * G"e $ G"b * G"e-1),

Abe= (a2b $ a 2C) * (G"a-1 * G"d $ G"a • G"d-1),

Abd = (a2b $ a 2"'J * (G"a-1 * G"e $ G"a * G"e-1),

Aed = (a2e $ a 2"l * (G"a-1 * G"b $ G"a • G"b-1),

Bab= (aa * a 2b $ab• a 20) * (G"e-1 * G"d $ G"e * G"d-1).

Bae= (aa • a 2e $ ae • a 20) * (G"b-1 * G"d $ G"b • G"d-1),

Bad= (aa * a 2d $ad* a 20) • (G"b-1 * G"e $ G"b • G"e-1),

Bbe = (ab* a 2e $ ae • a2~ • (G"a-1 * G"d $ G"a * G"d-1).

Bbd =(ab* a 2d $ad* a 2h) • (G"a-1 * 'G"e $ G"a • G"e-1).

Bed= (ae • a 2d $ad• a 2C) • (G"a-1 • G"b $ G"a • G"b-1),

Cab= (aa $ah)• (G"e-1 • G"d $ G"e • G"d-1),

4,839,896
28 27

-continued

Cac = (aa EB a')• (G"b-1 * G"d EB G"b * G"d-1),

Cad= (aa EB adj• (G"b-1 • G"c EB G"b * G"c-1), 5

Cbc =(ab EB a')• (G"a-1 • G"d EB G"a • G"d-1),

Cbd =(ab EB adj• (G"a-1 • G"c EB G"a • G"c-1),

e
R; = . ~ o E/fiJ,Lj).

J=I

41. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises the
steps of:

computing a syndrome polynomial S(x) from said

Ced= (ac EB adj• (G"a-1 • G"b EB G"a * G"b-1), 10
remainder polynomial R(x);

generating an error locator polynomial o-(x) from
said syndrome polynomial S(x); and G;" is a coefficient of the xi term of

locating errors using said error locator polynomial
o-(x); and

d-4
G"(x) = 7r (x EB amO+~

i=O

15 evaluating errors using said error locator polynomial

with G -1" defined as zero; and computing
o-1=N1/D and o-2=Ni/D.

20 37. The method of claim 35 wherein t > 4 and selected ·
coefficients Ra, Rb, Re, and Rd of said coefficients R; are
each not equal to zero.

38. The method of claim 35 wherein said step of cal­
culating said values E1 and E1 of said two data symbol 25
errors comprises the steps of:

computing non-zero parameters D, N 1, and N1 ac­
cording to

D = j(a,L1)*j(b,L2) EB f(b,L1)*j(a,L2);

N1· = Ra'f(b,Lz) EB Rb*fia,Lz),

30

o-(x) and said syndrome polynomial S(x).
42. The method of claim 41 wherein said step of com­

puting said syndrome polynomial comprises the steps
of:

(1) initializing a coefficient So and all other coeffici­
ents S; of said syndrome polynomial S(x) to a coef­
ficient Ro of said remainder polynomial R(x);

(2) initializing a counter j to l;
(3) computing a finite fie.Id logarithmic partial result

comprising a MODULO 1m - 1 sum of a finite field
logarithm of a non-zero coefficient Rj and j*mo;

(4) calculating a finite field antilogarithm of said par­
tial result;

(5) EXCLUSIVE-OR adding said finite field antilog­
arithm of said partial result to said coefficient So;

(6) MODULO 2m-1 adding said counter j to said
partial result;

(7) calculating a finite field antilogarithm of said par­
tial result;

wherein Ra, Rb, Re, and Rdare selected coefficients 35 (9) EXCLUSIVE-OR adding said finite field antilog-
arithm of said MODULO 2m-1 sum and one of

of said coefficients R,; and computing E1=N1/D said coefficients S,;

and E1=N2/D. (10) repeating said steps (6) through (9) for said coef-
39. The method of claim 35 wherein said step of vali- ficients S; wherein i=2 to MIN(d-2,11);

dating said locations and said values of said two data 40 (ll) incrementing said counter j; and
symbol errors comprises the steps of: (1 2) repeating said steps (3) through (11) for said

calculating finite field logarithms of said values E1 coefficients Rj wherein j=2 to d-2.
and Ez; 43. The method of claim 41 wherein said step of gen-

testing a plurality t-2 of said remainder coefficients erating said error locator polynomial comprises the
R; wherein i*a, i*b, i*c, and i*d, and further 45 steps of:
wherein each test comprises a sequential repeated computing an nth discrepancy dn using sequential
block comprising the steps of: repeated blocks, each said block comprising calcu-
adding said finite field logarithms of said values E1 lating a MODULO 2m-1 sum of said nth discrep-

and Ez to respective elements f(i,L1) and f(i,L2) ancy dn and finite field product of a coefficient O"pi

of said first table to produce finite field loga- 50 and a coefficient Sn-i;
rithms of test values, using a degree ln of an nth error locator polynomial

calculating finite field antilogarithms of said finite o-(x) as an index into a table of software addresses
field logarithms of said test values; of each said block;

calculating an EXCLUSIVE-OR sum of said finite 55 generating coefficients S;for i= 11 to d-2 when said
field antilogarithms of said test values; parameter is equal to twelve.

comparing said EXCLUSIVE-OR sum of said 44. The method of claim 41 wherein said step of lo-
finite field antilogarithms of said test values to eating said errors when said error locator polynomial
said coefficient R,; o-(x) is of degree j greater than four comprises the steps

correcting said two data symbol errors using said 60 of:
locations and values when each said EXCLU- evaluating said error locator polynomial o-(x) for
SIVE-OR sum of said finite field antilogarithms successive values of L until
of said test values is equal to said coefficient R;.

40. The method of claim 28 wherein said step of ap­
plying said remainder coefficients further comprises 65
validating locations Lj and values Ej of a plurality e of
symbol errors by testfog a plurality of said remainder
coefficients R; according to the equations

A = aJL•cr(x) la-L = 0,

said step of evaluating comprising a sequence of
repeated blocks, each said block comprising calcu­
lating a finite field product of a-Land an EXCLU-

4,839,896
30 29

SIVE-OR sum of said parameter A and a coeffici­
ent CT; of said error locator polynomial CT(x); and

maintaining a software address of a starting point for
next said evaluation.

45. The method of claim 41 wherein said step of lo- 5
eating said errors when said error locator polynomial
CT(x) is of degree j less than or equal to four comprises
locating one of said errors using one of the steps of:

when j is equal to four, calculating a finite field loga­
rithm of a root of a quartic equation in a finite field; 10

when j is equal to three, calculating a root and a finite
field logarithm of said root of a cubic equation in a
finite field;

when j is equal to two, calculating a root and a finite
field logarithm of said root of a quadratic equation 15
in a finite field; or •

when j is equal to one, calculating a finite field loga­
rithm of a root of a linear equation in a finite field.

46. The method of claim 41 wherein said step of eval-
uating said errors comprises the steps of: 20

dividing said error locator polynomial CT(x) by
(x$aL) to produce a new error locator polynomial
S(x) and calculating an error value E from said
syndrome polynomial S(x) and said new error loca­
tor polynomial CT(x), all in a single software loop 25
comprising steps of:
(1) initializing a counter g= 1, a remainder R= 1, a

denominator D = 1, and a numerator N = CT1;

(2) calculating a MODULO 2m-1 sum of said
remainder R and a finite field product of a finite 30
field antilogarithm of said location L and said
remainder R;

(3) storing said MODULO 2m -1 sum as said re­
mainder R and as a coefficient CT g of said error
locator polynomial CT(x); 35

(4) calculating a MODULO 2m-1 sum of said
remainder R and a finite field product of a finite
field antilogarithm of said location L and said
denominator D;

(5) storing said MODULO 2m-1 sum as said de- 40
nominator D;

(6) calculating a MODULO 2m-1 sum of said
numerator N and a finite field product of said
remainder R and a coefficient Sj-g of said syn-
drome polynomial S(x); 45

(7) storing said MODULO 2m - 1 sum as said nu­
merator N;

(8) incrementing said counter g; and
(9) repeating said steps (2) through (8) for values of

said counter g up to and including j; 50
terminating error correction unsuccessfully when R,

D, or N is equal to zero after completion of said
steps (1) through (9);

calculating a finite field quotient of said numerator N
and said denominator D; 55

recording said a finite field logarithm of said finite
field quotient as a parameter E';

calculating a finite field product of said finite field
quotient and a finite field antilogarithm of -L*mo;

recording said finite field product as said error value 60
E; and

adjusting coefficients of said syndrome polynomial
S(x) using steps of:
(a) initializing counter g==O;

65

(b) calculating a finite field antilogarithm of said
parameter E';

(c) calculating a MODULO 2m-1 sum of said
finite field antilogarithm and a coefficient S; of
said syndrome polynomial S(x);

(d) storing said MODULO 2m-1 sum as said coef­
ficient S,;

(e) calculating a MODULO 2m -1 sum of said
parameter E' and said location L;

(f) storing said MODULO 2m -1 sum as said pa­
rameter E';

(g) incrementing said counter g; and
(h) repeating said steps (b) through (g) for values of

said counter g up to and including j.
47. In a decoder for an error detection and correction

system using a Reed-Solomon code or related code of
degree d-1 for detection and correction of a plurality
of errors wherein a message block is comprised of N
interleaved codewords of said code wherein codeword
i is comprised of n;-(d-1) data symbols and d-1
check symbols comprising a total of D data symbols
stored in a data buffer means and N*(d-1) check sym­
bols stored in a remainder buffer means where d, i, N,
and n;are positive integers, and further wherein the first
check symbol in said remainder buffer means is remain­
der coefficient Rd-2 of codeword D MOD N and the
last symbol in said remainder buffer means is remainder
coefficient Roof codeword (D-1) MOD N, with other
coefficients interleaved between, a method for access­
ing said data buffer means and said remainder buffer
means for detection and correction of said errors com­
prising the steps of:

(1) initializing a parameter DMN equal to said num­
ber of data symbols D MODULO said number of
interleaves N and initializing a counter I to zero;

(2) if said parameter DMN is equal to zero, resetting
said parameter DMN to said number of interleaves
N·

' (3) computing a forward displacement within said
remainder buffer means of coefficient Ro of code­
word I by calculating N*(d-1)-DMN;

(4) computing forward displacements within said
remainder buffer means of other coefficients R; of
said codeword I by repeated subtraction of said
number of interleaves N from said forward dis­
placement of said coefficient Ro of said codeword
I;

(5) determining location(s) L; and value(s) E; of er­
ror(s) in said codeword I;

(6) computing a forward displacement within said
data buffer means of a last data symbol within said
codeword I as Fmax=d-DMN;

(7) computing a forward displacement widrin said
data buffer means of an error at a location L; > d- l
as F;=Fmax-N*L,;

(8) correcting said error at said forward displacement
F; using error value E,;

(9) repeating said steps (7) and (8) for all errors in said
codeword I;

(10) decrementing said parameter DMN and incre­
menting said counter I; and

(11) repeating said steps (2) through (10) for values of
said counter I up to and including N - 1.

* * * * *

