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[57] ABSTRACT 

Apparatus and methods are disclosed for providing an 
improved system for identifying the location and value 
of errors introduced in binary data encoded using Reed­
Solomon and related codes and to detect miscorrections 
of such codes with an auxiliary code. The invention 
employs an architecture based on a microcode engine 
that is specialized for error identification and that sup­
ports interleaved codewords. This architecture can be 
efficiently fabricated as an integrated circuit, yet is ca­
pable of identifying multiple introduced errors "on the 
fly" i.e. with performance sufficient to not significantly 
slow the process of reading from data storage or trans­
mission subsystems such as, but not limited to, optical 
disks. In the preferred embodiment, a new two-step 
method of error syndrome computation is employed to 
reduce circuit cost and complexity. An improved itera­
tive algorithm is provided which reduces circuit cost 
and complexity and decreases the time required to gen­
erate the error locator polynomial. Cyclic redundancy 
check (CRC) information is adjusted as introduced 
errors are identified during the Chien search, thus re­
ducing the time required to protect against ECC mis­
correction. Externally-specified error thresholds allow 
detection of excessive numbers of errors. 
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1 

FAST AND EFFICIENT CIRCUIT FOR 
IDENTIFYING ERRORS INTRODUCED IN 

REED-SOLOMON CODEWORDS 

5,384,786 
2 

over a signal channel, a group of more than 255 bytes 
together, more than one codeword is required. When 
errors tend to occur in bursts affecting more than one 
symbol, it is advantageous to interleave the codewords 

5 so that a single error burst is spread across more than 
BACKGROUND OF THE INVENTION one codeword. 

This invention relates to information storage and Optical disks conforming to ANSI/ISO standards for 
retrieval or transmission systems, and more particularly 90 mm and 130 mm media store data in a sector com-
to means for encoding and decoding codewords for use prising an identifying mark; a triply-redundant header 
in error detection, identification and correction in such IO containing physical location information; 512 or 1024 
information systems. user-data bytes plus vendor-unique/pointer bytes, all 

Digital information storage devices, such as magnetic protected by an overlay CRC code with four redundant 
disk, magnetic tape or optical disk, store information in bytes, in five or ten interleaved ECC codewords, re-
the form of binary bits. Also, information transmitted spectively, each with sixteen redundant bytes; and other 
between two digital devices, such as computers, is l5 necessary special marks. See 90 mm Rewritable/Read 
transmitted in the form of binary bits. During transfer of Only Optical Disk Cartridges for Information Inter-
data between devices, or during transfer between the change, Second Edition, Second Draft, JTC 1/SC 
storage media and the control portions of a device, 23/WG 2 N213, December 1990, pages 38-42 and 
errors are sometimes introduced so that the information 84-86. Also see Information Technology-130 MM Re-
received is a corrupted version of the information sent. 20 writable Optical Disk Cartridges for Information Ex-
Errors can also be introduced by defects in a magnetic change, ISO/IEC JTC 1/SC 23N, pages 53-57. FIG. 1 
or optical storage m:dium. These errors mu.st .almost shows the organization of a 512-user-date-byte sector 
always be corrected if the storage or transID1ss1on de- for the ANSI 90 mm rewritable optical disk standard. 
vice is to ?e useful. . . . . FIG. 2 shows the interleaved codeword organization of 

Correction of the received information is accom- 25 the data area within each 512-data byte sector for the 
plished by (1) deriving additional bits, called redun- ANSI 90 mm CCS rewritable optical disk standard. The 
dancy, by processing the original information mathe- "SB" and "RS" bytes are not included in ECC/CRC 
matically; (2) appending the redundancy to the original computations. 
information during the storage or transmission process; 
and (3) processing the received information and redun- 30 
dancy mathematically to detect, identify and correct 
erroneous bits at the time the information is retrieved. 
The process of deriving the redundancy is called encod­
ing. The process of processing the received information 
and redundancy is called decoding. One class of codes 35 
often used in these processes is Reed-Solomon codes. 

Encoding of information is accomplished by process­
ing a sequence of information bits, called an information 
polynomial or information word, to devise a sequence 
of redundancy bits, called a redundancy polynomial or 40 
word, in accord with an encoding rule such as Reed­
Solomon codes. An encoder processes the information 
polynomial with the encoding rule to create the redun­
dancy polynomial and then appends it to the informa­
tion polynomial to form a codeword polynomial which 45 
is transmitted over the signal channel or stored in an 
information storage device. When a codeword polyno­
mial is received from the signal channel or read from 

SYNDROME COMPUTATION 

A Reed-Solomon code with distance d over b-bit 
symbols from GF(2b) has code generator polynomial 
G(x) of degree d-1: 

m+d-2 (I) 

G(x) = n (xEl:)a') 
i=m 

where m is the offset of the code generator polynomial. 
$ represents finite-field addition and the product is 
formed using finite-field multiplication. The time­
domain remainder polynomial R(x) has coefficients R.; 
for j from 0 to d-2 defined by 

d-2 . 
R(x) = C(x)MODG(x) = . l: Rj*xJ 

1=0 

(2) 

the storage device, a decoder processes the received where C'(x) is the received codeword polynomial and 
codeword polynomial to detect the presence of error(s), 50 the summation is performed using finite-field addition. 
to attempt to identify any error(s) present and to flag Frequency-domain syndromes Sm+;for i from Oto d-2 
the information polynomial as erroneous or to correct it are related to coefficients Rj according to: 
before transferring the information polynomial for fur-
ther processing. 

The decoding process typically comprises three 55 
steps: (1) computing frequency-domain syndromes from 
the received codeword; (2) computing an error locator 
polynomial, whose roots indicate the locations of erro­
neous symbols, from the frequency-domain syndromes; 
and (3) finding the roots of the error locator polynomial 60 
and computing the corresponding error values. 

SECTOR FORMATS 

The length n of codewords of Reed-Solomon codes 
utilizing b-bit symbols is restricted to n<2b. A symbol 65 
size.commonly used is the "byte" comprising eight bits, 
giving n<28=256. When it is desired to store in and 
retrieve from a data storage system, or send and receive 

Rearranging equation (3) yields: 

d-2 ... 
Sm+i = .1:

0 
[R/am:!]•at·• 

}= 

(3) 

(4) 

Methods for performing the computations of equa­
tion (4) when mis zero are known in the art; see Lim, 
"A Decoding Procedure for the Reed-Solomon Codes, 
"NASA Technical Paper 1286, 1978 pp. 12-15. FIG. 3 
depicts prior-art circuitry implementing equation (4), 
comprising d-1 registers 113 denoted D(O) through 
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4 
sums are produced using EXCLUSIVE-OR circuit 185. 
Finite-field variable products are produced using loga­
rithm tables 188 and 189, adder 192, antilogarithm table 
192, zero-detection circuits 186 and 187, NOR circuit 

D(d-2); d-1 constant finite-field multipliers 110 im­
plementing multiplication by aj for j from 0 to d-2; 
d-1 three-input multiplexers 111; and a (d-1)-input 
EXCLUSIVE-OR circuit 112. All registers, multiplex­
ers, multipliers and data paths are symbol wide. 

In the operation of FIG. 3, first the following process 
is repeated d-1 times for j from 0 to d-2: present 
coefficient Rj and assert control signal LD-1)(j) to 
store Rj in D(j). Then control signal EN is asserted and 
the following process is repeated d- 1 times for i from 
0 to d-2: syndrome S;is produced on OUT and stored 
elsewhere and the outputs of multipliers aj 110 are 
stored in respective registers D(j) 113 for j from 0 to 
d-2. 

s 190 and gating circuit 194. Finite-field inversion is per­
formed using read-only memory tables 184. 

The circuitry of FIG. 5 is undesirable because it re­
quires an excessive amount of complex and relatively 
slow circuitry. Syndrome generator 180 contains sepa-

The circuit of FIG. 3 is undesirable because it re­
quires an excessive number of registers and constant 
finite-field multipliers and a very large EXCLUSIVE­
OR circuit. Thus it is clear that improved methods for 
computing frequency-domain syndromes are needed. 

10 rate syndrome computation circuits for each inter­
leaved codeword. The finite-field computation circuit 
contains a large number of registers. The read-only­
memory circuits of 184, 188, 189 and 192 are both com­
plex and slow, limiting the maximum rate of operation. 

lS It is clear that less expensive, faster circuitry is needed. 

CRC RESIDUE ADJUSTMENT 

ITERATIVE ALGORITHM 

Iterative algorithms for generating the error locator 
polynomial for Reed-Solomon and related codes are 
known in the art; see Clark ·and Cain, E"or Correction 
Coding for Digital Communications, 1981, pp. 204-208. 2S 
Iterative algorithms which require no inversion are also 
known in the art; see Burton, "Inversionless Decoding 

The ANSI/ISO standards for 90 mm and 130 mm 
optical disk media provide for a CRC code covering all 

20 interleaves of the user data and the vendor-unique/­
pointer information bytes. This distance-five, Reed­
Solomon code has information symbols comprising the 
EXCLUSIVE-OR sum of bytes across interleaves. The 

of Binary BCH Codes," IEEE Transactions on Informa­
tion Theory, IT-17, 1971, pp. 464-466. FIG. 4 shows the 
steps of a prior-art inversionless iterative algorithm. In 30 
step 1, counters n, k and L, parameter dkand polynomi-
als o{n) and o{k) are initialized. In step 2, the nth discrep­
ancy dn is calculated. If dn is zero, control passes to step 
6. Otherwise, step 3 calculates the updated error locator 
polynomial crl.P). Then if counter L is greater than or 3S 
equal to the difference n-k, control is passed to step 5. 
Otherwise step 4 updates counters k and L, copies dn to 
dkand copies o-<n)to o{k). Step 4 copies crl.P)to o-(n). Step 
6 multiplies o{k) by x and increments counter n. Then if 
counter n is less than 2·t, control is passed to step 2. 40 
Otherwise, the iterative algorithm has been completed 
and u{n) is the desired error locator polynomial. The 
prior-art iterative algorithm of FIG. 4 is undesirable 
because it requires storage elements for three polynomi­
als and repeated copying of polynomial coefficients 4S 
from one storage area to another. 

FINITE-FIELD COMPUTATIONS 

Hardware capable of performing the computations 
required for decoding Reed-Solomon and related codes SO 
are known in the art; see Glover and Dudley, Practical 
E"or Co"ection Design for Engineers, 1988, page 353. 
FIG. 5 shows the major blocks of a prior-art decoding 
circuit comprising syndrome generator 180; syndrome 
buffer 181; work buffer 182; sequencer 183; registers 195 SS 
A, B, C, D, E, F, G and H; read-only-memory tables 
184; EXCLUSIVE-OR circuit 185; zero-detection cir­
cuits 186 and 187; finite-field logarithm read-only­
memories 188 and 189; NOR circuit 190; ones-comple­
menting circuit 191; modulo-255 adder 192; finite-field 60 
antilogarithm table 193; and gating circuit 194. Unless 
otherwise noted, all paths are eight bits wide. 

In operation of FIG. 5, syndrome generator 180 gen­
erates frequency-domain syndromes for all interleaved 
codewords simultaneously and stores them in syndrome 65 
buffer 181. Sequencer 183 controls the operation of the 
decoder, using work buffer 182 to store intermediate 
results produced using the other circuitry. Finite-field 

CRC code generator polynomial GC(x) is of degree 
four: 

c+dc-1 (5) 

GC(x) = n (xEBai). 
i=c 

where de is the degree and c is the offset of the CRC 
code generator polynomial. The time-domain CRC 
residue polynomial RC(x) has coefficients RCj defined 
by 

dc-2 . 
RC(x) = CC(x)MODGC(x) = . ~ RCJ°*xl 

;=0 

(6) 

where CC'(x) is the received CRC codeword polyno­
mial. The residue of this code must be adjusted to re­
move the contribution of each identified error. After all 
errors have been identified, the adjusted CRC residue 
must be zero; if not, a miscorrection of an uncorrectable 
error by the error correction code has been detected. 

One method for adjusting the CRC residue is to re­
encode the sector after the error detection, identifica­
tion and correction process has been completed and 
check that the re-encoded CRC redundancy symbols 
match the corrected CRC redundancy symbols. This 
method is undesirable because it requires additional 
hardware to provide access to the corrected data and 
additional time to perform the re-encoding process. 

Another method for adjusting the CRC residue is to 
compute CRC syndromes SCc+i from CRC residue 
coefficients RCj according to: 

dc-2 . 
SCc+i = . ~ RCf'a(c+1)1 

;=0 

and then adjust the CRC syndromes according to: 

SC +. = SC +. $ 1l E-*a(c+1}Lj 
c l c l j=l 1 

(7) 

(8) 

where N is the total number of errors in symbols cov­
ered by the CRC code, Ejare the error values and Ljare 
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6 
computation circuits are provided specifically to sup­
port this objective. 

the. locations of the errors relative to the CRC code. 
This method is undesirable because it requires addi­
tional time to compute the CRC syndromes and to per­
form the adjustment. It is clear that faster and less ex­
pensive methods for adjusting the CRC residue are 
needed. 

SUMMARY OF THE INVENTION 

Another object is to provide an architecture particu­
larly suitable for error identification computations 

5 which includes both a specialized data-path design and 
a set of specialized microengine instructions and which 
is suitable for implementation in an integrated circuit. 

Another object is to provide elements of the set of 
Apparatus and methods are disclosed for providing microengine instructions which efficiently control the 

an improved system for identifying the location and 10 execution of finite-field variable multiply-and-sum oper-
value of errors introduced in binary data encoded using ations. 
Reed-Solomon and related codes and to detect miscor-
rections of such codes with an auxiliary code. The in- Another object of the present invention is to accept 
vention employs an architecture based on a microcode time-domain error syndromes so as to support a high 
engine that is specialized for error identification and 15 performance, cost-efficient implementation for Reed-
that supports interleaved codewords. This architecture Solomon codes that allows the same LFSR to be used 
can be efficiently fabricated as an integrated circuit, yet for both encoding and decoding of Reed-Solomon 
is capable of identifying multiple introduced errors "on codewords. 
the fly" i.e. with performance sufficient to not signifi- Another object is to support the ANSI/ISO standard 
cantly slow the process of reading from data storage or 20 formats for both 512-byte and 1024-byte sector sizes and 
transmission subsystems such as, but not limited to, both 90 mm and 130 mm optical-disk medium sizes. 
optical disks. In the preferred embodiment, a new two- Another object is to allow the code symbols of the 
step method of error syndrome computation is em- information polynomial to be interleaved, as is known in 
ployed to reduce circuit cost and complexity. An im- the art, among a plurality of codeword polynomials, 
proved iterative algorithm is provided which reduces 25 each containing its own independent redundancy poly-
circuit cost and complexity and decreases the time re- nomial while using the same error identification cir-
quired to generate the error locator polynomial. Cyclic cuitry for each interleave. 
redundancy check (CRC) information is adjusted as Another object is to allow the EXCLUSIVE-OR 
introduced errors are identified during the Chien sum across interleaves of the code symbols of the infor-
search, thus reducing the time required to protect 30 mation polynomial to form the information symbols of a 
against ECC miscorrection. Externally-specified error codeword of an overlay CRC code. 
thresholds allow detection of excessive numbers of Another object is to adjust this CRC information as 
errors. errors are detected during the Chien search, thus reduc-

In accordance with the foregoing, an object of the ing the time required to protect against ECC miscorr-
present invention is, in the typical case, to identify a 35 rection. 
plurality of errors introduced within a particular sector Another object is to detect when the number of er-
during the time period in which the next adjacent sector rors identified within a sector exceeds externally speci-
is being read or received from the storage or transmis- tied thresholds. 
sion medium. In the atypical case where the time re- These and other objects of the invention will become 
quired to identify the number of introduced errors ex- 40 apparent from the detailed disclosures following herein. 
ceeds the time required to read the next adjacent sector, 
or where the number of introduced errors exceeds ei­
ther an externally specified threshold or the correction 
power of the specific Reed-Solomon code used, the 
present invention detects this case, signals an external 45 
microcontroller and signals the ENDEC section of the 
CL-SM330 to cease reading the medium. 

Another object of the present invention is to reduce 
the implementation cost and complexity of error identi­
fication circuitry by performing error syndrome com- 50 
putation in two steps, where each step processes half of 
the required bits through a finite-field computation 
circuit of approximately half the size required by the 
prior-art one-step method. 

Another object of the present invention is to provide 55 
an enhancement of the prior-art iterative algorithm to 
allow computing the coefficients of the error locator 
polynomial in a manner that is quicker and requires less 
circuitry than prior-art implementations by using two 
polynomials and by interchanging the values of two 60 
pointers to two tables containing the coefficients of 
these polynomials and interchanging their associated 
parameters. 

Another object of the present invention is to reduce 
the time required by the error identification computa- 65 
tion by performing, during the Chien search for intro­
duced errors, the required adjustment of the CRC infor­
mation whenever an error is identified. Data paths and 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates the ANSI standard layout of a sec­
tor containing 512 user data bytes on 90 mm Continuous 
Composite Servo (CCS) optical-disk media. 

FIG. 2 illustrates the ANSI standard layout of the 
data area within a sector containing 512 user data bytes 
on 90 mm CCS optical-disk media. 

FIG. 3 is a logic diagram of a prior-art syndrome 
computation circuit that outputs one syndrome per 
clock cycle. 

FIG. 4 is a flow chart of a prior-art iterative algo­
rithm for computing the coefficients of the error locator 
polynomial. 

FIG. 5 is a block diagram of a prior-art circuit for 
performing finite-field computations. 

FIG. 6 is a block diagram of an optical-disk data-stor­
age system containing the present invention. 

FIG. 7 is a block diagram of the CL-SM330 portion 
of the optical-disk data-storage system. 

FIG. 8 is a block diagram of the CL-SM331 portion 
of the optical-disk data-storage system. 

FIG. 9 is a logic diagram of a new two-step syndrome 
computation circuit. 

FIG. 10 is a logic diagram of a two-step syndrome 
computation circuit equivalent to that of FIG. 9 except 
for the constant finite-field multipliers implemented. 
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FIG. 11 is a logic diagram of circuit which can be 
shared for two-step syndrome computation and for 
finding the roots of the error locator polynomial. 

FIG. 12 is a logic diagram of another circuit which 
can be shared for two-step syndrome computation and 5 
for finding the roots of the error locator polynomial. . 

FIG. 13 is a flow chart of a new iterative algorithm 
for computing the coefficients of the error locator poly­
nomial. 

FIG. 14 is a high-level block diagram of the CL- 10 
SM330's ECC/CRC block containing the error identifi­
cation circuit of the present invention and showing its 
interfaces with the other blocks of the CL-SM330. 

FIG. 15 is a register address and bit assignment map 
of the interface between the error identifier circuit and 15 
the external microcontroller. 

FIG, 16 is block diagram of the error identification 
circuit of the present invention showing its major func­
tional blocks. 

FIG. 17 is a block diagram of the Address Pointer 20 
Circuit (APC) block of the present invention. 

FIG. 18 is a block diagram of the CRC Residue Ad­
juster (CRA) block of the present invention. 

FIG. 19 is a block diagram of the Error Vector Con-
trol (EVC) block of the present invention. 25 

FIG. 20 is a block diagram of the Frequency Domain 
Circuit (FDC) block of the present invention. 

FIG. 21 is a block diagram of the Finite Field Proces­
sor (FFP) block of the present invention. 

FIG. 22 is a logic diagram of the finite-field Variable 30 
Multiply-and-Sum (VMS) circuit of the present inven­
tion. 

FIG. 23 is a block diagram of the Instruction Process­
ing Circuit (IPC) block of the present invention. 

FIG. 24 is a block diagram of the Interleave & Sector 35 
Counters (ISC) block the present invention. 

FIG. 25 is a flow chart of the overall read sector 
operation. 

FIG. 26 is a flow chart of the identify errors opera-
tion. 40 

FIG. 27 is a flow chart of the initialize RAM and 
CRA operation. 

FIG. 28 is a flow chart of the compute frequency­
domain syndromes operation. 

FIG. 29 is a flow chart of the compute error locator 45 
polynomial coefficients operation. 

FIG. 30 is a flow chart of the find errors and adjust 
CRC residue operation. 

8 
ter and the error detection, identification and correction 
logic required by the CCS standard. The CL-SM331 
SCSI Optical Disk Controller implements a Small Com-
puter System Interface (SCSI), Buffer Manager and 
Sector formatter. The CL-SM330 and CL-SM331, 
along with buffer memory, a data separator and a local 
microcontroller with system Read-Only-Memory and 
Random-Access-Memory, complete a high-perfor­
mance, low-cost optical disk controller subsystem. 

A local microcontroller provides both the CL­
SM330 and the CL-SM331 with initial operating param­
eters, such as disk sector format, type and size of buffer 
memory and SCSI host controller. During data transfer 
operations, the CL-SM330/331 require only minimal 
intervention from the local microcontroller. Features 
such as auto-incrementing ID registers and fully­
automated error correction (in typical cases) minimize 
the microcontroller's real-time interaction with disk 
activity. 

FIG. 7 is a block diagram of the CL-SM330 inte­
grated circuit showing its interfaces to the CL-SM331, 
the microcontroller, and the optical drive, as well as its 
ENDEC and ECC/CRC circuits. The present inven­
tion is part of the ECC/CRC block shown. The mi­
crocontroller-to-CL-SM330 communication path is a 
multiplexed address and data path similar to that pro­
vided by Intel 80188 and Motorola 68HC11 classes of 
microcontrollers. A configuration pin is available to 
allow selection of the microcontroller-bus control-sig­
nal method of either class. Virtually all controller func-
tions are programmable by the microcontroller via 
read/write registers. This provides substantial firmware 
control over drive operation to allow for various retry 
methods and other unique requirements. The CL­
SM330 has centralized status registers with interrupt 
capability. These features allow firmware designers 
flexibility in writing polled loops or interrupt handlers 
to provide real-time process control critical in embed­
ded controller drive applications. 

The data interface between the CL-SM330 and CL­
SM331 is a serial NRZ interface. NRZ data is transmit­
ted between the two devices with the Read-Reference 
Clock (RRCLK). Disk interface control signals, such as 
"Sector Mark Found" "ID Found" etc., are used for 
synchronization of the data transfer between the CL-
SM330 and CL-SM331. A dedicated serial Error Vec­
tor Interface transfers error correction vectors with the 
System Clock (SYSCLK) to the CL-SM331 for actual DESCRIPTION OF THE PREFERRED 

EMBODIMENT 

SYSTEM DESCRIPTION 

50 correction of erroneous bytes in the buffer. To protect 
against errors in the information transmission between 
the two devices, eight-bit checksums cover all informa­
tion transferred over the NRZ Interface and the Error FIG. 6 is a block diagram of an optical disk system for 

data storage that embodies the present invention within 
the CL-SM330 integrated circuit. The CL-SM330 and 55 
CL-SM331 are a set of two high-integration, integrated 
circuits for optical disk controllers for embedded con­
troller applications. They fully support the ANSI/ISO 
industry standard optical disk formats using the CCS 
(Continuous Composite Servo) standard for both 90 60 
mm (3.5") and 130 mm (5.25") optical disk drives. The 
rewritable, partial ROM and WORM (Write Once 
Read Many) standards are supported. The high integra­
tion and optimized pin-out of the CL-SM330/331 make 
them suitable for embedded controller applications, 65 
particularly for 90 mm drives where only limited board 
space is available. The CL-SM330 Optical Disk EN­
DEC/ECC implements the encoder/decoder/format-

Vector Interface. An Interrupt line allows optional 
connection of the CL-SM331 and CL-SM330 interrupt 
mechanisms, resulting in a single interrupt line to be 
handled by the local microcontroller. 

The CL-SM330 supports standard 512-user-data-byte 
sectors with five ECC interleaves or 1024-user-data­
byte sectors with ten ECC interleaves. Correction of 
erroneous data in the buffer is performed by the CL-
SM330/331 controller independent of the microcon­
troller. All but worst-case errors are corrected "on-the­
fly", without loss of disk revolutions. "On-the-fly" op­
eration is achieved by identifying the introduced errors 
using the present invention and generating error correc-
tion vectors for each sector while the next adjacent 
sector is being read by the controller. Error correction 
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10 
vectors are transmitted to the CL-SM331 through the 
dedicated serial Error Vector Interface. An indepen­
dent Corrector Clock input (CORRCLK) is provided 
for the ECC/CRC block to allow optimum error identi­
fier performance, independent of the System Clock 5 
frequency. Overlay CRC verification is performed in 
hardware during the error identification process, result­
ing in very low miscorrection probability without sig­
nificant performance penalty. 

The CL-SM330 ENDEC section includes the RLL 10 
(2,7) encoder/decoder and circuitry for the generation 
and detection of the special marks required by the opti­
cal disk format. Full ANSI/ISO format support pro­
vides for programmable Sector Mark, ID Field, Data 
Sync Mark and Resync Mark thresholds, as well as 15 
automatic hardware PLL synchronization and re-syn­
chronization capability, compensation for Sector Mark 
asymmetry, Flag generation and written Flag detection. 
Output signals are provided to indicate the position of 
the Pre-Formatted data area, the Track Offset Flag area 20 
and the Automatic Laser Power Control area. 

The data connection from the CL-SM330 to the opti­
cal drive is a serial RLL (2, 7) encoded interface. Output 
signals are also provided for data synchronizer (PLL) 
control; during either normal phase lock or, if phase 25 
lock is lost while reading, these signals can be used to 
control the synchronization or resynchronization of the 
phase-locked loop to the incoming data stream. A gen­
eral-purpose eight-bit output port and a general-purpose 
eight-bit input port, as well as two general purpose 30 
interrupt inputs, are available on the CL-SM330 to 
allow customization of the drive interface and minimize 
external component requirements. 

FIG. 8 is a block diagram of the CL-SM331 inte­
grated circuit including its interfaces with the SCSI bus 35 
and the microcontroller, Buffer Manager and Differen­
tial Control circuits, as well as its Format Sequencer 
and associated Writable Control Store (WCS) and Sec­
tor Formatter Data Path. The CL-SM331 Microcon­
troller Interface is similar to that of the CL-SM330 40 
Microcontroller Interface, with the addition of a Ready 
signal which enables the CL-SM331 to force wait states 
on the microcontroller address/data bus. 

The CL-SM331 SCSI is designed for compliance 
with the SCSI-II specification; see Small Computer 45 
Standard Interface-2 Draft Proposed American Na­
tional Standard, XT9.2/86-109 Rev. lOc, X3.131-199x, 
Mar. 9, 1990. The SCSI logic includes integrated 48 mA 
drivers for the single-ended option as well as signals for 
control of the external logic necessary to implement the 50 
differential transceiver option. Both the asynchronous 
and synchronous transfer protocols are supported in 
either Initiator or Target mode. Routine bus control 
operations such as arbitration, selection and reselection 
are automatically sequenced in hardware. This method 55 
of implementing the SCSI Interface makes the SCSI 
protocol firmware extremely flexible and very efficient. 

The CL-SM331 Buffer Manager controls the flow of 
data between the SCSI and disk interface. These inter­
faces store and retrieve data from the buffer memory 60 
using interleaved access cycles. The actual buffer mem­
ory may be implemented with static or dynamic RAM 
devices. The CL-SM331 Buffer Manager is program­
mable to provide all of the necessary address and con­
trol signals for RAM devices of varying access times. 65 
Up to 256 KBytes of SRAM can be directly addressed 
by the CL-SM331. As much as 4 MBytes of DRAM is 
directly supported by the CL-SM331 with specific con-

trol for 64 Kbit, 256 Kbit, 1 Mbit and 4 Mbit devices. In 
DRAM mode, refresh cycles are generated automati­
cally through a third channel to the buffer memory in 
addition to the concurrent disk and SCSI accesses. The 
CL-SM331 Buffer Manager accepts error correction 
vectors from the CL-SM330 chip and automatically 
corrects errors in the buffer RAM with no interruption 
of the current data transfer. 

The CL-SM331 Format Sequencer, WCS and Sector 
Formatter Data Path blocks provide for interface be­
tween the CL-SM331 and CL-SM330, as described 
above. The Data Path logic performs the serial-to-paral­
lel and parallel-to-serial conversion for NRZ data trans­
fer between the buffer and the CL-SM330. The Format 
Sequencer controls the low-level sector format control, 
as defined by the pattern loaded in the WCS. 

TWO-STEP SYNDROME COMPUTATION 

Define Lx.J as the largest integer not greater than x 
and define t= L(d-l)/2J. 

Equation (3) can be written as 

t-1 . . . . d-2-t (j TI f9) 
S · = L [R-*am:T)*al'1$a1"1* L [R·+1•am· +t,J•oJ>i 

m+• j=O ; j=O ; 

where 

(9a) 

. d-2-t (j TI .. 
B +·=a'"'* L [R·+t*am· +1,J*ol"' 

m 1 j=O ; 

(9b) 

From equation (9) it is clear that the computation of 
frequency-domain syndromes Sm+;can be performed in 
two steps wherein one step produces values Am+;, the 
other step produces values Bm+i, and syndromes Sm+i 
are formed as the EXCLUSIVE-OR sums of respective 
values Am+; and Bm+i· 

The circuitry of FIG. 9 implements equation (9) for 
codes with odd d; it comprises t registers 127 denoted 
D(O) through D(t-1); t constant finite-field multipliers 
120 implementing multiplication by aj for j from 0 to 
t-1; t three-input multiplexers 121; register 128 DM; a 
constant finite-field multiplier 122 implementing multi­
plication by am; a t-input EXCLUSIVE-OR circuit 
123; register 129 DT; a constant finite-field multiplier 
126 implementing multiplication by at; and two variable 
finite-field multipliers 124 and 125. Multipliers 124 and 
125 may be implemented as one multiplier with appro­
priate multiplexing of inputs and output, which is pre­
ferred due to the circuitry cost of variable multiplexers. 
All registers, multiplexers, multipliers and data paths 
are symbol wide. Values Am+; are produced on OUT1 
and values Bm+i are produced on OUT2. 

In the first step of operation of FIG. 9, DM is initial­
ized to ao, then the following process is repeated t times 
for j from 0 to t-1: present coefficient Rj and assert 
control signal LD_DG) to store in D(j) the product of 
Rjand the output ofDM, and store the output of multi­
plier 122 in DM. Then control signal EN is asserted and 
the following process is repeated d-1 times for i from 
0 to d-2: save elsewhere value Am+i on OUT1 and 
store the outputs of multipliers * aj 120 in respective 
registers D(j) for j from 0 to t-1. 
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In the second step of operation of FIG. 9, DM is 
initialized to at·m and the following process is repeated 
t times for j from 0 to t-1: present coefficient Rj+tand 
assert control signal LD-DG) to store in DU) the prod­
uct ofR.;+rand the output ofDM, and store the output 5 
of multiplier 122 in DM. Then DT is initialized to aO, 
control signal EN is asserted and the following process 
is repeated d-1 times for i from 0 to d-2: save as Sm+i 
the EXCLUSIVE-OR sum of value Bm+;on OUT2 and 
value Am+i from the first step, store the outputs of 10 
multipliers* ai120 in respective registers DU) for j from 
0 to t-1, and store the output of multiplier * at 126 in 
DT. 

Using the circuit of FIG. 9, it is possible to reverse 
the order of the two steps, first processing Rt through 15 
lld-2and then processing Ro through Rt-I· In the first 
step of operation, initialize DM to at·m load registers 
DU) while presenting Rt through lld-2, then initialize 
DT to aO and save elsewhere values Bm+;from OUT2. 
In the second step of operation, initialize DM to aO, 20 
load registers D(j) while presenting Ro through Rr- i, 

then save as Sm+;the EXCLUSIVE-OR sum of values 
Am+; from OUTl and respective values Bm+;from the 
first step. 

With a slight modification to the circuit of FIG. 9, it 25 
is possible to reverse the order in which the remainder 
coefficients Rj are processed within each step, in one 
step processing lld-2 through Rt and in the other step 
processing Rt- I through Ro. Replace multiplier 122 
with a multiplier implementing multiplication by a-m. 30 
In the first step of operation, initialize DM to a<d-2)·m, 
load registers D(j) while presenting lld-2 through R1, 

then initialize DT to a0and save elsewhere values Bm+i 
from OUT2. Then in the second step of operation, ini­
tialize DM to a(t-l)·m, load registers D(j) while present- 35 
ing Rt-I through Ro, then save as syndromes Sm+; the 
EXCLUSIVE-OR sums of values Am+i from OUTl 
and respective values Bm+;from the first step. Alterna­
tively, in the first step of operation, initialize DM to 
a<t-l)·m and load registers D(j) while presenting Rr-1 40 
through Ro, then initialize DT to aO and save elsewhere 
values Bm+i from OUT2. Then in the second step of 
operation, initialize DM to a(d-2)·m, load registers D(j) 
while presenting lld-2 through Rr, then save as syn­
dromes Sm+i the EXCLUSIVE-OR sums of values 45 
Am+; from OUTl and respective values Bm+;from the 
first step. 

When d is even, the equation for values Bm+i be­
comes 

B + · = a 1·i• f [R+ •am{i+t~•afi 
m 1 j=O "} I 

50 
(9c) 

and the circuit of PIG. 9 is modified to include a register 
D(t) and another constant finite-field multiplier 120 55 
implementing multiplication by at and another three­
input multiplexer 121, all connected as for existing reg­
isters D(j), multipliers 120 and multiplexers 121. EX­
CLUSIVE-OR circuit 123 becomes a (t+ 1)-input EX­
CLUSIVE-OR circuit. Operation is modified to load 60 
register D(t) with zero before producing values Am+i 
and with Rz.r before producing values Bm+i· Remainder 
coefficients may be processed in reverse order by per­
forming the same modification described above. 

When d is even, it is possible to compute the syn- 65 
dromes in two steps wherein one step processes remain­
der coefficients Rj for j from 0 to t and the other step 
processes coefficients Rjfor j from t+l to d-2. To do 

12 
so requires only replacing multiplier 126 with a multi­
plier implementing multiplication by at+ I. D(t) is 
loaded with Rt before producing values Am+i and with 
zero before producing values Bm+i· 

Equation (3) can also be written as 

. 2·t-I (j ) . . d-2-t f!O\ .. 
Sm+i = a-1·1• ::?: [R·_ 1•am· - 1]•af"1$ ::?: [R"am:T)0al·1 

j=t J j=t J 

where 

. z.t-1 (j ) .. 
Am+i = a-1·1• .::?: [Rj-r*am· -t ]*al"' 

;=t 

d-2-t ... 
Bm+i = .::?: [Rj*am:TJ•a!·1 

;=t 

(!Oa) 

(!Ob) 

From equation (10) it is clear that the computation of 
frequency-domain syndromes Sm+;can be performed in 
two steps wherein one step produces values Am+i• the 
other step produces values Bm+i• and syndromes Sm+i 
are formed as the EXCLUSIVE-OR sums of respective 
values Am+i and Bm+i· 

The circuitry ofFIG.10 implements equation (10) for 
codes with odd d; it comprises t registers 137 denoted 
D(t) through D(2·t- l); t constant finite-field multipli­
ers 130 implementing multiplication by ai for j from t to 
2·t-1; t three-input multiplexers 131; register 138 de­
noted DM; a constant finite-field multiplier 132 imple­
menting multiplication by am; a t-input EXCLUSIVE­
OR circuit 133; register 139 denoted DT; a constant 
finite-field multiplier 136 implementing multiplication 
by a-t; and two variable finite-field multipliers 134 and 
135. Multipliers 134 and 135 may best be implemented 
as one multiplier with appropriate multiplexing of in­
puts and output. Values Am+i are produced on OUT2 
and values Bm+i are produced on OUTl. 

In the first step of the operation of FIG. 10, DM is 
initialized to aO and the following process is repeated t 
times for j from t to 2·t- l: present coefficient Rj-t and 
assert control signal LD-D(j) to store the product of 
Rj-t and the output of DM in D(j), and store the output 
of multiplier * am 132 in DM. Then DT is initialized to 
aO control signal EN is asserted and the following pro­
cess is repeated d-1 times for i from 0 to d-2: save 
elsewhere value Am+;from OUT2, store the outputs of 
multipliers * ai 130 in respective registers D(j) for j from 
t to d-2, and store the output of multiplier* a-t136 in 
DT. 

In the second step of operation of FIG. 10, DM is 
initialized to at·m and the following process is repeated 
t times for j from t to 2·t-1: present coefficient Rjand 
assert control signal LD-DQ) to store the product of 
Rjand the output ofDM in D(j), and store the output of 
multiplier 132 am in DM. Then control signal EN is 
asserted and the following process is repeated d-1 
times for i from 0 to d-2: save as Sm+! the EXCLU­
SIVE-OR sum of value Bm+i from OUT2 and value 
Am+i from the first step and store the outputs of multi­
pliers ai 130 in respective registers DU) for j from t to 
d-2. 

Using the circuit of FIG. 10, it is possible to reverse 
the order of the two steps, first processing Rt through 
Ra-2 and then processing Ro through Rr-1· In the first 
step of operation, initialize DM to at·m, load registers 
D(j) while presenting Rt through lld-2, then save else-
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where values Bm+i from OUTl. In the second step of 
operation, initialize DM to aD load registers DU) while 
presenting Ro through Rt- i, then initialize DT to aO 

and save as Sm+; the EXCLUSIVE-OR sum of values 

14 
dromes Sm+i as the EXCLUSIVE-OR sums of respec­
tive values Am+i and Bm+i· 

SHARING ERROR LOCATION CIRCUITRY 

Am+; from OUT2 and respective values Bm+;from the 5 Errors can be located by finding the inverse roots of 
first step. the error locator polynomial 

With a slight modification to the circuit ofFIG.10, it 
is possible to reverse the order in which the remainder 
coefficients Rj are processed within each step, in one 
step processing lld-2 through Rt and in the other step 10 
processing Rt- I through Ro. Replace multiplier 132 
with a multiplier implementing multiplication by a-m. 
In the first step of operation, initialize DM to a(d-2)·m, 

load registers DU) while presenting lld-2 through Rt, 
15 then save elsewhere values Bm+i from OUTl. In the 

second step of operation, initialize DM to a(t-1)-m load 
registers DU) while presenting Rt- I through Ro. then 

e . 
cr(x) = l: cr .. xl 

j=O l 

(11) 

where e is the number of errors, 1 ;;§ e ;;§ t. Observe that 
at a root ai of o-(x), 

cr(x) I = J cr/ai·i = O. 
ai ;=0 

(12) 

initialize DT to aO and save as syndromes Sm+i the The roots of o-(x) can be found by successively evalu­
EXCLUSIVE-OR sums values Am+i from OUT2 and 20 ating o-(x) at all x=ai for i from 0 to n:-1, wh~re n<2b 
respective values Bm+i from the first step. Alterna- is the codeword length. A value of a1 for which o-(a1) 

tively, in the first step of operation, initialize DM to evaluates to zero is a root of o-(x), and (-i) is the corre-
at·m, load registers DU) while presenting Rt-1 through sponding error location. This method is known as a 
Ro, then initialize DT to aO and save elsewhere values Chien search. 
Am+i from OUT2. In the second step of operation, 25 The circuit of FIG. 11 can be shared for computing 
initialize DM to a(d-2)-m load registers DU) while pres- frequency-domain syndromes according to equation (9) 
enting lld-2 through Rt, then save as syndromes Sm+i and for finding the roots of the error locator polynomial 
the EXCLUSIVE-OR sums of values Bm+;from OUTl o-(x) according to equation (12) for codes with odd d. 
and respective values Am+i from the first step. FIG. 11 comprises t+ I _registers den?te.d D(O) t~ough 

When d is even, the equation for values Bm+i be- 30 D(t); t+ 1 constant firute-~eld multipliers 140 unple-
comes menting multiplication by a/for j from 0 tot, t+ 1 three-

(!Oc) 

input multiplexers 141; a symbol-wide gating circuit 
146; register DM; a constant finite-field multiplier 142 
implementing multiplication by am; a (t+ 1)-input EX-

35 CLUSIVE-OR circuit 143; and two variable finite-field 
multipliers 144 and 145. Multipliers 144 and 145 may 

and the circuit of FIG. 12 is used. <;>Peration is ~imilar to best be implemented as one multiplier with appropriate 
th~t for FIG. 10 except. that register D(2·t) is _loaded multiplexing of inputs and output. All registers, multi-
w1th zero bef~re producmg values A~+i and with. Ru pliers, multiplexers and data paths are symbol wide. 
before producmg ".alues Bm+;. Remamder _co~ffic1ents 40 FIG. 11 implements a reduction in circuitry which is 
may be pro~ess~d ~n reverse order ~y modifymg FIG. possible when dis odd; when dis even the circuit of 
12 m a fashion similar to that descnbed for FIG. 10. FIG. 9 modified for even d as described above, is used. 

When d is even, it is possible to ~odify the circuit ?f The' computation of frequency-domain syndromes 
FIG. 12 to compute the ~yndromes ~two steps ~herein with the circuit of FIG. 11 is performed in a fashion 
one step processes remamder coefficients ~jfor J from~ 45 similar to that used for the circuit of FIG. 9. Control 
to t and the other step processes ~oeffic1ents Rj f~r J signal GT is deasserted so that the output of gating 
from t+ 1 to d-2. To do so requrres only replacmg circuit 146 is zero. 
multiplier 156 with a multiplier implementing multipli- The search for the roots of o-(x) using the circuit of 
~ation by at+l. D(2·t) ~s loaded with Rt befo~e produc- FIG. 11 is accomplished by first loading coefficients O"j 
mg values Am+; and with zero before producmg values 50 into the e+ 1 registers D(e-j) for j from O to e and 
Bm+i· loading zero into registers the t-e registers DU) for j 

In the preferred embodiment of the invention, the from e+ 1 tot. Control signal GT is asserted so that the 
CL-SM330's Encode/Decode LFSR block presents input of gating circuit 146 is passed to its output. The 
interleaved remainder coefficients Rj sequentially from following process is repeated n times for i from 0 to 
lld-2 of the frrst interleaved codeword to Ro of the last 55 n -1: if OUTl is zero, a root has been found and the 
interleaved codeword, and these coefficients are stored error location is i; to search for another root, store the 
in the error identifier RAM in that order beginning at a outputs of multipliers * uj 140 in respective registers 
fixed address. Further, the number of interleaved code- DU) for j from O to t. 
words can be either five or ten, so the address in the Multiplying equation (12) by ai·t and transfonning j, 
identifier RAM of coefficient Ro of a codeword is not 60 we obtain 
fixed. Therefore it is desirable to use a syndrome com-
putation which accepts the remainder coefficients in 
order from lld-2to Ro; where the order of the two steps 
of syndrome computation is reversed and the order in 
which the coefficients Rj are processed within each 65 
steps is reversed, i.e. in the first step, lld-2 through Rt 
are processed to produce values Bm+;and in the second 
step, Rr-1 through Ro are processed to produce syn-

. I t+e .. 
a1·'•cr(x) . = l: <rj-t*a/"1 = 0. 

a' j=t 

(13) 

The circuit of FIG. 12 can be shared for computing 
syndromes according to equation (10) and for fmding 
the roots of the error locator polynomial o-(x) accord-
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ing to equation (13). FIG. 12 comprises t+ 1 registers 
157 denoted D (t) through D(2·t); t+ 1 constant finite­
field multipliers 150 implementing multiplication by ai 
for j from t to 2·t; register 158 denoted DT; a constant 
finite-field multiplier 156 implementing multiplication S 
by a- 1; t+ 1 three-input multiplexers 151; register 159 
denoted DM; a constant finite-field multiplier 152 im­
plementing multiplication by am, a (t+ 1)-input EX­
CLUSIVE-OR circuit 153; and two variable finite-field 
multipliers 154 and 155. Multipliers 154 and 155 may 10 
best be implemented as one multiplier with appropriate 
multiplexing of inputs and output. All registers, multi­
pliers, multiplexers and data paths are symbol wide. 

The computation of frequency-domain syndromes 
with the circuit of FIG. 12 is performed in a fashion 15 
similar to that used for the circuit of FIG. 10. 

The search for the roots of o-(x) using the circuit of 
FIG. 12 is accomplished by first loading the coefficients 
O"j-t into the e+ 1 registers D(e-G-t)) for j from t to 
t+e and loading zero into the t-e registers DG) for j 20 
from t+e+ 1to2·t. The following process is repeated n 
times for i from 0 to n-1: if OUTl is zero, a root has 
been found and the error location is i; to search for 
another root, store the outputs of multipliers * ai 150 in 
respective registers DG) for j from t to 2·t. 25 

Circuitry for computing syndromes in two steps and 
performing the Chien search is implemented in the pre­
ferred embodiment as shown in FIG. 16, FIG. 20, and 
FIG. 21. The IDC block fetches instructions from the 
ROM and decodes them to generate control signals for 30 
the RAM and the other blocks. Remainder coefficients 
R1; values Bm+;and syndromes Sm+1; and error locator 
polynomial coefficients Oj are stored in the RAM, with 
values Bm+;and syndromes Sm+;sharing the same stor­
age elements. Registers 192 denoted D(O) through D(8); 35 
multiplexers 191 denoted M(O) through M(8); multipli­
ers 193 denoted A(8) through A(16); and EXCLU­
SIVE-OR circuit 194 denoted FX of FIG. 20 corre­
spond to registers D(t) through D(2·t); multiplexers 151; 
multipliers * ai 150 for j from t to 2·t; and EXCLU- 40 
SIVE-OR circuit 153 ofFIG.12. Registers 202 denoted 
A135L, multiplier 201 denoted A135, register 206 de­
noted DO, and multiplier 204 denoted A247 of FIG. 21 
correspond to register DM, multiplier * am 152; register 
DT, and multiplier * a-t 156 of FIG. 12. Finite-field 45 
variable multiply-and-sum circuit 208 denoted VMS of 
FIG. 21 corresponds to finite-field variable multipliers 
154 and 155 of FIG. 12 implemented as a single multi­
plier with multiplexed inputs and outputs and the circuit 
which produces the syndromes Sm+i as the EXCLU- SO 
SIVE-OR sums of corresponding values Am+i and 
Bm+i· 

IMPROVED ITERATIVE ALGORITHM 

FIG. 13 is a flow chart of the improved iterative 55 
algorithm of the present invention. In FIG. 13, the 
"+ +" operator exchanges the values of two variables 
and Vd, Vn and Vk are arbitrary non-zero constants. In 
step 11, counters n, lk and In; parameter dk; and polyno­
mials a{k) and a{n) are initialized. In step 12, a{k) is 60 
multiplied by x and the nth discrepancy dn is calculated. 
If dn is zero, control passes to step 15. Otherwise, if 
counter lk is less than or equal to the counter In, control 
is passed to step 14. Otherwise step 13 exchanges the 
values of counters lk and In; exchanges the values of 65 
parameters dk and dn; and exchanges the values of a{k) 
and a{n) by exchanging the addresses of a{k) and a{n). 
Step 14 updates error locator polynomial a{n). Step 15 
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increments counter n. Then if counter n is less than 
t+ln, control is passed to step 12. Otherwise, the itera­
tive algorithm has been completed and o-(n) is the de­
sired error locator polynomial. 

The improved iterative algorithm reduces implemen­
tation complexity and cost by requiring only two poly­
nomial coefficient storage areas, instead of three, and 
decreases the time needed to compute the error locator 
polynomial by eliminating the need to copy polynomial 
coefficients from one storage element to another. The 
improved iterative algorithm is particularly suited for 
implementation in hardware, where exchanging the 
values of two variables is simply accomplished by cross­
connecting the outputs and inputs of two registers 
which contain the values, or, as in the case of variables 
stored in a random-access memory, of two registers 
which contain the addresses of the memory elements 
which contain the values. 

In the preferred embodiment of the invention, imple­
mentation complexity is reduced and speed of operation 
is increased by storing the coefficients of each polyno­
mial a{n) and a{k) in a number of memory elements 
equal to 2·t+ 1 wherein the first t and last t elements are 
initially cleared to zero and the middle element is initial­
ized to an arbitrary non-zero constant. The coefficients 
of polynomials a{n) and a{k) are stored in order of in­
creasing degree of x. The operation of multiplying a{k) 
by x is implemented by decrementing a register contain­
ing the address of the low-order coefficient of a{k). The 
operation of exchanging the coefficients of a{n) and 
a{k) is implemented by exchanging the contents of two 
registers containing the addresses of the low-order coef­
ficients of a{n) and a{k). The operation of computing 
a{n)= dk*a{n)EBdn*a{k) where lk<ln is performed in a 
loop repeated In times for i from 0 to In -1. This opera­
tion does not require any special treatment for those 
coefficients of a{k) where i>lk. 

Circuitry for performing the new iterative algorithm 
of the present invention as implemented in the preferred 
embodiment is shown in FIG. 16, FIG. 17, FIG. 21 and 
FIG. 23. Referring to FIG. 16, the IPC (Instruction 
Processing Circuit) block FIG. 23 fetches instructions 
from the ROM and controls the circuitry of the RAM, 
the APC (Address Pointer Circuit) block FIG. 17 and 
the FFP (Finite Field Processor) block FIG. 21. The 
RAM holds the value of counter n at location N; the 
syndromes, beginning at location S; and the coefficients 
of polynomials a{k) and a{n), low-order first beginning 
at the locations contained in registers 175 denoted SK 
and 171 denoted SN of FIG. 17, respectively. Registers 
277 denoted LK and 278 denoted LN of FIG. 23 con­
tain the values of counters lkand In, respectively. Regis­
ters 203 denoted DK and 206 denoted DO of FIG. 21 
hold the values of parameters dk and dn, respectively. 

For step 1, LK and LN are cleared to zero, SK and 
SN are initialized, the locations in the RAM used for the 
coefficients of polynomials a{k) and o-(n) are initialized, 
DK is initialized to a non-zero value, and Dl is initial­
ized to -(t-2). For step 2, location N in the RAM is 
written from Dl, LK is incremented, a{k) is multiplied 
by x by decrementing SK, DO is cleared, and the nth 
discrepancy dn is calculated by using the VMS Variable 
Multiply-and-Sum block of FIG. 21 to sum into DO the 
products of the contents of the RAM elements pointed 
to by SN and the syndromes in the area in the RAM 
beginning at location S. The block 274 denoted M40 of 
FIG. 23 is used to determine if parameter dn is zero; if 
so, control passes to step 5. Otherwise, block 212 de-
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noted ADD (Integer Addition Circuit) (FIG. 21) and 
block 270 denoted AGZ (Greater-than-Zero) Detection 
Circuit) {FIG. 23) are used to determine if the contents 
of LK are less than or equal to the contents of LN; if so, 
control is passed to step 14. Otherwise for step 13, the 5 
contents of LK and LN are exchanged; the contents of 
DK and DO are exchanged; and the contents of SK and 
SN exchanged. For step 14, the coefficients of polyno­
mial uf..n) are updated by using the VMS block of FIG. 
21 to sum the products of the contents of DK and the 10 
contents of the RAM elements pointed to by SK with 
the products of the contents of DO and the contents of 
the RAM elements pointed to by SK using the VMS 
block of FIG. 21 and then storing the results into the 
RAM elements pointed to by SN. For step 15, the ADD 15 
block of FIG. 21 and the AGZ block of FIG. 23 are 
used to determine if the sum of the contents of Dl and 
the contents of LN is less than or equal to zero; if so, the 
ADD block of FIG. 21 is used to form in Dl the sum of 
one and the contents of the RAM at location N, and 20 
control is passed to step 2. Otherwise, the iterative algo­
rithm has been completed; LN holds the degree and SN 
holds the address in the RAM of the coefficients of the 
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spectively. For all i greater than d-1, either zero or the 
value of the error in the symbol corresponding to i is 
clocked into the CRA. 

After all n locations of an interleave in error have 
been processed, the contents of the de- I CRA regis­
ters are shifted out of the CRA and EXCLUSIVE-OR­
ed into dc-1 storage elements elsewhere, and the dc-1 
CRA registers are cleared to zero. Referring to FIG. 18, 
the contents of the CRA are shifted out and the CRA 
registers are cleared to zero by asserting control signals 
EN and SH and deasserting control signal FB. In the 
preferred embodiment, referring to FIG. 21, the con­
tents of each CRA register are presented in turn on 
CRA_OUT and, using the VMS block, multiplied by 
AL-OUT and EXCLUSIVE-OR-ed with the contents 
of the corresponding RAM storage element presented 
on RAM-OUT, the result being stored in Dl and then 
Dl-OUT being back into the RAM storage element. 
This procedure works because AL-OUT is always the 
same, an- t. after each interleave has been processed, 
and the fact that the adjusted CRC residue bytes for 
each interleave have all been multiplied by a common 
non-zero factor is immaterial if the sum of all the ad-

25 justed CRC residue bytes is zero. Implementation com-
CONCURRENT CRC RESIDUE ADJUSTMENT plexity is reduced because no unique instruction or 

error locator polynomial uf..x). 

In the preferred embodiment of the invention, the instruction .exception condition need be implemented. 
adjustment of the CRC information required whenever After all mterleaved codewords have been proces~e~, 
an error is identified is performed during the Chien the dc-1 stora~e elements are checked for zero. ~his is 
search. Circuitry for performing the CRC residue ad- 30 perform~ addmg ze~o to each acc~ul.ated adjusted 
justment as implemented in the preferred embodiment is CRC residue byte usmg the ADD crrcwt of the FFP 
shown in FIG. 18, FIG. 21, and FIG. 23. FIG. 21 and using the M40 OR circuit in the IPC FIG. 

The CRC residue is adjusted in a dedicated CRC 23 to detect any non-zero value. 
Residue Adjuster (CRA) comprising a Linear Feedback ERROR IDENTIFIER ARCHITECTURE 
Shift Register (LFSR) implementing the reciprocal of 35 
the CRC code generator polynomial. The registers in FIG. 14 shows the CL-SM330's ECC/CRC block, 
the CRA are initially loaded with the CRC residue including the interfaces between the error identifier, the 
symbols. Referring to FIG. 18, loading the CRA regis- Encode/Decode LFSR block, and the other blocks of 
ters is performed by asserting control signal EN and the CL-SM330. The CORRCLK (Correction Clock) 
deasserting control signals SH and FB while presenting 40 signal clocks the synchronous logic of the error identi-
the CRC residue symbols on RAM-OUT, most-signifi- tier. The five configuration signals SIZE, FORM, 
cant symbol first. SUPP, DIAG and VU_PTR and the START, STOP, 

The search for roots ai of the error locator polyno- CONT and DISABLE signals are the outputs of regis-
mial is performed sequentially for all i from O to n. For ters in the CL-SM330's Microcontroller Interface block 
each interleave in error, before the search for roots 45 which are programmed by the external microcontroller. 
reaches i equal to d-1, zero is clocked into the CRA x The BUSY, DONE, ECC-ERR, CRC-ERR, THR_ 
times, where x is the non-inclusive number of CRC ERR and OVERRUN signals are applied to the CL-
redundancy symbols between the last non-ECC-redun- SM330's Microcontroller Interface block. MPU-BUS 
dancy symbol of the interleave in error and the first provides an address bus, a data bus, and read/write 
ECC redundancy symbol of the first interleave. For 50 control signals for external microcontroller access to 
example, referring to FIG. 2, xis equal to 4, 3, 2, 1 and the error identifier RAM and register AO. The 
0 for the interleaved codewords containing the symbols RRCLK, CG-RG, RMNDR and T7 signals are pro-
labeled "VU4" "CRC1" "CRC2" "CRC3" and vided to the error identifier from the Encode/Decode 
"CRC4" respectively. Referring to FIG. 18, clocking a LFSR block. The VREADY signal is fed from the 
value into the CRA is performed by asserting control 55 CL-SM331 Buffer Manager through the CL-SM330's 
signals EN, SH and FB and presenting the value on SM331 Interface block to the error identifier. The SEN-
CRA.JN. D_ VEC signal and the FWD_OUT and DLOUT 

If a root is found for i equal to d-1, the error value buses are applied to the CL-SM330's SM331 Interface 
is clocked into the CRA; otherwise zero is clocked into block. 
the CRA. Then if the symbol corresponding to i equal 60 SIZE and FORM determine the number of inter-
~o d-1 is a CR<? redundancy. symbol, z.ero is. clocked leaves (hereafter abbreviated as NUM--1L VS) and the 
mto the CRA y times where y is the non-mclus1ve num- total number of bytes in the sector (hereafter abbrevi-
ber of CRC redundancy symbols between the symbol ated as NUM-BYTS): 
corresponding to i equal to d-1 and the last non-CRC-
redundancy symbol of the sector. For example, refer- 65 ------------------­
ring to FIG. 2, y is equal to 0, 0, l, 2 and 3 for the 
interleaved codewords containing the symbols labeled 
"VU4" "CRC1" "CRC2" "CRC3" and "CRC4" re-

SIZE 

0 
0 

FORM 

0 
I 

NUM-ILVS 

5 
5 

NUM_BYTS 

600 
610 



19 
5,384,786 

20 
-continued 

SIZE FORM NUM.JLVS 

x 10 

NUM_BYTS 

1200 

identifier RAM, the microcontroller firmware is always 
certain of the value of AO, implementation cost is re­
duced by providing no path for the microcontroller to 
read the contents of AO. There is normally no need to 

5 transfer error correction vectors for errors in the ECC 
redundancy bytes, so DIAG is advantageously imple­
mented to be {de)asserted by writing (zero)one to bit 4 
at address 3Fh, wherein other bits control other test 

SIZE, FORM, SUPP, DIAG and VU_PTR control 
assertion of SEND-VEC as described below. Asser­
tion of ST ART forces the error identifier to begin iden­
tifying errors using the current contents of RAM. If the 
error identifier is identifying errors, assertion of STOP 10 
forces the error identifier to cease identifying errors and 
to assert DONE. Assertion of DISABLE prevents the 
error identifier from beginning to identify errors at the 
trailing edge of CG-RG as described below. 

FIG. 15 shows the register address and bit assign- 15 
ments for the signals accessible to the external mi­
crocontroller through the CL-SM330's Microcontroller 
Interface block. A number in hexadecimal notation is 
denoted by appending h to it. Because the overall CL­
SM330 busy status is read from bit 6 at register 10h, 20 
BUSY is advantageously implemented to be read from 
bit 4 at address 10h. Because START is best imple­
mented as an edge-triggered control signal and the 
"write" function of bit 4 of register 10h would other­
wise be wasted, ST ART is advantageously imple- 25 
mented to be asserted by writing one to bit 4 at address 
10h. Because the CL-SM330 is configured for Read 
Sector operations by writing bits 3-0 of register 10h, 
SUPP is advantageously implemented to be simulta­
neously (de)asserted by writing (zero)one to bit 3 at 30 
address 10h. Placing the form factor, sector size and 
vendor-unique/pointer control signals in the same regis­
ter allows all three to be controlled with one microcon­
troller access; therefore vu_pTR is (de)asserted by 
writing (zero)one to bit 5 at address 11h, FORM is (de) 35 
asserted by writing (zero) one to bit 1 at address 11h, 
and SIZE is (de)asserted by writing (zero)one to bit 0 at 
address 11h. Disabling the error identifier and enabling 
continuous sector read operation are seldom-used func­
tions, so it is preferred that they be placed in register 40 
12h along with other relatively static CL-SM330 con­
figuration signals; DISABLE is {de)asserted by writing 
(zero)one to bit 3 at address 12h and CONT is {de)as­
serted by writing (zero)one to bit 0 at address 12h. Be­
cause it is desirable to control related functions by ac- 45 
cessing a single address and other medium-related CL­
SM330 microcontroller interrupts are enabled and dis­
abled through register 21h, it is implemented so that 
when one is written to bit 0 at address 21h, the CL­
SM330's Microcontroller Interface block will assert an 50 
interrupt signal to the external microcontroller when 
the error identifier asserts DONE. For ease of mi­
crocontroller firmware implementation it is advanta­
geous that interrupt status signals be read from the cor­
responding bits at another address, so DONE is read 55 
from bit 0 at address 23h. Placing the error signals for 
the error identifier in the same register with other CL­
SM330 error signals allows all to be read with one mi­
crocontroller access; therefore ECC-ERR, CRC_ 
ERR, THR_ERR and OVERRUN are read from bits 60 
7, 6, 5 and 4, respectively, at address 30h. Grouping the 
error identifier RAM address and data access address 
with the error identifier error access register yields a 
more logical organization of the CL-SM330 microcon­
troller address space, so AO is written at address 31h and 65 
the RAM element at the address in AO is read or written 
by reading or writing address 32h. Because AO is incre­
mented each time the microcontroller accesses the error 

modes of the CL-SM330. 
FIG. 16 is a block diagram of the error identifier. The 

major blocks comprising the error identifier are the 
Address Pointer Circuit 165 (APC), CRC Residue Ad­
juster 164 (CRA), Error Vector Control 166 (EVC), 
Frequency Domain Circuit 167 (FDC), Finite Field 
Processor 169, (FFP), Instruction Processing Circuit 
162 {IPC), Interleave & Sector Counters 163 (ISC), 
Random Access Memory 168 (RAM) and Read-Only 
Memory 161 (ROM). 

The output of a register or circuit is denoted by ap­
pending "_OUT" to its name. The input to a register or 
circuit is denoted by appending "-1N" to its name. A 
number in hexadecimal notation is denoted by append­
ing 'h' to it. Where not otherwise indicated, control 
signal inputs to registers, multiplexers, etc. are driven 
from the appropriate "xxx_CTU" bus from the IPC 
block 162, FIG. 23. 

In the preferred embodiment of the invention, each 
instruction is fetched from the ROM and stored in the 
seventeen-bit instruction register (IR), then decoded 
from IR-OUT and executed during the next clock 
cycle. By pipelining the instruction in this manner, it is 
immediately available at the beginning of each cycle 
with no ROM-access delay. Also, the decoding of in-
struction bits required to select the proper address to be 
applied to the RAM address bus is performed using 
ROM_OUT rather than IR-OUT, and the selected 
address is stored in the eight-bit RAM address register 
(RA) and applied during the next cycle. By pipelining 
the RAM address in this manner, it is immediately avail­
able at the beginning of each cycle with no instruction-
decoding delay. 

FIG. 17 is a block diagram of the Address Pointer 
Circuit (APC), which controls the address and data 
input buses of the RAM and the loading of FDC regis­
ters D(i). APC includes AO, Al, AM, D49, RA, RMX, 
SK and SN. 

AO is an eight-bit register 172 which can supply an 
address for indirect access to the RAM. AO can be 
loaded from SN_OUT, from RAM-OUT, or from the 
external microcontroller data bus. Bits 7-5 of A0-1N 
are forced to zero when SN is the source. AO can be 
incremented. NUM-IL VS can be added to AO. 

Al is a seven-bit register 176 which can supply an 
address for indirect access to the RAM or to the FDC 
registers D(i). Al can be loaded from SK-OUT or 
from ADD-OUT. Bits 7-5 of Al-IN are forced to 
zero when SK-OUT is the source. Al can be incre-
mented or decremented. 

AM is a three-input, eight-bit-wide multiplexer 173 
which supplies input to RA. Its inputs are AO_OUT, 
ALOUT and bits 6-0 of ROM_OUT. Bit 7 of AM­
OUT is forced to zero when Al_OUT or ROM_OUT 
is the selected source. 

D491s a four-to-nine decoder 177 with enable. Al_ 
OUT is applied to D49_IN. D49_0UT is applied to 
the LD-1)(i) inputs of FDC multiplexers M(i). 
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RA is an eight-bit register 174 which holds the ad­
dress applied to the RAM address bus during the execu­
tion of an instruction. RA is loaded from AM_OUT. 

RMX is a four-input, eight-bit wide multiplexer 178 
which supplies input to the RAM data bus. Its inputs are 5 
FDC-OUT, M3_0UT, CER._BUS and the external 
microcontroller data bus. 

SK is a five-bit register 17S which holds the address 
of the low-order coefficient of the a{k) polynomial in 

22 
condition, BCV asserts SEND_ VEC, causing the CL­
SM331 Interface block to execute an error correction 
vector transfer using the current values ofFWD_OUT 
andDLOUT. 

SUPP DIAG VU-PTR. 

x x 

FWD_OUT 
SIZE FORM CONDITION 

x x 

the RAM. SK can be preset to OEh or loaded from 10 0 
SN_OUT. SK can be decremented. 

x x x 

NONE 
ALLOWED 
ALL 
ALLOWED 
<512 
<1024 
<520 

SN is a five-bit register 171 which holds the address 
of the low-order coefficient of the a{n) polynomial in 
the RAM. SN can be preset to 1Fh or loaded from 
SILOUT. 15 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
I 
I 
1 

0 
1 
0 
0 
1 

x 
x 
0 
1 
x 

<530 
<1040 

FIG. 20 is a block diagram of the Frequency Domain 
Circuit (FDC), which is used to compute syndromes 
from the time-domain remainders and to search for the 
roots of the error locator polynomial. The FDC in the 
preferred embodiment is a variation on the circuit 
shown in FIG. 12. The FDC comprises nine eight-bit 
registers 192 denoted D(i) for i from 0 to 8, each associ­
ated with a constant finite-field multiplier 193 denoted 
A(8+i) and a two-input, eight-bit-wide multiplexer 191 
denoted M(i); plus a nine-input, eight-bit-wide EXCLU-

FIG. 18 is a block diagram of the CRC Residue Ad­
juster (CRA), which is a LFSR implementing H(x), the 
reciprocal of the Reed-Solomon generator polynomial 
GC(x) for the ANSI/ISO standard CRC code. CRA 
comprises four eight-bit registers (18S-188) denoted CO, 20 
Cl, C2 and C3; the CM computation circuit 183, de­
scribed below; a two input, eight-bit-wide multiplexer 
184 deonted MX; a two input, eight-bit-wide EXCLU­
SIVE-OR circuit 181 denoted BO; and an eight-bit 
gating circuit 182 denoted CG. The output of C3 is 25 
CRA-OUT. CRA-IN and CRA-OUT are applied to 
the inputs of BO. BO-OUT is applied to CG-1N. 
CG-OUT, C2-0UT, Cl-OUT and CO_OUT are ~IVE-OR ~irc~it 194 denoted FX; and an. eight-bit-
applied to inputs A, B, c and D of CM, respectively. mput OR ?rrcwt. FDO. The output of FX 1s FDC_ 
Outputs W X and y of CM are applied to C3-1N 30 OUT and 1s applied to FD0-1N. The output of each 
C2_IN and CLIN, respectively. Output z of CM and register_D(i) is applied to the input of A(8+i) and t? o_ne 
RAM-OUT are applied to the inputs of MX. MX- of the mputs of FX. The output of each multiplier 
OUT is applied to co_IN. ~(8+i~ is applied to on~ of the inputs ofM~i). FDC_I~ 

To "clock the CRA" means to perform the combina- 1s apphed to the other mput of eac~ ~ultipl~xer M(1). 
tion of actions specified by bits 4-1 of IR-OUT: 35 The output of each multiplexer M(1) 1s apphed to the 

4321 ACTION 
xxOx 

input of respective register D(i). When FDC register 
D(i) is to be loaded from FDC_IN, signal LD__J)(i) 
from D49_0UT is asserted. To "clock the FDC" 
means to record FDO-OUT in the FZD latch within 

xxlO 

xxll 

xOxx 

Disable loading of CO, Cl, C2 and C3; i.e. force 
control signal EN to zero. 
If LOC_GT16 is one, enable loading of CO, Cl, C2 and 
C3; i.e. force control signal EN to one if and only if 
LOCGT_J6 is one. 
Enable loading of CO, Cl, C2 and C3; i.e. force 
control signal EN to one. 
Force CG_out to zero; i.e. force control signal FB to 

40 the IAC; to load each register D(i) from the output of its 
associated finite-field multiplier A(i); to store AL­
PHAl_OUT in the AL register within the FFP; to 
store A13S-OUT in the A13SL register within the 
FFP; and to load the FWD register within the ISC from 

zero. 45 SUB-OUT within the ISC. 
xlxx Pass CGJN to CG_OUT; i.e. force control signal FB to 

one. 
Oxxx 

FIG. 21 is a block diagram of the Finite-Field Proces­
sor (FFP), which performs integer addition and vari­
able finite-field multiply-and-sum operations. It includes 
A135, A13SL, A247, ADD, AL, ALPHAl, DO, Dl, 

lxxx 

If enabled as specified above, load C3, C2 and CI from 
outputs W, X and Y of CM, respectively, and load CO 
from RAM_OUT; i.e. force control signal SH to zero. 
If enabled as specified above, load C3, C2, Cl and CO 
from outputs W, X, Y and Z of CM, respectively.; i.e. 
force control signal SH to one. 

50 DK, Ml, M2, M3, M4, MS and VMS. Except as noted, 
all data paths are 8-bits wide. 

CM is a four-input, four-output, eight-bit-wide con­
stant finite-field computation circuit with inputs A, B, C 55 
and D, and outputs W, X, Y and Z, which implements: 

W=H3*AEBB 
X=H2*AEf)C 

A13S is a constant finite-field multiplier 201 imple­
menting multiplication by al35. A13SL-OUT is applied 
to A135L. 

A13SL is an eight-bit multiplexed register 202 which 
holds X*al3s.L, where Lis the number of times A13SL 
has been clocked since it was loaded with X from !R­
OUT. The value loaded into A13SL is multiplexed 
between A135-0UT and bits 7-0 of IR-OUT. A13-Y=H1*A$D 

Z=Ho*A 60 SL_OUT is applied to A135-1N and Ml. 
where H; are the coefficients of H(x). 

FIG. 19 shows Error Vector Control (EVC), which 
controls the assertion of SEND-VEC, the signal 
which initiates transfer of an error correction vector to 
the CL-CSM331. Each time the error identifier has 65 
located and identified an introduced error, EVC exam­
ines the configuration signals and applies the selected 
condition to FWD-OUT. If FWD_OUT satisfies the 

A247 is a constant finite-field multiplier 204 imple­
menting multiplication by a247. DO-OUT is applied to 
A247-1N. A247_0UT is applied to MS. 

ADD is a two-input, eight-bit-wide integer addition 
circuit 212 with a one-bit carry-in signal CI implement­
ing S=A+B+Cl. Ml_OUT is applied to inpU:t A. 
M2_0UT is applied to input B. Bit C of IR._OUT is 
applied to input CI. 
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AL is an eight-bit register 210 which holds aL-1, M2-0UT is minimized in preference to the propaga-
where L is the number of times AL has been clocked tion delays from the other inputs of M2 to M2_0UT, 
since it was initialized to a - 1 by assertion of control and M2_0 UT is applied to input B of VMS rather than 
input I. AL-OUT is applied to ALPHAl-IN and M2. to input A of VMS. This minimizes the total propaga-
AL can be initialized to a- 1 or loaded from AL- 5 tion delay when a RAM element is applied to VMS and 
PHAl_OUT. increases the maximum CORRCLK rate which may be 

ALPHAl is a constant finite-field multiplier 209 im- applied to the error identifier. 
plementing multiplication by at. ALPHAl_OUT is FIG. 23 is a block diagram of the Instruction Process-
applied to AL_IN. ing Circuit (IPC), which controls the operation of other 

DO is an eight-bit register 206 which is used for many 10 
purposes. DO can be loaded from MS_OUT. DO_OUT portions of the error identifier. IPC contains AGZ, 
is applied to Ml, M2 and A247-1N. FZD, GTZ, IA, ID, IM, IR, LA, LC, LK, LN, M40, 

Dl is an eight-bit register 214 which is used for many NZR, XI and ZRO. 
purposes. Dl can be loaded from M4-0UT. Dl_OUT AGZ is an eight-bit greater-than-zero detection cir-
is applied to M2, M3 and the SM331 interface block. 15 cuit block 270. Greater than zero means the most-sig-

DK is an eight-bit register 203 which is used to hold nificant bit is zero and at least one other bit is non-zero. 
d k and for other purposes. DK can be loaded from DO ADD-OUT is applied to AGZ_IN. 
_OUT. DK _OUT is applied to Ml. FDO is an eight-bit-input circuit (block 272). FDC_ 

Ml is a six-input, eight-bit-wide invertible multiplexer OUT is applied to FDO_IN. 
207 which supplies input to VMS and ADD. Its inputs 20 FZD is a one-bit register (block 273) which records 
are DO-OUT, DK-OUT, LN-OUT, CRA_OUT, FDO-OUT whenever the FDC is clocked. 
Al3SL-OUT and zero. Bits 7-4 of the LN_OUT input GTZ is a one-bit register (block 271) which records 
are forced to zero. If bits P and 7 of IR-OUT are set, AGZ_OUT when each instruction is executed. 
each bit of Ml-OUT is inverted. IA is an eight-bit register (block 203), which holds 

M2 is a seven-input, eight-bit-wide multiplexer 211 25 the address applied to the ROM address bus. IA can be 
which supplies input to VMS and ADD. Its inputs are cleared to zero, incremented, and loaded from JM_ 
DO_OUT, DLOUT, LK-OUT, AL-OUT, RAM_ OUT. 
OUT, FDC_OUT and bits 7-0 ofIR-OUT. Bits 7-4 of ID is the Instruction-bit Decoding network (block 
the LK._OUT input are forced to zero. Bit 7 of the 291), which generates control signals for the error iden-
IR-OUT input is replaced with bit 6 of IR-OUT. 

M3 is a three-input, eight-bit-wide multiplexer 21s 30 tifier hardware, including but not limited to multiplexer 
which supplies input to VMS, CRA and RMX. Its in- selection signals; register increment-enable, decrement-
puts are Dl_OUT, RAM_OUT and zero. M3_0UT is enable and write-enable signals; and RAM write-enable 
CRA_IN. signals. ID decodes instruction bits from ROM_OUT 

M4 is a three-input, eight-bit-wide multiplexer 213 and IR-OUT and control signals from the other blocks 
which supplies input to MS, Dl and the nine FDC regis- 35 of IPC to produce control signals applied to the other 
ters D(i). Its inputs are VMS_OUT, ADD-OUT and blocks of the error identifier on the buses labeled AP-
zero. M4-0UT is FDC-IN. C_CTL, CRA_CTL, etc. 

MS is a two-input, eight-bit-wide multiplexer 20S IM is a two-input, eight-bit-wide multiplexer (block 
which supplies input to DO. Its inputs are M4_0UT 282) which supplies input to IA. Its inputs are LA-
and A247-0UT. 40 OUT and bits 7-0 of IR-OUT. 

FIG. 22 is a block diagram of the finite-field Variable IR is a seventeen-bit register (block 280) which holds 
Multiply-and-Sum circuit (VMS), which implements the instruction being executed. IR is loaded from 
Z=(A *B)E]1C, which is computed according to: ROM-OUT. Bits 16-13 of IR-IN can be forced to zero 

to prevent execution of the next instruction by trans-
45 forming it into a NOP. 7 ' 

Z = CEB .l: A*(B AND 2'). 
z=O LA is an eight-bit register (block 281) which holds 

the address of the first instruction of a DO loop. LA can 
VMS comprises a single-input, eight-output constant be loaded from bits 7-0 of IR-OUT. 
finite-field multiplier circuit 221 denoted B07; eight 50 LC is a four-bit register (block 279) which holds the 
eight-bit-wide gating circuits 222 denoted VG(i); and a loop count during execution of a DO loop. It can be 
nine-input, eight-bit-wide EXCLUSIVE_OR circuit loaded from LN-OUT or from bits 12-9 of IR-OUT. 
223 denoted VX. B07 implements LK is a four-bit register (block 277) which holds the 

Z(z)=A*2.i 
degree of the o{k) polynomial. LK can be incremented, 

55 cleared to zero, or loaded from LN-OUT. 
LN is a four-bit register (block 288) which holds the 

degree of the o-(n) polynomial. LN can be cleared to 
zero or loaded from LK._OUT or from bits 3-0 of AD­
D_OUT. 

for i from 0 to 7. MLOUT is applied to input A of 
VMS, which is input A of B07. M2_0UT is applied to 
input B of VMS; each bit i of B is applied to the control 
input G of respective gating circuit VG(i). The eight 
outputs Z(i) of B07 are applied to the inputs of VG(i), 60 
whose outputs are applied to the first eight inputs of 
VX. M3-0UT is applied to input C of VMS, which is 
the remaining input of VX. 

Note that propagation delay from input B of VMS to 
VMS_OUT is less than that from input A of VMS to 65 
VMS_OUT. RAM access time can be significantly 
longer than other circuit delays. In the preferred em­
bodiment, the propagation delay from RAM-OUT to 

M40 is an eight-bit-input OR circuit (block 274). 
M4-0UT is applied to M40-1N. 

NZR is a one-bit latch (block 276) which is set if 
M40-0UT is one when a Load_FDC-Rem instruc­
tion is executed. NZR can be cleared. 

XI is the external interface module (block 290). XI 
controls APC when the external microcontroller is 
accessing RAM and when CRC residue/ECC remain­
der bits are being stored in RAM. The XI block of the 
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IPC manages the interfaces to the external microcon­
troller and the rest of the CL-SM330. 

The microcontroller can write register AO and read 
or write RAM at the address contained in AO. Each 
time the microcontroller accesses RAM, XI increments 5 
AO. 

If at the leading edge of CG-R.G, either CONT is 
asserted or BUSY is not asserted, XI presets AO to the 
value 3Eh and begins deserializing bits from RMNDR 
onto the eight-bit-wide CER-BUS. When T7 is as- 10 
serted during the last bit of each byte, XI stores the 

FDC is clocked, FWD holds the forward displacement 
of the error just located. 

LOC is a five-bit counter (block 233) which holds the 
number of times the FDC has been clocked, up to eigh­
teen. LOC can be cleared to zero. If LOC-GT17 is 
zero when the FDC is clocked, LOC is incremented. 

SUB is an eleven-bit minus four-bit unsigned subtrac­
tion circuit (block 232) implementing 

SUB_OUT=FWD_OUT -NUM_ILVS. 

deserialized byte on CER-BUS into RAM at the ad- NUM-IL VS is determined by the SIZE signal as de-
dress contained in AO and then increments AO. In addi- scribed herein. 
tion, if at the leading edge of CG-RG both CONT and RAM is a 226-by-eight-bit random-access memory 
BUSY are asserted, then XI asserts OVERRUN, stops 15 which holds the time-domain CRC residue and ECC 
and does not complete the current error identification remainder bytes, frequency-domain ECC syndromes, 
process. polynomial coefficients and other data used by the error 

If at the leading edge of CG--R.G, CONT is not as- identifier. Usage of RAM is as shown in TABLE I. On 
serted and BUSY is asserted, then XI asserts OVER- power up or other initialization, the external microcon-
RUN, does not store the deserialized CRC residue or 20 troller must write desired error threshold values to 
ECC remainder bits in RAM, and does not stop the locations IL V _ THR and SCT _ THR, and must write 
current error identification process. zero to locations SIG-K+9 through SIG-K.+16 and 

If at the trailing edge of CG--R.G, no non-zero bit SIG_N +9 through SIG_N + 16. 
was detected on RMNDR while CG--RG was asserted The error identifier has no need to access individual 
and either CONT is asserted or OVERRUN is not 25 CRC residue or ECC remainder bytes using immediate 
asserted, then XI asserts DONE. addresses. In the preferred embodiment of the inven-

If at the trailing edge of CG-R.G, any non-zero bit tion, implementation cost is reduced by storing these 
was detected on RMNDR while CG--RG was asserted bytes beginning at RES-REM equal to 3Eh, above all 
and DISABLE is not asserted and either CONT is other variables stored in the RAM, so that all immediate 
asserted or OVERRUN is not asserted, then XI asserts 30 addresses used to access other variables need be only six 
BUSY and the error identifier begins identifying intro- bits wide. At the beginning of the error identification 
duced errors. procedure, the four CRC residue bytes must be fetched 

When a Stop instruction is executed, XI asserts from the RAM in reverse order and stored in the CRA 
DONE and stops the error identifier by deasserting registers and six bytes in the RAM must be cleared to 
BUSY, which forces IA to zero. If an uncorrectable 35 zero. These six bytes are the four locations used for 
ECC error, uncorrectable CRC error, or error exceed- accumulating the adjusted CRC residue beginning at 
ing threshold has been detected, a Stop instruction will ADJ_CRC, the location used for the total error count 
be executed which causes XI to assert ECC-ERR, (TOT-ERR), and the location used for the maximum 
CRC--ERR, or THR--ERR, respectively. interleave error count (MAX-ERR). It is advanta-

ZRO is a one-bit register (block 275) which records 40 geous to place ADJ_CRC at 3Ah, TOT-ERR at 39h 
NOT(M40-0UT) when each instruction is executed. and MAX-ERR at 38h, so that the address register used 

FIG. 24 is a block diagram of the Interleave and to access the four CRC residue bytes at consecutive 
Sector Counters (!SC) block, which maintains forward decreasing addresses need not be reloaded before begin-
displacement and ECC error location counters for the ning a loop which clears the next six bytes at consecu-
error identifier. IPC comprises CMP, FWD, LOC and 45 tive decreasing addresses. By placing SIG_K at 06h 
SUB. The forward displacement of an error is the non- and SIG_N at 17h, the registers implemented for SK 
inclusive number of bytes between the first data byte of and SN need be only five bits wide, and this leaves room 
the sector and the byte in error. at 28h for storing the syndromes. The interleave error 

CMP is a comparator circuit (block 234) with inputs threshold (IL V _ THR) and sector error threshold 
FWD_OUTandLOC-OUTandoutputsFWD-LTO, 50 (SCT_THR) are placed adjacent to each other at the 
FWD_L TNI, LOC-EQ16, LOC_GT16, LOC_ beginning of the RAM at OOh and Olh, respectively, to 
EQ17 and LOC-GT17, where simplify microcontroller access. The remaining vari-

FWD-LTO=(FWD-OUT<NUM-ILVS) ables including the number of interleaves left to be 
FWD-L TNI=(FWD-OUT <2*NUM-ILVS) processed (ILV -LFI), the address or Rts of the inter-
LOC--EQ16=(LOC_OUT= = 16) 55 leave being processed (RlS-ADR), the seven least-sig-
LOC_GT16=(LOC_OUT> 16) nificant bits of the initial forward displacement value for 
LOC--EQ17=(LOC_OUT==l7) the interleave being processed (MAX-FWD) and 
LOC_GTl 7=(LOC_OUT>17) counter n of the iterative algorithm (N) are placed at the 
FWD is an eleven-bit register (block 231) which remaining RAM locations 02h, 03h, 04h and OSh respec-

holds the forward displacements of errors. Bits 6-0 of 60 tively. 

TABLE! FWD can be loaded from RAM-OUT; when bits 6-0 
are so loaded, bits 10-7 of FWD IN are forced to 1001 
if SIZE is one or forced to 0100 if SIZE is zero. For 
each interleave i in error (where O~i<NUM_ILVS), 
FWD is initialized to NUM-BYTS+i before the 65 
search for roots is begun. Each time the FDC is 
clocked, FWD is loaded from SUB-OUT. If FDO_ 
OUT is zero before the FDC is clocked, then after the 

Address Map of the Error Identifier RAM 
LABEL 

ILV_THR 
SCT_THR 
ILV__LFT 
R15-.ADR 
~ 

DECIMAL ADDRESS HEX ADDRESS 

0 
1 
2 
3 
4 

01 
01 
02 
03 
04 
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TABLE I-continued TABLE I-continued 

Address Mae of the Error Identifier RAM Address Mae of the Error Identifier RAM 
LABEL DECIMAL ADDRESS HEX ADDRESS LABEL DECIMAL ADDRESS HEX ADDRESS 

N 5 05 5 RES-REM 62 3E 
SIG-K 6 06 
SIG_N 23 17 
s 40 28 ROM is a 157-by-seventeen-bit read-only memory 
MAX-ERR 56 38 which contains the sequence of instructions required to 
TOT-ERR 57 39 identify errors. TABLE II shows the contents of ROM ADJ_CRC 58 3A IO in binary and hexadecimal form. 

TABLE II 
Contents of the Error Identifier ROM 

ADDR LQPRDSTFC76543210 HEX ADDR LQPRDSTFC76543210 HEX 

OOh 000000000000000 00000 28h 01110010100100000 OE520 
Olh 00101100001000001 05841 29h 00110100010000010 06882 
02h 01100011100000100 OC704 2Ah 11101011000110010 10632 
03h 10101000001000010 15042 2Bh 00100101110000101 04B85 
04h 11110110000000110 1EC06 2Ch 11100011000101111 1C62F 
05h 01100010100000110 OC506 2Dh 00100001110000100 04384 
06h 11110010000000000 IE400 2Eh 00100000000000011 04003 
07h 01110010000000000 OE400 2Fh 0110000000011000 I OC031 
08h 11101000000010000 10010 30h 1000000000000000 10000 
09h 01110000100000011 OE103 3!h 11110110001011110 IECSE 
OAh 11101001000001101 1D20D 32h 0010II00000000110 05806 
OBh 00101000001100010 05062 33h 01100111100110101 OCF35 
OCh 00101000001011000 05058 34h 11110000 I 00001110 IEIOE 
ODh 01110000100000100 OE104 35h 11110010000100000 1E420 
OEh 11100000000010011 1C013 36h 00101100000010111 05817 
OFh 00101000000000101 05005 37h 01100111100111001 OCF39 
!Oh 00101000000110000 05030 38h 11110000100011111 IE!IF 
llh 01110000100000100 OE104 39h 111100 I 0000100000 IE420 
12h 00101000000001010 0500A 3Ah 00101100111111010 059FA 
13h 01110000100000010 OE!02 3Bh 01110000100000101 OE105 
14h 01111000100110100 OF134 3Ch 00101101000101110 05A2E 
!Sh 01110100000000011 OE803 3Dh 01100000000111110 OC03E 
!6h 00101100000000111 05807 3Eh 10110100001100000 16860 
17h 01100011100011000 OC718 3Fh 01011101100000000 OB BOO 
18h 11011000001000000 1B040 40h 11100100001001010 !C84A 
19h 01011000001000000 OB040 41h 00101011110000000 05780 
!Ah 00101100000101000 05828 42h 11101011001000101 10645 
!Bh 01100111100011100 OCFIC 43h 00101000000000001 05001 
!Ch 11110011100100000 1E720 44h 01000010001000000 08440 
!Dh 01110011100100000 OE720 45h 00011000000000000 03000 
!Eh 01111000000000101 OFOOS 46h 01100000001000111 OC047 
!Fh 00101100000000111 05807 47h 01011010001000000 OB440 
20h 01100011100100001 OC721 48h 11011001100100000 1B320 
2th 11011000001000000 1B040 49h 01110010101100000 OE560 
22h 01011000001000000 OB040 4Ah 00111010110000101 07585 
23h 11101010010000010 ID482 4Bh 11101011000111011 !D63B 
24h 00101100000101000 05828 4Ch 00111100100000101 07905 
25h 00100100000000001 04801 4Dh 01111000110011100 1F19C 
26h 01101111100100111 ODF27 4Eh 01110100100000100 OE904 
27h 11001101111100000 19BEO 4Fh 00101110000000000 05COO 
50h 00111010000111001 07439 78h 01100000001111010 OC07A 
5!h 011000000010100 II OC053 79h 10010000100000000 12100 
52h 11110000100111001 IE139 7Ah 11110110001011110 1EC5E 
53h 10111000001100000 17060 7Bh 11101111001011011 !DESB 
54h 00100010001111111 0447F 7Ch 00110100000000101 06805 
55h 00110110110111000 06DB8 7Dh 11101100010010111 10897 
56h 11100011001011001 1C659 7Eh 00101100000111010 0583A 
57h 0010101000000000 I 05401 7Fh 01100011110000000 OC780 
58h Oil 10000100111000 OE138 80h 11001011110010110 19796 
59h 01110000100000101 OEI05 8th 01110010100100000 OE520 
5Ah 00010001000000000 02200 82h 00111000100000100 07104 
5Bh 01100000001011101 OC05D 83h 01110000100000100 OE104 
5Ch 11110111001011000 1EE58 84h 00111000100000011 07103 
5Dh 11110111001011100 IEE5C 85h 01110000I00000011 OE103 
5Eh 11101101001110001 1DA71 86h 00111000010000010 07082 
5Fh 0010111000010 I 000 05C28 87h 11100011000010100 1C614 
60h 0011100001000010 I 07085 88h 01110000100000010 OE102 
6!h 01110000100000101 OE105 89h 00111000000111000 07038 
62h 01000001001000000 08240 8Ah 11101011010011010 1069A 
63h 01100000001100100 OC064 8Bh 00101100000111010 0583A 
64h 01110000100110111 OE!37 8Ch 01100011110001101 OC78D 
65h 01000010010000000 08480 8Dh 10110100001000000 16840 
66h 01000010100000000 08500 8Eh 11101100010011011 1089B 
67h 10111000000110111 17037 8Fh 00110100000000000 06800 
68h 01011010100000000 OB500 90h 00110101110111000 06BB8 
69h 01001000001000000 09040 9th 11100011010011100 IC69C 
6Ah 01100110101101011 OCD6B 92h 00110100000000001 06801 
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TABLE II-continued 
Contents of the Error Identifier ROM 

ADDR LQPRDSTFC76543210 HEX ADDR LQPRDSTFC76543210 

6Bh 
6Ch 
6Dh 
6Eh 
6Fh 
70h 
71h 
72h 
73h 
74h 
75h 
76h 
77h 

11000101000100000 18A20 93h 00110101110111001 
01001001001000000 09240 94h 11100011010011100 
11100100010010111 IC897 95h 000000000000000 
00010010000000000 02400 96h 00010100000000000 
11101101001101111 IDA6F 97h 00101000001000000 
0000000000000001 00001 98h 11101011010000010 
11101110001111011 IDC7B 99h 01110000100111000 
01110110101011100 OED5C 9Ah 00010100000000100 
00110100000000010 06802 9Bh 00010100000000010 
00100101110000101 04B85 9Ch 00010100000000001 
11101011001111011 ID67B 
000000000000000 00000 
00100001001111111 0427F. 

ERROR IDENTIFIER MICROENGINE 
INSTRUCTION SET 

Each instruction comprises seventeen bits. The in- 20 
struction bits are labeled as follows: 

HEX 

06BB9 
1C69C 
00000 
02800 
05040 
ID682 
OE138 
02804 
02802 
02801 

Bit: 16° 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Label: LQPRDSTFC7 6 5 4 3 2 0 

The Opcode of an instruction comprises bits Q, P and 

30 

-continued 
instruction immediately follows a 
ConditionaL_Branch instruction 
If VREADY is zero when the 
ConditionaL_Branch instruction is 

executed, this instruction forces bit 
D of IR._OUT to zero. 

R. 'x' represents a bit whose value may be either one or 
zero. 'a' represents a bit which is part of an immediate 
ROM or RAM address; it may be either one or zero. 'v' 30 
represents a bit which is part of an immediate value; it 
may be either one or zero. 

OPCODE 001: MISCELLANEOUS INSTRUCTIONS 

LQPR DSTFC 76543210 

Conventions used for immediate values, immediate 
addresses and indirect addresses are as follows: 

VAL7 

*(ADR6) 

*(AO) 

*(AO++) 

•(Al++) 

*(Al--) 

Use the eight-bit value in bits 7--0 of IR._OUT after 
replacing the value of bit 7 with that of bit 6. This 
is equivalent to treating bits 6--0 of IR-OUT as a 
signed seven-bit integer with value in the range -64 
to +63. 
Read or write RAM at the address specified by bits 
5--0 of IR._OUT. 
Read or write RAM at the address specified by 
AG_OUT. 
Read or write RAM at the address specified by 
AO_OUT, then increment the AO register. 
Read or write RAM at the address specified by 
Al_OUT,then increment the Al register. 
Read or write RAM at the address specified by 
Al_OUT, then decrement the Al register. 

35 

xOOl 
xOOl 
xOOl 

xxxxl 
xxxlx 
xxlxx 

xxxxxxxx Load LN from LK_OUT. 
xxxxxxxx Load LK from LN_OUT. 
xxxxxxxx CorrecLError: If allowed by the 

current configuration signials and 
FWD_OUT, assert the signal 
which initiates an error correction 
vector transfer. FWD_OUT and 
DL_OUT are the forward 
displacement and value of the 
error, respectively. 

40 xOOl xlxxx xxxxxvvv Stop: Assert the error signal speci-

45 

xOOl lxxxx 

fied by one of bits 2--0 equal to one 
(if any) and stop the error 
identifier. 
Bit Error signal 

2 ECC_ERR 
1 CRC-ERR 
0 THR-ERR 

xxxxxxxx Load AO from SN_OUT and load 
Al from SK_OUT. 

OPCODE 110: BRANCH-CONTROL INSTRUCTIONS 

Initiate_DO_Loop: 

When any instruction with bit L equal to one (except 50 _L...;Q'-PR __ D_s_TF_c_7_6_54_3_21_0 ___________ _ 

a Conditional_Branch or Searcb_For-R.oot instruc- 0110 xxxxo aaaaaaaa 

tion) is executed, LC_OUT is examined. If LC-OUT 
is zero, IA is incremented; otherwise, LC is. decre- 0110 vvvvl aaaaaaaa 

mented and IA is loaded from LA-OUT. ConditionaL_Branch: 

Load LA from bits 7--0 of IR._OUT 
and load LC from LN_OUT. 
Load LA from bits 7--0 of IR._OUT 
and load LC from bits D, S, T, F. 

When a Searcb_For-Root instruction with bit L 55 
LQPR DSTFC 76543210 

~b~~~~ is;~e~~~!i~.CffO~C~~~=o~ -11"""1'-o--x-vvv-x--aaaaaaaa----!~--~-h~-,s-:;-~-e-~r-;:_0_ef-~-al-0se_UT_lec-~-~-by-
FWD-L TNI is one, or LOC-EQ16 is one, IA is incre- not match bit D, load IA from bits 
mented and bits L, Q, P and R of IR-IN are forced to 7--0 of IR-OUT. 

zero to prevent execution of the next instruction by 60 STF CONDITION 

transforming it into a NOP instruction; otherwise, IA is ~ :g~ ~~ 
loaded from L.A_OUT. 010 NZLOUT 

OPCODE 000: NOP INSTRUCTIONS 

LQPR DSTFC 76543210 

xooo xxxxx xxxxxxxO No Operation. 
xOOO xxxxx xxxxxxxl No Operation except when this 

011 GTZ_OUT 
100 ZRO_OUT 

65 101 FZD_OUT 
110 LOC-EQ17 
111 FWD_LTO 
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OPCODE Olx: ADD INSTRUCTIONS 

Perform an eight-bit addition operation with carry-in: 

ADD_OUT=Ml-OUT+Ml-OUT+CARRY. 

MLOUT is specified by bits T and F of the instruction. 

5 

If bit 7 of the instruction is one, each bit ofMLOUT is 
inverted. M2_0UT is specified by bits R, 6 and 5 of the 
instruction. CARRY is bit C of the instruction. ADD_ 10 
OUT is stored in the destination (s) specified by bits D 
and S of the instruction. The operation 

ADD_OUT=Ml_OUT-MLOUT 

15 
is selected by bits 7 and C of the instruction both equal 
to one. The operation 

ADD_OUT=Ml_OUT +I, 

is selected by bits T, F and 7 of the instruction all equal 20 

to zero and bit C of the instruction equal to one. The 
operation 

ADD_OUT=Ml_OUT-1, 

TF MLOUT 

00 A135L_OUT 
01 DO_ OUT 
10 DK_OUT 
11 CRA_OUT 

is selected by bits T, F and C of the instruction all equal 
to zero and bit 7 of the instruction equal to one. 

R65 

000 
001 
010 
Oil 
100 
101 
110 
111 

TF7 MLOUT R65 ML OUT DS DESTINATION(S) 

000 0 Ovv VAL7 00 LN 
010 DO_OUT lOa *(ADR6) 01 DO 
lxO LN_OUT 110 *(Al++) 10 DI 

-continued 
LQPR DSTFC7 6543210 

XOlO 110100 vvvvvvv Setup-Compute_Dn: In addition to 
the normal function,, store 
ADD-OUT in Al, clear DO and 
D 1 to zero, load AO from 
SN_OUT, decrement SK, and 
increment LK. 

OPCODE lOx: VMS INSTRUCTIONS 

Perform a finite-field variable multiply-and-sum oper­
ation: 

VMS_OUT=(MLOifr*M1_0UT)$M3_0UT. 

MI-OUT is specified by bits T and F of the instruction. 
M2_0UT is specified by bits R, 6 and 5 of the instruc­
tion. M3-0UT is specified by bits C and 7 of the in­
struction. VMS_OUT is stored in the destination(s) 
specified by bits D and S of the instruction. Note that 
when bits D and S of the instruction are both zero, the 
initial value of DO-OUT is stored in DK. If bits T and 
F are both one, the CRA is clocked. 

M2_0UT C7 MLOUT DS DESTINATION(S) 

AL_ OUT 00 0 01 DO 
DO_ OUT 10 DLOUT 10 DI 
DL_QUT 01 *(AO++) 11 DO=Dl=VMS_OUT 
FDC_OUT 11 *(Al) 00 DK=DO_OUT, 
*(Al--) DO=Dl=VMS_OUT 
*(Al++) 
*(AO) 
*(AO++) 

The following combinations are exceptions to the 
foregoing or cause additional functions to be per­
formed: 

001 FFh Ill *(AO++) 11 DO=Dl=ADD_OUT 
011 DO_OUT$FFh 
!xi LN_OUT$FFh 

The following combinations are exceptions to the 
foregoing or cause additional functions to be per- 50 
formed: 

LQPR DSTFC7 6543210 

xOlx xxllxx xxxxxxx Disregard bits R, 6 and 5; instead, 
use LK_OUT as MLOUT. 55 

xOlx llOxOO xxxxxxx In addition to the normal function, 
store ADD_OUT in Al. 

xOll 100000 llxxxxx Load_FDC_Sig: In addition to the 
normal function, store ADD-OUT 
in the FDC register D(i) specified 
by i=Al_OUT and decrement Al. 60 

XOIO 110011 vvvvvvv Setup-1teralgo: In addition to the 
normal function, store the initial 
value of DO_OUT in DK, clear 
LN and LK to zero, preset SN to 
OEh, and preset SK to lFh. 

XOIO lllOOO vvvvvvv Setup-A.0-A.l_DO_D!: In 65 
addition to the normal function, 
store ADD_OUT in Al, clear DO 
and DI to zero, and load AO from 
SN_OUT. 

LQPR DSTFC7 6543210 

x!Ol 100000 !Oxxxxx Loacl_FDC-Rem: In addition to 
the normal function, store 
VMS-OUT in the FDC register 
D(i) specified by i=ALOUT, 
decrement Al, add NUM-1LVS to 
AO, store Al35_0UT in Al35, and 
if M40_0UT is one, set NZR. 

XlOO 110111 llxxxxx Compute-Syndrome: Disregard bits 
D and S. Instead, store VMS_OUT 
in DI. In addition, clock the FDC 
and store A247_0UT in DO. 

x!OO 001000 lOxxxxx Swap_K_N-R,egs: In addition to 
the normal function, exchange the 
contents of SN and SK and ex-
change the contents of LN and LK. 



33 
5,384,786 

34 
OPCODE 111: ASSIGNMENT INSTRUCTIONS 

If bit F of any instruction with Opcode 111 is one, the 
FDC is clocked. If both bits S and T of any instruction 
with Opcode 111 are one, the CRA is clocked. 

The sequence of instructions used in the preferred 
embodiment to implement the error identification pro­
cedure is shown in TABLE Ill. This sequence is imple­
mented in the contents of ROM shown in TABLE II. A 

5 variable stored in RAM at a label shown in TABLE I is 

LQPR DSTFC7 6543210 

xi 11 OOOxxO Oaaaaaa Write RAM at the address in bits 5-0 from the 
source specified by bits F and C of IR_OUT. 
FC SOURCE DESTINATION 
00 0 *(ADR6) 
01 DLOUT 
lx FDC_OUT 

xll l OOlxxO xxxxxxx Write RAM at the address specified by bits 6 
and S of !LOUT from the source specified by 
bits F and C of IR_OUT. 
FC SOURCE .£?__ DESTINATION 
00 0 00 *(Al--) 
01 DLOUT 01 *(Al++) 
Ix FDC_OUT 10 *(AO) 

11 *(AO++) 
xll l O!Oxxx Oaaaaaa Load the destination specified by bit C of 

IR_OUT from bits 6-0 of the value read from 
RAM at the address in bits 5-0 of IR_OUT. 
SOURCE C DESTINATION 
*(ADR6) 0 AO 

I FWD 
Note: Bit 7 of AO is loaded with O; bits I 0-8 of 
FWD are loaded with bits 10-8 of NUM_.IL VS. 

xlll IOOOOv vvvvvvv LoacLAl35L: Load Al35L with the value in bits 
7-0 of IR_OUT. 

xlll IOOO!v vvvvvvv Initialize_FDC: Load Al3SL with the value in 
bits 7-0 oflLOUT, preset AL to a-1, clear 
each FDC register D(i) to zero, and clear LOC 
and NZR to zero. 

xlll 011100 !Ovvvvx Search....For-Root (described above). 

denoted by the parenthesized label preceded by "*"; the 
35 value of a label is denoted by the label itself. 

TABLE III 
Error Identifier Instruction Sequence 

OOh No_Operation(O); 
Olh DO = Dl = Al = ADD(O, RES....REM+3); 
02h Initiate_D{L.Loop(3, 04h); 
03h Dl = ADD(O, RES....REM+4); 
04h ClocLCRA(*(Al- - ),0,06h); 
OSh Initiate_DO_Loop(2, 06h); 
06h *(Al--)= O; 
07h *(Al--)= O; 
08h IF(!SIZE != I, !Oh); 
09h *(Rl5_ADR) = DI; 
OAh IF(!FORM != I, ODh); 
OBh DI = ADD(O, 610 & 7Fh); 
OCh DI = ADD(O, 600 & 7Fh); 
ODh *(MAX_FWD) = DI; 
OEh IF(!SIZE != 0, 13h); 
OFh DI = ADD(O, 5); 
lOh DI = ADD(O, 1200 & 7Fh); 
lib *(MAX_FWD) = Dl; 
12h DI = ADD(O, 10); 
13h *(ILV_LFT) =DI; 
14h Initialize_FDC(a15); 
lSh AO = *(Rl5_ADR) & 7fh; 
16h DO = Dl = Al = ADD(O, 7); 
l 7h Initiate_OO_Loop(3, l 8h); 
18h Load_FDC-RemO ; 
19h Load_FDc__RemO; 
!Ah DO = D1 = Al = ADD(O, S); 
IBh lnitiate_DO_Loop(7, !Ch); 
!Ch *(Al++)= FDC-OUT, ClocLFDCO; 
IDh *(Al++)= VRC_OUT, ClocLFDCQ; 
!Eh LoacLAl35L(a75); 
lFh DO = D1 = Al = ADD(O, 7); 
20h Initiate_DO_Loop(3, 2th); 
21h Load_FDC_R.emO; 
22h Load_FDC-RemO; 
23h IF(NZR_OUT != I, 84h); 
24h DO = Dl = Al = ADD(O, S); 
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TABLE III-continued 

Error Identifier Instruction Sequence 

25h DO = ADD{O, l); 
26h Initiate_IXLLoop{l5, 27h); 
27h Compute_SyndromeO; 
28h •(Al++)= DI; 
29h DO= ADD(-1, •(ILV_LFT)); 
2Ah IF{GTZ_OUT != 1, 3lh); 
2Bh DO= ADD(-DO_QUT, 5); 
2Ch IF(GTZ_OUT != 0,2Fh); 
2Dh LN = ADD(-DD_OUT, 4); 
2Eh LN = ADD{O, 3); 
2Fh Initiate_DO_Loop(LN_OUT, 3lh); 
30h No_operation(O) 
31h Clock CRA(•(AO), O,lEh), 
32h DO= DI= Al= ADD(O, SJG_K); 
33h Initiate_DO_Loop(7, 35h); 
34h •(SIG_K+8) =DI; 
35h •(Al++) = O; 
36h DO = DI = Al = ADD(O, SIG_N); 
37h Initiate_DO_Loop(7, 39h); 
38h •(SIG_N+8) = DI; 
39h •(Al++)= O; 
3Ah Setup-1teralgo(7 Ah); 
3Bh *(N) =DI; 
3Ch Setup-Compute_DNQ; 
3Dh Initiate_DO_Loop(LN_OUT, 3Eh); 
3Eh DO= ADD{O, •(AO++)); 
3Fh DO= DI= VMS(DD_OUT, •(Al--), DLOUT); 
40h IF(ZRQ_QUT != 0, 4Ah); 
4lh Dl = ADD{-LN_OUT, LILOUT); 
42h IF(GTZ_OUT != I, 45h); 
43h DI = ADD(O, l); 
44h Swap-1LN_R.egs0 
45h AO = SN_QUT, Al = SILOUT; 
46h Initiate_DO_Loop(LN_OUT, 47h); 
47h DI = VMS(DILOUT, •(AO), O); 
48h Dl = VMS(DO_OUT, •(Al++), DLOUT); 
49h •(AO++)= DI; 
4Ah DI = ADD(-LN_OUT, *(N)); 
4Bh IF(GTLOUT != 1, 3Bh); 
4Ch DO = Dl = ADD(+ I, *(N)); 
4Dh Initialize_FDC(al2°)); 

5,384,786 

4Eh FWD = (NUM__BYTS & 780h) I (*(MAX-FWD) & 7Fh); 
4Fh Setup__AO__Al_DO_DJ(O); 
50h DI = ADD{LN_OUT, *(TOT-ERR)); 
Sib Initiate_DO_Loop(LN_OUT, 53h); 
52h *(TOT-ERR) = Dl; 
53h LoacLFDc_sigQ; 
54h LN = ADD(LN_OUT, 7Fh); 
55h DO = ADD(-LN_QUT, *(MAX-ERR)); 
56h IF(GTLOUT != 0, 59h); 
57h DI = ADD(LN_OUT, I); 
58h *(MAX-ERR) = Dl; 
59h *{N) = Dl; 
5Ah LK = LN_OUT; 
5Bh Initiate_DO_Loop(LN_OUT, 5Dh); 
5Ch SearcLFor-Root(l8h) 
5Dh SearcLFor_R.oot(lCh) 
5Eh IF(FZD_OUT != 1, 7lh); 
5Fh Setup__AO__Al_DO_Dl(S) 
60h DI = ADD(-1, *(N)); 
6lh *(N) = Dl; 
6lh DK = DO_OUT, DO = DI = VMS(DO_OUT, DLOUT, O); 
63h Initiate_DO_Loop(LN_OUT, 64h); 
64h *(S+ 15) = DI; 
65h DO= Dl = VMS(DILOUT,AL_OUT,*(AO++)), DK=lnitial DO_OUT; 
66h DO = DI = VMS(DILOUT,AL_OUT,DLOUT), DK= Initial DO_OUT; 
67h DI= ADD(O, *(S+l5)); 
68h Dl = VMS(DILOUT, *{Al--), DLOUT); 
69h DI = VMS{Al35L_OUT, DLOUT, 0). 
6Ah Initiate_DO_Loop(6, 6Bh); 
6Bh DO = VMS(DO_OUT, DO_OUT, O); 
6Ch DI = VMS(DO_OUT, DLOUT, O); 
6Dh IF(ZRO_OUT != 0, 97h). 
6Eh Correct Errors; 
6Fh IF(FZD_OUT != 1), 6Fh); 
70h No Operation(!); 
71h IF(LOC_EQ17 != I, 7Bh); 
72h ClocLCRA(*(AO),DLOUT,ICh); 
73h DO= ADD{O, *(ILV_LFT)); 
74h DO= ADD(-DO_OUT, 5); 
75h IF{GTZ_QUT != !, 7Bh); 

36 
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TABLE III-continued 

Error Identifier Instruction Sequence 

76h No_Operation(O); 
77h LN = ADD(DD_OUT, 7Fh); 
78h Initiate_])()__Loop(LN_OUT, 7Ah); 
79h LN = LLOUT; 
7Ah ClocL1 CRA(*(AO),O,IEh); 
7Bh IF(FWD__LTNI != 1, 5Bh); 
7Ch DO = ADD(O, N); 
7Dh IF(ZRO_OUT != 1, 97h); 
7Eh DO = Dl = Al = ADD(O, CRC); 
7Fh Initiate_])()..Loop(3, 80h) 
80h Dl = VMS(CR.A_OUT, AL_OUT, *(Al)), ClocLCRA(*(A0),0,16h); 
8lh *(Al++)= Dl; 
82h Dl =ADD(!, *(MAX_FWD)); 
83h *(MAX_FWD) = Dl; 
84h Dl = ADD(l, *(Rl5-ADR)); 
85h *(Rl5-.ADR) = Dl; 
86h Dl = ADD(-1, *(ILV__LFI)); 
87h IF(GTZ_OUT != 0, 14h); 
88h *(ILV_LFI) = Dl; 
89h DI = ADD(O, *(MAX-ERR)); 
8Ah IF(GT.z_oUT != l, 9Ah); 
8Bh DO = Dl = Al = ADD(O, CRC); 
8Ch Initiate__DO__Loop(3, 8Dh); 
8Dh DO = ADD(D, *(Al++)); 
8Eh IF(ZRO_OUT != l, 9Bh); 
8Fh DO= ADD(O, *(ILV_THR)); 
90h DO = ADD(-DO-OUT, *(MAX-ERR)); 
9lh IF(GT.z_oUT != 0, 9Ch); 
92h DO= ADD(O, *(SCT_THR)); 
93h DO = ADD-DO-OUT, *(TOT-ERR)); 
94h IF(GT.z_oUT != 0, 9Ch); 
95h No_Operation(O); 
96h Stop(O); 
97h DI = ADD(O, 40h); 
98h IF(GTZ_OUT != I, 82h); 
99h *(MAX-ERR) = DI; 
9Ah Stop(4); 
9Bh Stop(2); 
9Ch Stop(!); 

ERROR IDENTIFICATION ALGORITHM 

FIG. 25 illustrates the read-sector process for the 
typical case where DISABLE is zero, CONT is zero 40 
and BUSY is zero at the leading edge of CG-RG; other 
cases are described above. First, circuitry in the En­
code/Decode LFSR block of the CL-SM330 computes 
CRC and ECC redundancy over user-data and vendor­
unique/pointer bytes read from the optical disk. While 4S 
CRC and ECC redundancy bits are read CG-RG is 
asserted and CRC residue/ECC remainder bits (which 
are the EXCLUSIVE-OR sum of the computed and 
read redundancy bits) are presented on RMNDR. T7 is 
asserted while every eighth such bit is presented. SO 
CG-R.G, RMNDR and T7 are synchronized with 
RRCLK. The error identifier deserializes the CRC 
residue/ECC remainder bits from RMNDR and stores 
the CRC residue/ECC remainder bytes in RAM. At the 
trailing edge of CG-RG if no non-zero bit was de- SS 
tected on RMNDR while CG-R.G was asserted, then 
the error identifier immediately asserts DONE; other­
wise, the error identifier asserts BUSY and begins iden­
tifying introduced errors. 

FIG. 26 illustrates the major steps of the error identi- 60 
fication process. In step 1020, the RAM and the CRA 
are initialized. Then for each interleave, the following 
process is repeated: In step 1030, compute frequency­
domain syndromes from the remainder. If all remainder 
coefficients are zero, the control is transferred to step 6S 
1080. Otherwise in step 1040, compute coefficients of 
the error locator polynomial from the syndromes, and 
in step 1050, perform the Chien search to locate each 

errors, adjusting the CRC residue whenever an error is 
found. 

In step 1060, the RAM elements at MAX_FWD and 
R15-ADR are incremented and the RAM element at 
ILV _LFT is decremented. If the RAM element at 
IL V _LFT is not zero, control is transferred to step 
1030. Otherwise, in step 1080, if any uncorrectable ECC 
error was detected, the error identifier asserts ECC­
ERR and stops; if any of the four RAM elements at 
ADJ-CRC is non-zero, an uncorrectable CRC error 
has been detected and the error identifier asserts 
CRC--ERR and stops; if the value stored in the RAM 
element at MAX-ERR exceeds that stored in the RAM 
element at IL V _ THR or if the value stored in the 
RAM element at TOT -ERR exceeds that stored in the 
RAM element at SCT _ THR, a threshold error has 
been detected and the error identifier asserts THR_ 

ERR and stop; otherwise the error identifier stops with­
out asserting any error signal. When the error identifier 
stops, it deasserts BUSY and asserts DONE. 

FIG. 27 shows the process of initializing the RAM 
and the CRA each time a sector containing errors is 
detected. First the four CRC residue bytes stored in 
RAM at RES-REM are loaded into the CRA registers. 
Then the four RAM elements at ADJ_CRA, used for 
accumulating the adjusted CRC residue, the RAM ele­
ment at MAX_ERR, used for the maximum error 
count and the RAM element at TOT -ERR, used for 
the total error count, are cleared to zero. The RAM 
element at R15-A.DR, used to record the address in 
RAM of R1s of the current interleave, is initialized to 
RES-REM+4. The RAM element at MAX-FWD, 
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used to record the seven least-significant bits of the sum 
of NUM-IL VS and the forward displacement of the 
last byte of the current interleave, is initialized to 
NUM-BYTS. The RAM element at ILV -LFT, used 
to record the number of interleaves remaining to be 5 
processed, is initialized to NUM-IL VS. 

FIG. 28 is a flow chart of the compute frequency­
domain syndromes operation. In step 251, AO, Al, 
A135L and the FDC are initialized for the first step. 
Then in step 252, coefficients R1s through Rs are read 10 
from RAM, multiplied by A135L-OUT and stored in 
D(7) through D(O). As each coefficient specified by AO 
is processed, VMS-OUT is stored in the FDC register 
specified by Al, NUM-IL VS is added to AO, Al is 
decremented and A135-0UT is stored in A135L and 15 
NZR is set if M40-0UT is one; all these functions are 
performed by the microcengine LoaLFDC--Rem 
instruction. Then in step 253, the FDC is clocked six­
teen times, with the partial syndrome on FDC-OUT 
being stored each time in RAM. Then in step 254, Al, 20 
A135L and DO are initialized for the second step. Then 
in step 255, coefficients R1 through Ro are read from 
RAM, multiplied by A135L_OUT and stored in D(7) 
through D(O), with AO, Al, A135L and NZR treated as 
in the first step, again by using the microengine Loa- 25 
LFDC--Rem instruction. Then in step 256, if none of 
R1s through Ro were non-zero, NZR will be zero and 
the ECC code detected no errors in the current inter­
leave, the error identification process for the current 
interleave is complete so control is passed to step 1060 30 
of FIG. 26. Otherwise, the error identification process 
for the current interleave continues with step 257, in 
which the FDC is clocked sixteen times, with the EX­
CLUSIVE-OR sum of the product of FDC_OUT and 
DO_OUT and the corresponding partial syndrome 35 
from the first step being stored in RAM and A247_ 
OUT being stored in DO. This is performed by execut­
ing a microengine Compute-Syndrome instruction in 
which the normal function of bits D and S is disre­
garded and instead, VMS-OUT is stored in Dl at the 40 
same time that the FDC is clocked and A247_0UT is 
stored in DO. Then in step 258, zero is clocked into the 
CRA is clocked as necessary to account for any CRC 
remainder bytes between the last non-ECC remainder 
byte of the current interleave and the first ECC remain- 45 
der byte of the sector. Note that this clocking of the 
CRA could be performed later, e.g. just before the loop 
in FIG. 30 is begun or immediately after the loop of 
FIG. 30 is interrupted when the FDC has been clocked 
d-1 times, but that to do so would increase the re- 50 
quired ROM size and time required to perform the error 
identification procedure. 

FIG. 29 is a flow chart of the compute error locator 
polynomial coefficients operation. This implements the 
new iterative algorithm of FIG. 13, as detailed in 55 
TABLE III. In the preferred embodiment of the inven­
tion, the swapping of the contents of LK and LN; DK 
and DO; and SK and SN are performed using a single 
microengine Swap_K_N--R.egs instruction after one 
has been stored into Dl using a microengine ADD 60 
instruction. When the Swap_K_N--R.egs instruction is 
executed, the product ofDl_OUT and DK is stored in 
DO and Dl at the same time that DO_OUT is stored in 
DK, LK_OUT is stored in LN, LN_OUT is stored in 
LK, SK_OUT is stored in SN and SN-OUT is stored 65 
in SK. 

FIG. 30 is a flow chart of the find errors and adjust 
CRC operation. In step 261, A135L, AL, LOC, FWD, 

AO, A12, DO, Dl and the FDC are initialized. The 
RAM element at TOT-ERR is updated by adding LN. 
If necessary, the RAM element at MAX-ERR is up­
dated with LN. The error locator polynomial coeffici­
ents in RAM at the address contained in SN are loaded 
into the FDC registers D(i). LN is stored in the RAM 
location at N, then LN is decremented. Then in step 
262, the FDC is clocked and L is incremented. Then if 
none of the conditions for terminating the search for 
roots was met before the FDC was clocked, the loop of 
step 263 is begun, in which zero is clocked into the 
CRA, the FDC is clocked and L is incremented until 
one of the terminating conditions is met. When one of 
the terminating conditions is met, the pipelined nature 
of instruction execution requires that execution of the 
next instruction be blocked. As disclosed herein, this is 
accomplished by transforming it into a No-Operation. 
Then in step 264, Dl is cleared. Then if condition (a) 
was met, step 265 is performed. In step 265, the RAM 
element. at N is decremented and the error value is 
computed and stored in Dl. Computing the error value 
requires performing a finite-field variable division. 
Hardware for performing this operation directly is com­
plex and expensive. In the preferred embodiment, of the 
invention, implementation cost is reduced by using the 
following identity to perform finite-field division as a 
series of finite-field multiplications: 

b-1 
L = x"Y-1 = x*.J12h-2 = x* n yi.; 
y i=l 

(14) 

Proceeding according to equation (14), finite-field 
division of x by y is performed by first loading x into Dl 
and y into DO, then repeating the following two-step 
process b-1 times: store the product of DO-OUT and 
DO-OUT in DO, then store the product of DO-OUT 
and Dl-OUT in Dl. The value x/y is produced in Dl 
and if either x or y was zero, Dl_OUT is zero. 

If the computed error value is zero, an uncorrectable 
ECC error has been detected, so this fact is recorded 
and control is transferred to step 1060 of FIG. 26; other­
wise, if correction of the identified error is allowed by 
its forward displacement and the configuration bits, 
then the forward displacement and value of the identi­
fied error are presented to the CL-SM331 Interface 
block on FWD_OUT and DLOUT respectively. The 
CL-SM331 deasserts VREADY when it is not able to 
accept an error correction vector. When the error iden­
tifier is ready to send an error correction vector, it waits 
until VREADY is asserted before asserting SEND_ 
VEC. Then in step 266, DLOUT is clocked into the 
CRA if LOC-GT16 is one. Then if condition (b) was 
met, step 267 is performed. In step 267, zero is clocked 
into the CRA as necessary to account for any CRC 
remainder bytes between the last non-CRC remainder 
byte of the sector and the last non-ECC remainder byte 
of the current interleave. Then if condition ( c) was not 
met, control is transferred to step 262, otherwise step 
268 is performed. In step 268, if the RAM element at N 
is not zero, an uncorrectable ECC error has been de­
tected so this fact is recorded and control is transferred 
to step 1060 of FIG. 26; otherwise, the EXCLUSIVE­
OR sums of the four RAM elements at ADJ_CRC and 
the products of the contents of the CRA registers and 
AL-OUT are stored in RAM at ADJ_CRC and then 
control is transferred to step 1060 of FIG. 26. 
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There has been disclosed and described in detail 
herein the preferred embodiment of the invention and 
its method of operation. From the disclosure it will be 
obvious to those skilled in the art that various changes 
in form and detail may be made to the invention and its 5 
method of operation without departing from the spirit 
and scope thereof. 

We claim: 
1. A circuit for producing a series of electronic values 

of frequency-domain syndromes of a Reed-Solomon or 10 

related code of distance d, the frequency-domain syn­
dromes being denoted Sm+;for i from 0 to d-2 wherein 
m is an offset of a code generator polynomial, from a set 
of electronic values of time-domain remairider coeffici- 15 
ents Rjfor j from 0 to d-2 comprising: 

means oft (d odd) or t+ 1 (d even) stages for elec­
tronically determining values of said frequency 
domain syndromes in two steps, including a step 
processing electronic values of said time-domain 20 
remainder coefficients Rj for j from 0 to t-1, 
where t= and producing electronic values of their 
contributions Am+i to said frequency-domain syn­
dromes Sm+i according to 

25 

t-1 •. al'" 
Am+; = . ~ [R/am 1]* t 

J=O 

and a step processing electronic values of said time- 30 
domain remainder coefficients Rj for j from t to d-2 
and producing electronic values of their contributions 
Bm+itO said syndromes Sm+; according to 

t* . d-2~ *(i n al'. 
Bm+i = a 1 * . ~ [Rj+t * am +t,J• t 

1=0 

35 

said syndromes Sm+; being formed as sums ofrespective 
electronic values of said contributions Am+i and Bm+i 
for i from 0 to d-2. 40 

said frequency-domain syndromes Sm+i being formed 
as sums of respective electronic values of said contribu­
tions Am+; and Bm+;for i from 0 to d-2. 

3. In a decoder for an error detection and correction 
system using a Reed-Solomon code or related code, a 
method of electronically decoding a Reed-Solomon 
code or related code of distance d having frequency 
domain syndromes Sm+dor i from 0 to d-2, compris­
ing the steps of: 

(A) receiving an electronic signal of a code word 
polynomial; 

(B) generating electronic values of an error locator 
polynomial G (x) from the code word polynomial 
electronic signal utilizing two polynomials s(k)(x) 
and s(n)(x) having respective coefficients s/k) and 
s/n> for j from 0 to t-1 and using steps of: 
(a) initializing said coefficient so(k) to an arbitrary 

non-zero constant, initializing said coefficient 
so<n>to an arbitrary non-zero constant, initializing 
a parameter dk to an arbitrary non-zero constant 
and initializing counters Ik, In and n to zero; 

(b) multiplying said polynomial s(k)(x) by x, incre­
menting said counter lkand computing a parame­
ter dn according to 

In ( 
dn = .~ u1n) *Sm+n-1; 

1=0 

( c) branching to step (g) if said parameter dn is 
equal to zero; otherwise 

(d) branching to step (f) if said counter lkiS less than 
or equal to said counter In; otherwise 

(e) interchanging values of said counters Ik and In, 
interchanging values of said parameters dk and 
dn, and interchanging the corresponding coeffi­
cients of said polynomials s(k)(x) and s(n)(x); 

(f) computing new coefficients of said polynomial 
s(n)(x) according to 

u(n)(x)=dk•cr<n)(x)$dn•crCk)(x); 2. A circuit for producing a series of electronic values 
of frequency-domain syndromes of a Reed-Solomon or 
related code of distance d, the frequency-domain syn- (g) incrementing said counter value n; 
dromes being denoted Sm+;fori from Oto d-2 wherein 

45 
(h) branching to step (b) if said counter n is less 

mis an offset of a code generator polynomial, a parame- than (d-2) or alternatively (t+ ln); otherwise 
ter of the code, from a set of electronic values of time- (i) assigning s(x)=s(n)(x) 
domain remainder coefficients Rj for j from Oto d-2 (C) finding root electronic values of the error locator 
comprising: means of t(d odd) or t+ 1 (d even) stages polynomial and determining corresponding error 
for electronically determining values of said frequency 50 locations; and 
domain syndromes in two steps, including a step pro- (D) correcting said code word polynomial signal or 
cessing electronic values of said time-domain remainder flagging an information polynomial as erroneous 
coefficients Rj for j from O to t-1, where t= and pro- according to results of step (C). 
ducing electronic values of their contributions Am+i to 4. In an electronic system performing identification of 
said syndromes Sm+i according to 55 introduced errors in a plurality of interleaved error 

t* . 2*t-l *(i ·n al'" Am+i =a- 1* ~ [R·-t"am +t,J• t 
j=t :J 

correction code (ECC) codewords of a Reed-Solomon 
or related code wherein information symbols of the 
ECC codewords are protected by a Reed-Solomon 
Cyclic Redundancy Check (CRC) code of degree de 

and a step processing said remainder coefficients Rj for 60 

j from t to d-2 and computing their contributions 
Bm+i to said frequency-domain syndromes Sm+i ac­
cording to 

with a generator polynomial GC(x) and the information 
symbols of the CRC code comprise sums across the 
ECC codewords of corresponding information symbols 
of the ECC codewords excluding the last information 
symbol of the last de said ECC codewords, these last de 

d-2 •. al'" Bm+i = .~ [R/am 1]* t 

j=t 

65 symbols comprising redundant symbols of the CRC 
code, a method for adjusting an electronic value of a 
residue of the CRC code to detect miscorrections by the 
ECC, the method comprising steps of: 
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(a) loading said residue of said CRC code into a 
LFSR which implements a reciprocal polynomial 
of said CRC generator polynomial GC(x) and 
clearing de accumulators; 

(b) before processing each of said ECC codewords in s 
turn, first clocking a zero value into said LFSR a 
number of times; 

(c) processing a last information symbol of said ECC 
codeword, wherein said processing comprises 10 
searching for an error in said information symbol 
and clocking a zero value into said LFSR if no 
error was detected or clocking an error value into 
said LFSR if an error was detected in said last 
information symbol of said ECC codeword; IS 

(d) next clocking a zero value into said LFSR a num­
ber of times; 

20 

2S 

30 

3S 

40 

4S 

so 

SS 

60 

6S 

(e) processing each of remaining said information 
symbols of said ECC codeword in order from next­
to-last to first, wherein said processing comprises 
searching for an error in said information symbol 
and clocking a zero value into said LFSR if no 
error was detected or clocking said error value into 
said LFSR if an error was detected in said informa­
tion symbol of said ECC codeword; 

(f) when all said information symbols of said ECC 
codeword have been processed, storing a sum of 
contents of said LFSR and contents of accumula­
tors in said accumulators and branching to step (b) 
if a codeword remains to be processed; otherwise 

(g) when all said information symbols of all said ECC 
codewords have been processed, checking that 
each of said accumulators contains zero values. 

* * * * * 


