
I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111

United States Patent [19]

Dudley et al.

[54] FAST AND EFFICIENT CIRCUIT FOR
IDENTIFYING ERRORS INTRODUCED IN
REED-SOLOMON CODEWORDS

[75] Inventors: Trent Dudley, Littleton; Neal Glover,
Broomfield; Larry King, Boulder, all
of Colo.

[73] Assignee: Cirrus Logic, Inc., Fremont, Calif.

[21] Appl. No.: 679,570

[22] Filed: Apr. 2, 1991

[51] Int. Cl.6 G06F 111-10; H03M 13/00
[52] U.S. CI •... 371/37.1
[58] Field of Search 371/37.1, 37.5, 40.1,

371/38.1, 39.1

[56] References Cited

U.S. PATENT DOCUMENTS

4,410,989 10/1983 Berlekamp 371/40
4,763,332 8/1988 Glover 371/37
4,839,896 6/1989 Glover et al. 3711'7

OTHER PUBLICATIONS

"Standard ECMA-154, Data Interchange on 90mm
Optical Disk Cartridges, Read Only and Rewritable,
MO" by ECMA European Computer Manufacturers
Association, published Jun. 1991, pp. 35-42, 79-88.
"Information Exchange", ISO/IEC JTC 1/SC 23N, pp.
53-57.
"CL-SM330 Preliminary Data Sheet" by Cirrus Logic,
Inc. published Apr., 1991.
"CL-SM33 l Preliminary Data Sheet" by Cirrus Logic,
Inc. published Apr., 1991.
A Decoding Procedure for the Reed-Solomon Codes
by Raymond S. Lim; Aug. 1978; pp. 12-15.

Microprocessor
(80188)

US005384786A

[11] Patent Number: 5,384,786
[45] Date of Patent: Jan. 24, 1995

lnversionless Decoding of Binary BCH Codes by Her­
bert O. Burton; Jul. 1971; vol. IT-17, pp. 464-466.

Primary Examiner-Charles E. Atkinson
Assistant Examiner-Stephen C. Elmore
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

[57] ABSTRACT

Apparatus and methods are disclosed for providing an
improved system for identifying the location and value
of errors introduced in binary data encoded using Reed­
Solomon and related codes and to detect miscorrections
of such codes with an auxiliary code. The invention
employs an architecture based on a microcode engine
that is specialized for error identification and that sup­
ports interleaved codewords. This architecture can be
efficiently fabricated as an integrated circuit, yet is ca­
pable of identifying multiple introduced errors "on the
fly" i.e. with performance sufficient to not significantly
slow the process of reading from data storage or trans­
mission subsystems such as, but not limited to, optical
disks. In the preferred embodiment, a new two-step
method of error syndrome computation is employed to
reduce circuit cost and complexity. An improved itera­
tive algorithm is provided which reduces circuit cost
and complexity and decreases the time required to gen­
erate the error locator polynomial. Cyclic redundancy
check (CRC) information is adjusted as introduced
errors are identified during the Chien search, thus re­
ducing the time required to protect against ECC mis­
correction. Externally-specified error thresholds allow
detection of excessive numbers of errors.

SYSTEM
ROM
RAM

4 Claims, 30 Drawing Sheets

Address/Data

SCSI
Interface

SCSI Data

SCSI Control

Buffer
Data

Buffer
RAM

SM330/
SM33

ERROR
Vector
Signals

Buffer
Address

CL-SM330

Command/Status

SH VFOl AM

5 12 1

~ -
--

ID#IOI SECTOR#

716151413121110

I I
I

I I

TRAC:H SECTOR CRC

2 1 2

I I

.-L1 IL' fl,

101 VF02 AM 102 VF02 AM 103

5 8 1 5 8 1 5

PA

1

~
rr=0

ODF GAP VF03

1 5 12

SYNC DATANU/CRC
ECC/RESYNC

3 639 (1259)

PRE-FORMATTED AREA ODFAREA DATA AREA
52BYTES • 6BYTES j.- 654 (1274) BYTES-.

TOTAL LENGTH
725 (1394) BYTES

Figure 1
(prior art)

PA BUFFER

1 12(61)

GAP AREA
13 (62)

... --...

~ •
rlJ. •
~
a a

~
--~
.....
~
(I)

r
.....
s,
CN
Q

(II ,,.
CH
00 .s;:. ,,.
'-l
00

°'

[SBl j SB2 l SB3

I RSl

lRS34

lRS35

(RS39

Dl D2 D3 D4 D5

D6 D7 DB D9 DlO

Dll D12 D13 D14 D15

D16 D17 D18 D19 D20

D21 D22 D23 D24 D25

• • • • • • • • • •
D506 D507 D508 D509 D510

D511 D512 VUl VU2 VU3

VU4 CRCl CRC2 CRC3 CRC4

El,l E2,1 E3,1 E4,1 E5,l

El,2 E2,2 E3,2 E4,2 E5,2

El,3 E2,3 E3,3 E4,3 E5,3

El,4 E2,4 E3,4 E4,4 E5,4

• • • • • • • • • •
El,14 E2,14 E3,14

El,15 E2,15 E3,15

El,16 E2,16 E3,16

E4,14

E4,15

E4,16

E5,14

E5,15

E5,16

Figure2
(prior art)

~ •
00 •
1-C

~ a

~
--~ ...
~ en

00 =­(!)

~
kV

~
w =

tll ...
CH
QC
~ ...
.........
QC
~

U.S. Patent Jan.24, 1995 Sheet 3 of 30

EN LD_D(O)

.
• . .

~
LD_D(d-2)

111 r
00

01

10

111

00

01

10

110

*aO

. 113

D(O)

110\

*ad-2

Figure 3
(prior art)

.
• .

5,384,786

112

OUT
XOR

U.S. Patent Jan. 24, 1995 Sheet 4 of 30 5,384,786

n = 0, k = -1, L = 0, dk = 1, cr(n) = 1, cr(k) = x

L
dn = \o O' ~n)*S .

/::__ 1 m+n-1

=

i=O

Tmp=L
k=n-L
L=Tmp

dk=dn
o(k) = cr(n)

--"----/5
a(n) = cr(p)

<

cr(k) = x*cr<k)
n=n+l

a(x)= a(n)
STOP

3

7

2
J

--'

Figure4

(prior art)

1

U.S. Patent Jan. 24, 1995 Sheet 5 of 30

180
SYNDROME
GENERATOR

181

SYNDROME BUFFER

H

190

186

Z-DET

1

1

LOG
ROM

OMPLEMENTER

SEQUENCER

c

8-BIT BINARY ADDER 192
MOD255

ANTil..OGROM 193

194

F 195

Figure5
(priorarl)

5,384,786

SCSI
Interface

' SCSI Data

Microprocessor
(80188)

•
I

Address/Data

SM330/

SYSTEM
ROM
RAM

•
•

4 SM33111\

RLL Interface r_) ... ·~ 4 • 4NRZDat~
CL-SM331 I... RRCLK CL-SM330

SCSI Control

• •
• • Buffer

Data t

411 ERROR•
Vector
Signals

Buffer
• Address

Buffer
RAM

... .
Command/Status ~

Figure 6

~ • r.11 •
""C a
tD =

~
--~
~
\C

~

~
a
0\

~
(H
Q

(It

"' (H
QC
~
"':.
QC

°"

SM330/SM331
Interface Signals

RRCLK

NRZData

SYSCLK

EITor Vector
Signals

~ -
--.....-

-...,.

.. -
.. SM331 ... I/F

-..

Address/Data Rd/Wr Interrupt
Bus Control ~ - . - - - - - --

j~
4~

~Ir ~·
Microcontroller

Interface

il

--
~· ~·

ECC/CRC END EC

A~

CORRCLK

- .. -- -----.....
Optical 1 ..
Drive 1•

... l/F -- ... ----
--

Figure 7

RLLData

PLLCLK

2FCLK

PLL Control

Flag Control

GPIN[0:7]

GPOUT[0:7]

INT[O:l]

c:: • rLJ.
•
~ a a

~
~

... ~
io-l
\C
\C
UI

00 =-n>
n> -"'-l
~,
c.u
Q

UI
~
QO
~

~
°'

SCSI
Data

SCSI
Control

-Driver
Control ---

.. -

SCSI - Control ..
and

... Data .. Transfer

,~

Differential
Control

Address/
Data Rd/Wr
Bm:i Control Interrupt
-~'-

A '~ A~

0 ,,
Microcontroller

Interface

J~

4 - ---- ..

,t

Buffer - -- Manager -- -----
'~ J It

,~ ,~

Address, ~Control,,

Data Error
Vector
Signals

-
wcs

3lx4Bytes

A~

·,~
Format - --Sequencer -- ...

'~ ,,
-- Sector -- --.... -Formatter

Data Path ---

Figures

SM330/SM331
Interface
Signals

NRZData

RRCLK

~
• 00
•
""d
a
('D

a

~
--~
~
(I)

~
n> a
00

e.
~ c

UI ...
(N
00
~ ...
........)
00

°'

U.S. Patent Jan. 24, 1995 Sheet 9 of 30 5,384,786

• . . • 121 . .
127

00

01 D(t-1)

10

LD_D(t-1)
126

*at

OUT2

Figure9

U.S. Patent Jan. 24, 1995 Sheet 10 of 30 5,384,786

130

132 *at

*am 133

{131
137

00

01 D(t)

10

• . .
EN LD_D(t) 130\ OUTl

XOR

*a2•t-1

Figure 10

U.S. Patent

142

*am

~48 M

Rj

EN

Jan. 24, 1995

LD_D(O)

141 r
00

01

10

r141

00

01

10

LD_D(t-1) --+---1------1

GT

Figurell

Sheet 11 of 30 5,384,786

140

*aO

143

147

D(O)

.
140'l

OUT!

*at-1 XOR

147

140

OUT2

U.S. Patent Jan. 24, 1995 Sheet 12 of 30 5,384,786

150

152 *at

153

151 r 157
00

01 D(t)

10

EN 150\ LD_D(t)

XOR
OUTl

*a2-t

Figure 12

U.S. Patent Jan. 24, 1995 Sheet 13 of 30 5,384,786

n = 0, lk = 0, ln = 0, dk = vd, a(k) = Vk_, a(n) = Vn _,ll

=

dn ++dk

In++ lk
a(n) ++o(k)

12b

13

14

o(n) = dk * o(n) EB dn * O' (k) /

<

n=n+l

O'(x) = o(n)
STOP

15

16

Figure 13

U.S. Patent Jan. 24, 1995 Sheet 14 of 30 5,384,786

101

U_BUS USY

SIZE ONE

FORM
ECC_ERR

CRO SUPP
JJF CRC_FRR

MICRO DIAG--.

JJF VU_Pl'R THR_ERR

START

STOP

CONT

DISABLE ERROR
IDENTIF'IER

102

RRCLK
DRIVE

JJF CG_RG END_VEC
ENCODE/
DECODE RMNDR

LFSR M331
JJF

T7

Dl_OUT

SM33
JJF

CORRCLK --------

Figure 14

ADDRESS BIT7 BIT6 BIT5 BIT4 BITS BIT2

Start /Ident.
Suppress

Error
lOh Ident Busy Vectors

Correct!
X-Fer

llh _WlPIR

Disable Error
12h Identification

21h

23h

30h Uncorrectable Uncorrectable
ECC Identifier

ECCError CRCError
Threshold Overrun
Exceeded

31h Error Identifier RAM Address (Write Only)

32h Error Identifier RAM Access

3Fh
EnableECC
DiagMode

Figure 15

BITl BITO

130mm 1024Mode Mode

Read
Continuously

Enable Done
Interrupt

Identifier
Done

~ • trJ. •
t-C

i
~ p
--~
~
UI

ga
~
UI

a,
(N
Q

U1
--(Jo)
QC

_..J;ii.
.....:I
QC

°'

U.S. Patent Jan. 24, 1995 Sheet 16 of 30 5,384,786

Enc/Dec LFSR
SM331 IIF

SM331 Micro IIF IIF
161 ~~ 162 (63

~~ ~ ~ ~~

J ,, . ,~
- __. v __. - .. --

ROM IPC -- ISC 1--1 _. --... -
~ ~

16) ,, L5 ,, 116

~ APC
_...

EVC CRA ...

j~

,, 16? ,, t.18
(169

I-+
FDC ~ RAM FFF -- .. -----

Figure 16

~ • 171 172 173 174 'fJl

M
•

SN)
MPU_DAT~ ROM_OUT-.sn

~ = lFh ~ I RAM_ OUT 8 (D

1'8 -RAM = 8 ~,
8 .. 1

I

SEL I 5 I . I SEL I I SEL

fT
C-j

p
}76 I 177 N

135 I .J:>. .. SK Al D49 1J
\C
\C
UI

I '7
-

--~ I '9
_.. LD_D(i)

OEh ~ I :5 1~·1 SEL SEL

t r.l.l
=-n>

ADD_OUT_J . n> -......
~

e,
.._, RMX t{ ~

0 MPU_DAT

FDC_OUT -- r RAM__DAT M3_0UT ..
U1

CER_BUS • SEL ~
QO

Figure 17 ~ ...
-...l
QO

°'

,, EO
CG J82

N
XOR -.. .. CRA_I

1817

G
..
...

f -... ...

184 185
C1~6 MX

~ a"
... ...

UT 1-----.... RAM_O

SEL EN EN

t

CM
;ss

A w
B x
c y

D z i--

C2 1~7

L...+ 1--- L+

EN

Figure 18

C3

... . "' RA_ OUT

EN 18f

~ • 00
•
'-a a
('I)

a

~
-.~
""" \C>

~

~
m.
""" 00

s,
~
Q

UI
w
QC
~ ...
....:I
QC

°'

U.S. Patent Jan. 24, 1995 Sheet 19 of 30 5,384,786

EVC

SUPP
DIAG --..
VU_PI'R ..

- ... _..
SEND_VEC ...

SIZE --
FORM _
FWD_OUT -.

Figure 19

U.S. Patent

FDC_IN

EN
(from IP C)

. . .

Jan. 24, 1995 Sheet 20 of 30 5,384,786

191 FX

MJ_OJ[_
192

D(O) j 194
.....

0 / ...
- ..

..... 1
...

SEL EN • tLD_D(O)

A(8)

XOR ~

- ~c_o - UT

193
• •
0 . . .

M(8) lf 191
D(8)

µ192 .. 0 -

---
1

...
SEL EN

j A(16) 193 b.J~ 8)

v /9 --~ D49_0UT

Figure20

A135 A135L

IR_OUT

EN

2\.~

ALPHAl AL

Figure21

EN --.-

ffi_OUT
LILOUT ~
FDC_OUT--=----:1
RAM_OUT-t ----

M2
211

f

20(VMS

~
z

ADD
I I I ••A

I ••CI

--~~~~~~~~~~--ADD_OUT

I ... FDC_IN

M4
Dl 214

I • .. ,1 I I •Dl_OUT
213 EN

T

11 • • CRA_IN
215

~ • 00 •
~ a
ti)

a

~
--~
~
OJ

r
~
~
e,
w
Q

UI ...
CH
QO
~ ...
--..I
QO

°'

U.S. Patent

A

B

c

--... A

B07

•
• .

Jan.24, 1995

221 v
Z(O)

(0)

f . . .

Z(7)

(7)

Sheet 22 of 30 5,384,786

vx

V~)
223 v22
~ ..

~ --
G

J
• . _..J7 XOR . . --~ . .
VG(7)
r--

222
/ .. • .. -

G

J

Figure22

A 270

ADD_ OUT--.~
£m372 ~73

FDC_OUT--.~

M4 274
M4_0UT--.~

LK

277

280

'

279

CG_RG
MPU_BUS
RAM_ OUT

RMNDR
RRCLK

T7

XI
f----i:>USY
14-CER_BUS

RC_ER

~ONE
i.-ECC_ERR

FWD_LTNI-.
FWD_LTO_.
FZD_OUT-.
GTZ_OUT-.

IR_OUT-.
LC_OUT-.

LOC_EQ16 __.
LOC_EQ17_.
LOC_GT16_.
NZR_OUT_.

ROM_ OUT-.
ZRO_OUT __.

LA (_,s IM ; ... a IA J 8_ <,... .., , Ir •i l:r •i ~ROM_ADR ROM OUT,, 17._ •' IR I --
Figure28

ID

291

APC_CTL
CRA_CTL
EVC_CTL
FDC_CTL
FFP_CTL
ISC_CTL
RAM_CTL
ROM_AOR

~ •
rJ1
•
~ a a
~

?
}t
""'4

~
UI

ga
$a.

~
a,
~
Q

UI
"' w
QO
.p..

"'

"' QO

°'

U.S. Patent Jan. 24, 1995 Sheet 24 of 30 5,384,786

231
FWD SUB

232

11 11
7

SIZE SIZE

LOC
CMP

233'-
FWD_LTO

FWD_LTNI

15
LOC_E016

CI LOC_GT16
234

LOC_EQ17

LOC_GT17

SIZE

Figure24

U.S. Patent Jan. 24, 1995 Sheet 25 of 30

READ DATA FROM MEDIA, STORING IT TO
BUFFER RAM AND COMPUTING CRC AND

ECCONIT

242

READ CRC AND ECC FROM MEDIA, COMPUTE
XOR OF READ AND COMPUTED VALUES,

AND STORE RESULTS IN IDENTIFIER RAM

NO

YES

Figure25

5,384,786

U.S. Patent Jan.24, 1995

[l.]

Sheet 26 of 30

INITIALIZE RAM
ANDCRA

1020

[2.] COMPUTE FREQUENCY DOMAIN
SYNDROMES FOR CURRENT INTERLEAVE

NO

[3.] COMPUTE COEFFICIENTS OF ERROR
LOCATOR POLYNOMIAL FOR CURRENT

INTERLEAVE

5,384,786

1030

1040

[4.] FIND ERROR LOCATION, VALUE AND 1050
ADJUST CRC FOR EACH ERROR OF

CURRENT INTERLEAVE

[5.] UPDATE RAM

[6.]
POST ANY

NO ERRORS

Figure26

1090

U.S. Patent Jan.24, 1995 Sheet 27 of 30

LOAD CRA WITH 4
CRC RESIDUE BYTES

FROM RAM

CLEAR ADJUSTED CRC
(ADJ_CRC) RESIDUE

BYTES IN RAM

1120

1130

CLEAR MAXIMUM 1140
AND TOTAL ERROR

(MAX_ERR AND
TOT_ERR) COUNTS

IN RAM

INITIALIZE NUMBER OF
INTERLEAVES LEFr (ILV _LFT) 1150

AND MAXIMUM FORWARD
DISPLACEMENT (MAX_FWD)

ACCORDING TO CONFIG
BITS; INITIALIZE ADDRESS

OF R15 (R15_ADR) OF
FIRST INTERLEAVE

Figure27

5,384,786

U.S. Patent

251

252

Jan.24, 1995 Sheet 28 of 30

PREPARE TO PROCESS
R15+-R8

'-. PREMULTIPLY AND LOAD R15 +-RB INTO FDC

253 CLOCK FDC 16 TIMES,
\... SAVING THE OUTPUT TO

RAM AS PARTIAL SYNDROMES

254\. PREPARE TO PROCESS R7 +- R0

255 PREMULTIPLY AND LOAD
R7 +- R0 INTO FDC

256\. IF NONE OF Rl5 +- R0 WERE
NON-ZERO, GOTO INTLV, DONE

257
CLOCK FDC 16 TIMES,

POSTMULTIPLYING OUTPUT AND
XORING wrm PARTIAL SYNDROMES,

STORING RESULTS IN RAM

258

AS COMPLETE SYNDROMES

CLOCK 0 INTO CRA MIN
(4 INTLVS_LEFT-1) TIMES

5,384,786

Figure28

U.S. Patent Jan.24, 1995 Sheet 29 of 30

DO

INITIALIZE LOCATIONS USED FOR O'n, O'I{ IN RAM

INITIALIZE SK, SN, LK, LN, DK, D0, Dl

INCREMENT LK, DECREMENT SK
RECORDNEWVALUEFORN=Dl

LN
COMPUTE D0=I: O'n (i) · S(N-i)
IF (D0 = 0) l=0

IF(LK>LN)

SWAP CONTENTS OF SN, SK
SWAP CONTENTS OF LN, LK
SWAP CONTENTS OF D9', DK

COMPUTE O'n =DK· O'n E9D0· O'k

COMPUTE Dl = N+l

WHILE (Dl<LN=8)

Figure29

5,384,786

U.S. Patent Jan. 24, 1995 Sheet 30 of 30

2 1

CLEAR ALL 9 FREQ. DOMAIN cmcUIT REGISTERS TO 0

LOAD a120 INTO Al35L

LOAD a254 INTO AL
CLEAR LOC TO 0
LOAD FWD REGISTER
LOAD A0, Al, D0, Dl REGISTERS
ADD LN TO *(TOT_ERR) IN RAM
LOAD FDC REGISTERS WITH a (x) COEFFICIENTS
UPDATE *(MAX_ERR) IN RAM WITH LN
STORE LN TO *(N) IN RAM
DECREMENT LN

CLOCK FDC, INCREMENT L, UPDATE FWD

D1~0

263...._.

NO CLOCK FDC, INCL, UPDATE FWD
IF ~16, CLOCK 0 INTO CRA

DECREMENT *(N) IN RAM
USE CJ(*) AND SYNDROMES TO
COMPUTE Dl=ERROR VALUE.
IF ERROR VALUE= 0, GOTO FLAG

~.....,, UNCORR ECC; ELSE SEND ERROR
VALUE AND FORWARD DISP. TO
SM331 I/F BLOCK

CLOCK 0 INTO CRA
MAX (0, 4-*(ILV _LFT)) TIMES

IF *(N);t:0, GOTO FLAG
UNCORR. ECC; ELSE XOR

>--....i CONTENTS OF CRA INTO
ADJUSTED CRC RESIDUE
BYTES IN RAM

5,384,786

Figure30

1

FAST AND EFFICIENT CIRCUIT FOR
IDENTIFYING ERRORS INTRODUCED IN

REED-SOLOMON CODEWORDS

5,384,786
2

over a signal channel, a group of more than 255 bytes
together, more than one codeword is required. When
errors tend to occur in bursts affecting more than one
symbol, it is advantageous to interleave the codewords

5 so that a single error burst is spread across more than
BACKGROUND OF THE INVENTION one codeword.

This invention relates to information storage and Optical disks conforming to ANSI/ISO standards for
retrieval or transmission systems, and more particularly 90 mm and 130 mm media store data in a sector com-
to means for encoding and decoding codewords for use prising an identifying mark; a triply-redundant header
in error detection, identification and correction in such IO containing physical location information; 512 or 1024
information systems. user-data bytes plus vendor-unique/pointer bytes, all

Digital information storage devices, such as magnetic protected by an overlay CRC code with four redundant
disk, magnetic tape or optical disk, store information in bytes, in five or ten interleaved ECC codewords, re-
the form of binary bits. Also, information transmitted spectively, each with sixteen redundant bytes; and other
between two digital devices, such as computers, is l5 necessary special marks. See 90 mm Rewritable/Read
transmitted in the form of binary bits. During transfer of Only Optical Disk Cartridges for Information Inter-
data between devices, or during transfer between the change, Second Edition, Second Draft, JTC 1/SC
storage media and the control portions of a device, 23/WG 2 N213, December 1990, pages 38-42 and
errors are sometimes introduced so that the information 84-86. Also see Information Technology-130 MM Re-
received is a corrupted version of the information sent. 20 writable Optical Disk Cartridges for Information Ex-
Errors can also be introduced by defects in a magnetic change, ISO/IEC JTC 1/SC 23N, pages 53-57. FIG. 1
or optical storage m:dium. These errors mu.st .almost shows the organization of a 512-user-date-byte sector
always be corrected if the storage or transID1ss1on de- for the ANSI 90 mm rewritable optical disk standard.
vice is to ?e useful. FIG. 2 shows the interleaved codeword organization of

Correction of the received information is accom- 25 the data area within each 512-data byte sector for the
plished by (1) deriving additional bits, called redun- ANSI 90 mm CCS rewritable optical disk standard. The
dancy, by processing the original information mathe- "SB" and "RS" bytes are not included in ECC/CRC
matically; (2) appending the redundancy to the original computations.
information during the storage or transmission process;
and (3) processing the received information and redun- 30
dancy mathematically to detect, identify and correct
erroneous bits at the time the information is retrieved.
The process of deriving the redundancy is called encod­
ing. The process of processing the received information
and redundancy is called decoding. One class of codes 35
often used in these processes is Reed-Solomon codes.

Encoding of information is accomplished by process­
ing a sequence of information bits, called an information
polynomial or information word, to devise a sequence
of redundancy bits, called a redundancy polynomial or 40
word, in accord with an encoding rule such as Reed­
Solomon codes. An encoder processes the information
polynomial with the encoding rule to create the redun­
dancy polynomial and then appends it to the informa­
tion polynomial to form a codeword polynomial which 45
is transmitted over the signal channel or stored in an
information storage device. When a codeword polyno­
mial is received from the signal channel or read from

SYNDROME COMPUTATION

A Reed-Solomon code with distance d over b-bit
symbols from GF(2b) has code generator polynomial
G(x) of degree d-1:

m+d-2 (I)

G(x) = n (xEl:)a')
i=m

where m is the offset of the code generator polynomial.
$ represents finite-field addition and the product is
formed using finite-field multiplication. The time­
domain remainder polynomial R(x) has coefficients R.;
for j from 0 to d-2 defined by

d-2 .
R(x) = C(x)MODG(x) = . l: Rj*xJ

1=0

(2)

the storage device, a decoder processes the received where C'(x) is the received codeword polynomial and
codeword polynomial to detect the presence of error(s), 50 the summation is performed using finite-field addition.
to attempt to identify any error(s) present and to flag Frequency-domain syndromes Sm+;for i from Oto d-2
the information polynomial as erroneous or to correct it are related to coefficients Rj according to:
before transferring the information polynomial for fur-
ther processing.

The decoding process typically comprises three 55
steps: (1) computing frequency-domain syndromes from
the received codeword; (2) computing an error locator
polynomial, whose roots indicate the locations of erro­
neous symbols, from the frequency-domain syndromes;
and (3) finding the roots of the error locator polynomial 60
and computing the corresponding error values.

SECTOR FORMATS

The length n of codewords of Reed-Solomon codes
utilizing b-bit symbols is restricted to n<2b. A symbol 65
size.commonly used is the "byte" comprising eight bits,
giving n<28=256. When it is desired to store in and
retrieve from a data storage system, or send and receive

Rearranging equation (3) yields:

d-2 ...
Sm+i = .1:

0
[R/am:!]•at·•

}=

(3)

(4)

Methods for performing the computations of equa­
tion (4) when mis zero are known in the art; see Lim,
"A Decoding Procedure for the Reed-Solomon Codes,
"NASA Technical Paper 1286, 1978 pp. 12-15. FIG. 3
depicts prior-art circuitry implementing equation (4),
comprising d-1 registers 113 denoted D(O) through

3
5,384,786

4
sums are produced using EXCLUSIVE-OR circuit 185.
Finite-field variable products are produced using loga­
rithm tables 188 and 189, adder 192, antilogarithm table
192, zero-detection circuits 186 and 187, NOR circuit

D(d-2); d-1 constant finite-field multipliers 110 im­
plementing multiplication by aj for j from 0 to d-2;
d-1 three-input multiplexers 111; and a (d-1)-input
EXCLUSIVE-OR circuit 112. All registers, multiplex­
ers, multipliers and data paths are symbol wide.

In the operation of FIG. 3, first the following process
is repeated d-1 times for j from 0 to d-2: present
coefficient Rj and assert control signal LD-1)(j) to
store Rj in D(j). Then control signal EN is asserted and
the following process is repeated d- 1 times for i from
0 to d-2: syndrome S;is produced on OUT and stored
elsewhere and the outputs of multipliers aj 110 are
stored in respective registers D(j) 113 for j from 0 to
d-2.

s 190 and gating circuit 194. Finite-field inversion is per­
formed using read-only memory tables 184.

The circuitry of FIG. 5 is undesirable because it re­
quires an excessive amount of complex and relatively
slow circuitry. Syndrome generator 180 contains sepa-

The circuit of FIG. 3 is undesirable because it re­
quires an excessive number of registers and constant
finite-field multipliers and a very large EXCLUSIVE­
OR circuit. Thus it is clear that improved methods for
computing frequency-domain syndromes are needed.

10 rate syndrome computation circuits for each inter­
leaved codeword. The finite-field computation circuit
contains a large number of registers. The read-only­
memory circuits of 184, 188, 189 and 192 are both com­
plex and slow, limiting the maximum rate of operation.

lS It is clear that less expensive, faster circuitry is needed.

CRC RESIDUE ADJUSTMENT

ITERATIVE ALGORITHM

Iterative algorithms for generating the error locator
polynomial for Reed-Solomon and related codes are
known in the art; see Clark ·and Cain, E"or Correction
Coding for Digital Communications, 1981, pp. 204-208. 2S
Iterative algorithms which require no inversion are also
known in the art; see Burton, "Inversionless Decoding

The ANSI/ISO standards for 90 mm and 130 mm
optical disk media provide for a CRC code covering all

20 interleaves of the user data and the vendor-unique/­
pointer information bytes. This distance-five, Reed­
Solomon code has information symbols comprising the
EXCLUSIVE-OR sum of bytes across interleaves. The

of Binary BCH Codes," IEEE Transactions on Informa­
tion Theory, IT-17, 1971, pp. 464-466. FIG. 4 shows the
steps of a prior-art inversionless iterative algorithm. In 30
step 1, counters n, k and L, parameter dkand polynomi-
als o{n) and o{k) are initialized. In step 2, the nth discrep­
ancy dn is calculated. If dn is zero, control passes to step
6. Otherwise, step 3 calculates the updated error locator
polynomial crl.P). Then if counter L is greater than or 3S
equal to the difference n-k, control is passed to step 5.
Otherwise step 4 updates counters k and L, copies dn to
dkand copies o-<n)to o{k). Step 4 copies crl.P)to o-(n). Step
6 multiplies o{k) by x and increments counter n. Then if
counter n is less than 2·t, control is passed to step 2. 40
Otherwise, the iterative algorithm has been completed
and u{n) is the desired error locator polynomial. The
prior-art iterative algorithm of FIG. 4 is undesirable
because it requires storage elements for three polynomi­
als and repeated copying of polynomial coefficients 4S
from one storage area to another.

FINITE-FIELD COMPUTATIONS

Hardware capable of performing the computations
required for decoding Reed-Solomon and related codes SO
are known in the art; see Glover and Dudley, Practical
E"or Co"ection Design for Engineers, 1988, page 353.
FIG. 5 shows the major blocks of a prior-art decoding
circuit comprising syndrome generator 180; syndrome
buffer 181; work buffer 182; sequencer 183; registers 195 SS
A, B, C, D, E, F, G and H; read-only-memory tables
184; EXCLUSIVE-OR circuit 185; zero-detection cir­
cuits 186 and 187; finite-field logarithm read-only­
memories 188 and 189; NOR circuit 190; ones-comple­
menting circuit 191; modulo-255 adder 192; finite-field 60
antilogarithm table 193; and gating circuit 194. Unless
otherwise noted, all paths are eight bits wide.

In operation of FIG. 5, syndrome generator 180 gen­
erates frequency-domain syndromes for all interleaved
codewords simultaneously and stores them in syndrome 65
buffer 181. Sequencer 183 controls the operation of the
decoder, using work buffer 182 to store intermediate
results produced using the other circuitry. Finite-field

CRC code generator polynomial GC(x) is of degree
four:

c+dc-1 (5)

GC(x) = n (xEBai).
i=c

where de is the degree and c is the offset of the CRC
code generator polynomial. The time-domain CRC
residue polynomial RC(x) has coefficients RCj defined
by

dc-2 .
RC(x) = CC(x)MODGC(x) = . ~ RCJ°*xl

;=0

(6)

where CC'(x) is the received CRC codeword polyno­
mial. The residue of this code must be adjusted to re­
move the contribution of each identified error. After all
errors have been identified, the adjusted CRC residue
must be zero; if not, a miscorrection of an uncorrectable
error by the error correction code has been detected.

One method for adjusting the CRC residue is to re­
encode the sector after the error detection, identifica­
tion and correction process has been completed and
check that the re-encoded CRC redundancy symbols
match the corrected CRC redundancy symbols. This
method is undesirable because it requires additional
hardware to provide access to the corrected data and
additional time to perform the re-encoding process.

Another method for adjusting the CRC residue is to
compute CRC syndromes SCc+i from CRC residue
coefficients RCj according to:

dc-2 .
SCc+i = . ~ RCf'a(c+1)1

;=0

and then adjust the CRC syndromes according to:

SC +. = SC +. $ 1l E-*a(c+1}Lj
c l c l j=l 1

(7)

(8)

where N is the total number of errors in symbols cov­
ered by the CRC code, Ejare the error values and Ljare

5
5,384,786

6
computation circuits are provided specifically to sup­
port this objective.

the. locations of the errors relative to the CRC code.
This method is undesirable because it requires addi­
tional time to compute the CRC syndromes and to per­
form the adjustment. It is clear that faster and less ex­
pensive methods for adjusting the CRC residue are
needed.

SUMMARY OF THE INVENTION

Another object is to provide an architecture particu­
larly suitable for error identification computations

5 which includes both a specialized data-path design and
a set of specialized microengine instructions and which
is suitable for implementation in an integrated circuit.

Another object is to provide elements of the set of
Apparatus and methods are disclosed for providing microengine instructions which efficiently control the

an improved system for identifying the location and 10 execution of finite-field variable multiply-and-sum oper-
value of errors introduced in binary data encoded using ations.
Reed-Solomon and related codes and to detect miscor-
rections of such codes with an auxiliary code. The in- Another object of the present invention is to accept
vention employs an architecture based on a microcode time-domain error syndromes so as to support a high
engine that is specialized for error identification and 15 performance, cost-efficient implementation for Reed-
that supports interleaved codewords. This architecture Solomon codes that allows the same LFSR to be used
can be efficiently fabricated as an integrated circuit, yet for both encoding and decoding of Reed-Solomon
is capable of identifying multiple introduced errors "on codewords.
the fly" i.e. with performance sufficient to not signifi- Another object is to support the ANSI/ISO standard
cantly slow the process of reading from data storage or 20 formats for both 512-byte and 1024-byte sector sizes and
transmission subsystems such as, but not limited to, both 90 mm and 130 mm optical-disk medium sizes.
optical disks. In the preferred embodiment, a new two- Another object is to allow the code symbols of the
step method of error syndrome computation is em- information polynomial to be interleaved, as is known in
ployed to reduce circuit cost and complexity. An im- the art, among a plurality of codeword polynomials,
proved iterative algorithm is provided which reduces 25 each containing its own independent redundancy poly-
circuit cost and complexity and decreases the time re- nomial while using the same error identification cir-
quired to generate the error locator polynomial. Cyclic cuitry for each interleave.
redundancy check (CRC) information is adjusted as Another object is to allow the EXCLUSIVE-OR
introduced errors are identified during the Chien sum across interleaves of the code symbols of the infor-
search, thus reducing the time required to protect 30 mation polynomial to form the information symbols of a
against ECC miscorrection. Externally-specified error codeword of an overlay CRC code.
thresholds allow detection of excessive numbers of Another object is to adjust this CRC information as
errors. errors are detected during the Chien search, thus reduc-

In accordance with the foregoing, an object of the ing the time required to protect against ECC miscorr-
present invention is, in the typical case, to identify a 35 rection.
plurality of errors introduced within a particular sector Another object is to detect when the number of er-
during the time period in which the next adjacent sector rors identified within a sector exceeds externally speci-
is being read or received from the storage or transmis- tied thresholds.
sion medium. In the atypical case where the time re- These and other objects of the invention will become
quired to identify the number of introduced errors ex- 40 apparent from the detailed disclosures following herein.
ceeds the time required to read the next adjacent sector,
or where the number of introduced errors exceeds ei­
ther an externally specified threshold or the correction
power of the specific Reed-Solomon code used, the
present invention detects this case, signals an external 45
microcontroller and signals the ENDEC section of the
CL-SM330 to cease reading the medium.

Another object of the present invention is to reduce
the implementation cost and complexity of error identi­
fication circuitry by performing error syndrome com- 50
putation in two steps, where each step processes half of
the required bits through a finite-field computation
circuit of approximately half the size required by the
prior-art one-step method.

Another object of the present invention is to provide 55
an enhancement of the prior-art iterative algorithm to
allow computing the coefficients of the error locator
polynomial in a manner that is quicker and requires less
circuitry than prior-art implementations by using two
polynomials and by interchanging the values of two 60
pointers to two tables containing the coefficients of
these polynomials and interchanging their associated
parameters.

Another object of the present invention is to reduce
the time required by the error identification computa- 65
tion by performing, during the Chien search for intro­
duced errors, the required adjustment of the CRC infor­
mation whenever an error is identified. Data paths and

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the ANSI standard layout of a sec­
tor containing 512 user data bytes on 90 mm Continuous
Composite Servo (CCS) optical-disk media.

FIG. 2 illustrates the ANSI standard layout of the
data area within a sector containing 512 user data bytes
on 90 mm CCS optical-disk media.

FIG. 3 is a logic diagram of a prior-art syndrome
computation circuit that outputs one syndrome per
clock cycle.

FIG. 4 is a flow chart of a prior-art iterative algo­
rithm for computing the coefficients of the error locator
polynomial.

FIG. 5 is a block diagram of a prior-art circuit for
performing finite-field computations.

FIG. 6 is a block diagram of an optical-disk data-stor­
age system containing the present invention.

FIG. 7 is a block diagram of the CL-SM330 portion
of the optical-disk data-storage system.

FIG. 8 is a block diagram of the CL-SM331 portion
of the optical-disk data-storage system.

FIG. 9 is a logic diagram of a new two-step syndrome
computation circuit.

FIG. 10 is a logic diagram of a two-step syndrome
computation circuit equivalent to that of FIG. 9 except
for the constant finite-field multipliers implemented.

5,384,786
7

FIG. 11 is a logic diagram of circuit which can be
shared for two-step syndrome computation and for
finding the roots of the error locator polynomial.

FIG. 12 is a logic diagram of another circuit which
can be shared for two-step syndrome computation and 5
for finding the roots of the error locator polynomial. .

FIG. 13 is a flow chart of a new iterative algorithm
for computing the coefficients of the error locator poly­
nomial.

FIG. 14 is a high-level block diagram of the CL- 10
SM330's ECC/CRC block containing the error identifi­
cation circuit of the present invention and showing its
interfaces with the other blocks of the CL-SM330.

FIG. 15 is a register address and bit assignment map
of the interface between the error identifier circuit and 15
the external microcontroller.

FIG, 16 is block diagram of the error identification
circuit of the present invention showing its major func­
tional blocks.

FIG. 17 is a block diagram of the Address Pointer 20
Circuit (APC) block of the present invention.

FIG. 18 is a block diagram of the CRC Residue Ad­
juster (CRA) block of the present invention.

FIG. 19 is a block diagram of the Error Vector Con-
trol (EVC) block of the present invention. 25

FIG. 20 is a block diagram of the Frequency Domain
Circuit (FDC) block of the present invention.

FIG. 21 is a block diagram of the Finite Field Proces­
sor (FFP) block of the present invention.

FIG. 22 is a logic diagram of the finite-field Variable 30
Multiply-and-Sum (VMS) circuit of the present inven­
tion.

FIG. 23 is a block diagram of the Instruction Process­
ing Circuit (IPC) block of the present invention.

FIG. 24 is a block diagram of the Interleave & Sector 35
Counters (ISC) block the present invention.

FIG. 25 is a flow chart of the overall read sector
operation.

FIG. 26 is a flow chart of the identify errors opera-
tion. 40

FIG. 27 is a flow chart of the initialize RAM and
CRA operation.

FIG. 28 is a flow chart of the compute frequency­
domain syndromes operation.

FIG. 29 is a flow chart of the compute error locator 45
polynomial coefficients operation.

FIG. 30 is a flow chart of the find errors and adjust
CRC residue operation.

8
ter and the error detection, identification and correction
logic required by the CCS standard. The CL-SM331
SCSI Optical Disk Controller implements a Small Com-
puter System Interface (SCSI), Buffer Manager and
Sector formatter. The CL-SM330 and CL-SM331,
along with buffer memory, a data separator and a local
microcontroller with system Read-Only-Memory and
Random-Access-Memory, complete a high-perfor­
mance, low-cost optical disk controller subsystem.

A local microcontroller provides both the CL­
SM330 and the CL-SM331 with initial operating param­
eters, such as disk sector format, type and size of buffer
memory and SCSI host controller. During data transfer
operations, the CL-SM330/331 require only minimal
intervention from the local microcontroller. Features
such as auto-incrementing ID registers and fully­
automated error correction (in typical cases) minimize
the microcontroller's real-time interaction with disk
activity.

FIG. 7 is a block diagram of the CL-SM330 inte­
grated circuit showing its interfaces to the CL-SM331,
the microcontroller, and the optical drive, as well as its
ENDEC and ECC/CRC circuits. The present inven­
tion is part of the ECC/CRC block shown. The mi­
crocontroller-to-CL-SM330 communication path is a
multiplexed address and data path similar to that pro­
vided by Intel 80188 and Motorola 68HC11 classes of
microcontrollers. A configuration pin is available to
allow selection of the microcontroller-bus control-sig­
nal method of either class. Virtually all controller func-
tions are programmable by the microcontroller via
read/write registers. This provides substantial firmware
control over drive operation to allow for various retry
methods and other unique requirements. The CL­
SM330 has centralized status registers with interrupt
capability. These features allow firmware designers
flexibility in writing polled loops or interrupt handlers
to provide real-time process control critical in embed­
ded controller drive applications.

The data interface between the CL-SM330 and CL­
SM331 is a serial NRZ interface. NRZ data is transmit­
ted between the two devices with the Read-Reference
Clock (RRCLK). Disk interface control signals, such as
"Sector Mark Found" "ID Found" etc., are used for
synchronization of the data transfer between the CL-
SM330 and CL-SM331. A dedicated serial Error Vec­
tor Interface transfers error correction vectors with the
System Clock (SYSCLK) to the CL-SM331 for actual DESCRIPTION OF THE PREFERRED

EMBODIMENT

SYSTEM DESCRIPTION

50 correction of erroneous bytes in the buffer. To protect
against errors in the information transmission between
the two devices, eight-bit checksums cover all informa­
tion transferred over the NRZ Interface and the Error FIG. 6 is a block diagram of an optical disk system for

data storage that embodies the present invention within
the CL-SM330 integrated circuit. The CL-SM330 and 55
CL-SM331 are a set of two high-integration, integrated
circuits for optical disk controllers for embedded con­
troller applications. They fully support the ANSI/ISO
industry standard optical disk formats using the CCS
(Continuous Composite Servo) standard for both 90 60
mm (3.5") and 130 mm (5.25") optical disk drives. The
rewritable, partial ROM and WORM (Write Once
Read Many) standards are supported. The high integra­
tion and optimized pin-out of the CL-SM330/331 make
them suitable for embedded controller applications, 65
particularly for 90 mm drives where only limited board
space is available. The CL-SM330 Optical Disk EN­
DEC/ECC implements the encoder/decoder/format-

Vector Interface. An Interrupt line allows optional
connection of the CL-SM331 and CL-SM330 interrupt
mechanisms, resulting in a single interrupt line to be
handled by the local microcontroller.

The CL-SM330 supports standard 512-user-data-byte
sectors with five ECC interleaves or 1024-user-data­
byte sectors with ten ECC interleaves. Correction of
erroneous data in the buffer is performed by the CL-
SM330/331 controller independent of the microcon­
troller. All but worst-case errors are corrected "on-the­
fly", without loss of disk revolutions. "On-the-fly" op­
eration is achieved by identifying the introduced errors
using the present invention and generating error correc-
tion vectors for each sector while the next adjacent
sector is being read by the controller. Error correction

9
5,384,786

10
vectors are transmitted to the CL-SM331 through the
dedicated serial Error Vector Interface. An indepen­
dent Corrector Clock input (CORRCLK) is provided
for the ECC/CRC block to allow optimum error identi­
fier performance, independent of the System Clock 5
frequency. Overlay CRC verification is performed in
hardware during the error identification process, result­
ing in very low miscorrection probability without sig­
nificant performance penalty.

The CL-SM330 ENDEC section includes the RLL 10
(2,7) encoder/decoder and circuitry for the generation
and detection of the special marks required by the opti­
cal disk format. Full ANSI/ISO format support pro­
vides for programmable Sector Mark, ID Field, Data
Sync Mark and Resync Mark thresholds, as well as 15
automatic hardware PLL synchronization and re-syn­
chronization capability, compensation for Sector Mark
asymmetry, Flag generation and written Flag detection.
Output signals are provided to indicate the position of
the Pre-Formatted data area, the Track Offset Flag area 20
and the Automatic Laser Power Control area.

The data connection from the CL-SM330 to the opti­
cal drive is a serial RLL (2, 7) encoded interface. Output
signals are also provided for data synchronizer (PLL)
control; during either normal phase lock or, if phase 25
lock is lost while reading, these signals can be used to
control the synchronization or resynchronization of the
phase-locked loop to the incoming data stream. A gen­
eral-purpose eight-bit output port and a general-purpose
eight-bit input port, as well as two general purpose 30
interrupt inputs, are available on the CL-SM330 to
allow customization of the drive interface and minimize
external component requirements.

FIG. 8 is a block diagram of the CL-SM331 inte­
grated circuit including its interfaces with the SCSI bus 35
and the microcontroller, Buffer Manager and Differen­
tial Control circuits, as well as its Format Sequencer
and associated Writable Control Store (WCS) and Sec­
tor Formatter Data Path. The CL-SM331 Microcon­
troller Interface is similar to that of the CL-SM330 40
Microcontroller Interface, with the addition of a Ready
signal which enables the CL-SM331 to force wait states
on the microcontroller address/data bus.

The CL-SM331 SCSI is designed for compliance
with the SCSI-II specification; see Small Computer 45
Standard Interface-2 Draft Proposed American Na­
tional Standard, XT9.2/86-109 Rev. lOc, X3.131-199x,
Mar. 9, 1990. The SCSI logic includes integrated 48 mA
drivers for the single-ended option as well as signals for
control of the external logic necessary to implement the 50
differential transceiver option. Both the asynchronous
and synchronous transfer protocols are supported in
either Initiator or Target mode. Routine bus control
operations such as arbitration, selection and reselection
are automatically sequenced in hardware. This method 55
of implementing the SCSI Interface makes the SCSI
protocol firmware extremely flexible and very efficient.

The CL-SM331 Buffer Manager controls the flow of
data between the SCSI and disk interface. These inter­
faces store and retrieve data from the buffer memory 60
using interleaved access cycles. The actual buffer mem­
ory may be implemented with static or dynamic RAM
devices. The CL-SM331 Buffer Manager is program­
mable to provide all of the necessary address and con­
trol signals for RAM devices of varying access times. 65
Up to 256 KBytes of SRAM can be directly addressed
by the CL-SM331. As much as 4 MBytes of DRAM is
directly supported by the CL-SM331 with specific con-

trol for 64 Kbit, 256 Kbit, 1 Mbit and 4 Mbit devices. In
DRAM mode, refresh cycles are generated automati­
cally through a third channel to the buffer memory in
addition to the concurrent disk and SCSI accesses. The
CL-SM331 Buffer Manager accepts error correction
vectors from the CL-SM330 chip and automatically
corrects errors in the buffer RAM with no interruption
of the current data transfer.

The CL-SM331 Format Sequencer, WCS and Sector
Formatter Data Path blocks provide for interface be­
tween the CL-SM331 and CL-SM330, as described
above. The Data Path logic performs the serial-to-paral­
lel and parallel-to-serial conversion for NRZ data trans­
fer between the buffer and the CL-SM330. The Format
Sequencer controls the low-level sector format control,
as defined by the pattern loaded in the WCS.

TWO-STEP SYNDROME COMPUTATION

Define Lx.J as the largest integer not greater than x
and define t= L(d-l)/2J.

Equation (3) can be written as

t-1 d-2-t (j TI f9)
S · = L [R-*am:T)*al'1$a1"1* L [R·+1•am· +t,J•oJ>i

m+• j=O ; j=O ;

where

(9a)

. d-2-t (j TI ..
B +·=a'"'* L [R·+t*am· +1,J*ol"'

m 1 j=O ;

(9b)

From equation (9) it is clear that the computation of
frequency-domain syndromes Sm+;can be performed in
two steps wherein one step produces values Am+;, the
other step produces values Bm+i, and syndromes Sm+i
are formed as the EXCLUSIVE-OR sums of respective
values Am+; and Bm+i·

The circuitry of FIG. 9 implements equation (9) for
codes with odd d; it comprises t registers 127 denoted
D(O) through D(t-1); t constant finite-field multipliers
120 implementing multiplication by aj for j from 0 to
t-1; t three-input multiplexers 121; register 128 DM; a
constant finite-field multiplier 122 implementing multi­
plication by am; a t-input EXCLUSIVE-OR circuit
123; register 129 DT; a constant finite-field multiplier
126 implementing multiplication by at; and two variable
finite-field multipliers 124 and 125. Multipliers 124 and
125 may be implemented as one multiplier with appro­
priate multiplexing of inputs and output, which is pre­
ferred due to the circuitry cost of variable multiplexers.
All registers, multiplexers, multipliers and data paths
are symbol wide. Values Am+; are produced on OUT1
and values Bm+i are produced on OUT2.

In the first step of operation of FIG. 9, DM is initial­
ized to ao, then the following process is repeated t times
for j from 0 to t-1: present coefficient Rj and assert
control signal LD_DG) to store in D(j) the product of
Rjand the output ofDM, and store the output of multi­
plier 122 in DM. Then control signal EN is asserted and
the following process is repeated d-1 times for i from
0 to d-2: save elsewhere value Am+i on OUT1 and
store the outputs of multipliers * aj 120 in respective
registers D(j) for j from 0 to t-1.

11
5,384,786

In the second step of operation of FIG. 9, DM is
initialized to at·m and the following process is repeated
t times for j from 0 to t-1: present coefficient Rj+tand
assert control signal LD-DG) to store in DU) the prod­
uct ofR.;+rand the output ofDM, and store the output 5
of multiplier 122 in DM. Then DT is initialized to aO,
control signal EN is asserted and the following process
is repeated d-1 times for i from 0 to d-2: save as Sm+i
the EXCLUSIVE-OR sum of value Bm+;on OUT2 and
value Am+i from the first step, store the outputs of 10
multipliers* ai120 in respective registers DU) for j from
0 to t-1, and store the output of multiplier * at 126 in
DT.

Using the circuit of FIG. 9, it is possible to reverse
the order of the two steps, first processing Rt through 15
lld-2and then processing Ro through Rt-I· In the first
step of operation, initialize DM to at·m load registers
DU) while presenting Rt through lld-2, then initialize
DT to aO and save elsewhere values Bm+;from OUT2.
In the second step of operation, initialize DM to aO, 20
load registers D(j) while presenting Ro through Rr- i,

then save as Sm+;the EXCLUSIVE-OR sum of values
Am+; from OUTl and respective values Bm+;from the
first step.

With a slight modification to the circuit of FIG. 9, it 25
is possible to reverse the order in which the remainder
coefficients Rj are processed within each step, in one
step processing lld-2 through Rt and in the other step
processing Rt- I through Ro. Replace multiplier 122
with a multiplier implementing multiplication by a-m. 30
In the first step of operation, initialize DM to a<d-2)·m,
load registers D(j) while presenting lld-2 through R1,

then initialize DT to a0and save elsewhere values Bm+i
from OUT2. Then in the second step of operation, ini­
tialize DM to a(t-l)·m, load registers D(j) while present- 35
ing Rt-I through Ro, then save as syndromes Sm+; the
EXCLUSIVE-OR sums of values Am+i from OUTl
and respective values Bm+;from the first step. Alterna­
tively, in the first step of operation, initialize DM to
a<t-l)·m and load registers D(j) while presenting Rr-1 40
through Ro, then initialize DT to aO and save elsewhere
values Bm+i from OUT2. Then in the second step of
operation, initialize DM to a(d-2)·m, load registers D(j)
while presenting lld-2 through Rr, then save as syn­
dromes Sm+i the EXCLUSIVE-OR sums of values 45
Am+; from OUTl and respective values Bm+;from the
first step.

When d is even, the equation for values Bm+i be­
comes

B + · = a 1·i• f [R+ •am{i+t~•afi
m 1 j=O "} I

50
(9c)

and the circuit of PIG. 9 is modified to include a register
D(t) and another constant finite-field multiplier 120 55
implementing multiplication by at and another three­
input multiplexer 121, all connected as for existing reg­
isters D(j), multipliers 120 and multiplexers 121. EX­
CLUSIVE-OR circuit 123 becomes a (t+ 1)-input EX­
CLUSIVE-OR circuit. Operation is modified to load 60
register D(t) with zero before producing values Am+i
and with Rz.r before producing values Bm+i· Remainder
coefficients may be processed in reverse order by per­
forming the same modification described above.

When d is even, it is possible to compute the syn- 65
dromes in two steps wherein one step processes remain­
der coefficients Rj for j from 0 to t and the other step
processes coefficients Rjfor j from t+l to d-2. To do

12
so requires only replacing multiplier 126 with a multi­
plier implementing multiplication by at+ I. D(t) is
loaded with Rt before producing values Am+i and with
zero before producing values Bm+i·

Equation (3) can also be written as

. 2·t-I (j) . . d-2-t f!O\ ..
Sm+i = a-1·1• ::?: [R·_ 1•am· - 1]•af"1$::?: [R"am:T)0al·1

j=t J j=t J

where

. z.t-1 (j) ..
Am+i = a-1·1• .::?: [Rj-r*am· -t]*al"'

;=t

d-2-t ...
Bm+i = .::?: [Rj*am:TJ•a!·1

;=t

(!Oa)

(!Ob)

From equation (10) it is clear that the computation of
frequency-domain syndromes Sm+;can be performed in
two steps wherein one step produces values Am+i• the
other step produces values Bm+i• and syndromes Sm+i
are formed as the EXCLUSIVE-OR sums of respective
values Am+i and Bm+i·

The circuitry ofFIG.10 implements equation (10) for
codes with odd d; it comprises t registers 137 denoted
D(t) through D(2·t- l); t constant finite-field multipli­
ers 130 implementing multiplication by ai for j from t to
2·t-1; t three-input multiplexers 131; register 138 de­
noted DM; a constant finite-field multiplier 132 imple­
menting multiplication by am; a t-input EXCLUSIVE­
OR circuit 133; register 139 denoted DT; a constant
finite-field multiplier 136 implementing multiplication
by a-t; and two variable finite-field multipliers 134 and
135. Multipliers 134 and 135 may best be implemented
as one multiplier with appropriate multiplexing of in­
puts and output. Values Am+i are produced on OUT2
and values Bm+i are produced on OUTl.

In the first step of the operation of FIG. 10, DM is
initialized to aO and the following process is repeated t
times for j from t to 2·t- l: present coefficient Rj-t and
assert control signal LD-D(j) to store the product of
Rj-t and the output of DM in D(j), and store the output
of multiplier * am 132 in DM. Then DT is initialized to
aO control signal EN is asserted and the following pro­
cess is repeated d-1 times for i from 0 to d-2: save
elsewhere value Am+;from OUT2, store the outputs of
multipliers * ai 130 in respective registers D(j) for j from
t to d-2, and store the output of multiplier* a-t136 in
DT.

In the second step of operation of FIG. 10, DM is
initialized to at·m and the following process is repeated
t times for j from t to 2·t-1: present coefficient Rjand
assert control signal LD-DQ) to store the product of
Rjand the output ofDM in D(j), and store the output of
multiplier 132 am in DM. Then control signal EN is
asserted and the following process is repeated d-1
times for i from 0 to d-2: save as Sm+! the EXCLU­
SIVE-OR sum of value Bm+i from OUT2 and value
Am+i from the first step and store the outputs of multi­
pliers ai 130 in respective registers DU) for j from t to
d-2.

Using the circuit of FIG. 10, it is possible to reverse
the order of the two steps, first processing Rt through
Ra-2 and then processing Ro through Rr-1· In the first
step of operation, initialize DM to at·m, load registers
D(j) while presenting Rt through lld-2, then save else-

5,384,786
13

where values Bm+i from OUTl. In the second step of
operation, initialize DM to aD load registers DU) while
presenting Ro through Rt- i, then initialize DT to aO

and save as Sm+; the EXCLUSIVE-OR sum of values

14
dromes Sm+i as the EXCLUSIVE-OR sums of respec­
tive values Am+i and Bm+i·

SHARING ERROR LOCATION CIRCUITRY

Am+; from OUT2 and respective values Bm+;from the 5 Errors can be located by finding the inverse roots of
first step. the error locator polynomial

With a slight modification to the circuit ofFIG.10, it
is possible to reverse the order in which the remainder
coefficients Rj are processed within each step, in one
step processing lld-2 through Rt and in the other step 10
processing Rt- I through Ro. Replace multiplier 132
with a multiplier implementing multiplication by a-m.
In the first step of operation, initialize DM to a(d-2)·m,

load registers DU) while presenting lld-2 through Rt,
15 then save elsewhere values Bm+i from OUTl. In the

second step of operation, initialize DM to a(t-1)-m load
registers DU) while presenting Rt- I through Ro. then

e .
cr(x) = l: cr .. xl

j=O l

(11)

where e is the number of errors, 1 ;;§ e ;;§ t. Observe that
at a root ai of o-(x),

cr(x) I = J cr/ai·i = O.
ai ;=0

(12)

initialize DT to aO and save as syndromes Sm+i the The roots of o-(x) can be found by successively evalu­
EXCLUSIVE-OR sums values Am+i from OUT2 and 20 ating o-(x) at all x=ai for i from 0 to n:-1, wh~re n<2b
respective values Bm+i from the first step. Alterna- is the codeword length. A value of a1 for which o-(a1)

tively, in the first step of operation, initialize DM to evaluates to zero is a root of o-(x), and (-i) is the corre-
at·m, load registers DU) while presenting Rt-1 through sponding error location. This method is known as a
Ro, then initialize DT to aO and save elsewhere values Chien search.
Am+i from OUT2. In the second step of operation, 25 The circuit of FIG. 11 can be shared for computing
initialize DM to a(d-2)-m load registers DU) while pres- frequency-domain syndromes according to equation (9)
enting lld-2 through Rt, then save as syndromes Sm+i and for finding the roots of the error locator polynomial
the EXCLUSIVE-OR sums of values Bm+;from OUTl o-(x) according to equation (12) for codes with odd d.
and respective values Am+i from the first step. FIG. 11 comprises t+ I _registers den?te.d D(O) t~ough

When d is even, the equation for values Bm+i be- 30 D(t); t+ 1 constant firute-~eld multipliers 140 unple-
comes menting multiplication by a/for j from 0 tot, t+ 1 three-

(!Oc)

input multiplexers 141; a symbol-wide gating circuit
146; register DM; a constant finite-field multiplier 142
implementing multiplication by am; a (t+ 1)-input EX-

35 CLUSIVE-OR circuit 143; and two variable finite-field
multipliers 144 and 145. Multipliers 144 and 145 may

and the circuit of FIG. 12 is used. <;>Peration is ~imilar to best be implemented as one multiplier with appropriate
th~t for FIG. 10 except. that register D(2·t) is _loaded multiplexing of inputs and output. All registers, multi-
w1th zero bef~re producmg values A~+i and with. Ru pliers, multiplexers and data paths are symbol wide.
before producmg ".alues Bm+;. Remamder _co~ffic1ents 40 FIG. 11 implements a reduction in circuitry which is
may be pro~ess~d ~n reverse order ~y modifymg FIG. possible when dis odd; when dis even the circuit of
12 m a fashion similar to that descnbed for FIG. 10. FIG. 9 modified for even d as described above, is used.

When d is even, it is possible to ~odify the circuit ?f The' computation of frequency-domain syndromes
FIG. 12 to compute the ~yndromes ~two steps ~herein with the circuit of FIG. 11 is performed in a fashion
one step processes remamder coefficients ~jfor J from~ 45 similar to that used for the circuit of FIG. 9. Control
to t and the other step processes ~oeffic1ents Rj f~r J signal GT is deasserted so that the output of gating
from t+ 1 to d-2. To do so requrres only replacmg circuit 146 is zero.
multiplier 156 with a multiplier implementing multipli- The search for the roots of o-(x) using the circuit of
~ation by at+l. D(2·t) ~s loaded with Rt befo~e produc- FIG. 11 is accomplished by first loading coefficients O"j
mg values Am+; and with zero before producmg values 50 into the e+ 1 registers D(e-j) for j from O to e and
Bm+i· loading zero into registers the t-e registers DU) for j

In the preferred embodiment of the invention, the from e+ 1 tot. Control signal GT is asserted so that the
CL-SM330's Encode/Decode LFSR block presents input of gating circuit 146 is passed to its output. The
interleaved remainder coefficients Rj sequentially from following process is repeated n times for i from 0 to
lld-2 of the frrst interleaved codeword to Ro of the last 55 n -1: if OUTl is zero, a root has been found and the
interleaved codeword, and these coefficients are stored error location is i; to search for another root, store the
in the error identifier RAM in that order beginning at a outputs of multipliers * uj 140 in respective registers
fixed address. Further, the number of interleaved code- DU) for j from O to t.
words can be either five or ten, so the address in the Multiplying equation (12) by ai·t and transfonning j,
identifier RAM of coefficient Ro of a codeword is not 60 we obtain
fixed. Therefore it is desirable to use a syndrome com-
putation which accepts the remainder coefficients in
order from lld-2to Ro; where the order of the two steps
of syndrome computation is reversed and the order in
which the coefficients Rj are processed within each 65
steps is reversed, i.e. in the first step, lld-2 through Rt
are processed to produce values Bm+;and in the second
step, Rr-1 through Ro are processed to produce syn-

. I t+e ..
a1·'•cr(x) . = l: <rj-t*a/"1 = 0.

a' j=t

(13)

The circuit of FIG. 12 can be shared for computing
syndromes according to equation (10) and for fmding
the roots of the error locator polynomial o-(x) accord-

15
5,384,786

ing to equation (13). FIG. 12 comprises t+ 1 registers
157 denoted D (t) through D(2·t); t+ 1 constant finite­
field multipliers 150 implementing multiplication by ai
for j from t to 2·t; register 158 denoted DT; a constant
finite-field multiplier 156 implementing multiplication S
by a- 1; t+ 1 three-input multiplexers 151; register 159
denoted DM; a constant finite-field multiplier 152 im­
plementing multiplication by am, a (t+ 1)-input EX­
CLUSIVE-OR circuit 153; and two variable finite-field
multipliers 154 and 155. Multipliers 154 and 155 may 10
best be implemented as one multiplier with appropriate
multiplexing of inputs and output. All registers, multi­
pliers, multiplexers and data paths are symbol wide.

The computation of frequency-domain syndromes
with the circuit of FIG. 12 is performed in a fashion 15
similar to that used for the circuit of FIG. 10.

The search for the roots of o-(x) using the circuit of
FIG. 12 is accomplished by first loading the coefficients
O"j-t into the e+ 1 registers D(e-G-t)) for j from t to
t+e and loading zero into the t-e registers DG) for j 20
from t+e+ 1to2·t. The following process is repeated n
times for i from 0 to n-1: if OUTl is zero, a root has
been found and the error location is i; to search for
another root, store the outputs of multipliers * ai 150 in
respective registers DG) for j from t to 2·t. 25

Circuitry for computing syndromes in two steps and
performing the Chien search is implemented in the pre­
ferred embodiment as shown in FIG. 16, FIG. 20, and
FIG. 21. The IDC block fetches instructions from the
ROM and decodes them to generate control signals for 30
the RAM and the other blocks. Remainder coefficients
R1; values Bm+;and syndromes Sm+1; and error locator
polynomial coefficients Oj are stored in the RAM, with
values Bm+;and syndromes Sm+;sharing the same stor­
age elements. Registers 192 denoted D(O) through D(8); 35
multiplexers 191 denoted M(O) through M(8); multipli­
ers 193 denoted A(8) through A(16); and EXCLU­
SIVE-OR circuit 194 denoted FX of FIG. 20 corre­
spond to registers D(t) through D(2·t); multiplexers 151;
multipliers * ai 150 for j from t to 2·t; and EXCLU- 40
SIVE-OR circuit 153 ofFIG.12. Registers 202 denoted
A135L, multiplier 201 denoted A135, register 206 de­
noted DO, and multiplier 204 denoted A247 of FIG. 21
correspond to register DM, multiplier * am 152; register
DT, and multiplier * a-t 156 of FIG. 12. Finite-field 45
variable multiply-and-sum circuit 208 denoted VMS of
FIG. 21 corresponds to finite-field variable multipliers
154 and 155 of FIG. 12 implemented as a single multi­
plier with multiplexed inputs and outputs and the circuit
which produces the syndromes Sm+i as the EXCLU- SO
SIVE-OR sums of corresponding values Am+i and
Bm+i·

IMPROVED ITERATIVE ALGORITHM

FIG. 13 is a flow chart of the improved iterative 55
algorithm of the present invention. In FIG. 13, the
"+ +" operator exchanges the values of two variables
and Vd, Vn and Vk are arbitrary non-zero constants. In
step 11, counters n, lk and In; parameter dk; and polyno­
mials a{k) and a{n) are initialized. In step 12, a{k) is 60
multiplied by x and the nth discrepancy dn is calculated.
If dn is zero, control passes to step 15. Otherwise, if
counter lk is less than or equal to the counter In, control
is passed to step 14. Otherwise step 13 exchanges the
values of counters lk and In; exchanges the values of 65
parameters dk and dn; and exchanges the values of a{k)
and a{n) by exchanging the addresses of a{k) and a{n).
Step 14 updates error locator polynomial a{n). Step 15

16
increments counter n. Then if counter n is less than
t+ln, control is passed to step 12. Otherwise, the itera­
tive algorithm has been completed and o-(n) is the de­
sired error locator polynomial.

The improved iterative algorithm reduces implemen­
tation complexity and cost by requiring only two poly­
nomial coefficient storage areas, instead of three, and
decreases the time needed to compute the error locator
polynomial by eliminating the need to copy polynomial
coefficients from one storage element to another. The
improved iterative algorithm is particularly suited for
implementation in hardware, where exchanging the
values of two variables is simply accomplished by cross­
connecting the outputs and inputs of two registers
which contain the values, or, as in the case of variables
stored in a random-access memory, of two registers
which contain the addresses of the memory elements
which contain the values.

In the preferred embodiment of the invention, imple­
mentation complexity is reduced and speed of operation
is increased by storing the coefficients of each polyno­
mial a{n) and a{k) in a number of memory elements
equal to 2·t+ 1 wherein the first t and last t elements are
initially cleared to zero and the middle element is initial­
ized to an arbitrary non-zero constant. The coefficients
of polynomials a{n) and a{k) are stored in order of in­
creasing degree of x. The operation of multiplying a{k)
by x is implemented by decrementing a register contain­
ing the address of the low-order coefficient of a{k). The
operation of exchanging the coefficients of a{n) and
a{k) is implemented by exchanging the contents of two
registers containing the addresses of the low-order coef­
ficients of a{n) and a{k). The operation of computing
a{n)= dk*a{n)EBdn*a{k) where lk<ln is performed in a
loop repeated In times for i from 0 to In -1. This opera­
tion does not require any special treatment for those
coefficients of a{k) where i>lk.

Circuitry for performing the new iterative algorithm
of the present invention as implemented in the preferred
embodiment is shown in FIG. 16, FIG. 17, FIG. 21 and
FIG. 23. Referring to FIG. 16, the IPC (Instruction
Processing Circuit) block FIG. 23 fetches instructions
from the ROM and controls the circuitry of the RAM,
the APC (Address Pointer Circuit) block FIG. 17 and
the FFP (Finite Field Processor) block FIG. 21. The
RAM holds the value of counter n at location N; the
syndromes, beginning at location S; and the coefficients
of polynomials a{k) and a{n), low-order first beginning
at the locations contained in registers 175 denoted SK
and 171 denoted SN of FIG. 17, respectively. Registers
277 denoted LK and 278 denoted LN of FIG. 23 con­
tain the values of counters lkand In, respectively. Regis­
ters 203 denoted DK and 206 denoted DO of FIG. 21
hold the values of parameters dk and dn, respectively.

For step 1, LK and LN are cleared to zero, SK and
SN are initialized, the locations in the RAM used for the
coefficients of polynomials a{k) and o-(n) are initialized,
DK is initialized to a non-zero value, and Dl is initial­
ized to -(t-2). For step 2, location N in the RAM is
written from Dl, LK is incremented, a{k) is multiplied
by x by decrementing SK, DO is cleared, and the nth
discrepancy dn is calculated by using the VMS Variable
Multiply-and-Sum block of FIG. 21 to sum into DO the
products of the contents of the RAM elements pointed
to by SN and the syndromes in the area in the RAM
beginning at location S. The block 274 denoted M40 of
FIG. 23 is used to determine if parameter dn is zero; if
so, control passes to step 5. Otherwise, block 212 de-

5,384,786
17

noted ADD (Integer Addition Circuit) (FIG. 21) and
block 270 denoted AGZ (Greater-than-Zero) Detection
Circuit) {FIG. 23) are used to determine if the contents
of LK are less than or equal to the contents of LN; if so,
control is passed to step 14. Otherwise for step 13, the 5
contents of LK and LN are exchanged; the contents of
DK and DO are exchanged; and the contents of SK and
SN exchanged. For step 14, the coefficients of polyno­
mial uf..n) are updated by using the VMS block of FIG.
21 to sum the products of the contents of DK and the 10
contents of the RAM elements pointed to by SK with
the products of the contents of DO and the contents of
the RAM elements pointed to by SK using the VMS
block of FIG. 21 and then storing the results into the
RAM elements pointed to by SN. For step 15, the ADD 15
block of FIG. 21 and the AGZ block of FIG. 23 are
used to determine if the sum of the contents of Dl and
the contents of LN is less than or equal to zero; if so, the
ADD block of FIG. 21 is used to form in Dl the sum of
one and the contents of the RAM at location N, and 20
control is passed to step 2. Otherwise, the iterative algo­
rithm has been completed; LN holds the degree and SN
holds the address in the RAM of the coefficients of the

18
spectively. For all i greater than d-1, either zero or the
value of the error in the symbol corresponding to i is
clocked into the CRA.

After all n locations of an interleave in error have
been processed, the contents of the de- I CRA regis­
ters are shifted out of the CRA and EXCLUSIVE-OR­
ed into dc-1 storage elements elsewhere, and the dc-1
CRA registers are cleared to zero. Referring to FIG. 18,
the contents of the CRA are shifted out and the CRA
registers are cleared to zero by asserting control signals
EN and SH and deasserting control signal FB. In the
preferred embodiment, referring to FIG. 21, the con­
tents of each CRA register are presented in turn on
CRA_OUT and, using the VMS block, multiplied by
AL-OUT and EXCLUSIVE-OR-ed with the contents
of the corresponding RAM storage element presented
on RAM-OUT, the result being stored in Dl and then
Dl-OUT being back into the RAM storage element.
This procedure works because AL-OUT is always the
same, an- t. after each interleave has been processed,
and the fact that the adjusted CRC residue bytes for
each interleave have all been multiplied by a common
non-zero factor is immaterial if the sum of all the ad-

25 justed CRC residue bytes is zero. Implementation com-
CONCURRENT CRC RESIDUE ADJUSTMENT plexity is reduced because no unique instruction or

error locator polynomial uf..x).

In the preferred embodiment of the invention, the instruction .exception condition need be implemented.
adjustment of the CRC information required whenever After all mterleaved codewords have been proces~e~,
an error is identified is performed during the Chien the dc-1 stora~e elements are checked for zero. ~his is
search. Circuitry for performing the CRC residue ad- 30 perform~ addmg ze~o to each acc~ul.ated adjusted
justment as implemented in the preferred embodiment is CRC residue byte usmg the ADD crrcwt of the FFP
shown in FIG. 18, FIG. 21, and FIG. 23. FIG. 21 and using the M40 OR circuit in the IPC FIG.

The CRC residue is adjusted in a dedicated CRC 23 to detect any non-zero value.
Residue Adjuster (CRA) comprising a Linear Feedback ERROR IDENTIFIER ARCHITECTURE
Shift Register (LFSR) implementing the reciprocal of 35
the CRC code generator polynomial. The registers in FIG. 14 shows the CL-SM330's ECC/CRC block,
the CRA are initially loaded with the CRC residue including the interfaces between the error identifier, the
symbols. Referring to FIG. 18, loading the CRA regis- Encode/Decode LFSR block, and the other blocks of
ters is performed by asserting control signal EN and the CL-SM330. The CORRCLK (Correction Clock)
deasserting control signals SH and FB while presenting 40 signal clocks the synchronous logic of the error identi-
the CRC residue symbols on RAM-OUT, most-signifi- tier. The five configuration signals SIZE, FORM,
cant symbol first. SUPP, DIAG and VU_PTR and the START, STOP,

The search for roots ai of the error locator polyno- CONT and DISABLE signals are the outputs of regis-
mial is performed sequentially for all i from O to n. For ters in the CL-SM330's Microcontroller Interface block
each interleave in error, before the search for roots 45 which are programmed by the external microcontroller.
reaches i equal to d-1, zero is clocked into the CRA x The BUSY, DONE, ECC-ERR, CRC-ERR, THR_
times, where x is the non-inclusive number of CRC ERR and OVERRUN signals are applied to the CL-
redundancy symbols between the last non-ECC-redun- SM330's Microcontroller Interface block. MPU-BUS
dancy symbol of the interleave in error and the first provides an address bus, a data bus, and read/write
ECC redundancy symbol of the first interleave. For 50 control signals for external microcontroller access to
example, referring to FIG. 2, xis equal to 4, 3, 2, 1 and the error identifier RAM and register AO. The
0 for the interleaved codewords containing the symbols RRCLK, CG-RG, RMNDR and T7 signals are pro-
labeled "VU4" "CRC1" "CRC2" "CRC3" and vided to the error identifier from the Encode/Decode
"CRC4" respectively. Referring to FIG. 18, clocking a LFSR block. The VREADY signal is fed from the
value into the CRA is performed by asserting control 55 CL-SM331 Buffer Manager through the CL-SM330's
signals EN, SH and FB and presenting the value on SM331 Interface block to the error identifier. The SEN-
CRA.JN. D_ VEC signal and the FWD_OUT and DLOUT

If a root is found for i equal to d-1, the error value buses are applied to the CL-SM330's SM331 Interface
is clocked into the CRA; otherwise zero is clocked into block.
the CRA. Then if the symbol corresponding to i equal 60 SIZE and FORM determine the number of inter-
~o d-1 is a CR<? redundancy. symbol, z.ero is. clocked leaves (hereafter abbreviated as NUM--1L VS) and the
mto the CRA y times where y is the non-mclus1ve num- total number of bytes in the sector (hereafter abbrevi-
ber of CRC redundancy symbols between the symbol ated as NUM-BYTS):
corresponding to i equal to d-1 and the last non-CRC-
redundancy symbol of the sector. For example, refer- 65 ------------------­
ring to FIG. 2, y is equal to 0, 0, l, 2 and 3 for the
interleaved codewords containing the symbols labeled
"VU4" "CRC1" "CRC2" "CRC3" and "CRC4" re-

SIZE

0
0

FORM

0
I

NUM-ILVS

5
5

NUM_BYTS

600
610

19
5,384,786

20
-continued

SIZE FORM NUM.JLVS

x 10

NUM_BYTS

1200

identifier RAM, the microcontroller firmware is always
certain of the value of AO, implementation cost is re­
duced by providing no path for the microcontroller to
read the contents of AO. There is normally no need to

5 transfer error correction vectors for errors in the ECC
redundancy bytes, so DIAG is advantageously imple­
mented to be {de)asserted by writing (zero)one to bit 4
at address 3Fh, wherein other bits control other test

SIZE, FORM, SUPP, DIAG and VU_PTR control
assertion of SEND-VEC as described below. Asser­
tion of ST ART forces the error identifier to begin iden­
tifying errors using the current contents of RAM. If the
error identifier is identifying errors, assertion of STOP 10
forces the error identifier to cease identifying errors and
to assert DONE. Assertion of DISABLE prevents the
error identifier from beginning to identify errors at the
trailing edge of CG-RG as described below.

FIG. 15 shows the register address and bit assign- 15
ments for the signals accessible to the external mi­
crocontroller through the CL-SM330's Microcontroller
Interface block. A number in hexadecimal notation is
denoted by appending h to it. Because the overall CL­
SM330 busy status is read from bit 6 at register 10h, 20
BUSY is advantageously implemented to be read from
bit 4 at address 10h. Because START is best imple­
mented as an edge-triggered control signal and the
"write" function of bit 4 of register 10h would other­
wise be wasted, ST ART is advantageously imple- 25
mented to be asserted by writing one to bit 4 at address
10h. Because the CL-SM330 is configured for Read
Sector operations by writing bits 3-0 of register 10h,
SUPP is advantageously implemented to be simulta­
neously (de)asserted by writing (zero)one to bit 3 at 30
address 10h. Placing the form factor, sector size and
vendor-unique/pointer control signals in the same regis­
ter allows all three to be controlled with one microcon­
troller access; therefore vu_pTR is (de)asserted by
writing (zero)one to bit 5 at address 11h, FORM is (de) 35
asserted by writing (zero) one to bit 1 at address 11h,
and SIZE is (de)asserted by writing (zero)one to bit 0 at
address 11h. Disabling the error identifier and enabling
continuous sector read operation are seldom-used func­
tions, so it is preferred that they be placed in register 40
12h along with other relatively static CL-SM330 con­
figuration signals; DISABLE is {de)asserted by writing
(zero)one to bit 3 at address 12h and CONT is {de)as­
serted by writing (zero)one to bit 0 at address 12h. Be­
cause it is desirable to control related functions by ac- 45
cessing a single address and other medium-related CL­
SM330 microcontroller interrupts are enabled and dis­
abled through register 21h, it is implemented so that
when one is written to bit 0 at address 21h, the CL­
SM330's Microcontroller Interface block will assert an 50
interrupt signal to the external microcontroller when
the error identifier asserts DONE. For ease of mi­
crocontroller firmware implementation it is advanta­
geous that interrupt status signals be read from the cor­
responding bits at another address, so DONE is read 55
from bit 0 at address 23h. Placing the error signals for
the error identifier in the same register with other CL­
SM330 error signals allows all to be read with one mi­
crocontroller access; therefore ECC-ERR, CRC_
ERR, THR_ERR and OVERRUN are read from bits 60
7, 6, 5 and 4, respectively, at address 30h. Grouping the
error identifier RAM address and data access address
with the error identifier error access register yields a
more logical organization of the CL-SM330 microcon­
troller address space, so AO is written at address 31h and 65
the RAM element at the address in AO is read or written
by reading or writing address 32h. Because AO is incre­
mented each time the microcontroller accesses the error

modes of the CL-SM330.
FIG. 16 is a block diagram of the error identifier. The

major blocks comprising the error identifier are the
Address Pointer Circuit 165 (APC), CRC Residue Ad­
juster 164 (CRA), Error Vector Control 166 (EVC),
Frequency Domain Circuit 167 (FDC), Finite Field
Processor 169, (FFP), Instruction Processing Circuit
162 {IPC), Interleave & Sector Counters 163 (ISC),
Random Access Memory 168 (RAM) and Read-Only
Memory 161 (ROM).

The output of a register or circuit is denoted by ap­
pending "_OUT" to its name. The input to a register or
circuit is denoted by appending "-1N" to its name. A
number in hexadecimal notation is denoted by append­
ing 'h' to it. Where not otherwise indicated, control
signal inputs to registers, multiplexers, etc. are driven
from the appropriate "xxx_CTU" bus from the IPC
block 162, FIG. 23.

In the preferred embodiment of the invention, each
instruction is fetched from the ROM and stored in the
seventeen-bit instruction register (IR), then decoded
from IR-OUT and executed during the next clock
cycle. By pipelining the instruction in this manner, it is
immediately available at the beginning of each cycle
with no ROM-access delay. Also, the decoding of in-
struction bits required to select the proper address to be
applied to the RAM address bus is performed using
ROM_OUT rather than IR-OUT, and the selected
address is stored in the eight-bit RAM address register
(RA) and applied during the next cycle. By pipelining
the RAM address in this manner, it is immediately avail­
able at the beginning of each cycle with no instruction-
decoding delay.

FIG. 17 is a block diagram of the Address Pointer
Circuit (APC), which controls the address and data
input buses of the RAM and the loading of FDC regis­
ters D(i). APC includes AO, Al, AM, D49, RA, RMX,
SK and SN.

AO is an eight-bit register 172 which can supply an
address for indirect access to the RAM. AO can be
loaded from SN_OUT, from RAM-OUT, or from the
external microcontroller data bus. Bits 7-5 of A0-1N
are forced to zero when SN is the source. AO can be
incremented. NUM-IL VS can be added to AO.

Al is a seven-bit register 176 which can supply an
address for indirect access to the RAM or to the FDC
registers D(i). Al can be loaded from SK-OUT or
from ADD-OUT. Bits 7-5 of Al-IN are forced to
zero when SK-OUT is the source. Al can be incre-
mented or decremented.

AM is a three-input, eight-bit-wide multiplexer 173
which supplies input to RA. Its inputs are AO_OUT,
ALOUT and bits 6-0 of ROM_OUT. Bit 7 of AM­
OUT is forced to zero when Al_OUT or ROM_OUT
is the selected source.

D491s a four-to-nine decoder 177 with enable. Al_
OUT is applied to D49_IN. D49_0UT is applied to
the LD-1)(i) inputs of FDC multiplexers M(i).

5,384,786
21

RA is an eight-bit register 174 which holds the ad­
dress applied to the RAM address bus during the execu­
tion of an instruction. RA is loaded from AM_OUT.

RMX is a four-input, eight-bit wide multiplexer 178
which supplies input to the RAM data bus. Its inputs are 5
FDC-OUT, M3_0UT, CER._BUS and the external
microcontroller data bus.

SK is a five-bit register 17S which holds the address
of the low-order coefficient of the a{k) polynomial in

22
condition, BCV asserts SEND_ VEC, causing the CL­
SM331 Interface block to execute an error correction
vector transfer using the current values ofFWD_OUT
andDLOUT.

SUPP DIAG VU-PTR.

x x

FWD_OUT
SIZE FORM CONDITION

x x

the RAM. SK can be preset to OEh or loaded from 10 0
SN_OUT. SK can be decremented.

x x x

NONE
ALLOWED
ALL
ALLOWED
<512
<1024
<520

SN is a five-bit register 171 which holds the address
of the low-order coefficient of the a{n) polynomial in
the RAM. SN can be preset to 1Fh or loaded from
SILOUT. 15

0
0
0
0
0

0
0
0
0
0

0
0
I
I
1

0
1
0
0
1

x
x
0
1
x

<530
<1040

FIG. 20 is a block diagram of the Frequency Domain
Circuit (FDC), which is used to compute syndromes
from the time-domain remainders and to search for the
roots of the error locator polynomial. The FDC in the
preferred embodiment is a variation on the circuit
shown in FIG. 12. The FDC comprises nine eight-bit
registers 192 denoted D(i) for i from 0 to 8, each associ­
ated with a constant finite-field multiplier 193 denoted
A(8+i) and a two-input, eight-bit-wide multiplexer 191
denoted M(i); plus a nine-input, eight-bit-wide EXCLU-

FIG. 18 is a block diagram of the CRC Residue Ad­
juster (CRA), which is a LFSR implementing H(x), the
reciprocal of the Reed-Solomon generator polynomial
GC(x) for the ANSI/ISO standard CRC code. CRA
comprises four eight-bit registers (18S-188) denoted CO, 20
Cl, C2 and C3; the CM computation circuit 183, de­
scribed below; a two input, eight-bit-wide multiplexer
184 deonted MX; a two input, eight-bit-wide EXCLU­
SIVE-OR circuit 181 denoted BO; and an eight-bit
gating circuit 182 denoted CG. The output of C3 is 25
CRA-OUT. CRA-IN and CRA-OUT are applied to
the inputs of BO. BO-OUT is applied to CG-1N.
CG-OUT, C2-0UT, Cl-OUT and CO_OUT are ~IVE-OR ~irc~it 194 denoted FX; and an. eight-bit-
applied to inputs A, B, c and D of CM, respectively. mput OR ?rrcwt. FDO. The output of FX 1s FDC_
Outputs W X and y of CM are applied to C3-1N 30 OUT and 1s applied to FD0-1N. The output of each
C2_IN and CLIN, respectively. Output z of CM and register_D(i) is applied to the input of A(8+i) and t? o_ne
RAM-OUT are applied to the inputs of MX. MX- of the mputs of FX. The output of each multiplier
OUT is applied to co_IN. ~(8+i~ is applied to on~ of the inputs ofM~i). FDC_I~

To "clock the CRA" means to perform the combina- 1s apphed to the other mput of eac~ ~ultipl~xer M(1).
tion of actions specified by bits 4-1 of IR-OUT: 35 The output of each multiplexer M(1) 1s apphed to the

4321 ACTION
xxOx

input of respective register D(i). When FDC register
D(i) is to be loaded from FDC_IN, signal LD__J)(i)
from D49_0UT is asserted. To "clock the FDC"
means to record FDO-OUT in the FZD latch within

xxlO

xxll

xOxx

Disable loading of CO, Cl, C2 and C3; i.e. force
control signal EN to zero.
If LOC_GT16 is one, enable loading of CO, Cl, C2 and
C3; i.e. force control signal EN to one if and only if
LOCGT_J6 is one.
Enable loading of CO, Cl, C2 and C3; i.e. force
control signal EN to one.
Force CG_out to zero; i.e. force control signal FB to

40 the IAC; to load each register D(i) from the output of its
associated finite-field multiplier A(i); to store AL­
PHAl_OUT in the AL register within the FFP; to
store A13S-OUT in the A13SL register within the
FFP; and to load the FWD register within the ISC from

zero. 45 SUB-OUT within the ISC.
xlxx Pass CGJN to CG_OUT; i.e. force control signal FB to

one.
Oxxx

FIG. 21 is a block diagram of the Finite-Field Proces­
sor (FFP), which performs integer addition and vari­
able finite-field multiply-and-sum operations. It includes
A135, A13SL, A247, ADD, AL, ALPHAl, DO, Dl,

lxxx

If enabled as specified above, load C3, C2 and CI from
outputs W, X and Y of CM, respectively, and load CO
from RAM_OUT; i.e. force control signal SH to zero.
If enabled as specified above, load C3, C2, Cl and CO
from outputs W, X, Y and Z of CM, respectively.; i.e.
force control signal SH to one.

50 DK, Ml, M2, M3, M4, MS and VMS. Except as noted,
all data paths are 8-bits wide.

CM is a four-input, four-output, eight-bit-wide con­
stant finite-field computation circuit with inputs A, B, C 55
and D, and outputs W, X, Y and Z, which implements:

W=H3*AEBB
X=H2*AEf)C

A13S is a constant finite-field multiplier 201 imple­
menting multiplication by al35. A13SL-OUT is applied
to A135L.

A13SL is an eight-bit multiplexed register 202 which
holds X*al3s.L, where Lis the number of times A13SL
has been clocked since it was loaded with X from !R­
OUT. The value loaded into A13SL is multiplexed
between A135-0UT and bits 7-0 of IR-OUT. A13-Y=H1*A$D

Z=Ho*A 60 SL_OUT is applied to A135-1N and Ml.
where H; are the coefficients of H(x).

FIG. 19 shows Error Vector Control (EVC), which
controls the assertion of SEND-VEC, the signal
which initiates transfer of an error correction vector to
the CL-CSM331. Each time the error identifier has 65
located and identified an introduced error, EVC exam­
ines the configuration signals and applies the selected
condition to FWD-OUT. If FWD_OUT satisfies the

A247 is a constant finite-field multiplier 204 imple­
menting multiplication by a247. DO-OUT is applied to
A247-1N. A247_0UT is applied to MS.

ADD is a two-input, eight-bit-wide integer addition
circuit 212 with a one-bit carry-in signal CI implement­
ing S=A+B+Cl. Ml_OUT is applied to inpU:t A.
M2_0UT is applied to input B. Bit C of IR._OUT is
applied to input CI.

5,384,786
23 ' 24

AL is an eight-bit register 210 which holds aL-1, M2-0UT is minimized in preference to the propaga-
where L is the number of times AL has been clocked tion delays from the other inputs of M2 to M2_0UT,
since it was initialized to a - 1 by assertion of control and M2_0 UT is applied to input B of VMS rather than
input I. AL-OUT is applied to ALPHAl-IN and M2. to input A of VMS. This minimizes the total propaga-
AL can be initialized to a- 1 or loaded from AL- 5 tion delay when a RAM element is applied to VMS and
PHAl_OUT. increases the maximum CORRCLK rate which may be

ALPHAl is a constant finite-field multiplier 209 im- applied to the error identifier.
plementing multiplication by at. ALPHAl_OUT is FIG. 23 is a block diagram of the Instruction Process-
applied to AL_IN. ing Circuit (IPC), which controls the operation of other

DO is an eight-bit register 206 which is used for many 10
purposes. DO can be loaded from MS_OUT. DO_OUT portions of the error identifier. IPC contains AGZ,
is applied to Ml, M2 and A247-1N. FZD, GTZ, IA, ID, IM, IR, LA, LC, LK, LN, M40,

Dl is an eight-bit register 214 which is used for many NZR, XI and ZRO.
purposes. Dl can be loaded from M4-0UT. Dl_OUT AGZ is an eight-bit greater-than-zero detection cir-
is applied to M2, M3 and the SM331 interface block. 15 cuit block 270. Greater than zero means the most-sig-

DK is an eight-bit register 203 which is used to hold nificant bit is zero and at least one other bit is non-zero.
d k and for other purposes. DK can be loaded from DO ADD-OUT is applied to AGZ_IN.
_OUT. DK _OUT is applied to Ml. FDO is an eight-bit-input circuit (block 272). FDC_

Ml is a six-input, eight-bit-wide invertible multiplexer OUT is applied to FDO_IN.
207 which supplies input to VMS and ADD. Its inputs 20 FZD is a one-bit register (block 273) which records
are DO-OUT, DK-OUT, LN-OUT, CRA_OUT, FDO-OUT whenever the FDC is clocked.
Al3SL-OUT and zero. Bits 7-4 of the LN_OUT input GTZ is a one-bit register (block 271) which records
are forced to zero. If bits P and 7 of IR-OUT are set, AGZ_OUT when each instruction is executed.
each bit of Ml-OUT is inverted. IA is an eight-bit register (block 203), which holds

M2 is a seven-input, eight-bit-wide multiplexer 211 25 the address applied to the ROM address bus. IA can be
which supplies input to VMS and ADD. Its inputs are cleared to zero, incremented, and loaded from JM_
DO_OUT, DLOUT, LK-OUT, AL-OUT, RAM_ OUT.
OUT, FDC_OUT and bits 7-0 ofIR-OUT. Bits 7-4 of ID is the Instruction-bit Decoding network (block
the LK._OUT input are forced to zero. Bit 7 of the 291), which generates control signals for the error iden-
IR-OUT input is replaced with bit 6 of IR-OUT.

M3 is a three-input, eight-bit-wide multiplexer 21s 30 tifier hardware, including but not limited to multiplexer
which supplies input to VMS, CRA and RMX. Its in- selection signals; register increment-enable, decrement-
puts are Dl_OUT, RAM_OUT and zero. M3_0UT is enable and write-enable signals; and RAM write-enable
CRA_IN. signals. ID decodes instruction bits from ROM_OUT

M4 is a three-input, eight-bit-wide multiplexer 213 and IR-OUT and control signals from the other blocks
which supplies input to MS, Dl and the nine FDC regis- 35 of IPC to produce control signals applied to the other
ters D(i). Its inputs are VMS_OUT, ADD-OUT and blocks of the error identifier on the buses labeled AP-
zero. M4-0UT is FDC-IN. C_CTL, CRA_CTL, etc.

MS is a two-input, eight-bit-wide multiplexer 20S IM is a two-input, eight-bit-wide multiplexer (block
which supplies input to DO. Its inputs are M4_0UT 282) which supplies input to IA. Its inputs are LA-
and A247-0UT. 40 OUT and bits 7-0 of IR-OUT.

FIG. 22 is a block diagram of the finite-field Variable IR is a seventeen-bit register (block 280) which holds
Multiply-and-Sum circuit (VMS), which implements the instruction being executed. IR is loaded from
Z=(A *B)E]1C, which is computed according to: ROM-OUT. Bits 16-13 of IR-IN can be forced to zero

to prevent execution of the next instruction by trans-
45 forming it into a NOP. 7 '

Z = CEB .l: A*(B AND 2').
z=O LA is an eight-bit register (block 281) which holds

the address of the first instruction of a DO loop. LA can
VMS comprises a single-input, eight-output constant be loaded from bits 7-0 of IR-OUT.
finite-field multiplier circuit 221 denoted B07; eight 50 LC is a four-bit register (block 279) which holds the
eight-bit-wide gating circuits 222 denoted VG(i); and a loop count during execution of a DO loop. It can be
nine-input, eight-bit-wide EXCLUSIVE_OR circuit loaded from LN-OUT or from bits 12-9 of IR-OUT.
223 denoted VX. B07 implements LK is a four-bit register (block 277) which holds the

Z(z)=A*2.i
degree of the o{k) polynomial. LK can be incremented,

55 cleared to zero, or loaded from LN-OUT.
LN is a four-bit register (block 288) which holds the

degree of the o-(n) polynomial. LN can be cleared to
zero or loaded from LK._OUT or from bits 3-0 of AD­
D_OUT.

for i from 0 to 7. MLOUT is applied to input A of
VMS, which is input A of B07. M2_0UT is applied to
input B of VMS; each bit i of B is applied to the control
input G of respective gating circuit VG(i). The eight
outputs Z(i) of B07 are applied to the inputs of VG(i), 60
whose outputs are applied to the first eight inputs of
VX. M3-0UT is applied to input C of VMS, which is
the remaining input of VX.

Note that propagation delay from input B of VMS to
VMS_OUT is less than that from input A of VMS to 65
VMS_OUT. RAM access time can be significantly
longer than other circuit delays. In the preferred em­
bodiment, the propagation delay from RAM-OUT to

M40 is an eight-bit-input OR circuit (block 274).
M4-0UT is applied to M40-1N.

NZR is a one-bit latch (block 276) which is set if
M40-0UT is one when a Load_FDC-Rem instruc­
tion is executed. NZR can be cleared.

XI is the external interface module (block 290). XI
controls APC when the external microcontroller is
accessing RAM and when CRC residue/ECC remain­
der bits are being stored in RAM. The XI block of the

5,384,786
26 25

IPC manages the interfaces to the external microcon­
troller and the rest of the CL-SM330.

The microcontroller can write register AO and read
or write RAM at the address contained in AO. Each
time the microcontroller accesses RAM, XI increments 5
AO.

If at the leading edge of CG-R.G, either CONT is
asserted or BUSY is not asserted, XI presets AO to the
value 3Eh and begins deserializing bits from RMNDR
onto the eight-bit-wide CER-BUS. When T7 is as- 10
serted during the last bit of each byte, XI stores the

FDC is clocked, FWD holds the forward displacement
of the error just located.

LOC is a five-bit counter (block 233) which holds the
number of times the FDC has been clocked, up to eigh­
teen. LOC can be cleared to zero. If LOC-GT17 is
zero when the FDC is clocked, LOC is incremented.

SUB is an eleven-bit minus four-bit unsigned subtrac­
tion circuit (block 232) implementing

SUB_OUT=FWD_OUT -NUM_ILVS.

deserialized byte on CER-BUS into RAM at the ad- NUM-IL VS is determined by the SIZE signal as de-
dress contained in AO and then increments AO. In addi- scribed herein.
tion, if at the leading edge of CG-RG both CONT and RAM is a 226-by-eight-bit random-access memory
BUSY are asserted, then XI asserts OVERRUN, stops 15 which holds the time-domain CRC residue and ECC
and does not complete the current error identification remainder bytes, frequency-domain ECC syndromes,
process. polynomial coefficients and other data used by the error

If at the leading edge of CG--R.G, CONT is not as- identifier. Usage of RAM is as shown in TABLE I. On
serted and BUSY is asserted, then XI asserts OVER- power up or other initialization, the external microcon-
RUN, does not store the deserialized CRC residue or 20 troller must write desired error threshold values to
ECC remainder bits in RAM, and does not stop the locations IL V _ THR and SCT _ THR, and must write
current error identification process. zero to locations SIG-K+9 through SIG-K.+16 and

If at the trailing edge of CG--R.G, no non-zero bit SIG_N +9 through SIG_N + 16.
was detected on RMNDR while CG--RG was asserted The error identifier has no need to access individual
and either CONT is asserted or OVERRUN is not 25 CRC residue or ECC remainder bytes using immediate
asserted, then XI asserts DONE. addresses. In the preferred embodiment of the inven-

If at the trailing edge of CG-R.G, any non-zero bit tion, implementation cost is reduced by storing these
was detected on RMNDR while CG--RG was asserted bytes beginning at RES-REM equal to 3Eh, above all
and DISABLE is not asserted and either CONT is other variables stored in the RAM, so that all immediate
asserted or OVERRUN is not asserted, then XI asserts 30 addresses used to access other variables need be only six
BUSY and the error identifier begins identifying intro- bits wide. At the beginning of the error identification
duced errors. procedure, the four CRC residue bytes must be fetched

When a Stop instruction is executed, XI asserts from the RAM in reverse order and stored in the CRA
DONE and stops the error identifier by deasserting registers and six bytes in the RAM must be cleared to
BUSY, which forces IA to zero. If an uncorrectable 35 zero. These six bytes are the four locations used for
ECC error, uncorrectable CRC error, or error exceed- accumulating the adjusted CRC residue beginning at
ing threshold has been detected, a Stop instruction will ADJ_CRC, the location used for the total error count
be executed which causes XI to assert ECC-ERR, (TOT-ERR), and the location used for the maximum
CRC--ERR, or THR--ERR, respectively. interleave error count (MAX-ERR). It is advanta-

ZRO is a one-bit register (block 275) which records 40 geous to place ADJ_CRC at 3Ah, TOT-ERR at 39h
NOT(M40-0UT) when each instruction is executed. and MAX-ERR at 38h, so that the address register used

FIG. 24 is a block diagram of the Interleave and to access the four CRC residue bytes at consecutive
Sector Counters (!SC) block, which maintains forward decreasing addresses need not be reloaded before begin-
displacement and ECC error location counters for the ning a loop which clears the next six bytes at consecu-
error identifier. IPC comprises CMP, FWD, LOC and 45 tive decreasing addresses. By placing SIG_K at 06h
SUB. The forward displacement of an error is the non- and SIG_N at 17h, the registers implemented for SK
inclusive number of bytes between the first data byte of and SN need be only five bits wide, and this leaves room
the sector and the byte in error. at 28h for storing the syndromes. The interleave error

CMP is a comparator circuit (block 234) with inputs threshold (IL V _ THR) and sector error threshold
FWD_OUTandLOC-OUTandoutputsFWD-LTO, 50 (SCT_THR) are placed adjacent to each other at the
FWD_L TNI, LOC-EQ16, LOC_GT16, LOC_ beginning of the RAM at OOh and Olh, respectively, to
EQ17 and LOC-GT17, where simplify microcontroller access. The remaining vari-

FWD-LTO=(FWD-OUT<NUM-ILVS) ables including the number of interleaves left to be
FWD-L TNI=(FWD-OUT <2*NUM-ILVS) processed (ILV -LFI), the address or Rts of the inter-
LOC--EQ16=(LOC_OUT= = 16) 55 leave being processed (RlS-ADR), the seven least-sig-
LOC_GT16=(LOC_OUT> 16) nificant bits of the initial forward displacement value for
LOC--EQ17=(LOC_OUT==l7) the interleave being processed (MAX-FWD) and
LOC_GTl 7=(LOC_OUT>17) counter n of the iterative algorithm (N) are placed at the
FWD is an eleven-bit register (block 231) which remaining RAM locations 02h, 03h, 04h and OSh respec-

holds the forward displacements of errors. Bits 6-0 of 60 tively.

TABLE! FWD can be loaded from RAM-OUT; when bits 6-0
are so loaded, bits 10-7 of FWD IN are forced to 1001
if SIZE is one or forced to 0100 if SIZE is zero. For
each interleave i in error (where O~i<NUM_ILVS),
FWD is initialized to NUM-BYTS+i before the 65
search for roots is begun. Each time the FDC is
clocked, FWD is loaded from SUB-OUT. If FDO_
OUT is zero before the FDC is clocked, then after the

Address Map of the Error Identifier RAM
LABEL

ILV_THR
SCT_THR
ILV__LFT
R15-.ADR
~

DECIMAL ADDRESS HEX ADDRESS

0
1
2
3
4

01
01
02
03
04

27
5,384,786

28
TABLE I-continued TABLE I-continued

Address Mae of the Error Identifier RAM Address Mae of the Error Identifier RAM
LABEL DECIMAL ADDRESS HEX ADDRESS LABEL DECIMAL ADDRESS HEX ADDRESS

N 5 05 5 RES-REM 62 3E
SIG-K 6 06
SIG_N 23 17
s 40 28 ROM is a 157-by-seventeen-bit read-only memory
MAX-ERR 56 38 which contains the sequence of instructions required to
TOT-ERR 57 39 identify errors. TABLE II shows the contents of ROM ADJ_CRC 58 3A IO in binary and hexadecimal form.

TABLE II
Contents of the Error Identifier ROM

ADDR LQPRDSTFC76543210 HEX ADDR LQPRDSTFC76543210 HEX

OOh 000000000000000 00000 28h 01110010100100000 OE520
Olh 00101100001000001 05841 29h 00110100010000010 06882
02h 01100011100000100 OC704 2Ah 11101011000110010 10632
03h 10101000001000010 15042 2Bh 00100101110000101 04B85
04h 11110110000000110 1EC06 2Ch 11100011000101111 1C62F
05h 01100010100000110 OC506 2Dh 00100001110000100 04384
06h 11110010000000000 IE400 2Eh 00100000000000011 04003
07h 01110010000000000 OE400 2Fh 0110000000011000 I OC031
08h 11101000000010000 10010 30h 1000000000000000 10000
09h 01110000100000011 OE103 3!h 11110110001011110 IECSE
OAh 11101001000001101 1D20D 32h 0010II00000000110 05806
OBh 00101000001100010 05062 33h 01100111100110101 OCF35
OCh 00101000001011000 05058 34h 11110000 I 00001110 IEIOE
ODh 01110000100000100 OE104 35h 11110010000100000 1E420
OEh 11100000000010011 1C013 36h 00101100000010111 05817
OFh 00101000000000101 05005 37h 01100111100111001 OCF39
!Oh 00101000000110000 05030 38h 11110000100011111 IE!IF
llh 01110000100000100 OE104 39h 111100 I 0000100000 IE420
12h 00101000000001010 0500A 3Ah 00101100111111010 059FA
13h 01110000100000010 OE!02 3Bh 01110000100000101 OE105
14h 01111000100110100 OF134 3Ch 00101101000101110 05A2E
!Sh 01110100000000011 OE803 3Dh 01100000000111110 OC03E
!6h 00101100000000111 05807 3Eh 10110100001100000 16860
17h 01100011100011000 OC718 3Fh 01011101100000000 OB BOO
18h 11011000001000000 1B040 40h 11100100001001010 !C84A
19h 01011000001000000 OB040 41h 00101011110000000 05780
!Ah 00101100000101000 05828 42h 11101011001000101 10645
!Bh 01100111100011100 OCFIC 43h 00101000000000001 05001
!Ch 11110011100100000 1E720 44h 01000010001000000 08440
!Dh 01110011100100000 OE720 45h 00011000000000000 03000
!Eh 01111000000000101 OFOOS 46h 01100000001000111 OC047
!Fh 00101100000000111 05807 47h 01011010001000000 OB440
20h 01100011100100001 OC721 48h 11011001100100000 1B320
2th 11011000001000000 1B040 49h 01110010101100000 OE560
22h 01011000001000000 OB040 4Ah 00111010110000101 07585
23h 11101010010000010 ID482 4Bh 11101011000111011 !D63B
24h 00101100000101000 05828 4Ch 00111100100000101 07905
25h 00100100000000001 04801 4Dh 01111000110011100 1F19C
26h 01101111100100111 ODF27 4Eh 01110100100000100 OE904
27h 11001101111100000 19BEO 4Fh 00101110000000000 05COO
50h 00111010000111001 07439 78h 01100000001111010 OC07A
5!h 011000000010100 II OC053 79h 10010000100000000 12100
52h 11110000100111001 IE139 7Ah 11110110001011110 1EC5E
53h 10111000001100000 17060 7Bh 11101111001011011 !DESB
54h 00100010001111111 0447F 7Ch 00110100000000101 06805
55h 00110110110111000 06DB8 7Dh 11101100010010111 10897
56h 11100011001011001 1C659 7Eh 00101100000111010 0583A
57h 0010101000000000 I 05401 7Fh 01100011110000000 OC780
58h Oil 10000100111000 OE138 80h 11001011110010110 19796
59h 01110000100000101 OEI05 8th 01110010100100000 OE520
5Ah 00010001000000000 02200 82h 00111000100000100 07104
5Bh 01100000001011101 OC05D 83h 01110000100000100 OE104
5Ch 11110111001011000 1EE58 84h 00111000100000011 07103
5Dh 11110111001011100 IEE5C 85h 01110000I00000011 OE103
5Eh 11101101001110001 1DA71 86h 00111000010000010 07082
5Fh 0010111000010 I 000 05C28 87h 11100011000010100 1C614
60h 0011100001000010 I 07085 88h 01110000100000010 OE102
6!h 01110000100000101 OE105 89h 00111000000111000 07038
62h 01000001001000000 08240 8Ah 11101011010011010 1069A
63h 01100000001100100 OC064 8Bh 00101100000111010 0583A
64h 01110000100110111 OE!37 8Ch 01100011110001101 OC78D
65h 01000010010000000 08480 8Dh 10110100001000000 16840
66h 01000010100000000 08500 8Eh 11101100010011011 1089B
67h 10111000000110111 17037 8Fh 00110100000000000 06800
68h 01011010100000000 OB500 90h 00110101110111000 06BB8
69h 01001000001000000 09040 9th 11100011010011100 IC69C
6Ah 01100110101101011 OCD6B 92h 00110100000000001 06801

29
5,384,786

TABLE II-continued
Contents of the Error Identifier ROM

ADDR LQPRDSTFC76543210 HEX ADDR LQPRDSTFC76543210

6Bh
6Ch
6Dh
6Eh
6Fh
70h
71h
72h
73h
74h
75h
76h
77h

11000101000100000 18A20 93h 00110101110111001
01001001001000000 09240 94h 11100011010011100
11100100010010111 IC897 95h 000000000000000
00010010000000000 02400 96h 00010100000000000
11101101001101111 IDA6F 97h 00101000001000000
0000000000000001 00001 98h 11101011010000010
11101110001111011 IDC7B 99h 01110000100111000
01110110101011100 OED5C 9Ah 00010100000000100
00110100000000010 06802 9Bh 00010100000000010
00100101110000101 04B85 9Ch 00010100000000001
11101011001111011 ID67B
000000000000000 00000
00100001001111111 0427F.

ERROR IDENTIFIER MICROENGINE
INSTRUCTION SET

Each instruction comprises seventeen bits. The in- 20
struction bits are labeled as follows:

HEX

06BB9
1C69C
00000
02800
05040
ID682
OE138
02804
02802
02801

Bit: 16° 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Label: LQPRDSTFC7 6 5 4 3 2 0

The Opcode of an instruction comprises bits Q, P and

30

-continued
instruction immediately follows a
ConditionaL_Branch instruction
If VREADY is zero when the
ConditionaL_Branch instruction is

executed, this instruction forces bit
D of IR._OUT to zero.

R. 'x' represents a bit whose value may be either one or
zero. 'a' represents a bit which is part of an immediate
ROM or RAM address; it may be either one or zero. 'v' 30
represents a bit which is part of an immediate value; it
may be either one or zero.

OPCODE 001: MISCELLANEOUS INSTRUCTIONS

LQPR DSTFC 76543210

Conventions used for immediate values, immediate
addresses and indirect addresses are as follows:

VAL7

*(ADR6)

*(AO)

*(AO++)

•(Al++)

*(Al--)

Use the eight-bit value in bits 7--0 of IR._OUT after
replacing the value of bit 7 with that of bit 6. This
is equivalent to treating bits 6--0 of IR-OUT as a
signed seven-bit integer with value in the range -64
to +63.
Read or write RAM at the address specified by bits
5--0 of IR._OUT.
Read or write RAM at the address specified by
AG_OUT.
Read or write RAM at the address specified by
AO_OUT, then increment the AO register.
Read or write RAM at the address specified by
Al_OUT,then increment the Al register.
Read or write RAM at the address specified by
Al_OUT, then decrement the Al register.

35

xOOl
xOOl
xOOl

xxxxl
xxxlx
xxlxx

xxxxxxxx Load LN from LK_OUT.
xxxxxxxx Load LK from LN_OUT.
xxxxxxxx CorrecLError: If allowed by the

current configuration signials and
FWD_OUT, assert the signal
which initiates an error correction
vector transfer. FWD_OUT and
DL_OUT are the forward
displacement and value of the
error, respectively.

40 xOOl xlxxx xxxxxvvv Stop: Assert the error signal speci-

45

xOOl lxxxx

fied by one of bits 2--0 equal to one
(if any) and stop the error
identifier.
Bit Error signal

2 ECC_ERR
1 CRC-ERR
0 THR-ERR

xxxxxxxx Load AO from SN_OUT and load
Al from SK_OUT.

OPCODE 110: BRANCH-CONTROL INSTRUCTIONS

Initiate_DO_Loop:

When any instruction with bit L equal to one (except 50 _L...;Q'-PR __ D_s_TF_c_7_6_54_3_21_0 ___________ _

a Conditional_Branch or Searcb_For-R.oot instruc- 0110 xxxxo aaaaaaaa

tion) is executed, LC_OUT is examined. If LC-OUT
is zero, IA is incremented; otherwise, LC is. decre- 0110 vvvvl aaaaaaaa

mented and IA is loaded from LA-OUT. ConditionaL_Branch:

Load LA from bits 7--0 of IR._OUT
and load LC from LN_OUT.
Load LA from bits 7--0 of IR._OUT
and load LC from bits D, S, T, F.

When a Searcb_For-Root instruction with bit L 55
LQPR DSTFC 76543210

~b~~~~ is;~e~~~!i~.CffO~C~~~=o~ -11"""1'-o--x-vvv-x--aaaaaaaa----!~--~-h~-,s-:;-~-e-~r-;:_0_ef-~-al-0se_UT_lec-~-~-by-
FWD-L TNI is one, or LOC-EQ16 is one, IA is incre- not match bit D, load IA from bits
mented and bits L, Q, P and R of IR-IN are forced to 7--0 of IR-OUT.

zero to prevent execution of the next instruction by 60 STF CONDITION

transforming it into a NOP instruction; otherwise, IA is ~ :g~ ~~
loaded from L.A_OUT. 010 NZLOUT

OPCODE 000: NOP INSTRUCTIONS

LQPR DSTFC 76543210

xooo xxxxx xxxxxxxO No Operation.
xOOO xxxxx xxxxxxxl No Operation except when this

011 GTZ_OUT
100 ZRO_OUT

65 101 FZD_OUT
110 LOC-EQ17
111 FWD_LTO

31
5,384,786

32
OPCODE Olx: ADD INSTRUCTIONS

Perform an eight-bit addition operation with carry-in:

ADD_OUT=Ml-OUT+Ml-OUT+CARRY.

MLOUT is specified by bits T and F of the instruction.

5

If bit 7 of the instruction is one, each bit ofMLOUT is
inverted. M2_0UT is specified by bits R, 6 and 5 of the
instruction. CARRY is bit C of the instruction. ADD_ 10
OUT is stored in the destination (s) specified by bits D
and S of the instruction. The operation

ADD_OUT=Ml_OUT-MLOUT

15
is selected by bits 7 and C of the instruction both equal
to one. The operation

ADD_OUT=Ml_OUT +I,

is selected by bits T, F and 7 of the instruction all equal 20

to zero and bit C of the instruction equal to one. The
operation

ADD_OUT=Ml_OUT-1,

TF MLOUT

00 A135L_OUT
01 DO_ OUT
10 DK_OUT
11 CRA_OUT

is selected by bits T, F and C of the instruction all equal
to zero and bit 7 of the instruction equal to one.

R65

000
001
010
Oil
100
101
110
111

TF7 MLOUT R65 ML OUT DS DESTINATION(S)

000 0 Ovv VAL7 00 LN
010 DO_OUT lOa *(ADR6) 01 DO
lxO LN_OUT 110 *(Al++) 10 DI

-continued
LQPR DSTFC7 6543210

XOlO 110100 vvvvvvv Setup-Compute_Dn: In addition to
the normal function,, store
ADD-OUT in Al, clear DO and
D 1 to zero, load AO from
SN_OUT, decrement SK, and
increment LK.

OPCODE lOx: VMS INSTRUCTIONS

Perform a finite-field variable multiply-and-sum oper­
ation:

VMS_OUT=(MLOifr*M1_0UT)$M3_0UT.

MI-OUT is specified by bits T and F of the instruction.
M2_0UT is specified by bits R, 6 and 5 of the instruc­
tion. M3-0UT is specified by bits C and 7 of the in­
struction. VMS_OUT is stored in the destination(s)
specified by bits D and S of the instruction. Note that
when bits D and S of the instruction are both zero, the
initial value of DO-OUT is stored in DK. If bits T and
F are both one, the CRA is clocked.

M2_0UT C7 MLOUT DS DESTINATION(S)

AL_ OUT 00 0 01 DO
DO_ OUT 10 DLOUT 10 DI
DL_QUT 01 *(AO++) 11 DO=Dl=VMS_OUT
FDC_OUT 11 *(Al) 00 DK=DO_OUT,
*(Al--) DO=Dl=VMS_OUT
*(Al++)
*(AO)
*(AO++)

The following combinations are exceptions to the
foregoing or cause additional functions to be per­
formed:

001 FFh Ill *(AO++) 11 DO=Dl=ADD_OUT
011 DO_OUT$FFh
!xi LN_OUT$FFh

The following combinations are exceptions to the
foregoing or cause additional functions to be per- 50
formed:

LQPR DSTFC7 6543210

xOlx xxllxx xxxxxxx Disregard bits R, 6 and 5; instead,
use LK_OUT as MLOUT. 55

xOlx llOxOO xxxxxxx In addition to the normal function,
store ADD_OUT in Al.

xOll 100000 llxxxxx Load_FDC_Sig: In addition to the
normal function, store ADD-OUT
in the FDC register D(i) specified
by i=Al_OUT and decrement Al. 60

XOIO 110011 vvvvvvv Setup-1teralgo: In addition to the
normal function, store the initial
value of DO_OUT in DK, clear
LN and LK to zero, preset SN to
OEh, and preset SK to lFh.

XOIO lllOOO vvvvvvv Setup-A.0-A.l_DO_D!: In 65
addition to the normal function,
store ADD_OUT in Al, clear DO
and DI to zero, and load AO from
SN_OUT.

LQPR DSTFC7 6543210

x!Ol 100000 !Oxxxxx Loacl_FDC-Rem: In addition to
the normal function, store
VMS-OUT in the FDC register
D(i) specified by i=ALOUT,
decrement Al, add NUM-1LVS to
AO, store Al35_0UT in Al35, and
if M40_0UT is one, set NZR.

XlOO 110111 llxxxxx Compute-Syndrome: Disregard bits
D and S. Instead, store VMS_OUT
in DI. In addition, clock the FDC
and store A247_0UT in DO.

x!OO 001000 lOxxxxx Swap_K_N-R,egs: In addition to
the normal function, exchange the
contents of SN and SK and ex-
change the contents of LN and LK.

33
5,384,786

34
OPCODE 111: ASSIGNMENT INSTRUCTIONS

If bit F of any instruction with Opcode 111 is one, the
FDC is clocked. If both bits S and T of any instruction
with Opcode 111 are one, the CRA is clocked.

The sequence of instructions used in the preferred
embodiment to implement the error identification pro­
cedure is shown in TABLE Ill. This sequence is imple­
mented in the contents of ROM shown in TABLE II. A

5 variable stored in RAM at a label shown in TABLE I is

LQPR DSTFC7 6543210

xi 11 OOOxxO Oaaaaaa Write RAM at the address in bits 5-0 from the
source specified by bits F and C of IR_OUT.
FC SOURCE DESTINATION
00 0 *(ADR6)
01 DLOUT
lx FDC_OUT

xll l OOlxxO xxxxxxx Write RAM at the address specified by bits 6
and S of !LOUT from the source specified by
bits F and C of IR_OUT.
FC SOURCE .£?__ DESTINATION
00 0 00 *(Al--)
01 DLOUT 01 *(Al++)
Ix FDC_OUT 10 *(AO)

11 *(AO++)
xll l O!Oxxx Oaaaaaa Load the destination specified by bit C of

IR_OUT from bits 6-0 of the value read from
RAM at the address in bits 5-0 of IR_OUT.
SOURCE C DESTINATION
*(ADR6) 0 AO

I FWD
Note: Bit 7 of AO is loaded with O; bits I 0-8 of
FWD are loaded with bits 10-8 of NUM_.IL VS.

xlll IOOOOv vvvvvvv LoacLAl35L: Load Al35L with the value in bits
7-0 of IR_OUT.

xlll IOOO!v vvvvvvv Initialize_FDC: Load Al3SL with the value in
bits 7-0 oflLOUT, preset AL to a-1, clear
each FDC register D(i) to zero, and clear LOC
and NZR to zero.

xlll 011100 !Ovvvvx Search....For-Root (described above).

denoted by the parenthesized label preceded by "*"; the
35 value of a label is denoted by the label itself.

TABLE III
Error Identifier Instruction Sequence

OOh No_Operation(O);
Olh DO = Dl = Al = ADD(O, RES....REM+3);
02h Initiate_D{L.Loop(3, 04h);
03h Dl = ADD(O, RES....REM+4);
04h ClocLCRA(*(Al- -),0,06h);
OSh Initiate_DO_Loop(2, 06h);
06h *(Al--)= O;
07h *(Al--)= O;
08h IF(!SIZE != I, !Oh);
09h *(Rl5_ADR) = DI;
OAh IF(!FORM != I, ODh);
OBh DI = ADD(O, 610 & 7Fh);
OCh DI = ADD(O, 600 & 7Fh);
ODh *(MAX_FWD) = DI;
OEh IF(!SIZE != 0, 13h);
OFh DI = ADD(O, 5);
lOh DI = ADD(O, 1200 & 7Fh);
lib *(MAX_FWD) = Dl;
12h DI = ADD(O, 10);
13h *(ILV_LFT) =DI;
14h Initialize_FDC(a15);
lSh AO = *(Rl5_ADR) & 7fh;
16h DO = Dl = Al = ADD(O, 7);
l 7h Initiate_OO_Loop(3, l 8h);
18h Load_FDC-RemO ;
19h Load_FDc__RemO;
!Ah DO = D1 = Al = ADD(O, S);
IBh lnitiate_DO_Loop(7, !Ch);
!Ch *(Al++)= FDC-OUT, ClocLFDCO;
IDh *(Al++)= VRC_OUT, ClocLFDCQ;
!Eh LoacLAl35L(a75);
lFh DO = D1 = Al = ADD(O, 7);
20h Initiate_DO_Loop(3, 2th);
21h Load_FDC_R.emO;
22h Load_FDC-RemO;
23h IF(NZR_OUT != I, 84h);
24h DO = Dl = Al = ADD(O, S);

35
TABLE III-continued

Error Identifier Instruction Sequence

25h DO = ADD{O, l);
26h Initiate_IXLLoop{l5, 27h);
27h Compute_SyndromeO;
28h •(Al++)= DI;
29h DO= ADD(-1, •(ILV_LFT));
2Ah IF{GTZ_OUT != 1, 3lh);
2Bh DO= ADD(-DO_QUT, 5);
2Ch IF(GTZ_OUT != 0,2Fh);
2Dh LN = ADD(-DD_OUT, 4);
2Eh LN = ADD{O, 3);
2Fh Initiate_DO_Loop(LN_OUT, 3lh);
30h No_operation(O)
31h Clock CRA(•(AO), O,lEh),
32h DO= DI= Al= ADD(O, SJG_K);
33h Initiate_DO_Loop(7, 35h);
34h •(SIG_K+8) =DI;
35h •(Al++) = O;
36h DO = DI = Al = ADD(O, SIG_N);
37h Initiate_DO_Loop(7, 39h);
38h •(SIG_N+8) = DI;
39h •(Al++)= O;
3Ah Setup-1teralgo(7 Ah);
3Bh *(N) =DI;
3Ch Setup-Compute_DNQ;
3Dh Initiate_DO_Loop(LN_OUT, 3Eh);
3Eh DO= ADD{O, •(AO++));
3Fh DO= DI= VMS(DD_OUT, •(Al--), DLOUT);
40h IF(ZRQ_QUT != 0, 4Ah);
4lh Dl = ADD{-LN_OUT, LILOUT);
42h IF(GTZ_OUT != I, 45h);
43h DI = ADD(O, l);
44h Swap-1LN_R.egs0
45h AO = SN_QUT, Al = SILOUT;
46h Initiate_DO_Loop(LN_OUT, 47h);
47h DI = VMS(DILOUT, •(AO), O);
48h Dl = VMS(DO_OUT, •(Al++), DLOUT);
49h •(AO++)= DI;
4Ah DI = ADD(-LN_OUT, *(N));
4Bh IF(GTLOUT != 1, 3Bh);
4Ch DO = Dl = ADD(+ I, *(N));
4Dh Initialize_FDC(al2°));

5,384,786

4Eh FWD = (NUM__BYTS & 780h) I (*(MAX-FWD) & 7Fh);
4Fh Setup__AO__Al_DO_DJ(O);
50h DI = ADD{LN_OUT, *(TOT-ERR));
Sib Initiate_DO_Loop(LN_OUT, 53h);
52h *(TOT-ERR) = Dl;
53h LoacLFDc_sigQ;
54h LN = ADD(LN_OUT, 7Fh);
55h DO = ADD(-LN_QUT, *(MAX-ERR));
56h IF(GTLOUT != 0, 59h);
57h DI = ADD(LN_OUT, I);
58h *(MAX-ERR) = Dl;
59h *{N) = Dl;
5Ah LK = LN_OUT;
5Bh Initiate_DO_Loop(LN_OUT, 5Dh);
5Ch SearcLFor-Root(l8h)
5Dh SearcLFor_R.oot(lCh)
5Eh IF(FZD_OUT != 1, 7lh);
5Fh Setup__AO__Al_DO_Dl(S)
60h DI = ADD(-1, *(N));
6lh *(N) = Dl;
6lh DK = DO_OUT, DO = DI = VMS(DO_OUT, DLOUT, O);
63h Initiate_DO_Loop(LN_OUT, 64h);
64h *(S+ 15) = DI;
65h DO= Dl = VMS(DILOUT,AL_OUT,*(AO++)), DK=lnitial DO_OUT;
66h DO = DI = VMS(DILOUT,AL_OUT,DLOUT), DK= Initial DO_OUT;
67h DI= ADD(O, *(S+l5));
68h Dl = VMS(DILOUT, *{Al--), DLOUT);
69h DI = VMS{Al35L_OUT, DLOUT, 0).
6Ah Initiate_DO_Loop(6, 6Bh);
6Bh DO = VMS(DO_OUT, DO_OUT, O);
6Ch DI = VMS(DO_OUT, DLOUT, O);
6Dh IF(ZRO_OUT != 0, 97h).
6Eh Correct Errors;
6Fh IF(FZD_OUT != 1), 6Fh);
70h No Operation(!);
71h IF(LOC_EQ17 != I, 7Bh);
72h ClocLCRA(*(AO),DLOUT,ICh);
73h DO= ADD{O, *(ILV_LFT));
74h DO= ADD(-DO_OUT, 5);
75h IF{GTZ_QUT != !, 7Bh);

36

37
5,384,786

38
TABLE III-continued

Error Identifier Instruction Sequence

76h No_Operation(O);
77h LN = ADD(DD_OUT, 7Fh);
78h Initiate_])()__Loop(LN_OUT, 7Ah);
79h LN = LLOUT;
7Ah ClocL1 CRA(*(AO),O,IEh);
7Bh IF(FWD__LTNI != 1, 5Bh);
7Ch DO = ADD(O, N);
7Dh IF(ZRO_OUT != 1, 97h);
7Eh DO = Dl = Al = ADD(O, CRC);
7Fh Initiate_])()..Loop(3, 80h)
80h Dl = VMS(CR.A_OUT, AL_OUT, *(Al)), ClocLCRA(*(A0),0,16h);
8lh *(Al++)= Dl;
82h Dl =ADD(!, *(MAX_FWD));
83h *(MAX_FWD) = Dl;
84h Dl = ADD(l, *(Rl5-ADR));
85h *(Rl5-.ADR) = Dl;
86h Dl = ADD(-1, *(ILV__LFI));
87h IF(GTZ_OUT != 0, 14h);
88h *(ILV_LFI) = Dl;
89h DI = ADD(O, *(MAX-ERR));
8Ah IF(GT.z_oUT != l, 9Ah);
8Bh DO = Dl = Al = ADD(O, CRC);
8Ch Initiate__DO__Loop(3, 8Dh);
8Dh DO = ADD(D, *(Al++));
8Eh IF(ZRO_OUT != l, 9Bh);
8Fh DO= ADD(O, *(ILV_THR));
90h DO = ADD(-DO-OUT, *(MAX-ERR));
9lh IF(GT.z_oUT != 0, 9Ch);
92h DO= ADD(O, *(SCT_THR));
93h DO = ADD-DO-OUT, *(TOT-ERR));
94h IF(GT.z_oUT != 0, 9Ch);
95h No_Operation(O);
96h Stop(O);
97h DI = ADD(O, 40h);
98h IF(GTZ_OUT != I, 82h);
99h *(MAX-ERR) = DI;
9Ah Stop(4);
9Bh Stop(2);
9Ch Stop(!);

ERROR IDENTIFICATION ALGORITHM

FIG. 25 illustrates the read-sector process for the
typical case where DISABLE is zero, CONT is zero 40
and BUSY is zero at the leading edge of CG-RG; other
cases are described above. First, circuitry in the En­
code/Decode LFSR block of the CL-SM330 computes
CRC and ECC redundancy over user-data and vendor­
unique/pointer bytes read from the optical disk. While 4S
CRC and ECC redundancy bits are read CG-RG is
asserted and CRC residue/ECC remainder bits (which
are the EXCLUSIVE-OR sum of the computed and
read redundancy bits) are presented on RMNDR. T7 is
asserted while every eighth such bit is presented. SO
CG-R.G, RMNDR and T7 are synchronized with
RRCLK. The error identifier deserializes the CRC
residue/ECC remainder bits from RMNDR and stores
the CRC residue/ECC remainder bytes in RAM. At the
trailing edge of CG-RG if no non-zero bit was de- SS
tected on RMNDR while CG-R.G was asserted, then
the error identifier immediately asserts DONE; other­
wise, the error identifier asserts BUSY and begins iden­
tifying introduced errors.

FIG. 26 illustrates the major steps of the error identi- 60
fication process. In step 1020, the RAM and the CRA
are initialized. Then for each interleave, the following
process is repeated: In step 1030, compute frequency­
domain syndromes from the remainder. If all remainder
coefficients are zero, the control is transferred to step 6S
1080. Otherwise in step 1040, compute coefficients of
the error locator polynomial from the syndromes, and
in step 1050, perform the Chien search to locate each

errors, adjusting the CRC residue whenever an error is
found.

In step 1060, the RAM elements at MAX_FWD and
R15-ADR are incremented and the RAM element at
ILV _LFT is decremented. If the RAM element at
IL V _LFT is not zero, control is transferred to step
1030. Otherwise, in step 1080, if any uncorrectable ECC
error was detected, the error identifier asserts ECC­
ERR and stops; if any of the four RAM elements at
ADJ-CRC is non-zero, an uncorrectable CRC error
has been detected and the error identifier asserts
CRC--ERR and stops; if the value stored in the RAM
element at MAX-ERR exceeds that stored in the RAM
element at IL V _ THR or if the value stored in the
RAM element at TOT -ERR exceeds that stored in the
RAM element at SCT _ THR, a threshold error has
been detected and the error identifier asserts THR_

ERR and stop; otherwise the error identifier stops with­
out asserting any error signal. When the error identifier
stops, it deasserts BUSY and asserts DONE.

FIG. 27 shows the process of initializing the RAM
and the CRA each time a sector containing errors is
detected. First the four CRC residue bytes stored in
RAM at RES-REM are loaded into the CRA registers.
Then the four RAM elements at ADJ_CRA, used for
accumulating the adjusted CRC residue, the RAM ele­
ment at MAX_ERR, used for the maximum error
count and the RAM element at TOT -ERR, used for
the total error count, are cleared to zero. The RAM
element at R15-A.DR, used to record the address in
RAM of R1s of the current interleave, is initialized to
RES-REM+4. The RAM element at MAX-FWD,

5,384,786
40 39

used to record the seven least-significant bits of the sum
of NUM-IL VS and the forward displacement of the
last byte of the current interleave, is initialized to
NUM-BYTS. The RAM element at ILV -LFT, used
to record the number of interleaves remaining to be 5
processed, is initialized to NUM-IL VS.

FIG. 28 is a flow chart of the compute frequency­
domain syndromes operation. In step 251, AO, Al,
A135L and the FDC are initialized for the first step.
Then in step 252, coefficients R1s through Rs are read 10
from RAM, multiplied by A135L-OUT and stored in
D(7) through D(O). As each coefficient specified by AO
is processed, VMS-OUT is stored in the FDC register
specified by Al, NUM-IL VS is added to AO, Al is
decremented and A135-0UT is stored in A135L and 15
NZR is set if M40-0UT is one; all these functions are
performed by the microcengine LoaLFDC--Rem
instruction. Then in step 253, the FDC is clocked six­
teen times, with the partial syndrome on FDC-OUT
being stored each time in RAM. Then in step 254, Al, 20
A135L and DO are initialized for the second step. Then
in step 255, coefficients R1 through Ro are read from
RAM, multiplied by A135L_OUT and stored in D(7)
through D(O), with AO, Al, A135L and NZR treated as
in the first step, again by using the microengine Loa- 25
LFDC--Rem instruction. Then in step 256, if none of
R1s through Ro were non-zero, NZR will be zero and
the ECC code detected no errors in the current inter­
leave, the error identification process for the current
interleave is complete so control is passed to step 1060 30
of FIG. 26. Otherwise, the error identification process
for the current interleave continues with step 257, in
which the FDC is clocked sixteen times, with the EX­
CLUSIVE-OR sum of the product of FDC_OUT and
DO_OUT and the corresponding partial syndrome 35
from the first step being stored in RAM and A247_
OUT being stored in DO. This is performed by execut­
ing a microengine Compute-Syndrome instruction in
which the normal function of bits D and S is disre­
garded and instead, VMS-OUT is stored in Dl at the 40
same time that the FDC is clocked and A247_0UT is
stored in DO. Then in step 258, zero is clocked into the
CRA is clocked as necessary to account for any CRC
remainder bytes between the last non-ECC remainder
byte of the current interleave and the first ECC remain- 45
der byte of the sector. Note that this clocking of the
CRA could be performed later, e.g. just before the loop
in FIG. 30 is begun or immediately after the loop of
FIG. 30 is interrupted when the FDC has been clocked
d-1 times, but that to do so would increase the re- 50
quired ROM size and time required to perform the error
identification procedure.

FIG. 29 is a flow chart of the compute error locator
polynomial coefficients operation. This implements the
new iterative algorithm of FIG. 13, as detailed in 55
TABLE III. In the preferred embodiment of the inven­
tion, the swapping of the contents of LK and LN; DK
and DO; and SK and SN are performed using a single
microengine Swap_K_N--R.egs instruction after one
has been stored into Dl using a microengine ADD 60
instruction. When the Swap_K_N--R.egs instruction is
executed, the product ofDl_OUT and DK is stored in
DO and Dl at the same time that DO_OUT is stored in
DK, LK_OUT is stored in LN, LN_OUT is stored in
LK, SK_OUT is stored in SN and SN-OUT is stored 65
in SK.

FIG. 30 is a flow chart of the find errors and adjust
CRC operation. In step 261, A135L, AL, LOC, FWD,

AO, A12, DO, Dl and the FDC are initialized. The
RAM element at TOT-ERR is updated by adding LN.
If necessary, the RAM element at MAX-ERR is up­
dated with LN. The error locator polynomial coeffici­
ents in RAM at the address contained in SN are loaded
into the FDC registers D(i). LN is stored in the RAM
location at N, then LN is decremented. Then in step
262, the FDC is clocked and L is incremented. Then if
none of the conditions for terminating the search for
roots was met before the FDC was clocked, the loop of
step 263 is begun, in which zero is clocked into the
CRA, the FDC is clocked and L is incremented until
one of the terminating conditions is met. When one of
the terminating conditions is met, the pipelined nature
of instruction execution requires that execution of the
next instruction be blocked. As disclosed herein, this is
accomplished by transforming it into a No-Operation.
Then in step 264, Dl is cleared. Then if condition (a)
was met, step 265 is performed. In step 265, the RAM
element. at N is decremented and the error value is
computed and stored in Dl. Computing the error value
requires performing a finite-field variable division.
Hardware for performing this operation directly is com­
plex and expensive. In the preferred embodiment, of the
invention, implementation cost is reduced by using the
following identity to perform finite-field division as a
series of finite-field multiplications:

b-1
L = x"Y-1 = x*.J12h-2 = x* n yi.;
y i=l

(14)

Proceeding according to equation (14), finite-field
division of x by y is performed by first loading x into Dl
and y into DO, then repeating the following two-step
process b-1 times: store the product of DO-OUT and
DO-OUT in DO, then store the product of DO-OUT
and Dl-OUT in Dl. The value x/y is produced in Dl
and if either x or y was zero, Dl_OUT is zero.

If the computed error value is zero, an uncorrectable
ECC error has been detected, so this fact is recorded
and control is transferred to step 1060 of FIG. 26; other­
wise, if correction of the identified error is allowed by
its forward displacement and the configuration bits,
then the forward displacement and value of the identi­
fied error are presented to the CL-SM331 Interface
block on FWD_OUT and DLOUT respectively. The
CL-SM331 deasserts VREADY when it is not able to
accept an error correction vector. When the error iden­
tifier is ready to send an error correction vector, it waits
until VREADY is asserted before asserting SEND_
VEC. Then in step 266, DLOUT is clocked into the
CRA if LOC-GT16 is one. Then if condition (b) was
met, step 267 is performed. In step 267, zero is clocked
into the CRA as necessary to account for any CRC
remainder bytes between the last non-CRC remainder
byte of the sector and the last non-ECC remainder byte
of the current interleave. Then if condition (c) was not
met, control is transferred to step 262, otherwise step
268 is performed. In step 268, if the RAM element at N
is not zero, an uncorrectable ECC error has been de­
tected so this fact is recorded and control is transferred
to step 1060 of FIG. 26; otherwise, the EXCLUSIVE­
OR sums of the four RAM elements at ADJ_CRC and
the products of the contents of the CRA registers and
AL-OUT are stored in RAM at ADJ_CRC and then
control is transferred to step 1060 of FIG. 26.

5,384,786
42 41

There has been disclosed and described in detail
herein the preferred embodiment of the invention and
its method of operation. From the disclosure it will be
obvious to those skilled in the art that various changes
in form and detail may be made to the invention and its 5
method of operation without departing from the spirit
and scope thereof.

We claim:
1. A circuit for producing a series of electronic values

of frequency-domain syndromes of a Reed-Solomon or 10

related code of distance d, the frequency-domain syn­
dromes being denoted Sm+;for i from 0 to d-2 wherein
m is an offset of a code generator polynomial, from a set
of electronic values of time-domain remairider coeffici- 15
ents Rjfor j from 0 to d-2 comprising:

means oft (d odd) or t+ 1 (d even) stages for elec­
tronically determining values of said frequency
domain syndromes in two steps, including a step
processing electronic values of said time-domain 20
remainder coefficients Rj for j from 0 to t-1,
where t= and producing electronic values of their
contributions Am+i to said frequency-domain syn­
dromes Sm+i according to

25

t-1 •. al'"
Am+; = . ~ [R/am 1]* t

J=O

and a step processing electronic values of said time- 30
domain remainder coefficients Rj for j from t to d-2
and producing electronic values of their contributions
Bm+itO said syndromes Sm+; according to

t* . d-2~ *(i n al'.
Bm+i = a 1 * . ~ [Rj+t * am +t,J• t

1=0

35

said syndromes Sm+; being formed as sums ofrespective
electronic values of said contributions Am+i and Bm+i
for i from 0 to d-2. 40

said frequency-domain syndromes Sm+i being formed
as sums of respective electronic values of said contribu­
tions Am+; and Bm+;for i from 0 to d-2.

3. In a decoder for an error detection and correction
system using a Reed-Solomon code or related code, a
method of electronically decoding a Reed-Solomon
code or related code of distance d having frequency
domain syndromes Sm+dor i from 0 to d-2, compris­
ing the steps of:

(A) receiving an electronic signal of a code word
polynomial;

(B) generating electronic values of an error locator
polynomial G (x) from the code word polynomial
electronic signal utilizing two polynomials s(k)(x)
and s(n)(x) having respective coefficients s/k) and
s/n> for j from 0 to t-1 and using steps of:
(a) initializing said coefficient so(k) to an arbitrary

non-zero constant, initializing said coefficient
so<n>to an arbitrary non-zero constant, initializing
a parameter dk to an arbitrary non-zero constant
and initializing counters Ik, In and n to zero;

(b) multiplying said polynomial s(k)(x) by x, incre­
menting said counter lkand computing a parame­
ter dn according to

In (
dn = .~ u1n) *Sm+n-1;

1=0

(c) branching to step (g) if said parameter dn is
equal to zero; otherwise

(d) branching to step (f) if said counter lkiS less than
or equal to said counter In; otherwise

(e) interchanging values of said counters Ik and In,
interchanging values of said parameters dk and
dn, and interchanging the corresponding coeffi­
cients of said polynomials s(k)(x) and s(n)(x);

(f) computing new coefficients of said polynomial
s(n)(x) according to

u(n)(x)=dk•cr<n)(x)$dn•crCk)(x); 2. A circuit for producing a series of electronic values
of frequency-domain syndromes of a Reed-Solomon or
related code of distance d, the frequency-domain syn- (g) incrementing said counter value n;
dromes being denoted Sm+;fori from Oto d-2 wherein

45
(h) branching to step (b) if said counter n is less

mis an offset of a code generator polynomial, a parame- than (d-2) or alternatively (t+ ln); otherwise
ter of the code, from a set of electronic values of time- (i) assigning s(x)=s(n)(x)
domain remainder coefficients Rj for j from Oto d-2 (C) finding root electronic values of the error locator
comprising: means of t(d odd) or t+ 1 (d even) stages polynomial and determining corresponding error
for electronically determining values of said frequency 50 locations; and
domain syndromes in two steps, including a step pro- (D) correcting said code word polynomial signal or
cessing electronic values of said time-domain remainder flagging an information polynomial as erroneous
coefficients Rj for j from O to t-1, where t= and pro- according to results of step (C).
ducing electronic values of their contributions Am+i to 4. In an electronic system performing identification of
said syndromes Sm+i according to 55 introduced errors in a plurality of interleaved error

t* . 2*t-l *(i ·n al'" Am+i =a- 1* ~ [R·-t"am +t,J• t
j=t :J

correction code (ECC) codewords of a Reed-Solomon
or related code wherein information symbols of the
ECC codewords are protected by a Reed-Solomon
Cyclic Redundancy Check (CRC) code of degree de

and a step processing said remainder coefficients Rj for 60

j from t to d-2 and computing their contributions
Bm+i to said frequency-domain syndromes Sm+i ac­
cording to

with a generator polynomial GC(x) and the information
symbols of the CRC code comprise sums across the
ECC codewords of corresponding information symbols
of the ECC codewords excluding the last information
symbol of the last de said ECC codewords, these last de

d-2 •. al'" Bm+i = .~ [R/am 1]* t

j=t

65 symbols comprising redundant symbols of the CRC
code, a method for adjusting an electronic value of a
residue of the CRC code to detect miscorrections by the
ECC, the method comprising steps of:

5,384,786
44 43

(a) loading said residue of said CRC code into a
LFSR which implements a reciprocal polynomial
of said CRC generator polynomial GC(x) and
clearing de accumulators;

(b) before processing each of said ECC codewords in s
turn, first clocking a zero value into said LFSR a
number of times;

(c) processing a last information symbol of said ECC
codeword, wherein said processing comprises 10
searching for an error in said information symbol
and clocking a zero value into said LFSR if no
error was detected or clocking an error value into
said LFSR if an error was detected in said last
information symbol of said ECC codeword; IS

(d) next clocking a zero value into said LFSR a num­
ber of times;

20

2S

30

3S

40

4S

so

SS

60

6S

(e) processing each of remaining said information
symbols of said ECC codeword in order from next­
to-last to first, wherein said processing comprises
searching for an error in said information symbol
and clocking a zero value into said LFSR if no
error was detected or clocking said error value into
said LFSR if an error was detected in said informa­
tion symbol of said ECC codeword;

(f) when all said information symbols of said ECC
codeword have been processed, storing a sum of
contents of said LFSR and contents of accumula­
tors in said accumulators and branching to step (b)
if a codeword remains to be processed; otherwise

(g) when all said information symbols of all said ECC
codewords have been processed, checking that
each of said accumulators contains zero values.

* * * * *

