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[57] ABSTRACT

A processor having two separate and relatively independent
memory controllers to achieve a dual interface architecture.
A first memory controller is coupled to the host interface for
retrieving data and instructions and a second memory con-
troller is coupled to an independent local bus for interfacing
with a frame buffer memory. A depth buffer may also be
coupled to the local bus if desired. Address multiplexor logic
is preferably included to allow either memory controller to
address either external bus. Multiplexor and buffer logic is
also preferably included to allow data transfer in either
direction. Preferably, the processor is a graphics processor
and both memory controllers are programmable for different
addressing formats, such as linear and X/Y in the preferred
embodiment. In this manner, data is transferred from host to
local memories, and vice versa, in any desired format
without delays due to memory controller reconfiguration.
Data transfers from one location to another within a single
memory, such as window moves within the frame buffer, are
achieved much faster. Dual memory controllers allow com-
mand or instruction prefetching during execution of a pre-
vious command. More sophisticated graphics functions,
such as texture mapping and data alignment, are also per-
formed much faster and more efficiently.

51 Claims, 8 Drawing Sheets
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GRAPHICS ACCELERATOR WITH DUAL
MEMORY CONTROLLERS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This is a continuation-in-part of co-pending application
Ser. No. 08/247,657 filed on May 23, 1994, entitled
“Dynamic Pipeline for a Processor.”

1. Field of the Invention

The present invention relates to graphics processors, and
more particularly to a graphics processor having dual
memory controllers.

2. Description of the Related Art

The advent of substantial hardware improvements com-
bined with standardized graphics languages has allowed the
use of complex graphics functions in even the most common
applications. For example, word processors, spreadsheets,
and desktop publishing packages are now beginning to take
full advantage of the improvements in graphics capabilities
to improve the user interface. Although sophisticated graph-
ics packages have been available for computer aided
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drafting, design and simulation for years, three dimensional -

graphic displays are now common in games, animation and
muitimedia communication designed for personal comput-
ers.

The architecture of the personal computer system has
advanced to handle the sophisticated graphic capabilities
required by modem software applications. In less sophisti-
cated designs, a single CPU handled all data functions
including graphics functions. In more complicated
architectures, a separate graphics processor is provided to
perform all graphic functions in order to relieve the primary
CPU to perform other operations. A graphics processor
generally transfers data and draws points, lines, polylines,
text, string text, triangles, and polygons within a frame
buffer for display. The graphics processor is connected
between a computer system bus and the video or frame
buffer. The frame buffer is the memory which stores the
video data that is actually displayed on the video screen. A
video controller is connected to the frame buffer to convert
the digital rasterized data from the frame buffer to the analog
signals needed by the display device.

An example of a graphics processor is the TMS34010 by
Texas Instruments, Inc. When it was developed, the
TMS34010 combined the functions of a graphics controlier
and a general purpose processor to provide more flexibility.
The TMS34010 includes a host graphics interface to connect
to the host bus of a computer system, as well as a local
memory bus for connection to both conventional dynamic
random access memories (DRAMs) for program and data
storage, as well as vidleo RAM (VRAM) to implement a
frame buffer for coupling to a CRT monitor through a
RAMDAC (RAM digital to analog converter) or similar
device. The separate interfaces allow the host processor and
host bus to be separated from the graphics bus Which
decouples the host system from the bandwidth requirements
of frame buffer updates and screen refreshes. The host CPU
can access the local bus indirectly through a register.

Prior processors such as the TMS34010 support several
fundamental graphics functions and operations, such as
pixel block transfers (PIXBLT) and fill instructions to
manipulate two-dimensional atrays of pixels, line instruc-
tions for drawing various lines and polygons, draw in
advance instructions for drawings circles, ellipses, arcs and
other curves, and pixel transfer instructions for transferring
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individual pixels from one location to another. The
TMS34010 supports X, Y addressing for defining an array of
pixels on a screen, such as that which would be displayed as
a window on a CRT, as well as linear addressing for storing
graphics data in memory off screen, such as in conventional
DRAMs. The TMS34010 allowed PIXBLT transfers from
one location to another within memory, as well as X, Y to
linear address conversion, and linear to X, Y address con-
version during the pixel block move. Furthermore, Boolean
and arithmetic pixel processing, plane masking, and trans-
parency functions could be performed during the transfer.
The TMS34010 thus has several desirable capabilities to
improve the graphics performance of a personal computer
system. However, it is evident that the demand for greater
graphics capabilities have increased dramatically, so that
graphics processor must be capable of performing more
sophisticated functions in less time. Computer-aided design
applications (CAD), as well as three-dimensional (3D)
graphics operations, sophisticated shading algorithms, trans-
parency and alpha-blending, live video windows, and stereo
3D windows are now desired on most desktop computer
systems. The graphics processor must be able to draw
complicated geographical figures and fill them while per-
forming complicated 2D and 3D functions, such as
patterning, depth cueing, color compare, alpha blending,
accumulation, texture assisting, anti-aliasing,
supersampling, color masking, stenciling, panning and
zooming, as well as depth and color interpolation, among
other functions. The graphics processor must also draw the
geographical figures at a much greater speed while manipu-
lating the pixel data being drawn. Furthermore, the graphics
processor must handle complex pixel data transfers from one
Iocation in memory to another. For example, it is desired that
the graphics processor move data stored in linear addressing
format from an offscreen memory area to X, Y addressing
format on the screen of the computer while also performing
complicated alpha-blending, interpolation, or even texture
mapping while being drawn on the screen of the computer.
Prior art graphics processors, including the TMS34010,
are simply unable to provide all of these capabilities at the
required speed of present day computer systems. Although
prior art graphics processors often include two or more bus
interfaces, the graphics processor was only able to operate
on one bus at a time. Such prior art graphics processors had
to be programmed to read data from a source location at one
pitch, and then had to be reprogrammed to write the data to
a destination at a new pitch. As a result, the single interface
unit had to handle all functions on two separate buses. For
example, the memory controller was configured to read data
in linear addressing format from the host memory, and then
had to be reconfigured to write the data in X, Y format in the
frame buffer. This procedure was very tedious and slow.
Prior art graphics processors execute many other desirable
functions relatively slowly. When moving a window from
one location to another in the frame buffer, the single
memory controller had to be reconfigured at least once and
more likely many times for each line of data. The memory
controlier read one line of data and then had to be repro-
grammed to write the data to another location before writing
the line to the new location. Then, the memory controlier
had to be reprogrammed once again to retrieve the next line
of source data and so on. Such an operation requires
extensive FIFO operations, or requires a reconfiguration of
the memory controller between each source read and the
destination write. When executing graphics instructions, the
instruction and its corresponding parameters had to be read
first by the memory controller, and then the memory con-
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troller had to be reconfigured to write the graphics data to the
frame buffer for display. Only after all the data was written
could the memory controller retrieve the next instruction.

More complicated functions are performed relatively
slowly by present processors. In texture mapping, data is
read in a u, v format in a non-linear random fashion, then
written in X, Y format., requiring intermediate reprogram-
ming of the memory controller. Complex bit-block or “blit”
operations require data to be read from two different
memory sources and then written back into one of the
memory locations. The entire operation experiences stall
periods while the memory controller reads data from one
source and then the other, and is then reconfigured before
writing the output data. Data alignment of non-aligned data
is slow since it requires reading two data bytes or words
before a single byte or word can be written in aligned format.

It is therefore desirable to provide a graphics processor to
perform high level graphics functions and to achieve faster
graphic data transfer without significantly depreciating the
performance of the computer system. It is thus desirable to
provide the functionality of high end work stations to the
desktop environment without substantially increasing cost
of the computer system.

SUMMARY OF THE INVENTION

A processor according to the present invention includes
two relatively independent memory controllers coupled to
two separate interfaces and corresponding memories. In the
preferred embodiment, a first memory controller addresses
data in memory connected to a host bus and a second
memory controller addresses data in memory connected to a
local bus. Preferably, both memory controllers are coupled
to both host and local buses through multiplexor logic for
complete flexibility. Also, multiplexor and buffer logic is
coupled to the data path to allow data flow in either
direction. In this manner, data is read from either memory
location in one format and written to another location in
either memory in the same or a different format much faster
than can be done with a single memory controller.
Furthermore, the data is either transferred without change or
can be operated on or otherwise modified during transfer
since the data always passes through an operation engine.
This facilitates complex block transfers or complex “blits”
where data from two different source locations are combined
in the operation engine.

A graphics processor according to the present invention
preferably includes a private memory comprising DRAMs
coupled to the host bus. The private memory preferably
stores display lists, texture maps, bitmapped fonts, and
offscreen data, but can also serve as a virtual frame buffer.
Also in the preferred embodiment, a frame buffer compris-
ing VRAMs and an optional Z buffer comprising DRAM:s
for achieving 3D capabilities are both coupled to the local
bus. The first memory controller typically fetches
commands, pixel data, and/or texture and font values from
the private memory in linear format for processing by the
graphics processor. The second memory controller typically
writes the data to the frame buffer in X, Y format or performs
BITBLT (bit-block) operations for moving data arrays from
one location to another within the frame buffer.

A processor with a dual interface architecture according to
the present invention allows substantial improvement in
performance of the graphics system. Address translation is
performed without having to reprogram either memory
controller by programming one memory controller in the
source format and the second memory controller in the
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destination format. Thus, data stored in linear format in the
private memory is linearly addressed by the first memory
controller and the second memory controller writes the data
to the frame buffer in X, Y addressing format. Likewise, data
stored in X, Y format within the frame buffer is accessed by
the second memory controller and the first memory control-
ler writes the data to the private memory in linear addressing
format. Furthermore, a processor having dual memory con-
trollers according to the present invention allows command
pipelining or prefetching of a second instruction while
executing a first. In this manner, subsequent instructions for
drawings lines, polylines, polygons. etc. are prefetched from
the host or private memory. while a previous instruction is
being executed by the graphics processor and corresponding
data written by the second memory controller. Address
translation and command pipelining can be performed
simultaneously. Instructions and corresponding parameters
are retrieved in one format, while the output data is written
into a different memory location in a different addressing
format.

A dual memory architecture according to the present
invention performs sophisticated graphics functions in less
time than that required for graphics processors having only
one memory controller. When moving windows in the frame
buffer, one memory controller is configured to read data
from the source window while the other memory controller
is configured to write the data to the destination window.
This use of two memory controllers eliminates the need for
a large internal memory area or the requirement to recon-
figure a memory controller multiple times during the trans-
fer. In a similar manner, data read from u, v space by one
controller in a non-linear random manner is written by the
other in normal X, Y mode during texture mapping opera-
tions without intermediate reconfigurations. Complex blit
operations are performed much faster since all source data is
read at once and then written out. Data re-alignment opera-
tion is also faster where one memory controller continually
reads two data elements or bytes while the other controller
continually writes one byte at a shifted location thereby
properly aligning the data.

Thus, it can be appreciated that a processor having a dual
interface architecture according to the present invention
allows superior performance through the use of two separate
and relatively independent memory controllers. This is par-
ticularly advantageous to achieve greater graphics capabili-
ties in personal computer systems without substantially
increasing costs.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings. in which:

FIG. 1 is a simplified block diagram of a graphics system
connected to a system bus of a computer system, where the
graphics system includes a graphics processor implemented
according to the present invention;

FIG. 2 is a simplified block diagram of the graphics
processor of FIG. 1;

FIGS. 3A and 3B are block diagrams illustrating the host
and local bus interfaces, respectively, of the graphics pro-
cessor of FIG. 1;

FIG. 4 is a register file located in the graphics processor
of FIG. 1;

FIG. 5 is a diagram illustrating linear to X, Y addressing
conversion;
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FIG. 6 is a timing diagram illustrating address conversion
from linear to X, Y during data transfer;

FIG. 7 is a diagram illustrating a window move from one
location to another within the frame buffer of FIG. 1;

FIG. 8 is a timing diagram illustrating command pipelin-
ing capability of the graphics processor of FIG. 1; and

FIG. 9 is a diagram illustrating a complex blit operation
using the graphics processor of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1. a simplified block diagram is
shown of a graphics system coupled to a system bus 102 of
a host computer system, where the graphics system includes
a graphics processor 100 implemented according to the
present invention. The system bus 102 is any one of a
plurality of different types of host or input/output (I/O)
buses, including the industry standard architecture (ISA), the
extended ISA (EISA), the peripheral component intercon-
nect (PCI), the video electronic standard association
(VESA) local bus or the L-bus, or any other standardized
system bus of a computer system. The graphics processor
100 is preferably a 32-bit graphics processor operating at a
frequency of 33 Megahertz (MHz) and is coupled to the
system bus 102 through bus interface and screen timing
logic (FPGA) 104. Of course, lower or higher operation
frequencies are achievable and contemplated. The FPGA
104 is used to control a set of transceivers 106 and a
random-access memory digital-to-analog converter
(RAMDAC) 108, where it interfaces to the system bus 102,
controls the decoding of cycles to the RAMDAC 108 and
determines video timing.

The RAMDAC 108 receives digital data stored in a frame
buffer 110 and converts the digital data to the appropriate
analog outputs required by a display unit 112. In the pre-
ferred embodiment, the frame buffer 110 is part of a raster
display implemented in a video RAM (VRAM), where the
digital data comprises a rectangular array of picture ele-
ments referred to as pixels or pixel values. Each pixel value
is preferably 8 bits for defining the intensity of a single color
of a corresponding pixel on a screen of the display unit 112.
However, either three passes ire made or three parallel logic
slices are implemented for the three primary colors to
achieve 24 bit pixel values for full color display. The frame
buffer 110 stores pixel values for a 4096x4096 screen size or
16 Megabytes (MB) of memory. The display unit 112 may
be any type, such as a cathode ray tube (CRT) for desktop,
workstation or server applications, or a liquid crystal display
(LCD) or the like commonly used for portable computers.

The transceivers 106 are used to interface the graphics
processor 100 with the system bus 102 through address, data
and control signals, coliectively referred to as the HBUS
114, which is further connected ‘to an optional private
memory 116. The address portion or host address bus is
preferably 12 bits, although these signals are asserted as row
and column signals for addressing 8MB worth of memory.
The host data bus is 32 bits in length for transferring 4 bytes
at a time, equivalent to one 32-bit instruction or 4 pixels. In
the preferred embodiment, the private memory 116 acts as a
virtual frame buffer, display list storage, texture map, and bit
mapped fonts storage memory to improve performance and
functionality of the graphics system. The private memory
116 is preferably added as a separate bank of external
dynamic RAMs (DRAMs) for providing a performance
improvement by permitting faster access to display list
instructions and pixel data compared to data stored in main
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memory 126 of the host computer system. The private
memory 116 is preferably up to 8MB for achieving a
2048x2048 byte pseudo-display, or for storing up to SMB
worth of instructions and data.

The graphics processor 100 communicates to the frame
buffer 110 through address, data and control lines, collec-
tively referred to as the LBUS 118, which is further con-
nected to a Z-buffer 122, also preferably implemented using’
DRAMEs. The local address bus is preferably 14 bits for
addressing the pixels of the frame buffer 110. The local data
bus is preferably 32 bits in length for transferring one word
or 4 pixels at a time. Throughout this disclosure, a word is
equal to 4 bytes or 32 bits. The Z-buffer 122 is preferably
used to implement a depth buffer for three-dimensional (3D)
graphic displays, where each depth value is preferably 16
bits. Separate control signals of the LBUS 118 are also
connected between the graphics processor 100 and the
Z-buffer 122, as will be described more fully below. The
host computer system preferably includes a central process-
ing unit (CPU) 128 for executing various soft, rare
programs, which are loaded into the main memory 126 from
a permanent magnetic storage device, such as a hard drive
or floppy drive device, and executed by the CPU 128,
although other similar configurations are possible.

It is understood that the particular embodiment shown in
FIG. 1 is only one of many possible implementations of a
graphics system for use in a personal computer system. FIG.
1 is simplified for purposes of clarity, and many control
signals are not shown. In the preferred embodiment, the
graphics processor 100 provides hardware support for 2D
and 3D graphics, text and windowing operations of a com-
puter system. The graphics processor 100 transfers digital
data between the main memory 126, the private memory
116. the frame buffer 110 and the Z-buffer 122, and pro-
cesses the data for storage in the frame buffer 110 for
ultimate display on the display device 112.

Referring now to FIG. 2, a simplified block diagram of the
graphics processor 100 is shown. The host data bus of the
HBUS 114, comprising the signals HDATA[31:0], is con-
nected to screen and refresh logic 200, an interpolation
engine and associated registers (polyengine) 202, instruction
decode and control logic 204, a register file 205 and pixel
alignment logic 208. The HBUS 114 also preferably pro-
vides a 33 MHz clock signal CK, which synchronizes data
flow and logic within the graphics processor 100. The screen
and refresh logic 200 provides row and column address
signals to the frame buffer 110 and to the Z-buffer 122 during
refresh cycles. The polyengine 202 preferably receives and
stores vector data or parameters from the register file 205 for
points, lines, polylines, polygons, and other geometric
quantities, and then calculates or otherwise interpolates
pixel position, color intensity, depth and transparency or
alpha-blending for the various geometric quantities and
characteristics. The polyengine 202 also determines address
values for bit-block data transfer operations and provides
color intensity values and depth values to an operation
engine 212. The register file 205 is preferably a set of
registers forming a read/write pre-storage and instruction
queuing buffer for storing data and commands, and will be
described more fully below. The registers of the register file
205 are connected and accessible to the control logic 204
and the polyengine 202. The operation engine 212 generally
performs alpha blending functions, color logic operations as
well as compare and masking functions.

The instruction decode and control logic, or simply the
control logic 204, provides control signals, generally
referred to by the letter C to all of the functional blocks
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described herein of the graphics processor 100. Graphics
instructions are preferably read from the private memory
116 (or host memory 126) and loaded into an instruction
queue (not shown) and then into an instruction register 420
(FIG. 4) within the register file 205. The control logic 204
then executes the instruction by asserting the necessary
control signals C for determining synchronization and data
flow according to the particular instruction.

The pixel alignment logic 208 includes two three-input
multiplexors 2084, 208b each having two inputs coupled to
the host data bus and local data bus. and outputs coupled to
the inputs of two registers 208¢, 2084, respectively. The
output of the register 208¢ is provided to the third input of
mux 208b and to one input of a two-input barrel shifter 208e.
The output of the register 208 is provided to the third input
of the mux 208a and to the other input of the barrel shifter
208e¢, having its output providing output pixel values to a set
of input first-in, first-out latches (IFIFOs) 210 and also
directly to the operation engine 212. The muxes 208a, 208b
allow the graphics processor 100 to receive data from either
the host or local data buses, or a combination thereof. The
barrel shifter 208 allows alignment of pixel data as desired.

The local data bus of the LBUS 118 is provided to
Z-buffer comparator logic 206 and also to the pixel align-
ment logic 208. The Z-buffer comparator logic 206 is
generally used for 3D operations for controlling the data to
be displayed in overlap or transparency situations. Depth
data values stored in the Z-buffer 122 are compared with
depth values interpolated by the polyengine 202. The out-
puts of the Z-buffer comparator logic 206 and the operation
engine 212 are provided to output FIFOs (OFIFOs) 214. The
outputs of the OFIFOs 214 are provided to the inputs of set
of buffers 215, comprising a first set of tri-stateable buffers
215a for providing outputs to the local data bus, and a
second set of tri-stateable buffers for providing outputs to the
host data bus. The IFIFOs 210 and the OFIFOs 214 decouple
the dynamic interface of the memories 110, 116 and 122, and
the IFIFOs 210 synchronize source data for the operation
engine 212 for read-modify-write (RMW) operations. The
buffers 215q, 215b allow data from the OFIFOs 214 to be
provided to the local data bus, the host data bus, or both. The
muxes 208a, 208> and the tri-stateable buffers 215a, 2156
allow complete flexibility of data flow between the LBUS
118 and HBUS 114, so that data can be transferred from the
private memory 116 to the frame buffer 110 or the Z-buffer
122, and vice versa.

A first memory controller (MC1) 216 provides address
signals to one input of a two input bus multiplexor (mux)
217 and to one input of another two-input bus mux 219. The
output of the mux 217 is connected to the host address bus
of the HBUS 114 for asserting address signals to the private
memory 116 and the transceivers 106. A second memory
controller (MC2) 218 provides address signals to the second
inputs of the muxes 217, 219. The output of the mux 219 is
connected to the local address bus of the LBUS 118 and
provides address signals to the Z-buffer 122, the FPGA 104
and the frame buffer 110. The select inputs of the muxes 217,
- 219 receive signals S1, S2, respectively, provided from the
control logic 204. In general, the graphics processor 100
operates in either a coprocessor or processor mode where the
CPU 128 or the graphics processor 100, respectively, con-
trols the system bus 102 for providing data and instructions
to the graphics processor 100 for execution. A coprocessor
mode is thus implemented where an external device such as
the host CPU 128 asserts address signals to the graphics
processor 100 for accessing the register file 205. For pro-
gramming different addressing modes as described below,
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the registers of the register file 205 are preferably connected
and accessible to the memory controllers MC1. 216, MC2
218. The preferred embodiment primarily concerns the
graphics processor 100 operating in the processor mode.

Referring now to FIG. 3A, a more detailed block diagram
is shown illustrating the signal connections between the
graphics processor 100, the transceivers 106, the FPGA 104
and the private memory 116. Although the host address bus
signals are asserted directly by the mux 217, it is understood
that these signals are indirectly asserted by the MC1 216 or
the MC2 218 depending upon the S1 signal. In the preferred
embodiment, the memory controliers MC1 216 and MC2
218 are implemented as state machines within the control
logic 204, although they are separated for purposes of
illustration. The various control signals described herein
related to the address signals are generally asserted by the
control logic 204, although they will be referred to as being
asserted generally by the graphics processor 100.

A host DRAM refresh signal, referred to as HREF, is
asserted by the graphics processors 100 to the FPGA 104
indicating that the graphics processor 100 requires access to
the HBUS 114 to either perform DRAM refresh cycles of the
private memory 116, or otherwise to indicate that such
cycles are already in progress. A host interface hold request
signal, referred to as HLDREQ. is asserted by the graphics
processor 100 to the FPGA 104 to indicate that the graphics
processor 100 desires control of the HBUS 114.
Correspondingly, the FPGA 104 asserts a host interface hold
acknowledge signal, referred to as HLDACK*, which indi-
cates that the host computer system has granted control of
the HBUS 114 to the graphics processor 100. An asterisk (*)
at the end of a signal name denotes negative logic where the
signal is normally considered asserted when low or at logical
zero and negated when high or at logical one. Otherwise.
signal names generally conform to positive logic where the
signal is asserted when high and negated when low. The
HIL.DREQ and HLDACK?* signals are used by the graphics
processor 100 to arbitrate for control of the HBUS 114,
where the graphics processor 100 drives the HBUS 114
when both the HLDREQ and HLDACK* signals are
asserted.

Ahost port ready signal, referred to as HPRDY., is asserted
by the graphics processor 100 to the FPGA 104 to indicate
to the host computer system that the graphics processor 100
is ready to accept another instruction. The HPRDY signal is
only used for a co-processor mode, since otherwise the
graphics processor 100 fetches the next instruction from
either the main memory 126 or from the private memory
116. A BUSY signal is asserted by the graphics processor
100 to the FPGA 104 to indicate that the graphics processor
100 is busy executing an instruction. The BUSY signal in
combination with the HPRDY signal indicates the state of
the instruction prefetch queue within the instruction decode
and control logic 204.

A host row address strobe signal. referred to as HRAS*,
is connected between the graphics processor 100, the FPGA
104 and the private memory 116, and is asserted when a
valid row address has been driven onto the HBUS 114. The
HRAS* signal is input to the graphics processor 100 when
the HLDREQ signal is negated and is provided by the
graphics processor 100 when both the HLDREQ and
HILDACK?* signals are asserted. Two host column address
strobe signals referred to as HCAS [1:0]* are connected
between the graphics processor 100, the FPGA 104 and the
private memory 116, which are asserted to indicate that a
valid column address has been driven onto the host address
bus, comprising individual bus signals HRCADDR(11:0].
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Preferably, two signals are provided for increased output
drive capability, although they will collectively be referred
to as the HCAS* signal. The HCAS* signal is provided to
the graphics processor 100 from an external device when the
HILDREQ signal is negated and are asserted by the graphics
processor 100 when both the HLDREQ and HLDACK*
signals are asserted. The HRAS* and HCAS* signals are
bi-directional signals driven by an external controller to
address the graphics processor 100 for reads and write
cycles or for instruction loading when the HLDREQ signal
is negated. These signals are driven by the graphics proces-
sor 100 to access instructions or data from the main memory
126 or from the private memory 116.

Four host write enable signals, referred to as HWE[3:0]*,
are individual write enables for each byte of the host data
bus of the HBUS 114, comprising individual bus signals
HDATA[31:0]. The HWE[3]*, HWE[2]*, HWE[1]*, HWE
[0]* signals correspond to the HDATA[31:24], HDATA
[23:17], HDATA[16:8] and HDATA[7:0] signals, respec-
tively. Two host output enable 'signals, referred to as HOE
[1:01*, are provided to the graphics processor 100 by an
external device when the HLDREQ signal is negated, which
causes the graphics processor 100 to provide data on the
HDATA[31:0] signals. Again, two identical signals are pref-
erably provided for increased drive capability, although they
will be collectively referred to as the HOE* signal. The
HOE* signal is asserted by the graphics processor 100 when
both the HLDREQ and HLDACK?* signals are asserted to
access instructions or data from an external memory, such as
the main memory 126 or the private memory 116. The
HWE[3:0]* and the HOE* signals are bi-directional host
write and output enable signals to allow an external con-
troller of the HBUS 114 to access the registers of the
graphics processor 100 or for loading instructions and
parameters into the graphics processor 100. These signals
also allow the graphics processor 100 to access instructions
or data from the main memory 126 or from the private
memory 116.

The host address bus for the HBUS 114 comprising
signals HRCADDR[11:0] are bi-directional host row and
column address signals driven by an external controller,
such as the host CPU 128, to address the registers of the
graphics processor 100 for reads and writes or for instruction
and parameter leading when the HLDREQ signal is negated.
When both the HLDREQ and HLDACK* signals are
asserted, the HRCADDR[11:0] signals are driven by the
mux 217 of the graphics processor 100 to access instructions
or data from the main memory 126 or from the private
memory 116. To achieve a full address, a row address is
asserted on the HRCADDRI[11:0] signals and the HRAS*
signal is asserted to precharge the DRAMs, and then a series
of column addresses are asserted on the HRCADDR][11:0}]
signals and the HCAS* signal is strobed accordingly. In the
preferred embodiment, the graphics processor 100 is con-
nected to the host computer system through the transceivers
106 and is directly connected to the DRAMs of the private
memory 116. As will be described below, these signals are
asserted as outputs from the graphics process 100 to provide
a linear or X/Y address. The host data bus transfers data and
instructions to and from the host computer system, which
includes the host CPU 128 and the main memory 126. The
controller of the host data bus changes on a cycle to cycle
basis depending upon the mode of the graphics processor
100, and whether data is being read or written.

Referring now to FIG. 3B, a block diagram is shown
illustrating the signal connections between the graphics
processor 100, the FPGA 104, the RAMDAC 108, the flame
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buffer 110 and the Z-Buffer 122. The Z-Buffer 122 is
preferably split into two banks, a first bank 122a and a
second bank 122b. The local address bus comprising four-
teen signals, LRCADDR][13:0] is a tri-statable row/column
address bus connected to the frame buffer 110 and the
Z-Buffer 122, and is driven by the mux 219 of the graphics
processor 100 for read and write cycles. The LRCADDR
[13:0] signals are preferably directly connected to the frame
buffer 110 and Z-Buffer 122 and is reconfigurable for
various screen sizes and memory address widths. The LBUS
118 further includes a local data bus comprising signals
LDATA[31:0] which are bidirectional data bus signals for
transferring pixel data between the graphics processor 100,
the frame buffer 110 and the Z-buffer 122.

A local interface hold request signal, referred to as
LHI.DREQ#, is provided to the graphics processor 100 by
a device wanting to gain control of the LBUS 118. A
corresponding local interface hold acknowledge signal,
referred to as LHLDACK*, is asserted by the graphics
processor 100 to indicate that it has granted control of the
LBUS 118 to another bus master. A signal BULQ¥* is
asserted by the graphics processor 100 to the FPGA 104
while the LHLDACK* signal is asserted to indicate to a
device controlling the LBUS 118 that the graphics processor
100 must have control of the LBUS 118 to perform urgently
needed DRAM refresh cycles. If the BULQ¥* signal is
asserted when the LHLDACK? signal is negated, this indi-
cates that the DRAM refresh cycles from the graphics
processor 100 are in progress. Thus, the BULQ* signal
indicates the beginning of a DRAM refresh cycle and
remains asserted while the refresh cycle is in progress.

Four screen memory column address strobes, referred to
as signals VCAS[3:0]*, are asserted by the graphics proces-
sor 100 to the CAS* inputs of the DRAMs comprising the
frame buffer 110 to indicate a valid column address has been
driven by the graphics processor 100 onto the LRCADDR
[13:0] address signals. Individual signals are provided for
each byte of the LDATA[31:0] signals, where VCAS[3]*,
VCAS[2]*, VCAS[1]* and VCAS[0]* correspond to
HDATA[31:24], HDATA[23:17], HDATA[16:8] and
HDATA[7:0] data signals, respectively. Four screen memory
write enables, referred to as VWE[3:0]*, provide individual
write enables for each byte of the local data bus, where the
VWE[3}*, VWE[2]*, VWE[1]* and VWE[0]* signals cor-
respond to the LDATA[31:24], LDATA[23:17], LDATA
[16:8] and LDATA[7:0] data signals, respectively. The VWE
[3:0]* signals are tri-stated when the LHLDACK?® signal is
asserted.

Four screen memory output enable signals, referred to as
VOEJ3:0]*, are provided for the four bytes of the LDATA
{31:0] signals in a similar manner as for the VWE signals.
The VWE[3:0]* and the VOE[3:0]* signals are tristatable
screen memory write and output emables driven by the
graphics processor 100 to access or transfer pixel data to and
from the screen memory VRAMs of the frame buffer 110
when the LHLDREQ* signal is negated. These signals are
tri-stated when both the LHLDREQ* arid LHLDACK*
signals are asserted. The VOE[3:0]* signals are used to
output enable the VRAMs, as well as to perform transfer
cycles inside the VRAMS for screen refresh support. In this
manner, four separate enable signals are provided for read-
ing and writing selected bytes on the local data bus.

A local row address strobe signal, referred to as RAS*, is
asserted when a valid row address has been driven onto the
LRCADDR[13:0] signals. The RAS* signal is tri-stated
when the LHLDACK?* signal is asserted. It is noted that the
RAS* signal is provided to the FPGA 104, which in mm
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provides corresponding signals VRAS* to the RAS* inputs
of the VRAMs of the frame buffer 110 and another signal
ZRAS™ to the RAS* inputs of DRAMs of both the banks
122q and 122b of the Z-Buffer 122.

Two column address strobe signals, referred to as ZCAS
[1:0]*, are provided to the GAS* inputs of the DRAMs of
the Z-Buffer 122. The ZCAS[1:0]* are individual column
address strobes for each bank 1224 and 1225 of the two-way
interleaved Z-Buffer 122. These signals are tri-stated when
the LHLDACK* signal is asserted. It is noted that only one
of these strobe signals are necessary if the Z-Buffer 122 is
not organized into two banks 122aq and 1226. Two write
enable signals, referred to as ZWE[1:0]*, are individual
write enables for each half (16 bits) of the LDATA[31:0]
signals, where ZWE[1]* corresponds to the LDATA[31:16]
signals and ZWE[0]* corresponds to the LDATA[15:0]
signals. The ZWE[1:0]* signals are tri-stated when the
LHIL.DACK?* signal is asserted. Two output enable signals,
referred to as ZOE[1:0]*, are individual output enables for
each word of the LDATA[31:0] signals in a similar manner
as described above for the ZOE[1:0]* signals. It is noted that
both the ZWE[1:0] and ZOE[1:0] signals are tri-statable
depth memory write and output enables driven by the
graphics processor 100 to access or transfer depth data to
and from the Z-Buffer 122 when the LHLDREQ¥* signal is
negated. These signals are tri-stated when both LHLDREQ*
and the LHLDACK?* signals are asserted.

FIG. 4 shows some of the more important registers within
the register file 205 for purposes of the present invention.
Each of the registers are preferably 32 bits in length for
purposes of convenience, although other lengths are pos-
sible. Two registers 400 and 404 preferably hold Y and X
address values, respectively. for identifying the location of
an object defined by pixel values in the frame buffer 110.
Addresses for objects drawn in the frame buffer 110 start
from an initial X, Y address, and the address values are then
preferably interpolated using the polyengine 202. The most
significant two bits (MSBs) of the X register 404 define the
direction for increasing address values while being
interpolated. referred to as DIRX and DIRy, respectively,
which are preferably both zero for increasing X addresses
from left to right (relative to the display screen 112) and
increasing Y addresses from top to bottom. The two direc-
tion bits DIRx, DIRy allow complete flexibility when writ-
ing pixels in to the frame buffer 110.

A AY register 402 identifies an incremental row value
added to the address value in the Y register 400 when
interpolating an object or data. However, the AY value will
preferably be considered one for purposes of the present
invention for incrementing to the next horizontal scan line
within the frame buffer 110. A AX register 406 generally
works in a similar manner as the AY register 402 and
preferably contains an incremental column value for adding
to the value in the X register 404 during interpolation.
However, this value is either set to one or is not used for
purposes of data transfer, where the column address is
simply incremented, or decremented. to get to the adjacent
column. However, when interpolating lines, polylines,
triangles. polygons, etc., this register is used by the poly-
engine 202. Although not shown, the register file 205
contains a plurality of other related registers. such as Z and
AZ registers for purposes of interpolating depth values m the
Z-buffer 122, but operate in a similar manner and will not be
described further. It is further noted that the X and Y
registers 400, 402, 404 and 406 include integer and frac-
tional components for purposes of accuracy. For purposes of
simplification. however, this will not be described further as
not necessary for purposes of the present invention.
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A HOST BASE register 410 identifies the initial starting
or base address when writing or reading data into the private
memory 116. A HOST__PITCH register 408 is provided for
identifying when a new line begins while writing data into
the private memory 116. Thus, the value in the HOST__
PITCH register 408 represents how many “x-counts” or
bytes are added to the base address in the HOST__BASE
register 410 before incrementing to the next line of data,
where a line of data is relative to the width of an object in
the frame buffer 110. Generally, the pitch of the frame buffer
110 is fixed at 4,096, which is preferably equivalent to the
number of pixels in each horizontal scan line. A value of
4,096 in the HOST_PITCH register 408 enables X/Y
addressing of the private memory 116. Other values loaded
into the HOST_PITCH register 408 allows linear address-
ing of the private memory 116. as will be described more
fully below. A HOST_OFFSET register 412 is used for
indirect addressing of the private memory 116 defining an
address offset relative to the address value in the HOST__
BASE register 410. A single set of pitch, base and offset
registers are sufficient unless reading from one location to
another within the private memory 116. In that case, the Y,
AY and X registers 400, 402 and 404 are also used as address
generators.

The register file 205 also includes the instruction register
420 for storing commands and functions, a control register
422 for containing various control bits for defining particular
modes for tespective instructions and operations, and a
status register 424 for controlling software transport
protocol, for enabling and determining pending interrupts
and for storing various result flags.

Referring now to FIG. S, a diagram is shown illustrating
address conversion from linear format to X/Y format for
transferring data from the private memory 116 to the frame
buffer 110 through the graphics processor 100. A dual
interface structure according to the present invention allows
such address conversion or translation automatically while
transferring data from one location to another.

The HOST__PITCH register 408 is loaded with a value of
eight (8) and the pitch for the frame buffer 110 is set at a
value of 4096. Four separate words A, B, C and D are stored
in the private memory 116 consecutively in a series of
memory words labelled 0 though 7. Each of the memory
words 0-7 include four bytes or 32 bits, where each byte is
addressed by two column bits 00, 01, 10 and 11. These
particular column address bits are not asserted on the host
address bus since all four bytes are read at once into the
graphics controller 100. The data words A~D are not aligned
to column boundaries within the memory words 07, so that
the second two bytes 10, 11 of the memory word 0 and the
first two bytes of the memory word 1 are required to form
the data word A. The data is written into the frame buffer 110
in X/Y addressing format, so that each of the data words
A-D are stacked on top of each other. More particularly, the
data words A-D are stored in a rectangular area between row
addresses Y=5 to Y=2 and in column addresses X=0 and
X=1, where each of the column addresses include four pixel
bytes, 00, 01, 10 and 11.

The MC1 216 thus reads seven memory words 0-7 from
the private memory 116 in linear format, where each word
is four bytes in length. The row is maintained at address 10,
and the column address is increased linearly from 0000 to
0111 for memory words 0 through 7 for all seven words
within the private memory 116. However, when writing into
the frame buffer 110, the value starts at row address Y=5.
column address X=00 and continues until eight bytes or two
words are written, including the data word A. thereby
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completing the first line of pitch 8, and then the pitch value
of 4,096 is added to the base or initial X column address
causing the row address to be decremented to begin at row
Y=4, column X=00 to begin a new memory line containing
the data word B. Operation continues in this manner until the
four data words A, B, C and D are aligned on top of one
another in the rows Y=5 to Y=2 in the frame buffer 110.

FIG. 6 is a timing diagram illustrating operation of the
MC1 216 and the MC2 218 performing address conversion
while reading data from the private memory 116 and writing
data into the frame buffer 110. In particular, the MC1 216 is
first programmed to linearly read data from the private
memory 116 stored in a linear addressing format. The S1
signal is asserted to select the MC1 216 for asserting address
signals on the host address bus. Data read by the MC1 216
is selected by either max 208a, 2085 for input data, which
traverses through the operation engine 212 and is loaded into
the OFIFOs 214. The buffers 2154 assert the data on the
local address bus. The MC2 218 is programmed to address
the frame buffer 110 in X/Y addressing format while data is
provided on the local data bus from the OFIFOs 214. The S2
signal is asserted to select the MC2 218 for asserting address
signals on the local address bus. The X and Y register 404,
400 are loaded with values 0 and 5, respectively, for pointing
to the initial point for inserting data into the frame buffer
110.

The graphics processor 100 is capable of addressing up to
8 Megabytes worth of data stored in the private memory 116
using the HRCADDER([11:0] signals by first asserting a row
and then a series of column addresses as known to those
skilled in the art. Thus, the graphics processor 100 asserts an
address on the host address bus and then asserts the HRAS*
signal low to precharge the DRAMs within the private
memory 116. Then, the graphics processor 100 asserts a
series of column addresses on the host address bus while
correspondingly asserting the HCAS* signal for each col-
umn address. Typically, data stored in the private memory
116 is addressed in linear format, where the column address
begins at zero and is subsequently incremented until it
reaches the very end of the row, thereby linearly addressing
every bit within the memory.

In the X/Y addressing format, a row address is asserted
and the corresponding RAS* signal is synchronously
asserted on the respective address bus, and then a series of
column addresses are asserted and the corresponding GAS*
signals are synchronously asserted until the number of
column addresses equals the pitch value. When the pitch
value is reached, the row address is either incremented or
decremented, and the pitch value is added to the base
column address to begin a new line. However, when reading
data from the private memory 116 in linear format and while
writing the data to the flame buffer 110 in X/Y format, the
pitch value of 4,096 is added to the X register 404 to begin
a new line. In this manner, an object having a certain width
defined in pixels in the frame buffer 110, and a certain height
defining a window of scan lines, can be stored in the private
memory 116 in relatively compressed format.

Operation begins at a time T0, when the MC1 216 asserts
the row address 10 on the HRCADDR|[11:0] signals or host
address bus. The graphics processor 100 then asserts the
HRAS* signal low at a time T2 to indicate that a valid row
address has been asserted on the HBUS 114. Subsequently
at a time T4, the graphics processor 100 asserts a column
address 0 to the private memory 116 for accessing the
memory word 0. While the column address is valid, the
graphics processor 100 asserts the HOE* signal low at a time
T6 to access data and then asserts the HCAS* signal Jow at
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a time T8 indicating that a valid column address is asserted
on the host address bus. Meanwhile, the corresponding data
word @ from the private memory 116 is provided to the host
data bus and latched into the graphics processor 100
although not explicitly shown. Subsequently, the remaining
memory word addresses 1, 2, 3,4, 5, 6 and 7 are asserted on
the host address bus at times T10, T12, T14, T16, T18, T20
and T22, respectively, and the HCAS* signals are synchro-
nously asserted while the column addresses are valid at
times T11, T13, T15, T17, T19, T21 and T23, respectively,
for latching in the corresponding memory words 1, 2, 3, 4,
5, 6 and 7, respectively.

Meanwhile, after the OFIFOs 214 become full, the MC2
218 asserts the row address Y=>5 on the local address bus of
the LBUS 118 for writing data to the frame buffer 110 at that
row. The RAS* signal is subsequently asserted by the
graphics processor 100 to the FPGA 104 which subsequently
asserts the VRAS* signal at a time T32 while the address
Y=>5 is still valid on the LBUS 118. It is noted that from the
beginning of the cycle at approximately T0, a time delay of
Tp occurs until the time T32 when the VRAS* signal is
asserted. This time delay T, is primarily due to the time it
takes for data to propagate through the pixel alignment logic
208, the IFIFOs 210, the operation engine 212 and through
the OFIFOs 214 before data can be provided to the private
memory 116. It is noted that although data is typically
modified or otherwise operated on through the operation
engine 212, data can also be simply passed unchanged
through the operation engine 212 and provided to the
OFIFOs 214 for storage in the frame buffer 110. 1t is further
noted that the time T32 does not necessarily occur after the
time T24 at the end of the HBUS 114 cycle, but instead
preferably occurs while the cycle on the HBUS 114 is
occurring. In fact, the only delay from time TO is the time
Ty, for allowing the data to propagate through the graphics
processor 100 before data can be provided at the OFIFOs
214 and onto the LBUS 118.

Once the row address Y=5 is latched by the VRAMs of
the frame buffer 110, the graphics processor 100 asserts the
first column address 0 at a time T34 and subsequently asserts
the corresponding VCAS* signals at a time T36.
Furthermore, the write enable signals VWE[2,3]* are
asserted approximately at the time T36 to write only the
bytes of interest into the frame buffer 110 at address Y=5 and
at column address 2. Note that the first two bytes 00, 01 are
not defined and that the second two bytes 10, 11 form the
first half of the data word A. Subsequently at time T37 anew
column address of X=1 is asserted on the LBUS 118 and
then the corresponding VCAS* and write enable signals
VWE[0,1 1* are asserted subsequently at a time T38 to
access the address location Y=5 and X=1 within the frame
buffer 110, and to write only the first two bytes of interest 00,
11 to complete the data word A. The cycle ends at a time T39
when the VRAS* and corresponding signals are negated,
thereby completing the writing of the data word A into the
frame buffer 110 at row address Y=5. Since 8 bytes of data
have been written into the frame buffer 110 and the HOST__
PITCH value of 8 has been reached, the pitch value of 4,096
of the frame buffer 110 is added to the X register 404 and the
Y address is decremented to begin a new scan line.

Subsequently at time T40, the new row address Y=4 is
asserted on the local address bus signals of the LBUS 118
and then the VRAS* signal is asserted subsequently at a time
T42 indicating that a valid row address has been asserted.
Once the VRAMs within the frame buffer 110 have latched
row address and have precharged, the graphics processor
100 asserts consecutive column addresses X=0 and X=1 at
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times T44 and T47 respectively in a similar manner
described previously. Likewise, the VCAS™ signals and the
corresponding VWE[2.3]* write enable signals are asserted
at time T46 to latch the X=0 column address, and then at a
time T48 to latch the X=1 column address, and correspond-
ing VWEJ]* write enable signals are asserted. Again, only
the VWE[2.3]* signals are asserted for X=0 and the VWE
[0.1]* signals are asserted for X=1 to latch the appropriate
data bytes of the local data bus for the data word B. This
completes the second row of data written to the frame buffer
110 for correspondingly writing the data word B into the
frame buffer 110. Operation proceeds in an almost identical
manner, where the graphics processor 100 asserts row
addresses, Y=3 and Y=2 at times T50 and T60. respectively,
and also asserts column addresses X=0, 1 at times T54, T57
and T64. T67. respectively. The VRAS* signals are asserted
appropriately to latch the row addresses at times T52 and
T62 and the VCAS* and VWE[4:0]* are asserted as shown
in the diagram to write the data words C and D at rows 3 and
2, respectively.into the frame buffer 110. The entire opera-
tion completes at a time T69 when all signals are negated,
completing the write operation.

It is clearly seen from FIGS. 5 and 6 that the dual interface
architecture according to the present invention enhances the
speed and thus the efficiency of the graphics processor 100.
While data is being read from the private memory 116 in
linear addressing format, data is simultaneously written into
the frame buffer 110 in X/Y addressing format, although a
slight delay T, occurs for data propagation through the
graphics processor 100. The time delay T, is a minor
penalty compared to prior art using a single memory con-
troller where data clearly cannot be read and written simul-
taneously. It is clear that moving data from one memory
location to another while simultaneously converting the
addressing format. such as from linear to X/Y or vice-versa,
would be very tedious and slow with a single memory
controller. The memory Controller would have to be repro-
grammed for each line of data, or a large internal memory
would need to be provided within the graphics processor 100
to store all the data from the source location, and then the
memory controlier would be reprogrammed to write the data
from the internally stored location to the destination memory
location. It is therefore seen that a dual interface architecture
according to the present invention allows complete flexibil-
ity in storing and retrieving data from one memory location
to another with different addressing formats. Referring now
to FIG. 7, a simplified block diagram is shown illustrating
the capability of moving a window of data from one location
to another within the frame buffer 110. A rectangular source
window 700 is shown between coordinates X1, Y1, and X2,
Y2 to be moved to a destination pointed to by the HOST_
BASE register 410 starting with coordinates X3, Y3 and
ending at coordinates X4, Y4. The LBMC 218 is preferably
programined to address the window 700 by initially pointing
at the X1,Y1 address and reading data from the frame buffer
110 in X/Y format. In particular, the X, Y registers 404, 400
are set to X1, Y1 accordingly and the S2 signal is asserted
to select the MC2 218 while data is being read. The data is
asserted on the local data bus and provided to the pixel
alignment logic 208, and eventually propagates through to
the OFIFOs 214. The buffer 2154 remains tri-stated,
however, while data is being read until ready to be written.

The HBMC 216 is programmed in X/Y format by setting
the HOST_PITCH register 408 to 4096 and setting the
HOST_BASE register 410 to X3, Y3 to write the data
beginning at X3, Y3 and ending at X4, Y4 of the destination
window 702. When the data from the window 700 fills the
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OFIFOs 214, the HBMC 216 addresses corresponding data
locations within the frame buffer 110 for writing the data to
the window 702. It is noted that the read and write operations
cannot occur simultaneously since accessing the same bus.
Therefore, the LBMC 218 is temporarily stalled while the
buffer 215a asserts data onto the local data bus to clear out
the OFIFO 214. Once the data is cleared from the OFIFOs
214 and written into the window 702, additional data from
the window 700 is read from the LBMC 218 thereby
temporarily stalling the HBMC 216. Therefore. although the
HBMC 216 and the LBMC 218 are not operated
simultaneously, there is no need for reprogramming either
memory controller MC1 or MC2 during the operation. so
that data is always being read from or written to the frame
buffer 110. In prior art, a single memory controller would
have to be reconfigured between each move which calls for
greater internal FIFO buffers or more data storage and a
complete stall during reconfiguration for addressing data
from the window 760 and writing data to the destination
location at window 702. Such extra data storage and delay
due to reconfiguration is entirely unnecessary using a dual
interface architecture according to the present invention.

Referring now to FIG. 8, a timing diagram is shown
illustrating command pipe lining capability of the present
invention where subsequent instructions are prefetched by
the graphic processor 100 while simultaneously executing
previously loaded instructions. In this case, the HBMC 216
is preferably programmed to fetch instructions and corre-
sponding parameters for that instruction from the private
memory 116 for loading into the register file 205, while the
LBMC 218 is programmed to retrieve data from the opera-
tion engine 212 through OFIFOs 214 and write the data into
the frame buffer 110 and/or Z-buffer 122. The polyengine
202 executes the first instruction and loads parameters from
the register file 205 into its internal registers. Resulting
output data is then provided to the operation engine 212.
Thus, there is a slight delay while the first instruction is
executing before data is written to the frame buffer 110.
Nonetheless, once the data is available to be written to the
frame buffer 110, it can immediately be written by the
LBMC 218 simultaneously while the HBMC 216 retrieves
new instructions and parameters from the private memory
116.

The HBMC 216 asserts a row address on the host address
bus at time T100 and subsequently asserts the HRAS* signal
at time 102 allowing the private memory 116 to latch the row
address. Subsequently at time T104, the HBMC 216 asserts
a column address 0 pointing to instruction #1 within the
private memory 116, and then asserts the HCAS* signal at
time T106 indicating a valid column address is asserted on
the host address bus. The private memory 116 asserts the
data comprising instruction #1 onto the host data bus which
is written into the register file 205. Subsequently, valid
column addresses pointing to the parameters of instruction
#1 within the private memory 116 are asserted on the host
address bus by the graphics processor 100 and the HCAS*
signal is asserted while the column addresses are valid
during times T108, T110, T112, and T114, so that instruction
#1 and all its parameters are loaded into the register file 205.
The first cycle completes at time T116 when the HRAS*
signal is negated. Almost immediately thereafter, the poly-
engine 202 begins executing instruction #1 and providing
data through the operation engine 212 to the OFIFOs 214.
Once data is available to be written to the frame buffer 110,
the LBMC 218 takes over and writes a row address and the
VRAS* signal is asserted at time T120. and then the
graphics processor 100 asserts corresponding VCAS* sig-
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nals at times T122, T124, T126, T128, T130, and T132 as
shown for writing data into the frame buffer 110. The first
data set is complete at a time T134, when the VRAS* signal
is negated although further data sets can be written accord-
ing to the requirements of instruction #1.

Meanwhile, before the polyengine 202 has completed the
execution of the first instruction and before all the data is
written into the frame buffer 110, the HBMC 216 assetts a
new row address on the host address bus at time T140 and
subsequently asserts the HRAS* signal at time T142 to
begin retrieving instruction #2. The time T142 preferably
occurs prior to time T134 before the first data line is written
into the frame buffer 110. In fact, the HBMC 216 begins
prefetching the next instruction #2 relatively soon after all of
the parameters for imstruction #1 have been loaded.
Thereafter, the HBMC 216 asserts column addresses 5, 6, 7,
8, and 9 beginning at time T144 and correspondingly asserts
the HCAS* signal at cormresponding times T146, T148,
T150, T152, and T154, consecutively and synchronously
with the column addresses 5-9. The prefetch operation ends
at time T156 when the HBMC negates the HRAS* signal. It
is noted that although the polyengine 202 cannot begin
operation of the next instruction #2 until instruction #1 is
completed, execution can begin immediately thereafter since

instruction #2 has been prefetched by the MC1 216.
I is therefore appreciated that the dual interface archi-
tecture according to the present invention provides a first
memory controller for prefetching instructions while a prior
instruction is being executed and the corresponding data is
being written to an output memory device, such as the frame
buffer 110 and/or the Z-buffer 122. Due to the OFIFOs 214,
the HBMC 216 and the LBMC 218 operate asynchronously
with respect to one another and need not wait for the other
to complete execution. A single memory controller would
not be able to prefetch instructions, but would have to be
reprogrammed and begin writing data to the flame buffer
110, and then would have to be reprogrammed again for
reading the next instruction from the private memory 116.
Thus, a dual interface architecture according to the present
invention allows instruction prefetching, thereby substan-
tially increasing the speed and efficiency of the graphics
processor 100.

Referring now to FIG. 9 a diagram is shown illustrating
a complex blit operation where data is simultaneously
retrieved from two separate memory locations. In this case,
either a window 900 within the frame buffer 110 or a similar
window 902 within the Z-buffer 122 is read by the graphics
processor 100 and modified using data from the private
memory 116. This is typically referred to as a read-modify-
write operation. Although two separate window 900, 902 are
shown, one each for the frame buffer 110 and the Z-buffer
122, only one is accessed during the complex blit operation.
Data from the window 900 or 902 and the modifying data
904 from the private memory 116 are read simultaneously
by the LBMC 218 and the HBMC 216, respectively. The
complex blit instruction is useful for area smoothing, video
and graphics blending and anti-aliasing raster font transfers
at a very fast rate. In the case shown in FIG. 9, the modifying
data 904 from the private memory 116 is read by the HBMC
216 in linear format, while the LBMC 218 reads the window
900 or 902 in X/Y format. The object is to bring in all of the
data, align it using the pixel alignment 208, operate on the
data, and then write the data back into the same location
within the frame buffer 110 or the Z-buffer 122. It is noted,
however, that the data could be written back into the private
memory 116 as desired. Also. although data can be read
simultaneously from the private memory 116 and the frame
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buffer 110 or the Z-buffer 122 using the two separate
memeory controllers MC1, MC2, the data cannot be written
while being read since accessing the same LBUS 118. Thus,
data is stored in the OFIFOs 214, and when ready for being
written to the frame buffer 110 or the Z-buffer 122, the
HBMC 216 is stalled while the LBMC 218 writes the data.

Once a data line has been written, both memory control-
lers HBMC 216, and the LBMC 218 can read more data for
the operation engine 212 before being subsequently written
by the LBMC 218. Although one of the memory controllers
is temporarily stalled during this operation, data is always
being read or written, which is not possible with a single
memory controller of prior art. With a single memory
controller, data would have to be read from the frame buffer
110 or the Z-buffer 122, and then the memory controller
would have to be reprogrammed to read data from the
private memory 116 before the data can be combined in the
operation engine 212. Of course, when the data is ready to
be written, the single memory controller would have to be
reconfigured to write the data back out to the destination
memories.

Other more complicated operations are performed faster
and more efficiently using a dual interface architecture
according to the present invention. Dual memory address
controllers are used in the case of graphics texture mapping,
where one address controller reads information in a nonlin-
ear random format from a source location to allow the
graphics processor 100 to develop u, v space for the appro-
priate texture mapping. Thus, one memory controller
addresses the data in a nonlinear random fashion and the
second memory controller writes the data in typical X/Y
format into the destination memory. In this manner, a
separate memory controller is provided for addressing data
in a non-sequential random access format for texture map-
ping in u, v space.

Another advantage of two memory controilers is to align
non-aligned data in a more efficient manner. In typical
graphic operations, data is read from one pixel address and
written to another pixel address. When moving data from
one location to another, however, the data might not be
aligned so that it is read from position one in the source scan
line and written to position three in the destination scan line.
Thus, more than one data word has to be read in order to
retrieve the full single word to be written. FIG. 5 illustrates
the point where it was required to read two words of memory
to write one word of data, such as data word A, since the data
crossed word boundaries. Thus, one address controller con-
tinually reads two pixels at a time from a source location
while the other address controller continually writes a single
data word back into a destination location for properly
aligning data.

T is now appreciated that a graphics processor according
to the present invention including two memory controllers to
achieve a dual interface is a substantial improvement over
single interface architectures. Data transfer rates from one
memory location to another are performed more efficiently
and significantly faster. Data stored in two separate formats,
such as linear versus X/Y addressing, does not slow down
the procedure since the separate memory controllers are
accordingly programmed for the different modes of address-
ing. Data transfer between two separate locations within the
same memory also occurs faster since one memory control-
ler is programmed to read the source data and the other
memory confroller is programmed to write the destination
data, so that delays for reconfiguring a single memory
controller during the transfer are eliminated. Command
pipelining for prefetching commands is now possible to
eliminate delays retrieving the next command.
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A graphics processor with a dual architecture according to
the present invention also allows more sophisticated opera-
tions to be performed with speed. Such operations as texture
mapping from u, v space and aligning non-aligned data
during data transfer are performed with ease. Thus, a graph-
ics processor according to the present invention performs
high level graphics functions and data transfers much faster
without depreciating the performance of the computer sys-
tem at all.

Although the method and apparatus of the present inven-
tion has been described in connection with the preferred
embodiment, it is not intended to be limited to the specific
form set forth herein, but on the contrary, it is intended to
cover such alternatives, modifications, and equivalents, as
can be reasonably included within the spirit and scope of the
invention as defined by the appended claims.

I claim:

1. A processor for coupling to first and second indepen-
dent buses. the first and second buses each having address
and data portions. said processor comprising:

a first memory controller for providing address signals

onto the address portion of the first bus;

a second memory controller for providing address signals

onto the address portions of the second bus;

a set of latches for coupling to the data portions of the first

and second buses; and

control logic coupled to said first and second memory

controllers and said set of latches for controlling data
flow on the first and second buses.

2. The processor of claim 1, wherein:

said first memory controller provides address signals on

the first bus for addressing input data, wherein said
input data is provided to an input of said set of latches;
and

wherein said second memory controller provides address

signals on the second bus for writing output data
provided from an output of said set of latches.

3. The processor of claim 1, wherein said first and second
memory controllers are both programmable for asserting
said address signals on the first and second buses in different
formats.

4. The processor of claim 3, wherein said first memory
controller is programmed for asserting address signals on the
first bus in linear format for accessing and providing data to
an input of said set of latches, and wherein said second
memory controller is programmed for asserting address
signals on the second bus in x/y format for writing data
provided from an output of said set of memory latches.

5. The processor of claim 3, further comprising:

memory coupled to said first and second memory con-

trollers for storing addressing parameters for program-
ming said first and second memory controllers for
asserting said address signals in either linear or x/y
format. ‘

6. The processor of claim 5, wherein said memory com-
prises a plurality of registers including a base register for
storing an initial memory address and a pitch register for
storing a value defining an amount of memory per line
associated with an external memory device.

7. The processor of claim 6. wherein said plurality of
registers include an offset register for storing an address
value added to said initial memory location for implement-
ing indirect addressing.

8. The processor of claim 1, wherein said set of latches
includes two inputs for coupling to the first and second
buses, respectively, and two outputs for coupling to the first
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and second buses. respectively. for allowing bidirectional
data fiow between the first and second buses.
9. The processor of claim 8, further comprising:
input select logic coupled to said control logic and having
5 respective inputs for coupling to the data portions of the
first and second buses and an output for providing
selected data to said set of latches; and
output select logic coupled to said control logic and
having an input for receiving data from said set of
latches and having respective outputs coupled to the

10 data portions of the first and second data buses;
wherein said control logic provides control signals for
controlling the direction of data fiow between the first
and second buses.
15 10. The processor of claim 9. wherein said set of latches

further includes first-in, first-out latches.

11. The processor of claim 10, wherein said first-in,
first-out latches include a set of input first-in, first-out latches
coupled to said input select logic and a set of output first-in,
first-out latches coupled to said output select logic.

12. The processor of claim 1, further comprising:

execution logic coupled to said control logic and for
coupling to the data portion of the first bus for receiving
and executing instructions and any associated param-
eters and providing data to said set of latches; and

wherein said first memory controller asserts address sig-
nals on the first bus for retrieving instructions for
execution by said execution logic, and wherein said
second memory controller asserts address signals onto
the second bus corresponding to data from an output of
said set of latches.

13. The processor of claim 12, wherein after said first
memory controller asserts address signals to retrieve a first
instruction and while said execution logic is executing said
first instruction and while second memory controller is
asserting address signals on the second bus corresponding to
data provided from said set of latches, said first memory
controller asserts additional address signals on the first bus
for retrieving a second instruction.

14. The processor of claim 12, wherein said execution
logic further includes memory for storing said instructions
and associated parameters.

15. The processor of claim 1, further comprising:

multiplexor logic receiving address signals from both said
first and second memory controller and for providing
address sigmals on the first and second buses, said
multiplexor logic further receiving select signals from
said control logic for selecting between said first and
second memory controllers.

16. The processor of claim 15, wherein said multiplexor
logic includes:

a first multiplexor having first and second inputs for
receiving address signals from said first and second
memory controller, respectively. a select input for
receiving a first select signal from said control logic for
selecting between said first and second memory con-
troller and an output for providing selected address
signals on the first bus.

17. The processor of claim 16, wherein said multiplexor

logic further includes:

a second multiplexor having first and second inputs for
receiving address signals from said first and second
memory controllers, respectively, a select input for
receiving a second select signal from said control logic
for selecting between said first and second memory
controllers, and an output for providing selected
address signals on the second bus.
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18. The processor of claim 15, wherein said second
memory controller provides address signals to read data
from the second bus from one addressable location and
wherein said first memory controller provides address sig-
nals to write data to the second bus to a second addressable
location.

19. The processor of claim 18, wherein the data read from
the second bus is provided to an input of said set of latches,
wherein data written to said second bus is provided from an
output of said set of latches and wherein said control logic
asserts select signals to said multiplexor logic for selecting
said first memory controller to read data and for selecting
said second memory controller to write data.

20. The processor of claim 15, wherein said first and
second memory controllers are both programmable for
asserting said address signals in either linear or x/y format.

21. The processor of claim 20, further comprising:

memory coupled to said first and second memory con-
trollers for storing a base address value identifying an
initial memory location and a pitch value identifying an
amount of memory per line associated with an external
memory device.

22. The processor of claim 21, wherein said memory
further stores an offset value for adding to said base address
value for implementing indirect addressing.

23. The processor of claim 20, wherein said set of latches
further includes input and output select logic for allowing
data flow in either direction between the first and second
buses.

24. The processor of claim 1, wherein said set of latches
includes:

pixel alignment logic having inputs for receiving data
from the data portion of the first and second buses, and
an output;

input FIFOs receiving data from said output of said pixel
alignment logic for synchronizing and providing data at
an output;

operation logic having an input for receiving and manipu-
lating pixel data from said input FIFOs and providing
manipulated pixel data at an output; and

output FIFOs receiving said manipulated pixel data from
said operation logic and providing synchronized data to
the data portions of the first and second buses.

25. The processor of claim 1, further comprising:

said set of latches including an input portion and an output
portion, wherein said input portion includes two inputs
coupled to the data portions of the first and second
buses, respectively; and

operation logic coupled between said input and output

portions of said set of latches for combining data from
the first and second buses;

wherein said first memory controller asserts address sig-

nals to retrieve data from the first bus and said second
memory controller asserts address signals to retrieve
data from the second bus, and then said second address
controller is reprogrammed by said control logic to
assert address signals to write data from said output
portion of said set of latches onto the second bus.

26. The processor of claim 25, wherein said set of latches
includes first-in, first-out latches for synchromizing data
flow.

27. A graphics system, comprising:

a first bus having address and data portions;

a first memory coupled to said first bus;

a second bus having address and data portions;
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a second memory coupled to said second bus; and
a processor coupled to said first and second buses, com-
prising:
a first memory controller for providing address signals
onto said address portion of said first bus;
a second memory controller for providing address
signals onto said address portion of said second bus;
data means coupled to said data portions of said first
and second buses; and
control logic coupled to said first and second memory
controllers and said data means.
28. The graphics system of claim 27, wherein said first
memory stores graphics instructions and data.
29. The graphics system of claim 27, wherein said second
memory comprises a frame buffer for storing pixel data.
30. The graphics system of claim 29, wherein said second
memory comprises video random access memory.
31. The graphics system of claim 27, further comprising
a third memory coupled to said second bus.
32. The graphics system of claim 31, wherein said third
memory comprises a buffer for storing depth information.
33. The graphics system of claim 27, wherein said first
and second memory controllers are programmable by said
control logic for asserting address signals in different
addressing formats.
34. The graphics system of claim 33. wherein said pro-

- cessor further includes:

memory coupled to said first and second memory con-
trollers for storing address parameters for programming
said first and second memory controllers to assert
address signals in either linear or x/y format.

35. The graphics system of claim 34, wherein said pro-
cessor memory stores a base address associated with said
first memory.

36. The graphics system of claim 35, whercin said
memory stores a pitch value representing an amount of data
in each group of a plurality of data groups stored consecu-
tively in said first memory, where each group is associated
with a line of data of said second memory.

37. The graphics system of claim 36, wherein said pitch
value is used relative to said base address.

38. The graphics system of claim 36, wherein said
memory stores an offset address added to said base address
for implementing indirect addressing.

39. The graphics system of claim 27, wherein said data
means includes two inputs coupled to said first and second
buses, respectively, and two outputs coupled to said first and
second buses, respectively, for allowing bidirectional data
flow between said first and second buses.

40. The graphics system of claim 39, wherein said data

- means further includes:
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data input select logic coupled to said control logic for
selecting between said two inputs of said data means;
and .
data output select logic coupled to said control logic for
selecting between said two outputs of said data means.
41. The graphics system of claim 40, wherein said pro-
cessor further comprises:
address select logic coupled to said first and second
memory controllers, said first and second buses and
said control logic, wherein said control logic selects
between said first and second memory controllers for
asserting address signals on said first and second buses.
42. The graphics system of claim 41, wherein said address
select logic comprises:
a first multiplexer having two inputs for receiving address
signals from said first and second memory controllers,
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respectively, and an output for providing selected
address signals on said first bus; and

a second multiplexer having two inputs for receiving

address signals from said first and second memory
controllers, respectively. and an output for providing
selected address signals on said second bus.

43. The graphics system of claim 41, wherein said second
memory controller provides address signals to read data
from said second bus at one address and wherein said first
memory controller provides address signals to write data to
said second bus at another address.

44. The graphics system of claim 41, wherein said first
and second memory controllers are programmed by said
control logic for asserting address signals in either linear or
x/y format.

45. The graphics system of claim 44, wherein said pro-
cessor further comprises:

memory coupled to said first and second memory con-

trollers for storing address parameters to program said
first and second memory controllers into linear or x/y
addressing formats.

46. The graphics system of claim 45, wherein said
memory stores a base address and a pitch value associated
with said first memory.

47. The graphics system of claim 46, wherein said pitch
value represents an amount of data per group for each of a
plurality of data groups stored consecutively in said first
memory equivalent to an amount of data per line in said
second memory.

48. The graphics system of claim 47, wherein said line in
said second memory is less than the pitch of said second
memory.

49. The graphics system of claim 41. wherein said pro-
cessor further comprises:

execution logic coupled to said control logic for executing

instructions provided by said control logic, wherein
said execution logic provides data to said data means;
and
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wherein said address select logic selects said first memory
controlier for asserting address signals on said first bus
for retrieving instructions for execution by said execu-
tion logic, and wherein said address select logic selects
said second memory controller for asserting address
signals onto said second bus for writing data to said
second memory provided from said data means.

50. The graphics system of claim 49, wherein after said
first memory controller asserts address signals to retrieve a
first instruction and while said execution logic is executing
said first instruction and said second memory controller is
asserting address signals on said second bus, said first
memory controller asserts address signals on said first bus to
retrieve a second instruction.

51. A computer system. comprising:

a host bus having address and data portions;
a host central processing unit coupled to said host bus;

a private memory coupled to said host bus for storing
graphics instructions and associated data;

a local graphics bus having address and data portions;
a frame buffer coupled to said local graphics bus; and

a graphics processor coupled to said host and local

graphics bus, comprising:

a first memory controller for providing address signals
onto said address portion of said first bus;

a second memory controller for providing address
signals onto said address portion of said second bus;

data means coupled to said data portions of said first
and second buses; and

control logic coupled to said first and second memory
controllers and said data means.



