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CHAPTER 1 

OP~SS==================== SEMICONDUCTOR Introduction 

This chapter provides an overview of the basic concepts and advantages of RISC computer archi­
tectures in general and a brief summary of the specific features of the RISC computer imple­
mented in Cypress's CY7C600 family. 

Scalable Processor Architecture 
The Cypress CY7C600 family implements a RISC architecture called SPARC TM. SPARC stands 
for Scalable Processor ARChitecture. It is applicable to large high performance as well as small 
machines. The term "scalable" refers to the size of the smallest lines on a chip. As lines become 
smaller, chips get faster. However, some chip designs do not shrink well (they do not scale 
properly) because the architecture is too complicated. Because of its simplicity, the CY7C600 
scales well. Consequently, CY7C600 systems will become faster as better semiconductor tech­
niques are perfected. SPARC is an open computer architecture. We believe that the intelligent 
and aggressive nature of the SPARC design will make it an industry standard.The design specifi­
cation is published, and other vendors are also producing SPARC microprocessors. 

What is RISe? 
RISC, an acronym for Reduced Instruction Set Computer, is a style of computer architecture 
emphasizing simplicity and efficiency. RISC designs begin with a necessary and sufficient in­
struction set. Typically, a few simple operations account for almost all computations. RISC ma­
chines are about two to five times faster than machines with traditional complex instruction set 
architectures. Also, RISC machines simpler designs are easier to implement, resulting in shorter 
design cycles. 

RISC architectures are a response to the evolution from assembly language to high-level lan­
guages. Assembly language programs occasionally employ elaborate machine instructions, 
whereas high-level language compilers rarely do. For example, most C compilers use only about 
30% of the available Motorola 68020 instructions. Studies show that approximately 80% of a 
typical programs computations require only about 20% of a processor's instruction set. 

RISC is to hardware what the UNIX® operating system is to software. The UNIX system proves 
that operating systems can be both simple and useful. Hardware studies suggest the same con­
clusion. As advances in semiconductor technology reduce the cost of processing and memory, 
overly complex instruction sets become a performance liability. The designers of RISC machines 
strive for hardware simplicity, with close cooperation between machine architecture and compil­
er design. At each step, computer architects must ask to what extent does a feature improve or 
degrade performance and is it worth the cost of implementation? Each additional feature, no 
matter how useful it is in an isolated instance, makes all others perform more slowly by its mere 
presence. 
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The goal of RISC architecture is to maximize the effective speed of a design by performing 
infrequent functions in software. including in hardware only features that yield a net 
performance gain. Performance gains are measured by conducting detailed studies of large 
high-level language programs. RISC improves performance by providing the building blocks 
from which high-level functions can be synthesized without the overhead of general but complex 
instructions. 

RIse Architecture 
The following characteristics are characteristic of RISC architectures. including the CY7C600 
design: 

Single-cycle execution 
Most instructions are executed in a single machine cycle. 

Hardwired control with no microcode 
Microcode adds a level of complexity and raises the number of cycles per instruction. 

Load/Store. register-to-register design 
All computational instructions involve registers. Memory accesses are made with only load and 
store instructions. 

Simple fixed-format instructions with few addressing modes 
All instructions are one word long (typically 32 bits) and have few addressing modes. 

Pipelining 
The instruction set design allows for the processing of several instructions at the same time. 

High-performance memory 

RISC machines have at least 32 general-purpose registers (the CY7C600 has 136) and large 
cache memories. 

Migration of functions to software 
Only those features that measurably improve performance are implemented in hardware. 
Programs contain sequences of simple instructions for executing complex functions rather than 
the complex instructions themselves. 

Simple, Efficient Instruction Pipeline Visible to Compliers 

For example. branches take effect after execution of the following instruction. permitting a fetch 
of the next instruction during execution of the current instruction. 

The real keys to enhanced performance are single-cycle execution and keeping the cycle time as 
short as possible. Many characteristics of RISC architectures. such as load/store and 
register-to-register design. facilitate single-cycle execution. Simple fixed-format instructions. on 
the other hand. permit shorter cycles by reducing decoding time. 

Note that some of these features. particularly pipelining and high-performance memories. have 
been used in supercomputer designs for many years. The difference is that in RISC architectures 
these ideas are integrated into a processor with a simple instruction set and no microcode. 
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Moving functionality from run time to compile time also enhances performance. Functions 
calculated at compile time do not require further calculating each time the program runs. 
Furthermore, optimizing compilers can rearrange pipelined instruction sequences and arrange 
register-to-register operations to reuse computational results. 

A new set of design criteria has emerged: 

Instructions should be simple unless there is a good reason for complexity. To be 
worthwhile, a new instruction that increases cycle time by 10% must reduce the 
total number of cycles executed by at least 10%. 

Microcode is generally no faster than sequences of hardwired instructions. Moving 
software into microcode does not make it better, it just makes it easier to modify. 

Fixed-format instructions and pipelined execution are more important than 
program size. As memory gets cheaper and faster, the space/time tradeoff resolves 
in favor of time. Reducing space no longer decreases time. 

Compiler technology should use simple instructions to generate more complex 
instructions. Instead of substituting a complicated microcoded instruction for 
several simple instrUctions, which compilers did in the 1970s, optimizing compilers 
can form sequences of simple, fast instructions out of complex high-level code. 
Operands can be kept in registers to increase speed even further. 

RIse's Speed Advantage 

Using any given benchmark, the performance (P) of a particular computer is inversely 
proportional to the product of the benchmark's instruction count (I) the average number of clock 
cycles per instruction (C) and the inverse of the clock speed (S). Let's assume that a RISe 

p= 
1 

1 
I xCx-

S 

machine runs at the same clock speed as a corresponding traditional machine; S is identical. The 
number of clock cycles per instruction (I) is approximately 1.3 to 1.7 for RISe machines, and 
between 4 and 10 for traditional machines. This makes the instruction execution rate of RISC 
machines about 3 to 6 times faster than traditional machines. But, because traditional machines 
have more powerful instructions, RISC machines must execute more instructions for the same 
program, typically about 10% to 30% more. Since RISC machines execute 10% to 30% more 
instructions 3 to 6 times more quickly, they are about 2 to 5 times faster than traditional 
machines for executing typical large programs. 

Compiled programs on RISC machines are somewhat larger than compiled programs on 
traditional machines, because several simple instructions replace one complex instruction 
resulting in decreased code density. All SP ARC instructions are 32 bits wide, whereas some 
instructions on traditional machines are narrower. But the number of instructions actually 
executed may not be as great as the increased program size would indicate. A windowed register 
file, for example, often simplify call/return sequences so that context switches become less 
expensive. 
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CY7C600 Architecture 
The SPARC CPU is composed of a CY7C601 Integer Unit (IV) that performs basic processing 
and a CY7C608 Floating-Point Controller (FPC) interface to the Texas Instruments' 
SN74ACT8847 Floating-Point Processor that performs floating-point calculations. The 
CY7C608/SN74ACT8847 combination act as a SPARC compatible Floating-Point Unit (FPU). 
CY7C600-based computers typically have a memory management unit (MMU), a large 
virtual-address cache for instructions and data, and are organized around a 32-bit data and 
instruction bus. 

The integer and floating-point units operate concurrently. The FPU performs floating-point 
calculations with a set number of floating-point arithmetic units. The CY7C600 architecture also 
specifies an interface for the connection of an additional coprocessor. 

Instruction Categories 

The CY7C600 architecture has about 50 integer instructions, a few more than earlier RISC 
designs, but less than half the number of Motorola 68000 integer instructions. CY7C600 
instructions fall into five basic categories: 

Load and store instructions (the only way to access memory) 

These instructions use two registers or a register and a constant to calculate the memory address 
involved. Half-word accesses must be aligned on 2-byte boundaries, word accesses on 4-byte 
boundaries, and double-word accesses on 8-byte boundaries. These alignment restrictions greatly 
speed up memory access. 

Arithmetic/logical/shift instructions 

These instructions compute a result that is a function of two source operands and place the result 
in a register. They perform arithmetic, logical, or shift operations. 

Floating-Point and Coprocessor nstructions 

These include floating-point calculations, operations on floating-point registers, and instructions 
involving the optional coprocessor. Floating-point operations execute concurrently with IV 
instructions and with other floating-point operations when necessary. This architectural feature 
hides floating-point concurrency from the programmer. 

Control-transfer instructions 

These include jumps, calls, traps, and branches. Control transfers are usually delayed until after 
execution of the next instruction, so that the pipeline is not emptied every time a control transfer 
occurs. Thus, compilers can be optimized for delayed branching. 

Read/write control register instructions 

These include instructions to read and write the contents of various control registers. Generally 
the source or destination is implied by the instruction. 

Artificial Intelligence Instructions 

These include the tagged arithmetic instructions Tagged Add and Tagged Subtract. Tagged 
instructions are useful for implementing artificial intelligence languages such as USP, because 
tags can automatically indicate to software interpreters the data type of arithmetic operands. 
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Multiprocessing Instructions 
These inclue two instructions for implementing semaphores in memory: Atomic Load/Store 
Unsigned Byte which loads a byte from memory then sets the location to all "l's and SWAP 
which exchanges the contents of a register and a memory location. Both of these instructions are 
"atomic" or uninterruptable. 

Register Windows 

A unique feature that contributes to the high performance of the CY7C600 design is its 
overlapping register windows. Results left in registers by a calling routine automatically become 
available operands for the called routine, obviating the need for load and store instructions to 
main memory. 

According to the architectural specification, there may be between 2 and 32 register windows, 
each window having 24 working registers, plus 8 global registers. The first implementation has 8 
register windows with 24 registers each (but count only 16 since 8 overlap), plus 8 global 
registers, for a total of 136 registers. Recent research suggests that register windows and tagged 
arithmetic, found in CY7C600 systems, but not in other commercial RlSC machines, are 
sufficient to provide excellent performance for expert system development requiring AI 
languages such as USP and Smalltalk. 

Traps and Interrupts 

The CY7C600 design supports a full set of traps and interrupts. They are handled by a table that 
supports 128 hardware and 128 software traps. Even though floating-point instructions can 
execute concurrently with integer instructions, floating-point traps are precise because the FPU 
supplies (from the table) the address of the instruction that failed. 

Protection 

Some CY7C600 instructions are privileged and can only be executed while the processor is in 
supervisor mode. This instruction execution protection ensures that user programs cannot 
accidentally alter the state of the machine with respect to its peripherals and vice versa. 

The CY7C600 design also provides memory protection, which is essential for smooth 
multitasking operation. Memory protection makes it impossible for user programs to corrupt the 
system, other user programs, or themselves. 

An Open Architecture 

Advantages of Open Architecture 

The CY7C600 design is the first open RlSC architecture, and one of the few open CPU 
architectures. Standard products are more beneficial than proprietary ones, because standards 
allow users to acquire the most cost-effective hardware and software in a competitive 
multi-vendor marketplace. Integrated circuits come from several competing semiconductor 
vendors, while software is supplied by systems vendors. This advantage is lost when users are 
limited by a processor that has proprietary hardware and software. 

RlSC architectures, and the CY7C600 design in particular, are easy to implement because they 
are relatively simple. Since they have short design cycles, RlSC machines can absorb new 
technologies almost immediately, unlike more complicated computer architectures. 
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CY7C600 systems were designed to support: 

The C programming language and the UNIX operating system, 

Numerical applications (using FORTRAN), and 

Artificial intelligence and expert system applications using Lisp and Prolog 

Supporting C is relatively easy; most modem hardware architectures are able to do so. The one 
essential feature is byte addressability. However, numerical applications require fast 
floating-point and artificial intelligence applications require large address spaces and 
interchangeability of data types. 

The floating-point processor, with pipelined floating-point operation capabilities, achieves the 
high performance needed for numerical applications. Floating-point coprocessors are generally 
not part of RISC machines, but they are available for microprocessors such as the Motorola 
68020 and the Intel 80386, and for CY7C600 systems as well. 

For artificial intelligence and expert system applications, CY7C600 systems offer tagged 
instructions and word alignment. Because languages such as Lisp and Prolog are often 
interpreted, word alignment makes it easier for interpreters to manipulate and interchange 
integers and different types of pointers. In the tagged instructions, the two low-order bits of an 
operand specify the type of operand. If an operand is an integer, most of the time it is added to 
(or subtracted from) a register. If an operand is a pointer, most of the time a memory reference 
is involved. Language interpreters can leave operands in the appropriate registers, greatly 
improving the performance of exploratory programming environments. 

The CY7C600 architecture does not dictate a memory management unit (MMU), although a high 
performance unit has been specified for the SPARC architecture. We expect the same processor 
to be used in different types of machines. For example, a single-user machine for embedded 
applications does not need anMMU. By contrast, a multitasking machine used for timesharing, 
such as a traditional UNIX box, needs a paging MMU. Furthermore, a multiprocessor such as a 
vector machine or hypercube requires specialized memory management facilities. The CY7C600 
architecture can be implemented with a different MMU configuration for each of these purposes, 
without affecting user programs. 

CY7C600 Machines and Other RISC Machines 

The CY7C600 design has more similarities to Berkeley's RISC-IT architecture than to any other 
RISC architecture. Like the RISC-IT architecture, it uses register windows in order to reduce the 
number of load/store instructions. The CY7C600 architecture allows 32 register windows, but the 
initial implementation has 8 windows. The tagged instructions are derived from SOAR, the 
"Smalltalk On A RISC" processor developed at Berkeley after implementing RISC-IT. 

CY7C600 systems are designed for optimal floating-point performance, and support single-, 
double-, and extended-precision operands and operations, as specified by the ANSIlIEEE 754 
floating-point standard. High floating-point performance results from concurrency of the ill and 
FPU. The integer unit loads and stores floating-point operands, while the floating-point unit 
performs calculations. If an error (such as a floating-point exception) occurs, the floating-point 
unit specifies precisely where the trap took place; execution is expediently resumed at the 
discretion of the integer unit. Furthermore, the floating-point unit has an internal instruction 
queue; it can operate while the integer unit is processing unrelated functions. 
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CY7C600 systems deliver very high levels of performance. The flexibility of the architecture 
makes future systems capable of delivering performance many times greater than the 
performance of the initial implementation. Moreover, the openness of the architecture makes it 
possible to absorb technological advances almost as soon as they occur. 

CY7C600 Product Family 
Since the CY7C600 has been designed to offer a complete solution for the implementation of 
high performance computers and controllers, the family consists of several members including 
an Integer Unit, a Floating-Point Controller, a Cache Tag RAM, a Cache Data RAM, and a 
Memory Management Unit. 

The SPARC processor family consists of a CY7C601 Integer Unit (IU) to perform all 
non-floating-point operations and a CY7C608 Floating-Point Controller (FPC) which interfaces 
to a standard Floating-Point Unit to perform floating-point arithmetic concurrent with the IU. 
Support is also provided for a second generic coprocessor interface. The IU communicates with 
external memory via a 32-bit address bus and a 32-bit data/instruction bus. In typical data 
processing applications, the IU and FPU are combined with a high performance CY7C603 
Memory Management Unit and a cache memory implemented with CY7C153 Cache RAMs and 
the CY7C181 Cache Tag RAM. In many dedicated controller applications the IU can function by 
itself with high speed local memory only. 

CY7C601 Integer Unit 

The IU is the basic processing engine which executes all of the instruction set except for 
floating-point operations. The CY7C601 IU contains a large 136 x 32 triple port register file 
which is divided into 8 windows. Each window contains 24 working registers and has access to 
the same 8 global registers. A current window pointer (CWP) field in the Processor State 
Register keeps track of which window is currently active. The CWP is decremented when the 
processor calls a subroutine and is incremented when the processor returns. 

The registers in each windows are divided into ins, outs, and locals. Each window shares its ins 
and outs with adjacent windows. The outs of the previous window are the ins of the current 
window, and the outs of the current window are the ins of the next window. The globals are 
equally available to all windows and the locals are unique to each window. The windows are 
joined together in a circular stack where the outs of the last window are the ins of the first 
window. 

The IU supports a multitasking operating system by providing user and supervisor modes. Some 
instructions are privileged and can only be executed while the processor is in supervisor mode. 
Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap 
instruction. 

The IU supports both asynchronous traps (interrupts) and synchronous traps (error conditions 
and trap instructions). Traps transfer control to an offset within a table. The base address of the 
table is specified by a Trap Base Register and the offset is a function of the trap type. Traps are 
taken before the current instruction causes any changes visible to the programmer and can 
therefore be considered to occur between instructions. 

CY7C603 Memory Management Unit 

The CY7C603 Memory Management Unit provides hardware support for a demand-paged 
virtual memory environment for the CY7C601 processor. The CY7C603 conforms to the 
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standard SPARC architecture definition for memory management. Page size is fixed at 4K bytes. 
The MMU translates 32-bit virtual addresses from the processor into 36-bit physical addresses. 

High speed address look-up is provided by an on-chip translation lookaside buffer. Each entry 
contains the virtual to physical mapping of a 4K byte page. If a virtual address finds a match in 
one of the TLB entries, the physical address translation contained in that entry will be delivered 
to the outputs of the MMU. If the virtual address from the processor has no corresponding entry 
in the MMU, the MMU will automatically perform address translation for the virtual address 
using on-chip hardware to access a main memory resident three-level page table. Each 
"matched" TLB entry is checked for protection violation automatically and violations are 
reported to the Integer Unit as memory exceptions. 

CY7C608 Floating-Point Controller 

The CY7C608 Floating-Point Controller in combination with a Texas Instruments 8847 
Floating-Point Processor form a SPARC compatible Floating-Point Unit or FPU. The FPU and 
CY7C601 IU operate concurrently. The FPU recognizes floating-point instructions and places 
them in a queue while the IU continues to execute non-floating-point instructions. If the FPU 
encounters an instruction which will not fit in its queue, the FPU holds the IU until the 
instruction can be stored. 

The FPU contains its own set of registers on which it operates. The contents of these registers 
are transferred to and from external memory under control of the IU via floating-point 
load/store instructions. Processor interlock hardware hides floating-point concurrency from the 
compiler or assembly language programmer. A program containing floating-point computations 
generates the same results as if instructions were executed sequentially. 

SN74ACT8847 Floating-Point Processor 

The SN74ACT8847 form Texas Instruments combines a multiplier and an arithmetic logic unit 
ina single microprogrammable VLSI device. The 8847 is capable of operating at ther same clock 
rate as the Cypress IU and FPC and provides on the order of 4 to 4.5 Megaflops of double 
precision Linpack floating-point performance when operated at 33 Mhz with these devices. The 
8847 is fully compatible with the IEEE standard for binary floating-point arithmetic, SID 
754-1985. The Floating-Point Processor performs both single and double precision operations, 
including division and square root. 

CY7C181 Cache Tag RAM 

The CY7C181 Cache Tag RAM provides storage for 4096 cache address tag entries. These 
entries can be directly written or read by the processor. In normal operation twelve low order bits 
of address from the processor are used to select one of the tag entries in the CY7C181 and its 
20-bit contents are compared on chip with the 20 high order processor address bits to determine 
if the cache contains the required data or instruction. This cache hit/miss comparison is then 
qualified by various built-in protection checks and the result is output. Pipelined accesses are 
supported via on-chip registers which capture both address and data from the processor. 

The CY7C181 also contains the logic required in a system to implement the byte and half-word 
write capabilities provided in the SPARC instruction set. Cache tag update is also simplified by 
an automatic tag update on miss feature which eliminates the need for processor accesses during 
tag update. 
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CY7C153 Cache Data RAM 

The CY7C153 static RAM is designed to interface easily to and provide maximum performance 
for the CY7C600 processor. The RAM has registered address inputs and latched data inputs and 
outputs as well as a self-timed write pulse which greatly simplify the design of cache memories 
for the CY7C601 Integer Unit. The device has a single clock that controls loading of the address 
register, data input latches, data output latches, pipeline control latch, and chip enable register. 
The chip enable is clocked into a register and pipelined through a control register to condition 
the output enable. This pipelined design allows a cache that works as an extension of the internal 
instruction pipeline of the CY7C601 Integer Unit thereby maximizing performance. The write 
enable is edge-activated and self timed thereby eliminating the need for the user to generate 
accurate write pulses in external logic. A separate asynchronous output enable is provided to 
disable outputs during a write or to allow other devices access to the bus. 
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SEMICONDUCTOR CY7C601 Architecture 

CYThe CY7C601 is the Integer processing Unit (IU) of the SPARC 32-bit RISC architecture. The 
SPARC architecture makes possible the creation of a processor which can execute instructions at 
a rate approaching one instruction per processor clock. The SPARC Instruction Set Architecture 
consists of Integer, Floating-Point and coprocessor extensions. Implementation of the SPARC 
architecture is a variable left to the silicon designer. 

In the Cypress implementation, the partitioning is into three specific elements, the Integer Unit, 
the Floating-point coprocessor, and a second coprocessor provision for future extensions into the 
arena of concurrent processing. The CY7C601 integer unit supports a tightly-coupled floating­
point coprocessor (FPU) which operates concurrently and a second implementation-definable 
coprocessor also with the capability to operate concurrently with both the Integer Unit and the 
Floating-Point Coprocessor. 

Overview 
The SPARC architecture is used to produce a 32-bit Reduced Instruction Set Computer (RISC). 
The CY7C601 is the Integer Unit (IU) used to perform basic processing. The SPARC architec­
ture provides in addition to an integer instruction set, a rich floating-point instruction set which 
may be implemented independently of the IU. It also provides instruction set support for an 
optional coprocessor. The details of the coprocessor are implementation-specific but both the 
generic coprocessor and the floating-point coprocessor may coexist with the CY7C601 IU and 
operate concurrently. The complete register set for the SPARC architecture is shown in 
Figure 2-1. In this implementation, the registers shown shaded are part of the CY7C601 IU, the 
lightly shaded registers are part of the floating-point coprocessor and the darkly shaded registers 
belong to any implementation specific coprocessor. 
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Figure 2-1. SP ARC Architecture Register Model 

An example of a computer system that uses the SPARe architecture is organized around a 32-bit 
virtual address bus and a 32-bit instruction/data bus. Its storage subsystem consists of a memory 
management unit (MMU) and a large cache for both instructions and data. The cache is 
virtual-address-based. Depending on the storage subsystem's interpretation of the processor's 
address space identifier (as i) bits, I/O registers are either addressed directly, bypassing the 
MMU, or they are mapped by the MMU into virtual addresses. Alternately, the entire physical 
memory space may exist in the virtual address space and no cache or memory management 
provisions may be necessary.As a controller, a SPARe system may include only the Integer Unit 
(with optional Floating-Point Unit), fast static RAM main memory and I/O devices. 
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Integer Unit, Floating-Point Unit, and Coprocessor 
The IU is the basic processing engine of the SPARe architecture. It executes all the instruction 
except floating-point operate instructions and coprocessor instructions. A block diagram of the 
IU appears in Figure 2-2. 
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Figure 2-2. CY7C601 Block Diagram 
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The FPU and the ill operate concurrently. The FPU recognizes floating-point operate instructions 
and places them into a queue. Meanwhile, the ill continues to execute instructions. 
Floating-point operate instructions are executed from the queue when the specified floating-point 
registers are free and the required FPU is available. If the FPU encounters a floating-point 
operate instruction that doesn't fit in the queue, the ill stalls until the required FPU resource 
becomes available. 

Floating-point load/store instructions are used to move data between the FPU and memory. The 
ill generates a memory address and the FPU either sources or sinks the data. Note that 
floating-point loads and stores are not floating-point operate instructions. 

The architecture hides floating-point concurrency from the programmer, so the processor 
hardware provides the appropriate register interlocks. A program including floating-point 
computations generates the same results as if all instructions were executed sequentially. 

The architecture supports an optional coprocessor. Like the FPU, the coprocessor recognizes 
coprocessor arithmetic instructions, and executes them concurrently with instructions executed 
by the ill. 

Likewise, coprocessor load/store instructions are used to move data between the coprocessor and 
memory. For each floating-point load/store instruction, there is an analogous coprocessor 
load/store instruction. 

The physical interface between both of the coprocessors and the ill is provided through a unique 
set of coprocessor control interfaces and a common interface to the system data bus and the 
virtual address bus. These control interfaces provide the synchronization and error handling that 
enable all three processors to operate concurrently. The common interface to the virtual address 
bus and data bus allows the ill to provide all addresses for floating-point and generic 
coprocessor Loads and Stores. and a Floating-Point Unit (FPU) to perform floating-point 
calculations concurrently with the ill. 

Figure 2-2 is a block diagram of the CY7C601 Integer Unit. The processor is organized around 
the Arithmetic/Logic and Shift Units. Both of these are two operand units and accept 32-bit 
information from source 1 or 2 of the register file, the program counters or the instruction 
decoders. Results from these units may be passed to the Register File, Address bus 
InstructionlData Bus, Program Counters and to or effect the Status Registers. Note that there is 
no direct connection from the data bus to either the Arithmetic/Logic or Shift Units. All data is 
transferred in or out of the processor with Load and Store Operations. Instructions are decoded 
and incoming information aligned as necessary directly from the InstructionlData Bus. The 
Instruction Decoder contains a 4 stage pipeline for fetch, Decode, Execute and Write Operations. 

The SPARC architecture supports a multitasking operating system by providing user and 
supervisor modes. Some instructions are privileged, and can only be executed while the 
processor is in supervisor mode. Changing from user to supervisor mode requires taking a 
hardware trap, or using a trap instruction. 

Registers 

The integer unit has two types of registers associated with it; working registers r registers and 
control/status registers. Working registers are used for normal operations, and control/status 
registers keep track of and control the state of the ill. The FPU has 32 working registers (called f 
registers, and two control/status registers: the Floating-point State Register (FSR) , and the 
Floating-point Queue (FQ). -
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Integer Unit Registers 

All r registers are 32 bits wide. They are divided into 8 global registers and a number of blocks 
called windows. Each window contains 24 r registers. The number of windows (NWINDOWS) 
ranges from 2 to 32 depending on the implementation. The CY7C601 contains 8 windows (a 
total of 136 registers) Windows are contiguously numbered from 0 to 7. At most NWINDOWS -1 
windows are available to user code since one window must be available for trap handlers. 

The windows are addressed by the CWP, a field of the Processor State Register (PSR). The CWP 
is incremented by a RESTORE or RETT instruction and decremented by a SA VB instruction. 
The active window is defined as the window currently pointed to by the CWP. The Window 
Invalid Mask (WIM) is a register which, under software control, detects the occurrence of IU 
register file overflows and underflows. 

The registers in each window are divided into ins, outs, and locals. Note that the globals, while 
not really part of any particular window, can be addressed when any window is active. When any 
particular window is active, the registers are addressed as follows: 

RP Round To 

0 Extended 
1 Single 
2 Double 
3 (Unused) 

Table 2-1. Extended Rounding Precision 

Each window shares its ins and outs with adjacent windows. The outs from a previous window 
(CWP +1) are the ins of the current window, and the outs from the current window are the ins 
for the next window (CWP -1). The globals are equally available from all windows, and the 
locals are unique to each window. 

The register addresses overlap such that, given a register with address 0 where 8 :=:;; 0 :=:;; 15, 0 

refers to exactly the same register as ( 0 + 16) after the CWP is decremented by 1 modulo 
NWINDOWS (points to the next window). Likewise, given a register with address i where 24 :=:;; i 
:=:;; 31, i refers to exactly the same register as address ( i - 16) after the CWP is incremented by 1 
modulo NWINDOWS (points to the previous window). 

The windows are joined together in a circular stack, where the highest numbered window is 
adjacent to the lowest. If NWINDOWS = 8, the outs of window 7 are the ins of window O. 
Figure 2-3 and Figure 2-4 show the relationships. 

Because the processor logically provides new locals and outs after every procedure call, register 
local values need not be saved and restored across calls. The overlap registers also minimize the 
overhead of passing and returning values. They can be used as follows: 

In preparation for a procedure call, a routine generally moves the parameters into its out 
registers. After the CAlL, the CWP is decremented with the SA VB instruction, what was the 
next window becomes the active window, and the parameters are directly accessible by the 
callee, since the caller's outs are the callee's ins. 
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Figure 2-3. Working Register Set 

Likewise, in preparing for a procedure return, a routine generally moves its result(s) into its in 
registers. After the CWP is incremented via the RESTORE instruction, what was the previous 
window becomes the active window, and the return values are accessible by the returnee, 
because the returner's ins are the returnee's outs. Note that the terms ins and outs are defined 
relative to calling, not returning. 

Since any implementation has only a finite number of windows, the register file becomes full 
after the number of procedure calls exceeds the number of returns by NWlNDOWS 1. A 
subsequent call causes the operating system to move one or more ( in and local sets of) windows 
from the register file into memory. The SA VB instruction automatically checks for the window 
overflow condition. 

Similarly, the register file can become empty when the number of procedure returns exceeds the 
number of calls by NWlNDOWS -1. A subsequent return causes one or more previously saved 
windows to be moved from memory into the register file. The RESTORE instruction 
automatically checks for the window underflow condition. The architecture works best with 
efficient window overflow and window underflow handlers. 
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By software convention, you can provide additional locals (and consequently, fewer ins and 
outs). For example, software can assume that the boundary is actually between r[26] and r[27], 
providing 6 outs, 10 locals, and 6 ins. 

RESTORE 
SAVE 

Figure 2-4. Overlapping Register Windows 

In Figure 2-4, NWINDOWS = 8. It does not show the 8 globals. If the procedure corresponding to 
the window labeled wO does a procedure call (executes a SA VB instruction), a window overflow 
trap will occur. The overflow trap handler uses the locals of w7: 

CWP=O active window = 0 
CWP+ 1 = 1 previous window = 1 
CWP-l = 7 next window = 7 
W!M=10000000 trap window = 7 

Special r Registers 
The utilization of two r registers is partially fixed by the instruction set: If global register r[O] is 
addressed as a source operand (rsl or rs2 = 0), the operand value 0 is returned. If r[O] is 
addressed as a destination operand (rd = 0), no register is modified. The CALL instruction writes 
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its own address into out register r[15]. Also note that traps save the program counters (pC and 
nPC) into two locals of the next window. 

Integer Unit ControUStatus Registers 

The IU's control/status registers are all 32-bit read/write registers unless specified otherwise. 
They include the program counters (pC and nPC), the Processor State Register (PSR), the 
Window Invalid Mask register (WIM), the Trap Base Register (TBR), and the multiply-step (Y) 
register. Control/status registers contain two types of fields, mode and status. Mode fields are set 
by the programmer; they appear in UPPER CASE (for example, PIL ). Status fields appear in 
lower case (for example, ver). 

Integer Program Counters (PC and nPC) 

The Program Counter (PC) contains the address of the instruction currently being executed by 
the IU, and the nPC holds the address of the next instruction to be executed (assuming a trap 
does not occur). In delayed control transfers, the instruction that immediately follows a control 
transfer may be executed before control is transferred to the target. The OPC is necessary to 
implement this feature. 

Processor State Register (PSR) 

This 32-bit register contains various fields describing the state of the IU. It can be modified by 
the SA VB, RESTORE, Ticc and RETT instructions, or by instructions that modify the condition 
codes. The (privileged) instructions RDPSR and WRPSR read and write it directly. The PSR 
provides the following fields: 

IU 
Imple-

mentation 
Number 
(impl) 

Trap Enable (ET) 
Previous Supervisor Mode (PS) 

Supervisor Mode (5) 

Floating Point Unit Enabled (EF) 

Coprocessor Enabled (EC) 

IU Integer Processor 
Version Condition Interrupt 
Number Codes Level 

(ver) (icc) Reserved (PIL) 

4 

8 

23 22 21 20 

Figure 2-5. Processor State Register 
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Implementation (impl) Bits 31 through 28 identify the implementation number of the processor. 
This field is 0001 for the CY7C601. The WRPSR instruction does not modify this field. 
Version (ver) Bits 27 through 24 contain a constant: the meaning of this constant depends on the 
value of the impl field. This field is 0000 for the initial version of the CY7C601.The WRPSR 
instruction does not modify this field. 

Integer Condition Codes (icc) Bits 23 through 20 contains the integer unit's condition codes. 
These bits are modified by the WRPSR instruction, and by arithmetic and logical instructions 
whose names end with the letters cc (for example, ANDcc). The Bicc and Ticc instructions base 
their control transfer on these bits, which are defined as follows: 

Negative ( n ) Bit 23 indicates whether the ALU result was negative for the last 
instruction that modified the icc field. 1 = negative, 0 = not negative. 

Zero ( z ) Bit 22 indicates whether the ALU result was zero for the last instruction that 
modified the icc field. 1 = result was zero, and 0 = result was nonzero. 

Overflow ( v ) If bit 21 is 1, it indicates that an arithmetic overflow occurred during the 
last instruction that modified the icc field. If bit 21 is 0, this indicates that an arithmetic 
overflow did not occur. Logical instructions that modify the icc field always set the 
overflow bit to O. 

Carry ( c ) If bit 20 is 1, it indicates that either an arithmetic carry out of bit 31 occurred 
as the result of the last addition that modified the icc, or that a borrow into bit 31 
occurred as the result of the last subtraction that modified the icc .If bit 20 is 0, this 
indicates that a carry did not occur. Logical instructions that modify the icc field always 
set the carry bit to O. 

Reserved Bits 19 through 14 are reserved. This field should only be written to 0 by the WRPSR 
instruction. 

Enable Coprocessor (EC) This bit determines whether the coprocessor is enabled or disabled. 1 
= enabled, 0 = disabled. 

Enable FPU (EF) This bit determines whether the FPU is enabled or disabled. 1 = enabled, 0 = 
disabled. 

If the FPU is either disabled, or enabled and not present, an FPop, FBfcc, or floating-point 
load/store instruction causes an fp disabled trap. Similarly, if the coprocessor is either disabled, 
or enabled and not present, a CPop, CBccc, or coprocessor load/store instruction causes a cp 
disabled trap. 

When the FPU (or CP) is disabled, it retains its state until it is reenabled or reset. When 
disabled, the FPU can continue to execute instructions in its queue. The CP can also, if it has a 
queue. 

When the FPU is present, software can use the EF bit to determine whether a particular process 
uses the FPU. If a process does not use the FPU, the FPU's registers need not be saved and 
restored across context switches. Also, if the FPU is not present, (as indicated by the bp FPU 
present signal), the fp disabled trap can be used to emulate the floating-point instruction set. 
(This also applies to the coprocessor.) 

Processor Interrupt Level (PIL) Bits 11 through 8 identify the processor interrupt level. 
The processor only accepts interrupts whose interrupt level is greater than the value in 
PlL. Bit 11 is the MSB and bit 8 is the LSB. 
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Supervisor (S) Bit 7 determines whether the processor is in supervisor mode: when S = 1, 
the processor is in supervisor mode. Note that because the instructions to write the PSR 
are only available in supervisor mode, supervisor mode can only be entered by a software 
or hardware trap. 

Previous Supervisor (PS) Bit 6 contains the value of the S bit at the time of the most 
recent trap. 

Enable Traps (ET) Bit 5 is the Trap Enable bit. When ET = 1, traps are enabled. When 
ET = 0, traps are disabled, and all asynchronous traps are ignored. Synchronous traps and 
floating-point/coprocessor traps cause the ill to halt and enter error mode. (See 
Appendix C for a definition of error mode.) 

If traps are enabled (ET=l), some care must be taken when you disable them (ET=O). Since the 
"RDPSR, WRPSR" instruction sequence is interruptible, it may not be appropriate in some 
situations. Here are two alternatives: 1) generate a "trap instruction" trap instead (this disables 
traps); or 2) use the "RDPSR, WRPSR" sequence and write the interrupt trap handlers so that 
before they return to the supervisor, they restore the PSR to the value it had when the interrupt 
handler was entered. Note that the PS bit cannot be restored. In alternative (1), the trap handler 
should verify that it was called from the supervisor state before returning to the supervisor. 

Current Window Pointer (CWP) Bits 4 through 0 comprise the Current Window Pointer, 
which points to the current active r register window. It is decremented by traps and the 
SAVE instruction, and incremented by RESTORE and RETT instructions. 

Window Invalid Mask Register (WIM) 

This register is used to determine whether a window overflow or window underflow trap should 
be generated by a SAVE, RESTORE, or RETT instruction. Each bit in the WIM register 
corresponds to a window. For example, bit 0 corresponds to window 0 (CWP = 0), bit 1 
corresponds to window 1 (CWP = 1), and so on. If a SAVE, RESTORE, or RETT would cause 
the CWP to point to a window whose corresponding WIM bit equals 1, it causes a window 
overflow (SAVE) or window underflow (RESTORE, RETT) trap. 
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This register can be read by the RDWIM instruction, and written by the WRWIM instruction. Bits 
corresponding to unimplemented windows read as zeroes and values written to unimplemented 
bits are ignored. The WIM provides the following fields: 

. . . . . Future Expansion for Additional Windows 

31 

WINDOW INVALID MASK 

Trap Base Address (TBA) 

20 

31 12 

TRAP BASE REGISTER 

Window 0 
Window 1 

7 654 3 210 

Trap Type (tt) 

8 

4 3 2 1 0 

Figure 2-6. Window Invalid & Trap Base Registers 

Trap Base Register (TBR) 

The trap base register contains three fields that generate the address of the trap handler when a 
trap occurs. These are: 

Trap Base Address (TBA) Bits 31 through 12 comprise the Trap Base Address (TBA) , 
which is controlled by software. It contains the most-significant 20 bits of the trap table 
address. (Note that the reset trap is an exception; it traps to address 0). The TBA field 
can be written by the WRTBR instruction. 

Trap Type ( tt ) Bits 11 through 4 comprise the Trap Type ( tt ) field. This is an 8-bit 
field that is written by the processor at the time of a trap, and retains its value until the 
next trap. It provides an offset into the trap table. The WRTBR instruction does not affect 
the tt field. Bits 3 through 0 are zeroes. The WRTBR instruction does not affect this field. 

Y Register 

The multiply step instruction (MULScc) uses the 32-bit Y register to create 64-bit products. An 
example algorithm is described in Appendix B. This register can be read and written using the 
RDY and WRY instructions. 

Floating-Point Registers 

The floating-point unit has 32 working registers called f registers, a Floating-Point State Register 
(FSR) that contains mode and status information about the FPU, and a Floating-Point Queue 
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(FQ) that holds one or more 64-bit instruction/address pairs. Software uses the FQ to recover 
from floating-point exceptions. 

Floating-Point f registers 

The 32-bit f registers are numbered from frO] to f[31]. These can be read and written by 
floating-point operate (FPop and FPcmp) instructions, or by load/store single/double 
floating-point instructions (LDF, LDDF, STF, STDF). They are addressable at all times. 

A single f register can hold one single-precision operand. Double-precision operands require an 
f register pair, where the double-e datum occupies an even-numbered register, and the double-f 
datum occupies the following odd-numbered register. Extended-precision operands require an f 
register quad, with extended-e, extended-f, extended-f low, and extended-u in register 
addresses 0, 1, 2, and 3 modulo 4, respectively. Thus, the f register file can hold 8 extended, 16 
double, or 32 single-precision operands. 

Floating-Point State Register (FSR) 

The FSR register fields contain FPU mode and status information. The fields are: 

Rounding Direction (RD) 

Rounding Precision (RP) 

Reserved 
Trap Enable 

Mask (TEM) 

nv - not valid 
of - overflow 
uf - underflow 
dz - divide by zero 
nx - not exact 

FP Trap Type (ftt) 

Queue Not Empty (qne) 

FP Condition Codes (fcc) 

Accrued 
Acception 
Bits (aexc) 

Current 
Acception 
Bits (cexc) 

5 

nxc 

o 

Figure 2-7. Floating-Point State Register 

o 

Rounding Direction (RD) Bits 31 and 30 select the rounding direction for floating-point results, 
according to the ANSI/IEEE 754-1985 Standard: 
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RD Round Toward 

0 Nearest (even if a tie) 
1 0 
2 + 1 
3 - 1 

Table 2-2. Rounding Direction (RD) 

Extended Rounding Precision (RP) Bits 28 and 29 determine the precision to which extended 
results are rounded, according to the ANSIlIEEE 754-1985 Standard: 

RP Round To 

0 Extended 
1 Single 
2 Double 
3 (Unused) 

Table 2-3. Extended Rounding Precision 

Trap Enable Mask (TEM) Bits 27 to 23 are enable bits for each of the five floating-point 
exceptions that can be indicated in the current exception field ( cexc ). (See definition of cexc 
below.) If a floating-point operate instruction generates one or more exceptions and the TEM bit 
corresponding to one or more of the exceptions is set (1), an fp exception trap is caused. A reset 
(0) TEM bit prevents that exception type from generating a trap. (See below.) The TEM field 
may be read and written by the STFSR and IDFSR instructions. 

Abrupt Underflow (AU) Bit 22, when set to 1, causes denormalized floating-point operands 
and/or results to be rounded to zero. The definition of AU mode is implementation-dependent 
and is not defined by the ANSIlIEEE 754-1985 Standard. 

Reserved Bits 21 through 17 and bit 12 are reserved. When read by an STFSR instruction, this 
field delivers all zeroes. This field should only be written to zero by the IDFSR instruction. 

Floating-Point Trap Type ( ftt ) Bits 16 through 14 identify fp exception traps. After a 
floating-point exception trap occurs, the ftt field encodes the type of exception. ftt remains valid 
until the next FPop instruction completes. (Note that the exception-causing FPop and its address 
are in the first entry of the Floating-point Queue. The ftt field can be read by the STFSR 
instruction. An IDFSR instruction does not affect ftt. This field encodes the exception types as 
follows: 

ftt Trap Type 

0 None 
1 IEEE Exception 
2 Unfinished FPop 
3 Unimplemented FPop 
4 Sequence Error 

Table 2-4. Floating-Point Trap Types 
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An IEEE exception indicates that an ANSI/IEEE 754-1985 exception occurred for the 
FPop identified by the front entry of the FO. The exception type(s) is indicated in the 
cexc field. If the IEEE exception results in a fp exception trap (as determined by the 
TEM) then the destination f register, fcc, and aexc fields remain unchanged. However, if 
the IEEE exception does not result in a trap, then the f register, fcc, and aexc fields are 
updated to their new values 

An unfmished FPop indicates that an implementation's FPU was unable to generate 
correct results or exceptions, as defined by the ANSI/IEEE 754-1985 Standard. In this 
case, the cexc field is undefined. (However, the aexc and fcc fields, and the destination f 
register are not affected by the exception.) 

An unimplemented FPop indicates that an implementation's FPU decoded an FPop that it 
did not implement. In this case, the cexc field is undefined. (However, the aexc and fcc 
fields, and the destination f register are not affected by the exception.) 

In the case of an unfinished FPop or unimplemented FPop, the software should emulate 
or reexecute the instructions in the FO, and update the FSR and destination f register(s) . 

A sequence error indicates that an FPop or a load floating-point instruction is fetched 
while the FPU is in FPU exception mode, waiting for the FO to be emptied by software. 

Queue Not Empty (qne ) Bit 13 indicates whether the Floating-point Oueue (PO) is empty after 
an fp exception trap or after a Store Double Floating-point Oueue (STDFO) instruction is 
executed. If qne = 0, the queue is empty; if qne = 1, the queue is not empty. The qne bit can be 
read by the STFSR instruction. The lDFSR instruction does not affect qne. However, executing 
successive STDFO instructions will (eventually) cause the FO to become empty ( qne = 0 ). 

Floating-point Condition Codes ( fcc) Bits 11 and 10 contain the FPU condition codes. These 
bits are updated by floating-point compare instructions (pCMP and FCMPE) and are read and 
written by the STFSR and lDFSR instructions, respectively. Note that fcc is updated even if 
FCMPE generates an IEEE exception trap. 

In the following table, fs1 and fs2 correspond to the values in the f registers specified by 
an instruction's rs1 and rs2 fields. The question mark (?) indicates an unordered relation, 
which is true if either fs1 or fs2 is a signaling or quiet NaN (see the section Processor 
Data Types). 

The FBfcc instruction bases its control transfer on this field, which is interpreted as 
follows: 

fcc Relation 

0 fs1 = fs2 
1 fs1 < fs2 
2 fs1 > fs2 
3 fs1 ? fs2 (Unordered) 

Table 2-5. Floating-Point Condition Codes 

Accrued Exception Bits ( aexc ) Bits 9 through 5 accumulate IEEE floating-point exceptions 
while fp exception traps are disabled. After an FPop completes, the TEM and cexc fields are 
logically and 'd together. If the result is nonzero, an FP exception trap is generated; otherwise, 
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the new cexc field is or 'd into the aexc field. Thus, while traps are masked, exceptions are 
accumulated in the aexc field. The aexc field is read and written by the STFSR and LDFSR 
instructions. 

Current Exeeption Bits ( eexe ) Bits 4 through ° indicate one or more IEEE exceptions 
that were generated by the most recently executed FPop instruction. The absence of an 
exception causes the corresponding bit to be cleared. The cexc field is read and written by 
the STFSR and LDFSR instructions. 

The cexc bits are not defined following an FPop that causes an unimplemented FPop or 
unfinished FPop fp exception trap. Following an FPop that does not generate an fp exception 
trap or that generates an IEEE exception trap, the cexc bits are set as follows: 

nve = 1 indicates an invalid operation: an operand is improper for the operation to be 
performed. For example, 0/0, and 00 - 00 are invalid. 

ofe = 1 indicates overflow: the rounded result would be larger in magnitude than the 
largest normalized number in the specified format. 

ufe = 1 indicates underflow: the rounded result is inexact, and would be smaller in 
magnitude than the smallest normalized number in the indicated format. 

dze = 1 indicates division-by-zero: X/O, where X is subnormal or normalized. Note that 
0/0 does not set the dzc bit. 

nxe = 1 indicates an inexact result: The rounded result differs from the infinitely precise 
correct result. 

nxe = 1 indicates inexact: The rounded result differs from the infinitely precise correct 
result. 

The following illustration summarizes the handling of IEEE exception traps. Note that the aexc 
and ftt fields can normally only be cleared by software. 

1. FPop generates an IEEE exception or exceptions 
2. cexc is loaded with the IEEE exceptions generated 
3. if cexc and TEM are equal to zero then: 

aexc is loaded with aexc or cexc, the result is stored in the f registers, and fcc is updated 
accordingly. 

if cexc or TEM are not equal to zero then: 

ftt is loaded with the IEEE exception type and a fp exception trap is taken 

Since the operating system must be capable of simulating the entire FPU in order to properly 
handle the unimplemented FPop and unfinished FPop floating-point exceptions, a user process 
always "sees" a fully implemented FSR as defined above. In other words, a user process always 
"sees" cexc, aexc, and TEM fields that conform to the ANSI/IEEE 754-1985 Standard. 

Floating-Point Queue (FQ) 

The Floating-point Queue keeps track of FPops that are pending completion by the FPU when an 
fp exception trap occurs. When an fp exception trap occurs, the first entry in the queue gives the 
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address of the FPop that caused the exception and the instruction itself. Any remaining entries in 
the queue contain FPop instructions (and their addresses) that had not finished when the 
exception occurred. 

Addressing 
Addressing conventions follow the big endian convention as shown in Figure 2-7. Addressing 
bytes for load and store byte instructions is such that increasing the address means decreasing 
the significance of the of the byte within the word. The most significant byte (MSB) of a word is 
accessed when address bits <1:0> = 0 and the least significant byte within the word is accessed 
when address bits <1:0> = 3. 

63 Double Word 0 

31 Word 0 31 Word 0 

15 Halfword 
0 15 Halfword 

0 15 Halfword 
0 15 Halfword 

0 

7 Byte 017 Byte 0 7 Byte 0 1 7 Byte 0 7 Byte 0 1 7 Byte 0 7 Byte J 7 Byte 0 
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 

Figure 2-8. Address Conventions 

Halfwords are addressed as follows. The least significant Halfword is addressed when address 
bit <1> = 1. The most significant Halfword is addressed when address bit <1> = O. All words are 
located on word boundaries, address bits <1:0> = O. When addressing Doublewords or word 
pairs, the least significant word is addressed when address bit <2> = 1 and the most significant 
word when address bit <2> = O. The address of a Doubleword, Word or Halfword is the address 
of its most significant Byte. 

A Doubleword datum is located at a doubleword address which is evenly divisible by 8. A Word 
datum is located on a word address which is evenly divisible by 4. A halfword datum is located 
on a halfword boundary, and is evenly divisible by 2. Attempting to access Halfwords, Words or 
Doublewords that are mis-aligned will result in a "memory address not aligned" trap. 

Address generation is provided for two cases, generating a memory address for a load or store 
operation and generating an address for the program counter. 

The three cases for Load and store operations are shown in the top of Figure 2-8. The first is 
simply the sum of two 32 values contained in the register file. The second is the sum of a 32-bit 
register value and a 13-bit sign extended immediate value from the Load or Store instruction. 
The third case is special in that it allows the addressing of the upper and lower 4K bytes of 
memory through the use of a single sign extended immediate value. 

Normally the program counter is incremented by 4 on each instruction fetch (pC=PC+4 because 
instructions are located on word boundaries), pointing to the next instruction to be fetched. In a 
branch or call operation, the branch or call is relative to this next program counter location or 
PC + 4. In the case of the Call instruction, the program counter is updated with the sum of PC + 
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4 and a 30 bit absolute displacement. This allows control transfers to any location in the virtual 
memory space on a 4-byte boundary. The Branch operation sums the PC + 4 value with a 22-bit 
sign extended displacement, allowing branching within a 8-megabyte range of the PC + 4 
location on 4-byte boundaries. 

31 o 
Register Source 1 

Memory Address 

Register Source 2 

31 

Register Source 1 

13 Memory Address 

Sign Extension 13-Bit Immediate 

31 13 o 
Sign Extension 13-Bit Immediate 1-------- Memory Address 

~----------------------~------------------~ 
LOAD/STORE 

Program Counter + 4 

Program Counter 

30-Bit Displacement 

CALL 

31 

Program Counter + 4 

24 2 Program Counter 

Sign Extension 22-Bit Displacement 

BRANCH 

Figure 2-9. Addressing Modes 
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Instruction Set 
Instructions fall into six basic categories: Load and store, Arithmetic/logical and shift, 
Control-transfer, Read/write control register, Floating-point operate and Coprocessor operate. 

Instruction Format 

Figure 2-9 shows each instruction format, with its fields and bit positions. It also lists the types 
of instructions that use that format. 

CALL 

30-Bit Displacement (disp30) 

o 
SETHI 

22-Bit Immediate (imm22) 

BRANCH 

Test Condo 22-Bit Displacement (disp22) 

o 

OTHER INTEGER INSTRUCnONS 

opcode Destination (rd) opcode Source 1 (rs1 ) 0 Alternate Space (asi) I Source 2 (rs2) (op) (op3) 

opcode Destination (rd) opcode Source 1 (rs1 ) 1 13-Bit Immediate (simm13) 
(op) (op3) 

31 30 25 19 14 13 5 o 

FLOA nNG POINT OPERA nONS 

Destination (rd) Source 1 (rs1) FP Opcode (opf) Source 2 (rs2) 

5 o 

Figure 2-10. Instruction Format Summary 
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The fields in these instructions have the following meanings: 

op This field places the instruction into one of the 3 major formats: 

op Value Instruction 

0 Call 

1 Bicc, FBfcc,CBccc, SETHI 

2 or 3 other 

Table 2-6. Use of op Field 

op2 This field, bits 24 through 22 of format 2 instructions, selects the instruction as 
follows: 

op2 Value Instruction 

0 UNIMPlemented 
2 Bicc 

4 SETHI 
6 FBfcc 
7 CBccc 

Table 2-7. Use of op2 Field 

rd For store instructions, this register selects an r register, or an f register (or an f 
register pair) to be the source. For all other instructions, this field selects an r register, or 
an f register (or an f register pair) to be the destination. Reading r[O] produces the result 
0, and writing it causes the result to be discarded. 

a The "a" bit means "annul" in format 2 instructions. This bit changes the 
behavior of the instruction encountered immediately after a control transfer, as described 
later in this chapter. 

cond This field selects the condition code for format 2 instructions. 

imm22 This field is a 22-bit constant value used by the SETHI instruction. 

disp22 and disp30 These fields are 30-bit and 22-bit sign-extended word displacements, 
for PC-relative calls and branches, respectively. 

op3 The op3 field selects one of the format 3 opcodes. 

The i bit selects the type of the second ALU operand for non-FPop instructions. 
If ; = 0, the second operand is r[rs2]. If i = 1, the second operand is sign-extended 
simm13. 

asi This 8-bit field is the address space identifier generated by load/store alternate 
instructions. See discussion below. 

rsl This 5-bit field selects the first source operand from either the r registers or the f 
registers. 
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rs2 This 5-bit field selects the second source operand from either the r registers or 
the f registers. 

simm13 This field is a sign-extended 13-bit immediate value used as the second ALU 
operand when i = 1. 

ope This 9-bit field identifies a floating-point operate (FPop) instruction or a 
coprocessor operate (CPop) instruction. Note that it uses the synonym opc for coprocessor 
operate instructions (see the coprocessor operate instructions in Appendix B). A table in 
Appendix F shows the relationship between the opf field and FPop instructions. 

The following sections describe each instruction category briefly; for a complete description of 
the instruction set, see Appendix B. 

Load and Store Instructions 

Load and store instructions are the only instructions that access data memory. They use two IU 
registers or an IU register and a signed immediate value to calculate the memory address. The 
instruction's destination field specifies either an IU register, FPU register, or coprocessor 
register; this register supplies the data for a store, or receives the data from a load. They 
generate a 32-bit byte address. In addition to the address, the processor always generates an 
address space identifier, or asi. 

Address Space Identifier 

The address space identifier generated by the processor is made available to the external system 
to distinguish up to 256 address spaces. These spaces can include system control registers, main 
memory, etc. 

The SPARC architecture defines four address spaces and their asi values; these appear in 
Table 2-8. They indicate to the external system whether the processor is in user or supervisor 
mode (as indicated by the PSR), and whether the access is an instruction or a data reference. 

Address Space Identifier (ASI) Address Space 

00001000 User Instruction 

00001010 User Data 

00001001 Supervisor Instruction 

00001011 Supervisor Data 

Table 2-8. ASl Bit Assignments 

Load/store instructions normally generate an asi of either 10 or 11 for the data access, depending 
on whether the processor is in user or supervisor mode. However, the load from alternate space 
and store into alternate space instructions use the asi field supplied by the instruction itself. Note 
that the load/store alternate instructions are privileged; they can only be executed in supervisor 
mode. 
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Arithmetic/Logical/Shift 

These instructions (with one exception) compute a result that is a function of two source 
operands; they either write the result into a destination register (r[rd]) or discard it. They 
perform arithmetic, tagged arithmetic, logical, or shift operations. The exception is a specialized 
instruction used to create 32-bit constants in two instructions. One of the operands is always 
r[rs1]. The other operand depends on the i bit in the instruction: if i = 0, the operand is r[rs2], 
but if i = 1, the operand is the sign-extended constant sign extend(simm13). 

Register 0 

Reading r[O] produces the value zero. If the destination field indicates a write into r[O], no 
r register is modified and the result is discarded. Most of these instructions have dual versions 
which modify the integer condition codes (icc) as a side effect. r[O] can be used to implement a 
register-to-register move in one of several ways: ADD with 0, OR with 0, etc. Subtract and set 
condition codes (SUBcc) can be used as an integer COMPARE instruction. 

Shift 

Shift instructions can be used to shift the contents of a register left or right, by a distance 
specified by the instruction or by an IV register. Shift instructions shift an r register left or right 
by a constant or variable amount, as described in Appendix B. None of the shift instructions 
changes the condition codes. 

SETHI 

The "set high 22 bits of r" (SETIll) instruction writes a 22-bit constant from the instruction into 
the high-order bits of the destination register. It clears the low-order 10 bits, and does not change 
the condition codes. SETHI can be used to construct a 32-bit constant using two instructions: 
SETHI followd by an OR Immediate. 

Tagged Arithmetic 

The tagged arithmetic instructions assume that the least-significant two bits of the operands are 
tags and set a condition code bit if they are not zero.The tagged add and subtract instructions 
(TADDcc, TSUBcc, TADDccTV and TSUBccTV) operate on tagged data where the tag is the 
low-order two bits of the data. If either of the instruction's two operands has a nonzero tag, the 
overflow bit of the PSR is set. The "trap on overflow" versions, TADDccTV and TSUBccTV, in 
addition to writing the condition codes, also cause an overflow trap.One possible model for 
tagging is to use 0 to tag integers and 3 for pointers to doublewords, i.e. list cells. If trapping 
overhead is insignificant, then TADDccTV or TSUBccTV is faster than the non-trapping 
versions, which would need to be followed by 'branch on overflow' instructions. 

For example p contains a tagged pointer to a list cell, i.e. has 3 in its low-order two bits. Since 
the load and store instructions execute successfully only with properly aligned addresses, a load 
or store word with an address specifier of "p - 3" or "p + 1" will succeed, accessing the first or 
second word of the list cell, respectively; if, on the other hand, p contains a tag value other than 
3, they will trap. 

2-21 



Control-Transfer Instructions 

Control-transfer instructions include jumps, calls, traps, and branches. Control transfer is usually 
delayed so that the instruction immediately following the control transfer is executed before 
control actually transfers to the target address. The instruction following the control-transfer 
instruction is called a delay instruction. The delay instruction is always fetched, even when the 
control transfer is an unconditional branch. However, a bit in the control-transfer instruction can 
cause the delay instruction to be annulled (i.e. to have no effect) if the branch is not taken (or in 
one case, if the branch is taken). 

There are five types of control transfer instructions: 

1. Conditional branch (Eicc, FBfcc, CBccc) 

2. Jump and Link (JMPL) 

3. Call (CAlL) 

4. Trap (Ticc) 

5. Return from trap (RETT) 

Each of these can be further categorized according to whether it is: 

1. PC-relative or register-indirect, or 

2. delayed or non-delayed. 

The following matrix shows these characteristics: 

Instructions Addressing Mode Delayed Annul Bit 

Conditional Branch Program Counter Relative Yes yes 

Call Program Counter Relative Yes Yes 

Jump Register Indirect Yes No 
Return Register Indirect Yes No 
Trap Register Indirect No No 

Table 2-9. Instruction Categories 

The following paragraphs describe each of the characteristics: 

PC-relative A PC-relative control transfer computes its target address by adding 
the (shifted) sign-extended immediate displacement to the program counter (PC). 

Register-indirect A register-indirect instruction computes its target address as either 
"r[rsl] + r[rs2]" if i = 0, or "r[rsl] + sign ext(simm13)" if i = 1. 

Delayed A control transfer instruction is delayed if it transfers control to the 
target address after a one-instruction delay. Delayed control transfers are described in the 
next section. 
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Delayed Control Transfer 

Traditional architectures usually execute the target of a control transfer instruction immediately 
after the control-transfer instruction. This architecture delays by one instruction the execution of 
the target of a delayed control-transfer instruction. The instruction encountered immediately 
after a delayed control transfer is called the delay instruction. 

PC and nPC 

In general, the PC points to the instruction being executed by the IU, and the OPC points to the 
instruction to be executed next. Most instructions complete by copying the contents of the nPC 
into the PC, then either increment nPC by 4, or, if the instruction implies a control transfer, 
write the computed target address into nPC. The PC now points to the instruction that will be 
executed next, and the nPC points to the instruction that will be executed after the next one; in 
other words, two instructions hence. 

Delay Instruction 

The instruction pointed to by the nPC when a delayed control-transfer instruction is encountered 
is called the delay instruction. Normally, this is the next sequential instruction in the code space. 
However, if the instruction that preceded the delayed control transfer was itself a delayed control 
transfer, the address of the delay instruction is the target of the (first) control-transfer 
instruction, since that is where the nPC will point. This behavior is explained further in the 
section Back-to-Back Delayed Control Transfers below. 

The following example shows the order of execution for a simple (not back-to-back) delayed 
control transfer. The order of execution is 8, 12, 16, 40. If the delayed control 
transfer-instruction were not taken, the order would be 8, 12, 16, 20. 

PC nPC Instruction 

8 12 Non-control transfer 
12 16 Control transfer (target = 40) 
16 40 Non-control transfer (delay instruction) 

Transfers control to 40 
40 44 ... 

Table 2-10. Delay Instruction Example 
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Annul Bit 

The a (annul) bit changes the behavior of the delay instruction. This bit is only available on 
conditional branch instructions (Bicc, FBfcc and CBccc). If a is set on a conditional branch 
(except BA, FBA and CBA) and the branch is not taken, the delay instruction is "annulled" (not 
executed). An annulled instruction has no effect on the state of the IU nor can a trap occur 
during an annulled instruction. If the branch is taken, the a bit is ignored and the delay 
instruction is executed. For example: 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a=l) 40 Not Taken 
16 40 ... Executed 
20 24 ... Executed 

Table 2-11. Effect of Annul Bit (a=1) 

BA, FBA and CBA instructions are a special case; if the a bit is set in these instructions the 
delay instruction is not executed if the branch is taken, but it is executed if the branch is not 
taken. The following display shows the effect of the a bit on the delay instruction after various 
kinds of branches: 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a=O) 40 Not Taken 
16 40 ... Executed 
40 44 ... Executed 

Table 2-12. Effect of Annul Bit (a=O) 

2-24 



CY7C601 Architecture er:r~ 
"'=-', ~============================== 

Taken 
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ANNUL = 1 

ANNUL = 0 

Code 

Untaken 
Conditional 

Delay Always Executed 

ANNUL = 1 
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Taken 
Conditional -

Delay Inst. 

I 

Delay Executed Only for Taken Conditional Branches 
Branch Always Implements Non-Delayed Control Transfer 

Figure 2-11. Delayed Control Transfer 

The annul bit increases the likelihood that a compiler or optimizer can place a useful instruction 
in the delay slot after a branch. Refer to the following table: 

Address Instruction Target 

L Non Control Transfer 
L' ... 
... ... 
... . .. 
... Bicc L 

D NOP 
... ... 

Table 2-13. Code Optimizer Use of Annul Bit 

If the Bicc has a = 0, a code optimizer may be able to move a non-control-transfer instruction 
from within the loop into location D. If the Bicc has a = 1, then the compiler can copy the 
non-control-transfer instruction at location L into location D, and change the branch to Bicc L'. 
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The annul bit can also be used to optimize "if-then-else" statements. Since the conditional 
branch instructions provide both true and false tests for all the conditions, an optimizer can 
arrange the code so that a non-control-transfer instruction from either the "else" branch or the 
"then" branch can be moved into the delay position after the branch instruction. For example: 

Address Instruction Address Instruction 

Bicc(cond. a=l) THEN Bicc(cond. a=l) ELSE 
Delay: Then Phrase 1 Delay: Else Phrase 1 
... Else Phrase 1 ... Then Phrase 1 
... Else Phrase 2 ... Then Phrase 2 

... Goto ... Goto 

... ... ... . .. 
THEN Then Phrase 2 THEN Else Phrase 2 
... Then Phrase 3 ... Else Phrase 3 

Table 2-14. Using Annul with IF-Then-Else Statements 

When set in a branch always instruction (BA, BFA), the annul bit implements a "traditional," 
non-delayed branch instruction. This can also be used to dynamically replace unimplemented 
instructions with branches to software emulation routines as this requires less overhead than a 
trap. 

Calls and Returns 
Branch and call instructions use PC-relative displacements. The jump and link (JMPL) 
instruction uses a register-indirect displacement: it computes its target address as either the sum 
of two registers, or the sum of a register and a 13-bit signed immediate. The branch instruction 
provides a displacement of 8 Mbytes, while the call instruction's 30-bit word displacement allows 
a transfer to an arbitrary address. 
A procedure that requires a register window is invoked by executing both a CALL (or a JMPL) 
and a SA VB instruction. A procedure that does not need a register window, a so-called "leaf" 
routine, is invoked by executing only a CALL (or a JMPL). Leaf routines can use only the 
\fIout\fP registers. 
The CALL instruction stores PC, which points to the CALL itself, into register r[15] (an 
\fIout\fR register). JMPL stores PC, which points to the JMPL instruction, into the specified \fIr 
register\fP. These instructions then cause a transfer of control to a target that can be arbitrarily 
distant. 
The SA VB instruction is similar to an ADD instruction, except that it also decrements the CWP 
by one, causing the active window to become the previous window, thereby "saving" the caller's 
window. Also, the source registers for the addition are from the previous window while the result 
is written into the new window. A procedure that uses a register window returns by executing 
both a RESTORE and a JMPL instruction. A leaf procedure returns by executing a JMPL only. 
The JMPL instruction typically returns to the instruction following the CALL's or JMPL's delay 
instruction; in other words, the typical return address is 8 plus the address saved by the CALL. 
The RESTORE instruction, also like an ADD instruction, increments the CWP by one, causing 
the previous window to become the active window, thereby "restoring" the caller's window. Also, 
the source registers for the addition are from the current window while the result is written into 
the previous window. 

2-26 



~ --.". 
~ ~ CY7C601 Architecture 
~,~================================== 

Both SA VB and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to 
check for window overflow or underflow. The SA VB and RESTORE instructions can be used to 
atomically update the CWP while establishing a new memory stack pointer in an \fIr register\fP. 

Trap Instruction 

The Ticc instruction evaluates the condition codes specified by its condition field, and if the 
result is true, it causes a trap with no delay instruction. If the condition codes evaluate to false, it 
executes as a Nap. A taken Ticc identifies the software trap by writing "trap number + 128" into 
the tt field of the TBR. The processor enters supervisor mode, disables traps, decrements the 
CWP, and saves PC and nPC into the locals r[17J and r[18J (respectively) of the new window. 
Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for 
run-time checks, such as out-of-range array indices, integer overflow, etc. 

Delayed Control Transfer Couples 

When a delayed control transfer is encountered immediately after another delayed control 
transfer, this creates what is called a delayed control-transfer couple, which the processor 
handles differently from a simple control transfer. The following tables show, first, a sequence 
of instructions that includes a delayed control-transfer couple, and second, a table that illustrates 
the order of execution depending on the nature of the control-transfer instructions. In the 
following tables, 'delayed control-transfer instruction' is abbreviated to 'DeT!'. Note that a 
"non-DCT!" may be either a non-control-transfer instruction, or a control-transfer instruction 
which is not delayed (Le. a Ticc). 

Address Instruction Target 

8: Non DCT! 
12: DeT! 40 
16: DeTI 60 
20: Non DeT! 
24: ... 
... . .. 
40: Non DeT! 

44: ... 
... ... 
60: Non DeT! 
64: ... 
... . .. 

Table 2-15. Sequence of Delayed Control Transfer Couples 

Where the annul bit is not indicated, it may be either 0 or 1. When the first instruction of a 
delayed control-transfer couple is a conditional branch, the transfer of control is undefined 
(case 6). If such a couple is executed, the location where execution continues is within the same 
address space but otherwise undefined. This sequence does not change any other aspect of the 
processor state. 
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Case DCTI at Location 12 DCTI at Location 16 Order of Execution 

1 DCTI Unconditional DCTI Taken 12.16.40.60.64 .... 
2 DCTI Unconditional B"cc(a=O) Untaken 12.16.40.44 .... 
3 DCTI Unconditional B"cc(a=1) Untaken 12.16.44.48 .... (40 annulled) 
4 DCTI Unconditional B"A(a=1) 12.16.60.64 .... (40 annulled) 
5 B*A(a=1) any CTI 12.40.44 .... (16 annulled) 
6 B"cc DCTI Not Supported 

Definitions: 
B*A-------------BA.FBA. or CBA 
B*cc------------Bicc.FBicc. or CBicc (except B* A) 
DCTI Uncond.---CALL.JMPL.RETT. or B'A(a=O) 
DCTI Taken-----CALL.JMPL.RETT.B*cc taken. or B*A(a=O) 

Table 2-16. Execution of Delayed Control Transfer Couples 

Code 

, 
Unconditional Control Xfer #1 

Conditional Control Xfer #2 I Taken 

a=1 I Untaken All Others 

,a=O , 
0 

I I l I 
I -, I ~ 

1 

Target #1 

Code 

n 

Branch Always , 
0 

Target #2 

Code 

n 

Figure 2-12. Back to Back Delayed Control Transfers 
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Read/Write Control Registers 
The SPARC architecture provides instructions to read and write the contents of the various 
control registers. For reads and writes, the source and destination (respectively) are implied by 
the instruction itself. Case 1 of the above table includes the "JMPL, RETT" couple. RETT must 
always be preceded by a JMPL instruction. (If it is not, the location where execution continues is 
not necessarily within the address space implied by the PS bit of the PSR.) Trap handlers 
complete execution by executing the "JMPL, RETT" couple. These instructions read or write the 
contents of the programmer-visible control registers. This category includes instructions to read 
and write the PSR, the WIM, the TBR, the Y register, the FSR, and the CSR. These instructions 
are all privileged (available in supervisor state only), except those that read and write the Y 
register, the FSR, and the CSR. 

Floating-point and Coprocessor Operate Instructions 

Floating-point operate instructions perform all floating-point calculations. These are 
register-to-register instructions that use the floating-point registers. Like arithmetic/logical/shift 
instructions, these also compute some result that is a function of two source operands. However, 
they always write the result into a destination register. 

Floating-point operate instructions execute concurrently with IU instructions and possibly with 
other floating-point instructions. A particular floating-point operate instruction is specified by a 
sub-field of the FPop instructions. 

Coprocessor arithmetic instructions are defined by the implemented coprocessor, if any. They 
are specified by the CPop instruction. The architecture supports 1024 distinct coprocessor 
arithmetic instructions. 

Floating-point loads and stores are NOT floating-point operate instructions (FPops) , and 
coprocessor loads and stores are NOT coprocessor operate instructions. Floating-point and 
coprocessor loads and stores fall in the category "loads and stores". 

Because the IU and the FPU can execute instructions concurrently, when a floating-point 
exception occurs, the program counter usually does not contain the address of the floating-point 
instruction that caused the exception. However, the first element of the floating-point queue 
points to the instruction that caused the exception, and the remaining elements point to 
floating-point operate instructions that have not yet completed. These can be re-executed or 
emulated. 

Likewise, if the coprocessor executes instructions concurrently with the IU, the coprocessor can 
support a queue that, at the time of a coprocessor exception, will contain the instruction that 
generated the exception and remaining, unexecuted coprocessor instructions. 

Condition Codes 
Branch and Trap on Integer Condition Codes in Table 2-13 are identical in terms of the 
operational condition being tested for either a Branch or Trap instruction. 

A Bicc (Branch on Integer Condition Code) instruction (except BA and BN) evaluate the integer 
condition code (icc) according to the condition field. If the condition code is true, the branch is 
taken and the instruction causes a PC-relative, delayed control transfer to the address "PC + (4 ... 
sign ext (disp22))." If the condition code is false, the branch is not taken. If the branch is not 
taken and the a (annUl) field is set, the delay instruction is annulled (not executed). If the branch 
is taken, the annul field is ignored. 
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Name Operation Cycles 

LDSB(LDSBA 0) Load Signed Byte (from Alternate Space) 2 
LDSH(LDSHA 0) Load Signed Halfword (from Alternate Space) 2 
LDUB(LDUBA 0) Load Unsigned Byte (from Alternate Space) 2 
LDUH(LDUHAO) Load Unsigned Halfword (from Alternate Space) 2 
LD(LDAO) Load Word (from Alternate Space) 2 

LDD(LDDA0) Load Doubleword (from Alternate Space) 3 
LDF Load Floating Point 2 
LDDF Load Double Floating Point 3 
LDFSR Load Floating Point State Register 2 
LDC Load Coprocessor 2 

LDDC Load Double Coprocessor 3 
LDCSR Load Coprocessor State Register 2 
STB(STBA*) Store Byte (into Alternate Space) 3 
STH(STHA*) Store Halfword (into Alternate Space) 3 
ST(STA*) Store Word (into Alternate Space) 3 
STD(STDA0) Store Doubleword (into Alternate Space) 4 
STF Store Floating Point 3 
STDF Store Double Floating Point 4 
STFSR Store Floating Point State Register 3 
STDFQ* Store Double Floating Point Queue 4 

STC Store Coprocessor 3 
STDC Store Double Coprocessor 4 
STCSR Store Coprocessor State Register 3 
STDCQo Store Double Coprocessor Queue 4 
LDSTUB(LDSTUBA *) Atomic Load/Store Unsigned Byte (in Alternate Space) 4 

SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4 
ADD (ADDcc) Add (and modify icc) 1 
ADDX(ADDXcc) Add with Carry (and modify icc) 1 
TADDcc(TADDccTV) Tagged Add and modify icc (and Trap on overflow) 1 
SUB (SUBcc) Subtract (and modify icc) 1 

Table 2-17. SPARe Instruction Set 

The exception BA (Branch Always) causes a branch to occur irrespective of the icc field. If the 
annul field is set, the delay instruction is annulled. If the annul field is not set, the delay 
instruction is executed. BN (Branch Never) acts like a "NOP" except that, if the annul field is 
set, the delay instruction is annulled. If the annul field is not set, the delay instruction is 
executed. 

Except for BA, all Bicc instructions with the annul field set annul the delay instruction when the 
branch is not taken. BA, however, with the annul field set does the reverse, the delay instruction 
is annulled even though the branch is taken. The delay instruction other than a BA should not be 
a delayed control-transfer instruction. 

The Ticc (Trap on Integer Condition Code) instructions evaluate the integer condition codes (icc) 
according to the condition field. If the condition code is true and there are no higher priority 
traps pending, then a Trap instruction is generated. If the condition code is false, then a Trap 
does not occur. 
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Name Operation Cycles 

SUBX(SUBXcc) Subtract with Carry (and modify icc) 1 
TSUBcc(TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow) 1 
MULScc Multiply Step and modify icc 1 
AND (ANDcc) And (and modify icc) 1 
ANDN(ANDNcc) And Not (and modify icc) 1 

OR(ORcc) Inclusive Or (and modify icc) 1 
ORN(ORNcc) Inclusive Or Not (and modify icc) 1 
XOR(XORcc) Exclusive Or (and modify icc) 1 
XNOR(XNORcc) Exclusive Nor (and modify icc) 1 
SLL Shift Left Logical 1 

SRL Shift Right Logical 1 
SRA Shift Right Arithmetic 1 
SETHI Set High 22 Bits of r Register 1 
SAVE Save caller's window 1 
RESTORE Restore caller's window 1 

Bicc Branch on integer condition codes 1" 
FBicc Branch on floating point condition codes 1*' 
CBccc Branch on coprocessor condition codes 1*' 
CALL Call 1" 
JMPL Jump and Link 2'* 

RETT Return from Trap 2" 
Ticc Trap on integer condition codes 1 (4 if Taken) 
RDY Read Y Register 1 
RDPSR Read Processor State Register 1 
RDWIM Read Window Invalid Mask 1 

RDTBR Read Trap Base Register 1 
WRY Write Y Register 1 
WRPSR* Write Processor State Register 1 
WRWIM' Write Window Invalid Mask 1 
WRTBR' Write Trap Base Register 1 

UNIMP Unimplemented Instruction 1 
IFLUSH Instruction Cache Flush 1 
FPop Floating Point Unit Operations 1 to Launch 
CPop Coprocessor Operations 1 to Launch 

• privileged instruction 
*' assumes delay slot is filled with a useful instruction 

Table 2-17. SPARC Instruction Set (Continued) 

When a Trap is generated the tt field of the Trap Base Register (TBR) is written with 128 plus 
the least significant seven bits of either "r[rs1] + r[rs2]" if the i field is zero, or "r[rs1 + sign 
ext(simm13)" if the i field is one. 

An FBfcc instruction (except FBA and FBN) evaluates the floating-point condition codes (fcc) 
according to the condition field. If the condition code, shown in Table 2-/4 is true the branch is 
taken and the instruction causes a PC-relative, delayed control transfer to the address "PC + (4 .. 
sign ext (disp22»." If the condition code is false, the branch is not taken. 
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Cond Test 

0000 Never 
0001 Equal 
0010 Less than or equal 
0011 Less than 
0100 Less than or equal, unsigned 
0101 Carry set (greater than or equal, unsigned) 
0110 Negative 
0111 Overflow set 
1000 Always 
1001 Not equal 
1010 Greater than 
1011 Greater than or equal 
1100 Greater than, unsigned 
1101 Carry clear (less than, unsigned) 
1110 Positive 
1111 Overflow clear 

Table 2-18. Bicc and Ticc Condition Codes 

Cond Test 

0000 Never 
0001 Not equal 
0010 Less than or greater than 
0011 Un-ordered or less than 
0100 Less than 
0101 Un-ordered or greater than 
0110 Greater than 
0111 Un-ordered 
1000 Always 
1001 Equal 
1010 Un-ordered or equal 
1011 Greater than or equal 
1100 Un-ordered or greater than or equal 
1101 Less than or equal 
1110 Un-ordered or less than or equal 
1111 ordered 

Table 2-19. FBfcc Condition Codes 

If the branch is not taken and the a (annul) field is set, the delay instruction is not executed 
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is executed. 

FBN (Branch Never) acts like a "NOP", except that if the annul field is one, the delay instruction 
is not executed (annulled). If the annul field is zero, the delay instruction is executed. 
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FBA (Branch Always) causes a transfer of control, irrespective of the value of the condition code 
bits. If the annul field is one, the delay instruction is not executed (annulled). If the annul field is 
zero, the delay instruction is executed. 

An FBfcc instruction generates an fp disabled trap (and does not branch on annul) if the PSR's 
(Program Status Register's) EF (Enable Floating-point) bit is reset or if the FPU is not present. 

Except for FBA, all FBfcc instructions with a=l annul the delay instruction when the branch is 
not taken. However, FBA with a=l does the reverse: it annuls the delay instruction even though 
the branch is taken. Note that the instruction executed immediately before an FBfcc must not be 
a floating-point instruction. 

A CBccc instruction (except CBA and CBN) evaluates the coprocessor condition codes (supplied 
by the coprocessor on CCC[1:0D according to the cond field. If the condition code is true the 
branch is taken and the instruction causes a PC-relative, delayed control transfer to the address 
"PC + (4 .. sign ext (disp22»." If the condition code is false, the branch is not taken and the 
instruction acts like a "NOP." 

If the branch is not taken and the a (annul) field is set, the delay instruction is not executed 
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is executed. 

CBN (Branch Never) acts like a "NOP", except that if the annul field is one, the delay 
instruction is not executed (annulled). If the annul field is zero, the delay instruction is executed. 

CBA (Branch Always) causes a transfer of control, irrespective of the value of the condition code 
bits. If the annul field is one, the delay instruction is not executed (annulled). If the annul field is 
zero, the delay instruction is executed. 

A CBccc instruction generates a cp disabled trap (and does not branch or annul) if the PSR's EC 
bit is reset or if no coprocessor is present. 

Except for CBA, all CBccc instructions with a=1 annul the delay instruction when the branch is 
not taken. However, CBA with a=1 does the reverse: it annuls the delay instruction even though 
the branch is taken. A CBccc instruction must be immediately preceded by a non-coprocessor 
instruction. 

Processor Pipeline 
The IU uses a four-stage instruction pipeline. A basic single-cycle instruction enters the pipeline 
and completes four cycles later. During these four cycles, three more instruction may enter the 
pipeline. This way, after a 4-cycle delay required to fill the pipeline, one single-cycle instruction 
enters the pipeline, and one (single-cycle) instruction exits the pipeline (completes) every cycle. 
For example, in a stream of 10 single-cycle instructions, the first enters the pipeline during T1 
(the clock cycle when the first instruction is fetched), and the last exits the pipeline after T14.A 
single-cycle instruction does not really complete in one cycle; it actually completes in four cycles. 
They are called "single-cycle" instructions because a series of single-cycle instructions will 
complete one-per-cycle after an initial four-cycle delay.A single-cycle instruction normally goes 
through the following four stages of the pipeline in four clock cycles:l. Fetch (F) The processor 
fetches the instruction and places it in the instruction register.2. Decode (D) The processor 
decodes the instruction, and reads the operands out from the register file.3. Execute (E) The 
processor executes the instruction and saves the results in (the processor's) temporary 
registers.4. Write (W) The processor updates the destination register, provided no traps or 
exceptions are raised during the execution of the instruction. 
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Opcode 'Cond' CCC[1:0] Test 

CBN '0000' Never 
CB123 '0001' 1 or 2 or 3 
CB12 '0010' 1 or 2 
CB13 '0011' 1 or 3 
CBl '0100' 1 
CB23 '0101' 2 or 3 
CB2 '0110' 2 
CB3 '0111' 3 
CBA '1000' Always 
CBO '1001' 0 
CB03 '1010' o or 3 
CB02 'lOll' o or 2 
CB023 '1100' o or 2 or 3 
CBOI '1101' o or 1 
CB013 '1110' o or 1 or 3 
CB012 '1111' o or 1 or 2 

Table 2-20. CBeee Condition Codes 

Floating-point operations FPops take 1 cycle in the integer unit, plus additional cycles in the 
FPU. For the number of cycles each takes in the FPU, refer to the CY7C608 Floating-point 
controller and TMS8847 chip specifications. 

Processor Data Types 
The architecture defines nine data types; these appear in Figure 2-12. The integer types include 
byte, unsigned byte, halfword, unsigned halfword, word and unsigned word. The ANSIlIEEE 
754-1985 floating-point types include single, double, and extended. A byte is 8 bits wide, a 
halfword is 16 bits, a word is 32 bits, a double is 64 bits, and an extended is 128 bits. 

The floating-point double type includes two subfields: 1) the double-e, which contains the sign, 
exponent, and high-order fraction, and 2) the double-f, which includes the low-order fraction. 
The floating-point extended type includes 4 subfields: 1) the extended-e, which contains the sign 
and exponent, 2) the extended-f, which contains the integer part of the mantissa, and the 
high-order part of the fraction, 3) the extended-f-Iow, which contains the low-order fraction, and 
4) the extended-u which is unused. 

Table 2-17 shows the single-precision floating-point format containing one sign bit, eight bits of 
biased exponent and 23 bits of fraction. The double-precision format is shown in Table 2-18. 
Double-precision numbers are represented with one sign bit, eleven bits of biased exponent and 
52 bits of fraction. 

The extended-precision format is shown in Table 2-19. Extended-precision numbers are 
represented with one sign bit, fifteen bits of biased exponent and 63 bits of fraction. 

The architecture does not define or create results with 0 < e < 32767, j = O. 
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BYTE lsi 
7 6 o 

UNSIGNED BYTE 

7 o 
HALF WORD lsi 

15 14 o 

UNSIGNED HALF WORD 

15 o 

WORD 
31 30 o 

UNSIGNED WORD 

31 o 
SINGLE PRECISION FP lsi Exponent I Fraction 

31 30 23 22 o 

DOUBLE PRECISION FP Exponent Fraction msb 

31 30 20 19 o 
Fraction 19b 

31 o 

EXTENDED PRECISION FP Exponent Reserved 

31 30 16 15 o 
Fraction msb 

31 30 o 
Fraction 19b 

31 o 
Reserved 

31 o 
TAGGED DATA 30-Bit Data 

31 2 0 

Figure 2-13. Processor Data Types 

Traps 
SPARe supports three types of traps: synchronous, floating-point/coprocessor and asynchronous 
(asynchronous traps are also called interrupts ). 

Synchronous traps are caused by an instruction, and occur before the instruction is completed. 
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Subfield Address 

Double-e n 
Double-f n + 4 
Extended-e n 
Extended-f n + 4 
Extended-f-Iow n + 8 
Extended-u n + 12 

Table 2-21. Arrangement of Double and Extended Data Types in Memory 

s = sign (1) 
e = biased exponent (8) 
f = fraction (23) 

normalized number ( 0 < e < 255 ): (-1) s • 2 e-127 • 1.f 
subnormal number ( e = 0 ): (-1) s • 2 -126 • O.f 
zero ( e = 0): (-l)s'O 

signaling NaN: s = u ; e = 255 (max); f = .0 uuu uu 
(at least one bit must be nonzero) 

quiet NaN: s = u ; e = 255 (max); f = .1 uuu uu 
infinity: s = u ; e = 255 (max); f = .000 00 

(all zeroes) 

Table 2-22. Single-Precision Floating-Point Format 

s = sign (1) 
e = biased exponent (11) 
f-msb f-Isb = f = fraction (52) 

normalized number (0 < e < 2047): (-1) s • 2e-1023 • 1.f 
subnormalized number (e = 0): (-1) s • 2-1022 • O.f 
zero ( e = 0): (-l)s'O 

signaling NaN: s = u ; e = 2047 (max); f = .0 uuu uu 
(at least one bit must be non-zero) 

quiet NaN: s = u ; e = 2047 (max); f = .1 uuu uu 
infinity: s = u ; e = 2047 (max); f = .000 00 

(all zeros) 

Table 2-23. Double-Precision Floating-Point Format 

Floating-point/coprocessor traps are caused by a floating-point operate (FPop) or coprocessor 
(CPop) instruction, and occur before the instruction is completed. However, due to the 
concurrent operation of the ill and the FPU, other non-floating-point instructions may have 
executed in the meantime. 

Asynchronous traps occur when an external event interrupts the processor; they are not related 
to any particular instruction and occur between the execution of instructions. 
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s = sign (1) 
e = biased exponent (15) 
j = integer part (1) 
f-msb f-lsb = f = fraction (63) 

normalized number ( 0 < e < 32767; j = 1 ): (-1) s • 2 e-16383 • j.f 
subnormal number ( e = 0; j = 0 ): (-1) s • 2 -16383 • j.f 
zero ( s = 0; e = 0): (-1) s • 0 

signaling NaN: s = u; e = 32767 (max); j = u; 
f = .0 uuu uu (at least one bit 
must be nonzero) 

quiet NaN: s = u; e = 32767 (max); j = u; 
f=.1uuuuu 

infinity: s = u; e = 32767 (max); i = u; 
f = .000 00 (all zeroes) 

Table 2-24. Extended-Precision Floating-Point Format 

Synchronous and floating-point/coprocessor traps are generally taken before the instruction 
changes any processor or system state visible to a programmer; they happen "between" 
instructions. Instructions which access memory twice (double loads and stores and atomic 
instructions) are the only exceptions. 

Traps transfer control to an offset within a table. The base address is specified in the trap base 
register (TBR) , and the offset depends on the type of trap. Reset traps, however, cause the 
processor to transfer control to address O. Because the program counters are not updated until 
after an instruction completes, the trap hardware captures both program counters and guarantees 
that the PC points to either the instruction that caused a synchronous trap, or to the instruction 
that was about to execute when a floating-point/coprocessor or asynchronous trap occurred. For 
floating-point/coprocessor traps, the instruction that caused the trap is in the floating-point queue 
(FQ) or the coprocessor queue (CP) , and the PC will usually not point to it. 
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Trap Priority Trap Type (tt) 

Synchronous or 
Asynchronous 

Reset 1 - Async 
Instruction Access Exception 2 1 Sync 
Illegal Instruction 3 2 
Privileged Instruction 4 3 
Floating Point Disabled 5 4 
Window Overflow 6 5 
Window Underflow 7 6 
Memory Address Not Aligned 8 7 
Floating Point Execption 9 8 
Data Access Execption 10 9 
Tag Overflow 11 10 Sync 
Trap Instructions (Ticc) 12 128-255 Sync 
Interrupt Level 15 13 31 Async 
Interrupt Level 14 14 30 
Interrupt Level 13 15 29 
Interrupt Level 12 16 28 
Interrupt Level 11 17 27 
Interrupt Level 10 18 26 
Interrupt Level 9 19 25 
Interrupt Level 8 20 24 
Interrupt Level 7 21 23 
Interrupt Level 6 22 22 
Interrupt Level 5 23 21 
Interrupt Level 4 24 20 
Interrupt Level 3 25 19 
Interrupt Level 2 26 18 
Interrupt Level 1 27 17 Async 

Table 2-25. Trap Type and Priority Assignment 

Traps are described in detail in the chapter Traps, Exceptions, and Error Handling. 
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CHAPTER 3 
CYP~SS==================== 
SEMICONDUCTOR Pipeline Operation 

The CY7C600 achieves its very high performance by executing instructions at a rate approaching 
one instruction per clock cycle. The one instruction per clock is achieved by separating the 
execution of each instruction into four pipelined stages and executing all four stages in parallel. 
This chapter describes the operation of this pipe lined method of instruction execution. 

Pipeline Stages 
The ill uses a four-stage instruction pipeline. A basic single-cycle instruction enters the pipeline 
and completes four cycles later. During these four cycles, three more instruction may enter the 
pipeline. This way, after a 4-cycle delay required to fill the pipeline, one single-cycle instruction 
enters the pipeline, and one (single-cycle) instruction exits the pipeline (completes) every cycle. 
For example, in a stream of 5 single-cycle instructions, the first enters the pipeline during Tl 
(the clock cycle when the first instruction is fetched), and the last exits the pipeline after T8 as 
shown in Figure 3-1. 

Single Cycle Instructions 

A single-cycle instruction does not really complete in one cycle; it actually completes in four 
cycles. They are called "single-cycle" instructions because the processor ill complete one instruc­
tion per cycle after an initial four-cycle delay. 

A single-cycle instruction normally goes through the following four stages of the pipeline in four 
clock cycles: 

1. Fetch (F)-The processor outputs the instruction address, fetches the instruction, and places 
it in the instruction register. 

2. Decode (D)-The processor decodes the instruction, reads the operands from the register 
file, and computes the next instruction address. 

3. Execute (E)-The processor executes the instruction and saves the results in (the proces­
sor's) temporary registers. Pending traps are prioritized and taken during this stage. 

4. Write (W)-The processor updates the destination register, provided no traps or exceptions 
are raised during the execution of the instruction. 
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Instruction CLOCK CYCLE 

2 3 4 5 6 7 8 

n Fetch Decode I Execute Write 

n+1 Fetch Decode Execute Write 

n+2 Fetch Decode Execute Write I 
n+3 Fetch Decode Execute I Write 

n+4 Fetch Decode I Execute Write 

Figure 3-1. Pipeline with All Single Cycle Instructions 

Multi-Cycle Instructions 

Some instructions take extra cycles to complete. For example, a double-cycle instruction has one 
extra cycle, and a three-cycle instruction has two extra cycles. These extra cycles delay the 
pipeline long enough to complete, adding 1, 2, 3, or 4 extra cycles. For example, if a 
double-cycle instruction occurs in the above-mentioned 5-instruction stream, the last instruction 
in the stream will complete on T9. A single-cycle instruction moves through the pipeline as 
shown in Figure 3-1. Multiple-cycle instructions delay the entire pipeline, so that if the first 
instruction has one extra cycle, it holds up the pipeline as shown in Figure 3-2. Typically, 
instructions contain delay cycles because the processor needs to use the bus for something other 
than for fetching the next instruction (a data load or store to memory for example) and therefore 
for example in Figure 3-2. it cannot fetch instruction n+3 during T4. Instead, it fetches 
instruction n+3 during the last extra cycle (T5 in this case). 

Instruction CLOCK CYCLE 
2 3 4 5 6 7 8 9 

n Fetch I Decode I Execute I lOP I Write I Load Instruction 

n+1 I Fetch l:~;;~:~;:?~:] Decode Execute Write 

n+2 I Fetch l;';~;~:~~:~:::: Decode Execute Write J 
n+3 li~i!:.~!1 Fetch I Decode I Execute I Write 

n+4 I Fetch I Decode I Execute I Write 

Figure 3-2. Pipeline with One Double Cycle Instruction (Load) 

Internally Generated Opcodes 

The extra cycles of multi-cycle instructions are actually generated by internal opcodes (lOPs) 
which are inserted in the pipeline as needed as shown in Figure 3-3. So that external instructions 
may continue to be fetched while internal opcodes are injected into the pipeline, a two-stage 
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prefetch buffer is used ahead of the pipeline. Only two stages are required because during any 
multi-cycle instruction a maximum of two extra cycles are available for fetching instructions. 
The buffers are used only as necessary to keep the pipeline full and fully utilize the external data 
bus bandwidth. 

Instruction 
from _ ....... 
Memory 

Internally Generated Opcode (lOP) 

Figure 3-3. Processor Instruction Pipeline 

E 
x 
e 
c 
u 
t 
e 

w 

e 

Multi-cycle instructions may use up to three internally-generated opcodes to complete execution. 
A summary of internal opcode generation is included in Table 3-1. 

Instruction Number of Internal Opcodes 

Single Loads 1 
Double Loads 2 
Single Stores 2 
Double Stores 3 
Atomic Load/Store 3 
Jump 1 
Return from Trap 1 

Table 3-1. Internally Generated Opcodes 

An example of a three cycle instruction is shown in Figure 3-4. This is a single word store 
instruction which contains two internal opcodes; one to allow external hardware time to 
determine whether or not the location to be written is in the cache, and the second to perform 
the actual data bus write cycle. The final write phase of the instruction is used to update internal 
processor status. 
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CLOCK CYCLE 

2 3 4 5 6 7 8 9 10 

Fetch lOP lOP Write Store Instruction 

I Fetch I Decode I Execute Write 

Figure 3-4. Pipeline with One Triple Cycle Instruction (Store) 

Register Load Interlocks 

Because of the pipelined execution of instructions, it is possible that an instruction may try to use 
the contents of a particular register which is in the process of being updated by a previous 
instruction. Special bypass paths in the pipeline of the CY7C601 make the correct data available 
to following instructions for all internal register to register operations but cannot solve the 
problem for loads to the registers from external memory. For this case register load interlock 
hardware prevents an instruction following. a Load instruction from reading the register being 
loaded until the load is complete. Thus when a Load is followed by an instruction which reads 
the contents of that register the CY7C60I automatically generates a I-cycle delay as shown in 
Figure 3-5. 

CLOCK CYCLE 
2 3 4 5 6 7 8 9 

Fetch Decode Execute lOP Write lOP Load Instruction 

Fetch Decode Execute 

Figure 3-5. Pipeline with Hardware Interlock 

In general, to maximize performance, compilers and assembly language programmers should 
avoid Loads followed immediately by instructions using the register contents. 

Delayed Branch Instructions 

The delayed branch instruction mechanism of the CY7C600 processor allows branches (whether 
taken or untaken) to occur without causing any delays in the pipeline as shown in Figure 3-6. If 
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the compiler or programmer cannot place an appropriate instruction in the delay instruction slot 
after the branch, the instruction fetched is annulled as shown in Figure 3-7. 

CLOCK CYCLE 

2 3 4 5 6 7 8 

Fetch Decode Execute Write Branch Instruction 

Fetch Decode Execute Write Delay Instruction 

Fetch Decode Execute Write - First Instruction of Target 

Fetch Decode Execute Write 

Fetch Decode Execute Write 

Figure 3-6. Pipeline During Branch Instruction 

CLOCK CYCLE 

2 3 4 5 6 7 8 

Fetch Decode Execute Write Branch Instruction 

Annulled Delay Instruction 

Fetch Decode Execute Write - First Instruction of Target 

Fetch Decode Execute Write 

Fetch Decode Execute Write 

Figure 3-7. Branch with Annulled Delay Instruction 

Pipeline Freezes 

Whenever the processor pipeline is frozen as the result of an externally generated hold input 
such as MHOLD or BHOLD, the pipeline stalls in the execute phase of the instruction that 
caused the hold as shown in Figure 3-8. 

3-5 



...:5ii!!5IIo. 

Pipeline Operation -~~ ~, SEMICC.tIDtlC'l ===============================;;;;; 

CLOCK CYCLE 

2 3 4 5 6 7 8 

Fetch Decode Execute Write 

Fetch Decode Execute Write 

Fetch Decode Execute Write 

Fetch Decode Execute 

Fetch Decode 

Figure 3-8. Pipeline Frozen by External Hold 

Traps 

Pending Traps whether synchronous or asynchronous are prioritized and taken during the 
execute phase of each instruction as shown in Figure 3-9. Instructions in the pipeline after 
detection of the trap are annulled and the first instruction of the trap target routine is executed in 
the fourth cycle following detection. 

CLOCK CYCLE 
2 3 4 5 6 7 8 

Instruction Annulled 

Instruction Annulled 

Instruction Annulled 

First Instruction of Trap Target Fetch Decode Execute Write 

Figure 3-9. Pipeline Operation for Taken Trap 
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CHAPTER 4 
~~SS~~~~~~~~~~ 
SEMICONDUCTOR Interrupts, Traps, 

and Exceptions 

The CY7C601 Integer Unit generates traps in response to both internal and external events. 
These traps switch control from the instruction stream to an address in a trap table. The only 
exception is the reset trap which transfers program control to virtual address o. 

Trap Categories 
Traps fall into two categories: synchronous and asynchronous. Synchronous traps are caused by 
hardware or by the Trap on Integer Condition Code (Ticc) instructions; they occur during the 
instruction that caused them. Asynchronous traps are caused by interrupt requests on inputs 
JRL[3:0]; they are synchronized by the IV and serviced after the current instruction has com­
pleted. 

Synchronous Traps 
The CY7C601 IV generates synchronous traps in response to internal conditions, external sig­
nals, or Trap (Ticc) instructions. These traps are taken immediately and the instruction that 
caused the trap is aborted BEFORE it changes any state in the processor. Synchronous traps may 
be caused by external hardware such as memory system. Table 4-1 lists the synchronous traps 
that occur in response to external signals: 

Trap Initiating Signal Condition 

Data Access Exception MEXC Memory error during data access 

Instruction Access Exception MEXC Memory error during instruction access 

Floating Point Exception FEXC Floating point unit error 

Coprocessor Exception CEXC Coprocessor unit error 

Table 4-1. Externally Generated Synchronous Exception Traps 

Asynchronous Traps 
Asynchronous traps occur in response to the Interrupt Request (IRL[3:0]) inputs. These traps 
wait for the currently executing instruction to complete before they are processed. The trap type 
(tt) value for the trap is determined by the value of JRL[3:0], and the contents of the trap table at 
the offset specified in Table 4-2. For the interrupt to be taken, IRL[3:0] must be greater than the 
value in the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). 

The JRL[3:0] inputs provide 15 levels of interrupts. IRL[3:0]=OOOO signifies no interrupts while 
IRL[3:0]=1111 signifies a non-maskable interrupt. All other IRL combinations represent interrupt 
requests which can be masked by the PIL field in the PSR. 
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IRL[3:0] are synchronized by 2 levels of D-type flip flops in the IU. The outputs of the two levels 
must agree before the interrupt can be processed. If the outputs of the two synchronizing levels 
disagree, the interrupt request will be ignored. This logic filters out transients on the IRL lines. 

Trap Addressing 
The Trap Base Register (TBR) generates the exact address of a trap handling routine. When a 
trap (other than some varieties of reset trap) occurs, the hardware writes a value into the trap 
type (tt) field of the TBR. This uniquely identifies the trap and serves as an offset into the table 
whose starting address is given by the TBA field of the TBR. 

For most traps, updating the TBR is accomplished by simply writing the number from the 
following tt assignment table into the tt field of the TBR. However, for Ticc instructions, the tt 
value is calculated by the IU before it is written into the tt field in the TBR. 

Trap Types and Priorities 
Each type of trap is assigned a priority; when multiple trap requests occur, the highest priority 
trap is taken, and lower priority traps are ignored. To ensure IU recognition, lower priority trap 
requests must either persist or be repeated. 

The following table shows the trap types, priorities, and assignments. 

Trap Priority Trap Type (tt) Synchronous or 
Asynchronous 

Reset 1 - Async 
Instruction Access 2 1 Sync 
Illegal Instruction 3 2 
Privileged Instruction 4 3 
Floating-Point Disabled 5 4 
Window Overflow 6 5 
Window Underflow 7 6 
Memory Address Not Aligned 8 7 
Floating-Point Exception 9 8 
Data Access Exception 10 9 
Tal! Overflow 11 10 Sync 
Trap Instructions (Tiec) 12 128-255 Svnc 
Interrupt Level 15 13 31 Async 
Interrupt Level 14 14 30 
Interrupt Level 13 15 29 
Interrupt Level 12 16 28 
Interrupt Level 11 17 27 
Interrupt Level 10 18 26 
Interrupt Level 9 19 25 
Interrupt Level 8 20 24 
Interrupt Level 7 21 23 
Interrupt Level 6 22 22 
Interrupt Level 5 23 21 
Interrupt Level 4 24 20 
Interrupt Level 3 25 19 
Interrupt Level 2 26 18 
Interrupt Level 1 27 17 Async 

Table 4-2. Trap Type and Priority Assignments 
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Trap Operation 
A trap causes the following action: 

• It disables traps (ET=O). 

• It copies the S field of the PSR into the PS field and then sets the S field to 1. 

• It decrements the CWP by 1, modulo the number of implemented windows. 

• It saves the PC and nPC into r[17] and r[18]' respectively, of the new window. 

• It sets the tt field of the TBR to the appropriate value. 

If the trap is not a reset, it writes the PC with the contents of TBR, and the nPC with the contents 
of TBR + 4. If the trap is a reset, it loads the PC with 0 and the nPC with 4. 

Unlike many other processors, the SPARC architecture does not automatically save the PSR into 
memory during a trap. Instead, it saves the volatile S field into the PSR itself and the remaining 
fields are either altered in a reversible manner (ET and CWP), or should not be altered in a trap 
handler until the PSR has been saved into memory. The last two instructions of a trap handler 
should be JMPL followed by RETT. This restores the PC, the nPC and the S bit of the PSR. 

Because the FPU and ill operate concurrently, the address that is saved from the PC as a result 
of a floating-point exception may not be the address of the FPop that caused the exception. If a 
floating-point exception occurs, the first element in the FO points to the FPop that caused the 
exception, and the remaining elements point to FPops that have been started by the FPU but 
have not yet completed. These can be re-executed or emulated. For additional information on 
trap handlers, see Appendix C. 

Interrupt Detection 
As long as ET = 1, the ill checks for interrupts. It compares the external interrupt level 
(IRL[O:3]) against the PIL field of the PSR, and if IRL[O:3] is greater than the PIL, or if IRL[O:3] 
is 15 (unmaskable), then a trap occurs at the level requested by IRL[O:3]. 

Interrupt Response Timing 

The Integer Unit samples the IRL[O:3] inputs at the rising edge of every clock. In order to 
properly synchronize these asynchronous inputs, the lines must be active for two consecutive 
clock edges to be accepted as valid inputs by the processor. Once the IRL input has been 
accepted, it is prioritized and the appropriate trap is taken during the next execute stage of the 
instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock 
plus one setup time before the execute phase of any instruction as shown in Figure 4-1. In this 
case the first instruction of the interrupt service routine is fetched during the fourth clock 
following the application of IRL. 
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Clock Cycle 2 3 4 5 6 7 

Interrupted Instruction F D EI-I-I-I-
First Service Routine Inst. F D E w 

Interrupt Input L iJ::-Taken -

Prioritized 
Latched 

Sampled 
Interrupt Acknowledge n 

----------~ ~-------

Clock Cycle 

4 Cycle 
Instruction 

Interrupted 
Instruction 

First Service 

Routine Inst. 

Interrupt J 
Input 

D 

F 

Figure 4-1. Best Case Interrupt Response Timing 

2 3 4 5 6 7 8 9 10 11 12 

E I lOP I lOP I lOP I W I 
1~;~;~~;i:;;;~~f~;~;;:~:1 D I E I - I -

I F D E I lOP I lopi 

Lc;,ed~"hed L ~,~.~c 
Interrupt n Acknowledge _____________ .... ~ ____ _ 

Figure 4-2. Worst Case Interrupt Response Timing 
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The worst case interrupt response occurs when the detection of the IRL input just misses the 
execute stage of a four-cycle instruction such as store double or atomic load/store as shown in 
Figure 4-2. In this case, the interrupt input must wait an additional 3 cycles for the next pipeline 
execute phase to occur. Also, the IRL input just misses the sampling clock edge resulting in an 
additional clock delay. As a result, the first instruction of the service routine is fetched in the 
eighth clock following the application of IRL. 

Both the above best and worst case interrupt timing assumes that the processor is not stopped via 
the application of an external hold signal, and the IRL input is not blocked by the occurrence of 
a synchronous (internal) trap. 

Interrupt Acknowledge 

As shown in Figure 4-1 and Figure 4-2, the Interrupt Acknowledge output pin goes active when 
an interrupt is taken, not when it is first detected and latched. This delay creates the possibility 
of ambiguity regarding which acknowledge is associated with which applied interrupt if IRL is 
not held stable until INTACK is received. 

Floating-Point/Coprocessor Exception Traps 
Floating-point/coprocessor exception traps are considered a separate class of traps because they 
are both synchronous and asynchronous. They are asynchronous because they occur sometime 
after the floating-point or coprocessor instruction that caused the exception. However, they are 
also synchronous because a floating-point or coprocessor instruction must be encountered in the 
instruction stream before the trap is taken. 

When the FPU or Coprocessor recognizes an exception condition, it enters an "exception 
pending mode" state, and remains in this state until the IU takes the fp exception trap. When the 
IU takes the exception trap, the FPU leaves "exception pending" state, and enters "exception 
mode" state. The FPU or coprocessor remains in the exception mode state until the 
floating-point or coprocessor queue has been emptied by execution of one or more STDFQ or 
STDCQ instructions. 

The PC that corresponds to a floating-point or coprocessor exception always points to a 
floating-point or coprocessor instruction since these exceptions are not recognized by the IU until 
the next floating-point or coprocessor instruction is encountered following the instruction which 
generated the exception. Therefore, the exception itself is always due to a previously executed 
floating-point or coprocessor instruction. The instruction which actually caused the trap and the 
value of the PC from which it was fetched are available in the floating-point (or coprocessor) 
queue. 

Trap Descriptions 
The following paragraphs describe the various traps, and the conditions that cause them. 

Reset 

A reset trap occurs when the IU leaves reset mode and enters execute mode. This is controlled 
by the reset input signal. The IU enters reset mode when the reset input signal is active, and 
enters execute mode when the reset input signal goes inactive. Except in one situation, reset does 
not change the value of the tt field of the TBR; the exception is when a return from trap 
instruction is executed while traps are not enabled and the processor is not in supervisor mode 
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(see description of return from trap instruction in Appendix B). Also, a reset trap causes the ill 
to begin execution at location 0, regardless of the value of the TBR. 

Reset traps set the PSR S bit to 1 and the ET bit to O. All other PSR fields, and all other registers 
retain their values from the last execute mode, except that on power-up they are undefined. An 
instruction access exception trap occurs when the memory exception input pin is active for a 
memory address used in an instruction fetch. 

Illegal Instruction 

This trap occurs: 

1) when ~ UNlMP instruction is encountered 

2) when an unimplemented instruction (FPops and CPops excluded) is encountered 

3) when an instruction is fetched which, if executed, would result in an illegal processor state: 

a. Writing the Current Window Pointer (CWP) with a value greater than the 
number of implemented windows (7 for the CY7C608) 

b. Executing an Alternate Space instruction which has its i bit set to 1 

c. Executing an RETT instruction with ET=l while in supervisor mode 

d. Executing an IFLUSH instruction with the input pin Flush=O 

Unimplemented floating-point and unimplemented coprocessor instructions do not generate 
illegal instruction traps. They generate floating-point exceptions and coprocessor exception 
traps, respectively. 

Privileged Instruction 

This trap occurs when a privileged instruction is encountered while the S bit in the PSR = O. 

Floating-Point Disabled 

This trap occurs when a FPop, FBfcc, or a floating-point load or store is encountered while either 
the EF bit in the PSR = 0 or no FPU is present as indicated by the processors Floating-Point 
Present (FP) input pin. 

Coprocessor Disabled 

This trap occurs when a CPop, CBccc, or a coprocessor load or store instruction is decoded while 
either the EC bit in the PSR = 0 or no coprocessor is present as indicated by the processors 
Coprocessor Present (CP) input pin. 

Window Overflow 

This trap occurs when a SA VB instruction would, if exe~uted, cause the CWP to point to a 
window marked invalid in the WIM. 

Window Underflow 

This trap occurs when a RESTORE instruction would, if executed, cause the CWP to point to a 
window marked invalid in the WIM. 
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Memory Address not Aligned 

This trap occurs when a load, store or JMPL instruction would, if executed, generate a memory 
address or a new PC value that is not properly aligned. 

Floating-Point Exception 

This trap occurs when the FPU is in exception pending state and a floating-point instruction (FP 
operate, floating-point load/store, FBfcc) is encountered in the instruction stream. The type of 
exception is encoded in the tt field of the FSR as described in the Registers section of chapter 2. 

Coprocessor Exception 

This trap occurs when the CP is in exception pending state and a coprocessor instruction (CP 
operate, coprocessor load/store, CBccc) is encountered in the instruction stream. 

Data Access Exception 

This trap occurs when the memory exception input pin is active for a memory address that 
corresponds to a data movement by a load or store instruction. 

Tag Overflow 

This trap occurs when a TADDccTV or TSUBccTV instruction is executed which causes the 
overflow bit of the integer condition codes to be set. 

Trap Instruction 

This trap occurs when a taken Ticc instruction is executed. 

Interrupt Level 

External interrupts are controlled by the value of lRL[3:0]. A value of 0 indicates that no 
interrupt is requested. Level 1 is the lowest priority interrupt and 15 is the highest. Interrupt level 
15 cannot be masked by the Processor Interrupt Level (PIL) field of the PSR. When ET = 1, an 
external interrupt is recognized if lRL[3:0] = 15 or lRL[3:0] > PIL. When ET = 0 or (lRL[3:0] =;f 
15 and lRL[3:0] < PIL), no external interrupt is recognized. 
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CYPRESS ==================== SEMICONDUCTOR Pin Description 

The Integer Unit's external signals fall into three categories: 1) memory subsystem interface 
signals, 2) floating-point unit/coprocessor interface signals, and 3) miscellaneous I/O signals. 
These are described in the following sections. Paragraphs after the tables describe each signal. 
Signals that are active LOW are marked with an overscore; all others are active HIGH. For 
example, WE is active LOW, while RD is active HIGH. The signals described in this chapter are 
summarized in Figure 5-1 and in Table 5-3 at the end of the chapter. 

Memory Subsystem Interface Signals 
The memory interface signals consist of 40 bits of address (32 bits of address and an 8-bit 
address space identifier), 32 bits of bidirectional data lines, 2 bits to identify the size (byte, 
halfword, word, or double word) of data bus transactions, and various control signals. 

A[31:0] Address Bus 

These 32 bits are the addresses of instructions or data and they are sent out "unlatched" by the 
Integer Unit. Assertion of the MAO signal during a cache miss (which is initiated by pulling one 
of the MHOLD inputs low) will force the Integer Unit to put the previous (missed) address on 
the address bus. A[31:0] pins are tristated if the AOE or TOE signal is deasserted (HIGH). 

ASI[7:0] Address Space Identifier 

These 8 bits are the Address Space Identifier for an instruction or data access to the memory. 
ASI[7:0] are sent out "unlatched" by the Integer Unit. The value on these pins during any given 
cycle is the Address Space Identifier corresponding to the memory address on the A[31:0] pins 
at that cycle. Assertion of the MAO signal during a cache miss (which is initiated by pulling one 
of the MHOLD inputs low) will force the Integer Unit to put the previous Address Space Identi­
fier on the ASI[7:0] pins. ASI[7:0] pins are three-stated if the AOE or TOE signal is deasserted 
(HIGH). Normally, the encoding of the ASI bits is as shown in Table 5-1. 

Address Space Identifier (ASI) Address Space 

Bit 7 0 

00001000 User Instruction 

00001010 User Data 

00001001 Supervisor Instruction 

00001011 Supervisor Data 
\ 

Table 5-1. AS! Bit Assignment 
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Pin Description 

....... A(0-31) .. FP 

....... ASI(0-7) - FHOLD .. 
: SIZE(O-l) .: FEXC 

-- FXACK 
~ MAO · ~ .. FCC(O-l) 

....... 0(0-31) ..... : FCCV 

""'I11III- r -- FINSl 
MDS • FINS2 

~ 

:- ~ MHOLDA ... ... FPSYN 
MHOLDB • --

BHOLD :. 
TOE 

.... 

COE 
... CY7C601 • ... 

CLK · SPARC INST .. 
IRL(0-3) 

FLUSH ~ ... ... INTACK ... 
MEXC .. Processor 

... 
RESET .. ... ... ERROR .. RD 

WE 

-- WRT CP .. --... DXFER .. CHOLD 

--.. LDSTO ... CEXC 

-- INULL -- CXACK .. ~ ... LOCK .. CCC(O-l) 

DOE • -: CCCV 

AOE :- -- CINSl 
~ 

1FT 
.... 

CINS2 ... ~ 

Figure 5-1. Integer Unit Pinout 

D[31:0] Data Bus 

D[31:0] is the bi-directional data bus to and from the Integer Unit. The data bus is driven by the 
Integer Unit during the execution of integer store instructions and the store cycle of atomic load 
store instructions. Similarly, the data bus is driven by the Floating-Point Unit only during the 
execution of floating-point store instructions. 
The store data is sent out unlatched and must be latched externally before it is used. Once 
latched, store data is valid during the second data cycle of a store single access, the second and 
third data cycle of a store double access, and the third data cycle of an atomic load store access. 
The alignment for load and store instructions is done inside the processor. A double word is 
aligned on an 8-byte boundary, a word is aligned on a 4-byte boundary, and a half word is 
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aligned on a 2-byte boundary. D(31) corresponds to the most significant bit of the least 
significant byte of the 32-bit word. If a double word, word, or half word load or store instruction 
generates an improperly aligned address, a memory address not aligned trap will occur. 
Instructions and operands are always expected to be fetched from a 32-bit wide memory. 

SIZE[1:0] Bus Transaction Size 

These bits specify the data size associated with a data or instruction fetch. Size bits are sent out 
"unlatched" by the Integer Unit. The value on these pins at any given cycle is the data size 
corresponding to the memory address on the A[31:0] pins at that cycle. SIZE[1:0] remains valid 
on the bus during all data cycles of loads, stores, load doubles, store doubles and atomic load 
stores. Since all instructions are 32-bits long, SIZE[1:0] is set to "10" during all instruction fetch 
cycles. Encoding of the SIZE[1:0] bits is shown in Table 5-2. 

Size 1 Size 0 Data Transfer Type 

0 0 Byte 
0 1 Halfword 
1 0 Word 
1 1 Word (Load/Store Double) 

Table 5-2. Size Bit Assignment 

MHOLD (AlB) Memory Holds 

The processor pipeline will be frozen while MHOIDA is asserted and the IU outputs will revert 
to and maintain the value they had at the rising edge of the clock in the cycle before MHOIDA 
was asserted. MHOIDA is used to freeze the clock to both the Integer and Floating-Point Units 
during a cache miss (for systems with cache), or when slow memory is accessed. This signal 
must be presented to the processor chip at the beginning of each processor clock cycle and be 
stable during the high time of the processor clock. Either MHOLDA or MHOIDB can be used for 
stopping the processor during a cache miss or memory exception. 

MHOIDB has the same definition as MHOIDA. The processor hardware uses the logical "OR" 
of all hold signals (i.e., MHOIDA, MHOIDB and BRaID) to generate a final hold signal for 
freezing the processor pipeline. All RaID signals are latched (transparent latch with clock high) 
in the IU before they are used. 

BHOLD Bus Hold 

BRaID is asserted by the I/O controller when an external bus master requests the data bus. 
Assertion of this signal will freeze the processor pipeline. External logic should guarantee that 
after deassertion of BRaID, the data at all inputs to the chip is the same as what it was before 
BHOLD was asserted. Since the IU processes the BROLD input through a transparent latch 
before it is used, this signal must be presented to the processor chip at the beginning of each 
processor clock cycle. BHOLD should be used only for bus access requests by an external 
device since the MDS and MEXC signals are not recognized while this input is active. 
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Pin Description 

MDS Memory Data Strobe 

Assertion of this signal enables the clock input to the on-chip Instruction Register (during an 
instruction fetch) or to the Load Result Register (during a data fetch). In a system with cache, 
MDS is used to signal the processor when the missed data (cache miss) is ready on the bus. In a 
system with slow memories, MDS is used to signal the processor when the read data is available 
on the bus. 

MDS must be asserted only while the processor is frozen by either the MHOLDA or MHOLDB 
input signals. The IU samples the MI5S signal via an on-chip transparent latch before it is used. 
The lVIDS signal is also used for strobing memory exceptions. In other words, MDS should be 
asserted whenever'MEXC is asserted (see MEXC definition). 

MEXC Memory Exception 

This signal is asserted by the memory (or cache) controller to initiate an instruction (or data) 
exception trap. MEXC is latched in the processor at the rising edge of CLK and is used in the 
following cycle. If MEXC is asserted during an instruction fetch cycle an instruction access 
exception is generated. If MEXC is asserted during a data fetch cycle a data access exception 
trap is generated. 

The MEXC signal is used during (MHOLD) in conjunction with the MDS signal to indicate to 
the IU that the memory system was unable to supply valid instruction or data. If MDS is applied 
without MEXC, the IU accepts the contents of the data bus as valid information. When MDS is 
applied with 'MEXC an exception trap is generated and the contents of the data bus is ignored by 
the IU. (Le., MHOLD and MDS must be LOW when MEXC is asserted). MEXC must be 
de-asserted in the same clock cycle in which MHOLD is released. 

MAO Memory Address Output 

This signal is used during a MHOLD by the Integer Unit to select between the current memory 
access parameters and the previous (missed) memory parameters (Le. the value of those 
parameters at the second rising edge of CLK before MHOLD was applied). A logic HIGH value 
at this pin during a cache miss causes the Integer Unit to put A[31:0], ASI[7:0], SIZE[1:0], RD, 
WE, WRT, LDSTO, LOCK, and DXFER values corresponding to the missed memory address on 
the bus. Normally, MAO should be kept at a LOW level, selecting the access parameters for the 
current access. MAO should not be used during store cycle misses because the WE output would 
be lost. 

AOE Address Output Enable 

De-assertion of this signal three-states all output drivers associated with A[31:0] and ASI[7:0] 
outputs. AOE is connected directly to the output drivers of the address and ASI signals and must 
be asserted during normal operations. This signal should be de-asserted only when the bus is 
granted to another bus master (Le., when either BHOLD, MHOLDA or MHOLDB is asserted). 

DOE Data Output Enable 

De-assertion of this signal three-states all output drivers of the data D[31:0] bus. DOE is 
connected directly to the data bus output drivers and must be asserted during normal operations. 
This signal should be de-asserted only when the bus is granted to another bus master (Le., when 
either BHOLD, MHOLDA or MHOLDB is asserted). 
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COE Control Output Enable 

De-assertion of this signal three-states all output drivers associated with SIZE [1: 0], RD, WE, 
WRT, LOCK, LDSTO and DXFER outputs. COE is connected directly to the output drivers and 
must be asserted during normal operations. This signal should be de-asserted only when the bus 
is granted to another bus master (i.e., when either BHOLD, MHOLDA or MHOLDB is 
asserted). 

RD Read 

This signal specifies whether the current memory access is a read or write operation. It is sent 
out "unlatched" by the Integer Unit and must be latched externally before it is used. RD is set to 
"0" only during data cycles of store instructions including the store cycles of atomic load store 
instructions. This signal when used in conjunction with SIZE[1:0], ASI[7:0], and LDSTO, can be 
used to check access rights of bus transactions. In addition, the RD signal may be used to turn 
off the output drivers of data RAMs during a store operation. For atomic load store instructions 
the RD signal is "1" during the first data cycle (read cycle) and "0" during the second and third 
data cycles (write cycle). 

WE Write Enable 

This signal is asserted by the Integer Unit during the second data cycle of store single 
instructions, the second and third data cycles of store double instructions, and the third data 
cycle of atomic load store instructions. The WE signal is sent out "unlatched" and must be 
latched externally before it is used. The WE signal may be externally qualified by HOLD signals 
(Le., MHOLDA and MHOLDB) to avoid writing into the memory during memory exceptions. 

WRT Advanced Write 

This signal is asserted (set to "I") by the processor during the first data cycle of single or double 
integer store instructions, the first data cycle of single or double floating-point store instructions, 
and the second data cycle of atomic load/store instructions. WRT is sent out "unlatched" and 
must be latched externally before it is used. 

LDSTO Load/Store 

This signal is asserted by the Integer Unit during the data cycles (which include the load cycle 
and both cycles of the store operation) of atomic load store operations. LDSTO is sent out 
"unlatched" by the Integer Unit and must be latched externally before it is used. 

LOCK 

This signal is set to "1" when the processor needs the bus for multiple cycle transactions such as 
atomic load store, double loads and double stores. LOCK is sent "unlatched" and should be 
latched externally before it is used. The bus may not be granted to another bus master as long as 
LOCK signal is asserted (Le., BHOLD should not be asserted in the following processor clock 
cycle when LOCK=1). 

DXFER Data Transfer 

This signal is asserted by the processor at the beginning of all bus data transfer cycles. DXFER 
is "unlatched" and DXFER = 1 indicates a data cycle. 
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lNULL Integer Unit Nullify Cycle 

Assertion of INULL indicates that the current memory access (whose address is held in an 
external latch) is to be nullified by the processor. INULL is intended to be used to disable cache 
misses (in systems with cache) and to disable memory exception generation for the current 
memory access (Le., MDS and MEXC should not be asserted for a memory access when 
lNULL=1). 

INULL is a latched output and is active during the same cycle as the address which it nullifies. 
INULL is asserted under the following conditions: 1. During the second cycle of a store 
instruction. 2. Whenever the IV address is invalid due to an external or internal exception. If a 
Floating-Point Unit or coprocessor unit is present in the system INULL should be or'ed with the 
FNULL and CNULL signals from these units. 

1FT Instruction Cache Flush Trap 

The state of this pin determines whether or not execution of the !FLUSH instruction generates a 
trap. If IFT =1, then !FLUSH executes like a NOP with no side effects. If IFT =0, then !FLUSH 
causes an Unimplemented Instruction Trap. 

Floating-Point/Coprocessor Interface Signals 
The floating-point/coprocessor unit interface is a dedicated group of connections between the IV 
and the FPU/Coprocessor. Note that no external circuits are required between the IV and the 
FPU/Coprocessor; all traces should connect directly. The interface consists of the following 
signals, described below. 

FP Floating-Point Unit Present 

This signal indicates whether or not a Floating-Point Unit exists in the system. The FP signal is 
normally pulled up to VDD by a resistor. It is grounded when the FPU chip is present. The 
Integer Unit generates a floating-point disable trap if FP = 1 during the execution of a 
floating-point instruction, FBfcc instruction, or floating-point load and store instructions. 

CP Coprocessor Unit Present 

This signal indicates whether or not a Coprocessor exists in the system. The CP signal is 
normally pulled up to VDD by a resistor. It is grounded when the Coprocessor chip is present. 
The Integer Unit generates a Coprocessor Disable Trap if CP = 1 during the execution of a 
coprocessor instruction, CBccc instruction, or coprocessor load and store instructions. 

FCC[1:0] Floating-Point Condition Codes 

These bits are taken as the current condition code bits of the FPU. They are considered valid if 
FCCV=1. During the execution of the FBfcc instruction, the processor uses these bits to 
determine whether the branch should be taken or not. FCC[1:0] are latched by the processor 
before they are used. 

CCC[1:0] Coprocessor Condition Codes 

These bits are taken as the current condition code bits of the Coprocessor. They are considered 
valid if CCCV=1. During the execution of the CBccc instruction, the processor uses these bits to 
determine whether the branch should be taken or not. CCC[1:0] are latched by the processor 
before they are used. 
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Pin Description 

FCCV Floating-Point Condition Codes Valid 
This signal should be asserted only when the FCC[1:0] bits are valid. The Floating-Point Unit 
de-asserts FCCV if pending floating-point compare instructions exist in the floating-point 
queue. FCCV is re-asserted when the compare instruction is completed and the floating-point 
condition codes FCC[1:0] are valid. The Integer Unit will enter a wait state if FCCV is 
de-asserted (Le., FCCV = "0"). The FCCV signal is latched (transparent latch) in the IU before 
it is used. 

CCCV Coprocessor Condition Codes Valid 

This signal should be asserted only when the CCC[1:0] bits are valid. The Coprocessor 
de-asserts CCCV if pending coprocessor compare instructions exist in the coprocessor queue. 
CCCV is re-asserted when the compare instruction is completed and the coprocessor condition 
codes CCC[1:0] are valid. The Integer Unit will enter a wait state if CCCV is de-asserted (Le., 
CCCV = "0"). The CCCV signal is latched (transparent latch) in the IU before it is used. 

FHOLD Floating-Point Hold 

This signal is asserted by the Floating-Point Unit if a situation arises in which the FPU cannot 
continue execution. The Floating-Point Unit checks all dependencies in the Decode stage of the 
instruction and asserts FROID (if necessary) in the next cycle. This signal is used by the Integer 
Unit to freeze the instruction instruction pipeline in the same cycle. The FPU must eventually 
deassert FROID in order to unfreeze the Integer Unit's pipeline. The FROID signal is latched 
(transparent latch) in the IU before it is used. 

CHOLD Coprocessor Hold 

This signal is asserted by the Coprocessor if a situation arises in which the Coprocessor cannot 
continue execution. The Coprocessor checks all dependencies in the Decode stage of the 
instruction and asserts CROID (if necessary) in the next cycle. This signal is used by the Integer 
Unit to freeze the instruction pipeline in the same cycle. The Coprocessor must eventually 
deassert CROID in order to unfreeze the Integer Unit's pipeline. The CROID signal is latched 
(transparent latch) in the IU before it is used. 

FEXC Floating-Point Exception 

Assertion of this signal indicates that a floating-point exception has occurred. FEXC must 
remain asserted until the Integer Unit takes the trap and acknowledges the FPU via FXACK 
signal. floating-point exceptions are taken only during the execution of floating-point 
instructions, FBfcc instruction and floating-point load and store instructions. FEXC is latched in 
the Integer Unit before it is used. The FPU should deassert FROID if it detects an exception 
while FROID is asserted. In this case FEXC should be asserted a cycle before FROID is 
deasserted. 

CEXC Coprocessor Exception 

This signal is asserted by the Integer Unit whenever a new instruction is being fetched. It is used 
by the FPU or coprocessor to latch the instruction on the D[31:0] bus into the FPU or 
coprocessor instruction buffer. The FPU (or coprocessor) needs two instruction buffers (D1 and 
D2) to save the last two fetched instructions. When INST is asserted a new instruction enters into 
the D1 buffer and the old instruction in D1 enters into the D2 buffer. 
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Pin Description 

INST Instruction Fetch 

This signal is asserted by the Integer Unit whenever a new instruction is being fetched. It is used 
by the FPU or coprocessor to latch the instruction on the D[31:0] bus into the FPU or 
coprocessor instruction buffer. The FPU (or coprocessor) needs two instruction buffers (D1 and 
D2) to save the last two fetched instructions. When INST is asserted a new instruction enters into 
the D1 buffer and the old instruction in D1 enters into the D2 buffer. 

FLUSH Floating-Point/Coprocessor Instruction Flush 

This signal is asserted by the Integer Unit and is used by the FPU or Coprocessor to flush the 
instructions in its instruction registers. This may happen when a trap is taken by the Integer Unit. 
Instructions that have entered into the floating-point (or coprocessor) queue may continue their 
execution if FLUSH is raised as a result of a trap or exception other than floating-point (or 
coprocessor) exceptions. 

FINSl Floating-Point Instruction in Buffer 1 

This signal is asserted by the Integer Unit during the Decode stage of an FPU instruction if the 
instruction is in the D1 buffer of the FPU chip. The FPU uses this signal to latch the instruction 
in D1 buffer into its Execute stage instruction register. 

FINS2 Floating-Point Instruction in Buffer 2 

This signal is asserted by the Integer Unit during the Decode stage of an FPU instruction if the 
instruction is in the D2 buffer of the FPU chip. The FPU uses this signal to latch the instruction 
in D2 buffer into its Execute stage instruction register. 

CINSl Coprocessor Instruction in Buffer 1 

This signal is asserted by the Integer Unit during the Decode stage of a coprocessor instruction if 
the instruction is in the D1 buffer of the coprocessor chip. The coprocessor uses this signal to 
latch the instruction in D1 buffer into its Execute stage instruction register. 

CINS2 Coprocessor Instruction in Buffer 2 

This signal is asserted by the Integer Unit during the Decode stage of a coprocessor instruction if 
the instruction is in the D2 buffer of the coprocessor chip. The coprocessor uses this signal to 
latch the instruction in D2 buffer into its Execute stage instruction register. 

FXACK Floating-Point Exception Acknowledge 

This signal is asserted by the Integer Unit in order to acknowledge to the FPU that the current 
FEXC trap is taken. The FPU must deassert FEXC after it receives an asserted level of FXACK 
signal so that the next floating-point instruction does not cause a "repeated" floating-point 
exception trap. 

CXACK Coprocessor Exception Acknowledge 

This signal is asserted by the Integer Unit in order to acknowledge to the Coprocessor that the 
current CEXC trap is taken. The Coprocessor must deassert CEXC after it receives an asserted 
level of CXACK signal so that the next coprocessor instruction does not cause a "repeated" 
coprocessor exception trap. 
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Pin Description 

Miscellaneous 1/0 Signals 
These signals are used by the IV to control external events or to receive input from external 
events. This interface consists of the signals discussed below. 

IRL[3:0] Interrupt Request Level 

The data on these pins defines the External Interrupt Level. IRL[3:0]=0000 indicates that no 
external interrupts are pending. The Integer Unit uses two on-chip synchronizing latches to 
sample these signals. A given interrupt level must remain valid for at least two consecutive 
cycles to be recognized by the Integer Unit. IRL[3:0]=1111 signifies an non-maskable interrupt. 
All other interrupt levels are maskable by the PIL field of the Processor State Register (PSR). 
External interrupts should be latched and prioritized by the external logic before they are passed 
to the Integer Unit. The external interrupt latches should keep the interrupts pending until they 
are taken (and acknowledged) by the Integer Unit. External interrupts can be acknowledged by 
software or by the Interrupt Acknowledge (INT ACK) output. 

INTACK Interrupt Acknowledge 

This signal is asserted by the Integer Unit when an external interrupt is taken. 

RESET Integer Unit Reset 

Assertion of this pin will reset the Integer Unit. The RESET signal must be asserted for a 
minimum of eight processor clock cycles. After a reset, the integer unit will start fetching from 
address o. The RESET signal is latched by the Integer Unit before it is used. 

ERROR Error State 

This signal is asserted by the Integer Unit when a trap is encountered while traps are disabled via 
the ET bit in the PSR. In this situation the Integer Unit saves the PC and nPC registers, sets the tt 
value in the TBR, enters into an error state, asserts the ERROR signal and then halts. The only 
way to restart the processor trapped in the error state, is to trigger a reset by asserting the 
RESET signal. 

TOE Test Mode Output Enable 

This signal is used to tristate all output drivers of the processor chip. It is used to isolate the chip 
from the rest of the system for debugging purposes. 

FPSYN Floating-Point Synonym Mode 

This pin is a mode pin which is used to allow execution of additional instructions in future 
designs. It should be normally kept deasserted (FPSYN=O) to disable the execution of these 
instructions. 

CLK Clock 

CLK is a 50% duty-cycle clock used for clocking the IV's pipeline registers. It is HIGH during the 
first half of the processor cycle, and LOW during the second half. The rising edge of CLK 
defines the beginning of each pipeline stage in the IV chip. 
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Pin Description 

Pin Name Description Input/Output Active 

A(O-3i) Address 3-State Output 
ASI(O-7) Address Space Identifier 3-State Output 
D(O-3i) Data 3-State BiDir. 
MEXC Memory Exception Input LOW 
MHOLDA Memory Hold A Input LOW 
MHOLDB Memory Hold B Input LOW 
BHOLD Bus Hold Input LOW 
AOE Address Output Enable Input LOW 
DOE Data Output Enable Input LOW 
COE Control Output Enable Input LOW 
MDS Memory Data Strobe Input LOW 
MAO Memory. Address Output Sel. Input 
1FT Instruction Flush Trap Input LOW 
SIZE(O-i) Bus Transaction Size 3-State Output 
RD Read 3-State Output HIGH 
WE Write 3-State Output LOW 
LDSTO Load/Store Operation 3-State Output HIGH 
INULL Null Cycle 3-State Output HIGH 
LOCK Multi-Cycle Bus Lock 3-State Output HIGH 
DFETCH Data Fetch Cycle 3-State Output HIGH 
WRT Advanced Write 3-State Output HIGH 
FP FPU Present Input w Pullup LOW 
FCC(O-i) FPU Condition Codes Input 
FCCV Condition Codes Valid Input HIGH 
FHOLD FPU Hold Input LOW 
FEXC FPU Exception Input LOW 
CP Coprocessor Present Input w Pullup LOW 
CCC(O-i) CP Condition Codes Input 
CCCV Condition Codes Valid Input HIGH 
CHOLD CP Hold Input LOW 
CEXC CP Exception Input LOW 
INST Instruction Fetch Cycle 3-State Output HIGH 
FLUSH Flush FP/CP Instruction 3-State Output HIGH 
FINS 1 FP Instruction Stage 1 3-State Output HIGH 
FINS2 FP Instruction Stage 2 3-State Output HIGH 

FXACK FP Exception Acknowledge 3-State Output HIGH 
CINSi CP Instruction Stage 1 3-State Output HIGH 
CINS2 CP Instruction Stage 2 3-State Output HIGH 
CXACK CP Exception Acknowledge 3-State Output HIGH 
IRL(O-3) Interrupt Request Lines Input 

INTACK Interrupt Acknowledge 3-State Output HIGH 
RESET System Reset Input LOW 
ERROR IU Error Mode 3-State Output LOW 
TOE Test Mode Output Enable Input HIGH 
FPSYN FPU Synonym Mode Input 

CLK System Clock Input 
VSSO Output Driver Ground Ground 
VCCO Output Driver Power Power 
VSSI Main Internal Ground Ground 
VCCI Main Internal Power Power 
VSST Input Circuit Ground Ground 
VCCT Input Circuit Power Power 

Table 5-3. Pinout Summary 
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CHAPTER 6 
CYP~SS===================== 
SEMICONDUCTOR Bus Operation 

This section describes standard bus operations. These operations include instruction fetch, load 
integer, load double integer, load floating-point, load double floating-point, store integer, store 
double integer, store floating-point, store double floating-point, atomic load/store unsigned byte, 
and floating-point operations (FPop). 

Instruction Fetch 
The processor sends out address bits A[31:0] at the beginning of the fetch cycle that must be 
latched externally. Data is expected at the end of the fetch cycle and it is latched from the data 
bus into the on-chip instruction register. If the external hardware cannot provide the instruction 
during the fetch cycle, wait states must be used, as described in the Memory Interface chapter. 
The first clock cycle in Figure 6-1 shows an instruction fetch. Since all instruction fetches are 
single-cycle operations, the pipe line runs smoothly with no delays. Under some conditions, the 
processor is unable to fetch an instruction, usually because a prior multi-cycle instruction needs 
to use the bus. When this occurs, the processor asserts INUll to indicate that the current fetch 
cycle should be nullified. 

CLOCK 

ADDRESS 

SIZE 

RD Z071 '<U0Vff I '0W~ I '<U0V4' 
Z07 '<U0Vff I ~ff I '<U0V4' 

DATA IN ------~~ ~>----------

~ ~#' II WY~ I h0W4' 
I I 

DXFER 

Figure 6-1. Instruction Fetch Followed by Load Cycle 
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Bus Operation 

Load Transactions 
The second clock cycle in Figure 6-1 shows the timing for a load single integer instruction. Load 
single is a two cycle operation: The first cycle is a regular instruction fetch while the second 
cycle is consumed in loading the required information from memory. Since the second cycle 
requires usage of the bus, instruction fetch has to be suspended for one clock. In other words, 
Load single causes a one-clock bus delay. 

CLOCK ---.J I I r-
I I I 

ADDRESS~~ff~~~ 
I I I I 

SIZE ~////?(ill)W////~ff/l>GUQl/////I?GUel 
I I I I 

RD (l/ I all//////1 I '<1///////1 I '<1///////1 I 0//7/////7 '({l 

WEWI~mw/I~AW/I wwm/lIWW/~ ~ 
WRT 7A mAW//>,. mAW//>,. I////ff/A I////////>.. Ili 

I I I I 
DATA IN Gi) ~ ~ Gi)-

I 
I I 

I 
LOCK (l/ 

I W/ffftA £mW.#A OJ. 
I I DXFER 7lb. &//UTL7 

I 
WM//£7 

I 
~Q~ OJ. 

INULL 7h.. I 

Figure 6-2. Load Double Word 

Figure 6-2 shows the timing for a load double integer instruction. LA, LS, and LD labels indicate 
the address, size and data information respectively for the Load operation while lA, IS and ID 
indicate cyles associated with instruction fetches. The instruction consumes three clock cycles 
and causes a two-clock bus delay. The first cycle fetches the load double instruction, the second 
cycle loads in the first word, and the third cycle loads in the second word. The address of the 
second load is equal to the address of the first load + 4, and the size bits = 11 (indicating a 
double access)., Load single floating-point instructions and load double floating-point instructions 
are similar to their integer counter-parts except that floating-point control signals are used. 

Store Transactions 
The second access in Figure 6-3 shows a store single integer instruction (the first access is a load 
single integer). LA, LS, and LD labels indicate the address, size and data information 
respectively for the Load operation while SA, SS and SD indicate cyles associated with the Store 
operation. IA and IS indicate the beginning of the next instruction fetch. A store single operation 
requires three clock cycles and causes a 2-clock bus delay. During the first cycle, the store 
instruction is fetched. Since this is a normal instruction fetch cycle, it does not incur a bus delay. 
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Bus Operation 

During the second cycle, the address of the store is driven onto the bus where it remains well 
into the third cycle. Store data is generated at the middle of cycle 2 and removed at the middle 
of cycle 3. Actual memory update occurs in cycle 3. The store address is delivered early in cycle 
2 so that it can be checked for possible cache miss or memory exception. Also note that INUlL 
goes HIGH during the cycle in which the data to be stored is placed on the bus. This is to 
indicate that the address outputs of this cycle should not be used to generate a cache miss and 
resultant MHOLD. Tags should have been checked and any miss generated in the previous cycle. 
This arrangement allows external cache logic an extra cycle to determine whether or not data is 
present in the cache and to apply MHOLD if it is not. 

~ I I I 
~ff//>GlX////I/~~/////;) 

CLOCK 

ADDRESS 

I I I I 
SIZE ~/ff~~/ff//I>GD<l///////> 

RD J i ,?,/Uff/A ! l/////ffA I ///II/1II/ i 'W//I//I) 

WE J I '(1/1//1/// II '<///////4. II ////// //// I V.//// /1ft) 
WRT 7h //7/7////7 'W/////4. ////////A u/lu//l) 

LOCK 

---<~ I 

/17/7//777 i «7.,",~~?;~~"Z"'?'h~~:...I~(Ii---'h";"""~~~~~";"'; /AL.oIUIIo-~O"Z",?'hL.ol~:...IZ~Z",Z,-,-V 
///////1// I W/I///A II ////////A 

____ ~ __________ ~ __________ ~~ __ _JI 

DATA IN 

DATA OUT 

DXFER 

INULL ' ..... _--
Figure 6-3. Load Followed by Store 

Figure 6-4 shows the timing for a store double integer instruction. The timing is very similar to 
the store single integer timing except an extra cycle is needed to store the second word. In other 
words, store double integer is a 4 cycle operation which causes a 3-clock bus delay. Note that the 
address of the second store is equal to the first address + 4, and that the size bits are set to 1, 1 
to indicate a double access. The timings for a single and double floating-point store instructions 
are similar to the integer stores, except that they generate FINSI and FINS2 during the decode 
cycle of the floating-point instruction, as well as other floating-point signals. Note that INUlL 
operates exactly as it does in the case of a store single word instruction (indicating that tags 
should not be checked during the first data store cycle). INULL does not however remain active 
for the second data store cycle. Since the data and instructions of SPARe processors are fully 
aligned, the second data cycles of Load and Store Double operations will not generate a miss if 
the first data cycle did not unless the cache line size is less than two words. 
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Bus Operation .~cm&ss 
~, ~================================================== 

CLOCK ---1 I I I I 
ADDRESS~///~~/I//~//~ 

I I I I I 
SIZE~//~~~~ 

RD J i 'W/////A. I uN/HIh I /IH////A. I lI//lUm i '<lL 

WEJI~ft//ftiIWftft~llamw~IIU@Wftl'<lL 
WRT7)". 1//1///1/1 \'/u/uA I/////IIA I///Il/~ /lj 

DATA IN 

DATA OUT 

------cG£D I I 
I ( SDl >--< SD2 )--

/lj 

/lj 

LOCK 72>,. /lI///I/17 I 'W/////Il I V//////A I ////////A 

DXFER72>,. 1/////1/// I W///I/ft I 'W/Tff/// I o/u/l/~ 
INULL / ' .... ____ -:... __ 

Figure 6-4. Store Double Word 

Data Bus Contents 
The following diagrams illustrate the behavior of the data bus lines D(O-31) during Load and 
Store operations. Figure 6-5 shows the relationship between the data transferred during word, 
halfword, and byte operations and the pins of the data bus. The processor automatically aligns 
byte (and halfword) transfers as shown by the examples in Figure 6-6 and Figure 6-7. 

DATA BUS 24123 16 115 01 

Size = 10 31 
Word n 0 

Size = 01 15 
Halfword n 

0 15 
Halfword n+2 

0 

Size = 00 
7 

Byte n 0/7 Byte n+1 0 7 
Byte n+2 0/7 Byte n+3 0 

Address n n+1 n+2 n+3 

Figure 6-5. Data Bus Contents During Load/Store 
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Address n n+1 n+2 n+3 
Data Bus 

Destination Register 

Figure 6-6. Byte Load Example (From Address n+ 1) 

Address n n+1 n+2 n+3 
Data Bus 1[3~1=====2~4~1~2~3====21~6111111117~====~O I 

Source Register 1~1~~~~~~~~~~~~~~~~~~~~~~1111_111 

Figure 6-7. Byte Store Example (TO Address n+2) 

Atomic Transactions 
Atomic transactions consist of two or more steps which are indivisible; once the sequence is 
started, it cannot be interrupted. To ensure that it has the bus for the second transaction, the IU 
asserts LOCK for as long as necessary. Figure 6-8 shows the timing of an atomic load and store 
unsigned word instruction (SWAP). It takes 3 extra cycles, and is described in Appendix B. 
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CLOCK ----l I I I 
ADDRESS 7/XLA1W////7Il>GID<1lff/~////hXEXI///////> 

-,-- I I I 
SIZE ~ff/l>GD<lU7////)@l)(7/Uff72>GI)<1//7U//) 

RD J I W///uA ! 1////7///>,. I ////l/U/7 I '<1///////.1 

J ! <qufl777')' rt-;«V././h.1 @UP//71 'WU/W') 
WRT 

DATA OUT 

DATA IN 

LDSTO 

DXFER 

LOCK 

INULL 

?U 
tu 

I I 
----<.~ <I SD, > I 

W/m/~////Il?' 1 o//I/ff/h. '1 1/7///1/1) 

W// ///// I 'W/ft//l/ I 'GV/l/7/& I H////lIl) 

Wft/17/7 I W//uffi,. I //~m.. : ~,-~_Z_~_/h_b_Z_'; 

Figure 6-8. Atomic Load/Store Word (SWAP) 

Floating-Point Operations 
When the IU decodes an FPop, it signals the FPU using the FINSl and FINS2 signals. Upon 
detecting active FINSl or FINS2 signals, the floating-point controller starts the decode and 
execution of the fetched floating-point instruction. If the floating-point controller detects a 
condition which requires it to delay execution of the current instruction, it stops the IU by 
asserting FHOLD. This can happen under the following conditions: 
1. When a Store Floating-point State Register (STFSR) instruction starts execution and FPops 

are pending in the floating-point queue. In this case, the FPU controller detects the condition 
and asserts FROLD because the STFSR instruction cannot proceed until all pending FPops 
have completed execution. 

2. When there is either a resource or an operand dependency between the present FPop and 
one or more of the previously fetched instructions. 

3. When a branch on floating-point condition instruction (FBfcc) starts execution while the 
floating-point conditions are not ready. This occurs when one of previously fetched 
instructions is a floating-point compare (FCMP) which the FPU has not yet completed. 

Bus Arbitration 
Because the Integer Unit behaves like a bus slave, bus arbitration must be performed externally 
using the BROLD and LOCK signals as shown in Figure 6-9. The CY7C60l IU asserts LOCK 
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Bus Operation 

when it needs to retain the bus. External hardware requesting access to the bus should assert 
BHOLD when LOCK is inactive. When BHOLD is asserted, the processor's pipeline is held until 
it is de-asserted. The signals DOE, AOE, and CaE can be used to turn off the output drivers of 
the data bus, the address bus, and the other control signals, thus allowing external sources to 
drive the bus. 

CLOCK 

I I 
ADDRESS ~ A2 ) HI-Z 

< A2 ~ 
I I I 

SIZE ~ S2 ) HI-Z 

< S2 ~ 
I I 1 I 

BHOLD \ I 
LOCK 

$A. &&1 HI-Z //7/l LDSTO 
~ I \ DXFER I I 

RD 'I W$ W$ '\ HI-Z I WM WE 

I 
WRT 

HI-Z 
I 

I 
\ 

COE 
DOE I \ AOE 

(Asynchronous) 

Figure 6-9. Bus Arbitration 

Reset Operation 
The processor requires two clock cycles to synchronize the reset input and six cycles to initialize 
the state of the machine for a total of eight clock cycles. Since Reset is synchronized internally, 
Clock must be applied to the processor for Reset to be recognized. Reset performs the following 
operations: 

1. Initializes internal processor logic 

2. Disables Traps by setting ET=O 

3. Sets Supervisor Mode (S=1) 

4. Sets trap type (tt) in Trap Base register only when reset occurs as the result of a return from 
trap instruction (RETT) 

5. Sets Program Counter to location 0 (pc=O, nPC=4) 
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All other PSR fields and registers retain their previous value which on power up is undefined. 
There is no distinction between "warm" and "cold" reset in this processor. Reset (and Clock) 
should always be applied to the CY7C601 before power is applied to guarantee that chip reaches 
a valid state on power up. 
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CHAPTER 7 

CYP~SS==================== SEMICONDUCTOR Memory Interface 

The CY7C601 Processor has a 32-bit address bus, and can directly address 4 gigabytes of mem­
ory. The address bus, data bus and all memory interface signals (except INUlL) are output 
"unlatched" in the previous cycle. 

Memory Wait States 
The ill provides several signals that can be used to insert wait states into the execution pipeline. 
These are MHOLDA, MHOLDB and BHOLD. Asserting any of these signals freezes the pipeline 
until the signal is deasserted. BHOLD should be used only for bus requests. While frozen, the ill 
does not fetch instructions or execute previously fetched instructions. The only state that changes 
is the contents of those latches used to capture external asynchronous events such as external 
interrupts, memory exceptions, and input control signals from the floating-point unit or coproces­
sor. 

Cache Memory Systems 
A cached memory system may use the lower address bits (for example A[15:2] for an 32-bit 
wide 64K byte cache) to address the cache RAMs, and the high address bits to compare the tags. 
For every cache access, the cache miss logic must send a hit or miss indication to the processor 
in the next cycle. If the cache hits, no wait state is inserted, and the memory access completes in 
one cycle. 

If the cache misses during a read, the cache logic must stop the processor by asserting MHOLDA 
or MHOLDB in the next cycle as shown in Figure 7-1. Asserting MHOLDAor MHOLDB during 
a load operation causes the processor to halt with the address of the next instruction (the instruc­
tion following the instruction which caused the hold) on the address bus. In general, the memory 
system needs the address which caused the hold in order to retrieve correct data from memory. 
The MAO input provides this address by forcing the processor to output the previous rather than 
current address. The new data must be given to the processor while MHOLDA or MHOLDB is 
asserted. The l\1DS signal is used to strobe the data into the processor since the internal proces­
sor clock is stopped while in hold. 

Normally, the processor expects to receive a new instruction every cycle. If the memory is not 
fast enough to provide one instruction per cycle, then wait states must be inserted by asserting 
MHOLDA or MHOLDB before the end of the cycle in which the processor needs the data. 
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Memory Interface _i:CYPR&SS 
~, ~========================================================== 

CLOCK 

ADDRESS 

SIZE 

MAO 
(Async) 

DATA IN 

\~----------~(~(------~I - » 

_____ ...J1 ~~~-------------------

--------~----------~~--~ 
INVALID DATA 
DUE TO MISS 

Figure 7-1. Load with Cache Miss 

When a cache miss and resultant hold occurs during the first (tag check) cycle of a store 
operation the processor stops with the next address on the address bus just as it does during a 
load operation. However, since the processor outputs the same address twice during stores (once 
for tag check and once for the actual write operation), the next address is the same as the 
previous one as shown in Figure 7-2. As a result, the use of the MAO input is not required for 
misses during stores. 

While the processor is stopped the data to be written to the memory system is available on the 
data bus as shown. The INULL signal goes active during the second cycle of the store to indicate 
to the memory system that a cache miss should not be generated for this cycle. 
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CLOCK 

ADDRESS ~ ______________ ~,~ __________ __ 

SIZE ~,--__________ ........ ~ _________ 'I1lIiiYlllJ 

~------------~~------~/ 
INULL 

DATA OUT -----c( D 1 ~~~ __ --J)>--

Figure 7-2. Store with Cache Miss 

Memory Exceptions 
The processor must receive all memory exceptions in the cycle following the event that caused 
the exception (in the same manner as a cache miss). When a memory exception occurs, the 
processor should be stopped by asserting MHOLDA or MHOLDB, and while in the hold state, 
MEXC should be asserted as shown in Figure 7-3. 

The MDS strobe is needed to strobe the MEXC signal into the processor since the internal 
processor clock is stopped while in hold. An MDS strobe without MEXC (as is the case with a 
cache miss) causes the processor to accept the current contents of the data bus replacing the 
previously loaded invalid data, and to continue as if nothing had happened. An MDS strobe with 
MEXC applied causes the processor to ignore the current data bus contents and take a memory 
exception trap. MEXC must be deasserted in the same cycle in which MHOLDA or MHOLDB is 
released. 
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A2~~ ADDRESS ~------.....Io.. ~ 

S2~~ SIZE ~'--_____ ~ ~ 

(( / » \~--------~~--~ 
~( / L » 

INULL 

MDS --------------~ (>~ / 

Figure 7-3. Load with Memory Exception 
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CHAPTER 8 

aP~~==================== SEMICONDUCTOR CY7C60 1 Coprocessor 
Interface 

The Integer Unit is the basic processing engine which executes all of the Integer instruction. The 
CY7C601 ill is implemented such that up to two Coprocessor Instruction Set extensions are 
possible. The most obvious use of these capabilities is for floating-point operations. These exten­
sions, however, are generic in nature. Within the bounds of the SPARC Instruction Set architec­
ture format, either coprocessor extension may be used for anything. 

Concept of a Coprocessor 
The concept of a coprocessor is that it is an extension of the basic ill instruction set. It operates 
from a common instruction stream with both the ill and any other coprocessors It interferes 
minimally with ill operations. In most cases, the coprocessor function should be able to be 
incorporated into the integer unit. Although this may be desirable in some cases, providing the 
capability of externally attaching a coprocessor or extending the architecture for a specific case 
provides both flexibility for the designer and at the same time does not burden all users with 
functions they may not need in this application. 

Concurrency 

Coprocessors operate concurrently with both the ill and any other coprocessors in the immediate 
system. This is necessary to maximize system performance. At the same time, it creates a prob­
lem in keeping track of the multiple operations in progress. For this reason, some method of 
keeping track of these simutaneous operations or synchronizing them is necessary. 

Synchronization 

Synchronization is achieved in hardware by sharing both the address and data buses, overtly 
requiring that the coprocessor test for data dependencies and transferring data to from memory 
with Load/Store operations where addresses are only generated by the ill. 

Coprocessor Interface 
The CY7C601 coprocessor interface consists of the normal address, data clock, reset and control 
signals and two special pair sets of coprocessor interface signals. These special interface signals 
provide synchronization and minimal status information transfer between coprocessor and inte­
ger unit. The configuration in Figure 8-1 shows the basic systems connection between the 
CY7C601 ill and two possible coprocessors. Table 8-1 shows the coprocessor interface signals, 
quantity and their description. 
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~ 
CY7C601 Coprocessor Coprocessor .. .. 

~ 

,~ 

Virtual Address 

Virtual Data 

~ 

It I 
Control 

System Memory 

Figure 8-1. Coprocessor System Connection 

Generic Signal Generic Description Quantity 

CCV Condition Code Valid 2 
CCO Condition Code 0 2 
CCl Condition Code 1 2 
HOLD Coprocessor Hold 2 
EXC Exception 2 
P Coprocessor Present 2 
XACK Exception Acknowledge 2 
INSl Instruction Stage 1 2 
INS2 Instruction Stage 2 2 
INST Instruction Fetch Cycle 1 
FLUSH Flush Processor Instruction (s) 1 

Table 8-1. Generic Coprocessor Interface Signals 

Nine of the eleven coprocessor interface signals are duplicated so that a unique signal exists for 
each of the two coprocessors. The last two, INST and FLUSH are common to both coprocessors. 

eev Condition code valid is asserted to indicate that condition codes ceo and 
eel are valid. The coprocessor deasserts eev if pending compare instructions exist in 
the queue. eev is then reasserted when the compare instruction is completed and condi­
tion the condition codes are again valid. 

8-2 



---- ::-........,... 
=:'~~~~~~~~~~~~=C=Y=7=C=6=O=1~C=o=pr=o=c=e=ss=o=r=I=n=te=r=fu=c=e 

CCO, CCI These are the current condition codes resulting from a coprocessor opera­
tion. They are only valid when CCV is HIGH. During execution of a Bee instruction 
(branch on condition code) the ill uses CCO & CCI to determine whether the branch 
instruction should be taken. CCO & CCI are latched by the ill before they are used. 

HOLD Hold is asserted by the coprocessor if execution cannot be continued. The 
coprocessor checks all dependencies in the decode stage of the pipeline. HOLD is 
asserted in the next cycle if the instruction being checked has an unresolved dependency. 
HOLD is deasserted when the dependency is resolved and operation continues. This sig­
nal is latched by the ill before it is used. HOLD freezes the ill and other coprocessor 
pipeline in the cycle it is asserted and latched. 

EXC Exception is asserted by the coprocessor to signal the ill that a coprocessor 
processing exception has occurred. It causes the ill to Trap and process the exception. 
Exception must remain asserted until the ill takes the Trap and issues an XACK signal in 
acknowledgment. 

P Present indicates the presence of the coprocessor. The Present signal is nor­
mally pulled up to Vcc through a resistor. It is tied to Vss when the coprocessor is pre­
sent. The ill generates a "Disable Trap" whenever a coprocessor instruction is executed if 
the P signal is deasserted. 

XACK Exception acknowledge is asserted by the integer unit to acknowledge the 
coprocessor Exception has been recognized by taking the "Disable Trap". The coprocess­
or must immediately deassert the EXC signal that caused the "Disable Trap" so that the 
ill does not take a second Trap in response to the same EXC. 

INS I Instruction Stage 1 is asserted by the ill during the decode operation if the 
instruction being decoded is a coprocessor instruction and the instruction is located in the 
coprocessors instruction/address decode 1 register pair. This causes the coprocessor to 
move the instruction and its address into the execution phase and passes it to the queue 
for actual execution. 

INS2 Instruction Stage 2 is asserted by the ill during the decode operation if the 
instruction being decoded is a coprocessor instruction and the instruction is located in the 
coprocessors instruction/address decode 2 register pair. This causes the coprocessor to 
move the instruction and its address into the execution phase and passes it to the queue 
for actual execution. 

INST Instruction is asserted by the ill whenever an instruction is being passed 
from the memory to the ill for execution. The coprocessors use this information to latch 
both the instruction being fetched and the address of the instruction. Each coprocessor 
has two instruction and address decode registers see Figure 8-6. When INST is asserted, 
the first instruction/address pair is loaded into instruction decode register 1 and address 
decode register 1. If INST occurs again before the instruction initially fetched is passed to 
the coprocessor queue, the old instruction is passed to instruction decode register 2 and 
address decode register 2 while the new instruction is loaded into instruction decode 
register 1 and address decode register 1. 

FLUSH Flush is asserted by the integer unit and causes the coprocessors to flush 
their internal instructions that have not been passed to the queue. This happens whenever 
the ill takes a branch or trap altering the instruction flow with instructions pending in the 

8-3 



~­==-.~~======================~C~Y~7~C~6~O~1==C~o~p~r~o~ce~s~s~o~r~I~n~te~r~f~a~ce 

decode registers of a coprocessor. Instructions that have been passed to the coprocessor 
queue will continue to execute whenever the Flush is caused by a Trap, Branch or excep­
tion taken by another device. 

Table 8-1 shows only the generic names and descriptions of the coprocessor interface signals. 
Because the specific implementation of the CY7C601 integer unit assumes that coprocessor 1 
will normally be a floating-point coprocessor, while coprocessor 2 may be a generic coprocessor 
implemented by the designer or some future device offered by Cypress, the signals are specifi­
cally named to reflect this use. See Table 8-2 for the actual signal names for the coprocessor 
interface on the CY7C601. 

CY7C601 Signal CY7C601 Description Quantity 

FCCV FP Condition Code Valid 1 
FCCO FP Condition Code 0 1 
FCCI FP Condition Code 1 1 
FHOLD FP Coprocessor Hold 1 
FEXC FP Exception 1 
FP FP Coprocessor Present 1 
FXACK FP Exception Acknowledge 1 
FINSI FP Instruction Stage 1 1 
FINS2 FP Instruction Stage 2 1 
CCCV CP Condition Code Valid 1 
CCCO CP Condition Code 0 1 
CCCI CP Condition Code 1 1 
CHOLD CP Coprocessor Hold 1 
CEXC CP Exception 1 
CP CP Coprocessor Present 1 
CXACK CP Exception Acknowledge 1 
CINSI CP Instruction Stage 1 1 
CINS2 CP Instruction Stage 2 1 
INST Instruction Fetch Cycle 1 
FLUSH Flush Processor Instruction (s) 1 

Table 8-2. CY7C601 Coprocessor Interface Signals 

An example of the interconnections between the Integer Unit and a Floating-Point Unit consist­
ing of a CY7C608 Floating-Point Controller and a Texas Instruments' SN74ACT8847 Floating­
Point Processor is shown in Figure 8-2. The three chips interconnect without additional interven­
ing logic. The signal lines between the FPC and FPP are explained in detail in the respective data 
sheets for these parts. There are additional connections to the Floating-Point Processor not 
shown in this diagram which are required for a fully-functiomal system. See the SN74ACT8847 
data sheet for details. 
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Figure 8-2. Floating-Point Controller System Connections 
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CY7C601 Coprocessor Interface 

Coprocessor Operations 
With respect to the Virtual bus, there are three basic operations that occur, Instruction Fetches, 
Data Load Operations and Data Store Operations. As indicated in Figure 8-1, all coprocessors 
are connected in parallel with the IV with additional control and synchronization accomplished 
through the unique coprocessor interface control signals. In addition, all processors are clocked 
in parallel with the same clock signal and share the reset signal. Since all instructions occur only 
on word boundaries, and all coprocessor load and store operation are also restricted to word 
aligned, the connection to the address bus by the coprocessor is only 30 bits. The two least 
significant bits are ignored. 

The IV always generates the address for all bus transfers associated with IV or either coprocess­
or. A fetch operation consists of the IV operating in a normal manner and the coprocessors 
recognizing, from INST being asserted on the rising edge of the clock, that both the address 
present on the bus and the subsequent information fetched on the next clock rising edge are the 
address of an instruction and the instruction respectively. Recognizing this, the coprocessors 
attached to the bus load both the instruction and its address into on of their internal decode 
stages. All instructions are loaded into all processors in parallel on every occurrence of an 
asserted INST. 

Load operations occur in two types, single word Loads (32 bits) and double word Loads 
(64 bits). As stated earlier, the IV generates the address or addresses that the data will be loaded 
from. A coprocessor Load loads data from a single 32 bit word aligned field in memory. In the 
case of a double word coprocessor Load, the information comes from two word aligned sequen­
tial 32 bit fields in memory. As shown in Figure 8-4, the IV generates the address for the load 
operation, and the data is loaded into the appropriate coprocessor only. This is accomplished by 
having the coprocessor execute the same load operation in sync with the IV. The IV accom­
plishes the generation of the address, and the coprocessor accepts the data from the bus and 
loads it into the appropriate register. In the case of a double load operation, two sequential load 
operations occur in sequential bus cycles. 

Load operations are differentiated between the three potential processors on the virtual bus by 
instruction, there is a separate opcode for loading each of the two coprocessors and the IV. 

In a similar manner, store operations are accomplished. The IV supplies the address, and at the 
same time the appropriate coprocessor supplies the data for the store operation. In the case of a 
double store, two sequential cycles are used to transfer 64 bits of data. Store operations are also 
differentiated among the processors on the virtual bus by instruction, there is a separate opcode 
for storing data from each of the two coprocessors and the IV. 

Figure 8-6 shows the working and addressable registers of the coprocessor. The 32 bit by 
32 word register file is the working register file for any coprocessor. All operands and results of 
coprocessor operations originate and return there. Coprocessor Load and Store operations are 
used to transfer data between this register file and memory. The Status register contains the 
current status of the coprocessor and may be interrogated with a store operation as well as tested 
where appropriate with the Bcc (branch on condition codes) by the IV. eeo and eel are 
brought out as signals on the coprocessor as well as being present in the status register. This 
allows the IV to directly test these condition codes during a Bcc operation. As appropriate, the 
status register may be set with a Load operation. 
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Figure 8-3. Instruction Fetch 

Coprocessor Compare Operations 

Coprocessor compares (CMP) and branch on coprocessor condition (Bcc) instructions interlock 
on the coprocessor condition codes. The SPARC architecture specifies that at least one non­
Coprocessor instruction must occur between an CMP and an Bcc (branch on condition code) that 
expects valid condition codes. Violation of this may result in using old condition codes for 
branch condition evaluation and the result is undefined. When a Coprocessor compare is exe­
cuted, the Coprocessor deasserts the CCV signal and keeps it deasserted until the compare 
instruction is completed and the Coprocessor condition codes are ready. Both ill and coprocessor 
wait during this interval while the coprocessor unit is performing the compare operation. 
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Figure 8-4. Load Operation 

Unimplemented Coprocessor Instructions 

This trap is generated when a coprocessor operation instruction defined in the architecture but 
not implemented on the current hardware is encountered. The trapped instruction can be emu­
lated in software. 

Unfinished Coprocessor instruction 

This trap is signaled when an coprocessor operation cannot complete execution because the data 
has exceeded the capabilities of the coprocessor and/or has generated an inappropriate result. 

Once a coprocessor operation has been started, the instruction and its address are available in 
the queue. Because trap handlers may look at both the PC or nPC, and the queue, an instruc­
tion's address is not entered into the coprocessor queue until it has "fallen off" the integer unit's 
PC queue. When an trap or exception is taken, the ill asserts the FLUSH signal. This causes the 
coprocessor to abort any instructions that have not yet entered the queue. 
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32 Word by 32 Bit Register File 

32 Bit Status Register 

Address Decode Register 1 Instruction Decode Register 1 

Address Decode Register 2 Instruction Decode Register 2 

Address Queue Register N Instruction Queue Register N 

---------------------------
Address Queue Register 1 Instruction Queue Register 1 

Address Queue Register 0 Instruction Queue Register 0 

Figure 8-6. Coprocessor Register Model 
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Clocking The CY7C601 IV 

Clock Parameters 

The CY7C601 Integer Unit can be driven at a maximum clock rate of 33 MHz. At 33 MHz, the 
high portion of the clock signal, measuring from 2.1 V of the rising edge to 2.1 V of the falling 
edge, must be a minimum of 13 ns. In addition, the low portion of the clock, measuring from 
0.8 V of the falling edge to 0.8 V of the rising edge, must also be a minimum of 13 ns wide. At 
25 MHz, the clock high and low requirements are relaxed to 18 ns and 18 nS respectively. Rise 
and fall time of the clock is specified at 1 volt per ns. 

Clock Generation 

In many designs, system clocking is supplied by hybrid crystal oscillators. Although most crystal 
oscillators are capable of generating clean clock signals, clock symmetry can vary from 40% to 
60% depending on the vendor. In a 33 MHz CY7C601-based system, the user must select a 
crystal oscillator which satisfies the 13 nS clock high and low requirements of the ill. If the 
selected crystal oscillator cannot meet the clocking requirements, a clock signal with 13 ns min 
minimum. high time can be generated by dividing the output of the oscillator with a D-type flip 
flop (74AS74). The oscillator frequency in this case has to be two times the system clocking 
frequency (i.e., 66 MHz). The schematic of the clock generation circuit is shown in Figure 9-1. 
The jumper in the schematic allows the user to choose between direct oscillator output and the 
half frequency flip flop output. 

+5V 

+5V 
PR 

33 MHz 

D Q 0 

0 ~ 

XTAL OSC Q System 
CLR Clock 

66 MHz 
AS74 

Figure 9-1. Sample Clock Generation Circuit 
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Clock Distribution 

In a CY7C601-based system, the clock signal is used by various logic blocks for synchronization 
and information latching purposes. 

These logic blocks include: 

Address latches Data latches Wait state logic 

Cache RAMs (CY7C153) Peripheral access control logic 

The heavy demand for the clock signal makes clock buffering an necessity. Since multiple 
versions of the clock are required, the skew between clocks must be kept to a minimum. This is 
especially important in a 33 MHz system. The best approach to reduce clock skew between 
buffers is to select an integrated circuit with multiple buffers on-chip. In addition, the driving 
capability of the buffer should be weighed against its loading. One type of buffer featuring small 
inter-buffer skew and good driving power is the 74AS18xx series from Texas Instruments (e.g. 
74AS1804) and they have been used successfully in CY7C601-based systems. 

Once a buffered set of clock signals is available, they must be carefully distributed to maintain 
even loadings on all clock lines. Major load components are trace capacitance, socket 
capacitance, and input capacitance. Failure to maintain even loading will result in increased 
skew between clock signals. Another area of concern in clock distribution is signal reflection. A 
clean clock signal can be achieved only if each clock line is properly terminated. Common 
termination methods include parallel termination, series termination, AC termination, and diode 
termination. 

Parallel Termination 

Parallel termination involves placing a pull-up and a pull-down resistor at the end of the trace. If 
the Thevenin equivalent of the two resistors is equal to the characteristic impedance of the trace, 
no signal reflection will occur. With multi-layer printed circuit boards, a frequently used set of 
values is 220 ohms for the pull-up resistor and 330 ohms for the pull-down resistor. This gives an 
equivalent resistance of 132 ohms. 

The advantages of parallel termination include no change in rise and fall times of the signal and 
the ability to support distributed loadings along the trace. The main disadvantage of this type of 
termination is the constant dissipation of power in the two resistors. Figure 9-2 shows a trace 
with parallel termination. Note that the termination is at the load. 

Vee 

ZO 

Figure 9-2. Parallel Termination 
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Series Termination 
Series termination is accomplished by placing a resistor in series with the trace at the driving 
device. Series termination is also known as series damping because it "damps" out ringing 
caused by signal reflection. If the value of the series resistor plus the impedance of the driver 
equals the characteristic impedance of the trace, the reflection coefficient at the driver end will 
be zero and any reflected signal from the load end of the trace is absorbed. Typical resistor 
values are in the range of 16 to 68 ohms. 
Series termination causes no DC power dissipation but will increase the propagation delay of the 
signal traveling down a trace. In addition, no distributed loads can be attached along the line and 
all loadings must be attached to the end of the trace. Figure 9-3 shows a trace with series 
termination. Note that the series terminating resistor should be placed as close as possible to the 
driver. 

~er~s ~esistor ZO ~ 
----~ v v .~-tI==============T---~~~--

Figure 9-3. Series Termination 

AC Termination 
An AC termination is constructed by grounding the signal trace at the load end via a capacitor 
and a resistor connected in series. If the impedance of the capacitor is sufficiently small (less 
than 5 ohms) and the resistor's value is approximately equal to the characteristic impedance of 
the trace, the reflection coefficient will be close to zero and no signal will be reflected back to 
the driver. No DC power will be dissipated in the resistor because the capacitor blocks the DC 
path to ground. 

AC termination is useful in applications with very high frequency signals. In order to reduce load 
on the driver, the value of the capacitor must be small. On the other hand, the impedance of the 
capacitor must be sufficiently small that the combined impedance of the capacitor and the 
resistor will approximate the characteristic impedance of the trace. Since Xc = 1/(2*pi*f*C), if C 
is small (e.g. 10 pF) then Xc will be small only if the frequency (f) is very high. Figure 9-4 
shows a trace with AC termination. Note that the termination is at the load. 

Diode Termination 

Diode termination is sometimes known as "active termination." A typical diode termination is 
shown in Figure 9-5. The signal seen by the load will be limited between (Vcc + diode drop) and 
one diode drop below ground. This method of termination is useful in applications where the 
trace or line impedance is not well defined. 

Clock Stretching 

If additional time is required for the CY7C601 IU to access a slow device, external logic must 
hold the IU by asserting the Memory Hold signal. Memory Hold is sampled by the IU at the 
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Figure 9-4. AC Termination 

vee 
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Zo 

Figure 9-5. Diode Termination 

falling edge of the clock in the following cycle. Because the processor typically generates a new 
address every clock, the address of the slow device would have been replaced by the address of 
the next access by the time MHOLD is recognized. In order to recover the lost address, the user 
can either: 

Build a 32-bit address latch to store the previous access location. 

Activate the MAO signal which causes the IU to return the previous access status 
(including the address) on the bus. 

Once the address has been recovered, access of the slow device can proceed. When the required 
data is available, it must be strobed into the IU by pulsing the MDS signal for one clock. 

The procedures described in the preceeding paragraphs can be avoided if the access of the slow 
device is completed within one clock cycle. This goal is attainable by using a technique called 
"clock stretching" which extends the low portion of the IU clock according to the time needed to 
complete an access. Figure 9-6 illustrates a simple clock stretcher which inserts 2 wait states into 
an access. 
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Figure 9-6. Clock Stretcher 
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The output of the clock generator is delivered to the A inputs of two 74AS1805 NOR buffers. 
With its B input tied to ground, the first NOR buffer functions as an inverter. Its output is a free 
running clock. The B input of the second buffer is connected to the output of a 74F112 flip flop 
clocked by the output of the first buffer. The output of this buffer is the "stretched clock." 

At the beginning of an access, an address from the ill is decoded to determine whether extra 
wait states are needed. If additional cycles are required, the decoder will generate an active 
HIGH stretch indicator which is connected to the J input of the 74F112. The K input of the flip 
flop is LOW. At the falling edge of the free running clock, the output of the flip flop goes HIGH 
and force the output of the second NOR buffer to stay LOW. 

With the clock successfully held, a timer is activated to count down the two wait states. In the 
following example, two 74AS74 D-type flip flops clocked by the free running clock are used. The 
D input of flop flop 1 (FFl) is connected to the output of the J-K flip flop. At the next clock rise, 
output of FFl goes HIGH and one clock later, the Q output of FF2 goes HIGH. Since Q from 
FF2 is connected to the K input of the 74Fl12, the output of the J-K flip flop will toggle and go 
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LOW at the next clock fall and release the "stretched clock". At the same time, FF1 is cleared. 
The timing diagram of this clock stretcher is shown in Figure 9-7. 

, , , , 
Free-runnIng Clock ---.l \ I \ I \ I \ , 

Stretched Clock ---.l \ i \ , 

Address From IU J X ] C 
Stretch IndIcator I 

"9" Input of 74AS1805 I :\ 
"Q" output of FFl I \ 
"Q" output of FF2 :/ , L 

Figure 9-7. Clock Stretcher Timing 

Figure 9-6 describes a clock stretcher with a fixed number of wait states. In a typical system, the 
number of wait states required by each device will be different. A programmable clock stretcher 
supporting 1 to 16 wait states can be constructed by substituting the dual D flip flop with a 
74AS163 binary counter. 

The ill generally performs one access per clock. However, a store cycle occupies two clocks with 
address checking occurring during the first clock and the actual writing during the second clock. 
If address checking can be completed in one regular clock period, then only the second clock 
should be stretched. 
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Under certain conditions such as access exceptions, the ill and the Floating-Point Controller will 
void an access by asserting the lNUlL and FNUlL signals respectively. Clock stretching should 
be canceled when the access cycle is nullified. One approach to stop the clock stretcher logic is 
to clear the 74F112 flip flop when anyone of the null signals is asserted. 

Cache Design in a CY7C601 System 
Cache memory is high speed memory located between the processor and main memory and is 
used for temporary information storage. In order to hold down system cost, the main memory 
section in most systems is implemented with slower and less expensive dynamic RAMs. As a 
result, one or more wait states are needed to access main memory. The cache memory, on the 
other hand, can return data to the processor with no wait states. As long as the information 
requested by the processor is found in the cache memory, processor references proceed without 
delay. Main memory is accessed only when the required data is not found in the cache. In a 
typical system, over 80% of the processor data are supplied by the cache. 

The success of cache memory is based on the Principle of Locality. Two main aspects are stated 
in the Principle of Locality, temporal locality and spatial locality. 

Temporal locality states that data will be re-used: Information currently in use will 
be used again in the near future. An example of temporal locality is the do-loop 
statement. 

Spatial locality specifies that related data are usually stored together: Information 
which will be used in the near future are likely to be found near current data. 

The sequential behavior of most instruction streams is a good example of spatial 
locality. The cache memory puts the Principle of Locality to practice by 
maintaining a set of windows into the main memory with each window containing a 
set of recently used data and their immediate neighbors. 

Building Blocks of a Cache System 

Figure 9-8 shows a typical cache system block diagram. The major components are: 

Cache Tag Memory-This is a high speed memory which holds the directory of the 
cache. Each group of data in the cache memory is identified by a cache tag entry 
containing the high order address bits of that group. Tag entries are selected by 
low order address bits from the processor and the content of the selected entry is 
delivered to the tag comparison logic. 

Tag Comparator-The tag comparator compares the identifier stored in the cache 
tag memory with the high order address bits from the processor. A match indicates 
that a copy of the data referenced by the processor is found in the cache memory. 
The comparator output is delivered to the cache controller. 

Cache Memory-This is a fast static memory containing data recently referenced 
by the processor. 

Cache Controller-The cache controller regulates data transfer between the main 
memory and the processor. It is also responsible for updating the cache memory 
and the cache tag memory during a cache miss. 
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Figure 9-8. Cache Block Diagram 

Cache Memory Operations 

When the processor reads data from memory, the lower address bits are used to select an entry 
in the tag memory. The content of the selected tag entry is compared against the upper address 
bits from the processor. If a match is detected, data from the cache is returned to the processor. 
If the tag comparator signals a miss, then data requested by the processor is not found in the 
cache and the cache controller will be activated to transfer information from main memory to the 
processor and the cache. At the completion of the transfers, the directory in the tag memory is 
updated to reflect the change in the cache contents. This sequence of operations ensures that the 
cache is continuously updated with the most current information. 

During processor write cycles, cache updates are dictated by the write policy. If a write-through 
policy is implemented, data is written into the cache and the main memory in case of a match. In 
this manner, main memory always contains the latest data. If a write-back policy is chosen, only 
the cache memory will be modified during the write access. Main memory is updated whenever a 
cache line (a group of cache data associated with one cache tag entry) is replaced. Although this 
policy enhances system performance by reducing bus traffic between the cache and main 

9-8 



CY7C601 Design Examples 

memory, it introduces stale data in main memory which causes data inconsistencies in a 
multiprocessor system. Complicated "ownership protocols" are needed to resolve this problem. 

If the processor write causes a tag miss, the cache is updated according to a second write policy. 
With a No-write-allocate policy, the write data is stored into main memory without updating the 
cache. If a Write-allocate policy is selected, the cache is updated after the data is stored into 
main memory. 

Cypress Cache Support Chips 
Cypress Semiconductor provides two cache support devices to simplify high speed cache 
memory design in CY7C601-based systems. The first device (CY7C181) is a sophisticated 
4K-entry cache tag RAM with on-chip tag comparator and byte write generation logic. The 
second device (CY7C153) is a fast 32K by 8 cache RAM. 

The CY7C181 Cache Tag RAM 

The CY7C181 Cache Tag RAM provides storage for 4096 tag entries accessible by the processor. 
Each entry contains a 20-bit tag and 5 status bits: one valid bit, one dirty bit, and three 
protection bits. Twelve low order address lines from the processor are used to select one of the 
tag entries and its tag field is compared with 20 high order address bits by an on-chip 
comparator. The comparison result is available as an output to the cache controller. Interface to 
the CY7C601 IV is simplified by the inclusion of on-chip address and data latches as well as IV 
handshake signals such as Memory Hold, Memory Data Strobe, and Memory Exception. 

Cache operations are greatly enhanced by the CY7C181: Read accesses benefit from the fast tag 
access and comparison features while the cache write logic is simplified by the provision of byte 
write signals. 

The Cache Tag RAM reduces the amount of glue logic in the cache design by accepting a 
number of cache related signals from the system. These signals include the non-cacheable signal 
from the address decoder, the NUlL signals from the IV and the FPC, the Address Space 
Identifiers (AS!) as well as the read and write signals from the IV. The block diagram of the 
cache tag RAM is shown in Figure 9-9. 
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Figure 9-9. CY7C181 Cache Tag Ram Block Diagram 

Processing an IV Cache Memory Access 
During an ill access, address from the processor is latched on the rising edge of the system 
clock. The contents of the selected tag entry are processed by on-chip logic and the match signal 
is generated only when all of the following conditions are met: 

The address is valid (The NULL signals are inactive). 

The address Tag Comparator indicates a match. 

The tag entry is valid (the valid bit of the entry is set). 

The Non-cacheable (NC) input is inactive. 

If a match is successful in a read access, the CY7C181 starts a new checking sequence in the 
next clock. If a match is successful in a write access, the CY7C181 generates the appropriate 
byte write signals to the cache RAMs in the next clock according to the SIZE information 
supplied by the ill. The two-clock write cycle is implemented to match the two-clock store 
sequence of the CY7C601 ill. 
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If a miss is detected, the Cache Tag RAM will suspend operations in the IV by asserting the 
Memory Hold signal. While the processor is held in a continuous wait state, the cache controller 
will get the requested data and update cache memory and IV. After all transfers are completed, 
the cache controller will update the tag storage and remove the CY7C181 from the hold state by 
issuing a Release with Update signal to the cache tag RAM. In situations where tag update is not 
necessary (such as a non-cacheable access), the CY7C181 can be removed from the hold state 
by a second release signal. The second release signal does not cause an update (Release No 
Update). 

Access Protection 

The CY7C181 Cache Tag RAM issues a protection violation to the processor whenever the 
access level specified by the three protection bits in the selected tag entry is not matched by the 
current access status. Current IV access status such as supervisor/user, instruction/data, 
read/write and so on are conveyed by the ASI code as well as the read/write signals. For 
example, if the 3 protection bits indicate that the entry is open to read data accesses in both 
supervisor and user modes, and the current access is a user write, the CY7C181 will issue a 
protection violation to the processor. If a protection violation is detected in a write cycle, all byte 
write signals will be de-asserted to prevent corrupting memory data. 

Caching Policy 

The CY7C181 understands the difference between write-through and write-back caching policies. 
A strap input pin, WP, sampled during reset, informs the Cache Tag RAM which policy is 
selected. The setting of the dirty bit in each tag entry during write cycles is controlled by the 
caching policy. 

Tag Invalidation 

Each tag entry can be individually invalidated by writing a zero into its associated valid bit. If the 
entire tag storage has to be invalidated, the user has two alternatives: 

Software Invalidation-Writing to a special location in the CY7C181 will invalidate all tag 
entries. 

Hardware Invalidation-Asserting the Cache Tag Invalidate input pin for one clock cycle will 
invalidate all tag entries. 

Byte Write Generation 

Since the CY7C601 IV is capable of accessing bytes, half words (two bytes), and words (four 
bytes), individual byte write signals are needed to enable only the bytes specified by the 
processor during write operations. Four byte write signals are required to support one bank of 
32-bit wide cache memory. 

The CY7C181 supports up to two cache memory banks by providing eight byte write signals. The 
byte write outputs are controlled by the IV SIZE code, the cache memory configuration (lor 
2 memory banks, supplied via the CONFIG input), and the three lowest address bits from the 
processor. For STORE single operations, the appropriate byte write signal(s) are asserted in the 
second clock of the cycle if a match is detected with no protection violation. For STORE double 
operations, byte writes are generated in both the second and third clocks. The byte writes are 
connected to the write inputs of the CY7C153 cache RAMs and they can be tri-stated by the 
cache controller via the Byte Write Enable input (Byte Write Output Enable). 
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Cascading the CY7C181 

Multiple CY7C181s can be used together to support either a larger cache or a smaller line size. 
Each CY7C181 is equipped with a chip enable signal. De-assertion of chip select suspends 
on-chip functions and place all outputs in a tri-state condition. An external address decoder is 
required to select one of the Cache Tag RAMs for a particular access. Figure 9-10 shows a cache 
system with four CY7C181 devices. 
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Figure 9-10. Cache System with 4 Cascaded CY7C18l's 
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The CY7C153 Cache RAM 

The CY7C153 cache RAM is a common I/O static RAM organized as 16K by 4 bits. Major 
features include input address and data latches, output data latch, self-timed write, and centered 
power pins. Address access time is approximately 17 nS. 

The on-chip address latch captures IU addresses at the rising edge of the clock and uses them for 
the rest of the cycle. The data latch is transparent and it is open during the high portion of the 
clock. An output data latch is incorporated on-chip to satisfy the data hold time requirements of 
the IU. 

Write operations are internally self-timed and initiated by the high to low transition of the write 
input. This feature eliminates complex off-chip write pulse generation which is difficult to 
accomplish at 33 MHz. The block diagram of the CY7C153 cache RAM is shown in Figure 9-11. 
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Figure 9-11. CY7C153 Registered Cache RAM 

Functional Description of a Sample Cache 
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The block diagram of a CY7C601-based direct-mapped cache system is shown in Figure 9-12 
and Figure 9-13. Major function blocks include: 

The CY7C601 Integer Unit 

The CY7C181 Cache Tag RAM 

256K-byte Cache RAMs (Eight CY7C153s) 

The Cache Controller 
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Figure 9-12. 1U, Cache Tag and Cache Controller 

9-14 

Clock To Cache 

Bank 1 Byte Write 
Bank 2 Byte Write 
Address To Cache 

Adr To Main Memory 

Control To/Fr 
Main Memory 

Data To/Fr 
Main Memory 

Data To/Fr 
Cache 



A3-A16 

Rea d 

A 2 

C Ik 

Bank 
Byte Writ 

Bank 
Byte Writ 

00-03 

1 
e 

2 
e 

1 

Main memory 

0 Q 

~ Q 

CY7C601 Design Examples 

32K x 32 32K x 32 

;=[»-
11 11 

,'I (1 ,'I (1 

=C)---<= 
A A 

OEI ---c OEI 

~ -~ 
CY7C153 CY7C153 

'- WR r<: WR 

,-- I-

0 0 

~ 

f 

Figure 9-13, 256K-Byte Cache Memory 

Address from the ill is latched by the Cache Tag RAM and the cache data RAMs at the rising 
edge of the clock, A single bank of four CY7C153s provide a 128K-byte cache, With a 4K-entry 
Cache Tag, line size is 32 bytes. The cache data RAM may also be divided into two 32-bit wide 
banks with address line A2 serving as the bank selector. Data is stored alternately between the 
2 cache banks. With a 4K-entry Cache Tag, line size is 64 bytes. A write through cache policy is 
implemented. 

Read Accesses 

During a read access, if the cache tag RAM indicates a hit, data from the chosen cache bank will 
be returned to the processor. If an address miss is det~cted, the cache tag RAM will hold the IU 
in a continuous wait (by asserting the Memory Hold signal) so that the cache controller can 
transfer data from main memory into the cache RAMs. In order to gain access to the cache data 
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RAMs, the cache controller first tri-states the address, data, and control lines from the IU (via 
All Output Enable, Data Output Enable, and Control Output Enable) and the byte write signals 
from the CY7C181 (via Byte Write Output Enable). Once the above signals are tri-stated, the 
cache controller outputs its own address and control signals to transfer the new cache line from 
main memory into the CY7C153s. At the end of the data transfers, the controller delivers the 
missed data to the IU and loads it by pulsing the Memory Data Strobe signal. With the new data 
in place, the cache tag is now ready to be modified to reflect the new cache line. The cache 
controller updates the tag and releases it from the hold state by: 

Placing the "missed" address on the address line 

Placing the new protection bits at the PI inputs of the cache tag RAM 

Pulsing the RWU/ (release with update) input for one clock period 

If the access is declared as non-cacheable by the address decoder, the CY7C181 will generate a 
miss and hold the IU (via Memory Hold) so that the access can proceed at its own speed. After 
the requested data is delivered to the IU (via Memory Data Strobe), the CY7C181 should be 
released from the hold state but with no tag update because the access is not cacheable. The 
cache controller accomplishes this function by asserting the Release No Update input of the 
cache tag RAM. 

If a protection violation is found, the access will be canceled. A hit will be generated by the 
CY7C181 to prevent activation of the cache controller. At the same time, a memory exception is 
delivered to the IU via the Memory Hold, Memory Data Strobe, and Memory Exception signals. 

Write Accesses 

Write cycles are multi-clock operations: A STORE single cycle occupies 2 clocks and a STORE 
double cycle occupies 3 clocks. Because all STORE double accesses are aligned on 8-byte 
boundaries, both memory locations will fall inside the same cache line. 

If the address is matched during the first clock, the first write will occur during the second clock 
and the second write will occur during the third clock (for STORE double). Since the IU is 
capable of 8-bit, 16-bit, and full 32-bit writes, individual byte write signals are needed. The 
CY7C181 generates 2 sets (4 byte writes per set) of byte writes based on the SIZE indicators 
from the processor and the number of cache banks in the system to support systems with single 
or dual cache banks. 

If an address miss is detected, the cache tag RAM will hold the IU in a continuous wait (by 
asserting the Memory Hold signal) so that the cache controller can write the data from the IU 
into main memory and cache RAMs. All byte writes from the CY7C181 are de-asserted because 
cache update is performed by the cache controller. After the new data is stored, the cache tag is 
ready to be modified. The cache controller updates the tag and releases it from the hold state by 
presenting the "missed" address and the new protection bits to the CY7C181 and then pulses the 
Release With Update input for one clock period. With a STORE single cycle, this is the end of 
the access. However, an additional write is needed to complete a STORE double cycle. 

Since both addresses belong to the same cache line and the cache line has been updated, the 
second address will always result in a hit. The appropriate byte write signals will be generated by 
the CY7C181 to complete the second store. The cache controller may hold the IU in a continuous 
wait until the data is written into main memory. This additional delay can be eliminated by 
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incorporating a write buffer into the cache controller. The write buffer stores the address and 
data designated for main memory into registers and releases the cache controller immediately. 
Actual main memory writing is overlapped with the following few processor cycles which will 
probably be read accesses for data already stored in the cache. 

If the access is declared as non-cacheable by the address decoder, the CY7C181 will generate a 
miss and hold the IU (via Memory Hold) so that the write cycle can proceed at its own speed. In 
addition, all byte writes will be de-asserted. After the requested data is written into the 
designated device, the CY7C181 should be released from the hold state with no tag update 
because the access is not cacheable. The Release No Update signal will be asserted by the cache 
controller to accomplish this function. For a STORE double cycle, the above sequence will be 
repeated for the second address. 

If a protection violation is found, the access will be canceled. A hit will be generated by the 
CY7C181 to prevent activation of the cache controller. At the same time, all byte writes will be 
de-asserted and a memory exception will be delivered to the IU via the Memory Hold, Memory 
Data Strobe, and Memory Exception signals. 

Summary 

The CY7C181 cache tag RAM and the CY7C153 cache RAMs are specifically designed to 
simplify CY7C601-based cache systems. A high performance 128 or 256 K-byte direct-mapped 
cache can be built with one CY7C181, four or eight CY7C153s, a cache controller, and a small 
amount of interface logic. 
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Preliminary 
cyp~SS~~~~~~~~~~== 
SEMICONDUCTOR 

CHAPfER 10 

Maximum Ratings 
( Above which the useful life may be impaired) 

Storage Temperature •••••..••• -6S·C to +IS0·C 

Ambient Temperature •• 
with Power Applied ••.••.•••• • -55 C to +125 C 

CY7C60 1 Electrical 
& Timing 

[4] 
Supply Voltage to Ground Potential ..• -O.SV to +7.0V Operating Range 

DC Voltage Applied to Outputs 
in High-Z State •••• 

DC Input Voltage ••• 

• -O.SV to +7.0V 

• -3.0V to +7.0V 

Output Low Sink Current • • • • • • • • • • • • . 30mA 

El t' lCh ec nca t . f arac ens lCS Over the Operating Range 

Range 

Commercial 

Military [3) 

[11 

Parameters Description Test Conditions 

VOH Output HIGH Voltage Vcc=Min., IOH= -2.0 rnA 

VOL Output LOW Voltage Vcc=Min., IOL= 8.0 rnA 

VIH Input HIGH Voltage 

VIL Input LOW Voltage 

IIH Input HIGH Current Vcc=Max., Vin=Vcc 

IlL Input LOW Current Vcc=Max., Vin=Vss 

IOH Output HIGH Current Vcc=Min., VOH =2.4 V 

IOL Output LOW Current Vcc=Min., VOL=O.S V 

loz Output Leakage Current Vcc=Max., Vss::; Vout ::;Vcc 

Isc Output Short Circuit Current Vcc=Max., Vout = 0 V 

Ambient 
Temperature 

O·C to +70·C SV 

-SS·C to +12S·C SV 

Min. Max. 

2.4 

0.5 

2.1 Vcc 

-3.0 0.8 

10 

-10 

-2.0 

8.0 

-40 40 

-30 -180 

ICCQ Quiescent Supply Current Vss::;Vin::;VIL or VIH::;Vin::;Vcc 400 

Icc Supply Current Vcc=Max., f = 33MHz 600 

10-1 

Vee 

± 10% 

± 10% 

Units 

V 

V 

V 

V 

uA 

uA 

rnA 

rnA 

uA 

rnA 

rnA 

rnA 
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Capacitance [2] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = 5.0 V, Ta = 2S'C, f= 1 MHz 10 pF 

COUT Output Capacitance Vee = 5.0 V, Ta = 2S'C, f=lMHz 12 pF 

CIQ I/O Bus Capacitance Vcc = 5.0 V, Ta = 2S'C, f=lMHz 15 pF 

Notes: 
I. See last page of this document for Group A subgroup testing information 

2. Tested initally and after any design or process changes that may affect these parameters. 
3. Ambient Temperature is the 'instant on' case temperature. 
4. All power and ground pins must be connected to the other pins of same type before any power is applied to the part. 

AC Test Loads and Waveforms 

R1 470 n 
5V 

OUTPUT 10 

I 
50 pF R2 319 n 

TEST lOAD WAVEFORM 

Figure 10-1. AC Test Loads 

Switching Waveforms 

elK 

RESET 

Figure 10-2. Clock & Reset Timing 

Reset needs to be synchronized with CLK only if the processor must be guaranteed to be in step with other 
devices in the system (Le. other processors) 
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Switching Characteristics Over the Operating Range [2,3] 

CY7C601-33 CY7C601-25 
Parameter Description Units 

Min. Max. Min. Max. 

1 tCY Clock cycle 30 100 40 100 ns 

2 tCHL Clock high and low 13 18 ns 

3 t CRF Clock rise and fall 1 1 V/ns 

4 tAD Address/Control output delay 26 35 ns 

5 tAH Address/Control output hold 7 7 ns 

6 tooo Data output delay 15 20 ns 

7 tOOH Data output hold 4 4 ns 

8 tMAO MAO to Address/Control output delay 14 19 ns 

9 tMAH MAO to Address/Control output hold 2 2 ns 

10 tDIS Data input setup 3 5 ns 

11 tDIH Data input hold 5 7 ns 

12 t MES Memory Exception input setup 15 20 ns 

13 tMEH Memory Exception input hold 1 2 ns 

14 t HS Hold input setup 5 7 ns 

15 tHH Hold input hold 5 7 ns 

16 tOE Output enable delay 16 18 ns 

17 too Output disable delay 16 18 ns 

18 t TOE Output enable delay for All Outputs 19 21 ns 

19 t TOO Output disable delay for All Outputs 19 21 ns 

20 t SSO Synchronous Signal output delay [1] 15 20 ns 

21 t SSH Synchronous Signal output hold [1] 3 3 ns 

22 t RS Reset input setup 10 15 ns 

23 t RH Reset input hold 3 3 ns 

24 t HOD Hold to Address/Control output delay 16 24 ns 

25 t HOH Hold to Address/Control output hold 0 0 ns 

26 t FO FPU/Coprocessor Signal output delay 18 27 ns 

27 t FH FPU/Coprocessor Signal output hold 4 4 ns 

28 t FIS FPU/Coprocessor Signal input setup 8 10 ns 

29 t FIH FPU/Coprocessor Signal input hold 3 4 ns 
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Switching Characteristics Continued 

CY7C601-33 CY7C601-25 
Parameter Description Units 

Min. Max. Min. Max. 

30 tDXD DXFER output delay 23 30 ns 

31 tDXH DXFER output hold 2 2 ns 

32 tHDXD Hold to DXFER output delay 15 20 ns 

33 tHDXH Hold to DXFER output hold 0 0 ns 

Notes: 
1. Includes INULL, INST, FLUSH, FXACK, CXACK, INTACK, and ERROR signals 
2. Test conditions assume signal transition times of S ns or less, a timing reference level of l.SY, input levels of 0 to 3.0Y, and 

output loading of SOpf capacitance. 
3. See the last page of this specification for Group A subgroup testing information 

I-t----<G)t-------t 
i-----, 

CLOCK 

ADDRESS 

SIZE 

RD 

DATA IN ------------~~>-------------

DXFER 

INST 

Figure 10-3. Load Timing 
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CLOCK 

ADDRESS 

SIZE 

( I 

I 

(S-\ I r-----------~) I MAO 
(Async) _____ -:--__ -" '-:~-:___:_:---_:__--

--------------------~)~®~ 
MDS I~ ""-__ oJ 

DATA IN ----@-----------..;110.".~---_( 
INVALID DATA 
DUE TO MISS 

Figure 10-4. Load with Miss Timing 
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CLOCK 

ADDRESS 

SIZE 

RD 

WRT 

----c~.-.---
DATA OUT 

DATA IN 

"----1. }---..j --10 
LOCK I 

7lA I MII/II)J ~/I/IIA I/IJI/I//Ih .IIIIIIII/M 
I· -@ ~ J."" r---:J- 1Gi){ __ _ 

DXFER 

INULL 

Figure 10-5. Load followed by Store Timing 
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CLOCK 

ADDRESS A 1 

SIZE S 1 

----~,~ 
I ~~ ______________ ~«~ ________ ~ 
~ ~ 

_
__________ -J1 )/~------------------~ 

INULL • 

DATA OUT 
~!~----------------~~-------~~. ____________ D __ l~~~----~~-----

Figure 10-6. Store with Miss Timing 
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CLOCK 

ADDRESS 

RD 

WRT 

DATA IN 

INST ~l--
LOCK I I 

DXFER ~ 

Figure 10-7. Load Double Timing 
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ADDRESS 

SIZE 

RD 

WRT 

DATA IN 

DATA OUT 
I..-~ 02 <lGH 03 }_ 

we, I i ~~I t..L.L.L.L.L.L.----L.L..L. 

OXFE" ~ ~ WIl/JII I-Wdf W1fffJ~j/A Ili 
INULL I \. 
-----------------~ 

Figure 10-8. Store Double Timing 
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CLOCK 

SIZE 

~------------~«~--~--~ » 

INULL 

Figure 10-9. Read With Memory Exception Timing 
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CLOCK 

ADDRESS 

SIZE 

LOCK 
LDSTO 

DFETCH 

RD 
WE 

WRT 

Figure 10-10. Bus Arbitration Timing 
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Military Specifications 
Group A Subgroup Testing 

DC Characteristics 

Parameters Subgroups 

V OH 1,2,3 

VOL 1,2,3 

VIH 1,2,3 

V lL 1,2,3 

IIH 1,2,3 

IlL 1,2,3 

Switching Characteristics 

Parameter Subgroups 

1 tey 7,8,9,10,11 

2 tCHL 7,8,9,10,11 

4 tAD 7,8,9,10,11 

5 tAH 7,8,9,10,11 

6 tooo 7,8,9,10,11 

7 tOOH 7,8,9,10,11 

8 tMAO 7,8,9,10,11 

9 tMAH 7,8,9,10,11 

10 tDiS 7,8,9,10,11 

11 tDiH 7,8,9,10,11 

12 t MES 7,8,9,10,11 

13 tMEH 7,8,9,10,11 

14 tHS 7,8,9,10,11 

15 tHH 7,8,9,10,11 

16 tOE 7,8,9,10,11 

Document #: 38-00082 

Parameters Subgroups 

IOH 1,2,3 

IOL 1,2,3 

Ioz 1,2,3 

Isc 1,2,3 

ICCQ 1,2,3 

Icc 1,2,3 

Parameter Subgroups 

17 too 7,8,9,10,11 

18 t TOE 7,8,9,10,11 

19 t TOO 7,8,9,10,11 

20 t sso 7,8,9,10,11 

21 t SSH 7,8,9,10,11 

22 t RS 7,8,9,10,11 

23 t RH 7,8,9,10,11 

24 t HOD 7,8,9,10,11 

26 tpo 7,8,9,10,11 

27 t PH 7,8,9,10,11 

28 t PIS 7,8,9,10,11 

29 tpIH 7,8,9,10,11 

30 toxo 7,8,9,10,11 

31 tOXH 7,8,9,10,11 

32 tHOXO 7,8,9,10,11 
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CHAPTER 11 

cyp~ss====================~ SEMICONDUCTOR Ordering & Mechanical 
Information 

The CY7C601 SPARC Integer Processing Unit is available in two packages, a Plastic Multilayer 
type and a Ceramic Multilayer type. The Pinout and physical characteristics of both units are 
identical, and are shown in this chapter. Both packages have tuned 50 ohm characteristic imped­
ance to provide the lowest noise and best interface characteristics possible. 

In Table 12-1, there are three separate power systems shown. Vcco and Vsso provide power for 
the output drivers only. VCCI and VSSI provide power for the chip internals while VCCT and 
VSST provide power for the device input receivers. This separation of power allows offchip 
decoupling and provides the ability to manage power and noise in the system. 

ABC 0 E F G H J K L M N P R T U 

1 @@@@@@@@@@@@@@@@ 
2 @@@@@@@@@@@@@@@@@ 
3 @@@@@@@@@@@@@@@@@ 
4 @@@@@@@@@@@@@@@@@ 
5 @@@@ @@@@ 
6 @@@@ @@@@ 
7 @@@@ @@@@ 
8 @@@@ @@@@ 
9 @ @ @ @ BOnOM VIEW @ @ @ @ 
10 @@@@ @@@@ 
11 @@@@ @@@@ 
12 @@@@ @@@@ 
13 @@@@ @@@@ 
14 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 
15 @@@@@@@@@@@@@@@@@ 
16 @@@@@@@@@@@@@@@@@ 
17 @@@@@@@@@@@@@@@@@ 

Figure 11-1. Pin Grid Array Package 
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Ordering & Mechanical Information 

Pin Name Description Input/Output Active 

A(O-31) Address 3-State Output 
ASI(O-7) Address Space Identifier 3-State Output 
D(O-31) Data 3-State BiDir. 
MEXC Memory Exception Input Low 
MHOLDA Memory Hold A Input Low 

MHOLDB Memory Hold B Input Low 
BHOLD Bus Hold Input Low 
AOE Address Output Enable Input Low 
DOE Data Output Enable Input Low 
COE Control Output Enable Input Low 

MDS Memory Data Strobe Input Low 
MAO Memory Address Output Sel. Input 
1FT Instruction Flush Trap Input Low 
SIZE(O-l) Bus Transaction Size 3-State Output 
RD Read 3-State Output High 

WE Write Output Low 
LDSTO Load/Store Operation Output High 
INULL Null Cycle Output High 
LOCK Multi-Cycle Bus Lock Output High 
DFETCH Data Fetch Cycle Output High 

WRT Advanced Write Output High 
FP FPU Present Input w Pullup Low 
FCC(O-l) FPU Condition Codes Input 
FCCV Condition Codes Valid Input High 
FHOLD FPU Hold Input Low 

FEXC FPU Exception Input Low 
CP Coprocessor Present Input w Pullup Low 
CCC(O-l) CP Condition Codes Input 
CCCV Condition Codes Valid Input High 
CHOLD CP Hold Input Low 

CEXC CP Exception Input Low 
INST Instruction Fetch Cycle Output High 
FLUSH Flush FP/CP Instruction Output High 
FINS 1 FP Instruction Stage 1 Output High 
FINS2 FP Instruction Stage 2 Output High 

FXACK FP Exception Acknowledge Output High 
CINSl CP Instruction Stage 1 Output High 
CINS2 CP Instruction Stage 2 Output High 
CXACK CP Exception Acknowledge Output High 
IRL(O-3) Interrupt Request Lines Input Low 

INTACK Interrupt Acknlwledge Output High 
RESET System Reset Input Low 
ERROR IU Error Mode Output Low 
TOE Test Mode Output Enable Input High 
FPSYN FPU Synonym Mode Input 
CLK System Clock Input 
VSSO Output Driver Ground Ground 
VCCO Output Driver Power Power 
VSSI Main Internal Ground Ground 
VCCI Main Internal Power Power 
VSST Input Circuit Ground Ground 
VCCT Input Circuit Power Power 

Table 11-1. Pin Function 
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Ordering & Mechanical Information 

Pin Name Pin Pin Name Pin Pin Name Pin 
Number Number Number 

AO K2 ASIO F3 VSSO B16 H4 T16 
Al Kl ASI1 F2 B17 J2 T17 
A2 L3 ASI2 G3 C3 K14 U16 
A3 Ll ASI3 02 C4 N14 U17 
A4 L2 ASI4 01 06 P4 
AS M2 ASIS H2 014 P6 
A6 N2 ASI6 Hl Fl P11 
A7 Ml ASI7 J1 F4 P14 
A8 M3 SIZEO E2 F14 RS 
A9 Pl SIZEl 02 F17 R14 AI0 P2 
A11 Nl MEXC 08 VCCO A1S L4 A12 N3 MHOLOA C8 
A13 R3 A16 M14 
A14 R2 MHOLOB B8 A17 N4 
A1S R4 BHOLO A7 01 P8 
A16 T4 AOE P3 012 P12 
A17 TS COE C2 017 P16 
A18 R6 OOE N17 El P17 
A19 T6 MOS B7 04 R16 
A20 US MAO E3 K4 R17 
A2l U6 1FT C14 K1S 
A22 U7 

RO A4 A3 J3 U2 A23 T7 VSSI 
A24 U8 WE B4 A14 Ll4 UI0 
A2S T8 LOSTO CS B2 M4 
A26 U9 INULL BS B3 PS 
A27 R8 LOCK 04 B9 P7 
A28 T9 OXFER 03 Cl Rl 
A29 R9 WRT E4 C16 R11 
A30 TlO 013 Tl 
A31 U11 FP C7 E1S T1S 
00 RI0 

FCCO A11 H14 Ul 
FCCl B11 01 T11 FCCV CI0 VCCI A2 R12 

02 U12 FHOLO A8 Bl T2 
03 T12 FEXC AS 07 T3 04 U13 
05 T13 CP B6 E14 U3 
06 Tl4 CCCO A12 E16 U4 
07 R13 CCC1 B13 014 
08 U14 CCCV BI0 H3 
09 U1S CHOLO C9 J1S 
010 R1S CEXC A6 PI0 
011 P1S R7 
012 N1S INST C6 

VSST 09 J4 013 M1S FLUSH B14 J14 
014 M16 FINS 1 E17 P9 
015 N16 FINS2 016 VCCT 05 P13 
016 L1S FXACK 011 
017 M17 CINSl 015 018 L16 CINS2 C17 019 L17 
020 K16 CXACK C13 
021 K17 IRLO AI0 
022 J16 IRLl C11 
023 J17 IRL2 010 024 H17 IRL3 B12 025 H1S INTACK A13 026 017 
027 H16 RESET A9 
028 016 ERROR B1S 
029 F16 TOE C1S 
030 F1S FPSYN C12 
031 015 CLK K3 

Table 11-2. Pin Connections 
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.775 
.745 

_1_ 
1 

1.615 
1.585 

-'--

.085~ 
.085-

Ordering & Mechanical Information 

@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@ @@@@ 

207 X .018 L 
I 

@@@@ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ BOTTOM @@@@ 
@@@@ VIEW @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@ 

I- ·1 1.615 
1.585 

-L .080 .130 

..... .160 
1.775 
1.745 

Figure 11-2. Package Outline 

Clock 
Frequency Odering Code Package Type Operating Range 

(MHz) 

25 CY7C601-25GC G208 Commercial 

33 CY7C601-33GC G208 Commercial 

25 CY7C60 1-25PC P208 Commercial 

33 CY7C601-33PC P208 Commercial 

25 CY7C601-25GMB G208 Military 

Table 11-3. Ordering Information 
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CHAPfER 12 

CYP~SS====================~ SEMICONDUCTOR Pro~ramming 
ConsIderations 

This section of the Users Manual will be published in the Second Edition, January 1989. 
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CHAPTER 13 
CYPRESS ====================== 
SEMICONDUCTOR Development 

Environment 

This section of the Users Manual will be published in the Second Edition, January 1989. 
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APPENDIX A 

cyp~ss==================== SEMICONDUCTOR Assembly Language Syntax 

This appendix supports Appendix B, Instruction Descriptions. Every instruction description in 
Appendix B includes a table that describes the suggested assembly language format for 
that instruction. This appendix describes the notation used in the assembly language syntax 
descriptions. 

Understanding the use of type fonts is crucial to understanding the syntax descriptions in 
Appendix B. Items in typewri ter font are literals, to be entered exactly as they appear. Items in 
italic font are metasymbols which are to be replaced by numeric or symbolic values when actual 
SPARe assembly-language code is written. For example, "asi" would be replaced by a number 
in the range of 0 to 255 (the value of the asi bits in the binary instruction), or by a symbol which 
had been bound to such a number. 

Subscripts on metasymbols further identify the placement of the operand in the generated binary 
instruction. For example, regrs2 is a reg (Le. register name) whose binary value will end up in the 
rs2 field of the resulting instruction. 

Register Names 
reg 

A reg is an Integer Unit register. It can have a value of: 

%0 through %31 all integer registers 
%gO through %g7 global registers-same as %0 through %7 
0/000 through %07 out registers-same as %8 through %15 
%10 through %17 local registers-same as %16 through %23 
%iO through %i7 in registers-same as %24 through %31 

Subscripts further identify the placement of the operand in the binary instruction as one 
of: 

regrs1 -rs1 field 
regrs2 -rs2 field 
regrd -rd field 

jreg 

Afreg is a floating-point register. It can have a value from %fO through %f31. Subscripts 
further identify the placement of the operand in the binary instruction as one of: 

jregrs1 -rs1 field 
jregrs2 -rs2 field 
jregrd -rd field 
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creg 

A creg is a coprocessor register. It can have a value from o/oeO through %c31. Subscripts 
further identify the placement of the operand in the binary instruction as one of: 

creg,s} -rsl field 
creg,s2 -rs2 field 
creg,d -rd field 

Special Symbol Names 

Certain special symbols need to be written exactly as they appear in the syntax table. These 
appear in typewriter font. and include a percent sign (%). also in typewriter font. The percent 
sign is part of the symbol name; it must appear as part of the literal value. 

The symbol names are: 

%psr Processor State Register 
%wim Window Invalid Mask register 
%tbr Trap Base Register 
%y Y register 
%fsr Floating-point State Register 
%csr Coprocessor State Register 
%fq Floating-point Queue 
%cq Coprocessor Queue 
%hi Unary operator that extracts high 22 bits of its operand 
%10 Unary operation that extracts low 10 bits of its operand 

Values 

Some instructions use operands comprising values as follows: 

simmI3-A signed immediate constant that fits in 13 bits 

const22-A constant that fits in 22 bits 

asi-An alternate address space identifier (0 to 255) 

Label 

A sequence of characters, comprised of alphabetic letters (a-z, A-Z [upper and lower case 
distinct]), underscore U, dollar sign ($), period (.), and decimal digits (0-9), which does not 
begin with a decimal digit. 

Some instructions offer a choice of operands. These are grouped as follows: 

regaddr: 

reg,s} 
reg,s} + reg,s2 
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address: 

reg,s1 
reg,s1 + reg,s2 
reg,s1 + simm13 
reg,s1 - simm13 
simm13 
simm13 + reg,s1 

reg_or_imm 

reg,s2 
simm13 
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APPENDIXB 
CYP~SS~~~~~~~~~~~ 
SEMICONDUCTOR Instruction Definitions 

This appendix describes the SPARe architecture's instruction set. A more detailed, algorithmic 
definition of the instruction set appears in Appendix C. 
Related instructions are grouped into subsections. Each subsection consists of five parts: 

• A table of the opcodes defined in the subsection with the values of the field(s) which 
uniquely identify the instruction(s). 

• An illustration of the applicable instruction format(s). 
• A table of the suggested assembly language syntax. (The syntax notation is described in 

Appendix A.) 

• A description of the salient features, restrictions, and trap conditions. 
• A list of the synchronous or floating-point/coprocessor traps which can occur as a conse-

quence of executing the instruction(s). 
This section does not include any timing information (in either cycles or absolute time) since 
timing is strictly implementation-dependent. 
The following table lists all the instructions: 

Opcode Name 

LDSB (LDSBA *) Load Signed Byte (from Alternate space) 
LDSH (LDSHA*) Load Signed Halfword (from Alternate space) 
LDUB (LDUBA *) Load Unsigned Byte (from Alternate space) 
LDUH (LDUHA *) Load Unsigned Halfword (from Alternate space) 
LD (LDA*) Load Word (from Alternate space) 

LDD (LDDA*) Load Doubleword (from Alternate space) 
LDF Load Floating-point 
LDDF Load Double Floating-point . 
LDFSR Load Floating-point State Register 
LDC Load Coprocessor 

LDDC Load Double Coprocessor 
LDCSR Load Coprocessor State Register 
STB (STBA*) Store Byte (into Alternate space) 
STH (STHA*) Store Halfword (into Alternate space) 
ST (STA*) Store Word (into Alternate space) 

STD (STDA*) Store Doubleword (into Alternate space) 
STF Store Floating-point 
STDF Store Double Floating-point 
STFSR Store Floating-point State Register 
STDFQ* Store Double Floating-point Queue 

'privileged instruction 
Table B-1. Instruction Set 
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Instruction Definitions 

Opcode Name 

STC Store Coprocessor 
STDC Store Double Coprocessor 
STCSR Store Coprocessor State Register 
STDCQ* Store Double Coprocessor Queue 
LDSTUB (LDSTUBA *) Atomic Load-Store Unsigned Byte (in Alternate space) 

SWAP (SWAPA*) Swap r Register with Memory (in Alternate space) 
ADD (ADDcc) Add (and modify icc) 
ADDX (ADDXc~) Add with Carry (and modify icc) 
TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on overflow) 
SUB (SUBcc) Subtract (and modify icc) 

SUBX (SUBXcc) Subtract with Carry (and modify icc) 
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow) 
MULScc Multiply Step and modify icc 
AND (ANDcc) And (and modify icc) 
ANDN (ANDNcc) And Not (and modify icc) 

OR (ORcc) Inclusive-Or (and modify icc) 
ORN (ORNcc) Inclusive-Or Not (and modify icc) 
XOR (XORcc) Exclusive-Or (and modify icc) 
XNOR (XNORcc) Exclusive-Nor (and modify icc) 
SLL Shift Left Logical 

SRL Shift Right Logical 
SRA Shift Right Arithmetic 
SETHI Set High 22 bits of r register 
SAVE Save caller's window 
RESTORE Restore caller's window 

Bicc Branch on integer condition codes 
FBfcc Branch on floating-point condition codes 
CBccc Branch on coprocessor condition codes 
CALL Call 
JMPL Jump and Link 

RETT* Return from Trap 
Ticc Trap on integer condition codes 
RDY Read Y register 
RDPSR* Read Processor State Register 
RDWIM* Read Window Invalid Mask register 

RDTBR* Read Trap Base Register 
WRY Write Y register 
WRPSR* Write Processor State Register 
WRWIM* Write Window Invalid Mask register 
WRTBR* Write Trap Base Register 

UNIMP Unimplemented instruction 
IFLUSH Instruction cache Flush 
FPop Floating-point Operate: FiTO(s,d,x), F(s,d,x)TOi, 

FsTOd, FsTOx, FdTOs, FdTOx, FxTOs, FxTOd, 
FMOVs, FNEGs, FABSs, FSQRT(s,d,x), FADD(s,d,x), 
FSUB(s,d,x), FMUL(s,d,x), FDIV(s,d,x), 
FCMP(s,d,x), FCMPE(s,d,x) 

CPop Coprocessor operate 

·prlvileged instruction 
Table B-1. InstructionSet (continued) 
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Load Integer Instructions 
Opcode op3 Operation 

LDSB 001001 Load Signed Byte 
LDSBA* 011001 Load Signed Byte from Alternate space 
LDSH 001010 Load Signed Halfword 
LDSHA* 011010 Load Signed Halfword from Alternate space 
LDUB 000001 Load Unsigned Byte 
LDUBA* 010001 Load Unsigned Byte from Alternate space 
LDUH 000010 Load Unsigned Halfword 
LDUHA* 010010 Load Unsigned Halfword from Alternate space 
LD 000000 Load Word 
LDA* 010000 Load Word from Alternate space 
LDD 000011 Load Doubleword 
LDDA* 010011 Load Doubleword from Alternate space 

'prlvileged instructIOn 

Format (3): 

111 rd op3 
31 29 24 

111 rd op3 
31 29 24 

Assembly Language Syntax 

Idsb 
Idsba 
Idsh 
Idsha 
Idub 
Iduba 
Iduh 
Iduha 
Id 
Ida 
Idd 
Idda 

Description 

[address], regrd 
[regaddr] asi, regrd 
[address], regrd 
[regaddr] asi, regrd 
[address], regrd 
[regaddr] asi, regrd 
[address], regrd 
[regaddr] asi, regrd 
[address], regrd 
[regaddr] asi, regrd 
[address], regrd 
[regaddr] asi, regrd 

rsl i=O asi 
18 13 12 

rsl i=l simm13 
18 13 12 

rs2 
4 o 

o 

The load single integer instructions move either a byte, halfword, or word from memory into the 
r register defined by the rd field. A fetched byte or halfword is right-justified in rd and may be 
either zero-filled or sign-extended. 

The load double integer instructions (LDD, LDDA) move a doubleword from memory into an 
r register pair. The most significant word at the effective memory address is moved into the even 
r register. The least significant word at the effective memory address + 4 is moved into the odd 
r register. The least significant bit of the rd field is ignored. (Note that a load double with rd = 0 
modifies only r [1] .) 

The effective address for a load instruction is either "r[rs1] + r[rs2]" if the i field is zero, or 
"r[rs1] + sign_ext(simm13)" if the i field is one. Instructions which load from an alternate 
address space must have zero in the i field and the address space identifier to be used for the 
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load in the asi field. Otherwise the address space indicates either a user or system data space 
access, according to the S bit of the PSR. 

ID and IDA cause a mem_address_not_aligned trap if the effective address is not word-aligned; 
IDUH, IDSH, IDUHA, and IDSHA trap if the address is not halfword-aligned; and IDD and 
IDDA trap if the address is not doubleword-aligned. 

If a load single instruction traps, the destination register remains unchanged. 

If a load double instruction is trapped with a data access exception during the effective address 
memory access, the destination registers remain unchanged. However a specific implementation 
might cause a data_access_exception trap during the effective address + 4 memory access, but 
not during the effective address access. Thus, the even destination r register can be changed in 
this case. (Note that this cannot happen across a page boundary because of the 
doubleword-alignment restriction.) 

Implementation Note 

On effective address +4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

Programming Note 

The execution time of a load integer instruction may increase if the next instruction uses the 
register specified by the rd field of the load instruction as a source operand (rsl or rs2). In the 
case of load doubleword instructions, this applies to both destination registers. Whether the time 
increase occurs or not is implementation-dependent. 

Programming Note 

When i = 1 and rsl = 0, any location in the lowest or highest 4K bytes of an address space can be 
accessed without using a register. 

Traps 

illegal_instruction (load alternate space with i = 1) 
privileged_instruction (load alternate space only) 
mem_address_not_aligned (excluding IDSB, IDSBA, IDUB, and IDUBA) 
data_access_exception 

Load Floating-Point Instructions 

opcode op3 operation 

LDF 100000 Load Floating-point register 
LDDF 100011 Load Double Floating-point register 
LDFSR 100001 Load Floating-point State Register 

Format (3): 

111 rd oE3 rsl i=O i!!nored rs2 
31 29 24 18 13 12 4 

111 rd op3 rsl i=l simm13 
31 29 24 18 13 12 

B-4 

0 

0 



~ 
~ ~ Instruction Definitions 
~I~================================= 

Assembly Language Syntax 

Id [address], jreg,d 
Idd [regaddr], jregrd 
Id [address], %fsr 

Description 

The load single floating-point instruction (LDF) moves a word from memory into the f register 
identified by the rd field. 

The load double floating-point instruction (LDDF) moves a doubleword from memory into an 
f register pair. The most significant word at the effective memory address is moved into the even 
f register. The least significant word at the effective memory address +4 is moved into the odd 
f register. The least significant bit of the rd field is ignored. 

The load floating-point state register instruction (LDFSR) waits for all FPops that have not 
finished execution to complete and then loads a word from memory into the FSR. 

The effective address for the load instruction is either "r[rsl] + r[rs2]" if the i field is zero, or 
r[rsl]+ sign_ext(simm13)" if the i field is one. 

lDF and lDFSR cause a mem_address_not_aligned trap if the effective address is not 
word-aligned; and lDDF traps if the address is not doubleword-aligned. A load floating-point 
instruction causes an fp_disabled trap if the EF field of the PSR is 0 or if no FPU is present. 

If a load single floating-point instruction is trapped with a data access exception, the destination 
f register either remains unchanged or is set to an implementation-defined constant value. 

If a load double floating-point instruction is trapped with a data access exception, either the 
destination f registers remain unchanged or one or both are set to an implementation-defined 
constant value. 

Programming Note 

The execution time of a load floating-point instruction may increase if the next instruction uses 
the register specified by the rd field of the load instruction as a source operand (rsl or rs2). In 
the case of load double floating-point instructions, this applies to both destination registers. 
Whether the time increases or not is implementation-dependent. 

Programming Note 

When i = 1 and rsl = 0, any location in the lowest or highest 4K bytes of an address space can be 
accessed without using a register. 

Traps 

fp_disabled 
fp _exception 
mem _address _ not_aligned 
data_access _exception 

B-5 



~ 

-~ ~~~========================================================== 
Instruction Definitions 

Load Coprocessor Instructions 

opcode op3 operation 

LDC 110000 Load Coprocessor register 
LDDC 110011 Load Double Coprocessor register 
LDCSR 110001 Load Coprocessor State Register 

Format (3): 

111 rd op3 rsl i=O ignored rs2 
31 29 24 18 13 12 4 o 

111 rd op3 rs1 i=1 simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

Id {address}, cregrd 
Idd {address}, cregrd 
Id {address}, %csr 

Description 
The load single coprocessor instruction (LDC) moves a word from memory into a coprocessor 
register. The load double coprocessor instruction (LDDC) moves a doubleword from memory 
into a coprocessor register pair. The load coprocessor state register instruction (LDCSR) moves a 
word from memory into the Coprocessor State Register. The semantics of these instructions 
depend on the implementation of the attached coprocessor. 
The effective address for the load instruction is either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm13)" if the i field is one. 
LDC and LDCSR cause a mem address not aligned trap if the effective address is not 
word-aligned; and LDDC traps if the address is not doubleword-aligned. A load coprocessor 
instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor is 
present. 
If a load coprocessor instruction traps, the state of the coprocessor depends on its 
implementation. 

Implementation Note 
On effective address +4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

Programming Note 
The execution time of a load coprocessor instruction may increase if the next instruction uses the 
register specified by the rd field of the load instruction as a source operand (rsl or rs2). In the 
case of load double coprocessor instructions, this applies to both destination registers. Whether 
the time increases or not is implementation-dependent. 

Programming Note 
When i = 1 and rsl = 0, any location in the lowest or highest 4K bytes of an address space can be 
accessed without using a register. 
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Traps 

cp_disabled 
cp _exception 
mem_address_not_aligned 
data_access _exception 

Store Integer Instructions 

opcode op3 

STB 000101 Store Byte 

operation 

STBA* 010101 Store Byte into Alternate space 
STH 000110 Store Halfword 
STHA* 010110 Store Halfword into Alternate space 
ST 000100 Store Word 
STA* 010100 Store Word into Alternate space 
STD 000111 Store Doubleword 
STDA* 010111 Store Doubleword into Alternate space 

'privileged instruction 

Format (3): 

111 rd oE3 rsl i=O 
31 29 24 18 13 

111 rd op3 rs1 i=1 
31 29 24 18 13 

Assembly Language Syntax 

stb 
stba 
sth 
stha 
st 
sta 
std 
stda 

Description 

reg,d' [address] 
reg,d, [regaddr] asi 
reg,d' [address] 
reg,d' [regaddr] asi 
reg,d' [address] 
reg,d' [regaddr] asi 
reg,d' [address] 
reg,d' [regaddr] asi 

synonyms: stub , stsb 
synonyms:stuba, stsba 
synonyms:stuh, stsba 
synonyms:stuha, stsha 

asi rs2 
12 4 0 

simm13 
12 0 

The store single integer instructions move the word, the least significant halfword, or the least 
significant byte from the r register specified by the rd field into memory. 

The store double integer instructions (STD, STA) move a doubleword from an r register pair into 
memory. The most significant word in the even r register is written into memory at the effective 
address and the least significant word in the following odd r register is written into memory at the 
effective address +4. 

The effective address for a store instruction is either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm13)" if the i field is one. Instructions which store to an alternate address 
space must have zero in the i field and the address space identifier to be used for the store in the 
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asi field. Otherwise the address space indicates either a user or system data space access, 
according to the S bit in the PSR. 

ST and STA cause a mem_address_not_aligned trap if the effective address is not word-aligned; 
STH and STHA trap if the address is not halfword-aligned; and SID and SIDA trap if the 
address is not doubleword-aligned. 

If a store single instruction traps, memory remains unchanged. However, in the case of a store 
double, an implementation might cause a data_access_exception trap during the effective 
address +4 memory access, but not during the effective address access. Thus, data at the 
effective memory address can be changed in this case. (Note that this cannot happen across a 
page boundary because of the doubleword-alignment restriction.) 

Implementation Note 
On effective address +4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

Programming Note 

When i = 1 and rsI = 0, any location in the lowest or highest 4K bytes of memory can be written 
without using a register. 

Traps 

illegal_instruction (store alternate with i = 1) 
privileged_instruction (store alternate only) 
mem_address_not_aligned (excluding STB and STBA) 
data_access _exception 

Store Floating-Point Instructions 
opcode op3 operation 

STF 100100 Store Floating-point 
STDF 100111 Store Double Floating-point 
STFSR 100101 Store Floating-point State Register 
STDFQ* 100110 Store Double Floating-point Queue 

'privileged instruction 

Format (3): 

111 rd op3 rsl i=O 
31 29 24 18 13 

111 rd op3 rs1 i=l 
31 29 24 18 13 

Assembly Language Syntax 

st /regrd, [address} 
std /regrd, [address} 
st %fsr, [address] 
std %fq, [address] 
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Description 
The store single floating-point instruction (STF) moves the contents of the f register specified by 
the rd field into memory. 

The store double floating-point instruction (STDF) moves a doubleword from an f register pair 
into memory. The most significant word in the even f register is written into memory at the 
effective address and the least significant word in the odd f register is written into memory at the 
effective address +4. 

The store floating-point queue instruction (STDFQ) stores the front entry of the Floating-point 
Queue (FQ) into memory. The address part of the front entry is stored into memory at the 
effective address, and the instruction part of the front entry at the effective address +4. If the 
FPU is in exception_mode, the queue is then advanced to the next entry, or it becomes empty 
(as indicated by the qne bit in the FSR). 

The store floating-point state register instruction (STFSR) waits for all FPops that have not 
finished execution to complete and then writes the FSR into memory. 

The effective address for a store instruction is either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm13)" if the i field is one. 

STF and STFSR cause a mem_address_not_aligned trap if the address is not word-aligned and 
STDF and STDFQ trap if the address is not doubleword-aligned. A store floating-point 
instruction causes an fp _disabled trap if the EF field of the PSR is 0 or if the FPU is not present. 

If a store single floating-point instruction traps, memory remains unchanged. However, in the 
case of a store double, an implementation may cause a data_access_exception trap during the 
effective address + 4 memory access, but not during the effective address access. Data at the 
effective memory address can be changed in this case. (Note that this cannot happen across a 
page boundary because of the doubleword-alignment restriction.) 

Implementation Note 

On effective address +4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

Traps 

fp _disabled 
fp _exception 
privileged_instruction (STDFQ only) 
mem _address _ not_aligned 
data_access _exception 

Store Coprocessor Instructions 
opcode op3 operation 

STC 110100 Store Coprocessor 
STDC 110111 Store Double Coprocessor 
STCSR 110101 Store Coprocessor State Register 
STDCQ* 110110 Store Double Coprocessor Queue 

'privileged instruction 
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Format (3): 

111 rd op3 rsl i=O ignored rs2 
31 29 24 18 13 12 4 o 

111 rd op3 rsl i=l simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

st cregrd' [address] 
std cregrd, [address] 
st %csr, [address] 
std %Cq, [address] 

Description 

The store single coprocessor instruction (STC) moves the contents of a coprocessor register into 
memory. The store double coprocessor instruction (SIDC) moves the contents of a coprocessor 
register pair into memory. The store coprocessor state register instruction (STCSR) moves the 
contents of the coprocessor state register into memory. The store double coprocessor queue 
instruction (SIDCQ) moves the front entry of the coprocessor queue into memory. The 
semantics of these instructions depend on the implementation of the attached coprocessor, if 
any. 

The effective address for a store instruction is either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm13)" if the i field is one. 

STC and STCSR cause a mem_address_not_aligned trap if the address is not word-aligned and 
SIDC and SIDCQ trap if the address is not doubleword-aligned. A store coprocessor instruction 
causes a cp_disabled trap if the BC field of the PSR is 0 or if no coprocessor is present. 

If a store single coprocessor instruction traps, memory remains unchanged. However, in the case 
of a store double, an implementation might cause a data_access_exception trap during the 
effective address +4 memory access, but not during the effective address access. Thus, data at 
the effective memory address can be changed in this case. (Note that this cannot happen across a 
page boundary because of the doubleword-alignment restriction.) 

Implementation Note 

On effective address +4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such a~ uncorrectable memory errors. 

Traps 

cp_disabled 
cp _exception 
privileged_instruction (SIDCQ only) 
mem _address _ not_aligned 
data_access _exception 
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Atomic Load-Store Unsigned Byte Instructions 
opcode op3 operation 

LDSTUB 001101 Atomic Load-Store Unsigned Byte 
LDSTUBA* 011101 Atomic Load-Store Unsigned Byte into Alternate space 

·privileged instruction 

Format (3): 

111 rd op3 rsl i=O asi rs2 
31 29 24 18 13 12 4 o 

111 rd op3 rs1 i=l simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

Ids tub [address]. reg,d 
Ids tuba [regaddr] asi. reg,d 

Description 

The atomic load-store instructions move a byte from memory into an r register identified by the 
rd field and then rewrite the same byte in memory to all ones without allowing intervening 
asynchronous traps. In a multiprocessor system, two or more processors executing atomic 
load-store instructions addressing the same byte simultaneously are guaranteed to execute them 
in some serial order. 

The effective address of an atomic load-store is either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm13)" if the i field is one. LDSTUBA must have zero in the i field, or an 
illegalJnstruction trap occurs. The address space identifier used for the memory accesses is 
taken from the asi field. For LDSTUB, the address space indicates either a user or system data 
space access, according to the S bit in the PSR. 

If an atomic load-store instruction traps, memory remains unchanged. However, an imple­
mentation may cause a data_access_exception trap during the store memory access, but not 
during the load access. In this case, the destination register can be changed. 

Implementation Note 

The system should limit data_access_exceptions on the store access to non-restartable errors, 
such as protection violation or uncorrectable memory errors. 

Programming Note 

When i = 1 and rsl = 0, any location in the lowest or highest 4K bytes of memory can be 
accessed without using a register. 

Traps 

illegaUnstruction (LDSTUBA with i = 1 only) 
privileged_instruction (LDSTUBA only) 
data_access _exception 
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SWAP r Register with Memory 

opcode op3 operation 

SWAP 001111 SWAP r register with memory 
SWAPA· 011111 SWAP r register with Alternate space memory 
·privileged instruction 

Format (3): 

111 rd op3 rsl i=O asi rs2 
31 29 24 18 13 12 4 o 

111 rd op3 rs1 i=1 simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

swap [source]. regrd 
swapa [regsource] asi, regrd 

Description 
The swap instructions exchange the r register identified by the rd field with the contents of the 
addressed memory location. This is performed atomically without allowing asynchronous traps. 
In a multiprocessor system, two or more processors issuing swap instructions simultaneously are 
guaranteed to get results corresponding to the executing the instructions serially, in some order. 

The effective address of the swap instruction is either "r[rs1] + r[rs2]" if the i field is zero, or 
"r[rs1] + sign_ext(simm13)" if the i field is one. SWAPA must have zero in the i field or an 
illegal_instruction trap occurs. The address space identifier used for the memory accesses is 
taken from the asi field. For SWAP, the address space indicates either a user or a system data 
space access, according to the S bit in the PSR. 

These instructions cause a mem_address_not_aligned trap if the effective address is not 
word-aligned. 

If a swap instruction traps, memory remains unchanged. 

Programming Note 

When i = 1 and rsl = 0, any location in the lowest or highest 4K bytes of memory can be written 
without using a register. 

Traps 
illegal instruction (i = 1 and SWAPA only) 
privileged_instruction (SWAPA only) 
data_access _exception 
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Add Instructions 

opcode op3 operation 

ADD 000000 Add 
ADDcc 010000 Add and modify icc 
ADDX 001000 Add with Carry 
ADDXcc 011000 Add with Carry and modify icc 

Format (3): 

110 rd op3 
31 29 24 

110 rd op3 
31 29 24 

Assembly Language Syntax 

add 
addcc 
addx 
addxcc 

Description 

reg,sl, reg_or _imm, regrd 
reg,sl, reg_or _imm, regrd 
res,.sl, reg_or _imm, regrd 
reg,sl, reg_or _imm, regrd 

rsl i=O 
18 13 

rs1 i=1 
18 13 

ignored rs2 
12 4 o 

simm13 
12 o 

ADD and ADDcc compute either "r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] + 
sign_ext(simm13)" if the i field is one, and place the result in the r register specified in the rd 
field. 

ADDX and ADDXcc add the PSR's carry (c) bit also; that is, they compute "r[rs1] + r[rs2] + c" 
or "r[rs1] + sign_ext(simm13) + c" and place the result in the r register specified in the rd field. 

ADDcc and ADDXcc modify all the integer condition codes. 

Traps 

(none) 

Tagged Add Instructions 

opcode op3 operation 

TADDcc 100000 Tagged Add and modify icc 
TADDccTV 100010 Tagged Add, modify icc and Trap on Overflow 

Format (3): 

110 rd op3 rsl i=O ignored 
31 29 24 18 13 12 

110 rd op3 rs1 i=1 simm13 
31 29 24 18 13 12 
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Assembly Language Syntax 

taddcc regrs/, reg_or _imm, regrd 
taddcctv regrs/. reg_or _imm, regrd 

Description 
These instructions compute either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)" if the i field is one. An overflow condition exists if bit 1 or bit 0 of either 
operand is not zero, or if the addition generates an arithmetic overflow. 

If a TADDccTV causes an overflow condition, a taLoverflow trap is generated and the 
destination register and condition codes remain unchanged. If a TADDccTV does not cause an 
overflow condition, all the integer condition codes are updated (in particular, the overflow bit (v) 
is set to 0) and the result of the addition is written into the r register specified by the rd field. 

If a TADDcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it does not 
cause an overflow, it is cleared. In either case, the remaining integer condition codes are also 
updated and the result of the addition is written into the r register specified by the rd field. 

Traps 

tag_overflow (TADDccTV only) 

Subtract Instructions 
opeode op3 operation 

ADD 000000 Add 
ADDee 010000 Add and modify icc 
ADDX 001000 Add with Carry 
ADDXcc 011000 Add with Carry and modify icc 

Format (3): 

110 rd op3 
31 29 24 

110 rd op3 
31 29 24 

Assembly Language Syntax 

sub 
subcc 
subx 
subxcc 

Description 

reg,s/, reg_or _imm, regrd 
reg,s/, reg_or _imm, regrd 
reg,.s/, reg_or _imm, regrd 
reg,.s/, reg or _imm, regrd 

rsl i=O 
18 13 

rsl i=l 
18 13 

ignored rs2 
12 4 o 

simm13 
12 o 

These instructions compute either "r [rs 1] - r [rs2] " if the i field is zero, or r [rs 1 ] -
sign_ext(simm13)" if the i field is one, and place the result in the r register specified in the rd 
field. 
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SUBX and SUBXcc ("SUBtract eXtended") also subtract the PSR's carry (c) bit; that is, they 
compute "r[rsl] - r[rs2] - COO or "r[rsl] - sign_ext(simm13) - COO and place the result in the r 
register specified in the rd field. 

SUBcc and SUBXcc modify all the integer condition codes. 

Programming Note 

A SUBcc with rd = 0 can be used for signed and unsigned integer compare. 

Traps 

(none) 

Tagged Subtract Instructions 

opcode op3 operation 

TSUBcc 100001 Tagged Subtract and modify icc 
TSUBccTV 100011 Tagged Subtract. modify icc and Trap on Overflow 

Format (3): 

110 rd op3 
31 29 24 

110 rd op3 
31 29 24 

Assembly Language Syntax 

tsubcc reg,s/. reg_or _imm. regrd 
tsubcctv reg,s/, reg_or _imm. regrd 

Description 

rsl i=O ignored 
18 13 12 

rs1 i=l simm13 
18 13 12 

rs2 
4 o 

o 

These instructions compute either "r[rsl] - r[rs2]" if the i field is zero, or "r[rsl] -
sign_ext(simm13)" if the i field is one. An overflow condition exists if bit 1 or bit 0 of either 
operand is not zero, or if the subtraction generates an arithmetic overflow. 

If a TSUBccTV causes an overflow condition, a tag_overflow trap is generated and the 
destination register and condition codes remain unchanged. If a TSUBccTV does not cause an 
overflow condition, the integer condition codes are updated (in particular, the overflow bit (v) is 
set to 0) and the result of the traction is written into the r register specified by the rd field. 

If a TSUBcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it does not 
cause an overflow, it is cleared. In either case, the remaining integer condition codes are also 
updated and the result of the subtraction is written into the r register specified by the rd field. 

Traps 

tag_overflow (TSUBccTV only) 
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Multiply Step Instruction 
operation 

MUltiply Step and modify icc 

Format (3): 

rd op3 rsl i=O ignored rs2 
31 29 24 18 13 12 4 o 

rd op3 rs1 i=1 simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

mulscc 

Description 

The multiply step instruction can be used to generate the 64-bit product of two signed or 
unsigned words (See Appendix E). MULScc works as follows: 

1. The value obtained by shifting "r[rs1]" (the incoming partial product) right by one bit and 
replacing its high-order bit by "N xor V" (the sign of the previous partial product) is 
computed. 

2. If the least significant bit of the Y register (the multiplier) is set, the value from step (1) is 
added to the multiplicand. The multiplicand is "r[rs2]" if the i field is zero or is 
"sign_ext(simm13)" if the i field is one. If the LSB of the Y register is not set, then zero is 
added to the value from step (1). 

3. The result from step (2) is written into "r[rd]" (the outgoing partial product). The PSR's 
integer condition codes are updated according to the addition performed in step (2). 

4. The Y register (the multiplier) is shifted right by one bit and its high-order bit is replaced by 
the least significant bit of r[rs1]" (the incoming partial product). 

Traps 

(none) 

Logical Instructions 
opcode op3 operation 

AND 000001 And 
ANDcc 010001 And and modify icc 
ANDN 000101 And Not 
ANDNcc 010101 And Not and modify icc 
OR 000010 Inclusive Or 
ORcc 010010 Inclusive Or and modify icc 
ORN 000110 Inclusive Or Not 
ORNcc 010110 Inclusive Or Not and modify icc 
XOR 010011 Exclusive Or and modify icc 
XNOR 000111 Exclusive Nor 
XNOR 010111 Exclusive Nor and modify icc 
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Format (3): 

110 rd op3 
31 29 24 

110 rd op3 
31 29 24 

Assembly Language Syntax 

and 
andcc 
andn 
andncc 
or 
orcc 
orn 
orncc 
xor 
xorcc 
xnor 
xnorcc 

Description 

regrs!' reg_or _imm, regrd 
regrs!' reg_or _imm, regrd 
regrsl' reg_or _imm, regrd 
regrsl' reg_or _imm, regrd 
regrs!' reg_or _imm. reg rd 
regrs!' reg_or _imm. reg rd 
regrs!, reg_or _imm, regrd 
regrs!' reg_or _imm. reg rd 
regrs!. reg_or_imm. regrd 
regrs/. reg_or _imm, regrd 
regrs/. reg_or _imm. regrd 
regrs/, rell-or imm, regrd 

rsl i=O ignored rs2 
18 13 12 4 a 

rsl i=l simm13 
18 13 12 a 

These instructions implement the bitwise logical operations. They compute either "r[rsl] op 
r[rs2]" if the i field is zero, or "r[rsl] op sign_ext(simm13)" if the i field is one (op = and, and 
not, or, or not, xor, xnor). 

ANDcc, ANDNcc, ORcc, ORNcc, XORcc and XNORcc modify all the integer condition codes as 
described in the chapter Registers. 

Traps 

(none) 

Shift Instructions 
opcode op3 operation 

SLL 100101 Shift Left Logical 
SRL 100110 Shift Right Logical 
SRA 100111 Shift Right Arithmetic 

Format (3): 

110 rd op3 rsl i=O ignored rs2 
31 29 24 18 13 12 4 a 

110 rd op3 rsl i=1 ignored shcnt 
31 29 24 18 13 12 a 

Assembly Language Syntax 

511 regrs/, reg_or _imm, reg rd 
5r 1 regrs/, reg_or _imm, reg rd 
5ra regrs!' reg_or _imm, reg rd 
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Description 
The shift count for these instructions is the least significant five bits of either" [rs2]" if the i field 
is zero, or "simm13" if the i field is one. (The least significant five bits of "simm13" is called 
"shcnt" in the above format.) 

SLL shifts the value of "r[rs1]" left by the number of bits implied by the shift count. 

SRL and SRA shift the value of "r[rs1]" right by the number of bits implied by the shift count. 

SLL and SRL replace vacated positions with zeroes, whereas SRA fills vacated positions with the 
most significant bit of "r[rs1]." No shift occurs when the shift count is zero. 

All of these instructions place the shifted result in the r register specified in the rd field. 

These instructions do not modify the condition codes. 

Programming Note 
"Arithmetic left shift by 1 (and calculate overflow)" can be implemented with an ADDcc 
instruction. 

Traps 
(none) 

SETHI Instruction 
opcode op op2 

SETHI 00 100 

Format (2): 

100 rd 100 
31 29 24 

operation 

.Set High 

21 

Assembly Language Syntax 

sethi const22 , regrd 
sethi %hi (value), regrd 

Description 

imm22 
o 

SETIll zeroes the least significant 10 bits of "r[rd]" and replaces its high-order 22 bits with 
imm22. 

The condition codes are not affected. 

Programming Note 

It is suggested that sethi 0, %0 be used as the preferred NOP, since it will not cause an increase 
in execution time if it follows a load instruction. 

Traps 

(none) 
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SAVE and RESTORE Instructions 
opcode op3 operation 

SAVE 111100 Save caller's window 
RESTORE 111101 Restore caller's window 

Format (3): 

110 rd op3 
31 29 24 

110 rd op3 
31 29 24 

Assembly Language Syntax 

save regrs/, reg_or _imm, regrd 
restore regrs/, reg_or _imm, reg rd 

Description 

rsl 
18 

rs1 
18 

i=O ignored rs2 
13 12 4 o 
i=1 simm13 
13 12 o 

The SAVE instruction subtracts one from the CWP (modulo the number of implemented 
windows) and compares this value, the "new_CWP," against the Window Invalid Mask (WIM) 
register. If the WIM bit corresponding to the new_CWP is set, "(WIM and 2new_CWP) = 1," then a 
window_overflow trap is generated. If the WIM bit corresponding to the new_CWP is reset, then 
a window_overflow trap is not generated and new_CWP is written into CWP. This causes the 
active window to become the previous window, thereby saving the caller's window. 

The RESTORE instruction adds one to the CWP (modulo the number of implemented windows) 
and compares this value, the "new_CWP," against the Window Invalid Mask (WIM) register. If 
the WIM bit corresponding to the new_CWP is set, "(WIM and 2new_CWP) = 1," then a 
window_underflow trap is generated. If the WIM bit corresponding to the new _ CWP is reset, 
then a window_underflow trap is not generated and new_CWP is written into CWP. This causes 
the previous window to become the active window, thereby restoring the caller's window. 

Furthermore, if an overflow or underflow trap is not generated, SAVE and RESTORE behave 
like normal ADD instructions, except that the operands "r[rsI]" or "r[rs2]" are read from the 
old window (i.e., the window addressed by the original CWP) and the result is written into 
"r[rd]" of the new window (i.e., the window addressed by new_CWP). 

Note that CWP arithmetic is performed modulo the number of implemented windows 
(NWINDOWS) . 

Traps 

window_overflow (SAVE only) 
window_underflow (RESTORE only) 
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Branch on Integer Condition Instructions 
opcode cond operation icc test 

BA 1000 Branch Always 1 
BN 0000 Branch Never 0 
BNE 1001 Branch on Not Equal not Z 
BE 0001 Branch on Equal Z 
BG 1010 Branch on Greater not (Z or (N xor V) 
BLE 0010 Branch on Less or Equal Z or (N xor V) 
BGE 1011 Branch on Greater or Equal not (N xor V) 
BL 0011 Branch on Less Nxor V 
BGU 1100 Branch on Greater Unsigned not (C or Z) 
BLEU 0100 Branch on Less or Equal Unsigned (C or Z) 
BCC 1101 Branch on Carry Clear (Greater than or Equal, Unsigned ) not C 
BCS 0101 Branch on Carry Set (Less than, Unsigned) C 
BPOS 1110 Branch on Positive not N 
BNEG 0110 Branch on Negative N 
BVC 1111 Branch on Overflow Clear not V 
BVS 0111 Branch on Overflow Set V 

Format (2): 

100 a cond 010 disp22 
31 29 28 24 21 o 

Assembly Language Syntax 

bar ,a} label 
bn{ ,a} label 
bne{ ,a} label synonym: bnz 
be{, a} label synonym: bz 
bg{,a} label 
bIe{,a} label 
bge{ ,a} label 
bl {, a} label 
bgu{ ,a} label 
bIeu{ ,a} label 
bee{, a} label synonym: bgeu 
bes{,a} label synonym: blu 
bpos{. a} label 
bneg{ ,a} label 
bve{ ,a} label 
bvs{.a} label 

NOTE: To set 'the "annul" bit for Bicc instructions, append an (optional) ", a" to the opcode. For 
example, use "bgu, a label". The preceding table indicates that the ,a" is optional by 
enclosing it in braces ({}). 

Description 

A Bicc instruction (except BA and BN) evaluates the integer condition codes (icc) according to 
the cond field. If the condition codes evaluate to true the branch is taken and the instruction 
causes a PC-relative, delayed control transfer to the address "PC + (4 .. sign_ext (disp22))." If 
the condition codes evaluate to false, the branch is not taken. If the branch is not taken and the a 
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(annul) field is set, the delay instruction is not executed (annulled). If the branch is taken, the 
annul field is ignored. (Annulment, delay instructions, and delayed control transfers are 
described further in the chapter Instructions.) 

BN (Branch Never) acts like a "Nap." except that, if the annul field is one, the delay instruction 
is not executed (annulled). If the annul field is zero, the delay instruction is executed. 

BA (Branch Always) causes a transfer of control, irrespective of the value of the condition code 
bits. If the annul field is one, the delay instruction is not executed (annulled). If the annul field is 
zero, the delay instruction is executed. 

NOTE: Except for BA, all Bicc instructions with a=] annul the delay instruction when the branch is 
not taken. However, BA with a=] does the reverse: it annuls the delay instruction even though 
the branch is taken. 

NOTE: The delay instruction of a Bicc, other than a BA, should not be a delayed control-transfer 
instruction. 

Programming Note 

An untaken branch takes as much or more time than a taken branch. The additional time it takes 
is implementation-dependent. 

Traps 

(none) 

Floating-Point Branch on Condition Instructions 

opcode cond operation fcc test 

FBA 1000 Branch Always 1 
FBN 0000 Branch Never 0 
FBU 0111 Branch on Unordered U 
FBG 0110 Branch on Greater G 
FBUG 0101 Branch on Unordered or Greater G or U 
FBL 0100 Branch on Less L 
FBUL 0011 Branch on Unordered or Less Lor U 
FBLG 0010 Branch on Less or Greater Lor G 
FBNE 0001 Branch on Not Equal LorGorU 
FBE 1001 Branch on Equal E 
FBUE 1010 Branch on Unordered or Equal E or U 
FBGE 1011 Branch on Greater or Equal E or G 
FBUGE 1100 Branch on Unordered or Greater or Equal EorGorU 
FBLE 1101 Branch on Less or Equal E or L 
FBULE 1110 Branch on Unordered or Less or Equal EorLorU 
FBO 1111 Branch on Ordered EorLorG 

Format (2): 

00 a I cond 110 disp22 
31 29 28 24 21 o 
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Assembly Language Syntax 

fba{,a} label 
fbn{ ,a} label 
fbu{ ,a} label 
fbg{ ,a} label 
fbug{ ,a} label 
fbl{,a} label 
fbul{,a} label 
fblg{, a} label 
fbne{ ,a} label synonym: fbnz 
fbe{, a} label synonym: fbz 
fbue{, a} label 
fbge{, a} label 
fbuge{, a} label 
fble{, a} label 
fbule{,a} label 
fbo{.a} label 

NOTE: To set the "annul" bit for FBfcc instructions, append an (optional) ",a" to the opcode. For 
example, use "fbl,a label". The preceding table indicates that the ",a" is optional by 
enclosing it in braces (n). 

Description 
An FBfcc instruction (except FBA and FBN) evaluates the floating-point condition codes (fcc) 
according to the cond field. If the condition codes evaluate to true the branch is taken and the 
instruction causes a PC-relative, delayed control transfer to the address "PC + (4 .. sign_ext 
(disp22))." If the condition codes evaluate to false, the branch is not taken. If the branch is not 
taken and the a (annul) field is set, the delay instruction is not executed (annulled).If the branch 
is taken, the annul field is ignored and the delay instruction is executed. (Annulment, delay 
instructions, and delayed control transfers are described further in the chapter Instructions.) 
FBN (Branch Never) acts like a "NaP", except that if the annul field is one, the delay instruction 
is not executed (annulled). If the annul field is zero, the delay instruction is executed. 

FBA (Branch Always) causes a transfer of control, irrespective of the value of the condition code 
bits. If the annul field is one, the delay instruction is not executed (annulled). If the annul field is 
zero, the delay instruction is executed. 

An FBfcc instruction generates an fp_disabled trap (and does not branch on annUl) if the PSR's 
EF bit is reset or if the FPU is not present. 

NOTE: Except for FBA, all FBfcc instructions with a=I annul the delay instruction when the branch 
is not taken. However, FBA with a=I does the reverse: it annuls the delay instruction even 
though the branch is taken. 

NOTE: The instruction executed immediately before an FBfcc must not be a floating-point instruction. 

Programming Note 
An untaken branch takes as much or more time than a taken branch. The additional time it takes 
is implementation-dependent. 

B-22 



Traps 

fp _disabled 
fp _exception 

Coprocessor Branch on Condition Instructions 

opcode cond bp_CP_cc[1:0] test 

CBA 1000 Always 
CBN 0000 Never 
CB3 0111 3 
CB2 0110 2 
CB23 0101 2 or 3 
CBl 0100 1 
CB13 0011 1 or 3 
CB12 0010 lor 2 
CB123 0001 lor2or3 
CBO 1001 0 
CB03 1010 o or 3 
CB02 1011 o or 2 
CB023 1100 Oor2or3 
CBOl 1101 o or 1 
CB013 1110 Oorlor3 
CB012 1111 Oorlor2 

Format (2): 

\ 00 a \ cond \111 \ disp22 
31 29 28 24 21 

Assembly Language Syntax 

eba{, a} label 
ebn{, a} label 
eb3 {, a} label 
eb2 {. a} label 
eb23 {, a} label 
ebl{,a} label 
eb13{ ,a} label 
eb12{ ,a} label 
eb123{ ,a} label 
ebO{,a} label 
eb03{ ,a} label 
eb02{ ,a} label 
eb023 {, a} label 
ebOl{,a} label 
eb013{ ,a} label 
eb012{.a} label 

Instruction Definitions 

o 

NOTE: To set the "annul" bit for CBeee instructions, append an (optional) ",a" to the opcode. For 
example, use "eb12, a label". The preceding table indicates that the ", a" is optional by 
enclosing it in braces ({}). 
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Description 

A CBccc instruction (except CBA and CBN) evaluates the coprocessor condition codes (supplied 
by the coprocessor on bp_CP _cc[1:0]) according to the cond field. If the condition codes evaluate 
to true the branch is taken and the instruction causes a PC-relative, delayed control transfer to 
the address "PC + (4 * sign_ext (disp22»." If the condition codes evaluate to false, the branch is 
not taken and the instruction acts like a "Nap." 

If the branch is not taken and the a (annul) field is set, the delay instruction is not executed 
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is executed. 
(Annulment, delay instructions, and delayed control transfers are described further in the 
chapter Instructions.) 

CBN (Branch Never) acts like a "NaP", except that if the annul field is one, the delay 
instruction is not executed (annulled). If the annul field is zero, the delay instruction is executed. 

CBA (Branch Always) causes a transfer of control, irrespective of the value of the condition code 
bits. If the annul field is one, the delay instruction is not executed (annulled). If the annul field is 
zero, the delay instruction is executed. 

A CBccc instruction generates a cp_disabled trap (and does not branch or annul) if the PSR's BC 
bit is reset or if no coprocessor is present. 

NOTE: Except for CBA, all CBccc instructions with a=1 annul the delay instruction when the branch 
is not taken. However, CBA with a=1 does the reverse: it annuls the delay instruction even 
though the branch is taken. 

NOTE: A CBccc instruction must be immediately preceded by a non-coprocessor instruction. 

Programming Note 

An untaken branch takes as much or more time than a taken branch. The additional time it takes 
is implementation-dependent. 

Traps 

cp_disabled 
cp _exception 

CALL Instruction 

Format (1): 

01 
31 29 

operation 

Call 

Assembly Language Syntax 

call label 

disp30 
o 
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Description 
The CALL instruction causes an unconditional, delayed, PC-relative control transfer to address 
"PC + (4 .. disp30)". Since the word displacement (disp30) field is 30 bits wide, the target 
address can be arbitrarily distant. The CALL instruction also writes the value of PC, which 
contains the address of the CALL, into out register r[15]. 

The PC-relative displacement is formed by appending two low-order zeros to the instruction's 
30-bit word displacement field. 

Programming Note 
A JMPL instruction with rd = 15 can be used as a register-indirect CALL. 

Programming Note 

The execution time of a CALL instruction may increase if the next instruction uses r[15] as a 
source operand. Whether this happens is implementation-dependent. 

Traps 

(none) 

Jump and Link Instruction 
operation 

Jump and Link 

Format (3): 

10 rd op3 rs1 i=O ignored rs2 
31 29 24 18 13 12 4 o 
10 I rd I op3 I rsl i=l I simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

jmpl address. regrd 

Description 

The JMPL instruction causes a register-indirect control transfer to an address specified by either 
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. 

The JMPL instruction writes the PC, which contains the address of the JMPL instruction, into the 
destination r register specified in the rd field. 

If either of the low-order two bits of the jump address is nonzero, a mem_address_not_aligned 
trap occurs. 

Programming Note 
JMPL with rd = 0 can be used to return from a subroutine. The typical return address is 
"r[31]+8", if the subroutine was entered by a CALL instruction. 
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Programming Note 
JMPL with rd = 15 can be used as a register-indirect CALL. 

Programming Note 
The execution time of a JMPL instruction may increase if the next instruction uses r[rd] as a 
source operand. Whether this happens is implementation-dependent. 

Traps 
mem _ address _not_aligned 

Return from Trap Instruction 
operation 

Return from Trap 
'privileged instruction 

Format (3): 

I 10 I ignored op3 rs1 i=O ignored rs2 
31 29 24 18 13 12 4 a 

I 10 I ignored I op3 I rsl i=l I simm13 
31 29 24 18 13 12 a 

Assembly Language Syntax 

rett address 

Description 

The RETT instruction adds one to the CWP (modulo the number of implemented windows) and 
compares this value, the "new_CWP," against the Window Invalid Mask (WIM) register. If the 
WIM bit indexed by the new_CWP is set, "(WIM and 2new_CWP) = 1," then a window_underflow 
trap is generated. If the WIM bit indexed by the new_CWP is reset, then a window_underflow 
trap is not generated and new_CWP is written into CWP. This causes the previous window to 
become the active window, thereby restoring the window that existed at the time of the trap. 

If a window_underflow trap is not generated, RETT causes a delayed control transfer to the 
target address. The target address is either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)" if the i field is one. Furthermore, RETT restores the S field of the PSR from 
the PS field, and sets the ET field to one. 

If traps are enabled (ET=l), an illegaUnstruction trap occurs. If traps are disabled (ET=O) and 
the processor is not in supervisor mode (S=O), or if a window_underflow condition is detected, or 
if either of the low-order two bits of the target address is nonzero, a reset trap occurs. If a reset 
trap occurs, the tt field of the TBR encodes the trap condition: privileged_instruction, 
window_underflow, or mem_address_not_aligned. 

NOTE: The instruction executed immediately before a RETT must be a JMPL instruction. (See 
discussion in the chapter "Instructions".) 
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Programming Note 
To re-execute the trapped instruction when returning from a trap handler use the sequence: 

jmpl 

rett 
%17, %0 

%18 

! old PC 
! old nPC 

To return to the instruction after the trapped instruction (e.g. when emulating an instruction) use 
the sequence: 

jmpl 

rett 

Traps 

illegal_instruction 

%18, %0 
%18 + 4 

reset (privileged_instruction) 
reset (mem_address_not_aligned) 
reset (window_underflow) 

old nPC 
old nPC + 4 

Trap on Integer Condition Instruction 

opcode cond operation 

TA 1000 Trap Always 
TN 0000 Trap Never 
TNE 1001 Trap on Not Equal 
TE 0001 Trap on Equal 
TG 1010 Trap on Greater 
TLE 0010 Trap on Less or Equal 
TGE 1011 Trap on Greater or Equal 
TL 0011 Trap on Less 
TGU 1100 Trap on Greater Unsigned 
TLEU 0100 Trap on Less or Equal Unsigned 

icc test 

1 
0 

not Z 
Z 

not (Z or (N xor V) 
Z or (N xor V) 

not (N xor V) 
Nxor V 

not (C or Z) 
(C or Z) 

TCC 1101 Trap on Carry Clear (Greater than or Equal, Unsigned» not C 
TCS 0101 Trap on Carry Set (Less Than, Unsigned) C 
TPOS 1110 Trap on Positive not N 
TNEG 0110 Trap on Negative N 
TVC 1111 Trap on Overflow Clear not V 
TVS 0111 Trap on Overflow Set V 

Format (3): 

tOl is.nored I cond I 111010 rsl i=O i8.nored rs2 
31 29 28 24 18 13 12 4 0 

10 I ignored I cond I 111010 I rsl i=l I simm13 I 
31 29 28 24 18 13 12 0 
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Assembly Language Syntax 

ta 
tn 
tne 
te 
tg 
tle 
tge 
tl 
tgu 
tleu 
tee 
tes 
tpos 
tneg 
tve 
tvs 

Description 

address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 

synonym: tnz 
synonym: tz 

synonym: tgeu 
synonym: tlu 

A Ticc instruction evaluates the integer condition codes (icc) according to the cond field. If the 
condition codes evaluate to true and there are no higher priority traps pending, then a 
trap_instruction trap is generated. If the condition codes evaluate to false, a trap_instruction trap 
does not occur. 

If a trap_instruction trap is generated, the tt field of the Trap Base Register (TBR) is written with 
128 plus the least significant seven bits of either "r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] 
+ sign_ext(simm13)" if the i field is one. 

See the chapter Traps, Exceptions and Error Handling for the complete definition of a trap. 

Traps 

trap_instruction 

Read State Register Instructions 
opcode op3 operation 

RDY 101000 Read Y register 
RDPSR* 101001 Read Processor State Register 
RDWIM* 101010 Read Window Invalid Mask register 
RDTBR* 101011 Read Trap Base Register 
.. ·pnvIleged Instruction 

Format (3): 

10 rd op3 ignored ignored ignored 
31 29 24 18 13 12 o 

Assembly Language Syntax 

rd %y, regrd 
rd %psr, regrd 
rd %wim, reg rd 
rd %tbr, regrd 
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Description 
These instructions read the specified IU state registers into the r register specified in the rd field. 

Programming Note 

The execution time of any of these instructions may increase if the next instruction uses the 
register specified by the rd field of this instruction as a source operand. Whether it does or not is 
implementation-dependent. 

Traps 

privileged_instruction (RDPSR, RDWIM and RDTBR only) 

Write State Register Instructions 
opcode op3 operation 

WRY 110000 Write Y register 
WRPSR* 110001 Write Processor State Register 
WRWIM* 110010 Write Window Invalid Mask register 
WRTBR* 110011 Write Trap Base Register 

·privileged instruction 

Format (3): 

I 10 I ignored op3 rs1 i=O ignored rs2 
31 29 24 18 13 12 4 o 
10 I ignored op3 I rs1 i=l I simm13 
31 29 24 18 13 12 o 

Assembly Language Syntax 

wr reg,sl, reg_or _imm, %y 
wr reg,sl, reg_or _imm, %psr 
wr reg,s1, reg_or _imm. %wim 
wr reg,s1, reg_or _imm. %tbr 

Description 

These instructions write either "r[rsl] xor r[rs2]" if the i field is zero, or "r[rsl] xor 
sign_ext(simm13)" if the i field is one, to the writeable subfields of the specified IU state 
register. 

WRPSR does not write the PSR and causes an illegal_instruction trap if the result would cause 
the CWP field of the PSR to point to an unimplemented window. 

These instructions are delayed-write instructions: 

1. If any of the three instructions after a WRPSR uses any field of the PSR that is changed 
by the WRPSR, the value of that field is unpredictable. (Note that any instruction which 
references a non-global register implicitly uses the CWP.) 

2. If a WRPSR instruction is updating the PSR's PIL to a new value and is simultaneously 
setting ET to 1, this can result in an interrupt trap at a level equal to the old value of the 
PIL. 
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Programming Note 
Two WRPSR instructions should be used when enabling traps and changing the value of the PIL. 
The first WRPSR should specify ET =0 with the new PIL value, and the second WRPSR should 
specify ET=l and the new PIL value. 

3. If any of the three instructions after a WRWIM is a SA VB, RESTORE or RETT, the 
occurrence of window_overflow and window_underflow traps is unpredictable. 

4. If any of the three instructions that follow a WRY is a MULScc or RDY, the value of Y 
used is unpredictable. 

5. If any of the three instructions that follow a WRTBR causes a trap, the trap base address 
(TBA) used may be either the old or the new value. 

6. If any of the three instructions after a write state register instruction reads the modified 
state register, the value read is unpredictable. 

7. If any of the three instructions after a write state register instruction is trapped, a 
subsequent read state register instruction in the trap handler will get the register's new 
value. 

Traps 
privileged_instruction (WRPSR, WRWIM and WRTBR only) 
illegalJnstruction (WRPSR only) 

Unimplemented Instruction 
opcode op op2 operation 

UNIMP 00 000 Unimplemented 

Format (2): 

I 00 ignored 000 const22 
31 29 24 21 

Assembly Language Syntax 

unimp const22 

Description 

o 

The UNIMP instruction causes an illegal_instruction trap. The const22 value is ignored. 

Programming Note 
This instruction can be used as part of the protocol for calling a function that is expected to 
return an aggregate value, such as a C-language structure. See Appendix D for an example. 

• An UNIMP instruction is placed after (not in) the delay slot after the CAlL instruction in 
the calling function. 

• If the callee function is expecting to return a structure, it will find the size of the structure 
that the caller expects to be returned as the const22 operand of the UNIMP instruction. 
The callee can check the opcode to make sure it is indeed UNIMP. 
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• If the function is not going to return a structure, upon returning it attempts to execute the 
UNIMP instruction rather than skipping over it as it should. This causes the program to 
terminate. This behavior adds some run-time type checking to an interface that cannot be 
checked properly at compile time. 

Traps 

illegal_instruction 

Instruction Cache Flush Instruction 
operation 

Instruction cache Flush 

Format (3): 

10 I ignored op3 rs1 
31 29 24 18 

10 I ignored I op3 I rs1 
31 29 24 18 

Assembly Language Syntax 

iflush address 

Description 

i=O ignored rs2 
13 12 4 o 
i=1 simm13 
13 12 o 

The IFLUSH instruction causes a word to be flushed from an instruction cache that may be 
internal to the processor. The address of the word to be flushed is either "r[rsl] + r[rs2]" if the 
i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. 

Implementation Note: 

If there is no instruction cache internal to the processor, IFLUSH acts as a "NOP." If there is an 
internal instruction cache, IFLUSH flushes the addressed word from the cache. If there is an 
external instruction cache, IFLUSH causes an illegal_instruction trap. The presence of an 
external instruction cache is determined by the bp_I_cacheyresent signal. 

Traps 

illegal_instruction 

Floating-Point Operate (FPop) Instructions 
opcode op3 operation 

FPopl 110100 Floating-point operate 
FPop2 110101 Floating-point operate 
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Format (3): 

I 10 I rd 110100 rs1 opf I rs2 
31 29 24 18 13 4 0 

I 10 I rd I 110101 I rs1 opf I rs2 I 
31 29 24 18 13 4 o 

The Floating-Point Operate (FPop) instructions are encoded using two type 3 instruction formats 
called FPop1 and FPop2. The floating-point operations themselves are encoded by the opf field. 
(Note that the load/store floating-point instructions are not "FPop" instructions.) 

All FPop instructions take all operands from and return all results to f registers and/or the FSR. 
They perform operations on ANSIlIEEE 754-1985 single, double, and extended formats. 

NOTE: All FPops which deal with extended format data are not currently implemented in 
floating-point hardware and are emulated in software. Extended data FPops currently 
generate a floating point exception trap when executed .. 

All multiple-precision floating-point instructions (including load/store floating-point) assume that 
operands are located in register pairs (for double precision) or quadruples (for extended 
precision). The following table indicates the alignment assumptions. Note that single-precision 
operands can be in any f register. 

Operand f Register Address 

Double-e o mod 2 
Double-f 1 mod 2 

Extended-e o mod 4 
Extended-f 1 mod 4 
Extended-f-low 2 mod 4 
Extended-u 3 mod 4 

Table B-2. Arrangement of Double and Extended Operands in f registers 

According to this convention, the least significant bit of an f register address is ignored by 
double-precision FPops and the least significant two bits of an f register address are ignored by 
extended-precision FPops. 

A program including floating-point computations generates the same results as if all instructions 
were executed sequentially (assuming it runs to completion). Note that floating-point loads and 
stores are not floating-point operate instructions. 

Results are written (or traps are caused) in the order that FPops are encountered in the 
instruction stream. The section Instructions in chapter 2 explains this in more detail. An FPop 
instruction causes an fp _disabled trap if the EF field of the PSR is 0 or if no FPU is present. 
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Convert Integer to Floating-Point Instructions 
opcode opf operation 

FiTOs 011000100 Convert Integer to Single 
FiTOd 011001000 Convert Integer to Double 
FiTOx 011001100 Convert Integer to Extended 

Format (3): 

10 rd 110100 ignored 
31 29 24 18 13 

Assembly Language Syntax 

fitos 
fitod 
fitox 

Description 

jregrs2, jregrd 
jregrs2, jregrd 
jregrs2, jreg rd 

Instruction Definitions 

opf rs2 
4 0 

These instructions convert the 32-bit integer argument in the f register specified by rs2 into a 
floating-point number in the destination format according to the ANSIlIEEE 754-1985 
specification. They place the result in the destination f register(s) specified by rd. 

For FiTOs and FiTOx with single-precision rounding, rounding is performed according to the 
rounding direction (RD) field of the FSR. 

Traps 

fp _disabled 
fp_exception (NX) (PiTOs and FiTOx when RP=single) 

Convert Floating-Point to Integer 

opcode opf operation 

FsTOi 011010001 Convert Single to Integer 
FdTOi 011010010 Convert Double to Integer 
FxTOi 011010011 Convert Extended to Integer 

Format (3): 

10 rd 110100 ignored 
31 29 24 18 13 

Assembly Language Syntax 

fstoi 
fdtoi 
fxtoi 

jregrs2, jreg rd 
jreqrs2 , jreg rd 
jregrs2, jreg rd 
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Description 

These instructions convert the floating-point source argument in the f register or f registers 
specified by rs2 to a 32-bit integer (in the f register specified by the rd field) according to the 
ANSIJIEEE 754-1985 specification. 

The floating-point argument is rounded toward zero and the rd field of the FSR is ignored. 

Traps 

fp _disabled 
fp_exception (NY, NX) 

Convert Between Floating-Point Formats Instructions 

opcode opr operation 

FsTOd 011001001 Convert Single to Double 
FsTOx 011001101 Convert Single to Extended 
FdTOs 011000110 Convert Double to Single 
FdTOx 011001110 Convert Double to Extended 
FxTOs 011000111 Convert Extended to Single 
FxTOd 011001011 Convert Extended to Double 

Format (3): 

10 I rd 110100 ignored 
31 29 24 18 13 

Assembly Language Syntax 

fstod 
fstox 
fdtox 
fdtox 
fxtod 
fxtos 

Description 

fregrs2, fregrd 
fregrs2, fregrd 
fregrs2, freg rd 
fregrs2, fregrd 
fregrs2, freg rd 
fregrs2, fregrd 

opf rs2 
4 0 

These instructions convert the floating-point source argument in the f register or f registers 
specified by rs2 to a floating-point number in the destination format according to the ANSIlIEEE 
754-1985 specification. They place the result in the f register or f registers specified by rd. 

Rounding is performed according to the rounding direction (RD) field of the FSR. In the case of 
FdTOx, the outcome is also a function of the rounding precision (RP) field. 

Traps 

fp_disabled 
fp_exception (OF, UF, NY, NX) 
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Floating-Point Move Instructions 

opcode opf operation 

FMOVs 000000001 Move 
FNEGs 000000101 Negate 
FABSs 000001001 Absolute Value 

Format (3): 

10 rd 110100 ignored 
31 29 24 18 13 

Assembly Language Syntax 

fmovs 
fnegs 
fabss 

Description 

fregrs2. freg rd 
fregrs2. freg rd 
fregrs2. freg rd 

opf rs2 
4 0 

FMOVs moves a word from f[rs2] to f[rd]. Multiple FMOVs's are required to transfer a 
multiple-precision number between f registers. 

FNEGs complements the sign bit, and FABs clears it. 

These instructions do not round. 

Programming Note 

FNEGs or FABSs instructions can also operate on the high-order words (the word that contains 
the sign bit) of double and extended operands. Thus an FNEGs instruction and an FMOVs 
instruction would be used to negate a double and put the results in a different pair of f registers. 

Traps 

fp_disabled 

Floating-Point Square Root Instructions 
opcode opf operation 

FSQRTs 000101001 Square Root Single 
FSQRTd 000101010 Square Root Double 
FSQRTx 000101011 Square Root Extended 

Format (3): 

10 rd 110100 ignored 
31 29 24 18 13 

Assembly Language Syntax 

fsqrts 
fsqrtd 
fsqrtx 

jregrs2. jreg rd 
jregrs2, jregrd 
jregrs2. jreg rd 
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Description 
These instructions generate the square root of the floating-point source argument in the f register 
or f registers specified by rs2 according to the ANSIlIEEE 754-1985 specification. They place the 
result in the destination f register or f registers specified by the rd field. 

Rounding is performed according to the rounding direction (RD) field of the FSR. In the case of 
FSQRTx, the outcome is also a function of the rounding precision (RP) field. 

Traps 
fp_disabled 
fp_exception (NY, NX) 

Floating-Point Add and Subtract Instructions 
opcode opr operation 

FADDs 001000001 Add Single 
FADDd 001000010 Add Double 
FADDx 001000011 Add Extended 

FSUBs 001000101 Subtract Single 
FSUBd 001000110 Subtract Double 
FSUBx 001000111 Subtract Extended 

Format (3): 

10 I rd 110100 rs1 op£ rs2 
31 29 24 18 13 4 0 

Assembly Language Syntax 

fadds Ireg,.1, Iregrs2. Iregrd 
faddd Iregrs]. Iregrs2, Iregrd 
faddx Iregrs1. Iregrs2, Iregrd 

fsubs Iregrs1, Iregrs2. Iregrd 
fsubd Iregrs1, Iregrs2. Iregrd 
fsubx Iregrs1, Iregrs2. Iregrd 

Description 

These instructions add or subtract their operands according to the ANSIlIEEE 754-1985 
specification, and place the result in the f register or f registers specified in the rd field. The 
subtract instructions subtract the floating-point value specified by rs2 from the one specified by 
rsl. 

Traps 
fp_disabled 
fp_exception (OF, UP, NX) 
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Floating-Point Multiply and Divide Instructions 
opcode opr operation 

FMULs 001001001 Multiply Single 
FMULd 001001010 Multiply Double 
FMULx 001001011 Multiply Extended 

FDIYs 001001101 Divide Single 
FDIVd 001001110 Divide Double 
FDIVx 001001111 Divide Extended 

Format (3): 

10 I rd 110100 rs1 opf rs2 
31 29 24 18 13 4 0 

Assembly Language Syntax 

fmuls fregrs1. fregrs2. fregrd 
fmuld fregrs]. fregrs2. fregrd 
fmulx fregrs]. fregrs2. fregrd 

fdivs fregrs1. fregrs2. fregrd 
fdivd fregrs]. fregrs2. fregrd 
fdivx fregrs]. fregrs2. fregrd 

Description 

These instructions multiply or divide their operands according to the ANSIlIEEE 754-1985 
specification, and place the result in the f register or f registers specified in the rd field. The divide 
instructions divide the floating-point value specified by rsl by the one specified by rs2. 

Traps 

fp _disabled 
fp_exception (OF, UF, DZ (FDIV only), NY, NX) 

Floating-Point Compare Instructions 

opcode opr operation 

FCMPs 001010001 Compare Single 
FCMPd 001010010 Compare Double 
FCMPx 001010011 Compare Extended 
FCMPEs 001010101 Compare Single and Exception if Unordered 
FCMPEd 001010110 Compare Double and Exception if Unordered 
FCMPEx 001010111 Compare Extended and Exception if Unordered 

Format (3): 

10 ignored 110101 rs1 opf rs2 
31 29 24 18 13 4 0 
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Assembly Language Syntax 

femps /regrs], /regrs2 
fempd /regrs], /regrs2 
fempx freg rs ], freg rs2 

fempes fregrs], fregrs2 
femped fregrs], fregrs2 
fempex fregrs], fregrs2 

Description 

These instructions compare their operands according to the ANSIlIEEE 754-1985 specification. 
The floating-point condition codes in the FSR are set as follows: 

NOTE: This table is a duplicate of Table 3-5 in the chapter "Registers". 

fcc Relation 

o fs1 = fs2 
1 fs1 < fs2 
2 fs1 > fs2 
3 fs1 ? fs2 (unordered) 

Table B-3. Floating-Point Condition Codes (fcc) 

In this table, fsI refers to the value specified by the rsI field and fs2 refers to the value specified 
by the rs2 field of the compare instruction. 

The "Compare and Cause Exception if Unordered" instructions (FCMPE) cause an invalid 
exception (NV) if either of the operands is a signaling or quiet NaN. FCMP also causes an 
invalid exception if either operand is a signaling NaN. 

NOTE: A non-jloating point instruction must be executed between an FCMP and a subsequent FBfce. 

Traps 

fp _disabled 
fp _exception (NV) 

Coprocessor Operate Instructions 
opcode op3 operation 

CPop1 110110 Coprocessor Operate 
CPop2 110111 Coprocessor Operate 

Format (3): 

10 rd 110110 rs1 °Ec rs2 
3] 29 24 ]8 13 4 0 

10 rd 110111 rs1 opc rs2 I 
31 29 24 18 13 4 0 

NOTE: The assembly language syntax for these instructions is unspecified. 
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The Coprocessor Operate (CPop) instructions are encoded via two type 3 instruction formats 
called CPopl and CPop2. The coprocessor operations themselves are encoded by the ope field 
and are coprocessor-dependent. (Note that the load/store coprocessor instructions are not 
"CPop" instructions.) 

All CPop instructions take all operands from and return all results to coprocessor registers. The 
data types supported by the coprocessor are coprocessor-dependent. Operand alignment is 
coprocessor-dependent. 

A CPop instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor 
is present. 

Whether a CPop generates a cp_exception trap is coprocessor-dependent. 
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SEMICONDUCTOR ISP Descriptions 

This appendix provides a description of the SPARC architecture using the Instruction-Set 
Processor (ISP) description language. It includes register definitions, instruction fields, processor 
states, instruction dispatch, traps, and instruction descriptions. 

The instruction interpreter defines the ordering of events. Except for a few cases (which are 
documented), the interpreter together with the instruction and register definitions provide a 
supplemental description of the processor. 

Note that the use of a particular variable in the notation does not necessarily imply that its 
related signal is present in an implementation, or visible to the programmer. 

The instruction description language is a modified version of Bell and Newell's ISP instruction 
description language, which was created to accurately describe computer instruction sets. While 
the semantics are somewhat intuitive, the following guidelines provide important details: 

• The only data type is the bit vector. Variables are defined as bit vectors of particular 
widths, declared as variable<n:m>. Variable subfields can be defined, also with the <n:m> 
notation. The value of a vector is a number in a base indicated by its subscript. The 
default base is decimal. Arrays of vectors are declared as array[n:m]. 

• The notation +- indicates variable assignment, and := indicates a macro definition. 

• When a bit vector is assigned to another of greater length, the operand is right-justified in 
the destination vector and the high-order positions are zero-filled. The macro zero_extend 
is sometimes used to make this clear. Conversely, the macro sign_extend causes the 
high-order positions of the result to be filled with the highest-order (sign) bit of its oper­
and. 

• The semicolon I;' separates statements. Parentheses '0' group statements and expressions 
that could otherwise be interpreted ambiguously. 

• All statements are generally executed "simultaneously." However, if the term next ap­
pears, it indicates that the statement or statements which follow the next are 
executed after 
those that appear before the next. Thus, all statements between next phrases are executed 
concurrently. More precisely, this means that all expressions on the right hand sides of 
assignments located between next's are evaluated first, after which. the variables on the 
left hand sides are updated. (This convention emulates synchronous, clocked hardware.) 

For example, if A=O and B=O, execution of the following two statements, 

A+- B+l; 

B +- A+l; 
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results in A=1 and B=1. However, 
A+- B+l; 

next; 

B +- A+l; 

results in A=1 and B=2. 

• The symbol 0 designates concatenation of vectors. A comma ',' on the left side of an 
assignment separates quantities that are concatenated for the purpose of assignment. For 
example, if the 2-bit vector T2 equals 3, and X, Y, and Z are I-bit vectors, then: 
x. y. Z +- oDT2 

results in X=O, Y=I, and Z=1. 

• The operators '+' and '-' perform two's complement arithmetic. 

• The phrase fork, used only in the instruction interpreter for the FPop instructions, 
indicates that the associated routine may be executed concurrently with all other 
subsequent statements. There is no notation for rejoining: after the forked routine 
executes its last statement, it terminates. 

• The major difference between the notation used here and the 1971 version of ISP is that 
the notation here uses the more common: 

if cond then Sl else S2 

whereas Bell and Newell used the following: 
(cond -+ Sl, ~ cond -+ S2) 

• The macros memory Jead and memory_write, are implementation-dependent. These 
routines define the interface without referring to implementation-specific signals: 
load_data +- memory_read (addr_space, address) 

memory_write (addr_space , address, byte_mask, store_data) 

Memory Jead returns the word in memory specified by both the address and the address space 
identifier. 

Memory_write writes all or part of the word store_data into the word specified by the given 
address. If ~here is an exception, memory_write does not change the state of the external system 
or the MMU. Byte_mask is a 4-bit value that indicates which of the four bytes in store_data are 
to be written into the addressed word. 

Register Definitions 
PSR<31:0>; 

impl 
ver 
icc 

N 

Z 

V 

C 

{Processor state Register} 

:= PSR<31:28>; 
:= PSR<27:24>; 
:= PSR<23:20>; 

:= PSR<23>; 
:= PSR<22>; 
:= PSR<21>; 
:= PSR<20>; 
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reserved 
EC 
EF 
PIL 
S 

PS 
ET 

CWP 

TBR<31:0>; 

TBA 
tt 
zero 

FSR<31:0>; 

RD 

RP 
TEM 

NVM 

OFM 
UFM 
DZM 
NXM 
AU 

reserved 
ftt 
qne 
reserved 
fcc 
aexe 

eexe 

CSR<31:0>; 
WIM<31:0>; 
Y<31:0>; 
PC<31:0>; 

nva 
ofa 
ufa 
dza 
nxa 

nve 
ofe 
ufe 
dze 
nxe 

:= 
:= 
.-
.-
:= 

:= 
:= 
:= 

.-
!= 

FSR<9>; 
FSR<8>; 
FSR<7>; 
FSR<6>; 
FSR<5>; 

FSR<4>; 
FSR<3>; 
FSR<2>; 
FSR<l>; 
FSR<O>; 

:= PSR<19:14>; 
:= PSR<13>; 
:= PSR<12>; 
:= PSR<11:8>; 
:= PSR<7>; 
:= PSR<6>; 
:= PSR<5>; 
.- PSR<4:0>; 

{Trap Base Register} 

:= TBR<31:12>; 
:= TBR<11:4>; 
:= TBR<3:0>; 

{Floating-Point State Register} 

.- FSR<31:30>; 
:= FSR<29:28>; 
.- FSR<27:23>; 

!= FSR<27>; 
:= FSR<26>; 
:= FSR<25>; 
:= FSR<24>; 
!= FSR<23>; 
.- FSR<22>; 

.- FSR<21:17>; 
:= FSR<16:14>; 
:= FSR<13>; 
.- FSR<12>; 
:= FSR<11:10>; 
:= FSR<9:5>; 

.- FSR<4:0>; 

{CP State Register} 
{Window Invalid Mask Register} 
{Y Register} 
{Program Counter} 
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nPC<31:0>; 
FQ<63:0>; 
CQ<63:0>; 
G[1:7]<31:0>; 
R[O: (16*NWINDOWS)-1] <31: 0>; 
f[0:31]<31:0>; 

r[n] := if (n = 0) 

then 0 
else if (1 ~ n ~ 7) 

then G[n] 

{Next Program Counter} 
{Floating-point Queue} 
{Coprocessor Queue} 
{Global Registers} 
{Windowed Registers} 
{Floating-Point Registers} 

else R[(n-8) + (CWP*16)] 
{globals} 

{windowed registers} 

System Interface Definitions 
bp IRL<3:0>; 
bp-reset in; 
pb-error; 
pb-retain bus; 
bp::::FPUJlresent; 
bp_CPJlresent; 
bp_I_cacheJlresent; 
bp_CP_exception; 
bp CP cc <1:0>; 
bp::::memory_exception; 

Instruction Fields 
The numbers in braces are the widths of the fields in bits. 
instruction<31:0> 

op {2} := instruction<31:30>; 
op2 {3} := instruction<24:22>; 
op3 {6} := instruction<24:19>; 
opf {9} := instruction<13:5>; 
opc {9} .- instruction<13:5>; 
asi {8} := instruction<12:5>; 
i {I} := instruction<13>; 
rd {5} := instruction<29:25>; 
a {1} := instruction<29>; 
cond {4} != instruction<28:25>; 
rs1 {5} .- instruction<18:14>; 
rs2 {5} := instruction<4:0>; 
simm13 {13} := instruction<12:0>; 
shcnt {5} != instruction<4:0>; 
disp30 {30} := instruction<29:0>; 
disp22 {22} != instruction<21:0>; 

Processor States and Instruction Fetch 
The IU can be in one of three states: execute_mode, reset_mode, or error_mode. 

The FPU can be in one of five states: reset_mode, error_mode, fpu_execute_mode, 
fpu_exception-pending_mode, or fpu_exception_mode. The FPU's reset_mode and error_ 
mode correspond to the IU's reset and error modes. The remaining FPU states are described in 
Section C.6. 
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The processor (that is the ill and FPU) is in reset_mode when bpJeset_in is asserted. The 
processor remains in reset_mode until bpJeset_in is deasserted, at which point the ill enters 
execute_mode and the FPU enters fpu_execute_mode. 

When bpJeset_in is deasserted, the first instruction address is 0, with ASI=9 (supervisor 
instruction). 

The processor enters error_mode from any state exept reset_mode if a synchronous trap is 
generated while traps are disabled. (See the chapter Traps, Exceptions, and Error Handling). 

5.) The processor remains in error_mode until bpJeset_in is asserted, at which time it enters 
reset mode. 

Implementation Note 
The external system should assert bp_reset_in whenever pb_error is detected. 

The following ISP code defines the three ill states. In execute_mode, the ill fetches and 
dispatches instructions. 

while (reset_mode) ( 

) ; 

if (bp_reset_in = 0) then 

reset_mode +- 0; 
execute_mode +- 1; 
trap +- 1; 
reset +- 1 

addr_space := S=O then S else 9; 

while (execute_mode) ( 

check_interrupts; 

next; 

see Section C.S} 

{ the following code emulates the delayed nature of the write state register 
instructions.} 

PSR +- PSR'; PSR' +- PSR"; PSR" +- PSR"'; PSR'" +- PSR"" 
TBR +- TBR'; TBR' +- TBR"; TBR" +- TBR"'; TBR'" +- TBR"" 
WIM +- WIM'; WIM' +- WIM"; WIM" +- WIM"'; WIM'" +- WIM"" 
Y +- y'; y' +- y"; y" +- y"'; y'" +- y"" ; 

next; 

if (trap = 1) then 

next; 

instruction +- memory_read (addr_space, PC); 

next; 

if (bp_memory_exception = 1) then ( 

trap +- 1; 
instruction_access_exception +- 1 

c-s 

{ see Section C.S} 
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) else ( 

if (annul = 0) then ( 

dispatch_instruction { see Section C.S } 

) ; 

else ( 

annul +- 0; 
PC +- nPC; 
nPC +- nPC + 4 

while (error_mode) ( 

) ; 

if (bp_reset_in = 1) then 

error mode +- 0 
reset mode +- 1 
pb_error +- 0 

Instruction Dispatch 
The "dispatch_instruction" macro determines if the fetched instruction is an FPop or CPop. If it 
is an FPop, it is executed by the "execute_FPU_instruction" macro (Section C.6) as soon as the 
FPU can accept another instruction. If the fetched instruction is a CPop, it is executed by the 
"execute _ CP _instruction" macro (Section C.7) as soon as the CP can accept another instruction. 

If the instruction is neither an FPop or a CPop, it is executed by the "execute_IUJnstruction" 
macro, which includes all the macro definitions in Section C.9 (except for FPop and CPop). 

Unused bit patterns in the op, op2, op3, opf, and i fields of instructions cause illegal_instruction 
traps. Other fields that are defined to be unused are ignored and do not cause traps. 

The macro 'floating-point_instr' returns a 1 if the instruction is a floating-point instruction. 
Similarly, the macro 'coprocessor_instr' returns a 1 if the instruction is a coprocessor instruction. 

unimplemented_IU_instr := 

if ( ( (Op=002) and (op2=0002) ) [UNIMP instruction} 

or 

«op=112) or (OP=102» and (op3=unassigned) ) 

or 

(i = 1) and 

(LDSBA or LDSHA or LDUBA or LDUHA or LDA or 

LDDA or STDA or LDSTUBA or SWAPA 

STBA or STHA or STA 

then 1 else 0 

C-6 



ISP Descriptions 

) ; 

floating-point_instr := ( 

if (LDF or LDDF or LDFSR or 

STF or STDF or STFSR or STDFQ or 

FPop1 or FPop2 or FBfcc) then 1 else 0 

) ; 

coprocessor_instr: = ( 

if (LDC or LDDC or LDCSR or 

STC or STDC or STCSR or STDCQ or CPop1 or CPop2 or CBccc) then 1 else 0 

) ; 

dispatch_instruction := ( 

) ; 

if (unimpl_IU_instr 1) then ( 

) ; 

trap +- 1; 

illegal_instruction +- 1 

if (floating-point_instr 

if (EF = 0) then ( 

1) then ( 

) else 

) ; 

trap +- 1; 

fp_disabled +- 1 

if fpu_exception-pending_mode = 1 ) then ( 

fpu_exception-pending_mode +- 0; 

fpu_exception_mode +- 1; 

trap +- 1 

while ( (fp_not_ready = 1) and (trap 0» 

check_interrupts; 

if (coprocessor_instr = 1) then ( 

if (EC = 0) then 

trap +- 1; 

cp_disabled +- 1 

else ( 

check_CP_exception; 

next; 

1) and (trap 0) ) ( 
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check_interruptsj 

) j 

nextj 

if (trap = 0) then 

if (FPopl or FPop2) then fork execute_FPU_instruction 

else if (CPopl or CPop2) then fork execute_CP_instruction 

else execute_IU_instruction 

) j 

execute_IU_instruction := ( 

{ do routine for specific instruction, defined below } 

nextj 

if (trap = 0 and 

ISP Descriptions 

not (CALL or RETT or JMPL or Bicc or FBfcc or CBccc or Ticc) ) then ( 

PC +- nPCj 

nPC +- nPC + 4 

) j 

execute_FPU_instruction := ( 

) j 

if (FPU_exception_mode)_ then 

ftt <- sequence_errorj 

FPU_exception_mode <- OJ 

FPU_exception-pending_mode <- 1 

else ( 

enqueue_FQ(instruction, PC) 

{ execute description defined below } 

Floating-Point Instruction Execution 

{see following discussion} 

The FPU can execute floating-point operate (FPop) instructions concurrently with other FPops 
and with non-floating-point instructions.To do this, it maintains a Floating-point Queue (PQ) of 
FPop instructions pending completion, and can force the IV to wait until resource and data 
dependencies have been resolved. 

The architecture ensures that a program containing FPops generates the same numerical results 
as if there were no concurrency. 

C-8 



.::S5i!Ii!Io..--=. 
ISP Descriptions ~~ ~~ -==-"SEMICCtIDUC'I'C============================= 

After the FPU begins to execute an FPop, the ill continues to fetch and execute instructions until 
one of five "hold" conditions occurs. Anyone of these causes the ill to stop fetching 
instructions until the condition is no longer true: 

1) If, for a load floating-point register instruction, the destination f register is the source or 
destination register of an executing FPop, the ill waits until the executing FPop no longer 
requires the register. 

2) If, for a store floating-point register instruction, the source f register is the destination 
register of an executing FPop, the ill waits until executing FPop no longer require the 
register. 

3) A load or store floating-point state register instruction (lDFSR, STFSR) causes the ill to 
wait until all executing and pending FPops have completed. 

4) A branch on floating-point condition (FBfcc) instruction causes the ill to wait until any 
executing or pending floating-point compare instructions (FCMP, FCMPE) have finished. 

5) When the ill encounters an FPop, it stops fetching instructions until the FPop has been 
accepted by the FPU. 

Floating-Point Queue (FQ) 

The floating-point queue (FQ) has at least one entry for each of the FPU's arithmetic units that 
can execute in parallel with other arithmetic units. The depth of the queue is 
implementation-dependent. 

Each entry in the queue (for the purposes of the definition in this appendix) contains 1) the FPop 
instruction itself, 2) the PC from which the FPop was fetched, 3) an indication of the arithmetic 
unit executing it, 4) a completion status bit that indicates whether the operation finished 
properly, and 5) a temporary result, including any exceptions or condition codes generated by 
the instruction. Parts (1) and (2) of the front entry are visible to the programmer using the 
STDFQ instruction; the other parts and the other entries are invisible to the programmer. 
(Note that load floating-point, store floating-point, and FBfcc instructions are never entered in 
the queue.) 

For the purposes of the definition in this appendix, when an arithmetic unit finishes, it deposits 
its computed result, any exceptions or conditions it may have generated, and a completion status 
bit, into the reserved location in the queue. As FPops complete, each entry moves toward the 
front of the queue (if it is not already there). 

The FPU can stop executing an FPop in one of four ways: 1) completed without exception 
(normal), 2) IEEE_exception, 3) unfinished_FPop, or 4) unimplemented_FPop. The following 
paragraphs describe each: 

Normal Completion 
If the FPop represented by the front entry in the queue caused no unmasked exceptions, the FPU 
1) writes the result into the f register(s) specified by the rd field of the instruction (if any), 2) 
updates the FSR's cexc and fcc fields, 3) removes the entry from the queue, and 4) advances the 
queue. 

IEEE_Exception 
If the FPop pointed to by the front entry in the queue caused an IEEE_exception trap, the FPU 
updates the FSR's cexc and fit fields to identify the exception, and does not write the result into 
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the I register(s) specified by the rd field of the instruction, nor does it remove the entry from the 
queue. However, if an IEEE_exception does not result in a fp_exception trap, all results are 
written, including the destination I register, cexc, aexc, and Icc. 

Unimplemented_FPop or Unjinished_FPop 
If the FPop pointed to by the front entry in the queue is not implemented, or if the arithmetic 
unit was unable to complete it according to the ANSIlIEEE 754-1985 specification (for example, 
a multiply unit may not be able to postnormalize a denormalized result or handle a NaN), the 
FPU updates the ftt field of the FSR to identify the exception, and does not write the result into 
the I register(s) specified by the rd field of the instruction, nor does it remove the entry from the 
queue. The front entry in the queue identifies the FPop that generated the floating-point 
exception trap. 

FQFront_Done 

The implementation-dependent macro 'FQ_front_done' returns a 1 if an arithmetic unit has 
finished processing the FPop at the front of the FQ. The implementation-dependent macro 
'stop_FPU' stops all current processing of FQ entries. 

FPU States 

The FPU can be in any of three modes: FPU_execute_mode, FPU_exceptionyendinLmode, or 
FPU_exception_mode. In FPU_execute_mode, it executes floating-point instructions. 

The FPU enters the FPU_exceptionyending_mode state when an FPop instruction causes 
an IEEE_exception, unfinished_FPop exception, unimplemented_FPop exception, or a 
sequence_error. The FPU remains in FPU_exceptionyending_mode until the IU fetches another 
floating-point instruction, at which time a fp _exception trap is caused and the FPU enters the 
FPU _exception_mode state. 

In FPU_exception_mode, the FPU executes only store floating point instructions. If an FPop or a 
load floating point instruction is fetched while the unit is in FPU_exception_mode, theftt field of 
the FSR will be updated to indicate "sequence_error", and the FPU will enter 
FPU_exceptionyending_mode. The instruction that caused the sequence_error is not entered 
into the.FQ. 

The FPU returns to FPU_execute_mode after the FQ has been emptied via STDFQ instructions, 
that is, qne is O. 

while (FPU_execute_mode) ( 

if (FQ_front_done = 1) then ( 

if (fp_unimplemented = 1) then ( {not implemented} 

fp_exception +- 1; ftt +- unimplemented_FPop; 

) ; 

if (FQ_c = 0) then ( {not finished} 

fp_exception +- 1; ftt +- unfinished_FPop; 

) else 

cexc +- texc; 

next; 

{executed and finished} 
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next; 

if ( cexc and TEM ,= 0) then ( {floating-point trap} 

fp_exception +- 1; ftt +- IEEE_Exception; 

else {no floating-point trap} 

aexc +- aexc or cexc; 

if (FQ_single_result = 1) then 

f [rd] +- result; 

if (FQ_double_result = 1) then 

f[rdE], f[rdO] +- result; 

if (FQ_extended_result = 1) then 

f[rdEE], f[rdEO], f[rdOE] +- result; 

if (FQ_compare = 1) then 

fcc +- tfcc; 

if (fp_exception = 1) then ( 

FPU_execute_mode +- 0; 

FPU_exception_pending_mode +- 1 

Coprocessor Instruction Execution 
The CP can execute coprocessor operate (CPop) instructions concurrently with integer 
instructions and other CPops. Although the instruction set includes a "store CP double queue" 
instruction, the existence of the queue and the type of concurrency available in the coprocessor 
is dependent on the coprocessor itself. 

The FPU leaves FPU _exception_mode and enters FPU _execute_mode after the FQ has been 
emptied (via execution of STDFQ instructions.) 

execute_CP_instruction .- ( {not specified} ) ; 

Traps 
execute_trap := ( 

select_trap; 

ET +- 0; 

PS +- S; 

annul +- 0; 
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CWP _ (CWP - 1) mod NWINDOWS;{point to next window} 

) ; 

r[17] +- PC; 

r[18] +- npC; 

next; 

S +- 1; 

if (reset_trap = 0) then ( 

PC +- TBR; 

nPC_TBR+4 

else ( 

reset_trap _ 0; 

PC _ 0; 

nPC _ 4 

select_trap := 

if (ET = 0 or reset_trap 1) then 
error_mode _ 1 

else if (instruction_access_exception 1) 

tt +- 000000012 

else if (illegal_instruction 1) then 

tt _ 000000102 

else if (privileged_instruction 1) then 

tt +- 000000112 

else if (fp_disabled 1) then 

tt _ 000001002 

else if (cp_disabled 1) then 

tt _ 001001002 

else if (window_overflow 1) then 

tt _ 000001012 

else if (window_underflow = 1) then 

tt _ 000001102 

else if (mem_address_not_aligned 1) then 

tt _ 000001112 

else if (fp_exception 1) then 

tt _ 000010002; 

else if (cp_exception 1) then 

tt _ 001010002; 
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) ; 

else if (data_access_exception = 1) then 

tt +-- 000010012 

else if (tag_overflow = 1) then 

tt +-- 000010102 

else if (trap_instruction = 1) then 

tt +-- hDticc_trap_type 

else if (interrupt_level> 0) then 

tt +- 00012Dinterrupt_level 

next; 

trap +-- 0; {since the tt field has been set, reset the trap signal} 

reset_trap +-- 0; 

instruction_access_exception +-- 0; 

illegal_instruction +- 0; 

privileged_instruction +- 0; 

fp_disabled +-- 0; 

cp_disabled +-- 0; 

window_overflow +- 0; 

window_underflow +-- 0; 

mem_address_not_aligned +-- 0; 

fp_exception +-- 0; 

cp_exception +-- 0; 

data_access_exception +-- 0; 

tag_overflow +-- 0; 

trap_instruction +-- 0; 

interrupt_level +- 0 

check_interrupts := ( 

) ; 

if (bp_reset_in = 1) then ( 

reset_mode +-- 1 

) ; 

else if (ET = 1 and (bp_IRL = 15 or bp_IRL > PIL» then ( 

trap +- 1; 

interrupt_level +- bp_IRL 

Instruction Definitions 
This section contains the ISP definitions of the SPARe architecture instructions. These 
complement the instruction descriptions in Appendix B, Instruction Descriptions. 
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Load Instructions 
if ( (LOF or LOOF or LOFSR) then ( 

) ; 

if (EF = 0 or bp_FPU-present = 0) then ( 

trap +- 1; fp_disabled +- 1 

else if (FPU_exception_mode = 1) then ( 

ftt +- sequence_error; 

FPU_exception_mode +- 0 

FPU_exception-pending_mode +- 1 

if ( (LDC or LOOC or LOCSR) and (EC = 0 or bp_CP-present 0» then ( 

trap +- 1; cp_disabled +- 1 ) ; 

next; 

if (trap = 0) then ( 

) ; 

next; 

if (LOO or LO or LOSH or LOUH or LDSB or LDUB 

) ; 

or LODF or LDF or LOFSR or LOOC or LOC or LDCSR) then ( 

address +- r[rsl] + (if i=O then r[rs2] else sign_extend(simm13»; 

addr_space +- (if (S = 0) then 10 else 11) 

else if (LODA or LOA or LOSHA or LDUHA or LDSBA or LOUBA) then ( 

if (S = 0) then ( 

trap +- 1; privileged_instruction +- 1 

address +- r[rsl] + r[rs2] ; 

addr_space +- asi 

if (trap 0) then ( 

) ; 

next; 

if ( «LOD or LOOA or LOOF or LODC) and address<2:0> ~ 0) or 
«LO or LOA or LOF or LDFSR or LOC or LOCSR) and address<1:0> ~ 0) or 
«LOSH or LOSHA or LOUH or LOUHA) and address<O> ~ 0) ) then ( 
trap +- 1; mem_addr_not_aligned +- 1 

if (trap = 0) then ( 

data +- memory_read (addr_space , address); 

MAE +- bp_memory_exception; 

next; 
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) ; 

next; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 

else ( 

if (LDSB or LDSBA or LDUB or LDUBA) then ( 

if (address<1:0> 

else if (address<1:0> 

else if (address<1:0> 

else if (address<1:0> 

next; 

if (LDSB or LDSBA) then 

0) byte +- data<31:24> 

1) byte +- data<23:16> 

2) byte +- data<15:8> 

3) byte +- data<7:0>; 

wordO +- sign_extend_byte(byte) 

else 

wordO +- zero_extend_byte(byte) 

) else if (LDSH or LDSHA or LDUH or LDUHA) then 

) else 

if (address<1:0> 

else if (address<1:0> 

next; 

if (LDSH or LDSHA) then 

0) halfword +- data<31:16> 

2) halfword +- data<15:0>; 

wordO +- sign_extend_halfword(halfword) 

else 

wordO +- zero_extend_halfword(halfword) 

wordO +- data 

if (trap 0) then 

if ( rd ~ 0 and (LD or LDA or LDSH or or LDSHA or LDUHA or LDUH or LDSB or LDSBA 
or LDUB or LDUBA) ) then 

r[rd] +- wordO 

else if ( «rd and 111102) ~ 0) and (LDD or LDDA) ) then 

r[rd and 111102] +- wordO 

else if (LDF) then 

f [rd] +- wordO 

else if (LDFSR) then 

wait_for_FAUs_to_complete; {implementation-defined} 

FSR +- wordO ) 
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else if (LDC) then 

c [rd] +- wordO 

else if (LDCSR) then 

CSR +- wordO 

) ; 

next; 

if (trap = 0 and (LDD or LDDA or LDDF or LDDC» then 

word1 +- memory_read (addr_space , address + 4); 

MAE +- bp_memory_exception; 

) ; 

next; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 ) 

else if (LDD or LDDA) then 

r[rd or 1] +- word1 

else if (LDDF) then 

f[rd or 1] +- word1 

else if (LDDC) then 

c[rd or 1] +- word1 

Store Instructions 
if 

if 

if 

( (STF or STDF or STFSR or STDFQ) and (EF o or bp_FPU-present 0» then ( 

trap +- 1; fp_disabled +- 1 ) 

«STC or STDC or STCSR or STDCQ) and (EC o or bp_CP-present 0» then ( 

trap +- 1· cp_disabled +- 1 ) 

(trap = 0) then ( 

if (STD or ST or STH or STB or STF or STDF or STFSR or STDFQ or STCSR or STC or 
STDC or STDCQ) then ( 

) ; 

address +- r[rs1] + (if i=O then r[rs2] else sign_extend(simm13»; 

addr_space +- (if s=o then 10 else 11) 

else if (STDA or STA or STHA or STBA) then 

if (S = 0) then ( 

trap +- 1; privileged_instruction +- 1 

) else 

address +- r[rs1] + r[rs2]; 

addr_space +- asi; 
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) ; 

next; 

if (trap = 0) then ( 

) ; 

next; 

if (STD or STDA or STDF or STDFQ or STDC or STDCQ) then ( 

if (address<2:0> ,= 0) then 

trap +- 1; mem_addr_not_aligned +- 1 ) 

else if (ST or STA or STF or STFSR or STC or STCSR) the ( 

if (address<1:0> ,= 0) then 

trap +- 1; mem_addr_not_aligned +- 1 ) 

else if (STH or STHA) then ( 

if (address<O> ,= 0) then 

trap +- 1; mem_addr_not_aligned +- 1 ) 

) ; 

if (trap = 0) then ( 

if (STDF) then 

byte_mask +- 11112; dataO +- f[rd and 11102] ) 

else if (STDFQ) then ( 

byte_mask +- 11112; dataO +- FQ.ADDR ) 

else if (STDC) then ( 

byte_mask +- 11112; dataO +- c[rd and 11102] ) 

else if (STDCQ) then ( 

byte_mask +- 11112; dataO +- CQ.ADDR ) 

else if (STD or STDA) then ( 

byte_mask +- 11112; dataO +- r[rd and 11102] ) 

else if (ST or STA) then 

byte_mask = 11112; dataO 

else if (STH or STHA) then 

if (address<1:0> = 0) then 

r[rd]) 

byte_mask +- 11002; dataO +- shift_left_logical(r[rd]. 16) ) 

else if (address<1:0> = 2) then ( 

byte_mask +- 00112; dataO +- r[rd] ) ) 

else if (STB or STBA) then 

if (address<1:0> = 0) then 

byte_mask +- 10002; dataO +- shift_left_logical(r[rd]. 24) ) 

else if (address<1:0> = 1) then ( 
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) ; 

) ; 

next; 

byte_mask +- 01002; dataO +- shift_left_logical(r[rd], 16) ) 

else if (address<1:0> = 2) then ( 
byte_mask +- 00102; dataO +- shift_left_logical(r[rd], 8) ) 

else if (address<1:0> = 3) then ( 
byte_mask +- 00012; dataO +- r[rd] ) 

if (trap = 0) then ( 

) ; 

next; 

memory_write (addr_space, address, byte_mask, dataO); 

MAE +- bp_memory_exception 

next; 

if (MAE = 1) then ( 
trap +- 1; data_access_exception +- 1 

if (trap = 0) then ( 

) ; 

if (STD or STDA) then datal +- r[rd or 1] 

else if (STDF) then datal +- f[rd or 1] 

else if (STDFQ) then ( 

next; 

datal <- FQ.INSTR; 

dequeue_FQ; 

if (qne = 0) then ( 

FPU_exception_mode +- 0 

FPU_execute_mode +- 1 

else if (STDC) then datal +- c[rd or 1] 

else if (STDCQ) then datal +- CQ.INSTR 

next; 

memory_write (addr_space, address + 4, 11112, datal); 

MAE +- bp_memory_exception; 

next; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 
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Atomic Load-Store Unsigned Byte Instroctions 
if (LDSTUB) then ( 

address +- r[rs1] + (if i=O then r[rs2] else sign_extend(simm13»; 

addr_space +- (if (S = 0) then 10 else 11) 

else if (LDSTUBA) then 

) ; 

next; 

if (S = 0) then ( 

trap +- 1; privileged_instruction +- 1 

address +- r[rs1] + r[rs2]; 

addr_space +- asi 

if (trap = 0) then ( 

pb_retain_bus +- 1; 

next; 

data +- memory_read (addr_space, address); 

MAE +- bp_memory_exception; 

next; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 

else ( 

if (address<1:0> 0) word +- zero_extend_byte(data<31:24» 

else if (address<1:0> 1) word +- zero_extend_byte(data<23:16» 

else if (address<1:0> 2) word +- zero_extend_byte(data<15:8» 

else if (address<1:0> 3) word +- zero_extend_byte(data<7:0»; 

next; 

if (rd ~ 0) then r[rd] +- word 

) ; 

next; 

if (trap 0) then 

if (address<1:0> 0) then byte_mask +- 10002) 

else if (address<1:0> 1) then byte_mask +- 01002) 

else if (address<1:0> 2) then byte_mask +- 00102) 

else if (address<1:0> 3) then byte_mask +- 00012) 

next; 
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) ; 

memory_write (addr_space , address, byte_mask, FFFFFFFF16); 

MAE +- bp_memory_exception; 

next; 

pb_retain_bus +- 0; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 

Swap r Register with Memory Instructions 
if (SWAP) then ( 

address +- r[rs1] + (if i=O then r[rs2] else sign_extend(simm13»; 

addr_space +- (if (S = 0) then 10 else 11) 

else if (SWAPA) then ( 

) ; 

next; 

if (S = 0) then 

trap +- 1; privileged_instruction +- 1 

address +- r[rs1] + r[rs2]; 

addr_space +- asi 

if (trap = 0) then ( 

temp +- r [rd] ; 

pb_retain_bus +- 1; 

next; 

) ; 

next; 

word +- memory_read (addr_space , address); 

MAE +- bp_memory_exception; 

next; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 

else ( 

if (rd ~ 0) then r[rd] +- word 

if (trap = 0) then ( 

memory_write (addr_space , address, 11112, temp); 

MAE +- bp_memory_exception; 
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next; 

pb_retain_bus +- 0; 

if (MAE = 1) then ( 

trap +- 1; data_aeeess_exeeption +- 1 

) ; 

Add Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simm13); 

if (ADD or ADDee) then 

result +- r[rs1] + operand2; 

else if (ADDX or ADDXee) then 

result +- r[rs1] + operand2 + C; 

next; 

if (rd ~ 0) then 

r[rd] +- result; 

if (ADDee or ADDXee) then 

N +- result<31>; 

Z +- if result=O then 1 else 0; 

V +- (r[rs1]<31> and operand2<31> and not result<31» or 
(not r[rs1]<31> and not operand2<31> and result<31»; 

C +- (r[rs1]<31> and operand2<31» or 
(not result<31> and (r[rs1]<31> or operand2<31») 

) ; 

Tagged Add Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simm13); 

result +- r[rs1] + operand2; 

next; 

temp v +- (r[rs1]<31> and operand2<31> and not result<31» or 
-(not r[rs1]<31> and not operand2<31> and result<31» or 

(r[rs1]<1:0> ~ 0 or operand2<1:0> ~ 0); 

next; 

if (TADDceTV and temp_v = 1) then ( 

trap +- 1; tag_overflow +- 1 

else ( 

N +- result<31>; 

Z +- if result=O then 1 else 0; 
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C +- (r[rs1]<31> and operand2<31» or 
(not result<31> and (r[rs1]<31> or operand2<31»); 

if (rd ~ 0) then 

r [rd] +- result; 

) ; 

Subtract Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simm13); 

if (SUB or SUBcc) then 

result +- r[rs1] - operand2; 

else if (SUBX or SUBXcc) then 

result +- r[rs1] - operand2 - C; 

next; 

if (rd ~ 0) then 

r[rd] +- result; 

if (SUBcc or SUBXcc) then 

N +- result<31>; 

Z +- if result=O then 1 else 0; 

V +- (r[rs1]<31> and not operand2<31> and not result<31» or 
(not r[rs1]<31> and operand2<31> and result<31»; 

C +- (not r[rs1]<31> and operand2<31» or 
(result<31> and (not r[rs1]<31> or operand2<31») 

) ; 

Tagged Subtract Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simm13); 

result +- r[rs1] - operand2; 

next; 

temp v +- (r[rs1]<31> and not operand2<31> and not result<31» or 
-(not r[rs1]<31> and operand2<31> and result<31» or 

(r[rs1]<1:0> ~ 0 or operand2<1:0> ~ 0); 

next; 

if (TSUBccTV and temp_v = 1) then ( 

trap +- 1; tag_overflow +- 1 

else ( 

N +- result<31>; 

Z +- if result=O then 1 else 0; 

V +- temp_v; 

C +- (not r[rsl]<31> and operand2<31» or 
(result<31> and (not r[rs1j<31> or operand2<31»); 
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) ; 

if (rd ~ 0) then 

r[rd] ..- result; 

Multiply Step Instruction 
operandI := (N xor V)Or[rSI]<31:1>; 

operand2 := 

if (Y<O> 0) then 0 

else if (i = 0) then r[rs2] else sign_extend(simmI3) 

) ; 

result ..- operandI + operand2; 

Y ..- r[rsl] <0>DY<31: I>; 

next; 

if (rd ~ 0) then 

r[rd] ..- result; 

N ..- result<31>; 

z ..- if result=O then I else 0; 

V ..- (operandl<31> and operand2<31> and not result<31» or 
(not operandl<31> and not operand2<31> and result<31»; 

C +- (operandl<31> and operand2<31» or 
(not result<31> and (operandl<31> or operand2<31») 

Logical Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simmI3); 

if (AND or ANDcc) then result ..- r[rsl] and operand2 

else if (ANON or ANONcc) then result +- r[rsl] and not operand2 

else if (OR or ORcc) then result ..- r[rsl] or operand2 

else if (ORN or ORNcc) then result ..- r[rsl] or not operand2 

else if (XOR or XORcc) then result ..- r[rsl] xor operand2 

else if (XNOR or XNORcc) then result ..- r[rsl] xor not operand2; 

next; 

if (rd ~ 0) then r[rd] ..- result; 

if (ANDcc or ANDNcc or ORcc or ORNcc or XORcc or XNORcc) then ( 

N ..- result<31>; 

z ..- if result=O then I else 0; 

v..- 0; 

C ..- 0 

) ; 
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Shift Instructions 
shift_count := if i=O then r[rs2]<4:0> else shcnt; 

if (SLL and rd ~ 0) then 

r[rd] +- shift_Ieft_Iogical(r[rs1]. shift_count) 

else if (SRL and rd ~ 0) then 

r[rd] +- shift_right_Iogical(r[rs1]. shift_count) 

else if (SRA and rd ~ 0) then 

r[rd] +- shift_right_arithmetic(r[rs1]. shift_count) 

SETHI Instruction 
if (rd ~ 0) then ( 

r[rd]<31:10> +- imm22; 

r[rd]<9:0> +- 0 

SAVE and RESTORE Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simm13); 

if (SAVE) then 

new_cwp +- (CWP - 1) mod NWINDOWS; 

next; 

if «WIM and 2new_cwp) ~ 0) then ( 

trap +- 1; window_overflow +- 1 

else ( 

result +- r[rs1] + operand2; 

CWP +- new_cwp 

else if (RESTORE) then ( 

) ; 

next; 

new_cwp +- (CWP + 1) mod NWINDOWS; 

next; 

if «WIM and 2new_cwp) ~ 0) then ( 

trap +- 1; window_underflow +- 1 

else ( 

result +- r[rs1] + operand2; 

CWP +- new_cwp 
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if (trap = 0 and rd ~ 0) then 

r [rd] +- result {destination in new window} 

Branch on Integer Condition Instructions 
eval_icc := ( 

) ; 

if (BNE and (Z = 0» then 1 else 0; 

if (BE and (Z = 1» then 1 else 0; 

if (BG and «Z or (N xor v» = 0» then 1 else 0; 

if (BLE and «Z or (N xor V» = 1» then 1 else 0; 

if (BGE and «N xor V) = 0» then 1 else 0; 

if (BL and «N xor V) = 1» then 1 else 0; 

if (BGU and (C = 0 and Z 0» then 1 else 0; 

if (BLEU and (C = 1 or Z 1» then 1 else 0; 

if (BCC and (C = 0» then 1 else 0; 

if (BCS and (C = 1» then 1 else 0; 

if (BPOS and (N 0» then 1 else 0; 

if (BNEG and (N 1» then 1 else 0; 

if (BVC and (V = 0» then 1 else 0; 

if (BVS and (V = 1» then 1 else 0; 

if (BA) then 1; 

if (BN) then 0 

PC +- nPC; 

if (eval_icc) = 1 then ( 

nPC +- PC + sign_extend(disp22D002); 

if (BA and a = 1) then 

annul +- 1 

else ( 

nPC +- nPC - 4; 

if (a = 1) then 

annul +- 1 

Floating-Point Branch on Condition Instructions 
E ,- if fcc=O then 1 else 0; 

L := if fcc=1 then 1 else 0; 

G ,- if fcc=2 then 1 else 0' , 

U ,- if fcc=3 then 1 else 0; 
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eval_fcc := ( 

if (FBU and U» then 1 else 0; 

if (FBG and G) then 1 else 0; 

if (FBUG and (G or U) then 1 else O· , 
if (FBL and L) then 1 else 0; 

if (FBUL and (L or U» then 1 else 0; 

if (FBLG and (L or G» then 1 else 0; 

if (FBNE and (L or G or U» then 1 else o· , 
if (FBE and E» then 1 else 0; 

if (FBUE and (E or U» then 1 else 0; 

if (FBGE and (E or G» then 1 else 0; 

if (FBUGE and (E or G or U» then 1 else 

if (FBLE and (E or L» then 1 else 0; 

if (FBULE and (E or L or U» then 1 else 

if (FBO and (E or L or G» then 1 else 0; 

if (FBA) then 1; 

if (FBN) then 0 

) ; 

PC +- nPC; 

if (eval_fcc = 1) then ( 

nPC +- PC + sign_extend(disP22D002) ; 

if (FBA and (a = 1» then 

annul +- 1 

else ( 

nPC +- nPC + 4; 

if (a = 1) then 

annul +- 1 

Coprocessor Branch on Condition Instructions 
co := if bp_CP_cc<I:0>=0 then 1 else 0; 

Cl := if bp_CP_cc<I:0>=1 then 1 else 0; 

C2 := if bp_CP_cc<I:0>=2 then 1 else 0; 

C3 := if bp_CP_cc<1:0>=3 then 1 else 0; 

eval_bp_CP_cc := ( 

if (CB3 and C3» then 1 else 0; 

if (CB2 and C2) then 1 else 0; 
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if (CB23 and (C2 or C3) then 1 else 0; 

if (CB1 and C1) then 1 else 0; 

if (CB13 and (C1 or C3) ) then 1 else 0; 

if (CB12 and (C1 or C2) ) then 1 else 0; 

if (CB123 and (C1 or C2 or C3» then 1 else 

if (CBO and CO» then 1 else 0; 

if (CB03 and (CO or C3) ) then 1 else o· , 
if (CB02 and (CO or C2» then 1 else 0; 

if (CB023 and (CO or C2 or C3» then 1 else 

if (CB01 and (CO or C1» then 1 else 0; 

if (CB013 and (CO or C1 or C3) ) then 1 else 

if (CB012 and (CO or C1 or C2) ) then 1 else 

if (CBA) then 1; 

if (CBN) then 0 

) ; 

PC +- nPC; 

if (eval_bp_CP_cc = 1) then ( 

nPC +- PC + sign_extend(disP22D002); 

if (CBA and (a = 1» then 

annul +- 1 

else ( 

nPC +- nPC + 4; 

if (a = 1) then 

annul +- 1 

CALL Instruction 
r[15] +- PC; 

PC +- nPC; 

nPC +- PC + disP3oDo02 

Jump and Link Instruction 

0; 

0; 

0; 

0; 

jump_address +- r[rs1] + (if i=O then r[rs2] else sign_ext(simm13»; 

next; 

if (jump_address<1:0> ~ 0) then ( 

trap +- 1; 

mem_address_not_aligned +- 1 

else ( 
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if (rd ~O) then r[rd] +- PC; 

PC +- nPC; 

nPC +- jump_address 

Return from Trap Instruction 
new_cwp +- (CWP + 1) mod NWINDOW8; 

address +- r[rs1] +. (if i=O then r[rs2] else sign_extend(simm13»; 

next; 

if (ET) then ( 

trap +- 1; 

illegal_instruction +- 1 

else if (8 = 0) then ( 

trap +- 1; 

privileged_instruction +- 1 

else if «WIM and 2new_cwp) ~ 0) then ( 

trap +- 1; 

window_underflow +- 1 

else if (address<1:0> ~ 0) then ( 

trap +- 1; 

mem_address_not_aligned +- 1 

else ( 

ET +- 1; 

PC +- nPC; 

nPC +- address; 

CWP +- new_cwp; 

8 +- p8 

Trap on Integer Condition Instructions 
trap_eval_icc := ( 

if (TNE and (Z = 0» then 1 else 0; 

if (TE and (Z = 1» then 1 else 0; 

if (TO and «Z or (N xor V» = 0» then 1 else 0; 

if (TLE and «Z or (N xor V» = 1» then 1 else 0; 

if (TOE and «N xor V) = 0» then 1 else 0; 

if (TL and «N xor V) = 1» then 1 else 0; 

if (TOU and (C = 0 and Z = 0» then 1 else 0; 
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if (TLEU and (C = 1 or Z = 1» then 1 else 0; 

if (TCC and (C 0» then 1 else 0; 

if (TCS and (C 1» then 1 else o· . 
if (TPOS and (N = 0» then 1 else 0; 

if (TNEG and (N = 1» then 1 else 0; 

if (TVC and (V 0» then 1 else 0; 

if (TVS and (V 1) ) then 1 else 0; 

if (TA) then 1; 

if (TN) then 0 

) ; 

trap_number := r[rsl] + (if i=O then r[rs2] else sign_ext(simmI3»; 

if (Ticc) then 

) ; 

if (trap_eval_icc 1) then ( 

trap +- 1; 

trap_instruction +- 1; 

ticc_trap_type +- trap_number <6:0> 

else ( 

PC +- nPC; 

nPC +- nPC + 4 

Read State Register Instructions 
if «RDPSR or RDWIM or RDTBR) and S 0) then ( 

) ; 

trap +- 1; 

privileged_instruction +- 1 

else if (rd ~ 0) then 

if (RDY) then 

r[rd] +- Y 

else if (RDPSR) then 

r[rd] +- PSR 

else if (RDWIM) then 

r [rd] +- WIM 

else if (RDTBR) then 

r [rd] +- TBR; 
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Write State Register Instructions 
operand2 := if i=O then r[rs2] else sign_extend(simm13); 

result := r[rsl] xor operand2; 

if (WRY) then 

Y' +- result 

else if (WRP8R) then 

) ; 

if (result<4:0> ~ NWINDOW8) then ( 

trap +- 1; 

illegal_instruction +- 1 

else if (8 = 0) then ( 

trap +- 1; 

privileged_instruction +- 1 

else 

P8R' +- result 

else if (WRWIM) then ( 

if (8 = 0) then ( 

trap +- 1; 

privileged_instruction +- 1 

else 

WIM' +- result 

else if (WRTBR) then 

if (8 = 0) then ( 

trap +- 1; 

privileged_instruction +- 1 

else 

TBR' +- result 

Unimplemented Instruction 
trap +- 1; 

illegal_instruction +- 1 

Instruction Cache Flush Instruction 
address := r[rsl] + (if i=O then r[rs2] else sign_extend(simm13»; 

if (IU_cache-present) then 

flush_IU_cache_word(address) 

else if (bp_I_Cache-present) then ( 

trap +- 1; 
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illegal_instruction +- 1 

Floating-Point Operate Instructions 
The multiple precision FPops use the following notation to indicate f register alignment: 

double precision 

rslE := rsl<4:l~02; rslO := rsl<4:l~12; 

rs2E := rs2<4:1~02; rs20 := rs2<4:1~12; 

rdE := rd<4:l~02; rdO := rd<4:1~l2 

extended precision 

rslEE := rSl<4:2~002; rslEO := rsl<4:2~012; rsl0E := rsl<4:2~102; 

rs2EE := rs2<4:2~002; rs2EO := rs2<4:2~012; rs20E := rs2<4:2>DI02; 

rdEE := rd<4:2~002; rdEO := rd<4:2~012; rdOE := rd<4:2~102 

Most of the floating-point routines defined below (or not defined since they are 
implementation-dependent) return: (1) a single, double, or extended result; (2) a 5-bit exception 
vector (texc) similar to the cexc field of the FSR, or a 2-bit condition code vector (tfcc) identical 
to the fcc field of the FSR; and (3) a completion status bit (c) which indicates whether the 
arithmetic unit was able to complete the operation. 

Convert Integer to Floating-Point Instructions 
if (FiTOs) then 

result, texc, c +- cvt_integer_to_single(f[rs2]) 

else if (FiTOd) then 

result, texc, c +- cvt_integer_to_double(f[rs2]) 

else if (FiTOx) then 

result, texc, c +- cvt_integer_to_extended(f[rs2]) 

Convert Floating-Point to Integer 
if (FsTOi) then 

result, texc, c +- cvt_single_to_integer(f[rs2]) 

else if (FdTOi) then 

result, texc, c +- cvt_double_to_integer(f[rs2E]Df[rS20]) 

else if (FxTOi) then 

result, texc, c +- cvt_extended_to_integer(f[rS2EE]Df[rs2EO]Df[rs20E]); 

Convert Between Floating-Point Formats Instructions 
if (FsTOd) then 

result, texc, c +- cvt_single_to_double(f[rs2]) 

else if (FsTOx) then 

result, texc, c +- cvt_single_to_extended(f[rs2]) 
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else if (FdTOs) then 

result, texc, c +- cvt_double_to_single(f[rS2E]Df[rS20]) 

else if (FdTOx) then 

result, texc, c +- cvt_double_to_extended(f[rs2E]Df[rs20]) 

else if (FxTOs) then 

result, texc, c +- cvt_extended_to_single(f[rs2E]Df[rs20]Df[rs20E]) 

else if (FxTOd) then 

result, texc, c +- cvt_extended_to_double(f[rs2EE]Df[rs2Eo]Df[rs20E]) 

Floating-Point Move Instructions 
if (FMOVs) then 

result +- f[rs2] 

else if (FNEGs) then 

result +- f[rs2] xor 8000000016 

else if (FABSs) then 

result +- f[rs2] and 7FFFFFFF16; 

texc +- 0; 

c +- 1 

Floating-Point Square Root Instructions 
if (FSQRTs) then 

result, texc, c +- sqrt_single(f[rs2]) 

else if (FSQRTd) then 

result, texc, c +- sqrt_double(f[rs2E]Df[rs20]) 

else if (FSQRTx) then 

result, texc, c +- sqrt_extended(f[rs2EE]Df[rs2EO]Df[rs20E]) 

Floating-Point Add and Subtract Instructions 
if (FADDs) then 

result, texc, c +- add_single(f[rsl], f[rs2]) 

else if (FSUBs) then 

result, texc, c +- sub_single(f[rsl] , f[rs2]) 

else if (F ADDd) then 

result, texc, c +- add_double(f[rslE]Df[rslO] , 

else if (FSUBd) then 

result, texc, c +- sub_double(f[rS1E]Df[rS10] , 

else if (FADDx) then 

f[rs2E]Df[rs20]) 

f [rs2E] Of [rs20] ) 

resu\t, texc, c +- add_extended(f [rslEE]Df [rslEO]Df [rslOE] , 

f[rs2EE]Df[rs2EO]Df[rs20E]) 
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else if (FSUBx) then 

result, texc, c +- sub_extended(f[rslEE]Df [rslEO]Df [rslOE] , 

f[rs2EE]Df[rs2EO]Df[rs20E]) 

Floating-Point Multiply and Divide Instructions 

if (FMULs) then 

result, texc, c +- mul_single(f[rsl], f[rs2]) 

else if (FDIVs) then 

result, texc, c +- div_single(f[rsl], f[rs2]) 

else if (FMULd) then 

result, texc, c +- mul_double(f[rS1E]Df[rS10], f[rs2E]Df[rs20]) 

else if (FDIVd) then 

result, texc, c +- div_double(f[rslE]Df[rslO], f[rs2E]Df[rs20]) 

else if (FMULx) then 

result, texc, c +- mul_extended(f[rS1EE]Df[rS1EO]Df[rS10E], 

f[rs2EE]Df[rs2Eo]Df[rs20E]) 

else if (FDIVx) then 

result, texc, c +- div_extended(f[rslEE]Df[rS1EO]Df[rSlOE], 

f[rs2EE]Df[rs2EO]Df[rs20E]) 

Floating-Point Compare Instructions 

if (FCMPs) then 

tfcc, texc, c +- compare_single(f[rsl], f[rs2]) 

else if (FCMPd) then 

tfcc, texc, c +- compare_double(f[rS1E]Df[rslO], f[rs2E]Df[rs20]) 

else if (FCMPx) then 

tfcc, texc, c +- compare_extended(f[rSlEE]Df[rSlEO]Df[rSlOE], 

f [rs2EE]Df [rs2Eo]Df [rs20E] ) 

else if (FCMPEs) then 

tfcc, texc, c +- compare_e_single(f[rsl], f[rs2]); 

else if (FCMPEd) then 

tfcc, texc, c +- compare_e_double(f[rSlE]Df[rslO], f[rs2E]Df[rs20]) 

else if (FCMPEx) then 

tfcc, texc, c +- compare_e_extended(f[rSlEE]Df[rslEO]Df[rSlOE] , 

f [rs2EE]Df [rs2EO]Df [rs20E] ) 
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cyp~ss===================== SEMICONDUCTOR Software Considerations 

This appendix describes how software can use the SPARC architecture effectively. It describes 
assumptions that compilers may make about the resources available, and how compilers can use 
them. It does not discuss how the operating system may use the architecture. 

Registers 
How to use registers is typically a very important resource allocation problem for compilers. The 
SPARC architecture provides windowed registers (in, out, local), global registers, and floating­
point registers. 

In and Out Registers 

The in and out registers are used primarily for passing parameters to subroutines and receiving 
results from them, and for keeping track of the memory stack. When a routine is called, the 
caller's outs become the callee's ins. 

One of the caller's out registers is used as the stack pointer, SP. It points to an area in which the 
system can store r16 through r3I when the register file overflows. It is essential that this 
register have the correct value when the corresponding underflow trap occurs so that the 
register window can be reloaded. It is also important that this register be kept up to date with 
register window changes, and that the overhead for doing calls be kept as small as possible. 
Since SP is in one of the caller's out registers, it can be used by the callee as its FP, and the 
callee can use the SA VB instruction to set its own SP from its FP. 

Up to six parameters* may be passed by placing them in the out registers; additional parameters 
are passed in the memory stack. When the callee is entered, the parameters passed in registers 
are now in its corresponding ins. One of the other two in/out registers is used as the 
caller's old SP, which is also the current routine's frame pointer, FP (see below). The other is 
used to pass the subroutine's return address. With the exception of SP, out registers may be used 
as temporaries between subroutine calls. 

If a routine is passed more than six parameters, the remainder are passed on the memory stack. 
If, on the other hand, it is passed fewer than six parameters, it may use the other parameter 
registers as if they were locals. If a register parameter has its address taken, it must be stored on 
the memory stack, and used from there for the lifetime of the pointer (or for the extent of the 
procedure, if the compiler cannot figure this out). A function returns its value by writing it into 
its ins (which are the caller's outs). 

'Six is more than adequate, since the overwhelming majority of procedures in system code-at least 97% measured 
statically, according to the studies cited by Weicker (Weicker, R. P., Dhrystone: A Synthetic Systems Programming Benchmark, 
CACM 27:10, October 1984)-take fewer than six parameters. The average number of parameters, measured statically or dynami­
cally, is no greater than 2.1 in any of these studies. 
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Local Registers 

The locals are used for automatic variables and most temporaries. The compiler may also copy 
parameters out of the memory stack into the locals and use them from there. If an automatic 
variable has its address taken, it must be stored in the memory stack for the lifetime of the 
pointer (or for the extent of the procedure, if the compiler cannot figure this out). 

Global Registers 

Unlike the ins, locals, and outs, the globals are not part of any register window, but are a single 
set of registers with global scope, like the registers of a more traditional architecture. This means 
that if they are used on a per-procedure basis, they must be saved and restored. 

The global registers can be used for temporaries and for global variables or pointers, either 
visible to the user or maintained as part of the program's execution environment. For instance, 
one could by convention address all global scalars by offsets from register r7. This would allow 
2 13 bytes of global scalars, and would enable access to these variables faster than if they were 
only accessible via absolute addresses. This is because absolute addresses longer than 13 bits 
require a SETHI instruction. 

Floating-Point Registers 

There are thirty-two 32-bit floating-point registers. They are accessed differently from the other 
registers and cannot be moved to or from anything but memory. Like the global registers, they 
must be managed by software. Compilers probably will not pass parameters in them, but will 
use them for user variables and compiler temporaries. Across a procedure call, either the caller 
saves the live floating-point registers, or the callee saves the ones it uses and subsequently 
restores them. 
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r31 (i7) return address 

r30 (FP) frame pointer 

r29 (i5) incoming param reg 5 

in r28 (i4) incoming param reg 4 

r27 (i3) incoming param reg 3 

r26 (i2) incoming param reg 2 

r25 (i1 ) incoming param reg 1 

r24 (iO) incoming param reg 0 

r23 (17) local 7 

r22 (16) local 6 

r21 (15) local 5 

local r20 (14) local 4 

r19 (13) local 3 

r18 (12) local 2 

r17 (11 ) local 1 

r16 (10) local 0 

r15 (07) temp 

r14 (SP) stack pointer 

r13 (05) outgoing param reg 5 

out r12 (04) outgoing param reg 4 

r11 (03) outgoing param reg 3 

r10 (02) outgoing param reg 2 

r9 (01) outgoing param reg 1 

r8 (00) outgoing param reg 0 

r7 (g7) global 7 

r6 (g6) global 6 

r5 (g5) global 5 

global r4 (g4) global 4 

r3 (g3) global 3 

r2 (g2) global 2 

r1 (g1) global 1 

rO (gO) 0 

f31 floating-point value 

floating : : 
point 

fO floating-point value 

Figure D-I. Registers as Seen by a Procedure 
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Software Considerations 

The Memory Stack 
Parameters beyond the sixth are passed on the stack. Parameters which must be addressable are 
stored in the stack. Space is reserved on the stack for passing a one-word hidden parameter. This 
is used when the caller is expecting to be returned a C language struct by value; it gives the 
address of stack space allocated by the caller for that purpose (see Function Returning Aggregate 
Values). Space is reserved on the stack for keeping the procedure's in and local registers, should 
the register stack overflow. Automatic variables which must be addressable are kept there, as are 
some compiler-generated temporaries. These include automatic arrays and automatic records. 
Space is reserved on the stack for saving floating-point registers across calls. Space on the stack 
may be dynamically allocated using the a110ca function from the C library. Automatic variables 
on the stack are addressed relative to FP, while temporaries and outgoing parameters are 
addressed relative to SP. When a procedure is active, its stack frame appears as in Figure D-2. 

FP, old SP-> 

Example Code 

PROGRAM STACK 

Local stack space for addressable automatics 

Dynamically allocated stack space 

Local stack space for compiler temporaries 
and saved floating-point registers 

Outgoing parameters past the sixth 

6 words into which callee may store register 
arguments 

One-word hidden parameter (address at which 
callee should store aggregate return value) 

16 words in which to save in and local registers 
I 
v 

Stack Growth 
(Decreasing Memory Addresses) 

Figure D-2. The User Stack Frame 

Previous Stack 
Frame 

Current Stack 
Frame 

In the following example we assume the following pseudo-instructions are provided by the 
assembler: 

pseudo-instruction 

ret 
ret! 
mov reg_or _imm, reg 
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equivalent instruction 

jmp %i7 + 8 
jmp %07 + 8 
or %gO, reg_or _imm, reg 



Software Considerations g);~ 
~~~========================================================== 

The following code fragment shows a simple procedure call with a value returned, and the 
procedure itself: 

CALLER: 
int i; 
i = sum3( 1, 2, 3 ); 

mov 1, %00 
mov 2, %01 
call sum3 
mov 3, %02 
mov %00, %17 

CALLEE: 

sum3: 

int sum3( a, b, c 
int a, b, c; 
{ 

save 
add 
add 
ret 

return a+b+c; 

%sp, -(16*4), %sp 
%iO, %i1, %17 
%17, %i2, %17 

/* in register %17 */ 

last parameter in delay slot 

/* received %iO, %i1 and %i2 */ 

setup new sp 
compute sum in local 

restore %17, 0, %00 move result into output reg, restore 

Since "sum3" does not call any subroutines (Le. it is a "leaf" routine) it can be recoded as: 

sum3: 
add %00, %01, %03 
retl 
add %02, %03, %00 

! use %03 as a local 
can't use ret; use retl 

Functions Returning Aggregate Values 
Some programming languages, including C, some dialects of Pascal, and Modula-2, allow the 
user to define a function returning an aggregate value, such as a C struct or a Pascal record. 
Since such a value may not fit into the registers, another value returning protocol must be 
defined to return the result in memory. Reentrancy and efficiency considerations require that the 
memory used to hold such a return value be allocated by the function's caller. The address of 
this memory area is passed as the one-word hidden parameter mentioned in the section The 
Memory Stack in this appendix. Because of the lack of type safety in the C language, a function 
should not assume that its caller is expecting an aggregate return value and has provided a valid 
memory address. Thus some additional handshaking is required. 

When a procedure expecting an aggregate function value is compiled, an UNIMP instruction is 
placed after the delay-slot instruction following the call to the function in question. The 
immediate field in this UNIMP instruction is the low-order twelve bits of the size in bytes of the 
aggregate value expected. When an aggregate-returning function is about to return its value in 
the memory allocated by its caller, it first tests for the presence of this UNIMP instruction in its 
caller's instruction stream. If it is found, then the hidden parameter is assumed to be valid, and 
the function returns control to the location following the unimplemented instruction. Otherwise, 
the hidden parameter is assumed not to be valid, and no value can be returned. Conversely, if a 
scalar-returning function is called when an aggregate value is expected, the function returns as 
usual, executing the UNIMP instruction and causing a trap. 
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APPENDIXE 

Example Integer 
Multiplication and 

Division Routines 
This appendix contains routines a SPARe architecture system might use to perform integer 
multiplication and division. 

In these examples, it is assumed that the assembler provides the following pseudo-instructions: 

Pseudo Instruction 

nop 
jmp 
ret 
ret! 
mov reg_or _imm. neg 
tst reg 
neg reg 
cmp reg. reg_or _imm 
inc reg 
incc reg 
dec reg 
deccc reg 

Equivalent Instruction 

sethi O.%gO 
jmpl address. %gO 
jmp %i7 +8 
jmp %07 +8 
or %gO. reg_or _imm. reg 
subcc reg. %gO. %gO 
sub %gO. reg, reg 
subcc reg. reg_or _imm. %gO 
add reg, 1. reg 
addcc reg, 1. reg 
sub reg. 1. reg 
subcc reg, 1. reg 

It is also assumed that the assembler recognizes " / " ... " / "-style comments, and " ! " as the 
beginning of a comment which extends to the end of the current line. 

Signed Multiplication 
/" 

" Procedure to perform a 32-bit by 32-bit multiply. 
" Pass the multiplicand in %iO. and the multiplier in %iI . 
.. The least significant 32 bits of the result are returned in %iO • 
.. and the most significant in %iI . .. 
.. This code has an optimization built-in for short (less than 13-bit) 
.. multiplies. Short multiplies require 26 or 27 instruction cycles • 
.. and long ones require 47 to 51 instruction cycles. For two positive numbers 
.. (the most common case) a long multiply takes 47 instruction cycles . .. 
.. This code indicates that overflow has occurred by leaving the z condition 
.. code clear. The following call sequence would be used if you wish 
.. to deal with overflow: .. .. .. .. 
" 

call 
nop 
bnz 

.mul 

overflow_code 
(or set up last parameter here) 
(or tnz to overflow handler) 

* Note that this is a Leaf routine; i.e. it calls no other routines and does 
* all of its work in the Out registers. Thus. the usual SAVE and RESTORE 
.. instructions are not needed. 
*/ 
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~,~================================= 

.mul: 
. global 

mov 
andncc 
be 
andcc 

long 
! 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 

.mul 

%00, %y 
%00, Oxfff, %gO 
mul_shortway 
%gO, %gO, %04 

multiply 

%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %01, %04 
%04, %gO, %04 

multiplier to Y register 
mask out lower 12 bits 
can do it the short way 
zero the partial product and clear Nand 
V conditions 

first iteration of 33 

32nd iteration 
last iteration only shifts 

If %00 (multiplier) was negative, the result is: 
(%00 * %01) + %01 * (2**32) 

We fix that here. 

tst %00 
rd %y, %00 
bge 1f 
tst %00 for when we check for overflow 

sub %04, %01, %04 bit 33 and up of the product are in 
%04, so we don't have to shift %01 

We haven't overflowed if: 
low-or der bits are positive and high-order bits are 0 
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1: 

2: 

low-order bits are negative and high-order bits are -1 

If you are not interested in detecting overflow, 
replace the following few instructions with: 

bge 
addcc 

ret! 
subcc 

ret! 
nop 

! short 
! 

1: retl 
mov 

2f 
%04, %gO, %01 

%04, -1, %gO 

multiply 

%04, %01 

if low-order bits were positive. 
return most sig. bits of prod and set 
Z appropriately (for positive product) 
leaf-routine return 
set Z if high order bits are -1 (for negative 
product) 

leaf-routine return 

mul shortway: 
- mulscc 

mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 
mulscc 

rd 
sl1 
srI 

%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 
%04, 

%y, 
%04, 
%05, 

%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%01, 
%gO, 

%05 
12, 
20, 

%04 
%04 
%04 
%04 
%04 
%04 
%04 
%04 
%04 
%04 
%04 
%04 
%04 

%00 
%05 

first iteration of 13 

12th iteration 
last iteration only shifts 

left shift middle bits by 12 bits 
right shift low bits by 20 bits 

We haven't overflowed if: 
low-order bits are positive and high-order bits are 0 
low-order bits are negative and high-order bits are -1 

If you are not interested in detecting overflow, 
replace the following code with: 

orcc 
bge 
sra 

retl 
subcc 

or %05, %04, %00 
retl 
mov %04, %01 

%05, %00, %00 
3f 
%04, 20, %01 

%01, -1, %go 

merge for true product 
if low-order bits were positive. 
right shift high bits by 20 bits 
and put into %01 
leaf-routine return 
set Z if high order bits are -1 (for 
negative product) 
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3: 
retl 
addcc %01, %gO, %gO 

Unsigned Multiplication 
/* 

leaf-routine return 
set Z if high order bits are 0 

* Procedure to perform a 32 by 32 unsigned multiply. 
* Pass the multiplier in %00, and the multiplicand in %01. 
* The least significant 32 bits of the result will be returned in %00, 
* and the most significant in %01. 
* * This code has an optimization built-in for short (less than 13 bit) 
* multiplies. Short multiplies require 25 instruction cycles, and long ones 
* require 46 or 48 instruction cycles. 
* * This code indicates that overflow has occurred, by leaving the Z condition 
* code clear. The following call sequence would be used if you wish to 
* deal with overflow: 
* 
* 
* 
* 
* 

call 
nop 
bnz 

.umul 

overflow_code 
(or set up last parameter here) 
(or tnz to overflow handler) 

* Note that this is a Leaf routine; i.e. it calls no other routines and does 
* all of its work in the Out registers. Thus, the usual SAVE and RESTORE 
* instructions are not needed. 
*/ 

. global .umul 
.umul: 

or %00, %01, %04 
mov %00, %y 
andncc %04, Oxfff, %05 
be mul_shortway 
andcc %gO, %gO, %04 

long multiply 

mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 

logical or of multiplier and multiplicand 
multiplier to Y register 
mask out lower 12 bits 
can do it the short way 
zero the partial product and clear Nand 
v condi Hons 

first iteration of 33 
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1: 

mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mu1scc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 32nd iteration 
mulscc %04, %gO, %04 last iteration only shifts 
/* 
* Normally, with the shifty-add approach, if both numbers are positive, 
* you get the correct result. With 32-bit twos-complement numbers, 
* -x can be represented as «2 - (x/(2**32» mod 2) * 2**32. To avoid 
* a lot of 2**32's, we can just move the radix point up to be just 
* to the left of the sign bit. So: 
* 
* x * y (xy) mod 2 
* -x * Y (2 - x) mod 2 * Y (2y - xy) mod 2 
* x * -y x * (2 - y) mod 2 (2x - xy) mod 2 
* -x * -y (2 - x) * (2 - y) (4 - 2x - 2y + xy) mod 2 
* 
* For signed multiplies, we subtract (2**32) * x from the partial 
* product to fix this problem for negative multipliers (see multiply.s) 
* Because of the way the shift into the partial product is calculated 
* (N xor V), this term is automatically removed for the multiplicand, 
* so we don't have to adjust. 
* 
* But for unsigned multiplies, the high order bit wasn't a sign bit, 
* and the correction is wrong. So for unsigned multiplies where the 
* high order bit is one, we end up with xy - (2**32) * y. To fix it 
* we add y * (2**32). 
*/ 

tst %01 
bge 1£ 
nop 
add %04, %00, %04 

rd 
retl 
addcc 

short 

%y, %00 

%04, %gO, %01 

multiply 

return least sig. bits of prod 
leaf-routine return 
delay slot; return high bits and set 
zero bit appropriately 

mul_shortway: 
mulscc %04, %01, %04 first iteration of 13 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, %04 

E-5 



2f?~ ~C'f) Example Integer Multiplication and Division Routines 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

mulscc %04, %01, 
mulscc %04, %01, 
mulscc %04, %01, 
mulscc %04, %01, 
mulscc %04, %gO, 

rd %y, %05 
sl1 %04, 12, 
srI %05, 20, 
or %05, %04, 

%04 
%04 
%04 
%04 
%04 

%04 
%05 

%00 

12th iteration 
last iteration only shifts 

left shift partial product by 12 bits 
right shift product by 20 bits 
merge for true product 

The delay instruction (addcc) moves zero into %01, 
sets the zero condition code, and clears the other conditions. 
This is the equivalent result to a long umultiply which doesn't overflow. 

! 
retl 
addcc 

! leaf-routine return 
%go, %go, %01 

Division 
Integer division implemented in software or microcode is usually done by a method such as the 
non-restoring algorithm, which provides one digit of quotient per step. A W-by-W digit division, 
of radix-B digits, is most easily achieved using 2*W-digit arithmetic. 

Program 1 

A binary-radix, 16-digit version of this method is illustrated by the C language function in 
Program 1, which performs an unsigned division, producing the quotient in Q and the remainder 
in R. 

#include <stdio.h> 
#include <assert.h> 

#define W 16 /* maximum number of bits in the dividend & divisor */ 

unsigned short 
divide( dividend, divisor ) 

unsigned short dividend, divisor; 

long R; /* partial remainder -- need 2*W bits */ 
unsigned short Q; /* partial quotient */ 
int iter; 

R = dividend; 
Q = 0; 
for ( iter = w; iter >= 0; iter -= 1 ){ 

assert( Q*divisor+R == dividend ); 
if (R >= 0) { 

R -= divisor «iter; 
Q += l«iter; 

else { 
R += divisor «iter; 
Q -= l«iter; 

} 
if(R<O){ 
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} 

R += divisor; 
Q -= 1; 

return Q; 

Program 2 

In the simple form shown above, this method has two drawbacks: 

• It requires a 2*W-digit accumulator 

• It always requires W steps. 

Both these problems may be overcome by estimating the quotient before the actual division is 
carried out. This can cut the time required for a division from O(W) to O(lOgB (quotient)). 
Program 2 illustrates how this estimate may be used to reduce the number of divide steps 
required and the size of the accumulator. 

#include <stdio.h> 
#include <assert.h> 

#define W 32 /* maximum number of bits in a divisor or dividend */ 

#define Big_value (unsigned)(1«(W-2» /* 2 • (W-1) */ 

int 
estimate log quotient( dividend. divisor) 

unSigned-dividend. divisor; 

unsigned log_quotient; 

for (log quotient = 0; log quotient < W; log quotient += 1 ) 
if ( (-divisor «log quotient) > Big value-) 

break; - -
else if ( (divisor «log quotient) >= dividend ) 

break; -

return log_quotient; 

unsigned 
divide( dividend. divisor ) 

unsigned dividend. divisor; 

int R; /* remainder */ 
unsigned Q; /* quotient */ 

int iter; 
R = dividend; 
Q = 0; 
for ( iter = estimate log quotient( dividend, divisor); iter >= 0; iter l){ 

assert( Q*divisor+R-== dividend ); 
if (R >= O){ 

R -= divisor «iter; 
Q += l«iter; 
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else { 
R += divisor «iter; 
Q -= l«iter; 

} 
if(R<O){ 

} 

R += divisor; 
Q -= 1; 

return Q; 

Program 3 

Another way of reducing the number of division steps required is to choose a larger base, B'. 
This is only feasible if the cost of the radix-B' inner loop does not exceed the cost of the radix-B 
inner loop by more than 10gB (B'). When B' = BN for some integer N, a radix-B' inner loop can 
easily be constructed from the radix-B inner loop by arranging an N-high, B-ary decision tree. 
Programs 3 and 4 illustrate how this can be done. Program 3 uses N-level recursion to show the 
principle, but the overhead of recursion in this example far outweighs the loop overhead saved 
by reducing the number of steps required. Program 4 shows how run-time recursion can be 
eliminated if N is fixed at two. 

#include <stdio.h> 
#include <assert.h> 

#define W 32 /* bits in a word */ 

int B, 
N; 

#define 
#define 

/* number base of division (must be a power of 2) */ 
/* log2(B)*/ 

WB (W/N) /* base B digits in a word */ 
Big_value (unsigned)(B«(WB-2» /* B - (WB-l) */ 

int Q, 
R, 
v; 

int 

/* partial quotient */ 
/* partial remainder */ 
/* multiple of the divisor */ 

estimate_Iog_quotient( dividend, divisor 
unsigned dividend, divisor; 

unsigned log_quotient; 

for (log quotient = 0; log quotient < WB; log quotient += 1 ) 
if ( (-divisor «log quotient*N) > Big value) 

break; - -
else if ( (divisor «log_quotient*N) >= dividend ) 

break; 

return log_quotient; 

int 
compute digit( level, quotient digit) 

int level, quotient_digit; 
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if (R >= O){ 
R -= V « level; 
quotient digit += 1«level; 

else { -
R += V « level; 
quotient_digit 1«level; 

} 
if (level> 0) 

return compute_digit( level-I, quotient_digit); 
else 

return quotient_digit; 

unsigned 
divide( dividend, divisor) 

unsigned dividend, divisor; 

int iter; 

B (1«(N» ; 
R dividend; 
Q O' 
for ( iter = estimate_log_quotient( dividend, divisor); iter >= 0; iter 1){ 

assert( Q*divisor+R == dividend ); 
V = divisor « (iter*N); 
Q += compute_digit( N-l, 0) « (iter*N); 

} 
if ( R < 0 ){ 

R += divisor; 
Q -= 1; 

return Q; 

Program 4 

#include <stdio.h> 
#include <assert.h> 

#define W 32 /* bits in a word */ 

#define 
#define 
#define 
#define 

B 4 /* 
N 2 /* 

number base of division (must be a power of 2) */ 
log2(B)*/ 

int 

WE (W/N) 
Big_value 

/* base B digits in a word */ 
(unsigned) (B«(WE-2» /* B ' WE-I */ 

estimate log_quotient( dividend, divisor) 
unsigned dividend, divisor; 

unsigned log_quotient; 

for (log_quotient = 0; log_quotient < WE; log_quotient += 1 ) 
if ( ( divisor «log_quotient*N) > Big_value 
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break; 
else if ( (divisor «log_quotient*N) >= dividend ) 

break; 

return log_quotient; 

int 
unsigned 
divide( dividend, divisor ) 

unsigned dividend, divisor; 

int Q, /* partial quotient */ 
R, /* partial remainder */ 
v; /* multiple of the divisor */ 
int iter; 

R = dividend; 
Q = 0; 
for ( iter = estimate_log_quotient( dividend, divisor); iter >= 0; iter 1){ 

} 

assert( Q*divisor+R == dividend ); 
V = divisor« (iter*N); 
/* N-deep, B-wide decision tree */ 
if(R>=O){ 

R -= V«l; 
if ( R >= 0 ){ 

R -= V; 
Q += 3 «(N*iter); 

else { 
R += v; 
Q += 1 «(N*iter); 
} 

else { 
R += V«l; 
if(R>=O){ 

R -= V; 
Q -= 1 «(N*iter); 

else { 
R += V; 
Q -= 3 «(N*iter); 
} 

if ( R < 0 ){ 
R += divisor; 
Q -= 1; 

return Q; 

Program 5 

At the risk of losing even more clarity, we can optimize away several of the bookkeeping 
operations, as shown in Program 5. 
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#include <stdio.h> 
#include <assert.h> 

#define W 32 /* bits in a word */ 

#define B 4 /* 
#define N 2 /* 

number base of division (must be a power of 2) */ 
log2 (B) */ 

#define WB (W/N) 
#define Big_value 

/* base B digits in a word */ 
(unsigned)(B«(WB-2» /* B A WB-1 */ 

int 
unsigned 
divide( dividend, divisor ) 

unsigned dividend, divisor; 

int Q, /* partial quotient */ 
R, /* partial remainder */ 
V; /* multiple of the divisor */ 

int iter; 

R = dividend; 
Q = 0; 
V = divisor; 
for ( iter = 0; V <= Big_value && V <= dividend; iter += 1 ) 

V «= N; 

for ( V «= (N-1); iter >= 0; iter -= 1 ){ 
Q «= N; 
assert( Q*(1«(iter*N»*divisor+R == dividend ); 
/* N-deep, B-wide decision tree */ 
if(R>=O){ 

R -= V; 
V »= 1; 
if(R>=O){ 

} 
} else { 

R -= V; 
V »= 1; 
Q += 3 ; 

else { 
R += V; 
V »= 1; 
Q += 1 ; 

R += V; 
V»= 1; 
if(R>=O){ 

R -= V; 
V »= 1; 
Q -= 1; 

else { 
R += V; 
V »= 1; 
Q -= 3; 
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if(R<O){ 
R += divisor; 
Q -= 1; 

return Q; 

Program 6 

Program 6 is, essentially, the method we recommend for SPARe. The depth of the decision 
tree-two in the preceding examples-is controlled by the constant N, and is currently set to 
three, based on empirical evidence. The decision tree is not explicitly coded, but defined by the 
recursive m4 macro DEVELOP_QUOTIENT_BITS. Other differences include: 

• Handling of signed and unsigned operands 

• More care is taken to avoid overflow for very large quotients or divisors 

• Special tests are made for division by zero and zero quotient 

• The routine is conditionally compiled for either division or remaindering. 

/* 
* Divison/Remainder 
* 
* Input is: 
* dividend -- the thing being divided 
* divisor -- how many ways to divide it 
* Important parameters: 
* N -- how many bits per iteration we try to get 
* as our current guess: define(N, 3) 
* WORDSIZE -- how many bits altogether we're talking about: 
* obviously: define (WORDSIZE, 32) 
* A derived constant: 
* TOPBITS -- how many bits are in the top "decade" of a number: 
* define (TOPBITS, eval( WORDSIZE - N*«WORDSIZE-1)/N) ) 
* Important variables are: 
* Q -- the partial quotient under development -- initally 0 
* R -- the remainder so far -- initially == the dividend 
* ITER -- number of iterations of the main division loop which will 
* be required. Equal to CEIL( 192(quotient)/N ) 
* Note that this is log base (2'N) of the quotient. 
* V -- the current comparand--- initially divisor*2'(ITER*N-1) 
* Cost: 
* current estimate for non-large dividend is 
* CEIL( 192(quotient) / N ) x ( 10 + 7N/2 ) + C 
* a large dividend is one greater than 2'(31-TOPBITS) and takes a 
* different path, as the upper bits of the quotient must be developed 
* one bit at a time. 
* This uses the m4 and cpp macro preprocessors. 
*/ 

#include "sw_trap.h" 

define(dividend, '%iO') 
define(divisor, '%i1') 
define(Q, '%i2') 
define(R, '%i3') 
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define (ITER, '%10') 
define(V, '%11') 
define(SIGN, '%12') 
define(T, '%13') working variable 
define(SC, '%14') 

/* 
* This is the recursive definition of how we develop quotient digits. 
* It takes three important parameters: 
* $1 the current depth, l<=$l<=N 
* $2 -- the current accumulation of quotient bits 
* N -- max depth 
* We add a new bit to $2 and either recurse or insert the bits in the quotient. 
* Dynamic input: 

R current remainder 
* Q -- current quotient 
* V -- current comparand 
* cc -- set on current value of R 
* Dynamic output: 
* R', Q', V', cc' 
*/ 

define(DEVELOP QUOTIENT BITS, 
!depth $1, accumulated bits $2 
bl L.$1.eval(2 A N+$2) 
srI V,l,V 
! remainder is positive 
subcc R,V,R 
Helse( $1, N, 

b 9f 
add Q, ($2*2+1), Q 
DEVELOP_QUOTIENT_BITS( 

, ) 

L.$1.eval(2 A N+$2): 
addcc R,V,R 
ifelse( $1, N, 

b 9f 
add Q, ($2*2-1), Q 

, DEVELOP_QUOTIENT_BITS( 
, ) 
Helse( $1, 1, '9:') 

, ) 

ifelse( ANSWER, 'quotient', ' 
.global .div, .udiv 

.udiv: ! UNSIGNED DIVIDE 
save %sp,-64,%sp 
b divide 
mov O,SIGN 

.div: ! SIGNED DIVIDE 
save %sp,-64,%sp 
orcc divisor,dividend,%gO 
bge divide 
xor divisor,dividend,SIGN 
tst divisor 
bge 2f 
tst dividend 

divisor < 0 

incr($l) , 'eval(2*$2+1)') 

! remainder is negative 

incr($l), 'eval(2*$2-1)') 

result always positive 

! are either dividend or divisor negative 
if not, skip this junk 
! record sign of result in sign of SIGN 
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, , , 

bge divide 
neg divisor 
2: 

dividend < 0 
neg dividend 

FALL THROUGH 

. global .rem, .urem 
. urem: ! UNSIGNED REMAINDER 

save %sp,-64,%sp do this for debugging 
b divide 
mov O,SIGN 

.rem: ! SIGNED REMAINDER 
save %sp,-64,%sp 
orcc divisor,dividend,%gO 
bge divide 
mov dividend,SIGN 
tst divisor 
bge 2f 
tst dividend 

divisor < 0 
bge divide 
neg divisor 
2: 

dividend < 0 
neg dividend 

FALL THROUGH 
, ) 

result always positive 

! do this for debugging 
! are either dividend or divisor negative 
if not, skip this junk 

! record sign of result in sign of SIGN 

divide: 
compute size of quotient, scale comparand 
orcc divisor,%gO,V ! movcc divisor,V 
te ST DIVO ! if divisor = 0 
mov di-;idend,R 
mov O,Q 
sethi %hi(1«(WORDSIZE-TOPBITS-1»,T 
cmp R,T 
blu not_really_big 
mov O,ITER 

Here, the dividend is >= 2 A (31-N) or so. We must be careful here, as 
our usual N-at-a-shot divide step will cause overflow and havoc. The 
total number of bits in the result here is N*ITER+SC, where SC <= N. 
Compute ITER, in an unorthodox manner: know we need to Shift V into 

1: 

2: 

the top decade: so don't even bother to compare to R. 

cmp V,T 
bgeu 3f 
mov l,SC 
sll V,N,V 
b 1b 
inc ITER 

Now compute SC 

addcc V,V,V 
bcc not_too_big bcc 
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add SC,l,SC 

We're here if the divisor overflowed when Shifting. 
This means that R has the high-order bit set. 
Restore V and subtract from R. 

sll T,TOPBITS,T ! high order bit 
srI V,l,V! rest of V 
add V,T,V 
b do_single_div 
dec SC 

not_too_big: 
3: cmp V,R 

blu 2b 
nop 
be do_single_div 
nop 

V > R: went too far: back up 1 step 
srI V,l,V 
dec SC 

do single-bit divide steps 

We have to be careful here. We know that R >= V, so we can do the 
first divide step without thinking. BUT, the others are conditional, 
and are only done if R >= O. Because both R and V may have the high­
order bit set in the first step, just falling into the regular 
division loop will mess up the first time around. 
So we unroll slightly ... 

do single div: 
- deccc SC 

bl end_regular_divide 
nop 
sub R,V,R 
mov l,Q 
b end_single_divloop 
nop 

single divloop: 
sll Q,l,Q 
bl 1f 
srI V,l,V 
! R >= 0 
sub R,V,R 
b 2f 
inc Q 

1: ! R < 0 
add R,V,R 
dec Q 

2: 
end single divloop: 

- deccc-SC 
bge single divloop 
tst R -
b end_regular_divide 
nop 

not_really_big: 
1: 

sll V,N,V 
cmp V,R 
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bleu Ib 
inccc ITER 
be got result 
dec ITER 

do_regular_divide: 

! Do the main division iteration 
tst R 
! Fall through into divide loop 

div100p: 
sl1 Q,N,Q 
DEVELOP QUOTIENT BITS( 1, 0 ) 

end regular divide: -
- deccc- ITER 

bge divloop 
tst R 
bge got_result 
nop 
! non-restoring fixup here 

ifelse( ANSWER, 'quotient', 
, dec Q 

add R,divisor,R 
, ) 

got result: 
tst SIGN 
bge 1£ 
restore 
! answer < 0 
retl ! leaf-routine return 

ifelse( ANSWER, 'quotient', 
, neg %02,%00 quotient <--Q 
',' neg %03,%00 ! remainder <--R 
, ) 
1: ret I ! leaf-routine return 
ifelse( ANSWER, 'quotient', 
, mov %02,%00 quotient <- Q 
',' mov %03,%00 ! remainder <- R 
, ) 
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CYP~SS~~~~~~~~~~~ 
SEMICONDUCTOR Opcodes and 

Condition Codes 

This appendix lists the opcodes and condition codes. 

Instruction 

CALL 

Table F-l. Format 1 Opcodes 

op2 Instruction 

000 UNIMP 
001 Unimplemented 
010 Bicc 
011 Unimplemented 
100 SETHI 
101 Unimplemented 
110 FBfcc 
111 CBccc 

Table F-2. Format 2 Opcodes (op = 00) 
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op3 Instruction 

000000 ADD 
000001 AND 
000010 OR 
000011 XOR 
000100 SUB 
000101 ANDN 
000110 ORN 
000111 XNOR 
001000 ADDX 
001001 Unimplemented 
001010 Unimplemented 
001011 Unimplemented 
001100 SUBX 
001101 Unimplemented 
001110 Unimplemented 
001111 Unimplemented 
010000 ADDcc 
010001 ANDcc 
010010 ORcc 
010011 XORcc 
010100 SUBcc 
010101 ANDNcc 
010110 ORNcc 
010111 XNORcc 
011000 ADDXcc 
011001 Unimplemented 
011010 Unimplemented 
011011 Unimplemented 
011100 SUBXcc 
011101 Unimplemented 
011110 Unimplemented 
011111 Unimplemented 

Table F-3. Format 3 Opcodes (op = 10, op3 = Onnnnn) 
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op3 Instruction 

100000 TADDcc 
100001 TSUBcc 
100010 TADDccTV 
100011 TSUBccTV 
100100 MULScc 
100101 SLL 
100110 SRL 
100111 SRA 
101000 RDY 
101001 RDPSR 
101010 RDWIM 
101011 RDTBR 
101100 Unimplemented 
101101 Unimplemented 
101110 Unimplemented 
101111 Unimplemented 
110000 WRY 
110001 WRPSR 
110010 WRWIM 
110011 WRTBR 
110100 FPop1 
110101 FPop2 
110110 CPopl 
110111 CPop2 
111000 JMPL 
111001 RETT 
111010 Ticc 
111011 IFLUSH 
111100 SAVE 
111101 RESTORE 
111110 Unimplemented 
111111 Unimplemented 

Table F-4. Format 3 Opcodes (op = 10, op3 = 1nnnnn) 
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op3 Instruction 

000000 LD 
000001 LDUB 
000010 LDU 
000011 LDD 
000100 ST 
000101 STB 
000110 ST 
000111 STD 
001000 Unimplemented 
001001 LDSB 
001010 LDSH 
001011 Unimplemented 
001100 Unimplemented 
001101 LDSTUB 
001110 Unimplemented 
001111 SWAP 
010000 LDA 
010001 LDUBA 
010010 LDUHA 
010011 LDDA 
010100 STA 
010101 STBA 
010110 STHA 
010111 STDA 
011000 Unimplemented 
011001 LDSBA 
011010 LDSHA 
011011 Unimplemented 
011100 Unimplemented 
011101 LDSTUBA 
011110 Unimplemented 
011111 SWAPA 

T..able F-S. Format 3 Opcodes (op = 11, op3 = Onnnnn) 
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op3 Instruction 

100000 LOF 
100001 LOFSR 
100010 Unimplemented 
100011 LOOF 
100100 STF 
100101 STFSR 
100110 STOFQ 
100111 STOF 
101000-101111 Unimplemented 
110000 LOC 
110001 LOCSR 
110010 Unimplemented 
110011 LOOC 
110100 STC 
110101 STCSR 
110110 STOCQ 
110111 STOC 
111000-111111 Unimplemented 

Table F-6. Format 3 Opcodes (op = 11, op3 = lnOnnn) 
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Opcodes and Condition Codes 

opf Instruction 

000000001 FMOVs 
000000101 FNEGs 
000001001 FABSs 
000101001 FSQRTs 
000101010 FSQRTd 
000101011 FSQRTx 
001000001 FADDs 
001000010 FADDd 
001000011 FADDx 
001000101 FSUBs 
001000110 FSUBd 
001000111 FSUBx 
001001001 FMULs 
001001010 FMULd 
001001011 FMULx 
001001101 FDIVs 
001001110 FDIVd 
001001111 FDIVx 
011000001 FsTOiR 
011000010 FdTOiR 
011000011 FxTOiR 
011000100 FiTOs 
011000110 FdTOs 
011000111 FxTOs 
011001000 FiTOd 
011001001 FsTOd 
011001011 FxTOd 
011001100 FiTOx 
011001101 FsTOx 
01100'1110 FdTOx 
011010001 FsTOi 
011010010 FdTOi 
011010011 FxTOi 

Table F-7. FPop Opcodes (op = 11, op3 = 110100) 
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opf Instruction 

001010001 FCMPs 
001010010 FCMPd 
001010011 FCMPx 
001010101 FCMPEs 
001010110 FCMPEd 
001010111 FCMPEx 

Table F-8. FPop Opeodes (op = 11, op3 = 110101) 

cond Test 

0000 Never 
0001 Equal 
0010 Less than or equal 
0011 Less than 
0100 Less than or equal, unsigned 
0101 Carry set (less than, unsigned) 
0110 Negative 
0111 Overflow set 
1000 Always 
1001 Not equal 
1010 Greater than 
1011 Greater than or equal 
1100 Greater than, unsigned 
1101 Carry clear (greater than or equal, unsigned) 
1110 Positive 
1111 Overflow clear 

Table F-9. Biee and rice Conditon Codes 
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cond Test 

0000 Never 
0001 Not equal 
0010 Less than or greater than 
0011 Unordered or less than 
0100 Less than 
0101 Unordered or greater than 
0110 Greater than 
0111 Unordered 
1000 Always 
1001 Equal 
1010 Unordered or equal 
1011 Greater than or equal 
1100 Unordered or greater than or equal 
1101 Less than or equal 
1110 Unordered or less than or equal 
1111 Ordered 

Table F-lO. FBfcc Condition Codes 

opcode cond by_CP_cc[1:0] test 

CBN 0000 Never 
CB123 0001 lor2or3 
CB12 0010 1 or 2 
CB13 0011 1 or 3 
CBl 0100 1 
CB23 0101 2 or 3 
CB2 0110 2 
CB3 0111 3 
CBA 1000 Always 
CBO 1001 0 
CB03 1010 o or 3 
CB02 1011 o or 2 
CB023 1100 Oor2or3 
CBOl 1101 o or 1 
CB013 1110 Oorlor3 
CB012 1111 Oorlor2 

Table F-ll. CBccc Condition Codes 
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