
WARp™
VHDL Syn hesis Ref

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
(408) 943-2600
JANUARY 1995

WarprM
VHDL Development System

Warp Synthesis
Compiler-Manual

Cypress Software License Agreement

Cypress Software License Agreement

1. LICENSE. Cypress Semiconductor Corporation
("Cypress") hereby grants you, as a Customer and Lic­
ensee, a single-user, non-exclusive license to use the
enclosed Cypress software program ("Program") on a sin­
gle CPU at any given point in time. Cypress authorizes
you to make archival copies of the software for the sole
purpose of backing up your software and protecting your
investment from loss.

2. TERM AND TERMINATION. This agreement is effective
from the date the diskettes are received until this agree­
ment is terminated. The unauthorized reproduction or use
of the Program and/or documentation will immediately
terminate this Agreement without notice. Upon termina­
tion you are to destroy both the Program and the docu­
mentation.

3. COPYRIGHT AND PROPRIETARY RIGHTS. The Pro­
gram and documentation are protected by both United
States Copyright Law and International Treaty provi­
sions. This means that you must treat the documentation
and Program just like a book, with the exception ofmak­
ing archival copies for the sole purpose of protecting your
investment from loss. The Program may be used by any
number of people, and may be moved from one computer to
another, so long as there is No Possibility of its being
used by two people at the same time.

4. DISCLAIMER. THIS PROGRAM AND DOCUMENTA­
TION ARE LICENSED "AS-IS," WITHOUT WARRANTY
AS TO PERFORMANCE. CYPRESS EXPRESSLY DIS­
CLAIMS ALL WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTY OF MERCHANTABILITY OR

Warp Synthesis Compiler Reference Manual 111

Cypress Software License Agreement

IV

FITNESS OF THIS PROGRAM FOR A PARTICULAR
PURPOSE.

5. LIMITED WARRANTY. The diskette on which this Pro­
gram is recorded is guaranteed for 90 days from date of
purchase. If a defect occurs within 90 days, contact the
representative at the place of purchase to arrange for a
replacement.

6. LIMITATION OF REMEDIES AND LIABILITY. IN NO
EVENT SHALL CYPRESS BE LIABLE FOR INCIDEN­
TAL OR CONSEQUENTIAL DAMAGES RESULTING
FROM PROGRAM USE, EVEN IF CYPRESS HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
CYPRESS'S EXCLUSIVE LIABILITY AND YOUR
EXCLUSIVE REMEDY WILL BE IN THE REPLACE­
MENT OF ANY DEFECTIVE DISKETTE AS PROVIDED
ABOVE. IN NO EVENT SHALL CYPRESS'S LIABILITY
HEREUNDER EXCEED THE PURCHASE PRICE OF
THE SOFrWARE.

7. ENTIRE AGREEMENT. This agreement constitutes the
sole and complete Agreement between Cypress and the
Customer for use of the Program and documentation.
Changes to this Agreement may be made only by written
mutual consent.

8. GOVERNING LAW. This Agreement shall be governed by
the laws of the State of California. Should you have any
question concerning this agreement, please contact:

Cypress Semiconductor Corporation
Attn: Legal Counsel
3901 N. First Street
San Jose, CA 95134-1599

408-943-2600

Warp Synthesis Compiler Reference Manual

Table
of

Contents

Chapter 1 - Introduction

1.1. Overview of Warp Synthesis Compiler .. 1-2
1.2. Warp Synthesis Compiler Capabilities ... 1-4
1.3. About This Manual ... 1-6

Chapter 2 - Using Wary from a Command Line

2.1. Warp Command Syntax .. 2-2
2.2. Warp Command Options .. 2-4
2.3. Warp Output .. ~. 2-13

Chapter 3 - Wary with Galaxy

3.1.
3.2.
3.3.
3.3.1.
3.3.1.1.
3.3.1.2.
3.3.1.3.
3.3.1.4.
3.3.1.5.
3.3.1.6.
3.3.2.
3.3.3.
3.3.4.
3.4.
3.4.1.

Introduction ... 3-2
Starting Galaxy .. 3-3
Galaxy Window Menu Items .. 3-5
File Menu .. 3-7

Open ... 3-9
Save Transcript File ... 3-11
Work Area List .. 3-13
Work Area Remove ... 3-14
Exit ... 3-15
About ... 3-16

Edit Menu ... 3-17
Tools ... 3-18
Font ... 3-19
The Warp VHDL Files Dialog Box .. 3-21
Selecting Files to Compile, Synthesize, or Edit. 3-23

Warp Synthesis Compiler Manual v

Table of Contents

3.4.2.
3.4.3.
3.4.3.1.
3.4.3.2.
3.4.3.3.
3.4.3.4.
3.4.3.5.
3.5.

Compiling or Synthesizing ... 3-25
Specifying Warp Options .. 3-27

Selecting the Target Device ... 3-29
Selecting Optimization Level .. 3-31
Selecting Synthesis Output .. 3-33
Selecting Fitter Options ... 3-35
Choosing Run Options ... 3-37

Running Warp ... 3-38

Chapter 4 - Using VHDL Elements

VI

4.1.
4.2.
4.3.
4.4.
4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.5.
4.5.1.
4.5.2.
4.5.3.
4.5.4.
4.5.5.
4.5.6.
4.5.7.
4.5.8.
4.6.
4.7.
4.7.1.
4.7.2.
4.7.3.
4.8.
4.8.1.
4.9.
4.10.

Introduction ... 4-2
Identifiers .. 4-3
Data Objects ... o 4-5
Data Types .. 4-7
Pre-Defined Types .. 4-8
Enumerated Types .. 4-11
Subtypes .. 4-12
Composite Types .. 4-13
Operators ... 4-16
Logical Operators ... 4-18
Relational Operators ... 4-19
Adding Operators .. 4-21
Multiplying Operators ... 4-23
Miscellaneous Operators ... 4-24
Assignment Operations ... 4-25
Association Operations ... 4-26
Bit-Vector Operations ... 4-28
Entities .. 4-30
Architectures ... 4-33
Behavioral Descriptions .. 4-35
Structural Descriptions ... 4-38
Design Methodologies .. 4-39
Packages .. 4-79
Predefined Packages ... 4-85
Libraries .. 4-95
Additional Design Examples .. 4-97

Warp Synthesis Compiler Manual

Table of Contents

4.10.1. DEC24 .. 4-98
4.10.2. PINS .. 4-99
4.10.3. NAND2_TS .. 4-100
4.10.4. CNT4_EXP ... 4-101
4.10.5. CNT4_REC ... 4-103
4.10.6. DRINK .. 4-105
4.10.7. TRAFFIC .. 4-108
4.10.8. SECURITY ... 4-110

Chapter 5 - Warp VHDL Reference

5.1.
5.2.
5.3.
5.4.
5.4.1.
5.4.2.
5.4.3.
5.4.4.
5.4.5.
5.4.6.
5.4.7.
5.4.8.
5.4.9.
5.4.10.
5.4.11.
5.4.12.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.

Introduction ... 5-2
ALIAS ... 5-3
ARCHITECTURE .. 5-4
ATTRffiUTE .. 5-6
Pre-defined Attributes ... 5-9
dont_touch ... 5-17
enum_encoding .. 5-20
fixed_ff ... 5-21
ff_type .. 5-22
node_num .. 5-23
order_code ... · ... 5-24
part_name .. 5-25
pin_numbers .. 5-26
polarity .. 5-29
state_encoding .. 5-30
synthesis_off ... 5-32
CASE .. 5-36
COMPONENT .. 5-39
CONSTANT ... 5-42
ENTITy .. 5-44
EXIT ... 5-45
GENERATE ... 5-46
GENERIC ... 5-48
IF-THEN-ELSE .. 5-49
LffiRARY ... 5-52
Loops .. 5-53

Warp Synthesis Compiler Manual Vll

Table of Contents

5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.20.1.
5.20.2.
5.21.
5.22.
5.23.
5.24.

NEXT .. 5-55
PACKAGE o ... 5-56
PORT MAP ... 5-59
PROCESS ... 5-61
SIGNAL .. 5-63
Subprograms ... 5-65
Procedures ... 5-68
Functions ... 5-69
TYPE .. 5-71
USE ... 5-75
VARIABLE .. 5-76
WAIT .. 5-77

Chapter 6 - Synthesis

Vlll

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

Introduction ... 6-2
Architectures ... 6-3
Processes ... 6-4
Components .. 6-6
Signals and Variables .. 6-7
Clocks ... 6-8
Global Signals ... 6-9
CASE OTHERS .. 6-10

Warp Synthesis Compiler Manual

Introduction

Introduction

Warp Synthesis Compiler Manual 1-1

Introduction

1.1. Overview of Warp Synthesis Compiler

The Warpl synthesis compiler is a state-of-the-art VHDL compiler for
designing with Cypress PLDs, CPLDs, and pASIC380 FPGAs.

1-2

Warp utilizes a subset of IEEE 1076 VHDL as its Hardware
Description Language (HDL) for design entry. Warp accepts
VHDL text input, then synthesizes and optimizes the design for
the target hardware. It then outputs a JEDEC map for
programming PLDs and CPLDs, or a .QDF netlist for the place
and route and eventual programming pASIC380 FPGAs (Figure
1-1).

The JEDEC map that Warp produces when targeting PLDs and
CPLDs can be used to program parts with a device programmer.
It can also be used as input to the Nova functional simulator.
Nova is an interactive, graphical simulator that allows you to
examine the behavior of synthesized designs.

The .QDF file that Warp produces when targeting pASIC380
FPGAs can be used as input to the SpDE Toolkit. The SpDE
Toolkit is a collection of interactive, graphical tools that perform
logic optimization, placement, and routing of pASIC designs.

FPGA support is available in Warp2+ and Warp3 only.

1. Warp is a Trademark of Cypress Semiconductor Corporation

Warp Synthesis Compiler Manual

PLDs, CPLDs

Warp
synthesis
compiler

Introduction

pASIC380 FPGAs

Figure 1-1. The Warp synthesis compiler produces JEDEC maps for programming
PLDs and CPLDs, and .QDF netlists for placing and routing pASIC380 FPGAs.

Warp Synthesis Compiler Manual 1-3

Introduction

1.2. Warp Synthesis Compiler Capabilities

The Warp synthesis compiler utilizes a VHDL subset geared for
synthesis of designs onto PLDs, CPLDs, and pASIC380 FPGAs.

1-4

Some highlights of the Warp synthesis compiler:

• VHDL is an open, non-proprietary language, and a de
facto standard for describing electronic systems. It is
mandated for use by the DoD, and supported by every
major CAE vendor.

• VHDL allows designers to describe designs at different
levels of abstraction. Designs can be entered as
descriptions of behavior (high level of abstraction), as state
tables and boolean entry descriptions (intermediate level),
or at gate level (low-level of abstraction).

• Warp supports numerous data types, including
enumerated types, integer types, and user-defined types,
among others.

• Warp supports the for ... generate loop construct for
structural descriptions, providing a powerful, efficient
facility for describing replication in low-level designs.

• Warp incorporates state-of-the-art optimization and
reduction algorithms, including automatic selection of
optimal fli p-flop type (D type/T type).

• While users can specify the signal-to-pin mapping for their
designs, Warp can also map signals from the design to pins
on the target device automatically, making it easy to re­
target designs from one device to another.

• Warp can automatically assign state encodings (e.g., gray
code, one-hot, binary) for efficient use of device resources.

Warp Synthesis Compiler Manual

Introduction

• Warp supports all Cypress PLD, CPLD, and FPGAIpASIC
families, including the FLASH370, pASIC380, and C34X
(compatible with the MAX.5000 series) families.

FPGA support is available in Warp2+ and WarpS only.

Warp Synthesis Compiler Manual 1-5

Introduction

1.3. About This Manual

This section describes the contents of the remainder of this manual.

1-6

Section 2 of this manual describes Warp's command line
interface.

Section 3 describes Warp's graphical user interface.

Section 4 describes the fundamental elements of VHDL, as
implemented in Warp.

Section 5 provides a comprehensive reference to the VHDL
statements and other constructs implemented in Warp.

Section 6 describes how Warp synthesizes various VHDL
constructs.

Appendix A lists and provides brief explanations for the various
error messages that Warp produces.

Appendix B is a glossary of WarpNHDL terminology.

Appendix C provides a Backus-Naur Form (BNF) listing of
Warp's implementation ofVHDL.

Appendix D is a bibliography of books and articles about VHDL
and design synthesis.

Warp Synthesis Compiler Manual

Using Warp from a
Command Line

Using Warp from a Command Line

Warp Synthesis Compiler Manual 2-1

Using Warp from a Command Line

2.1. Warp Command Syntax

On Sun workstations, you can run Warp by typing the warp command
from a shell window. On IBM PC's and compatibles running Windows,
you can run Warp by typing the warp command in the "Command
Line" box in response to the FilelRun menu item in the Windows File
Manager. On IBM PC's and compatibles running DOS, you can run
Warp by typing the warp command at the command line prompt, or by
including the warp command in a batch file and typing the name of the
batch file at the command line prompt.

This chapter documents the warp command and its options.

Syntax

2-2

warp [filename]
[-d device]
[-b filename]
[-a [library] filename[/ filename ...]]
[-e max-#-of-errors]
[-f{d 1 flo 1 pit}]
[-h]
[-1 [library]]
[-0 01112]
[-p package-name]
[-q]
[-r[library] filename]
[-s[library] path]
[-w max-#-of-warnings]
[-xor2]

The warp command runs the Warp synthesis compiler.

Typing warp with no arguments brings up a help screen
showing the available options for the warp command.

Warp Synthesis Compiler Manual

Using Warp from a Command Line

Typing warp followed by the name of a file compiles the named
file and, if compilation is successful, synthesizes the design.

Note that, when using the warp command line interface on a Sun
workstation, the command and its options are case-sensitive. On
an IBM PC or compatible computer, they aren't.

Warp Synthesis Compiler Manual 2-3

Using Warp from a Command Line

2.2. Warp Command Options

Numerous options control the execution of the warp command from the
command line. This section documents warp's command-line options.

The warp command options you will use most frequently are -d,
-b, and -a. These three options are described first, followed by the
remaining options in alphabetical order.

Note that, when using the warp command line interface on a Sun
workstation, the command and its options are case-sensitive. On
an IBM PC or compatible computer, they aren't.

The -d Option

2-4

The -d option specifies a target device for synthesis. If this option
is not included on the command line, Warp targets devices in the
following order:

1. it searches for a part_name attribute in the file being
compiled/synthesized, and targets the device specified by
that attribute. If no part_name attribute is found, then

2. it searches for an architecture that identifies a device as a
top-level entity, and targets that device. If no such
architecture is found, then

3. it uses the last device targeted by a previous Warp run
from the same directory.

4. otherwise, an error is returned.

Example:

warp -d c371 myfile.vhd

The command above compiles and synthesizes a source file
named myfile.vhd, targeting a CY7C371.

Warp Synthesis Compiler Manual

Using Warp from a Command Line

Allowable arguments for the ·d option consist of the letter "c"
followed by a part identifier, usually consisting of the three
rightmost digits of the part's name (e.g., C335, C371, etc.)
Notable exceptions to this rule are the arguments C22VIO and
C22VPIO, which target a PAL22VIO and PAL22VPIO,
respectively.

Each time the ·d option is used in a warp command, it creates a
subdirectory within the current directory in which compilation
results are stored, if such a subdirectory does not already exist.
The name of this directory consists of the letters "lc" followed by
the part identifier used in the argument to the ·d option (e.g., an
argument of"C371" creates an "LC371" subdirectory, etc.). This
subdirectory becomes the work library for the Warp run.

In addition, the ·d option causes Warp to look for a library in a
subdirectory of the warp directory (default: /warp). This
subdirectory is named Ilibllcdevice-name. This library has the
same root name as the ·d option's argument, followed by the
extension .VHD (e.g., the path to the C22VIO library is /wARP/
LIBILC22VIO/C22VIO.VHD).

When Warp interprets the·d option on the command line, it
creates a subdirectory for the specified device if one does not
already exist within the current directory, compiles the
appropriate library file(s) for the device within the new sub­
directory, assigns the path of the new subdirectory to the "work"
logical name, and writes or revises the WARP.RC file (if
necessary) to reflect the new path to the work library.

The -b Option

The ·b option specifies a VHDL source file to compile. All
packages referenced within the file are also compiled. If
compilation is successful, this option causes Warp to synthesize
the design, producing a JEDEC file.

Warp Synthesis Compiler Manual 2-5

Using Warp from a Command Line

The -b option assumes that the file to be compiled has an
extension of . VHD, unless a different extension is specified on the
command line.

The -b option is assumed if a filename is included on the
command line and no other option is present.

Example:

warp myfile.vhd

The command above compiles a file named myfile.vhd. If
compilation is successful, the file will be synthesized, producing
an output file called myfile.jed.

The -a Option

2-6

The -a option analyzes one or more files and adds them to the
work library or to a different, user-specified library. To specify a
library other than "work", follow the -a option immediately (i.e.,
without an intervening space) by the name of the library. This
library is referenced by its logical name, and must have been
previously created by means of the -1 option.

The -a option assumes that the file to be compiled has an
extension of . VHD, unless a different extension is specified on the
command line.

Example:

warp -a filel file2 -b myfile.vhd

The command above compiles two files named filel.vhd and
file2.vhd. If those two files compile successfully, Warp will then
compile myfile. vhd. If compilation is successful, myfile. vhd will
be synthesized, producing an output file called myfile.jed.

Warp Synthesis Compiler Manual

Using Warp from a Command Line

warp -amylib filel file2 -b myfile.vhd

This command is identical to the previous, except that results
from the compilation offile1.vhd and file2.vhd will be written
into a subdirectory called mylib.

For more information about libraries and their use, see
Section 5.13, "LIBRARY" and Section 5.22, "USE".

The -e Option

The -e option specifies the maximum number of non-fatal errors
that can occur on a single Warp run before Warp quits.

The -f Option

The ·f option enables certain global fitter options. ·f must be
followed (without an intervening space) by one of the arguments
'd', 't', '0', 'f, 'h', '1', or 'p'. (Multiple uses of the ·f option are
allowed on a single line.) Arguments 'd', 't', and '0' are mutually
exclusive. The meanings of these arguments are as follows:

• 'd' forces registered equations to a 'D' registered form (i.e.,
forces use ofD-type flip-flops). For some devices, this may
result in a non-minimal solution for an output register.
This is the default for the ·f option.

• 't' forces the use of T-type flip-flops for registered
equations. For some devices, this may result in a non­
minimal solution for an output register. If the target PLD
does not support a physical 'T' flip-flop, the equation is
converted to a 'D' registered form using the formula 'D = T
XOR Q'. Use of this option may lead to fitter errors if the
target device cannot support either a physical 'T' flip-flop
or product-term programmable XOR function.

• '0' tells the fitter to optimize the Warp-generated design to
either D-type or T-type flip-flops, whichever produces the

Warp Synthesis Compiler Manual 2-7

Using Warp from a Command Line

2-8

smaller equation set. If the target PLD does not support a
physical 'T' flip-flop, the equation is converted to a'D'
registered form using the formula 'D = T XOR Q'.

• 'f tells the fitter to ignore any user-specified pin
assignments and assign pins itself instead.

Note: when you run Warp using the "-£P' option, Warp
always assign pins itself, overriding any pin assignments
made in the source file (e.g., by the use of the
"pin_numbers" attribute).

• 'h' writes out the JEDEC output file in hexadecimal
format. This can effect a considerable (i.e., 4X) savings in
storage space for JEDEC files.

• 'I' allows the fitter to perform three-level logic factoring
instead of just two-level (sum of products) factoring. This
is recommended for the 7c34x device family. For pASIC
architectures, it allows common sub-expressions between
different signals to be shared, thereby reducing fanout.
This option is recommended for VHDL designs targeting
pASIC devices, and is only applicable for non-frag based
signals. (See also the descriptions for the synthesis_off
and dont_touch attributes, elsewhere in this chapter.)

• 'p' logically reduces output signals via Espresso during the
optimization process. This option selects the output
polarity that produces the minimum number of product
terms.

The 'f and 'p' arguments can be used in conjunction with the 'd',
'0', or 't' arguments, e.g., "-fo -ff -fp".

Warp Synthesis Compiler Manual

Using Warp from a Command Line

Example:

warp -b myfi1e.vhd -fa -ff -fp

The command above compiles and synthesizes a file named
myfile.vhd. During synthesis, Warp is directed to optimize the
design to use either D- or T-type flip-flops (" -fo"), ignore any pin
assignments in the file and assign pins itself ("-ff'), and optimize
output polarity ("-fp").

The -h Option

The -h ("help") option lists the available options, their syntax,
and meanings. Executing warp with this option is the same as
executing warp with no command line options.

Example:

warp -h

The command above prints the warp command's available
options, syntax, and meanings.

The -I Option

The -1 option lists the contents of the "work" library (default), or
of any user-specified library. To specify a library other than
"work", follow the -1 option immediately (i.e., without an
intervening space) by the name of the library. The listing of
library contents includes the type and name of each design unit
and the name of the file in which the unit is found.

Example:

warp -1

The command above lists the contents of the "work" library.

Warp Synthesis Compiler Manual 2-9

Using Warp from a Command Line

warp -lmylib

The command above lists the contents of library "mylib" .

The -0 Option

The -0 option specifies the level of optimization to perform on
Warp output:

• An argument of'O' provides minimal optimization.

• An' argument of'1' (default) provides more optimization.

• An argument of'2' runs the industry-standard Espresso
optimizer, giving the most thorough optimization possible.
However, running Warp with Espresso takes much more
time than running it without Espresso, so use the -0

option only when you think it is necessary to fit the design
onto the target PLD. Running Warp with this option is
highly recommended, however, when targeting pASICs.

Example:

warp -02 myfile.vhd

The command compiles and synthesizes a file named myfile.vhd.
Warp is directed to use the highest level of optimization possible.

The -q Option

2-10

The -q ("quiet") option suppresses the printing of status
messages during compilation. This leads to a less cluttered
screen when compilation and synthesis are finished.

Example:

warp -q myfile.vhd

This command compiles and synthesizes a file named myfile.vhd,
quietly.

Warp Synthesis Compiler Manual

Using Warp from a Command Line

The -r Option

The -r option removes design units compiled from one or more
files from the "work" library, or from a user-specified library. To
specify a library other than "work", follow the -r option
immediately (i.e., without an intervening space) by the name of
the library.

Example:

warp -r filel.vhd

This command removes the design units compiled from file
file1.vhd from the work library.

warp -rmylib filel.vhd

This command removes the design units compiled from file
file1.vhd from library mylib.

The -s Option

The -s option pairs a library name with a path. The name of the
library and its path are written into the warp.rc file in the
current directory. To use a library other than "work" with a
VHDL description, follow the -s option immediately (i.e., without
an intervening space) by the name of the library.

Example:

warp -smylib /usr/myname/mydir

This command pairs the library name "mylib" with path
"/usr/myname/mydir" .

The -w Option

The -w option specifies the maximum number of warnings that
can appear as a result of a single Warp run before Warp quits.

Warp Synthesis Compiler Manual 2-11

Using Warp from a Command Line

The -xor2 Option

2-12

The -xor2 option passes along any XOR operators found in the
design to the fitter for PLD's/CPLD's, and to SpDE for pASIC's. If
this option is disabled, any XOR operators contained within the
design are flattened, and it would be up to the fitter or to SpDE
to detect the XOR contained within the equation. Always use the
-xor2 option when targeting pASICs.

Example:

warp -d c382a -xor2 rnyfile.vhd

This command compiles and synthesizes a file named myfile.vhd,
preserving any XOR operators in the input file.

Warp Synthesis Compiler Manual

Using Warp from a Command Line

2.3. Warp Output

A warp run produces numerous output files, of which the following are
important to the user: .JED files for targeting PLDs, .QDF files for
targeting pASIC380 FPGAs, and .RPT files to report on compilation
results.

A successful warp run produces two output files in the current
directory:

• filename.JED

or

• filename.QDF

and

• filename.RPT

The .JED file is a fuse map that can be used by a PLD
programmer. It is also used as input to the Nova simulator.

The .QDF file, which can be produced only when targeting
pASIC380 FPGAs, can be used as input to the SpDE place and
route tool.

The .RPT file is an ASCII text file that contains fitter statistics
and informational, warning, and error messages from the Warp
run, as well as pinout information for the synthesized design.

FPGAs are only available with Warp2+ and Warp3.

Warp Synthesis Compiler Manual 2-13

Using Warp from a Command Line

2-14 Warp Synthesis Compiler Manual

Using Warp with
Galaxy

Using Warp with Galaxy

Warp Synthesis Compiler Manual 3-1

3.1. Introduction

Galaxy is Cypress Semiconductor Corporation's graphical user interface
(GUI) for its Warp synthesis compiler.

Warp is Cypress Semiconductor Corporation's name for its VHDL
compilation and synthesis software. Warp accepts VHDL source
files as input. The primary output of a Warp run is a .JED or a
.QDF file. The .JED file can be used as input to a PLD
programmer. The .QDF file can be used as input to SpDE for the
place and route ofpASICs. Warp can compile objects (e.g.,
components, type and function declarations, etc.) into a VHDL
library, which can be used by numerous designs.

Galaxy is the name of the graphical user interface for Warp.
Galaxy gives you a graphical way to:

• select VHDL source files for compilation or synthesis;

• choose whether to compile selected files into a library, or
synthesize them to program an actual device;

• select a target device for synthesis;

• choose synthesis options, such as the type offlip-flops
used, degree of logic optimization, etc.

This chapter tells you how to use Galaxy to run Warp. It assumes
that you are already familiar with common user interface
operations for your platform, such as the use of scroll bars, menu
buttons, opening and closing windows, etc.

Using Warp with Galaxy

3.2. Starting Galaxy

To start Galaxy on a Sun workstation, type "galaxy" on the command
line of a shell window. To start Galaxy while running Windows on an
IBM PC or compatible computer, double-click on the Galaxy icon in the
Cypress window. This brings up the Galaxy window.

The Galaxy window (Figure 3-1) consists of a menu bar with four
items across the top, a scroll bar along the right side, and a large,
mostly blank, text area.

Menu Bar

The four menu items are File, Edit, Tools, and Font. Under each
of these items are menus for selecting related actions. The menus:,
are ordered so that the most common operation is at the top. The
contents of each menu are described in greater detail later in this
manual.

Text Area

As compilation and synthesis proceed, Warp writes various
messages into the text area. As the text area fills up, new
messages are written at the bottom of the text area, while old
text scrolls off the top. You can view this information using the
scroll bar located at the right of the text area.

Warp Synthesis Compiler Manual 3-3

Using Warp with Galaxy

File Edit Tools Fonl

Cypress Semiconductor
Copyright 1993

3-4

F1=Help

Figure 3-1. Galaxy Window.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

The menu items in the Galaxy window bring up menus that control
Warp operation and control the appearance of messages and output
from Warp.

Table 3-1 summarizes the operation of the menu items available
in the Galaxy dialog box.

Table 3-1.
Galaxy Dialog Box Menu Items

Menu
Submenu Item Meaning

Item

File Open ... brings up the Warp VHDL dialog box.

Save Transcript File ... brings up dialog box to save contents of
text area to a file.

Work Area List lists contents of work library (for the last
device processed) in the text area.

Work Area Remove ... brings up dialog box to specify file whose
contents will be removed from work
library.

Exit exits Galaxy.

AbouL. displays software version and copyright
message

Edit Copy copies selected text from text area to clip-
board.

Clear clears text area.

Warp Synthesis Compiler Manual 3-5

Using Warp with Galaxy

Menu
Item

Tools

Font

Style

3-6

Table 3-1. (Continued)
Galaxy Dialog Box Menu Items

Submenu Item Meaning

Run Warp Menu ... brings up Warp VHDL dialog box.

Nova Functional runs Nova functional simulator.
Simulator

Courier specifies Courier font for text area.

Helvetica specifies Helvetica font for text area.

Times specifies Times font for text area.

System specifies System font for text area.

Fixed specifies Fixed font for text area.

Normal specifies Normal type for text area.

Bold specifies Boldface type for text area.

Italic specifies Italic type for text area.

8 point specifies 8 point type for text area.

10 point specifies 10 point type for text area.

12 point specifies 12 point type for text area.

14 point specifies 14 point type for text area.

18 point specifies 18 point type for text area.

24 point specifies24 point type for text area.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

The File menu contains items to bring up the Warp VHDL dialog box,
save a transcript of a Galaxy session, view the contents of the work
library, remove objects from the work library, exit Galaxy, and display
the Warp version number.

The File menu in the Galaxy dialog box (Figure 3-2) contains the
following items:

• Open .•. brings up the Warp VHDL dialog box.

• Save Transcript File .•. brings up a dialog box that lets
you specify a file in which to save the current contents of·
the text area.

• Work Area List writes the contents of the work library
(for the last device targeted by a Warp run) to the text
area.

• Work Area Remove ... brings up a dialog box that allows
you to specify a file whose contents will be removed from
the work library.

• Exit exits the Galaxy user interface.

• About displays the Warp version number and a copyright
message.

Each of these items is discussed in greater detail on the following
pages.

Warp Synthesis Compiler Manual 3-7

Using Warp with Galaxy

3-8

Open ...
Save Transcript File ...

Work Area List
Work Area Remove ...

Exit
About. ..

Figure 3-2. File Menu.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

3.3.1.1. Open ...

To select Warp input files, or to specify options for a Warp run, bring up
the Warp VHDL Files dialog box, using File/Open... or ToolslRun
Warp Menu .•..

The Warp VHDL Files dialog box (Figure 3-3) is the "command
center" for compilation and synthesis. To bring up the Warp
VHDL Files dialog box, select Open •.. from the File menu or
Run Warp Menu ... from the Tools menu.

From the Warp VHDL Files dialog box, you can:

• change the current directory;

• selected files to be compiled or synthesized;

• select whether to compile-only or compile and synthesize
selected files;

• bring up an editor to modify VHDL source files;

• bring up the Warp Options dialog box to specify further
Warp operation details.

The elements of the Warp VHDL Files dialog box are discussed in
greater detail in Section 3.4, "The Warp VHDL Files Dialog Box."

Warp Synthesis Compiler Manual 3-9

Using Warp with Galaxy

3-10

113 Warp VHOL Files

C:\RE p\TUTFILES\W3TUT

""'VHOL Files:--------.

binctr.vhd
;l;refill.vhd
[..)
[lc22vl0)
[lc335)
[lc344)
[lc381]
[sch)
[sym)
[vhd)
Jwir)

Build:----------,

<!) Compile _Synthesize

o Compile Only

""'Warp Input Files:

binctr.vhd
;l;refill.vhd

Selected Oevice:----,

C22Vl0

Figure 3-3. Warp VHDL Files Dialog Box.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

3.3.1.2. Save Transcri pt File ...

Save Transcript File ..• in the File menu brings up a dialog box that
lets you specify a file in which to save the current contents of the text
area.

Selecting Save Transcript File .•• from the File menu brings up
the Save Transcript to File ... dialog box (Figure 3-4).

Specifying a File name and selecting Save writes the current
contents of the text area to the specified file.

The default File name is warp.log. If you want to use a different
name for the log file, enter it on the line labeled File name.

All transcript files are given a .log extension. If the name you
type doesn't have a .log extension, .log will be added to the name
when the file is written. If the name you type includes a .log
extension, nothing more will be added to the file name when the
file is written.

The Files window on the dialog box lists any .log files already in
your current directory.

The line labeled Path: displays the full path of the directory you
are working in.

The Directories window lists the sub-directories of the current
directory. To change directories, double click on one of the items
in the Directories window. The Path: line updates automatically
as you go from one directory to another.

Warp Synthesis Compiler Manual 3-11

Using Warp with Galaxy

Save Transcript to File ...

File Name: Directories::

IWkI'·8tm1 c: \rep\tutfiles:\w3tut
I !!!!!1l!!!11!11P.~!1HHH1!!11
Illlll!!l!l~~~llll!mmi dh<.~c::::.e~'-:;'. ~:f}~1

~'ef~H.~:nq
"!"'~'de.~::.)q
\:+:'J'wqen. ~og
",,~::.~w<,.'~m. b~1
wt<.~p~. ~::')f$

S aye File as: Ivpe:

to c:\
o rep
to tutfiles:
~ w3tut
LJ Ic22yl0
LJ Ic335
LJ Ic344

Driyes::

I Files: (:I< .Iog) 1_ c: l~ III

3-12

Figure 3-4. Save Transcript to File ... Dialog Box.

Once you have specified the transcript file name and its
directory, selecting Save closes down the dialog box and writes
the contents of the text area to the specified file.

Selecting Cancel closes the dialog box without saving the
contents of the text area to the .log file.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

3.3.1.3. Work Area List

Work Area List in the File menu writes the contents of the current
work library to the text area.

In VHDL, a library is a collection of previously compiled design
elements (packages, components, entities, architectures) that
can be referenced by other VHDL descriptions.

In Warp, a library is implemented as a directory, containing one
or more VHDL files and an index to the design elements they
contain.

Work Area List displays the contents of the current work
library in the text area. Figure 3-5 shows an example of library
contents. First, the name of the library and the directory it
resides in is identified. Then, each design element contained in
the library is listed, along with the name of its source file.

VH D L pars e r [C :\WARP\b i n\vh d Ife. exe V3. 5 I R x57]
Contents of library Iworkl with directory IIc22vl 01

:

Unit Design File

Package Ibinctr_pkgl
Entity Ibinctrl

Architecture larchbinctrl of Ibinctrl

WARP done.

binctr.vhd
binctr.vhd

binctr.vhd

Figure 3-5. Sample Work Area List Output.

Warp Synthesis Compiler Manual 3-13

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

3.3.1.4. Work Area Remove ...

Work Area Remove ••. in the File menu brings up a dialog box that lets
you specify an element to remove from the work library.

Work Area Remove ••• removes the file containing a specified
element from the work library. Selecting Work Area Remove •••
brings up the Work Area Remove dialog box (Figure 3-6).

The dialog box prompts you for the name of an object to remove
from the work library. When you type the name of an object and
click on "OK," the source file of that object is removed from the
library. This means that the named object AND 'ALL OTHER
OBJECTS FROM THE SAME SOURCE FILE can no longer be
referenced by any design until the objects are re-compiled and
added to the library again.

galaxy

Enter name of object to remove from Work Area 1!!ii!!!~~!!!!!!!!1

IIII~~I!!III

II
Figure 3-6. Work Area Remove Dialog Box.

3-14 Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

3.3.1.5. Exit

Exit terminates the Galaxy session.

Exit closes the Galaxy window and returns you to your regularly
scheduled programming.

Warp Synthesis Compiler Manual 3-15

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.1. File Menu

3.3.1.6. About ...

About displays the Warp version number and a Cypress copyright
message.

3-16

Figure 3-7 shows the About ... dialog box. Clicking on "OK" closes
the dialog box. Clicking on "Help" brings up help for running
Warp.

About

Copyright 1993 Cypress Semiconductor

Version: 3.5 IR x55

License to:

Company:

Site:

License SIN:

1 .. ······················· ····· .. ·····1
~~ ~~l~ ~~ l~~ ~l~ ~~ Rll ~ll ~l~lll ~~

Figure 3-7. About ... Dialog Box.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.2. Edit Menu

The Edit Menu contains submenus for copying or clearing information
displayed in the text area.

Copy copies selected text from the text area to a clipboard. If no
text is selected in the text area, the entire contents are copied to
the clipboard. If you have an application that reads from a
clipboard, this may be a handy option.

Clear erases all text from the text area.

Copy

Figure 3-8. Edit Menu.

Warp Synthesis Compiler Manual 3-17

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.3. Tools

The Tools Menu contains three items, Run Warp Menu ••• , Nova
Functional Simulator, and Tool Versions •••.

3-18

Run Warp Menu ••• brings up the Warp VHDL Files dialog box,
which is discussed in greater detail in Section 3.4, "The Warp
VHDL Files Dialog Box."

Nova Functional Simulator brings up the Nova simulator,
which is discussed in greater detail in Section 4, "Using Nova."

Tool Versions ••• brings up a scrollable list showing the version
numbers of the programs in your Warp tool set.

Run Warp Menu ...
Nova Functional Simulator

Tool Versions ...

Figure 3-9. Tools Menu.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.3. Galaxy Window Menu Items

3.3.4. Font

The Font menu controls the font, type SIze, and appearance of the
contents of the text area.

The Font menu (Figure 3-10) contains various items that allow
you to control the appearance (font, type size, style) of text in the
text area.

When you select a different font, style, or type size, the contents
of the entire text area are updated to reflect the change. Future
input to the text area is written in the selected font/style/size.

Warp Synthesis Compiler Manual 3-19

Using Warp with Galaxy

Normal F5

Bold F6
Italic F7
Underline F8

Stro ke Fonts
Modern
Roman
Script

Raster Fonts
Courier
Helvetica
Times Roman

S¥stem Font

Variable Pitch
Fixed Pitch

Best Appearance
Conform to Size

6 Point
8 Point
9 Point
10 Point
12 Point
14 Point
16 Point
18 Point
20 Point
24 Point
36 Point
48 Point
54 Point
60 Point
72 Point

Figure 3-10. Font Menu

3-20 Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

The Warp VHDL Files dialog box is the "command center" for
compilation and synthesis. To bring up the Warp VHDL Files dialog
box, select Open ••. from the File menu or Run Warp Menu ••. from the
Tools menu.

From the Warp VHDL Files dialog box (Figure 3-11), you can:

• change the current project (i.e., the directory where Warp
expects to find VHDL source files, and where output files
and subdirectories are written);

• select files to be com piled or synthesized;

• bring up VHDL source files for editing;

• select whether to compile-only or compile and synthesize
selected files;

• bring up the Warp Options dialog box to specify further
Warp operation details.

Various elements of the Warp VHDL Files dialog box are
discussed in greater detail on the next few pages.

Warp Synthesis Compiler Manual 3-21

Using Warp with Galaxy

1:11 Warp VHDL Files

C:\REP\TUTFILES\W3TUT

VHDL Files:--------.

binctr.vhd
~refill.vhd

[..]
[lc22vl0]
[Ic335)
[1c3~~1
[lc3811
[sch1
[sym1
[vhd]

Build:---------.

@ Compile _Synthesize

o Compile Only

'""Warp Input Files:

binctr.vhd
~refill.vhd

Selected Device:-----.

C22Vl0

Figure 3-11. Warp VHDL Files Dialog Box.

3-22 Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.1. Selecting Files to Compile, Synthesize, or Edit

You select files for compilation and synthesis from the Warp VHDL
Files dialog box, using the mouse, the "VHDL Files:" and "Warp Input
Files" windows, and the "Add," "Add All," "Remove," and "Edit" buttons.

The VHDL Files window displays all subdirectories and all files
in the current directory with a . VHD extension. Subdirectories
are displayed in this window with a trailing slash ("f') character
on Sun workstations. On IBM PC or compatible computers, they
are surrounded by square brackets ("[" ... "]").

The Warp Input window lists the names of the files that will be
compiled and/or synthesized by the next Warp run.

To select a file for compilation or synthesis, highlight the file by
clicking on it in the VHDL Files window, then click on the "Add"
button. The file name appears in the Warp Input Files window.

To select all .VHD files in the current directory for compilation or
synthesis, click on the "Add All" button. AlI.VHD files in the
current directory appear in the Warp Input Files window.

To remove a file from the Warp Input Files window, highlight the
file in the window, then click on the "Remove" button. The file's
name is removed from the Warp Input Files window. Nothing
happens to the actual file, however. It is still available for
selection from the VHDL Files window.

To select a VHDL source file for editing, highlight the file by
clicking on it in the VHDL Files window, then click on the "Edit"
button. The file appears in a text window for editing. By default,
the editor used is "textedit" on Sun workstations, "notepad" on
PC's and compatibles. You can change this by setting the
EDITOR environment variable to the editor you want.

Warp Synthesis Compiler Manual 3-23

Using Warp with Galaxy

VHDL Files: Warp Input Files:

./

. ./

c22vlO/

c2S 8/

c330/

~
I

'--_______ 0

(Add»)

(Add All»)

/ .. ,.
:, :;> (r1'".~·y· ,.: -:: « J
(Edit)

Figure 3-12. VHDL Files Window in the Warp VHDL Files Dialog Box.

To view files in a sub-directory, double-click on the sub-directory
in the VHDL Files window, or highlight the sub-directory and
click on the "Add" button.

To move to the next higher directory in the directory structure,
double-click on the ".f' or "[.. J" directory in the VHDL Files
window, or highlight the directory and click on the "Add" button.

Clicking "OK" runs Warp on the files appearing in the "Warp
Input Files" window. Clicking "Cancel" exits the Warp VHDL
Files dialog box and returns to the Galaxy dialog box.

Important Note About File Order

3-24

When synthesizing a design, Warp assumes that the last file in
the Warp Input Files window is the "top-level" file, i.e., any
components or functions referenced in this file have been defined
in files earlier in the list.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.2. Compiling or Synthesizing

Warp either compiles VHDL files into a library, or synthesizes a
mapping file for use in programming the target device. You control this
Warp functionality by means of the "Build:" window in the Warp VHDL
Files dialog box.

When Warp compiles a VHDL file, it checks the file for
syntactical correctness, then adds any objects defined by the file
to a library for the target device. This library is implemented as a
sub-directory of the current directory. The sub-directory is given
the name of the target device, and contains an index file and a
copy of the compiled file(s).

When Warp synthesizes a VHDL file, it produces the following
files in the current directory, among others:

• a JEDEC file (.JED extension) for PLDs and PROMs. This
file can be used as input to Nova, or as input to a device
programmer.

• a QDIF file (.QDF extension) for pASICs. This file can be
used as input to the SpDE Place and Route tool.

To compile the files listed in the Warp Input Files window, select
"Compile Only" in the "Build:" window (Figure 3-13). Be sure you
select a target device if you are compiling files in this project
directory for the first time.

To compile and synthesize the files in the Warp Input Files
window, select "Compile & Synthesize" in the "Build:" Window.

Clicking on "OK" in the Warp VHDL Files window runs Warp,
whether compiling and synthesizing or compiling only. The
default is to compile and synthesize.

Warp Synthesis Compiler Manual 3-25

Using Warp with Galaxy

3-26

r- Build: -----------,

@ Compile _Synthesize

() Compile Only

Figure 3-13. "Build" Window in the Warp VHDL Files Dialog Box.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.3. Specifying Warp Options

The Warp Option dialog box lets you specify the target device, the level
of optimization, the output files created, the type of flip-flops used in
synthesis, and other parameters for a Warp run.

To bring up the Warp Option dialog box (Figure 3-14), click on
the "Options ... " button in the Warp VHDL Files dialog box.

The Warp Option dialog box contains the following windows:

• Devices: specifies the target device.

• Package: specifies the package used by the target device.

• Optimize: specifies the degree of optimization used
during compilation and synthesis.

• Output: specifies which of several possible output files are
to be produced.

• Fitter: specifies whether D- or T-type flip-flops are used in
synthesis; whether to force polarity optimization; whether
to assign pins in the fitter; and whether to force logic
factoring.

• Run Options: specifies whether Warp should run in
"quiet" mode.

Each of these windows is discussed in greater detail on the
following pages.

Clicking on OK returns you to the Warp VHDL Files dialog box,
keeping any changes you have made to Warp options.

Warp Synthesis Compiler Manual 3-27

Using Warp with Galaxy

II Warp Option

3-28

Devices:-------,

C16R8
C16V8
C20Gl0
C20Gl0C
C20RA10
C22V10
C22VP10
C258
C259
C330
C331
C332
C335
C341
C342

IC342B
Package:

Idefault

Optimize:
o None

<!,\ Quick

o Large

[S] XOR

Output:

[S] Create JEDEC File

[S] Creak HEX Flk

D Create ViewSim Model

Fitter:----------------,

[S] Force Flip-Flop Types

o U'Ge \Y·type Fmm

() U~~e ir .. t;pe Form

@ the npdmd TY m 'r Form

D Keep Polarity as Specified

D Allow Fitter to Change Pin Assignments

D Force Logic Factoring

Run Options:

D Quiet Mode

Figure 3-14. Warp Option Dialog Box.

Clicking on Cancel returns you to the Warp VHDL Files dialog
box, discarding any changes you have made to Warp options.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.3. Specifying Warp Options

3.4.3.1. Selecting the Target Device

Warp can synthesize designs from VHDL descriptions for Cypress
PLDs, CPLDs, or FPGAs. The Devices window in the Warp Option
dialog box lets you specify the target device.

The Devices window (Figure 3-15) in the Warp Option dialog box
lists all the possible target devices for synthesis. To select a
target device for synthesis, use the scroll bar to bring the name of
the desired device into view, then click on the device's name.
Selecting the "default" device from the Devices window tells
Warp to use a device named in the VHDL source file, e.g., in an
architecture that specifies pin binding, or in an "attribute
part_name" statement.

The Package window allows you to choose a package for the
device you have selected. The default package for each device is
usually the highest-speed package available for that device. To
select a package, click with the right mouse button on the down­
arrow below the word "Package:". Then, scroll through the
available selections until the package you want appears, and
click on it.

Warp Synthesis Compiler Manual 3-29

Using Warp with Galaxy

3-30

Devices: ---------.

default
C16L8
C16R04
C16R6
C16R8
C16V8
C20Gl0
C20Gl0C
C20RA10
C22Vl0
C22VP10
C258
C259

IC330

Package:

Idefault

Figure 3-15. Devices Window in Warp Option Dialog Box.

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.3. Specifying Warp Options

3.4.3.2. Selecting Optimization Level

Warp can employ different levels of optimization, which can help make
more efficient use of chip resources.

When Warp optimizes a design, it simplifies the Boolean
equations contained in that design to use fewer chip resources
and make the design easier to fit onto a target device.

The Optimize window (Figure 3-16) in the Warp Option dialog
box controls the level of optimization that Warp performs:

• None performs no optimization;

• Quick (the default) performs a standard, device-specific
optimization;

• Large performs the default optimization, plus some pre­
processing optimizations. In general, you don't need the
Large optimization setting for PLD designs unless you are
having trouble fitting a very large design. For pASIC
designs, "Large" optimization is highly recommended.

The XOR button tells Warp to preserve XOR structure, which
gives better results for certain kinds of architectures (e.g.,
arithmetic circuits) and devices with XOR gates in their
macrocells (e.g., C335's, C34X's, etc.).

Warp Synthesis Compiler Manual 3-31

Using Warp with Galaxy

- Optimize:

o None

@ Quick

C· Large

[2] XOR

Figure 3-16. Optimize Window in Warp Option Dialog Box.

3-32 Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.3. Specifying Warp Options

3.4.3.3. Selecting Synthesis Output

Warp can produce four kinds of primary output: JEDEC files,.QDF files,
and VHDL models.

The Output window of the Warp Options dialog box specifies
which files a given Warp run actually produces:

• Create JEDEC file produces a file that can be input
directly into a device programmer;

• Create Hex file allows output of JEDEC files encoded in
Hex format to conserve disk space. The Create Hex file
option is enabled only for the 34X and the 37X families.

• Create QDIF file, which appears when targeting a
pASIC device (C38x), produces a file that can be input to
the SpDE Place and Route tool;

• Create ViewSim Model applies to non-pASIC designs,
and when enabled, converts the JEDEC file produced by
the fitter into a VHDL file. This file is placed under the
sub-directory 'vhd', and has the same name as the original
top level VHDL file. It is then analyzed to allow a ViewSim
simulation. The analyzed results are then placed in the
current directory.

Warp Synthesis Compiler Manual 3-33

Using Warp with Galaxy

~ Output:

[2J Create JEDEC File

[2J Create HEX File

D Create ViewSim Model

Figure 3-17. Output Window.

3-34 Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.3. Specifying Warp Options

3.4.3.4. Selecting Fitter Options

The Fitter window in the Warp Options dialog box lets you specify
whether Warp should use D- or T-type flip-flops; whether Warp should
determine the optimal signal polarity to fit the design into the target
device; and whether Warp should assign signals to pins.

The Fitter window (Figure 3-18) in the Warp Options dialog box
contains four check boxes labeled "Force Flip-Flop Types," "Force
Polarity Optimization," "Allow Fitter to Change Pin
Assignments," and "Force Logic Factoring."

Force Flip-Flop Types determines whether Warp should force
flip-flops used in synthesis to be D- or T-type. If checked, this box
enables the three boxes below it:

• Use 'D'-type Form forces the use ofD-type flip-flops;

• Use 'T'-type Form forces the use of T-type flip-flops;

• Use optimal 'D' or 'T' Form tells Warp to determine
which type of flip-flop best utilizes chip resources and use
that one.

Force Polarity Optimization tells Warp to choose the optimal
signal polarity for internal signals to fit the design into the target
device.

Allow Fitter to Change Pin Assignments tells Warp to ignore
any pin assignments in the VHDL source file(s), and use its own
algorithms to map the external signals of the design to pins on
the target device.

Warp Synthesis Compiler Manual 3-35

Using Warp with Galaxy

3-36

- Fitter:

D Force Flip-Flop Types

@.) U~~e opthn~d ~D~ o~ ~T~ Fnn"n

D Keep Polarity as Specified

D Allow Fitter to Change Pin Assignments

D Force Logic Factoring

Figure 3-18. Fitter Window.

Force Logic Factoring tells Warp to perform three-level logic
factoring instead of just two-level (sum of products) factoring.
This is recommended for the 7c34x device family. For pASIC
architectures, it allows common sub-expressions between
different signals to be shared, thereby reducing fanout. This
option is recommended for VHDL designs targeting pASIC
devices, and is only applicable for non-frag based signals. (See
also the descriptions for the synthesis_off and dont_touch
attributes, in Chapter 5 of this manual.)

Warp Synthesis Compiler Manual

Using Warp with Galaxy

3.4. The Warp VHDL Files Dialog Box

3.4.3. Specifying Warp Options

3.4.3.5. Choosing Run Options

The Run Options window in the Warp Options dialog box specifies
whether or not Warp runs in "quiet" mode.

Quiet Mode suppresses the equation-by-equation display of
progress messages in the text area during compilation and
synthesis.

~Run Options:

D Quiet Mode

Figure 3-19. Run Options Window.

Warp Synthesis Compiler Manual 3-37

Using Warp with Galaxy

3.5. Running Warp

To run Warp, click on OK from the Warp VHDL Files dialog box.

3-38

Clicking on OK in the Warp VHDL Files dialog box runs Warp to
compile and synthesize the selected files.

Warp is not a single program, but actually consists of a series of
programs. As Warp runs, various messages appear in the text
area of the Galaxy dialog box, informing you of Warp's progress.

If an error is found in the source file, a message appears telling
you the error number and informing you of the nature of the
error. Whenever possible, the name of the source file and the line
and column number where the error was found also appear. Be
warned, however, that often an error in one position may give
rise to other errors, later in the file. Be ready to look around for
the location of the "root" error, if it isn't obvious.

Warp reports "Done" at the completion of its run, even if errors in
the VHDL source file(s) cause no output to be created.

Warp Synthesis Compiler Manual

Basic VHDL Elements

Basic VHDL Elements

Warp Synthesis Compiler Manual 4-1

Basic VHDL Elements

4.1. Introduction

This section discusses some of the fundamental elements of VHDL
implemented in Warp.

4-2

Topics include:

• identifiers

• data objects (constants, variables, signals)

• data types, including pre-defined types, user-definable
types, subtypes, and composite types

• operators, including logical, relational, adding,
multiplying, miscellaneous, assignment, and association
operators

• entities

• architectures, for behavioral, data flow, and structural
descriptions

• packages and libraries

Designs in VHDL are created in what are called entity/
architecture pairs. Entities and architectures are discussed in
Sections 4-6 and 4-7. Sections leading up to this discussion cover
VHDL language basics such as identifiers, data objects, data
types, operators, and syntax.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.2. Identifiers

An identifier in VHDL is composed of a sequence of one or more
alphabetic, numeric, or underscore characters.

Legal characters for identifiers in VHDL include uppercase
letters (A ... Z), lowercase letters (a ... z), digits (0 ... 9) and the
underscore character (_).

The first character in an identifier must be a letter.

The last character in an identifier cannot be an underscore
character. In addition, two underscore characters cannot appear
consecutively.

Lowercase and uppercase letters are considered identical when
used in an identifier; thus, SignalA, signala, and SIGNALA all
refer to the same identifier.

Comments in a VHDL description begin with two consecutive
hyphens (--), and extend to the end of the line. Comments can
appear anywhere within a VHDL description.

VHDL defines a set of reserved words, called keywords, that
cannot be used as identifiers.

Examples
this is a comment.

this is the first line of
a three-line comment. Note the repetition
of the double hyphens for each line.

entity mydesign is -- comment at the end of a line

Warp Synthesis Compiler Manual 4-3

Basic VHDL Elements

4-4

The following are legal identifiers in VHDL:

SignalA
Hen3ry
Output_Enable
C3PO
THX_1138

The following are not legal identifiers in VHDL:

3POC
_Output_Enable
My_Design
My_Entity_
Sig%
Signal

identifier can't start with a digit
or an underscore character
contains two consecutive underscores
can't end with an underscore, either
percent sign is an illegal character
reserved word

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.3. Data Objects

A data object holds a value of some specified type. In VHDL, all data
objects belong to one of three classes: constants, variables, or signals.

Syntax (constant declaration):

constant identifier[,identifier . ..] :type:=value;

Syntax (variable declaration):

variable identifier[,identifier ...] :type[:=value];

Syntax (signal declaration):

signal identifier[,identifier ...] : type [:=value];

An object of class constant can hold a single value of a given type.
A constant must be assigned a value upon declaration. This
value cannot be changed within the design description.

An object of class variable can also hold a single value of a given
type at any point in the design description. A variable, however,
can take on many different values within the design description.
Val ues are assigned to a variable by means of a variable
assignment statement.

An object of class signal is similar to an object of class variable in
Warp, with one important difference: signals can hold or pass
logic values, while variables cannot. Signals can therefore be
synthesized to memory elements or wires.

Variables have no such hardware analogies. Instead, variables
are simply used as indexes or value holders to perform
computations incidental to modeling components.

Warp Synthesis Compiler Manual 4-5

Basic VHDL Elements

Most data objects in VHDL, whether constants, variables, or
signals, must be declared before they can be used. Objects can be
given a value at declaration time by means of the ":=" operator.

Exceptions to the "always-declare-before-using" rule include:

1. the ports of an entity. All ports are implicitly declared as
signals.

2. the generics of an entity. These are implicitly declared as
constants.

3. the formal parameters of procedures and functions.
Function parameters must be constants or signals, and
are implicitly declared by the function declaration.
Procedure parameters can be constants, variables, or
signals, and are implicitly declared by the procedure
declaration.

4. the indices of a loop or generate statement. These objects
are implicitly declared when the loop or generate
statement begins, and disappear when it ends.

Examples

4-6

constant bus_width:integer := 8;

This example defines an integer constant called bus_width and
gives it a value of 8.

variable ctrl_bits:bit_vector(7 downto 0);

This example defines an eight-element bit vector called ctrl_bits.

signal sigl, sig2, sig3:bit;

This example defines three signals of type bit, named sig1, sig2,
and sig3.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.4. Data Types

A data type is a name that specifies the set of values that a data object
can hold, and the operations that are permissible on those values.

Warp supports the following pre-defined VHDL types:

• integer;

• boolean;

• bit;

• character;

• string;

• xOlz;

Warp also gives you the capability to define subtypes and
composite types by modifying these basic types, and to define
your own types by combining elements of different types.

Warp's pre-defined types, and Warp's facilities for defining
subtypes, composite types, and user-defined types, are all
discussed in the following pages.

Note: VHDL is a strongly typed language. Data objects of one
type cannot be assigned to a data objects of another, and
operations are not allowed on data objects of differing types.
Warp provides functions for converting bit_vectors to integers
and integers to bit_vectors and functions for allowing certain
operations on differing data types.

Warp Synthesis Compiler Manual 4-7

Basic VHDL Elements

4.4. Data Types

4.4.1. Pre-Defined Types

Warp supports the following pre-defined VHDL types: integer, boolean,
bit, character, string, and bit_vector.

Integer
VHDL alJows each implementation to specify the range of the
integer type differently. However, the range must extend from at
least -(2**31-1) to +(2**31-1), or -2147483648 to +2147483647.
Warp allows data objects of type integer to take on any value in
this range.

Boolean
Data objects of this type can take on the values 'true' or 'false'.

Bit
Data objects of this type can take on the values '0' or '1'.

Character
Data objects of type character can take on values consisting of
any of the 128 standard ASCII characters. The non-printable
ASCII characters are represented by three-character identifiers,
as follows: NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS,
HT, LF, VT, FF, CC, SO, Sl, DLE, DC1, DC2, DC3, DC4, NAK,
SYN, ETB, CAN, EM, SUB, ESC, FSP, GSP, RSP, and USP.

String
A string is an array of characters. Here's an example:

variable greeting:string(l to 13) :="Hello, world!";

4-8 Warp Synthesis Compiler Manual

Basic VHDL Elements

Bit_Vector

A bit vector is an array of bits in ascending or descending order
and provides an easy means to manipulate buses. Bit_vectors
can be declared as follows:

signal a, b:bit_vector(O to 7);
signal c, d:bit_vector(7 downto 0);
signal e:bit_vector(O to 5);

NOTE: bit vector constants are specified with double quote
marks ("), whereas single bit constants are specified with single
quote marks (').

If these signals are subsequently assigned the following values,

a <= "00110101";
c <= "00110101";
b <= x"7A";

d <= x"7A";

e <= 0"25";

then we can compare the individual bits of "a"and "c" to discover
that a(7) is '0', a(6) is '0', a(5) is '1', a(4) is '0', ... , a(O) is '1', whereas
c(7) is '1', c(6) is '0', c(5) is '1', c(4) is '0', ... c(O) is '0'. This is because
the bits of signal "a" are in ascending order, and the bits of signal
"b" are in descending order.

A prefix of "X"or "x" denotes a hexadecimal value; a prefix of
"O"or "0" denotes an octal value; a prefix of"B" or "b" denotes a
binary value. Ifno prefix is included, a value of"b" is assumed.
Underscore characters may be freely mixed in with the bit_vector
value for clarity. Hexadecimal and octal designators should only
be used if the hexadecimal or octal value can be directly mapped
to the size of the bit_vector. For example, if "x" is a bit_vector(O to
5), then the assignment 'a <= x"B";' cannot be made because the
hexadecimal number "B" uses four bits and does not match the
size of the bit_vector it is being assigned to.

Warp Synthesis Compiler Manual 4-9

Basic VHDL Elements

String Literals

xOlz

A value that represents a (one-dimensional) string of characters
is called a string literal. String literals are written by enclosing
the characters of the string within double quotes (" ... "). String
literals can be assigned either to objects of type string or to
objects of type bit_vector, as long as both objects have been
declared with enough elements to contain all the characters of
the string:

variable err_msg:string(l to 18);
err_msg := "Fatal error found!";

signal bus_a:bit_vector(7 downto 0);
bus_a<= "10011110";

Data objects of type x01z can have values of 'x', '0', '1', or 'z'.

xOlz_ vector

4-10

An x01z_vector is an array ofx01z's in ascending or descending
order, and can be defined in the same manner as a bit_vector.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.4. Data Types

4.4.2. Enumerated Types

An enumerated type is a type with a user-defined set of possible values.

Syntax (enumerated type declaration)

type name is (value[,value ...]);

The order in which the values are listed in an enumeration type's
declaration defines the lexical ordering for that type. That is,
when relational operators are used to compare two objects of an
enumerated type, a given value is always less than another value
that appears to its right in the type declaration. The position
number of the leftmost value is 0; the position number of other
values is one more than that of the value to its left in the type
declaration.

Examples
type arith_op is (add,sub,IDul,div);

This example defines an enumerated type named arith_op whose
possible values are add, sub, mul, and div.

type states is (stateO, statel, state2, state3)

This example defines an enumerated type named states, with
four possible values: stateO, state1, state2, and state3.

Warp Synthesis Compiler Manual 4-11

Basic VHDL Elements

4.4. Data Types

4.4.3. Subtypes

A subtype is a subset of a larger type.

Syntax (subtype declaration):

subtype type is
base_type range value {toldownto} value;

Subtypes are useful for range checking or for enforcing
constraints upon objects of larger types.

Examples

4-12

subtype byte is bit_vector(7 downto 0);
subtype single_digit is integer range 0 to 9;

These examples define subtypes called byte and single_digit.
Signals or variables that are declared as byte are bit_vectors of
eight bits in descending order. Signals or variables that are
declared as single_digit are integers with possible values
consisting of the integers 0 through 9, inclusive.

subtype byte is bit_vector(7 downto 0);

type arith_op is (add,sub,mul,div);
subtype add_op is arith_op range add to sub;
subtype mul_op is arith_op range mul to div;

This example first defines an enumerated type called arith_op,
with possible values add, sub, mul, and dive It then defines two
subtypes: add_op, with possible values add and sub, and mul_op,
with possible values mul and dive

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.4. Data Types

4.4.4. Composite Types

A composite type is a type made up of several elements from another
type. There are two kinds of composite types: arrays and records.

Syntax (array type declaration)
type name is array ({low to high} I

{high downto low}) of base_type;

Syntax (record type declaration)
record type is record

element:element_type
[;element:element_type ... J;

end record;

An array is a data object consisting of a collection of elements of
the same type. Arrays can have one or more dimensions.
Individual elements of arrays can be referenced by specifying an
index value into the array (see examples). Multiple elements of
arrays can be referenced using aggregates.

A record is a data object consisting of a collection of elements of
different types. Records in VHDL are analogous to records in
Pascal and struct declarations in C. Individual fields of a record
can be referenced by using selected names (see examples).
Multiple elements of records can be referenced using aggregates.

Warp Synthesis Compiler Manual 4-13

Basic VHDL Elements

Examples

The following are examples of array type declarations:

type big_word is array (0 to 63) of bit;
type matrix_type is array (0 to 15, 0 to 31) of bit;
type values_type is array (0 to 127) of integer;

Possible object declarations using these types include:

signal word1,word2:big_word;
signal device_matrix:matrix_type;
variable current_values:values_type;

Some possible ways of assigning values to elements of these
objects include:

word1(0)<='l'; assigns value to Oth element in word1
word1(5)<='O'; assigns value to 5th element in word1
word2 <= word1; -- makes word2 identical to word1
word2(63) <= device_matrix(15,31); -- transfers value
-- of element from device_matrix to element of word2
current_values (0) := 0;
current_values (127) := 1000;

The following includes an example of a record type declaration:

type opcode is (add,sub,mul,div);
type instruction is record

operator:opcode;
op1:integer;
op2:integer;
end record;

Here are two object declarations using this record type
declaration:

variable inst1, inst2:instruction;

4-14 Warp Synthesis Compiler Manual

Basic VHDL Elements

Some possible ways of assigning values to elements of these
objects include:

instl.opcode . - add; -- assigns value to opcode of instl
inst2.opcode . - sub; -- assigns value to opcode of inst2
instl.opl .- inst2.op2; -- copies op2 of inst2

-- to opl of inst2
inst2 := instl; -- makes inst2 identical to instl

Warp Synthesis Compiler Manual 4-15

Basic VHDL Elements

4.5. Operators

VHDL provides a number of operators used to construct expressions to
compute values. VHDL also uses assignment and association operators.

4-16

VHDL's expression operators are divided into five groups. They
are (in increasing order of precedence): logical, relational,
adding, multiplying, and miscellaneous.

In addition, there are assignment operators that transfer values
from one data object to another, and association operators that
associate one data object with another.

Table 4-1 lists the VHDL operators that Warp supports.

Warp Synthesis Compiler Manual

Basic VHDL Elements

Table 4-1: VHDL Operators

Logical Operators

and I or I nand I nor I xor I not

Relational Operators

= I 1= I < I <= I > I >=

Adding Operators

+ I -
I & I I I
Multiplying Operators

* I I I mod I rem I I
Miscellaneous Operators

abs I ** I I I I
,

Assignment Operators

<= I
.-

I I I I .-
Association Operator

=> I I I I I

Warp Synthesis Compiler Manual 4-17

Basic VHDL Elements

4.5. Operators

4.5.1. Logical Operators

The logical operators AND, OR, NAND, NOR, XOR, and NOT are
defined for predefined types BIT and BOOLEAN.

4-18

AND, OR, NAND, and NOR are "short-circuit" operations. The
right operand is evaluated only if the value of the left operand is
not sufficient to determine the result of the operation. For
operations AND and NAND, the right operand is evaluated only
if the value of the left operand is TRUE. For operations OR and
NOR, the right operand is evaluated only if the value of the left
operand is FALSE.

Note that there is no differentiation of precedence among the
binary boolean operators. Thus, successive boolean operators in
an expression must be delimited by parentheses to guarantee
error-free parsing and evaluation, e.g.,

a <= b AND c OR d

is not legal;

a <= (b AND c) OR d

IS.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.5. Operators

4.5.2. Relational Operators

Relational operators include tests for equality, inequality, and ordering
of operands.

The operands of each relational operator must be of the same
type. The result of each relational operation is of type
BOOLEAN.

The equality operator (=) returns TRUE if the two operands are
equal, FALSE otherwise. The inequality operator (/=) returns
FALSE if the two operands are equal, TRUE otherwise.

Two scalar values of the same type are equal if and only if their
values are the same. Two composite values of the same type (e.g.,
bit vectors) are equal if and only if for each element of the left
operand there is a matching element of the right operand, and
the values of matching elements are equal.

The ordering operators are defined for any scalar type and for
array types (e.g., bit vectors). For scalar types, ordering is
defined in terms of relative values (e.g., '0' is always less than '1').
For array types, the relation < (less than) is defined such that the
left operand is less than the right operand if and only if:

• the left operand is a null array and the right operand is a
non-null array; otherwise

• both operands are non-null arrays, and one of the
following conditions is satisfied:

• the leftmost element of the left operand is less than that of
the right; or

• the leftmost element of the left operand is equal to that of
the right, and the tail of the left operand is less than that

Warp Synthesis Compiler Manual 4-19

Basic VHDL Elements

4-20

of the right. The tail consists of the remaining elements to
the right of the leftmost element and can be null.

The relation <= (less than or equal to) for array types is defined
to be the inclusive disjunction of the results of the < and =
operators for the same two operands (i.e., it's true if either the <
or = relations are true). The relations> (greater than) and >=
(greater than or equal to) are defined to be the complements of
<= and <, respectively, for the same two operands.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.5. Operators

4.5.3. Adding Operators

In VHDL, the '+' and '-' operators perform addition and subtraction,
respectively. The '&' operator concatenates characters, strings, bits or
bit vectors. All three of these operators have the same precedence, and
so are grouped under the category "Adding Operators."

The adding operators + and - are defined for integers, and have
their conventional meaning.

These operations are also supported for bit vectors, through the
use of the BV _MATH package. (See "Bit Vector Operations" later
in this chapter for more information.)

In Warp, concatenation is defined for bits and arrays of bits (bit
vectors). The concatenation operator in Warp is "&".

Ifboth operands are bit vectors, the result of the concatenation is
a one-dimensional array whose length is the sum of the lengths
of the operands, and whose elements consist of the elements of
the left operand (in left-to-right order) followed by the elements
of the right operand (in left-to-right order). The left bound of this
result is the left bound of the left operand, unless the left
operand is a null array, in which case the result of the operation
is the right operand. The direction of the result is the direction of
the left operand, unless the left operand is a null array, in which
case the direction of the result is that of the right operand.

If one operand is a bit vector and the other is a bit, or if both are
bits, the bit operand is replaced by an implicit one-element bit
vector having the bit operand as its only element. The left bound
of the implicit bit vector is 0, and its direction is ascending.

It is always safest to use ascending ranges in bit vector
declarations used in concatenation. Given the example

Warp Synthesis Compiler Manual 4-21

Basic VHDL Elements

4-22

signal a,b:bit_vector(O to 2);
signal c:bit_vector;
C <= a & b; --concatenation

the result has a(O) in c(O) and b(O) in c(3), the concatenation of a
and b occupying the range from 0 to 5 in c.

Given the example

signal a,b:bit_vector(2 downto 0);
signal c:bit_vector;
c <= a & b; --concatenation

the result has a(2) in c(2), a(l) in c(l), a(O) in c(O), b(2) in c(-l),
bel) in c(-2), and b(O) in c(-3). The concatenation occupies the
range from 2 down to -3 in c.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.5. Operators

4.5.4. Multiplying Operators

In VHDL, the '*' and 'f operators perform multiplication and division,
respectively. Tvvo other operands of the same precedence include the
mod and rem operators. Both operators return the remainder when one
operand is divided by another.

All the multiplication operators are defined for both operands
being of the same integer or bit_vector type. The result is also of
the same type as the operands.

The rem operation is defined as

A rem B = A-(A/B)*B

where "/" in the above example indicates an integer division. The
result has the sign of A and an absolute value less than the
absolute value of B.

The mod operation is similar, except that the result has the sign
ofB. In addition, , for some integer N, the result satisfies the
relation:

A mod B = A-B*N

Warp Synthesis Compiler Manual 4-23

Basic VHDL Elements

4.5. Operators

4.5.5. Miscellaneous Operators

The two "miscellaneous" expression operators in VHDL are abs and **.

4-24

The abs operator, defined for integers, returns the absolute value
of its operand.

The ** operator raises a number to a power of two. It is defined
for an integer first operand and a power-of-two second operand.
Its result is the same as shifting the bits in the first operand left
or right by the amount specified by the second operand.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.5. Operators

4.5.6. Assignment Operations

VHDL has two assignment operators: "<=" and ":=". The first is used for
signal assignments, the second for variable assignments.

Syntax (variable assignment)

variable_name := expression;

Syntax (signal assignment)

signal_name <= expression;

Variable assignments can only occur inside a process. Signal
assignments can occur anywhere inside an architecture.

Assignments to objects of composite types can be assigned values
using aggregates, which is simply a way of specifying more than
one value to be assigned to elements of an object with a single
assignment statement. Examples of the use of aggregates are
shown below.

Examples
type opcode is (add,sub,mul,div);
type instruction is record

operator:opcode;
opl:integer;
op2:integer;

variable instl,inst2:instruction;
signal vecl, vec2 : bit_vector(O to 3):

vec1 <= ('1', '0', '1', '0'); -- aggregate assignment
vec2 <= vec1; -- another aggregate assignment
inst1 := (add,S,10); -- aggregate assignment to record
vec1 <= (0=>'0' ,others=>'l'); -- assign 0 to Oth bit,

-- set others to 1

Warp Synthesis Compiler Manual 4-25

Basic VHDL Elements

4.5. Operators

4.5.7. Association Operations

Whenever you instantiate a component in a Warp description, you must
specify the connection path(s) between the ports of the component being
instantiated and the interface signals of the entity/architecture pair
you are defining. You do this by means of an association list within a
port map or a generic map.

4-26

Warp supports both named and positional association.

In named association, you use the "=>" association operator to
associate a formal (the name of the port in the component being
instantiated) with an actual (the name of the signal in the entity
you're defining). If you think of the association operator as an
"arrow" indicating direction, it's easy to remember which way to
make the arrow point: it always points to the actual. For
example, in the following instantiation of a predefined D flip-flop,

stO: DSRFF port map (
d => dat,
s => set,
r => rst,
elk => elk,
q => duh) ;

the arrow always points toward the ports of the defined
component, the DSRFF in this case. Named association allows
you to associate the signals in any order you want. In the
previous example, you could have listed the "q => duh" before
"d => dat".

In positional association, you don't use the association operator.
Instead, you list the actuals (signals names) in the port map in
the same order as the formals of the component being
instantiated, without including the formal names at all.

Warp Synthesis Compiler Manual

Basic VHDL Elements

For example, the jkff component for the C22VIO is declared as
follows:

component jkff port (
j in bit;
k in bit;
clk: in bit;
q out bit);

end component;

An association list for an instantiation of this component could
use either named association, like this:

jkl:jkff port map(j_in=>j,k_in=>k,clk=>clk,~out=>q);

or positional association, like this:

jkl:jkff port map (j_in, k_in, clk, ~out);

Either form maps signals j_in, k_in, clk, and q_out in the entity
being defined to ports j, k, clk, and q, respectively, on the
instantiated component.

Warp Synthesis Compiler Manual 4-27

Basic VHDL Elements

4.5. Operators

4.5.8. Bit-Vector Operations

Addition, subtraction, incrementing, decrementing, inverting, and
relational operators for bit vectors are defined in the INT_MATH and
BV _MATH packages.

4-28

With the appropriate package, INT_MATH or BV _MATH, the
addition (+) and subtraction (-) operators allow you to add or
subtract two bit-vectors, or a bit-vector and an integer constant,
or a bit vector and an integer variable whose value is constant In
all of the examples in this section, count is a bit_vector(O to 5).
The following example requires the use of the INT_MATH
package by including the clause "use work.int_math.all;"
immediately before the architecture.

count <= count + Ii vector + integer
count <= count - 5i -- vector - integer

The increment function, named inc_bv, adds one to the value of a
bit vector. Similarly, the decrementing function, named dec_bv,
subtracts one from the value of a bit vector. The following
examples require the use of the BV _MATH package by including
the clause "use work.bv _math. all;" immediately before the
architecture

count <= inc_bv(count)i-- incrementing
count <= dec_bv(count)i-- decrementing

The inversion function, named inv, performs a bit-by-bit
inversion of each element of a bit vector:

count <= inv(count)i-- inverting

The inv function also operates on individual bits. This allows the
function to be used in port maps for signal polarity conversion.

Warp Synthesis Compiler Manual

Basic VHDL Elements

The relational operators =, i=, <, <=, >, >= allow you to compare a
bit vector to an integer constant or an integer variable whose
value is constant:

signal count:bit_vector(O to 5);

IF (count < 10) THEN

END IF;

Warp Synthesis Compiler Manual 4-29

Basic VHDL Elements

4.6. Entities

Entities describe the design I/O.

4-30

VHDL designs consist of entity/architecture pairs in which the
entity describes the design 110, or interface, and the architecture
describes the content of the design.Together, entity/architecture
pairs can be used as complete design descriptions or as
components in a hierarchical design or both.

The syntax for an entity declaration is as follows:

ENTITY entity IS PORT(
[signal][sig-name, ...]:[direction] type
[;signal[sig-nam, ...]: [direction] type]

) ;
END enti ty-name;

The entity declaration specifies a name by which the entity can
be referenced in a design architecture. In addition, the entity
declaration specifies ports. Ports are a class of signals that define
the entity interface. Each port has an associated signal name,
mode, and type.

Choices for mode are IN (default), OUT, INOUT and BUFFER.
Mode IN is used to describe ports that are inputs only; OUT is
used to describe ports that are outputs only, with no feedback
internal to the associated architecture; INOUT is used to
describe bi-directional ports; BUFFER is used to describe ports
that are outputs of the entity but are also fed back internally.

Two sample entity declarations appear in Figures 4-1 and 4-2.

Figure 4-1 shows the proper declaration for a bidirectional signal
(which, in this case, is also a bit vector), along with several input

Warp Synthesis Compiler Manual

Basic VHDL Elements

entity cnt3bit is port (
q:inout X01Z_vector(O to 2);
inc,grst,rst,clk:in bit;
carry:out bit);
end cnt3bit;

Figure 4-1. Sample Entity Declaration.

ENTITY Bus_Arbiter IS PORT (
Clk, -- Clock
DRAM_Refresh_Request,-- Refresh Request
VIC_Wants_Bus,-- VIC Bus Request
Sparc_Wants_Bus: IN BIT;-- Sparc Bus Request
Refresh_Control,-- DRAM Refresh Control
VIC_Has_Bus,-- VIC Has Bus
Sparc_Has_Bus: OUT BIT) ;-- Sparc Has Bus

END Bus_Arbiter;

Figure 4-2. Sample Entity Declaration. Note the use
of comments to document the purpose of each signal.

Warp Synthesis Compiler Manual 4-31

Basic VHDL Elements

4-32

signals and an output signal.

Figure 4-2 shows how comments can be included within an entity
declaration to document each signal's use within the entity.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.7. Architectures

An architecture describes the behavior or structure of an associated
entity.

Architectures describe the behavior or structure of associated
entities and can be either or a combination of

1. Behavioral descriptions.

These descriptions provide a means to define the "behavior" of a
circuit in abstract, "high level" algorithms, or in terms of "low
level" boolean equations.

2. Structural descriptions.

These descriptions define the "structure" of the circuit in terms of
components, and resemble a net-list that could describe a
schematic equivalent of the design. Structural descriptions
contain hierarchy in which components are defined at different
levels.

The architecture syntax follows:

ARCHITECTURE aname OF entity IS
[type-declarations]
[signal-declarations]
[constant-declarations]
BEGIN
[architecture definition]
END anamei

Each architecture has a name and specifies the entity which it
defines. Types, signals, and constant must all be declared before
the beginning of the architecture definition. The architecture
defines the concurrent signal assignments, component
instantiations, and processes.

Warp Synthesis Compiler Manual 4-33

Basic VHDL Elements

Examples

4-34

use work.int_math.all;
architecture archcounter of counter is
begin
procl: process (clk)

begin
if (clk'event and clk = '1') then

count <= count + 1;
end if;

end process procl;
x <= '1' when count

end archcounter;
"1001" else '0';

Archcounter is an example of a behavioral architecture
description of a counter and a signal x that is asserted when
count is a particular value. This design is considered behavioral
because of the algorithmic way in which it is described. The
details of such descriptions will be covered later.

use work.rtlpkg.all;
architecture archcapture of capture is

signal c: bit;
begin

c <= a AND b;
d1: dff port map(c, clk, x);
end archcapture;

Archcapture is the name of an architectural description that is
both structural and behavioral in nature. It is considered
structural because of the component instantiation, and it is
considered behavioral because of the boolean equation. VHDL
provides the flexibility to combine behavioral and structural
architecture descriptions.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.5. Operators

4.7.1. Behavioral Descriptions

Behavioral descriptions consist of concurrent signal assignments and/or
processes that enable both low-level and high-level, abstract design
descriptions.

Behavioral design descriptions consist of two types of
statements:

1. Concurrent statements which define concurrent signal
assignments by way of association operators.

2. Sequential statements within a PROCESS which enable
an algorithmic way of describing a circuit's behavior.
Sequential statements enable signal assignments to be
based on relational and conditional logic.

These types of statements, as well as structural descriptions,
may be combined in any architecture description.

Concurrent Statements

Concurrent statements are found outside of processes and are
used to implement boolean equations, when ... else constructs,
signal assignments, or generate schemes. Here are some
examples:

u <= ai

v <= Ui

w <= a XOR bi
x <= (a AND s) or (b AND NOT(s»i

y <= ('1' when (a='O' and b = '1') else 'O'i

z <= A when (count = "0010") else bi

Signal u is assigned the value of signal a and is its equivalent.

Warp Synthesis Compiler Manual 4-35

Basic VHDL Elements

Likewise, v is equivalent to both signals u and a. The order of
these signal assignments does not matter because they are
outside of a process and are concurrent. The next two statements
implement boolean equations, while the last two statements
implement "when ... else" constructs. You could read the
assignment for signal y as "y gets (is assigned) '1' when a is zero
and b is one, otherwise y gets '0'." Likewise, "z gets a when count
is "0010," otherwise z gets b."

Sequential Statements
Sequential statements must be within a PROCESS and enable
you to describe signal assignments in an algorithmic fashion. All
statements in a process are evaluated sequentially, and therefore
the order of the statements is important. For example, in the
process

proc1: process (x)
begin

a <= '0';
if x = 'lOll' then

a <= '1';
end if;

end process proc1;

signal "a" is first assigned '0.' Later in the process, if x is found to
be equivalent to "lOll" then signal "a" is assigned the value '1.'

Final signal assignments occur at the end of the process. In other
words, the VHDL compiler evaluates the code sequentially before
determining the equations to be synthesized, whereas the
compiler synthesizes equations for concurrent statements upon
encountering them. A process taken as a whole is a concurrent
statement.

The Process
In most cases, a process has a sensitivity list: a list of signals in

4-36 Warp Synthesis Compiler Manual

Basic VHDL Elements

parentheses immediately following the key word "process".
Signals assigned within a process can only change value if one of
the signals in the sensitivity list transitions. If the sensitivity list
is omitted, then the compiler infers that signal assignments are
sensitive to changes in any signal.

You may find it helpful to think of processes in terms of
simulation (VHDL is also used for simulation) in which a process
is either active or inactive. A process becomes active only when a
signal in the sensitivity list transitions. In the process

procl: process (rst, elk)
begin

if rst = '1' then
q <= '0';

elsif (clk'event and clk='l') then
q <= d;

end if;
end process;

only transitions in rst and elk cause the process to become active.
If either elk or rst transition, then the process becomes active,
and the first condition is checked (ifrst = '1'). In the case that rst
='1,' q will be assigned '0,' otherwise the second condition is
checked (if clk'event and elk ='1'). This condition looks for the
rising edge of a clock. All signals within this portion of the
process are sensitive to this rising edge clock, and the compiler
infers a register for these signals. This process creates a D flip­
flop with d as its input, q as its output, clk as the clock, and rst as
an asynchronous reset.

Warp Synthesis Compiler Manual 4-37

Basic VHDL Elements

4.5. Operators

4.7.2. Structural Descriptions

Structural descriptions of architectures are net-lists that enable you to
instantiate components in hierarchical designs.

4-38

Structural descriptions are net-lists that enable you to
instantiate components in hierarchical designs. A port map is
part of every instantiation and indicates how the ports of the
component are connected. Structural descriptions can be
combined with behavioral descriptions, as in the following
example:

architecture archmixed of mixed is
begin
--instantiations
cntl1: motor port map(clk, Id, en, c1, chg1, start1, stop1);
cnt12: motor port map(clk, ld, en, c2, chg2, start2, stop2);
safety: mot_check port map(status, c1, c2);
--concurrent statement
en <= '1' when (status='l' and status = '1') else 'a';
-- concurrent process with sequential statements
ok:process (clk)

begin
if (clk'event and clk='l') then

status <= update;
end if;

end process ok;
end archmixed;

This example shows that two motor components and one
mot_check component are instantiated. The port maps are
associated with inputs and outputs of the motor and mot_check
components by way of positional association. Signal en is
assigned by a concurrent statement, and signal status is
assigned by a process that registers a signal using the common
clock clk.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.5. Operators

4.7.3. Design Methodologies

VHDL provides the flexibility to describe designs in multiple ways,
depending on the designers coding preferences.

Designers can choose from multiple methods of describing
designs in VHDL, depending on coding preferences. In this
section, we'll discuss how to implement combinatorial logic,
registered logic, counters, and state machines. The discussion of
state machines will cover multiple implementations and the
design and synthesis trade-offs for those implementations.
Section 4.10, "Additional Design Examples" contains further
design examples. Most of the design examples in this section can
be found in the directory \warp\examples.

Combinatorial Logic

Following are examples of a four-bit comparator implemented in
four different ways, all yielding the same result. In all examples,
the entity is the same:

entity compare is port(
a, b:
aeqb:

end comparei

in bit_vector (0 to 3)i

out bit) i

The entity declaration specifies that the design has three ports:
two input ports (a, b), and one output port (aeqb). The input ports
are of type BIT_VECTOR and the output port is of type BIT.

Using a process, the comparator can be implemented like this:

architecture archcompare of compare is
begin
comp: process (a, b)

begin

Warp Synthesis Compiler Manual 4-39

Basic VHDL Elements

4-40

if a b then
aeqb <= '1' ;

else
aeqb <= ' 0 ' ;

end if;
end process comp;

end archcompare;

The design behavior is given in the architecture section. The
architecture description consists of the process "comp". The
process includes the sensitivity list (a,b) so that the process
becomes active each time there is a change in one of these
signals. The process permits the use of an algorithm to assert
aeqb when a equals b.

With one concurrent statement, making use of the case ... when
construct, the same comparator can be described like this:

architecture archcompare of compare is
begin

aeqb <= '1' when (a = b) else '0';
end;

In this example, the process in the previous example has been
replaced by a concurrent signal assignment for aeqb.

Using boolean equations, the comparator looks like this:

architecture archcompare of compare is
begin

end;

aeqb <= NOT (
(a(O) XOR b(O» OR
(a(l) XOR b(l» OR
(a(2) XOR b(2» OR
(a(3) XOR b(3»);

In this example, a boolean equation replaces the when ... else
construct.

Warp Synthesis Compiler Manual

Basic VHDL Elements

Finally, a structural design which implements a net list ofXOR
gates and a 4-input NOR gate, looks like this:

use work.gatespkg.all;
use work.rtlpkg.all;
architecture archcompare of compare is

signal c: bit_vector(O to 3);
begin

end;

xO: xor2
xl: xor2
x2: xor2
x3: xor2

port
port
port
port

map(a (0) I

map(a (1) I

map (a (2) I

map (a (3) I

b(O), c(O));
b(l) I c (1));

b(2), c(2));
b(3), c(3));

a1: nor4 port map(c(O) I c(l) I c(2) I c(3) I aeqb);

In this example, the compare architecture is described by
instantiating gates much the same as one would by placing gates
in a schematic diagram. The XOR and NOR gates used in this
architecture are the same as those available in the Warp
schematic library under "gates". The port map lists are
associated with the inputs and outputs of the gates through
positional association.

Many other functions or components can be implemented in
multiple ways. We leave you with one last combinatorial
example: a four-bit wide four-to-one multiplexer. In all versions,
the entity is the same:

entity mux is port(
a , b , c , d:
s:
x:

end mux;

in bit_vector(3 downto 0);
in bit_vector (1 downto 0);
out bit_vector(3 downto 0));

Using a process, the architecture looks like this:

architecture archmux of mux is

Warp Synthesis Compiler Manual 4-41

Basic VHDL Elements

4-42

begin
mux4 1: process (a, b, c, d)

begin
if s = "00" then

X <= ai

elsif s "01" then

elsif s

else

end if;

x <= bi
"10" then

x <= Ci

X <= di

end process mux4_1;
end archmuxi

Using a concurrent statement with a case ... when construct, the
architecture can be written as

architecture archmux of mux is
begin

X <= a when (s
b when (s
c when (s
d;

end archmux;

"00") else
"01") else
"10") else

If you prefer to write boolean equations, then you can write the
architecture as follows.

architecture archmux of mux is
begin

x (3) <= (a (3) and not (s (1)) and not(s(O»)
OR (b (3) and not(s(l» and s (0))
OR (c(3) and s(l) and not(s(O»)
OR (d(3) and s(l) and s(O»;

x (2) <= (a(2) and not(s(l» and not(s(O»)
OR (b (2) and not (s (1)) and s (0»
OR (c(2) and s(l) and not (s (0)))
OR (d (2) and s(l) and S(O»i

Warp Synthesis Compiler Manual

Basic VHDL Elements

x(l) <= (a(l) and not(s(l» and not(s(O»)
OR (b(l) and not(s(l» and s (0))
OR (c (1) and s(l) and not(s(O))
OR (d(l) and s(l) and s(O));

x (0) <= (a(O) and not(s(l» and not(s(O»)
OR (b(O) and not(s(l» and s(O»
OR (c (0) and s(l) and not(s(O))
OR (d(O) and s(l) and s(O));

end archmux;

A structural approach that also makes use of a generate scheme
can be written like this:

use work.muxpkg.all;
architecture archmux of mux is
begin
mux_array: for i in 3 downto 0 generate

mux_i: mux1of4 port map (one, s(O), s(l), a(i), b(i),
c(i), d(i), x(i»;

end generate;
end archmux;

This design makes use of the multiplexers in the Warp library. Of
course, you could build up your own multiplexers and instantiate
them instead. The generate scheme implemented here consists of
a loop in variable i which is used to instantiate a muxlof4 for
each i in 3 downto o. In each instantiation, i is used to reference
the individual bit of the bit_vector that is under consideration.

Registered Logic

There are two methods for implementing registered logic:
instantiating a register (or other component with registers), or
using a process that is sensitive to a clock edge. For example, if
you wanted to use a D register and a 4-bit counter, you could
simply instantiate these components after including the
appropriate packages:

Warp Synthesis Compiler Manual 4-43

Basic VHDL Elements

4-44

use work.rtlpkg.all;
use work.counterpkg.all;

dl: dsrff port map(d, s, r, clk, q);
cl: cntr4 port map(one, open, one, one, d3, d2, d1, dO,

clk, rst, cnt3, cnt2, cnt1, cntO);

Another method of using registered elements is to include a
process that is sensitive to a clock edge or that waits for a clock
edge. In processes that are sensitive to clock edges or that wait
for clock edges, the compiler infers a register for the signals
defined within that process. Four basic templates are supported:

process_label: process
begin

wait until clk = '1';

end process;

This process does not have a sensitivity list. Instead it begins
with a WAIT statement. The process will become active when elk
transitions to a one (clk--or whatever identifier you give to your
clock--can also wait for zero for devices that support such
clocking schemes). All signal assignments within such a process
will be registered, as these signals only change values on clock
edges and retain their values between clock edges.

my-proc: process (clk)
begin

if (clk'event and clk ='1') then

end if;
end process;

This process is sensitive only to changes in the clock, as the
sensitivity list indicates. The first statement within the process
looks for a transition from zero to one in signal elk. All signals
that are assigned within this process are also registered because
the assignments only occur on rising clock edges, and the signals

Warp Synthesis Compiler Manual

Basic VHDL Elements

retain their values between rising clock edges.

your-proc: process (rst, clk)
begin

if rst = '1' then

elsif (clk'event and clk='l') then

end if;
end process;

This process is sensitive to changes in the clock and signal rst, as
the sensitivity list indicates. This process is intended to support
signals that must be registered and have an asynchronous set
and/or reset. The first statement within the process checks to see
if rst has been asserted. Signals that are assigned in this portion
of the template are assumed to be registered with rst assigned as
either the asynchronous reset or set of the register, as
appropriate. If rst has not been asserted, then the remainder of
this process works as does the previously described process.

procl: process (rst, pst, clk)
begin

if rst = '1' then

elsif pst = '1' then

elsif (clk'event and clk='l') then

end if;
end process;

This process is sensitive to changes in the clock and signals rst
and pst, as the sensitivity list indicates. This process is intended
to support signals that must be registered and have an
asynchronous set and reset. The first statement within the
process checks to see if rst has been asserted. Signals that are
assigned in this portion of the template are assumed to be
registered with rst used as either the asynchronous reset or set

Warp Synthesis Compiler Manual 4-45

Basic VHDL Elements

of the register, as appropriate. The second condition assigns pst
as the asynchronous reset or set of the register, as appropriate. If
rst and pst have not been asserted, then the remainder of this
process works as does the previous process.

To register 32-bits with an asynchronous reset, you could simply
write the code

regs32: process (r, clk2)
begin

if (r = '1') then
q <= x"ABC123DE";

elsif (clk2'event and clk2='1') then
q <= d;

end if;
end process;

Assuming that q and d are declared as 32-bit signals or ports,
then this code example implements 32 registers with d(i) as the
input, q(i) as the output, clk2 as the clock, and r as the
asynchronous reset for some of the registers and r as the
asynchronous preset for the others. This is because resetting the
q to the value x"ABC123DE" will cause some registers to go high
and other registers to go low when r is asserted.

Counters and state machines designed with processes are
described in more detail in the following discussions.

Counters

4-46

This is a 4-bit loadable counter:

entity counter is port (
clk, load: in bit;
data: in bit_vector(3 downto 0);
count: buffer bit_vector(3 downto 0));

end counter;

use work.int_math.alli
architecture archcounter of counter is

Warp Synthesis Compiler Manual

Basic VHDL Elements

begin
upcount: process (clk)

begin
if (clk'event and clk= '1') then

if load = '1' then
count <= data;

else
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

The "use work.int_math.all;" statement is included to make the
integer math package visible to this design. The integer math
package provides an addition function for adding integers to a bit
vector. The native VHDL addition operator applies only to
integers. The architecture description is behavioral. In this'
design the counter counts up or synchronously loads depending
on the LOAD control input. The counter is described by the
process "upcount". The statement "if (clk'event AND clk = 'I')
then ... " implies that operation of the counter takes place on the
rising edge of the signal clk. The following IF statement
describes the loading and counting operation.

In this description, the "if (clk'event AND clk = 'I') then ... "
statement (and its associated "end if') could have been replaced
by the statement "wait until clk = 'I';".

Following is a 4-bit loadable counter with synchronous reset:

entity counter is port(
clk, reset, load:
data:
count:

end counter;

use work.int_math.all;

in bit;
in bit_vector(3 downto 0);
buffer bit_vector(3 downto 0));

architecture archcounter of counter is
begin

Warp Synthesis Compiler Manual 4-47

Basic VHDL Elements

4-48

upcount: process (clk)
begin

if (clk'event and clk= '1') then
if reset = '1' then

count <= "0000";
elsif load = '1' then

count <= data;
else

count <= count + 1;
end if;

end if;
end process upcounti

end archcounter;

In this design the counter counts up, synchronously resets
depending on the RESET input, or synchronously loads
depending on the LOAD control input. The counter is described
by the process "upcount." The statement "if (clk'event AND elk =
'1') then ... " appearing first implies that all operations of the
counter take place on the rising edge of the signal, elk. The
following IF statement describes the synchronous reset
operation; the counter is synchronously reset on the rising edge
of elk. The remaining operations (load and count) are described
in elsif or else clauses in this same if statement, therefore the
reset takes precedence over loading or counting. Ifreset is not '1',
then the operation of the counter depends upon the load signal.
This operation is then identical to the counter in the previous
example.

Following is a 4-bit loadable, enablable counter with
asynchronous reset:

entity counter is port (
clk, reset, load,counten: in bit;
data: in bit_vector(3 downto 0);
count: buffer bit_vector(3 downto 0));

end counter;

use work.int_math.all;

Warp Synthesis Compiler Manual

Basic VHDL Elements

architecture archcounter of counter is
begin
upcount: process (clk, reset)

begin
if reset = '1' then

count <= "0000";
elsif (clk'event and clk= '1') then

if load = '1' then
count <= data;

elsif counten = '1' then
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

In this design the counter counts up, resets depending on the
RESET input, or synchronously loads depending on the LOAD
control input. This counter is similar to the one in the pre'i0us
example except that the reset is asynchronous. The sensitivity
list for the process contains both clk and reset. This causes the
process to be executed at any change in these two signals.

The first IF statement, "if reset = '1' then ... ," states that this
counter will assume a value of "0000" whenever reset is 'I'. This
will occur when the process is activated by a change in the signal
reset. The elsif clause that is part of this IF statement, "elsif
(clk'event AND clk = 'I') then ... ," implies that the subsequent
statements within the IF are performed synchronously
(clk'event) on the rising edge (clk = 'I') of the signal clk (providing
that the previous If / ELSIF clauses were not satisfied). The
synchronous operation of this process is similar to the previous
example, with the exception of the counten signal enabling the
counter. If counten is not asserted, then count retains its
previous value.

Following is a 4-bit loadable, enablable counter with
asynchronous reset and preset.

Warp Synthesis Compiler Manual 4-49

Basic VHDL Elements

4-50

entity counter is port(
clk, rst, pst,
data:

load,counten: in bit;

count:
in bit_vector(3 downto 0);
buffer bit_vector(3 downto 0));

end counter;

use work.int~ath.all;
architecture archcounter of counter is
begin
upcount: process (clk, rst, pst)

begin
if rst = '1' then

count <= "DODO";
elsif pst = '1' then

count <= "1111";
elsif (clk'event and clk= '1') then

if load = '1' then
count <= data;

elsif counten = '1' then
count <= count + 1;

end if;
end if;

end process upcount;
end archcounter;

In this design the counter counts up, resets depending on the
RESET input, presets depending upon the pst signal, or
synchronously loads depending on the LOAD control input. This
counter is similar to the previous example except that a preset
control has been added (pst). The sensitivity list for this process
contains clk, pst, and rst. This causes the process to be executed
at any change in these three signals.

The first IF statement "if rst = '1' then .. " implies that this counter
will assume a value of"OOOO" whenever rst is '1'. This will occur
when the process is activated by a change in the signal rst. The
first elsif clause that is part of this IF statement, "elsifpst = '1'
then ... ," implies that this counter will assume a value of "1111"
whenever pst is '1' and rst is '0'. This will occur when the process
is activated by a change in the signal pst and rst is not' l' .

Warp Synthesis Compiler Manual

Basic VHDL Elements

The second elsif clause that is part of this IF statement, "elsif
(clk'event AND clk = '1') then ... ," implies that the following
statements within the IF are performed synchronously
(clk'event) and on the rising edge (clk = '1') of the signal clk
providing that the previous If / ELSIF clauses were not satisfied.
In this regard the operation is identical to the counter in the
previous example.

The following is an 8-bit loadable counter. The data is loaded by
disabling the three-state output, and using the same i/o pins to
load.

entity ldcnt is port (
clk, ld, oe:
count_out:

end ldcnt;

in bit;
inout x01z_vector(7 downto 0»;

use work.rtlpkg.alli
use work.int_math.all;

architecture archldcnt of ldcnt is
signal count, data:bit_vector(7 downto 0);

begin
counter: process (clk)

begin
if (clk'event and clk='l') then

if ld = '1' then
count <= data;

else
count <= count + 1;

end if;
end if;

end process counter;
bidirs:for i in 7 downto 0 generate

bi_x: bufoe port map (count(i), oe, count_out (i) ,
data(i»;

end generate;
end archldcnt;

Warp Synthesis Compiler Manual 4-51

Basic VHDL Elements

4-52

This design performs a synchronous counter that can be loaded.
The load occurs by disabling the output pins. This allows a signal
to be driven from off chip to load the counter. The three-state for
I/O pins is accomplished with the use ofa bufoe component which
is defined as follows:

COMPONENT bufoe -- Three-state with feedback for I/O.
PORT (

x IN BIT; -- Logic input to Buffer.
oe IN BIT; -- Output Enable input.
y inout xOlz; -- bit output pin.
yfb OUT BIT -- Output feed back as bit.

) ;

END COMPONENT;

The generation scheme instantiates a bufoe for each i in 7
downto o. For each bufoe, a counter bit is the input to the buffer,
oe is the enable, count_out the output, and data the feed back.
Count_out and data are essentially the same node, but the bufoe
component which implements the three state requires two
separate signal names and provides the type conversion between
xOlz and bit.

oe

~
x

/
y

yfb

Figure 4-3. Bufoe Component.

Warp Synthesis Compiler Manual

Basic VHDL Elements

State Machines
VHDL provides constructs that are well suited for coding state
machines. VHDL also provides multiple ways to describe state
machines. In this section, we'll take a look at some coding
implementations and how the implementation affects synthesis
(the way in which the design description is realized in terms of
logic and the architectural resources of the target device).

The implementation that you choose when coding may depend on
the issues that are important to you: fast time-to-market or
squeezing all the capacity and performance you can out of a
device. Often times, choosing one coding style over another will
not result in much difference and will allow you to meet your
performance and capacity requirements while achieving fast
time-to-market.

We will consider Moore and Mealy state machines, discussing
Moore machines first. Moore machines are characterized by the
outputs changing only with a change in state. Moore machines
can be implemented in multiple ways:

1. Outputs are decoded from state bits combinatorially.

2. Outputs are decoded in parallel output registers.

3. Outputs are encoded within the state bits. A state
encoding is chosen such that a set of the state bits are the
required outputs for the given states.

4. One-hot encoded. One register is asserted "hot" per state.
This encoding scheme often reduces the amount of logic
required to transition to the next state at the expense of
more registers. This implementation is particularly well
suited to FPGA, register-intensive devices.

5. Truth Tables. A truth table maps the current state and
inputs to a next state and outputs.

Warp Synthesis Compiler Manual 4-53

Basic VHDL Elements

We will take the same state machine and implement it five
different ways as a Moore machine, discussing the design and
synthesis issues. Figure 4-4 shows the state diagram.

id 1= 3h

async rst--_--Ao...

id >= 7h * id 1= 9h id 1= 7h

Figure 4-4. State Diagram of Moore State Machine

4-54 Warp Synthesis Compiler Manual

Basic VHDL Elements

Outputs decoded combinatorially

Figure 4-5 shows a block diagram of an implementation in which
the state machine outputs are decoded combinatorially. The code
follows:

Logic

Inputs

State
egister

Outp'ut
Logic

Outputs

Figure 4-5. Outputs Decoded Combinatorially

entity moorel is port (
clk, rst:in bit;
id: in bit_vector(3 downto 0);
y: out bit_vector(l downto 0));

end moorel;

architecture archmoorel of moorel is
type states is (stateO, statel, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst)

begin
if rst='l' then

state <= stateO;
elsif (clk'event and clk='l') then

case state is
when stateO =>

if id = x"3" then
state <= statel;

Warp Synthesis Compiler Manual 4-55

Basic VHDL Elements

4-56

else
state <= stateD;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then
state <= stateD;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= stateD;

else
state <= state4;

end if;
end case;

end if;
end process;

--assign state outputs;
y <= ''~O" when (state=stateO) else

"10" when (state=state1 or state=state3) else
"11";

end archmoore1;

The architecture description begins with a type declaration,
called an enumerated type, for "states" which defines five states
labeled stateO through state4. A signal, state, is then declared to
be of type states. This means that the signal called state can take
on values of stateO, state!, state2, state3, or state4.

Warp Synthesis Compiler Manual

Basic VHDL Elements

The state machine itself is described within a process. The first
condition of this process defines the asynchronous reset condition
which puts the state machine in stateO whenever the signal rst is
a '1'. If the rst signal is not a '1' and the clock transitions to a '1'-­
"elsif(clk'event and clk='l')"--then the state machine algorithm is
sequenced. The design can be rising edge triggered as it is in this
example, or falling edge triggered by specifying clk='O'.

On a rising edge of the clock, the CASE statement (which
contains all of the state transitions for the Moore machine) is
evaluated. The "when" statements define the state transitions
which are based on the input id. For example, in the "case when"
the current state is stateO, the state machine will transition to
state1 ifid=x"3", otherwise the state machine will remain in
stateO. In a concurrent statement outside of the process, the
output vector y is assigned a value based on the current state.

This implementation demonstrates the algorithmic and intuitive
fashion in which VHDL permits in the description of state
machines. Simple case ... when statements enable you to
succinctly define the states and their transitions. There are two
design and synthesis issues with this implementation which
some designers may wish to consider: clock-to-out times for the
combinatorially decoded state machine outputs, and an
alternative state encoding to use minimal product terms.

As Figure 4-5 shows, the clock-to-out times for the state machine
outputs are determined by the time it takes for the state bits to
be combinatorially decoded. For designs that require minimal
clock-to-out times, a similar implementation as the one above
can be used with a design modification: a second process could
register the outputs after combinatorial decode. This would
introduce a one clock-cycle latency, however. If this latency is not
acceptable, then you will need to choose from the second
implementation (outputs decoded in parallel registers) or the
third implementation (outputs encoded within state bits).

Warp Synthesis Compiler Manual 4-57

Basic VHDL Elements

4-58

For designs in which the number product terms must be
minimized, you can implement your design similar as above,
with one exception: rather than using the enumerated encoding,
you will want to implement your own encoding scheme. The third
implementation shows how to do this.

Outputs decoded in parallel output registers

Figure 4-6 shows a block diagram of an implementation in which
the state machine outputs are determined at the same time the
next state is, by using output registers. The code follows:

State
RegIsters r--

~ --Logic - - Outflut Inputs RegI ters

Figure 4-6. Outputs decoded in parallel

entity moore2 is port(
elk, rst:in bit;
id: in bit_veetor(3 downto 0);
y: out bit_veetor(l downto 0));

end moore2;

-. -Output s

Warp Synthesis Compiler Manual

Basic VHDL Elements

architecture archmoore2 of moore2 is
type states is (stateO, state1, state2, state3, state4);
signal state: states;

begin
moore: process (clk, rst)

begin
if rst='l' then

state <= stateO;
y <= "00";

elsif (clk'event and clk='l') then
case state is

when stateO =>
if id = x"3" then

state <= state1;
y <= "10";

else
state <= stateO;
y <= "00";

end if;
when state1 =>

state <= state2;
y <= "11";

when state2 =>
if id = x"7" then

state <= state3;
y <= "10";

else
state <= state2;
y <= "11";

end if;
when state3 =>

if id < x"7" then
state <= stateO;
y <= "00";

elsif id = x"g" then
state <= state4;
y <= "11";

else
state <= state3;
y <= "10";

end if;

Warp Synthesis Compiler Manual 4-59

Basic VHDL Elements

4-60

when state4 =>
if id = x"b" then

state <= stateD;
y <= "DO";

else
state <= state4;
y<= "11";

end if;
end case;

end if;
end process;

end archmoore2;

This implementation requires that you specify--in addition to the
state transitions--the state machine outputs for every state and
every input condition because the outputs must be determined in
parallel with the next state. Assigning the state machine outputs
in the synchronous portion of the process causes the compiler to
infer registers for the output bits. Having output registers rather
than decoding the outputs combinatorially results in a smaller
clock-to-out time. This implementation has one design/synthesis
issue which some may wish to consider: while this
implementation achieves a better clock-to-out time for the state
machine outputs (as compared to the first implementation), it
uses more registers (and possibly more product terms) than the
first implementation. The next implementation (outputs encoded
within state bits) achieves the fastest possible clock-to-out times
while at the same time using the fewest total number of
macrocells in a PLD/CPLD.

Outputs encoded within state bits

Figures 4-7 and 4-8 show the state encoding table and a block
diagram of an implementation in which the outputs are encoded
within the state registers--the two least significant state bits are
the outputs. Therefore, no decoding is required for the outputs,
and the output signals can be directed from the state registers to
output pins. The code follows:

Warp Synthesis Compiler Manual

Basic VHDL Elements

State Output State Encoding

sO 00 000

sl 10 010

s2 11 011

s3 10 110

s4 11 111

Figure 4-7. State encoding table

~ State Logic - -- RegIsters -- Output -Inputs
s

Figure 4-8. Outputs Encoded Within State Bits

entity moorel is port(
elk, rst:in bit;
id: in bit_veetor(3 downto 0);
y: out bit_veetor(l downto 0));

end moorel;

Warp Synthesis Compiler Manual 4-61

Basic VHDL Elements

architecture archmoorel of moorel is
signal state: bit_vector(2 downto 0);

-- State assignment is such that 2 LSBs
constant stateO: bit_vector(2 downto 0)
constant statel: bit_vector(2 downto 0)
constant state2: bit_vector(2 downto 0)
constant state3: bit_vector(2 downto 0)
constant state4: bit_vector(2 downto 0)
begin
moore: process (clk, rst)

begin
if rst='l' then

state <= stateO;
elsif (clk'event and clk='l') then

case state is
when stateO =>

if id = x"3" then
state <= state1;

else
state <= stateO;

end if;
when state1 =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then
state <= stateO;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= stateO;

else

are outputs
.- "000";
. - "010";
.- "011";
.- "110";
. - "111";

4-62 Warp Synthesis Compiler Manual

Basic VHDL Elements

state <= state4;
end if;

when others =>

state <= stateO;
end case;

end if;
end process;

--assign state outputs (equal to state bits)
y <= state(l downto 0);
end archmoorel;

A state encoding was chosen for this design such that the last
two bits were equivalent to the state machine outputs for that
state. By using constants, the state machine could be encoded,
and the transitions specified as in the first implementation. The
output was specified in a concurrent statement. This statement
shows that the outputs are a set of the state bits. One synthesis
issue is highlighted in this example: the use of "when others =>."

"When others" is used when not all possible combinations of a bit
sequence have been specified in other "when" clauses. In this, the
states "001," "100," and "101" are not defined, and no transitions
are specified for these states. If "when others" is not used, then
next state logic must be synthesized assuming that if the
machine gets in one of these states then it will remain in that
state. This has the effect of utilizing more logic (product terms in
the case of a PLD/CPLD). Supplying a simple "when others" is a
quick solution to this design issue.

One-hot-one state machines

In a one-hot-one state machine, there is one register for each
state. Only one register is asserted, or "hot," at a time,
corresponding to one distinct state. Figure 4-9 shows three states
of a state machine and how one of the state bits would be
implemented. From this implementation, you can see that the

Warp Synthesis Compiler Manual 4-63

Basic VHDL Elements

4-64

next state logic is quite simple. The trade-off is in the number of
registers that is required. For example, a state machine with
eight states could be coded in three registers. The equivalent
one-hot coded state machine would require eight registers. The
trade-off is that the next-state logic is more simple, often times
enabling faster performance in FPGA architectures which are
register intensive but that would require multiple levels of logic
to decode a complex state transition. Following is the code:

Warp Synthesis Compiler Manual

Basic VHDL Elements

ab = "10" ab = "01"

D D

sl • • s5

Figure 4-9. Implementation of one-hot state machine bits

entity one_hot is port(
clk, rst:in biti
id: in bit_vector (3 downto O)i
y: out bit_vector(l downto O»i

end one_hot;

architecture archone_hot of one_hot is

Warp Synthesis Compiler Manual 4-65

Basic VHDL Elements

4-66

type states is (stateD, statel, state2, state3, state4);
attribute state_encoding of states:type is one_hot_one;
signal state: states;

begin
machine: process (clk, rst)

begin
if rst='l' then

state <= stateD;
elsif (elk'event and elk='l') then

case state is
when stateD =>

if id = x"3" then
state <= statel;

else
state <= stateD;

end if;
when statel =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

else
state <= state2;

end if;
when state3 =>

if id < x"7" then
state <= stateD;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= stateD;

else
state <= state4;

end if;
end case;

end if;
end process;

Warp Synthesis Compiler Manual

Basic VHDL Elements

--assign state outputs;
y <= "00" when (state=stateO) else

"10" when (state=state1 or state=state3) else
"11";

end archone_hot;

This implementation is almost the same as the first
implementation, the only difference being the additional
attribute which causes the state encoding to use one register for
each state.

State Transition Tables

The final Moore implementation of this state machine uses a
truth table. The state transition table can be found in the VHDL
code.

The code follows:

entity ttf_fsm is port(
clk, rst:in bit;
id: in bit_vector(O to 3);
y: out bit_vector(O to 1));

end ttf_fsm;

use work.table_bv.all;
architecture archttf_fsm of ttf_fsm is

signal table_out: bit_vector(O to 4);
signal state: bit_vector(O to 2);

constant stateO:x01_vector(0 to 2) := "000";
constant state1: x01_vector(0 to 2) .- "001";
constant state2: x01_vector(0 to 2) .- "010";
constant state3: x01_vector(0 to 2) .- "011";
constant state4: x01_vector(0 to 2) .- "100";

constant table: x01_table(0 to 21, 0 to 11) .-
present state output

stateO &
stateO &
stateO &

Warp Synthesis Compiler Manual

"00",
"00",
"10",

4-67

Basic VHDL Elements

4-68

state1 & "xxxx" &

state2 & "lxxx" &

state2 & "xOxx" &

state2 & "xxOx" &

state2 & "xxxO" &

state2 & "0111" &

state3 & "0111" &

state3 & "1000" &

state3 & "llxx" &

state3 & "101x" &

state3 & "0110" &

state3 & "010x" &

state3 & "OOxx" &

state3 & "1001" &

state4 & "Oxxx" &

state4 & "100x" &

state4 & "llxx" &

state4 & "1010" &

state4 & "1011" &

begin
machine: process (clk, rst)

begin

state2
state2
state2
state2
state2
state3
state3
state3
state3
state3
stateO
stateO
stateO
state4
state3
state3
state4
state4
stateO

if rst ='1' then
table_out <= "00000";

& "11",
& "11",
& "11" ,
& "11" ,
& "11",
& "10",
& "10",
& "10",
& "10",
& "10",
& "00",
& "00",
& "00",
& "11",
& "10",
& "10",
& "11" ,
& "11",
& "00") ;

elsif (clk'event and clk='l') then
table_out <= ttf(table,state & id);

end if;
end process;

state <= table_out(O to 2);

--assign state outputs;
y <= table_out(3 to 4);
end archttf_fsm;

This implementation uses the ttffunction, truth table function,
which enables you to create a state transition table that lists the
inputs, the current state, the next state, and the associated
outputs. Within the architecture statement, a few signals and
constants are defined. The signal called table_out is the vector
which will contain the output from the state table. The signal

Warp Synthesis Compiler Manual

Basic VHDL Elements

called state is the state variable itself. Six constants are defined
which contain the state encoding - stateO, statel, state2, state3,
and state4 - and table which contains the entire state transition
table. The table itselfis created as an array with a certain
number of rows designating the number of transitions, and a
certain number of columns designating the number of input bits,
present state bits, next state bits, and output bits.

Since the ttffunction is not a standard part ofVHDL, it has been
defined in a separate package and provided to you as part of the
Warp software. This package is located in the work library and is
called table_bv. To allow your design to have access to the ttf
function, you must add the statement "use work.table_bv.all;" to
your VHDL description immediately above your architecture
defini tion.

Most of the work is in creating the truth table, and the process
becomes fairly simple. The first portion of the process defines the
asynchronous reset. Next, the synchronous portion of the process
(elsif clk'event and clk='l') is defined in which the signal
table_out is assigned the returned value of the ttf function. The
function is called with two parameters: the name of the state
transition table, and the set of bits which contain the inputs and
the present state information. The value that is returned is the
remainder of the columns in the table (total number of columns­
second parameter). These bits will contain the next state value
and the associated outputs. The only task remaining is to split
the state information from the output information and assign
them to the appropriate signal names. Both of these assignments
must occur outside of the process, otherwise another level of
registers will be created, as this portion of the process defines
synchronous assignments.

This design, as implemented, uses more registers than required,
but it could easily be modified. Registers must be created for both
the state registers and the output registers, as in the second
implementation (outputs decoded in parallel). The truth table

Warp Synthesis Compiler Manual 4-69

Basic VHDL Elements

4-70

can be modified such that the outputs are encoded in the state
bits, as in the third example. Thus, rather than specifying both
next state values and outputs, you can simply specify next state
values in which the outputs are encoded.

Mealy state machines are characterized by the outputs which
can change depending on the current inputs. We will implement
the state machine shown in Figure 4-10 which has Moore outputs
and one Mealy output. Figure 4-11 shows a block diagram of a
Mealy m~chine.

The code follows:

entity mealyl is port (
elk, rst:in bit;
id: in bit_veetor(3 downto 0);
w: out bit;
y: out bit_veetor(l downto 0));

end mealyl;

architecture arehmealyl of mealyl is
type states is (stateO, statel, state2, state3, state4);
signal state: states;

begin
moore: process (elk, rst)

begin
if rst='l' then

state <= stateO;
elsif (elk'event and elk='l') then

case state is
when stateO =>

if id = x"3" then
state <= statel;

else
state <= stateO;

end if;
when statel =>

state <= state2;
when state2 =>

if id = x"7" then
state <= state3;

Warp Synthesis Compiler Manual

Basic VHDL Elements

else
state <= state2;

end if i
when state3 =>

if id < x"7" then
state <= stateO;

elsif id = x"9" then
state <= state4;

else
state <= state3;

end if;
when state4 =>

if id = x"b" then
state <= stateO;

else
state <= state4;

end if;
end case;

end if;
end process;

--assign moore state outputs;
y <= "00" when (state=stateO) else

"10" when (state=state1 or state=state3) else
"11";

--assign mealy output;
w <= '0' when (state=state3 and id < x"7") else

'1' ;
end archmealy1i

Warp Synthesis Compiler Manual 4-71

Basic VHDL Elements

id 1= 3hll

async rst

id 1= 7hll
id >= 7h * id 1= 9hll

Figure 4-10. State Diagram for Combination Moore-Mealy State
Machine

4-72 Warp Synthesis Compiler Manual

Basic VHDL Elements

State
Registers I--.. --

Logic - -- -
Inputs Outputs

Figure 4-11. Block Diagram of Mealy State Machine

This implementation is almost identical to the first Moore
implementation. The only difference is the additional Mealy
output defined at the end of the architecture. We'll now take a
look at a Mealy state machine, with all Mealy outputs.

Figure 4-12 is the state diagram. Two implementations follow.

Warp Synthesis Compiler Manual 4-73

Basic VHDL Elements

async rstlOO ----.....

id = 9hlll

id 1= 7hlll

Figure 4-12. State Diagram for Second Mealy Machine

The following implementation specifies the state transitions in a

4-74 Warp Synthesis Compiler Manual

Basic VHDL Elements

synchronous process, and the mealy outputs with a concurrent
statement.

entity mealyl is port (
in bit; clk, rst:

id:
y:

in bit_vector(3 downto 0);
out bit_vector(l downto 0));

end mealyl;

architecture archmealyl of mealyl is
type states is (stateO, statel, state2, state3,

state4) ;
signal state: states;

begin
machine: process (clk, rst)

begin
if rst='l' then

state <= stateD;
elsif (clk'event and clk='l') then

case state is

Warp Synthesis Compiler Manual

when stateD =>
if id = x"3" then

state <= statel;
else

state <= stateD;
end if;

when statel =>
state <= state2;

when state2 =>
if id = x"7" then

state <= state3;
else

state <= state2;
end if;

when state3 =>
if id < x"7" then

state <= stateD;
elsif id = x"9" then

state <= state4;
else

state <= state3;
end if i

4-75

Basic VHDL Elements

4-76

when state4 =>

end case;

if id = x"b" then
state <= stateO;

else
state <= state4;

end if;

end if;
end process;

--assign mealy
y <= "00" when

"10" when

"11 II ;

end archmealy1;

output;
«state=stateO
(state=state3
(state=state4

((state=stateO

and
and
and
and

id /= x"3") or
id < X"7") or
id x"B"» else
id x"3") or

(state=state2 and id x"7") or
(state=state3 and (id >= x"7") and

(id /= x"9"») else

This implementation of the Mealy state machine uses a
synchronous process in much the same way as all of the other
examples. An enumerated type is used to define the states. As in
all but the one_hot coding implementation, you can choose your
own state assignment, as in the third Moore implementation.
The Mealy outputs in this implementation are define in a
concurrent "when ... else" construct. Thus, the output y is a
function of the current state and the present inputs.

A second implementation of the same state machine follows. This
implementation uses one synchronous process (in which the next
state is captured by the state registers) and one combinatorial
process in which the state transitions and Mealy outputs are
defined.

entity mealy1 is port(
clk, rst:
id:
y:

in bit;
in bit_vector(3 downto 0);
out bit_vector(l downto 0»;

Warp Synthesis Compiler Manual

Basic VHDL Elements

end mealy1;

architecture archmealy1 of mealy1 is
type states is (stateD, state1, state2, state3,

state4) ;
signal state, next_state: states;

begin
st_regs: process (elk, rst)

begin
if rst='l' then

state <= stateD;
elsif (clk'event and clk='l') then

state <= next_state;
end if;

end process;

mealy: process (id)
begin

ease state is
when stateD =>

if id x"3" then

else

next state <= state1;
y <= "10";

next_state <= stateD;
y <= "00";

end if;
when state1 =>

next_state <= state2;
y<= "11";

when state2 =>
if id = x"7" then

next_state <= state3;
y <= "10";

else
next state <= state2;
y<= "11";

end if;
when state3 =>

Warp Synthesis Compiler Manual

if id < x"7" then
next_state <= stateD;

y <= "00";

4-77

Basic VHDL Elements

4-78

elsif id = x"9" then
next_state <= state4;
y<= "11";

else
next_state <= state3;

y <= "10";
end ifi

when state4 =>

end case;
end process;

end archmealyl;

if id x"h" then

else

end if;

next_state <= stateD;
y<= "00";

next_state <= state4;
y<= "11";

In this implementation, the first process, "st_regs," captures the
next state value. The second process, "mealy," defines the state
transitions and the Mealy outputs. This second process is not
synchronous and is activated each time the signal id transitions.
Because the second process is not synchronous, the outputs can
change even if the state doesn't, as would be expected in a Mealy
state machine.

This concludes our discussion of state machines. Additional state
machine, counter, and logic examples are documented in
Section 4.10. We will move on to discuss hierarchical design, but
first we'll discuss the concept of packages.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.8. Packages

A package is a collection of declarations that make component, type,
constant, and function declarations visible to more than one design.

A package can declare components (which are entity/architecture
pairs), types, constants, or functions as a way to make these
items visible in other designs.

The form of a package declaration is

PACKAGE package_name IS
declarations
END package_name;

Package declarations are typically used in Warp to declare types,
constants, and components to be used by other VHDL
descriptions. Most commonly, you put a package declaration'
(containing component declarations) at the beginning of a design
file (before the entity/architecture pair definitions) in order to use
the components in a subsequent or hierarchical design.

Packages which contain only components do not need a package
body. However, if you intend to write VHDL functions to be used
in multiple designs, then these functions must be declared in the
package declaration as well as defined in a package body:

PACKAGE BODY package_name IS
declarations
END package_name;

A package body always has the same name as its corresponding
package declaration, and is preceded by the reserved words
PACKAGE BODY. A package body contains the function bodies
whose declarations occur in the package declaration, as well as
declarations that are not intended to be used by other VHDL
descriptions.

Warp Synthesis Compiler Manual 4-79

Basic VHDL Elements

4-80

The following example shows a package that declares a
component named "demo," whose design (entity/architecture
pair) follows the package declaration:

package demo-package is
component demo
port(x:out bit; clk, y, z:in bit);
end component;

end package;

entity demo is
port(x:out bit; clk, y, z:in bit);

end demo;

architecture fsm of demo is

end fsm;

If this description were in the file "demofile.vhd," you could
analyze the package and add it to the current WORK library
with the command

warp -a demofile

Items declared inside a package declaration are not
automatically visible to another VHDL description. A use clause
within a VHDL description makes items analyzed as part of a
separate package visible within that VHDL design unit.

Use clauses may take one of three forms:

• USE library_name.package_name;

• USE package_name.object;

• USE library_name.package_name.object;

The portion of the USE clause argument preceding the final
period is called the prefix; that after the final period is called the
suffix.

Warp Synthesis Compiler Manual

Basic VHDL Elements

Some examples of use clauses are:

LIBRARY project_lib;
USE project_lib.special-pkg;
USE project_lib.special-pkg.compl;

The LIBRARY statement makes the library "project_lib" visible
within the current VHDL design unit. The first USE clause
makes a package called "special_pkg" contained within library
"project_lib" visible within the current VHDL design unit. The
second USE clause makes a component called "comp1," contained
within "special_pkg," visible within the current VHDL design
unit.

The suffix of the name in the use clause may also be the reserved
word ALL. The use of this reserved word means that all packages
within a specified library, or all declarations within a specified
package, are to be visible within the current VHDL design unit.
Some examples are:

USE project_lib. all;

This example makes all packages contained within library
"project_lib" visible within the current VHDL design unit.

USE project_lib.special-pkg.all;

This example makes all declarations contained within package
"special_pkg," itself contained within library "project_lib," visible
within the current VHDL design unit.

Note the important difference between

USE project_lib.special-pkg;

and

USE project_lib.special-pkg.all;

The first USE clause just makes the package named special_pkg

Warp Synthesis Compiler Manual 4-81

Basic VHDL Elements

within library project_lib visible within the current VHDL design
unit. However, while the package name may be visible, ITS
CONTENTS ARE NOT. The second USE clause makes all
contents of package special_pkg visible to the current VHDL
design unit.

Example

4-82

The following code defines a four bit counter:

package counter-pkg is
subtype nibble is bit_vector(3 downto 0);
component upcnt port(

clk: in bit;
count: buffer nibble);

end component;
end counter-pkg;

use work.counter-pkg.all;
use work.int_math.all;

entity upcnt is port(
clk: in bit;
count: buffer nibble);

end upcnt;

architecture archupcnt of upcnt is
begin
counter:process (clk)

begin
if (clk'event and clk='l') then

count <= count + 1;
end if;

end process counter;
end archupcnt;

The package declaration will allow you to use the upcnt
component and the type nibble in other designs. For example,
suppose you needed five of these counters, but you did not want
to write five separate process. You might prefer to simply

Warp Synthesis Compiler Manual

Basic VHDL Elements

instantiate the upcnt counter defined above in a new design,
creating a level of hierarchy. The code follows:

use work.counter-pkg.all;

entity counters is port(
clk1, clk2:
acnt, bcnt, ccnt:

deqe:
end counters;

architecture archcounters of

in bit;
buffer nibble;

out bit);

counters is
signal dcnt, ecnt: nibble;
begin
counter1: upcnt port map (clk1, acnt) ;
counter2: upcnt port map (clk2, bcnt) ;
counter3: upcnt port map (clk => clk1, count =>
counter4: upcnt port map (clk2, dcnt) ;

ccnt) ;

counter5: upcnt port map (count => ecnt, clk => clk2);
deqe <= '1' when (dcnt ecnt) else '0';
end archcounters;

The initial use clause makes the counter _pkg available to this
design. Counter _pkg is required for the nibble definition used in
the entity, and the upcnt component used in the architecture.
Five counters are then instantiated by using the port map to
associate the component 1/0 with the appropriate entity ports or
architecture signals. Three of the instantiations use positional
association in which the position of the signals in the port map
determines to what 1/0 of the component the signal is associated.
In counter3, and counter5, named association is used to explicitly
define the signal to component 110 connections. In named
association, the order of the signal assignment is not important.

When using Galaxy to compile and synthesize the counters
design, the design file that contains upcnt must be compiled first,
before counters can be compiled and synthesized. This is because
the contents of the counter_pkg must first be added to the WORK
library. Therefore, when selecting (in Galaxy) the Warp input

Warp Synthesis Compiler Manual 4-83

Basic VHDL Elements

4-84

files to be compiled and synthesized, select the upcnt design as
the first file and the counters design as the second. This will
ensure that upcnt is compiled first. Once you have added the
upcnt design to the current WORK library, you do not need to
recompile it when synthesizing your top-level design unless you
make changes to it or target your design to a different device.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.8. Packages

4.8.1. Predefined Packages

Special purpose packages are provided with the Warp compiler to
simplify description and synthesis of frequently used and useful
structures and operations not native to VHDL.

The following packages are supplied standard with the warp
compiler. These packages are found in \ warp \ lib \common.

Package Name Purpose

rtlpkg

math operations with bit vector data types

math operations which mix integer and bit vector
data types

provides a state transition table format for
description of state machines.

provides a set of simple logic functions useful for
creation hierarchical structural VHDL design files

defines 8-bit arithmetic components for use in
designs targeted to CY7C340 family
CPLDs.Implemented using CY7C340 architecture
primitive elements. The mth34xl2, mth34xl6, and
mth34x24 packages provide similar arithmetic
components of widths 12,16, and 24 respectively.

The USE statement is required in a design file to make the
package "visible" to the design file. The USE statement should
immediately precede the architecture and appear as follows:

USE work.package_name.a11i

where package_name refers to one of the package names listed
above.

Warp Synthesis Compiler Manual 4-85

Basic VHDL Elements

Package Contents and Usage of bv _math

4-86

This package contains functions which allow arithmetic
operations on bit vectors. VHDL is a strongly typed language
which does not recognize the bit data type as a type compatible
with arithmetic manipulation. This package contains functions
which when invoked in the design file allow arithmetic
operations on bit vectors.

Several of the functions in this package are implemented by
"overloading" of the native VHDL operators for arithmetic
operations on integers. Overloading is a scheme by which one or
more functions can be called by use of the same conventional
arithmetic operator symbol. The compiler will call the correct
function by determining the data types of the arguments of the
function call. Multiple functions can be represented by the same
symbol as long as no two functions accepts the same combination
of argument data types. By this means the "+" sign can be used,
for example, to call a bit vector addition routine since the data
type of the arguments (both of type bit vector) will signal that "+"
should call the bit vector addition function.

The operators for which functions are provided are:

inc_bv(a) increment bit vector a. If function is assigned to a
signal within a clocked process, the synthesized
result will be an up counter. Equivalent to a <= a + 1;

Usage: a <= inc_bv(a);

dec_bv(a) decrement a bit vector a. If function is assigned to a
signal within a clocked process, the synthesized
result will be a down counter. Equivalent to a <= a-
1;.

Usage: a <= dec_bv(a);

Warp Synthesis Compiler Manual

+(a;b)

Basic VHDL Elements

regular addition function for two bit vectors a and b.
The "+" operator overloads the existing "+" operator
for definition for arithmetic operations on integers.
The output vector is the same length as the input
vector so there is no carry output. If a carry out is
required the user should increase the length of the
input vectors and use the MSB as the carry out.

U sage for two vectors of length 8 with carry out:

signal a: bit_vector(O to 8);
signal b: bit_vector(O to 8);
signal q: bit_ vector(O to 8);
q <= a + b;

+(a; b) regular addition function for adding to bit vector a
the object b of type bit. This is the equivalent of a
conditional incrementing of bit vector a. The "+"
operator overloads the existing" +" operator for
definition for arithmetic operations on integers. The
output vector is the same length as the input vector
so there is no carry output. If a carry out is required
the user should increase the length of the input
vector and use the MSB as the carry out.

Usage for 16 bit vector with no carry out:

signal a: bit_ vector(O to 15);
signal b: bit;
signal q: bit_vector(O to 15);
q <= a + b;

-(a; b) regular subtraction function for two bit vectors. The
"-" operator overloads the existing "-" operator
definition for arithmetic operations on integers.

Usage: signal a: bit_vector(O to 7);

signal b: bit_vector(O to 7);

Warp Synthesis Compiler Manual 4-87

Basic VHDL Elements

signal q: bit_ vector(O to 7);
q <= a - b;

-(a; b) regular subtraction function for subtracting from bit
vector a the object b of type bit. This is equivalent to
the conditional decrementing of bit vector a. The "-"
operator overloads the existing "-" operator definition
for arithmetic operations on integers.

Usage: signal a: bit_vector(O to 7);

signal b: bit;
signal q: bit_vector(O to 7);
q <= a - b;

inv(b) unary invert function for object b of type bit. For use
in port maps and sequential assignments.

Usage: signal b: bit;

signal z: bit;
z <= inv(b);

inv(a) invert function which inverts each bit of bit vector a
and returns resulting bit vector.

Usage: signal a: bit_vector(O to 15);

signal q: bit_vector(O to 15);
q <= inv(a);

Package Contents and Usage of int_math

4-88

This package contains functions which allow mixed arithmetic
operations on bit vectors and integers.

VHDL is a strongly typed language which does not recognize the
bit data type as a type compatible with arithmetic manipulation.
This package contains functions which when invoked in the

Warp Synthesis Compiler Manual

Basic VHDL Elements

design file allow arithmetic operations which mix integers and
bit vectors.

Several of the functions in this package are implemented by
"overloading" of the native VHDL operators for arithmetic
operations on integers. Overloading is a scheme by which one or
more functions can be called by use of the same conventional
arithmetic operator symbol. The compiler will call the correct
function by noting the data types of the arguments of the
function call. Multiple functions can be represented by the same
symbol as long as no two functions accepts the same combination
of argument data types. By this means the "+" sign can be used,
for example, to call a routine for adding mixed data types (bit
vector and integer) since the data type of the arguments will
signal that" +" should call the package function for mixed
addition rather than the native function for integer addition or
the bit vector addition function of the above package "bv _math".

The operators for which functions are provided are:

bv2i(a) converts bit vector a to an integer.

Usage: variable z: integer range 0 to 15;

signal a: bit_ vector(O to 3);
z := bv2i(a);

i2bv(i; w) converts integer i to binary equivalent and expresses
as a bit vector of length w.

Usage: variable i: integer range 0 to 31;

signal a: bit_vector(O to 4);
a <= i2bv(i, 5);

i2bvd(i; w) converts integer i to a binary coded decimal bit vector
of length w.

Usage: variable i: integer range 0 to 31;

Warp Synthesis Compiler Manual 4-89

Basic VHDL Elements

4-90

signal a: bit_ vector(O to 7);
a <= i2bv(i, 8);

=(a; b) converts bit vector a to integer and checks for
equality with integer b. Returns boolean value TRUE
if equal, FALSE if not equal. Overloads native
operator for integer arithmetic.

Usage:signal a: bit_vector(O to 15);

variable b: range 0 to 64;
variable z: boolean;
z := (a = b);

I=(a; b) converts bit vector a to integer and checks for
equality with integer b. Returns boolean value TRUE
if not equal, FALSE if equal. Overloads native
operator for integer arithmetic.

Usage:signal a: bit_ vector(O to 15);

variable b: range 0 to 128;
variable z: boolean;

>(a; b)

z := (a 1= b);

converts bit vector a to integer and compares with
integer b. If a is> b, returns boolean value TRUE,
otherwise returns FALSE. Overloads native operator
for integer arithmetic.

Usage:signal a: bit_vector(O to 15);

variable b: range 0 to 128;
variable z: boolean;
z := (a > b);

«a; b) converts bit vector a to integer and compares with
integer b. If a is < b, returns boolean value TRUE,
otherwise returns FALSE. Overloads native operator
for integer arithmetic.

Warp Synthesis Compiler Manual

Usage:signal a: bit_vector(O to 15);

variable b: range 0 to 128;
variable z: boolean;
z:= (a < b);

Basic VHDL Elements

>=(a; b) converts bit vector a to integer and compares with
integer b. If a is >= b, returns boolean value TRUE,
otherwise returns FALSE. Overloads native operator
for integer arithmetic.

Usage:signal a: bit_vector(O to 15);

variable b: range 0 to 128;
variable z: boolean;
z:= (a >= b);

<=(a; b) converts bit vector a to integer and compares with
integer b. If a is <= b, returns boolean value TRUE,
otherwise returns FALSE. Overloads native operator
for integer arithmetic.

Usage:signal a: bit_vector(O to 3);

variable b: range 0 to 128;
variable z: boolean;
z:= (a <= b);

+(a; b) increments bit vector a the number of times indicated
by the value of integer b and returns bit vector result.
Implemented by conversion of integer b to bit vector
and adding to bit vector a. Overloads native operator
for integer arithmetic.

Usage:signal a: bit_vector(O to 15);

variable b: range 0 to 128;
signal z: bit_ vectoreD to 15);
z <= a + b;

Warp Synthesis Compiler Manual 4-91

Basic VHDL Elements

-(a; b) decrements bit vector a the number of times indicated
by the value of integer b and returns bit vector result.
Implemented by conversion of integer b to bit vector
and subtracting from bit vector a. Over loads native
operator for integer arithmetic.

Usage:signal a: bit_vector(O to 15);

variable b: range 0 to 128;
signal z: bit_vector(O to 15);
z <= a - b;

Package Contents and Usage of table_bY

The table_bv package describes a truth table function, ttf, which
can be used to implement state transiting tables or other truth
tables. A description and example of the ttffunction can be found
in Section 4.7.3, "Design Methodologies."

Package Contents and Usage of rtlpkg

4-92

The package rtlpkg contains VHDL component declarations for
basic VHDL components which can be used to construct
structural design files of more complex logic circuits. These
components are useful for controlling implementation of the
design by the WARP compiler to insure that specific performance
or architecture choices are preserved in the final synthesized
design. These components are generic components which can be
used to describe retarget able designs which can be synthesized
and fit to any desired Cypress device. The compiler makes the
appropriate synthesis choices based on the target device's
architectural resources to achieve the best possible utilization of
the device and by preserving the specified interconnection of the
declared components maintains the specific circuit
implementation intended by the designer.

Components Contained In the Package rtlpkg are:

Warp Synthesis Compiler Manual

Name

bufoe

dlatch

dff

xdff

jkff

buf

srI

srff

dsrff

tff

xbuf

triout

Basic VHDL Elements

Function

bidirectional I/O with three state output driver
y with type bit feedback to logic array (yfb)

transparent latch with active low latch enable
(e) (transparent high)

positive edge triggered D-Type flip flop

positive edge triggered D-Type flip flop with
XOR of two inputs (xl & x2) feeding D input

positive edge triggered jk flip flop

signal buffer to represent a signal not to be
removed during synthesis to enable visibility
during simulation.

set/reset latch with reset dominant, set and
reset active high

posi tive edge triggered set/reset flipflop, reset
dominant, set and reset active high

positive edge triggered D-Type flip flop without
asynchronous set and reset, reset dominant,
set and reset active high

toggle flipflop

two input exclusive OR gate

three state buffer with active high output
enable input

Package Contents and Usage of mth34x8_pkg

The packages mth34x8_pkg, mth34xl2, mth34xl6, and
mth34x24 contain VHDL component declarations for optimal

Warp Synthesis Compiler Manual 4-93

Basic VHDL Elements

4-94

arithmetic components to be implemented in the CY7C34X
family of devices. These components are useful for controlling
implementation of arithmetic functions by the WARP compiler to
insure that specific performance or architecture choices are
preserved in the final synthesized design. There are four
packages containing components that are functionally the same,
but that operate on signals of different widths. The usage for
these components is the same. The components included in the
mth34x8pkg are as follows.

Name Function

eight-bit adder

eight-bit subtracter

eight-bit greater than comparator

eight-bit less than comparator

eight-bit greater than or equal to comparator

eight-bit less than or equal to comparator

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.9. Li braries

A library is a collection of previously analyzed design elements
(packages, components, entities, architectures) that can be referenced
by other VHDL descriptions.

1.

If all information about a design description had to appear in one
file, many VHDL files would be huge and cumbersome, and
information re-use would be impossible. However, VHDL allows
you to share information between files by means of two
constructs: libraries and packages.

In VHDL, a library is a collection of previously analyzed 1 design
elements (packages, components, entities, architectures) that
can be referenced by other VHDL descriptions. In Warp, a library
is implemented as a directory, containing one or more VHDL files
and an index to the design elements they contain.

To make the contents of a library accessible by a VHDL
description, use a library clause. A library clause takes the form:

LIBRARY library_name [, library name ...];

For example, the statement

LIBRARY gates, my_lib;

makes the contents of two libraries called gates and my_lib
accessible in the VHDL description in which the LIBRARY
clause is contained.

You seldom need to use a library clause in Warp VHDL

In VHDL, analysis is the examination of a VHDL description to guarantee compli­
ance with VHDL syntax, and the extraction of design elements (packages, compo­
nents, entities, architectures) from that description.
Synthesis is the production of a file (to be written onto a physical chip) that embodies
the design elements extracted from the VHDL descriptions by analysis.

Warp Synthesis Compiler Manual 4-95

Basic VHDL Elements

4-96

descriptions. This is because all VHDL implementations include
a special library, named WORK. WORK is the symbolic name
given to the current working library during analysis. The results
of analyzing a VHDL description are placed by default into the
WORK library for use by other analyses. (In other words, you
don't need a LIBRARY clause to make the WORK library
accessible.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.10. Additional Design Examples

This section provides additional design examples not described In
earlier sections of this chapter.

Logic

Many examples demonstrating design methodologies can be
found in section 4.7 of this chapter. Most of these examples can
be found in the /warp/examples directory. This section provides a
discussion for additional design examples found in the
\ warp \examples directory but not discussed earlier in this
chapter. These designs include:

• DEC24: a two-to-four bit decoder.

• PINS: shows how to use the part_name and pin_numbers
attributes to map signals to pins.

• NAND2_TS: a two-input NAND gate with three-state
output.

Counters

• CNT4_EXP: Four bit counter with synchronous reset. The
counter uses expressions for clocks and resets.

• CNT4_REC: Four bit counter with load on the
bidirectional pins. Demonstrates use of a record.

State Machines

• DRINK: a behavioral description of a mythical drink
machine (the drinks only cost 30 cents!).

• TRAFFIC: a traffic-light controller.

• SECURITY: a simple security system.

Warp Synthesis Compiler Manual 4-97

Basic VHDL Elements

4.10. Additional Design Examples

4.10.1. DEC24

This example demonstrates a two-to-four decoder.

Source Code:
-- two to four demultiplexer/decoder

ENTITY demux2_4 IS
PORT(inO, inl: IN BIT;

dO, dl, d2, d3: OUT BIT);
END demux2_4;

ARCHITECTURE behavior OF demux2 4 IS
BEGIN

dO <= (NOT(inl) AND NOT(inO));
dl <= (NOT(inl) AND ina);
d2 <= (inl AND NOT(inO));
d3 <= (inl AND ina);

END behavior;

Discussion:

4-98

The entity declaration specifies two input ports, inO and inl, and
four output ports, dO, dl, d2, and d3, all of type BIT.

The architecture specifies the various ways that the two inputs
are combined to determine the outputs. This is one of several
ways that a two-to-four decoder can be implemented.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.10. Additional Design Examples

4.10.2. PINS

This example shows how to use the part_name and pin_numbers
attributes to map signals to pins.

Source Code:
--Signals that are not assigned to pins can be automatically
--assigned pins by Warp. This design uses the C22V10-2SDMB.
ENTITY andSGate IS

PORT (a: IN BIT_VECTOR(O TO 4)j
f: OUT BIT) j

ATTRIBUTE part_name of and5Gate:ENTITY IS "C22V10"j
ATTRIBUTE pin_numbers of and5Gate:ENTITY IS

"a(O):2 a(l):3 " --The spaces after 3 and 5 are necessary
& "a(2):4 a(3):5 " --for concatenation (& operator)
& "f:23"j --signal a(4) will be assigned a pin by warp

END and5Gatej

ARCHITECTURE see OF and5Gate IS
BEGIN

f <= a(O) AND a(l) AND a(2) AND a(3) AND a(4)j
END seej

Discussion:
Of particular importance in this example is the space just before
the closing right-quote of each portion of the attribute value to be
concatenated. As shown, this value resolves to;

a(O):2 a(l):3 a(2):4 a(3):5 f:23

Had the spaces not been included, this value would have been

a(O):2 a(l) :3a(O):4 a(l) :5f:23
which is an unrecognizable string.

Warp Synthesis Compiler Manual 4-99

Basic VHDL Elements

4.10. Additional Design Examples

4.10.3. NAND2_TS

This example is a two-input NAND gate with three-state output.

Source Code:
--Two input NAND gate with three-state output
--This design is DEVICE DEPENDENT.

USE work.rtlpkg.all;--needed for triout

ENTITY threeStateNand2 IS
PORT (a, b, outen: IN BIT;

c: INOUT xOlz);
END threeStateNand2;

ARCHITECTURE show OF threeStateNand2 IS
SIGNAL temp: BIT;

BEGIN
temp <= a NAND b;
tril: triout PORT MAP (temp, outen, c);

END show;

Discussion:

4-100

This design is implemented by instantiating one triout
component from rtlpkg. Temp is a signal created to be the input
to the tristate buffer. Outen is the output enable, and c is the
output (the NAND of signals a and b).

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.10. Additional Design Examples

4.10.4. CNT4_EXP

This example is a counter that uses expressions for clocks and resets.

Source Code:
-- Fits to a c344

USE work.bv_math.all;

ENTITY testExpressions IS
PORT (clkl, clk2, resl, res2, inl, in2: IN BIT;

count: BUFFER BIT_VECTOR(O TO 3));
END testExpressions;

ARCHITECTURE cool OF testExpressions IS
SIGNAL clk, reset: BIT;

BEGIN
clk <= clkl AND clk2;--both clocks must be asserted;
reset <= resl OR res2; --either reset

procl:PROCESS
BEGIN
WAIT UNTIL clk = '1';

IF reset = '1' THEN
count <= x"O";

ELSE
count <= inc_bv(count);

END IF;
END PROCESS;

END cool;

Discussion:

The entity declaration specifies two clock signals and two reset
signals as external interfaces, as well as two input data ports
and a four-bit bit vector for output.

Warp Synthesis Compiler Manual 4-101

Basic VHDL Elements

4-102

The architecture declares two new signals, clk and reset, which
are later defined to be the AND of clk1 and clk2 and the OR of
reset1 and reset2, respectively. Both clocks must be asserted to
detect a clock pulse and trigger the execution of the process. If
either reset is asserted when a clock pulse is detected, the
counter resets itself, else it increments by one and waits for the
next clock pulse.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.10. Additional Design Examples

4.10.5. CNT4_REC

This example is a four bit counter with load on the bidirectional pins,
and demonstrates the use of a record.

Source Code:
loads on the i/o pins
temp is a RECORD used to simplify instantiating bufoe

USE work.bv_math.all;-- necessary for inc_bv();
USE work.rtlpkg.all;

ENTITY counter IS
PORT (clk, reset, load, outen: IN BIT;

count: INOUT xOlz_VECTOR(O TO 3));
END counter;

ARCHITECTURE behavior OF counter IS
TYPE bufRec IS -- record for bufoe

RECORD -- inputs and feedback
cnt: BIT_VECTOR(O TO 3);
dat: BIT_VECTOR(O TO 3);

END RECORD;
SIGNAL temp: bufRec;

CONSTANT counterSize: INTEGER:= 3;
BEGIN
gl:FOR i IN 0 TO counterSize GENERATE

bx: bufoe PORT MAP (temp.cnt (i) , outen, count (i) ,
temp.dat(i));

END GENERATE;

procl:PROCESS
BEGIN
WAIT UNTIL (clk = '1');

IF reset = '1' THEN
temp.cnt <= "0000";

ELSIF load = '1' THEN

Warp Synthesis Compiler Manual 4-103

Basic VHDL Elements

temp.cnt <= temp.dat;
ELSE

temp.cnt <= inc_bv(temp.cnt); -- increment vector
END IF;

END process;
END behavior;

Discussion:

4-104

The entity declaration specifies that the design has four input
bits (clk, reset, load, and outen) and a four-bit bit vector for
output.

The architecture implements a counter with synchronous reset
and load, and also demonstrates the use of RECORD types and
the GENERATE statement.

Warp Synthesis Compiler Manual

Basic VHDL Elements

4.10. Additional Design Examples

4.10.6. DRINK

This example a behavioral description of a mythical drink dispensing
machine (the drinks only cost 30 cents!)

Source Code:
--In keeping with the fact that this is a mythical drink
--machine, the cost of the drink is 30 cents!

entity drink is port (
nickel, dime, quarter, clock in bit;
returnDime,returnNickel,giveDrink: out bit);

end drink;

architecture fsm of drink is
type drinkState is (zero, five, ten, fifteen, twenty, twenty­

five, owedime) ;
signal drinkStatus: drinkState;

begin
process begin

wait until clock = '1';
-- set up default values
giveDrink <= '0';
returnDime <= '0';
returnNickel <= 'a';
case drinkStatus is

when zero =>

IF (nickel = '1') then
drinkStatus <= Five;

elsif (dime = '1') then
drinkStatus <= Ten;

elsif (quarter = '1') then
drinkStatus <= TwentyFive;

end if;
when Five =>

IF (nickel = '1') then
drinkStatus <= Ten;

elsif (dime = '1') then

Warp Synthesis Compiler Manual 4-105

Basic VHDL Elements

4-106

drinkStatus <= Fifteen;
elsif (quarter = '1') then

giveDrink <= '1';
drinkStatus <= zero;

end if;
when Ten =>

IF (nickel = '1') then
drinkStatus <= Fifteen;

elsif (dime = '1') then
drinkStatus <= Twenty;

elsif (quarter = '1') then
giveDrink <= '1';
returnNickel <= '1';
drinkStatus <= zero;

end if;
when Fifteen =>

IF (nickel = '1') then
drinkStatus <= Twenty;

elsif (dime = '1') then
drinkStatus <= TwentyFive;

elsif (quarter = '1') then
giveDrink <= '1';
returnDime <= '1';
drinkStatus <= zero;

end if;
when Twenty =>

IF (nickel = '1') then
drinkStatus <= TwentyFive;

elsif (dime = '1') then
giveDrink <= '1';
drinkStatus <= zero;

elsif (quarter = '1') then
giveDrink <= '1';
returnNickel <= '1';
returnDime <= '1';
drinkStatus <= zero;

end if;
when TwentyFive =>

IF (nickel = '1') then
giveDrink <= '1';
drinkStatus <= zero;

elsif (dime = '1') then

Warp Synthesis Compiler Manual

returnNickel <= '1';
giveDrink <= '1';
drinkStatus <= zero;

elsif (quarter = '1') then
giveDrink <= '1';
returnDime <= '1';
drinkStatus <= oweDime;

end if;
when oweDime =>

returnDime <= '1';
drinkStatus <= zero;

Basic VHDL Elements

The following WHEN makes sure that the state machine
resets itself if it somehow gets into an undefined state.

when others =>

drinkStatus <= zero;
end case;

end process;
end fsm;

Discussion:

The entity declaration specifies that the design has four inputs:
nickel, dime, quarter, and clock. The outputs are giveDrink,
returnNickel, and returnDime. The last two outputs tell the
design when to give change after the 30-cent price of the drink
has been satisfied.

The architecture then defines an enumerated type with one
value for each possible state of the machine, i.e., each possible
amount of money deposited. Thus, the initial state of the
machine is zero, while other states include five, ten, fifteen, etc.

After some initialization statements, the major part of the
architecture consists of a large CASE statement, containing a
WHEN clause for each possible state of the machine. Each
WHEN clause contains an IF ... THEN ... ELSIF statement to
handle each possible input and change of state.

Warp Synthesis Compiler Manual 4-107

Basic VHDL Elements

4.10. Additional Design Examples

4.10.7. TRAFFIC

This example is a traffic-light controller.

Source Code:

4-108

This state machine implements a simple traffic light.
The N - S light is usually green, and remains green
for a 'minimum of five clocks after being red. If a
car is travelling E-W, the E-W light turns green for
only one clock.

ENTITY traffic_light IS
PORT(clk, car: IN BIT;--car is an E-W travelling car
lights: BUFFER BIT_VECTOR(O TO 5));

END traffic_light;

ARCHITECTURE moore1 OF traffic_light IS
The lights (outputs) are encoded in the following states.
For example, the
state green_red indicates the N-S light is green and the
E-W light is red.
~001" indicates green light, ~010" yellow, ~100" red;
~&" concatenates
CONSTANT green_ red : BIT_VECTOR (0 TO 5) .- ~001"

CONSTANT yellow_red : BIT_VECTOR (0 TO 5) . - ~010"

CONSTANT red_green : BIT_VECTOR (0 TO 5) .- ~100"

CONSTANT red-yellow : BIT_VECTOR (0 TO 5) . - ~100"

nscount to verify five consecutive N-S greens
SIGNAL nscount: INTEGER RANGE 0 TO 5;

BEGIN
PROCESS
BEGIN

WAIT UNTIL clk = '1';
CASE lights IS

WHEN green_red =>

& ~100";

& ~100";

& ~001";

& ~010";

Warp Synthesis Compiler Manual

IF nscount < 5 THEN
lights <= green_red;
nscount <= nscount + 1;

ELSIF car = '1' THEN
lights <= yellow_red;
nscount <= 0;

ELSE
lights <= green_red;

END IF;
WHEN yellow_red =>

lights <= red_green;
WHEN red_green =>

lights <= red-yellow;
WHEN red-yellow =>

lights <= green_red;
WHEN others =>

lights <= green_red;
END CASE;

END PROCESS;
END moorel;

Discussion:

Basic VHDL Elements

The states in this example are defined such that the outputs are
encoded in the state, using red/yellow/green triplets for each of
the north-south and east-west light. For example, if the north­
south light is red and the east-west light is green, then the state
encoding is "100001".

In this design, the north-south light remains green for a
minimum of five clock cycles, while the east-west light only
remains green for one clock cycle. Note the use of signal nscount
to keep track of the number of clock cycles the north-south light
has remained green. This is less confusing than creating five
extra states that do basically nothing.

Warp Synthesis Compiler Manual 4-109

Basic VHDL Elements

4.10. Additional Design Examples

4.10.8. SECURITY

This example is a simple security system.

Source Code:

4-110

ENTITY seeuritySystern IS
PORT (set, intruder, elk: IN BIT;

horn: OUT BIT);
END seeuritySystem;

ARCHITECTURE behavior OF seeuritySystem IS
TYPE states IS (seeurityOff, seeurityOn, seeurityBreaeh);
SIGNAL state, nextState: states;

BEGIN
PROC1:PROCESS (set, intruder)

BEGIN
CASE state IS
WHEN seeurityOff =>

IF set = '1' THEN
nextState <= seeurityOn;

END IF;
WHEN seeurityOn =>

IF intruder = '1' THEN
horn <= '1'; --Mealy output
nextState <= seeurityBreaeh;

ELSIF set = 'a' THEN
horn <= '0';
nextState <= seeurityOff;

END IF;
WHEN seeurityBreaeh =>

IF set = 'a' THEN
horn <= '0';
nextState <= seeurityOff;

END IF;

WHEN others =>

Warp Synthesis Compiler Manual

nextState <= seeurityOffj
END CASEj

END PROCESS;
proe2:PROCESS

BEGIN
WAIT UNTIL elk ='1'j

state <= nextState;
END PROCESS;

END behaviorj

Discussion:

Basic VHDL Elements

The entity declaration specifies that the design has three inputs
(set, intruder, and clk) and one output (horn), all of type bit.

The architecture declares an enumerated type with three
possible values: securityOn, securityOff, and securityBreach. It
also declares two state variables, named state and nxtState.

The rest of the architecture defines two concurrent processes
that interact via the nextState signal. The first process is
activated whenever a change occurs in the set or intruder
signals, and defines what the new state of the machine will be as
of the next clock signal. The second is activated with each rising
clock pulse.

Warp Synthesis Compiler Manual 4-111

Basic VHDL Elements

4-112 Warp Synthesis Compiler Manual

Warp VHDL Reference

Warp VHDL Reference

Warp Synthesis Compiler Manual 5-1

Warp VHDL Reference

5.1. Introduction

This chapter provides an encyclopedic reference to each VHDL
language element that Warp supports.

5-2

This chapter shows the syntax of each language element,
explains the purpose of the language element, and gives an
example of its use.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.2. ALIAS

ALIAS lets you define an alternate name by which to reference a VHDL object.
Use ALIAS to create a shorter reference to a long object name, or to provide a

mnemonic reference to a name that may be difficult to remember otherwise.

Syntax

alias identifier[:subtype_indication] is name;

Discussion

Identifier is the alias for name in the alias declaration. An alias
of a signal denotes a signal; an alias of a variable denotes a
variable; an alias of a constant denotes a constant.

An alias of an object can be updated if and only if the object itself
can be updated. Thus, an alias for a constant or for a port of mode
in cannot be updated.

An alias may be constrained to a sub-type of the object specified
in name, but identifier and name must have the same base type.

Example
signal Instrctn:Bit_vector(15 downto 0);
alias Opcode:Bit_vector(3 downto 0) is
Instrctn(15 downto 12);
alias Op1:Bit_vector(5 downto 0) is Instrctn(11 downto 6);
alias Op2:Bit_vector(5 downto 0) is Instrctn(5 downto 0);
alias Sign1:Bit is Opl(5);
alias Sign2:Bit is Op2(5) i

The first line of this example declares a signal called Instrctn,
containing 16 bits. Succeeding lines define several aliases from
sub-elements of this bit vector: two six-bit operands (Opl and
Op2) and two sign bits (Signl and Sign2). The alias declarations
for Signl and Sign2 make use of previously declared aliases.

Warp Synthesis Compiler Manual 5-3

Warp VHDL Reference

5.3. ARCHITECTURE

An architecture (or, more formally, an "architecture body") describes the
internal view of an entity, i.e., it specifies the functionality or the
structure of the entity.

Syntax
architecture name of entity is

architecture_declarations;
begin

concurrent_statements;
end [name];

architecture_declaration .. -
subtype_declaration

constant_declaration
signal_declaration
component_declaration
attribute_specification

concurrent_statement ::=
process_statement

concurrent_signal_assignment_statement
component_instantiation_statement
generate_statement

Discussion

5-4

Architectures describe the behavior, data flow, or structure of an
accompanying entity. (See Section 5.8, "ENTITY"for more
information about entities.)

Architectures start with the keyword archi tecture, followed
by a name for the architecture being declared, the keyword 0 f,
the name of the entity to which the architecture is being bound,
and the keyword is.

Warp Synthesis Compiler Manual

Warp VHDL Reference

A list of architecture declarations follows. This list declares
components, signals, types, constants, and attributes to be used
in the architecture. If a USE clause appears before the
architecture, any elements referenced by the USE clause need
not be re-declared.

The architecture body follows, consisting of component
instantiation statements, generate statements, processes, and/or
concurrent signal assignment statements.

In'practice, architectures in Warp perform one of the following
functions:

1. they describe the behavior of an entity; or

2. they describe the data flow of an entity; or

3. they describe the structure of an entity.

Examples of each of these uses of an architecture are given in
section 4.5, Operators and section 4.10, Additional Design
Examples.

Warp Synthesis Compiler Manual 5-5

Warp VHDL Reference

5.4. ATTRIBUTE

An attribute is a property that can be associated with an entity,
architecture, label, or signal in a VHDL description. This property, once
associated with the entity, architecture, label, or signal, can be assigned
a value, which can then be used in expressions.

Syntax (Attribute Declaration)
attribute attribute-name: type;

Syntax (Attribute Specification)

attribute attribute-name
of name-list:name-class is expression;

Syntax (Attribute Reference)

item-name'attribute-name

Discussion

5-6

Attributes are constants associated with names. When working
with attributes, it is helpful to remember the following order of
operations: declare-specify-reference:

1. declare the attribute with an attribute declaration
statement;

2. associate the attribute with a name and give the attribute
a value, with an attribute specification statement;

3. reference the value of the attribute in an expression.

VHDL contains pre-defined and user-defined attributes.

Warp Synthesis Compiler Manual

Warp VHDL Reference

Pre-defined attributes are part of the definition of the language.
Warp supports a subset of these attributes that relate to
synthesis operations. This subset is discussed in section 5.4.1.

User-defined attributes are additional attributes that annotate
VHDL models with information specific to the user's application.
Several user-defined attributes are supplied with Warp to
support synthesis operations. These attributes are discussed in
sections 5.4.2 through 5.4.12.

Declaring New Attributes

To declare a new attribute, use an attribute declaration:

attribute smart is boolean;
attribute charm is range 1 to 10;

This example declares two attributes. The first is called smart, of
type boolean. The second is called charm, and has as possible
values the integers 1 through 10, inclusive.

Associating Attributes With Names

To associate an attribute with a name and assign the attribute a
value, use an attribute specification:

attribute smart of sigl:signal is true;
attribute charm of entl:entity is 5;

This example associates the attribute smart with signal sigl, and
assigns smart a value of TRUE, then associates the attribute
charm with entity entl and assigns charm a value of 5.

Referencing Attribute Values
To use the value of an attribute in an expression, use an attribute
reference:

if (sigl'smart TRUE) then a <= 1 else a<= 0;

Warp Synthesis Compiler Manual 5-7

Warp VHDL Reference

5-8

This example tests the value of the attribute "smart" for signal
sigl, then assigns a value to signal a depending on the result of
the test.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.1. Pre-defined Attributes

Warp supports a large set of pre-defined attributes, including value,
function, type, and range attributes.

Table 5-1 lists the pre-defined attributes that Warp supports:

• Value attributes operate on items of scalar type or
subtype.

• Function attributes operate on types, objects, or signals.

• Type attributes operate on types.

• Range attributes operate on constrained (i.e., bounded)
array types.

Value Attributes

All scalar types or subtypes have the following value attributes:

• 'LEFT: returns the leftmost value in the type declaration.

• 'RIGHT: returns the rightmost value in the type
declaration.

• 'HIGH: returns the highest value in the type declaration.
For enumerated types, this is the rightmost value. For
integer sub-range types, it's the value of the highest
integer in the range. For other sub-range types, it's the
rightmost value if the type declaration uses the keyword
"to"; it's the leftmost value if the type declaration uses the
keyword "down to".

Warp Synthesis Compiler Manual 5-9

Warp VHDL Reference

Table 5-1: Pre-defined Attributes Supported by Warp.

Value Attributes

'Left 'Right 'High

'Low 'Length

Function Attributes (types)

'Pos 'Val 'Succ

'Pred 'Leftof 'Rightof

Function Attributes (objects)

'Left 'Right 'High

'Low 'Length

Function Attributes (signals)

'Event

Type Attributes

'Base

Range Attributes

'Range 'Reverse_range

5-10 Warp Synthesis Compiler Manual

Warp VHDL Reference

• 'LOW: returns the lowest value in the type declaration.
For enumerated types, this is the leftmost value. For
integer sub-range types, it's the value of the lowest integer
in the range. For other sub-range types, it's the leftmost
value if the type declaration uses the keyword "to"; it's the
rightmost value if the type declaration uses the keyword
"downto".

Constrained array types have the following value attribute:

• 'LENGTH(N): returns the number of elements in the N'th
dimension of the array.

Constrained array objects also use these same attributes. For
objects, the attributes are implemented in VHDL as functions
instead of value attributes.

Examples:

For the following type declarations:

type countup is range 0 to 10;
type countdown is range 10 downto 0;
type months is (JAN,FEB,MAR,APR,MAY,JUN,

JUL,AUG,SEP,OCT,NOV,DEC) ;
type Ql is months range MAR downto JAN;

the value attributes are:

countup'left = 0
countup'right = 10
countup'low = 0
countup'high = 10
countup'length = 11

months'left = JAN
months'right = DEC
months'low = JAN
months'high = DEC
months'length = 12

Warp Synthesis Compiler Manual

countdown'left = 10
countdown'right = 0
countdown'low = 0
countdown'high = 10
countdown'length = 11

Ql'left = MAR
Ql'right = JAN
Ql'low = JAN
Ql'high = MAR
Ql'length = 3

5-11

Warp VHDL Reference

Function Attributes (Types)

5-12

All discrete (i.e., "ordered") types and their subtypes have the
following function attributes:

• 'POSey): returns the position number of the value V in the
list of values in the declaration of the type.

• 'VAL(P): returns the value that corresponds to position P
in the list of values in the declaration of the type.

• 'SUCC(V): returns the value whose position is one larger
than that of value Yin the list of values in the declaration
of the type.

• 'PRED(V): returns the value whose position is one smaller
than that of value Yin the list of values in the declaration
of the type.

• 'LEFTOF(V): returns the value whose position is
immediately to the left of that of value Yin the list of
values in the declaration of the type. For integer and
enumerated types, this is the same as 'PRED(V). For sub­
range types, this is the same as 'PRED(V) if the type was
declared using the keyword "to"; it is the same as
'SUCC(V) if the type was declared using the keyword
"downto" .

• 'RIGHTOF(V): returns the value whose position is
immediately to the right of that of value V in the list of
values in the declaration of the type. For integer and
enumerated types, this is the same as 'SUCC(V). For sub­
range types, this is the same as 'SUCC(V) if the type was
declared using the keyword "to"; it is the same as
'PRED(V) if the type was declared using the keyword
"downto".

Warp Synthesis Compiler Manual

Warp VHDL Reference

Examples:

For the following type declarations (the same as those used in
the previous example set):

type countup is range 0 to 10;
type countdown is range 10 downto 0;
type months is (JAN, FEB,MAR,APR,MAY, JUN,

JUL,AUG,SEP,OCT,NOV,DEC);
type Ql is months range MAR downto JAN;

the function attributes are:

countup'POS(O) = 0
countup'POS(10) = 10
countup'VAL(l) = 1
countup'VAL(9) = 9
countup'SUCC(4) = 5
countup'PRED(4) = 3
countup'LEFTOF(4) = 3
countup'RIGHTOF(4) = 5

months'POS(JAN) = 1
months'POS(DEC) = 12
months'VAL(l) = JAN
months'VAL(12) = DEC
months'SUCC(FEB) = MAR
months'PRED(FEB) = JAN
months' LEFTOF (FEB) = JAN
months'RIGHTOF(FEB) = MAR

Function Attributes (Objects)

countdown'POS(10) = 0
countdown'POS(O) 10
countdown'VAL(l) = 9
countdown'VAL(9) = 1
countdown'SUCC(4) = 3
countdown'PRED(4) = 5
countdown'LEFTOF(4) = 5
countdown'RIGHTOF(4) = 3

Ql'POS(JAN) = 1
Ql'POS(MAR) = 3
Ql'VAL(l) = MAR
Ql'VAL(12) = error
Ql' SUCC (FEB) = MAR
Ql'PRED(FEB) = JAN
Ql'LEFTOF(FEB) = MAR
Ql'RIGHTOF(FEB) = JAN

All constrained (i.e., bounded) array objects have the following
function attributes:

• 'LEFT(N): returns the left bound of the Nth dimension of
the array object.

Warp Synthesis Compiler Manual 5-13

Warp VHDL Reference

• 'RIGHT(N): returns the right bound of the Nth dimension
of the array object.

• 'LOW(N): returns the lower bound of the Nth dimension of
the array object. This is the same as 'LEFT(N) for
ascending ranges, 'RIGHT(N) for descending ranges.

• 'HIGH(N): returns the upper bound of the Nth dimension
of the array object. This is the same as 'RIGHT(N) for
ascending ranges, 'LEFT(N) for ascending ranges.

In the discussion above, the value ofN defaults to 1, which is also
the lower bound for the number of dimensions in an array.

Examples:

For the following type and variable declarations:

type two_d_array is array (8 downto 0, 0 to 4) i

variable my_array:two_d_arraYi

the function attributes are:

my_array'left(l)= 8
my_array'right(l) = 0
my_array'low(l) = 0
my_array'high(l) = 8

my_array'left(2) = 0
my_array'right(2) = 4
my_array'low(2) = 0
my_array'high(2) = 4

Function Attributes (Signals)

5-14

Warp supports a single function attribute for signals, namely the
'EVENT attribute. 'EVENT is a boolean function that returns
TRUE if an event (i.e., change of value) has just occurred on the
signal.

Warp supports the 'EVENT attribute only for clock signals such
as in the following example.

Warp Synthesis Compiler Manual

Warp VHDL Reference

Example:

PROCESS BEGIN
WAIT UNTIL (elk'EVENT AND elk='l')i

END PROCESSi

This example shows a process whose statements are executed
when an event occurs on signal clk and signal elk goes to '1'.

Type Attributes

All types and subtypes have the following attribute:

• 'BASE: returns the base type of the original type or
subtype.

At first glance, this attribute doesn't appear very useful in
expressions, since it returns a type. But it can be used in
conjunction with other attributes, as in the following examples.

Examples:

For the following type declarations:

type day_of_week is (SUN,MON,TUE,WED,THU,FRI,SAT) i

subtype work_day is day_of_week range MON to FRli

the following value attributes are true:

work_daY'left = MON
work_day'right = FRI
work_day'low = MON
work_day'high = FRI
work_day'length = 5

work_day'BASE'left = SUN
work_day'BASE'right = SAT
work_day'BASE'low = SUN
work_day'BASE'high = SAT
work_day'BASE'length = 7

Warp Synthesis Compiler Manual 5-15

Warp VHDL Reference

Range Attributes

5-16

Constrained array objects have the following attributes:

• 'RANGE(N): returns the range of the Nth index of the
array. IfN is not specified, it defaults to 1.

• 'REVERSE_RANGE(N): returns the reversed range of the
Nth index of the array. IfN is not specified, it defaults to 1.

The range attributes give you a way to parameterize the limits of
FOR loops and FOR-GENERATE statements, as in the following
example.

Example:

Consider a variable declared as:

variable my_bus:bit_vector(O to 7);

Then, the value of the 'RANGE and 'REVERSE_RANGE
attributes for my_bus are:

my_bus'RANGE = 0 to 7
my_bus'REVERSE_RANGE = 7 downto 0

You could use this attribute in a FOR loop, like this:

for index in my_bus'REVERSE_RANGE loop

end loop;

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.2. dont_touch

The dont_touch attribute is used when targeting pASICs to specify that
a component is to pass through synthesis and optimization untouched.
Using this attribute allows you to "freeze" the structural
implementation of an optimized component, such as a hand-tuned
carry-select adder.

Syntax

The dont_touch attribute has no effect when the
target device is not a pASIC.

attribute dont_touch of label-name:label is true;

OR

attribute dont_touch of entity-name:entity is true;

The dont_touch attribute takes the value TRUE or FALSE. The
default is FALSE.

When the dont_touch attribute is set to TRUE for an entity or a
component instance, the structural implementation of that
entity/component is not modified by subsequent synthesis, or
during Levell optimization within SpDE. Setting the do nt_touch
attribute to TRUE is similar to using Level 0 optimization on a
component or entity, in that very little optimization or packing is
done. This allows hand-optimized portions of the design to stay
untouched within SpDE while the rest of the design is optimized
and packed with SpDE's Levell optimization.

Warp Synthesis Compiler Manual 5-17

Warp VHDL Reference

5-18

When using the dont_touch attribute, structural or schematic
designs must resolve to pASIC primitives (not equations). These
primitives are PMrag_a, PAfrag_f, PAfrag_m, PAfrag_q, PAlcell
and logico, which constitute portions or the pASIC logic cell.

Note, however, that the dont_touch attribute does not apply to
packing. For example, suppose you have a schematic or a
structural implementation that uses a PAfrag_a, PAfrag_m,
PMrag_f, and PMrag_q, and the dont_touch attribute is set to
TRUE on the entire schematic or on all the individual instances.
Even if components are ideally connected to each other so that
they can be packed together, it is not guaranteed that these four
frags will pack into a single logic cell (although it is highly likely
that they would). To gain control over the packing of such
schematics, higher-level elements like PAlcell and logico should
be used. PAlcell represents the whole logic cell. Logico
represents the whole logic cell except the flip-flop portion, and
has only one output.

Another important use of the dont_touch attribute is for
buffering high fanout nets, or for special buffering situations.
Sometimes, the logic optimizer inadvertently removes gates that
the user intended for buffering. Placing the dont_touch attribute
forces such gates to be preserved. Buffering is also best done
using the pASIC primitives.

Higher level library elements available from the math, counter,
shifter, pasic, mux, and memory packages, and certain large
gates (like AND14I7, NAND13I6, OR13I6,NOR14I7, SOP14I7)
have already been hand-optimized and use the highest level
pASIC primitives possible. However, these elements do not have
the dont_touch attribute set within them. In most instances, you
will get better performance and density if the dont_touch
attribute is set to TRUE on these components. However, when
very small combinational equations feed the inputs of these
components, it might be better not to set the dont_touch
attribute to TRUE, to give the optimizer/packer in SpDE more

Warp Synthesis Compiler Manual

Warp VHDL Reference

freedom to insert the input logic into the logic cells of the
component. Also, please note that most simple gates are not
implemented at a frag level, to allow better packing and
optimization by SpDE.

Warp Synthesis Compiler Manual 5-19

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.3. enum_encoding

The enum_encoding attribute lets you specify the internal encoding to
be used for each value of a user-defined enumerated type. The internal
encoding is reflected in the gate-level design when targeting a device.

Syntax
attribute enum_encoding of type-name:type is "string";

The enum_encoding attribute takes a single argument,
consisting of a string of 0' sand l' s separated by white space
(spaces or tabs). Each contiguous string of O's and l's represents
the encoding for a single value of the enumerated type. The
number of contiguous strings in the enum_encoding argument
must equal the number of values in the enumerated type.

When the enum_encoding attribute is included in a Warp
description, it overrides the value of a state_encoding attribute
appearing in the same description.

Example:

5-20

type state is (sO,sl,s2,s3);
attribute enum_encoding of
state:type is "00 01 10 11";

The first statement in this example declares an enumerated
type, called "state," with four possible values. The possible state
values of type state can therefore be represented in two bits. The
second statement specifies the internal representation of each
value of type "state". Value sO's internal representation is "00".
Value sl's internal representation is "01". Value s2's internal
representation is "10". Value s3's internal representation is "11".

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.4. fixed_ff

The fixed_ff attribute is used when targeting pASICs to assign a signal
to a specific internal register. This fixed placement overrides the default
placement assigned by the SpDE Placer.

Syntax
attribute fixed_ff of signal-name:signal is "register-name";

The fixed_ff attribute is similar to the pin_numbers attribute, in
that it locks a signal to a specific fixed placement. The difference
is that fixed_ff is for fixed internal placement, while the
pin_numbers attribute is for fixed external placement.

A given signal could have both a pin number and a fixed internal
flip-flop placement. For instance, you may want to fix the output
of a register to internal cell AI, and also have that output signal
fixed to the output pad attached to pin 59 of the chip.

The fixed_ff attribute only applies to the Q output signal from a
register. If the fixed_ff attribute is attached to any other signal
besides the Q output of a register, it is ignored.

Warp Synthesis Compiler Manual 5-21

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.5. ff_type

The ff_type attribute specifies the flip-flop type used to synthesize
individual signals.

Syntax
attribute ff_type of signal-name:signal is value;

Legal values for the ff_type attribute are ff_d, ff_t, ff_opt, and
ff_default.

• A value offf_d tells Warp to synthesize the signal as a D­
type flip-flop.

• A value offf_t tells Warp to synthesize the signal as a T­
type flip-flop.

• A value offf_opt tells Warp to synthesize the signal to the
"optimum" flip-flop type (i.e., the one that uses the fewest
resources on the target device).

• A value offf_default tells Warp to synthesize the signal
based on the default flip-flop type selection strategy,
determined by the command line switches or dialog box
settings used in invoking Warp.

Example:

5-22

attribute ff_type of abc:signal is ff_opt;

The command above tells Warp to optimize the flip-flop type used
to synthesize a signal named "abc".

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.6. node_num

The node_num attribute tells Warp to map an individual signal to the
pin on the target device that it determines would fit best.

Syntax
attribute node_num of signal-name:signal is integer;

The node_num attribute has a single legal value, nd_auto.
Assigning this attribute to a signal tells Warp to map the signal
to the pin on the target device it determines would fit best.

When you map a signal using this method, you need not include
the signal's name in the port map of a binding architecture file.
The node_num attribute of a signal overrides the port map's pin
specification.

Example:
attribute node_num of hoohah:signal is nd_auto;

The command above maps a signal named hoohah to a Warp­
determined pin on the target device.

attribute node_num of hoohah:signal is 23;

The command above maps a signal named hoohah to a specific
node within the device being targeted. This value is both device­
and package-specific, and may not be portable to other packages
or devices.

Warp Synthesis Compiler Manual 5-23

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.7. order_code

The order_code attribute tells Warp which device package to use when
synthesizing a design for a target device.

Syntax
attribute order_code of entity-name:entity is "order-code";

The order_code attribute specifies the package for a chip. The
package name tells Warp the pin names and pin ordering for the
device and package that you are targeting.

Legal order codes can be found in the "Ordering Code" column of
the ordering information table for each device in the Cypress
Semiconductor Data Book, or in Appendix B of this manual.

Example:

5-24

attribute order_code of mydesign:entity is "PALC22Vl0-25HC";

This example specifies a package type of "PALC22VIO-25HC" for
the entity named "mydesign."

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.8. part_name

The part_name attribute specifies the device to target for synthesis.

Syntax
attribute part_name of entity-name:entity is "part-name";

The part_name attribute tells Warp what part you're targeting
for synthesis. If this attribute is present, it overrides the target
device specified by a binding architecture, a command line
switch, or a Galaxy dialog box setting.

Example:
attribute part_name of my_design:entity is "C335";

This examples specifies the C335 as the target device for
synthesis.

Warp Synthesis Compiler Manual 5-25

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.9. pin_numbers

The pin_numbers attribute maps the external signals of an entity to
pins on the target device.

Syntax

5-26

attribute pin_numbers of entity-narne:entity is string;

The pin_numbers attribute maps the external signals (ports) of
an entity with pin numbers on a target device.

The string used in the Attribute statement consists of one or
more pairs of the form signal-name: number. Pairs must be
separated from each other by white space (spaces or tabs). This
string can consist of several smaller, concatenated strings.

If the string contains an embedded line
break (carriage return or line feed), a
VHDL syntax error may result. Thus,
for target devices with lots of pins, it
may be more convenient to express the
signal-to-pin mapping as a series of con­
catenated strings, making sure to leave
a space between successive concate­
nated sub-strings.

Warp Synthesis Compiler Manual

Warp VHDL Reference

Example
attribute pin_numbers of my_design:entity is

"x:l y:2 clk:3 a(O) :4";

This example maps four signals from an entity called "mydesign"
onto the pins of a target device. Signal x is mapped to pin 1,
signal y to pin 2, signal clk to pin 3, and signal a(O) to pin 4.

When targeting pASICs: you can use the
pin_numbers attribute to assign an input signal to
more than one high-drive pad in order to give the
signal a higher drive strength. Just separate the
pin numbers by commas within the attribute string,
e.g., to assign a signal named in1 to pins 2 and 3
of a pASIC, you would write

attribute pin_numbers of my_design:entity is
"in1:2,3"

You can use this feature to assign a signal to any
desired combination of input and input/clock pins.
Be sure that the pin numbers specified in the
attribute string match the input and clock pins of
the actual device.

Warp Synthesis Compiler Manual 5-27

Warp VHDL Reference

5-28

attribute pin_numbers of my_design:entity is
"sigl:l " &
"sig2:2 " &
"sig3:3 " &
"sig4:4 " &
"sig5:5 " &
"sig6:6 " &
"sig7:7 " &
"sig8:8";

This example maps eight signals from entity "mydesign" onto the
pins of a target device. Note the space character before the end­
quote on the specifications for signals 1 through 7. This
guarantees that the string for the pin_numbers attribute is
syntactically correct.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.10. polarity

The polarity attribute specifies polarity selection for individual signals.

Syntax
attribute polarity of signal-name:signal is value;

Legal values for the polarity attribute are pI_keep, pI_opt, and
pI_default:

• A value of pI_keep tells Warp to keep the polarity of the
signal as currently specified.

• A value of pI_opt tells Warp to optimize the polarity of the
signal to use the fewest resources on the target device.

• A value of pI_default tells Warp to synthesize the signal
based on the default polarity selection strategy. This
default is determined by the command line switches or
Galaxy dialog settings, if any, used in invoking Warp.

Example:
attribute polarity of abc:signal is pI_opt;

This example tells Warp to optimize polarity for signal "abc".

attribute polarity of abc:signal is pI_keep;

This example tells Warp to keep the polarity of signal "abc" as
currently specified.

Warp Synthesis Compiler Manual 5-29

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.11. state_encoding

The state_encoding attribute specifies the internal encoding scheme for
values of an enumerated type.

Syntax

5-30

attribute state_encoding of type-name:type is value;

The legal values of the state_encoding attribute are sequential,
one_hot_zero, one_hot_one, and gray.

When the state_encoding attribute is set to "sequential", the
internal encoding of each value of the enumerated type is set to a
sequential binary representation. The first value in the type
declaration gets an encoding of 00, the second gets 01, the third
gets 10, the fourth gets 11, and so on. Sufficient bits are allocated
to the representation to encode the number of enumerated type
values included in the type declaration.

When the state_encoding attribute is set to "one_hot_zero", the
internal encoding of the first value in the type definition is set to
O. Each succeeding value in the type definition has its own bit
position in the encoding. That bit position is set to 1 when the
state variable has that value. Thus, a one_hot_zero encoding of
an enumerated type with N possible values requires N -1 bits. For
example, if an enumerated type had four possible values, three
bits would be used in its one_hot_zero encoding. The first value
in the type definition would have an encoding of "000". The
second would have an encoding of"OOl". The third would have an
encoding of "OlO". The fourth would have an encoding of "lOO".

"One_hot_one" state encoding works similarly to one_hot_zero,
except that no zero encoding is used; every value in the
enumerated type has a bit position, which is set to one when the

Warp Synthesis Compiler Manual

Warp VHDL Reference

state variable has that value. Thus, a one_hot_one encoding of an
enumerated type with N possible values requires N bits. For
example, if an enumerated type had four possible values, four
bits would be used in its one_hot_one encoding. The first value in
the type definition would have an encoding of"0001". The second
would have an encoding of "0010". The third would have an
encoding of"0100". The fourth would have an encoding of "1000".

When the state_encoding attribute is set to "gray", the internal
encoding of successive values of the enumerated type follow a
Gray code pattern, where each value differs from the preceding
one in only one bit.

Examples:
type state is (sO,s1,s2,s3);
attribute state_encoding of state:type

is one_hot_zero;

The first statement in this example declares an enumerated
type, called" state," with four possible values. The second
statement specifies that values of type state are to be encoded
internally using a one_hot_zero encoding scheme.

type s is (sO,s1,s2,s3);
attribute state_encoding of s:type is gray;

The first line of this example declares an enumerated type, called
"s," with four possible values. The second line specifies that
values of type s are to be encoded internally using a Gray code
encoding scheme.

Warp Synthesis Compiler Manual 5-31

Warp VHDL Reference

5.4. ATTRIBUTE

5.4.12. synthesis_off

The synthesis_off attribute controls the flattening and factoring of
expressions feeding signals for which the attribute is set to TRUE. This
attribute causes a signal to be made into a factoring point for logic
equations, which keeps the signal from being substituted out during
optimization.

Syntax

5-32

attribute synthesis_off of signal_name:signal is true;

The synthesis_off attribute can only be applied to signals. The
default value of the synthesis_off attribute for a given signal is
FALSE. The attribute gives the user control over which
equations or sub-expressions need to be factored into a node (i.e.,
assigned to a physical routing path).

For PLD's and CPLD's:

• When set to TRUE for a given signal, synthesis_off causes
that signal to be made into a "node" (i.e., a factoring point
for logic equations) for the target technology. This keeps
the signal from being substituted out during the
optimization process. This can be helpful in cases where
performing the substitution causes the optimization phase
to take an unacceptably long time (due to exponentially
increasing CPU and memory requirements) or uses too
many resources.

• Making equations into nodes forces signals to take an
extra pass through the array, thereby decreasing
performance, but may allow designs to fit better.

Warp Synthesis Compiler Manual

Warp VHDL Reference

• The synthesis_ off attribute should only be used on
combinational equations. Registered equations and pins
are already natural factoring points; the use of
synthesis_off on such equations results in unnecessary
factoring.

For pASIC's:

Example

• The synthesis_off attribute prevents logic factoring on any
signal for which the attribute is set to TRUE. The gates
that form such a signal's equation are not shared with
other signals.

• This attribute should be used on signals whose
performance is critical, and where sub-expression
factoring is not desired. In some rare cases, factorinKalso
causes more utilization of resources; this attribute will aid
in those situations also. (See also the description of the -fL
command line option in Section 2.2, "Warp Command Line
Options. ")

• In general, for designs targeting pASIC architectures, it is
a good practice to enable the logic factoring option in
Galaxy, and set the synthesis_off attribute on certain
critical signals only.

attribute synthesis_off of sigl:signal is true;

This example sets the synthesis_off attribute to true for a signal
named "sigl".

Warp Synthesis Compiler Manual 5-33

Warp VHDL Reference

PLD/CPLD Example:

5-34

Suppose you have the following equations:

x <= a OR b OR c i

Y <= NOT x OR d i

where x is an internal signal, a, band c are inputs to the device,
and y is an output pin. By default (i.e., with the synthesis_off
attribute for y set to FALSE), the fitter implements the y
function as

y <= NOT (a OR b OR c) OR d i

thereby substituting x in y. This is desirable in most cases.
However, there can be cases where x is a large equation, and is
used in other large equations, possibly with inversions. This
situation might cause the logic optimizer to take unacceptably
long (read "forever") to complete, due to constantly expanding
CPU and memory requirements.

A situation might also occur where signal x is used by multiple
other large outputs or registered nodes, which might cause the
design to not fit, use too many resources, or fail to optimize.
Setting the synthesis_off attribute for signal x to TRUE assigns x
to a macrocell instead of substituting it into other equations.

Warp Synthesis Compiler Manual

pASIC Example

If you have the following equations:

X <= a OR b OR c
y <= a OR b OR d ;

Warp VHDL Reference

In the default case (i.e., synthesis_off set to FALSE for both x and
y), the logic factoring algorithm implements these equations as:

x_trnp <= a OR b
x <= x_tmp OR c
y <= x_tmp OR d

[Note: the equations in the example above are too small to have a
significant effect on resource utilization or design performance.
But they do serve to illustrate the concept of logic factoring and
the use of the synthesis_off attribute. "Real-life" equations are
likely to have many more product terms.]

For large equations, the sharing of subexpression x_tmp reduces
resource utilization and signal loading for the inputs. However,
there can be cases where sharing subexpressions results in
higher resource utilization or worsened performance. For these
situations, setting the synthesis_off attribute on signal x or y to
TRUE prevents subexpression x_tmp from being shared, and
yields the following implementation:

X <= a OR b OR c
Y <= a OR b OR d ;

which causes signals a and b to support a higher loading, but
makes both x and y faster.

Warp Synthesis Compiler Manual 5-35

Warp VHDL Reference

5.5. CASE

The CASE statement selects one or more statements to be executed
within a process, based on the value of an expression.

Syntax:
case expression is

when easel [\ case2 ...] =>
sequence_of_statementsi

when case3 [\ case4 ...] =>
sequence_of_statementsi

.]
[when others =>

sequence_of_statementsi]
end case;

Discussion:

5-36

In Warp, the expression that determines the branching path of
the CASE statement must evaluate to a bit vector or to a discrete
type (i.e., a type with a finite number of possible values, such as
an enumerated type or an integer type).

The vertical bar (' I ') operator may be used to indicate multiple
cases to be checked in a single WHEN clause. This may only be
used if the sequence of statements following the WHEN clause is
the same for both cases.

The keyword OTHERS may be used to specify a sequence of
statements to be executed if no other case statement alternative
applies. Because CASE statements execute sequentially, the test
for OTHERS should be the last test in the WHEN list."

When Warp synthesizes a CASE statement, it synthesizes a
memory element for the condition being tested (in order to

Warp Synthesis Compiler Manual

Warp VHDL Reference

maintain any outputs at their previous values) unless:

1. all outputs within the body of the CASE statement are
previously assigned a default value within the process; or

2. the CASE statement completely specifies the design's
behavior following any possible result of the conditional
test. The best way to ensure complete specification of
design behavior is to include an OTHERS clause within
the CASE statement.

When a CASE statement does not specify a branch for all
possible results, Warp synthesizes a memory element for the
conditional test. This could use up more PLDIFPGA resources
than would otherwise be required.

Therefore, to use the fewest possible resources during synthesis,
either assign default values to outputs in a process, or make sure
all CASE statements include an OTHERS clause.

Example:

In the following example, signal s is declared as

s :in bit_vector(O to 2);

In addition, i and 0 are declared as eight-element bit vectors:

i in bit_vector(O to 7);
o : out bit_vector(O to 7);

The architecture follows:

architecture demo of Barrel_shifter is
begin process (s, i)

begin
case s is

WHEN "000"=>
o<=i;

Warp Synthesis Compiler Manual 5-37

Warp VHDL Reference

WHEN "001"=>

0<= (i (1) I i (2) I i (3) I i (4) I i (5) I i (6) Ii (7) I i (0)) ;

WHEN "010"=>
0<= (i (2) I i (3) I i (4) I i (5) I i (6) I i (7) I i (0) I i (1)) ;

WHEN "011"=>
0<= (i (3) I i (4) I i (5) I i (6) I i (7) I i (0) I i (1) I i (2)) ;

WHEN "100"=>
0<= (i (4) I i (5) I i (6) I i (7) I i (0) I i (1) I i (2) I i (3)) ;

WHEN "101"=>
0<= (i (5) I i (6) I i (7) I i (0) I i (1) I i (2) I i (3) I i (4)) ;

WHEN "110"=>
0<= (i (6) I i (7) I i (0) I i (1) I i (2) I i (3) I i (4) I i (5)) ;

WHEN "111"=>
0<= (i (7) I i (0) I i (1) I i (2) I i (3) I i (4) I i (5) I i (6)) ;

end case;
end process;

end demo;

In this example, signal s evaluates to a 3- element bit-string
literal. The appropriate statement is executed, depending on the
value of s, and output bit vector 0 gets the value given by the
specified ordering of elements in input bit vector i. Note that the
CASE statement completely specifies the results of the
conditional test; all possible values of s are covered by a WHEN
clause. Hence, no OTHERS clause is needed.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.6. COMPONENT

A component declaration specifies a component to be synthesized, and
lists the local signal names of the component. The component
declaration serves the same purpose in VHDL as a function declaration
or prototype serves in the C programming language.

Syntax (Component Declaration):

component identifier
[generic (generic_list);]
[port (port_list);]
end component;

Example:
component barrel_shifter port (

clk : IN BIT;
s :in bit_vector(O to 2);
insig :in bit_vector(O to 7);
outsig :out bit_vector(O to 7));

end component;

This example declares a component called barrel_shifter with a
3-bit input signal, an 8-bit input signal, and an 8-bit output
signal.

Syntax (Component Instantiation):

instantiation_label: component_name
[generic generic_mapping]
[port port_mapping];

A component instantiation creates an instance of a component
that was previously declared with a component declaration
statement. Think of component instantiation as "placing" a

Warp Synthesis Compiler Manual 5-39

Warp VHDL Reference

previously declared component into an architecture, then
"wiring" the newly placed component into the design by means of
the generic map or port map.

Example:

5-40

al:barrel_shifter
port map (

clk=>pinl,
s(O)=>pin2,
s(l)=>pin3,
s(2)=>pin4,
insig(O)=>pin5,
insig(l)=>pin6,
insig(2)=>pin7,
insig(3)=>pin8,
insig(4)=>pin9,
insig(5)=>pinl0,
insig(6)=>pinll,
insig(7)=>pin12,
fbx(outsig(O))=>pin14,
fbx(outsig(l))=>pin15,
fbx(outsig(2))=>pin16,
fbx(outsig(3))=>pin17,
fbx(outsig(4))=>pin18,
fbx(outsig(5))=>pin19,
fbx(outsig(6))=>pin20,
fbx(outsig(7))=>pin21) ;

The line "al:barrel_shifter" in the example above instantiates a
component named al of type barrel-shifter. The port map
statement that follows maps each signal from this instance of
barrel-shifter to a pin on a physical part.

Note the use of the fbxO function to map the output signals (of
type bit) from the component onto the output pins (of type XOIZ)
on the PLD.

Note also the direction of the "arrow" in each mapping: from the
"formal" (the signal name on the component) to the "actual" (the

Warp Synthesis Compiler Manual

Warp VHDL Reference

name of the pin to which the signal is being mapped).

Warp Synthesis Compiler Manual 5-41

Warp VHDL Reference

5.7. CONSTANT

A constant is an object whose value may not be changed.

Syntax:
constant identifier_list:type[:=expression];

Example:

5-42

TYPE stvar is bit_vector(O to 1};
constant sO:stvar .- 1100 11 ;
constant sl:stvar .- 110111;
constant s2:stvar .- 1110 11 ;
constant s3:stvar .- 111111;

This example declares a bit vector subtype with length 2, called
"stvar". It then defines four constants of type stvar, and gives
them values of 00, 01, 10, and 11, respectively.

subtype bit8 is bit_vector(O to 7};
type v8_table is array(O to 7} of bit8;
constant xtbLl:v8_table .- (
1100000001 11 ,
1100000010 11 ,
1100000100 11 ,
1100001000 11 ,
1100010000 11 ,
1100100000 11 ,
1101000000 11 ,
1110000000") ;

This example declares a bit vector subtype with length 8 called
"bit8," a I-dimensional array type ofbit8 called "v8_table" with
eight elements, and a constant of type v8_table called "xtbL1."

Values are assigned to the constant by concatenating a sequence
of string literals (e.g., "00000001") into bit-vector form. Only
characters '0' and '1' are allowed in these string literals, but the

Warp Synthesis Compiler Manual

Warp VHDL Reference

values could have been written in hex format (e.g., x"Ol" is the
same as "00000001" for this purpose). The result is a table of
constants such that xtbL1(0) is "00000001" and xtbL1(7) is
"10000000" .

Warp Synthesis Compiler Manual 5-43

Warp VHDL Reference

5.8. ENTITY

An entity declaration names a design entity and lists its ports (i.e.,
external signals). The mode and data type of each port are also
declared.

Syntax:

entity identifier is port(
port_name: mode type [;
port_name: mode type ...])
end [identifier];

Choices for mode are IN, OUT, BUFFER, and IN OUT.

Example:

5-44

entity Barrel_Shifter is port(
elk : IN BIT;
s :in bit_veetor(O to 2);
insig :in bit_veetor(O to 7);
outsig :out bit_veetor(O to 7));

end Barrel_Shifter;

This example declares an entity called barrel_shifter with a 3-bit
and an 8-bit input signal as well as an 8-bit output signal.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.9. EXIT

The EXIT statement causes a loop to be exited. Execution resumes with
the first statement after the loop. The conditional form of the statement
causes the loop to be exited when a specified condition is met.

Syntax:
exit [loop_label] [when condition];

Example:
i <= 0;
loop

outsig(i)<=barrel_mux8(i,s,insig);
i <= i+li
exit when i>7;
end loop;

The EXIT statement in the example above causes the loop to exit
when variable i becomes greater than 7. The example thus calls
the function barrel_mux8 eight times.

Warp Synthesis Compiler Manual 5-45

Warp VHDL Reference

5.10. GENERATE

Generate statements specify a repetitive or conditional execution of the
set of concurrent statements they contain. Generate statements are
especially useful for instantiating an array of components.

Syntax:
label:generation_scheme generate

{concurrent_statement}
end generate [label];

generation_scheme ::=
for generate-parameter_specification

I if condition

A "generation scheme" in the syntax above refers to either a
FOR-loop specification or an IF-condition specification, as shown
in the example below.

Example:

5-46

architecture test of serreg is
begin

ml: for i in 0 to size-l generate
m2: if i=O generate

xl:dsrff port map (si, zero, mreset,
end generate;

m3: If i>O generate

clk, q(O));

x2:dsrff port map(q(I-l), zero, mreset,clk, q(I));
end generate;

end generate;
end test;

The example above instantiates a single component labeled xl,
and size-l components labeled x2. For size=3, for instance, the
code shown above is the equivalent of

Warp Synthesis Compiler Manual

Warp VHDL Reference

architecture test of serreg is
begin

xl:dsrff port map(si, zero, mreset, clk, q(O));
x2:dsrff port map(q(O), zero, mreset, clk, q(l));
x3:dsrff port map(q(l), zero, mreset, clk, q(2));

end test;

Warp Synthesis Compiler Manual 5-47

Warp VHDL Reference

5.11. GENERIC

Generics are the means by which instantiating (parent) components
pass information to instantiated (child) components in VHDL. Typical
uses are to specify the size of array objects or the number of
subcomponents to be instantiated.

Syntax
generic(identifier:type[:=value]);

Example

5-48

component serreg
generic (size:integer:=8);
port (si,

clk,
mreset : in bit;
q : inout bit_vector(O to size-i));

end component;

This example declares a component with a bidirectional array of
8 bits, among other signals. The number of bits is given by the
value of the size parameter in the generic statement.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.12. IF-THEN-ELSE

The IF statement selects one or more statements to be executed within
a process, based on the value of a condition.

Syntax
IF condition THEN sequence_of_statements

[ELSIF condition THEN
sequence_of_statements ...]

[ELSE sequence_of_statements]
END IF;

Discussion
A condition is a boolean expression, i.e., an expression that
resolves to a boolean value. If the condition evaluates to true, the
sequence of statements following the THEN keyword is executed.
If the condition evaluates to false, the sequence of statements
following the ELSIF or ELSE keyword(s), if present, are
executed.

When Warp synthesizes an IF-THEN-ELSE statement, it
synthesizes a memory element for the condition being tested (in
order to maintain any outputs at their "previous" values) unless:

1. all outputs within the body of the IF-THEN-ELSE
statement are previously assigned a "default" value within
the process; or

2. the IF-THEN-ELSE statement completely specifies the
design's behavior following any possible result of the
conditional test. The best way to ensure complete
specification of design behavior is to include an ELSE
clause within the IF statement. (See example following.)

Warp Synthesis Compiler Manual 5-49

Warp VHDL Reference

When an IF-THEN-ELSE statement does not specify a branch
for all possible results, Warp synthesizes a memory element for
the conditional test. This could use up more PLD resources than
would otherwise be required.

In short, to use the fewest possible PLD resources during
synthesis, either assign default values to outputs in a process, or
make sure all IF-THEN-ELSE statements include ELSE clauses.

Example
if (not tmshort=one)then stvar <= ewgo;
elsif (tmlong=one)then stvar <= ewwait;
elsif (not ew=one AND ns=one) then stvar<=ewgo;
elsif (ew=one AND ns=one)then stvar <= ewwait;
elsif (not ew=one) then stvar <= ewgo;
else stvar <= ewwait;
end if;

In the case above, the 'else' statement is to be left
out, as opposed to suggestions made on the pre­
vious page.

The example above sets a state variable called stvar. The value
that stvar receives depends on the value of variables tmshort,
tmlong, ew, and ns.

Asynchronous Sets, Resets

5-50

Use an IF-THEN-ELSE statement to synthesize the operation of
a synchronous circuit containing asynchronous sets or resets.

To do so, use a sensitivity list in the PROCESS statement,
naming the sets, resets, and clock signals that will trigger the
execution of the process. Then, use a sequence of IF .. ELSIF
clauses to specify the behavior of the circuit.

Warp Synthesis Compiler Manual

Warp VHDL Reference

The structure of the process should be something like this:

process (set, reset, elk) begin
if (reset = 'O')then

--assign signals to their "reset" values;
elsif (set = 'O')then

--assign signals to their "set" values;
elsif (clk'EVENT AND clk='l')then

--perform synchronous operations;
end if;

end process;

The example above shows the VHDL description for active-low
set and reset signals. It could just as easily have been coded for
active-high sets and resets by using the conditions set='l' and
reset='l'.

The assignments made in the statements that follow the set or
reset signal conditions must be "simple" assignments (i.e., of the
form name=constant), to a signal of type bit, bit vector, or
enumerated type (for state variables).

Warp Synthesis Compiler Manual 5-51

Warp VHDL Reference

5.13. LIBRARY

In Warp, a library is a storage facility for previously analyzed design
units.

Syntax
library library-name [, library-name];

A library clause declares logical names to make libraries visible
within a design unit. A design unit is an entity declaration, a
package declaration, an architecture body, or a package body.

Example

5-52

library mylib;

The above example makes a library named mylib visible within
the design unit containing the library clause.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.14. I Loops

Loops execute a sequence of statements repeatedly.

Syntax
[loop_label:] [iteration_scheme] loop

sequence_of_statements
end loop [loop_label];

iteration_scheme ::=
while condition
I for loop-parameter in

{lower_limit to upper_limit
I upper_limit downto lower_limit}

Discussion

There are three kinds of loops in VHDL:

1. Simple loops are bounded by a loop/end loop statement
pair. These kinds of loops require an exit statement,
otherwise they execute forever;

2. FOR loops execute a specified number of times; and

3. WHILE loops execute while a specified condition remains
true.

Warp Synthesis Compiler Manual 5-53

Warp VHDL Reference

Example

5-54

Simple loop:

i : = 0;
loop

outsig(i)<=barrel_mux8(i,s,insig) ;
i := i+l;
if (i>7) then

exit;
END IF;

end loop;

FOR loop:

for i in 0 to 7 loop
outsig(i)<=barrel_mux8(i,s,insig) ;
end loop;

WHILE loop:

i : = 0;
while (i<=7) loop

outsig(i)<=barrel_mux8(i,s,insig) ;
i := i+l;
end loop;

The examples above show three ways of implementing the same
loop. All of these loops call the function barrel_mux8 eight times.
(In all three, i must be defined as a variable.)

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.15. NEXT

NEXT advances control to the next iteration of a loop.

Syntax
next [loop_label] [when condition];

Discussion

Example
for i in 0 to 7 loop

if ((i =0) or (i=2) or (i=4) or (i=6» then
outsig(i)<=barrel_mux8(i,s,insig)

else
next i;

end if;
end loop;

The example above performs an operation on the even-numbered
bits of an 8-element bit vector. It uses a NEXT statement to
advance to the next iteration of the loop for the odd-numbered
bits.

Warp Synthesis Compiler Manual 5-55

Warp VHDL Reference

5.16. PACKAGE

A VHDL package is a collection of declarations that can be used by
other VHDL descriptions. A VHDL package consists of two parts: the
package declaration and the package body.

Syntax (package declaration)

package identifier is
function_declaration

type_declaration
subtype_declaration
constant_declaration
signal_declaration
component_declaration
attribute_declaration
attribute_specification
use_clause

[;{function_declaration
type_declaration
subtype_declaration
constant_declaration
signal_declaration
component_declaration
attribute_declaration
attribute_specification
use_clause} ...]

end [identifier];

Syntax (package body)

5-56

package body identifier is
{function_declaration

function_body
type_declaration
subtype_declaration
constant_declaration
use_clause}

[;{function_declaration

Warp Synthesis Compiler Manual

function_body
type_declaration
subtype_declaration
constant_declaration
use_clause} ...]

end [identifier];

Warp VHDL Reference

The package declaration declares parts of the package that can
be used by other VHDL descriptions, i.e., by other designs that
use the package.

The package body provides definitions and additional
declarations, as necessary, for functions whose interfaces are
declared in the package declaration.

Example (package declaration)
package bv_tbl is
subtype bit8 is bit_vector(O to 7);
type v8_table is array(O to 7) of bit8;

-- defining vectors for i2bv8 function
constant xtbl1:v8 table .- (
"00000001",
"00000010",
"00000100",
"00001000",
"00010000",
"00100000" ,
"01000000",
"10000000") ;

-- function declaration
function i2bv8(ia:integer) return bit8;
subtype bit3 is bit_vector(O to 2);
type v3_table is array(O to 7) of bit3;

-- defining vectors for i2bv3 function
constant xtb12:v3_table .- (
"000" ,
"001" ,

Warp Synthesis Compiler Manual 5-57

Warp VHDL Reference

"010 I

"011 I

"100 I

"101 I

"110 I

"111
) ;

--function declaration
function i2bv3(ia:integer) return bit3;

The example above declares several types, subtypes, constants,
and functions. These items become available for use by any
VHDL description that uses package bv _tbl.

Example (package body)

5-58

package body bv_tbl is

function i2bv8 (ia: integer) return bit8 is
-- translates an integer between 1 and 8
-- to an 8-bit vector
begin
return xtbll(ia);
end i2bv8;

function i2bv3(ia:integer) return bit3 is
-- translates an integer between 1 and 8
-- to a three-bit vector
begin
return xtb12(ia);
end i2bv3;

The example above defines two functions whose declarations
appeared in the package declaration example, shown previously.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.17. PORT MAP

A port map statement associates the ports of a component with the pins
of a physical part.

Syntax

port map ([formal_name =>] actual_name
[, [formal_name =>] actual_name]);

The port map statement associates ports declared in a
component declaration, known as formals, with the signals
(known as actuals) being passed to those ports.

If the signals are presented in the same order as the formals are
declared, then the formals need not be included in the port map
statement.

Port map statements are used within component instantiation
statements. (See Section 5.6, "COMPONENT", for more
information about component instantiation statements.)

Example
and_I: AND2

port map(A => empty_I,
B => emptY_2,
Q => refill_bin);

The example above instantiates a two-input AND gate. The port
map statement associates three signals (empty_I, empty_2, and
refill_bin, respectively) with ports A, B, and Q of the AND gate.

If the three ports appear in the order A, B, and Q in the AND2
component declaration, the following (shorter) component
instantiation would have the same effect:

Warp Synthesis Compiler Manual 5-59

Warp VHDL Reference

and_l: AND2
port map (empty_l/empty_2/refill_bin) ;

5-60 Warp Synthesis Compiler Manual

Warp VHDL Reference

5.18. PROCESS

A process statement is a concurrent statement that defines a behavior
to be executed when that process becomes active. The behavior is
specified by a series of sequential statements executed within the
process.

Syntax
[label:] process [(sensitivity_list)]

[process_declarative-part]
begin

sequential_statement
[;sequential_statement .. . J;

end process [label];

process_declarative-part .. -
function_declaration

function_body
type declaration
subtype declaration
constant declaration
variable declaration
attribute specification

sequential_statement ::=
wai t_statement

signal_assignment_statement
variable_assignment_statement
if_statement
case_statement
loop_statement
next_statement
exit_statement
return_statement
null_statement

A process which is executing is said to be active; otherwise, the

Warp Synthesis Compiler Manual 5-61

Warp VHDL Reference

process is said to be suspended. Every process in the VHDL
description may be active at any time. All active processes are
executed concurrently with respect to simulation time.

Processes can be activated in either of two ways: by means of a
wait statement, or by means of a sensitivity list (a list of signals
enclosed in parentheses appearing after the process keyword).

When a process includes a WAIT statement, the process becomes
active when the value of the clock signal goes to the appropriate
value ('0' or '1').

When a process includes a sensitivity list, the process becomes
active when one or more of the signals in the list changes value.

Example

5-62

process (s, insig) begin
for i in 0 to 7 loop

outsig(i)<=barrel_rnux8(i,s,insig)i
end lOOPi

end processi

The example above shows a process that executes whenever
activity is sensed on either of two signals, s or insig.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.19. SIGNAL

A signal is a pathway along which information passes from one
component in a VHDL description to another. Signals are also used
within components to pass values to other signals, or to hold values.

Syntax (signal declaration)
signal name [, name ...]:type;

Syntax (signal assignment)

signal_name <= expression
[when condition [else expression]];

Signals must be declared before they can be used. Declaring a
signal gives it a name and a type. Signal declarations often
appear as part of port or component declarations.

To assign a value to a signal, you simply replace its current value
with the value of some expression of the same type as the signal,
using the signal name and the "<=" operator.

You may also specify a condition under which the replacement is
to be made, as well as an alternative value for the signal if the
condition is not met. This form of the signal assignment
statement uses the "when" and "else" keywords.

Example

(Signal Declaration examples)

signal cO,cl,cinl,cin2:bit;

This example declares four signals (cO, cl, cinl, and cin2), each of
type bit.

Warp Synthesis Compiler Manual 5-63

Warp VHDL Reference

5-64

type State is (sl/ s2/ s3/ s4/ s5);
signal StVar : State;

This example declares an enumerated type named State, with
five possible values. It then declares a signal named StVar of
type State. Thus, StVar can have values sl, s2, s3, s4, or s5.

(Unconditional Signal Assignment examples)

This example sets a variable of type bit named "c_in" to '1'.

StVar <= sl;

This example assigns the value sl to a signal named StVar.
Presumably, StVar is a signal of some enumerated type, having
"sl" as one of its possible values.

(Conditional Signal Assignment example)

c_in2 <= 11' when (stvar=sl) OR (stvar=s2) else '0 1 ;

The above example illustrates the use of conditional signal
assignment. Signal c_in2 is assigned one value if the specified
conditions are met; otherwise, it is assigned a different value.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.20. Subprograms

Subprograms are sequences of declarations and statements that can be
invoked repeatedly from different parts of a VHDL description. VHDL
includes two kinds of subprograms: procedures and functions.

Syntax (procedure declaration)

procedure designator [(formal-parameter-list)];

Syntax (procedure body)

procedure designator [(formal-parameter-list)] is
[declarations]

begin
{sequential-statement;}

end [designator];

Syntax (function declaration)

function designator [(formal-parameter-list)]
return type_mark;

Syntax (function body)

function designator [(formal-parameter-list)]
return type_mark is

[declarations]
begin

{sequential-statement;}
end [designator];

Warp Synthesis Compiler Manual 5-65

Warp VHDL Reference

5-66

A subprogram is a set of declarations and statements that you
can use repeatedly from many points within a VHDL description.

There are two kinds of subprograms in VHDL: procedures and
functions. Procedures may return zero or more values. Functions
always return a single value. In practice, procedures are most
often used to sub-divide a large behavioral description into
smaller, more modular sections. Functions are most often used to
convert objects from one data type to another or to perform
frequently needed computations.

VHDL allows you to declare a subprogram in one part of a VHDL
description while defining it in another. Subprogram
declarations contain only interface information: name of the
subprogram, interface signals, and return type (for functions).
The subprogram body contains local declarations and
statements, in addition to the interface information.

Function calls are expressions; the result of a function call is
always assigned to a signal or variable, or otherwise used in a
larger statement (e.g., as a parameter to be passed to a procedure
call). Procedure invocations, by contrast, are entire statements in
themselves.

In both procedures and functions, actual and formal parameters
may use positional association or named association.

To use positional association, you list the parameters to be
passed to the subprogram in the same order that the parameters
were declared, without naming the parameters.

To use named association, you give the formal parameter (the
name shown in the subprogram declaration) and the actual
parameter (the name you're passing to the subprogram) within
the procedure invocation or function call, linking the formal and
actual parameters with the '=>' operator. When you use named
association, you can list parameters in any order.

Warp Synthesis Compiler Manual

Warp VHDL Reference

Example

Consider a procedure, whose declaration is shown below, that
takes three signals of type bit as input parameters:

procedure crunch(signal sigl,sig2,sig3:in bit) i

Then, the invocation

crunch(trex,raptor,spitter) i

uses positional association to map signal trex to sigl, signal
raptor to sig2, and signal spitter to sig3. You could use named
association in the following procedure invocation, however, and
get the same result:

crunch (sig2=>raptor, sig3=>spitter, sigl=>trex) i

More information about procedures and functions is included on
the following pages.

Warp Synthesis Compiler Manual 5-67

Warp VHDL Reference

5.20. Subprograms

5.20.1. Procedures

Procedures describe sequential algorithms that may return zero or
more values. They are most frequently used to decompose large
behavioral descriptions into smaller, more modular sections, which can
be used by many processes.

5-68

Procedure parameters may be constants, variables, or signals,
and their modes may be in, out, or inout. Unless otherwise
specified, a parameter is by default a constant if it is of mode in,
and a variable if it is of mode out or inout.

In general, procedures can be used both concurrently (outside of
any process) and sequentially (inside a process). However, if any
of the procedure parameters are variables, the procedure can
only be used sequentially (since variables can only be defined
inside a process). Any variables declared inside a procedure cease
to exist when the procedure terminates.

A procedure body can contain a wait statement, while a function
body cannot. However, a process that calls a procedure with a
wait statement in it cannot have a sensitivity list. (Processes
can't be sensitive to signals and made to wait simultaneously.)

Warp Synthesis Compiler Manual

5.20. Subprograms

5.20.2. Functions

Warp VHDL Reference

Functions describe sequential algorithms that return a single value.
Their most frequent uses are: (1) to convert objects from one data type
to another; and (2) as shortcuts to perform frequently used
computations.

Function parameters must be of mode in and must be signals or
constants. If no mode is specified for a function parameter, the
parameter is interpreted as having mode in.

A function body cannot contain a wait statement. (Functions are
only used to compute values that are available instantaneously.)

Any variables declared inside a function cease to exist when the
function terminates (i.e., returns its value).

One common use of functions in VHDL is to convert objects from
one data type to another. Warp provides two pre-defined type
conversion functions in file CYPRESS.VHD: the functions fxbO
("from-X01Z-io-bit") and fbxO ("from-hit-to-X01Z").

The fxbO and fbxO functions are frequently used to bind signals
to pins in an architecture. Because VHDL is a strongly typed
language, it is important that signals are mapped to pins of the
same type. Signals are usually of type bit, with possible values '0'
and '1'. Many pins, however, are of type X01Z, with possible
values '0', '1', 'X' (unknown) and 'Z' (high-impedance). To map a
signal of type bit to a pin of type X01Z, you would use the fbxO
function, as demonstrated in the first example.

Warp Synthesis Compiler Manual 5-69

Warp VHDL Reference

Examples

5-70

architecture demo of c22v10 is
begin

xx1:SeqDetect
port map (

xO => pin3,
xl => pin5,
clk => pin1,
fbx(Outsig) => pin16);

end demo;
In this example, the value of signal Outsig, which is of type bit, is
converted into a value of type XOIZ by the fbxO function before
being mapped to pin 16 on the C22VI0.

The fxbO function, which converts a value of type xOlz to a value
of type bit, works in a complementary fashion to the fbxO
function. It is used with I/O ports that are being used as inputs.

function count_ones(vec1:bit_vector)
return integer is
returns the number of '1' bits in a bit vector
variable temp:integer:=O;
begin

for i in vec1'low to vec1'high loop
if vec1(i) = '1' then

temp := temp+1;
end if;

end loop;
return temp;

end count_ones;

This function counts the number of'l's in a bit vector.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.21. TYPE

In VHDL, objects are anything that can hold a value. Signals,
constants, or variables are common objects. All VHDL objects have a
type, which specifies the kind of values that the object can hold.

Syntax (enumerated type declaration)

type name is (value [,value ...]);

Syntax (subtype declaration)

subtype name is base_type
[range {lower_limit to upper_limit

I upper_limit downto lower_limit}];

Syntax (bit vector declaration)

subtype name is bit_vector
(lower_limit to upper_limit
I upper_limit downto lower_limit);

Syntax (record declaration)

type name is record
name: type;
[name: type; ...]
end record;

Warp has the following pre-defined types:

• integer: VHDL allows each implementation to specify the
range of the integer type differently, but the range must
extend from at least -(2**31-1) to +(2**31-1), or -
2147483648 to +2147483647. Only variables (not signals)
can have type integer.

Warp Synthesis Compiler Manual 5-71

Warp VHDL Reference

5-72

• boolean: an enumerated type, consisting of the values
"true" and "false";

• bit: an enumerated type, consisting of the values '0' and '1';

• character: an enumerated type, consisting of one literal for
each of the 128 ASCII characters. The non-printable
characters are represented by three-character identifiers,
as follows: NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI, DLE, DCl, DC2, DC3,
DC4, NAK, SYN, ETB, CAN,EM, SUB, ESC, FSP, GSP,
RSP, and USP.

VHDL objects can take other, user-defined, types as well.
Possibilities include:

• enumerated types: This type has values specified by the
user. A common example is a state variable type, where
the state variable can have values labeled statel, state2,
state3, etc.

• sub-range types: This type limits the range ofa larger base
type (such as integers) to a smaller set of values. Examples
would be positive integers, or non-negative integers from 0
to 100, or printable ASCII characters.

• arrays (especially bit vectors): This type specifies a
collection of elements of a single base type. A commonly
used example is the bit_vector type, declared in the
standard library, which denotes an array of bits.

• records: This type specifies a collection of elements of
possibly differing types.

Warp Synthesis Compiler Manual

Warp VHDL Reference

Examples

(Enumerated Type Declaration example)

type sigstates is (nsgo, nswait, nswait2,
nsdelay, ewgo, ewwait, ewwait2, ewdelay);

This example declares an enumerated type and lists eight
possible values for it.

(Sub-range Type Declaration example)

type column is range (1 to 80) ; type row is
range (1 to 24);

The above examples declare two new sub-range integer types,
column and row. Legal values for objects of type column are
integers from 1 to 80, inclusive. Legal values for objects of type
row are integers from 1 to 24, inclusive.

(Bit Vector Type Declaration example)

subtype bit8 is bit_vector(O to 7);
signal insig, outsig : bit8;

insig <= "00000010";

outsig<=insig(2 to 7) & insig(O to 1);

The above example declares a bit vector type called bit8. It then
declares two signals of type bit8, insig and outsig. The signal
assignment statement that concludes the example left-shifts
insig by two places. (Outsig then contains the value "00001000".)

Warp Synthesis Compiler Manual 5-73

Warp VHDL Reference

5-74

(Record Type Declaration example)

subtype BitS is bit_vector(l to 5);
-- define a record type containing a 5-bit vector
-- and a bit
type arec is record

abc:Bit5;
def:bit;
end record;
define a type containing
an array of five records

type twodim is array (1 to 5) of arec;
-- now define a couple of signals
signal v:twodim;
signal vrec:arec;

in record 1 of v, set array field to alIa's
v(l) . abc <= "00000";

-- in record 2 of v, set first three bits to a's,
-- others to l's
v(2) . abc <= (' 0', '0', '0', others => '1');

-- set fifth bit in array within record #5 to O.
v (5) . abc (5) < = '0';

-- set bit field within record to 1
vrec.def <= '1';

-- set 3rd bit within vrec's array to 1
vrec.abc(3) <= '1';

The example above defines a record type and a type consisting of
an array of records. The example then demonstrates how to
assign values to various elements of these arrays and records.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.22. USE

The USE statement makes items declared in a package visible inside
the current design unit. A design unit is an entity declaration, a
package declaration, an architecture body, or a package body.

Syntax

use name {, name} ;

Example
use work.cypress.all;
use work.rtlpkg.all;
use work.brI4pkg.all;

The example above makes the items declared in the specified
packages available for use in the design unit in which the use
statements are contained.

The scope of a USE statement extends only to the
design unit (entity, architecture, or package) that it
precedes.

Warp Synthesis Compiler Manual 5-75

Warp VHDL Reference

5.23. VARIABLE

A variable is a VHDL object (similar to a signal) that can hold a value.

Syntax (variable declaration)

variable name [, name ...]:type [:=expression];

Syntax (variable assignment)
signal_name <= expression;

Variables differ from signals in that variables have no direct
analogue in hardware. Instead, variables are simply used as
indices or value-holders to perform the computations incidental
to higher-level modeling of components.

Example

5-76

function admod(i,j,max:integer) return integer is
variable c:integeri
begin
c:=(i+j) mod (max+l) i

return Ci

end admodi

The function in the example above declares a variable c as a
value-holder for a computation, then uses it and returns its value
in the body of the function.

Warp Synthesis Compiler Manual

Warp VHDL Reference

5.24. WAIT

The WAIT statement suspends execution of a process until the specified
condition becomes true.

Syntax

wait until [condition];

Discussion

A WAIT statement, if used, must appear as the first sequential
statement inside a process.

Example
wait until clk='l'i

The example above suspends execution of the process in which it
is contained until the value of signal clk goes to 'I'.

Warp Synthesis Compiler Manual 5-77

Warp VHDL Reference

5-78 Warp Synthesis Compiler Manual

Synthesis

Synthesis

Warp Synthesis Compiler Manual 6-1

Synthesis

6.1. Introduction

This chapter describes how the following VHDL constructs are
synthesized in Warp: architectures, processes, components, signals and
variables, clock signals, global signals, and the CASE OTHERS
construct.

6-2

Warp's operation can be divided into two phases: the analysis
phase and the synthesis phase.

In analysis, Warp examines the VHDL description to guarantee
that it complies with VHDL syntax rules. Warp then determines
what design elements (packages, components, entities,
architectures) make up the description.

Synthesis, as defined in the context of Warp, is the realization of
design descriptions into logic circuits. In other words, synthesis
is the process by which logic circuits are realized/created from
design descriptions. These logic circuits are then fitted (PLDs) or
placed and routed (FPGAs) to produce a programming file for the
target device. The structural netlist description is a text file that
lists the fundamental sub-components in the design, their
connections, and the equations that transfer values from one
sub-component to another. "Fundamental sub-components"
include the RTL components declared for the target PLD:
memory elements, liD components, buffers, and macrocell
components.

Note that fundamental sub-components do not include the
combinatorial gates (AND, OR, XOR, NOT) that are common in a
standard netlist. This is because combinatorial logic is not
represented in the form of gates in Warp synthesis, but rather in
the form of transfer equations.

Warp Synthesis Compiler Manual

Synthesis

6.2. Architectures

Architectures consist of collections of statements and processes that,
taken together, describe the function of an entity.

Each architecture statement is either a component instantiation,
a process, or a statement that is converted into a process. Note
that an architecture is a concurrent description; conceptually, all
assignments and processes within an architecture operate
concurrently. This is radically different from a computer
program written in a language such as C or Pascal, in which
statements operate sequentially. Only within a process do
statements evaluate sequentially.

Architectures are synthesized into RTL (Register Transfer Level)
descriptions consisting of fundamental sub-components and:
transfer equations, which are technology-mapped to the target
PLD.

Warp Synthesis Compiler Manual 6-3

Synthesis

6.3. Processes

In VHDL, a process is a sequence of statements that runs sequentially.

In behavioral descriptions, processes usually consist of
collections of IF-THEN -ELSE statements, CASE statements,
and assignment statements.

Warp syn~hesizes such processes differently, depending on
whether or not the process begins with a WAIT statement.

With WAIT Statement (Clocked)

Processes that begin with a WAIT statement are assumed to be
synchronized to a clock signal. Such processes are synthesized
as follows:

1. Warp converts the IF-THEN-ELSE and CASE statements
in the process to an equivalent set of fundamental sub­
components and transfer equations;

2. For each assignment statement to a signal, Warp uses a
memory element (e.g., a D flip-flop) to store the value of
the signal and connects the memory element's clock input
to the conditional expression named in the WAIT
statement.

Thus, each signal assigned to in a process containing a WAIT
statement uses up a memory element on the target PLD.
Similarly, the more complex the IF-THEN-ELSE and CASE
statements in a process (as, for example, if you are describing a
really large state machine), the more PLD resources are used.

With Sensitivity List (No WAIT Statement)

6-4

Processes that have no WAIT statement are assumed to be
"unclocked," i.e., asynchronous with respect to system clocks.

Warp Synthesis Compiler Manual

Synthesis

For VHDL compliance, such processes require a "sensitivity list"
(a list of signals) to accompany the PROCESS keyword. A
change in the value of any signal in the sensitivity list causes the
process to become active. Note, however, that Warp does not
currently object to missing sensitivity lists.

If all signals contained in the process are assigned a value before
they are used, Warp synthesizes unclocked processes as
combinatorial logic. No explicit memory element is used on the
target PLD, nor is any combinatorial feedback generated.

If one or more signals are used before their values are initialized,
however, Warp creates "implicit" memory in the form of
combinatorial feedback. This can lead to equations that consume
large amounts ofPLD resources, or to an inability to fit the
design on a PLD due to signal placement restrictions. The"
solution: initialize signals in unclocked processes.

Warp Synthesis Compiler Manual 6-5

Synthesis

6.4. Components

Components are recursively "flattened" into a set of fundamental sub­
components and transfer equations.

6-6 Warp Synthesis Compiler Manual

Synthesis

6.S. Signals and Variables

A signal is a pathway along which information passes from one
component in a VHDL description to another. It is analogous to a wire
in hardware.

A variable is a VHDL object that can hold a value. It differs from a
signal in that a variable has no direct analogue in hardware.

There is often a great deal of confusion about the difference
between a signal, which is a concept unique to VHDL, and a
variable, which appears in most programming languages.

VHDL was originally designed as a simulation language. It was
also created to support concurrency of statements. The
implementation of signals makes this possible.

A VHDL simulator scans a source file, interpreting each VHDL
statement in turn. This process is repeated for as long as the
user specifies. Each pass through the source is referred to as a
"simulation cycle."

Whenever the code assigns a value to a variable, the simulator
simply updates the current value of that variable, as you would
expect in any programming language.

But when the code assigns a value to a signal, that assignment is
treated differently. The signal has a current value, which is used
whenever the signal appears in an expression, and a list of "next
values," each of which consists of a pair of data items: a value for
the signal, and the number of simulation cycles after which the
signal is actually given that value. So, a signal assignment does
not affect the current value of the signal but only the value for a
future simulation cycle. At the end of each simulation cycle, the
simulator scans through all the signals, and updates each one
from its "next values" list for the next cycle that is to occur.

Warp Synthesis Compiler Manual 6-7

Synthesis

6.6. Clocks

VHDL has no concept of a "clock" signal. The way to incorporate a clock
signal in your designs is to use a WAIT statement in processes or to use
RTL components.

6-8

When you use a WAIT statement, the RTL component
synthesized for each assignment has a signal assigned to the
component's CLK port.

Warp Synthesis Compiler Manual

Synthesis

6.7. Global Signals

Two global signals are declared in Warp: 'zero' and 'one'.

These signals are initialized to 0 and 1, respectively. They have
constant value and are otherwise synthesized just like any other
signal. They are most often used to assign a constant value to an
input port on an RTL component.

Warp Synthesis Compiler Manual 6-9

Synthesis

6.8. CASE OTHERS

When conditions or assignments occur in the OTHERS selection of a
CASE statement, the synthesis process computes the complement of
the other conditions and creates corresponding equations.

6-10 Warp Synthesis Compiler Manual

Appendix

A

Error Messages

Warp Synthesis Compiler Manual A-I

Error Messages

A. Error Messages

This appendix lists the error messages that may be returned by the
Warp compiler. A brief explanation is included if the error message is
not self-explanatory.

Error messages not listed in this appendix are internal errors. If you
encounter an internal error, notify your local Cypress sales
representative. Note: %s refers to any string, %d to a decimal.

A-2

E3 :Need a '<=' or ':=' here.

An equal sign instead of an assignment operator was used . .
In an expressIon.

E4 :Missing 'PORT MAP'.

E5 :Use '=', not ':=' here.

The assignment rather than the comparison operator was
used in an expression.

E6 :Can't create output file '%s'.

The specified output file couldn't be created for some
reason: out of disk space, file already exists and is write­
protected, etc.

E7 :Can't open file.

An input file couldn't be opened for some reason (usually,
because the file doesn't exist or isn't in the current path).

E8 :Syntax error: Can't use '%s' (a %s) here.

An attempt was made to use the wrong character or
keyword, or a delimiter is missing.

Warp Synthesis Compiler Manual

Error Messages

E9 :Can't take attribute '%s' here

An attribute was used where not allowed.

EI0 :Syntax error: '%s' is a reserved symbol.

You used a reserved word in an illegal fashion, e.g., as a
signal or variable name.

E14 :%s (line %d, col %d):

This message is more of an informative message than an
error message. It tells you where to look for an error. The
message usually appears as part of another message.

E18 :Missing THEN.

A THEN is missing from an IF -THEN -ELSE statement.

E19 :Not a TYPE or SUBTYPE name: %s

A variable or signal was defined that has an unknown type
(". I ") e.g., sIgna x:nerp .

E20 :'%s' already used

An attempt has been made to define a symbol that exists.

E21 :%s not an enumeration literal of %s

Attempt to assign or compare a state variable to a value
that is not within its defined enumeration set.

E30 :';' after last item in interface list.

A semicolon was used after the last item in an interface
list (the port declaration or parameter list for a function)
instead of a right parenthesis.

Warp Synthesis Compiler Manual A-3

Error Messages

A-4

E3t :Missing end-quote.

E32 :Function overloading by return type not
implemented.

Functions of the same name and different parameters are
allowed, but functions may not have different return
types.

E34 :Undeclared name: %s

Attempt to use an undeclared (undefined) variable.

E36 :Variable declaration must be in a PROCESS
statement.

Attempt to declare a variable inside an architecture.
Signals can be declared in architectures, but variables
have to be declared within a process.

E40 :Declaration outside ARCHITECTURE or ENTITY.

An attempt was made to declare a variable outside an
architecture or sub-program.

E4t :Not a valid ENTITY declarative item.

Attempt to declare a variable inside an entity. Variables
must be declared within a process.

E42 :Can't open standard library '%s'.

File CYFRESS.VHD or STD.VHD must be available, but
couldn't be found in the current path.

E43 :'%s' must be a RECORD

An attempt was made to use a variable or symbol as a
record when it was not.

Warp Synthesis Compiler Manual

Error Messages

E44 :Must be a constant.

A constant is required.

E45 :Bad direction in range

You defined a bit vector in the wrong direction, e.g., (2 TO
0) or (0 DOWNTO 2).

E46 :Error limit (%d) exceeded

The default error limit is 10 errors. More than 10 errors
causes an abort.

E47 :'%s' not a formal port.

The named item is not a formal port.

E48 :Warning limit (%d) exceeded

The default number of warnings has been exceeded,
causing an abort.

E49 :Not a polymorphic object file.

The application stopped running before completion or has
not been updated correctly. Delete all files that are not
part of the design (temporary files such as *.VIF, *.PRS
files) and re-run the application.

E50 :Bad polymorphic object file version.

The application stopped running before completion or has
not been updated correctly. Delete all files that are not
part of the design (temporary files such as *.VIF, *.PRS
files), then re-Ioad and re-run the application.

E5t :Variable '%s' already mapped.

A port is mapped to more than one pin.

Warp Synthesis Compiler Manual A-5

Error Messages

A-6

E52 :Symbol '%s' declared twice

The same name has been declared twice.

E53 :Name '%s' at end of %s, but no name at start

An un-named construct (e.g., a process) was referred to by
a named label at its conclusion.

E54 :Name '%s' at end of %s does not match '%s' at start

The label referenced at the end of a construct does not
match the name the construct was given at its beginning.

E55 :%s used as an identifier

Attempt to use a reserved word as an identifier.

E56 :Expected %s, but got %s

Syntax error: Warp expected a particular character or
keyword, but found something else.

E57 :Expected O/OS

See error E56.

E58 :Expected %s or %s

See error E56.

E59 :Expected %s or %s, but got %s

See error E56.

E60 :Extra COMMA at end of list

A comma appeared after the last item but before the
closing parenthesis in a PORT statement.

Warp Synthesis Compiler Manual

Error Messages

E61 :'%s' mode not compatible with '%s' mode

An input port was mapped to an output pin, or vice versa.

E62 :Warning:

The beginning portion of a warning message.

E63 :Error writing '%s'.

Couldn't write to the output file once it was created. The
most likely causes are a lack of disk space, a bad disk, or
no write permission.

E64 :Out of memory.

The application is out of memory. Remove memory
resident programs and drivers and re-run the application.

E65 :Fatal error

The beginning portion of a fatal error message.

E66 :Can't index into '%s'

An attempt was made to use the named string as an array
when the string is not an array.

E67 :Can't open report file '%s'

Couldn't open or create the report file. Most likely causes:
disk is write-protected or out of disk space.

E68 :Missing right parenthesis

Syntax error.

E69 :Use '<=' for signal assignments.

Used ":=" instead of "<=" as assignment operator.

Warp Synthesis Compiler Manual A-7

Error Messages

A-8

E70 :'%s' type not compatible with '%s' type

A type mismatch was found.

E71 :Positional choice follows named choice

Positional (unspecified formal port) entries may not follow
named entries.

E72 :Can't RETURN when in a finite-state-machine

A return statement inside a finite state machine
description (a case statement on an enumerated type) is
not supported.

E74 :'%s' not a field in record '%s' of type '%s'

An attempt was made to use an inappropriate string as a
field in a record.

E75 :Sensitivity name not a SIGNAL

A sensitivity list on a process must consist only of signals.

E76 :Not a '%s' enumeration literal

Inappropriate use was made of the named string as an
enumeration literal.

E77 :'%s' not in enumeration '%s' list

Incorrect assignment.

E78 :Positional parameter follows named parameter

A positional (unspecified formal port) parameter may not
follow a named parameter.

E79 :%s has no parameter to match '%s'

The port map contains a missing parameter.

Warp Synthesis Compiler Manual

Error Messages

E80 :Value '%s' out of range.

A limit, such as a vector limit, is out of range. Re-declare
the variable or rework the design.

E8t :Illegal char. '%c' in literal

The named character is not allowed in this literal.

E82 :'%s' conversion to VIF not supported

Synthesis of this VHDL object is not supported.

E83 :'%s' conversion to PLD not supported

Synthesis of this VHDL object is not supported.

E86 :Procedure '%s' body not found

The named procedure was declared, but the body of the
procedure could not be located.

E87 :Division by 0

E88 :Operation '%s' not supported

The named arithmetic operation is not supported.

E89 :'%s' must be a CONSTANT or VARIABLE

A constant or variable is required in the named instance.

E90 :VARIABLE '%s' has no value

Only variables having known values at com pile time are
supported.

Warp Synthesis Compiler Manual A-9

Error Messages

A-lO

E91 :Not in a loop

An EXIT or a NEXT statement was found that was not
inside a loop.

E92 :Not in a loop labelled '%s'

See E9l.

E95 :FOR variable '%s' not a constant

The named FOR variable is not known at compile time.

E96 :Only integer range supported.

An attempt was made to assign an invalid integer range,
such as an enumeration range.

E98 :Negative exponent %ld

Negative exponents are not supported.

E99 :Cannot assign. this to an array or record.

Only an aggregate with a list of values or another array or
record may be assigned to an array or record.

ElOO :Too many values (%d) for '%s' of size %d

The list of values in the aggregate was too large for the
aggregate to be assigned to an array or record.

EIOI :Can't handle function call '%s' here

The named function call cannot be handled.

EI02 :Variable expected.

Symbol was incorrectly declared. The symbol must be a
variable, not a signal.

Warp Synthesis Compiler Manual

Error Messages

EI03 :'%s' must be an ARRAY

The named string must be an array.

EI04 :Field name or 'OTHERS' expected

Invalid case statement qualifier.

EI05 :Can't delete '%s' from library '%s'

110 error. The named string cannot be deleted from the
named library.

EI06 :You need to declare this as a SUBTYPE.

You declared something as a TYPE that should have been
declared a SUBTYPE.

EI07 :Qualified expressions not supported.

"Qualified expressions" are the VHDL equivalent of type
casting (familiar to C programmers). Warp doesn't support
it.

EI08 :Function '%s' body not found

The named function was declared, but the statements
associated with the function could not be located.

EI09 :Expected '%s' to return a constant

A function that was expected to return a constant didn't.

EIIO :Array sizes don't match for operation %s

You tried a dyadic logical operation (AND, OR, XOR) on
two bit vectors of different sizes.

Warp Synthesis Compiler Manual A-II

Error Messages

A-12

Ell2 :Positional parameter '%s' follows named parameter

A positional parameter may not follow a named
parameter.

Ell3 :No function '%s' with these parameter types

The named function with the specified expressions was not
found.

Ell5 :'%s' is not a visible LIBRARY or PACKAGE name

Warp cannot identify the named string as a valid name for
a library or package.

Ell6 :'%s' not in PACKAGE '%s'

The named string is not in the named package.

Ell7 :Missinglopen field '%s' in %s

Missing parameter or port in the named port list.

EllS :Identifier '%s' starts with a digit

The named identifier begins with a digit. Identifiers must
begin with a letter.

Ell9 :Slice (%d TO %d) is outside array '%s' range (%d TO
%d)

The named index range of the slice is outside the named
index range of the specified array. The indices of a slice
must be within the indices of an array.

El20 :'%s' not an array

The named string is not an array.

Warp Synthesis Compiler Manual

Error Messages

E121 :'%s' is not a PACKAGE.

The named string is not a package.

E122 :'%s' must be a SIGNAL or function(SIGNAL).

The named port map parameter may not be an expression,
variable, or constant; it must be a signal or signal
function.

E123 :Output parm. '%s' must be a SIGNAL or VARIABLE

The named output parameter must be a single entity, like
a signal or variable.

E124 :'%s' is not a COMPONENT

The named string is not a component.

E125 :-s requires a path.

The -s command line option requires a path to the library.

E126 :Wrong number (%d) of indices. %d needed.

The listed number of indices is incorrect for the multi­
dimensional array.

E127 :Constraint dimension (%d) doesn't match type
dimension (%d)

The named constraint dimension doesn't match the named
type dimension (constraint must be in the same number of
indices as the array).

E129 :Illegal '&' operands: '%s' and '%s'.

Concatenation is not allowed for the named strings.
Concatenation is allowed only for identically typed one­
dimensional arrays.

Warp Synthesis Compiler Manual A-13

Error Messages

A-14

El30 :Bad dimension (%d) for attribute '%s'

The named dimension is incorrect for the named array.

El31 :'%s' mapped twice.

The same actual parameter was mapped to two formals.

El33 :'%s' wasn't mapped

The actual parameter identified in the message was not
mapped to a formal in the port map.

El34 :Error occurred within '%s' at line %d, column %d in
%s.

A descriptive message to inform the user of the exact error
location.

El35 :Unexpected '%s'.

Syntax error.

El36 :'%s' is not a known ENTITY

An attempt was made to use the named string as an entity
name.

El37 :Can't use OTHERS for unconstrained array '%s'

Syntax error.

El3S :OTHERS must be the last case statement
alternative

No case statement alternatives may follow OTHERS.

El39 :Can't use actual function with formal output '%s'

Data is not allowed with the named formal output port.

Warp Synthesis Compiler Manual

Error Messages

E140 :Use ':=' for variable assignments.

A string other than ":=" was used for a variable
assignment.

E141 :Can't use function(formal) with formal input '%s'

You used an fbxO or fxbO function in the wrong direction.

E209 :Allocation failed for state node

Too many states; design too complex, too many resources
used.

E212 :Lrst Resources used up

Design contains too many counters, using too many local
resets.

E213 : Attempt to reuse node number %d

Design does not fit and must be modified.

E214 :Unassigned local reset on toggle node number: %d

A local reset is not specified.

E217 :Error writing .cyp file

File I/O error.

E218 : write_cyp - file O/OS will not open

File I/O error.

E222 : a36fit - no input file name (parmI)

INTERNAL

Warp Synthesis Compiler Manual A-15

Error Messages

A-16

E223 : a36fit - file %s will not open

File I/O.

E224 : a36fit - error writing .fit file

File I/O.

E225 : write_fit - file %s will not open

File I/O.

E226 :cannot open fitter file: %s

File I/O.

E228 : ftda36 - file %s will not open

File I/O.

E235 : Does not fit: Node %s has more that 16 connections

The named node may have no more than 16 connections
because of a hardware constraint, but the design requires
more.

E300 :VHDL parser

Message indicating progress of compilation (not really an
error).

E350 :error opening file: %s

File I/O.

E351 :error closing file: %s

File I/O.

Warp Synthesis Compiler Manual

Error Messages

E357 :Cannot open file: %s

File I/O.

E362 :Error writing to library index

File I/O.

E363 :Error copying '%s' to library

File I/O.

E364 :Can't create library index '%s'

File I/O.

E365 :Bad library index '%s'

The named index for the library is corrupted. Delete the
library and load another copy.

E366 :Can't create library '%s' with path '%s'

File I/O.

E367 :Duplicate library entry for '%s'

Duplicate library entry.

E368 :Error deleting existing library index entries

File I/O.

E369 :Can't open library '%s' with path '%s'

File I/O.

E370 :Error reading library '%s'

File I/O.

Warp Synthesis Compiler Manual A-17

Error Messages

A-18

E371 :Can't find '%s' in library '%s'

File I/O.

E372 :Can't open library module '%s'

File I/O.

E374 :'%s' not a PACKAGE

File I/O.

E375 :'%s' is not in '%s'

The named package is not in the named library.

E376 :User aborted.

The user aborted the run, probably by typing Ctrl-C.

W377 :'%s' from '%s' replaces that from '%s' in library '%s'

Warning message. When a module is compiled into a
library, module design units with names the same as
existing names overwrite the existing design units.

E378 :Don't work from within your library directory ('%s')

An attempt was made to run Warp with the named library
directory as the current directory.

E403 :Output and inverted output are both open

Some built in components in the Warp library have both
output and inverted output pins. One of these outputs pins
must be used (both outputs may not be left open).

E404 :Can't use both output and inverted output

Similar to E403, except both outputs may not be used.

Warp Synthesis Compiler Manual

Error Messages

E406 :Illegal '%s'. Only a NOT is allowed here.

Some expressions allow only a NOT statement.

E407 :Bad Mealy input/output pair: %s / %s

An attempt was made to select an inappropriate named
input pin for the named output.

E410 :Missing RTL port

An attempt was made to use a built-in (RTL) component
without specifying a required input port.

E411 :Illegal Mealy function '%s'

Mealy output expressions can only take the form of an
(optional) Mealy input signal followed by AND, OR, Qr
XOR, followed by an OR list.

E412 :Port '%' in RTL component '%s' is missing or
improper

An attempt was made to use the named RTL component
without assigning the named port or assigning it
inappropriately.

E413 :Variable '%s' has no node # assigned.

A signal is used in an expression, but the signal has not
been assigned to any node or pin in a chip.

E414 :Expression too complex: %s

Output assignments must follow a specific format.

E416 :'%s' has no signal assigned.

The design has no signal assigned because it is too large.
See the .RPT file for more information.

Warp Synthesis Compiler Manual A-19

Error Messages

A-20

E418 :%d too many macrocells in design

The design contains too many macrocells and must be
modified to use fewer macrocell resources.

W419 :Can't synthesize signal initialization (ignored)

Initialization is ignored when signals are declared as non­
enumerated types and initialization is attempted.

E421 :B~d Mealy input/output pair: O/OS / %s

An attempt was made to select an inappropriate named
input pin for the named output.

E422 :Target '%s' of '%s' already assigned to node %d

An attempt was made to assign the named target to the
named node. The name has been used previously.

E423 :Target '%s' must be an input/output pin

An attempt was made to connect the named signal to
something other than an I/O pin.

E427 :Target must be a variable.

Target may not be a constant or an aggregate.

E428 :Could not find entity '%s (%s)' for component '%s'

Warp was unable to find the named entity for the named
component.

E429 :Could not find entity '%s' for component '%s'

See E428.

E430 :No entity for architecture '%s'

No entity exists for the named architecture.

Warp Synthesis Compiler Manual

Error Messages

E431 :'%s' has already been used as an output.

You attempted to assign two outputs to the same pin.

E432 :Conversion from AONG to '%s' not supported

Finite state machine enumerated type synthesis is not
supported.

E434 :Unsupported PLD '%s'

An attempt was made to compile to an unsupported or
nonexistent device.

E436 :Only simple waveform supported

Warp allows only simple wave forms with no timing
information.

E438 :RTL '%s' not supported for %s

An attempt was made to use the named built-in
component for an incorrect named device.

E440 :Missing RTL field '%s'

An RTL component is missing a port.

E443 :SIGNAL '%s' has more than one driver

An attempt was made to use more than one driver with
the named signal.

E444 :Can't handle chip '%s'

Warp does not support the named chip.

E500 :Can't handle '%s' expression.

An unsupported operation was included in an expression.

Warp Synthesis Compiler Manual A-21

Error Messages

A-22

E501 :'%s' State_node has no exit.

In a state machine, Warp cannot find an exit for the
named state.

E503 :Initializer of '%s' must be an enum. literal

Attempt to initialize a state variable to a value not
included in its enumerated list.

W507 :No entry to state '%s' of '%s'.

Warp cannot find an entry to the named state, so the state
is not used and can be removed.

W508 :No exit from state '%s' of '%s'.

Warp cannot find an exit from the named state, so the
state is a sink.

E509 :Array sizes don't match for operation %s

You attempted a dyadic logical operation (AND, OR, XOR)
on two bit vectors of different sizes.

E510 :Operation '%s' not implemented for vectors

Implementation not supported.

E511 :BIT or array required

Warp does not synthesize integers; a bit or array is
required.

E512 :Unsupported expression type '%s'.

Some operators in the expression are not supported.

Warp Synthesis Compiler Manual

Error Messages

E513 :'%s' not a BIT or array

Warp does not synthesize integers; a bit or array is
required.

E600 :Array lengths %ld, %ld don't match for '%s'.

For the named operation, the named array lengths do not
match.

E601 :Bad operand types '%s' and '%s' for operator '%s'.

Type check violation.

E602 :Bad operand type '%s' for operator '%s'.

Type check violation.

E603 :Wrong character '%c' in string

Type check violation.

E604 :Expression type '%s' does not match target type
'%s'.

Type check violation.

E605 :BOOLEAN required here.

Type check violation.

E606 :Numeric expression required here.

Type check violation.

E607 :Choice type '%s' doesn't match case type '%s'.

Type check violation.

Warp Synthesis Compiler Manual A-23

Error Messages

A-24

E60S :'%s' not readable. Mode is OUT.

The mode is defined as OUT, so you can't put it on the
right side of an expression.

E609 :'%s' not writable. Mode is IN.

The mode is defined as IN, so you can't put it on the left
side of an expression.

E610 :SEVERITY_LEVEL required here

An ASSERT statement requires a severity level.

E611 :RETURN not in a function or procedure

A return statement was found that was not inside a
function or procedure.

E612 :Can't RETURN a value from a procedure

The application cannot return a value from a procedure; a
function is required.

E613 :Function RETURN needs a value.

You attempted to return from a function without
specifying a value.

E614 :Return type '%s' does not match function type '%s'.

Syntax error.

E615 :Can't assign to CONSTANT '%s'.

Invalid constant.

E3001 :illegal device\n

Check legal device names in manual.

Warp Synthesis Compiler Manual

Error Messages

W3002 :phase ignored\n

The fitter is ignoring a statement in the .PLA file. You can,
too.

E3027 :Internal Error\n

Call your Cypress representative.

Warp Synthesis Compiler Manual A-25

Error Messages

A-26 Warp Synthesis Compiler Manual

Appendix

B

Glossary

Warp Synthesis Compiler Manual B-1

Glossary

B. Glossary of VHDL Terminology

Listed here are the definitions of terms that you will encounter
frequently in using VHDL. Note that the context for the definitions is
that of synthesis (as opposed to simulation) modeling.

B-2

actual- in port maps used in binding architectures, the name of
the pin to which the signal is being mapped.

analysis - the examination of a VHDL description to ensure
that it complies with VHDL syntax rules. During analysis, Warp
determines the design elements (packages, components, entities,
and architectures) that make up the description and places these
design elements into a VHDL library and an associated index.
The library and index are then available for use in synthesis by
other descriptions.

architecture - the part of a VHDL description that specifies the
behavior or structure of an entity. Entities and architectures are
always paired in VHDL descriptions.

attribute - a named characteristic of a VHDL item. An attribute
can be a value, function, type, range, signal, or constant. It can
be associated with one or more names in a VHDL description,
including entity names, architecture names, labels, and signals.
Once an attribute value is associated with a name, the value of
the attribute for that name can be used in expressions.

binding architecture - an architecture used to map the ports
of an entity to the pins of a PLD.

bit vector - a collection of bits addressed by a common name
and index number (an array of bits).

component - a description of a design that can be used in
another design.

Warp Synthesis Compiler Manual

Glossary

component declaration - that part of a VHDL description that
defines what a component is. It is usually encapsulated in a
package for export via the library mechanism.

component instantiation statement - a statement in a
VHDL description that creates an instance of a previously
defined component.

concurrent statement - a statement in an architecture that
executes or is modeled concurrently with all other statements in
the architecture.

constant declaration - an element of a VHDL description that
declares a named data item to be a constant value.

design architecture - an architecture paired with a previously
declared entity that describes the behavior or structure of that
entity.

design unit - an entity declaration, a package declaration, an
architecture body, or a package body.

entity - that part of a VHDL description that lists or describes
the ports (the interfaces to the outside) of the design. An entity
describes the names, directions, and data types of each port.

formal- in port maps used in binding architectures, the signal
name on the component.

function - a subprogram whose invocation is an expression, and
therefore returns a value. See subprogram andprocedure.

function body - a portion of a VHDL description that defines
the implementation of a function.

function declaration - a portion of a VHDL description that
defines the parameters passed to and from a function invocation,
such as the function name, return type, and list of parameters.

Warp Synthesis Compiler Manual B-3

Glossary

B-4

function invocation - a reference to a function from inside a
VHDL description.

generic map - a VHDL construct that enables an instantiating
component to pass environment values to an instantiated
component. Typically, a generic map is used to size an array or a
bit vector or provide true/false environment values.

instantiation - the process of creating an instance (a copy) of a
component and connecting it to other components in the design.

library - a collection of previously analyzed VHDL design units.
In Warp a library is a directory containing an index and one or
more .VHD files.

package - a collection of declarations, including component,
type, subtype, and constant declarations, that are intended for
use by other design units.

package body - the definition of the elements of a package. A
package body typically contains the bodies of functions declared
within the package.

package declaration - the declaration of the names and values
of components, types, subtypes, constants, and functions
contained in a package.

port - a point of connection between a component and anything
that uses the component.

port map - an association between the ports of a component and
the signals of an entity instantiating that component. Within the
context of a binding architecture, a port map is a VHDL
construct that associates signals from an entity with pins on a
PLD.

procedure - a subprogram whose invocation is a statement, and
therefore does not return a value. See subprogram and function.

Warp Synthesis Compiler Manual

Glossary

procedure body - a portion of a VHDL description that defines
the implementation of a procedure.

procedure declaration - a portion of a VHDL description that
defines the parameters passed to and from a procedure
invocation, such as the procedure's name and list of parameters.

procedure invocation - a reference to a procedure from inside
a VHDL description.

process - a collection of sequential statements appearing in a
design architecture.

sensitivity list - a list of signals that appears immediately after
the process keyword and specifies when the process statements
are activated. The process is executed when any signal in the
sensitivity list changes value.

sequential statement - a statement appearing within a
process. All statements within a process are executed
sequentially.

signal- a data path from one component to another.

signal declaration - a statement of a signal name, its direction
of flow, and the type of data that it carries.

subprogram - a sequence of declarations and statements that
can be invoked repeatedly from different locations in a VHDL
description. VHDL recognizes two kinds of subprograms:
procedures and functions.

subtype - a restricted subset of the legal values of a type.

subtype declaration - a VHDL construct that declares a name
for a new type, known as a subtype. A subtype declaration
specifies the base type and declares the value range of the
subtype.

Warp Synthesis Compiler Manual B-5

Glossary

B-6

synthesis - the production of a file to be mapped to a PLD
containing the design elements extracted from VHDL
descriptions during the analysis phase. The file is a technology
mapped structural netlist description that is fitted to a user­
specified device.

type - an attribute of a VHDL object that determines the kind of
value the object can hold. Examples of types are bit and XOlZ.
Objects of type bit can hold values '0' or '1'. Objects of type XOlZ
can hold yalues of'O', '1', 'X' ("don't care") or 'Z' ("high­
impedance").

type declaration - a VHDL construct that allows you to define
new types as a sub-type or combination of existing types.

variable - a VHDL object that can hold a data value, which can
be used during analysis or synthesis, but is not itself
synthesized.

Warp Synthesis Compiler Manual

Appendix

C

BNF of Supported VHDL

Warp Synthesis Compiler Manual C-l

BNF of Supported VHDL

c. BNF of Supported VHDL

This appendix presents a simplified Backus-Naur Form (BNF) of the
VHDL subset supported by Warp.

Conventions Used In This Appendix

C-2

The form of a VHDL description is described by means of context­
free syntax, together with context-dependent syntactic and
semantic requirements expressed by narrative rules. The
context-free syntax of the language is described using a simple
variant of Backus-Naur Form, in particular:

(a) Lower case words, some containing embedded underlines,
are used to denote syntactic categories, for example:

formal_port_list

(b) Boldface is used to denote reserved words and literal
characters, for example:

array

(c) A vertical bar separates alternative items, unless it
appears in boldface immediately after an opening brace, in
which case it stands for itself:

letter_or_digit ::= letter I digit

choices ::= choice { I choice}

Warp Synthesis Compiler Manual

BNF of Supported VHDL

(d) Square brackets enclose optional items. Thus, the
following two rules are equivalent

return_statement ::= return [expression];

return_statement::= return; I return expression;

(e) Braces enclose a repeated item. The item may appear zero
or more times; the repetitions occur from left to right as
with an equivalent left-recursive rule. Thus, the following
two rules are equivalent:

term ::= factor {multiplying_operator factor}

term ::= factor I term multiplying_operator factor

(f) If the name of any syntactic category starts with an
italicized part, it is equivalent to the category name
without the italicized part. The italicized part is intended
to convey some semantic information. For example,
type_name and subtype_name are both equivalent to name
alone.

(g) The term simple_name is used for any occurrence of an
identifier that already denotes some declared entity.

Warp Synthesis Compiler Manual C-3

BNF of Supported VHDL

BNF

C-4

actual_designator: :=
expression
I signal_name
I variable_name
I open

actual_parameter_part ::=
parameter _asociation_list

actual_part ::=
actual_designator
I function_name (actual_designator)

adding_operator ::=
+1-1 &

aggregate ::=
(element_association {, element_association})

alias_declaration: :=
alias identifier:subtype_indication is name;

architecture_body ::=
architecture identifier of entity _name is
architecture_declarative_part
begin

architecture_statement_part
end [architecture_simple_name];

architecture_declarative_part ::=
{block_declarative_item}

architecture _statement_part::=
{ concurrent_statement}

array _type_definition ::=
unconstrained_array _defmition
I constrained_array _definition

assocation_list ::=
assocation_element {, association_element}

Warp Synthesis Compiler Manual

BNF of Supported VHDL

association_element ::=
[formal_part =>] actual_part

attribute_declaration: :=
attribute identifier:type _mark;

attribute_designator: :=
attribute_simple_name

attribute_name: :=
prefix' attribute_designator [(expression)]

attribute_specification: :=
attribute attribute_designator of entity_specification
is expression

block_declarative_item ::=
subprogram_declaration
I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I alias_declaration
I component_declaration
I attribute_specification
I use_clause

block_declarative_part: :=
{ block_declarative_item }

block_statement: :=
block_label:
block block_declarative_part
begin

block_statement_part
end block [block_label];

block_statement_part ::=
{ concurrent_statement }

Warp Synthesis Compiler Manual C-5

BNF of Supported VHDL

C-6

case_statement: :=
case expression is case_statement_alternative
{ case_statement_alternative }
end case;

case_statement_alternative ::=
when choices => sequence_of_statements

choice ::=
simple_expression
I discrete_range
I element_simple_name
I others

choices ::=
choice [I choice]

component_declaration ::=
component identifier
[local_generic _clause]
[local_port_clause]
end component;

component_instantiation_statement ::=
instantiation_label:

component_name
[generic _map_aspect]
[port_map_aspect] ;

composite_type_definition ::=
array _type_definition
I record_type_definition

concurrent_signal_assignment_statement .. -
[label:] conditional_signal_assignment
I [label:] selected_signal_assignment

Warp Synthesis Compiler Manual

BNF of Supported VHDL

concurrent_statement ::=
block_statement
I process_statement
I concurrent_assertion_statement
I concurrent_signal_assignment_statement
I component_instantiation_statement
I generate_statement

condition ::=
boolean_expression

conditional_signal_as signment ::=
target <= options conditional_waveforms;

conditional_waveforms ::=
{ waveform when condition else } waveform

condition_clause ::=
until condition

constant_declaration
constant identifier_list: subtype_indication [:=expression];

constrained_array _definition ::=
array index_constraint of element_subtype_indication

constraint ::=
range_constraint
I index_constraint

declaration: :=
type_declaration
I subtype_declaration
I object_declaration
I interface_declaration
I alias_declaration
I attribute_declaration
I component_declaration
I entity_declaration
I subprogram_declaration
I package_declaration

Warp Synthesis Compiler Manual C-7

BNF of Supported VHDL

designator: :=
identifier I operator_symbol

direction: :=
to I downto

discrete_range ::=
discrete _subtype_indication
I range

element_association ::=
[choices =>] expression

element_declaration: :=
identifier_list: element_subtype_definition;

C-8

element_subtype_definition ::=
subtype_indication

entity_class ::=
entity I architecture
I function I package
I subtype I constant
I variable I component

entity_declaration: :=
entity identifier is

entity _header
entity_declarative_part

[begin
entity _statement_part]

end [entity _simple_name];

I configuration
I type
I signal
I label

Warp Synthesis Compiler Manual

entity_declarative_item: :=
subprogram_declaration
I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I alias_declaration
I attribute_declaration

. I attribute_specification
I use_clause

entity_declarative_part: :=
{ entity _declarative_item}

entity_designator: :=
simple _name I operator_symbol

entity_header: :=
[formal~eneric_clause]
[formal_port_clause]

entity _name_list::=
entity_designator {, entity_designator}
I others
I all

entity_specification ::=
entity _name_list : entity_class

enum_literal ::=
identifier I character_literal

enum_type_definition ::=
(enum_literal {,enum_Iiteral})

exit_statement ::=
exit [loop_label] [when condition];

Warp Synthesis Compiler Manual

BNF of Supported VHDL

C-9

BNF of Supported VHDL

C-IO

expression: :=
relation { and relation}
I relation { or relation}
I relation { xor relation}
I relation { nand relation}
I relation { nor relation}

factor ::=
primary
I not primary

formal_designator_ ::=
generic_name
I port_name
I parameter_name

formal_parameter_list ::=
parameter _interface_list

formal_part: :=
formal_designator
I function_name (formal_designator)

full_type_declaration ::=
type identifier is type_definition;

function_call ::=
function_name [(actual_parameter_part)]

generate_statement ::=
generate _label:

generation_scheme generate
{ concurrent_statement }

end generate [generate_label];

generation_scheme ::=
for generate_parameter_specification
I if condition

generic_clause ::=
generic (generic_list);

Warp Synthesis Compiler Manual

BNF of Supported VHDL

generic_list ::=
generic _interface_list

identifier_list ::=
identifier {, identifier}

if_statement: :=
if condition then sequence_of_statements
{elsif condition then sequence_of_statements}
[else sequence_of_statements]
end if;

indexed_name: :=
prefix (expres sion {, expres sion })

index_constraint: :=
(discrete_range {, discrete_range})

index_subtype_definition ::=
type_mark range <>

integer_type_definition ::=
range_constraint

interface _constant_declaration ::=
[constant] identifier_list: [in] sUbtype_indication

[: =static _expression]

interface_declaration ::=
interface _constant_declaration
I interface _signal_declaration
I interface_variable _declaration

interface_element ::=
interface _declaration

interface_list ::=
interface _element {; interface_element}

interface_signal_declaration ::=
[signal] identifier_list: [mode] subtype_indication [bus]

[: =static _expression]

Warp Synthesis Compiler Manual C-ll

BNF of Supported VHDL

C-12

interface_ variable_declaration::=
[variable] identifier_list: [mode] subtype_indication

[:=static _expression]

iteration_scheme: :=
while condition
I for loop _parameter_specification

label ::=
identifier

literal ::=.
numeric_literal
I enumeration_literal
I string_literal
I bit_string_literal
I null

logical_operator ::=
andlorlnandlnorlxor

loop_statement ::=
[loop_label:]

[iteration_scheme] loop sequence_of_statements
end loop [loop_label]

miscellaneous_operator ::=
** I abs I not

mode ::=
in lout I inout I buffer I linkage

multiplying_operator ::=
*l/lmodlrem

Warp Synthesis Compiler Manual

name ::=
simple_name
I operator_symbol
I selected_name
I indexed_name
I slice_name
I attribute_name

next_statement: :=
next [loop_label] [when condition];

null_statement ::=
null;

numeric_literal ::=
abstract_literal
I physical_literal

object_declaration: :=
constant_declaration
I signal_declaration
I variable_declaration

operator_symbol ::=
string_literal

options ::=
[guarded] [transport]

package_body ::=
package body package_simple_name is

package_body _declarative_part
end [package _simple_name];

Warp Synthesis Compiler Manual

BNF of Supported VHDL

C-13

BNF of Supported VHDL

C-14

package_body _declarative_item::=
function_declaration
I function_body
I type_declaration
I subtype_declaration
I constant_declaration
I alias_declaration
I use_clause

package_body _declarative_part::=
{package_body _declarative_item}

package_declaration: :=
package identifier is

package_declarative _part
end [package _simple _name];

package_declarative_item ::=
function_declaration
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I alias_declaration
I component_declaration
I attribute_declaration
I attribute_specification
I use_clause

package_declarative_part ::=
{package_declarative _item}

parameter_specification: :=
identifier in discrete_range

port_clause ::=
port (port_list);

port_list ::=
port _interface_list

Warp Synthesis Compiler Manual

prefix ::=
name
I function_call

primary ::=
name
I literal
I aggregate
I function_call
I qualified_expression
I type_conversion
I allocator
I (expression)

procedure_call_statement ::=

BNF of Supported VHDL

procedure_name [(actual_parameter_part)] ;

process_declarative_item ::=
function_declaration
I function_body
I type_declaration
I subtype_declaration
I constant_declaration
I variable_declaration
I alias_declaration
I attribute_declaration
I attribute_specification
I use_clause

process_statement: :=
[process_label]
process [(sensitivity_list)]

process_declarative_part
begin

process_statement_part
end process [process_label];

process_statement_part :=
{ sequential statement }

Warp Synthesis Compiler Manual C-15

BNF of Supported VHDL

C-16

range ::=
range _attribute_name
I simple_expression direction simple_expression

range_constraint ::=
range range

record_type_definition ::=
record

element_declaration
{ element_declaration}

end record

relation ::=
simple_expression [relational_operation simple_expression]

relational_operator: :=
+ I 1= I < I <= I > I >=

return_statement: :=
return [expression] ;

scalar_type_definition ::=
enum_type_definition
I integer_type_definition

selected_name ::=
prefix. suffix

selected_signal_assignment: :=
with expression select

target <= options selected_waveforms

selected_waveforms ::=
{waveform when choices,}
waveform when choices

sensitivity_clause ::=
on sensitivity_list

sensitivity_list ::=
signal_name {, signal_name}

Warp Synthesis Compiler Manual

sequence_of_statements ::=
{ sequential_statement }

sequential_statement: :=
wait_statement
1 signal_assignment_statement
1 variable _assignment_sta tement
1 if_statement
1 case_statement
1 loop_statement
1 next_statement
1 exit_statement
1 return_statement
1 null_statement

sign ::=
+ 1-

signal_assignment_statement ::=
target <= [transport] waveform;

signal_declaration ::=
signal identifier_list:subtype_indication

[signal_kind] [:=expression]

signal_kind: :=
register 1 bus

simple_expression: :=
[sign] term {adding_operator term}

simple_name ::=
identifier

slice_name ::=
prefix (discrete_range)

Warp Synthesis Compiler Manual

BNF of Supported VHDL

C-17

BNF of Supported VHDL

C-18

subprogram_body: :=
subprogram_specification is

subprogram_dec1arati ve _part
begin

subprogram_statement_part
end [designator];

subprogram_declaration: :=
subprogram_specification;

subprogram_declarative _item ::=
subprogram_declaration
I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I variable_declaration
I alias_declaration
I attribute_declaration
I attribute_specification
I use_clause

subprogram_declarative_part ::=
{subprogram_declarative_item}

subprogram_specification ::=
procedure designator [(formal_parameter_list)]
I function designator [(formal_parameter_list)] return type_mark

subprogram_statement_part ::=
{ sequential_statement}

subtype_declaration ::=
subtype identifier is subtype_indication;

subtype_indication: :=
[resolutionJunction_name} type_mark [constraint]

Warp Synthesis Compiler Manual

BNF of Supported VHDL

suffix ::=
simple_name
I character_literal
I operator_symbol
I all

target ::=
name
I aggregate

term ::=
factor {multiplying_operator factor}

timeout_clause: :=
for time_expression

type_declaration: :=
full_type_declaration

type_definition ::=
scalar_type_definition
I composite_type_definition
I access_type_definition

type_mark :=
type_name
I subtype_name

unconstrained_array _defmition ::=
array (index_subtype_defmition {, index_subtype _definition})

of element_subtype_indication

variable_assignment_statement ::=
target := expression;

variable_declaration ::=
variable identifier_list: subtype_indication [:=expression];

wait_statement: :=
wait [sensitivity_clause] [condition_clause] [timeout_clause];

waveform ::=
waveform_element {, waveform_element}

Warp Synthesis Compiler Manual C-19

BNF of Supported VHDL

C-20

wavefonn_element ::=
value_expression

Warp Synthesis Compiler Manual

Appendix

D

Bibliography

Warp Synthesis Compiler Manual D-l

Bibliography

D. Bibliography

The following list of books and articles on VHDL is not intended to be
comprehensive, but merely to point you to further reading that can help
you become skilled in the use ofVHDL simulation and synthesis tools.

D-2

Books:

1. Armstrong, J.R., Chip-Level Modeling with VHDL,
Englewood cliffs, NJ: Prentice-Hall, 1988.

2. Barton, D., A First Course in VHDL, VLSI Systems
Design, January 1988.

3. Bhasker, J., A VHDL Primer, Englewood Cliffs, NJ: Pren­
tice Hall, 1992.

4. Carlson, S., Introduction to HDL-Based Design Using
VHDL, Synopsys Inc., 1991.

5. Coelho, D., The VHDL Handbook, Boston: Kluwer Aca­
demic, 1988.

6. Harr, R. E., et aI., Applications ofVHDL to Circuit Design,
Boston: Kluwer Academic, 1991.

7. IEEE Standard VHDL Language Reference Manual, Std
1076-1987, IEEE, NY, 1988.

8. IEEE Standard 1076 VHDL Tutorial, CLSI, Maryland,
March 1989.

9. Leung, S., ASIC System Design With VHDL, Boston: Klu­
wer Academic, 1989.

10. Leung, S., and M. Shanblatt, ASIC System Design With
VHDL: A Paradigm, Boston: Kluwer Academic, 1989.

Warp Synthesis Compiler Manual

Bibliography

11. Lipsett, R., C. Shaefer, and C. Ussery, VHDL: Hardware
Description and Design, Boston: Kluwer Academic, 1989.

12.Mazor, S., and P. Langstraat, A Guide to VHDL, Boston:
Kluwer Academic, 1992.

13. Perry, D., VHDL, New York: McGraw-Hill, 1991.

14.Military Standard 454, U.S. Government Printing Office,
1988.

15. Schoen, J.M., Performance and Fault Modeling with
VHDL, Englewood Cliffs, NJ: Prentice Hall, 1992.

Articles:

1. Armstrong, J.R., et aI., "The VHDL Validation Suite,"
Proc. 27th Design Automation Conference, June 1990,
pp.2-7.

1. Barton, D., "Behavioral Descriptions in VHDL," VLSI
Systems Design, June 1988.

2. Bhasker, J., "Process-Graph Analyzer: A Front-End Tool
for VHDL Behavioral Synthesis," Software Practice and
Experience, vol. 18, no. 5, May 1988.

3. Bhasker, J., "An Algorithm for Microcode Compaction of
VHDL Behavioral Descriptions," Proc. 20th Micropro­
gramming Workshop, December 1987.

4. Coelho, D., "VHDL: A Call for Standards," Proc. 25th
Design Automation Conference, June 1988.

5. Coppola, A., and J. Lewis, "VHDL for Programmable Logic
Devices," PLDCON'93, Santa Clara, March 29-31,1993.

Warp Synthesis Compiler Manual D-3

Bibliography

D-4

6. Coppola, A., J. Freedman, et aI., "Tokenized State
Machines for PLDs and FPGAs," Proceedings of IFIP
WG 10.2/ WG 10.5 Workshop on Control-Dominated Synthe­
sis from a Register-Transfer-Level Description, Grenoble,
France, 3-4 September, 1992, G. Saucier and J. Trilhe, edi­
tors, Elsevier Science Publishers.

7. Coppola, A., J. Freedman, et aI., "VHDL Synthesis of Con­
current State Machines to a Programmable Logic Device,"
Pr<!c. of the IEEE VHDL International User's Forum,
May 3-6, 1992, Scottsdale, Arizona.

8. Coppola, A., and M. Perkowski, "A State Machine PLD
and Associated Minimization Algorithms," Proc. of the
FPGA'92 ACM / SIGDA First International Workshop on
Field-Programmable Gate Arrays, Berkeley, California,
Feb. 16-18, 1992,pp. 109-114.

9. Dillinger, T.E., et aI., "A Logic Synthesis System for VHDL
Design Description," IEEE ICCAD-89, Santa Clara, Cali­
fornia.

10. Farrow, R., and A. Stanculescu, "A VHDL Compiler Based
on Attribute Grammar Methodology," SIGPLAN 1989.

11. Gilman, A.S., "Logic Modeling in WAVES," IEEE Design
and Test of Computers, June 1990, pp. 49-55.

12. Hands, J.P., "What Is VHDL?", Computer-Aided Design,
vol. 22, no. 4, May 1990.

13. Hines, J., "Where VHDL Fits Within the CAD Environ­
ment," Proc. 24th Design Automation Conference, 1987.

14. Kim, K., and J. Trout, "Automatic Insertion ofBIST Hard­
ware Using VHDL," Proc. 25th Design Automation Confer­
ence, 1988.

Warp Synthesis Compiler Manual

Bibliography

15. Moughzail, M., et aI., "Experience with the VHDL Envi­
ronment," Proc. 25th Design Automation Conference , June
1988.

16. Saunders, L., "The IBM VHDL Design System," Proc. 24th
Design Automation Conference, 1987.

17. Ward, P.C., and J. Armstrong, "Behavioral Fault Simula­
tion in VHDL," Proc. 27th Design Automation Conference,
June 1990, pp. 587-593.

Warp Synthesis Compiler Manual D-5

Bibliography

D-6 Warp Synthesis Compiler Manual

Index
Symbols
& operator 4-21
* operator 4-23
* * operator 4-24
+ operator 4-21
+ operator (bit vector) 4-28
/ operator 4-23
:= operator 4-25
<= operator 4-25
=> operator 4-26

A
-a Option 2-6
About (File menu item) 3-16
Abs operator 4-24
Adding operators 4-21
Aggregates 4-25
ALIAS 5-3
Allow Fitter to Change Pin Assignments (fitter option) 3-35
AND operator 4-18
Architecture (statement) 5-4 thru 5-5
Architectures 4-33 thru 4-78

behavioral descriptions 4-35 thru 4-37
structural descriptions 4-38
synthesis 6-3

Assignment operators 4-25
Association operator (=» 4-26
Attributes 5-6 thru 5-35

Enum_encoding 5-17, 5-20, 5-21
Flipflop_type 5-22
function 5-12 thru 5-15

Warp Synthesis Compiler Reference Manual Index-l

Index

B

Node_num 5-23
Order_code 5-24
Part_name 5-25
Pin_numbers 5-26
Polarity_select 5-29
pre-defined 5-9 thru 5-16
range 5-16
State_encoding 5-30
State_variable 5-32
type 5-15
value 5-9 thru 5-11

-b Option 2-5
'BASE attribute 5-15
Bibliography D-1 thru D-5
Bit (data type) 4-8
Bit_vector (data type) 4-9
Bit-vector operations 4-28
BNF of supported VHDL C-1 thru C-20
Boolean (data type) 4-8

C
CASE 5-36 thru 5-38
CASE OTHERS synthesis 6-10
Character (data type) 4-8
Clear 3-17
Clocked processes

synthesis 6-4
Clocks

synthesis 6-8
Command Syntax 2-2
Command-line options 2-4 thru 2-12
compiling 3-25
COMPONENT 5-39 thru 5-41
Components

Index-2 Warp Synthesis Compiler Reference Manual

synthesis 6-6
Composite types 4-13
CONSTANT 5-42 thru 5-43
constant 4-5

D
-d Option 2-4
Data objects 4-5 thru 4-6
Data types 4-7 thru 4-15

composite types 4-13
enumerated types 4-11
pre-defined 4-8
subtypes 4-12

dec_bY function 4-28
decrement function

bit vectors 4-28

E
-e Option 2-7
Edit Menu 3-17
entities 4-30 thru 4-31
ENTITY 5-44
Enum_encoding attribute 5-17,5-20,5-21
Enumerated types 4-11
Error messages A-I thru A -25
'EVENT attribute 5-14
EXIT 5-45
Exit (File menu item) 3-15

F
-f Option 2-7
fbxO function 5-69
File Menu 3-7
Fitter options, selecting 3-35
Flipflop_type attribute 5-22
Force Flip-Flop Types (fitter option) 3-35
Force Logic Factoring (fitter option) 3-36

Warp Synthesis Compiler Reference Manual

Index

Index-3

Index

Force Polarity Optimization (fitter option) 3-35
Function attributes 5-12 thru 5-15
Functions 5-69 thru 5-70
fxbO function 5-69

G
Galaxy Window Menu Items 3-5 thru 3-20
GENERATE 5-46 thru 5-47
GENERIC 5-48
Global signals

synthesis 6-9
Glossary B-1 thru B-6

H
-h Option 2-9
'HIGH attribute 5-9
'HIGH(N) attribute 5-14

I
Identifiers 4-3
IF-THEN-ELSE 5-49 thru 5-51
inc_bv function 4-28
increment function

bit vectors 4-28
Integer (data type) 4-8
inv 4-28
inversion function

bits, bit vectors 4-28

L
-1 Option 2-9
'LEFT attribute 5-9
'LEFT(N) attribute 5-13
'LEFTOF(V) attribute 5-12
'LENGTH(N) attribute 5-11
Libraries 4-95 thru 4-96
LffiRARY5-52

Index-4 Warp Synthesis Compiler Reference Manual

Logical operators 4-18
Loops 5-53 thru 5-54
'LOW attribute 5-11
'LOW(N) attribute 5-14

M
Miscellaneous operators 4-24
mod operator 4-23
Multiplying operators 4-23

N
NAND operator 4-18
NEXT 5-55
Node_num attribute 5-23
NOR operator 4-18
NOT operator 4-18

o
-0 Option 2-10
Open (File menu item) 3-9
Operators 4-16 thru 4-29

adding operators 4-21
assignment operators 4-25
association operator 4-26
bit-vector operations 4-28
logical operators 4-18
miscellaneous operators 4-24
multiplying operators 4-23
relational operators 4-19

Optimization level, selecting 3-31
OR operator 4-18
Order_code attribute 5-24
Output, Warp 2-13

P
PACKAGE 5-56 thru 5-58
Packages 4-79 thru 4-82

Warp Synthesis Compiler Reference Manual

Index

Index-5

Index

Part_name attribute 5-25
Pin_numbers attribute 5-26
Polarity optimization, forcing 3-35
Polarity_select attribute 5-29
PORT MAP 5-59 thru 5-60
Ports 4-30
'POSeY) attribute 5-12
'PRED(V) attribute 5-12
Pre-defined attributes 5-9 thru 5-16
Pre-defined Packages 4-85
Pre-defined types 4-8
Procedures 5-68
PROCESS 5-61 thru 5-62
Processes

synthesis 6-4

Q
-q Option 2-10
Quiet Mode 3-37

R
-r Option 2-11
Range attributes 5-16
'RANGE(N) attribute 5-16
Relational operators 4-19
rem operator 4-23
'REVERSE_RANGE(N) attribute 5-16
'RIGHT attribute 5-9
'RIGHT(N) attribute 5-14
'RIGHTOF(V) attribute 5-12
Run Options 3-37
Running Warp 3-38

S
-s Option 2-11
Save Transcript File (File menu item) 3-11
Selecting a target device 3-29

Index-6 Warp Synthesis Compiler Reference Manual

selecting files 3-23
Selecting fitter options 3-35
Selecting synthesis output 3-33
Selecting the optimization level 3-31
SIGNAL 5-63 thru 5-64
signal 4-5
Signal assignment operator «=) 4-25
Signals

synthesis 6-7
Starting Galaxy 3-3
State_encoding attribute 5-30
State_variable attribute 5-32
String (data type) 4-8
String literals 4-10
Subprograms 5-65 thru 5-70
Subtypes 4-12
'SUCC(V) attribute 5-12
Syntax, Warp Command 2-2
Synthesis output, selecting type of 3-33
Synthesis policy 6-2 thru 6-10
Synthesizing designs 3-25

T
Target device, selecting 3-29
transcript files 3-11
TYPE 5-71 thru 5-74
Type attributes 5-15

U
Unclocked processes

synthesis 6-5
USE 5-75

V
'V AL(P) attribute 5-12
Value attributes 5-9 thru 5-11
variable 4-5

Warp Synthesis Compiler Reference Manual

Index

Index-7

Index

Variable assignment operator (:=) 4-25
Variables 5-76

synthesis 6-7
VHDL Files dialog box 3-21 thru 3-37

W
-w Option 2-11
WAIT 5-77
Warp Command Options 2-4 thru 2-12
Warp options 3-27 thru 3-37
Warp Output 2-13
Warp VHDL Files dialog box 3-21 thru 3-37
Work Area List (File menu item) 3-13
Work Area Remove (File menu item) 3-14
WORK library 4-96

X
xOlz 4-10
xOlz_vector 4-10
-xor Option 2-12

Index-8 Warp Synthesis Compiler Reference Manual

