


ADVANCE INFORMATION 

EXPONENTIAL X 704™ 

RISC MICROPROCESSOR 
AN IMPLEMENTATION OF" THE POWERPC:™ ARCHITECTURE 

T E C H N I C A L SUMMARY 

n 

exponential 



~ Exponential Tochnology 1996 

All rights resorvcd. No part of the contents of this document may be 
reproduced or transmitted in any fonn without the express written 
permission of Exponential Technology, Inc. 

This document contains information on a product which has not been 
commercially released, and may contain technical inaccuracies or 
typographical errors. Information in this document is subject to change 
without notice. Exponential makes no express or implied warranty of any 
kind and assumes no liability or responsibility for any errors or omissions in 
this document. 

PowerPC, PowerPC Architecture, POWER and POWER Architecture are 
trademarks of International Business Machines Corporation. Exponential 
and the Exponential logo are trademarks of Exponential Technology, Inc. All 
other trademarks and registered trademarks are the property of their 
respective owners. 



Contents 

Preface ........................................................ 1 

1. Processor Overview . ............................ . . ....... 5 

1.1 Processor Features .......................................... 5 

1.2 Processor Organization . ....... . . ........................ 7 

1.2.1 Instruction Fetch Unit ....... . . ......................... 8 

1.2.2 Decode Unit .............. . . ......................... 10 

1.2.3 Branch Unit ............................................... 1 O 

1.2.4 Integer Executior, Unit ..................................... 10 

1.2.5 Load/Store Unit. . . . . . . . . . . . . .......................... 11 

1.2.6 Floating-Point Execution Unit. ............................... 13 

1.2.7 Level 2 Cache ............................................. 14 

1 .2.8 Bus Interface Unit . . . . . . . . . . . ..................... 15 

2. PowerPC Architecture Compliance. . . . ................. 17 

2.1 X704 User Instruction Set Architecture (UISA) . ............... 17 

2.1 .1 Reserved Fields .............................. . . ....... 17 

2.1 .2 Classes of Instructions ..................................... 17 

2.1.2.1 Defined Instruction Class ................................. 17 

2.1.2.2 Illegal Instruction Class .................................. 18 

2.1.2.3 Reserved Instruction Class ................................ 18 

2.1.3 Exceptions ................................................ 19 

2.1 .4 Branch Processor ......................................... 19 

2.1.4.1 Instruction Fetching .................................... 19 

Ill 



2.1.4.2 Branch Prediction ...................................... 19 

2.1.4.3 Invalid Branch Instruction Forms ........................... 19 

2.1.5 Fixed-Point Processor ...................................... 20 

2.1.5.1 Load/Store Unit ....................................... 20 

2.1.5.2 Invalid Load/Store Instruction Forms . . . . . . . . . . . . . .......... 21 

2.1.5.3 Reservation Granularity .................................. 21 

2.1.5.4 Synchronization Instruction ............................... 21 

2.1.5.5 Data Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 21 

2.1 .6 Fixed-Point Unit ............................... . .. 22 

. 22 2.1.6.1 Invalid Fixed-Point Instruction Forms 

2.1.7 Floating-Point Unit ......................................... 23 

2.1.7.1 Conformance with IEEE Standard ........................... 23 

2.1.7.2 Floating-Point Load/Store Operations ............. . . . 23 

2.1.7 .3 Floating-Point Arithmetic Instructions ........................ 23 

2.1.7.4 Floating-Point Status and Control Register Instructions ........... 24 

2.1.7 .5 Optional Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 

2.1.7.6 Denormalized Numbers ............ . . . . . . . . . . . . . . . . . . . . . 24 

2.1.7.7 Floating-Point Exceptions ........................ . . .... 24 

2.1.7.8 Invalid Floating-Point Instruction Forms . . . . . . . . . . . . . . . . . .... 25 

2.2 x704 Virtual Environment Architecture (VEA) ................ 25 

2.2.1 Storage Model ............................................ 25 

2.2.1.1 Caches .. . .. .. .. .. .. .. .. .. .. . .. .. .. .. .. . .. 25 

2.2.1.2 Storage Consistency ....................... . . ... 27 

2.2.2 Effect of Operand Placement on Performance ................ 27 

2.2.3 Cache Management Instructions ............................ 27 

2.2.3.1 Instruction Cache Block Invalidate (icbi) ..................... 27 

2.2.3.2 Instruction Synchronize (isync) ........................... 28 

2.2.3.3 Data Cache Block Touch (debt) ........................... 28 

2.2.3.4 Data Cache Block Touch for Store (dcbtst) . . . ............... 28 

2.2.3.5 Data Cache Block Zero (dcbz) ............................ 29 

2.2.3.6 Data Cache Block Store (dcbst) ........................... 29 

2.2.3.7 Data Cache Block Flush (dcbf) . . . . . . . . . . . . .............. 30 

2.2.4 Additional Diagnostic Instructions ............................ 30 

2.2.5 Storage Access Ordering ................................... 32 

IV EXPONENTIAL x 704 TECHN\CAL SUMMARY 



2.2.6 Executing Modified Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 32 

2.2.7 Atomic Update Primitives ................................... 33 

2.2.8 Timer Facilities ............................................ 33 

2.3 x704 Operating Environment Architecture (OEA) ............. 33 

2.3.1 Reserved Fields in Storage Tables ........................... 33 

2.3.2 Exceptions ................................................ 33 

2.3.3 Branch Processor .......................................... 34 

2.3.3.1 SRRD and SRR1 ....................................... 34 

2.3.3.2 MSR ............................................... 34 

2.3.4 Fixed-Point Processor ...................................... 35 

2.3.4.1 Software Use SPRs ..................................... 35 

2.3.4.2 Processor Version Register ............................... 35 

2.3.4.3 Additional Special Purpose Registers ..................... 35 

2.3.4.4 TLB Miss Registers ..................................... 38 
2.3.4.4.1 TLB Miss Address Register !MAR) .... 38 

2.3.4.4.2 TLB Miss Interrupt Status Register IMISR) .. . .... 39 

2.3.4.4.3 TLB Miss PTE Compare Register ICMP) . . . ................ 39 

2.3.4.4.4 TLB Miss PTEG Address Hash Registers IHASH1 and HASH2) . . . 40 

2.3.4.4.5 TLB Miss Update LRU Rogisters ITLBLRUO and TLBLRU1). . ... 40 

2.3.4.4.6 TLB Miss Update MRf Heg1ster ITLBMRF) . . . . ....... 41 

2.3.4.5 Debugging Registers . . . . .......................... 41 
2.3.4.5.1 Breakpoint Control Register IBPTCTL). . . . . . . . . 42 

2.3.4.5.2 Instruction Address Breakpoint Register llABR).. . .. 44 

2.3.4.5.3 Extended Data Address Breakpoint Register IXDABR). . . 44 

2.3.4.5.4 Data Address Breakpoint Register IDABR). . . . . . . . . . ...... 45 

2.3.4.5.5 Event Register (EVENT). . .... 45 

2.3.4.6 Processor Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . 47 
2.3.4.6.1 Modes Register (MODES). . . . . . .. . . . .. . . . . . . .. .. . .. . . 47 

2.3.4.6.2 Machine Check Register !CHECK). . . . . . . . . 48 

2.3.4.6.3 L2/Bus Control Register (L2CTL) . . . . . . . . . 50 
2.3.4.6.4 L2 Column Disable Register IL2CDR) . . . . . . . . . . . 52 

2.3.4.7 Processor Identification Register (PIR) ....................... 52 

2.3.5 Storage Control. ........................................ . . 53 

2.3.5.1 Translation Lookaside Buffer (TLB) .......................... 53 

2.3.5.2 Block Address Translation ................................ 54 

2.3.5.3 Storage Access Modes .................................. 54 

2.3.5.4 Reference and Change Recording ........................... 54 

v 



2.3.5.5 Storage Control Instructions .............................. 54 
2.3.5.5.1 Data Cache Block Invalidate (dcbi) .......................... 55 
2.3.5.5.2 TLB Invalidate Entry (t/biel ................................. 55 
2.3.5.5.3 TLB Invalidate All (tibial ................................... 55 
2.3.5.5.4 TLB Synchronize (tlblsyncl ................................ 55 

2.3.6 Interrupts ................................................. 56 

2.3.6.1 Interrupt Classes ...................................... 56 

2.3.6.2 Interrupt Definitions .................................... 56 
2.3.6.2.1 System Reset Interrupt ..................................... 57 
2.3.6.2.2 Machine Check Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 57 
2.3.6.2.3 Data Storage Interrupt ..................................... 58 
2.3.6.2.4 Instruction Storage Interrupt. .. . . 59 
2.3.6.2.5 External Interrupt ......................................... 59 
2.3.6.2.6 Alignment Interrupt. .......... . . 60 
2.3.6.2.7 Program Interrupt ......................................... 60 
2.3.6.2.8 Floating-Point Unavailable .................................. 60 
2.3.6.2.9 Decrementer Interrupt. ......... . . . 60 
2.3.6.2.10 System Cali Interrupt ......... . . ....................... 60 
2.3.6.2.11 Trace Interrupt. ............... . . .... 60 
2.3.6.2.12 Floating-Point Assist Interrupts .. . ······················· 61 
2.3.6.2.13 TLB Miss interrupt.............. . ...................... 61 
2.3.6.2.14 TLB Store Interrupt . . . . . . . . .. . . . . ...................... 62 

2.3.6.3 Exception Ordering ..................................... 64 

2.3.7 Synchronization Requirements for Special Registers ........... 64 

3. Processor Operation ......................................... 67 

3.1 Execution Pipeline ......................................... 67 

3.1 .1 Fetch Stage (Fl ............................................ 68 

3.1.2 Decode Stage (D) .......................................... 68 

3.1 .3 Address Generation Stage (A) ............................... 68 

3.1 .4 Cache Access Stage (C) .................................... 68 

3.1 .5 Tag Match Stage (M) ....................................... 68 

3.1.6 Writeback Stage (W) ....................................... 68 

3.1.7 ALU Operations ........................................... 69 

3.1 .8 Floating-Point Operations ................................... 69 

3.2 Instruction Cache .......................................... 69 

3.3 Data Cache ................................................ 70 

VI EXPONENTIAL x704 TECHNICAL SUMMARY 



3.4 Level 2 Cache .............................................. 72 

3.4.1 Level 2 Cache Tags ........................................ 72 

3.4.2 Address Translation and the Level 2 Cache ................... 73 

3.4.3 Level 2 Cache Replacement Policy ........................... 73 

3.4.4 Disabling the Level 2 Cache. _ .......... __ ..... . . . . . . . . . . . . . 75 

3.4.5 Flushing the Level 2 Cache ................................. 75 

3.4.6 Cache Coherency Protocol. ................................. 77 

3.4.7 Cache Prefetching ......................................... 78 

3.5 Translation Lookaside Buffer (TLB) .......................... 79 

3.6 Instruction TLB (ITLB) ...................................... 81 

3.7 Block Address Translation ..... ............................. 81 

3.8 Branch Prediction .......................................... 81 

3.8.1 Branch Direction Prediction ................................. 82 

3.8.2 Branch Target Prediction .... . . ...................... 83 

3.8.3 Finder Initialization .............. . . .................... 83 

3.9 Diagnostic Accesses . ..... . - ............................ 84 

3.10 Power-On Reset and Hard Reset Initialization ............... 85 

4. Instruction Execution ........................................ 87 

4.1 Pipeline Diagrams . .............................. . 

4.2 Sliding ALU Stage . ........................... . 

4.3 Branch Resolution ............................ . 

.. 87 

. . 88 

. ..... 91 

4.4 Instruction Grouping Rules ................................. 92 

4.5 Fetch Stalls.... . . . ....................................... 94 

4.6 Decode Stalls .............................................. 95 

4. 7 Pipe Stalls ... .......................................... ~ 

4.8 Penalties for Algebraic and Misaligned Loads and Stores . .... 99 

4.8.1 Pipeline Diagrams for Algebraic Loads. . . . . . . . . . . . . . . . . . . 99 

VII 



4.8.2 Pipeline Diagrams for Misaligned Loads ..................... 100 

4.8.3 Pipeline Diagram for Misaligned Stores ...................... 101 

4.9 Floating-Point Execution ................................. 101 

4.9.1 Floating-Point Computational Instructions .................... 103 

4.9.2 Floating-Point Compare Instructions ........................ 103 

4.9.3 Floating-Point Load and Store Instructions ................... 104 

4.9.4 Floating Point Exceptions and Condition Register Updates ..... 104 

4.9.5 Floating-Point and Integer Pipeline Synchronization ........... 105 

4.9.6 Optimizing Floating-Point Performance ...................... 106 

5. Signal Descriptions ......................................... 107 

5.1 Bus Interface Signals . ............. . . ................... 107 

5.2 Signal Descriptions . ................. . . .................. 109 

5.2.1 Clock and Phase-Locked Loop Signals .. . . .................. 111 

5.2.2 Test Signals .............................................. 113 

5.2.3 Thermal Monitoring and Control Signals ..................... 113 

6. Processor Interface ......................................... 115 

6. 1 Address Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

6.2 Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

6.3 Coherency Protocol . . . . . . . . . . . . . . . . . . . .............. , ... 116 

6.4 Features for Improved Bus Performance . ................... 117 

7. Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. 119 

7.1 JTAG Interface....................... . ................. 119 

7 .2 Scan Chains . . . . . . . . . . . . . . . . . . . . . . .................. 119 

7.3 At-Speed Testing . . . . . . . . . . . . . . . . . . . . . . ................ 120 

8. Package Description ........................................ 121 

Appendix A. Sample TLB Interrupt Handlers . .............. 127 

Index ........................................................ 133 

VIII EXPONENTIAL x704 TECHNICAL SUMMARY 



Figures 

Figure 1: Data Path Simplified Block Diagram .......................... 8 

Figure 2: Instruction Fetch Unit Simplified Block Diagram ............... 9 

Figure 3: Integer Execution Unit Simplified Block Diagram .............. 11 

Figure 4: Load/Store Unit Simplified Block Diagram .................... 13 

Figure 5: Floating-Point Execution Unit Block Diagram ................. 14 

Figure 6: TLB Miss PTE Compare Register ........................... 39 

Figure 7: TLB Miss PTEG Address Hash Registers .................... 40 

Figure 8: TLBLRU Registers ........................................ 40 

Figure 9: TLB Entry ................................................ 41 

Figure 10: Breakpoint Control Register ............................... 42 

Figure 11: Instruction Address Breakpoint Register .................... 44 

Figure 12: Data Address Breakpoint Register ......................... 45 

Figure 13: Event Register .......................................... 46 

Figure 14: Modes Register ......................................... 47 

Figure 15: Machine Check Register. ....... : ......................... 49 

Figure 16: L2/Bus Control Register .................................. 50 

Figure 17: L2 Column Disable Register. .............................. 52 

Figure 18: Instruction Cache Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Figure 19: Data Cache Tags.............. . . . . . . . . . . . . . . . . . . . . . . . . 71 

Figure 20: Level 2 Cache Tags ...................................... 72 

Figure 21: L2 Cache Use Record .................................... 73 

Figure 22: TLB Entry ............................................... 79 

Figure 23: Predicted Branch Direction State Transitions ................ 83 

Figure 24: X704 Bus Interface Signals ............................... 108 

Figure 25: Pinout Diagram for the X704 Package ...................... 121 

Figure 26: x704 Package Drawing ................................... 125 

IX 



x EXPONENTIAL X 704 TECHNICAL SUMMARY 



Tables 

Table 1: Processor Revision Values .................................. 35 

Table 2: Special Purpose Registers .................................. 36 

Table 3: Event Counter Selections ................................... 46 

Table 4: Interrupt Vector Offsets .................................... 56 

Table 5: Synchronization Requirements for Implementation-

Dependent SPRs .......................................... 64 

Table 6: Level 2 Cache Tag MESI State Values ........................ 73 

Table 7: Diagnostic Address Space .................................. 84 

Table 8: Hard Reset State Initialization ............................... 86 

Table 9: Floating-Point Instruction Bandwidth and Latency ............. 102 

Table 10: Floating-Point and Integer Pipeline Alignments .............. 105 

Table 11: Processor-Dependent Signal Descriptions .................. 109 

Table 12: Typical PLL_CFG Settings ................................ 112 

Table 13: CLK_CTL Settings ....................................... 112 

Table 14: Pinout Listing for the x704 Package ........................ 122 

XI 



XII EXPONENTIAL x704 TECHNICAL SUMMARY 



Preface 

Scope of this Document 

This document presents information supporting hardware design and sys­
tems programming with Exponential Techology's x704. Note that this docu­
ment is in progress and is subject to change at any time. Presently, it 
consists of eight chapters and an appendix, as follows: 

• Chapter 1, "Processor Overview," describes basic features of the x704 

and provides an overview of the processor's organization and architec­
ture. 

• Chapter 2, "PowerPC Architecture Compliance," contrasts the imple­
mentation of the x704 to the Apple-IBM-Motorola specification for 
PowerPC architecture provides details of features specific to the x704 

implementation. 

• Chapter 3, "Processor Operation," provides a detailed look at the x704 

hardware features that are of particular interest to systems program­
mers. 

• Chapter 4, "Instruction Execution," provides details on the operation of 
the instruction pipelines. It will benefit software engineers working to 
predict processor performance or to optimize software. 

• Chapter 5, "Signal Descriptions," presents details on the x704 hardware 
interface. 

• Chapter 6, "Processor Interface," summarizes aspects of the hardware 
interface that are unique to the x104_ 

• Chapter 7, "Test Interface," presents details on X704 testability. 

• Chapter 8, "Package Description," provides a physical and mechanical 
description of the x704_ 

•Appendix A. "Sample TLB Interrupt Handlers," provides code examples. 
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Documentation Conventions and Definitions 

This document follows the notation conventions used in the PowerPC 
Architecture Specification referenced on page 3. In addition, the following 
notation is used: 

2 

• Obnnnn indicates a number expressed in binary format; Oxnnnn indi­
cates a number expressed in hexadecimal format (for example, Ox4FOO). 

• Instruction mnemonics appear in lowercase, bold italic typefaces (for 
example, sync, tlbsync). 

• Bits are numbered from left to right, starting with the lower numbered 
bit. 

• Ranges of bits are specified in parentheses with starting and ending 
numbers separated by a colon. For example, (5:7) denotes bits five 
through seven. 

• Register names, fields of instructions, fields of special purpose regis­
ters, and macro names appear in uppercase (for example, MSR, BO, RA 
and VSID). 

• REG[FIELDJ indicates a specific field within a register (for example, 
FPSCR[NI]). 

• REG(p) or REG(p:q) indicates a specific bit or range of bits, respectively, 
within a register (for example, B0(2)). 

• (x) indicates the contents of register x, when x is an instruction field 
name. For example, (RA) means the contents of register RA, and (FRA) 
means the contents of FRA, where RA and FRA are instruction fields. 

• (RAIO) indicates the contents of register RA wher-:i RA has the value of 
1-31, or the value 0 when RA contains 0. 

• ACTIVE_HIGH signals appear in uppercase text (for example, SCAN_EN 
and SCAN_SER). 

• ACTIVE_LOW signals appear in uppercase text with an overbar (for 
example, ABB and DBB). 

• SIGO-SIG7 indicates a group of signals from SIGO to SIG7. 

• The term power-endian is used to refer to the pseudo-little-endian mode 
defined for the PowerPC. 
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Applicable Documents 

The x704 is compatible with the PowerPC architecture as specified in the 
following documents: 

• I BM, PowerPC User Instruction Set Architecture (Book I), Morgan 
Kaufmann, San Francisco, CA, second edition, December 13, 1994. 

• IBM, PowerPC Virtual Environment Architecture (Book /I-AIM), Morgan 
Kaufmann, San Francisco, CA, second edition, December 13, 1994. 

• IBM, PowerPC Operating Environment Architecture (Book ///-AIM), 
Morgan Kaufmann, San Francisco, CA, second edition, December 13, 
1994. 

These documents are collectively referred to as the PowerPC Architecture 
Specification, PowerPC architecture, or simply as the architecture specifica­
tion and are individually referred to as Book I, Book 11, and Book Ill. Readers 
of this document should be familiar with these books. 

The X704 bus interface is compatible with the interface described in: 

• Motorola: PowerPC 604 Microprocessor Interface Specification, 
March 28, 1994. 

This document is referred to as the bus specification. 

The x704 supports a test interface compatible with the IEEE 1149.1 stan­
darci described in: 

• IEEE, New York, NY: IEEE Standard Test Access Port and Boundary-Scan 
Architecture, IEEE Standard 1149.1, May, 1990 
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1. Processor Overview 

This document describes the X704 implementation of the PowerPC 
architecture. 

1. 1 Processor Features 

The Exponential Technology x704 is a single-chip implementation of the 32-

bit PowerPC architecture that conforms fully to the PowerPC Architecture 
Specification. The x704 processor features: 

• separate integer, load/store, branch, and floating-point units 

• up to three instructions issued each cycle 

• separate level 1 data and instruction caches 

• unified data and instruction level 2 cache 

• on-chip translation lookaside buffer (TLB) 

Integer Unit 

• executes all arithmetic, logical, compare, rotate, and shift instructions 

except multiply and divide in a single cycle 

• executes multiply instructions in 3 to 6 cycles 

• bypasses results to following instructions with no delay 

Load/Store Unit 

• supports issue of a load or store each cycle 

• handles all big-endian mode misaligned loads and stores in hardware 

• supports power-endian mode, including some misaligned accesses 

• forwards load data to the integer unit with no load-use penalty 
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Branch Unit 

• supports issue of a branch or condition register logical instruction 
each cycle 

• maintains 2-bit dynamic branch prediction in hardware 

• supports prediction through both PC-relative and indirect branches 

• no penalty for following correctly predicted branches 

• recovers quickly from mispredicted branches 

Floating-Point Unit 

• complies with IEEE-754 single-precision and double-precision arith­
metic standard 

• implements optional fsel and stfiwx instructions 

• supports denormalized numbers in hardware 

Caches 

• 2-level cache hierarchy 

• 2 KB direct-mapped instruction cache with 32-byte blocks 

• 2 KB direct-mapped write through data cache with 32-byte blocks 

• 32 KB 8-way set-associative unified level 2 cache with 32-byte blocks 

• supports write through and copy back protocols (level 2 cache) 

• supports all PowerPC cache operations 

• physically indexed and physically tagged caches 

• features 4-doubleword store queue between load/store unit and 
data/level 2 caches 

• features software disables 

• maps out damaged blocks and columns (level 2 cache) 

Memory Management Unit 

6 

• contains 128-entry, 4-way set-associative TLB with hardware­
assisted software refill 

• contains four-entry, fully associative instruction TLB with hardware 
refill from main TLB 

• supports block address translation for four instruction blocks and 
four data blocks 
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MultiProcessing Support 

• supports MESI cache coherency protocol 

• supports lwarx and stwcx. memory synchronization instructions for 
atomic updates 

• broadcast synchronization of cache operations and serialization 

• broadcast TLB invalidates 

Bus Interface 

• supports standard 64-bit data, 32-bit address 60x bus 

• supports data streaming with optional fast L2 mode 

• supports pipelined and split transactions 

• supports processor clock that is an integral multiple of bus clock 

Test Interface 

• features JTAG TAP controller with boundary scan 

• proprietary scan access to all internal flip flops 

• supports scan access to all internal RAM structures 

• supports instruction-level access to all internal RAM structures 

• performs at-speed fault testing 

1.2 Processor Organization 

This section presents a high-level view of the x704 processor. See Chapter 3 
for detailed descriptions of the x704 micro-architecture and implementation. 

The major functional blocks of the x704 include the following: 

• instruction fetch unit, including the instruction cache 

• decode unit 

• integer execution unit 

• load/store unit, including the data cache and TLB 

• floating-point execution unit 

• level 2 cache 

• bus interface unit 
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The block diagram in Figure 1 depicts an overview of the x704 data paths. 

Branch 
Unit 

INSTRUCTION 
FETCH UNIT 

2KB L1 CACHE 
Direct, B words/line 

Decode/Dispatch 
2 Oecode/3 Dispatch 

Load/Store Fixed Point 32 GPRs Unit Unit 

Store Queue 2KB L 1 DCACHE 
Direct. B words/line 

Floating 
Point 
Unit 

TLB 

32 FPRs 

L2CACHE }~~ 32KB Unified . Bus Interface Unit 60x Bus 
B way, B words/line 

Figure 1: Data Path Simplified Block Diagram 

1.2.1 Instruction Fetch Unit 

The instruction fetch unit contains the instruction cache, the instruction TLB 
and the IBAT registers, a branch prediction RAM known as the finder, and a 
6-word instruction buffer. The instruction buffer consists of a four-entry 
decode buffer and a two-entry fetch buffer. Figure 2 shows a simplified 
block diagram of the instruction fetch unit. 

As the decode unit empties the decode buffer, the fetch unit continually 
reads instructions from the instruction cache and places them in the instruc­
tion buffer. Instructions not consumed by the decode unit are moved to the 
front of the decode buffer. An aligned doubleword can be read from the 
instruction cache on each cycle. The instruction cache is not read during an 
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instruction TLB miss, during an instruction cache miss, or when the fetch 
buffer is not empty. Only one instruction can be placed in the decode buffer 
after the instruction stream branches to an instruction on an odd word 
address. Instructions are placed directly in the decode buffer portion of the 
instruction buffer if it is not full; the fetch buffer holds any overflow. 

The fetch unit maintains its own copy of the program counter, called the 
fetch PC, that is updated in one of three ways: 

• If the finder indicates that the instruction being read is not a branch or is 
a branch that is predicted to be not taken, the fetch unit increments the 
counter. 

• If the finder predicts that a branch will be taken, the fetch unit sets the 
counter to the branch target address. 

• If the decode unit indicates that a previous branch was predicted incor­
rectly, the fetch unit sets the counter to the correct branch target 
address provided by the decode unit. 

From Level 2 Cache 

From Decode Unit l 
L2 Buffer 

FINDER !CACHE 

Shift Rotate 

From Decode Unit 

To Decode Unit 

Figure 2: Instruction Fetch Unit Simplified Block Diagram 
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The fetch unit predicts indirect branches, including return-from-interrupt, 
and some interrupts. However, not all branches can be predicted. See 
Section 3.8 on page 81 for more information on branch prediction. 

1.2.2 Decode Unit 

The decode unit examines the contents of the first three entries in the 
decode buffer and determines whether the first, the first and the second, or 
all three of those instructions can be issued-sent to the appropriate execu­
tion unit-on each cycle. Integer register operands are read from the integer 
register file, which is part of the decode unit. The decode unit tracks inter­
instruction interlocks and ensures that all results are correctly bypassed to 
any instructions that need them. This unit also processes exceptions. 

1.2.3 Branch Unit 

The branch unit determines whether branches are taken and computes 
branch target addresses. The branch unit tracks all branch predictions made 
by the fetch unit and handles mispredicted branches by flushing the pipeline 

and sending the correct branch target address back to the fetch unit. 

The condition register resides in the branch unit, so all condition register log­
ical instructions are executed here. The branch unit also contains the link 
register, count register, XER, MSR, SRRO, SRR1, DEC, TBU, and TBL spe­
cial purpose registers. 

1.2.4 Integer Execution Unit 

The integer execution unit consists of a single pipe stage that executes 
instructions in one of five subunits: an adder unit, a logical operation unit, a 
shifter/rotator, a leading-zero counter, and a multiplier. The multiplier takes 
multiple cycles and includes two internal registers, M01 and M02, that 
hold intermediate results. Divides use a combination of the adder and the 
shifter/rotator. Only one subunit can execute an instruction in any one cycle. 
Figure 3 shows a simplified block diagram of the integer execution unit. 
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Immediate 
Integer - Load Data 
Register 
File - Integer Result 

Bypass Paths 

Integer Result 

Figure 3: Integer Execution Unit Simplified Block Diagram 

1.2.5 Load/Store Unit 

In conjunction with the level 2 cache and bus interface unit, tho load/store 
unit executes load, store, and cache operation instructions. This unit con­
sists of an adder that produces the effective address from the address oper­
ands, the TLB, the data cache, a rotator that handles misaligned data and 
performs byte-reversal, and a store queue. Figure 4 on page 13 shows a 
simplified block diagram of the load/store unit. A number of SPRs, including 
the DAR, DSISR, SDR1, SPRG, and DBATs, and the segment registers, 
reside in the load/store unit. 

The load/store unit reads the results of load instructions from the data 
cache. It then immediately bypasses the results to any execution unit that 
may need them as operands for other instructions, even to fixed-point 
instructions that are issued in the same cycle as the load. Because of this 
intra-cycle bypassing, the load-use penalty for ALU operations on the x704 is 
effectively zero cycles. Store instructions do not usually delay the execution 
pipeline. Store data is placed in the store queue where it waits for a free 
cycle when it can be written to the level 2 cache and possibly to the data 
cache. 
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Data in the store queue can be written to both the data cache and the level 
2 cache. Store queue entries also hold data sent from the level 2 cache in 
response to a data cache miss. The store queue allows subsequent load 

instructions to proceed and potentially complete before it writes the store 
data to either cache. Stores that miss in the data cache do not cause a data 

cache miss; instead, the data is sent directly to the level 2 cache, where a 
miss occurs if necessary. This process is known as store-around. 

The store queue contains four doubleword entries. Cacheable stores that hit 

existing entries in the store queue combine with the existing entry rather 

than allocate a new entry. This significantly improves the performance of 
consecutive stores, particularly those using the store multiple instruction. In 

most cases, data held in the store queue can be bypassed back into the 

pipeline when a load instruction hits it; the load need not wait until the store 

queue data is written into the data cache. 

Cache operations are placed in the store queue and sent to the level 2 

cache, which actually performs the operations, without holding up the exe­
cution pipeline. The sync, tlbsync, and eieio synchronization instructions 

also execute in the load/store unit and do not complete until all of the appro­
priate entries have been removed from the store queue. 
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Integer Register FP Register Register Register or Immediate 

TLB 

Store Queue 

From L2 Cache To L2 Cache Load Result 

Figure 4: Load/Store Unit Simplified Block Diagram 

1.2.6 Floating-Point Execution Unit 

The floating-point execution unit contains the floating-point register file, a 
pipelined adder, a pipelined multiplier, and a divider that all support the IEEE-
754 standard for floating-point arithmetic. Figure 5 shows a simplified block 
diagram of the floating-point execution unit. 

The x704 processor supports IEEE NaNs and denormalized numbers. See 
Section 2.1.7.6 on page 24 tor more information on denormalized numbers. 
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From Load/Store Unit 

Floating-Point Register File To Load/Store Unit 

Adder 

Figure 5: Floating-Point Execution Unit Block Diagram 

1.2. 7 Level 2 Cache 

The level 2 cache moves data between external caches or memory and the 
faster instruction and data caches. The level 2 cache controller handles mul­
tiple misses and processes hits from either level 1 cache while satisfying a 
miss from one or both of them. 

The level 2 cache also executes cache operations such as block touch, block 
store, and block zero, maintaining both the storage reservation used by the 
stwcx. instruction and cache coherency in a multiprocessor system using 
the MESI protocol. 

The level 1 caches must be subsets of the level 2 cache; the level 2 cache 
tags record which lines, if any, are present in either level 1 cache. This 
allows the level 2 cache to execute most cache operations and process 
most snoop requests without interfering with the operation of the level 1 
caches. 
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1.2.8 Bus Interface Unit 

The bus interface unit passes information between the level 2 cache and 
the system bus using the basic transfer protocol described in the bus speci­
fication. It contains: 

• a 32-byte writeback buffer that stages data being evicted from the level 
2 cache 

• a 16-byte write buffer that holds write data being sent to the system in 
response to a snoop 

• address buffers that hold information for up to three read, write, coher­
ency, or synchronization requests and a single incoming snoop request 

In a multiprocessor system, the bus interface unit maintains information on 
the state of broadcast coherency and synchronization operations. 
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2. PowerPC Architecture Compliance 

This chapter describes implementation-defined features of the X704 and 
elaborates on general architectural details where necessary. 

2.1 x704 User Instruction Set Architecture (UISA) 

This section follows the structure of Book I of the PowerPC Architecture 
Specification. The reader should be familiar with that book. 

2.1.1 Reserved Fields 

The PowerPC architecture does not require the implementation of reserved 

bits in special purpose registers. For reserved bits, do not assume that a 

read returns the last value written when writing software. When the x704 

writes zero to a reserved bit, subsequent reads return zero; when the x704 

writes one to a reserved bit, subsequent reads return an undefined value. 

2.1.2 Classes of Instructions 

The PowerPC architecture defines three instruction classes: 

• Defined 

• Illegal 

• Reserved 

The following sections describe the X704 's implementation. 

2.1.2.1 Defined Instruction Class 

The x704 supports all required instructions defined for 32-bit implementa­

tions of the PowerPC architecture. It also supports the optional fset, 
stfiwx, and tlbie instructions. 
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The x704 does not support the optional fres, frsqrte, fsqrt, fsqrts, tibia, 
eciwx, and ecowx instructions. Attempts to execute these instructions 
cause the system illegal instruction error handler to be invoked. 

Book I of the architecture defines certain instructions to have preferred 
forms. The x704 does not distinguish between preferred forms and other 
forms of valid defined instructions. 

The architecture allows invalid forms of defined instructions to cause 
boundedly undefined results. The operation of the x704 on invalid forms of 
instructions is described for each of the functional units in Section 2.1.4.3 

on page 19, Section 2.1.5.2 on page 21, Section 2.1.6.1 on page 22, and 
Section 2.1.7.8 on page 25, respectively. 

2.1.2.2 Illegal Instruction Class 

Attempts to execute instructions in this class cause the system illegal 
instruction error handler to be invoked. PowerPC instructions defined only 
for 64-bit implementations are treated as illegal instructions. 

2.1.2.3 Reserved Instruction Class 

The reserved instruction class comprise the following four subclasses: 

• the instruction having primary opcode zero except for the instruction 
consisting entirely of zeros 

• POWER instructions that were not included in the PowerPC architecture 

• implementation-dependent instructions required to conform to the archi­
tecture specification 

• other implementation-dependent instructions 

The x704 invokes the system illegal instruction error handler on attempts to 
execute instructions with primary opcode zero or POWER instructions that 
are not included in the PowerPC architecture. See Section G.27 of Book I 
for POWER instructions not implemented in the PowerPC architecture. 

There are no implementation-dependent instructions required to conform to 
the PowerPC Architecture Specification. 

The X704 supports two implementation-dependent instructions, lwdx and 
stwdx. that provide diagnostic access to the on-chip caches and TLB. See 
Section 2.2.4 on page 30. 
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The x704 also supports several privileged special purpose registers (SPRs) 
that are not defined in the architecture specification. The mfspr and mtspr 
instructions provide access to these registers. These implementation­
dependent SPRs are described in Section 2.3.4.3 on page 35. 

2. 1.3 Exceptions 

The x704 supports the standard PowerPC exceptions, including single-step 
and branch tracing; it also supports two additional exceptions not described 
in the architecture specification: TLB miss and TLB store. These exceptions 
handle software reloading and updating of the translation lookaside buffer 
(TLB). See Section 2.3.6.2 on page 56 for additional information on these 
interrupts. 

2.1.4 Branch Processor 

The following sections describe the x704 UISA for the branch processor. 

2.1.4.1 Instruction Fetching 

The x704 prefetches instructions before it determines whether they will 
actually execute. Instructions are never fetched from guarded storage 
unless they are either in the cache, known to be on the branch path, or are 
on the same page as an instruction known to be on the branch path. The 
x704 requires software cache operations when a program modifies an 
instruction it intends to execute. Software must execute the instruction 
sequence described in Section 2.2.6 on page 32 to ensure that the modified 
instruction is visible to the fetch unit. 

The instruction fetch unit includes an Instruction Address Breakpoint Regis­
ter (IABR) that triggers a trace interrupt when an instruction is fetched from 
a specified address. See Section 2.3.4.5 on page 41 for more information on 
IABR and its associated interrupt. 

2.1.4.2 Branch Prediction 

The x704 improves its performance by predicting branch directions and tar­
get addresses using the algorithms described in Section 3.8 on page 81. 
The x704 ignores the y bit in the BO field of branch conditional instructions. 

2.1.4.3 Invalid Branch Instruction Forms 

Attempts to execute invalid forms of the bcctr instruction where B0(2) is 
clear will cause the system illegal instruction error handler to be invoked. 
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Execution of invalid forms of the mcrf and condition-register logical instruc­
tions with the Re bit set may cause CRO to be set to an undefined value. 

2.1.5 Fixed-Point Processor 

The following sections describe the x704 implementation of the fixed-point 
processor. 

2.1.5.1 Load/Store Unit 

Book I of the architecture specification notes that the load algebraic, load 
with byte reversal, and load with update instructions may have greater 
latency than other load instructions. On the X704• load algebraic instructions 
(Iha, lhax, lhau, and /haux) require an additional cycle before the result 

can be used by another instruction, but can still issue at the rate of one per 
cycle. Load with byte reversal and load with update instructions, however, 
incur no additional latency penalty, although update instructions do prevent 
the simultaneous issue of an integer instruction. See Chapter 4 for more 
information on instruction latency and performance. 

When operating in big-endian mode, the load/store unit supports arbitrary 
alignment of halfword, word, floating-point single. and floating-point double 
scalar values. In power-endian mode, the load/store unit supports mis­
aligned word and halfword loads and stores that do not cross a doubleword 
boundary. Some alignments may incur additional cycles of execution time 
as described in Section 4.8 on page 99. Power-endian mode elementary 
loads and stores that cross a doubleword boundary, and any lwarx or 
stwcx. instruction with a misaligned target address causes the system 
alignment error handler to be invoked. 

An unaligned access that does not cause the system alignment error han­
dler to be invoked may cross a page boundary. If this happens, the TLB 
miss, TLB store fault, or system data storage error handlers can be invoked 
with the instruction partially completed, but the RT register will not have 
been altered for elementary fixed-point load instructions. Aligned move 
assist (lswi, lswx, stswi, and stswx), lmw, and stmw instructions that 
cross page boundaries can also cause these handlers to be invoked with the 
instruction partially completed. 

The x704 does not support direct-store segments or accesses to direct-store 
segments. All attempts to reference data in a direct-store segment cause 

either the system data storage error handler or the system alignment error 
handler to be invoked. 
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2.1.5.2 Invalid Load/Store Instruction Forms 

Attempts to execute load with update instructions with RA = RT cause the 
system illegal instruction error handler to be invoked. 

The execution of load with update or store with update instructions with 
RA = 0 performs the storage access with an effective address of the con­
tents of RB (for X-form instructions) or of the displacement (for D-form 
instructions). If the access is successful, rO is set to the effective address. 

Execution of the lmw, lswi, and lswx instructions with RA or RB in the 
range of target registers, including the RA= 0 case, functions correctly, but 
the instructions cannot be restarted reliably if interrupted because the 
address value in RA or RB may have been overwritten. 

Execution of an lswx instruction specifying a zero-byte transfer causes the 
contents of RT to become undefined. 

Execution of invalid forms of load/store instructions with the Re bit set does 
not alter CRO. 

Execution of the stwcx. instruction with the Re bit clear sets CRO as if the 
Re bit were set. 

2.1.5.3 Reservation Granularity 

The storage reservation granularity established by the lwarx instruction is 
32 bytes-the same size as a cache block. 

2.1.5.4 Synchronization Instruction 

This instruction causes significant performance penalties and should not be 
used indiscriminately. See Section 2.2.5 on page 32 for a detailed descrip­
tion of the sync instruction. 

2.1.5.5 Data Breakpoints 

The load store unit includes a Data Address Breakpoint Register (DABR) and 
a Breakpoint Control register (BPTCTL) that cause a data storage interrupt to 
occur when a specified address or address range is referenced. See 
Section 2.3.4.5 on page 41 for more information on BPTCTL, DABR, and 
breakpoint interrupts. 
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2.1.6 Fixed-Point Unit 

Book I of the architecture specification notes that instructions with the OE 
bit set or those that are defined to set CA can execute slowly or prevent the 
execution of subsequent instructions until the operation is complete. With 
the x704 processor, instructions that set CA never cause performance penal­
ties. The performance of multiply instructions, however, is affected by set­
ting the OE bit. 

On the x704, the mullwo and mul/wo. instructions always require six 
cycles, as opposed to the three to five cycles required by other fixed-point 
multiply instructions. The only other performance penalty that may occur 
for fixed-point instructions occurs when recovering from mispredicted 
branches based on the value of the SO bit in CRO. In this case, a penalty is 
incurred only when the branch issues while the instruction with OE set is 
still in the pipeline. 

The performance of the mtcrf instruction does not depend on the value of 
the FXM field in the instruction. 

Execution of mtspr and mfspr instructions with undefined values in the 
SPR field triggers either the system privileged instruction handler (if SPR(O) 
is set) or the system illegal instruction interrupt handler (if SPR(O) is clear). 
The x704 defines additional SPR values beyond those defined in the 
PowerPC Architecture Specification. 

The x704 does not support the optional EAR special purpose register. 
Attempts to reference this register cause the system illegal instruction error 
handler to be invoked. 

2.1.6.1 Invalid Fixed-Point Instruction Forms 

The x704 processor ignores the Re bit value in compare, trap, mtspr. 
mfspr. mcrxr. and mfcr instructions. Execution of those instructions with 
the Re bitset will not cause CRO to be set to an undefined value. 

Execution of the mtcrf instruction with the Re bit set may cause CRO to be 
set to an undefined value. 

Execution of compare instructions with Re set and with BF not equal to zero 
will set CR field BF correctly. 

Execution of compare instructions is unaffected by the value of either the L 
bit or bit 9 of the instruction. 

Execution of instructions such as neg that do not use the RB field is unaf­
fected by the contents of that field. 
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2.1. 7 Floating-Point Unit 

The following sections describe the x704 implementation of the floating­
point unit. 

2.1.7.1 Conformance with IEEE Standard 

The x704 floating-point unit complies with the IEEE-754 floating-point stan­
dard while the NI bit in the FPSCR is clear. When FPSCR!NIJ is set. the 
x704 deviates from the standard by replacing denormalized results of 
floating-point computational instructions with zeros. The check for a denor­
malized result is made before rounding, so a result that would have been 
rounded from the largest denormalized number to the smallest normalized 
number is still forced to zero. 

Setting the NI bit does not alter either the definitions of other FPSCR fields 
or the behavior of floating-point exceptions. including underflow and inex­
act traps resulting from denormalized results that are forced to zero. Appli­
cations that want to suppress all floating-point exceptions should clear all 
five exception enable bits in the FPSCR. 

2.1.7.2 Floating-Point Load/Store Operations 

The floating-point register file stores all operands in double-precision for­
mat. Single-precision loads and stores perform the appropriate conversions 
to and from the single-precision memory format. Conversions of single­
precision denormalized values on load instructions cause a performance 
penalty. See Section 4.9 on page 101 for more information on floating­
point execution. 

2.1.7.3 Floating-Point Arithmetic Instructions 

The architecture specification requires operands to single-precision float­
ing-point arithmetic instructions to be representable in single-precision for­
mat. If they are not, the results of single-precision arithmetic instructions 
are undefined. On the x704, the results are undefined only when one or 
more operands are not representable in single-precision format and the 
result is also not representable in single-precision format. The undefined 
result may not be representable in single-precision format and therefore 
may not be a valid input for subsequent single-precision computational or 
store instructions. 
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2.1.7.4 Floating-Point Status and Control Register Instructions 

The performance of the mtfsf instruction does not depend on the value of 
the FLM field in the instruction. 

2.1.7.5 Optional Instructions 

The x704 implements the optional fsel and stfiwx instructions, but not the 
optional fres, frsqrte, fsqrt, and fsqrts instructions. The hardware never 
sets FPSCR[VXSORTJ except when one of the floating-point status and con­
trol instructions sets that bit explicitly. 

2.1.7.6 Denormalized Numbers 

The x704 provides complete support for denormalized values in both single­
and double-precision formats. When the processor is in non-IEEE mode 
(FPSCR[NIJ is set), denormalized results of floating-point computational 
instructions, but not floating-point load instructions, are forced to zero. Con­
version of single-precision denormalized values on load instructions causes 
a performance penalty. See Section 4.9 on page 101 for more on floating­

point execution. 

2.1. 7. 7 Floating-Point Exceptions 

All floating-point exceptions on the x704 are reported as precise exceptions. 
The x704 does not use the imprecise recoverable and imprecise non-recov­
erable exception modes. When a floating-point exception occurs while the 
processor is not in floating-point interrupts disabled mode, SRRO always 

points to the instruction that caused the exception, all instructions prior to 
that instruction have completed, and no instructions following that instruc­
tion have caused any architecturally visible effects. 

Enabling inexact, overflow, and underflow exceptions degrades perfor­
mance more than enabling zero divide and invalid operation exceptions. 
Enabling inexact, overflow, and underflow exceptions does not cause the 
floating-point operations to take longer, but it does prevent the fixed-point 
and branch processors from completing instructions and issuing additional 
instructions for an extended period of time. See Section 4.9 on page 101 for 
more information. 

The x704 processor does not use the floating-point assist interrupt. 
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2.1.7 .8 Invalid Floating-Point Instruction Forms 

The execution of floating-point load with update or floating-point store with 
update instructions with RA = 0 performs the storage access with an effec­
tive address of the contents of RB (for X-form instructions) or of the dis­
placement (for D-form instructions). If the access is successful, RO is set to 
the effective address. 

Execution of floating-point load and store instructions with the Re bit set 
does not alter CR1. 

The X704 processor ignores the value of the Re bit in fcmpo and fcmpu. 
Execution of those instructions with the Re bit set does not cause CR1 to 
be set to an undefined value. 

Execution of floating-point compare instructions with Re set and with BF 
not equal to one will set CR field BF correctly. 

2.2 X 704 Virtual Environment Architecture (VEA) 

This section follows the structure of Book II of the PowerPC Architecture 
Specification. The reader should be familiar with that book. 

2.2.1 Storage Model 

The following sections describe the implementation of the storage model 
for the x704 processor. 

2.2.1. 1 Caches 

The x704 contains three on-chip caches: level 1 data and instruction caches, 
and a unified level 2 cache. In this document, level 1 is used only when 
referring to the instruction and data caches as a group; otherwise, ~nose 
caches are known simply as the instruction cache and the data cache. 

All three caches are made up of 32-byte blocks, are physically addressed, 
and have physical tags. Cache validity is maintained on a doubleword basis 
in the level 1 caches. A level 2 cache miss requests all 32 bytes from off 
chip. This doubleword validity scheme allows partially satisfied level 1 cache 
misses to be abandoned when a higher-priority miss occurs. For example, if 
the instruction stream executes a branch from the middle of a cache block, 
there is no need to supply the remainder of that block to the instruction 
cache. Instead, the level 2 cache may immediately begin supplying data 
from the target of the branch if that data is not already present in the 
instruction cache. 
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The instruction and data caches are 2 KB direct-mapped caches. The level 2 
cache is a 32 KB, eight-way set-associative cache. The level 2 cache always 
includes any block that is present in either level 1 cache; this is known as 
the inclusion property. The level 2 cache uses a modified pseudo-LRU algo­
rithm to manage the blocks in an associativity set: a block marked as 
present in either the data cache or the instruction cache is never considered 
to be the least-recently-used block and is not replaced in the level 2 cache. 

The x704 processor disables the caches when it is reset and must be indi­
vidually enabled by setting the appropriate bits in the L2CTL register. See 

Section 2.3.4.6.3 on page 50 and Section 3.10 on page 85. 

Level 1 cache blocks can be either valid or invalid. Level 2 cache blocks are 
each in one of the four MESI cache line states: invalid (I), exclusive clean (E). 
shared clean (S), and exclusive modified (M). 

The data cache is a write through cache. The level 2 cache uses the write 
through required (W) storage control attribute to determine whether each 
individual block is write through or copy back. Blocks are treated as copy 
back unless the W bit is set. 

Most memory references are either instruction fetches. data loads, or data 
stores. When all caches are enabled, those operations have the following 
effects: 

• Instruction fetches read the target storage block into the level 2 cache if 

it is not already present there, and into the instruction cache if it is not 
already in that cache. 

• Data loads read the target storage block into the level 2 cache if it is not · 
already present there, and into the data cache if it is not already in that 
cache. 

• Data stores read the target storage block into the level 2 cache if it is not 
already present there. If the block is present in the data cache, the mod­
ified data is written to the data cache; if the block is not present, it is not 
brought into the data cache. The x704 always writes modified data into 
the level 2 cache, but never to the instruction cache, even if the target 
block is present there. 

All other memory references are performed either with cache management 
instructions (described in Section 2.2.3 on page 27) or by other processors 

referencing coherent storage (described in Section 3.4.6 on page 77). 
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2.2.1.2 Storage Consistency 

In order to maintain sequential consistency for memory operations executed 
within a single processor, the x704 load/store unit wraps data from the store 

queue when a load hits a recent store. Store data is not placed in the cache or 
sent off chip until any possible exceptions caused by the store instruction or 
any instruction issued before the store instruction have occurred. 

2.2.2 Effect of Operand Placement on Performance 

The alignment of operands in memory affects the performance of load and 
store instructions. In big-endian mode, the x704 handles misaligned accesses 

with minimal performance degradation, and then only when the accesses 
cross a doubleword boundary. In power-endian mode, misaligned accesses 
that cross a doubleword boundary always invoke the system alignment error 
handler, resulting in poor performance. 

2.2.3 Cache Management Instructions 

The x704 implements all cache management instructions described in Book II. 

Execution of all of these instructions except isync can update the LRU state 
of the TLB and level 2 cache. Management of the PTE Reference and Change 
bits is left to the software interrupt handlers, but the handlers should not be 
expected to distinguish accesses on behalf of cache management instructions 
from other storage accesses. 

2.2.3.1 Instruction Cache Block Invalidate (icbi) 

Execution of the icbi instruction invokes the TLB miss handler if data address 
translation is enabled and no translation for the effective address is found in 
the TLB or DBAT. If a translation is found in the TLB, but read permission is not 
allowed, the system data storage error handler is invoked. If data address 
translation is disabled, or a translation is found and read access is allowed, the 
addressed block is removed from the instruction cache if it is present there. If 
the addressed storage is in coherence required mode, the operation is then 

broadcast on the bus to allow the line to be invalidated in the instruction 
caches of other processors. 

The icbi instruction never invalidates a block in the level 2 cache. 

The effect of this instruction is the same if the instruction cache is disabled. 
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2.2.3.2 Instruction Synchronize (isyne) 

Execution of the isyne instruction flushes any subsequent instructions 
from the pipeline and causes the fetch unit to invalidate the contents of the 

instruction buffer and to re-fetch the instruction following the isyne in the 
current context. All previously issued instructions complete. 

This instruction must be used when changing the processor's endian mode 
(see Section 2.3.3.2 on page 34). 

2.2.3.3 Data Cache Block Touch (debt) 

If data address translation is disabled, or if a translation for the effective 
address is found, read access is allowed and the addressed storage is not in 
caching inhibited mode, the x704 may read the addressed block into the 
level 2 cache. If any of these conditions are not met, if the level 2 cache is 
disabled, or if processor resources are busy on higher-priority memory oper­
ations, the debt instruction is treated as a nop. 

Because of resource limitations, the X704 generally performs a read for only 
the last in a sequence of touch operations. Data references caused by the 
debt instruction are treated as prefetches. See Section 3.4.7 on page 78 for 
more information on prefetching. 

2.2.3.4 Data Cache Block Touch for Store (dcbtst) 

The debtst instruction is treated as a nop when: 

• the level 2 cache is disabled 

• processor resources are busy on higher-priority memory operations 

• data address translation is enabled and no translation for the effective 
address is found 

• read access is not allowed 

• the addressed storage is in caching inhibited mode 

If none of these conditions are true, and the addressed storage is marked as 
memory coherence required, the addressed block is read into the level 2 
cache with a read with intent to modify bus operation and marked as modi­
fied in the cache. If the addressed storage is marked as memory coherence 
not required, the block is read into the cache with a simple read operation 
and placed in the exclusive state. 

This instruction should be used only when there is a high probability that the 
target cache block will be modified before it is evicted from the cache. If the 
line is very likely to be read, but less likely to be modified, the debt instruc-
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tion should be used instead. Because of resource limitations, the x704 gener­

ally performs a read for only the last in a sequence of touch operations. Data 
references caused by the dcbtst instruction are treated as prefetches. See 

Section 3.4.7 on page 78 for more information on prefetching. 

2.2.3.5 Data Cache Block Zero (dcbz) 

Execution of the dcbz instruction invokes the TLB miss handler if data 

address translation is enabled and no translation for the effective address is 
found in the TLB or DBAT. It also invokes the TLB store handler if a matching 

TLB entry is found with the C bit clear, and invokes the system data error 
handler if a translation is found that does not allow write permission. 

If the addressed storage is marked as memory coherence required and not 

caching inhibited, dcbz broadcasts an invalidate request that removes the 

line from the caches of any other processors. 

If the addressed storage is caching allowed, dcbz zeroes the line in the level 

2 cache, allocating a cache block if the line is not already present. No read 

request will be issued on the bus. If the addressed storage is present in the 

data cache, dcbz invalidates the cache block containing that storage 

If the level 2 cache is disabled, or if the storage is marked as either caching 

inhibited or write through required, the dcbz instruction sets each byte of 

the addressed block in off-chip memory to zero. The PowerPC Architecture 
Specification invokes the system alignment error handler in these cases, but 

the x704 implementation does not. 

2.2.3.6 Data Cache Block Store (dcbst) 

Execution of the dcbst instruction invokes the TLB miss handler if data 

address translation is enabled and no translation for the effective address is 

found in the TLB or DBAT. If a translation is found, but read access is not 
allowed, the system data storage error handler is invoked. 

If data address translation is disabled, or a translation is found and the 

addressed block is marked as modified in the level 2 cache, the contents of 
the block are written back to off-chip memory, and the state of the block is 

changed to exclusive clean. If the addressed storage is marked as memory 

coherence required, the clean operation is broadcast on the bus. 

The operation of this instruction is independent of the state of the cache 

enables. If the block is not present and modified in any processor's level 2 

cache, the instruction is treated as a nop. 
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2.2.3.7 Data Cache Block Flush (dcbf) 

Execution of the dcbf instruction invokes the TLB miss handler if data 
address translation is enabled and no translation for the effective address is 
found in the TLB or DBAT. If a translation is found, but read access is not 
allowed, the system data error handler is invoked. 

If data address translation is disabled or a translation is found, and the 
addressed block is marked as valid in the level 2 cache, the block is invali­
dated in the data cache, the instruction cache, and the level 2 cache. The data 
cache block addressed by bits (21 :26) of the effective address is invalidated 
regardless of whether the addressed storage is present in the cache. If the 
addressed block is marked as modified in the level 2 cache, the contents of 
the block is written back to main memory. If the addressed storage is marked 
as coherence required, the flush operation is broadcast on the bus. 

The operation of this instruction is independent of the state of the cache 
enables. If the block is not present in any processor's level 2 cache, the 

instruction is treated as a nap. 

2.2.4 Additional Diagnostic Instructions 

The x704 implements two diagnostic instructions allowing direct access to 
the TLB, cache data, cache tags, and other internal processor structures. 
These instructions use an alternate address space to reference the struc­
tures. See Section 3.9 on page 84 for a description of the diagnostic address 
space. 

In the following instruction descriptions, DIAG(X, YJ refers to the contents of 
Ybytes of diagnostic memory at address Xin the diagnostic address space. 

Load Word Diagnostic Indexed 

lwdx RT, RA, RB 

31 RT RA RB Ox21 E 

0 5 6 10 11 15 16 20 21 

if RA = 0 then 

else 

a ~ b + (RB) 

RT ~ DIAG (a, 4) 

b ~o 

b ~(RA) 

X-Form 

30 31 
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Let the diagnostic address (a) be the sum (RA I 0) + (RB). The word in diag­

nostic memory addressed by a is loaded into RT. 

This instruction is privileged, and defined only when the DE bit in the 

MODES register is set. An attempt to execute this instruction with 
MODES[DEJ clear or MSR[PRJ set will cause the system illegal instruction 

error handler to be invoked. 

If the instruction references an undefined diagnostic address, the system 

data storage interrupt handler may be invoked (see Section 3.9 on page 84). 

The low two bits of the effective address must be zero or the results of exe­

cuting the instruction are boundedly undefined; this instruction never 
causes an alignment interrupt. 

Special Registers Altered: None 

Store Word Diagnostic Indexed X-Form 

stwdx RS, RA, RB 

31 RS RA RB Ox29E I I I 
a 5 6 10 11 15 16 20 21 30 31 

if RA = 0 then b ~ 0 

else b ~(RA) 

a ~b + (RB) 

DIAG (a, 4) ~ (RS) 

Let the diagnostic address (a) be the sum (RA I 0) + (RB). (RS) is stored into 

the word in diagnostic memory addressed by a. 

This instruction is privileged, and defined only when the DE bit in the 

MODES register is set. An attempt to execute this instruction with 
MODES!DEJ clear or MSR[PRJ set will cause the system illegal instruction 

error handler to be invoked. 

If the instruction references an undefined diagnostic address, the system 

data storage interrupt handler may be invoked (see Section 3.9 on page 84). 

The low two bits of the effective address must be zero or the results of exe­
cuting the instruction are boundedly undefined; this instruction never 

causes an alignment interrupt. 

Special Registers Altered: None 
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2.2.5 Storage Access Ordering 

The x704 implements a weakly consistent storage model. The order in 
which stores are visible outside the processor may not be the same order in 
which the stores are performed. For example, multiple stores to the same 
doubleword can be merged and made visible as a single store operation. If a 
particular ordering is required, the eieio and sync instructions can be used 
to place barriers in the storage access stream. 

The eieio instruction does not complete until all stores have been removed 
from the store queue and the level 2 cache has reported that all previous 

tlbie and tlbsync operations have been broadcast on the bus. Subsequent 
load and store instructions are delayed until after the eieio completes. The 
architecture specification defines two sets of operations that are ordered 
separately by eieio, but the x704 orders all applicable operations as a single 
set. If synchronization of storage and TLB accesses is all that is required, 
the eieio instruction is preferable to the sync instruction. 

The sync instruction does not complete until the store queue is empty and 
the level 2 cache reports that no operations are still in progress. 

2.2.6 Executing Modified Code 

When a program modifies an instruction stream that it wants to execute, 
cache management instructions must be used to ensure that all updates are 
visible to the instruction fetch unit. Without the use of these instructions, 
the x704 does not guarantee coherency between the instruction cache and 
either the data cache, level 2 cache, or off-chip memory. 

After modifying instructions in the block of data addressed by general regis­
ter RX, the program should execute the following instruction sequence: 

dcbst 
sync 
i cbi 
sync 
isync 

RX 

RX 

update cache block in main memory 
wait for update to complete 
invalidate block in icache 
wait for invalidate to complete 
make sure instructions are re-fetched 

Because it appears before the icbi instruction, the first sync instruction 
ensures that the fetch unit reads instructions from the modified block after 
the updates are visible. The second sync instruction is necessary only on 
multiprocessor systems where the block must be flushed from the instruc­
tion caches of all processors before execution continues. 
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2.2. 7 Atomic Update Primitives 

The lwarx and stwcx. instructions function correctly regardless of the 
write through required attribute for the addressed storage. 

The stwcx. instruction performs a store even if its storage address is not 
identical to the storage address used by the most recent lwarx instruction. 

There are no causes of reservation loss other than those listed in Book 11. 

On the x704, the reservation is lost when another processor executes a 

dcbtst or dcbi instruction to the reservation granule, but is not lost when 

another processor executes a dcbf or dcbst. 

2.2.8 Timer Facilities 

The x704 maintains the 64-bit time base register in two parts: the lower 32 

bits in the TBL register and the upper 32 bits in the TBU register. These reg­
isters can be read separately with the mftb and mftbu instructions. The 

x704 is a 32-bit implementation of the PowerPC architecture and thus does 

not provide a way to read all 64 bits of the time base in one instruction. 

The x704 increments the time base register every four system bus clock 
cycles as long as MODES!TBDJ is clear. The x704 also implements the 32-bit 

decrementer (DEC) register. This register counts down every four system 

bus clock cycles. 

2.3 X 704 Operating Environment Architecture (OEA) 

This section follows the structure of Book Ill of the PowerPC Architecture 
Specification. The reader should be familiar with that book. 

2.3.1 Reserved Fields in Storage Tables 

The x704 hardware does not automatically access the hashed page table 

and thus does not alter any reserved fields. 

2.3.2 Exceptions 

The x704 defines two additional interrupts: TLB miss and TLB store. These 
interrupts manage the software refill and update of the TLB. They are 

described in detail in Section 2.3.6.2 on page 56. 
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2.3.3 Branch Processor 

The following sections describe the x704 implementation of the OEA speci­
fication for the branch processor. 

2.3.3.1 SRRO and SRR1 

Any instruction fetch when MSR[IRJ is set can set SRRO to the address of 
the instruction being fetched, and can set SRR1 as described in 
Section 2.3.6.2.13 on page 61 . 

The execution of any instruction requiring an address translation when 
MSR[DRJ is set can set SRRO to the address of the instruction being exe­
cuted, and can set SRR1 as described in Section 2.3.6.2.13 on page 61 or 
Section 2.3.6.2.14 on page 62. 

2.3.3.2 MSR 

The x704 implements the MSR as described in the PowerPC Architecture 
Specification, including the tracing functions supported by the Branch Trace 
Enable (BE) and Single-Step Trace Enable (SE) bits. When either of these 

trace enable bits is set, the processor disables superscalar instruction issue. 

Caution: Use of the tracing facilities causes significant performance loss. 

The x704 uses MSR(14), formerly called the Implementation-Dependent 
Function bit and known as MSR[TWJ on the x704, to prevent external TLB 
invalidates from interfering with a software page table walk. TLB miss and 
TLB store interrupts set MSR[TWJ, and the rfi instruction clears it. When 
the bit is set, the x704 defers processing of TLB invalidates received from 
other processors or devices. 

The X704 does not use the Power Management Enable (POW) bit. This bit is 
treated as a reserved full-function bit. Future implementations that support 
power management features may make use of this bit. 

In order to ensure that instructions are fetched using the correct address for 
the current endian format, care must be taken when altering the MSR[LEJ 
bit with an mtmsror rfi instruction. When using an mtmsr instruction, the 
change in endian-ness is not guaranteed to take effect until after a subse­
quent isync instruction. The following code sequence should be used to 
change endian modes with an mtmsr instruction: 

.align 8 
mtmsr RX 
isync 
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When altering MSR[LEJ with an rfi instruction using an effective address in 
SRRO that refers to the doubleword containing the rfi instruction, the 
results are boundedly undefined. 

2.3.4 Fixed-Point Processor 

The following sections describe the x704 implementation of the OEA speci­
fication for the fixed-point processor. 

2.3.4.1 Software Use SPRs 

The x704 provides eight software use SPRs rather than the four specified in 
Book Ill. SPRGO-SPRG7 are addressed by SPR values 272 through 279. The 
additional SPRG registers can be used by implementation-dependent inter­
rupt handlers. 

2.3.4.2 Processor Version Register 

The Version field of the PVR contains Ox60 for the x704 processor. The 
Revision field is divided into two bytes: bits (16:23) contain a major version 
number and bits (24:31) contain a minor version number. The Revision 
field is incremented each time the processor is revised. Table 1 shows the 
values of the Revision field for all versions of the x704. 

Table 1: Processor Revision Values 

Processor Release PVR.Revision 

prototype ________ o
0

xxo
0
1
1
oo
01 

----------------.]· __ 
initial production 

--------

Important Note: The Version field for the prototype version of the x704 processor 
was Ox54. This value will not be used for any other x704 versions. 

2.3.4.3 Additional Special Purpose Registers 

The x704 contains several implementation-dependent special purpose regis­
ters that can be accessed with the mfspr and mtspr instructions. 
Accesses to all of these registers are privileged. Table 2 shows all of the 
SPRs implemented on the x704, with the implementation-dependent entries 

shown in shaded rows. 
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Table 2: Special Purpose Registers 

SPR Number Register Name Privileged Unit Defined in Book/Page 

Dec. spr5:9 spr04 

DODOO 00001 XER no Branch Book I 

8 DODOO 01000 LR no Branch Book I 

9 DODOO 01001 CTR no Branch Book I 

18 DODOO 10010 DSISR yes Load/Store Book Ill 

19 DODOO 10011 DAR yes Load/Store Book Ill 

22 DODOO 10110 DEC yes Branch Book Ill 

25 00000 11001 SDR1 yes Load/Store Book Ill 
!-----· 

26 DODOO 11010 SRRD yes Branch Book Ill 

27 DODOO 11011 SRR1 yes Branch Book Ill 

272 01000 10000 SPRGD yes Load/Store Book Ill 

273 01000 10001 SPRG1 yes Load/Store Book Ill 
-~-------

274 01000 10010 SPRG2 yes Load/Store Book Ill 
~··---" 

275 01000 10011 SPRG3 yes Load/Store Book Ill 

284 01000 11100 TBL yes Branch Book II 

285 01000 11101 TBU yes Branch Book II 

287 01000 11111 PVR1 yes Load/Store Book Ill 

528 10000 10000 IBATOU yes Fetch Book Ill 

529 10000 10001 IBATOL yes Fetch Book Ill 
----

530 10000 10010 IBAT1U yes Fetch Book Ill 
---------

531 10000 10011 IBAT1L yes Fetch Book Ill 
----·- -- .. -.--

532 10000 10100 IBATZU yes Fetch Book Ill 
----

533 10000 10101 18AT2L yes Fetch Book Ill 

534 10000 10110 18AT3U yes Fetch Book Ill 

535 10000 10111 IBAT3L yes Fetch Book Ill 

536 10000 11000 DBATDU yes Load/Store Book Ill 
------

537 10000 11001 DBATDL yes Load/Store Book Ill 

538 10000 11010 DBAT1U yes Load/Store Book Ill 

539 10000 11011 DBAT1L yes Load/Store Book Ill 

540 10000 11100 DBAT2U yes Load/Store Book Ill 

541 10000 11101 DBAT2L yes Load/Store Book Ill 
--------·· -------

542 10000 11110 DBAT3U yes Load/Store Book Ill 
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Table 2: Special Purpose Registers(Cont.) 

Register Name Privileged Unit 

1. road-only 
2. write-only 

These registers fall into five major categories: 

• hardware aids for TLB miss handlers (MAR, MISR, CMP, HASH1, 
HASH2, TLBLRUO, TLBLRU1, and TLBMRF registers) 

• scratch registers for TLB miss, TLB store, and instruction emulation han­
dlers (SPRG4-SPRG7) 

• debugging (BPTCTL, IABR, DABR, XDABR, and EVENT) 

• various processor control functions (CHECK, MODES, L2CTL, and 

L2CDR) 

• multiprocessor applications (PIR) 

The following sections describe these registers in detail. 
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2.3.4.4 TLB Miss Registers 

The MAR and MISR registers provide information about the address and 
type of reference that caused a TLB miss or TLB store interrupt. They are 
analogous to the DAR and DSISR registers used to hold information about 
the address and reference that caused a data storage or alignment interrupt. 

The HASH1, HASH2, and CMP registers return page table access informa­
tion designed to assist TLB miss, TLB store, instruction storage, and data 
storage interrupt handlers. The contents of these registers is based on the 
current contents of SDR 1, MAR, and the segment register referenced by 
the effective address saved in MAR, all of which have well-defined values 
after TLB interrupts. 

The TLB miss and TLB store handlers write the TLBLRUO, TLBLRU1, and 
TLBMRF registers to update the contents of the TLB in response to TLB 
interrupts. Writes to the TLBLRUO and TLBLRU1 registers use the current 
contents of MAR to select the target TLB entry. The data written depends 
on the current contents of MAR and the segment register referenced by the 
effective address saved in MAR. The contents and location of the TLB entry 
written using the TLBLRU registers may be changed if MAR or the segment 
registers are modified. Read and write accesses to the TLBMRF register 
use the current contents of the MAR and MISR to select a TLB entry. Modi­
fying either of those registers may change which TLB entry is accessed by a 
reference to the TLBMRF register. 

In general, interrupt handlers should not modify SDR1, MAR, MISR, or the 
segment registers before using the HASH1, HASH2, CMP, TLBLRUO, 
TLBLRU1, and TLBMRF registers. Sample TLB miss and TLB store handlers 
making use of these registers are shown in Appendix A. 

Outside of TLB-related interrupt handlers, software can alter the values in 
SDR1, MAR, or the segment registers and subsequently use HASH1, 
HASH2, and CMP to assist in other page table accesses. These registers 
should be altered only when both data and instruction relocation are dis­
abled, and programs that update them must follow the synchronization 
requirements described in Section 2.3.7 on page 64. 

2.3.4.4.1 TLB Miss Address Register (MAR) 

The MAR register is a 32-bit register used for software TLB management. 
When a TLB miss or TLB store interrupt occurs, the MAR is loaded with the 
effective address of the faulting reference. For TLB miss interrupts, this 
address can be either an instruction address or the effective address of a 
data reference. 
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The x704 processor uses the contents of this register implicitly in references 

to the CMP, HASH 1, HASH2, TLBLRUO, TLBLRU1, and TLBLMRF registers. 

MAR is both readable and writable. 

2.3.4.4.2 TLB Miss Interrupt Status Register (MISR) 

The MISR register contains information about the reference that caused a 

TLB miss or TLB store inte'rrupt. When a TLB miss or TLB store interrupt 

occurs, MISR is loaded as described in Section 2.3.6.2.13 on page 61 and 

Section 2.3.6.2.14 on page 62. The MISR register is compatible with the 

DSISR register, so that its contents can be copied there when TLB miss 

interrupts must be passed to the operating system as page fault or page 

protection data storage interrupts. See the sample TLB interrupt handlers in 

Appendix A for examples of the use of this register. 

2.3.4.4.3 TLB Miss PTE Compare Register (CMP) 

The CMP register contains the high word of the PTE search target, made up 

of the V, VSID, H, and API fields as defined in the PowerPC Architecture 
Specification. TLB miss and TLB store interrupt handlers compare the value 

in the CMP register with the high word of PTEs in the system page table to 

locate the PTE that matches the reference that caused the interrupt. 

Figure 6 depicts the CMP register. 

v VSID _ __L_I H__,_-T __ A_P_I _~ 
0 1 24 25 26 31 

Figure 6: TLB Miss PTE Compare Register 

The fields are defined as follows: 

V is the valid bit This bit is always returned as one because the miss handler is 

searching for a valid PTE. 

VSID is the virtual segment ID copied from the VSID field of the segment register 

indexed by bits (0:31 of the MAR register. 

H is the hash function identifier. This bit is always returned as zero because the 

miss handler begins the search using the primary hash function. 

API is the abbreviated page index copied from bits (4:91 of the current contents of 

the MAR register. 

An instruction that attempts to write CMP is invalid. 
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2.3.4.4.4 TLB Miss PTEG Address Hash Registers (HASH1 and HASH2) 

The HASH1 register contains the physical address formed by the primary 

hash for the address currently in MAR. The HASH2 register contains the 

physical address formed by the secondary hash. TLB miss and TLB store 

handlers use the contents of these registers to address the two PTEGs that 

could contain the page table entry for the reference that caused the inter­

rupt. Figure 7 shows the format of these registers. 

HTABORG HASH 000000 

0 6 7 25 26 31 

Figure 7: TLB Miss PTEG Address Hash Registers 

The fields are defined as follows: 

HTABORG is bits (0:6) of the HTABORG field of the sdr1 register. 

HASH is the output of the primary or secondary hash function as defined in the 

PowerPC Architecture Specification. The value in this field depends on the 

current contents of MAR, SDR1. and the segment register indexed by the 

address in MAR. 

An instruction that attempts to write either of these SPRs is invalid. 

2.3.4.4.5 TLB Miss Update LAU Registers (TLBLRUO and TLBLRU1) 

The TLBLRU registers are used by TLB miss handlers to create a TLB entry 

with a translation for the last address that missed in the TLB. The data writ­

ten to this register contains the RPN, R, C, WIMG, and PP PTE fields and is 

formatted as the lower half of a PTE as shown in Figure 8. 

APN I I I I A I c I WIMG I I I pp 

0 19 23 24 25 28 30 31 

Figure 8: TLBLRU Registers 

The remaining information needed to build a translation is taken from the 

CMP register and the segment register indexed by bits (0:3) of MAR. The 

definitions of the fields in the TLBLRU registers are exactly the same as the 

definitions of the corresponding fields in the PTE. 
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In order to create a valid TLB entry (see Figure 22 on page 79), the same data 
must be written to both TLBLRUO and TLBLRU1. 

When either TLBLRU register is written, the least recently used entry in the 
TLB set corresponding to the address saved in MAR is updated with the new 
translation. Software that writes TLB entries should always set the R bit in 
the corresponding PTE. 

An instruction that attempts to read either of these SPRs is invalid. 

2.3.4.4.6 TLB Miss Update MRF Register (TLBMRF) 

The TLBMRF register is used by the TLB store fault handler to update the C 
bit in the TLB entry that caused the most recent fault. The data written to this 
register contains the RPN, C, and PAGEi DX TLB fields and is formatted as the 
lower half of a TLB entry as shown in Figure 9. 

0 1 24 25 28 29 30 31 

VSID V.MG I 0 I pP I 
PAGEIDX RPN c 

0 19 20 21 31 

Figure 9: TLB Entry 

The TLB entry accessed with this register is the one referenced by MISR(7:8) 
in the set indexed by the address saved in MAR. Knowledge of the format of 
this register is not usually necessary: the TLB store imerrupt handler normally 
reads this register, ORs in the C bit, and writes it back. The TLB store inter­
rupt handler should also set the C bit in the corresponding PTE. 

2.3.4.5 Debugging Registers 

The x704 implements instruction and data address breakpoints through the 
use of the IABR, DABR, and BPTCTL registers. Two formats of DABR are 
implemented: one that conforms to the definition suggested in Appendix A of 
Book Ill and an extended definition that provides additional functionality. 
Accesses to the compatible DABR register affect both the extended XDABR 
register and the BPTCTL register. 

See Book Ill for the behavior of data breakpoints if the BPTCTL register is left 
as initialized by a hard reset and all accesses to XDABR and BPTCTL are done 

through the DABR register. 
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2.3.4.5.1 Breakpoint Control Register (BPTCTL) 

The BPTCTL register contains enables and control information for both 
instruction and data breakpoints. The format of this register is shown in 
Figure 10. 

Reserved I DO I MASK I SB I PR I SU I OT I ST I LD I 
20 21 22 23 25 26 27 28 29 30 31 

Figure 10: Breakpoint Control Register 

The fields are defined as follows: 

MASK selects which of the low 3 bits of xdabr are used in data address breakpoint 
comparisons. A 'O' bit in MASK(0:2) prevents the corresponding bit in 
xdabrt29:31) from participating in the comparison. An address match occurs 
if 

((EADDR<0:28> DABR<0:28>) && 
((EADDR<zg:31> & MASK)~~ (DABR<29:31> & MASK))) 

If MASK is 7, the effective address and XOABR must match exactly. If MASK 
is 0, the effective address and XOABR need only refer to the same double­

word. Th is field does not affect instruction breakpoints. 

SB is the strobe bit. If this bit is set. instruction and data address breakpoints 
cause a strobe of a pin instead of an exception. See Section 5.2 on page 109 
for a description of the STROBE pin. 

PR is the problem state bit. If this bit is set. data address breakpoints occur on 
problem state references. This bit does not affect instruction address break­
points. 

SU is the supervisor state bit. If this bit is set. data address breakpoints occur on 
supervisor state references. This bit does not affect instruction address 
breakpoints. 

OT is the data translation bit. If this bit is set. data translation must be enabled 
in order to trigger a data address breakpoint. If it is clear, data translation 
must be disabled in order to trigger a data address breakpoint. 

ST is the store enable bit. If this bit is set. data address breakpoints may occur 
on stores. If it is clear, stores will not cause data address breakpoints. The 
dcbz instruction is considered to be a 32-byte store. 

LO is the load enable bit. If this bit is set, data address breakpoints may occur on 
loads. If it is clear. loads will not cause data address breakpoints. 
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A data breakpoint address match occurs if any byte in the reference 
matches the breakpoint address in XDABR as modified by the MASK field. 
For references which span multiple doublewords, part of the reference may 
have completed before the trap is taken. The dcbz instruction is defined to 
reference all 32 bytes in a cache block. Cache management instructions 
other than dcbz do not cause instruction or data address breakpoints. 

A data address breakpoint occurs if all of the following conditions are met: 

• The effective address matches the value in XDABR as modified by the 
MASK field. 

• MSR[DRJ has the same value as BPTCTL[DTJ. 

• BPTCTL[PRJ and MSR[PRJ are both set, or BPTCTL[SUJ is set and 
MSR[PRJ is clear. 

• The reference is a load and BPTCTL[LDJ is set, or the reference is a 
store and BPTCTL[STJ is set. 

If neither LD nor ST is set, or if neither PR nor SU is set, the data address 
breakpoint is disabled. 

A stwcx. instruction that does not perform a store may still take a data 
address breakpoint. 

A data address breakpoint with SB clear causes a data storage interrupt with 
DSISR(9) set and the address saved in DAR. 

If SB is set and a breakpoint is triggered, no exception occurs. Instead, the 
value of the L2CTL.STROBE bit is inverted for one bus cycle before being 
placed on the STROBE pin. The elapsed time between the triggering of the 
breakpoint and the pulse on the pin is not defined precisely, but will be a 
small number of bus cycles. 

Multiple breakpoints triggered in a small number of processor cycles can 
appear on the pin as one pulse because of the ratio between processor 
cycles and bus cycles. The strobe does not occur unless the exception 
would have occurred: a higher-priority trap suppresses the strobe. The SB 
bit permits references to be detected without affecting the performance of 
the processor in almost all cases. Instruction breakpoint hits occurring near 
other instruction fetch traps may cause a slight change in processor timing. 

Breakpoint exceptions have lower priority than TLB misses, TLB store faults 
and all other data storage interrupts. 

In order to ensure that changes to the breakpoint registers take effect, soft­
ware should execute a sync instruction after writing BPTCTL or 
XDABR/DABR and before the first data reference that could cause a break-
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point. An isync instruction following the sync is required if a change in 

BPTCTL[SBJ affects subsequent instruction breakpoints. 

2.3.4.5.2 Instruction Address Breakpoint Register (IABR) 

The IABR register contains an effective word address that is compared with 

the program counter. The format of this register is shown in Figure 11. 

ADDA IE IT 

0 29 30 31 

Figure 11: Instruction Address Breakpoint Register 

The fields are defined as follows: 

ADDR is bits (0:29) of the instruction breakpoint address. 

IE is the instruction breakpoint enable. If this bit is set. an instruction address 

breakpoint occurs when the processor attempts to issue the instruction 

fetched from the effective address in the ADDR field and MSR[IRJ has the 

same value as the IT field. 

IT is the instruction translation enabled bit. If this bit is set. instruction transla­

tion must be enabled in order to trigger an instruction address breakpoint. If 

it is clear. instruction translation must be disabled in order to trigger an 

instruction address breakpoint. 

An instruction breakpoint match occurs if the address of the first byte of the 

instruction matches the ADDR field and MSR[IRJ has the same value as the 

IT field. Instruction breakpoint exceptions are taken before the instruction is 

executed. An instruction breakpoint exception causes a trace interrupt and 

sets SRR1 (11 ). 

If instruction breakpoints are being enabled, disabled, or changed, a sync 
instruction followed by an isync instruction should be executed after 
BPTCTL or IABR writes. 

2.3.4.5.3 Extended Data Address Breakpoint Register (XDABR) 

The XDABR register contains a 32-bit effective address that is compared 

with effective addresses used by loads, stores, and cache operations. 

When the two addresses match, and the appropriate enables are set in the 

BPTCTL register, a data storage interrupt occurs. See the description of the 

BPTCTL register on page 42 for more information on data breakpoints. 
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2.3.4.5.4 Data Address Breakpoint Register (DABR) 

This is a PowerPC-compatible version of the DABR register. It accesses 

both the XDABR and BPTCTL registers in a way that mimics the behavior of 

the data breakpoint register as suggested in Appendix A of Book Ill. The 

DABR is not a separate register from the XDABR; it merely provides an 

alternate way of accessing the same data. The format of this register is 

shown in Figure 12. 

ADDR I DT I ST I LD 

0 28 29 30 31 

Figure 12: Data Address Breakpoint Register 

The fields are defined as follows: 

ADDR is bits (0:28) of the doubleword breakpoint address. 

OT is the data translation bit. If this bit is set, data translation must be enabled 

in order to trigger a data address breakpoint. If it is clear, data translation 

must be disabled in order to trigger a data address breakpoint. 

ST is the store enable bit. If this bit is set, data address breakpoints occur on 

stores to addresses that match XOABR as modified by the MASK field. The 

dcbzinstruction is considered to be a store. 

LO is the load enable bit. If this bit is set. data address breakpoints occur on 

loads from addresses that match XOABR as modified by the MASK field. 

On writes, the contents of the ADDR field are written to bits (0:28) of 

XDABR, and bits (29:31) of XDABR are cleared. The contents of the DT, ST, 

and LD fields are written to the corresponding fields in the BPTCTL register. 

In addition, writes to DABR also set the PR and SU bits in the BPTCTL regis­

ter to one. 

On reads, the contents of XDABR are returned, with bits 29, 30, and 31 
replaced by BPTCTL[DT]. BPTCTL[ST]. and BPTCTL[LD]. respectively. 

2.3.4.5.5 Event Register (EVENT) 

The x704 processor can use the TBU and TBL time base registers to count 

the occurrence of performance-related events. The EVENT register controls 

which of those events are counted. The format of the EVENT register is 

shown in Figure 13. 
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Reserved I SET I EVENT Reserved 

0 17 18 19 23 24 31 

Figure 13: Event Register 

When the EVENT field contains 0, the TBU and TBL registers form a 64-bit 
counter that increments every four bus cycles. Any other setting of this field 
causes these registers to count other events and to no longer maintain the 
time base value. When the EVENT field contains 1, the TBU and TBL regis­
ters hold their current values. When the field contains a value greater than 
1, the TBU register counts instructions completed, and the TBL register 
counts the events shown in Table 3 depending on the value of the SET and 
EVENT fields. 

Table 3: Event Counter Selections 
-· -------

EVENT SET=1 SET=O 

0 time base upper time base lower 
·---· ···-·--I 

I 
1 do not count do not count 

---· ··------
I 4 L 1 instruction cache accesses L 1 instruction cache misses 
! --

i 
0 ITLB accesses ITLB misses 

-
H L 1 data cache accesses L1 data cache misses 

··-

9 TLB accesses TLB misses 
. . 

1() L2 cache accesses L2 cache misses 
-·-···--

11 snoop accesses snoop misses 

16 decode buffer empty memory operand hold 
-

17 multi-step X holds misaligned accesses 

18 ALU valid in A ALU valid in C 
-· 

19 ALU valid in M reserved 
r--------· -- --1 

20 0 flows issued O flows completed 
·--· 

21 1 flow issued 1 flow completed 
-··-·---. 

22 2 flows issued 2 flows completed 

23 3 flows issued 3 flows completed 
··- --

24 branch correctly predicted taken branch incorrectly predicted taken 
... ---

25 branch correctly predicted not taken branch incorrectly predicted not taken 

26 pipe restarts finder invalids 

27 traps from tw/twi instructions all other traps 

28 mispredicts in A mispredicts in C 
L__ ... _ --
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Table 3: Event Counter Selections (Cont.) 

EVENT SET=1 SET=D 

29 mispredicts in M mispredicts in W 
,, __ 

30 processor clocks flows completed 
·--· 

31 processor clocks flows issued 
.. ·- ·-·· 

All others reserved reserved 
- ·-·-

Familiarity with the material in Chapter 3 and Chapter 4 on the x704 ·s pipe­
line structure, performance, and branch prediction is needed for a full under­
standing of most of these events. In particular, the event counters may not 
agree with the values expected for a program run using the sequential exe­
cution model because speculative instruction issues and cache accesses 
and cache misses may be counted. 

The MODES[TBDJ bit disables counting only when the EVENT register con­
tains zero. 

When the TBU and TBL registers reach their maximum value, they incre­
ment to zero. When gathering performance statistics, they should be read 
frequently to ensure that data is not lost. A 32-bit counter incrementing at 
500MHz will wrap once in approximately 8.5 seconds. 

Important Note: The definition of the EVENT register changed from the 
definition used in the prototype version of the x704. 

2.3.4.6 Processor Control Registers 

The x704 contains several miscellaneous registers that control various pro­
cessor functions such as resource enabling and disabling, error reporting, 
and multiprocessor support. 

2.3.4.6.1 Modes Register (MODES) 

The MODES register, depicted in Figure 14, controls several functions 
related to instruction decoding and dispatching. 

Reserved BPE TBD DE POE SSE Reserved 

0 10 11 12 13 14 15 16 31 

Figure 14: Modes Register 
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The fields are defined as follows: 

BPE is the branch prediction enable bit. If this bit is clear, the branch prediction 
hardware is ignored and all branches will be predicted to be not taken. If it is 
set, the processor predicts branch directions and targets as described in 
Section 3.B on page 81. 

TBD is the time base disable bit. If this bit is set. the time base register does not 
increment. If it is clear. the time base register increments every fourth bus 
clock. This bit controls the time base register increment only while the 
EVENT register contains zero. 

DE is the diagnostic access enable bit. If this bit is set, the lwdx and stwdx 
instructions execute. If it is clear, attempts to execute those insvuctions will 
result in illegal instruction program interrupts. 

POE is the pipeline overlap enable bit. If this bit is clear, instructions are issued 
only when the execution pipeline is empty. If it is set. instructions are issued 
when other instructions are in the pipeline. This bit does not affect supersca­
lar issue or instruction queuing in the fetch unit. 

SSE is the superscalar enable bit. If this bit is clear, superscalar issue is disabled 
and only one instruction may be issued on each cycle. If it is set. up to three 
instructions may be issued on each cycle as described in Section 4.4 on 
page 92. 

2.3.4.6.2 Machine Check Register (CHECK) 

The CHECK register, shown in Figure 15, contains temperature status infor­
mation and the enables for various conditions that can cause machine 
checks or checkstop conditions. Not all conditions that cause machine 
checks have an enable. If the machine check condition is detected, and that 
condition has no enable, or if the enable bit corresponding to the error is set, 
a machine check interrupt occurs. If MSR[ME] is set, execution continues at 
the machine check trap vector. If MSR[MEJ is clear, the processor enters 
the checkstop state and halts. 

See Section 5.2.3 on page 113 for more information on the processor's 
operating temperature range and the use of the status bits in the CHECK 
register. 
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Reserved 'NT HT R IF DC L2C L2B BP TLB SW Reserved 

0 5 6 7 8 9 10 11 12 13 14 15 16 31 

Figure 15: Machine Check Register 

The fields are defined as follows: 

WT is the warm temperature indication. When this bit is set, the processor is 
near the upper end of its operating temperature range. 

HT is the over-temperature indication. When this bit is set, the processor has 
exceeded its maximum operating temperature. 

R is the reset type bit. This bit is initialized by hardware to one on a hard reset 
and zero on a soft reset. It may not be written by software. 

IF is the instruction fetch machine check enable. If this bit is set, multiple !BAT 
or ITLB hits on the effective address of an issuing instruction are reported as 
machine checks. 

DC is reserved for future use. The value of this bit is ignored. 

L2C is the invalid level 2 state machine check enable. If this bit is set, an invalid 
state in a level 2 cache tag is reported as a machine check. This includes 
cache LRU state errors and multiple hits in a set for the sa ;ie address. 

L2B is the invalid bus controller state machine check enable. If this bit is set, an 
invalid state in the bus controller is reported as a machine check. This 
includes detecting invalid snoop types on the bus and errors in filling, push­
ing, or evicting cache blocks. 

BP is the bus parity machine check enable. If this bit is set, bus address and data 
parity errors are reported as a machine check. Machine checks caused by the 
assertion of the TEA or MCP interface signal are always enabled. 

TLB is the TLB machine check enable. If this bit is set. an address that matches 
multiple TLB entries or multiple DBATs is reported as a machine check. 

SW is the software-initiated machine check bit. A single machine check occurs 
when software changes the value of this bit from zero to one. If machine 
check interrupts are enabled, the interrupt handler should clear this bit in 
order to re-enable software machine checks. 

Failure to enable a machine check can result in undefined behavior should 
the disabled machine check condition occur. For example, a masked parity 
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error could result in the use of corrupted data and a reference through an 
address that matches multiple TLB or BAT entries could result in referenc­
ing unexpected or non-existent physical memory. 

2.3.4.6.3 L2/Bus Control Register (L2CTL) 

The L2CTL register controls the behavior of all three on-chip caches and the 
bus interface. The format of this register is shown in Figure 16. 

00000 CLOCK BC BS BE BT SB IE OE L2E 000 IP DP CM TM IC 

0 10 11 15 16 17 18 19 20 21 22 23 2426 27 28 29 30 31 

Figure 16: L2/Bus Control Register 

The fields are defined as follows: 

CLOCK is the current ratio between the external (bus) clock and the processor clock. 
This value is set from the external PLL_CFG(2:6) pins on power on or hard 
reset and cannot be changed by software. See the description of the 
PLL_CFG pins in Section 5.2.1 on page 111. 

BC is the broadcast cache operations bit. If this bit is clear, cache management 
operations are broadcast on the bus and global bus transactions are 

snooped. These operations include write kills, debt. and dcbi. If this bit is 
set, the x704 does not broadcast coherence operations and ignores all incom­
ing snoop transactions. Setting this bit will not prevent broadcasts of kill 
operations caused by dcbz instructions. 

BS is the broadcast synchronization bit. If this bit is clear, sync instructions are 
broadcast on the bus. If it is set, sync instructions are not broadcast, and the 
x704 assumes that nothing external to the chip affects the completion of 
sync instructions. 

BE is the broadcast eieio bit. If this bit is clear, eieio instructions are broadcast 
on the bus. If it is set, eieio instructions are not broadcast on the bus. 

BT is the broadcast TLB operations bit. If this bit is clear, tlbie and tlbsync 
instructions are broadcast on the bus. If it is set, TLB operations are not 
broadcast on the bus, and the x704 assumes that nothing external to the chip 
affects the completion of tlbsync instructions. 
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SB is the strobe bit. The value of this bit is copied to the STROBE pin. Data and 

instruction address breakpoints can optionally invert this bit for one bus 
cycle. See the discussion of the BPTCTL register in Section 2.3.4.5.1 on 

page 42 for more information on the use of the strobe facility by breakpoints. 

IE is the instruction cache enable bit. If this bit is set. the instruction cache is 

enabled. If it is clear. instruction fetches bypass the instruction cache, and 
the level 2 cache does not write data into the instruction cache. 

DE is the data cache enable bit. If this bit is set. the data cache is enabled. If it is 
clear, load and store accesses bypass the data cache, and the level 2 cache 

does not write data into the data cache. 

L2E is the level 2 cache enable bit. If this bit is set, the level 2 cache is enabled. If 

it is clear, all instruction and data accesses not satisfied by the instruction 
and data caches will be satisfied from off-chip memory. 

IP is the instruction prefetch enable. If this bit is set, the level 2 cache can 
prefetch additional blocks from off-chip into the level 2 cache in response to 

instruction cache misses. 

DP is the data prefetch enable. If this bit is set, the level 2 cache can prefetch 

additional blocks from off-chip into the level 2 cache in response to data 
cache misses. 

CM is the column mask update enable bit. If this bit is set. updates to the level 2 

column disable register (L2CDR) are allowed. If it is clear, writes to that reg­

ister are ignored. See Section 2.3.4.6.4 on page 52 for more information on 

the L2CDR register. 

TM is the tag block valid update enable bit. If this bit 1s set, the block valid field 
in the level 2 cache use records can be updated with diagnostic stores to the 

use records. If it is clear, diagnostic writes to the use records may not alter 
the field valid mask. See Section 3.4.3 on page 73 for more information on 

use records and the field valid mask. 

IC is the instruction cache coherency bit. If this bit is set. the processor ensures 
that the instruction cache stays coherent with respect to data stores. If it is 
clear. software is responsible for ensuring that updates to the instruction 

stream are reflected in the instruction cache by executing an instruction 

sequence similar to that shown in Section 2.2.6 on page 32. Setting this bit 

degrades the performance of the processor, but may be useful for applica­

tions that emulate instruction execution for other architectures that enforce 

instruction cache coherency. 
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The BC, BS, and BT bits should be cleared in multiprocessor systems and 
should be set in uniprocessor systems. The BE bit should be cleared in all 
multiprocessor systems or in any uniprocessor system with an external 

device that is sensitive to the order in which writes are completed. 

For more information on prefetching, see Section 3.4.7 on page 78. 

2.3.4.6.4 L2 Column Disable Register (L2CDR) 

The L2CDR register provides one of two ways to mark damaged cache 
RAM entries as unusable. By setting the appropriate bit in this register, an 
entire associativity class consisting of 4KB is removed from the level 2 
cache. The register is formatted as shown in Figure 17. 

~BD~_B_1~_B2~_B_3~_B4~_B_5~1_B_6~1_B_7~~~~~-R_e_se_~_ed~~~~ 
0 2 4 5 7 8 31 

Figure 17: L2 Column Disable Register 

The fields are defined as follows: 

Bn is the block n disable bit. If this bit is set, block n in each set of the level 2 
cache is marked as unusable. Any valid data in a cache block marked dis­
abled is lost. 

This register can be written only when the CM bit in the L2CTL register is 
set. It is intended to be set by a power-on-self-test cache checker when it 
discovers multiple failures in a column. Because the level 2 cache data RAM 
is 2-way interleaved, physical RAM errors that affect an entire column 
require the paired column from the other bank (the paired banks are 0-4, 
1-5, 2-6, and 3-7) to be disabled. When a column is disabled, it must also 
be marked as recently used in the PLRU field of each level 2 cache use 
record. See Section 3.4.3 on page 73 for information on cache use records 
and the cache replacement strategy. 

Disabling more than four columns may cause level 2 cache controller 
machine checks to occur when the level 2 cache is enabled. 

2.3.4.7 Processor Identification Register (PIR) 

The PIR register is a 32-bit register that can be read or written by privileged 
programs. It is neither interpreted nor used by the hardware. Its intended 
use is holding a unique processor identification number for each CPU in a 
multiprocessor system. 
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2.3.5 Storage Control 

The x704 provides ordinary storage segments as described in Book Ill; 
direct-store segments are not supported. An attempt to reference data 
with a fixed-point load or store instruction through a segment register with 
the T bit set causes a data storage interrupt. An attempt to reference data 
with a floating-point load or store instruction through a segment register 
with the T bit set causes an alignment interrupt. Cache management 
instructions that reference direct-store segments are treated as nops. 

2.3.5.1 Translation Lookaside Buffer (TLB) 

The x704 contains a 128-entry, 4-way set-associative TLB. In addition, the 
instruction fetch unit contains a 4-entry, fully associative instruction TLB 
(ITLB). When an instruction fetch misses in the ITLB, the X704 attempts to 
resolve the miss by searching the main TLB. If it finds a matching entry in 
the TLB, it copies translation and protection information into the least 
recently used ITLB entry and it marks the TLB entry as the most recently 
used entry in its set. The translations present in the ITLB are always a sub­
set of the translations contained in the main TLB. 

The hardware does not search the page table or update the TLB if either 
the ITLB miss or any data access fails to find a matching TLB entry. 
Instead, a TLB miss interrupt occurs and a software handler performs the 
page table search and TLB refill. 

The hardware also does not update the storage access recording bits in 
page table entries. Whon it places an entry in the TLB, the TLB miss inter­
rupt handler should set the Reference (R) bit in the associated PTE. The 
Change (C) bit in the PTE is copied to the TLB entry. When the hardware 
detects a store access through a TLB entry with the C bit clear, a TLB store 
interrupt occurs. The handler for this interrupt should set the C bit in the 
TLB entry and the C bit in the associated PTE before restarting the faulting 
instruction. 

See Section 2.3.6.2 on page 56 for detailed descriptions of the TLB miss 
and TLB store interrupts, and Appendix A for sample handlers. 

The TLB miss handler can write either a specific entry or the least recently 
used entry in the target set. Writing multiple TLB entries that translate the 
same effective address is an error and may cause a machine check or 
boundedly undefined results. 
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2.3.5.2 Block Address Translation 

The x704 implements block address translation as described in Book Ill of 
the PowerPC Architecture Specification. Because the two halves of each 
IBAT or DBAT register must be loaded separately, software must ensure 
that inconsistencies caused by a partially loaded IBAT or DBAT do not affect 
program execution. To do this, load these registers only when the associ­
ated relocation enable bit is clear. 

Loading an IBAT or DBAT register with an invalid BL field or with either BEPI 
or BRPN fields that are inconsistent with the BL field can cause boundedly 

undefined results. 

2.3.5.3 Storage Access Modes 

When the caching inhibited storage access mode is enabled, the state of 
the write through required access mode is assumed to be off. Thus, the 
two unsupported access mode combination (WI M = 110 or 111) are treated 
as caching inhibited, write through not required storage. 

2.3.5.4 Reference and Change Recording 

The x704 hardware does not set the PTE Reference and Change bits 
directly; they are set by the TLB miss and TLB store interrupt handlers as 
discussed in Section 2.3.5.1 on page 53. 

Because TLB misses must be satisfied before the hardware can determine 
that an access is permitted, it is likely that the PTE Reference bit will be set 
in cases where read or write permission is denied and no storage access 
occurs. Similarly, a TLB store fault may occur before it is known whether a 
stwcx. instruction will succeed. Thus, it is likely that the PTE changed bit 
will be set in these circumstances. The TLB store handler is invoked only 
when the reference has write permission to the target page. 

A TLB miss on an instruction fetch occurs only when that instruction is 
required by the sequential execution model and any exceptions related to 
previous instructions have been resolved. 

2.3.5.5 Storage Control Instructions 

The x704 implements all of the storage control instructions specified in Book 
Ill of the PowerPC Architecture Specification except for the optional tibia 
instruction. The tibia instruction may be emulated by a sequence of tlbie 
instructions as described in Section 2.3.5.5.3 on page 55. 
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2.3.5.5.1 Data Cache Block Invalidate (dcbi) 

Executing the dcbi instruction invokes the TLB miss handler if data transla­
tion is enabled and no translation for the effective address is found in the 
TLB or DBAT. If a translation is found, but write access is not allowed, a 
data storage interrupt occurs. 

If either data address translation is disabled or a translation is found, and 
the addressed block is marked as valid in the level 2 cache, the block is 
invalidated in the data cache, the instruction cache, and the level 2 cache. 
Any modifications to the data in the cache block are discarded. If the stor­
age is marked as coherence required, the kill operation is broadcast on the 
bus. 

The operation of this instruction is independent of the state of the cache 
enables. If the block is not present in the level 2 cache of any processor, the 

instruction is treated as a nop. 

2.3.5.5.2 TLB Invalidate Entry (tlbie) 

The tlbie instruction invalidates all four TLB entries in the set addressed by 
RB(15: 19) and flushes the ITLB. The TLB entries are invalidated without 
regard to their contents. If the broadcast TLB bit is set in the L2CTL regis­
ter, a TLB invalidate operation is broadcast on the bus to other processors. 

In a multiprocessor system, software must guarantee that only one proces­
sor in the system is executing tlbie instructions at any given time, or unde­

fined bohavior including a deadlocked system occurs. 

2.3.5.5.3 TLB Invalidate All (tibia) 

The tibia instruction is not implemented on the X704, instead the entire 
TLB can be invalidated by executing a sequence of 32 tlbie instructions­
one for each of the 32 sets in the TLB. For example, a subroutine contain­
ing the following loop invalidates all entries in the TLB: 

for (addr = 0; addr < :l2 * OxlOOO; addr += OxlOOOl 
tlbie (addrl; 

2.3.5.5.4 TLB Synchronize (tlb/sync) 

The tlbsync instruction completes only when all tlbie instructions previ­
ously issued by this processor are complete. If the broadcast TLB bit in the 

L2CTL register is set, the tlbsync operation is broadcast on the bus and 
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the instruction does not complete until all processors have executed all 
tlbie instructions issued on this processor before the tlbsync. 

In a multiprocessor system, software must guarantee that only one proces­
sor in the system is executing tlbsync instructions at any given time, or 
undefined behavior including a deadlocked system occurs. 

2.3.6 Interrupts 

The following sections discuss the X704 implementation of interrupts. 

2.3.6.1 Interrupt Classes 

The x704 does not have any imprecise interrupts. All floating-point excep­

tions are precise. 

2.3.6.2 Interrupt Definitions 

In addition to the interrupt types defined in the PowerPC Architecture Speci­
fication, the x704 implements the TLB miss and TLB store interrupts. The 
x704 interrupt vector is shown in Table 4, with implementation-dependent 

interrupts shown in shaded rows 

Table 4: Interrupt Vector Offsets 

Vector Offset Interrupt 'JVpe 

OxOOOO Reserved 
1----- --------- ·-··· -

Ox0100 System Reset 

Ox0200 Machine Check 

Ox0300 Data Storage 

Ox0400 Instruction Storage 

Ox0500 External 
I-·· --·-

Ox0600 Alignment 
1-- .. 

Ox0700 Program 
1----· 

OxOBOO Floating-Point Unavailable 
1---· 

Ox0900 Decrementer 
1---

OxOAOO Reserved 
1----------- .. 

OxOBOO Reserved 

OxOCOO System Call 
-

OxODOO Trace 

OxOEOO Floating-Point Assist 
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Table 4: Interrupt Vector Offsets (Cont.) 

2.3.6.2.1 System Reset Interrupt 

On the x704, the system reset interrupt is caused by the assertion of either 

the HRESET or the SRESET input pin. The interrupt handler determines 
which pin was asserted by examining the R bit in the CHECK register. 

A system reset interrupt always clears SRR1 (30), indicating that the inter­

rupt is not recoverable. 

2.3.6.2.2 Machine Check Interrupt 

A machine check condition occurs when one of the conditions enabled in 

the CHECK register is detected or when the TEA interface signal is 

asserted. A machine check condition causes a machine check interrupt if 

the MSR[MEJ bit is set. If MSR[MEJ is clear, the processor enters checkstop 
mode instead. In checkstop mode, the processor stalls until either the 

HRESET or the SRESET external reset pin is asserted. In some circum­

stances, it may not be possible to take a machine check interrupt even 

when MSR[MEJ is set; instead, the processor enters checkstop mode. 

In general, machine check conditions cannot be precisely related to the exe­

cution of any particular instruction and cannot be restarted. A machine 
check interrupt can result in corrupted data being placed in general registers 

or in any one of the caches. 

The following registers are set: 

SRRO Set to the effective address of the last instruction that completed. For some 

machine checks, that instruction may have caused boundedly undefined 

results. 

SRR1 

1:4 Set to 0. 

10 Set to 0. 

11 :15 Set to a nonzero value according to the following: 

00001 an invalid level 2 cache tag or use record state was detected. 
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00010 an address hit more than one tag in the level 2 cache. 

00011 the bus controller detected an internal state machine error. 

00100 an invalid snoop type (TT) was detected. 

00101 a bus data parity error was detected. 

00110 a bus address parity error was detected. 

00111 a qualified assertion of the TEA signal was received. 

01001 software requested a machine check by writing a one to 
CHECK[SW]. 

0101 O a multiple DBAT or TLB hit was detected on a single data reference. 

10000 the external machine check pin (MCP) was asserted. 

10100 a multiple IBAT or ITLB hit was detected on a single instruction 
reference. 

All other nonzero values are reserved. If multiple machine check conditions 
are detected between instruction issues. this field may not be meaningful. 

30 Set to zero. indicating that the interrupt is not recoverable. 

Others: Loaded from the MSR register. 

The machine check interrupt handler should set the MSR[MEJ bit so that 
additional machine checks that occur while the handler is executing do not 
cause the processor to checkstop. 

Software that tests for the existence of physical memory by issuing loads 
and observing whether a machine check results should adhere to the fol­

lowing guidelines: 

• Instruction references should not be used to probe for memory. 

• The storage being probed should be marked as caching inhibited, or the 
probe references should be executed with caches disabled. 

• The probe references should be preceded and followed by sync instruc­
tions. 

Warning: Failure to follow these guidelines may result in checkstops 
caused by multiple machine checks. 

2.3.6.2.3 Data Storage Interrupt 

The X704 implements data storage interrupts as described in the PowerPC 
Architecture Specification with the following notes: 
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• Any attempt to access fixed-point data in a direct-store segment causes 
a data storage interrupt with DSISR(O) set and DAR set to the effective 

address of the direct-store reference. 

• An stwcx. instruction with an effective address for which a normal 
store would cause a data storage interrupt causes a data storage inter­

rupt even if the processor does not perform the store. 

• Data address breakpoints are supported: DSISR(9) is set for data break­
points and cleared for other data storage interrupts. On a data address 

breakpoint, the DAR register may not contain the effective address com­

puted by the instruction that triggered the breakpoint. For load/store 
multiple, move assist, or unaligned elementary accesses where the 

breakpoint address is not in the same doubleword as the effective 

address, DAR contains an address in the doubleword that triggered the 
breakpoint. 

• An lwarx or stwcx. instruction that addresses a location that is write 

through required completes correctly and does not cause a data storage 
interrupt. 

2.3.6.2.4 Instruction Storage Interrupt 

The x704 implements instruction storage interrupts as defined in the archi­

tecture specification. 

2.3.6.2.5 External Interrupt 

The X7011 implements external interrupts as defined in the architecture spec­

ification. 

The x7011 expects the external interrupt signal (INl) to be asserted until the 
external interrupt handler software acknowledges the interrupt to the 

device signalling it. 
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2.3.6.2.6 Alignment Interrupt 

The x704 causes an alignment interrupt when any of the following condi­

tions occur: 

• The effective address of a lwarx or stwcx. instruction is not word­
aligned. 

• A /swi, /swx, stswi, stswx, lmw, or stmw instruction is executed in 
power-endian mode. 

• Any unaligned access that crosses a doubleword boundary is attempted 
in power-endian mode. 

• The effective address of a floating-point load or store instruction refer­
ences a location in a direct-store segment. 

The SRRO, SRR1, DAR, and DSISR registers are set as described in the 
architecture specification, with the additional note that alignment interrupts 
caused by lmw, /swi, and lswx instructions set DSISR(27:31) to the RA 

field of the instruction. 

2.3.6.2.7 Program Interrupt 

The x704 implements program interrupts as defined in the architecture 

specification. 

2.3.6.2.8 Floating-Point Unavailable 

The x704 implements floating-point unavailable interrupts as defined in the 
architecture specification. 

2.3.6.2.9 Decrementer Interrupt 

The X704 implements decrementer interrupts as defined in the architecture 
specification. 

2.3.6.2.10 System Call Interrupt 

The x704 implements system call interrupts as defined in the architecture 
specification. 

2.3.6.2. 11 Trace Interrupt 

The X704 implements trace interrupts as shown in Appendix A of Book Ill. 

In addition, instruction address breakpoints cause trace interrupts. See 
Section 2.3.4.5 on page 41 for more information on instruction breakpoints. 
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When a trace interrupt is taken, SRR1 is set as follows: 

1 :4 is set to 0. 

10 is set to 0. 

11 is set to 1 for instruction breakpoints or 0 for single-step or branch trace 

interrupts. 

12:15 aresettoO. 

Others: are loaded from the MSR register. 

2.3.6.2.12 Floating-Point Assist Interrupts 

The floating-point assist interrupt is not used by the x704. 

2.3.6.2.13 TLB Miss interrupt 

The TLB miss interrupt is a x704 implementation-dependent interrupt. The 

interrupt vector offset of this trap is Ox1000. 

A TLB miss interrupt occurs when MSR[IRI is set and no translation for an 

instruction fetch address is present in either an IBAT or the TLB, or when 

MSR[DRJ is set and no translation for an effective address is present in 

either a DBAT or the TLB. 

The following registers are set: 

MSR 

14 is set to 1. blocking system TLB invalidates. 

Others: as described in the architecture specification. 

SRRO is set to the effective address of the instruction that caused the interrupt. 

SRR1 

0:3 are loaded from CRO. 

4 is set to 0. 

10: 15 are set to 0. 

Others: are loaded from the MSR register. 

MAR is set to the instruction or data effective address that caused the TLB miss 

interrupt. 
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MISR 

is set to 1 for loads or stores. indicating a possible page fault, and is set to 0 

for instruction fetches. 

2 is set to 1 for instruction fetches. and set to 0 for loads or stores. 

6 is set to 1 for stores, and set to 0 for loads or instruction fetches. 

Others: are set to 0. 

A TLB miss interrupt changes the contents of the MAR and MISR registers. 

Changes to these registers can alter the contents of the CMP, HASH1, and 
HASH2 registers and can change the TLB entry accessed by the TLBLRUO, 

TLBLRU 1, and TLBMRF registers. 

The definition of the MISR allows a common TLB miss handler to handle 

both instruction and data TLB misses. If the miss is really a page fault (no 

matching PTE is found in either PTEG searched) the handler looks at 
MISR(2). If it is clear, the handler copies MAR and MISR to DAR and DSISR 

and jumps to the data storage interrupt vector. This works because MISR(1) 

and MISR(6) are set correctly for a page fault. If MISR(2) is one, the handler 

sets SRR1 to Ox40000000, indicating an instruction page fault, clears the 
MSR[TWJ bit set by the trap, and then jumps to the instruction storage inter­

rupt vector. 

The TLB miss handler should take advantage of the TLB assist SPRs 

described in Section 2.3.4.4 on page 38. The handler can safely alter CRO 

without first saving it because the hardware has already saved CRO in 

SRR1. General registers must be saved to SPRGs. The handler must restore 

the condition register and any altered general registers before exiting. A 

handler that exits without executing an rfi instruction must clear MSR[TW]. 

which was set by the trap. See Appendix A for a sample TLB miss handler. 

2.3.6.2.14 TLB Store Interrupt 

The TLB store interrupt is a X704 implementation-dependent interrupt. The 
interrupt vector offset of this trap is Oxl 100. 

A TLB store interrupt occurs when a store instruction executes with 

MSR!DRJ set, a valid TLB entry translates the effective address computed 

by that instruction, the PP field of that TLB entry permits the store access, 
and the changed (C) bit of that TLB entry is clear. 
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The following registers are set: 

MSR 

14 is set to 1, blocking system TLB invalidates. 

Others: as described in the architecture specification. 

SARO is set to the effective address of the instruction that caused the interrupt. 

SRR1 

0:3 are loaded from CAO. 

4 is set to 0. 

10:15 are set to 0. 

Others: are loaded from the MSR register. 

MAR is set to the effective address of the data referenced by the instruction that 

caused the TLB store interrupt. 

MISR 

4 is set to 1, indicating a possible protection fault. 

6 is set to 1, indicating a fault caused by a store instruction. 

7:8 are set to the TLB element number of the entry that translated the access. 

Others: are set to 0. 

A TLB store interrupt changes the contents of the MAR and MISR registers. 

Changes to these registers can alter the contents of the CMP, HASH1, and 

HASH2 registers and can change the TLB entry accessed by the TLBLRUO, 

TLBLRU1, and TLBMRF registers. 

The TLB store handler should take advantage of the TLB assist SPRs 

described in Section 2.3.4.4 on page 38. The handler can safely alter CRO 

without first saving it because the hardware has already saved CRO in 

SRR1. General registers must be saved to SPRGs. The handler must restore 

the condition register and any altered general registers before exiting. A 

handler that exits without executing an rfi instruction must clear MSR[1WJ, 

which was set by the trap. See Appendix A for a sample TLB store interrupt 

handler. 
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2.3.6.3 Exception Ordering 

The x704 processor adds the following interrupt priority conditions for imple­

mentation-dependent interrupts: 

• Data TLB miss interrupts have a higher priority than TLB store inter­

rupts, and both of those have a higher priority than data storage inter­

rupts, but a lower priority than alignment interrupts. 

• Instruction fetch TLB interrupts have a higher priority than instruction 

storage interrupts. 

• A trace interrupt caused by an instruction breakpoint is of lower priority 

than an instruction storage interrupt. 

• A single-step or branch trace interrupt occurs before an instruction 

breakpoint trace interrupt on the following instruction. 

• Data breakpoints are the lowest priority data storage interrupt. 

2.3. 7 Synchronization Requirements for Special Registers 

Several of the x704 ·s implementation-dependent SPRs can alter the context 

in which addresses are interpreted and in which instructions are executed. 
The side effects caused by these context-altering instructions may not 

occur in program order, and can require explicit software synchronization. 

Table 5 shows the type of synchronization required before and after an 

instruction that changes the contents of each SPR. As in Book 111, the nota­
tion CS/ in the table means any context-synchronizing instruction or any 

interrupt other than a non-recoverable reset or machine check. 

Table 5: Synchronization Requirements for Implementation-Dependent SPRs 

Register 

MAR 
... 

MISR 

SPRG 

EVENT 
--
TLBLRUO-TLBLRU1 

1--
TLBMRF 

r---
BPTCTL 

·-

IABR 

DABR/XDABR 

CHECK 

64 

Required Before 

none 

none 

none 

sync2 

none3 
--

none3 

none 

none 

none 

none 

----

Required After 
-------4 

sync1 

sync1 

none 

CSI 

cs14 

cs14 

sync 

CSI 

sync 
·----------4 

CSI 
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Table 5: Synchronization Requirements for Implementation-Dependent SPRs(Cont.) 

I Register 
·----.. ---··--

Required Before Required After 

MODES none CSI 

L2CTL[IE] none isync5 
·-·-· 

L2CTL[L2E] sync isync 
f----- --

L2CTL (other) none sync 
--

L2CDR none6 sync 

PIR none none 

TLB entries none cs14 

1. Required only when the write is tallowed by an access to the TLBLRUD, TLBLRU1. or TLBMRF registers 

2. The sync instruction ensures that all storage-related events are counted before the value at EVENT 
changes. 

3. These registers should not be written while address translation is enabled. 

I 

4. A context-synchronizing event is required before translation is re-enabled. Accesses to the new transla­
tion should not be made until after the CSI following the instruction that sets MSR.IR or MSR.DR. 

5. It the cache line containing the instruction that modifies L2CTL is already in the instruction cache, its 
contents must be the same as the contents of that line in memory. It the two lines differ. the results of 
continued execution are boundedly undefined. 

6. This register should not be written while the level 2 cache is enabled. 

Accesses to special purpose registers using stwdx instructions to the diag­
nostic address space are also subject to these synchronization require­

ments. Additional synchronization rules for some MSR bits are given in 

Section 2.3.3.2 on page 34. 
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3. Processor Operation 

This chapter presents a detailed description of the x704 microarchitecture 
and implementation. including the execution pipeline, caches, TLB, and 
branch prediction units. 

3.1 Execution Pipeline 

The X704 pipeline consists of a fetch stage (F) followed by five execution 

stages used by all instructions: decode (D). address generation (A). cache 
access (C), tag match (M), and writeback (W). These stages are normally 

denoted by the initials F, D, A, C, M, and W. The fetch stage is usually omit­

ted from pipeline diagrams because it does not participate in instruction 
interlock or operand bypass operations; however, it is shown in diagrams 

including branch mispredicts to demonstrate the cause of the performance 
penalty. 

The terms group, flow, and step are frequently used in describing the pipo 

line. A group is a set of zero to three instructions that are issued on a singlo 

cycle and travel down the pipeline together. Individual instructions proceed 
down the pipeline in flows. Most instructions need only a single flow, but 

some complicated instructions require multiple flows. For example, the 

move assist and load and store multiple instructions use one flow for each 

register transferred, misaligned load accesses require two flows, and mis­
aligned store accesses require three flows. Most flows require a single step 

in each pipe stage, but instructions such as integer multiplies and divides 

require multiple steps in the ALU. 

The following sections describe each pipeline stage. Additional information, 

including detailed pipeline diagrams, appears in Chapter 4. 
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3.1.1 Fetch Stage (F) 

In the fetch stage, the instruction fetch unit reads the instruction cache and 
finder and, if the fetch PC hits in the instruction cache, places either one or 
two instructions into the six-element instruction buffer. 

3.1.2 Decode Stage (0) 

In this stage, the decode unit reads instructions from the decode buffer, 
determines how many instructions can be issued on this clock, reads any 
general registers needed by any instructions on this cycle, and calculates 
the branch target address for any branch being issued on this cycle. 

3. 1.3 Address Generation Stage (A) 

In this stage, the decode unit generates the effective address for storage 
access instructions. 

3.1.4 Cache Access Stage {C) 

In this stage, the decode unit presents the effective address for memory 
references to the data cache and to the TLB. Cache read data is available at 

the end of this stage and can be bypassed to other parts of the pipeline. 
This bypassing occurs before the load/store unit determines if the address 
hit in the cache. 

3.1.5 Tag Match Stage (M) 

In this stage, the TLB and data cache determine if memory accesses hit. In 
the event of a data cache miss, the pipeline is held until the referenced data 
is available. If the TLB misses, an exception is raised. Information on any 
other exceptions occurring on any instruction in this stage is combined and 
prioritized. If an exception is detected, the instruction causing the exception 
and all following instructions in this stage or in the D, A. or C stages are can­
celled. 

3.1.6 Writeback Stage (W) 

In this stage, instruction results are written back to the register file and 
store data is transferred to the store queue. Instructions are considered to 
be complete once they reach the W stage. 
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3. 1. 7 ALU Operations 

The x704 contains a single ALU that can be used in the A, C, or M pipe 

stage. This sliding ALU stage, known as X, is normally located in the A 

stage, but will slide out to the C or M stage if an operand is not available in 

A. Placing the ALU farther down the pipeline reduces the load-use penalty 

but increases the penalty for mispredicted branches; the X7D4 pipeline 
dynamically adjusts to minimize these penalties. 

The relocating X stage also reduces the complexity of the instruction group­

ing logic by eliminating a number of group breaks that would otherwise 

need to be detected in the D stage. For example, the instruction dispatcher 
need not hold an ALU instruction with an operand that is the target of a load 

being issued in the same cycle. 

3.1.8 Floating-Point Operations 

Although floating-point operations typically take longer than ALU operations, 

the floating-point pipeline can be viewed as operating in lock-step with the 

integer pipeline. Floating-point exceptions are detected or predicted in or 

before the M stage. If an exception cannot be ruled out, the integer and 
load/store pipelines stall in M until the exception status of the floating-point 
operation is known. 

3.2 Instruction Cache 

The 2 KB instruction cache consists of 64 d1roct-mapped, 32-byte blocks. 
Because the cache size is smaller than the page size, the cache can be 

viewed as being either physically or virtually addressed. The tags contain 

physical addresses. 

The instruction cache supplies one doubleword of data to the instruction 

fetch unit on each cycle. When an instruction cache miss occurs, the cache 

is filled at one doubleword per cycle from the level 2 cache in critical-word­
first order. Cache validity is maintained on a doubleword basis, and the level 

2 cache might not supply all four doublewords in a block-particularly in the 

case where the cache miss occurs in the middle of a block. In that case, the 

level 2 cache gives a low priority to the doublewords from the start of the 

block through the doubleword before the miss address, and frequently does 

not send these doublewords to the instruction cache. 

The contents of the instruction cache are a subset of the level 2 cache con­

tents. 
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When the instruction cache is disabled (L2CTL.IE is clear), all instruction fetch 

requests are handled as if they were targeted at caching-inhibited storage. 

When executing with the instruction cache disabled and the level 2 cache 

enabled, instruction fetch accesses are not satisfied from the level 2 cache, 

and data brought in from off-chip memory in response to instruction fetches is 

not placed in the level 2 cache. This mode is intended for use by cache diag­

nostics only. 

Note: Operating in this mode is not recommended. 

The instruction cache data and tags can be read and written with the diagnos­

tic access instructions at the addresses shown in Table 7 on page 84. The 

instruction cache tags are formatted as shown in Figure 18. 

Tag I VO I V1 I V2 I V3 I Reserved 

0 20 21 22 23 24 25 31 

Figure 18: Instruction Cache Tags 

The fields are defined as follows: 

Tag is physical address bits (0:20) of the entry present in this block. 

VO is the valid bit for the first doubleword in the block. If this bit is set, the double­

word is present in the instruction cache. 

V1 is the val id bit for the second doubleword in the block. If this bit is set. the dou­

bleword is present in the instruction cache. 

V2 is the valid bit for the third doubleword in the block. If this bit is set, the double­

word is present in the instruction cache. 

V3 is the valid bit for the fourth doubleword in the block. If this bit is set, the dou­

bleword is present in the instruction cache. 

3.3 Data Cache 

The 2 KB data cache consists of 64 direct-mapped, 32-byte blocks. Because 

the cache size is smaller than the page size, the cache can be viewed as being 

either physically or virtually addressed. The tags contain physical addresses. 
The data cache is a write through cache. 

The data cache can supply or receive up to one doubleword of data to or from 

the load/store unit on each cycle. When a data cache miss occurs, the cache 
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is filled from the level 2 cache at one doubleword per cycle in critical-word­

first order. Cache validity is maintained on a doubleword basis, and the level 
2 cache might not supply all four doublewords in a block. Data cache fills of 

the non-critical word have a higher priority than the low-priority instruction 

cache fills described in the previous section. 

The contents of the data cache are a subset of the level 2 cache contents. 

When the data cache is disabled (L2CTL.DE is clear). all data storage 

requests are handled as if they were targeted at caching-inhibited storage. 
When executing with the data cache disabled and the level 2 cache 

enabled, data accesses are not satisfied from the level 2 cache, and data 
brought in from off-chip memory in response to load or store instructions is 

not placed in the level 2 cache. This mode is intended for use by cache diag­
nostics only; operating in this mode is not recommended. 

The data cache data and tags can be read and written with the diagnostic 

access instructions at the addresses shown in Table 7 on page 84. The data 

cache tags are formatted as shown in Figure 19. 

Tag I VO I V1 I V2 I V3 I Reserved 

0 20 21 22 23 24 25 31 

Figure 19: Data Cache Tags 

The fields are defined as follows: 

Tag is phyrical address bits (0:20) of the entry present in this block. 

VO is the valid bit for the first doubleword in the block. If this bit is set, the dou­

bleword is present in the data cache. 

V1 is the valid bit for the second doubleword in the block. If this bit is set, the 

doubleword is present in the data cache. 

V2 is the valid bit for the third doubleword in the block. It this bit is set, the dou­

bleword is present in the data cache. 

V3 is the valid bit tor the fourth doubleword in the block. It this bit is set, the 

doubleword is present in the data cache. 
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3.4 Level 2 Cache 

The level 2 cache is a 32 KB unified instruction and data cache organized as 
a set-associative cache with 128 sets of eight 32-byte blocks. 

The level 2 cache data RAM is arranged as two interleaved banks. Each read 
or write has a two-cycle access time, but sequential accesses to alternating 
banks allow one operation to be started on every cycle. Up to a doubleword 
of data can be written to the level 2 cache from either the bus or the store 
queue in one operation. When data is not being written, a doubleword of 
data can be read out of the cache in order to load either of the level 1 
caches or to supply data to the system bus for cache evictions and snoop 
pushes. When satisfying level 1 cache misses, the level 2 cache supplies 
the data and tag values to the level 1 caches. 

The level 2 cache also implements the multiprocessor MESI cache coher­
ency protocol. It snoops bus operations, updating its cache tags and invali­
dating primary cache blocks as necessary. The level 2 cache also supports 
the data cache block store, flush, invalidate, touch, touch for store, and 
block zero operations, and the instruction cache block invalidate operation. 

In addition to tags recording which blocks it contains, the level 2 cache con­
tains use records (see Figure 20) that record which blocks are present in 
either level 1 cache. This allows the cache to determine which coherency 
operations on the bus affect the level 1 caches and also allows some cache 
operations (data cache block zero, for example) to be implemented almost 
entirely in the level 2 cache, preventing them from delaying processor 
accesses to the level 1 caches. 

The level 2 cache data, tags, and use records may be read and written with 
the diagnostic access instructions at the addresses shown in Table 7 on 
page 84. 

3.4.1 Level 2 Cache Tags 

Each cache block has a tag formatted as shown in Figure 20. 

Tag s Reserved 

0 19 20 21 22 31 

Figure 20: Level 2 Cache Tags 
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The fields are defined as follows: 

Tag is physical address bits (0:19) of the entry present in this block. 

S is the MESI state for this cache block. The cache state is encoded as shown 

in Table 6. 

Table 6: Level 2 Cache Tag MESI State Values 

l ·Value 

- ---

Cache Line State 

00 Invalid 
--

01 Shared 

10 Exclusive 

11 Modified 

3.4.2 Address Translation and the Level 2 Cache 

When data address translation is enabled, bits (0: 19) of the effective 

address must be translated from virtual to physical addresses. As soon as 

the effective address is available, address bits (20:28) are used to index into 

the cache. This allows a cache tag lookup to proceed in parallel with the cor­

responding TLB accesses. By the time the high-order physical address bits 

are needed to determine if any of the tags in the set matched, the TLB will 

have supplied them to the cache. 

3.4.3 Level 2 Cache Replacement Policy 

Each cache set has a use record containing information about which blocks 

have been recently used, which blocks aro present in the level 1 caches, 

and which blocks are not functional. A use record is formatted as shown in 

Figure 21. 

~llll 
0 

DCP D 

4 5 

ICP 

8 9 

Figure 21: L2 Cache Use Record 
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The fields are defined as follows: 

VALID is the block valid field. This field can be used by a cache test initialization 
program to mark one or more blocks as unusable. This field is encoded as fol­
lows: 

0000 all eight blocks in this set are valid. 
1 xxx block xxx is invalid and is not used. 
0100 blocks 0-3 are invalid and are not used. 
0101 blocks 4-7 are invalid and are not used. 

All other encodings are reserved. 

DCP is the data cache present bit. If this bit is set, one of the blocks in this set can 
be present in the data cache. 

D is the data cache block field. If the DCP bit is set, this field contains the index 
of the block that can be present in the data cache. 

ICP is the instruction cache present bit. If this bit is set, one of the blocks in this 
set can be present in the instruction cache. 

is the instruction cache block field. If the ICP bit is set. this field contains the 
index of the block that can be present in the instruction cache. 

PLRU is the pseudo-LAU information field. This field records information on which 
blocks have been recently accessed. If bit n of this field is a one, then the 
level 2 cache controller considers block n of this cache set to have been 
recently used. The contents of this field is updated on all cache accesses and 
is used to determine which block should be replaced when a new block is 
brought into the cache. 

Because of the cache geometry, there are two locations in the level 2 cache 
where each level 1 cache block may reside. If a level 1 cache block is 
replaced, and the new block comes from a different set than the old block, 
the level 2 cache use records for both sets must be updated. The use 
record for the replacement block is updated immediately, but there can be 
some delay before the use record for the block being removed from the 
level 1 cache can be updated, creating a temporary inconsistency where the 
D/DCP or l/ICP fields indicate that a block is present in a level 1 cache when 
it has already been replaced. It is possible that this use record update is 
never made. This may cause some unnecessary level 1 cache invalidates 
and subsequent misses, but it never causes incorrect behavior. 

The pseudo-LRU algorithm used to select a block to be replaced is deter­
ministic. If the use records are initialized to an identical state before the 
level 2 cache is enabled, the same memory reference pattern results in the 
same series of cache block replacements. 
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All of the fields in the use record except VALID and PLRU should be initial­
ized to zero at reset time. Diagnostic accesses to the cache data and tags 
can be used to identify any bad blocks that must be recorded in the VALID 

field. This field is intended to record information about isolated bad blocks. If 
an entire column is bad, it can be disabled by using the L2CDR register 
described in Section 2.3.4.6.4 on page 52. Any block disabled with the 
VALi D field must also be marked as recently used by setting the appropri­
ate bit in the PLRU field. 

Disabling more than four blocks in a single set can cause level 2 cache con­
troller machine checks to occur on cacheable accesses to that set. 

3.4.4 Disabling the Level 2 Cache 

When the level 2 cache is disabled (L2CTL.L2E is clear), the processor does 
not maintain the level 2 cache tags or use records, and does not act upon or 
respond to any snooped requests on the bus. While it is possible to execute 
with the level 2 cache disabled and either or both level 1 caches enabled, 
storage coherence with other processors is not maintained, and some 
cache management instructions do not function correctly. In addition, care 
must be taken when re-enabling the level 2 cache. When executing in this 
state, level 1 cache misses continue to be satisfied with burst reads from 
off-chip memory, but the level 2 cache does not maintain inclusion. Before 
enabling the level 2 cache, the contents of the level 1 caches should be 
invalidated, synchronizing them with memory, and then the level 1 caches 
should be disabled. Finally, both the level 1 anc .. level 2 caches should be 
enabled simultaneously. 

Disabling an enabled level 2 cache must be done carefully. All prefetching 
should be disabled while the level 2 cache is still enabled. The L2CTL write 
that disables the cache must be preceded by a sync instruction and fol­

lowed by an isync instruction. If the isync instruction is not the last 
instruction in a cache block, the remainder of the instructions in that block 

can be fetched as though the cache were still enabled. 

3.4.5 Flushing the Level 2 Cache 

The restriction that the level 1 caches are always a subset of the level 2 
cache presents a complication to any program that must invalidate all blocks 
or flush all modified data from the level 2 cache. When programs write to 

the instruction stream, a single cache block can be marked as modified and 
also be present in both the instruction and data caches. A routine that 
attempts to flush the cache by touching 32 KB worth of data replaces that 
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cache block in the data cache, but will not necessarily evict it from the 
instruction cache, and therefore it can remain modified in the level 2 cache. 

While good programming practices dictate that writes to the instruction 
stream be done in the coherent fashion suggested in Section 2.2.6 on 
page 32, an operating system cannot guarantee that all application software 
is well-behaved. The following algorithm, which uses the lwdx instruction 
to access the L2 cache tags directly, can be used by privileged software to 
ensure that all modified data has been written back to main memory. 

for (i = O; i < L2_N_SETS; i++) 

for (j = O; j < L2_ASSOC; j++) 
{ 

tag_addr = MAKE_DIAG_L2_TAG_ADDR (i, j); 

tag= LWDX (tag_addr); 
if ((tag & L2_TAG_STATE_MASK) == L2_TAG_MODIFIED) 

DCBST (L2_TAG_TO_ADDR (tag, i)); 

In this example, the MAKE_DIAG_L2_TAG_ADDR macro creates the diag­
nostic address that accesses the level 2 cache tag for block j in set i. The 
L2_ TAG_ TO_ADDR macro returns the physical address of the block 
described by the cache tag, and the LWDX and DCBST macros invoke the 
lwdx and dcbst instructions, respectively. This routine must run with data 
address translation disabled so that the physical address of the cache block 
can be used as the effective address argument to dcbst. 

If application software is expected to flush the cache reliably, this routine 
should be provided as an operating system service. Alternatively, an applica­
tion can guarantee that all modified lines are written back to memory by 
flushing the instruction cache (by executing code from 64 consecutive 
cache blocks, for example) and then flushing the level 2 cache by loading 
data from 1024 consecutive cache blocks known not to be modified in the 
cache. 

Because it was optimized for zeroing large blocks of memory that are not 
expected to be referenced immediately, the dcbz instruction does not 
place the block containing the target storage address in the level 1 cache. lt 
also does not invalidate the level 1 cache entries indexed by the target 
address if they contain blocks from a different storage address. Because of 
this, dcbz cannot be used to flush the entire level 2 cache. 
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3.4.6 Cache Coherency Protocol 

The x704 uses the 4-state MESI protocol to maintain data coherency among 

its caches, the caches in other processors in a multiprocessor system, 1/0 

devices, and main memory. This section describes the cache states, the 

operations that change cache block states, and the transitions that those 
operations cause. Some of the mechanisms used to detect and perform 

state transitions are part of the external bus protocol and are described in 
the PowerPC 60x Microprocessor Interface Definition. 

The MESI states are: 

Invalid 

Exclusive 

Shared 

Modified 

The block is not valid in the level 2 cache. 

The block is valid in the level 2 cache. is not modified. and is not present 
in the cache of any other processor in a multiprocessor system. 

The block is valid in the level 2 cache, is not modified, but can be present 
in the caches of other processors in a multiprocessor system. 

The block is valid in the level 2 cache. has been modified with respect to 

the contents of main memory. and is not present in the cache of any 

other processor in a multiprocessor system. 

In order to guarantee correct operation of the cache coherence scheme, the 
memory coherence storage control attribute (M bit) should be set for all 

pages that may be shared between processors. If tho M bit is not set for a 

shared page, software must use cache management and synchronization 
instructions to ensure that separate processors have a consistont view of 

the data on that page. 

The operations that cause changes in the MESI state of a cache block are 

Read miss 

Write miss 

Evict/Flush 

Write hit 

The block is changed from the invalid state to either exclusive or shared. 

depending on whether another processor has the line cached. 

The block is changed from the invalid state to modified. 

The block is changed from the exclusive. shared. or modified states to 
invalid because it is being replaced in the cache, because it is the target 

of a dcbfinstruction or bus flush operation, or because another proces­

sor is requesting exclusive access to it. If the block was in the modified 

state. the contents are written back to memory. 

The block is changed from the exclusive or shared states to modified 

because it was the target of a store instruction that hit in the cache. 
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Bus read hit The block is changed from the exclusive state to the shared state 

because another processor requested read access to the block. 

Clean The block is changed from the modified state to the exclusive state 

Invalidate 

because it was the target of a dcbst instruction or a bus operation that 

requested a clean. The modified data is written back to memory. 

The block is changed from the exclusive, shared, or modified state to 

invalid because it was the target of a dcbiinstruction or a bus operation 

that requested an invalidate. If the block was in the modified state, the 

modified data is discarded. 

3.4. 7 Cache Prefetching 

When prefetching is enabled, the level 2 cache controller uses spare 

resources to move data into the level 2 cache by having each miss that 

completes start a prefetch reference on the cache block at the next higher 

address. Prefetches have lower priority than demand misses or stores 

when accessing the system bus and internal busses, but are otherwise 

implemented in a nearly identical fashion to demand misses-including 

sharing the same level 2 cache tag access resources. At any time, only one 

data address (demand or prefetch) and one instruction address can access 

the level 2 cache tags. If a new address arrives for a demand miss before 

the prefetch address completes its tag access, the prefetch request is 

dropped. 

Prefetching stops when the requested data is already in the level 2 cache, 

after the last line on a physical memory page is fetched, when the L2CTL 

register is written, and when any TLB invalidate occurs. In addition, 

prefetches are never performed on guarded data pages, and all cache 

prefetching is disabled when the processor clock to bus clock ratio is less 

than 6:1. 

The debt and dcbtst touch instructions are treated as prefetch requests 

that can be made even when data prefetching is disabled. Touch instruc­

tions are executed at the same priority as other prefetches. The touched 

data is never placed in the level 1 data cache. Unlike either demand misses 

or other prefetches, touch instructions that complete never cause further 

prefetch requests. Because touch instructions overwrite the previous con­

tents of the level 2 cache tag access register, a sequence of touch instruc­

tions rarely results in all of the requested lines being brought into the cache. 

The most likely result is for the last reference in the sequence to be the only 

successful one. 
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3.5 Translation Lookaside Buffer (TLB) 

The TLB contains 128 entries, organized as a 4-way set-associative cache; 
each can be used to map a virtual page address to a physical address. A 
total of 512KB of storage can be covered by TLB translations. Each TLB 
entry is a doubleword formatted as shown in Figure 22. 

0 1 24 25 28 29 30 31 

VSID "'"'1°1"! 
PAGEi DX RPN c 

0 19 20 21 31 

Figure 22: TLB Entry 

The fields are defined as follows: 

V is the valid bit. The translation entry is valid if this bit is set, and invalid if it is 
clear. 

VSID is the virtual segment ID associated with this translation. 

WIMG are the storage access control bits for the page associated with this transla­
tion. 

PP are the page protection bits for tho page associated with this translation. 

RPN is the page number of the physical page frame associated with this transla· 
tion. The physical address for memory references using this translation is 
produced by appending bits (20:31) of the effective address to RPN. 

C is the page changed bit. If an instruction attempts to store to this page and 
this bit is clear, a TLB store interrupt occurs. 

PAGEIDX is bits (24:34) of the virtual address (bits (4:14) of the effective address) asso­

ciated with this translation. 

TLB entries may be written with diagnostic accesses at the addresses 
shown in Table 7 on page 84, or by using the TLBLRU and TLBMRF regis­
ters described in Section 2.3.4.4 on page 38. 

A TLB match with an effective address occurs when both of these condi­
tions are true: 

1. The virtual segment ID in the segment register referenced by bits (0:3) 
of the effective address matches the VSID field of the TLB entry. 

2. Bits (4:14) of the effective address match the PAGEi DX field of the TLB 
entry. 
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Effective address bits (15: 19) index into the TLB, and do not participate fur­
ther in the determination of a match. If no match is found for an effective 
address, a TLB miss interrupt occurs. 

The TLB miss handler can write a specific entry in the set indexed by bits 
(15:19) of the effective address of an lwdx instruction, or it can use the 
TLBLRUO and TLBLRU1 registers to write the least recently used entry in 
the set addressed by DAR(15:19). See Appendix A for an example of a TLB 
miss handler. 

Software that writes a TLB entry should also set the Reference bit in the 
associated PTE. 

Writing multiple TLB entries that translate the same effective address is an 
error and can cause a machine check or boundedly undefined results. 

The TLB tracks usage history in each set using a 3-bit pseudo-LRU algorithm 
that works as follows: 

• Bit 0 is set when entries O or 1 are used, and cleared when entries 2 or 

3 are used. 

• Bit 1 is set when entry O is used, and cleared when entry 1 is used. 

• Bit 2 is set when entry 2 is used, and cleared when entry 3 is used. 

Application of these rules yields the following state transition table: 

r Current 
State After Ace e11 to Entry 

State 0 2 3 
·-----

000 110 100 001 000 

001 111 101 001 000 

010 110 100 011 010 

011 111 101 011 010 

100 110 100 001 000 

101 111 101 001 000 

110 110 100 011 010 

111 111 101 011 010 

When choosing the LRU entry to replace, the TLB uses the following rules: 

• If bit O is set, choose entry 3 if bit 2 is set, or entry 2 if bit 2 is clear. 

• If bit 0 is clear, choose entry 1 if bit 1 is set, or entry 0 if bit 1 is clear. 
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These rules are embodied in the following table: 

State LRU Block 

OOx 0 

01x 1 

Ro 2 
--

1x1 3 

3.6 Instruction TLB (ITLB) 

The ITLB consists of four 8-byte entries used to translate instruction 
addresses. Unlike the main TLB, the ITLB translates directly from effective 

addresses to physical addresses, skipping the virtual stage. As a result. the 
ITLB must be flushed each time a segment register or TLB entry is modi­
fied, including each time entries are modified by writes to the TLBLRUO, 
TLBLRU 1, and TLBMRF registers or by a local or broadcast tlbie operation. 
The ITLB is maintained automatically by the hardware, which flushes it and 
refills it from the TLB as necessary. 

3. 7 Block Address Translation 

The x704 supports block address translation as defined in the PowerPC 
Architecture Specification. The instruction fetch unit contains four pairs of 
IBAT registers, and the load/store unit contains four pairs of DBAT registers. 
These registers can be acces5ed with mfspr and mtspr instructions using 
the defined SPR numbers or with diagnostic accesses 

3.8 Branch Prediction 

The x704 instruction fetch unit maintains branch prediction and branch tar­
get information in the finder. There is one finder entry for each doubleword 
in the instruction cache. Finder entries are written to a default value (as 
described in Section 3.8.3 on page 83) when a block is brought in to the 
instruction cache, and are updated by the decode unit as necessary. A finder 
entry holds information on the direction and target for a maximum of one 
branch instruction; if an aligned doubleword contains two branches, the 
finder entry describes only one branch at any given time. This condition can 

cause poor prediction performance as prediction information for each 
branch continually overwrites the information for the other branch. 
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Branch prediction information is lost when a block is evicted from the 
instruction cache. Finder information can also be corrupted if a block con­
taining a branch is evicted from the instruction cache while that branch is in 

the instruction buffer or the pipeline. If this happens, the decode unit can 
update the finder entry for the replacement block, even if there is no branch 
in that block, because its finder target address is a cache block index rather 
than a complete physical address. This can result in spurious mispredicted 
branches, but does not affect the correct execution of programs. 

The finder can be accessed using the diagnostic address space so that the 
finder RAM can be tested by a power-on-self-test program. The width of the 
finder RAM is 14 bits and the data is right justified in bits (18:31) when read 
or written. The test program need not leave any particular value in the 
finder, but clearing each entry is recommended. 

3.8. 1 Branch Direction Prediction 

The finder maintains two bits of branch direction information that repre­
sents four states: strong taken (ST). weak taken (WT). weak not taken 
(WNT). and strong not taken (SNT). When the state is either ST or WT, the 
branch is predicted taken, and when the state is either WNT or SNT, the 
branch is predicted not taken. Each time a branch is executed, the finder 
entry is updated as depicted in Figure 23. 

Finder entries for absolute branches always predict the branches to be not 
taken. 
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Solid lines indicate taken branches and dashed lines indicate not taken branches. 

Figure 23: Predicted Branch Direction State Transitions 

3.8.2 Branch Target Prediction 

For instructions that alter the program counter and are predicted to be taken, 

the finder value may specify that the new fetch PC comes from the link regis­

ter, tram the count register, from SRRO, or directly from the finder for 
branches with targets within the same 2 KB block as the branch instructions 
or from the 2 KB blocks immediately before and immediately after that block. 

Relative branches whose targets are too far away for the finder to address 

are never predicted to be taken. 

3.8.3 Finder Initialization 

When a block is loaded into the instruction cache, the corresponding finder 
entries are initialized according to the following rules: 

• If neither instruction is a branch, the finder is initialized to WNT. 

• If both instructions are branches, only the first one is examined. 

• band be instructions are initialized to WT if bits (16:21) of the instruction 
are either all zeroes or all ones, and to WNT otherwise. 

• rfi, bclr, and bcctr instructions are initialized to WT. 

• The y bit in the BO field of conditional branch instructions is ignored. 

For information on WT and WNT settings, see Section 3.8.1 on page 82. 
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3.9 Diagnostic Accesses 

The x704 allows diagnostic access to all of its internal RAM structures using 
the lwdx and stwdx instructions. These instructions use an alternate 
address space to address individual resources such as the caches, TLB, 
finder, and BATs. The diagnostic address space is defined in Table 7. 

Table 7: Diagnostic Address Space 
----- .. 

Address Structure Accessed 

0000 0000 ---- ---- ---- xxxx xxxx xxOO SPR1 
~- -------·---- .•. 

1000 0100 ---- ---- ---- -xxx xxxx x-00 Finder 
r--

1000 1000 ---- ---- ---- -xxx xxxx xxOO Instruction Cache Data 
-------

1000 1010 ---- ---- ---- -xxx xxx- --00 Instruction Cache Tags 
-

I 1001 1000 ---- ---- ---- -xxx xxxx xxOO Data Cache Data 
-

1011 1110 ---- ---- ---- -xxx xxx- --00 Data Cache Tags 

1010 1000 -AAA ---- ---- xxxx xxxx xxOO Level 2 Cache Data 
... ---·-

1010 1010 -AAA ---- ---- xxxx xxx- --00 Level 2 Cache Tags 
-- - - - ------- ··-- ··---· 

1010 1110 ---- ---- ---- xxxx xxx- --00 Level 2 Cache Use Records 
.. --·-------·- ·-··-

1011 1000 ---x xxxx ---- ---A ALOO TLB 

1011 1010 ---x xxxx ---- ---- -LOO LAU TLB entry 

1. The entry address is the SPA number as used in mfsprand mlSprinstructions. 

In this table, an x represents a bit used to address an individual entry within 
a larger structure, an A selects among elements of a set in associative 
structures, and L is clear to select the more-significant half of a doubleword 
entry and set to select the less-significant half. Finally, a hyphen (-) repre­
sents an address bit that is ignored. 

Only those SPRs implemented in the instruction fetch, load/store, and level 
2 cache units can be accessed through the diagnostic address space. See 
Table 2 on page 36 for a list of SPRs implemented in those units. 

When the cache is enabled, avoid diagnostic writes to any of the three 
caches, including the tags. An instruction that writes to the data or tags of 
an enabled cache has boundedly undefined results. Diagnostic writes to the 
data cache data RAMs must be followed by a sync or eieio instruction in 
order to ensure that the data is visible to subsequent load instructions and 
to ensure that the writes are done in order. 
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Diagnostic writes to the instruction cache can be suppressed by an ITLB 

miss. Hence. diagnostic writes of the instruction cache should be done with 
instruction address translation disabled (MSR[IRJ clear). This conflict does 

not affect diagnostic writes to the IBATs. the finder, or other fetch unit struc­
tures. 

A single diagnostic write to the TLB only writes half of a TLB entry. The two 

diagnostic writes required to write an entire entry must be executed with 

both instruction and data translation disabled (MSR[IRJ and MSR[DRJ clear). 

Diagnostic write accesses to the TLB with address translation enabled have 

boundedly undefined results. 

Diagnostic writes to the TLB LRU space modify the least recently used TLB 

entry in the addressed set. The 3-bit LRU information described in 

Section 3.5 on page 79 is not directly accessible to software. If either data 
or instruction translation is enabled (MSR[IRJ or MSR[DRJ set), TLB LRU 

space accesses must be preceded by sync instructions in order to ensure 

that previous references have updated the TLB LRU information. If instruc­

tion translation is enabled, TLB LRU space accesses must be followed by 
isync instructions. 

Diagnostic accesses to the finder should be performed only when the 
instruction cache is disabled (L2CTL. IE is clear) and branch prediction is dis­

abled (MODES[BPEJ is clear). 

Diagnostic accesses to addresses not defined in Table 7 or to undefined 

entries in the diagnostic SPR space cause data storage interrupts. Unde­
fined addresses are those where bits (0:3) differ from all of the entries in the 

table. 

Diagnostic accesses never trigger data breakpoints. even if the diagnostic 
address matches the effective address in the DABR. 

3.10 Power-On Reset and Hard Reset Initialization 

When the HRESET signal is asserted, most of the processor state becomes 

undefined. The registers listed in Table 8 are initialized as shown. Execution 
begins at the system reset interrupt vector at addressOxfffOOlOO. All 

other processor state, including the general registers, cache tags, level 2 

cache use records, and TLB entries, is undefined and must be initialized 
before use. The x704 has no power-on-reset circuitry, so the HRESET signal 

must be asserted after power is applied to the chip. 
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Table 8: Hard Reset State Initialization 

Resource Setting 

MSR Ox00000040 

SRR1 Ox00000040 

DEC Oxffffffff 

PVR Ox0060rrrr 1 
- -

BPTCTL OxOOOOOOOO 
··---

IABR[IE] oz 
EVENT OxOOOOOOOO 

-· 

CHECK Ox00800000 

MODES OxOOOOOOOO 
r------

OxOOcc00003 L2CTL 

ITLB Al 1 entries are invalid 
~ --- ----
1. The contents of the revision field is implementation­

dcpendent. 
2. All other bits of this register are undefined at reset. 
3. The clock field is set from the PLL_CFG pins. 

A soft reset, taken in response to the assertion of the SRESET signal, 
causes the same actions as a hard reset, except the CHECK!Rl bit is 
cleared, the remaining fields of the CHECK register and BPTCTL are left 
unchanged. The SRESET signal is examined only if HRESET is not asserted. 

For all resets, the cache tags and the level 2 cache use records must be ini­
tialized before the caches are enabled. The level 2 cache initialization soft­
ware can also determine if any blocks are unusable, and should set the 
L2CDR register or the VALID and PLRU fields of use records to reflect any 
errors found. The TLB entries must be initialized before address translation 
is enabled. To ensure a deterministic reset, the finder should be initialized to 
all zeros before branch prediction is enabled. The TLB LRU information is ini­
tialized such that the behavior is deterministic and identical on each reset. 

The MODES register is reset to a value that specifies the most conservative 
mode of operation. The system reset interrupt handler should enable pipe­
line overlap and superscalar execution as soon as possible. Branch predic­
tion should be enabled as soon as the finder has been initialized. 
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4. Instruction Execution 

This chapter describes the performance-related characteristics of the X704. 

There are four major components affecting the execution time of instructions: 

• the inherent execution time of each instruction in the x704• usually one 

cycle 

• the parallelism available in the x704 

• the interactions between instructions 

• the ability of the caches to supply instructions and data to the pipelines. 

These subjects are all covered in the following sections. 

4. 1 Pipeline Diagrams 

The examples in this chapter make extensive use of simple pipeline diagrams. 

The progress of an instruction flow is shown in a horizontal line with a letter in 

each column indicating the current pipe stage. In the simplest case. a load 
instruction fetched and executed with no pipeline delays is depicted like this: 

lbz rl. C r2) F D A C M W 

Instructions issued in the same group are represented by identical lines, since 
any pipe stall holds all instructions in a group. Instructions issued on succeed­

ing cycles are offset to the right by one column for each cycle of delay. The F 

stage is omitted here; it is shown only in those diagrams where it is key to 

understanding the example. 

lbz rl. Cr2) D A C M W 
addi r3, r4, 1 D A C M W 
sthu r5, ~( r?l D A C M . W 

In this example, the /bz and addi instructions are issued together, followed 

one cycle later by the sthu instruction. 
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Each column in a pipeline diagram represents the state of the machine at any 
point in time, so one can see that the store instruction is computing its 
address in A while the previous load is accessing the cache in C. Multiple 
occurrences of a stage in single lines of pipeline diagrams represent pipeline 
stalls. Even though instructions can spend several cycles in the instruction 
decode buffer waiting to be dispatched, only one D is shown except when 
demonstrating dispatch grouping rules. 

4.2 Sliding ALU Stage 

As described in Section 3.1.7 on page 69, the ALU, also known as X, pipe 
stage can be located in the A, C, or M pipe stages. In pipeline diagrams, the 
letter x is appended to a pipe stage name to denote the current location of 
the ALU stage. For example, a flow that executes an ALU operation in the C 
stage is depicted like this: 

D A Cx M W 

The X stage is initially located in A. This allows condition register flag values 
to be computed early in the pipe and thus reduces the penalty for mispre­
dicted branches. When an ALU operand is not available in the A stage, X 
moves to a later pipe stage. This can happen with operands such as SPRs 
that cannot be bypassed, but occurs most frequently when load data is used 
by the following instruction, as in this example: 

lwz 
add 

rl, (r2) 

r3, r2, rl 

D A 
D 

C M W 

A Cx M w 

The load instruction result is not available until the end of the C stage, and 
therefore cannot be used in the A stage of the add instruction. Instead, the 
ALU moves to the C stage of the add. If the load and use had been issued in 
the same cycle, the X stage would move to M. as shown in this pipeline dia­
gram: 

lwz 
add 

rl, ( r2) 

r3, r2, rl 

D A C M W 
D A C Mx W 

This example shows the effective load-use penalty of zero cycles. Once X 
has moved out to M, successive load-use pairings have no further effects. 
Consider this example: 

lwz rl, (r2) 

add r3, r2, rl 

lwz r4, 4Cr2) 

add r3, r4, r3 

BB 

D A C M W 
D A C Mx W 

D A C 
D A C 

M W 
Mx W 
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The X stage is also moved out to M on all accesses to SPRs located in the 

decode or branch units, including the link register, count register, and condi­
tion register. For the condition register, this occurs only for accesses with 

instructions such as mtcrf and mfcr, and does not occur for compare 

instructions or those that set CRO or CR1 because Re is set. For example: 

add rl, r2, r3 D Ax C M W 
rntl r r4 D A C Mx W 

addi rl, rl, 4 D A e Mx W 

After it has moved later in the pipe, the X stage remains where it is as long 
as instructions continue to use the ALU. At the first opportunity when the 

ALU is not being used, X returns to A. Compare the following two examples: 

li rO, 4 D Ax c M w 
lwz rl, (r2) D A c M w 
add rl. r2, rl D A ex M w 
subf r3, r3, rl D A ex M w 

and 

li rO, 4 D Ax c M w 
lwz rl. (r2) D A c M w 
add rl, r2, rl D A ex M w 
lw1 r3, 4(r2) D A c M w 
subf rl, r4, rl D Ax e M w 

In the second example, the second load instruction does not use the ALU, 
so the X stage can be moved back to A in time to execute the subtract 

instruction. (Assume that the lwz and subf instructions are not grouped 
because the instruction buffer was empty after the lwz was issued.) Notice 

that the ALU is used in consecutive cycles by the add and subf instructions; 

no ALU cycles are wasted. 

The rules for moving the X stage back to an earlier stage in the pipeline are: 

1. If the next group does not require the ALU and X is not already in A. 
move X back one pipe stage either from M to C or from C to A. If the 

next two flows do not require the ALU, X can move back from M to A in 

a single cycle. 

2. On a mispredicted branch, X moves back to A. 

INSTRUCTION EXECUTION 89 



The X stage is most likely to move back toward the A stage when the pipe­
line is empty because of a branch mispredict or an empty instruction 
decode buffer. 

The later in the pipe X is located, the longer it takes for results to be avail­
able to other execution units. For performance, the most important factor is 
the impact of the availability of flag results on the cost of branch mispre­
dicts, though the availability of ALU results for use as address generation 
operands is also important. If a branch is predicted correctly, there is no visi­
ble penalty even when X is all the way out in the M stage. For example, a 
correctly predicted compare and branch to a load instruction could look like 
this: 

emp 

beq 

lwz 

r 1, r2 

r3, ( r4) 

D A C Mx W 
D A C M W 

D A C M W 

There is always a penalty for mispredicted branches; the important factor is 
that the penalty increases by one cycle for each cycle it takes to discover 
that the branch was mispredicted, which occurs no earlier than the cycle 
after the flag value is computed. If the branch in the previous example had 
been predicted incorrectly, this sequence would incur the maximum five­
cycle branch mispredict penalty, as shown in the following pipeline diagram: 

emp r 1 , r 2 

bee 

<rnisprediet> 

lw1 r7, ( rB) 

D A C Mx W 
D A C M W 

D A C M W 

If the X stage of the compare instruction had been in the A stage, the pipe­
line diagram would have looked like this, and the mispredict penalty would 
have been only three cycles. 

emp r 1 , r2 D Ax c M w 
bee D A c M w 
<misprediet> 

lwz r7, ( r8) F D A c M w 

If the flag value had been known when the branch arrived in A, the mispre­
dict penalty would have been the minimum two cycles. 
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4.3 Branch Resolution 

A conditional branch is unresolved until the value of the condition register 

flag it depends on is known. Resolving a branch consists of determining the 

direction of the branch, determining whether the branch direction and 

branch target address were predicted correctly, and flushing the pipeline 

and redirecting the fetch unit if either was incorrectly predicted. Each pipe­
line stage can contain an unresolved branch in any position in the instruction 

group. Each unresolved branch in the pipeline can be predicted to be either 

taken or not taken. 

Unconditional branches must also be resolved. Even though the branch 
direction is known, the branch target address still needs verification. In this 

case, resolution need not wait for any particular flag to become available. 

If a flag has not been set in some time, a conditional branch depending on 

that flag can be resolved in the A stage. In other cases, including the com­
mon case where the branch immediately follows the instruction that modi­

fies the condition register. the branch can be resolved in the stage after the 

new flag value is computed. Only one branch, the oldest unresolved branch 

in the pipeline, can be resolved on each cycle. 

Most flags are set by arithmetic instructions, and their values are available in 

the cycle after the X stage. Condition register logical instructions are exe­

cuted 1n the branch unit and their results are not available until the W stage. 

The following example illustrates branch resolution: 

(I 2 3 4 5 6 

cmpwi crl. r3, 0 IJ Ax c M w 
lwz r2, C rl) [I A c M w 
cmpwi r2, 0 II c Mx w 
beq .+40 D II I M w 
bgt crl,.+20 D II c M w 

Even though the value of CR1 is known before the second branch enters A 

in cycle 3, that branch cannot be resolved until it is in W during cycle 6. This 

is because the value of CRO needed to resolve the first branch is not known 

until the end of cycle 4, preventing the first branch from being resolved until 

cycle 5; a later branch cannot be resolved before an earlier one. 

Conditional branches that decrement and test the count register can be pre­

dicted unless they are preceded by an explicit load of the count register. In 

that case, the conditional branch cannot be resolved until the cycle after the 

mtctr instruction reaches the W stage. 
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4.4 Instruction Grouping Rules 

The x704 is a superscalar processor. The decode unit can issue up to three 

instructions on each cycle, one to each of the following three pipelines: 

ALU/Float 

Load/Store 

Branch 

This pipeline executes all instructions that do not access memory and do 

not fall in the branch group. These are either integer arithmetic, logical, 

or shift operations, floating-point operations other than loads and stores. 

and some SPR accesses. 

This pipeline executes instructions that access memory, including cache 

operations, synchronization, and diagnostic accesses that go through the 

data cache {dcbz, eieio, diagnostic cache tag accesses, and so on). 

Most SPR accesses are handled by the load/store pipeline. 

This pipeline executes conditional and unconditional branches including 

rfi, sc, condition-register logical, and isync. These instructions have pri­

mary opcodes equal to Ob0100xx. 

The only instruction that can be the third in a group is a PC-relative branch. 

There are no other position restrictions. Floating-point and integer opera­

tions cannot be executed in a single group. The load/store with update 

instructions use both the load/store and the ALU pipelines, thus preventing 

an ALU or floating-point instruction from issuing in the same group. 

No instructions can be issued if the pipeline is stalled and there is at least 

one valid instruction in the A stage that cannot proceed down the pipe. In 

the absence of such a stall, the decode unit places instructions in the group 

to be issued until one of the following conditions occurs: 

1. The instruction decode buffer is empty. 

2. There are three instructions in the group being issued. 

3. There are two instructions in the group being issued, and the next 

instruction in the instruction decode buffer is not a PC-relative branch. 

4. The next instruction in the decode buffer uses the same pipeline as an 

instruction already in the group being issued. 

5. The next instruction in the decode buffer writes the same register as an 

instruction already in the group being issued. 

6. Either the next instruction in the decode buffer or an instruction placed 

in the issuing group is one of a class of instructions that must execute 

by itself. 
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This class comprises the dcbst, dcbtst, dcbz, sync, isync, tlbie, 
tlbsync, lmw. stmw, lswx, stswx, lswi, stswi, lwarx, stwcx., 
sc, rfi, mtcrf, mfcr, mfmsr, mtmsr. mftb, mtsr, mtsrin, mfsr, 
mfsrin, mcrxr. as well as mtspr and mfspr instructions that access 

privileged registers. 

mtspr and mfspr instructions referencing the LR, CTR, and XER regis­

ters execute as ALU instructions. All other mtspr and mfspr instruc­

tions execute in a group by themselves. 

7. The group being issued contains an mtspr instruction and the next 

instruction in the decode buffer is a conditional branch. 

8. The next instruction in the decode buffer is a floating-point divide, any 

floating-point instruction with the Re bit set, or a floating point status 
and control register instruction, and the group being issued is not 

empty. 

9. The integer pipeline is not empty and the next instruction in the decode 

buffer is an lswx or stswx. 

10. Tha group being issued contains an instruction and either branch tracing 
or single-step tracing is enabled (MSR[SEJ or MSR[BEJ are set). or the 
processor is in single-issue mode (MODES[SIJ is set}. 

11. The group being issued contains an instruction that takes an instruction 

storage interrupt, instruction fetch TLB miss interrupt, or instruction 

breakpoint trace interrupt or strobe pulse. 

Multi-flow instructions use one D stage for each flow. No other instructions 

issue during these additional D stages. The load and store multiple and 

move assist instructions are multi-flow; they have one flow for each register 
accessed. An lswx or stswx instruction with a length of zero requires one 

flow. Each memory reference in a misaligned multi-flow instruction incurs 

additional performance penalties as described in Section 4.8 on page 99. 

Only one instruction can be issued on the cycle following a mispredicted 
branch that occurred because of an invalid finder entry. Consider this pair of 

instructions issued in a single group: 

14 beq . +40 

54 add rO. rl, r2 

where the finder indicates that the branch is taken and that the add instruc­

tion is also a taken branch. The invalid finder entry causes a mispredict back 

to PC 14. When the branch instruction is reissued, a group break occurs 
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before the add instruction. This break is required because only one finder 
entry can be updated on each cycle, and both instructions require finder 
entry modification. This situation is rare, and this group break has a negligi­
ble performance impact. 

Because the fetch unit predicts branch target addresses and places instruc­
tions fetched from the branch target into the instruction buffer, there is no 
requirement that instructions executed in the same group be from sequen­
tial addresses. 

4.5 Fetch Stalls 

No instructions can be issued until they have been fetched into the proces­
sor. The fetch unit loads instructions into the instruction buffer unless any of 
the following conditions are present: 

1. The fetch buffer portion of the instruction buffer is not empty. 

2. The current fetch causes an ITLB miss. 

If the ITLB miss can be satisfied from the main TLB, there is a minimum 
four cycle penalty. If the miss cannot be satisfied from the main TLB 
and the processor attempts to issue the instruction at the offending 
address, a TLB miss interrupt occurs. 

3. The current fetch PC misses in the instruction cache. 

An instruction cache miss has a minimum penalty of four cycles if the 
level 2 cache speculative access succeeds. The minimum penalty is 
five cycles if there is no speculative access, or if the speculative access 
fails. 

4. The value in the appropriate register {CTR, LR, or SRRO) is not current, 

and a bcctr. bclr or rfi indirect branch instruction in the instruction 
buffer is predicted to be taken. 

In this case, the fetch unit stalls until the instruction buffer contains 
three or fewer instructions and all instructions in the pipeline or instruc­
tion buffer, if any, that could modify the register containing the target 
address have completed. 

5. An isync or rfi instruction is issued, the L2CTL register is written, or an 
interrupt is taken. 
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In this case, the fetch unit resumes fetching instructions when all cache 
operations, synchronization instructions, and diagnostic writes have 
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been removed from the store queue. Diagnostic writes include modifi­
cations to the TLB or to SPRs that affect the context in which instruc­
tions addresses are interpreted. This stall ensures that these events are 
context synchronizing. 

6. The instruction buffer has an associated four-entry queue that provides 
an entry for each instruction in the instruction buffer that is either 
marked as a branch in the finder or causes a trap known to the fetch 
unit. 

If this queue is full, an instruction requiring a queue entry cannot be put 
in the instruction buffer until the cycle after another entry is freed. 
Entries are removed from this queue when the associated instruction is 
issued. This queue rarely fills, and should not cause any performance 
degradation. 

4.6 Decode Stalls 

After the decode unit has determined how many instructions can be moved 
from the instruction buffer into the execution pipeline, it may discover that 
one or more of those instructions cannot be issued because of a resource 
conflict. Rather than attempt to determine if a smaller instruction group 
could be issued, the decode unit prevents the entire group from moving to 
the A stage. 

Any of the following events cause decode stalls: 

1. The instruction group contains a load or store with an address register 
operand that is being written by either a load instruction in the A stage 
or an ALU ir.struction that has not yet reached the X stage. This is 
known as an address generation dependency. For example: 

lwz 
lwz 

rl. (rO) 

r2, ( rl) 

0 A 

D D 
C M W 

D A C M W 

In this case, the second load instruction is delayed for two cycles: once 
by a group break because of a pipeline conflict with the previous 
instruction, and once by a stall because it may not reach the A stage 
until the result of the previous instruction can be bypassed from its C 
stage. 

Normally, the X stage occurs in A, so a sequence like the following does 
not cause an empty instruction group to be issued: 
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lwz rl, CrO) D A c M w 
add r3, rO, r7 D Ax c M w 
lwz r2, C r3) D A c M w 

If the X stage is farther out in the pipeline, multiple address generation 

stalls occur, as in the extra two-cycle delay in this example: 

lwz r 1 , C rO) D A c M w 
add r3. rO, rl D A c Mx w 
l wz r2, ( r3) D D D A c M w 

2. A group containing an indirect branch instruction (bcctr, bclr, or rfi) 

cannot be issued while any instruction that modifies the register hold­
ing the target address is in the pipe. This is apparent in a sequence like 
the following: 

mt l r rO D A C M W 
bl r D D D D D A C M W 

3. A group containing a floating-point instruction cannot be issued unless 

the ALU X stage is in the A stage. 

4. A group containing a floating-point instruction with the Re bit set or a 

floating point status and control register instruction cannot be issued 
while there is a floating-point divide instruction in the execution pipe­
line. 

5. A group containing a floating-point computational instruction cannot be 
issued while an instruction that sets FPSCR explicitly (mtfsf, mtfsfi, 
mtfsbO, and mtfsb 1) is in the pipeline but has not yet reached the W 
stage. This can cause a delay of as long as four cycles in issuing the 
next instruction. 

6. A group containing a floating-point instruction cannot be issued while 
there is a single-precision floating-point load of a denormalized value in 
the W stage, and any instruction using the load/store pipeline is in the 
M stage. 

7. No instructions can be issued while an stwcx. or sync instruction is 

waiting to complete in the W stage. See the entries for these instruc­
tions in Section 4.7 on page 97. 

As shown in Section 4.2 on page 88, the sliding X stage eliminates most 
group breaking because of read-after-write register dependencies; only 
address operand dependencies cause group breaks. In addition, an ALU 
instruction that writes CR and a condition-register logical instruction (for 
example, cror) can execute in the same group. 
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4. 7 Pipe Stalls 

Certain conditions cause an instruction to require multiple cycles in a single 
pipe stage, causing the pipeline to stall. When the pipeline stalls, instruc­

tions already in the pipe advance and instructions can be issued while there 
are empty stages behind the stalled instruction. 

The following conditions cause the pipeline to stall: 

1. A multi-step instruction uses multiple X stages. The various multiply and 

divide instructions are the only multi-step instructions. 

The mulhw and mulhwu instructions always take five steps and the 

mullwo instruction always takes six steps, but mullw and multi take 

between three and five steps depending on the number of leading 

zeroes in the (RB) operand to mullw or the sign-extended immediate 
operand of multi according to this table: 

Number of Leading Zeros Steps 

16 or more 3 

8 to 15 4 

fewer than 8 5 __J 

The divw and divwu instructions always take 37 steps. 

2. If the X stage is in M, tw and twi instructions stall in X for a single 
cycle. 

3. A load instruction in the C stage stalls for a single cycle if it addresses 
the same doubleword as a store in the M or VI.' stage, or if it addresses 

the same cache block being supplied from the level 2 cache to the data 

cache on that cycle. 

4. A load instruction in the C stage stalls while a store queue entry is being 
written to the data cache. A store instruction in the C stage stalls in this 

situation only if the store queue entry updates the data cache tags. 

This situation occurs when the store queue is full or when the hardware 
cannot determine whether it will become full. If the store queue were 
not full, advancing the pipeline would take precedence over writing a 

store queue entry to the data cache. This case is rare. 

5. A store instruction in either the C stage or the W stage stalls for a single 

cycle if it hits the cache block being supplied from the level 2 cache to 

the data cache on that cycle. 
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6. Load instructions that cause data cache misses stall in the M stage until 
the target word is accessible. The minimum data cache miss penalty is 
three cycles if the level 2 cache speculative access succeeds. The mini­
mum penalty is four cycles if there is no speculative access or if it fails. 

7. If the store queue is full, a store instruction in the W stage stalls until a 
store queue entry becomes available. 

8. A load or store instruction that uses the result of a misaligned load or 
load algebraic instruction as an address operand stalls in the A stage 
until that misaligned load or load algebraic instruction has exited the M 
stage. An ALU instruction that uses the result of a misaligned load or 
load algebraic instruction may also stall in X. See Section 4.8 on 
page 99. 

9. A caching inhibited or diagnostic load stalls in the M stage until the tar­
get data is returned. Caching inhibited loads must also wait for all cach­
ing inhibited stores to be drained from the store queue, and diagnostic 
loads other than data cache data accesses must wait for all diagnostic 
stores to be drained from the store queue. Diagnostic accesses include 
reads and writes of SPRs implemented in the load/store, level 2 cache, 
and fetch units. A list of those SPRs can be found in Table 2 on page 36. 

10. A dcbf, dcbi, or dcbz instruction in the M stage, W stage, or store 
queue stalls a subsequent load or store instruction to the same cache 
block index in the C stage until two cycles after the cache operation is 
removed from the store queue. Any load or store instruction in the C 
stage stalls for one cycle on the cycle after a dcbf, dcbi, or dcbz 
instruction is removed from the store queue. This stall also affects 
caching inhibited loads and stores. 

11. The sync instruction stalls in the W stage until the store queue is 
empty and the level 2 cache has no operations in progress. All instruc­
tions in the pipe behind the sync will be re-issued when the sync com­
pletes. 

12. The eieio instruction stalls in the W stage and holds subsequent 
load/store instructions in the C stage until the store queue is empty and 
the level 2 cache reports that all previous tlbie and tlbsync instruc­
tions have been broadcast on the bus. 

13. The lwarx and stwcx. instructions stall in the M stage until all 
branches ahead of them have been resolved and they are known to be 
on the execution path. 
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14. The stwcx. instruction stalls in the M stage until the store queue is 
empty. When the store queue is empty, the conditional store operation 
is sent to the level 2 cache and the instruction stalls until the level 2 
cache reports whether the store succeeded. 

15. Branches that are not the last instruction in their group stall in the M 
stage until they are resolved. 

16. The mfcr instruction stalls in the M stage for one cycle if the W stage is 
not empty. 

Stalls caused by store instructions in the W stage are visible to the rest of 
the pipeline only when there is another load/store instruction in M. In that 
case, it appears as though the load/store instruction in M is stalling. 

TLB misses are interrupts and do not cause pipe stalls. Pipeline stalls 
caused by floating-point instructions are covered in Section 4.9 on 
page 101. 

4.8 Penalties for Algebraic and Misaligned Loads and Stores 

Most load results can be bypassed from the cache output in the C stage 
directly to any stage that might need them. Some load instructions require 
extra processing that prevents this efficient bypassing. The load algebraic 
instructions require additional time to perfo;:ii sign extensions, and cannot 
bypass their results immediately. Some misaligned loads roquiro multiple 
accesses to the cache and must introduce pipe stalls. The following sec­
tions illustrate these penalties. 

4.8.1 Pipeline Diagrams for Algebraic Loads 

Load algebraic instructions access the cache as efficiently as other load 
instructions, but they cannot bypass their result from the C stage as other 
loads do. A subsequent instruction that uses the result of a load algebraic 
can stall, or the.ALU can move out to a later stage. There is no decrease in 
the bandwidth of these instructions, so if the following instructions do not 
use their results, no penalty is incurred. For example, 

lha rl, ( r2) D A c M w 
lwz r3. 4(r2) D A c M w 
lwz r4. 8( r2) D A c M w 
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Similarly, a sequence of Iha instructions executes with no stalls: 

lha rl, C r2) D A c M w 
l ha r3, 2(r2) D A c M w 
l ha r4, 4(r2) D A c M w 
l ha r5, 6(r2) D A c M w 

If an ALU instruction needs the result of an algebraic load, the X stage stalls 
for one cycle waiting for the result, as though it were a one-cycle cache 
miss penalty: 

l ha 

or 

add 

rl, ( r2) 

r3, r4, r5 

rl, rl, r2 

D A C M W 
D Ax C M W 

D A Cx Cx M W 

For a non-algebraic load, the result would have been available at the end of 
the C stage and could have been wrapped into the first C stage of the add_ 
The or instruction forces a pipeline conflict group break and also demon­
strates that two cycles of possible ALU usage were lost. If the result of an 
algebraic load is needed to generate an address for the following instruc­
tion, that instruction is held in A for an additional cycle: 

l ha 

lwz 
rl, ( r2) 

r4, ( rl) 

D A C M W 
D 8 A A C M W 

These examples demonstrate that algebraic loads have the same band­
width as other loads, but are encumbered by an additional cycle of latency. 

4.8.2 Pipeline Diagrams for Misaligned Loads 

The x704 executes most unaligned loads with no performance penalty. 
Unaligned loads that cross a doubleword (eight-byte) boundary require two 

instruction flows: one for each doubleword access to the data cache. This 
impacts performance. In this section, the term misaligned refers only to 
accesses that cross doubleword boundaries. 

In pipeline diagrams, misaligned loads are shown with two A stages. The 
additional A stage represents both the C stage of the first cache access 
flow and the A stage of the second one. This extra flow can be viewed as an 
A stage stall that reduces the bandwidth of misaligned loads to one every 
two cycles. A sequence of misaligned loads looks like this: 

100 

lwz 
lwz 
lwz 

r2, (rl) 

r3, 4(rl) 

r4, B(rl) 

D A A C M W 
D A A C M W 

D A A C M W 
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If an ALU instruction needs the result of a misaligned load, the X stage stalls 

for one cycle waiting for the result, as though it were a one-cycle cache 
miss penalty: 

l wz 

or 

add 

r2, ( rl) 

r3, r4, r5 

r2, r2, rl 

D A A C M W 

D Ax Ax C M W 

D A Cx Cx M W 

Again, the or instruction forces a group break for illustrative purposes only. 

If the load result is needed to generate an address for the following instruc­

tion, that instruction is held in A until the load result is available at the end of 
the M stage: 

l wz 

lwz 

r2, ( rl) 

r4, ( r2) 

D A A C M W 

DAAACMW 

4.8.3 Pipeline Diagram for Misaligned Stores 

Misaligned store instructions that cross a doubleword (eight-byte) boundary 

require two cache accesses and two A stages just as misaligned loads do. 

In addition, they require two M stages because the store data must be sup­

plied to the data cache for each write. This causes a delay of one cycle to 
the following instructions, requiring an extra cycle in the A stage to com­

plete their execution. The additional stalls reduce the bandwidth of mis­

aligned stores to one every three cycles. 

A pipeline diagram of a misaligned store followed by an aligned store and an 

unrelated ALU operation looks like this: 

stw rl, ( r2) 

stw r3, (r4) 

addi r5, r6, 4 

D A A C M M W 
D A A C 
D Ax Ax C 

M W 
M W 

4.9 Floating-Point Execution 

Unlike integer operations, all of the non-load/store floating-point instructions 
have multiple-cycle latencies. Portions of the floating-point unit are not pipe­

lined, preventing some floating-point operations from issuing on every 
cycle. The following table shows the bandwidth and latency for all of the 
floating-point instructions. 
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Table 9: Floating-Point Instruction Bandwidth and Latency 
--

Instruction Bandwidth Latency 

fabs 1 4 

fadd 1 4 

fadds 1 4 

tempo 1 41 

fcmpu 1 41 
-··-

fctiw 1 4 
. ------ ----- ----· 

fctiwz 1 4 
t--- ---- ·--

fdiv(typical) 34 35 
---- ··------ -- --1 

I fdiv(worst case) 14a2 141 
--· -- ----1 

fdivs (typical) 20 21 
-·- - ··--

fdivs (worst case) 662 67 

fmadd 2 5 

fmadds 1 4 
... -·--

fmr 1 4 

fmsub 2 5 

fmsubs 1 4 
---·- --

fmul 2 5 
-· 

fmuls 4 
·-----·--

fnabs 4 

fneg 4 

fnmadd 2 5 

fnmadds 1 4 

fnmsub 2 5 

fnmsubs 4 

frsp 4 

fsel 4 

fsub 4 

_J fsubs 4 

1. This is the latency until a branch depending on the resulting flags can be resolved. 

2. Worst-case divides arc those requiring the maximum normalization of an operand 
and the maximum dcnormalization of the result. 

The bandwidth column lists the minimum number of cycles between 
issues, where a value of one indicates that one instruction can issue every 
cycle. The latency column shows the number of cycles that must elapse 
before the result of the instruction can be used as an input to another 
floating-point instruction. 
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4.9.1 Floating-Point Computational Instructions 

The floating-point execution pipeline has four execution stages, called F1, 
F2, F3, and F4, in addition to the normal decode and writeback stages. The 
W stage of a floating-point operation normally occurs one cycle after the W 
stage of load/store or branch instructions issued in the same group. The 
latency of floating-point instructions is shown in this pipeline diagram: 

fadd frl, fr2. fr3 D Fl F2 F3 F4 W 

fmu 1 fr4, frl, fr5 D Fl Fl F2 F3 F4 W 

The extra cycle of latency on double-precision multiplies is manifested by an 
additional F1 stage. This double use of a pipe stage means that double-pre­
cision multiply and multiply-add operations can be issued only every other 
cycle, as shown in this diagram: 

fmul 

fmul 

fadd 

frl' fr2. fr3 

fr4, fr5, fr6 

fr7, frB, fr9 

D Fl Fl 

D 

F2 F3 F4 W 

Fl Fl F2 F3 

D Fl F2 

F4 W 

F3 F4 W 

The fadd instruction in this diagram shows that any floating-point instruc­
tion following an instruction with a two-cycle bandwidth is delayed. 

The result of a floating-point divide instruction cannot be bypassed when 
used as an operand to a following instruction; it must be written into the 
floating-point register file and then read out. Thus, tho latency of the float­
ing-point divider is one cycle longer than the issue rate. When all floating­
point exceptions are disabled, the Re bit in a divide instruction is clear, and 
the MODES[POE] bit is set, the divider operates asynchronously. In this 
case, a subsequent floating-point instruction can be delayed by one cycle to 
allow the divider to write a result into the register file. When the divider is 
operating synchronously, the entire pipeline stalls waiting for the divide 
result. In this case, the latency and issue bandwidth are identical. 

4.9.2 Floating-Point Compare Instructions 

A branch instruction that depends on a condition register field set by a float­
ing-point instruction cannot be resolved until the W stage of the instruction 
that sets CR. A mispredicted branch in a group with a floating-point com­
pare incurs a six-cycle penalty, as shown in the following pipeline diagram: 

fempu fr4,fr5 D Fl F2 F3 F4 w 
bee erl D A c M M w 
<misprediet> 

add rl, r2. r3 F D A C M W 
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4.9.3 Floating-Point Load and Store Instructions 

Floating-point load instructions have an extra cycle of load-use penalty when 
compared to fixed-point loads. In addition, there is no equivalent of the slid­
ing X stage to absorb some of the load-use penalty. The load-use relation­
ship is shown in this pipeline diagram: 

lfd frO, (r4) D A C M W 

fadd frO, frl, fr2 D Fl F2 F3 F4 W 

Single-precision floating-point loads of denormalized data incur an additional 
penalty of up to 23 cycles while they are converted to the double-precision 
format used in the floating-point register file. The normalization occurs in 
the W stage and stalls the entire pipeline. A single-precision floating-point 

load of the value zero requires one extra cycle of latency because the result 
cannot be bypassed until the processor can determine that zero is not a 
denormalized value. This extra latency does not affect the one issue per 

cycle bandwidth of floating point loads. 

Floating-point store data must come directly from the floating-point register 
file; neither load data nor computational results can be bypassed. The result­
store relationship is shown in this pipeline diagram: 

fadd frO, frl. fr2 D Fl F2 F3 F4 W 

stfd frO,(rl) D A C C C C M W 

The result is read from the register file in the last C stage of the store, one 
cycle after it was written by the fadd instruction. If the result had come 
from a load of a denormalized single-precision value, the pipeline diagram 
would look like this (the lowercase w pipe stage represents a shift of a sin­
gle bit of a normalization): 

lfs frO, (rl) 

stfd frO, (r2) 

D A C 

D A 
M w w w 
c c c c 

w 
c c M W 

Single-precision floating-point stores of denormalized values are performed 
without any performance penalty. 

4.9.4 Floating Point Exceptions and Condition Register Updates 

When inexact, underflow, and overflow exceptions are enabled, an instruc­
tion group containing a floating-point computational instruction stalls in the 
M stage until the floating-point unit can determine whether an exception 
has occurred. An instruction group containing a floating-point computational 
instruction with the Re bit set also stalls. 
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4.9.5 Floating-Point and Integer Pipeline Synchronization 

The floating-point and integer pipelines are not tightly coupled; floating-point 

and load/store or branch instructions that issue in the same group do not 

necessarily proceed down the pipeline together. Table 10 shows the valid 

alignments of the two pipelines. 

Table 10: Floating-Point and Integer Pipeline Alignments 

D F1 F2 F3 F4 FW 

D • ______ ,_ 

A 

c • 
M • 
w • • 

r· 
• • 

This loose coupling allows one pipeline to proceed while the other is stalled. 

In the absence of stalls, paired instructions proceed on the diagonal path 
from D/D through NF1, C/F2, M/F3, and W/F4; floating-point instructions 

continue on to the floating-point write (FW) stage, which is one cycle after 

the W stage for a fixed-point instruction. If any floating-point exceptions are 

enabled and there is a possibility that the floating-point instruction may take 

an exception, or if a floating-point instruction updates CR because the Re bit 
is set, the group must pass through the M/F4 point to coordinate exception 

processing and condition register updates. This will always cause the inte­

ger pipe to stall for at least one cycle. Condition register updates resulting 

from floating-pqint compare instructions can be handled at the M/F3 point 

and do not cause a stall. 
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4.9.6 Optimizing Floating-Point Performance 

To obtain the best floating-point performance on the x704. follow these 
guidelines: 

• Disable all exceptions by clearing the five exception enable bits in the 
FPSCR. 

• Do not set the Re bit in any floating-point instructions. 

• Explicit reads and writes of FPSCR with the floating-point status and 
control register instructions should be used sparingly. 

• If programs are expected to generate denormalized numbers, they 
should be run in non-IEEE mode by setting FPSCR[NIJ. 

• In floating-point code, fixed-point instructions should be scheduled so 
that the ALU X stage remains in the A stage. In particular, fixed-point 
loads should be separated from uses by two cycles. 

• Instructions should be scheduled so that floating-point instructions do 
not immediately follow double-precision floating-point multiply or multi­
ply-add instructions. 
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5. Signal Descriptions 

The X704 supports the Basic Transport Protocol described in the PowerPC 
60x Microprocessor Interface Specification. The x704 does not support the 
Extended Transfer Protocol described in that document. The 60x bus pro­
vides a 64-bit data bus and a separate 32-bit address bus, each with byte 
parity. The following sections describe the x704 processor interface in more 
detail. 

5.1 Bus Interface Signals 

Figure 24 illustrates the x704 bus interface signals grouped according to 
their functions. All interface signals except the clocks and those listed as 
configuration and test are described in the PowerPC 60x Microprocessor 
Interface Specification. The x704 does not support the XATS extended 
address transfer start pin, the SMI interrupt pin, and the CKSTP _IN and 
CKSTP _OUT check stop pins described in that specification. 
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Figure 24: x704 Bus Interface Signals 
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5.2 Signal Descriptions 

The following table describes the x704 processor-dependent bus interface 
signals. 

Table 11: Processor-Dependent Signal Descriptions 

Signal Name 

STROBE 
Breakpoint 
strobe 

PLL_CFG 
PLL and 
clock 
configuration 

PLL_BYPASS 
PLL disable 

CIOCK 
System clock 

CLK_CTL 
Clock control 

CLK_OUT 
PLL test 
clockout 

SCAN_EN 
Scan enable 

Pins Active 

N/A 

5 high 

high 

high 

high 

SIGNAL DESCRIPTIONS 

1/0 State Meaning Timing Commen-ts ___ 1 

0 Asserted/Negated- Asserted/Negated-
when breakpoint strobes pulsed tor one bus clock 
are used, this pin indicates within three bus clocks 
breakpoint hits. The signal alter the breakpoint is trig-
is either asserted or gered. I 

depending on the value of 
the l1CTL SB bit 

negated on a breakpoint ~ 

--A-s-se_rt_e_d/_N_e-ga-t-ed_-;; __ o_n----Th-e-se~pinsmaybe 

figures the ratio between changed only while the I 

0 

processor and bus clocks. HRESET input is asserted. 
See Section 5.2.1 on · 
page 111 tor more intor- \ 
mation. ----1 

Asserted-disables the 
PLL and causes the CLOCK 
input to be passed directly 
to the internal clock signal. 

Standard input clock sent 
to the PLL 

Selocts tlu: internal clock 
tree source among tile 
internal clock signal, TCK, 
and a speed test clock. 
See Section 5.2.1 on 
page 111 tor more infor­
mation. 

This pin is a 50% duty 
cycle clock that runs at 
hall the frequency of the 
internal system bus clock 
PLL output. It is intended 
to be used as a heartbeat 
test 

Asserted-enables scan 
mode on all scan nab le ftip­
tlops and disables all inter­
nal RAM write enables. 
Negated-All flip-flops 
and RAM write enables 
are in the normal operat­
ing mode. 

These pins can be r.lianged ,
1
. 

only while the Hf1lSET 
input is asserted 

Srrn Ser:lrnn :,I 1 on 
page 111 for more infor 
mation on this signal. 

See Section 7.2 on 
page 119 tor more infor­
mation on this signal. 
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Table 11: Processor-Dependent Signal Descriptions 

Signal Name Pins Active 1/0 State Meaning liming Comments 

SCAN_SER high Asserted-all scan ele- See Section 7.2 on 
scan serial ments are configured as a page 119 for more infer-
mode single scan chain. mation on this signal. 

Negated-the scan ele- I 
ments are configured as j multiple parallel scan 
chains. 

HOT high 0 Asserted-the die tern- See Section 5.2.3 on I perature has exceeded page 113 for more infor-
the maximum operating mation on this signal. I 

temperature. If the 
OTMP _DIS pin is not 
asserted, the processor 
has shut down. 
Negated-the die temper-
ature is below the maxi-
mum operating 
temperature. 

~··· -
WARM high 0 Asserted-the die tern- See Section 5.2.3 on 

perature is near the top of page 113 for more inf or-
the operating range. mation on this signal 
Negated-the die temper-
ature is below the top of 
the operating range. 

-I 
TEMP_OUT 2 analog 0 The voltage across these 

two pins is a measure-
ment of the die tempera-
ture. Bit 1 of this signal is 
a ground reference for bit 
0. 

·-----j 

OTMP_DIS high Asserted-the processor See Section 5.2.3 on 
will continue operating page 113 for more infer-
when the maximum aper- mation on this signal. 
ating temperature is 
exceeded. 
Negated-the processor 
will shut down when its 

-1 maximum operating tern-
perature is exceeded. 

PHEAT_DIS high Asserted-the processor See Section 5.2.3 on 
will process reset inter- page 113 for more infer-
rupts as soon as they are mation on this signal. 
detected. 
Negated-the processor 
will hold reset interrupts 
pending until the die tern-
perature is above a mini-
mum threshold. 
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Table 11: Processor-Dependent Signal Descriptions 

Signal Name Pins Active 1/0 State Meaning Timing Comments 

TRST_ low Asserted-resets the This signal must be held 
JTAG JTAG TAP controller. asserted during normal 
test reset chip operation. 

This signal must be 
asserted synchronously 
with TCK. 

TCK JTAG scan and test clock 
JTAG 
test clock I 
TMS high Asserted/Negated- l JTAG causes the TAP controller 
test mode to change states as 

I select defined in the JTAG speci-
fication. 

I 
-·-~--

TOI high Asserted/Negated-car-
JTAG ries the serial data input to 
test data in the TAP controller. 

-----

~o 
high 0 Asserted/Negated-tar-

AG ries the serial data output 
t data out from the TAP controller. 

5.2.1 Clock and Phase-Locked Loop Signals 

The x704 receives an external system clock on the CLOCK input pin. The 

system clock frequency must be between 40 MHz and 100 Ml 11. 

The x704 contains a phase-locked loop (PLL) referenced to tho oxtornal sys­

tem clock that generates the internal processor and bus clocks. Tho intornal 

processor clock frequency is an integral multiple of the system clock fre­

quency and can range from 350MHz to 650MHz in normal system opera­

tion. The internal bus clock is a copy of the system clock output by the 

PLL for use on-chip. 

The internal processor clock to system clock ratio configuration information 

is encoded in the 5-bit PLL_CFG input The values 1, 2, and 17 through 31 
are reserved and may not be used. In all other cases, the system bus clock 

frequency is multiplied by one more than the value of this field to produce 

the processor clock frequency_ For example, a value of 5 in· PLL_CFG 

denotes a processor clock to bus clock ratio of 6: 1 . 

Representative settings of PLL_CFG for typical system and processor clock 

rates are shown in Table 12_ 
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Table 12: Typical PLL_CFG Settings 

System Clock (MHz) Processor Clock (MHz) PLL_CFG Value 

40 400 01001 

50 500 01001 

50 600 01011 

60 420 00110 

60 600 01001 

66.7 400 00101 

66.7 600 01000 
·-,-

80 400 00100 
- --

80 640 00111 
--

100 400 00011 

100 600 00101 
--

100 700 00110 
-

The use of a bus clock to processor clock ratio of 1 :1 is allowed only for chip 
testing; the bus interface is not logically functional in this configuration. 

If the PLL_BYPASS input pin is asserted, the PLL is disabled and the system 
clock input is passed directly to the internal processor clock distribution 
tree. The PLL configuration inputs are still used to create an internal bus 
clock, but system logic that requires a functional bus must include a clock 
divider to create an external bus clock that matches the internal one. Use 
PLL bypass mode for chip testing only. 

The two-bit CLK_CTL signal selects alternate clock sources during test and 
scan operations. This signal is encoded as shown in the following table: 

Table 13: CLK_CTL Settings 

CLK_CTL Clock distributed throughout chip 

00 TCK. speed-test trigger enabled 
t-----

01 scan speed test(See Section 7.3 on page 120) 
t---

10 PLL output or PLL bypass 
t---

11 TCK 
'-----------

In normal operation, CLK_CTL is set to 10. During scan testing, it is set to 
11 to distribute the TCK JTAG test clock pin. When CLK_CTL is set to 00, 
the scan speed testing trigger is enabled. In this state, when a rising edge is 
detected on CLK_CTL(1) the internal clock is switched from TCK to the PLL 
output (or PLL bypass) clock for two internal clock cycles. The CLK_CTL(1) 
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edge is sampled on the rising edge of the CLOCK input. During scan speed 
testing, CLK_CTL(1) should be asserted for at least two external clock 

cycles. See Section 7 .3 on page 120 for more information on scan speed 
testing. 

5.2.2 Test Signals 

The x704 provides the five interface signals needed to implement the IEEE 

1149.1 JTAG standard. That standard should be consulted for information 
on the JTAG protocol. The X704 deviates from the standard by requiring the 

optional TRST test reset pin to be asserted synchronously with the TCK test 
clock. 

The CLK_OUT pin provides a basic check of chip functionality. This pin out­

puts a 50% duty cycle clock running at half the frequency of the internal bus 

clock signal generated by the PLL. The PLL generates a bus clock even 
when PLL_BYPASS is asserted. 

The SCAN_EN and SCAN_SER signals support manipulation of the internal 

scan chains. Use of these signals is described in Section 7.2 on page 119. 

The STROBE pin indicates that instruction or data breakpoints have been 
triggered. This pin is intended to be used as a trigger for a logic analyzer. For 

more information on breakpoints, see Section 2.3.4.5 on page 41. 

5.2.3 Thermal Monitoring and Control Signals 

The x704 contains an internal temperature sensor unit that constantly moni­

tors the internal die temperature. This unit supplies an analog output repre­

senting the current temperature and two digital outputs indicating whether 
the die temperature has exceeded either a warm or hot threshold. The hot 

threshold represents the maximum operating temperature of the part, and 

the warm threshold is set approximately 10° C below that point. 

In order to prevent physical damage to the processor, the temperature 
sensor unit turns off the voltage reference generators when the hot 

threshold is exceeded, effectively cutting power to the chip and causing it 

to cease operating. This automatic cutoff can be disabled by asserting the 

OTMP _DIS input pin. Assertion of this pin is not recommended for other 

than testing purposes. Once an over-temperature shutdown has occurred, 
the processor cannot be restarted until the temperature drops below the 

warm threshold and either the HR ES ET or SRESET pin is asserted. 
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The WARM output is intended to be used by systems that can provide addi­
tional cooling capacity in high temperature situations, or as an indication to 
the system that an over-temperature shutdown may occur. 

The digital threshold indications are provided to external system hardware 
on the WARM and HOT output pins and to system software as the WT and 
HT bits in the CHECK register. 

The temperature sensor provides a preheat period before processing a 
reset interrupt. At lower temperatures, the processor requires higher volt­
ages. By delaying a reset interrupt until the processor has reached a mini­
mum operating temperature, a lower voltage can be used, reducing the 
amount of power dissipated by the processor. The preheat delay can be 
suppressed by asserting the PH EAT _DIS input pin. 

The exact values of the preheat, warm, and hot temperature thresholds, the 
correlation between the TEMP _OUT analog outputs and die temperature, 
power dissipation, and the processor's voltage requirements will be sup­
plied in a later version of this document. 
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6. Processor Interface 

The x704 processor uses the standard PowerPC 60x processor interface 
standard. This standard contains several features that are implementation 
dependent. This section contains a summary of ways that the x704 interface 
may differ from other PowerPC processor interfaces, 

• The X704 supports the read with no intent to cache (RWNITC), lwarx 
reservation set, ICBI, TLB invalidate, TLBSYNC, and EIEIO bus opera­
tions. 

• The X704 does not support the external control word read and external 
control word write bus operations produced by the ECIWX and ECOWX 
instructions. 

• The x704 does not support the extended transfer protocol (PIO). 

• The X704 does not provide any power management signals, the SMI_ 
signal, or any checkstop signals. 

• The x704•s 8-way set-associative level 2 cache requires three cache set 
element (CSE) output signals. 

• The x704 supports the multiprocessing features of the interface defini­
tion including the SHD_ signal, reservation cancellation on snooped read 
with intent to modify (RWITM) operations, and the suppression of 
snoops for transactions that do not assert the GBL_ signal. 

• The x704 supports non-cacheable and write through dcbz operations. 

• The x704 supports write through write atomic transactions. 

• The x704 does not support a timebase enable input signal; the timebase 
is enabled by a field in the MODES register. 

The following sections elaborate on the x704 bus interface implementation. 
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6. 1 Address Bus 

In order to maximize available address bus bandwidth, the x704 always 
asserts TS coincidentally with ABB and deasserts ABB on the cycle following 

AACK. 

Address and data parity errors detected by the x704 cause APE or DPE to be 
asserted even if the CHECK.BP bus parity machine check enable bit is clear. 

The x704 will neither generate nor snoop the external control word read or 
external control word write TT encodings. The x704 does not generate the 
read with no intent to cache (RWNITC) TT encoding, but it will snoop global 

transactions of that type. When an RWNITC snoop is received, the ARTRY 
and SHD pins are asserted if necessary, and the cache state is changed to 

exclusive as for a clean bus operation. 

6.2 Data Bus 

On burst reads, the x704 can present any doubleword-aligned address in the 
block and expects to receive the addressed doubleword of data first, followed 
by the remaining doublewords in increasing address order, wrapping back to 
the beginning of the block if required. On burst writes, the x704 always trans­
fers data beginning at the start (lowest address) of the block. 

6.3 Coherency Protocol 

On cycles where it is not driving the bus, the x704 snoops all bus transactions 
where the GBL signal is asserted. The x704 never snoops its own transactions 
or asserts ARTRY in response to its own transactions. 

The ARTRY signal is asserted in response to the following conditions: 

• A snoop hits a modified block, causing that block to be written back to 
memory. 

• A snoop that might require a writeback arrives while an earlier snoop 
writeback is in progress. This snoop is retried even if no writeback is 
required. 

• A bus SYNC operation arrives when a snoop writeback is in progress. 

• A bus TLBSYNC operation arrives while the x704 has a pending operation 
based on a TLB translation that occurred before the most recent snooped 
TLB invalidation. 

• A bus TLBIE operation arrives while the MSR[TW] bit is asserted. 

• Resource contention prevented a snoop operation from accessing the 
cache tags in time to determine how to assert ARTRY and SHD accurately. 
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6.4 Features for Improved Bus Performance 

The x704 implements the following performance-enhancing bus protocol 

extensions allowed by the bus specification: 

• Optional disabling of the DRTRY signal, decreasing the minimum read 
latency by one cycle. 

• Optional data-streaming mode, increasing the maximum bandwidth. 

• Optional elimination of the ABB and DBB signals. 

The DRTRY signal allows external cache and memory controllers to cancel a 

data transfer after it has already been sent to the processor. The processor 
must buffer data for a cycle to prevent it from being used before a transfer 

is canceled. This buffering adds a cycle to the read latency. Disabling the 

DRTRY signal eliminates this cycle of latency. There is a performance cost, 

however. In this mode, the earliest data transfer cannot occur until the first 
cycle of the ARTRY window, and not on the cycle before that as it can using 
the standard protocol. 

Data streaming allows consecutive burst reads to appear on the bus with­

out an intervening dead cycle. Do not use this feature unless DBB is dis­
abled and the system arbitration logic asserts DBG for only the single cycle 
before a data transfer must start on the bus. 

The DRTRY feature is disabled and data streaming is enabled when DITTRY 
is asserted along with HRESET 1n tho hardware reset interval. 

x704 processors recognize address tenures by tracking the TS and AACK 

signals and do not depend on ABB assertions. Assertions of ABB are 
always recognized and prevent a X704 from using a bus grant. Tho x704 will 

drive ABB during its address tenures. 

The X704 does not require the DBB input if the system guarantees that DBG 

will only be asserted for the one cycle before its data tenure should start. 

DBB assertions are always recognized and prevent a x704 from using a data 

bus grant. 
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7. Test Interface 

This chapter briefly describes the X704 's test interface. 

7. 1 JTAG Interface 

The x704 supports an IEEE 1149.1 ~compliant JTAG TAP interface that can be 
used to perform board-level testing. The TAP controller supports the JTAG 

boundary scan SAMPLE/PRELOAD, EXTEST, INTEST, and BYPASS instruc­
tions. The JTAG ID register is not supported. All x704 1/0 pins except 
CLOCK, CLK_OUT, SCAN_EN, SCAN_SER, and the five JTAG interface sig­
nals appear on the boundary scan chain. 

The TAP controller is not used to access the internal scan chains described 
in the next section. 

7 .2 Scan Chains 

The x704 supports a single serial scan chain that includes every flip flop in 

the design. This scan chain can also be configured as 32 separate scan 
chains that can be accessed in parallel. The serial scan mode is intended for 
functional debug of prototype systems, while the parallel scan interface can 
be used for both functional debug and for manufacturing testing where high 

bandwidth scan is required. 

The scan interface is driven entirely from input pins and does not use the 
JTAG TAP controller. It does make use of the TCK test clock and the TDI and 
TDO scan data input and output pins. To enable scan, the test device should 
assert SCAN_EN to place all internal flip flops in the scan configuration. 
Asserting the SCAN_EN pin also disables the write enables on all of the 

internal RAMs. 
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The SCAN_SER pin selects between the serial and parallel scan interfaces. 
When this pin is asserted, the flip flops are treated as one long scan chain 
with an input on the TOI pin and an output on the TOO pin. When 
SCAN_SER is not asserted, the flip flops are treated as 32 scan chains with 
inputs on one set of 0 bus data pins and outputs on another set of D bus 
data pins. 

Two clocking mechanisms can be used during scan. If the PLL is in bypass 
mode, the CLK_CTL input can be set to 10 to use the CLOCK input pin to 
clock the scan chain. Alternatively, CLK_CTL can be set to 11 to select TCK 
as the source of the scan clock. In this case, the scan interface can be used 
while the PLL is running and synchronized to the CLOCK input. 

7 .3 At-Speed Testing 

Because the x704 runs at internal clock rates greater than the speed at 
which a tester can supply vectors to the pins, some method other then sim­
ple external test vectors must be used to do speed fault grading. In order to 
meet this requirement, the x704 provides a special speed test feature. With 
the PLL running (PLL_BYPASS deasserted), the CLK_CTL input can be set 
to 00 to select the TCK clock and enable the scan speed test trigger. 

After loading a test vector while TCK is selected as the clock, the tester 
clears SCAN_EN and sets CLK_CTL to 01 for at least two cycles of the 
CLOCK input, restoring the 00 value after that time. This causes the internal 
clock distribution logic to switch to the PLL output clock for two internal 
clocks, effectively running one processor clock cycle at the internal proces­
sor clock rate rather than the tester clock rate. The scan chain can then be 
scanned out of the chip by asserting SCAN_EN and clocking TCK to see if 
any faults occurred at speed. 
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8. Package Description 

Part A 
Part A shows the pinout of the Pl package as viewed from the bottom surface. 

ABC DEF G HJ KL MN PR TU VW 

19 0000000000000000000 
18 00000000000000/0 000 
17 o o o o o o O o o o o o QO o Q o O 
1 B o o o o o o o o o o o 96 o,~:9~'2 o 
15 OOOOOOOOOOOOO~]l~QeJO · 
14 oooooooooooo~_o,0tsooo 

13 o o o o o o o o .. ·· o o o.~.············ ... ~.::::.·.·~:0.o. /eio o 
12 0 0 0 0 0 0 0 0/0 c > CJ ~\O 0 0 0 0 0 
11 o o o o o o q/6 o o o\;~fd 00 o o o o 
10 O O 0 0 0 00 0 O'() 00 0 0 O 0 O 0 O 

09 o o o o ... ·· 06 o ~~~<l>o.o o o o o o o o 
00 000000 .. ~~c)ooooooooo 

01 o. o 9/·o·····o~ .. // ~v)) . . ·o,c:Jo o o o o o o o 
06 0 0 O 00; 0)0 0}3 0 0 O 0 O O 0 0 0 
o 5 QO 0 c.40~7 0 C) 0 0 0 0 0 0 0 0 0 0 
04 dQ c,(0'&o o,cj o o o o o o o o o o o 
o 3 o o o'<:) o o/c5 o o o o o o o o o o o o 
02 0 0 0 00 0 0 0 0 0 0 0 0 () 0 0 0 0 
01 0 00000000000000000 

NOTTO SCALE 

PartB 
Part B shows the side profile of the Pl package to indicate the direction of the 
bottom surface view. 

• VIEW 

Figure 25: Pinout Diagram for the X704 Package 
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Table 14: Pinout Listing for the X784 Package 

Signal Name Pin Number 

AO-A31 L01, M01, M03, K02, L02, L03, K01, N01, J01, H02, K03, J03, N02, G02, J02, 
M02, G03, F01, H03, E01, 002, F02, H01, F03, G01, E02, 001, E03, C01, C02, 
003, C03 

f-=· 
AACK COB 

---- , ___ -------
ABB V03 

---- -------------
APO-AP3 W04, V04, T09, T01 

- --------

APE VOS 
------

ARTRY W08 _ _," ____ 
---

BG A07 

BR U09 
-----

Cl W06 
I---- ---

CLK_CTLO-CLK_CTL 1 B16,A17 
--- -I 

CLK_OUT W03 
I---- ---

CLOCK C09 
f--- ---

l_CSE~S~ U06, P03, U01 
--- ---1 

DBB W07 
- --------1 

DBOIS A16 
----I 

DBG A06 
--- ----j 

DBWO A05 
--- --------1 

DHO-DH31 U13, W14, V12, V16, W15, U15, R17, U16, V15, T17, U12, W17, R18, T18, M17, 
V17, V18, U17, P18, N18. P17, N19,U18, N17, T19, M1B, K17, l18, L17, R19. 
R01, J17 

-- -- --- --j 

DIODE A BOB 
c------= - --

DIODE_C B07 
--- ----j 

DLO-DL31 K18, P19. K19, L 19, M19, J19, J18, H18, G18, G19, F18. F19, F17, 019, C18, C19, 

I T11. P02, U11, P01, V10, U14, VOS. U08, V07. G17, 018, 017, E19, E17, E18, C17 
---- --I DPO-DP7 V14, W16, V11, U19, H17, H19, U07, U10 

OPE W10 
f-- ·=.:.:c.__ -- -----

DRTRY B04 

GBL N03 
---

HOT C04 

HRESET C11 

INT B09 

MCP A04 
---------- -

Not Connected A01, A18, B03, B17, B18, B19, COS, C14, C15, C16, T07, T13, V01, V19, W02, 
W18 

I OTMP_DIS A09 
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Table 14: Pinout Listing for the X764 Package (Cont.) 

Signal Name 

PHEAT_DIS 

PLL_BYPASS 

PLL_CFGO-PLL_CFG4 

RSRV 

SCAN_ EN 

SCAN_SER 

SHD 

SR ES ET 

STROBE 

TA 

TBST 

TCO-TC2 

TCK 

TOI 

TOO 

TEA 

TEMP_OUT 
r----. 

TMS 
I-= ·-

, TRST 
f-=· 

TS 
I-· 

TSIZO· lSl/2 
I-

n 
!------ ---· 

Ve 

--· 

Vdd 

VGc 

VGf 

Vrd 

Vrn 

Vrp 

Vss 

WARM 

WT 

Pin Number l 
B05 

C12 

B14, COS, B11, A10, C07 
I T03 

A12 

. ······~ A11 

W09 
-~! 

B15 

U05 

ADS 

V13 

T10, W12, U04 _., __ 

C10 

BOB 

R03 

A03 

A14, C13 

810 

A13 

W05 

V02, U03, I 0/ 

W11, W13, VOb, V06, UO/ 

008, 011, E07, E10. E13, F09, F12, GOB, G11, HO/, 1110. 1113, ,JOii. JO!J, J12, 
K11, K14, L07, L10, L13, M09, M12, NOB, N11, P07, P10, P13, H09. Ill?, TOB 

-----
005, 014, 016, E04, E06, E15, F05, F14, F16, G04, G06, G15, H05, H14, 1116, 1 
J04, J15, K05, K16, L04, L15, M05, M14, M16, N04, N06, N15, P05, P14, P1 6, I 

R04, R06, R15, T05, T14, T16 
~- .. 

009, 012, EOB, E11, F07, F10, F13, G09, G12, HOB, H11, J07, J10, J13, K06, K09, 
2 K12, LOB, L11, L14, M07, M10, M13, N09, N12, POB, P11, R07, R10, R13, T1 

007, 010, 013, E09, E12, FOB, F11, G07, G10, G13, HOS, H12, JOB, J11, J14, 
K07, K10, K13, L06, LOS, L12, MOB, M11, N07, N10, N13, P09, P12, ROB, R1 

812 _,,_ ·--

813 

A15 

004, 006, 015, E05, E14, E16, F04, F06, F15, G05, G14, G16, H04, H06, H15, 
J05, J16, K04, K15, L05, L16, M04, M06, M15, N05, N14, N16, P04, P06, P1 5, 
R05, R14, R16,T04, T06, T15 

802 
--- -

ROZ 
·-- ----
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X704 Package Structure 

ci 

________ , 45sq 

Note: All values are mm. All dimensions are nominal ± 10% tolerance. 
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Appendix A. Sample TLB Interrupt Handlers 

This appendix contains sample handlers for the TLB miss and TLB store 
interrupts. These examples demonstrate the use of the x704·s TLB miss 
SPRs and were written with more attention to clarity than to performance. 

The TLB miss handler performs the following steps: 

1. Saves some general registers and the counter register. 

2. Initializes the PTE search from the CMP and HASH1 registers. 

3. Searches both possible PTEG groups for the requested translation. 

4. Uses the TLBLRUO and TLBLRU1 registers to write the new translation 
into the TLB if the matching PTE is found. 

5. Converts the TLB miss interrupt into the proper instruction storage or 
data storage interrupt if the matching PTE is not found. 

The TLB miss hancJlr•r is called on both instruction and data TLB 
misses. The hardw<JT·r· writes MAR and Ml'>ii and saves CRO in the 
upper bits of SRRl. lhc handler use~ r!4 11 and the counter 
register after saving them using infon11<11 ion in SPRGs 4 and 5. 

TLBMISS: hancJ l 1·r· at OxlOOO 
mtsprg 5. r29 save r29 in SPRG5 
mfsprg r29, 4 use r·?9 as pointer to save area 
stmw r30, 0(r29) sa vr· r30 and r31 in save area 
mfctr r30 Sa VC' counter register 
stw r30, 8(r29) in save area 

The magic CMP and HASHl registers use the miss address saved in 
MAR.the value in SDRl, and the contents of the segment register 
indexed by the upper four bits of the address in MAR. 

mfspr 
mfspr 

r30, cmp 
r31, hashl 

SAMPLE TLB INTERRUPT HANDLERS 

upper half of desired PTE in r30 
addr of primary PTEG in r31 
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TLB_MISS_PTEG_SEARCH: 
1 i 
mt ctr 

TLB_MISS 
lwz 
cmplw 
beq 

addi 
bdnz 

andi. 
bne 
mfspr 
ori 

r29, 8 

r29 

LOOP: 
r29, 0(r31) 
r29, r30 
WRITE_TLB 

r31, r31. 8 
TLB MISS_LOOP 

r29, r30, Ox40 
TLB_FAUL T 
r31, hash2 
r30. r30. Ox40 

loop over 8 PTEs in a PTEG 

load upper half of this PTE 
compare to desired entry 
found it! 

point to next PTE 
and try again 

was this secondary search? 
if so. it's a storage interrupt 
otherwise. try secondary PTEG 
Set H-1 in target PTE upper half 

and search secondary PTEG 
b TLB MISS_PTEG SEARCll 

If we get here, the upper half of the PTE is 
in r29 and the PTE addres' i~ in r31. 

WRITE_TLB_ENTRY: 
lwz r30, 4 ( r31) load lower half of PT[ 
ori r30, r30, OxlOO set referenced bit 
stw r30. 4( r31) and write it back 

mtspr tlblruO, r30 write the TLB entry using CMP and 
r30 

mtspr tlblrul, r:lO 

TLB_RETU RN: restore registers 
mfsprg r29, 4 get address of save area 
lwz r30, 8 ( r29) load old counter value 
mfsrrl r31 SRRl has saved CRO 
mt ctr r30 restore counter register 
mtcr f OxBO, r31 restore CRO 

l mw r30, 0 ( r29) load r30 and r31 from save area 
mfsprg r29, 5 restore r29 
rf i return to faulting instruction 

If we get here, no translation is found, and we must convert 
this interrupt into either a data storage interrupt or an 
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instruction storage interrupt. 
If it's a data storage interrupt, MAR and MISR must be copied to 
DAR and DSISR. If it's an instruction miss. we have to set up 
SRRl. 

TLB_FAULT: 
mfmsr r30 ! must reset MSR[TWJ 
rlwinm r30, r30, 0, 15, 13 
mtms r r30 

mfsprg r29, 0 get address of save area 
lwz r30, 8(r29) restore counter register 
mt ctr r30 

mfspr r30, misr get MISR to look at typr info 

andis. r31, r30, Ox2000 was it instr TLB miss? 
mfsrrl r31 get saved CRO from SRRl 
bne SETUP _I SI it's an instruction storage ruult 

mtdsisr r30 copy MISR to DSISR 
mfspr r30, mar copy MAR 
mtda r r30 to DAR 
mtcrf OxBO, r31 restore CRO 
lmw r30, 0( r29) restore r30 and r31 
mfsprg r?9, s and restore r29 
b DA I A_':, I Ol~ACI INTERRUPT 

SETUP I SI: -
mtcrf OxBO, r31 restore CRO 
l is r30, Ox4000 set up SRRl ror page rault 
i nsl wi r31, r30, 16, 0 
mtsrrl r31 
lmw r30, 0(r29) ! restore r30 and r31 
mfsprg r29, 5 ! and restore r29 
b INSTR_STORAGE INTERRUPT 

The TLB store handler is similar to the TLB miss handler. An implementation 
that tried to minimize interrupt handler instruction cache usage could have 

the TLB miss and TLB store handlers share much of their code. 

The TLB store handler is invoked when a store references through 
a TLB entry with the C bit clear. The hardware guarantees that the 
faulting instruction had write permission to the page; if not, it 
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would have invoked the data storage interrupt handler instead. 
The hardware writes MAR and MISR and saves CRO in the 
upper bits of SRRl. The handler uses r29-31 and the counter 
register after saving them using information in SPRGs 4 and 5. 

TLB_STORE: handler at OxllOO 
mtsprg 5' r29 save r29 in SPRG5 
mfsprg r29, 4 use r29 as pointer to save area 
stmw r30, 0(r29) save r30 and r31 in save area 
mfctr r30 save counter register 
stw r30. B ( r29) in save area 

The CMP and HASHl registers use the address saved in MAR, 
the value in SDRl, and the contents of the segment register 
indexed by the upper four bits of the address in MAR. 

mf spr 
mrspr· 

TLB_STDRE 
l i 
mt ctr 

TLB_STORE 
lwz 
cmplw 
beq 

addi 
bdnz 

andi. 
bne 

mfspr 
o ri 

-

r30, cmp 
r31, hashl 

PTEG_SEARCH: 
r29, 8 
r29 

LOOP: 
r29, O C r31) 
r29, r30 
UPDATE _ _TLB 

r31, r31, 8 

TLB_STORE_LOOP 

r29, r30, Ox40 
TLB_STORE_FAU LT 

r31, hash2 
r30, r30, Ox40 

upper half of desired PTE in r30 
addr of primary PTEG in r31 

loop over 8 PTEs in a PTEG 

load upper half of this PTE 
co~pare to desired entry 
found it! 

point to next PTE 
and try again 

was this secondary search? 
This shouldn't happen, O/S forgot 
TLBIE after PTE invalidate? 
otherwise, try secondary PTEG 
Set H=l in target PTE upper half 
and search secondary PTEG 

b TLB_STORE PTEG_SEARCH 

If we get here, the upper half of the PTE is 
in r29 and the PTE address is in r31. 

UPDATE_ TLB: 
l wz 
ori 
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r30, r30, OxBO 

load lower half of PTE 
set changed bit 
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stw r30, 4(r31) 

mfspr r30, tlbmrf 
ori r30, r30, Ox BOO 
mtspr tl bmrf, r30 

mfsprg r29, 4 
lwz r30, 8(r29) 
mfsrrl r31 
mt ctr r30 
mtcrf OxBO, r31 

lmw r30, 0(r29) 
mfsprg r29, 5 
rf i 

and write it back 

load faulting TLB entry 
set changed bit 
and write it back 

get address of save area 
load old counter value 
SRRl has saved CRO 
restore counter register 
restore CRO 

load r30 and r31 from save area 
restore r29 
return to faulting instruction 

If we get here, we couldn't find the PTE that matches the TLB 
entry. This isn't supposed to happen. If it does, treat it like a 
TLB miss that turned into a page fault. 

TLB_STORE_FAULT: 
mfmsr r30 ! must reset MSR[TWJ 
rlwinm r30, r30, 0, 15, 13 
mtms r r30 

l is r29, Ox4200 setup IY> ! \I{ to be· page fault on 
store 

mtdsisr r29 
mfspr r29, mar copy MAR 
mtdar r29 to DAR 

mfspr·q r29, 0 get address of save area 
lwz r30, 8(r29) gf't saved counter 
mfsrrl r31 Cj(' t saved CRO 
mt ctr r30 n•store counter register 
mtcrf OxRO, r31 restore CRO 
lmw r30. O(r29) re' store r30 and r31 
mfsprg r·?'J, 5 .inrl restore r29 
b DATA STORAGE_ INTI l{f{IJl'l 
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Index 

A 

address translation 34, 73, 86 

alignment 20, 27, 98, 100 

ALU stage 88, 96 

B 

block address translation 54, 81 

boundary scan 119 

BPTCTL 42,51 

branch prediction 10, 19, 48, 81-83 

branches 
indirect 94, 96 
mispredicted 88 
resolving 91 
unresolved 91 

breakpoint 
data 21, 41-45, 59, 64 
instruction 41-44, 60, 64 
registers 41-45 

bus interface 107-117 

bus performance 117 

c 
cache operations 26, 50 

caches 
coherency 32, 72, 77 
data 11, 25, 70-71 
enables 26, 51, 75 
flushing 75 
inclusion 26, 75 
instruction 8, 25, 69-70, 94 
level 2 14, 25, 72-76 
misses 94, 98 
prefetching 78 
replacement 26 

change bit 27, 53, 54 

INDEX 

CHECK 48, 57, 86 

checkstop 57 

CLK_CTL 112 

clock 50, 111-113 

CMP 38, 39 

context synchronization 95 

CR 89 

CTR 10,89 

D 

DABR 41, 45 

DAR 59, 60 

data cache. See caches, data 

dcbf 30 

dcbi 55 

dcbst 29, 76 

debt 78 

dcbtst 78 

dcbz 29,42, 76 

DEC 33 

decode unit 10 

denormalized numbers 23, 24, 104 

diagnostic address space 84 

direct-store segments 20, 53, 59 

E 

eciwx 18 

ecowx 18 

eieio 12, 32, 50, 98 

exceptions 
floating-point 24, 69, 104 
inexact 24 
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F 

fetch PC 9 

fetch unit 8, 94 

finder 8, 81--83 

floating-point unit 13, 23, 101-104 

flow, instruction 67 

FPSCR 23, 96 

G 

group 67 

guarded storage 19 

H 

HASH1 38, 40 

HASH2 38,40 

HRESET 57,85, 113 

IABR 44 

icbi 27 

instruction buffer 8, 92, 94 

instruction cache. See caches, instruc-
tion 

instruction fetching 19, 26 

instruction grouping 92-94 

instruction issuing 10, 48 

instructions 
debt 30 
dcbi 55 
dcbst 29, 76 
debt 78 
dcbtst 78 
dcbz 29,42, 76 
diagnostic 30, 48, 84 
divide 97 
eciwx 18 
ecowx 18 
eieio 12, 32, 50, 98 
executing modified 32 
icbi 27 
indirect branch 96 
invalid 19, 21, 22, 25 
isync 28, 94 
lmw 21 
load algebraic 99 
lswi 20, 21, 60 
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lswx 20, 21, 60 
lwarx 33, 98 
lwdx 18, 30, 48, 76 
mfspr 22, 35 
mtmsr 34 
mtspr 22, 35 
multi-flow 93 
multiply 97 
rfi 94 
stfiwx 24 
storage control 54 
stswi 20, 60 
stswx 20, 60 
stwcx. 59, 99 
stwdx 31, 48 
sync 12,32,50,98 
tibia 55 
tlbie 50, 55 
tlbsync 50, 55 

INT 59 

integer unit 10 

interrupt 56-64 
alignment 60 
data storage 58 
decrementer 60 
external 59 
floating-point assist 61 
floating-point unavailable 60 
instruction storage 59 
machine check 57 
program 60 
system call 60 
system reset 57 
TLB miss 38, 53, 61, 127-129 
TLB store 38, 53, 62, 129-131 
trace 60, 64 

interrupt priorities 64 

interrupt vector 56 

isync 28, 94 

ITLB 8, 53, 81, 94 

J 

JTAG 113, 119 

L 

lmw 21 

load/store unit 11, 20 

LR 10,89 

LRU 26 
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lswi 20, 21, 60 

lswx 20, 21, 60 

lwarx 33, 98 

lwdx 18, 30, 48, 76 

M 

machine check 48, 57 

MAR 38, 61, 63 

MCP 58 

MESI 26, 72, 77 

mfspr 22, 35 

MISR 62 

MODES 31, 33, 47 

MSR 34 
BE 34 
DR 34, 61, 62 
IR 34, 61, 85 
LE 34 
ME 57 
SE 34 
TW 34 

mtmsr 34 

mtspr 22, 35 

0 

operand placement 27 

p 

performance 45, 87, 1 06 

phase-locked loop 111 

pipeline 48, 67-68, 87-101 
address generation 95 
load-use 88 
stalls 97-101 

pipeline diagrams 87 

PIR 52 

R 

reference bit 27, 53, 54, 80 

register file 
floating-point 13, 23 
integer 10 

registers 
BPTCTL 42, 51 
CHECK 48, 57, 86 
CMP 38, 39 

INDEX 

CR 89 
CTR 10, 89 
DABR 41, 45 
DAR 59, 60 
DEC 33 
FPSCR 23, 96 
HASH1 38, 40 
HASH2 38, 40 
IABR 44 
LR 10,89 
MAR 38, 61, 63 
MISR 62 
MODES 31, 33, 47 
MSR 34 
PIR 52 
SDR1 38 
SPRG 35 
SRRO 34 
SRR1 34 
TBL 33 
TBU 33 
TLBLRU 38, 40 
TLBMRF 38, 41 
XDABR 44 

reservation 21, 33 

reserved fields 17, 33 

reset 50, 85, 114 

rfi 94 

s 
scan 119-120 

SDR1 38 

segment registers 38 

SPRG 35 

SRESET 57,86, 113 

SRRO 34 

SRR1 34 

stfiwx 24 

store queue 11, 97 

strobe 42, 51 

stswi 20, 60 

stswx 20, 60 

stwcx. 59, 99 

stwdx 18, 31, 48 

superscalar 48, 92 

sync 12,32,50,98 

synchronization 12, 32 
context 95 
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T 

TBL 33 

TBU 33 

TEA 49, 57 

temperature 113 

TLB 53, 79-81 
invalidation 55 
replacement 80 

TLB miss 38, 54 

tibia 55 

tlbie 50, 55 

TLBLRU 38, 40 

TLBMRF 38, 41 

tlbsync 50, 55 

translation lookaside buffer. See TLB 

u 
use record 51, 72, 73, 86 

x 
XDABR 44 
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