
United States Patent (19)
Richter et al.

54 EMULATION OF SEGMENT BOUNDS
CHECKING USING PAGING WITH
SUB-PAGE VALIDITY

75) Inventors: David E. Richter, San Jose; Earl T.
Cohen, Fremont; James S. Blomgren,
San Jose, all of Calif.

73) Assignee: Exponential Technology, Inc., San
Jose, Calif.

(21) Appl. No.: 207,857
22 Filed: Mar. 8, 1994

51l Int. Cl. .. G06F 12/10
52 U.S. C. 395/417; 395/500;

395/411; 364/256.3; 364/256.4; 364/256.6;
364/969

58 Field of Search 395/400, 500, 425;
364/256.3, 256.6

56) References Cited
U.S. PATENT DOCUMENTS

3,942,155 3/1976 Lawlor 364/200
4,376,297 3/1983 Anderson et al. 364/200
4,550,368 11/1985 Bechtolsheim 364/200
4,885,680 12/1989 Anthony et al..................... 364/200
4,961,135 10/1990 Uchihori 364/200
4,972,338 12/1990 Crawford et al. 364/200
5,058,003 10/1991 White 364/200
5,261,049 11/1993 Lumelsky et al. a a - - - - - - - - - - - 395/164

OTHER PUBLICATIONS

John L. Hennessy & David A. Patterson, Computer

63

66 68 70

USOOS44070A

Patent Number: 5,440,710
Aug. 8, 1995 Date of Patent:

11

45

Architecture A Quantitative Approach, 1990, Ch 8, pp.
14, 15.
Andrew S. Tanenbaum, Modern Operating Systems,
1992, Ch 3.
William J. Dally, A Fast Translation Method for Pag
ing on Top of Segmentation, IEEE 1992.
Primary Examiner-Parshotam S. Lall
Assistant Examiner-Sang Yong Kang
Attorney, Agent, or Firm-Stuart T. Auvinen
57 ABSTRACT
Segmentation is added to a reduced instruction set com
puter (RISC) processor which supports paging. The
arithmetic-logic-unit (ALU) is extended to allow for a
3-port addition so that the segment base can be added
when the virtual address is being generated. Segment
bounds checking is achieved by extending the paging
system to allow for valid regions that are less than the
full page size. Sub-page validity can mimic segmenta
tion because a segment can be broken up into a number
of full pages and one or more partially-valid pages at the
segment boundaries. A page that is not wholly valid has
an "event' on the page, and a memory reference to this
page will either cause a software routine to be invoked
to check the segment bound, or an extension to the
TLB, called a sub-page validity buffer, is used to check
if the reference was to a valid portion of the page.
Events may also be defined for program watchpoints
and defective memory locations. Segment bounds thus
do not have to be compared for each access, and the
bounds do not even have to be stored on the CPU die.

25 Claims, 8 Drawing Sheets

94

66A

V.A. PAGE
95

SPVE V.A. PAGE PHY. PAGE ATTR
64

54 N2Ob 54 N2Ob 99
V.A. V.A. 74

50 SUB-PG
12b 52 LOGIC

56
96

P.A.

2 9
60 VALID

OFFSET

U.S. Patent Aug. 8, 1995 Sheet 1 of 8 5,440,710

PAGE TABLE
ORTLB

58

66 68 70

V.A. PAGE PHY. PAGE ATTR

62

MSB

60

U.S. Patent Aug. 8, 1995 Sheet 2 of 8 5,440,710

Virtual Or v rai

Linear Address Fig. 3 E.

fee

5,440,710 Sheet 3 of 8 Aug. 8, 1995 U.S. Patent

09

97

?uV JOJd :G -61-I

99

4K 80 80-7

80-4 s 3492 Sassy N

S - v, 80-6

S
a?." Y N y

by

O F. y

U.S. Patent Aug. 8, 1995 Sheet 5 of 8 5,440,710

64A

V.A. PAGE PHY PAGE PG SIZE PG OFFSET

66 68 70 67 69

Fig. 7

Attr. PG BND 1
70 82

Fig. 8
64C 88

V.A. PG PHY. PGATTR. MSK1 MSK3 MSK4

66 68 70
91 92 93

64B

V.A. PGPHY. PG PG BND 2

66 68 84 86

Fig. 9 9

Sheet 6 of 8 5,440,710 Aug. 8, 1995 U.S. Patent

/6

OL ‘6|-
! /,0 / 8999 96

5,440,710 Sheet 7 of 8 Aug. 8, 1995 U.S. Patent

| || -61-I

99

Sheet 8 of 8 5,440,710 Aug. 8, 1995 U.S. Patent

5,440,710
1.

EMULATION OF SEGMENT BOUNDS CHECKING
USING PAGING WITH SUBPAGE VALIDITY

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to digital computer systems,
and more particularly to memory management using
segmentation and paging.

BACKGROUND OF THE
INVENTION-DESCRIPTION OF THE

RELATED ART

Computers have been designed to allow several dif
ferent users to share the same central processing unit, or
CPU. These multi-user, multi-tasking systems provide
protection between users through memory management
techniques such as segmentation and paging. These
techniques divide memory up into variable-sized seg
ments and fixed-sized pages. One user is prevented from
harming data stored in another user's segments or pages
because the CPU checks that memory references are to
a segment or page belonging to that user. Some seg
ments or pages may be shared among several users, or
several users may have “read access' but may not alter
or “write' data in a shared segment or page.
Some computer architectures, such as for RISC or

reduced instruction set computers, employ paging with
out segmentation, since paging can be simple to imple
ment. However CISC (complex instruction set com
puter) architectures such as the x86 architecture, at
present embodied in CPU's such as the 386 and 486
manufactured by Intel Corporation of Santa Clara,
Calif., and others, employs both segmentation and pag
1ng.

In a paging system, a page table provides the mapping
or translation between a program or virtual address
generated by the user's program, and a physical address
of a location in memory. Physical memory is divided
into many pages, with each page being the same size,
typically 4096 or 4K bytes. Each page begins and ends
on a "pageboundary”, which is always a multiple of the
page size, 4K bytes. FIG. 1 shows that a virtual address
50 is composed of two pans: the lower 12 bits form the
address within a page, or page offset 52, while the upper
address bits determine which page is accessed in this
embodiment. The upper bits of the virtual address are
the virtual page number 54, and these upper bits are
translated and replaced with a physical page number 56.
A page table in main memory, or a cache of the page
table, called a translation-lookaside buffer or TLB 62, is
used to translate the virtual page number 54 to the phys
ical page number 56. The physical address 60 is thus
composed of the translated page number 56 and the
untranslated offset 58.

Page tables and TLB's are well-known and are dis
cussed more fully with respect to the x86 architecture in
U.S. Pat. No. 4,972,338, issued in 1990 to Crawford and
assigned to Intel Corporation of Santa Clara, Calif. A
TLB is a small cache of the most recently used transla
tions in the page tables. Inasmuch as the page tables are
usually stored in main memory, accessing the page table
for each memory reference adds significant overhead to
each reference and slow the system down. Since each
page table translation or entry covers 4K memory
bytes, relatively few page table entries need to be

10

15

25

30

35

45

50

55

65

2
cached by the TLB for a high hit rate and improved
performance.

SEGMENTATION SMLAR TO PAGING

Segmentation provides a mechanism to identify a
range of addresses that are valid for access. Any men
ory accesses outside of the segment, defined by the base
and the limit, will cause a segment fault, which will
interrupt the user program and return control to a su
pervisory program such as an operating system. Like
wise paging is a mechanism to validate memory ac
cesses, but paging defines a valid block of memory that
is always a multiple of the fixed page size, typically 4K
bytes, and that begins and ends on an address that is a
multiple of 4K bytes. Addresses falling outside any
pages cached in the TLB will cause a translator, imple
mented either in hardware or software, to load a trans
lation entry for the new page into the TLB. If the new
page is beyond the user's allocated memory, then a page
fault similar to the segment out-of-bounds fault can be
signalled by the translator.

Both segmentation and paging can be used for mem
ory protection and management. Both perform a similar
function in re-locating or mapping the user's memory
references, and both can include accessibility attributes
such as read-only, execute-only, dirty, and referenced.
However, because segments may begin and end at any
arbitrary address, not just at page boundaries, a separate
segmentation unit is normally required. Having two
additional 32-bit adders for the base addition and the
limit check is expensive and adds complexity. Typically
an extra processor clock cycle is needed for the segmen
tation unit. Since RISC systems are designed to be sim
ple and fast, segmentation is often avoided by RISC
CPU designers, or a simplified segmentation scheme is
used.

Because of the similarity in functions provided by the
two memory management techniques, and the desire to
emulate CISC architectures such as the x86 architec
ture, on a RISC CPU, what is desired is to emulate x86
segmentation on a RISC CPU that supports paging.

SUMMARY OF THE INVENTION

Segmentation from a CISC architecture is emulated
with the paging system of a RISC CPU. The paging
system of the RISC CPU has a sub-page validity buffer
for assisting with emulation of segment bounds check
ing. The sub-page validity buffer indicates which por
tion of a page is valid. The sub-page validity buffer is for
checking validity of a virtual address which comprises
a virtual page number and a page offset. The sub-page
validity buffer comprises a plurality of buffer entries,
each of the plurality of buffer entries comprises a virtual
page number field for comparing with the virtual page
number and a sub-page validity field for indicating a
valid subset of page offsets.
A first compare means receives the virtual page num

ber of the virtual address, and compares the virtual page
number field of the plurality of buffer entries with the
virtual page number of the virtual address. The first
compare means indicates a selected buffer entry in the
plurality of buffer entries if one of the virtual page num
ber fields in the plurality of buffer entries matches with
the virtual page number of the virtual address. The
selected buffer entry has a matching virtual page num
ber field and a selected sub-page validity field.
A second compare means receives the selected sub

page validity field from the selected buffer entry and

5,440,710
3

compares the page offset to the valid subset of page
offsets. The second compare means indicates that the
page offset is invalid if the page offset is not within the
valid subset of page offsets. Validity of the page offset is
checked for pages having only a subset of page offsets
valid. This allows for emulation of segment bounds
checking, watchpoint detection, and disabling of faulty
memory blocks by specifying only a subset of the page
offsets as valid.

In another aspect of the invention, the sub-page valid
ity field is stored within the TLB itself, rather than in a
separate sub-page validity buffer. Further aspects of the
invention include a TLB that is not loaded with a par
tially-valid page, but that uses a software handler rou
tine to perform segment bounds checking for partially
valid pages.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows how a virtual address is translated to
physical address components.
FIG. 2 is a translation-lookaside buffer.
FIG. 3 is a conceptual diagram of paging.
FIG. 4 is a conceptual diagram of segmentation.
FIG. 5 is a block diagram of a prior-art CPU with

segmentation and paging.
FIG. 6 shows how the TLB entries are combined to

define a sub-page block.
FIG. 7 is a TLB entry having a variable page size.
FIG. 8 is a TLB entry containing page offset bounds.
FIG. 9 is a TLB entry having a valid mask for sub

page validity.
FIG. 10 shows a sub-page validity buffer accessed by

a pointer field in a TLB.
FIG. 11 shows a sub-page validity buffer accessed by

a virtual address look-up.
FIG. 12 is a diagram of a memory space containing a

software handler routine.
FIG. 13 shows a sub-page validity buffer accessed by

the segment number and the virtual page number.
DETAILED DESCRIPTION

This improvement relates to emulation of segment
bounds checking using an existing paging system. While
the detailed description describes the invention in the
context of CISC (complex instruction set computer)
segmentation being emulated on a RISC (reduced in
struction set computer) central processing unit (CPU),
it is contemplated that the invention will apply to other
architectures besides RISC and CISC without depart
ing from the spirit of the invention.

FIG. 2 is a diagram of a typical translation-lookaside
buffer or TLB. A table of entries 63 is stored in a RAM
array. One entry 64 is shown having a virtual page
number field 66, a physical page number field 68, and
attributes field 70. A 32-bit virtual address 50 is inputted
from the address generation logic, and is broken into a
lower 12-bit offset part 52, which is not translated, and
an upper 20-bit virtual page number 54. If the TLB is
fully associative, then the virtual page number 66 for
each entry in the TLB will be compared by comparator
74 to the input virtual page number 54 to determine if
any addresses match. A set-associative TLB will use
part of the input virtual address as an index to select a
subset of the entries, and this subset of entries will be
compared to the input virtual page number 54 for a
match. If a match or hit occurs, then the 20-bit physical
page number 68 will be read out of the matching TLB

5

O

5

25

30

35

45

50

55

60

65

4.
entry and concatenated with the offset 52 to form the
full 32-bit physical address 60.

Attributes stored in the TLB can include protection
bits which can make a page read-only, executable, or
writable for a particular user, and can also include refer
ence bits which indicate if the data on the page has been
modified and will need to be written back to a master
storage area such as a disk drive. When a page is refer
enced, the CPU or operating system can check or mod
ify these bits and take appropriate action. A “page
fault' is signaled if an unallowed access (write to a
read-only page, etc.) is attempted, or if a miss occurs
(the translation is not present in the TLB). The page
fault will usually cause the user's program to suspend
while a supervisory program, such as an operating sys
tem, loads, corrects or modifies the TLB or page tables
before returning control to the user program.
The TLB may be filled and controlled by hardware

on the CPU, such as a translator, or the TLB may be
refilled by a software program such as an operating
system. When a page fault occurs, the hardware or
software will re-load or modify the TLB and return
control to the program at the instruction that caused the
page fault, which should not page-fault a second time
for the same reason. Thus the page fault handler should
be invisible to the user's program.
FIG.3 shows that a virtual memory space 76 may be

re-mapped to a physical memory space 78 by paging.
Pages may be re-ordered and re-located by the paging
mechanism. For example, virtual page number 0 is
mapped to physical page number 2, while virtual page 3
is mapped to physical page 0. Thus paging can re-locate
pages to anywhere in the physical memory, but it can
only re-locate blocks that are one or more pages in size,
and the blocks must end and begin on 4K-byte page
boundaries.

Segmentation can be combined with paging. Segmen
tation performs a first translation, translating a virtual
address to a linear address. Then the linear address is
inputted to the paging unit in lieu of the virtual address,
and is then translated to a physical address. Thus the
virtual memory space 76 of FIG. 3 is replaced with a
linear memory space when segmentation first translates
the virtual addresses to linear addresses. FIG. 4 is a
diagram showing a small portion of a linear memory
space 14 accessed by a CPU. The memory space 14 is
split up by paging into pages of 4096 bytes each (4
Kbytes). These pages may next be reordered by the
paging unit as was shown in FIG. 3. A user progran
may have access to one or more pages or segments,
while another user may have access to other pages and
segments.

Data segment 2 is accessed by user A with program
or virtual addresses. These virtual addresses start at
address 0 bytes, reference numeral 6, and go up to the
segment limit 10, which is 9000 bytes in this example.
Any user memory reference to data segment 2 with an
address less than 0 would cause a memory reference
error or exception for being below the lower bound.
Likewise, any memory references to data segment 2
with an address greater than 9000 bytes would cause a
memory error for being above the upper limit or bound.
Code segment 4 is another segment accessed by user A,
and has a start address 8 at 0 bytes and an upper bound
12 at 500 bytes. The program will indicate which seg
ment to access either implicitly or indirectly by refer
encing a certain register or using a certain type of in
struction, or directly by specifying the segment to use in

5,440,710
5

the instruction. The virtual address alone does not con
pletely specify the memory location, since the same
virtual address may exist in several different segments.
Segments 2 and 4 are mapped into the linear memory

space 14 by a segmentation unit on the CPU. Segment 2
has a base address 16 of 4000 bytes, which is 96 bytes
below the beginning 18 of page 1 at 4096 bytes (4
Kbytes). Since segment 2 is 9000 bytes long, the upper
bound 20 is BASE--LIMIT, O
4000--(9000-1)= 12,999 bytes. Address 12,999 is the
last valid address of the data segment 2. Page 3 starts at
address 22, which is 12. Kbytes, or 12,288 bytes, and
ends at address 24, which is 16 Kbytes, or 16,384 bytes.
Thus segment 2 begins within page Oand ends in the
middle of page 3. As shown, segment 4 fits entirely
within page 0, being only 500 bytes long and not cross
ing a page boundary.
FIG. 5 is a block diagram of address generation in a

typical x86 processor, which includes both segmenta
tion and paging. ALU 30 calculates a virtual address 32
from address components indicated by an instruction
being processed. ALU 30 or other decode logic (not
shown) indicates which segment is being referenced by
the instruction and selects one segment descriptor 34 in
a segment descriptor register array 33. The selected
segment descriptor 34 includes a base address field
which outputs the base or starting address of the se
lected segment on line 36, and a limit or upper bound
which is outputted on line 40. Virtual address 32 is
added to the base address 36 in segment adder 42, to
produce a linear address 38. The segment adder 42 must
be a full 32-bit adder in the x86 architecture because
Segments can begin and end on any boundary, down to
single-byte granularity. Other architectures that restrict
the segment to begin and end on page boundaries need
not add the lower 12 bits, and thus can use a smaller
adder.

Subtractor 44 subtracts the virtual address 32 from
the limit 40. If a negative value results, then the virtual
address exceeds the limit and a segment overrun erroris
signaled. A second adder/subtractor could be used to
check the lower bound of the segment; however if the
lower bound is always virtual address 0, then the seg
ment adder 42 can be used for the lower bound check.
If the result is a negative number then the lower bound
has been violated. Thus the negative flag or the sign bit
may be used for lower bound checking. Comparators
may also be employed for bounds checking.

Linear address 38 is translated to a physical address
by translation-lookaside buffer or TLB 46, which is a
small cache of the page translation tables stored in main
memory. As previously described in reference to FIGS.
1 and 2, the TLB 46 translates the upper 20 bits of the
linear address by searching the associative TLB cache
for a match, and if one is found, then replacing these
upper 20 bits with another 20 bits stored in the TLB 46.

If the linear address is not found in the TLB, then a
miss is signaled to the translator 48, which accesses the
page tables in main memory and loads into the TLB the
page table entry that corresponds to the linear address.
Future references to the same page will "hit' in the
TLB, which will provide the translation. Translator 48
may be implemented entirely in hardware, entirely in
software, or in a combination of hardware and software.

5

15

25

35

45

50

55

60

65

6

EMULATION OF SEGMENTATION WITH A
PAGING-ONLY CPU

The invention emulates segmentation with a RISC
CPU that typically only supports paging. The segmen
tation hardware of prior-art CPU's does not need to be
added to the RISC CPU when this invention is used.
Reducing the amount of hardware on a CPU is greatly
desired because the cost and complexity of the CPU is
reduced. However, segmentation must be supported in
some cases for software compatibility. These and other
advantages of the invention will become apparent upon
examination of the detailed description of some of the
embodiments of the invention.
Two functions must be performed in order to emulate

segmentation: the segment base must be added to the
virtual address, and the resulting linear address must be
checked for validity. The base addition can be per
formed in the central processing unit's (CPU’s) arith
metic-logic-unit (ALU). The-2-port ALU normally
required to generate the virtual address from address
components may be extended to a 3-port ALU, which
allows the segment base to be added to the components
of the virtual address at the same time that the virtual
address is being generated. Thus the ALU calculates
the linear address directly, rather than just the virtual
address. Using a 3-port ALU eliminates the extra pipes
tage and processor clock cycle required if a separate
addition step for the segment base is employed. Thus
the ALU will output the linear address, but without
checking the address for validity.
The second function, the validity checks, includes the

base and bounds check, and attributes checking. Seg
ment attributes such as read-only and dirty are almost
identical to the attributes needed for paging. Thus pag
ing can perform all the attribute checking for both seg
mentation and paging. The operating system or emula
tion software merely has to ensure that the paging attri
butes are set to reflect the most restrictive combination
of the paging and the segment attributes. For example,
if the page is read-write, but the segment is read-only,
then the entry in the TLB for this region is set to read
only, the more restrictive.

Base and bounds checking would be simple if seg
ments always began and ended on page boundaries,
because the un-augmented paging hardware could be
used. When segments begin and end at arbitrary bound
aries, only a part of a page may be valid. For example,
in FIG. 4 data segment 2 is mapped by segmentation to
all of pages 1 and 2, and to the upper portion of page 0,
and to the lower portion of page 3. Only the part of
page 0 between the base 16 and the page boundary 18 is
valid for segment 2. Likewise, only the lower portion of
page 3, from page boundary 22 to segment bound 20, is
valid.

EVENTS ON PAGES
The invention can be more readily understood by

introducing the concept of an event. An event is a loca
tion in memory that requires special processing not
supported by a typical prior-art paging system. The
paging system of the present invention performs special
operations for pages having an event located within the
page. These special operations allow for emulating seg
ment bounds checking or other CISC memory features.
However, the prior-art segmentation hardware does not
need to be added to a CPU using the present invention.

5,440,710
7

An "event may be defined for any page that is not
wholly valid. In the example of segment 2 of FIG. 4,
pages 0 and 3 have events on them, while pages 1 and 2
do not. Events exist at the base and bound of segments,
because there only a portion of the page may be valid
for the segment. Pages without events are handled by
the paging hardware and software without any modifi
cation. Thus references within segment 2 that lie on
pages 1 or 2 will be translated by the paging system
without bounds checking, whereas in the prior art of 10
FIG. 5 bounds checking is performed on all references
in a segment. However, pages with events must be han
dled in a special manner to ensure that only the valid
portion of the page is accessed.

Events may also be defined to support other features,
such as removing defective memory locations by map
ping out these bad locations that commonly occur in
large memory arrays such as dynamic RAM. Another
use for events is for setting program watchpoints,
where the program halts execution when a specified
address or range of addresses are referenced. In FIG. 4,
if DRAM addresses 6000 to 6016 were faulty, page 1
could have an event defined for it to disable references
to these faulty address locations. Emulation software
could re-direct the references away from the faulty
memory locations to other unused memory. Thus the
entire DRAM bank of chips would not have to be dis
abled, only those specific faulty locations within the
DRAM chips.
Thus events are used to designate some pages as hav

ing partial validity, regardless of the reason for the
event. Events extend the paging system's validity to
finer granularities than an entire page, yet pages with
out events are processed as they normally would be.

Various embodiments of the invention will now be
discribed. These embodiments use events to designate
pages that are partially valid. Emulation of segment
bounds checking is thus possible because pages may be
only partially valid.
EVENT HANDLING BY SUPERVISORY CODE

The first embodiment of the present invention is sim
ple, requiring that very little or no additional hardware
be added to the CPU. The most basic method of han
dling events is to not load into the TLB any page with
a defined event. Thus any reference to pages with
events would cause a page fault, which would then
cause a supervisory software routine to be processed.
This routine can check attributes and perform a bounds
check using simple instructions. The routine would load
the segment descriptors from memory, or extract the
base or bounds value from the descriptor, and compare
the bound to the virtual address, possibly with a sub
tract and a compare/test flags instruction. If the refer
ence is not valid, such as when a segment fault occurs,
the code would take the appropriate action. This action
may include returning control to the operating system
or a supervisory program. A valid reference could be
emulated by the supervisory routine, for example by
reading or writing memory and loading a CPU register
with the data item, before returning control to the user
program at the following instruction.

ONE-TIME TLB ENTRY

If the reference is valid, the supervisory program may
also use a special one-time TLB entry, rather than emu
late the instruction. A permanent TLB entry cannot be
loaded because future references to the page might lie

15

25

30

35

45

50

55

60

65

8
outside the valid portion of the page. Only completely
valid pages are loaded into the TLB in this embodiment.
The page tables are accessed by the supervisory pro
gram to translate the linear address to a physical ad
dress. The supervisory program loads a one-time TLB
entry with the virtual address and the physical address,
the correct translation needed by the faulting instruc
tion, and returns control to the user program. The user
program repeats the faulting instruction, which does
not fault a second time but uses the translation that was
just loaded into the one-time TLB entry. If the next
instruction also references the same event-containing
page, then another page fault is signaled because the
one-time TLB entry becomes invalid after being used.
The supervisory program will again check the refer
ence for validity, and possibly again load the one-time
TLB entry and return to the user program. Thus the
supervisory program will check each reference on a
page containing an event, but unlike the previous en
bodiment, the supervisory program is not required to
emulate the faulting user instruction.
While this method results in many page faults when

pages containing events are being referenced, the per
formance loss may not be significant for large segments
of many pages, because only the partial pages at the
beginning and end of the segment cause page faults.
Nearly all of the large segment lies in fully valid pages.
The one-time TLB entry may be implemented in

several ways. A normal TLB entry may include an
extra “one-time-only' bit in the attributes field. This bit
would be set, validating the entry when the TLB entry
is loaded by the supervisory program. The first memory
reference after returning to the user program would
clear this bit, which would invalidate the reference for
future instructions. Only the next instruction after re
turning control to the user program could use the TLB
entry.
Another implementation is an auxiliary one-time

TLB. This TLB could have only a single entry. This has
the advantage of not adding complexity to the main
TLB. Other implementations might have only a subset
of the TLB entries with the one-time attribute bit. Hav
ing more than a single one-time TLB entry may be
beneficial when an instruction is able to make several
memory references, such as for fetching multiple oper
ands or words from code.

VARIABLE-PAGE-SIZE TLB

Another embodiment for sub-page validity checking
does not require the intervention of supervisory code
for every reference to a page containing an event. Addi
tional bits of information are stored in the TLB to indi
cate the size of the valid page. Not all entries in the TLB
need to have the page size fields, so the additional cost
of this embodiment can be reduced by having only a
few TLB entries with the additional page size fields.
The pages can be full size, 4K bytes, or a fraction of the
full page size, but only powers of 2 are used in order to
simplify the design. Pages sizes may be 4K, 2K, 1 K, 512,
256, 128, 64, 32, 16, 8, 4, 2, or 1 byte.

If a direct-mapped or set-associative TLB were used,
then any particular page could only be located in 1 or a
few locations in the TLB, up to the degree of set asso
ciativity. In this embodiment the TLB is preferably
fully associative, so that a single page containing an
event may have several entries in the TLB, not just one.
The entries will indicate which parts of the page are
valid, with each entry being of a different size in most

5,440,710 9
cases. For example, if a segment ends at offset Ox)A5
hex, or 3492 decimal, in a 4K-byte page, the following
entries would be loaded in the TLB for that one page:

TABLE

Variable Page Six TLB Entries Example

10
TLB. The TLB will determine if a page hit has oc
curred by comparing the virtual page number from the
ALU to the virtual page number stored in the TLB

Entry PageSize (bytes) Page Offset (decimal) Page offset calculation
1. 2K O O
2 K. 2048 2K
3 256 3072 2K--K
4. 128 3328 3K-256
5 32 3456 3K-256-- 28
6 4 3488 3K-256- 128-32
7 34.92 3K-256-28-32-4

Thus 7 entries would be loaded into the TLB for this 15
single page. Each entry designates a successively
smaller portion of the page, down to single-byte granu
larity. All 7 entries would contain the same virtual page
number in the virtual address match field, and all entries
would be page hits. The page size field is then used to 20
determine how many additional address bits should be
compared. A page size of 2K will indicate that one
additional address bit is compared. If 4K is designated
by the 13th adress bit, A12, then A11, the next least-sig
nificant bit (LSB), will also be compared. A page size of 25
1K will require that 2 additional bits be compared,
while a page size of 1 byte will require that all the low
order page offset bits be compared. All specified addi
tional bits must match for the entry to be a complete hit.

In Table 1, each entry has a successively larger page 30
offset as the sub-page size decreases. FIG. 6 shows
graphically how the TLB entries of Table 1 are com
bined to define a memory block 80 that is valid from
page page offset 0, to offset 0xDA5 hex (3492 decimal).
Entry 1 defines a 2 K-byte sub-page 80-1 from address 0 35
to address 2047. Entry 2 defines a 1 K-byte sub-page
80-2 from address 2048 to address 3071, while entry 3
defines a 256-byte sub-page 80-3 from address 3072 to
3327. Likewise entries 4 to 7 define successively smaller
sub-pages 80-4, 80-5, 80-6 until the last (7th) entry de- 40
fines a 1-byte sub-page 80-7 at address 3492. Thus by
combining sub-pages 80-1 through 80-7, a valid block 80
from address offset 0 to 3492 is defined.
This embodiment requires that 2 additional fields be

stored with the TLB entry. FIG. 7 shows an entry 64A 45
in the TLB for this embodiment. Entry 64A contains a
virtual page number field 66, a physical page number
field 68, and attributes field 70, as in the prior-art TLB
entry 64 of FIG. 2. A page size field 67 indicates the
sub-page size, from 4K to 1 byte. As there are 13 possi- 50
ble sizes, 4 binary bits can be used to encode the sub
page size. These 4 bits are decoded, and each decoded
bit is used to enable a bit-wise compare of a successively
lower-significance address bit. The second additional
field is the sub-page offset field 69. This field 69 specifies 55
the starting address of the sub-page within the page. In
a full implementation of a 4K byte page, down to byte
granularity, this field 69 is 12-bits wide, the full offset
address size.

TLB BT-MASK FOR BOUND ENCODING

The previous embodiment required several entries in
the TLB for a single event-containing page. Events may
also be specified using just a single TLB entry. In this
embodiment, some TLB entries are extended with addi- 65
tional bits to encode the sub-page validity information.
This sub-page validity information will be consulted to
determine if a memory reference is a valid hit in the

entries. If a page hit is detected for an entry, then the
sub-page validity information will be consulted to deter
mine if the memory reference falls within a valid por
tion of the page. Thus a subset of all the page offsets
may be specified as being valid.
A trivial but expensive embodiment is to store one

sub-page valid or mask bit for every byte in the page.
Thus 4096 mask bits would be required, one mask bit for
every byte within the 4K-byte page. This bit-mask field
will be consulted if the referenced virtual page number
matches the virtual page number stored in the TLB.
Each byte that is referenced must also have its corre
sponding valid bit set in the bit-mask field for the refer
ence to be a valid one.

Since there are typically only a limited number of
events on any particular page, a full 4 K-byte bit mask
is not needed. Less expensive embodiments are thus
possible that allow for a limited number of events on a
page.

PAGE OFFSET BOUNDS ENCODING

In this embodiment, shown in FIG. 8, the TLB entry
64B has the virtual page number field 66, the physical
page number field 68, and attributes 70 of the prior-art
TLB. In addition, a first bounds field 82 and a second
bounds field 84 are added. Each bounds field encodes a
page-offset address of an event. For example, the page
offset bounds could encode the offset address of the
base or the upper bound of a segment that lie within a
page. Two offset bounds fields are provided in this
embodiment for efficient encoding of pages with two
events, which occur for small segments that lie entirely
within a single page, program watchpoints, and faulty
memory locations. These are typically small blocks
within a page. Thus by having two offset bounds fields,
the starting and ending addresses for the small block
may be specified.
The page-offset bounds fields 82, 84 contain enough

bits to specify the page offset down to the desired gran
ularity. Thus for a 4 K-byte page, which has 12 bits of
address offset, 32-bit aligned word granularity requires
that 10 bits be stored in each offset bounds field 82, 84,
while full byte-granularity requires that a full 12-bit
offset address be stored in each offset bounds field 82,
84.

Control bits 86 specify how the offset bounds 82, 84
are to be interpreted. For a first offset bounds 82 having
a value 'x' and a second offset bounds 84 having a
value of “y”, a simple encoding for control bits 86 is
shown in Table 2.

5,440,710
11

TABLE 2

Control Bits Encoding for Page Offset Bounds
Control

Type Bits Referenced Page Offset is Valid if:
Whole Page 000 Whole page valid
Segment Base 001 > X
Segment Bound 010 <y
Within Page 011 > x AND < y
Two at Ends 00 < x OR a y

Several types of events may be supported with two
offset bounds and the encoding of Table 2. With the
control bits 86 set to "000”, the entire page is valid. An
encoding of "001" specifies that all address greater than
the first offset bound 82 is valid, as when a segment
begins within a page. The "010” encoding may be used
for the end of a segment, when the upper bound ends
within a page. Thus the second offset bound 84 specifies
the upper limit of validity within the page. Encoding
"011” specifies validity between the two offset bounds
82, 84, which may be used to specify a segment that lies
entirely within a single page. The "100" encoding speci
fies that the entire page is valid except the region be
tween the two offset bounds 82, 84. This is used for
watchpoints and disabling faulty memory locations.
Any reference between the two bounds 82, 84 will
cause a page fault.
While an embodiment with only two page offset

bounds fields 82, 84 has been explained, it would be
obvious for one skilled in the art to employ a different
number of offset bounds fields or a different number of
encoding control bits 86. For example, the encoding
may be changed for greater than or equal to a page
offset bound value, and still fall within the sprit of the
invention.

VALID MASK

Another embodiment, shown in FIG. 9, of sub-page
validity checking on a TLB is to use a valid mask field.
There are many embodiments possible, and the one
described herein is meant to be illustrative and not to
limit the invention to the exact form shown.
A valid mask field 88 is added to the TLB entry 64C,

which contains the virtual page number field 66, the
physical page number field 68, and attributes 70, as in
the prior-art. The valid mask field 88 is split up into 4
sub-fields 90,91, 92,93, each of which is a bit mask for
a certain granularity of references. Sub-field 90 contains
an 8-bit mask, one bit for each of the 8 512-byte sub
blocks in a 4 K-byte page. Sub-field 91 contains an 8-bit
mask, one bit for each of the 864-byte sub-blocks within
one of the 512-byte sub-blocks of the page. Likewise,
sub-field 92 contains an 8-bit mask, one bit for each of
the 8 8-byte sub-blocks within one of the 64-byte sub
blocks of the page, and sub-field 93 contains an 8-bit
mask, one bit for each of the 8 1-byte sub-blocks within
one of the 8-byte sub-blocks of the page. Thus 48-bit
masks in sub-fields 90,91, 92, 93 are used to specify an
event with increasingly finer granularity. Each of sub
fields 90,91, 92, 93 is associated with three bits of the
12-bit page offset. Thus sub-field 90 encodes the three
page offset address bits A11, A10, A9, while sub-field 91
encodes A8, A7, A6, sub-field 92 encodes A5, A4, A3,
while sub-field 93 encodes A2, A1, and A0. If a logical
“1” (an electrical signal of typically 5 or 3.3 volts) is
used to denote validity, then a bit-mask value of
“100000' would indicate that the first three of the
eight blocks are valid. If this were for the first sub-field

5

10

15

20

25

30

35

45

50

55

60

65

12
90, then the first three 512-byte sub-blocks on the page
would be valid.

ONE-HOT ENCODING

One-hot encoding is a method wherein only a single
bit in a field of bits is active. This single active bit selects
ony one valid block out of a plurality of blocks. The
sub-fields 90, 91, 92, 93 may be encoded by several
methods. If only one valid sub-block is allowed for
every bit-mask, then the previously-described encoding
may be used, since each 8-bit mask would identify only
a single valid sub-block of the eight sub-blocks for each
sub-field. Thus the encoding:

00100000 00000001 10000000 00010000
for sub-fields 90,91, 92,93 would indicate that the third
of the eight 512-byte sub-blocks is valid, and within this
third 512-byte block, only the last (eighth) 54-byte sub
block is valid. Within this 54-byte block, only the first
8-byte block is valid, and only the fourth of these 8
bytes is valid. This encoding-thus specifies that the
1476th byte on the 4096-byte page is the only byte valid.
Note that the last sub-field 93, need not have only a
single valid bit since there are no more sub-blocks with
finer granularity. Thus if the last sub-field 93 had the
bit-mask value:

00011110
then bytes 4, 5, 6, and 7 would be valid in that field. This
specifies that the four bytes 476 through 1479 are valid.

TRANSTION ENCODING

If the mask having a '1' value indicates validity, then
a mask having a bit-transition from a 1 to a 0, or a Oto a
1 can be used to indicate that the next lower sub-field's
bit mask must be consulted. Transition encoding can be
used to specify the valid region within a page when
only a single event is present on the page. This is typical
for the beginning and end of a segment. The lower
bound of the segment, the base, can be encoded by a
transition from a 0 to a 1, which will specify that the
upper portion of the page is valid while the lower por
tion is not valid. The upper bound of the segment may
be specified by a transition from a 1 to a 0, indicating
that the lower portion of the page is valid while the
upper portion is not valid. The example of Table 1
showed an upper bound of 0xDA5 hex, or 3492 decimal,
within a page with the lower portion, from Oto 3492,
valid for the segment. This value can be encoded:

11111100 11111100 11110000 11111,000
indicating that the first 6512-byte blocks are valid, and
the first 6 of the 8 64-byte blocks in the 7th 512-byte
block are valid. Within the 7th 64-byte block, the first
four 8-byte blocks are valid, and the first 5 bytes of the
5th 8-byte block, of the 7th 64-byte block, of the 7th
512-byte block, are valid. Thus a “1” indicates that the
entire block specified is valid, while the first “0” from
the left side indicates that a portion of that sub-block
may be valid, depending on the next lower sub-fields.

BUBBLE ENCODING

When only a small portion of the page needs to be
disabled or marked as invalid, as for example when a
watchpoint is set or a faulty memory location specified,
the bubble encoding may be employed. Again a “1”
indicates that the sub-block which corresponds to the
mask bit is valid. A single “0” is allowed for any sub
field. This zero indicates that the next lower sub-field
mask should be consulted to determine which portion of

5,440,710
13

the page is not valid. The byte at page offset address
0x6B4 hex would be specified with this encoding:
11011 11011111111110111110111

The 4th 512-byte block has the third 64-byte block with
a non-valid byte on it. In this 3rd 64-byte block, the 7th
8-byte block has the 5th byte marked as not valid. Thus
only one byte at 6B4 hex is not valid.
Various other encodings and combinations with the

page offset bounds field are possible within the spirit of
the invention. One or more control bits could be stored
with the TLB entry to specify which encoding, one-hot,
transition, bubble, or another should be used for that
particular TLB entry, or a global control bit could
indicate the type of encoding used.

SUB-PAGE VALIDITY BUFFER

Since there are usually only a small, fixed number of
events on a system, it is not necessary to add sub-page
validity information to every TLB entry. However,
since the TLB is usually implemented as a small RAM
array, adding additional bits to some but not all of the
entries renoves the symmetry of the RAM array and
may make the TLB more expensive to implement. In
addition, the longer TLB entries with the sub-page
validity fields must be reserved for pages with events.
This adds complexity to TLB management.
A flexible alternative is to add a second auxiliary

structure for storing the sub-page validity information
on the CPU die. This auxiliary structure is closely cou
pled to the regular TLB. This structure, the sub-page
validity buffer 94 (SPVB), is shown in FIG. 10 along
with the regular TLB 63. TLB 63 contains a virtual
page number field 66, a physical page number field 68,
and attributes 70, as in the prior-art TLB. The physical
address 60 is thus composed of translated page number
56 and the lower offset portion 52. However, additional
index pointer bits are added to each TLB entry, as
shown for entry 64 with index field 71. Index field 71 is
used to indicate the location in the SPVB of the sub
page validity entry 95 associated with the TLB entry
64. This index field 71 is loaded by the system software
or TLB handler when the TLB entry is loaded. If no
event exists for the page, then the index entry is set to
“OOOO’ to indicate that the SPVB 94 need not be con
sulted. Other values of index field 71 will be read out of
TLB 63 over index bus 98 to select an entry 95 in SPVB
94. SPVB entry 95 may contain offset bounds fields and
control bits, as described earlier in reference to FIG. 8,
or SPVB entry 95 may contain sub-fields for valid
masks, as described earlier in reference to FIG. 9, or a
combination of these methods may be used. The size of
the SPVB 94 is based on the number of events that may
need to be loaded into the TLB at any one time. Thus
the SPVB 94 may be much smaller than the TLB 63.
Because index bits 71 are used to specify which entry 95
in SPVB 94 is to be referenced, any TLB entry 64 may
use any entry 95 in the SPVB 94. Thus great flexibility
is afforded the system software.
TLB entry 64 could include additional information

preferably stored in the SPVB 94, such as not only
index bits 71 to locate the particular corresponding
entry 95 in SPVB 94, but also to indicate how the SPVB
entry 95 is to be used. For example, the control bits 86
of FIG. 8 could be stored in either the TLB 63 or the
SPVB 94.

5

14
OPERATION OF SUB-PAGE VALIDITY

BUFFER

Sub-page validity buffer 94 (SPVB) operates in con
junction with TLB 63 in the following manner. A 32-bit
virtual address 50 has an offset portion 52 and an upper
page number portion 54. The virtual page number por
tion 54 is compared to the virtual page number 66 stored
in TLB entry 64 using comparator 74, which signals a

0 page hit if the page numbers match. Using well-known

15

techniques in the art, a single TLB entry 64 may be
compared, or an associative search may be made of all
entries in the TLB, or a sub-set of the entries may be
compared if the TLB is of the set-associative type. If a
page hit is signaled, then index bits 71 are read out of
TLB 63 and used to select an entry 95 in SPVB 94. The
sub-page validity entry 99 is read out of SPVB 94 and
inputted to logic block 96. The lower offset portion 52
of the virtual address 50 from the ALU is also inputted
to the logic block 96. Logic blgck 96 uses the sub-page
validity entry transferred over bus 99 to control combi
natorial logic and comparators for comparing the sub

25

30

35

45

50

55

60

65

page defined in SPVB entry 95 with the page offset
address 52. If the page offset address is found to lie
within a valid portion of the page, then a valid offset is
signaled over line 97, allowing the CPU to continue the
memory reference. However, if the offset 52 lies outside
of the valid portion of the page, then logic block 96
signals that the page offset is not valid on line 97, caus
ing a page fault to be signaled, which invokes a TLB
handler. Logic block 96 can be implemented by one
skilled in the art using random or combinatorial logic
based on the earlier description of the various embodi
ments of this invention.

SUB-PAGE VALIDITY BUFFER WITH
VIRTUAL LOOKUP

An alternative embodiment, shown in FIG. 11, of the
sub-page validity buffer 94 (SPVB) is to include a vir
tual page number field 66A in SPVB entry 95. The
proper entry 95 in the SPVB 94 is thus determined by an
associative look-up as is performed by the associative
TLB 63. If a match is found between the virtual page
number portion 54 of the virtual address 50 and the
virtual page number 66A stored in a SPVB entry 95,
then that corresponding entry 95 is selected and its
sub-page validity information 99 is inputted to logic
block 96, which operates in the same manner as de
scribed for FIG. 10. Should no matching virtual page
entry 66A be found in the SPVB 94, then the page has
no events defined for it and a valid offset is signaled on
line 97. If the page is also not present in TLB 63, then a
page miss is signaled and a page fault occurs, invoking
the TLB handler, either a software routine or a hard
ware sequencer. This implementation may be faster
than that of FIG. 10 because the virtual lookup in the
SPVB 94 operates in parallel with the lookup in TLB
63, whereas the embodiment of FIG. 10 requires that
the TLB 63 lookup occur first so that the index bits 71
may be read out of TLB 63 and then used to index
SPVB 94. Other reference numerals in FIG. 11 corre
spond to similar elements described in reference to FIG.
10.
FIG. 13 shows that the sub-page validity buffer may

be accessed by additional information, such as which
segment register was used to create the linear address of
a reference. This would aid emulation of a segmented
system with several segment registers. The TLB entry

5,440,710
15

(as shown in FIG. 11) still includes the control informa
tion on a page basis, but the sub-page validity buffer 94
of FIG. 13 will have an additional segment number field
67 indicating which segment register the entry 95 refers
to. This additional segment number field 67 is stored in
SPVB entry 95 along with the virtual page number field
66A. Both the virtual page number and the segment
number must match for a hit in the sub-page validity
buffer. Comparator 74 will compare the virtual page
number as described in reference to FIG. 11, while
comparator 75 compares the segment number stored in
the additional segment number field 67. The segment
number 55 from the address generation unit will be sent
to the paging system along with virtual address 50. The
access to the sub-page validity buffer may still proceed
in parallel with the translation-lookaside buffer look-up.

SOFTWARE HANDLER ROUTINE

FIG. 12 is a diagram of a physical memory space 78
which contains a user program 110, an operating system
112, and a software handler routine 114. Software han
dler routine 114 will be activated when a page fault
occurs, either being directly called by the page fault or
called by another routine, such as another TLB miss
handler routine in the operating system 112, responsible
in some prior-art systems for loading the TLB when
paging is enabled. Software handler routine 114 will
fetch the segment bounds fields from the segment de
scriptors, which are usually stored with the operating
system 112. Software handler routine 114 will compare
the segment bound fetched from the segment descriptor
to the offset portion of the linear or virtual address to
check that the memory reference is to a portion of a
page that is within the segment bounds. This checking
need not be performed in the embodiments that contain
sub-page compare hardware on the CPU itself. If the
page offset is within the portion of the page that is valid
for the segment, or the subset of page offsets that are
valid for a partially-valid page, then the software han
dler routine 114 will load a translation into the TLB or
emulate the memory reference. In addition, if the page
is wholly valid, but not yet loaded into the TLB, then
the software handler routine 114 may load the transla
tion into the TLB. The software handler routine 114
could also signal to the operating system 112 to allow a
routine in the operating system 112 to load the TLB
entry.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. Various combinations of the embodiments
described and trade-offs among them are possible. For
example, the variable-page-size embodiment suffers
from the extra hardware needed to designate the sub
page granularity down to the single-byte level. The
one-time-TLB embodiment uses very little additional
hardware, because slower software is used for bounds
checking. The two embodiments could be combined to
reach an optimum trade-off between the higher perfor
mance of designating sub-pages in the TLB hardware,
and the lower cost and complexity of using the software
for bounds checking. Instead of designating sub-pages
down to byte-granularity, sub-pages could be defined
only down to an intermediate granularity, with soft
ware checking the remaining references. Thus sub
pages of 2K, 1 K, 512, and 256 bytes could be defined,
and any reference within a block of 256 bytes of the
event or bound would be checked by software. This

10

15

25

30

35

40

45

50

55

65

16
trade-off would support 4 of the 12 page sizes between
2K and 1 byte, which is less than half the hardware for
the full implementation, but reduces software checking
to only 256 bytes of the 4096 bytes in the page, or
1/16th of the total page. In summary, paging may be
used to reduce the amount of hardware required to
support segmentation.
A page size of 4096 bytes was described with refer

ence to the embodiments, but other page sizes and ad
dress sizes may be easily substituted by one skilled in the
art. Many other combinations of the embodiments dis
closed are possible in light of the teachings herein.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illus
tration and description. It is not intended to be exhaus
tive or to limit the invention to the precise form dis
closed. Many modifications and variations are possible
in light of the above teaching. It is intended that the
scope of the invention be limited not by this detailed
description, but rather by the claims appended hereto.
We claim:
1. A paging system adapted for emulating segment

bounds checking wherein pages completely contained
within segment boundaries are not checked for segment
bounds violations, whereas pages containing segment
boundaries are tested for segment bounds violations by
a sub-page validity buffer for checking validity of a
virtual address, said virtual address comprising a virtual
page number and a page offset, said sub-page validity
buffer comprising:

a plurality of buffer entries, each of said plurality of
buffer entries comprising:
a virtual page number field; and
a sub-page validity field for indicating a valid sub

set of page offsets within a page;
first compare means for receiving said virtual page
number and comparing said virtual page number
field with said virtual page number, said first com
pare means indicating a selected buffer entry of
said plurality of buffer entries if said virtual page
number field matches said virtual page number,
said selected buffer entry including a selected sub
page validity field; and

second compare means for receiving said selected
sub-page validity field and comparing said page
offset to said valid subset of page offsets, said sec
ond compare means indicating that said page offset
is invalid if said page offset is not within said valid
subset of page offsets, said second compare means
signaling that said page offset is valid if no buffer
entry in said plurality of buffer entries is a matching
buffet entry, said matching buffer entry containing
said virtual page number field matching said virtual
page number,

wherein the absence of said matching buffer entry in
said sub-page validity buffer indicates that segment
bound do not need to be checked for said virtual
address,

wherein pages completely contained within segment
boundaries are not checked for segment bounds
violations,

whereby validity of said page offset is checked for
pages having only a subset of page offsets valid.

2. The buffer of claim 1 wherein said sub-page valid
ity field comprises:

a first field for specifying a size of said valid subset of
page offsets, said size being equal to or less than
said size of a page; and

5,440,710
17

a second field for specifying a page offset indicating a
location of said valid subset of page offsets.

3. The buffer of claim 1 wherein said sub-page valid
ity field comprises:

a first field for specifying a first page offset indicating
a location of said valid subset of page offsets;

control bits for encoding control information about
said first field; and said second compare means
including means for interpreting said first field with
said control information.

4. The buffer of claim 3 wherein said control bits
indicate if page offsets within said valid subset of page
offsets must be greater than or equal to, or less than or
equal to said first page offset in said first field.

5. The buffer of claim 4 wherein said sub-page valid
ity field further comprises:

a second field for specifying a second page offset
further indicating said location of said valid subset
of page offsets;

wherein said control bits further indicate if said valid
subset of page offsets is between said first page
offset and said second page offset, said control bits
further indicating if said valid subset of page offsets
is outside of a region between said first page offset
and said second page offset.

6. The buffer of claim 1 wherein said sub-page valid
ity field comprises:

a valid mask field, said valid mask field comprising:
a plurality of bit masks, said bit masks comprising a

plurality of valid bits for indicating if a fixed-size
portion of a page is valid.

7. The buffer of claim 6 said plurality of bit masks
corresponds to a different size for said fixed-size por
tion, bit masks corresponding to a larger fixed-size por
tion indicating which fixed-size portion is referred to by
said bit mask corresponding to a next smaller fixed-size
portion.

8. A paging system for translating a virtual address to
a physical address, said virtual address comprising a
virtual page number and a page offset, said paging sys
tem adapted for emulating segment bounds checking,
said paging system comprising:
a translation-lookaside buffer (TLB), said TLB com

prising a plurality of page entries, each of said
plurality of page entries comprising:
a virtual page number field for comparing with said

virtual page number, a match indicating that the
page entry with the matching virtual page num
ber field be selected;

a physical page address field, for combining with
said page offsets, for

outputting to a main memory;
sub-page validity means for indicating a specified

subset of page offsets for pages containing a seg
ment bound, said specified subset defined by said
segment bound, the absence of a sub-page validity
means for a particular page entry in said plurality
of page entries indicating that segment bounds do
not need to be checked for said particular entry;
and

sub-page compare means for comparing said page
offset with said specified subset of page offsets, said
sub-page compare means providing a segment out
of-bounds indication if said page offset is not within
said specified subset of page offsets,

wherein pages completely contained within segment
boundaries are not checked for segment bounds
violations,

5

O

5

25

35

45

50

55

60

65

18
whereby segment bounds checking is emulated by

said paging system for a page that has only a subset
of said page offsets accessible for a segment.

9. The paging system of claim 8 wherein said sub
page compare means comprises a software compare
routine that compares said page offset to said segment
bound; said paging system further comprising a transla
tion handler, for loading page entries from main mem
ory into said TLB, said translation handler being acti
vated when no page entry in said TLB has a virtual
page number field that matches said virtual page num
ber, said translation handler not loading a page entry
into said TLB for a partially-valid page having said
segment bound within said page, said translation han
dler activating said software compare routine when a
partially valid page is accessed,
whereby said TLB will be loaded only with fully

valid pages, whereas partially-valid pages at said
segment bound always cause a page fault, activat
ing said software compare routine.

10. The system of claim 9 further comprising a one
time TLB entry, loaded by said translation handler if
said page offset is within a valid portion of said partial
ly-valid page, said software compare routine providing
a valid indication to said translation handler if said page
offset is within said specified subset of page offsets, said
one-time TLB entry being valid for a single memory
reference only.

11. The paging system of claim 8 wherein said sub
page validity means comprises

a sub-page validity field for indicating said specified
subset of page offsets, said specified subset of page
offsets defined by said segment bound, said sub
page validity field having a corresponding page
entry in said TLB;

the sub-page compare means receiving said sub-page
validity field corresponding to said selected page
entry, said sub-page compare means providing said
segment out-of-bounds indication if said page offset
is not within said specified subset of page offsets.

12. The system of claim 11 wherein said sub-page
validity field comprises:

a first field for specifying a size of said specified sub
set of page offsets, said size being equal to or less
than said page size; and

a second field for specifying a page offset indicating a
location of said specified subset within said page.

13. The system of claim 11 wherein said sub-page
validity field comprises:

a first bounds field for specifying a first page offset
indicating a location of said specified subset within
said page; and control bits for encoding a manner in
which said sub-page compare means compares said
page offset to said first bounds field.

14. The system of claim 3 wherein said control bits
indicate if said specified subset of page offsets is greater
than or less than said first page offset in said first bounds
field.

15. The system of claim 14 wherein said sub-page
validity field further comprises:
a second bounds field for specifying a second page

offset further indicating said location of said speci
fied subset within said page;

wherein said control bits further indicate if said speci
fied subset of page offsets is between said first page
offset and said second page offset or if said speci
fied subset of page offsets is outside of a region

5,440,710
19

between said first page offset and said second page
offset.

16. The system of claim 11 wherein said sub-page
validity field comprises:
a valid mask field, said valid mask field comprising:

a plurality of bit masks, said bit masks comprising a
plurality of valid bits, each of said plurality of
valid bits for indicating if a fixed-size portion of
a page is valid.

17. The system of claim 16 wherein each bit mask in
said plurality of bit masks corresponds to a different size
for said fixed-size portions, said bit masks correspond
ing to a larger fixed-size portion indicating said location
of said fixed-size portions that said next smaller bit mask
refers to.

18. The system of claim 11 wherein said sub-page
validity field is joined to a corresponding page entry in
said TLB and stored in said TLB.

19. The system of claim 11 wherein said sub-page
validity field is stored in a sub-page validity buffer com
prising a plurality of sub-page entries, said plurality of
page entries in said TLB further comprising a pointer
field for selecting a sub-page entry in said sub-page
validity buffer.

20. The system of claim 11 wherein said sub-page
validity field is stored in a sub-page validity buffer com
prising a plurality of sub-page entries, each entry in said
plurality of sub-page entries comprising said sub-page
validity field, and a second virtual page number field, a
sub-page entry being selected if said second virtual page
number field matches said virtual page number.

21. The system of claim 20 wherein said virtual ad
dress further comprises a segment number, each entry in
said plurality of sub-page entries further comprising a
segment number field, said sub-page entry being se
lected if said segment number of said virtual address
matches said segment number field and if said second
virtual page number field matches said virtual page
number.

22. A method for emulating segment bounds check
ing in a paging system, said method comprising:

loading a translation-lookaside buffer (TLB) with
entries corresponding to pages containing a fixed
number of page offsets, each entry present in said
TLB corresponding to a page wherein every page
offset is valid for reference;

10

15

20

25

30

35

45

50

55

60

65

20
translating a virtual address to a physical address

using said entries in said TLB when said virtual
address has a corresponding entry in said TLB, said
corresponding entry having a virtual page number
field matching a portion of said virtual address;

generating a page fault if said virtual address has no
corresponding entry in said TLB;

loading a new entry into said TLB if said virtual
address corresponds to a page wherein every page
offset within said page is valid for reference and
not checked for segment bounds violations; and

executing a software handler routine if said virtual
address does not correspond to a page wherein
every page offset within said page is valid for refer
ence, said software handler routine comparing an
offset portion of said virtual address to a bound for
a segment, said software handler routine continu
ing execution of a user program if said offset por
tion of said virtual address is within said bound for
said segment, said handler routine sending a seg
ment bounds fault to said user program if said offset
portion of said virtual address is not within said
bound for said segment,

whereby segment bounds checking is performed by
said software handler routine for pages wherein
not every page offset address is valid for reference.

23. The method of claim 22 wherein said software
handler routine emulates a memory access referenced
by said virtual address if said offset portion of said vir
tual address is within said bound for said segment, said
software handler routine transferring data between a
main memory and a central processing unit generating
said virtual address, said software handler routine con
tinuing execution of said user program after transferring
said data.

24. The method of claim 22 wherein said software
handler routine loads a translation entry into a one-time
TLB if said offset portion of said virtual address is
within said bound for said segment, said one-time TLB
being valid only for said virtual address that is being
translated, said software handler routine continuing
execution of said user program after loading said trans
lation entry, said user program using said translation
entry in said one-time TLB to continue execution.

25. The method of claim 22 wherein said virtual ad
dress is a linear address generated by adding a segment
base to an address generated by said user program.

ck sk ck ck sk

