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57 ABSTRACT 
Segmentation is added to a reduced instruction set com 
puter (RISC) processor which supports paging. The 
arithmetic-logic-unit (ALU) is extended to allow for a 
3-port addition so that the segment base can be added 
when the virtual address is being generated. Segment 
bounds checking is achieved by extending the paging 
system to allow for valid regions that are less than the 
full page size. Sub-page validity can mimic segmenta 
tion because a segment can be broken up into a number 
of full pages and one or more partially-valid pages at the 
segment boundaries. A page that is not wholly valid has 
an "event' on the page, and a memory reference to this 
page will either cause a software routine to be invoked 
to check the segment bound, or an extension to the 
TLB, called a sub-page validity buffer, is used to check 
if the reference was to a valid portion of the page. 
Events may also be defined for program watchpoints 
and defective memory locations. Segment bounds thus 
do not have to be compared for each access, and the 
bounds do not even have to be stored on the CPU die. 

25 Claims, 8 Drawing Sheets 
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EMULATION OF SEGMENT BOUNDS CHECKING 
USING PAGING WITH SUBPAGE VALIDITY 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to digital computer systems, 
and more particularly to memory management using 
segmentation and paging. 

BACKGROUND OF THE 
INVENTION-DESCRIPTION OF THE 

RELATED ART 

Computers have been designed to allow several dif 
ferent users to share the same central processing unit, or 
CPU. These multi-user, multi-tasking systems provide 
protection between users through memory management 
techniques such as segmentation and paging. These 
techniques divide memory up into variable-sized seg 
ments and fixed-sized pages. One user is prevented from 
harming data stored in another user's segments or pages 
because the CPU checks that memory references are to 
a segment or page belonging to that user. Some seg 
ments or pages may be shared among several users, or 
several users may have “read access' but may not alter 
or “write' data in a shared segment or page. 
Some computer architectures, such as for RISC or 

reduced instruction set computers, employ paging with 
out segmentation, since paging can be simple to imple 
ment. However CISC (complex instruction set com 
puter) architectures such as the x86 architecture, at 
present embodied in CPU's such as the 386 and 486 
manufactured by Intel Corporation of Santa Clara, 
Calif., and others, employs both segmentation and pag 
1ng. 

In a paging system, a page table provides the mapping 
or translation between a program or virtual address 
generated by the user's program, and a physical address 
of a location in memory. Physical memory is divided 
into many pages, with each page being the same size, 
typically 4096 or 4K bytes. Each page begins and ends 
on a "pageboundary”, which is always a multiple of the 
page size, 4K bytes. FIG. 1 shows that a virtual address 
50 is composed of two pans: the lower 12 bits form the 
address within a page, or page offset 52, while the upper 
address bits determine which page is accessed in this 
embodiment. The upper bits of the virtual address are 
the virtual page number 54, and these upper bits are 
translated and replaced with a physical page number 56. 
A page table in main memory, or a cache of the page 
table, called a translation-lookaside buffer or TLB 62, is 
used to translate the virtual page number 54 to the phys 
ical page number 56. The physical address 60 is thus 
composed of the translated page number 56 and the 
untranslated offset 58. 

Page tables and TLB's are well-known and are dis 
cussed more fully with respect to the x86 architecture in 
U.S. Pat. No. 4,972,338, issued in 1990 to Crawford and 
assigned to Intel Corporation of Santa Clara, Calif. A 
TLB is a small cache of the most recently used transla 
tions in the page tables. Inasmuch as the page tables are 
usually stored in main memory, accessing the page table 
for each memory reference adds significant overhead to 
each reference and slow the system down. Since each 
page table translation or entry covers 4K memory 
bytes, relatively few page table entries need to be 
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2 
cached by the TLB for a high hit rate and improved 
performance. 

SEGMENTATION SMLAR TO PAGING 

Segmentation provides a mechanism to identify a 
range of addresses that are valid for access. Any men 
ory accesses outside of the segment, defined by the base 
and the limit, will cause a segment fault, which will 
interrupt the user program and return control to a su 
pervisory program such as an operating system. Like 
wise paging is a mechanism to validate memory ac 
cesses, but paging defines a valid block of memory that 
is always a multiple of the fixed page size, typically 4K 
bytes, and that begins and ends on an address that is a 
multiple of 4K bytes. Addresses falling outside any 
pages cached in the TLB will cause a translator, imple 
mented either in hardware or software, to load a trans 
lation entry for the new page into the TLB. If the new 
page is beyond the user's allocated memory, then a page 
fault similar to the segment out-of-bounds fault can be 
signalled by the translator. 

Both segmentation and paging can be used for mem 
ory protection and management. Both perform a similar 
function in re-locating or mapping the user's memory 
references, and both can include accessibility attributes 
such as read-only, execute-only, dirty, and referenced. 
However, because segments may begin and end at any 
arbitrary address, not just at page boundaries, a separate 
segmentation unit is normally required. Having two 
additional 32-bit adders for the base addition and the 
limit check is expensive and adds complexity. Typically 
an extra processor clock cycle is needed for the segmen 
tation unit. Since RISC systems are designed to be sim 
ple and fast, segmentation is often avoided by RISC 
CPU designers, or a simplified segmentation scheme is 
used. 

Because of the similarity in functions provided by the 
two memory management techniques, and the desire to 
emulate CISC architectures such as the x86 architec 
ture, on a RISC CPU, what is desired is to emulate x86 
segmentation on a RISC CPU that supports paging. 

SUMMARY OF THE INVENTION 

Segmentation from a CISC architecture is emulated 
with the paging system of a RISC CPU. The paging 
system of the RISC CPU has a sub-page validity buffer 
for assisting with emulation of segment bounds check 
ing. The sub-page validity buffer indicates which por 
tion of a page is valid. The sub-page validity buffer is for 
checking validity of a virtual address which comprises 
a virtual page number and a page offset. The sub-page 
validity buffer comprises a plurality of buffer entries, 
each of the plurality of buffer entries comprises a virtual 
page number field for comparing with the virtual page 
number and a sub-page validity field for indicating a 
valid subset of page offsets. 
A first compare means receives the virtual page num 

ber of the virtual address, and compares the virtual page 
number field of the plurality of buffer entries with the 
virtual page number of the virtual address. The first 
compare means indicates a selected buffer entry in the 
plurality of buffer entries if one of the virtual page num 
ber fields in the plurality of buffer entries matches with 
the virtual page number of the virtual address. The 
selected buffer entry has a matching virtual page num 
ber field and a selected sub-page validity field. 
A second compare means receives the selected sub 

page validity field from the selected buffer entry and 
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compares the page offset to the valid subset of page 
offsets. The second compare means indicates that the 
page offset is invalid if the page offset is not within the 
valid subset of page offsets. Validity of the page offset is 
checked for pages having only a subset of page offsets 
valid. This allows for emulation of segment bounds 
checking, watchpoint detection, and disabling of faulty 
memory blocks by specifying only a subset of the page 
offsets as valid. 

In another aspect of the invention, the sub-page valid 
ity field is stored within the TLB itself, rather than in a 
separate sub-page validity buffer. Further aspects of the 
invention include a TLB that is not loaded with a par 
tially-valid page, but that uses a software handler rou 
tine to perform segment bounds checking for partially 
valid pages. 
BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows how a virtual address is translated to 
physical address components. 
FIG. 2 is a translation-lookaside buffer. 
FIG. 3 is a conceptual diagram of paging. 
FIG. 4 is a conceptual diagram of segmentation. 
FIG. 5 is a block diagram of a prior-art CPU with 

segmentation and paging. 
FIG. 6 shows how the TLB entries are combined to 

define a sub-page block. 
FIG. 7 is a TLB entry having a variable page size. 
FIG. 8 is a TLB entry containing page offset bounds. 
FIG. 9 is a TLB entry having a valid mask for sub 

page validity. 
FIG. 10 shows a sub-page validity buffer accessed by 

a pointer field in a TLB. 
FIG. 11 shows a sub-page validity buffer accessed by 

a virtual address look-up. 
FIG. 12 is a diagram of a memory space containing a 

software handler routine. 
FIG. 13 shows a sub-page validity buffer accessed by 

the segment number and the virtual page number. 
DETAILED DESCRIPTION 

This improvement relates to emulation of segment 
bounds checking using an existing paging system. While 
the detailed description describes the invention in the 
context of CISC (complex instruction set computer) 
segmentation being emulated on a RISC (reduced in 
struction set computer) central processing unit (CPU), 
it is contemplated that the invention will apply to other 
architectures besides RISC and CISC without depart 
ing from the spirit of the invention. 

FIG. 2 is a diagram of a typical translation-lookaside 
buffer or TLB. A table of entries 63 is stored in a RAM 
array. One entry 64 is shown having a virtual page 
number field 66, a physical page number field 68, and 
attributes field 70. A 32-bit virtual address 50 is inputted 
from the address generation logic, and is broken into a 
lower 12-bit offset part 52, which is not translated, and 
an upper 20-bit virtual page number 54. If the TLB is 
fully associative, then the virtual page number 66 for 
each entry in the TLB will be compared by comparator 
74 to the input virtual page number 54 to determine if 
any addresses match. A set-associative TLB will use 
part of the input virtual address as an index to select a 
subset of the entries, and this subset of entries will be 
compared to the input virtual page number 54 for a 
match. If a match or hit occurs, then the 20-bit physical 
page number 68 will be read out of the matching TLB 
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4. 
entry and concatenated with the offset 52 to form the 
full 32-bit physical address 60. 

Attributes stored in the TLB can include protection 
bits which can make a page read-only, executable, or 
writable for a particular user, and can also include refer 
ence bits which indicate if the data on the page has been 
modified and will need to be written back to a master 
storage area such as a disk drive. When a page is refer 
enced, the CPU or operating system can check or mod 
ify these bits and take appropriate action. A “page 
fault' is signaled if an unallowed access (write to a 
read-only page, etc.) is attempted, or if a miss occurs 
(the translation is not present in the TLB). The page 
fault will usually cause the user's program to suspend 
while a supervisory program, such as an operating sys 
tem, loads, corrects or modifies the TLB or page tables 
before returning control to the user program. 
The TLB may be filled and controlled by hardware 

on the CPU, such as a translator, or the TLB may be 
refilled by a software program such as an operating 
system. When a page fault occurs, the hardware or 
software will re-load or modify the TLB and return 
control to the program at the instruction that caused the 
page fault, which should not page-fault a second time 
for the same reason. Thus the page fault handler should 
be invisible to the user's program. 
FIG.3 shows that a virtual memory space 76 may be 

re-mapped to a physical memory space 78 by paging. 
Pages may be re-ordered and re-located by the paging 
mechanism. For example, virtual page number 0 is 
mapped to physical page number 2, while virtual page 3 
is mapped to physical page 0. Thus paging can re-locate 
pages to anywhere in the physical memory, but it can 
only re-locate blocks that are one or more pages in size, 
and the blocks must end and begin on 4K-byte page 
boundaries. 

Segmentation can be combined with paging. Segmen 
tation performs a first translation, translating a virtual 
address to a linear address. Then the linear address is 
inputted to the paging unit in lieu of the virtual address, 
and is then translated to a physical address. Thus the 
virtual memory space 76 of FIG. 3 is replaced with a 
linear memory space when segmentation first translates 
the virtual addresses to linear addresses. FIG. 4 is a 
diagram showing a small portion of a linear memory 
space 14 accessed by a CPU. The memory space 14 is 
split up by paging into pages of 4096 bytes each (4 
Kbytes). These pages may next be reordered by the 
paging unit as was shown in FIG. 3. A user progran 
may have access to one or more pages or segments, 
while another user may have access to other pages and 
segments. 

Data segment 2 is accessed by user A with program 
or virtual addresses. These virtual addresses start at 
address 0 bytes, reference numeral 6, and go up to the 
segment limit 10, which is 9000 bytes in this example. 
Any user memory reference to data segment 2 with an 
address less than 0 would cause a memory reference 
error or exception for being below the lower bound. 
Likewise, any memory references to data segment 2 
with an address greater than 9000 bytes would cause a 
memory error for being above the upper limit or bound. 
Code segment 4 is another segment accessed by user A, 
and has a start address 8 at 0 bytes and an upper bound 
12 at 500 bytes. The program will indicate which seg 
ment to access either implicitly or indirectly by refer 
encing a certain register or using a certain type of in 
struction, or directly by specifying the segment to use in 
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the instruction. The virtual address alone does not con 
pletely specify the memory location, since the same 
virtual address may exist in several different segments. 
Segments 2 and 4 are mapped into the linear memory 

space 14 by a segmentation unit on the CPU. Segment 2 
has a base address 16 of 4000 bytes, which is 96 bytes 
below the beginning 18 of page 1 at 4096 bytes (4 
Kbytes). Since segment 2 is 9000 bytes long, the upper 
bound 20 is BASE--LIMIT, O 
4000--(9000-1)= 12,999 bytes. Address 12,999 is the 
last valid address of the data segment 2. Page 3 starts at 
address 22, which is 12. Kbytes, or 12,288 bytes, and 
ends at address 24, which is 16 Kbytes, or 16,384 bytes. 
Thus segment 2 begins within page Oand ends in the 
middle of page 3. As shown, segment 4 fits entirely 
within page 0, being only 500 bytes long and not cross 
ing a page boundary. 
FIG. 5 is a block diagram of address generation in a 

typical x86 processor, which includes both segmenta 
tion and paging. ALU 30 calculates a virtual address 32 
from address components indicated by an instruction 
being processed. ALU 30 or other decode logic (not 
shown) indicates which segment is being referenced by 
the instruction and selects one segment descriptor 34 in 
a segment descriptor register array 33. The selected 
segment descriptor 34 includes a base address field 
which outputs the base or starting address of the se 
lected segment on line 36, and a limit or upper bound 
which is outputted on line 40. Virtual address 32 is 
added to the base address 36 in segment adder 42, to 
produce a linear address 38. The segment adder 42 must 
be a full 32-bit adder in the x86 architecture because 
Segments can begin and end on any boundary, down to 
single-byte granularity. Other architectures that restrict 
the segment to begin and end on page boundaries need 
not add the lower 12 bits, and thus can use a smaller 
adder. 

Subtractor 44 subtracts the virtual address 32 from 
the limit 40. If a negative value results, then the virtual 
address exceeds the limit and a segment overrun erroris 
signaled. A second adder/subtractor could be used to 
check the lower bound of the segment; however if the 
lower bound is always virtual address 0, then the seg 
ment adder 42 can be used for the lower bound check. 
If the result is a negative number then the lower bound 
has been violated. Thus the negative flag or the sign bit 
may be used for lower bound checking. Comparators 
may also be employed for bounds checking. 

Linear address 38 is translated to a physical address 
by translation-lookaside buffer or TLB 46, which is a 
small cache of the page translation tables stored in main 
memory. As previously described in reference to FIGS. 
1 and 2, the TLB 46 translates the upper 20 bits of the 
linear address by searching the associative TLB cache 
for a match, and if one is found, then replacing these 
upper 20 bits with another 20 bits stored in the TLB 46. 

If the linear address is not found in the TLB, then a 
miss is signaled to the translator 48, which accesses the 
page tables in main memory and loads into the TLB the 
page table entry that corresponds to the linear address. 
Future references to the same page will "hit' in the 
TLB, which will provide the translation. Translator 48 
may be implemented entirely in hardware, entirely in 
software, or in a combination of hardware and software. 
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EMULATION OF SEGMENTATION WITH A 
PAGING-ONLY CPU 

The invention emulates segmentation with a RISC 
CPU that typically only supports paging. The segmen 
tation hardware of prior-art CPU's does not need to be 
added to the RISC CPU when this invention is used. 
Reducing the amount of hardware on a CPU is greatly 
desired because the cost and complexity of the CPU is 
reduced. However, segmentation must be supported in 
some cases for software compatibility. These and other 
advantages of the invention will become apparent upon 
examination of the detailed description of some of the 
embodiments of the invention. 
Two functions must be performed in order to emulate 

segmentation: the segment base must be added to the 
virtual address, and the resulting linear address must be 
checked for validity. The base addition can be per 
formed in the central processing unit's (CPU’s) arith 
metic-logic-unit (ALU). The-2-port ALU normally 
required to generate the virtual address from address 
components may be extended to a 3-port ALU, which 
allows the segment base to be added to the components 
of the virtual address at the same time that the virtual 
address is being generated. Thus the ALU calculates 
the linear address directly, rather than just the virtual 
address. Using a 3-port ALU eliminates the extra pipes 
tage and processor clock cycle required if a separate 
addition step for the segment base is employed. Thus 
the ALU will output the linear address, but without 
checking the address for validity. 
The second function, the validity checks, includes the 

base and bounds check, and attributes checking. Seg 
ment attributes such as read-only and dirty are almost 
identical to the attributes needed for paging. Thus pag 
ing can perform all the attribute checking for both seg 
mentation and paging. The operating system or emula 
tion software merely has to ensure that the paging attri 
butes are set to reflect the most restrictive combination 
of the paging and the segment attributes. For example, 
if the page is read-write, but the segment is read-only, 
then the entry in the TLB for this region is set to read 
only, the more restrictive. 

Base and bounds checking would be simple if seg 
ments always began and ended on page boundaries, 
because the un-augmented paging hardware could be 
used. When segments begin and end at arbitrary bound 
aries, only a part of a page may be valid. For example, 
in FIG. 4 data segment 2 is mapped by segmentation to 
all of pages 1 and 2, and to the upper portion of page 0, 
and to the lower portion of page 3. Only the part of 
page 0 between the base 16 and the page boundary 18 is 
valid for segment 2. Likewise, only the lower portion of 
page 3, from page boundary 22 to segment bound 20, is 
valid. 

EVENTS ON PAGES 
The invention can be more readily understood by 

introducing the concept of an event. An event is a loca 
tion in memory that requires special processing not 
supported by a typical prior-art paging system. The 
paging system of the present invention performs special 
operations for pages having an event located within the 
page. These special operations allow for emulating seg 
ment bounds checking or other CISC memory features. 
However, the prior-art segmentation hardware does not 
need to be added to a CPU using the present invention. 
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An "event may be defined for any page that is not 
wholly valid. In the example of segment 2 of FIG. 4, 
pages 0 and 3 have events on them, while pages 1 and 2 
do not. Events exist at the base and bound of segments, 
because there only a portion of the page may be valid 
for the segment. Pages without events are handled by 
the paging hardware and software without any modifi 
cation. Thus references within segment 2 that lie on 
pages 1 or 2 will be translated by the paging system 
without bounds checking, whereas in the prior art of 10 
FIG. 5 bounds checking is performed on all references 
in a segment. However, pages with events must be han 
dled in a special manner to ensure that only the valid 
portion of the page is accessed. 

Events may also be defined to support other features, 
such as removing defective memory locations by map 
ping out these bad locations that commonly occur in 
large memory arrays such as dynamic RAM. Another 
use for events is for setting program watchpoints, 
where the program halts execution when a specified 
address or range of addresses are referenced. In FIG. 4, 
if DRAM addresses 6000 to 6016 were faulty, page 1 
could have an event defined for it to disable references 
to these faulty address locations. Emulation software 
could re-direct the references away from the faulty 
memory locations to other unused memory. Thus the 
entire DRAM bank of chips would not have to be dis 
abled, only those specific faulty locations within the 
DRAM chips. 
Thus events are used to designate some pages as hav 

ing partial validity, regardless of the reason for the 
event. Events extend the paging system's validity to 
finer granularities than an entire page, yet pages with 
out events are processed as they normally would be. 

Various embodiments of the invention will now be 
discribed. These embodiments use events to designate 
pages that are partially valid. Emulation of segment 
bounds checking is thus possible because pages may be 
only partially valid. 
EVENT HANDLING BY SUPERVISORY CODE 

The first embodiment of the present invention is sim 
ple, requiring that very little or no additional hardware 
be added to the CPU. The most basic method of han 
dling events is to not load into the TLB any page with 
a defined event. Thus any reference to pages with 
events would cause a page fault, which would then 
cause a supervisory software routine to be processed. 
This routine can check attributes and perform a bounds 
check using simple instructions. The routine would load 
the segment descriptors from memory, or extract the 
base or bounds value from the descriptor, and compare 
the bound to the virtual address, possibly with a sub 
tract and a compare/test flags instruction. If the refer 
ence is not valid, such as when a segment fault occurs, 
the code would take the appropriate action. This action 
may include returning control to the operating system 
or a supervisory program. A valid reference could be 
emulated by the supervisory routine, for example by 
reading or writing memory and loading a CPU register 
with the data item, before returning control to the user 
program at the following instruction. 

ONE-TIME TLB ENTRY 

If the reference is valid, the supervisory program may 
also use a special one-time TLB entry, rather than emu 
late the instruction. A permanent TLB entry cannot be 
loaded because future references to the page might lie 
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8 
outside the valid portion of the page. Only completely 
valid pages are loaded into the TLB in this embodiment. 
The page tables are accessed by the supervisory pro 
gram to translate the linear address to a physical ad 
dress. The supervisory program loads a one-time TLB 
entry with the virtual address and the physical address, 
the correct translation needed by the faulting instruc 
tion, and returns control to the user program. The user 
program repeats the faulting instruction, which does 
not fault a second time but uses the translation that was 
just loaded into the one-time TLB entry. If the next 
instruction also references the same event-containing 
page, then another page fault is signaled because the 
one-time TLB entry becomes invalid after being used. 
The supervisory program will again check the refer 
ence for validity, and possibly again load the one-time 
TLB entry and return to the user program. Thus the 
supervisory program will check each reference on a 
page containing an event, but unlike the previous en 
bodiment, the supervisory program is not required to 
emulate the faulting user instruction. 
While this method results in many page faults when 

pages containing events are being referenced, the per 
formance loss may not be significant for large segments 
of many pages, because only the partial pages at the 
beginning and end of the segment cause page faults. 
Nearly all of the large segment lies in fully valid pages. 
The one-time TLB entry may be implemented in 

several ways. A normal TLB entry may include an 
extra “one-time-only' bit in the attributes field. This bit 
would be set, validating the entry when the TLB entry 
is loaded by the supervisory program. The first memory 
reference after returning to the user program would 
clear this bit, which would invalidate the reference for 
future instructions. Only the next instruction after re 
turning control to the user program could use the TLB 
entry. 
Another implementation is an auxiliary one-time 

TLB. This TLB could have only a single entry. This has 
the advantage of not adding complexity to the main 
TLB. Other implementations might have only a subset 
of the TLB entries with the one-time attribute bit. Hav 
ing more than a single one-time TLB entry may be 
beneficial when an instruction is able to make several 
memory references, such as for fetching multiple oper 
ands or words from code. 

VARIABLE-PAGE-SIZE TLB 

Another embodiment for sub-page validity checking 
does not require the intervention of supervisory code 
for every reference to a page containing an event. Addi 
tional bits of information are stored in the TLB to indi 
cate the size of the valid page. Not all entries in the TLB 
need to have the page size fields, so the additional cost 
of this embodiment can be reduced by having only a 
few TLB entries with the additional page size fields. 
The pages can be full size, 4K bytes, or a fraction of the 
full page size, but only powers of 2 are used in order to 
simplify the design. Pages sizes may be 4K, 2K, 1 K, 512, 
256, 128, 64, 32, 16, 8, 4, 2, or 1 byte. 

If a direct-mapped or set-associative TLB were used, 
then any particular page could only be located in 1 or a 
few locations in the TLB, up to the degree of set asso 
ciativity. In this embodiment the TLB is preferably 
fully associative, so that a single page containing an 
event may have several entries in the TLB, not just one. 
The entries will indicate which parts of the page are 
valid, with each entry being of a different size in most 
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cases. For example, if a segment ends at offset Ox)A5 
hex, or 3492 decimal, in a 4K-byte page, the following 
entries would be loaded in the TLB for that one page: 

TABLE 

Variable Page Six TLB Entries Example 

10 
TLB. The TLB will determine if a page hit has oc 
curred by comparing the virtual page number from the 
ALU to the virtual page number stored in the TLB 

Entry PageSize (bytes) Page Offset (decimal) Page offset calculation 
1. 2K O O 
2 K. 2048 2K 
3 256 3072 2K--K 
4. 128 3328 3K-256 
5 32 3456 3K-256-- 28 
6 4 3488 3K-256- 128-32 
7 34.92 3K-256-28-32-4 

Thus 7 entries would be loaded into the TLB for this 15 
single page. Each entry designates a successively 
smaller portion of the page, down to single-byte granu 
larity. All 7 entries would contain the same virtual page 
number in the virtual address match field, and all entries 
would be page hits. The page size field is then used to 20 
determine how many additional address bits should be 
compared. A page size of 2K will indicate that one 
additional address bit is compared. If 4K is designated 
by the 13th adress bit, A12, then A11, the next least-sig 
nificant bit (LSB), will also be compared. A page size of 25 
1K will require that 2 additional bits be compared, 
while a page size of 1 byte will require that all the low 
order page offset bits be compared. All specified addi 
tional bits must match for the entry to be a complete hit. 

In Table 1, each entry has a successively larger page 30 
offset as the sub-page size decreases. FIG. 6 shows 
graphically how the TLB entries of Table 1 are com 
bined to define a memory block 80 that is valid from 
page page offset 0, to offset 0xDA5 hex (3492 decimal). 
Entry 1 defines a 2 K-byte sub-page 80-1 from address 0 35 
to address 2047. Entry 2 defines a 1 K-byte sub-page 
80-2 from address 2048 to address 3071, while entry 3 
defines a 256-byte sub-page 80-3 from address 3072 to 
3327. Likewise entries 4 to 7 define successively smaller 
sub-pages 80-4, 80-5, 80-6 until the last (7th) entry de- 40 
fines a 1-byte sub-page 80-7 at address 3492. Thus by 
combining sub-pages 80-1 through 80-7, a valid block 80 
from address offset 0 to 3492 is defined. 
This embodiment requires that 2 additional fields be 

stored with the TLB entry. FIG. 7 shows an entry 64A 45 
in the TLB for this embodiment. Entry 64A contains a 
virtual page number field 66, a physical page number 
field 68, and attributes field 70, as in the prior-art TLB 
entry 64 of FIG. 2. A page size field 67 indicates the 
sub-page size, from 4K to 1 byte. As there are 13 possi- 50 
ble sizes, 4 binary bits can be used to encode the sub 
page size. These 4 bits are decoded, and each decoded 
bit is used to enable a bit-wise compare of a successively 
lower-significance address bit. The second additional 
field is the sub-page offset field 69. This field 69 specifies 55 
the starting address of the sub-page within the page. In 
a full implementation of a 4K byte page, down to byte 
granularity, this field 69 is 12-bits wide, the full offset 
address size. 

TLB BT-MASK FOR BOUND ENCODING 

The previous embodiment required several entries in 
the TLB for a single event-containing page. Events may 
also be specified using just a single TLB entry. In this 
embodiment, some TLB entries are extended with addi- 65 
tional bits to encode the sub-page validity information. 
This sub-page validity information will be consulted to 
determine if a memory reference is a valid hit in the 

entries. If a page hit is detected for an entry, then the 
sub-page validity information will be consulted to deter 
mine if the memory reference falls within a valid por 
tion of the page. Thus a subset of all the page offsets 
may be specified as being valid. 
A trivial but expensive embodiment is to store one 

sub-page valid or mask bit for every byte in the page. 
Thus 4096 mask bits would be required, one mask bit for 
every byte within the 4K-byte page. This bit-mask field 
will be consulted if the referenced virtual page number 
matches the virtual page number stored in the TLB. 
Each byte that is referenced must also have its corre 
sponding valid bit set in the bit-mask field for the refer 
ence to be a valid one. 

Since there are typically only a limited number of 
events on any particular page, a full 4 K-byte bit mask 
is not needed. Less expensive embodiments are thus 
possible that allow for a limited number of events on a 
page. 

PAGE OFFSET BOUNDS ENCODING 

In this embodiment, shown in FIG. 8, the TLB entry 
64B has the virtual page number field 66, the physical 
page number field 68, and attributes 70 of the prior-art 
TLB. In addition, a first bounds field 82 and a second 
bounds field 84 are added. Each bounds field encodes a 
page-offset address of an event. For example, the page 
offset bounds could encode the offset address of the 
base or the upper bound of a segment that lie within a 
page. Two offset bounds fields are provided in this 
embodiment for efficient encoding of pages with two 
events, which occur for small segments that lie entirely 
within a single page, program watchpoints, and faulty 
memory locations. These are typically small blocks 
within a page. Thus by having two offset bounds fields, 
the starting and ending addresses for the small block 
may be specified. 
The page-offset bounds fields 82, 84 contain enough 

bits to specify the page offset down to the desired gran 
ularity. Thus for a 4 K-byte page, which has 12 bits of 
address offset, 32-bit aligned word granularity requires 
that 10 bits be stored in each offset bounds field 82, 84, 
while full byte-granularity requires that a full 12-bit 
offset address be stored in each offset bounds field 82, 
84. 

Control bits 86 specify how the offset bounds 82, 84 
are to be interpreted. For a first offset bounds 82 having 
a value 'x' and a second offset bounds 84 having a 
value of “y”, a simple encoding for control bits 86 is 
shown in Table 2. 
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TABLE 2 

Control Bits Encoding for Page Offset Bounds 
Control 

Type Bits Referenced Page Offset is Valid if: 
Whole Page 000 Whole page valid 
Segment Base 001 > X 
Segment Bound 010 <y 
Within Page 011 > x AND < y 
Two at Ends 00 < x OR a y 

Several types of events may be supported with two 
offset bounds and the encoding of Table 2. With the 
control bits 86 set to "000”, the entire page is valid. An 
encoding of "001" specifies that all address greater than 
the first offset bound 82 is valid, as when a segment 
begins within a page. The "010” encoding may be used 
for the end of a segment, when the upper bound ends 
within a page. Thus the second offset bound 84 specifies 
the upper limit of validity within the page. Encoding 
"011” specifies validity between the two offset bounds 
82, 84, which may be used to specify a segment that lies 
entirely within a single page. The "100" encoding speci 
fies that the entire page is valid except the region be 
tween the two offset bounds 82, 84. This is used for 
watchpoints and disabling faulty memory locations. 
Any reference between the two bounds 82, 84 will 
cause a page fault. 
While an embodiment with only two page offset 

bounds fields 82, 84 has been explained, it would be 
obvious for one skilled in the art to employ a different 
number of offset bounds fields or a different number of 
encoding control bits 86. For example, the encoding 
may be changed for greater than or equal to a page 
offset bound value, and still fall within the sprit of the 
invention. 

VALID MASK 

Another embodiment, shown in FIG. 9, of sub-page 
validity checking on a TLB is to use a valid mask field. 
There are many embodiments possible, and the one 
described herein is meant to be illustrative and not to 
limit the invention to the exact form shown. 
A valid mask field 88 is added to the TLB entry 64C, 

which contains the virtual page number field 66, the 
physical page number field 68, and attributes 70, as in 
the prior-art. The valid mask field 88 is split up into 4 
sub-fields 90,91, 92,93, each of which is a bit mask for 
a certain granularity of references. Sub-field 90 contains 
an 8-bit mask, one bit for each of the 8 512-byte sub 
blocks in a 4 K-byte page. Sub-field 91 contains an 8-bit 
mask, one bit for each of the 864-byte sub-blocks within 
one of the 512-byte sub-blocks of the page. Likewise, 
sub-field 92 contains an 8-bit mask, one bit for each of 
the 8 8-byte sub-blocks within one of the 64-byte sub 
blocks of the page, and sub-field 93 contains an 8-bit 
mask, one bit for each of the 8 1-byte sub-blocks within 
one of the 8-byte sub-blocks of the page. Thus 48-bit 
masks in sub-fields 90,91, 92, 93 are used to specify an 
event with increasingly finer granularity. Each of sub 
fields 90,91, 92, 93 is associated with three bits of the 
12-bit page offset. Thus sub-field 90 encodes the three 
page offset address bits A11, A10, A9, while sub-field 91 
encodes A8, A7, A6, sub-field 92 encodes A5, A4, A3, 
while sub-field 93 encodes A2, A1, and A0. If a logical 
“1” (an electrical signal of typically 5 or 3.3 volts) is 
used to denote validity, then a bit-mask value of 
“100000' would indicate that the first three of the 
eight blocks are valid. If this were for the first sub-field 
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12 
90, then the first three 512-byte sub-blocks on the page 
would be valid. 

ONE-HOT ENCODING 

One-hot encoding is a method wherein only a single 
bit in a field of bits is active. This single active bit selects 
ony one valid block out of a plurality of blocks. The 
sub-fields 90, 91, 92, 93 may be encoded by several 
methods. If only one valid sub-block is allowed for 
every bit-mask, then the previously-described encoding 
may be used, since each 8-bit mask would identify only 
a single valid sub-block of the eight sub-blocks for each 
sub-field. Thus the encoding: 

00100000 00000001 10000000 00010000 
for sub-fields 90,91, 92,93 would indicate that the third 
of the eight 512-byte sub-blocks is valid, and within this 
third 512-byte block, only the last (eighth) 54-byte sub 
block is valid. Within this 54-byte block, only the first 
8-byte block is valid, and only the fourth of these 8 
bytes is valid. This encoding-thus specifies that the 
1476th byte on the 4096-byte page is the only byte valid. 
Note that the last sub-field 93, need not have only a 
single valid bit since there are no more sub-blocks with 
finer granularity. Thus if the last sub-field 93 had the 
bit-mask value: 

00011110 
then bytes 4, 5, 6, and 7 would be valid in that field. This 
specifies that the four bytes 476 through 1479 are valid. 

TRANSTION ENCODING 

If the mask having a '1' value indicates validity, then 
a mask having a bit-transition from a 1 to a 0, or a Oto a 
1 can be used to indicate that the next lower sub-field's 
bit mask must be consulted. Transition encoding can be 
used to specify the valid region within a page when 
only a single event is present on the page. This is typical 
for the beginning and end of a segment. The lower 
bound of the segment, the base, can be encoded by a 
transition from a 0 to a 1, which will specify that the 
upper portion of the page is valid while the lower por 
tion is not valid. The upper bound of the segment may 
be specified by a transition from a 1 to a 0, indicating 
that the lower portion of the page is valid while the 
upper portion is not valid. The example of Table 1 
showed an upper bound of 0xDA5 hex, or 3492 decimal, 
within a page with the lower portion, from Oto 3492, 
valid for the segment. This value can be encoded: 

11111100 11111100 11110000 11111,000 
indicating that the first 6512-byte blocks are valid, and 
the first 6 of the 8 64-byte blocks in the 7th 512-byte 
block are valid. Within the 7th 64-byte block, the first 
four 8-byte blocks are valid, and the first 5 bytes of the 
5th 8-byte block, of the 7th 64-byte block, of the 7th 
512-byte block, are valid. Thus a “1” indicates that the 
entire block specified is valid, while the first “0” from 
the left side indicates that a portion of that sub-block 
may be valid, depending on the next lower sub-fields. 

BUBBLE ENCODING 

When only a small portion of the page needs to be 
disabled or marked as invalid, as for example when a 
watchpoint is set or a faulty memory location specified, 
the bubble encoding may be employed. Again a “1” 
indicates that the sub-block which corresponds to the 
mask bit is valid. A single “0” is allowed for any sub 
field. This zero indicates that the next lower sub-field 
mask should be consulted to determine which portion of 
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the page is not valid. The byte at page offset address 
0x6B4 hex would be specified with this encoding: 
11011 11011111111110111110111 

The 4th 512-byte block has the third 64-byte block with 
a non-valid byte on it. In this 3rd 64-byte block, the 7th 
8-byte block has the 5th byte marked as not valid. Thus 
only one byte at 6B4 hex is not valid. 
Various other encodings and combinations with the 

page offset bounds field are possible within the spirit of 
the invention. One or more control bits could be stored 
with the TLB entry to specify which encoding, one-hot, 
transition, bubble, or another should be used for that 
particular TLB entry, or a global control bit could 
indicate the type of encoding used. 

SUB-PAGE VALIDITY BUFFER 

Since there are usually only a small, fixed number of 
events on a system, it is not necessary to add sub-page 
validity information to every TLB entry. However, 
since the TLB is usually implemented as a small RAM 
array, adding additional bits to some but not all of the 
entries renoves the symmetry of the RAM array and 
may make the TLB more expensive to implement. In 
addition, the longer TLB entries with the sub-page 
validity fields must be reserved for pages with events. 
This adds complexity to TLB management. 
A flexible alternative is to add a second auxiliary 

structure for storing the sub-page validity information 
on the CPU die. This auxiliary structure is closely cou 
pled to the regular TLB. This structure, the sub-page 
validity buffer 94 (SPVB), is shown in FIG. 10 along 
with the regular TLB 63. TLB 63 contains a virtual 
page number field 66, a physical page number field 68, 
and attributes 70, as in the prior-art TLB. The physical 
address 60 is thus composed of translated page number 
56 and the lower offset portion 52. However, additional 
index pointer bits are added to each TLB entry, as 
shown for entry 64 with index field 71. Index field 71 is 
used to indicate the location in the SPVB of the sub 
page validity entry 95 associated with the TLB entry 
64. This index field 71 is loaded by the system software 
or TLB handler when the TLB entry is loaded. If no 
event exists for the page, then the index entry is set to 
“OOOO’ to indicate that the SPVB 94 need not be con 
sulted. Other values of index field 71 will be read out of 
TLB 63 over index bus 98 to select an entry 95 in SPVB 
94. SPVB entry 95 may contain offset bounds fields and 
control bits, as described earlier in reference to FIG. 8, 
or SPVB entry 95 may contain sub-fields for valid 
masks, as described earlier in reference to FIG. 9, or a 
combination of these methods may be used. The size of 
the SPVB 94 is based on the number of events that may 
need to be loaded into the TLB at any one time. Thus 
the SPVB 94 may be much smaller than the TLB 63. 
Because index bits 71 are used to specify which entry 95 
in SPVB 94 is to be referenced, any TLB entry 64 may 
use any entry 95 in the SPVB 94. Thus great flexibility 
is afforded the system software. 
TLB entry 64 could include additional information 

preferably stored in the SPVB 94, such as not only 
index bits 71 to locate the particular corresponding 
entry 95 in SPVB 94, but also to indicate how the SPVB 
entry 95 is to be used. For example, the control bits 86 
of FIG. 8 could be stored in either the TLB 63 or the 
SPVB 94. 

5 

14 
OPERATION OF SUB-PAGE VALIDITY 

BUFFER 

Sub-page validity buffer 94 (SPVB) operates in con 
junction with TLB 63 in the following manner. A 32-bit 
virtual address 50 has an offset portion 52 and an upper 
page number portion 54. The virtual page number por 
tion 54 is compared to the virtual page number 66 stored 
in TLB entry 64 using comparator 74, which signals a 

0 page hit if the page numbers match. Using well-known 

15 

techniques in the art, a single TLB entry 64 may be 
compared, or an associative search may be made of all 
entries in the TLB, or a sub-set of the entries may be 
compared if the TLB is of the set-associative type. If a 
page hit is signaled, then index bits 71 are read out of 
TLB 63 and used to select an entry 95 in SPVB 94. The 
sub-page validity entry 99 is read out of SPVB 94 and 
inputted to logic block 96. The lower offset portion 52 
of the virtual address 50 from the ALU is also inputted 
to the logic block 96. Logic blgck 96 uses the sub-page 
validity entry transferred over bus 99 to control combi 
natorial logic and comparators for comparing the sub 
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page defined in SPVB entry 95 with the page offset 
address 52. If the page offset address is found to lie 
within a valid portion of the page, then a valid offset is 
signaled over line 97, allowing the CPU to continue the 
memory reference. However, if the offset 52 lies outside 
of the valid portion of the page, then logic block 96 
signals that the page offset is not valid on line 97, caus 
ing a page fault to be signaled, which invokes a TLB 
handler. Logic block 96 can be implemented by one 
skilled in the art using random or combinatorial logic 
based on the earlier description of the various embodi 
ments of this invention. 

SUB-PAGE VALIDITY BUFFER WITH 
VIRTUAL LOOKUP 

An alternative embodiment, shown in FIG. 11, of the 
sub-page validity buffer 94 (SPVB) is to include a vir 
tual page number field 66A in SPVB entry 95. The 
proper entry 95 in the SPVB 94 is thus determined by an 
associative look-up as is performed by the associative 
TLB 63. If a match is found between the virtual page 
number portion 54 of the virtual address 50 and the 
virtual page number 66A stored in a SPVB entry 95, 
then that corresponding entry 95 is selected and its 
sub-page validity information 99 is inputted to logic 
block 96, which operates in the same manner as de 
scribed for FIG. 10. Should no matching virtual page 
entry 66A be found in the SPVB 94, then the page has 
no events defined for it and a valid offset is signaled on 
line 97. If the page is also not present in TLB 63, then a 
page miss is signaled and a page fault occurs, invoking 
the TLB handler, either a software routine or a hard 
ware sequencer. This implementation may be faster 
than that of FIG. 10 because the virtual lookup in the 
SPVB 94 operates in parallel with the lookup in TLB 
63, whereas the embodiment of FIG. 10 requires that 
the TLB 63 lookup occur first so that the index bits 71 
may be read out of TLB 63 and then used to index 
SPVB 94. Other reference numerals in FIG. 11 corre 
spond to similar elements described in reference to FIG. 
10. 
FIG. 13 shows that the sub-page validity buffer may 

be accessed by additional information, such as which 
segment register was used to create the linear address of 
a reference. This would aid emulation of a segmented 
system with several segment registers. The TLB entry 
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(as shown in FIG. 11) still includes the control informa 
tion on a page basis, but the sub-page validity buffer 94 
of FIG. 13 will have an additional segment number field 
67 indicating which segment register the entry 95 refers 
to. This additional segment number field 67 is stored in 
SPVB entry 95 along with the virtual page number field 
66A. Both the virtual page number and the segment 
number must match for a hit in the sub-page validity 
buffer. Comparator 74 will compare the virtual page 
number as described in reference to FIG. 11, while 
comparator 75 compares the segment number stored in 
the additional segment number field 67. The segment 
number 55 from the address generation unit will be sent 
to the paging system along with virtual address 50. The 
access to the sub-page validity buffer may still proceed 
in parallel with the translation-lookaside buffer look-up. 

SOFTWARE HANDLER ROUTINE 

FIG. 12 is a diagram of a physical memory space 78 
which contains a user program 110, an operating system 
112, and a software handler routine 114. Software han 
dler routine 114 will be activated when a page fault 
occurs, either being directly called by the page fault or 
called by another routine, such as another TLB miss 
handler routine in the operating system 112, responsible 
in some prior-art systems for loading the TLB when 
paging is enabled. Software handler routine 114 will 
fetch the segment bounds fields from the segment de 
scriptors, which are usually stored with the operating 
system 112. Software handler routine 114 will compare 
the segment bound fetched from the segment descriptor 
to the offset portion of the linear or virtual address to 
check that the memory reference is to a portion of a 
page that is within the segment bounds. This checking 
need not be performed in the embodiments that contain 
sub-page compare hardware on the CPU itself. If the 
page offset is within the portion of the page that is valid 
for the segment, or the subset of page offsets that are 
valid for a partially-valid page, then the software han 
dler routine 114 will load a translation into the TLB or 
emulate the memory reference. In addition, if the page 
is wholly valid, but not yet loaded into the TLB, then 
the software handler routine 114 may load the transla 
tion into the TLB. The software handler routine 114 
could also signal to the operating system 112 to allow a 
routine in the operating system 112 to load the TLB 
entry. 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. Various combinations of the embodiments 
described and trade-offs among them are possible. For 
example, the variable-page-size embodiment suffers 
from the extra hardware needed to designate the sub 
page granularity down to the single-byte level. The 
one-time-TLB embodiment uses very little additional 
hardware, because slower software is used for bounds 
checking. The two embodiments could be combined to 
reach an optimum trade-off between the higher perfor 
mance of designating sub-pages in the TLB hardware, 
and the lower cost and complexity of using the software 
for bounds checking. Instead of designating sub-pages 
down to byte-granularity, sub-pages could be defined 
only down to an intermediate granularity, with soft 
ware checking the remaining references. Thus sub 
pages of 2K, 1 K, 512, and 256 bytes could be defined, 
and any reference within a block of 256 bytes of the 
event or bound would be checked by software. This 
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trade-off would support 4 of the 12 page sizes between 
2K and 1 byte, which is less than half the hardware for 
the full implementation, but reduces software checking 
to only 256 bytes of the 4096 bytes in the page, or 
1/16th of the total page. In summary, paging may be 
used to reduce the amount of hardware required to 
support segmentation. 
A page size of 4096 bytes was described with refer 

ence to the embodiments, but other page sizes and ad 
dress sizes may be easily substituted by one skilled in the 
art. Many other combinations of the embodiments dis 
closed are possible in light of the teachings herein. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illus 
tration and description. It is not intended to be exhaus 
tive or to limit the invention to the precise form dis 
closed. Many modifications and variations are possible 
in light of the above teaching. It is intended that the 
scope of the invention be limited not by this detailed 
description, but rather by the claims appended hereto. 
We claim: 
1. A paging system adapted for emulating segment 

bounds checking wherein pages completely contained 
within segment boundaries are not checked for segment 
bounds violations, whereas pages containing segment 
boundaries are tested for segment bounds violations by 
a sub-page validity buffer for checking validity of a 
virtual address, said virtual address comprising a virtual 
page number and a page offset, said sub-page validity 
buffer comprising: 

a plurality of buffer entries, each of said plurality of 
buffer entries comprising: 
a virtual page number field; and 
a sub-page validity field for indicating a valid sub 

set of page offsets within a page; 
first compare means for receiving said virtual page 
number and comparing said virtual page number 
field with said virtual page number, said first com 
pare means indicating a selected buffer entry of 
said plurality of buffer entries if said virtual page 
number field matches said virtual page number, 
said selected buffer entry including a selected sub 
page validity field; and 

second compare means for receiving said selected 
sub-page validity field and comparing said page 
offset to said valid subset of page offsets, said sec 
ond compare means indicating that said page offset 
is invalid if said page offset is not within said valid 
subset of page offsets, said second compare means 
signaling that said page offset is valid if no buffer 
entry in said plurality of buffer entries is a matching 
buffet entry, said matching buffer entry containing 
said virtual page number field matching said virtual 
page number, 

wherein the absence of said matching buffer entry in 
said sub-page validity buffer indicates that segment 
bound do not need to be checked for said virtual 
address, 

wherein pages completely contained within segment 
boundaries are not checked for segment bounds 
violations, 

whereby validity of said page offset is checked for 
pages having only a subset of page offsets valid. 

2. The buffer of claim 1 wherein said sub-page valid 
ity field comprises: 

a first field for specifying a size of said valid subset of 
page offsets, said size being equal to or less than 
said size of a page; and 
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a second field for specifying a page offset indicating a 
location of said valid subset of page offsets. 

3. The buffer of claim 1 wherein said sub-page valid 
ity field comprises: 

a first field for specifying a first page offset indicating 
a location of said valid subset of page offsets; 

control bits for encoding control information about 
said first field; and said second compare means 
including means for interpreting said first field with 
said control information. 

4. The buffer of claim 3 wherein said control bits 
indicate if page offsets within said valid subset of page 
offsets must be greater than or equal to, or less than or 
equal to said first page offset in said first field. 

5. The buffer of claim 4 wherein said sub-page valid 
ity field further comprises: 

a second field for specifying a second page offset 
further indicating said location of said valid subset 
of page offsets; 

wherein said control bits further indicate if said valid 
subset of page offsets is between said first page 
offset and said second page offset, said control bits 
further indicating if said valid subset of page offsets 
is outside of a region between said first page offset 
and said second page offset. 

6. The buffer of claim 1 wherein said sub-page valid 
ity field comprises: 

a valid mask field, said valid mask field comprising: 
a plurality of bit masks, said bit masks comprising a 

plurality of valid bits for indicating if a fixed-size 
portion of a page is valid. 

7. The buffer of claim 6 said plurality of bit masks 
corresponds to a different size for said fixed-size por 
tion, bit masks corresponding to a larger fixed-size por 
tion indicating which fixed-size portion is referred to by 
said bit mask corresponding to a next smaller fixed-size 
portion. 

8. A paging system for translating a virtual address to 
a physical address, said virtual address comprising a 
virtual page number and a page offset, said paging sys 
tem adapted for emulating segment bounds checking, 
said paging system comprising: 
a translation-lookaside buffer (TLB), said TLB com 

prising a plurality of page entries, each of said 
plurality of page entries comprising: 
a virtual page number field for comparing with said 

virtual page number, a match indicating that the 
page entry with the matching virtual page num 
ber field be selected; 

a physical page address field, for combining with 
said page offsets, for 

outputting to a main memory; 
sub-page validity means for indicating a specified 

subset of page offsets for pages containing a seg 
ment bound, said specified subset defined by said 
segment bound, the absence of a sub-page validity 
means for a particular page entry in said plurality 
of page entries indicating that segment bounds do 
not need to be checked for said particular entry; 
and 

sub-page compare means for comparing said page 
offset with said specified subset of page offsets, said 
sub-page compare means providing a segment out 
of-bounds indication if said page offset is not within 
said specified subset of page offsets, 

wherein pages completely contained within segment 
boundaries are not checked for segment bounds 
violations, 
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18 
whereby segment bounds checking is emulated by 

said paging system for a page that has only a subset 
of said page offsets accessible for a segment. 

9. The paging system of claim 8 wherein said sub 
page compare means comprises a software compare 
routine that compares said page offset to said segment 
bound; said paging system further comprising a transla 
tion handler, for loading page entries from main mem 
ory into said TLB, said translation handler being acti 
vated when no page entry in said TLB has a virtual 
page number field that matches said virtual page num 
ber, said translation handler not loading a page entry 
into said TLB for a partially-valid page having said 
segment bound within said page, said translation han 
dler activating said software compare routine when a 
partially valid page is accessed, 
whereby said TLB will be loaded only with fully 

valid pages, whereas partially-valid pages at said 
segment bound always cause a page fault, activat 
ing said software compare routine. 

10. The system of claim 9 further comprising a one 
time TLB entry, loaded by said translation handler if 
said page offset is within a valid portion of said partial 
ly-valid page, said software compare routine providing 
a valid indication to said translation handler if said page 
offset is within said specified subset of page offsets, said 
one-time TLB entry being valid for a single memory 
reference only. 

11. The paging system of claim 8 wherein said sub 
page validity means comprises 

a sub-page validity field for indicating said specified 
subset of page offsets, said specified subset of page 
offsets defined by said segment bound, said sub 
page validity field having a corresponding page 
entry in said TLB; 

the sub-page compare means receiving said sub-page 
validity field corresponding to said selected page 
entry, said sub-page compare means providing said 
segment out-of-bounds indication if said page offset 
is not within said specified subset of page offsets. 

12. The system of claim 11 wherein said sub-page 
validity field comprises: 

a first field for specifying a size of said specified sub 
set of page offsets, said size being equal to or less 
than said page size; and 

a second field for specifying a page offset indicating a 
location of said specified subset within said page. 

13. The system of claim 11 wherein said sub-page 
validity field comprises: 

a first bounds field for specifying a first page offset 
indicating a location of said specified subset within 
said page; and control bits for encoding a manner in 
which said sub-page compare means compares said 
page offset to said first bounds field. 

14. The system of claim 3 wherein said control bits 
indicate if said specified subset of page offsets is greater 
than or less than said first page offset in said first bounds 
field. 

15. The system of claim 14 wherein said sub-page 
validity field further comprises: 
a second bounds field for specifying a second page 

offset further indicating said location of said speci 
fied subset within said page; 

wherein said control bits further indicate if said speci 
fied subset of page offsets is between said first page 
offset and said second page offset or if said speci 
fied subset of page offsets is outside of a region 
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between said first page offset and said second page 
offset. 

16. The system of claim 11 wherein said sub-page 
validity field comprises: 
a valid mask field, said valid mask field comprising: 

a plurality of bit masks, said bit masks comprising a 
plurality of valid bits, each of said plurality of 
valid bits for indicating if a fixed-size portion of 
a page is valid. 

17. The system of claim 16 wherein each bit mask in 
said plurality of bit masks corresponds to a different size 
for said fixed-size portions, said bit masks correspond 
ing to a larger fixed-size portion indicating said location 
of said fixed-size portions that said next smaller bit mask 
refers to. 

18. The system of claim 11 wherein said sub-page 
validity field is joined to a corresponding page entry in 
said TLB and stored in said TLB. 

19. The system of claim 11 wherein said sub-page 
validity field is stored in a sub-page validity buffer com 
prising a plurality of sub-page entries, said plurality of 
page entries in said TLB further comprising a pointer 
field for selecting a sub-page entry in said sub-page 
validity buffer. 

20. The system of claim 11 wherein said sub-page 
validity field is stored in a sub-page validity buffer com 
prising a plurality of sub-page entries, each entry in said 
plurality of sub-page entries comprising said sub-page 
validity field, and a second virtual page number field, a 
sub-page entry being selected if said second virtual page 
number field matches said virtual page number. 

21. The system of claim 20 wherein said virtual ad 
dress further comprises a segment number, each entry in 
said plurality of sub-page entries further comprising a 
segment number field, said sub-page entry being se 
lected if said segment number of said virtual address 
matches said segment number field and if said second 
virtual page number field matches said virtual page 
number. 

22. A method for emulating segment bounds check 
ing in a paging system, said method comprising: 

loading a translation-lookaside buffer (TLB) with 
entries corresponding to pages containing a fixed 
number of page offsets, each entry present in said 
TLB corresponding to a page wherein every page 
offset is valid for reference; 
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translating a virtual address to a physical address 

using said entries in said TLB when said virtual 
address has a corresponding entry in said TLB, said 
corresponding entry having a virtual page number 
field matching a portion of said virtual address; 

generating a page fault if said virtual address has no 
corresponding entry in said TLB; 

loading a new entry into said TLB if said virtual 
address corresponds to a page wherein every page 
offset within said page is valid for reference and 
not checked for segment bounds violations; and 

executing a software handler routine if said virtual 
address does not correspond to a page wherein 
every page offset within said page is valid for refer 
ence, said software handler routine comparing an 
offset portion of said virtual address to a bound for 
a segment, said software handler routine continu 
ing execution of a user program if said offset por 
tion of said virtual address is within said bound for 
said segment, said handler routine sending a seg 
ment bounds fault to said user program if said offset 
portion of said virtual address is not within said 
bound for said segment, 

whereby segment bounds checking is performed by 
said software handler routine for pages wherein 
not every page offset address is valid for reference. 

23. The method of claim 22 wherein said software 
handler routine emulates a memory access referenced 
by said virtual address if said offset portion of said vir 
tual address is within said bound for said segment, said 
software handler routine transferring data between a 
main memory and a central processing unit generating 
said virtual address, said software handler routine con 
tinuing execution of said user program after transferring 
said data. 

24. The method of claim 22 wherein said software 
handler routine loads a translation entry into a one-time 
TLB if said offset portion of said virtual address is 
within said bound for said segment, said one-time TLB 
being valid only for said virtual address that is being 
translated, said software handler routine continuing 
execution of said user program after loading said trans 
lation entry, said user program using said translation 
entry in said one-time TLB to continue execution. 

25. The method of claim 22 wherein said virtual ad 
dress is a linear address generated by adding a segment 
base to an address generated by said user program. 
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