R0 0L 0 0 0O

1684A

United States Patent [19] (111 Patent Number: 5,481,684
. ’ 9
Richter et al. [45] Date of Patent: Jan. 2, 1996
[54] EMULATING OPERATING SYSTEM CALLS 5,226,164 7/1993 Nadas et al. .oeerveererceernemenenne 395/800
IN AN ALTERNATE INSTRUCTION SET 5,230,069 7/1993 Brelsford et al.ceerueeemeeenn. 395/400
USING A MODIFIED CODE SEGMENT: 5,241,636 §/1993 Kohn 395/375
RIPT 5,255,379 10/1993 Melo - 395/400
DESC OR 5,269,007 12/1993 Hanawa et al. 395/375
[75] Inventors: David E. Richter, San Jose; Jay C. g%gz;‘gg gﬁggj i‘:}rzfa:;a et al. " gggggg
Pattin, Redwood City; James S. ,291, \ e rnes
Blomgren, San Jose, all of Calif. OTHER PUBLICATIONS
[73] Assignee: Exponential Technology, Inc., San Combining both micro-code and Hardwired control in RISC
Jose, Calif. by Bandyophyay and Zheng, Sep. 1987 Computer Archi-
tecture News pp. 11-15.
Combining RISC and CISC in PC systems By Garth, Nov.
21] Appl. No.: 277,905 & Y y ’
21 Appl. No.: 277 1991 IEEE publication (?) pp. 10/1 to 10/5.
[22] Filed: Jul. 20, 1994 A 5.6-MIPS Call-Handling Processor for Switching Sys-
tems by Hayashi et al., IEEE JSSC Aug. 1989.
Related U.S. Application Data
Primary Examiner—Parshotam S. Lall
[63] Continuation-in-part of Ser. No. 179,926, Jan. 11, 1994. Assistant Examiner—Viet Vu
[51] Int CL® GOGF 9/30 Attorney, Agent, or Firm—Stuart T. Auvinen
[52] US.ClL ... 395/375; 395/500; 364/DIG. 1 571 ABSTRACT
[58] Field of Search 339955/?87(;50 57%% The CISC architecture is extended to provide for segments
’ that can hold RISC code rather than just CISC code. These
[56] References Cited new RISC code segments have descriptors that are almost

U.S. PATENT DOCUMENTS

3,764,988 10/1973 Omishioveeeeeererecesnenersenense 395/375
4,077,058 2/1978 Appell et al. .. . 395/650

4,633,417 12/1986 Wilburn et al. . 364/550
4,763,242 8/1988 Lee et al .ucvcereecrececrrencerns 395/500
4,780,819 10/1988 Kashiwagicocercreniecreieens 395/500
4,794,522 12/1988 SImMPSonccreserecromsesisssenns 395/500

4,812,975 3/1989 Adachietal. .
4,821,187 4/1989 Uedaet al.
4,841,476 6/1989 Mitchell et al. ...
4,876,639 10/1989 Mensch, Jr.

. 395/500
. 395/375

4,928,237 5/1990 Bealkowski et al. . 395/500
4,942,519 7/1990 Nakayamac..esecssernnes 395/775
4,943,913 7/1990 Clark 395/700

4,972,317 11/1990 Buonomo et al.coecerervrenes 395/375
4,992,934 2/1991 Portanova et al. . .

5,053,951 10/1991 Nusinov et al. ...
5,077,657 12/1991 Cooper et al. . .
5,097,407 3/1992 Hino et al. 395/375
5,136,696 8/1992 Beckwith et al. .
5,167,023 11/1992 de Nicolas et al. .
5,210,832 3/1993 Maier et al. ...occoverererrsnncrerernas 395/375

Emu ID

identical to the CISC segment descriptors, and therefore
these RISC descriptors may reside in the CISC descriptor
tables. The global descriptor table in particular may have
CISC code segment descriptors for parts of the operating
system that are written in x86 CISC code, while also having
RISC code segment descriptors for other parts of the oper-
ating system that are written in RISC code. An undefined or
reserved bit within the descriptor is used to indicate which
instruction set the code in the segment is written in. An
existing user program may be written in CISC code, but call
a service routine in an operating system that is written in
RISC code. Thus existing CISC programs may be executed
on a processor that emulates a CISC operating system using
RISC code. A processor capable of decoding both the CISC
and RISC instruction sets is employed. The switch from
CISC to RISC instruction decoding is triggered when con-
trol is transferred to a new segment, and the segment
descriptor indicates that the code within the segment is
written in the alternate instruction set.

6 Claims, 5 Drawing Sheets

62~ RISC 1D
o EX
| FETCH UNIT
CISC 1D 4
— 49
66 TLBON VA
52y
IPTR 10
u \]
sec| 7° T I
64 | Rea| LunkinsTR miss
*| MoDECTL e
4 0
21 PA.
ENTRY PT GEN r 5

U.S. Patent

Jan. 2, 1996

(u

nterrupt Signalle
to CPU

)

CPU
generates INT
ACK cycle

Interrupt #
sent to CPU

Fetch entry
in Intr Table

Fetch Entry
in Descriptor
Table

Sheet 1 of 5 5,481,684

Store IP,
CS, Flag on
Stack

l

Load CS, IP
from Intr
Table entry

Execute Intr
Service
Routine

Restore IP,
CS, Flags

Return control to
User program

Fig. 1

5,481,684

Sheet 2 of 5

Jan. 2, 1996

U.S. Patent

¢ 9Ol

802
mm/ _@m £e are
o 3dAL | 0 [1da| d 9L "LE 135440
LND aM
076l 138440 ¥010373S
0 Gl ol
<vN|\ ~ F A &
02 V0Z

U.S. Patent Jan. 2, 1996 Sheet 3 of 5 5,481,684

N

TLB
TRANS

Fig. 3

YA\ A

‘:j \

)”

BASE

V.A.

LIM

33_\\
SEG. DESCR.
!

ALU
80//

5,481,684

Sheet 4 of 5

Jan. 2, 1996

U.S. Patent

aATars

\ ave \FN V \ oze

91€T b6l avlolalsl veie .\mom
1IN ©93S 3Svd 93s J<om

wem\ Pl

0}

GL 9l | /<Nm

1€

5,481,684

Sheet 5 of 5

Jan. 2, 1996

U.S. Patent

G "bi4

A< NIO 1d AYLINI
.y
H 1 o
<
P Lo3don |
- . JLSNIMNN wwm
A
2T 0L
2N
o34 IAON oL
N~z
VA NOg1L . 8\ 99
%v) aiosio e
1INN
xa |4
»_ alosiy |e—
ﬂ n/3
—
Y,

HOL13d |

fN@

5,481,684

1

EMULATING OPERATING SYSTEM CALLS
IN AN ALTERNATE INSTRUCTION SET
USING A MODIFIED CODE SEGMENT
DESCRIPTOR

BACKGROUND OF THE
INVENTION—RELATED APPLICATIONS

This application is a Continuation-in-Part of copending
application for a “Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode”, filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926, having a common inventor and
assigned to the same assignee as the present application.

BACKGROUND OF THE INVENTION—FIELD
OF THE INVENTION

The present invention relates to a dual-instruction-set
processor, and more particularly to a method and apparatus
for emulating operating system calls using instructions from
a second instruction set.

BACKGROUND OF THE
INVENTION—DESCRIPTION OF THE
RELATED ART

An enormous base of software has been written for
existing operating systems such as the DOS™ and Win-
dows™ operating systems produced by Microsoft Corpora-
tion of Redmond, Wash. However, these operating systems
presently must be executed on x86 microprocessors manu-
factured by Intel Corporation of Santa Clara, Calif., and
others. The x86 architecture is an old complex instruction set
computer (CISC) architecture and is quite different from
today’s highly optimized reduced instruction set computers
(RISCs).

It is greatly desired to use newer RISC processors since
they are potentially less expensive and faster. The Pow-
erPC™ architecture by IBM, Motorola and Apple Computer
uses a RISC instruction set. However, the PowerPC™
cannot directly execute programs written for x86 CISC
operating systems such as DOS™ and Windows™., Emula-
tion programs such as the SoftPC program by Insignia
Corporation translate x86 CISC instructions to RISC
instructions, but the performance is reduced relative to
running x86 code directly.

A dual-instruction-set CPU was disclosed in the related
application entitled “Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode”, filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926. That application is assigned to the
same assignee as the present application. The dual-instruc-
tion set CPU contains hardware so that it can decode
instructions from two entirely separate instruction sets.

What is desired is a method and apparatus to trigger a
switch from one instruction set to another instruction set
when a call to a support routine in an operating system is
made.

SUMMARY OF THE INVENTION

The present invention allows code from a first instruction
set to reside within a segment defined by a second instruc-
tion set. For example, RISC instruction code may reside
within a CISC segment. The CISC architecture is extended
to provide for segments that can hold RISC code or CISC
code.

10

15

20

25

30

35

40

45

50

55

60

65

2

In a broad sense the present invention is directed toward
a segment descriptor for a dual-instruction-set processor.
The processor executes instructions from a first instruction
set and a second instruction set that are substantially inde-
pendent. The segment descriptor describes a segment in
memory containing program code. The segment descriptor
has a location indicating means for indicating a location of
the segment in the memory; attribute indicating means for
indicating attributes of access to the segment; and an instruc-
tion set indicating means for indicating that an instruction
set of the program code located within the segment belongs
to one of a first instruction set and a second instruction set.

The instruction set indicating means has a first state for
indicating that the program code contains instructions from
the first instruction set, and a second state for indicating that
the program code contains instructions from the second
instruction set. The program code in the segment contains
instructions from one of the first instruction set and the
second instruction set.

In another aspect of the present invention the first instruc-
tion set is a complex instruction set compuier (CISC)
instruction set while the second instruction set is a reduced
instruction set computer (RISC) instruction set. The first
instruction set has a first encoding of operations to opcodes,
while the second instruction set has a second encoding of
operations to opcodes. The first encoding of operations to
opcodes is substantially independent from the second encod-
ing of operations to opcodes. Thus the two instruction sets
may be entirely separate and independent instruction sets.

An undefined or reserved bit within the segment descrip-
tor is used for the instruction set indicating means to indicate
which instruction set the program code in the segment is
written in. The switch from CISC to RISC instruction
decoding is triggered when control is transferred to a new
segment, and the segment descriptor indicates that the code
within the segment is written in the alternate instruction set.

The present invention allows an existing user program
written in CISC code to call a service routine in an operating
system that is written in RISC code. Thus existing CISC
programs may be executed on a dual-instruction-set proces-
sor which can execute RISC code to emulate a CISC
operating system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the steps to service an x86 hardware
interrupt.

FIG. 2 is a CISC call gate descriptor.

FIG. 3 is a block diagram of a CPU with segmentation and
paging.

FIG. 4 is a diagram of a CISC segment descriptor.

FIG. 5 is a block diagram of a dual-instruction-set CPU.

DETAILED DESCRIPTION

The present invention relates to an improvement in pro-
cessing. The following description is presented to enable one
of ordinary skill in the art to make and use the present
invention as provided in the context of a particular applica-
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven-
tion is not intended to be limited to the particular embodi-
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features

5,481,684

3

herein disclosed.

A dual-instruction-set CPU was disclosed in the related
application entitled “Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode”, filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926, hereby incorporated by reference.
That application is assigned to the same assignee as the
present application. The dual-instruction set CPU contains
hardware so that it can decode instructions from two entirely
separate instruction sets. A page fault or exception would
cause the instruction set being decoded to switch. Thus if a
page fault occurred when the CISC instruction set was being
decoded, execution would switch to the RISC instruction
set. CISC instructions that were not directly supported in
hardware would also cause a switch to the RISC instruction
set.

Although the related application works effectively for
many applications, calls from user programs to support
routines in the x86 CISC operating system do not normally
cause an exception or page fault to occur. Thus the support
routines in the operating system would be executed from
x86 CISC code. Since RISC code is believed to be more
efficient than x86 CISC code, it would be preferable to
execute as much code as possible in RISC rather than in
CISC. Because of the enormous number of user programs
written in x86 CISC code, it is not feasible to convert each
program over to RISC code. Indeed, it is highly desirable to
be able to execute unmodified user programs. However,
most of these user programs use (or call) support routines
that are supplied by the operating system. Since DOS™ and
Windows™ are by far the most widely used operating
systems on personal computers (PC’s), it is desired to write
RISC code for emulating the support routines in these two
operating systems. Thus when an x86 CISC user program
calls a support routine in either the DOS™ or Windows™
operating systems, the support routine could be written in
the RISC code, improving performance over the original
support routine written in x86 code. However, a method is
needed to trigger the switch from decoding CISC instruc-
tions to decoding RISC instructions when the support rou-
tine is called.

The operating system (O/S), or possibly the Basic Input/
Output System (BIOS), may provide support routines that a
user program may access. The user program may transfer
contro] to the operating system in the following ways:

Exception

External Interrupt

Software Interrupt

Far Call or Far Jump.

Each of these methods to transfer control from a user
program to the operating system will be discussed next.
EXCEPTIONS

An exception occurs when an instruction is executed that
causes some sort of error. A divide instruction that attempts
to divide by zero would cause a divide-by-zero exception,
invoking a service routine in the operating system to handle
the error. The service routine in this case would typically
display an error message to the user and terminate the
program.

Other causes of exceptions include attempting to execute
an undefined or illegal opcode, reaching a program check or
break point, attempting to access memory that is out of the
bounds for the segment, writing to a read-only segment, or
accessing a segment that is valid but is not currently present
in the system RAM. Page faults, where the page of memory
being accessed is not present in the main memory but only
on the disk, can also cause an exception.

15

20

25

30

35

40

45

55

60

65

4

The proper service routine is determined by accessing an
interrupt table or interrupt descriptor table to fetch the
starting address for the service routine for the particular
exception. When an exception occurs, control is transferred
to a service routine for the particular exception. The pro-
cessor itself, however, supplies an entry number for an
interrupt table.

EXTERNAL INTERRUPTS

An external device may signal an interrupt to the proces-
sor. For example, a user may strike a key on the keyboard,
which would generate a keyboard interrupt to the processor.
The processor will perform an external interrupt acknowl-
edge cycle to allow the external device to identify an
interrupt number. The interrupt number identifies an entry in
the interrupt table which points to a service routine in the
operating system for the external device.

SOFTWARE INTERRUPTS

A wide variety of O/S support routines may be accessed
by programming a software interrupt into the user code. A
software interrupt is an instruction that emulates a hardware
interrupt. The software interrupt instruction causes the inter-
rupt table to be accessed. The software interrupt instruction
has a parameter that specifies a unique entry in the interrupt
table. When an interrupt is encountered, the interrupt table
is consulted to determine the address where the interrupt
service routine is located in memory. The processor loads
this address and begins executing instructions from this
address, the location of the service routine. Upon completion
of the service routine, control is transferred or returned back
to the user program. Application programs running under
DOS typically use software interrupt instructions to invoke
DOS routines.

FAR CALLS AND JUMPS

Application programs running under Windows™ occa-
sionally use software interrupts to invoke operating system
routines, but the bulk of the Windows™ operating system
routines are invoked by a far call instruction. For example,
a user application may call the “CreateWindow” command
while running under Windows™ to have a new window
opened. The user application program executes a far call
instruction to transfer control to a different segment where
the Windows™ CreateWindow routine is located. A far call
is a transfer of control to code which resides in a different
segment, which also saves the instruction pointer and code
segment register onto a stack in memory. The CreateWin-
dow routine returns to the application program by executing
a far return instruction, which restores the instruction pointer
and code segment from the stack.

A segment descriptor is accessed and examined when a
far call occurs, because control is transferred to a new
segment. However, no interrupt is signaled.

INTERRUPT SERVICE ROUTINES

Many support routines supplied by the operating system
are accessed when an external hardware interrupt is signaled
to the processor. FIG. 1 shows the steps to service an x86
hardware interrupt. In the x86 architecture, only one pin or
input to the processor is provided for most interrupts.
Therefore, the processor must determine what the cause of
the external interrupt is by generating an interrupt acknowl-
edge cycle, when the external devices send an interrupt
number or vector back to the processor. The interrupt vector
specifies the device causing the interrupt, for example the
keyboard. The interrupt vector is also known as an entry
number, which specifies an entry in an interrupt table stored
in memory. In the x86 architecture, the entry number is
multiplied by eight, since each entry in the interrupt table
occupies eight address locations, to specify the address of

5,481,684

5

the entry in the interrupt table in memory. The entry stored
in the interrupt table is a starting address where a support
routine to service the interrupt is stored. The starting address
of the interrupt service routine is loaded into the processor’s
instruction pointer and code segment register, while the old
values for the instruction pointer and code segment register,
and the flags register, are stored on a stack in memory.

The support routine is then executed starting with the
instruction fetched from the starting address stored in the
entry in the interrupt table. The support routine, or interrupt
service routine, is executed, and control is returned to the
user program when the end of the service routine is reached,
by retrieving the old values for the instruction pointer, code
segment and flags registers from the stack.

As an example, the user may strike a key on the keyboard.
The keyboard controller would signal to the processor an
interrupt request over the shared interrupt input. The pro-
cessor then “services” this interrupt. First, an interrupt
acknowledge cycle is run when the keyboard’s interrupt
number, 09 hex, is supplied to the processor. The interrupt
number is multiplied by 8 hex, and the result, 48 hex, is
tadded to the interrupt descriptor table base register, yielding
the address of the keyboard’s entry in the interrupt table. A
memory cycle is run at this address to fetch the contents of
the interrupt descriptor table entry number at 48 hex, and the
contents are stored in the processor. The old instruction
pointer, code segment and flags registers are stored to the
stack, and then the contents of the keyboard’s entry from the
interrupt table are loaded into the instruction pointer and
code segment register. Execution then transfers to the key-
board interrupt service routine pointed to by the contents of
the keyboard’s entry from the interrupt table, which is a
starting address for the keyboard service routine. This rou-
tine performs an /O read of the keyboard to determine
which key was struck, and then terminates and returns
control to the user program by retrieving the old instruction
pointer, code segment and flags registers from the stack.

To service an x86 software interrupt, the steps are similar
to those for the hardware interrupt of FIG. 1 except that an
external interrupt acknowledge cycle is not necessary
because the software interrupt instruction specifies the inter-
rupt number and entry.

INTERRUPT TABLE DESCRIPTORS

The entries in the interrupt descriptor table are descrip-
tors, similar to descriptors for segments. An offset address in
the interrupt descriptor provides the entry point within the
code segment jumped to. A selector field in the interrupt
descriptor identifies the segment the interrupt service routine
is located in. Privilege and access checks are performed for
the interrupt descriptor just as they are done for segment
descriptors. The interrupt descriptor table may contain a
special descriptor, called a task gate, which causes the
interrupt service routine to run in a separate context.
CISC CONTROL TRANSFERS TO RISC

A signal is needed to cause the processor to switch the
instruction set being decoded. An exception or interrupt can
provide this signal, or a separate instruction can be defined
to switch instruction sets. Jumping from a CISC user pro-
gram to another segment written in RISC code without
signaling an interrupt or exception could cause unpredict-
able results or even a system crash unless a method is
employed to trigger the switch to RISC decoding. Addition-
ally, routines within the operating system may jump to other
operating system routines that may not be implemented in
RISC code but in CISC code. Ideally the type of code, RISC
or CISC, would be indicated when a jump or control transfer
occurs, regardless of what caused the jump.

10

15

20

25

30

35

40

45

50

55

60

65

6

When called from a CISC user program, the O/S service
routine could begin with a special instruction to switch to the
RISC instruction set. However, if this same O/S service
routine were call from a RISC user program, then a separate
entry point would be needed for the RISC program, because
the special instruction to switch instruction sets should not
be executed. Thus two entries would be needed for each O/S
service routine. The RISC entry point could be the start of
the service routine, but CISC programs would first have an
entry point to execute the special instruction to switch to
RISC code, and then jump to the RISC entry point. On return
from the O/S service routine, CISC code would have to .
again execute a special instruction to switch back to CISC
instruction decoding.

Having two entry points for each OfS service routine is
undesirable as it increases the memory requirement for the
interrupt table. Performance would decrease because param-
eters or return values passed to and from the O/S service
routine could have to be copied, saved, or re-arranged in
registers or memory. One or more additional instructions
would have to be executed, also reducing performance.
Maintaining and verifying the operating system would be
more difficult.

Ideally either RISC or CISC code could use the same
interrupt descriptor table and entry points. The O/S service
routines would be independent of the user’s instruction set.

The inventors have recognized all of these operating
system calls cause a control transfer to a different segment.
The switch to the RISC instruction set is therefore best
triggered by loading the new segment descriptor. Each
segment is written in either RISC or CISC code, and its
segment descriptor indicates the instruction set for the code
in that segment. Thus if a jump occurs to a segment that has
a descriptor indicating RISC code, then the processor will
switch to RISC decoding if it is currently decoding CISC.
The cause of the jump, be it an interrupt, exception, or
merely a far jump to another segment, is irrelevant; the target
segment type will cause the proper instruction set to be
decoded for the new segment.

X86 CISC SEGMENTATION

Segments are variable-sized blocks of memory, delineated
by a segment base address and a bound or limit that is equal
to the size or length of the segment. Segments can be of
several types such as code, data, stack, or system manage-
ment. The operating system typically manages segments by
managing descriptors that identify the location and type of
each segment. Segments can be used to protect one user or
task from another, allowing for multi-user and multi-tasking
systems.

FIG. 3 is a block diagram of address generation in a
typical x86 processor, which includes both segmentation and
paging. ALU 80 calculates a virtual address 82 from address
components indicated by an instruction being processed.
ALU 80 or other decode logic (not shown) indicates which
segment is being referenced by the instruction and selects
one segment descriptor 30" in a segment descriptor register
array 33. The selected segment descriptor 30' includes a base
address field which outputs the base or starting address of
the selected segment on line 86, and a limit or upper bound
which is outputted on line 90. Virtual address 82 is added to
the base address 86 in segment adder 92, to produce a linear
address 88. The segment adder 92 must be a full 32-bit adder
in the x86 architecture because segments can begin and end
on any boundary, down to single-byte granularity. Other
architectures that restrict the segment to begin and end on
page boundaries need not add the lower 12 bits, and thus can
use a smaller adder.

5,481,684

7

Subtractor 94 subtracts the virtual address 82 from the
limit on line 90. If a negative value results, then the virtual
address exceeds the limit and a segment overrun error is
signaled. A second adder/subtractor could be used to check
the lower bound of the segment; however if the lower bound
is always virtual address 0, then the segment adder 92 can
be used for the lower bound check. If the result is a negative
number then the lower bound has been violated. Thus the
negative flag or the sign bit may be used for lower bound
checking. Comparators may also be employed for bounds
checking.

Linear address 88 is translated to. a physical address by
translation-lookaside buffer or TLB 96, which is a small
cache of the page translation tables stored in main memory.
The TLB 96 translates the upper 20 bits of the linear address
by searching the associative TLB cache for a match, and if
one is found, then replacing these upper 20 bits with another
20 bits stored in the TLB 96.

If the linear address is not found in the TLB, then a miss
is signaled to the translator 98, which accesses the page
tables in main memory and loads into the TLB the page table
entry that corresponds to the linear address. Future refer-
ences to the same page will “hit” in the TLB, which will
provide the translation. Translator 98 may be implemented
entirely in hardware, entirely in software, or in a combina-
tion of hardware and software.

SEGMENT DESCRIPTORS

FIG. 4 is a diagram of a segment descriptor in the x86
architecture. The descriptor 30 consists of two 4-byte
double-words 30A and 30B. The beginning address of the
segment is determined by the segment base 32, which is split
among three fields, a first base field 32A in the first double-
word 30A, having bits 15 to 0 of the base address, a second
base field 32B in the second double-word 30B, having bits
23 to 16 of the base address, and a third base field 32C in the
second double-word, having bits 31 to 24 of the base
address. Combining fields 324, 32B, and 32C yields a 32-bit
segment base address. Likewise the upper bound or limit of
the segment 34 is broken up among two fields, a first limit
field 34A in the first double-word 30A, and a second limit
field 34B in the second double-word 30B. Combining fields
34A and 34B yields a 20-bit limit for the segment. The limit
34 is the length or size of the segment.

Many attribute bits are provided to control access to the
segment and to further define the segment, or to aid the
operating system in management of the segment. The x86
architecture defines the following attribute bits:

P Present bit. 1 = segment is present in memory;
0 = not present in memory

DPL Descriptor Privilege Level 3-0

S Segment type 1 = User Code/data; 0 = system
Type Segment Type (see below)

A Accessed

G Granularity 1 = page/4K; 0 = byte

D Default Operation Size 1 = bit; 0 = 16 bit
AVL Available for user or O/S, extra bit

The system field 38 breaks segments into two broad
classes: system segments that are used by the operating
system, and user segments, such as code, data, and stack
segments. The Type field 36 further defines the type of
segment pointed to by the descriptor. Some of the other
attribute bits may change definition depending upon the
segment type. Three bits are used to encode the type, so 23
or 8 types are possible. For user segments, the type bits
indicate if the segment is executable, writable, or readable.

10

15

20

25

30

35

40

45

8

A code segment would be executable but not writable, while
a data segment would be writable but not executable. For
system segments, the accessed bit 40 is used as an extra type
bit so that the type field is now 4 bits for system segments.
The system segment types defined by Intel are shown in
Table 1.

TABLE 1
System Segment Types

Type Code Segment/gate

Invalid
286 TSS
LDT
286 TSS Busy
286 Call Gate
Task Gate
286 Interrupt Gate
286 Trap Gate
Invalid
486 TSS
Reserved by Intel
TSS Busy
486 Call Gate
Reserved by Intel
486 Interrupt Gate
486 Trap Gate

MOUAOE P OOV ARAWLWNRLO

GATE DESCRIPTORS

FIG. 2 is a diagram of a gate descriptor in the x86
architecture. Gate descriptors control access to entry points
into a code segment. Interrupt gate descriptors are placed in
the interrupt descriptor table in protected mode. The gate
descriptor 20 consists of two 4-byte double-words 20A and
20B. The beginning address of the service routine within the
segment is determined by the offset 24, which is split among
two fields, a first offset field 24A in the first double-word
20A, having bits 15 to 0 of the offset address, and a'second
offset field 24B in the second double-word 20B, having bits
31 to 16 of the offset address. Combining fields 24A and 24B
yields a 32-bit offset address within the segment. A selector
22 identifies the segment that is the target of the gate
descriptor. The target segment will have its own segment
descriptor, such as the descriptor shown in FIG. 4, which
must be accessed and checked before code can be fetched
from the target segment.

Many attribute bits are provided to define the control
transfer gate. The x86 architecture defines the following
attribute bits:

50 P Present bit. 1 = segment is valid; 0 = not valid
DPL Descriptor Privilege Level 3-0
WD CNT Number of parameters passed to procedure
called (call gate only)
Type Segment Type (see Table 1)
55 The type of gate can be interrupt, task switch, trap, or call,

60

65

depending upon the type of control transfer defined by the
gate. Table 1 also shows the types of gate descriptors defined
for the x86 architecture. The last 4 rows of Table 1 are gate
descriptor types while the first four rows of Table 1 are
segment descriptor types.
SEGMENT CODE DESCRIPTORS
INSTRUCTION SET

The x86 segment descriptors may be modified to indicate
that the segment descriptor refers to a segment containing
RISC code rather than x86 CISC code. An invalid or
reserved combination of bits in the segment descriptor can
be used to indicate that the processor should switch to

INDICATING

5,481,684

9

decoding RISC code rather than CISC code when accessing
code in this segment. Bit 21 in the second double-word of
the segment descriptor of FIG. 4 is normally always zero for
x86 systems. Setting this bit to one, which could cause a
prior-art x86 system to perform an undocumented function,
would indicate to a dual-instruction-set processor of the
present invention that the segment contains code written in
a RISC instruction set rather than the x86 CISC instruction
set.

Setting bit 21 to a one is the preferred technique for
indicating RISC code within a segment because this bit can
be set for any type of segment, system or user. However,
other ways of indicating RISC code are also possible. Table
1A showed that four types of system segments were either
invalid or reserved for Intel. Setting a descriptor for a system
segment to one of these invalid or reserved types could also
indicate that the segment contains RISC code.

RISC data structures may differ from x86 data structures.
For example, the order of the bytes in a data word can be
either “big endian” or “little endian”, depending upon
whether the most significant bit is in the highest byte or the
lowest byte of the data word. Invalid or reserved segment
descriptor types could also be used to indicate that a RISC
data structure and byte-ordering is to be used when access-
ing the data in the segment rather than the default CISC
byte-ordering.

CISC USER CODE CALLING RISC O/S ROUTINES

Regardless of the reason for a control transfer, when a
new segment is accessed the segment descriptor is checked
to see if it indicates that the new segment contains RISC
code or data. If so, then the processor will use a RISC
instruction decoder rather than the CISC instruction decoder
when executing instructions from the new segment. Any
type of inter-segment transfer of control will force the
processor to check the new segment descriptor to determine
which instruction set to decode. Operating system calls from
user code will cause an inter-segment jump, whether a
software or hardware interrupt is used, or if a far jump
directly to the address of the service routine is employed.
The present invention will operate properly, checking the
instruction set for the new segment, as long as the operating
system is invoked by an inter-segment control transfer.

Great flexibility is provided by the present invention. The
operating system no longer must be written in a single
instruction set. An x86 operating system such as DOS™ or
Windows™ may be re-written entirely in PowerPC™ RISC
code, yet still execute x86 programs. The entire .operating
system does not have to be converted to RISC code however.
Parts of the operating system may be re-written while other
parts may be left in the original x86 code. While RISC code
may have a higher performance for most functions, some
functions may have a higher performance in the CISC code,
especially if a complex CISC instruction is able to perform
the function efficiently. Thus the operating system may be
optimized using either of two instruction sets. Additionally,
user applications may also be written in either or both
instruction sets.

PROTECTION MECHANISMS

The segment descriptors are stored in memory in tables.
For the x86 architecture, a global descriptor table contains
segment descriptors that are available to all tasks and users
in a system. Each task or user will generally have its own
local descriptor table storing segment descriptors for its own
segments. Thus one user’s segments are protected from
another user because his segment descriptors are stored in
his own local table. System descriptors are located in the
global table, while user code, data, and stack segment

10

15

20

25

30

35

40

45

50

55

60

65

10

descriptors are usually located in a user’s local descriptor
table. The interrupt table is usually shared by all users, and
its entries are similar to segment descriptors. Rather than
storing a segment base address and a limit, the interrupt
descriptors contain an identifier to select a new segment, and
an offset to specify a starting address to jump to within that
segment.

Using the present invention, RISC code can reside within
a CISC segment. The CISC architecture is extended to
provide for segments that can hold RISC code rather than
just CISC code. These new RISC code segments have
descriptors that are almost identical to the CISC segment
descriptors, and therefore these RISC descriptors may reside
in the CISC descriptor tables. The global descriptor table in
particular may have CISC code segment descriptors for parts
of the operating system that are written in x86 CISC code,
while also having RISC code segment descriptors for the
parts of the operating system that are written in RISC code.

When control is passed to a new code segment, the
segment descriptor is fetched from the global or local
descriptor table, and protection checks are performed as
usual. The present bit stored in the segment descriptor is
examined, and an error is signalled if the segment is not
present in memory. The type of the segment is checked, and
an error is signalled if the segment is not a code segment.
The privilege level in the descriptor is examined and a
segment error is signaled if the privlege rules are violated.
These protection checks are done without regard to the type
of code residing in the segment, be it RISC or CISC.

Referring to FIG. 5, if the protection checks pass, then
control is transferred to the new segment by loading the new
segment base address into the processor’s code segment
register 10, and fetching the next instruction from the
address pointed to by the instruction pointer 64 (IP). Before
this instruction is decoded, the segment register 10 is also
loaded with the instruction set type bit 21, from the segment
descriptor. If the instruction set type bit 21 indicates that
RISC code is to be decoded, then the RISC instruction
decode unit is enabled and its output selected by mux 46 to
be sent to the execute unit 48. If the instruction set type bit
21 indicates that CISC code is to be decoded, then the CISC
instruction decode unit is enabled and its output selected by
mux 46 to be sent to the execute unit 48. Mode control 42
copies the instruction set type bit 21 from line 12 to the
RISC/CISC bit in mode register 68.
CPU HARDWARE

The next pages provide further background on the pro-
cessor hardware used to implement a dual-instruction set
processor. The present application is a Continuation-in-Part
of the parent copending application for a “Dual-Instruction-
Set Architecture CPU with Hidden Software Emulation
Mode”, filed Jan. 11, 1994, U.S. Ser. No. 08/179,926, having

-a common inventor and assigned to the same assignee as the

present application.

FIG. 5 shows a simplified block diagram of a CPU that
can execute both RISC and CISC instructions. Instruction
Pointer 64 indicates the instruction to be decoded in instruc-
tion fetch unit 62. This instruction is sent to Instruction
Decode (ID) 66. Instruction decode 66 is composed of three
sub-blocks, one for decoding CISC instructions, another for
decoding RISC instructions, and a third sub-block for
decoding extended RISC instructions for emulation mode.
The extended instructions are at the highest privilege level,
higher than even the operating systems that may be running
under RISC of CISC modes. These extended instructions
offer access to all the system resources, including mode
register 68. Mode register 68 contains bits to indicate the

5,481,684

11

current operating mode of the CPU. One bit selects between
the RISC and CISC user modes, while another bit enables
the extended RISC instructions for emulation mode.

Instruction decode 66 is a partial instruction decode unit,
in that it fully decodes only about 50% of the x86 CISC
instructions, and about 85% of the PowerPC™ RISC
instructions. Several well-known implementations are pos-
sible for instruction decode 66. For example, random logic
may be used to decode the instruction set defined by an
opcode map such as Tables 2 and 3. Opcode maps in Tables
2 and 3 are similar to logic truth tables in that they fully
specify the logic equations needed to decode the instruction
set. Instructions that are not fully decoded are not directly
supported by hardware, and signal an “unknown opcode” on
line 70 to mode control 42, which causes emulation mode to
be entered.

The same opcode may map to different operations or
instructions in the two instruction sets, requiring separate
decode units for each instruction set. Since emulation code
runs a superset of the RISC code, additional logic to decode
these extended instructions is provided with the RISC
decode block. The extended emulation mode instructions are
enabled by enable block 44, which is controlled by the
emulation mode bit in the mode register 68. Multiplexer or
Mux 46 selects the decoded instruction from either the RISC
or the CISC decode sub-block. Mux 46 is controlled by the
RISC/CISC mode control bit in mode register 68. When
emulation mode is entered, the RISC/CISC bit must be set
to the RISC setting and the emulation mode bit enabled,
because RISC instructions may also be executed by the
emulation code.

The decoded instruction is passed from mux 46 to execute
unit 48, which can perform arithmetic functions and address
generation. General-purpose registers 50 supply operands to
the execute unit 48. Since a full segmentation unit is not
provided, segment addition must be performed by the
execute unit when needed as part of normal address gen-
eration. Limit checking is provided by hardware associated
with the TLB in conjunction with the emulation driver.

Execute unit 48 is designed to execute the simpler CISC
and RISC instructions, and thus has reduced complexity
relative to traditional execute units on CISC and even RISC
CPU’s. Since only simple instructions are directly sup-
ported, the unit can be made to operate at higher speed than
if all instructions were supported. Microcode can be mini-
mized or even eliminated because complex instructions are
supported by algorithms stored in emulation memory. These
algorithms are not merely microcode stored off chip, which
would require much more memory, but are higher-level
routines composed of RISC instructions and extended
instructions.

Any address generated by execute unit 48 is sent to the
TLB 52, which performs an associative search on the input
virtual address and translates it to a physical address output
on bus 54. The page or upper address is from the TLB and
the offset or lower address is bypassed around the TLB. TLB
52 can translate virtual addresses from the execute unit 48 to
physical addresses if segmentation is disabled, or translate a
linear address generated by addition in the address genera-
tion unit to a physical address. If the segment begins or ends
on a page, then special hardware is required to specify that
emulation mode should be entered if the address is close to
the segment boundary, or within the physical page but
outside the segment.

If the translation is not present in the TLB, a miss is
signaled which causes emulation mode to be entered. Emu-
lation mode is always used to load the TLB, allowing the

10

15

20

25

30

12

emulation driver the highest level of control over address
mapping and translation. Mode control 42 causes emulation
mode to be entered whenever a miss is signaled from TLB
52, or an unknown opcode is detected by instruction decode
66. Normal exceptions, interrupts, and traps from the
execute unit and other units also cause emulation mode to be
entered, giving great flexibility in system design. Mode
control 42 sets and clears the RISC/CISC and emulation
mode control bits in mode register 68. When entry to
emulation mode is requested, entry point block 56 generates
the proper entry point vector or address in the emulation
portion of memory, and loads this address into the instruc-
tion pointer 64. Thus the CPU will begin fetching and
executing instructions at the specified entry point, where the
emulation driver contains a routine to handle the exception,
TLB miss, or to emulate the unknown instruction. Instruc-
tion decode 66 can provide the opcode itself and other fields
of the instruction to the entry point logic, to allow the entry
point to be more fully specified. Thus one entry point could
be defined for a REP MOVS with a byte operand while
another entry point is defined for a REP MOVS instruction
with a long-word operand. Table 2 shows the entry points
from CISC mode. For example, the REP MOVS byte
instruction enters the emulation code at A4 hex, while REP
MOVS longword enters at A5 hex. A TLB miss with
segment O enters at 18 hex, while a far RETum in x86 real
mode enters at CA hex.

If the CISC user program executes an instruction to
enable or disable translation and the TLB, the instruction
may be detected by the instruction decode 66, causing an
unknown instruction to be signaled over line 70 to mode
control 42, causing emulation mode to be entered. Execute
unit 48 may also detect an attempt to enable or disable the

~ TLB, and signal mode control 42 by asserting TLB enable

40

45

50

55

60

65

detect 49. TLB enable detect 49 does not enable or disable
the TLB as is does for a prior-art CISC CPU; instead it
causes emulation mode to be entered, which will emulate the
effect the instruction would have had. However, the TLB is
not disabled. Thus emulation mode has complete control
over the TLB.

RISC INSTRUCTION DECODE

The RISC sub-block of instruction decode 66 decodes the
PowerPC™ RISC instruction set. All instructions are 32 bits
in size, and some require two levels of instruction decoding.
The first level determines the basic type of instruction and is
encoded in the 6 most significant bits. Table 3 shows the 64
possible basic or primary opcode types. For example,
001110 binary (OE hex) is ADDI—add with an immediate
operand, while 100100 (24 hex) is STW—store word. The
CPU executes the 45 unshaded opcodes direcily in hard-
ware. The fifteen darkly shaded opcodes, such as 000000,
are currently undefined by the PowerPC™ architecture.
Undefined opcodes force the CPU into emulation mode,
where the emulation driver executes the appropriate error
routine. Should instructions later be defined for these
opcodes, an emulator routine to support the functionality of
the instruction could be written and added to the emulator
code. Thus the CPU may be upgraded to support future
enhancements to the PowerPC™ instruction set. It is pos-
sible that the CPU could be field-upgradable by copying into
emulation memory a diskette having the new emulation
routine.

The second level of instruction decoding is necessary for
the remaining four lightly shaded opcodes of Table 3.
Another 12-bit field in the instruction word provides the
extended opcode. Thus one primary opcode could support
up to 4096 extended opcodes. Primary opcode 010011,

5,481,684

13

labeled “GRP A” in Table 3, contains instructions which
operate on the condition code register, while groups C and
D (opcodes 111011 and 111111 respectively) contain float-
ing point operations. Group B (opcode 011111) contains an
additional version of most of the primary opcode instruc-
tions, but without the displacement or immediate operand
fields. Most group B and many instructions from groups A,
C, and D are directly supported by the CPU’s hardware, and
the RISC instruction decoder thus supports some decoding
of the 12-bit second level field. In the appendix is a list of
the PowerPC™ instruction set, showing the primary and
extended opcodes, and if the instruction is supported directly
in hardware or emulated in emulation mode, as is, for
example, opcode 2E, load muitiple word.

EXTENDED INSTRUCTIONS FOR EMULATION
MODE

Extended instructions for controlling the CPU’s hardware
are added to the RISC instruction set by using undefined
opcodes, such as those indicated by the darkly shaded boxes
in Table 3. Thus additional logic may be added to the RISC
instruction decode unit to support these additional instruc-
tions. However, user RISC programs must not be allowed to
use these extended instructions. Therefore, the decoding of
these extended instructions can be disabled for RISC user
mode, and only enabled for emulation mode.

Extended instructions include instructions to control the
translation-lookaside buffer or TLB. The TLB may only be
loaded or modified by these extended instructions which are
only available when in emulation mode. Thus the emulation
mode drivers have complete control over address mapping
and translation in the system. This allows the emulation
driver to set aside an area of memory for its own use, and to
prevent user programs from accessing or modifying this area
of memory. Because all memory references in user modes
are routed through the TLB, which is only controllable by
the emulation mode driver, the emulation mode acts as an
additional layer of software between the user mode pro-
grams and operating systems, and the actual system memory
and I/O. Thus the emulation driver can create an area of
memory hidden from the user mode programs, and can
locate its drivers and emulation routines in this hidden area
of memory.

CISC INSTRUCTION DECODE

CISC instructions can range in size from 8 bits (one byte)
to 15 bytes. The primary x86 opcode, is decoded by the
instruction decode 66 of FIG. 5. About 50% of the x86
instructions that can be executed by Intel’s 80386 CPU are
executed directly by the dual-instruction set CPU. Table 4
shows a primary opcode decode map for the x86 instruction
set. Unshaded opcodes are directly supported in hardware,

15

20

25

30

35

40

45

14

such as 03 hex, ADD r,v for a long operand. This same
opcode, 03 hex, corresponds to a completely different
instruction in the RISC instruction set. In CISC 03 hex is an
addition operation, while in RISC 03 hex is TWI—trap word
immediate, a control transfer instruction. Thus two separate
decode blocks are necessary for the two separate instruction
sets.

A comparison of the opcode decoding of Table 3 for the
RISC instruction set with Table 4 for the CISC instruction
set shows that the two sets have independent encoding of
operations to opcodes. While both sets have ADD opera-
tions, the binary opcode number which encodes the ADD
operation is different for the two instruction sets. In fact, the
size and location of the opcode field in the instruction word
is also different for the two instruction sets.

Darkly shaded opcodes in Table 4 are not supported
directly by hardware and cause an unknown or unsupported
opcode to be signaled over line 70 of FIG. 5. This causes
emulation mode to be entered, and the opcode is used to
select the proper entry point in the emulation memory. By
careful coding of the emulation routine, performance deg-
radation can be kept to a minimum. Lightly shaded opcodes
in Table 4 are normally supported directly by the CPU, but
not when preceded by a repeat prefix (opcode F2 or F3).
ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example, while the preferred embodiment has
been described as having two instruction sets, multiple
instruction sets could be decoded and defined in the segment
descriptors. The present invention is not limited to x86 CISC
and PowerPC™ RISC instruction sets, but may be extended
to instruction sets other than x86 and PowerPC™ and other
types of instruction sets besides RISC and CISC. While the
present invention has been described using a preferred
embodiment where a user program written in CISC code
makes a call to an operating system in RISC code, the call
from the user program could also be to another part of the
user program that is written in RISC code. Thus a large user
application could make use of the present invention by
having some parts written in CISC code while other parts are
written in RISC code. The parts written in RISC code might
be speed-critical portions of the large user application.

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi-
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

5,481,684

16

15

Jao HOX HDX
e asd asd 11S o dND dND ITH X
101d Tea1
1e) 1]
L0 1100 NI NI JL dINT 1no 1Nn0 NI NI xq
j01d j01d 101d 101d joxd j01d
Iej Tey
LTI O.LNI UINI €INI Rice: ¢ RAce. | IVIX avv VYV X
ear eax Teaz B eax e 101d 101d eax ea:
ey xey a a
1AA1 OLNI ULNI EINI RS LT anes] g sat ST sa1 SAT avx avx
oudor sudar audaz audax oudax oudorx j01d oudar audar audar oudor joxd Tear j01d
Suop kg Suoy akq Buoy 24q Fuof afq Suof alkq
SO Sd
seog sesg spo] spo] 501§ s01§ dod sdury sy SAOI SAOI[SS1 S8 dod xg
d9 d93 dad ddd 494 d3d Tear d9y dHd dHy d3d eax
Suor a14q Suog a1fq Buoy kg Buop afq Buoy a1hq
3] 3] Sd Sq
seog seag spo] spo] SOIS SOIS dod HSnd sdw)y sdw)y SAOI SAOIN dod HSNd XV
naze naze nqgy nq9T 1od [ea1 : toxd 101d Teaz [eas
d | d Tey Te]
dod HSNd 4d0d HSNd e} 1Le) SOT SI1 SO1 ST X6
a A o]
dHS @IHS NSy NIgm JANI dTHS aTHS X8
XL
anN v
S1NO S1N0 SNI SNI TV nod vdOod HSNd x9
joud A 1o1d
sa OHO sS
dod 0AId dod Xg
s joud
i sd
1L dod ALNI TAN s Xy
A T = i
Svv HSNd i : TIOZ VvV xg
c Ly S [g
SO [eAUL eaut oAty Teaut Ieaut 11 19 px 2% p o
sva Hsnd 1L gL HIL HAL vva AOW AOW AOW AOW AOW AOW XC
fear ‘ouon S ¥ Lot 0
sa se i o S 2 SS §S
doda HIL = dod HSnd 9¥D X1
. . ’ i g i [eat
] LaLhiS -9 e ¥ g AT -k 0 sa sq
{10z 107 107 107 $0Z 10z 10z €10z dod HSNd SITD 181 IV Ld¥D peugopun xp
Ax qx ax % gx VX 6% 8% X 9x 6x X £x s X 0%

siutod Anug JSID

T H149dVL

5,481,684

18

17

S[eAUL

D D

HX

Hx

ax

ox ax vx 6% 8x X ox [S%

sjtog Anug DSID

X

[%.4

X

Ix

[1).4

Panunu0d-7 FIAV.L

5,481,684

19 20
TABLE 3
PowerPC ™ RISC Opcodes

PowerPC
primary 5
opcode XXX000 XXX001 XXX010 XXX011 XXX100 XXX101 XXX110 XXX111
000XXX el wmean mp ™I R Be Codmnme MU
001XXX SUBFIC agmesans CMPLI CMPI ADDIC ADDIC. ADDIL ADDIS
010XXX BCx sc Bx crpA RIWMIX RIWINMx oo RIWNMx

Condition ; o

register

instructions
011XXX ORI ORIS XORI XORIS ANDIL ANDIS. e GRPB

15 L . Mis.
SR Instructions

100XXX LWZ LWZU LBZ LBZU STW STWU STB STBU
101XXX LHZ LHZU LHA LHAU STH STHU LMW STMW
110XXX LFS LESU LFD LFDU STFS STFSU STFD STFDU
111XXX : G S SR R g GRPD

GRPC 20 . ’ .

FP operate N . FP operate

25

30

35

40

45

50

55

60

65

5,481,684

22

21

depy spoadQ DSID 98

Suop 214q
A A L aN
SddD PddD aio arLs 1LS: I'1o JLS jogte] v v ONWD TIH dI Eet ¥007] X1
akq Fuo Suor]
: : , : q dIN
LNO INno NI NI JINT dIAT JINT meD 100 N0 NI NI ZXOf doo] doop doo x5
i ; : Buog ahq Suor a14q
: i . O oA T'A T'a
dd dd dd dd dd I dd dd LVIX Wy VY. LIHS L4HS LJHS LJHS xa
Suorg 94q : g 1991 Juog Akq
i . . I'a ra S rA r'A
RE R OINI BINI £LNI I LI AT Joqug AOW AOW SaT R4 R Rict:d JIJHS I4HS ')
ria ¥IS rdd rds ¥xd ¥xa XD XV Hd 'HA 33 0) FHY g ¥1d 10 v
AOW AON AONW AON AOIN AONW AON AON AON AOW AON AON AON AON AONW AON xd
Suop a14q Suoy adq Buor 21iq Suop 94q Suor alhq
1344 v Xv'w v'w wxy wTy
580§ seag sporp spo] 5018 soIg ISAL 1SAL sdu) sdup SAOIN SAOJAT AOW AOIN AOW AOW Xy
d 1a IS d4 ds xd Xa X0
HV'T HHVS iddod HSNd IIVM e amo MED Syox Sipx Syox Syox Syox Syax Syox JON X6
1997 1991 Buoy a14q Suoy Q)hq guor akq Juoy alfq Jxougis Fuog a14q
A A'S SIA AX Al A A rA A IA IA ra ‘A A
dod AOI Va1 AOW AON AOW AONW AOW ISHL 1SHL nv - v nwv x3
HTINT q1f “INT g dNI dr SNI St HENI adr ZNTI yA) aNI i1y ONI or XL
214q 294q Suoy Suog py e
i qZIS VAN SO Sd L an . v
SN0 SLAO SNE SNE TNNE HSNd TN HSNd qav do oHS DHS a4y Nog VdOd: HSOd X9
1a IS dd ds Xd Xa X2 XV 1a IS dd ds X4 Xa XD XV
dOd d0d dod dod dod dOd dod dod HSNd HSNd HSNd HSNd HSNd HSNd HSNd HSNd by
1a IS dd ds Xq Xa X0 XV 1a IS dd ds Xd Xd XD XV
oaa oda oda odda Jda Jda odaa o 3 (e ONI ONI ONI ONI ONI ONI ONI ONI xp
Buor a4q Suor a14q Buor a4q Buop a14q
fr L sd 197474 |39 04 A‘X Al A Ia o SS XV v AT Az IA I
V¥ DHS: dIND dIND dND dIND dD dIND Wy, ogs (0.4 b:(0).¢ UOX HOX ¥OX UOX Xg
. Suor a1hq Buop a4q . : Suog s14q Buop A4q
o el 19°44 1V AT AT IA A o Sq XY IV AT Al A ‘A
L 8YQ BEY ans ans ans ans €ns ans o ¥vd any anvy any anNv anv any Xz
. : : Buog a4q Buor a4q o e uop kg Suop alhq
8 8 |9°¢4 v Al A FON - 8§ 8§ 19°4% v A A A 1A
wdod HSOd ads qds a8s ads a8s g8s G Hsid oav oav oav oav oav oav X1
e Suoj a4q Suoy ahkq i . Suoj a4q Suoy 214q
a8eq Ne. Xy v A‘X A'X I'A A 8 [o 1944 3544 AX A'X Ia A
puz HSOd b (6] (6] k(o) O (0] d0 dod HSnd aav aav aav aav aav aav X0
I 88 gx ax o 3 {ax VX 6% 8% Lx 9% X 12 £x (A Ix ox dO

¥ 41dVL

5,481,684

23
Appendix
PowerPC ™ RISC Instruction Set
Primary Extend. How
opcode opcode Mnemonic Instruction handled Units
20 lwz Load word and zero Hardware Jo
21 Iwzu update TUo1
1F 17 Iwzx indexed 100
1F 37 Iwzux indexed update Tuo1
24 stw Store word Hardware U0
25 stwu update 1001
1F 97 Stwx indexed 00
1F B7 Stwux indexed update 1001
28 thz Load halfword and zero Hardware TUO
29 thzu update 1001
1F 117 Ihzx indexed jLofi]
1F 137 Ihzux indexed update 1U01
2A Tha Load halfword algebraic 100
2B thau update 1uo1
1F 157 Ihax indexed TUo
1F 177 Thaux indexed update 1001
2C sth Store halfword Hardware 100
2D sthu update TUo1L
1F 197 sthx indexed TU0
1F 1B7 sthux indexed update TU01
22 bz Load byte and zero Hardware 100
23 Ibzu update Tuo1
1F 57 Tbzx indexed 100
1F 77 Ibzux indexed update 1001
26 stb Store byte Hardware U0
27 stbu update TUO1
1F D7 stbx indexed 100
1F F7 stbux indexed update 1001
30 Ifs Load FP. single Hardware Tuo
31 Ifsu precision TU01
1F 217 1fsx update TJo
1F 237 Ifsux indexed TUO1
indexed update
32 Ifd Load FP. double Hardware TUo
33 Ifdu precision 1Uo1
1F 257 Ifdx update TUo
1F 277 ifdux indexed TU01
indexed update
34 stfs Store FP. single Hardware 100
35 stfsu precision 1001
IF 297 stfsx update 00
IF 2B7 stfsux indexed o1
indexed update
36 stfd Store F.P. double Hardware U0
37 stfdn precision TU01
1IF 2D7 stfdx update U0
1F 2F1 stfdux indexed TUo1
indexed update
2E Imw Load multiple word Emiilat TUOL &
BU
2F stmw Store multiple word Emulat V0L &
BU
1F 216 Iwbrx Load word byte-reverse Hardware 100
indexed
1F 296 stwbrx Store word byte-reverse Hardware 100
indexed
1F 316 Thbrx Load halfword byte- Hardware Tuo
reverse indexed
1F 396 sthbrx Store halfword byte- Hardware TUo
reverse indexed
1F 14 Iwarx Load word and reserve
indexed
1F 96 StweX. Store word conditional
indexed
Primary Extend. How
opcode opcode Mnemonic 1F handled Units

Logical and Shift Instructions

1F 1C andx AND Hardware U1
1C andi.

25

Appendix-continued

5,481,684

PowerPC ™ RISC Instruction Set

1D andis.
1IF 3C andcx AND with complement Hardware U1
1F 7C norx NOR Hareware TU1
1F 11C eqvx Equivalent Hardware U1
1F 13C Xorx XOR Hardware U1
1A xor
1B xoris
1F 19C orcx OR with complement Hardware U1
1F 1BC orx OR Hardware U1
18 ori
19 oris
1F 1DC nandx NAND Hardware U1
14 rlwimix Rotate left word immed. Hardware U1
then AND with mask
insert
15 rlwinmx Rotate left word immed. Hardware U1
then AND with mask
17 rlwnmx Rotate left word then Hardware 101
AND with mask
1F 18 slwx Shift left word Hardware 101
1F 218 STWX Shift right word Hardware 101
1F 318 sTawx Shift right algebraic word Hardware w1
1F 338 srawix Shift right algebraic word Hardware U1
immediate
1F 1A cntlzwx Count leading zeros word Hardware U1
1F 39A extshx Extend sign halfword Hardware 1
1F 3BA extsbx Extend sign byte Hardware U1
Primary Extend. How
opcode opcode Mnemonic Instruction handled Units
Algebraic instructions
E addi. ADD immediate Hardware U1
C addic carrying
D addic. carrying record
F addis shifted
1F 10A addx ADD Hardware U1
1F A addex carrying
1F 8A addex extended
iF CA addmex to minus one extended
IF EA addzex to zero extended
8 subfic SUB immediate carrying Hardware U1
1F 28 subfx SUB Hardware U1
1F 8 subfcx carrying
1F 88 subfex extended
1F E8 subfmex to minus one extended
1F Cc8 subfzex to zero extended
1IF 68 negx Negate Hardware 101
B cmpi Compare immediate Hardware U1
A cmpli logical
1F 0 cmp Compare Hardware U1
1F 20 cmpl logical
Control transfer instructions
12 bx Branch Hardware BU
10 bex Branch conditional Hareware BU
1F 4 tw Trap word Hardware U1
3 twi immediate
13 10 beetrx Branch cond. to count Hardware BU
reg.
13 210 belrx Branch cond. to link reg. Hardware BU
11 1 System call Hardware BU
Multiply and Divide instructions
1F EB mullx Multiply low Hardware TUo1
7 mulli immediate
1F 4B mulhwx Multiply high Hardware 1001
1F B mulhwux unsigned
1F 1CB divwx Divide word Hardware Tuo1
iF 1EB divwux unsigned
String instructions
1F 215 Iswx Load string word

indexed

27

Appendix-continued

5,481,684

PowerPC ™ RISC Instruction Set

1F

1F

1F

13

13

1F

1F

1F
1F

1F

1F

1F

1IF

1F

1F

1F

1F

1F

IF

1F

255

295

2D5

21
81

C1
El
101
121
1A1
1C1

247
2C7

32

96

D2

F2

253

293

53

92

132

1F2

1B2

1D2

113

133

193

1B3

153

1D3

Iswi

stswx

stswi

Load string word
immediate

Store string word
indexed

Store string word
immediate

Condition register instructions

merf
crnor
crandc
crxor
crnand
crand
creqv
crorc
cror
mterf
merxr
merfs
mfcr
mtfshlx
mtfsb0x
mtfsfix
mifsx
mtfsfx

rfi
isync
mitst
mtsrin
mfsr
mfsrin
mfmsr
mtmsr
tlbie
sibia
slbia
slbiex
mftb
mftbu
mitb
mttbu
mfspr

mispr

Move CR field

CR NOR

CR AND with

complement

CR XOR

CR NAND

CR AND

CR Equivalent

CR OR with complement

CR OR

Move to CR fields

Move to CR from XER

Move to CR from

FPSCR

Move form CR field

Move to FPSCR bit 1

Move to FPSCR bit 0

Move to FPSCR

immediate

Move from FPSCR

Move to FPSCR
Privileged instructions

Return from interrupt
Instruction synchronize

Move to segment register
indirect

Move from segment
register

indirect

Move from machine state
register

Move to machine state
register

TLB invalidate entry
SLB invalidate all

SLB invalidate entry
SLB invalidate by index
Move from time base
Move from time base
upper

Move to time base
Move to time base upper
Move from special

purpose register

Move to special purpose
register

Hardware
Hardware
Hardware

Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

Hardware
Hardware
Hardware
Hardware

Hardware
Hardware

Emulaed

Emiulatd

Erfilsed

29

Appendix-continued

5,481,684

PowerPC ™ RISC Instruction Set

1F

1F

1F

1F

1IF

1F

1F

IF

1F

1F

1F

1F

3B
3B
3B
3B

3B
3B
3B
3B
3B
3F
3F
3F
3F

3F
3F
3F
3F
3F
3B

3F

3F

3F

3F

3F

3F

36

56

F6

116

1D6

3F6

3D6

356

256

136

1B6

73

B2

17

1A

20

Other user-mode instructions

dcbst Data cache block store

debf Data cache block flush

dcbtst Data cache block touch
for store

dcbt Data cache block touch

dcbi Data cache block
invalidate

dcbz Data cache block zero

ichi Instruction cache block
invalidate

eieio Enforce in-order /O
execution

sync Synchronize

eciwx External control input
word indexed

€CoOwWX External control output
word indexed

Other instructions

mfpmr Move from program
mode register

mtpmr Move to program mode
register

Floating point instructions

fdivsx FP SP Divide
fsubsx FP SP Subtract
faddsx FP SP Add
frsgrtsx FP SP Square root
frlsx FP SP Muitiply

fmsubsx FP SP Muitiply-Subtract
fmaddsx FP SP Multiply-Add
fnmsubsx FP SP Neg-Mult-Subtract
famaddsx FP SP Net-Mult-Add

fdivx FP DP Divide

fsubx FP DP Subtract

faddx FP DP Add

fsqrtx FP DP Square root
fmulx FP DP Multiply

fmsubx FP DP Multiply-Subtract
fmaddx FP DP Multiply-Add

fomsubx FP DP Neg-Mult-Subtract
fnmaddx FP DP Net-Mult-Add

fresx FP SP Reciprocal
estimate

fempu FP Compare unordered

frspx FP Round to SP

fetiwx FP Convert to integer
word

fetiwzx FP Convert to integer

word and round toward
zero
fselx FP Select

frsqrtex RP Reciprocal square
root estimate

fempo FP Compare ordered

Emulaied

Emulaed’

Emulaed
Emulaed
Emulated

Emutaed

Emalaed:
Emulaed:

Emutaed

Emulaed

Emuilaed

Emulaéd

Hardware
Hardware
Hardware

‘not impl.
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

Hardware
Hardware

not impl;

Hardware
Hardware
Hardware
Hardware
Hardware

notimpl.
Hardware

Hardware
Hardware

Hardware

‘ot imipl.

‘notimpl:

Hardware

00L&
BU :

U0l &
BU

0l &
BU

U0l &
BU

1001 &
BU

U0 &
BU

oL &
BU

wor&:
BU: g

oL &
BU -
001 &
BU:

UolL &
BU:

UoL&:
BU...

aad

U0l &

CEEEEEERER

TUOL &

w
g

daaad

TUoLE
BU:

d dad

TUOL&

or& -
BU. ’

5,481,684

31

Appendix-continued

32

PowerPC ™ RISC Instruction Set

3F 28 fnegx FP Negate Hardware FU
3F 48 fmrx FP Move register Hardware FU
3F 108 fnabsx FP Negative absolute Hardware FU
value
3F 147 fabsx FP Absolute value Hardware FU
10
We claim:

1. A method for emulating calls from a user program to an
operating system, said method comprising:
executing a plurality of user instructions from said user
program, said user instructions belonging to a first
instruction set;

decoding a call instruction in said user program, said call
instruction calling a service routine in an operating
system, wherein said call instruction in said user pro-
gram is a far jump instruction;
loading a pointer to a code segment, said code segment
containing said service routine in said operating sys-
tem, said pointer having an instruction set indicating
means for indicating an instruction set for said service
routine;
executing service routine instructions in said code seg-
ment, decoding service routine instructions with a first
instruction decoder when said instruction set indicating
means indicates said first instruction set, decoding
service routine instructions with a second instruction
decoder when said instruction set indicating means
indicates a second instruction set, said first instruction
decoder for decoding only a portion of said first instruc-
tion set;
returning control to said user program when a return
instruction is executed in said service routine;
whereby said user program containing instructions in said
first instruction set calls said service routine in said operat-
ing system, said service routine having instructions from
said second instruction set, said pointer to said code segment
indicating if said service routine contains instructions from
said second instruction set or said first instruction set.
2. The method of claim 1 wherein said operating system
emulates the DOS™ operating system.
3. The method of claim 1 wherein said operating system
emulates the WINDOWS™ gperating system.
4. The method of claim 1 wherein said first instruction set
is an x86 CISC instruction set and said second instruction set
is a RISC instruction set.

15

20

25

30

35

40

45

5. The method of claim 1 wherein said first instruction set
is an x86 CISC instruction set and said second instruction set
is the PowerPC™ RISC instruction set.

6. A method for emulating calls within a user program,
said method comprising:

executing a plurality of user instructions from said user
program, said user instructions belonging to a first
instruction set;

decoding a call instruction in said user program, said call
instruction calling a service routine in said user pro-
gram, wherein said call instruction in said user program
is a far jump instruction;

loading a pointer to a code segment, said code segment
containing said service routine in said user program,
said pointer having an instruction set indicating means
for indicating an instruction set for said service routine;

executing service routine instructions in said code seg-
ment, decoding service routine instructions with a first
instruction decoder when said instruction set indicating
means indicates said first instruction set, decoding
service routine instructions with a second instruction
decoder when said instruction set indicating means
indicates a second instruction set, said first instruction
decoder for decoding only a portion of said first instruc-
tion set;

returning control to said user program when a return
instruction is executed in said service routine;

whereby said user program containing instructions in said
first instruction set calls said service routine in said user
program, said service routine having instructions from said
second instruction set, said pointer to said code segment
indicating if said service routine contains instructions from
said second instruction set or said first instruction set.

