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EMULATING OPERATING SYSTEM CALLS 
IN AN ALTERNATE NSTRUCTION SET 
USING AMODIFIED CODE SEGMENT 

DESCRIPTOR 

BACKGROUND OF THE 
INVENTION-RELATED APPLICATIONS 

This application is a Continuation-in-Part of copending 
application for a "Dual-Instruction-Set Architecture CPU 
with Hidden Software Emulation Mode', filed Jan. 11, 1994, 
U.S. Ser. No. 08/179,926, having a common inventor and 
assigned to the same assignee as the present application. 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

The present invention relates to a dual-instruction-set 
processor, and more particularly to a method and apparatus 
for emulating operating system calls using instructions from 
a second instruction set. 

BACKGROUND OF THE 
INVENTION-DESCRIPTION OF THE 

RELATED ART 

An enormous base of software has been written for 
existing operating systems such as the DOSTM and Win 
dowsTM operating systems produced by Microsoft Corpora 
tion of Redmond, Wash. However, these operating systems 
presently must be executed on x86 microprocessors manu 
factured by Intel Corporation of Santa Clara, Calif., and 
others. The x86 architecture is an old complex instruction set 
computer (CISC) architecture and is quite different from 
today's highly optimized reduced instruction set computers 
(RISCs). 

It is greatly desired to use newer RISC processors since 
they are potentially less expensive and faster. The Pow 
erPCTM architecture by IBM, Motorola and Apple Computer 
uses a RISC instruction set. However, the PowerPCTM 
cannot directly execute programs written for x86 CISC 
operating systems such as DOSTM and WindowsTM. Emula 
tion programs such as the SoftPC program by Insignia 
Corporation translate x86 CISC instructions to RISC 
instructions, but the performance is reduced relative to 
running x86 code directly. 
A dual-instruction-set CPU was disclosed in the related 

application entitled "Dual-Instruction-Set Architecture CPU 
with Hidden Software Emulation Mode', filed Jan. 11, 1994, 
U.S. Ser. No. 08/179,926. That application is assigned to the 
same assignee as the present application. The dual-instruc 
tion set CPU contains hardware so that it can decode 
instructions from two entirely separate instruction sets. 
What is desired is a method and apparatus to trigger a 

switch from one instruction set to another instruction set 
when a call to a support routine in an operating system is 
made. 

SUMMARY OF THE INVENTION 

The present invention allows code from a first instruction 
set to reside within a segment defined by a second instruc 
tion set. For example, RISC instruction code may reside 
within a CISC segment. The CISC architecture is extended 
to provide for segments that can hold RISC code or CISC 
code. 
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2 
In a broad sense the present invention is directed toward 

a segment descriptor for a dual-instruction-set processor. 
The processor executes instructions from a first instruction 
set and a second instruction set that are substantially inde 
pendent. The segment descriptor describes a segment in 
memory containing program code. The segment descriptor 
has a location indicating means for indicating a location of 
the segment in the memory; attribute indicating means for 
indicating attributes of access to the segment; and an instruc 
tion set indicating means for indicating that an instruction 
set of the program code located within the segment belongs 
to one of a first instruction set and a second instruction set. 
The instruction set indicating means has a first state for 

indicating that the program code contains instructions from 
the first instruction set, and a second state for indicating that 
the program code contains instructions from the second 
instruction set. The program code in the segment contains 
instructions from one of the first instruction set and the 
second instruction set. 

In another aspect of the present invention the first instruc 
tion set is a complex instruction set computer (CISC) 
instruction set while the second instruction set is a reduced 
instruction set computer (RISC) instruction set. The first 
instruction set has a first encoding of operations to opcodes, 
while the second instruction set has a second encoding of 
operations to opcodes. The first encoding of operations to 
opcodes is substantially independent from the second encod 
ing of operations to opcodes. Thus the two instruction sets 
may be entirely separate and independent instruction sets. 
An undefined or reserved bit within the segment descrip 

tor is used for the instruction set indicating means to indicate 
which instruction set the program code in the segment is 
written in. The switch from CISC to RISC instruction 
decoding is triggered when control is transferred to a new 
segment, and the segment descriptor indicates that the code 
within the segment is written in the alternate instruction set. 
The present invention allows an existing user program 

written in CISC code to call a service routine in an operating 
system that is written in RISC code. Thus existing CISC 
programs may be executed on a dual-instruction-set proces 
sor which can execute RISC code to emulate a CISC 
operating system. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows the steps to service an x86 hardware 
interrupt. 

FIG. 2 is a CISC call gate descriptor, 
FIG. 3 is a block diagram of a CPU with segmentation and 

paging. 
FIG. 4 is a diagram of a CISC segment descriptor. 
FIG. 5 is a block diagram of a dual-instruction-set CPU. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in pro 
cessing. The following description is presented to enable one 
of ordinary skill in the art to make and use the present 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
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herein disclosed. 
A dual-instruction-set CPU was disclosed in the related 

application entitled "Dual-Instruction-Set Architecture CPU 
with Hidden Software Emulation Mode', filed Jan. 11, 1994, 
U.S. Ser. No. 08/179,926, hereby incorporated by reference. 
That application is assigned to the same assignee as the 
present application. The dual-instruction set CPU contains 
hardware so that it can decode instructions from two entirely 
separate instruction sets. A page fault or exception would 
cause the instruction set being decoded to switch. Thus if a 
page fault occurred when the CISC instruction set was being 
decoded, execution would switch to the RISC instruction 
set. CISC instructions that were not directly supported in 
hardware would also cause a switch to the RISC instruction 
Set. 

Although the related application works effectively for 
many applications, calls from user programs to support 
routines in the x86 CISC operating system do not normally 
cause an exception or page fault to occur. Thus the Support 
routines in the operating system would be executed from 
x86 CISC code. Since RISC code is believed to be more 
efficient than x86 CISC code, it would be preferable to 
execute as much code as possible in RISC rather than in 
CISC. Because of the enormous number of user programs 
written in x86 CISC code, it is not feasible to convert each 
program over to RISC code. Indeed, it is highly desirable to 
be able to execute unmodified user programs. However, 
most of these user programs use (or call) support routines 
that are supplied by the operating system. Since DOSTM and 
WindowsTM are by far the most widely used operating 
systems on personal computers (PC's), it is desired to write 
RISC code for emulating the support routines in these two 
operating systems. Thus when an x86 CISC user program 
calls a support routine in either the DOSTM or WindowsTM 
operating systems, the support routine could be written in 
the RISC code, improving performance over the original 
support routine written in x86 code. However, a method is 
needed to trigger the switch from decoding CISC instruc 
tions to decoding RISC instructions when the support rou 
tine is called. 
The operating system (OIS), or possibly the Basic Input/ 

Output System (BIOS), may provide support routines that a 
user program may access. The user program may transfer 
control to the operating system in the following ways: 

Exception 
External Interrupt 
Software Interrupt 
Far Call or Far Jump. 

Each of these methods to transfer control from a user 
program to the operating system will be discussed next. 
EXCEPTIONS 
An exception occurs when an instruction is executed that 

causes some sort of error. A divide instruction that attempts 
to divide by zero would cause a divide-by-zero exception, 
invoking a service routine in the operating system to handle 
the error. The service routine in this case would typically 
display an error message to the user and terminate the 
program. 

Other causes of exceptions include attempting to execute 
an undefined or illegal opcode, reaching a program check or 
break point, attempting to access memory that is out of the 
bounds for the segment, writing to a read-only segment, or 
accessing a segment that is valid but is not currently present 
in the system RAM. Page faults, where the page of memory 
being accessed is not present in the main memory but only 
on the disk, can also cause an exception. 
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4 
The proper service routine is determined by accessing an 

interrupt table or interrupt descriptor table to fetch the 
starting address for the service routine for the particular 
exception. When an exception occurs, control is transferred 
to a service routine for the particular exception. The pro 
cessor itself, however, supplies an entry number for an 
interrupt table. 
EXTERNAL INTERRUPTS 
An external device may signal an interrupt to the proces 

sor. For example, a user may strike a key on the keyboard, 
which would generate a keyboard interrupt to the processor. 
The processor will perform an external interrupt acknowl 
edge cycle to allow the external device to identify an 
interrupt number. The interrupt number identifies an entry in 
the interrupt table which points to a service routine in the 
operating system for the external device. 
SOFTWARE INTERRUPTS 
A wide variety of O/S support routines may be accessed 

by programming a software interrupt into the user code. A 
software interrupt is an instruction that emulates a hardware 
interrupt. The software interrupt instruction causes the inter 
rupt table to be accessed. The software interrupt instruction 
has a parameter that specifies a unique entry in the interrupt 
table. When an interrupt is encountered, the interrupt table 
is consulted to determine the address where the interrupt 
service routine is located in memory. The processor loads 
this address and begins executing instructions from this 
address, the location of the service routine. Upon completion 
of the service routine, control is transferred or returned back 
to the user program. Application programs running under 
DOS typically use software interrupt instructions to invoke 
DOS routines. 
FAR CALLS AND JUMPS 

Application programs running under WindowsTM occa 
sionally use software interrupts to invoke operating system 
routines, but the bulk of the WindowsTM operating system 
routines are invoked by a far call instruction. For example, 
a user application may call the "CreateWindow' command 
while running under WindowsTM to have a new window 
opened. The user application program executes a far call 
instruction to transfer control to a different segment where 
the WindowsTM CreateWindow routine is located. A far call 
is a transfer of control to code which resides in a different 
segment, which also saves the instruction pointer and code 
segment register onto a stack in memory. The CreateWin 
dow routine returns to the application program by executing 
a far return instruction, which restores the instruction pointer 
and code segment from the stack. 
A segment descriptor is accessed and examined when a 

far call occurs, because control is transferred to a new 
segment. However, no interrupt is signaled. 
INTERRUPT SERVICE ROUTINES 
Many support routines supplied by the operating system 

are accessed when an external hardware interrupt is signaled 
to the processor. FIG. 1 shows the steps to service an x86 
hardware interrupt. In the x86 architecture, only one pin or 
input to the processor is provided for most interrupts. 
Therefore, the processor must determine what the cause of 
the external interrupt is by generating an interrupt acknowl 
edge cycle, when the external devices send an interrupt 
number or vector back to the processor. The interrupt vector 
specifies the device causing the interrupt, for example the 
keyboard. The interrupt vector is also known as an entry 
number, which specifies an entry in an interrupt table stored 
in memory. In the x86 architecture, the entry number is 
multiplied by eight, since each entry in the interrupt table 
occupies eight address locations, to specify the address of 
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the entry in the interrupt table in memory. The entry stored 
in the interrupt table is a starting address where a support 
routine to service the interrupt is stored. The starting address 
of the interrupt service routine is loaded into the processor's 
instruction pointer and code segment register, while the old 
values for the instruction pointer and code segment register, 
and the flags register, are stored on a stack in memory. 
The support routine is then executed starting with the 

instruction fetched from the starting address stored in the 
entry in the interrupt table. The support routine, or interrupt 
service routine, is executed, and control is returned to the 
user program when the end of the service routine is reached, 
by retrieving the old values for the instruction pointer, code 
segment and flags registers from the stack. 
As an example, the user may strike a key on the keyboard. 

The keyboard controller would signal to the processor an 
interrupt request over the shared interrupt input. The pro 
cessor then "services' this interrupt. First, an interrupt 
acknowledge cycle is run when the keyboard's interrupt 
number, 09 hex, is supplied to the processor. The interrupt 
number is multiplied by 8 hex, and the result, 48 hex, is 
tadded to the interrupt descriptor table base register, yielding 
the address of the keyboard's entry in the interrupt table. A 
memory cycle is run at this address to fetch the contents of 
the interrupt descriptor table entry number at 48 hex, and the 
contents are stored in the processor. The old instruction 
pointer, code segment and flags registers are stored to the 
stack, and then the contents of the keyboard's entry from the 
interrupt table are loaded into the instruction pointer and 
code segment register. Execution then transfers to the key 
board interrupt service routine pointed to by the contents of 
the keyboard's entry from the interrupt table, which is a 
starting address for the keyboard service routine. This rou 
tine performs an I/O read of the keyboard to determine 
which key was struck, and then terminates and returns 
control to the user program by retrieving the old instruction 
pointer, code segment and flags registers from the stack. 
To service an x86 software interrupt, the steps are similar 

to those for the hardware interrupt of FIG. 1 except that an 
external interrupt acknowledge cycle is not necessary 
because the software interrupt instruction specifies the inter 
rupt number and entry. 
INTERRUPT TABLE DESCRIPTORS 
The entries in the interrupt descriptor table are descrip 

tors, similar to descriptors for segments. An offset address in 
the interrupt descriptor provides the entry point within the 
code segment jumped to. A selector field in the interrupt 
descriptor identifies the segment the interrupt service routine 
is located in. Privilege and access checks are performed for 
the interrupt descriptor just as they are done for segment 
descriptors. The interrupt descriptor table may contain a 
special descriptor, called a task gate, which causes the 
interrupt service routine to run in a separate context. 
CISC CONTROL TRANSFERS TO RISC 
A signal is needed to cause the processor to switch the 

instruction set being decoded. An exception or interrupt can 
provide this signal, or a separate instruction can be defined 
to switch instruction sets. Jumping from a CISC user pro 
gram to another segment written in RISC code without 
signaling an interrupt or exception could cause unpredict 
able results or even a system crash unless a method is 
employed to trigger the switch to RISC decoding. Addition 
ally, routines within the operating system may jump to other 
operating system routines that may not be implemented in 
RISC code but in CISC code. Ideally the type of code, RISC 
or CISC, would be indicated when ajump or control transfer 
occurs, regardless of what caused the jump. 
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6 
When called from a CISC user program, the O/S service 

routine could begin with a special instruction to switch to the 
RISC instruction set. However, if this same O/S service 
routine were call from a RISC user program, then a separate 
entry point would be needed for the RISC program, because 
the special instruction to switch instruction sets should not 
be executed. Thus two entries would be needed for each O/S 
service routine. The RISC entry point could be the start of 
the service routine, but CISC programs would first have an 
entry point to execute the special instruction to switch to 
RISC code, and then jump to the RISCentry point. On return 
from the O/S service routine, CISC code would have to 
again execute a special instruction to switch back to CISC 
instruction decoding. 

Having two entry points for each O/S service routine is 
undesirable as it increases the memory requirement for the 
interrupt table. Performance would decrease because param 
eters or return values passed to and from the O/S service 
routine could have to be copied, saved, or re-arranged in 
registers or memory. One or more additional instructions 
would have to be executed, also reducing performance. 
Maintaining and verifying the operating system would be 
more difficult. 

Ideally either RISC or CISC code could use the same 
interrupt descriptor table and entry points. The O/S service 
routines would be independent of the user's instruction set. 
The inventors have recognized all of these operating 

system calls cause a control transfer to a different segment. 
The switch to the RISC instruction set is therefore best 
triggered by loading the new segment descriptor. Each 
segment is written in either RISC or CISC code, and its 
segment descriptor indicates the instruction set for the code 
in that segment. Thus if a jump occurs to a segment that has 
a descriptor indicating RISC code, then the processor will 
switch to RISC decoding if it is currently decoding CISC. 
The cause of the jump, be it an interrupt, exception, or 
merely afarjump to another segment, is irrelevant; the target 
segment type will cause the proper instruction set to be 
decoded for the new segment. 
X86 CISC SEGMENTATION 

Segments are variable-sized blocks of memory, delineated 
by a segment base address and abound or limit that is equal 
to the size or length of the segment. Segments can be of 
several types such as code, data, stack, or system manage 
ment. The operating system typically manages segments by 
managing descriptors that identify the location and type of 
each segment. Segments can be used to protect one user or 
task from another, allowing for multi-user and multi-tasking 
systems. 

FIG. 3 is a block diagram of address generation in a 
typical x86 processor, which includes both segmentation and 
paging. ALU 80 calculates a virtual address 82 from address 
components indicated by an instruction being processed. 
ALU 80 or other decode logic (not shown) indicates which 
segment is being referenced by the instruction and selects 
one segment descriptor 30' in a segment descriptor register 
array 33. The selected segment descriptor 30' includes a base 
address field which outputs the base or starting address of 
the selected segment on line 86, and a limit or upper bound 
which is outputted online 90. Virtual address 82 is added to 
the base address 86 in segment adder 92, to produce a linear 
address 88. The segment adder 92 must be a full 32-bit adder 
in the x86 architecture because segments can begin and end 
on any boundary, down to single-byte granularity. Other 
architectures that restrict the segment to begin and end on 
page boundaries need not add the lower 12 bits, and thus can 
use a smaller adder. 
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Subtractor 94 subtracts the virtual address 82 from the 
limit on line 90. If a negative value results, then the virtual 
address exceeds the limit and a segment overrun error is 
signaled. A second adder/subtractor could be used to check 
the lower bound of the segment; however if the lower bound 
is always virtual address 0, then the segment adder 92 can 
be used for the lower bound check. If the result is a negative 
number then the lower bound has been violated. Thus the 
negative flag or the sign bit may be used for lower bound 
checking. Comparators may also be employed for bounds 
checking. 

Linear address 88 is translated to a physical address by 
translation-lookaside buffer or TLB 96, which is a small 
cache of the page translation tables stored in main memory. 
The TLB 96 translates the upper 20 bits of the linear address 
by searching the associative TLB cache for a match, and if 
one is found, then replacing these upper 20 bits with another 
20 bits stored in the TLB 96. 

If the linear address is not found in the TLB, then a miss 
is signaled to the translator 98, which accesses the page 
tables in main memory and loads into the TLB the page table 
entry that corresponds to the linear address. Future refer 
ences to the same page will "hit' in the TLB, which will 
provide the translation. Translator 98 may be implemented 
entirely in hardware, entirely in software, or in a combina 
tion of hardware and software. 
SEGMENT DESCRIPTORS 

FIG. 4 is a diagram of a segment descriptor in the x86 
architecture. The descriptor 30 consists of two 4-byte 
double-words 30A and 30B. The beginning address of the 
segment is determined by the segment base32, which is split 
among three fields, a first base field 32A in the first double 
word 30A, having bits 15 to 0 of the base address, a second 
base field 32B in the second double-word 30B, having bits 
23 to 16 of the base address, and a third base field 32C in the 
second double-word, having bits 31 to 24 of the base 
address. Combining fields 32A, 32B, and 32C yields a 32-bit 
segment base address. Likewise the upper bound or limit of 
the segment 34 is broken up among two fields, a first limit 
field 34A in the first double-word 30A, and a second limit 
field 34B in the second double-word 30B. Combining fields 
34A and 34B yields a 20-bit limit for the segment. The limit 
34 is the length or size of the segment. 
Many attribute bits are provided to control access to the 

segment and to further define the segment, or to aid the 
operating system in management of the segment. The x86 
architecture defines the following attribute bits: 

P Present bit. 1 = segment is present in memory; 
0 = not present in memory 

DPL Descriptor Privilege Level 3-0 
S Segment type 1 = User Codefdata; 0 = system 
Type Segment Type (see below) 
A Accessed 
G Granularity 1 = pagefAK; 0 = byte 
D Default Operation Size 1 = bit; 0 = 16 bit 
AVL Available for user or OS, extra bit 

The system field 38 breaks segments into two broad 
classes: system segments that are used by the operating 
System, and user segments, such as code, data, and stack 
segments. The Type field 36 further defines the type of 
segment pointed to by the descriptor. Some of the other 
attribute bits may change definition depending upon the 
segment type. Three bits are used to encode the type, so 2 
or 8 types are possible. For user segments, the type bits 
indicate if the segment is executable, writable, or readable. 
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8 
A code segment would be executable but not writable, while 
a data segment would be writable but not executable. For 
system segments, the accessed bit 40 is used as an extra type 
bit so that the type field is now 4 bits for system segments. 
The system segment types defined by Intel are shown in 
Table 1. 

TABLE 1. 

System Segment Types 

Type Code Segment/gate 

Invalid 
286 TSS 
LDT 

286 TSS Busy 
286 Cal Gate 
Task Gate 

286 Interrupt Gate 
286 Trap Gate 

Invalid 
486 TSS 

Reserved by Intel 
TSS Busy 

486 Call Gate 
Reserved by Intel 
486 Interrupt Gate 
486 Trap Gate 

GATE DESCRIPTORS 
FIG. 2 is a diagram of a gate descriptor in the x86 

architecture. Gate descriptors control access to entry points 
into a code segment. Interrupt gate descriptors are placed in 
the interrupt descriptor table in protected mode. The gate 
descriptor 20 consists of two 4-byte double-words 20A and 
20B. The beginning address of the service routine within the 
segment is determined by the offset 24, which is split among 
two fields, a first offset field 24A in the first double-word 
20A, having bits 15 to 0 of the offset address, and a second 
offset field 24B in the second double-word 20B, having bits 
31 to 16 of the offset address. Combining fields 24A and 24B 
yields a 32-bit offset address within the segment. A selector 
22 identifies the segment that is the target of the gate 
descriptor. The target segment will have its own segment 
descriptor, such as the descriptor shown in FIG. 4, which 
must be accessed and checked before code can be fetched 
from the target segment. 
Many attribute bits are provided to define the control 

transfer gate. The x86 architecture defines the following 
attribute bits: 

P Present bit. 1 = segment is valid; 0 = not valid 
DPL Descriptor Privilege Level 3-0 
WD CNT Number of parameters passed to procedure 

called (call gate only) 
Type Segment Type (see Table 1) 

The type of gate can be interrupt, task switch, trap, or call, 
depending upon the type of control transfer defined by the 
gate. Table 1 also shows the types of gate descriptors defined 
for the x86 architecture. The last 4 rows of Table 1 are gate 
descriptor types while the first four rows of Table 1 are 
segment descriptor types. 
SEGMENT CODE DESCRIPTORS 
INSTRUCTION SET 
The x86 segment descriptors may be modified to indicate 

that the segment descriptor refers to a segment containing 
RISC code rather than x86 CISC code. An invalid or 
reserved combination of bits in the segment descriptor can 
be used to indicate that the processor should switch to 

INDICATING 
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decoding RISC code rather than CISC code when accessing 
code in this segment. Bit 21 in the second double-word of 
the segment descriptor of FIG. 4 is normally always zero for 
x86 systems. Setting this bit to one, which could cause a 
prior-art x86 system to perform an undocumented function, 
would indicate to a dual-instruction-set processor of the 
present invention that the segment contains code written in 
a RISC instruction set rather than the x86 CISC instruction 
Sct. 

Setting bit 21 to a one is the preferred technique for 
indicating RISC code within a segment because this bit can 
be set for any type of segment, system or user. However, 
other ways of indicating RISC code are also possible. Table 
1A showed that four types of system segments were either 
invalid or reserved for Intel. Setting a descriptor for a system 
segment to one of these invalid or reserved types could also 
indicate that the segment contains RISC code. 
RISC data structures may differ from x86 data structures. 

For example, the order of the bytes in a data word can be 
either "big endian” or "little endian', depending upon 
whether the most significant bit is in the highest byte or the 
lowest byte of the data word. Invalid or reserved segment 
descriptor types could also be used to indicate that a RISC 
data structure and byte-ordering is to be used when access 
ing the data in the segment rather than the default CISC 
byte-ordering. 
CISC USER CODE CALLING RISC O/S ROUTINES 

Regardless of the reason for a control transfer, when a 
new segment is accessed the segment descriptor is checked 
to see if it indicates that the new segment contains RISC 
code or data. If so, then the processor will use a RISC 
instruction decoder rather than the CISC instruction decoder 
when executing instructions from the new segment. Any 
type of inter-segment transfer of control will force the 
processor to check the new segment descriptor to determine 
which instruction set to decode. Operating system calls from 
user code will cause an inter-segment jump, whether a 
software or hardware interrupt is used, or if a far jump 
directly to the address of the service routine is employed. 
The present invention will operate properly, checking the 
instruction set for the new segment, as long as the operating 
system is invoked by an inter-segment control transfer. 

Great flexibility is provided by the present invention. The 
operating system no longer must be written in a single 
instruction set. An x86 operating system such as DOSTM or 
WindowsTM may be re-written entirely in PowerPCTM RISC 
code, yet still execute x86 programs. The entire operating 
system does not have to be converted to RISC code however. 
Parts of the operating system may be re-written while other 
parts may be left in the original x86 code. While RISC code 
may have a higher performance for most functions, some 
functions may have a higher performance in the CISC code, 
especially if a complex CISC instruction is able to perform 
the function efficiently. Thus the operating system may be 
optimized using either of two instruction sets. Additionally, 
user applications may also be written in either or both 
instruction sets. 
PROTECTION MECHANISMS 
The segment descriptors are stored in memory in tables. 

For the x86 architecture, a global descriptor table contains 
segment descriptors that are available to all tasks and users 
in a system. Each task or user will generally have its own 
local descriptor table storing segment descriptors for its own 
segments. Thus one user's segments are protected from 
another user because his segment descriptors are stored in 
his own local table. System descriptors are located in the 
global table, while user code, data, and stack segment 
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10 
descriptors are usually located in a user's local descriptor 
table. The interrupt table is usually shared by all users, and 
its entries are similar to segment descriptors. Rather than 
storing a segment base address and a limit, the interrupt 
descriptors contain an identifier to select a new segment, and 
an offset to specify a starting address to jump to within that 
segment. 

Using the present invention, RISC code can reside within 
a CISC segment. The CISC architecture is extended to 
provide for segments that can hold RISC code rather than 
just CISC code. These new RISC code segments have 
descriptors that are almost identical to the CISC segment 
descriptors, and therefore these RISC descriptors may reside 
in the CISC descriptor tables. The global descriptor table in 
particular may have CISC code segment descriptors for parts 
of the operating system that are written in x86 CISC code, 
while also having RISC code segment descriptors for the 
parts of the operating system that are written in RISC code. 
When control is passed to a new code segment, the 

segment descriptor is fetched from the global or local 
descriptor table, and protection checks are performed as 
usual. The present bit stored in the segment descriptor is 
examined, and an error is signalled if the segment is not 
present in memory. The type of the segment is checked, and 
an error is signalled if the segment is not a code segment. 
The privilege level in the descriptor is examined and a 
segment error is signaled if the privilege rules are violated. 
These protection checks are done without regard to the type 
of code residing in the segment, be it RISC or CISC. 

Referring to FIG. 5, if the protection checks pass, then 
control is transferred to the new segment by loading the new 
segment base address into the processor's code segment 
register 10, and fetching the next instruction from the 
address pointed to by the instruction pointer 64 (IP). Before 
this instruction is decoded, the segment register 10 is also 
loaded with the instruction set type bit 21, from the segment 
descriptor. If the instruction set type bit 21 indicates that 
RISC code is to be decoded, then the RISC instruction 
decode unit is enabled and its output selected by mux 46 to 
be sent to the execute unit 48. If the instruction set type bit 
21 indicates that CISC code is to be decoded, then the CISC 
instruction decode unit is enabled and its output selected by 
mux 46 to be sent to the execute unit 48. Mode control 42 
copies the instruction set type bit 21 from line 12 to the 
RISC/CISC bit in mode register 68. 
CPU HARDWARE 
The next pages provide further background on the pro 

cessor hardware used to implement a dual-instruction set 
processor. The present application is a Continuation-in-Part 
of the parent copending application for a "Dual-Instruction 
Set Architecture CPU with Hidden Software Emulation 
Mode", filed Jan. 11, 1994, U.S. Ser. No. 08/179,926, having 
a common inventor and assigned to the same assignee as the 
present application. 

FIG. 5 shows a simplified block diagram of a CPU that 
can execute both RISC and CISC instructions. Instruction 
Pointer 64 indicates the instruction to be decoded in instruc 
tion fetch unit 62. This instruction is sent to Instruction 
Decode (ID) 66. Instruction decode 66 is composed of three 
sub-blocks, one for decoding CISC instructions, another for 
decoding RISC instructions, and a third sub-block for 
decoding extended RISC instructions for emulation mode. 
The extended instructions are at the highest privilege level, 
higher than even the operating systems that may be running 
under RISC of CISC modes. These extended instructions 
offer access to all the system resources, including mode 
register 68. Mode register 68 contains bits to indicate the 
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current operating mode of the CPU. One bit selects between 
the RISC and CISC user modes, while another bit enables 
the extended RISC instructions for emulation mode. 

Instruction decode 66 is a partial instruction decode unit, 
in that it fully decodes only about 50% of the x86 CISC 
instructions, and about 85% of the PowerPCTM RISC 
instructions. Several well-known implementations are pos 
sible for instruction decode 66. For example, random logic 
may be used to decode the instruction set defined by an 
opcode map such as Tables 2 and 3. Opcode maps in Tables 
2 and 3 are similar to logic truth tables in that they fully 
specify the logic equations needed to decode the instruction 
set. Instructions that are not fully decoded are not directly 
supported by hardware, and signal an "unknown opcode' on 
line 70 to mode control 42, which causes emulation mode to 
be entered. 
The same opcode may map to different operations or 

instructions in the two instruction sets, requiring separate 
decode units for each instruction set. Since emulation code 
runs a superset of the RISC code, additional logic to decode 
these extended instructions is provided with the RISC 
decode block. The extended emulation mode instructions are 
enabled by enable block 44, which is controlled by the 
emulation mode bit in the mode register 68. Multiplexer or 
Mux 46 selects the decoded instruction from either the RISC 
or the CISC decode sub-block. Mux 46 is controlled by the 
RISC/CISC mode control bit in mode register 68. When 
emulation mode is entered, the RISC/CISC bit must be set 
to the RISC setting and the emulation mode bit enabled, 
because RISC instructions may also be executed by the 
emulation code. 
The decoded instruction is passed from mux 46 to execute 

unit 48, which can perform arithmetic functions and address 
generation. General-purpose registers 50 supply operands to 
the execute unit 48. Since a full segmentation unit is not 
provided, segment addition must be performed by the 
execute unit when needed as part of normal address gen 
eration. Limit checking is provided by hardware associated 
with the TLB in conjunction with the emulation driver. 

Execute unit 48 is designed to execute the simpler CISC 
and RISC instructions, and thus has reduced complexity 
relative to traditional execute units on CISC and even RISC 
CPU's. Since only simple instructions are directly sup 
ported, the unit can be made to operate at higher speed than 
if all instructions were supported. Microcode can be mini 
mized or even eliminated because complex instructions are 
supported by algorithms stored in emulation memory. These 
algorithms are not merely microcode stored off chip, which 
would require much more memory, but are higher-level 
routines composed of RISC instructions and extended 
instructions. 
Any address generated by execute unit 48 is sent to the 

TLB 52, which performs an associative search on the input 
virtual address and translates it to a physical address output 
on bus 54. The page or upper address is from the TLB and 
the offset or lower address is bypassed around the TLB.TLB 
52 can translate virtual addresses from the execute unit 48 to 
physical addresses if segmentation is disabled, or translate a 
linear address generated by addition in the address genera 
tion unit to a physical address. If the segment begins or ends 
on a page, then special hardware is required to specify that 
emulation mode should be entered if the address is close to 
the segment boundary, or within the physical page but 
outside the segment. 

If the translation is not present in the TLB, a miss is 
signaled which causes emulation mode to be entered. Emu 
lation mode is always used to load the TLB, allowing the 
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emulation driver the highest level of control over address 
mapping and translation. Mode control 42 causes emulation 
mode to be entered whenever a miss is signaled from TLB 
52, or an unknown opcode is detected by instruction decode 
66. Normal exceptions, interrupts, and traps from the 
execute unit and other units also cause emulation mode to be 
entered, giving great flexibility in system design. Mode 
control 42 sets and clears the RISC/CISC and emulation 
mode control bits in mode register 68. When entry to 
emulation mode is requested, entry point block 56 generates 
the proper entry point vector or address in the emulation 
portion of memory, and loads this address into the instruc 
tion pointer 64. Thus the CPU will begin fetching and 
executing instructions at the specified entry point, where the 
emulation driver contains a routine to handle the exception, 
TLB miss, or to emulate the unknown instruction. Instruc 
tion decode 66 can provide the opcode itself and other fields 
of the instruction to the entry point logic, to allow the entry 
point to be more fully specified. Thus one entry point could 
be defined for a REP MOVS with a byte operand while 
another entry point is defined for a REP MOVS instruction 
with a long-word operand. Table 2 shows the entry points 
from CISC mode. For example, the REP MOVS byte 
instruction enters the emulation code at A4 hex, while REP 
MOVS longword enters at A5 hex. A TLB miss with 
segment 0 enters at 18 hex, while a far RETurn in x86 real 
mode enters at CA hex. 

If the CISC user program executes an instruction to 
enable or disable translation and the TLB, the instruction 
may be detected by the instruction decode 66, causing an 
unknown instruction to be signaled over line 70 to mode 
control 42, causing emulation mode to be entered. Execute 
unit 48 may also detect an attempt to enable or disable the 
TLB, and signal mode control 42 by asserting TLB enable 
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detect 49. TLB enable detect 49 does not enable or disable 
the TLB as is does for a prior-art CISC CPU; instead it 
causes emulation mode to be entered, which will emulate the 
effect the instruction would have had. However, the TLB is 
not disabled. Thus emulation mode has complete control 
Over the TLB. 
RISC INSTRUCTION DECODE 
The RISC sub-block of instruction decode 66 decodes the 

PowerPCTMRISC instruction set. All instructions are 32 bits 
in size, and some require two levels of instruction decoding. 
The first level determines the basic type of instruction and is 
encoded in the 6 most significant bits. Table 3 shows the 64 
possible basic or primary opcode types. For example, 
001110 binary (OE hex) is ADDI-add with an immediate 
operand, while 100100 (24 hex) is STW-store word. The 
CPU executes the 45 unshaded opcodes directly in hard 
ware. The fifteen darkly shaded opcodes, such as 000000, 
are currently undefined by the PowerPCTM architecture. 
Undefined opcodes force the CPU into emulation mode, 
where the emulation driver executes the appropriate error 
routine. Should instructions later be defined for these 
opcodes, an emulator routine to support the functionality of 
the instruction could be written and added to the emulator 
code. Thus the CPU may be upgraded to support future 
enhancements to the PowerPCTM instruction set. It is pos 
sible that the CPU could be field-upgradable by copying into 
emulation memory a diskette having the new emulation 
routine. 
The second level of instruction decoding is necessary for 

the remaining four lightly shaded opcodes of Table 3. 
Another 12-bit field in the instruction word provides the 
extended opcode. Thus one primary opcode could support 
up to 4096 extended opcodes. Primary opcode 010011, 
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labeled "GRP A' in Table 3, contains instructions which 
operate on the condition code register, while groups C and 
D (opcodes 111011 and 111111 respectively) contain float 
ing point operations. Group B (opcode 011111) contains an 
additional version of most of the primary opcode instruc 
tions, but without the displacement or immediate operand 
fields. Most group B and many instructions from groups A, 
C, and D are directly supported by the CPU's hardware, and 
the RISC instruction decoder thus supports some decoding 
of the 12-bit second level field. In the appendix is a list of 
the PowerPCTM instruction set, showing the primary and 
extended opcodes, and if the instruction is supported directly 
in hardware or emulated in emulation mode, as is, for 
example, opcode 2E, load multiple word. 
EXTENDED INSTRUCTIONS FOR EMULATION 
MODE 

Extended instructions for controlling the CPU's hardware 
are added to the RISC instruction set by using undefined 
opcodes, such as those indicated by the darkly shaded boxes 
in Table 3. Thus additional logic may be added to the RISC 
instruction decode unit to support these additional instruc 
tions. However, user RISC programs must not be allowed to 
use these extended instructions. Therefore, the decoding of 
these extended instructions can be disabled for RISC user 
mode, and only enabled for emulation mode. 

Extended instructions include instructions to control the 
translation-lookaside buffer or TLB. The TLB may only be 
loaded or modified by these extended instructions which are 
only available when in emulation mode. Thus the emulation 
mode drivers have complete control over address mapping 
and translation in the system. This allows the emulation 
driver to set aside an area of memory for its own use, and to 
prevent user programs from accessing or modifying this area 
of memory. Because all memory references in user modes 
are routed through the TLB, which is only controllable by 
the emulation mode driver, the emulation mode acts as an 
additional layer of software between the user mode pro 
grams and operating systems, and the actual system memory 
and I/O. Thus the emulation driver can create an area of 
memory hidden from the user mode programs, and can 
locate its drivers and emulation routines in this hidden area 
of memory. 
CISC INSTRUCTION DECODE 
CISC instructions can range in size from 8 bits (one byte) 

to 15 bytes. The primary x86 opcode, is decoded by the 
instruction decode 66 of FIG. 5. About 50% of the x86 
instructions that can be executed by Intel's 80386 CPU are 
executed directly by the dual-instruction set CPU. Table 4 
shows a primary opcode decode map for the x86 instruction 
set. Unshaded opcodes are directly supported in hardware, 
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14 
such as 03 hex, ADD rv for a long operand. This same 
opcode, 03 hex, corresponds to a completely different 
instruction in the RISC instruction set. In CISC 03 hex is an 
addition operation, while in RISC 03 hex is TWI-trap word 
immediate, a control transfer instruction. Thus two separate 
decode blocks are necessary for the two separate instruction 
SetS. 
A comparison of the opcode decoding of Table 3 for the 

RISC instruction set with Table 4 for the CISC instruction 
set shows that the two sets have independent encoding of 
operations to opcodes. While both sets have ADD opera 
tions, the binary opcode number which encodes the ADD 
operation is different for the two instruction sets. In fact, the 
size and location of the opcode field in the instruction word 
is also different for the two instruction sets. 

Darkly shaded opcodes in Table 4 are not supported 
directly by hardware and cause an unknown or unsupported 
opcode to be signaled over line 70 of FIG. 5. This causes 
emulation mode to be entered, and the opcode is used to 
select the proper entry point in the emulation memory. By 
careful coding of the emulation routine, performance deg 
radation can be kept to a minimum. Lightly shaded opcodes 
in Table 4 are normally supported directly by the CPU, but 
not when preceded by a repeat prefix (opcode F2 or F3). 
ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. For example, while the preferred embodiment has 
been described as having two instruction sets, multiple 
instruction sets could be decoded and defined in the segment 
descriptors. The present invention is not limited to x86 CISC 
and PowerPCTM RISC instruction sets, but may be extended 
to instruction sets other than x86 and PowerPCTM and other 
types of instruction sets besides RISC and CISC. While the 
present invention has been described using a preferred 
embodiment where a user program written in CISC code 
makes a call to an operating system in RISC code, the call 
from the user program could also be to another part of the 
user program that is written in RISC code. Thus a large user 
application could make use of the present invention by 
having some parts written in CISC code while other parts are 
written in RISC code. The parts written in RISC code might 
be speed-critical portions of the large user application. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 







5,481,684 
19 20 

TABLE 3 

PowerPCTM RISC Opcodes 
PowerPC 
primary 5 
opcode XXX000 XXX00 XXX00 XXX011 XXX100 XXX101 XXX110 XXX111 

000XXX . . . . . . TWI ... : : MULI 
O01XXX SUBFC CMPLI CMPI ADDIC ADDC. ADDI. ADDIS 

010XXX BCx SC Bx orp A RLWMIX RLWINMx RLWNMx 
Condition ::::::::::::::::::::::::::: 

register 
instructions 

O1XXX OR ORIS XORI XORS ANDI. ANDS. :::::::: GRPB 

15 Misc. 
:::::::::::::::::::: Instructions 

100XXX LWZ LWZU LBZ LBZU STW STWU STB STBU 
101XXX LHZ LHZU LHA LHAU STH STHU LMW STMW 
10XXX LFS LFSU LFD LFDU STFS STFSU STFD STFDU 
11XXX 3:3::::::::::::::::::::::: - - - , , , , ::::::: : ::::::::::::: ::::::::::::: GRPD 

GRPC :20 
FP operate 3. FP operate 
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Appendix 
PowerPCTM RISC Instruction Set 

Primary Extend. How 
opcode opcode Mnemonic Instruction handled Units 

20 lwz. Load word and zero Hardware IUO 
2 lwzu update IUO 
1F 17 lwzX indexed UO 
1F 37 lwzux indexed update UO1 
24 StW Store word Hardware IUO 
25 StWi update IUO1 
1F 97 stWX indexed U0 
1F B7 StWX indexed update IUO1 
28 h2. Load halfword and Zero Hardware TUO 
29 hzu update U01 
1F 17 hzx indexed UO 
1F 37 hzux indexed update UO1 
2A ha Load halfword algebraic UO 
2B hau update UO1 
1F 157 hax indexed TUO 
1F 177 haux indexed update UO1 
2C sth Store halfword Hardware UO 
2D sthu update UOl 
1F 197 sthk indexed UO 
1F 1BT sthux indexed update UO1 
22 bz Load byte and zero Hardware U0 
23 lbzu update UO 
1F 57 lbZx indexed UO 
1F 77 lbzux indexed update UO1 
26 stb Store byte Hardware IUO 
27 stbu update IUO1 
1F D7 stbx indexed IUO 
1F F7 stbux indexed update IUO1 
30 lfs Load F.P. single Hardware IUO 
31 1fsu. precision IUOI 
1F 217 lfsx update IUO 
1F 237 lfsux indexed IUO 

indexed update 
32 lfd Load F.P. double Hardware IUO 
33 lfdu precision IUO1 
F 257 lfdx update IUO 
1F 277 lfdux indexed IUO1 

indexed update 
34 stfs Store FP single Hardware IUO 
35 stfsu precision IUO1 
F 297 stfsX update IUO 
F 2BT stfsux indexed FUO1 

indexed update 
36 stf Store FP double Hardware IUO 
37 stfolu precision UO1 
F 2D7 stfix update IUO 
1F 2F7 stflux indexed UO1 

indexed update 
2E imw Load multiple word Emulate TUO.R. 

BU 
2F Staw Store multiple word Emulate O1& 

B 
F 216 wbrx Load word byte-reverse Hardware IUO 

indexed 
F 296 stwbrx Store word byte-reverse Hardware IUO 

indexed 
F 36 hbrx Load halfword byte- Hardware UO 

reverse indexed 
F 396 stbrx Store halfword byte- Hardware IUO 

reverse indexed 
F 14 lwarx Load word and reserve EO: 

indexed 

1F 96 StWCX. Store word conditional 
indexed 

Primary Extend. How 
opcode opcode Mnemonic 1E handled Units 

Logical and Shift Instructions 

1F 1C andx AND Hardware IU1 
1C andi. 

24 
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Appendix-continued 
PowerPCTM RISC Instruction Set 

1D andis. 
F 3C andcx AND with complement Hardware IU1 
F 7C OX NOR Hareware IUl 
1F 11C eqvX Equivalent Hardware IU1 
1F 13C XOX XOR Hardware IU1 
1A xori 
1B xoris 
1F 19C OCX OR with complement Hardware IU1 
1F BC OX OR Hardware U1 
18 ori 
19 oris 
1F 1DC nandx NAND Hardware U1 
14 rlwinnix Rotate left word immed. Hardware IU 

then AND with mask 
insert 

5 rlwinmx Rotate left word immed. Hardware IUl 
then AND with mask 

17 rlwinmx Rotate left word then Hardware IU 
AND with mask 

F 18 slwy Shift left word Hardware IU 
F 218 SWX Shift right word Hardware IU 
F 318 SaWX Shift right algebraic word Hardware IU1 
1F 338 srawix Shift right algebraic word Hardware IU1 

immediate 
1F 1A cntlzwx Count leading zeros word Hardware IU1 
1F 39A extshx Extend sign halfword Hardware U1 
1F 3BA extsbx Extend sign byte Hardware IU1 

Primary Extend. How 
opcode opcode Mnemonic Instruction handled Units 

Algebraic instructions 

E addi. ADD immediate Hardware IU1 
C addic carrying 
D addic. carrying record 
F addis shifted 
1F 10A addx ADD Hardware IU1 
F A addicx carrying 
F 8A addex extended 
F CA addmex to minus one extended 
F EA addzex to zero extended 
8 subfic SUB immediate carrying Hardware IU1 
1F 28 subfx SUB Hardware IU1 
1F 8 subfcx carrying 
1F 88 subfex extended 
1F E8 subfmex to minus one extended 
1F C8 subfaex to zero extended 
1F 68 negx Negate Hardware U1 
B cmpi Compare immediate Hardware U1 
A. cmpli logical 
1F O cmp Compare Hardware IU1 
1F 20 cmpl logical 

Control transfer instructions 

12 bx Branch Hardware BU 
10 bcx Branch conditional Hareware BU 
1F 4 tw Trap word Hardware Ul 
3 twi immediate 
13 10 bcctrx Branch cond. to count Hardware BU 

reg. 
13 20 bclinx Branch cond. to link reg. Hardware BU 
11 1. System call Hardware BU 

Multiply and Divide instructions 

1F EB mulx Multiply low Hardware IUO1 
7 mulli immediate 
1F 4B mulhwx Multiply high Hardware IUO1 
1F B mulhwux unsigned 
1F 1CB divwx Divide word Hardware IUO1 
F 1EB divwux unsigned 

String instructions 
1F 215 iswx Load string word 

indexed 
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13 
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C1 
E1 
101 
121 
1A1 
1C 
90 
200 
40 

13 
26 
46 
86 

247 
2C7 

32 

96 

253 
293 

53 

92 

132 

13 

133 

193 

153 
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Appendix-continued 
PowerPCTM RISC Instruction Set 

lswi Load string word 
immediate 

stSWX Store string word 
indexed 

stswi Store string word 
immediate 

Condition register instructions 

mcrif Move CR field 
CIO CR NOR 
crandc CRAND with 

complement 

crnand CRNAND 
crand CRAND 
creqv CR Equivalent 
COC CR OR with complement 
cro CROR 
mtcrf Move to CR fields 

C Move to CR from XER 
incrfs Move to CR from 

FPSCR 
Infor Move form CR field 
mtfsbx Move to FPSCR bit 1 
mtfsbOx Move to FPSCR bit 0 
Intfisfix Move to FPSCR 

immediate 
mffsX Move from FPSCR 
mtfsfx Move to FPSCR 

Privileged instructions 

rfi Return from interrupt 

isync Instruction synchronize 

tS Move to segment register 
mtsrin indirect 

mfsr Move from segment 
mfsrin register 

indirect 

nfmsr Move from machine state 
register 

ints Move to machine state 
register 

tlbie TLB invalidate entry 

sibia SLB invalidate all 

slbia SLB invalidate entry 

slbiex SLB invalidate by index 

mftb Move from time base 

mftbu Move from time base 
upper 

mttb Move to time base 

mttbu. Move to time base upper 

mfspr Move from special 
purpose register 

mtspr Move to special purpose 
register 

5,481,684 

Hardware 
Hardware 
Hardware 

Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 

Hardware 
Hardware 
Hardware 
Hardware 

Hardware 
Hardware 
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Appendix-continued 
PowerPCTM RSC Instruction Set 

Other user-mode instructions 

F 36 dcbst Data cache block store 

F 56 dcbf Data cache block flush 

1F F6 dcbtst Data cache block touch 
for store 

1F 16 dcbt Data cache block touch Emulated 0;& 

BU 
F 1D6 dcbi Data cache block Emulated IUO & 

invalidate BU 

1F 3F6 dcbz Data cache block zero Emulated IUO & 

BU 
1F 3D6 icbi Instruction cache block Emulated: U01 & 

invalidate . . . BU. 
1F 356 eieio Enforce in-order I/O Emulated IUO & 

execution : BU 

1F 256 sync Synchronize Emulated. IUO &: 
. . . . . BU 

1F 136 eciwx External control input Emulated IUO3& 
word indexed ... . . BU. 

1F 1B6 eCOWX External control output Emulated IUO&: 
word indexed - 

Other instructions 

1F 73 mfpmr Move from program 
mode register 

1F B2 mtpmr Move to program mode 
register 

Floating point instructions 

3B 12 fivsx FPSP Divide Hardware FU 
3B 14 fsubsx FPSP Subtract Hardware FU 
3B 15 faddsx FPSPAdd Hardware FU 
3B 16 firsqrtsx FPSP Square root not impl. 0. 

st 
3B 19 frmulsx FPSP Multiply Hardware FU 
3B 1C finsubsx FPSP Multiply-Subtract Hardware FU 
3B 1D frmaddsx FPSP Multiply-Add Hardware FU 
3B E finimsubsx FPSP Neg-Mult-Subtract Hardware FU 
3B F fnmaddsx FPSP Net-Mult-Add Hardware FU 
3F 12 fodivx FPDP Divide Hardware FU 
3F 14 fsubx FPDP Subtract Hardware FU 
3F 15 faddx. FPDPAdd Hardware FU 
3F 16 fsqrtx FPDP Square root not impl; U0:8: 

BU: 
3F 19 frmulx FPDP Multiply Hardware FU 
3F 1C fmsubx FPDP Multiply-Subtract Hardware FU 
3F 1D fmaddx FPDP Multiply-Add Hardware FU 
3F E finimsubx FPDP Neg-Mult-Subtract Hardware FU 
3F F fnmaddx FPDP Net-Mult-Add Hardware FU 
3B 18 fresx FPSP Reciprocal not impl. EU01 &: 

3F O fcmpu FP Compare unordered Hardware FU 
3F C firspx FP Round to SP Hardware FU 
3F E fictiwx FP Convert to integer Hardware FU 

word 
3F F fetiwzx FP Convert to integer Hardware FU 

word and round toward 
Zero 

3F 17 fsex FP Select not impl. U0:8: 
---. BU : 

3F 1A frsqrtex RP Reciprocal square 
root estimate - 

3F 20 fcmpo FP Compare ordered Hardware FU 
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PowerPCTM RISC Instruction Set 

3F 28 fnegx FP Negate Hardware 
3F 48 frmrx FP Move register Hardware 
3F 108 finabsx FP Negative absolute Hardware 

value 
3F 47 fabsx FPAbsolute value Hardware 

10 

We claim: 
1. A method for emulating calls from a user program to an 

operating system, said method comprising: 
executing a plurality of user instructions from said user 

program, said user instructions belonging to a first 
instruction set; 

decoding a call instruction in said user program, said call 
instruction calling a service routine in an operating 
system, wherein said call instruction in said user pro 
gram is a far jump instruction; 

loading a pointer to a code segment, said code segment 
containing said service routine in said operating sys 
tem, said pointer having an instruction set indicating 
means for indicating an instruction set for said service 
routine; 

executing service routine instructions in said code seg 
ment, decoding service routine instructions with a first 
instruction decoder when said instruction set indicating 
means indicates said first instruction set, decoding 
service routine instructions with a second instruction 
decoder when said instruction set indicating means 
indicates a second instruction set, said first instruction 
decoder for decoding only a portion of said first instruc 
tion set; 

returning control to said user program when a return 
instruction is executed in said service routine; 

whereby said user program containing instructions in said 
first instruction set calls said service routine in said operat 
ing system, said service routine having instructions from 
said second instruction set, said pointer to said code segment 
indicating if said service routine contains instructions from 
said second instruction set or said first instruction set. 

2. The method of claim 1 wherein said operating system 
emulates the DOSTM operating system. 

3. The method of claim 1 wherein said operating system 
emulates the WINDOWSTM operating system. 

4. The method of claim 1 wherein said first instruction set 
is an x86 CISC instruction set and said second instruction set 
is a RISC instruction set. 
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5. The method of claim 1 wherein said first instruction set 
is an x86 CISC instruction set and said second instruction set 
is the PowerPCTM RISC instruction Set. 

6. A method for emulating calls within a user program, 
said method comprising: 

executing a plurality of user instructions from said user 
program, said user instructions belonging to a first 
instruction set; 

decoding a call instruction in said user program, said call 
instruction calling a service routine in said user pro 
gram, wherein said call instruction in said user program 
is a far jump instruction; 

loading a pointer to a code segment, said code segment 
containing said service routine in said user program, 
said pointer having an instruction set indicating means 
for indicating an instruction set for said service routine; 

executing service routine instructions in said code seg 
ment, decoding service routine instructions with a first 
instruction decoder when said instruction set indicating 
means indicates said first instruction set, decoding 
service routine instructions with a second instruction 
decoder when said instruction set indicating means 
indicates a second instruction set, said first instruction 
decoder for decoding only a portion of said first instruc 
tion set; 

returning control to said user program when a return 
instruction is executed in said service routine; 

whereby said user program containing instructions in said 
first instruction set calls said service routine in said user 
program, said service routine having instructions from said 
second instruction set, said pointer to said code segment 
indicating if said service routine contains instructions from 
said second instruction set or said first instruction set. 


