
United States Patent 19
Blomgren et al.

III III IIII
US005481693A

11) Patent Number:
(45) Date of Patent:

5,481,693
Jan. 2, 1996

54 SHARED REGISTER ARCHITECTURE FOR
A DUAL-NSTRUCTION-SET CPU

(75) Inventors: James S. Blomgren; David E. Richter,
both of San Jose, Calif.

73) Assignee: Exponential Technology, Inc., San
Jose, Calif.

21 Appl. No.: 277,962
(22 Filed: Jul. 20, 1994

(51) int. Cl." G06F 9/30
52 U.S. Cl. 395/375; 395/800; 395/500
58) Field of Search 395/800, 500,

395/375, 550, 425

56) References Cited

U.S. PATENT DOCUMENTS

4,633,417 12/1986 Wilburn et al. 364/550
4,763,242 8/1988 Lee et al. 395/500
4,780,819 10/1988 Kashiwagi 395/500
4,794,522 12/1988 Simpson 395/500
4,812,975 3/1989 Adachi et al. 395/500
4,821,187 4/1989 Ueda et al. 395/375
4,841,476 6/1989 Mitchell et al. 395/500
4,942,519 7/1990 Nakayama 395/775
4,972,317 1/1990 Buonomo et al. 395/375
4,992,934 2/1991 Portanova et al. 395/375
5,077,657 12/1991 Cooper et al. 395/500
5,097,407 3/1992 Hino et al. 395/375
5,136,696 8/1992 Beckwith et al. 395/375
5,167,023 11/1992 de Nicolas et al. 395/375
5,210,832 3/1993 Maier et al. 395/375
5,226,164 7/1993 Nadas et al. ... 395/800
5,230,069 7/1993 Brelsford et al 395/400
5,241,636 8/1993 Kohn 395/375
5,269,007 12/1993 Hanawa et al..... 395/375
5,287,465 2/1994 Kurosawa et al. . 275/375
5,291,586 3/1994 Jen et al. 395/500

OTHER PUBLICATIONS

Combining both micro-code and Hardwired control in RISC
by Bandyophyay and Zheng, Sep. 1987 Computer Archi
tecture News pp. 11-15.

Combining RISC and CISC in PC systems by Garth, Nov.
1991 IEEE publication (?) pp. 10/1 to 10/5.
A 5.6-MIPS Call-Handling Processor for Switching Sys
tems by Hayashi et al., IEEE JSSC Aug. 1989.

Primary Examiner-Alyssa H. Bowler
Assistant Examiner-John Follansbee
Attorney, Agent, or Firm-Stuart T. Auvinen

(57) ABSTRACT

A dual-instruction set central processing unit (CPU) is
capable of executing instructions from a reduced instruction
set computer (RISC) instruction set and from a complex
instruction set computer (CISC) instruction set. Data and
address information may be transferred from a CISC pro
gram to a RISC program running on the CPU by using
shared registers. The architecturally-defined registers in the
CISC instruction set are merged or folded into some of the
architecturally-defined registers in the RISC architecture so
that these merged registers are shared by the two instructions
sets. In particular, the flags or condition code registers
defined by each architecture are merged together so that
CISC instructions and RISC instructions will implicitly
update the same merged flags register when performing
computational instructions. The RISC and CISC registers
are folded together so that the CISC flags are at one end of
the register while the frequently used RISC flags are at the
other end, but the RISC instructions can read or write any bit
in the merged register. The CISC code segment base address
is stored in the RISC branch count register, while the CISC
floating point instruction address is stored in the RISC
branch link register. The general-purpose registers (GPR's)
are also merged together, allowing a CISC program to pass
data to a RISC program merely by writing one of its GPR's,
switching control to the RISC program, and the RISC
program reading one of its GPR's that is merged with and
corresponds to the CISC GPR that was written to by the
CISC program.

7 Claims, 4 Drawing Sheets

EFAGS1 CR

40

CSf CTR

42

EMURTNADRISRRO

44

FPP ILR

46

48

GPR, SEG, EMU 1 GPR

CSC
USER

RSC 8.
EMU CODE

U.S. Patent Jan. 2, 1996 Sheet 1 of 4 5,481,693

-

12 RISC SUPERVISOR REGISTERS

N 36 MSR

32

U.S. Patent Jan. 2, 1996 Sheet 2 of 4 5,481,693

CISC USER REGISTERS

2

s
1

s 9

... d. Y 8.- : " """ " "T"

1 R

U.S. Patent Jan. 2, 1996 Sheet 4 of 4 5,481,693

EFLAGS / CR

40

CS I CTR
42

EMU RTN ADR / SRRO

44

FPP / LR

46

GPR, SEG, EMU / GPR

RSC &
EMU CODE

CSC
USER

Fig. 4

5,481,693
1.

SHARED REGISTER ARCHITECTURE FOR
A DUAL-NSTRUCTIONSET CPU

BACKGROUND OF THE
INVENTION-RELATED APPLICATION

This application is related to copending application for a
"Dual-Instruction-Set Architecture CPU with Hidden Soft
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No.
08/179,926, hereby incorporated by reference. This related
application has a common inventor and is assigned to the
same assignee as the present application.

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to computing hardware, and more
particularly to the architecture of registers in a processor
capable of executing from two instruction sets.

BACKGROUND OF THE
INVENTION-DESCRIPTION OF THE

RELATED ART

Processors, or central processing units (CPUs) that are
capable of executing instructions from two separate instruc
tion sets are highly desired at the present time. For example,
a desirable processor would execute user applications for the
x86 instruction set and the PowerPCTM instruction set. It
would be able to execute the tremendous software base of
x86 programs that run under the DOSTM and WINDOWSTM
operating systems from Microsoil of Redmond, Wash., and
it could run future applications for PowerPCTM processors
developed by IBM, Apple, and Motorola.

Such a processor is described in the related to the copend
ing application for a "Dual-Instruction-Set Architecture
CPU with Hidden Software Emulation Mode', filed Jan. 11,
1994, U.S. Ser. No. 08/179,926. That dual-instruction-set
CPU has a pipeline which is capable of executing instruc
tions from either a complex instruction set computer (CISC)
instruction set, such as the x86 instruction set, or from a
reduced instruction set computer (RISC) instruction set,
such as the PowerPCTM instruction set.

Two instruction decode units are provided so that instruc
tions from either instruction set may be decoded. Two
instruction decoders are required when the instruction sets
are separate because the instruction sets each have an
independent encoding of operations to opcodes. For
example, both instruction sets have an ADD operation or
instruction. However, the binary opcode number which
encodes the ADD operation is different for the two instruc
tion sets. In fact, the size and location of the opcode field in
the instruction word is also different for the two instruction
sets. In the x86 CISC instruction set, the opcode 03 hex is
the ADD rv operation or instruction for along operand. This
same opcode, 03 hex, corresponds to a completely different
instruction in the PowerPCTM RISC instruction set. In CISC
the 03 hex opcode is an addition operation, while in RISC
the 03 hex opcode is TWI-trap word immediate, a control
transfer instruction. Thus two separate decode blocks are
necessary for the two separate instruction sets.

Programs may run in either or both instruction sets. Data
and other information may be shared between RISC pro
grams and CISC programs. One way to share data and other
information is to store the data in a register within the CPU
before switching to the alternate instruction set, and making
all registers readable by either instruction set. Unfortunately,

10

5

20

25

30

35

40

45

50

55

60

65

2
this requires that the instruction sets be extended to provide
instructions to read the additional registers. The shared data
could also be saved to a stack in memory, but this decreases
performance due to the time required to transfer the data to
memory and to adjust the stack pointers.
Two sets of registers could be provided; one set for the use

of CISC programs and a second set for the use of RISC
programs. This is an expensive approach since the registers
reside on the CPU die, which has a limited space available
for registers. The additional registers would require increas
ing the size of the CPU die, or deleting another function such
as floating point processing.
What is desired is a way to share some of the registers

between a CISC and a RISC architecture on a dual-instruc
tion-set CPU. It is further desired to have shared registers for
data and system information. The shared registers should not
be extra registers in addition to the registers already defined
by the CISC or RISC architectures, but should be registers
already existing in the architectures. The shared registers
must not cause conflicts between use in the two instruction
Sets or other undesirable effects.

SUMMARY OF THE INVENTION

Certain CPU registers defined by a RISC and a CISC
architecture are shared. CISC and RISC programs may alter
and read these shared registers, allowing data and system
information to be exchanged between programs running in
the two instruction sets.

A shared register system for a dual-instruction-set pro
cessor has a shared register for storing information to be
transferred between a first program comprised of instruc
tions from a first instruction set and a second program
comprised of instructions from a second instruction set. The
first instruction set has a first encoding of operations to
opcodes, while the second instruction set has a second
encoding of operations to opcodes. The first encoding of
operations to opcodes is substantially independent from the
second encoding of operations to opcodes.
A first means is for accessing the shared register from the

first instruction set. The first means writes information into
the shared register responsive to a first subset of instructions
from the first instruction set. A second means is for accessing
the shared register from the second instruction set. The
second means reads information from the shared register
responsive to a second subset of instructions from the
second instruction set and.
The invention allows information to be transferred from

the first program to the second program using the shared
register. In other aspects of the invention, the shared register
may be any one of the general-purpose registers accessible
to both instruction sets, while the source and destination
fields in the instruction words specify which general-pur
pose register to access. In still further aspects of the inven
tion, the shared register is the flags register which stores
flags or condition codes that are implicitly written by
arithmetic-logic-unit (ALU) operations. Although the shared
flags register contains a first flags field for flags from the first
instruction set and a second flags field for the flags from the
second instruction set, either instruction set can access the
flags in the shared register regardless of which instruction
set the flags are from.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a RISC register set.
FIG. 2 is a diagram of a CISC register set.

5,481,693
3

FIG. 3 is a diagram of a CISC condition flag register and
a RISC condition register.

FIG. 4 shows shared registers in a dual-instruction-set
CPU.

DETAILED DESCRIPTION

The present invention relates to an improvement in pro
cessor architecture. The following description is presented
to enable one of ordinary skill in the art to make and use the
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

This application is related to the copending application for
a "Dual-Instruction-Set Architecture CPU with Hidden Soft
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No.
08/179,926, hereby incorporated by reference.
A dual-architecture central processing unit (CPU) is

capable of operating in three modes-RISC mode, CISC
mode, and emulation mode. A first instruction decoder
decodes instructions when the processor is in RISC mode,
while a second instruction decoder decodes instructions
while the processor is in CISC mode. Two instruction
decoders are needed since the RISC and CISC instruction
sets have an independent encoding of instructions or opera
tions to binary opcodes.
The third mode of operation, emulation mode, also uses

the first instruction decoder for RISC instructions, but emu
lation mode executes a superset of the RISC instruction set.
Using emulation mode, individual CISC instructions may be
emulated with RISC instructions. Thus, not all CISC instruc
tions need to be directly supported in the CPU's hardware.
Unsupported CISC instructions cause a jump to an emula
tion mode routine to emulate the unsupported CISC instruc
tion. Upon completion of the emulation mode routine,
control is returned to the CISC program with the next CISC
instruction.

RISC INSTRUCTIONS NEED ACCESS TO CISC
REGISTERS

Emulation of CISC instructions with RISC instructions
creates a need for the RISC instructions to have access to
CISC registers. For example, a CISC branch instruction may
be emulated by an emulation routine of RISC instructions.
The CISC branch instruction may be a conditional branch
that only branches if a certain bit in a condition code register
is set, perhaps by a previous CISC instruction. Since the
CISC condition code register is part of the CISC architec
ture, but not the RISC architecture, the condition code
register would not be visible to the RISC instructions in the
emulation routine. However, the RISC emulation routine
must have access to this CISC condition code register to
determine if the branch should be taken.

RISC REGISTER SET

FIG. 1 is a diagram of a register set for a RISC architec
ture such as the PowerPCTM. Registers that are visible to a
user program are shown as user register space 10. Supervi
sory programs such as operating systems are able to see all
of the registers in the user register space 10 and the registers
in the supervisor's register space 12. The user registers

10

15

20

25

30

35

40

45

50

55

60

65

4
include general-purpose registers 14 which are used by
programs for temporary storage of operands and results, and
for address formation. Floating point registers 16 are pro
vided for storing floating point numbers that a numeric
processor operates on. Condition register 20 contains con
dition codes set by various instructions and is useful for
setting and checking conditions for conditional branch
instructions. Integer exception register 18 contains bits that
are set when an exception is caused by execution of an
instruction. It contains information on overflows and carries
that occurred in an arithmetic-logic-unit (ALU) when the
instruction causing the exception was executed. Link regis
ter 22 contains the branch target address when a special
branch to link register instruction is executed. Count register
24 holds a value for a loop count which can be decremented,
providing a simple way of programming loops.
A supervisory program such as an operating system has

access to additional registers in the supervisor's register
space 12. Supervisor general-purpose registers 26 are for
general use by the supervisory program. Segment registers
28 and block-address translation registers 32 are for address
translation functions. Machine state register 36 defines the
state of the processor, including reset, and CISC/RISC
emulation mode. Machine state register 36 contains a priv
lege-level bit, the PR bit, to indicate if a the processor is
running in user or supervisor mode when RISC mode is
active. An additional bit, the xE bit, is included in machine
state register 36 to indicate CISC and emulation modes. The
XE bit and the PR bit are encoded as shown in Table 1.

TABLE 1.

Machine Status

xE bit PR bit Processor Mode

O 0 RISC Supervisor
0 RISC User

0 x86 Emulation
1. x86 CISC

Machine status save restore 0 register 30 saves the effec
tive address of the instruction following the instruction
causing an exception or a system call instruction. Machine
status save restore 1 register 34 saves part of machine state
register 36 and other information on the cause of an excep
tion when an exception occurs. In particular, machine status
save restore 1 register 34 receives the PR bit and xE bit from
the machine state register 36. Machine status save restore 1
register 34 thus saves the mode the processor was in at the
time of an exception or other event, and is used to restore the
processor to that mode when exception processing is com
plete. A return from interrupt (rfi) instruction at the comple
tion of the exception processing will restore the xE and PR
bits to the machine status register 36 from machine status
save restore 1 register 34. Together, machine status save
restore registers 30, 34 save the state of the processor when
an exception occurs, allowing the system to return to the
user program once the exception handler routine is com
pleted. Hardware-specific registers 38 contain miscella
neous implementation-specific information such as extended
features.

CISC REGISTER SET

FIG. 2 is a diagram of a register set for a CISC architec
ture such as the x86 used in microprocessors by Intel
corporation of Santa Clara, Calif., Advanced Micro Devices
of Sunnyvale, Calif., and Cyrix Corporation of Richardson,
Tex. Registers that are visible to a user program are shown
as user register space 11. Supervisory or system-level pro

5,481,693
S

grams such as operating systems are able to see all of the
registers in the user register space 11 and the registers in the
system-level register space 13. The user registers include
general-purpose registers 15 which are used by programs for
temporary storage of operands and results, and for address
formation. Segment registers 17 are provided for address
translation. Floating point registers (not shown) may be
included in some embodiments to store data in a floating
point format. Flags register 21 contains flags or condition
codes set by various instructions and is used for setting and
checking conditions for conditional branch instructions.
Instruction pointer 19 contains the address of the instruction
currently being executed.
A system-level program such as an operating system has

access to additional registers in the system-level register
space 13. System address registers 26 are for use by system
level programs for address generation. System segment
registers 29 are for segment address translation functions.
Control registers 31, 35, 39 define the state of the processor,
including protected or real modes, exception handling, cache
enabling, and contain the base address of page tables.
Breakpoints and control, performance monitoring, real-time
clocks and other control may also be included in control
registers 31, 35, 39. Floating point instruction pointer reg
ister 38 contains the address of the instruction last executed
by the floating point unit. It must be saved because a floating
point exception may be signaled after other instructions pass
through the integer pipeline. It allows an exception handler
routine to find the exact address causing a floating point
exception.

CONDITION CODE/FLAGS REGISTER

Condition codes are employed by both RISC and CISC
instruction sets. Instructions that use the arithmetic-logic
unit (ALU) may produce a result having a zero or negative
value. These instructions cause a flag or condition code in
register 21 or 20 to be set when the result is zero or negative.
Iterative loops may be programmed using such flags. For
example, a simple loop may execute a series of instructions
and decrement a loop variable each time the series of
instructions in the loop is executed. The loop variable is
initially set to the number of times to execute the loop. At the
end of the loop, an ALU instruction subtracts one from the
loop variable. When the loop variable becomes zero, the
zero flag will be set. A conditional branch instruction will
check the zero flag and exit the loop when Zero is reached.
Many other flags may be defined. For example, the x86

CISCEFLAGS register defines the flags of Table 2 that are
set or cleared by ALU instructions depending on the result
of the instruction.

TABLE 2

CF Carry Flag Set if carry-out or borrow
PF Parity Flag Set if low 8 bits have even parity
AF Auxiliary (2nd) Carry Bit 3 carry-out, used for BCD
ZF Zero Flag Set if all bits are zero
SF Sign Flag Set if highest-order bit is one
DF Direction Flag Incr. or Decr. string variable
OF Overflow Flag Signed overflow to highest bit

10

15

20

25

30

35

40

45

50

55

6
Other bits in the x86 EFLAGS register are not flag bits set

by operations but are control bits that define how the
processor will operate. Table 3 shows these control bits.

TABLE 3

TF Trap Flag Trap after next instruction
F Interrupt enabled Flag Enables external interrupts
IOPL Input/Output Privilege Max. Privilege for I/O instr.

level (2 bits)
NT Nested Task Flag Nested task being executed
RF Resume Flag Resume after breakpoint
VM Virtual Mode Virtual 8086 mode executing
AC Memory Alignment Check Mis-aligned data will fault

The dual-instruction set processor directly executes only
the simpler CISC instructions. Many of these simpler CISC
instructions set or clear the flag bits in Table 2. However, the
control bits in Table 3 are set or cleared by complex or
infrequently used CISC instructions such as privileged
instructions. These instructions are therefore emulated. Only
the simple CISC instructions will modify the flag bits in the
CISC EFLAGS register. Emulated instructions will modify
the control bits in the CISC EFLAGS register.

FIG. 3 shows the CISC flags register 21 and the RISC
Condition register 20. In the PowerPCTM RISC architecture,
flags or condition codes are kept in the condition register
(CR) 20. Condition register 20 is a 32-bit register divided
into eight 4-bit fields, CR0 to CRT. Most RISC integer
instructions generate the four bits in CR0, but do not modify
any bits in fields CR1 to CR7. Table 4 shows the meanings
of the four bits in CRO.

TABLE 4

RISCCRO field

CRO bit Name Description

O Negative Result is negative
1 Positive Result is positive and not zero
2 Zero Result is Zero
3 Overflow Overflow has occurred

Floating point operations do not modify the bits in the
CR0 field, but they do modify the four bits in the CR1 field.
Table 5 shows the definitions of the four bits in CR1 set by
floating point operations.

TABLE 5

RISCCR1 field

CR1 bit Name Description

O FP exception Floating point exception has
occurred
A floating point enabled excep
tion has occurred
An invalid floating point
exception has occurred
Floating Point Overflow has
occurred

1 FP enabled exception

2 FP invalid exception

3 FP Overflow

5,481,693
7

ARISC compare instruction can set bits in any of the 4-bit
fields CR0-CR7. Table 6 shows the definitions for the four
bits in any field CRn set by the RISC compare instruction.

TABLE 6

RISC CRn field set by Compare Instruction

CRn bit Name Description

0 Less Than register A is less than register B or
immediate value from instruction word
register A is greater than register B or
immediate value from instruction word

1 Greater Than

2 Equal To register A is equal to register B or
immediate value from instruction word

3 Overflow Copy of the Overflow bit in XER
register

The compare instruction specifies which field to write its
result to. Likewise, the RISC branch instructions can
specify, as a condition for branching, any bit in any of the
fields CR0 to CRT. Thus the programmer may write condi
tion codes to the other six fields in the CR register 20. The
programmer may later use these other fields with the branch
instruction using any of the bits in any of the fields CR0 to
CR7. RISC move instructions may also load bits into any of
the fields CR0 to CR7 of the CR register 20. The RISC move
instruction may move bits from another register, or from one
4-bit CR field to another field within CR register 20. A mask
may be specified in the move instruction word to indicate
which bits to move and which bits to not modify. A wealth
of RISC logical instructions are provided that specify as
inputs one or two bits in any of the 4-bit fields. A Boolean
logical function is performed on the specified input bits, and
the resulting output bit is written to any bit in any of the 4-bit
fields in CR register 20. Thus RISC provides a variety of
instructions to update, modify, and perform logical functions
on parts of the CR register 20.

CISC AND RISC FLAGS REGISTERS MAY BE
COMBINED

Although fields CR2 to CR7 may be updated in a variety
of ways by RISC instructions, the inventors have recognized
that fields CR2 to CR7 may be infrequently updated while
fields CR0 and CR1 are typically updated frequently. A
programmer has to explicitly decide to update fields CR2 to
CR7, while fields CR0 and CR1 are implicitly updated by
many RISC instructions.
The inventors have also recognized that most CISC

instructions update bits 0 to 11 in the CISC EFLAGS
register, while few CISC instructions update bits 12 to 31 in
the CISCEFLAGS register. FIG.3 compares the CISC flags
register 21 and the RISC Condition register (CR) 20. FIG.3
shows that simple CISC integer instructions update flags in
bit-positions 0 to 11 of CISC EFLAGS register 31, while
RISC integer instructions update bits in the 4-bit CR0 field.
RISC floating point instructions update field CR1, while few
RISC instructions update fields CR2 to CRT. If a RISC
programmer can avoid using fields CR5 to CR7 in RISCCR
register 20, which correspond to bit-positions 11 to 0 in the
CISCEFLAGS register 21, then the CISCEFLAGS register
21 can be folded into or combined with the RISCCR register
20. Since the RISC programs that will share data with CISC
programs are typically RISC emulation routines, the RISC
programmer will be aware of these limitations and avoid
using fields CR5 to CRT. Standard RISC user programs that
do not avoid using fields CR5 to CR7 will not be able to take

10

15

20

25

30

35

40

45

50

55

60

65

8
advantage of the data sharing features of the invention, but
will still be able to take advantage of the cost savings of the
invention beacuse fewer registers are needed on the micro
processor. However, x86 CISC emulation routines written in
RISC code will greatly benefit by both sharing data using the
shared registers and by cost savings.
Complex CISC instructions modify the control bits of

Table 3, which are in bit-positions 12 to 21 of EFLAGS
register 21. These complex CISC instructions may be emu
lated with RISC instructions in the emulation mode of the
dual-instruction-set processor. These control bits may be
stored in memory rather than in EFLAGS register 21,
freeing up these bits for use by CR2 to CR4. If CISC
instructions need to read any of these control bits, then they
may be stored in bit positions 12 to 21 of the EFLAGS
register 21, but still updated by emulation.

EMULATION OF CISC ENHANCED BY
COMBINED FLAGS REGISTER

The CISC EFLAGS register 21 and the RISC CR register
20 are combined into a single 32-bit register in the dual
instruction-set processor. When a complex CISC instruction
that updates a control bit in the EFLAGS register 21 is
emulated, the RISC instructions in the emulation routine
merely have to update the corresponding bit in one of the
fields CR2 to CR4 in the RISC CR register 20, because the
RISC CR register 20 and the CISCEFLAGS register 21 are
the same shared register. For example, a complex CISC
instruction writes a one to the Virtual 8086 mode bit (VM)
at bit-position 17 in the EFLAGS register 21. This complex
CISC instruction is not supported by the instruction decoder
and signals an unsupported opcode exception, which causes
emulation mode to be entered from CISC mode. An emu
lation routine of RISC instructions is executed to emulate
the complex CISC instruction. This emulation routine con
tains a RISC Boolean instruction which will set bit 2 in CR3,
corresponding to bit-position 17, the VM bit, in the
EFLAGS register 21. The RISC Boolean instruction setting
this bit may be a CR-register Boolean XOR instruction
(creqv) that exclusive-OR's bit 2 to itself, with field CR3 as
its sources and destination. Once the emulation routine is
completed, CISC mode is again entered and execution of the
CISC program resumes at the following CISC instruction.
Because CISC EFLAGS register 21 and RISC CR register
20 are implemented as the same hardware register on the
CPU die, updating the RISC register also updates the
register seen by CISC programs.
The emulation routine of RISC instructions, or other

native RISC programs, may freely update bits in fields CR0
and CR1, because these bits correspond to reserved bits in
CISC EFLAGS register 21. At the conclusion of the emu
lation routine, before CISC mode is entered, these bits in
CR0 and CR1 are cleared so that they will all be read as zero
when CISC mode instructions read CISC EFLAGS register
21.

BENEFITS AND USES OF MERGED FLAGS
REGISTERS

Folding CISCEFLAGS register 21 and RISC CR register
20 together brings additional benefits besides cost reduction
by having fewer registers on the CPU die. RISC programs
can examine the flag bits in CISC EFLAGS register 21 to
determine the results generated by the CISC program using
the existing RISC instructions. No special instructions are
needed to examine this information from the other instruc

5,481,693
9

tion set. The RISC program may examine the zero flag to
determine if the CISC program had a zero result, which
might indicate the end of an iterative loop. The CISC zero
flag (ZF) at bit position 6 may be examined by a RISC
instruction simply by reading bit 2 of field CR6. Likewise,
any of the other flag bits may be examined by a RISC
program by reading the corresponding bit in the RISC CR
register 20. Particularly with emulation routines, having this
information is critical. Because the RISC instruction set has
so many instructions which can access RISC CR register 20
directly, the emulation routine may be efficiently pro
grammed without many move or load/store instructions to
make available the CISC EFLAGS register 21. Thus the
emulation routine will have a much higher performance than
if the CISCEFLAGS register 21 had to be stored on a stack
in memory and retrieved for the emulation routine to exam
ine. Even moving a separate CISC EFLAGS register 21
from one CPU register into the RISC CR register 20 for use
by RISC branch instructions would require extra RISC
instructions, decreasing performance relative to the inven
tion.

The emulation routine can perform branches directly off
the CISC flag bits. A RISC instruction in the emulation
routine can branch off the VM bit in the CISC EFLAGS
register by merely specifying the corresponding bit in the
RISC CR register. The CR register is the most visible and
accessible state register in the PowerPCTM RISC architec
ture. The EFLAGS register in the x86 CISC architecture is
likewise the most interesting CISC register because of the
many state flags stored in it. Using the RISC CR register as
a window into the CISC architecture provides a versatile and
powerful tool.
The RISC and CISC condition code and flags registers are

effectively merged together into a single flags register that is
accessible by instructions from both instruction sets. The
merged register is special because it is not just explicitly
accessible as a register, but the merged register is also
accessible implicitly. Instructions that implicitly update the
flags register, whether RISC or CISC instructions, will
update the same merged register. Because the two instruc
tion sets tend to use separate portions of the merged register,
each instruction set can use its portion of the merged
register, without interfering with the other instruction set.
Yet programs running in one instruction set can still observe
the flags set by programs in the other instruction set. Thus
information about the results generated by one instruction
set may be made available to programs in the other instruc
tion set.

Information about the operating state of the x86 CISC
program is also available by reading the merged flags
register since control bits are stored in bit-positions 11 to 21.
These control bits, shown in Table 3, include virtual 8086
mode, interrupt enabling and privilege levels, an indication
of task nesting, debug trapping, and data alignment check
ing. Again, a RISC program merely has to read the proper bit
in the merged register, which appears as the standard RISC
CR register to the RISC program. Often the register does not
even have to be explicitly read by the RISC program, but
only implicitly read. A RISC conditional branch instruction
can be set to branch on the bit in CR5 corresponding to the
CISC interrupt enable control bit (IF). A RISC program
could branch to a routine to check and disable interrupts if
the IF bit is set, but continue without disabling interrupts if
the bit is zero, knowing that interrupts are not possible. Thus
the CISC interrupt enable bit is used to direct program flow
in the RISC program merely by branching on the CISC bit.
No register transfers, loads, or even explicit reads were

10

15

20

25

30

35

40

45

50

55

60

65

10
necessary. The invention provides a very clean, simple, and
efficient way to pass information between programs running
in two different instruction sets.

ADDRESS GENERATION REGISTERS
COMBINED

Other registers are also be folded together or combined.
The RISC count register (CTR) is a 32-bit register that
contains a loop count that can be decremented when a
branch instruction is executed. It can be explicitly accessed
by some RISC move instructions, and can be implicitly
accessed by certain RISC branchinstruction which cause the
CTR register to be read and decremented.
One of the CISC segment registers (17 of FIG. 2) holds

the base address of the code segment. This code segment
register is needed to generate addresses for fetching instruc
tions when in CISC mode. The base address in the code
segment register is also needed to calculate the targets of a
branch instruction. Thus the code segment register is
accessed frequently.
The RISC CTR register and the CISC code segment

registers may be combined together in the dual-instruction
set processor. The combined register holds the CISC code
segment base address during CISC mode. The code segment
base address is left in the combined CTR/CS register when
RISC mode is entered. If a RISC iterative-branch instruction
is encountered that uses the count register, then the code
segment base address can be saved to memory before the
RISC iterative-branch instruction begins execution. The
code segment base address is restored by the emulation
routine to the combined CTR/CS register before CISC mode
is re-entered.

Since the CTR register is infrequently used, the code
segment can remain in the combined CTR/CS register most
of the time, even during RISC mode. RISC emulation
routines may be programmed that do not use the CTR
register, thus increasing performance of the emulation rou
tine. Since both the CISC code segment register and the
RISC count register are needed by the branching unit,
merging these into the same register provides a single shared
register to supply both CISC and RISC address information
to the branching unit.

RETURN ADDRESS REGISTERS COMBINED

The RISC machine status save restore 0 register (SRR0)
30 of FIG. 1 saves the effective address of the instruction
following the instruction causing an exception, or the effec
tive address of the instruction following a system call
instruction. When the exception handler routine completes
and a return-from-interrupt (rfi) instruction is executed, the
address that was stored in SRRO is reloaded into the instruc
tion pointer so that program execution can continue with the
next instruction. Thus the SRR0 register provides a place for
the address of a RISC instruction that occurs after a RISC
instruction causing an exception.

In the dual-instruction-set processor, when a CISC pro
gram causes an exception, a RISC emulation routine is
called and executed. Thus the normal CISC exception han
dling hardware is not needed and no counterpart to the SRR0
register is necessary. The CISC CR2 register would nor
mally hold the address of an instruction causing a page fault
in a CISC-only processor. This CR2 register is not needed in
the dual-instruction-set processor since page faults, like
other exceptions, are all handled by RISC emulation code.
Other CISC exceptions would cause the instruction pointer

5,481,693
11

(IP) to be pushed on the stack in memory by the exception
handler. Pushing the IP to the stack is not performed in
micro-code, as in prior-art x86 processors, but by the emu
lation routine for the dual-instruction-set processor. Any
time emulation mode is entered from CISC mode, regardless
of the cause, the address of the CISC instruction being
executed is stored into the RISC SRR0 register. When the
emulation routine completes, the processor switches back to
CISC mode, the address stored in register SRR0 is re-loaded
into the instruction pointer, and the next instruction in the
CISC program is fetched and executed.

If emulation mode is entered to handle an exception, then
SRR0 should point to the CISC instruction causing the
exception, so that CISC instruction can be re-started once
the exception handling is complete. If emulation mode was
entered to emulate a complex CISC instruction, then SRRO
should hold the address of the instruction following the
CISC instruction. When the emulation routine determines
the size of the CISC instruction, the size is added to the
address stored in the SRR0 register to get the address of the
next CISC instruction. This addition must occur because
CISC instructions can vary in size, CISC instructions being
1-15 bytes in size. Thus SRR0 will cause the CISC program
to continue at the instruction following the CISC instruction
being emulated, unless an exception occurs.
The RISC SRR0 register, which normally holds the

address of an instruction causing an exception, is also used
to hold the address of a CISC instruction following a CISC
instruction that caused emulation mode to be entered
because the CISC instruction was not supported in hardware
but had to be emulated. These are two parallel uses, but for
two different instruction sets. The additional hardware to
support both of these functions is minimal because these
functions are closely related.

LRAND FP REGISTERS COMBINED

The RISC link register (LR) provides a branch target
address for a RISC branch conditional to link instruction. It
is a 32-bit register. While most RISC branch instructions do
not use the link register, some do.
The CISC architecture requires that the address of a

floating point instruction be saved. Since floating point
operations may take several clock cycles to complete, sev
eral simple integer instructions could have completed
execution by the time an exception is signaled that was
caused by the floating point instruction. Storing the address
of the floating point instruction allows the exception han
dling routine to backtrack the code and sort out the integer
instructions executed. This address of the floating point
instruction is stored in the FP IP register in the CISC
architecture. In the dual-instruction-set processor this
address is instead stored in the RISC link register.

Storing the CISC floating point instruction's address in
the RISC link register may cause a problem if a RISC
program contains a RISC instruction that uses the link
register. If that happens, the CISC floating point instruc
tion's address must be saved to a stack in memory or to
another general-purpose register. It is believed that this will
be an infrequent occurrence and therefore the cost savings of
combining the registers justifies sharing these two registers.
Most of the time the RISC link register will not be used, so
no conflict will occur.

Since the link register is used to store the address of the
RISC target, a path for an instruction address is already
provided to this register. Thus the floating point instruction's
address may also use this instruction path to the shared LR
register.

10

15

20

25

30

35

40

45

50

55

60

65

12
GPR'S COMBINED

There are 32 general-purpose registers (GPR's) for RISC
which may be explicitly read or written by RISC instruc
tions. The x86 CISC architecture provides only 8 general
purpose registers which can be read or written by a user
program. CISC also provides 6 segment registers which
contain segment base addresses that are used to calculate the
linear address of code, data operands, and a stack. These
segment registers can only be used for segmentation, a part
of address generation, and have restrictions on reading and
writing them with CISC instructions. Only x86 privileged or
segment-load instructions can read or write the segment
registers. All of these instructions are emulated by the
dual-instruction-set processor. Thus CISC-mode instruc
tions cannot directly read or write these segment registers.

These 32 RISC general-purpose registers may be merged
with the 8 CISC general-purpose registers and the 6 CISC
segment registers. Table 7 shows how these registers are
used for RISC, CISC, and emulation mode.

TABLE 7

Shared GPR's

RISC Mode CISC Mode Emulation Mode

GPRO EAX GPR EAX GPR
GPR1 ECX GPR ECX GPR
GPR2 EDX GPR EDX GPR
GPR3 EBX GPR EBX GPR
GPR4 ESP GPR ESP GPR
GPR5 EBP GPR EBP GPR
GPR6 ESI GPR ES GPR
GPRT ED GPR ED GPR
GPR8 ES Seg Base ES Seg Base
GPR9 CS Seg Base CS Seg Base
GPR10 SS Seg Base SS Seg Base
GPR11 DS Seg Base DS Seg Base
GPR12 FS Seg Base FS Seg Base
GPR13 GS Seg Base GS Seg Base
GPR14 N/A Emulation Base Address
GPR15 N/A 0 Base Address
GPR16 N/A GPR16
GPR17 N/A GPR17
GPR18 N/A GPR18
GPR19 N/A GPR19
GPR20 NIA GPR20
GPR21 N/A GPR21
GPR22 N/A GPR22
GPR23 N/A GPR23
GPR24 N/A GPR24
GPR25 N/A GPR25
GPR26 N/A GPR26
GPR27 N/A GPR27
GPR28 N/A GPR28
GPR29 N/A GPR29
GPR30 N/A Emulation Assist Address
GPR31 N/A Emulation Assist Data

Table 7 shows that in RISC mode, the 32 general-purpose
registers are accessible as true general-purpose registers.
Any of the 32 registers may be read or written by RISC
programs. In CISC mode, there are only 8 general-purpose
registers, EAX through EDI, which share the same physical
registers with the RISC GPRs 0 to 7. A CISC program may
load one of its GPR's, such as EAX, with a data value, then
switch to RISC mode, allowing the RISC program to read
that value the CISC program placed in EAX merely by
reading the RISC GPR 0. Since the RISC architecture
defines GPR 0 as a regular GPR, many instructions can
access this register without an explicit load from memory or
register-to-register transfer. For example, a RISC add
instruction could specify the value in GPR0 that was loaded
by the CISC program merely by identifying GPRO in one of

5,481,693
13

the source fields in the RISC ADD instruction word. The
result of the ADD may be written back to GPR0 or any other
GPR. Thus no explicit transfer is needed to access the CISC
data by the RISC program.
The 6 CISC segment base address registers, ES Base to

GSBase, may be implicitly read by the CISC program when
generating an address. A RISC program may read or write
these registers merely by specifing the corresponding GPR.
If the CISC program required emulation code to load
segment register FSBase with a base address, then the RISC
emulation program would merely have to identify GPR 12
in a RISC instruction to read or write this base address.
CISC programs, however, cannot freely access any RISC

GPR except GPR 0 to 7. CISC programs may access GPR
8 to 13 in a restricted way, since these registers correspond
to the CISC segment registers ES Base to GS Base. The
CISC program may use a special segment override in the
CISC instruction word to access one of these segment base
registers when calculating an address. The CISC architec
ture imposes limitations on accessing these segment regis
ters, making them useful for transferring address informa
tion between the RISC and CISC programs, but not useful
for transferring data. The CISC program can only implicitly
access these segment registers for address generation.
CISC mode programs have no access to RISC GPR14 to

31, since there is no corresponding CISC register. However,
emulation mode can access all 31 RISC registers, including
the first 8 registers, which are the CISC GPR's, and the 6
CISC segment base registers. However, emulation mode can
freely access the CISC segment base registers. Emulation
mode executes RISC instructions, so the mechanism to
transfer data and address information between CISC and
emulation modes is similar to transfers between CISC and
RISC modes as described above. The RISC instructions in
emulation mode can implicitly access a CISC register by
identifying the corresponding RISC GPR as a source in the
RISC instruction word.

Emulation mode differs slightly from RISC mode. Nor
mal RISC address checking and page fault handling is
performed for accesses to most registers. However, when
any of the 6 CISC segment registers, or GPR14 or 15, are
used to generate an address, the CPU uses x86-type address
checking and x86 page fault handling, rather than the normal
RISC address checking and page faulting routines.
GPR14 and 15 are used in emulation mode as special

emulation-mode segment base address registers. When emu
lation code generates an address using GPR15 as one of the
operands, no segment validity checking is performed at all,
neither RISC nor x86 segment validity checking. Using
GPR15 allows for emulation code to generate an address
without any segment checking. Using GPR 14 causes the
CPU to use one of the 6 CISC segment registers to form the
address, and for checking segment validity. When emulation
mode is entered, a 3-bit register is loaded with a pointer to
one of the 6 CISC segment base registers. The pointer value
loaded is the segment used by the CISC instruction being
emulated. This is normally the data segment register DS, or
code segment register CS, but a segment over-ride prefix
appended onto the CISC instruction could indicate that one
of the other segment base registers be used. Thus using GPR
14 allows the emulation code to generate an address using
whichever CISC segment register would have been used by
the CISC instruction. This is a very powerful feature for
emulation, saving dozens of instructions in the emulation
routine to examine and decode the CISC instruction word to
determine which segment register should be used.

10

15

20

25

30

35

40

45

50

55

60

65

14
Both registers GPR14 and 15 are preferably loaded with

the value Zero so that they do not modify the address being
generated. Thus using these registers in emulation mode
alters the address checking being used. Emulation mode,
although using RISC instructions, can have CISC address
checking for certain addresses generated with the CISC
segment base registers and the two emulation base registers
GPR14 and 15. Some of the RISC GPR's may be used by
emulation mode for particular purposes. For example,
GPR's 14, 15, 30, and 31 may be used by emulation routines
for address generation within emulation mode, and for
various assist functions.

If RISC mode and emulation mode are to be both used at
the same time on a system, then the RISC program should
not overwrite the four special emulation mode registers, or
the CPU hardware needs to provide two sets of registers for
GPR14, 15, 30, and 31, one set exclusively for RISC mode,
with a second set exclusively for emulation mode. RISC
mode programs must also not overwrite GPR's 0-13, which
are used for CISC mode architectural registers. Because
general RISC user programs will write these registers, and
may not have a need for transferring data to a CISC program,
a process or task switch from a CISC user program to a
general RISC user program would be handled as a normal
task switch, with all registers being saved to a stack before
the switch so that the values in the GPR's will not be
overwritten and lost.

The code segment base address is available in two sepa
rate registers: GPR9 holds the CISC code segment base (CS
Base) while the RISC count CTR register also holds this
same code segment base. This is beneficial for modern
pipelined and superscalar processors because the CTRICS
register can provide the branching unit with the code seg
ment base address, while the GPR array also can provide the
code segment base address to the execution unit. Thus the
code segment base address may be provided from two
separate registers to two separate units within the processor.
Since these units are often separated, having the separate
registers can save the delay in transferring the code segment
from the GPR's to the branching unit. As the code segment
base address is frequently used in address calculations,
having it in two separate locations is useful, effectively
doubling the available bandwidth for supplying this base
address.

Merging the GPR's together with the CISC GPR and
segment registers provides a very efficient and clean way of
transferring address and data between CISC and RISC
programs and emulation programs. Normal architectural
features are used to access and transfer data. Data can be
accessed explicitly by specifying the corresponding GPR as
the source in the instruction word.

SHARED REGISTER ARCHITECTURE

FIG. 4 is a diagram of the shared registers in the dual
instruction set processor. The CISC EFLAGS register and
the RISC CR register are combined into a single 32-bit
CR/EFLAGS register 40 that can be accessed by CISC user
programs and RISC user programs and emulation code. The
CISC code segment base address register and the RISC
count CTR register are merged to a single CS/CTR register
42, also accessible by CISC user programs and RISC user
programs and emulation code. The RISC system save?
restore (SRR0) register, which normally holds the address to
return to after an interrupt has been processed, also holds the
return address when emulation code was called. Thus SRR0

5,481,693
15

can hold a RISC address or a CISC address. The RISC or
CISC user can indirectly load SRR0 register 44 by causing
emulation code to be entered, but cannot directly access
SRR0 register 44. However, RISC supervisor code and
emulation code has full access to SRR0 register 44.
The RISC link register, which is used to hold a branch

address, is combined with a CISC register that holds the
instruction address of the last floating point instruction. This
merged FP-IP/LR register 46 is also indirectly accessible by
CISC programs because they cannot directly read or write it,
but can only load it by executing a floating point instruction.
RISC and emulation programs can freely access this merged
FP-IP/LR register 46. The 32 general-purpose registers from
RISC are merged with the 8 GPR's and 6 segment base
registers from the CISC architecture into merged GPR's 48.
Four of the RISC GPR's are used by emulation code for
special uses, although emulation code can access all RISC
and CISC registers.

ALTERNATE EMBODIMENTS

This improvement relates to a central processing unit
(CPU) for a dual-instruction set architecture. While the
detailed description describes the invention in the context of
the PowerPCTM reduced instruction set computer (RISC)
and the x86 complex instruction set computer (CISC), it is
contemplated that the invention applies to other instruction
sets besides PowerPCTM and x86, and to more than two
instruction sets, and to architectures besides RISC and
CISC, without departing from the spirit of the invention. The
exact number of bits in each register may likewise be varied
by persons skilled in the art without departing from the spirit
of the invention, although architecture compatibility may be
lost.

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A shared register system for a dual-instruction-set

processor, the shared register system comprising:
a shared register for storing information to be transferred

between a first program comprised of instructions from a
first instruction set and a second program comprised of
instructions from a second instruction set, the first instruc
tion set having a first encoding of operations to opcodes,
the second instruction set having a second encoding of
operations to opcodes, the first encoding of operations to
opcodes being substantially independent from the second
encoding of operations to opcodes;

first means, coupled to the shared register, for accessing the
shared register from the first instruction set, the first
means writing information into the shared register respon
sive to a first subset of instructions from the first instruc
tion set; and

second means, coupled to the shared register, for accessing
the shared register from the second instruction set, the
second means reading information from the shared reg
ister responsive to a second subset of instructions from the
second instruction set,

wherein each instruction in the first subset of instructions
from the first instruction set comprises a first opcode field
indicating the operation encoded and a destination field
specifying the shared register, and wherein each instruc
tion in the second subset of instructions from the second
instruction set comprises a second opcode field indicating

10

15

20

25

30

35

40

45

50

55

60

65

16
the operation encoded and a source field specifying the
shared register;

wherein the first subset of instructions have first opcode
fields with encodings for integer operations, arithmetic
logic-unit (ALU) operations, and register-to-register
move operations and wherein the second subset of
instructions have second opcode fields with encodings for
integer operations, arithmetic-logic-unit (ALU) opera
tions, and register-to-register move operations,

wherein the shared register is in a plurality of general
purpose registers in the dual-instruction-set processor, the
source field and the destination field selecting any one
register in the plurality of general-purpose registers, the
one register selected being the shared register for trans
ferring information between the first program and the
second program;

wherein the first means for accessing the shared register
from the first instruction set includes means for reading
and means for writing information into the shared regis
ter,

and wherein the second instruction set is a reduced instruc
tion set computer (RISC) instruction set and the first
instruction set is a complex instruction set computer
(CISC) instruction set,

whereby information is transferred from the first program to
the second program using the shared register.

2. The shared register system of claim 1 wherein the
plurality of general-purpose registers comprise eight freely
accessible registers and six segment registers for holding
segment base addresses.

3. The shared register system of claim 1 wherein the
second instruction set is a PowerPCTM RISC instruction set,
and the first instruction set is an x86 CISC instruction set.

4. A shared register system for a dual-instruction, set
processor, the shared register system comprising;
a shared register for storing information to be transferred

between a first program comprised of instructions from a
first instruction set and a second program comprised of
instructions from a second instruction set, the first instruc
tion set having a first encoding operations to opcodes, the
second instruction set having a second encoding of opera
tions to opcodes, the first encoding of operations to
opcodes being substantially independent from the second
encoding of operations to opcodes;

first means, coupled to the shared register, for accessing the
shared register from the first instruction set, the first
means writing information into the shared register respon
sive to a first subset of instructions from the first instruc
tion set; and

second means, coupled to the shared register, for accessing
the shared register from the second instruction set, the
second means reading information from the shared reg
ister responsive to a second subset of instructions from the
second instruction set,

wherein the shared register comprises a first flags field for
storing first flags implicitly set by arithmetic-logic-unit
(ALU) operations encoded by opcodes in the first subset of
instructions from the first instruction set, and wherein the
shared register further comprises a second flags field for
storing second flags implicitly set by arithmetic-logic-unit
(ALU) operations encoded by opcodes in a third subset of
instructions from the second instruction set, the second
means for accessing the shared register from the second
instruction set writing information to the shared register in
response to instructions from the third subset of instructions
from the second instruction set;
wherein the second instruction set is a reduced instruction

5,481,693
17

set computer (RISC) instruction set and the first instruction
set is a complex instruction set computer (CISC) instruction
Set,
wherein the first flags field in the shared register is implicitly
read by first instructions having opcodes encoding condi
tional branch operations, and wherein the second flags field
in the shared register is implicitly read by second instruc
tions having opcodes encoding conditional branch opera
tions,
wherein the first flags include a Zero flag indicating that one
of the ALU operations encoded by opcodes in the first subset
of instructions from the first instruction set had a zero
valued result and the second flags included Zero flag indi
cating that one of the ALU operations encoded by opcodes
in the first subset of instructions from the first instruction set
had a zero-valued result;
wherein the second means for accessing the shared register
from the secondinstruction set reads the first flags set by first
instructions and reads the second flags set by second instruc
tions, whereby the second program can read both the first
flags set by ALU operations encoded by the first instruction
set and the second flags set by ALU operations encoded by
the second instruction set,
whereby information is transferred from the first program to
the second program using the shared register.

5. A central processing unit (CPU) for executing first
instructions from a first instruction set and for executing
Second instructions from a second instruction set, the CPU
comprising:
a first instruction decoder, receiving the first instructions
from the first instruction set, the first instruction decoder
providing decoded first instructions;

a second instruction decoder, receiving the second instruc
tions from the second instruction set, the second instruc
tion decoder providing decoded second instructions;

an execution unit for executing first instructions and for
executing second instructions, the execution unit receiv
ing decoded first instructions from the first instruction
decoder, the execution unit receiving decoded second
instructions from the second instruction decoder; and

a condition code register comprising a first condition code
and a second condition code, the first condition code
being set by the execution unit when the execution unit
receives a decoded first instruction and an arithmetic
operation is executed, the second condition code being set
by the execution unit when the execution unit receives a
decoded second instruction and an arithmetic operation is
executed,

the first condition code being read by the execution unit
when the execution unit receives a decoded first instruc
tion having a first opcode indicating that the first condi
tion code be read;

the first condition code also being read by the execution unit
when the execution unit receives a decoded second
instruction having a second opcode that the first condition
code be read;

the second condition code being read by the execution unit
when the execution unit receives a decoded second
instruction having a third opcode indicating that the
second condition code be read,

wherein the first opcode designates an ALU operation that
implicitly writes the first condition code, the second
opcode and the third opcode encoding operations for a
conditional branch operation that reads the condition code
register to determine if a branch is taken;

wherein the first instruction set has a first encoding of
operations to opcodes, the second instruction set has a
second encoding of operations to opcodes, the first encod
ing of operations to opcodes being substantially indepen
dent from the second encoding of operations to opcodes;

10

15

20

25

30

35

40

45

50

55

60

65

18
whereby the first condition code set by execution of the first
instruction set may be read by the first instruction set or the
second instruction set.

6. A shared register system for a dual-instruction-set
processor, the shared register system comprising:
a shared register for storing information to be transferred
between a first program comprised of instructions from a
first instruction set and a second program comprised of
instructions from a second instruction set, the first instruc
tion set having a first encoding of operations to opcodes,
the second instruction set having a second encoding of
operations to opcodes, the first encoding of operations to
opcodes being substantially independent from the second
encoding of operations to opcodes;

first means, coupled to the shared register, for accessing the
shared register from the first instruction set, the first
means writing information into the shared register respon
sive to a first subset of instructions from the first instruc
tion set; and

second means, coupled to the shared register, for accessing
the shared register from the second instruction set, the
second means reading information from the shared reg
ister responsive to a second subset of instructions from the
second instruction set,

wherein each instruction in the first subset of instructions
from the first instruction set comprises a first opcode field
indicating the operation encoded and a destination field
specifying the shared register, and wherein each instruc
tion in the second subset of instructions from the second
instruction set comprises a second opcode field indicating
the operation encoded and a source field specifying the
shared register,

wherein the first subset of instructions have first opcode
fields with encodings for integer operations, arithmetic
logic-unit (ALU) operations, and register-to-register
move operations and wherein the second subset of
instructions have second opcode fields with encodings for
integer operations, arithmetic-logic-unit (ALU) opera
tions, and register-to-register move operations;

wherein the shared register is in a plurality of general
purpose registers in the dual-instruction-set processor, the
source field and the destination field selecting any one
register in the plurality of general-purpose registers, the
one register selected being the shared register for trans
ferring information between the first program and the
Second program,

wherein the first means for accessing the shared register
from the first instruction set includes means for reading
and means for writing information into the shared regis
ter;

and wherein the first instruction set is a reduced instruction
set computer (RISC) instruction set and the second
instruction set is a complex instruction set computer
(CISC) instruction set,

whereby information is transferred from the first program to
the second program using the shared register.

7. A shared register system for a dual-instruction-set
processor, the shared register system comprising:
a shared register for storing information to be transferred
between a first program comprised of instructions from a
first instruction set and a second program comprised of
instructions from a second instruction set, the first instruc
tion set having a first encoding of operations to opcodes,
the second instruction set having a second encoding of
operations to opcodes, the first encoding of operations to
opcodes being substantially independent from the second
encoding of operations to opcodes;

5,481,693
19

first means, coupled to the shared register, for accessing the
shared register from the first instruction set, the first
means writing information into the shared register respon
sive to a first subset of instructions from the first instruc
tion set; and

second means, coupled to the shared register, for accessing
the shared register from the second instruction set, the
second means reading information from the shared reg
ister responsive to a second subset of instructions from the
second instruction set,

wherein the shared register comprises a first flags field for
storing first flags implicitly set by arithmetic-logic-unit
(ALU) operations encoded by opcodes in the first subset of
instructions from the first instruction set, and wherein the
shared register further comprises a second flags field for
storing second flags implicitly set by arithmetic-logic-unit
(ALU) operations encoded by opcodes in a third subset of
instructions from the second instruction set, the second
means for accessing the shared register from the second
instruction set writing information to the shared register in
response to instructions from the third subset of instructions
from the second instruction set;
wherein the first instruction set is a reduced instruction set
computer (RISC) instruction set and the second instruction
set is a complex instruction set computer (CISC) instruction

10

15

20

20
Set,
wherein the first flags field in the shared registeris implicitly
read by first instructions having opcodes encoding condi
tional branch operations, and wherein the second flags field
in the shared register is implicitly read by second instruc
tions having opcodes encoding conditional branch opera
tions;
wherein the first flags include a zero flag indicating that one
of the ALU operations encoded by opcodes in the first subset
of instructions from the first instruction set had a zero
valued result and the second flags include a Zero flag
indicating that one of the ALU operations encoded by
opcodes in the first subset of instructions from the first
instruction set had a Zero-valued result;
wherein the second means for accessing the shared register
from the second instruction set reads the first flags set by first
instructions and reads the second flags set by second instruc
tions, whereby the second program can read both the first
flags set by ALU operations encoded by the first instruction
set and the second flags set by ALU operations encoded by
the second instruction set,
whereby information is transferred from the first program to
the second program using the shared register.

ck :: *k : :

