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(57) ABSTRACT 

A dual-instruction set central processing unit (CPU) is 
capable of executing instructions from a reduced instruction 
set computer (RISC) instruction set and from a complex 
instruction set computer (CISC) instruction set. Data and 
address information may be transferred from a CISC pro 
gram to a RISC program running on the CPU by using 
shared registers. The architecturally-defined registers in the 
CISC instruction set are merged or folded into some of the 
architecturally-defined registers in the RISC architecture so 
that these merged registers are shared by the two instructions 
sets. In particular, the flags or condition code registers 
defined by each architecture are merged together so that 
CISC instructions and RISC instructions will implicitly 
update the same merged flags register when performing 
computational instructions. The RISC and CISC registers 
are folded together so that the CISC flags are at one end of 
the register while the frequently used RISC flags are at the 
other end, but the RISC instructions can read or write any bit 
in the merged register. The CISC code segment base address 
is stored in the RISC branch count register, while the CISC 
floating point instruction address is stored in the RISC 
branch link register. The general-purpose registers (GPR's) 
are also merged together, allowing a CISC program to pass 
data to a RISC program merely by writing one of its GPR's, 
switching control to the RISC program, and the RISC 
program reading one of its GPR's that is merged with and 
corresponds to the CISC GPR that was written to by the 
CISC program. 

7 Claims, 4 Drawing Sheets 
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1. 

SHARED REGISTER ARCHITECTURE FOR 
A DUAL-NSTRUCTIONSET CPU 

BACKGROUND OF THE 
INVENTION-RELATED APPLICATION 

This application is related to copending application for a 
"Dual-Instruction-Set Architecture CPU with Hidden Soft 
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 
08/179,926, hereby incorporated by reference. This related 
application has a common inventor and is assigned to the 
same assignee as the present application. 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to computing hardware, and more 
particularly to the architecture of registers in a processor 
capable of executing from two instruction sets. 

BACKGROUND OF THE 
INVENTION-DESCRIPTION OF THE 

RELATED ART 

Processors, or central processing units (CPUs) that are 
capable of executing instructions from two separate instruc 
tion sets are highly desired at the present time. For example, 
a desirable processor would execute user applications for the 
x86 instruction set and the PowerPCTM instruction set. It 
would be able to execute the tremendous software base of 
x86 programs that run under the DOSTM and WINDOWSTM 
operating systems from Microsoil of Redmond, Wash., and 
it could run future applications for PowerPCTM processors 
developed by IBM, Apple, and Motorola. 

Such a processor is described in the related to the copend 
ing application for a "Dual-Instruction-Set Architecture 
CPU with Hidden Software Emulation Mode', filed Jan. 11, 
1994, U.S. Ser. No. 08/179,926. That dual-instruction-set 
CPU has a pipeline which is capable of executing instruc 
tions from either a complex instruction set computer (CISC) 
instruction set, such as the x86 instruction set, or from a 
reduced instruction set computer (RISC) instruction set, 
such as the PowerPCTM instruction set. 

Two instruction decode units are provided so that instruc 
tions from either instruction set may be decoded. Two 
instruction decoders are required when the instruction sets 
are separate because the instruction sets each have an 
independent encoding of operations to opcodes. For 
example, both instruction sets have an ADD operation or 
instruction. However, the binary opcode number which 
encodes the ADD operation is different for the two instruc 
tion sets. In fact, the size and location of the opcode field in 
the instruction word is also different for the two instruction 
sets. In the x86 CISC instruction set, the opcode 03 hex is 
the ADD rv operation or instruction for along operand. This 
same opcode, 03 hex, corresponds to a completely different 
instruction in the PowerPCTM RISC instruction set. In CISC 
the 03 hex opcode is an addition operation, while in RISC 
the 03 hex opcode is TWI-trap word immediate, a control 
transfer instruction. Thus two separate decode blocks are 
necessary for the two separate instruction sets. 

Programs may run in either or both instruction sets. Data 
and other information may be shared between RISC pro 
grams and CISC programs. One way to share data and other 
information is to store the data in a register within the CPU 
before switching to the alternate instruction set, and making 
all registers readable by either instruction set. Unfortunately, 
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2 
this requires that the instruction sets be extended to provide 
instructions to read the additional registers. The shared data 
could also be saved to a stack in memory, but this decreases 
performance due to the time required to transfer the data to 
memory and to adjust the stack pointers. 
Two sets of registers could be provided; one set for the use 

of CISC programs and a second set for the use of RISC 
programs. This is an expensive approach since the registers 
reside on the CPU die, which has a limited space available 
for registers. The additional registers would require increas 
ing the size of the CPU die, or deleting another function such 
as floating point processing. 
What is desired is a way to share some of the registers 

between a CISC and a RISC architecture on a dual-instruc 
tion-set CPU. It is further desired to have shared registers for 
data and system information. The shared registers should not 
be extra registers in addition to the registers already defined 
by the CISC or RISC architectures, but should be registers 
already existing in the architectures. The shared registers 
must not cause conflicts between use in the two instruction 
Sets or other undesirable effects. 

SUMMARY OF THE INVENTION 

Certain CPU registers defined by a RISC and a CISC 
architecture are shared. CISC and RISC programs may alter 
and read these shared registers, allowing data and system 
information to be exchanged between programs running in 
the two instruction sets. 

A shared register system for a dual-instruction-set pro 
cessor has a shared register for storing information to be 
transferred between a first program comprised of instruc 
tions from a first instruction set and a second program 
comprised of instructions from a second instruction set. The 
first instruction set has a first encoding of operations to 
opcodes, while the second instruction set has a second 
encoding of operations to opcodes. The first encoding of 
operations to opcodes is substantially independent from the 
second encoding of operations to opcodes. 
A first means is for accessing the shared register from the 

first instruction set. The first means writes information into 
the shared register responsive to a first subset of instructions 
from the first instruction set. A second means is for accessing 
the shared register from the second instruction set. The 
second means reads information from the shared register 
responsive to a second subset of instructions from the 
second instruction set and. 
The invention allows information to be transferred from 

the first program to the second program using the shared 
register. In other aspects of the invention, the shared register 
may be any one of the general-purpose registers accessible 
to both instruction sets, while the source and destination 
fields in the instruction words specify which general-pur 
pose register to access. In still further aspects of the inven 
tion, the shared register is the flags register which stores 
flags or condition codes that are implicitly written by 
arithmetic-logic-unit (ALU) operations. Although the shared 
flags register contains a first flags field for flags from the first 
instruction set and a second flags field for the flags from the 
second instruction set, either instruction set can access the 
flags in the shared register regardless of which instruction 
set the flags are from. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of a RISC register set. 
FIG. 2 is a diagram of a CISC register set. 



5,481,693 
3 

FIG. 3 is a diagram of a CISC condition flag register and 
a RISC condition register. 

FIG. 4 shows shared registers in a dual-instruction-set 
CPU. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in pro 
cessor architecture. The following description is presented 
to enable one of ordinary skill in the art to make and use the 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
herein disclosed. 

This application is related to the copending application for 
a "Dual-Instruction-Set Architecture CPU with Hidden Soft 
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 
08/179,926, hereby incorporated by reference. 
A dual-architecture central processing unit (CPU) is 

capable of operating in three modes-RISC mode, CISC 
mode, and emulation mode. A first instruction decoder 
decodes instructions when the processor is in RISC mode, 
while a second instruction decoder decodes instructions 
while the processor is in CISC mode. Two instruction 
decoders are needed since the RISC and CISC instruction 
sets have an independent encoding of instructions or opera 
tions to binary opcodes. 
The third mode of operation, emulation mode, also uses 

the first instruction decoder for RISC instructions, but emu 
lation mode executes a superset of the RISC instruction set. 
Using emulation mode, individual CISC instructions may be 
emulated with RISC instructions. Thus, not all CISC instruc 
tions need to be directly supported in the CPU's hardware. 
Unsupported CISC instructions cause a jump to an emula 
tion mode routine to emulate the unsupported CISC instruc 
tion. Upon completion of the emulation mode routine, 
control is returned to the CISC program with the next CISC 
instruction. 

RISC INSTRUCTIONS NEED ACCESS TO CISC 
REGISTERS 

Emulation of CISC instructions with RISC instructions 
creates a need for the RISC instructions to have access to 
CISC registers. For example, a CISC branch instruction may 
be emulated by an emulation routine of RISC instructions. 
The CISC branch instruction may be a conditional branch 
that only branches if a certain bit in a condition code register 
is set, perhaps by a previous CISC instruction. Since the 
CISC condition code register is part of the CISC architec 
ture, but not the RISC architecture, the condition code 
register would not be visible to the RISC instructions in the 
emulation routine. However, the RISC emulation routine 
must have access to this CISC condition code register to 
determine if the branch should be taken. 

RISC REGISTER SET 

FIG. 1 is a diagram of a register set for a RISC architec 
ture such as the PowerPCTM. Registers that are visible to a 
user program are shown as user register space 10. Supervi 
sory programs such as operating systems are able to see all 
of the registers in the user register space 10 and the registers 
in the supervisor's register space 12. The user registers 
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4 
include general-purpose registers 14 which are used by 
programs for temporary storage of operands and results, and 
for address formation. Floating point registers 16 are pro 
vided for storing floating point numbers that a numeric 
processor operates on. Condition register 20 contains con 
dition codes set by various instructions and is useful for 
setting and checking conditions for conditional branch 
instructions. Integer exception register 18 contains bits that 
are set when an exception is caused by execution of an 
instruction. It contains information on overflows and carries 
that occurred in an arithmetic-logic-unit (ALU) when the 
instruction causing the exception was executed. Link regis 
ter 22 contains the branch target address when a special 
branch to link register instruction is executed. Count register 
24 holds a value for a loop count which can be decremented, 
providing a simple way of programming loops. 
A supervisory program such as an operating system has 

access to additional registers in the supervisor's register 
space 12. Supervisor general-purpose registers 26 are for 
general use by the supervisory program. Segment registers 
28 and block-address translation registers 32 are for address 
translation functions. Machine state register 36 defines the 
state of the processor, including reset, and CISC/RISC 
emulation mode. Machine state register 36 contains a priv 
lege-level bit, the PR bit, to indicate if a the processor is 
running in user or supervisor mode when RISC mode is 
active. An additional bit, the xE bit, is included in machine 
state register 36 to indicate CISC and emulation modes. The 
XE bit and the PR bit are encoded as shown in Table 1. 

TABLE 1. 

Machine Status 

xE bit PR bit Processor Mode 

O 0 RISC Supervisor 
0 RISC User 

0 x86 Emulation 
1. x86 CISC 

Machine status save restore 0 register 30 saves the effec 
tive address of the instruction following the instruction 
causing an exception or a system call instruction. Machine 
status save restore 1 register 34 saves part of machine state 
register 36 and other information on the cause of an excep 
tion when an exception occurs. In particular, machine status 
save restore 1 register 34 receives the PR bit and xE bit from 
the machine state register 36. Machine status save restore 1 
register 34 thus saves the mode the processor was in at the 
time of an exception or other event, and is used to restore the 
processor to that mode when exception processing is com 
plete. A return from interrupt (rfi) instruction at the comple 
tion of the exception processing will restore the xE and PR 
bits to the machine status register 36 from machine status 
save restore 1 register 34. Together, machine status save 
restore registers 30, 34 save the state of the processor when 
an exception occurs, allowing the system to return to the 
user program once the exception handler routine is com 
pleted. Hardware-specific registers 38 contain miscella 
neous implementation-specific information such as extended 
features. 

CISC REGISTER SET 

FIG. 2 is a diagram of a register set for a CISC architec 
ture such as the x86 used in microprocessors by Intel 
corporation of Santa Clara, Calif., Advanced Micro Devices 
of Sunnyvale, Calif., and Cyrix Corporation of Richardson, 
Tex. Registers that are visible to a user program are shown 
as user register space 11. Supervisory or system-level pro 
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grams such as operating systems are able to see all of the 
registers in the user register space 11 and the registers in the 
system-level register space 13. The user registers include 
general-purpose registers 15 which are used by programs for 
temporary storage of operands and results, and for address 
formation. Segment registers 17 are provided for address 
translation. Floating point registers (not shown) may be 
included in some embodiments to store data in a floating 
point format. Flags register 21 contains flags or condition 
codes set by various instructions and is used for setting and 
checking conditions for conditional branch instructions. 
Instruction pointer 19 contains the address of the instruction 
currently being executed. 
A system-level program such as an operating system has 

access to additional registers in the system-level register 
space 13. System address registers 26 are for use by system 
level programs for address generation. System segment 
registers 29 are for segment address translation functions. 
Control registers 31, 35, 39 define the state of the processor, 
including protected or real modes, exception handling, cache 
enabling, and contain the base address of page tables. 
Breakpoints and control, performance monitoring, real-time 
clocks and other control may also be included in control 
registers 31, 35, 39. Floating point instruction pointer reg 
ister 38 contains the address of the instruction last executed 
by the floating point unit. It must be saved because a floating 
point exception may be signaled after other instructions pass 
through the integer pipeline. It allows an exception handler 
routine to find the exact address causing a floating point 
exception. 

CONDITION CODE/FLAGS REGISTER 

Condition codes are employed by both RISC and CISC 
instruction sets. Instructions that use the arithmetic-logic 
unit (ALU) may produce a result having a zero or negative 
value. These instructions cause a flag or condition code in 
register 21 or 20 to be set when the result is zero or negative. 
Iterative loops may be programmed using such flags. For 
example, a simple loop may execute a series of instructions 
and decrement a loop variable each time the series of 
instructions in the loop is executed. The loop variable is 
initially set to the number of times to execute the loop. At the 
end of the loop, an ALU instruction subtracts one from the 
loop variable. When the loop variable becomes zero, the 
zero flag will be set. A conditional branch instruction will 
check the zero flag and exit the loop when Zero is reached. 
Many other flags may be defined. For example, the x86 

CISCEFLAGS register defines the flags of Table 2 that are 
set or cleared by ALU instructions depending on the result 
of the instruction. 

TABLE 2 

CF Carry Flag Set if carry-out or borrow 
PF Parity Flag Set if low 8 bits have even parity 
AF Auxiliary (2nd) Carry Bit 3 carry-out, used for BCD 
ZF Zero Flag Set if all bits are zero 
SF Sign Flag Set if highest-order bit is one 
DF Direction Flag Incr. or Decr. string variable 
OF Overflow Flag Signed overflow to highest bit 
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Other bits in the x86 EFLAGS register are not flag bits set 

by operations but are control bits that define how the 
processor will operate. Table 3 shows these control bits. 

TABLE 3 

TF Trap Flag Trap after next instruction 
F Interrupt enabled Flag Enables external interrupts 
IOPL Input/Output Privilege Max. Privilege for I/O instr. 

level (2 bits) 
NT Nested Task Flag Nested task being executed 
RF Resume Flag Resume after breakpoint 
VM Virtual Mode Virtual 8086 mode executing 
AC Memory Alignment Check Mis-aligned data will fault 

The dual-instruction set processor directly executes only 
the simpler CISC instructions. Many of these simpler CISC 
instructions set or clear the flag bits in Table 2. However, the 
control bits in Table 3 are set or cleared by complex or 
infrequently used CISC instructions such as privileged 
instructions. These instructions are therefore emulated. Only 
the simple CISC instructions will modify the flag bits in the 
CISC EFLAGS register. Emulated instructions will modify 
the control bits in the CISC EFLAGS register. 

FIG. 3 shows the CISC flags register 21 and the RISC 
Condition register 20. In the PowerPCTM RISC architecture, 
flags or condition codes are kept in the condition register 
(CR) 20. Condition register 20 is a 32-bit register divided 
into eight 4-bit fields, CR0 to CRT. Most RISC integer 
instructions generate the four bits in CR0, but do not modify 
any bits in fields CR1 to CR7. Table 4 shows the meanings 
of the four bits in CRO. 

TABLE 4 

RISCCRO field 

CRO bit Name Description 

O Negative Result is negative 
1 Positive Result is positive and not zero 
2 Zero Result is Zero 
3 Overflow Overflow has occurred 

Floating point operations do not modify the bits in the 
CR0 field, but they do modify the four bits in the CR1 field. 
Table 5 shows the definitions of the four bits in CR1 set by 
floating point operations. 

TABLE 5 

RISCCR1 field 

CR1 bit Name Description 

O FP exception Floating point exception has 
occurred 
A floating point enabled excep 
tion has occurred 
An invalid floating point 
exception has occurred 
Floating Point Overflow has 
occurred 

1 FP enabled exception 

2 FP invalid exception 

3 FP Overflow 
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ARISC compare instruction can set bits in any of the 4-bit 
fields CR0-CR7. Table 6 shows the definitions for the four 
bits in any field CRn set by the RISC compare instruction. 

TABLE 6 

RISC CRn field set by Compare Instruction 

CRn bit Name Description 

0 Less Than register A is less than register B or 
immediate value from instruction word 
register A is greater than register B or 
immediate value from instruction word 

1 Greater Than 

2 Equal To register A is equal to register B or 
immediate value from instruction word 

3 Overflow Copy of the Overflow bit in XER 
register 

The compare instruction specifies which field to write its 
result to. Likewise, the RISC branch instructions can 
specify, as a condition for branching, any bit in any of the 
fields CR0 to CRT. Thus the programmer may write condi 
tion codes to the other six fields in the CR register 20. The 
programmer may later use these other fields with the branch 
instruction using any of the bits in any of the fields CR0 to 
CR7. RISC move instructions may also load bits into any of 
the fields CR0 to CR7 of the CR register 20. The RISC move 
instruction may move bits from another register, or from one 
4-bit CR field to another field within CR register 20. A mask 
may be specified in the move instruction word to indicate 
which bits to move and which bits to not modify. A wealth 
of RISC logical instructions are provided that specify as 
inputs one or two bits in any of the 4-bit fields. A Boolean 
logical function is performed on the specified input bits, and 
the resulting output bit is written to any bit in any of the 4-bit 
fields in CR register 20. Thus RISC provides a variety of 
instructions to update, modify, and perform logical functions 
on parts of the CR register 20. 

CISC AND RISC FLAGS REGISTERS MAY BE 
COMBINED 

Although fields CR2 to CR7 may be updated in a variety 
of ways by RISC instructions, the inventors have recognized 
that fields CR2 to CR7 may be infrequently updated while 
fields CR0 and CR1 are typically updated frequently. A 
programmer has to explicitly decide to update fields CR2 to 
CR7, while fields CR0 and CR1 are implicitly updated by 
many RISC instructions. 
The inventors have also recognized that most CISC 

instructions update bits 0 to 11 in the CISC EFLAGS 
register, while few CISC instructions update bits 12 to 31 in 
the CISCEFLAGS register. FIG.3 compares the CISC flags 
register 21 and the RISC Condition register (CR) 20. FIG.3 
shows that simple CISC integer instructions update flags in 
bit-positions 0 to 11 of CISC EFLAGS register 31, while 
RISC integer instructions update bits in the 4-bit CR0 field. 
RISC floating point instructions update field CR1, while few 
RISC instructions update fields CR2 to CRT. If a RISC 
programmer can avoid using fields CR5 to CR7 in RISCCR 
register 20, which correspond to bit-positions 11 to 0 in the 
CISCEFLAGS register 21, then the CISCEFLAGS register 
21 can be folded into or combined with the RISCCR register 
20. Since the RISC programs that will share data with CISC 
programs are typically RISC emulation routines, the RISC 
programmer will be aware of these limitations and avoid 
using fields CR5 to CRT. Standard RISC user programs that 
do not avoid using fields CR5 to CR7 will not be able to take 
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8 
advantage of the data sharing features of the invention, but 
will still be able to take advantage of the cost savings of the 
invention beacuse fewer registers are needed on the micro 
processor. However, x86 CISC emulation routines written in 
RISC code will greatly benefit by both sharing data using the 
shared registers and by cost savings. 
Complex CISC instructions modify the control bits of 

Table 3, which are in bit-positions 12 to 21 of EFLAGS 
register 21. These complex CISC instructions may be emu 
lated with RISC instructions in the emulation mode of the 
dual-instruction-set processor. These control bits may be 
stored in memory rather than in EFLAGS register 21, 
freeing up these bits for use by CR2 to CR4. If CISC 
instructions need to read any of these control bits, then they 
may be stored in bit positions 12 to 21 of the EFLAGS 
register 21, but still updated by emulation. 

EMULATION OF CISC ENHANCED BY 
COMBINED FLAGS REGISTER 

The CISC EFLAGS register 21 and the RISC CR register 
20 are combined into a single 32-bit register in the dual 
instruction-set processor. When a complex CISC instruction 
that updates a control bit in the EFLAGS register 21 is 
emulated, the RISC instructions in the emulation routine 
merely have to update the corresponding bit in one of the 
fields CR2 to CR4 in the RISC CR register 20, because the 
RISC CR register 20 and the CISCEFLAGS register 21 are 
the same shared register. For example, a complex CISC 
instruction writes a one to the Virtual 8086 mode bit (VM) 
at bit-position 17 in the EFLAGS register 21. This complex 
CISC instruction is not supported by the instruction decoder 
and signals an unsupported opcode exception, which causes 
emulation mode to be entered from CISC mode. An emu 
lation routine of RISC instructions is executed to emulate 
the complex CISC instruction. This emulation routine con 
tains a RISC Boolean instruction which will set bit 2 in CR3, 
corresponding to bit-position 17, the VM bit, in the 
EFLAGS register 21. The RISC Boolean instruction setting 
this bit may be a CR-register Boolean XOR instruction 
(creqv) that exclusive-OR's bit 2 to itself, with field CR3 as 
its sources and destination. Once the emulation routine is 
completed, CISC mode is again entered and execution of the 
CISC program resumes at the following CISC instruction. 
Because CISC EFLAGS register 21 and RISC CR register 
20 are implemented as the same hardware register on the 
CPU die, updating the RISC register also updates the 
register seen by CISC programs. 
The emulation routine of RISC instructions, or other 

native RISC programs, may freely update bits in fields CR0 
and CR1, because these bits correspond to reserved bits in 
CISC EFLAGS register 21. At the conclusion of the emu 
lation routine, before CISC mode is entered, these bits in 
CR0 and CR1 are cleared so that they will all be read as zero 
when CISC mode instructions read CISC EFLAGS register 
21. 

BENEFITS AND USES OF MERGED FLAGS 
REGISTERS 

Folding CISCEFLAGS register 21 and RISC CR register 
20 together brings additional benefits besides cost reduction 
by having fewer registers on the CPU die. RISC programs 
can examine the flag bits in CISC EFLAGS register 21 to 
determine the results generated by the CISC program using 
the existing RISC instructions. No special instructions are 
needed to examine this information from the other instruc 
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tion set. The RISC program may examine the zero flag to 
determine if the CISC program had a zero result, which 
might indicate the end of an iterative loop. The CISC zero 
flag (ZF) at bit position 6 may be examined by a RISC 
instruction simply by reading bit 2 of field CR6. Likewise, 
any of the other flag bits may be examined by a RISC 
program by reading the corresponding bit in the RISC CR 
register 20. Particularly with emulation routines, having this 
information is critical. Because the RISC instruction set has 
so many instructions which can access RISC CR register 20 
directly, the emulation routine may be efficiently pro 
grammed without many move or load/store instructions to 
make available the CISC EFLAGS register 21. Thus the 
emulation routine will have a much higher performance than 
if the CISCEFLAGS register 21 had to be stored on a stack 
in memory and retrieved for the emulation routine to exam 
ine. Even moving a separate CISC EFLAGS register 21 
from one CPU register into the RISC CR register 20 for use 
by RISC branch instructions would require extra RISC 
instructions, decreasing performance relative to the inven 
tion. 

The emulation routine can perform branches directly off 
the CISC flag bits. A RISC instruction in the emulation 
routine can branch off the VM bit in the CISC EFLAGS 
register by merely specifying the corresponding bit in the 
RISC CR register. The CR register is the most visible and 
accessible state register in the PowerPCTM RISC architec 
ture. The EFLAGS register in the x86 CISC architecture is 
likewise the most interesting CISC register because of the 
many state flags stored in it. Using the RISC CR register as 
a window into the CISC architecture provides a versatile and 
powerful tool. 
The RISC and CISC condition code and flags registers are 

effectively merged together into a single flags register that is 
accessible by instructions from both instruction sets. The 
merged register is special because it is not just explicitly 
accessible as a register, but the merged register is also 
accessible implicitly. Instructions that implicitly update the 
flags register, whether RISC or CISC instructions, will 
update the same merged register. Because the two instruc 
tion sets tend to use separate portions of the merged register, 
each instruction set can use its portion of the merged 
register, without interfering with the other instruction set. 
Yet programs running in one instruction set can still observe 
the flags set by programs in the other instruction set. Thus 
information about the results generated by one instruction 
set may be made available to programs in the other instruc 
tion set. 

Information about the operating state of the x86 CISC 
program is also available by reading the merged flags 
register since control bits are stored in bit-positions 11 to 21. 
These control bits, shown in Table 3, include virtual 8086 
mode, interrupt enabling and privilege levels, an indication 
of task nesting, debug trapping, and data alignment check 
ing. Again, a RISC program merely has to read the proper bit 
in the merged register, which appears as the standard RISC 
CR register to the RISC program. Often the register does not 
even have to be explicitly read by the RISC program, but 
only implicitly read. A RISC conditional branch instruction 
can be set to branch on the bit in CR5 corresponding to the 
CISC interrupt enable control bit (IF). A RISC program 
could branch to a routine to check and disable interrupts if 
the IF bit is set, but continue without disabling interrupts if 
the bit is zero, knowing that interrupts are not possible. Thus 
the CISC interrupt enable bit is used to direct program flow 
in the RISC program merely by branching on the CISC bit. 
No register transfers, loads, or even explicit reads were 
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necessary. The invention provides a very clean, simple, and 
efficient way to pass information between programs running 
in two different instruction sets. 

ADDRESS GENERATION REGISTERS 
COMBINED 

Other registers are also be folded together or combined. 
The RISC count register (CTR) is a 32-bit register that 
contains a loop count that can be decremented when a 
branch instruction is executed. It can be explicitly accessed 
by some RISC move instructions, and can be implicitly 
accessed by certain RISC branchinstruction which cause the 
CTR register to be read and decremented. 
One of the CISC segment registers (17 of FIG. 2) holds 

the base address of the code segment. This code segment 
register is needed to generate addresses for fetching instruc 
tions when in CISC mode. The base address in the code 
segment register is also needed to calculate the targets of a 
branch instruction. Thus the code segment register is 
accessed frequently. 
The RISC CTR register and the CISC code segment 

registers may be combined together in the dual-instruction 
set processor. The combined register holds the CISC code 
segment base address during CISC mode. The code segment 
base address is left in the combined CTR/CS register when 
RISC mode is entered. If a RISC iterative-branch instruction 
is encountered that uses the count register, then the code 
segment base address can be saved to memory before the 
RISC iterative-branch instruction begins execution. The 
code segment base address is restored by the emulation 
routine to the combined CTR/CS register before CISC mode 
is re-entered. 

Since the CTR register is infrequently used, the code 
segment can remain in the combined CTR/CS register most 
of the time, even during RISC mode. RISC emulation 
routines may be programmed that do not use the CTR 
register, thus increasing performance of the emulation rou 
tine. Since both the CISC code segment register and the 
RISC count register are needed by the branching unit, 
merging these into the same register provides a single shared 
register to supply both CISC and RISC address information 
to the branching unit. 

RETURN ADDRESS REGISTERS COMBINED 

The RISC machine status save restore 0 register (SRR0) 
30 of FIG. 1 saves the effective address of the instruction 
following the instruction causing an exception, or the effec 
tive address of the instruction following a system call 
instruction. When the exception handler routine completes 
and a return-from-interrupt (rfi) instruction is executed, the 
address that was stored in SRRO is reloaded into the instruc 
tion pointer so that program execution can continue with the 
next instruction. Thus the SRR0 register provides a place for 
the address of a RISC instruction that occurs after a RISC 
instruction causing an exception. 

In the dual-instruction-set processor, when a CISC pro 
gram causes an exception, a RISC emulation routine is 
called and executed. Thus the normal CISC exception han 
dling hardware is not needed and no counterpart to the SRR0 
register is necessary. The CISC CR2 register would nor 
mally hold the address of an instruction causing a page fault 
in a CISC-only processor. This CR2 register is not needed in 
the dual-instruction-set processor since page faults, like 
other exceptions, are all handled by RISC emulation code. 
Other CISC exceptions would cause the instruction pointer 
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(IP) to be pushed on the stack in memory by the exception 
handler. Pushing the IP to the stack is not performed in 
micro-code, as in prior-art x86 processors, but by the emu 
lation routine for the dual-instruction-set processor. Any 
time emulation mode is entered from CISC mode, regardless 
of the cause, the address of the CISC instruction being 
executed is stored into the RISC SRR0 register. When the 
emulation routine completes, the processor switches back to 
CISC mode, the address stored in register SRR0 is re-loaded 
into the instruction pointer, and the next instruction in the 
CISC program is fetched and executed. 

If emulation mode is entered to handle an exception, then 
SRR0 should point to the CISC instruction causing the 
exception, so that CISC instruction can be re-started once 
the exception handling is complete. If emulation mode was 
entered to emulate a complex CISC instruction, then SRRO 
should hold the address of the instruction following the 
CISC instruction. When the emulation routine determines 
the size of the CISC instruction, the size is added to the 
address stored in the SRR0 register to get the address of the 
next CISC instruction. This addition must occur because 
CISC instructions can vary in size, CISC instructions being 
1-15 bytes in size. Thus SRR0 will cause the CISC program 
to continue at the instruction following the CISC instruction 
being emulated, unless an exception occurs. 
The RISC SRR0 register, which normally holds the 

address of an instruction causing an exception, is also used 
to hold the address of a CISC instruction following a CISC 
instruction that caused emulation mode to be entered 
because the CISC instruction was not supported in hardware 
but had to be emulated. These are two parallel uses, but for 
two different instruction sets. The additional hardware to 
support both of these functions is minimal because these 
functions are closely related. 

LRAND FP REGISTERS COMBINED 

The RISC link register (LR) provides a branch target 
address for a RISC branch conditional to link instruction. It 
is a 32-bit register. While most RISC branch instructions do 
not use the link register, some do. 
The CISC architecture requires that the address of a 

floating point instruction be saved. Since floating point 
operations may take several clock cycles to complete, sev 
eral simple integer instructions could have completed 
execution by the time an exception is signaled that was 
caused by the floating point instruction. Storing the address 
of the floating point instruction allows the exception han 
dling routine to backtrack the code and sort out the integer 
instructions executed. This address of the floating point 
instruction is stored in the FP IP register in the CISC 
architecture. In the dual-instruction-set processor this 
address is instead stored in the RISC link register. 

Storing the CISC floating point instruction's address in 
the RISC link register may cause a problem if a RISC 
program contains a RISC instruction that uses the link 
register. If that happens, the CISC floating point instruc 
tion's address must be saved to a stack in memory or to 
another general-purpose register. It is believed that this will 
be an infrequent occurrence and therefore the cost savings of 
combining the registers justifies sharing these two registers. 
Most of the time the RISC link register will not be used, so 
no conflict will occur. 

Since the link register is used to store the address of the 
RISC target, a path for an instruction address is already 
provided to this register. Thus the floating point instruction's 
address may also use this instruction path to the shared LR 
register. 
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GPR'S COMBINED 

There are 32 general-purpose registers (GPR's) for RISC 
which may be explicitly read or written by RISC instruc 
tions. The x86 CISC architecture provides only 8 general 
purpose registers which can be read or written by a user 
program. CISC also provides 6 segment registers which 
contain segment base addresses that are used to calculate the 
linear address of code, data operands, and a stack. These 
segment registers can only be used for segmentation, a part 
of address generation, and have restrictions on reading and 
writing them with CISC instructions. Only x86 privileged or 
segment-load instructions can read or write the segment 
registers. All of these instructions are emulated by the 
dual-instruction-set processor. Thus CISC-mode instruc 
tions cannot directly read or write these segment registers. 

These 32 RISC general-purpose registers may be merged 
with the 8 CISC general-purpose registers and the 6 CISC 
segment registers. Table 7 shows how these registers are 
used for RISC, CISC, and emulation mode. 

TABLE 7 

Shared GPR's 

RISC Mode CISC Mode Emulation Mode 

GPRO EAX GPR EAX GPR 
GPR1 ECX GPR ECX GPR 
GPR2 EDX GPR EDX GPR 
GPR3 EBX GPR EBX GPR 
GPR4 ESP GPR ESP GPR 
GPR5 EBP GPR EBP GPR 
GPR6 ESI GPR ES GPR 
GPRT ED GPR ED GPR 
GPR8 ES Seg Base ES Seg Base 
GPR9 CS Seg Base CS Seg Base 
GPR10 SS Seg Base SS Seg Base 
GPR11 DS Seg Base DS Seg Base 
GPR12 FS Seg Base FS Seg Base 
GPR13 GS Seg Base GS Seg Base 
GPR14 N/A Emulation Base Address 
GPR15 N/A 0 Base Address 
GPR16 N/A GPR16 
GPR17 N/A GPR17 
GPR18 N/A GPR18 
GPR19 N/A GPR19 
GPR20 NIA GPR20 
GPR21 N/A GPR21 
GPR22 N/A GPR22 
GPR23 N/A GPR23 
GPR24 N/A GPR24 
GPR25 N/A GPR25 
GPR26 N/A GPR26 
GPR27 N/A GPR27 
GPR28 N/A GPR28 
GPR29 N/A GPR29 
GPR30 N/A Emulation Assist Address 
GPR31 N/A Emulation Assist Data 

Table 7 shows that in RISC mode, the 32 general-purpose 
registers are accessible as true general-purpose registers. 
Any of the 32 registers may be read or written by RISC 
programs. In CISC mode, there are only 8 general-purpose 
registers, EAX through EDI, which share the same physical 
registers with the RISC GPRs 0 to 7. A CISC program may 
load one of its GPR's, such as EAX, with a data value, then 
switch to RISC mode, allowing the RISC program to read 
that value the CISC program placed in EAX merely by 
reading the RISC GPR 0. Since the RISC architecture 
defines GPR 0 as a regular GPR, many instructions can 
access this register without an explicit load from memory or 
register-to-register transfer. For example, a RISC add 
instruction could specify the value in GPR0 that was loaded 
by the CISC program merely by identifying GPRO in one of 
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the source fields in the RISC ADD instruction word. The 
result of the ADD may be written back to GPR0 or any other 
GPR. Thus no explicit transfer is needed to access the CISC 
data by the RISC program. 
The 6 CISC segment base address registers, ES Base to 

GSBase, may be implicitly read by the CISC program when 
generating an address. A RISC program may read or write 
these registers merely by specifing the corresponding GPR. 
If the CISC program required emulation code to load 
segment register FSBase with a base address, then the RISC 
emulation program would merely have to identify GPR 12 
in a RISC instruction to read or write this base address. 
CISC programs, however, cannot freely access any RISC 

GPR except GPR 0 to 7. CISC programs may access GPR 
8 to 13 in a restricted way, since these registers correspond 
to the CISC segment registers ES Base to GS Base. The 
CISC program may use a special segment override in the 
CISC instruction word to access one of these segment base 
registers when calculating an address. The CISC architec 
ture imposes limitations on accessing these segment regis 
ters, making them useful for transferring address informa 
tion between the RISC and CISC programs, but not useful 
for transferring data. The CISC program can only implicitly 
access these segment registers for address generation. 
CISC mode programs have no access to RISC GPR14 to 

31, since there is no corresponding CISC register. However, 
emulation mode can access all 31 RISC registers, including 
the first 8 registers, which are the CISC GPR's, and the 6 
CISC segment base registers. However, emulation mode can 
freely access the CISC segment base registers. Emulation 
mode executes RISC instructions, so the mechanism to 
transfer data and address information between CISC and 
emulation modes is similar to transfers between CISC and 
RISC modes as described above. The RISC instructions in 
emulation mode can implicitly access a CISC register by 
identifying the corresponding RISC GPR as a source in the 
RISC instruction word. 

Emulation mode differs slightly from RISC mode. Nor 
mal RISC address checking and page fault handling is 
performed for accesses to most registers. However, when 
any of the 6 CISC segment registers, or GPR14 or 15, are 
used to generate an address, the CPU uses x86-type address 
checking and x86 page fault handling, rather than the normal 
RISC address checking and page faulting routines. 
GPR14 and 15 are used in emulation mode as special 

emulation-mode segment base address registers. When emu 
lation code generates an address using GPR15 as one of the 
operands, no segment validity checking is performed at all, 
neither RISC nor x86 segment validity checking. Using 
GPR15 allows for emulation code to generate an address 
without any segment checking. Using GPR 14 causes the 
CPU to use one of the 6 CISC segment registers to form the 
address, and for checking segment validity. When emulation 
mode is entered, a 3-bit register is loaded with a pointer to 
one of the 6 CISC segment base registers. The pointer value 
loaded is the segment used by the CISC instruction being 
emulated. This is normally the data segment register DS, or 
code segment register CS, but a segment over-ride prefix 
appended onto the CISC instruction could indicate that one 
of the other segment base registers be used. Thus using GPR 
14 allows the emulation code to generate an address using 
whichever CISC segment register would have been used by 
the CISC instruction. This is a very powerful feature for 
emulation, saving dozens of instructions in the emulation 
routine to examine and decode the CISC instruction word to 
determine which segment register should be used. 
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Both registers GPR14 and 15 are preferably loaded with 

the value Zero so that they do not modify the address being 
generated. Thus using these registers in emulation mode 
alters the address checking being used. Emulation mode, 
although using RISC instructions, can have CISC address 
checking for certain addresses generated with the CISC 
segment base registers and the two emulation base registers 
GPR14 and 15. Some of the RISC GPR's may be used by 
emulation mode for particular purposes. For example, 
GPR's 14, 15, 30, and 31 may be used by emulation routines 
for address generation within emulation mode, and for 
various assist functions. 

If RISC mode and emulation mode are to be both used at 
the same time on a system, then the RISC program should 
not overwrite the four special emulation mode registers, or 
the CPU hardware needs to provide two sets of registers for 
GPR14, 15, 30, and 31, one set exclusively for RISC mode, 
with a second set exclusively for emulation mode. RISC 
mode programs must also not overwrite GPR's 0-13, which 
are used for CISC mode architectural registers. Because 
general RISC user programs will write these registers, and 
may not have a need for transferring data to a CISC program, 
a process or task switch from a CISC user program to a 
general RISC user program would be handled as a normal 
task switch, with all registers being saved to a stack before 
the switch so that the values in the GPR's will not be 
overwritten and lost. 

The code segment base address is available in two sepa 
rate registers: GPR9 holds the CISC code segment base (CS 
Base) while the RISC count CTR register also holds this 
same code segment base. This is beneficial for modern 
pipelined and superscalar processors because the CTRICS 
register can provide the branching unit with the code seg 
ment base address, while the GPR array also can provide the 
code segment base address to the execution unit. Thus the 
code segment base address may be provided from two 
separate registers to two separate units within the processor. 
Since these units are often separated, having the separate 
registers can save the delay in transferring the code segment 
from the GPR's to the branching unit. As the code segment 
base address is frequently used in address calculations, 
having it in two separate locations is useful, effectively 
doubling the available bandwidth for supplying this base 
address. 

Merging the GPR's together with the CISC GPR and 
segment registers provides a very efficient and clean way of 
transferring address and data between CISC and RISC 
programs and emulation programs. Normal architectural 
features are used to access and transfer data. Data can be 
accessed explicitly by specifying the corresponding GPR as 
the source in the instruction word. 

SHARED REGISTER ARCHITECTURE 

FIG. 4 is a diagram of the shared registers in the dual 
instruction set processor. The CISC EFLAGS register and 
the RISC CR register are combined into a single 32-bit 
CR/EFLAGS register 40 that can be accessed by CISC user 
programs and RISC user programs and emulation code. The 
CISC code segment base address register and the RISC 
count CTR register are merged to a single CS/CTR register 
42, also accessible by CISC user programs and RISC user 
programs and emulation code. The RISC system save? 
restore (SRR0) register, which normally holds the address to 
return to after an interrupt has been processed, also holds the 
return address when emulation code was called. Thus SRR0 
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can hold a RISC address or a CISC address. The RISC or 
CISC user can indirectly load SRR0 register 44 by causing 
emulation code to be entered, but cannot directly access 
SRR0 register 44. However, RISC supervisor code and 
emulation code has full access to SRR0 register 44. 
The RISC link register, which is used to hold a branch 

address, is combined with a CISC register that holds the 
instruction address of the last floating point instruction. This 
merged FP-IP/LR register 46 is also indirectly accessible by 
CISC programs because they cannot directly read or write it, 
but can only load it by executing a floating point instruction. 
RISC and emulation programs can freely access this merged 
FP-IP/LR register 46. The 32 general-purpose registers from 
RISC are merged with the 8 GPR's and 6 segment base 
registers from the CISC architecture into merged GPR's 48. 
Four of the RISC GPR's are used by emulation code for 
special uses, although emulation code can access all RISC 
and CISC registers. 

ALTERNATE EMBODIMENTS 

This improvement relates to a central processing unit 
(CPU) for a dual-instruction set architecture. While the 
detailed description describes the invention in the context of 
the PowerPCTM reduced instruction set computer (RISC) 
and the x86 complex instruction set computer (CISC), it is 
contemplated that the invention applies to other instruction 
sets besides PowerPCTM and x86, and to more than two 
instruction sets, and to architectures besides RISC and 
CISC, without departing from the spirit of the invention. The 
exact number of bits in each register may likewise be varied 
by persons skilled in the art without departing from the spirit 
of the invention, although architecture compatibility may be 
lost. 

The foregoing description of the embodiments of the 
invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A shared register system for a dual-instruction-set 

processor, the shared register system comprising: 
a shared register for storing information to be transferred 

between a first program comprised of instructions from a 
first instruction set and a second program comprised of 
instructions from a second instruction set, the first instruc 
tion set having a first encoding of operations to opcodes, 
the second instruction set having a second encoding of 
operations to opcodes, the first encoding of operations to 
opcodes being substantially independent from the second 
encoding of operations to opcodes; 

first means, coupled to the shared register, for accessing the 
shared register from the first instruction set, the first 
means writing information into the shared register respon 
sive to a first subset of instructions from the first instruc 
tion set; and 

second means, coupled to the shared register, for accessing 
the shared register from the second instruction set, the 
second means reading information from the shared reg 
ister responsive to a second subset of instructions from the 
second instruction set, 

wherein each instruction in the first subset of instructions 
from the first instruction set comprises a first opcode field 
indicating the operation encoded and a destination field 
specifying the shared register, and wherein each instruc 
tion in the second subset of instructions from the second 
instruction set comprises a second opcode field indicating 
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16 
the operation encoded and a source field specifying the 
shared register; 

wherein the first subset of instructions have first opcode 
fields with encodings for integer operations, arithmetic 
logic-unit (ALU) operations, and register-to-register 
move operations and wherein the second subset of 
instructions have second opcode fields with encodings for 
integer operations, arithmetic-logic-unit (ALU) opera 
tions, and register-to-register move operations, 

wherein the shared register is in a plurality of general 
purpose registers in the dual-instruction-set processor, the 
source field and the destination field selecting any one 
register in the plurality of general-purpose registers, the 
one register selected being the shared register for trans 
ferring information between the first program and the 
second program; 

wherein the first means for accessing the shared register 
from the first instruction set includes means for reading 
and means for writing information into the shared regis 
ter, 

and wherein the second instruction set is a reduced instruc 
tion set computer (RISC) instruction set and the first 
instruction set is a complex instruction set computer 
(CISC) instruction set, 

whereby information is transferred from the first program to 
the second program using the shared register. 

2. The shared register system of claim 1 wherein the 
plurality of general-purpose registers comprise eight freely 
accessible registers and six segment registers for holding 
segment base addresses. 

3. The shared register system of claim 1 wherein the 
second instruction set is a PowerPCTM RISC instruction set, 
and the first instruction set is an x86 CISC instruction set. 

4. A shared register system for a dual-instruction, set 
processor, the shared register system comprising; 
a shared register for storing information to be transferred 

between a first program comprised of instructions from a 
first instruction set and a second program comprised of 
instructions from a second instruction set, the first instruc 
tion set having a first encoding operations to opcodes, the 
second instruction set having a second encoding of opera 
tions to opcodes, the first encoding of operations to 
opcodes being substantially independent from the second 
encoding of operations to opcodes; 

first means, coupled to the shared register, for accessing the 
shared register from the first instruction set, the first 
means writing information into the shared register respon 
sive to a first subset of instructions from the first instruc 
tion set; and 

second means, coupled to the shared register, for accessing 
the shared register from the second instruction set, the 
second means reading information from the shared reg 
ister responsive to a second subset of instructions from the 
second instruction set, 

wherein the shared register comprises a first flags field for 
storing first flags implicitly set by arithmetic-logic-unit 
(ALU) operations encoded by opcodes in the first subset of 
instructions from the first instruction set, and wherein the 
shared register further comprises a second flags field for 
storing second flags implicitly set by arithmetic-logic-unit 
(ALU) operations encoded by opcodes in a third subset of 
instructions from the second instruction set, the second 
means for accessing the shared register from the second 
instruction set writing information to the shared register in 
response to instructions from the third subset of instructions 
from the second instruction set; 
wherein the second instruction set is a reduced instruction 
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set computer (RISC) instruction set and the first instruction 
set is a complex instruction set computer (CISC) instruction 
Set, 
wherein the first flags field in the shared register is implicitly 
read by first instructions having opcodes encoding condi 
tional branch operations, and wherein the second flags field 
in the shared register is implicitly read by second instruc 
tions having opcodes encoding conditional branch opera 
tions, 
wherein the first flags include a Zero flag indicating that one 
of the ALU operations encoded by opcodes in the first subset 
of instructions from the first instruction set had a zero 
valued result and the second flags included Zero flag indi 
cating that one of the ALU operations encoded by opcodes 
in the first subset of instructions from the first instruction set 
had a zero-valued result; 
wherein the second means for accessing the shared register 
from the secondinstruction set reads the first flags set by first 
instructions and reads the second flags set by second instruc 
tions, whereby the second program can read both the first 
flags set by ALU operations encoded by the first instruction 
set and the second flags set by ALU operations encoded by 
the second instruction set, 
whereby information is transferred from the first program to 
the second program using the shared register. 

5. A central processing unit (CPU) for executing first 
instructions from a first instruction set and for executing 
Second instructions from a second instruction set, the CPU 
comprising: 
a first instruction decoder, receiving the first instructions 
from the first instruction set, the first instruction decoder 
providing decoded first instructions; 

a second instruction decoder, receiving the second instruc 
tions from the second instruction set, the second instruc 
tion decoder providing decoded second instructions; 

an execution unit for executing first instructions and for 
executing second instructions, the execution unit receiv 
ing decoded first instructions from the first instruction 
decoder, the execution unit receiving decoded second 
instructions from the second instruction decoder; and 

a condition code register comprising a first condition code 
and a second condition code, the first condition code 
being set by the execution unit when the execution unit 
receives a decoded first instruction and an arithmetic 
operation is executed, the second condition code being set 
by the execution unit when the execution unit receives a 
decoded second instruction and an arithmetic operation is 
executed, 

the first condition code being read by the execution unit 
when the execution unit receives a decoded first instruc 
tion having a first opcode indicating that the first condi 
tion code be read; 

the first condition code also being read by the execution unit 
when the execution unit receives a decoded second 
instruction having a second opcode that the first condition 
code be read; 

the second condition code being read by the execution unit 
when the execution unit receives a decoded second 
instruction having a third opcode indicating that the 
second condition code be read, 

wherein the first opcode designates an ALU operation that 
implicitly writes the first condition code, the second 
opcode and the third opcode encoding operations for a 
conditional branch operation that reads the condition code 
register to determine if a branch is taken; 

wherein the first instruction set has a first encoding of 
operations to opcodes, the second instruction set has a 
second encoding of operations to opcodes, the first encod 
ing of operations to opcodes being substantially indepen 
dent from the second encoding of operations to opcodes; 
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whereby the first condition code set by execution of the first 
instruction set may be read by the first instruction set or the 
second instruction set. 

6. A shared register system for a dual-instruction-set 
processor, the shared register system comprising: 
a shared register for storing information to be transferred 
between a first program comprised of instructions from a 
first instruction set and a second program comprised of 
instructions from a second instruction set, the first instruc 
tion set having a first encoding of operations to opcodes, 
the second instruction set having a second encoding of 
operations to opcodes, the first encoding of operations to 
opcodes being substantially independent from the second 
encoding of operations to opcodes; 

first means, coupled to the shared register, for accessing the 
shared register from the first instruction set, the first 
means writing information into the shared register respon 
sive to a first subset of instructions from the first instruc 
tion set; and 

second means, coupled to the shared register, for accessing 
the shared register from the second instruction set, the 
second means reading information from the shared reg 
ister responsive to a second subset of instructions from the 
second instruction set, 

wherein each instruction in the first subset of instructions 
from the first instruction set comprises a first opcode field 
indicating the operation encoded and a destination field 
specifying the shared register, and wherein each instruc 
tion in the second subset of instructions from the second 
instruction set comprises a second opcode field indicating 
the operation encoded and a source field specifying the 
shared register, 

wherein the first subset of instructions have first opcode 
fields with encodings for integer operations, arithmetic 
logic-unit (ALU) operations, and register-to-register 
move operations and wherein the second subset of 
instructions have second opcode fields with encodings for 
integer operations, arithmetic-logic-unit (ALU) opera 
tions, and register-to-register move operations; 

wherein the shared register is in a plurality of general 
purpose registers in the dual-instruction-set processor, the 
source field and the destination field selecting any one 
register in the plurality of general-purpose registers, the 
one register selected being the shared register for trans 
ferring information between the first program and the 
Second program, 

wherein the first means for accessing the shared register 
from the first instruction set includes means for reading 
and means for writing information into the shared regis 
ter; 

and wherein the first instruction set is a reduced instruction 
set computer (RISC) instruction set and the second 
instruction set is a complex instruction set computer 
(CISC) instruction set, 

whereby information is transferred from the first program to 
the second program using the shared register. 

7. A shared register system for a dual-instruction-set 
processor, the shared register system comprising: 
a shared register for storing information to be transferred 
between a first program comprised of instructions from a 
first instruction set and a second program comprised of 
instructions from a second instruction set, the first instruc 
tion set having a first encoding of operations to opcodes, 
the second instruction set having a second encoding of 
operations to opcodes, the first encoding of operations to 
opcodes being substantially independent from the second 
encoding of operations to opcodes; 
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first means, coupled to the shared register, for accessing the 
shared register from the first instruction set, the first 
means writing information into the shared register respon 
sive to a first subset of instructions from the first instruc 
tion set; and 

second means, coupled to the shared register, for accessing 
the shared register from the second instruction set, the 
second means reading information from the shared reg 
ister responsive to a second subset of instructions from the 
second instruction set, 

wherein the shared register comprises a first flags field for 
storing first flags implicitly set by arithmetic-logic-unit 
(ALU) operations encoded by opcodes in the first subset of 
instructions from the first instruction set, and wherein the 
shared register further comprises a second flags field for 
storing second flags implicitly set by arithmetic-logic-unit 
(ALU) operations encoded by opcodes in a third subset of 
instructions from the second instruction set, the second 
means for accessing the shared register from the second 
instruction set writing information to the shared register in 
response to instructions from the third subset of instructions 
from the second instruction set; 
wherein the first instruction set is a reduced instruction set 
computer (RISC) instruction set and the second instruction 
set is a complex instruction set computer (CISC) instruction 
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Set, 
wherein the first flags field in the shared registeris implicitly 
read by first instructions having opcodes encoding condi 
tional branch operations, and wherein the second flags field 
in the shared register is implicitly read by second instruc 
tions having opcodes encoding conditional branch opera 
tions; 
wherein the first flags include a zero flag indicating that one 
of the ALU operations encoded by opcodes in the first subset 
of instructions from the first instruction set had a zero 
valued result and the second flags include a Zero flag 
indicating that one of the ALU operations encoded by 
opcodes in the first subset of instructions from the first 
instruction set had a Zero-valued result; 
wherein the second means for accessing the shared register 
from the second instruction set reads the first flags set by first 
instructions and reads the second flags set by second instruc 
tions, whereby the second program can read both the first 
flags set by ALU operations encoded by the first instruction 
set and the second flags set by ALU operations encoded by 
the second instruction set, 
whereby information is transferred from the first program to 
the second program using the shared register. 
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