
III III
USOO5542059A

United States Patent (19) 11) Patent Number: 5,542,059
Blomgren 45) Date of Patent: Jul. 30, 1996

54 DUAL INSTRUCTION SET PROCESSOR OTHER PUBLICATIONS

75

63
51
52

58

56

HAVING A PEPELINE WITH APPESTAGE
FUNCTIONAL UNIT THAT IS
RELOCATABLE IN TIME AND SEQUENCE
ORDER

Inventor: James S. Blomgren, San Jose, Calif.

Assignee: Exponential Technology, Inc., San
Jose, Calif.

Appl. No. 361,017

Filed: Dec. 21, 1994

Related U.S. Application Data

Continuation of Ser. No. 80,023, Jan. 11, 1994.
Int. Cl. G06F 9/30
U.S. Cl. 395/375; 395/728; 364/DIG, ;

364/DIG. 2
Field of Search 395/375, 725;

364/23.8, 232.23

References Cited

U.S. PATENT DOCUMENTS

4,377,844 3/1983 Kaufman 395/425
4,538,241 8/1985 Levin et al. 395/400
4,633,417 12/1986 Wilburn et al. 364/550
4,763,242 8/1988 Lee et al. 395/500
4,780,819 10/1988 Kashiwagi 395/500
4,794,522 12/1988 Simpson 395,500
4,812,975 3/1989 Adachi et al. 395,500
4,821,87 4/1989 Ueda et al. 395/375
4,841,476 6/1989 Mitchell et al. ... 395,500
4,962,519 7/1990 Nakayama 395/775
4,972,317 1/1990 Buonomo et al. ... 395/375
4,99,081 2/99 Boshart 395,425
4,992,934 2f1991 Portanova et al. ... 395/375
5,067,069 1/1991 Fite et al............. 395/375
5,073,855 12/1991 Staplin et al. 395,375
5,077,654 12/1991. Ohtsuki 395/800
5,077,657 12/1991 Cooper et al. 395/500

(List continued on incxt page.)

CISC

OPERAN BUS

RSCD

Combining Both Micro-Code and Hardware Control in
RISC, by Zheng, 1990 Mar. publication, pp. 11-15, Clem
son University.
Combining RISC and CISC in PC systems Simon C. J.
Garth, Nov. 1991, IEEE publication, pp. 10/1-10/5.
A5.6-MIPS call-Handling Processor for switching systems,
By Hayashi et al, Aug. 1989, IEEE publication, pp.
945-950.

Primary Examiner-Parshotam S. Lall
Assistant Examiner-Zarni Maung
Attorney, Agent, or Firm-Stuart T. Auvinen
(57) ABSTRACT

A CPU pipeline is able to process instructions from a
complex instruction set computer CISC instruction set and
from a reduced instruction set computer RISC set. A mode
register is provided to indicate whether RISC or CISC
instructions are currently being processed. Two instruction
decode units are used, one for each instruction set. Com
pound CISC instructions flow from the decode pipestage to
the address generate stage, then to an operand cache stage,
and finally to an algebraic execute stage before the results
are written back to the GPR register. When the CPU
switches to RISC mode by clearing a mode bit in the mode
register, the pipeline is re-arranged for processing the sim
pler RISC instructions. Two outputs are provided for the
RISC instruction decoder. The first output is for simple
execute-type instructions, while the second output is for
load/store-type instructions, and connects to the address
generate pipestage, which generates an address for the
operand cache stage. These instructions are prevented from
continuing to the execute stage by a mux. The mux normally
connects the operand cache stage to the execute stage when
CISC instructions are being processed, but the mux directly
connects the second output of the RISC instruction decoder
to the execute stage when the mode register enables RISC
instruction decoding. This reduces the latency for RISC
instructions by l or 2 clocks. An alternate embodiment
re-arranges the pipeline dynamically as simple instructions
are detected by the decode units. The preferred embodiment
uses a fixed pipeline with the execute hardware relocatable
to the D, C, or M pipestages. Thus the pipeline is optimized
for both RISC and CISC instructions.

16 Claims, 6 Drawing Sheets

MAN MEM

5,542,059
Page 2

U.S. PATENT DOCUMENTS 5,226,164 7/1993 Nadas et al. 395/800
5,230,045 7/1993 Sindhu 395,425

5,097,407 3/1992 Hino et al. 395/375 5,230,069 7/1993 Brelsford et al. 395,400
5,136,696 8/1992 Beckwith et al. ... 395/375 5,241,636 8/1993 Kohn 395/375
5, 150,468 9/1992 Staplin et al. 395/375 5,255,384 10/1993 Sachs et al. ... 395/425
5,167,023 11/1992 de Nicolas et al. ... 395.375 5,269,007 12/1993 Hanawa et al. 395/375
5,210,832 3/1993 Maier et al. 395/375 5,287,465 2/1994 Kurosawa et al....................... 395/375
5,222,223 671993 Webb, Jr. et al. 395,425 5,291,586 3/1994 Jen et al. 395/500

5,542,059 Sheet 1 of 6 Jul. 30, 1996 U.S. Patent

61

E HOV/O NOI LOTT}} LSN||

5,542,059 Sheet 2 of 6 Jul. 30, 1996 U.S. Patent

5,542,059 Sheet 3 of 6 Jul. 30, 1996 U.S. Patent

5,542,059 Sheet 5 of 6 Jul. 30, 1996 U.S. Patent

G -61-I 79ZGT_LO BOJOW ? Tid

LINT!

XE|-
zººl , !

|5DE, ECHOW

\/09 +++.---E 89
9€.

5,542,059 Sheet 6 of 6 Jul. 30, 1996 U.S. Patent

9 · 61

LINT XE No.w : »

T_LO ECJOW ? Td

|€)E}} EIGIOIN
89

C]] OSIO

5,542,059
1

DUAL INSTRUCTION SET PROCESSOR
HAVING A PIPELINE WITH APPESTAGE

FUNCTIONAL UNIT THAT IS
RELOCATABLE IN TIME AND SEQUENCE

ORDER

RELATED APPLICATION

This application is a continuation of Ser. No. 08/180,023
filed 1/1/94, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to microprocessor architectures,

and more particularly to a pipeline with variable latencies to
support execution of multiplc instruction sets.

RELATED APPLICATION

This application is related to a co-pending application for
a "Dual-Instruction-Set Architecture CPU with Hidden Soft
ware Emulation Mode', invented by Blomgren and Richter,
Ser. No. 08/179,926, filed 1/11/94, and assigned to the same
assignee as this application.

2. Description of the Related Art
The performance of microprocessors has been increased

through the use of the well-known technique of pipelining.
A pipelined central processing unit or CPU is divided into
several units referred to as stages or pipestages, each pip
estage typically requiring one processor clock period to
perform its function. As an instruction is processed by the
microprocessor, it flows through the pipcline: first the
instruction is fetched from memory by the Fetch pipestage,
then the instruction is decoded by the D stage, the decoded
instruction may then be executed by an arithmetic-logic-unit
(ALU) or adder, then the result from the execute stage is
written to a register file or to memory. While a first instruc
tion is in the execute stage, the following instruction is in the
D stage, and the next following instruction in the Fetch
stage. Thus many instructions are being processed at the
same time, but each instruction is processed over several
clock periods. The result is that the clock period may be
reduced, improving performance.

Pipelining has worked very well with simple, well-orga
nized instruction scts such as with reduced instruction set
computers or RISC instruction sets. However, older, more
complex instructions set computers or CISC instruction sets
contain instructions that require additional use of functional
units. Some complex, compound instructions actually per
form the equivalent work of two or more simple instructions.
A high-performance design may require adding more func
tional units and stages to the pipeline than are necessary for
the simpler instructions. The difficulty arises in trying to
process both simple and complex instructions in the same
pipeline. If the pipeline is to execute both a simple RISC and
a complex CISC instruction set, the difficulty is intensified.
When instructions are pipelined, the results from one

instruction may be needed by a subsequent instruction, even
before the instruction completes. Techniques such as bypass
ing and forwarding of results can route the result from one
instruction to a subscquent instruction, when both instruc
tions are in different pipestages of the pipeline. However, the
subsequent instruction will still have to wait for the next
pipestage to bc released by the previous instruction.

O

15

2

25

30

35

40

45

50

55

60

65

2
All microprocessors perform 3 basic types of instructions:

accessing memory, performing algebraic operations, and
control transfer. These 3 types can be referred to as LOAD/
STORE, ALU, and BRANCH operations. Regardless of the
architecture or instruction set, all instructions are composed
of these 3 component operations. An example is in the x86
instruction set, made popular by personal computers (PC's)
using Intel Corporation (of Santa Clara, Calif.) 386 and 486
microprocessors. The x86 POP instruction performs a
LOAD from a stack in memory followed by an ALU
operation to increment the stack pointer register. Compound
instructions are common in CISC instruction sets such as the
x86 set, but are rare in RISC instruction sets.

OPERATIONAL LATENCES

ALU operations include addition, subtraction, Boolean
operations, and bit shifts. Multiplication, division, and other
complex floating-point operations may also be performed if
sufficient hardware resources are provided. This type of
instruction usually takes one or two operands from a high
speed internal CPU general-purpose register file (GPR), and
stores the result back to this register file. Since data is not
transferred off the CPU die, the operation is very fast,
typically requiring one clock period. The latency, or time
required to perform the operation defined by the instruction,
is one clock period. Latency does not include fetch, decode,
or write-back time normally required for instruction pro
cessing; latency here refers to the time to perform a com
ponent operation.
LOAD/STORE operations must first compute a memory

address where the data resides, and then write data to that
memory location or read data from that location or address.
Data is transferred between a register in the GPR and the
memory, which can be slow DRAM-based system memory
or cache memory. The cache may be on the CPU die or
off-chip. With a cache, the transfer will usually take one
clock, while the address computation, which normally
requires addition, takes an additional clock. Thus the
LOAD/STORE operations require a total of 2 clocks, for a
latency of two.

Control transfer or BRANCH operations calculate a new
address to load into the instruction pointer. If the branch is
conditional, a new target address for the code to jump to is
calculated, and a branch condition is evaluated, usually from
the condition code register associated with the ALU. Branch
operations may be quite complex to pipeline, but optimiza
tions and prediction techniques are possible. A supplemen
tary adder may be provided to calculate the target address
early, during the decode pipestage, and the Fetch stage may
be designed to fetch both the target instruction and the
sequential (branch not taken) instruction. However, since the
branch may have to wait for the condition codes to be set by
a previous instruction's ALU pipestage, and the next instruc
tion must be decoded after the branch decision is made, the
latency is at least two clocks.

LATENCY DIAGRAM

FIG. is a latency diagram that is useful in designing
pipelines. Each box in the figure represents an operation or
function that requires one clock to complete. Connections
between boxes show how one operation may depend upon
the results of another operation. The computational work
performed by any instruction can be analyzed with this
latency diagram. Instruction cache 10 contains a buffer of
instructions that have not yet been decodcd, and may contain

5,542,059
3

instructions that will not be executed if a branch occurs.
Branch adder 12 is used to calculate the target address for a
branch. Instruction decode and register file 14 decodes an
instruction fetched into the instruction cache, and provides
the register operands to adder 16, which performs an ALU 5
operation, or can calculate an address. Operand cache 18 is
a cache of main memory data or operands and can be written
into for a STORE operation or read from in a LOAD
operation.

- If an operation has a greater latency than 1 clock, then the 10
diagram may be modified accordingly. For example, if the
operand cache 18 were slow and required 2 clocks, then box
18 could be replaced with two boxes in sequence. Similarly,
the adder could be replaced with two or three boxes for
floating-point operations. Connections may also be modified 15
depending upon the design; for example, a very high-speed
design might not allow connection "D', the bypass around
the ALU. Another design might have adder 16 located after
operand cache 18 rather than before it, or in both locations.
A LOAD/STORE will flow through the latency diagram, 20

FIG. 1, starting as an instruction in the I-cache 10, decoded
in block 14, which provides address components from the
register file or immediate values from the instruction itself,
and ALU control information, along path “B” to adder 16.
Adder 16 generates a memory address from these address 25
components and provides this address along path "C" to the
operand cache 18. The operand cache stores or loads the data
specified by the address. If the operation is a load, then the
data read from the cache is available to the adder 16 along
path 'E', and is loaded into the register file (not shown).
Thus the load operation takes 4 clocks to execute and
provide its data result. Four clocks are required because of
dependencies within the load instruction itself: the operand
cache could not be accessed before the address was gener
ated, and the address could not be generated before the
register file provided the components.
An operand dependency may exist with the instruction

following the load. If the subsequent instruction is an Add
using the data loaded by the load instruction, then the Add
instruction will be in the adder block 16 while the load
instruction is in the operand cache 18. However, the adder
cannot perform the add until the end of the clock period
when the data is provided from the cache 18 to the adder 16
along path “E”. Thus the addinstruction must wait or "stall'
in the add stage 16 for an additional clock before starting the
add operation. The stall would still be necessary even if
several adder blocks 16 were provided, because the data was
not yet available to the add instruction.

Recently, compilers have been designed to re-order 50
instructions to try to reduce dependencies that cause stalls.
In the above example, if the Add instruction could occur

30

35

40

45

4
instruction, eliminating the possibility of re-ordering. Thus
the CISC instruction set itself imposes latencies.

RISC PIPELINE

RISC instructions are typically simple instructions that do
not perform both an ALU operation and a cache or memory
operand access. Thus path "E" of FIG. 1 is not used within
a single instruction, but may be used by a second instruction
following a load instruction. However, re-ordering compil
ers reduce or eliminate the need for path "E". Thus a simple
pipeline for RISC is:

DECODE ADDER OPERAND CACHE

A write-back stage is normally also included at the end of
the pipeline when the results are written back into the
register file and the condition codes are modified. However,
this stage does not affect the dependencies and is thus not
shown. Likewise the fetch stage is not shown. The adder is
designed for both ALU operations and address generation,
since address generation is usually simple in RISC instruc
tions. An instruction that uses the ALU will store its result
back to the register file rather than the operand cache
memory, while an instruction accessing the operand cache
will not use the ALU except for generating the address in the
operand cache. The Execute pipestage for RISC instructions
can perform an address generation or an ALU operation, but
not both at the same time.
The diagram below indicates the progression of each

instruction through the RISC pipeline, with time increasing
to the right by one clock for every stage, while subsequent
instructions are listed below one another. Stages are abbre
viated as D, E, C, and W, for decode, execute, cache, and
write-back.

Time (clocks): 1. 2 3 4. 5 6
1st Instruction: D E C W
2nd Instruction: D E C W
3rd Instruction: D. E. C. W

CISC PIPELINE

Because of the existence of compound CISC instructions
that can both load an operand and execute an ALU opera
tion, a stall of two clocks would result if the RISC pipeline
were used for certain compound CISC instructions. The stall
occurs because the adder must be used twice by the com
pound instructions-first for address generation, then after
the operand cache fetch during the execute/ALUphase. Any
subsequent instruction needing the adder for address gen
eration must wait until the adder is free.

1st Instruction: D E C E W
2nd Instruction: D D D E C E W

Stall Stall

after another instruction, rather than immediately following 60
the load instruction, then the stall would be avoided. RISC
compilers in particular have been successful at instruction
re-ordering, allowing for CPU's with multiple functional
units to increase performance using dual-pipeline techniques 65
such as super-scalar designs. However, CISC instructions
may perform both the load and the add as one atomic

A better pipeline for compound CISC instructions results
from breaking the adder into two separate pipestages. The
first adder is used solely for address generation, and is
abbreviated 'A' , while the second adder is used for
algebraic ALU execute operations, and is designated 'X'.
This is often necessary for CISC instructions sets because
address generation can be much more complicated than for
RISC instructions. CISC address generation may require a

5,542,059
5

3-component add, whereas the execute unit only adds two
opcrands, but must perform shifts and condition code opera
tions. Thus the two types of operations may be justifiably
separated for CISC pipelines. With two separate adders, the
instruction flow does not have any stalls:

X W st Instruction: D A C
D A C X 2nd Instruction: W

Thus the better CISC pipeline is:
DECODE ADDR GEN OPERAND CACHE EXECUTE

A disadvantage of this pipeline can be seen in reference to
FIG. 2. FIG. 2 shows the same latency diagram as FIG. 1,
with the addition of block 20, the execute stage, which
occurs after the operand cache 18. The Adder block 16 of
FIG. 1 has been changed to Address Generate Block 22 to
highlight its restricted function in the CISC pipeline. If
execute does not occur until after the operand cache 18, then
path "F" is delayed for 2 additional clocks. This can be a
disadvantage when the branch prediction logic mis-predicts
and path "F" is then needed. Condition codes from the
previous operation are delayed 2 clocks relative to the
decode of the branch instruction, becausc they are not
available until the previous operation finishes the execute
stage, which is now separated from the decode stage by 2
additional stages-the address generate adder and the oper
and cache.

DUAL-INSTRUCTION-SET PIPELINE

Pipeline optimization is more difficult when instructions
from 2 different instruction sets must be executed with the
same CPU. It would be possible to build 2 separate pipe
lines, onc for RISC and another for CISC, but the cost of
having 2 of every functional unit is prohibitive. In addition,
the complexity is great, especially if results must be
exchanged between the two pipelines. However, simply
choosing a RISC or a CISC pipeline and processing both
instruction sets has severe performance penalties. For
example, if a CISC instruction is exccuted on a simple RISC
pipeline, a 2-clock stall can result for many sequences of
instructions, such as explained above for a load followed by
an add. However, if a RISC instruction is executed on a
CISC pipeline, results are delayed by two clocks because of
the 2 additional stages-address generate and operand
cache-inserted before the execute stage. The diagram
below shows an Add followed by a load that requires the
result of the add, "y", in order to calculate the address. This
scquence is on the RISC pipeline.

Time (clocks): 1 2 3 4.
Add y D E C
Loady D. E. C

No stalls occur bccause the result "y' from the execute
stage is available at the end of time 2 for use in address
generation by the Execute stage at time 3. However, stalls
result when running this same sequence of RISC instructions
on a CISC pipeline, as shown below.

Time (clocks): 1 2 3. 4. 5 6 7
Add y D A C X
Loadly D A A A C X

Sta Stal

5

O

15

25

35

40

45

50

55

60

65

6
A two-clock stall occurs because the result of the add

instruction is not available until late in the pipeline, in the
execute/ALU "X" stage at the end of time 4. This stall did
not occur when the execute stage was located earlier in the
pipeline, as in the RISC pipeline arrangement.

Thus, the example shows a 2-clock penalty for a sequence
of RISC instructions when run on a CISC pipeline, while the
earlier example showed a 2-clock penalty when CISC
instructions are run on a RISC pipeline. A dual-instruction
set CPU would thus have to be optimized either for RISC or
for CISC instructions, with a significant penalty when
executing instructions from the non-optimized instruction
set. What is desired is a pipeline that can execute both RISC
and CISC instructions without a penalty caused by optimiz
ing the pipeline for one instruction set or the other.

SUMMARY OF THE INVENTION

A CPU has a pipeline for processing instructions from 2
separate instruction sets. The CPU contains a plurality of
functional units for processing the instructions, with at least
one of the functional units being temporally re-locatable.
This has the advantage that the pipeline may be optimized
for both instruction sets.

In another aspect of the invention, functional units are
relocated when instructions from a first instruction set are
being processed. In particular, the execution functional unit
is relocated either when instructions from the first instruc
tion set are being processed, or when simple execute-only
instructions are detected. Thus the pipeline is re-arranged
when processing simple execute-only instructions rather
than complex compound instructions which require a more
complex pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is latency diagram of a simple RISC pipeline.
FIG. 2 is a latency diagram for a complex CISC pipeline.
FIG. 3 is a latency diagram for a temporally-reconfig

urable pipeline.
FIG. 4 is a block diagram of the temporally-reconfig

urable CPU.
FIG. 5 is a block diagram of a dynamically and tempo

rally-reconfigurable CPU.
FIG. 6 is a block diagram of the preferred embodiment.

DETAILED DESCRIPTION

More detail on the dual-instruction set architecture may
be found in related co-pending application for a "Dual
Instruction-Set Architecture CPU with Hidden Software
Emulation Mode', invented by Blomgren and Richter, pend
ing application Ser. No. 08/179,926, filed 1/11/94, and
assigned to the same assignee as this application, hereby
incorporated by reference.

This improvement relates to a central processing unit
(CPU) with a dual-instruction set architecture. While the
detailed description describes the invention in the context of
a reduced instruction set computer (RISC) and a complex
instruction set computer (CISC), it is contemplated that the
invention applies to other instruction sets besides RISC and
CISC, and to more than two instruction sets, without depart
ing from the spirit of the invention.
The basic CISC pipeline is modified for processing simple

RISC instructions without the penalties associated with
processing RISC instructions on the standard CISC pipeline.

5,542,059
7

The sequence in which the functional units appear as
instructions are being processed must change to accommo
date the simpler RISC instructions. The basic CISC pipeline:

DECODE ADDR GEN CACHE EXECUTE

must be modified to look like a RISC pipeline when execut
ing RISC instructions:

DECODE ADDR GENIEXE CACHE

For the load/store type of instructions the pipeline should
skip the last pipestage, the algebraic execute stage, and
move directly to the write-back stage if needed. For the
RISC execute instruction, the execution facility must be
moved up 2 clocks in time to appear immediately after the
decode stage. The cache stage is not needed for RISC
execute instructions since they always write their results to
the local register file, never to the cache memory. Therefore,
execute instructions proceed to the write-back stage after the
execute unit.

FIG. 3 is a latency diagram for a temporally-reconfig
urable pipeline. An additional path “J” has been added to the
prior-art latency diagram of FIG. 2. This path "J" connects
the execute unit 20 directly to the instruction decode unit 14.
Instructions may flow out of decode unit 14 along two
different paths, either the normal CISC path to the address
generate unit 22, along path “B”, or directly to execute unit
20 via path “J”. Consequently it is possible for an instruction
to follow the full CISC pipeline from decode 14 to address
generate 22, operand cache 18, to execute 20, but it is also
possible to skip the address generate and operand cache
Stages.

Additionally, a pipe flow may terminate before reaching
the final write-back pipestage. This is desirable for store
operations. RISC load/store operations also do not need the
execute pipestage, and therefore this stage is also skipped
when these types of instructions are detected. Additional
ports to the GPR register file may be needed because more
than one instruction can terminate and desire to write its
results to the register file. Condition codes may be updated
by more than a single instruction during any given cycle, but
the codes from the earlier instruction are over-written by the
condition codes from the later instruction.

In the simplified embodiment, the instruction decode
logic determines the type of instruction and which pip
estages are needed by the instruction. A simple RISC
execute instruction will be detected by the decode logic and
the decoded instruction will be sent directly to the execute
unit along path J. However, if another instruction is in
pipestages A or C, and will require the execute stage, then
the execute instruction must stall in the decode pipestage
until the previous instruction has released the execute pip
estage. Thus the execute stage may be reserved by an
instruction in the address generate or cache stages, prevent
ing the execute instruction from proceeding. Although it
would be possible to send the execute instruction to the
execute stage without the stall, out-of-order instruction
execution is undesirable because of the added complexity.

CISC read-execute D A C E
Add D D D E

Stall Stall

However, when a series of RISC execute instructions
occur in sequence, the instruction decode logic will send
these along path 'J' directly to the execute unit without
stalls, as the diagram below shows.

10

15

20

25

30

35

40

45

50

55

60

65

8

Add D E
Add D E
Add ED E

RISC loads and stores may be mixed together with simple
execute instructions, allowing the executes to skip around
the load/stores, because the load and stores do not need to
reserve the execute stage:

Add D. E
Load D A C
Add D E
Add D E
Load D A C

If the data operand loaded by the first Load instruction is
needed by a later execute instruction, then a data interlock
will occur, causing a stall in the execute stage for the Add
operation. This is a well-known technique in pipelined
CPUs.

Add D E
Loady D. A C
Add y D. D. E.
Add D E
Load D A C

Data Interlock Stal

Because of the prevalence of optimizing compilers for
RISC that can re-order instructions, data interlocks such as
shown above are rare. If the standard CISC pipeline is used,
one additional clock is required to execute this sequence and
produce the result without the data interlock. This is because
of the additional 2 clock latency in the pipeline between the
decode and the execute unit.

Add D A
Loady D
Addy
Add
Load

s E
C E

FIG. 4 is a block diagram of the simplified embodiment.
An instruction fetcher (not shown) supplies an instruction to
be decoded by instruction decode unit 32, 36. Since the
pipeline supports both a RISC and a CISC instruction set,
and these instruction sets are separate and independent in the
encoding of opcodes to instructions, two separate instruction
decode units are provided. Thus there is no restriction placed
on the two instruction formats in relation to one another.
Different bit fields of the instruction word may contain the
opcode, while other bit fields may contain operand register
pointers or identifiers or immediate data. In fact, the size of
the instruction word may be different for the two instruction
sets. The two instruction decoders will break the instruction
word up into different bit fields as required by the respective
instruction set. Since the same opcode number may map or
encode different operations in the two instruction sets, one
instruction decode must be disabled and the other enabled,
depending upon the instruction set being processed at that
time.
The RISC and CISC instruction sets have independent

encoding of instructions to opcodes. While both sets have
ADD operations, the opcode number which encodes the
ADD operation is different for the two instruction sets. In
fact, the size and location of the opcode field in the instruc
tion word is also different for the two instruction sets.
Mode register 38 contains a bit to indicate the current

mode or instruction set being processed. This RISC/CISC

5,542,059
9

mode bit is supplicd to the instruction decoders 32, 36 along
signal 60. This signal will enable RISC decoder 36 and
disable CISC decoder 32 if set to one, otherwise it will
enable CISC decoder 32 and disable RISC decoder 36 if
logically zero or cleared.

if CISC mode is enabled, decoded instructions will flow
through the pipeline as arranged for compound CISC
instructions. Pipestages address generate 44, operand cache
48, and execute unit 52 will be sequenced through for each
instruction. Pipelinc stalls and repeated compound instruc
tions may cause some stages to be repeated several times.
The decoded instruction from CISC decode unit 32 is sent
along bus 56 to the address generate unit 44, which may
receive operands from the general-purpose register (GPR)
file 34. Address generate unit 44 calculates the operand
address and supplies this to the operand cache 48. The
operand from the cache is sent along bus 62 to the execute
unit 52, which calculates the final result, which is written
back to the GPR34 along the operand bus 54. Operand bus
54 may have to be several operand words in width to supply
sufficient bandwidth for the various pipeline functional
unitS.

Slower main memory 50 provides operands when the
operand cache 48 does not contain the requested operand,
and provides a back-up store for operands written to the
cache 48. Multiplexer or mux 46 selects the operand from
the operand cache 48 when CISC mode is indicated by
RISC/CISC mode bit 60 from mode register 38. Thus a
connection is made between the operand cache 48 and the
execute unit 52 for CISC instructions, resulting in the full
CISC pipcline of D - A - C - E.
When mode register 38 indicates RISC mode, signal 60

sets mux 46 to connect the output of the RISC instruction
decode unit 36 directly to the execute unit 52. Operands
from the cache are prevented by mux 46 from being sent to
execute unit 52 over bus 62. Thus load/store operations must
terminate before the execute stage by writing the operand
back to the GPR 34 using operand bus 54. Since RISC
load/store instructions do not support an execute operation
combined with the load/store, path 62 is not needed. The
re-configured pipeline for RISC load/stores is therefore: D
A - C.
Two outputs are provided from the RISC instruction

decode unit 36: one output for load/store operations and the
second output for execute operations. The third type of
operation, branches, require special hardwarc such as a
dedicated adder and are thus not shown in FIG. 4. Decoded
load/store-type instructions connect to the address generate
unit 44 over bus 56 while execute-type instructions are
decoded and sent over path 58 to execute unit 52 through
mux 46. RISC execute instructions thus flow through a
different portion of the pipeline than load/stores; the execute
pipeline is D - E, while the load/store pipeline is D - A - C.
The output from the CISC decode unit 32 and the load/

store output from RISC decode unit 36 can be safely
combined on bus 56 because only one of the 2 decode units
will be enabled at any one time. Bus contention will not
occur with only one of the decode units driving bus 56 to the
address generate unit 44.

Switching bctween RISC and CISC modes is under the
control of pipeline and mode control logic 42. Mode logic 42
sets or clears the RISC/CISC bit 60 in mode register 38 to
reconfigure the pipeline using mux 46. In addition, mode bit
60 enables one of the two instruction decoders. In a pre
ferred embodiment, certain very complex CISC instructions
are not directly supported in hardware but are emulated by
software routines composed of simpler RISC instructions.

O

15

25

35

40

45

55

60

65

10
CISC instruction decode unit 32 will detect these emulated
instructions and signal an unknown opcode over line 40 to
mode control 42. Mode control 42 will then set the RISC bit
60 in register 38 and load the instruction pointer (not shown)
with the address of the emulation routine in memory. The
RISC emulation routine will execute, and perform the opera
tion that the very complex CISC instruction would have
performed. The last instruction of the emulation routine will
be a special extended RISC instruction causing the mode
register 38 to be reset to CISC mode and the instruction
pointer updated to point to the following CISC instruction.
The CISC program will continue with the following instruc
tion unaware that the instruction was emulated with RISC
instructions.

Switching from CISC mode to RISC mode may also
occur when an interrupt or exception is signaled to the mode
logic 42. Events such as divide-by-zero and adder overflows
may cause the mode switch to occur. If paging is provided
with a translation-lookaside buffer (TLB) on the CPU die,
then TLB misses or page faults can also cause the mode
switch, allowing the TLB to be loaded only by the RISC
mode.
Thus both CISC and RISC instructions will be processed

during execution of the same program, and the need exists
for the pipeline to efficiently execute both RISC and CISC
instructions. Rapid re-configuration of the pipeline between
a pipeline optimized for RISC instructions and one opti
mized for CISC instructions is possible with the mux 46 and
mode register 38.

DYNAMIC PIPELINE RECONFIGURATION

In the simplified embodiment, the pipeline is static or
fixed depending upon the instruction set currently being
decoded. A mode register is provided to indicate whether
RISC or CISC instructions are being decoded and executed.
The mode register enables path "J" of latency diagram FIG.
3 when RISC mode is indicated, and the instruction decode
unit sends execute instructions directly to the execute unit
while load/store operations are sent to the address generate
unit. However, if the mode register indicates that the CISC
instruction set is being decoded, then path 'J' is disabled
and all instructions are sent to the address generate unit first.
The simplified embodiment has the advantage of a simpler
decode unit, with fewer critical timing paths, since the
pipeline is only statically re-configured, rather than dynami
cally on an instruction-by-instruction basis.

However, dynamic configuration is also contemplated, as
shown by FIG. 5. CISC instruction decode logic 32 will
distinguish between compound or read-execute instructions
that require the full CISC pipeline of D-A-C-E and simple
instructions that do not require the full pipeline. For
example, a simple execute CISC instruction would be
detected by CISC decode unit 32 and would signal to mode
control 42 over line 40 to re-configure the pipeline for a
simple execute. Mode control 42 would then directly drive
line 60A to directly connect the decode unit 32 to the execute
unit 52 via mux 46. Line 60A would no longer indicate
merely RISC/CISC mode, but would control the reconfigu
ration of the temporal location of the execute unit. Since line
60A would be driven directly by the mode logic 42, the
pipeline could be reconfigured on a cycle-by-cycle basis for
each instruction, although re-configuration may have to wait
for busy functional units to finish. The mode & pipeline
control logic 42 would have to be more complex, checking
for other instructions in the pipeline before re-arranging the
pipeline. The decode logic would also have to be able to

5,542,059
11

detect simple vs. compound instructions, and be able to
rapidly signal the pipeline logic 42. Timing would be
critical.

FIXED PIPELINE WITH RE-LOCATABLE
EXECUTE HARDWARE

In order to simplify pipeline control, only one instruction
can complete at a time. The same minimum number of
clocks are required for all instructions in the pipeline, even
if the execute stage is moved early in the pipeline. Addi
tional "dummy' stages are added as needed after the results
are calculated to fill in the minimum number of clocks. The
stage after the cache is re-named "M', for memory write
back, and all instructions flow through a 5-clock minimum
flow:

D A C M W.

The execute hardware, including the ALU, can operate
during the M stage, which would emulate the CISC pipeline.
A compound CISC read-execute instruction would need the
execute hardware in the M stage:

Rd-Ex D A C Me W

The execute hardware could also move up two clocks to
the A stage, emulating the simple RISC-execute pipeline, D
- E. However, stages C, M, and W will still occur to meet the
minimum number of clocks for a flow:

D Ale C M W.

The execute hardware could also move ahead by one
clock, to perform the execute operation during the C stage.
Although the operand cache fetch would not be performed
by a simple execute, the C stage is used as a "place holder'
to add in a clock period. This case occurs for a simple
execute following a load having a data interlock:

Load y D A C M
Add y D A Cle

W
M W

Note that the load instruction does not need the execute
hardware; if it did, for example to set condition codes, it
could occur during the A, C, or M stages. If it occurred
during the M stage, then the Add instruction would have to
delay the execute to its M stage because the execute hard
ware is busy during the Add's C stage:

Load y D A C Mie
Add y D A C

W
Mie W

Thus the execute hardware can be relocated within the
fixed pipeline. All instructions follow the fixed pipeline of D
- A - C - M - W. Functional units in these pipestages
decode, address generate, operand cache, memory write
back, and register write-back, never are relocated. They can
only occur in this fixed order. However, the execute hard
ware is no longer a fixed pipestage. It can be re-located to
occur, or perform an ALU or algebraic execute operation,
during any of pipestages A, C, or M.

Although all instructions now require a minimum number
of clocks, the results from the instructions are available
earlier. Thus subsequent instructions do not have to stall for

O

15

20

25

30

35

40

45

50

55

60

65

12
data interlocks, speeding up processing. In addition, since
the execute hardware is no longer a fixed pipestage, execute
operations could occur in any order, as long as the data is
available (no data interlocks). Thus the execute for a sub
sequent instruction could precede the execute for a previous
instruction:

Load y D A C Mile
Add Z D Afe C

W
M. W

Although this is possible, the preferred embodiment does
not allow of out-of-order execute because of the added
pipeline complexity.

FIG. 6 shows a block diagram of the preferred embodi
ment. The figure is similar to FIGS. 4 and 5 and uses the
same reference numbers when referring to similar elements.
FIG. 6 has an additional memory write-back stage 51 that
receives operands from operand cache 48. Execute hardware
or unit 52 can be relocated within the pipeline by means of
mux 46, which is controlled by signals 60A driven from
mode and pipeline control logic 42. Mux 46 can receive
inputs from 3 stages-decode 32 or 36, address generate 44,
and operand cache 48. Since instructions are pipelined, mux
46 must receive operands and the decoded instruction and
control information from the previous stage in the pipeline
in order to have a full clock period to perform the operation.
Thus when the execute is located in the address generate
stage, mux 46 sends the decoded instruction and operands
over bus 58 from the instruction decoder 32, 36. When
execute occurs during the operand cache stage, bus 62
transmits the needed instruction information from the pre
vious pipestage, the address generate stage 44. Finally, when
execute occurs during the memory write-back pipestage,
mux 46 receives operands over bus 63 from the operand
cache pipestage. All RISC instructions are transmitted over
bus 56 from the decode stage 36 to the address generate
stage 44, even if the instruction is a simple execute. Thus all
instructions travel through the full pipeline of decode 32 or
36, address generate 44, operand cache 48, memory write
back 51, and register write-back (not shown). Instructions
may use the execute unit 52 during any of the 3 pipestages
of address generate 44, operand cache 48, or memory
write-back 51.

ALTERNATE EMBODIMENTS

The fixed pipeline with the execution hardware relocat
able to the A, C, or M stages is the preferred embodiment
because of the simplicity of having all instructions pass
through the same pipestages. This embodiment retains the
advantage of obtaining the results of a simple execute early
in the pipeline, which eliminates or reduces data interlocks
with Subsequent instructions. Branch latencies are also
improved since condition codes for simple execute instruc
tions are determined earlier in the pipeline, usually when the
execute operation is performed.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

I claim:
1. A CPU having a pipeline for processing a plurality of

5,542,059
13

instructions from two separate instruction sets, said pipeline
comprising:

first instruction decode means for decoding instructions
from said first instruction set, said first decode means
providing decoded instructions to said plurality of
functional units, said first instruction set having a first
encoding of opcodes to instructions;

second instruction decode means for decoding instruc
tions from said second instruction set, said second
instruction set having a second encoding of opcodes to
instructions, said second encoding of opcodes to
instructions being separate and independent from said
first encoding of optodes to instructions, said second
decode means providing decoded instructions to said
plurality of functional units;

enable means for enabling either said first instruction
decode means or said second instruction decode means,
said enable means coupled to said first instruction
diccode means and coupled to said second instruction
decode means,

a plurality of functional units for processing said plurality
of instructions;

a relocatable functional unit in said plurality of functional
units, said relocatable functional unit for executing
nativc instructions from both of said two separate
instruction sets;

means for indicating which one of said two separate
instruction sets is being processed by said plurality of
functional units; and

means for rc.locating, responsive to said indicating means,
said relocating means for temporally relocating said
relocatable functional unit in time and sequence order
to other functional units in said plurality of functional
units.

2. The CPU of claim 1 wherein said two separate instruc
tion sets comprise a first and a second instruction set, and
whercin said relocatable functional unit is relocated by said
relocating means when instructions from said first instruc
tion set are being proccssed by said plurality of functional
units.

3. The CPU of claim 2 wherein said relocatable functional
unit is a functional unit for executing algebraic operations
relocated by said relocating means when instructions from
said first instruction set are being processed by said plurality
of functional units.

4. The CPU of claim 2 whercin said first instruction
decode means includes means for detecting a simple execute
instruction and wherein a functional unit for executing
algebraic operations is relocated by said relocating means
when said simple execute instruction is detected by said first
instruction decode means.

5. A CPU pipeline for executing a complex instruction set
computer CISC instruction set and a reduced instruction set
computer RISC instruction set, said pipeline comprising:
CISC decode means for decoding said CISC instruction

Sct,
RISC decode means for decoding said RISC instruction

Sel,
enable means for enabling either said RISC decode means

or said CISC decode means, said enable means coupled
to said RISC decode means and coupled to said CISC
decode means:

a plurality of functional units, each functional unit in said
plurality of functional units for executing both native
RISC and native CISC instructions, said plurality of

5

O

15

20

25

30

35

40

45

50

55

60

65

14
functional units receiving decoded insauctions from
said CISC decode means and said RISC decode means,
said plurality of functional units arranged in a sequence
of functional units,

a relocatable functional unit in said plurality of functional
units;

means for indicating if said RISC instruction set or said
CISC instruction set is being processed by said plural
ity of functional units;

means for relocating, responsive to said means for indi
cating, said relocating means for relocating temporally
said relocatable functional unit in time and sequence to
other functional units in said plurality of functional
units if said means for indicating indicates that said
RISC instruction set is being processed.

6. The pipeline of claim 5 wherein said RISC instruction
set has an encoding of opcodes to instructions separate and
independent from the encoding of said CISC instruction set.

7. The pipeline of claim 6 wherein said relocatable
functional unit is relocated relative to other functional units
by said means for relocation when said enable means
enables said RISC decode means.

8. The pipeline of claim 7 wherein said relocatable
functional unit relocated by said means for relocation is a
functional unit for execution of algebraic and logic instruc
tions.

9. The pipeline of claim 8 wherein said functional unit for
execution is relocated by said means for relocation to an
earlier position in said sequence of functional units in said
pipeline.

10. The pipeline of claim 9 wherein said functional unit
for execution is relocated by said means for relocation to
immediately after said RISC decode means, said functional
unit for execution receiving decoded RISC execute instruc
tions from said RISC decode means when said means for
indicating indicates that said RISC instruction set is being
processed.

11. A CPU pipeline for executing a complex instruction
set computer CISC instruction set and a reduced instruction
set computer RISC instruction set, said pipeline comprising:
CISC decode means for decoding said CISC instruction

Sct,
RISC decode means for decoding said RISC instruction

Set,
enable means for enabling either said RISC decode means

or said CISC decode means, said enable means coupled
to said RISC decode means and coupled to said CISC
decode means;

a plurality of functional units, said plurality of functional
units receiving decoded instructions from said CISC
decode means and said RISC decode means, said
plurality of functional units arranged in a sequence of
functional units;

a relocatable functional unit in said plurality of functional
units, said relocatable functional unit in said plurality
of functional units for executing both native RISC and
native CISC instructions,

means for indicating if said RISC instruction set or said
CISC instruction set is being processed by said plural
ity of functional units;

means for relocating, responsive to said means for indi
cating, said relocating means for relocating temporally
said relocatable functional unit in time and sequence to
other functional units in said plurality of functional
units if said means for indicating indicates that said
RISC instruction set is being processed.

5,542,059
15

12. The pipeline of claim 11 wherein said RISC instruc
tion set has an encoding of opcodes to instructions separate
and independent from the encoding of said CISC instruction
Set.

13. The pipeline of claim 11 wherein said relocatable
functional unit is relocated relative to other functional units
by said means for relocation when said enable means
enables said RISC decode means.

14. The pipeline of claim 13 wherein said relocatable
functional unit relocated by said means for relocation is a
functional unit for execution of algebraic and logic instruc
tions.

10

16
15. The pipeline of claim 14 wherein said functional unit

for execution is relocated by said means for relocation to an
earlier position in said sequence of functional units in said
pipeline.

16. The pipeline of claim 15 wherein said functional unit
for execution is relocated by said means for relocation to
immediately after said RISC decode means, said functional
unit for execution receiving decoded RISC execute instruc
tions from said RISC decode means when said means for
indicating indicates that said RISC instruction set is being
processed.

