
|||||||||||
US005551 001A

United States Patent 19 11 Patent Number: 5,551,001
Cohen et al. 45) Date of Patent: Aug. 27, 1996

(54) MASTER-SLAVE CACHE SYSTEM FOR OTHER PUBLICATIONS
SSSION AND DATA CACHE Blasco et al., “Inspection Cache Buffer With Program-Flow

Control'. Originally Published As U.S. Pat. No. 5,131,088.
75) Inventors: Earl T. Cohen, Fremont; Russell W.

Tilleman, Palo Alto, Jay C. Pattin,
Redwood City; James S. Blomgren,
San Jose, all of Calif.

Primary Examiner-Tod R. Swann
Assistant Examiner-James Peikari
Attorney, Agent, or Firm-Stuart T. Auvinen
57) ABSTRACT

(73) Assignee: openial Technology, Inc., San A master-slave cache system has a large, set-associative
master cache, and two smaller direct-mapped slave caches,
a slave instruction cache for supplying instructions to an

21 Appl. No.: 267,658 instruction pipeline of a processor, and a slave data cache for
--. supplying data operands to an execution pipeline of the

(22 Filed: Jun. 29, 1994 processor. The master cache and the slave caches are tightly
51 int. Cl. .. G06F 12/08 coupled to each other. This tight coupling allows the master 51 6 led h other. This tigh ling all h
52 U.S. C. 395/449; 395/450; 395/455; cache to perform most cache management operations for the

395/457; 395/459; 395/460; 395/462; 395/463; slave caches, freeing the slave caches to supply a high
395/467; 395/471; 395/473; 395/469 bandwidth of instructions and operands to the processor's

58) Field of Search 395,450,455, pipelines. The master cache contains tags that include valid
395/457, 459, 460, 462, 463,467, 471, bits for each slave, allowing the master cache to determine

473, 469, 449 if a line is present and valid in either of the slave caches
without interrupting the slave caches. The master cache

(56 References Cited performs all search operations required by external snoop
ing, cache invalidation, cache data Zeroing instructions, and

U.S. PATENT DOCUMENTS store-to-instruction-stream detection. The master cache
interrupts the slave caches only when the search reveals that

4,467,414 8/1984 Akagi et al. 395/250 a line is valid in a slave cache, the master cache causing the
4,707,784 11/1987 Ryan et al. " E slave cache to invalidate the line. A store queue is shared 5,019,971 5/1991 Lefsky et al. 395/250
5,023,776 6/1991 Gregor 395/449 between the master cache and the slave data cache. Store
5,136,700 8/1992 Thacker 395,449 data is written from the store queue directly in to both the
5, 155,824 10/1992 Edenfield et al. 395/470 slave data cache and the master cache, eliminating the need
5,155,828. 10/1992 Le Fetra et al. 395/449 for the slave data cache to write data through to the master
5,155,831 10/1992 Emma et al. 395/448 cache. The master-slave cache system also eliminates the
5,170,476 12/1992 Laakso et al. 395/467 need for a second set of address tags for snooping and
5,179,679 1/1993 Shoemaker 395/445 coherency operations. The master cache can be large and
3. y E. al. - : designed for a low miss rate, while the slave caches are

y s 30 C

5,212,781 5/1993 Shah 395/449 designed for the high speed required by the processor's
5,249.282 9/1993 Segers 395,449 pipelines.
5,276.848 1/1994 Gallagher et al. 395.1448
5,283,890 2/1994 Petolino et al. 395/449 16 Claims, 11 Drawing Sheets

U.S. Patent Aug. 27, 1996 Sheet 1 of 11 5,551,001

Delay (ns)

Miss Rate

12 ACCeSS Time

7.5 nS

Cache Size

72

60 62-N 64-N 66 68 70

Addr Tag vaMod Exc S Val SO Val
6OD

5,551,001 Sheet 2 of 11 Aug. 27, 1996 U.S. Patent

L

N:

G?.

Áuouue VN u?eW

5,551,001 Sheet 3 of 11 Aug. 27, 1996 U.S. Patent

3?OeO J??SeW

|

Z9

5,551,001 Sheet 4 of 11 Aug. 27, 1996 U.S. Patent

G -61-I

U.S. Patent Aug. 27, 1996 Sheet 5 of 11 5,551,001

Start invalidate
Cmd

Read Master
Tag Indexed
by inval. Cmd

Does
Tag Addr Match

inval Addr 2 No ->C Stop D

Yes

ls Send invalidate
S Valid in and Index to
master = 1 Slave Instr.

2 Cache

Slave instr.
Cache

Clears Valid Send invalidate
and index to
Slave Data
Cache

ls
SD Valid in
master = 1

2

Slave Data
Cache

Clears Valid Clear Valid
in Master

U.S. Patent Aug. 27, 1996 Sheet 6 of 11 5,551,001

Start Ext Snoop

Read Master
Tag Indexed
by Snoop Addr

Does
Tag Addr Match
Snoop Addr? No ->C Stop)

Yes

s Send invalidate
SWalid in and Index to
master E 1 Slave Instr.

2 Cache

Slave instr.
Cache

Clears Walid Send Invalidate
and Index to
Slave Data
Cache

ls
SD Valid in
master = 1

p

Slave Data
Cache

Clears Valid Clear Walid
in Master Fig. 7

U.S. Patent Aug. 27, 1996 Sheet 7 of 11 5,551,001

Start Flush Cmd

Read Master
Tag Indexed
by Flush Cmd

Does
Tag Addr Match
Flush Addr 2 No C stop D

Yes

ls
MOD bit in
master F 1

2

Write Data
back to

external Mem

Clear MOD
bit in Master

Fig. 8

U.S. Patent Aug. 27, 1996 sheets of Il 5,551,001

Data Cache Blk
Zeroing Instr (dcbz)

Read Tag indexed
by dobz Addr.

Does
Addr Tag Match

dcbz Addr
?

Fig. 9

Allocate line in
No master for

docbZ addr

Yes

S or SD Valid
Set in Master No

? Set
Sub-Block

Yes Cntr = 0

Send Inval. 37 Write 0 to
to Slave Sub-Block

39 nCr.
Slave clears Sub-Block
its valid bit Cntr

Master
ClearS Sl
and 'SD bits

ls
Sub-Block Cntr=
i Sub-BlockS/line

U.S. Patent Aug. 27, 1996 Sheet 9 of 11 5,551,001

Read or Write to
Slave Data Cache

Slave Sends
Miss to
Master

Send Invalidate
and Index to
Slave instr.

Cache

Slave instr.
Cache

Clears Valid

Master
clears S
Valid bit

Master Sets
SD Valid

Master sends
data to slave
Data cache

Fig. 10

5,551,001 Sheet 10 of 11 Aug. 27, 1996 U.S. Patent

??OeO J??SeW
is us u a m as m as a su u u a u sun a u as m an un is us un

5,551,001 Sheet 11 of 11 Aug. 27, 1996 U.S. Patent

EdÅL
O-HNI ©vy L |WEM8

SE/WE
9 | -61-I |-

£ OOSS\/- LES Z OOSS\/-_LES ? OOSS\/- LES

0 OOSS\/-_LES

5,551,001
1.

MASTER-SLAVE CACHE SYSTEM FOR
INSTRUCTION AND DATA CACHE

MEMORIES

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to cache memory systems, and
more particularly to a masterslave cache system.

BACKGROUND OF THE
INVENTION-DESCRIPTION OF THE

RELATED ART

Memory access delays have not been reduced as quickly
as have logic delays within central processing units (CPU's)
or microprocessors. These logic delays within microproces
sor pipelines have been reduced with new design techniques
such as super-scalar design, where two or more pipelines can
operate in parallel to effectively process two or more instruc
tions in each clock cycle. Reduced instruction set computer
(RISC) systems simplify the pipeline, allowing the clock to
be run at a still higher frequency. Thus newer processors
require a higher bandwidth for both instructions and data
operands to satisfy multiple pipelines operating at higher
frequencies.
A memory hierarchy is often set up, in which a few small

registers lie within the microprocessor core. A small level-1
cache memory is placed on the microprocessor die, and a
level-2 cache memory on the system board, with dynamic
RAM (DRAM) comprising the large main memory. Main
taining coherency between each of these levels in the
memory hierarchy can be difficult and can slow down the
cache memories in particular. Prefetching of instructions can
also increase the complexity of the cache and slow down the
cache.

The trend in recent years has been to put a level-1 cache
on the microprocessor die. As the processor pipeline
becomes faster, the level-1 cache size has been increased to
increase the hit rate of the level-1 cache. A high hit rate is
necessary because the miss penalty is high, requiring that a
slower off-chip level-2 cache or main memory be accessed.
Often the level-1 cache is made multi-way set-associative to
improve its hit rate. This has led to larger and more complex
on-chip caches. However, the larger and more complex the
cache becomes, the more difficult it becomes to make the
cache fast enough to meet the bandwidth of the processor
pipelines, as shown in FIG.1. As cache size is increased, the
miss rate 12 decreases. However, the raw access time 10 to
retrieve data from the cache increases with the cache size
and associativity because of the larger delays from the
longer signal-line traces and capacitive delays from addi
tional memory cells. For a pipeline operating at 66 Mhz, and
requiring one instruction and one data operand per cycle,
data must be accessed from the cache every 7.5 nanoseconds
(ns). However, this 7.5ns access time 14 sets an upper limit
16 of 2K for the cache size for the example of FIG. 1. The
2K cache will therefore have a higher miss rate 18 due to the
need for the fast access time.
A "Harvard' architecture is often needed to meet the

bandwidth required by the two main pipelines-one for
instructions and a second pipeline for data operands. These
pipelines may be connected together within the processor
core or they may be separate. For example, the instruction
pipeline may decode instructions and feed an execution
pipeline with decoded instructions, while the data pipeline
also sends data operands to the execution pipeline. Alter

5

O

15

20

25

30

35

40

45

50

55

65

2
nately, a branch-instruction pipeline may be used to process
branch instructions only, and would not feed decoded branch
instructions to the execution pipeline.
The Harvard architecture of FIG.2 shows a main memory

34 supplying a processor core 20. Two separate caches are
provided in the Harvard architecture, one cache 15 to supply
the instruction pipeline 22, with a second cache 17 to supply
data operands to the execution pipeline 24. However, this
architecture is not flexible because fixed caches must be
provided for data and instructions rather than having both
share the same cache. A single, unified cache is more flexible
because the percentage of the cache apportioned for instruc
tions or data can vary over time, depending on the require
ments of programs being executed. Providing two separate
sets of address and data buses and pins 13, 11 for connection
to off-chip data and instruction caches would also be expen
sive. If only one set of pins is provided, then both the
instruction cache 15 and the data cache 17 must contend for
the same set of pins which may become a bottleneck. In
addition, coherency can be a problem, especially when data
operands are stored to the instruction stream. Coherency
requests, or "snoops' must usually be sent to both caches.
Large, complex separate caches, even though smaller than a
unified cache, are often required.

On-chip caches are becoming more of a bottleneck to
processor performance. They need to be larger and more
complex because the off-chip miss penalty is becoming
relatively higher. Processor technology allows for rapid
increases in pipeline speed but off-chip memory access
times have been unable to achieve commensurate speed
increases. However, larger, more complex caches are not as
fast as smaller, simpler caches, and may not be able to match
the processor's pipeline clock rate and maximum band
width.

What is desired is a caching scheme that will provide the
benefits of large on-chip caches with low miss rates, but also
offer the speed advantage of small, simple caches. It is also
desired to provide for complex cache management opera
tions such as prefetching, snooping, and cache coherency
without creating a bottleneck for the processor's pipelines.

SUMMARY OF THE INVENTION

A master-slave caching scheme includes a larger master
cache that provides a low miss rate, and supports all
prefetching and cache coherency operations. The master
cache controls two smaller slave caches, a slave-instruction
cache and a slave-data cache. The master cache includes
valid bits for the slave caches, and will instruct the slave
caches to invalidate a line when a coherency hit is detected
by the master cache. A store to the instruction stream will
cause the master cache to instruct the slave instruction cache
to invalidate the corresponding line in the slave-instruction
cache.

The instruction and data slave caches are kept small and
simple so that they can match the bandwidth required by
their respective pipelines. The master cache is tightly
coupled to the slave caches which results in a low miss
penalty for a slave cache miss that hits in the master cache.
Thus the slave caches provide the high bandwidth required
by the pipelines, while the master cache provides a low miss
rate with a large size and associative organization.
The master-slave cache system is for transferring data

between a main memory and a central processing unit
(CPU). The CPU has an instruction pipeline and an execu
tion pipeline, while the main memory stores a plurality of

5,551,001
3

data operands and a plurality of instructions. The instruction
pipeline decodes instructions at a first rate, while the execu
tion pipeline is executing at a second rate. The system
comprises a master cache for storing data operands and
instructions. The master cache is coupled to the main
memory and stores a first subset of the plurality of data
operands and a second subset of the plurality of instructions
stored in the main memory.
A slave instruction cache is coupled to the master cache

and is coupled to the instruction pipeline. It stores a third
subset of the instructions stored in the master cache, the third
subset being a subset of the second subset. The slave
instruction cache is capable of transferring instructions to
the instruction pipeline at the first rate.
A slave data cache is coupled to the master cache and is

coupled to the execution pipeline. It stores a fourth subset of
the data operands in the master cache, the fourth subset
being a subset of the first subset. The slave data cache is
capable of transferring data operands to the execution pipe
line at the second rate.
The slave instruction cache matches the instruction trans

ferrate required by the instruction pipeline, while the slave
data cache matches the data-operand transfer rate required
by the execution pipeline. The overall miss rate of the
master-slave cache system is improved by the larger capac
ity of the master cache, while the processor's bandwidth
requirements are satisfied by the slave caches.

In another aspect of the invention, an invalidation means
coupled to the master cache invalidates data words in both
the master cache and the slave caches. The master cache
contains master tags that include valid bits for the slaves.
Thus all invalidation, snoop, and cache management opera
tions are handled by the master cache, which signals to the
slave caches to invalidate a line only after a matching line
has been detected as being present in the slave cache. Thus
the searching that is required by cache management opera
tions is performed by the master cache for the slave caches,
freeing the slave caches of the added complexity and band
width loss.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph of the relationship between cache size,
miss rate, and access time.

FIG. 2 is a diagram of a prior-art Harvard-architecture
cache.

FIG. 3 illustrates a microprocessor employing the master
slave cache.

FIG. 4 is a diagram of the tags stored in the master-slave
cache.

FIG. 5 is a is a flowchart of the basic sequence of
operations when one of the pipelines accesses data or an
instruction from one of the slave caches.

FIG. 6 is a flowchart for a simple invalidate instruction.
FIG. 7 is a flowchart of an external snoop operation.
FIG. 8 is a flowchart for a cache flush operation.
FIG. 9 is a flowchart for a data-cache-block-zero opera

tion.
FIG. 10 is a flowchart for a store-to-instruction-stream

operation.
FIG. 11 shows the store queue within the microprocessor

die.
FIG. 12 is a set-associate master cache with a common

LRU field.

10

15

20

30

35

40

45

50

55

60

65

4
FIG. 13 is a diagram of a store queue tag.

DETALED DESCRIPTION

The present invention relates to an improvement in cache
organization. The following description is presented to
enable one of ordinary skill in the art to make and use the
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

MASTER-SLAVE CACHE ARRANGEMENT

A cache on the same substrate or die with a micropro
cessor can supply the maximum bandwidth of the proces
sor's pipelines while being large enough to have a low miss
rate. The cache is arranged as a large master cache which
controls two smaller slave caches, one slave instruction
cache for supplying the instruction pipeline with instruc
tions, and a second slave data cache for supplying data
operands to the execution pipeline.

FIG. 3 illustrates a microprocessor substrate or die 20
containing the master-slave cache. Instruction pipeline 22 is
supplied with instructions by slave instruction cache 26. The
instruction pipeline 22 is clocked by a processor or pipeline
clock. The pipeline clock controls the transfer of instructions
from one stage of the pipeline to the next. One or more
instruction words must be provided for each processor clock
period. Although the instruction pipeline 22 may stall, or
occasionally require more than one processor clock period
for an instruction word, the maximum or full bandwidth
when no stalls occur is n instruction words per processor
clock period, where n is the level of scalarity. Thus the slave
instruction cache 26 must supply the instruction pipeline 22
with at least n instruction words per processor clock period
if the full bandwidth of the processor is to be achieved. A
super-scalar processor capable of executing 2 instructions
per clock period would have n=2.
A simplified embodiment is described having a single

instruction pipeline and a single execution pipeline. How
ever, most modern processors employ super-scalar designs.
Super-scalar CPU's have several pipelines. A three-way
super-scalar embodiment would require three instructions
for each clock period to supply three pipelines. If two of the
pipelines are execution pipelines capable of executing
memory operations, then two data operands may also need
to be supplied for each clock period. The teachings of the
detailed description will be restricted to a simple CPU
having a single execution pipeline and a single instruction
pipeline. These teachings may however be extended to
multiple pipelines by persons skilled in the art.
The execution pipeline 24 is supplied with operands from

slave data cache 28. In one embodiment of the invention
execution pipeline 24 may also store data operands into
slave data cache 28; these data operands are then written
through to master cache 30. Master cache 30 provides all the
cache management necessary for itself and the slave caches
26, 28. Slave caches 26, 28 need only have a valid bit with
each tag which is set and cleared by the master cache 30.
Prefetching, handling external snoop requests, coherency
operations, and cache flushes are all accomplished by the

5,551,001
5

master cache. Thus the slave caches 26, 28 may be kept
simple, allowing for a fast access time and a high bandwidth.
Master cache 30 is significantly larger and more complex
than would be possible if it were to directly supply the
processor's pipelines 22, 24. Directly supplying the pipe
lines in a single processor clock requires a fast access time.
Slave caches 26, 28 are small, fast and simple, and are
preferably implemented as RAM-based, direct-mapped
caches, while master cache 30 is preferably RAM-based and
set-associative. Master cache 30 preferably has four or more
times the capacity of both the slave caches 26, 28. Master
cache 30 may require multiple processor clock periods to
access its contents, while the slave caches 26, 28 are small
enough to supply the required data operand and instruction
words each processor clock period. An additional level-2
cache 32 may be provided on the system board off the
microprocessor die 20, or the level-2 cache 32 may be
omitted, and misses from the master cache passed on to the
main memory 34 on the system board. The high-bandwidth
benefit of the Harvard architecture is obtained because the
slave instruction cache 26 and slave data cache 28 can
supply both pipelines 22, 24 as did the split instruction and
data caches 15, 17 of the Harvard architecture of FIG. 2.
However, two sets of address and data buses and pins 13, 11
are not required. If the prior-art Harvard architecture is used
with only a single set of pins, the pins must be multiplexed
between the two caches 15, 17. The two caches 15, 17 must
be made large so that the miss rate is small, otherwise the
two caches 15, 17 will be contending for the multiplexed
pins frequently, causing one cache to have to wait. However,
the larger cache sizes reduces the clock rate and bandwidth
that can be supplied to the processor core. The prior-art
Harvard architecture is thus stuck between the trade-off of
larger size and lower bandwidth, or smaller cache size and
higher bandwidth but pin contention or die cost.

In the invention, master cache 30 provides more func
tionality than is the case by merely integrating an additional
level of caching on the microprocessor die 20. Master cache
30 is tightly coupled to slave caches 26, 28 and can relieve
the slave caches 26, 28 from burdensome cache management
operations such as coherency and snooping. In the Harvard
architecture of FIG. 2, coherency between instruction cache
15 and data cache 17 is difficult and may require that clock
cycles be taken that would otherwise be used to supply the
pipelines 22, 24. In the invention, the master cache 30
absorbs these coherency requests, freeing the slave caches to
supply the processor's pipelines.

Additionally, the slave caches 26, 28 may be physically
located in close proximity to the pipelines 22, 24. Thus slave
instruction cache 26 is located near to the instruction pipe
line 22, while the slave data cache 28 is located near the
execution pipeline 24. The larger master cache 30 may then
be located at a greater distance from the pipelines 22, 24 and
the core CPU logic. This simplifies floor-planning and
layout of the microprocessor die 20, and results in faster
access times for transferring instructions and data from the
slave caches 26, 28 to the pipelines 22, 24. In prior-art
systems, the large cache sizes required that any cache be
located away from the CPU core and the pipelines.
Only a single set of address and data busses are needed for

communicating with external caches and memories. Pins 31
connect the master cache 30 with the external level-2 cache
32, whereas on some prior-art systems a single set of pins
had to be multiplexed. Not having to multiplex the pins
reduces contention and complexity. A larger, wider data path
may be used between the master cache 30 and the slave
caches 26, 28 since no connection is necessary for the

O

15

20

25

30

35

40

45

50

55

65

6
slave-master busses 33, 35 to the external pins of the
microprocessor die 20. Slave-master busses 33, 35 may be
each separately optimized for the bandwidth required by the
particular slave cache and pipeline.

Since the bulk of the capacity of the cache lies in the
master cache 30 rather than the slave caches 26, 28, the
benefits of the unified cache result. A higher hit rate is
achieved than if the master cache were split into two
separate half-size caches, and the master cache provides
flexibility and adaptability by being able to place either
instruction or data words in any line in the cache, allowing
the portion of the cache allocated to either data or instruc
tions to vary as needed by the programs currently executing
on the processor. The master cache may be implemented in
slower, denser, and lower-power memory than the slave
caches, saving power, space and cost while maintaining a
high hit rate.

MASTER TAGS INCLUDE SLAVE VALID BITS

FIG. 4 shows the tags stored with each line in the
master-slave cache. A master tag 72 is stored for each line in
the master cache 30. An address tag 60 stores a portion of the
address of the data stored in the line. The data fields of the
line are not shown but are well-known in the art and can take
on many arrangements. The data stored may be either data
operands, instructions, or translation or other system infor
mation. A master valid bit 62 is used to indicate if the line
in the master cache 30 contains valid data. A modified bit 64
is used when a write-back policy is desired and indicates that
the processor has written data into the cache line. Before the
modified line is purged from the cache and replaced, the line
must be copied or written back to external memory, or at
least loaded into a temporary write-back buffer, before new
data and a new tag address can be loaded into the cache line.

Exclusive bit 66 allows for more complex cache-coher
ency schemes. If exclusive bit 66 is set, it indicates that no
other caches in the system may have a copy of that particular
line. The exclusive bit is particularly useful in multi-pro
cessor systems and can be used to help implement the MESI
(modified, exclusive, shared, invalid) standard for cache
coherency.

Master tag 72 also contains a copy of the valid bits in the
slave caches 26, 28. SI Valid bit 68 is a copy of the slave
instruction cache's valid bit for that same line, while SD
valid bit 70 is a copy of the slave data cache's valid bit. Thus
the master cache has information on the contents of the slave
caches.
A particular line in the master cache is selected by

breaking an address into a tag portion and an index portion.
The index portion selects a subset of the lines in the cache
while the tag portion is stored in the address tag field 60 of
the master tag 72. This is a well-known technique in the art.
Since the slave caches 26, 28 are smaller, having fewer
cache lines, several lines in the master cache will correspond
to each line in the slave cache. Since the master cache is
set-associative, the several lines corresponding, or mapping
into a single line in the slave caches may all have the same
index portion of the address in the master cache. The number
of address bits in the master and slave tags will be identical
if the master cache is designed so that each column has a size
equal to the size of the slave cache. An 8-way associative
master cache that has 2K bytes in each column would have
a total size of 16K. If the slave caches were chosen to be 2K
bytes, then the address tags in the slave caches could have
the same number of bits as the tags in the master.

7
In a preferred embodiment, the master cache is set

associative, as shown in FIG. 12. A least-recently used
algorithm is used to determine which set-associate, 80A,
80B, 80C, 80Z to replace when a new line is allocated into
the master cache and all sets store valid data. Additional
least-recently-used (LRU) bits 82 are stored in a common
tag field which contains LRU information for all set-asso
ciate lines having the same index. These LRU bits 82 are
stored with each set to keep track of which set-associate in
the set was used least recently. Normally, this least-recently
used set-associate would be replaced. However, if this
least-recently-used set-associate has a slave valid bit set,
indicating that the line is also present in a slave cache, then
this line will not be replaced. Instead, the 2nd least-recently
used set-associate will be replaced, leaving the LRU set
associate in the cache.
Thus when the LRU bits are consulted to select which

set-associate and line should be replaced to make room for
a new line, the slave cache valid bits 68A, 68B, 68C, 68Z,
70A, 70B, 70C, 70Z, are also consulted. Any line having a
slave cache valid bit set would not be replaced, even if it is
the least-recently used line. The slave cache lines are always
kept in the master cache in this manner. A line must first be
purged from the slave cache before it can be a candidate for
replacement in the master cache.

Another approach for line replacement is to force the
set-associates having a slave valid bits set to be the most
recently-used set-associates. The LRU field may consist of
subfields, one for each set-associate, making a stack. When
a set-associate is referenced, it is placed on the top of the
stack as the most-recently used, while the others are shifted
down the stack. The set-associate on the bottom of the stack
is the least-recently used and the first to be replaced. Any
set-associates having a slave valid bit set would be placed on
the top of the stack and could not be shifted out of their
most-recently-used (MRU) positions except by another set
associate having the other slave valid bit set. Thus the
set-associates having the slave valid bit set would always be
kept MRU, or next-MRU.

Data slave tag 74 of FIG. 4 also includes an address tag
60D, which may contain more address bits than the address
tag 60 in the master cache because a smaller index width
may be needed to access the fewer lines in the slave data
cache. A single valid bit, the SD valid bit 68D, is needed for
each set-associate to indicate if the line is valid in the slave
data cache.

Instruction slave tag 76 includes an address tag 60I, which
may contain more address bits than the address tag 60 in the
master cache because a smaller index width may be needed
to access the fewer lines in the slave cache. A valid bit, the
SI valid bit 68I, is needed to indicate if the line is valid in
the slave instruction cache.
Thus the master cache contains three valid bits: the master

valid bit 62 which indicates if the line in the master cache is
valid, and the SI valid bit 68 for the slave instruction cache
and the SD valid bit 70 for the slave data cache. The master
cache always contains a copy of any lines in the slave
caches; it is not permitted for the slave caches to have lines
which are not present in the master cache. By also having a
copy of the slave cache's valid bits, the master can perform
complex coherency operations such as snoops, invalida
tions, and Zeroing, required by many modern architectures,
without needlessly disturbing the slave caches.
A zeroing operation causes binary zeros to be written to

all data locations in a line. For a line that has many
sub-blocks of data, the writing of zero to all sub-blocks may

5,551,001

10

15

20

25

30

35

40

45

50

55

60

65

8
take many clock cycles. When the master finds a line that is
present in one of the slave caches, indicated by the copy of
the slave's valid bit in the master tag 72, the master causes
the slave to invalidate that particular line in the slave, even
though an invalidation is not being performed. A simple
invalidation is possible if the slave data cache is write
through, always staying consistent with the master cache.
The master will perform all the searching and data zero

ing, and the master will detect hits in the slave caches, while
the slave caches merely have to invalidate a line when
instructed to do so by the master cache. This is a significant
savings in bandwidth for the slave caches. Since this search
ing is performed only by the master cache, loops may be
coded in software or hardware for searching the contents of
the cache line-by-line. The slave caches are interrupted only
when the search in the master cache detects a line present in
the slave. If an action is required, rather than perform that
action on the line in the slave cache, the master merely
invalidates the line in the slave cache. Some types of cache
coherency operations may not require invalidation. For
example, some snoops may only be checking to see which
lines are present in a cache, but do not request any invali
dations.

SLAVE MISS

FIG. 5 is a flowchart illustrating the basic sequence of
operations when one of the pipelines accesses data or an
instruction from one of the slave caches. The slave cache
receives the address from the pipeline and breaks the address
into an index portion and a tag portion. The index portion is
used to select a single line in the slave cache if the slave
cache is direct-mapped, or a subset of lines if the slave is
set-associative. The address tag field from the selected line
or lines is then compared to the tag portion of the address.
If a match results, and the slave's valid bit indicates that the
line is valid, then the data stored in the matching line in the
slave cache is simply supplied to the pipeline.

However, if none of the address tags match the tag portion
of the address, or if the slave's valid bit indicates that the
matching line is not valid in the slave cache, then the data
must be fetched from the master cache. The slave cache
sends the address to the master cache, which also breaks the
address into a tag portion and an index portion, although
these portions may not be exactly the same as those for the
slave since the larger master cache may require more address
bits for the index portion than the slave cache did. The
master cache uses the tag portion of the address to select a
subset of lines in the master cache (multiple lines if the
master cache is set-associative). Each address tag field 60
from each selected line is then compared with the tag portion
of the address. If a match is found and the master valid bit
62 is set, then the matching line is selected, and the data is
sent to the slave cache and the pipeline. If no match is found,
then the address is sent off-chip to the main memory 34 or
the level-2 cache, which supplies the data, and the data is
placed in one of the lines of the master cache and sent to the
slave cache and pipeline. The SI or SD valid bit is set in the
master to indicate for future accesses that the slave cache
now has a copy of the data in the line.
Data from the master cache is written by the master cache

into the slave cache line selected by the index portion of the
address, and sets the valid bit in the slave cache. The master
cache also writes the tag portion of the address to the slave
cache's address tag, to reflect the new address for the line.
A bypass may be provided to route the data from the master

5,551,001
9

cache directly to the pipeline so that the processor's pipeline
does not have to wait for the data to be first written to the
slave cache. This bypass is not shown in FIG. 5 for the sake
of simplicity.

Additionally, when the master cache supplies data to the
slave cache, the master cache must clear the SI or SD valid
bits 68, 70 stored in the master cache for the old line being
replaced in the slave cache. An extra invalidate cycle to clear
the old SI or SD valid bit in the master cache may be
performed with the old address from the slave cache. During
a miss, the slave caches 26, 28 may send a portion of their
old address tags back to the master cache to allow the master
cache to identify the old line and clear the SI or SD valid bit
for the old line. The master cache may also perform a search
of all the possible locations for the oldSI or SD valid bit and
clear this bit once it is found. This search can occur after the
master has transferred the new data to the slave cache and
has set the new SI or SD valid bit. This search could be
delayed or avoided at the expense of additional interruptions
to the slave cache because of false "hits' from old SI or SD
valid bits that were not cleared.

If the modified bit 64 in the master cache is set, then the
old line in the master must be written back to main memory
34. For simplicity, this is not shown in FIG. 5. The slave
instruction cache never writes data, while the slave data
cache is write-through, so the slave caches never have to
copy a line back to the master cache, reducing complexity of
the slave caches.

INVALIDATION, SNOOPING AND CACHE
COHERENCY

The processor may issue an instruction to invalidate any
lines in a cache that match a certain address or range of
addresses. These invalidate instructions are usually defined
by the architecture and are executed by a program or
operating system to achieve multiprocessing or system secu
rity. In RISC instruction sets, the invalidate instruction may
only provide a single line address for invalidation. A simple
routine may be programmed that loops through a range of
addresses, invalidating one line address at a time. Thus a
specific page of addresses in the cache may be invalidated by
looping through the entire range of possible addresses within
the page.

FIG. 6 is a flowchart for a simple invalidate instruction.
The invalidate instruction is sent to the master cache when
it is encountered by the processor's pipeline. The master
cache breaks the address specified by the invalidate instruc
tion, called the invalidate address, into a tag portion and an
index portion. The index portion is used to select a subset of
lines in the master cache, and each line's tag address is
compared to the tag portion of the address. If a match is not
found, then no further action is required since no line was
found having the invalidate address. Since the slave caches
cannot have a line which is not present in the master, the
slave caches do not have to perform a separate invalidation
lookup. This allows the slave caches to continue supplying
the pipelines with operands and instructions rather than
having to stop and perform an invalidation lookup.

If a line is found having an address tag that matches the
invalidate address, and the master valid bit is set, then the
master cache checks the slave valid bits that are stored in the
master's tag, the SI valid bit 68 and the SD valid bit 70. If
the SI valid bit 68 is set, then the master cache writes the tag
in the slave instruction cache with the valid bit cleared,
invalidating the line. The slave-cache index portion of the

10

5

20

25

30

35

40

45

50

55

60

65

10
address is sent to the slave instruction cache to specify the
particular line to invalidate in the slave instruction cache.
The slave does not need the whole address, including the tag
portion, since the slave is preferably direct-mapped. The
master cache then clears the SI valid bit 68I in the slave
instruction cache, which invalidates the line in the slave
instruction cache.
The master also checks the SD valid bit 70 which is a copy

of the slave data cache's valid bit. If the SD valid bit 70 is
set, then the master cache instructs the slave data cache to
invalidate the line. The slave-cache index portion of the
address is sent to the slave data cache to specify the
particular line to invalidate in the slave data cache. The
master cache then clears the SD valid bit 70D in the slave
data cache, which invalidates the line in the slave data cache.
Finally the master clears all three valid bits in the master, the
master valid bit 62, the SI valid bit 68, and the SD valid bit
70. This invalidates the line in the master cache.

Modern architectures allow for more than one processor
and its associated caches. I/O devices may become bus
masters and may update the main memory or demand
exclusive control over a portion of main memory. A snoop
ing mechanism is required to ensure coherency between the
main memory and a plurality of caches and bus masters. A
snoop request is similar to an invalidation instruction from
the processor's pipeline, but the snoop request originates
from an external device or snoop requester rather than from
the processor's internal pipeline. A cacheable access by
another processor or a bus master to main memory will
cause a snoop request to the master cache. The snoop request
will include a snoop address. A line found in the master
cache corresponding to the snoop address is invalidated by
clearing its valid bits. However, if the snoop request is a
non-exclusive read that does not require invalidation, then
the invalidation step is skipped. The line may have to be
written back to the main memory if the line has been
modified. While snoop requests are common, a snoop hit is
rare. Thus snoop requests will frequently need to access the
tags in the master cache to determine if a snoop hit has
occurred, but invalidations of master cache lines will be
much less frequent. Since the slave caches are only inter
rupted when a snoop hit occurs, and then only when one of
the slave valid bits is set, these snoop requests will not
require much of the slave's bandwidth since the master
handles all of the snoop requests that miss the slave cache
without interrupting the slave caches.

FIG. 7 is a flowchart of an external snoop operation. The
sequence of operations is similar to the sequence for an
invalidation, as discussed for FIG. 6. The main difference is
that the snoop address originates from an external source,
while the invalidate address originates from within the
processor's pipelines. Thus snoop requests may be handled
by the master cache in a manner similar to the invalidation
commands. Thus the design of the master cache is simpli
fied.

More complex invalidate instructions may also be sup
ported by extensions of these teachings. For example, an
instruction that invalidates all lines in a cache having a
specified index is very useful for quickly invalidating the
entire cache by looping through the range of indexes in the
master cache. Rather than compare the tag to the invalidate
address, as shown in FIG. 6, the master cache would select
the first line having the specified index, then check the SI
valid bit and the SD valid bit as shown in FIG. 6, performing
slave-cache line-invalidations if these bits are set. Finally
the master clears all valid bits in the line. The master cache
then selects the next line having the same index, and repeats

5,551,001
11

these operations. The master cache may allow for all lines
having a common index to be read and written in parallel.
For example, an 8way set-associative master cache will have
8 lines to invalidate, requiring 8 lines to be read and written
in parallel using the steps shown in the lower half of FIG. 6.

Because the cache of the present invention includes both
a master cache and slave caches, the master cache can free
the slave caches so they can supply the pipelines with data
and instructions at the high bandwidth required. The master
cache is also freed from having to supply both pipelines
because the slaves only send requests to the master at a rate
equal to the pipeline bandwidth multiplied by the miss rate
of the slave cache. While the slave's miss rate is higher than
for a larger cache, because the slave is designed for speed,
the bandwidth of misses sent to the master is much lower
than if the master had to supply the pipeline directly. For
example, if the slave had a 10% miss rate, and supplied the
pipeline every 7.5 ns cycle, then only 1 out of 10 cycles
would result in a miss that would require access to the
master cache. The master would see a miss from the slave
only every 75 ns. Thus the master cache has many free clock
cycles to perform cache coherency and external snoop
cycles. The master cache can be designed to be two or three
times slower than the slave caches, and still have enough
surplus bandwidth to support snoop requests. If the master
cache had an access time of 15 ns, and had to supply both
slave caches every 75 ns, there would still be 75 ns-15
ins-15 ns=45 ns of unused time for snoops and coherency
requests. Often the snoop must be responded to within a
fixed period of time. In prior-art systems, a second, separate
set of 'snoop' tags was often needed so that snoop requests
could be responded to within a fixed period of time without
slowing the cache by using the cache tags for every snoop
request. This second set of snoop tags is not necessary with
the master-slave cache since the master has surplus band
width as it does not have to directly supply the processor's
pipelines.

CACHE FLUSH

FIG. 8 is a flowchart for a cache flush operation. A cache
flush causes modified data in the cache to be written or
copied back to the main memory or an external level-2
cache. A block of memory may be flushed by programming
a loop that sequences through a range of addresses, per
forming the operations shown in FIG. 8 for each iteration of
the loop.
The flush command will specify a flush address. This

flush address is broken into a tag portion and an index
portion. The index portion selects a set of associates in the
master cache. Each of these associates in the set has its
address tag field compared to the tag portion of the flush
address. Typically these compares can be performed at the
same time because the set-associative master cache has a
comparator for each column of associates, and the total
number of comparators is equal to the number of columns.
If no valid matching tags are found, then the flush command
is completed. However, if a valid matching tag is found, then
the modified bit 64 in the master tag 72 is checked. If
modified bit 64 is set, then the data in the selected line is
written back to the main memory or level-2 cache and the
flush command completes. If the modified bit 64 is not set,
then no write-back operation is needed and the flush com
mand completes. Since the slave caches are write-through,
the master cache always contains an accurate copy of all the
data in the slave caches. Consequently the slave caches are

10

15

20

25

30

35

40

45

50

55

60

65

12
not interrupted by a flush command, saving the slave cache
bandwidth for supplying the processor's pipelines.

Flushing may be combined with invalidation. In a multi
processing system another processor may request that a line
be exclusive for its own use. The address of this line would
be sent to the master cache, which would flush and invali
date this line if it were present in the master cache.

DATA CACHE BLOCK ZEROING

FIG. 9 is a flowchart for a data-cache-block-zero (dcbz)
instruction. This is a RISC instruction in a popular commer
cial RISC instruction set and hence must be supported for
certain commercial RISC processors. The dcbz instruction
writes the value zero ("0x00' in hexadecimal notation) to all
data bytes in a cache line corresponding to a dcbz address
specified in the dcbz instruction. The dcbz instruction is an
unusual but useful instruction. It can be used by the oper
ating system for establishing a block of user memory in a
cache that will later be written to by a user program. Since
the block will be over-written by the program, the existing
data in the block will be discarded and hence does not need
to be fetched from main memory. The dcbz instruction can
save many clock cycles that would be spent fetching the old
data in the block from main memory and then overwriting
that old data. Instead, the data in the memory block is simply
initialized to the value zero in the cache. Once the program
has finished writing new data to the memory block, it will
then be written back to main memory, overwriting the data
existing there. The exclusive bit 66 may be set so than no
other master or external processor reads the stale data from
the main memory, or other coherency mechanisms may be
used.

FIG. 9 shows the sequence of operations supporting the
dcbz instruction with the master-slave cache. As with invali
date and flush instructions, the dcbz instruction is sent to the
master cache and doesn't interfere with the slave caches
unless required for coherency. The dcbz address is broken
into a tag portion and an index portion. The index portion is
used to select a subset of addresses in the master cache while
the tag portion is compared to the address tag 60 field of the
master tag 72. If a matching line is found, then the SI valid
bit 68 and the SD valid bit 70 are checked. If either (or both)
slave cache's valid bit is set, then the master cache causes
the slave cache to invalidate that line in the slave by sending
an invalidation signal and the index portion to the slave
cache. The master then clears the slave cache's valid bits
(either the SI valid bit 68 or the SD valid bit 70 or both) in
the master tag 72, but the master cache does not clear the
master valid bit 62.
A sub-block counter is then initialized. A line in the

master cache may contain one or more sub-blocks. The size
of the sub-block is here defined as the number of bytes that
can simultaneously have a zero written to them by the master
cache. Typically the sub-block is the width of the data path
or bus going into the master cache, but this can vary with the
particular embodiment. All data bytes in the selected line are
then zeroed by writing zero to each sub-block in the line and
incrementing the sub-block counter until all bytes in the line
have been written to.

If no line in the master cache was found that has a
matching address tag, then a line must be allocated. One of
the lines, preferably the least-recently-used line in the set, is
selected having the same index as the index portion of the
dcbz address. The data in the old line is written back to the
main memory if the modified bit 64 is set, and the new

5,551,001
13

address tag 60 is written to the master tag 72. The master
valid bit 62 is set, and the exclusive bit 66 may also be set.
The SI valid bit 68 and the SD valid bit 70 are cleared. The
data in the line is then zeroed by initializing the sub-block
counter and successively writing the value Zero to each data
byte in the line, one sub-block at a time.
The zeroing operation requires many clock cycles since

the cache must first be searched and then successive bytes of
data written with the value zero. In prior-art systems, the
Zeroing would stall the pipelines because the cache would be
preoccupied with the Zeroing operation. In the present
invention, the pipelines do not stall, because the zeroing
operation is performed in the master cache. The slave caches
are therefore freed to supply the pipelines at the full band
width. The slave caches are interrupted only to perform a
line invalidation once the search in the master cache locates
a line to be zeroed that is present in the slave cache. The
slower zeroing operation, which requires a loop of succes
sive writes, is performed only in the master cache, not in the
slave caches.

STORE TO INSTRUCTION STREAM

Architectures often require support for storing data oper
ands into a block of memory that contains instruction code.
This is known as a store to the instruction stream (STIS).
Maintaining cache coherency can be difficult when a pro
gram stores into its instruction stream. Coherency is par
ticularly difficult with the prior-art Harvard architecture, as
shown in FIG. 2. Data stores are sent from the execution
pipeline 24 to the data operand cache 17. However, the
instruction stream is stored in the separate instruction cache
15. If the data operand that is being stored to the instruction
stream has an address corresponding to a line that is cur
rently stored in the instruction cache 15, then this data
operand must be quickly written to main memory 34, and the
corresponding line in the instruction cache 15 must be either
updated with the data operand or invalidated. However, if
the data cache is write-back, then the data operand might not
be written back to the main memory for a long period of
time, until the line is replaced in the data cache 17. Even
write-through caches may have a write buffer, increasing the
delay for the data operand to be written back to the main
memory. Some type of coherency mechanism must be
provided to detect a store to data cache 17 that corresponds
to a line in instruction cache 15. Some type of path must be
provided to update or invalidate the instruction cache when
a store occurs in the data cache.

The master-slave cache is ideally suited for implementing
a coherency scheme for store to instruction stream. Since the
master cache has control over both the slave instruction
cache and the slave data cache, the master cache can easily
detect a store to the instruction stream and perform the
necessary coherency tasks. The master-slave cache can
implement a policy of never having a line present in both of
the slave caches at any one time. Thus if a line is present in
the slave instruction cache, and the execution pipeline
performs a read or a write to this same line, the line will not
be present in the slave data cache since it is already present
in the slave instruction cache. A miss will occur in the slave
data cache and the data will be requested from the master
cache. However, when the master cache reads the master tag
of the line, the master cache will detect that the SI valid bit
is already set. The master cache then sends an invalidate
signal to the slave instruction cache and sends the index of
the line. The slave instruction cache then clears its valid bit,
which invalidates the line in the slave instruction cache. The

10

15

20

25

30

35

40

45

50

55

60

65

14
master cache clears the SI valid bit and sets the SD valid bit
in the master tag. The master cache sends the data to the
slave data cache, and the slave data cache writes the new
address tag and sets its valid bit.
The policy of never having a line present in both of the

slave caches at any particular time can be selectively
enabled or disabled. This allows for efficient store-to-in
struction-stream for certain types of programs but not for
other types. FIG. 10 shows a flowchart for a read or write
operation from the execution pipeline to the slave data
cache, for the particular example of a STIS where the line is
present in the slave instruction cache. The slave data cache
misses, and sends a request to the master cache. The master
reads the master tag, but first checks the slave valid bit for
the other slave, the SI valid bit. If the SI valid bit is set, a
STIS has been detected. The master then sends an invalidate
signal to the slave instruction cache together with the index
of the line. The slave instruction cache invalidates the line.
The master can then allocate the line to the slave data cache
by clearing the SI valid bit and setting the SD valid bit in the
master tag. The data is finally sent to the slave data cache
from the master cache.

In the above case, the master cache detected the STIS
when the slave data cache requested a line, and the SI valid
bit was already set. This very simple detection method can
also signal when to flush the instruction pipeline. If the
master cache detects a store from the slave data cache to a
line present in the slave instruction cache, the master cache
must invalidate the line in the slave instruction cache. It is
also possible that the instruction pipeline of the processor
has a copy of or a part of the line. Depending upon the
architectural requirements for STIS, the master cache may
also send a pipeline invalidate signal to the instruction
pipeline to prevent it from using potentially stale data. The
master-slave cache is ideally suited for detecting the STIS
because the master tag includes the slave cache valid bits.
Additionally, the slave instruction cache is not disturbed
unless the STIS is detected. This allows the slave instruction
cache to supply the instruction pipeline without interruption,
at the full bandwidth required. The master cache only
interrupts the slave instruction cache after the STIS is
detected, not every time coherency must be checked.
The slave instruction cache may also request a line that is

stored in the slave data cache. In this case, the master cache
will detect that the SD valid bit is set, and send an invali
dation and the index to the slave data cache before allocating
the line to the slave instruction cache. However, since the
instruction pipeline only reads data, a STIS is not signaled,
and no flush is required.

STORE QUEUE
In a highly-pipelined processor, a store queue is often

necessary. The store queue holds data operands from the
execution pipeline that are to be written out to the cache or
memory. The store queue is a useful structure for buffering
stores to the cache and main memory. Often the slave data
cache will be busy processing a read request from the
pipeline, preventing the store from being immediately writ
ten to the slave data cache. The store queue can hold the
store data until the slave data cache has a free cycle. The
store queue may be several words deep, allowing it to buffer
several stores simultaneously. Store queues such as this are
well-known in the prior art.

Since the master cache is tightly coupled to the slave data
cache, the store queue may be shared between the master
cache and the slave data cache. Because the slave data cache

5,551,001
15

is preferably write-through, lines do not have to be copied
back to the master cache after a miss occurs and an old line
is replaced. If the store data from the execution pipeline is
written to both the slave data cache and the master cache via
the store queue, the slave data cache does not need a separate
mechanism for writing-through to the master cache. This
helps to reduce complexity of the master-slave cache and
saves space by sharing store queue storage.

FIG. 11 shows the store queue 52 within microprocessor
die 20. The slave instruction cache 26 supplies instruction
words to the instruction pipeline, which includes instruction
buffer 42, instruction decoder 44, and instruction fetcher 46.
Instruction decoder 44 is the last stage of the instruction
pipeline, and feeds decoded instructions to the execute
pipeline. The execution pipeline includes general-purpose
registers 56, which contain temporary storage areas visible
to and available for use by programs. The general-purpose
registers 56 feed operands to an arithmetic-logic unit (ALU)
48, which performs an operation on the data operands. Data
operands may be selected from the general-purpose registers
56, or from memory. Memory operands are supplied by
slave data cache 28. ALU 48 may write the result of the
operation back into the general-purpose registers 56, or the
result may be written to memory. The operation that the
ALU executes may simply be to move data from the
general-purpose registers 56 and store that data to the
memory. The store data is transferred to the store queue 52
from either the ALU 48 or directly from the general-purpose
registers 56. Data in the store queue 52 is then written to the
slave data cache 28, and to the master cache 30.
Once data is placed in the store queue 52, the actual write

operations to the master cache 30 and the slave data cache
28 could occur at slightly different times, depending when a
free cycle occurs for the master cache 30 and for the slave
data cache 28. Master cache 30 could have many free cycles,
allowing several stores to be written to the master cache 30
before even the first store is written to the slave data cache
28, or the reverse may be true. A policy of allocate on write
for the slave data cache 28 would require added complexity.
Therefore stores that miss in the slave data cache 28 pref
erably do not cause a new line to be allocated to the slave
data cache 28. Rather, the store data are simply not written
to the slave data cache 28 but are written only to the master
cache 30. Thus some of the stores in the store queue 52 will
not be written to the slave data cache 28. However, all stores
are written to the master cache 30.

FIG. 13 is a diagram of a store queue tag. The store queue
52 contains fields for the store data (not shown) and a store
queue tag. These store queue tags are similar to cache tag
fields. The store queue tag includes an address field 86 for
the address of the store. Page information field 84 specifies
if the store data is to a page in memory that is write-through,
guarded, cacheable, or coherent. The store queue 52 also
includes bits 88, 89 to indicate if the store data needs to be
been written to the master cache 30, or to the slave data
cache 28. These bits are necessary since the writing to either
cache may occur in any order. A slave-tag-valid bit 90 is
used to indicate that the store data is a line fill from the
master cache, and that the address tag in the slave data cache
28 must also be updated when the data is written. Two byte
enable fields, 91, 92 specify which bytes are valid for the
slave and master, allowing merges of bytes for multiple
writes. Tag information field 93 may contain parity, sub-line
validity, or other information. Type field 94 specifies if the
store queue entry is a normal write from the execution
pipeline, or if it contains a cache operation such as an
invalidate request or zeroing operation from the CPU.

O

15

20

25

30

35

40

45

50

55

60

65

16
Instead of having a separate fill buffer for fill data from the

master cache, the store queue is used as the fill buffer. A large
savings in hardware results because address compare and
bypass logic in the store queue is shared with the fill buffer.
The storage space in the store queue may be dynamically
allocated between fill data and write data, resulting in a more
efficient use of processor resources.
The store queue 52 is the only path for store data from the

execution pipeline to be written out to the master cache 30
and the slave data cache 28. In addition, the store queue can
be used to write data from the master cache 30 to the slave
data cache 28. Thus the store queue can also act as a fill
buffer known in the prior art. This eliminates the need for a
second write port into the slave data cache 28. Data from the
master cache can bypass the store data in the store queue 52
when necessary, as when the store queue is full. Invalida
tions and reads must first check the store queue 52 to see if
a line is present in the store queue 52. If an address match
occurs, then the store queue must be emptied out or invali
dated before the data may be read, or the invalidation is
performed. For reads, data from the store queue 52 is
preferably wrapped or bypassed onto the slave data cache
output when a store queue hit is detected.
An invalidation instruction that is detected by the execute

pipeline can also use the store queue 52 to send the invali
dation request to the master cache. A cache management
operation bit in the store queue, encoded in type field 94, is
set by the CPU to indicate that the store data is actually a
cache management operation. The type of operation, data
block zero, invalidation, search, etc., may be encoded in the
data field in the store queue, while the address field holds the
invalidation or zeroing address for which the master cache
searches. Thus the store queue may be used to send cache
management operations directly to the master cache. The
store queue is shared by both the master cache and the slave
data cache.

The close coupling of the master cache 30 and the slave
data cache 28 allows the store queue 52 to be shared between
the master cache and the slave data cache. Sharing the store
queue eliminates having to have a second store queue for the
master cache 30. Cache management requests are commu
nicated from the execution pipeline to the master cache
using the shared store queue. Stores may be merged together
in the store queue before being written to the master or slave
cache, reducing bandwidth for writes.

MASTER PREFETCH

Most modern processors employ some form of prefetch
ing of instructions and/or data before they are requested.
Prefetching of instructions is the most common, so it will be
described, although the teachings herein disclosed may be
applied by those of skill in the art to data prefetching. The
master-slave cache performs all prefetching into the master
cache rather than into the slave instruction cache. This frees
the slave instruction cache from the complexity of prefetch
ing. Because some of the prefetched instructions will not be
used, some bandwidth is wasted when prefetching. Since the
master cache is so closely coupled to the slave instruction
cache, the miss penalty from the slave instruction cache is
small. The slave miss penalty is especially small when
compared to the miss penalty from the master cache, which
requires that memory off the microprocessor die be
accessed. Therefore prefetching into the master cache
greatly reduces the miss penalty as instruction words are
fetched into the slave instruction cache.

5,551,001
17

Many prefetching schemes may be implemented in the
master cache. The master cache may be coupled directly to
the instruction pipeline to receive the current instruction
pointer value, and branching information from the instruc
tion decoder 44. However, in the preferred embodiment, the
master cache starts prefetching when a miss request is
processed from the slave instruction cache. The master
cache stores the address of the miss from the slave instruc
tion cache, and increments this address. If the incremented
address, the prefetch address, is not present in the master
cache, then the corresponding line will be fetched from main
memory. The prefetch address is then incremented again,
and the next sequential line is fetched from main memory if
not already present in the master cache. The sequential
prefetching continues until a hit in the master cache, or until
another miss occurs from the slave instruction cache, reload
ing the prefetch address. If a page boundary is reached
before the next master cache prefetchhit or slave-cache miss
occurs, then prefetching will stop. Other enhanced prefetch
ing schemes may be employed, such as tagged prefetch,
where a prefetched bit in the master tag is set when the next
sequential line is prefetched. Tagged prefetch can prevent
prefetching the same line multiple times. Other prefetching
schemes may also use bits in the master tag.
The prefetched data in the master cache may easily be

pre-loaded into the slave instruction cache. Since the slave
instruction cache cannot be written by the instruction pipe
line, the master cache has complete control over writing
words to the slave instruction cache and updating the slave
cache tags. The master cache may directly control signals to
write the tag and data into the slave instruction cache. The
master may chose to pre-load into the slave a line that has
been prefetched into the master cache. The master may even
implement a scheme that keeps statistical data on how
frequently or recently lines were used in the slave instruction
cache.

CONCLUSION AND ADVANTAGES

The master-slave cache allows for supplying the pipelines
of a processor at the full bandwidth required because the
small slave caches have a fast access time and are not
repeatedly interrupted for cache management and coherency
operations. The large master cache performs all searching
and Zeroing required by coherency, snooping, and block
Zero requests, and detects stores into the instruction stream.
The master only interrupts the slaves when a requested line
is detected in the master cache and is also present in a slave
cache. The master cache can have a large size, and have a
complex organization, such as set-associative, accomplish
ing a low miss rate for the master-slave cache. In addition to
these benefits, the master cache may be slower than the
slaves, saving power by being designed from slower RAM
blocks. Power savings results from using the well-known
power-delay tradeoff. The master cache may also employ
other power-savings features, such as a power-down mode
that detects periods of time when the master cache is not
being accessed, and shuts down the sense amplifiers and
other power-hungry circuits in the cache RAM.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example the master cache may simulta
neously check and send invalidation requests to both the
slave instruction cache and the slave data cache. The master
cache is preferably constructed from RAM cells, while the

10

15

20

25

30

35

40

45

50

55

65

18
slaves are RAM-based and designed for speed, although
many other implementations are possible. The preferred
embodiment uses three separate valid bits for indicating if a
line is valid in the master cache and the two slave caches.
However, these valid bits could be encoded as a multi-bit
field and still indicate validity of the lines in both the master
and slave caches. The valid bits could also be encoded
together with the modified and exclusive bits, or with other
bits in the master tag. Likewise, the various bits in the store
queue could also be combined and encoded together. In a
preferred embodiment, the slave cache valid bits are stored
with the least-recently-used (LRU) bits, which are stored in
a common tag field which contains LRU information for all
set-associate lines having the same index. Thus when the
LRU bits are consulted to select which line should be
replaced to make room for a new line, the slave cache valid
bits may also be consulted. Any line having a slave cache
valid bit set would not be replaced, even if it is the
least-recently used line. The slave cache lines are always
kept most-recently used in this manner.

While a specific embodiment has been described having
two slave caches that supply the two processor pipelines, for
instructions and for data operands, processors with more
than two pipelines would especially benefit from application
of the teachings of the invention. For example, a super-scalar
processor might have seven pipelines-one instruction pipe
line just for branches and three execution pipelines each
having their own instruction pipeline. Three, four, or more
slave caches could be used to supply these pipelines. Addi
tional valid bits or equivalent means for the additional slave
caches could be added to the master cache tag. A floating
point unit might have its own pipeline, and could also benefit
from having its own slave cache supply it with operands.
The slave caches and store queue may be organized in

different ways, and the slave instruction cache could include
buffering similar to the store queue to allow it to defer line
fills from the master cache. The buses between the master
cache and the slave caches could be separate busses as
described, or a shared bus could be used. An embodiment
has been described with valid bits in the master indicating if
an instruction or data word is present in one of the slave
caches. Another embodiment does not require that the slave
valid bits in the master indicate that an instruction or data
word is definitely present in the slave. It is enough that the
slave valid bit in the master indicate that the instruction or
data word might be present in the slave cache. This embodi
ment relaxes the coherency requirement between the slave
caches and the slave valid bits in the master cache, at the
expense of some additional invalidations being sent to the
slave caches for instruction or data words that might be
present in the slave caches but are actually not present in the
slave caches.

The invention has been described as a cache using physi
cal addresses. Caches using virtual addresses are also well
known in the art and the invention could be modified to use
virtual addresses rather than physical addresses. Direct
memory access (DMA) may also be combined with the
invention allowing DMA access to the master cache through
a separate DMA channel. The master cache would handle all
DMA cycles, only interrupting the slave caches when nec
essary, when a slave valid bit is set.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be

5,551,001
19

limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A master-slave cache system for transferring data

between a main memory and a central processing unit
(CPU), the CPU having an instruction pipeline decoding
instructions at a first rate, the CPU having an execution
pipeline executing at a second rate, the main memory storing
a plurality of operands and a plurality of instructions, the
system comprising:

a master cache for storing operands and instructions, the
master cache coupled to the main memory, the master
cache storing a first subset of the plurality of operands
and a second subset of the plurality of instructions
stored in the main memory, the master cache storing a
third subset of instructions and a fourth subset of
operands, the third subset being a subset of the second
subset, and the fourth subset being a subset of the first
Subset;

a slave instruction cache, coupled to the master cache and
coupled to the instruction pipeline, for storing the third
subset of instructions, the slave instruction cache
capable of transferring instructions to the instruction
pipeline at the first rate, the slave instruction cache
comprising a cache that is read-only by the CPU; and

a slave data cache, coupled to the master cache and
coupled to the execution pipeline, for storing the fourth
subset of operands, the slave data cache capable of
transferring operands to the execution pipeline at the
second rate;

wherein the master cache comprises a set-associative
cache, and the slave instruction cache and the slave data
cache comprise direct-mapped caches;

wherein the master cache further includes means for
replacing operands and instructions using a modified
least-recently-used algorithm, never replacing a least
recently used operand or instruction that is present in
the slave data cache or the slave instruction cache,

whereby the slave instruction cache matches the first rate
required by the instruction pipeline, and the slave data cache
matches the second rate required by the execution pipeline.

2. The system of claim 1 wherein the master cache has a
capacity to contain at least four times a maximum number of
operands and instructions that can be stored in both the slave
data cache and the slave instruction cache.

3. The system of claim 1 wherein the slave data cache
comprises a write-through cache, the slave data cache for
writing a copy of an operand back into the master cache
when the execution pipeline writes the operand to the slave
data cache.

4. The system of claim 1 wherein the first subset and the
Second subset overlap, wherein an overlapping operand in
the first subset that has an address matching an address of an
instruction in the second subset indicates that the overlap
ping operand is being stored to an instruction stream stored
in the plurality of instructions.

5. The system of claim 1 further comprising:
prefetching means, coupled to the master cache, for

fetching instructions from the main memory into the
master cache, the prefetching means fetching instruc
tions having sequential addresses following a miss
address from the slave instruction cache.

6. A master-slave cache system for transferring data
between a main memory and a central processing unit
(CPU), the CPU having an instruction pipeline decoding
instructions at a first rate, the CPU having an execution

10

5

20

25

30

35

40

45

50

55

60

65

20
pipeline executing at a second rate, the main memory storing
a plurality of operands and a plurality of instructions, the
system comprising:

a master cache for storing operands and instructions, the
master cache coupled to the main memory, the master
cache storing a first subset of the plurality of operands
and a second subset of the plurality of instructions
stored in the main memory, the master cache storing a
third subset of instructions and a fourth subset of
operands, the third subset being a subset of the second
subset, and the fourth subset being a subset of the first
Subset;

a slave instruction cache, coupled to the master cache and
coupled to the instruction pipeline, for storing the third
Subset of instructions, the slave instruction cache
capable of transferring instructions to the instruction
pipeline at the first rate;

a slave data cache, coupled to the master cache and
coupled to the execution pipeline, for storing the fourth
subset of operands, the slave data cache capable of
transferring operands to the execution pipeline at the
second rate;

a plurality of master tags, stored in the master cache, each
master tag in the plurality of master tags comprising:
an address tag field, for storing a tag portion of an

address of a data item, the data item being one of the
plurality of operands or one of the plurality of
instructions stored in main memory;

master valid indicating means for indicating that the
data item is valid and present in the master cache;

slave-instruction valid indicating means for indicating
that the data item is valid and present in the slave
instruction cache; and

slave-data valid indicating means for indicating that the
data item is valid and present in the slave data cache,

invalidation means, coupled to the master cache and to the
CPU, for modifying the plurality of master tags;

the CPU including means for providing an invalidation
address to the invalidation means;

the invalidation means further including:
means for signaling an invalidation hit if a tag portion

of the invalidation address matches the address tag
field in a matching line in the plurality of master tags;

master invalidating means for invalidating the data item
in the matching line in the master cache if the
invalidation hit is signaled and the master valid
indicating means indicates that the data item is valid
and present in the master cache;

first invalidating means for invalidating a first copy of
the data item in the slave data cache if the invalida
tion hit is signaled and the slave-data valid indicating
means indicates that the first copy of the data item is
valid and present in the slave data cache; and

second invalidating means for invalidating a second
copy of the data item in the slave instruction cache
if the invalidation hit is signaled and the slave
instruction valid indicating means indicates that the
second copy of the data item is valid and present in
the slave instruction cache,

whereby the master cache contains information on valid
words present in the slave instruction cache and the slave
data cache and the slave instruction cache matches the first
rate required by the instruction pipeline, and the slave data
cache matches the second rate required by the execution
pipeline and whereby all invalidation requests from the CPU
are processed by the master cache.

5,551,001
21

7. The system of claim 6 further including an external
Snoop requester coupled to the invalidation means, the
external snoop requester providing an external snoop
address to the invalidation means.

8. The system of claim 7 further comprising
means for signaling a snoop hit if the tag portion of the

external snoop address matches the address tag field in
a snooped line in the plurality of master tags;

the master invalidating means invalidating the data item
in the snooped line in the master cache if the snoop hit
is signaled and the master valid indicating means
indicates that the data item is valid and present in the
master cache,

the first invalidating means invalidating the first copy of
the data item in the slave data cache if the snoop hit is
signaled and the slave-data valid indicating means
indicates that the first copy of the data item is valid and
present in the slave data cache; and

the second invalidating means invalidating the second
copy of the data item in the slave instruction cache if
the snoop hit is signaled and the slave-instruction valid
indicating means indicates that the second copy of the
data item is valid and present in the slave instruction
cache,

whereby all snoop requests from the external snoop
requester are processed by the master cache.

9. The system of claim 6 wherein the first copy of the data
item in the slave data cache and the second copy of the data
item in the slave instruction cache can not both be valid at
the same time.

10. The system of claim 9 wherein
the first invalidating means invalidates the first copy of

the data item in the slave data cache when the slave
instruction cache requests that the second copy of the
data item be validated and placed in the slave instruc
tion cache; and

the second invalidating means invalidates the second copy
of the data item in the slave instruction cache when the
slave data cache requests that the first copy of the data
item be validated and placed in the slave data cache,

thereby keeping the slave instruction cache and the slave
data cache coherent and allowing a store to the instruction
Streal.

11. The system of claim 10 wherein
the master cache signals a pipe-flush to the CPU when the

execution pipeline writes to the data item and the slave
instruction valid indicating means indicates that the
second copy of the data item is valid and present in the
slave instruction cache;

the instruction pipeline being flushed when the pipe-flush
is signaled.

12. The system of claim 6 further comprising a store
queue, the store queue further comprising:
means for receiving store data and an address of the store

data from the execution pipeline;
means for writing store data to the master cache when the

master cache is not busy;
means for writing store data to the slave data cache if the

address of the store data matches an address of an

5

10

5

20

25

30

35

45

50

55

22
operand in the slave data cache and the slave data cache
is not busy; and

means for storing a plurality of store data and a plurality
of addresses of the store data,

whereby the store queue is shared between the master cache
and the slave data cache, the store queue receiving store data
from the execution pipeline and writing the store data when
the master cache and the slave data cache are each not busy.

13. The system of claim 12 wherein the execution pipeline
uses the store queue to write store data to the slave data
cache and to the master cache, eliminating a need for the
slave data cache to write through to the master cache.

14. The system of claim 13 wherein invalidation and
cache management operations from the CPU are placed in
the store queue and written only to the master cache and not
to the slave data cache, the master cache performing invali
dation and cache management operations for the slave data
cache.

15. The master-slave cache system of claim 6 further
comprising:

selecting means for selecting a selected line in the master
cache using a portion of a zeroing address;

reading means for reading the address tag field in the
master tag for the selected line and allocating a new line
in the master cache if the address tag field does not
match a tag portion of the Zeroing address;

signal means for sending an invalidation signal to the
slave instruction cache if the slave-instruction valid
indicating means in the master tag for the selected line
indicates that the data item in the selected line is valid
and present in the slave instruction cache, the slave
instruction cache invalidating its copy of the selected
line in response to the invalidation signal; and

zero means for successively writing a zero value to all
bytes of data in the selected line in the master cache,

whereby the cache block is zeroed in the master cache
without interrupting the slave instruction cache except when
the copy of the selected line is in the slave instruction cache.

16. The master-slave cache system of claim 6 further
comprising:

selecting means for selecting a selected line in the master
cache using a portion of a zeroing address;

reading means for reading the address tag field in the
master tag for the selected line and allocating a new line
in the master cache if the address tag field does not
match a tag portion of the Zeroing address;

signal means for sending an invalidation signal to the
slave data cache if the slave-data valid indicating
means in the master tag for the selected line indicates
that the data item in the selected line is valid and
present in the slave data cache, the slave data cache
invalidating its copy of the selected line in response to
the invalidation signal; and

Zero means for successively writing a zero value to all
bytes of data in the selected line in the master cache,

whereby the cache block is zeroed in the master cache
without interrupting the slave data cache except when the
copy of the selected line is in the slave data cache.

ck k k cic k

