
United States Patent (19)
Richter et al.

54

75

73

21

22

(63)

51
52
58

56

TRANSLATOR HAVING SEGMENT BOUNDS
ENCODNG FOR STORAGE IN ATLB

Inventors: David E. Richter, Milpitas; James S.
Blomgren, San Jose, both of Calif.

Assignee: Exponential Technology, Inc., San
Jose, Calif.

Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5.440,710.

Appl. No.: 436,137
Filed: May 8, 1995

Related U.S. Application Data

Continuation-in-part of Ser. No. 207,857, Mar. 8, 1994, Pat.
No. 5,440,710.
Int, C. m. G06F 12/10
U.S. Cl. 395/500; 395/417; 395/800
Field of Search 395/417,500,

395/800

References Cited

U.S. PATENT DOCUMENTS

3,942,155 3/1976 Lawlor 340/1725
4,376,297 3/1983 Anderson et al. 364/200
4,550,368 10/1985 Bechtolsheim 364/200
4.675,646 6/1987 Lauer 340/146.2
4.885,680 12/1989 Anthony et al. 364/200
4,961,135 10/1990 Uchihori 364/200
4,972,338 11/1990 Crawford et al. 364/200
5,058,003 10/1991 White 364/200
5,239,642 8/1993 Guitierrez et al. 395/425
5,249,278 9/1993 Krauskopf............................... 395/400
5,261,049 11/1993 Lumelsky et al. 3957164
5,371,894 12/1994 DiBrino 395/800
5,440,710 8/1995 Richter et al. 395/417
5,479,627 12/1995 Khalidi et al. 395/45

SEGMEN
DESCRIPOR
TABLE(S)

USOO5652872A

11. Patent Number: 5,652872
45 Date of Patent: *Jul. 29, 1997

OTHER PUBLICATIONS

Computer Architecture, A Quantatitative Approach, Hen
nessy and Patterson, pp. 15.433-449.
Modern Operating Systems. Tanenbaum, pp. 82-85,
132-141.
A FastTranslation Method for Paging on top of Segmenta
tion, Dally, IEEE Tran. Comp. 1992.

Primary Examiner-Kevin J. Teska
Assistant Examiner-A. Roberts
Attorney, Agent, or Firm-Stuart T. Auvinen
57 ABSTRACT

A computer system emulates segment bounds checking with
a paging System. Pages entirely within a segment are des
ignated as clear pages, while the first and last pages
containing segment bounds may be partially-valid pages.
The computer system has a memory with a segment descrip
tortable and an active segment descriptor cache. The active
segment descriptor cache holds a copy of the segment
descriptors for the active segments in a central processing
unit (CPU). The active segment descriptor cache also hold
the first and last clear page numbers and the first and last
linear address offsets for the active segment. A software
segment load routine copies portions of the segment descrip
tor from the segment descriptor table to the active segment
descriptor cache when a user program loads a new segment.
Only the segment base address is copied to the CPU die; the
segment limit and selector need not be stored on the CPU
die. The CPU has a translation-lookaside buffer (TLB) that
includes bounds fields and a comparator for signaling when
an offset portion of a linear address is outside the bound on
a page. ATLB miss routine compares the linear address to
the first and last clear pages in the active segment descriptor
cache and loads a fully-valid page if the linear address is
between the first and last clear pages, but loads the bounds
field with the page offset of the segment bound if the linear
address is to a partial page at the bounds of the segment.

20 Claims, 17 Drawing Sheets

MEMORY

x8192 xN BASE ADDRATRIBILIMIT

ACTIVE SEGMENT
DESCRIPTOR CACHE

x6 SEG SELTOR BASE ADDR ATRBLIMIT

f N

SEGMENT REGISTERS

x6 BASEADR

TRANSATION-LOOKAS BUFFER

4 SEGi. LiN ADDRPHY ADDRATRIB PARTAL x32 x PAGEC

N

5,652,872 Sheet 1 of 17 Jul. 29, 1997 U.S. Patent

?uV JOJd :| -61-I

IESVG-IWIT
99

U.S. Patent Jul. 29, 1997 Sheet 2 of 17 5,652,872

MEMORY

SEG SELTOR SEG Fig. 2

PRIOR ART

33

SEG REGS/DESCR CACHE

BASE ADDR
42

SEGADDER MMU
LIN ADDR

PHY ADDR

U.S. Patent Jul. 29, 1997 Sheet 3 of 17 5,652,872

SEGMENT MEMORY
DESCRIPTOR
TABLE(S)

X8192 XN BASE ADDR ATRBLMIT

SEGMENT ACTIVE SEGMENT
REGISTERS DESCRIPTOR CACHE

X6 SEG SELTOR BASE ADDR ATRIBLIMIT

TRANSLATION-LOOKASIDE BUFFER

x32 LIN ADDRPHY ADDRATRIB

PRIOR ART Fig. 3

U.S. Patent Jul. 29, 1997 Sheet 4 of 17 5,652,872

78-N S
PAGE 12

EE PAGE 11
EIALY photom SEG LIMIT

PAGE rate

FIRST

CLEAR Pass PAGE Ya Page
SSSSSEG BASE

2.
PAGEO

Fig. 4

U.S. Patent Jul. 29, 1997 Sheet 5 of 17 5,652,872

U.S. Patent Jul. 29, 1997 Sheet 6 of 17 5,652,872

SEGMENT MEMORY
DESCRIPTOR
TABLE(S)

X8192 XN BASE ADDRATRIBLIMIT

ACTIVE SEGMENT
DESCRIPTOR CACHE

X6 SEG SELTOR BASE ADDR ATRBLIMIT

f NJ N

SEGMENT REGISTERS N 1

X6 BASE ADDR

TRANSLATION-LOOKASIDE BUFFER

SEG# LIN ADDRPHY ADDRATRIB PARTAL

U.S. Patent Jul. 29, 1997 Sheet 7 of 17 5,652872

MEMORY Fig. 7
12

SEG SELTOR SEG

ACTIVE SEG
as sees assed as DESCR CACHE

50

10

SEG REGS

BASE ADDR

SEGADDER 42

MMU

LIN ADDR

PHY ADDR

5,652,872 Sheet 8 of 17 Jul. 29, 1997 U.S. Patent

9 eun6|-

ES\/8 5DERH "SOES

,99

5,652,872 Sheet 9 of 17 Jul. 29, 1997 U.S. Patent

ZT_LO | || T. LOZ CINE 5Dd || || CINE SOd 9998?78 ?79

6 (61-)
89

99

U.S. Patent Jul. 29, 1997 Sheet 10 of 17 5,652,872

32-BIT
BASE ADDR

20b FCP 12 b FLA

130 120

BASE-LIMIT

128 Aea/so
132

UB NOT ALIGNED

122

U.S. Patent Jul. 29, 1997 Sheet 11 of 17 5,652,872

LOAD
SEGMENT

202 NVALIDATE TLB ENTRIES
FOR OLD SEG

DERIVE PTR TO SEGMENT TABLE ENTRY IN
204 MEM FROM LOAD INSTR/SELECTOR

COPY STE TO ACTIVE SEG DESCR CACHE IN
2O6 EMULATION MEM SPACE

COPY BASE ADDR FROM

208 STE TO SEG REGON CPU F G 1 1 A

READ BASE FROM
210 STE 200

NO ARE
12 LSB BITS
OF BASE

s: O 2

FCP = 20 MSB'S OF
BASE + 4K

214

212

YES

FCP=2O MSB'S OF
216 BASE

FLA-12 LSB'S OF
BASE 218

U.S. Patent Jul. 29, 1997 Sheet 12 of 17 5,652,872

220 READ BASE & LMIT
FROM STE

CALCULATE
222 BASE--LIMIT

ARE
12 LSB BITS

OF BASE-LMT
= FFF 2

YES

LCP=20 MSB'S OF
228 BASE--LIMIT

LA-12 LSB'S OF
230 BASE-LMT

WRITE FCP,LCP, FLA, LLATO F (G 1 1 B
ACTIVE SEG DESCR CACHE

200

NO

LCP = 20 MSB'S OF
BASE-- LIMT - 4K 224

226

232

DONE

U.S. Patent Jul. 29, 1997 Sheet 13 of 17 5,652,872

TLB MISS

EXTRACT SEGMENT 302
NUMBER FROM DSSR

DERVE POINTER TO CACHED 300
SEGMENT DESCRIPTOR IN MEM 304 .

306 READ FCP, LCP

YES 308 S
LIN ADDR >=

FCP 2

S
LIN ADDR <

LCP 2

READ FLA, LA
DECREMENT FCP IF FLA=OOOh;
INCREMENT LCP F LLA=FFFh 316 340

YE B: IS S

314 LIN ADDR X- LIN ADDR <= PAL
s p 2 FCP:FLA LCPLLA VALD

C:
SEGMENT
BOUNDS
FAULT 360

U.S. Patent Jul. 29, 1997 Sheet 14 of 17 5,652,872

380 DEBUG
PROCESSING

322 DERVE PTR TO PAGE
TABLES FROM LIN ADDR

GET PTE FROM PAGE
324 TABLES IN MEM

BUILD TLB ENTRY
326 FROM PTE

F.G. 12A

SETTLE ENTRY'S PARTIAL
328 PAGE CONTROL BITS = OO

330 SET SEGi BITS IN TLB
ENTRY TO CURRENT SEG

332 LOAD LB ENTRY
INTO TLB

RETURN

U.S. Patent Jul. 29, 1997 Sheet 15 of 17 5,652,872

B:
PARTIAL
PAGE
VALID

38O DEBUG
PROCESSING

DERIVE PTR TO PAGE
322 TABLES FROM LIN ADDR

GET PTE FROM PAGE F G 1 2 B
324 TABLES IN MEM

326 BUILD TLB ENTRY
FROM PTE 340

LOAD FLA, LLA INTO BOUNDS
342 FIELDS IN TLB ENTRY

SET TLB ENTRY'S PARTIAL
PAGE CONTROL BITS = 10

OR O1 OR 11

SET SEGi BTS IN TLB
330 ENTRY TO CURRENT SEG

LOAD TLB ENTRY
332 NTO TLB

RETURN

344

U.S. Patent Jul. 29, 1997 Sheet 16 of 17 5,652,872

START:
NVALIDATE TLB ENTRIES FOR

OLD SEG

READ PTR TO FIRST TEM.IN
402 LINKED LIST FOR OLD SEG

READ FIRST TEM IN
404 LINKED LIST

NVALIDATE ENTRY INTLB
CORRESPONDING TO FIRST

ITEM

YES

CONTINUE

NO

READ PTR TO NEXT 410
ITEM IN LINKED LIST

NVALIDATE NEXT ENTRY IN
TLB CORRESPONDING TO

NEXT ITEM

FIG. 13
202

412

U.S. Patent Jul. 29, 1997 Sheet 17 of 17 5,652,872

78

110

O/S

SEG DESC
TABLES

112
14

ACTIVE SEG
35 DESC CACHE

HANDLER

TLB MISS
SEG LOAD

117
3OO

200

Fig. 14

5,652,872
1.

TRANSLATOR HAVING SEGMENT BOUNDS
ENCODNG FOR STORAGE IN ATLB

BACKGROUND OF THE INVENTION--
RELATED APPLICATIONS

This application is a continuation in part (CIP) of "Emu
lation of Segment Bounds Checking Using Paging with
Sub-Page Validity”, U.S. Pat. No. 5,440,710, U.S. Ser. No.
08/207,857 filed Mar. 8, 1994, assigned to the same
Assignee and with at least one common inventor. This
application is also related to "Emulation of Program Watch
point Checking Using PagingWith Sub-Page Validity". U.S.
Pat. No. 5,598.593, assigned to the same Assignee and with
at least one common inventor. This application is further
related to "Method for Debug Emulation of Multiple Break
points by Page-Partitioning Using a Single Breakpoint
Register”, U.S. Ser. No. 08/436,136, also assigned to the
same Assignee and with at least one common inventor.

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to address translation handlers, and
more particularly for methods to emulate segment bounds
checking with a paging system.

BACKGROUND OF THE INVENTION--
DESCRIPTION OF THE RELATED ART

Some computer architectures, such as for RISC or
reduced instruction set computers, employ paging without
segmentation, since paging can be simple to implement.
However CISC (complex instruction set computer) archi
tectures employ both segmentation and paging. One such
architecture is the x86 architecture, at present embodied in
CPU's such as the 386, 486, and PentiumTM manufactured
by Intel Corporation of Santa Clara, Calif., and others.

In a paging system, a page table defines the mapping or
translation between a program or virtual address generated
by the user's program, and a physical address of a location
in memory. Physical memory is divided into many pages,
with each page being the same size, typically 4096 or 4K
bytes. Each page begins and ends on a "page boundary".
which is always a multiple of the page size, 4K bytes.
Definitions
A virtual address is composed of two parts: the lower 12

bits form the address within a page, or page offset, while the
upper address bits determine which page is accessed. The
upper bits of the virtual address are the virtual page number,
and these upper bits are translated and replaced with a
physical page number. The virtual page number is translated
to a physical page number by either a page table in main
memory, or by a cache of the page table such as a
translation-lookaside buffer (TLB). The physical address is
thus composed of the translated page number and the
un-translated offset.

Page tables and TLB's are well-known and are discussed
more fully with respect to the x86 architecture in U.S. Pat.
No. 4972,338, issued in 1990 to Crawford and assigned to
Intel Corporation of Santa Clara, Calif. A TLB is a small
cache of the most recently used translations in the page
tables. Inasmuch as the page tables are usually stored in
main memory, accessing the page table for each memory
reference adds significant overhead to each reference and
slows the system down. Since each page table translation or
entry covers 4K memory bytes, relatively few page table
entries need to be cached by the TLB for a high hit rate and
improved performance for most programs. The term “virtual

O

15

20

25

30

35

45

50

55

65

2
address” is often used rather loosely to refer to any address
except the physical address. The physical address is output
from the paging unit and is the actual address in memory of
a datum. When both segmentation and paging are combined,
a user program generates an "effective address", which is
then translated by the segmentation unit to a "linear
address”. The linear address is then translated by the paging
unit or a TLB to the "physical address". Sometimes the
effective address and the linear address are referred to as
virtual addresses.

PRIOR-ART SEGMENTATION AND PAGING
HARDWARE FIG. 1

FIG. is a block diagram of address generation in a
typicalx86 processor, which includes both segmentation and
paging. Address generate unit 30 calculates a virtual or
effective address 32 from address components indicated by
an instruction being processed. Address generate unit 30 or
other decode logic (not shown) indicates which segment is
being referenced by the instruction and selects one segment
descriptor 34 in a segment descriptor register array 33. The
selected segment descriptor 34 includes a base address field
which outputs the base or starting address of the selected
segment on line 36, and a limit or upper bound which is
outputted on line 40. Effective address 32 is added to the
base address 36 in segment adder 42, to produce a linear
address 38. The segment adder 42 must be a full 32-bit adder
in the x86 architecture because segments can begin and end
on any boundary, down to single-byte granularity.

Subtractor 44 subtracts the effective address 32 from the
limit 40. If a negative value results, then the effective
address exceeds the limit and a segment overrun error is
signaled. A second adder/subtractor could be used to check
the lower bound of the segment; however if the lower bound
is always effective address 0, then the segment adder 42 can
be used for the lower bound check. If the result is a negative
number then the lower bound has been violated. Thus the
negative flag or the sign bit may be used for lower bound
checking. Comparators may also be employed for bounds
checking.

Linear address 38 is translated to a physical address by
translation-lookaside buffer or TLB 46, which is a small
cache of the page translation tables stored in main memory.
TLB 46 translates the upper 20 bits of the linear address by
searching the associative TLB cache for a match, and if one
is found, then replacing these upper 20 bits with another 20
bits stored in the TLB 46.

If the linear address is not found in the TLB, then a miss
is signaled to the translator 48, which accesses the page
tables in main memory and loads into the TLB the page table
entry that corresponds to the linear address. Future refer
ences to the same page will "hit" in the TLB, which will
provide the translation. Translator 48 may be implemented
entirely in hardware, entirely in software, or in a combina
tion of hardware and software.

PRIOR-ART SEGMENT TABLES &
REGISTERS-FIG. 2

FIG. 2 illustrates the communication between a CPU and
memory for Supporting segmentation. ALU 30, or an address
generate unit, indicate which segment is being accessed
when an effective address is sent to segment adder 42. The
segment number selects a descriptor entry in segment
descriptor register array 33. The segment's base address is
then sent to segment adder 42 and added to the effective
address. The resulting linear address is outputted to TLB 46,

5,652,872
3

which translates the linear address to physical address 50.
Physical address 50 is used to access memory 12.
CPU 10 is limited in the number of segment descriptors

that may be stored in segment descriptor register array 33.
Typically only six segments may be cached in array 33 on
the die of CPU 10. Segment descriptor table 14 in memory
12 stores descriptors for many other segments. Other seg
ment descriptor tables may also be provided in memory 12.
While the segment number is sufficient to identify one of the
six segments stored in array 33 on CPU 10, other segments
are identified by a segment selector. A segment selector
includes an index into Segment descriptor table 14 to locate
one particular descriptor. In the x86 architecture, a global bit
in the segment selector determines if a local or a global
segment descriptor table is used, allowing two segment
descriptor tables to be "accessible” at any given time.

PRIOR-ART SEGMENT DESCRIPTORS AND
CACHE-FIG. 3

FIG. 3 highlights the relationship between data structures
on the CPU die and in memory for segmentation. In
memory, each segment descriptor contains a segment base
address, a segment limit, which together define the bounds
of a segment, and attributes. Each segment descriptor table
may hold up to 8K entries, and there may be several
descriptor tables.
On the CPU die, a cache of six active segments is kept.

The segment selector is stored in a segment register while
the descriptor is retrieved from memory and cached in an
active segment descriptor cache. Each TLB entry contains a
linear address field that is compared to a linear address
output from the segmentation unit. The TLB outputs a
physical address and paging attributes from a matchingTLB
entry.
Objects of the Invention
What is desired is to emulate segment bounds checking

with a paging system. It is desired to emulate CISC-style
segmentation with a simple RISC-type paging system. Emu
lation routines are desired to emulate instructions that load
a new segment. Emulation routines are also desired to
properly handle a page miss when the page lies within a
segment.

SUMMARY OF THE INVENTION

A system for emulating segmentation on a processor with
page-address translation has a central processing unit
(CPU). The CPU has a segment register for storing a base
address of an active segment. The active segmentis accessed
by a user program executing on the CPU. The segment
register does not store a limit for the active segment. In some
aspects of the invention the segment register is a general
purpose register (GPR).
A linear address generation means receives an identifier

for the active segment from the user program, and selects the
segment register containing the active segment and adds the
base address of the active segment to an address from the
user program. The linear address generation means outputs
a sum as a linear address. A translation-lookaside buffer
(TLB) receives the linear address from the linear address
generation means. The TLB has a plurality of page transla
tion entries for pages in memory having a fixed number of
offset addresses, with each page translation entry having a
linear address field and a physical address field. The TLB
outputs the physical address field for a matching entry when
a portion of the linear address matches the linear address
field in the matching entry.

10

15

20

25

30

35

45

50

55

65

4
Amemory has a plurality of storage locations addressable

by a plurality of physical addresses. A first portion of the
memory stores a segment descriptor table comprising a
plurality of segment descriptors, each having attributes, a
base address, and a limit for a segment. A second portion of
the memory stores an active segment descriptor cache which
has a plurality of entries for active segments loaded in the
CPU for access. The identifier for the active segment selects
a selected cache entry for the active segment. Each entry has
a copy from the segment descriptor table of the attributes of
one of the active segments. Each entry also has a first clear
page field indicating the address of a first clear page in the
active segment. The first clear page has all offset addresses
within the page being valid for access. A first linear address
field in each entry indicates a first linear address for the
active segment. The segment's limitis not stored on the CPU
but is only stored in the memory.

Infurther aspects an emulation handler means is executed
on the CPU. It checks for segment bounds violations of
linear addresses for pages not having all offset addresses
within the page valid. Thus segment bounds are checked
only for pages not having all offset addresses within the page
valid, while clear pages with all offset addresses valid are
not checked for segment bounds violations.
A bound field in the matching entry in the TLB contains

a bound for the active segment. A segment bounds checking
means receives the bound from the matching entry of the
TLB, and compares a portion of the linear address to the
bound. Signaling a segment bound violation if the linear
address is outside the bound for the active segment. The
segment bounds checking means is disabled when the
matching entry contains a clear page with all offsets within
the page valid for access by the active segment. Thus
segment bounds are checked only for pages not having all
offset addresses within the page valid, while clear pages with
all offset addresses valid are not checked for segment bounds
violations.

In still further aspects of the invention each entry in the
active segment descriptor cache also has a last clear page
field indicating the address of a last clear page in the active
segment. The last clear page has all offset addresses within
the page valid for access. Alastlinear address field indicates
a last linear address for the active segment.

Other aspects of the invention include methods for emu
lating a segment load by a CPU. A portion of the segment
table entry is copied to an active segment descriptor cache
in the memory. A base address from the segment table entry
is copied to a segment register on the CPU. Afirst clear page
(FCP) number identifying a first clear page for an active
segment is generated. The first clear page is a first page in
the active segment with all offset addresses within the page
valid for access by the active segment.

Other aspects of the invention include a method for
loading a translation-lookaside buffer (TLB) on a central
processing unit (CPU). A first clear page number and a last
clear page number are read from an entry in the active
segment descriptor cache. A page number portion of a linear
address is compared to the last clear page number. The TLB
is loaded with a clear page translation entry under appro
priate conditions.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of address generation in a

typical x86 processor, which includes both segmentation and
paging.

FIG. 2 illustrates the communication between a CPU and
memory for supporting segmentation.

5,652,872
5

FIG. 3 highlights the relationship between data structures
on the CPU die and in memory for segmentation.

FIG. 4 shows a large segment in physical memory space.
FIG. 5 is an enlarged view of the segment boundaries.
FIG. 6 highlights data structures in memory and on the

CPU die for emulation of segmentation.
FIG. 7 is another diagram of the location of segment

information in the system.
FIG. 8 is a simplified diagram of the address generation

hardware on the RISC CPU.
FIG. 9 shows in detail a preferred embodiment for a TLB

entry.
FIG. 10 is a hardware embodiment for generating the first

and last clear page and linear address fields.
FIGS. 11A and 11B show the steps in a routine that

emulates segment loading.

5

15

FIGS. 12, 12A, 12B detail the steps in a TLB miss
emulation routine.

FIG. 13 is an emulation subroutine 202 to invalidate TLB
entries for an old segment being unloaded.

FIG. 14 is a diagram of a physical memory space which
contains a user program, an operating System, and emulation
handler routines.

DETALED DESCRIPTION

The present invention relates to an improvement in
address generation. The following description is presented
to enable one of ordinary skill in the art to make and use the
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

This is a continuation-in-part of (CIP) of "Emulation of
Segment Bounds Checking using Paging with Sub-Page
Validity”, U.S. Pat. No. 5.440,710 U.S. Ser. No. 08/207,857
filed Mar. 8, 1994, hereby incorporated by reference. Addi
tional background information on segmentation and paging
is provided in the parent patent.

Several embodiments of a RISC-type paging system
adapted for emulation of segment bounds checking are
presented in the parent, U.S. Pat. No. 5.440,710. The basics
of a software emulation routine was presented. However,
more efficient procedures to implement the emulation of
segmentation are desired. Novel emulation routines and data
structures have been invented for use with a CPU having a
RISC-type paging system.

CONCEPT OF CLEAR PAGES-FIGS. 4-5

The parent patent first disclosed that segment bounds need
only be checked for pages that contain a segment boundary.
For large segments, only the first page and the last page need
to be checked for segment boundary violations; pages
entirely within the large segment do not need to be checked
at all for segment bounds violations. Pages entirely within a
large segment are called "clear” pages.

FIG. 4 shows a large segment 14 in physical memory
space 78. Segment 114 begins at the segment base on page
3, and ends at the segment limit on page 10. Thus only pages
3 and 10 need to be checked for segment bounds violations.

25

30

35

45

50

55

65

6
Pages 3 and 10 are partially-valid pages for segment 114.
Pages 4, 5, 6, 7, 8, and 9 lie entirely within segment 114 and
are thus clear pages. Page 4 is the first clear page (FCP) of
segment 114, while page 9 is the last clear page (LCP) for
segment 114. When segment boundaries are not aligned to
page boundaries, the first clear page is always one page
above the first partial page, while the last clear page is
always one page less than the last partial page for the
segment. However, a Small segment (not shown) may not
have any clear pages.
First and Last Linear Addresses (FLA, LLA)

FIG. 5 is an enlarged view of the segment boundaries.
Memory space 78A is the lower portion of physical memory
space 78, while memory space 78B is the upper portion of
memory space 78. Page 4 is the first clear page (FCP), and
is identified by the starting address of page 4, FCP. The first
address of the segment, its base address, is indicated by the
first linear address (FLA) on page 3.

Page 9 is the last clear page (LCP), and is identified by the
starting address of page 9, LCP. The last address of the
segment, at its upper bound, is indicated by the last linear
address (LLA) on page 10, the last partial page. Since the
limit is the number of bytes in the segment, the upper
bound's address is the sum of the base address and the limit
(base-limit). Thus the last linear address (LLA) is base--
limit in the x86 architecture.
The concepts of clear pages, and first and last clear pages

and linear addresses, are useful in constructing emulation
routines and segment memory structures. By using these
concepts in emulation routines, the amount of information
cached on the CPU die from the segment descriptor may be
greatly reduced.

ACTIVE SEGMENT DESCRIPTOR CACHE IN
MEMORY-FG. 6

FIG. 6 highlights data structures in memory and on the
CPU die for emulation of segmentation. Segment descriptor
tables are kept in memory, as in the prior art. However,
rather than cache on the CPU die the full descriptors for six
active segments, these active descriptors are cached in
memory. Since memory is much less expensive than regis
ters on the CPU die, it is much more cost effective to cache
these descriptors in abundant memory than in the crowded
CPU die.
The segment's base address must still be stored on the

CPU die, since this base must be added to every address
generated by the user program. The segment selector, seg
ment limit, and attributes are not stored on the CPU die, as
they are not needed. Instead, the segment's attributes are
merged in with the page attributes in a TLB entry, so that the
most restrictive of the segment and page attributes is stored
in the TLB. For example, if the segment is read-write, but
the page is read-only, then the more restrictive attribute,
read-only, is loaded into the TLB for that page. Likewise, if
the privilege level is 3 for the segment but only 2 for the
page, the segment's more-restrictive privilege level of 3 is
loaded into the TLB's page entry.
The TLB entries also contain a new segment number field.

This segment number field can contain the three-bit segment
number that indicates which of the six active segments the
TLB entry corresponds to. In a preferred embodiment, this
segment number field contains six binary bits, with each bit
indicating if that TLB entry is valid for an active segment.
Thus a single TLB entry may be used by all six active
segments. A single TLB entry may be shared by two or more
active segments by setting two or more of the six segment
enable bits in the TLB's segment number field.

5,652,872
7

The TLB entry also contains a new partial page control
field. This field holds the bounds information for partial
pages, as will be explained for FIG. 9. This bounds infor
mation is conveniently generated when necessary from the
first and last linear address and clear page information: FLA,
LLA, FCP, LCP. The dashed lines of FIG. 6 indicate that the
partial page control field is generated from the FCP, LCP,
FLA, LLA fields in the active segment descriptor cache in
memory.
Memory Cache Stores FCP, LCP. FLA, LLA
The active segment descriptor cache in memory conve

niently stores additional information used to load the TLB
with segment information. Storing this information with the
segment descriptor improves the speed of the segmentation
emulation routine as the necessary information is stored in
one place.

FIG. 6 shows that the active segment descriptor cache
stores the first and last clear page and linear address infor
mation in fields FCP, LCP, FLA, LLA. These fields are
calculated each time a segment is loaded by a program
running on the CPU and the loaded segment becomes one of
the six active segments. The clear page information does not
need to be stored for each of the possibly thousands of
segments in the segment tables, which would increase the
memory required to store these segment tables.

Other information useful to the emulation handlers is also
stored with the active segment descriptor entries. This
information may include a pointer to a linked list of entries
in the TLB enabled for a particular segment. This linked list
is useful when a new segment is loaded and the old segment
must be flushed from the TLB. The emulation handler can
simply invalidate the TLB entries in the list for the old
segment, rather than search all entries in the TLB for entries
enabled for the old segment being purged. This extrafield is
labeled as field "x" in FIG. 6. Aroutine usingfieldx and the
linked list is described later in reference to FIG. 13.
The segment selector is also stored in the active segment

descriptor cache rather than on the CPU die. This selector is
used by the emulation routines to locate a particular descrip
tor in the segment descriptor tables in memory. The selector
contains an index into a segment table, and a bit to indicate
if a local or global descriptor table is to be used. Thus the
segment selector, like the segment limit, is removed from the
CPU die and placed in inexpensive memory.
The selector is usually generated by a user program or

operating system and loaded into a segment register on the
CPU die. The selector may first be loaded into a general
purpose register (GPR), or it may reside in memory. The
emulation routine is activated by a segment load instruction.
The emulation routine moves the new selector to the seg
ment register which will erase the old base address stored
there. The emulation routine then purges the old segment
from the TLB and active segment descriptor cache. After the
old segment has been purged, the emulation routine moves
the new selector from the GPR register or memory to the
active segment descriptor cache. This new segment selector
is then also used to locate the segment's entry in the segment
tables, and the new segment's base and limit and attributes
are fetched from the segment table and loaded into the active
Segment descriptor cache.
The segment selector is generated by the user program or

operating system and loaded into a segment register on the
CPU die. The emulation routine moves this segment selector
to the active segment descriptor cache, and uses the selector
to find the segment's entry in the segment tables, and copies
the base, limit, and attributes to the active segment descrip
tor cache. Thus the information in the active segment
descriptor cache originates from both the CPU die and the
segment table.

10

15

20

25

30

35

45

50

55

65

8
FIG. 6 shows that only the segment base must be stored

on the CPU die as a special register for segmentation. On a
RISC processor, certain general-purpose registers may be
designated by the system software or emulation routines for
storage of the six segment base addresses. Thus most of the
segmentation registers have been removed from the CPU.
The extension of the TLB with the segment number field and
partial page control fields is more streamlined than adding
segmentation logic, as existing paging hardware is extended
rather than new subsystems being added.
Segment Selector and Limit Not Stored on CPU-FIG. 7

FIG. 7 is another diagram of the location of segment
information in the system. The system includes memory 12'
and CPU die 10'. The CPU die 10' includes an arithmetic
logic-unit (ALU) 30 which includes address generation
logic. ALU 30 sends a program's effective address to
segment adder 42, which adds this effective address to the
segment's base address. The base address is stored in
segment registers 33, and one of six base addresses is
selected by the identifier or segment number received from
the ALU. The linear address produced by the segment adder
searches TLB 46 for a matching entry, and the physical
address is output if a matching entry is found.
As was described in reference to FIG. 6, segment registers

33' contains the base address, but not the selector or limit.
Active segment descriptor cache 35 contains the segment
selector and limit, as well as another copy of the base
address. Active segment descriptor cache 35 is called a
"cache” although it is in normal main memory, which is
typically constructed from dynamic RAM. It is a cache in
the sense that it holds a subset of the information in segment
descriptor table 14. Since only six segments can be active on
CPU 10' at any time, only six entries are needed in active
segment descriptor cache 35. Only the 3-bit segment number
identifier is needed to access an entry in cache 35, along with
the starting address of this table, which is either explicitly
stored in memory 12 or is part of the instruction code
executed by the emulation routines. However, the much
larger size of segment descriptor tables 14 requires that the
16-bit segment selector be used to point to a particular
segment's entry, rather than just the 3-bit segment number.
Thus access of the segment descriptor tables 14 is more
complex and slower, as the proper address is more difficult
to generate.

RISC PAGING HARDWARE EMULATES
SEGMENTATION-FIG. 8

FIG. 8 is a simplified diagram of the address generation
hardware on the RISC CPU. An ALU or address generate
unit 30 generates an effective address (E.A.) from execution
of a user's program. ALU30 also determines which segment
should be accessed. For example, when a data move instruc
tion is executed, an effective address for the data item in
memory is generated by ALU 30. This effective address is
typically in the data segment (DS:), so the segment number
outputted corresponds to the data segment. If the instruction
executed is a jump instruction, the effective address gener
ated is the address of a target instruction. In that case, the
effective address is in the code segment (CS:), and the
segment number outputted corresponds to the code segment.
An example of one possible mapping of active segments to
segment numbers is shown below in Table 1.

5,652,872

TABLE

Active Segments

Segment Name Code Segment #

Code Segment CS: OOO
Data Segment IDS: OO1
Stack Segment SS: 010
Extra Data Segment ES: Oil
Extra Data Segment FS: 100
Extra Data Segment GS: 101

The segment number selects one of the six base addresses
stored in the segment registers 33. The selected base address
is outputted on bus 36 to segment adder 42, which sums the
base and the effective addresses. The resulting linear address
(L.A.) searches through TLB 46 for an entry that matches
the upper 20 bits of this linear address. If a matching entry
is found, the segment number stored in that matching entry
must also match the segment number output from the ALU
30. If the segment numbers and linear addresses match, then
the physical address is read out of TLB 46 and combined
with the low 12 offset bits of the linear address (not shown)
and output to memory as the physical address.
The linear address is also loaded into data address register

60 (DAR). DAR register 60 holds all linear addresses,
whether for data, instructions or for the stack. The segment
number is loaded into a portion of data storage interrupt
service register 62 (DSISR). DAR register 60 and DSISR
register 62 are used by the PowerPCTM architecture for
exception handling. When no matching entry is found in
TLB 46, a page fault is signaled and the execution of the
user program suspends while the matching page entry is
fetched from page tables in memory. On some CPU's, the
page fault is handled by a hardware sequencer or state
machine. In the preferred embodiment, this page fault han
dler is a software routine that reads DAR register 60 to get
the linear address, which is used to locate the matching entry
in the page tables, and DSISR register 62, which is used to
indicate the status. Status can indicate if the linear address
corresponds to an instruction address or a data address.
Storing the segment number in this status register is conve
nient if the page fault handler must consult the active
segment descriptor cache. The opcode and any instruction
modifier bytes such as register specifiers or prefixes may
also be stored in DSISR register 62.
TLB 46 also contains partial page control fields, which

indicate if the page is a clear page, with no bounds checking
required, or a partially-valid page that must be checked.

TLB FIELDS FOR BOUNDS AND OFFSET
COMPARE LOGIC FG. 9

FIG. 9 shows in detail an embodiment for a TLB entry 64.
The upper 20 bits of the 32-bit linear and physical addresses
are stored in fields 66,68. Attributes are stored in attributes
field 70. Two page offset bounds fields 82.84 are provided
that contain the 12-bit page offset of the boundary of the
valid portion of the page, for partially-valid pages. Two
control fields 86.88 enable page offset bounds fields 82,84,
respectively. Each control field 86.88 is one bit. When the
control bit is high, comparison of the corresponding offset
bounds field to the offset of the current linear address is
enabled.
Two page offset bounds fields are provided in this

embodiment for efficient encoding of pages with two events,
which occur for Small segments that lie entirely within a

5

25

30

35

45

50

55

65

10
single page, program watchpoints, and faulty memory loca
tions. These are typically Small blocks within a page. Thus
by having two page offset bounds fields, the starting and
ending addresses for the small block may be specified.
The page offset bounds fields 82, 84 contain enough bits

to specify the page offset down to the desired granularity.
Thus for a 4K-byte page, which has 12 bits of address offset,
32-bit aligned word granularity requires that 10 bits be
stored in each page offset bounds field 82, 84, while full
byte-granularity requires that a full 12-bit offset address be
stored in each page offset bounds field 82, 84.

Sub-page logic 100 includes comparison logic 90 which
outputs a one to AND gate 94 when the 12-bit offset portion
of the current linear address is less than the 12-bit offset
bound stored in field 82. If the first control bit stored in
control field 86 is also enabled (high), then an error will be
signaled on bounds error line 99 from OR gate 98. Thus the
first comparison signals an error when the linear address is
below the first offset bounds.
The opposite type of comparison is performed for the

second offset bounds field. Comparison logic 92 outputs a
one to AND gate 96 when the 12-bit offset portion of the
current linear address is greater than the 12-bit offset bound
stored in field 84. If the second control bit stored in control
field 88 is also enabled (high), then an error will be signaled
on bounds error line 99 from OR gate 98. The second
comparison thus signals an error when the linear address is
above the second bounds.

Table 2 shows the encoding of control bits 86.88 and how
the 12-bit offset of the linear address is compared to the
offset bounds fields. In Table 2. “y” refers to the value stored
in first offset bounds field 82, while 'Z' refers to the value
stored in second offset bounds field 84. Proper programming
of these offset bounds fields and their control bits allows for
segment base checking at the lower bound of the segment,
or segment limit checking at the upper bound of the seg
ment. Comparison for both fields may be enabled to allow
for checking of very small segments that lie entirely within
a single page.

TABLE 2

Encoding of Partial Page Control Bits

Control Bits 86, 88 Error if Use

OO Never Clear Page, No Checking
01. >2. Segment Upper Bound
10 <y Segment Lower Bound

>z OR <y Segment Within a Page

Several types of events may be supported with two offset
bounds and the encoding of Table 2. With the control bits 86,
88 set to "00", the entire page is valid. An encoding of “10"
specifies that all address greater than the second offset bound
84 is valid, as when a segment begins within a page. The
"01" encoding may be used for the end of a segment, when
the upper bound ends within a page. Thus the first offset
bound 82 specifies the upper limit of validity within the
page. Encoding “11” specifies validity between the two
offset bounds 82, 84, which may be used to specify a
segment that lies entirely within a single page.

HARDWARE EQUIVALENT OF FCP, LCP. FLA,
LLA GENERATION-FIG. 10

FIG. 10 is a hardware embodiment for generating the first
and last clear page and linear address fields. The 32-bit base

5,652,872
11

address is broken into a 20-bit upper portion or page number
and a 12-bit lower portion of offset. OR gate 115 outputs a
low signal when all 12 lower bits of the base's offset are
Zero. All of the base's offset bits are zero when the base is
the first address of a page, when the segment's base is 5
aligned with the start of a page. If any of the 12 offset bits
are one, then the segment is not aligned to the page, and the
page number must be incremented. The first clear page is the
next page after the first partial page, so the 20-bit page
number of the base address must be incremented. Incre
menter 110 increments the 20-bit page number of the base
address when its carry-in input is high, which occurs when
OR gate 115 signals that any of the 12 offset bits are
O-ZO.

Incrementer 110 is only 20 bits in size, and its output is
stored as the page number for the first clear page 130 (FCP). 15
The 12 offset bits of the base address are stored as the 12
offset bits of the first linear address 120 (FLA). While both
the FCP and FLA could be stored as full 32-bit addresses,
preferably only a subset of these 32-bit addresses are stored,
as shown in FIG. 10. Since the address for the first clear page 20
130 will always be page-aligned, the 12 offset bits for FCP
will always be zero. Thus they do not need to be stored.
Storage space may be reduced by saving only the 20-bit page
number for the first clear page 130. The address of the first
linear address (FLA) 120 actually includes a 20-bit page 25
number as well as a 12-bit offset. The 20-bit page number for
the FLA will be one page lower than the first clear page in
all instances except when page-aligned. Since the 20-bit
page number is always either one less than the FCP, or equal
to the FCP, a separate 20-bit page number need not be stored 30
for both the FCP and the FLA. Thus a single 32-bit storage
can hold both the FCP and the FLA. The FCP is generated
by taking the 20 upper bits and appending 12 zeros for the
offset bits, while the FLA is generated by using the low 12
offset bits stored, and appending the upper 20 bits of the FCP 35
when all 12 offset bits are zero, or appending the upper 20
bits of the FCP decremented by one when all 12 offset bits
are not all Zero.
The upper bound of the segment is the limit. However, the

limit is expressed as the maximum effective address of the 40
segment, where the segment base is at effective address zero.
Thus the upper bound expressed as a linear address is the
base added to the limit, base-limit. Adder 126 adds the
32-bit base to the 32-bit limit and stores the upper linear
address in storage 136. AND gate 134 receives all 12 offset 45
bits of the upper bound stored in storage 136, and outputs a
one or high signal if all offset bits are one. When all offset
bits are one, the offset in hexadecimal is FFFh. Offset FFFh
is the last address on a page. Thus the upper bound is page
aligned when all 12 offset bits are one. AND gate 134 50
outputs a decrement signal to decrementer 128 when the
upper bound is not page-aligned, which causes decrementer
128 to subtract one from the 20-bit page number of the upper
bound is storage 136. The decrementer's result is stored as
the page number of the last clear page 132 (LCP). The 12 55
offset bits of the upper bound from storage 136 are stored as
the last linear address 122 (LLA).

Again, the last clear page and last linear address are
actually two 32-bit addresses, but only one 32-bit value is
stored. When the 12 lower bits stored as LLA 122 are all one, 60
then the 20 upper bits stored as LCP 132 are simply
appended to LLA to get a 32-bit value for LLA. When any
of the 12 offset bits are zero, the upper bound is not
page-aligned, and the 20 bits stored as LCP must be incre
mented by one before being appended to the 12 offset LLA 65
bits. The full 32-bit LCP value is always the 20-bit LCP132
stored with 12 zero bits appended as the offset.

12
Thus storing the clear page addresses as 20-bit page

numbers, and the first and last linear addresses as 12-bit
offsets reduces storage requirements by half without the loss
of address information. The active segment descriptor cache
in memory preferably stores the FCP, LCP, FLA, LLA
values as 20 and 12-bit values as described here for FIG. 10.

SEGMENT LOAD EMULATION ROUTINE -
FIG. 11

In a preferred embodiment, the calculation of FCP, LCP,
FLA, LLA values is performed by software when the
segment is loaded. When a user program "loads” a new
segment, a segment selector is generated by the program or
operating system, and moved or loaded into a segment
register. In a CISC CPU, this load would invoke a hardware
sequence that would fetch the segment table entry from
memory and cache the descriptor on the CPU die, and
perform a series of attribute and privilege checks. The RISC
CPU of the present invention would not directly support this
move instruction that transfers the selector to the segment
register. Instead, when the opcode is decoded for the seg
ment load instruction, an invalid or undecodable opcode is
detected. This calls a software emulation routine, which
decoded the opcode and emulates or performs the function
that would be performed by the CISC hardware.

FIGS. 11A and 11B show the steps in a routine that
emulates segment loading. When a user program or operat
ing system executes an instruction to load a new value into
one of the six segment registers, the instruction decoder is
unable to decode that segment load instruction since the
CPU's hardware does not directly support segmentation.
The instruction decoder signals an invalid opcode, which
interrupts the user program or operating system. Emulation
code is entered and the opcode is decoded by the software
emulation routine, possibly with a partial or pre-decode by
the instruction decoder that selects one entry point into the
emulation code out of several possible entry points. The
entry point is an address of the first instruction to execute in
the emulation routine.

The first step 202 in the segment load emulation routine
is to invalidate any entries in the TLB for the old segment.
One approach would be to flush the entire TLB by invali
dating all entries in the TLB. This could have a severe
performance penalty. A search could be performed by read
ing every TLB entry and comparing the segment number
field in each TLB entry to the segment number for the
segment being loaded. If the segment numbers match, then
the TLB entry is invalidated. If the segment number field of
the TLB is the preferred embodiment having six bits, one for
each segment, then the particular bit for the segment being
replaced is checked and cleared if active. Other bits for other
segments would not be changed. If all segment bits are off,
then the entry could be removed from the TLB entirely by
invalidating the entry. A preferred embodiment of the TLB
invalidate step 202 using linked lists is shown later in FIG.
13.

Once all TLB entries for the old segment have been
invalidated, the new segment is fetched in steps 204, 206.
The segment selector is retrieved, from a general-purpose
register on the CPU, from a memory location, or from
immediate data that is specified by the segment loadinstruc
tion. The segment selector contains an index into a segment
table, and a global/local bit to determine if a local or global
segment descriptor table is to be accessed. Other informa
tion identifying the user and the starting location in memory
of these segment tables is normally stored by the operating

5,652,872
13

system on the CPU die for a CISC CPU, but is stored in
memory by emulation code in the present invention. A
pointer or address of the particular segment's entry in the
segment tables in memory is derived (204) from the selector
and the other information stored by emulation code. The
segment entry stored at the pointer's location in memory is
retrieved (206) and copied to the active segment descriptor
cache in the emulation code's portion of the memory.
The information copied to the active segment descriptor

cache includes the segment base address, limit, and
attributes that are stored in the segment table. The selector
is also copied into the active segment descriptor cache from
the emulation routine that extracted the selector from a
register, memory, or the segment load instruction.
Only the base address from the segment descriptor in

memory is copied to the CPU die and loaded into one of the
general-purpose registers (GPR's) which holds the segment
base (step 208). Any of the unused GPR's may be used for
holding the segment base; thus no specific segment register
is needed, although for clarity one of these GPR's is shown
in the figures as the “segment register" holding the segment
base. The segment limit is left in memory in the active
segment descriptor cache.

O

15

20

The emulation routine reads the base address, step 210
and determines if the lower 12 bits of the base are all Zero
(step 212). The segment base is page-aligned if all 12 lower
bits are zero. When page-aligned, the FCP field in the active
segment descriptor cache is loaded with the 20-bit page
number, which is the 20 most-significantbits (MSB's) of the
base address (step 216). When the segment base is not
page-aligned, the 20 MSB's of the base address are incre
mented by one and the loaded as the FCP. step 214. This is
equivalent to adding 4096 to the page's address, or incre
menting the page number by one to yield the first clear page.
The 12 least-significant bits (LSB's), or offset, of the

segment base are stored in the active segment descriptor
cache as the first linear address (FLA) for the segment being
loaded (step 218). Thus 32 bits of memory are used to store
both the FCP and the FLA. Of course, 64 bits of memory
could be used if the FLA and FCP were each stored as full
32-bit values. This may save some processing time.

FIG. 11B is a continuation of FIG. 11A. In step 220, the
base and limit are read, either from the segment table or
preferably from the active segment descriptor cache. The
base is added to the limit by the emulation routine by coping
the base and limit to temporary general-purpose registers
(GPR's) on the CPU and using an ADD instruction, with the
result being saved to a GPR register or to emulation memory
(step 222). If the 12 offset bits of the base-limit result from
step 222 are all ones (FFF hex), then the upper bound is
page-aligned and the LCP field of the active segment
descriptor cache is simply loaded with the upper 20 bits of
the baselimit result that was temporarily stored in step 222.
If any of the LSB's are zero, then the upper bound is not
page-aligned (step 224) and the LCP field is loaded with the
upper 20 bits of the base-limit result decremented by one,
step 226. Decrementing the LCP by one is equivalent to
subtracting one page-length (4K) from the upper bound's
page number, yielding the last clear page.
The last linear address (LLA) field is loaded with the 12

lower bits of the base-limit result, step 230. If these FCP,
LCP. FLA, LLA values were merely stored in temporary
storage such as in GPR's, then they must now be copied to
the active segment descriptor cache in memory, step 232. If
the FCP. LCP. FLA, LLA values were stored directly to the
active segment descriptor cache as they were generated then
step 232 is not necessary.

25

30

35

45

50

55

65

14
TLB MISS EMULATION ROUTINE-FIG. 12

Another emulation routine is needed for handling page
faults. Page faults occur when a linear address is presented
to the TLB, but the TLB does not contain any matching
entries. For the present invention, a page fault can also occur
when a TLB entry is found with a matching linear address,
but the segment number field in the TLB does not match the
segment number for the linear address, or the segment's
enable bit is not active for that matchingTLB entry. This can
occur when a user program attempts to access another user's
segment with the proper linear address, but has not been
granted privilege to access that segment. Thus segment
faults can initially be signaled as page faults. Another
common cause for a page miss is a first write to a page
present in the TLB. This first write makes the page "dirty",
and a dirty or accessed bit is set in the page tables. The more
generic term “TLB miss” is thus used to describe page faults
caused either by lack of matching linear address, first write
to a page, or segment faults caused by lack of a matching
segment number.

FIGS. 12, 12A and 12B detail the steps in a TLB miss
emulation routine. This routine is activated when the TLB
hardware is unable to complete address translation, as dis
cussed above. The user program or operating system is
interrupted and a starting address for the TLB miss emula
tion routine is loaded into the CPU's instruction fetcher.
When the TLB generates an interrupt or exception for a

page fault, TLB miss routine 300 is started. The segment
number is stored for each faulting linear address in DSISR
register 62 as discussed for FIG. 8. Likewise each faulting
linear address is stored in DAR register 60. When the page
fault is signaled, DAR register 60 and DSISR register 62
will be loaded with the values for the faulting linear address
and segment. The segment number is extracted from the
DSISR register by the emulation routine 300 which reads at
least a portion of DSISR register 62, step 302. A pointer to
one of the six entries in the active segment descriptor cache
is generated, step 304. The emulation routine 300 may
simply store a memory pointer to the first entry in the active
segment descriptor table, and add the segment number
multiplied by the size of each entry.
The active segment descriptor cache is read, and the FCP

and LCP values are read (step306) for the segment indicated
by the segment number in the DSISR register 62. If the
linear address is greater than the first clear page (FCP), and
less than or equal to the last clear page (LCP), then the linear
address lies in a clear page and the whole page is valid.
Whole page valid subroutine 320 is then activated, FIG.
12A.

If either of the FCP and LCP tests 308,310 fail, then the
linear address lies in a partial page at the ends of the segment
or a bounds fault may have occurred. An additional level of
bounds checking is then performed by the emulation routine
300. The pointer from step 304 is again used to read the
active segment descriptor cache to obtain FLA and LLA.
Although all fields-FCP, LCP, FLA, LLA-could have
been read at once in step 306, this would require at least a
64-bit data transfer, which might require additional bus
cycles. Thus only 32 bits are read in step 306 and additional
read step 312 is needed to read FLA, LLA.
The second level of checking compares the linear address

to FLA and LLA, steps 314,316. If the linear address from
DAR register 60 is less than the first linear address (FLA),
then the linear address is below the lower bound of the
segment and a segment bounds fault is signaled, 360.
Likewise, if the linear address is greater than the last linear

5,652,872
15

address LLA, the linear address is above the upper bound
and the segment bounds fault signaled. Otherwise, if checks
314, 316 pass, then the linear address is within the segment
bounds and no segment fault is signaled. Instead, partial
page subroutine 340 of FIG. 12B is activated to complete
loading of the TLB.
The first and second levels of checking do not have to

perform full 32-bit compares. For the first level, steps 308,
310, the FCP and LCP values are compared. Since these
values are stored as 20-bit page numbers, the upper 20 bits
of the linear address may simply be compared. Alternatively,
12 zeros may be appended to the FCP value before com
parison. For LCP 12 ones are appended to the 20-bit LCP
value before 32-bit comparison. The second level
comparison, 314, 316, may be just a 12-bit comparison of
the 12-bit FLA, LLA values stored in the active segment
descriptor cache, if the 20-bit compare result is saved. If a
full 32-bit comparison is used, then the 20-bit page numbers
FCP. LCP, must be selectively decremented or incremented,
respectively, if the bound's linear addresses are not page
aligned (step 312).

If a segment bounds fault is signaled, 360, then an
additional emulation routine is entered (not shown). Seg
ment bounds faults are serious and typically the user pro
gram must be halted and control returned to the operating
system. Clean-up routines are then executed which are well
known.
Whole Page Valid-FIG. 12A
When the whole page is valid, as determined by the first

level of checking for clear pages, subroutine 320 of FIG.
12A is executed. Debug or breakpoint processing 380 is first
executed, which checks a debug enable register to determine
if any breakpoints are active, and performs special process
ing if necessary. Once debug processing is complete, a
pointer to the page tables in memory is derived from the
linear address, step 322. The upper 20-bit page number of
the linear address from DAR register 60 are used together
with a starting address for a page table to locate the proper
page entry. Thus the page number acts as an index into a
page table. The starting address of the page table is stored in
emulation memory or an unused GPR for the present
invention, although for CISC machines it was stored as a
special register on the CPU. Several levels of page tables
may be used, with the first level of page tables being a
directory of page tables and the second level being the user's
local page table. While appearing to be complex, multi-level
page tables are well-known in the art.
The page table entry from the final level of page tables is

retrieved from memory, step 324. This page table entry
(PTE) includes a 20-bit physical page number and attributes,
which are re-ordered for placement in the TLB. The dirty or
accessed bit for the page may be updated at this time. The
segment's attributes must also be fetched from the active
segment descriptor cache as described in steps 304,306 for
other fields of the active segment descriptor cache. The
segment's attributes are merged into the page attributes by
selecting the most-restrictive to the page's and segment's
attributes for each type of attribute. The upper 20 bits of the
linear address, and the upper 20 bits of the physical address,
and attributes are used to construct the TLB entry. These
fields may be written separately to the TLB, or preferably
they are first assembled and grouped together in memory
before being written to the TLB.
The partial page control bits are also set to "00", indicat

ing that the whole page is valid and disabling bounds
checking on subsequent accesses to this TLB entry. The
segment number is also loaded into the TLB entry, or the

O

15

20

25

30

35

45

50

55

65

16
segment's enable bit in the six-bit segment number field is
enabled, step 330. Finally the fully-assembled TLB entry is
loaded into the TLB, step 332, if it was not loaded
piecemeal-fashion.
At this point the faulting user program may be resumed,

allowing the faulting instruction to be re-executed, and the
linear address in the DAR register re-generated to be trans
lated by the newly-loaded entry in the TLB.
Partial Page Valid-FIG. 12B
FIG.12B shows TLB loading when only apart of the page

is valid. Many of the same steps are used by partial-page
loading subroutine 340 as shown and described for FIG.
12A.
The partial page control bits are set to a value other than

"00", indicating that only a partial page is valid, step 344.
Table 2 shows encoding for these partial-page control bits.
The offsetboundsfields 82, 84 of FIG. 9 are loaded in step

342 with the 12-bit FLA and/or LLA values retrieved from
the active segment descriptor cache. It may be necessary to
read FLA and LLA from memory again (as shown in steps
304,312) if they are not still stored in temporary GPR's on
the CPU. If the page contains an upper bound, as indicated
by LCP compare step 310 failing, the LLA must be loading
into page offset bounds field 84, and the partial page control
bits are set to "01". If the page contains a lower bound, as
indicated by FCP compare step 308 failing, the FLA must be
loading into page offset bounds field 82, and the partial page
control bits are set to "10". If both LCP and FCP compare
steps 308,310 were to fail, then both the upper and the lower
bound lie within the page. Page offset field 82 is loaded with
the FLA and page offset field 84 is loaded with the LLA, and
the partial page control bits are set to "11", enabling both
upper and lower bounds checking on subsequent TLB
aCCCSSCS.

Other steps are similar to those shown and described for
FIG. 12A.

ROUTINE TO INVALIDATE OLD SEGMENTS
TLB ENTRIES FG, 13

FIG. 13 is an emulation subroutine 202 to invalidate TLB
entries for an old segment being unloaded. This subroutine
202 is called from the segment load routine 200 of FIG. 11A.
Six linked lists are set up in emulation subroutine 202's
memory, one for each active segment. Alinked list is a series
of entries, with each entry having a data item and a pointer.
The pointer points to the address of the next entry in the
linked list. Thus the items are “linked” together by their
pointers. When a linked list is used, an entry is added to the
linked list for a segment each time a new translation is
loaded into the TLB for that segment (this is done during
step 332 of FIGS. 12A, 12B). Typically the new entry is
added to the end of the linked list and the pointer to the new
entry is added to the formerly-last entry. An entry is deleted
from the linked list each time a segment's translation is
removed from the TLB, as when a TLB entry is replaced.
The TLB miss routine must include a search routine to locate
the linked list for each segment enabled for that TLB entry,
and then locate the entry in the linked list for that translation
and deleted the entry. The pointer of the previous entry in the
linked list is replaced with the deleted entry's pointer.
The invalidation subroutine 202 reads the segment num

ber and reads the pointer to the first item in that segment's
linked list, step 402. This pointer may be stored in the active
segment descriptor cache in field "x" of FIG. 6. The first
item in the linked list is read at the memory location pointed
to by the pointer, step 404. That item includes a pointer to
an entry in the TLB for that segment. The TLB entry pointed

5,652,872
17

to by the first itemis invalidated for that segment by clearing
its segment enable bit in the segment number field of the
TLB entry, step 406. A checkis made to determine if the end
of the linked list has been reached, 408. If not, the first item's
pointer is read, and the second item is retrieved, 410. The
TLB entry corresponding to the second item is then
invalidated, 412. This process is repeated until the end of the
linked list is reached, and all TLB entries for that linked
list's segment are invalidated.
An alternate embodiment of the linked list is to include an

additional first-link bit in field X. The first-link bit is set
when the first page for a segment is loaded into the TLB.
Thus old segments with no active TLB entries can be
swapped out without consulting the linked list. However,
once the first entry is loaded into the TLB for a segment,
then the first-link bit is set in its active segment descriptor
cache entry, and purging this old segment would require
consulting the linked list as described.
Another alternative is to have a gang-clearfunction in the

TLB hardware. The gang-clear would be asserted by writing
a command to the TLB, identifying the segment number. All
TLB entries would have this segment's valid bit cleared by
this gang-clear. While this rapidly clears the TLB of the old
segment, it requires additional hardware in the TLB, such as
an AND gate for each segment valid bit in each TLB entry
or location.

A brute force approach is to read each entry in the TLB
and compare its segment valid bits to the current segment,
or to write back these segment valid bits with the old
segment's valid bit cleared. Reading and writing each TLB
entry can require many separate clock cycles though.

SOFTWARE HANDLER ROUTINE

FIG. 14 is a diagram of a physical memory space 78
which contains a user program 110, an operating system 112,
and emulation handler routines 117. Emulation handler
routines 117 include several routines activated for different
reasons. These routines include TLB miss routine 300 and
segment load routine 200, detailed in FIGS. 11, 12. Segment
descriptor tables 14 resides near operating system 112, while
active segment descriptor cache 35 resides near emulation
handler routines 117.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. Various combinations of the embodiments
described and trade-offs among them are possible. Instead of
designating sub-pages down to byte-granularity, sub-pages
could be defined only down to an intermediate granularity,
with software checking the remaining references.
A page size of 4096 bytes was described with reference to

the embodiments, but other page sizes and address sizes may
be easily substituted by one skilled in the art. Standard
expand-up segments were described, but expand-down seg
ments may also be used. Expand-down segments are com
monly used for stacks while expand-up segments are used
for code and data segments. These segment types are well
known in the art. Many other combinations of the embodi
ments disclosed are possible in light of the teachings herein.
FIG.7 described a separate segment adder that added the

segment base address to the effective address in the memory
management unit (MMU). Amore preferred embodiment is
disclosed in the parent patent that performs this addition in
the ALU rather than in the MMU. The two-port adder in the
ALU is expanded to three ports to allow the segment base to

10

15

20

25

30

35

45

50

55

65

18
be added in when the effective address is being generated.
This blurs the distinction between the ALU and the MMU,
but generates the linear address in fewer steps.

While an embodiment with only two page offset bounds
fields 82, 84 (FIG. 9) has been explained, it would be
obvious for one skilled in the art to employ a different
number of offset bounds fields or a different number of
encoding control bits 86,88. For example, the encoding may
be changed for greater than or equal to a page offset bound
value, and still fall within the spirit of the invention. Addi
tional control bits may also be added. A "100" encoding
could specify that the entire page is valid except the region
between the two offset bounds 82, 84. This is useful for
watchpoints and disabling faulty memory locations. Any
reference between the two bounds 82.84 would cause a page
fault.

Another embodimentis to not load any partial pages in the
TLB. Only clear pages are loaded into the TLB. All refer
ences to partial pages at segment boundaries will cause a
TLB miss. The TLB miss handler operates as described,
except that partial pages are not loaded into the TLB. At the
point that the new partial page would otherwise be loaded
into the TLB, the TLB miss handler must emulate the
memory reference causing the page fault, or load a special
one-time TLB entry that will be valid for only one reference,
after which it will become invalid. The one-time TLB entry
is described in the parent patent. The segment load and TLB
miss emulation routines described herein may be applied to
these other embodiments described at length in the parent
patent.

Debug or program watchpoint emulation may be com
bined with the invention by designating these watchpoints as
invalid offsets within a page. Additional bounds fields and
compare logic may be needed to efficiently handle both
segment bounds and watchpoints on a single page. The
emulation routines described herein may be modified to
program in additional bounds fields or modify existing
segment bounds fields during the debug processing step.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is notintended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A system for emulating segmentation on a processor

with page-address translation, the system comprising:
a central processing unit (CPU) comprising:

a segment register for storing a base address of an
active segment, the active segment being accessed
by a user program executing on the CPU, the seg
ment register not storing a limit for the active seg
ment;

linear address generation means, receiving an identifier
for the active segment from the user program, for
selecting the segment register containing the active
segment and adding the base address of the active
segment to an address from the user program, the
linear address generation means outputting a sum as
a linear address;

a translation-lookaside buffer (TLB), receiving the lin
ear address from the linear address generation
means, the TLB comprising a plurality of page
translation entries for pages in memory having a

5,652,872
19

fixed number of offset addresses, each page transla
tion entry comprising a linear address field and a
physical address field, the TLB outputting the physi
cal address field for a matching entry when a portion
of the linear address matches the linear address field
in the matching entry;

a memory having a plurality of storage locations addres
sable by a plurality of physical
addresses, the memory having:
a first portion for storing a segment descriptor table

comprising a plurality of segment descriptors, each
segment descriptor having attributes, a base address,
and a limit for a segment; and

a second portion for storing an active segment descrip
tor cache, the active segment descriptor cache com
prising a plurality of entries for active segments
loaded in the CPU for access, the identifier for the
active segment selecting a selected cache entry for
the active segment, each entry comprising:
a copy from the segment descriptor table of the

attributes of one of the active segments;
a first clear page field indicating the address of a first

clear page in the active segment, the first clear
page having all offset addresses within the page
being valid for access;

a first linear address field indicating a first linear
address for the active segment;

wherein the segment's limit is not stored on the CPU but is
only stored in the memory.

2. The system of claim 1 further comprising:
emulation handler means, for execution on the CPU, for

checking for segment bounds violations of linear
addresses for pages not having all offset addresses
within the page valid,

wherein segment bounds are checked only for pages not
having all offset addresses within the page valid, wherein
clear pages with all offset addresses valid are not checked for
segment bounds violations.

3. The system of claim 1 further comprising:
a bound field in the matching entry in the TLB, the bound

field containing a bound for the active segment;
segment bounds checking means, receiving the bound
from the matching entry of the TLB, for comparing a
portion of the linear address to the bound, signaling a
segment bound violation if the linear address is outside
the bound for the active segment.

4. The system of claim 3 wherein the segment bounds
checking means is disabled when the matching entry con
tains a clear page with all offsets within the page valid for
access by the active segment, wherein segment bounds are
checked only for pages not having all offset addresses within
the page valid, wherein clear pages with all offset addresses
valid are not checked for segment bounds violations.

5. The system of claim 1 wherein each entry in the active
segment descriptor cache further comprises a copy from the
segment descriptor table of the base address and the limit of
one of the active segments.

6. The system of claim 1 wherein each entry in the active
segment descriptor cache further comprises a selector for the
active segment, the selector containing an index into the
segment descriptor table.

7. The system of claim 1 wherein each entry in the active
segment descriptor cache further comprises:

a last clear page field indicating the address of a last clear
page in the active segment, the last clear page having
all offset addresses within the page valid for access; and

10

15

20

25

30

35

45

50

55

65

20
a last linear address field indicating a last linear address

for the active segment.
8. The system of claim 7 further comprising:
a bound field in the matching entry in the TLB, the bound

field containing a bound, the bound being an upper
bound or a lower bound for the active segment;

segment bounds checking means, receiving the bound
from the matching entry of the TLB, for comparing a
portion of the linear address to the bound, signaling a
segment bound violation if the linear address is outside
the bound for the active segment;

wherein the segment bounds checking means is disabled
when the matching entry contains a clear page with all
offsets within the page valid for access by the active
segment, the clear page being the first clear page, the
last clear page, or a page between the first clear page
and the last clear page,

wherein segment bounds are checked only for pages not
having all offset addresses within the page valid, whereas
clear pages with all offset addresses validare not checked for
segment bounds violations.

9. The system of claim 8 further comprising a TLB miss
routine, the TLB miss routine comprising:

means for activation of the TLB miss routine when no
matching entry is found in the TLB having a linear
address field matching a portion of the linear address;

means for retrieving a page table entry from a third
portion of the memory;

means for loading the page table entry into the TLB;
means for reading the identifier for the active segment;
means for selecting the selected cache entry for the active

segment in response to the identifier for the active
segment;

means for reading the first clear page field and the last
clear page field from the selected cache entry;

means for comparing a page number portion of the linear
address to the first clear page field and the last clear
page field, including means for indicating that the
linear address is in a clear page when the means for
comparing indicates that the linear address is in the first
clear page, the last clear page, or a page between the
first clear page and the last clear page;

means for writing a disable bit to the page table entry in
the TLB, wherein the disable bit disables the segment
bounds checking means when the page table entry is in
the matching entry;

second compare means for comparing the linear address
to the firstlinear address field and the lastlinear address
field, and for signaling a segment bounds error when
the linear address exceeds the last linear address or is
less than the first linear address;

means for filling the bound field with the first linear
address field when the means for comparing indicates
that the linear address is below the first clear page, the
means for filling the bound field loading the last linear
address field into the bound field when the means for
comparing indicates that the linear address is above the
last clear page, the means for filling being disabled
when the segment bounds error is signaled;

wherein the TLB miss routine compares the linear address to
the first clear page field and the last clear page field to
determine if the linear address is in a clear page, and loads
the disable bit into the TLB when the linear address is to a
clear page.

10. The system of claim 1 wherein the linear address
generation means comprises a three-port adder, the three

5,652,872
21

port adder having at least three input ports which receive the
base address and effective address components of an address
from the user program.

11. The system of claim 1 wherein the segmentregisterfor
storing a base address of an active segment is a general
purpose register (GPR).

12. Amethod for emulating a segment load by a CPU, the
method comprising:

generating a pointer to a segment table entry in a segment
table in a memory;

copying a portion of the segment table entry to an active
segment descriptor cache in the memory;

copying a base address from the segment table entry to a
segment register on the CPU;

generating a first clear page (FCP) number identifying a
first clear page for an active segment, the first clear
page being a first page in the active segment with all
offset addresses within the page valid for access by the
active segment, the first clear page number being
(i) an upper portion of the base address when a lower

portion of the base address is a first offset address on
a page,

(ii) an upperportion of the base address incremented by
one page number when a lower portion of the base
address is not a first offset address on the page,

generating a first linear address (FLA) offset as the lower
portion of the base address;

storing the first clear page number (FCP) and the first
linear address offset (FLA) in the active segment
descriptor cache in the memory;

wherein the active segment descriptor cache is loaded with
the portion of the segment table entry but the CPU is loaded
only with the base address when the segment is loaded.

13. The method of claim 12 further comprising:
adding the base address to a segment limit, the base

address and the segment limit being stored in the
segment table entry for the active segment;

outputting the sum of the base address and the segment
limit as an upper bound for the active segment;

generating a last clear page (LCP) number identifying a
last clear page for the active segment, the last clear
page being the last page in the active segment with all
offset addresses within the page valid for access by the
active segment, the last clear page number being
(i) an upper portion of the upper bound when a lower

portion of the upper bound is a last offset address on
a page,

(ii) an upper portion of the upper bound decremented
by one page number when a lower portion of the
upper bound is not a last offset address on the page,

generating a last linear address (LLA) offset as the lower
portion of the upper bound;

storing the last clear page number (LCP) and the last
linear address offset (LLA) in the active segment
descriptor cache in the memory;

wherein the active segment descriptor cache is loaded with
a portion of the segment table entry and the FCP, LCP. FLA,
and LLA.

14. The method of claim 13 wherein the upper portion of
the base address is a page number and wherein the lower
portion of the base address is an offset address on a page.

15. The method of claim 14 wherein the method is
activated by a segment load instruction executed by a user
program.

O

15

20

25

30

35

45

50

55

65

22
16. The method of claim 11 further comprising the step of:
clearing segment valid bits in a translation-lookaside

buffer (TLB) for an old segment being replaced by the
segment load, the old segment having a same segment
number as the active Segment.

17. The method of claim 16 wherein clearing the segment
valid bits comprises:

asserting a gang clear, the gang clear clearing all segment
valid bits in the TLB for the old segment.

18. The method of claim 16 wherein clearing the segment
valid bits comprises:

searching the TLB for old entries having the segment
valid bit set for the old segment, and clearing the
segment valid bit set for the old segment for the old
entries.

19. The method of claim 16 wherein clearing the segment
valid bits comprises:

searching a linked listin memory for TLB entries having
the segment valid bit set for the old segment, and
clearing the segment valid bit set for the old segment
for the old entries.

20. A method for loading a translation-lookaside buffer
(TLB) on a central processing unit (CPU), the method
comprising:

deriving a pointer to an entry in an active segment
descriptor cache in a memory;

reading a first clear page number and a last clear page
number from the entry;

comparing a page number portion of a linear address to
the first clear page number;

comparing the page number portion of the linear address
to the last clear page number;

loading the TLB with a clear page translation entry having
all offset addresses valid for access by a segment when
the page number portion is
(a) not less than the first clear page number, and
(b) not greater than the last clear page number;

when the clear page translation entry is not loaded:
reading a first linear address offset and a last linear

address offset from the entry;
decrementing the first clear page number if the first

linear address offset is zero and concatenating with
the first linear address offset to produce a first linear
address;

incrementing the last clear page number if the last
linear address offset is a last offset on a page and
concatenating with the last linear address offset to
produce a last linear address;

comparing the linear address to the first linear address;
comparing the linear address to the last linear address;
signaling a segment bounds violation when the linear

address is less than the first linear address or greater
than the last linear address;

loading the TLB with a partial page translation entry
having not all offset addresses valid for access by the
segment when a segment bounds violation is not
signaled;

whereby the first and last clear page numbers in the active
segment descriptor cache are compared to the linear address
and a fully-valid page translation is loaded into the TLB
when a clear page is found.

ce k k . .

