
United States Patent (19)
Richter et al.

54

75

73

21

22

63

51
(52)
58

56

METHOD FOR EMULATING MULTIPLE
DEBUG BREAKPONTS BY PAGE
PART TONING USING ASINGLE
BREAKPONT REGISTER

Inventors: David E. Richter, Milpitas; James S.
Blomgren, San Jose, both of Calif.

Assignee: Exponential Technology, Inc., San
Jose, Calif.

Appl. No.: 436,136
Filed: May 8, 1995

Related U.S. Application Data

Continuation-in-part of Ser. No. 207,857, Mar. 8, 1994, Pat.
No. 5,440,710.
Int. Clar. G06F 12/10
U.S. Cl. 395/500; 395/800.41; 711/207
Field of Search 395/500, 417,

395/375, 800

References Cited

U.S. PATENT DOCUMENTS

4,675,646 6/1987 Lauer 340/146.2
5,239,642 8/1993 Guiterrez et al 395/425
5.249,278 9/1993 Krauskopf............................... 395/400
5,371,894 12/1994 DiBrino 395/800
5,440,710 8/1995 Richter et al. 395/417
5.530,822 6/1996 Beavers 395/417
5.535,351 7/1996 Peng .. 395/417

78

USER
PGM

OJS

114 PAGE

135

300

200

TABLES

DEBUG REG
SETUP MEM

HANDLER

TLB MSS
DEBUG LOAD

USOO5664159A

11. Patent Number: 5,664,159
45 Date of Patent: Sep. 2, 1997

5,560,013 9/1996 Scalzi et al. 395/700
5,560,035 9/1996 Garget al. 395/800

Primary Examiner-Kevin J. Teska
Assistant Examiner-Andrew S. Roberts
Attorney, Agent, or Firm-Stuart T. Auvinen
57 ABSTRACT

A single breakpoint address register on a CPU is shared to
emulate a plurality of breakpoint registers. A plurality of
breakpoints are stored in an emulation area of main memory.
One of these breakpoints is loaded into the single breakpoint
register on the CPU. When a translation-lookaside buffer
(TLB) on the CPU detects a page miss, a page miss handler
activates a debug processing routine to determine if the
faulting page contains one of the breakpoints. If the faulting
page does contain a breakpoint, then this breakpoint is
written to the single breakpoint register on the CPU. Any
page in TLB is invalidated if it contained the old breakpoint
that was overwritten by the new breakpoint in the single
breakpoint register. Thus only one breakpoint can have a
page translation in the TLB at any time, and the breakpoints
are swapped in and out of single breakpoint register when
the TLB entries are swapped. A TLB invalidate entry
instruction finds the old breakpoint's TLB entry and invali
dates it. When multiple breakpoints exist on a single page,
then that page is divided into partial pages, with each partial
page having just one breakpoint. The TLB entries contain
upper and lower bounds fields to identify the extent of the
partial page. A bit in the condition register is set when
multiple breakpoints exist on the same page.

18 Claims, 14 Drawing Sheets

110

U.S. Patent Sep. 2, 1997 Sheet 1 of 14 5,664,159

N es es S

v N

S S.

o -

H O w CN cr) o

?h O O ?h
?

O

O O O O w
OO wer V

vie

s

U.S. Patent Sep. 2, 1997 Sheet 2 of 14 5,664,159

n
? n

Il-3 Gl-3
CO OO
CY) cy)

<n& O
n

n Y H g 5
? s

CO

OO cy)

<
D

.9)
-

S

5,664,159 Sheet 3 of 14 Sep. 2, 1997 U.S. Patent

ZT_LO | LT LOZ CINE 5Dc|| || || CINE SOd 989878 ?79

| 9

5Dd º WHCH

99

U.S. Patent Sep. 2, 1997 Sheet 4 of 14 5,664,159

78

110

USER
PGM f
O/S

PAGE
TABLES

114

DEBUG REG
135 SETUP MEM

HANDLER
TLB MISS

DEBUG LOAD
300

200

Fig. 4

U.S. Patent Sep. 2, 1997 Sheet 5 of 14 5,664,159

a

TB Miss PAGE F 5
LOAD

320

IS N 310 FREELY LOAD 1 DEBUG
N(ENABLED PAGE ENTRY TO

TLB

Y

330 DOES
NCOMING

PAGE CONTAIN
A BP 300

Y 360
340

BP'S PER PAGE
? LOAD NCOMING

BP INTO DABR

Y

350
BREAK PAGE INTO PARTIAL PAGE ENTRY
PAGES WITH 1 BPEACH INTO TLB

LOAD NCOMING 370

REMOVE TLB 380
END ENTRY FOR

OUGOING BP

U.S. Patent Sep. 2, 1997 Sheet 6 of 14 5,664,159

MULT MULT
DEBUG DEBUGS DEBUG
ACTIVE ACTIVE PER PAGE

SINGLE
DBACTIVE

2ND DB
ON A PAGE

DB'S/PAGE

5,664,159 Sheet 7 of 14 Sep. 2, 1997 U.S. Patent

U.S. Patent Sep. 2, 1997 Sheet 8 of 14 5,664,159

x86 DEBUG REG
LOAD INSTR
DECODED

READ CRREG FOR DBA 210
MDB, MDBP

ADVANCE DEBUG SETUP 220
TRACKER STATE MACHINE

WRITE CR & UPDATE DBA, MDB, 23O 200
MDBP

240

Fig. 9

WRITE NEW BP ADOR TO TABLE
IN EMU MEM; SET VALIDS

270

250 N
1ST BP NVALIDATE ANY TLB ENTRIES
ENABLED MATCHING NEW BP

Y

260 WRITE NEW BP TO END
DABR

5,664,159 Sep. 2, 1997 U.S. Patent Sheet 9 of 14

- Ø2

@@@ 0090X LONG || 0090X ØØ

?ú0000X–0000X ??0070X ?ØX No. 9980

U.S. Patent Sep. 2, 1997 Sheet 10 of 14 5,664,159

- - - - - - - - - - - - - 135 EVULATION VULATIO 48
3O 16s MEMORY y 41 N

TLB ENTRY FINDER DEBUG
SETUP
TRACKER

1.) SETUP DB1=7C - 050

TLB TLB ENTRY FINDER DEBUG VAL RE3
SETUP
TRACKER

2.) SETUPDBO=01 121
TB DBO3 TLB ENTRY FINDER DEBUG

SETUP
TRACKER

U.S. Patent Sep. 2, 1997 Sheet 11 of 14 5,664,159

Egton - - -
MEMORY 8 'N t Y
TLB ENTRY FINDER DEBUG VAL KE

SETUP
TRACKER

3.) SETUP DB2=B8 3F8 TLB HIT & INVALIDATE, ENTRY #0

TLB ENTRY FINDER DEBUG VAL EE
SETUP
TRACKER

4.) SETUP DB3=B8 14cl DB3 & DB2 ON SAME PAGE B8 OOO

TLB ENTRY FINDER DEBUG VAL EE
SETUP

DB IDB EN, TRACKER 1
NB # 1 a STATED

5.) DEBUG SETUP COMPLETE Fig 1 1 B

U.S. Patent Sep. 2, 1997 Sheet 12 of 14 5,664,159

MEMORY y" 41 N
TLB ENTRY FINDER DEBUG

SETUP
TRACKER

6.) E9 000 TLB MISS LOADED TO ENTRY F4

TLEB DBO:3
OXXOOO SETUP VAL ADDR

DABR 14FOOO TRACKER 1
23AOOO

7C05037Coo
4 E9000

TBENTRY FINDER DEBUG

7.) 7C 050 TLB HIT, ENTRY #3, DABRMATCH,
BREAKPOINT SIGNALED

TLB ENTRY FINDER DEBUG VAL RE3
SETUP
TRACKER 1

1
STATE D 1

1

U.S. Patent Sep. 2, 1997 Sheet 13 of 14 5,664,159

135 fini---------- MEMORY y" 'N 44 y
DBO:3

SETUP ADDR
TRACKER 1

1
STATED 1

1

TLB MSS LOADED TO ENTRY #2
DBO --> DABR, INVALIDATE TLB ENTRY #3

TLB ENTRY FINDER DEBUG VAL EE
SETUP
TRACKER 1

TLB HIT, ENTRY #2, DABRMATCH,
BREAKPOINT SIGNALED

TLEB MSS LOADED TO ENTRY #O
DB3 --> DABR, INVALIDATE TLB ENTRY #2
PARTIAL PAGE LOADED, UB-3F7, LB=OOO
DABRMATCH, BREAKPOINT SIGNALED

9.) 01 121

10.) B8 14C

TLB ENTRY FINDER DEBUG VAL RE3
SETUP
TRACKER 1

:

U.S. Patent Sep. 2, 1997 Sheet 14 of 14 5,664,159

16 48 41 3O N MEMORY y N

y HB TLB ENTRY FINDER DEBUG
O B8OOO SETUP

2 XXOOO
B814C3XX000 STATED

4 E9000

11.) B8 100 TLB HIT, ENTRY iO

12.) B8 3F7 TLB HIT, ENTRY #0

13.) B8 400 TLB MSS LOADED TO ENTRY #3
DB2 --> DABR, INVALIDATE TLB ENTRY #0

TLB ENTRY FINDER DEBUG VAL EE
DABR 99E SETUP

14FOOO TRACKER 1
2 XXOOO

B83F8 3B83F8 STATE D : 4 E9000

14.) B8 3F8 TLB HIT, ENTRY #3, DABRMATCH,
BREAKPOINT SIGNALED

15.) B8 A00 TLB HIT, ENTRY #3

PARTIAL PAGE LOADED, UB-FFF, LB-3F8

Fig. 12C

5,664, 159
1.

METHOD FOR EMULATING MULTIPLE
DEBUG BREAKPONTS BY PAGE
PARTITIONING USING ASINGLE

BREAKPONT REGISTER

BACKGROUND OF THE INVENTION
RELATED APPLICATIONS

This application is a continuation-in-part (CIP) of "Emu
lation of Segment Bounds Checking Using Paging with
Sub-Page Validity”, U.S. Pat. No. 5,440,710, U.S. Ser. No.
08/207,857 filed Mar. 8, 1994, assigned to the same
Assignee and with at least one common inventor. This
application is also related to "Emulation of Program Watch
point Checking Using Paging With Sub-Page Validity”, U.S.
Ser. No. 08/444,813, assigned to the same Assignee and with
at least one common inventor. This application is further
related to "A Translator having Segment Bounds Encoding
For Storage in a TLB", U.S. Ser. No. 08/436,137, also
assigned to the same Assignee and with at least one common
inventor.

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to computer systems, and more
particularly to emulation of breakpoint checking.

BACKGROUND OF THE INVENTION
DESCRIPTION OF THE RELATED ART

Advanced architectures such as RISC (reduced instruc
tion set computers) provide fewer computing resources in
hardware than older CISC (complex instruction set
computer) architectures. While RISC has the potential of
higher operating speeds than CISC, many programs have
been written for CISC architectures. Most personal comput
ers (PC's) use the x86 architecture, at present embodied in
CPU's such as the 386, 486, and PentiumTM manufactured
by Intel Corporation of Santa Clara, Calif., and others.
The parent application discloses a RISC architecture

capable of emulating certain aspects of the x86 CISC
architecture. In particular, segmentation is emulated by
extending the translation-lookaside buffer (TLB) to allow
for less than a whole page to be valid.

Like the x86 segmentation, x86-style program watchpoint
or breakpoint checking is awkward to implement in a
standard RISC processor. RISC processors such as Pow
erPCTM processors by Motorola provide far fewer hardware
resources than x86 processors. While additional breakpoint
registers, comparators, and control logic could be added to
a RISC processor to support CISC breakpointing, this
increases the cost and complexity of the RISC processor.

PRIOR-ART CISC DEBUG HARDWARE FIG. 1

FIG. It is a block diagram of debug breakpoint hardware
in a typical x86 processor, which includes paging.

Linear address 18 is translated to physical address 20 by
translation-lookaside buffer or TLB 16, which is a small
cache of the page translation tables stored in main memory.
TLB 16 translates the upper 20 bits of linear address 18 by
searching the associative TLB cache for a match, and if one
is found, then replacing these upper 20 bits with another 20
bits stored in the TLB 16.

If the linear address is not found in the TLB, then a miss
is signaled to a translator (not shown), which accesses the
page tables in main memory and loads into the TLB the page
table entry that corresponds to the linear address. Future

10

15

20

25

30

35

40

45

50

55

65

2
references to the same page will “hit” in the TLB, which will
provide the translation.

Four debug registers 10 may each contain a linear address
where a breakpoint is to occur. When a program accesses an
instruction or data operand at this linear address, then a
breakpoint is signaled and the program halted. Comparators
26 compare the current linear address 18 to the breakpoint
addresses stored in debug registers 10 and output match
indications to AND gates 12.
Debug control register 14 contains bits to enable each of

the four debug registers 10, and possibly a global debug
enable bit. Register 14 also contains data/code bits to
indicate if the breakpoint addresses in each of debug regis
ters 10 are for instruction addresses or data operand
addresses. Four bits may be used, one for each debug
register 10. Thus some breakpoints may be for instructions
while others for data. These data/code bits in register 14 are
compared to a data/code signal 21 which indicates if the
current linear address 18 is for a data operand or an
instruction (code). Comparators 28 compare the D/C signal
21 to each of the four data/code bits in register 14, and
output D/C match signals 24 to AND gates 12. If linear
address 18 matches one of the breakpoint addresses in
registers 10, and the data/code signal 21 matches the data/
code bit in register 14, then one of AND gates 12 will output
a high signal which will be passed by OR gate 22 to generate
a breakpoint signal. Comparators 28 may also check that the
debug registers 10 are enabled before generating the match
indication.

OBJECTS OF THE INVENTION

While the prior-art debug apparatus is effective, RISC
processors may provide only one or two debug registers and
comparators, rather than the four used by x86 CISC CPU's.
The RISC debug registers are restricted to either instruction
or data operands and are thus less flexible than the CISC
debug registers. In the PowerPCTM architecture, a single
register is provided for data operand breakpointing, while
another single register is provided for instruction break
pointing.
What is desired is to emulate multiple breakpoints with a

single breakpoint register. When multiple breakpoints are
enabled, it is desired to emulate CISC-style breakpointing
with a simple RISC-type paging system that allows for
partial pages or sub-page validity. Emulation routines are
desired to properly handle a page miss when the page
contains a breakpoint. Emulation routines are also desired to
emulate setup of debug registers.

SUMMARY OF THE INVENTION

In one aspect the invention is a method for emulating a
plurality of breakpoints on a processor with a single break
point register which stores just one breakpoint address. The
processor also has a translation-lookaside buffer (TLB) with
a plurality of page entries. The breakpoints are addresses
which halt execution of a user program when accessed.

Page entries are freely loaded into the TLB when no more
than one breakpoint in the plurality of breakpoints is
enabled. When two or more breakpoints in the plurality of
breakpoints are enabled, then a page fault is signaled when
a faulting page does not have a translation in the TLB. It is
determined if a breakpoint in the plurality of breakpoints
falls within the faulting page when the page fault is signaled.
The breakpoint falling within the faulting page is hereinafter
referred to as a first breakpoint. A page entry is loaded into
the TLB for the faulting page while the first breakpoint is

5,664, 159
3

loaded into the breakpoint register on the processor when the
faulting page contains the first breakpoint. Any page entries
in the TLB containing a breakpoint are invalidated, other
than the faulting page entry. Execution of the user program
is halted when the user program accesses an address match
ing the breakpoint address in the breakpoint register on the
processor.
Thus only one breakpoint in the plurality of breakpoints

has a page translation entry in the TLB, which is loaded into
the breakpoint register on the processor when the faulting
page entry is loaded into the TLB.

In other aspects of the invention the plurality of break
points are addresses of data operands or instructions. Further
aspects include a step to determine when more than one
breakpoint in the plurality of breakpoints falls within the
faulting page. The faulting page is divided into partial pages
when more than one breakpoint falls within the faulting
page. Each partial page contains no more than one break
point in the plurality of breakpoints. Bounds fields are
loaded into the TLB when loading the page entry for the
faulting page when the faulting page contains more than one
breakpoint. The bounds fields define the boundaries of the
partial page within the faulting page. Thus pages may
contain multiple breakpoints yet the multiple breakpoints
share the single breakpoint register on the processor.

In other aspects a multiple-breakpoint bit in a condition
register on the processor is read to determine when multiple
breakpoints are enabled. The multiple-breakpoint bit is set
when a second breakpoint is enabled in the plurality of
breakpoints and the second breakpoint falls within a page
which already contains another enabled breakpoint in the
plurality of breakpoints.

Other aspects of the invention include a system for
emulating processing of a plurality of breakpoints. The
breakpoints are addresses which halt execution of a user
program when accessed. A central processing unit (CPU)
has a breakpoint register that stores a single breakpoint
address which halts execution of a user program when
encountered. An address compare means receives a linear
address generated by execution of the user program and is
coupled to the breakpoint register. It compares the linear
address to the breakpoint address and signals a breakpoint
fault when an address match occurs. A translation-lookaside
buffer (TLB) receives the linear address. The TLB has a
plurality of page translation entries for pages in memory
having a fixed number of offset addresses. Each page
translation entry has a linear address field and a physical
address field. The TLB outputs the physical address field for
a matching entry when a portion of the linear address
matches the linear address field in the matching entry. A
memory has a plurality of storage locations addressable by
a plurality of physical addresses. A first portion of the
memory stores a debug table which has a plurality of debug
entries each for storing a breakpoint address. A second
portion of the memory stores an emulation handler routine
which includes a means for copying a breakpoint address
from one of the debug entries in the debug table to the
breakpoint register on the CPU. An invalidation means
invalidates a translation entry in the TLB containing a
breakpoint address stored in the debug table but not stored
in the breakpoint register on the CPU.
Thus only one breakpoint from the debug table in memory

has a page translation entry in the TLB. The one breakpoint
is loaded into the breakpoint register on the processor by the
emulation handler routine.

In other aspects the CPU has a bound field in the matching
entry in the TLB. The bound field contains a bound for a

O

15

20

30

35

40

45

50

55

60

65

4
partial page. A bounds checking means receives the bound
from the matching entry of the TLB and compares a portion
of the linear address to the bound. A page fault is signaled
if the linear address is outside the bound for the partial page.
The emulation handler means has a partial page loading
means for loading the bound field of the matching entry
when the page translation entry is for a page containing
multiple breakpoints. The page is divided into partial pages
each containing one breakpoint.

Another aspect of the invention is a method for emulating
a plurality of breakpoints on a processor with no breakpoint
register. A translation-lookaside buffer (TLB) on the proces
sor has a plurality of page entries. Pages entries are freely
loaded into the TLB when no breakpoint in the plurality of
breakpoints is enabled. When one or more breakpoints in the
plurality of breakpoints are enabled, then a page fault is
signaled when a faulting page does not have a translation in
the TLB. If a breakpoint in the plurality of breakpoints falls
within the faulting page when the page fault is signaled, then
no page entry is loaded into the TLB for the faulting page.
A memory access is instead emulated for the faulting page
when the faulting page contains the breakpoint. Execution of
the user program is halted when the user program accesses
an address matching the breakpoint address. Thus no break
point in the plurality of breakpoints has a page translation
entry in the TLB.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of debug breakpoint hardware
in a typical x86 processor, which includes paging.

FIG. 2 is the breakpoint apparatus for a RISC processor.
FIG. 3 shows in detail an embodiment for a TLB with

sub-page validity.
FIG. 4 is a diagram of a physical memory space which

contains a user program, an operating system, and emulation
handler routines.

FIG. 5 is a debug processing routine executed when a
page misses in the TLB.

FIG. 6 is a diagram of the condition register CR on a RISC
processor with bits defined for aiding debug emulation.

FIG. 7 is a state diagram of the debug setup sequence as
debug register setup instructions are emulated.

FIG. 8 shows the storage structures in emulation memory
that are maintained by a debug load routine and a TLB miss
routine with debug processing.

FIG. 9 is a routine that emulates a debug register load
instruction.

FIG. 10 shows partitioning of a page which contains three
breakpoints into partial pages.

FIGS. 11A, 11B show an example of how the storage
structures in the debug setup area of the emulation memory
are modified as debug registers are loaded and enabled.

FIGS. 12A, 12B, 12C show an example of how the TLB
and RISC breakpoint register DABR are modified as page
misses and hits occur.

DETAILED DESCRIPTION

The present invention relates to an improvement in pro
gram debugging using breakpoints. The following descrip
tion is presented to enable one of ordinary skill in the art to
make and use the invention as provided in the context of a
particular application and its requirements. Various modifi
cations to the preferred embodiment will be apparent to
those with skill in the art, and the general principles defined

5,664, 159
5

herein may be applied to other embodiments. Therefore, the
present invention is not intended to be limited to the par
ticular embodiments shown and described, but is to be
accorded the widest scope consistent with the principles and
novel features herein disclosed.

RISC BREAKPONT HARDWARE-FIG. 2

FIG. 2 is the breakpoint apparatus for a RISC processor.
Virtual address 18 can be the x86 linear address when the
segment base addition is performed before generating virtual
address 18. Virtual address 18 is translated to physical
address 20 by translation-lookaside buffer (TLB) 16, as is
well-known in the art. Condition register 32 contains flags or
condition codes that are set by programs and the operating
system. In the PowerPCTM RISC architecture, register 32 is
known as the CR register. Data-address breakpoint register
(DABR) 30 is loaded with a breakpoint address for a data
operand, while instruction-address breakpoint register
(IABR) 34 is loaded with a virtual address where a break
point of an instruction is to occur.

Comparators 36, 38 compare the current virtual address
18 to the data and instruction breakpoint addresses stored in
registers 30, 34 and generate data breakpoint signal 35 or
instruction breakpoint signal 33 if an address match occurs.
A breakpoint control register (not shown) may also be used
to mask off some of the bits compared, allowing for the
breakpoint to occur over a range of addresses.
RISC provides only one breakpoint register for

instructions, and another breakpoint register that can only be
used for data operands. The present invention includes
methods to use either one of these registers to emulate up to
four x86-style breakpoint registers. Since these are 32-bit
breakpoint registers, significant hardware is saved.

TLB WITH SUB-PAGE FIELDS
BACKGROUND

Several embodiments of a RISC-type paging system
adapted for emulation of segment bounds checking are
presented in the parent, U.S. Pat. No. 5,440,710. ATLB was
disclosed which is capable of having less than a full page
valid. While the predominant use of sub-page validity is for
emulation of segmentation, sub-page validity may also be
used for emulation of breakpointing. When combined with
RISC's single breakpoint registers, sub-page validity can
emulate a larger set of breakpoint registers. However, effi
cient procedures to implement the emulation of breakpoint
ing are desired. Novel emulation routines and data structures
have been invented for use with a CPU having a RISC-type
paging system.

In a paging system, a page table defines the mapping or
translation between a program or virtual address generated
by the user's program, and a physical address of a location
in memory. Physical memory is divided into many pages,
with each page being the same size, typically 4096 or 4K
bytes. Each page begins and ends on a "page boundary',
which is always a multiple of the page size, 4K bytes.

DEFINITIONS

A virtual address is composed of two parts: the lower 12
bits form the address within a page, or page offset, while the
upper address bits determine which page is accessed. The
upper bits of the virtual address are the virtual page number,
and these upper bits are translated and replaced with a
physical page number. The virtual page number is translated
to a physical page number by either a page table in main

10

5

25

30

35

40

45

50

55

65

6
memory, or by a cache of the page table such as a
translation-lookaside buffer (TLB). The physical address is
thus composed of the translated page number and the
un-translated offset. Page tables and TLB's are well-known
and are discussed more fully with respect to the x86 archi
tecture in U.S. Pat. No. 4.972.338, issued in 1990 to Craw
ford and assigned to Intel Corporation of Santa Clara, Calif.
ATLB is a small cache of the most recently used translations
in the page tables. Inasmuch as the page tables are usually
stored in main memory, accessing the page table for each
memory reference adds significant overhead to each refer
ence and slows the system down. Since each page table
translation or entry covers 4K memory bytes, relatively few
page table entries need to be cached by the TLB for a high
hit rate and improved performance for most programs.
The term “virtual address” is often used rather loosely to

refer to any address except the physical address. The physi
cal address is output from the paging unit and is the actual
address in memory of a datum. When both segmentation and
paging are combined, a user program generates an "effective
address", which is then translated by the segmentation unit
to a "linear address". The linear address is then translated by
the paging unit or a TLB to the "physical address". Some
times the effective address and the linear address are referred
to as virtual addresses.

TLB SUB-PAGE FIELDS FOR BOUNDS
COMPARE LOGIC-FIG. 3

FIG. 3 shows in detail an embodiment for a TLB with
sub-page validity. The upper 20 bits of the 32-bit linear and
physical addresses are stored in fields 66, 68, as in prior-art
TLB's. Attributes are stored in attributes field 70. Two page
offset bounds fields 82, 84 are provided that contain the
12-bit page offset of the boundary of the valid portion of the
page, for partially-valid pages. Two control fields 86, 88
enable page offset bounds fields 82, 84, respectively. Each
control field 86, 88 is one bit. When the control bit is high,
comparison of the corresponding offset bounds field to the
offset of the current linear address is enabled.
Two page offset bounds fields are provided in this

embodiment for efficient encoding of pages with two events,
which occur for small segments that lie entirely within a
single page, program breakpoints, and faulty memory loca
tions. These are typically small blocks within a page. Thus
by having two page offset bounds fields, the starting and
ending addresses for the small block may be specified. This
is especially useful when multiple breakpoints occur within
one page, as will be described in detail later.
The page offset bounds fields 82, 84 contain enough bits

to specify the page offset down to the desired granularity.
Thus for a 4K-byte page, which has 12 bits of address offset,
32-bit aligned word granularity requires that 10 bits be
stored in each page offset bounds field 82, 84, while full
byte-granularity requires that a full 12-bit offset address be
stored in each page offset bounds field 82, 84.

Sub-page logic 100 includes comparison logic 90 which
outputs a one to AND gate 94 when the 12-bit offsetportion
of the current linear address is less than the 12-bit offset
bound stored in field 82. If the first control bit stored in
control field 86 is also enabled (high), then an error will be
signaled on bounds error line 99 from OR gate 98. Thus the
first comparison signals an error when the linear address is
below the first offset bounds.
The opposite type of comparison is performed for the

second offset bounds field. Comparison logic 92 outputs a
one to AND gate 96 when the 12-bit offset portion of the

5,664,159
7

current linear address is greater than the 12-bit offset bound
stored in field 84. If the second control bit stored in control
field 88 is also enabled (high), then an error will be signaled
on bounds error line 99 from OR gate 98. The second
comparison thus signals an error when the linear address is
below the first offset bounds.

Table 1 shows the encoding of control bits 86.88 and how
the 12-bit offset of the linear address is compared to the
offset bounds fields. In Table 1. “y” refers to the value stored
in first offset bounds field 82, while "z' refers to the value
stored in second offset bounds field 84. Proper programming
of these offset bounds fields and their control bits allows for
checking the lower bound of the valid block, or checking the
upper bound of the block. Comparison for both fields may
be enabled to allow for checking of very small blocks that
lie entirely within a single page.

TABLE 1.

Encoding of Partial Page Control Bits

Control Bits 86, 88 Error if Use

OO Never Clear Page, No Checking
O 2. Block Upper Bound
10 <y Block Lower Bound
11 >z OR <y Block Within a Page

Several types of events may be supported with two offset
bounds and the encoding of Table 1. With the control bits 86,
88 set to "00", the entire page is valid. An encoding of “10”
specifies that all addresses greater than the second offset
bound 84 are valid, as when a segment or block begins
within a page. The "01" encoding may be used for the end
of a segment or block, when the upper bound ends within a
page. Thus the first offset bound 82 specifies the upper limit
of validity within the page. Encoding “11” specifies validity
between the two offset bounds 82,84, which may be used to
specify a segment or block that lies entirely within a single
page.

OVERVIEW OF INVENTION

A typical RISC CPU, as shown in FIG. 2, contains only
one register for data operand breakpoints, and one for
instruction breakpoints. Four CISC breakpoint registers
(FIG. 1) can be emulated with the invention, which uses one
of the single RISC breakpoint registers and the TLB. A
standard TLB could be used for case (1) or (2) below, but the
modified TLB of FIG. 3 is used for case (3), when two or
more breakpoints fall within a page.
Three cases or possible configurations of the x86 CISC

breakpoint registers are possible:
(1) Only one of the four x86 CISC breakpoint registers is

enabled.

(2) Multiple x86 CISC breakpoints are enabled. Each
breakpoint falls on a different 4 Kbyte page.

(3) Multiple x86 CISC breakpoints are enabled. Multiple
breakpoints fall on the same 4 Kbyte page.
These three cases are handled separately. For the simplest

case (1), the breakpoint address is simply loaded into the
single RISC breakpoint register-either DABR or LABR. In
all cases a basic rule is followed-that a breakpoint may
have a page translation entry in the TLB only if that
breakpoint is loaded into the single RISC breakpoint register
(DABR or IABR).

Case (2) is more complex, having multiple breakpoints
that must share a single breakpoint register. Since there is

5

10

5

20

25

30

35

40

45

50

55

65

8
only one RISC breakpoint register, only one breakpoint can
be loaded into this RISC register. The other breakpoint
addresses are stored in emulation memory. These other
breakpoints are prevented from triggering by removing their
page entry from the TLB. Only the single "active' breakpoint
in the RISC breakpoint register may have its page entry in
the TLB; the other breakpoints are "disabled' by not having
a valid entry in the TLB. For these 'disabled' breakpoints to
trigger, their page entry must first be loaded into the TLB
and the RISC breakpoint register overwritten with the "dis
abled' breakpoint from emulation memory. The breakpoint
that was "active' in the RISC breakpoint register must have
its TLB entry invalidated. A debug processing routine is
added to the page fault routine to shuffle the breakpoints
between the single RISC breakpoint register and emulation
memory.

Case (3) is by far the most complex. Multiple breakpoints
exist on a single page. The method for case (2) of swapping
pages will not work when two breakpoints are on the same
page.
The TLB allows a page entry to specify that only a portion

of a page is valid instead of the entire 4. Kbytes. The page
with multiple breakpoints is divided into non-overlapping
sub-pages or portions, each portion containing a single
breakpoint. Only one of the portions is loaded into the TLB
at any time; the breakpoint in this loaded portion is "active'
and copied into the single RISC breakpoint register. The
other breakpoints are left in emulation memory and "dis
abled by not having their portion(s) loaded into the TLB.
Otherwise, the method for case (2) is used, or may be
combined with case (3)'s method when multiple breakpoints
occur on one page, and other breakpoints occur on other
pages.

SOFTWARE HANDLER ROUTINE

These methods for cases (1), (2), and (3) are contained in
two software routines shown in FIG. 4:

1. A debug processing routine in the TLB page miss
handler or routine 300.

2. A debug load or setup routine 200 that emulates x86
instructions that alter the contents of the debug registers.

FIG. 4 is a diagram of a physical memory space 78 which
contains a user program 110, an operating system 112, and
emulation handler routines 117. Emulation handler routines
117 include several routines activated for different reasons.
These routines include TLB page miss routine 300 and
debug register load routine 200, detailed in FIGS. 5, 10.
Page tables 114 reside near operating system 112, while
debug register setup memory area 135 resides near emula
tion handler routines 117.

DEBUG PROCESSING FORTLB PAGE MESS -
FIG.S

FIG. 5 is a debug processing routine executed when a
page misses in the TLB. Debug page miss routine 300 is
called or entered from another emulation routine for pro
cessing page misses and loading translation entries from the
page tables into the TLB. When debug breakpointing is
disabled, routine 300 is quickly exited, reducing the impact
on performance.
The first step 310 is to determine if breakpointing is

enabled. This can be determined by reading a global enable
bit in emulation memory or in the condition register. Higher
performance is achieved by defining a bit in the RISC CR
register 32 as a "debug active' bit, as described for FIG. 6.

5,664, 159
9

Should debug be disabled, which is the normal condition for
most programs, then debug routine 300 is exited (step 320),
and the TLB miss routine can freely load the new page entry
into the TLB. When step 310 determines that debug is
enabled, then test 330 determines if the new or incoming
page being loaded into the TLB contains a breakpoint. Test
330 can be accomplished by successively comparing the
incoming page's upper page address to each breakpoint
stored in emulation memory. If this incoming page does not
contain a breakpoint, then again debug routine 300 may be
exited, 320, and the incoming page freely loaded into the
TLB.

If test 330 determined that the incoming page contained a
breakpoint, then test 340 is performed to determine if
multiple breakpoints exist on the incoming page. While test
340 could be accomplished by comparing the upper or page
address of each debug register in emulation memory to the
page address of the incoming page, this would require up to
four comparisons and memory reads. A more efficient
approach is to set a "multiple breakpoints perpage' bit in the
CR condition register when two or more breakpoints exist
on a page. Test 340 first reads this CRbit, and then compares
the incoming page address to each breakpoint stored in
emulation memory if the CR bit is set. If both the CR bit is
set and the compare reveals that the incoming page is a page
with multiple breakpoints on it, then the incoming page is
broken into partial pages or portions, each portion with just
one breakpoint, step 350.
The incoming breakpoint is read from the breakpoint

registers in emulation memory and loaded into the RISC
breakpoint register, either DABR or LABR, step 360. In step
370, the whole or partial page is loaded into the TLB. For
partial pages, the upper and/or lower bound fields are loaded
and their compare enable bits are set, as described for FIGS.
3 and 11. The TLB entry that contains the old or "outgoing
breakpoint that was in the RISC breakpoint register is
removed from the TLB in step 380. Step 380 can be
performed by a TLB invalidate entry instruction or
procedure, such as the PowerPCTM tibie instruction, or by
over-writing the old TLB entry.
An alternative to step 310 is to testif multiple breakpoints

are enabled, instead of testing whether debug is enabled. If
only one breakpoint is enabled, then there is no need to
execute the rest of debug routine 300, as the single RISC
debug register is already loaded with the only breakpoint
address, and no page management is needed for debug
processing. The multiple debug breakpoints active' bit in
the CR register is checked instead of the debug active' bit
in the CR register. For RISC processors with both a data
operand and an instruction breakpoint register (DABR and
IABR), up to one breakpoint of each type (data and
instruction) may be loaded without requiring debug process
ing by the TLB miss handler.

CONDITION CODE REGISTERIDENTIFIES
DEBUG SETUP

FIG. 6 is a diagram of the condition register CR on a RISC
processor with bits defined for aiding debug emulation. CR
register 32 is a 32-bit register on the RISC CPU die which
is implicitly accessible by many instructions. For example,
an addinstruction may set a zero flag in CR register 32 when
the result is zero. While many bits in CR register 32 are
defined by the RISC architecture, other bits may be freely
used. Of these freely-usable bits, the emulation handler
defines up to three of them for use with debug emulation.
Debug active bit 32A is set when any debug register is

O

15

20

25

30

35

40

45

50

55

60

65

10
enabled and indicates that debug breakpointing is active.
Multiple debug bit 32B is set when two or more breakpoints
are enabled, regardless of where these breakpoints occur.
Multiple debug per page bit 32C is set when multiple
breakpoints fall within a single page. Thus the three debug
bits 33A, 33B, 33C correspond to the three cases or con
figurations for the CISC debug breakpoint registers. Pro
gramming the configuration for the emulated debug registers
into the CR register improves performance by as much as a
factor of thirty since the access of the on-chip CR register is
fast compared to an off-chip memory access to read the
debug configuration in the emulation memory.

EMULATION OF DEBUG REGISTER SETUP

The CISC debug breakpoint registers are setup by moving
binary addresses to these registers one at a time, and by
enabling these registers by setting bits in the debug control
register. When any of these debug setup instructions are
encountered, debug register load routine 200 is initiated to
emulate the instruction.

FIG. 7 is a state diagram of the debug setup sequence as
debug register setup instructions are emulated. At first, no
debug registers are enabled, and state A is active. A binary
address is first moved into one of the emulated CISC debug
registers by copying this binary address to the debug register
setup area of emulation memory. This debug register is
enabled by an instruction which sets the enable bit for the
emulated debug register. While in the prior art this instruc
tion would physically set a bit in the CISC debug control
register 14 of FIG. 1, this instruction is emulated, calling the
debug load routine 200 of FIG. 4. Debug load routine 200
keeps track of how many of the four debug registers have
been enabled, and if any two of the breakpoints fall within
a single page.

State tracker 40 of FIG. 7 sequences through four states:
A, B, C, D as debug registers are enabled or disabled,
keeping track of the number of registers enabled and if
multiple breakpoints are on a page. States B, C, D corre
spond to the three cases (1), (2), (3) respectively of possible
configurations of the debug registers as described above in
the overview section.
At first, no debug breakpoints are enabled. When the first

breakpoint is enabled, the attempted execution of the debug
enable instruction which sets the enable bit in the debug
control register causes debug load routine 200 to be acti
wated: State tracker 40 advances from state A to state B,
indicating that one debug breakpoint has been enabled. The
next attempt to execute the debug enable instruction will
enable a secondbreakpoint, and state tracker 40 will usually
advance from state B to state C. State C indicates that
multiple breakpoints are enabled, but on different pages. A
test will be performed by debug load routine 200 to deter
mine if the newly-enabled debug breakpoint lies on the same
page as another breakpoint. If so, then multiple breakpoints
exist on the same page, and state D rather than state C will
be entered from state B. Alternatively, if two or more
breakpoints have already been enabled, and the new break
point lies in the same page as an existing breakpoint, then
stage D will be entered from state C.

Other instructions will disable existing breakpoints, also
causing debug load routine 200 to be activated. States D, C,
and B may then be exited for states C, B, or A, as indicated
by the dotted arrows of FIG.7. While state tracker 40 could
be implemented using flip-flops on the CPU die, it is
preferably coded into debug load routine 200, with the
current state being stored in emulation memory.

5,664,159
11

STORAGE STRUCTURES IN EMULATION
MEMORY FIG. 8

FIG. 8 shows the storage structures in emulation memory
that are maintained by debug load routine 200 and TLB miss
routine 300. Emulation memory includes debug register
setup memory area 135 for storing information on the setup
of the emulated CISC debug registers. The current state 41
of state tracker 40 is stored as a simple 2-bit binary number
in memory area 135.
The breakpoint addresses for the four x86 CISC debug

registers which are being emulated are stored in debug
emulation table 42 of memory area 135. Four valid bits 44
are set or cleared to indicate if each of the four debug
breakpoints in table 42 are enabled. Alternatively, a separate
debug control register 46 may be set up in memory area 135.

DEBUG REGISTER LOAD ROUTINE FIG. 9

FIG. 9 is a routine that emulates a debug register load
instruction. When an instruction is decoded that enables one
of the four CISC debug breakpoint registers, debug load
routine 200 is activated. The condition register CR is read
for the debug active, multiple debug, and multiple debugs
per page bits. The debug tracker 40 is advanced to the next
state in step 220, as described in FIG. 7. It may be necessary
in step 220 to compare the page address of the incoming
breakpoint to the page addresses of the existing, already
loaded breakpoints to determine if the incoming breakpoint
falls on the same page as an existing breakpoint. The CR
register is written in step 230 to update the debug active,
multiple debug, and multiple debugs per page bits to cor
respond to the new state of state tracker 40. The new or
incoming breakpoint address is written to one of the four
debug address register DB0-DB4 in the debug area 135 of
emulation memory, or the valid bit for that register is set or
cleared, step 240.
The valid bits for the four debug address registers are

checked, step 250, to determine if this is the first breakpoint
to be programmed. If so, then the breakpoint address is
copied to the RISC breakpoint register (DABR or IABR) on
the CPU die, step 260. Otherwise, the TLB must be searched
for any page entries having a page address matching the
incoming breakpoint. The PowerPCTM RISC architecture
provides a TLB invalidate entry instruction (tlbie) which
invalidates an entry in the TLB that matches the address
supplied. Thus a simple tibie instruction may be executed.
These matching entries must be invalidated, step 270. A full
TLB flush could be substituted for step 270 with a loss of
performance.

MULTIPLE BREAKPOINTS ON A PAGE-FIG.
O

When two or more breakpoints lie on the same page, the
TLB miss routine 300 is modified to load a partial page into
the TLB rather than the whole page. The upper and lower
bounds of the partial page are computed and loaded into the
bounds fields of the TLB entry for the partial page. The
bounds checking enable bits are also set, as described for
FIG. 3. These upper and lower bounds can be pre-computed
by the debug load routine 200 and stored in the debug area
135 of emulation memory, or the bounds can be computed
when the page is loaded during step 370 of routine 300.

FIG. 10 shows partitioning of a page which contains three
breakpoints into partial pages. The 4-Kbyte page has offset
addresses within the page ranging from 0x0000 to 0x0FFF
hex. At offset 0x0123 is the breakpoint programmed into

10

15

20

25

30

35

45

50

55

60

65

12
CISC breakpoint register D1. Offset 0x0400 is the break
point programmed into CISC breakpoint register DB0, while
offset 0x0855 is the breakpoint programmed into CISC
breakpoint register DB2.

This 4-Kbyte page is divided into three non-overlapping
partial pages, each partial page containing just one break
point. The first partial page contains the first (DB1) break
point at 0x0123. The lower bound is set to the lowest offset
address on the page, 0x0000, while the upper bound is set to
the last offset address before the next breakpoint at 0x400.
Thus the first partial page only contains the first breakpoint
at 0x0123, with the lower and upper bounds set to 0x0000
and 0x03FF. These values would be programmed into the
bounds fields 84, 82 in the TLB entry when this partial first
page is loaded into the TLB.
The second partial page contains the second breakpoint at

offset 0x0400. The lower bound is set to this breakpoint's
address, 0x0400, while the upper bound is set to the last
offset address before the next (third) breakpoint at 0x0855.
Thus only addresses between 0x0400 and 0x0854 will be
valid for the second partial page, and other offset addresses
on this page will cause a page fault when the second partial
page is loaded in the TLB. Another partial page will be
loaded into the TLB when the offset is outside the resident
second partial page.
The third partial page contains the third breakpoint (DR2)

at 0x0855. The lower bound is 0x0855 while the upper
bound is the last offset on the page. 0x0FFF, since there are
no more breakpoints on this page.
The first, second, or third partial page is selected for

loading into the TLB based on the page faulting address. If
the address of the page fault lies within the second partial
page, then the second partial page is loaded into the TLB.
Likewise for the first or third partial page. The offset address
locations of the breakpoints in registers DB0, DB1, and DB2
is for illustration only, and can easily be in a different order.

EXAMPLE OF DEBUG LOADING FIGS. 11A,
11B

FIGS. 11A, 11B show an example of how the storage
structures in the debug setup area 135 of the emulation
memory are modified as debug registers are loaded and
enabled. This example shows the worst-case of all break
points being data operand breakpoints, so data address
breakpoint register DABR 30 is shown on the RISC CPU
die. The TLB 16 is also shown as having five page entries
for simplicity. Addresses are shown in DABR30, TLB 16,
and debug emulation table 42 as 5-digit hexadecimal
addresses. Since the page size is 4. Kbytes, the lower three
hex digits are the offset address within a page, while the
upper two hex digits are the page number or address. These
5-digit hex addresses are sometimes written with an under
score character to emphasize the separation between the
page and offset addresses. The address 7C 050 is equiva
lent to 7C050, having a page address of 7C and an offset
within the page of 050.
The debug setup area 135 of emulation memory contains

debug tracker current state 41, CISC debug emulation table
42, and valid bits 44 for these four CISC debug breakpoint
registers DB0, DB1, DB2. DB3. ATLB entry tinder 48 is
also shown to indicate if any debug breakpoints are in the
TLB, and if so, what debug breakpoint and which TLB
location. This TLB entry finder is for illustration and may
not necessarily be present in emulation memory 48. FIGS.
11 and 12 show how the data values within these structures
change as various operations occur.

5,664,159
13

Initially, as shown at the top of FIG. 11A, DABR contains
00000, while page addresses B8, 4F, 3A, 7C, and 04 are
stored in entries 0 to 4 of TLB 16. No debug breakpoints
have yet been enabled, so debug emulation table 42 and
valid bits 44 are all cleared to zeros. No debug breakpoints
are currently in the TLB. The current state 41 of the state
tracker 40 is state A.

1.)The first operation is to setup the second debug register
DB1. The breakpoint address 7C 050 is loaded into DB1
and this CISC emulation register is enabled by setting its
valid bit 44. This requires two discrete x86 instructions, one
to move the breakpoint address and the second to enable the
debug register.

Since this is the first breakpoint to be enabled, its break
point address is copied onto the RISC CPU and loaded into
the single RISC breakpoint register DABR30. The current
state 41 advances to state B, and the debug active bit in
condition register CR is set (not shown). A page entry having
a breakpoint is now present in the TLB, since entry 3 of TLB
16 already contains page address 7C, which matches break
point's 7C 050 page address.

2.) The second operation is to load and enable the first
debug register DB0 with breakpoint address 01121. Valid
bits 44 are updated to show both DB0 and DB1 valid, and
current state 41 advances to state C, indicating that multiple
debug breakpoints are enabled, but not on the same page.
The page address for the new breakpoint is 01, which does
not match any entries in the TLB. DABR30 is not changed.

3.) The third operation, shown on FIG. 11B, is to setup the
third CISC debug register DB2. breakpoint address B8 3F8
is loaded into the third register of debug emulation table 42
and valid bits 44 are set for three valid breakpoints. The
current state remains at state C since all three breakpoints
have different page addresses-01, 7C, and B8. The page
address for the new breakpoint is B8, which matches entry
0 in the TLB. Thus TLB entry 0 must be invalidated since
the new breakpoint is not loaded into the only RISC break
point register, DABR 30.

4.) The fourth operation is to load the last (fourth) debug
register DB3 with breakpoint B8 14C. All valid bits 44 are
now enabled. State D is entered because both DB2 and DB3
fall within the same page, the page starting at address
B8 000. However, page B8 was invalidated in TLB 16 in
operation 3, do no further changes to TLB 16, or DABR30
are needed. However, condition register CR is updated to set
the multiple debugs perpage bit to indicate that case (3) now
exists.

5.) The setup of the CISC debug emulation registers is
now completed. The single RISC breakpoint register 30
contains the breakpoint for DB1, and entry 3 in the TLB as
has the DB1 breakpoint.

EXAMPLE OF DEBUG PROCESSING FIGS.
12A, 12B, 12C

FIGS. 12A, 12B, 12C show an example of how the TLB
and RISC breakpoint register DABR are modified as page
misses and hits occur. The top of FIG. 12A shows the setup
of these storage structures after the debug setup of FIGS.
11A, 11B are completed by operation 5.

6.) The first memory reference is to address E9 000. No
entry in TLB 16 matches page E9, so a TLB miss occurs.
Page E9's page translation entry is loaded into location 4 of
TLB 16, which might be the least-recently-used location in
TLB 16. Since none of the breakpoints in debug emulation
table 42 falls within page E9, no further debug processing is
needed.

10

15

20

25

30

35

45

50

55

65

14
7.) The next memory reference is to address 7C 050.

This is a TLB hit, since TLB entry 3 already contains page
7C. This address, 7G 050 matches the breakpoint address
in the single RISC breakpoint register DABR 30, so a
breakpoint is signaled by the RISC CPU. This breakpoint
can be quickly signaled as the RISC hardware register
DABR is used to signal the breakpoint. No access of
emulation memory 135 is needed.

8.) Memory reference 01 100, on FIG. 12B, is a TLB
miss since page address 01 is not present in TLB 16. This
page is loaded into TLB entry 2. A comparison of the
breakpoint addresses in debug emulation table 42 reveals
that breakpoint DB0 at address 01121 falls within this new
page starting at 01000. Thus this new incoming break
point address 01 121 must be written to DABR 30. The
incoming breakpoint over-writes the old "outgoing break
point 7C 050 which was in DABR 30. However, the
outgoing breakpoint still has its page entry in TLB 16. While
a search of TLB could be performed to locate the outgoing
page entry, a TLB invalidate entry instruction, tibie, is
executed to invalidate the old breakpoint's entry in the TLB,
which is TLB entry 3. Thus TLB entry 3, which is for page
7C, is invalidated. The TLB location of the new 'incoming
breakpoint is TLB entry 2, for debug emulation registers
DBO.

9.) Memory reference 01121 hits the TLB for page
address 01, which is TLB entry 2. This memory reference is
to the breakpoint address in the RISC breakpoint register
DABR 30, and thus a breakpoint is signaled. Emulation
memory is not referenced as the breakpoint is signaled by
the RISC hardware.

10.) Memory access to address B8 14C is a TLB miss.
Since page B8 contains two breakpoints, a partial page entry
must be loaded into TLB 16. Page B8 is divided into two
partial pages. Address B8 14C falls within the first partial
page, and upper and lower bounds of 3F7 and 000 are loaded
into the bound fields 84, 82 for TLB entry 0 (bound fields are
not shown in FIG. 12 but are shown in FIG. 3).
The breakpoint falling within the partial page loaded into

TLB 16 is B8 14C, stored in emulation memory in debug
emulation register DB3. This breakpoint address is loaded
into RISC breakpoint register DABR 30. The outgoing
breakpoint's TLB entry is located using a tibie instruction
which invalidates location 2 in the TLB.

Since the memory reference, B8 14C, is to the incoming
breakpoint loaded into RISC breakpoint register DABR30,
a breakpoint will be signaled by the RISC CPU once the
debug processing routine 200 and the TLB page miss
routines finish. While the RISC hardware quickly reports the
breakpoint, the software page miss and debug processing
routines are relatively slow, and thus the breakpoint will not
be reported as quickly as when the RISC breakpoint register
DABR 30 is already loaded. This type of delay should be
rare, since it will only occur when a jump occurs to the exact
breakpoint from another page.

11.) The next memory reference to address B8 100,
shown on FIG. 12C, is a page hit to the partial page loaded
by operation 10.

12.) The next memory reference to address B8.3F7 is
also a page hit to the partial page loaded by operation 10.
However, address B8 3F7 is at the upper bound of the
partial page.

13.) The next reference is to address B8 400, just a few
bytes above the last reference in operation 12. This memory
reference is to the same 4 Kbyte page, and would be a page
hit is debug processing were not enabled. However, this

5,664,159

reference is to the other partial page, and is a miss to the
partial page currently loaded into TLB location 0 for break
point DB3.
A TLB invalidate entry instruction is used to locate the

outgoingTLB entry at location 0, which is invalidated. The
incoming partial page contains breakpoint DB2, which is
loaded into RISC breakpoint register DABR30. The incom
ing partial page is loaded to entry location 3 in TLB 16, with
the upper bound field set to FFF and the lower bound field
set to 3F8, the offset of the incoming breakpoint B8 3F8.
TLB location 3 holds breakpoint DB2.

14.) The memory reference B8 3F8 is a page hit for
location 3, the partial page loaded in operation 13. This
reference is to the first valid offset on the partial page, which
is the breakpoint for debug emulation register DB2. Thus the
RISC hardware detects a match with RISC breakpoint
register DABR30 and signals the breakpoint.

15.) Finally memory reference B8 A00 is a page hit to
the partial page loaded in operation 13.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. The invention has been described as using a single
RISC breakpoint register. However, the invention can easily
be adapted for two or more breakpoint registers. For
example, PowerPCTMRISC processors may have two break
point registers-DABR for data operands and LABR for
instructions. A simple embodiment is to load DABR when
the CISC breakpoint is for a data operand, but load LABR
when the CISC breakpoint is for instructions. The four CISC
debug breakpoints stored in the emulation memory area may
be allocated to either LABR or DABR, depending upon the
type of breakpoint programmed instruction or data operand.
The state tracker, and four emulated CISC debug registers
can be duplicated for instruction and data breakpoints. Thus
both DABR and LABR could be simultaneously used, pos
sibly increasing performance. ATLB entry finder may be set
up in emulation memory to aid locating TLB entries for
removal or invalidation. When several TLB's exist on the
CPU, then the invention may easily be adapted by ensuring
that all TLB's in combination do not have more than one
page containing a breakpoint.
A page size of 4096 bytes was described with reference to

the embodiments, but other page sizes and address sizes may
be easily substituted by one skilled in the art. Many other
combinations of the embodiments disclosed are possible in
light of the teachings herein.
While an embodiment with only two page offset bounds

fields 82, 84 (FIG. 3) has been explained, it would be
obvious for one skilled in the art to employ a different
number of offset bounds fields or a different number of
encoding control bits 86,88. For example, the encoding may
be changed for greater than or equal to a page offset bound
value, and still fall within the spirit of the invention. Addi
tional control bits may also be added. A "100" encoding
could specify that the entire page is valid except the region
between the two offset bounds 82, 84. This is useful for
watchpoints and disabling faulty memory locations. Any
reference between the two bounds 82,84 would cause a page
fault.
The page with multiple breakpoints was partitioned by

setting the upper bounds to the breakpoints or the last
address on the page. Other partitioning methods may be
used. Higher performance may be achieved by breaking the
page at intermediate boundaries such as on an aligned 1
Kbyte boundary. Another partitioning method is to make one

10

15

20

25

30

35

45

50

55

60

65

16
or more of the partial pages as large as possible, as was done
for the first partial page.

Another embodiment requires no breakpoint register at all
on the CPU. Pages containing a breakpoint are never loaded
into the TLB. Only pages without breakpoints are loaded
into the TLB. All references to pages with breakpoints will
cause a TLB miss. The TLB miss handler operates as
described, except that breakpoint pages are not loaded into
the TLB. At the point that the new partial page would
otherwise be loaded into the TLB, the TLB miss handler
must emulate the memory reference causing the page fault,
or load a special one time TLB entry that will be valid for
only one reference, after which it will become invalid. The
one-time TLB entry is described in the parent patent. The
debug load and TLB miss emulation routines described
herein may be applied to these other embodiments described
at length in the parent patent.
A partial page that does not include the breakpoint can

also be loaded into the TLB. The on-chip RISC breakpoint
register is not used in this embodiment. Instead, the partial
page will have a page fault when the breakpoint's address is
reached. The page fault routine would then signal the
breakpoint rather than the CPU's hardware. This embodi
ment works particularly well when multiple breakpoints
occur on the same page.
The TLB miss routine of FIG. 5 may be modified to

reduce or eliminate the CR bits used. The CISC x86 archi
tecture has only four debug registers. Thus at most four
pages could contain breakpoints. The page addresses, the 20
upper bits of the linear addresses of the breakpoints, are
stored in emulation memory. These breakpoint page
addresses are updated by debug setup routine 200 in a
conventional manner.
On a TLB miss, test 310 can check the CR bit, or another

bit in the emulation memory. Test 330, which determines if
an incoming page has a breakpoint, searches through the
four breakpoint page addresses for a match. If no match is
found, then the incoming page does not contain a breakpoint
and may be freely loaded, step 320. If a match is found, then
a breakpoint occurs on the incoming page. Another emula
tion memory location is consulted to determine how many
breakpoints are on that page. This memory location can
conveniently be another dimension in the debug or page
address table. Step 350 is activated if more than one break
point lies on the page, while step 360 is activated when only
one breakpoint is in the incoming page. Thus only one CR
bit is needed, to indicate if any debug breakpoints are
enabled.

While an embodiment with four debug breakpoints has
been described, additional debug registers can easily be
provided by those skilled in the art. While simply increasing
the number of breakpoints in the debug emulation table is
useful, providing an additional level of debugging has some
particular unexpected advantages. Four debug breakpoints,
as described, could be used by a user program operating on
a lower privilege level. Four or eight more debug break
points could be simultaneously in use by a higher-privilege
level operating system or system-level debugger. This
system-level debugger may be used to debug the user
program which itself is using all four lower-level break
points.
The breakpoint may vary in size or width, as is conven

tionally known. Thus the breakpoint may be one byte to
about four bytes in size. The invention allows the width of
the breakpoint to be dramatically increased beyond what is
Supported in hardware. All breakpoints would trap to the

5,664,159
17

debug processing routine which would checkthe breakpoint,
which can be of any width. The breakpoint register on the
CPU die would not be used, but any page containing or
within a breakpoint would not be loaded into the TLB.

For example, the video graphics display memory, 64
Kbytes to 2 Megabytes in width, may be defined as one large
breakpoint. Any accesses to the display region would
encounter an emulated breakpoint. This is particularly useful
for power management. When the wide breakpoint is
encountered, the operating system is informed that the
display has been updated or accessed. The display's back
light could then be turned on, restoring power to the display.
Thus some surprising, unexpected results such as power
management are possible with the invention. The emulated
debug breakpoints are much more flexible and useful than
the prior-art fixed debug registers.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A method for emulating a processor having a plurality

of breakpoint register, using a processor with a single
breakpoint register for storing just one breakpoint address
and a translation-lookaside buffer (TLB) having a plurality
of page entries, the breakpoints being addresses which halt
execution of a user program when accessed, the method
comprising the steps of:

freely loading page entries into the TLB when no more
than one breakpoint in the plurality of breakpoints is
enabled;

when two or more breakpoints in the plurality of break
points are enabled:
signaling a page fault when a faulting page does not
have a translation in the TLB:

determining if a breakpoint in the plurality of break
points falls within the faulting page when the page
fault is signaled, the breakpoint falling within the
faulting page hereinafter referred to as a first break
point;

loading a page entry into the TLB for the faulting page;
loading the first breakpoint into the breakpoint register
on the processor when the faulting page contains the
first breakpoint;

invalidating any page entries in the TLB other than the
faulting page entry for pages containing a breakpoint
in the plurality of breakpoints other than the first
breakpoint; and

halting execution of the user program when the user
program accesses an address matching the breakpoint
address in the breakpoint register on the processor,

wherein only one breakpoint in the plurality of breakpoints
has a page translation entry in the TLB, the only one
breakpoint being loaded into the breakpoint register on the
processor when the faulting page's entry is loaded into the
TL.B.

2. The method of claim 1 wherein the plurality of break
points are addresses of data operands, the method further
comprising the step of:

comparing the breakpoint address in the breakpoint reg
ister on the processor to an address of a data operand
being accessed by the user program and signaling a
breakpoint and halting the user program when a match
OCCUS

5

10

15

20

25

30

35

40

45

50

55

65

18
3. The method of claim 1 wherein the plurality of break

points are addresses of instructions, the method further
comprising the step of:

comparing the breakpoint address in the breakpoint reg
ister on the processor to an address of an instruction
being fetched for the user program and signaling a
breakpoint and halting the user program when a match
OCCTS.

4. The method of claim 1 further comprising the steps of:
determining when more than one breakpoint in the plu

rality of breakpoints falls within the faulting page;
dividing the faulting page into partial pages when more

than one breakpoint falls within the faulting page, each
partial page containing no more than one breakpoint in
the plurality of breakpoints; and

loading bounds fields in the TLB when loading the page
entry for the faulting page when the faulting page
contains more than one breakpoint, the bounds fields
defining boundaries of the partial page within the
faulting page.

whereby pages may contain multiple breakpoints yet the
multiple breakpoints share the single breakpoint register on
the processor.

5. The method of claim 4 wherein the step of determining
when more than one breakpoint in the plurality of break
points falls within the faulting page comprises the steps of:

reading a multiple-breakpoint bit in a condition register
on the processor, the multiple-breakpoint bit being set
when a second breakpoint is enabled in the plurality of
breakpoints and the second breakpoint falls within a
page which already contains another enabled break
point in the plurality of breakpoints; and

comparing for a match an address of the faulting page to
an address of the page containing the second breakpoint
and indicating that more than one breakpoint falls
within the faulting page when a match occurs and the
multiple-breakpoint bit in the condition register is set.

6. The method of claim 5 wherein the step of comparing
for a match signals a match when an upper portion of the
address of the faulting page matches a page address for the
address of the page containing the second breakpoint.

7. A system for emulating a processor having a plurality
of breakpoint registers, wherein breakpoints are addresses
which halt execution of a user program when accessed, the
system comprising:

a central processing unit (CPU) comprising:
a breakpoint register for storing a single breakpoint

address which halts execution of a user program
when encountered;

address compare means, receiving a linear address
generated by execution of the user program and
coupled to the breakpoint register, for comparing the
linear address to the breakpoint address and signal
ing a breakpointfault when an address match occurs;

a translation-lookaside buffer (TLB), receiving the lin
ear address, the TLB comprising a plurality of page
translation entries for pages in memory having a
fixed number of offset addresses, each page transla
tion entry comprising a linear address field and a
physical address field, the TLB outputting the physi
cal address field for a matching entry when a portion
of the linear address matches the linear address field
in the matching entry;

a memory having a plurality of storage locations addres
sable by a plurality of physical addresses, the memory
having:

5,664, 159
19

a first portion for storing a debug table comprising a
plurality of debug entries each for storing a break
point address; and

a second portion for storing an emulation handler
routine, the emulation handler routine including:
means for copying a breakpoint address from one of

the debug entries in the debug table to the break
point register on the CPU;

invalidation means for invalidating a translation
entry in the TLB containing a breakpoint address
stored in the debug table but not stored in the
breakpoint register on the CPU;

wherein only one breakpoint from the debug table in
memory has a page translation entry in the TLB, the only
one breakpoint being loaded into the breakpoint register on
the processor by the emulation handler routine.

8. The system of claim 7 wherein the CPU further
comprises:

a bound field in the matching entry in the TLB, the bound
field containing a bound for a partial page;

bounds checking means, receiving the bound from the
matching entry of the TLB, for comparing a portion of
the linear address to the bound, signaling a page fault
if the linear address is outside the bound for the partial
page.

9. The system of claim 8 wherein the emulation handler
routine further comprises:

partial page loading means for loading the bound field of
the matching entry when the page translation entry is
for a page containing multiple breakpoints, the page
being divided into partial pages each containing one
breakpoint.

10. The system of claim 7 wherein the breakpoint register
stores a single breakpoint address for a data operand and
wherein the plurality of breakpoints are breakpoints for data
operands.

11. The system of claim 10 wherein the breakpoint
register is a RISC data breakpoint register and wherein the
plurality of breakpoints are four CISC breakpoints.

12. The system of claim 10 wherein the breakpoint
register is a RISC data breakpoint register and wherein the
plurality of breakpoints are eight CISC breakpoints arranged
in two privilege levels.

13. The system of claim 7 wherein the breakpoint register
stores a single breakpoint address for an instruction and
wherein the plurality of breakpoints are breakpoints for
instructions.

14. The system of claim 13 wherein the breakpoint
register is a RISC instruction breakpoint register and
wherein the plurality of breakpoints are four CISC break
points.

10

15

20

25

30

35

45

50

20
15. The system of claim 14 wherein the CPU further

comprises:
a data breakpoint register for storing a single data break

point address which halts execution of a user program
when a data operand stored at the single data break
point address is accessed;

second address compare means, receiving the linear
address generated by execution of the user program and
coupled to the data breakpoint register, for comparing
the linear address to the single data breakpoint address
and signaling a data breakpoint fault when an address
match occurs;

whereby instruction breakpoints are stored in the breakpoint
register but data operand breakpoints are stored in the data
breakpoint register.

16. The system of claim 15 wherein the plurality of
breakpoints include data operand breakpoints and instruc
tion breakpoints, and wherein the debug table includes data
and instruction breakpoints.

17. The system of claim 7 wherein the first portion of the
memory further comprises a valid table for storing valid bits
indicting which debug entries in the debug table are enabled.

18. A method for emulating a processor having a plurality
of breakpoint registers, using a processor with no breakpoint
register and a translation-lookaside buffer (TLB) having a
plurality of page entries, the breakpoints being addresses
which halt execution of a user program when accessed, the
method comprising the steps of:

freely loading page entries into the TLB when no break
point in the plurality of breakpoints is enabled;

when one or more breakpoints in the plurality of break
points are enabled:
signaling a page fault when a faulting page does not

have a translation in the TLB;
determining if a breakpoint in the plurality of break

points falls within the faulting page when the page
fault is signaled, the breakpoint falling within the
faulting page hereinafter referred to as a first break
point;

loading a page entry into the TLB for the faulting page
when the faulting page contains no breakpoint;

not loading a page entry into the TLB but emulating a
memory access for the faulting page when the fault
ing page contains the first breakpoint; and

halting execution of the user program when the user
program accesses an address matching the breakpoint
address,

wherein no breakpoint in the plurality of breakpoints has a
page translation entry in the TLB.

:: :: * : :

