
United States Patent (19)
Cohen et al.

54

(75)

73

21

22

63

(51)
(52)

58

56

MASTER-SLAVE CACHE SYSTEM WITH
DE-COUPLED DATA AND TAG PPELNES
AND LOOP-BACK

Inventors: Earl T. Cohen, Fremont; Jay C.
Pattin, Redwood City, both of Calif.

Assignee: Exponential Technology, Inc., San
Jose, Calif.

Appl. No.: 649,115
Filed: May 14, 1996

Related U.S. Application Data

Continuation-in-part of Ser. No. 267,658, Jun. 29, 1994, Pat.
No. 5551,001.
Int. Claim.............. G06F 1208
U.S. Cl. 395/467; 395/449; 395/473;

395/472: 395/450
Field of Search 395,449, 467,

395/473, 450, 472. 455

References Cited

U.S. PATENT DOCUMENTS

4,467,414 8/1984 Akagi et al. 395/250
4,707,784 11/1987 Ryan et al. 395/467
4,860,192 8/1989 Sachs et al. 395,403
5,019,971 5/1991 Lefsky et al. 395/250
5,023,776 6/1991 Gregor 395,449
5,025,366 6/1991 Baror 395,455
5,123,097 6/1992 Joyce et al. 395,394
5,131,088 7/1992 Blasco et al. ... 395,425
5,136,700 8/1992 Thacker 395,449
5,155,824 10/1992 Edenfield et al. 395/470
5,155,828 10/1992 Le Fetra et al. 395,449
5,155,831 O/1992 Emma et al. 395/448
5,170,476 12/1992 Laakso et al. 395/467

USOO5692152A

11 Patent Number: 5,692,152
45 Date of Patent: Nov. 25, 1997

5,179,679 1/1993 Shoemaker 395/.445
520,041 4/1993 Bohner et al. 395/465
5202,969 4/1993 Sato et al. 395/4TO
5212,781 5/1993 Shah 395/449
5.249,282 9/1993 Segers 395,449
5,276,848 1/1994 Gallagher et al. 395,448
5,283,890 2/1994 Petolino et al. 395,449
5,293,603 3/1994 MacWillaims et al. 395,309
5,307,477 4/1994 Taylor et al. 395,403
5,339,399 8/1994 Lee et al. 395/473
5,355,467 10/1994 MacWillaims et al. 395,473
5,359,723 10/1994 Mathews et al. 395,449
5,479,641 2/1995 Nadir et al. 395/455

Primary Examiner Tod R. Swann
Assistant Examiner J. Peikari
Attorney, Agent, or Firm-Stuart T. Auvinen
57 ABSTRACT

A cache system has a large master cache and smaller slave
caches. The slave caches are coupled to the processor's
pipelines and are kept small and simple to increase their
speed. The master cache is set-associative and performs
many of the complex cache management operations for the
slave caches, freeing the slaves of these bandwidth-robbing
duties. The master cache has a tag pipeline for accessing the
tag RAM array, and a data pipeline for accessing the data
RAM array. The tag pipeline is optimized for fast access of
the tag RAM array, while the data pipeline is optimized for
overall data transfer bandwidth. The tag pipeline and the
data pipeline are bound together for retrieving the first
sub-line of a new miss from the slave cache. Subsequent
sub-lines only use the data pipeline, freeing the tag pipeline
for other operations. Bus snoops and cache management
operations can use just the tag pipeline without impacting
data bandwidth. Loop-back flows are performed which
cancel an intervening flow in the tag pipeline when the index
portions of the addresses match.

19 Claims, 6 Drawing Sheets

5,692,152 Sheet 1 of 6 Nov. 25, 1997 U.S. Patent

??OeO J??SeW

| 9

U.S. Patent Nov. 25, 1997 Sheet 2 of 6 5,692,152

60 62 68 66 64

MSTR-VAL
TAGADDR is Sl-VALSD-VAL

61 61 61 61

DATA SLO DATA SL1 DATA SL2 DATA SL3

SOURCES

TO SOURCE 30

U.S. Patent Nov. 25, 1997 Sheet 3 of 6 5,692,152

10 TAGPL 12 DATA PL

P5

P4

P3 TAG READ DATA
MUXING ACCESS 1
COMPARE 1

COMPARE 2 DATA ACCESS 2
P2 UPDATE PREP. MUX DATA

HIT/CANCEL SEND ADDR
TO SAVE

SEND UPDATED SEND DATA TO
P1 HIT, BLK#TO SLAVE CACHE

SOURCE REG SEND CANCEL
TO SLAVE

SLAVE
PO BYPASSES

DATA TO CPU

FIG. 4

U.S. Patent Nov. 25, 1997 Sheet 4 of 6 5,692,152

LOWER-PRIORITY
SRC1
SRC2

SRC3

L. DATA PL
ARB-1 ARB-1

HIGH-PRIORITY P5 P5
SRCO (MISS)

a ARB-2
P4 P4

FIG. 5

U.S. Patent Nov. 25, 1997 Sheet 5 of 6 5,692,152

TAGPL DATA PL

COMMIT
POINT

U.S. Patent Nov. 25, 1997 Sheet 6 of 6 5,692,152

42 40 46 44

FG-VAL ADDR SL-VAL

48 52 54 58

MSTR-HIT BLK MSTR-MISS LRU/2K FLOW

FIG. 7

5,692, 152
1

MASTER-SLAVE CACHE SYSTEM WTTH
DE-COUPLED DATA AND TAG PIPELINES

AND LOOP-BACK

BACKGROUND OF THE INVENTION--
RELATED APPLICATIONS

This is a continuation-in-part (CIP) of "Master-Slave
Cache System". Ser. No. 08/267.658, filed Jun. 29, 1994
now U.S. Pat. No. 5,551,001, hereby incorporated by ref.
erence. This application is also related to "A Slave Cache
Having Sub-Line Valid Bits Updated by a Master Cache",
U.S. Ser. No. 08/618,637, filed Mar. 19, 1996, and assigned
to the same assignee.

BACKGROUND OF THE INVENTION FELD
OF THE INVENTION

This invention relates to cache memory systems, and
more particularly to a master-slave cache system having
separate pipelines for accessing the tag and data arrays of the
master cache.

BACKGROUND OF THE INVENTION--
DESCRIPTION OF THE ELATED ART

On-chip caches are becoming more of a bottleneck to
processor performance. They need to be larger and more
complex because the off-chip miss penalty is becoming
relatively higher, Processor technology allows for rapid
increases in processor speed but off-chip memory access
times have been unable to achieve commensurate speed
increases. Larger, more complex caches are not as fast as
smaller, simpler caches, and may not be able to match the
processor's pipeline clock rate and maximum bandwidth.
A memory hierarchy is often set up, in which a few small

registers lie within the microprocessor core. A small level-1
cache memory is placed on the microprocessor die, and a
level-2 cache memory on the system board, with dynamic
RAM (DRAM) comprising the large main memory, Main
taining coherency between each of these levels in the
memory hierarchy can be difficult and can slow down the
cache memories. Prefetching of instructions can also
increase the complexity of the cache and slow down the
cache.

The trend in recent years has been to put a level-1 cache
on the microprocessor die. As the processor becomes faster,
the level-1 cache size has been increased to increase the hit
rate of the level-1 cache. A high hitrate is necessary because
the miss penalty is high, requiring that a slower off-chip
level-2 cache or main memory be accessed. Often the level-1
cache is made multi-way set-associative to improve its hit
rate. This has led to larger and more complex on-chip
caches. However, the larger and more complex the cache
becomes. the more difficult it becomes to make the cache
fast enough to meet the bandwidth of the processor pipelines
The parent application disclosed a master-slave cache

system where a large level-2 master cache controls smaller
slave caches. The slave caches supply instructions and data
to the processor at a high rate since the slave caches are
small and simple. The master cache performs all cache
management functions for the slave caches, such as
snooping, line invalidation, and cache block Zeroing. The
master cache keeps line valid bits which indicate when a line
is also present in one of the slave caches. In the other related
application the master-slave cache is extended to include a
pipeline in the master cache which keeps track of the
sub-line valid bits in the slave caches. The master pipeline

15

30

35

45

50

55

65

2
alters sub-line valid bits to reflect other transfers to the slave
cache that are in progress. The slave cache then blindly
writes the updated sub-line valid bits from the master
cache's pipeline. Thus the slave cache does not have to
generate and alter its sub-line valid bits, further simplifying
and speeding up the slave cache.
The master cache's pipeline described in the related

application used a single pipeline to access both the master
cache's tags and data. A pipeline has multiple stages, and
different actions occur in these stages. The tags are first
accessed, and then the data is retrieved from the master
cache before being sent to the slave cache. Using multiple
stages allows for optimization of timing of these various
actions such as accessing the cache memory.
While the master cache's pipeline frequently accesses

both the tags and the data array of the master cache, many
operations do not require access to both the tags and the data
array. Line fills require that the master's tags be read once
per line, but the data array is read four times per line (for a
line having four sub-lines). Thus the data array is accessed
much more often than the tags for line fills. The tags sit idle
during three of the four sub-line transfers.

Cache management operations often do not require access
to the data array. Bus snoops and invalidations merely have
to read and possibly update the master's tags. The data array
sits idle during bus snoops. Thus some cache operations do
not access the data array while other operations access only
the tag array. The resources of the master cache are not used
efficiently since the master's pipeline often accesses just the
tags or just the data array.
On the other hand, some systems must respond to external

bus snoops within a fixed span of time. These systems
sometimes include a second set of tags to respond quickly to
bus snoops. A second set of 'snoop' tags certainly increases
the cost of the cache.
A pipeline allows optimization of accesses. For the master

cache, two different kinds of access are required: tag access
and data-array access. Latency, the delay to read the tag, is
most important for the tag array. Bandwidth, the amount of
data transferred averaged over a period of time, is most
important for optimizing the data array. Often the bandwidth
of the data array must be less than optimal in order to
minimize tag latency. Thus latency of tag access can impede
data-array bandwidth when a single master-cache pipeline is
used, or conversely, optimizing for data-array bandwidth can
increase tag latency.
What is desired is efficient use of the tags and the data

array of the master cache. It is desired to process line misses,
stores, bus snoops, invalidates, and other cache operations in
the master cache's pipeline as efficiently as possible. It is
further desired to minimize tag access latency yet maximize
data bandwidth without adding a second set of 'snoop' tags.

SUMMARY OF THE INVENTION

A master-slave cache system is accessed by a central
processing unit's (CPU's) execution pipelines. A slave cache
supplies instructions or operands to the CPU's execution
pipelines. A master cache is coupled to the slave cache and
is coupled to an external bus. The master cache is organized
as an N-way set-associative cache with N elements for each
index-portion of an address. The master cache has a tag
RAM array for storing a tag and a master-valid indicator for
each element for each index-portion of the address. The tag
RAM array includes slave-valid indicators which identify
elements in the tag RAM array which also have valid data
in the slave cache. The master cache performs cache man

5,692, 152
3

agement operations for the slave cache by using the slave
valid indicators in the master cache.
A data RAM array stores sub-lines of data for each tag in

the tag RAM array. A tag pipeline accesses the tag RAM
array. The tag pipeline has a plurality of stages for simul
taneously processing a plurality of requests by passing the
requests through successive stages of the tag pipeline in
response to a clock.
A data pipeline accesses the data RAM array indepen

dently of the tag pipeline. The data pipeline has a plurality
of stages simultaneously processing a plurality of requests
bypassing the requests through successive stages of the data
pipeline in response to the clock.
Tag arbitration means receives a plurality of tag requests.

It selects a tag request from the plurality of tag requests for
processing by the tag pipeline. Data arbitration means
receives a plurality of data requests. It selects a data request
from the plurality of data requests for processing by the data
pipeline. The data arbitration means operates independently
of the tag arbitration means.

Source registers are coupled to the tag arbitration means
and to the data arbitration means. They store a plurality of
requests for access to the master cache, including requests to
access only the tag RAM array, requests to access only the
data RAM array, and requests to access both arrays. The
source registers store completion status for each request.
The tag pipeline includes tag update means, coupled to the

source registers, for updating the completion status for the
request being processed by the tag pipeline. The data pipe
line includes data update means, coupled to the source
registers, for updating the completion status for the request
being processed by the data pipeline. Thus the tag RAM
array is accessed separately and independently from the data
RAM array because separate pipelines are used to access the
tag RAM array and the data RAM array,

In further aspects of the invention the tag pipeline has tag
compare means that is coupled to the tag RAM array. It
compares a tag portion of the address of the tag request to
a plurality of N tags for the N elements that have an index
matching an index portion of the address of the tag request.
A hit means is coupled to the tag compare means. It signals
a hit when one of the plurality of N tags matches the tag
portion of the address of the tag request. The tag update
means further updates the completion status for the tag
request with a hit indication when the hit is signaled by the
hit means but updates the completion status with a miss
indication when no hit is signaled. Thus the source registers
are updated with the hit indication or the miss indication
after the tag pipeline accesses the tag RAM array.

Still further aspects of the invention include element
means which is coupled to the tag compare means. It
identifies which one of the plurality of N tags for the N
elements matches the tag portion of the address of the tag
request and outputs an element-hit identifier to the tag
update means. The tag update means writes the element-hit
identifier to the tag request in the source registers. Thus the
source registers identify which element contains a matching
tag after the tag pipeline accesses the tag RAM array.

In other aspects a bus snoop register stores bus snoop
requests from the external bus. The bus snoop requests
include requests to invalidate any matching lines in the
master cache. Thus slave-cache misses and bus Snoops are
requests stored in the source registers.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a microprocessor substrate or die con

taining the master-slave cache.

10

15

25

30

35

45

50

55

65

4
FIG.2 shows the tags and data stored for each line in the

master cache in a tag array and a separately-accessed data
array.

FIG. 3 highlights separate tag and data pipelines in the
master cache for separately accessing the tag array and the
data array of the master cache.

FIG. 4 is a detailed diagram of the stages in the tag and
data pipelines.

FIG. 5 highlights arbitration and loop-back flows in the
tag and data pipeline of the master cache.

FIG. 6 shows the address for the request in the intervening
stage P3 being compared to the loop-back address from
stage P2 and the intervening request being canceled when
the index portions of the address match.

FIG. 7 shows fields in a foreground source register.

DETALED DESCRIPTION

The present invention relates to an improvement in cache
organization. The following description is presented to
enable one of ordinary skill in the art to make and use the
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

Master-Slave Cache Arrangement
The parent application for a "Master-Slave Cache Sys

tem” U.S. Ser. No. 08/267.658, now U.S. Pat No. 5,551,
001, hereby incorporated by reference, first disclosed a
master-slave cache arrangement. A large, set-associative
master cache supplies instructions and operands to smaller
direct-mapped slave caches for the processor's data and
instruction pipelines. Complex logic for cache coherency,
snooping, zeroing and invalidations is provided in the mas
ter cache but not in the slave caches. The master cache's tags
include slave valid bits which indicate that a copy of the data
is located in the slave cache. Data in the slave caches can be
invalidated by the master cache if the master cache deter
mines that the data also resides in a slave cache.
A master-slave cache on the same substrate or die with a

microprocessor can supply the maximum bandwidth of the
processor's pipelines while being large enough to have a low
miss rate. The cache is arranged as a large master cache
which controls two smaller slave caches, one slave instruc
tion cache for supplying the instruction pipeline with
instructions, and a second slave data cache for supplying
data operands to the execution pipeline.

FIG. 1 illustrates a microprocessor substrate or die 20
containing the master-slave cache. The central processing
unit's (CPU's) instruction pipeline 22 is supplied with
instructions by slave instruction cache 26. Instruction pipe
line 22 is clocked by a processor or pipeline clock. The
pipeline clock controls the transfer of instructions from one
stage of the pipeline to the next. One or more instruction
words must be provided for each processor clock period.
Although the instruction pipeline 22 may stall, or occasion
ally require more than one processor clock period for an
instruction word, the maximum or full bandwidth when no
stalls occur is n instruction words per processor clock
period, where n is the level of scalarity. Thus the slave

5,692, 152
5

instruction cache 26 must supply the instruction pipeline 22
with at least n instruction words per processor clock period
if the full bandwidth of the processor is to be achieved. A
super-scalar processor capable of executing 2 instructions
per clock period has n=2.
The execution pipeline 24 is supplied with operands from

slave data cache 28. In one embodiment of the invention
execution pipeline 24 may also store data operands into
slave data cache 28; these data operands are then written
through to master cache 30. Master cache 30 provides all the
cache management necessary for itself and the slave caches
26, 28. Slave caches 26, 28 need only have a valid bit with
each tag which is set and cleared by the master cache 30.
Prefetching, handling external snoop requests, coherency
operations, and cache flushes are all accomplished by the
master cache. Thus the slave caches 26, 28 may be kept
simple, allowing for a fast access time and a high bandwidth.
Master cache 30 is significantly larger and more complex
than is possible if it were to directly supply the processor's
pipelines 22, 24. Directly supplying the pipelines in a single
processor clock requires a fast access time.

Slave caches 26, 28 are small, fast and simple, and are
preferably implemented as RAM-based, direct-mapped
caches, while master cache 30 is preferably RAM-based and
set-associative. Master cache 30 preferably has four or more
times the capacity of both the slave caches 26, 28. Master
cache 30 may require multiple processor clock periods to
access its contents, while the slave caches 26, 28 are small
enough to supply the required data operand and instruction
words each processor clock period.
An additional level-2 cache 32 may be provided on the

system board off the microprocessor die 20, or the level-2
cache 32 may be omitted, and misses from the master cache
passed on to the main memory 34 on the system board. The
high-bandwidth benefit of the Harvard architecture is
obtained because the slave instruction cache 26 and slave
data cache 28 can supply both pipelines 22, 24 as do split
instruction and data caches of the Harvard architecture.
However, two sets of address and data busses and pins are
not required.
The two caches must be made large so that the miss rate

is small, otherwise the two caches will be contending for the
multiplexed pins frequently, causing one cache to have to
wait. However, the larger cache sizes reduce the clock rate
and bandwidth that can be supplied to the processor core.
The prior-art Harvard architecture is thus stuck between the
trade-off of larger size and lower bandwidth, or smaller
cache size and higher bandwidth but pin contention or die
coSt.

In the invention, master cache 30 provides more func
tionality than is the case by merely integrating an additional
level of caching on the microprocessor die 20. Master cache
30 is tightly coupled to slave caches 26, 28 and can relieve
the slave caches 26, 28 from burdensome cache management
operations such as coherency and snooping. In the Harvard
architecture, coherency between instruction cache and data
cache is difficult and may consume clock cycles that other
wise would be used to supply the pipelines 22, 24. In the
invention, the master cache 30 absorbs these coherency
requests, freeing the slave caches to supply the processor's
pipelines, and greatly simplifying the control logic for the
slave caches.

Additionally, the slave caches 26, 28 may be physically
located in close proximity to the pipelines 22, 24. Thus slave
instruction cache 26 is located near to the instruction pipe
line 22, while the slave data cache 28 is located near the

O

5

35

45

50

55

65

6
execution pipeline 24. The larger master cache 30 may then
be located at a greater distance from the pipelines 22, 24 and
the core CPU logic. This simplifies floor-planning and
layout of the microprocessor die 20, and results in faster
access times for transferring instructions and data from the
slave caches 26, 28 to the pipelines 22, 24. In prior-art
systems, the large cache sizes required that any cache be
located away from the CPU core and the pipelines.
Only a single set of address and data busses are needed for

communicating with external caches and memories. Pins 31
connect the master cache 30 with the external level-2 cache
32, whereas on some prior-art systems a single set of pins
had to be multiplexed. Not having to multiplex the pins
reduces contention and complexity. Alarger, wider datapath
may be used between the master cache 30 and the slave
caches 26, 28 since no connection is necessary for the
slave-master busses 33, 35 to the external pins of the
microprocessor die 20. Slave-master busses 33, 35 may be
each separately optimized for the bandwidth required by the
particular slave cache and pipeline.

Since the bulk of the capacity of the cache lies in the
master cache 30 rather than the slave caches 26, 28, the
benefits of the unified cache result. A higher hit rate is
achieved than if the master cache were split into two
separate half-size caches, and the master cache provides
flexibility and adaptability by being able to place either
instruction or data words in any line in the cache, allowing
the portion of the cache allocated to either data or instruc
tions to vary as needed by the programs currently executing
on the processor. The master cache may be implemented in
slower, denser, and lower-power memory than the slave
caches, saving power, space and cost while maintaining a
high hit rate.

Master Tags Include Slave Valid Bits
FIG. 2 shows the tags and data stored for each line in the

master cache in a tag array and a separately-accessed data
array. Amaster line is stored for each line in the master cache
30. The master line is divided into two parts which are stored
and accessed separately: data fields 61 are stored in a data
RAM array, while tag 60, valid bits 62. 66, 68 and LRU bits
64 are stored in a tag RAM array. LRU bits 64 may also be
stored in a separate 'use' array which may be accessed with
the tag RAM array.

Data fields 61 of the line are well-known in the art and can
take on many arrangements. Data fields 61 are preferably
sub-lines, where the bus interface between the master and
slave caches can transfer one sub-line of data per cycle. The
data stored may be either data operands, instructions, or
translation or other system information. Data fields 61 are
stored and accessed separately from the remaining fields
which are stored in a tag RAM array separate from the data
RAM array.

For each cache line in the tag RAM array, address tag 60
stores a tag portion of the address of the data stored in the
line. A master valid bit 62 is used to indicate if the line in the
master cache 30 contains valid data. A preferred embodi
ment replaces a single master valid bit 62 with a MESIfield
of two bits which are encoded to indicate if the line is
invalid, modified (dirty), exclusive, or shared with other
external caches. The MESI protocol is a well-known pro
tocol for sharing data between different memories or caches.
Master valid bit 62 does not provide sub-line validity; only
an entire line in master cache 30 can be valid.
Master cache 30 is preferably an 8-way set-associate

cache, which is a cache array divided into 8 elements or

5,692, 152
7

blocks. A cache line with a certain index can reside in any
of the 8 lines (also called set-associates) for the index. The
8 lines are known as a set, and each set is uniquely identified
by an index. LRU bits 64 encode a pseudo-least-recently
used algorithm to help select which element or block should
be replaced next for that index. An approach for line
replacement is to force the set-associates in the master cache
that also exist in a slave cache (they have a slave valid bit
66, 68 set) also to be the most-recently-used set-associates.
The master cache line also contains inclusion information

for the slave caches 26, 28. SI valid bit 68 indicates that at
least some of the data in the master's cacheline is also valid
in the slave instruction cache, while SD valid bit 66 indicates
that at least some of the data in the master's cacheline is also
valid in the slave data cache. It is possible that only one or
two of the four sub-lines may be valid in the slave cache
since the slave cache supports sub-line validity. Thus the
master cache has information on the contents of the slave
caches.
The master cache thus contains three valid bits:
1. The master valid bit 62 which indicates if the line in the

master cache is valid.
2. The SI valid bit 68 for the slave instruction cache.
3. The SD valid bit 66 for the slave data cache.
The master cache always contains inclusion information

for any lines in the slave caches; it is not permitted for the
slave caches to have lines which are not presentin the master
cache. By also having the slave-cache valid bits, the master
can perform complex coherency operations, required by
many modern architectures such as snoops, invalidations,
and zeroing, without needlessly disturbing the slave caches.

Only a valid bit for an entire cache line is provided in the
master cache, but sub-line valid bits are provided in the slave
caches. Since the master cache is much larger than the slave
caches, the additional cost for providing sub-line validity is
reduced compared to adding sub-line valid bits in the larger
master cache. Details of providing sub-line validity in the
slave cache and not in the master cache are provided in the
related applications for "Slave Cache having Sub-Line Valid
Bits Updated by a Master Cache", U.S. Ser. No. 08/618,637
filed Mar 19, 1996 with a common inventor and assigned to
the same assignee. This related application describes a single
combined tag and data pipeline in the master cache for
adjusting the sub-line valid bits from the slave caches.

Separate Tag and Data Pipelines in Master Cache
FIG. 3 highlights separate tag and data pipelines in the

master cache for separately accessing the tag RAM and the
data RAM of the master cache. Master cache 30 stores data
arranged in the sub-lines of datafields in dataRAM array 18.
Tags, valid bits, and LRU fields are stored in tag RAM array
16. Tagpipeline 10 is amulti-stage pipeline for accessing tag
RAM array 16, while data pipeline 12 is a second multi
stage pipeline for accessing data RAM array 18. Tag pipe
line 10 is optimized for accessing tag RAM array 16 with
minimum latency or access time, while data pipeline 12 is
optimized for accessing data RAM array 18 with maximum
bandwidth. Thus tag pipeline 10 and data pipeline 12 are
separately optimized in timing.
Tag RAM array 16 is set-associative, but all tags for a

given index are output to tag pipeline 10 during an access of
tag RAM array 16. Tagpipeline 10 includes comparators for
each element of tag RAM array 16. These comparators
compare the tags stored for an index with the tag portion of
the incoming address. When none of the comparators signal
a match, or when the master-valid bit or MESIfield indicates

10

15

20

25

30

35

45

55

65

8
that the matching address is marked as invalid, then a miss
is signaled in tag pipeline 10. When a match is found, and
the master-valid bit indicates that the matching line is valid,
then a hit is signaled and the element number oridentifier for
the matching element is encoded by tag pipeline 10.
The hit-miss indication, and the encoded element number

for the matching element are sent to data pipeline 12 so that
the matching element's data may be selected. Data pipeline
12 can first access data RAM array 18 without knowing
which element the desired data resides in, and later in the
pipeline select the correct data using the encoded element
number from tag pipeline 10. Sending the hit and encoded
element number from tag pipeline 10 directly to data pipe
line 12 is useful when both pipelines are processing the same
address. Both pipelines can process the same address when
a source request such as a new miss from a slave cache is
simultaneously sent to both pipelines 10, 12. Using both
pipelines for the same request is known as "binding the two
pipelines together and is used for high-priority cache
accesses such as a new demand miss from a slave cache
which must be quickly responded to so that the CPU can
continue. Thus demand misses, which must be satisfied
immediately, can use both pipelines in lock-step to maxi
mize resources allocated to the new miss.
Most other sources of requests are not critical for both the

tag and data pipelines, so tag pipeline 10 and data pipeline
12 respond to a request at different times. A low-priority line
transfer to a slave cache first is loaded into source registers
14, which then arbitrate for control of tag pipeline 10 and/or
data pipeline 12. The request is first sent down tag pipeline
10 to read tag RAM array 16 to determine if the line hits in
the master cache. If it does, then the hit updates source
registers 14, and the encoded element number is also stored
in source registers 14. The hit signal sent to data pipeline 12
is either not generated or ignored by data pipeline 12, which
may be processing a different source's request.
Once the requestin source registers 14 has been looked up

by tag pipeline 10 to find the element number of the
requested data, then the request arbitrates for control of data
pipeline 12. The encoded element number which was found
by tag pipeline 10 and stored in source registers 14 is also
passed to data pipeline 12. The data is retrieved from the
indicated element of data RAM array 18 as the request
travels down data pipeline 12. Finally the data and its
address are sent to the slave cache from data pipeline 12.
When the data pipeline is not otherwise busy, sending the

request down both the tag and the data pipelines can reduce
latency in returning the first critical sub-line of a demand

SS

One Tag Access Followed by Four Data Accesses
When multiple sub-lines of data are transferred, then the

single pass through tag pipeline 10 may be followed by
multiple passes through data pipeline 12, with one sub-line
of data being sent to the slave cache for each pass through
data pipeline 12. A complete line transfer requires one pass
through tag pipeline 10, and four passes through data
pipeline 12. A second pass through tag pipeline 10 may be
used to update LRU or slave-valid information. A third pass
may update slave valid information for the prior contents of
the slave cache.

Source Registers Updated as Tags Modified or
Read

Source registers 14 contain the address of the request,
such as the miss address from the slave cache. Source

5,692, 152

registers 14 also contain status information about the
progress of satisfying the request, such as the hit/miss
indication and element numberlooked up by tag pipeline 10,
and the status of external bus operations that are required
when the request misses in the master cache and must read
an external memory. For a large master cache, many sources
can be loaded into many different registers in source regis
ters 14. Source registers 14 contain several registers for miss
and prefetch requests for the slave caches, and bus snoop
requests, invalidates, stores, and other cache operations.
The inventors have realized that the tags are changed

much less frequently than the data. Since four data accesses
occur for each tag access for satisfying a typical slave cache
miss, more tag bandwidth is available than data pipeline
bandwidth. If the tags are modified before all four sub-lines
have been transferred to the slave cache, then the source
register has its tag-hit indication cleared. The tags must be
accessed again or the request canceled altogether when the
request's tags are modified by another operation.
When the tags are modified during the tag pipeline, the tag

pipeline's address is compared to all sources in the source
registers to find any matching index and tag portions of the
address. Any matching tags in the sources have their hit
indication cleared so that the tags must be accessed again,
unless the source register's request has passed a commit
point.

Detail of Tag and Data Pipelines
FIG. 4 is a detailed diagram of the stages in the tag and

data pipelines. Tag pipeline 10 accesses the tag RAM array,
while data pipeline 12 accesses the data RAM array of
master cache 30. Both pipelines contain six pipestages,
designated P5, P4, P3, P2, P1, and P0. Stage P5 is the top or
beginning of the pipeline while stage P0 is the bottom or end
of the pipeline.
Two stages of arbitration (PS and P4) are used to arbitrate

among the many sources of requests for access to the master
cache. The first stage (P5), ARB-1, receives lower-priority
requests such as background transfers and prefetches to the
slave caches which can safely be delayed. The second stage
(P4), ARB-2, arbitrates the winner of the ARB-1 arbitration
with other high-priority sources. These high priority sources
include a new demand miss from a slave cache, which is a
request for data that the CPU is waiting for. Another
high-priority request is a bus snoop, which often must be
responded to within a fixed amount of time. When an
exception such as a master-cache miss has occurred in tag
pipeline 10, then the excepting request is looped back to
ARB-2 and has priority over all other requests. Loop-back
allows a request to have several flows through the pipelines
to process complex operations, and excludes other requests
from accessing or modifying lines at the same cache index
as the complex operation.

Separate Arbitration for Tag and Data Pipelines
Separate arbitration is performed for tag pipeline 10 and

for data pipeline 12, even when a source requests both
pipelines, such as a new demand miss. Separate arbitration
allows sources that require only one of the pipelines to
request only that pipeline and not the other pipeline. A snoop
request which has to read only the tags can arbitrate for only
tag pipeline 10 and not for data pipeline 12, which is not
needed. Thus separate arbitration promotes efficient use of
the pipelines.

Two-stage arbitration provides lower latency for high
priority requests, since these enter the pipeline in the second

10

15

25

35

45

50

55

65

10
(P4) stage while low-priority requests enter the first pipeline
stage, P5. Thus high-priority requests have one less cycle of
latency than do low-priority requests. The presence of a
competing requestor and short cycle times may necessitate
two-stage arbitration.
Once arbitration is complete, the request address from the

source registers is loaded into the P3 stage of the pipeline.
Thus the first two stages, PS and P4, do not require an
address. This can further improve latency for requests that
receive the address later than the request is signaled. For
example, a bus snoop may be initiated when a snoop-request
pin is asserted by an external snoop requestor. The snoop
address may be driven onto the external bus a cycle or two
later. As soon as the snoop-request pin is asserted, but before
the snoop address is received, the master cache can begin
arbitration for the snoop requestin either the P5 or P4 stages,
depending on the priority of the snoop request. Likewise a
miss from a slave cache can first be signaled before the miss
address is sent. The index portion of the address does not
have to be available until the beginning of the third pipeline
stage, P3, while the remaining portions of the address need
to be available only by the end of stage P3.
Tag pipeline 10 is optimized for latency of tag RAM

access. Thus the tag RAM array is read early in tag pipeline
10, immediately after arbitration is complete. This provides
the hit indication as soon as possible. The tag RAM is read
during stage P3 of tag pipeline 10, and the tags, one for each
element, are sent to the comparators. Address comparison
begins during stage P3 and is completed during the next
stage, P2. In P2 the matching element is identified and
encoded into the element number, which is sent to stage P2
of the data pipeline when the pipelines are bound together,
During stage P2 the hit indication and the encoded element
number are sent to source registers 14 for storage.
When the tags need to be written (as for an invalidate), the

updated tags, valid bits, and LRU fields are generated during
stage P2, and a loop-backflow is performed by re-arbitrating
for the tag pipeline in stage P4, and writing to the tags rather
than reading the tags during stage P3 of the second flow.
Explicittag-write flows without loop-back occur for line fills
from the external bus.

Stage P0, the last pipeline stage, is merely a place
keeper' stage performing no function other than for address
comparisons against new requests that are being loaded into
source registers 14. All new requests have their indexes
compared against transfers in the tag and data pipelines so
that the new requests can reflect these completing requests
that have not yet been sent to the slave caches. In particular,
the sub-line valid bits of new requests are adjusted to take
into account completing transfers in the P0, P1, P2, and P3
stages of the data pipeline so that all requests are consistent.
This allows for transfers to take several cycles to be sent to
the master cache or back to the slave caches. In one
embodiment the data pipeline has the P0 stage, but the P0
stage is deleted from the tag pipeline.

Data Pipeline
Data pipeline 12 is loaded with the address of the winning

request at the beginning of stage P3. This request and its
address can be different from the request and address that are
loaded into tag pipeline 10. The data RAM array is read
during stages P3 and P2, with the address being sent to the
data RAM array during stage P3, and the data fields being
returned in the next stage, stage P2. Since all data fields are
read for all lines having the same index, data pipeline 12
must select the correct element's data by muxing during

5,692, 152
11

stage P2. The encoded element number used to select the
proper data is staged down data pipeline 12 when tag
pipeline 10 is not bound to data pipeline 12. When the two
pipelines are bound together, tag pipeline 10 sends the
encoded element number to data pipeline 12 late in stage P2
so the correct data can be muxed out.

During stage P1, data pipeline 12 sends the selected data
field to the slave cache or other source. Should the two
pipelines be bound together and a miss be detected by tag
pipeline 10, then the transfer to the slave cache is terminated
by sending a cancel signal to the slave cache near the end of
stage P1. This cancel signal acts as a disable of the transfer
from data pipeline 12 to the slave cache, allowing the
address and data fields to be sent at the beginning of stage
P1 and the enable/disable at the end of stage P1. Since the
wide address and data may require more time to drive the
address and data bus interfaces, the cancel signal can be
designed to arrive at the slave cache in time to cancel the
transfer.
The slave cache can write the data received during stage

P0 of the data pipeline. Stage P0 performs no other function
other than address comparisons for new requests from the
slave cache which arrive before the data from the master's
data pipeline 12 is written to the slave cache in stage P0.

Operations which write to the data RAM array include
line fills from external memory to the master cache, and
stores from the CPU (slave data cache and/or store buffer).
Data must be available early in cycle P3 for writing to the
data RAM.
New requests that arrive from the slave cache during

stages P0, P1, P2, and P3 do not see the data written from
these stages. Thus an address comparison is made. When an
exact address match is detected, the new request is simply
requesting the same data that is being transferred, and thus
the new request is redundant. The new request may be
deleted rather than being loaded into source registers 14. The
new request is known as a re-miss' and can occur when
prefetching correctly anticipates what cache lines are
needed. Re-misses also occur when prefetching the remain
ing sub-lines of a cache line that had only one of the
sub-lines requested earlier. When the new address is to a
different sub-line but the same cache line as another request
in a source register, the new request is merged into the old
request's source register.

Re-misses also occur after the new demand miss is
transmitted to the master cache, but before all four sub-lines
from that cache line have been transmitted to the slave
cache. The CPU may request a second sub-line in that cache
line. This request for the second sub-line is merged into the
original request, but the order of sending the subsequent
sub-lines is altered so that the second sub-line requested is
sent immediately. Thus merging requests allows sub-lines to
be transferred to the slave cache in the order requested by the
CPU rather than in a fixed order. Prior art systems might use
a fixed order, always sending the third sub-line after the first
sub-line, and then the second and fourth sub-lines.

Artbitration and Loop-Back Flows
FIG. 5 highlights arbitration and loop-back flows in the

tag and data pipeline of the master cache. Lower priority
sources arbitrate for tag pipeline 10 and for data pipeline 12
in the first stage, P5. Most lower-priority sources arbitrate
for either tag pipeline 10 or data pipeline 12, but not both.
High-priority sources such as a new demand miss from a
slave cache are artbitrated in second stage P4. When there are
no high-priority P4 sources arbitrating for a pipeline, then

10

15

25

30

35

45

55

65

12
the winner of the first-stage arbitration gains control of the
pipeline. However, higher-priority sources input to stage P4
generally win arbitration, losing only to line evicts and fills
from the external bus which begin arbitration in stage PS.
The winner of the two-stage arbitration flows down the

pipeline through stages P3, P2, P1 and P0. Certain tag
pipeline flows can have exceptional conditions occur. For
example, a miss from the slave cache may also miss in the
master cache and have to read external memory to find the
data requested. Such a miss is detected in the tag pipeline
during stage P2, after the tags have been read from the tag
RAM array in stage P3 and compared in stages P3 and P2.
When such a miss is detected in stage P2, a second flow

is required to read the old tag because the LRU bits must be
consulted during the first flow to determine which element
is to be replaced. The LRU bits identify which element is to
be replaced, and when that element is modified its tag is read
during the second flow. The old element's address from the
tags read during the second flow are loaded into a source
register for line evicts which then arbitrates for the data
pipeline. The data pipeline reads the evicted line's data and
writes it out to the external bus, perhaps using other buffers.
The second flow through tag pipeline 10 is known as a

loop-back flow. A loop-backflow is initiated by arbitrating
again for the pipelines. The address from stage P2 is looped
back to stage P4 and the flow in P2 arbitrates for a second
flow through tag pipeline 10. Data pipeline 12 is also
arbitrated for, as it is also needed for some types of loop
backflows. In the preferred embodiment, data pipeline 12 is
always bound to tag pipeline 10 for loop-backflows as this
simplifies arbitration logic. Since loop-back requests have
the highest priority of all requests, the loop-back request
from stage P2 always wins arbitration of both pipelines in
stage P4.

Both tag pipeline 10 and data pipeline 12 are arbitrated for
when a loop-back flow is required. This simplifies loop
backs since both pipelines are often required to handle the
exceptional conditions. The preferred embodiment does not
allow the tag pipeline to transfer to the slave caches; thus
loop-backflows are required to send invalidates to the slave
cache from the tag pipeline.

Bus Snoop Which Hits Requires Loop-Back Row
A bus Snoop that hits in the tag RAM may require a

loop-back flow to invalidate the matching tag. The loop
back flow uses the tag pipeline to write an invalid MESI
condition to the master's valid bit/MESIfield. At the same
time the data pipeline is used to send an invalidate to the
slave cache when the matching tag's slave valid bits indi
cates that the slave cache also has a copy of the data being
invalidated. The data pipeline is needed because only the
data pipeline can send information to the slave caches. The
data pipeline invalidates the slave's data by sending the
invalidation address along with all sub-line valid bits
cleared. The slave cacheblindly writes this address and valid
bits to its cache line, resulting in a cache line having all
sub-lines marked as invalid.
When the bus snoop hits a modified line in the master

cache, then the modified line must be cast out or evicted
from the master cache and written out to the bus to update
external memory. This eviction of the dirty line requires four
passes through the data pipeline to read all four sub-lines of
data. A final, optional, tag flow may be initiated to alter the
LRU bits to point to the invalidated line so that other valid
lines are not replaced before the invalid line. This improves
performance somewhat.

5,692, 152
13

Master-Cache Miss Requires Loop-Back Flows
Loop-backflows are also used when a miss from the slave

cache also misses in the master cache, and an old cache line
must be evicted to make room for the new cache line. If this
evicted line is modified, it must be written out to the external
memory. During the loop-back, the old tag is read and stored
in an evict source register. Subsequent data pipeline flows
are used to read the four sub-lines. Finally the tags are
over-written for the new line, and the LRU bits are updated
in another tag pipeline flow.
A loop-back flow may also be used to update the LRU

information. Since the LRU information does not need to be
immediately updated, this can also be accomplished by a
second flow from the source register rather than by using the
loop-back arbitration, which can delay other critical
requests.
A loop-back flow is also required when a store from the

CPU or store buffer writes to a clean (exclusive) line. During
the initial flow through the tag pipeline, the MESI bits are
read for the matching cache line. At the P2 stage the tag
pipeline determines that the MESI bits show that the cache
line is unmodified, and a loop-backflow is arbitrated for in
the P4 stage. The loop-backflow then writes the MESIbits
to the modified state.
In summary, the loop-back flow occurs when any of the

following occur:
1. A miss in the master cache uses the loop-backflow to
read the old tag for the modified cache line being
replaced, the least-recently-used cache line.

2. A bus snoop uses the loop-back flow to write the tags
when a hit occurs in the first flow through the tag
pipeline. The matching tag may be invalidated in the
loop-back flow. Rather than invalidate the tag, the
snoop may change the MESI bits to shared when the
data is written out to the bus.

3. A store from the CPU uses the loop-backflow to write
the matching tag's MESIbits to modified (dirty) if they
were exclusive.

4. Other cache operations from the CPU use the loop-back
flow to invalidate a tag.

5. LRU updates use loop-back when too many LRU
requests are already queued up.

Address Compare for Intervening Request
FIG. 6 shows the address for the request in the intervening

stage P3 being compared to the loop-back address from
stage P2. The intervening request is canceled for certain
loop-back requests when the master-index portions of the
address match.
Once a request has flowed down a pipeline into the P1

stage, it has passed the "commit' point, and an update has
occurred. For tag pipeline 10, the source registers 14 are
written on the transition from stage P2 to stage P1 with the
encoded element number and a bit is set indicating that
either a hit or a miss has been detected. For data pipeline 12,
the data is sent to the slave cache during stage P1 and source
registers 14 are updated to indicate that another sub-line of
data has been transferred to the slave cache. A special late
cancel signal is used at the end of stage P1 to cancel a
transfer if a master-cache miss has just been detected.
Otherwise data pipeline 12 reaches its commit point in early
P1 rather than at the end of P1. The commit point is at the
end of P1 for data pipeline but at the end of P2 for the tag pipeline.
Requests before the commit point can be canceled or

looped-back for a second flow through the pipelines. When

10

15

20

25

35

45

55

65

14
a request is looped back from stage P2 to stage P4, an
intervening request may be present in stage P3 of tag
pipeline 10. The master-index portion of the address being
looped back is compared to the index portion of the address
of the request in stage P3 by comparator 50, and if a match
is detected, the request in stage P3 of the tag pipeline may
be canceled. This cancels intervening requests that might be
affected by the loop-back of P2, but allows requests to
unrelated cache lines to complete unhindered.
The comparison for the P3 stage may itself be pipelined

for timing reasons. The comparison could take place in the
previous P4 stage, with the compare result being available in
the P3 stage. The intervening address of the P4 stage is
compared to the P3 address in the pipelined compare, which
is equivalent to comparing the intervening address in the P3
stage with the P2 address.

Fields in Source Registers
FIG. 7 shows fields in a foreground source register. Each

source register contains the miss address 40 and other
information on the status of the request. For example,
sub-line valid bits 44 are stored for misses from the slave
cache, and invalid sub-lines may be prefetched to the slave
cache when free data-pipeline bandwidth is available. Sub
line valid bits 44 thus indicate how many of the four
sub-lines have already been transferred.

Status information is stored when the tag has been looked
up, and if so, if a master miss or hit was determined by the
tag pipeline. Master hit bit 48 is set after a tag lookup when
a hit is detected, while master miss bit 54 is set when the tag
lookup detects a miss. The element or block number 52 of
the matching tag is also stored from the tag pipeline so that
the correct data may be fetched from the data pipeline.
Secondary-flow status bits 58 indicate if the LRU update
flow has occurred yet, and if any inclusion check or update
flows have been processed through the tag pipeline after the
data has been fetched.

Foreground valid bit 42 is cleared when no request resides
in the foreground register. Demand sub-line field 46 iden
tifies which of the four sub-lines in the cache line is being
requested first by the slave cache. Other sources have
somewhat similar registers also containing address and
status information, but are adapted for other particular types
of request.

Types of Source Registers
Several different kinds of source register are used. The

slave instruction cache has two source registers: a fore
ground and a background register. New demand misses are
loaded into the foreground register. Sub-lines of data are
transferred to the slave cache until another miss from the
slave is received. This new request is merged into the
foreground register if the miss is to the same line (the index
and tag portions of the address match). When the new
request is to a different line, the older request in the
foreground register is moved to the background register and
the foreground register is loaded with the new request. The
foreground register transfers its four sub-lines of data to the
slave cache before the background register transfers its
remaining sub-lines to the slave cache. When both the
background and foreground registers are occupied and a new
miss arrives, then the request in the background register is
deleted to make room for the request from the foreground
register. -

The slave data cache also has a foreground and a back
ground register used to satisfy slave data cache misses,

5,692, 152
15

which operate in the same manner as the foreground and
background registers for the slave instruction cache.
The store buffer source register receives all writes from

the CPU, which are then loaded into a source register for the
store buffer.

Bus snoops also have a source register for checking the
tags to determine if the snoop hits in the tags, and to perform
an invalidation if a hit occurs. When the hit is to a modified
cache line, then the request is transferred from the snoop
source register to a bus-operations source register. Bus
operation source registers control transferring data between
the master cache and the external bus or external memory.
Typically the four sub-lines of data are transferred, and the
tags are modified. This requires an initial tag-pipeline flow
to read the old tags, four data-pipeline flows to transfer the
four sub-lines of data, and a final tag-pipeline flow to write
the new tags, or to invalidate the old tag. In the preferred
embodiment, four bus-operation source registers are pro
vided to perform up to three bus operations at once and a
snoop push. Misses in the master cache also use these
bus-operation source registers to read in the new cache line
from the external memory, and possibly to evict the old
modified line.
Cache operations that are initiated by executing in the

CPU a cache operation in the instruction set may also use
these bus-operation source registers, or special source reg
isters may be provided. As an example, the PowerPCM
instruction set includes a wealth of cache instructions, such
as "touch" instructions (dcbt, dcbtst) that fetch a line from
the external memory but do not send any data to the CPU.
This is useful to force a pre-fetch of the cache line into the
master cache before the data is needed by the CPU. Block
zeroing instructions (dcbz) allocate a new cache line and
write zeros to all data fields in the cache line. Other cache
operations include "dcbi", which invalidates data in the
cache, "icbi" which invalidates instructions in the cache, and
"dcbf” which invalidates data after flushing the data if it has
been modified.

Types of Operations
The following operations are sent down the tag pipeline:
1. Tag reads for Slave Cache Misses to determine if they

hit in the master cache, and which element they hit in.
2. Tag writes from the external bus to update the tags
when a new line is allocated to the master cache.

3. Tag reads for stores from the CPU or slave caches to
determine if they hit in the master cache and what
element they hit in.

4. Tag reads for bus snoops to determine if they hit in the
master cache and slave caches.

5. Tag writes by bus snoops to invalidate the master
cache's tags, a loop-back flow.

6. Tag writes to update the LRU bits and/or slave valid
bits in the master's tags.

7. Tag writes to update MESI bits to modified when a
store occurs, a loop-back flow.

8. Tag writes and reads for diagnostic purposes.
9. Inclusion update after replacing a line in the slave, a

"2K-away check".
The following operations are sent down the data pipeline:
1. Data reads for slave-cache misses, after the master's

tags have been read.
2. Speculative data reads for slave-cache misses while the

master's tags are being read.

10

15

25

35

55

65

16
3. Data writes for stores from the CPU (slave cache and/or

store buffer).
4. Data reads for expelling or copying a modified old line
from the master cache to the external memory.

5. Data writes from the external bus or memory for
loading a new cache line into the master cache.

6. Data reads and writes for diagnostic purposes.
7. Invalidates to the slave caches.

Tag-Only Operations
Several types of operations do not require use of the data

pipeline, and thus can occur without reducing the data
bandwidth of the master cache. LRU updates, bus snoops,
2K-away inclusion checks, and line-prefetch checking use
only the tag pipeline under most circumstances. Bus Snoops
that must invalidate a line in the slave cache are an excep
tion: the data pipeline is used to transmit the invalidation to
the slave cache which requires a loop-back flow, Line
prefetch checking may first be done to determine if a
prefetch is feasible before the data bandwidth is used to
prefetch data.
When the master cache has more indexes than the slave

caches, several sets in the master cache map into one slave
set. When a new cache line is loaded into the slave cache, the
slave valid bit in the master's tag is set. However, the old
slave valid bit for the slave's line being replaced may also
need to be cleared. The old slave valid bit is in a different
master tag than the new line when the old A20 bit differs
from the new miss's A20 bit. Thus an inclusion check may
be needed to locate and clear the old line's slave valid bit in
the master cache. This inclusion check is performed as a
tag-only pipeline flow. This is a lower-priority request.
When the slave caches are 2K bytes in size, master cache
lines that are 2K bytes away from the new cache line must
be checked during this inclusion check. If the master cache
has 4K bytes in each block, then only two master cache lines
can map to each slave cache line and only one inclusion
check may be necessary.
Acache line with four sub-lines uses the data pipeline four

times, but the tag pipeline only once or twice. Thus the tag
pipeline sits idle for half of the time. This idle time is used
for these tag-only operations without impacting data pipe
line bandwidth.

Banking Data Rams
The data RAM array may be divided into two or more

banks to allow interleaving. Interleaving can increase band
width by accessing each bank in a staggered fashion when
RAM access requires more than one pipestage. When the
source is assigned the data pipeline, one or both of the two
RAM banks is also assigned. Both RAM banks may be
accessed for demand misses when the tags are being
accessed in parallel. The correct bank to use is determined
once the tag has been looked up. For subsequent misses in
the same line, the tag has already been looked up, and the
data pipeline is assigned one of the banks. Back-to-back
accesses in the data pipeline can occur when the banks
accessed are alternated; otherwise the RAM may be
accessed only once every two cycles for a two-cycle RAM
CCCSS

The two-stage arbitration is ideal for two banks of data
RAM. Since an access to any one bank of data RAM can
only be started every other clock cycle, the two-stage
arbitration can cancel a request immediately following
another request to the same bank and instead allow another

5,692, 152
17

request to a different bank to win arbitration. Thus two-stage
arbitration promotes efficient interleaving of the two data
RAM banks.

For a new demand miss, the first data sub-line is returned
in three cycles (stages P3, P2, P1 from receiving the miss in
cycle P4). Subsequent sub-lines are returned in three, one,
and one additional cycles. Thus a burst of 3-3-1-1 is sup
ported with two-bank interleaving. Below is a timing dia
gram when the correct bank is selected in the first flow
which has the tag and data bound in the pipeline:

P4 P3 P2 P1
st

P5 P4 P3 P2 P1
te

P2

1st Sub-line:
1st data
2nd Sub-line:
2nd data
3rd Sub-line:
3rd data
4th Sub-line:
4th data

P5 P4 P3 P1
s:

P4 P3 P2 P1

The second sub-line does not begin until after the tag has
been accessed in P2 of the first flow through the tag pipeline.
Alternating banks are selected for each subsequent sub-line.
Sub-line validity allows data to be transferred in any order,
so that the third sub-line may be transferred before the
second sub-line if the second sub-line's bank is busy. This
flexibility of ordering sub-lines uses the available RAM
banks more efficiently.

Advantages of the Invention
Two independent and parallel pipelines allow separate

access of the tag and data RAMs. A higher overall through
put is achieved for a wide variety of cache operations that
must be processed by advanced cache systems. While it is
possible to optimize access for common line misses andfills,
the invention provides optimized access for a wider variety
of cache operations, such as bus snoops, invalidates, evicts,
stores, and other cache management operations.
The tag pipeline is separately optimized for the timing of

the tag RAM array, which may differ from the timing
requirements of the data RAM array. The tag pipeline is
optimized for latency, providing quick access to the tags,
while the data pipeline is optimized for throughput rather
than latency. Data transfer throughput is increased while fast
tag latency is provided for bus snoops and demand misses.
The pipelines can still be bound together for high priority

operations such as returning the first sub-line of data when
a new demand miss occurs. The pipelines are then unbound
for transfer of subsequent sub-lines, allowing just the data
RAM to be accessed for these subsequent sub-lines.

Since the tag RAM array is smaller than the data RAM
array for most cache arrangements, the tag RAM has a lower
access delay than does the data RAM. The separate pipelines
take full advantage of this difference in access delays by
reading the tag RAM in less than one clock cycle, but
allowing two clock cycles for the data RAM array access.
While pipeline stalls often occur in processor pipelines,

tag pipeline 10 and data pipeline 12 are designed to not have
any stalls. Instead, when an exceptional condition such as a
miss occurs, a request flowing through a pipeline can cancel
other requests flowing behind it in the pipeline, and the
exceptional request can loop back and flow through the
pipeline again to process the exceptional condition. Thus
requests always continue to stage down the pipeline unless
they are canceled or loop back to the top of the pipeline.
Typically a cache clock is used to clock the requests down

10

15

30

35

45

55

65

18
the pipeline. When no request is being processed by a
particular stage, then the stage's outputs are disabled. A
stage-valid bit can be used to indicate empty stages.
Except for the hit?cancel signal, tag pipeline 10 and data

pipeline 12 are completely decoupled. Even when both
pipelines are “bound' together to simultaneously handle a
new demand miss, the only coupling once arbitration is over
is the hit?cancel signal and element number from tag pipe
line to the data pipeline. After the tag pipeline reads the tag
RAM array and determines if the demand miss is a hit in the
master cache, tag pipeline 10 sends a hit signal to data
pipeline 12. The encoded element number of the matching
line is also sent with the hit?cancel signal so that data
pipeline 12 can select the correct element's data from the
data read out of the data RAM array. Data pipeline 12 reads
all elements of data for the index of the new demand-miss,
and then selects the correct element's data toward the end of
data pipeline 12. Thus almost no coupling between the
pipelines is used, allowing the pipelines to actindependently
of one another.

Alternate Embodiments

Several other embodiments are contemplated by the
inventors. For example separate master cache pipelines may
be constructed for the slave instruction and slave data
caches. Separate pipelines may also be used for each ele
ment or group of elements in the master cache. When the
RAM is divided into banks, a separate pipeline may be
provided for each bank. Requests from other sources besides
those described herein can be mixed in with requests for the
master pipeline. These other sources can include external
Snoop or invalidate requests, other processors or I/O devices,
stores to the master cache, and other caches. In these cases
the "miss' address is not strictly caused by a miss.
The master cache's pipelines have been described as

six-stage pipelines, but deeper or shallower pipelines may
also be used. The tag and data pipelines do not have to be of
the same length. While for simplicity the requests in the
master pipeline have remained in order, some higher-priority
requests may bypass lower-priority requests in the pipeline
to achieve more efficient processing. Foreground and back
ground registers are just one of many ways to track incoming
requests, and indeed these registers or buffers may be
deleted in favor of other means of tracking and processing
requests. Each foreground or background register may
source several transfer requests. A line miss in the fore
ground register can generate four sub-line requests in order
to fetch the entire line into the slave cache. A new request
can move an olderline miss in the foreground register to the
background register, and prefetching may be sourced from
these registers by incrementing the line address.
The master cache could also contain a secondary tag

RAM array for keeping a copy of the slave's sub-line valid
bits and tags to expedite processing. Data forwarding and
bypassing techniques may also be used. For example, bus
operations which write data from an external bus to the
master cache may also forward this data directly to the slave
cache during the P2 stage of the data pipeline when writing
the data to the data RAM.

In the preferred embodiment, only the data pipeline can
transfer information to the slave caches; the tag pipeline
must use the data pipeline to send an invalidate to the slave
cache even when no data access is required. The tag pipeline
could be extended to access the slave caches as does the data
pipeline. The tag pipeline may contain additional hardware
to latch and stage down the pipeline the tags, valid bits, and

5,692, 152
19

LRU information for all elements in a set. This additional
hardware can avoid having to perform a loop-back flow to
read the old tags for the line being evicted.
The master cache may use a single bus to communicate

with both the slave caches. In that case, busses 33, 35 of FIG.
1 are combined together into a single bus. Another improve
ment is to not store slave valid bits for each of the elements.
For an 8-way set-associative master cache storing slave
instruction cache and slave data cache valid bits in each set,
16 bits are needed for each index. Instead, a single structure
is shared by all sets. The shared structure is known as a use
record. The use record encodes the 8 slave instruction cache
valid bits into 4 bits: a single slave instruction valid bit, and
a 3-bit field that encodes the element number of the one
element containing the activated slave instruction cache
valid bit. No more than one element may have its data in the
slave instruction cache since the slave instruction cache is
direct mapped, having only one entry for each master-index.
The use record thus reduces the number of bits for the slave
valid bits from 16 to 8 for a master having two slave caches.
Least-recently-used bits can also be located in the use
record.

Other encodings may be used for the fields described
herein, and indeed the miss address itself can be decoded at
the end of the pipeline to supply the valid bit for the current
sub-line. The entire 32-bit address need not be sent to the

10

15

20

25

master cache as alreads are preferably 8 bytes in size. Other
address and data sizes may also be used. More tag states
beyond MESI may be added without altering the slave
caches.
A simplified embodiment is described of a CPU having a

single instruction pipeline and a single execution pipeline.
However, most modern processors employ super-scalar
designs. Super-scalar CPU's have several pipelines. A three
way super-scalar embodiment requires three instructions for
each clock period to supply three pipelines. If two of the
pipelines are execution pipelines capable of executing
memory operations, then two data operands may also need
to be supplied for each clock period. The teachings of the
detailed description are restricted to a simple CPU having a
single execution pipeline and a single instruction pipeline.
These teachings may however be extended to multiple
pipelines and multiple CPUs by persons skilled in the art.
The arbitration may be accomplished in a single cycle or

three or more cycles rather than in two cycles. Tag access
may also vary in the number of cycles required. Any number
of banks of RAM may be used. Dedicated foreground and
background source registers for each slave may be used as
taught, or a unified foreground and background register may
be used for requests from either slave cache.
The master cache may periodically search for modified

lines using spare tag-pipeline cycles. When a modified line
is found, it is written out to the external memory, and another
tag-pipeline flow performed to change the MESIbits from
modified to either exclusive or shared. Writing modified
lines out to external memory can improve performance,
because when this line needs to be replaced by a new line,
the old line no longer has to be written back to external
memory.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is notintended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

30

35

45

50

55

65

20
We claim:
1. A master-slave cache system for access by a central

processing unit's execution pipelines comprising:
a slave cache for supplying instructions or operands to the
CPU's execution pipelines;

a master cache coupled to the slave cache and coupled to
an external bus, the master cache organized as an
N-way set-associative cache having N elements for
each index-portion of an address, the master cache
comprising:
a tag RAM array for storing a tag and a master-valid

indicator for each element for each index-portion of
the address, the tag RAM array including slave-valid
indicators for identifying elements in the tag RAM
array which also have valid data in the slave cache,
the master cache performing cache management
operations for the slave cache by using the slave
valid indicators in the master cache;

a data RAM array for storing sub-lines of data for each
tag in the tag RAM array;

a tag pipeline for accessing the tag RAM array, the tag
pipeline having a plurality of stages for simulta
neously processing a plurality of requests bypassing
the requests through successive stages of the tag
pipeline in response to a clock;

a data pipeline for accessing the data RAM array
independently of the tag pipeline, the data pipeline
having a plurality of stages simultaneously process
ing a plurality of requests by passing the requests
through successive stages of the data pipeline in
response to the clock;

tag arbitration means, receiving a plurality of tag
requests, for selecting a tag request from the plurality
of tag requests for processing by the tag pipeline;

data arbitration means, receiving a plurality of data
requests, for selecting a data request from the plu
rality of data requests for processing by the data
pipeline, the data arbitration means operating inde
pendently of the tag arbitration means; and

source registers, coupled to the tag arbitration means
and to the data arbitration means, for storing a
plurality of requests for access of the master cache,
including requests to access only the tag RAM array,
requests to access only the data RAM array, and
requests to access both arrays, the source registers
storing completion status for each request;

wherein the tag pipeline includes tag update means,
coupled to the source registers, for updating the
completion status for the request being processed by
the tag pipeline;

and wherein the data pipeline includes data update
means, coupled to the source registers, for updating
the completion status for the request being processed
by the data pipeline,

whereby the tag RAM array is accessed separately and
independently from the data RAM array and whereby
separate pipelines are used to access the tag RAM array
and the data RAM array.

2. The master-slave cache system of claim 1 wherein the
tag pipeline further comprises:

tag compare means, coupled to the tag RAM array, for
comparing a tag portion of the address of the tag
request to a plurality of N tags for the N elements
having an index matching an index portion of the
address of the tag request; and

hit means, coupled to the tag compare means, for signal
ing a hit when one of the plurality of N tags matches the
tag portion of the address of the tag request;

5,692, 152
21

the tag update means further comprising means for updat
ing the completion status for the tag request with a hit
indication when the hit is signaled by the hit means but
updating the completion status with a miss indication
when no hit is signaled,

whereby the source registers are updated with the hit
indication or the miss indication after the tag pipeline
accesses the tag RAM array.

3. The master-slave cache system of claim 2 wherein the
tag pipeline further comprises:

element means, coupled to the tag compare means, for
identifying which one of the plurality of N tags for the
Nelements matches the tag portion of the address of the
tag request and outputting an element-hit identifier to
the tag update means;

the tag update means writing the element-hit identifier to
the tag request in the source registers,

whereby the source registers identify which element con
tains a matching tag after the tag pipeline accesses the
tag RAM anray.

4. The master-slave cache system of claim 1 wherein the
data update means further comprises:

sub-line means for indicating which sub-line of data is
being accessed by the data pipeline;

the data update means including means for writing the
sub-line means to the completion status for the data
request being processed by the data pipeline;

whereby the completion status in the source registers for
the data request processed by the data pipeline is
updated to indicate which sub-line of data has been
accessed.

5. The master-slave cache system of claim 4 wherein the
sub-line means comprise sub-line valid bits indicating which
sub-lines in a cache line contain valid data, the master cache
containing means for writing the sub-line valid bits to the
slave cache,
whereby the sub-line valid bits generated by the master

cache are written to the slave cache.
6. The master-slave cache system of claim 4 wherein the

source registers include:
a miss request register for miss requests from the slave

cache for CPU requests which miss in the slave cache;
a bus snoop register for bus snoop requests from the

external bus, the bus snoop requests including requests
to invalidate any matching lines in the master cache,

whereby slave-cache misses and bus Snoops are requests
stored in the source registers.

7. The master-slave cache system of claim 6 wherein the
source registers include:
snoop means for generating a tag request in response to a
bus snoop received from the external bus;

slave miss means for generating a tag request in response
to a slave-cache miss and for generating a plurality of
M data requests in response to the slave-cache miss;

wherein each cache line in the master cache contains M
sub-lines of data.

8. The master-slave cache system of claim 7 wherein the
master cache further comprises:

master miss means, responsive to the miss indication from
the tag pipeline, for generating a plurality of M data
requests for transferring M sub-lines of data from the
external bus to a cache line in the data RAM array in
the master cache,

whereby M data requests to the data pipeline are gener
ated when a new cache line is fetched from the external
bus to the master cache when a master-cache miss
OCCS.

10

15

25

30

35

45

55

22
9. The master-slave cache system of claim 4 wherein the

master cache further comprises:
binding means, coupled to the tag arbitration means and

coupled to the data arbitration means, for binding the
tag pipeline to the data pipeline when a high-priority
request is received, the high-priority request arbitrating
control of both the tag pipeline and the data pipeline;

whereby both the tag and data pipelines simultaneously
process the high-priority request.

10. The master-slave cache system of claim 9 wherein the
high-priority request is a first sub-line of data in a new
cache-line miss from the slave cache;

wherein subsequent sub-lines of data in the new cache
line miss arbitrate for only the data pipeline and not the
tag pipeline,

whereby a new missbinds both pipelines together for the
first sub-line of data but not for subsequent sub-lines of
data.

11. The master-slave cache system of claim 9 wherein the
master cache further comprises:

source compare means, coupled to the source registers,
for comparing an index and a tag portion of a new
request to the index and tag portions of addresses of
requests in the source registers;

source merge means, responsive to the source compare
means, for merging the new request into an existing
request in the source registers when the index and tag
portions match;

wherein a subsequent sub-line of data in the existing
request arbitrates for only the data pipeline and not the
tag pipeline, the subsequent sub-line of data being a
sub-line requested by the new request,

wherein sub-lines are transferred from the master cache to
the slave cache in an order determined by new requests
received from the slave cache rather than a fixed order.

12. The master-slave cache system of claim 9 wherein the
master cache further comprises:

canceling means, coupled to the binding means, for
sending a cancel signal from the tag pipeline to the data
pipeline when the pipelines are bound together and the
tag pipeline does not signal a hit from the hit means, the
cancel signal canceling a transfer from the data RAM
array;

wherein the canceling means sends the element-hit iden
tifier to the data pipeline when the pipelines are bound
together and the tag pipeline signals a hit, the data
pipeline including means for selecting a sub-line of
data from the data RAM array in response to the
element-hit identifier.

whereby the tag pipeline sends the element-hit identifier
directly to the data pipeline when the pipelines are
bound together and whereby a first sub-line of data is
read from the data RAM array in a single flow of the
data pipeline bound to the tag pipeline.

13. The master-slave cache system of claim 1 wherein the
master cache further comprises:

loop-back means, in the tag pipeline and coupled to the
tag arbitration means and the data arbitration means,
for arbitrating for a second flow through the tag pipe
line and a simultaneous flow through the data pipeline
when an exceptional event occurs in the tag pipeline
after accessing the tag RAM array,

wherein the exceptional event is a master-cache miss, or
a bus-Snoop hit.

14. The master-slave cache system of claim 13 wherein
the second flow invalidates the tag when the exceptional

5,692, 152
23

event is the bus-snoop hit, the data pipeline writing invalid
sub-line valid bits to the slave cache when the slave-valid
indicators in the tag RAM array indicates that a snoop
address of the bus snoop also has valid data in the slave
cache,
whereby the master cache performs a cache management

operation for the slave cache by using the slave-valid
indicators in the master cache.

15. The master-slave cache system of claim 13 wherein
the loop-back means further comprises:

intervening compare means, coupled to the tag pipeline,
for comparing addresses of intervening requests in the
tag pipeline after the tag arbitration means but before
the loop-back means, and for canceling any intervening
requests which have an index portion of the address
match an index portion of a loop-back request's
address,

whereby intervening requests in the tag pipeline are
canceled when the index portions of the addresses
match.

16. The master-slave cache system of claim 1 wherein the
slave cache comprises a slave instruction cache for supply
ing instructions to the CPU and a slave data cache for
supplying data operands to the CPU's execution pipeline,
the slave instruction cache being read-only by the CPU but
the slave data cache being readable and writeable by the
CPU.

17. Amethod for processing a bus snoop from an external
bus, the method comprising the steps of:

receiving a snoop address from an external bus, the bus
Snoop address having a tag portion and an index
portion;

loading a snoop source register with the snoop addresses
and artbitrating for control of a tag pipeline;

reading a plurality of tags having an index portion of an
address matching the index portion of the snoop
address;

comparing the plurality of tags to the tag portion of the
snoop address;

when none of the plurality of tags match the tag portion
of the snoop address, signaling completion of the bus
snoop to the external bus and clearing the snoop source
register;

10

15

20

25

30

35

24
when a matching tag in the plurality of tags matches the

tag portion of the snoop address:
arbitrating for a loop-back flow in the tag pipeline;
when the matching tag indicates that data is modified

and not yet written back to the external bus, per
forming a series of flows in the data pipeline to
transfer data for the matching tag from a master
cache to the external bus;

marking the matching tag as invalid during the loop
back flow in the tag pipeline;

when the matching tag indicates that a slave cache
coupled to a processor has a copy of the data for a
matching line, sending the index portion of the snoop
address and an invalid tag to the slave cache to
invalidate the matching tag in the slave cache; and

signaling completion of the bus snoop to the external
bus and clearing the snoop source register,

whereby bus snoops are processed by the master cache for
the slave cache.

18. The method of claim 17 wherein the step of sending
the index portion of the snoop address and an invalid tag to
the slave cache to invalidate the matching tag in the slave
cache comprises sending from the data pipeline to the slave
cache the index portion of the snoop address and the invalid
tag,

whereby the data pipeline and not the tag pipeline sends
the invalid tag to the slave cache.

19. The method of claim 17 further comprising the step of:
when arbitrating for the loop-back flow, comparing the

index portion of the snoop address to an index portion
of an intervening address, the intervening address being
for an intervening request in the tag pipeline before the
snoop address;

canceling the intervening request when the index portion
of the snoop address matches the index portion of the
intervening address,

whereby intervening requests in the tag pipeline are
canceled when the index portions match.

