
III
USOO5757690A

United States Patent 19 11 Patent Number: 5,757,690
McMahon 45 Date of Patent: May 26, 1998

54 EMBEDDED ROM WITH RAM WALD BITS 5,619,698 4/1997 Lillich et al. 395/710
FOR FETCHING ROM.CODE UPDATES 5,623,665 4/1997 Shimada 395/182.03
FROM EXTERNAL MEMORY Primary Examiner-David C. Nelms

Assistant Examiner-Hien Nguyen
75) Inventor: Scott H. R. McMahon, Austin, Tex. Attorney, Agent, or Firm-Stuart T. Auvinen
73) Assignee: Exponential Technology, Inc., San 57 ABSTRACT

Jose, Calif.
An embedded ROM has a column of static RAM cells

(21) Appl. No.: 842,007 attached tO the end of the row lines. When a row of ROM
cells is activated by the row line, a RAM cell is also

22 Filed: Apr. 23, 1997 activated by the row line. The RAM cell indicates if the data
6 in the selected row's ROM cells is valid. When the RAM

(51) int. Cl. ... G11C 17/00 cell indicates that the ROM data is not valid, external
52 U.S. C. 365/104; 365/189.01: 365/189.02: memory is read to obtain a patched instruction and the ROM

365/207 data is ignored. The ROM's base address is translated to a
(58) Field of Search 365/104, 189.02, base address in external memory of patch code. The ROM's

365/18901, 207 offset address is used as the offset into the patch-code region
of external memory. Thus address translation is minimal as

56) References Cited the offset is not translated. A single ROM instruction can be
U.S. PATENT DOCUMENTS updated by a single patch instruction in external memory,

providing fine granularity of code updates. Longer update
4,400.798 8/1983 Francis et al. 365/174 routines can be located in a patch-code overflow region of
4,610,000 9/1986
4,802,119 1/1989
5,321,828 6/1994 --
5,481,713 1/1996 Wetmore et al. 395/700

E. external memory. The updated instruction at the ROM's
offset in the patch-code region can be a jump instruction to
the longer update routine in the overflow region. Thus both

5.487,037 1/1996 ... 36.5/189.11 single and multiple-instruction patches are possible.
5,493,674 2/1996 395/13204
5,546.586 8/1996 Wetmore et al. 395/700 20 Claims, 5 Drawing Sheets

BAS
" " " "

DO f ROW 34 DC

32 37 DC
46 vy Y 35 N 33 &

18 V V V V V WR L.

ROM DATA 6

WRH

U.S. Patent May 26, 1998 Sheet 1 of 5 5,757,690

ROM BITS RAM BIT

N-N-NA
CODE O
CODE O

F.G. 1

16

10

12 14

" " " "

ROW 34 DC

DECODE St. 32 37 DC

46 Y 35 Y 33 <
18 V V V V V WRL

42 NA 44 H
ROM DATA M53 6 38

FIG. 2 WR H PATCH

BAS

5,757,690 Sheet 2 of 5 May 26, 1998 U.S. Patent

ESVETHOLWCH Z9

U.S. Patent May 26, 1998 Sheet 3 of 5 5,757,690

FIG. 4

82

62 64

rom Base T offset 90

INSTR-20 68

5,757,690 Sheet 4 of 5 May 26, 1998 U.S. Patent

-- 88') !ISNI
06

ESVGTWOH LEIS-B-JO

98

5,757,690

LES-H-HO^,
as as as a s p

P

Sheet 5 of 5

ESVETWO}} | ES-H-HO

99

Z8

U.S. Patent

5,757,690
1.

EMBEDDED ROM WITH RAM WALD BITS
FOR FETCHING ROM-CODE UPDATES

FROM EXTERNAL MEMORY

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to embedded memories, and more
particularly to patching of embedded ROMs.

BACKGROUND OF THE INVENTION--
DESCRIPTION OF THE RELATED ART

Complex routines of instructions are used to control
today's computers. Software application programs often use
or call lower-level routines in an operating system (OfS).
The operating system may itself call hardware-specific
routines, which are part of a basic input-output system
(BIOS). The BIOS is usually contained in a read-only
memory such as a ROM. Microcode containing low-level
operations to execute a machine instruction often resides
inside a microprocessor. Emulation code to emulate com
plex instructions may likewise reside inside a microproces
sor in an embedded ROM.
The complexity of software or firmware makes it difficult

to write fully functional code. Modifications to fix errors of
bugs are common. Additional functionality may be inserted
into the code. Thus changes to code are common. While it
is relatively easy and inexpensive to modify software, firm
ware such as code in a ROM is more difficult to change. A
new ROM chip may be required to change the firmware
code. For an embedded ROM, an entirely new micropro
cessor chip is manufactured for a code update.
Re-manufacturing a microprocessor chip for even a minor
code update can cost over a hundred thousand dollars.

Various solutions have been developed to solve the prob
lem of code updates for read-only memories. Erasable
Programmable ROMs such as EEPROMs or flash EPROMs
have been developed to allow re-programming. While flash
EPROMs are useful, they require specialized transistor
technology such as quantum-mechanical tunneling oxides
and floating polysilicon gates. Microprocessors are not
usually manufactured on such a complex EPROM process;
thus flash memory is not an option for an embedded ROM.

Standard ROMs can be used together with an external
random-access memory (RAM) to allow code updates. The
updated code is loaded from a boot disk to the RAM. which
is typically a portion of the main memory DRAM. However,
the original, unmodified code in the ROM must somehow
pass control over to the updated code in the RAM. One
technique is to insert a jump instruction in the original ROM
code. This jump instruction causes a jump to a code segment
in RAM. The code segment in RAM can then be modified
without changing the ROM code. This technique is useful
for adjusting time delays, and is described in more detail by
Mizutani et al. in U.S. Pat. No. 5493.674. However, the
original code must contain and use the jump, and a RAM
routine must always be present. A danger is that a misbe
having application program could corrupt the RAM routine
and crash the system.
A more versatile approach is to store a vector table of

jump or interrupt vectors in RAM. Each routine in the ROM
is entered through the vector table. Aroutine in the ROM can
be replaced by changing the vector in the vector table to
point to an updated routine in RAM rather than the original
routine in ROM. Thus the original ROM code can be
bypassed using the vector table. See Wetmore et al. in U.S.
Pat. No. 5.546,586 and U.S. Pat. No. 5481,713.

10

15

25

30

35

45

50

55

65

2
Techniques using a vector table in RAM require inserting

jump instructions to the vector table in external RAM, even
for the original ROM code when no changes have yet been
made. It is undesirable to require that all routines be entered
through the external vector table. An entire routine must be
replaced with an updated routine in external RAM even
when only one instruction is changed. Small changes still
require that the entire routine be replaced. Since many
routines are large, much memory space is needed for even
minor changes. Finer granularity for minor updates is
desired.

Locating the ROM code's interrupt or vector table in
RAM is dangerous since RAM can be modified. A mis
behaving program that writes outside of its address space
could corrupt the vector table. rendering the ROM code
unusable.
A hybrid RAM-ROM device is disclosed by Lee in U.S.

Pat. No. 5.487,037. assigned to Dallas Semiconductor Corp.
Fuses are added to SRAM cells. The device initially acts as
a RAM. Later, the user can blow the fuses to change the
device to a ROM. Unfortunately, fuses are not part of a
standard microprocessor process and increase the size of the
memory cells. Once the fuses are blown, updating code is no
longer possible. Thus the device is not useful for ROM
based code updates.
What is desired is a patchable ROM. It is desired to update

as little as one instruction in the ROM without replacing an
entire routine. Fine patch granularity is desired. It is desir
able to update ROM code without adding jump instructions
to the ROM code, and without locating a vector table in
RAM. It is desirable to locate the ROM vector table in
read-only memory to prevent corruption. The amount of
patch code in the vulnerable RAM is desired to be mini
mized to reduce the possibility of corruption. It is further
desired to use a standard logic process without EPROM
transistors or fuses.

SUMMARY OF THE INVENTION
An embedded memory has a plurality of read-only

memory (ROM) bit lines and a pair of random-access
memory (RAM) bit lines. Each row line in a plurality of row
lines is coupled to a plurality of ROM cells. Each row line
is also coupled to a RAM cell. The RAM cell is readable and
writeable, but the ROM cells are readable but not writeable.
A row decoder receives an address offset and decodes the

address offset to select and activate a selected row line in the
plurality or row lines. A plurality of ROM sense amplifiers
outputs a ROM code word. Each ROM sense amplifier
receives one of the ROM bit lines as an input and outputs a
bit in the ROM code word. A differential sense amplifier is
coupled to amplify a small voltage difference across the pair
of RAM bit lines. The differential sense amplifier outputs a
patch-enable signal indicating that the ROM code word has
been patched and is not valid.
Thus each row line is connected to both ROM cells and

a RAM cell. The RAM cell indicates when the ROM cells
contain an invalid ROM code word.

In further aspects of the invention, a ROM cell is located
at each intersection of a ROM bit line and a row line. A
RAM cell is located at each intersection of the pair of RAM
bit lines and a row line. Each ROM cell is manufactured
either with or without a functional ROM transistor. The
ROM transistor has a gate connected to a row line and a
drain connected to a ROM bit line and a source connected
to a constant-voltage supply. Thus ROM cells are pro
grammed at manufacture by the presence or absence of the
functional ROM transistor.

5,757,690
3

In still further aspects the constant-voltage supply is
ground, the ROM transistor is an n-channel metal-oxide
semiconductor (MOS) transistor, and the selected row line is
activated by the row decoder driving a high voltage onto the
selected row line to enable functional ROM transistors to
conduct current from the ROM bit lines to ground.

In further aspects each ROM cell and each ROM sense
amplifier connect to only one ROM bit line. Thus ROM
sensing is single-ended while RAM sensing is differential.

In further aspects of the invention an external-memory
interface is responsive to the patch-enable signal from the
differential sense amplifier. It fetches an updated code word
from an external memory when the patch-enable signal
indicates that the ROM code word is not valid. Thus the
updated code word is fetched from the external memory
when the RAM cell indicates that the ROM code word is not
valid.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a ROM array with integrated RAM bits for
identifying code updates.

FIG. 2 shows a memory with each row line connected to
both ROM cells and a RAM cell.

FIG. 3 is a diagram of an embedded ROM with RAM bits
to activate a fetch of a code patch from external RAM.

FIG. 4 is a diagram of an address space with a ROM
region and a patch-code region in DRAM.

FIG. 5 is a diagram of a fetch of an instruction in ROM
that has not been patched.

FIG. 6 is a diagram of fetching a single patched ROM
word from external RAM.

FIG. 7 is a diagram of fetching multiple instructions from
external RAM for a single instruction in ROM.

DETALEED DESCRIPTION

The present invention relates to an improvement in patch
able read-only memories. The following description is pre
sented to enable one of ordinary skill in the art to make and
use the invention as provided in the context of a particular
application and its requirements. Various modifications to
the preferred embodiment will be apparent to those with
skill in the art, and the general principles defined herein may
be applied to other embodiments. Therefore, the present
invention is not intended to be limited to the particular
embodiments shown and described, but is to be accorded the
widest scope consistent with the principles and novel fea
tures herein disclosed.

The inventor has realized that fine granularity of code
patches can be achieved if individual instruction words in a
ROM can be invalidated. Since ROM memory cells cannot
be modified, a RAM cell is used to store an invalidate bit.
When an instruction word in the ROM is updated, a RAM
cell associated with the instruction word is set to indicate
that the instruction is not valid. An updated instruction word
in an external RAM is instead fetched and executed before
the following instruction word in the ROM is executed.
Cache memories frequently use valid bits to indicate

which data or instruction words in the cache are valid or not
valid. Adding valid bits to a cache is easy because both the
valid bit and the instruction or data words use the same
RAM cells. However, adding RAM bits to a ROM is not as
straightforward as two different kinds of memory cells are
needed. Since ROM memory is not used as temporary
storage as is a cache, valid bits are not used with a ROM.

15

20

25

30

35

45

50

55

65

4
RAM CELLS INVALIDATE ROM CODE WORDS-FG.
1.

FIG. 1 shows a ROM array with integrated RAM bits for
identifying code updates. Memory array 10 includes read
only memory ROM cells 12 and read-writeable random
access memory RAM cells 14. Each line or row in memory
array 10 contains 32 ROM cells but only one RAM cell. The
ROM cells contain one or more instructions, while the RAM
cell indicates if the row's instruction is valid or has been
updated with an instruction in external memory. For
example, the ROM code word in row 16 is invalidated
because its RAM bit is set to one. All other rows of code
words are valid since their RAM bits are cleared.
The inventor has realized that a single RAM bit can be

integrated into a ROM array to provide fine-granularity code
patches. While a separate RAM module could be integrated
on the same chip with a ROM module, separate arrays, row
lines, and row decoders for the RAM and for the ROM
would be used. Instead, the inventor uses the same array,
with the same row decoders and drivers to drive both the
ROM bits and the single RAM bit. The row line connects to
both ROM memory cells and a RAM cell.
ROW LINE AND DECODER SHARED BY ROMAND
RAM CELLS FIG. 2

FIG. 2 shows a memory with each row line connected to
both ROM cells and a RAM cell. A ROM cell is simply a
single transistor with its gate connected to the row line and
its drain connected to a bit line. When the row line has a high
voltage applied, the ROM transistor turns on, pulling the bit
line to a low voltage. The ROM is programmed by the
presence or absence of a transistor at the crossing of the row
line with each bit line.
Row decode 18 receives an address as an input (not

shown), and drives one of the row lines high while driving
the other row lines low. Thus only one of the row lines can
be activated at any time. Row decode 18 can be constructed
with a NOR gate to drive each row line, or using a NAND
gate and an inverter for driving each row line. Other
arrangements are possible for row decode 18. Row lines are
sometimes referred to as word lines since a 16 or 32-bit word
is accessed by one row in some array configurations.

Each row line connects to a word of ROM bits. 32 ROM
cells. ROM cells with a ROM transistor drive bit lines low,
while ROM cells without a functional transistor leave the bit
lines high. Bitlines are biased high by pre-charge transistors
40 which can be left on at all times, or pulsed high between
memory accesses. Using n-channel transistors for pre
charge transistors 40, bit lines are biased high to Vcc-Vtn,
about 2 volts for a 3-volt power supply. An n-channel ROM
transistor pulls the bit line to ground. Thus ROM sense
amplifiers 36 can be simple inverters or buffers with a
logical threshold of about 1 to 1.5 volts. The ROM data is
thus driven out from ROM sense amplifiers 36.
At the end of each row line is a single static RAM cell.

RAM cell 48 stores a single bit in a cross-coupled pair of
inverters. A pair of access transistors connect the input and
outputs of the cross-coupled inverters to a pair of bit lines
42, 44. When a row line is activated. the high row-line
voltage turns on the access transistors, connecting the cross
coupled inverters to bit lines 42, 44. One of the bit lines is
driven low by the cross-coupled inverters while the other bit
line remains high. The relative size of the access transistors
and the cross-coupled inverters is carefully chosen so that
the bit-line charge does not accidentally flip the state of the
cross-coupled inverters. Normally the access transistor is
made smaller than the inverters to limit charge sharing.

Differential sense amplifier 38 senses the difference in
voltage between the two bit lines and amplifies this

5,757,690
5

difference, outputting a signal indicating the logical state of
the RAM cell being read. The RAM cells each contain an
invalid bit that indicates when the ROM word in that row is
not valid but is patched in external RAM.
The RAM cells are initially written by driving one of bit

lines 42, 44 high, and the other bit line low. A write driver
can be as simple as a large n-channel transistor which drives
one bit line low while the biasing transistors 40 keep the
other bit line high. A one is written to a RAM cell by
activating its row line and signaling WR PAT HIGH,
activating write transistor 53 to pull bit line 42 low. A zero
is written to the RAM cell by activating its row line and
signaling WR PAT LOW, activating write transistor 51 to
pull bit line 44 low.

During reading, both the ROM cells and the RAM cell are
simultaneously read. For example, when row line 34 is
decoded and activated, ROM bit line 46 is pulled to ground
by ROM transitransistors cont lines 35, 37 are also pulled
low by ROM transistors connected to row line 34. However,
ROM bit lines 31.33 are left high since no ROM transistor
is present for these bit lines for row line 34. The ROM data
read from ROM sense amplifiers 36 is thus 01010.
RAM cell 48 is also connected to row line 34. When the

ROM word at row line 34 is being read. RAM cell 48 is also
activated and read, driving one of bit lines 42, 44 low.
The low bit line is sensed and amplified by differential

sense amplifier 38 and output as signal PATCH. When RAM
cell 48 was written to the high state during initialization,
PATCH is high when row line 34 is activated, indicating that
the ROM word of row line 34 is not valid and a patch in
external RAM should be fetched.
RAM cell 48 is preferably constructed in a small vertical

pitch to match the much smaller ROM cells on row line 34.
RAM cell 48 can have a wide layout since only one cell is
attached to each row line. The array or ROM cells may have
to be expanded somewhat in the vertical pitch to allow for
the physical placement of a RAM cell in the row.
A preferred approach is to place multiple columns of

RAM cells at the end of the rows or ROM cells. The bit lines
for all of the multiple columns of RAM cells are connected
together so there is only one logical column or RAM cells.
Thus only one differential sense amp is needed. For
example. a RAM cell that is three times the height of the
ROM cells requires three columns of RAM cells. Thus the
vertical pitch of the rows of ROM cells does not have to be
expanded.
RAM BIT ENABLES EXTERNAL FETCH OF PATCHED
INSTRUCTION

FIG. 3 is a diagram of an embedded ROM with RAM bits
to activate a fetch of a code patch from external RAM. A
central processing unit (CPU's) pipeline generates addresses
of instructions being fetched for execution. Addresses are
pre-decoded to determine if they fall within an embedded
ROM's address space. If so, the lower bits of the address are
decoded by row decoder 18 and one of the rows in memory
array 10 is activated. ROM cells 12 which are connected to
the activated row line drive some bit lines low, and are
sensed and outputted by ROM sense amplifiers 36 as a ROM
code word or instruction.
When ROM cells 12 are read, a RAM cell in a column of

RAM cells 14 is also read, since the RAM cell shares the
same row lines as the ROM cells 12. Differential sense
amplifier 38 detects the voltage difference between the two
bit lines from RAM cells 14 and outputs signal PATCH.
When signal PATCH is low, ROM cells 12 in the activated
row are valid and have not been patched. The ROM code
word output from ROM sense amplifiers 36 is selected by

10

15

25

30

35

45

50

55

65

6
mux 24 and output to the CPU pipeline as the ROM's data.
The CPU's pipeline then arranges the ROM data into
instructions and executes the instruction obtained from the
ROM. The CPU's pipeline may contain a cache or an
instruction buffer, which temporarily stores the ROM data
before execution.
When the RAM bit read from memory array 10 is high,

signal PATCH is high. Mux 24 then blocks the ROM data
from ROM sense amplifiers 36 and instead selects external
RAM data from external bus 26. Signal PATCH also acti
vates an external read cycle from bus interface unit BIU 22,
BIU 22 receives the address from the CPU pipeline and
normally does not generate an external memory access when
the address falls within the embedded ROM's address space.
However, signal PATCH over-rides the address pre-decode
and causes BIU 22 to generate an external memory read
cycle. BIU translates the ROM's address from the CPU
pipeline to an address in external RAM 20 where ROM
patches are located. The patch is read from external RAM 20
and inputted to mux 24 over external bus 26. Mux 24 selects
the patched code word from external RAM 20 and transmits
the patch data to the CPU pipeline rather than the ROM data.

Translation of the ROM's address to the external RAM's
address can be performed in many ways, but the inventor
prefers to simply replace the upper (most-significant)
address bits with a base address for the patch region within
external RAM 20. Patch base address register 52 supplies
the upper address bits for the region within external RAM 20
where the patches are located. Thus a small portion of the
system's main memory can be used for the code patches.
Patch base address register 52 can be programmed with
different addresses so that the patch region of memory can
be re-located or assigned by the operating system.
PATCH REGION OF ADDRESS SPACE-FIG. 4

FIG. 4 is a diagram of an address space with a ROM
region and a patch-code region in DRAM. Address space 80
is a 4 Gigabyte virtual address space addressable by a 32-bit
physical address. Accesses to ROM are mapped to ROM
region 82, while DRAM access are generated for addresses
in DRAM region 84. A small part of DRAM region 84 is set
aside as patch-code region 90 for code updates or patches to
the code in ROM region 82.
The base or starting address of ROM region 82 is ROM

base address 88. Addresses within ROM region 82 are
specified as an offset within region 82, often written as
base:offset. The offset is the value of the lower or least
significant address bits. The beginning of patch-code region
90 is also specified by a base address. patch base address 86.
The inventor prefers to select base addresses for ROM
region 82 and patch-code region 90 to be aligned to the same
power of 2. In other words, each base address has the same
number of upper address bits and the offsets have the same
number of lower address bits. Addresses within patch-code
region 90 are also specified by an offset within the region,
as patch base:offset.
SAME OFFSET USED FOR ROM INSTRUCTION AND
PATCH IN RAM
The ROM's offset is used as the offset into patch-code

region 90. Thus a patched instruction in ROM has its
updated instruction in RAM at the same offset in patch-code
region 90. Using the same offset simplifies address
generation, as a vector table lookup is not required.
FETCHING UN-PATCHED ROM INSTRUCTION-FG.
5

FIG. 5 is a diagram of a fetch of an instruction in ROM.
which has not been patched. Address 60 from the CPU
pipeline contains upper address bits which form the ROM

5,757,690
7

base address 62, and lower address bits which form offset
64. ROM base address 62 is decoded to determine that the
embedded ROM is accessed, enabling the ROM access logic
and disabling DRAM access logic. ROM base address 62
corresponds to the first address in ROM region 82. Offset 64
is decoded by the row decoder to select one row in the
physical ROM array that contains the desired ROM code
word or instruction. Instruction 68 is thus decoded in ROM
region 82. Since the RAM bit for the selected row is a zero,
the ROM's instruction 68 is valid and has not been patched.
Instruction 68 from the ROM is then returned to the CPU's
pipeline.
FETCHING PATCHED ROM INSTRUCTION FROM
EXTERNAL RAM
FIG. 6 is a diagram of fetching a single patched ROM

word from external RAM. ROM region 82 is first accessed
to fetch instruction 68. However, the RAM bit for the
decoded row is high, indicating that instruction 68 in ROM
region 82 is not valid. The external memory is instead
accessed for the updated instruction.
The ROM base address 88 is translated or replaced with

patch-code base address 86 by the bus interface unit. The
patch-code base address is combined with the offset to
generate the address of the patch word in main memory.
Updated instruction 66 is fetched from patch-code region 90
of the main DRAM memory and passed to the CPU pipeline
for execution. Program control is returned to the next
instruction in ROM region 82, instruction 68, which is then
fetched and executed.
Thus only a single row in the ROM is replaced with the

updated instruction form external RAM. When the ROM's
rows are one instruction wide, then single-instruction granu
larity is achieved. A single instruction in the ROM can be
updated without changing other instructions.
FETCHING SEQUENCE OF PATCHEDROM INSTRUC
TIONS FROM EXTERNAL RAM

FIG. 7 is a diagram of fetching multiple instructions from
external RAM for a single instruction in ROM. ROM region
82 is first accessed to fetch instruction 110. However, the
RAM bit for the decoded row is high, indicating that
instruction 110 in ROM region 82 is not valid. The external
memory is instead accessed for the updated instruction.
The ROM base address 88 is translated or replaced with

patch-code base address 86 by the bus interface unit. The
patch-code base address is combined with the offset to
generate the address of the patch word in main memory.
Updated instruction 100 is fetched from patch-code region
90 of the main DRAM memory and passed to the CPU
pipeline for execution.

However, a more complex patch is required to fix instruc
tion 110 in ROM. A single instruction cannot fix the prob
lem. Instead, a sequence of instructions is necessary to fix
the complex problem caused by the one ROM instruction.
The instruction sequence in ROM region 82 needs to be
expanded.
The ROM's offset locates just one instruction in patch

code region 90. Additional instructions for this patch cannot
use adjoining locations in patch-code region 90 because
other instructions in ROM region 82 might also need patches
and have to use these offsets. Thus only one instruction is
available in patch-code region 90.
A patch overflow region 91 is provided when additional

instructions are needed for a single patch that cannot fit in
the assigned offset in patch-code region 90. Instruction 100
in patch-code region 90 is a jump instruction to a longer
routine in patch overflow region 91. The actual patch is
contained in a sequence of instructions 102, 104, 106 in

10

15

20

25

35

5

50

55

65

8
patch overflow region 91. Once the patch routine is
completed, a return instruction 108 is executed, passing
control back to the following instruction in ROM region 82.
instruction 68, which is then fetched and executed.
A single instruction in the ROM can thus be replaced with

either a single patch instruction. as shown in FIG. 6, or a
series of instructions. as shown in FIG. 7. The programmer
is provided a versatile method to update ROM code, using
efficient, single-line updates or more lengthy routine updates
as needed.

Patch overflow region 91 is also located in the main
DRAM memory. Jump instruction 100 may need to be a
long jump fully specifying the address of instruction 102.
Patch overflow region 91 is preferably located adjacent to
patch-code region 90 so that a short jump instruction can be
used. While unused offsets in patch-code region 90 could be
used for patch overflow region 91, this is undesirable, as
future updates may need the unused offsets.
INTIALIZATION OF RAM BITS IN ROMARRAY
The RAM bits in the ROM array must be initialized to

indicate the updated code. The RAM bits can be designed to
power up in the zero (unpatched) state. A first part of the
ROM code that cannot be updated can be used to read a file
on a hard disk that contains a list of the current updates. This
list can include the bits to be written to the RAM bits in the
ROM.
APPLICATIONS
The invention allows for such easy updating of ROM

code that other applications are enabled. Performance analy
sis can use the invention to count how often certain instruc
tions or ROM routines are executed. A performance routine
which increments a counter each time the routine is called is
placed in patch-code overflow memory. ARAM bit for a line
in the ROM is set to invalidate the ROM line and force a
jump to the external patch-code memory. Then each time the
ROM line is executed, the performance routine is executed.
Once performance testing is completed, the RAM bit is
cleared so that the ROM line is again used. Tracing or
logging routines can also be used. Debugging can be facili
tated by traps implemented with the invalidated ROM lines.
ALTERNATE EMBODEMENTS

Several other embodiments are contemplated by the
inventor. For example the external data can be cached in an
on-chip data cache even though the external RAM is off
chip. The ROM and patch-code regions of memory do not
have to be aligned to a power-of-two boundary, but then an
addition may be needed to add the non-aligned base to the
offset. Other biasing schemes are possible; p-channel tran
sistors rather than n-channel biasing transistors can be
substituted to increase the bias voltage for low-voltage
applications. The cross-coupled inverters in the RAM cell
can be standard complementary metal-oxide-semiconductor
(CMOS) inverters, or the pull-up p-channel transistors can
be replaced with resistors.
The term "RAM" is somewhat of a misnomer, since

read-only memories are also randomly accessible by
address. The term RAM has come to mean a read-writeable
memory while a ROM is readable but not writeable. The
ROM cell is programmed during chip manufacturing by the
presence or absence of a functional transistor at the inter
section of a ROM bit line and a row line. A ROM cell is
programmed off by either the complete absence of the ROM
transistor, or by disabling the ROM transistor, such as by
deleting a critical part of the ROM transistor, such as a metal
contact or connection.
The number of ROM bits in each row line can vary. While

32 ROM bits per row are preferred, other sizes such as 16.

5,757,690
9

64. 128. or 256 are also contemplated. The wider rows have
an advantage of easier layout, but when only one RAM bit
is shared for a wide row, then the granularity is coarser and
additional code must be located in the external RAM for
updates. The computer's instruction size can also vary from
32 bits. The various signals and bits can be inverted.
Multiple RAM bits could be used to encode additional
information, such as to select one of several patch areas of
memory. The column of RAM cells can be physically placed
at the end of the row lines or at the beginning of the row lines
near the row decoder, or at an intermediate location on the
row lines. Placing the RAM cells near the row decoder may
speed up RAM access by having a reduced row-line delay.

For large ROM's, the address space occupied by the patch
memory can be excessive. The patch memory can be com
pressed to save memory space. Multiple entry points in the
ROM can be mapped to the same address entry point in the
patch memory. For example, the 2 or more of the address
bits of the ROM offset can be ignored when determining the
offset to the external patch memory. Code-path analysis can
be used to ensure that no two updated ROM instructions map
to the same patch-memory address. The ROM code can
alternately be aligned to ensure that two patched instructions
do not map to the same patch address. A branch-and-link
instruction can also be used to store the entry address from
the ROM and map all patches to the same entry address in
external patch memory.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

I claim:
1. An embedded memory comprising:
a plurality of read-only memory (ROM) bit lines and pair

of random-access-memory (RAM) bit lines;
a plurality of row lines, each row line in the plurality of
row lines coupled to a plurality of ROM cells, each row
line also coupled to a RAM cell, the RAM cell being
readable and writeable, but the ROM cells being read
able but not writeable;

a row decoder receiving an address offset, the row
decoder for decoding the address offset to select and
activate a selected row line in the plurality or row lines;

a plurality of ROM sense amplifiers for outputting a ROM
code word, each ROM sense amplifier receiving one of
the ROM bit lines as an input and outputting a bit in the
ROM code word; and

a differential sense amplifier, coupled to amplify a small
voltage difference across the pair of RAM bit lines, the
differential sense amplifier outputting a patch-enable
signal indicating that the ROM code word has been
patched and is not valid,

whereby each row line is connected to both ROM cells and
a RAM cell, the RAM cell indicating when the ROM cells
contain an invalid ROM code word.

2. The embedded memory of claim 1 wherein a ROM cell
is located at each intersection of a ROM bit line and a row
line, and wherein a RAM cell is located at each intersection
of the pair of RAM bit lines and a row line; and

wherein each ROM cell is manufactured either with or
without a functional ROM transistor, the ROM tran
sistor having a gate connected to a row line and a drain

O

15

20

25

30

35

45

50

55

65

10
connected to a ROM bit line and a source connected to
a constant-voltage supply,

whereby ROM cells are programmed at manufacture by
the presence or absence of the functional ROM tran
sistor.

3. The embedded memory of claim 2 wherein the
constant-voltage supply is ground, and wherein the ROM
transistor is an n-channel metal-oxide semiconductor (MOS)
transistor, and wherein the selected row line is activated by
the row decoder driving a high voltage onto the selected row
line to enable functional ROM transistors to conduct current
from the ROM bit lines to ground.

4. The embedded memory of claim 3 wherein each RAM
cell comprises:

a cross-coupled pair of inverters for storing a bit of data:
a pair of pass transistors, each pass transistor coupled to

conduct current between one of the pair of RAM bit
lines and the cross-coupled pair of inverters in response
to control gates, the control gates connected to a row
line,

whereby each row line is coupled to gates of ROM transis
tors and the control gates of the pair of pass transistors in a
RAM cell.

5. The embedded memory of claim 4 wherein each pass
transistor is an n-channel MOS transistor.

6. The embedded memory of claim 5 further comprising:
biasing means, coupled to each ROM bit line and to the

pair of RAM bit lines, for applying a bias voltage to
each ROM bit line and to the pair of RAM bit lines.

wherein the ROM sense amplifiers and the differential
sense amplifier sense a voltage change from the bias
voltage.

7. The embedded memory of claim 6 further comprising:
write means, coupled to the pair of RAM bit lines, for

writing either a one or a zero logical value to the RAM
cell coupled to the selected row line, the write means
driving one of the pair of RAM bit lines low to write to
the RAM cell.

8. The embedded memory of claim 7 wherein each ROM
cell and each ROM sense amplifier connect to only one
ROM bit line,
whereby ROM sensing is single-ended while RAM sensing
is differential.

9. The embedded memory of claim 8 further comprising:
an external-memory interface. responsive to the patch

enable signal from the differential sense amplifier, for
fetching an updated code word from an external
memory when the patch-enable signal indicates that the
ROM code word is not valid.

whereby the updated code word is fetched from the external
memory when the RAM cell indicates that the ROM code
word is not valid.

10. The embedded memory of claim9 further comprising:
a translator, receiving an address including the address

offset and a ROM base address, for translating the
ROM base address to a patch-code base address in the
external memory, the translator generating an external
address as the patch-code base address combined with
the address offset, the translator outputting the external
address to the external memory interface,

wherein the address offset is not translated but the ROM
base address is translated.

11. A microprocessor with an embedded read-only
instruction memory, the microprocessor comprising:

a central processing unit (CPU) core for executing
instructions;

5,757,690
11

an embedded memory for storing read-only instructions.
the embedded memory having row lines connected to
read-only-memory ROM cells storing an instruction for
execution by the CPU core;

random-access-memory RAM cells, connected to the row
lines in the embedded memory, for storing valid bits for
the instructions stored in the ROM cells, a valid bit
stored in a RAM cell connected to a selected row line
indicating when the instruction stored in the ROM cells
connected to the selected row line are not valid:

external-memory interface means, coupled to an external
memory, for fetching an updated instruction from the
external memory when the valid bit indicates that the
instruction stored in the ROM cells for the selected row
line is not valid; and

multiplexer means, coupled to the external memory inter
face and coupled to the embedded memory, for trans
mitting the updated instruction from the external
memory when the valid bit indicates that the instruction
from the selected row line is not valid, but transmitting
the instruction from the ROM cells connected to the
selected row line when the valid bit indicates that the
instruction is valid,

whereby the valid bit indicate when the instruction in the
ROM cells is not valid and the updated instruction is fetched
from the external memory.

12. The microprocessor of claim 11 further comprising:
a row decoder, receiving an address of the instruction
from the CPU core, the row decoder decoding an offset
portion of the address and activating the selected row
line in the embedded memory when a base address
portion of the address matches a ROM base address,

whereby the row decoder activates the ROM cells and a
RAM cell coupled to the selected row line.

13. The microprocessor of claim 12 further comprising:
a translator, coupled to receive the address of the instruc

tion from the CPU core, for translating the base address
portion of the address to an external base address of a
patch-code portion of the external memory containing
the updated instruction, the translator outputting the
external base address portion and the offset portion to
the external memory interface means,

wherein the updated instruction is fetched at a same offset
from a base address as the instruction in the embedded
memory.

14. The microprocessor of claim 13 wherein the embed
ded memory further comprises:
ROM bit lines and a pair of RAM bit lines;
a differential sense amplifier, receiving the valid bit from

the RAM bit lines, for outputting a patch-enable signal
by amplifying a small voltage difference between the
pair of RAM bit lines;

ROM sense amplifiers, each ROM sense amplifier receiv
ing one ROM bit line and outputting one bit of the
instruction;

wherein a ROM cell is located at each intersection of a
ROM bit line and a row line and a RAM cell is located
at each intersection of the pair of RAM bit lines and a
row line.

15. The microprocessor of claim 14 wherein the ROM cell
in a first logical state comprises a functional n-channel MOS
transistor having a gate connected to a row line and a drain
connected to a ROM bit line and a source connected to a
constant voltage

5

15

20

25.

35

40

45

50

55

12
and wherein a ROM cell in a second logical state opposite

the first logical state comprises an absence of a func
tional transistor.

16. The microprocessor of claim 15 wherein the RAM cell
comprises a storage element and a pair of pass transistors.
each pass transistor having a gate connected to a row line
and a drain connected to a RAM bit line and a source
connected to the storage element.

17. The microprocessor of claim 16 wherein the pair of
pass transistors in the RAM cell are n-channel MOS tran
sistors,

18. The microprocessor of claim 17 wherein the external
memory is a main system memory comprising dynamic
RAM.

19. A method of fetching instructions from an embedded
read-only memory (ROM) and updated instructions from an
external memory, the method comprising the steps of:

generating a fetch address from a processor pipeline. the
fetch address having a base portion and an offset;

decoding the base portion of the fetch address and gen
erating an access to the embedded read-only memory
when the base portion is a first address in the embedded
read-only memory;

decoding the offset of the fetch address and selecting a
selected row line in the embedded read-only memory;

reading selected read-only cells connected to the selected
row line and outputting a ROM code word stored in the
selected read-only cells;

simultaneously reading a writeable cell coupled to the
selected row line. the writeable cell storing a valid bit
for the ROM code word stored in the selected read-only
cells;

transferring the ROM code word to the processor pipeline
when the valid bit indicates that the ROM code word is
valid;

when the valid bit indicates that the ROM code word is
not valid:
translating the base portion of the fetch address to an

external base portion, the external base portion being
a first address in a patch-code portion of the external
memory;

concatenating the external base portion with the offset
to form an external address;

transmitting the external address to the external
memory and reading an updated code word at the
external address;

transferring the updated code word to the processor
pipeline rather than the ROM code word;

whereby the ROM code word is replaced by the updated
code word from the external memory in response to the valid
bit connected to the row line.

20. The method of claim 19 further comprising the steps
of:

detecting when the updated code word is a jump instruc
tion to a patch routine in the external memory;

fetching instructions in the patch routine in the external
memory and transmitting the instructions to the pro
cessor pipeline;

detecting an end of the patch routine and requesting a next
fetch address from the processor pipeline;

whereby the ROM code word is replaced by the patch
routine of instructions in external memory when the updated
code word is the jump instruction.

ck sk ck ck -k

