
||||III
USO(5781.457A

United States Patent 19 11 Patent Number: 5,781.457
Cohen et al. (45) Date of Patent: Jul. 14, 1998

54). MERGE/MASK, ROTATE/SHIFT, AND 4,992.934 2/1991 Portanova et al. 364/200
BOOLEAN OPERATIONS FROM TWO 5195,051 3/1993 Paaniswani 364,748
NSTRUCTION SETS EXECUTED INA 5,227.989 77993 Jones, Jr. et al., ... 36.4f716

MUX y 5.251,167 10/993 Simmonds et al. ... 36.4/760
WECTORED ON A DUAL-ALU 5.327.364 7/1994 Jones, Jr. et al. 364,716.

5,333,120 77994 Gilbert 36,786
(75) Inventors: Earl T. Cohen. Fremates. 5,442.576 8/1995 Gergen et al. ... 364f7 5.08

lites {A, David E. Richter, 5,633.808 5/1997 Morishima 36.4f7 6.0
ilpitas, all oI Ual II.

Primary Examiner Tan V. Mai
73 Assignee: Exponential Technology, Inc.. San Attorney; Agent, or Firm-Stuart T. Auvinen

Jose. Calif. 57 ABSTRACT

21 Appl. No.: 649,116 A Boolean logic unit (BLU) features a vectored mux.
a. Boolean instructions are executed by applying operands to

22 Filed: May 14, 1996 the select inputs but truth-table signals to the data inputs.
- Merge and mask operations are performed by reversing the

Related U.S. Application Data connection and inputting the operands to the data inputs but
(63) continuation-in-part of set No. 609.908, Feb. 29, 1996, PPyin "g's his "P.P.

which is a continuation-in-part of Ser. No. 444,814, May 18, copies byte or 16-bit operands to 32-bits before being
1995, Pat. No. 5.497.34, which is a continuation of Ser. No. rotated and merged by the vectored mux. A rotator is used to
207,75. Mar. 8, 1994, Pat. No. 4,442,577. rotate an operand before being applied to the data input of

(51) Int. Cl. G06F 7/38 the vectored mux so that compound rotate-merge operations
52 U.S. Cl 364/716.02 can be executed in a single step through the vectored mux.
-rmy A carry flag may also be merged in during a multi-step

58) Field of Search 36471692.9 bit-test instruction. Complex CISC instructions such as
X- A was rotate-through-carry and shift-double are executed in mul

& tiple steps on the vectored mux. Intermediate results are
56 References Cited stored in the multiplier-quotient temporary registers which

U.S. PATENT DOCUMENTS are normally used for multiply and divide instructions. A
3,764.988 10,973 Onish 340,172.5 RISC ALU using the vectored mux BLU is modified only
4.460.976 7/1984 My - Eii slightly to support execution of CISC instructions. Merge,

... 364,768
... 364,754

4,608,660 8/1986 Hasbe......
4.748.582 5/1988 New et al.
4,761,756 8/1988 Lee et al. 364,757
4,831,573 5/1989 Norman 364f76
4,860.235 8/1989 Kondou et al. 364f76

OPA

11

321 24

22

42

OPB

SOSE

D3 D2 D1 OO
st VECTORED
SO MUX

RESULT<31 Oc

mask, rotate, shift, and Boolean operations of both RISC and
CISC instruction sets are executed in the same ALU because
of the inherent flexibility of the vectored mux architecture.

16 Claims, 12 Drawing Sheets

BO
SGN (OPA-312)

OPB 1 C

Do DD2 MRG OPB
MRG MQ

TO
FLAGS

U.S. Patent Jul. 14, 1998 Sheet 1 of 12 5,781.457

T2-31. Os TT1 <31 Od
TT3<31.02 TO<31 Od

B3 B2 B1 BO

D3 D2 D1 DO
S1
SO

OP-A-C31 Od

OP-BC31.02

RESULTC31 Od

-FETCH

94

RISC/CISC
MODE 96

PL 1OO

DUAL-ALU

F
70 Fig. 14

U.S. Patent Jul. 14, 1998 Sheet 2 of 12 5,781.457

rlwimi (Rotate-Left Word Immediate then Mask Insert)

op-typers A n MB ME

rS

3 1 O

ROT left by n 472 Gen MASK

31 n O 000 11111 000
31

rAAAA X AAA
Fig. 2 S- - -

rA rS rA

MERGED-RESULT

U.S. Patent Jul. 14, 1998 Sheet 3 of 12 5,781.457

OP-A

MB ME

MASKC31 OD

Fig. 3
MERGED-RESULTC31.02

OP-AC31.02

G -61-0||

U.S. Patent

U.S. Patent Jul. 14, 1998 Sheet 5 of 12 5,781.457

rA SHLD-32 (Shift Left Double)
31 O

ROT left by n (772
CCC X AAA

31 n O
STEP 1

STEP 2
rB DDD BBB Y

31 O

ROT left by n (772 Gen MASK

STORE BBB Y Dd MB ME
STEP 1 31 n O i
RESULT
IN MO

MO CCC X AAA

31 O Fig. 6 N-Du
B rA

MERGED-RESULT

U.S. Patent Jul. 14, 1998 Sheet 6 of 12 5,781.457

RCL-32 (Rotate-Left
AAA x Y BBB through Carry)

A AAA X Y BBB MB ME

111111 : 00000
ROT left by n (77.

AAAX

O

X-> NEW C Flag

Gen MASK

Y BBB

31

STEP 1
ROTATE-n MQ Y BBB : CCC
8. MERGE CARRY 4.

31 n O
Y was a NamN -1 N-N-1

STEP 2 v CFlag
ROTATE n-1
& MERGE MO Y-------------------------------------

A AAA XY BBB MB ME
31 O

ROT left by (772
XY BBB AAA

31 O

Fig. 7 31 n-1 O

rA(1) CF ra(2)

U.S. Patent Jul. 14, 1998 Sheet 7 of 12 5,781.457

BTC (Bit Test then Complement)

A AAA X BBBBBB

31 n O

ROT right by IS/7
BBBBBB AAA X

31 O

X-> NEW C Flag

STEP 1
BIT EXTRACT/TEST

STEP 2
COMPLEMENT
& STORE

rA AAA X BBB

31 O

31 n O
Fig 8 Na1 NN1 NN/

rA CFlag ra

MERGED-RESULT

U.S. Patent Jul. 14, 1998 Sheet 9 of 12 5,781.457

IB IMMREGID

II:
oph, Lopa,

84

DUAL-ALU

DIRECT- .
RESULTC31 Od

OP1 LOADING Fig. 10

32 BITS

PARTIAL
RESULT1C39.0>

U.S. Patent Jul. 14, 1998 Sheet 10 of 12 5,781.457

32 BITS

DUAL-ALU

DIRECT
RESULTC310>

PARTIAL
RESULT2<39.0>

OP2 LOADING Fig. 11

U.S. Patent Jul. 14, 1998 Sheet 1 of 12 5,781.457

32 BITS

DIRECT- PARTIAL
RESULTC31 Oc RESULT1C39.02

MO1 LOADING Fig. 12

U.S. Patent Jul. 14, 1998 Sheet 12 of 12 5,781.457

DUAL-ALU

DIRECT
RESULT<31.02

PARTAL
RESULT2<39. Od

MO2 LOADING Fig. 13

5.78457

MERGE/MASK, ROTATE/SHIFT, AND
BOOLEAN OPERATIONS FROM TWO
INSTRUCTION SETS EXECUTED INA
WECTORED MUX ON A DUAL-ALU

RELATED APPLICATIONS

This application is a continuation-in-part (CIP) of U.S.
Ser. No. 08/609,908 filed Feb.29, 1996 Pending. which is a
continuation-in-part (CIP) of U.S. Ser. No. 08/444,814, filed
May 18, 1995 now U.S. Pat. No. 5,497,341, which is a
continuation of U.S. Ser. No. 08/207,752 filed Mar. 8, 1994,
now U.S. Pat. No. 5.442.577, hereby incorporated by ref
cC.

FIELD OF THE INVENTION

This invention relates to digital arithmetic units, and more
particularly to methods for sign-extension, masking.
merging, and bit-test operations.

DESCRIPTION OF THE RELATED ART

The grand-parent, U.S. Pat. No. 5.442.577, disclosed a
vectored mux for performing Boolean operations and sign
extension of an operand or immediate constant. The vec
tored mux performs both the Boolean operation and the
sign-extension simultaneously as one atomic operation.
Both a Boolean operation, such as AND, XOR, AND-OR.

and a sign-extension of one operand can be performed as an
atomic operation using the vectored mux. The vectored mux
is a bank of 32 ordinary four-to-one muxes (for 32-bit
operands). Each individual mux generates one bit of the
output. The two operands are routed to the two select or
control inputs of the vectored mux rather than to the four
data inputs. The two select inputs determine which one of
the four data inputs is connected to the output.
The four data inputs of the vectored mux are not con

nected to the operands. Instead, signals representing a truth
table for the Boolean operation are applied to these data
inputs. The logical values of each bit on the two operands
selects the proper entry of the truth table, which is output for
that bit-position. Of course, these signals are electrical
voltages which represent logical values such as ones and
zeros as is well-known in the art.

This unusual connection of the operands to the select
inputs of the vectored mux allows many kinds of Boolean
operations to be performed on the input operands. For a
simple AND operation, the output is high when both input
operands are high for a particular bit-position. Thus truth
table signals of 0001 are applied to data inputs D0. D1, D2,
D3 respectively for each 4:1 mux. When a particular bit
position has both operands high, then the "1" input to data
input D3 is selected as the output for that bit-position.

Another advantage of the vectored mux is that different
operations can be applied to different bit-positions for the
32-bit result. An AND operation can be applied to the lowest
8 bits, while a sign-extend operation is applied to the upper
24 bits. The sign-extend operation applied to the upper
24-bits can be a sign-extend of an 8-bit first operand
combined with an AND-operation with the second operand.

Simply by changing the truth-table applied to the data
inputs, any arbitrary logical function can be performed by
the vectored mux. By varying the truth-table inputs for
different bit-positions in the vectored mux, different opera
tions can be performed on different parts of an input oper
and. Thus the vectored mux is versatile yet simple in
construction.

O

15

20

25

30

35

45

SO

55

65

2
A processor can use the vectored mux as a Boolean Logic

Unit (BLU) in an arithmetic-logic-unit (ALU) or an integer
execute unit. Arithmetic operations such as ADDS and
increments are executed in an adder in the ALU while
multiply and divide operations can be performed in an
integer multiplier also in the ALU. Boolean operations such
as AND's, OR's, and complements can be performed by the
vectored mux. Sign-extensions can also be performed by the
vectored mux along with a Boolean operation as a single
step atomic operation.
The parent application, U.S. Ser. No. 08/609.908, dis

closed extensions to the to vectored mux to allow execution
of a variety of other operations, such as merges, shifts, and
rotates in addition to Boolean operations. Rotate or shift
operations are often combined with merge operations for
rotate-merge instructions. These rotate, shift, mask, and
merge operations must also be executed by the ALU. The
parent application described several RISC instructions from
the PowerPCTM RISC instruction set.

It is greatly desired to execute both RISC and x86 CISC
instructions on the same central processing unit (CPU). This
could allow a RISC computer to execute newer PowerPCM
RISC programs and also execute older x86 CISC programs.
A vast amount of code has been written with native X86
instructions which currently can only be emulated in soft
ware on RISC computers. Software emulation is slow and
thus little or no performance gain is observed when running
the CISC programs on emulators on RISC computers.
What is desired is to extend the vectored mux to perform

mask and merge operations for instructions from two dif
ferent instruction sets. It is desired to use the vectored muX
to perform Boolean, merge/mask, and shiftirotate operations
from both a RISC and a CISC instruction set. It is also
desired to perform more complex CISC operations such as
rotate-through-carry, bit-test-and-complement, and shift
double using the vectored mux. It is desired to use a RISC
execution unit which includes a vectored mux to execute
both RISC instructions and CISC instructions. It is desired
to extend a RISC ALU to allow native execution of CISC
instructions.

SUMMARY OF THE INVENTION

A logic-instruction execution unit executes Boolean
operations and merge operations. The logic-instruction
execution unit has a vectored mux which outputs a result of
a Boolean operation or a merge operation. The vectored muX
has a plurality of individual mux cells, and each mux cell has
data inputs and select control inputs and an output driving
one bit-position of the result. The select control inputs
control which data input is coupled to drive the output
independently of other data inputs.
A first operand input has a plurality of electrical signals

representing a first operand, while a second operand input
has a plurality of electrical signals representing a second
operand. Operand-spread means receives the first operand
input. It extends the first operand from a reduced-width
operand to a full-width operand by duplicating the reduced
width operand to fill bit-positions in a full-width operand
beyond the reduced-width operand. The operand-spread
means outputs a spread first operand to a first data input of
the vectored mux when the first operand is a reduced-width
operand.

Boolean control means applies the first operand input and
the second operand input to the select control inputs of the
vectored mux when a Boolean operation is executed. Truth
table inputs are electrical signals that represents a truth table

5.78 457
3

for the Boolean operation. The truth-table inputs vary for
different Boolean operations. The Boolean control means
includes means for applying the truth-table inputs to the data
inputs of the vectored mux when a Boolean operation is
executed.

Merge control means applies the spread first operand to
the first data input on the vectored mux and applies the
second operand input to a second data input on the vectored
mux when a merge operation is executed. A mask generator
generates a mask indicating a first portion of the result from
the first operand and a second portion of the result from the
second operand. The first portion and the second portion do
not overlap.
The merge control means includes a means for applying

the mask to a select control input of the vectored mux when
a merge operation is executed. The mask causes the vectored
mux to select the first portion of the first operand applied to
the first data input and the second portion of the second
operand applied to the second data input.
Thus the vectored mux executes both merge operations

and Boolean operations. The operands are applied to the data
inputs for merge operations but are applied to the select
control inputs for Boolean operations.

In further aspects the reduced-width operand is a byte
operand. The operand-spread means is disabled for RISC
instructions but enabled for CISC instructions which use
reduced-width operands.

In other aspects the vectored mux is comprised of indi
vidual four-to-one mux cells each having four data inputs
and two select control inputs. The merge control means
further has a constant means for applying a constant elec
trical signal to one of the select control inputs when a mask
or a merge operation is executed. The constant electrical
signal prevents two of the four data inputs from being
selected while allowing only the first and the second data
inputs to be selected for mask and merge operations. Thus
the vectored mux uses four data inputs for Boolean opera
tions of two operands but only two data inputs for mask and
merge operations.

In still further aspects of the invention a rotate means
receives the spread first operand. It rotates the spread first
operand by a shift-count number of bit-positions and outputs
a rotated first operand to the first data input of the vectored
mux when a rotate operation is executed. The merge control
means applies the mask having a constant value when a
simple rotate operation is executed. The constant value
causes the rotated first operand to be selected to drive the
output of the vectored mux as the result. Thus rotate
operations are also performed by the logic-instruction
execution unit and rotate results are passed through the
vectored mux.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a vectored mux for performing
Boolean logic functions.

FIG. 2 illustrates the operation performed by a RISC
rotate-merge instruction.

FIG. 3 shows a vectored mux which is modified to
execute rotate-merge instructions as described in the parent
application.

FIG. 4 is a byte spreader which is used for extending
CISC operands.

FIG. S shows an execute unit with a vectored mux for
executing Boolean logic operations, rotate, merge and bit
test operations for both RISC and CISC instructions.

O

15

20

25

35

45

SO

55

65

4
FIG. 6 illustrates execution of the CISC shift-double

instruction (SHLD) by the vectored-mux BLU.
FIG. 7 illustrates execution of the CISC rotate-through

carry instruction (RCL) by the vectored mux BLU.
FIG. 8 illustrates execution of the CISC bit test and

complement instruction (BTC) by the vectored mux BLU.
FIG. 9 is a block diagram of an ALU which executes

native instructions from both a RISC an CISC instruction
Set.

FIG. 10 highlights loading of input register OP1.
FIG. 11 highlights loading of input register OP2.
FIG. 12 highlights loading of temporary register MQ1.
FIG. 13 highlights loading of temporary register MQ2.
FIG. 14 is an architectural diagram of a dual-instruction

Set CPU.

DETALED DESCRIPTION

The present invention relates to an improvement in digital
operations. The following description is presented to enable
one of ordinary skill in the art to make and use the invention
as provided in the context of a particular application and its
requirements. Various modifications to the preferred
embodiment will be apparent to those with skill in the art,
and the general principles defined herein may be applied to
other embodiments. Therefore, the present invention is not
intended to be limited to the particular embodiments shown
and described, but is to be accorded the widest scope
consistent with the principles and novel features herein
disclosed.
DESCRIPTION OF BASIC VECTORED MUX-FIG. 1

FIG. 1 is a diagram of a vectored mux for performing
Boolean logic functions. Vectored mux 10 has 32 individual
4:1 muxes, one generating each bit-position in the 32-bit
result. The two input operands. OP-A. OP-B. are applied to
the control or select inputs S1, S0 of vectored mux 10. Each
of the 32 bits of operand-A is applied to the S1 input of a
different 4: mux in vectored nux 10, while each bit of
operand-B is applied to the corresponding S0 input. Thus the
individual 4:1 mux which generates bit-position 6 of the
result RESULT<6>, has its S1 select input connected to bit
6 of operand-A OP-A<6>, while its S0 select input is
connected to bit 6 of operand-B OP-B462. Other individual
4:1 muxes in Vectored mux 10 are connected in the same
fashion.
The data inputs D3, D2, D1, D0 of vectored mux 10 are

connected to truth-table signals, designated TT3. TT2. TT1,
TT0. These truth-table signals are each 32-bits wide, for
connecting to the 32 individual 4:1 muxes in vectored mux
10. These truth-table signals are also abbreviated as B3, B2.
B1, B0 to indicate a Boolean function may be input.

For a simple Boolean function without any sign
extension, all 32 signals are identical in the truth-table
signals applied to one of the data inputs. Thus for AND
operations, all 32 bits in TT3<31.0> are one, while all 32
signals in each of TT2, TT1, and TTO are zero. Since these
bits are the same for all 32 positions, only four bits for any
Boolean function need to be stored or generated to drive the
data inputs of vectored mux 10. When sign-extension is
combined with a Boolean function, then additional bits may
need to be stored, as was described in detail in the grand
parent patent, U.S. Pat. No. 5.443,577.

Sign-extension can be performed as described in the
grand-parent patent by dividing each set of truth-table
signals into an upper and a lower section, and modifying the
upper section to account for the sign extension. Thus sign
extension is accounted for in the truth-table signals them
selves.

5,781.457
S

RSC ROTATE-MERGE INSTRUCTION
FIG. 2 illustrates the operation performed by a RISC

rotate-merge instruction. The RISC PowerPCM architecture
provides a wealth of useful instructions, including merge
instructions. Merge instructions in their simplest forms may
be used to read or test a bit or a field of bits in a register. The
bits read can be extracted to a different register where further
processing can be performed using the extracted bits. While
many forms and variations of these merge operations exist.
FIG. 2 highlights one of the more complex of the merge
instructions, rlwini.
The merge instruction rlwimi is the "rotate-left word

immediate then mask-insert" instruction. A 32-bit “word" is
rotated to the left by the rotate amount "n" which is specified
in the instruction word as shown in FIG. 2. Since this rotate
amount "n" is contained in the instruction word itself, rather
than in a register, the rotate amount is an "immediate"
constant. The rotate is performed on a 32-bit source operand
from the rS register identified by the rS field in the instruc
tion word. A mask is then generated beginning with the bit
identified by field MB and ending with the bit indicted by
field ME. The rotated operand is then merged with a second
operand in register ra.specified by field IA of the instruction
word. The portion of rotated rS between MB and ME is
merged into the operand in register IA.

FIG. 2 shows a first operand in register rS having a
least-significant-bit (LSB) with the value "X" at bit-position
0. A left rotate by n bits shifts the LSB X over to bit-position
n as shown. For a left-rotate the MSB's shifted out from
bit-position 31 are rotated back to the LSB. A mask is
generated from fields MB. ME by loading a temporary
register with ones between MB and ME, but Zeros else
where. This mask can be used as the control input to a mux
which selects the rotated rS operand when the mask for that
bit-position is one, but selects the rA register's bit when the
mask bit for that bit-position is zero.

Several bits can be extracted from register rS and inserted
into register ra using rlwimi. The merge instruction can
extract one bit or 32 bits or any number of bits between 1 and
31. Rotating first allows these bits to be placed anywhere in
the rA register.
EXECUTING RISC ROTATE-MERGE ENSTRUCTION
ON A VECTORED MUX
FIG. 3 shows a vectored mux which is modified to

execute rotate-merge instructions as described in the parent
application. Vectored mux 20 is comprised of 32 individual
2:1 muxes, one for each bit-position. Operand-A is first
shifted or rotated by rotator 24, which has control inputs
determining the number of bits to shift, the shift count (SC)
having the value "n", and the direction of the rotate, left or
right. The rotated 32-bit output from rotator 24 is received
by vectored mux 20 on the D1 data input.
Operand-B is input to vectored mux 20 on its D0 data

inputs after an optional zeroing by AND gates 26. For the
rlwimi instruction, AND gates 26 simply pass operand-B
through. Another rotate-merge instruction, rlwinm, performs
an AND with the mask rather than merge the rotated
operand-A into operand-B. Any mask bits that are zero.
before MB and after ME, cause the result of rlwinn to be
zero. Thus operand-B is zeroed out before input to vectored
mux 20.
Mask generator 22 receives the beginning and ending

mask fields MB, ME from the instruction decoder, and
generates the mask. Ones are generated forbits between MB
and ME, with the other bits being zero. Simple, well-known
combinatorial logic may be used to implement mask gen
erator 22. For example, a first mask can be generated using

O

5.

25

35

45

50

55

65

6
just MB, while a second mask generated using just ME.
Simple decoders for each bit-position set the mask bit when
the bit-position is less than or equal to MB. or greater than
or equal to ME. The two masks are then ANDed to get the
final mask. When MB<ME, the masks are ORed rather than
ANDed. The generated mask. MASK<31.0>is input to the
select control input of vectored mux 20, with each mask bit
controlling an individual 2:1 mux. When the mask bit is high
for a bit-position. D1 is selected and rotated operand-A is
selected as the result output. When the mask bit is low for
a bit-position, operand-B is selected as the result output (or
zeros from AND gates 26 for rlwinm).

Vectored mux 20, mask generator 22, rotator 24, and AND
gates 26 together form merge unit 28 for performing merge
and rotate operations.
BOOLEAN VECTORED MUX USED FOR MERGE
OPERATIONS
The inventors have realized that the merge unit and the

Boolean unit can be combined. The 4:1 mux for the Boolean
unit can be controlled as a 2:1 mux to perform merge
operations. Thus the same hardware mux can be used for two
functions, reducing cost and complexity. Since both of these
muxes are vectored muxes, reducing the number of vectored
muxes also reduces complexity for mux control logic.
A 4:1 mux may be logically reduced to a 2:1 mux by

applying a constant to one of the two select inputs. When a
constant zero is applied to the S0 input, data inputs D1 and
D3 are never selected. Data input D0 is selected when S1 is
low, while data input D2 is selected when S1 is high. The 4:1
vectored mux, useful for performing Boolean operations,
can also be used as a 2:1 mux for merge operations.

Another major difference between the vectored 4:1 mux
for Boolean operations and the 2:1 mux for merge operations
is that the operands are input to the select control inputs for
Boolean operations, but to the data inputs for merge opera
tions. Additional control logic is needed to route the oper
ands to the control inputs for Boolean operations but to the
data inputs for merge and rotate operations. The mask and a
constant must be routed to the select control inputs formerge
operations.
BYTE SPREADER FOR CISC OPERATIONS

FIG. 4 is a byte spreader which is used for extending
CISC operands. Byte-spreaders are well-known in the art.
CISC instructions often use 8-bit (byte) or 16-bit (word)
operands while RISC instructions always use 32-bit (double
word, DW) operands. Since the vectored mux and merge
unit is designed for 32-bit RISC operands, smaller CISC
operands are either sign-extended or spread to 32 bits. Sign
extension copies the sign bit to the upper bit-positions.
Byte-spreading, on the other hand, copies an entire byte or
16-bit word to the upper bit-positions. For example, the
byte-operand 10101111 may be sign-extended to
1111111111111111111111110101111,

but byte-spread to
10101111 10101111 1010111110101111.
Byte-spreading is preferable for operands that are input to

shift and rotate operations since a 32-bit rotate requires no
other special muxing or correction. For example, a 2-bit
rotate of the byte 10101111 results in 10111110, which can
be generated from an 8-bit rotator, or from a 32-bit rotator
when the byte input is byte-spread to 32-bits.

Byte-spreader 11 of FIG. 4 takes operand-A and divides
it into four bytes. The highest byte, bits 31:24, is input to
input D2 of mux 56. The third byte, bits 23:16, is input to
input D2 of mux 52. The second byte, bits 15:8, is input to
input D1 of mux 56 and input D1 of mux 54. The low byte.
bits 7:0, is input to inputs D0 of muxes 56.52, 54 and also

5,781.457
7

input to input D1 of mux 52. Mux, 56 selects the upper byte.
mux 52 selects the third byte, and mux 54 selects the second
byte of the byte-spread output. The low byte is connected
directly to the low byte of the output.
The select control inputs to muxes 56, 52.54 indicate if

operand-A is a byte, word, or double-word operand. A byte
operand selects inputs D0 from all three muxes, which
selects the low byte to be output for all four bytes of the
output. A word operand selects inputs D1 from all three
muxes, copying the low byte to the third byte, bits 23:16, and
copying the second byte to the upper byte, bits 31:24. Thus
the 16-bit word operand is copied to the upper 16 bits of the
output. When a double-word operand is used, muxes 56.52
select the D2 input, passing the upper and third bytes to the
output, while mux 54 selects the D1 input, passing the
second byte to the output.
Thusbyte-spreader 11 spreads or copies a byte operand to

the upper three bytes, or copies a 16-bit word operand to the
upper two bytes. Full-width double-word operands simply
pass all 32 bits through with no change. Thus 32-bit RISC
operands are not modified by byte spreader 11.
COMBINED BOOLEAN AND MERGE UNIT USING
VECTORED MUX
FIG. 5 shows an execute unit with a vectored mux for

executing Boolean logic operations, rotate. merge and bit
test operations for both RISC and CISC instructions. Vec
tored mux 10 is comprised of 32 individual 4:1 multiplexers
or muxes as described for FIG. 1. When truth table inputs
B3, B2, B1, B0 are coupled to the data inputs D3. D2. D1.
D0 and operands A and B are coupled to the select control
inputs S1. S0 of vectored mux 10, then the Boolean function
encoded in the current truth-table signals is performed on
operands A and B. Other Boolean functions are performed
simply by applying a different set of truth-table signals to
B3:BO, as described in detail in the grand-parent Pat. No.
5.442.577, where tables 1-4 showed truth-table signals for
various Boolean functions such as AND, OR, XOR, A
ANDNOT B.
For Boolean operations, signal BOOL is high, causing

mux 46 to select vector B2 while mux 42 couples operand-A
to the S1 control input of vectored mux 10. S0SEL is set high
to connect operand-B to the S0 control input of vectored
mux 10. Truth-table vector B0 is connected to data input D0
through muxes 12, 50 by setting B0SEL high and MRG
OPB and MRG MQ low. Thus vectored mux 10 is con
nected properly for Boolean operations.
The instruction decoder at the beginning of the pipeline

decodes the instruction's opcode to determine what type of
operation is called for. Boolean operations are further
decoded into the exact Boolean operation just before the
pipestage containing the ALU, although may variations of
the decoding are possible. The Boolean operation decoded
then selects the correct set of truth-table vectors to apply to
B3:B0. For Boolean operations without a sign-extend, a
single bit for each of the four truth-table vectors is generated
and spread out over all 32 bits. Boolean operations with a
sign-extended operand require two bits for each vector, one
for the lower section and a second for the upper section, as
was described in the grand-parent patent in Tables 5-9. Two
copies of mux 12 are needed when the truth-table inputs are
divided into an upper and a lower section. The four or eight
truth-table bits may be read from a small ROM or generated
by a programmable-logic array (PLA) or other decoding
logic.

For merge operations, the connection of the operands to
the vectored mux is reversed. Instead of applying the oper
ands to the select control inputs as for Boolean operations.

10

5

20

25

3.

35

45

50

55

65

8
the operands are applied to the data inputs. When two
operands are used, operand-B is applied to data input DO
through mux 50, which has MRG OPB set high and
MRQ MQ low. Operand-A is applied to data input D2
through mux 46, which has BOOL set low for merge
operations. Operand-A is first byte-spread by byte-spreader
11 and then rotated or shifted by rotator 24 before being
input to mux 46 and vectored mux 10.

Rotator 24 is preferably a simple barrel rotator, allowing
a rotate of any number of bits to be performed in a single
step. The number of bit-positions rotated is determined by
the shift count SC, which can be read from a register or as
an immediate value in the instruction itself. The direction of
the shift or rotate. either left or right, is also determined by
the instruction and input to rotator 24 as is the type of
operation, either a shift or a rotate (not shown). The type and
direction of shift/rotate is usually determined by the opcode
itself. A rotate is a shift with the MSB looped back to the
LSB for a left rotate. or the LSB looped back to the MSB for
a right rotate. Shifts do not loop the MSB or LSB back, but
simply drop bits that are shifted off the end. Zeros are shifted
in the other end, except for arithmetic right shifts, which
shift in the sign bit. which is the original MSB. An alternate
embodiment described later uses a simple rotator with the
masking and merging features of the vectored mux to
accomplish both rotates and shifts.

For simple rotate or shift operations, vectored mux 10 just
passes the rotated operand-A through to the result. Data
input D2 from rotator 24 is selected by forcing S1, S0 to 10
in all bit-positions. Mask generator 22 defaults to output 32
bits of ones when no mask operation is being performed.
BOOL is low for non-Boolear operations, coupling the one
outputs from mask generator 22 to S1 control input through
mux 42. SOSEL is also set low, causing mux 48 to select a
zero to S0. For more complex instructions, the rotated
operand-A can then be merged or masked using vectored
mux 10. Simple mask and merge operations can also be
performed by setting the shift count to zero for rotator 24.
Mask generator 22 receives the beginning and ending

bit-positions of the mask or merge, MB, ME, which can each
be encoded by 5-bit fields in the instruction word. Mask
generator 22 generates a 32-bit mask which has ones
between and including MB and ME, but zeros elsewhere.
This mask is selected by mux 42 when BOOL is low, and
applied to select input S1 of vectored mux 10. The other
select input, S0, is driven by 32 Zeros from mux 48 as signal
SOSEL is low. Thus data inputs D3 and D1 cannot be
selected as S0 is low for all 32 bits. Vectored mux 0 is
logically reduced from a 4:1 mux to a 2:1 mux for merge
operations.

SC, MB, and ME can be provided from decoding or
control logic based on the type of instruction or can be
provided directly in the instruction word. For example, a
sign-extend byte instruction would set SC=0, MB=7, ME=0.
thus merging bits 31 to 8 of its operand with a sign bit, if
selected.

For the bit positions between MB and ME, in the masked
portion, a one is output to select input S1, and thus data input
D2 is selected. However, for bit positions outside of the
masked portion, a zero is output to S1, and data input D0 is
selected. D2 receives the rotated operand-A, while D0
receives operand-B through mux 50, which has MRGOPB
set for two-operand merge operations. Thus operand-A.
possibly rotated by rotator 24, is merged into operand-B
using vectored mux 10. The mask determines which bits of
the result originate from each operand.
A simple mask or merge occurs when the shift count SC

is set to zero, while a rotate-merge (rlwimi) or a shift-merge

5,78457
9

operation occurs when SC is non-zero. A mask operation
differs from a merge in that only one operand is used for a
mask, but two for a merge. For a mask operation, bit
positions not between MB and ME are cleared to zero. Thus
a mask operation is simply a merge with a Zero-filled
register.
Mask operations are performed by applying 32 zeros to

data input D0 rather than applying the second operand-B.
MRG OPB and MRG MQ are set low for mask
operations, while the B0SEL bits are set to 01, causing
truth-table vector B0 to be applied to data input D0 through
muxes 12.50. Bit B0 is set to zero, which is spread to all 32
bits for the mask operation. Thus zeros are merged with
operand-A when a mask operation such as rlwinm is per
formed,
An explicit sign-extension operation for RISC instruc

tions is performed on a single operand, operand-A, by
applying operand-A possibly after a rotate by rotator 24, to
data input D2 through mux 46 which has signal BOOL low.
Mask generator 22 generates a vector for the operand size as
described for FIG. 2 of the parent application. with one bits
where the operand-A has significant bits, but zero bits where
sign-extension is to occur. This operand-size vector is
applied to select control input S1. Signal SOSEL is low,
forcing a constant zero onto select input S0 so that only data
inputs D0 or D2 can be selected,

Signals MRG MQ and MRG OPB are low since a
second operand is not being merged in. Mux 50 couples the
output from mux 12 to data input D0 of vectored mux 10.
For sign-extension, both bits of signal B0SEL are low,
selecting the sign bit, the MSB of operand-A. to data input
D0 of vectored mux 10. Zero-extension is performed by
setting truth-table signal B0 to zero, and B0SEL to 01, so
that zeros are applied to data input D0 of vectored mux 10.
The S1 input to vectored mux 10 is driven by a vector of

the operand size. with one bits where the operand exists and
zero bits for the extension part of the 32-bit result. Thus an
8-bit byte operand being extended to 32 bits has the vector
OOOOOOOOOOOOOOOOOOOOOOOO 11111111

driven to select input S1. The zero bits select the sign bit
from mux 12 and data input D0, while the one bits select the
shifted or un-shifted operand-A from data input D2. Thus
sign-extension is performed by merging the operand with
the sign bits using vectored mux 10 to perform the merge.

Result output 16 from vectored mux 10 can be used to
generate flags for the ALU result. For example, comparing
result output 16 to zero generates the “Z” flag.
RISC Vectored Mux BLU Modified Slightly For CISC
The inventors have realized that the vectored mux

Boolean-logic unit (BLU) can be extended slightly to allow
not only RISC instructions, but also CISC instructions to be
natively executed. The vectored mux approach is so surpris
ingly versatile and flexible that even CISC operations can be
performed on an otherwise RISC BLU.

For CISC instructions, the basic RISC execute unit
described in the parent application is extended only slightly.
As FIG. 5 shows, byte spreader 11 is an added element, and
mux 12 is changed from a 2-input mux to a 4-input mux to
allow the carry flag CF and its complement CF to be
merged in instead of the sign bit. Zero or one. In addition to
OP-B, MQ also needs to be a merge source. These three
simple changes allow complex CISC operations to be
executed on the otherwise RISC BLU.
SIMPLIFED EMBODMENT OF ROTATOR FOR SHIFT
OPERATIONS
For an arithmetic shift right instruction, sign-extension is

required. Vectored mux 10 and mask generator 22 are used

O

15

25

35

45

5

55

65

10
to perform an arithmetic shift by adjusting the rotated output
from rotator 24. The instruction decoder sets shift count SC
to n, the number of bits to shift. ME is set to 0, while MB
is set to 31-n. The sign bit is selected by mux 12 for the
merge rather than Zeros. Vectored mux 10 merges the sign
bit from mux 12 to the MSB's of the result above MB.
Rotator 24 simply rotates by the shift count SC, even for
shift operations. Thus rotator 24 can be used for both rotates
and shifts by always rotating in rotator 24, but using the
merge/mask features of vectored mux 10 to generate the
shift result from the rotated output.
The direction control for rotator 24 can also be eliminated

by adjusting shift count SC. Rotator 24 is designed to always
rotate left. For right rotates and shifts, the shift count SC is
simply complemented in modulo 32. Thus a right shift by
2bit-positions is complemented to a left shift by 30 bit
positions. Of course, rotator 24 could default to either right
or left shifts/rotates, and the modulus can be changed for
different data-path widths,
A shift left by a shift of “n” is thus accomplished by

setting:

MEen

Merge with zeros.
A shift right by a shift of "n" is accomplished by setting:
SC=two's complement of n

MEO
Merge with zeros for logical shift, but merge with sign bit

for arithmetic shift.
Thus the mask/merge features of vectored mux 10 and

surrounding logic can be used to adjust the output from a
simplified rotator 24 which can only rotate in one direction.
This reduces cost and complexity as a simpler rotator is used
rather than a more versatile and complex bi-directional
rotator/shifter.
EXAMPLES OF CISC OPERATIONS PERFORMED ON
BLU
The operation of the RISC/CISCALU of FIG.5 will now

be described for several complex CISC operations. Simple
CISC operations that resemble RISC operations can be
directly executed in the same manner as the corresponding
RISC operation is executed. CISC operands of 8 or 16 bits
are first byte-spread to 32-bits by byte spreader 32.

For example, after byte-spreading the CISC shift instruc
tions SHL, SHR and SAR are simple shifts that are executed
in the same manner as the RISC shift instructions sw, SrW,
Sraw. (RISC instructions are listed in lowercase letters while
CISC instructions are listed in uppercase letters.) The CISC
rotate instructions ROL, and ROR are simple rotates that are
executed in the same manner as the RISC rotates rlwimi,
rlwinm, rlwinm, except that no merging or masking is
performed.
The following PowerPCTM RISC instructions are

executed by the vectored mux and merge BLU:
Boolean Instructions: and, andc, nor, eqv, xor, orc. or,

nand
Sign-Extend Instructions: extsh, extsb
Shift Instructions: slw, srw.sraw
Mask/Merge Instructions: rlwimi, rlwinm, rlwinm
These RISC instructions are executed in a single clock

cycle. Even the mask/merge instructions are executed in one
clock cycle because rotates and shifts can be performed
before the merging and masking in a single pass through the
vectored mux BLU. Any arbitrary Boolean function can be

5,781.457
11

performed by inputting appropriate truth-table signals to the
data inputs of the vectored mux, as described in detail in the
grand-parent patent. RISC sign-extensions are executed as a
merge operation, with the sign bit merged into the vectored
mux through mux 12 of FIG. 5. The mask generated has a
field of ones for the size of the un-extended input operand.
and zeros for the upper, extension bits.
The following simple x86 CISC instructions are also

executed in a single clock cycle:

MOVZX. MOWSX move zero-extended or sign extended
CBW. CWE Sign-extend a register operand
ROL, ROR Rotates left or right
SHL, SHR Shift left or right (logical)
SAR shift arithmetic right
BT Bit test

Sign-extension for CISC instructions are preferably per
formed as a Boolean operation as described in the grand
parent patent. MOVes are to or from memory while CBW.
CWDE are sign-extensions on a register operands. Since
these CISC instructions are relatively simple, they can be
performed on a single pass through the vectored mux.

Other x86 instructions are more complex. and require
multiple passes through the vectored mux BLU. These
multi-step instructions include:

RCL, RCR Rotate through carry left or right
SHLD, SHRD Shift double
BTC, BTR, BTS Bit test and modify

These are compound instructions which perform complex
operations and thus require two or more cycles to execute.
Any of these CISC instructions, whether single or multi

step, can operate on reduced-width operands. Byte spreader
11 of FIG. 5 is used to first spread a byte operand to 32 bits,
or a 16-bit word operand to 32 bits. The register file or bus
interface unit is sent the desired size of the result, either byte.
word, or 32-bit double-word. The desired size of the result
is used to enable the desired bytes when writing the result to
a register or memory. Thus a byte-rotate ROL would byte
spread the byte operands to 32-bits, perform the rotate, and
then store only the low 8 bits of the result back to a result
register.
COMPLEX CSC INSTRUCTIONS

FIG. 6 illustrates execution of the CISC shift-double
instruction SHLD by the vectored-mux BLU. The shift
double instruction performs a shift across two operands
located in two different registers.

For example, register ra contains the lower operand
AAACCCX, while register B contains the upper operand
DDDBBBY. In concept, the two operands are put together
with raforming the lower bits and rB forming the upper bits.

DDDBBBY AAACCCX

The shift is performed on the two registers as a single unit.
Bits shifted out of the lower registerra are shifted into the
upper register rB for a left shift. The final contents of the
upper register rB are stored as the result:

BBBYAAA

The lower-bit result of a left-shift-double of n positions is
CCCXAAA. The lower bits (AAA) are stored as part of the
result while the upper bits (CCCX) are discarded. The
upper-bit result is BBBYDDD, with the upper bits BBBY

O

15

25

30

35

40

45

50

55

65

12
forming part of the result and the lower bits (DDD) dis
carded. The upper and lower operands may be byte. word, or
double-word operands, and the result is the same 'size as one
of the input operands.

FIG. 6 shows that two shifts are required. using two clock
cycles through the vectored mux BLU. During the first cycle
or step, operand AAACCCX in register ra is rotated to the
left by the shift count n. The intermediate result
(CCCXAAA) is stored in temporary register MQ and input
to the vectored mux at port D0 with MRG MQ high
selecting MQ in the second step as a merge input. During the
second step the upper operand DDDBBBY in register rB is
rotated to the left by n. The rotated upper operand is also
input to the vectored mux as a first merge input through port
D2.
A merge mask is generated having n zeros in the lower

bit-positions but ones in the upper bit-positions (MB=31 and
ME=n). The merge mask controls the vectored mux because
it is input to the select control input of the vectored mux. The
merge mask causes the vectored mux to select the rotated
lower n bits of the lower operand (AAA) from temporary
register MQ, while the upper bits of the rotated upper
operand (BBBY) are selected as the upper part of the result.
BBBYAAA
Right-shift-double (SHRD) operates in an analogous

manner. The first step rotates to the right the upper operand
and saves it to MQ. In the second step the lower operand is
rotated right and merged with the rotated upper operand
from MQ. The lower portion of the merged result is saved.
Thus the complex shift-double CISC instruction can be
executed on the vectored-mux BLU in two steps.
ROTATE-TRHOUGH CARRY-FG. 7

FIG. 7 illustrates execution of the CISC rotate-left
through-carry instruction on the vectored mux BLU. The
rotate-through-carry instruction differs from ordinary rotate
instructions because the carry bit from the flag register is
inserted at the bottom of the operand before the rotate is
performed. The carry bit is set by a previous instruction.

In concept, the operand:

AAAXYBBB

is first appended with the carry flag C:
AAAXYBBB. C.

The carry flag is not part of the 8, 16, or 32-bit operand,
but instead is a separate, additional bit. The rotate is per
formed on the operand and the carry flag. A 32-bit operand
thus rotates through 33 bits, including the carry bit. The
result of a right-rotate-through carry by n is:

YTBBBCAAAX

with the carry bit C at bit-position n-1 of the result. The
original bit "X" is now the new carry flag and is not part of
the data result Stored.

FIG. 7 rotates the operand AAAXYBBB with the original
carry flag "C". In step one, the operand is rotated to the left
by n, producing the first rotated value

YBBBAAAX

which is input to input D2 of the vectored mux. The new
carry flag is set to the lowest bit of the rotator output, bit 0
which is “X”. Note that the simplified rotator only rotates
through 32 bits and does not include the carry bit as a 33rd
bit in the rotate loop.
The original carry flag "C" is a single bit that was set by

execution of a previous instruction such as an earlier ADD

5,781.457
13

instruction. This single carry bit is spread from one bit to 32
bits and transmitted to input D0 of the vectored mux.
Spreading to 32 bits can be accomplished by simply con
necting the output of mux 12 to all 32 inputs of mux 50 of
FIG.S.
The mask generated in step one has MB=31 and ME=n.

so ones are generated for bits 31 to and including bit n, with
bits n-1 to 0 being zeros. The upper ones in the mask select
inputs D2 of the vectored mux, which is the rotated operand.
The lower zero bits of the mask select copies of the carry bit.
The merged output of the vectored mux for the first step is
therefore

YBBBCCC

which is stored in the MQ temporary register and sent to
input D0 of the vectored mux in step two.
The original operand is again sent to the rotator in step

two, but this time it is rotated left by n-1. The first step
rotated by n. The second rotated result is

XYBBBAAA

which is sent to port D2 of the vectored mux for merging
with the first step's result stored in register MQ. The mask
generated for the second step has MB=n-2 and ME=0, so
zeros are generated for the upper mask bits, which select the
result from step one. The lower mask bit are ones, selecting
the second step's rotator output. Since the first one in the
mask is at bit-position n-2, while the first carry bit from step
one is at bit-position n-1, there is exactly one carry bit in the
final answer, at bit-position n-1:

YTBBBCAAA.

The upper bits of the final result are from the first step
while the lower bits are from the second step. Thus reducing
the rotate value for the second step and adjusting the mask
generated inserts the carry bit at the proper bit-position,
mimicking a 33-bit rotate through the carry bit.
The first step uses a standard, quickly-generated mask that

is used for simple one-step shifts. This is the same mask used
for shift-left. The second step used a non-standard mask
which takes more time to generate. Thus the first step is
easier to execute and not time critical, while additional time
is available for generating the second step's mask.

For 16-bit rotate-through carry, the shift count n is
reduced by modulo 17 to rotate by the proper amount to
mimic 16-bit hardware. Byte operands require that the shift
count be reduced modulo 9. An RCL with n=9 is thus
reduced to n=0. RCR operates in an analogous manner using
right-rotates.
BIT TEST & COMPLEMENT-FIG. 8

FIG. 8 illustrates execution of the CISC bit test and
complement instruction (BTC) on the vectored mux BLU. A
bit test instruction copies one bit of an operand to the carry
bit of the flags register. Any bit of a 32-bit. 16-bit, or 8-bit
operand may be tested. The BTC instruction then comple
ments the bit tested and writes the complement back to the
tested bit. For example, the operand:

AAAXBBBB

where bit "X" is to be tested and complemented is updated
by BTC to

AAAX"BBBB

where X" is the logical complement of bit X.

5

15

25

30

35

45

50

55

65

14
Since a rotate-left operation loads the carry flag with a

copy of the lowest bit of the rotated result (the last bit shifted
out), the rotator of the vectored mux BLU can be used to test
the bit. The merge function of the vectored mux BLU can
then be used in a second step to merge the complemented bit
into the operand. The x86 architecture requires that the
lowest bit of the rotated result for a rotate left be copied to
the carry flag.

FIG. 8 shows that in the first step the operand

AAABBBBBB

is rotated to the right by the tested bit's position, n. This
places the tested bit. X. at position 0:

BBBBBBAAAX.

Bit Xat position zero of the rotator's output is then copied
to the carry flag CF of the flags register. A temporary register
in the BLU for the carry flag may also be used as the source
of CF for step two.

In step two, the carry flag is complemented to CF, input
to mux 12 of FIG. 5, and spread from one bit to 32 bits by
mux 50 before being sent to port D0 of vectored mux 10.
The original, unrotated operand (SC=0) is input to port D2
of the vectored mux. A mask is generated with MB=n-1 and
ME=n-1. This generates a mask having all ones except a
single zero at position n. This mask selects the comple
mented carry flag CF for bit-position n but selects the
original operand for all other bits. Thus the complemented
carry flag is merged into the final result.
The output of the vectored mux from step one is not stored

as it is not needed. Since the mask is not generated until step
two, additional time is available to generate the non
standard mask. This helps to reduce critical paths in the
ALU.

Other bit-test instructions are similar and can be accom
plished in two steps in an analogous manner. Bit-test-and
reset (BTR) rotates the operand in step one and stores the
lowest bit as the carry flag. However, in step two the original
operand is merged with a zero bit rather than the comple
ment of the carry flag at bit-position n. Bit-test-and-set
(BTS) rotates the operand in step one and also stores the
lowest bit as the carry flag. In step two the original operand
is merged with a one bit rather than the complement of the
carry flag at bit-position n. Mux 12 can be used to supply a
one or a zero bit instead of the carry flag's complement
simply by selecting input D1 and setting the Boolean
truth-table bit B0 to Zero or one.
Thus several complex CISC instructions are executed in

multiple steps by the vectored-mux Boolean logic unit.
These complex CISC instructions might otherwise require
dedicated hardware for their execution, increasing cost.
complexity, and confusion.
RISC & CISC ALU-FG. 9

FIG. 9 is a block diagram of an ALU which executes
native instructions from both a RISC and a CISC instruction
set. Dual-ALU 70 includes three main components: a full
adder 72, a vectored-mux Boolean logic unit (BLU) 80, and
multiplier 74. Full adder 72 generates the sum of two inputs
and can also be used for subtraction by adding the two's
complement of one input. Both RISC and CISC add instruc
tions may be executed in full adder 72. Multiplier 74 is an
8-bit by 32-bit partial multiplier capable of performing a full
32-bit multiply infour cycles. Both RISC and CISC multiply
instructions may be executed in multiplier 74.
BLU 80 is based on the vectored-mux Boolean logic unit

of FIG. 5. As described previously, both RISC and CISC

5,781.457
15

Boolean, merge. shift, rotate, and bit test instructions may be
executed by BLU 80.
Two input operands are loaded into operand registers 82.

84 which are then input to dual-ALU 70. Two temporary
registers 86.88 are also available for multi-step operations
such as multiplies and divides. Thus these temporary reg
isters 86.88 are labeled MQ1. MQ2 because they contain
intermediate results such as the multiplier or partial quo
tients. As an example of execution of a multi-step divide
instruction using an MQ register, see U.S. Ser. No. 08/344,
179, now U.S. Pat. No. 5,574,672 hereby incorporated by
reference.
MULTIPLY & DIVIDE TEMPORARY REGISTERS &
CONTROL USED FOR CISC
The inventors have realized that the MQ registers for

multiply and divide may also be used for multi-step CISC
operations such as rotate-through carry and shift-double.
Thus FIGS. 6, 7, 8 described storing intermediate results
from a first step in the MQ register.

Since dual-ALU 70 supports multi-cycle instructions such
as multiply and divide, only minor changes are needed to
support multi-cycle CISC instructions. Multi-cycle control
logic is already present to perform integer divides and
multiplies; this multi-cycle control logic may also be used to
control multi-cycle CISC instructions without resorting to
complex micro-code routines. Some changes are required in
the inputs to input registers 82.84 and temporary registers
86, 88.

FIG. 10 highlights loading of input register 82, which is
the OP1 register. A first operand may be loaded from an
immediate field in an instruction, or from a register in a
general-purpose register file. The result from dual-ALU 70
may be recirculated back to input register 82, as can the
contents of temporary register 86. MQ1. The contents of
input registers 82.84. (OP1, OP2) may also be loaded into
register 82 (OP1). Loading register 82 with the previous
contents of register 82 is a hold function. Multiplies or
divides may load OP1 shifted up by 8 bits.
RISC instructions already require that OP1 be loaded

from the result (for forwarding or wrapping the result into a
subsequent operation), registerslimmediates, the low 32 bits
of partial-result1 from the multiplier, and OP1 shifted left by
8 since OP1 is the multiplicand in RISC multiplies. CISC
instructions require three more inputs to OP1:

I. OP2 recirculated to OP1
2. OP1 recirculated back to OP1 (Hold)
3. MQ1 loaded to OP1
The bit-test and rotate-through-carry instructions

described previously require that the first operand OP1 be
used again in the second step and thus OP1 is recirculated
back to OP1 at the end of step one for these instructions.

FIG. 11 highlights loading of input register 84, OP2. A
second operand may be loaded from an immediate field in an
instruction, or from a register in a general-purpose register
file. The result from dual-ALU 70 may be recirculated back
to input register 82. The contents of input register 84. (OP2)
may be recirculated back to register 84 (OP2 Hold). Mul
tiplies may also load OP2 shifted right by 8 bits.

For the second input register 84. OP2, RISC already
requires inputs from registerfimmediate, ALU result, shifted
ALU result for divide. OP2 shifted right by 8 bits, and from
the low 32 bits of partial-result2 from the multiplier, CISC
instructions merely require one more input:

1. OP2 recirculated back to OP2 (Hold)
FIG. 12 highlights loading of temporary register 86.

MQ1. The result from dual-ALU 70 may be recirculated
back to temporary register 86, MQ1. The contents of input

O

15

20

25

30

35

45

50

55

65

16
register 84. (OP2) may be recirculated back to register 84
(OP2) after being shifted down by 8 bits. The contents of
temporary register 86 may also be recirculated back after a
1-bit shift to the left with a new quotient bit shifted in, which
is useful for accumulating the divide result (quotient) in
register MQ.

FIG. 13 highlights loading of temporary register 88.
MQ2. Either the high or the low partial result from multi
plier 74 in dual-ALU 70 is recirculated back to temporary
register 88, MQ2.

For the temporary registers 86.88. (MQ1, MQ2), the
partial result from the multiplier is typically loaded for RISC
instructions. For CISC, the normal result output from the full
adder and BLU is also a possible input to MQ1. Temporary
register 86, MQ1, is also input to the BLU for CISC
operations instead of just to the multiplier for RISC instruc
tions. This is used for shift-double and rotate-through-carry
instructions where the intermediate result from the first step
is stored in MQ1 and input back to the BLU for step two.
The operand which is the multiplier, which is the second

operand OP2, is normally shifted and loaded into MQ1
during multiplies. For divides, the contents of MQ1 are
shifted left one bit for each iteration and reloaded to MQ1.
MQ2 is not modified for CISC instructions other than for
CISC multiply and divide.
RISC 32-bit multiplies produce a 32-bit result. The partial

results are held in MQ1 and MQ2. For 64-bit RISC
multiplies. MQ1 and MQ2 hold the upper part of the partial
products.
CISC multiplies return a double-size result, 64 bits for a

32-bit multiply. The final multiply step puts the final partial
results in OP1 and OP2. When the partial results are added
together, the sum is the upper 32bits of the result. The lower
32 bits of the answer are left in the MQ1 register.

In one embodiment, a 32-bit by 8-bit multiplier is used
which produces two 40-bit partial results. A 32-bit by 32-bit
multiply can be performed in four passes through the
multiplier and a final sum of the partial products. The upper
32-bits of the partial products are temporarily stored in
registers MQ1 and MQ2 for each of the four passes through
the multiplier. The low 8 bits of the partial products for each
pass are summed and shifted right into register OP2, which
accumulates the lower 32-bit portion of the result. After the
four passes through the multiplier are complete, four 8-bit
lower portions of the partial results have been shifted into
register OP2, which now holds the lower 32 bits of the
result. The MQ1 and MQ2 registers hold the upper 32 bits
of the partial products for the last pass through the multi
plier. These partial products in MQ1 and MQ2 are summed
to get the final upper 32-bits of the result, while the lower 32
bits of the result is read from the OP2 register.

Since MQ1 and MQ2 registers do not directly input to the
32-bit full adder, MQ1 and MQ2 are swapped with the OP1
and OP2 registers before the final add. The lower 32 bits of
the result in OP2 is copied to MQ1 as well.
DUAL-INSTRUCTON-SET PIPELINE

FIG. 14 is an architectural diagram of a dual-instruction
set CPU. Native CISC instructions are executed on an
otherwise RISC processor. Instruction fetcher 90 fetches
both RISC and CISC instructions from a cache or memory
(not shown). Fetched instructions are sent to RISC decoder
92 and CISC decoder 94. RISC decoder 92 assumes the
instructions received are RISC instructions and attempts to
decode them. CSC decoder 94 assumes the instructions
received are CISC instructions and also attempts to decode
them. For any particular instruction, either the decoded
RISC instruction or the decoded CISC instruction is incor

5,781.457
17

rect. Decoded RISC and CISC instructions are sent to mux
96 which selects decoded RISC instructions from RISC
decoder 92 when in RISC mode, but selects decoded CISC
instructions from CISC decoder 94 when the CPU is in CISC
mode.

Pipeline 100 receives decoded RISC or CISC instructions
from mux 96 and processes these decoded instructions in a
series of stages which fetch operands from GPR's 98 and/or
external cache or memory, and write results and flags back
to GPR's 98. Pipeline 100 includes as one stage dual-ALU
70, which executes add, multiply. Boolean, and rotate/merge
instructions as described previously.

U.S. Pat. No. 5.481,684 and its parent application
describe such a dual-instruction-set CPU. and using segment
descriptors to determine when to switch between RISC and
CISC modes. Other details of a dual-instruction-set CPU are
contained in U.S. Pat. No. 5,481,693 which describes a
shared register architecture wherein the GPR's and flags are
directly shared among RISC and CISC programs without
register swapping or Saving to memory.
The present application describes the heart of the dual

instruction-set CPU--a dual-ALU capable of executing
native RISC and native CISC instructions. Rather than
duplicate the ALU or the processor's pipelines, a single ALU
and a single pipeline are used to process both RISC and
CISC instructions without software emulation or translation
of CISC instructions into RISC instructions. The vectored
mux provides a versatile piece of hardware that is so
surprisingly versatile that both RISC and CISC instructions
may be executed.
ADVANTAGES
The invention provides a versatile yet simple apparatus

for executing a wide variety of operations: Boolean logic,
merge, mask, rotate. shifts, sign-extension, and Zero
extension and combinations thereof. Often separate units are
provided for each of these operations. The invention pro
vides a single unit for performing all of these operations.
The vectored mux can execute any arbitrary Boolean

logic function merely by placing a different set of truth-table
vectors to the data inputs. Thus special logic is not needed
for each type of Boolean operation. Many types of Boolean
operations can be supported with minimal design effort.
The same vectored mux is used for merge and mask

operations. Using the same hardware for two purposes is an
efficient use of limited silicon resources. The rotator is
coupled to the vectored mux so that shifts and rotates can be
sent through the vectored mux too. This allows compound
operations such as rotate-merge operations to be performed
in a single step.
Compound operations can be performed in a single step,

such as a single clock cycle. Rotates and shifts can occur
before a merge, mask, sign or Zero-extension operation.
Sign-extension can be combined with a Boolean operation
by altering the truth-table vectors.
More complex CISC instructions require two or more

steps or cycles in the ALU. Since RISC integer-divide and
multiply instructions also require multiple steps, the multi
cycle control logic is already present in the RISCALU. The
temporary registers used to store the multiplier and partial
quotients may also be used as temporary registers for
intermediate results from multi-step CISC instructions. Thus
the same hardware is used for a second purpose with the
surprising result that both RISC and CISC instructions may
be natively executed on the same ALU hardware.
The invention provides a very streamlined and efficient

execution unit for the many miscellaneous instructions that
must be processed, especially complex CISC instructions.

10

15

25

30

35

45

50

55

65

18
When combined with an adder and a multiplier and divider,
two complete sets of integer ALU instructions can be
executed from a RISC and a CISC instruction set such as the
x86 CISC and PowerPCTM RISC instruction sets.
ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example the invention has been described for
32-bit operations as the full width, but smaller or larger
widths may be used, such as with advanced 64-bit proces
sors. More complex or simple mask schemes may be used
for the mask and merge operations by altering the mask
generator. The vectored mux may be modified to have more
or fewer data or control inputs, and the order of the inputs
may also be modified. Multiple pipelines may be used for
superscalar operation. Instruction sets other than RISC and
CISC may be used, and indeed new terms describing archi
tectures are being coined frequently.

While the more complex operations such as compound
rotate-merge and shift-double operations have been
described to show the features and capabilities of the vec
tored mux, many simpler instructions can also be executed
by the apparatus. A more complex rotator can have addi
tional features to insert the sign bit or zero bits to perform
arithmetic and logical shifts rather than use the mask/merge
features of the invention. A simple shifter rather than a
simple rotator may also be substituted.
Many variations of the control logic are possible. The

various muxes may be combined. For example. Muxes 50
and 12 may be combined into one larger mux. Muxes may
also be combined with other hardware such as the mask
generator being combined with mux 42. Generation of shift
count SC and mask endpoints MB. ME may be generated in
many different ways from the instruction itself or registers.
A shift overflow can be defined when the shift count SC

is greater than or equal to 32. All the data is shifted out in
a shift overflow. The mask is forced to all Zeros and none of
the rotated data is output as the result when a shift overflow
OCCS.

The particular assignment of polarities and inputs to
muxes described herein is arbitrary. For example. inverting
select inputs to the vectored mux and reversing bits in the
truth-table produce the same result. Other RISC and CISC
instructions besides those described herein may be executed
as a sequence of shift/merge steps.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A logic-instruction execution unit for executing Bool

ean operations and merge operations, the logic-instruction
execution unit comprising:

a vectored mux for outputting a result of a Boolean
operation or a merge operation, the vectored muX
comprising a plurality of individual mux cells, each
mux cell having data inputs and select control inputs
and an output driving one bit-position of the result, the
select control inputs controlling which data input is
coupled to drive the output independently of other data
inputs;

a first operand input comprising a plurality of electrical
signals representing a first operand;

a second operand input comprising a plurality of electrical
signals representing a second operand;

5,78457
19

operand-spread means, receiving the first operand input,
for extending the first operand from a reduced-width
operand to a full-width operand by duplicating the
reduced-width operand to fill bit-positions in a full
width operand beyond the reduced-width operand, the
operand-spread means outputting a spread first operand
to a first data input of the vectored mux when the first
operand is a reduced-width operand;

Boolean control means for applying the first operand
input and the second operand input to the select control
inputs of the vectored mux when a Boolean operation
is executed;

truth-table inputs comprising electrical signals represent
ing at truth table for the Boolean operation, the truth
table inputs varying for different Boolean operations;

the Boolean control means including means for applying
the truth-table inputs to the data inputs of the vectored
mux when a Boolean operation is executed;

merge control means for applying the spread first operand
to the first data input on the vectored mux and for
applying the second operand input to a second data
input on the vectored mux when a merge operation is
executed;

a mask generator for generating a mask indicating a first
portion of the result from the first operand and a second
portion of the result from the second operand, the first
portion and the second portion not overlapping;

the merge control means including means for applying the
mask to a select control input of the vectored mux when
a merge operation is executed, wherein the mask causes
the vectored mux to select the first portion of the first
operand applied to the first data input and the second
portion of the second operand applied to the second
data input,

whereby the vectored mux executes both merge opera
tions and Boolean operations, the operands applied to
the data inputs for merge operations but applied to the
select control inputs for Boolean operations.

2. The logic-instruction execution unit of claim 1 wherein
the reduced-width operand is a byte operand.

3. The logic-instruction execution unit of claim 1 wherein
the operand-spread means is disabled for RISC instructions
but enabled for CISC instructions using reduced-width oper
ands.

4. The logic-instruction execution unit of claim 1 wherein
the vectored mux is comprised of individual four-to-one
mux cells each having four data inputs and two select control
inputs;

the merge control means further comprising:
constant means for applying a constant electrical signal

to one of the select control inputs when a mask or a
merge operation is executed, the constant electrical
signal preventing two of the four data inputs from
being selected while allowing only the first and the
second data inputs to be selected for mask and merge
operations,

whereby the vectored mux uses four data inputs for
Boolean operations of two operands but only two data
inputs for mask and merge operations.

5. The logic-instruction execution unit of claim 4 further
comprising:

rotate means, receiving the spread first operand, for
rotating the spread first operand by a shift-count num
ber of bit-positions and outputting a rotated first oper
and to the first data input of the vectored mux when a
rotate operation is executed;

O

15

20

25

35

45

50

55

65

20
the merge control means applying the mask having a

constant value when a simple rotate operation is
executed, the constant value causing the rotated first
operand to be selected to drive the output of the
vectored mux as the result.

whereby rotate operations are also performed by the
logic-instruction execution unit and rotate results are
passed through the vectored mux.

6. The logic-instruction execution unit of claim 5 further
comprising:

a carry flag indicating a carry from execution of a previ
ous instruction;

the merge control means including carry means for apply
ing the carry flag to the second data input on the
vectored mux when a rotate-through-carry instruction
is executed, the merge control means also applying the
rotated first operand to the first data input on the
vectored mux.

whereby the carry flag is merged in by the vectored mux.
7. The logic-instruction execution unit of claim 6 further

comprising:
carry flag means, coupled to the rotate means, for gener

ating as the carry flag the least-significant bit of the
rotated first operand;

the carry means including means for applying a comple
ment of the carry flag to the second data input on the
vectored mux when a bit-test-and-complement instruc
tion is executed, the merge control means also applying
the first operand to the first data input on the vectored

whereby the bit-test-and-complement instruction is
executed by the vectored mux by merging the first
operand with the complement of the carry flag.

8. The logic-instruction execution unit of claim 7 wherein
the complement of the carry flag is applied to the second
data input on the vectored mux during a subsequent cycle
when a bit-test-and-complement instruction is executed, the
rotate means rotating the spread first operand during an
initial cycle before the subsequent cycle and outputting the
least-significant bit of the rotated first operand to the carry
flag means for generating the carry flag before the subse
quent cycle, whereby the bit-test-and-complement instruc
tion is executed in more than one cycle.

9. The logic-instruction execution unit of claim 7 for
further executing a compound shift-merge instruction in a
single step and a rotate-merge instruction in a single step, the
merge control means applying the rotated first operand to the
first data input and applying the mask to the select control
input when the compound shift-merge instruction is
executed.

10. The logic-instruction execution unit of claim 9
wherein the compound shift-merge instruction and rotate
merge instruction executed in a single step are each native
RISC instructions and wherein the bit-test-and-complement
instruction executed in more than one cycle is a native CISC
instruction. whereby the vectored mux in the logic
instruction execution unit executes native RISC instructions
and native CISC instructions.

11. The logic-instruction execution unit of claim 10
wherein the compound shift-merge instruction is a RISC
rotate-left word immediate then mask-insert rlwini instruc
tion and wherein the bit-test-and-complement instruction is
a CISC bit-test instruction.

12. A central processing unit (CPU) having an arithmetic
logic-unit (ALU) for executing integer instructions from a
first instruction set and from a second instruction set.
wherein the ALU comprises:

5,78457
2

a first operand input:
a second operand input:
a byte-spreader for copying a byte-operand to a full width

of the ALU:
a result output:
an adder for performing add and subtract operations on

the first and second operand inputs, the adder output
ting a sum as the result output;

a Boolean-logic unit for performing Boolean, merge.
rotate, and shift operations, the Boolean-logic unit
comprising:

a vectored mux having a plurality of multiplexer cells
each having data inputs, a first select input and a second
select input. and output for outputting one bit-position
of the result output, each multiplexer cell selecting one
of the data inputs as the result output in response to the
first and second select inputs;

truth-table means for applying electrical signals repre
senting a truth-table of a Boolean-logic function being
executed to the data inputs of the vectored mux;

first select means for applying the second operand input to
the first select inputs of the vectored mux when a
Boolean operation is being executed, but applying a
constant signal to the first select inputs when a Boolean
operation is not being executed;

mask generator means for generating a mask indicating
which bit-positions of the first operand input are output
to the result output and which bit-positions of the first
operand input are not output to the result output;

second select means for applying the first operand input to
the second select inputs of the vectored mux when a
Boolean operation is being executed, but applying the
mask to the second select inputs when a Boolean
operation is not being executed;

a shifter for shifting and rotating the first operand input to
produce a shifted first operand when a rotate or shift
operation is being executed;

first data select means, coupled to the shifter and the
truth-table means. for outputting one of the truth-table
signals to a data input of the vectored mux when a
Boolean operation is being executed but for outputting
the shifted first operand to a data input of the vectored
mux when a Boolean operation is not being executed:

1O

15

25

30

35

22
second data select means, coupled to the second operand

input and the truth-table means, for outputting a second
one of the truth-table signals to a second data input of
the vectored mux when a Boolean operation is being
executed but for outputting the second operand input to
the second data input of the vectored mux when a
Boolean operation is not being executed;

whereby the Boolean-logic unit executes Boolean-logic
operations and merge. rotate, and shift operations.

13. The CPU of claim 12 wherein the Boolean, merge,
rotate, and shift operations from the first instruction set are
performed in a single clock cycle.

14. The CPU of claim 12 further comprising:
a first instruction decoder for decoding instructions from

the first instruction set, the first instruction decoder
generating decoded first instructions:

a second instruction decoder for decoding instructions
from the second instruction set, the second instruction
decoder generating decoded second instructions;

wherein the first instruction set has an encoding of
instructions to operations which is independent of the
encoding of instructions to operations for the second
instruction set;

an instruction mux, for selecting decoded first instructions
from the first instruction decoder when the CPU is
executing instructions from the first instruction set but
selecting decoded second instructions from the second
instruction decoder when the CPU is executing instruc
tions from the second instruction set;

a pipeline containing the ALU, the pipeline receiving the
decoded instructions selected by the instruction mux:

wherein the ALU executes decoded first instructions from
the first instruction set and decoded second instructions
from the second instruction set.

15. The CPU of claim 14 wherein the instructions from
the first instruction set are performed in a single clock cycle
but compound instructions from the second instruction set
are performed in two clock cycles, wherein the compound
instructions from the second instruction set include a shift
double instruction and a rotate-through-carry instruction.

16. The CPU of claim 15 wherein the first instruction set
is a RISC instruction set and wherein the second instruction
set is a CISC instruction set.

