R0 L 0 O

United States Patent i (111 Patent Number: 5,781,750
Blomgren et al. (451 Date of Patent: Jul. 14, 1998
[54] DUAL-INSTRUCTION-SET ARCHITECTURE 5230060 7/1993 Brelsford et al.oorrrr. T11/6

CPU WITH HIDDEN SOFTWARE 5255384 10/1993 Sachs et al. W 7117207

EMULATION MODE

5291586 3/1994 Jen et al. eveveernencernnenn. 395/500

OTHER PUBLICATIONS

[75] Inventors: James S. Blomgren; David E. Richter,
both of San Jose. Calif. “High Performance Dual Architecture Processor”, IBM
. . Technical Disclosure Bulletin, vol. 36. No. 2. Feb. 1993. pp.
[73] Assignee: Exponential Technology, Inc.. San 231-234.
Jose. Calif. Tanenbaum. “Structured Computer Organization™, Prentice—
Hall 1984, pp. 10-12.
[21] Appl. No.: 179,926 Combining both micro—code and Hardwired control in RISC
[22] Filed: Jan. 11, 1994 by Bandyophyay and Zheng.. Sep. 1987 Computer Archi-
. tecture News pp. 11-15.
(51] Int ClL - GOGF 9/455 Combining RISC and CISC in PC systems By Garth, Nov.
(521 US. Cl e 395/385; 395/500; 395/570 1991 IEEE publication (?) pp. 10/1 to 10/5.
[58] Field of Searchccoocnnicrrceencnns 395/385. 500.
395/800.43. 570, 800.23, 800.41 Primary Examiner—Parshotam S. Lall
Assistant Examiner—Viet Vu
[56] References Cited Attorney, Agent, or Firm—Stuart T. Auvinen
U.S. PATENT DOCUMENTS [57] ABSTRACT
3.764,988 1071973 Onishi 395/581 A dual-instruction-set CPU is able to execute x86 CISC
4,377,844 3/1983 Kaufman 7117220 (complex instruction set computer) code or PowerPC RISC
4,456,954 6/1984 Bullions, IIl et al. 711/207 . .
(reduced instruction set computer) code. Three modes of
4,514,803 4/1985 Agnew etal. ..oeevrecvcerrirennnes 395/500 ti ided: CISC mode. RISC mode. both called
4538241 8/1985 Levin etal .ooooeeererercersioerne 711207 ~ Operation are proviged: L15¢ mode. mode. both catle
4,633417 12/1986 Wilbum et al. .oooeerrrerrrenn. 364/550 ~ user modes. and emulation mode. Emulation mode is
4,691,278 9/1987 Iwata 395/500 entered upon reset. and performs various system checks and
4763242 8/1988 Lee etal. ccrcnrrrevmerecrenronns 395/500 memory allocation. A special emulation driver is loaded into
4,780,819 10/1988 Kashiwagiccvcicrernennee 395/500 a portion of main memory set aside at reset. Software
4,794,522 12/1988 SIMPSON covvvvsrremrrnrrmsssssmssreen 395/500 routines to emulate the more complex instructions of the
4812975 3/1989 Adachietal .. - 395/500 CISC architecture using RISC instructions are also loaded
jgiii% ‘gﬁggg E’L?dahglal a] """""" gggggg into the emulation memory. A TLB is enabled. and transla-
Coan tchell et al. ... tion tables and drivers are set up in the emulation memory.
4942519 7/1990 Nakayama weree 395/290 All TLB mi in th od ill
4,972,317 11/1990 Buonomo et al.ccvceveereene. 395/568 mlSSC§. evqn in the u§er modes, w. cause entry tf’
4,991,081 2/1991 Boshart 71173 a translator driver in emulation mode. Since the TLB is
4,992,934 2/1991 Portanova et al. ...coocooveemrvveree. 395/385 always enabled for the user modes. and all misses are
5,077,654 12/1991 OBSUKI ..ccovvromsacarsonsaensraameninn 711/203 handled by the emulation code. the emulation code can set
5,077,657 12/1991 Cooper et al. . 395/500 aside a portion of memory for itself and insure that the user
5097407 3/1992 Hino etal ... - 3951385 programs never have access to the emulation memory. Thus
5,136,696 8/1992 Beckwith et al. wuuveveereervversens 395/587 the programs, including operating systems. in CISC or RISC
3,167,023 11/1992 de Nicolas etal. . 395/527 mode are unaware of emulation memory or even the exist-
5210,832 5/1993 Maier et al. 395/568 ence of emulation mode
5222223 6/1993 Webb, Jr. et al. 711/140)
5226,164 7/1993 Nadas et al. 395/385
5,230,045 7/1993 Sindhuccocinrnencnnieeeriienns 711/203 20 Claims, 3 Drawing Sheets
1
Emu ID “ 50 CGPR
E/J l
32~ RISC ID
» EX
| FETCH UNIT
CISC ID 4
45 49
[
38 R/C
36 [TLBON VA,
52 X
IPTR l I MODE REG
+ 42
34 4 T ? T 4 TLB
UNK INSTR miss
INTR MODE CTL
PA
ENTRY PT GEN L

5,781,750

Sheet 1 of 3

Jul. 14, 1998

U.S. Patent

My JoLd : | "Bi4

e
V'd 8z
o -
9l
1 9L 5P ISNvYL[¢— 3009 n _/
oz |
l
o SNy
daav y LINN
NN\. O3S | VA X3 _ o3a| [«
ﬂ 81— ﬁ N
vz | ©3s 4dd N
0z

i

HOL134 |

!

dl

NF\

5,781,750

Sheet 2 of 3

Jul. 14, 1998

U.S. Patent

Z b1

< N3O 1d AMINI
vd H f
—— YN
| Lo3aow |
L . | YLSNI NN
2w 4 b
3 ,
< O34 3A0ON
VA NOSTL -~ wm\ o¢
gy op -/
B J QIoSID [
1INN
x3 [*
|M||r alosiy [e—
a E
— |
udo | 08 oy QI3 e
|

HO134 |

fmm

U.S. Patent Jul. 14, 1998 Sheet 3 of 3 5,781,750

| eReew

72

%

.

////"’///7/////

A At 8 ¥ LN 'F 3§ OO}
AV/EEN S s F=SATE ED i B sl o S
[W Sad L 33 W -

86

80

5.781.750

1

DUAL-INSTRUCTION-SET ARCHITECTURE
CPU WITH HIDDEN SOFTWARE
EMULATION MODE

RELATED APPLICATIONS

This application is related to co-pending application for a
“Pipeline with Temporal Re-arrangement of Functional
Units for Dual-Instruction-Set CPU™. filed Jan. 11. 1994,
U.S. application Ser. No. 08/180.023. now U.S. Pat. No.
5.542,059. This application is further related to copending
application for “Emulating Operating System Calls in an
Alternate Instruction Set Using a Modified Code Segment
Descriptor”, filed Jul. 20. 1994, U.S. application Ser. No.
08/277.905. now U.S. Pat. No. 5.481.684. This application
is further related to copending application for “Shared
Register Architecture for a Dual-Instruction-Set CPU™”,
filed Jul. 20, 1994, U.S. application Ser. No. 08/277.962.
now U.S. Pat. No. 5.481.693. These related applications
have a common inventor and are assigned to the same
assignee as the present application.

1. Field of the Invention

This invention relates to Computer System Architectures,
and more particularly to microprocessors that can execute
multiple instruction sets.

2. Description of the Related Art

Personal Computers (PC’s) are based on two types of
Central Processing Units (CPU’s). categorized by the com-
plexity of the set of instructions that may be executed on a
particular CPU: CISC - complex instruction set computer,
and RISC - reduced instruction set computer. CISC systems.
which feature many different instructions and options for
each instruction, were most popular in the 1970’s. The
design philosophy was that by making the instructions
complex, each instruction could carry out more actual com-
putational ‘work’. thus a fewer number of instructions
would be needed. This is analogous to breaking a task down
into a few large steps.

RISC became a viable alternative as smaller micropro-
cessors became inexpensive and thus popular. It was not
easy to provide on a single silicon die all the hardware
needed to execute the relatively complex instructions of a
CISC processor. Since the CISC hardware had to execute
many different types of instructions, all within the same
fixed clock period. the clock had to be slowed down to
accommodate the slower, more complex instructions. It was
also discovered that the simpler instructions were often more
likely to be used than the complex instructions. and that
some complex instructions were infrequently used. Thus the
idea of RISC was born - using a smaller. reduced set of
instructions. Although more instructions, or steps, would be
needed, the hardware could be made simpler and the clock
would not have to be slowed down by the infrequent
complex instructions.

Early microprocessors were of the CISC variety. Interna-
tional Business Machines (IBM) of Armonk, N.Y. chose the
8088 microprocessor from Intel Corp. of Santa Clara, Calif.
for its line of personal computers or PC’s. Many other
vendors made their own PC’s based on later members of the
8088’s family of CPU’s. the ‘x86’ family, named after the
8086. a forerunner to the 8088 CPU. Since IBM provided a
standard, PC’s based on the x86 family proliferated. Each
newer member of the x86 family could run instructions, or
code, from the earlier x86 CPU’s. As more and more
programs were written for PC’s. including the DOS and
Windows operating systems by Microsoft Corp. of
Redmond, WA, x86 became the most popular instruction

10

15

20

25

30

35

40

45

50

55

65

2

set. or architecture. About 37 million x86 CPU’s will be
shipped during 1993.

FIG. 1 is a simplified block diagram of an x86 CISC
microprocessor, such as the 80386. Instructions flow
through a processor in a “pipeline” fashion. possibly with
several instructions being in the pipeline at the same time.
each instruction at a different functional block or “pip-
estage”. An instruction is fetched from memory and placed
into Instruction Fetcher 10, which may have a buffer which
can hold several instructions. Instruction Pointer 12 contains
the address of the particular instruction to be decoded next
by Instruction Decode Unit 14. Instruction Decode 14 inter-
prets the instruction. and identifies which operands need to
be accessed from the high-speed general-purpose Register
file (GPR) 20. Instruction decode 14 sends the opcode field
of the instruction to microcode ROM 16, and the opcode
field is used to enter the microcode where a routine to
execute the instruction is located.

Microcode words are typically 50-200 bits wide, with
various bits used to control registers. paths. and gating
within the CPU, and a field indicating the location of the
next microcode word to be accessed. Thus the microcode
controls the CPU at the lowest hardware level; the bits in the
microcode word are able to control individual logic gates
and latches inside the CPU die. Long. complex microcode
routines can be painstakingly constructed including jumps
and micro-routine calls. Typically one micro-instruction is
fetched for each processor clock. Some instructions may
require several micro-words.

Execute unit 18 receives a portion of the microcode word
and the operands from GPR 20, and can perform simple
arithmetic operations with an ALU, or generate an address
for a branch. load. or store. If an address is generated. it is
passed to segment unit 22, which for the x86 architecture
performs a full 32-bit addition, adding a segment base
address stored in segment descriptor registers 24. to the
virtual address generated by the execute unit. the result
being called the linear address. The linear address is checked
to see if it is outside the segment boundaries. indicating a
limit violation. The linear address is passed along to the
Translation-Lookaside Buffer (TLB) 26. which is a small
associative memory. If an entry is found in the TLB corre-
sponding to the lincar address. the translated or physical
address is read out of the TLB and output to the main
memory on address bus 30. If no entry corresponding to the
linear address is found in the TLB, then a miss is signaled
to translator 28. Translator 28 may need to access a routine
in microcode ROM 16, or the translator may be controlled
by a state machine. Translator 28 forms an address for the
page tables stored in inexpensive main memory. and
accesses the page table entry corresponding to the linear
address. and then loads this entry into the TLB. In the x86
architecture, a two-level page table is used, requiring the
translator to access main memory twice, first fetching an
entry from a page directory table, and then the page table
entry. Page tables are data structures in main memory that
contain translation information. such as the physical page
address and access information.

The user may execute an instruction to enable or disable
the TLB and any translation. Such an instruction will cause
execute unit 18 to enable or disable translation by activating
line 19. Line 19 is thus an enable/disable line for translation
and the TLB. The same feature may also be supported by
writing a TLB enable bit in a control register within the
CPU. and then having the control register drive TLB enable
line 19.

Another popular CISC microprocessor is the 68000 fam-
ity from Motorola of Scottsdale. Ariz. This CPU is used in

5.781.750

3

the Macintosh Computer manufactured by Apple Computer
of Cupertino, Calif. Apple will ship about 2 million units in
1993.

Apple and IBM have announced their intention to switch
to RISC for future CPU’s. The PowerPC microprocessor
will be manufactured by IBM and Motorola, and will feature
a simplified or reduced instruction set. Although RISC
CPU’s are manufactured by several other manufacturers. the
PowerPC architecture will probably dominate because of the
backing by the two largest PC manufacturers.

Because of the huge amount of software written for the
x86 instruction set. software programs called “emulators”
have been written that allow x86 code to be run on RISC
CPU’s. The emulator must parse the x86 code and convert
the x86 instructions into RISC code. This can be done before
the x86 code is executed, which is known as binary trans-
lation because the x86 code is translated at a low or binary
level and translated to the RISC instruction set. This is an
undesirable method since binary translation requires 5 to 10
times as long to run as a native x86 program. A native
program is one that is written in the lowest-level machine
instructions for that architecture.

Another option called interpretation is to re-compile as
the x86 program is executing. Thus a second copy of the
code does not have to be stored. However. the re-compiling
requires extra steps by the RISC CPU and can significantly
slow down the x86 code being executed. because
re-compilation must occur at the same time as execution.

One such software emulation program is sold by Insignia
Solutions under the name of SoftPC. This program interprets
the x86 code as it is executing. However. the speed of
execution. or performance, is less than that for a program
written in native RISC code.

Since there is so much installed x86 code. it is greatly
desired to run x86 programs on newer RISC CPU’s, but
without the performance degradation of the software emu-
lator. One approach would be to add support in hardware for
all the x86 instructions. While this would provide the highest
performance, the complexity would be enormous. and the
cost very high. A very large microcode, composed of small
sub-instructions or micro-instructions, could be constructed
to allow execution of all x86 instructions. This would
require a large microcode read-only memory (ROM) on the
CPU die. Various subroutines in the microcode would con-
trol execution of the different instructions. While it would be
a tremendous competitive advantage to be able to run native
x86 code on a RISC CPU. no manufacturer has yet becn able
to achieve this. attesting to the great technical difficulty of
integrating the entire x86 instruction set.

Since PowerPC may become the next standard
architecture, yet the existing software base of x86 code is
immense. what is desired is a CPU that can execute both
PowerPC RISC code and x86 CISC code. but without the
performance degradation of emulating all x86 instructions in
software.

SUMMARY OF THE INVENTION

A CPU for processing instructions from two separate
instruction sets has a first instruction decode means for
degoding instructions from a first instruction set and a
second instruction decode means for decoding instructions
from a second instruction set. The second instruction set has
an encoding of instructions which is independent from the
encoding of instructions of the first instruction set. A select
means, coupled to the first instruction decode means and the
second instruction decode means, is used for selecting the

10

20

25

35

45

50

55

65

4

decoded instruction from either the first instruction decode
means or from the second instruction decode means. An
execution unit is also included for executing decoded
instructions that are selected by the select means. Thus
instructions from both the first instruction set and the second
instruction set are executed by the CPU.

In another aspect of the invention. a mode register indi-
cates whether the first or the second instruction set is
currently being processed. The mode register is coupled to
the select means so as to select decoded instructions from the
proper instruction set.

In a still further aspect of the invention. only a portion of
the second instruction set is decoded. If an undecoded
instruction is signaled. then the mode register is switched to
the first instruction set. A translation-lookaside buffer (TLB)
is provided that signals to the mode register to change to the
first instruction set when no translation is found. A handler
routine composed of instructions from the first instructions
set is executed whenever an undecoded instruction or a TLB
miss is signaled.

This invention has the advantage that a complex second
instruction set need not be fully decoded and supported in
the CPU’s hardware. The undecoded instructions are emu-
lated by a software routine written in the reduced instruction
set computer (RISC) first instruction set. Another advantage
of the invention is that the TLB can be controlled by RISC
mode. which can prevent second instruction set programs
from directly accessing the TLB because all TLB misses
cause a switch to the first instruction set routines. Thus RISC
mode can set aside a memory space for the emulation
routines that the second instruction set programs cannot
access or even detect.

Another aspect of this invention is a method for process-
ing instructions from a complex instruction set computer
CISC instruction set on a reduced instruction set computer
RISC CPU. The method includes attempting to decode an
instruction with a CISC instruction decode unit that does not
decode all instructions in the CISC instruction set. directly
executing the instruction in an execute unit if the CISC
instruction decode unit is able to decode the instruction.

An emulation mode is entered if the CISC instruction
decode unit is not able to fully decode the instruction, which
indicates that the execute unit cannot directly execute the
instruction. The CISC instruction decode unit is disabled
while a RISC instruction decode unit is enabled when
entering emulation mode. An instruction pointer is loaded
with an address of a software emulation routine for emulat-
ing the undecodable instruction. The routine comprises
instructions from a separate RISC instruction set which are
decoded with the RISC instruction decode unit as the
software routine is executed and executed in the execute
unit. Emulation mode is finally exited. disabling the RISC
instruction decode unit and enabling the CISC instruction
decode unit when the end of the software emulation routine
is reached.

All instructions from the CISC instruction set can be
executed, either directly by the execute unit or by emulation
with a software emulation routine composed of RISC
instructions.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a simplified block diagram of a prior-art x86
CPU.
FIG. 2 is a block diagram of a dual-instruction-set CPU.

FIG. 3 shows a main memory space for use with the
dual-instruction-set CPU.

5.781.750

5
DETAILED DESCRIPTION

This improvement relates to a central processing unit
(CPU) with a pipeline for a dual-instruction set architecture.
While the detailed description describes the invention in the
context of a reduced instruction set computer (RISC) and a
complex instruction set computer (CISC), it is contemplated
that the invention applies to other instruction sets besides
RISC and CISC, and to more than two instruction sets,
without departing from the spirit of the invention.

When trying to implement both a RISC and a CISC
architecture on the same CPU. a software emulator suffers
from poor performance. while a hardware-only approach is
too complex and expensive. An approach that uses some
hardware and some software is the best, because simple. fast
instructions can be implemented by hardware on the CPU,
while complex instructions can be detected by the hardware
and trapped to a software emulation driver. Thus some of the
complexity of the CISC architecture is moved to the soft-
ware driver. However, the emulation driver must be isolated
and hidden from the user’s code being executed. otherwise
the user programs could modify or destroy the emulation
code, resulting in a system crash,

Hiding the emulation driver from the user code is accom-
plished by means of a TLB that is always enabled for the
user modes but is only modifiable by a special emulation
mode. Since the emulation mode has complete control over
the TLB. the emulation driver can use address translation to
hide itself from the lower-privilege user modes. Thus an
additional software layer has been inserted between the
actual hardware and the user-mode operating system.

There are three operating modes of the CPU. Two modes
are traditional user modes. one for RISC and another for
CISC. In the user modes all instructions in the instruction set
may be executed by the user programs, and protection
mechanisms available in these instruction-set architectures
are available within these user modes. For example. x86
instructions for enabling paging and segmentation address
translation and protection exist in CISC mode, and any
memory management available in the PowerPC instruction
set is available in RISC mode. However, segmentation and
paging control and other complex instructions are not sup-
ported directly by the CPU’s hardware. Instead. when a
user-mode program attempts to execute a complex
instruction, a third mode, emulation mode, is entered, with-
out detection by the user program.

Emulation Mode

Emulation mode runs a super-set of the RISC instruction
set. Additional “extended” instructions are added for con-
trolling the CPU’s hardware, such as direct access to the
TLB. register files, cache, and selecting between the three
operating modes of the CPU. Emulation mode executes
routines that emulate the behavior of the complex instruc-
tions that are not supported directly by the hardware. For
example, CISC code includes a repeated string move
instruction. REP MOVS. Execution of this instruction in
CISC mode will cause emulation mode to be entered. A
software routine will be executed that breaks the complex
CISC instruction down into several smaller RISC
instructions. such as Loads and Stores. The data string will
be loaded into the CPU and stored back into memory
repeatedly until the entire string has been moved. Then the
emulation code will return control to CISC mode and the
user program will continue with the next instruction.
unaware that the instruction was not executed directly by
hardware as an atomic instruction, but by emulation mode.

10

15

25

30

35

45

50

55

65

6

Since the instruction to change the operating mode of the
CPU is available only to the emulation code. the user modes
cannot directly execute the highest-level emulation instruc-
tions. Ermulation mode instructions are thus hidden from
user-mode programs. The emulation driver code is also
hidden from the user programs because it resides in an area
of memory that is not accessible by the user programs.
Hiding the emulation memory area is accomplished by
causing a jump into emulation mode if the user mode
attempts to access the emulation memory. Emulation code
can then re-direct the memory access to another portion of
memory by loading the TLB with a translation. even if the
TLB is not enabled by the user mode.

CPU Hardware

FIG. 2 shows a simplified block diagram of a CPU that
can execute both RISC and CISC instructions. Instruction
Pointer 34 indicates the instruction to be decoded in instruc-
tion fetch unit 32. This instruction is sent to Instruction
Decode unit (ID) 36. Instruction decode 36 is composed of
three sub-blocks. one for decoding CISC instructions.
another for decoding RISC instructions. and a third sub-
block for decoding extended RISC instructions for emula-
tion mode. The extended instructions are at the highest
privilege level. higher than even the operating systems that
may be running under RISC of CISC modes. These extended
instructions offer access to all the system resources, includ-
ing mode register 38. Mode register 38 contains bits to
indicate the current operating mode of the CPU. One bit
selects between the RISC and CISC user modes. while
another bit enables the extended RISC imstructions for
emulation mode.

Instruction decode unit 36 is a partial instruction decode
unit, in that it fully decodes only about 50% of the x86 CISC
instructions. and about 85% of the PowerPC RISC instruc-
tions. Several well-known implementations are possible for
instruction decode unit 36. For example, random logic may
be used to decode the instruction set defined by an opcode
map such as Tables 2 and 3. Opcode maps in Tables 2 and
3 are similar to logic truth tables in that they fully specify the
logic equations needed to decode the instruction set. Instruc-
tions that are not fully decoded are not directly supported by
hardware, and signal an “unknown opcode” on line 40 to
mode control block 42, which causes emulation mode to be
entered.

The same opcode may map to different instructions in the
two instruction sets. requiring separate decode units for each
instruction set. Since emulation code runs a superset of the
RISC code. additional logic to decode these extended
instructions is provided with the RISC decode block. The
extended emulation mode instructions are enabled by enable
block 44. which is controlled by the emulation mode bit in
the mode register 38. Multiplexer or Mux 46 selects the
decoded instruction from either the RISC or the CISC
decode sub-block. Mux 46 is controlled by the RISC/CISC
mode control bit in mode register 38. When emulation mode
is entered. the RISC/CISC bit must be set to the RISC setting
and the emulation mode bit enabled. because RISC instruc-
tions may also be executed by the emulation code.

The decoded instruction is passed from mux 46 to execute
unit 48. which can perform arithmetic functions and address
generation. General-purpose registers 50 supply operands to
the execute unit 48. Since a full segmentation unit is not
provided, segment addition must be performed by the
execute unit when needed as part of normal address gen-
eration. Limit checking is provided by hardware associated
with the TLB in conjunction with the emulation driver.

5.781.750

7

Execute unit 48 is designed to execute the simpler CISC
and RISC instructions. and thus has reduced complexity
relative to traditional execute units on CISC and even RISC
CPU’s. Since only simple instructions are directly
supported. the unit can be made to operate at higher speed
than if all instructions were supported. Microcode can be
minimized or even eliminated because complex instructions
are supported by algorithms stored in emulation memory.
These algorithms are not merely microcode stored off chip.
which would require much more memory, but are higher-
fevel routines composed of RISC instructions and extended
instructions.

Any address generated by execute unit 48 is sent to the
TLB 52. which performs an associative search on the input
virtual address and translates it to a physical address output
on bus 54. The page or upper address is from the TLB and
the offset or lower address is bypassed around the TLB. TLB
52 can translate virtual addresses from the execute unit 48 to
physical addresses if segmentation is disabled. or translate a
linear address generated by addition in the address genera-
tion unit to a physical address. If the segment begins or ends
on a page. then special hardware is required to specify that
emulation mode should be entered if the address is close to
the segment boundary. or within the physical page but
outside the segment.

If the translation is not present in the TLB. a miss is
signaled which causes emulation mode to be entered. Emu-
lation mode is always used to load the TLB, allowing the
emulation driver the highest level of control over address
mapping and translation.

Mode control logic 42 causes emulation mode to be
entered whenever a miss is signaled from TLB 52. or an
unknown opcode is detected by instruction decode unit 36.
Normal exceptions, interrupts. and traps from the execute
unit and other units also cause emulation mode to be entered.
giving great flexibility in system design. Mode control logic
42 sets and clears the RISC/CISC and emulation mode
control bits in mode register 38. When entry to emulation
mode is requested, entry point block 56 generates the proper
entry point vector or address in the emulation portion of
memory, and loads this address into the instruction pointer
34. Thus the CPU will begin fetching and executing instruc-
tions at the specified entry point. where the emulation driver
contains a routine to handle the exception, TLB miss, or to
emulate the unknown instruction. Instruction decode block
36 can provide the opcode itself and other fields of the
instruction to the entry point logic, to allow the entry point
to be more fully specified. Thus one entry point could be
defined for a REP MOVS with a byte operand while another
entry point is defined for a REP MOVS instruction with a
long-word operand. Table 1 shows the entry points from
CISC mode. For example. the REP MOVS byte instruction
enters the emulation code at A4 hex. while REP MOVS
longword enters at AS hex. A TLB miss with segment 0
enters at 18 hex. while a far RETurn in x86 real mode enters
at CA hex.

If the CISC user program eXecutes am instruction to
enable or disable translation and the TLB, the instruction
may be detected by the instruction decode logic 36. causing
an unknown instruction to be signaled over line 40 to mode
control 42. causing emulation mode to be entered. Execute
unit 48 may also detect an attempt to enable or disable the
TLB. and signal mode control 42 by asserting TLB enable
detect 49. TLB enable detect 49 does not enable or disable
the TLB as is does for a prior-art CISC CPU; instead it
causes emulation mode to be entered. which will emulate the
effect the instruction would have had. However, the TLB is
not disabled. Thus emulation mode has complete control
over the TLB.

10

20

25

30

35

40

45

50

55

65

8
RISC Instruction Decode

The RISC sub-block of instruction decode 36 decodes the
PowerPC RISC instruction set. All instructions are 32 bits in
size. and some require two levels of instruction decoding.
The first level determines the basic type of instruction and is
encoded in the 6 most significant bits. Table 2 shows the 64
possible basic or primary opcode types. For example.
001110 binary (OE hex) is ADDI - add with an immediate
operand. while 100100 (24 hex) is STW - store word. The
CPU executes the 45 unshaded opcodes directly in hard-
ware. The fifteen darkly shaded opcodes. such as 000000.
are currently undefined by the PowerPC architecture. Unde-
fined opcodes force the CPU into emulation mode. where the
emulation driver executes the appropriate error routine.
Should instructions later be defined for these opcodes. an
emulator routine to support the functionality of the instruc-
tion could be written and added to the emulator code. Thus
the CPU may be upgraded to support future enhancements
to the PowerPC instruction set. It is possible that the CPU
could be field-upgradable by copying into emulation
memory a diskette having the new emulation routine.

The second level of instruction decoding is necessary for
the remaining four lightly shaded opcodes of Table 2.
Another 12-bit field in the instruction word provides the
extended opcode. Thus one primary opcode could support
up to 4096 extended opcodes. Primary opcode 010011.
labeled “GRP A” in Table 2. contains instructions which
operate on the condition code register. while groups C and
D (opcodes 111011 and 111111 respectively) contain float-
ing point operations. Group B (opcode 011111) contains an
additional version of most of the primary opcode
instructions, but without the displacement or immediate
operand fields. Most group B and many instructions from
groups A. C. and D are directly supported by the CPU’s
hardware, and the RISC instruction decoder thus supports
some decoding of the 12-bit second level field. In the
appendix is a list of the PowerPC instruction set. showing
the primary and extended opcodes. and if the instruction is
supported directly in hardware or emulated in emulation
mode, as is. for example, opcode 2E, load multiple word.

Extended Instructions For Emulation Mode

Extended instructions for controlling the CPU’s hardware
are added to the RISC instruction set by using undefined
opcodes. such as those indicated by the darkly shaded boxes
in Table 2. Thus additional logic may be added to the RISC
instruction decode unit to support these additional instruc-
tions. However. user RISC programs must not be allowed to
use these extended instructions. Therefore, the decoding of
these extended instructions can be disabled for RISC user
mode, and only enabled for emulation mode.

Extended instructions include instructions to control the
translation-lookaside buffer or TLB. The TLB may only be
loaded or modified by these extended instructions which are
only available when in emulation mode. Thus the emulation
mode drivers have complete control over address mapping
and translation in the system. This allows the emulation
driver to set aside an area of memory for its own use. and to
prevent user programs from accessing or modifying this area
of memory. Because all memory references in user modes
are routed through the TLB. which is only controllable by
the emulation mode driver. the emulation mode acts as an
additional layer of software between the user mode pro-
grams and operating systems, and the actual system memory
and I/O. Thus the emulation driver can create an area of
memory hidden from the user mode programs, and can
locate its drivers and emulation routines in this hidden area
of memory.

5.781.750

9
CISC Instruction Decode

CISC instructions can range in size from 8 bits (one byte)
to 15 bytes. The primary x86 opcode. is decoded by the
instruction decode block 36 of FIG. 2. About 50% of the x86
instructions that can be executed by Intel’s 80386 CPU are
executed directly by the dual-instruction set CPU. Table 3
shows a primary opcode decode map for the x86 instruction
set. while Table 4 shows extended decoding. Unshaded
opcodes are directly supported in hardware, such as 03 hex.
ADD rv for a long operand. This same opcode, 03 hex.
corresponds to a completely different instruction in the RISC
instruction set. In CISC 03 hex is an addition operatjon.
while in RISC 03 hex is TWI -trap word immediate, a
control transfer instruction. Thus two separate decode
blocks are necessary for the two separate instruction sets,

A comparison of the opcode decoding of Table 2 for the
RISC instruction set with Table 3 for the CISC instruction
set shows that the two sets have independent encoding of
instructions to opcodes. While both sets have ADD
operations. the opcode number which encodes the ADD
operation is different for the two instruction sets. In fact, the
size and location of the opcode field in the instruction word
is also different for the two instruction sets.

Darkly shaded opcodes in Table 3 are not supported
directly by hardware and cause an unknown or unsupported
opcode to be signaled over line 40 of FIG. 2. This causes
emulation mode to be entered, and the opcode is used to
select the proper entry point in the emulation memory. By
careful coding of the emulation routine, performance deg-
radation can be kept to a minimum. Lightly shaded opcodes
in Table 3 are normally supported directly by the CPU, but
not when preceded by a repeat prefix (opcode F2 or F3).

Selection of Instructions to Directly Support

Instructions were chosen for emulation rather than direct
execution in hardware on the basis of how frequently the
instruction is used in a typical x86 program., how many
processor clock cycles the instruction takes. and how com-
plex and likely the instruction is to need debugging and
revision before operating properly on the dual-instruction set
CPU. The performance of emulated instructions is reduced
by an emulation mode entry and exit overhead. and by
substituting RISC instructions for the atomic CISC instruc-
tion. Instructions that already take many clocks, such as
repeated string instructions or PUSHALL., can have the
entry/exit overhead amortized over more clock cycles; thus
the penalty is effectively reduced. For some repeated
instructions, a more complex and efficient algorithm can be
coded in emulation memory, possibly even resulting in an
improvement in performance.

Instructions that are very complex and poorly understood
by the CPU designers can also be emulated rather than
directly supported. Thus debugging could be done quickly
and inexpensively by changing the emulation code in
memory. rather than by the expensive and time-consuming
process of revising the silicon die. Time-to-market for the
CPU may therefore be reduced.

While a preferred embodiment has been described that
directly decodes only about 50% of the CISC instruction set
and a larger percentage of the RISC instructions set. the
exact percentage of instructions decoded and supported will
vary from implementation to implementation. Other
embodiments may directly support a larger or a smaller
percentage of a particular instruction set, while still falling
within the spirit of the invention.

Translation Algorithm

When a TLB miss occurs, Mode control logic 42 of FIG.
2 sets the emulation mode bit in the mode register 38,

10

15

20

25

30

35

45

50

55

65

10

causing emulation mode to be entered. Entry point logic 56
determines the proper entry point depending on the segment
that caused the TLB miss. or if the miss was caused by an
invalid or unallowed access. such as a write to a read-only
page. As Table 1 shows, entry points 18-1E are defined for
TLB misses for segment number 0-5, and without a segment
enabled. while entry points 28-2D are for invalid accesses
for segments 0-5. Entry point 48 is for instruction TLB
misses.

Emulation code will determine the correct translation for
the virtual address that was input into the TLB for transla-
tion. For CISC mode, segmentation rules will also be
checked. The correct translation is determined by accessing
the page tables for the user, if present. and accessing system
page tables kept by the emulation driver in the emulation
memory. The final translation will be loaded into the TLB
along with the virtual address. and the translation validated
and enabled. Subsequent references to the same page will
result in TLB hits.

Since the TLB is only loaded by the emulation driver. and
cannot be modified by the user programs or operating
systems, a mechanism is provided to protect or set aside
portions of memory for use solely by the emulation driver,
and to partition the memory into 2 or more user spaces. The
TLB must always be enabled when user mode is active, even
at system reset or boot-up. The emulation driver must set up
page translation tables and enable the TLB before user mode
is first entered. The user mode programs must not be able to
turn off or avoid TLB translation. User programs may have
their own routines to set up and manage page translation
tables, and the emulation driver will consult these if
necessary. but will always be able to translate memory
references from user modes.

FIG. 3 shows a main memory space 70 for use with the
dual-instruction-set CPU. Main memory space 70 is divided
into a CISC memory space 72, a RISC memory space 74.
and an emulation memory space 76. Emulation memory
space 76 contains handler routines 80 for emulating the
more complex instructions of the RISC and CISC instruction
sets that are not directly supported in the CPU’s hardware.
These handler routines 80 are composed of the simpler RISC
instructions and extended RISC instructions. such as for
controlling the TLB. The CISC memory space 72 may
contain user programs 78 as well as a CISC operating system
82. Likewise the RISC memory space 74 may contain RISC
user programs 84 and a RISC operating system 86. Because
the emulation handler routines 80 control the TLB at the
highest level. the emulation memory space 76 may be
inaccessible and hidden from the user programs 78, 84. and
even the operating systems 82. 86 of CISC and RISC modes.
The entire memory space visible by CISC programs 78 and
operating system 82 is only the CISC memory space 72.

Thus a CPU that can execute instructions from multiple
instruction sets has been described. By emulating some
complex instructions in software the CPU has the advantage
of being simpler, less expensive to manufacture and design,
and easier to debug. resulting in a faster time-to-market. The
CPU may also be upgraded after being sold by a software
update in the field.

Alternate Embodiments

Several other embodiments are contemplated by the
inventors. For example, the RISC/CISC multiplexer 46 for
the instruction decode could be implemented in a variety of
ways., such as enabling the inputs to the decode logic or
disabling other logic within the decoder. Many other such
design choices may be made without departing from the
spirit of the invention disclosed herein.

The foregoing description of the invention has been
presented for the purposes of illustration and description. It

5.781.750

11 12
is not intended to be exhaustive or to limit the invention to intended that the scope of the invention be limited not by this
the precise form disclosed. Many modifications and varia- detailed description. but rather by the claims appended

tions are possible in light of the above teaching. It is hereto.

TABLE 1|

CISC Entry Points

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 XA xB xC xD xE xF
Ox Undef GRP7 LAR LSL CLTS PUSH POP Z0T ZOT ZOT ZOT ZOT Z0T zZoT Z0T
ined ES ES 0 1 2 3 4 5 6 mult.
real
1x GRPs PUSH POP TLB TLB TLB TLB TLB TLB LB POP
SS SS miss miss miss miss miss miss miss DS
real 0 1 2 3 4 5 none real
2x MOV MOV MOV MOV MOV MOV DAA TLB TLB TLB TLB TLB TLB PUSH DAS
c,r dr rc rd tr nt inval inval inval inval inval inval CS
0 1 2 3 4 5
3x AAA ZOT PUSH AAS
inst DS
4x reset NMI INTR POP TLB
ES miss
prot inst
5x POP DIVG POP
S8 OFLO DS
prot w prot
6x PUSH POPA BOU ARPL INS INS OUTs OUTS
A ND
7x
8x SHLD SHLD INVD WBIN RSM SHRD SHR
C v D
9x LFS8 LGS LFS LGS Call Call PUSH POPF PUSH POP
real real prot prot far far F 16bit F F
real prot 16bit 32bit 32bit
Ax PUSH POP Movs Movs Cmps Cmps PUSH POP Stos Stos Lods Lods Scas Scas
FS FS byte long byte long GS GS byte long byte long byte long
real REP REP REP REP real REP REP REP REP REP REP
Bx POP LS8 LSS Movs Movs Cmps Cmps POP Stos Stos Lods Lods Scas Scas
FS byte long byte long GS byte long byte long byte long
prot real prot repne repne repne repne prot repne Tepne repne repne fepne repne
Cx XAD XAD LES LDS LES LDS Enter Leave RET RET INT3 INTn INTO IRET
D D real real prot prot far far real real real real
real read
Dx AAM AAD XLAT RET RET INT3 INTn INTO IRET
far far prot prot prot prot
prot prot
Ex i) IN our OouT MP MP IN N ouT ouT
far far
real prot
Fx HLT CMP CMP CLI STI BSF BSR all
XCH XCH other
G G nvals
TABLE 2

50 PowerPC RISC Opcodes

PowerPC
primary
opcode XKXXK000 XXX001 XOOX010 XXX0I1 — XXX100 XXXI01 XXX110 XXl
000X3CK TWI MULI
00IXXX SUBFIC CWPLI CMPI ADDIC ADDIC ADDL ADDIS
010XXX BCx sC Bx GRP A RLWIMIx RLWINMx RLWNMx
Condition
register
instructions
OLIXXX ORI ORIS XORI XORIS ANDL ANDIS. GRP B
60 Misc.
Instructions
100K LWZ IWZU LBZ LBZU STW STWU STB STBU
01XXX LHZ LHZU LHA LHAU STH STHU LMW STMW
1100XXX LFS LFSU LFD LFDU STFS STESU STFD STFDU
11X GRP C GRP D

65 FP operate FP operate

5.781.750

14

13

Buoy a4q
A A AN
sddo O atd ars s o JLS jog] [419\4 mnmw o) g'le) I ddd dTd o] xd
Ahq Buoy Buoj q AN
1n0 1no NI NI dNL INC dL e Ino 1no NI NI ZXOI doory doory doog xg
Buo[ai4q Buoy a14q
g I T I T
dd dd dd dd dd dd dd dd IvVIX avv WvvY 14HS I1AHS 1AHS 1JHS xq
Buoj akq Buof a4q
ra A 1991 1'a ta
I3 O1INI UINI €INI 134 134 348X 12ug AOKN AONW sat SqT I3d 134 1dHS 1dHS XD
3 (0 IS tdag 1ds [.41 L'Xa XD XV 1'HY 1'HA 1'HD L'HY [t | 1YIa T 108 \ 4
AOW AON AOW AON AON AONW AON AONW AON AONW AOW AOI AOW AOW AONW AOW xg
Fuop a14q Buop 234q Suof ahq XY 1Y Suop 214q Buo[3jhq XV ‘W TV w u Yy w Ty
seag SEDS Spol Spoy solg 501§ Isdal IsdL sdm) sdur) SAOIN SAO AOKW AOW AONW AOW Xy
4 a IS dd ds Xq Xa X0
AHVS AHVS 4d0d HsNd Ivm ed amd 'x: o] Byox Fgox Byoy LD ¢ Byox Fuox Byox dON %6
139
a9t 1991 Suoj 24q Buo| 9)4q Buog a4q Suoj a4q -uds Buof 214q
A A'S S A A‘ Al 1A 1A 1A 1A I°A 1A 1A A 1A
dod AOW VA1 AOW AOW AOW AOW AOW 3yoyx Buyox IS4l ISHL v nw nmw xg
TINS a7 ING s dNf df SNI St HANC adr ZN(u aNI ar ONI of XL
kg akq Suoy guo[HZIS HZIS SOD sd an v
SLNO Si1no SHNI SNI TNIAT HSNd “TNINT HSNd qav do DHSs ods 144V nod vdod HSNd X9
1a IS dd ds Xq Xa XD Xv 1a Is dd dS Xd Xa X0 XV
d0d dod dod dod d0d dod dod dOd HSNd HSNd HSnd HSNd Hsnd Hsnd HSNd HSNd X6
1a 18 dq ds Xd Xa XD XV Ia 1s L : ds Xd Xda XD Xv
OHA J4a 2dd DHA o (et o - {x¢ JHd oda ONI INL ONI ONI ONI ONI ONI ONI Xt
Buof 234q Buol a4q Buop a4q Buoy a)4q
sa 11XV 1TV Al Al 1A XA SS 18944 1TV AL Al 1A 1A
SVVY Ods dND dND dWD dJND dND dND vvv Ods qox q0X q0X qox i (0).4 k-(0).¢ b33
Buoy 214q Buoj 214q Fuoy 34q Buog akq
s 1YY LY Al A I‘A IA s XY 1“1V AL Ad 1A 1A
sva Dds ans ans ans ans dns ans yva ods NV ANV aNv ANV aNv aNyv b4
Buop 1Y) Buop a4q Fuop a4q Buop 24q
sa sd 1YV 1TY AN Al 1A 1A SS SS 1'%y 1“1V Al AR I*A Ia
dod Hsnd q4ds qds ads qds q4ds qads 40d HSd av oav o2av 2av oav oV i
Buoj 214q Buoy al4q Buop Afq Fuop 314q
sdeq SO 1YY 191y A A 1A 1A sH sq 1Y%V 1V AL Al 1A I°A
puz Hsnd - [¢] k: (0] 40 q0 4o 40 dod HSNd aav aav aav aav aav aav X9
Jx qJx ax ox ax Vi 6% 8x (x 9% X 23 £€x x 29 ox do

dE apoad() HSID 98%

£ H1dV.L

5.781.750

15 16
TABLE 4
x86 CISC Secondary Opcode Map
2
nd xC x1 x2 x3 x4 x5 x6 x7 x8 x9 XA B xC D xE xF
Ox GRP6 GRP7 LAR LSL CLTS Load INV WB
ALL DC NV
Ix ICE ICE ICE ICE
x MOV MOV MOV MOV MOV MOV
c,r d.r te rnd tr 6t
Ix
4x
5x
6x
x
8 JO INO B INB JZ INZ JBE INBE J5 INS P INP JL JNL JLE INLE
9x SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET SET
[¢] NO B NB 2 N BBE NBE 5§ NS P NP L NL LE NLE
Ax PUSH POP BT SHLD SHLD CMP CMP PUSH POP RSM BTS BHRD SHRD MUL
FS FS v, r XCH XCH GS GS v, T v
G G
Bx LS5 BTR LFs LGS MOV MOV BIT BTC BSF BSR MOV MOV
v, T X X TEST v, r sX SX
I,V v v, i AR rv
byte long byte Jong
Cx XAD XAD bswap bswap bswap bswap bswap bswap bswap bswap
D D AX cxX DX BX sp BP SI DI
Dx
Ex
Fx
Appendix: PowerPC RISC Instruction Set
Primary Extend. How
opcode opcode Mnemmic Instruction handled Units
20 lwz Load word and zero Hardware TUo
21 Iwzu update o1
1F 17 Iwzx indexed U0
1IF 37 Iwzux indexed update IUo1
24 stw Store word Hardware 100
5 stwu update 1001
IF 97 Stwx indexed o
IF B7 stwux indexed update Ivot
28 Ihz Load halfword and zero Hardware Tuo
29 lhzu update IUo1
iF 117 lhzx indexed Tuo
IF 137 Thzux indexed update o1
24 lha Load halfword algebraic o
2B lhau update TUo1
1F 157 thax indexed Tuo
1F 177 Ihaux indexed update Tuot
2C sth Store halfword Hardware 100
D sthu update 1001
1F 197 sthx indexed Lujo]
1F 1B7 sthux. indexed update Tuot
22 bz Load byte and zero Hardware o
23 Tozu update Igol
IF 57 Tbzx indexed o
jig 77 Tbzux indexed update o1
26 stb Store byte Hardware o
27 stbu update ol
1F D7 stbx indexed o
1IF F7 stbux indexed update ool
30 Ifs Load EP. single precision Hardware 100
31 Ifsu update 1Uo1
1F 217 tfsx indexed Tuo
IF 237 Hfsux indexed update 1001
32 ifd Load FP. double Hardware TJo
33 ifdu precision TJo1
IF 257 Hdx update TJo
IF 277 Ifidux indexed TUo1
indexed update
34 stfs Store FP. single precision Hardware TUo
35 stfsu update o1

17

-continued

5.781.750

Appendix: PowerPC RISC Instruction Set

1F 297 stfsx indexed Iuo

1IF 2B7 stfsux indexed update Tuol

36 stfd Store F.P. double Hardware Tuo

37 stfdu precision o1

IF D7 stfdx update iuo

IF 2F7 stfdux indexed Tuot
indexed update

2E Imw Load multiple word Emulate U1 &

BU
2F stmw Store multiple word Emulate TUor &
BU

iF 216 fwbrx Load word byte-reverse Hardware o
indexed

IF 296 stwbrx Store word byte-reverse Hardware U0
indexed

1IF 316 thbrx Load halfword byte- Hardware o
reverse indexed

IF 396 sthbrx Store halfword byte- Hardware o
reverse indexed

IF 14 lwarx Load word and reserve o
indexed

1F 96 STWCX. Store word conditional Jo
indexed

Logical and Shift Instructions

Primary Extend. How

opcode opcode Mnemnic 1F handled Units

1IF 1cC andx AND Hardware U1

1C andi.

1D andis.

1F 3cC andcx AND with complement Hardware U1

1IF 7C norx NOR Hardware U1

1IF 11C eqvx Equivalent Hardware 1

IF 13C XOrx XOR Hardware w1

1A xori

1B xoris

IF 19C orcx OR with complement Hardware i

1IF 1BC orx OR Hardware 1

18 ori

19 oris

IF 1DC namdx NAND Hardware U1

14 rlwimix Rotate left word immed. Hardware 1
then AND with mask
insert

15 rlwinmx Rotate left word immed. Hardware jL08)
then AND with mask

17 rlwnmz Rotate left word then Hardware U1
AND with mask

IF 18 stwx Shift left word Hardware U1

IF 218 STWX Shift right word Hardware jLIM

1F 318 STawx Shift right algebraic word Hardware 1051

1F 338 sTawix Shift right algebraic word Hardware U1
immediate

1F 1A cntlzwx Count leading zeros word Hardware U1

F 39A extshx Extend sign halfword Hardware U1

1IF 3BA extsbx Extend sign byte Hardware U1

Algebraic instructions

Primary Extend. How

opcode opcode Mnemnic Instruction handled Units

E addi. ADD immediate Hardware U1

C addic carrying

D addic. carrying record

F addis shifted

IF 10A addx ADD Hardware U1

jig A addcx carrying

1F 8A addex extended

1F CA addmex to minus one extended

1F EA addzex to zero extended

8 subfic SUB immediate carrying Hardware 1031

1F 28 subfx SUB Hardware 1

IF 8 subfex carrying

IF 88 subfex extended

IF E8 subfmex to minus one extended

1IF c8 subfzex to zero extended

1F 68 negx Negate Hardware w1

18

19

-continued

5.781.750

Appendix: PowerPC RISC Instruction Set

IF
IF
IF

iF
1F

IF

1IF

1F

IF

1IF

IF

1IF

1IF

20

10

210

4B

ICB

215

255

295

D2
F2
253
293
53
92
132
1F2
1B2

1D2

cmpi
cmpli
cmp

cumpl

bx
bex
w
twi
beetrx

belrx

mullx
mulii
mulhwx
mulhwux
divwx
diveux

Iswx
Iswi
stswx

stswi

merf
crnor
crandc

crxor
crnand
crand
creqv
crorc
cror
mterf
merxr
merfs
mfcr
mtfsblx
mitfsbOx
mitfsfix

mffsx
mitfsfx

i
isync
misr
mitsrin
mfsr
mfsrin
mfmsr
mtmsr
tlbie
slbia
slbia

slbiex

Compare inunediate
logical

Compare

logical

Control transfer instructions

Branch

Branch conditional

Trap word

immediate

Branch cond. to count
reg.

Branch cond. to link reg.
System call

Multiply and Divide instructions

Multiply low
immediate
Multiply high
unsigned
Divide word
unsigned
String instructions
Load string word indexed
Load string word
immediate
Store string word mndexed

Store string word
immediate

Condition register instructions

Move CR field

CR NOR

CR AND with

complement

CR XOR

CR NAND

CR AND

CR Equivalent

CR OR with complement

CR OR

Move to CR fields

Move to CR from XER

Move to CR from FPSCR

Move from CR field

Move to FPSCR bit 1

Move to FPSCR bit 0

Move to FPSCR

immediate

Move from FPSCR

Move to FPSCR
Privileged instructions

Return from interrupt
Instruction synchronize

Move to segment register
indirect

Move from segment
register

indirect

Move from machine state
register

Move to machine state
register

TLB invalidate entry

SLB invalidate all
SLB invalidate entry

SLB invalidate by index

Hardware

Hardware

Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

Hardware

Hardware

Emulated
Emulated
Emulated

Emulated

Hardware
Hardware
Hardware

Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

Hardware
Hardware

Emulated
Emulated
Emulated

Emulated

Emulated
Emulated
Emulated
not impl.
not impl.

not impl.

BU
BU
U1

BU

BU

Tyot

ot

TJo1

o1 &
BU
o1 &
BU
Uo1 &

TU01 &
BU

001 &
BU

Vo1 &
BU
o1 &
BU
o1 &

TUO1 &
BU
Iuo1 &
BU
IUO1 &
BU

20

21

-continued

5.781.750

Appendix: PowerPC RISC Imstruction Set

1IF

IF

1IF

IF

1IF

1IF

1IF

1F

1F

1F

1IF

1F

3B
3B
3B
3B

3B
3B
3B
3B
3B
3F
3F
IF
3F

3F
3F
3F
3F
3F
3B

3F
3F
3F

IF

36
56
F6
116
1D6
3F6
3D6
356
256
136

1B6

73

B2

e]

mflb
mftbu
mith
mitbu
mfspr

mispr

debst
debf
debtst
dcbt
dcbi
dcbz
icbi
eieio
sync
eciwx

€COwWX

mfpmr

mtpmr

fdivsx
fsubsx
faddsx
frsqrisx

finulsx
fmsubsx
fmaddsx
fnmsubsx
fomaddsx
fdivx
fsubx
faddx
fsqrtx

fiulx
fmsubx
fmaddx
fnmsubx
fnmaddx
fresx

fempu
frspx
fetiwx

fetiwzx

Move from time base

Move from time base

upper
Move to time base

Move to time base upper

Move from special
purpose register

Move to special purpose
register

Other user-mode instructions

Data cache block store
Data cache block flush

Data cache block touch
for store
Data cache block touch

Data cache block
invalidate
Data cache block zero

Instruction cache block
invalidate

Enforce in-order /O
execution

Synchronize

External control input
word indexed
External control output
word indexed

Other instructions

Move from program
mode register

Move to program mode
register

Floating point mstructions

FP SP Divide

FP SP Subtract
FP SP Add

FP SP Square root

FP SP Multipty

FP 5P Multiply-Subtract
FP SP Multiply-Add

FP SP Neg-Mult-Subtract
FP SP Net-Muit-Add

FP DP Divide

FP DP Subtract

FP DP Add

FP DP Square root

FP DP Multiply

FP DP Multipty-Subtract
FP DP Multiply-Add

FP DP Neg-Mult-Subiract
FP DP Net-Mult-Add

FP SP Reciprocal
estimate

FP Compare unordered
FP Round to SP

FP Convert to integer
word

FP Convert to integer
word and round toward
zero

not unpl.
not impl.
not impl.
not impl.
Emulated
Emulated
Emulated

Emulated

Emulated
Emulated
Emulated
Emulated
Emulated
Emulated
Emulated
Emulated
Emulated
Emulated

Emulated

Hardware
Hardware
Hardware
not impl,

Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
not impl.

Hardware
Hardware
Hardware
Hardware
Hardware
not impl.

Hardware
Hardware
Hardware

Hardware

=

Zddaazzaggaas

w
gg
@

gdaz33ad
.

2]
[

a az3

5.781.750

23

-continued

Appendix: PowerPC RISC Instruction Set

3F 17 fselx FP Select not impl. IUo1 &
BU
3F 1A frsqrtex FP Reciprocal square root not impl. o1 &
estimate BU
IF 20 fcmpo FP Compare ordered Hardware FU
IF 28 fnegx FP Negate Hardware FU
3F 48 fmrx FP Move register Hardware FU
3F 108 fnabsx FP Negative absolute Hardware FU
value
3F 147 fabsx FP Absolute value Hardware Fu
We claim: 15 main memory, said TLB providing an indication to aid

1. A central processing unit (CPU) for processing instruc-
tions from two separate instruction sets. said CPU compris-
ing:

first instruction decode means for decoding instructions

from a first instruction set. said first instruction set
having a first encoding of instructions;

second instruction decode means for decoding only a
subset of instructions from a second instruction set.
said second instruction set having a second encoding of
instructions, said first encoding of instructions inde-
pendent from said second encoding of instructions;

select means, coupled to said first instruction decode
means and said second instruction decode means. for
selecting said decoded instruction from either said first
instruction decode means or from said second instruc-
tion decode means; and

execute means for executing decoded instructions
selected by said select means.

whereby instructions from both said first instruction set
and said second imstruction set are executed by said
CPU.

2. The CPU of claim 1 further comprising:

an instruction fetch buffer, containing instructions to be
decoded. coupled to said first instruction decode means
and said second instruction decode means; and

instruction pointer means. coupled to said instruction
fetch buffer, for indicating an address of a next instruc-
tion to be decoded.

3. The CPU of claim 1 further comprising:

mode register means. coupled to said select means. for
indicating an instruction set to be decoded and
executed.

4. The CPU of claim 3 further comprising:

mode control means. coupled to said mode register
means. for changing said instruction set to be decoded.

5. The CPU of claim 4 wherein

the second instruction decode means decodes only a
portion of said second instruction set. and said second
instruction decode means indicating to said mode con-
trol means when an instruction is not in said decoded
portion of said second instruction set;

the mode control means changing said instruction set to
be decoded to said first instruction set when an indi-
cation is received that an instruction is not in said
decoded portion of said second instruction set.

6. The CPU of claim 5 further comprising

a translation-lookaside buffer (TLB) coupled to said
execute means, said TLB having address translation
entries for translating a virtual address from said
execute means to a physical address for accessing a

20

25

30

35

40

45

50

55

65

mode control means to change said instruction set to be
decoded to said first instruction set when no translation
is found in said TLB corresponding to aid virtual
address from said execute means.
7. The CPU of claim 6 wherein a handler routine com-
prised of instructions from said first instruction set is fetched
from main memory and executed when mode control is
signaled by said TLB or by said second instruction decode
means.
8. The CPU of claim 7 wherein said execute unit provides
an indication to said mode control means when an exception
occurs in said execute unit, said mode control means chang-
ing aid instruction set to be decoded to said first instruction
set when said indication is received.
9. The CPU of claim 6 wherein all references to main
memory generated by instructions in said second instruction
set are translated by said TLB.
10. The CPU of claim 6 wherein said address translation
entries in said TLB are loaded only by instructions decoded
by said first instruction decode means.
11. The CPU of claim 10 wherein said first instruction
decode means decodes instructions from said first instruc-
tion set and extended instructions added to said first instruc-
tion set. and wherein said address translation entries in said
TLB are modified only by said extended instructions.
12. The CPU of claim 11 wherein said first instruction
decode means is selected to decode instructions immediately
following a reset of said CPU.
13. The CPU of claim 11 wherein said extended instruc-
tions are decoded by said first instruction decode means only
when said mode control means is signaled to change said
instruction set to be decoded or immediately following a
reset.
14. A method for processing instructions from two sepa-
rate instruction sets on a central processing unit (CPU). said
method comprising:
decoding instructions from a first instruction set with a
first instruction decoder, said first instruction set having
a first encoding of instructions;

decoding only a subset of instructions from a second
instruction set with a second instruction decoder, said
second instruction set having a second encoding of
instructions. said first encoding of instructions inde-
pendent from said second encoding of instructions;

selecting said decoded instruction from either said first
instruction decoder or from said second instruction
decoder; and

executing said decoded instruction that was selected.

whereby instructions from both said first instruction set

and said second instruction set are executed by said
CPU.

15. A method for processing instructions from a complex

instruction set computer (CISC) instruction set on a reduced

5.781.750

25

instruction set computer (RISC) Central Processing Unit
(CPU). said method comprising:
attempting to decode an instruction with a CISC instruc-
tion decode unit that does not decode all instructions in
said CISC instruction set;
directly executing said instruction in an execute unit if
said CISC instruction decode unit is able to decode said
instruction;
entering an emulation mode if said CISC instruction
decode unit is not able to fully decode said instruction.
indicating that said execute unit cannot directly execute
said instruction;

disabling said CISC instruction decode unit and enabling
a RISC instruction decode unit when entering emula-
tion mode;

loading an instruction pointer with an address of a soft-
ware emulation routine for emulating said undecodable
instruction, said routine comprising instructions from a
separate RISC instruction set;

decoding RISC instructions with said RISC instruction
decode unit as

aid software routine is executed;

executing said RISC instructions in said execute unit; and

exiting emulation mode, disabling said RISC instruction
decode unit and enabling said CISC instruction decode
unit when said end of said software emulation routine
is reached.

whereby all instructions from said CISC instruction set
are executed, either directly by said execute unit or by
emulation with a software emulation routine comprised
of RISC instructions.

16. The method of claim 15 wherein

the software emulation routine is comprised of RISC
instructions and extended instructions, said extended
instructions using undefined opcodes in said RISC
instruction set;

the method further comprising decoding and executing
extended instructions while said software emulation
routine is being executed.

17. The method of claim 16 further comprising:

translating memory references generated by said CISC
instructions that are directly executed, said translation
of memory references controlled by a software trans-

10

15

20

25

30

35

26
lator routine comprised of RISC instructions and
extended instructions. said translator routine loading
said resulting translations into a translation-lookaside
buffer.

18. A microprocessor for executing instructions belonging
to a reduced instruction set computer (RISC) instruction set
and for executing instructions belonging to a complex
instruction set computer (CISC) instruction set. said micro-
processor comprising:

RISC instruction decode means, for decoding instructions

belonging to said RISC instruction set;

CISC instruction decode means. for decoding only a
subset of instructions belonging to said CISC instruc-
tion set;

mode register means for indicating a current operating
mode of said microprocessor;

enable means, coupled to said RISC instruction decode
means and said CISC instruction decode means, for
enabling said-decoding of instructions belonging to
said RISC instruction set or belonging to said CISC
instruction set, said enable means responsive to said
current operating mode of said microprocessor: and

an execution unit, coupled to said RISC instruction
decode means and said CISC instruction decode means.
for executing instructions belonging to said RISC
instruction set and instructions belonging to said CISC
instruction set,

whereby instructions from said RISC instruction set and

instructions from said CISC instruction set can be
executed by said execution unit.

19. The microprocessor of claim 18 wherein said mode
register means indicates CISC mode. RISC mode, or an
emulation mode, wherein a portion of said CISC instruction
set is decoded by said CISC instruction decode means when
said mode register means indicates CISC mode. and wherein
undecoded CISC instructions are emulated by emulation
mode.

20. The microprocessor of claim 19 wherein emulation
mode is entered when said CISC instruction decode means
signals an undecoded instruction. said mode register means
changing from CISC mode to emulation mode when an
undecoded instruction is signaled.

£ 0k 0k ® ok

