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(57) ABSTRACT 

A dual-instruction-set CPU is able to execute x86 CISC 
(complex instruction set computer) code or PowerPC RISC 
(reduced instruction set computer) code. Three modes of 
operation are provided: CISC mode, RISC mode, both called 
user modes, and emulation mode. Emulation mode is 
entered upon reset, and performs various system checks and 
memory allocation. A special emulation driver is loaded into 
a portion of main memory set aside at reset. Software 
routines to emulate the more complex instructions of the 
CISC architecture using RISC instructions are also loaded 
into the emulation memory. ATLB is enabled, and transla 
tion tables and drivers are set up in the emulation memory. 
All TLB misses, even in the user modes, will cause entry to 
a translator driver in emulation mode. Since the TLB is 
always enabled for the user modes, and all misses are 
handled by the emulation code, the emulation code can set 
aside a portion of memory for itself and insure that the user 
programs never have access to the emulation memory. Thus 
the programs, including operating systems, in CISC or RISC 
mode are unaware of emulation memory or even the exist 
ence of emulation mode. 

20 Claims, 3 Drawing Sheets 
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DUAL-NSTRUCTION-SET ARCHITECTURE 
CPU WITH HIDDEN SOFTWARE 

EMULATION MODE 

RELATED APPLICATIONS 

This application is related to co-pending application for a 
"Pipeline with Temporal Re-arrangement of Functional 
Units for Dual-Instruction-Set CPU", filed Jan. 11, 1994, 
U.S. application Ser. No. 08/180,023, now U.S. Pat. No. 
5.542,059. This application is further related to copending 
application for "Emulating Operating System Calls in an 
Alternate Instruction Set Using a Modified Code Segment 
Descriptor", filed Jul. 20. 1994, U.S. application Ser. No. 
08/277.905, now U.S. Pat. No. 5481,684. This application 
is further related to copending application for "Shared 
Register Architecture for a Dual-Instruction-Set CPU", 
filed Jul. 20, 1994, U.S. application Ser. No. 08/277.962. 
now U.S. Pat. No. 5,481,693. These related applications 
have a common inventor and are assigned to the same 
assignee as the present application. 

1. Field of the Invention 
This invention relates to Computer System Architectures, 

and more particularly to microprocessors that can execute 
multiple instruction sets. 

2. Description of the Related Art 
Personal Computers (PC's) are based on two types of 

Central Processing Units (CPU's), categorized by the com 
plexity of the set of instructions that may be executed on a 
particular CPU: CISC - complex instruction set computer, 
and RISC - reduced instruction set computer. CISC systems, 
which feature many different instructions and options for 
each instruction, were most popular in the 1970's. The 
design philosophy was that by making the instructions 
complex, each instruction could carry out more actual com 
putational 'work, thus a fewer number of instructions 
would be needed. This is analogous to breaking a task down 
into a few large steps. 
RISC became a viable alternative as smaller micropro 

cessors became inexpensive and thus popular. It was not 
easy to provide on a single silicon die all the hardware 
needed to execute the relatively complex instructions of a 
CISC processor. Since the CISC hardware had to execute 
many different types of instructions, all within the same 
fixed clock period, the clock had to be slowed down to 
accommodate the slower, more complex instructions. It was 
also discovered that the simpler instructions were often more 
likely to be used than the complex instructions, and that 
Some complex instructions were infrequently used. Thus the 
idea of RISC was born - using a smaller, reduced set of 
instructions. Although more instructions, or steps, would be 
needed, the hardware could be made simpler and the clock 
would not have to be slowed down by the infrequent 
complex instructions. 

Early microprocessors were of the CISC variety. Interna 
tional Business Machines (IBM) of Armonk, N.Y. chose the 
8088 microprocessor from Intel Corp. of Santa Clara, Calif. 
for its line of personal computers or PC's. Many other 
vendors made their own PC's based on later members of the 
8088's family of CPU's, the x86 family, named after the 
8086, a forerunner to the 8088 CPU. Since IBM provided a 
standard, PC's based on the x86 family proliferated. Each 
newer member of the x86 family could run instructions, or 
code, from the earlier x86 CPU's. As more and more 
programs were written for PC's, including the DOS and 
Windows operating systems by Microsoft Corp. of 
Redmond, WA., x86 became the most popular instruction 
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Set, or architecture. About 37 million x86 CPUs will be 
shipped during 1993. 

FIG. 1 is a simplified block diagram of an x86 CISC 
microprocessor, such as the 80386. Instructions flow 
through a processor in a "pipeline" fashion, possibly with 
several instructions being in the pipeline at the same time. 
each instruction at a different functional block or "pip 
estage". An instruction is fetched from memory and placed 
into Instruction Fetcher 10, which may have a buffer which 
can hold several instructions. Instruction Pointer 12 contains 
the address of the particular instruction to be decoded next 
by Instruction Decode Unit 14. Instruction Decode 14 inter 
prets the instruction, and identifies which operands need to 
be accessed from the high-speed general-purpose Register 
file (GPR) 20. Instruction decode 14 sends the opcode field 
of the instruction to microcode ROM 16, and the opcode 
field is used to enter the microcode where a routine to 
execute the instruction is located. 
Microcode words are typically 50-200 bits wide, with 

various bits used to control registers, paths, and gating 
within the CPU, and a field indicating the location of the 
next microcode word to be accessed. Thus the microcode 
controls the CPU at the lowest hardware level; the bits in the 
microcode word are able to control individual logic gates 
and latches inside the CPU die. Long, complex microcode 
routines can be painstakingly constructed including jumps 
and micro-routine calls. Typically one micro-instruction is 
fetched for each processor clock. Some instructions may 
require several micro-words. 

Execute unit 18 receives a portion of the microcode word 
and the operands from GPR 20, and can perform simple 
arithmetic operations with an ALU. or generate an address 
for a branch, load, or store. If an address is generated, it is 
passed to segment unit 22, which for the x86 architecture 
performs a full 32-bit addition, adding a segment base 
address stored in segment descriptor registers 24, to the 
virtual address generated by the execute unit, the result 
being called the linear address. The linear address is checked 
to see if it is outside the segment boundaries, indicating a 
limit violation. The linear address is passed along to the 
Translation-Lookaside Buffer (TLB) 26, which is a small 
associative memory. If an entry is found in the TLB corre 
sponding to the linear address, the translated or physical 
address is read out of the TLB and output to the main 
memory on address bus 30. If no entry corresponding to the 
linear address is found in the TLB, then a miss is signaled 
to translator 28. Translator 28 may need to access a routine 
in microcode ROM 16, or the translator may be controlled 
by a state machine. Translator 28 forms an address for the 
page tables stored in inexpensive main memory, and 
accesses the page table entry corresponding to the linear 
address, and then loads this entry into the TLB. In the x86 
architecture, a two-level page table is used, requiring the 
translator to access main memory twice, first fetching an 
entry from a page directory table, and then the page table 
entry. Page tables are data structures in main memory that 
contain translation information, such as the physical page 
address and access information. 
The user may execute an instruction to enable or disable 

the TLB and any translation. Such an instruction will cause 
execute unit 18 to enable or disable translation by activating 
line 19. Line 19 is thus an enablefdisable line for translation 
and the TLB. The same feature may also be supported by 
writing a TLB enable bit in a control register within the 
CPU. and then having the control register drive TLB enable 
line 19. 
Another popular CISC microprocessor is the 68000 fam 

ily from Motorola of Scottsdale, Ariz. This CPU is used in 
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the Macintosh Computer manufactured by Apple Computer 
of Cupertino, Calif. Apple will ship about 2 million units in 
1993. 
Apple and IBM have announced their intention to switch 

to RISC for future CPU's. The PowerPC microprocessor 
will be manufactured by IBM and Motorola, and will feature 
a simplified or reduced instruction set. Although RISC 
CPU's are manufactured by several other manufacturers. the 
PowerPC architecture will probably dominate because of the 
backing by the two largest PC manufacturers. 

Because of the huge amount of software written for the 
x86 instruction set, software programs called "emulators” 
have been written that allow x86 code to be run on RISC 
CPU's. The emulator must parse the x86 code and convert 
the x86 instructions into RISC code. This can be done before 
the x86 code is executed, which is known as binary trans 
lation because the x86 code is translated at a low or binary 
level and translated to the RISC instruction set. This is an 
undesirable method since binary translation requires 5 to 10 
times as long to run as a native x86 program. A native 
program is one that is written in the lowest-level machine 
instructions for that architecture. 

Another option called interpretation is to re-compile as 
the x86 program is executing. Thus a second copy of the 
code does not have to be stored. However, the re-compiling 
requires extra steps by the RISC CPU and can significantly 
slow down the x86 code being executed, because 
re-compilation must occur at the same time as execution. 
One such software emulation program is sold by Insignia 

Solutions under the name of Softp(c. This program interprets 
the x86 code as it is executing. However, the speed of 
execution, or performance, is less than that for a program 
written in native RISC code. 

Since there is so much installed x86 code, it is greatly 
desired to run x86 programs on newer RISC CPU's, but 
without the performance degradation of the software emu 
lator. One approach would be to add support in hardware for 
all the x86 instructions. While this would provide the highest 
performance, the complexity would be enormous. and the 
cost very high. A very large microcode, composed of small 
sub-instructions or micro-instructions, could be constructed 
to allow execution of all x86 instructions. This would 
require a large microcode read-only memory (ROM) on the 
CPU die. Various subroutines in the microcode would con 
trol execution of the different instructions. While it would be 
a tremendous competitive advantage to be able to run native 
x86 code on a RISC CPU, no manufacturer has yet been able 
to achieve this, attesting to the great technical difficulty of 
integrating the entire x86 instruction set. 
Since PowerPC may become the next standard 

architecture, yet the existing software base of x86 code is 
immense, what is desired is a CPU that can execute both 
PowerPC RISC code and x86 CISC code, but without the 
performance degradation of emulating all x86 instructions in 
software. 

SUMMARY OF THE INVENTION 

A CPU for processing instructions from two separate 
instruction sets has a first instruction decode means for 
decoding instructions from a first instruction set and a 
second instruction decode means for decoding instructions 
from a second instruction set. The second instruction set has 
an encoding of instructions which is independent from the 
encoding of instructions of the first instruction set. A select 
means, coupled to the first instruction decode means and the 
second instruction decode means, is used for selecting the 
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4 
decoded instruction from either the first instruction decode 
means or from the Second instruction decode means. An 
execution unit is also included for executing decoded 
instructions that are selected by the select means. Thus 
instructions from both the first instruction set and the second 
instruction set are executed by the CPU. 

In another aspect of the invention, a mode register indi 
cates whether the first or the second instruction set is 
currently being processed. The mode register is coupled to 
the select means so as to select decoded instructions from the 
proper instruction set. 

In a still further aspect of the invention, only a portion of 
the second instruction set is decoded. If an undecoded 
instruction is signaled, then the mode register is switched to 
the first instruction set. A translation-lookaside buffer (TLB) 
is provided that signals to the mode register to change to the 
first instruction set when no translation is found. A handler 
routine composed of instructions from the first instructions 
set is executed whenever an undecoded instruction or a TLB 
miss is signaled. 

This invention has the advantage that a complex second 
instruction set need not be fully decoded and supported in 
the CPU's hardware. The undecoded instructions are emu 
lated by a software routine written in the reduced instruction 
set computer (RISC) first instruction set. Another advantage 
of the invention is that the TLB can be controlled by RISC 
mode, which can prevent second instruction set programs 
from directly accessing the TLB because all TLB misses 
cause a switch to the first instruction set routines. Thus RISC 
mode can set aside a memory space for the emulation 
routines that the second instruction set programs cannot 
access or even detect. 

Another aspect of this invention is a method for process 
ing instructions from a complex instruction set computer 
CISC instruction set on a reduced instruction set computer 
RISC CPU. The method includes attempting to decode an 
instruction with a CISC instruction decode unit that does not 
decode all instructions in the CISC instruction set. directly 
executing the instruction in an execute unit if the CISC 
instruction decode unit is able to decode the instruction. 
An emulation mode is entered if the CISC instruction 

decode unit is not able to fully decode the instruction, which 
indicates that the execute unit cannot directly execute the 
instruction. The CISC instruction decode unit is disabled 
while a RISC instruction decode unit is enabled when 
entering emulation mode. An instruction pointer is loaded 
with an address of a software emulation routine for emulat 
ing the undecodable instruction. The routine comprises 
instructions from a separate RISC instruction set which are 
decoded with the RISC instruction decode unit as the 
software routine is executed and executed in the execute 
unit. Emulation mode is finally exited, disabling the RISC 
instruction decode unit and enabling the CISC instruction 
decode unit when the end of the software emulation routine 
is reached. 

All instructions from the CISC instruction set can be 
executed, either directly by the execute unit or by emulation 
with a software emulation routine composed of RISC 
instructions. 

BRIEF DESCRIPTION OF THE DRAWTNGS 

FIG. 1 is a simplified block diagram of a prior-art x86 
CPU. 

FIG. 2 is a block diagram of a dual-instruction-set CPU. 
FIG. 3 shows a main memory space for use with the 

dual-instruction-set CPU. 
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DETALED DESCRIPTION 

This improvement relates to a central processing unit 
(CPU) with a pipeline for a dual-instruction set architecture. 
While the detailed description describes the invention in the 
context of a reduced instruction set computer (RISC) and a 
complex instruction set computer (CISC), it is contemplated 
that the invention applies to other instruction sets besides 
RISC and CISC, and to more than two instruction sets, 
without departing from the spirit of the invention. 
When trying to implement both a RISC and a CISC 

architecture on the same CPU, a software emulator suffers 
from poor performance, while a hardware-only approach is 
too complex and expensive. An approach that uses some 
hardware and some software is the best, because simple, fast 
instructions can be implemented by hardware on the CPU, 
while complex instructions can be detected by the hardware 
and trapped to a software emulation driver. Thus some of the 
complexity of the CISC architecture is moved to the soft 
Ware driver. However, the emulation driver must be isolated 
and hidden from the user's code being executed, otherwise 
the user programs could modify or destroy the emulation 
code, resulting in a system crash. 

Hiding the emulation driver from the user code is accom 
plished by means of a TLB that is always enabled for the 
user modes but is only modifiable by a special emulation 
mode. Since the emulation mode has complete control over 
the TLB, the emulation driver can use address translation to 
hide itself from the lower-privilege user modes. Thus an 
additional software layer has been inserted between the 
actual hardware and the user-mode operating system. 

There are three operating modes of the CPU. Two modes 
are traditional user modes, one for RISC and another for 
CISC. In the user modes all instructions in the instruction set 
may be executed by the user programs, and protection 
mechanisms available in these instruction-set architectures 
are available within these user modes. For example, x86 
instructions for enabling paging and segmentation address 
translation and protection exist in CISC mode, and any 
memory management available in the PowerPC instruction 
set is available in RISC mode. However, segmentation and 
paging control and other complex instructions are not sup 
ported directly by the CPU's hardware. Instead, when a 
user-mode program attempts to execute a complex 
instruction, a third mode, emulation mode, is entered, with 
out detection by the user program. 

Emulation Mode 

Emulation mode runs a super-set of the RISC instruction 
set. Additional "extended" instructions are added for con 
trolling the CPU's hardware, such as direct access to the 
TLB, register files, cache. and selecting between the three 
operating modes of the CPU. Emulation mode executes 
routines that emulate the behavior of the complex instruc 
tions that are not supported directly by the hardware. For 
example, CISC code includes a repeated string move 
instruction, REP MOVS. Execution of this instruction in 
CISC mode will cause emulation mode to be entered. A 
Software routine will be executed that breaks the complex 
CISC instruction down into several smaller RISC 
instructions, such as Loads and Stores. The data string will 
be loaded into the CPU and stored back into memory 
repeatedly until the entire string has been moved. Then the 
emulation code will return control to CISC mode and the 
user program will continue with the next instruction, 
unaware that the instruction was not executed directly by 
hardware as an atomic instruction, but by emulation mode. 
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Since the instruction to change the operating mode of the 

CPU is available only to the emulation code, the user modes 
cannot directly execute the highest-level emulation instruc 
tions. Emulation mode instructions are thus hidden from 
user-mode programs. The emulation driver code is also 
hidden from the user programs because it resides in an area 
of memory that is not accessible by the user programs. 
Hiding the emulation memory area is accomplished by 
causing a jump into emulation mode if the user mode 
attempts to access the emulation memory. Emulation code 
can then re-direct the memory access to another portion of 
memory by loading the TLB with a translation, even if the 
TLB is not enabled by the user mode. 

CPU Hardware 

FIG. 2 shows a simplified block diagram of a CPU that 
can execute both RISC and CISC instructions. Instruction 
Pointer 34 indicates the instruction to be decoded in instruc 
tion fetch unit 32. This instruction is sent to Instruction 
Decode unit (TD) 36. Instruction decode 36 is composed of 
three sub-blocks, one for decoding CISC instructions. 
another for decoding RISC instructions. and a third sub 
block for decoding extended RISC instructions for emula 
tion mode. The extended instructions are at the highest 
privilege level. higher than even the operating systems that 
may be running under RISC of CISC modes. These extended 
instructions offer access to all the system resources, includ 
ing mode register 38. Mode register 38 contains bits to 
indicate the current operating mode of the CPU. One bit 
selects between the RISC and CISC user modes, while 
another bit enables the extended RISC instructions for 
emulation mode. 

Instruction decode unit 36 is a partial instruction decode 
unit, in that it fully decodes only about 50% of the x86 CISC 
instructions, and about 85% of the PowerPC RISC instruc 
tions. Several well-known implementations are possible for 
instruction decode unit 36. For example, random logic may 
be used to decode the instruction set defined by an opcode 
map such as Tables 2 and 3. Opcode maps in Tables 2 and 
3 are similar to logic truth tables in that they fully specify the 
logic equations needed to decode the instruction set. Instruc 
tions that are not fully decoded are not directly supported by 
hardware, and signal an "unknown opcode" on line 40 to 
mode control block 42, which causes emulation mode to be 
entered, 

The same opcode may map to different instructions in the 
two instruction sets, requiring separate decode units for each 
instruction set. Since emulation code runs a superset of the 
RISC code, additional logic to decode these extended 
instructions is provided with the RISC decode block. The 
extended emulation mode instructions are enabled by enable 
block 44, which is controlled by the emulation mode bit in 
the mode register 38. Multiplexer or Mux 46 selects the 
decoded instruction from either the RISC or the CISC 
decode sub-block. Mux 46 is controlled by the RISC/CISC 
mode control bit in mode register 38. When emulation mode 
is entered, the RISC/CISC bit must be set to the RISC setting 
and the emulation mode bit enabled, because RISC instruc 
tions may also be executed by the emulation code. 
The decoded instruction is passed from mux 46 to execute 

unit 48. which can perform arithmetic functions and address 
generation. General-purpose registers 50 supply operands to 
the execute unit 48. Since a full segmentation unit is not 
provided, segment addition must be performed by the 
execute unit when needed as part of normal address gen 
eration. Limit checking is provided by hardware associated 
with the TLB in conjunction with the emulation driver. 
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Execute unit 48 is designed to execute the simpler CISC 
and RISC instructions. and thus has reduced complexity 
relative to traditional execute units on CISC and even RISC 
CPU's. Since only simple instructions are directly 
supported, the unit can be made to operate at higher speed 
than if all instructions were supported. Microcode can be 
minimized or even eliminated because complex instructions 
are supported by algorithms stored in emulation memory. 
These algorithms are not merely microcode stored off chip, 
which would require much more memory, but are higher 
level routines composed of RISC instructions and extended 
instructions. 
Any address generated by execute unit 48 is sent to the 

TLB 52, which performs an associative search on the input 
virtual address and translates it to a physical address output 
on bus 54. The page or upper address is from the TLB and 
the offset or lower address is bypassed around the TLB.TLB 
52 can translate virtual addresses from the execute unit 48 to 
physical addresses if segmentation is disabled, or translate a 
linear address generated by addition in the address genera 
tion unit to a physical address. If the segment begins or ends 
on a page. then special hardware is required to specify that 
emulation mode should be entered if the address is close to 
the segment boundary, or within the physical page but 
outside the segment. 

If the translation is not present in the TLB, a miss is 
signaled which causes emulation mode to be entered. Emu 
lation mode is always used to load the TLB, allowing the 
emulation driver the highest level of control over address 
mapping and translation. 
Mode control logic 42 causes emulation mode to be 

entered whenever a miss is signaled from TLB 52. or an 
unknown opcode is detected by instruction decode unit 36. 
Normal exceptions, interrupts, and traps from the execute 
unit and other units also cause emulation mode to be entered, 
giving great flexibility in system design. Mode control logic 
42 sets and clears the RISC/CISC and emulation mode 
control bits in mode register 38. When entry to emulation 
mode is requested, entry point block 56 generates the proper 
entry point vector or address in the emulation portion of 
memory, and loads this address into the instruction pointer 
34. Thus the CPU will begin fetching and executing instruc 
tions at the specified entry point. where the emulation driver 
contains a routine to handle the exception, TLB miss, or to 
emulate the unknown instruction. Instruction decode block 
36 can provide the opcode itself and other fields of the 
instruction to the entry point logic, to allow the entry point 
to be more fully specified. Thus one entry point could be 
defined for a REP MOVS with a byte operand while another 
entry point is defined for a REP MOVS instruction with a 
long-word operand. Table 1 shows the entry points from 
CISC mode. For example, the REP MOVS byte instruction 
enters the emulation code at A4 hex, while REP MOVS 
longword enters at A5 hex. A TLB miss with segment 0 
enters at 18 hex, while a far RETurn in x86 real mode enters 
at CA hex. 

If the CISC user program executes an instruction to 
enable or disable translation and the TLB, the instruction 
may be detected by the instruction decode logic 36, causing 
an unknown instruction to be signaled over line 40 to mode 
control 42, causing emulation mode to be entered. Execute 
unit 48 may also detect an attempt to enable or disable the 
TLB, and signal mode control 42 by asserting TLB enable 
detect 49. TLB enable detect 49 does not enable or disable 
the TLB as is does for a prior-art CISC CPU; instead it 
causes emulation mode to be entered, which will emulate the 
effect the instruction would have had. However, the TLB is 
not disabled. Thus emulation mode has complete control 
over the TLB. 
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RISC Instruction Decode 

The RISC sub-block of instruction decode 36 decodes the 
PowerPCRISC instruction set. All instructions are 32 bits in 
size. and some require two levels of instruction decoding. 
The first level determines the basic type of instruction and is 
encoded in the 6 most significant bits. Table 2 shows the 64 
possible basic or primary opcode types. For example. 
001110 binary (OE hex) is ADDI - add with an immediate 
operand, while 100100 (24 hex) is STW - store word. The 
CPU executes the 45 unshaded opcodes directly in hard 
ware. The fifteen darkly shaded opcodes, such as 000000, 
are currently undefined by the PowerPC architecture. Unde 
fined opcodes force the CPU into emulation mode, where the 
emulation driver executes the appropriate error routine. 
Should instructions later be defined for these opcodes, an 
emulator routine to support the functionality of the instruc 
tion could be written and added to the emulator code. Thus 
the CPU may be upgraded to support future enhancements 
to the PowerPC instruction set. It is possible that the CPU 
could be field-upgradable by copying into emulation 
memory a diskette having the new emulation routine. 
The second level of instruction decoding is necessary for 

the remaining four lightly shaded opcodes of Table 2. 
Another 12-bit field in the instruction word provides the 
extended opcode. Thus one primary opcode could support 
up to 4096 extended opcodes. Primary opcode 010011. 
labeled "GRP A' in Table 2, contains instructions which 
operate on the condition code register, while groups C and 
D (opcodes 111011 and 111111 respectively) contain float 
ing point operations. Group B (opcode 011111) contains an 
additional version of most of the primary opcode 
instructions, but without the displacement or immediate 
operand fields. Most group B and many instructions from 
groups A. C. and D are directly supported by the CPU's 
hardware, and the RISC instruction decoder thus supports 
some decoding of the 12-bit second level field. In the 
appendix is a list of the PowerPC instruction set, showing 
the primary and extended opcodes, and if the instruction is 
supported directly in hardware or emulated in emulation 
mode, as is, for example, opcode 2E, load multiple word. 

Extended Instructions For Emulation Mode 

Extended instructions for controlling the CPU's hardware 
are added to the RISC instruction set by using undefined 
opcodes, such as those indicated by the darkly shaded boxes 
in Table 2. Thus additional logic may be added to the RISC 
instruction decode unit to support these additional instruc 
tions. However, user RISC programs must not be allowed to 
use these extended instructions. Therefore, the decoding of 
these extended instructions can be disabled for RISC user 
mode. and only enabled for emulation mode. 

Extended instructions include instructions to control the 
translation-lookaside buffer or TLB. The TLB may only be 
loaded or modified by these extended instructions which are 
only available when in emulation mode. Thus the emulation 
mode drivers have complete control over address mapping 
and translation in the system. This allows the emulation 
driver to set aside an area of memory for its own use, and to 
prevent user programs from accessing or modifying this area 
of memory. Because all memory references in user modes 
are routed through the TLB, which is only controllable by 
the emulation mode driver, the emulation mode acts as an 
additional layer of software between the user mode pro 
grams and operating systems, and the actual system memory 
and I/O. Thus the emulation driver can create an area of 
memory hidden from the user mode programs, and can 
locate its drivers and emulation routines in this hidden area 
of memory. 
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CISC Instruction Decode 

CISC instructions can range in size from 8 bits (one byte) 
to 15 bytes. The primary x86 opcode, is decoded by the 
instruction decode block 36 of FIG. 2. About 50% of the x86 
instructions that can be executed by Intel's 80386 CPU are 
executed directly by the dual-instruction set CPU. Table 3 
shows a primary opcode decode map for the x86 instruction 
set, while Table 4 shows extended decoding. Unshaded 
opcodes are directly supported in hardware, such as 03 hex, 
ADD rv for a long operand. This same opcode. 03 hex, 
corresponds to a completely different instruction in the RISC 
instruction set. In CISC 03 hex is an addition operation, 
while in RISC 03 hex is TWI -trap word immediate, a 
control transfer instruction. Thus two separate decode 
blocks are necessary for the two separate instruction sets, 
A comparison of the opcode decoding of Table 2 for the 

RISC instruction set with Table 3 for the CISC instruction 
set shows that the two sets have independent encoding of 
instructions to opcodes. While both sets have ADD 
operations, the opcode number which encodes the ADD 
operation is different for the two instruction sets. In fact, the 
size and location of the opcode field in the instruction word 
is also different for the two instruction sets. 

Darkly shaded opcodes in Table 3 are not supported 
directly by hardware and cause an unknown or unsupported 
opcode to be signaled over line 40 of FIG. 2. This causes 
emulation mode to be entered, and the opcode is used to 
select the proper entry point in the emulation memory. By 
careful coding of the emulation routine, performance deg 
radation can be kept to a minimum. Lightly shaded opcodes 
in Table 3 are normally supported directly by the CPU, but 
not when preceded by a repeat prefix (opcode F2 or F3). 

Selection of Instructions to Directly Support 
Instructions were chosen for emulation rather than direct 

execution in hardware on the basis of how frequently the 
instruction is used in a typical x86 program, how many 
processor clock cycles the instruction takes, and how com 
plex and likely the instruction is to need debugging and 
revision before operating properly on the dual-instruction set 
CPU. The performance of emulated instructions is reduced 
by an emulation mode entry and exit overhead, and by 
substituting RISC instructions for the atomic CISC instruc 
tion. Instructions that already take many clocks, such as 
repeated string instructions or PUSHALL, can have the 
entry/exit overhead amortized over more clock cycles; thus 
the penalty is effectively reduced. For some repeated 
instructions, a more complex and efficient algorithm can be 
coded in emulation memory, possibly even resulting in an 
improvement in performance. 

Instructions that are very complex and poorly understood 
by the CPU designers can also be emulated rather than 
directly supported. Thus debugging could be done quickly 
and inexpensively by changing the emulation code in 
memory, rather than by the expensive and time-consuming 
process of revising the silicon die. Time-to-market for the 
CPU may therefore be reduced. 
While a preferred embodiment has been described that 

directly decodes only about 50% of the CISC instruction set 
and a larger percentage of the RISC instructions set, the 
exact percentage of instructions decoded and supported will 
vary from implementation to implementation. Other 
embodiments may directly support a larger or a smaller 
percentage of a particular instruction set, while still falling 
within the spirit of the invention. 

Translation Algorithm 
When a TLB miss occurs, Mode control logic 42 of FIG. 

2 sets the emulation mode bit in the mode register 38. 
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10 
causing emulation mode to be entered. Entry point logic 56 
determines the proper entry point depending on the segment 
that caused the TLB miss, or if the miss was caused by an 
invalid or unallowed access. Such as a write to a read-only 
page. As Table 1 shows, entry points 18-1E are defined for 
TLB misses for segment number 0-5, and without a segment 
enabled, while entry points 28-2D are for invalid accesses 
for segments 0-5. Entry point 48 is for instruction TLB 
misses. 

Emulation code will determine the correct translation for 
the virtual address that was input into the TLB for transla 
tion. For CISC mode, segmentation rules will also be 
checked. The correct translation is determined by accessing 
the page tables for the user, if present, and accessing system 
page tables kept by the emulation driver in the emulation 
memory. The final translation will be loaded into the TLB 
along with the virtual address, and the translation validated 
and enabled. Subsequent references to the same page will 
result in TLB hits. 

Since the TLB is only loaded by the emulation driver, and 
cannot be modified by the user programs or operating 
systems, a mechanism is provided to protect or set aside 
portions of memory for use solely by the emulation driver, 
and to partition the memory into 2 or more user spaces. The 
TLB must always be enabled when user mode is active, even 
at system reset or boot-up. The emulation driver must set up 
page translation tables and enable the TLB before user mode 
is first entered. The user mode programs must not be able to 
turn off or avoid TLB translation. User programs may have 
their own routines to set up and manage page translation 
tables, and the emulation driver will consult these if 
necessary, but will always be able to translate memory 
references from user modes. 

FIG. 3 shows a main memory space 70 for use with the 
dual-instruction-set CPU. Main memory space 70 is divided 
into a CISC memory space 72, a RISC memory space 74. 
and an emulation memory space 76. Emulation memory 
space 76 contains handler routines 80 for emulating the 
more complex instructions of the RISC and CISC instruction 
sets that are not directly supported in the CPU's hardware. 
These handler routines 80 are composed of the simpler RISC 
instructions and extended RISC instructions, such as for 
controlling the TLB. The CISC memory space 72 may 
contain user programs 78 as well as a CISC operating system 
82. Likewise the RISC memory space 74 may contain RISC 
user programs 84 and a RISC operating system 86. Because 
the emulation handler routines 80 control the TLB at the 
highest level, the emulation memory space 76 may be 
inaccessible and hidden from the user programs 78.84, and 
even the operating systems 82.86 of CISC and RISC modes. 
The entire memory space visible by CISC programs 78 and 
operating system 82 is only the CISC memory space 72. 
Thus a CPU that can execute instructions from multiple 

instruction sets has been described. By emulating some 
complex instructions in software the CPU has the advantage 
of being simpler, less expensive to manufacture and design. 
and easier to debug, resulting in a faster time-to-market. The 
CPU may also be upgraded after being sold by a software 
update in the field. 

Alternate Embodiments 

Several other embodiments are contemplated by the 
inventors. For example, the RISC/CISC multiplexer 46 for 
the instruction decode could be implemented in a variety of 
ways, such as enabling the inputs to the decode logic or 
disabling other logic within the decoder. Many other such 
design choices may be made without departing from the 
spirit of the invention disclosed herein. 
The foregoing description of the invention has been 

presented for the purposes of illustration and description. It 
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is not intended to be exhaustive or to limit the invention to intended that the scope of the invention be limited not by this 
the precise form disclosed. Many modifications and varia- detailed description, but rather by the claims appended 
tions are possible in light of the above teaching. It is hereto. 

TABLE 

CISC Entry Points 

O x x2 x3 x4 x5 x6 x7 x8 x9 XA xB xC. XD XE XF 

Ox Undef GRP7 LAR LSL CLTS PUSH POP ZOT ZOT ZOT ZOT ZOT ZOT ZOT ZOT 
ined ES ES O 1 2 3 4. 5 6 mult. 

real 
lx GRP6 PUSH POP TLB TLB TLB TLB TLB TLB TB POP 

SS SS miss miss miss miss miss miss miss DS 
real O 2 3. 4 5 Oe real 

2x MOV MOV MOV MOV MOV MOW DAA TLB TLB TLB TLB TLB TLB PUSH DAS 
c, r dr C r, d t, r , t inval inval inval inval inval inval CS 

O 2 3. 4. 5 
3x AAA ZOT PUSH AAS 

inst DS 
4x reset NMI INTR POP TLB 

ES Iniss 
prot inst 

5x POP DIWG POP 
SS OFLO DS 
prot W prot 

6x PUSH POPA BOU ARPL INS NS OUTS OUTS 
A. ND 

7. 
8x SHILD SHLD NVD WBEN RSM SHRD SHR 

C W D 
9x LFS LGS LFS LGS Call Cal PUSH POPF PUSH POP 

real real prot prot far far F 16bit F F 
real prot 16bit 32bit 32bit 

Ax PUSH POP Movs Movs Cmps Cmps PUSH POP Stos Stos Lods Lods Scas Scas 
FS FS byte long byte long GS GS byte long byte long byte long 

real REP REP REP REP real REP REP REP REP REP REP 
Bx POP LSS ESS Movs Movs Cmps Cmps POP Stos Stos Lods Lods Scas Scas 

FS byte long byte long GS byte long byte long byte long 
prot real prot repne repne repne repne prot repne repne repne repne repne repne 

Cx XAD XAD LES LDS LES LDS Enter Leave RET RET NT3 NT NTO IRET 
D D real real prot prot far far real rea real real 

real read 
Ox AAM AAD XLAT RET RET NT3 INT ENTO RET 

far far prot prot prot prot 
prot prot 

Ex N N OUT OUT MP JMP N N OUT OUT 
far far 
real prot 

Fx HLT CMP CMP CLI STI BSF BSR all 
XCH XCH other 
G G invals 

TABLE 2 

50 PowerPC RISC Opcodes 

PowerPC 
primary 
opcode XXX000 XXX001 XXXO10 XXXO11 XXX100 XXX101 XXX110 XXX111 
000XXX TWI MUL 
OOXXX SUBFC cPLI CMPI ADDC ADOC ADD. ADDS 
O10XXX BCx SC Bx GRPA RLWMx RLWNMix RLWNMx 

Condition 
register 
instructions 

O11XXX ORI ORIS XOR, XORS AND ANDS. GRP B 
60 Misc. 

instructions 
100XXX LWZ LWZU LBZ LBZU STW STWU STB STBU 
101XXX LHZ LHZU LHA LHAU STH STHU LMW STMW 
1100XXX LFS LFSU LFD LFDU STFS STFSU STFD STFDU 
1XXX GRPC GRPD 

65 FP operate FP operate 







17 
-continued 

5.78,750 

Appendix: PowerPC RISC Instruction Set 

F 297 stfsX indexed UO 
F 2B7 stfsu. indexed update UO1 
36 stfid Store FP double Hardware UO 
37 stfchu precision UOl 
F 2D7 stfix update J 
1F 2F7 stflux indexed UO 

indexed update 
2E lmw Load multiple word Emulate UO & 

BU 
2F sts Store multiple word Emulate UO & 

BU 
F 216 wbrx Load word byte-reverse Hardware UO 

indexed 
F 296 stwbrx Store word byte-reverse Hardware UO 

indexed 
F 316 librx Load halfword byte- Hardware UO 

reverse indexed 
1F 396 sthbrx Store halfword byte- Hardware IUO 

reverse indexed 
F 4. lwarx Load word and reserve EUO 

indexed 
1F 96 stWCX. Store word conditional UO 

indexed 
Logical and Shift Instructions 

Primary Extend. How 
opcode opcode Mnemnic F handled Units 

1F C and AND Hardware U1 
1C andi. 
1D andis. 
1F 3C andcx AND with complement Hardware U1 
F 7C ox NOR Hardware U1 
F 11C eqvX Equivalent Hardware U1 

IF 13C ox XOR Hardware U1 
1A Xori 
1B xoris 
F 19C Cx OR with complement Hardware U1 
F 1BC Ox OR Hardware U1 
18 ori 
19 oris 
F OC nandix NAND Hardware U1 
4 rwinix Rotate left word immed. Hardware U 

then AND with mask 
insert 

5 rwinmx Rotate left word immed. Hardware Ul 
then AND with mask 

17 rlwinnx Rotate left word then Hardware U1 
AND with mask 

F 8 swk Shift left word Hardware U 
1F 28 SW Shift right word Hardware TU 
F 38 Saw Shift right algebraic word Hardware U 
F 338 stawix Shift right algebraic word Hardware U 

immediate 
1F A. cntlzwk Count leading zeros word Hardware 1 
F 39A extsh Extend sign halfword Hardware Ul 
1F 3BA extsbx Extend sign byte Hardware U 

Algebraic instructions 

Primary Extend. How 
opcode opcode Mnemnic Instruction handled Units 

E addi. ADD immediate Hardware U1 
C addic carrying 
D addic. carrying record 
F addis shifted 
F 10A addix ADD Hardware U1 
F A. addicx carrying 
F 8A. addex extended 
1F CA addmex to minus one extended 
1F EA. addizex to zero extended 
8 subfic SUB immediate carrying Hardware U 
F 28 subf SUB Hardware U 
F 8 subfcx carrying 
1F 88 subfex extended 
F E8 subfmex to minus one extended 
F C8 subfaex to zero extended 
F 68 neg Negate Hardware U 

18 
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s 

3 

F 
F 

F 

F 

F 

13 

3 

F 

10 

210 

4B 

1CB 
EB 

25 

255 

295 

21 
81 

3 
26 
46 
86 

247 
2C7 

32 

D2 
F2 
253 
293 

53 

92 

32 

F2 

B2 

cmpi 
cmpli 
clap 
cmpl 

mulx 
mulli 
mulhwx 
mulhwux 

div wux 

lswx. 

lswi 

stsWX 

stswi 

micrf 
CC 

crandic 

co 

crnand 

creqv 
Coc 

co 

mtcrf 
c 

mcrfs 
mfcr 
mtfsb1x 
mtfsbOx 
mtfsfix 

mitfsfx 

isync 

mtsrin 
mfst 
mfsrin 

mfansr 

ratist 

tlbie 

slbia 

slbia 

slbiex 

Compare immediate 
logical 
Compare 
logical 
Control transfer instructions 

Branch 
Branch conditional 
Trap word 
immediate 
Branch cond. to count 
reg. 
Branch cond. to link reg. 
System call 

Multiply and Divide instructions 

Multiply low 
immediate 
Multiply high 
unsigned 
Divide word 
unsigned 

String instructions 

Load string word indexed 

Load string word 
immediate 
Store string word indexed 

Store string word 
immediate 

Condition register instructions 

Move CR fied 
CR NOR 
CRAND with 
complement 
CR XOR 
CR NAND 
CRAND 
CR Equivalent 
CR OR with complement 
CR OR 
Move to CR fields 
Move to CR from XER 
Move to CR from FPSCR 
Move from CR field 
Move to FPSCR bit 1 
Move to FPSCR bit 0. 
Move to FPSCR 
immediate 
Move from FPSCR 
Move to FPSCR 

Privileged instructions 

Return from interrupt 

Instruction synchronize 

Move to segment register 
indirect 
Move from segment 
register 
indirect 
Move from machine state 
register 
Move to machine state 
register 
TLB invalidate entry 

SLB invalidate a 

SLB invalidate entry 

SLB invalidate by index 

Hardware 

Hardware 

Hardware 
Hardware 
Hardware 

Hardware 

Hardware 
Hardware 

Hardware 

Hardware 

Hardware 

Emulated 

Emulated 

Emulated 

Emulated 

Hardware 
Hardware 
Hardware 

Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 

Hardware 
Hardware 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

not impl. 

not impl. 

not impl. 

U 

BU 
BU 
Ul 

BU 

BU 
BU 

UO. 

IUOl 

UOl 

O & 
BU 
UO & 
BU 
UO & 
BU 
UO1 & 
BU 

BU 
BU 
BU 

BU 
BU 
BU 
BU 
BU 
BU 
U1 & BU 
BU 
BU 
U1 & BU 
BU 
BU 
BU 

FU & BU 
FU & BU 

U01 & 
BU 
IUO1 
BU 
IUO & 
BU 

IUO & 
BU 
UOl & 
BU 
UO & 
BU 
UO1 & 
BU 
UO1 & 
BU 
U01 & 
BU 

20 
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F 

F 

F 

F 

F 

F 

193 

1B3. 

153 

36 

56 

F6 

116 

1D6 

3F6 

3D6 

356 

256 

136 

73 

B2 

12 
4 
15 
16 

19 
1C 
1D 
1E 
1F 
12 
14 
15 
6 
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mfb 

mftbu 

mttb 

mttbu 

mfspr 

mtspr 

dcbst 

dcbf 

dcbtst 

dcbt 

dicbi 

dcbz 

icbi 

eieio 

sync 

eciwx 

ecoVX 

mtpmr 

fivsx 
fsubsk 
faddsx 
frsqrtsx 

fmusX 
fimsubsx 
fmaddsx 
fnmsubsx 
fnmaddsx 
foivX 
fsubx 
faddx 
fsqrtx 

fmulx 
finsubx 
fmaddix 
fininsubx 
fnmaddx 
fresx 

fcmpu 
frspx 
fotiwx 

Move from time base 

Move from time base 
upper 
Move to time base 

Move to time base upper 

Move from special 
purpose register 
Move to special purpose 
register 

Other user-mode instructions 

Data cache block store 

Data cache block flush 

Data cache block touch 
for store 
Data cache block touch 

Data cache block 
invalidate 
Data cache block zero 

Instruction cache block 
invalidate 
Enforce in-order I/O 
execution 
Synchronize 

External control input 
word indexed 
External control output 
word indexed 

Other instructions 

Move from program 
mode register 
Move to program mode 
register 
Floating point instructions 

FPSP Divide 
FPSP Subtract 
FPSPAdd 
FPSP Square root 

FPSP Multiply 
FPSP Multiply-Subtract 
FPSP Multiply-Add 
FPSP Neg-Mult-Subtract 
FPSP Net-Mutt-Add 
FPDP Divide 
FPDP Subtract 
FPDPAdd 
FPDP Square root 

FP DP Multiply 
FP DP Multiply-Subtract 
FP DP Multiply-Add 
FPDP Neg-Mult-Subtract 
FPDP Net-Mult-Add 
FPSP Reciprocal 
estimate 
FP Compare unordered 
FP Round to SP 
FP Convert to integer 
word 
FP Convert to integer 
word and round toward 
2ed 

not impl. 

not impl. 

not impl. 

not impl. 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Emulated 

Hardware 
Hardware 
Hardware 
not impl. 

Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
not impl. 

Hardware 
Hardware 
Hardware 
Hardware 
Hardware 
not impl. 

Hardware 
Hardware 
Hardware 

Hardware 

UO & 
BU 
UO & 
BU 
UO1 & 
BU 
UO1 & 
BU 
UO1 & 
BU 
IUO & 
BU 
IUO & 
BU 
IUO & 
BU 

1 & 
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3F 17 fsex FP Select not impl. UO & 
BU 

3F 1A frsqrtex FP Reciprocal square root not impl. UO1 & 
estimate BU 

3F 20 fempo FP Compare ordered Hardware FU 
3F 28 fnegx FP Negate Hardware FU 
3F 48 fmrx FP Move register Hardware FU 
3F O8 finabsx FP Negative absolute Hardware FU 

value 
3F 14 fabsx FPAbsolute value Hardware FU 

We claim: 15 main memory, said TLB providing an indication to aid 
1. A central processing unit (CPU) for processing instruc 

tions from two separate instruction sets, said CPU compris 
ing: 

first instruction decode means for decoding instructions 
from a first instruction set, said first instruction set 
having a first encoding of instructions; 

second instruction decode means for decoding only a 
subset of instructions from a second instruction set, 
said second instruction set having a second encoding of 
instructions, said first encoding of instructions inde 
pendent from said second encoding of instructions; 

select means, coupled to said first instruction decode 
means and said second instruction decode means, for 
selecting said decoded instruction from either said first 
instruction decode means or from said second instruc 
tion decode means; and 

execute means for executing decoded instructions 
selected by said select means. 

whereby instructions from both said first instruction set 
and said second instruction set are executed by said 
CPU. 

2. The CPU of claim 1 further comprising: 
an instruction fetch buffer, containing instructions to be 

decoded, coupled to said first instruction decode means 
and said second instruction decode means; and 

instruction pointer means, coupled to said instruction 
fetch buffer, for indicating an address of a next instruc 
tion to be decoded. 

3. The CPU of claim 1 further comprising: 
mode register means, coupled to said select means, for 

indicating an instruction set to be decoded and 
executed. 

4. The CPU of claim 3 further comprising: 
mode control means, coupled to said mode register 

means, for changing said instruction set to be decoded. 
5. The CPU of claim 4 wherein 
the second instruction decode means decodes only a 

portion of said second instruction set, and said second 
instruction decode means indicating to said mode con 
trol means when an instruction is not in said decoded 
portion of said second instruction set; 

the mode control means changing said instruction set to 
be decoded to said first instruction set when an indi 
cation is received that an instruction is not in said 
decoded portion of said second instruction set. 

6. The CPU of claim 5 further comprising 
a translation-lookaside buffer (TLB) coupled to said 

execute means, said TLB having address translation 
entries for translating a virtual address from said 
execute means to a physical address for accessing a 
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mode control means to change said instruction set to be 
decoded to said first instruction set when no translation 
is found in said TLB corresponding to aid virtual 
address from said execute means. 

7. The CPU of claim 6 wherein a handler routine com 
prised of instructions from said first instruction set is fetched 
from main memory and executed when mode control is 
signaled by said TLB or by said second instruction decode 
CaS. 

8. The CPU of claim 7 wherein said execute unit provides 
an indication to said mode control means when an exception 
occurs in said execute unit, said mode control means chang 
ing aid instruction set to be decoded to said first instruction 
set when said indication is received. 

9. The CPU of claim 6 wherein all references to main 
memory generated by instructions in said second instruction 
set are translated by said TLB. 

10. The CPU of claim 6 wherein said address translation 
entries in said TLB are loaded only by instructions decoded 
by said first instruction decode means. 

11. The CPU of claim 10 wherein said first instruction 
decode means decodes instructions from said first instruc 
tion set and extended instructions added to said first instruc 
tion set, and wherein said address translation entries in said 
TLB are modified only by said extended instructions. 

12. The CPU of claim 11 wherein said first instruction 
decode means is selected to decode instructions immediately 
following a reset of said CPU. 

13. The CPU of claim 11 wherein said extended instruc 
tions are decoded by said first instruction decode means only 
when said mode control means is signaled to change said 
instruction set to be decoded or immediately following a 
eSet. 
14. A method for processing instructions from two sepa 

rate instruction sets on a central processing unit (CPU), said 
method comprising: 

decoding instructions from a first instruction set with a 
first instruction decoder, said first instruction set having 
a first encoding of instructions; 

decoding only a subset of instructions from a second 
instruction set with a second instruction decoder, said 
second instruction set having a second encoding of 
instructions, said first encoding of instructions inde 
pendent from said second encoding of instructions; 

selecting said decoded instruction from either said first 
instruction decoder or from said second instruction 
decoder; and 

executing said decoded instruction that was selected, 
whereby instructions from both said first instruction set 

and said second instruction set are executed by said 
CPU. 

15. A method for processing instructions from a complex 
instruction set computer (CISC) instruction set on a reduced 
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instruction set computer (RISC) Central Processing Unit 
(CPU), said method comprising: 

attempting to decode an instruction with a CISC instruc 
tion decode unit that does not decode all instructions in 
said CISC instruction set: 

directly executing said instruction in an execute unit if 
said CISC instruction decode unit is able to decode said 
instruction; 

entering an emulation mode if said CISC instruction 
decode unit is not able to fully decode said instruction. 
indicating that said execute unit cannot directly execute 
said instruction; 

disabling said CISC instruction decode unit and enabling 
a RISC instruction decode unit when entering emula 
tion mode: 

loading an instruction pointer with an address of a soft 
ware emulation routine for emulating said undecodable 
instruction, said routine comprising instructions from a 
separate RISC instruction set; 

decoding RISC instructions with said RISC instruction 
decode unit as 

aid software routine is executed; 
executing said RISC instructions in said execute unit; and 
exiting emulation mode, disabling said RISC instruction 

decode unit and enabling said CISC instruction decode 
unit when said end of said software emulation routine 
is reached. 

whereby all instructions from said CISC instruction set 
are executed, either directly by said execute unit or by 
emulation with a software emulation routine comprised 
of RISC instructions. 

16. The method of claim 15 wherein 

the software emulation routine is comprised of RISC 
instructions and extended instructions, said extended 
instructions using undefined opcodes in said RISC 
instruction set; 

the method further comprising decoding and executing 
extended instructions while said software emulation 
routine is being executed. 

17. The method of claim 16 further comprising: 
translating memory references generated by said CISC 

instructions that are directly executed, said translation 
of memory references controlled by a software trans 
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lator routine comprised of RISC instructions and 
extended instructions. said translator routine loading 
said resulting translations into a translation-lookaside 
buffer. 

18. A microprocessor for executing instructions belonging 
to a reduced instruction set computer (RISC) instruction set 
and for executing instructions belonging to a complex 
instruction set computer (CISC) instruction set, said micro 
processor comprising: 
RISC instruction decode means, for decoding instructions 

belonging to said RISC instruction set; 
CISC instruction decode means, for decoding only a 

subset of instructions belonging to said CISC instruc 
tion set; 

mode register means for indicating a current operating 
mode of said microprocessor; 

enable means, coupled to said RISC instruction decode 
means and said CISC instruction decode means, for 
enabling said-decoding of instructions belonging to 
said RISC instruction set or belonging to said CISC 
instruction set, said enable means responsive to said 
current operating mode of said microprocessor; and 

an execution unit, coupled to said RISC instruction 
decode means and said CISC instruction decode means. 
for executing instructions belonging to said RISC 
instruction set and instructions belonging to said CISC 
instruction set, 

whereby instructions from said RISC instruction set and 
instructions from said CISC instruction set can be 
executed by said execution unit. 

19. The microprocessor of claim 18 wherein said mode 
register means indicates CISC mode, RISC mode, or an 
emulation mode, wherein a portion of said CISC instruction 
set is decoded by said CISC instruction decode means when 
said mode register means indicates CISC mode, and wherein 
undecoded CISC instructions are emulated by emulation 
mode. 

20. The microprocessor of claim 19 wherein emulation 
mode is entered when said CISC instruction decode means 
signals an undecoded instruction, said mode register means 
changing from CISC mode to emulation mode when an 
undecoded instruction is signaled. 
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