
40

A cyclic redundancy code can be calculated on bytes instead of bits. One

byte-oriented method reduces calculation time by a factor of almost four.

. Byte,:-wise
CRC Calculations

Aram Perez

Wismer & Becker

A method that is commonly used to ensure the integ­
rity of the messages in data communications is a cyclic
redundancy code, or eRC. A CRC is usually calculated
automatically in hardware by means of a bit-wise method.
It can also be calculated in software by emulating this
method. Here, we derive a byte-wise algorithm for calcu­
lating CRC in software that is four times faster than the
usual bit-wise software method. The idea for this algo­
rithm came from a table look-up algorithm by Lee. 1 The
method described here eliminates the table and takes no
more space than the slower bit-wise method.

CRC background and theory

When digital messages are transmitted and received over
telephone or radio channels, some errors can be expected
to appear. Errors occur because of interference between
channels, fading of signals, atmospheric conditions, and

other sources of noise. Some method is needed to detect
when the message received is not the same as that transmit­
ted. Commonly used methods of detecting errors include
checksums, parity checks, longitudinal redundancy code,
and cyclic redundancy code.

CRC is often used because it is easy to implement and it
detects a large class of errors. For any given message, CRC
will detect

• all one- or two-bit errors,
• all odd numbers of bit errors,
• all burst errors less than or equal to the degree of the

polynomial used, and
• most burst errors greater than the degree of the poly­

nomial used.

In a system employing CRC, the message being trans­
mitted is considered to be a binary polynomial M(X). It is
first multiplied by Xk and then divided by an arbitrary

.: 0272-1732/83/0600-00-10$01.00 © 1983 IEEE IEEE MICRO

generator polynomial G(X) of degree k, which results in a
. quotient Q(X) and a remainder R(X)/G(X). All arithmetic
is done: in modulo 2. This process is shown in the following
equation, in which E& is the sign for addition in modulo 2
arithmetic:

XkMOQ
G(X)

R(X)
Q(X) E& G(X)'

In modulo 2 arithmetic, the results of subtraction are
equivakmt to the results of addition. By applying this
property and some simple algebra to the equation, we get

XkM(X) E& R(X) = Q(X)G(X).

R(X) wiiIl always be of degree k or less.
The eRC algorithm calculates R(X) and appends it to

the message being sent. Since xkM(X) E& R(X) equals
Q(X)G(X), the original message with the CRC appended
will be e:venly divisible by G(X), if and only if no bits are
changed. At the receiving end, the received message (ori­
ginal message plus R(X» is divided by the generator
polynomial G(X). If the remainder is nonzero, it is as­
sumed that an error has occurred.lfthl:! remainder is zero,
it is assumed that no errors have occurred or that an error
has occurred buthas gone undetected by the algorithm. A
list of commonly used generator polynomials is given in
Table 1 .
. The CRC-16 polynomial is a common standard used

around the world. (It is the polynomial used in the Bisync
protocol, for example.) SDLC-synchronous data link
control--is used by IBM and is the standard in Europe.
The CRC-12 polynomial is used with six-bit bytes. The
"reverse:" polynomials are the same as the "forward"
polynomials, except that the data are taken in reverse
order. The LRC polynomials are used in longitudinal
calculations.

The rest of this article will be concerned only with the
CRC-16 polynomial, although any other polynomial can
be easily adapted by using the selected polynomial in the
derivation.

Since eRC arithmetic is done in modulo 2, it can be
easily implemented in hardware with shift registers and
exclusive-OR gates (Figure O. Each flip··flop contains one
bit of the CRC register. Most software routines emulate

MSB

D o D o o o

16 15 14

Figure 1. lfiardware for CRC·16 calculation.

June 1983

the hardware method, thus operating on one bit at a time.
Since most processors are not bit-oriented, the bit-wise
software approach requires lengthy periods of CPU time.
Given that many microprocessors are byte-oriented, an
algorithm to calculate CRC on a byte-by-byte basis would
be·of great benefit.

Algorithm derivation

Since we want to calculate the eRe eight bits at a time,
we need an algorithm that will produce the same eRe
value as would occur after eight shifts of a bit-wise CRe
calculation. The following sections derive such an algo­
rithm. Table: 2 shows the CRe register for each of eight
shifts. The notation used is as follows:

• Bits are numbered starting at 1, and bit 1 is the least
significant bit.

• The "SH" column is the shift number.
• The "IN" column is the data in, witp Mi being the ith

bit of the current byte of message M(X).
• Ri is the ith bit of the eRe register.
• Cj is the dih bit of the initial eRC register, just before

any shifts due to the current input byte.
• Vertical t:ntries in the Rj columns denote that the en­

tries are to be exclusive-ORed to form the contents of
each Ri.

As can be seen in Table 2, the contents of the CRC register
after eight shifts are a function (exclusive-OR) of various
combinations of the input data byte and the previous con­
tents of the eRC register. The byte-wise algorithm must
produce these eRC register contents.

Table 1.
Commonly used generator polynomials.

CRC-16 X
16 + X

15 + X2 + 1
SOLC (IBM, CCIH) X

16 + X12 + X5 + 1
CRC-12 X12 + X11 + x3 + X2 + X + 1
CRC-16 REVERSE X16 + X14 + X + 1
SOLC REVERSE X16 + X11 + X4 + 1
LRCC-16 X16 + 1
LRCC-8 x8 + 1

LSB CRC
OUT

D 0---- 0 o D 01--___

13

41

42,

The exclusive-OR function has the following properties,
given here without proofs ($ means exclusive-OR);

• A $ B equals B $ A (commutativity).
• A $ B $ C equals A $ C $ B (associativity).
• A $ A equals 0 (involution).
• A $ 0 equals A (identity).

The use of these properties makes it possible to simplify
the contents of each bit of the CRC register after eight
shifts, as shown in Table 3.

By defining a function Xi, we can further simplify the
CRC register. The vector X is composed of Xi's which in
turn are the result of the exclusive-OR of the ith bit of the
input data byte with the ith bit of the CRC register. The
function Xi is defined as

Xi = Ci $ Mi·

For an eight-bit data byte, X is the result of exclusive-OR­
ing the low-order byte of the CRC register with the input

Table 2.
CRC register after eight shifts.

SH IN CRC REGISTER

R16 R15 R14 R13 R12 R11 R10 Rg Rs R7 R6 R5 R4 R3 R2 R1

0 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 C4 C3 C2 C1

M1 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 C4 C3 C2
M1 C1 C1

M1 M1

2 M2 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cs Cs C7 C6 C5 C4 C3
C1 M1 C2 C1 C2
M1 C1 M1 C1
M2 M1 M1

M2 M2

3 M3 C3 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 C4
C2 C1 M1 C2 C1 C3
C1 M1 C3 C1 M1 C2
M1 M2 C2 M1 C1
M2 C1 M2 M1

M3 M1 M2
M2 M3
M3

4 M4 C4 C3 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5
C3 C2 C1 M1 C2 C1 C4
C3 C1 M1 C3 C1 M1 C3
C1 M1 M2 C2 M1 C2
M1 M2 C4 C1 M2 C1
M2 M3 C3 M1 M1
M3 C2 M2 M2
M4 C1 M3 M3

M1 M4

M2
M3
M4

M5 C5 C4 C3 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6
C4 C3 C2 C1 M1 C2 C1 C5
C3 C2 C1 M1 C3 C1 M1 C4
C2 C1 M1 M2 C2 M1 C3
C1 M1 M2 C4 C1 M2 C2
M1 M2 M3 C3 M1 C1
M2 M3 C5 C2 M2 M1
M3 M4 C4 C1 M3 M2
M4 C3 M1 M3
M5 C2 M2 M4

C1 M3 M5
M1 M4
M2
M3
M4
M5

IEEE MICRO

Table :2 cont'd

6 Me Ce C5 C4 C3 C2 C1 C1e C15 C14 C13 C12 Cll ClO Cg Ca C7
C5 C4 C3 C2 C1 Ml C2 C1 Ce
C4 C3 C2 C1 Ml C3 C1 Ml C5
C3 C2 C1 M, M2 C2 Ml C4 . C

2 C1 Ml M2 C4 C1 M2 C3
C1 Ml M2 M:j C3 Ml C2
Ml M2 M3 C5 C2 M2 C1
M2 M3 M4 C4 C1 M3 Ml
M3 M4 Ce C3 Ml M2
M4 M5 C5 C2 M2 M3
M5 C4 C1 M3 M4
Me C3 M1 M4 M5

C2 M2 Me
C1 M3
Ml M4
M2 M5
M3
M4
M5
Me

7 M7 C7 Ce C5 C4 C3 C2 C1 C1e C15 C14 C13 C12 C11 ClO Cg Ca
Ce C5 C4 C3 C2 C1 Ml C2 C1 C7
C5 C4 C3 C2 C1 Ml C3 C1 Ml Ce
C4 C3 C2 C1 Ml M2 C2 Ml C5
C3 C2 C1 Ml M2 C4 C1 M2 C4
C2 C1 Ml M2 M3 C3 Ml C3
C1 Ml M2 M3 C5 C2 M2 C2
Ml M2 M3 M4 C4 C1 M3 C1
M2 M3 M4 Ce C3 Ml Ml
M3 M4 M5 C5 C2 M2 M2
M4 M5 C7 C4 C1 M3 M3
M5 Me Ce C3 Ml M4 M4
Me C5 C2 M2 M5
M7 C4 C1 M3 Me

C3 Ml M4 M7
C2 M2 M5
C1 M3
Ml M4
M2 M5
M3 Me
M4
M5
Me
M7

8 Ma Ca C7 Ce C5 C4 C3 C2 C1 C1e G15 C14 C13 C12 C11 ClO Cg
C7 Ce C5 C4 C3 C2 C1 M1 C2 C1 Ca
Ce C5 C4 C3 C2 C1 Ml C3 C1 1'v1 1 C7
C5 C4 C3 C2 C1 Ml M2 C2 Ml Ce
C4 C3 C2 C1 Ml M2 C4 C1 M2 C5
C3 C2 C1 Ml M2 M3 C3 Ml C4
C2 C1 Ml M2 M3 C5 C2 M2 C3
C1 Ml M2 M3 M4 C4 C1 M3 C2
Ml M2 M3 M4 Ce C3 Ml C1
M2 M3 M4 M5 C5 C2 M2 Ml
M3 M4 M5 C7 C4 C1 M3 M2
M4 M5 Me Ce C3 Ml M4 M3
M5 Me Ca C5 C2 M2 M4
Me M7 C7 C4 C1 M3 M5
M7 Ce C3 Ml M4 Me
Ma C5 C2 M2 M5 M7

C4 C1 M3 Ma
C3 Ml M4
C2 M2 M5
C1 M3 Me
Ml M4
M2 M5
M3 Me
M4 M7
M5
Me
M7
Ma

June 1983 43

data byte. Table 4 shows the new simplified eRe register • the low-order byte of the eRe register is dependent
using Xi'S. on functions of the initial lower eight bits of the eRe

From Table 4 we can see that register, the input data byte, and the initial high-order
eight bits of the eRe register.

• the high-order byte of the eRe register is dependent
only on combinations of the exclusive-OR of the ini- This leads to the conclusion that it is possible to shift the
tiallower eight bits of the eRe register and the input high-order byte into the low-order byte of the eRe
data byte, and that register, discard the low-order byte, and then exclusive-

Table 3.
Simplified eRe register after eight shifts.

SH IN CRC REGISTER

R16 R15 R14 R13 R12 R11 R10 Rg Ra R7 R6 R5 R4 R3 R2 R1

8 Ma Ca C7 Ca C7 C6 C5 C4 C3 C16 C15 C14 C13 C12 Cn C10 Cg
Ma M7 Ma M7 M6 M5 M4 M3 C2 C1 Ca
C7 C6 C7 C6 C5 C4 C3 C2 M2 M1 Ma
M7 M6 M7 M6 M5 M4 M3 M2 C1 C7
C6 C5 M1 M7
M6 M5 C6
C5 C4 M6
M5 M4 ' C5
C4 C3 M5
M4 M3 C4
C3 C2 M4
M3 M2 C3
C2 C1 M3
M2 M1 C2
C1 M2
M1 C1

M1

Table 4.
eRe register after eight shifts, using XI'

SH IN CRC REGISTER

R16 R15 R14 R13 R12 Rn R10 Rg Ra R7 R6 R5 R4 R3 R2 R1

8 Ma Xa X7 Xa X7 X6 X5 X4 X3 C16 C15 C14 C13 C12 Cn C10 Cg
X7 X6 X7 X6 X5 X4 X3 X2 X2 X1 Xa
X6 X5 X1 X7
X5 X4 X6
X4 X3 X5
X3 X2 X4
X2 X1 X3
X1 X2

X1

Table 5.
Final eRe register.

SH IN CRC REGISTER

R16 R15 R14 R13 R12 R11 R10 Rg Ra R7 R6 R5 R4 R3 R2 R1

8 Ma 0 0 0 0 0 0 0 0 C16 C15 C14 C13 C12 C11 C10 Cg

Xa X7 Xa X7 X6 X5 X4 X3 X2 X1 0 0 0 0 0 Xa
X7 X6 X7 X6 X5 X4 X3 X2 X1 X7
X6 X5 X6
X5 X4 X5
X4 X3 X4
X3 X2 X3
X2 X1 X2
X1 X1

44 IEEE MICRO

OR some 16-bit word with the CRC register to get the new
contents. This is demonstrated in Table 5, in which every­
thing below the dotted line defines the 16-bit word that is
needed!.

Give:n the results shown in Table 5, it is possible to state
the following algorithm:

1. Exclusive-OR the input byte with the low-order byte
of the CRC register to get the Xi's.

2. Shift the CRC register eight bits to the right.
3. Calculate a value from the Xi'S which will give the

16-bit value defined by everything below the dotted
line in Table 5.

4. Exclusive-OR the CRC register with the calculated
value.

5. Repeat Steps 1 to 4 for all the message bytes.

Since the value calculated in Step 3 is dependent only on
Xs through Xl' and since there are only 256 different com­
binatiol1s of X, it is clear that these values can be tabulated
using X as an index. Thus, the algorithm can be restated as
follows:

1. Exclusive-OR the input byte with the low-order byte
of the CRC register to get X.

2. Shift the CRC register eight bits to the right.
3. Exclusive-OR the CRC register with the contents of

th(! table, using X as an index.
4. Repeat Steps 1 to 3 for all the message bytes.

This algorithm is general since no a priori assumption of
the polynomial is necessary. Only the entries. in the table
change if a different polynomial is used. Thus, it is pos­
sible to use only one routine to calculate a number of dif­
ferent CRCs,

Table gen.natlon

A Fortran 77 program that will generate the table values
needed for byte-wise CRC-16 calculations is given in
Listing 1, reproduced at the end of this article. It prints the
values in hexadecimal on a line printer. A modified version
of the program was used to make the file "&CRCTB."
This file was then INCLUDED in the source file of the
8080/8085 implementation of the algorithm. The program
may be easily changed to calculate the values for a differ­
ent CRC polynomial. Table 6 contains the table for the
CRC-16 polynomial. It contains all the possible values that
result from t~xclusive-ORing the low-order byte of the
CRC register with the incoming data byte and that are
defined by everything below the dotted line in Table 5.

Implementation

Listing 2 (program "CRCT") is an 8080/8085 program
that implements the byte-wise CRC algorithm using the
table look-up method. Comparing this routine with a bit-

Table 6.
Values for byte·wise CRC calculations
for all possible X's (values are in hex).

X VALUE X VALUE X VALUE X VALUE X VALUE X VALUE X VALUE X VALUE
CI 0000 32 0801 64 F001 96 2800 128 A001 160 7800 192 5000 224 8801
1 COC1 33 18CO 65 30CO 97 E8C1 129 60CO 161 88C1 193 90C1 225 48CO
2 C181 34 1980 66 3180 98 E981 130 6180 162 8981 194 9181 226 4980
3 0140 35 0941 67 F141 99 2940 131 A141 163 7940 195 5140 227 8941
4 C301 36 1800 68 3300 100 EB01 132 6300 164 8801 196 9301 228 4800
5 03CO 37 08C1 69 F3C1 101 2BCO 133 A3C1 165 78CO 197 53CO 229 88C1
6 0280 38 OA81 70.F281 102 2A80 134 A281 166 7A80 198 5280 230 8A81
7 C241 39 1A40 71 3240 103 EA41 135 6240 167 8A41 199 9241 231 4A40
8 C601 40 1EOO 72 3600 104 EE01 136 6600 168 8E01 200 9601 232 4EOO
9 06CO 41 OEC1 73 F6C1 105 2ECO 137 A6C1 169 7ECO 201 56CO 233 8EC1

10 0780 42 OF81 74 F781 106 2F80 138 A781 170 7F80 202 5780 234 8F81
11 C741 43 1F40 75 3740 107 EF41 139 6740 171 8F41 203 9741 . 235 4F40
12 0500 44 0001 76 F501 108 2000 140 A501 172 7000 204 5500 236 8001
13 C5C1 45 10CO 77 35CO 109 EOC1 141 65CO 173 80C1 205 95C1 237 40CO
14 C481 46 1C80 78 3480 110 EC81 142 6480 174 8C81 206 9481 238 4C80
15 0440 47 OC41 79 F441 111 2C40 143 A441 175 7C40 207 5440 239 8C41
16 CC01 48 1400 80 3COO 112 E401 144 6COO 176 8401 208 9C01 240 4400
17 OCCO 49 04C1 81 FCC1 113 24CO 145 ACC1 177 74CO 209 5CCO 241 84C1
18 0080 50 0581 82 FD81 114 2580 146 A081 178 7580 210 5080 242 8581
19 CD41 51 1540 83 3040 115 E541 147 6040 179 8541 211 9041 243 4540
20 OFOO 52 0701 84 FF01 116 2700 148 AF01 180 7700 212 5FOO 244 8701
21 CFC1 53 17CO 85 3FCO 117 E7C1 149 6FCO 181 B7C1 213 9FC1 245 47CO
22 CE81 54 1680 86 31:80 118 E681 150 6E80 182 8681 214 9E81 246 4680
23 OE40 55 0641 87 FE41 119 2640 151 AE41 183 7640 215 5E40 247 8641
24 OAOO 56 0201 88 FA01 120 2200 152 AA01 184 7200 216 5AOO 248 8201
25 CAC1 57 12CO 89 3ACO 121 E2C1 153 6ACO 185 82C1 217 9AC1 249 42CO
26 CB81 58 1380 90 3B80 122 E381 154 6880 186 8381 218 9881 250 4380
27 OB40 59 0341 91 FB41 123 2340 155 A841 187 7340 219 5840 251 8341
28 C901 60 1100 92 3900 124 E101 156 6900 188 8101 220 9901 252 4100
29 09CO 61 01C1 93 F9C1 125 21CO 157 A9C1 189 71CO 221 59CO 253 81C1
30 0880 62 0081 94 F881 126 2080 158 A881 190 7080 222 5880 254 8081
31 C841 63 1040 95 3840 127 E041 159 6840 191 8041 223 9841 255 4040

June 198:~ 45

BYTES:IN
MESSAGE

1
8

16

ROUTINE

CRCT
CRCF
CRCB

46

Table 7.
Comparison of CRC routines.

Acknowledgments

CRCT

NUMBER OF CPU CYCLES TO
CALCULATE CRC-16

CRCF

I would like to thank Dick Wallace, Leo Endres, Dick
Huffman, Roger Melton, Ray Haider, and, in particular,
Fred Jensen, all of Wismer & Becker, for their invaluable

CRCB support in the preparation of this article.

161
1169
2321

227
1669
3319

NUMBER OF BYTES OF MEMORY
FOR ROUTINE

540 (INCLUDING TABLE)
43
44

739
5668

11269

wise CRC routine, we found that it is up to five times
faster but that it takes 12 times as much memory. Concern­
ed with the speed/memory trade-off, we asked, "Since Xg
through Xl are known, is it possible to calculate the need­
ed value 'on the fly' instead oflooking it up in a table?"

The answer turned out to be yes. Listing 3 (program
"CRCF") is the result of trying to calculate the needed
value' 'on the fly. " It is actually an implementation of the
original version of the algorithm. Our objective in devel­
oping this program was to produce the needed value
(everything below the dotted line in Table 5) in register pair
HL. We used several facts which may not be readily appar­
ent from the program listing. First, by looking at
everything below the dotted line in Table 5, we can see that

• Rl6 is the sa~e as R I ,

• Rl6 is Xg e R IS ' and
• Rl4 through R7 is X e (X < 1), where" < " is shift

left.

Second, by letting XX7 equal X7 e X6 e Xs e X4 e X3 e X2
e Xl and letting XXg equal Xg e XX7, we can show that

• if Xg equals 0, then XXg equals XX7, and that
• if Xg equals 1, then XXg equals the complement of

XX7•

And third, 8080/8085 processors have a parity flag which
is the result of exclusive-ORingall the bits in the A register.

Performance

We compared both CRC routines against a bit-wise
serial routine (which we called "CRCB") and obtained the
results shown in Table 7. As can be seen, CRCT is the
fastest routine, nearly five times as fast as CRCB. But
CRCT does need almost twelve times as much memory as
CRCB. The surprise turned out to be CRCF. Needing one
byte less of memory'than CRCB, it is nearly four times
faster than that routine .•

Reference

1. R. Lee, "Cyclic Code Redundancy," Digital Design, July
1981, pp. 77-85.

For further reading

J. Martin, Teleprocessing Network Organization, Prentice­
Hall, Englewood Cliffs, NJ, 1970.

A. K. Pandeya and T. J. Cassa, "Parallel CRC Lets Many
Lines Use One Circuit," Computer Design, Sept. 1975.

Aram Perez is working on an MSEE at
California State University, Sacramento.
At the time of the writing of this article, he
was a software engineer at Wismer &
Becker, also in Sacramento. While with
that firm, he was in charge of designing
and writing software for microprocessor­
controlled data communications systems.
Before joining Wismer & Becker, he was a
software engineer for Teletek Enterprises,

Inc. His interests include home computing, computer graphics,
and music. Perez received a BSE from Walla Walla College,
College Place, Washington, in 1978. His address is Jones Futura
Foundation, 9700 Fair Oaks Blvd., Suite G, Fair Oaks, CA
95628.

IEEE MICRO

----------________ ----------______ ._----1--------------------__ --------
Listing 1. Tab~e generator program.

FTN77,L !rORTRAN 77 (HP-I000)
PROGRAM CRCV

c
C THIS, PROGRAM CALCULATES THE VALUES NECESSARY FOR
C BYTE-WISE CRC-!6 CALCULATIONS.
C
C IT PRINTS THE HEX EQUIVALENT OF THE VALUES ON THE LINE PRINTER,
C

c

c

c

c

INTEGER X8, X7, X6, XS, X4, X3, X2, Xl, V'(16), P2(4)
DIMENSION IA(4), IHXASC(1~) ! HEX TO ASCII TABLE
DATA IHXASC l'O~,'t','2#,'3','4',·5','6'~'7',

+ '8'~'9','A','B'~'C',~O','€','F'1
DATA V IO,O,O,O,O,O,O)O,O~O,O,O,OuO,O,OI
DATA P2 11,2#4,81 .

10UT= 6

WRITE{IOUT,'(" X Value")')
WRITECIOUT,'(" _. ----")')

IXH= 1
IXL:: 1

C START THE CALCULATIONS
C

June 1983

DO X8= 0,1
DO X7= 0,1

00 X6= 0,1
00 X5= 0,1

00 X4= 0,1
DO X3= 0,1

DO X2= O,l
DO Xl= 0,,1
. x= X8.XOR.X7.XOR.X6.XDR.X5.XOR.X4.XOR.X3.XOR.X2.XOR.Xl

V(16)= X
V(tS): X7.XOR.X6.XOR.X5.XOR.X4.XOR.X3.XOR.X2.XOR.Xl
V(t4):; }(8.XDR.X7
V(13): X7.XOR.X6
V(12): X6.XOR.XS
VeIl): X5.XOR.X4
Vel0): X4.XQR.X3
V(9)= X3.XOR.X2
V(8)= X2.XOR.Xl
V(7): Xl
Vel): x
DO l= 4,1,-1 ! CONVERT BI~IARY TO HEX

L= 0
K= 4*(1-1)

47

c

DO J= 1,4
L= L+(P2(J).V(K+J»

END DO
IACI)= IHXASCCL+1) 1 CONVERT HEX TO ASCII

END DO
IXHA= IHXASC(IXH)
IXLA= IHXASCCIXL)
WRITE(IDUT,30) IXHA, IXLA, (IACI), 1= 4,1,-1)
IXI.,= IXL+1
IFCIXL .EQ. 17) THEN

IXL= 1
IXH: IXH+l

ENDIF
END DO

END DO
END DO

END DO
END 00

END DO
END DO

END DO

C ALL DONE!
C
30 FORMAT(lX,2Al,2X,4Al)
C.

END

Listing 2. Table look-up CRC routine.

,-----------------------------------_._----------; CReT
; CALCULATES CRC-16 A BYTE AT A TIME USING A
; TABLE LOOK-UP ALGORITHM.
• ,
, GIVEN:
• ,
• , .

, RETURNS:
:
• , ,
• ,
• ,

B= BYTE COUNT
HL= BUFFER ADDRESS

B= 0
c- C

OF.= CRC-16
HL- BUFFER ADDRESS+ BYTE COUNT

A= 11

;------------------------------_.----------------CReT

48

Eau
LXI

$
0,0

;BEGIN
;INITIALIZE eRe

IEEE MICRO

---------------------------------------,-------------------------------
CRC1'O $

A,M
H
B
H

;REPEAT
• ,
• ,
· ,
• ,

GE'r DATA B :ifE
BUMP POTNTER
SAVE .. COlJNTER
SAVE DATA POINTgR

EQU
I\4,QV
INK
PUSH
PUSH
XRA
MOV
MVI
LXI
DAD
DAD
MOV
XRA
MOV
INX
MOV
POP
POP
DCR
JNZ
RET

E · , XOR DATA AND LOW BYTE
FORM INDEX INTO TABLE

OF eRe TO GET 'x'

.' "

C,A
B,O
H,TCRC16
B
B
A,D
M,
E:, A
H
D,M
H
B
B
CReTO

· ,
· ,
.. ,
..
" • , . ,

INDEX INTO THE TABLE
SHIFT eRe 9 BITS
XOR. TABLE ENTRY
REG.E= to 8YTE CRC

, REG.D= HI BYTE CRC
; RESTORE DATA POINTER
J RESTORE COUNTER
: DECREMENT COUNTER
;UNTIL BYTE COUNT=O

1: E:'I\f[)

TCRC16 EQU $;; CRe TABLE'
IN C'LUDE;' & CReTS ;CTABLE PRODUCED BY FORTRAN PROGRAM)

llsliing 3.. ~'Q.n the Uy"" C::RC l1outiine.

, CReF
I' CA·,LCULATE;S CRC:-16 A 8YTE AT It TIME CJ\LCULA,TING THE
;! "'U:'JiliES IT NEEDS 'ON T'HJEF'LY
;
, GIVEN:
J .. •
, RETURNS:
:
:
:
:
:

8= BYTE COUNT
HLa BUFFER ADDRESS

B= 0
c= C

DE= CRC16
HL= BUFFER ADDRESS+ BYTE COUNT
ALL OTHERS CHANGED

; STRATEGY erOR GETTING VALUE): ,
: 1~ XOR DATA BYTE WITH LOW BYTE CRe
; REG.A:: X
; 2. COpy X IN REG.L

--
June 1983 49

· 3. SHIFT X LEFT 1 BIT BY ADDING REG.A WITH ITSELF ,
· Cy= X8, p= XX7 ,
• 4. SAVE X8 AND XX7 ,
• 5. XOR REG.A WITH REG.L TO GET R14 THROUGH R7 ,
• REG.A=X.XOR.(X.SHL.t) ,
• 6. SAVE REG.A IN REG. J.J ,
· 1. RESTORE CY AND P ,
· cy= XS, p= XX7 ,
• 8. MAKE XX1 EQUAL TO 0 AND XX8 EQUAL TO XX7 ,
• 9. IF XX7 ACTUALLY IS 1 MAKE XX7 AND XX8 EQUAL TO 1 ,
• 10. IF XB EQUALS 1 THEN COMPLEMENT XXB ,
· 11 • SAVE XXA AND XX7 IN REG.H ,
· REG.HL(BI.TS 9 - 0)= Rib THROUGH R7 ,
• 12. SHIFT REG.A RIGHT 1. BIT TO GET XXB IN BIT 0 ,
• 13. SHIFT REG.tiL lJEFT 6 BITS ,
• 14. PUT XX8 (FROM REG.A) IN R~:G .lJ ,
• REG. HI ... = R16 THROUGH Rl ,
• ,
;---~---~------~--------~~----~~-----~--~--------
CRCf' EQU $ ~BEGIN

LXI 0,0 ;INITIALIZE eRC
CRCF"O EQlf $;REPEAT

MOV A,M · GE:T DATA BYTE~ ,
INX H BUMP POINTER
PUSH H • SAVE DATA POINTER ,
XRA E ; STEP 1
MOV L,A · STEP 2 ,
ADD A · STEP 3 ,
PUSH PSW · STEP 4 ,
XRA L STEP 5
MOV L,A · STEP 6 ,
POP PSW STEP 7
114 V I A,O · STEP 8 ,
JPE CRCFl
MVI A,01.1B · STEP 9 ,

CRCFl EQU $
JNC CRCf2
XRI OlOR · STEP 10 ,

CRCf2 EQLJ S
MOV H,A STEP 1 1
RAR · STEP 12 ,
DAD H · STEP 13 ,
DAD H
DAD H
DAD H
DAD H
DAD H
ORA L · STEP 14 ,
XRA D · XOR HIGH ORnER eRe (IMP[JICIT .SHk.8) ,
MOV E,A · REG.E.:= fJO BYTE eRe ,
MOV D,H · Rf.:G. D= HI BYTE eRe ,
POP H · RESTORE DATA POINTER ,
OCR B · Df:CR f~M.E NT COUNTER ,
JNZ CRCPO ; UNTIl, BYT~: COUNT=O
RET ;ENO

50 IEEE MICRO

