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A cyclic redundancy code can be calculated on bytes instead of bits. One 

byte-oriented method reduces calculation time by a factor of almost four. 

. Byte,:-wise 
CRC Calculations 

Aram Perez 

Wismer & Becker 

A method that is commonly used to ensure the integ­
rity of the messages in data communications is a cyclic 
redundancy code, or eRC. A CRC is usually calculated 
automatically in hardware by means of a bit-wise method. 
It can also be calculated in software by emulating this 
method. Here, we derive a byte-wise algorithm for calcu­
lating CRC in software that is four times faster than the 
usual bit-wise software method. The idea for this algo­
rithm came from a table look-up algorithm by Lee. 1 The 
method described here eliminates the table and takes no 
more space than the slower bit-wise method. 

CRC background and theory 

When digital messages are transmitted and received over 
telephone or radio channels, some errors can be expected 
to appear. Errors occur because of interference between 
channels, fading of signals, atmospheric conditions, and 

other sources of noise. Some method is needed to detect 
when the message received is not the same as that transmit­
ted. Commonly used methods of detecting errors include 
checksums, parity checks, longitudinal redundancy code, 
and cyclic redundancy code. 

CRC is often used because it is easy to implement and it 
detects a large class of errors. For any given message, CRC 
will detect 

• all one- or two-bit errors, 
• all odd numbers of bit errors, 
• all burst errors less than or equal to the degree of the 

polynomial used, and 
• most burst errors greater than the degree of the poly­

nomial used. 

In a system employing CRC, the message being trans­
mitted is considered to be a binary polynomial M(X). It is 
first multiplied by Xk and then divided by an arbitrary 
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generator polynomial G(X) of degree k, which results in a 
. quotient Q(X) and a remainder R(X)/G(X). All arithmetic 
is done: in modulo 2. This process is shown in the following 
equation, in which E& is the sign for addition in modulo 2 
arithmetic: 

XkMOQ 
G(X) 

R(X) 
Q(X) E& G(X)' 

In modulo 2 arithmetic, the results of subtraction are 
equivakmt to the results of addition. By applying this 
property and some simple algebra to the equation, we get 

XkM(X) E& R(X) = Q(X)G(X). 

R(X) wiiIl always be of degree k or less. 
The eRC algorithm calculates R(X) and appends it to 

the message being sent. Since xkM(X) E& R(X) equals 
Q(X)G(X), the original message with the CRC appended 
will be e:venly divisible by G(X), if and only if no bits are 
changed. At the receiving end, the received message (ori­
ginal message plus R(X» is divided by the generator 
polynomial G(X). If the remainder is nonzero, it is as­
sumed that an error has occurred.lfthl:! remainder is zero, 
it is assumed that no errors have occurred or that an error 
has occurred buthas gone undetected by the algorithm. A 
list of commonly used generator polynomials is given in 
Table 1 . 
. The CRC-16 polynomial is a common standard used 

around the world. (It is the polynomial used in the Bisync 
protocol, for example.) SDLC-synchronous data link 
control--is used by IBM and is the standard in Europe. 
The CRC-12 polynomial is used with six-bit bytes. The 
"reverse:" polynomials are the same as the "forward" 
polynomials, except that the data are taken in reverse 
order. The LRC polynomials are used in longitudinal 
calculations. 

The rest of this article will be concerned only with the 
CRC-16 polynomial, although any other polynomial can 
be easily adapted by using the selected polynomial in the 
derivation. 

Since eRC arithmetic is done in modulo 2, it can be 
easily implemented in hardware with shift registers and 
exclusive-OR gates (Figure O. Each flip··flop contains one 
bit of the CRC register. Most software routines emulate 
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Figure 1. lfiardware for CRC·16 calculation. 
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the hardware method, thus operating on one bit at a time. 
Since most processors are not bit-oriented, the bit-wise 
software approach requires lengthy periods of CPU time. 
Given that many microprocessors are byte-oriented, an 
algorithm to calculate CRC on a byte-by-byte basis would 
be·of great benefit. 

Algorithm derivation 

Since we want to calculate the eRe eight bits at a time, 
we need an algorithm that will produce the same eRe 
value as would occur after eight shifts of a bit-wise CRe 
calculation. The following sections derive such an algo­
rithm. Table: 2 shows the CRe register for each of eight 
shifts. The notation used is as follows: 

• Bits are numbered starting at 1, and bit 1 is the least 
significant bit. 

• The "SH" column is the shift number. 
• The "IN" column is the data in, witp Mi being the ith 

bit of the current byte of message M(X). 
• Ri is the ith bit of the eRe register. 
• Cj is the dih bit of the initial eRC register, just before 

any shifts due to the current input byte. 
• Vertical t:ntries in the Rj columns denote that the en­

tries are to be exclusive-ORed to form the contents of 
each Ri. 

As can be seen in Table 2, the contents of the CRC register 
after eight shifts are a function (exclusive-OR) of various 
combinations of the input data byte and the previous con­
tents of the eRC register. The byte-wise algorithm must 
produce these eRC register contents. 

Table 1. 
Commonly used generator polynomials. 

CRC-16 X
16 + X

15 + X2 + 1 
SOLC (IBM, CCIH) X

16 + X12 + X5 + 1 
CRC-12 X12 + X11 + x3 + X2 + X + 1 
CRC-16 REVERSE X16 + X14 + X + 1 
SOLC REVERSE X16 + X11 + X4 + 1 
LRCC-16 X16 + 1 
LRCC-8 x8 + 1 
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42, 

The exclusive-OR function has the following properties, 
given here without proofs ($ means exclusive-OR); 

• A $ B equals B $ A (commutativity). 
• A $ B $ C equals A $ C $ B (associativity). 
• A $ A equals 0 (involution). 
• A $ 0 equals A (identity). 

The use of these properties makes it possible to simplify 
the contents of each bit of the CRC register after eight 
shifts, as shown in Table 3. 

By defining a function Xi, we can further simplify the 
CRC register. The vector X is composed of Xi's which in 
turn are the result of the exclusive-OR of the ith bit of the 
input data byte with the ith bit of the CRC register. The 
function Xi is defined as 

Xi = Ci $ Mi· 

For an eight-bit data byte, X is the result of exclusive-OR­
ing the low-order byte of the CRC register with the input 

Table 2. 
CRC register after eight shifts. 

SH IN CRC REGISTER 

R16 R15 R14 R13 R12 R11 R10 Rg Rs R7 R6 R5 R4 R3 R2 R1 

0 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 C4 C3 C2 C1 

M1 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 C4 C3 C2 
M1 C1 C1 

M1 M1 

2 M2 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cs Cs C7 C6 C5 C4 C3 
C1 M1 C2 C1 C2 
M1 C1 M1 C1 
M2 M1 M1 

M2 M2 

3 M3 C3 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 C4 
C2 C1 M1 C2 C1 C3 
C1 M1 C3 C1 M1 C2 
M1 M2 C2 M1 C1 
M2 C1 M2 M1 

M3 M1 M2 
M2 M3 
M3 

4 M4 C4 C3 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 C5 
C3 C2 C1 M1 C2 C1 C4 
C3 C1 M1 C3 C1 M1 C3 
C1 M1 M2 C2 M1 C2 
M1 M2 C4 C1 M2 C1 
M2 M3 C3 M1 M1 
M3 C2 M2 M2 
M4 C1 M3 M3 

M1 M4 

M2 
M3 
M4 

M5 C5 C4 C3 C2 C1 C16 C15 C14 C13 C12 C11 C10 Cg Cs C7 C6 
C4 C3 C2 C1 M1 C2 C1 C5 
C3 C2 C1 M1 C3 C1 M1 C4 
C2 C1 M1 M2 C2 M1 C3 
C1 M1 M2 C4 C1 M2 C2 
M1 M2 M3 C3 M1 C1 
M2 M3 C5 C2 M2 M1 
M3 M4 C4 C1 M3 M2 
M4 C3 M1 M3 
M5 C2 M2 M4 

C1 M3 M5 
M1 M4 
M2 
M3 
M4 
M5 
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Table :2 cont'd 

6 Me Ce C5 C4 C3 C2 C1 C1e C15 C14 C13 C12 Cll ClO Cg Ca C7 
C5 C4 C3 C2 C1 Ml C2 C1 Ce 
C4 C3 C2 C1 Ml C3 C1 Ml C5 
C3 C2 C1 M, M2 C2 Ml C4 . C

2 C1 Ml M2 C4 C1 M2 C3 
C1 Ml M2 M:j C3 Ml C2 
Ml M2 M3 C5 C2 M2 C1 
M2 M3 M4 C4 C1 M3 Ml 
M3 M4 Ce C3 Ml M2 
M4 M5 C5 C2 M2 M3 
M5 C4 C1 M3 M4 
Me C3 M1 M4 M5 

C2 M2 Me 
C1 M3 
Ml M4 
M2 M5 
M3 
M4 
M5 
Me 

7 M7 C7 Ce C5 C4 C3 C2 C1 C1e C15 C14 C13 C12 C11 ClO Cg Ca 
Ce C5 C4 C3 C2 C1 Ml C2 C1 C7 
C5 C4 C3 C2 C1 Ml C3 C1 Ml Ce 
C4 C3 C2 C1 Ml M2 C2 Ml C5 
C3 C2 C1 Ml M2 C4 C1 M2 C4 
C2 C1 Ml M2 M3 C3 Ml C3 
C1 Ml M2 M3 C5 C2 M2 C2 
Ml M2 M3 M4 C4 C1 M3 C1 
M2 M3 M4 Ce C3 Ml Ml 
M3 M4 M5 C5 C2 M2 M2 
M4 M5 C7 C4 C1 M3 M3 
M5 Me Ce C3 Ml M4 M4 
Me C5 C2 M2 M5 
M7 C4 C1 M3 Me 

C3 Ml M4 M7 
C2 M2 M5 
C1 M3 
Ml M4 
M2 M5 
M3 Me 
M4 
M5 
Me 
M7 

8 Ma Ca C7 Ce C5 C4 C3 C2 C1 C1e G15 C14 C13 C12 C11 ClO Cg 
C7 Ce C5 C4 C3 C2 C1 M1 C2 C1 Ca 
Ce C5 C4 C3 C2 C1 Ml C3 C1 1'v1 1 C7 
C5 C4 C3 C2 C1 Ml M2 C2 Ml Ce 
C4 C3 C2 C1 Ml M2 C4 C1 M2 C5 
C3 C2 C1 Ml M2 M3 C3 Ml C4 
C2 C1 Ml M2 M3 C5 C2 M2 C3 
C1 Ml M2 M3 M4 C4 C1 M3 C2 
Ml M2 M3 M4 Ce C3 Ml C1 
M2 M3 M4 M5 C5 C2 M2 Ml 
M3 M4 M5 C7 C4 C1 M3 M2 
M4 M5 Me Ce C3 Ml M4 M3 
M5 Me Ca C5 C2 M2 M4 
Me M7 C7 C4 C1 M3 M5 
M7 Ce C3 Ml M4 Me 
Ma C5 C2 M2 M5 M7 

C4 C1 M3 Ma 
C3 Ml M4 
C2 M2 M5 
C1 M3 Me 
Ml M4 
M2 M5 
M3 Me 
M4 M7 
M5 
Me 
M7 
Ma 
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data byte. Table 4 shows the new simplified eRe register • the low-order byte of the eRe register is dependent 
using Xi'S. on functions of the initial lower eight bits of the eRe 

From Table 4 we can see that register, the input data byte, and the initial high-order 
eight bits of the eRe register. 

• the high-order byte of the eRe register is dependent 
only on combinations of the exclusive-OR of the ini- This leads to the conclusion that it is possible to shift the 
tiallower eight bits of the eRe register and the input high-order byte into the low-order byte of the eRe 
data byte, and that register, discard the low-order byte, and then exclusive-

Table 3. 
Simplified eRe register after eight shifts. 

SH IN CRC REGISTER 

R16 R15 R14 R13 R12 R11 R10 Rg Ra R7 R6 R5 R4 R3 R2 R1 

8 Ma Ca C7 Ca C7 C6 C5 C4 C3 C16 C15 C14 C13 C12 Cn C10 Cg 
Ma M7 Ma M7 M6 M5 M4 M3 C2 C1 Ca 
C7 C6 C7 C6 C5 C4 C3 C2 M2 M1 Ma 
M7 M6 M7 M6 M5 M4 M3 M2 C1 C7 
C6 C5 M1 M7 
M6 M5 C6 
C5 C4 M6 
M5 M4 ' C5 
C4 C3 M5 
M4 M3 C4 
C3 C2 M4 
M3 M2 C3 
C2 C1 M3 
M2 M1 C2 
C1 M2 
M1 C1 

M1 

Table 4. 
eRe register after eight shifts, using XI' 

SH IN CRC REGISTER 

R16 R15 R14 R13 R12 Rn R10 Rg Ra R7 R6 R5 R4 R3 R2 R1 

8 Ma Xa X7 Xa X7 X6 X5 X4 X3 C16 C15 C14 C13 C12 Cn C10 Cg 
X7 X6 X7 X6 X5 X4 X3 X2 X2 X1 Xa 
X6 X5 X1 X7 
X5 X4 X6 
X4 X3 X5 
X3 X2 X4 
X2 X1 X3 
X1 X2 

X1 

Table 5. 
Final eRe register. 

SH IN CRC REGISTER 

R16 R15 R14 R13 R12 R11 R10 Rg Ra R7 R6 R5 R4 R3 R2 R1 

8 Ma 0 0 0 0 0 0 0 0 C16 C15 C14 C13 C12 C11 C10 Cg 

Xa X7 Xa X7 X6 X5 X4 X3 X2 X1 0 0 0 0 0 Xa 
X7 X6 X7 X6 X5 X4 X3 X2 X1 X7 
X6 X5 X6 
X5 X4 X5 
X4 X3 X4 
X3 X2 X3 
X2 X1 X2 
X1 X1 
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OR some 16-bit word with the CRC register to get the new 
contents. This is demonstrated in Table 5, in which every­
thing below the dotted line defines the 16-bit word that is 
needed!. 

Give:n the results shown in Table 5, it is possible to state 
the following algorithm: 

1. Exclusive-OR the input byte with the low-order byte 
of the CRC register to get the Xi's. 

2. Shift the CRC register eight bits to the right. 
3. Calculate a value from the Xi'S which will give the 

16-bit value defined by everything below the dotted 
line in Table 5. 

4. Exclusive-OR the CRC register with the calculated 
value. 

5. Repeat Steps 1 to 4 for all the message bytes. 

Since the value calculated in Step 3 is dependent only on 
Xs through Xl' and since there are only 256 different com­
binatiol1s of X, it is clear that these values can be tabulated 
using X as an index. Thus, the algorithm can be restated as 
follows: 

1. Exclusive-OR the input byte with the low-order byte 
of the CRC register to get X. 

2. Shift the CRC register eight bits to the right. 
3. Exclusive-OR the CRC register with the contents of 

th(! table, using X as an index. 
4. Repeat Steps 1 to 3 for all the message bytes. 

This algorithm is general since no a priori assumption of 
the polynomial is necessary. Only the entries. in the table 
change if a different polynomial is used. Thus, it is pos­
sible to use only one routine to calculate a number of dif­
ferent CRCs, 

Table gen.natlon 

A Fortran 77 program that will generate the table values 
needed for byte-wise CRC-16 calculations is given in 
Listing 1, reproduced at the end of this article. It prints the 
values in hexadecimal on a line printer. A modified version 
of the program was used to make the file "&CRCTB." 
This file was then INCLUDED in the source file of the 
8080/8085 implementation of the algorithm. The program 
may be easily changed to calculate the values for a differ­
ent CRC polynomial. Table 6 contains the table for the 
CRC-16 polynomial. It contains all the possible values that 
result from t~xclusive-ORing the low-order byte of the 
CRC register with the incoming data byte and that are 
defined by everything below the dotted line in Table 5. 

Implementation 

Listing 2 (program "CRCT") is an 8080/8085 program 
that implements the byte-wise CRC algorithm using the 
table look-up method. Comparing this routine with a bit-

Table 6. 
Values for byte·wise CRC calculations 
for all possible X's (values are in hex). 

X VALUE X VALUE X VALUE X VALUE X VALUE X VALUE X VALUE X VALUE 
CI 0000 32 0801 64 F001 96 2800 128 A001 160 7800 192 5000 224 8801 
1 COC1 33 18CO 65 30CO 97 E8C1 129 60CO 161 88C1 193 90C1 225 48CO 
2 C181 34 1980 66 3180 98 E981 130 6180 162 8981 194 9181 226 4980 
3 0140 35 0941 67 F141 99 2940 131 A141 163 7940 195 5140 227 8941 
4 C301 36 1800 68 3300 100 EB01 132 6300 164 8801 196 9301 228 4800 
5 03CO 37 08C1 69 F3C1 101 2BCO 133 A3C1 165 78CO 197 53CO 229 88C1 
6 0280 38 OA81 70.F281 102 2A80 134 A281 166 7A80 198 5280 230 8A81 
7 C241 39 1A40 71 3240 103 EA41 135 6240 167 8A41 199 9241 231 4A40 
8 C601 40 1EOO 72 3600 104 EE01 136 6600 168 8E01 200 9601 232 4EOO 
9 06CO 41 OEC1 73 F6C1 105 2ECO 137 A6C1 169 7ECO 201 56CO 233 8EC1 

10 0780 42 OF81 74 F781 106 2F80 138 A781 170 7F80 202 5780 234 8F81 
11 C741 43 1F40 75 3740 107 EF41 139 6740 171 8F41 203 9741 . 235 4F40 
12 0500 44 0001 76 F501 108 2000 140 A501 172 7000 204 5500 236 8001 
13 C5C1 45 10CO 77 35CO 109 EOC1 141 65CO 173 80C1 205 95C1 237 40CO 
14 C481 46 1C80 78 3480 110 EC81 142 6480 174 8C81 206 9481 238 4C80 
15 0440 47 OC41 79 F441 111 2C40 143 A441 175 7C40 207 5440 239 8C41 
16 CC01 48 1400 80 3COO 112 E401 144 6COO 176 8401 208 9C01 240 4400 
17 OCCO 49 04C1 81 FCC1 113 24CO 145 ACC1 177 74CO 209 5CCO 241 84C1 
18 0080 50 0581 82 FD81 114 2580 146 A081 178 7580 210 5080 242 8581 
19 CD41 51 1540 83 3040 115 E541 147 6040 179 8541 211 9041 243 4540 
20 OFOO 52 0701 84 FF01 116 2700 148 AF01 180 7700 212 5FOO 244 8701 
21 CFC1 53 17CO 85 3FCO 117 E7C1 149 6FCO 181 B7C1 213 9FC1 245 47CO 
22 CE81 54 1680 86 31:80 118 E681 150 6E80 182 8681 214 9E81 246 4680 
23 OE40 55 0641 87 FE41 119 2640 151 AE41 183 7640 215 5E40 247 8641 
24 OAOO 56 0201 88 FA01 120 2200 152 AA01 184 7200 216 5AOO 248 8201 
25 CAC1 57 12CO 89 3ACO 121 E2C1 153 6ACO 185 82C1 217 9AC1 249 42CO 
26 CB81 58 1380 90 3B80 122 E381 154 6880 186 8381 218 9881 250 4380 
27 OB40 59 0341 91 FB41 123 2340 155 A841 187 7340 219 5840 251 8341 
28 C901 60 1100 92 3900 124 E101 156 6900 188 8101 220 9901 252 4100 
29 09CO 61 01C1 93 F9C1 125 21CO 157 A9C1 189 71CO 221 59CO 253 81C1 
30 0880 62 0081 94 F881 126 2080 158 A881 190 7080 222 5880 254 8081 
31 C841 63 1040 95 3840 127 E041 159 6840 191 8041 223 9841 255 4040 
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BYTES:IN 
MESSAGE 

1 
8 

16 

ROUTINE 

CRCT 
CRCF 
CRCB 

46 

Table 7. 
Comparison of CRC routines. 

Acknowledgments 

CRCT 

NUMBER OF CPU CYCLES TO 
CALCULATE CRC-16 

CRCF 

I would like to thank Dick Wallace, Leo Endres, Dick 
Huffman, Roger Melton, Ray Haider, and, in particular, 
Fred Jensen, all of Wismer & Becker, for their invaluable 

CRCB support in the preparation of this article. 

161 
1169 
2321 

227 
1669 
3319 

NUMBER OF BYTES OF MEMORY 
FOR ROUTINE 

540 (INCLUDING TABLE) 
43 
44 

739 
5668 

11269 

wise CRC routine, we found that it is up to five times 
faster but that it takes 12 times as much memory. Concern­
ed with the speed/memory trade-off, we asked, "Since Xg 
through Xl are known, is it possible to calculate the need­
ed value 'on the fly' instead oflooking it up in a table?" 

The answer turned out to be yes. Listing 3 (program 
"CRCF") is the result of trying to calculate the needed 
value' 'on the fly. " It is actually an implementation of the 
original version of the algorithm. Our objective in devel­
oping this program was to produce the needed value 
(everything below the dotted line in Table 5) in register pair 
HL. We used several facts which may not be readily appar­
ent from the program listing. First, by looking at 
everything below the dotted line in Table 5, we can see that 

• Rl6 is the sa~e as R I , 

• Rl6 is Xg e R IS ' and 
• Rl4 through R7 is X e (X < 1), where" < " is shift 

left. 

Second, by letting XX7 equal X7 e X6 e Xs e X4 e X3 e X2 
e Xl and letting XXg equal Xg e XX7, we can show that 

• if Xg equals 0, then XXg equals XX7, and that 
• if Xg equals 1, then XXg equals the complement of 

XX7• 

And third, 8080/8085 processors have a parity flag which 
is the result of exclusive-ORingall the bits in the A register. 

Performance 

We compared both CRC routines against a bit-wise 
serial routine (which we called "CRCB") and obtained the 
results shown in Table 7. As can be seen, CRCT is the 
fastest routine, nearly five times as fast as CRCB. But 
CRCT does need almost twelve times as much memory as 
CRCB. The surprise turned out to be CRCF. Needing one 
byte less of memory'than CRCB, it is nearly four times 
faster than that routine .• 
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----------________ ----------______ ._----1--------------------__ --------
Listing 1. Tab~e generator program. 

FTN77,L !rORTRAN 77 (HP-I000) 
PROGRAM CRCV 

c 
C THIS, PROGRAM CALCULATES THE VALUES NECESSARY FOR 
C BYTE-WISE CRC-!6 CALCULATIONS. 
C 
C IT PRINTS THE HEX EQUIVALENT OF THE VALUES ON THE LINE PRINTER, 
C 

c 

c 

c 

c 

INTEGER X8, X7, X6, XS, X4, X3, X2, Xl, V'(16), P2(4) 
DIMENSION IA(4), IHXASC(1~) ! HEX TO ASCII TABLE 
DATA IHXASC l'O~,'t','2#,'3','4',·5','6'~'7', 

+ '8'~'9','A','B'~'C',~O','€','F'1 
DATA V IO,O,O,O,O,O,O)O,O~O,O,O,OuO,O,OI 
DATA P2 11,2#4,81 . 

10UT= 6 

WRITE{IOUT,'(" X Value")') 
WRITECIOUT,'(" _. ----")') 

IXH= 1 
IXL:: 1 

C START THE CALCULATIONS 
C 

June 1983 

DO X8= 0,1 
DO X7= 0,1 

00 X6= 0,1 
00 X5= 0,1 

00 X4= 0,1 
DO X3= 0,1 

DO X2= O,l 
DO Xl= 0,,1 
. x= X8.XOR.X7.XOR.X6.XDR.X5.XOR.X4.XOR.X3.XOR.X2.XOR.Xl 

V(16)= X 
V(tS): X7.XOR.X6.XOR.X5.XOR.X4.XOR.X3.XOR.X2.XOR.Xl 
V(t4):; }(8.XDR.X7 
V(13): X7.XOR.X6 
V(12): X6.XOR.XS 
VeIl): X5.XOR.X4 
Vel0): X4.XQR.X3 
V(9)= X3.XOR.X2 
V(8)= X2.XOR.Xl 
V(7): Xl 
Vel): x 
DO l= 4,1,-1 ! CONVERT BI~IARY TO HEX 

L= 0 
K= 4*(1-1) 

47 



c 

DO J= 1,4 
L= L+(P2(J).V(K+J» 

END DO 
IACI)= IHXASCCL+1) 1 CONVERT HEX TO ASCII 

END DO 
IXHA= IHXASC(IXH) 
IXLA= IHXASCCIXL) 
WRITE(IDUT,30) IXHA, IXLA, (IACI), 1= 4,1,-1) 
IXI.,= IXL+1 
IFCIXL .EQ. 17) THEN 

IXL= 1 
IXH: IXH+l 

ENDIF 
END DO 

END DO 
END DO 

END DO 
END 00 

END DO 
END DO 

END DO 

C ALL DONE! 
C 
30 FORMAT(lX,2Al,2X,4Al) 
C. 

END 

Listing 2. Table look-up CRC routine. 

,-----------------------------------_._----------; CReT 
; CALCULATES CRC-16 A BYTE AT A TIME USING A 
; TABLE LOOK-UP ALGORITHM. 
• , 
, GIVEN: 
• , 
• , . 

, RETURNS: 
: 
• , , 
• , 
• , 

B= BYTE COUNT 
HL= BUFFER ADDRESS 

B= 0 
c- C 

OF.= CRC-16 
HL- BUFFER ADDRESS+ BYTE COUNT 

A= 11 

;------------------------------_.----------------CReT 
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Eau 
LXI 

$ 
0,0 

;BEGIN 
;INITIALIZE eRe 
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---------------------------------------,-------------------------------
CRC1'O $ 

A,M 
H 
B 
H 

;REPEAT 
• , 
• , 
· , 
• , 

GE'r DATA B :ifE 
BUMP POTNTER 
SAVE .. COlJNTER 
SAVE DATA POINTgR 

EQU 
I\4,QV 
INK 
PUSH 
PUSH 
XRA 
MOV 
MVI 
LXI 
DAD 
DAD 
MOV 
XRA 
MOV 
INX 
MOV 
POP 
POP 
DCR 
JNZ 
RET 

E · , XOR DATA AND LOW BYTE 
FORM INDEX INTO TABLE 

OF eRe TO GET 'x' 

.' " 

C,A 
B,O 
H,TCRC16 
B 
B 
A,D 
M, 
E:, A 
H 
D,M 
H 
B 
B 
CReTO 

· , 
· , 
.. , 
.. 
" • , . , 

INDEX INTO THE TABLE 
SHIFT eRe 9 BITS 
XOR. TABLE ENTRY 
REG.E= to 8YTE CRC 

, REG.D= HI BYTE CRC 
; RESTORE DATA POINTER 
J RESTORE COUNTER 
: DECREMENT COUNTER 
;UNTIL BYTE COUNT=O 

1: E:'I\f[) 

TCRC16 EQU $ ;; CRe TABLE' 
IN C'LUDE;' & CReTS ;CTABLE PRODUCED BY FORTRAN PROGRAM) 

llsliing 3.. ~'Q.n the Uy"" C::RC l1outiine. 

, CReF 
I' CA·,LCULATE;S CRC:-16 A 8YTE AT It TIME CJ\LCULA,TING THE 
;! "'U:'JiliES IT NEEDS 'ON T'HJEF'LY ..... 
; 
, GIVEN: 
J .. • 
, RETURNS: 
: 
: 
: 
: 
: 

8= BYTE COUNT 
HLa BUFFER ADDRESS 

B= 0 
c= C 

DE= CRC16 
HL= BUFFER ADDRESS+ BYTE COUNT 
ALL OTHERS CHANGED 

; STRATEGY erOR GETTING VALUE): , 
: 1~ XOR DATA BYTE WITH LOW BYTE CRe 
; REG.A:: X 
; 2. COpy X IN REG.L 
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· 3. SHIFT X LEFT 1 BIT BY ADDING REG.A WITH ITSELF , 
· Cy= X8, p= XX7 , 
• 4. SAVE X8 AND XX7 , 
• 5. XOR REG.A WITH REG.L TO GET R14 THROUGH R7 , 
• REG.A=X.XOR.(X.SHL.t) , 
• 6. SAVE REG.A IN REG. J.J , 
· 1. RESTORE CY AND P , 
· cy= XS, p= XX7 , 
• 8. MAKE XX1 EQUAL TO 0 AND XX8 EQUAL TO XX7 , 
• 9. IF XX7 ACTUALLY IS 1 MAKE XX7 AND XX8 EQUAL TO 1 , 
• 10. IF XB EQUALS 1 THEN COMPLEMENT XXB , 
· 11 • SAVE XXA AND XX7 IN REG.H , 
· REG.HL(BI.TS 9 - 0)= Rib THROUGH R7 , 
• 12. SHIFT REG.A RIGHT 1. BIT TO GET XXB IN BIT 0 , 
• 13. SHIFT REG.tiL lJEFT 6 BITS , 
• 14. PUT XX8 (FROM REG.A) IN R~:G .lJ , 
• REG. HI ... = R16 THROUGH Rl , 
• , 
;---~---~------~--------~~----~~-----~--~--------
CRCf' EQU $ ~BEGIN 

LXI 0,0 ;INITIALIZE eRC 
CRCF"O EQlf $ ;REPEAT 

MOV A,M · GE:T DATA BYTE~ , 
INX H BUMP POINTER 
PUSH H • SAVE DATA POINTER , 
XRA E ; STEP 1 
MOV L,A · STEP 2 , 
ADD A · STEP 3 , 
PUSH PSW · STEP 4 , 
XRA L STEP 5 
MOV L,A · STEP 6 , 
POP PSW STEP 7 
114 V I A,O · STEP 8 , 
JPE CRCFl 
MVI A,01.1B · STEP 9 , 

CRCFl EQU $ 
JNC CRCf2 
XRI OlOR · STEP 10 , 

CRCf2 EQLJ S 
MOV H,A STEP 1 1 
RAR · STEP 12 , 
DAD H · STEP 13 , 
DAD H 
DAD H 
DAD H 
DAD H 
DAD H 
ORA L · STEP 14 , 
XRA D · XOR HIGH ORnER eRe (IMP[JICIT .SHk.8) , 
MOV E,A · REG.E.:= fJO BYTE eRe , 
MOV D,H · Rf.:G. D= HI BYTE eRe , 
POP H · RESTORE DATA POINTER , 
OCR B · Df:CR f~M.E NT COUNTER , 
JNZ CRCPO ; UNTIl, BYT~: COUNT=O 
RET ;ENO 
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