This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Features

High Performance

* 50 MHz single-phase clock

50 MIPS peak execution rate

Separate CPU data and instruction buses
Full 32-bit internal and external architecture
3-stage integer execution pipeline and IEEE
floating-point execution unit with overlapped
instruction fetch and decode operations

* On-chip IEEE floating-point execution unit

¢ Upward-compatible with CLIPPER C100

Streamlined Instruction Set

* 9 addressing modes

* Most frequently used instructions execute in one
clock cycle

* Macro instructions for operating system support and
optimal use of bus bandwidth

s Multiple programmable register sets for efficiency
~— 16 32-bit user registers
— 16 32-bit supervisor registers
— 8 64-bit floating-point registers

8 K-Byte Total Instruction and Data Caches

* 4 K-byte instruction cache

* 4 K-byte data cache

* 256 line two-way set-associative, 16-byte line size
cache organization

* User-enabled instruction prefetch for maximum hit
rate and performance of the pipeline

* Bus Watch for system data integrity

* Wirite-through, copy-back, and noncacheable
caching policies on a per-page basis

Memory Management

Demand paged virtual memory

4 G-byte virtual address space per process

4 G-byte real memory address space

Separate user and supervisor modes

128 line two-way set-associative Translation

Lookaside Buffer each for data and instructions

* Memory read, write, and execute access protection
on a per-page basis

« Dynamic Translation Unit and page table update

High-Speed and Flexible Bus
* High-bandwidth synchronous bus

* Byte, halfword, word, and quadword transfers
» Support for both big endian and little endian byte
orderings

InterruptVException Processing

» Macro instructions for exception processing

¢ 256 vectored interrupts with 16 priority levels

e Separate interrupt bus for high-speed interrupt
processing

s 20 predefined traps

* 128 system calls

Multiprocessing Suppont

e Bus Watch checks all caches in system for cached
data

Global writes access all caches and TLBs in system
Global system clock synchronization

Test-and-set operation

Multiple caching strategies

The CLIPPER C300 Compute Engine is an architectural-
ly advanced, very high-performance CMOS 32-bit
microprocessor module consisting of a CPU, two
Cache/MMU chips, and clock control circuitry. The CPU
includes an IEEE standard Floating-Point Execution Unit.

The CLIPPER C300 is a Single Instruction/Single Data
architecture with instruction prefetch overlapped on mul-
tiple execution units. The basic instruction set is stream-
lined and hardwired for maximum performance.

Because the control section of the CPU is a hardwired
logic state machine, rather than a microcoded engine, in-
structions execute at a maximum rate of one per clock
cycle. The CPU contains two 32-bit buses: one for data
and one for instructions. Multistage pipelined instruction
processing, combined with a dual cache/MMU design,
permit concurrency at all stages of program execution.

In addition, the integrated Floating-Point Unit executes
instructions concurrently with the integer execution unit.
A high-bandwidth synchronous bus architecture easily in-
terfaces to high-speed peripherals, /O, and memory
subsystems, and supports both big endian and little en-
dian byte orderings.

1. Introduction

The CLIPPER C300 32-bit Microprocessor Compute En-
gine (see Figure 1) consists of three CMOS VLSI chips
together with a Clock Control chip. The VLSI chips are:

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 1 CLIPPER C300 Module Block Diagram

OSCILLATOR SYNC
r-—F~—~— -1~~~ ~-~"—-—"~-~"~-~"~-~"~-" - - =-"=-=- 7 |
|
! L
I CONTROL f
| UNIT |
| |
N CPU . 32
| > FPU < 7 I
| 7 |
| /32 3 - |
[2
| 50 MHz '
| cLQcK |
| |
i o e |
] leZ';lc’ﬁEON OR 12.5 MHz) DATA CACHE |
[AND MMU AND MMU [
l - »] A |
I 32 32 I
| v4) 1 ve |
I Bt |
! INTERRUPTBUS Vs Js2aDBUs conTROL ¢%° |
L o o — —m — — — 4 — Yt e e e = -~ = —
CLIPPER MODULE
INTERFACE
v <
DRIVERS/RECEIVERS
F 1; 1L
8 , 32 , 35
/] / /)
Y L v v
7 Y ﬂ 3
CLIPPER BUS
v VL
MAIN
vo MEMORY

A129

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

1) a high-performance, dual bus CPU/FPU, 2) an in-
struction cache/MMU chip (I-CAMMU), and 3) a data
cache/MMU chip (D-CAMMU). The CLIPPER Module in-
terface is a 96-pin connector which is buffered through
a set of user-supplied drivers.

The CLIPPER Module interface signals comprise the
CLIPPER Bus and consist of a 32-bit, muitiplexed
data/address bus, bus arbitration control, bus control,
clock control, interrupt control, error signalling, diagnos-
tics, and reset.

1.1. CPU

The CLIPPER CPU is a high-performance, full 32-bit in-
ternal and external (via separate 32-bit instruction and
data buses) processor with a load/store architecture.
The CPU is highly pipelined for maximum instruction ex-
ecution and contains a 32 x 32-bit general register file,
two ALUs (one for integer execution and one for floating-
point execution), a streamlined instruction set, a Macro
Instruction Unit (for exception processing instructions, in-
terrupt handling instructions, and macrocoded instruc-
tions), and a complete Floating-Point Unit. Figures 2

Figure 2 Simplified CPU Block Diagram

and 3 show simplified and detailed block diagrams of
the CPU.

1.1.1. Plpelining and Concurrency

The CPU utilizes a fetch, decode, and execution
pipeline as shown in Figure 4. The CPU two-stage in-
struction control unit (see Figure 2) supports two
instruction execution units that operate in parallel, per-
mitting up to four instructions (three integer and one
floating-point) to be in the execution stage concurrently.
Instruction control (the upper pipeline) includes both
fetch and decode; decode includes both resource
management and issue. The parallel execution units
(lower pipeline) execute integer and floating-point opera-
tions concurrently. Program counter values accompany
instructions through the upper pipeline for exception
processing and branch control by the CPU.

There are two stages of instruction fetch, namely, from
memory to the instruction cache (ahead of actual CPU
demand) and from the cache to the CPU’s instruction
Buffer. The Instruction Buffer can hold up to four instruc-
tions. Immediate values are sent from the Instruction

INSTRUCTUON
- CAII U

INSTRUCTION BUS INTEAFACE

TRANSCEIV

ERS
lN.TRUCTIOI BUFFER {4 X 18)
-PROGRAM COUNTER <

-BUS CONTROL

]

INTEGER EXECUTION UNIT

Rk -
“REQISTER FILE (32 X 32)
- numnun

lVORl
~CONTROL

INSTRUCTION CONTAROL UNIT

-INSTRUCTION DECODE

- L]
~-INSTRUCTION ISSUE
-STATUS

FLOATING-POINT
EXECUTION UNIT

DAYA BUS INTERFACE DATA BUS

D-CAMMY

~SYTR/HALFWORD
ALIGNMENT

-TRANSCEIVEAS <:>
-INPUY REGISTER

~OUTPUT REGISTER

1

MACR
INSTRUCTION
UNT

~MACRO FUNCTIONS

-REGISTER FILE (8 X 84)
-AECODER

-WALLACE TRER ADDER
~CARRY LOOKANEAD ADDER <:_‘
<ACCUMULATOR

-CONTROL
-STATUS

-BUS CONTROL

L
~MACRO INSTRUCTIONS
<INTERRUPT/TRAP SUPPORT
<DIAGNOSTICS
~SCRATCH PAD REQISTERS

A130

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Buffer via the J register to an L register in the ALU
pipeline, for use as address offsets or data values. The
J register and L register stages are shown in Figure 3.

Instruction decode and resource management are per-
formed in the B stage. The B stage obtains instruction
parcels from either the Instruction Buffer or the Macro
Instruction Unit. Resource management is accomplished
by comparing an instruction request for a resource
against a table of resources busy.

In the final stage of the upper pipeline (decoded and as-
sembled instruction is in the C stage), instructions are is-
sued for execution to the integer execution unit or the

floating-point execution unit if no resource conflict exists.

The lower pipeline consists of two parallel execution
units, an integer execution unit and a floating-point ex-
ecution unit. The integer execution pipeline has three
stages. In the first stage, operands are read from the
general register file. The general register file has three
ports that operate concurrently in a single clock period;
two ports are for reading and the third is for writing.
Thus, two reads and a write may be performed in a
single clock. In the second stage, the ALU output is writ-
ten to the A register or directly to the D-CAMMU inter-

Figure 3 Detailed CPU/FPU Block Diagram

face. In the third stage, the contents of the A register
are output to the FPU, the bypass mux (to the ALU), to
the general register file or to the D-CAMMU interface.

1.1.2. Integer Execution Unit

The Integer Execution Unit executes all instructions ex-
cept those handled by the FPU. It contains a register
file (supervisor and user sets), a serial double-bit shifter,
and a 32-bit Arithmetic Logic Unit (ALU).

The ALU is used for address computation as well as
data manipulation. Nine addressing modes are sup-
ported, each requiring only one pass through the ALU.

When the result output by the ALU is needed by the in-
struction immediately following it, a feedback mecha-
nism allows the result from the current ALU operation to
be fed back into the ALU for the next operation. Ad-
dresses and data for integer load and store operations
are passed directly to the D-CAMMU interface, bypass-
ing the A register.

1.1.3. Floating-Point Execution Unit (FPU)

An integrated Floating-Point Unit performs single- and
double-precision floating-point operations concurrently
with the integer execution unit, using its own ALU and

INTEGER EXECUTION UNIT

INSTRUCTION BUS
INTERFACE

16 X 32

FILE
2x32

QENERAL
REQISTER

BYPASS

L2

SHIFTER

TO I-CAMMUY |
'

reu
REGISTER
LE
2 X 84

A0S59-0-A

WRITE
READ B
READ A

DATA BUS INTERFACE

WALLACE
TREE

ADDER

LOOKAHEAD
ADDEA

CLIPPER CPU/FPU
BLOCK DIAGRAM

S |

L I e Y R P

4

ACS9-1-A

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

set of eight 64-bit registers. The FPU controller is tightly
coupled to CPU issue logic to reduce overhead.
Because the Floating-Point Unit is on the CPU chip,
CLIPPER Bus accesses are usually not required. This
reduces bus traffic and improves performance.

All CLIPPER floating-point arithmetic operations support
the IEEE 754 Standard. For more information, refer to
Section 4, Floating-Point Unit.

1.1.4. Macro Instruction Unit

The Macro Instruction (Ml ROM) Unit stores instruction
sequences of the basic hardwired instruction set. When
a macro instruction is encountered in the instruction
stream, an instruction sequence is read from the Mi
ROM and inserted into the B stage of the upper
pipeline. The width of the ROM word is such that the in-
struction pipeline can be maintained at the maximum of

quence ends, the instruction stream is switched back to
the Instruction Buffer as the source.

The MI Unit provides three types of instruction
sequences:

— Those that provide direct support for the operating
system: for example, context switching and
trap/interrupt entry and return;

— Those that perform certain floating-point operations
not directly implemented in the Floating-Point Unit:
for example, single to double and double to
single-precision floating-point conversions;

— Commonly used complex instructions which are
typically found in so-called complex instruction set
computers: for example, character string

one parcel (one halfword) every clock. When the MI se- manipulations.
Figure 4 CLIPPER Pipeline
UPPER PIPEL
1-CAMMU uus‘rnu:'v'lou Pn:pl::nlou) mu-.ﬂli-cl’.:i::clﬁfaiumrs)
I
FEFCH DECODE EXECUTE
~ —~ ~ -~ ~A
INTEGER EXECUTION UNIT
GENERAL REGISTER FILE
(32 X 32) [
TE ALU
R/W WRITE .
‘:;ﬁ%‘:ﬁf OPERANDS [RESULTS
L L2 A REGS

J

INSTRUCTION DECODE AND
PREFETCH BUFFER
MANAGEMENT

resource 1,

ISSUE

MACRO
INSTRUCTION
UNIT

|
|
|
|
|
|
|
l
|
~—»1 (s PARCELS) ™ (4 PancELs)
|
|
|
|
I
|
!
!
I
|
|

FLOATING-POINT EXECUTION UNIT

ARITHMETIC UNIT

‘

FPU REGISTER FILE
(8 X 84)

A062

Copyrighted By Its Respective Mnufacturer

This Materi al

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Instructions from the M! ROM are provided with addition-
al M register files, thus avoiding resource conflicts with
the floating-point and general-purpose registers.

1.2. CAMMU

In addition to the CPU, the C300 Compute Engine
Module includes two Cache/Memory Management Unit
(CAMMU) chips, an Instruction Cache/MMU, and a
Data Cache/MMU. The CAMMUs interface to the CPU
via a high-speed, 32-bit internal module bus and inter-
face to main memory and I/O devices via the CLIPPER
Bus.

1.2.1. Instruction and Data Caches

Two separate, 4 K-byte cache memories, one for data
and one for instructions, act as transparent high-speed
buffers between the CPU and main memory. Each
cache is two-way set-associative, containing 256 quad-
word lines of frequently used instructions or data. For
fast CPU access, each cache also contains a virtual ad-
dress cache consisting of a 16-byte buffer containing
the quadword that was most recently accessed from the
cache, and a register containing the virtual address of
the quadword.

Because most CPU fetches are satisfied directly from
the cache, the access time of real memory has far less
effect on total system performance. Minimizing fetches
from main memory also reduces bus traffic and allows
greater bandwidth for other bus masters or 1/O
processors.

Bus Watch is the monitoring of the CLIPPER Bus trans-
actions by the CAMMUSs. It is used to ensure data con-
sistency between the cache and main memory, and to
ensure that the latest data is always transferred to an
110 device reading main memory. Bus Watch is
transparent to software.

A demand fetch algorithm is implemented in both the
I-CAMMU and D-CAMMU. A prefetch algorithm is also
implemented in the I-CAMMU; it can be enabled or dis-
abled under program control.

1.2.2. Memory Management Unit (MMU)

The Memory Management Unit translates CPU virtual
addresses to real addresses in one of three separate
real spaces (I/O, Boot, or Main Memory) using transia-

tion tables located in main memory. In order to minimize
the time required to obtain these translations, an addi-
tional two-way set-associative Translation Lookaside
Buffer (TLB) in each CAMMU holds 128 of the most fre-
quently used values from the translation tables for both
instructions and data.

When the TLB does not contain the required translation
entry, the MMU fetches the required value from main
memory and updates the TLB.

The MMU also supports main memory access protec-
tion (read, write, and execute).

1.3. Clock Control Unit

The CLIPPER C300 clock chip provides both internal
clocks for use on the Module and external clocks which
can be used for system clocking. The frequency of
MCLK, one of the internal clocks not available to the
user, determines the rate of operation of the CPU and
CAMMUs. The two external clocks generated by the
clock chip are BCLK and 2BCLK. BCLK is the CLIPPER
Module bus clock. The BCLK frequency is the rate of
operation of the CLIPPER bus. 2BCLK is twice the fre-
quency of BCLK. With an externally supplied 100 MHz
oscillator, MCLK is 50 MHz, and BCLK/2BCLK is either
25/50 MHz or 12.5/25 MHz, depending on the state of
the RATE control pin on the CLIPPER Bus. See Section
9, CLIPPER Bus, for details.

2. Memory Organization

The real memory of a CLIPPER system is organized as
a sequence of 32-bit words, each word consisting of
four 8-bit bytes. Each byte is assigned a unique ad-
dress ranging from O to 4,294,867,295 (4 G-bytes).

By using virtual memory techniques, a CLIPPER system
can appear to have a full 4 G-bytes of physical memory
available to each user program. See Section 9,
CLIPPER Bus, for details.

There are three real address spaces defined in the
CLIPPER architecture:

— Main memory space
— /O space
— Boot space

Copyrighted By Its Respective Mnufacturer

Thi s

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Main memory, IO space, and Boot space are acces-
sible in both user and supervisor modes. The memory
space accessed by a given address is determined by
the System Tag associated with the page.

The Hardwired Translation Lookaside Buffer (HTLB) is a
feature of the CAMMU which guarantees TLB hits of
special memory pages by the supervisor. The first four
pages of real main memory space have HTLB entries in
the CAMMUs, as do the first two pages of both /O
space and Boot space. The HTLB is used in supervisor
mode only. The HTLB is described in detail in Section
7.2.2, Fixed Address Translation. CLIPPER's three

Figure 5 Real Address Spaces—HTLB Mapping

memory spaces and the mapping of the HTLB are
shown in Figure 5.

2.1. Data Types

The CLIPPER C300 architecture supports the primitive
data types shown in Figure 6. There are signed and un-
signed bytes, halfwords (16 bits), words (32 bits), and
longwords (64 bits), as well as single-precision (32-bit)
and double-precision (64-bit) IEEE Standard floating-
point numbers.

Bit O is the least-significant bit of all data types, and bit
numbers within a byte increase from right to left.

| FFFFFFFF L ------
= = z - SYSTEM r 1 T
PROGRAMMER 1 SYSTEM T »}
DEFINED DEFINED DEFINED
— PAGE TABLE 1 se00b---------JN F------—--—1
- DIRECTORIES L 2000 (s000
-~ PAGE TABLES
- CODE
- DATA
| . L E 1000 | E A—W 3 - 7000
B 1 2000 - — - - —-—— -1 ° SF----=-=---- 4 so000
REAL
00T SPACE
| J 1000l - - - - - - - <} 4 5000
CAMMU REGISTERS
goof-—--------1
RESERVED
4000 - ——--— - - N 0 F---—-—-—---1 4000
REAL 1/0
SPACE
3000 | E H 4 3000
2000 | { e ﬂ - 4 2000
1000 4 e ERRUPT VECTORS] i q oo
soo |- = -~ —— =] ALL ADDRESSES ARE IN HEXADECIMAL
oo |SUPERVISOR cALLS
400 = AP VECTORS | IN UNITS OF BYTES -
108 p -~ — ——~ == —— ©
o L_SYSTEM DEFINED |) L 0 2
REAL MAIN SUPERVISOR
MEMORY SPACE VIRTUAL
SPACE

Mat eri al

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 6 C300 Primitive Data Types

BYTE HALFWORD
7 6 [] 15 14]
|s] vave | |s | VALUE]
BYTE UNSIGNED HALFWORD UNSIGNED
7 o 15 0
| vawe | | VALUE 1
WORD
31 30 0
Is] VALUE |
WORD UNSIGNED
31 °
| VALUE |
LONGWORD
2 °
VALUE LOW
VALUE HIGH

e

;?NGWORD UNSIGNED

VALUE LOW

VALUE HIGH

63

IEEE SINGLE FLOATING

31 30 23
s EXP

FRAC

!'EEE DOUBLE FLOATING
1

FRAC LOW

s| e |

FRAC HIGH

63 62 52

51

32

Figure 7 Representation of Data In Memory

LITTLE ENDIAN

BIG ENDIAN

MEMORY ADDRESS

This Materia

ne? ne+e

n+s

A021

Data should be aligned in memory, that is, data types
should begin at an address that is a multiple of their
size. For example, a halfword should begin on a
halfword boundary. When enabled by software, un-
aligned memory accesses cause an alignment trap, as
explained in Section 7, Exceptions.

2.1.1. Representation of Data in Memory

There are two ways in which multiple-byte data may be
addressed in CLIPPER memory: in big endian order or
in litde endian order. With big endian ordering, the ad-
dress of a multiple-byte data type corresponds to the ad-
dress of its most-significant byte, whereas with little
endian ordering, the address of the multiple-byte data
type corresponds to the address of its least-significant
byte. The two orderings are shown in Figure 7.

The byte ordering is determined by the state of the BIG
(big endian) control pin, which is set when the system is
oonﬁgured Tymg this pin LOW selects big endian order-
ing; tying this pin HIGH selects little endian ordering.
The state of the BIG pin can be determined by reading
the PSW's BIG fiag.

3. Programming Model

The basic programming model for the CLIPPER C300 is
shown in Figure 8. CPU registers are discussed in this
section; CAMMU registers are discussed in Section 7,
Cache and MMU.

nel n MEMORY ADDRESS
n+2 ne+1 n

ln:ulzs:u' 15:8 | 7:0 I;’,ﬁgféno"mG

n+2 n+1 n

Ics:ss'ss:uIn:ao]sa:aaln:nlzs::el 15:8 I 7:0 ILONGWOHD.

DOUBLE FLOATING

n ne+1

HALFwoRD

n+2

n+1

ﬁznlzs1slisa|1u

n+1

n+2

WORD,
| siNGLE FLOATING

na+s ne+ s ne7

|s:| 56 lss a8 ln 40 an 32 |:n ulzs 16 | 15:8 | 7: "J LONGWORD,

DOUBLE FLOATING

A3t

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 8 C300 Programming Model

CPUIFPU
e mm e mm e — e — e — oo — - ST o T m e
| 31 ° 31
| ns
| r1a
| r3
| n2
| 23
| o
|]
| "n
| 7
| N
| 4]
I 4
| (]
| 2
| "
! ro
| USER REGISTERS SUPERVISOR REGISTERS
| [1)
|)
| !
| L
| L
| i
| 1
1]
| L
1 FLOATING-POINT REGISTERS (USER OR SUPERVISOR MODE)
| 33
|| PROGRAM STATUS woRD |
| SYSTEM STATUS woRD |
|
| PROGRAM COUNTER |
|
L e e ———_—_—————_———— e ——— —— —— —— — e — e m
1-CAMMU D-CAMMU
—F——————————————— — = — = = === —F——_———— e ——— — —
| 1
! seTw AA | | sET W AA]
| LINE 63 VA T | LINE 83 Ty T
I :I.llflxll { RA | | sET X { RA |
LINE 63
i : yA] i . VA |
| A | . p
I : | . Lo
| sET W RA 1 | sET W RA |
| LINE 0 VA T I LiNE O Ty T
| :':ur' 1: { RA | | SET X RA 1
| Ty T | LINE O — T
| . TLS ENTRIES | A TLB ENTRIRS
: RESET REGISTER | RESET REQISTER
1 |
conTaoL
| REGISTER | gggl‘s';%'i
Iraas DInECTORY [= — LE K leaoE 1Y
| oRiGIN - [uln | omiain USER PDO
5] YIYY
PAGE DIRECTORY PAGE DIRECTORY
: omIGIN REGISTER SUPERVISOR PDO : Aat o SUPERVISOR PDO T
T
| FAULT REGISTER | FAULT nEaISTER
L e —— b ——— e
A132-1A A13z.2a
9

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

3.1. Register Sets

The CPU contains three sets of registers: 16 user
registers (r0-r15), 16 supervisor registers (r0-r15) and 8
floating-point registers (f0- {7).

The user and floating-point registers are accessible in
both user and supervisor modes; the supervisor
registers are accessible only in supervisor mode.

There are two status and control registers: the Program

Status Word (PSW) and the System Status Word
(SSW). The PSW is accessible in both user and super-

Figure 9 Program Status Word

visor modes. The SSW is writable only in supervisor
mode; it should not be read in user mode to ensure
compatibility with future Intergraph CLIPPER products.

The Program Counter (PC) contains the address of the
current instruction. This is interpreted as a virtual ad-
dress if CLIPPER is operating in mapped mode, and as
a physical address if CLIPPER is operating in un-
mapped mode (see Section 3.3, Mapped and Un-
mapped Addresses). The PC is accessible by both the
user and the supervisor.

31 2827 24232221 1716151413121110 98 7 6 5§ 4 3 2 1 0
M 0 v N
T T] R |F FIFIF§FlI JV]|DjU]X
] S G T V] D} U] X
FIELD MEANING CcTs MEANING
N Negative 0 No CPU trap
r4 Zero 1 g{le_served)
v Overflow . 2 ivide by zero
C Carry out or borrow in 3 ﬁReserved)
FX Floating inexact 4 legal operation
FU Floating underflow 5 Privileged instruction
FD Floating divide by zero] Reserved
FV Floating overflow 7 race trap
Fi Floating invalid operation 8-15 (Reserved)
EFX Enable floating inexact trap
EFU Enable floating underfiow trap
EE\E} Engg:e goagng duvicriﬂg by zero trap
nable floating overflow trap
EFi Enable floating invalid operation trap MTS MEANING
EFT Enable floating trap 0 No memory trap
BIG Big endian 1 Corrected memory error
FR Floating rounding mode 2 Uncorrectable memory error
T Trace trap 3 Reserved)
CTS CPU trap status 4 lignment fault
MTS Memory trap status 5 Page fault
6 Read or execute protect fault
7 Write protect fault
FR MEANING 815 (Reserved)
0 Round to nearest
1 Round toward + infinity
2 Round toward — infinity
3 Round toward zero A133
i0

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

3.1.1. User and Supervisor Registers

The user and supervisor registers, r0-ri5, are general-
purpose, 32-bit registers. They are used for word (32-
bit) and longword (64-bit) integer operations.

Bytes and halfwords used in load and store instructions
are sign- or zero-extended to 32 bits before they are put
in registers. Longword values are stored in register
pairs, with the least significant word in the even-num-
bered register. When double-precision (64-bit) floating-
point data types are moved to an integer register pair,
the least-significant fraction occupies the even num-
bered register.

3.1.2. Floating-Point Registers

The floating-point registers, f0-f7, are used by the FPU
for floating-point instructions, which are executed concur-
rently with instructions in the ALU. These 64-bit

registers are used for floating-point operands in both
single- and double-precision IEEE format. Single-
precision operands stored in floating-point registers

have zeros in the 20 least significant fraction bits and in
the three most significant exponent bits.

The integer multiply, divide, and mod instructions are ex-
ecuted by the FPU, but use registers r0-r15 (user or su-
pervisor).

3.1.3. Program Status Word (PSW)

The PSW, shown in Figure 9, contains flags which iden-
tify and, together with the SSW, control a program’s
response to various exceptions resulting from integer
and floating-point operations (see Section 6, Excep-
tions). This register also indicates byte ordering, as
described in Section 2.1, Data Types.

On hardware reset, the trace trap (T) flag is cleared, the
big endian (BIG) flag is set to reflect the state of the
BIG control pin, and the remaining PSW bits are un-
defined.

C,V,Z,N: Condition Codes

The condition codes are modified only by the register-to-
register integer instructions, string instructions, floating
comparison, and by directly writing the PSW. They are
tested by the branch on condition instruction.

FX, FU, FD, FV, Fl: Floating-Point Exception Flags

The floating-point exception flags are set by hardware
on exceptions arising from floating-point operations, in
accordance with the IEEE 754 Floating-Point Standard.
Once set, they are cleared only by user software or, for
those conditions for which the corresponding trap is
enabled (i.e., when both EFT and the individual enable
flag are set) by the trap handler. They are tested by the
branch on floating exception instruction (see Section
6.2.2, Floating-Point Arithmetic Trap Group, for more
details).

EFX, EFU, EFD, EFV, EFI: Enable Floating Flags

The IEEE floating-point trap enable flags are set by
software to request the result that would be given to a
trap handler on an exception, rather than the IEEE
default (no-trap) result. If the EFT bit is set, enabled ex-
ceptions also cause traps. See Section 6.2.2, Floating-
Point Arithmetic Trap Group, for a description of the use
of this field by trap handler routines.

EFT: Enable Floating Trap

When set, the enable floating trap flag enables traps to
occur whenever an exception is signalled by the FPU
and that exception’s trap enable flag is also set. When
this bit is clear, floating-point traps are disabled and
program execution continues regardless of the values of
the floating trap enable flags.

FR: Floating Rounding Mode

The floating-point rounding mode field is set by software
to select the IEEE rounding mode for floating-point
operations.

The default is round to nearest, in which the rounded
result is the closest representable number to the exact
result, with ties decided in favor of the representable
number with zero as its least-significant fraction field bit.

When rounding toward +, the result is the format's
value (possibly +e) closest to and no less than the in-
finitely precise result. When rounding toward -, the
result is the format's value (possibly -=) closest to and
no greater than the infinitely precise result. When round-
ing toward 0, the result is the format's value closest to
and no greater in magnitude than the infinitely precise
result.

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

BIG: Big Endian

The big endian flag indicates the byte ordering of CLIP-
PER memory, as described in Section 2.1.1, Represen-
tation of Data in Memory.

When CLIPPER is reset, this flag is set by hardware to
the state of the BIG control pin. if BIG is tied to GND,
BIG = 1; if BIG is tied to VCC, BIG = 0. This flag is read
only; writes to this flag are ignored.

T: Trace Trap Enable

The trace trap enable flag is set by the user or super-
visor to request a trace trap following execution of the
next instruction. It is cleared by the user or supervisor
to disable the trace.

CTS: CPU Trap Status

The CPU trap status field is set by the hardware to indi-
cate the cause of a CPU-related trap (see Section 6.2,
Traps).

MTS: Memory Trap Status

The memory trap status field is set by the hardware to
indicate the cause of a memory-related trap (see Sec-
tion 6.2, Traps).

3.1.4. System Status Word (SSW)

The SSW controls the CLIPPER C300’s mode of opera-
tion (user or supervisor) and provides status and control
for program protection and the response to interrupts
(see Figure 10). It may be written in supervisor mode

Figure 10 System Status Word

only. Reset clears the following SSW flags: El, TP, M,
U, K, KU, UU and P. The remaining flags are undefined
except for ID, which is hardwired. This represents un-
mapped supervisor mode with all maskable interrupts
disabled.

The SSW is written using the movwp (move word to
processor register) instruction. When used with the
SSW, this instruction can take as its second operand
either processor register 1 (ssw) or processor register 3
(sswf). movwp using processor register 1 behaves like
a branch instruction, causing the upper pipeline to be
flushed. movwp with processor register 3 does not
cause the pipeline to be flushed, is thus faster, but must
only be used in cases where the modification of the
SSW will not compromise the memory mapping of the
subsequent code in the upper pipeline. That is, because
the K, U, KU, and UU protection bits are compared with
the PL field of the TLB or HTLB entry for memory ac-
cess protection, a memory reference that would have
failed may succeed or vice versa, or it may fail different-
ly, or it may succeed for the wrong reasons. Therefore,
processor register 3 may only be used when modifying
the IN, IL, El, FRD, TP, ECM, KU and UU fiags;
modifications of the M, K, U and P flags must use the
movwp instruction with processor register 1.

Descriptions of IN, IL, El, TP, and ECM are given below
and in Section 6, Exceptions. M, KU, UU, K, U, and P
are described below and in Section 7.2.1, Translation
Lookaside Buffer (see Protection Level field description).

31 30 29 28 27 26 25 24 23 22 21 17 16 9 8 7 43 0
PJU [KJU KM JO JE|T|F 0 D E iL IN
uju CJP|R i
M D

FIELD MEANING

IN Interrupt number
IL Interrupt level

El Enable interrupts
ID CPUID

FRD Floating registers dirty

TP Trace trap pending

ECM Enable corrected memory
error

FIELD MEANING

M Mapped mode
KU User protect key
uu User data mode

K Protect key
U User mode
P Previous mode

A136

12

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

IN: Interrupt Number

The interrupt number field is set by hardware (INTRAP
and retl) and by software (movwp) to indicate the
system's current interrupt number. If an interrupt of
equal or higher priority occurs during the service of an
interrupt, this value (along with the interrupt level) will
be pushed on the stack, and this field will be updated
with a new interrupt number value. Interrupt numbers
are not prioritized.

IL: Interrupt Level

The interrupt level field is set by hardware (INTRAP and
reti) and by software (movwp) to establish the system’s
current interrupt priority level. Only interrupts of equal or
higher priority (equal or lesser value) than this value will
be recognized. If an interrupt of equal or higher priority
occurs during an interrupt service routine, this value will
be pushed on the stack, and this field will be updated
with the new interrupt level.

El: Enable Interrupts
The enable interrupt flag is set by software to enable in-
terrupts. It is cleared by software to disable interrupts.

ID: CPU ID

This 8-bit field is hardwired to encode the version num-
ber of the CLIPPER CPU/FPU. This field is read only;
writes to this field are ignored.

FRD: Floating Registers Dirty

The floating register dirty flag is set by hardware when-
ever a floating-point register is written. This flag may be
cleared by software. Its purpose is to permit operating
systems to reduce context switching overhead.

TP: Trace Trap Pending

The trace trap pending flag is automatically set by
hardware whenever a trap or interrupt occurs during an
instruction and the T flag is set. This ensures that the
trace trap is taken immediately after the trap or interrupt
handler has finished executing, and that a single instruc-
tion is traced exactly once.

On data page faults, the supervisor must clear TP
before restarting the faulting instruction in order to en-
sure that the instruction is traced exactly once.

ECM: Enable Corrected Memory Error Trap

The enable corrected memory flag is set by software to
request a trap whenever a corrected memory error oc-
curs. When this flag is set, a logic low on the
MSBE/RETRY signal line (indicating a single-bit
memory error) causes a trap.

M: Mapped Mode

The mapped mode fiag is set by software to cause all
address references to be mapped through the page
tables. When set, virtual address (VA) to real address
(RA) translation by the CAMMUs is enabled (mapped
mode). When cleared, VA to RA translation by the
CAMMUs is disabled (unmapped mode). The only ex-
ceptions are the first eight pages when in supervisor
mode. These pages are always mapped via the HTLB,
regardiess of the state of this flag.

U:User Mode

The user mode flag is set by the supervisor to indicate
user mode of operation and cleared to indicate super-
visor mode of operation.

K: Protect Key

The protect key flag is set and cleared by the super-
visor to select one of two sets of memory access protec-
tion codes for memory access validation and protection
during program execution. This flag is used for the ac-
cess protection code selection in user mode, and in su-
pervisor mode when the UU flag is clear (see Table 10
in Section 7.2, Memory Management Unit).

KU: User Protect Key

The user protect key flag is set and cleared by the su-
pervisor program to select one of two sets of memory
access protection codes for memory access validation
and protection during program execution. This flag is
used for the access protection code selection only
during supervisor program execution when the UU flag
is set (see Table 10 in Section 7.2, Memory Manage-
ment Unit).

UU: User Data Mode

The user data mode flag is set and cleared by the su-
pervisor to select either supervisor or user data address
space access when memory data is referenced in super-

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

visor mode, and to select either the K or KU key flags
for selection of the access protection codes used during
supervisor memory references. When the UU flag is set,
supervisor data references access user data space, and
the KU flag is used for access protection code selec-
tion. When the UU flag is clear, supervisor data referen-
ces access supervisor data space, and the K flag is
used for access protection code selection. This flag is
significant only in supervisor mode (see Table 10in Sec-
tion 7.2, Memory Management Unit).

P: Previous Mode
The previous mode flag is copied from the U flag when-
ever the INTRAP sequence is executed.

3.2. Supervisor and User Modes of Operation

The C300 Module has two modes of operation, user
and supervisor, as selected by the SSW's U flag. User
and supervisor modes are distinguished by the set of in-
structions which they are permitted to execute, and by
the registers and logical address space they are per-
mitted to access.

All instructions can be executed in supervisor mode. In-
structions which can be executed only in supervisor
mode are called privileged instructions. When a

program in user mode attempts to execute these instruc-
tions, a privileged instruction trap occurs.

Figure 11 Address Mapping—Mapped/Unmapped Modes

This Materia

Programs executing in user mode have access only to
the user registers (r0-r15), floating-point registers (f0-17),
the PSW, and the PC. Supervisor mode programs have
access to all programmer-accessible registers.

Memory address spaces are distinct for user and super-
visor modes. Different translation tables may be used
for tranclating user and supervisor mode addresses,
and the access protection provided by the memory
management mechanism allows access by supervisor
programs to memory locations inaccessible to user
mode programs.

Supervisor mode is entered only via the INTRAP se-
quence, or when the system is reset.

3.3. Mapped and Unmapped Addresses

CLIPPER can operate in two modes: mapped and un-
mapped. In mapped mode, the CAMMU translates user
and supervisor virtual addresses to real addresses
using the TLB or the HTLB (for supervisor virtual
addresses 0 - 777F Hex); in unmapped mode, only the
HTLB is used for translation. The mode is selected by
the M (mapped mode) flag in the SSW. When this flag
is set, CLIPPER operates in mapped mode; when this
flag is clear, CLIPPER operates in unmapped mode.
The two modes are shown in Figure 11. Virtual to real
address translation is discussed in Section 7.2, Memory
Management Unit..

SUPERIIISOR USER
P A N — A ~
UNMAPPED MAPPED UNMAPPED MAPPED
PAGES MODE MODE MODE MODE
UNMAPPED VA MAPPED
VA=RA TO RA
UNMAPPED VA MAPPED
VA=RA TO RA
7
HTLB HTLB
° MAPPED MAPPED 8
<

Copyri ght ed

14

By Its Respective

Manuf act ur er

This Materi al

CLIPPER® C300
32-Bit Compute Engine

Advance Information

4. Floating-Point Unit

The C300 Fioating-Point Unit (FPU) executes addition,
subtraction, multiplication, and division operations con-
forming to the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985) in the single- and
double-precision formats. In addition, the floating-point
comparison operations are provided for both
precisions. The floating-point execution unit also per-
forms integer multiplication, division, and mod opera-
tions.

Comparisons of floating-point numbers can result in the
familiar trichotomy of b < a, b = a, b < a, as well as the
condition b .unordered. a, which arises when either b or
a is a non-numeric value (NaN). Resuilts of the com-
parison are indicated in the PSW condition codes at the
condlusion of a floating-point comparison. Conditional
branch instructions allow these condition codes to be
used.

The floating-point execution unit performs one operation
at a time, reusing interal resources over a number of
CPU clocks in order to complete the operation, includ-
ing the handling of special case operands and results
mentioned below.

4.1. Floating-Point Register Usage

All of the floating-point arithmetic instructions are
register-to-register operations, using the eight floating-
point registers available to software. These registers are
capable of holding either single or double format
operands interchangeably. The floating-point registers
may be directly loaded from memory or may be loaded
by transfer from the integer register file. Storing of
operands may be direct to memory or by transfer to the
integer register file. Additional "scratch pad" registers,
transparent to the user, are availabie to the Macro In-
struction Unit.

Integer multiplication, division, and mod operations are
also register-to-register, but in this case the registers
used are in the integer register file; no floating-point
registers are involved.

Because separate instructions are provided for single-
and double-precision operations, a rounding precision

15

mode field is not required because the precision is
defined by the instruction field. All four rounding modes
called for in the Standard are provided by the FR field
in the PSW.

4.2. Floating-Point Exceptions and Traps
Exceptional operands and operation results are handled
in conformity with the requirements of the IEEE Stan-
dard. The special operands include signalling and quiet
Not-a-Number (NaN), signed infinities, signed zeros,
and denormal numbers, as well as the wealth of ordi-
nary normalized numbers.

If the corresponding trap enable flag in the PSW is set,
and the PSW's floating-point trap group enable flag is
also set, then a floating-point trap occurs. The CPU
then invokes a program called a trap handler, which
may be user-specified. When a trap handler is entered,
the load floating status (loadfs) instruction can be ex-
ecuted to acquire useful information about the instruc-
tion causing the exception. Floating-point exceptions are
discussed in greater detail in Section 6, Exceptions.

4.3. FPU Software Initialization
The |EEE Standard requires the following initial condi-
tions:

— The rounding mode must be round nearest.
— The floating-point exception flags must all be cleared.

— Al floating-point traps must be disabled, and default
results for all exceptions must be enabled.

This initialized state is accomplished by clearing all FPU-
related bits in the PSW.

The contents of f0-{7 should be set to a known value.
Some programming languages require that these values
be initialized to zero. The IEEE Standard, on the other
hand, provides for special reserved values and calls
these NaN, or Not-A-Number. Whichever of these is
chosen, this value should be created and loaded into
each of the floating-point registers.

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

An example FPU initialization is as follows:
loadq $0, r0 # Create zero
movwp 10, psw # Load PSW with rounding
mode 00 (nearest) and
clear all exception
flags and trap enable bits
loadi $0x7ffbad75, r1 # Load high half of hex
NaN 1.bad75a
loadi $0x00000000, r0 # Load low half of NaN

movid 10, fO # Store in floating register O
movid 10, f1 # Store in floating register 1
movid 10, f2 # Store in floating register 2
movid 10, f3 # Store in floating register 3
movid 10, f4 # Store in floating register 4
movid 10, f§ # Store in floating register 5
movid r0, f6 # Store in floating register 6
movid 10, {7 # Store in floating register 7

The NaN used in the initialization above is a quiet NaN.
A quiet NaN propagates through arithmetic operations
unchanged, except for the sign bit, which is undefined
for NaNs. Thus, any user who operates on a register
not yet defined will receive this NaN as a result.

5. Instruction Set

The CLIPPER C300 instruction set of 101 basic and 67
macro instructions is streamlined for speed and the
most effective use of the system’s resources and
register sets. This smaller, faster instruction set is espe-
cially useful to high-level language compilers that op-
timize register usage, branch timing for maximum
speed, and pipeline sequencing.

Memory access is by load/store instructions to minimize
memory-dependent execution delays. All data opera-
tions are performed on registers by hardwired instruc-
tions.

There are two units in the C300 CPU that execute in-
structions: the Integer Execution Unit (IEU) and the
Floating-Point Execution Unit (FPU). The integer instruc-
tions (with the exception of integer multiplies and
divides) are executed by the IEU. Floating-point instruc-
tions (and the integer multiplies and divides) are ex-
ecuted by the FPU.

Most instructions are fetched from main memory. Each
instruction is fetched (through the instruction cache),

decoded, then executed, either by the IEU or by the
FPU. The only exceptions are the macro instructions.

A macro instruction opcode selects a sequence of in-
structions in the macro instruction ROM (Ml ROM).
When a macro instruction is decoded, execution control
is switched to the Ml ROM, and the sequences of the
macro instruction are executed.

The instruction set is listed in Table 1.

5.1. Instruction Formats

The information encoded in each instruction specifies
the operation to be performed, the type of operands to
use (if any), and the location of the operands. The
mnemonic and operands of the assembly language
source statement determine the instruction format used.

Most instructions require one or more operands in the
source statement. These operands can be located in a
register or in memory. For example, the loadb instruc-
tion contains operands that reference memory and a
register. If an operand is located in memory, the instruc-
tion must calculate the address of the operand accord-
ing to the address mode specified in the instruction
format.

An operand can also be encoded within the instruction.
The immediate and quick instructions use this type of
format for efficient operation.

All instructions are constructed in multiples of halfwords
called parcels (see the general instruction format
below). Depending on the instruction format used, the
size of an instruction varies from one to four parcels.

MSB Lss
63 48 47 32 3 16 15 87 0
OPCODE i
- ~——— —~ - — o~ - =
FOURTH THIRD SECOND RRST
PARCEL PARCEL PARCEL PARCEL

Figure 12 shows CLIPPER C300 instruction formats.
Notice that the formats are divided into two main
categories, non-memory referencing instructions (NO
ADDRESS) and memory referencing instructions (WITH
ADDRESS).

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 12 Instruction Formats

INSTRUCTION FORMATS - NO ADDRESS

REGISTER CONTROL
15 8 7 43 0 15 8 7 0
| S O ;Y | [opcooE___ | BYTE]
Quick MACRO
15 _ 87 43 o 15 98 76 0
[opcooE JTauick T _Rr2 1 [_GpcobE_PoJoo
00000000 1 2|
3 24 23 20 19 16
16-BIT IMMEDIATE 32-BIT IMMEDIATE
15 8 7 4 3 0 15 87 43 0
 OPCODE 101 1] A2 | [~ OPCODE _ 0011 R2
W{TBWME
31 30 1 S] IMMEDIATE HIGH
a7 46 32

INSTRUCTION FORMAT - WITH ADDRESS

RELATIVE
15
OPCODE 0

4 43
R1 R2

RELATIVE PLUS 12-BIT DISPLACEMENT
15 8 7 43

o

OPCODE ___1]1 0 1 0] _R1

! Al

——

2

31 30

RELATIVE PLUS 32-BIT DISPLACEMENT

20 19

16

15 8 7 43 0
OPCODE 10110 R1
0000000O0O0O0O00OC R2
DISP NLoWw]
() DISPLACEMENT HIGH
63 62 a8
16-BIT ABSOLUTE
15 8 7 43 (]
EESBE 1!1 01 1| R2
31 30 1€
32-BIT ABSOLUTE
15 8 7 43 0
OPCODE 110 0 1 1 R2
ADDRESS LOW
S ADDR IGH o
4 32

PC-RELATIVE PLUS 16-BIT DISPLACEMENT
15 8 7 43 0

DPCOD

PC-RELATIVE PLUS 32-BIT DISPLACEMENT

15 8 7 43 0

OPCODE ___1]0 0 0 1] R2 |
- _"BEEUEELEWM 'L'b'v& —
g_—'mm'éﬂ———p C i
a7 46 32

RELATIVE INDEXED
15 8 7 43 0
0

OPCODE___1]1 1 1 R1
0000000 0] RX R2
3 24 23 20 19 16
PC INDEXED
15 3 7 43 0
OPCODE __1]1 1 0 1J0 0 0 O
0000000 [R2__|
3t 24 23 2019 16
AO22

17

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 1 Instruction Set, by Function

LOAD/STORE INSTRUCTIONS

Load Address

Load Byte

Load Byte Unsigned
Load Double Floating
Load Floating Status
Load Halfword

Load Halfword Unsigned
Load immediate
Load Quick

Load Single Floating
L.oad Word

Store Byte

Store Double Floating
Store Halfword

Store Single Floating
Store Word

DATA MOVEMENT INSTRUCTIONS

Move Double Floating

Move Double to Longword

Move Longword to Double

Move Processor Register to Word
Move Single Floating

Move Supervisor to User (privileged)
Move Single to Word ‘

Move User to Supervisor (privileged)
Move Word

Move Word to Processor Register
Move Word to Single Floating

ARITHMETIC INSTRUCTIONS

Add Double Floating
Add Immediate

Add Quick

Add Single Floating
Add Word

Add Word with Carry

Subtract Double Floating
Subtract immediate
Subtract Single Floating
Subtract Word

Subtract Word with Carry

Multiply Double Floating
Multiply Single Floating
Multiply Word

Multiply Word Unsigned
Muitiply Word Extended

Divide Double Floating
Divide Single Floating

Divide Word

Divide Word Unsigned

Negate Double Floating
Negate Single Floating
Negate Word

Modulus Word
Modulus Word Unsigned

Scale by, Double Floating
Scale by, Single Floating

i8

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 1 Instruction Set, by Function (cont.)

LOGICAL INSTRUCTIONS SHIFT/ROTATE INSTRUCTION
AND Immediate Shift Arithmetic Immediate
AND Word Shift Arithmetic Longword
Shift Arithmetic Longword Immediate
OR Immediate Shift Arithmetic Word
OR Word Shift Logical Immediate

Exclusive-OR Immediate
Exclusive-OR Word

Not Quick
Not Word

CHARACTER STRING INSTRUCTIONS

Compare Characters
Initialize Characters

Move Characters

CONVERSION INSTRUCTIONS

Convert Double to Single

Convert Double to Word

Convert Rounding Double to Word
Convert Rounding Single to Word
Convert Single to Double

Convert Truncating Double to Word
Convert Truncating Single to Word
Convert Word to Double

Convert Word to Single

Shift Logical Longword
Shift Logical Longword Immediate
Shift Logical Word

Rotate Immediate

Rotate Longword

Rotate Longword Immediate
Rotate Word

STACK MANIPULATION INSTRUCTIONS

Pop Word
Push Word

Restore Registers fn-f7
Restore User Registers (privileged)
Restore Register m-r14

Save Registers fn-17
Save User Registers (privileged)
Save Registers m-r14

CONTROL INSTRUCTIONS

COMPARE AND TEST INSTRUCTIONS

Compare Double Floating
Compare Immediate
Compare Quick
Compare Single Floating
Compare Word

Test and Set

Branch on Condition
Branch on Floating Exception

Call Subroutine
Call Supervisor

No Operation

Return From Subroutine

Return From interrupt (privileged)
Trap on Floating Unordered

Wait for Interrupt (privileged)

19

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

5.1.1. Instruction Formats—No Address

Register

The Register format is used for most instructions that
take just one or two register arguments.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

]

=

movw 3,

|

mlnz 2

r OPCODE]

The opcode specifies the interpretation of the R1 and
R2 fields. Usually the R1 field contains the source
operand register number, and R2 contains the destina-
tion operand register number. For example, in the
movsw instruction, the R1 field contains the number of
the single-precision floating-point register containing the
source operand, and the R2 field contains the number
of the general register in which to store the result.

Quick

The Quick format encodes constant, 4-bit unsigned
source operands directly in the instruction. The quick
value is always zero-filled at the left before use.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

loadq $18

e

. 110
.T.

|

]ouncx] A2]:
H

I

OPCODE
1

16-bit immediate

The 16-bit Immediate format encodes a 16-bit source
operand constant directly in the instruction. The im-
mediate value is always sign-extended before use.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

T4

7

addl 817,

|
T1o11] A2

IMMEDIATE

OPCODE

A04S

32-bit Immediate
The 32-bit immediate format encodes a constant, 32-bit
source operand directly in the instruction.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

andi_$Oxiftit , 16

I

OPCODE

loounl R2

IMMEDIATE LOW

IMMEDIATE HIGH

5]

Control

The Control format encodes up to 8 bits of a constant
value that is used by several special instructions. For ex-
ample, the byte operand specifies the system call num-
ber in the calls instruction.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

calls $17

OPCODE

o
|

BYTE l

Macro

The Macro format is used by those instructions that are
implemented as macros rather than directly in the
hardware. The P bit in the opcode, bit 9 of the first in-
struction parcel, selects a privileged macro.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

7

7z

covew 13,

A04s

A047

I 1 [

OPCODE POojOO CODE

0 00000CO0OCOC R1 R2

20

Copyrighted By Its Respective Mnufacturer

Ao4as

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

5.1.2. Instruction Formats—With Address

The remaining instruction formats specify an address
operand and a register operand. Several address for-
mats, or modes, are provided to support typical high-
level language operations. The address mode is
selected first by the opcode (bit 8 of the first instruction
parcel), and if necessary, by the AM field (bits <7:4> of

Table 2 Memory Addressing Modes

the first instruction parcel). Displacements and absolute
addresses are always sign-extended.

The address modes used in the memory referencing in-
structions are summarized in Table 2 and explained in
the following pages.

Memory Addressing Mode

Address Formation

Relative

Relative plus 12-bit displacement
Relative plus 32-bit displacement
16-bit Absolute

32-bit Absolute

PC Relative plus 16-bit displacement
PC Relative plus 32-bit displacement
Relative Indexed

PC Indexed

Notes:
All displacements are signed.
PC addresses the first parcel of the current instruction.

Address « (R1)

Address « (R1) + 12-bit displacement
Address « (R1) + 32-bit displacement
Address « 16-bit displacement
Address « 32-bit displacement
Address « (PC) + 16-bit displacement
Address « (PC) + 32-bit displacement
Address « (R1) + (RX)

Address « (PC) + (RX)

RX is any general register containing the index modifying the effect of the source register.

21

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Relative
The Relative format uses the address in a register (R1)
to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
losdw () , 12
} |
OPCODE ° R R2 3 0
L ADDRESS 2
3
Relative Plus 12-bit Displacement
The Relative Plus 12-bit Displacement format uses the
address in a register (R1), plus a signed 12-bit displace-
ment, to compute an address. The displacement is sign-
extended to 32 bits before the address calculation.
EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
storw 18 , 4 (sp)
T]
¥ 31 0
OPCODE 11010 m ADDRESS FROM REGISTER J
L sl DISPLACEMENT R2 - +
‘ 31 12 11 10 0
ol -
»fe-—— EXTEND SIGN [s l DISPLACEMENT I
31 [
ADDRESS]]
22

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Relative Plus 32-bit Displacement

The Relative Plus 32-bit Displacement format uses the
address in a register (R1), plus a signed 32-bit displace-
ment, to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION

R e I —

00000006060GOGCOO0 o

S

I ADDRESS li
16-bit Absolute
The 16-bit Absolute format uses the signed 16-bit ad-
dress, which is sign-extended to 32 bits before use. Be-
cause the address field is signed, the range of
addresses that can be accessed with this format is -2'°
< address < 2'5 -1.
EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
tots l&c!_ ,
OPCODE 1|1o11] R2 1 16 15 14
sl ADDRESS EXTEND SIGN 8| DISPLACEMENT
31
ADDRESS

23

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

32-bit Absolute
The 32-bit Absolute format uses the 32-bit displacement
portion of the instruction as an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
loadd , M
T T
OPCODE 1] o 011 l R2
L{ ADDRESS LOW & 2
] I ADDRESS HIGH

PC Relative Plus 16-bit Displacement

The PC Relative Plus 16-bit Displacement format adds
a signed 16-bit displacement to the contents of the
Program Counter (PC) to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
b . &
T 7]
31 l 0
OPCODE 1 I1 o0 1| ADDRESS FROM PROGRAM COUNTER J
sl DISPLACEMENT +
31 16 15 14 o

EXTEND SIGN | -] ‘ DISPLACEMENT I

31 0

ADDRESS i

24

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300

32-Bit Compute Engine

Advance Information

PC Relative Plus 32-bit Displacement
The PC Relative Plus 32-bit Displacement format adds
a signed 32-bit displacement to the contents of the

Program Counter (PC) to compute the address.

call sp ,

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
far (pe)
T
5 l
OPCODE 1 | 0001 | R2 I ADDRESS FROM PROGRAM COUNTER I
sl DISPLACEMENT HIGH
- +
DISPLACEMENT LOW
31 0
SIGNED DISPLACEMENT l
31 o
| ADDRESS

Relative Indexed
The Relative Indexed format uses the address in a
register (R1), plus the contents of an index register
(RX), to compute an address.

P

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
toadby 3] (fp) . o
4 31 0
OPCODE 1 (1110 Ri I ADDRESS FROM REGISTER
00000000 RX R2 +
$ 31 0
ADDRESS FROM REGISTER
31 0
ADDRESS
25

This Materia

Copyrighted By Its

Respecti ve Manuf acturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

PC indexed

The PC Indexed format adds the contents of an index
register (RX) to the contents of the PC to compute an
address.

i —
e

5.2. Instruction Set Summary

Table 5 is a summary of the instruction set. Each instruc-
tion is described by several columns in the table. The
columns are as follows:

Instruction Name
The full name of the instruction.

Syntax

Assembler instruction name and operand formats. The
left letter of the operand code specifies the operand's
type and size. The right letter of the operand code
specifies the operand's field within the instruction and
its location in the machine (immediate value, register,
memory, etc.).

Operand Type Operand Field
b byte 8 single floating 1 R1 a address
h halfword d double floating {2 R2 b byte
w word p processor register|q quick
| longword i immediate

For example, the operand code w1 indicates a word
operand in the general register whose number is en-
coded in the R1 field of the instruction. The code sa indi-
cates a single floating operand in the memory location
whose address is given by one of the addressing

modas in Section 5.1.2, Instruction Formats —With Ad-

26

- 7 I_____.i’-' — ol

31]
L I3
dress. Quick and immediate operand types are always

w because these directly encoded values are always
zero or sign extended to a word before use.

Opcode

Hexadecimal opcode. Address format instructions use
two opcodes; the first one listed is for relative mode,
and the second is for all other addressing modes.
Macro format instructions show the entire first parcel.

Format
Instruction format. See Section 5.1, Instruction Formats.

Operation

Basic operation of the instruction. The operations of
complex instructions like move are simplified or ab-
breviated. Fixed registers are given by name, e.g., 0, f1.

CVZN
Effect of the instruction on condition codes in the PSW.

0 = always settoO.
1 = alwayssetto 1.
= unaffected.
= = set according to the operation.
Fl, FV, FD, FU, FX

Effect of the instruction on the floating-point exception
flags in the PSW. Same key as CVZN.

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Traps

Traps that can be caused by the instruction.
Corrected Memory Error
Uncorrectable Memory Error
Data Alignment fault

Page Fault

Read Protect Fault

Wirite Protect Fault

Divide by Zero

lllegal Operation

Supervisor Only (privileged)Instruction

W—OSTITVPCO
LS T I A]

All instructions can cause traps from the Instruction
Memory Trap group in the I-CAMMU (for example, an

execute protect fault), so these are not shown. Possible
floating-point traps are indicated by an asterisk (*) in
the FI1..FX columns.

The instruction operand codes described above also
describe the syntax of each instruction operand. As-
sembler operand syntax is given in Table 3 below. As-
sembler instruction operands are generally given in
source, destination order independent of their positions
in the machine representation. Table 4 lists the
operators used in the operation field.

Table 4 Operators

Table 3 Assembler Operand Syntax Notation Meaning

r0o..r5 General registers. The even general rot Rotate operator
registers address long operands. sp, fp, sha Shift arithmetic operator
and ap are synonyms for r15, ri4, and shi Shift logical operator
r13. Not to be confused with R1 or R2, + Add operator
which are register fields within an - Subtract operator
instruction. X Multiply operator

fo..f7 Floating registers. Each register may + Divide operator

contain a single or double floating value.
psw, ssw, | Processor registers 0, 1,and 3.
sswi

$n Quick, byte or immediate value.

n Absolute address.

n(rm) Relative or relative with displacement
address. n may be O or absent.

[rx](rn) Relative indexed address.

n(pc) PC relative address.

or .in

[rx}(pc) PC indexed address.

label Absolute or PC relative address depend-

ing on the circumstances.

mod Modulus operator

~ Logical complement operator

= Equal operator
«- Assignment operator

& AND logical operator

| OR logical operator

@ Exclusive-OR logical operator
() Contents of operand within
[1 Separators used to indicate value inside as

a unit
<> Bit field of previous value
. Indicates a range of values
T Exponentiation

27

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 5 Instruction Operations

FFFFF
Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps
Add Double Floating addd d1,d2 22 Register d2 « (d2) + (d1) LR
Add immediate addi wi w2 83 immediate w2 « (W2) + wi N L
Add Quick addq wqw2 82 Quick W2 « (W2) + Wq B
Add Single Floating adds 81,82 20 Register S2 « (82) + (s1) LRI 2
Add Word addw wiw2 80 Register w2 & (W2) + (w1) . R LA
Add Word with Carry addwc wiw2 90 Register w2« (W2) + (W1)+C LR R
And immediate andi wiw2 8b Immediate w2 « (W2) & wi 00+*+ |
And Word andw wiw2 88 Register w2 « (w2) & (w1) GO+~
Branch on Conditional be ha 48,49 Address IF cond, PC « ha .. - Al
Branch on Fioating Exception bfs ha 4c,4d Address IF cond, PC « ha S e - Al
Call Routine call w2, ha 44,45 Address W2 & (W2) — 4, (W2) « (PC),- - - - - - APW
PC « ha
Call Supervisor calls bb 12 Control trap 400 + 8 x bb<7:0> e e e e
Compare Characters cmpc b4 of Macro while [(r0)=0] & [((r2)=((r1))}, - - - - - s *=*=* CU.PR
rO=length, r1=string1, r2=string2 Me(0)-1,re(r)+1,
Re(r2)+1
Compare Double Floating cmpd di1,d2 27 Register (d2) - (d1) 00+«
Compare Immediate cmpi wi w2 a7 immediate (W2) — wi eses |
Compare Quick cmpq wqw2 at Quick (w2) - wq . . LR
Compare Single Floating cmps 81,82 25 Register (s2) —(81) ceeee 00%»
Compare Word cmpw wiw2 a4 Register (w2) — (w1) B LR
Convert Double Floating to Single cnvds d1,s2 b4 39 Macro 82 « (d1) e ne
Convert Double Floating to Word cnvdw diw2 b4 34 Macro w2 « (d1) ...
Convert Rounding Double to Word cnvrdw d1,.w2 b4 35 Macro w2 « (d1) ...
Convert Rounding Single 1o Word cnvrsw 81,w2 b4 31 Macro w2 « (81) ...
Convert Single Floating 1o Double cnvsed 81,d2 b4 38 Macro d2 « (s1) * . .
Convert Single Floating 1o Word cnvsw s1w2 b4 30 Macro w2 « (s1) LIRIRIS
Convert Truncating Double to Word cnvidw d1,w2 b4 36 Macro w2 « {d1) LICERIES
Convert Truncating Single to Word cnvisw s1,w2 b4 32 Macro w2 « (81) LICERREE
Convert Word to Double Floating cnvwd w1,d2 b4 37 Macro d2 « (w1) e e
Convert Word to Single Floating cnvws w1,82 b4 33 Macro 82 « (W1) BRI
Divide Double Floating divd d1,d2 2b Register d2 « (d2) + (d1) creee
Divide Single Floating divs 81,82 29 Register 82 « (82) + (81) LR T
Divide Word divw wiw2 9¢ Register W2 « (w2) + (w1) 0+00D
Divide Word Unsigned divwu wiw2 9e Register W2 « (W2) + (w1) 0000 D
Initialize Characters initc b4 Oe Macro while (r1)»0, ... PW
rO=length, ri=dest, r2=pattern (r1) « (r2<7:0>),
Me(0)—1,r «(r1)+1,
r2 « (r2) rot-8
Load Address loada baw2 62,63 Address w2 « ba B |
Load Byte loadb baw2 68,69 Address W2 « (ba) .- CUAPR,|I
Load Byte Unsigned loadbu baw2 6a,6b Address w2 « (ba) .- CUAPRI
Load Double Floating loadd da,d2 66,67 Address d2 « (da) - CUAPR|
Load Floating Status loadfs wi,d2 b4 3f Macro wi « (FP PC),
d2 « (FP dest)
Load Halfword loadh haw2 6¢,6d Address w2 « (ha) - CUAPRJI
{ oad Halfword Unsigned loadhu haw?2 6e,6f Address W2 « (ha) ... CUAPRI
Load Immediate loadi wi,w2 87 immediate W2 «— wi 00#*» 1
Load Quick loadq wqw2 86 Quick w2 « wWq 00+*0
Load Single Floating loads sas2 64,65 Address 82 « (sa) CUAPRI|I
Load Word joadw waw2 60,61 Address W2 « (wa) - CUAPR,|I
28

This Material Copyrighted By

Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table § Instruction Operations (cont.)

FFFFF
Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps
Modulus Word modw wiw2 Sd Register w2 « (w2) mod (w1) 0+00D
Modulus Word Unsigned modwu wiw2 of Register w2 « (w2) mod (w1) 00000
Move Characters move b4 0d Macro while (r0) = 0, {r2) « ((r1)), - CUPRW
r0=length, ri=source, r2=dest M () -1, (r)+1,
Re(T2)+1
Move Double Floating movd d1,d2 26 Register d2 « (d1)
Move Double Floating o Longword movdl d1,12 2e Register 12 « (d1) .-
Move Longword to Double Floating movid 11,d2 2t Register d2 « (1)
Move Processor Register to Word movpw p1,.w2 11 Register w2 « (p1)
Move Single Floating movs 81,82 24 Register 82 « (s1) e
Move Supervisor to User (privileged) movsu ~ w1,w2 b6 01 Macro W2 « (W1) 00+«+ S
Move Single Floating to Word movsw 81,w2 2c Register w2 « (s1) e
Move User to Supervisor (privileged) movus w1,.w2 b6 00 Macro W2 « (w1) 00+« S
Move Word mow wiw2 84 Register w2 « (w1) 00 #*=
Move Word to Processor Register mowwp w2,p1 10 Register p1 « (W2) LR R
Move Word to Single Floating mowws wi,s2 2d Register 82 « (w1) o
Multiply Double Floating muld di,d2 2a Register d2 « (d2) x (d1) DRI 3
Muitiply Single Floating muls 81,82 28 Register s2 « (s2) x (s1) L 2 Cee
Multiply Word mulw wiw2 98 Register w2 « (W2) x (W1) .. 0+00
Muttiply Word Unsigned muiwu wiw2 9a Register w2 « (w2) x (w1) 0+00
Multiply Word Unsigned Extended mulwux w1,12 9b Register 12 « (W2) x (w1) 0+00
Multiply Word Extended mulwx w1,12 99 Register 12 « (w2) x (w1) 0+00
Negate Double Floating negd d1,d2 b4 3b Macro d2 « —(d1) e
Negate Single Fioating negs 51,82 b4 3a Macro 2e-(s1) ...
Negate Word negw wiw2 93 Register w2 « - (w1) LR
No Operation noop bb 00 Control none P
Not Quick notq wq,w2 ae Quick w2 « ~Wq 0001
Not Word notw wiw2 ac Register w2 « ~(w1) 00+ =
Or Immediate ori wi,w2 8f Immediate w2 « (wW2) | wi 00+ 1
Or Word orw wiw2 8c Register w2 « (w2) | (w1) 00+
Pop Word popw wi w2 16 Register w1 « (w1) + 4, . CUAPR
w2 « ((W1) - 4)
Push Word pushw w2wi 14 Register w1 « (w1) -4, - APW
(W1) « (w2)
Restore Registers fn .. f7 restdn b4 28 Macro fn.f7e(ri5)..+ CUAPR
0sns7 . ((r15) + 8 x [7-n]),
b4 2F r15 « (r15) + 8 x [8-n)
Restore User Registers (privileged) restur w1 b6 03 Macro r0 .. r5 « ((w1)) .. - CUAPRS
((w1) + 60)
Restore Registers rn .. r14 restwn b4 10 Macro tn..r14 « ((r15)) .. - CUAPR
0sns12 - ((r15) + 4 x [14-n)),
b4 1C S « (r15) + 4 x [15-n]
Return From Routine ret w2 13 Register PC « ((w2)) - CUAPR
W2« (W2) + 4
Retumn From Interrupt (privileged) reti w1 b6 04 Macro Restore SSW, PSWandPC . - - .. «*%x%x S
Rotate Immediate roti wi,w2 3c Immediate w2 « (w2) rot wi . 00=*x* |
. Rotate Longword rotl wi 2 35 Register 12 « (I12) rot (w1) 00+
Rotate Longword immediate rotli wi,l2 3d Immediate 12 « (12) rot wi 00+ |
Rotate Word rotw wiw2 34 Register w2 « (w2) rot (w1) 00+«
Save Registers fn .. f7 savedn b4 20 Macro (r15)-8x[8—n] .. - APW
0sns7 . (r15) - 8 « (fn) .. (f7),
b4 27 r5 « (r15) -8 x [8 — n]
29

This Materia

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 5 Instruction Operations (cont.)

FFFFF
Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps
Save User Registers (privileged) saveur w1 b6 02 Macro (w1)—4 .. (W1)—64 « vee e .- APWS
(r15) .. (r0)
Save Registers rn .. r14 savewn b4 00 Macro (ri5) -4 x[15-n] .. N ¥ A U
0<ns12 .- (r15) — 4 « (rn) .. (r14),
b4 OC 15 « (r15) -4 x {15 - n]
Scale by, Double Floating scalbd wi,d2 ba3d Macro d2« (d2) x 2™V A AR
Scale by, Single Fioating scabs wis2 bd3c Maco 82 (s2)x2™" ar.ws
Shift Arithmetic Immediate shai wiw2 38 Immediate w2 « (w2) sha wi s Osxx|
Shift Arithmetic Longword shal wi,l2 31 Register 12 « (2) sha (w1) cieee O%as
Shift Arithmetic Longword Immediate shali wii2 39 Immediate 12 « (I2) sha wi cee v Dewx |
Shift Arithmetic Word shaw wiw2 30 Register w2 « (w2) sha (w1) ceiiee Oses
Shift Logical Immediate shli wi,w2 3a Immediate w2 « (w2) shl wi e 00|
Shift Logical Longword shil wil2 33 Register 12 « (12) shi (w1) e 002
Shift Logical Longword Immediate shlli wi,l2 3b Immediate 12 « (12) shl wi s 00|
Shift Logical Word shiw wiw2 32 Register w2 « (w2) shi (w1) cee-e 00==
Store Byte storb w2,ba 78,79 Address ba « (W2) e oo oo .- APWI
Store Double Floating stord d2,da 76,77 Address da « (d2) ce e e APWI
Store Halfword storh w2,ha 7¢,7d Address ha « (w2) e ee oo - APWI
Store Single Floating stors s2,sa 74,75 Address sa e« (s2) e oo APWI
Store Word storw w2wa 70,71 Address wa & (W2) N YA A
Subtract Double Floating subd di,d2 23 Register d2 « (d2) - (d1) T
Subtract Immediate subi wiw2 a3 immediate W2 « (wW2) — wi ceee senx|
Subtract Quick subq wqw2 a2 Quick w2 « (W2) - wq Ciee. wEEs
Subtract Single Floating subs 81,82 21 Register 82 « (82) — (s1) L L
Subtract Word subw wiw2 a0 Register W2 « (w2) — (w1) ceee. sx% s
Subtract Word with Carry subwc wiw2 91 Register w2 « (w2)—{(w1)—-C cee s ke Es
Test and Set tsts wa,w2 72,73 Address W2 « (wa),wae1 - - - CUAP,
RW,!
Trap on Floating Unordered trapfn b4 3e Macro IF PSW<ZN> indicates B I |
unordered, illegal instruction
trap
Wait for Interrupt (privileged) wait b6 05 Macro Wait for interrupt ceiee ... 8
Exclusive-OR Immediate xori wiw2 ab immediate W2 « (W2) ® wi cee e 00|
Exclusive-OR Word XOrw wiw2 a8 Register w2 « (w2) @ (w1) e 00%x
Legend:
PSW Flags Field Traps Field
- = Flag not affected by instruction D = Divide-by-zero
* = Flag set according to operation | = lllegal instruction
0= Flag setto 0 M = Memory fault
1= Flag setto 1 P = Page fault

R = Read protect fault
S = Supervisor only (priviledged) instruction
W = Write protect fault

30

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 6A Integer Branch Conditions

PSW Flags
cond (C|V|Z|N| Name | Condition
0 XiIX|XIX b Branch always
PSW Flags
cond |C|V|Z|N| Name | Compare R1:R2 Name Result R2:0
1 Xj0j010 beit Less Than brgt Greater Than
Xl1]0]1
2 Xjo|xjo bcle Less or Equal brge Greater or Equal
X{1}]0]1
3 X[X]1|0] beeq Equal breq Equal
1
4 xjofo begt Greater Than brit Less Than
Xit1|X|o
Xj1|X|o
5 X10|/0]|1] bege Greater or Equal brie Less or Equal
X[X|t1]|o
X
6 X|X10 bcne Not Equal brne Not Equal
X[X]1[1
7 0|X]0|X]| beltu Less Than Unsigned brgtu Greater Than Unsigned
8 O(X|X|X]| bcleu Less or Equal Unsigned brgeu Greater or Equal Unsigned
9 1 [X|{X|[X]| begtu Greater Than Unsigned britu Less Than Unsigned
1 (XXX
A x1x!l1lx begeu Greater or Equal Unsigned brleu Less or Equal Unsigned
PSW FI The R2 field of the branch on condition instruction
ags selects the condition on which to branch. When a
cond |[C|V|Z|N| Name | Condition choice of mnemonics is shown, use the ones begin-
8 ol x|x1x]| bne Not Carry ning with be if the.conditiclm codes to be tested.were
set by a compare instruction. Use the mnemonics
9 1[X]X]|X]| be Carry beginning with br if they were set by move or logical in-
B X]11]X|[X] bv Overflow structions (those instructions that set only N or Z).
¢ X]O|X]X]| b Not Overflow Table 6B Floating Branch Conditions
D X[{X|0}{1] bn Negative
E |X[X[X|0[ban | Not Negative cond ::‘"" °°“f’"'::w :
F|X[X[1]1] b Floating Unordered ° | ey ,ﬁ:g:::g BAD Loaption
2-F Reserved

This Materia

31

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

6. Exceptions

The CLIPPER C300 architecture supports 404 excep-
tion conditions: 20 hardware traps, 128 programmable
supervisor call traps, and 256 vectored interrupts.

Traps are exceptions recognized by the CPU during ex-
ecution of single instructions (e.g., divide by zero, page
fault). A trap causes all instructions in both the upper
and lower pipelines to either be backed out or com-
pleted in a manner consistent with program restart.

Interrupts are events signalled by devices extemal to
the €300 Module and input to the module via the inter-
rupt pins. Interrupts are taken when the following condi-
tions are met:

— Interrupts are enabled.

— The Interrupt Level (IVEC<7:45) is less than or equal
to the IL field in the SSW.

— All instructions in the lower pipeline have finished
executing. String instructions have either completed
execution or have detected the interrupt and saved
sufficient state information for continuation.

— No traps are pending.

A flow chart showing the necessary conditions for inter-
rupts is shown in Figure 14.

The address of the service routine for each trap, super-
visor call, and interrupt is stored in an Exception Vector
Table (see Table 7), located in the first real page of
main memory. The Exception Vector Table (EVT) con-
tains a two-word entry for each exception, consisting of
the starting address of the exception’s service routine
and an SSW value associated with the routine. Unas-
signed EVT addresses are reserved for future use by In-
tergraph and must be initialized to point to a valid
handler routine.

The priority of exceptions is the order shown in the EVT
(in the order from highest to lowest priority), except that
the trace trap has the lowest priority. The CLIPPER
C300 Module's internal priority logic ensures that excep-
tion service is always granted to the highest priority
event.

32

Table 7 Exception Vector Table

Real Address Description

(Hex)
Data Memory Trap Group

108 Corrected Memory Error

110 Uncorrectable Memory Error

120 Alignment Fault

128 Page Fault

130 Read Protect Fault

138 Write Protect Fault
Floating-Point Arithmetic Trap Group

180 Floating Inexact

188 Floating Underflow

190 Floating Divide by Zero

1A0 Floating Overflow

1CO Floating Invalid Operation
Integer Arithmetic Trap Group

208 Integer Divided by Zero
Instruction Memory Trap Group

288 Corrected Memory Error

290 Uncorrectable Memory Error

2A0 Alignment Fault

2A8 Page Fault

2B0 Execute Protect Fault
llegal Operation Trap Group

300 Iilegal Operation

308 Privileged Instruction
Diagnostic Trap Group

380 Trace Trap
Supervisor Calls

400 Supervisor Call 0

408 Supervisor Call 1

7F8 Supervisor Call 127
Prioritized Interrupts:

800 Non-Maskable Interrupt

808 Interrupt Level 0 Number 1

810 Interrupt Level 0 Number 2

878 Interrupt Level O Number 15

880 Interrupt Level 1 Number O

888 Interrupt Level 1 Number 1

FF8 Interrupt Level 15 Number 15

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

6.1. INTRAP and retl Sequences
Two macro instruction sequences, INTRAP and reti,

manage the entry to and exit from both traps and inter-
rupts. The INTRAP sequence performs a non-interrup-

table context switch to supervisor mode, and then

transters control to the trap or interrupt handler. The retl
sequence is an interrupt/trap retum, also non-interrupt-
ible, which restores the system to the correct user or su-

pervisor environment.

During the INTRAP and retl sequences, all interrupts

are disabled; traps are not disabled, but only serious
system faults can occur, as explained below.

The INTRAP sequence begins by saving the PC, SSW,
and PSW on the supervisor stack as shown in Figure
13. The saved PSW will have MTS or CTS set to indi-

cate the cause of the trap. INTRAP then copies the

SSW's user mode flag (U) into the previous mode flag
(P). In order to access the Vector Table, INTRAP sets
the user mode flag to supervisor mode and clears the
protect key (K), user data mode (UU), and user protect

key (KU). The PSW is cleared.

The address of the required Exception Vector Table

entry, V, is then obtained in one of three ways: 1) For

traps and the non-maskable interrupt, the address is
generated from intemal trap logic. 2) For supervisor

calls, the address is generated from the lower 7 bits of
the instruction. This value is multiplied by 8 and 400H is
added to it. 3) For priority interrupts, a number is read
from the Interrupt Bus lines, IVEC<7:0>. This value is in-

verted, multiplied by 8, and 800H is added to it.

INTRAP uses V to obtain the new PC value and V + 4

to obtain the associated SSW value. The new SSW

Figure 13 Supervisor Stack After INTRAP

HIGHER ADDRESSES

+ x

o

value is transferred to the SSW, overwriting the pre-
vious contents of SSW except for the previous mode
flag (P), which is retained in order to indicate the mode
of the interrupted program. INTRAP then exits, and con-
trol is passed to the trap or interrupt service routine.

After completing its service, the trap or interrupt handler
executes the retl sequence, which restores the PSW,
SSW and PC to their contents prior to INTRAP.

6.1.1. Faults During INTRAP and reti

The occurrence of a trap during INTRAP or retl results
in an Unrecoverable Fault (URF). The C300 halts in a
controlled suspended state, drives the URF signal low
as an alarm, and waits until restarted by the RESET sig-
nal. (In the URF state, all inputs other than RESET are
ignored.)

To avoid the occurrence of a page fault during INTRAP
or retl (and the resulting URF condition), the supervisor
stack must always have a valid Page Table entry that
permits both reading and writing. This will prevent page
faults from occurring during INTRAP or retl, because
the supervisor stack is the only memory area
referenced by these sequences.

6.2. Traps

Traps are signalled in the CPU chip or by either of the
CAMMUs. There are 20 predefined traps, shown in
Table 7.

Both conditional and unconditional traps are supported
(see Table 8). Conditional traps are enabled by flags in
the PSW and the CAMMU Control Register and occur
only when enabled. Conditional traps that are disabled
can be detected and handled by the executing program.

Table 8 Conditional and Unconditional Traps

Conditional Traps Unconditional Traps

Corrected Memory Error | Uncorrectable Memory

SsSwW

15 ——>n

This Materia

L/

LOWER ADDRESSES

Floating-Point Arithmetic Error
Trap Group Page Fault
Trace Protect Faults

Alignment Fault

Privileged Instruction
lllegal Operation
Integer Divide by Zero
Supervisor Call

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 9 Trap Handler Environment Summary

Trap

When Trap Is Taken

Return Address
(Saved In Supervisor Stack)

Data Memory Trap Group
Floating-Point Arithmetic Trap Group
Integer Arithmetic Trap Group
Instruction Memory Trap Group
lllegal Operation Trap Group
Diagnostic Trap Group

Supervisor Call

During Execution
After Execution
After Execution
Before Execution
Before Execution
After Execution
After Execution

Faulting Instruction

Next Instruction To Be Executed
Next Instruction To Be Executed
Faulting Instruction

Faulting Instruction

Following Instruction

Following [nstruction

Traps may be generated at various stages of instruction
processing, as shown in Table 9. The CLIPPER C300's
internal trap logic ensures that the saved program
counter points to the instruction at which the trapped
program may be correctly restarted.

6.2.1. Data Memory Trap Group

Data memory traps occur when the data cache inter-
face reports a fault. These traps cause the faulted in-
struction, as well as subsequent instructions already in
the upper pipeline, to be backed out.

Data memory traps are recorded in the PSW's memory
trap status (MTS) field. The MTS field is also used by
the instruction memory trap group for the same fauit
conditions. Interpretation is not ambiguous because in-
struction memory traps are deferred until data memory
traps have been serviced, and they are serviced by dif-
ferent trap handlers.

In the case of the pushw and popw instructions, the
stack pointer is decremented or incremented in parallel
with the instruction’s memory access. Thus, when a
data memory trap occurs during a pushw or popw in-
struction, the operating system must, before restarting
the program, restore the stack pointer to the value it
had prior to the trapping instruction, i.e., decrement the
stack pointer by 4 for popw, or increment the stack
pointer by 4 for pushw.

Corrected/Uncorrectable Memory Errors

Corrected and uncorrectable data memory errors are
detected by memory and communicated to the CAMMU
via the two system bus signals, MSBE/RETRY and
MMBE respectively. It is the responsibility of memory to
save the real memory address of the location that failed

34

in a predetermined location, where it may be accessed
for maintenance by the operating system.

The operating system may ignore indications of cor-
rected memory errors (MSBE/RETRY) by clearing the
ECM flag in the SSW.

Alignment Fault

An alignment fault occurs when the ATE flag in the
D-CAMMU's Control Register is set, and one of the
following data accesses is attempted:

— halfword (16-bit) access to an odd address (AD<0>=1)

— word (32-bit) access with AD<1:0>=0, except for
accesses to CAMMU /O space, where AD<1:0> are
used to select TLB lines or CAMMU registers (see
Section 7.6.6, CAMMU Register Access)

— doubleword (64-bit) access with AD<2:0>20
— byte or halfword access to CAMMU I/O space

The address saved on the supervisor stack is the
program address of the instruction that caused the align-
ment trap. The virtual address of the data memory loca-
tion that generated the trap is saved in the CAMMU’s
Fault Register.

Page Fault

A page fault occurs when a program attempts to access
a page for which there is no valid entry in the currently
assigned Page Directory or Page Tables. The operating
system uses this fault to allocate pages to user or super-
visor programs. The address saved on the supervisor

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

system uses this fault to allocate pages to user or super-
visor programs. The address saved on the supervisor
stack is the program address of the instruction that
caused the page fault. The virtual address of the data
memory location that generated the fault is saved in the
CAMMU’s Fault register.

Read/Write Protection Faults

Read/write accesses to each page are validated by a
comparison of the U, K, UU, and KU flags in the SSW
with the protection code in the TLB or user page tables.
When an access violation occurs, the address saved on
the supervisor stack is the program address of the in-
struction that caused the fault. The virtual address of
the data memory location that generated the fault is
saved in the CAMMU's Fault register.

6.2.2. Floating-Point Arithmetic Trap Group

There are five distinct floating-point exceptions which
are specified in the IEEE Standard 754. These excep-
tions are signalled by the FPU in the case of invalid
operation, inexact result, overflow, underflow, or divide
by zero. For each exception, there corresponds a fioat-
ing-point exception flag in the PSW. The corresponding
bit is set on any occurrence of the exception.

In addition, for each exception there exists a floating-
point trap enable flag. There is also a floating-point
group trap enable flag. When an exception arises for
which the individual trap enable flag is true and the
group trap enable fiag is true, then a floating-point trap
is invoked and control is transferred to a user-specified
trap handler. If the group trap enable is false, then the
trap is not invoked. If the individual trap enable flag is
false, then the trap is not invoked.

For the underflow and overflow exceptions, the behavior
of the FPU is determined by the values of the floating-
point trap enable flags as specified in the Standard. In
particular, overflows with the overflow trap disabled
deliver infinity or max_real, whereas the result with the
trap enabled is the normalized result with the exponent
distorted, as discussed below. Underflows are handied
similarly.

The software knows which floating-point trap has oc-
curred because each floating-point trap invokes a
separate trap handler (each has its own entry in the Ex-
ception Vector Table). It is not sufficient to examine the

35

floating-point exception flags, since the state of these im-
mediately before executing the exceptional operation is
generally unknown.

Floating Overfiow

The floating overflow exception is signalled when the
biased exponent of the result (after rounding) is greater
than the largest finite representable exponent. With addi-
tion and subtraction, overflow occurs when two large
numbers are added. At least one of them must have a
biased exponent of +126 (single-precision) or +1022
(double-precision) and the fraction addition (or the sub-
sequent rounding) has a carry out of the msb position.
The overflow may coincide with the fraction sum being
inexact, though this is not necessarily the case. With
multiplication, overflow occurs if, after normalization and
rounding, the product of two finite non-zero numbers
has an exponent greater than +127 (single-precision) or
+1023 (double-precision). Overflow for multiplication
may be exact or inexact.

If the EFV flag is set, the computed result is delivered
to the destination with the normalized rounded fraction
of the true result (though the delivered exponent is
usually wrong because of missing additional leading bits
in the exponent field). For single-precision overflows, if
the biased exponent of the true result is 255, then
biased exponent 255 is delivered to the destination. If
the true biased exponent of the result is 256 . . 408,
then the true biased exponent minus 256 is delivered to
the destination. Note that this is not the exponent
wrapped result called for by the IEEE 754 specification;
the wrap must be adjusted by system software before
delivery to a user’s trap handler. This is done to allow
the user to provide software that handles traps in an ap-
plication-specific way. For double-precision, the overflow
exponents (biased) lie in the range 2047 . . 3120.
These are mapped to 2047 and O . . 1072 respectively.
These must be adjusted by (3/4)x2"! (1536) to obtain
the IEEE Standard wrapped exponent.

If the EFV flag is clear, then the computed result is dis-
carded, and the properly signed default value (infinity or
max_real, depending on rounding mode) is delivered to
the destination. Max_real is the maximum representable
value in the given floating-point format; single

max_real = 2'28 - 2'%; double_max_real = 21024 _ o871
The floating inexact exception is also signalled. If the
rounding mode is round toward zero, the value

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

delivered to the destination is the maximum finite repre-
sentable number (max_real) with the appropriate sign. If
the rounding mode is round toward + <, then a positive
signed overflow is replaced with + «, while a negative
signed overflow is replaced by minus max_real. For
round toward - «, a positive overflow goes to plus
max_real, while a negative overflow goes to - .

Floating Inexact

The floating inexact exception is signalled when the
result of an operation cannot be exactly represented in
the precision of the destination. The result is rounded
according to the rounding mode specified in the PSW
so that it has the precision of the destination, and then
the rounded result is delivered to the destination.

Floating Underflow

The conditions under which the floating underflow excep-
tion condition is signalled differ according to the setting
of the EFU flag. If EFU is set, the floating underflow ex-
ception is signalled when the result of an operation
(before rounding) has a biased exponent less than the
minimum representable biased exponent for a normal-
ized number. If the true biased exponent of the result is
zero, then biased exponent zero is delivered to the des-
tination. If the true biased exponent is less than zero,
then the exponent delivered to the destination is true
biased exponent plus 256 (2048 for double.) The ex-
ponent must be adjusted by system software before
delivery to the program’s trap handier in order to con-
form to the IEEE 754 Specification. The range of under-
flowed biased exponents for single-precision is 0 . .
-275; for double-precision the range is 0 . . -1125.

It the EFU flag is clear, then the underflowed fraction is
right shifted as the exponent is incremented until the
biased exponent equals one. At this point, the result has
been restated as a denormal number. If this repre-
sentation is exact, then no underflow exception is sig-
nalled. If the representation is inexact, then the result is
rounded and delivered to the destination, and both the
inexact and underflow exceptions are signalled.

Floating Divide by Zero

The floating divide by zero exception is signalled when
the divisor is zero and the dividend is non-zero and
finite. If the dividend is also zero, the result is the
default quiet NaN (all ones in the fraction and exponent
fields), and the FI flag is set. If the dividend is infinite,

36

the result is infinite, and no condition flags are set. The
default result is a correctly signed infinity.

Floating Invalld Operation
The floating invalid operation exception is signalled in
the following cases:

-

. One of the operands is a signalling NaN.

2. Add/Subtract, magnitude subtraction of infinities:
(+) = (+ =)

or (+) + (-~)

or (+ 00) — (— o)

or (+ o)+ (+)

3. Multiplication’
0 X oo
or «=x0
4. Division
0+0

Or oo + oo

The value written to the destination is always a NaN.
The NaN is either the NaN operand (the second
operand if both are NaNs) made quiet if it were
signalling (by setting the msb of the explicit fraction
field), or the default NaN created by the hardware. The
default NaN is quiet, and its fraction field is all ones.

6.2.3. Integer Arithmetic Trap Group
The CPU trap status field in the saved PSW indicates
the cause of the integer arithmetic trap.

Integer Divide by Zero

The integer divide by zero exception is signalled when
an integer divide or mod instruction is executed with
zero divisor.

Integer divide by zero cannot be disabled. The result of
the trapped instruction will not be written to the
specified register.

6.2.4. Instruction Memory Trap Group

instruction memory faults are detected and signalled by
the instruction interface. These traps are not acted upon
when first sensed, i.e., if a branch instruction or other
sequence altering event occurs between the time that
the instruction interface detects the trap condition and
when that instruction arrives at the C stage, then the
pending trap condition is cleared and the trap is

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

deferred. A deferred trap will not trap until it is ready to
be issued for execution. If pre-empted by another trap,
it may trap later if the code is restarted. The faulting in-
struction has not yet entered the lower pipeline when
the trap is taken. The program address saved is that of
the faulting instruction.

For instruction memory traps, the memory trap status
(MTS) field in the saved PSW indicates the reported
errof.

Corrected/Uncorrectable Memory Error

Corrected and uncorrectable data memory errors are
detected by memory and communicated to the CAMMU
via the two system bus signals, MSBE/RETRY and
MMBE respectively. It is the responsibility of the
memory system to save the real memory address of the
location that failed in a predetermined location in
memory, where it can be accessed for maintenance by
the operating system.

The operating system may ignore indications of cor-
rected memory errors by clearing the ECM flag in the
SSW.

Alignment Fault

An alignment fault occurs when the ATE bit in the
I-CAMMU’s Control Register is set to 1, and an instruc-
tion fetch is attempted from an odd address in memory
(where AD<0>=1).

The address saved on the supervisor stack is the
program address of the instruction that caused the align-
ment trap. The virtual address of the memory location
that generated the trap is saved in the CAMMU’s Fault
Register.

Page Fault

A page fault occurs when a program tries to access a
page for which there is no valid entry in the currently as-
signed Page Directory or Page Tables. The operating
system uses this fault to allocate pages to user and su-
pervisor programs. The address saved on the super-
visor stack is the program address of the instruction that
caused the page fault. The virtual address of the
memory location that caused the fault is saved in the
CAMMU's Fault register. (The two addresses may differ
for multiple-parcel instructions.)

37

Execute Protect Fault

Instruction fetches from each page are validated by a
comparison of the U, K, UU and KU flags in the SSW
with the protection level in the TLB or user’s page
tables. When an instruction fetch violation occurs, the
address saved on the supervisor stack is the program
address of the instruction that caused the fault. The vir-
tual address of the memory location that caused the
fault is saved in the CAMMU's Fault register.

6.2.5. lllegal Operation Trap Group

lllegal operation traps are taken before the instruction is
executed. The program address saved on the super-
visor stack is the address of the instruction which
caused the trap. The CPU trap status field in the saved
PSW indicates the type of trap.

lllegal Operation Fault

An illegal operation trap results from the attempted ex-
ecution of any undefined instruction opcode or the occur-
rence of an addressing mode which is not specifically
allowed.

Privileged Instruction Fault
A privileged instruction trap occurs when a privileged
macro instruction is encountered in user mode.

6.2.6. Diagnostic Trap Group

Trace Trap

Unless pre-empted by another trap or interrupt, the
trace trap occurs following the execution of an instruc-
tion whenever the PSW's T (trace trap enable) flag is
set. For traced instructions which are interrupted or
cause traps, the TP flag is set by hardware when the in-
terrupt or trap occurs to ensure that the trace trap will
occur immediately after the interrupt or other trap has
been serviced. In the case of data page faults, TP must
be cleared by the supervisor before restarting the fault-
ing instruction to ensure that the instruction is traced
exactly once.

M! ROM sequences are treated as a single instruction
for trace purposes so that the entire sequence executes
before the trace trap is taken.

At the time of the trap, the CPU trap status field in the
saved PSW indicates that a trace trap has occurred.

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

The saved PC is the address of the instruction following
the instruction that caused the trace trap.

6.2.7. Supervisor Calls

A supervisor call is an instruction executed as a trap,
and is made using the calls instruction. lts purpose is to
provide controlled access to system-level functions.
There are 128 supervisor call codes, with separate Vec-
tor Table entries for each. The PC value saved on the
stack is the address of the instruction following the calls
instruction.

6.2.8. Multiple Traps

Only traps in the data memory and floating-point groups
can be signalled at the same time. CLIPPER internal
trap logic permits correct recovery of both faulting in-
structions. INTRAP transfers control to the floating-point
trap handler, and the loadfs instruction can be used to
access the floating-point instruction that caused the
trap. The MTS field in the saved PSW may be read by
the floating-point trap handler to determine which data
memory trap occurred.

6.3. Interrupts

The C300 supports 16 prioritized interrupt levels, with
each level containing interrupt numbers of equal priority.
Level O (highest priority) contains 15 numbers; levels 1-
15 each contain 16 numbers. In addition to the 16 inter-
rupt levels, there is a non-maskable interrupt which has
a higher priority than all interrupt levels and cannot be
disabled by software. Level 0 Number O vectors to the
NMI interrupt handler.

The CPU contains the logic necessary to arbitrate inter-
rupt requests according to the priority of the interrupt
level. The interrupt level currently being processed is
stored in the Interrupt Level (IL) field of the SSW. The
CPU accepts interrupts only for interrupt levels of equal
or higher priority than the current interrupt level.

Interrupts are serviced between instructions, that is, in-
terrupt requests are not acknowledged until instructions
in the lower pipeline have finished executing, any resuit-
ing traps have been serviced, and memory transactions
have concluded. Thus, interrupts are not normally per-
mitted during a macro sequence, which is considered a
single instruction. However, some macro sequences (for
example, the string instructions) permit interrupts peri-
odically during their execution.

38

6.3.1. Maskable Interrupt Request/Acknowledge
Protocol

Priority interrupts are requested by the activation of the

RQ input line and the assertion of the vector number

on IVEC<7:0>. The vector number includes the interrupt

level on IVEC<7:4> and the interrupt number on

IVEC<3:0>.

An interrupt request will be acknowledged by the CPU if
interrupts are enabled (the interrupt enable flag in SSW
is set) and the interrupt level (IVEC<7:4>) is of equal or
higher priority than the interrupt level contained in the
SSW's Interrupt Level (IL) field. To maximize interrupt
es@nsweness following the assertion of TRQ and
IVEC, the interrupt level can change to higher priority
on any BCLK until IRQ is released. See Figure 14.

The CPU samples TRQ on the rising edge of every
BCLK if interrupts are enabled and the priority condition
is met. The CPU then enters the pre-trap state, in which
the execution pipeline is emptied by withholding issue of
the instruction in the issue and control phase. The in-
structions in the execution pipeline complete executing;
if their execution causes a trap to be signallad, the inter-
rupt is deferred and the (higher priority) trap is serviced.
The CPU then asserts IACK.

The CPU latches the interrupt number and level on the
BCLK following the release of IRQ, and releases IACK
during the following BCLK.

The maskable interrupt request/acknowledge timing is
shown in Figure 59. See also Section 9.4.8, Interrupt
Bus.

6.3.2. Non-Maskable Interrupt

The non-maskable interrupt is signalled on the NMI
input to the CPU which is sampled on the rising edge of
every BCLK. An active low on NMI greater than the
BCLK period will trigger this interrupt. NMI remains ac-
tive until acknowledged by the CPU on NMIACK. If NMi
is asserted after another interrupt has already been ac-
knowledged, the non-maskable interrupt is serviced
after completion of the INTRAP sequence for the ac-
knowledged interrupt. The NMi request/acknowledge
timing is shown in Figure 60. See also Section 9.4.8, In-
terrupt Bus.

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 14 Interrupt Flow Dlagram

BEGIN

RELEASED

iRQ LATCH IVEG <7:0>
ASSERTED RELEASE IACK
HOLD ISSUE OF EXECUTE
NEXT INSTRUCTION INTRAP SEQUENCE
YES
SERVICE
TRAP 1 INTERRUPT
NO
LOWER
NO PIPELINE EXECUTE
EMPTY RETI SEQUENCE
2
=3
.4
YES
2
39

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

7. Cache and MMU

The CLIPPER C300 contains two Cache/Memory
Management Unit (MMU) combination VLSI chips called
CAMMUs which are designed to optimize CLIPPER per-
formance.

Each CAMMU contains a 4 K-byte data cache, and a
memory management unit which translates CPU 32-bit
virtual addresses into 32-bit real addresses. One
CAMMU is used for CPU instruction fetching and cach-
ing and is interfaced to the CPU Instruction Bus; the
second CAMMU is used for CPU data transfers and
caching and is interfaced to the CPU Data Bus. Both
CAMMUs also interface to main memory and /0
devices via the CLIPPER Bus.

The two CAMMUs are functionally identical, but each is
hardware programmed via an external chip pin for use
as either an instruction CAMMU (I-CAMMU) or a data
CAMMU (D-CAMMU).

Figure 15 CAMMU Interface

The CAMMUs feature several caching policy and Bus
Watch options which allow optimum performance
tailored to specific applications. A prefetch option is
available for the -CAMMU; and fixed address transla-
tion is used in both the I-CAMMU and the D-CAMMU
for guaranteed access of selected locations in main
memory, Boot, and /O spaces. In addition, CAMMU in-
temal registers and register fields are easily accessed
for efficient CAMMU configuration and control.

7.1. Functional Overview

The two main functional units of the CAMMU are the
cache and the Memory Management Unit (MMU), with
the MMU comprised of the Dynamic Translation Unit
(DTU), the Translation Lookaside Buffer (TLB), and the
Hardwired Translation Lookaside Buffer (HTLB) (see
Figure 15). The CAMMU also utilizes a cache control
unit which controls CAMMU data fetches from main
memory.

LCAMMU
10 /]
REAL OR VIRTUAL l CAcCHE I cgl:Tc ::L I REAL ADDRESS/
ADDRESS/INSTRUCTIONS L . __J L . _J INSTRUCTIONS
[T] T T
MMU
l_ - —l I o l c PAGE TABLE
|_m-_u _l L_ . _] L DIRECTORIES
cpPu : T T
— — > —
€ TABLES
— — R
r —] l— —-I B = e r
I CACHE I CACHE I u
REAL OR VINTUAL CONTROL s DATA
ADDRESS/DATA L —_ J L_ —_ J
r—;, _] I—_ _ —l REAL ADDRESS/DATA 1 T
|_ Te _l | :M-nl: | INSTRUCTIONS
L_T __l l_ — _] f f,E‘ /];
A070 MAN
MEMORY
40

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 16 Basic CAMMU Functional Flow

BEGIN

ACCESS TLB
AND CACHE

CONCURRENTLY

ISSUE
TRAP

UPDATE
CACHE

YES

3

TRANSFER
DATA/INSTR

5

AO71

41

CAMMU operation begins when the CPU asserts a vir-
tual address on the CPU-CAMMU address/data bus.
The task of the CAMMU is to translate the CPU virtual
address (bits <31:12>) into a real address and to use
the translated real address to find the data.

The CAMMU compares the virtual address with a virtual
address of the data stored in a 16-byte (Quadword) Buf-
fer containing the most recently accessed cache line. If
there is a match, the data is fetched directly from the
Quadword Buffer and no additional cache or TLB action
is performed. If there is no Quadword Buffer match, the
CAMMU attempts to translate the address by using the
TLB, which is a look-up table containing Virtual Address
Tags and associated Real Address fields which point to
locations in the cache. If the CAMMU finds a Virtual Ad-
dress Tag in the TLB which matches the CPU virtual ad-
dress, it compares the associated Real Address field in
the TLB with the Real Address fieids of a cache line set,
already selected by virtual address bits <10:4>, to deter-
mine whether the data is in the cache. If the data is not
in the cache, the CAMMU accesses main memory for
the data.

If the CAMMU cannot find a matching Virtual Address
Tag in the TLB, it invokes the DTU to search declared
blocks of main memory (Page Directory Tables and
Page Tables) in an attempt to translate the virtual ad-
dress.

The DTU, upon successful translation of the virtual ad-
dress, updates the TLB with the new Virtual Address
Tag/real address association. The CAMMU then con-
tinues with data access. If the DTU cannot find the valid
translation in main memory, the CAMMU asserts a CPU
page fault trap for resolution by the operating system.

Each CAMMU cache consists of 256 quadwords of data
(4 K-bytes) with associated Real Address Tags in a con-
figuration similar to the TLB. The CAMMU searches the
Quadword Buffer and the onboard cache first, then
main memory for addressed data locations if required.

A basic logic flow of CAMMU operation is shown in
Figure 16.

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 17 CPU Virtual Address Format

RAMMER
CAMMU VIEW CACHE PROG VIEW
WORD
SELECT
TLB ns CACHE BYTE bty oTUY
COMPARE SET SET HALFWORD PAGE TABLE PAGE TABLE PAGE
MELD SELECT SELECT SELECT DIRECTORY INDEX INDEX OFFSET
A A - A
3 18 |17 12 |11 |10 413 2|1 [} By 2 |2 12 |11

A072

Figure 18 Simplified CAMMU Block Diagram

[~ TLB

! |
! |
| |
| ——] VIRTUAL REAL JL”E_ DYNAMIC |
| [——] ADDRESS TAG | ADDRESS l ConTROL TRANSLATION K—1 |
l |
[8 |
| |
! |
! |
! |
| |
| |

TLB HIT/MISS ?

CACHE HIT/MISS ?

COMPARE
T0 CI :>
|
|
|
|
1
I
|
|
|
|
!
|
|
I

CPU/FPU
QUADWORD BUFFER

|
|
|
|
|
|
|
B |
|
|
|
|
|
|
|

127
QUADWORD REAL J____ CACHE
—) DATA I ADDRESS TAGl CONTROL contRoL [K——
CACHE UNIT
B UPDATE

0

l o

CACHE g

L e e e _l

42

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 17 depicts the format of the CPU virtual address
and indicates how the various virtual address fields are
used by the CAMMU. Figures 18 and 19 show CAMMU
operation. These figures should be referred to while
reading the following CAMMU descriptions.

7.2. Memory Management Unit (MMU)

The Memory Management Unit translates CPU virtual
addresses into real addresses and supports address
space access protection by the operating system on a
per-page basis.

Figure 19 CAMMU Block Diagram

Address translation is executed by three functional units
within the MMU: the Translation Lookaside Buffer (TLB),
the Hardwired TLB (HTLB), and the Dynamic Transla-
tion Unit (DTU). Address space access protection and
memory management support are performed by logic
within the MMU which utilizes system tags and protec-
tion codes associated with the virtual memory pages.

7.2.1. Translation Lookaslde Buffer (TLB)
The TLB is a two-way set-associative memory array
that is used by the CAMMU for fast, on-board virtual ad-

CACHE
VA =RA Py
<10:4> w X T8 CONTROL
COMPARTMENT COMPARTMENT
w X
=] compARTMENT COMPARTMENT e DM
WO yW1i W2 53 wo VA
‘. <17:12>
QUADWORD QUADWORD | !
c"h BUFFER BUFFER E‘F’ T e
t]] VA<31:18>
VA = RA<3:2> T j_: seeT
= MUX L MUX X
RA<31:12>» |
SELECT W Mux 1. SELECTX
VA<31:12>
VA = RA<11> r
VA = RA<10:2>
AIR | COR | [ciR csor| |[ceiR |

NOTES:

AIR = address input register t

COR = CPU output register

CIR = CPU input register

CBOR = CLIPPER bus output register TocPy 7O CLIPPER BUS

CBIR = CLIPPER bus input register AD34

43

Copyrighted By Its Respective

Manuf act ur er

CLIPPER® C300
32-Bit Compute Engine

Advance Information

dress to real address translation. It consists of 64 sets
of lines, with each set consisting of a W and an X com-
partment line, and an associated U flag (see Figure 20).
The CAMMU uses bits <17:12> of the CPU virtual ad-
dress to select a TLB line set, then compares bits
<31:18> of the virtual address with the VA (Virtual Ad-
dress) Tag of both the W and X Compartment lines of
the selected set.

If there is a match, and if the appropriate access protec-
tion code allows the data/instruction access, the 20-bit
RA (Real Address) field of the matching W or X line is
multiplexed and transferred to the cache as real ad-
dress bits <31:12> where they, along with virtual/real ad-
dress bit 11 (this bit is not translated), are used to
validate the data.

If there is no TLB match, the DTU attempts address

translation, as explained in Section 7.2.3, Dynamic
Translation Unit.

Figure 20 CLIPPER TLB

TLB Line Description

TLB line format is shown in Figure 21. Equivalent RA,
ST, PL, D and R flags are located in the Page Tables.
The CAMMU ensures that the D and R flags in the
Page Table entries are updated with flag changes in the
TLB.

The TLB line field definitions are as follows:

SV: Supervisor Valid

The SV flag when set indicates that the TLB line is
used for address translation only during supervisor
mode operation. All TLB SV flags can be cleared as a
group by writing to the CAMMU Reset Register and by
a hardware reset.

UV: User Valid

The UV flag when set indicates that the TLB line is
used for address translation only during user mode
operation. All TLB UV flags can be cleared as a group

SET #63
62 —
61
: w x v
: COMPARTMENT COMPARTMENT
:
o
/ | AN AN AN
/ | AN AN AN
/ I AN N N
7/ | AN N AN
7/ | AN AN AN
/ | N AN N
/ i AN AN AN
Y, W LINE | X LINE N RN
?‘f""lsv uvIVAlmlsrlsTPLlnlnlvauvlvalmlsrlsIPL'DIHI E§

This Materia

44

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

by writing to the CAMMU Reset Register and by a
hardware reset.

VA: Virtual Address Tag

This 14-bit field is used for W or X line selection once
TLB set selection is complete. The VA Tag of each line
is compared with CPU virtual address bits <31:18>. If
there is a match, the matching line is used for the ad-
dress translation.

RA: Real Address

This 20-bit field is used as real address bits <31:12>
once the TLB line has been matched, and access
protection and validation checks have been completed
(see UV, SV, and PL descriptions).

ST: System Tag

This is a three-bit field which identifies the caching type,
caching policy, and address space associated with the
page referenced by the TLB line as follows:

ST<2:0> Description

private, write-through, main memory space
shared, write-through, main memory space
private, copy-back, main memory space
noncacheable, main memory space
noncacheable, /0 space

noncacheable, Boot space

cache purge

noncacheable, main memory space, slave
1/0 mode

NON L WN=O

Figure 21 TLB Line Format and Description

This field is used only in mapped mode. in unmapped
mode, the UST (Unmapped System Tag) field in the
CAMMU Control Register is used, as described in
Section 7.6.4.

The System Tag is asserted on CLIPPER Bus lines
TG<2:0> during CAMMU external accesses. Further in-
formation on the System Tag field is provided in Section
7.4, System Tag.

S: System Reserved
This is a general-purpose, two-bit field reserved for use
by the operating system.

PL.: Protection Level

Associated with each virtual address is a function code
asserted by the CPU which identifies each memory
reference as a read, write, or instruction fetch operation,
and indicates the states of the U, UU, K, and KU flags
in the CPU's SSW. These SSW flags indicate whether
the memory access is by the supervisor or by a user,
which protect key is to be used for access verification
(K or KU), and the state of the key. The CAMMU com-
pares the function code with the 4-bit PL field of a
selected TLB line to determine whether read access,
write access, and instruction fetching is aliowed.

The Protection Level fields are used only for CPU
mapped addresses (addresses asserted while the
mapped mode bit of the SSW is set). Unmapped
addresses invoke no access protection.

1 14 20 3 2 4 1

N A N . N A A

46 45 44 31 30 1110 87 65 2 1 0

svjuv VA RA ST s PL pfRrRIS

<
SUPERVISOR _T T T_
VALID T T I SYSTEM T REFERENCED

USER VALID RESERVED DIRTY

VIRTUAL REAL

SYSTEM PROTECYION
ADDRESS TAG ADDRESS TAG

LEVEL

45

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 10 shows allowed accesses according to the the operating system uses this flag as part of a main
SSW's K, U, UU, and KU flags, and the PL field. memory page replacement algorithm by periodically
clearing all the TLB R flags via the Reset Register (see
D: Dirty Flag Saction 7.6.5, Reset Register), then allowing them to be
The Dirty flag is set by the CAMMU to indicate that the set during normal program execution. When the operat-
4 K-byte page in main memory referenced by the TLB ing system replaces a main memory page, it selects an
line has been altered. Typically the operating system *unreferenced" page for replacement based on the
uses this flag to determine whether the referenced data states of the R flags.
page must be copied to secondary storage (such as a
hard disk) when the data in the page is replaced. U: Used Flag
Associated with each TLB line set is a U (Used) flag
R: Referenced Flag which is set by the CAMMU to indicate that the W line
The CAMMU sets the R flag to indicate that the page of the set was last accessed and cleared to indicate
associated with the line has been accessed. Typically that the X line was last accessed. When a new line has
to be entered into the TLB as a result of a TLB miss,
Table 10 Page Access Encoding the least recently used line in the selected set is
Supervisor Mode User Mode replaced based on the state of this flag.
(U=0) (U=1) 7.2.2. Fixed Address Translation
uu=0 uUu=1 D-and The CAMMUs feature hardwired TLB lines which en-
D-CAMMU -CAMMU sure TLB hits of special memory pages by both mapped
Only and unmapped addresses while the CPU is executing in
supervisor mode. These hardwired entries eliminate
PL | K=1 K=0 | KU=1 |KU=0 | K=1 K=0 page faults during INTRAP and reti sequences, and
ol rRW - - - - allow access of Boot and I/O space before the Page
1| RW . } .) Table Directories and Page Tables have been initialized
2| RW AW] AW] during system booting.
3| RW RW | RW | RW RW The hardwired TLB (HTLB), implemented in random
4 RW RW R RW R logic and not visible to software, contains the functional
5| RW R R R R equivalents of the VA, RA, ST and PL fields found in the
6 RW R R R R writable TLB. However, equivalents to other TLB fields
are not used in the HTLB. The HTLB can be accessed
7 | RWE RWE | RWE | RWE RWE only during CPU supervisor mode, so UV and SV flags
8| RE - - - - are not required. HTLB lines cannot be replaced, so no
9 R - - - - Used flags are required. Pages referenced by the HTLB
10| R RE - RE . are dedicated pages not subject to general replacement
by the operating system, so no Referenced or Dirty
1 R RE RE RE RE flags are required.
12 - - RE - RE
13 - RE - RE - HTLB Mapping
14 - - RE - RE The hardwired TLB is invoked only when supervisor
5] - . - . _ pages 0-7 are addressed by the CPU. With the excep-
tion of CAMMU (/O space (the upper half of page 0 of
Notes: - No Access Allowed I/O space), these pages can also be mapped through
R Read Only Allowed the writable TLB. Virtual pages other than supervisor
RW Read and Write Allowed pages O - 7 must be mapped through the writable TLB.

RE Read and Execute Allowed
RWE Read, Write, and Execute Allowed

46

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

When a CAMMU detects a supervisor page 0 - 7 virtual
address, it selects the Real Address, System Tag, and
Protection Level fields from the appropriate HTLB line.
Pages 0 - 3 and 6 - 7 are protection free, allowing read,
write and execution accesses. Pages 4 and § allow only
read and write access, and attempted instruction fetch
from these pages results in a protection fault. The real
address translation and system tag assigned to each
page is shown in Table 11.

The address space assigned to each of the virtual
pages is also shown in Table 11. These address space

purposes. These page assignments are shown in

Table 11.

The CPU fetches interrupt and trap vectors from super-
visor virtual page 0. The CAMMUs translate this page
into page O of main memory where the vectors must be

located.

Figure 22 Hardwired TLB Mapping

assignments are determined by the System Tag, which v;‘;ﬁi’:“g‘:’és HE:;A%OEOT
is asserted on CLIPPER Bus lines TG<2:0> during oAGE
CLIPPER Bus access. These lines function as main PAGE 7
memory, /O and Boot space selects and must be REAL 1/0 SPACE PAGE 8 PAGE 0
decoded by system hardware for proper device PAGE 1 PAGE 5
selection. MAIN MEMORY
PAGE 0 PAGE 4 SPACE
Figure 22 contains a pictorial overview of Hardwired PAGE 3 PAGE 3
TLB mapping showing the three distinct real address SAGE 2 CAGE 2
spaces into which virtual pages 0 - 7 are mapped.
PAGE 1 PAGE 1
Virtual Page 0 - 7 Assignments PAGE 0 PAGE 0
Three of the "hardwired" virtual pages are available for !
general use. The other five are dedicated for specific
Table 11 Hardwired TLB Address Translations
Virtual Real Page Protection System Tag
Page Page Assignment Level T "
Number |Number (u=g) [ST-TG Description
0 (o} General-Purpose and 7 1 shared, write-through, main memory space
Interrupt and Trap Vectors
1 1 General-Purpose 7 2 private, copy-back, main memory space
2 2 General-Purpose 7 3 noncacheable, main memory space
3 3 General-Purpose 7 3 noncacheable, main memory space
4 0 110, CAMMUS and Reserved 3 4 noncacheable, /O space
5 1 o 3 4 noncacheable, /O space
6 0 General-Purpose 7 5 noncacheable, Boot space
7 1 General-Purpose 7 5 noncacheable, Boot space

Note: The ST field is decoded by the CAMMU during page access. The bits are transferred to the CLIPPER Bus lines

TG<2:0> during CLIPPER Bus access.

47

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Similarly, following CLIPPER reset, the CPU fetches ini-
tial boot code from virtual page 6, which the CAMMUs
translate into page 0 of Boot space. The CAMMUs also
translate virtual page 7 into Boot space (page 1) to
allow a total of 8 K-bytes of HTLB-translated Boot ad-
dresses.

The first Boot instructions must be located at supervisor
virtual address 6000 Hex, which translates to address 0
of Boot space. The rest of the boot code should be lo-
cated in pages 0 and 1 of Boot space as required.

Virtual page 4 is reserved by Intergraph for CAMMU in-
ternal register addressing and for future use (see Sec-

Figure 23 DTU Virtual Address Translation

tion 7.6, Internal Registers). Virtual page 5 is available
for VO. The D-CAMMU translates these virtual pages
into pages 0 and 1 of real /O space. Attempted access
of virtual pages 4 or 5 for instruction fetch results in a
protection fault.

Additional pages can be created in Boot or I/O space by
assigning the appropriate System Tag (5 or 4) to virtual
pages other than O - 7. Translation of these pages,
however, is by the writable TLB or the DTU, not by the
Hardwired TLB.

Virtual pages 1- 3 are general-purpose pages which are
translated into main memory pages 1- 3 by the HTLB.

VIRTUAL ADDRESS

31 22 21

2 1 L]

PAGE TABLE DIRECTORY INDEX I PAGE TABLE INDEX I PAGE OFFSET |
10 10 12
| entrY PAGE TABLE DIRECTORY ENTRY PAGE TABLE
1023 I l 1023 | I I l I l
L] *
L] L]
[] L]
[] L]
° 20 11 1 . 20 3 2 4 1 11
REAL e Jay |2v'|| 1 0 REAL ® 131 121198763 2 1 0
MEMORY W > PTO_ | 0 | MEMORY < > ra_Istlsfeifo|r]|F
[] .
[] l 20 [}
L] []
L] L]
. ° 20
[] []
L] L]
L s> o 1 | - o HERER
31 12 11 o
PDO I 0 I
31 A 1211 0
PAGE DIRECTORY ORIGIN REGISTER I I I
u ~ vl
h 1 REAL ADDRESS
] 32
T T AQ73
4 G-BYTE

48

REAL MEMORY

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

7.2.3. Dynamic Translation Unit (DTU)

The DTU translates virtual address bits <31:12> into
real address bits <31:12> in two steps. First it fetches a
Page Table Origin from a Page Table Directory located
in main memory; then it fetches an entry from a Page
Table, also located in main memory. This sequence is
depicted in Figure 23.

Once the DTU has completed address translation, the
CAMMU updates the TLB and provides the real address
to validate the cache data, then searches the cache for
the data. If the data is not cached, the CAMMU
accesses main memory for the data using the con-
catenation of translated address bits <31:12> and un-
translated virtual address bits <11:0>.

Note that because the DTU accesses only main
memory and not the cache during address translation,
all Page Table Directories and Page Tables must be lo-
cated in noncacheable pages (see Section 7.4,
System Tag).

Page Table Directory Entry Selection

Two 20-bit PDO (Page Directory Origin) registers each
contain the base address of a Page Table Directory.
One PDO register is used by the CAMMU during super-
visor mode operations; the other PDO register is used
during user mode operations. The DTU concatenates
bits <31:22> of the virtual address with the contents of
the appropriate PDO register to form the most sig-
nificant 30 bits of a Page Table Directory entry address.
(Page Table Directory entries are word-aligned; there-

Figure 24 Page Table Format

fore bits <1:0> are forced LOW.) In effect, the PDO
register points to the Page Table Directory, and bits
<31:22> of the virtual address select one of 1024 Page
Table Directory entries.

Page Table Directory Format

Each Page Table Directory consists of 1024 32-bit
words located in main memory. Page Table Directory
entries (see Figure 24) are comprised of two fields.

PTO: Page Table Origin
This field is used by the DTU during address translation
to locate the Page Table in main memory.

F: Page Fault

The F flag is set or cleared by the operating system to
indicate the absence or presence of a valid Page Table
pointed to by the PTO field in the entry. A set F flag indi-
cates absence of a valid Page Table, and attempted
DTU address translation with a Page Table directory
entry having a set F flag forces a CPU page fault trap.

Page Table Entry Selection

The selected Page Table Directory entry contains a 20-
bit PTO field (see Figure 24) which holds the base ad-
dress of a Page Table that is to be used for address
translation. The DTU concatenates bits <21:12> of the
virtual address with the contents of the PTO field to
form bits <31:2> of the Page Table entry address (bits
<1:0> are forced LOW). In effect, the PTO field points
to the appropriate Page Table, and bits <21:12> of the
virtual address select one of 1024 Page Table entries.

31 12 11 1 0
PTO 0 F g
T T <
PAGE TABLE PAGE
ORIGIN FAULT

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 25 Page Table Entry Format

31 12 1 9 8786 3 2 1
RA ST S PL D R s
<
4 A 'y A
PAGE
FAULT
REFERENCED
FLAG
DIRTY
FLAG
PROTECTION
LEVEL
REAL SYSTEM SYSTEM
ADDRESS TAG RESERVED
Figure 26 Cache Set-Associative Memory Array
LINE SET #
127 [
126 |
125 |} —
[]
.
. w X v
° COMPARTMENT COMPARTMENT
°
[]
°
°
™
[]
o |
/ N N
7/ | AN NN
Ve l N AN
/ AN NN
/ ' NN
/ | N\ AN
. / W LINE X LINE AN N\
LIN
§'E‘T LV}iLD RA wo w1 w2 w3 LV LD RA wo w1 w2 w3 V]

50

This Material Copyrighted By Its Respective Manufacturer

Thi s

CLIPPER® C300
32-Bit Compute Engine

Advance Information

The CAMMU then uses the 20-bit RA (Real Address)
field in the Page Table entry, shown in Figure 25, as
bits <31:12> of the real address.

Page Table Format

Each Page Table consists of 1024 32-bit words com-
prised of six fields, as shown in Figure 25. Equivalent
ST, S, PL, D, and R fields are located in the TLB
registers. See Saction 7.2.1, Translation Lookaside
Buffer.

The following are the Page Table entry field descriptions:

RA: Real Address

The 20-bits of the RA field are used as real address bits
<31:12> following address translation. These bits con-
stitute a 4 K-byte page address.

ST: System Tag

This field identifies the caching policy, caching type, and
address space of the page (see Section 7.4, System
Tag).

S: System Reserved
This is a general-purpose 2-bit field reserved for the
operating system.

PL: Protection Level

The CAMMU uses this field to determine whether data
read, data write, and instruction fetching are allowed
to/from the page (see Section 7.2.1, Translation
Lookaside Buffer).

Figure 27 CLIPPER Cache Line Format

D: Dirty Flag
The Dirty flag is set by the CAMMU to indicate that the
page has been altered.

R: Referenced Flag
The CAMMU sets the R flag to indicate that the page
has been accessed.

F: Page Fault

The F flag is set/cleared by the operating system to indi-
cate the absence/presence of a valid page. A set F flag
indicates absence of a valid page, and attempted DTU
address translation with a Page Table entry having a set
F flag forces a CPU page fault trap.

7.3. Cache

The cache architecture is similar to that of the TLB, as
shown in Figure 26. It is a 4 K-byte cache composed of
128 sets of lines, with each set consisting of a W com-
partment line and an X compartment line.

Associated with each cache line set is a U bit which is
set to indicate that the W line of the entry was last ac-
cessed, and cleared to indicate that the X line was last
accessed. When, as a resuit of cache miss, a new data
quadword has to be cached, the least recently used line
in the selected line set is replaced based on the state of
this bit.

7.3.1. Cache Line Description

Figure 27 shows the cache W and X compartment line
format. Each line consists of four 32-bit data words and
LV, LD, and RA fields defined as follows:

1 1 21 32 32 32 32
Y A v = v = Y —_ A
150 149 148 128 127 96 _95 64 63 32 31 0
Lv LD RA wo w1 w2 w3
4 3 4 4 3
UNE
VALID
LINE
DIRTY
REAL g
ADDRESS
TAG WORD 0 WORD 1 WORD 2 WORD 3
51

Mat eri al Copyrighted By Its

Respecti ve Manuf acturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

LV: Line Valid

The LV bit, when set, indicates that the data in the as-
sociated line is valid; when clear, it indicates that the
data is invalid.

A line LV bit is set by the CAMMU when it loads new
data into the cache line. The bit is cleared by the
CAMMU, operating as a slave, in response to CLIPPER
Bus activity when its Bus Watch modes are enabled, or
by a cache purge operation (TG = 6) as described in
Section 7.4.2, System Tag 6. Individual LV flags are
also cleared by hardware when the CV (Clear Valid) bit
in the CAMMU Control Register is set, and the cache
provides more current (dirty) data for a quadword /O
Read (see Section 7.5, Bus Watch Modes, Watch I/O
Reads).

In the case of Bus Watch, LV is cleared during a quad-
word write to a main memory address that matches the
particular cache location. During the Bus Watch opera-
tion, the CAMMU asserts the CBSY signal on the
CLIPPER Bus. The CBSY signal prevents another bus
transaction from beginning until Bus Watch operation
has completed. If the CPU has addressed this same
cache line prior to the CLIPPER Bus's write operation,
the CPU has priority and the bit is not cleared until the
CPU access is completed. This is described in more
detail in Section 7.5, Bus Watch Modes.

All cache LV flags can be cleared as a group by writing
to the CAMMU Reset Register (see Section 7.6, Internal
Registers), and by CLIPPER hardware reset.

LD: Line Dirty

The LD bit is set by the CAMMU to indicate that data in
the cache line has not been updated in main memory.
This occurs when the CAMMU is operating in the copy-
back mode (see Section 7.4, System Tag), and a CPU
write to memory results in a cache hit. In this case, the
data is written to the cache but not to main memory,
resulting in "dirty" cache data, i.e., data which is more
current than main memory data. This bit is cleared by
the CAMMU when the copy-back data is copied back to
memory.

RA: Real Address Tag

The RA tag is used for cache line selection. The RA
tags of both the W and X compartment lines are com-
pared with translated address bits <31:12> and bit 11 of

52

the virtual address. Accessed data is located in a match-
ing line.

WO0-W3: Word 0 - 3
Words 0 - 3 are the four 32-bit data words in the cache
line.

7.3.2. Cache Data Selection

Virtual address bits <11:2> are used directly by the
CAMMU as real address bits <11:2> to access cache
data (refer to Figure 19).

The CAMMU uses address bits <10:4> to select one of
the 128 cache line sets. The CAMMU compares the con-
catenation of translated address bits <31:12> and ad-
dress bit 11 with the RA field of both the W line and the
X line of the selected line set. If there is no match, a
cache miss has occurred, and the CAMMU accesses
main memory for the data transfer. If there is a match,
the CAMMU uses address bits <3:2> to select one of
the four data words in the matching line for the data
transfer.

7.3.3. Prefetch

The D-CAMMU implements a "demand” data fetching al-
gorithm. Data fetching for the cache is "on demand” by
the CPU; that is, a new data quadword is fetched from
main memory only as a result of a cache miss.

The I-CAMMU also supports demand fetching which
functions identically to D-CAMMU data fetching, but fea-
tures an optional prefetching algorithm not available in
the D-CAMMU. This algorithm prefetches the next four
words of instructions from main memory for line N + 1
of the cache when line N has been accessed by the
CPU. I-CAMMU prefetching is controlled by bit O of the
CAMMU Control Register. When bit 0 is clear, prefetch
is disabled; when set, prefetch is enabled.

I-CAMMU prefetch enable/disable should be based on
the general structure of the code being executed. If the
instructions are in general executed sequentially as
stored in main memory, the probability of cache hits of
prefetched instructions is high; therefore, prefetch
should be enabled for increased CPU throughput. If the
instructions are branch intensive, the probability of
cache hits of prefetched instructions is reduced; there-
fore, prefetch may be disabled to reduce system bus
traffic.

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

7.3.4. Quadword Data Transfers

The CAMMU cache lines each contain four words. The
CAMMUs transfer data/instructions between the caches
and main memory four words (one quadword) at a time.
(Single-word transfers are used for data/instructions in
noncacheable pages.)

7.4. System Tag

Associated with each virtual page is a three-bit ST (Sys-
tem Tag) field which determines the caching policy that
applies to the page, the page caching type (private or
shared), and the page’s address space (I/O, Boot, or
main memory). In addition, the System Tag can be used
to identify two special operations: Cache Purge and
Slave 1/O mode. This field is found in the Page Table
entries (see Figure 25) and in the TLB (see Figure 21).

The System Tags for supervisor pages 0 - 7 are
hardware-selected by the CAMMU (see Section 7.2.2,
Fixed Address Translation and Table 11). All other vir-
tual address page System Tags are assigned by the
operating system according to system requirements
when it creates the Page Tables. The CAMMUs decode
the ST fields during address translation and transfer the
bits to the CLIPPER Bus lines TG<2:0> during
CLIPPER Bus access. (If the system is being operated
in unmapped mode, the UST field (Unmapped System
Tag) in the CAMMU Control Register determines the
System Tag.)

7.4.1. System Tags 0-5

System Tags O - 5 encode the following information

about a virtual page:

(1) Address space— main memory, Boot, or I/O.

(2) Caching type—private or shared.

(3) Caching policy—cacheable or noncacheable; write-
through or copy-back.

Address Space

*Address space" identifies the real address space of the
page as either main memory space, Boot space or /O
space. The CAMMUs map all virtual addresses into one
of these spaces.

Caching Type

Two types of page caching are recognized by the
CAMMU: private and shared. Private caching pages are
accessed and cached by one CAMMU only. Shared
caching pages are accessed and cached by more than
one CAMMU. (Pages that are cached by both the
I-CAMMU and D-CAMMU of a CLIPPER Module are
shared pages.)

Note that the terms "shared" and "private” relate only to
CAMMU access. In fact, a page may be private to a
CAMMU but accessible by non-CAMMU devices. This
page, though private, is common to one or more
devices other than the CAMMU, and should therefore
receive special consideration when assigning System

Tags.

Caching Policy

Caching policy is a set of attributes assigned to a page
by the System Tag which identifies the page as cache-
able or noncacheable, and, if cacheable, defines the
caching mode which applies to the page as copy-back
or write-through. Combinations of write-through or copy-
back caching to private pages, and write-through cach-
ing to shared pages are possible.

Cacheable data can be entered into a cache; noncache-
able data cannot be entered into a cache. Pages can
be tagged as cacheable or noncacheable according to
system requirements.

Write-through and copy-back are two schemes for updat-
ing main memory with data in the D-CAMMU cache.
Selection of these modes is based on system require-
ments and page caching type. Private pages may be
write-through or copy-back; shared pages must be write-
through.

During a CPU write, the CAMMU searches the cache
for the accessed location. If the location is not in the
cache (a cache miss), the CAMMU operates according
to the caching mode as follows:

(1) Write-through—the CAMMU updates main memory
with the CPU data but does not update the cache be-
cause the data is not cached.

53

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

(2) Copy-back—the CAMMU reads the quadword con-
taining the addressed data from main memory into the
cache, then updates the cache, but does not update
main memory.

If the data is in the cache (a cache hit), the CAMMU
operates according to caching mode as follows:

(1) Wnte—through——the CAMMU updates both the
cache and the main memory.

(2) Copy-back—the CAMMU updates only the cache,
but does not update main memory.

Write-through mode forces the D-CAMMU to access the
CLIPPER Bus and update main memory immediately fol-
lowing a cache write. Write-through mode thus ensures
that main memory data is current with the cache at all
times. Shared pages (those that can appear in more
than one cache) must be write-through.

Copy-back mode inhibits updating of main memory with
the new data until the cache line written into is
replaced. When a copy-back write hit to the cache oc-
curs, the LD (Line Dirty) flag in the hit line is set to indi-
cate that the line data must be written to main memory
when the line is replaced. Since copy-back mode does
not assure data consistency between main memory and
the cache at all times, copy-back mode cannot be used
for pages that are shared by another CAMMU.

Wirite-through mode eases the task of data manage-
ment because main memory is always "up to date” but
increases CLIPPER Bus traffic because the CAMMU
must access the bus following each cache write. Copy-
back requires more careful data management considera-
tion but decreases system bus traffic, thereby
significantly improving system performance. These fac-
tors should be considered when assigning System Tags.

7.4.2. System Tag 6—Cache Purge
System Tag 6, Cache Purge, forces invalidation (purg-
ing) of cache lines that are hit during CPU write opera-
tions that are tagged TG = 6. The lines are invalidated
by clearing of the Line Valid (LV) bits.

A CPU write with the ST field in the TLB set to a 6 will
purge hit cache lines of its own caches. The write

proceeds as normal with TG lines = 6 on the CLIPPER
Bus, causing hit lines in other module caches (having
Watch CPU writes enabled) to be purged. Any cache
with Watch CPU writes enabled will purge hit lines
(regardiess of the state of the TLB system tag field)
when a write is detected on the CLIPPER Bus with
TG =6.

The Cache Purge feature facilitates the re-use of pages
by allowing invalidation of data belonging to a replaced
page which is left in a cache. In multiple CLIPPER
Module applications, for example, a page might be
replaced in main memory which may leave unpurged
data in a cache of the module not initiating the page re-
placement. The CAMMU initiating the page replacement
can invalidate that cache data by writing to the cached
data locations using the Cache Purge tag.

7.4.3. System Tag 7—Slave VO

System Tag 7, Slave I/O Mode, in effect allows the
module to act as a DMA controller. It supports transfer
of data between 1/O and main memory in DMA-like
fashion, but is not intended to replace DMA controllers.

During Slave I/O operation, the CLIPPER Module
accesses an individual word, halfword, or byte from a
source (such as main memory) which is simultaneously
read by a destination device. Both read and write opera-
tions can be tagged Slave /O mode.

Slave /O read operations are used to transfer data from
main memory to an /O device. The CLIPPER Module
executes a read from memory with TG = 7, and the
memory responds with the data which is read by the /O
but can be ignored by the CPU. The I/O must recognize
TG = 7 as Slave /O mode and assert RDYi to terminate
the operation. Timing for the Slave I/O read operation is
the same as for a standard read.

Slave I/O write operations are used to transfer data
from 1/0 to main memory. The C300 executes a write to
memory with TG = 7 using arbitrary data that will not be
asserted on the bus. The I/O must recognize TG = 7 as
slave I/0 mode and assert data on the bus. The main
memory asserts RDYi to terminate the operation.

Timing for the Slave 1/O write operation is the same as
for a standard write, with the exception that DIR transi-

54

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

tions after the address phase of the operation as if for a
read. This prevents the external bus transceivers from
driving the bus during the data transfer phase of the
operation, allowing the /O to send data without bus con-
tention.

7.5. Bus Watch Modes

Bus Watch modes are used by the CAMMU to ensure
data consistency between the cache and main memory,
and to transfer the "latest” data to an external device
reading main memory.

When Bus Watch is enabled in a CAMMU, it monitors
main memory accesses by other bus masters. Depend-
ing on the Bus Watch mode enabled and the type of
main memory access (identified by decoding the
CLIPPER Bus TG<2:0> and CT<5:0> lines, as
described in Section 9, CLIPPER Bus), the CAMMU in-
tervenes to update the cache with data that is written to
main memory, to invalidate cache data, or to transfer up-
dated data from the cache to a bus master that is read-
ing main memory. This Bus Watch monitoring occurs in
parallel with the memory access in order to eliminate or
minimize the Bus Watch operation effect on CLIPPER
Bus throughput. Each CLIPPER Bus master must
generate the appropriate TG<2:0> tag when accessing
the CLIPPER Bus.

The three Bus Watch modes featured by the CAMMU

are:

(1) Watch CPU Writes (CPU writes to shared cacheable
pages)

(2) Watch 1/0 Writes (IO writes to cacheable pages)

(3) Watch 1/0 Reads (I/O reads from private copy-back
pages)

These Bus Watch modes are controlled by bits <3:1> of
the CAMMU Control Register, as explained in Section
7.6, Intemal Registers.

Watch CPU Writes

Watch CPU Writes is enabled in a CAMMU to ensure
that data in the CAMMU cache is updated with new
data written by another CAMMU into its shared main
memory pages, or to invalidate cache lines (cache data)
in the case of quadword writes.

The CPU transfers data to/from main memory via the
D-CAMMU. The D-CAMMU transfers the data using

55

either single-word (byte, halfword, or word) transfers, or
quadword transfers. When, with Watch CPU Writes
enabled, a slave CAMMU (a CAMMU that is not access-
ing the bus) detects a CPU write to one of its shared
main memory pages by a master CAMMU (a D-
CAMMU that is accessing the bus), the slave CAMMU
determines whether the accessed location is in its
cache, and whether the write involves one word for four
words. If a single word write, the CAMMU updates the
matched cache line. If a quadword write, the CAMMU
does not update the matched cache line but instead in-
validates the line by clearing the LV bit.

Watch VO Writes

Watch I/O Writes, when invoked, functions identically to
Watch CPU Wirites. The two modes differ in that Watch
I/O Writes responds to /O writes rather than to CPU
writes.

When a CAMMU with Watch /O Writes enabled detects
an 170 write to one of its cacheable pages, the CAMMU
determines whether the accessed data is cached in the
CAMMU, and whether the write involves one word or
four words. If a single-word write, the CAMMU updates
the matched cache line. If a quadword write, the
CAMMU does not update the matched line but instead
invalidates the line by clearing the LV bit.

Watch VO Reads

Watch I/O Reads is enabled to ensure that data read by
I/O devices from private, copy-back pages is always cur-
rent data. This mode functions identically for both single-
word and quadword I/O reads.

When this mode is enabled in a D-CAMMU, the D-
CAMMU monitors the system bus for reads by [/O of
private, copy-back pages. When the D-CAMMU detects
such a read, it searches its cache for the data. If the
data is not cached or the cached data LD bit is clear,
the I/O device reads the data directly from main
memory. If the data is cached and the LD bit is set, the
D-CAMMU aborts the assertion of data by main
memory and asserts the current cache data on the
CLIPPER Bus. The D-CAMMU thus intervenes in the
I/O read operation to provide the more current cached
data. If the Clear Valid bit in the Control Register is set,
then the CAMMU will also clear the Line Valid bit in the
cache line used to supply the data; the memory inter-

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

face can use the cache data to update its own contents,
as described in Section 9.4.7.

Note that because the copy-back caching mode applies
only to private pages not shared by CAMMUs, this Bus
Watch mode is invoked only during I/O reads of copy-
back pages.

7.6. Internal Registers

Each CAMMU contains five software-accessible
registers used for initialization and control. Two of these
registers, the Supervisor PDO and User PDO, are used
in address translation; they contain the base addresses
of the supervisor and user Page Table Directories. The
Fault register is loaded with the virtual address as-
sociated with certain fault conditions and is used by the
operating system to implement virtual memory. The Con-
trol and Reset registers are used to control various
aspects of CAMMU operation. These registers are dis-
cussed in the following sections.

7.6.1. Supervisor PDO Register

The Supervisor PDO (Page Directory Origin) Register is
a 20-bit read/write register that holds the base address
of a Page Table Directory address which is used by the
DTU during supervisor mode address translation (see
Section 7.2.3, Dynamic Translation Unit).

7.6.2. User PDO Register

The User PDO (Page Directory Origin) Register is a 20-
bit read/write register that holds the base address of a
Page Table Directory address which is used by the DTU
during user mode address translation (see Section
7.2.3, Dynamic Translation Unif).

Figure 28 CAMMU Control Register

31 24 23 10 9 8 7

7.6.3. Fauilt Register

The Fault Register is a 32-bit read/write register which
holds the virtual address of the data or instruction
memory location that generated a page fault., a protec-
tion fault, or an alignment fault. This register can be
read by trap handler software to determine the faulting
virtual address, and written to by the operating system
to restore the context of a suspended fauiting process.

7.6.4. Control Register

The Control Register is a 32-bit read/write register used
to enable prefetching in the I-CAMMU, to selectively
enable the Bus Watch modes, to assign a system tag to
unmapped memory addresses, and to enable the clear-
ing of cache line LV bits during Bus Watch of 1/O
Reads. It is also used to enable the data or instruction
alignment trap selectively in either CAMMU, and to indi-
cate the CAMMU's vresion number.The Control Register
is shown in Figure 28 and is described below.

CiD: CAMMU ID

The 8-bit CID field contains the CAMMU's ID version
number. This field is read only; writes to this field are ig-
nored.

ATE: Alignment Trap Enable

The alignment tap enable flag is set by software to
enable a trap when an unaligned data or instruction ac-
cess is attempted. It is cleared by software to disable
the alignment trap. See Sections 6.2.1 and 6.2.4
describing data and instruction memory traps. On reset,
this bit is set by hardware.

cio (] ATE cv 0

usT EWIR EWIW EWCW EP

A134

NOTE: BITS <6:7> AND <23:10> MUST ALWAYS BE PROGRAMMED 0 OR UNDEFINED RESULTS WILL OCCUR.

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

CV: Clear Valid ‘

When this bit is set, the LV (Line Valid) bit in a copy-
back cache line is cleared by hardware when the more
current (dirty) data contained within that line is supplied
by the CAMMU for an 1/O quadword read (as a resuit of
Bus Watch of I/O Reads). This permits pages that are
swapped by /O back to disk to be simultaneously
purged from the cache. Use of this option requires the
memory interface to use the data sent to the I/O device
to update its own contents, except in cases where the
data will not be read by another /O device (see Section
9.4.7). The Clear Valid option is disabled by clearing
this bit. On reset, this bit is cleared by hardware.

Note: The Clear Valid bit was called the "Clear Dirty" bit
in previous documents.

UST: Unmapped System Tag

When the Mapped Mode bit in the CPU System Status
Word is clear, all CPU addresses, except supervisor vir-
tual addresses O - 7FFF Hex which are mapped by the
HTLB, are treated by the CAMMUs as real addresses
requiring no translation. These unmapped addresses
therefore have no TLB or Page Table source of system
tags. The CAMMUs, therefore, use the two-bit UST field
to tag pages referenced with unmapped addresses as
follows:

UST Description
0 private, write-through, main memory space
1 shared, write-through, main memory space
2 private, copy-back, main memory space
3 noncacheable, main memory space

Figure 29 CAMMU Reset Register

31 7 6

The UST bits map to TG<1:0> CLIPPER Bus lines.
TG<2> is forced to 0. UST is set to 3 by a reset.

EWIR: Enable Watch I/O Reads

EWIR, when set, enables Watch /O Reads operation.
This bit is ignored by the I-CAMMU. EWIR is set by
CLIPPER Module reset.

EWIW: Enable Watch 1/0O Writes
EWIW, when set, enables Watch I/O Writes operation.
EWIW is set by CLIPPER Module reset.

EWCW: Enable Watch CPU Writes
EWCW, when set, enables Watch CPU Writes opera-
tion. EWCW is set by CLIPPER Module reset.

EP: Enable Prefetch

EP, when set, enables I-CAMMU prefetching. When EP
is clear, I-CAMMU prefetching is disabled, and the
I-CAMMU fetches instructions "on demand.” The state
of this bit is ignored by the D-CAMMU, which always
fetches on demand. EP is set by CLIPPER Module
reset.

7.6.5. Reset Register

The Reset Register is a 7-bit, write-only register that al-
lows selective resetting of the CAMMU cache and TLB
(see Figure 29). The cache LV (Line Valid) and U~
(Used) flags, and the TLB SV (Supervisor Valid), UV
(User Valid), D (Dirty) and R (Referenced) flags can be
cleared by setting individual Reset Register bits.

RR RD RUV RSV RLVX RLVW

A078

NOTE: BITS <31:7> MUST ALWAYS BE PROGRAMMED 0 OR UNDEFINED RESULTS WILL OCCUR.

57

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 30 CAMMU Access Map

RESERVED
GLOBAL
CAMMU

1-CAMMU

D-CAMMU

This Materia

Copyrighted By Its

VIRTUAL ADDRESS

can FEF

DESCRIPTION

_ FF

0x00004D81 — Ox00004DFF

Reserved.
Giobal CAMMU, Reset register.

0x00004D80
041 — D7F .
0x00004D40 Global CAMMU, Control register.
D1t — D3F
0x00004D10 Gilobal CAMMU, Fault register.
0x00004D08 — O0x00004DOF Reserved.
0x00004D08 Global CAMMU, User Page Directory Offset register.
D05 — Do7
0x00004D04 Global CAMMU, Supervisor Page Directory Offset register.
Doo — Do3
0Xx00004CFF Gilobal CAMMU, TLB Line Set 63, X Line, VA Field.
0x00004CFE Giobal CAMMU, TLB Line Set 63, X Line, RA Field.
0x00004CFD Giobal CAMMU, TLB Line Set 83, W Line, VA Fleld.
0x00004CFC Global CAMMU, TLB Line Set 63, W Line, RA Fiakd.
0x00004C04 — 0x00004CFB Global CAMMU, Line Sets 1 through 82.
0x00004C03 Giobal CAMMU, TLB Line Set 0, X Line, VA Fieid.
0x00004C02 Globai CAMMU, TLB Line Set 0, X Line, RA Field.
0x00004CO1 Global CAMMU, TLB Line Set 0, W Line, VA Field.
0x00004C00 Global CAMMU, TLB Line Set 0, W Line, RA Field.
0x00004B81 — OxO0004BFF Reserved.
0x00004B80 LCAMMU, Reset reglster.
B4l — B7F
Gx00004B40 +CAMMU, Control register.
811 —
0x00004810 HCAMMU, Fault register.
0x00004B09 — 0x00004BOF Reserved.
0x00004B08 +CAMMU, User Page Directory Offset register.
B0S — BO7 .
0x00004804 1-CAMMU, Supervisor Page Directory Offset register.
0x00004B00 — 0x00004803 Reserved.
0x00004AFF FCAMMU, TLB Line Set 83, X Line, VA Field.
O0X00004AFE CAMMU, TLB Line Set 83, X Line, RA Fleid.
0Xx00004AFD 1-CAMMU, TLB Line Set 83, W Line, VA Field.
0x00004AFC CAMMU, TLB Line Set 63, W Line, RA Fieid.
0x00004A04 — OXC0004AFB 1-CAMMU, Line Sets 1 through 62.
0x00004A03 -CAMMU, TLB Line Set 0, X Line, VA Fieid.
0x00004A02 FCAMMU, TLB Line Set 0, X Line, RA Fieid.
0x00004A01 1-CAMMU, TLB Line Set 0, W Line, VA Field.
0x00004A00 CAMMU, TLB Line Set 0, W Line, RA Field.
11— F
0x00004980 D-CAMMU, Resel register.
0x00004941 — 0x0000497F Reserved.
0x00004840 D-CAMMU, Controi register.
1 —
0x000049810 D-CAMMU, Fault register.
0x00004908 0-CAMMU, User Page Directory Offset register.
05 — 4907 .
0x00004904 D-CAMMU, Supervisor Page Directory Offset register.
0x000048FF D-CAMMU, TLB Line Set 83, X Line, VA Field.
0x000048FE D-CAMMU, TLB Line Set 83, X Line, RA Field.
0x000048FD D-CAMMU, TLB Line Set 83, W Line, VA Fietd.
0x000048FC D-CAMMU, TLB Line Set 63, W Line, RA Field.
0x00004804 — 0x000048FB D-CAMMU, Line Sets 1 through 62.
0x00004803 D-CAMMU, TLB Line Set 0, X Line, VA Field.
0x00004802 D-CAMMU, TLB Line Set 0, X Line, RA Fleld.
0x00004801 D-CAMMU, TLB Line Set 0, W Line, VA Field. E
0x00004800 D-CAMMU, TLB Line Set 0, W Line, RA Fieid. <

Respecti ve Manuf acturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

in virtual address 4A00-4BFF. These addresses are

The Reset Register bits and their associated reset
used to access registers in individual CAMMUs.

operations are as follows:

The CAMMUs can also be addressed as a group using

Bit# Bit Name Reset Operation

6 RU Reset All U Flags in Cache global addresses for TLB writes, register writes, and

8 RR Reset All R Flags in TLB TLB/cache reset. In systems utilizing multiple CLIPPER
4 RD Reset All D Flags in TLB Modules, for example, a CPU can execute global writes
3 RUV Reset All UV Flags in TLB to CAMMUs other than its companion D-CAMMU by ac-
2 RSV Reset All SV Flags in TLB cessing virtual address locations 4Cnn (Hex, TLB write),
1 RLVX Reset All "X" Line LV Flags in Cache and 4Dnn (Hex, register write, and TLB/cache reset).

0 RLVW Reset All "W~ Line LV Flags in Cache IVO devices can execute the global writes by accessing

This Materia

The reset operations shown are performed by writing to
the Reset Register with the appropriate data pattern.

These CAMMU registers, as well as the CAMMU TLBs,
are located in virtual page 4, which is translated by the
Hardwired TLB into Page O of /O space. A map of
CAMMU /O space is shown in Figure 30.

The CPU accesses the D-CAMMU I/O space directly.
The CPU accesses the I-CAMMU /O space indirectly
via the D-CAMMU, because the I-CAMMU/CPU Instruc-
tion Bus is tied to CPU instruction buffers which only
transfer instructions.

7.6.6. CAMMU Register Access

The D-CAMMU registers are located in virtual address
4800-49FF (Hex). The -CAMMU registers are located

Figure 31 CAMMU Addressing

Cnn and Dnn (Hex).

Global writes are typically used in multi-CPU systems
when main memory pages that are shared by more
than one CLIPPER Module are replaced. If the virtual
address of a page being replaced is identical for all
modules sharing the page, a single global write to
CAMMU I/O space can be used to invalidate the TLB
entry corresponding to the outgoing page in all
CAMMUs.

Register Addressing

CAMMU I/O space addresses are shown in Figure 31.
Virtual address bits <31:11> comprise the CAMMU
Base Address field, which must point to the upper half
of virtual page 4 for CAMMU access.

Virtual address bits <10:8> comprise the CAMMU
Select field. This field identifies the following:

TLB LINE SET SELECT

X/W LINE SELECT IF
(1 = X SELECT) LB
ACCESS
VA/RA SELECT
r— (1 = VA SELECT)
31 1615 121110 87 2 1.0
VA <31:0> o 4 1

_——’

CAMMU SELECT

0 = D-CAMMU TLB
1 = D-CAMMU REG
2 = I-CAMMU TLB

REGISTER SELECT

04 = SUPERVISOR PDO REGISTER
08 = USER PDO REGISTER
10 = FAULT REGISTER IF

3 = I-CAMMU REG 20 ~ RESERVED REGISTER
4 - GLOBAL TLB 40 = CONTROL REGISTER ACCESS
§ = GLOBAL REG 80 = RESET REGISTER
6 = RESERVED roso
7 = RESERVED
59

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Bit No. CAMMU ing, intended for use in systems utilizing more than one
10 9 8 Selected Operation/Access CLIPPER Module. A CPU uses global addressing in
such a system to access a specific register or to reset
0 0 0 D-CAMMU RWTLB the TLB and cache in all CAMMUs in the system other
0 0 1 D-CAMMU R/W Registers; Reset than its own D-CAMMU.
TLB/Cache
0 1 0 I-CAMMU RWTLB Bits <7:0> of the virtual address comprise the Register
0 1 1 I-CAMMU R/W Registers; Reset Select field. This field identifies the register or the TLB
TLB/Cache field being accessed. All five CAMMU registers, and in-
1 0 0 Gilobal Write TLB dividual VA (Virtual Address) and RA (Real Address)
1 0 1 Global Write Registers; Reset fields of the TLB can be addressed.
TLB/Cache
if the operation is a TLB access, virtual address bits
Note: <7:2> address one of the 64 TLB entries, bit <1> ad-
The TLBs and caches are reset by writing to the Reset dresses the W or X line of the TLB entry, and bit <0> ad-
Register. dresses the VA or RA field of the addressed TLB line.
The first four entries show individual |- and D-CAMMU if the operation is a register access, virtual address bits
addressing. The last two entries show global address- <7:0> address the registers as follows:

Figure 32 TLB Access Data Formats
(a) TLB RA FIELD ACCESS FORMAT

31 12 11 98 7 6 3 2 1 [
RA ST (4] PL D R
Y ? 7y T f 3
USED FLAG
REFERENCED FLAG
RESERVED
DIRTY FLAG
REAL SYSTEM PROTECTION
ADDRESS TAG LEVEL
(b) TLB VA FIELD ACCESS FORMAT
31 18 17 3 2 1 0
VA) sv Juv
VIRTUAL RESERVED [-——-__ RESERVED
ADDRESS
TAG USER VALID FLAG
Aost SUPERVISOR VALID FLAG
60

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Bits Register

<7:0> Addressed
0000 0000 Reserved, Must Be Zero
0000 0001 Reserved, Must Be Zero
0000 0010 Reserved, Must Be Zero
0000 0100 Supervisor PDO (read/write)
0000 1000 User PDO (read/write)
0001 0000 Fault (read/write)
0010 0000 Reserved, Must Be Zero
0100 0000 Control (read/write)
1000 0000 Reset (write only)

CAMMU Data Format

The format of data written to and read from the
CAMMUs varies according to the register or TLB field
addressed. Both the fields and the number of data bits
used in the 32-bit data words written to the CAMMUs dif-
fer to accommodate individual CAMMU registers and
register types.

TLB Access Data Format

TLB access data formats are shown in Figure 32. Two
formats are used. One format is used when accessing a
TLB RA field; the second is used when accessing a
TLB VA field.

Figure 32A shows the data format used when accessing

a TLB RA field. When accessing an RA field, the
System Tag and Protection Level fields and the R and

Figure 33 PDO Register Access Format

D fiags of the addressed TLB line are also accessed, as
well as the U fiag of the TLB set containing the TLB line.

Figure 32B shows the data format used when accessing
a TLB VA field. The UV and SV flags of the TLB line are
also accessed. Note that several data bits are not used.
These bits are reserved by Intergraph and must be zero.

PDO Register Access Data Format

Figure 33 shows the data format used when accessing
either the supervisor or the user PDO register. Bits
<31:12> are used to transfer the 20-bit PDO data; bits
<11:0> are reserved by Intergraph and must be zero.

Fault Register Data Format
The 32-bit address in the Fault Register is accessed as
a 32-bit data word.

Control Register Access Data Format

The Control Register is accessed as a 32-bit data word.
Bits <23:10> are reserved by Intergraph and must be
zero.

Reset Register Access Data Format

The seven least-significant bits are used when access-
ing the Reset Register; bits <31:7> are reserved by
Intergraph and must be zero.

31 12 1 0
PDO 0
A082
PAGE DIRECTORY
ORIGIN

NOTE: THIS FORMAT IS USED FOR BOTH THE USER AND SUPERVISOR

PDO REGISTER ACCESS.

61

This Material Copyrighted By Its Respective Manufacturer

This Materi al

CLIPPER® C300
32-Bit Compute Engine

Advance Information

8. CLIPPER Hardware Reset

The CLIPPER C300 is reset when power is initially ap-
plied to the module (power-on reset), and when RESET
is asserted LOW during operation.

The response of the CPU to a hardware reset is as
follows:

(1) The T flag in the PSW is cleared and the BIG flag
is set to indicate the state of the BIG pin. The
remaining flags in the PSW are undefined.

(2) The following SSW flags are cleared: EI, TP,

M, U, K, KU, UU, and P. The remaining
flags are undefined, except for the 1D field which is
hardwired.

The response of each CAMMU to reset is as follows:

Figure 34 CLIPPER C300 Following Reset
PROGRAM STATUS WORD

(1) All LV (Line Valid) flags in the cache are cleared.

(2) All U (Used) flags in the cache are cleared.

(3) All UV (User Valid) flags in the TLB are cleared.

(4) All SV (Supervisor Valid) flags in the TLB are
cleared.

(5) Ali D (Dirty) flags in the TLB are cleared.

(6) All R (Referenced) flags in the TLB are cleared.

(7) Bits <9:0> of the Control Register are set to 0x23F.

(8) The Reset Register is cleared.

Reset therefore places the CLIPPER C300 in un-
mapped supervisor mode with all traps and conditional
interrupts disabled and with Bus Watch and prefetching
enabled. Figure 34 shows the state of the C300's CPU
control registers, and the CAMMU’s registers, TLB, and
cache lines following reset. While RESET is asserted,
all CLIPPER C300 Bus active LOW signals are pulled

MTS CTS T MG O FN EFT ER EFV EFX R FY PO FU FX C V Z N
I"I"l'l"]'l"l"l"]"l"l" x | x Px x| x x x| x]
SYSTEM STATUS WORD

P U X U KU M o ECM TP FRD 0 __© _E L __IN

553 I I IC I I (0 I K N K X3 I

PDO REGISTER
PDO__ 0

FAULT REGISTER
VIRTUAL ADDRESS

CONTROL REGISTER

ATE cv] UST EWIR EWIW EWCW EP
2 KN KN I N N N N

RESET REGISTER (WRITE ONLY)
0 RU AR RD AUV RSV RLVX RLVW
I3 KN B

ololololn]
TLB LINES

sV UV VA RA

CID 0
el

LedfedxTx]

xlexluI:I:I:l

CACHE LINES
LV LD RA WO W1

I I8 8 N N N

* 10RO, DEPENDING OF THE STATE OF THE B1G CONTROL PIN
% SET TO ENCODE CHIP ID NUMBER
X = UNDEFINED

w2 ws
KI!

62

A135

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

HIGH (via pull-up resistors), and all active HIGH signals
are forced LOW. BCLK continues clocking normally.

RESET must be held low for a minimum of 100 BCLK
cycles after Vpp reaches Vpp min when power is initially
applied to the C300 (see Figure 35). This ensures ade-
quate module reset time. It must be released in
synchronization with BCLK. RESET must be held LOW
for a minimum of 100 BCLK cycles when asserted
during operation, and both the assertion and release of
RESET must be synchronized with BCLK.

The CLIPPER C300 executes diagnostic routines follow-
ing release of RESET if URDIAG is asserted during the
two BCLK cycles following the release of RESET (see
Section 9.4.9, Diagnostics Control). Then it begins ex-
ecution at supervisor virtual address 6000H, which is
mapped by the HTLB to real address O of Boot space.

9. CLIPPER Bus
The CLIPPER C300 interfaces to external system
devices and functional units such as main memory, /O

Figure 35 Reset Timing

devices and peripherals, and other CLIPPER Modules
via the CLIPPER Bus—a high-speed, synchronous bus
designed to support multiple bus masters.

The bus includes 32 bidirectional, multiplexed ad-
dress/data lines which support byte, halfword, word, and
quadword transfers. A separate interrupt bus allows fast
interrupt management by the C300 with no ad-
dress/data line loading or contention, thereby increasing
the effective bus bandwidth. The bus protocol allows
devices that are clocked at different rates to interface to
the CLIPPER Module through the use of wait states as
required, and bus arbitration to be centralized in a
simple, fast bus arbiter. The bus supports Bus Watch,
which monitors the bus and takes corrective action to
ensure data consistency between the CAMMUs and
main memory.

The bus utilizes a single clock (BCLK), generated by
the Clock Control Unit, for system clocking. All C300
signal sampling and signal assertion are gated on the
rising edge of this clock. A second clock signal, 2BCLK,

Voo
| #————— 100 BCLKS MIN ———

RESET | @

ol T

8uUS S @

X ®

URDIAG
.

\

Notes:

. CLIPPER Bus is inactive until first instruction fetch.
. Internal CPU startup time.

Acs4

. RESET transitions must be synchronized with BCLK rising edges.

. CPU diagnostics execution if URDIAG was asserted during the 2 BCLK cycles following release of RESET.
. Fetch from boot space.

. URDIAG is asserted during RESET if CPU diagnostics execution prior to instruction execution is desired. URDIAG
must remain asserted for at least 2 BCLK periods following release of RESET to assure recognition and can
then either remain asserted or be released with no further effect on CLIPPER Module operation.

o U A W N -

63

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

with a frequency twice that of BCLK, provides additional and address/data signal transceiver

clock edges for use in interfacing peripheral systems. control (DIR).

All module outputs except BCLK are open drain and are The CLIPPER C300 Bus consists of the following

tied to pullup resistors inside the module. These signals groups of bus lines and signals:

are tied to a 96-pin connector for interfacing to user-

designed systems, where they may be buffered. — Address/Data multiplexed lines used for address and
data transfer

The signals tied to the C300 connector constitute the — Cycle Type signals used to identify the number of

CLIPPER Bus, shown in Figure 36. These signals are in- bytes or words transferred during a bus operation, to

terfaced through butfers and logic devices as shown in identify the operation as a read, write, or global

Figure 37. Note that this interface includes ORed logic write, and to identify the bus master executing the

operation as a CPU or an I/O device

Figure 3¢ CLIPPER Bus Signals

/7 «— AD#32 ——» ADDRESS/DATA

«— BIG ——— BIG ENDIAN

—— DIR —————» BUFFER DIR CONTROL

«— CT46 ————— 9 CYCLE TYPE

«— TG<3 — 3 MEMORY SPACE SYSTEM TAG

——— CBSYd — D-CAMMU CACHE BUSY
—— CBSYl ——— |-CAMMU CACHE BUSY
—— LOCK ————— BUS LOCK

l <«— TR ———————» TRANSFER REQ (BUS ACTIVE CYCLE) SONTROL

-———— RDYol ————» READY OUTPUT I-CAMMU

ADYo — 9 READY OUTPUT D-CAMMU
1-CAMMU

«4— RDYl —— READY INPUT

BRd ——— BUS REQ D-CAMMU

44— BGd —————————— BUS GRANT D-CAMMU

cPU AR®
BRI — & BUS REQ I-CAMMU ARBITRATION

-4—-—— MSBE/RETRY —

D-CAMMU

-<—— MMB

MCLK
<« BERA—

cLoCK } sk «— IVEC+8

CONTROL j—
UNIT 2BCLK

SINGLE BIT ERROR/RETRY

ﬁ «— BGI ————————— BUS GRANT I-CAMNMY

MULTIPLE BIT ERROR
B8US ERROR

INT VECTORS

INT REQ

INT ACK
NON-MASK INT
NON-MASK INT ACK
OSCILLATOR INPUT
SYNCHRONIZATION
BCLK CONTROL
BUS CLOCK

TWICE BCLK
MASTER RESET

UNRECOVERABLE FAULT
APPLY DIAGNOSTICS

This Material Copyrighted By Its Respective Manufacturer

e N

ERROR
INDICATION

INTERRUPT
CONTROL

A137

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 37 CLIPPER C300 Bus Interface

CLIPPER BUS

D-CAMMU BRd Jv—[{>0————~ BRd
| Bad T <p———Bad
: cssvd _8_1_____D>—-cuv
| ADYo 0 —>o———ROYo
| ROYi T Cg—+—RpY
| tock -O T {>———= LOCK
| |
| TR, CT<5:0>, TG<2:0> f& - TR, CT<5:0>, TG<2:0>
: BGI+BGd
| AD<31:0> & i AD<31:00>
. MSBE ,
: MSBE/RETRY, MMBE, { o MSBE/RETRY, MMBE
BERR T < BERR
| 5 RESET l —< RESET
| __ %
CPU RESET T _
|] <} BiG
| IVEC<7:0> | } e IVEC<7:0>
| L f <+ iRa
| TACK o— > TACK
| Nwi t <l NM1
| NMIACK O T > NMIACK
| URDIAG T <} URDIAG
| URF | > URF
I |
| CLOCK ,. .« I —> 8CLK
| 28LCK T —> 2BCLK
RATE <t RATE
: osc 1 <t osc
| SYNC - | < SYNC
bR
| RESET |
[WSBE/AETAY, MMBE, |
| BERR
1 AD<31:0> & :
| TR, CT<5:0>, TA<2:0> & |
| tock |
: RDY! :
| cBsyl |
| RDYol —o— o—1
| 8al | < 5
: I-cAMMU BM “: o—— BRI
- - |
Notes:
1. ADY and RDYo can be connected together on the CLIPPER Bus .
A138

2. ~—O— = pullup resister .

65

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

— Memory Space System Tags used to identify — Interrupt vector bus
address space being accessed and the caching — Bus protocol control lines
policy which applies to the accessed data
— Error signals used to report memory errors and bus An example CLIPPER C300 system implementation
errors showing these signals is depicted in Figure 38. Table 12
— Bus arbitration handshaking signals contains detailed descriptions of the CLIPPER Bus

— Interrupt control lines

Figure 38 Example CLIPPER System (Block Diagram)

BCLK/2BCLK
; ADDRESS/DATA 32
7
ﬁ CYCLE TYPE . 6§
s 7
c MEMORY SPACE .3 MEMORY MAIN
f SYSTEM TAG INTERFACE | MEM
2
v #
E MEMORY ERRORS s
R p
s CONTROL SIGNALS ~
(RDY, CBSY, TR)
BCLK/
2BCLK
CLIPPER —
MODULE
BUS REQUEST 2
BUS
BUS GRANT 2 |ARBITRATION] BUS REQUEST 1o
BUS 7 AND ERROR
US ERROR LoGIC BUS GRANT
e OSC
le—— SYNC
L » BCLK T
- » 2BCLK
INTERRUPT CONTROL _ 4 T
INTERRUPT VECTOR 8 ég;$ggsfgh BOLK
NUMBERS > /2BCLK
" BCLK/2BCLK —»
le——— BIG

n
1—7;— IRQ REQUESTS A139

66

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 12 CLIPPER Bus Signal Descriptions

Signal Type Description

AD Vo ADDRESS/DATA. This is a positive logic (HIGH = logic 1) multiplexed address and data

<31:0> bus which is tied to the CAMMUs.

BIG 1 BIG ENDIAN.The state of this pin selects between the big endian and little endian byte or-
dering. When BIG is tied to GND, big endian ordering is selected. When this pin is con-
nected to Ve, little endian ordering is selected. BIG must be configured before RESET is
removed and must not be changed following the release of RESET.

DIR o DIRECTION CONTROL. This control signal can be used to control the drive direction of _
TTL tranceivers interfacing AD <31:0> to the CLIPPER Bus. A master CAMMU asserts DIR
during an entire write operation and during the first two cycles of a read operation. A slave
D-CAMMU asserts this signal when transferring data during an I/O read; a slave |-CAMMU
asserts this signal when transferring data to a companion D-CAMMU. Drive direction is
from CAMMU to the CLIPPER Bus when DIR is low.

TG 7o MEMORY SPACE SYSTEM TAGS. These three CAMMU signals identify the address
<2:0> space being accessed, the page type, and the caching policy which applies to the ac-

This Materia

cessed page. In addition, they signal two special operations, Cache Purge and Siave /O
mode. System tags are derived from one of four sources. In mapped mode, they are
selected during address translation from the TLB, the HTLB, or from page tables in main
memory. In unmapped mode, TG<2> is zero and TG<1:0> is selected by the UST bits in
the CAMMU Control Register.TG<2:0> tag encoding is as follows:

TG2 TG1 TGO Encoding

(o] 0 0 = main memory/private cacheable/ write-through
(o] 0 1 = main memory/shared cacheableMrite-through
0 1 0 = main memory/private cacheable/copy-back

0 1 1 = main memory/noncacheable

1 0 0 = /O space/noncacheable

1 0 1 = boot space/noncacheable

1 1 0 = cache purge

1 1 1 =

slave 1/O mode/main memory/noncacheable

Note: The slave CAMMU can continually monitor the Memory Space System Tag and
check for cache/main memory data consistency when the Bus Watch modes are enabled.
The Bus Watch modes, when enabled, are invoked during the following CLIPPER Bus
operations:

(1) /O writes to shared or private pages.
(2) CPU writes to shared pages.
(3) 11O reads from private copy-back pages.

Frequently systems require the transfer of data between main memory and an I/O device.
This type of data transfer is normally implemented by a CPU as a read operation into a
CPU register, followed by a CPU write operation to the /O device. This type of operation is
accelerated by the CLIPPER Module through the use of slave I/O mode identified by the

67

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal Type Description

Memory Space System Tag. The slave I/O mode allows an I/O device to capture data being
read by the CPU during the read portion of the operation. The I/O device must be able to in-
terpret TG = 7 as slave /O mode, then read the transferred data as it is being read by the
CPU. The data read by the CPU is discarded.

cT 1o CYCLE TYPE. These six CAMMU signals indicate the type of CLIPPER Bus operation in
<5:0> progress. CT<5:0> signal encoding is as follows:
Signal State Operation
CTs 0 CPU master.
1 /O master.
CT4 0 Write operation.

1 Read operation.

CT<3:2> 00 Word/halfword/byte transfer.
o1 Quadword transfer.
10 Reserved.
11 Global CAMMU write.

CT<1:0> 00 Whole word transfer. If AD<1:0> are not equal to 0 and the access is

not of CAMMU /O space, an alignment trap will be signalled.
01 Reserved.
10 Byte transfer; AD<1:0> define the byte position.
11 Halfword transfer; AD<1> defines the halfword position; if AD<0>
is not equal to 0, an alignment trap will be signalled.
Notes:
(a) CT<1:0> have meaning only for single word transfers, with AD<1:0> pointing to
transferred word/bytes.

(b) In halfword/byte mode, the data must be written in the location specified by AD<1:0>.
(c) During a quadword transfer, the master must assert AD<3:0> all 0 to pointto a
quadword boundary.

CBSYi, fe) CACHE BUSY (I-CAMMU, D-CAMMU). A CAMMU asserts CBSY to indicate execution of in-

CBSYd ternal operations associated with Bus Watch operations. Main memory data must not be as-
serted on the CLIPPER Bus while CBSYi or CBSYd is asserted. If a D-CAMMU asserts
RDYo while asserting CBSY, indicating that it is asserting more recent cache data on the
CLIPPER Bus, main memory must abort the data transfer operation.

LOCK le) BUS LOCK. LOCK is asserted by a bus master when it requires the CLIPPER Bus for more
than one operation. LOCK is asserted by the CAMMUs during the following operations:

(1) DTU Page Table Directory and Page Table accesses.

(2) DTU R or D bit modifications in Page Tables.

(3) Read-modify-write (test and set) operations.

(4) Cache line replace and fetch on cache miss (quadword write followed by
quadword read).

68

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal

Type

Description

TR

Vo

TRANSFER REQUEST. TR is asserted by a bus master to indicate that a CLIPPER Bus
operation is in progress.

RDYi

READY INPUT. RDYi is tied to both CAMMUs. During read operations, the slave with the ad-
dressed data asserts RDYi to indicate that it has asserted the data on the AD bus. During
single word, byte or halfword write operations, the slave asserts RDYi to indicate that it has
latched (read) the data. During quadword write operations, the slave asserts RDYi to indi-
cate that it has latched the data word currently on the AD bus, and is ready to latch the next
word.

RDYo

READY OUTPUT. RDYo is asserted by the D-CAMMU during Watch /O Reads operations
to indicate to the /O device that it has asserted data on the AD bus for reading. This occurs
when the data location being accessed in main memory is cached, and the cache data is
more “recent” than the main memory data. RDYo can be tied to RDY on the CLIPPER Bus.

RDYoi

READY OUTPUT. RDYoi is asserted by the I-CAMMU when it is being accessed by its com-
panion D-CAMMU. RDYoi is not interfaced to the CLIPPER Bus.

BRi,BRd

o

BUS REQUEST (I-CAMMU, D-CAMMU). These signals are asserted by the respective
CAMMUSs to obtain control of the CLIPPER Bus.

BGi,BGd

BUS GRANT (I-CAMMU, D-CAMMU). Bus Grant is asserted by the CLIPPER Bus arbitra-
tion logic in response to a Bus Request by a CAMMU, and indicates that the requesting
CAMMU has control of the bus.

This Materi al

MEMORY SINGLE BIT ERROR/RETRY. The main memory interface asserts MSBE/RETRY
when it detects a corrected error in main memory during a read operation. (Typically, in sys-
tems utilizing error correction, only single-bit errors are corrected.) MSBE/RETRY is tied to
both CAMMUSs, and is sampled by the CAMMUs when RDYi is sampled. A master CAMMU
issues a trap to the CPU when it detects MSBE/RETRY asserted. The main memory inter-
face must not assert an interrupt when it detects a corrected data error. The MSBE/RETRY
signal must be presented to the CAMMU by the memory interface along with (during the
same BCLK as) RDYi and the data to indicate a corrected error. MSBE/RETRY may not be
asserted when RDYi is inactive during main memory accesses.

The MSBE/RETRY signal is also used to abort and retry CLIPPER Bus operations. If the sig-
nal is asserted during access of I/O space (TG=4) while RDYi is inactive, the current bus
operation is aborted by the master CAMMU with no trap assertion to the CPU.

Thus, if this pin is active during the same BCLK that RDYi is HIGH, an MSBE condition is

recognized.; if this pin is active during a BCLK when RDYi is LOW (for an |/O space access),
a RETRY condition is recognized.

69

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal

Type

Description

MMBE

MEMORY MULTIPLE BIT ERROR. The main memory interface asserts MMBE when it
detects an uncorrectable error in main memory during a read operation. (Typically, these will
be multiple-bit errors, because in systems using error correction, only single-bit errors are
corrected.) This signal must be asserted during the same BCLK cycle that RDY is asserted.
MMBE is tied to both CAMMUs, and is sampled by the CAMMUs when RDYi is sampled. A
master CAMMU issues a trap to the CPU when it detects MMBE asserted. The main
memory interface must not assert an interrupt when it detects an uncorrectable

data error.

BUS ERROR. BERR should be asserted by user-designed logic to indicate a CLIPPER Bus
error condition such as a bus timeout. BERR is tied to both CAMMUs. Upon assertion of
BERR, the master CAMMU terminates the bus operation and indicates to the CPU that the
operation is completed. (If the bus error occurs during a read operation, the data asserted
on the AD bus at the time BERR is asserted is transferred by the CAMMU to the CPU). The
CAMMU does not issue a trap in response to a bus error; the bus error logic should assert
an interrupt.

IVEC
<7:0>

INTERRUPT VECTORS. This is an inverted jogic (LOW=logic 1) bus, tied directly to the
CPU. It transfers interrupt vector numbers associated with interrupt requests.

INTERRUPT REQUEST. This signal, tied directly to the CPU, is asserted by system devices
for interrupt service requests. Once asserted, IRQ must remain asserted until IACK is as-
serted by the CPU. An interrupt level and number must be asserted on IVEC<7:0> with
each interrupt request. IRQ is maskable.

INTERRUPT ACKNOWLEDGE. IACK is asserted by the CPU in response to an interrupt re-
quest (IRQ) to acknowledge that servicing of the interrupt is in progress.

NON-MASKABLE INTERRUPT. This signal, tied directly to the CPU, is asserted by system
devices for non-maskable interrupt service requests. Once asserted, NMI must remain as-
serted until NMIACK is asserted by the CPU.

NMIACK

o

NON-MASKABLE INTERRUPT ACKNOWLEDGE. This signal is asserted by the CPU in
response to an NMI request to acknowledge that servicing of the interrupt is in progress.

RATE

This Materia

BCLK RATE CONTROL. This input to the CLIPPER Module controls the CLIPPER Bus
BCLK frequency. When RATE is tied to GND, BCLK frequency is 1/2 MCLK frequency.
When RATE is tied to Vpp, BCLK frequency is 1/4 MCLK frequency. For example if the
standard 100 MHz crystal is used in the CLIPPER Module, BCLK frequency is 25 MHz if
RATE is tied to GND, and 12.5 MHz if RATE is tied to Vpp.

70

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal Type Description

BCLK fo) BUS CLOCK. BCLK clocks all devices on the CLIPPER Bus. All signals must be clocked
onto the CLIPPER Bus on the rising edge of BCLK; all signals must be latched/sampled
from the CLIPPER Bus on the rising edge of BCLK. The propagation delay of signals
asserted on the system bus must be less than one BCLK period and more than the BCLK
skew between devices in order to ensure proper operation of the synchronous
CLIPPER Bus.

2BCLK le) TWICE BUS CLOCK. This signal is twice the frequency of BCLK and in phase with it.
2BCLK facilitates CLIPPER system design by providing additional clock edges for the
synchronization of external logic and devices.

RESET I RESET. This is the master reset signal which is asserted by system logic to reset the
CLIPPER Module and other devices on the CLIPPER Bus. Upon release of RESET, the
CPU begins instruction fetching at Boot space address 0.

UNRECOVERABLE FAULT. This signal is asserted by the CPU to indicate that it has
stopped program execution as a result of an unrecoverable fault condition. An un-
recoverable fault occurs when the CPU encounters an error condition during execution of on-
chip diagnostic routines, or when a trap occurs during the execution of INTRAP or retl.

[
b/
m
O

URDIAG | APPLY DIAGNOSTICS. This input to the CPU is asserted to force the CPU to execute on-
chip diagnostic routines resulting in the following:

(1) The diagnostics detected no error conditions. The CPU begins program execution at
Boot space address O (supervisor virtual address 6000 hex).
(2) The diagnostics detected an error condition. The CPU asserts URF and stops execution.

RESET must be asserted when URDIAG is asserted.

o0sC | OSCILLATOR INPUT. This signal is used by the CLIPPER Clock Control Unit to derive all
clocks on the CLIPPER Module. The active edge of OSC is the HIGH to LOW transition.

SYNC | SYNCHRONIZATION. This signal can be used to synchronize BCLK with devices on the
CLIPPER Bus. When this input is not used, it can be tied HIGH, tied LOW, or left uncon-
nected. The SYNC input is sampled on the HIGH to LOW transition of OSC.

7

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300

32-Bit Compute Engine

Advance Information

Table 13 Signal Summary

Signal Mnemonlc Input/Output’ Active State
Address/Data Bus AD 110 HIGH
Big Endian BIG [LOW
Direction Control DIR (o] HIGH = input
LOW = output
Memory Space System Tag TG 110 HIGH
Cycle Type CT 110 HIGH
Cache Busy CBSYi, CBSYd O HIGH
Bus Lock LOCK [¢} LOW
Transfer Request TR 1’0 LOW
Ready RDYi | HIGH
RDYo, RDYoi [e) HIGH
Bus Request BRi, BRd O HIGH
Bus Grant BGi, BGd | HIGH
Memory Single Bit Error/Retry MSBE/RETRY | LOW
Memory Multiple Bit Error MMBE 1 LOW
Bus Error BERR [LOW
Interrupt Vector Bus IVEC I LOW
Interrupt Request RQ | LOW
Interrupt Acknowledge IACK O LOW
Non-Maskable Interrupt NMI [LOW
Non-Maskable Interrupt Acknowledge NMIACK o Low
BCLK Rate Select? RATE I HIGH = 80 ns
LOW = 40 ns
Bus Clock BCLK O —
Twice Bus Clock 2BLCK (o] —
Master Reset RESET | LOW
Unrecoverable Fault URF [¢) LoW
Apply Diagnostics URDIAG | LOW
Oscillator Input OSC i —
Synchronization SYNC | —

Notes:

1. Inputs are designed with a nominal switching threshold of 1.3 V and are therefore referred to as TTL compatible. All
outputs (excluding BCLK, 2BCLK and URF) are open drain structures with pull-up resistors (220 Ohms) to Vcc on the
module. BCLK, 2BCLK and URF are standard CMOS output signals. If an external pull-up is used for URF, it must be
at least 220 Ohms. Timing parameters are referenced to standard TTL levels.

2. The BCLK period values shown are for an OSC frequency of 100 MHz.

72

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

signals, and Table 13 contains a summary of the bus
signals.

9.1. System Clock

The C300 is clocked by an external oscillator signal,
OSC. A Clock Control Unit derives from OSC both the
internal clocks used on the Module and external clocks
which can be used for system clocking.

MCLK (Module Clock), one of the internal clocks, is the
internal CLIPPER master clock, used to drive the CPU,
the CAMMUSs, and associated module logic. The fre-
quency of MCLK is one half the frequency of OSC.
Therefore, if the typical 100 OSC frequency is used, the
MCLK frequency is 50 MHz. MCLK is not availlable for
off-Module use.

BCLK (Bus Clock) is the C300 system clock, used to
clock devices interfaced to the CLIPPER Bus. The CLIP-
PER Bus is synchronous: all data and control signals
are asserted and sampled on the rising edge of BCLK.
BCLK frequency is either one half or one fourth the fre-
quency of MCLK, depending on the state of the C300
Rate control pin. If RATE is tied to GND, BCLK frequen-
cy is one half the frequency of MCLK; if RATE is tied to
VCC, BCLK frequency is one fourth the MCLK frequen-
cy. Therefore, assuming an OSC frequency of 100 MHz,
BCLK frequency is either 25 MHz (40ns) or 12.5 MHz
(80ns). BCLK is in phase with MCLK, with the LOW to
HIGH transitions of the clocks occurring in phase with a
skew of less than + 5ns.

2BCLK (Twice Bus Clock) is an output signal having
twice the frequency of BCLK. It provides additional
clock edges for devices interfaced to the CLIPPER Bus.
2BCLK is in phase with BCLK, with a skew of less than
+ 1ns.

9.2, System Configuration

Any device (or functional unit) which meets the
CLIPPER Bus protocol and electrical requirements
(timing, threshold, and loading) can be interfaced to the
CLIPPER Bus. Such devices include memory, /O
devices, and subsystems as well as the CLIPPER
C300. A typical CLIPPER system configuration is shown
in Figure 39.

Up to 4 G-bytes of memory can be addressed by the
CLIPPER C300 via its 32-bit address bus. This memory

73

can be interfaced directly to the CLIPPER Bus if re-
quired.

I/O devices such as disk controllers, bus translators,
data communications devices, and associated control
logic such as bus arbitration units and interrupt control-
lers, can also be interfaced to the bus. Such devices
may be "off-the-shelf" or user-designed. /O devices are
typically located in 1/O space, but can also be located in
main memory space.

Figure 39 CLIPPER System

CLIPPER MODULE
CPU) —
f—w FPU \l—j
Z
INSTRUCTION DATA
CACHE /MMU CACHE /MMU
i T
1T
Sz
INTERRUPT

CONTROL LOGIC

b U
CLIPPER BUS

RY
ADAPTER INTERFACE

MAIN
MEMORY

BUS
CONTROL LOGIC

] L
CONTROLLERS

170
170
SUBSYSTEM
S 1/0 BUS N
| | l l
PER PER
CPU MEM crre |* *°| cTRL
4 Y 8
| S
4 y
170 170

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

9.3. Deflnitions

Several terms are used in the following text which may
not have universal meanings. These terms and their
defintions as used in this text are as follows:

Master:

A device which has control of the CLIPPER Bus. A
master gains control of the bus by asserting BR (Bus
Request), then receiving BG (Bus Grant) from bus
arbitration logic.

Slave:
A device that is being addressed via the CLIPPER
Bus. A slave is addressed by a master.

Memory interface:
Logic which controls data transfer to and from main
memory.

1/0 Write:
Write by an I/O device.

1/0 Read:
Read by an /0O device.

Figure 40 Cache Line Replacement

|
r‘l'ub

BCLK 1 2 3 .]

28CLK

WRITE

| vadar | Tadaz | vao Td1

WAIT
Td2 I Td3 I Tadd1 l Tadd2 | Téo

9.4. Bus Protocol
CLIPPER Bus operations are governed by the following
rules:

(1) A bus master cannot introduce wait states. This
requires that a bus master be able to transfer data at
the maximum rate allowed by the bus protocol.

(2) Slaves may introduce wait states by delaying the
assertion of RDY (Ready) on the CLIPPER Bus.
Wait states can be introduced between the address
and data cycles of an operation by delaying RDY
and between data words in a quadword transfer by
toggling RDY.

(3) All CLIPPER Bus signals must be sampled on the
positive edge of BCLK.

(4) All signals must meet required set-up and hold
times with respect to the positive transition edge of
BCLK.Signals must not transition within the Tsu set-
up time of BCLK rising edge or undefined states
within the C300 can result.

(5) if RDYo (Ready out) is asserted on the CLIPPER
Bus by a CAMMU while CBSY is active, the memory
interface must abort its data transfer.

QUADWORD READ
| ver |

1 2 3 4

| | | | | |

| | | I

|

i | | |
g N I I |
i N N I O O e N '
Ab N avonzss l)(o le - X o X .,.:/ \ TS 7 _T._/ \YATY/ \%/
Tacr l \ MEMORY SPACE SYSTEM TAG, CYCLE TYPE [| \ MEMONY SPACE SYSTEM TAQ, CYCLETYPE [
™ T\ acmive]cvcu l[/ 1\ Acﬂvzl oveLr 1 /T
| / \ /a __
e\ l / Atas
74

This Materia

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

9.4.1. Bus Arbitration

A bus arbitration unit which arbitrates control of the
CLIPPER Bus must be implemented in systems utilizing
the CLIPPER C300. The unit must be capable of receiv-
ing bus requests from each of the possible bus masters
via Bus Request lines (BRx, where "x" identifies a par-
ticular bus master), and must be able to assert a Bus
Grant (BGx) for each bus master. The unit may support
priority assignment such that in cases of multiple re-
quests for the bus, the bus arbitration unit grants the
bus to the highest-priority requesting device.

A bus master should hold BRx asserted during its entire
access of the CLIPPER Bus, then should release BRx
as soon as possible after completion of its data transfer
in order to maintain high system throughput. The bus ar-
bitration unit should hold BRx asserted until the bus
master has released BRx.

Multiple Bus Operations

A bus master can execute multiple bus operations by
holding its BRx signal asserted until it has completed all
its data transfers. Read-modify-write operations, for ex-
ample, require that the bus masters executing the opera-
tions maintain control of the bus during the reads and
following writes, and the bus master maintains this con-
trol by holding BRx asserted until after completion of the
write. Another example of a multiple-bus operation is
the replacement of a cache line as a result of a cache
miss. As shown in Figure 40, the operation consists of a
quadword write of the cache line to memory if the line is
dirty, followed by a quadword read of the replacement
line into the cache.

9.4.2. Bus Control

The bus control signals indicate CLIPPER Bus opera-
tion status which is used to implement bus protocol and
control, support Bus Watch, and give a bus master the
means to secure the bus indefinitely in order to com-
plete multiple bus operations.

A Ready Input (RDYi) tied to each CAMMU is used to
synchronize data transfers between CLIPPER, 1/O, and
memory. When a CAMMU reads data, it holds the bus
in a read state until the responding device asserts
RDYi, indicating that the data to be read is on the bus.
When a CAMMU writes data, it provides data on the
clock following the address phase of the operation until
the device being written to asserts RDY], indicating that

75

it has latched the data. RDYi is thus used to accom-
modate various response times of devices on the bus.
This eliminates the need to introduce for all data trans-
fers the number of wait states necessary to accom-
modate the slowest device on the bus.

Ready Out (RDYo) is asserted by the D-CAMMU during
Bus Watch operation in response to an l/O read of
memory data that is cached. RDYo is active only during
this operation. If the memory page being read is tagged
as a copy-back page, then changes to the page data in
the cache are not copied to the page in main memory
until the page is replaced by the operating system. If an
VO device reads data from memory that is cached, and
if the cache has updated data that has not been copied
to the memory location being read, the D-CAMMU as-
serts RDYo while asserting CBSYd. This aborts asser-
tion of memory data. (The memory interface must be
designed to abort the memory operation when both
CBSYd and RDYo are asserted.) The D-CAMMU in-
stead asserts the updated cache data on the CLIPPER
Bus, which is read by the I/O device, and RDYo. In this
way, transfer of valid data to I/O devices is assured.

Ready Out I-CAMMU (RDYoi) is asserted by the
I-CAMMU to indicate assertion or latching of data in
response to access by the D-CAMMU. Since only the
D-CAMMU can access the I-CAMMU, this signal is tied
only to the D-CAMMU.

Two Cache Busy signals, one for the I-CAMMU (CBSY)
and one for the D-CAMMU (CBSYd), are used to indi-
cate CAMMU internal operations associated with Bus
Watch. CBSYi and CBSYd may be ORed to form a
single Cache Busy (CBSY) signal on the CLIPPER Bus
as shown in Figure 37. When a CAMMU Bus Watch
mode is invoked during a memory access, the affected
CAMMU asserts Cache Busy to indicate that it is check-
ing whether the accessed data location is cached (see
Figures 55 and 56).

If the bus operation is a write, the memory interface
must not assert RDYi until CBSY is released by the
CAMMU. This ensures that the CAMMU has time to up-
date data in its cache before the bus operation is com-
pleted. If the operation is a read, the memory interface
must not drive the drive the Address/Data bus until
CBSY is released. This allows the CAMMU to abort
assertion of data by the memory interface, and to

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

provide cached data if required (see Ready Out
description).

Transfer Request (TR) is asserted by bus masters to in-
dicate that CLIPPER Bus operations are in progress.
While Transfer Request is asserted, no bus master
other than the one controlling the bus can gain bus ac-
cess.

Lock (LOCK) is used in dual-bus applications in which
the CLIPPER Bus is interfaced to a separate /O bus
through a bus adapter or a dual port memory, this
provides CLIPPER Bus masters with a means of main-
taining control of the 1/O bus or dual port memory
throughout successive bus operations. LOCK becomes
active during DTU page table access, cache line re-
placement, and read-modify-write operations.

Figure 41 Single Word Read (1 Wait State)

Direction Control (DIR) is used to contro} drive direction
of TTL transceivers buffering the C300 Address/Data
bus. This signal controls the transceivers with proper
timing for all bus operations, eliminating the need for
such logic in the system.

9.4.3. Memory Errors

Memory data errors are reported with the Memory
Single Bit Error/Retry (MSBE/RETRY) and the Memory
Multiple Bit Error (MMBE) signals. These signals are as-
serted by error detection and correction logic within the
memory interface to indicate that a single-bit error has
been detected and corrected (MSBE/RETRY), or that
an uncorrectable multiple-bit error has occurred
(MMBE). The signals, tied directly to the CAMMUs for
fast response, force traps to error-handling routines.
Timing for MSBE/RETRY and MMBE is shown in Figure
41. Note that the signals are asserted during the same
cycle that RDYi is active.

| Tarb | Tadd1 | Tadd2 | Tw | Td |
O O s IS I e IE0 BN
e (LU LU
- | |
BR _/_ ‘ ’) _
4 ‘ ‘ | N\
DIR ' \ | / ‘
AD l N\ ADDRESS J / \ ID /
TG,CT ‘ "\ MEMORY SPACE SYSTEM TAG, CYCLE TYPE /
TR ‘ \ ACTIVE CYCLE E /—
RDYi | / ® \

MSBE/RETRY, MMBE

NOTES:

1. Timing for SINGLE WORD READ with NO WAIT STATES
is shown in Figure 53.

2. These signals are asserted here by the memory interface
to indicate memory data errors.

This Materia

76

Copyrighted By Its Respective Mnufacturer

Thi s

CLIPPER® C300
32-Bit Compute Engine

Advance Information

In cases of multiple-bit and single-bit errors, the
CAMMU Fault Register does not capture the addresses
causing the errors. It is therefore necessary to design
an address snapshot register into the system to capture

-addresses for use by the trap routine servicing single-bit

errors if analysis of the errors is required.

The MSBE/RETRY signal is also used to abort and
retry CLIPPER Bus operations. If the signal is asserted
during access of VO space (TG = 4) while RDYi is inac-
tive, the current bus operation is aborted and retried
with no trap assertion. This feature is intended to
resolve Bus Lockout in dual-bus systems, which occurs
when a CLIPPER Bus master and an /O processor
(IOP) bus master simultaneously request access to
each other’s buses. For example, if CLIPPER has con-
trol of the CLIPPER Bus for attempted access of the /O
bus at the same time that an /O bus master has control

Figure 42 Bus Retry (Single Word Read Example)

-<—ABORTED OPERATION |

of the /O bus for attempted access of the CLIPPER
Bus, each bus master waits for the other to release its
bus. Each bus master is therefore *locked out” from the
other bus until one of the masters is forced to release
its bus. Simple logic in the interbus interface logic can
be used to assert MSBE/RETRY whenever a CLIPPER
request for the /O bus occurs simultaneously with an
IOP request for the CLIPPER Bus. This forces the
CLIPPER to abort its bus operation and release the
CLIPPER Bus, then re-arbitrate access to the CLIPPER
Bus for a retry of the aborted operation. The IOP can
gain access to the CLIPPER Bus after the abort by the
C300 but before the retry, thus eliminating the Bus Lock-
out condition. The CLIPPER then waits for completion
of the /O operation before gaining access to the I/O
bus for the retry. Timing for bus retry is shown in Figure
42.

Tarb | Tadd1 | Tlddzv]
BCLK

2BLCK

w

AD | \ ADDRESS / 1 l

’ } \ADDRESS

TG, CT l \ /] ’ ‘ \
| .
MSBE/RETRY ' _f . Ates

Retry occurs when MSBE/RETRY is asserted while RDYi is released

during access of IO space only (TG = 4).

Mat eri al

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

In summary, the Memory Single Bit Error/Retry signal
operates as follows:

1. If the signal is asserted during any time other than ac-
cess to /0 space and during the same clock cycle that
RDYi is active, the signal reports a corrected memory
single-bit error. This causes the CAMMU to generate a
trap to the CPU.

2. If the signal is asserted during access of I/O space
(TG = 4) while RDYi is inactive, the current bus opera-
tion is aborted and retried by the master CAMMU with
no trap assertion to the CPU.

9.4.4. Bus Error

A bus operation can be aborted by the assertion of
BERR (Bus Error) by user-designed logic implemented
in the CLIPPER system (see Figure 43). Bus error con-
ditions should be detected by the bus error logic, which
should then assert BERR and an interrupt request (via
the interrupt logic). The CAMMU terminates the system
bus access and releases the bus when it detects the

Figure 43 Bus Error

f——-——-—e-— ABORTED OPERATION —u—p

s N N I O B

2BCLK

"L N

L

Ta.CT

78

assertion of BERR. The CPU should use the interrupt re-
quest to vector to a routine designed to resolve the bus
error condition.

BERR must be asserted by the bus error logic for one

BCLK cycle. The state of the CLIPPER Bus associated
with the bus error may be stored by the bus error logic
for use by the bus error interrupt service routine.

9.4.5. Unrecoverable Fault

Some errors allow no clean means of recovery for con-
tinuation of program execution. These errors include the
occurrence of a trap during execution of INTRAP or
reti, and the detection of a fault during self-test (see
Section 9.4.9). A trap during execution of INTRAP or
reti can be avoided by ensuring that the Exception Vec-
tor Table is set up prior to the occurrence of a trap con-
dition, and that the supervisor stack pointer always
points to a valid page. No other conditions generate an
unrecoverable fault.

Were the CPU to ignore these error conditions and con-
tinue execution, effects on the system could be
catastrophic. A faulty or "lost" CPU could execute ran-
dom writes to memory and I/O, for instance, corrupting
data in both main memory and secondary storage. The
CLIPPER CPU offers protection from catastrophic
failure by stopping program execution immediately upon
detection of one of the unrecoverable fault conditions,
before the system is corrupted. It then asserts the Un-
recoverable Fault signal (URF) as a hardware indication
that the CPU is halted due to an unrecoverable error,
and that human intervention is required to correct the
problem.

9.4.6. Walit States

Slow devices can introduce wait states by delaying
assertion of RDY on the CLIPPER Bus during bus
operations. Wait states consist of an integral number of
BCLK periods during which time the master device
remains in a "waiting” state until the slave device as-
serts RDY to indicate that it has asserted data on the
bus (if a read operation by the master), or has read
data from the bus (if a write). Wait states are further ex-
plained in the following descriptions of bus operations.

Copyrighted By Its Respective Mnufacturer

Thi s

CLIPPER® C300
32-Bit Compute Engine

Advance Information

9.4.7. CLIPPER Bus Operations

Unless otherwise noted, the signal nomenclature used
in this section describe the signals as shown in
Figure 37.

— RDY s tied to RDYo to form a single ready signal
(RDY). RDY is gated with RDYoi on the CLIPPER
Module Interface.

— CBSYd and CBSYi on the CLIPPER Module
Interface are gated to form a single ORed CBSY
signal on the CLIPPER Bus.

A CLIPPER Bus operation begins when a bus master re-
quests the bus by asserting its Bus Request signal and
receives Bus Grant from the bus arbitration unit. The
bus master can then execute one of four bus opera-
tions: a read operation, a write operation, a global write
operation, or a multiple memory access operation.

Figure 44 Quadword Read (No Wait States)

| Tab | Teddt | Tadd2 |

Read Operation S

Upon receiving Bus Grant (BGx), the master {possibly a
CAMMU) asserts TR, Memory Space System Tag
(TG<2:0>), Cycle Type (CT<5:05), and a real address
(AD<31:0>) on the bus. The Memory Space System
Tag, Cycle Type, and TR signals remain asserted during
the entire operation. However, the bus master three-
states the multiplexed address/data lines (AD<31.0>)
after two BLCK cycles to make the lines available for
data transfer by the slave device (see Figures 41 and

44).

The bus master then waits for the slave device to assert
RDY (CAMMU RDYi signal), indicating that the data is
on the bus. The master latches the data on the same
positive transition of BCLK that it detects assertion of
RDY. The slave device can respond with data im-
mediately after the address/data lines are three-stated

T2 | T8

Le [1o 1 —

,er — ~
8a ‘ | N
o I\ / |
. LA VAR UV 7/
Tact \ | |/
" \ | /S
/- N

CAMMU DATA LATCH TIMES VAN N\ A A o
79
Mat eri al Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

by the bus master, or can respond later as required by
delaying assertion of RDY thereby introducing wait
states.

The minimum number of BCLK cycles required for a
read operation is three, excluding bus arbitration require-
ments: two cycles are required for assertion of address,
and at least one cycle is required for the data transfer.

Bus Watch During Read Operations

During /O reads of private, copy-back main memory
space (i.e., TG=2), each CAMMU with Watch 1/O Reads
enabled asserts CBSY, indicating to other bus devices
that it is checking for dirty cached data (cached data not
yet written to main memory) corresponding to the main
memory location being accessed by the I/O device. If it
finds dirty data, it asserts the data on the AD bus, as-
serts RDYo, and releases CBSY. The I/O master must
then latch the data on the positive BCLK transition fol-
lowing assertion of RDYo. If the data is not cached or

Figure 45 Memory Interface CBSY Monitoring

the cached data is not dirty, the affected CAMMU
releases CBSY, allowing transfer of main memory data
to the bus master. This Bus Watch sequence applies to
both single-word reads and quadword reads. If Bus
Watch intervention occurs during quadword reads,
however, the affected CAMMU will retum all four data
words if one or more data words is dirty.

The main memory interface must monitor the CLIPPER
Bus CBSY and RDYo (which can be tied to the RDY sig-
nal) lines and allow main memory data response on
AD<31:0> only if CBSY (CBSYi or CBSYd on the
CLIPPER Module Interface) is not asserted, indicating
that there will be no CAMMU intervention resulting from
CAMMU Bus Watch. If RDYo is asserted by the
CAMMU while CBSY is asserted, the memory interface
must abort the memory read because the CAMMU is
responding with more recent cache data. Memory
monitoring of CBSY is summarized in Figure 45.

. cPu 170
READ WRITE READ WRITE
SINGLE | QUADW | SINGLE | QUADW | SINGLE [QuADW | SINGLE [Quabw]} TG<2:0>:
PRIVATE W.T. - - - - - - m(1) -(3) 000
PRIVATE C.B. - - - - m(2) m(2) m(1) -(3) 010
SHARED (W.T.) - - m(1) -(3) - - m(1) -(3) 001
NONCACHEABLE| - - - - - - - - 011
CT <5:2> | 0100 | 0101 | oooo | ooo1 | 1100 | 1101 | 1000 | 1001 |

m=monitor CBSY
NOTES:

A090

(1) Single Word Writes: CAMMU updates cache on hit; memory interface must not assert RDY until after CBSY

is released.

(2) 110 Reads: CAMMU provides data on cache hit; memory interface must not assen RDY until after CBSY is
released, and may enter into memory data that is supplied by the CAMMU (indicated by assertion of RDY and
CBSY by the CAMMU) in order to support Clear Dirty operation if required.

(3) Quadword Writes: The memory interface proceeds normally (doesn’t monitor CBSY) if the bus arbiter inhibits
granting of the bus again while CBSY is asserted; otherwise the memory interface must not assert RDY until

after CBSY is released.

80

This Material Copyrighted By Its Respective Manufacturer

Thi s

CLIPPER® C300
32-Bit Compute Engine

Advance Information

The Clear Valid option, if enabled, requires memory to
update its contents with the more current (dirty) data
supplied by the cache for an /O quadword read, unless
the data will not be read by another 1/O device (see Sec-
tion 7.6.4). Use of this option saves a write of the dirty
data to memory when the cache line is replaced. The
Clear Valid option is enabled by setting the Clear Valid
flag in the Control Register. Memory support for this op-
tion requires that the memory transition from a memory
read operation to a memory write operation when both
CBSY and RDY are asserted by the D-CAMMU, and
that the memory not be allowed any wait states be-
tween the individual quadwords supplied by the
CAMMU.

CAMMUs normally require 4 MCLK (80ns @ 100 MHz

OSC frequency) cycles for Bus Watch checking. During
this time the memory interface can proceed with the

Figure 46 Single Word Write (1 Walt State)

\ Tarb

| Tadd1 \ Tadd2 I

read operation without delay up to, but not including,
assertion of RDY. As a result of this parallelism,
CAMMU Bus Watch operation results in little impact on
CLIPPER Bus utilization.

Write Operation

Signal assertion and timing associated with a write
operation are similar to those associated with a read
operation. Upon receiving Bus Grant (BGx), the master
(possibly a CAMMU) asserts TR, Memory Space Sys-
tem Tag (TG<2:0>), Cycle Type (CT<5:0>), and a real
address (AD<31:0>) on the CLIPPER Bus. The Memory
Space System Tag, Cycle Type, and TR signals remain
asserted during the entire operation (see Figures 46-48).

After two BCLK cycles, however, the bus master
replaces the address on the AD lines with the data to
be written, and holds the data on the lines until the

BCLK

L2 |

_I——lJl o]

BG / _
=
o N 7
N e srrc e e/
T D

Timing for SINGLE WORD WRITE with NO WAIT STATES
is shown in Figure 54.

81

Mat eri al

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

slave acknowledges latching of the data by asserting
RDY (CAMMU RDYi signal) on the CLIPPER Bus. The
slave can assert RDY when ready, allowing wait states
as required.

If the operation is a single-word write, the bus master
releases the bus immediately following detection of as-
serted RDY (CAMMU RDYi signal). If the operation is a
quadword write, the bus master asserts the second,
third, and fourth data words of the quadword data trans-
fer during successive BCLK cycles following detection
of asserted RDY. The slave device can introduce wait
states between assertion of the quadword address by
the master and latching of the first data word, and be-
tween latching of the individual data words.

The minimum number of BCLK cycles required for a
write operation is three, excluding bus arbitration require-

Figure 47 Quadword Write (No Wait States)

I Tarb | Tadd1 | Tadd2 | Tdo

BLCK

ments. Two cycles are required for assertion of the ad-
dress, and at least one cycle is required for the data
transfer.

Bus Watch During Write Operations

A CAMMU invokes Watch I/0 Writes, if enabled, when
an /O device writes to its cacheable main memory
space; and invokes Watch CPU Wrrites, if enabled,
when a CPU (via a D-CAMMU) writes to its shared
cacheable main memory space. Both Bus Watch
modes, when invoked, function identically. if the write
operation invoking one of these modes is a single-word
write operation, the affected CAMMU updates the cache
with the data written to the main memory if the main
memory data has been cached. If the write operation is
a quadword write, the affected CAMMU invalidates the
cache line containing the data addressed in main
memory.

Td1 I Td2 | Td3 t

S N O R T N

|
R Sy B

] | | | | |
==°wIUL|f‘I_J"L_H_FI_I_l_I‘I_ﬂ_I_L_I'1_FLI_U_LI—U_I_

.)

I
|
=1

i
t

|
AD T\ ADDRESS XooR(monXml/

10,67) \

\

3

RDYI

SUGGESTE!

D
SLAVE DATA LATCH
TIMES

Al

82

This Material Copyrighted By Its Respective Manufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

A CAMMU normally requires 4 MCLK (80ns @ 100
MHz OSC frequency) cycles to complete one of these
Bus Watch operations. However, if the Bus Watch opera-
tion occurs while the CPU is accessing the CAMMU,

the CAMMU may require more time to complete the
operation and will keep asserting CTBSY to inhibit further
bus operations until it has completed the task. The bus
master, however, can complete the write operation while
the CAMMU executes its Bus Watch operation, so Bus
Watch impact on CLIPPER Bus utilization is

minimal.

If CBSY is asserted during a byte, halfword, or word
memory write operation, the memory interface must not
assert RDY until after CBSY is released. This ensures
that the data remains on the bus long enough for entry
by a CAMMU into its cache in case of a hit.

if CBSY is asserted during a quadword write, the
memory interface can assert RDY normally without
regard to the state of CBSY because in case of a cache
hit, the affected CAMMU invalidates the hit line and
does not require data to be present on the bus.
However, the system bus arbiter must not grant the bus
to a new bus master until CBSY is released, indicating

Figure 48 Quadword Write (4 Walt States)

|T-rb |'radd1 ['r-aaz| Tw | Tdo | Tw | Tt i

BLCK

that all CAMMUs are ready for a new operation. Alterna-
tively, the memory interface can delay assertion of RDY
until CBSY is released as in the byte/halfword/word
write case, eliminating the need for the bus arbiter to
monitor CBSY. In any case, a new CLIPPER Bus opera-
tion should not be allowed to begin while CBSY is
asserted. Memory monitoring of CBSY is summarized in
Figure 45.

Global Write Operation

A global write is used in a system utilizing multiple
CLIPPER Modules to reset the TLBs or caches, or to
write to specific TLB lines or registers in all CAMMUs in
the system except the companion D-CAMMU of the
CLIPPER CPU executing the global write. CLIPPER
Module global addressing is explained in Section 7.6.6,
CAMMU Register Access. Non-CLIPPER bus masters
can execute global writes by setting CT<3:2> HIGH
during the otherwise normal write operations. Note,
however, that CAMMUs respond only to global writes to
CAMMU /O space real addresses Cnn and Dnn (Hex).

Each CAMMU being written to by a global write asserts

CBSYi (if an I-CAMMU) or CBSYd (if a D-CAMMU)
during the write to inhibit further bus activity until it has

| T2 | ™w | Tas |

2BCLK
s l | I ! I |
ol N R R N B
—/|
R I
AD | ADDRESS X Do ' X D1 ‘ X 02 ' X 03 ' /
TG, CT | I /
™ | | | /
AN
SLAVE PATA LATCH A A _A A
%MES A130
83

Copyrighted By Its Respective Mnufacturer

Thi s

CLIPPER® C300
32-Bit Compute Engine

Advance Information

completed internal tasks associated with the write. Sys-
tem logic is required which detects global writes and as-
serts RDY when CBSY is released.

Read-Modify-Write Operation

A read-modify-write bus operation is a combination of a
read operation, followed by a write operation. Timing
and protocol associated with the read and the write
phases of a read-modify-write operation are the same
as for single reads and writes; however, Bus Request
(BR) must be asserted by the bus master during the en-
tire operation.

Read-modify-write operations are performed during ex-
ecution of the tsts (test-and-set instruction). However,
the write part of the read-modify-write is performed only
if the bit to be tested is zero; if the bit has already been
set (AD<31> = 1), the bus operation is terminated.
Timing for this operation is shown in Figure 49.
Read-modify-write operations are also performed during
address translation when the DTU accesses main

Figure 49 Read-Modify-Write (Test and Set)

-—
| Tarp | Tadd1 | Tadd2 | Td |

8CLK

2BLCK

TEST PART.

memory twice to read the Page Table Directory and
Page Table in main memory, and follows with a write to
the Page Table if the Referenced or Dirty flags must be
modified. Timing for this operation is shown in

Figure 50.

9.4.8. Interrupt Bus

The CLIPPER Bus includes a separate interrupt bus,
IVEC<7:0>, tied directly to the CPU. This bus allows in-
terrupt levels and numbers to be transferred to the CPU
without regard to CLIPPER Bus activity, thereby reduc-
ing CPU interrupt response time and increasing effec-
tive CLIPPER Bus bandwidth. (See Section 6.3,
Interrupts.)

An interrupt controller must be implemented in a
CLIPPER system. In cases of multiple interrupt re-
quests, it must select between the interrupts, asserting
the interrupt with highest priority. The interrupt controller
must assert an interrupt request and its associated inter-
rupt vector number together on the same positive transi-

SET PART
Ttest | Taddt | Tadd2 |

Ttest | Ttest | Td |

_ﬁm

L l |
- —] | I |
B
M etd [|]2
DIR _I\———r‘/ | | l \ | : /
AD ' | __ ApDRESS /\ © /| I _Aooress X b/
TG, CT } \ READ MODE 7 \ | \ WRITE llaoue : /
™ —_|\ ACTIVE CYCLE ’ 4/|—_~—1—\ ACTIVE cchE | Yo
LOCK T\ l / ;
ROYI /L—\I l l /L
A A
MASTER CAMMU SUGGESTED SLAVE
DATA LATCH TIME DATA LATCH TIME
NOTE:

A5t

Test Part - CAMMU determines if the set part of the operation is needed.

Mat eri al

84

Copyrighted By Its Respective Mnufacturer

This Materia

CLIPPER® C300
32-Bit Compute Engine

Advance Information

tion edge of BCLK. The interrupt vector number can
change to a higher priority on any BCLK. The CPU
uses the interrupt level and number present on the
IVEC bus when it detects IRQ release on a rising edge
of BCLK, then releases IACK during the following BCLK
period.

9.4.9. Diagnostics Control

The CLIPPER C300 executes diagnostic routines follow-
ing release of RESET if Apply Diagnostics

(URDIAG) is asserted during the two BCLK cycles fol-
lowing the release of RESET. Then it begins execution
at supervisor virtual address 6000H, which is mapped
by the HTLB to real address O of Boot space.

The state of URDIAG during the two BCLK cycles follow-
ing release of RESET determines whether the C300
CPU executes interal diagnostics before executing

from boot code (see Figure 35). This is a powerful fea-
ture of the module which allows self test of major func-
tions of the CPU without test equipment, and without
removal of the chip. Failure during diagnostics is
reported by assertion of the Unrecoverable Fault (URF)
CLIPPER Bus signal.

The C300 self test checks most, but not all, of the major
functions of the CPU. It is intended to be a first-level
check of the CPU, and in fact is used to initially test in-
dividual CPU die during fabrication. The test executes

Figure 50 Read-Modify-Write (DTU Operation)

approximately 700 instructions in about 4500 MCLK
periods, using operands which test the CPU under
worst-case conditions where possible. For example,
worst-case carries, overflows, and sign extensions are
tested.

The following CPU operations and functions are tested:

— Pipeline resource management

— Integer and Floating-Point Execution Units

— General-purpose register files

— Integer bypass mechanism

— Transition between supervisor and user modes

— Temporary (hidden) registers

— Macro branches

— All addressing mode computations

— Arithmetic shift, logical shift, and rotate instructions

— Integer multiply and divide

— Single- and double-precision fioating-point
instructions

— Floating-point status bits

CPU operations which require external response to in-
struction execution are generally not tested. These in-
clude exception conditions, branches, loads, stores,
pushes and pops, and I-CAMMU and D-CAMMU
interfaces.

Note: Diagnostics are designed to run in litle endian
mode (BIG tied HIGH) only.

e e e T T_ —’F*-‘"‘”‘“""“ T———"" ,_.,“. ‘:‘"f::‘a" <
- _r | : -] ; t
eux m.mmmwmuwummmmmmmm
I | | | || I | |
"] | | | -
— | | | | D=
o T N— | N _______7_/_
A 4 = =——c
T8.cT READ MOOE \ READ MODE / 'WRITE MODE
w ; ACTIVECTCLE ! I ACTIVE CYCLE ! i \\ acnvecrcie ! /
nom . /\ /\ | /N
m= /S =

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

9.4.10. Bus Timing

Figures 51-66 show CLIPPER Bus signal timing and
test loads. Values for parameters indicated in the
figures are listed in Tables 15 and 17.

BCLK is CMOS-compatible. All timing relationships in
the timing figures are referenced to the 1.5 V midpoints
of BCLK positive transitions.

The following are definitions of terms used in the figures:

Tarb (arbitration time)
BCLK cycle used for bus arbitration

Tadd1 (address time 1)
First BCLK cycle during which address is asserted
on the bus

Tadd2 (address time 2)
Second BCLK cycle during which address is as-
serted on the bus

Td (data time)

BCLK non-wait state cycle during which data is as-
serted on the bus. For a quadword transfer, a
numerical subscript (6.g., Td2) indicates which data
word is asserted.

Tw (wait state time)
BCLK cycle during which the CLIPPER Module is in
a wait state.

9.4.11. CLIPPER C300 Module Configurations
There are three CLIPPER C300 Module configurations,
shown in Figures 67 - 72.

The C300 Module with standard connector is shown in
Figure 67. Its connector mates with a user-supplied type

Table 14 Absolute Maximum Ratings®

BIC-Vero 905-72178F, or equivalent, male connector.
Note that the numbering on the male connector is
reversed relative to the C300 connector.

The C300 Module with box connector (Figure 69) mates
with a user-supplied Samtec SD-125-T-18, or a Mc-
Kenzie SBU-2X25-STGT-D131-VL! female socket con-
nector, or the equivalent.

The C300 Module with dual connector (Figure 71)
mates with a user-supplied McKenzie PH1-225/100 -
32G male connector or the equivalent.

9.4.12. Osclllator Connection

An external oscillator must be provided by the user to
drive the clock control chip on the CLIPPER Module.
The oscillator frequency must be twice the required
MCLK frequency, with a duty cycle between 60/40 and
40/60. The oscillator should be placed as close to the
connector as possible.

9.4.13. System Synchronization

The SYNC input signal can be used to synchronize
BCLK with devices on the CLIPPER Bus. For example,
in applications using multiple-CLIPPER Modules, this
input can be used to ensure that the BCLKS of all
Modules are in phase. The OSC inputs of all the
Modules must be connected to a single oscillator, and
all the RATE pins must be in the same state.

The SYNC input is sampled on the HIGH to LOW tran-
sistion of OSC. To initiate synchronization of all Modules
in the system, the SYNC input must be driven LOW for
at least two OSC periods, then driven HIGH for the fol-
lowing two OSC periods. Synchronization occurs in
such a manner as to stretch all the clock inputs rather
than shrink them.

Parameter Symbol Limits Units
Supply Voltage Vee -0.5to0 +6.0 v
DC Input Voltage Per Pin Vi 05to Vcc +0.5 V Vv
Storage Temperature Range Tsta -40 to +85 °C

*Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation
under these conditions is not implied.

86

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information
Table 15 AC Characteristics Vcc = 5.0 V £ 5%, Tc = 0 to +70°C
40 MHz and 50 MHz C300
Symbol Characteristic Min Max Unit
tsu Setup Time 12 ns
tH Hold Time 0 ns
tco Clock to Transition Time' 16 ns
tR Output Rise Time'* 10 ns
tr Output Fall Time'* 10 ns
tssu SYNC Setup Time 0 ns
tsH SYNC Hold Time 1 ns
Notes:
1. Transition, rise, and fall times are for a 50pF external capacitive load (see Figure 64).
2. All outputs except BCLK and 2BCLK.
3. To guarantee set-up times, the input signals must have rise and fall times < 4ns.
Table 16 DC Characteristics Vcc = 5.0 V £ 5%, Tc = 0 to +70°C
Symbol | Characteristic Conditions Min Max Unit
ViH Input HIGH Voltage 2.0 Vee Vv
Vi Input LOW Voltage -0.5 0.8 \
Vec =475V \'
VoH Output HIGH Voltage' lom = -20pA 45
Vec =475V \"
loH = -2mA 24
Vec =525V 0.5 v
Vou Output LOW Voitage' loL = +20pA
Vec =525V 0.5 v
loL = +2mA
IIN Input Leakage Current ViN=01t0 5.25 V Inputs Only +10 HA
IH Input HIGH Current Rp = 220 ohms | Bidirectional /0 Only +10 HA
I Input LOW Current Rp = 220 ohms | Bidirectional /O Only ViL = 0.55 V -22 mA
CiN Input Capacitance Inputs 18 pF
Bidirectional 11O 28
lce Supply Current Ta=0°C,Vcc=5.25V 12 | A
Po Power Dissipation fosc = 100 MHz 6.0 w
BCLK load = 100pF

1. lon, loL and i parameters are a function of the value of Module pull-up resistor Rp.

This Materia

87

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information
Table 17 AC Characteristics - 0SC, BCLK, 2BCLK Vcc = 5.0 V £ 5%, CL = 200pF, Tc =0 to +70°C
Symbol Characteristic Conditions 40 MHz C300 50 MHz C300 Unit
Min Max Min | Max
fosc Oscillator Frequency 20 80 20 100 MHz
tosc Oscillator Cycle Time 12.5 50 10 50 ns
toscH Oscillator Pulse Width tosc = Min 4 8 3 7 ns
toscL 4 8 3 7
toscr Oscillator Rise and Fall Time 50 50 |ns
toscF 3.0 3.0
tc BCLK Cycle Time RATE = LOW 50 200 40 200 ns
RATE = HIGH 100 400 80 400 ns
tcH BCLK Pulse Width tc = Min (RATE = LOW) 19 21 19 21 ns
tc = Min (RATE = HIGH) 39 41 39 41 ns
tR BCLK Rise and Fall Time CL = 200pF 5.0 5.0 | ns
tF CL = 100pF 3.0 3.0
tezs BCLK to 2BCLK Skew -1.0 1.0 -1.0 1.0 [ns
toBR 2BCLK Rise and Fall Time CL = 50pF 4.0 40 |ns
t2BF
tesc 2BCLK Cycle Time RATE = LOW 20 80 20 100 ns
RATE = HIGH 40 160 40 200
t28CH 2BCLK Pulse Width tzac = Min (RATE = LOW) 9 11 9 11 ns
teac = Min (RATE = HIGH) 19 21 19 21 ns
Note
BCLK rise and fall times are for a 100pF capacitive load (see Figure 65). This load should not be exceeded to
ensure proper operation.
Table 18 DC Characteristics - BCLK, 2BCLK Vcc =5.0 V + 5%, Tc = 0 to +70°C
Symbol Characteristic Conditions Min Max Unit
VoH Output HIGH Voltage los = +100mA Vce -0.45 \"
VoL Output LOW Voltage loL = +100mA 0.45 Vv
Table 19 DC Characteristics - OSC Vcc = 5.0V +5%, Tc = 0 to +70°C
Symbol Characteristic Conditions Min Max Unit
ViH Input HIGH Voltage 2.0 Vee +0.5 Y
Vi Input LOW Voltage -0.5 0.8 Y
88
This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 51 AC Measurement Points

BCLK 1.5V

Tsu —»
— '1— Tu

Tco —»

OUTPUT 1.5% 24V 24V X
0.4V 0.4V

- L I

Figure 52a AC Measurement Points, OSC

tosc
— tOSCH —¥ — ¢ oscL >
2.0V
0OSC
0.8v
tR tF A156
89

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 52b AC Measurement, BCLK and 2BCLK

—
r

t2ecH tageL

2.4V

Figure 52c AC Measurement, OSC and SYNC

w N

-
SYNC)4 |
2

1
——tonk—

A153

90

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 53 Read Timing Diagram

Tarb Tadd1 Tadd2 Td
e A A N N F L F
—'é I‘* Teco — <+—Tco
- [D
Tsu —»’ -« TH — I¢—
86 A o
—> \.; Tco Tco —P ‘4—
- ‘e \K Jﬂ(, —
R ‘—Teo Teo — [i Tsu
AD ¥ ADDRESS >|(X opara ¥
— Teco Tco —»> l'_
TG, CT MEMORY SPACE SYSTEM TAG, >|[
i S
TR XK ACTIVE CYCLE %——_
Tsu —bl BN I'f

RDYi

NOTES:

1. Timing measurements are referenced as specified in Fig. 51.

2. I-CAMMU internal registers can be accessed through the companion D-CAMMU
{D-CAMMU of same CLIPPER Module).

o1

This Material Copyrighted By Its Respective Manufacturer

:

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 54 Write Timing Diagram

l Tarb Tadd1 ' Tadd2 Td |

= 4 p

Tsu—-‘ r— TH —»

A -
= X

—» +—Tco Teo —-| |‘—— ——4 [&— Tco

AD o ¥ ADDRESS X DATA j[
—> +—Tco —.| In— Tco

TG, CT %EMORY SPACE SYSTEM TAG, CYCLE TYPE ¥

BG

e

—» «—Tco

™ R— R
—

A158

:

RDYI

NOTE:
Timing measurements are referenced as specified in Fig. 51.

92

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 55 Watch VO Reads

| Tadd1 | Tadd2 | BUS WATCH | Td |

| Too f for -I [+~ Teo

|
™ ‘l ’“ H e b A e
AD 3k ADDRESS % 5|< DATA)Z
i B L
TG,CT Ek VO READ, COPY-BACK SPACE . /
m }
™ X /
Tco —) In— | —cI l-— Teo

CBSYd 7|[CACHE MEMORY
ACCESS k
Tco |~—
RDYo (HIT*DIRTY) }k

NOTES:

1. YO READ: Device reads from main memory (e.g., main memory to disk).
2. Timing measurements are referenced as specified in Fig. 51.

93

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 56 Watch CPU and /O Writes

| Taddi | Tadd2 | BUSWATCH | Tw | Td l

wx /N A N\ F A A A
T p— T — |

|
AD lk ADDRESS X: oA J
T f— | | |

TG,CT /O WRITE, WRITE-THROUGH OR COPY-BACK
CPU WRITE, SHARED WRITE-THROUGH
Tsu ——ul
TR lk /

|

A160
NOTES:
1. VO WRITE : VO device writes into main me e.g., disk to main memory).
2. WRITE TO SHARED PAGE : One of the CAMMUs writes into the shared area of main memory.

3. ﬁmin?smasuremenm are referenced as specified in Fig. 51.
4. RDYiI Is asserted by the memory interface.

94

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 57 D-CAMMU Read from Companion I-CAMMU

| Tarb | Tadd1 | Tadd2 |

A N\ F N\ F S\

Tco |

)
BR___j[

Tsu—t‘ e

BG %

Teo — ",
{D-CAMMU)

e

Teo —» L‘ Tco,,__. (FCAMMU)
5 X a e _ 4
— lq—'rco Teco ——b{ |<— Tcom—a r_—bl Tco
AD Y aooress ¥ BK DATA ¥
—» '1— Tco | ——'l }4— Tco
G, CT - 35— MEMORY SPACE SYSTEM TAG, CYCLE TYPE)Ii_ i
. X BNE S
cBSYi " _-I; | = |‘_ -
- ’.7 —’I I‘— Teco
Aovol J‘HL
Tsu f—Ty4
RDYi 1 3 -

1. Timing measurements are referenced as specified in Fig. 51.
2. I-CAMMU internal registers can be accessed through the companion D-CAMMU
(D-CAMMU of same CLIPPER moduie).

This Materia

95

Copyrighted By Its Respective Mnufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 58 D-CAMMU Write Into Companion -CAMMU

| Tarb | Tadd1 l Tadd2 | CAMMU BUSY l Td |

e £ N\ F ./ _F F .F F
a‘ o | | | | o0

|
“T
|

Teo Teo —»| | I | —’l |‘— Teo

ADDRESS j(DATA

|'—
~ | | L e
TG, CT %t MEMORY SPACE SYSTEM TAG, CYCLE TYPE
r—
X

AD

Tco —»

Teo)

3

ACTIVE CYCLE

Teo — | f— | — Teo
CBSYi f] I., i L—

RDYol F_L__
Tsu —-I N I'_TH
RDYI ee jz—_NR_

NOTES:

1. Timing measurements are referenced as specified in Fig. 51.

2. I-CAMMU internal registers can be accessed through the companion D-CAMMU
(D-CAMMU of same CLIPPER module).

96

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 59 Maskable Interrupt Request/Acknowledge Timing

CPU LATCHES IVEC

NOTES:
1. After TACK returns high the TRQ: line must be high for one clock before another interrupt

request retums IRQ low.

2. The IVEC lines can change only to a higher priority when iRQ is low. The higher priority value
must be on the IVET lines by "a".

3. CPU latches IVEC on the rising edge of BCLK following release of TRQ. The CPU releases

“TACK during the BCLK period following release of IRQ.

4. Timing measurements are referenced as specified in Fig. 51.
At83

Figure 60 Non-Maskable Interrupt Request/Acknowledge Timing

=X /

md f e
NMIACK lk_ %_'

Al64

NOTES:
1. After NMIACK returns high the NMI line must be high for one clock before another

non-maskable interrupt request returns NMI low.
2. Timing measurements are referenced as specified in Fig. 51.

97

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 61 LOCK Timing

BLCK

Figure 62 URF Timing

Figure 63 RESET and URDIAG Timing

_7"—_7"_7'(_7"_

| «— Tsu «—Tn

ﬁe‘se‘?'* j‘—

—>| <« Tsu T —> ic—

wowa \ y A

Note: TRDIAG should not be asserted if BIG is tied high.

o8

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance information

Figure 64 Module Output Test Load

Vee
1.8K
2.0K l 50pt
INO14
A120
Figure 65 BLCK Output Test Load
________ 1
Vee i Vee
1 |
I 1.8K
|
!
|
38pt] 2.0K 200pt

|

| IN914
I
|

________ _J A121

99

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300

32-Bit Compute Engine

Advance Information

Figure 66 Maximum Output Delay vs. Capacitive Loading

Tob (ns)

This Materia

16.5

v16.0 /r—ho

15.5 B

15.0 /

14.5

14.0

13.5

13.0

0.0 10.0 20.0 30.0 40.0
c|_ (pf)

NOTE:
These values require termination of 330/220 ohm from Vec to GND.

100

Copyrighted By Its Respective Mnufacturer

A122

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 67 CLIPPER C300 Module C300C3MLX with Standard Connector

SI08 VIEW OF MODILE RECEPTACLE) -ﬂ'n] |
i | P :
] . 1 !
L i, Tl L LT
I || ke |
. L e e e e e e - - = 4
TOP VIEW OF MODULE .‘._‘ir_
— ’
l H a® 8
| L 2800 — p-.uo‘p

A= 0128 DIAMETER

Package dmensions are given in inches.

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 68 Pinout of CLIPPER C300 Module C300C3MLX Connector

END VIEW OF MODULE
cC B A
]
o ° GND
vee 1 t RATE
cBsyi 2 * 9 o SND osc
URDIAG 3 - ¢ o BGI GND
IVEC2 4 e ¢ o RSV 2BCLK
IVECA § —e ¢ o eSS GND
IVEC7 6 o ¢ o e NMI
IACK 7 —e ¢ o TVEce BRI
RESET 8 - ¢ e RDYoi
AD18 9 —e ¢ o TG BIG
AD20 10— ¢ o L VEGS
_ IVEC3
AD22 11 —e ¢ AD17
o — o
AD28 14 ———1 o ¢ o D26 AD25
AD29 1§ ———— —1 o ¢ Voo AD27
AD31 16 — 1 o ¢ o— AD36 AD16
MSBE/RETRY 17 ————— —= ¢ o AD1S GND
AD13 18 ———————1+—=o ¢ o AD12 AD14
AD10 19 — o ¢ o— s AD11
ADO9 20 ———— = ¢ o ADOS ADO7
Vec 2t ———— = ¢ o ADoS Vee
ADO5 22 — 1o ¢ o 2Doa ADO3
ADO2 23 —— 1 —o ¢ Voo ADO1
ADOO 24 —e ¢ o BR MMBE
GND 25 e ¢ o — GN:
ma e
-—
t GND
cTo 28 —e 9 o 15 RDYI
CT4 29 SN Vee
t cT3 3’
CcT2 30 — ¢ == CBSY
RDYo 31 . GND
— t SYNC
LocK 32 - ¢ o =g BLCK
—__ |

NOTE: Numbering on the CLIPPER Module female connector may not correspond
to numbering on user-supplied male connectors.

A140

102

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 69 CLIPPER C300 Module C300C3BLX with Box Connector
SIDE VIEW OF MODULE .200 MAX

R
[—l AAA

BOX CONNECTOR

S—
e

| J) -

TOP VIEW OF MODULE

| @

4.500
3.100

150 TYP D D& 625

}—p e— .150 TYP ——| le— .200

3.000

D =.125 DIAMETER

NOTE:
Package dimensions are given in inches. A125

103

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 70 Pinout of CLIPPER C300 Module C300C3BLX Box Connector

cC B A
Vee 1 e ¢ o RATE GND
cesyl 2 * ¢ o OND 0oscC
URDIAG 3 e o o e GND
IVEC2 4 —- 9 & AoV 2BCLK
IVEC4 8 . ¢ o VST ED
IVEC?7 8 . ? o iﬁ NMI
IACK 7 —o ¢ © G BRI
RESET 8 e ¢ o T RDYol
- * BIG
ADis 9 t NMIACK JE—
AD20 10 * ¢ o T3 IVECO
AD22 M1 e 9 o ADY7 IVEC3
AD24 12 * ¢ o A>3 AD19
GND 13 e ¢ o AD23 GND
AD28 14 * ¢ o AD28 AD25
AD29 18 > 9 o AD27
Vee
AD31 16 e o o AD% AD18
MSBE/RETRY 17 e ¢ o ADiS GND
AD1S 18 - ¢ o D12 AD14
AD10 19 * ¢ o OND AD11
ADO® 20 e ¢ o "ADoS ADO7
Vee 21 * 9 o ADOS Vee
ADOS 22 * o o ADO3
ADO4
ADO2 23 o ¢ & ADO1
. — Vee
ADOO 24 ® ¢ o ﬁ MMBE
GND 28 * 9 o Joz GND
TG1 26 e ¢ o Joo BERR
cTT 27 * ¢ o BGd
CTo 28 - ¢ o GND RDY!
- — cTs
CT4a 20 e o o e Vee
Ccra 30 * ¢ o— — CBSYd
TR
RDYo 31 * ¢ o SYNG GND
LOCK 32 * ¢ o BLCK
BRd

NOTE: Numbering on the CLIPPER Module female connector may not correspond
- to numbering on user-supplied male connectors.
At41

104

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 71 CLIPPER C300 Module C300C3DLX with Dual Connector

A \‘—5:; o]

1l

LI
[l

1.2 AQ®

L AD LY::)

L—. j——— P >l a.uo——-l

A=.123 DIAMETER

NOTE:
Package dmensions are given in inches.

105

This Material Copyrighted By Its Respective Manufacturer

CLIPPER® C300
32-Bit Compute Engine

Advance Information

Figure 72 Pinout of CLIPPER C300 Module C300C3DLX Dual Connector

TOP VIEW OF MODULE
J2 3
12 12
08C —+—o0 o——— GND =) VoG ——o o0—1— GND
GND ° 2BCLK cT cTo
RSY ———o0 o—— GND €T3 —oo—1—CT2
RATE o SYNC ° cT4
RDYoi ———0 o—— BRI GND ——o0 o—1— TGO
CBSYi BGi TG2 TG1
- B —}—o o—— VCC ADO1 ——o o—— ADOO
TR P BCLK ADO3 oo ADO2
LOCK ——0 0—— GND ADO4 ——o0 o0—4+—Vee
BRd o— RDYo ADOS —o ADOS
CBSYd —1{-—0 o—— RSV ADO8 ———o o—— ADO7
RDYI —oo BGd ADIO ° ADO9
— BERR —1—0 o—— Vce GND———o o—{— ADM
WMMBE — 1 00— ————MSBE AD13 oo AD12
RESET —{—o o—— URF AD18 ——o o——AD14
IACK — GND AD17 AD16
NMIACK —{—0 o—— IRQ AD18 ——o0 o—+— Vece
WWECT IS VECS AD20 ° AD19
IVECS —t—o0 o—— Vee AD22 ——o o—— AD21
IVEC3 —o VECa AD24 o AD23
VECT ——o0o0—— IV GND ——oo—{—AD25
URDIAG — —0 o ———GND AD28 AD27
BIG ——o o—— IVECO AD28 ———o o—— AD29
RSV o N AD30 <o AD31
—t o .
GND ——0om— GND o @ GND ——o ort—GND
AT42
106

This Material Copyrighted By Its Respective Manufacturer

