The C400 Superscalar/Superpipelined RISC Design

Lee Hanson and Nathan Brookwood

Intergraph Advanced Processor Division
Palo Alto, California

Abstract

The C400 represents the first complete
reimplementation of CLIPPER architecture since
Fairchild introduced the original C100 version in
1985. The design incorporates an entirely new
pipeline structure that exploits instruction-level
parallelism far more than its predecessors, and
provides far greater computational performance
than earlier CLIPPERs, in both absolute and
frequency-adjusted comparisons. The combination of
superscalar dispatch and deep floating-point
pipelines provides “architectural headroom” that
permits performance enhancements over the life of
the implementation architecture. This paper
discusses the C400’s design goals, constraints, and
architecture.

Introduction

Intergraph’s new C400 CLIPPER is the outcome of a
two-year program focused on the design of a high-
end CLIPPER processor. Earlier CLIPPERs, the
C1001 introduced in 1985 and the C3002 introduced in
1988, emphasized a high degree of functional
integration on silicon. Both models combined integer
and floating-point hardware on one chip, and cache
and memory management functions on a second chip.
An entire compute engine, including CPU, FPU and
dual caches, resided on a small (3 inch by 4.5 inch)
module. This high degree of integration forced
design compromises with regard to pipeline
organization, hardware algorithms and cache size.
Intergraph recognized that improvements in process
technology alone would not allow these earlier
products to achieve the performance levels needed
for technical computing systems in the 1990’s, and in
the fall of 1988, it set out to design a software-
compatible high-end CLIPPER. The goals for the
‘C4’ program were:

CH2961-1/91/0000/0247$01.00 © 1991 IEEE

» Improve integer performance by a factor of 3 - 4
over that of the C300 operating at 50 MHz.

o Improve floating-point performance by a factor
of 6 - 8 over the C300’s performance.

s Use several moderately sized die to implement
processor functions, rather than one very large
die, both to insure good production yields and to
lower the program’s technology risk.

e Provide an upwardly compatible binary
environment that would allow the millions of
lines of application code already written for the
CLIPPER to continue to execute properly, so that
customers could migrate to systems based on the
new chipset at their own pace.

e Deliver first silicon to our customers by the end
of 1990; i.e., take no longer than two years to
design the chips.

Our analysis of performance on earlier CLIPPERs
suggested several areas with substantial potential
for improvement. The “high integration” focus of
the earlier designs resulted in caches that were too
small (4 KB) and too slow to support the integer
performance that the CPU could theoretically
deliver. Since cache access was not pipelined, back-
to-back loads or stores introduced wait states, even
for cache hits. Pipeline stalls due to branching
impacted performance, especially in tight loops.
The long latencies of many floating-point operations
adversely impacted performance. The single-
threaded design of the floating-point logic caused
operations like floating-add with short latencies to
back up behind ones with very long latencies like
divide, and exacerbated the effect this had on
performance. The chip’s 32-bit datapaths limited
the rate at which operands could be read from the
64-bit register file, and throttled double-precision
performance. Our compilers paid scant attention to
issues of code scheduling and sequencing data
accesses, since CLIPPER’s internal scoreboard

ensured that the CPU would stall, rather than
deliver incorrect results, if resources were accessed in
the wrong order, or before internal results were
written back to the register file.

The C400 system addresses the performance
limitations of the earlier CLIPPERSs, and achieves
the goals outlined above. The processor, as
illustrated in Figure 1, includes four major elements:

e The C411 Integer Unit (CPU) decodes and issues
all instructions, and executes integer operations.
It contains approximately 160,000 transistors, on
a die measuring 253,000 square mils, and is
packaged in a 299-pin ceramic PGA.

¢ The C421 Floating-Point Unit (FPU) incorpo-
rates a sixteen by 64-bit floating register file,
along with the execution pipelines for floating
add/subtract, multiply and divide. It contains
approximately 140,000 transistors, on a die
measuring 253,000 square mils, and is packaged
in a 299-pin ceramic PGA.

¢ The Memory Management Unit handles virtual-
to-physical address translation, using
Translation Lookaside Buffers (TLBs) stored in
discrete SRAMs.

* The Cache Unit provides a high-speed (single
clock) 128 KB direct-mapped cache that
supports the CPU’s bandwidth requirements for
instructions and data. Cache data and tags are
stored in discrete SRAMs.

The entire CPU assembly fits on a printed circuit
board with a 9U form factor, with a small daughter-
board attached via a private connector.

The system uses 64-bit datapaths to link the CPU,
FPU and cache. A single transfer from the cache to
the CPU’s instruction buffer can contain up to four
variable-length instructions. Double-precision data
can be moved from the cache to the FPU'’s register
file in a single clock cycle; in general, there is only a
minor performance penalty associated with the use
of double precision arithmetic, compared with
single-precision timings.

The CPU pipelines all accesses to the cache and
main memory system. During any given clock cycle,
the CPU can generate a new virtual address, while
the MMU translates the previous virtual address,
and the cache accesses the physical address
calculated in the previous clock. Although the

Figure 1. C400 System Processor

32, Virtual Address
[4

32, Data
[4

32, Real Address

L4

64, InstructiorvData
L 4

Inter-Processor
Communications

64, Data
k 32§
32F p128 4
Ad dress‘ Data Address 128 Data
. -
32 Address
Y 2 -

Integer Unit coordinates all transfers between the
cache and IU or the FPU, floating-point data moves
directly between the cache and the FPU register
file, and does not pass through the IU.

Although the initial version of the C400
implements its MMU and cache using discrete
elements, a future version is planned that
incorporates a VLSI MMU/cache mechanism. These
‘cache chips,” along with the IU and FPU, will be
packaged together in a single multi-chip module
(MCM) that behaves in most regards like a large
single chip. A companion paper® argues that this
design technique provides a saner and more economic
approach to complex silicon design than the
currently fashionable “million-plus transistor chip”
approach.

Integer Unit (IU) Design

The processor design includes nine distinct pipelines
that handle loads, stores, branches and a variety of
integer and floating-point execution elements. The
integer unit fetches, decodes and issues all
instructions, and manages all but the floating-point
execution pipelines. To support the high degree of
concurrency within the IU, the chip incorporates a
multi-ported 32 by 32 register file with three read
and two write ports. This custom-designed file uses
an advanced circuit design that provides a 6 ns
access time in a 1 p CMOS process technology.

The integer unit fetches, decodes and issues all
instructions, including floating-point instructions.
The IU also supervises the execution of floating
loads and stores. It signals the FPU regarding the
appropriate register to load or store, but treats the
operation like an integer operation in all other
regards. The C400’s superscalar dispatch logic can
issue one integer and one floating instruction each
clock cycle. This allows the IU to start a floating
load (or store) and a floating operate instruction in
the same clock, if there are no data dependencies in
the instructions to be issued. This ability to combine
the issue of floating loads with floating operates
makes the C400’s superscalar capabilities far more
effective than they might at first appear. For
example, in a hand-coded, unrolled version of the
‘Daxpy’ inner loop from Linpack, it is possible to
calculate six array elements, based on twelve input
values (a total of 18 memory accesses), in just 18
clocks; essentially all operate and loop control
instructions are ‘hidden’ by data loads and stores. It
is hard to surpass this level of performance in
microprocessor designs with a single path between
the CPU and cache.

249

CLIPPER’s instruction set architecture includes a
variety of complex addressing modes that greatly
complicates the task of effective address generation
for loads and stores. The C100/C300 devices used a
common ALU for address generation and arithmetic
operations, and this slowed performance when the
programmer attempted to use these addressing
modes. The C400 design uses a dedicated address
adder in the load and store pipelines to eliminate
this bottleneck.

The Load pipeline normally requires a clock cycle to
generate an effective address, another to translate
this address, and a third cycle to access the cache
and present the cached data to the IU or FPU. Once
the data arrives at the IU or FPU, it can be written
to the register file or bypassed to the appropriate
functional unit. The overall flow appears as

follows:
Translate Write
Generate " Access .
Decode | ‘Agdress | Vittual Cache | Register
Address File

The Store pipeline hides the virtual address
translation and cache cycles from the rest of the IU:

Generate
Address

Output

Decode Data

The new Branch Pipeline represents a major
enhancement to CLIPPER architecture, and is also
one of the few changes visible to application
software. The original CLIPPER implementations
omitted a delayed branch instruction, primarily
because of the difficulty involved in parsing
variable-length instructions in the delay slot. The
semantics of the old branch and conditional branch
instructions were preserved for the sake of software
compatibility. A new ‘Compare and Branch’
instruction tests the value of a general register and
branches appropriately, with two delay slots. This
approach avoids the use of the condition codes and
gives the compiler more flexible choices regarding
code scheduling. This instruction also includes a
static branch prediction bit supplied by the
compiler. When the ‘Compare and Branch’
instruction is executed, the branch prediction is used
to determine whether the address of the branch
target should be output to the MMU/cache. If the
prediction is correct, then the first instruction at the
branch target will arrive in the instruction buffer
two clocks later, immediately following the
execution of the delay instructions. Bad branch

predictions impose a one-clock penalty, since the
CPU incorrectly signals the branch target address,
and cannot output an updated target address to the
MMU until the next cycle. The overall pipeline
appears as follows: :

Decode/ | Translate
Generate Virtual 'gi.;‘ses
Address | Address
Delay
Instruction
#1
Delay
Instruction
#2

The integer unit contains an ALU, a 32-bit barrel
shifter, a Wallace-tree multiplier and an integer
divider. Most arithmetic and logical operations
execute in one clock cycle, and thus do not present any
special problems regarding resource management or
instruction scheduling. Multiplication and division
operations, however, require a variable number of
cycles to complete, based on the values of the
operands. Because these operations are not
pipelined, the instruction issue logic cannot issue a
second instruction of the same type until the first one
completes. To minimize lost cycles, the issue logic
and the multiply/divide function unit communicate
via a simple protocol that lets the function unit
examine the arguments and inform the issue logic
how long the operation will take. The basic flow for
most integer and logical operations follows the
classic RISC decode/execute/write-back model:

Decode/ Update
Access | Execute | Register
Registers File

Floating-Point Unit (FPU) Design

The FPU contains separate execution units for
addition/subtraction, multiplication and division.
The FPU'’s superpipelined design limits the number
of levels of logic in each pipeline stage, and allows
the processor to run at a much higher clock rate than
otherwise possible, given typical 1 p CMOS gate
delays. This higher clock rate creates more
opportunities to issue instructions, and improves
overall computational performance. A multi-ported
register file with three read and two write ports
holds floating-point data; like the IU’s register
file, it can be accessed in less than 6 ns.

The Integer Unit decodes all floating-point
instructions and handles all the address calculations
and memory operations involved in floating load
and store operations. Most FPU real estate is
devoted to the execution units that handle floating
addition, subtraction, multiplication and division.
The superpipelined add/subtract and multiply
execution units incorporate deep pipelines that
permit the IU to issue instructions to the same unit on
every clock cycle without pipeline stalls. Double-
precision multiplication operations require a one-
clock interval between back-to-back instructions; a
one clock stall occurs if the compiler places two
64-bit floating multiplies in adjacent issue slots.
Floating-point divide operations do not occur with
sufficient frequency to justify the expense of a
pipelined divide operation, and the issue logic will
stall the processor if the compiler schedules a second
divide operation prior to the completion of an
earlier one.

The instruction issue logic will not issue instructions
out of order and will delay the issue of any
instruction until all the resources needed for its
execution are available. Nevertheless, given the
extremely wide range of execution times for floating-
point instructions (a 32-bit add takes four clocks and
a 64-bit divide takes 30), it is entirely likely that
instructions will complete out of order. This creates
an interesting problem for compiler writers who must
track the sequence in which computations complete
if they are to provide optimal code scheduling.4 It
creates an even more challenging problem for the
authors of math libraries that need to deal with the
variety of IEEE 754 floating-point exception traps
that can occur during normal program execution.

Imagine what might happen if a program starts a
64-bit division (a 30 clock operation), proceeds with
several additions and multiplications, and then
discovers a floating underflow condition on the
division. The trap handler will want to sort this
out, match the error to the offending instruction, and
present the results to the application programmer in
a manner consistent with in-order instruction issue
and in-order instruction completion. Some IEEE
implementations achieve this by disabling out-of-
order completion; i.e. they serialize instruction issue
and give up any opportunities to exploit parallelism
within the code. Other implementations examine
the operands at the start of each operation, and
signal a trap if there is a possibility a trap might
occur; this approach tends to increase overhead as
the software processes these potential problems.
The C400 FPU achieves IEEE compatibility without

sacrificing performance or accuracy. To facilitate
the reconstruction of an in-order completion sequence
when traps do occur, at the start of each floating
operation, the FPU stores the program counter and
source operands in a queue known as the Floating
Trap Register. As operations complete, their entries
are removed from the queue. When the hardware
does encounter an IEEE exception, the contents of the
FTR are frozen, and an operating system routine is
invoked to untangle the situation.
Circuit Design

The C400 VLSI components were designed using a
standard cell methodology, with a custom-designed
register file and I/O pad ring, using a 1.0 p CMOS
process with two layers of metal. The short design
cycle mandated the use of a standard cell approach.
The high bandwidth requirements needed to support
concurrent operations the IU and FPU necessitated
the use of a custom register file. Our APD operation
depends on external fabs for wafer production, and
we believed the choice of a 1.0 p process would be a
conservative one for the period in 1990-1991 when
we planned to go into production. We have been
surprised to find that we are closer to the state of
the art in this regard than we expected. After
reviewing the capabilities of most major
semiconductor foundries, we conclude that there is a
substantial gap between vendor claims and the
reality of ASIC manufacturing today.

Our desire to spread our design over several
moderately sized chips, rather than pack it all on
one die, led to the need for innovation with regard to
interconnect circuitry. We needed to minimize
interconnect delays and power dissipation. Much of
the power dissipated by CMOS devices goes into
driving the I/0O pads:
P=CV

where P is the dissipated power, C is the
capacitance of the circuit, V is the voltage swing,
and f is the driving frequency. With many 1/O pins
on each device, and anticipated frequencies in excess
of 50 MHz, we were quite concerned about power
dissipation. We reviewed the use of a BiCMOS
process to obtain a low voltage I/O along with a
normal 5 V on-chip operation, but no BiCMOS
vendor could support our requirements. Instead, we
turned to a unique circuit design that allows us to use
low voltage swings (approximately 1 V) for most
high frequency I/O lines. We achieve this by
feeding a low voltage signal onto the chip, and then
using this signal as a reference voltage for input

251

signals, and as a switched output for outbound
signals. The use of this one volt signalling method
reduces the power used to drive the I/O lines by a
factor of 25, and keeps total power requirements
under 7 watts.

Conclusions

The C400 development program accomplished a
complete redesign of the CLIPPER processor in
slightly less than two years, approximately one-
half the elapsed time required to implement the
original C100 The speed with which this task was
performed demonstrates many positive aspects of our
industry in general and CLIPPER architecture:

* VLSI development tools have improved vastly
over the last five years, especially in the areas
of chip layout and simulation.

* The design team was able to incorporate concepts
of superscalar dispatch, superpipelining and
delayed branching while maintaining software
compatibility with existing applications. This
demonstrates the robustness of the architecture,
and validates many decisions made in CLIPPER’s
original definition, such as hiding the precise
operation of the execution pipeline from
applications code.

* The performance gains from our somewhat
constrained approach to superscalar dispatch
were truly gratifying.

This new CLIPPER delivers a level of performance

unimaginable just a few years ago, but future

CLIPPERs will likely dwarf the C400’s performance,

just as it today dwarfs the performance of the

original C100.

1 Introduction to the CLIPPER Architecture,
Fairchild Camera and Instrument Corp., October
1985

2 W. Hollingsworth, H. Sachs and A. J. Smith,
“The CLIPPER Processor: Instruction Set
Architecture and Implementation,” CACM
February 1989

3 H. McGhan and H. Sachs, “Future Directions in
CLIPPER Processors,” COMPCON’91

4 W. Baxter and R. Amold, “Code Restructuring
for Enhanced Performance on a Pipelined
Processor,” COMPCON’'91

