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THE CLIPPER@ PROCESSOR: INSTRUCTION 
SET ARCHITECTURE AND 
IMPLEMENTATION 

Intergraph’s CLIPPER microprocessor is a high performance, three chip 
module that implements a new instruction set architecture designed for 
convenient programmability, broad functionality, and easy future expansion. 

WALTER HOLLINGSWORTH, HOWARD SACHS, and ALAN JAY SMITH 

The Intergraph CLIPPER’ employs a new high perform- 
ance computer architecture currently implemented as a 
three chip module, consisting of a processor chip and 
two cache and memory management unit (CAMMU) 
chips (see Figure 1); the processor is also available sepa- 
rately. It uses a new “simplified” instruction set and 
satisfies the key aspects of RISC designs [41] (limited 
and simple instruction set; maximum use of registers 
and minimal references to memory; and emphasis on 
optimi.zing the instruction execution pipeline). The ma- 
chine has a 32-bit architecture, with a 32-bit bus data 
path, 32-bit registers, 32-bit data paths on chip, and a 
separate 32-bit virtual address space for the system and 
each user address space. There are nine addressing 
modes, permitting memory addresses to be computed 
from most of the useful combinations of the program 
counter, register contents and/or a displacement of 12, 
16, or 32 bits. Instructions are 2, 4, 6, or 8 bytes long, 
with their length, address mode, and opcode specified 
in the first two bytes for efficient decoding. Data types 
include bytes, halfwords, words (32 bits), longwords 
(8 bytes), and single (4 bytes) and double (8 bytes) preci- 
sion floating point. Three user visible register sets are 
available: 16 user and 16 supervisor general purpose 
32-bit registers, and 8 floating point registers of 64 bits 
each. There are also the usual control registers (pro- 
gram counter, program status word, system status word) 

-- 
’ The trademark CLIPPER was chosen to reflect the principal architect and 
general manager’s preference for spending his weekends sailing [%I]. 

CLIPPER is B trademark of Intergraph Corporation. 
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and some internal registers used by the processor. 
Eighteen traps are implemented and 128 system calls 
are provided. Floating point operations conform to the 
IEEE 754 standard [6]. 

The CLIPPER microprocessor uses caching and vir- 
tual memory as the standard mode of operation. The 
associated CAMMLJ chips each contain a 4 Kbyte cache, 
a translation lookaside buffer (TLB), and a translator. 
One CAMMU is used for instruction references and the 
other for data; the CAMMUs not only provide caching, 
but also implement protection, detect page faults, and 
watch the system bus to ensure multiple cache consist- 
ency. A full 32-bit address space is provided :for the 
operating system and for each user process; the address 
space is not partitioned via high order address bits. 

The floating point unit is on the CLIPPER processor 
chip. Instruction execution is pipelined with up to five 
instructions in the pipeline. Interlocks and dependency 
checks are provided in the pipeline hardware, so that 
no compiler inserted no-ops are needed for correct op- 
eration. Some complicated operations and diagnostics 
are implemented as instruction sequences in a small, 
on-chip ROM, called the Macro Instruction ROM 
(MIROM); all other instructions are hardwired. No mi- 
crocode is used. The machine has 168 instructions, of 
which 101 are directly hardwired. 

Two versions of the CLIPPER processor have been 
introduced. The ClOO, first available in 1986 from Fair- 
child Semiconductor, was implemented in 2 micron 
CMOS, was 167 K square mils, and used 132,000 tran- 
sistors. The C300, available in 1988 from Intergraph 
Corporation, is implemented in 1.5 micron CR/IOS, is 
285K square mils, and uses 174,000 transistors. Per- 
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FIGURE 1. Schematic Diagram of CLIPPER 

formance measurements show that the Cl00 imple- 
mentation is 3 to 15 times as fast as a Vax 11/780 
(averaging more than five times faster) and is somewhat 
faster than a Vax 8600. The C300 is about twice as fast 
as the ClOO. The peak execution rate in CLIPPER in- 
structions for the Cl00 is 33 MIPS and 50 MIPS for the 
C300. Additional information on CLIPPER is available 
in [3] and [13]. 

Motivation and Design Philosophy 
CLIPPER was designed and built to fulfill the need for a 
very high performance, microcomputer chip-based 
computer. The immediate applications for such a pro- 
cessor are in high performance workstations and 
“super-minicomputer” shared machines. To introduce 
some historical perspective, the highest performance 
commercial mainframe in 1976 was the IBM 370/168, 
which for the kind of workloads expected on CLIPPER 
(C, Fortran, Pascal), had performance comparable to 
that of the Cl00 CLIPPER. 

When the CLIPPER project began 1982-83, no exis- 
ting commercial computer architecture permitted a 
high performance implementation on a microprocessor 
chip with the necessary instruction set and architec- 
tural features. At the time, architectures available on 
microprocessors failed to permit high performance im- 
plementations, and most other architectures failed to be 
easily implementable on a chip or to provide a reasona- 
ble range of features. There were also commercial bar- 
riers to using existing architecture. The decision was 
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thus made to design a new instruction set architecture, 
using the previous experience of the designers and the 
latest thinking in the computer architecture research 
community. 

Fashions in computer architecture have varied 
widely over the last few years, changing from the “ba- 
roque” or “rococo” of the 1970s to the “minimalist” 
1980s. It was widely believed in the 1970s that hard- 
ware would be very cheap, and software difficult and 
expensive; therefore as much functionality as possible 
should be moved to the hardware, resulting in complex 
architectures such as the DEC Vax [lo, 241. The prob- 
lems with such a complex architecture are that it is 
very difficult to obtain good performance as a function 
of the amount of logic needed, it is difficult to get com- 
pilers to actually generate instructions that use the ma- 
chine features, and the machine is hard (time consum- 
ing, expensive) to design, build, and debug [18, 191. 

The popular thinking in computer architecture 
shifted in the 1980s toward very simple architectures, 
as originally implemented in the Cray machines (CDC 
6400, 6600, 7600), studied and implemented in the IBM 
801 [36], and further studied and popularized by the 
RISC project at Berkeley [32, 331 and the MIPS project 
at Stanford [19]. The essence of such machines is a 
simplified instruction set, which permits a hardwired 
implementation, a very simple instruction encoding 
which permits rapid decoding and effective pipelining, 
a load/store architecture, which greatly simplifies the 
control logic, and effective use of registers to cut mem- 
ory traffic. Some such machines, such as RISC [32, 331 
and MIPS [19] have carried these concepts to their lim- 
its by requiring fixed length instructions, almost all of 
which execute in one cycle. The fixed length instruc- 
tions result in a significant increase in code size [la], 
increasing memory traffic and cache miss ratios. The 
single cycle execution requirement increases the ma- 
chine cycle time; CLIPPER has more compact code and 
a shorter cycle time than such very simple machines. 
Some discussion of the RISC/CISC issues appear in [7] 

and [14]. 
The choice was thus made to design a new instruc- 

tion set architecture (ISA). The instructions, the module 
design, and the functional partitioning were chosen to 
permit mainframe level performance, and to permit fu- 
ture compatible mainframe implementations. The con- 
tinuing and increasing adoption of the easily ported 
UNIX* [37] as the standard operating system for aca- 
demic, software development, and workstation environ- 
ments made a new ISA commercially feasible. 

Outline and Context 
It is possible to describe a “computer” at many levels. 
The instruction set architecture (ISA) refers to the com- 
puter instruction set as expressed in binary or in as- 
sembly language and its functions; the ISA is usually 
described in the “principles of operation” manual. We 

* UNIX is a trademark of AT&T Bell Laboratories. 
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use the term design architecture to refer to the highest 
level description of an implementation, i.e., the block 
diagram and parameter level. Below that are gate and 
circuit level descriptions. 

This article focuses primarily on CLIPPER’s instruc- 
tion set architecture, and examines the design architec- 
ture and related issues such as performance, design 
tradeoffs, design implications, and areas for possible fu- 
ture expansion. 

MEMORY ARCHITECTURE AND DATA TYPES 
Memory Architecture 
First, we’ll provide a brief overview of the memory ar- 
chitecture of the CLIPPER microprocessor. A much 
more detailed description, including a discussion of the 
CAMMU, is provided in [3]. 

Address Space 
In normal operation, CLIPPER uses virtual memory, al- 
though unmapped (real memory) mode is also possible. 
The supervisor and each user process has its own 32-bit 
virtual address space, defined by the PDO (page direc- 
tory origin) register in the CAMMU, which contains the 
physical memory address of the base of the first level of 
the page map for the process. The page map is imple- 
mented in two levels: the first level is the page direc- 
tory, and the second level contains the page tables. The 
page size is 4 Kbytes, which is large enough for efficient 
I/O [38], keeps the TLB miss ratio down, and provides 
enough unmapped bits that set selection in the 4 Kbyte 
caches can be effectively overlapped with translation 
[39]. The page size is also small enough to avoid unrea- 
sonable levels of internal fragmentation. No address 
bits are used to partition the address space, as in the 
Vax and MIPS machines [9], so such a partitioning isn’t 
an obstacle to increased address space size as technol- 
ogy evolves. 

Caching 
Two cache and memory management chips (see Fig- 
ure 1) provide most of the support for the memory 
architecture; one is used for data and the other for 
instructions; each is connected to the processor by its 
own 32-bit address/data bus. Each CAMMU has a TLB 
and a translator. The TLB is set associative with 
128 entries organized as 64 sets of 2 elements each. 
Protection is provided on a page basis, with each page 
table entry specifying permission for the process to 
read, write, and/or execute from the page in supervisor 
and/or user state; protection bits are cached in the 
TLB. Page faults, protection faults, and memory errors 
are detected by the CAMMU and a trap code is 
returned to the processor for supervisor action. 

Each CAMMU also contains a 4 Kbyte cache mem- 
ory, organized as 128 sets of two 16-byte lines. The 
caching policy (copy back, write through, uncacheable) 
is defined on a per page basis and can vary from page to 

page; caching policy bits are attached to each page table 
and TLB entry. The CAMMU is capable of “watching” 
the system bus and acting to maintain cachce consist- 
ency when there are multiple CAMMUs on the bus 
and/or when I/O operations reference data resident in 
the local cache. Specifically, shared data is marked 
“shared” and is cached write-through. Bus operations 
labeled as “I/O” or “shared write-through” are recog- 
nized by the CAMMU. I/O reads to lines that are dirty 
in the cache are preempted and the cache supplies the 
data. Single word I/O writes and shared write-throughs 
on the bus update the local copy, if any, and quad-word 
writes invalidate the local copy. 

The low order eight pages of the supervisor address 
are permanently mapped by the CAMMU to provide 
access to Boot ROM (residing on the system bus), I/O, 
which is addressed via reads and writes to memory 
addresses, and low main memory. Trap and interrupt 
vectors reside in low memory. The CAMMUs are con- 
trolled by reads and writes to the I/O region of memory. 

Bit Ordering 
The Cl00 model of the CLIPPER was designed to use a 
consistent, “little endian” [23], numbering system for 
bits, bytes, and words, in which the most significant bit 
is in the highest numbered bit of the highest numbered 
byte, and internally, CLIPPER remains little endian. 
Figure 2 shows the instruction formats, in which the 
bit, byte, and word numbering may be observed. The 
“first parcel” is the first two bytes of the instruction 
stream; the remaining bytes of the instruction or the 
bytes of the following instruction(s) will appear in the 
second, third, and fourth parcels. This numbering sys- 
tem is also used in the Dee VAX, Intel 80386, and Na- 
tional 32000 [21]. This contrasts with the Sy.stem/370 
[22] in which the most significant bit is the lowest 
numbered bit of the lowest numbered byte; bits, bytes 
and words are numbered in increasing order from left 
to right, with the MSB at the left. The Motorola 68000 
also uses a “big endian” scheme, but numbers bits in 
the opposite order from bytes and words [28]. 

In the C300 version, CLIPPER can function in either 
a little-endian or big-endian mode, although internally 
the little-endian-ness is retained. The approlpriate byte 
order is selected at power-up time by tying a pin to 
either +5v or ground. When operating in big-endian 
mode, CLIPPER internally reverses the order of half 
words in the instruction buffer, reverses the order in 
which double word operands are loaded/stored, and 
changes the byte and half-word addressing to reference 
the correct byte or half word within a word. As a re- 
sult, data can be exchanged with a big-endian machine 
without reversing the bytes or changing the byte num- 
bering. It also facilitates upgrading low performance 
(big-endian) machines with higher performance, CLIP- 
PER-based products. (In contrast, when data is ex- 
changed between a Vax and an IBM 370, bytIes must be 
explicitly swapped.) 
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FIGURE 2. CLIPPER’s Instruction Formats 
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Data Types 
The selection of data types represents a compromise 
between apparent functionality, which is enhanced by 
a large number of data types, and implementability, 
whic:h is easiest when the number of types is small. 
The data types supported by the CLIPPER architecture 
include signed and unsigned bytes, half words (Z bytes), 
words (4 bytes) and long words (8 bytes). There are also 
single and double precision (4 and 8 bytes, respectively) 
floating point numbers. This set of data types is suffi- 
cient to implement programming languages such as C, 
Fortran, and Pascal with direct hardware support pro- 
vided for most language operations. (Initially, as sug- 
gested in [18], little support for bytes or half words was 
intended, but further examination of programming 
needs showed that more direct hardware support was 
required.) 

At this time CLIPPER does not provide decimal num- 
bers, strings, or precision beyond that of long words or 
double precision floating point as hardware specified 
data lypes. Strings can be easily implemented via soft- 
ware; CLIPPER also provides three string manipulation 
instructions (move, compare, fill) as Macro ROM se- 
quences. Extended precision can be obtained via soft- 
ware when needed. 

CLIPPER also imposes alignment restrictions on data 
items, as do other RISC and RISC-like processors. All 
data items must be stored on a boundary which is a 
multiple of its size [29]. This restriction generally 
causes little difficulty, and simplifies the processor im- 
plementation considerably. For CLIPPER, there is no 
implementation problem with line crossers (fetch or 
store requests spanning a pair of cache lines) or page 
crossers (fetch or store requests spanning a page bound- 
ary), since line and page crossers are impossible for data 
loads and stores. Instructions can span page boundaries, 
but no problem occurs since the instruction stream is 
fetched sequentially, four (aligned) bytes at a time. 

REGISTERS AND MODES OF OPERATION 
User and Supervisor General Purpose Registers 
There are two sets of 16 general purpose registers 
(GPRs), one referenced by user mode programs and one 
by supervisor mode programs. The mode of thk pro- 
gram is determined by a bit in the system status word 
(SSW). Two privileged instructions allow data transfers 
between user and supervisor registers. 

Using separate user and supervisor register sets 
speeds up interrupt and trap handling, and makes 
CLIPPER especially suitable for real time applications, 
since registers don’t need to be stored or restored when 
interrupts occur. The selection of 16 registers was de- 
termined by several factors, including the number of 
bits conveniently available for register addressing and 
the fact that 16 registers represent a good tradeoff; 16 
registers are enough for local working storage without 
induc:ing unreasonable overhead for saving and restor- 
ing them at procedure call time. The C compiler pro- 
vided by Intergraph [29] saves and restores only those 

registers that have been modified, and passes the first 
two arguments in registers. For comparison, we note 
that both the Vax and the IBM 370 have 16 GPRs. 
Lunde’s results [25] suggest that 8 to 10 registers are 
almost always sufficient. Analyses in [14] show that 
with intra-procedure register allocation, no improve- 
ment in load/store traffic is obtained with more than 
16 registers; even with interprocedural register alloca- 
tion, minimal improvement is obtained with more than 
16 registers. Eight registers, however, are too few. 

The idea of register windows was first proposed by 
Baskett and was implemented in the Berkeley RISC 
project [32]; the motivation was that loads and stores 
due to procedure calls and returns could be avoided by 
simply moving to a new set of registers, using shared 
registers to pass parameters and results. An(alyses in 
[14] show that with fewer than 100 registers, interpro- 
cedural register allocation results in less memory traffic 
than register windows; even with a total of 256 regis- 
ters, register windows only outperform interprocedural 
register allocation by a small amount. Large register 
sets, such as those used in register windows, however, 
have a number of disadvantages [18, 331: they require 
substantial chip area, only a small fraction of the regis- 
ters are in use at any one time, process switching time 
is much larger since all registers need to be stored and 
restored, and larger register files are slower due to dis- 
tance and circuit drive requirements. Register windows 
also require a mechanism to address across windows, so 
that nonlocal variables can be referenced [4:1]. For 
some projects (RISC II, SOAR), register access time has 
been a primary determinant of cycle time [14]. The 
decision, therefore, to use 16 user and 16 supervisor 
GPRs seems to be fully justified. 

Floating Point Registers 
CLIPPER provides a set of eight double precision float- 
ing point (FP) registers accessible in both us,er and su- 
pervisor states; floating point instructions refer to these. 
This is similar to the IBM 370 design, in which there 
are four FP registers. Eight registers provide sufficient 
storage for temporary operands, whereas four are insuf- 
ficient in the absence of memory to register operations 
other than load and store. Four registers are clearly 
insufficient to permit interprocedural register alloca- 
tion. (For non-numerically intensive programs, Lunde 
found that three floating point registers were usually 
sufficient. We expect a workload that is more numeri- 
cally intensive than that analyzed by Lunde.) 

Processor Status Registers 
Three additional program addressable registers are pro- 
vided, the program counter (PC), the program status word 
(PSW), and the system status word (SSW). The program 
counter contains the address of the instruction about to 
be issued, i.e., the instruction in the pipeline that will 
be released and allowed to modify the processor state 
(write into a register or store a result). The internal 
registers containing addresses of instructions following 
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the currently issued instruction in the pipe are not user 
addressable. 

The program status word (PSW) is primarily used to 
hold status information (condition codes, trap codes) 
and to set those aspects of the processor state that the 
user process is permitted to modify, such as floating 
point trap enables. Four bits of condition code are pro- 
vided (negative, zero, overflow, carry), and five bits of 
floating point exception status, as required by IEEE 
754 standard, are also available. Six bits are used to 
enable/disable floating point traps, and two more to 
specify the floating point rounding mode. A trace trap 
bit is available. Four bits are used to record program 
traps (e.g., trace trap, illegal operation), and four more 
to record system trap types (memory error, page fault, 
etc.). The PSW may be read or written by the user 
process. 

The last status register is the system status word 
@SW). The SSW is used, among other things, to record 
the interrupt number and level, to enable interrupts, to 
set the mode (user/supervisor) and to set the protection 
key. The SSW may only be written in supervisor state. 
Its use is further described in [3]. 

INSTRUCTION FORMATS AND ADDRESSING 
MODES 
Addressing Modes 
The CLIPPER microprocessor has a load/store architec- 
ture; i.e., most of the references to memory are via load 
and store instructions in contrast to both the IBM 370 
and DEC Vax which make extensive use of their regis- 
ter/memory operations (370 RX type instructions) and 
memory-to-memory (370 SS type) instructions. Elimi- 
nating most RX and SS instructions substantially sim- 
plifies the processor implementation by eliminating 
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control logic and especially by simplifying recovery 
from traps and interrupts such as page faults and mem- 
ory errors. As noted in [al], all modern, simplified ar- 
chitectures are load/store. The lack of RX and most SS- 
type instructions increases CLIPPER code size above 
that for such densely encoded CISC (complex instruc- 
tion set computer) processors such as the Vax, the Na- 
tional 32000 and the Intel 80386, but provides consider- 
ably denser code than RISC processors such as the SUN 
Spare and the IBM ROMP. (CLIPPER does have some SS 
operations implemented in the MIROM.) For RISC-I 
[32], a % increase in number of instructions over the 
Vax was observed, using a very primitive compiler for 
RISC. Table I shows static code sizes (the size of the 
text segment of the object file) for a number of standard 
benchmarks compiled on a number of machines; data 
in [14] shows that static and dynamic code sizes are 
very closely correlated. There are two advantages to 
small code sizes: there is less memory traffic, which is a 
limiting factor in most multiprocessor designs, and 
cache miss ratios are lower, since working sets are 
smaller; see [14] for analyses and comparative miss 
ratios. 

For load and store instructions, CLIPPER provide nine 
addressing modes, which appear in Figure 2. These 
nine address modes represent those judged to be impor- 
tant for convenient programming plus those that “come 
for free;” i.e., those that can be trivially generated with 
the logic and data paths already available. For a 32-bit 
architecture, a register + 32-bit displacement mode 
(relative with 32-bit displacement) is very useful. The 
long 32-bit displacement eliminates the aggravating ad- 
dressability problem posed by the 12-bit displacement 
of the IBM 370. The register + 12-bit displacement 
mode saves 4 bytes, if only a short displacement is 

TABLE I. Code Size of Several Standard Benchmarks (in bvtes) 

Vax(Unix 4.3 BSD) 86832 24908 9016 1900 6448 1276 21404 

(1 .O) (1 Q (1.0) (1.0) (1 .O) (1 .O) (1 .O) 1.0 
IBM PC/RT(ACIS 1.0) * 41696 16792 

- (1.67) (1.86) I- 
10872 1632 
(1.69) (1.28) : 1.63 

Sun 3/280(Sun Unix 4.213.4) 134372 29572 9388 2600 7064 1616 23372 
(1.55) (1.19) (1.04) (1.37) (1.10) (1.27) (1.09) 1.23 

Sun 4(Sun Unix 4-3.2) 141280 29944 13104 3152 12248 1792 30976 
(1.63) (1.20) (1.45) (1.66) (1.90) (1.40) (1.45) 1.53 

Sequent(32032) 95396 
(1.10) -r. 

6960 2024 5876 1368 16516 
(0.77) (1.07) (0.91) (1.07) (0.77) 0.81 

Sequent(80386) 100112 
(1.15) : 

7264 2224 8556 1384 16776 
(0.81) (1.17) (1.33) (1.08) (0.78) 1.05 

CLIPPER 114680 24584 8976 1904 7816 1376 24456 
(1.32) (0.99) (1.00) (1.00) (1.21) (1.08) (1.14) 1.11 

*Code size in bytes is shown for the text part of the object file for the compiled version of each of several standard benchmarks: Doduc, Livermore 
Loops [27], Linpack [I I], Whetstone [S], NAS Kernels [I J, and a synthetic benchmark usad by one author (Smith). In parentheses below the size is 
the ratio of that size to the size of the code for the VAX, using the compiler distributed with 4.3BSD UNIX. The average ratio (arithmetic average of 
the ratios) is shown at the right. In each case, the smallest code size obtained is shown; code sizes vary with the level of optimization. An asterisk 
means that the program would not compile. 
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needed, and the relative (register with no displacement) 
mode requires two bytes less. Register + displacement 
addressing is often used for array and stack references, 
and local variables. 

Absolute addressing is provided with Is-bit or 32-bit 
address constants. Absolute addressing is typically used 
for references (e.g., calls) to independently compiled 
code segments, and in the 16-bit form, for references to 
low memory and within small programs. 

A PC-relative address mode would have been very 
useful in the IBM 370 [35], and such modes are pro- 
vided by CLIPPER. The PC can be used with 16- or 32- 
bit displacement or with a register (GPR) displacement. 
Most of the time, the short displacement should be suf- 
ficient; in [35] 89 percent of the branches were expres- 
sible in 16 bits or less as an offset from the PC. PC 
relative addressing is used primarily for branches and 
the PC + GPR mode for computed gotos and case state- 
ments. 

Finally, a two register address mode (relative in- 
dexed) is provided, which facilitates addressing when 
both the base and index addresses are in registers, as 
well as when an array is passed as a parameter. 

Four important aspects of the way the address mode 
is specified are evident in Figure 2. First, the address 
mode and opcode are always defined in the first instruc- 
tion parcel (first two bytes), so there is no (slow) se- 
quential decoding of the instruction; subsequent bytes 
can be immediately routed (as to the adder) without 
further examination. This encoding provides many of 
the supposed advantages of fixed length instructions 
that are used in RISC and MIPS. Second, 4 bits are used 
to specify the addressing mode, and only 8 of the 16 
possible combinations are currently assigned, leaving 
the remainder available for future extensions. Third, 
there is no indirect addressing mode, a mode which is 
very difficult to implement efficiently. Finally, some of 
the address modes result in unused bits in some fields, 
which could be used in the future to generate more 
than 32 bits of virtual address. 

To estimate the frequency of use of the various ad- 
dressing modes, we examined data from the literature. 
In [35], addressing calculations for System/370 RX type 
instructions used no register 1.1 percent of the time, 
one register 85.6 percent of the time, and two registers 
13.3 percent of the time; the RX type instruction forms 
an effective address as the sum of a I.&bit displacement 
and the contents of up to two registers. Data in [Xi!] 
indicat.es that for the Vax, 61 percent of the operand 
addresses were displacement + register, and 23 percent 
were just register. Displacements from a register were 
most often one byte long. For the PDP-11 [31], most of 
the operand addresses were specified in a register (with 
or without increment or decrement), and most of the 
remainder were displacement + register. Based on the 
data cited and further data in [16] and [44], we would 
expect the relative l(R)}, relative with Ii’-bit displacement 
((R) + disp), and PC Relative with 16-bit Displacement 
{(PC) + disp) to account for the bulk of the address 

mode use. In fact, as shown in Table VII for one (unrep- 
resentative) benchmark, those address modes are com- 
mon, as are also the PC Relative with 32-bit Displacement 
{(PC) + disp)) and Relative Indexed {(RX) + (R)). The 
former is appropriate to large programs, such as Spice, 
and the latter for numerical programs making many 
array references. We again note that many of the ad- 
dress modes provided “come for free”; e.g., the relative 
address mode is a displacement mode with TLO displace- 
ment. If each address mode had required significant 
additional logic, fewer modes would have been justified 
or included. 

Instruction Formats 
Figure 2 shows the available instruction formats. Those 
instructions using addresses have already been dis- 
cussed; next we’ll comment on instructions which do 
not contain memory addresses. 

Register-to-register instructions are specified in two 
bytes. Register-immediate operations can be specified 
in 2, 4, or 6 bytes, depending on the size of t’he immedi- 
ate constant. Immediate constants are often small; 69 
percent of the immediate operands can be encoded in 4 
or fewer bits and 96 percent in 8 or fewer bits [18]; the 
corresponding figures from [16] are 60 percent and 70 
percent. The availability of the quick format (which pro- 
vides a J-bit unsigned constant) and the 16-bit immedi- 
ate format aid code density. 

The control opcode is used when the operation re- 
quires a small (8-bit) constant only, as for the culls (sys- 
tem call) instruction. The macro opcodes are used to 
invoke operations implemented via instruction se- 
quences in the on-chip ROM, such as the string move 
(move) instruction, 

INSTRUCTION SET 
The CLIPPER instruction set is fairly conventional and 
reflects the experience of its designers with respect to 
two factors: what is needed for convenient and efficient 
programmability, and what can be easily implemented 
in hardware. Table II shows the set of opcodes. Most of 
the entries are self-explanatory, and we will discuss 
only those that are interesting or worth explaining. 

Floating Point 
The CLIPPER microprocessor is unusual in that its 
floating point unit is on the processor chip; the floating 
point execution unit is also used to compute the integer 
multiplication, division and mod operations. Floating 
point arithmetic operations are performed as specified 
in the IEEE 754 standard. As noted earlier, there is a 
separate set of eight floating point registers, and all 
floating point operations are register to register. The 
floating registers may loaded or stored from/to main 
memory, or from/to the general purpose regi.sters. 

Branches and Condition Codes 
The approach chosen for CLIPPER for controlling pro- 
gram execution is that of condition codes, wh.ich are set 
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TABLE II. Operations and Opcodes 

Load address (loada), byte (loadb), byte unsigned (loadbu), double floating (loadd), floating 
status (loadfs), halfword (loadh), halfword unsigned (loadhu), immediate (loadi), quick 
(loadq), single floating (loads), word (loadw) 

Store 

Move 

Add 

Subtract 

byte (storb), double floating (stord), halfword (storh), single floating (stors), word (storw) 

double floating (movd), double floating to longword (movdl), longword to double floating 
(movld), word (movw), processor register to word (movpw), single floating (movs), 
supervisor to user (movsu), user to supervisor (movus), single floating to word (movsw), 
word to processor register (movwp), word to single floating (movws) 

double floating (addd), immediate (addi), quick (addq), single floating (adds), word (addw), 
word with carry (addwc) 

double floating (s&d), immediate (subi), quick (subq), single floating (subs), word (subw), 
word with carry (subwc) 

Multiply 

Divide 

Negate 

Modulus 

Scale-by 

Convert 

double floating (muld), single floating (muls), word (mulw), word unsigned (mulwu), word 
unsigned extended (mulwux), word extended (mulwx) 

double floating (divd), single floating (divs), word (divw), word unsigned (divwu) 

double floating (negd), single floating (negs), word (negw) 

word (modw), word unsigned (modwu) 

double floating (scalbd), single floating (scalbs) 

double floating to single (cnvds). double floating to word (cnvdw), rounding double to word 
(cnvrdw), rounding single to word (cnvrsw), single floating to double (cnvsd), single floating 
to word (cnvsw), truncating double to word (cnvtdw), truncating single to word (cm&w), 
word to double floating (cnvwd), word to single floating (cnvws) 

And immediate (andi), word (andw) 
Or immediate (ori). word (orw) 
Exclusive-or immediate (xori), word (xorw) 
Not word (notw), quick (notq) 

Shift arithmetic 
Shift logical 
Rotate logical 

Compare 

immediate (shai), longword (shal), word (shaw), longword immediate (shali) 
immediate (shli), longword (shll), word (shlw), longword immediate (shlli) 
immediate (roti), longword (rotl), word (rotw), longword immediate (rotli) 

double floating (cmpd), immediate (cmpi), quick (compq), single floating (cmps), word 

(cmw) 

Test and set (tsts) 

Compare characters 
Initialize characters 
Move characters 

@mm 
(initc) 
(move) 

Pop word 
Push word 

Save registers m . . r14 
Save floating registers fn . . . f7 
Save user registers 

Restore registers m . . . r14 
Restore floating registers fn . f7 
Restore user registers 

(POPW) 
@usW 

(savewn) 
(savedn) 
(saveur) 

(restwn) 
(restdn) 
(restur) 

Branch conditional 

Branch floating exception 

Call 
Call supervisor 
Return from subroutine 
Return from interrupt 

Trap on floating unordered 
Wait for interrupt 
No operation 

(b’): less than (belt), less than or equal (bcle), equal (bceq), greater than (bcgt), greater or 
equal (bcge), not equal (bcne), less than unsigned (bcltu), less or equal unsigned (bcgtu). 
greater or equal unsigned (bcgeu), not carry (bnc), carry (bc), overflow (bv), not overflow 
(bnv), negative (bn), not negative (bnn), floating unordered (bfn) 
(bf’): floating any exception (bfany), floating bad result (bfbad) 

WI) 
(calls) 

(ret) 
(reti) 

(trapfn) 
(wait) 

Ww) 
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by one instruction and read and used by a subsequent 
instruction; this is similar to what is done on the IBM 
370. IJsing condition codes for branching yields better 
performance and less complexity than an instruction 
that both tests and branches. 

Four standard condition codes-N (negative), Z 
(zero), V (overflow) and C (carry)-are set in the PSW 
after certain operations. There are five floating point 
exception signalling codes: FX (floating inexact), FU 
(floating underflow), FD (floating divide by zero), FV 
(floating overflow), and FI (floating invalid op). Com- 
pare instructions normally set the N and Z flags; since 
the compare is executed by performing a subtraction, 
V and C may also be set. 

There are two standard branch instructions. Branch 
on condition tests the NZVC PSW bits; the list of possi- 
bilities is shown in Table II. The branch on floating ex- 
ception tests either for any exception or for a bad result 
(floating invalid, divide by zero, overflow). Branch 
instructions use the standard addressing modes, as 
defined in Figure 2, where the R2 field holds the condi- 
tion code field that specifies the type of branch. 

Implemented directly in the hardwired instruction 
set are the call and return (ret) instructions. The call 
instruction decrements the stack pointer (defined by 
the register in the R2 field), pushes the address of the 
next instruction onto the stack, and then loads the PC 
with the target address. Return reverses the process. 

Macro Instructions 
The CLIPPER processor chip includes a small ROM 
(known as the Macro Instruction ROM), which holds var- 
ious useful code sequences. The MIROM contents are 
regular instructions, not microcode. Microcode requires a 
two-level decode [19] (instructions need to be decoded 
into microinstructions, and then decoded and exe- 
cuted), and microcoded machines tend to be slower 
than hardwired ones. Approximately half of the 
MIROM is devoted to diagnostic code to be used for 
chip testing and sorting during manufacturing. The 
remainder implements complex operations that are 
often found as single (usually microcoded) instructions 
on CISC machines. Implementing these functions as 
MIROM sequences increases code density and readabil- 
ity, instruction fetch penalties (misses, sequential fetch 
delays) and memory traffic decrease, and less instruc- 
tion cache space is used. The MIROM concept has other 
advantages: (1) new instructions can be easily added; 
and (2) custom versions of the processor can be easily 
designed and implemented. 

A h4acro instruction actually represents a branch into 
the ROM; the instruction fetch unit starts fetching in- 
structions from the ROM at the address specified by the 
macro opcode. Next, we’ll briefly discuss the instruc- 
tions implemented in the MIROM; the operation of the 
MIROM is described in more detail later. 

Instructions to save and restore general registers 
(save registers (savewn), restore registers (restwn), save 
floating registers (save&), and save user registers (saveur)) 

are implemented in the MIROM as a sequence of con- 
secutive store (or load) operations, starting from a given 
register number and continuing through register 14. 
The floating point register saves and restores are imple- 
mented similarly. 

Three string (storage to storage) instructions are cur- 
rently implemented in the MIROM: move (copy a string 
of characters from/to nonoverlapping fields)., initc (ini- 
tialize a string with the contents of a register; primarily 
used for clearing buffers), and cmpc (compare two char- 
acter strings). These instructions may be interrupted 
and restarted. 

All of the conversion operations, and negate floating, 
scale by, and load floating status (see Table II) are im- 
plemented in the ROM. 

The refurn from interrupt (refi] instruction restores the 
processor state after trap or interrupt processing. The 
wait for interrupt (wait) instruction causes the processor 
to halt pending the arrival of an enabled interrupt. The 
interrupt routine then determines whether to continue 
execution. 

Test and Set 
The cost and performance advantages of multiple 
microprocessor computer systems sharing a common 
memory are currently quite compelling [40]. The Test 
and Set (tsts) instruction is the instruction chosen for 
CLIPPER to implement the locks used in multipro- 
cessor and multiprocess synchronization. As a single, 
indivisible operation, it loads the contents of a main 
memory location into a specified GPR, and sets bit 31 of 
the given main memory word to 1. Indivisibility is 
achieved by making the lock word noncacheable, and 
holding the main memory bus for the entire operation 
(which is a read/modify/write). A processor may either 
loop, continually testing the lock until it is released, 
use the waif instruction to sleep, or task switch. Test 
and set is also used by the IBM 370 and the hf68000; 
the Vax provides seven instructions for locking and 
synchronization, some of which are equivalent to test 
and set. Test and set locks may be either cacheable or 
noncacheable. If they are cacheable, the local copy is 
updated and any remote copies are invalidated; in 
any case, the tsts operation always references main 
memory. 

Opcode Assignment 
As shown earlier in Figure 2, the high order byte of the 
first parcel of each instruction always contains the in- 
struction opcode. As noted earlier, this greatly facili- 
tates rapid execution, by always permitting immediate 
instruction decode. The assignment of bits to opcodes is 
shown in Figure 3. Of the possible 256 opera.tion codes 
available from 8 bits, 85 instructions (including sets of 
instructions) are defined, and 104 of the bit combina- 
tions are used. (Some opcodes used to imple:ment in- 
structions that may be executed only from the MIROM 
are not shown in Figure 3.) That leaves over 140 possi- 
ble opcodes for future expansion. In general! we have 
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Instruction Opcode/Mnemonic Summary 

2 3 4 5 6 
LSB 

( ( f 4 

Macro Instruction Code Field (Opcode B4) 
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3 

FIGURE 3. Assignment of Bits to Opcodes 
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Privileged Macro Instruction Code Field (Opcode B6) 

F 

3 

made a conscious effort to allow the CLIPPER architec- 
ture to evolve with user needs and technology trends; 
reserving a significant number of opcodes is one part of 
that effort. 

INTERRUPTS, TRAPS AND SUPERVISOR CALLS 
The CLIPPER microprocessor provides for 402 excep- 
tion conditions: 18 hardware traps, 128 programmable 
supervisor calls and 256 vectored interrupts. The num- 
ber of hardware traps can be expanded to 128. 

A trap is an exception that relates to a condition of a 
single instruction, e.g., page fault, memory error, over- 
flow, etc. Interrupts are events signalled by devices 
external to the CLIPPER module. 

Intrap and Return Sequences 
The recognition by the hardware of a trap or interrupt 
causes entry to a macro instruction sequence, INTRAP, 
which in noninterruptible mode performs a context 
switch to supervisor mode, stores the PC, PSW, and 
SSW on the supervisor stack, and transfers control to 
the trap or interrupt handler through the vector table. 
The vector table is a table in low memory containing 
two-word entries; each entry contains the address of 
the trap or interrupt handler and the new SSW. The reti 
(return from interrupt) sequence is a noninterruptible 
sequence which restores the system to the correct user 
or supervisor environment. Interrupts and traps are 
prioritized, with logic within the processor giving ser- 
vice to the highest priority event. Traps are permitted 
during interrupt and trap handling but result in an 
unrecoverable fault; page fault traps must be avoided 
during fault handling. 

Traps 
When a trap occurs, all instructions prior to the trap- 
ping instruction are completed (including those in the 
floating point unit), and all instructions that follow the 
trapping instruction are flushed from the pipeline. 

Traps can be classified into several groups: data 
memory, floating point arithmetic, integer arithmetic, 
instruction memory, illegal operation, diagnostics, and 
supervisor calls. 

Data memory and instruction memo y traps include cor- 
rectable and uncorrectable memo y errors, page faults, and 

FIGURE 3. (Continued) 

protection faults. In each case, the CAMMU recognizes 
the exception and maintains copies of the protection 
bits taken from the page table entries in the TLB. 

The five floating point arithmetic traps are invalid oper- 
ation, inexact result, overflow, underflow, and divide by 
zero. There are trap enable flags for each of these in the 
PSW, as well as exception flags in the PSW which are 
set when the corresponding events occur. An overall 
floating point trap enable flag (also in the P!SW) can be 
used to disable all floating point traps. 

The trace trap causes a trap at the end of the current 
instruction. A MIROM sequence is considered to be a 
single instruction for tracing purposes. Tracing is dis- 
abled on entry to the INTRAP sequence and trace trap 
handler. 

Supervisor calls are implemented as traps triggered by 
the calls instruction. There are potentially 1.28 supervi- 
sor call codes; the CLIXe system (the Intergraph port of 
Unix) [30] uses approximately 60 of them. 

Interrupts 
Interrupts are signalled externally to the processor and 
appear as signals on the interrupt pins of the system 
bus. An interrupt is taken only when no tra.ps are pend- 
ing except the trace trap, interrupts are enabled, all 
instructions currently in the pipeline have completed, 
and string instructions have either completed or have 
saved sufficient state to be able to restart. (Long string 
instructions periodically test for pending interrupts, 
and if there are any, save their state and permit the 
interrupt to be processed.) With the exception of the 
string instructions, interrupts are not accepted during 
MIROM sequences. 

There are 16 prioritized interrupt levels, with 16 in- 
terrupts of equal priority within each level. Interrupt 
processing can be interrupted by an event of higher 
priority. 

DESIGN ARCHITECTURE 
As explained earlier, the term design architecture refers 
to the architectural implementation at a fairly high 
level. Figure 4 shows the major components of the 
CLIPPER processor and the major interconnections in a 
simplified fashion. Somewhat more detail is shown in 

a CLIX is a trademark of Intergraph Corporation. 
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Figure 6. As can be seen from those figures, the proces- 
sor is divided into six major sections: the instruciion bus 
interface (including an instruction prefetch buffer), the 
macro instruction unit, the instruction control unit, the 
floating point unit, the integer execution unit, and the data 
bus interface. Table III shows the fraction of the chip 
area occupied by various processor sections; the re- 
mainder of the area is occupied by other minor compo- 
nents or empty space. 

Instruction Bus Interface 
The instruction bus (described in more detail in [3]) is a 
bi-directional &-line bus connecting the CPU chip to 
the Instruction CAMMU. The interface contains receiv- 
ers (RCV) and drivers (DRV), and a 64bit @-byte) in- 
struction buffer on the processor chip. Instructions are 
prefetched into this buffer, and are then fed into the 
instruction control unit as needed. A branch never hits 
in this buffer because there is no mechanism to detect 
that a branch target address is within the buffer; on a 
successful branch, the instruction buffer is cleared. The 
Instruction CAMMU contains its own instruction coun- 
ter, and will feed the next 4 bytes of the instruction 
stream into the instruction buffer every time the next 
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instruction line of the instruction bus is clocked. While 
within a cache line, the ICAMMU can deliver 4 bytes 
every 2 CPU cycles (60 ns), and the CPU can at its 
maximum rate execute 2 bytes (one parcel, or one 
z-byte instruction) every CPU cycle (30 ns). 

A multiplexor (MUX) that can accept instructions 
from either the instruction buffer or the Macro Instruc- 
tion ROM and feed them to the instruction control unit 
is also associated with the instruction bus interface. 

Macro Instruction Unit 
The Macro Instruction ROM (MIROM) is an on-chip 
ROM (1 K entries X 47 bits) that implements compli- 
cated instructions as sequences of simpler hardwired in- 
structions; the opcode for the MIROM implemented 
instruction is effectively a branch target address into 
the ROM; the MIROM does not contain microcode. 
Each entry in the MIROM contains two instruction par- 
cels plus the next instruction address and a stop bit. 

The set of legal opcodes for ROM instructions is a 
superset of the standard instruction set, including, for 
example, the conditional branch within the MIROM 
itself; those ROM-only instructions are not shown in 
Table II or Figure 3. 

---TRANSCEIVERS 
-lNSTRUCTION BUFFER (4 x 16) 
---PROGRAM COUNTER 
-BUS CONTROL 

LTEGER EXECUTION UNIT 

-SHIFTER 
--REGISTER FILE (32 x 32) 
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-ALU 
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FIGURE 4. Simplified Diagram of CLIPPER’s Major Components 
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FIGURE 5. Detailed Diagram of CLIPPER’s Major Components 

In addition to the regular registers, there are 16 
scratch registers (12 regular and 4 floating point) acces- 
sible only from instructions in the MIROM. The in- 
strucbons in the MIROM also have a mechanism to 
reference the registers specified by the Rl and R2 fields 
of the Macro instruction (see Figure 2). 

Integer Execution Unit 
The integer execution unit contains the general register 
file (16 user GPRs, 16 supervisor GPRs, and 12 scratch 
registers), the shifter, and the ALU. The register file has 
three ports, permitting two reads and one write during 
the same machine cycle. 

The shifter implements the shift and rotate instruc- 
tions and is designed as a serial double bit shifter, Sin- 
gle and double bit shifts occur in one cycle; larger shifts 
require multiple cycles. Data in [ZO] shows that for a 
particular System/370 workload, only 1.9 percent of all 
shifts were for more than 3 bits. 

The ALU (arithmetic/logic unit) implements integer 
addition and subtraction, bitwise logical operations, and 
register-to-register transfers. The address mode addi- 
tions are also performed by the ALU; each requires 
only one pass through the ALU, since no address com- 
putation requires more than one add. 

Floating Point Unit 
CLIPPER is unusual among current microprocessors 
in having its floating point unit (FPU) on chip. Multipli- 
cation uses a Booth algorithm [2] which produces prod- 
ucts iteratively, two bits per clock cycle for single pre- 
cision (2 bits/3 cycles for double precision) in the Cl00 
and 8 bits per cycle in the C3OO. Typically, one clock 
time is needed for round and one (3 in the C~OO) for 
normalize. Division uses a nonrestoring shift and sub- 
tract algorithm, producing 1 bit per three clocks in the 
Cl00 and 8 bits per seven clocks in the C300. Associ- 
ated with the FPU is the floating point register file, 
which contains eight regular and four scratch-pad 64- 
bit floating point registers; the latter are accessible only 
from code running in the Macro Instruction ROM. The 
floating point unit is also used to perform intceger multi- 
ply and divide. 

The floating point unit operates in parallel with re- 
spect to the rest of CLIPPER. Although only one floating 
point operation can be executed at a time, operations 
that neither use the FPU nor rely on its output can be 
issued steadily while the FPU completes the current 
operation. As a result, much of the execution time 
for floating point operations will overlap that of other 
instructions. 
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TABLE III. Area Allocations for Functions on CLIPPER Chip 

Floating Point Unit 
(Floating Point Control) 

Execution Unit 
(Register File) 

(ALU) 
ROM 
Program Counter 
Instruction Buffer 
Branch Logic 
B-stage Control Logic 
C-stage (Execution) Logic 
Data Memory Interface 
Status Logic (PSW, SSW, 

Trap and Cond Codes) 
Other (interconnect, mist 

and unused) 

0.25 0.507 
(0.067) (0.082) 

0.187 0.096 
(0.05) (0.019) 

(0.053) (0.016) 
0.056 0.025 
0.013 0.006 
0.014 0.023 
0.041 0.032 
0.074 0.037 
0.083 0.062 
0.026 0.022 
0.048 0.032 

0.208 0.158 

Floating point exceptions may be out of sequence 
with respect to the rest of the instruction stream. When 
a floating point trap occurs, the address of the floating 
point instruction may be recovered from a special regis- 
ter; the PC value pushed on the system stack can po- 
tentially be quite far from the address of the trapping 
instruction. 

Data Bus Interface 
The data bus interface consists principally of receiver 
and driver circuits for the data bus, and a shifter for 
aligning byte and half word operands. It is connected 
to all of the major functional units of the CPU via the 
S-bus so it can receive and deliver operands in the most 
expeditious manner. 

Instruction Control Unit and CPU Pipeline 
The heart of the CLIPPER processor is the instruction 
control unit (KU), which is responsible for decoding 
instructions and controlling instruction execution. The 
KU is shown in Figure 5, and the instruction execution 
pipeline is shown in Figure 6. 

The ICU has several components. The program coun- 
ter contains the address of the instruction about to be 
issued; to issue an instruction means to allow it to run 
to completion (i.e., modify registers or memory), pro- 
vided no traps occur. Figure 6 shows two boxes, called 
the “B stage” and “C stage.” Each consists of a set of 
decoding logic and registers for holding partially de- 
coded instructions and the corresponding instruction 
address. The B stage is responsible for instruction de- 
coding and resource management; resource manage- 
ment keeps track of which functional units are busy 
and allows instructions to advance to the issue stage 
only if the necessary units are available. The C stage 
holds the fully decoded instruction, and controls the 
operation of the integer execution unit and the floating 
point unit. The J register (Figure 5) is used to hold 
immediate values (including address offsets and address 

constants). The PSW and SSW registers are also located 
in the ICU. 

There can be one instruction in each of the B and C 
stages. Shown preceding the B stage (Figure 6) is the 
instruction buffer (IB), which holds 4 parcels (8 bytes) 
of instructions, or up to four instructions. 

The last stage of the pipeline consists of parallel inte- 
ger and floating point execution units. These two exe- 
cution units can operate in parallel, with one active 
instruction in the FPU and one instruction in each of 
the three stages of the integer execution unit (IEU). 
Those three stages are operand fetch (L stage), arith- 
metic (A stage: ALU or shifter) and operand write 
(0 stage-to either registers or elsewhere). It takes 
three cycles for an instruction to pass through the 
IEU-one to read from the registers into the ALU, one 
to pass through the ALU or shifter, and one to write the 
results. There is a bypass from the output of the ALU to 
the input, so that results can be immediately reused in 
the next instruction. 

LAYOUT, AREA, AND PHYSICAL PARAMETERS 
Table III shows the fraction of the chip used for various 
purposes. The Cl00 (and C300) are implemented re- 
spectively using 2-micron (1.5-micron) CMOS, with two 
levels of metal interconnect with a 6.5 micron (5.2 mi- 
cron) pitch, one polysilicon level with 2.0 micron (1.5 
micron) gates and a 4.0 micron (3.2 micron) pitch, a 250 
A thick gate oxide, and 2.0 micron contacts and vias. 
Transistor switching speeds range from 0.5 ns (0.35 ns) 
to 3.0 ns, depending on gate size and load. The chip 
dissipates 0.5 (1.5) watts. The processor cycle time is 30 
ns (20 ns), which is also the minimum time to execute 
an instruction. The power supply is required to provide 
0 and +5 volts, The processor chip has 132 (144) pins. 
The chip size is 10.55 X 10.24 (13.45 X 14.12) millime- 
ters; the package is 0.9 in.’ (1.025) and is surface 
mounted. 

PERFORMANCE 
CLIPPER was conceived of and designed as a high per- 
formance processor, and design decisions and tradeoffs 
have been made whenever possible to achieve higher 
performance. That high performance has indeed been 
achieved is evident from the instruction execution 
times shown in Table IV. The minimum instruction 
execution time is one CPU cycle time, or 30 ns in the 
Cl00 and 20 ns in the C300. The peak program execu- 
tion rate is thus 50 MIPS on the C300. 

Benchmark results have been obtained both from 
real machines running current software and from an 
instruction set timing simulator. The simulator shows 
an average of 5 to 6 clock cycles per instruction includ- 
ing memory delays for typical integer programs on the 
ClOO. That works out to about 5 to 7 MIPS on the Cl00 
and 1.8 to 2.0 times that for the C300. 

Table V shows the results of the Dhrystone [43], 
Whetstone [8], Linpack [ll], Livermore Loops [27], 
Stanford, Smith and Doduc benchmarks on the Cl00 
(33 MHz) and C300 (50 MHz) CLIPPER, the Vax 8600, 
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FIGURE 6. CLIPPER’s Instruction Execution Pipeline 

8800, and 11/785, and the SUN 3/50 (with 68881), 
3/280 (with 68881), 386i/250 (with 80387) and 4/280. 
Whetstone and Dhrystone are in C; the others are in 
Fortran. All runs were with unoptimized code; published 
data usually shows optimized results. All runs were 
made by one of the authors personally, using the same 
source code in all cases, and should be comparable. 
Results have been normalized to the Vax 8600, since 
we no longer have access to a Vax 111780. The Vax 
11/780 is typically considered to be a 1 MIPS (millions 
of instructions per second) machine, and the Vax 8600 
is approximately four times as fast, or 4 MIPS. (Ac- 
tually, the Vax has a CISC instruction set, and thus 
generally runs at about 0.5 MIPS [12]. The Vax 11/780 
runs about as fast as an IBM System/370 machine run- 
ning at 1 MIPS on a scientific workload.) 

While there is considerable variation among the var- 
ious benchmarks, the Cl00 CLIPPER is approximately 
1.3 times as fast as a Vax 8600, or a little over 5 MIPS. 
The C300 CLIPPER is about 2.5 times as fast as a Vax 
8600, or about 10 MIPS. Performance ratings of all ma- 
chines shown would be higher with fully optimized 
code. 

Hardware Monitor Measurements 
A limited number of programs have been run on a 
Cl00 CLIPPER and measured with a hardware monitor, 
and also traced. Here we summarize the measurements 
taken from an execution of the SPICE circuit simulator 
on an MOS memory cell circuit. SPICE is a large double 
precision numerical program, and the results are not 
representative for other workoads. 

The execution time was 8.64 seconds at 33MHz; 1.37 
seconds of system time and 7.27 seconds of user time. 
The instruction cache miss ratio in user state was 
14 percent and the data cache miss ratio 10 percent; 
for system state, the miss ratios were 2.3 percent and 

3.9 percent. User state data references were 69 percent 
read and 31 percent write; in supervisor state, the fig- 
ures were 54 percent and 46 percent. Instructions were 
85 percent fixed point, 12 percent point, 10 percent 
branch and call, and 3 percent other. The percentages 
of the most common instructions in user state are 
shown in Table VI. 33 percent of the branch.es were 
unconditional, and 67 percent were conditional. The 
frequencies of the various address modes are shown in 
Table VII. Data types for compares were 47 Ipercent 
quick, 32 percent double, 13 percent word, and 9 per- 
cent immediate. Floating point instructions were 
28 percent add double, 31 percent subtract double, 
30 percent multiply double and 9 percent divide dou- 
ble. 11.7 percent of the instructions were “quick” types. 

Performance versus Cycle Time and 
Cycles/Instruction 
For a given instruction set architecture, CPIJ perfor- 
mance is inversely proportional to the product of 
cycle-time and cycles/instruction. CLIPPER achieves 
its high level of performance via a careful tradeoff of 
these two factors, rather than forcing all instructions to 
execute in one cycle, as is suggested by many RISC 
proponents [18, 33, 361. 

The disadvantage to the single cycle per instruction 
approach is that not all instructions are equally com- 
plex, and the cycle time must accommodate the longest 
single cycle instruction; conversely, partitioning an in- 
struction into a larger number of sequential phases pro- 
vides more possibjlities for overlap. For these reasons, 
the CLIPPER designers chose to implement the instruc- 
tion set in the manner of a traditional mainframe, 
whereby the longer and more complex instructions are 
permitted more cycles to complete. The CPU cycle time 
in the Cl00 (30 ns) was chosen as a design goal, on the 
basis that the technology available at the time of chip 
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TABLE IV. Execution Times for Common Instructions 

Add Word 1 30 1 20 
Logical 1 30 1 20 
Move Word 1 30 1 20 
Load Word/Pop 4-6 120-l 80 3-5 60-l 00 
Store Word/Push 8 180 5 100 
Branch (not taken) 4 120 4 80 
Branch (taken) 7-9 210 7-9 140-l 80 
Multiply word 26 720 14 280 
Floating Add Single 25 750 12 240 
Floating Add Double 27 810 13 260 
Floating Multiply Single 24 720 13 260 
Floating Multiply Double 69 2070 17 340 
Floating Divide Single 110 3300 50 1000 
Floatina Divide Double 183 5490 71 1420 

Note: Floating point times vary; figures given are averages 

TABLE V. Benchmark Results 

Unoprimized code in all cases. (Quality of optimizers varies; published results are usually from optimized code.) Each set of data 
(with one exception) consists of two rows. The first row of each pair contains the raw performance numbers. The second row of 
the pair shows the data normalized to the Vax 8600 (first column). In the second row, in all cases, bigger is better. The row 
“average ratio” represents the (arithmetic) average speed ratio of the machines to the Vax 8600. 

Dhrystone 1 .l 
(dhr-ystones) 

Whetstone (double) 
(kilowhetstones) 

Whetstone (single) 
(kilowhetstones) 

Linpack 
(mf Lops) 

Livermore Loops 
(mf Lops) 

Stanford (ms) 
Composite-non-FP 

Stanford (ms) 
Composite-FP 

Smith (set) 

Smith (ave) 

Doduc (set) 

Averaae Ratio 

5893 
1.0 

1648 
1.0 

1935 
1.0 

.536 
1.0 

.521 
1.0 

863 
1.0 

1538 
1 .o 

236 
1.0 

1.0 
140 
1.0 

1.0 

1889 8670 
.32 1.47 

.36 1.24 

692 3429 
.36 1.77 

.218 .792 
.41 1.48 

.198 .529 
.38 1.02 

2356 561 
.37 1.50 

4274 1132 
.36 1.34 

589 176 
.40 1.34 

.308 1.23 
355 203 
.39 .a4 

.37 1.32 

1732 3942 7936 10489 17005 7246 
.30 .67 1.35 1.78 2.89 1.23 

617 909 2352 2765 5259 1202 
.38 .55 1.43 1.68 3.19 .73 

696 972 2667 4000 7026 1587 
.36 .50 1.38 2.07 3.63 .82 

.077 ,105 .777 585 1.40 ,195 
.14 .20 1.45 1.09 2.61 .36 

.070 .095 ,617 ,484 .990 .185 
.13 .18 1.18 .93 1.90 .36 

2435 1143 582 698 347 694 
.35 .76 1.48 1.24 2.49 1.24 

4630 2481 1119 1163 675 1685 
.33 .62 1.37 1.32 2.28 .91 

708 412 156 208 102 287 
.33 .57 1.51 1.13 2.31 .82 

.470 .385 1.51 1.23 2.35 .698 
639 449 95 110 83.9 359 
.22 .31 1.47 1.27 1.67 .39 

.30 .48 1.41 1.37 2.53 .76 

Figures for Dhrystones [43]. Whetstones [El, Linpack [I I] and Livermore Loops [27] are given in number of units per second. “mflops” is “millions of 
floating point operations per second.” Figures for Stanford, Smith and Doduc are given in units of time. Linpack matrices with leading dimension of 201. 
Livermore loops mflops are harmonic mean, vector length 468. The “Smith (ave)” line gives a weighted average of subcomponents of the Smith 
benchmark, normalized to the same weighted average for the Vax 8600 (paper in preparation). 
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TABLE VI. Instruction Frequencies, Spice Program 

load double floating 
load address 
loacl word 
add word (fixed) 
branch conditional 
store double floating 
subtract quick 
shii arithmetic immediate 
move word 
multiply double 
compare quick 
subtract double 
load immediate 
add quick 
move double 
add double 
store word 
load quick 
move longword to double 
branch 
compare double 
return 
Call 
compare immediate 
push word 
divide double 
compare word 
and immediate 

11.58 
9.87 
9.71 
7.65 
6.57 
5.42 
5.26 
4.19 
3.84 
2.63 
2.53 
2.52 
2.43 
2.41 
2.28 
2.26 
1.69 
1.48 
1.29 
1.28 
1.26 
0.95 
0.95 
0.91 
0.74 
0.72 
0.66 
0.51 

11.58 
21.45 
31.16 
38.81 
45.38 
50.80 
56.06 
60.25 
64.09 
66.72 
69.25 
71.77 
74.20 
76.61 
78.89 
81.15 
82.84 
84.32 
85.61 
86.89 
88.15 
89.10 
90.05 
90.96 
91.70 
92.42 
93.08 
93.59 

fabrication would permit the basic instructions (e.g., 
add, logical operations) to complete in one cycle. 
Longer instructions were allowed to take as many 
cycles as necessary, and the appropriate hardware sup- 
port was placed on-chip to ensure that the instructions 
executed correctly in the presence of traps, interrupts, 
and data and register dependencies. 

As a result, in 1986 it was possible to build a 33 Mhz 
part and in 1988, a 50 MHz part. This compares with 
speeds of about 16 MHz for the initial Spare implemen- 
tation (1987), and 8 MHz for the initial MIPS Corp. 
implementation (1986). The minimum instruction time 
for those machines is one cycle, so the peak instruction 
rate of CLIPPER is substantially higher. 

Performance Improvement 
There are two approaches to improving the perfor- 
mance of an implementation of a given instruction set 
architecture. The first is technology scaling, by which 
faster technology and denser packaging (or a smaller 
chip) permit the machine to run faster without any 
changes in the design architecture or even in the cir- 
cuit diagram. 

For the most part, performance improvements in 
scaling from one technology (e.g., 2-micron CMOS) to 
another (e.g., 1.5-micron CMOS) are independent of the 
actual absolute value of the cycle time. The cycle time 
in a m.achine is limited by the longest signal path (in- 
c1udin.g gate delays) within a cycle; halving the longest 

path almost halves the cycle time. CLIPPER has already 
improved in performance significantly through the scal- 
ing and semiconductor process improvements that oc- 
curred in going to the C~OO, which also has a much 
improved floating point unit relative to the ClOO, as 
well as other minor functional changes. 

In considering the performance of CLIPPE:R, the fac- 
tor most strictly limiting performance on a high per- 
formance microprocessor is the memory int,erface [26]. 
As is discussed in more detail in [3], CLIPPE:R is most 
strictly limited by memory delays, despite the two 
buses (one each for instructions and data), and the fact 
that those busses are short and that each is #dedicated to 
communication between a pair of chips. In scaling any 
processor, the limiting factor will continue to be the 
memory interface, which does not scale as well as other 
aspects of the machine. 

The other approach to improved performance is a 
redesign which decreases the number of cycles per in- 
struction. In general, this can be accomplished by the 
use of more logic. This type of redesign has already 
occurred in going from the Cl00 to the C300, as is 
shown in Table IV. There we see that by reclesigning 
the floating point unit, floating instruction times have 
decreased significantly. Similar improvements are pos- 
sible in other multicycle instructions. In comparison, 
the Amdahl 47OV/6 required 5 to 6 cycles per instruc- 
tion, and that was roughly halved for the 580. The DEC 
Vax 11/780 needed about 10 cycles per instruction 
[12], which was reduced to about 6 cycles for the 8600 
[15]; the cycle time was only reduced from 200 ns to 80 
ns, but the total performance was improved by a factor 
of almost five. The next versions of CLIPPER will be 
complete reimplementations with the mean number of 
cycles per instruction reduced substantially. 

CONCLUSIONS 
The Intergraph CLIPPER microprocessor was designed 
from scratch to provide high performance, cost effec- 
tiveness, convenient programmability, and an architec- 
ture that can be expanded as technology improves and 
the art of computer architecture design adva.nces. 

Among the important characteristics of CLIPPER are 
a load/store, fully hardwired architecture, full feature 

TABLE VII. Frequencies of Address Modes for Spice 
Benchmark 

12(rl) 15.66 

32(~c) 10.77 

(rl) 8.04 

Wpc) 7.85 

[rxl(rl) 4.82 
32(rl) 1.62 
abs32 0.75 

WI(w) 0.23 

Total 49.74 

31.48 
21.65 
16.16 
15.78 

9.69 
3.26 
1.51 
0.46 
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instruction set with complex instructions implemented ory management units, and the clock; thus the user 
in an on-chip ROM, an instruction set encoding that doesn’t have to build his own cache or memory man- 
permits very fast decode, compact code, very fast cycle agement system. Opcodes and address modes have 
time, a sophisticated pipeline, on-chip floating point, been left available, so that the instruction set and 
and high performance. To minimize the costs of using address space may be easily expanded. 
CLIPPER in a product, CLIPPER is available as a small We believe that CLIPPER represents a good set of 
module containing the processor, two cache and mem- design choices. 

TRADEOFFS AND EXTENSIONS 

Instruction Set Choice 
Why Not “Pure RISC”? The current research trend in com- 
puter architecture is to design machines with extremely sim- 
ple instruction sets. The term RISC, named after the Berkeley 
RISC project [32], is sometimes taken to mean a machine 
with a simple, load/store architecture; it can also be used to 
refer to a machine with a specific set of “features,” including 
fixed length 32-bit instructions, single cycle execution, and 
register windows. This specific set of features is only one 
means to high performance; as is noted in [32]: “we some- 
what artificially placed the following design constraints on the 
hardware.” 

We decided not to use register windows for several rea- 
sons. Flynn [14] shows that register windows do not improve 
memory traffic in comparison to good register allocation 
mechanisms, and the large number of registers can increase 
the cycle time [19, 331. Fixed length instructions increase 
code size, memory traffic and cache miss ratios; data in 
Table I demonstrate that CLIPPER code is reasonably com- 
pact. The benefits of fixed length instructions are obtained in 
CLIPPER by placing the opcode and address mode in the 
first parcel (two bytes) of the instruction, so that efficient 
decoding is possible. Single cycle execution means that the 
cycle must be long enough to accommodate the longest 
single cycle instruction; CLIPPER allows instructions to take 
as many cycles as necessary. As with all RISC designs, 
CLIPPER is a load/store architecture, which only increases 
the code size slightly (see Table I), while greatly simplifying 
the pipeline control and interrupt and trap handling. Finally, 
the benefits of the more useful complex instructions (such as 
copy string and fill buffer) are obtained through the use of the 
MIROM; no complexity has been added to the implementa- 
tion or the actual hardwired instruction set. 

since the total number of operand specifiers is almost the 
same. 

2. There is usually little savings in execution time, since 
the same sequence of operations must occur. 

3. There is considerable additional complexity, because of 
the difficulty of handling memory traps and interrupts, espe- 
cially page faults. In particular, if there are multiple memory 
references per instruction, then there can be multiple page 
faults; an extreme case occurs with the M66000 which per- 
mits an indirect indexed address mode. 

Some complicated instructions seen in the IBM/370 and 
DEC Vax (e.g., translate, translate and test, edit, queue, 
polynomial, etc.) were omitted because of their substantial 
complexity, and the fact that the same functionality can be 
reasonably implemented in software. In practice, a compiler 
is seldom able to generate these instructions even when they 
are needed. All existing studies show that a small number of 
opcodes account for the large majority of all instructions 
executed; (see e.g., [5,35]). For many of the same reasons, 
we omitted complicated branch instructions (such as decre- 
ment, test, and branch if less than zero). 

Protection domains were limited to those possible from the 
protection bits assigned to page frames (see [3] for further 
discussion), since very few operating systems are prepared 
to take advantage of ring-structured protection domains or 
similarly complex designs. Likewise, a segmented address 
space was avoided, due to the inflexibility it imposes on the 
use of memory, including the impediments it provides to 
increases in the address space size, and the fact that the 
same functionality is obtained by protection bits on pages. 
General purpose registers were selected over dedicated reg- 
isters (e.g., index, data, and address registers) for program- 
ming flexibility and generality. 

A compatibility mode is not necessary in CLIPPER since it 

Why Not “More CISC”, and What We Chose Not To 
Include. 
There is a certain intellectual appeal to taking commonly 
needed software functions and implementing them in single 
instructions. Extreme examples are instructions to manipu- 
late queues and compute polynomials, but we can include 
such reasonable operations as the three memory address 
instruction in this class. There are several problems with this 
approach. First, the number of gates available on a chip in 
current technology is not sufficient to implement these in- 
structions entirely in hardware; microcode would have been 
required. Existing microcoded machines tend to be slow. 
(see [19, 33, 411 for extensive and detailed discussions of 
this issue.) 

A natural form of computation is memory-to-register, regis- 
ter-to-memory, or memory-to-memory, but such instructions 
are not provided for three reasons: 

1. It is very simple to generate the corresponding code 
sequences. Very few extra instruction bytes are needed, 

is not an upward compatible extension of an existing archi- 
tecture. Not having to provide this feature greatly simplified 
the design, avoided undesirable architectural compromises, 
and permitted increased performance. 

Extended precision arithmetic was not considered to be 
sufficiently useful at the time CLIPPER was designed to jus- 
tify the area required to implement it in hardware. Extended 
precision is currently implemented with instruction se- 
quences, and opcodes are available to implement extended 
precision in the hardwired instruction set in the future. 

Possible Additions 
One of the limiting factors in the design of a micropro- 
cessor is the silicon area available and the area required for 
each gate. For that reason, some features originally consid- 
ered were deferred until future CLIPPER versions. For exam- 
ple, a delayed branch can reduce the pipeline penalty due to 
successful branches. The problem with a delayed branch is 
that of saving the state when a trap (e.g., a page fault) or 
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interrupt occurs between the time the branch decision is 
made (the delayed branch instruction) and the time that it 
takes effect (one or two instructions later). Because of its 
sophisticated pipeline, the existing CLIPPER chips simply 
don’t have the space to implement this feature. (This is in 
contrast to various RISC chips which can easily include a 
delayed branch because each instruction executes in one 
cycle, thus only a very small amount of state has to be saved 
when a page fault occurs.) In addition to the delayed branch, 
a delayed load and vector instructions are also possible fu- 
ture enhancements. 

Pipeline Control 
CLIPPER is pipelined, and the pipeline is fully hardware con- 
trolled, with all interlocks (including checks for register de- 
pendencies) enforced with hardwired logic. This is in contrast 
to designs such as MIPS [4], where the compiler must reor- 
ganize code and inset-l no-ops as necessary. Some claim 
[19] that hardware pipeline control increases the cycle time, 
but this is disputed by others [33]. We chose to use hard- 
ware control deliberately because (1) it is a burden to require 
that the compiler understand the pipeline and inserts no-ops 
as necessary; (2) it is an unreasonable burden on the assem- 
bly language programmer and/or code generator to over- 
come the lack of hardware; (3) the implications of (1) and (2) 
are that without interlocks, code will tend to be “buggy”; (4) 
compilers and programs become implementation dependent; 
instead of just depending on the instruction set architecture, 
they depend on the precise features of the pipeline for cor- 
rectness. Object code is thus not portable between different 
implementations of the same instruction set architecture. We 
regard (4) to be the most serious of these problems. 

On-Chip Cache or Larger Instruction Suffer 
Considerable study was devoted to the question of whether 
CLIPPER should have an on-chip cache or a significantly 
larger instruction buffer than the current 6 bytes. We do not 
have space here to discuss the reasons for the existing 
choice in detail (see [3]), but the basic problem is that given 
the limited chip area, we were unable to put enough cache or 

buffer on the chip to yield a useful performance irnprove- 
ment. For example, the 66030 (which was available in 1967) 
has only 256 bytes of instruction cache and 256 bytes of 
data cache; such small caches are of little use, and much of 
the potential utility of the small instruction cache is obtained 
from the a-byte instruction buffer used in CLIPPER. In addi- 
tion, there are problems of virtual versus real addressing, 
synonyms, cache flushing, and cache consistency [39]. A 2- 
or 3-level cache (on chip, CAMMU chip, cache board) is a 
future possibility. 

Address Space Size 
Almost any shortcoming in a computer architecture can be 

overcome except too small an address space; this is the 
reason that DEC was finally forced to design the L’ax (“virtual 
address extension”) as a replacement for the PDP-11. CLIP- 
PER provides a flat, uniform (not partitioned) 32-bit address 
space. Because of the availability of additional address 
modes, it will be possible to define modes which produce 
more than 32 bits of virtual address. More than 32 bits of 
physical addressing can be obtained by changing the format 
of the page tables. These changes are straightforward and 
require few user programs to undergo conversion. We ex- 
pect that within 10 or 15 years, both physical and virtual 
addresses will need more than 32 bits. 

Better Multiprocessor Cache Consistency 
As explained in [3], the CLIPPER CAMMU implements a bus 
watch cache consistency protocol; it watches memory trans- 
actions on the bus, and maintains cache consistenf:y in a 
system with multiple CPUs and shared writeable areas of 
memory. The algorithm implemented requires that :shared 
writeable data be marked, and thus the CAMMU need only 
take action when the reference is marked shared. 13ecause 
the present CAMMU can do only one thing at a time, consis- 
tency operations interfere with normal CPU access, and thus 
the use of this mode should be minimized. With improved 
technology, we expect that it will be possible to implement a 
much more sophisticated bus interface, with a dual-ported 
cache directory and an optimized consistency algorithm such 
as is described in [42]. 
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