APPLICATION NOTES

TABLE OF CONTENTS

1..........BitManipulation

2. 00, . . . Compare Instructions
K RAM Expansion
B Multiplexing I1/0 Pofts
5.Extending I/0 Ports fron the Data Bus
6‘. . ; . . Expanding Input Sources Through Memory
7..... e e e e Extension of External Interrupt Levels
8..... P Double Precision Binary Add/Subtract Subroutine
. Binary Multiply Subroutine |
0.0 e Double Precision Binary Divide Subroutine
L Decimal Add/Subtract Subroutine
12 + « Decimal Mu]tip]y Subrqutine
13..... + « + « . Decimal Divide Subroutine

14 e e e Bootstrap Program for Reading Paper Tapes

BIT MANIPULATION
Abstract

The following applicaticn note describes the testing of various conditions
(or bit patern) in a register. It is hopeful that this will clarify the usage
of bit testing in F8.
Description

There are four condition codes in F8, namely-positive, zero, overflow and
carry. The user can test for any of the above four or any combination of the

above four. The logical implication of these four bits are as follows:

(a) Positive: set by the most significant bit of the result being zero.
(b) Zerec: set by the result being zero.

(c) Carry: set by the carry coming out of the most significant bit.

(d) Overflow: set by exclusive R the carry frem the 7th bit and 8th bit.

This is an indication of a change of sign in signed arithmetic.

The following are for testing bits and values of registers.
(a) Test for 1 in 6th bit of |
register. LR A 'R
' NI B'00100GG0"
ENZ
(b) Test for 1 in 6th or 4th
bit. LR AR
NI B'00103000"
BNZ

(c) Test for 1 in 6tk and 4th .
bit. LR A, R
: NI B'001G1000"
XI B'001G1000"

BZ
(d) Test for 6th bit in
' register being 0. LR AR
NI B'007100CC0"
BZ

(e) Test for 1 in 6th cor
4th bit. LR ALR
NI B'0010100C"
XI B'00101000"

1.0

(f) Test for 0 in 6th and 4th bit.
LR A,R
NI B'O
BZ

0101000"

{g) Test to see if register is
smaller than 128. CI B'lo0cceoo!
"'BC

(h) Test to see if register is greater
than 254. LR A,R
CI B'l

BNC

1111110!

For 2s complement arithmetic, the testing involves both positive and overflow bit.
(as shown in following examples).

(i) Test te see if reg R is greater

than B'01110000" (+112). LR AR

CI B'O1110000'
BM in this case, there is no need for
testing overflow. '

(j) Test to see if reg R
-1

reater
thar B'10000000' ()

g

28 LR A,R

CI B'10000000"

BM in this case, there is no need to
test for overflow.

(k) Test tc see if reg R is less
than B'C111000C' (+112).

LR A,R

CI B'O1170000"
BNO Test 2

BM Loc

Test 2 BP Loc

(1) Test to see if reg R is Tess
than B'10000CCG' (-128).

LR A,R
CI B'100000GC'
BNC Test 2

: BP Loc

Test 2 BM

The general relation in testing 2% coniplement values is such that
(1) Acc > value if overflow and positive are the same.
(2) Acc < value if overflow and P are different.

(3) Overflow will not be generated unless a 2 different signed number are
compared.

1.1

The fo]lbwing condition code table summarizes various comparisons.

Acc Value Result Condition Code(0ZCP)
+ve +ve AD B 00GC
tve tve A= B 0111
tve *ve A< B Co17
-ve -ve A >. B CGCO
-ve -ve A= B 0111
-ve -ve A<B 0011
+ve -ve A > B 001C
 AD>B 1011 }(depending on operand values)
-ve +ve A< B 0001
A B 1000::}(dePEFd1ng on operand values)

1.2

COMPARE INSTRUCTIONS
Abstract

The following application note describes the use of the compare instructions
"CM" and "CI" in performing magnitude or Algebraic comparison between two signed
or unsigned numbers.:

Description

F8 Microprocessor instruction set has two instructions for comparing two numbers:
'CM' and 'CI'. In 'CM' numbers compared are Memory content addressed by DC register
and accumulator, while in 'CI' numbers compared are Immediate Data (second byte |
of instruction) and accumulator. For this discussion, accumulator content is
noted by 'A' while memory content or immediate operand is noted by 'B'.

When "compare" instruction is being performed, condition codes are set of the |
result of following arithmetic operation: B is added with its complement of A, and
1 is added to the result. '

Result = B + A + 1

Compare instructions do not affect accumulator contents.

Example A = 45 0100 0111 4744
B 47 Result = 1011 1010 Com 45
% U

C "1"0000 0010

Hence the flags set would be 0ZCP

0011
(overflow is exclusive OR of carries from sixth and seventh stages). "0" in this
example because a carry was present from the sixth and seventh stages.

As the eight bits of data in A and B can be treated as signed number (2's complement)
or unsigned number (only positive numbers) it is important to know various combina-
tions of condition codes set by different values of A and B. Following table
summarizes such various combinations.

2.0

Number to be Unsigned Signed Condition

Accumulator compared with Magnitude Magnitude Remarks Codes
A B 0ZCP
Pos. Pos. AD>B A>DB 0000
Pos. "~ Pos. A=B A=B8 0111
Pos. Pos. A<B IXE: 0011
Neg.* Neg.* AdB A{B 0011
Neg. Neg. ~ A=8B A=8B 0111
Neg. ~ Neg. A)B A)B 0000
Pos. Neg. Al B A> B without OVF 0010
| A< B AD>B with OVF 1011
Neg. Pos. ADB A< B without OVF 0001
A>B AL B with OVF 1000

*Negative numbers are with Bit 7 = 1

Following ovservations can be obtained from above table.
1. If two numbers are to be compared for equality only "Z" flag is to be checked
irrespective of type of numbers.
2. If unsigned magnitudes to be compared between two numbers, carry bit indicates
the difference in two numbers. If carry bit is set:A L B. If carry bit is not
set:A > B.
3. If signed magnitudes to be compared between two numbers (any combination)
both overflow and sign bits are to be chécked.

A> B if both overflow and P are 1 or are zero (0 & P = 0)

AL B if overflow and P are not equal (0 8 P = 1)

2.1

Programs for Comparisons

1. For comparing A = B (sign or unsigned)
A is in accumulator

CI B compare with B ,
BZ Equal if zero flags set go to equal
------------ unequal

2. For comparing A > B (unsigned)

CI B
BNC Y1 if A greater than B--go to Y1
--------- A is either less than or equal to B

Y1

3. For comparing A;E B (unsigned)

CI B compare with B
BNC Y1 If A greater than B go to YI
Bz Y1 If A =B go to Y1l

..... =zZ Now A is less than B

Yr A is greater than or equal to Y1

4. Comparing two numbers algebraically
As per previous discussion to compare two signed numbers, exclusive or function
of sign and overflow bit is required, one method of doing such function is shown

below.
CI B A is in accumulator
B is compared with A
BF9 GRT If both OVF and POS are
zero A B hence branch to GRT

BNO Y1 To come to this inst--either
overflow = 1 or Positive = 1. If
overflow = @, positive is equal to 1
hence jump to Y1

BN GRT Now overflow = 0, if positive =0,
A>B f '

Y1 At this point either OVF = 1, or POS = 1
hence A S_ B

2.2

GRT Now OVF and Pos are both equal to zero
or both equal to 1

Hence A > B.

2.3

F8 RAM EXPANSION

Abstract

A Memory Interface Chip (3852 or 3853) may be used to expand the amount of
read/write memory in an F8 System up to 64K bytes. Both MI chips m1n1m1ze the
number of additional external parts necessary to build a working RAM interface.
This paper details two system designs; one using the 3852 MI with 4K dynamic RAM,
and one using the 3853 with 1K static RAM.

Static RAM Interface

The 3853 Memory Interface Chip is designed for use in interfacing various
types of static RAM with an F8 system. This chip provides the following signals:
16 Address Lines - allowing up to 64K bytes of RAM expansion

CPU READ - a signal for gating data from RAM onto the F8 Data Bus lines

RAV WRTTE - a memory WRITE signal .

REGDR - a pin allowing external selection of the address space driven by
the MI chip. '

Figure 1 shows a typica] system using the 3853 to connect 8K of static 2102 RAM
to an F8 CPU which has 2K of F8 ROM (3851).

Connections between the 3853 and the CPU are the same as those between the
F8 ROMs and CPU. Name1y, 5 ROMC control 1ines, 8 Data Bus lines and two timing
lines (P and WRITE) not shown on the Figure. Thus, the MI chip looks just Tike
another ROM chip to the CPU.

Because the Data Bus Tines in an F8 system are bi-directional, any chip
driving this bus must be ‘3+state. The CMOS devices labeled 340097 on Figure 1
perform this function. Data coming from 2102 RAM is buffered through the 340097's
which have an external control Tline for forcing them into a high output impedance
state. This control line is, in turn, driven by the MI chip signal CPU READ
wh1ch is ANDed with a PAGE SELECT signal derived externally. " Thus, when the Data
Bus Line is to be driven by RAM (during, say, an instruction fetch), the 3853

3.0

raises the CPU READ line and if the PAGE SELECT line is tnue, information from RAM

is gated onto the Data Bus. In all other cases the CPU READ 1ine holds the buffers

in high impedance output state. Note that for RAMs which have externally controllable
‘3-state capability, these buffers may not be required provided the total line
maximum capacitance of 100 pf. is not exceeded on the Data Bus. In this case the

CPU READ signal would be connected directly to the RAM 3<state control input.

The CMOS buffers (34050) shown driving the Data Bus out to the RAM array
in Figure 1 may or may not be required depending en the total line capacitance.

If the capacit&nce on each Data Bus line can be held to under 100 pf. total,
including ROM, MI, RAM inputs and interconnect, then these buffers may be elimin-
ated.

The address space of RAM drivén by the MI chip is defined externally with
decoding logic. The low order ten bits of address coming from the MI are
connected directly to address line inputs of the RAM chips. Drivers on the
Memory Interface are designed to drive a 500 pf. load on each address line.

Higher order address lines (ADDR 19 - 13) are then used in this design to deter-
mine memory pages. Each page is 1K bytes of memor&. To do this, these lines
are decoded by a 9315 (1 of 10 decoder) which directly generates Chip Enable
signals for the RAM. Note that the first two pages of memory are used by F8 ROM
(i.e. mask options have defined their ROM contents as occupying page zero and
page one) and hence connot be assigned to a page of RAM.

A1l of the RAM chip enable signals are then effecfive]y ORed together by the
ON30 and a PAGE SELECT signal is formed. This signal is true whenever a page of
RAM is being addressed by the F8 system and is used with the CPU READ signal to
gate Memory data onto the Data Bus. PAGE SELECT is also fed back into the MI |
chip thru an oben collector buffer (shown a$ ON17) tied to the REGDR pin. This
pin is wire—ANDéd internally (an internal pullup is also provided) with other.

signals and used to determine when the MI chip should be driving the Data Bus.

3.1

The system shown in Figure 1 is designed to operate at a maximum P clock
rate of 2 MHz, To meet this, the 2102 RAM used must have a maximum access time
of 650 nS.

Further RAM expansion ihan that shown here may be accomplished in any one of
several ways. As long as the current ahd capacitapce load driving capabilities
of the various chips used is not exceeded, one simple way of further expansion is
to perform more extensive decoding of the high order address lines from the MI
(say ‘perhaps with a 1 of 16 decoder, or several). RAM pages are then just stacked
deeper. Another way of expanding would be to use more than one MI chip in a system.
The only requirement when doing this is that the address space assigned to each
MI (by the external address decoding logic) be different. -In this case, each
MI chip would have its own set of Data Bus buffers as well as address decoding
logic and RAM array.

It should be noted here that'in a system which mixes F8 ROM and Memory Inter-
face chips, a great deal of care must be taken when using the second DC of the MI
because the ROM contains only a single DC. This involves the use of the SWAP
instruction which exchanges the contents of the two DC's on the MI but is a no-op
to the F8 ROM since it does not have a second DC. (See the F8 Manual for further
details). As a result, it may be desirab1g in some systems to use standard ROM
chips to replace some RAM on the outside of an MI chip instead of using F8 ROMs.
This gains the full advantages of the MI's dual DC but sacrafices the 1/0 porfs,

Internal timers and External Interrupt facilities of the F8 ROMs.

Dynamic RAM Interface

The 3852 Memory Interface Chip is designed for use in interfacing dynamic RAM
with an F8 system. In addition to the signals generated by the 3853, the 3852 |
provides the following two signals: '

CPU SLOT - used to divide a CPU instruction cycle in half. During the
' first half the CPU uses RAM; during the second half, RAM is
refreshed.

3.2

CYCLE REQUEST - used to signal the beginning of a RAM access cycle.
Each CPU cycle is divided into two sections by the CPU SLOT signal (except during
execution of the ST instruction). The first section is always used f&r the CPU's
access to RAM. The second sectioh is then used every fourth or eighth time by
the 3852 to refresh the dynamic RAM. fhe 3853, thus, internally multiplexes the
Tow order Address lines between the correct RAM address (contents of the Program
Counter) and an internal 6-bit refresh counter.

Figure 2 details a system design using the 3852 to connect 32K of Dynamic
RAM (the 16 pin version - 4096) with an F8 CPU and 4K of F8 ROM. This design has
a good deal in common with that shown in Figure 1 for static RAMs. Several other
tasks must now be handled by the MI chip, however, because of the RAM refreshing
requirements. '

Since the 16 pin 4K RAMs are being used in this configuration it is necessary
to multiplex the 12 address lines on 6 lines to be sent to the RAM chips. This
may be simply accomplished using 3 9N51 (AOI) chips. The MI signal called
CYCLE REQUEST is then used, thru a one-shot (9602) to generate the contrq]»gating
signals for the multiplexing. CYCLE REQUEST is also used to generate the RAS

and CAS strobes for the RAM chips. The timing for these signals is as follows:

7 X N
TAS &—— X + 150nS ——>
MX _.J X + 1oo.ns———->|

where a typical value for X is &= 300nSand is the address set-up time
on the MI chip.

During a normal CPU cycle when information is being fetched from RAM, it is
necessary for the information to be held on the Data Bus lines for the entire
length of the cycle. This means that in order to divide .a machine cycle in hé]f
(and use the 'second part for refreshing RAM) it is necessary to store the infor-

mation fetched during the first part of the cyele. In the design of Figure 2,

3.3

v°e

R K RoM + B K RAM CONFIGUR ATION uSING 2l02's

Fi6GuRre

/

[\340627
X8 =
34009
T/0 ™ F-8 8
Llepu DATA BUS X
/o 1850
3
[-
o < 3% I+ g3 g
® “LiRom 90O 3 A 33 E J 3
I/o 2o |/ . o A o A a 2
[——
o CPu £2A R0 ALY i 2wl 7/ 802
] ,) R ATE ’/~1> - —“ o7 —
/o «—3 — r —
/ bl ROM (43 ’ . J
z/0 295 ! ,.31] i
3853 [S OIS I 7 S N ey N - :
BOOR @~ [y Nilrs 17 s B 272 7 R e 7y 7 s
ROMC. MT < d .
(L_E. - / : L2 T
EXT, INT, 7noomd =)3 ¢ I l [
[- AN :
2 e AP R g, | P TIhJR >
qus EE' ;;, — _ e o ¢ o .
7a a <
£ 2 [
p— . . .
L] . ’
[L] L]
9GN30 L . . .
* . ’

2102

2102

//

2102

i

m:éw-l

G°¢

GURE 2_
YK ROM + 22 K RAM-CONFIGURART ION USING MKHOT(0

N 3Yose
‘>';’.7..—:.=

<
. T 340097
2/0 - | CLPU ‘ g ——
1 z8s0 DATA BuS (B-%) < e

I/o e .
Tk
cPu_ReEAD
v
2 _19~oo oo
%lOK
i RAM WRITE : _ ‘
Z/o «—d | ROM [2vat 2 Qe g A
I]o = | 3851 —_] . Mux '\\'2. a § a § a i a §
< o] — -
i RoriC 3854 Tl .cléam L 1:43'01;9.&'9‘-' unr‘y o . Yoqell it Yol st . . BRI
i ML LA ELOT)] o 9 9 9 —g
Ijlo ‘_.~._ Rom | s - : —— D)
o fan o | 11l °
N 1 o 7 ry o —
9|>Z BT 3 >wo% oo AL L ot 22 a9
9 —q
Ro™M g
1/0 == ol d €
1
10 ~—{ | 3BT gl ; L] v 1]
5 11 " 2P0) -
a : >~/a% i TR vy U T T
. 4 »
£ p? o] p 1 —q
T/0 <« | Rom qus ks i) —4
#o = |zes Saam 11— Il [
a
-
. ’ .
L4 . 3
—] " L]
INIO * . .
4 . v
E
(LAl Il
= — >~m L7777 ono LI Lo (L2 L oge
ﬂ q L LI e————C}
d » —_

this is accomplished for the Data Bus lines by using the CPU SLOT signa]'and two
levels of CMOS buffering (340097's). During the first part of a cycle, CPU SLOT
is true ahd information from RAM is passed onto fhe node betweén the two buffers.
When the second part of the cycle begins (during'which time RAM will be refreshed),
CPU SLOT goes Tow temporarily latching the RAM information 6nto the node between
the two bufférs. This allows the data to remain constant on the Data Bus lines
for the entire length of thevcyc]e. An ordinary latch may aTéo be'used4instead
of the second Tevel CMOS buffer described here.
Page select information must a1so be latched since the address Tines will
be changing during the second part of the éyc]e; One latch from a 9314 used
in D-mode performs the desired function. | ’
The system shown in Figure 2 is deSignéd to operate‘with a @ clock rate
of 2 MHz. A maximum RAM access time of 350nS is required to meet this design goal.
As with the 3853 system, further expansion of RAM in a 3852 interfaéed system
may be accomplished in any one of several ways (further address, decoding and |
RAM array stacking or use of multiple MI chips). Also, the necessity of the buffers
(340050) driving the Data Bus to the RAM array_is contingéht upon the total capaéi-

tance on those lines.

Conclusions |

The 3852 and 3833 Memory Interface Chips proVide an easy_meahs of’expanding
the amount of Read/Write memory in an F8 system. The chips provide a]]_fiming |
and control signals neceSsary for dynamic RAM ihterfacing and static RAM inter-
facing, respectively, of most common memory chips avai]abTeAtoday. This-mfnimizes
the number of additional external circuits required and hence minimizes the overall
system cost and complexity. For detailed information on the‘e]eétfica]land‘timing

characteristics of the Memory Interface chips, refer to the F8 manual.

3.6

MULTIPLEXING F8 I/0 PORTS

Abstract

Each I/0 Port in an F8 system is 8 bits wide. Although the F8 CPU and F8
ROM each offer two I/0 ports per circuit, some applications may require an expansion
of I/0 capability. This may be easily accomplished with standard multiplexing
techniques. Three cases of I/0 expansion are examined. First, consideration is
given to expanding output latches of an F8 system. Next, expanding the number of
inputs into an F8 is discussed. Finally, expansion of both outputs and inputs in
the same system is described. A1l of these techniques employ MSI circuits connected

to the F8 I/0 port externally.

Expanding F8 Output Latches

A simple expansion of F8 I/0 ports may be accomplished using two F8 I/0 ports.
One port will be used as the selector while the other is needed for data transfer.
Using this scheme, a total of 128 output latches may be realized. The cost of this is
twofold; extra circuits and additioﬁal programming}

For the purpose of analysis, this paper will expand the number of F8 output
latches to eight; cqnsiderations for higher and Tower expansion will also be discussed.
Two types of MSI circuits are needed to accomplish this expansion. Each 8-bit I/0
port will be a dual 4-bit latch. The 8-bit output latch is realized using the 9388
Dual Four-Bit Latch. A 1 of 10 decoder, the 9301, is also required.

The expansion of F8 I/0 to 8 output ports is shown in Figure 1. Three Teads
of I/0 Port 0 of the CPU are used to select one of ten ports. A fourth lead, bit
04, is used as an enable 1ine by the latches. This bit will be used to control
data entry into the latches. Port 1 of the CPU transfers data ffom the microprocessor

to the latches. Using this method of I/0 expansion, a new sequence of instructions

4.0

are necessary to output an 8-bit byte from the accumulator of the CPU to the latches.
Two types of F8 instructions are used. One of these is the Load Immediate Short
(LIS) instruction. |
LIS a
This instruction will load the low order four bits of the accumulator with the four
bit operand "a". The upper four bits of the accumulator will be set to zero. The
other instruction is the Output Short instruction (OUTS) which transfers the content
‘of the accumulator to the port specified by the four bit operand "a".
OUTS a
Each eight bit transfer to an expanded I/0 latch involves five instructions.
First, the data must be transferred from the accumulator to I/0 port 1 of the CPU.
This may be accomplished with an OUTS 1 instruction. Next, the desired latch must
be selected by Toading CPU port O with the proper code. At this time, the enable
line, bit 4, must be Towered. Pefforming this operation allows the data to be
accepted by the desired latch. This operation fequires two instructions.
LIS X |

2%1%o

ouTsS 0
Note: XoX1Xg is the three bit address of the output latch.
The LIS instruction will load the accumu]atok wfth the latch address and the enable
bit; the OUTS instruction transfers the content of the accumulator to I/0 port 0.
Finally, the enable Tine of the Jatches must be broughtvhigh, so that the contents
of the latch may be maintained. This may be done by clearing port 0 as shown below:
LIS O

ouTs 0

4.1

The sequence of instructions for an output transfer becomes:

OUTS 1 Put data on Port One

LIS]XZX]X0 Se]éct a latch, lower the enable 1ine

ouTS 0 Put the select bits on port 0
LIS 0 Clear the accumulator
OUTS 0 Raise the enable Tine port 0

The first instruction makes the data available for all of the latches. The third
instruction selects the desired latch and drops the enable 1ine, allowing the
desired latch to accept the data. The last instruction raises the enable 1ine

so that the output data is held. ATl five instructions are one byte each. The
OUTS instruction require two cycles to execute while the LIS instruction only
requires one. Thus, each output to an expanded latch is a five byte operation
executing in eight cycles. |

Output Macro

A macro may be developed to handle a data transfer to these external latches.
Suppose that a byte of data is already in the accumulator. A suitable output macro
would be:

MACRO
OUTPUT &SEL Macro Name

OUTS’] Output Data From Accumulator

LIS &SEL “Put Selection Code in Accumulator
ouTS 0 Output Selection Code to Port O
LIS O Clear Accumulator

OUTS 0 Raise Latch Enable Line

MEND

The argument, &SEL, is the selection code for the desired latch. When used
within a program, this macro will transfer the accumulator into the latch designated

by SEL. The content of the accumulator is cleared after this operation, as is the

4.2

content of I/0 Port 0. The data that was in the accumulator is'stored in Port 1.
Example

Suppose an F8 system is configured with eight expanded output latches, as shown
in Figure 1 and it is necessary to transfer the contents of scratchpad fegister one
to Tatch six and scratchpad register two to latch three. The following sequence

of instructions may be used.

LR A,T Load R1 into the Accumulator
OUTPUT B'1110' |
LR A,2 Load R2 into the Accumulator
OUTPUT B'1011"
Some cases may exist where the number of instructions per output may be reduced.
For instance, in cases where all of the latches are to be loaded with identical
: data,‘only one output instruction to port number one is required. In another sit-
uation, where only one latch will experience data changes, that latch can be selected
once, and the data in the latch may change by simply writing into I/0 Port one.
If all of the latches are to be cleared, the Master Reset (MR) Tine of these registers
may be connecfed to a pin of port zero, the selector port. Thus, a pulse on this
line will reset the Tatches.

Other Configurations

When a different number of latches are used in this type of output expanding
technique, some system details may change. If, for instance, only seven latches
or less are required, the need for a decoder is not necessary. The selector I/O
port can use seven lines for latch selection and the eighth 1iné for the enable
strobe. If more than eight latches are employed, a larger decoder may be required.
In addition, 'an extra instruction byte is required. LIS is a one byte instruction.
However, if more than eight latches are used, the selection code will be at least
four bits; add another bit for the enable bit and a five bit select word is require

The LIS instruction only has a four bit operand. Thus, the Load Immediate instruc-

4.3

tion (LI), a two byte instruction, will be required.

Expanding F8 Inputs

An input into the F8 system may be sampled from any F8 Port. Applications
exist where it may become necessary to increase the number of input sources into
an F8 system. This may be done using multiplexing techniques. Once again, two F8
I/0 Ports will be required. One port, CPU Port 0, will be used to select one of
many input sources. The other port, CPU Port 1, will pass the data from the source
to the accumulator of the CPU.

During this discussion, a system expansion to sixteen input sources will be
examined. Only one type of TTL MSI circuit is required. This is a 16-input
Multiplexer, the 93150.

The implementation of input expansion is rather straightforward. A diagram

of the circuit is shown in Figure 2. The two CPU Ports are used. The output
of port zero is connected through buffers to the input of the sixteen multiplexer
- decoder inputs. A buffer is required because the F8 I/0 Port can only drive one
standard TTL load. (Designs employing another technology, Low Power TTL or CMOS,
may eliminate the need for a buffer, at the expense of other design tradeoffs).
The output of the F8 I/0 Ports are inverted. Thus, the external buffer will invert
the output to its original state. Once the data source has been selected, an 8-bit
byte is available on CPU I/0 Port 1.

The sequence of F8 instructions for reading one of the sources of data from

the configuration in Figure 2 is:

LIS a Select a Data Source

OuTS o0

INS 1 Read the Data
The four bit operand of the LIS instruction seiects one of 16 data sources. Once
this code has been entered into the accumulator, an output instruction transfers
it to CPU Port 0. Thus, the select code wi]] be issued to the multiplexers. The

proper data is now available on Pert 1 of the CPU. An input instruction, INS 1,

4.4

will transfer this data from I/0 Port 1 to the accumulator. In most cases, each
input to the accumulator from one of the expanded input sources requires the above
three instructions. These instructions are each one byte Tong. The OUTS and INS
instructions execute in two cycles while the LIS instruction requires only one
cycle. Thus, each input from configuration of Figure 2 is three bytes Tlong and

| executes in five machine cycles.
Input Macro

A macro may be written to perform an input operation into the F8. The argument,

SEL, selects the source of data.

MACRO

INPUT &SEL

LIS &SEL Put.Select Code into Accumulator
ouTs 0 Output Select Code to Port O

INS 1 Read Data into Accumulator

MEND

This macro will read data from the desired source and leave it in the accumu-
lator. The original content bf the accumulator are lost.
Example

Suppose it is necessary to read the data from sources two and nine in Figure 2
and store the data in scratchpad registers one and two respectively. The program

to perform this operation would be:

INPUT B'0010'

LR 1,A Store Data in Reg']

INPUT B'1001"

LR 2,A Store Data in Reg 2
First, a select code for data source two}must be put in the accumulator and then
transferred to I/0 Port 0. Then the data may be read into the accumulator and

passed on to register one of the scratchpad. This sequence of operations is repeated

4.5

for the second byte of data.
If data is continuously read from the same source, it will not be necessary
to update the select €ode. This will save two instructions per input.

Other Configurations

As a larger number of data sources are required, the amount of multiplexing
will increase propoftional]y. The multiplexers may be stacked to allow a total
of 256 sources of data using two I/0 Ports.

Expanding Inputs and Outputs Simultaneously

The concept of expanding the inputs and the outputs may be combined. Still
using just two F8 I/0 ports, a system may be configured so that the number of
output Tatches and input sources-is increased. One I/0 Port will be used as a
selector. In addition to choosing the source or destination of the data, the selector
port must also specify the direction of data flow. The other F8 I/0 Port will be
used to transfer the data.

In order to combine both the input and output simultaneously, it is necessary
that the input 1ines do not affect the logic levels of the I/0 Port during the
output mode. Therefore, buffering is necessary. A three-state CMOS Hex non-inverting
buffer .has been selected for this task. |

The full expanded system is shown in Figure 3. Bit 7 of CPU I/0 Port O controls
the direction of data transfer. When it is HIGH (LOGIC ONE), data may be transferred
to the output latches. When this bit is zero, the input data from the multiplexers
may be sampled.
Conclusion

The expansion of F8 I/0 ports with external MSI circuits may be accomplished
using multiplexing techniques. Although this expansion requires additional pro-
- gramming and additional circuits, it is indeed simple. Timing considerations are
kept to a minimum, in addition, the users do not have to worry about other aspects

of the F8 system. The external circuits are completely independent to the microprocessor.

4.6

LY

i IS 6 1T

Y 93¢

RN B 01 & N
- 191 .

w_ﬂ-‘
N

¥

NS

IEE
R HE

S—
P N
}: s 50
] o o RPN 1
H 3.
H

4

T,

+

v

TR
! i

Tl

‘73Q;8

Tl

%O%

95@5

[930

93Cs

75Cd

c’/ "(IS

73
i

I

Expandec/ Oufpur OF F§ Aafcﬁcg

F/y, /

llll

Hsl

lll

il

I8

/a*

7

9

o,

308
RYOX|
3/¢

8t

W
93150

I“m, AN ploie,

ST

TR

A :
5’ 1 Tnpar Maltyplese:
B

Fg

<

J\) '(.

)

—L/DU

Zio Porr ©

OO0 ¢t 63 O oL ¢, =

V | I/0 Portd
o |

aney
5T

T OO DGz ~~'—§"Ti§—éj—
V |
, 3 / : |
' S‘..i, 3t ' I
i & .
, x
!
|
] H
b

2

S YW

A 93150

ﬁ/{ ,Z;;p.vr/}?u/f,j:ltn,
e

: ,' Do D Da - Does Los

CRIANS|
$ 16 Lpon Melppton

‘D, [

fj/so

> K '4/7/"-'1 /}’“'""" 4 ‘E’ V4 //7/:.,r P)/}r}ulur.

S) \4."_.
g93/50

A
A1 Zipor Dby

AR Des 2l

4 - -

Ekpanded _Zn,?-Jf Joo £ 8 I/() forts

Fig 2

Dew 2 P11 ‘)h 0D Deels Uu o I Dz, Dy {2 - e e
i

b

R § & i T =

. u N B ; I T

IS 3 Y § LI
Coon tin Souvtces jo 4 he G2l gy I o,,, ,,,(:(-
i VR } .
R
/7 'y

/%Lr'f Nu’i),'é,w‘ I L’.L.;n'
gd3)Sc [9
93/¢ |/

6%

f’rorr- anuf
}7;U)f'/j7/e LR Y

2850

FSCPU

/76 2 0

Z/0O PoR7 ¢

10 1142 13 14 1S /6 17 |

"T?"(S“C}‘"(

Lo wrgagscsasc oy
TETETTTYY
. \??"7,'? T o
N - |
{ :
. | N
; — S b et e
oL ;
—=7
o 1
: se e e :
L :
— Ci
= i
— / , ' i
. | B e e o e e o e+ rram 4
e e e, _1/ i
L i
_— HE
=S J ; 2
T e e - i

!
!

Similutaneses T /O Cxpans fon

frg 3

EXTENDING I/0 PORTS FROM THE DATA BUS

Hardware, external to the data bus, may be added to an F8 extending the I/0
capability of the microprocessor system. Design of this external logic requires
an understanding of the input and output instructions. The advantage of this
technique is an economical increase of I/0 capabi]ity without additional program-
ming.

Input and Output Instructions

There are two F8 input instructions, IN and INS, and two F8 output instructions,
OUT and OUTS. Each instruction requires three machine cycles to execute. The IN
and OUT instructions are each two bytes long. The first byte is an 8-bit op code
and the second byte, the operand, is an 8-bit port address. The INS and OUTS in-
structions are only one byte long. The first four bits are used for the op code
and the remianing bits form the lower half byte of the port address. (The four
high order bits of the port address for these instructions are set to be zero). Thus,
the IN and OUT instructions may select one of 256 port address while the INS and
OUTS only selects one of 16 ports.

A11 four I/0 instructions require three machine cyc]es'for execution. During
~the first cycle, the port address is available on the data bus. The second cycle
is used to pass data to or from the accumulator while the third and final cycle
is simply the next instruction fetch. The CPU dictates the state of the peripheral
F8 circuits (F8 ROM, F8 MI, and F8 DMA) via five control lines. During an I/0

tranéfer, the second cycle, these five 1ines will be at the following levels;
Control Line Levels

Control Line : OUTS or OUT. INS or IN
ROMC4 1 1
ROMC3 1 1
ROMC2 0 0
ROMC] 1 1
ROMCO 0 1

For an output instruction the data will be passed.‘fpqm the accumulator to the
1/0 port, while an input instruction transfers data to the accumulator from the port.
5.0

1/0 Logic
A block diagram of the logic necessary for additional I/0 ports is shown below.

This circuit is connected to the F8 data bus.

LT
iﬁ‘FAG fBu{’Fe(‘ f/-
) T K INPUT
cg WRITE - Je _Tﬁﬂ&~_ |
‘ ' Cpara BUS DRIVE
CPU I O
- DATA BUS » z .
— LCd‘C h _— N T —
1 [ouTPy
DECODE E
INPOT
CONTROL LINES
OUT?U7'f:i::)~———“
Figure 1

Each new port in the system must be assigned a port number for the instruétions
to reference. This circuit must decode the data bus for the specific port address.
If a match is found, it will flag the match in a flip flop. Next, the CPU control
lines are decoded to the Input and Output states. If an input instruction is found,
the transfer buffer connected to the data bus is opened. If an output instruction
is detected, the external latch is enabled to retain the content of the data bus.

If neither instruction is detected,no action is'performed. The WRITE pulse,
generated by the CPU on the control lines, performs the system timing. This pulse
identifjes the end of machine cycles as well as time slots when valid data is
available on the Data Bus and control lines.

The Timing diagram for this system is shown below.

WRITE [] [] [] [

Data Bus Decode |t Add | [oata |
Flag Flip Flop | .

Control Lines | *lw)
Latch Pulse (Output) faw

Data Bus Drive (Input) l L___M

5.1

The Tatch pulse is used to open the external latches while the data bus drive line
allows the input source data to be put onto the data bus.

A very important consideration in this system mﬁst be given to the Toad that
the external logic places on the CPU generated signals. Within an F8 system, the
data bus lines, the CPU control lines, and the timing signals are primarily intended
as intrasystem; i.e. they originate from an F8-MOS circuit and drive one or more
F8-MOS circuits. As such, they have very 1ittle drive capability. For this reason,
it is recommended that CMOS circuits be used to interface with the F8 signals and
the external logic. In addition, a CMOS three state circuit is required for driving
the data bus. |
Example

As an illustration of this technique, Figure 2 is an example of an F8 system
with an expansion to eight additional I/0 ports. They are assigned port addresses

"H'F8' through H'FF'. Note the use of CMOS circuits buffering the.CPU signals.

Since eight additional ports are required, it is necessary not only to flag
an I/0 port address match from the data bus, but to retain the selected port number.
This is'implemented using four flip flops; one retains an address‘match while the
other three select the port. ,

The éight input sources to this system are fed into eight multiplexers. The
select lines of these multiplexers are obtained from the three select flip flops.
The outputs of these devices are connected to CMOS three state non-inverting gates.
The drive control signal for these gates originates from the decoding logic.

The eight output latches receive their input from the data bus through CMOS
buffers. The enable 1ines are controlled by the decoding logic and the WRITE pulse.
To select one of eight latches, the outputs of the three select flip flops are fed
into a decoder. Eight outputs of this decoder are directly connected to the enable

Tine of the latch.

5.2

Conclusion .
It is possible to add external circuits to an F8 system to increase the number

of available I/0 ports. The example given requires 29 additional circuits to increase

the number of ports by eight. Twelve of these circuits perform a control function

while nine are required for eight output latches and eight are necessary for input

sources. The advantage of this approach is that it requires no additional program-

ming steps.

5.3

3850 CPU

WRITE D
27 R ROt/ »

)
1
! i e
i ‘ P 2AY) -'/‘
% neto —H 4
: l “74¢ 30 37023 v
i
! i ey . _3‘/023 ’/:
i i
!] “7c 30 L '
])‘ 240097 :
H 1
j S A i !
. -
- Soune 7, Brto
N 8o e+
b Ty o I
T l _ %
Q20 1 1| 1
RVITE S/ ::"9 - . - : 2) g -
¢ ~ :{ i 12 = -
o151 H =
—e__| I ooy 3'\
" SN L2 .
- . 4
LrpuTs . g N g
. c — 157
T Cit? R — . |
Soome 7,7 i ©
Ianciommy —17 —]"\
: SIS Sk Sty A K 90 48 5 ’ L 7’(
Soveq, B0 i) T =
’ > o) 3.1 -
"V""—" :,?
—1{=
i
¢

E(}xmd'mg T/ frem /-g /)a ja Bus

Figure 2

EXPANDING INPUT SOURCES THROUGH MEMORY
Abstract

Data may be entered into an F8 system using memory 1ocations. A minimum number
of external components are required to decode the address lines, select an input
source, and drive the data bus. This approach increases the number of instructions
that may be used to transfer data into the accumulator while, simultaneously,

drastically reducing the programming required in certain applications.

Description

The accompanying figure is an F8 system with the number of input sources ex-
panded to 16. The 16 8-bit inputs are fed into eight multiplexers. Address lines,
originating from the Memory Interface circuit, are decoded to memory locations
FFFO through FFFF. (Of course, these 1ines may be used for other parts of the system
not shown here). The lower four bits of the address are fed into the select
lines of the multiplexers; thus, they may be used to select one of sixteen input
sources. The decoding of the address Tines enables the three state gates to
drive the F8 data bus.

This method of input expansion offers a major advantage to the user. Instead
of only having one instruction, IN or INS, to transfer data into the accumulator,
a much Targer set of instructions, the Memory Reference Instructdons, may
be used. Thus, the input data may bé brought in and an arithmetic operation may
be performed using only one instruction. For example, the XM (Exclusive OR with
Memory) instruction may be used. The following operation will take place.

ACC < (ACC) ®& INPUT DATA
This operation would have required two instructions if, instead, an I/0 port was

used.

Example

Suppose a system has 128 bits to poll. Each bit may be the service flag bit
of a peripheral in the system. A Tlogic zero in the flag means that the unit

does not need attention while a one is a request for action. A routine may be .

6.0

written to accomplish this.

Operation Operand Comment
bCI H'FFFO* Load the data counter with the address
of the first input source

LIS H'F' ﬁut 1111 in the accumulator

LR 1, A | Store 1111 in a counter

LIS 0 Clear the accumulator
TOP CM Compare Input Source to zero

BNZ EXIT Branch if Input is not zero

DS 1 Decrement the counter

BNZ TOP Branch if counter is not zero

This routine will first load the data counter with the input address. This is a
16-bit address because the memory space is being used for the data. Scratchpad
register one is the loop counter. Next, the program clears the accumulator

and, using the CM instruction, compares the input against zero. If the result

is non-zero, a jump to EXIT will occur. For a zero result the counter will be
decremented. The counter serves two purposes. First, it signals the end of the loop,
when all sources have been polled. The counter also identifies which ibput

byte was non-zero.

Conclusion

Placing input sources in memory provides a simple scheme for performing
certain input tasks. Polling many inputs is one of these. The memory reference
instructions offer much flexibility durihg input operations. This cqncept.may
also be expanded to output latches. In a similar fashion, the address lines

may be decoded to load a latch using a Memory Reference instruction.

6.1

3853

M1
o: IBITV 0 o . DBo fa7 A0 A&{i:U READ -
INPUT g 9-3[_"! 30098 | oN27?
Tieml_ O |
1 mux O-I ﬁ
0 5y E o ‘ L___/v -
e LS —
| N
——— V
D’ P>
B 1
: il >
— . j/
= >
» L
, 34049
BIT 7 \
INPUT. 2| 93L1 j |
7] '\146 dn;;(X I . PARTS
= 93l 8
15 —| : ’ 340098 2
4545, Sa ' 3404 1
aN27 |
_ ' N S

EXPANDING INMANT QOLICES TR MNMEMMA DY

EXTENSION OF EXTERNAL PRIORITY INTERRUPT LEVELS IN A F8 2 CHIP CPU-ROM CONFIGURATION

Abstract

The F8 2 chip (CPU-ROM) system has only 1 level of external interrupt. However,
it takes only 1 additional gate to extend the Tevels to as many as up to 32 levels.
The following description, however, is confined to an extension of up to 8 levels.

'Descrigtion

Fig. 1 describes such a configuration

F8 2-CHIP |
CSYSTEM - |_EXTERNAL AND INTERRUPT
| INTERRUPT \ T LINES
1/0 PORTS

The Interrupt Line and the I/0 Port Lines are |
all negative signals. The 'AND' gate is actually
an 'OR' function of the negative signals.

Fig. 1

A11 the interrupt lines are 'AND'ed together to give a common interrupt signal
to the ROM chip. However, each intérrupt line is also tied to a line of an I/0
port according to a priority basis. (e.g. the h1ghest priority on the MSB line
to the least priority on the LSB line).

Once the system is interrupted by 1 of the eight lines, the system will go into
an interrupt scann1ng routine which will scan for the active 1ine on the I/0 port
'from left to r1ght the result from that 1nterrupt scan will be a code 1nd1cat1ng

“which interrupt is active and ought to be serviced.

7.0

Scanning

MSB Y\ direction
Oth 6th
Ist 5th
2nd \ . /4th
3rd
Scanning routine
Scan LIS 8 Load a count of A
LR 0,A - Store in Register 0
INS PORT Get the interrupt information
LR 1,A Store in Register 1
Loop AS 1 Add REG 1
BC ouT ~ MSB is a '’ '
LR 1,A Put the left shifted result
- DS 0 back to Rl
BR LOOP Update the code
Do it again.

With the above scheme, a multi-Tevel priority interrupt scheme is constructed.
However, the user should also be aware of the timing of the interrupts responses
since the scanning also takes time. 4

7.1

DOUBLE PRECISION BIMARY ADD/SUBTRACT SUBROUTINE

Purpose

This subroutine will perform a 16-bit binary addition or subtraction and return to

the user with the status of the 16-bit operation-and the result of the operation.

Calling Sequence

Scratch Regs: 1,0 Contain AUGEND/SUBTRAHEHND
3,2 Contain ADDEND/MINUEND
(bit 7 of SR1 and SR3 is the most significant bit and sign bit
of the 16-bit numbers). SR7 =.0 for add, SR7 # for subtract.

PI DBA (Calls subroutine to perform add or subtract

Upon Exit

The sum or difference is contained in SR3, SR2 with bit 7 of SR3 being the most
significant bit and the sign bit.

The proper status is set in the W-Reg for the 16-bit operation.

Operation Performed

(SR3, SR2) + (SR1, SRO)—> (SR3, SR2)

Registers Used

ACC, W, J, SRO-SR3, SR7-SR8

Calls to other Subroutines

None

8.0

2's Comp of
SRO, SRI1

SRO-+SR2-» SR2

-

‘Save Zero
Status
in SR8

v

|SRI+CRY>SR1 |

N\

Status =» SR7

SR1+SR3 = SR3

AND 1in Zero
Status to
Present
Status

- 'OR' in
Carry & OV
- From Link

Move Final
16-Bit Status
to W-REG

8.1

——3>{ RETURN

- 01/30/7‘.J 1‘: 58:’16 e . - pos v R [, - m— ___.FSA_.-- .VERSION. _--_.t,x('/-,ﬁ .
‘Loc OBJECT CODE STMT sOURCE STATEMENT o PAGE &
= - e mm——— cee ime-.- ® DOUBLE PRECISION BINARY- ADD-(26 -8BIT)-OR- = o
———— e % . SUBTRACT SUBRQUTINE., — e @ i S e
- - e v oo o UPON.ENTRY?S e et e ———— s e e b A St v 42 e S e i .
- e ew . oo . .QF SRT = O ADDy OTHERWISE SUBTRACT e -—— — — B
* AUGEND - = SQRATCH--REGS' O -AND-1{1"MSB)s
mres e e e e o e -#% - ADDEND,= SCRATCH REGS 2 AND 3(3-MSB).; At
______ x*.. -(THESE. DOUSLE REGISTERS- ARE- TREATED--AS h
* 16 -BIT--SIGNED-NUMBERS-WITH-BIT-97 OF
—— e e e emee e % .~ REGS 1 AND 3 BEING THE SIGN BIT) —
—-- mrmere o= —He (IF-SUBTRACT.' THEN (R2,R3)=(RO,R1))% s oo ——es -
*x.—- UPON EXIT: :
o5 e e H S~ SUM OR- DIFF IS-CONTAINED-IN-R2,R34 -
N ———— e ¥ 'H‘—REG CONTAINS THE STATUS OF THE 16 : B
- - reen e e - e .BIT ADDw
2007 70 126 DBA LIS O
2008 oy S .. 127 -- - AS 7 e e+ e e e - — - .-
2009 B4 B 128 "BZ ADD IF SR7=0' THEN GO DO ADD.
— 2008 40 o e = - 126 o eee LR . AGO - - e e mm e Sere am . - - -
200C 18 130 coM
- 2G0T 1F e mee——eeemeeee=- 13 U § XTSRS
2CDE s 132 LR 0sA COMPLEMENT FOR SUBTRACT.v ‘
20UF 1E 123 LR JyW) S - U
2050 &1 124 LR Ayd . . 1
— 20t1 18 - .135 COM - - . —
20L2 ‘1D 136 LR Wed ‘
———.. 20E3 ___.19 137 LNK —e
2084 51 138 LR 1,A
— 2085 . 40 - 139 ADD. - LR -~ Ay0 —— GET LSB OF AUGEND. ”
20%6 c2 140. AS 2 ADD LSB OF ADDEND.
o ._ 2CE7._..52 .. 141 LR«-——Z,A————‘SAVEv-PARTIAL»— SUM. ~
20E8 1€ 142 LR JyW ‘
2CE9 .49 143 LR—A,9 GET--STATUS-—-AND-OR—IN-ALL-BITS |
2CZ A 22 18 144 oI H* IB' BUT ZERO.
. 2CEC58 - 145 — LR —-8yA ——SAVE IN SR8 FOR CALC-OF-FINAL.
20&0 1D 146 LR Wed .GEY ORIG STATUS BACK IN W-REG.
. 20EE &Y . 147 LR-——A,1 GET-2ND-BYTE-OF-AUGEND.

 14:58116

~= VERSION 4C =~

17347715

01/30/75 FBA

o LOC L OBJCCT.CODE - STMY. SOURCE-STATEMENT woivumes o o vy PACE ~og=
2GEF 19 e 148 e INK - e ADD 1 IF CARRY FROM PREV ADD, - -- e —— s e e
2CF0. 1€ 149 LR JoW SAVE STATUS, MAY BE ov. OR CARRY.
20F1 €3 e e 150 e AS . 3 ... ADD LSB OF ADDENDs - ~voovm e ' - —— —
20F2 ‘53 151 LR 2,A SAVE IN REG 1. . ' .

—— 20F % et 152 LR =By 9 MOVE - STATUS - SAVED«FROM -LINK . -
20F4 57 153 LR 7,4 ADD 10.SR 7.

e 20F5 .. 1E - 154 LR - JyW -
20F¢ 49 155 LR 4,9 cer STATUS FROM FINAL ADD AND

——. 26FT _. F8.__ 156 NS .—8 - .- sAND" IN ZERO. STATUS FROM
2GF8 58 157 LR 8yA FIRST ADD.

—— . 20F9 47 158 LR—A,7 e e
20FA 59 159 LR 9,4 MOVE STATUS SAVED FROM LINK

——— . 20F3_.__4g 160 LR-——Ay8-——BACK 7O W-REG- AND -'QR?--IN
20FC 10 161 LR~ WyJ = OV AND CARRY BITS TO FINAL-

—— . 2CFD __.92___4. 162 SNC --0BAL-— STATUS o-.-
2CFF 22 2 163 or 2
2101 10 164 , LR——Wyd
2102 96 3 165 DBAl BNO DBAX

U 21C4 ... 22 _ 8 166 . TR <) Q-
2106 59 167 DBAX LR 9,A MOVE FINAL STATUS TO W=REG.

——— 2137 ..__1D 168, — = LR e Wy Joe -
2108 ic 169 POP RETURN.

- — - < e i s v e s e e -

L — S e e

BINARY MULTIPLY SUBROUTINE

PUY‘EOSE

This subroutine performs a binary multiplication of two 8-bit numbers resulting
in a 16-bit product. The multiplication 1s'accomp1ished by testing bit positions
of the multiplier and adding the corresponding value to a partial product (when

a bit is set) until all of the bits have been tested.

Calling Sequence

SR1 Contains the multiplier
SR2 Contains the multiplicand

PI BMPY (Calls subroutine to perform the multiplication)

Upon Exit

The product is contained in SR7, SR6, with bit 7 of SR7 being the most significant
bit of the 16-bit product.

Operation Performed

SR1 X SR2 ~——3»(SR7, SR6)

Registers Used

ACC, J, W, SR1 - SR2, SR5 - SR7

Calls to Other Subroutines

None

9.0

(v)

N

Zero Partial
Product

&

Set Counter
to 8

Add
Multiplicand
to Partial
Product

i
Shift

Multiplier
Left 1

¥

Decrement
Counter

” RETURN '

Shift
Partial

Product
Left 1

9.1

A

l
}

e CY/20/T75 . AL e e — —- —F8A-==-VERSION —&C—=w=—1/14/95 -~ =
LOC OBJECT CODE - STMT SOURCE STATEMENT PAGE T
S *.BINARY MULTIPLY SUBROUTINE
*_SCRATCH.REG--1- CONTAINS-MULTIPLIER
e —— #* - SCRATCH REG- 2- CONTAINS MULTIPLICAND.
—— L e - * ... SCRATCH REGS-6 AND.7 CONTAIN -PRODUCT -{SR7- HSB)- -
2125 78 196 EMPY LIS. 8 INITIALIZE COUNTER TO 8.
2126 55 197 -PRODUCT-«
2127 70 198 LIS 0 :
—_— 2128 . .56 199 c— e LB e -
2129 57 200 LR 7yA
— 224 .70 201 BMPL LIS -0 oo cmomoi s s e e e T
2126 c1 202 AS 1 1S SIGN BIT Ol- MULTIPLIER SET?
212C 81 7 —203 8P-—BMP2——NOy--GO-SHIFT-- PARTIAL—-PRODUCT-
212¢€ 42) 204 LR Ay2 :
— 1zF _ L6 205. AS— 6. —-YES, -ADD MULTIPLICAND-TO -
2130 56 206 LR 6,A PARTIAL PRODULT.
——. 2121 47 .. 207. e LR e Ay T e —--
2132 19 208 LNK
2133 57 209 - TeA
2134 41 210 BMP2 LR Ayl
o—-2135___13 211 SL——1--. ——SHIFT--THE- MULTIPLIER-LEFT-1+
G 2136 51 212 LR 1A
.. 21327 .35 : 213 -BS-—5 ..-—- DECREMENT COUNTER- -
213¢e €4 c 214 BZ 8MP3 EXIT IF DCONE.
——213A 46 . 215 LR ——Ayb2— SHIFT: PARTIAL -PRODUCT~LEFRT--1-»¢
2128 Cé 216 AS 6 SHIFT LSB LEFT 1
— 2130 .. 56 217 LR -6 g A e e —
z130 1E 218 LR JoW SAVE TATUS FDR CARRY.
- | Sy - ..-219 LR Ay T eme e
213F 13 220 SL 1 SHIFT MSB LEF! 1 AND ADD IN
—_——— 2140 10 221 LR -——Wed CARRY--FROM-PREV--SHIFT--({LSB)
2141 19 . zz2 LNK ')
————2Y42. ST223. e LR T A e e - -
2143 S0 E6 224 BR BMP1 GO BACK FOR NLXT.
———2145_____1C__. : 225 BMP3.POP— . _RETURN--TO- CALLER.
' 226 IND

DOUBLE PRECISION BINARY DIVIDE SUBROUTINE

Purpose -

This subroutine performs the binary division of a 16-bit unsigned value by another
16-bit unsigned value, and returns with a 16-bit unsigned quotient. The division
is performed by repetitive1y subtracting the divisar from the dividend until a

"Carry" is not detectéd,

Ca1]ing Sequence

SR1,-SRO Contain the divisor (bit 7 of SR1 is most significant bit)
$R3, SR2 Contain the dividend (bit 7 of SR3 is most significant bit)

PI BVD (Calls subroutine to perform the division)

Upon Exit

The quotient is contained in SR6, SR5, with bit 7 of SR6 being the most significant

bit of the 16-hit quotient,

L= | . -

Operation Performed

(SR3, SR2) + (SR1, SRO) —> (SR6, SR5)

Registers Used

ACC, K, W, SRO - SR3, SR5 - SR7

Calls to Other Subroutines

DBA is called to perform the double precision Subtraction.

10.0

BVD

L

Save Return
Address in
K-REG

v

0-> SR6,SR5

Y

;Save Divisor
In Q-REG

=)

Set SR7
For Subtract

Call DBA
Subroutine

Add 1 to
Partial
Quotient

Q- SR1, SRO

10.1

Subtract 16-Bit Divisor
_ From Dividend. The

— = = =)| pifference Becomes the
Minuend for the Next
Subtraction.

~.01/30/75

. 14258218

FBA-=~=-VERSION -~

4C-m== 1724775

e .. 2110 .

*--WITH - 'NO CARRY' STATUS—

LOC OSJECT CODE STMT SOURCE STATEMENT PAGE 6
*--DOUBLE : PRECISION -(16-BI7)-BINARY-DIVIDE——
*_SUBROUT-INE.
—— *-— UPON-ENTRY: -
e % .. SR2,SR3 CONTAIN DIVIDEND- (SR3-MSB). - —
L * SROySR1-CONTAIN-DIVISOR- t<n1—-mss).'
—————— - ~CALLS TO OTHER SUBROUTINES: - ———
’q .
- : * «--PI-‘--A---DBAV‘- (FOR -DOUB.- PREC. -SUB)+ -
- Hooe UDON - EXIT 2 mmrm —moome oo e
— - * .. SRS5,SR6-CONTAIN QUOTIENT: (SR6 -MSB)« _
, 2109 e 171 BVD LR K,P SAVE RETURN Aooa. IN Ko
—— 210A ... 70 .. 172 . - LIS 0 S :
2103 55 173 LR 54A zsao QUOTIENT AREA.
210C £6 - 174 LR-—6y A
2100 40 175 LR A0
——Z10E. .. & 176 LR —— QUyA——SAVE -DIVISOR ~IN-Q-REG.s
S zicF a1 177 LR A,1
et 2110 [S 178.. v LR QL g A e e e
SN 211 7 179 BVD1 LIS 1 - SUBTRACT DIVISOR FROM DIVIDEND«
z112 57— 180 LR--—7yA-—— GO -TO *DBA'- ROUTINE- WITH-SR7 NOT
2113 z8 20 D7 181 PI -~ DBA EQU O FOR DOUB.: PREC SUBTRACT.
- 2116 92__.0 —-182. BNC - BVD2 B, - — —
— e .% QUOTIENT-IS.COMPLETE- WHEN SUBTRACT-RETURNS

45

'183 LR Ay5-]
IR e 184 INC e !
£5 1e5 LR 5+A IP\CRENENT QUOTI!NT. i
— bl e 186 LR Ay 6 U . ——
19) 187 LNK : ‘
.56 ~1&8 LR B A |
2 AR 1€9 LR AyQU-
50 i e 190 o LR =09 A -~ RESTORE DIVISOR.
'3 o191 LR A QL
DL Y92 L LR~ 1,A —_—
90 EE 193 BR BVD1
Sl e 2 196 e BVYD2 PK e e ieeo - RETURN-TO CALLER .- —

DECIMAL ADD/SUBTRACT SUBROUTINE
Abstract
This subroutine will perform a Floating Decimal ADD or SUBTRACT on two
14 Digit Signed Numbers.
Description
The two numbers are stored using nne scratchpad Tocation for every 2 BCD digits
The sign uses one half byte, scratchpad location. The exponent of the number uses
one scratchpad location. The following scratchpad locations are used in the

program example:

K REGISTER
Digit No. S1gn' 0 I 1 I | 3 | I 5 I I 7 | I l 10 | 11 |12 I 13 [14|
Scratch Pad R27 R26 R25 R24 R21 R20 l
Tocation
(Octal)

R27 Upper,S1gn of Number "0" Positive
"F" Negative

R27 Lower,overflow digit

R20 to R26 14 BCD digits, R26 upper - Most significant, R20 Tower-
Least Significant
The exponent of the number is stored in binary scratchpad location R60 (octal)

Binary "0" represent 107!

Binary "1" represent 100
Binary "2" represent 10]

Binary "3" represent 102 etc...
b
A REGISTER
Digit No Sign | 0 ! 1 I 2 | 3 |,4 l 5| 6 |.7 |.8 | 9 l 10.|A11.| 12' 13 |14|
Scratch Pad R37 R36 R35 R34 R33 R32 R31 R30
- location ‘
(Octal)

R37 Upper,Sign of Number
R37 Lower overflow digit

11.0

R3G to R36 14 BCD Digits
The exponent of the number is stored in binary in scratch pad-
1ocation R61

The number in the K Register is Added to or Subtracted from the number

in the A Register. The result is retained in the A Register.

R 60
Rzo-27

SET

ADD.SUBTRACT SUBROUTINE

ERROR

RsH A REq
INc A (EX)

| ADD
RsK 5
_'r koA
INC K (EX) INC A(EX]| Rél
SH KR , 30-3
R /‘/I £4 Pos A(;SS‘K(E’() NEG RﬁH ‘A REG| R 7
Alsy> K(Ex) AlBY) = K(EX)
F 508
y
sirgm. SvBTRACT
SET LS S
A DD =7 '2“1* VB =
ADDI I’s compL. K(»)
, AbD K A
ADD 6,6 K(x) 4 INC TSR
pob KGR
4+ INC TZAR \
K ADD CARRY
ADD CARRY To NEXT DIGIT
To NEXT DIGIT .
_No |
SuB4 | YES
Abp 1 To
A REG

suBb

s
YES /CARRY MsD

5UB7

1075 CompLEMENT]

of A RES6.
cHmaE A SI6N
]

OBJECT CODE SGURCE STATEMENT e) .

FRAERXE AUVD 3 SUETACT SUGROUTINE #atskss

66 AUD LISU é . SET ISAk .
68 LISL 0 , = 60
4D , ' LR Ayl LUAD K EXPo(Re0)IHC ISHR
15 CoM GET 27§
1F - INC - COMPLEMENT
cc AS S SUB A(EX)=K(EYX)
84 4B Bz SIGN EQUAL BRANCH
91 10 - 3M RSAS NEGATIVE ERANCH
& 7 LR KyP SAVE PC}
28 2 53 PI RSK TH OTO RIGHT SHIFT K(KEQ)
9 LR PeK RETURN PCO
66 LISU & SET 1SAR
68 LISL 0 =60
4C LR AyS LOAD KI(EX)
1F , INC INC K (EX)
5C LR SyA STORE K(EX)IN R&G
90 EB BR AL
62 RSK LISU 2z SET 1SAF
68 LISL 0 =20
4C RSK1 LR Ay S LOAD FEOM B(XX)
14 SR 4 SHIFT DIGLT RIGKHT
5D LR 1y4 STORE IN R{XX)oINC I1YAR
4E LR Ayl LOAG FROM K(ZX)+1,0LEC ISAFR
15 S 4 SHIFT DIGIT LoET
EC XS S COMRINE TWC DIGITS
SD LR) STORE IN R{XX)4INC TSAK
&F F8 BR7 RSK1
20 FO LI HYFG S CLEAR
FC. NS S K(O)
5C LR SyA RZ7 LOWER
1C : POP _
g RSAS LR KyP SAVE PC?
28 ? 6F PI RSA GO TG RIGHT SHIFT A(KSG)
9 LR PeK - RETURN pC!
66 Li1su & SET I1SAR
69 LISL 1 =61
4C ‘ LR Ay S LORD ANG
1F - . INC INC A(EX)
5C LR Sy A STOURE IN re}
90 CF ; BR ADD '
€3 RSA LISU 3 SET ISep
68 , . LISL 0 =30
4C RSA1 LR Ay s RIGHT
14 ; SR 4 SHIFT
50 ‘ LR 1A A FEG.
4E LK Le DD P304%¢
15 SL 4 : UONE
EC XS S COLICIT
50 LR IeA
&F Fg BRT RS AT
20 Fo , L1 HYFU® CLEAR
FC : NS S ' ALO)
5C LR Sed R3T LOWRR
XC POP
63 SIGN LISU 3 SET 158K
&F LisSL 7 =37
20 FO : LI HYFO Y SOLATE UPPLF..
FC NS 3 e eDIGITo2(SIGN) R37
62 LISuU 2 AND

OUsJECT CUDE

EC
9
Y
62
20
cc
63
uC
50
4C
19
5C
8F
7F
FC
94
1C
tE
69
<0
EC
84
4C
Y
sC
¢
28
9
1C
68
62
«C
18
63
0c
5D
1E
aC
19
eC

gF

&8
20

4C
14
5C
8F
GG

o
22

to

T
W

a8}

49

Ti
fos

An

6F

SCUKCE STATEMENT

DD

ADDS

ADLS
SUE
SUE

xS

3NZ

LISL
LISU
LI
AS
LISy
ASD
LR
LR

"LNK

LR
BKR7
L1s
NS
BNZ
PLP
LISU
LISL
LI
X$
52
LR
InC
LR
LR
PX
LR
pPuP

LISk,
LISy

LR
COM
LISy
ASD
LR
L¥
LR:

LMK
LR

BRT
LISL

‘Ll

ASD

LE

CLNK.

8RT
B&

S tn N
- [on
c- x
-

=W TN
-
>

-
[Vl

w
-

A

11.4

COMPARE WLTH K(SIGN) RZ7
SIGNS DIFFERENT BRANCH
SIGNS EGUAL ADD

BEGIN DECIMAL ADRD
ADD 646 TU K DIGITeREXX)

ADBD CECIMAL K TG A
STORE SUM 1IN AL,INC ISARL
ADD CARRY

IF PRESENT

TG NEXT OIGIT

. ISOLATE LOWER DIGIT

OF R37 4 A(C)
ALG) =1 BRANCH
RETURN
SET ISAR

= 6}
LOAD 14
TEST A(EX), R61
ALEX)=14, OVERFLOW
LOAD AND

1NCREMENT A(EX)
STORE 1IN Rel
SAVE PC) | |
GL TO RIGHT SHIFT A(REG)
RETURN PC1 |
RETURN

ISAP =20 TO 27
LOAD K DIGIT REXX)
1'S COMPLEMENT GF K DIGIT

SUBTRACT DECIMAL K FROM A
STGRE SUM IN 4 4 INC. ISARL
SAVE STATUS OF. CARRY
ADD CAKRY :

1F PRESENT

TG NEXT DIGIT

ISAR = 30
AUD T TO A 14

ADD UECIMAL CORRECTIUN

 ALD CARRY

IF PRESENT

TO MEXT DIGIT
NCT T CUOMTINUE
JUMF

OBJECT CODE SUURCE STATEMENT

20 66 SUBS LI HY 66"
.90 F4 BR SUB4
1D SUBé LR Wed LOAD STATUS
__.82 1C : BC SUBIG CAXRY =1 RETUEN .
68 _ LISL 0 I1SAR = 30
. 4C suBv LR Ay S LOAD A DIGIT FROM R(XX)
18 CCM VS COMPLEMENT OF A LIGH
..5C . LR SyA STORE BACK BIGIT -
70 LIS 0 CLEAR ACCUMULATER
_..c ASD S SUBTRACT A UIGIT FRUM ZERD
5D ' LR 1,4 STORE A DIGIT 4INC ISARL
—..8¢ F9 BR7 suB7
68 : LISL ¢ CISAR = 30
..20 67 LI CLEYA ACD Y 10 Ala
DC) suBe ASD s ADD DEC. CURECTINN
50 LR Iya STORE & INC. IS4KR
4C LR Ay S ACD CARRY
D LNK IF PRESENT
5C LR Se A TO MEXT OIGIT
__8F_ 3 - BR7 sUBY CONTINUE
90 5 BK SUBYA ISAR=T Jump
.20 66 suB? LI HY66 "
90 - F4 . 8R - suBe
_..4Cc__ . ~ SUEB9A LR Ay S SIGN CF £ REG (RZT)
18 : CoM o CHANGE SIGN F ¢
.21 FO SUBLO NI HYFGY CLEAR A(D) K37 LOWER
5C LR Sy A STORE 2ACK DIGIT
S PUP :
29 1 11 OVER JMP ERROK GO TU ERRUF

DECIMAL MULTIPLY SUBROUTINE

Abstract
This subroutine will perform a Floating Decimal MULTIPLY on two 14 Pigit

Signed Numbers. The product is also a 14 Digit Signed Number.

Description
The two numbers (multiplicand and multiplier) as well as the product are

stored using one scratch pad location for every 2 BCD digits. The sign
uses one-half byte or one-half scratch pad location. The exponent of the
numbers and product use one scratch pad location each. The following scratch

pad locations are used in the program example:
First Number, Multiplicand, F Register
Digit No |Sign | o | 1 | 2 I 3 | 4 | 5 | 6 | 7] 8.| 9,|10 | 1 I 12 I 13 l 14

R47 R46 l R45 R44 R43 R42 R41 R40

Scratchpad
Tocation
(Octal)

R47 Upper, Sign of Number "0" positive "F" negative
R47 Lower, Overflow digit
R40 to R46, 14 BCD digits, R46 upper - Most Significant, R40 Tower -

Least Significant

The exponent of the number is stored in binary, in scratchpad location

R62 (Octal).

[

Second Number, Multiplier, W Register

Digit No- l Sign l 0 l 1 I 2| 3 | 4' 5| 6' 7 ' 8 | 9 l 10 l 1 j 12 I 13 l 1

Scratchpad| RS57 Rs6 | Rs5 | Rsa | RS3 | RS2 I R51 , R0
Location :
(Octal)

12.0

R57 Upper, Sign-of Number
R57 Lower, Overflow Digit‘

" R50 to R56, 14 BCD Digits

The exponent of the number is stored in binary, in scratchpad location

R63 (Octal)

Product K Register

lswnn L] l [efe o] L o] o
Scratchpad , , R22 , R21 , R20 ,
location
(Octal)

The number

result or

R27 Upper, Sign of Number
R27 Lower, Overflow digit
R20 to R26, 14 BCD digits
The exponent of the number is‘stofed in binary, in scratchpad location
R60. | | |
in the F register is multipliéd by the number in the W register, the

Product is stored in the K register with the correct sign and exponent.

124

F(Req)= Ré0 _ R4s
F(S'QN)-—- R 47 vpper
F(ex) = Ré2

W (Reg) = R50 - R56
w (SIQN) = R57 upper
w (ex) = R€3>
TeMp. TsAR = R4
TEMP. DigIT = RS

EVEN FLAG, = R& B1

MPY MULTIPLY SUBROUTINE
K (Reg) = F (RE§) x W (Res)

L5AR=< R4

CLEAR
K (RES)
K (S151v)<WIs158) @ FT5i
K (Ex) < W(BY +F (&9
K (kx) =< K(Ex) —/
VESs SET
ERROR
No
ISAR=50
SKT EVEN Fiy
y M|
Tsape > G oy ST PopP
-7 = ¢
M2 § No N e K (&9
'3 No My _RSH K (Rea)
EVEN Flag
= M
YES LoAD W (xx)
LoAD W [xx) UPPER
LOWER RS = A
R5 < A INCc TSAR
M#‘f’
compL. . EVEN Flg
R4 <« ISAR
RsH K(REG)
M5
Vs No | K(Res) < K(Req)
+F(Reg)
M6| pec. RS

OBJECT CODE SOURCE STATEMENT

FHRAKEF F MULTIFLY SUBROUTINE 3 momson

65 MPY Lisy 5
6F LISL 7 ISAR=57 -
20 FO LI CHYFO? ISULATE SIGN
FC , NS S OF W(REG)
64 : LISU 4 ISAR=47
EC x5 S XGR SIGNS GF F & W (REC)
62 ' LIsU z ISAR=27
5E : LR Dy A LOAD SION GF K(REG)
70 L1S G CLEAR KI(RFG)
5E LR e A RZE TO K26
8F FE BRY *=1
66 LISU & 12AR
68 LISL 3 =52
4E ' LR bho LOAD W(F X}
cc , AS S COADD F(EX)
- 68 LISL 4] ISAR=60
5C LR SeA STORE W(LX)+F(EX) IN K(EFX)
3c : DS S DEC oK (EX)
24 FLl , Al HYFT® ADD MINUS 1°
E5 Ee6 BT 5:0VER K(EX) GREATER THAN 14 OVERFLOW
65 LISU 5 ISAR =5¢
48 LR Ay 3 SET EVEN FLA&G
22 2 oI 2 RERT =1
58 ' LR Eo A ENU STURE
. 8F 3 M1 BR7 M2 IS 1$SAR =7 7
90 31 HR ME YES JuspP
72 M2 LIS 2 IS EVEN FLAG
F8 NS & = 1 %
84 7 BZ M3
4C LR Ag S LOAD W (xX)
21 F N1 C OHYOF ISOGLATE LiWER DIGLT
55 LR 544 STURE LN k&
90 4 BR Mé& ,
4D M3 LR Ayl LUAD WIEX)LING 18AR
14 SR <4 SHIFT UPPER DIGTT _
55 LR 5y4 LOAD MULTIRLIEK 0IGIT IM R
T2 M4 LIS 2 COMPLEMENT .
EB XS & EVEN FLLG
58 : LR Gy A RR 5
A LK P SAVE 1S5ar
54 LR 4y 2 IN R4
&) LR Ky P SAVE PCY -
28 2 53 PI RS GC TU RIGHT SHIFT K(rie)

12.3

0RJECT CGOLE

.

20
F&
94
44
g
50
&t
&
20
cc
62
1
50
&
19
5C
aF
25
<0
67
7F
FC
94
1C
66
&5
4C
IF
5C
b
2E
9
1C

FF

&
b

boh

&6

il
L

&8

e

e

SUURCE STATEMENT

Mé&

M7

My

MY

LR
Ll
N5
BNZ
LR
LR
BR M1
LISL
L1ISU
L1
AS
LISU
A 5D
Lk
LR
LK
Le
BK?7
oS
K
LYISU
LIS
NS
B2
PUP
LISU
LISL
LR
INC
LK
LK
Pl
LR
PLP

PyK
HYFF *
5N

“Meé

Ay &
ISyA

- -

LT M EZ X
- n
T:
-

QO

12.4

RETURN PCH
TEST IF NUMBER
IN RS 1S ZER(O 7

LGAD Re
IN ISAR

ADD FI(K:G) TO K(REG)
ISAR = 40

S5EGIN DECIMAL ADD
ADD 646 TU FIXX)

ADD DECIMAL FLXX) TC K(XX)
STORE SUM IN Ky INC ISAF
ADD CARKY
IF PRESENT
TGO NEXT DIGLT

DECPEMEMT NMUMBER IN RS

ISAR =27
ISCLATL LOWER OLIGLT
OF 227,K(G)
K(0) NUT 2FRG 4 BRANCH
K({0) =ZLRUO 4 RETURN
SeT 1saPR ‘
=60
LCAD AND
INCREMENT K(EX)
STCRE I R 6O
SAVE BC1
GO TGO RIGHT SHIFT K(REG)

CRETURN PCY

END OF sPY

DECIMAL DIVIDE SUBROUTINE

Abstract

This subroutine will perform a F]oat1ng Dec1ma1 DIVIDE on two 14 Digit Signed
Numbers. The quotient is also a 14 D1g1t S1gned Number.

Description
The two numbers (dividend and divisor) as well as the quotient are stored using
one scratchpad location for every 2 BCD digits. The sign uses one-half byte
or one-half scratchpad location. The exponent of the numbers and quotient,

one scratchpad location each. The following scratchpad locations are used in
the program example: '

First Number, Divisor, F Register

Digit No |51gn ’ 0 ’ 1 ’ 2 I 3 , 4 ' 5 J 6 | 7 l,s | 9 l 10 | 11 l 12 | 13| 14|

~ Scratchpad R47 R46 R45 R44 I R43 | R42 R41 l R40 ‘
lTocation _ ' \
(Octal) |
R47 Upper, Sign of Number "O" positive "F" negative
R47 Lower, Overflow digit

R40 to R46, 14 BCD digits, R46 upper - Most S1gn1f1cant R40 Jower -
Least Significant

The exponent of the number is stored in binary, in scratchpad location R62
(Octal).

Second Number, Divident, W Register

Digitho | sign [0[1]2)3 .44|._5_.|.6_| 7|8 .9.| 12...13.| 14|
Scratchpad R57 ' R56 R55 ' R54 l R53 I R52 l R50
location { : .

(Octal)

13.0

R57 Upper, Sign of Number
R57 Lower, 0verf1ow Digit
R50 to R56, 14 BCD Digits

The exponent of the number is stored in binary, in scratchpad location R63
(Octal).

Quotient, K Register

Digit No }I»Sign | 0 l 1,| 2»|_3;|4 |”5 | 6 l 7'[8 I 9 l 10 | n | 12 | 13 l 14|

Scratchpad R27
location ' '
(Octal)

R25 R24 R23 R22 . R21 R20

R26

R27 Upper, Sign of Number

R27 Lower, Overflow Digit

R20 to R26, 14 BCD digits
The exponent of the number is stored in binary, in scratchpad location R60.
The number in the W register ijs divided by the number in the F register,

the result or quotient is stored in the K register with the correct sign and
exponent.

13.1

DVD DiviDE
CLEAR
W (REG) TEMR TSAR = R4

l TEMR DIGIT= R5
K (siaN)<- Whi)®F6i) £ven FLAG = R8BI
R4 < T5AR=27

SET Vi
ERROR |~
N
Dj S ' A
Yeo| LSH F(REg)‘J
DEC F(Ex)
D’A NO
=
[No
Dig - ‘
VES| LS H w(REs) _,
DEE F ()
N
Dz}

@ K (sx) <~ WiEx)~ Fiex)
SET EVEN Flag

—~—
—

Zre R5
W (Re) <— W(REG) = FRS)

W IREG)> g

SUBROUTINE

. R5 = @ - /A

13.2

K(RE‘?):_ V//?E‘)

F (Reg’
~]o9a
L5AR< R4

A~ R5 STORE DIGIT
STORE DIqIT IN K(xx) LOWER
1N Kixx)UPPER DEC R4

Y

Dil
CoMP EVEN Flag

DIZ == L

fuk:éﬁ K (kes)
| AN K (£X)
N“;—:"B'*—“ D3

sxsxks DIVIDE SUBRUUTINE skt

65 N LVo L1SU 5

&F LISL 7 ISAR=E

2C FO LI HYFQ Y ISCLATE SIGN

FC NS. s 0F W (REG)

&4 L1SU <« 1SAR=47

EC . XS S XOR SIGNS OF W & F (REG)
62 LISU ‘ 1SAK=27

5€ LK Dy b LUAD S1GN (F K (REG)
70 LIS 0 CLEAR KIREG)

5E LR Dy A R26 TG R2G
eF FE BR7 *—1

A LR . STORE ISAR

Y LK Gy A IN Ry

64 N LISU 4 SET 1SAR

&L : LISL & =46

70 LIS ¢ - LOAD ZEPOD

ce AS 5 TEST FIREG)

94 4 BNZ bl NOT ZERZ BRANCH
&F FC BRT #=3

G0 23 BR GVER F{REG)=0 LRROR
s LY Lisu &

6E LISL & ISAR=46

0 FO LI HYFO? TEST F(Y) _
FC NS S . IN Rac UPPER
9 F BNZ DlA IF NCT ZERD JQUMP
40 LR Ryl LEFT

Y4 SK 4 SHIFT

£C %5 5 FIREG)

5 LR Uy A gy

4C LR £y S GME ,
ik St 4 LIGIT
5E LR Cig A

HF FE LRT7 =7

X : LISU 6

6A , LISL z 1SAR=¢2

3¢ . oS S UECREMENT F(EX)
40 EC BR Lt '

&5 Cla LiSu g SET TSAR

oF LISL 7 =57

70 LIS G CLEAR WO & SIGN)

13.3

OBJECT CUDE SOUKCE STATEMENT

5E ‘ : LR Uy A RET

.CE ' AS 0 TEST W(REG)
94 4 8NZ DiE NOT ZERN ORANCH
- 8F FC 3R7 ¥=3 _
| ol PGP o . W(RLG)=0 RETUAN
65 : : 01 LISU 5 : :
6E : ' - LISL 6 ISAR=56
20 FO . , Ll HYFO? TEST W(Y)
FC : A NS 5 IN R5¢ UPPER
94 . F BNZ - p2 NOT ZERG JUMP
4D o : LR Ayl CLEFTY
14 SR 4 SHIFT
EC , o XS S 3 WIREG)
5 . LR Uy A N -3 7
4C , LR byS UNE _
15 ‘ SL 4 - DIGIT
5E LR U,A
8F F§8 . . BRY ¥
66 ‘ LISU &
6B _ , LISL 3. Sap=¢3
3C ' us S CDECREMENT W(EX)
90 EC BR 018
70 , p2 LIS 0 ‘
55 LR He A CLEAR TLMF. GUDTILNT K
© b6 Lisu & - SET I354R
6A LISL 2 =¢?
4D LR A § LOAD F(ex)
18 : ComM \ :
1F INC 4 2'S COMPLEMENT
- cc , o AS S WIEX) = F(Dx)
68 LISL 0 - ISAR= tﬁ
_5C . Le SeA STORE NeW K(LY)
48 LK Ae§ SET &vzw FLAG
22 2 : 01 2 - R&RBY =)
58 : LR Hy A AND STOVE
45 D3 LR Ay S ’
}F INC INCREMENT V :
55 LR by A ' TEMP, GUCTICNT IN FS
68 ; LISL (C
b4 - Ue Lisu 4 ISAR =40
4C LR Ay S LOAD F(XX)
18 _ CCM 108 COMPLEMENT
65 L : LIsSU 5 .
.bCc . ‘ - ASD S L QUJTACT DECSFIYX) FROM W{xX)
50 o LR IyA . STORE VESULT IN WEXX) g INC 1SA
4C DR LR AyS ALD CAFRR
19) LNK e IF VPbSka
5C o o LR SeA STORE IN W(XX)+1
" 8F F& N BR7 - Da - '
20 FF LI HYFF® -~ SULTACT *00Y Fpnig Rev

13.4

VI VI TV

R AG

OUUINULED

TN

£ AFANDING

OBJECT CUDE

e
5C
tE
66
20
DeC
50
4C
19
5C
eF
90
20
90
20
6C
5C
g2

10

G
g0
35
6%
64
20
cC
oY
bC
5D
4C
16
5C
&F
20
C
5C
G4

%
72
Fa
H4
45
EC
5C
24
SO
4%
iy

5C

12

o7

bé
Fa
&6

1e

66

5
t)f')

SUURCE STATEMENT

o7

ug

uy

Cos

Ulo

wil

ASD
LR
LR
LISL
Ll
ASD
LR
LR
LANK
LR
g8R7
BR
LI
BR
LI
ASD
LR
BC
LR
BNC
BR
DS
LISL
LISU
LI
£S
LISu
ASD
LR
LR
LNK
LR
BRT
LI
ASD
LR
LR
LK
L1S
NS
B4
L¥
X$s
LR
LS
5R
LR
SL
LR
LIS

S

SeA
JoW

¢
HY&T7 Y
\Y

I,A
Ay S

SeA
De

D7

He &6
D5
Ht66Y
S

S+ A
DA
Wed
D8

03

0s
HY'e6!

Sy A
Ly
1S4n

N
- -

- i

LY e

[NCI VT i ~ B e o & I B
-
3>

13.%

AND STORE
SAVE STATUS GF CARRY

AUD 1 TGO W(T14)
ADD DECIMAL CURECTION
AND STORE

ADD CARRY IF PRESENT
AND STCRE

ALD *OCG* T0
RST .
AND STORE
W(REG) =0 BRANCH
LOAD STATUS
RESULT NEGATIVE ALD F(REG) TO.W(RE(

DEC. TEMPe QUOTIENT

ADBD 646 TO F UIGITS FLXX)

AuD DECIMAL FIXX) TO W({XX)
AND STORE

AUD CARRY IF PRESENT
AND STURE

ADD *0O0*
10 RET
AND STORE
LOAD R&
IN ISAP
IS EVEN FLAG

=1 %

LOGAD QUOTIENT
IN
K{XXY EBEVEN
CECREMENT DIGIT CCUNTER

LOAD QUGTIERT
N '
K(xX) 0DL
COMPFLEMENT

OBJECT CODE SOURCE STATEMENT

EE xS 8 EVEN FLAG

58 LR Be A (R&BR1Y)

TF LIS HYF? LOAD ¥5 (0OCTAL 7))

E4 xS 4

84 10 Bz UY2 Fa=17 GCTAL o REANCH

70 LIS ¥

5% LR S5¢A CLEAR TEMP. CUGTIENT

6% LSW LiSu 5 SET T SAw

6F LISL & =56

40 - LSW1 LR Ay T LEFT

14 . SR 4 SHIFT

EC XS S W REL

5t LK Dy 4

4C LR byl kY

15 , St 4 ONE

5E LR Oy a DIGIT

BF f& oR7 LEW}

G0 9B BR 013

52 Gt LISU Py SET 1SAR

&F : LISL 7 =27

TF LiIS HY ¢

FC NS 5 ISGLETE KUU)Y o K27 LUWIK

94 A BNZ Lis '

66 LISy & SET IeaP

65 ‘ LISL ¢ =t

70 LIS G TEST

cC AS S KOEX)Y F&O

91 4 BM DY 3 KEEY) NeGo pRaNGH

84 Z B Lt s KUEL) ZExU FOanCH

1C PGP
& 013 LR Ky # SeVE PG

28 2 53 Pi CRGK GG T STCHET SBIFT K (FF ()
9 L Pyk RETURN P (L

&6 LISU & EET Y Eaw

68 L1550 0 =60

4C LR Ae & LCAG K{(+=))

1F INC

5C LE Sy A INCe KEUY) IN Fet

S0 E6 B8R Lo

13.6

BOOTSTRAP PROGRAM FOR READING PAPERTAPES
Abstract |
This application note describes an F8 program that is used to load information
from a paper tape into Read/Write memory. The tape may be read from either a
serial teletype or a parallel device such as a tape reader; input routines for both
type of devices are included. Prdgram size is 250 bytes. Flow chart and operating

instructions included.

This application note describes a program that reads a formatted paper tape
into an F8 system. The system is assumed to include the F8 MI (Memory Interface)
ci}cuit and RAM memory. This program is designed for loading user's programs into
an F8 Micromodule system - the program is supplied in two PROMs (256 X 4 each) and
is able to load into RAM that occupies addresses H'0800' and H'OBFF' during loading.

The paper tape is typically produced as output from the F8 cross-assembler
which resides in a time-sharing service. A11- information on the tape is in ASCII
representation (i.e. the character 'A' is represented by one line of holes 11000y001
where y is the spocket hole). Each block on the tape begins with an X; the X is
then followed by 16 characters from the hex set 0 -9andA - F. The 16 characters
give 8 data bytes to be loaded into RAM memory. The 16 data characters are followed
by a one character check sum; the checksum is used to check the validity of the
input. The entire block is typically followed by a carriage return and line feed;
other comments can also be inserted if "X"s and "S"s are not included. Since
the tape is all ASCII, it can be understood when read and printed. Figure 1 is an
example.

The checksum is included in each block of data. It consists of a single charac-
ter. The checksum is calculated by performing a summation of all 16 half bytes of
the block, using hex arithematic. The resulting sum js truncated to its least 4
binary digits; the checksum character is the ASCII representation of the resulting

hex digit. When the program reads a paper tape it calculates an internally held

14.0

K kdkkd Kk dktk kK kksk Kok
KhkhkkhkhhrAxhkh th hxrnk
Khhkhkhk kkkh ik khtxkk
*hkhkkhkhhkhkhik kdkixkk
S50000 %% % ¢k hthk Kk hkx
XT71B0206u50A015%5 14
XOEZ20%25 1280000207
B0 77006900 E209CF

—

~ LEADER

"X" at start

KO 770060455/ 133 | £
KO390FF2408007054E

Xe8QQ9B2H533432055

16 characters

X2AB435235894F25 12
X18555423007C1735E
XYAFA2800YB2 | 3F 2

XD08203243918 1FC T8
X210F8455A01581070
£20935123003090F FF
X28007C24085A2800 4
X7C5310908CF 484597
XKAO1581G720935123E
X00DIYOFFO87256257
X00YB213F 240082039
X2439155114C757233
X8405415390EA4114%
KC3091COUA591 FE TFE
A1BIFY4FEAL1B81312]
K31 T1ESASSIFETOB5 A
X411C79524091 FE40E
X189001231F94F5A0 1
X91F32159C13291115
X84021251 4018855150
XBB281Fy4i AAUYOZES
XADAI8IEFICTB52702
ABU4018B3EBRL2B1E 7
XY4FA32640C412101C
XBO411224805190%A8
A1C000003000C0CH0D

represent 8 bytes

Checksum character

KEKKIK KKK KKK K s KK . Marks end oF tape

KEX kkkdir khkxkkhk ik
khkk kkkdkex ik ki o
Khkhkkkxkik hkkkkrik

Figure 1

14.1

——— Set Load Address for H'0000"

Data Lines

checksum using these same rules. If the internal checksum does not match the check-
sum read from the tape, the tape is immediatly stopped--which will be at the end of
the bad block.

The paper tape format also includes provisions for setting an address that is
to be used for loading data blocks that follow. The format is "SXXXX" where XXXX
represents the 4 digit hex load address. There may be more than one load addréss
on a tape--additional load addresses may be inserted between data blocks.

The paper tape may be read from either a serial or parallel device. I/0 Port
P is used for the serial device. If bit 3 of Port @ is strapped to ground, the
program will assume that a serial device is present and that input will be from it.
The program sends READER ON, READER OFF control characters to control tapé start
and stop.

The serial routines use the 11 bit asynchronous format that is standard on
teletypes; the 11 bits are 1 start, 8 data,and 2 stop bits. Parity is not checked
on input. The teletype routines use software delay loops to set the character rate.
The delay loops are set for characters/sec--30 characters/second on a 2usec system;
however, the character rate is easily adjusted by changing the number that is loaded
into the register "BAUD" at the start of the program.

The paralliel input routine uses a generalized "handshaking” protocol that applies
to many devices.

The program waits for the device to indicate ready before reading a character;
the device waits for a command from the program before starting to‘move the tape
to the character. Thus slow and fast readers can be used with equal ease. The
parallel input could even accommodate a FIFO; the only requirement is that the device
be able to operate in the step mode and that the character ready stay low after the

step command is received for at least the minimum width of that command: 24usec with

14.2

a 2psec F8 system. The figure below shows the timing relationship of the step command

and character ready status Tine.

Char. ‘ 1
Ready 0
Step
Command [‘:5\\[“[[J“\Nr—l-
m = m -Hh O — m P |>.<I-l
=1 1)) X ~is O Q) = : [1} Eid
ot 1] e S CT ct -1 ct
~ Q. ct (7] 1] 1) o
e 3 - - T8z 3 -
Events § - = N 0903 o S =
5 = a 1 E8a = o
[} [) Sunhuwuv (2] ©
© e WU .) =
(=] (1] ot
> (7] 234 -3
Q. - n .
-~ =1
. -de
=]

OPERATING INSTRUCTIONS:

Disable the reader: for instance open the read head or set reader control to
STOP or FREE. |

Reset the system and étaft it running to initialize the I/0 ports.

Load the tape into the reader anywhere before the Start of the punching.

Again reset the system: the tape will begin moving as it is read into the system.
The system will "halt" at H'007C' when finished. A fha]t" at H'0060' indicates
a‘tape error; restart. A "halt" at H'0021' while using a parallel reader occurs
if ihe reader is not ready. (The "halt" is a branch instruction branching to

itself).

14.3

(BOOT)

[

INITIALIZE
PORT 9
SERIAL PARALLEL
SEND RDR"ON" SET SWITCH FOR
TO TTY PARALLEL INPUT
(Q RES).
SET SWITCH FOR INITIALIZE
SERIAL INPUT PORT 4 & 5

INPUT & TEST
FOR RDR READ

A

NOT READY
(

IIHALTII
(BRANCH TO SELF)

READY

Y

SET DC TO DEFAULT,LOAD ADDR
CLEAR "X DETECT" FLAG

9‘

IDLE

GET A CHARACTER
FROM INPUT DEVICE

IS IT AN "S"?

> ENDX

IS IT A "*"?

)

IS IT AN "X"2 = DATA
\\\\\\‘\\\/f’///y//i <::::>

14.4

(DATA M:)

CLEAR CHECKSUM
INITIALIZE BYTE CNT FOR 8
SET "X DETECT" FLAG
(NEXT * IS THE END OF TAPE)

AM AT START OF DATA BLOCK

USE BYTE ROUTINE,
GETS TWO CHARACTERS,
DOES CONVERSION TO BYTE,
FIXES CKSUM

STORE THE BYTE IN RAM
USING DC

STILL

DECREMENT BYTE COUNT

MORE TEST FOR END OF BLOC

READ CKSUM CHARACTER
& CONVERT TO BINARY

COMPARE THE TWO CKSUM

EQUAL
& TEST FOR EQUALITY

SERIAL

4

SEND RDR OFF
TO TTY

T -y

INPUT PORT @
TEST FOR SERI

(:éBR;néhT;ELEE> ~ IF CHECKSUM ERROR

14.5

INITIALIZE HALF-FLAG

SAVE PC1

ENTER BY PUSH

PUSH TO 'CHAR' ROUTINE

SET SERIAL

|
CHAR

<JMP USING

e o sy

PINP

| GET A CHARACTER

GET A CHARACTER

|

<<

CONVERT ASCII TO HEX

TEMPORARILY SAVE 1/2 BYTE

ADD TO CHECKSUM

HAVE BOTH

—~——

RESTORE PC1

MERGE 1/2 BYTES

POP

14.6

DECREMENT HALF FLAG
TEST FOR BOTH HALVES IN—"|

MOVE 1/2 BYTE

T0 2nd TEMP REG

SET PARALLEL

NEED TO
GET 2nd

@ HAVE 'S’ @ HAVE '*!
SET LOAD ADR IT'S THE END

IF AN X WAS SEEN

¥
i
1

GET TWO BYTES

L
|
ADD OFFSET
MOVE INTO H REG
& FROM THERE TO DC Y SERIAL.
- [senD RoR 0FF To Ty |
IDLE <
n HALT"

(SELF BRANCH

PARALLEL
CHAR INPUT
NOT
RDY
100 us DELAY LOOP]
INPUT PORT 4 &
SAVE CHARACTER
[
SEND ADVANCE CMD
TO PARALLEL DEVIGE
STILL RDY

INPUT & TEST CHAR RDY

NOT READY
REMOVE ADVANCE CMD

|
PICK UP CHAR IN ACC

 POP

14.7

C
TTYI
1 START, 8 DATA, 1 OR MORE STOP -——-——-—/)

\
ESET BIT COUNT

TELETYPE INPUT

MARK = 1
SPACE

START
STOP = 1

0

MARKING

0

NPUT PORT P &
EST FOR START BI

IHALF BIT DELAY

BAD NPUT & TEST

TART VALIDIT

0K
= PTA

MERGE BIT WITH CHARACTER FROM CHRS REG

DECREMENT BIT CNT & TE&T
ST IFO0 : 1 to 7 IF POS : STOP IF NE

<0

< NPUT & TEST STOP BIT

‘SHIFT CHARACTER RIGHT\‘\-‘\‘\§\‘N\2[

GET CHARACTER IN ACC }

' \

\ PLACE UPDATE CHAR I

BACK INTO "CHRS" REG

! ‘ POP
l FULL BIT DELAY‘ | |
gt
BIT BCNT CONTENTS OF REG 'CHRS'
START 9 XXXX XXXX
DO— 8 OXXX XXXX
SNAPSHOTS D1— 7 10XX XXXX
D2— 6 010X XXXX
AT PT A I D3— 5 1070 XXXX
! D4— 4 0101 OXXX
| D5— 3 0010 10¥X
INPUT = “E" i D6— 2 0001 010X
0 n7— 1 1000 1030 !
100 a101 % STOP 0 210 | !

14.8

(TTYO) TELETYPE OUTPUT
1 START, 8 DATA, 2 STOP

SET BIT COUNT
OUTPUT START BIT

> PTA

DELAY LOOP: 1 BIT TIME

DECREMENT & TEST BIT CNT

OUTPUT PRESENT LSB OF CHAR
|

SHIFT CHARACTER RIGHT
SHIFT IN ONES FOR STOP

START

NOYOTP W) —

STOP 1
STOP 2

CHARACTER & BIT COUNT AT PT A
IF INPUT IS "E" = 0700 0101

CHAR BIT CNT

0100
1010
1101
1110
1111
1111
11711
1111
1111
1111
1111

0101 11
0010 10
0001
1000
0100
1010
1101
1110
1111
1111
1111

=S NDWhOTOIN O

14.9

DONE

OUTPUT

O O00O0O—NO—O

oLl

q

~

o © & &

03/05/75 13:46306 -) o " FBA <= VERSION 4D == 2/18/7%
LOC OuJeC1 CODE’ TMT SOGURCE STATEMENT)) R ’ PAGE ?
PASS) LOMPLETE 6.25 SEC
pansaksk BUUT PRUGRAM FOR MMUD AND TTY CR RLADER AND FHA FURMAT®322
RETTE L FOR EITHER SERIAL TTY LR PARALLEL TAPE KEADER *#%
ot SLRIAL TTY WILL Si USED IF BIT 2 OF PURT 0 IS .TIED LCW
»#%x FILEL ALLOCATION 0: TEMP STORE FOR CHAR
» 1: CHK SUM CHARACTER
» 2: CHARACIER COUNT == 16 CHARACTERS PER LIN
* 2: HALF BEYTE FLAG
* 43 TLMP STCRE FOR 141 RhALF BYTE (UPPER)
* §: X DETECT FLAG
) L
#xass PGRT ALLUCATICN .-
* 0: SERIAL TTYy-- 81T 03 PNTR OUTPUT MAKK=QV
* BIT 3: TIt LOW. TU CHODSL TTY -
; : .t BIT.7: KEYBKD INPUT MARK=OV
* 4% PARALLEL BYTE .INPUT
® 5: Bl 0--.. STEP READER .OVSDRIVE LEFT ;
- ek e . 5 . . _BIT b==. READER READY SVSREADY.
- - - * _BIT 7-- .SPCCKET. 5V=CHAR KEADY e
——s — - — - [Rp—— e *_._ - - S e e e - . - - -
< . S s o e * - S [P p— .t e - e ceecmr o e o nmes memiem— i i e - —e - -
1 BASE HEX
e e e .. - . . e [e .
e e U . R
. 2 H e e e —_— e e e
3 BAUD 0
— . 4 . CHRS _ LY e e i e T -
"5 BCNT 2
S - 6. Twe _ EQU 3 R - A e

LL*pL

fe
ah

R 2 P @

13:246:06

T Lot T ORJIECT CODE

STMT

P —

i
!

7

[71
S S 1

20)

| CKSM_

: T T T FEA —= VERSION 4D —o T2nvests
"SOURCE STATEMENT -) T pace 2
XFLG EQU 4 B
CONT_ EQU_ - S T
THELG EQU P
EQU Y e [e e

-_BAUD, A_.

O - INITIALIZE TTY PORI . TO. MARK STATE

HY06

—- SET_DELAY TIME FCR_ TTY ROUTINES==___ _ . .-

e - e -3 e3MS=30CP S, 9.09MS=10CPS . e B
..... X S S —_— e -
S 5RO I8 INS ¢} INPUT SERIAL PCRT
e &S le._ i Sh b e e .
- 7 81 vl? 8P ps00 AND CHK FUR °ERIAL TTY
e ¥ 020009 s AL H'S1' . READER ON. CHARACTER... e et .
B 51 19 LR RS, A TpAsS 17 :
€_ .26 0 DD 2o Pl LLTTIYO ~ANDLTYPELXT e
- 20 B2 21 L1 TTYI .
Wt 22 _.LR QLeA ... SET Q REG FOR SERIAL INPUT CALLS I e .
T2 70 23 LIS 0
_““_Aé_-ﬁ__w_“_m.gimwmw” wm;wu_ﬁme"wm_mww;_m-wwN;m_.wmwmm"wmmMmmmwwmﬂwu-»
o B Y4 90 ’ 25" BR BOT] SKIP OVER PARALLEL CODE
T S s e e e
16 20 9 B 26 PEQU LI PIND o ol _Q) B
- T T oy 27 LR QLyA SET Q FGR PARALLEL INPUT CALLLS
19 70 — B8 LIS .0 e e e e e e e
R 1a77 T T 29 LR QUy A
16 GY:]) . 30 o OUTS 8 . INITIALIZE INPUT PORT. i
° 10T By - 31 ouTS 9 INITIALIZE CONTRGL PCRT FOR. READER UFE
1D A9 .32 - JAINS e B _
TR 13T T 33 SL S 'GET T READER KEADY BIT
iF 8y 3 L S - B %eg e e el el e e e
TS 90 FF 357 TSLFT BR SLF1 TLGCK UP 1N LOOP IF READER NUT READY
e e e e I _
e o e e e e
..é3, 2A_ & 0 .36 BOTI _ . pCI__ - !:1.‘.089.01__..551_9‘9.‘EDR_,LQADLNG._ADDRESS e e e e
26 70 T T T 37 LIS 0
27 54 .38 LR MKFQGzA“.H.QLEABMEIRSIMX.DEIECT,FLAG...mwm_- e S
* e R e e _ - e
28 28 0 9D 39 I0CE PI CHAR GET HEADER CHARACTER
.28 13___ — (40 e SL ok ___CLEAR PARLITY BIT__ e .

03765775

T13:46306

GBJECT COOE 7T TTSINT

"SOURCE STATEMENT

ARt

39
3A

. 3va FORN
3C

30
40
41

Lo

49

N

4D
“F

i

47

.80

Loc
i 12
2b 25 53 ..
2F T84 32
31 25 2A :
33 ts 3B
35 23 5B ..o
37 94 FO-

57
78
55,
Er

28 0 T .
17

35 e
94 FA

28 0 9D .

21 3F
24 DO
82 3
24 39

L]

TN

SR

..CI

B2
CCI
[:74
X1 .

- “Fea I vERsion

4D —-

2/18/7;

PAG 3

. €5t

1

SETA

_Cher

ENDX

IS IT.AN COAD. ADDRESSZ. . -

_IS.IT THE END.OF THE. TAPEZ — —ooolo

(VXY WELLs_IE IT .ISN*T.AN. X, THEN.LET?S 50_”__.,n_,-<““"__.-‘“

AR

bNZ IDLE
HAVE THE START UF A DATA LINE P,
LR CKSMyA_ _ INTIALIZE.CHK. SUM . (ACCSO)... . o .
LIS H*08"*
LR __CCNTsA INIIIALILE,BYTi COUNT T0. B oo i o meimim o e - }
LR XFLG 92 SHOW TﬁAT X HAS BEEN DETECTED
_PI . _BYTE . O _ .
ST STORE THE BYTE
OS o SONT s e e AND DECREMENT_LYIE. CuUNI_m,__""_.;“._.__ S
"BNZ CONT -
NOW TIME FOR MAKING CKH SUM CHK
PI CHAR . GET_CHK.CHAR EROM TAPE oo oo e omesimmm i o om0 20
N1 HI3F! MASK TO SIX BITS :
AL _ CHYDOY. __ _ ASCI1 CONVERT-= FIRST 079 - - -
BC *44 CARRY IF IT WAS TWEEN A AND F
JAL _ Hv3gy ___ FINISH _CONVERSION.DF A TO o e S .
CoM :
ANC e e e e e e . e
AS CKSM MAKE THE COMPARISON
LNL _H'OFY MASK_TO LSB & BITS . . e oo o o 3 o
BZ IDLE IF OK , LET®S GET SCME MORE
TCHK SUM ERRGR HALT SF*sssxssssssses
CINS O e e e s e S
St 4 CHK FOR SER/PARALLEL
BP SLF2 BIT 1S NOT. SET_IF. PARALLEL_"_w e o e e e B,
Ll H*93 " TURN READER OFF
LR _CHRSsA - [
. PI TTY0 AND TYPE IT i
2____BR___ SLFZ__.,-_.________.- e

Py

el vl

FBA -

- VERSION 4D == 2716775

1 03705/75 7 I3 46 08

@; _--.:__,_,-L.UC,V PAGE &
el « e S

€ T R TR T e N E! SETA PI BYTE .~ GET NEW LDAU ADDRESS FROM TAPE .
© e G324 B 74 meme AL H'OBY ~-ADD._IN_OFFSET IO GET. T(_RAM . e

67 54 ; 75 - LR 1044
P IO PL. . BYTE _

[T 77 11,4 ’
__MDCvau“,_AkéﬁlmThE_ADD&ESS”INIU"DC_.,__

€ o L L -7 S IDLE T T T s e e :
‘ s e e et = s e s o e - Mix ae v wncaas mmom B Eal VN [— e he e e e . o o s won e - S .- - R P . -
T *)
e OF R4 BO.__ tNDX S NS XFLG_ . HAVE AN %, GUT DOES. IT FOLLOW ANY DATA. 2 o
¢ 70 84 &7 81 : . B2 10LE MUST BE ONLY AT THE HEAD OF THE TAPE
e e e . RIEE _uomm,w“n,~,.4w”_-gxg.éA+6n»D§w2Agé e e
f — wer weem e _— S ——— - - -
T) ©weesawasx T HALT LOOP FOR WHEN FINISHED sosssks
.12 AO e B2 CINS ol B . . e R
< 73 15 293 St 4 MAKL TEST FOR SERIAL OR PARALLEL
STe 8 T B4 e e BP0 SLFZ O SKIP UVER JF PARALLEL T
76 26 93 €5 L1 MCEL READER UFF CHARACTER
< L Y T S S CHRSyA . _PASS IT IN CHRS o . oo
) 7T 197 24 G U &7 Pl) TTYO
7C 90 FF 86 SLF> BR SSLEB L) o i X
< N Lo LR . 8B . |
) e — ..N*, - . . — . e . . . o o N o .
€ i * o B i i
* N - - - -
. . .
< ’ G e PR GET A BYTE mwesaesas ———
o - LER L GETS THE BYTE, CUNVERTS, AND ALDS TG CHK SUM .
< . .
.* - - . [—— " . . - . e memie mm e 4L evienceeas menan - “ = . e . - - e F—
£ T e PR BYTF LR Ky P SAVE pC1
< w2 s LIS z , , s .
" a0 56 91 LR HFLGyA SET ThE HALF FLAG
81 26 _ 0 90U LPL 0 char o) A)
< T Be 7T 21 TiF : . NI RETY) MASK TU € BITS
8624 DO 94 eemem e AL HUDO' ASCIT CONVERT-= FIRST.0-9 e
68 c27 "3 95 BC xtg
L 2 S 2 - ST YA S AL MTI9Y L NEXT CLEAN_UP A-F . .
< . T . - e - - .
& e R T e e e e e - N

pLo L

43705715

Y “toc

TTOBJECT COBE T

13:46%06

“SINT T TSOURCE STATEMENT

? TTeC
i .. 8D .
‘BE
_8F

-3 S — .98

is 97 : st
] . LR
14 99 SR
L7100 . AS

4
_ CHRSsA. .. TEMP. STORE.IN. REG .CHRS ..

4
_CKSM..

" ADD. NEW. CHAR. IO CHK. SUM . .ocoo — —

FSA - VERSIDN 40 - 2/18/75
e e e o mm e e e i i o PAGE 5

@ T TTTe0 s Ty T R TCKRSMWA -

936 e Joe DS. ... HELG. _DECREMENT. HALF _COURT. oo - e om
i 92 84 5 .. 103 B2 THOD HAVE BOTH HALVES :
e e e - e e U — o .

B) } ,
84 ey o ha L LR ..—AyCHRS ...-.AONL.Y. HAVE UPPER.HALF-—. MUST.GD BACK. [R
€ 95 53 105 LR TEMP,A BUT FIRST SAVE THIS HALF AWAY
T Y Y VTN 17 ST -1 SRp— (7.1 B S e e e
¢ . S S L e e e
95 41 107 THEU TR AsCHRS GET THE LAST CHAR READ
99 Y4 _ ... oMos 0 SR s . AND. SHIFT IT.T0.LSB-END . o o mme e s
€ 9A c3 109) AS TEMP ADD IN MSE HALF BYTE :
: 9B S MO MR PaKoo. . RESTORE BLL .. e e e e e o e o o
: 9C ic 111 POP
*

z ’) v- i ” B - - i Tt) o i o B -
€« e S - e . . e - - e - - S
" B I e e e e e . R
L 4 . _ e - e . . - e - . R
« B N R _ -
€ . - e [U VU O —— e) e
E -t T T T T T N
€ e e o e e e e -
& o e e s e s M T T T T
< e e e e e e e e e e s
€ T S
€ ___ ‘ : e S

¢ ¢ ¢

[}

o

v w @

w

GLvlL

;]

”03/05‘/7;5”"""'T3—:‘;6:66 . T T e - uﬁgf:'.’\-/ﬁ_sfﬁh - Z,B :_—2';"3,75
LOC _ OBJECT CODE “ STMT: __ SDURCE STATEMENT C_PAGE__6
e S -y R N —_— IR
— S . g S S . — SIS
- '
T e oy PARALLEL AND SERIAL INPUT ROUTINES ES wnmeEans
e
o T T T T T T T oo 'CALL" 1S A pUSH TAo'A'c'HAiz"“_‘ E .
T - - o _'“-'CHAR USES Q T JUMP TO APPRUPRIATE ROUTINE
S - e T . - _ B
e B0 D . N13 CHAR_ e BB P0G JUMP TULINPUT.RQUT INE INDIRECTLY.IHRU.Q RE* . __ _
P . e ;.
S e e s . B . e e ——
T : ; ** PINPE GET A CHARACTER FROM PORT o)
” - Tt T e 1YBICALLY USED WITH TAPE REAUER, BUT HAS & HAND SHAK ING o
S5 DISUIPLINE THAT IS APPLICASLE Tu UTHER DEVICES SUCH S FIFCS
¥¥ o LUOKS FUK A CHARACTLR KEADY INPUT, AND THEM GETS THE
C T e T CHARACTERL NEXT CPU GIVES AN ADVANCE FULSE THat IS RENOVED o T
Twx T AFTER ThE DEVICE READY INPUT GOES NOT REAUY. ’
B %
— . - . .
SE A , R N T s 9 CGET A CHAR FRUM 300CPS READER
YF 91 Fe 115 HM Pinp LUGK FCR SPOCKET= FilGH
Al F 116 LIS HYOF " 100 US GLLAY AFTER SEEING SFOUCKET.
w2 18 17 cun
A3 LY LM RDLY O InC L . - - - -
A4 94 FE 119 BNZ PULY
A6 AB 120 CINS u AND NOW GET THE DATA BYTE

9 0 95 @

9

9L vl

&

&

[

13346306

FBA == VERSION 4D —-=

“o03/05s15 T a/18s75
LoC 'OIBJECT“CUDEA - SOURCESTA}-—E_MEKAI o)) o o) T o T PAGE 7
P i e e e e e e —_— e e e e e .
AB SY .. - 122 LR _..... . CHRSyA. _ TEMP.STURE CNEW. CHAR . S
s e ; e * e e . R S
A9 71 123 LIS H*O0)* LET'S ADVANCE 'lHt: RLADER To NLXT CHAR
. AA L BY e M2 L OUTS. L L9 D e e e
AB A9 125 msv INS 9 t,ET ’\EADLR .>'IATU5
AC 81 FE 126 &P NOSP . .AND LOOK FOR. MOVING. OFF .SPOCKET
AE 70 127 LIS 0
AF 89 128 OUTS .9 REMOVE DRIVE PULSE KUW THAT 17 15 MOVING
. e e s * . P Y VP -
BO %1 129 LR AyCHRS PICK BACK UP THt NEH CHARACTER
BY 1 . . 130 . ..PCP _ .
i L . N
- —— L pe ... s — - - —— .# - - - . s o e - - - - POy —— - - - -
»)
- - - N - - N LY
.
e . e %% TTYYI: SERIAL INPUT CHAKACTER RETURNLD IN ACC AMD REGO .
P - - - e —-_——— e e e e —— "._ —— P —m— - bmes iimsmm. s iea e Aeee e 4 mommmeme me 4 Ss s e s A e e me e s - - -
- U L ** REG BCNT HGLDS BIT COUNT . FEG. CHRS HOULDS .CHARACIER .
B8z 79 13i 1TVi LIS 9
- .B3 52 i 33z LR BCNT A _ SET_BIT_COUNT FOR_® DATA BITS R
84 A0 133 START NS v
.85 9} _FE_ 234 O BM .. START . LOOK FOR_START. ELT. ool o comis e oo e i - }
BT 40 135 LR AyBAUD GET DELAY COUNT
- B8 .28 —— 130 o CNOP L . e e e
B9 90) 137 pLY S BR a2 SILLY BRANCH FOR DELAY
N . BB 24) ... 13s o _AT HOOXS e L . S
B8O 94" F8 129 : BNZ ‘DLY3 THIS LOOP 1S HALF AS MUCH DELAY
e . e e i e e [T ——
... BE___AO . R LY NS - _CHECK START BIT_VALIDITY. . _. - -
co 91 F3 141 BM START
_Ce2 . _=2) 8O _ _._ .14l WwoP_ N1 _ . _ H*80% ____ NASK TO GET INPUT.BIT ONLY.. I -
C4 Ct 143 v AS CHRS (LL'G START BIT WILL CLR GAPGAGE)
e B 32 S L1 - DS ___BCNT_ ___ DROP. BIT CNT: Q_IF. LAST. DATAGNEG IF. STOP.. e s o o =
ce 91 11 145 BM sTaP NEG IF LOUKING FOR STOP BIT
. €8 84 2 146 B2 LoP2 . CIF LAST.B1T, DU.NOT SHIFT.. . .. ——
T cA 32 147 LOP3 SR . 1 SHIFT ASSEMBLED CHARACTER TO HAK[RGOM
Lo 82 D48 LOP2____ WR__ .. . CHRSsA _ _STORE.ASSEMBLED. CHARACTER.. e e e
- - S ’ - - . . - re—— e - v [Op.
AN o o 40 149 LR AJBAUD. START OF FULL BIT TIME DELAY
e €D 28 .. _.350_ NOP e e e e e e

e o o

d>

.

vl

i T

n

w

F8A <2 VERSION 4D -

E72TY: T

TTTTUoC T T OBJEE T CUDE ST --sﬁuktt‘"érﬁe}qéii'f"”'.“?‘“" T - I T T “—*_'.;Agg“‘“é? T
- CE BB 151 oLYe T TOUTS T T T hiog e NOP FOR DELAY T T
- LCRL BB 352 ouTs. HeOBS _ e e e e - et m e e
i) B8 “153 ouTS HY0B
by 24 1 154 AL HYOI' __ INCR_WITH A 5US.INSI_ ___ e e e e e e e
: D3 94 FA 155 BNZ DLY4
e LS A0 el 86VINSL L0 GEYNEW. BIT.. e ot s e e
L6 90 "EH 157 BR Loop
...be a0 e 28 L STGP _INS . O i GET STOP 01T . e e e+ e — e e
09- 41 159 LR AsCHRS GET CHAR. IN A
DA 81 EF_ — 160 L BP LorP3 -—.DAD. STOR.BIT IF 6117 OF INPUI 1S O . . - . DR
. e —_ . * - e e R
""" ‘oc ic 16l POP -
- e e — et er m—— o ot e oot e e e - e
. - * - * . - -

8L ¥l

F

e ¢

"2

03705775 T 13iebi0e T T TTTTTTTTTITT Tt T T e T TR BA —- {,‘E",{él},‘N"’;B“_’; "7)]8",'-,';'
- e e i et i i e e e e .
_LOC__ _OBJECT CODE . STMI __ SOURCE STATEMENT _ e e maeme e PAGEL 9
: . **
B} - I , T e e e e — e e 5
) T Trmmm T ”f"';'ié':&:;i"s‘;‘eh'x'A'f'c'{biﬁii'i ROUTINE “wananamsans < T T S
T TS ik has 1 START, 6 DATA, 2 STOP. USES PORT 0, BITS o a0 7 T ’ ~
T UNE T GhUD RATE 1S SET BY 7 DELAY COUNT IN REG BAUD 3
Lo "%+ CALL BY PUTTING CHAR IN REG CHRS, AND SETTING DELAY IN BAUD
’ ‘ TS ROUTINE RETURNS WITH ALL 195 IN REG CHRS, REG BAUD INTACT v
. _..bo . - led _ TIYO_ LIS HROBY s e S - - .
DE 52 164 LR, BCNTyA SET BIT COUNT FOR 1) BITS »
[L (- TS L SN 1N B e .
£EG 80 106 ouTS o CUTPUT START BIT 9
- - y - — o i o— .’ —— a il e i e et e e e mn e e e mm e [PY . —— o - — - e ——
T o T - """‘353'""th"Ai'Ru(}imé'i-""a'."ihs'"F'o'ri"é'é‘o ‘BAUD, 9 MS FOR 10 Brve T Trttet T v
El 167 - DLYY LR AsbAUD GET OFLAY COUNT - . e m >
- "E2 lo8 NOP
E3 169 - DLYZ _QUTS _ __ HT08Y _ NOR_FOR DELAY. . o e e e } - .
- E4 " 170 ouTS H*OB?* »
E5 LA OUTS OB e s e T e S
(13 172 AL H'0}? INCR WITH A 5US INST)
__.E®_ R ¥ N CBNZ o DLY2 e - e e e »
¥ I R LG ; A
T URATTTTRY RS ¥ T DS BCNT DECREMENT BIT COUNT »
. EB 84 ¢ 175 Bz DONE P e —
T ED 41 176 LR AsCHRS GET CHARACTER .
N EE 21 1 177 NIt H'OL __ MASK OFF ALL_BUT.BIT O o s e o N »
FO B0 178 ouTsS 0 OUTPUT THE NEW DATA BIT
- - — - . ; ‘ ———— o < e ot A _"—'f—"">""' e ot s e e . i 4 o Sine s et ,
. F1 .41 179 LR __A3CHRS NOW SHI1FT _THE CHARACTER. EOR MEXT BIT S
F2 12 180 SR 1 S T B L _
— F3 24 &0 181 . - Al _ H®8O% __ FILL WITH 1®S_FOR_STOP BITS . oo S e e »
F5 51 182 LR _CHRSyA , - :
) ~ i -
— .. O

6L Pl

& o

ba)

o

03705775 . T13346:06

LOC OBJECT COUE TUUSTAT T U SOURCE STATEMENT

BR

163

FE 1c (184 LONE | PuP

... ALL FINJSHED

- e — N .V - .#.. - .. - - PR,
‘ i ®
*
15 END
PASS 2 LOMPLETE T GL17 §E¢T T s i
NO ERRORS IN ABGvE aSSEmpry 7
A J

OLYE T TG0 wAIT ouT Th1s 81T

. PAGE

FBA == VERSION 4D ~— 2/18/7%

10

2 ® © ©

<

	001
	002
	01-00
	01-01
	01-02
	02-00
	02-01
	02-02
	02-03
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-00
	05-01
	05-02
	05-03
	05-04
	06-00
	06-01
	06-02
	07-00
	07-01
	08-00
	08-01
	08-02
	08-03
	09-00
	09-01
	09-02
	10-00
	10-01
	10-02
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	12-00
	12-01
	12-02
	12-03
	12-04
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-00
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19

