
:II
CJD.
mD
LLI- MOS Microcomputer Division

464 Ellis Street, Mountain View, California 94042
:£ 1977 Fairchild Camera and Instrument Corporation/464 Ellis Street, Mountain View, California 94042/(415)962-5011/TWX 910-379-6435

TABLE OF CONTENTS

SECTION

1.0 INTRODUCTION .. .
1.1 ASSUMED READER BACKGROUND
1.2 SUPPORTING DOCUMENTATION.

PAGE

1-1
1-1
1-1

2.0 THE F8 MICROPROCESSOR SYSTEM '" 2-1
2.1 WHAT IS A MICROPROCESSOR 2-1
2.2 SOME BASIC CONCEPTS. 2-1

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

INSTRUCTIONS, PROGRAMS, DATA AND MEMORY
INTERRUPTS
PROGRAMMABLE CLOCKS.
DIRECT MEMORY ACCESS
A COMPLETE MICROPROCESSOR SYSTEM

2-1
2-2
2-2
2-2
2-3

2.3 THE F8 SYSTEM. 2-4
2.3.1 CHIP AND I/O PORT SELECTION. 2-4

2.4 THE 3850 CPU. 2-4
2.4.1 TIMING. 2-4
2.4.2 CPU REGISTERS 2-6
2.4.3 STATUS.
2.4.4 3850 INPUT/OUTPUT

2.5 THE 3851 PSU.......
2.5.1 3851 TIMING _
2.5.2 3851 REGISTERS..
2.5.3 3851 INPUT/OUTPUT
2.5.4 3851 LOCAL TIMER AND INTERRUPT.

2-6
2-7

2-7
2-7
2-8
2-9
2-9

2.6 THE 3852 DYNAMIC MEMORY INTERFACE..
2.6.1 3852 TIMING.
2.6.2 3852 REGISTERS
2.6.3 3852 DIRECT MEMORY ACCESS AND MEMORY REFRESH

2-9
.. 2-9

........... 2-9
2-10

2.7

2.8

THE 3853 STATIC MEMORY INTERFACE

THE 3854 DIRECT MEMORY ACCESS .. .

2-10

2-11
2.8.1 3854 REGISTERS. 2-11
2.8.2 DMA CONTROL CODES

3.0 F8 PROGRAMS
3.1 FLOWCHARTING.
3.2 ASSIGNING MEMORY.
3.3 SOURCE AND OBJECT PROGRAMS.

4.0 ASSEMBLY LANGUAGE SyNTAX .. .
4.1 INSTRUCTION TYPES .. .

4.1.1 COMMENTS.
4.1.2 EXECUTABLE INSTRUCTIONS..
4.1.3 ASSEMBLER DIRECTIVES.

4.2 INSTRUCTION FIELDS
4.2.1 LABEL FIELD
4.2.2 MNEMONIC FIELD .. .
4.2.3 OPERAND FIELD.
4.2.4 COMMENT FIELD.
4.2.5 ALIGNING FIELDS .. .

4.3 LANGUAGE COMPONENTS.
4.3.1 VALID CHARACTERS .. .
4.3.2 CONSTANTS
4.3.3 SYMBOLS
4.3.4 EXPRESSIONS

5.0 ASSEMBLER DIRECTIVES
5.1 BASE - SELECT LISTING NUMERIC BASE
5.2 DC - DEFINE CONSTANT

2-12

3-1
3-1
3-1
3-2

4-1
4-1
4-1
4-1
4-1

4-1
4-1
4-2
4-2
4-2
4-3

4-4
4-4
4-4
4-5
4-5

5-1

5-1
5-1

SECTION

5.3
5.4
5.5

5.6
5.7
5.8
5.9
5.10
5.11

TABLE OF CONTENTS (Cont'd).

EJECT - EJECT CURRENT LISTING PAGE
END - END OF ASSEMBLY
EQU - EQUATE A SYMBOL TO A NUMERIC VALUE ..
5.5.1 A COMPARISON OF THE EQU AND DC DIRECTIVES

MAXCPU - SPECIFY MAXIMUM CPU TIME
ORG - ORIGIN A PROGRAM
SYMBOL - ASSEMBLER PROVIDE A SYMBOL TABLE
TITLE - PRINT A TITLE AT THE HEAD OF THE ASSEMBLER LISTING
XREF - ASSEMBLER PROVIDE A SYMBOL CROSS REFERENCE LISTING
WHEN TO USE ASSEMBLER DIRECTIVES

6.0 THE INSTRUCTION SET
6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

ADC - ADD ACCUMULATOR TO DATA COUNTER
AI - ADD IMMEDIATE TO ACCUMULATOR.
AM - ADD (BINARY) MEMORY TO ACCUMULATOR
AMD - DECIMAL ADD, MEMORY TO ACCUMULATOR
AS - BINARY ADDITION, SCRATCHPAD MEMORY TO ACCUMULATOR ..
ASD - DECIMAL ADD, SCRATCHPAD TO ACCUMULATOR
BRANCH INSTRUCTIONS
6.7.1 BF - BRANCH PM FALSE........
6.7.2 BT - BRANCH ON TRUE.

CI - COMPARE IMMEDIATE
CLR - CLEAR ACCUMULATOR.
CM - COMPARE MEMORY TO ACCUMULATOR
COM - COMPLEMENT
DCI - LOAD DC IMMEDIATE.
01 - DISABLE INTERRUPT.
OS - DECREMENT SCRATCHPAD CONTENT ..
EI - ENABLE INTERRUPT
IN - INPUT LONG ADDRESS
INC - INCREMENT ACCUMULATOR.
INS - INPUT SHORT ADDRESS
JMP - BRANCH IMMEDIATE .. .
LI - LOAD IMMEDIATE.
LIS - LOAD IMMEDIATE SHORT
LlSL - LOAD LOWER OCTAL DIGIT OF ISAR.
LlSU - LOAD UPPER OCTAL DIGIT OF ISAR
LM - LOAD ACCUMULATOR FROM MEMORY
LNK - LINK CARRY TO THE ACCUMULATOR
LR - LOAD REGISTER
NI - AND IMMEDIATE.
NM - LOGICAL AND FROM MEMORY.
NOP - NO OP...
NS - LOGICAL AND FROM SCRATCHPAD MEMORY .. .
01 - OR IMMEDIATE
OM - LOGICAL "OR" FROM MEMORY
OUT - OUTPUT LONG ADDRESS
OUTS - OUTPUT SHORT ADDRESS

6.35 P! - CALL TO SUBROUT!NE !MMEDLl1.TE
6.36 PK - CALL TO SUBROUTINE DIRECT AND RETURN FROM

SUBROUTINE DIRECT ..
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44

POP - RETuRN ~HOiVl SUHHOU liN!::
SL - SHIFT LEFT.
SR - SHIFT RIGHT
ST - STORE TO MEMORY
XDC - EXCHANGE DATA COUNTERS
XI - EXCLUSIVE OR IMMEDIATE
XM - EXCLUSIVE OR FROM MEMORY
XS - EXCLUSIVE OR FROM SCRATCH PAD

PAGE

5-1
... 5-2

5-2
5-2

. .. 5-2
5-3
5-3
5-3
5-3
5-3

6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-7
6-7

6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-8
6-8
6-9
6-10
6-10
6-10
6-10
6-10
6-11
6-11
6-11
6-11
6-11
6-12
6-13
6-13
6-13
6-13
6-14
6-14
61 A

6-14
6-15
6-15
6-15
6-15
6-16
6-16
6-16

... 6-16

TABLE OF CONTENTS (Cont'd)

SECTION PAGE

7-1
7-1
7-1
7-1
7-3
7-3

7.0 PROGRAMMING TECHNIQUES.
7.1 MANIPULATING DATA IN THE SCRATCHPAD ..

7.1.1 SIMPLE SCRATCHPAD BUFFER OPERATIONS
7.1.2 INCREMENTING UP, AND DECREMENTING DOWN SCRATCHPAD BUFFERS ..
7.1.3 USING SCRATCHPAD REGISTERS AS COUNTERS ...
71.4 USING SCRATCHPAD REGISTERS FOR SHORT DATA OPERATIONS.

7.2 ROM, RAM AND DATA TABLES ..
7.2.1 READING DATA OUT OF TABLES IN ROM
7.22 ACCESSING DATA TABLES IN RAM

7.3 SUBROUTINES ...
7.3.1 THE CONCEPT OF A SUBROUTINE
7.3.2 SUBROUTINE PROGRAM STEPS
7.3.3 SIMPLE SUBROUTINE CALLS AND RETURNS
7.3.4 NESTED SUBROUTINES
7.35 MULTIPLE SUBROUTINE RETURNS ..
7.3.6 PASSING PARAMETERS

7.4 MACROS..
74.1 DEFINING AND USING MACROS
74.2 MACROS WITH PARAMETERS
74.3 RULES FOR DEFINING AND USING MACROS ..
7.4.4 WHEN MACROS SHOULD BE USED ..

75 JUMP TABLES.
7.5.1 JUMP TABLE USING JUMP INSTRUCTIONS
7.52 JUMP TABLE USING ADDRESS CONSTANTS ..
7.5.3 JUMP TABLE USING DISPLACEMENT TABLES.

76 STATUS, BITS AND BOOLEAN LOGIC.
7.61 MANIPULATING INDIVIDUAL BITS
7.6.2 TESTING FOR STATUS.

7.7 POWERING UP AND STARTING PROGRAM EXECUTION

8.0 INPUT/OUTPUT PROGRAMMING
8.1 PROGRAMMED I/O .

8.1.1 POLLING ON STATUS
8.1.2 DATA. STATUS AND CONTROLS
8.1.3 PARALLEL DATA AND CONTROL PORTS

8.2 INTERRUPT 1j0
8.2.1 THE INTERRUPT SEQUENCE ...
8.2.2 ENABLING AND DISABLING INTERRUPTS
8.23 INTERRUPT PRIORITIES.
8.2.4 PROGRAM RESPONSE TO AN INTERRUPT
8.2.5 MAKING 3851 PSU INTERRUPT ADDRESS PROGRAMMABLE
8.2.6 SIMPLE 1j0 INTERRUPTS
8.2.7 A SAMPLE PROGRAM .. .

8.3 LOCAL TIMERS (PROGRAMMABLE TIMERS)
8.3.1 LOCAL TIMER 1j0 PORTS
8.3.2 PROGRAMMING LOCAL TIMERS
8.3.3 A PROGRAMMING EXAMPLE - THE TIME OF DAY

8.4 DIRECT MEMORY ACCESS
8.4.1 WHEN TO USE DMA
8.4.2 PROGRAMMING DMA
8.4.3 CATCHING DMA ON THE FLy............................

7-4
7-4
7-4

7-6
7-6
7-7
7-7
7-8
7-12
7-13

7-14
7-14
7-14
7-15
7-15

7-15
7-16
7-16
7-16

7-17
7-17
7-18

7-18

8-1
8-1
8-1
8-2
8-3

8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-6

8-7
8-7
8-8
8-8

8-9
8-9

8-10
8-11

9.0 PROGRAM OPTIMIZATION " 9-1
9.1 COUNTING CYCLES AND BYTES. 9-1
9.2 ELEMENTARY OPTIMIZATION TECHNIQUES , '" 9-1

9.2.1 SCRATCHPAD AND RAM MEMORy... 9-1
9.2.2 IMMEDIATE INSTRUCTIONS , , 9-1

TABLE OF CONTENTS (Cont'd)

SECTION

9.3

9.2.3
~?4

9.2.5

SHORT INSTRUCTIONS
USf OF OS INSTRUCT!ON TO DECREMENT AND TEST
USE OF THE BR7 INSTRUCTION

PROGRAMMING FOR SPEED OR MEMORY ECONOMY
9.3.1 MACROS AND SUBROUTINES
9.3.2 TABLE LOOKUPS VERSUS DATA MANIPULATION

10.0 SOME USEFUL PROGRAMS
10.1 GENERATING TEXT

10.1.1 SIMPLE AND DEDICATED TEXT PROGRAMS
10.1.2 UNPACKING DECIMAL DIGITS ..
10.1.3 VARIABLE TEXT

10.2 MULTIBYTE ADDITION AND SUBTRACTION.
10.2.1 16-BIT, BINARY ADDITION AND SUBTRACTION
10.2.2 MULTIBYTE BINARY OR DECIMAL ADDITION AND SUBTRACTION

10.3 MULTIPLICATION.

10.4 DiViSiON

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

BINARY NUMBER SYSTEM.
ASCII CODES ...
CONVERSION TABLES/TIMER COUNTS ...
INSTRUCTION SUMMARY.

FIGURE

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12

3-1
3-2
3-3

4-1
4-2
4-3
4-4
4-5
4-6
4-7

5-1

6-1
6-2

LIST OF ILLUSTRATIONS

Multifunction Logic Device.
Data and Instruction Paths In a Multifunction Logic Device.
Program P Being Interrupted to Execute Program R
Logical Components, Data Paths and Control Paths In any Microprocessor System.
F8 Microprocessor System Configurations
Logical Functions of the 3850 CPU ..
Instruction Timing ..
3850 CPU Programmable Registers
Logical Functions of the 3851 PSU ..
Logical Functions of the 3852 DMI Device
Logical Functions of the 3853 SMI Device
Logical Functions of the 3854 DMA Device

Flowchart for a Program to Move Data from One RAM Buffer to Another ..
Flowchart for Program to Add Two Multibyte Numbers and Output the Result.
Source and Object Programs.

Four Comment Lines (Shaded; in a Source Program
Label Fields (Shaded) in a Source Program.
Mnemonic Field (Vertical Shaded) in a Source Program
Operand Fields (Shaded) in a Source Program
Comment Fields (Shaded) in a Source Program .. .
Source Program with Unaligned Fields
Symbols in a Source Program

Assembier Directives (Shadedj in a Source Program.

Generation of a Displacement Object Program Byte in Response to a Forward Branch.
Genel diiull UI d Di:;pidcelTlfli ObJeci Program Byte in Response to a Backward Branch

PAGE

9-7
n "7 ;:..'-,

9-7

9-2
9-2
9-3

10-1
10-1
10-1

. .. 10-1
10-1

10-2
10-2
10-3

iO-3

10-5

A-l
B-1
C-l
D-l

PAGE

2-1
2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-8

2-10
2-11
2-12

3-1
3-2
3-3

4-1
4-2
4-2
4-3
4-3
4-3
4-5

5-1

6-5
0-0

FIGURE

7-1
7-2
7-3

8-1
8-2
8-3
8-4

9-1

TABLE

2-1
2-2

4-1

6-1
6-2
6-3
6-4
6-5
6-6
6-7

7-1
7-2

8-1

TABLE OF CONTENTS (Cont'd)

Use of H, Q and DCl Registers to Hold Three Buffer Addresses
Subroutine, as Compared to a Macro.
Scratchpad Stack

Daisy Chaining and Interrupt Priority Determination ...
Two Levels of Interrupt.
Two Devices Servicing a Keyboard to Cassette Application ..
How BUFC and BUFD are used to Control DMA Operations

Counting Cycles and Bytes ...

LIST OF TABLES

Summary of Status Bits.
Hexadecimal Addresses of Four I/O Ports used as Registers by Four 3854 DMA Registers ..

Summary of Restricted Characters

Operand Symbols
Operands Referencing Scratchpad Memory, as Specified by Symbol Sreg
Branch Conditions
Branch Conditions for BF Instruction
Branch Conditions for BT Instruction
I/O Port Address Assignments ..
LR Instruction Operand Definitions ...

Scratchpad Memory Utilization.
Use of a Memory Stack for Executing Multiple Level Subroutines

Contents of Interrupt Control I/O Ports

v

PAGE

7-6
7-7
7-1C

8-4
8-4
8-6
8-lC

9-2

PAGE

2-6
2-11

4-4

6-1
6-1
6-6
6-6
6-7
6-9
6-1 ~

7-1
7-1C

8-4

INTRODUCTION

This manual explains how to write programs for the Fairchild
F8 microprocessor system, and how these F8 programs cause
a microprocessor system to function as a discrete logic
replacement.

The Fairchild F8 family of logic devices consists of a Central
Processing Unit and a number of complementary devices,
manufactured using n-channel Isoplanar MOS technology.
Components of the F8 family include the following devices:

1) The 3850 Central Processing Unit (CPU)
2) The 3851 Program Storage Unit (PSU)
3) The 3852 Dynamic Memory Interface (DMI)
4) The 3853 Static Memory Interface (SMI)
5) The 3854 Direct Memory Access (DMA)

Complete microprocessor based systems may vary in size and
complexity from as little as two devices-the 3850 CPU and
the 3851 PSU-to large systems incorporating the above
five devices, plus any standard static and/or dynamic Random
Access Memory (RAM) devices.

The following are some general characteristics of this micro­
processor device set:

• 8-bit data organization
• 2 #1 s instruction cycle time
• Over 70 microprocessor instructions
• 64 general purpose registers in the CPU
• Binary and decimal arithmetic, and logic functions
• Up to 65,536 bytes of ROM and RAM, in any combination
• No need for special external interface devices
• Internal, programmable real time clocks
• Internal power on and reset logic
• Multi-level interrupt handling
• Clock and timing circuits

1-1

1.1 ASSUMED READER BACKGROUND

This manual has been written for logic designers with little
or no background in programming.

The reader is assumed to understand the following:

1) Binary, octal, binary coded decimal and hexadecimal
number systems

2) Signed and unsigned binary arithmetic
3) Boolean logic
4) ASCII and EBCDIC character codes

For readers without the assumed background, a summary of
this basic information is given in Appendix A.

1.2 SUPPORTING DOCUMENTATION

The following manuals provide additional information on the
F8 microprocessor:

1) F8 Circuit Data Book which provides electrical param­
eter data for all Fairchild F8 Microprocessor devices.

2) F8 Timeshare Operating Systems Manual which ex­
plains how to assemble and debug F8 Microprocessor
programs on NCSS and GE Timeshare Networks.

3) F8 Circuit Reference Manual which describes the
interactive timing and signal sequences which occur
between devices in the F8 Microprocessor family.

4) F8S and F8SEM Users Manuals which describe how
to assemble and debug microprocessor programs on
the F8S and F8SEM hardware modules.

5) F8 Formulator Users and Reference Manuals which
describe how to use and maintain Fairchild's F8
Formulator developmental hardware.

THE Fa MICROPROCESSOR SYSTEM

The purpose of a microprocessor system is to replace discrete
logic; but in order to understand why a microprocessor system
is effective as a logic design tool, it is first necessary to
understand what is in a microprocessor system.

2.1 WHAT IS A MICROPROCESSOR?
After a product has been fabricated using discrete logic com­
ponents, it consists of one or more logic cards; each card may
be visualized as generating a variety of signals output at the
card edge, based on signals input at the card edge. The logic
devices on the card are specifically selected and sequenced
to generate the required product.

If the same product is implemented using the F8 micropro­
cessor, the F8 CPU and its five supporting devices can be
made to function in the same way as anyone of many mil­
lions of different discrete logic device combinations. In other
words, the F8 CPU, optionally in conjunction with the sup­
porting devices, has the capacity to duplicate the performance
of any discrete logic design, limited only by speed consider­
ations. F8 microprocessor systems have a 2 j.Ls instruction
cycle time. The functions that will be performed by the F8
microprocessor system are established by a sequence
of "instructions", stored in a memory device as a sequence
of binary codes. Taken as a whole, the sequence of instruc­
tions are referred to as a "stored program".

2.2 SOME BASIC CONCEPTS
Any logic device may be reconstituted from some or all of
the following basic functions:

1) 8inary addition
2) The logical operations AND, OR and EXCLUSIVE-OR
3) Shifts and rotates of binary digit sequences which

are being interpreted as numerical entities (e.g., a
byte = eight bits).

A general purpose logic device can be created by implement­
ing the basic functions listed above on a single chip. If the
single chip is to duplicate the performance of other logic de­
vices, it must be provided with a sequence of instructions that
enable the required logic in the proper order, plus aa stream
of data that is operated on by the specified logic. This is
illustrated in Figure 2-1.

INSTRUCTIONS IN

I
MULTIFUNCTION

LOGIC
DEVICE
(CPUI

Fig. 2-1. Multifunction Logic Device

2-1

In order to function, the multifunction logic device will need
the following parts:

A) An Arithmetic Logic Unit (ALU), containing the neces­
sary basic logic functions.

B) A control unit, which decodes instructions and enables
elements of the ALU, as needed.

C) Registers to hold instruction codes and data, as needed.
D) Data paths within the CPU, and between the CPU and

external devices.

Parts A), B), C), and D) are the basic components of any
Central Processing Unit (CPU). A CPU must be the focal point
of any computer-maxi, mini or micro.

Referring to Figure 2-1, where do "instructions" and "data
in" come from, and where will "data out" go? There are two
possibilities: memory or external devices.

Refer to Figure 2-2. Memory is a passive depository of infor­
mation where data or instruction codes may be stored.
Memory must be divided into individually addressable loca­
tions, each of which can store one element of instruction
code or one element of data. In an F8 system, each individ­
ually addressable location will be an 8-bit data unit (a byte),
since the F8 is an 8-bit microprocessor.

MEMORY

MULTIFUNCTION
lOGIC

DEVICE
(CPUI

I/O PORT EXTERNAL DEVICES 1;0 PORT

Fig. 2-2. Data and Instruction Paths in a Multifunction Logic
Device

"External devices" refer to any data source or destination
beyond the perimeter of the microprocessor system. Drawing
an analogy with a logic card, "'external devices" will refer to
the world beyond the card edge connector. Data passes be­
tween the microprocessor system and external devices via
Input/Output (I/O) ports.

2.2.1 Instructions. Programs. Data and Memory

For a microprocessor to perform any specified operation, it
will receive and process a sequence of instructions. The se­
quence may be very long-numbering even into the thousands

of instructions. A sequence of instructions that can be taken
as a unit is called a program; the purpose of this manual is
to describe how a program is constructed out of a sequence
of instructions.

Data may (and usually will) be stored in memory. In fact, the
255 possible combinations of eight binary digits (Oi byte) may
represent any of the following types of information:

1) An instruction code
2) Numeric or address data that is part of an instruction's

code
3) Numeric or address data that is independent of

instruction codes
4) A coded representation of a letter of the alphabet, digit

or printable character

It would be impossible to determine the content of any
memory byte by random inspection. This does not cause prob­
lems, since a program will occupy one or more segments of
contiguous memory bytes, and data resides in blocks of
memory as assigned by the programmer.

2.2.2 Interrupts

The number of programs which may be stored in memory is
limited only by the amount of memory available for program
storage. If ten programs were stored in memory, by simply
identifying one program, the same microprocessor system
could be made to function in one of ten different ways.

If a microprocessor has more than one program available for
execution, how is the one program which is to be executed
identified? There are two separate and distinct ways in which
a program may be identified for execution:

A) Program identification may itself be a programmed
function; for example, each program, upon completing
execution, may identify the next program to be exe­
cuted. The key to this method of program identification
is that it is internally controlled, within the logic of
the microprocessor system.

B) Programs may be called into execution by external
devices; this may happen even if another program is
in the middle of execution. For example, take the sim­
ple case of a microprocessor that is recording data
input by an external instrument; while receiving data
from the external instrument, the microprocessor per­
forms numerical operations on the collected data.
Program executions are illustrated in Figure 2-3.

Fig. 2·3. Program P Being Interrupted to Execute Program R

In Figure 2-3, P represents the program performing numerical
operations on the data. Data is collected by repeated execu­
tion of program R. Events occur as follows:

1) Program P is executing.
2) When the external instrument has data which it is

ready to transmit, it sends an interrupt signai iii to
the microprocessor, along with the starting address
of program R.

3) Upon receiving interrupt signal I, the microprocessor
does some elementary "housekeeping"; for example,
it saves the address of the program P instruction it
was about to execute, plus any intermediate data being
held in temporary storage registers.

4) The microprocessor completely executes program R.
5) Upon completion of program R execution, the micro­

processor restores values saved in step 3, then con­
tinues program P execution from the point where
interrupt I occurred. Thus execution of program P ap­
pears to have gone into "suspended animation" for
the duration of program R execution.

The sequence of events illustrated in Figure 2-3 is quite com­
mon in microprocessor applications, and is called an external
interrupt. Interrupt programming is described in Section 8.2.

2.2.3 Programmable Clocks
There are many microprocessor applications in which It IS
important that the microprocessor system be synchronized
with the real time of the outside world. Such synchronization
is accomplished using programmable clocks, which are reg­
isters that count at a known rate. When the shift register
counts to zero, the event is marked by an interrupt (as de­
cribed in Section 2.2.2); in this case the interrupt is defined
as a "time out" interrupt. Since the rate at which the clock
register counts will be known for any microprocessor system,
setting a real time interval simply involves loading the
register with the correct initial count.

2.2.4 Direct Memory Access
Notice from Figure 2-2 that data may be input to the micro­
processor from memory or from an external device, via an
I/O port.

It is easy to imagine how, in many applications, data will be
transferred from an external device, via an I/O port and the
CPU, to memory; the data will then be accessed from memory
in the normal course of program execution.

It makes little sense to tie up the logic of the CPU while shunt­
ing data from an I/O port to memory; therefore, provisions
are made for Direct Memory Access (DMA), whereby data is
moved between memory and an "I/O port". bypassing the
CPU entirely. The DMA "I/O port" is called a "DMAchannel".

In order to implement DMA, the microprocessor system must
have iogic (outside the CPU) which provides the follOWing
three pieces of information:

1) A starting memory address for a data block.
2) A byte length for the data block.
3) The direction of the data movement.

If the microprocessor has this logic, data may be transferred
between memory and an I/O port independent of, and in
parallel with, unrelated CPU-memory operations.

2.2.5 A Complete Microprocessor System

To summarize, a complete microprocessor system will have
the following logical components:

1) A CPU, which is the multifunction logic device of the
system.

2) Memory (of various types and combinations), in which
programs and data are stored.

3) Memory interface logic which identifies:
a) the next memory location which must be accessed

to fetch instruction codes for the CPU, and
b) the memory location from which a byte of data will

be read, or to which a byte of data will be written.

/
/
I
I
I
I
\
\
\
\

/

_OATAPATHS

---+ CONTROL PATHS

/
/

/

/

/
/

/

REAL
TIME

,- CLOCK

,/ _--'""-

MEMORY

CPU

4) 1/0 ports, through which bidirectional data pas­
ses between the microproc'essor system and external
devices.

5) DMA logic, which provides a direct data path between
memory and external devices, bypassing the CPU.

6) Interrupt logic, which causes the CPU to temporarily
suspend current program execution. Along with each
interrupt request signal, interrupt logic identifies the
program which is to implement operations required by
the source of the interrupt.

7) Real time clock logic, which synchronizes the entire
microprocessor system with the real outside world by
generating interrupts at variably definable time
intervals.

Figure 2-4 illustrates these seven logical components, with
associated data flow paths.

~
~

I I ~'l-
I Q

I

MICROPROCESSOR
SYSTEM

OUTSIDE
WORLD

Fig. 2·4. Logical Components. Data Paths and Control Paths in any Microprocessor System

2-3

2.3 THE F8 SYSTEM
There is no one-for-one correspondence between the logical
components of a microprocessor system, as illustrated
in Figure 2-4, and the devices of the F8, or any other micro­
processor product. In fact, it is counter-productive to extend
the concept of isolating functions on separate devices
because it reduces the flexibility of a microprocessor system
to satisfy simple, as well as complex, applications needs.
More than any other microprocessor product, the F8 combines
many functions on single chips, thus allowing simple systems
to be implemented with as few as two devices, and complex
systems to be implemented using many devices.

Figure 2-5 illustrates the way in which F8 microprocessor
system devices interconnect to give a variety of system
configurations.

The simplest F8 system contains one 3850 CPU and one
3851 PSU.

Another very simple F8 system consists of one 3850 CPU,
plus either one 3852 OMI interfaced to a single dynamic
memory, or one 3853 SMI interfaced to a single static
memory device.

A fully expanded F8 system may have one 3850 CPU, one
3852 OMI and one 3853 SMI device, up to four 3854 OMA
devices, plus 3851 PSU and static or dynamic memory devices
in any combination, providing not more than a combined total
of 65,536 bytes of memory are directly addressed by the 3850
CPU. It is possible to address more than 65,536 bytes of
memory using special techniques which are described in the
F8 Circuit Reference Manual.

I
I

11,0 ,'"
'7

I I
,<D

'7

I I

I
13
(/)
(/)
::l
CD

o
II:
Z
o
u

I~
I~

3851
PSU

3851
PSU

II I I

,'"
'7

,'"
'7

,'"
'7

,'"
'7

TO STATIC READ/WRITE MEMORY

I ~ TO DYNAMIC READ/WRITE MEMORY

l4iJ
_C~N2R~~~' •

3854

DMA '" 7

DMA CHANNEL

Fig. 2-5. F8 Microprocessor System Configurations

2.3.1 Chip and I/O Port Selection

Every 3851 PSU has two permanent select codes-a chip
select code and an liD port select code.

The 3851 PSU chip select code is a six digit binary number,
which is always the highest six bits for memory addresses
on that device:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IxlxlxlxlxlxlAIAIAIAIAIAIAIAIAIAI
"-v-"
Chip Select

Memory Address for Individual Bytes on Chip

The 3851 PSU liD port select code is also a six digit binary
number, and is independent of the chip select code. The I/O
port select code is always the highest six bits for liD port
numbers on that device:

76543210

IxlxlxlxlxlxlAIAI
"-v-"
1;0 Port Select

1;0 Port Number

The 3852 OMI and 3853 SMI devices have a fixed (pre­
assigned) liD port select code, but have no on-board chip
select code.

The dynamic andlor static memories associated with the
3852 OMI and 3853 SMI derive their select function from
external logic. This allows the system designer complete
freedom with respect to memory space partitioning.

Every F8 microprocessor system must have one memory
device whose byte addresses start at 0; the first instruction
executed when an F8 system is powered up is the instruction
stored in memory byte O.

2.4 THE 3850 CPU
Figure 2-6 illustrates the logical functions implemented on
the 3850 CPU.

The heart of the F8 microprocessor system is the 3850 CPU,
which contains data manipulation logic in an Arithmetic Logic
Unit (ALU). Eight-bit instruction codes are decoded by a
Control Unit (CU), which controls execution of logic internal
to the 3850 CPU and generates signals controlling operations
of other devices in the system.

2.4.1 Timing
System t!m!ng !s !!!ustratea !r! F!gt.!re 2-7. System t!m!ng !s
controlled by an external or internal ~Iock, which provides
clock pulses of not less than 500 ns and not more than 10fJ,s.
In response to instruction codes, the CPU creates instruction
timing cycles of either 4 or 6 clock pulses. The fastest instruc­
tion will execute in one short (4 clock pulse) cycle; the slowest
instruction will execute in one short (4 clock pulse) cycle plus
three long (6 clock pulse) cycles.

/
I
I
I ,
I
\
\
\
\

~
<[
o

/

_OATAPATHS

__ -~-_ CONTROL PATHS

/
/

/
/

/

/

REAL
TIME

~ CLOCK
/....--L...-__ -

/

MEMORY

" "-
"-

"-
" "

MICROPROCESSOR
SYSTEM

Fig. 2-6. logical Functions of the 3850 CPU

Fig. 2-7. Instruction Timing

CLOCK nnnr
PULSES..J U U U .

CYCLES

I
I

I l I

l- ON~y~~~RT - ... l.II----- O~~~~~G ------j.~!
I I

2-5

OUTSIDE
WORLD

2.4.2 CPU Registers
The 3850 CPU has an 8-bit Accumulator Register and a
Scratch pad consisting of 64 8-bit registers. In addition there
is a 6-bit Indirect Scratchpad Address Register (lSAR), which
is used to address the scratch pad and a 5-bit Status Register
(the W register), which identifies selected status conditions
associated with the resuits of CPU operations. Figure 2-8
illustrates the CPU register.

7 6 5 4 3 2 1 0 _ BIT NO

I I I I I I I I I ACCUMULATOR

5 4 3 2 1 0 - BIT NO.

I I I I I I IISAR --------H! lO

'-----v----'
OCTAL ADDRESS OF
SCRATCHPAD BYTE

4 3 2 1 0 - BIT NO

W REGISTER! ~ H z lei S I

BYTE
ADDRESS

SCRATCH PAD DECIMAL OCTAL

§
I I
I I
I I

:~~: : 10

KU 12

KL 13

au
aL 15

I I
I I
I I

~
I 158

59

60

61

62

63

12

13

15

16

17

20

I
I
I
I

72

74

75

76

Fig. 2-8. 3850 CPU Programmable Registers

Data in the Accumuiator may be manipulated by the ALU.
Individual instructions allow the contents of the Accumulator
to be operated on in a variety of ways. Data may be trans­
ferred between the Accumulator and other CPU registers, or
between the Accumulator and data locations outside the CPU.

The Scratchpad is the principal depository of frequently acces­
cessed data and, in small microprocessor configurations, may
represent the system's only ReadlWrite Memory. Because
the Scratch pad actually resides on the CPU, instructions that
reference Scratchpad bytes execute in one short cycle; these
are the fastest executing Fa instructions.

The first 16 Scratch pad bytes can be identified by instructions
without using the ISAR. The remaining Scratch pad bytes are
referenced via the ISAR; i.e., the ISAR is assumed to hold
the address of the Scratchpad byte which :s to be referenced.
Observe that the first 16 bytes of the Scratchpad can also be
referenced via the ISAR.

The !S~~.R shcu!d be v:suanzed as hc!dir:g t'y''.'C oct~! d:g:ts, H!
and LO. This division of the ISAR is important, since a number
of instructions increment or decrement the contents of the
ISAR when referencing Scratchpad bytes via the ISAR. This
allows a sequence of contiguous scratchpad bytes to be easily
referenced. However, only the low order octal digit (LO) is
incremented or decremented; thus ISAR is incremented from
0'27' to 0'20', not to 0'30'. Similarly, ISAR is decremented

£-0

from 0'20' to 0'27', not to 0'17'. This feature of the ISAR greatly
simplifies many program sequences, as will be described in
Section 7.

Seven of the Scratchpad registers (9 through 15) have special
significance. Data from register 9 may be moved dlrect!y be­
tween register 9 and the W register, bypassing the Accumulator.
Registers 10 through 15 are connected to memory interface
logic, as described in Sections 2.5,2.6 and 2.7.

2.4.3 Status
A number of operations performed by the Arithmetic Logic
Unit (ALU) ~enerate results, selected characteristics of which
are important to logic sequences. Table 2-1 summarizes the
W register status bits, which are individually described next.

OVERFLOW = CARRY7 8 CARRY6

ZERO

CARRY

SIGN

= ALU7 ALUe ALU5 ALU4 ALU3 ALU2 ALU1 ALUO

= CARRY7

= ALU7

Table 2-1. A Summary of Status Bits

SIGN

When the results of an ALU operation are being interpreted
as a signed binary number, the high order bit (bit 7) repre­
sents the sign of the number (see Appendix A). At the con­
clusion of instructions that may modify the Accumulator bit 7,
the S bit (W register bit 0) is set to the complement of the
Accumulator bit 7.

CARRY

The C bit (W register bit 1) may be visualized as an extension
of an a-bit data unit; i.e., bit 8 of a 9-bit data unit. When
two bytes are added and the sum is greater than 255, the
carry out of bit 7 appears in the C bit. Here are some examples:

C 7 6 5 4 3 2 1 0 Bit Number
Accumulator contents: a 1 1 a a 1 a 1

Value added: a 1 1 1 a 1 1 a
Sum: a 1 1 a 1 1 a 1 1

There is no carry, so C is reset to O.

Accumulator contents:
Value added:

Sum:

C 7 6 5 4 3 2 1 O~ Bit Number
10011101
11010001
01101110

There is a carry, so C is set to 1.

ZERO

The Z bit (W Register bit 2) is set whenever an arithmetic or
logical operation generates a zero result. The Z bit is reset to a
when an arithmetic or logical operation could have generated
a zero result, but did not.

Load instructions do not affect status bits.

a) The Accumulator contains 01101011. The value
00010101 is added to the Accumulator:

Accumulator contents:
Value added:

Sum:

01101011
000 1 0 1 0 1
10000000

The result in the Accumulator is not zero, so the Z bit
is reset to O. (There is no carry, so C is reset to 0).

b) Next, the Accumulator contents are shifted left one
bit position:

7 6 5 4 3 2 1 0 Bit number
(before shift)

shifted out~O 0 0 0 0 0 0.-0 shifted in
after sh ift 0 0 0 0 0 0 0 0

Since the result in the Accumulator is now zero, the
Z bit is set to 1.

c) Subsequently the value 1101111 is loaded into the
Accumulator. Even though the Accumulator no longer
contains zero, the Z bit remains set at 1 since an Ac­
cumulator load is neither an arithmetic nor a logical
operation, therefore has no effect on the Z bit.

OVERFLOW

The high order Accumulator bit (bit 7) represents the sign of
the number. When the Accumulator contents are being in­
terpreted as a signed binary number, some method must be
provided for indicating carries out of the highest numeric bit
(bit 6 of the Accumulator). This is done using the 0 bit
(W register bit 3). After arithmetic operations, the 0 bit is set
to the EXCLUSIVE-OR of Carry Out of bits 6 and bits 7. This
simplifies signed binary arithmetic as shown in Section 10.3
and in Appendix A; Here are some examples:

Accumulator contents:
Value added:

Sum:

C 7 6 5 4 3 2 1 0 Bit Number
10110011
01110001
00100 1 0 0

There is a carry out of bit 6 and out of bit 7, so the 0 bit is
reset to 0 (1 01 = 0). The C bit is set to 1.

C 7 6 5 4 3 2 1 0 Bit Number
Accumulator contents: 0 1 1 0 0 1 1 1

Value added: 0 0 1 0 0 1 0 0
Sum: 0 1 0 0 0 1 0 1 1

There is a carry out of bit 6, but no carry out of bit 7; the 0 bit
is set to 1 (100 = 1). The C bit is reset to O.

When the Overflow bit is set, the magnitude of the number is
too large for the 7-bit numeric field within the byte, and the
sign bit has been destroyed. However, the 9-bit field made
up of the Carry bit (high order) and the data byte give a valid
9-bit signed binary result.

2·7

ICB AND INTERRUPTS

External logic can alter the operations sequence within the
CPU by interrupting ongoing operations, as described in
Section 2.2.2. However, interrupts are allowed only when
the ICB bit (W register bit 4) is set to 1; interrupts are dis­
allowed when the ICB bit is reset to O.

2.4.4 3850 Input/Output
The 3850 CPU communicates with the outside world in
two ways:

To execute instructions, instruction codes must be input from
the external storage device (probably a 3851 PSU) where
they are being maintained. Data stored in a memory device
may have to be loaded into the CPU in order to meet the re­
quirements of the instruction being executed. This type of
communication between the 3850 CPU and the outside world
is of no immediate concern to an F8 programmer, since it
involves data flows within the confines of the microprocessor
system, and requires no special considerations beyond an
understanding of instruction execution sequences.

Input/output programming, as the term is commonly used,
refers to data transfers between the microprocessor system
and logic beyond the microprocessor system. The 3850 CPU
has two 8-bit. bidirectional ports, via which 8-bit parallel data
may be transferred in either direction, between the 3850 CPU
and logic external to the microprocessor system. The two
3850 CPU I/O ports are identified by the hexadecimal port
addresses H'OO' and H'Ol '.

2.5 THE 3851 PSU
Figure 2-9 illustrates the logical functions implemented on
the 3851 PSU.

The 3851 PSU provides an F8 microprocessor system with
1024 bytes of Read Only Memory. 3851 memory is usually
used to store instructions, but may also be used to store data
that is read, but never altered. In addition, each 3851 PSU
provides two 8-bit I/O ports, a programmable timer and
external interrupt processing logic.

The 3851 PSU is the logic device which is modified and re­
placed to reflect a product's continuing engineering and field
upgrades.

In microprocessor systems, instruction codes are usually stored
in a PSU to prevent accidental erasure. As many as 643851
PSU's may be connected to one 3850 CPU, yet a single 3851
PSU interfaced to a 3850 CPU, provides a viable microprocessor
system with the following capacities:

• 1024 bytes of program storage (on the 3851)
• 64 bytes of ReadlWrite Memory (on the 3850)
• 4 separately addressable, bidirectional I/O ports

(2 on the 3850, 2 on the 3851)
• An external interrupt line
• A programmable clock

2.5.1 3851 Timing
Timing signals created by the 3850 CPU, and illustrated in
Figure 2-7, control operation sequences in the 3851 PSU.

.... --.. DATA PATHS

_---... CONTROL PATHS

I REAL I
~

nME: I

CLOCK I
,/ "------I.

/' " / "-
/ "-

/ "-

rU\l14.

lOGiC

h,
1%

DMA
CHANNEl

/ " / "-
/ "-

I
I
I
I
I
I
\
\
\
\

I

CPU

Fig. 2-9. Logical Functions of tht. 3851 PSU

2.5.2 3851 Registers
In addition to 1024 bytes of ROM, the 3851 contains three
16-bit address registers, which are described next.

PROGRAM COUNTER (PCa)

This 16-bit register provides the address of the memory byte
from which the next instruction code will be fetched for trans­
mittal to the 3850 CPU. After each byte of instruction code
is fetched, logic internal to the 3851 increments the contents
of pca to address the next memory byte.

Even though each 3851 PSU contains only 1024 bytes of
memory, pca preserves a 16-bit memory address. Thus pca
may be !!'1terpreted as fc!!c'.'vs:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I I
~ ~"-""---... ---.",~ ~ V'

Chip Select Byte Select
Within Selected

Chip

pca Bit No.

2-8

MICROPROCESSOR
SYSTEM

OUTSIDE
WORLD

Each 3851 device has a unique select code that is a perma­
nent mask option; 3851 memory access logic is only activated
when the six Chip Select bits of pca match the 3851 select
code. Thus, if more than one 3851 is present in an F8 system,
every 3851 device's pca register holds the address of the
memory byte from which the next instruction code will be
fetched for transmittal to the 3850 CPU; but an instruction
fetch will actually be executed from one 3851 device only.

The pca registers of the 3851 devices are logically connected
to 3850 scratchpad bytes 12 and i 3, designated as the K
register, and bytes 14 and 15, designated as the Q register
in Figure 2-8. Specific instructions allow the contents of the
K or Q register to be loaded into every pca register. Specific
instructions allow the pca registers' contents to be modified
in order to control microprocessor logic sequences.

Note that in a correctly designed F8 microprocessor system,
when there is more than one 3851 device, every pca register
will always contain exactly the same address.

STACK REGISTER (PC1),

Every 3851 device has a 16-bit Stack Register, which is a buf­
fer for the contents of PCO. This allows program execution
sequence to be modified by changing the PCO registers' con­
tents, while the previous contents of PCO are saved in PC1;
,thus programs may return to the prior instruction execution
sequence.

The PCl registers are logically connected to the 3850 scratch­
pad bytes 12 and 13, designated as the K register in Figure
2-8. Specific instructions allow the contents of the K register
to be loaded into every PCl register, or the PCl registers'
contents to be loaded into the K register.

DATA COUNTER (DC)

Every 3851 device has a 16-bit Data Counter register which
contains the address of the memory byte (external to the 3850
CPU) from which data is to be accessed. For example, an in­
struction requiring a data byte to be loaded from external
memory into the 3850 Accumulator will fetch the contents
of the data byte addressed by the DC registers.

The DC registers are 16-bit registers, where the high order
six bits (bits 15 to 10) are interpreted as chip select bits, and
the low order nine bits (bits 9 to 0) provide the byte address.

The DCO registers are logically linked to the Hand Q registers
in the same way that the PCl registers are logically linked to
scratch pad register K.

2.5.3 3851 Input/Output

Each 3851 PSU has two bidirectional, 8-bit I/O ports. Each
port's address, using binary notation, is XXXXXXOO or
XXXXXX01, where the X binary digits are the device's unique
I/O port select code. Note that every 3851 PSU has an I/O
port select code and an independent chip select code.

2.5.4 3851 Local Timer and Interrupt

3851 programmable timer and interrupt logic are accessed
via the binary port addresses XXXXXX11 and XXXXXX10,
respectively; the X binary digits are the I/O port select codes
described in Section 2.5.3.

The programmable timer port is a polynomial shift register
which runs continuously, sending a signal to the interrupt
control logic whenever the timer count equals zero.

Any numeric value between 0 and 255 may be loaded into
the programmable timer port by an appropriate instruction
code. If 255 (hexadecima! FF) is loaded into a timer port, the
timer is stopped. Any other value loaded into a timer port is
decremented once every 31 clock pulses (see Figure 2~7);

therefore delays up to 7905 clock pulses may be programmed.

The local interrupt port is loaded by an appropriate instruction,
with a control code; bits 0 and 1 of the control code are
interpreted as follows:

Bit 1

o
o
1

Bit 0

o
1
o

Function

Disallow all interrupts
Enable external interrupts
Disallow all interrupts
Enable timer interrupts;

2-9

If timer interrupts have been enabled and if the 3850 CPU
has enabled interrupts (via the ICB status), then when the
local timer decrements to 0, an interrupt request is transmitted
to the 3850 CPU.

The way in which the local timer and interrupt ports are used
is described in Section 8.3.

2.6 THE 3852 DYNAMIC MEMORY
INTERFACE

Figure 2-10 illustrates the logical functions implemented on
the 3852 DMI device.

The 3852 DMI device interfaces dynamic random access
memory (e.g" Fairchild 3540 RAM) to a 3850 CPU. One
3852 DMI device interfaces up to 65,536 bytes of RAM
memory to the 3850 CPU. However, recall that a combined
maximum of 65,536 bytes of ROM and RAM may be addressed
by the 3850 CPU unless special additional memory interfacing
logic is added to the microprocessor system.

Only one 3852 DMI device will normally be present in an F8
microprocessor system.

The 3854 DMA device may be attached to the 3852 DMI de­
vice enabling data to be transferred between memory devices
and any external device, bypassing the 3850 CPU,

2.6.1 3852 Timing

Timing signals created by the 3850 CPU, and illustrated in
Figure 2-7, control operation sequences in the 3852 DMI.

2.6.2 3852 Registers

The 3852 DMI device has the same address registers as the
3851 PSU; however, the 3852 DMI has two Data Counter

registers. Thus the 3852 has one Program Counter (PCO), one
Stack Pointer (PC1) and two Data Counters (DCO and DC1).

There are two differences between the way in which 3852
registers and 3851 registers are used.

The 3852 has no chip select mask. This is because there will
only be one 3852 device in a microprocessor system, and it
passes the entire PCO address to attached RAM devices; the
attached RAM devices interpret part of the PCO address as
chip select lines.

Data Counter DCl is a temporary storage buffer for Data
Counter DCO. An instruction switches the DCO and DCl reg­
isters' contents; since 3851 PSU have no DCl register, this
switch instruction has no effect on 3851 PSU. Thus it is pos­
sible for the 3852 DMI Data Counter (DCO) to have contents
which differ from 3851 PSU. Recall that the Data Counters
are logically connected to the Hand Q scratchpad registers
within the 3850 CPU, so that Data Counters' contents may
be transferred to the H or Q registers, The fact that the' 3851
DCO register and the 3852 DCO register may not hold the
same addresses may present a problem, since the contents
of a Data Counter is transferred to the H or Q registers from
any device with a device select code corresponding to the
current DCO contents.

Simultaneous use of 3851 PSU and 3852 DMI devices is
discussed in detail in Section 7.2.

..... -_ ... DATA PATHS

--- CONTROL PATHS

/
I
I
I
I
I
I
\

~ «
o

/

/
/

I
/

/

"",""
/

MEMORY

Fig. 2-10. logical Functions of the 3852 DMI Device

2.6.3 3852 Direct Memory Access and Memory
Refresh

The 3852 DMI device has two addressable ports which are
used to enable direct transfer of data between memory
devices and external devices. This transfer is referred to as
Direct Memory Access (DMA), and requires the presence of
the 3854 DMA device. For a discussion of DMA see Sections
2.2.4, 2.8 and 8.4.

The two addressable 3852 ports use hexadecimal addresses
H'OC' and H'OD'. Port H'OC' requires a control byte to be
loaded for interpretation as follows:

Bit No.

o = DMA not allowed 0 = DMA allowed
1 = Refresh memory 0 = No memory refresh
2 = Refresh every fourth write cycle

o = Refresh every eighth write cycle

Another version of the 3852 DMI device, referred to as the
SL 31116 device, uses port addresses H'EC' and H'ED' instead
of H'OC' and H'OD'. This allows 3852 DMI and 3853 SMI
devices to be used in the same microprocessor system.

2-10

'CC'0 ' ' DMA
' , LOGIC

I I ~
I I ~ I ~

I

MICROPROCESSOR
SYSTEM

OUTSIDE
WORLD

2.7 THE 3853 STATIC MEMORY
INTERFACE

Figure 2-11 illustrates the logical functions implemented on
the 3853 SMI device.

The 3853 SMI device is similar to the 3852 DMI device, de­
scribed in Section 2.5. There are four important differences,
which are described below.

1) The 3853 SMI device interfaces static memory (such
as the Fairchifd 2102 RA~v1) to a 3850 CPU.

2) The 3853 SMI does not have a DMA interface
capability.

3) The 3853 SMI has local timer and interrupt control, as
described for the 3851 PSU in Section 2.4.4. How­
ever, the 3853 local timer port address is H'OF' and
the interrupt control port address is H'OE'.

4) The 3853 SMI has two additional ports, addressed
H'OC' and H'OD', which are programmable interrupt
vector registers. The importance and use of these
registers is discussed in Section 8.2.

_DATAPATHS

--- CONTROL PATHS
REAL
TIME

CLOCK

/....-'I"'j'----~
/' '

/ "-

~
~ / I,p.'?'

D~ I
C",NN" I

/ "
/ "

/ "-
I Q

I

I / '-
/ '-

/
I
I
I
I
I
I
\
\
\

/

CPU

Fig. 2-11. Logical Functions of the 3853 SM I Device

MEMORY

Since the 3853, like the 3852, has two Data Counter regis­
ters, there are similar programming consequences, as de­
scribed in Section 7.2.

2.8 THE 3854 DIRECT MEMORY ACCESS
Figure 2-12 illustrates the logical functions implemented on
the 3854 DMA device.

The 3854 DMA device, in conjunction with the 3852 DMI
device, sets up a data channel between a peripheral device
and the memory associated with the DMI. DMA data trans­
fers occur during the second part of each instruction cycle,
therefore program execution speed is in no way degraded
by parallel DMA data transfers. The concept of DMA data
transfers is described in Section 2.2.4.

There may be up to four 3854 DMA devices in one micro­
processor system.

Any external device may be attached to a 3854 DMA device.
Also, two microprocessor systems may communicate with
each other via a DMA device. For a description of how various
DMA operations are programmed, see Section 8.4.

2-11

MICROPROCESSOR
SYSTEM

2.8.1 3854 Registers

OUTSIDE
WORLD

The 3854 has three internal registers, addressed as four
separate 1;0 ports. Addresses of the four I/O ports associ­
ated with the three 3854 registers are given in Table 2-2. The
three registers are described next.

FUNCTION OF FIRST SECOND THIRD FOURTH
I/O PORT 3854 3854 3854 3854

Address, L.O.
Byte (BUFA) FO F4 F8 FC
Address, H.O.
Byte (BUFB) F1 F5 F9 FD
Count, L.O.
Byte (BUFC) F2 F6 FA FE
Count, H.O.
Four bits, and F3 F7 FB FF
Control* (BUFD)

'The low order four bits of this port constitute the high order four bits of the
byte count. The high order four bits of this port constitute the function code.

Table 2-2. Hexadecimal Addresses of Four I/O Ports Used as
Registers by Four 3854 DMA Registers.

_DATAPATHS

--- CONTROL PATHS

I
I
I
I
I
I
\

/
I

I

/
/

I

./

/
/'

MEMORY

"-
"-

"-
"-

"-
"

\
\
\

/~
./ / -- / ----- /

I
MEMORY

INTERFACE
LOGIC

CPU

Fig. 2-12. Logical Functions of the 3854 DMA Device

BUFA, BUFB, BUFC and BUFD are buffer names used in
Section 8.4.2, which describe DMA programming.

ADDRESS REGISTER

This is a 16-bit register which holds the address of the next
memory byte to be accessed for a DMA data transfer.

Before a DMA operation is initiated, the beginning memory
address for the data block which is to be transferred must be
loaded (using appropriate Fa instructions) into the two ports
set aside as the address register. As each data byte is trans­
ferred (input or output), the contents of the address register
are automatically incremented.

BYTE COUNT REGISTER

This is a 12-bit register which acts as a counter, allowing
blocks of up to 4096 data bytes to be _ transferred during a
DMA operation. As described in Section 2-8.2, it is pos­
sible to execute DMA transfers without using the Byte Count
register.

If the Byte Count register is in use, it is decremented as each
byte of data is transferred, until it is decremented to 0; data
transfer then stops.

CONTROL REGISTER

This is a 4-bit register which controls DMA operations as
described next.

MICROPROCESSOR
SYSTEM

1;0 PORTS

OUTSIDE
WORLD

2.8.2 DMA Control Codes

The Control Register has four bits which control DMA
operations as follows:

Bit 7 - ENABLE

This bit must be set to 1 in order to initiate a DMA operation;
it is automatically reset to ° when the DMA operation has
run to completion.

Bit 6 - DIRECTION

If this bit is 0, data is transferred from main memory to the
external device. If this bit is 1, data is transferred from the
external device to main memory.

Bit 5 - INDEF

If this bit is 0, the Byte Count register controls the DMA trans­
fer, which halts when the Byte Count register is decremented
to O. if this bit is 1, the Byte Count register is ignored and
DMA transfer continues until the ENABLE bit is reset to °
under program control.

Bit 4 - HIGHS PEED

If this bit is 0, the external device controls the rate at which
data is transferred. If this bit is set to 1, a data byte will be
transferred during every available DMA time slot; the external
device must be capable of transmitting or receiving the data
at the execution cycle speed of the Fa system.

Fa PROGRAMS

Individual instructions of the F8 assembly language instruc-
tion set exercise all of the capabilities of every device de­
scribed in Section 2. Before studying individual instructions,
however, it is necessary to understand what a program is,
how a program is written, and how the written program
becomes code that drives the microprocessor system.

3.1 FLOWCHARTING
An application which is to be implemented using a micro­
processor is specified using a flowchart; this differs from hard­
ware logic diagrams only in the symbols used and the
operations specified at each mode. The following four symbols
will usually be sufficient in any microprocessor program
flowchart:

1) Beginning and End
A program may have one or more initiation or
termination points. Identify each with the symbols:

(START) or (STOP)

2) Internal operations
Enclose words in a rectangular box to identify each
step of a program. Here is an example:

I Increment byte count I
3) I/O operations

Use a parallelogram to identify I/O operations. Here
is an example:

4) Decisions
Use a diamond to identify decisions. Here is an
example:

Figure 3-1 flowcharts a very simple program that moves data
from one buffer in RAM to another buffer in RAM.

Figure 3-2 flowcharts a program that performs a multibyte
addition. Observe that arrows identify the possible logic
flow paths.

3.2 ASSIGNING MEMORY
Having flowcharted an entire application, the next step is to
identify and name every buffer and variable to be referenced
by the program. Names must conform to the rules of symbol
syntax, described in Section 4.2.3., and will be used by the
program to specify individual buffers and variables.

Before starting to write a program, assign space in scratch­
pad and in ROM or RAM memory for each buffer and every
variable. These assignments will probably change before the
program is finalized; nevertheless, it is important to have a
clearly mapped data area at all times. Note also that the same
scratchpad or RAM memory bytes may be used by different
variables within one program, providing the different uses
never overlap.

3-1

Fig. 3-1. Flowchart for a Program to Move Data from One

RAM Buffer to Another

Recall that scratchpad registers are addressed by the ISAR
register in the 3850 CPU, and are numbered from a to 63.
ROM and RAM are addressed by the DCa register when ac­
cessing data. (Every 3851, 3852 and 3853 device has its own
DCa register.) ROM and RAM bytes have addresses numbered
from a to 65535.

With regard to addresses, note the following:

1) The first 64 bytes of ROM/RAM may have addresses
that are the same as the Scratchpad Register
addresses. No confusion is possible since the scratch­
pad is addressed via ISAR while ROM and RAM are
addressed via DCa.

2) ROM and RAM byte addresses must not overlap.

3) Memory addresses must be contiguous within one de­
vice, but need not be contiguous from device to device.
For example, three 3851 PSU may decode addresses
from a to 1023, from 2048 to 3071, and from 3072
to 4095. Addresses 1024 to 2047 may be unused.
(Recall that each 3851 PSU contains 1024 bytes of
memory.)

START

L __ -----'
Fig. 3-2. Flowchart for Program to Add Two Multibyte

Numbers and Output the Result

3.3 SOURCE AND OBJECT PROGRAMS
What eventually makes an F8 microprocessor system perform
its assigned tasks is a sequence of binary digits, stored in
memory and called an object program.

Since the F8 microprocessor accesses memory in 8-bit (or
1-byte) units, the binary digits of an object program are, by
convention, collected into 8-bit units which are represented
on paper as two hexadecimal digits (each hexadecimal digit
is equivalent to four binary digits).

Upon examining the contents of any individual byte of mem­
ory, it would be impossible to determine what the eight binary

digits contained by the memory byte represented. A memory
byte could hold any of the following types of information:

1) An instruction code which the 3850 CPU is supposed
to interpret as an instruction.

2) Binary data which may be unsigned {representing
numbers betvveen 0 arid 255} vi signed {represei1ting
numbers between -128 and +127).

3) Data, as in 2) above, which provide speCific informa­
tion needed by an instruction code as in 1) above.

4) Data which are to be interpreted as representing a
character that may be displayed or printed. Character
codes are given in Appendix B.

How, then, will an F8 system pick its way through the various
types of data which may be found stored in memory?

The program counter register (PCO) which is included in every
3851, 3852 or 3853 device, will at all times contain the ad­
dress of the next memory byte whose content is to be inter­
preted by the 3850 CPU as an instruction code. When an F8
system is first powered up, the program counter is initialized
at zero. Therefore, the contents of the memory byte with ad­
dress a will be interpreted as the first instruction code to be
executed. PCO also addresses data bytes of type 3.

Whenever the content of a memory byte is to be interpreted
as data of type 2 or 4, the address of the memory byte is con­
tained in the data counter registers (DCOI, which are also
present on every 3851, 3852 or 3853 device.

It is not easy to immediately understand that the 3850 CPU
is able to pick its way through object program numeric codes,
as stored in memory, by suitably manipulating the program
counter and data counter register contents; but fOI tunately,
such understanding is not necessary in order to write F8 pro­
grams. In fact, even though microprocessor programs could
be created directly as a sequence of hexadecimal digits, the
potential for making errors when writing such programs is so
overwhelming, that were an alternative method not available,
the computer industry would never have gotten off the
ground. The alternative is to write source programs.

A source program is a program written in a programming
language. In the case of the F8, this manual describes what
is called an assembly language. A programming language
represents data and instruction sequences in a manner which
is meaningless to a microprocessor but easily read and
understood by a human.

Look at Figure 3-3 Upon first inspection, the part of the figure
identified as a source program will not make much sense; the
purpose of this manual is to explain how such source pro­
grams aie written. Nevertheless, it is immediately evident
that the source program is potentially much easier to read
and understand than the eqlJiva!ent object program.

The process of converting a source program to an object pro­
gram is automatic and is handled by an assembler which is,
itself, a computer program. The assembler interprets a source
program, character-by-character, then generates an equiv­
alent object program in a form that can be loaded into an F8
microprocessor system memory and executed.

BUFA
BUFB

EQU
EQU
ORG

H'0800' SET THE VALUE OF SYMBOL BUFA
H'OSAO' SET THE VALUE OF SYMBOL BUFB
H'0100'

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
010A
010B
010C
0100
010E
010F
0110

2A ONE COl BUFA SET DCO TO BUFA STARTING ADDRESS
OS
00
2C TWO STORE IN DCl
2A THREE

XDC
DCI BUFB SET DCO TO BUFB STARTING ADDRESS

OS
AO
20 FOUR LI H'SO' LOAD BUFFER LENGTH INTO ACCUMULATOR
SO
51 FIVE LR

LM
XDC
ST
XDC
OS
BNZ

l.A SAVE BUFFER LENGTH IN SCRATCH PAD BYTE 1
16 LOOP
2C SIX

LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DCl

17 SEVEN
2C EIGHT

STORE ACCUMULATOR IN MEMORY BYTE ADDR!:SSED BY DCO
EXCHANGE DCO AND DCl

31 NINE DECREMENT SCRATCH PAD BYTE 1
94 LOOP IF SCRATCH PAD BYTE 1 IS NOT ZERO, RETURN TO LOOP
F9

END

I l" A SOURCE-:OGRAM C The Eq",,,'eot Object Pmge<m, cepee,eoted " he"de"m,' ""mbe"

Hexadecimal address of memory byte In which object program byte IS to be stored

Fig, 3-3, Source and Object Programs

After the assembler has created the object program equiv­
alent of a source program, it will print its results, outputing
a program listing, The program listing provides information
used to detect errors in a source program.

The rest of this manual explains how source programs are
written as follows:

Every line of a source program constitutes one instruction,
In Section 4, the various parts of an instruction are defined,

Section 5 and 6 define two classes of instructions used by
the Fa assembly language, The consequences of every exe­
cutable instruction's execution are defined.

Section 7 describes how individual instructions are combined
in order to create a program. Therefore, the source program
in Figure 3-3 will not be meaningful until you have completed
reading Section 7,

Section a explains how programs should be written to access
the various input and output features of the Fa microprocessor
system.

In summary, the process of writing an Fa program follows
these steps:

3-3

1) Using pencil and paper, write a source program.
2) Enter the source program, as text. into the computer

system being used to develop Fa object programs,
3) Assemble the source program entered in Step 2, and

thus create an object program. This step merely in­
volves executing a program called the Assembler,
identifying the source program and assigning a name
to the object program,

4) If the source program contains illegal steps, they will
be identified in Step 3, Treating the source program
as text. edit out the errors, then return to Step 3. If
there are no errors indicated at the end of Step 3, go
on to Step 5.

5) Using appropriate Fairchild provided debugging aids,
run the program created in Step 4 in order to find logic
errors, If errors are found, correct them in the source
program and return to Step 3. When there are no
errors, the program is complete.

This manual provides information needed to perform Step 1.
The Fa Timeshare Operating Systems Manual provides
information needed for Steps 2 through 5,

During Step 3, the program listing is printed out on a line
printer or time share terminal. The program listing shows the
source and equivalent object program instructions, as well as
additional, optional material that may be specified using as­
sembler directives described in Chapter 5. Use the program
listing to visually check a program; mark on the program
listing all changes that must be made to the source program.

ASSEMBLY LANGUAGE SYNTAX
A very specific set of rules apply to the way in which an
assembly language source program is written.

An assembly language program consists of a number of in­
structions, each of which occupies one line of text. There are
four parts (or fields) to an instruction; one or more fields may
contain non-blank information. Definite rules cover the char­
acters that may be used in an instruction and how each char­
acter will be interpreted, depending on in which field the
character appears.

The rules covering the way in which assembly language source
programs are written are referred to collectively as the syn­
tax of the assembly language. Assembly language syntax will
be described with reference to the data moving program
flowcharted in Figure 3-1 and illustrated in Figure 3-3.

4.1 INSTRUCTION TYPES
There are three types of source program statements:
comments, executable instructions and assembler directives.

4.1.1 Comments
Comment instructions are used to insert remarks in the pro­
gram in order to identify the program, separate program sec­
tions or make the source program easier to follow. A comment
instruction does not have any computer related function, nor
does it generate any object code; therefore, there is no re­
striction on its format or characters. An asterisk (*) charac­
ter in column 1 designates the line of text as a comment
instruction. Following the asterisk, there can be up to 71 char­
acters of comment. Figure 4-1 illustrates comment lines in a
source program.

4.1.2 Executable Instructions
Executable instructions are the steps that implement the pro­
cedure being programmed. For every executable instruction,
the assembler generates one, two or three bytes of object
code.

4.1.3 Assembler Directives
Assembler directives provide the assembler with additional
information about the program. They are used to control the
assembly process and in some cases cause data, which is
included in the object code, to be generated.

4.2 INSTRUCTION FIELDS
Executable instructions and assembler directives have the
following four fields:

1. Label field
2. Mnemonic field
3. Operand field
4. Comment field

Executable instructions and assembler directives must be
formatted in a specific manner in order to be properly inter­
preted by the Fa Assembler. This means that each part of a
source program instruction must be placed in its designated
position or "field".

4.2.1 Label Field
The label field provides a means for assigning a name to
a specific instruction. Any valid symbol (see Section 4.3.2)
may be used in the label field. The label field begins in column
1 and may have any length; however, only the first four char-

BUFA EQU H'0800' SET THE VALUE OF SYMBOL BUFA

0100 2A
0101 08
0102 00
0103 2C
0104 2A
0105 08
0106 AO
0107 20
0108 80
0109 51
010A 16
0108 2C
O1oe 17
0100 2C
010E 31
010F 94
0110 FA

BUFB EQU H'08AO SET THE VALUE OF SYMBOL BUFB
ORG H'0100'

*THE FOLLOWING PROGRAM MOVES DATA FROM O~E 128 BYTE
*BUFFER TO ANOTHER 128 BYTE BUFFER

ONE DCI BUFA SET DCO TO BUFA STARTING ADDRESS

TWO XDC STORE IN DC1
THREE DCI BUFB SET DCC TO BUFB STARTING ADDRESS

FOUR LI H'80' LOAD BUFFER LENGTH INTO ACCUMULATOR

FIVE LR 1,A SAVE BUFFER LENGTH IN SCRATCH PAD BYTE 1
LOOP LM LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
SIX XDC EXCHANGE DCO AND DC1
SEVEN ST STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EIGHT XDC EXCHANGE DCO AND DC1
NINE OS 1 DECREMENT SCRATCHPAD BYTE 1

BNZ LOOP IF SCRATCH PAD BYTE 1 IS NOT ZERO, RETURN TO LOOP

END

Fig. 4-1. Four Comment lines (Shaded) in a Source Program

4-1

acters are recognized by the assembler. The label field is
terminated by a blank character. Figure 4-2 identifies label
fields.

4.2.3 Operand Field
The operand field consists of additional information (e.g.,
parameters, addresses) required by the Assembler to inter­
pret the mnemonic field completely. The operand field may
contain a symbol or expression (see Sections 4.3.2 and
4.3.4). The operand field must be separated from the mne­
monic field by at least one blank; also, the operand fieid must
be terminated by a blank. Figure 4-4 identifies the operand
fields of a program. Notice that many instructions require no
information in the operand field.

Label fields are frequently optional. With reference to Figure
4-2, notice that only three instruction labels, BUFA, BUFB
and LOOP an~ necessary; they are the only labels referenced
by other instructions.

4.2.2 Mnemonic Field
The mnemonic field contains the Operation Code (op code),
which identifies the operation to be performed. There are two
classes of operations accepted by the Assembler:

Instruction FOUR in Figure 4-4 illustrates the function served
by operand fields. When executed, this instruction causes the
byte value specified in the operand field to be loaded into the
3850 CPU accumulator register. In response to the source
program instruction, the assembler generates an object pro­
gram byte of H'20' representing the mnemonic "U", the nu­
meric value in the operand field is placed, by the assembler,
in the next object program byte.

1. Assembler directives (Section 5)
2. CPU instructions (Section 6)

The mnemonic field may begin in any column other than col­
umn 1, and is terminated by a blank space. Figure 4-3
identifies mnemonic fields in a program. 4.2.4 Comment Field
In Figure 4-3, assembler directives are identified; notice that
these assembler directives generate no object code.

The comment field is optional and provides additional in­
formation that makes the source program easier to read. This

BUFA ~EQU H'0800' SET THE VALUE OF SYMBOL BUFA

~EQU H'OSAO' SET THE VALUE OF SYMBOL BUFB
ORG~ H'Ol00'

0100 2A ONE DCI BUFA SET DCO TO BUFA STARTING ADDRESS
0101 08

XD~ 0102 00
0103 2C TWO STORE IN DCl
0104 2A THREE DCI BUFB SET DCO TO BUFB STARTING ADDRESS
0105 08
0106 AO
0107 20 FOUR LI H'SO' LOAD BUFFER LENGTH INTO ACCUMULATOR
0108 SO
0109 51 FIVE LR 1.A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
010A 16 LOOP >{M LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
0108 2C SIX DC EXCHANGE DCO AND DCl
010C 17 SEVEN ST~ STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
0100 2C EIGHT XDC EXCHANGE DCa AND DC 1
alOE 31 NINE DS ~ 1 DECREMENT SCRATCH PAD BYTE 1
010F 94 BNZ LOOP IF SCRATCH PAD BYTE 1 IS NOT ZERO, RETURN TO LOOP
0110 FA

END

Fig. 4-2. label Fields (Shaded) in a Source Program

Assembler { BUFA EQU H'08OO' SET THE VALUE OF SYMBOl BUFA
Directives BUFB EQU H'Q8AO' SET THE VALUE OF SYMBOL BUFB

ORG H'0100'
0100 2A ONE DCI BUFA SET DCa TO BUFA STARTING ADDRESS
0101 08
0102 00
0103 2C lVVO XDC STORE IN DCl
0104 2A THREE DCI BUFB SET DCa TO BUFB STARTING ADDRESS
0105 08
0106 AO
0107 2C FOUR .. t H'8C' LOAD BUFFER LENGTH iNTO ACCUMULATOR
0108 so
0109 51 FIVE LR l.A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
010A 16 LOOP Lr..,1 LOAD CONTENTS OF MEIViORY BYTE ADDRESSED BY Dca
0108 2C SIX XDC EXCHANGE DCO AND DCl
010C 17 SEVEN ST STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
0100 2C EIGHT XDr. FXr.HANGF nco AND DC1
alOE 31 NINE OS DECREMENT SCRATCHPAD BYTE 1
010F 94 BNZ LOOP IF SCRATCHPAD BYTE 1 IS NOT ZERO, RETURN TO LOOP
0110 FA

Assembler
Directive-

- END

~ Object Program

Fig. 4-3. Mnemonic Field (Vertical Shaded) in a Source Program

field is ignored by the Assembler and generates no object
code. The comment field must be separated from the operand
field (or the mnemonic field if there is no operand field) by
at least one blank; it continues to the end of the text line.

Figure 4-5 identifies the comment fields of a program.

4.2.5 Aligning Fields

BUFA EQU H'0800' SET THE VALUE OF SYMBOL BUFA
BUFB EQU H'OBAO' SET THE VALUE OF SYMBOL BUFB

ORG H'Ol00'
ONE DCI BUFA SET DCO TO BUFA STARTING ADDRESS
TWO XDC STORE IN DCl

Figure 4-6 illustrates the source program of Figures 4-1 to
4-5, with a single space code separating each field of every
instruction.

THREE DCI BUFB SET DCO TO BUFB STARTING ADDRESS
FOUR LI H'BO' LOAD BUFFER LENGTH INTO ACCUMULATOR
FIVE LR l.A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
LOOP LM LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
SIX XDC EXCHANGE DCO AND DCl
SEVEN ST STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EIGHT XDC EXCHANGE DCO AND DCl
NINE OS 1 DECREMENT SCRATCHPAD BYTE 1

Clearly the program in Figure 4-6 is hard to read. For clarity
it is recommended that all fields be aligned within character
positions of every line; here is one possibility:

BNZ LOOP IF SCRATCH PAD BYTE 1 IS NOT ZERO. RETURN TO LOOP
END

Label field:
Mnemonic field:

Characters 1 to 6
Charcters 7 to 11
Characters 12 to 19
Characters 20 to 72

Operand field:
Comment field:

BUFA EQU
BUFB EQU

ORG
0100 2A ONE DCI
0101 OS
0102 00
0103 2C 1W0 XDC
0104 2A THREE DCI
0105 OS
0106 AO
0107 20 FOUR LI
010S SO
0109 51 FIVE LR
010A 16 LOOP LM
010B 2C SIX XDC
010C 17 SEVEN ST
010D 2C EIGJ.iT XDC
010E 31 NINE DS
010F 94 BNZ
0110 FA

END

H'0800'
H'OSAO'
H'01oo'
BUFA

BUFB

H'SO'

1,A

1
lOOP

Fig. 4-4. Operand Fields (Shaded) in a Source Program

BUFA EQU H'08oo'
BUFB EQU H'OBAO'

ORG H'Oloo'
0100 2A ONE DCI BUFA
0101 08
0102 00
0103 2C 1W0 XDC
0104 2A THREE DCI BUFB
0105 08
0106 AO
0107 20 FOUR U W80'
0108 80
0109 51 FIVE LR l,A
010A 16 LOOP LM
0108 2C SIX XDC
010C 17 SEVEN ST
0100 2C EIGHT XDC
OlOE 31 NINE OS 1
010F 94 BNZ LOOP
0110 FA

END

Fig. 4-5. Comment Fields (Shaded) in a Source Program

Fig. 4-6. A Source Program with Unaligned Fields

SET THE VALUE OF SYMBOL BUFA
SET THE VALUE OF SYMBOL BUFB

SET DCO TO BUFA STARTING ADDRESS

STORE IN DCl
SET DCO TO BUFB STARTING ADDRESS

LOAD BUFFER LENGTH INTO ACCUMULATOR

SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DCl
STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DCl
DECREMENT SCRATCHPAD BYTE 1
IF SCRATCHPAD BYTE 1 IS NOT ZERO, RETURN TO LOOP

SET THE VALUE OF SYMBOL BUFA
SET THE VALUE OF SYMBOl BUFB

SET oeo TO BUFA STARTING ADDRESS

STORE IN DC1
SET DCO TO BUFB STARTING ADDRESS

LOAD BUFFER LENGTH INTO ACCUMULATOR

SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY oeo
EXCHANGE DCO AND DCl
STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DCl
DECREMENT SCRATCHPAD BYTE 1
IF SCRATCHPAD BYTE 1 IS NOT ZERO. RETURN TO LOOP

4-3

4.3 LANGUAGE COMPONENTS

4.3.1 Valid Characters
The F8 Assembler accepts all characters available on an input
terminal as valid characters. Alphabetic (A-Z), numeric (0-9),
and special (aU other terminal characters) characters are va!:d
when correctly used; in other words, there is no character
which will always be invalid.

Some characters have been assigned special meaning; the
use of these special characters is therefore restricted, as
described in the following sub-sections, and summarized in
Table 4-1.

Restricted
Character Function Example

D Specify decimal constants D'1234'
H Specify hexadecimal constants H'123A'
B Specify binary constants B'10011101 '

0 Specify octal constants 0'23714'
C Specify character constants C'VALID'
T Specify timer counts T'123'
* Current memory location *+3
* Multiplication sign (VAL*2)
** Exponentiation sign (VAL **2)
+ Addition sign I (VAL+2)

- Subtraction sign (VAL-2)

/ Division sign (VALl2)
(Beginning of an expression (VAL+2)
) End of an expression (VAL+2)

Separate operands A,l

Table 4-1. A Summary of Restricted Characters

Restricted characters may be used in any way that does not
directly conflict with the restricted use.

4.3.2 Constants
Constants represent quantities or data that do not vary in
value during the execution of a program. The syntax for
constants' representation is described below.

DECIMAL

A decimal number consists of a string of from one to five nu­
meric characters. The number may be preceded by a minus
"-" sign but no blanks are allowed within the number. The
value of a decimal digit must fall in the range +32767 to
-32768. Optionally, decimal numbers may be enclosed
between single quotes. preceded by a D character.

Examples:

Valid Invalid Reason invalid

12 123456 Too many digits
-123 123- Invalid character
12345 12.3 Invalid character
-5432 12}S3 Invalid character
23456 65432 Above +32767
D'12' '12'D D does not precede

number in quotes
D'23456' D'65432' Above +32767

4-4

HEXADECIMAL

A hexadecimal number consists of a string of from one to
four numeric characters and/or alphabetic characters (A to
F inclusive) enclosed in single quotes and preceded by an H.
No blanks are allowed within the number or between the H
a~d the ~umber. Hex:adeGimal nl.lmhers in the rclnge H'O' to
H'FFFF' are valid. Signed hexadecimal numbers are invalid.

Examples:

Valid Invalid Reason invalid

H'12' 'ABCD' No preceding H
H'ABCD' H'-12' Invalid character H
H'lAFO' H'12.A3' Invalid character (.)

BINARY

A binary number consists of a string of from 1 to 16 ones or
zeroes, enclosed within a pair of quotes and preceded by a B.
No blanks are allowed between the apostrophe symbols, or
between the B and the number. If there are less than 16
binary digits, leading 0 digits are assumed.

Examples:

Valid

B'101101'
B'0010'

OCTAL

Invalid

B1011101
B'10110111011100101 '
B'10021'

Reason invalid

No quotes
Too many digits
Invalid digit (2)

An octal number consists of a string of from one to six nu­
meric digits, excluding 8 or 9, enclosed between single quotes
and preceded by an O. Octal numbers in the range 0'0' to
0'177777' are valid. Signed numbers are invalid.

Examples:

Valid

0'17243'
0'2462'
0'177272'
0'23714'

CHARACTERS

Invalid

017243
'2462'
0'277272'
0'23914'

Reason invalid

No quotes
No preceding 0
Value exceeds maximum
Invalid character (9)

Any characters (other than the single quote character) may
be enclosed in single quotes and preceded by a C, in which
case the characters will be interpreted as ASCII characters
(see Appendix B).

Examples:

Valid

CVALID'
C'12345'
C'NAME'

Invalid

VALID'
C12345'
C"NAME"

TIMER COUNTS

Reason invalid

No preceding C
No initial single quote
Double quotes

As described in Section 2, the 3851 PSU and the 3853
Memory Interface device each have a timer which may be
loaded under program control. Depending on the value loaded
into the timer, variable delays may be programmed, at the
end of which a timer interrupt is transmitted to the 3850 CPU.

Timer counts may be entered, as decimal numbers between
a and 255, enclosed in single quotes and preceded by a T.
The assembler converts the timer count to the exact binary
code which (based on the timer logic) will generate the re­
quired time delay. Appendix C provides the exact codes that
correspond to each timer count entered using 1'nn' format.

Recall that the exact time delay is given by the equation:

Delay = (timer counts) * 31 * Clock period

Examples:

Valid

1'25'
1'127'
1'254'

4.3.3

Invalid

T25
1'12A'
1'264'

Symbols

Reason invalid

No single quotes
Invalid character (A)
Count too high

A symbol is a character string of from one to four characters,
the first of which must be alphabetic (A-Z). A symbol may
have any number of characters; however, only the first four
characters are interpreted by the assembler. A symbol can­
not have the exact appearance of a number, as specified in
Section 4.3.2.

Since a blank space acts as a field delimiter, it cannot be
present as a character within a symbol.

Examples:

Valid Invalid Reason invalid

ABCD ABt:SCD A blank present. AB is the
assumed symbol

AB12 12AB A numeric first character
012 0'12' Would be interpreted as

decimal 12
SYMBOLA SYMBOLB Both symbols are SYMB

Figure 4-7 illustrates a number of symbols in a source pro­
gram. Observe that symbols may appear in the label field or
the operand field of an instruction.

When a symbol appears in the label field of an instruction,
it is either assigned a value by that instruction (EQU) or it is
assigned a value equal to the location of that instruction,
depending on the nature of the instruction. Sections 5.5
and 5.7 describe how this is done.

When a symbol appears in the operand field of an instruction,
the assembler substitutes the assigned value for the symbol.
For example, instruction THREE in Figure 4-7 causes the value
associated with symbol BUFB to be loaded into the DCa reg­
isters of all memory and memory interface devices. Instruc­
tion THREE therefore generates the following object code:

2A

08

AO

4.3.4 Expressions

Expressions may appear in the operand field of an instruction,
and are evaluated by the assembler to generate a constant
which is used in the object program.

BUFA EQU H'OSOO' SET THE VALUE OF SYMBOL BUFA
BUFB EQU H'OSAO' SET THE VALUE OF SYMBOL BUFB

ORG H'0100'
0100 2A ONE DCI BUFA SET DCO TO BUFA STARTING ADDRESS
0101 OS
0102 00
0103 2C TWO XDC STORE IN DCl
0104 2A THREE DCI BUFB SET DCO TO BUFB STARTING ADDRESS
0105 OS
0106 AO
0107 20 FOUR LI H'SO' LOAD BUFFER LENGTH INTO ACCUMULATOR
010S SO
0109 51 FIVE LR l.A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
010A 16 LOOP LM LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
010B 2C SIX XDC EXCHANGE DCO AND DCl
010C 17 SEVEN ST STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
010D 2C EIGHT XDC EXCHANGE DCO AND DCl
OlOE 31 NINE DS 1 DECREMENT SCRATCHPAD BYTE 1
010F 94 TEN BNZ LOOP IF SCRATCHPAD BYTE 1 IS NOT ZERO. RETURN TO LOOP
0110 FA TL END

Object Program

Hexadecimal memory address in which object code is stored.

Fig. 4-7. Symbols in a Source Program

4-5

Unlike higher level languages, expressions do not represent
equations to be resolved at execution time. By the time a
program is executed, every expression in the source program
will have been converted (by the assembler) to a constant in
the object program.

An expression can have three types of numeric value, linked
by six types of algebraic symbol.

These are the three types of numeric value:

1) Any symbol, as defined in Section 4.3.3.
2) Any constant numeric value, as defined in Section

4.3.2.

3) An asterisk (*), which will be interpreted as having the
value of the memory address into which the first ob­
ject program byte for this instruction will be stored.

These are the six algebraic symbols that are recognized:

1) + for add
2) - for subtract

4-6

3) * for multiply
4) / for divide
5) ** for exponentiate
6) (and) to enclose expression and subexpressions,

which are to be evaluated as a constant.

Expressions and subexpressions must be enclosed in brackets.
An exception is the simple (and most frequently used
expression:

*±numeric constant

Subexpressions may be nested ten deep.

Use of complex expressions is pointless, since it is almost as
simple to evaluate the expression and use the evaluated re­
sult in the object program. The one time when expressions
are useful is when calculating instruction addresses. Refer­
ring to Figure 4-7, the following are substitutes for LOOP in
the operand field of instruction TEN:

*-5 (equals H'010F' - 5)
(FOUR+3) (equals H'01 01' + 3)

ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler; as
such, they generate no object code. Assembler directives
provide the assembler with the following three types of
information:

1) Values of symbols
2) How memory is to be mapped
3) Assembly listings print options

Assembler directives are described in alphabetic order on the
following pages. A summary of the assembler directives
which are necessary, versus those which are optional, is given
in Section 5.11; hints on good programming practice are
also provided.

5.1 BASE - SELECT LISTING NUMERIC BASE
This is an optional directive which specifies the number sys­
tem in which object program codes will be printed on the
assembler printout. The following three options are provided:

Label Mnemonic
BASE
BASE
BASE

Operand
HEX
OCT
DEC

Comment
Select hexadecimal output
Select octal output
Select decimal output

If no base is specified, decimal output will be selected by de­
fault. If a base is specified, one BASE instruction should ap­
pear at the beginning of the program, as illustrated in
Figure 5-1.

Since hexadecimal notation is the standard for the Fa micro­
processor, it is strongly recommended that programmers use
this numeric option.

5.2 DC - DEFINE CONSTANT
This directive causes the assembler to generate a one or two
byte constant. The DC directive is an exception in that
it causes one or two bytes of object code to be generated­
identical to the one or two byte constant specified.

The DC directive will usually have a label, which becomes the
symbol via which the constant is referenced. The general
format of the DC directive is:

Label Mnemonic
LABEL DC

Operand
VALUE

LABEL is any valid symbol. The label is optional.
VALUE is any valid numeric value as described in Section
4.3.2.

For examples of DC directive use see Section 7.2.1. See
also Section 5.5.1 for a discussion of when DC directives
are used and when EQU directives are used.

5.3 EJECT - EJECT CURRENT LISTING PAGE
This directive has no effect on the program being assembled.
It controls the line printer on which the assembler is printing
out an assembly listing.

When the assembler encounters EJECT in the mnemonic field
of an instruction, it immediately advances the line printer
paper to the top of the next page.

If the assembler is not printing out an assembly listing, it will
ignore the EJECT directive.

The format of the EJECT directive is:

Label Mnemonic Operand
EJECT

nUE';'.':i~~~~,rtiMtlV~ti~~~a~,;~1·y;·;';(·,:'·l,:,1~,,·' "
'MAXcroso,itMilOF !;)pSECONDS'CN 'riME S~ECfFlEO:\ "'!<';'~' ~;:'Y;;
SYMBOL ',AS;f'MBOL,TA9.I.;E V\ln..lFOI.;I-C>WSOURCE PR~_,~, ,:

0100 2A
0101 OS
0102 00
0103 2C
0104 2A
0105 OS
0106 AO
0107 20
010S SO
0109 51
010A 16
0108 2C
OlOC 17
0100 2C
OlOE 31
alOF 94
0110 FA

XREF,SYMBOLS'CRQSSLlSTlNG WtLLFQU.dVV'SOY'RC~ '~M:.'
'BASE HEX HEXADECIMAL NUMBERS SPECIFIED FOR ASSEMBLYHSllNG

,SOFA ebU H'o8oo'; SET THE VALUE OfSYMBQlBUFA
BUFB 'EQU 'H,'QaAO' SET THEVALU,E OF SYMBOL BUFB

ONE

TWO
THREE

FOUR

FIVE
LOOP
SIX
SEVEN
EIGHT
NINE

'ORG H'0100'
DCI'

XDC
DCI

LI

LR
LM
XDC
ST
XDC
DS
BNZ

END

BUFA SETDCD TO BUFA STARTING ADDRESS

STORE IN DCl
BUFB SET DCa TO BUFB STARTING ADDRESS

H'SO' LOAD BUFFER LENGTH INTO ACCUMULATOR

l,A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY Dca
EXCHANGE DCO AND DCl
STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EXCHANGE Dca AND DCl

1 DECREMENT SCRATCHPAD BYTE 1
LOOP IF SCRATCHPAD BYTE 1 IS NOT ZERO, RETURN TO LOOP

Fig. 5-1. Assembler Directives (Shaded) in a Source Program

5-1

,

5.4 END - END OF ASSEMBLY
An END directive must terminate every source program. Upon
encountering this directive, the assembler stops reading
source program instructions, and starts to perform various
post-assembly computations.

Figure 5-1 illustrates use of an END directive.

Note that an END directive cannot, and must not. have a label.

The format of the END directive is:

Label
Must
be blank

Mnemonic
END

Operand

5.5 EQU - EQUATE A SYMBOL TO A NUMERIC
VALUE

Every symbol in a source program must be the label of an
assembly language instruction or a DC directive, or the sym­
bo! must be assigned a value by an EQU directive. The general
format of an EQU directive is:

Label Mnemonic
LABEL EQU

Operand
VALUE

LABEL is any valid symbol.
VALUE is any valid numeric value as described in Section
4.2.2.

Refer to Figure 5-1. The symbols BUFA and BUFB appear in
instructions ONE and THREE, and are assigned values by two
EQU directives. Therefore:

BUFA EQU H'0800'

ONE DCI BUFA

is identical in its net effect to:

ONE DCI H'0800'

Why then are Equate directives used? In a real program, a
symbol (such as BUFA) is likely to appear many times. If the
value of the symbol changes, the progrram can be corrected
by modifying one Equate directive, then re-assembling the
program. If absolute values are used in instruction operands
(instead of symbols), every instruction that references the
absolute value must be changed in the source program if
the absolute value changes; the source program nust be
re-assembled.

For example. suppose there are 24 instructions in a source
program that reference the ~ymbol BUFA. The Equate direc­
tive could be eliminated, in which case each of the 24 instruc­
tions would have H'0800' where it had BUFA. However, if
H'0800' had to be changed, instead of making the chan!;le in
one Equate directive, the change would h<lVp. to be m;:uip. in
each of the 24 instructions.

5.5.1 A Comparison of the EQU and DC Directives

A common error made by novice programmers is to misuse
the EQU and DC directives. The difference between the two
must be clearly understood.

o-L

With reference to Figure 5-1, consider the following erroneous
variation of the BUFA symbol's use:

ORG
BUFA DC

ONE
ORG
DCI

H'2FAO'
H'0800'

H'0100'
BUFA

The DC directive causes the two byte, hexadecimal value
H'0800' to be stored in two memory bytes, with addresses
H'2FAO' and H;2FA 1'. In instruction ONE, BUFA acquires the
value H'2FAO', not H'0800'.

Now consider how the DC directives might be correctly used
in the Figure 5-1 program. BUFB has been equated to
H'OSAO', which is the starting memory address of the source
buffer. The source buffer contents could be specified, using
DC directives, as follows:

BUFA

ONE
TWO
THREE

BUFB

EQU
ORG
DCI
XDC
DCI

ORG
DC
DC
DC

H'0800'
H'0100'
BUFA

BUFB

H'08AO'
H'20A1'
H'143E'
H'5A62'

The symbol BUFB no longer needs to be equated to H'OSAO'
since it appears as a label at address H'OSAO'. The DC direc­
tives cause the data string H'20A 1143E5A62' to be loaded
into memory starting at memory location H'OBAO'.

NOTE: When a buffer's contents are specified by DC directives,
the buffer's data becomes part of the program, and
are loaded into memory when the program is loaded
into memory.

5,6 MAXCPU - SPECIFY MAXIMUM CPU TIME
This directive is only meaningful when the source program is
being assembled on a large host computer (e.g., an IBM 360
or 370). On such large computers, programs exist to simu­
late the F8 microprocessor; therefore once the source program
has been assembled, the object program may be "run" using
the host computer simulator.

A potential problem lies in executing an object program
which, due to programming errors, may run for ever; a large
amount of costly host computer time may be expended before
the existence of the error is detected. The MAXCPU directive
specifies a maximum number of seconds of host computer
execution time, after which program execution will be
terminated.

Figure 5-1 illustrates the use of the MAXCPU directive, speci­
fying a maximum of 50 seconds of host computer CPU time.
Note that the MAXCPU directive cannot. and must not. have
a label.

The format of the MAXCPU directive is:

Label
Must
be blank

Mnemonic
MAXCPU

Operand
CONSTANT

CONSTANT is any numeric constant as described in Section
4.3.2.

5.7 ORG - ORIGIN A PROGRAM
As described in Section 4.3.3, a symbol which is an instruc­
tion label acquires a value equal to the memory address of
the first object program byte for the instruction. With
reference to Figure 5-1, therefore:

ONE acquires the value of H'01 00'
LOOP acquires the value of H'OlOA'

In order to assign values to instruction labels, the assembler
has to know where the object program will be stored once
it gets loaded into an F8 microprocessor system memory;
this is done using the ORG directive.

When assembling a source program, the assembler main­
tains its own program counter, which tracks the memory ad­
dresses into which each byte of object program is destined
to be stored. Whenever the assembler encounters an ORG
directive, it resets its program counter to the address speci­
fied by the ORG directive. Thus in Figure 5-1 the ORG direc­
tive sets the effective memory address to H '01 00' for the
first object code byte of the first instruction that follows.

A program may have more than one ORG directive, depending
on how subroutines and program modules have been mapped
into memory. Any time there is a "gap" between one pro­
gram module and the next the new origin must be specified
using an ORG directive.

The format of the ORG directive is as follows:

Label
Must
be blank

Mnemonic
ORG

Operand
VALUE

The ORG directive cannot and must not have a label.

VALUE is any valid numeric value as described in Section
4.3.2, or any valid expression as described in Section 4.3.4.

5.8 SYMBOL - ASSEMBLER PROVIDE A SYMBOL
TABLE

This directive may optionally appear once, at the beginning
of a source program, as illustrated in Figure 5-1.

5-3

If the assembler encounters SYMBOL in the mnemonic field
of an instruction, it will print a symbol table at the end of
the assembly listing. The SYMBOL directive cannot and must
not have a label.

A symbol table lists every symbol encountered in the source
program, along with the value assigned to the symbol.

A symbol table allows errors in symbols to be spotted quickly.
A misspelled symbol, for example, will appear in the symbol
table as an extra, unexpected symbol.

5.9 TITLE - PRINT A TITLE AT THE HEAD OF THE
ASSEMBLER LISTING

This is an optional directive, which, if present causes a title
to be printed at the top of every assembler listing page. The
format of this directive is as follows:

Label
Must
be blank

Mnemonic
TITLE

Operand
"any heading"

The heading must be enclosed in double quotes. The TITLE
directive cannot and must not have a label.

5.10 XREF - ASSEMBLER PROVIDE A SYMBOL
CROSS REFERENCE LISTING

This directive may optionally appear once, at the beginning of
a source program, as illustrated in Figure 5-1.

If the assembler encounters XREF in the mnemonic field of
an instruction, it will print a cross reference listing of symbols
at the end of the assembly listing. The XREF directive cannot
and must not have a label.

A cross reference listing shows every symbol encountered in
the source program, plus the statement number at which the
symbol was referenced (i.e., appeared in an instruction's
operand field).

A cross reference listing allows misplaced or misspelled
symbols to be quickly spotted and corrected.

5.11 WHEN TO USE ASSEMBLER DIRECTIVES
The END assembler directive must be present in a source pro­
gram. Without this directive the program will not assemble
correctly.

The ORG, DC and EOU directives are almost always used in
a program. Symbols equated to a numeric value (using the
EOU directive) are recommended instead of having numeric
constants in instruction operands.

The remaining assembler directives are optional, to be used
for programming efficiency and convenience only.

THE INSTRUCTION SET

Because of the nature of the F8 family of devices, program
sequences are very dependent on device configurations.
Many instructions are important in some device configura­
tions, but do not apply, or are rarely used in other device
configurations. Therefore, individual F8 instructions should be
visualized as contributions to one (or more) of a number of
common, identifiable operation sequences, rather than as
equal entities.

It would be impossible to describe operation sequences with­
out first defining individual instructions; therefore, individual
instructions are defined in this section, and example pro­
grams representing common operation sequences are given
in Sections 7, 8, 9 and 10.

In this section instructions are described in alphabetic order
of the instruction mnemonic. This makes it easy to locate any
instruction. Examples in this section are very primitive, and
merely illustrate the operations performed by each instruc­
tion. Programs in Sections 7 through 10 are referenced for
comprehensive and realistic examples. Instructions are
grouped by type in Appendix D.

When instruction format is defined, optional items are enclosed
in square brackets. For example:

[LABEL] ADC

means that the instruction ADC may, or may not have a label.

Tables 6-1 and 6-2 identify the terms and abbreviations used
in Section 6.

Nval3

Nval4

Nval8

Nval16

- This symbol is used to indicate an instruction
operand which defines the three low order
bits of the instruction object code.

- This symbol is used to indicate an instruction
operand which defines the four low order
bits of the instruction object code.

- This symbol is used to indicate an instruction
operand which defines the 8-bit second byte
of the instruction object code.

- This symbol is used to indicate an instruction
operand which defines the 8-bit second byte,
plus the 8-bit third byte of the instruction
object code.

Table 6-1. Operand Symbols

Instructions described in the rest of Section 6 generate 1, 2
or 3 bytes of object code.

The first byte of object code is always the instruction opera­
tion code. Selected "short" instructions use three or four
bits of the first byte to specify data.

The second byte of a 2 - byte instruction provides either a
signed, or an unsigned, binary number.

The second and third bytes of three byte instructions provide
a 16-bit unsigned binary number.

6-1

Value or Symbol
for Sreg Scratchpad Register Specified

o through 11 The first 12 scratch pad registers are
addressed directly.

S (12) The scratchpad register address is
~rovict.e1iindirectIY by ISAR.
~, tc...

I (13) As 12, but the low order three bits of
ISAR are incremented after the scratch-
pad reg ister is accessed. *

D (14) As 12, but the low order three bits of
ISAR are decremented after the scratch-
pad register is accessed. *

* Modification of ISAR is described in Section 2.4.2.

Table 6-2. Operands Referencing Scratchpad Memory.
as Specified by Symbol Sreg

Object code types are illustrated below, with the instructions
using each object code type identified by instruction mnemonic.

See Appendix D for actual object code byte contents.

One Byte, Type 1

Instruction
Code

Bit Number

4-bit. unsigned binary
number. Represents register
designation (see Table 6-2).
1/0 port number. or simple
data (NvaI4. Table 6-1)

AS. ASD. CLR. DS. INS. LIS. LR (with Sreg), NS. OUTS, XS

One Byte, Type 2

Bit Number

Instruction
Code

3-bit. unsigned binary
number (NVaI3. Table 6-1)

L1SL. L1SU

One Byte, Type 2

Instruction
Code

Bit Number

ADC, AM, AMD. CM. COM. DI, EI, INC. LM. LNK, LR (not
with Sreg), NM, NOP, OM, PK, POP, SL. SR, ST, XDC, XM

Two Byte, Type 1

Byte 1

\. j .,
'V"

Instruction
Code

Byte 2
Bit Number

\.. ..I
V'

8-bit, binary
data (NvaI8, Table 6-1)

AI, CI, IN, LI, NI, 01, OUT, XI

Two Byte, Type 2

Byte 1
Bit Number

\..
V'

/

Instruction
Code

Byte 2
Bit Number

8-bit address displacement

BC,BF, BM, BNC, BNO, BNZ, BP,BR, BR7, BT, BZ

Three Byte

Byte 1

V'
Instruction
Code

Byte 2

Bit Number

Bit Number

16-bit address (high byte) (Nval 16, Table 6-1)

Byte 3
3 Bit Number

\.. /
~----~~~-------'
16-bit address (low byte) (Nval 16, Table 6-1)

DCI, JMP, PI

6.1 ADC - ADD ACCUMULATOR TO DATA
COUNTER

The contents of the accumulator are treated as a signed binary t+t
number, and are added to the contents of every DCO register.
The result is stored in the DCO registers. The accumulator
contents do not change.

FORMAT:

ADD +v't~~\~
4E11EL~ _ "Yi- L· 0:

[LABEL] ADC

STATUS CONDITIONS:

No status bits are modified.

EXAMPLES:

Suppose the accumulator contains H'3E' and every DCO regis­
ter contains H'209A'. After execution of the ADC instruction,
every DCO register will contain H'20D8':

209A
3E

H'20D8'

Suppose the accumulator contains H'A2' and every DCO regis­
ter contains H'213E'. In two's complement notation, H'A2' is
a negative number, since the high order bit of the byte is 1:

H'A2' = 1 0 1 a a 0 1 a

Sign Bit = 1,
Value negative

Accordingly, after execution of the ADC instruction, every
DCa register will contain H'2aEO'C

213E
FFA2

H'20EO'

See also Sections 7.3.4., 7.5.1, and 9.3.2.

6.2 AI - ADD IMMEDIATE TO ACCUMULATOR
The 8-bit (two hexadecimal digit) value provided by the
instruction operand is added to the current contents of the
accumulator. Binary addition is performed.

FORMAT:

[LABEL] AI Nval8

Nval8 is defined in Table 6-1

STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Suppose the accumulator contains H'3F'. After execution of
the instruction:

AI H'7E'

the accumulator will contain H'BD':

Bit No.
H'3F' ==
H'7E' ==
H'BD' ==

C76543210
o 0 1 1 1 1 1 1
o 1 1 1 0

0101 01

There is no carry out of bit 7, so CARRY = O.
There is a carry out of bit 6 and no carry out of bit 7,
therefore OVF = 0 0 1 = 1.

The result is not zero, so ZERO = O.
The high order bit of the result is 1, so SIGN = O.

See also Sections 8.2.7 and 10.1.3.

6.3 AM - ADD (BINARY) MEMORY TO
ACCUMULATOR

The content of the memory location addressed by the DCO
registers is added to the accumulator. The sum is returned in
the accumulator. Memory is not altered. Binary addition is
performed. The contents of the DCO registers are incremented
by 1.

FORMAT:

[LABEL] AM

STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Suppose the accumulator contains H'C2', the DCO registers
contain H'213E' and memory location H'213E' contains H'2A'.
After an AM instruction has been executed, the DCO registers
will contain H'213F', and the accumulator will contain H'EC'C

Bit No:
H'C2' ==
H'2A' ==
H'EC' =

C76543210
11000010
0010101 0

011101100

There is no carry out of bit 7, so CARRY = O.
There is no carry out of bit 6 or bit 7, so OVF = 0 0 0 = O.
The result is not zero, so ZERO = O.
The high order bit of the result is 1, so SIGN = O.

See also Sections 7.2.2, 7.4.2, 10.2.2.

6.4 AMD - DECIMAL ADD, MEMORY TO
ACCUMULATOR

The accumulator and the memory location addressed by the
DCO registers are assumed to contain two BCD digits. The
content of the address memory byte is added to the contents
of the accumulator to give a BCD result in the accumulator,
providing these steps are followed:

Decimal addition is, in reality, three binary events. Consider
8-bit decimal addition. Assume two BCD digit augend XY is
added to two BCD digit addend ZW, to give a BCD result PO:

XY
+ZW
=PQ

6-3

Two carries are important: any intermediate carry (IC) out of
the low order answer digit (0), and any overall carry (C) out
of the high order digit (P). The three binary steps required to
perform BCD addition are as follows:

STEP 1 Binary add H'66' to the augend.

STEP 2 Binary add the addend to the sum from Step 1.
Record the status of the carry (C) and intermediate
carry (IC).

STEP 3 Add a factor to the sum from Step 2, based on the
status of C and IC. The factor to be added is given
by the following table:

Status from
Step 2

C IC
o 0
o 1

o
1

Sum to be added
H'AA'
H'AO'
H'OA'
H'OO'

In Step 3, any carry from the low order digit to the high order
digit is suppressed.

For example, consider 21 + 67 = 88.

21 00100001
67 01100111

STEP 1 H'21' 00100001
+ H'66' 01100110
::: H'8T 10000111

STEP 2 H'8T 10000111
+ H'67' 01100111
= H'EE' 11101110

Set Status, C=O IC =0

STEP 3 H'EE' 11101110
+H'AA" 10101010
= H'88' 10001000

Carry
suppressed

DECIMAL ADD:
A decimal add is accomplished by executing a binary addition
of H'66' to one of the two BCD numbers, then executing the
AMD instruction, as follows:

AI H'66' Always precedes AMD for addition
[LABEL] AMD

DECIMAL SUBTRACT:

Assume scratchpad byte 0 contains 1, the accumulator con­
tains the subtrahend and DCO addresses the minuend.
Decimal subtraction is performed as follows:

H'66'

ONES COMPLEMENT SUBTRAHEND
DECIMAL ADD MINUEND

COM
AMD
AI
ASD o DECIMAL ADD 1 TO SUM

STATUS CONDITIONS:

Statuses modified: CARRY, ZERO
Statuses not significant: OVF, SIGN
Statuses unaffected: ICB

EXAMPLES:

DECIMAL ADD:

Assume the accumulator contains H'51', the DCO registers
contain H'12FA' and memory location H'12FA' contains H'60'.
After the execution of:

AI H'66'
AMD

the accumulator will contain H'11', and the DCO registers
will contain H'12FB'.

There is a carry, so CARRY=1. This carry indicates that the
result of the addition exceeded 99; therefore the carry must
be added to the next high order digit.

Other status indicators are modified, but their condition is
not significant.

DECIMAL SUBTRACT:
Assume the accumulator contains H79', the DCO registers
contain H'32A1', memory location H'32A1' contains H'SO'
and scratchpad byte 0 contains H'01'.

After executing:

COM
AMD
AI H'66'
ASD 0

the accumulator contains H'01'.

There is no carry, so CARRY = O. No Borrow was required.

Status indicators other than carry are modified, but their
condition is not significant.

6.5 AS - BINARY ADDITION, SCRATCHPAD
MEMORY TO ACCUMULATOR

The content of the scratchpad register referenced by the in­
struction operand (Sreg) is added to the accumulator using
binary addition. The result of the binary addition is stored in
the accumulator. The scratchpad register contents remain
unchanged. Depending 011 tile vaiue of Sley, lSAR f(lay be
unaltered, incremented or decremented.

FORMAT:

[LABEL] AS Sreg

Sreg is defined in Table 6-2.

0-4

STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Suppose the accumulator contains H '34' and scratchpad
register 11 contains H72'. After the instruction:

AS 11

is executed, the accumulator will now contain H'A6':

Bit No:
H'34' =

H'72' =
H'A6" =

C76543210
001 101 0 0
o 1 1 100 1 0

o 101 001 1 0

There is no carry out of bit 7, so CARRY = O.
There is a carry out of bit 6, but not out of bit 7,
so OVF = 0 CD 1 = 1.

The result is non-zero, so ZERO = O.
The high order bit of the result is 1, so SIGN = O.

Suppose the accumulator contains H7E', ISAR contains 0'21'
and scratch pad register 23 (=0'21') contains H'A2'. After
the instruction:

AS o

is executed, the accumulator will contain H'20', and ISAR will
increment (low order octal digit only) to 0'26':

Bit No:
H'7E' =

H'A2' =
H'20' =

C76543210
01111110
101 000 1 0
00100000

There is a carry out of bit 7, so CARRY = 1.
There is a carry out of bit 6 and bit 7, so OVF = 1 0 1 = O.
The result is non-zero, so ZERO = O.
The high order bit of the result is 0, so SIGN = 1.

Had the AS instruction operand been I, ISAR contents would
have been decremented to 0'20'; had the AS instruction oper­
and been S, ISAR contents would have remained unchanged.

See also Sections 7.1.2, 7.1.4, and 7.2.2.

6.6 ASO - DECIMAL ADD, SCRATCHPAD TO
ACCUMULATOR

The ASD instruction is similar to the AMD instruction, except
that instead of adding the contents of the memory byte ad­
dressed by the DCO registers, the content of the scratchpad
L. • ...&. __J...J _____ ..J L. •. ______ -1 I~ ___ \: _ _ ..J...J_...J.L_ .a.L- ____ •• _ •• 1_.&. __

Uylt:: auult::;:,;:,t::u uy uJ..It::lallu \v't::l::j/';:' auut::u lU lilt:: a UIIIUlalUI.

FORMAT:

DECIMAL ADD:

AI H'66' ALWAYS PRECEDES ASD FOR
ADDITION

[LABEL] ASD Sreg

Sreg is defined in Table 6-2.

DECIMAL SUBTRACT:

COM

[LABEL] ASD
AI
ASD

Sreg
H'66'
ONE

STATUS CONDITIONS:

ALWAYS PRECEDES ASD FOR
SUBTRACTION

SCRATCHPAD BYTE ONE
CONTAINS H'01'

The status bits have the same significance as they do for the
AMD instruction.

EXAMPLES:

DECIMAL ADD:

Assume the accumulator contains H'42', the ISAR contains
0'54', and scratch pad register 0'54' contains H'83'.

After the instruction sequence:

AI H'66'
ASD 0

is executed, the accumulator will contain H'25'. ISAR will
contain 0'53'.

There is a carry, so CARRY = 1.

Other status indicators are modified, but their condition is
not significant.

6.7 BRANCH INSTRUCTIONS
The Branch instruction is used to modify a program's instruc­
tion execution sequence by altering the contents of the pro­
gram counters, PCO. In a conditional branch instruction,
alteration occurs when specified branch test conditions are
met. In an unconditional branch instruction. a branch occurs
simply as the result of the execution of the instruction.

All branch instructions are two-byte instructions. The first
byte is the object code of the instruction mnemonic. The sec­
ond byte is a displacement which is added to the program
counter if a branch occurs.

Conditional branch mnemonics: BC. BF. BM, BNC, BNO, BNZ,
BP, BR7. BT, BZ

Unconditional branch mnemonics: BR

FORMATS:

[LABEL] OP DEST

OP is one of the mnemonics BC. BM. BNC, BNO. BNZ,
BP. BR7 or BZ.

DEST is an expression which evaluates to the memory ad­
dress to which a branch may occur. Frequently DEST
labels the instruction to which a branch may occur.

6-5

[LABEL] OP t,DEST

OP is one of the mnemonics BF or BT.

is a condition specification. as given in Table 6-5 for
BT. or in Table 6-4 for BF.

DEST is as described above.

Relative branching is performed within a range of 127 ad­
dress locations forward and 128 address locations behind
the address of the branch instruction's second byte.

All branch instructions are similar in operation, the only dif­
ference is the conditions under which a branch occurs. The
instruction BC - BRANCH ON CARRY will be used as an
example of how the branch instructions are executed.

When a BC instruction is executed a branch occurs to the
instruction whose label is specified in BC instruction operand,
but only if the Carry bit is set at the time the BC instruction
is executed.

First, consider a BRANCH FORWARD as indicated in the
following instruction sequence:

Memory
Address

H'4ADE'
H'4ADF'

~::~~~:)

H'4B5F'

Object Source
Code Program

H·88·_--------AM
H·82·.... BC LOOP
H'7F'
-r:~.~----------------~

:L
Displacement = H'7F'

H'1F' LOOP INC

Fig. 6-1. Generation of a Displacement Object Program Byte in

Response to a Forward Branch

Figure 6-1 illustrates source and consequent object program.

Assume the Carry bit is set as a result of the AM instruction
execution and the contents of the program counters, PCO, are
equal to H'4AEO', subsequent to the BC instruction operand
fetch. A branch to H'4B5F' is indicated by the BC instruction
as follows:

The displacement vector between H'4B5F' and H'4AEO' must
be added to the program counters. This vector (+0'127') will
have been calculated by the assembler and stored in the
second byte of the BC instructions object code.

When a single byte displacement vector is added to the con­
tents of the program counters, the most significant bit of the
single byte displacement vector is propagated through the
high order eight bits of the addition as follows:

Bit No:
H'4AEO'
H'7F'
H'4B5F'

15 14 13 12 11 10 9 8 7 6 543 2 1 0
o 1 001 0 1 011 1 0 0 0 0 0
o 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0100 01101011111

Next, consider a BRANCH BACKWARD as indicated in the
following instn.ction sequence:

Memory
Address

H'B612'\

•

H'B690,J
H'B691 '
H'B692'

Object
Code

H'lF' LOOP

Displacement = ~80:

Source
Program

INC

H'88':! AM H'82' -----+------BC LOOP
H'80' _ •

L I

Fig. 6-2. Generation of a Displacement Object Program Byte in

Response to a Backward Branch

Assume the carry bit is set and the program counters con­
tain H'B692', subsequent to the BC instruction operand fetch.
A branch to H'B612' is indicated by the BC instruction as
follows:

The displacement vector between the address of the second
byte of the BC instruction and the address of the instruction
labeled LOOP is added to the PCO registers. The displace­
ment vector will have been calculated by the assembler and
stored in the second byte of the BC instruction object program.
In the case of a BRANCH BACKWARD, the negative displace­
ment will be a two's complement number. Since the high
order (sign) bit of the displacement is 1, it will be propagated
through the high order eight bits of the addition as follows:

Bit No:
H'B692'
H'80'
H'B612'

15 14 13 12 11 1098 7 6 5 432 1 0
101 1 0 1 101 001 001 0
111 111110000000

o 1 0 1 1 000 0 1 001 0

I OPERAND I STATUS FLAGS TESTED
t OVF I ZERO I CARRY I SIGN
0 0 0 0 0

1 a a a 1
2 a a 1 0
3 a a 1 1

4 a 1 0 0
5 a 1 a 1
6 a 1 1 0

7 a 1 1 1
8 1 a 0 '0

I 9 1 a 0 1

I I I A 1 a 1 a

I I I B 1 0 1 1

I I I C 1 1 a a

D 1 1 a 1
E 1 1 1 a

F 1 1 1 1

Table 6-4. Branch Conditions for BF Instruction

Table 6-3 lists the branch instruction mnemonics and the con­
ditions under which a branch will occur.

BC

BF

INSTRUCTION
MNEMONIC

- BRANCH ON
CARRY

- BRANCH ON
FALSE

BM - BRANCH ON
NEGATIVE

BNC - BRANCH IF
NO CARRY

BNO- BRANCH IF
NO OVERFLOW

BNZ - BRANCH IF
NOT ZERO

BP - BRANCH IF
POSITIVE

BR - UNCONDITIONAL
BRANCH

BR7 - BRANCH
ON ISAR

BT - BRANCH
ON TRUE

BZ - BRANCH
ON ZERO

I BRANCH WILLI
, "C"'UR I~ , v "- r

Carry bit is set

See Table 6-4

Sign bit is reset

Carry bit is reset

OVF bit is reset

Zero bit is reset

Sign bit is set

Always

Any of the low
3 bits of ISAR
are reset

See Table 6-5

Zero bit is set

Table 6-3. Branch Conditions

DEFINITION I COMMENTS
Uncondit;onal Bmnch I

relative
Branch on negative Same as BM
Branch if no carry Same as BNC
Branch if no carry

and negative
Branch if not zero Same as BNZ

Same as t=l
Branch if no carry

and result is no zero
Same as t=3

Branch if there is no Same as BNO

I overflow I
Branch if negative and

I no overflow I
Branch if no overflow

I and no carry I
Branch if no overflow.

I no carry & negabve I
Branch if no overflow

8!"!d !"!ot :1:ero

Same as t=9
Branch if no overflow.

no carry & not zero
Same as t=B

EXAMPLE
'N SE TION I ~

10.2.1

7.1.4, 7.3.3, 7.3.5

7.1.3,7.2.1,7.2.2

7.3.4.8.1.1.8.1.3

7.1.4. 7.2.2. 7.3.4

7.1.1.7.1.2.8.2.7

7.2.1. 7.2.2. 7.3.4

I

OPERAND STATUS FLAGS TESTED
t ZERO CARRY SIGN
a a a

1 a a
2 a 1
3 a 1

4 1 a
5 1 a
6 1 1

7 1 1

Table 6-5. Branch Conditions for BT Instruction

6.7.1 BF - Branch on False
The BF - BRANCH ON FALSE instruction will branch if the
status bits selected by t in Table 6-4 are all reset. Selected
bits are identified in Table 6-4 by 1 under "Status Flags
Tested"; selected status bits must all be zero. Unselected
status bits are ignored.

6.7.2 BT - Branch on True
The BT - BRANCH ON TRUE instructions will branch if any
test conditions defined by t in Table 6-5 are met.

6.8 CI - COMPARE IMMEDIATE
The contents of the accumulator are subtracted from the op­
erand of the CI instruction. The result is not saved but the
status bits are set or reset to reflect the results of the
operation.

FORMAT:

[LABEL] CI NvalS

NvalS is defined in Table 6-1.

STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'1 B' and the second byte
of the instruction contains H'DS'. The comparison is made
as follows:

Bit No:
H'1B'
two's comp:
H'DS'
H'BO'

C76543210
00011011
11100101

101 100 a
0111101

a

1
a
1

a
1
a

1

6-7

I

DEFINITION COMMENTS
Do not branch An effective 3

cycle NO-OP
Branch if Positive Same as BP
Branch on Carry Same as BC
Branch if Positive

or on Carry
Branch if Zero Same as BZ
Branch if Positive Same as t=1
Branch if Zero or

on Carry
Branch if Positive or Same as t=3

or on Carry

The H'BO' result is not saved.
There is a carry out of bit 7, so CARRY = 1.
There is also a carry out of bit 6, so OVF = 1 0 1 = O.
The result is not zero, so ZERO = O.
The high order bit is 1, so SIGN = O.

See also Sections 7.3.4, S.2.7, S.3.3.

6.9 CLR - CLEAR ACCUMULATOR
The contents of the accumulator are set to zero.

FORMAT:

[LABEL] CLR

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the accumulator contains H'AO'. After the CLR
instruction has executed, the accumulator contains H'OO'.

See also Sections 7.1.1, 7.3.5, and 4.3.3.

6.10 CM - COMPARE MEMORY TO
ACCUMULATOR

The CM instruction is the same as the CI instruction except
the memory contents addressed by the DCa registers, instead
of an immediate value, are compared to the contents of the
accumulator.

Memory contents are not altered. Contents of the DCa
registers are incremented.

FORMAT:

[LABEL] CM

See also Section 9.3.3.

6.11 COM - COMPLEMENT
The accumulator is loaded with its one's complement.

FORMAT:

[LABEL] COM

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Status unaffected: ICB

EXAMPLE:

If the accumulator contains H'8B', after the COM instruction
is executed, it will contain H'74'.

The Zero bit is reset to 0 since the result is not zero.

The Sign bit is set to 1 since the high order bit of the result
is O.

The OVF and Carry bits are unconditionally reset to O.

See also Sections 7.1.2, 7:2.2, and 7.4.2.

6.12 DCI -LOAD DC IMMEDIATE
The DCI instruction is a three-byte instruction. The contents
of the second byte replace the high order byte of the DCO
registers; the contents of the third byte replace the low order
byte of the DCO registers.

FORMAT:

[LABEL] DCI Nval16

Nval16 is defined in Table 6-1.

STATUS CONDITIONS:

The status bits are not affected.

EXAMPLE:

After the instruction:

DCI H'2317'

is executed, the DC registers wi!! contain H'231T.

See also Sections 7.2.1, 7.2.2, 7.4.1.

6.13 01 - DISABLE INTERRUPT
The interrupt control bit. ICB, is reset; no interrupt requests
will be acknowledged by the 3850 CPU.

FORMAT:

[LABEL] DI

STATUS CONDITION:S:

Statuses reset: ICB
Statuses unaffected: OVF, ZERO, CARRY, SIGN

6.14 OS - DECREMENT SCRATCHPAD
CONTENT

The content of the scratchpad register addressed by the op­
erand (Sreg) is decremented by one binary count. The
decrement is performed by adding H'FF' to the scratchpad
register.

FORMAT:
[LABEL] DS Sreg

Sreg is defined in Table 6-2.

STATUS CONDiTIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the ISAR contains 0'23' and the scratch pad register
0'23' contains H'lT. After the instruction:

DS D

is executed, scratchpad register 0'23' contains H'16' and
the ISAR contains 0'22'. The accumulator is unaffected.

There is a carry out from bit 7, so CARRY = 1.
There is a carry out from bit 6, so OVF = 1 0 1 = O.
The result of the decrement is non-zero, so ZERO = O.
The most significant bit is 0, so SIGN = 1.

See also Sections 7.1.3, 7.2.1 and 7.2.2.

6.15 EI - ENABLE INTERRUPT
The interrupt control bit is set. Interrupt requests will now be
acknowledged by the CPU.

FORMAT:

[LABEL] EI

STATUS CONDITIONS:

ICB is set to 1 .

All other status bits are unaffected.

See also Sections 8.2.7,8.3.1, and 8.3.3.

6.16 IN - INPUT LONG ADDRESS
The data input to the I/O port specified by the operand of the
!N instruction is stored in the accumulator.

The I/O port address assignments are given in Table 6-6. I/O
ports with addresses 4 through 255 may be addressed by
the IN instruction. I/O ports with port. addresses 0 through
15 may be accassed by the H~~S ;ilstiuct;Oi'i (see Section 6.17),

The IN instruction generates two bytes of object code, whereas
the INS instruction generates one byte of object code.

If an I/O port or pin is being used for both input and output.
the port or pin previously used for output must be cleared
before it can be used to input data.

I

RESERVED MAY BE USED MAY BE USED MAY BE USED MAY BE USED
PORT ADDRESS FOR BY BY BY BY
(HEXADECIMAL) 3850 CPU 3851 PSU 3852DMI 3853 SMI 3854DMA

OC
00
OE
OF
10

EB
EC
ED
EE
EF
FO

FF

Table 6-6. I/O Port Address Assignments

NOTE 1: These I/O port addresses may not be used by PSU's
if a 3852 OMlor 3853 SMI device is used.

NOTE 2: These I/O port addresses may not be used by PSU's
if a SL31116 DMI device is used.

NOTE 3: I/O port addresses used by DMA devices may not be
used by PSU's.

NOTE 4: Two versions of the 3852 DMI device are available.
One uses port assignments H'OC' and H'OD'; the
other uses port assignments H'EC' and H'ED'.

FORMAT:

[LABEL] IN Nval8

Nval8 is defined in Table 6-1.

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume that the value H'C8' has been input by an external
device to I/O port H'1 0'. After the instruction:

IN H'10'

is executed, the accumulator will contain H'37'. Note that
the data is complemented between I/O pin and accu mulator.

The overflow and carry bits are unconditionally reset, so
OVF = CARRY = O.

The accumulator content is non-zero, so ZERO = O.
The most significant bit is zero, so SIGN = 1.

See also Sections 7.6.2 and 8.4.3.

6.17 INC -INCREMENT ACCUMULATOR
The content of the accumulator is increased by one binary
count.

FORMAT:

[LABEL] INC

STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'FF'. After an INC
instruction execution, the accumulator contains WOO'.

There is carry out from bit 7, so CARRY = 1.
There is also a carry out from bit 6, so OVF = 1 0 1 = O.
The result is zero, so ZERO = 1, and SIGN = 1.

See also Section 8.3.3 and 10.2.2.

6-9

6.18 INS - INPUT SHORT ADDRESS
Data input to the 1/0 port specified by the operand of the INS
instruction is loaded into the accumulator. An 1/0 port with
an address within the range 0 through 15 may be accessed by
this instruction.

!f an I/O port or pin is being used for both input and output,
the port or pin previously used for output must be cleared
before it can be used to input data.

FORMAT:

[LABEL] INS Nval4

Nval4 is defined in ;able 6-1.

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume that the 3850 CPU 1/0 port addressed by H'Ol'
contains H'79'. Execution of the instruction:

INS

causes the accumulator to be loaded with H'86'.

The overflow and carry bits are reset, so OVF = CARRY = O.
The accumulator content is non-zero, so ZERO = O.
The most significant bit is 1, so SIGN = O.

6.19 JMP - BRANCH IMMEDIATE
As the result of a JMP instruction execution, a branch to the
memory location addressed by the second and third bytes of
the instruction occurs. The second byte contains the high
order eight bits of the memory address; the third byte
contains the low order eight bits of the memory address.

The accumulator is used to temporarily store the most sig­
nificant byte of the memory address; therefore, after the JMP
instruction is executed, the initial contents of the accumulator
are lost.

FORMAT:

[LABEL] JMP Nval16

STATUS CONDITIONS:

No status bits are affected.

EXAMPLE:

Assume the operand of the JMP instruction contains H'03A6'.
After the instruction:

JMP H'03A4'

is executed, the next instruction will execute from address
H'03A4'. At the completion of this execution, the accumulator
contains H'03'.

See also Section 7.3.4 and 7.5.1.

6.20 LI - LOAD IMMEDIATE
The value provided by the operand of the LI instruction is
loaded into the accumulator.

FORMAT:

[LABELj Li Nvaii 8

STATUS CONDITIONS:

No status bits are affected.

EXAMPLE:

Assume the second byte of the LI instruction contains H'CT.
The instruction:

LI H'CT

causes the accumulator to be loaded with H'CT.

See also Section 7.1.3, 7.2.1, and 7.2.2.

6.21 LIS - LOAD IMMEDIATE SHORT
A 4-bit value provided by the LIS instruction operand is loaded
into the four least Significant bits of the accumulator. The
most significant four bits of the accumulator are set to "a".

FORMAT:

[LABEL] LIS Nval4

Nval4 is defined in Table 6-1.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

After the instruction:

Lis 3

has executed, the accumulator will contain H'03'.

See also Section 7.2.2, 7.3.4 and 9.3.2.

6.22 LlSL - LOAD LOWER OCTAL DIGIT OF ISAR
A 3-bit value provided by the USL instruction operand is
loaded into th'e three least significant bits of the ISAR. The
three most significant bits of the ISAR are not altered.

FORMAT:

[LABEL] LlSL Nval3

Nval3 is defined in Table 6-1.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Suppose ISAR contains the value 0'72'. After the instruction:
LlSL 6

has executed, ISAR will contain the value 0'76'.

See also Section 7.1.1, 7.1.2 and 8.2.7.

6.23 LlSU - LOAD UPPER OCTAL DIGIT OF ISAR
A 3-bit value provided by the LlSU instruction operand is
loaded into the three most significant bits of the ISAR. The
three least significant bits of the ISAR are not altered.

FORMAT:

[LABEL] Nval3

Nval3 is defined in Table 6-1.

STATUS CONDITIONS:

No status bits are affected.

EXAMPLE:

Suppose ISAR contains the value 0'72'. After the instruction:

LlSU 3

has executed, ISAR will contain the value 0'32'.

See also Section 7.1.1,7.1.2, and 8.2.7.

6.24 LM - LOAD ACCUMULATOR FROM
MEMORY

The contents of the memory byte addressed by the DCa reg­
isters are loaded into the accumulator. The contents of the
DCa registers are incremented as a result of the LM instruction
execution.

FORMAT:

[LABEL] LM

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the DCa registers contain H'37A2' and the memory
location addressed by H'37A2' contains H'2B'. Execution of
the LM instruction causes the accumulator to be loaded with
H'2B'. The DCa registers subsequently will contain H'37A3'.

6.25 LNK - LlNKCARRYTOTHEACCUMULATOR
The carry bit is binary added to the least significant bit of the
accumulator. The result is stored in the accumulator.

FORMAT:

[LABEL] LNK

STATUS CONDITIONS:

6-11

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'84', and the CARRY bit
is set. The instruction execution causes the accumulator to
contain H'85'.

As a result of the instruction execution, there is no carry out
of bit 7, so CARRY = a.
There is also no carry out of bit 6, so OVF = a 0 a = a.
The result is non-zero, so ZERO = a.
The most significant bit of the result is 1, so SIGN = a.

See also Section 7.1.2, 7.1.4 and 7.2.2.

6.26 LR - LOAD REGISTER
The LR group of instructions move one or two bytes of data
between a source and destination register. Instructions exist
to move data between the following registers:

a) A scratch pad register and the Accumulator
b) Scratchpad registers and the Data Counter, DCa
c) The Accumulator and the ISAR
d) Scratchpad register 9 and the status register
e) Scratchpad registers and Program Counter, pca
f) Scratch pad registers and stack register, PC1

An LR instruction's data source and destination is determined
by the instruction operands as illustrated in Table 6-7. The
number of data bytes moved (one or two) depends on the
size of the source and destination registers (8 or 16 bits).

FORMAT:

[LABEL] LR D,S

S is the source register.
D is the destination register.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the ISAR contains 0'76'. After the instruction:

LR AIS

is executed, the accumulator contains 0'76'. Scratch pad
register 0'76' remains unchanged. ISAR also remains
unchanged.

6.27 NI - AND IMMEDIATE
An 8-bit value provided by the operand of the NI instruction
is ANDed with the contents of the accumulator. The results
are stored in the accumulator.

FORMAT:

[LABEL] NI Nval8

LR
INSTRUCTION

OPERANDS
DESTINATION SOURCE

A,
A,
A,
A,

KU,
KL,
au,
aL,
K,

P,

A,

IS,
PO,

0,

DC,

DC,

H,

W,
J,

II !(v

KL
au
aL
A
A
A
A
P

K

IS

A
a

DC

a

H

DC

J
W

LOADS
REGISTER

~ 1 • .--1,1 + .. !A cu •• ,ua .. o~
Accumulator
Accumulator
Accumulator
Scratchpad register 12
Scratchpad register 13
Scratchpad register 14
Scratchpad register 15
Scratchpad register 12
Scratchpad register 13
High order byte of PCl
Low order byte of PC 1
Accumulator

ISAR
High order byte of PCO
Low order byte of PCO
Scratchpad register 14
Scratchpad register 15
High order byte DCO
Low order byte DCO
High order byte of DCO
Low order byte of DCO
Scratchpad register 10
Scratchpad register 11
Status register (w)
Scratch pad register 9

A,
(Sreg)*

(Sreg)* Accumulator
A Scratchpad register (Sreg)

FROM
REGISTER

.................. L...I .. _: _ 1'"
I S"'CI"_,,pau ,ey'S,,,,, 'L

Scratchpad register 13
Scratchpad register 14
Scratchpad register 15
Accumulator
Accumulator
Accumulator
Accumulator
Program Counter PCl
Program Counter PCl
Scratchpad register 12
Scratchpad register 13
ISAR

Accumulator
Scratchpad register 14
Scratchpad register 15
Data counter registers DCO
Data counter registers DCO
Scratchpad register 14
Scratchpad register 15
Scratchpad register 10
Scratchpad register 11
Data counter register
Data counter register
Scratch pad register 9
Status register (w)

Scratchpad register (Sreg)
Accumulator

WITH

_. ____ .a._

8-b.t "' tc::/Il~
8-bit contents
8-bit contents
8-bit contents
8-bit contents
8-bit contents
8-bit contents
8-bit contents
High order 8-bit byte
Low order 8-bit byte
8-bit contents
8-bit contents
OOXXXXXX
X's are contents
of ISAR
Low order 6-bits.
8-bit contents
8-bit contents
High order byte
Low order byte
8-bit contents
8-bit contents
8-bit contents
8-bit contents
High order byte
Low order byte
Low order 5 bits
OOOXXXXX
X's are contents
of status register
8-bit contents
8-bit contents

EXAMPLE GIVEN
IN

SECTION

........ 7""" , 1.:1'+. J 0

7.3.4, 7.3.6

8.4.3
8.4.3
7.3.4, 7.3.6
7.3.4, 7.3.6
7.3.4, 7.3, 7.3.6

8.4.3

7.3.4, 8.2.7

7.3.4,7.3.5,8.2.7
7.3,4.7.5

7.2.2, 7.3.6, 7.4.2

7.2.2, 7.3.3, 7.3.4

7.2.2, 7.3.4, 7.3.6

7.1.2, 7.2.2, 7.4.1
7.1.2, 7.2.2, 7.3.3

7.1.2, 7.1.4, 7.4.1
7.1.1,7.1.2,7.1.3

'Sreg IS a hexadecimal digit represeming a scratchpad register. as defined in Tabie 6·2.

Table 6-7. LR Instruction Operand Definitions

STATUS CONDITIONS:

Statuses reset to 0: OVF, CARRY
Statuses modified: ZERO, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the second byte of the NI instruction contains H'36',
and the accumulator contains H'2A' as a result of the
instruction execution, the accumulator contains H'22'.

Bit No:
H'36'
H'2A'
H'22'

765432 0
00110110
0010101 0
001 000 1 0

There is no carry out of bit 7, so CARRY = O.
There is no carry out of bit 6, so OVF = 0 0 0 = O.
The result is non-zero, so ZERO = O.
The most significant bit is zero, so SIGN = 1.

See also Section 7.1.2, 7.2.2 and 7.3}.

O'IL

6.28 NM - LOGICAL AND FROM MEMORY
The content of memory addressed by the data counter reg­
isters is ANDed with the content of the accumulator. The
results are stored in the accumulator. The contents of the
data counter registers are incremented.

FORMAT:

[LABEL] NM

STATUS CONDITIONS:

Statuses reset to 0: OVF, CARRY
Statuses modified: ZERO, SIGN
Statuses unaffected: :C8

EXAMPLE:

Assume the data counters contain H'49AC', the memory lo­
cation addressed by H'49AC' contains H'6T and the accumu­
lator contains WA9'. After execution of the NM instruction,
the accumulator contains H'21 " and the data counters contain
H'49AD'.

Bit No:
H'6T
WAS'
H'21'

Also see Section 7.6.1.

7 6 543 2 1 0
o 1 100 1 1 1
1010100 1
001 0 0 0 0 1

6.29 NOP - NO OPERATION
No function is performed.

FORMAT:

[LABEL] NOP

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the program counters contain H'2700'. After a NOP
instruction is executed, the PCO registers contain 'H2701 '.

Also see Section B.4.3.

6.30 NS - LOGICAL AND FROM SCRATCHPAD
MEMORY

The content of the scratchpad register addressed by the op­
erand (Sreg) is ANDed with the content of the accumulator.
The results are stored in the accumulator.

FORMAT:

[LABEL] NS Sreg

Sreg is defined in Table 6-2.

STATUS CONDITIONS:

Statuses reset to 0: OVF, CARRY
Statuses modified: ZERO, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume scratchpad register 0'02' contains H'F2', and the
accumulator contains H'2F'. Execution of the instruction:

NS 2

causes the accumulator to contain H'22'.

Bit No:
H'F2'
H'2F'
H'22'

7 6 543 2 1 a
11110010
00101111
001 000 1 0

There is no carry out of bit 7, so CARRY = O.
There is also no carry out of bit 6, so OVF = 0 e 0 =0.
The result is non-zero, so ZERO = O.
The most significant bit of the result is zero, so SIGN = 1.

Also see Section 7.6.1 and 7.6.2.

6-13

6.31 01 - OR IMMEDIATE
An B-bit value provided by the operand of the I/O instruction
is ORed with the contents of the accumulator. The results
are stored in the accumulator.

FORMAT:

[LABEL] 01 NvalB

NvalB is defined in Table 6-1.

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'OA'. The execution of
the instruction:

01 H'A3'

causes the accumulator to contain H'AB'.

Bit No:
WAB'
H'OA'
WAB'

7 6 543 2 1 0
101 000 1 1
o 0 0 0 1 010
1010101 1

The accumulator result is non-zero, so ZERO = O.
The most significant bit of the result is 1, so SIGN = O.
The overflow and carry bits are reset, so OVF = 0 and
CARRY = O.

Also see Section 7.6.1.

6.32 OM - LOGICAL "OR" FROM MEMORY
The content of memory byte addressed by the data counter
registers is ORed with the content of the accumulator. The
results are stored in the accumulator. The data counter
registers are incremented.

FORMAT:

[LABEL] OM

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the DC registers contain H'FC1S', the memory lo­
cation addressed by H'FC1S' contains H'16', and the accumu­
lator contains H'Bl '. After execution of an OM instruction,
the accumulator contains H'ST and the DC registers will
contain H'FC1A'.

Bit No:
H'16'
H'Bl'
H'97'

7 6 5 432 1 0
000 1 0 1 1 0
1 0 0 0 000 1
10010111

The result is non-zero, so ZERO = O.
The most significant bit of the resu!t is 1, so SIGN = O.
The overflow and carry bits are unconditionally reset, so
OVF = 0 and CARRY = O.

6.33 OUT - OUTPUT LONG ADDRESS
The I/O port addressed by the operand of the OUT instruction
is loaded with the contents of the accumulator.

I/O ports with addresses from 4 through 255 may be accessed
with the OUT instruction.

The OUT instruction generates two bytes of object code, where­
as the OUTS instruction generates one byte of object code.

The 110 port addresses are defined in Table 6-6.

FORMAT:

[LABEL] OUT NvalB

NvalB is defined in Table 6-1.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE'

Assume the accumulator contains H'2A'. Execution of the

OUTS 15

will cause the I/O port H'OF' to contain H'CD'.

Also see Section 7.2.1, B.l.l and B.l.3.

6.35 PI - CALL TO SUBROUTINE IMMEDIATE
The contents of the Program Counters are stored in the
Stack Registers, PC1, then the 16-bit address contained in
the operand of the PI instruction is loaded into the Program
Counters., The accumulator is used as a temporary storage
register during transfer of the most significant byte of the
address. Previous accumulator results will be altered.

FORMAT:

[LABEL] PI Nval16

Nval16 is defined in Table 6-2.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume that the operand of the PI instruction contains
H'32A 1', the program counter (PCO) registers contain
H'ABCD', and the Stack registers (pC 1) contain H'1234'.
Execution of the instruction:

PI H'32Al'

instruction: causes the Stack registers (PC1) to contain H'ABCD', and
the program counter registers (PCO) to contain H'32A 1'.

OUT H'F6'

will cause the I/O port H'F6' to be loaded with H'D5'.
Note that the data at the 110 pins is complemented with
respect to the accumulator.

6.34 OUTS - OUTPUT SHORT ADDRESS
The I/O port addressed by the operand ofthe OUTS instruction
object code is loaded with the contents of the accumulator.
I/O ports with addresses from 0 to 15 may be accessed by this
instruction. The I/O port addresses are defined in Table 6-6.
Outs 0 or 1 is CPU port only.

FORMAT:

[LABEL] OUTS Nval4

Nva!4 is defined in Tab!e 6-1.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the OUTS instruction operand (NvaI4) is H'OF', and
the accumulator contains H'32'. Execution of the instruction:

Also see Section 7.3.3, 7.3.5 and 8.1.1.

6.36 PK - CALL TO SUBROUTINE DIRECT AND
RETURN FROM SUBROUTINE DIRECT

The contents of the Program Counter Registers (PCO) are
stored in the Stack Registers (PC1), then the contents of the
Scratch pad K Registers (Registers 12 and 13 of scratchpad
memory) are transferred into the Program Counter Registers.

FORMAT:

[LABEL] PK

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume Scratchpad Register 12 contains WAB', Scratchpad
Register 13 contains H'CD", and the Program Counter Reg­
isters (PCO) contain H'1234'. Execution of the instruction PK
causes the Stack Registers to contain H'1234' and the Program
Counter Registers to contain WABCD'.

Also see Sections 7.3.3, 7.4.1 and B.2.7.

6.37 POP - RETURN FROM SUBROUTINE
The contents of the Stack Registers (PC1) are transferred to
the Program Counter Registers (PCO).

FORMAT:

[LABEL] POP

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the Stack Registers (PC1) contain H'ABCD' and the
Program Counter Registers (PCO) contain H'1234'. When the
POP instruction has been executed, the PCO registers will
contain H'ABCD' and PC1 will not be changed.

Also see Sections 7.3.3, 7.3.4 and 8.2.7.

6.38 SL - SHIFT LEFT
The contents of the accumulator are shifted left either one or
four bit positions, depending upon the value of the SL
instruction operand.

If the value of the operand is 1, the accumulator contents are
shifted left one bit position. The least significant bit becomes
a zero.

If the value of the operand is 4, the accumulator contents are
shifted left four bit positions. The four least significant bits
are filled with zeroes.

FORMAT:

[LABEL] SL Nval4

Nval4 = 1 or 4

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'81 '. The execution of
the instruction:

SL

causes the accumulator to contain H'02'. Execution of the
instruction:

SL 4

causes the accumulator to contain H'10'.

In both examples the result is non-zero, so ZERO = O.
The most significant bit of the results is zero, so SIGN = 1.
The overflow and carry bits are unconditionally reset, so OVF
and CARRY = O.

Also see Sections 8.4.3,8.3.2 and 10.3.

6-15

6.39 SR - SHIFT RIGHT
The contents of the accumulator are shifted right either one
or four bit positions, depending on the value of the SR
instruction operand.

If the value of the operand is 1, the accumulator contents are
shifted right one bit position. The most significant bit becomes
a zero.

If the value of the operand is 4, the accumulator contents
are shifted right four bit positions. The four most significant
bits are filled with zeroes.

FORMAT:

[LABEL] SR Nval4

Nval4 = 1 or 4

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'81 '. Execution of the
instruction:

SR

causes the accumulator to contain H'40'. Execution of the
instruction:

SR 4

causes the accumulator to contain H'08'.

In both examples the result is non- zero, so ZERO = O.
The most significant bit of the results is zero, so SIGN = 1.
The overflow and carry bits are unconditionally reset, so OVF
and CARRY = O.

Also see Sections 10.1.2 and 10.3.

6.40 ST - STORE TO MEMORY
The contents of the accumulator are stored in the memory
location addressed by the Data Counter (DCO) registers.

The DC registers' contents are incremented as a result of the
instruction execution.

FORMAT:

[LABEL] ST

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the accumulator contains H'69', and the DCO reg­
isters contain H'ABBE'. Execution of the instruction ST causes
the memory location H'ABBE' to contain H'69'; DCO is
incremented to contain H'ABBF'.

See also Sections 7.2.2, 7.3.4 and 7.4.2.

6.41 XDC - EXCHANGE DATA COUNTERS
Execution of the instruction XDC causes the contents of the
auxiliary data counter registers (DC1) to be exchanged with
the contents of the data counter registers (DCO).

This ;ilstruct;on is (Hl~Y s;gn;f;cant -"VhSil ~ 3852 or 3853
Memory Interface device is part of the system configuration.

FORMAT:

[LABEL] XDC

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the data counters, DCO, contain H'ABCD', and the
auxiliary data counter registers, DC1, contain H'1234'. Ex­
ecution of the instruction XDC causes the DCa registers to
contain H'1234', and the DC1 registers to contain H'ABCD'.
The PSU's will have DCO unaltered.

Also see Sections 7.2.2, 7.4.2 and 7.6.1.

6.42 XI - EXCLUSIVE-OR IMMEDIATE
The contents of the S-bit value provided by the operand of
the XI instruction are EXCLUSIVE-ORed with the contents of
the accumulator. The results are stored in the accumulator.

FORMAT:

[LABEL] XI NvalS

NvalS is defined in Table 6-1.

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'AB', and the operand of
the XI instruction contains H'42'. Execution of the instruction:

XI H'42'

causes the accumulator to contain H'S9'.

Bit No:
H'AB'
H /)I')I

'+,£.

H'S9'

7 6 543 2 1 0
1 0 1 0 1 0 1 1
t""\ t""\ 1 1"\ 1"\ 1"\ 1 "
VUIVVVfU

10001001

The result is non-zero, so ZERO = O.
The high order bit of the results is one, so SIGN = O.
The overfiow and Garry bil are ullGullditiullaiiy re::;ei, ::;u
OVF = 0 and CARRY = O.

6.43 XM - EXCLUSIVE-OR FROM MEMORY
The content of the memory location addressed by the DCO
registers is EXCLUSIVE-ORed with the contents of the ac­
cumulator. The results are stored in the accumulator. The
DCO registers are incremented.

6-16

FORMAT:

[LABEL] XM

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the DCO counters contain H'1DE4', the memory lo­
cation addressed by H'1DE4' contains H'1D', and the accu­
mulator contains H'AS'. Execution of the instruction XM
causes the accumulator to contain H'B5'. DCO is updated to
H'1DE5'.

Bit No:
H'lD'
H'AS'
H'B5'

7 6 543 2 1 0
o a 0 1 1 1 a 1
10101 000
1 0 1 1 0 10 1

The result is non-zero, so ZERO = O.
The high order bit of the result is one, so SIGN = O.
The overflow and carry bit are unconditionally reset, so
OVF = 0 and CARRY = O.

6.44 XS - EXCLUSIVE-OR FROM SCRATCHPAD
The content of the scratchpad register referenced by the
operand (Sreg) is EXCLUSIVE-ORed with the contents of the
accumulator.

FORMAT:

[LABEL] XS Sreg

Sreg is defined in Table 6-2.

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the scratchpad register 10 contains H'7C', and the
accumulator contains H'61 '. Execution of the instruction:

XS 10

causes the accumulator to contain H'1 0'.

Bit No.
H'7C'
H'6i'
H'1D'

7 6 543 2 1 0
o 1 1 1 1 1 00
Oi iOOOOi
00011101

The result is non-zero, so ZERO = O.
The high order bit of the results is zero, so SIGN = 1.
Overflow and carry bits are reset, so OVF = 0 and CARRY = O.

Also see Section 7.1.1 and 7.6.2.

PROGRAMMING TECHNIQUES

This section describes some basic programming techniques
that will be useful in almost any Fa application.

NOTE: For easy reading, instructions in examples have labels
which are repeated from one example to the next.
it is important to understand that in a real program
no label can be used more than once.

7.1 MANIPULATING DATA IN THE SCRATCHPAD
The Central Processing Unit's 64 byte scratch pad memory is
the principle storage for data and addresses that are currently
being accessed by the CPU. Table 7-1 illustrates the scratch­
pad memory. Notice that since the ISAR register is divided
into two 3-bit ur,its, octal numbers are the best suited to
scratchpad addressing.

Scratchpad registers 0 through 8 are nine general purpose
registers that should be used to store transient data (or
addresses) currently being accessed.

Scratchpad registers 9 through 15 are used as temporary
depositories for address and status register contents (DCO,
PCO, PCl and W). Special instructions move data between
these scratchpad registers and their associated status or
address registers.

Registers 16 through 63 are addressed via the ISAR register,
and may be visualized as six .. 8-byte buffers. The ISAR register
can, of course, address any of the 64 scratchpad registers;
however, usually only scratchpad registers 16 through 63
(0'20' through 0'77') are accessed via the address in ISAR.

BYTE NUMBER
Octal Decimal FUNCTION

0-10 0-8 Nine general purpose scratch registers

11 9 Temporary storage for status register

12,13 10,11 HU and HL; temporary storage for the
Data Counter registers (DCO)

14,15 12,13 KU and KL; temporary storage for the
stack register (PC1)

16,17 14,15 OU and OL; temporary storage for
I Pmgcam Count., (PCO) DC Data Count.,
Registers

20 - 27 16 - 23 First data buffer. ISAR = 0'2X'.

30 - 37 24 - 31 Second data buffer. ISAR = 0'3X'.

40 - 47 32 - 39 Third data buffer. ISAR = 0'4X'.

50 - 57 40 - 47 Fourth data buffer. ISAR = 0'5X'.

60 - 67 48 - 55 Fifth data buffer. ISAR = 0'6X'.

70 - 77 56 - 63 Sixth data buffer. ISAR = O'7X'.

X is any octal digit (0 through 7).

Table 7-1. Scratchpad Memory Utilization

7.1.1 Simple Scratchpad Buffer Operations

I

Because of the way ISAR operates, registers 16 through 63
conveniently form six buffers, each capable of storing eight
bytes. As described in Section 2.1, the ISAR is a 6-bit reg­
ister, divided into 3-bit digits. When ISAR contents are in-

7-1

cremented or decremented, only the lower three bits are
affected; therefore, once ISAR has been loaded with a scratch­
pad address, it will only increment or decrement within an
8-byte address range. The end of any 8-byte buffer may be
identified using the BR7 instruction.

To illustrate scratch pad buffer manipulation at its most ele­
mentary level, consider the following instruction sequence,
which sets all eight bytes of a buffer to zero:

ONE CLR CLEAR THE ACCUMULATOR
TWO LlSU 2 ADDRESS SCRATCHPAD

BUFFER 1
THREE LlSL 7
LOOP LR D.A CLEAR SCRATCHPAD BYTE AND

DECREMENT ISAR
FOUR BR7 LOOP RETURN FOR MORE BYTES

Instructions execute as follows:

ONE: Clear the accumulator, so scratch pad bytes may be
cleared by loading 0 into each byte.

TWO Set the ISAR register to address the first byte
THREE: of scratchpad buffer 1. This address is 0'27'.

LOOP: Load the accumulator content (which is zero) into
the scratchpad byte addressed by ISAR (initially byte
0'27'). Because ISAR is identified in the operand via
the address D, decrement the low order ISAR octal
digit. (After the first execution of LOOP, ISAR con­
tents are decremented to 0'26'; after the second
execution of LOOP, ISAR contents are decremented
to 0'25', etc.)

FOUR: If ISAR contains 7 as its' low order octal digit, con­
tinue; otherwise return to LOOP. In this case, con­
tinue if ISAR contains 0'27' and return if ISAR
contains 0'20' through 0'26'.

7.1.2 Incrementing Up, and Decrementing Down
Scratchpad Buffers

Now consider a simple variation of the above example; a
7 -byte, positive number, stored in buffer 3, is added to an­
other 7-byte, positive number, stored in buffer 4. Binary
addition is performed as follows:

COM INITIALLY CLEAR THE
CARRY STATUS

ONE LlSL 0 ADDRESS LOW ORDER BYTE
OF EACH BUFFER

LOOP LlSU 4 ADDRESS FIRST BUFFER
TWO LR A.S LOAD FIRST BUFFER BYTE

INTO A
THREE LlSU 5 ADDRESS SECOND BUFFER
FOUR LNK ADD ANY CARRY TO A
FIVE LR J,W SAVE STATUS IN SCRATCH PAD

BYTE 9
SIX AS S ADD SAME BYTE OF SECOND

BUFFER
SEVEN LR I.A STORE ANSWER AND INCRE-

MENT BYTE POINTER
EIGHT LR A.9 XOR CARRY BIT FROM

SCRATCHPAD BYTE 9

TEN
ELEV
TWEL
THRT
FORT

LR
XS
LR
LR
BR7

J,W
9
9,A
W,J
LOOP

WITH CURRENT CARRY BIT

RETURN IF NOT END

Instructions in the above example execute as foiiows:

ONE

First
Buffer

Set the low order octal digit of ISAR to O. Assume
that numbers are stored in scratchpad buffers as
follows:

47 46 45 44 43 42 41 40..,

I I I I I I I I I

Octal Addresses

57 56 55 54 53 52 51 50.J
Second and I I I I i Answer Buffer t Least significant byte ~

Most significant byte

LOOP Set the high order octal digit of ISAR to 4, thus ad­
dressing the next (initially least significant) byte of
the first buffer.

TWO Load the next byte of the first buffer. By using S to
identify ISAR as addressing the scratchpad, ISAR is
not changed. This is important, since ISAR must not
be incremented until the sum has been stored in the
second buffer.

THREE By loading 5 into the ISAR high order digit, the cor­
responding byte of the second buffer is addressed.

FOUR Add any carry from the previous byte addition to the
accum u lator.

FIVE Save the status in J (scratchpad register 9).

SIX Add the second buffer byte (same byte number as
first buffer) to the accumulator.

SEVEN Store the sum back into the second buffer, and this
time increment the low order octal digit in ISAR,
after storing the sum.

EIGHT
to

THRT

When any previous carry is added to the accumula­
tor by instruction FOUR, it is possible for 1 to be
added to H'FF'. In this case the carry status would be
set to 1 and the accumulator will be reset to O. When
the main addition is performed by instruction SIX,
the carry status must be reset to O. As a result the
carry from FOUR will be lost. The correct carry to be
used in the next byte addition is the OR of any car­
ries from FOUR and SIX; EXCLUSIVE-OR is used
since the two carry statuses cannot both be 1. The
correct carry is created by instructions EIGHT
through THRT, which perform these steps:

EIGHT
TEN

ELEV

TWEL

Move status from FOUR to the accumulator.
Move status from addition in instruction
SIX to J, register 9 in the scratchpad.
EXCLUSIVE-OR J and the accumulator. The
carry status can be 0 G 1 = 1,0 <B 0 =: 0,
1 (8 0 = 1 but never 1 (8 1 = O.
Return status to J.

THRT Return status to W.

Note: instructions EIGHT to THRT can be simplified by replacing
with BC FORT

FORi

LR W, J

if iSAR does not address the iast byte of the second
number buffer, return to LOOP; otherwise continue.
(i.e., return to LOOP if ISAR holds 0'50' through
0'56'; concinue if ISAR holds 0'57'.)

This multibyte addition i!lustrates an important feature of
scratch pad buffer utilization: increment ISAR if the high order
buffer byte has a special significance; decrement otherwise.
For example, as illustrated below numbers may use the high
order buffer byte to hold sign, decimal point, or any other
control information:

rMost significant byte
, ~ Least significant byte

x7 x6 x5 x4 x3 x2 xl xO~Octal Address. X is
any digit from 2

~ J through 7

L Nume~c value i~
these seven bytes

Control byte; not processed in Iterative
loop when ISAR is incremented.

Consider now a variation of the multibyte addition, in which
the significance of bytes is reversed:

x7 x6 x5 x4 x3 x2 xl xO..-Octal Address. X is
I any digit from 2

L---L_...L--_L----'-_-'-_-'------'-_--' through 7. L LMost signiHcant byte
Least significant byte

By starting ISAR at x7, all eight bytes of the buffer will be
processed identically, since ISAR will be decremented to x6
before the first execution of BR7. Thus the loop will be exe­
cuted seven times, untillSAR decrements from xO back to x7.
Program steps are as follows:

COM INITIALLY CLEAR THE CARRY
STATUS

ONE LlSL 7 ADDRESS LOW ORDER BYTE
OF EACH BUFFER

LOOP LlSU 4 ADDRESS FIRST BUFFER
TWO LR AS LOAD FIRST BUFFER BYTE

INTO A
THREE LlSU 5 ADDRESS SECOND BUFFER
FOUR LNK ADD ANY CARRY TO A
FIVE LR J,W SAVE STATUS IN SCRATCHPAD

BYTE 9
SIX AS S ADD SAME BYTE OF SECOND

BUFFER
SEVEN LR D,A STORE ANSWER AND DECRE-

MENT BYTE POINTER
r-.,....IIT c..un. Ln M,;3 OR CARRY BiT FROivi SCRATCH-

PAD BYTE 9
TEN LR J,W WITH CURRENT CARRY BIT
ELEV XS 9
TWEL LR 9,A
THRT LR W,J
FORT BR7 LOOP RETURN IF ISAR DID NOT DE-

CREMENT FROM 0'50' to 0'57'

Another variation of the same incrementing scratch pad ad­
dition is shown below. It takes advantage of the fact that the
SUM is overstoring the second data buffer. If the result of
the LNK instruction produces a carry the results in the ac­
cumulator must be zero; therefore, the sum is already correct
and the following addition is needless. The carry bit logic is
therefore simplified. This routine is only valid if the sum
overstores one of the buffers.

COM
ONE LlSL a
LOOP LlSU 4
TWO LR A.S
THREE LlSU 5
FOUR LNK

BC CKENK
SIX AS S
SEVEN LR S,A
CKEND LR A,I DUMMY INSTRUCTION TO INC

ISAR
BR7 LOOP

By changing:ONE LlSL atoONE LlSL 7
and: CKEND LR A,I to CKEND LR A,D

The ISAR will be decrementing during the addition.

7.1.3 Using Scratch pad Registers as Counters

Scratch pad bytes a through 8 should be used for counters
and pointers, and for short data operations that do not require
data buffers.

Consider the simple use of a scratchpad byte as a counter.
If an instruction sequence is to be executed some number of
times between 1 and 256, proceed as follows:

ONE

TWO

LOOP

TEST

LI

LR

DS
BNZ

COUNT

a,A

a
LOOP

LOAD COUNT INTO
ACCUMULATOR
MOVE TO SCRATCHPAD
REGISTER a
START OF INSTRUCTION SE­
QUENCE TO BE RE-EXECUTED

DECREMENT COUNTER
RETURN IF COUNTER IS NOT a

COUNT is a symbol which must be equated to a numeric con­
stant between a and 255. A value of a will cause 256 returns
to LOOP, since TEST will decrement the counter to 255 on
the first pass.

Note that scratch pad register a has been arbitrarily selected
as the counter; any other register, up to register 8, could have
been used.

7.1.4 Using Scratchpad Registers for Short Data
Operations

Data operations that involve 4-byte (or smaller) data units
are handled out of the first nine scratchpad registers.

Consider the addition .of 16-bit signed binary numbers. As­
sume that the augend is stored in scratch pad registers a and

7-3

1 (1 most significant), and the addend is stored in scratchpad
registers 2 and 3 (3 most significant). The result is to be re-
turned in registers 2 and 3. Bit 7 of registers 1 and 3 holds the
sign of the augend and addend, respectively. The addition pro-
gram proceeds, directly accessing scratchpad registers:

ONE LR A,a LOAD LOW ORDER AUGEND
BYTE

TWO AS 2 ADD ADDEND LOW ORDER
BYTE

THREE LR 2,A SAVE THE RESULT
FOUR LR A,1 LOAD THE HIGH ORDER

AUGEND BYTE
FIVE LNK ADD ANY CARRY FROM LOW

ORDER BYTE ADD
SIX BNO EIGHT IF THERE IS AN OVERFLOW,
SEVN BR ERROR THE RESULT IS TOO LARGE.

MAKE AN ERROR EXIT
EIGHT AS 3 ADD THE HIGH ORDER

ADDEND BYTE
NINE LR 3,A SAVE THE RESULT
TEN BNO OK NO OVERFLOW, CONTINUE
ELEV BR ERROR OVERFLOW, THE RESULT IS IN

ERROR

The program executes as follows:

ONE Load the low order augend byte into the accumulator,

TWO add the low order addend byte and save the result.

THREE Carry is the only meaningful status after this addition.

FOUR

FIVE

SIX
SEVN

If the carry is set. it means that 1 must be added to
the high order byte result.

Load the high order augend byte and add any carry
to it.

Now the overflow status is important. since it iden­
tifies a carry out of bit 6, the highest order data bit.
(See Appendix A for clarification.)

If the overflow status is set. branch out to an error
handling program. If the overflow status is not set.
continue. Only the overflow status need be tested.

If two positive numbers are being added, the impor­
tant carry is out of bit 6, and there can be no carry
out of bit 7, which must be a for both numbers.

If a positive and a negative number are being added,
there can be no overflow.

If two negative numbers are being added, there must
be a carry, since both 7 bits are 1. If there is no
carry out of bit 6, an erroneous positive result is
indicated, and the overflow bit is set.

EIGHT Add the high order addend byte and store the result.
NINE

TEN Repeat of instruction SIX. OK is presumed to be the
label of the instruction at which normal execution
continues.

7.2 ROM, RAM AND DATA TABLES
There are two circumstances under which ROM and RAM
memory outside the 3850 CPU scratchpad will be referenced
to access data:

1) In large or small F8 systems, data tables may be stored
in ROM.

2) In large F8 systems, data will be stored and retrieved
out of RAM, via 3852 or 3853 interface devices; this
allows large amounts of data to be stored and
processed.

7.2.1 Reading Data Out of Tables in ROM
Various types of '"table lookup'" applications make extensive
use of data tables stored in ROM, which will usually be a
3851 PSU device. There are two types of table lookup
application, the sequential access and the random access.

Consider first text generation as an example of sequential
access. Messages are stored, as ASCII character sequences,
in ROM. The following instruction sequence outputs a message
via the 3850 CPU I/O port 0:

ORG H'0600'
MSG1 DC C'PO'

DC C'UL'
DC C'TR'
DC C'Ylf

MSG2 DC C'FI'
DC C'SH'
DC C'tsH'

ORG H'0400'
ONE LI (MSG2-MSG1) LOAD BUFFER LENGTH
TWO LR O,A SAVE IN SCRATCH

REGISTER 0
THREE DCI MSG1 LOAD STARTING BUFFER

ADDRESS INTO DCO
FOUR CLR INITIALIZE PORT 0

OUTS 0
INS 0 TEST FOR READY TO

RECEIVE DATA
FIVE BP FOUR ASSUME 1 IN BIT 7

WHEN READY
SIX LM LOAD NEXT CHARACTER
SEVEN OUTS 0 OUTPUT CHARACTER
EIGHT DS 0 DECREMENT CHARACTER

COUNTER
NINE BNZ FOUR RETURN FOR MORE

CHARACTERS

It is arbitrarily assumed that the eight ASCII characters
'POULTRYts' are stored in ROM, starting at memory location
H'0600'; the program to output this character string starts at
........ n-..._ .. " I ; U'AAI'ln' Tl.... _ ... ---. _____ -J __ L II ____ _
IllvlltUI y IV"OllUII If v-t"vv. lilt:; ~IV'!::f'OIII lJ'Uvt::t::U~ a:, IUIIUVV:,.

ONE The message length is computed by subtracting the
TWO symbol MSG 1, which equals the starting address

of 'POULTRYH', from the symbol MSG2, which
equals the starting address of the next message,
'FISHts'. This message length is stored in scratch pad
register O.

THREE The selected message starting address (provided by
the symbol MSG 1) is loaded into the DCO registers.

FOUR These two instructions provide one of many ways in
FIVE which programmed I/O may be set up. It is assumed

that the receiving device connected to I/O port 0 has
an I/O buffer containing aii zeros until it is ready to
receive data, at which time bit 7 of the I/O buffer is
set to 1. The I/O buffer contents are continuously
checked until bit 7 (the sign bit) is sensed as a 1 bit.
The port is cleared prior to input when used for input
and output. For details see Section 8.2.

SIX The contents of the ROM byte addressed by the DCO
registers is input to the accumulator; the DCO reg­
isters contents are then incremented.

SEVEN The accumulator contents are output to I/O port O.

EIGHT
NINE

The buffer length counter (in scratch pad byte 0) is
decremented. If the result is not zero, return to
instruction FOUR to process the next character.

Improved text writing programs are given in Section 10.2.

7.2.2 Accessing Data Tables in RAM
Two programming techniques need to be understood in
connection with accessing RAM via 3852 or 3853 interface
devices:

a) Processing data between a source buffer and a
destination buffer.

b) Operating on data from two source buffers to create
results that are stored in a destination buffer.

Consider first the example of data being moved from one
RAM buffer to another. This procedure is very simple on the
F8, requiring the following instruction sequence:

BUFA EOU H'2000' BUFFER ADDRESSES AND
BUFB EOU H'3080' LENGTH HAVE BEEN ARBI-

TRARIL Y SELECTED
CTHI EOU H'02' CTHI AND CTLO TOGETHER
CTLO EOU H'80' FORM A TWO BYTE BUFFER

LENGTH COUNTER

ONE LI CTHI USE SCRATCHPAD REG-
TWO LR 1,A ISTERS 0 AND 1 FOR THE

BUFFER LENGTH
THREE LI CTLO
FOUR LR O,A
FIVE DCI BUFB LOAD DESTINATION

ADDRESS INTO DCO
SIX XDC SAVE iN DC1
SEVEN DCI BUFA LOAD SOURCE ADDRESS

INTO DCO
LOOP LM LOAD SOURCE BYTE
EIGHT XDC EXCHANGE ADDRESSES
1\1I1\1r." C-T STORE ii-J DESTiNATiOi'.j '''III'''L. 01

BUFFER
TEN XDC EXCHANGE ADDRESSES
ELEV DS 0 DECREMENT LOW ORDER

COUNTER BYTE
TWEL BNZ LOOP RETURN IF NOT ZERO
THRT DS 1 DECREMENT H.O.

COUNTER BYTE AND TEST IF

FRTN BC LOOP
IT WAS 0
RETURN IF H.O. BYTE WAS
NOT 0

This program makes no assumptions regarding data buffer
size or location. Decrementing 2-byte counters is illustrated
in this program, enabling data to be moved between buffers
of any size. Program steps proceed as follows:

ONE
to

FOUR

FIVE
SIX

The two byte buffer length is loaded into scratchpad
registers 1 (high order byte) and 0 (low order byte).
Notice that the 2-byte count must be loaded as two
single byte quantities, since the LI instruction loads
a single data byte into the accumulator.

Save the destination buffer starting address in DC1.
First the address must be loaded into DCO using a
DCI instruction, then it is transferred to DCl by the
XDC instruction. Note that the DCI instruction has
a 2-byte operand, therefore BUFA (and BUFB) are
equated as 2-byte addresses.

SEVEN Load the source buffer starting address into DCO.
(The destination buffer starting address is now
in DC1.)

LOOP Transfer the contents of the memory byte addressed
by the DCO registers to the accumulator. The ad­
dress in the DCO registers is automatically incre­
mented and now points to the next byte of the
source buffer.

EIGHT Exchange addresses between the DCO and DC1
registers. The DCO registers now address the
destination buffer.

NINE Store the contents of the accumulator in the memory
byte addressed by the DCO registers. This is now
the next destination buffer byte following the pre­
vious XDC instruction. After the data byte is stored
in the destination buffer the address in the DCO
registers is automatically incremented to address
the next destination buffer byte.

TEN Exchange the contents of the DCO and DC1 registers
so that the DCO registers again address the next
source buffer byte.

ELEV The two byte counters CTHI and CTLO, stored in
to scratchpad registers 1 and 0, respectively, are dec-

FRTN remented to zero. Until they decrement to zero,
execution returns to LOOP. After they decrement
to zero, execution continues at the instruction
following FRTN.

Decrement logic proceeds as follows: the low order
counter byte is decremented until it reaches zero. At
this point the high order counter byte is decremented
and simultaneously tested to see if it was decre­
mented from O. Since the DS instruction, in fact.
adds H'FF' to the contents of the scratchpad byte,
the carry status will be set unless H'FF' was added
to H'OO'. Therefore after executing a DS instruction,
it is possible to test for a "decrement-from-zero"
using the BC instruction. A branch-on-negative
(BM) instruction would serve as well.

7-5

Consider the current case. Initially CTLO in scratch­
pad register 0 is decremented from H'80' to O. At
this point, CTHI in scratchpad register 1 contains
2 and there are 512 bytes of data remaining to be
moved. The low order byte of the counter is again
decremented from H'FF' through to 0, at which point
CTHI in scratch pad register 1 contains 1, signifying
that 256 bytes of data still remain to be moved.
Now the high order byte of the counter in scratch­
pad register 1 is decremented from 1 to O. Again
the low order byte of the counter in scratchpad reg­
ister 0 is decremented from H'FF' through to O. This
time no bytes remain to be moved; when the high
order byte of the counter in register 1 is tested, it
is found to be negative. As required, execution of
the loop ceases and the branch occurs to instruction
OUT, somewhere beyond the program.

Consider next a three buffer example; two positive, multi­
byte numbers are to be added and the sum is to be stored
in a third multibyte buffer. This three buffer addition proceeds
as follows:

BUFA EQU H'0838' THE CONTENTS OF BUFA
BUFB EQU H'0920' AND BUFB ARE ADDED.
BUFC EQU H'077C' THE RESULT IS STORED

IN BUFC.
CNT H'OA' 10 BYTE BUFFERS ARE

ASSUMED.

ONE LIS CNT USE SCRATCHPAD
TWO LR O.A REGISTER 0 AS A COUNTER
THREE DCI BUFC SAVE THE ANSWER IN BUF-
FOUR LR Q,DC FER STARTING ADDRESS

IN Q
FIVE DCI BUFA SAVE THE SOURCE BUFFER

ADDRESSES
SIX XDC IN DCO AND DC1
SEVEN DCI BUFB
EIGHT COM INITIALLY CLEAR THE

CARRY BIT
LR J,W INITIALIZE STATUS

LOOP LM LOAD N EXT BYTE
LR W,J MOVE CARRY FROM

PRIOR ADD TO STATUS
NINE LNK ADD ANY PREVIOUS

CARRY
TEN LR J,W SAVE STATUS IN J
ELEV XDC ADDRESS ADDEND BUFFER
TWEL AM ADD CORRESPONDING

ADDEND BYTE
THRT XDC READDRESS AUGEND

BUFFER
FRTN LR H,DC SAVE AUGEND ADDRESS

IN H
FFTN LR DC,Q LOAD ANSWER BUFFER

ADDRESS
SXTN ST STORE THE ANSWER
SVTN LR Q,DC SAVE ANSWER BUFFER

ADDRESS IN Q
EGTN LR DC,H MOVE AUGEND ADDRESS

BACK TO H
NNTN BNC TWTl NO CARRY FROM AM

INSTRUCTION
TWTY LR J,W SAVE CARRY FROM AM

INSTRUCTION

lWTl DS
BNZ

a
LOOP

DECREMENT COUNTER
RETURN FOR MORE

This program executes as follows:

ONE Scratchpad register a is used as a counter. Buffer

I

THREE
to

SEVEN

I 1
10

HI"

length has arbitraiily been assumed to be ten bytes.

Since three 16-bit addresses have to be maintained,
the following scheme will be used. At any time the
buffer being accessed must have its address in DCa;
however, DCl plus the Q and H registers in the
scratchpad memory are available to store addresses
which are out of service. Accordingly, the answer
buffer address will be saved in Q, the addend buffer
address will be saved in DCl and the augend buffer
address will be saved in H whenever the answer
buffer address is moved from Q to DCa. This scheme
is illustrated in Figure 7-1.

SCRATCHPAD

THRT

_b

J b a_

I
I
I
I

l~
I f 12 E~ I: :1 II cl a.bore b or a
I K l13

I~DCO
ElEV DC1

f 14 b_

I Q)15 Ie FFTN _a

16

I a - ADDEND ADDRESS (BUFAI

I
b = AUGEND ADDRESS (BUFBI
c ~ ANSWER ADDRESS (BUFCI

Fig. 7-1. Use of H, Q and DC1 Registers to Hold Three Buffer
Addresses

Initially, it is necessary to load the answer buffer
starting address into the Q registers, the addend buf­
fer starting address into DCl and the augend buffer
address into DCa.

EIGHT The carry status must initially be set to a before the
first two bytes are added. This is done by comple­
menting whatever happens to be in the accumulator,
since the complement instruction automatically sets
the carry status to a.

LOOP Load the next augend byte. The augend byte address
is initially loaded into DCa and is returned to DCa
at the end of the addition loop. After the augend
byte has been loaded into the accumulator, DCa
contents are automatically incremented.

NINE Add any carry from the previous byte addition to the
augend byte in the accumulator. (Instruction EIGHT
wiii have set the carry to 0 before the first two bytes
are added.)

TEN As described in Section 7.1.2, addition logic must
take account of the fact that when the link is added
to the accumulator it is possible for the accumulator
to contain H'FF' and the link to contain 1. In this
case the result will be zero in the accumulator with
1 in the carry status. Subsequent addition of the
addend byte will destroy the carry status. Instruction

I
I ,

ELEV
to

THRT

FRTN
to

EGTN

NNTN

TWlY

lWTl

TEN therefore saves the status register in the scratch­
pad J register (register number 9).

These three instructions switch the contents of the
DCa and DCl registers (DCa will now address the
augend buffer). The contents of the next augend byte
are added to the accumulator using binary addition.
The augend buffer address in DCa is automatically
incremented after performing the addition. Then the
augend and addend addresses are exchanged so that
after instruction THRT has been executed, DCa ad­
dresses the next addend byte and DCl addresses
the next augend byte.

The sum in the accumulator must now be saved in
the next answer buffer byte. The answer buffer ad­
dress is in the scratchpad Q registers (registers 14
and 15). Before moving the answer buffer address to
the DCa registers, the DCa registers contents are
saved in the scratchpad H registers (registers 1 a
and 11). Instruction SXTN stores the answer byte in
the accumuiator into the answer buffer, then incre­
ments the answer buffer address in the DCa registers.
Instruction SVTN saves the incremented answer buf­
fer address back in the Q registers while instruction
EGTN restores the augend address from the H
register to the DCa registers.

Observe that instructions FRTN through EGTN do
not modify any of the status bits. As described in
Section 7.1.2, the correct carry status to be used
when adding the next two bytes is given by ORing
the carry status from instructions NINE and TWEL.
If instruction TWEL created a a carry, then the carry
saved by TEN is valid. If instruction TWEL created a
1 carry, it must be saved (by TWlY), to be recalled
following LOOP. Since DS in lWTl resets the carry
to 0, it is necessary to save the carry status in 9,
across the DS instruction. Note the difference in
technique for preserving the carry status in this
example, where DS resets the carry, as compared
to Section 7.1.2, where statuses are not destroyed.

The buffer length counter in scratch pad register 0
is now decremented. If it does not decrement to
zero return to LOOP to add the next two bytes of
the buffer.

7.3 SUBROUTINES

7.3.1 The Concept of a Subroutine
Any iogic that will be used more than once can be written
as a subroutine. For example, the 16-bit, signed binary ad­
dition program given In Section 7.1.4 may be needed at a
!'lumber of different points w:th:~ one iarge program. The
routine may be repeated wherever it is needed. For example,
the eleven instructions of the 16-bit signed binary addition
routine may re-appear ten times within a program that uses
this logic ten times. When the code is reproduced, without
mcdjf:C3t:C~, :t :s \tv'tisting memory.

There are two ways in which an often used routine may be
accessed by a program:

1) The code can be reproduced with minor modifications,
in which case it is treated as a Macro. as described
in Section 7.4.

I
j
j

I

2) The routine may be stored once, then accessed for
execution each time it is needed. The routine is now
called as a subroutine.

Figure 7 -2 illustrates the concept of a subroutine.

There are four aspects of subroutines that must be considered;
they are:

1) The program steps of the logic being bundled as a
subroutine.

2) How the subroutine is accessed. (This is termed
"calling" the subroutine.)

3) Returning from the subroutine after it has executed.
4) Passing data, as parameters, to the subroutine.

Each aspect of a subroutine will be examined with reference
to the multibyte addition routine described in Section 7.2.2.

a I 5 I I 5 I e

(AI ROUTINE "5" IS PACKAGED AS A MACRO, AND
REAPPEARS EACH TIME ITS LOGIC IS REQUIRED

~
Jt~ I~\

/~X>(;I\
/ ,.\ \ i'~ \

/ / " \j I, '\ \

I / \ 1\ \ '\ \
II 1/\1 '\

1/ 1 I 1 ,
II II \: -0

¥ ,-. "
I I I I

(BI ROUTINE "5" APPEARS ONCE EXECUTION LOGIC
(REPRESENTED BY ~ I BRANCHES TO THE
BEGINNING OF "5". THEN RETURNS, FROM THE
END OF "5", TO THE BRANCH POINT

Fig. 7-2. Subroutine, as Compared to a Macro

7.3.2 Subroutine Program Steps
The instructions that implement any logic are the same within,
or outside of, a subroutine. Compare the 16-bit addition pro­
gram (AD16) in Section 7.3.3 with the equivalent program
in Section 7.2.1; the only changes relate to entry and exit
procedures.

7.3.3 Simple Subroutine Calls and Returns

As described in Sections 6.35 and 6.36, there are two
instructions used to call a subroutine into execution.

Instruction PK saves the contents of the program counter
(PCO) in the stack register (PC1). then loads the subroutine
starting address from the K register (scratchpad registers
12 and 13) into the program counter.

Instruction PI saves the contents of the program counter in
the stack register; it then loads the subroutine starting ad­
dress (which is in the two object program bytes following
the Plop code byte) into the program counter.

For straightforward returns from subroutines, the POP in­
struction, described in Section 6.37, moves the contents of

7-7

the stack register back to PCO, thus effecting a return from
a subroutine.

PK may also be used to return from a subroutine by having
the return address in the K registers. LR PO,Q likewise may
be used to return by having the return address in the Q
register.

The starting address of a subroutine is identified by the sub­
routine name, which is the label of the first instruction to be
executed in the subroutine.

Suppose the multibyte addition routine from Section 7.2.2 is
to be named MADD, while the 16-bit addition routine from
Section 7.1.4 is to be named AD16. These names are created
by changing

ONE LI CNT USE SCRATCHPAD
REGISTER a

to the following equivalent instruction:

MADD LI CNT

For AD16, change

ONE LR A,O

USE SCRATCHPAD
REGISTER a

LOAD LOW ORDER
AUGEND BYTE

to the following equivalent instruction:

AD16 LR A.O LOAD LOW ORDER
AUGEND BYTE

Note that although the first sequential instruction is also the
first executed instruction for MADD and AD 16, the first
executed instruction may, in reality, be any instruction within
the subroutine.

The last instruction executed by a subroutine must be POP,
PK or LR PO,Q. Therefore, if for the moment the AD 16 error
return is ignored, subroutine AD16 becomes:

AD16

TWO
THREE
FOUR
FIVE
SIX
SEVN

EIGHT
NINE
OUT

LR

AS
LR
LR
LNK
BNO
POP

AS
LR
POP

A,O

2
2,A
A,l

EIGHT

3
3,A

FIRST INSTRUCTION
EXECUTED FOR AD16

IF THE RESULT IS TOO
LARGE, RETURN

RETURN AT END OF
SUBROUTINE

Notice that a subroutine may have more than one exit.

Subroutine MADD becomes:

MADD LI CNT

TWO LR OA

FIRST INSTRUCTION
EXECUTED FOR MADD

(rest of subroutine as in Section 7.2.2)

TWTl DS
BNZ
POP

o
LOOP RETURN FOR MORE

RETURN AT END OF
SUBROUTINE

Consider the very simple case of subroutineAD16 being called
using a PI instruction. Instruction sequences, with arbitrarily
selected memory addresses, might be as foiiows:

Memory *MAIN PROGRAM SEGMENT
Address

H'102A' ONE PI AD16
H'102D' TWO INC

*SUBROUTINE AD16 STARTS HERE
H'2130' AD16 LR A,O

H'213B' OUT POP
Before instruction ONE is executed, PCO contains H'102A'.
After instruction ONE has executed, PCO contains H '2130'
and PCl contains H'102D'. Execution now proceeds from
AD16, at H'2130'.

Before instruction OUT is executed, PCO contains H'213B'
and PCl still contains H'102D'. Instruction OUT moves
H'102D' to PCO, thus returning execution to TWO.

The following sequence illustrates PK being used to call AD 16,
and PI being used to enll MADD'

*THIS ORIGIN FOR AD 16 HAS BEEN ARBITRARILY SELECTED

AD16
ORG H'0980'
10
1...11

'''' ... l""t. , ,,",,'AI ",....~,.._
LVMU LVVV vnucn
AUGEND BYTE

(rest of subroutine follows here)

*THIS ORIGIN FOR MADD HAS BEEN ARBITRARILY SELEClED
ORG H'09EO'

MADD LI CNT USE SCRATCHPAD
REGISTER 0

irest of subroutine follows here)

*THIS ORIGIN FOR THE MAIN PROGRAM HAS BEEN
* ARB!TRAR!L Y SELECTED

ORG H'1000'
*BEFORE SUBROUTINE AD16 IS FIRST CALLED, LOAD
*ITS STARTING ADDRESS INTO THE SCRATCHPAD K
REGISTERS

ONE LI
TWO LR
THREE LI

LR

FOUR PK

FIVE PI

SIX PK

SEVEN PK

etc

H'09'
KUA
H'80'
KLA

MADD

7.3.4 Nested Subroutines

LOAD STARTING ADDRESS
OF SUBROUTINE AD161NTO
K REGISTER

FIRST CALL TO SUBROUTINE
AD16

FIRST CALL TO SUBROUTINE
MADD

SECOND CALL TO SUB-
ROUTINE AD16

THIRD CALL TO SUB-
ROUTINE AD16

"Nesting" is the term applied to subroutines being called
from within other subroutines.

There is no reason why a subroutine should not, itself, call
another subroutine. In fact, subroutines are such efficient
programming tools, that it is not uncommon to find subroutines
nested eight deep, or more, in large programs.

Consider a very simple case, where creation of the correct
carry status for multibyte addition is packaged into a sub­
routine named CBIT. This subroutine is equivalent to instruc­
t:C:1S E!GHT thivugh THRT of the addition program in Section
7.1.2.

Subroutine CBIT appears as follows:

CS~T In A " iviOVE STATUS FROM LNK 1...1"\ M,;;}

ADDITION TO A
LR J,W MOVE STATUS FROM BYTE

ADD TO W
XS 9 EXCLUSIVE-OR STATUSES
LR 9,A RETURN STATUSTOJVIAW
LR W,J
POP

I
t

I

First try changing the addition program in Section 7.1.2 as
follows:

MADS COM INITIALLY CLEAR THE
CARRY STATUS

ONE LlSU 7 ADDRESS LOW ORDER
BYTE OF EACH BUFFER

LOOP LlSU 4 ADDRESS FIRST BUFFER
TWO LR A,S LOAD FIRST BUFFER BYTE

INTO A
THREE LlSU 5 ADDRESS SECOND BUFFER
FOUR LNK ADD ANY CARRY TO A
FIVE LR J,W SAVE STATUS IN SCRATCH-

PAD BYTE 9
SIX AS S ADD SAME BYTE OF

SECOND BUFFER
SEVEN LR D,A STORE ANSWER AND INC-

REMENT BYTE POINTER
EIGHT PI CBIT CALL C STATUS SUB-

ROUTINE
FORT BR7 LOOP RETURN IF NOT END
FIFT POP RETURN FROM SUB-

ROUTINE

The addition routine has been converted into a subroutine
named MADS.

When subroutine MADS is called, the return address is stored
in PC1 to be returned to PCO by POP instruction FIFT. Un­
fortunately, when CBIT is called at EIGHT, the PI instruction
will also store a return address, the address of instruction
FORT, in PC1. The POP at FIFT will no longer work, since it
will branch execution back to FORT, thus forming an endless
execution loop. (This type of program error is handled by the
MAXCPU directive.)

When subroutines are nested one deep, (and this is often
sufficient in simple F8 applications), the K registers in the
scratchpad can be used to overcome the problem of wiping
out PC1. For example, in Subroutine MADD, save PC1 in
K upon entering MADS then use PK to return from MADD:

MADS LR K,P
COM

EIGHT PI CBIT

FORT BR7 LOOP
FIFT PK

SAVE RETURN ADDRESS
INITIALLY CLEAR THE
CARRY STATUS

CALL C STATUS SUB­
ROUTINE
RETURN IF NOT END
RETURN FROM SUB­
ROUTINE FOR END

When subroutines are nested more than two deep, a stack
is created in RAM to hold subroutine return addresses. When
creating such a memory stack, it is wise to use PC1 and K as
address conduits to the stack, never actually retaining address
permanently in PC 1 or K.

Consider the following simple, three-deep subroutine nest:

Arbitrary
Memory
Addresses

"MAIN PROGRAM

7-9

H'080A' ONE PI SUB1
H'080D' NXT1

ORG H'2073'

CALL FIRST SUBROUTINE
FIRST SUBROUTINE
RETURNS HERE

"START OF FIRST SUBROUTINE
H'2073' SUB1 FIRST INSTRUCTION OF

SUB1

H'2082' TWO PI SUB2 CALL TO SECOND SUB-
ROUTINE

H'2085' NXT2 SECOND SUBROUTINE
RETURNS HERE

H'2132' RET1 POP RETURN TO MAIN
PROGRAM

"START OF SECOND SUBROUTINE
ORG H'12A4'

H'12A4' SUB2

H'12B3' THRE PI

H'12B6' NXR3

H'12E2' RET2 POP

SUB3

FIRST INSTRUCTION OF
SUB2

CALL TO THIRD SUB

THIRD SUBROUTINE
RETURNS HERE

RETURN TO FIRST
SUBROUTINE

"START OF THIRD SUBROUTINE
ORG H'1558'

H'1558' SUB3

H'1596' RET3 POP

FIRST INSTRUCTION OF
SUB3

RETURN TO SECOND
SUBROUTINE

The sequence in which instructions are executed is given in
Table 7-2, along with contents of PCO, PC1, and a "stack"
in memory, where PC1 contents may be stored.

Notice that the first return address, H'080D', is passed to SO,
the first two bytes of the memory stack. Similarly the sec­
ond (H'2085') and third (H'12B6') return addresses are stored
in the second and third byte pairs of memory stack. At a"
times, data in PC1 and K are merely the accidental result of
logic needed to pass return addresses to the stack.

A memory stack "pointer" must be maintained. After each
return address is stored in the stack, the stack pointer wi"
identify the next free stack byte.

Return logic is the opposite of subroutine call logic. Before
each call, the most recently stored return address (in the
two stack bytes right behind the stack pointer) are moved to
PC1, and the stack pointer address is decremented by 2.

The memory stack may either be in scratchpad memory, or
in RAM memory.

r INSTRUCTION i PCO

REGISTERS/STACK CONTENTS

PC1 J K First six bytes of Memory Stack

L ~~g~ ___ -L .. I SO --L~--~.2_ J
1080A

0;00 I
? ?

ONE i2073 7 ! 7

SU81 [2073 0800 ? I ?

1

2082 0800 ! 0800 ! 0800
TWO ,12A4 2085 ! 0800 ! 0800

1~_S~12A4 2085 0800 0800
12B3 2085 2085 0800

I THRE 1558 1286 2085 ! 0800
SU83 ! 1558 1286 2085 i 0800

I

1596
I

1286 1286 i 0800
RET3 1286 1286 1286, 0800
NXT3 ~86 1286 0800

12E 2 2085 2085 0800

i
RET2 2085 2085 2085 0800
NXT2 12085 2085 2085 0800

[2132 0800 0800 0800
RET1 0800 0800 0800 0800 --

7 !

7 I
7 1
7

7 i

7

I 2085
2085
2085
2085 r

2085
2085
2085
2085
2085 1
2085

1 2085

? r---
7 !.--
?
?

~ I:
) !-4--
7 !.---
7 ,---

1286 ,---
1286 -1286 -12B6 !~
1286 ___

12~_
- 12B6~--_

12B6 r---

Before
AftAr
Before
Before
After
Before
Before
After
Before
Before
After
Before
Before
After
Before
Before
After

I

L~ Instructions are In order of execution

Table 7-2. Use of a Memory Stack for Executing Multiple level Subroutines

Consider first a stack in scratch pad memory. By assigning
one 8-byte buffer to serve as a memory stack, subroutines
may be nested four deep. One byte at the beginning of
scratchpad memory will serve as the stack pointer.

Subroutine CALL, described next, uses scratch pad bytes 0'77'
to 0'70' as the memory stack, as illustrated in Figure 7-3.
Scratchpad byte 8 is the stack pointer which must be initialized
to H'7T.

BYTE SCRATCH PAD
NO. STACK / BEGINNING OF STACK

077' H1 I FIRST RETURN ADDRESS
076' L1

075' H2
} SECOND RETURN ADDRESS

074' l2

073' H3 f-------ij } THIRD RETURN ADDRESS

I
} FOURTH RETURN ADDRESS

f-------l ~END OF STACK

0'72' I l3

071' H4

070' I l4

SUBROUTINE CAll lOAD ADDRESSES INTO THIS STACK
SUBROUTINE RTRN FETCH ADDRESSES OUT OF THIS STACK

Fig. 7-3. Scratchpad Stack

Every subroutine must begin by saving PCl contents in K,
then calling CALL. This is illustrated as follows for subroutine
MADD, which is the addition program from Section 7.2.2,
converted into a subroutine:

MADD LR K,P SAVE RETURN ADDRESS
IN K

PI CALL SAVE RETURN ADDRESS
IN STACK

ONE LIS CNT USE SCRATCHPAD
REGISTER 0

TWO LR OA AS A COUNTER

Since the call to CALL is preceded by PC 1 contents being
saved in K, PCl is now free to hold the return address for
CALL. Subroutine CALL has the following instructions:

CALL LR A,8 MOVE THE STACK POINTER
TOISAR

Cl LR ISA
C2 CI 0'67' CHECK FOR STACK

OVERFLOW
C3 BZ SFUL STACK HAS OVERFLOWED.

MAKE ERROR EXIT.
C5 LR A,KU MOVE KU TO STACK
C6 LR DA
C7 LR A,KL MOVE KL TO STACK
C8 LR SA DO NOT DECREMENT ISAR
C9 LR A.IS SAVE ISAR IN SCRATCH-

PAD SYTE:3
C10 LR 8A
Cll DS 8 DECREMENT VALUE SAVED

FOR ISAR
C12 POP RETURN

The address of the next free stack byte is held in scratch pad
byte 8. If this address is 0'67', it means that 0'70' is the

address of the last filled stack byte and the stack is full.
Therefore when CALL is called, the stack address is tested
for overflow by checking ISAR. A value of 0'67' indicates the
stack has overflowed. A value of 0'77' indicates the stack
is empty.

Subroutine CALL logic proceeds as follows:

CALL Move the stack address from scratchpad byte 8 to
ISAR

C1

C2 Test stack address for 0'67'.

C3

C5
to
C8

C9

C10

C11

It is assumed that SFUL is the label of an instruction
which will handle stack full errors in any way re­
quired by program logic. This instruction branches
execution to the instruction labeled SFUL.

Move the contents of the K registers to the next two
free bytes of the stack. The ISAR is only decremented
once. The second decrement can be performed in
the scratchpad, where 0'70' will decrement to 0'67'
which is indicates stack full, rather than to 0'77'
which would erroneously indicate stack empty.

Return the new contents of ISAR to scratchpad
register A.

Decrement ISAR in scratch pad so that 0'70' will
decrement to 0'67' which is full, not to 0'77', which
is empty.

C12 Return from subroutine CALL.

A subroutine that uses CALL to save its return address on
the stack will use another subroutine, named RTRN, to re­
turn to the calling program. For example, subroutine MADD
will now end with:

lWT2 PI RTRN

Since RTRN resets PCO, PI may be replaced with:

lWT2 JMP RTRN

Subroutine RTRN takes the address most recently stored in
the stack and moves this address to PCO, effecting the desired
return, as follows:

RTRN LR A8 MOVE THE STACK POINTER
TO ISAR

R1 LR IS,A
LR AI INCREMENT ADDRESS TO

LAST FILLED STACK BYTE
R2 LR AI MOVE THE ADDRESS
R3 LR QL,A IDENTIFIED BY ISAR TO Q
R4 LR AS
R5 LR QU,A
R6 LR AIS RESTORE ISAR
R7 LR 8,A
R8 LR PO,Q MOVE Q TO PCO

Subroutine RTRN executes as follows:

7-11

RTRN
R1

R2
to
R5

R6
R7

R8

Move the stack pointer address from scratchpad
register 8 to ISAR. Increment ISAR to move ad­
dress from the first free stack byte to the last
occupied stack byte.

Move the address identified by ISAR to QL and QU.
Increment ISAR to point to the prior address. Leave
ISAR addressing what is now the first free byte.

Save the new value of ISAR in scratchpad register 8.

The subroutine that called RTRN now wishes to
return to the address which RTRN has moved to
the Q registers. RTRN can simply move this ad­
dress from Q to PCO in order to effect the desired
return.

For large stacks, RAM memory may be used for the memory
stack. Only minor logic modifications are required to CALL
and RTRN if the stack is in RAM. Assuming that the stack
pointer is maintained in scratch pad registers 8 (high) and
7 (low), subroutine CALR and RTRR perform the same func­
tions as CALL and RTRN but, for a RAM stack, that may be
more than 256 bytes long.

As for the scratch pad stack, the RAM stack begins at a high
RAM address, and the stack address is decremented as the
stack gets filled. The end of the RAM stack is identified by a
low address, represented using the symbols SPHI and SPLO
for the high and low order bytes of the address.

The stack pointer address identifies the last filled stack byte.

*VERSION OF SUBROUTINE CALL FOR RAM STACKS, WITH
*THE STACK POINTER IN SCRATCHPAD REGISTERS 8AND 7.
CALR LR A,7 LOAD LOW ORDER BYTE OF

LR
CI

LR

LR
BNE

CI

BEQ

11,A
SPLO

A8

10,A
CA8

SPHI

CA20

STACK ADDRESS
MOVE TO HL
COMPARE WITH END-OF-
STACK L.O. BYTE
LOAD HIGH ORDER BYTE OF
STACK ADDRESS
STORE IN HU
IF LOW ORDER BYTE DOES
NOT EQUAL STACK END,
CONTINUE
COMPARE HIGH ORDER
BYTES
IF EQUAL, STACK HAS
OVERFLOWED

CA8 LR DC,H MOVE H TO DC
*SUBTRACT 2 FROM THE STACK ADDRESS, SINCE IT INCRE­
*MENTS WHEN MEMORY IS ACCESSED. BY SUBTRACTING
*2, DCO ADDRESSES THE SECOND FREE STACK BYTE.

LI H'FE'
ADC
LR
ST

AKU MOVE KU TO STACK

LR A,KL MOVE KL TO STACK
ST

*SUBTRACT 2 FROM STACK ADDRESS, SINCE IT HAS INCRE­
*MENTED TO BEGINNING OF PREVIOUS ADDRESS.

LI H'FE'
ADC
LR
LR

H,DC
A 11

RESTORE STACK POINTER

CA20

LR
LR
LR
POP
JMP

7.A
A10
8.A

SFUL
RETURN
STACK FULL ERROR

The logic of CALR differs from ihe iogic of CALL oniy in the
way stack overflow is handled. Rather than leaving the stack
pointer addressing the next free byte of the stack, the stack
pointer addresses the last used byte of the stack. Stack over­
flow is tested for by comparing the contents of the stack
pointer with an address that has been specified as the end
of the stack. This end of stack address can be equated to any
value that is convenient to program logic.

Notice that whenever memory is accessed via the DC reg­
isters the address in the DC registers is automatically incre­
mented. The stack in RAM has arbitrarily been selected to
begin at a high address and end at a low address, which is
the opposite direction as seen by the DC registers. Since
the DC registers address the last filled byte of the stack, two
must be subtracted from this address so that two bytes of
address data may be loaded into the stack without overloading
the last filled byte. Also, after the two bytes of address have
been loaded into the stack, two must again be subtracted
from the address in the DC registers so that the address once
again identifies the last filled byte of the stack.

Although the sense of direction of the stack is inverted with
regard to the DC registers when CALR is executed, stack
direction will agree with the DC registers when RTRR is exe­
cuted. Since stack access involves a forward and then a
reverse direction, it makes no difference what is chosen to
be forward and what reverse; either CALR or RTRR must
access the stack by decrementing addresses. This is contrary
to the sense of the DC registers which only increment addresses.

*VERSION OF SUBROUTINE RTRN FOR RAM STACKS, WITH
*THE STACK POINTER IN SCRATCH PAD REGISTERS 8 AND 7.
RTRR LR A8 MOVE THE STACK POINTER

TO H
LR 10.A
LR A7
LR 11.A
LR DC,H MOVE THE STACK POINTER

TO DC
LM LOAD HIGH ORDER BYTE
LR QU.A OF RETURN ADDRESS

INTO QU

LM LOAD LOW ORDER BYTE
LR OLA OF RETURN ADDRESS

INTO OL
LR H,DC SAVE STACK POINTER IN
LR A10 SCRATCHPAD BYTES 8

AND 7
LR S,A
LR A,11
LR 7.A
LR PO,Q MOVE Q TO PCO

In F8 systems that have a 3852 and/or 3853 Memory Inter­
face device, if DC1 is not used to address data buffers, it can
be used effectively as a RAM stack pointer.

/- I L

7.3.5 Multiple Subroutine Returns
Observe that the 16-bit addition subroutine in Section 7.1.4
requires two returns, one for an overflow in the answer, the
other for a valid execution.

Frequent!y subrout:nes may execute with more than one
possible outcome. The most efficient way of handling such
logic is to build multiple returns into the calling program and
into the called subroutine. Here are some examples. First.
an error return:

PI SUB1
BR ERR

Next, mu!tiple valid returns:

PI SUB2
BR PLUS
BR ZERO

CALL SUBROUTINE SUB 1
ERROR RETURN FROM SUB 1
NON-ERROR RETURN FROM
SUB1

RESULT IS POSITIVE
RESULT IS ZERO
RESULT IS NEGATIVE

Subroutines RTRN and RTRR can easily be rewritten to handle
multiple returns. Instructions will be added that return, to
PCO, the last address entered into the stack, plus any dis­
placement that is in QL (scratchpad register 15) when the
subroutine is called. RTRN will now appear as follows, renamed
RTRD:

RTRD

R6
R7

Taking

LR

LR
LR

LR

AS
LR
LR

LNK

LR
LR
LR
LR

advantage
will become:

AD16 LR

Pi

LR

AS

LR
LR

A,8

IS.A
AI

AQL

I
QL.A
AS

QU.A
AIS
8A
PO,Q

of RTRD,

K,P

CALL

AO

2

2.A
A,1

MOVE STACK POINTER TO
ISAR

INCREMENT ADDRESS TO
LAST FILLED BYTE
LOAD LOW ORDER
ADDRESS BYTE
ADD DISPLACEMENT IN QL
STORE RESULT IN QL
LOAD HIGH ORDER
ADDRESS BYTE
ADD ANY CARRY FROM LO
BYTE ADDITION
STORE RESULT IN QU
RESTORE ISAR

MOVE Q TO PCO

the i 6-bit addition subroutine

SAVE RETURN ADDRESS
IN K
SAVE RETURN ADDRESS
IN SCRATCHPAD STACK
LOAD LOW ORDER
AUGEND BYTE
ADD ADDEND LOW ORDER
BYTE
SAVE THE RESULT
LOAD HIGH ORDER

AUGEND BYTE
LNK ADD ANY CARRY FROM

LOW ORDER BYTE ADD
BNO EIGHT IF THERE IS A CARRY OR

AN OVERFLOW, RETURN
WITHOUT DISPLACEMENT

BR ERR
EIGHT AS 3 ADD THE HIGH ORDER

ADDEND BYTE
LR 3,A SAVE THE RESULT
LIS 2 FOR A GOOD RETURN, ADD

2 TO RETURN ADDRESS
BNO OK AGAIN IF THERE IS A

CARRY OR OVERFLOW
ERR CLR FOR AN ERROR RETURN,

ADD 0 TO RETURN
ADDRESS

OK LR QL,A SAVE THE DISPLACEMENT
IN QL

PI RTRD

Now AD16 will be called as follows:

PI AD16
BR ERROR ERROR RETURN

GOOD RETURN

7.3.6 Passing Parameters
Subroutine MADD, as described so far, is of limited value,
since the starting addresses of buffers BUFA, BUFB and
BUFC are fixed. MADD will only add the contents of two
fixed buffers and store the result in a third, fixed buffer. The
subroutine would be far more useful if buffer locations and
lengths could be specified at the time the subroutine is called.
This can be done and is called parameter passing.

The parameters to be passed to a subroutine are listed, in
the calling program, after the subroutine call. For example,
the call to MADD would appear as follows:

VA LA EQU
VALB EQU
VALC EQU
COUNT EQU

H'2080'
H'2088'
H'2800'
H'08'

*CALL TO MADD IN MAIN PROGRAM
PI MADD CALL SUBROUTINE MADD
DC VALA VALA IS A TWO BYTE

AUGEND BASE ADDRESS
DC VALB VALB IS A TWO BYTE

ADDEND BASE ADDRESS
DC VALC VALC IS A TWO BYTE

ANSWER BASE ADDRESS
DC COUNT COUNT IS A ONE BYTE

BUFFER LENGTH
BR ERROR RETURN HERE IF THERE IS

AN ERROR
RETURN HERE FOR
SUCCESSFUL EXECUTION

7-13

Once MADD is entered, the return address in PC1 is in
fact, the address where the augend buffer starting address
will be found. Before entering into the body of the subroutine,
MADD will load parameters into H, Q and DC1. This is
illustrated below for subroutine MADD with parameters,
renamed MADP.

MADP LR K,P SAVE THE RETURN ADDRESS
IN P

PI CALL SAVE THE RETURN ADDRESS
IN THE STACK

LR A,KU MOVE THE RETURN
ADDRESS FROM K

LR 10,A TO DCO. DCO WILL NOW
ADDRESS THE FIRST OF THE

LR A,KL TWO BYTES IN WHICH VALA
IS STORED, FOLLOW!NG

LR 11,A THIS CALL TO MADP
LR DC,H LOAD PARAMETER

ADDRESS INTO DCO
LM LOAD VALA INTO H
LR 10,A
LM
LR 11,A
XDC MOVE VALA FROM H TO

DC1 BY
LR DC,H EXCHANGING DCO WITH DC1
XDC MOVING VALA TO Dcd,

THEN
LM AGAIN EXCHANGING DCO

AND DC1
LR 10,A NEXT LOAD VALB INTO H
LM
LR 11,A
LM LOAD VALC INTO Q
LR QU,A
LM
LR Ql,A
LM LOAD COUNT iNTO

SCRATCHPAD BYTE 0
LR O,A
LR DC,H MOVE VALB TO DCO

*THE MULTIBYTE ADD MAY NOW BEGIN
COM INITIALLY CLEAR THE CARRY

BIT
LR J,W

LOOP LM LOAD THE NEXT AUGEND

• BYTE
LR W,J
LNK ADD ANY PREVIOUS CARRY
LR J,W SAVE STATUS IN J
XDC ADDRESS ADDEND BUFFER
AM ADD CORRESPONDING

ADDEND BYTE
XDC READDRESS AUGEND

BUFFER
LR H,DC SAVE AUGEND ADDRESS

IN H
LR DC,Q LOAD ANSWER BUFFER

ADDRESS
ST STORE THE ANSWER
LR Q,DC SAVE THE ANSWER BUFFER

ADDRESS IN Q
LR DC,H MOVE AUGEND ADDRESS

BACK FROM H
BNC TWT1 NO CARRY FOR NEXT BYTE
LR J,W

1WT1 DS DECREMENT COUNTER
BNZ lOOP RETURN FOR MORE
lR W,J
LIS 9 LOAD A FOR A GOOD

RETURN
BNC OUT TEST FOR A FINAL CARRY
US 7 THERE is A CARRY,

PREPARE FOR ERROR
OUT lR Ql,A SAVE THE DISPLACEMENT

IN QL
PI RTRD RETURN FROM SUBROUTINE

Parameter passing works as follows:

A subroutine that expects to receive parameters will initiate
execution with the return address pointing to the first byte
of the parameter list, and not to the instruction which must
be executed once program control returns to the calling pro­
gram. In other words, after subroutine CALL has executed,
the address saved on the stack is the address of the first
parameter, not the address of the next instruction to be exe­
cuted in the calling program. Initial subroutine iogic must
therefore move the address of the first parameter to the
DCO registers, and must then appropriately load parameters
into registers where they will be needed for execution of
the subroutine. This process is straightforward data movement
and requires no special explanation.

Observe that when subroutine RTRD is called to effect a
return to the calling program (in this case the main program
which called MADP) the return address, as stored in the
stack, is still the address of the first parameter byte. There­
fore, before RTRD is called, the value loaded into the accu­
mulator is not zero or a displacement representing multiple
returns. It is the number of bytes of parameters, or the num­
ber of bytes of parameters plus the displacement of the multi­
ple returns. For example, subroutine MADP requires seven
bytes of parameter information to follow the call to MADP.
Therefore, an error return from MADP requires the value 7
to be loaded into the accumulator before RTRD is called; a
value of 9 must be loaded into the accumulator before RTRD
if there is no error.

7.4 MACROS
Observe in Figure 7-2(A) that an instruction sequence may
reappear in a program each time it is reused. Such an instruc­
tion sequence may be identified as a macro.

Refer to Figure 7-2. If the instruction sequence represented
by "s" is a subroutine (we will assume that it is named
SUB1), then wherever the logic of SUB1 is required, a PI
or PK instruction in the main program will cause execution
to branch to one set of code, as illustrated in Figure 7-2(BI
and described in Section 7.3. If,. on the other hand, the
logic of SUB 1 is to be treated as a macro, then the name
SUB1 will appear in the mnemonic field of the source pro­
gram as though SUB 1 were the mnemonic for ali instruction.
In the object program, the assembler will actually insert
the sequence of instructions represented by SUB 1 wherever
SUBl appears in the source program, as illustrated in Figure
7-2(A).

7.4.1 Defining and Using Macros
Beginning with a very simple example, suppose the instruc­
tion sequence which creates the correct carry status in multi­
byte addition routines is to be identified as a macro named

CBIT, rather than as a subroutine named CBIT. The macro is
defined in the source program by enclosing the instructions
of the macro between assembler directives MACRO and
MEND, as follows:

MACRO
CSIT
lR A,9

NI H'02'
LR J,W

AS 9
LR 9,A
LR W,J
MEND

MOVE STATUS FROM LNK
ADDITION TO A
MASK OUT All BUT C BIT
MOVE STATUS FROM BYTE
ADD TO W
ADD STATUSES
RETURN STATUS TO J VIA W

In theory, a macro definition, as illustrated above, could ap­
pear anywhere in a source program; the assembler simply
takes everything between the MACRO and MEND directives
and holds it to one side, inserting the instructions whenever
it sees the macro name appear in the mnemonic field of an
instruction. In practice, it is good programming to collect
macro definitions either at the very beginning or at the very
end of a source program.

As an example of how a macro works, subroutine MADD
could specify CBIT as a macro, rather than as a subroutine,
as follows:

(Body of subroutine MADD)

EGTN LR DC,H MOVE AUGEND ADDRESS
BACK TO H

LR K,P SAVE PCl IN K
NNTN CBIT INSERT INSTRUCTIONS

FROM CBIT MACRO HERE
1WTl DS 0 DECREMENT COUNTER

BNZ LOOP RETURN FOR MORE
1WT2 PK RETURN FROM SUBROUTINE

FOR END

When the assembler assembles the above instruction se­
quence, instruction NNTN will be replaced directly by the six
instructions listed between MACRO CBIT and MEND. For
this reason, the programmer may look upon a macro simply
as a short-hand method of writing source programs (i.e., a
method of taking the tedium out of re-writing the same
instruction seauence again and againl.

7.4.2 Macros with Parameters
A simple macro, as illustrated for CBIT in Section 7.4.1, is
of limited value; it makes an object program longer, but it
makes vvr!t!ng the sot.!!"ce program eas!er. The p:-cgrlJm
executes faster since the PI and POP instructions are not
executed.

Macros with parameters are more useful. Refer to subroutine
MADP, in Section 7.3.6. In order to make the multibyte
addition program MADD useful, it was modified so that the
call to subroutine MADD could be followed by seven bytes

I

of parameter data, including three 2-byte addresses and
a single byte buffer length counter. Instructions at the be­
ginning of subroutine MADP transfer these parameters to
the H, a and DCl registers before performing the multibyte
addition, thus allowing subroutine MADP to perform muiti­
byte additions on the contents of buffers that can have any
length and can be anywhere in memory.

The multibyte addition may also be specified as a macro,
where the macro name is followed by a number of para­
meters. In this case, the parameters would again be three
addresses and a byte count. Now when the assembler sub­
stitutes the instruction sequence of the multibyte add for the
macro name appearing in an instruction mnemonic, it changes
instructions within the sequence according to parameter
specifications.

When a macro is defined, macro parameters are listed after
the macro name with an ampersand as the first character
of each parameter and one space separating parameters.
This is illustrated for macro MADP below:

ONE

TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT

LOOP

NINE
TEN
ELEV
TWEL

THRT

FRTN

FFTN

SXTN
EGTN

TWTY

TWTl

MACRO
MADP
LI

LR
DCI
LR
DCI
XDC
DCI
COM

LR
LM

LR

LNK
LR
XDC
AM

XDC

LR

LR

ST
LR

BNC
LR

DS
BNZ
MEND

&VALA &VALB &VALC &CNT
&CNT

a,A
&VALC
a,DC
&VALA

&VALB

J,W

W,J

J,W

H,DC

DC, a

DC,H

TWTl
J,W

a
LOOP

USE SCRATCHPAD
REGISTER a
AS A COUNTER
SAVE THE ANSWER BUFFER
STARTING ADDRESS IN a
SAVE THE SOURCE BUFFER
ADDRESSES IN Dca AND DCl

INITIALLY CLEAR THE
CARRY BIT

LOAD THE NEXT AUGEND
BYTE
CARRY FROM PRIOR ADD
TO STATUS
ADD ANY PREVIOUS CARRY
SAVE STATUS IN J
ADDRESS ADDEND BUFFER
ADD CORRESPONDING
ADDEND BYTE
READDRESS AUGEND
BUFFER
SAVE AUGEND ADDRESS
IN H
LOAD ANSWER BUFFER
ADDRESS
STORE THE ANSWER
MOVE AUGEND ADDRESS
BACK TO H
NO CARRY FOR NEXT BYTE
SAVE CARRY FROM AM
INSTRUCTION
DECREMENT COUNTER
RETURN FOR MORE

Any program can tell the assembler to insert the instruction
sequence specified by macro MADP, changing the symbols
&CNT, &VALA, &VALB and &VALC to any four symbols speci­
fied in the operand field of the instruction that references
macro MADP. For example, in order to reproduce the multi­
byte addition instruction sequence as illustrated in Section
7.2.2, the following instruction would have to appear:

MADP BUFA BUFB BUFC CNT

7-15

When the assembler encounters the above instruction, it will
substitute all ofthe instructions listed between MACRO MADD
and MEND; however wherever it finds &CNT it will replace
it with CNT, wherever it finds &VALA, &VALB or &VALC it
will substitute BUFA, BUFB or BUFC, respectively.

7.4.3 Rules for Defining and Using Macros

The following few rules apply to the use and definition of
macros:

1) No macro can be referenced in a program unless it
has been defined as a macro, using the MACRO and
MEND assembler directives.

2) When a macro is defined, it can reference another
macro so long as the other macro is defined separately
elsewhere.

3) If a macro is defined with parameters, then every
time the macro is specified within the body of a pro­
gram, the specification must have a valid symbol in
the operand field, corresponding to every parameter
in the macro definition.

7.4.4 When Macros Should be Used
There are two circumstances when macros are more ef­
ficient as a programming tool than subroutines.

Short instruction sequences that are frequently used within
a program are often better represented as macros, if sub­
routine addresses are being maintained in a stack. It takes
a certain amount of time to store a return address in a
stack, then at the end of a subroutine to retrieve the ad­
dress from the stack. If the body of the subroutine is quite
short, the time taken to maintain the stack may become
excessive. Under such circumstances it is better to repro­
duce the instruction sequence as a macro wherever it is
needed within a program.

Subroutines which require a large number of parameters
to be passed from the main subroutine are frequently bet­
ter represented as macros; a considerable number of in­
structions may be needed to move the parameters from
the parameter list that follows the subroutine call, to the
registers or memory locations out of which the subroutine
will access the parameters. Consider subroutine MADP;
if this subroutine is called only two or three times it is
probably more efficient to represent it as a macro rather
than as a subroutine.

Macros always result in faster program execution than
subroutines. Macros may result in longer programs than
subroutines. Therefore, in an application where speed is
important, macros should be used in preference to subroutines.

7.5 JUMP TABLES
A jump table is a programming device which is particularly
useful in microprocessor applications. A jump table allows
an index number to be loaded into the accumulator after
which program execution jumps to a memory location which
is dedicated to that index number.

Jump tables are commonly used in switching applications,
where data may be received from, or control signals may have
to be sent to, one of many external devices.

7.5.1 Jump Table Using Jump Instructions
The F8 instruction set is well-suited to execution of jump
tables. As illustrated, one jump table may serve an entire
application of diverse operations. The jump table consists
of nothing more than a large number of jump instructions.
To execute the jUIT'P table, a pmgraIT' SiIT'ply loads an !D.
number into the accumulator, then jumps to the table logic.
The table logic adds the contents of the accumulator, three
times, to the address of the first jump instruction, which is
stored in the DCO registers. The sum is moved (via the a
registers) to the program counter and the jump is effected.

"JUMP TABLE PROGRAM. JUMP NUMBER IS ASSUMED TO
"BE IN THE ACCUMULATOR.
JUMP DCI JMPO LOAD THE FIRST JUMP

ADC

ADC
ADC

LR
LR

JMPO JMP
JMP
JMP
JMP
JMP
etc.

O,DC
PO,O
AO
A1
A2
A3
A4

ADDRESS INTO DCO
ADD THREE TIMES THE
BRANCH
INDEX TO DCO, FOR THE
THREE BYTES OF A JMP
INSTRUCTION
MOVE DCO TO PCO
JUMP OCCURS HERE

7.5.2 Jump Table Using Address Constants
Another jump table technique uses a table of addresses
which are indexed as in the previous example. However,
instead of a JUMP (LR PO,O) to the jump table, the address
is loaded from memory into Q. The LR PO,Q instruction then
causes a direct jump to the address in Q. The major advan­
tage of this technique is that the table is only two bytes per
entry, as compared to three bytes in the previous example.
It also executes using fewer instruction cycles.

"THE JUMP NUMBER IS ASSUMED TO BE IN THE
"ACCUMULATOR
JUMP DCI

ADC
ADC

LM

LR
LM

LR
LR

JMPO DC
DC
DC
DC
DC
etc.

JMPO

QH,A

QL,A
PO,Q

AO
A1
A2
A3
A4

LOAD THE FIRST JUMP
ADDRESS INTO DCO
ADD TWICE THE JUMP
NUMBER. DCO NOW AD­
DRESSES A JUMP ADDRESS
LOAD FIRST BYTE OF JUMP
ADDRESS
STORE IN QH
LOAD SECOND BYTE OF
JUMP ADDRESS
STORE IN QL
BY iviOViNG Q TO PO, rOReE
JUMP

I-Hi

7.5.3 Jump Table Using Displacement Tables
Under some circumstances the addresses of the jump table
may all be within 256 bytes of each other. When this situa­
tion exists, only a displacement need be created in the table.
This displacement, when added to some base address, will
produce the address requ~red for the Jump. Nct~ce that :n the
following example, entry FOUR and FIVE go to the same lo­
cation. This is a variation that is quite useful. Perhaps the
values 4 and 5 are invalid and an error routine needs to be
called. The jump table will satisfy this condition in a most
efficient manner without a separate compare instruction for
each invalid value. Also notice that the entry points need
not be in any particular sequence; however, in this example
A 1 must be the first entry point encountered, and it must
have the lowest address in order for the arithmetic to be valid.

This displacement table is most efficient since the table values
are only one byte each. If an entry is beyond the 256 range
it is possible to treat it as a special case within the table.
Notice that A6 is more than 256 bytes beyond the start of
A 1 and is too large to insert before A4. To include it insert
a JMP A6 prior to the coding at A4. If this instruction is
labeled A66, an entry in the table would be:

SIXS DC (A66-A 1-1 28) 82

The value of THRE would now become 85.

"THE JUMP NUMBER IS ASSUMED TO BE IN THE
"ACCUMULATOR
JUMP DCI ZERO LOAD FIRST TABLE

LOCATION INTO DCO
ADC ADD VALUE FROM

ACCUMULATOR
LM LOAD TABLE VALUE

TO ACCUMULATOR
DCI (A1+128) LOAD FIRST ORIGIN
ADC ADD DISPLACEMENT

VALUE ADDED TO DC
LR Q,DC RECALL DC TO Q
LR PO,Q JUMP TO ROUTINE

ZERO DC (Al-Al-128) VALUE = -128
ONE DC (A2-A 1-128) VALUE = - 78
TWO DC (A5-A 1 -128) VALUE = 22
THRE DC (A4-A 1 -128) VALUE = 82
FOUR DC (ERR-A 1-128) VALUE = - 53
F!VE DC (ERR-A 1-128) VALUE = - 53
SIX DC (A3-A 1-128) VALUE = - 28
SVEN DC (A6-A 1 -1 28) VALUE = 207

TOO LARGE!

Values are displaced by -128 to take into account the fact
that the DCI instruction points to the middle of the table
(A 1 + 128). Therefore, addresses are created as shown on the
following page.

ARBITRARY DECIMAL ~
ADDRESSES:

-- 2100 A1 STARTS HERE

2150 A2 STARTS HERE
w
t:l :i 2175 ERR STARTS HERE
a:

~ 2200 A3 STARTS HERE

III

2356

2250 f--------i A5 STARTS HERE

2310 f---------1 A4 STARTS HERE

2435 f---------1 A6 STARTS HERE}

OUT OF RANGE

2585 f---------1 A6 ENDS HERE

7.6 STATUS, BITS AND BOOLEAN LOGIC
The F8 instruction set is rich in boolean logic instructions
which are very useful in applications manipulating bits and
control lines.

Examples given in the following subsections demonstrate
some elementary uses of boolean logic instructions, along
with some less obvious but commonly needed routines.

7.6.1 Manipulating Individual Bits
Immediate boolean instructions specify data in the operand
of the instruction; they may be used to set or reset individual
bits within the accumulator.

To reset one or more bits within the accumulator, AND the
accumulator contents with a mask which is the complement
of the bits to be reset. For example, the following instructions
will reset bit 3 of scratchpad byte 1:

LR

NI
LR

A,1

H'FT
1,A

LOAD SCRATCHPAD BYTE
1 INTO A
MASK OUT BIT 3
RETURN TO SCRATCHPAD
BYTE 1

Similarly, individual bits can be set by ORing the accumu­
lator with a mask which has a 1 in every bit position that
is to be set. For example, bit 3 of scratchpad byte 1 contents
can be set to 1 as follows:

LR

01
LR

A,1

H'04'
1,A

LOAD SCRATCHPAD BYTE
1 INTO A .

SET BIT 3
RETURN TO SCRATCH PAD
BYTE 1

Masks may also be accessed out of RAM or scratch pad
memory. The following instruction sequence takes every
byte from a buffer CNT bytes long, starting at BUFA; it sets
to 0 the bits specified by a mask stored in a memory byte
addressed by MASK. BUFA, CNT and MASK are symbols
which have been given arbitrary values below.

BUFA
MASK
CNT

EQU
EQU
EQU

H'2380'
H'08FF'
50

7-17

DCI MASK STORE THE MASK ADDRESS
IN H

LR H,DC
DCI BUFA STORE THE BUFFER

STARTING ADDRESS IN Q
LR Q,DC
LI CNT USE SCRATCHPAD BYTE

OASA
LR O,A COUNTER

LOOP LM LOAD NEXT BYTE
L 1 LR DC,H LOAD MASK ADDRESS
L2 NM AND ACCUMULATOR WITH

MASK
L3 LR DC,Q RELOAD BYTE ADDRESS
L4 ST STORE MASKED BYTE IN

ORIGINAL BYTE POSITION
L5 LR Q,DC SAVE INCREMENTED

BUFFER ADDRESS IN Q
L6 DS 0 DECREMENT COUNTER
L7 BNZ LOOP RETURN FOR MORE

In addition to demonstrating use of the NM instruction, the
above example shows how to process data in a single buffer,
restoring a modified byte to its original byte position.

The program proceeds as follows:

The instructions preceding LOOP load the mask address into
H and the beginning buffer address into Q. The buffer length
is loaded into scratchpad byte A which is osed as a counter.

LOOP The data counter holds the initial buffer address
when this instruction is first executed and the next
byte address on all subsequent executions of this
instruction. This instruction therefore loads the
next byte from BUFA.

L 1 Load the mask address from the H registers into
the data counter, wiping out the incremented buffer
address that resulted from instruction LOOP.

L2 AND the contents of the accumulator with the
mask byte. The fact that the AND with memory
instruction will increment the address in the data
counters is not consequential since this incremented
address is not saved. On the next execution of
this instruction, the original mask address stored
in the H registers will be reused.

L3 Reload the buffer address from the Q registers.
This is the same address that was used by instruction
LOOP.

L4 Store the contents of the accumulator back in the
buffer. Since the address loaded by L3 is the same
address as was used by instruction LOOP, the
masked byte will be stored back in the same memory
location from which it was loaded.

L5 This time save the incremented address in the
data counters back in the Q registers.

L6 Decrement the counter in scratch pad byte O. If
L7 the result is zero, end. If the result is not zero

process the next byte of the buffer.

By using the NM instruction, the above example is resetting
(to 0) selected bits from every byte in BUFA. By merely re-
placing the NM instruction with an OM instruction, selected
bits from every byte of BUFA could be set to 1.

By storing the mask byte in a scratchpad register, the pro-
gram can be greatly simplifip.n Thl;! illstruct!(I!"' seque'"!ce
below is similar to the previous example, but the mask byte
is stored in scratchpad register 1, and the DCl registerS are
used to hold the buffer address, rather than the Q registers.

Notice that at the LM instruction (LOOP), DCO is incremented;
prior to the ST instruction, DCO and DC1 are exchanged.
The ST instruction then increments DCO, thus both addresses
remain synchronized.

MASK EQU B'any binary value'
BUFA
CNT

ONE
TWO

LOOP
THREE

EQU
EQU

LI
LR
DCI
XDC

DCI
LI
LR
LM
NS

XDC
ST

OS
BNZ

H'2380'
50

MASK
l.A
BUFA

BUFA
CNT
O.A

o
LOOP

STORE BUFFER ADDRESS
IN DCO AND IN DCl
REGISTERS

USE SCRATCHPAD BYTE 0
AS A COUNTER
LOAD NEXT BYTE
AND WITH MASK IN
SCRATCH PAD BYTE 1

STORE IN ORIGINAL
LOCATION
DECREMENT COUNTER
RETURN FOR MORE

Again this routine can be simplified even further by deleting
instructions ONE and TWO and changing instruction THREE
to one of the following:

NI
01
XI

MASK
MASK
MASK

AND WITH MASK
OR WITH MASK
EXCLUSIVE OR WITH MASK

This change would result in saving two bytes. however the
loop time would be increased by 1.5 cycles.

7.6.2 Testing for Status
The EXCLUSIVE-OR instruction is very useful as a means of
detecting changed statuses. There are many applications in
which it will be necessary to keep a record of status for various
control lines, and to detect when individual control line sta­
tuses change and how they change. As illustrated in the
instruction sequence below, eight control iines have their
statuses maintained in scratchpad byte 3. When new sta­
tuses are input from I/O port 0, they are temporarily saved
in scratch pad byte 4. By EXCLUSIVE-ORing the new and old
statuses, the accumulator identifies those status bits which
have changed. By ANDing the changed status indicators
with the old status, those indicators which went from "on"
to "off" are identified. By EXCLUSIVE-ORing this result with
the changed status indicators, those statuses which went
from "off" to "on" are identified.

IN 0 INPUT NEW STATUS
S2 LR 4.A SAVE IN SCRATCHPAD

BYTE 4
S3 XS 3 EXCLUSIVE-OR ACCUMU-

LATOR WITH OLD STATUS
S4 LR 5.A SAVE "CHANGED

STATUSES" INDICATORS
IN 5

S5 NS 3 AND WITH OLD STATUSES
S6 LR 6.A SAVE "STATUSES TURNED

OFF" IN 6
S7 XS 5 EXCLUSIVE-OR WITH

"CHANGED STATUSES"
S8 LR 7.A SAVE "STATUSES TURNED

ON" IN 7
S9 LR A,4 NEW STATUS FROM SAVE
S10 LR 3.A OLD STATUS FROM NEXT

USAGE.

Suppose the old status was:

7 6 5 432 1 0
Old Status = 1 0 1 1 1 0 0 0

Suppose the new status is:

7 6 543 2 1 0
New Status = 1 1 0 1 0 1 1 0

Bits 6, 2 and 1 have turned on.
Bits 5 and 3 have turned off.
Bits 6, 5, 3, 2 and 1 have changed.

Here is the result of instruction S3:

Old Status
New Status
Changed Statuses

7 6 543 2 1 0
101 1 100 0
11010110
01101110

Here is the result of instruction S5:

Changed Status
Old Status
Turned Off

7 6 543 2 1 0
01101110
10111000
00101 000

Here is the result of instruction S7:

Turned Off
Changed Statuses
Turned On

7 6 543 2 1 0
0010100 0
01101110
o 1 00 0 1 1 0

Bit No.

Bit No.

Bit No.

Bit No.

Bit No.

7.7 POWERING UP AND STARTING PROGRAM
EXECUTION

Whp.n power is turned on, an peo reg!sters !n an F8 micro
processor system are set to O. Therefore the first instruction
executed is located at memory byte O.

Every F8 microprocessor system must, therefore, have a
memory device (either a 3851 PSU, 3852 OMlor 3853 SMI).
The first program to be executed must be originated at H'OO',
as illustrated on the following page.

I
I

I

ORG
START

H'oo'
FIRST INSTRUCTION
EXECUTED

The power on detect circuit for an F8 system is located in the
CPU. This circuit insures that all critical control circuits and
registers are in a valid operating condition when power is
first applied. It performs the following functions:

• Pushes previous contents of the program counter to
the stack register

• Resets the program counter to address "0000"

7-19

• Resets the Interrupt Control Bit (lCB)
• Sets control block on the 3852 MI circuit

When power is connected to the circuit or the reset line goes
low, the CPU clears the program counter (PCO), pushing its
previous contents into the stack register (PC1). Therefore,
the instruction in location zero is executed first. The inter­
rupt control bit is also cleared at this time. The rest of the
F8 system is initialized under program control. The local in­
terrupt block of the individual memory devices must be loaded
before allowing any interrupts to occur. Output latches must
be reset to zero before they may be used to input data .

INPUT/OUTPUT PROGRAMMING

Input/output programming covers program steps that cause
data to be transferred between the F8 microprocessor system
and the world beyond the microprocessor system.

There are three separate and distinct types of input/output
(I/O) programming: Programmed I/O, Interrupt I/O and Direct
Memory Access (DMA).

Programmed I/O is characterized by the 3850 CPU executing
an instruction to initiate and control the I/O transfer of a single
byte of data, via an I/O port. The key feature of programmed
I/O is that it is initiated by the CPU, on a byte-by-byte basis.

Interrupt I/O is characterized by an external device issuing
an interrupt to the 3850 CPU; (this concept is discussed in
Section 2.2.2). The interrupt does not itself cause any input
or output data transfer to occur; rather it initiates execution
of a program which performs any required programmed I/O

DMA has been described conceptually in Sections 2.2.4,
2.6.3 and 2.8. DMA transfers data between a memory device
within the microprocessor system and any device external to
the microprocessor system, in parallel with other micropro­
cessor operations. DMA is initiated using programmed I/O
and, optionally, may terminate with an interrupt.

The use of software clocks is also covered in this chapter.
Even though software clocks have nothing to do with trans­
fer of data between the microprocessor system and the out­
side world, they do allow events within the microprocessor
system to be synchronized with real time.

8.1 PROGRAMMED 1/0

A programmed input or output operation moves a byte of
data from the 3850 CPU accumulator either to an I/O port
(OUT), or from an I/O port to the accumulator (IN).

Four instructions enable programmed I/O: INS and iN enable
input, while OUTS and OUT enable output. (See Sections
6.16, 6.18, 6.33 and 6.34.)

Note that a number of I/O ports are accessed by I/O instruc­
tions, but transfer no data between the microprocessor system
and the outside world. These I/O ports hold control information
used by interrupt I/O, DMA and real time clocks. Section 6.16
summarizes the I/O port addresses used by the F8, and
indicates how the individual port addresses may be used.

Programmed I/O is a very open ended subject, since it is de­
pendent on how external circuitry accesses the I/O ports. The
following subsections describe some general approaches to
I/O programming as seen by the CPU. Actual applications will
usually require modified versions of the given programming
techniques.

8.1.1 Polling on Status

A key feature of programmed I/O is that the microprocessor
system and external devices operate at different speeds; the
external device must transfer data at a rate which is slower
than the I/O program's execution speed.

The simplest way of handling programmed I/O, when external
devices run slower than the microprocessor, is to have the ex­
ternal device input a "status byte" to the I/O port when it is

8-1

ready to transmit or receive data. The 3850 CPU continuously
inputs a byte of data from the port until the "ready status"
appears. For example, suppose a 1 in the high order bit (bit 7)
of the I/O port signifies a ready status; the following routine
will input a byte of data via port 0:

*ROUTINE TO INPUT A BYTE OF DATA VIA PORT 0, POLLING
*ON STATUS TO SYNCHRONIZE WITH THE EXTERNAL
*DEVICE.
INa LIS a FIRST CLEAR THE PORT

OUTS a
LOOP INS a INPUT STATUS

BP LOOP RETURN IF BIT 7 is a
La INS a BIT 7 IS 1. INPUT A DATA

BYTE
ST STORE IN MEMORY BYTE

ADDRESSED BY DCa
L1 PI TEST BRANCH TO END OF INPUT

TEST
L2 BR LOOP RETURN FROM TEST FOR

MORE INPUT
L3 RETURN FROM TEST FOR

END

Three features of the above routine need to be explained. The
first two instructions clear the output port. This is necessary
because data being input at an I/O port is ORed with what­
ever is already in the port. If, by chance, the high order bit
of the last data byte input was 1, this would be interpreted
as a ready status.

The data which is input to the accumulator by instruction
LOOP will be interpreted as a byte of status. While in this
simple application only the high order bit of the status byte
is being interrogated, in any real application all eight bits of
the status byte could be assigned meaning. In this case,
when bit 7 of the status byte is tested to be 1, a byte of data
is input by instruction La to the accumulator. This routine
assumes that the time delay between execution of instructions
LOOP and La is sufficient for the external device to transmit
a data byte.

This routine assumes that an indeterminate number of char­
acters are expected on input. A subroutine named TEST is
called to determine if more bytes of data are expected. The
operations performed by subroutine TEST are immaterial to
the 1;0 routine. Subroutine TEST must have two returns; to
instruction L2 if another byte of data is to be input, or to in­
struction L3 if data input is complete.

Each byte of data that is input to the accumulator in sub­
routine INa must be stored in some read/write memory loca­
tion. INa assumes that the DCa registers address a RAM byte
into which the data must be stored. This assumes that before
INa is called as a subroutine, the beginning address of a RAM
data buffer is loaded into the DCa registers. Data bytes, as
they are input, will be stored in ascending bytes of the ad­
dressed RAM data buffer. Scratchpad bytes can also be used
to hold data being input.

Subroutine OUTO, described below, is a variation of subroutine
INa. OUTO outputs data from a RAM buffer. The only dif­
ference between subroutines INa and OUTO is that in OUTO,
once a ready status has been detected, the data byte which

is to be output must first be transferred from memory to the
accumulator before being output to port O.

Both subroutines INO and OUTO can address any port that
the INS and OUTS instructions can address. In order to ad­
dress other ports it is only necessary to replace the INS and
OUTS instructions vv;th II\J and OUT instructions.

*ROUTINE TO OUTPUT A BYTE OF DATA VIA PORT 0, POL­
*LlNG ON STATUS TO SYNCHRONIZE WITH THE EXTERNAL
*DEVICE
OUTO LI

OUTS
INS

o FIRST CLEAR THE PORT
o

LOOP1 o
LOOP1

INPUT STATUS

MO
M1

M2

M3

BP
LM

OUTS
PI

BA

1
TEST

LOOP1

RETURN IF BIT 7 is 0
BIT 7 IS 1. READ FROM
MEMORY THE BYTE TO BE
OUTPUT
OUTPUT THE DATA BYTE
BRANCH TO END OF INPUT
TEST
RETURN FROM TEST FOR
MORE INPUT
RETURN FROM TEST FOR
END

8.1.2 Data, Status and Controls

Observe that in Section 8.1.1, a byte input by an external
device may be interpreted as status information or as data.
Similarly, the 3850 CPU may output a byte which is to be
interpreted as control signals or as data.

To illustrate, consider an F8 microprocessor system being
used to read data input from a keyboard, block the data into
256 byte records, then write the records out to a cassette.
Events would proceed as follows:

1) Using a programmed input sequence such as INO,
interpret a byte input from the keyboard as status.
When a ready status is sensed, interpret the next
byte arriving from the keyboard as data.

2) A subroutine such as TEST is called to create a 256
byte record in RAM, in the format needed for output
to the cassette.

3.) When the microprocessor is ready to write a record
to the cassette, it must first turn the cassette drive
motor on, since the cassette drive will be stationary
during the intervals when records are not being written
out. The microprocessor will turn the cassette drive
on by outputting an appropriate control byte whose bit
pattern is determined by the specifications of the
cassette drive controller.

4) The cassette drive will respond to the control byte.
commanding the drive be turned on by transmitting
back a status byte indicating that the command was
successfully executed and the drive is now ready to
receive data.

5) Upon receiving back the ready status from the cassette
drive the microprocessor will output 256 bytes of

data. Depending on the design of the cassette drive,
the cassette drive controller may transmit a status
byte back to the microprocessor after each individual
data byte has been received. This status byte reports
that the previous data byte has been recorded accu­
rately, and the controller is ready to receive and record
the next byte of data.

6) After the microprocessor has completed transmittal of
an entire record of data, it must send a control signal
to the cassette drive commanding the cassette drive
to stop forward movement.

7) When all records have been written to the cassette
drive, the microprocessor will issue a third control com­
mand which causes the cassette drive to mechanically
rewind.

Observe that this simple application receives either data or
status from the keyboard, then outputs either controls or
data to the cassette drive; additional status information may
come back from the cassette drive.

Any external device may transmit two types of information
to the microprocessor system: data or status.

Any external device may receive two types of information
from the microprocessor system: data or controls.

Thus there are four types of information that may be trans­
ferred between the microprocessor system and an external
device. They are:

a) data in
b) status in
c) data out
d) control out

An external device may communicate with the microproces­
sor system using one, two, three or all four of the above types
of information. For example, the keyboard uses "data in" and

"status in" but does not use "data out" or "controls out". The
cassette drive in the illustrated application uses "status in",
"data out" and "controls out" but does not use "data in". Of
course the cassette drive would be capable (at another time)
of using "data in", when the data which was recorded on the
cassette is subsequently read back into the microprocessor
system.

It is .feasible to use one port for all four of the information
transfer types listed above when communicating with any
one external device. For example, ane !/O port cou!d be used
to receive status and data from the keyboard, and could also
be used to receive status or data from the cassette drive and
to output controls or data to the cassette drive. However, if
more than one type of information is to go through one 1/0
port, exte!'"na~ ~og!C must have the means of mu!t:p!c;dng :n-
formation in or out. A scheme that uses more 1/0 ports, but
less external logic, allocates one port for data in or out and
another port for status in or controls out. For example, 1/0
port 0 may be assigned to keyboard status in, 1/0 port 1 may
be assigned to keyboard data in, 1/0 port 4 may be assigned
to cassette status in and controls out and 1/0 port 5 may be
assigned to cassette data in and out.

I

8.1.3 Parallel Data and Control Ports

Many applications will require data to be handled on paths
that are more than eight bits wide. Sixteen-bit data, for
example, is a common word size. Less frequently, it will be
necessary to handle more than eight control lines at a time.

Data paths that are more than eight bits wide can be handled
in 8-bit units, sequentially through a single port. Alternatively,
two or more ports may be assigned to one external data bus
so that. whenever the microprocessor inputs data from an
external device or outputs to the external device, it accesses
each 110 port allocated to the data bus. This is illustrated be­
low in subroutine IN16, which inputs data in 16-bit units via
ports 4 (bits 0-7) and port 5 (bits 8-15).

*ROUTINE TO INPUT 16 BITS OF DATA VIA PORTS 4 AND 5,
*POLLING ON STATUS VIA PORT a TO SYNCHRONIZE WITH
*THE EXTERNAL DEVICE
IN16 LIS a FIRST CLEAR THE STATUS

PORT TO REMOVE PREVIOUS
OUTS a READY STATUS

LOOP INS a INPUT STATUS
BP LOOP RETURN IF BIT 7 IS a

La INS 4 BIT 71S 1.INPUT FIRST DATA
BYTE

ST STORE IN MEMORY BYTE
ADDRESSED BY DCa

INS 5 INPUT SECOND DATA BYTE
ST STORE IN NEXT MEMORY

BYTE (ADDRESSED BY DCa)
L1 PI TEST BRANCH TO END OF INPUT

TEST
L2 BR LOOP RETURN FROM TEST FOR

MORE INPUT
L3 RETURN FROM TEST FOR NO

MORE INPUT

8.2 INTERRUPT I/O

Two circumstances under which interrupts are commonly
used to control 1;0 operations are:

The programmed 110, described in Section 8.1, has the severe
disadvantage that the microprocessor system spends a great
deal of its time reading a status byte and waiting for the sta­
tus byte to signal ··ready". If the external device operates at
speeds close to that of the microprocessor, the wasted time
may be unavoidable. For example, if the microprocessor can
only execute ten instructions between each byte transmitted
or received by the external device, it is probable that these
ten instructions can be effectively used testing or processing
each data byte as it is transferred. On the other hand, if the
3850 CPU can execute approximately one hundred instruc­
tions between bytes of data being transmitted to or from the
external device, there is sufficient time between data trans­
fers for the microprocessor to be doing other useful work
which mayor may not be related to the data transfer taking
place. If instead of sending a ready status, the external de­
vice transmits an interrupt request signal every time it is
ready to transmit or receive a data byte, this signal can be
used by the 3850 CPU to suspend executing whatever pro­
gram was being executed, process a single byte of data, then
return to the suspended program.

The transfer of a sequence of data bytes at a known data rate
constitutes a sequence of predictable events. In many ap­
plications an external device's need for access to the micro-

8-3

processor system cannot be predicted. For example, an
external device may only communicate to the microprocessor
under distress circumstances, atwhich time the microprocessor
must execute a program to compute and output needed cor­
rection data. When the external device's need for access
to the microprocessor system cannot be predicted, an inter­
rupt is the only reasonable way in which the external device
can gain control of the microprocessor system.

8.2.1 The Interrupt Sequence

Each 3851 PSU in an F8 microprocessor system has an
external interrupt line, as does the 3853 SMI device, if present.

The sequence of events surrounding an interrupt is as follows:

1) For interrupts to be processed, interrupts must be
enabled within the 3850 CPU and at the device re­
ceiving the interrupt request signal. At the 3850 CPU,
all interrupts are enabled or disabled. At each 3851
or 3853 device, the individual interrupt line at that
device is enabled or disabled. This is described in
Section 8.2.2.

2) More than one device may simultaneously request to
interrupt the 3850 CPU; that is, interrupt request sig­
nals may be true, simultaneously, at more than one
device. When this happens, priorities are arbitrated
as described in Section 8.2.3.

3) When a valid interrupt request signal is detected by the
3850 CPU, it ceases current program execution at the
conclusion of the instruction currently being executed.
(Certain instructions are exempt, as described below.)

4) The 3850 CPU sends out an interrupt acknowledge
signal. The way in which this signal is trapped imple­
ments interrupt priority when more than one interrupt
request line is true, as described in Step 2.

5) When the 3850 CPU sends out an interrupt acknowl­
edge signal. it clears the interrupt enable status within
the 3850 CPU, thus disabling all subsequent interrupts.
As described in Section 8.2.4, interrupts must be
re-enabled, under program control, when such a step
is appropriate to program logic.

6) Each device that has an interrupt request line also has
a 16-bit address register which holds the address of
the first instruction to be executed following the inter­
rupt. The 3851 address register is a non-programmable
mask option. The 3853 address register is made up
of two I/O ports which are loaded with an address by
appropriate I/O instructions. As described in Section
8.2.4, bit 7 of the interrupt address will always be 1
for an external interrupt. and will always be a for a
local timer interrupt.

The device that traps the interrupt acknowledge sig­
nal output in step 5 responds by transmitting the
contents of its interrupt address register as the next
contents of PCO registers.

7) PSU and MI logic, under CPU control, moves the con­
tents of PCO to PC 1, then loads the address from step 6
into PC 0; thus a program dedicat,ed to the acknowl­
edged interrupt request line is executed.

An interrupt will not be acknowledged at the conclusion of
any of the following instructions:

PK
PI
POP
JMP
OUTS (if not port 0 or 1)
OUT (if not port 0 or 1)
EI
LR W,J

An instruction other than one of the above must be executed
before an interrupt will be acknowledged.

When power is first turned on, interrupts are disabled.

8.2.2 Enabling and Disabling Interrupts

As described in Section 2.4.3, bit 4 of the 3850 CPU W reg­
ister is an Interrupt Control bit. When this bit is set to 1,
interrupt requests to the CPU are enabled; when this bit is
reset to 0, no interrupt request to the CPU will be acknowl­
edged. ICB is set to 1 by the EI instruction or by a LR W,J
instruction; it is reset to 0 by the DI instruction or by a
LR W,J instruction.

Individual interrupt request lines are controlled at each de­
vice via an I/O port which is set aside as an interrupt control
buffer.

For the 3851 PSU's, the interrupt control 1/0 port address is
B'xxxxxxl0'; xxxxxx is the 1/0 port select code, which may be
any number from 1 to H'3F'. The 3853 interrupt control 1/0
port address must be H'OE'. This address is also available on
a 3851 PSU; when xxxxxx is H'03', the 3851 interrupt control
1/0 port address becomes H'OE'.:

B'xxxxxxl0' = B'00001110' = H'OE'

When a 3853 SMI device is present, a 3851 PSU with a chip
select of H'03' cannot also be present.

The following two instructions load the interrupt control
1/0 port:

LI VAL
OUT IPRT

IPRT must be equated to the interrupt control 1/0 port address.

VAL must be equated as shown in Table 8-1.

Value VAL is I
equated to I Effect

H'OO'
H'01'

H'02'

H'03'

-I I I Interrupts disabled at this device.

I
External Interrupt enabled, timer interrupt I
disabled.
Interrupts disabled at this device (same as
H'OO').
External interrupts disabled, timer interrupt
enabled.

Table 8-1 _ Contents of Interrupt Control 1;0 Ports

Timer interrupts are described in Section 8.4.

8.2.3 Interrupt Priorities

When an F8 microprocessor system has more than one in­
terrupt line, priorities are determined on the basis of "daisy
chaining", as illustrated in Figure 8-1.

3850
CPU

PIN

3851
psu

POUT

3851
psu

PIN POUT

IREQ = COMMON INTERRUPT REQUEST LINE
PIN = PRIORITY IN (INTERRUPT ACKNOWLEDGE)
POUT = PRIORITY OUT (INTERRUPT ACKNOWLEDGE)

3853
SMI

PIN

EACH DEVICE RECEIVING PIN PASSES THE SIGNAL ON AS POUT,

ETC.

UNLESS IT IS REQUESTING AN INTERRUPT, IN WHICH CASE IT TRAPS PIN.

Fig. 8-1. Daisy Chaining and Interrupt Priority Determination

The daisy chain sequence is a hardware feature of an F8 micro­
processor system; when the system is configured, the inter­
rupt acknowledge signal from the CPU is chained from one
device to the next. This determines interrupt priorities.

The only thing a programmer can do to modify interrupt pri­
orities is to disable external interrupts at selected devices by
appropriately loading the interrupt control 1/0 port at that
device with some value other than H'Ol'. (See Section 8.2.2
and Table 8-1.)

It should be clearly understood that interrupt priorities, as
described in this section, apply only to interrupt request
signals competing for the 3850 CPU's next interrupt service.

There is nothing to prevent an interrupt from interrupting a
previous interrupt; however, this type of nested priority is a
function of how programs have been written. Once an in­
terrupt has been acknowledged and is being serviced, and
the ICB bit in the CPU is set to 1, the current interrupt service
routine can itself be interrupted.

In order to prevent an interrupt service routine from being
itself interrupted, the ICB bit in the CPU W register must be
left at zero until the interrupt service routine has completed
execution.

Figure 8-2 illustrates the concept of nested interrupts.

FIRST INTERRUPT

D = INTERRUPTS DISABLED (ICB = 0)
I = INTERRUPTS ENABLED BY FIRST INTERRUPT

SERVICE ROUTINE (ICB = 1)

Fig. 8-2. Two Levels of Interrupt

The 3853 SMI device will not pass on an interrupt acknowl­
edge signal; therefore, it must be at the end of the daisy
chain, and will have lowest interrupt priority.

8.2.4 Program Response to an Interrupt

There are three program steps which may be needed prior
to an interrupt in order to prepare to receive interrupts. They
are:

1) If a 3853 SMI device is present, the interrupt address
register of the 3853 must be loaded with the address
of the first instruction to be executed after an inter­
rupt from the 3853 is acknowledged. As described in
Sections 2.7 and 6.16, 1/0 port addresses H'OC' and
WaD' have been reserved for the upper and lower
interrupt address bytes, respectively; therefore the
post-interrupt execution address can be loaded as
follows:

LI
OUTS
LI
OUTS

ADHI
H'OC'
ADLO
WOO'

ADHI and ADLO are symbols which must be equated
to the high and low bytes of the selected execution
address. Note that the 3851 PSU has the post­
interrupt execution address as a permanent feature
of the chip mask; therefore, each 3851 PSU has a
fixed post-interrupt execution address associated
with it.

2) Interrupts must be selectively enabled or disabled at
3851 and 3853 interrupt control ports, as described
in Section 8.2.3.

3) The 3850 CPU master interrupt enable bit (ICB) must
be set to 1, as described in Section 8.2.3.

When an interrupt is acknowledged, events within the 3850
CPU proceed exactly as if a subroutine had just been called:
the content of PCO is moved to PC1, and the content of the
selected device's post-interrupt address register is moved to
PCO. Interrupts should therefore be handled as though a
subroutine had just been executed, as described in Section
7.3. For example, the first instructions executed following
an interrupt might be:

LR

PI

K,P

CALL

SAVE CONTINUATION
ADDRESS IN K
SAVE CONTINUATION
ADDRESS IN STACK

Returning from an interrupt to the interrupted program is
identical to returning from a subroutine to the calling pro­
gram; however, since a program may be interrupted any time
interrupts have been enabled, parameter passing and multi­
ple returns do not apply to post-interrupt programs and should
not be used.

Remember that the first interrupt service routine must enable
ICB if second level interrupts are to be allowed (as illustrated
in Figure 8-2).

8-5

8.2.5 Making 3851 PSU Interrupt Address
Programmable

The fact that the 3851 PSU's interrupt address is a permanent
feature of the device is not a problem in applications where
this address may have to be varied. Using a branch table (as
described in Section 7.5), a number of possible post-interrupt
service routine execution addresses may be maintained. The
following routine shows how an external device may use a
PSU 1/0 port to provide an index identifying the service rou­
tine which must be executed following the interrupt. 1/0
port 4 has been arbitrarily selected as the 1/0 port address.
The data byte at 1/0 port 4 selects an address from a branch
table, as follows:

*POST INTERRUPT SERVICE ROUTINE FOR PSU 1
RC11 LR K,P SAVE RETURN ADDRESS ON

THE STACK
PI
INS

LR
PI

CALL
4

RX
BRANCH

INPUT PROGRAM SELECT
BYTE
SAVE INDEX VALUE
CALL BRANCH TABLE SUB­
ROUTINE

8.2.6 Simple I/O Interrupts

In Section 8.1.2, a simple application was described, where
data is input at a keyboard and recorded in 256 byte records
on a cassette.

A cassette may record data at a rate of approximately 200
bytes/second. With time taken to start and stop the cassette,
two or three seconds may elapse each time a record is out­
put to the cassette. Preventing data from being input at the
keyboard while it is being output to a cassette is both incon­
venient and unnecessary. Simple 1/0 interrupts may be used
to output data to the cassette, byte-by-byte. These few
instructions are sufficient to service each interrupt.

*PROGRAM TO WRITE ONE BYTE TO A CASSETIE, FOLLOW­
*ING AN INTERRUPT
CRW LM

OUT
EI
POP

CASS

LOAD NEXT BYTE
ADDRESSED BY DCa
OUTPUT TO CASSETIE

RETURN FROM INTERRUPT

The key concept here is that the F8 is uniquely suited to pro­
cessing a large number of simple interrupts. If the post­
interrupt program will not itself be interrupted, and if it will
call no subroutines, then merely ending it with a POP in­
struction turns it into a complete interrupt service routine.
Do not save the return address in the stack; do not call any
starting or ending subroutines (e.g., CALL or RTRN).

For example, see Section 2.8.7.

8.2.7 A Sample Program

Figure 8-3 illustrates a configuration for the key to cassette
application described in Section 8.1.2, except that 32 byte
records are to be written to the cassette.

STATUS FROM
KEYBOARD

3850

°tETvAB~~~~-----.J

3851
PSU

DEVICE SELECT
~ I INTERRUPT

1--_-r-_-+-~.....JtD j""""-- CONTROL

J 0 PORT SELECT

'---.---'---r---' 8'000001'

STATUS FADM CASSEITE
CONTROLS TO CASSETTE

'----.... OATA TO CASSETTE

Fig. 8-3. Two Devices Servicing a Keyboard to Cassette
Application

*PROGRAM TO RECEIVE DATA FROM THE KEYBOARD USING
*PROGRAMMED I/O
*SCRATCHPAD BYTES 0'40'TO 0'77' MAKE UPTHE 32 BYTE
*BUFFER.
*SCRATCHPAD BYTES 0'20' TO 0'37' ARE USED AS A TEM­
*PORARY BUFFER TO HOLD DATA WHILE THE MAIN BUFFER
*IS BEING WRITTEN TO CASSETTE

ORG H'OOOO'
START L1SU 3
Sl L1SL 7
S2 LIS H'Ol'

OUTS 6

INITIALIZE ISAR TO
TEMPORARY BUFFER
ENABLE EXTERNAL INTER­
RUPTS AT PSU

EI ENABLE INTERRUPTS
S3 PI INKB INPUT NEXT EIGHT BYTES

FROM KEYBOARD
S5 L1SU 2 DECREMENT UPPER DIGIT

OF ISAR
S6 PI INKB INPUT NEXT EIGHT BYTES

FROM KEYBOARD
*AFTER INPUTTING 16 BYTES FROM THE KEYBOARD, IT IS
*ASSUMED THAT ANY RECORD OUTPUT TO THE CASSETTE
*IS COMPLETE. MOVE DATA FROM 0'37' - 0'20' TO 0'77'-
0'60'.

S8 L1SL 7 LOAD FIRST SOURCE BYTE
ADDRESS

S9
S10
Sll
S12
S13

S14

S15

S16

S17

L1SU
LR
L1SU
LR
8R7

L1SU

LR

L1SU
LR
BR7
L1SU

PI

3
A,S
7
D,A
S9

2

A,S

6
D,A
S14
5

INKB

LOAD NEXT BYTE

STORE NEXT BYTE
iF NOT END OF BUFFER,
RETURN FOR NEXT BYTE
IF END OF F!RST BUFFER,
MOVE SECOND BUFFER
REPEAT MOVE FOR SECOND
8 BYTE
BUFFER

INPUT NEXT EIGHT BYTES
FROM KEYBOARD TO
SCRATCHPAD BUFFER 0'57'
TO 0'50'

8-6

S19 L1SU

S20 PI

4

INKB

INPUT NEXT EIGHT BYTES
FROM KEYBOARD TO
SCRATCHPAD BUFFER 0'47'
TO 0'40'

~8UFFER is NOW READY TO 8E OUTPUT TO CASSETTE.
S21 LI H'3F' LOAD BUFFER INITIAL

S22 LR O,A
ADDRESS
(0'77') INTO SCRATCHPAD
BYTE 0

S23 LI ONC TURN CASSETTE ON
S24 OUTS 5
S25 BR START RETURN FOR NEXT RECORD
*INPUT SUBROUTINE INKB STORES A BYTE OF DATA INPUT
*FROM KEYBOARD INTO SCRATCHPAD BYTE ADDRESSED

"BY ISAR

INKB

LO

LOOP
Ll
L2
L3

LR K,P

CLR
OUTS 0
INS 0
BP LOOP

SAVE RETURN ADDRESS
IN K
CLEAR PORT 0

INPUT STATUS

INS 1 INPUT DATA
LR D,A STORE IN ISAR BUFFER
BR7 LO RETURN IF NOT EIGHTH BYTE

L4 PK RETURN
*INTERRUPT SERVICE ROUTINE, EXECUTED TO WRITE ONE
"BYTE TO CASSETTE.

EO

El

E2
E3

E4
E5

E7
E8
E9
El0
Ell

E12
E13
E14

E15
E16

E17

E18

FO

ORG
LR

LR

LR
LR

LR
INS

BZ
LR
OUTS
LR
AI

CI
BZ
LI

OUTS
Li

H'0280'
l,A

A,IS

2,A
A,O

IS,A
5

FO
A,S
4
A,IS
H'FF'

0'37'
E17
STOP

4
O'77 J

LR O,A

LR A,2

LR IS,A
LR A,l
EI
POP
LI REW
OUTS 4
BR E18

SAVE ACCUMULATOR IN
SCRATCHPAD BYTE 1
SAVE ISAR IN SCRATCHPAD
BYTE 2

LOAD SCRATCHPAD BYTE 0
CONTENTS INTO ISAR

RECEIVE STATUS FROM
CASSETTE, INS SETS STATUS

IF NOT END OF CASSETTE,
OUTPUT NEXT BYTE
MOVE ISAR TO A
DECREMENT ALL 6 BITS OF
ADDRESS
TEST IF RESULT IS 0'37'
RETURN IF NOT
IF IT IS, ISSUE A STOP
COMMAND

RESET TO TOP FOR NEXT
OUTPUT
SAVE !SAR ADDRESS FOR
NEXT BYTE
BEFORE RETURNING,
RESTORE ACCUMULATOR
AND ISAR

IF CASSETTE IS FULL, ISSUE
REWIND COMMAND

I

I

The logic of this program is relatively simple. Scratchpad
bytes 0'77' to 0'40' constitute a 32-byte buffer, the contents
of which is output as a record to the cassette. It is assumed
that this record can be written to the cassette in less time
than an operator takes to enter 16 digits at the keyboard.
Therefore instructions START through S7, input 16 digits into
the 16 scratchpad bytes addressed by 0'37' through 0'20'.

Data is input from the keyboard using programmed 1/0 via
subroutine INKB. Notice that subroutine INKB saves its return
address in the K scratchpad registers and uses the PK in­
struction to return; therefore a stack register is available for
the interrupt. Subroutine INKB is almost identical to the
input subroutine described in Section 8.1.1. The principle
difference is that separate ports are being used for status
and data. Observe that throughout this program data is input
into scratch pad bytes, one scratch pad 8-byte buffer at a time.

Once 16 digits have been input from the keyboard, they are
moved from scratchpad bytes 0'37' - 0'20' to 0'77' - 0'60'.
This entire data movement will take 208 microseconds which
is not a noticeable delay to an operator entering data at the
keyboard.

The next 16 bytes of data entered at the keyboard go directly
into scratchpad bytes 0'57' through 0'50' and 0'47' through
0'40'.

After 32 bytes have been entered into the scratchpad buffer,
a buffer counter is initialized in scratchpad byte 0 (instructions
21 et. seq.); then the cassette is turned on by instructions
S23 and S24. ONC is used as a symbol representing the one
byte code which will be recognized by the cassette control
logic as a turn-on signal. Once the cassette has been turned
on, program logic branches back to the start of data entry
for the next record.

Notice that nowhere in the main program has the interrupt
service routine been mentioned. It is assumed that once the
cassette has been turned on, cassette control logic will issue
an interrupt request signal each time it is ready to receive
another byte of data from the microprocessor. The interrupt
service routine therefore may be executed at any time. It is
as though there were a floating call to a subroutine that could
randomly be executed at any point in the program where
interrupts were being allowed.

Observe that the interrupt service routine has to save the
contents of the accumulator and the ISAR in scratchpad bytes
because the accumulator and ISAR are going to be needed.

The illustrated interrupt service routine is probably somewhat
Simpler than most real interrupt service routines would be.
Control logic associated with the cassette drive is assumed
capable of sending status inputs to the microprocessor telling
the microprocessor when to rewind the cassette. It is also
assumed that housekeeping associated with the start and
end of each record is handled by the cassette control logic.
In all probability much of this housekeeping could be done
by the microprocessor, but to include it in the example would
detract from the purpose of the example, which is to show
how an interrupt service routine is handled.

The origins of the main program and interrupt service routine
have been randomly selected. Note that since the origin of
the interrupt service routine has been selected at H'0280',

8-7

this is the address which must be in the 3851 interrupt
address register.

The symbols STOP and REW in the interrupt service routine
must be equated to the actual bit pattern that the cassette
controller logic will interpret as stop and rewind commands,
respectively.

8.3 LOCAL TIMERS (PROGRAMMABLE
TIMERS)

Programmable timers are a more useful microprocessor
programming tool than is initially apparent to a programmer.

Programmable timers are shift registers which, after being
loaded with some initial value, count down to 0, then send
an interrupt request signal to the CPU. (See Section 2.5.4.)
The 3851 PSU and the 3853 SMI device both have program­
mable timers.

Here are some applications for which timers are useful:

1) In control applications, such as an operations monitor
alarm, to insure that some maximum time interval is
not exceeded between consecutive readings from
sensitive data inputs. For example, suppose a tem­
perature must be measured in a chemical reactor at
least once every second to prevent runaway condi­
tions. 253 maximum time intervals ·on a local timer
approximate 1 second. Whenever a temperature is
input, the local timer is reset to start counting tlown
one second. If one second is counted down, the pro­
gram can be written to output a signal that triggers
an audible alarm.

2) To activate refresh logic for external devices. For ex­
ample, a video display may need to be refreshed at
fixed time intervals; the refresh sequence may be
initiated by a local timer.

3) To maintain the real time of day in any system that
has to generate clock times. Such devices include
badge readers and numerous small office business
systems.

8.3.1 Local Timer I/O Ports

Local timer logic uses the local interrupt control 1/0 ports to
enable local timer interrupts, as described in Section 8.2.2
and Table 8-1.

The interrupt control 1/0 port must have the value H'03'loaded
into it under program control in order to enable local timer
interrupts at that one device. Therefore either external inter­
rupts or local timer interrupts, but not both, may be enabled
at one device.

If interrupts have been disabled at the 3850 CPU, local timer
interrupt requests will be ignored until a subsequent inter­
rupt enable. At this time any interrupt request will still be
active unless cleared prior to the interrupt enable.

The timer 1/0 ports have 1/0 port addresses one higher than
the local interrupt control 1/0 port. Therefore 3851 PSU port
addresses are:

B'xxxxxx10' for the local interrupt control 1/0 port
S'xxxxxx11' for the iocai timer ilO port

For the 3853 SMI, port addresses are:

H'OE'
H'OF'

for the local interrupt control 1/0 port
for the local timer I/O port

8.3.2 Programming Local Timers

Programming a local timer requires the value H'03' to be
loaded into the selected device's local interrupt control 1/0
port. A number between 0 and 254, identified as a timer
constant, is loaded into the associated local timer 1/0 port.
A value of 255 loaded into the local timer 1/0 port stops the
clock.

The value loaded into a local timer, as a timer constant, is
converted (by the assembler) to a binary value, as given in
Appendix C; that is why numbers should be entered as timer
constants.

A local timer interrupt will be generated after the time interval
given by the product:

(system clock pulse interval) * (local timer constant) * 31

For example, a value of T'200' loaded into a local timer 1/0
port will generate an interrupt after 3.1 ms if the system
clock pulse interval is 500 ns.

Instructions needed to enable a local timer are as follows:

LI
bUTS
LIS

OUTS

EI

T'200'
7
3

6

LOAD TIMER CONSTANT
OUTPUTTO TIMER 1/0 PORT 7
LOAD TIMER INITIATION
CONTROL
OUTPUT TO CONTROL 1/0
PORT 6

ENABLE INTERRUPTS AT
THE 3850 CPU

!n the above eX3mp!e, the timer ccnst3nt T'200' has been
arbitrarily selected. Any value from T'O' to T'256' could be
used. T'256', remember, will stop the clock.

The selection of 1/0 ports 7 and 6 is also arbitrary; any pair
of 1/0 ports with addresses given in Section 8.3.1 could be
used. Note, however, that the control 1/0 port number is
always one less than the timer port number it controls.

The value H'03' must be loaded into a local timer control 1/0
port if the associated timer port is to operate. When this
value is loaded into the control 1/0 port any pending timer
interrupt is cleared. Any subsequent zero value of the timer
will set the timer interrupt.

if the vaiue H'03' is in the controi i/O port before the timer
constant is output to the timer 1/0 port, then the timer which
is constantly running may interrupt before being set with a
timer constant. Once the timer 1/0 port holds a zero value,
an interrupt request signal will be generated once every
3.953 ms (for a 500 ns clock pulse). Providing the ICB bit
is 1 within the 3850 CPU, every timer interrupt request will
be acknowledged and serviced if the timer interrupt is enabled.

The program that is executed after a timer interrupt is acknowl­
edged is a service routine which, like the service routine il­
lustrated in Section 8.2.7, is never called or referenced by
any other program. The service routine must start executing
at the memory address provided by the 3851 or 3853 device's
interrupt address 1/0 ports; however, recall that the 7 bit of
the address is automatically set to 0 for a timer interrupt, or
to 1 for an external interrupt. If the external interrupt service
routine is origined at H'0680', as illustrated in Section 8.2.7,
then for the same device, the local timer interrupt service
routine will be origined at H'0600'.

8.3.3 A Programming Example - The Tim.e of Day

The program below creates the time of day by storing hours
in scratch pad byte 8, minutes in scratch pad byte 7 and sec­
onds in scratchpad byte 6. Scratchpad byte 5 is used as a
counter.

This program uses the maximum timer interval (3.953 ms
between interrupts). The local timer must be initialized with
the main program as follows:

LIS
LR
LR
LR

LI
LR
LI
OUTS
LIS
OUTS
EI

o
8,A
7,A
6,A

253
5,A
T'O'
7
H'03'
6

ZERO HOURS, MINUTES AND
SECONDS PORTS, ASSUM­
ING THE DEVICE WILL BE
SWITCHED ON EXACTLY AT
MIDNIGHT
INITIALIZE THE LOCAL
COUNTER TO 253
CLEAR LOCAL TIMER PORT

ENABLE THE LOCAL TIMER
PORT INTERRUPTS
ENABLE INTERRUPTS AT
THE CPU

The local timer interrupt service routine is assumed to be
origined at H'0200'. It executes as follows:

ORG H'Q?OO'
OS 5 DECREMENT THE LOCAL

COUNTER
BNZ OUT CONTiNUE iF iT is NOT ZERO

(ONE SEC).
LI 253 IF IT IS ZERO, RESET TO 253
LR 5,A
LR A,6 INCREMENT THE SECONDS

COUNTER
INC
CI 60 TEST IF SECONDS EQUAL 60

I

I

OUT

BZ

LR
EI
POP

T10

6,A

IF THEY DO, ADJUST
MINUTES
IF THEY DO NOT, END

*MINUTES ADJUST BEGINS HERE
TlO US ° ZERO SECONDS

LR 6,A
LR A,7
INC
CI
BZ
LR

EI
POP

60
T20
7,A

LOAD MINUTES
INCREMENT MINUTES
TEST FOR 60 MINUTES
AT 60 MINUTES, ADJUST
HOURS OTHERWISE RETURN
MINUTES

*HOURS ADJUST BEGINS HERE
T20 LIS ° ZERO MINUTES

LR 7,A
LI

LR
LR
INC
CI
BNZ
LIS

T30 LR
EI
POP

153 CORRECT 0.392 SECOND
ERROR EVERY HOUR

5,A
A8 LOAD HOURS

INCREMENT HOURS
24 TEST FOR 24 HOURS
no AT 24 HOURS, RESET TO ° ° OTHERWISE RETURN HOURS
8,A

8.4 DIRECT MEMORY ACCESS

Direct memory access (DMA) allows data to be transferred
between any F8 microprocessor system memory and an ex­
ternal device, bypassing the 3850 CPU. Data is transferred
in parallel with any CPU operations. DMA has been described,
as a concept, in Sections 2.6.3 and 2.8.

One 3852 DMI device must be present in a microprocessor
system that supports DMA. Up to four 3854 DMA devices
may be present in the system; each 3854 DMA device
provides one DMA channel.

8.4.1 When to Use DMA

DMA is used to transfer data into, or out of, a microprocessor
system that has heavy 1/0 requirements. For example, using
programmed 1/0, the theoretically maximum data transfer
rate is implemented by the following instruction sequence
for data input:
LOOP INS

ST
DS

BNZ

°

LOOP

INPUT A DATA BYTE VIA

PORT °
STORE IN RAM MEMORY
TEST FOR END OF TRANS­
MISSION
RETURN FOR NEXT CHAR­
ACTER

Scratchpad register 1 is assumed to hold the initial character
count.

These four instructions execute in 9.5 instruction cycles, equal
to 19 /.1S, using a 500 ns clock pulse. Assuming that external
logic is synchronized to input one byte of data every 19 /.1S.

the maximum data transfer rate is approximately 50,000
bytesl second.

8-9

The maximum data transfer rate supported by programmed
I/O is not of itself a limiting factor. A 256 byte buffer, for
example, can be transferred in 4.86 ms. The problem is that
this maximum data transfer rate requires external logic that
processes data at a rate of one byte every 19 J.lS. Most ap­
plications will not meet this requirement, usually because
data transfer rates are set by logic considerations beyond
the microprocessor system; that is, external logic determines
data transfer rates, not the microprocessor system.

Suppose external logic is inputting data to the microprocessor
system at some rate, which we will label R bytes/second.
The time that elapses between each byte transferred will be
(l,OOO,OOO/R) J.lS. The local timer can be used to generate
an interrupt shortly before each byte of data is due, in which
case the local timer interrupt service routine will input the
data byte. Assuming that data will always be in the 1/0 port
before the local timer interrupt service routine is executed,
the following service routine will input data bytes from an
1/0 port:

ISRI LR O,A SAVE ACCUMULATOR
CONTENTS IN °

XDC SWITCH DCO AND DCl
LI TCNT RESTART TIMER
OUTS 7
INS ° INPUT DATA BYTE
ST SAVE IN MEMORY
XDC SWITCH DCO AND DCl
LR A,O RESTORE ACCUMULATOR

FROM °
EI ENABLE INTERRUPTS
POP RETURN

TCNT is a symbol defined by the equate directive:

TNCT EQU T'VAL'

where VAL is a number between ° and 255. Each count
represents 31 clock periods and the total time is equal to
(l,OOO,OOO/R) but less than 3.953 ms.

It will take approximately 38 J.lS for interrupt service routine
ISRI to execute; this means that approximately 9.7 ms will
be required to input 256 bytes of data. This 9.7 ms will be
spread over whatever time interval the external device re­
quires to transfer 256 bytes of data. But there are some
problems associated with the method of inputting data:

1) Recall that there are certain privileged instructions
which inhibit acknowledgement of an interrupt. It is
quite feasible for a 2 to 4 J.lS delay to randor;lly get
inserted between each execution of ISRI if, by chance,
a privileged instruction is being executed at the instant
the local timer times out. Over 256 bytes of data trans­
fer, this means that it is feasible for a 500 J.lS slew to
develop, which will result in the loss of a byte of data,
if the data transfer rate exceeds 2,000 bytes/so

2) If the microprocessor is handling interrupts other
than the local timer, clearly other interrupts must be
serviced by routines which are themselves interrupt­
able, since one interrupt service routine blocking out
ISRI for any significant period of time would almost
c~rtainly create irrecoverable timing errors.

3) Observe that ISRI uses the DCl register and uses one
scratchpad register to store accumulator contents.
This means that the DCl register and the scratch pad
regis!er cannot be used by any other program that
is being executed during the same time period.

If subroutine ISRI is expanded to include a status test plus
logic to compute the timer constant that will compensate
for timing slews, the new expanded version of ISRI might
easily take 200 J.LS to execute. Under these circumstances
the microprocessor system would spend a significant amount
of its time merely moving data between memory and an
I/O port.

In all but the simplest I/O transfer applications, therefore,
DMA becomes the preferable way of moving data between
memory and external devices.

8.4.2 Programming DMA

The actual programming steps required in order to initiate a
DMA operation are simple, as follows:

LI ADLO LOAD BUFFER STARTING
OUT BUFA ADDRESS INTO ADDRESS

110 PORTS
LI ADHI
OUT BUFB
LI CTLO LOAD LOW ORDER BYTE OF

BYTE COUNT
OUT BUFC
LI CTRL LOAD HIGH ORDER 4 BITS

OF BYTE COUNT
OUT BUFD PLUS CONTROL BITS

Symbols must be equated as follows:

1) The I/O port addresses, BUFA. BUFB, BUFC and BUFD

1/0 PORT BUFD

7 6 5 4 3 2 o

I I I I I I I I I

are given in Table 2-2 for the four 3854 DMA devices
that may be present in an F8 microprocessor system.
Whether a DMA device uses the first, second, third
or fourth set of addresses is a function of device hard­
ware configuration and of no concern to the program­
mer, so long as the correct port addresses are used.

2) ADLO and ADHI represent the low order and high
order bytes of the beginning address of the memory
buffer into which data will be written, or from which
data will be read.

3) Data buffers may be up to 4,096 bytes long. CTLO
represents the low order eight bits of the buffer length,
as illustrated in Figure 8-4. CTRL provides the controls
which select DMA options and also the high order four
bits of the buffer length, as illustrated in Figure 8-4.

The following instructions will initiate 256 bytes of data being
written into a memory buffer, where the data rate is con­
troiled by the externai device. The memory buffer starting
address is H'A280'. The first DMA channel is used.

LI H'80'

OUT H'FO'
LI H'A2'

OUT H'Fl '
LI H'OO'

OUT H'F2'
LI H'Cl'

OUT H'F3'

1/0 PORT BUFC

7 6 5 4 3 2

OUTPUT LOW ORDER BYTE
OF ADDRESS

OUTPUT HIGH ORDER BYTE
OF ADDRESS

OUTPUT LOW ORDER BYTE
OF COUNT

OUTPUT HIGH ORDER 4
DIGITS OF COUNT (1)
AND CONTROL DIGIT IC).

o Bit No

I I I I I I I I I

tl III
\..'-----'./

Buffer Length

'----- 0 External device c6ntrols data transfer rate. \ I I A byte of data will be transferred every available

I I 11....-____ 0 ~~: t~~O~sfer halts when the byte count register

II 1,_______ decrements to 0 1 Data transfer continues until bit 7 is reset to O.
o Data is transf",rre<1 from memory to an external device

~
Data is transferred from an external device to main
memory

---- 0 Ha!! D~.~.~. opere!!0!:
Start DMA operation

Fig. 8-4. How BUFC and BUFD are used to Control DMA Operations

I

I

8.4.3 Catching DMA on the Fly

There are many applications in which data will be transferred
via DMA at unpredictable rates. For example, in communi­
cations applications, data may come over a telephone line at
a fixed baud rate, but the length of messages and the period
when no data is being transferred may be completely random.
Under such circumstances it is very useful if a program can
start and stop DMA operations or interrogate the buffer counter
to find out how much data has been transferred via DMA
since the last interrogation. The following program sequence
catches DMA on the fly, in a way that would be well suited
to random data transfer rates in communications applications:

*SUBROUTINE TO INITIALIZE DMA WITH H'FF' IN THE BYTE
*COUNTER. THE DATA BUFFER STARTS AT H'2000'
DMA LI H'oo' OUTPUT BUFFER STARTING

ADDRESS

S2

OUT
LI
OUT
LI
OUT
LI
OUT
POP

H'FO'
H'20'
H'F1 '
H'FF'
H'F2'
H'CO'
H'F3'

OUTPUT BYTE COUNTER

"MAIN PROGRAM TO HANDLE COMMUNICATIONS DATA
*TRANSFERRED VIA DMA

PI DMA INITIALIZE DMA

M1 LIS 0 STOP DMA DATA TRANSFER
M2 OUT H'F3'
M3 IN H'F2' LOAD BYTE COUNT INTO

COM SCRATCHPAD BYTE 0
M4 LR O,A
(instructions to process data follow here)

8-11

Instruction steps to initiate DMA are pClckaged as a subrou­
tine labeled DMA. The buffer length output is H'FF'. As this
buffer length is counted down, the number of bytes trans­
ferred via DMA can, at any time, be determined by reading
the contents of I/O port F2 into the accumulator and com~
plementing. The control digit C starts data flow via DMA from
the external device (assumed to be a communications
interface) to the memory buffer, beginning at H'2000'.

The main program starts by initializing DMA via a call to
subroutine DMA. At some later point in the program, in­
structions M1 and M2 are executed in order t6 load the code
digit 0 into I/O port F3 and thus stop DMA transfers. Instruc­
tions M3 through M4 determine the number of bytes that
have been transferred via DMA, since DMA was initiated,
and loads this byte count into scratch pad register O. Instruc­
tions will now follow to move the number of bytes received
to some other memory location where the data can be pro­
cessed. Subroutine DMA will then be recalled to re-initialize
DMA data transfers. After data has been processed execution
will branch back to instruction M1 and so the program will
continue processing whatever data has been transferred in
each time interval.

I
·1

I

PROGRAM OPTIMIZATION

Optimizing a program is not a routine mechanical task; rather,
it is a function of application requirements and hardware
configuration. Most microprocessor programs are written
either to maximize execution speed, or to minimize the
amount of memory used.

Consider a simple example. A microprocessor has 1024 bytes
of program memory. An application may only use half of the
available memory, but may be too slow to meet product speci­
fications. Converting every subroutine to a macro will speed
up program execution time, but may double the size of the
program. Since program memory comes in finite increments,
economizing on program storage requirements is only mean­
ingful when it reduces the number of devices required by a
microprocessor system; therefore, increasing program stor­
age requirements from 500 bytes to 1000 bytes carries no
penalty.

In practice, programming for minimum use of program stor­
age should be the goal of microprocessor programmers.
Microprocessor instruction sets are very versatile. Many
variations of a program can be written to implement any
problem; but some programs will be more efficient than
others. A novice microprocessor programmer may well write
programs that occupy 50% more memory than is really neces­
sary. Inefficiencies of this type are not important in mini­
computer systems, which usually include bulk storage devices
such as disk units. The only penalty paid for having unneces­
sarily long programs is a few extra milliseconds, making
otherwise unnecessary transfers of program segments be­
tween disk and memory. Unnecessarily long programs are
very uneconomical in microprocessor systems, where the
entire program sits in one or more memory devices. If a
microprocessor system has two more memory devices than
the most compact program would require, these two memory
devices can become 20,000 memory devices, if the micro­
processor system is to be reproduced 10,000 times.

In many ways, the logic designer will find it easier to be­
come an efficient microprocessor programmer than will a
systems analyst. who has gained experience programming
minicomputers and larger systems. The systems analyst has
continuously striven to write programs which are general
purpose. For example, a subroutine that performs multibyte
addition must be able to add two number buffers of any length,
located anywhere in memory, storing the result in a third
number buffer. Such a multibyte addition subroutine, once
written, could be frequently reused in almost any applica­
tion, thus reducing future programming expenses. This is
economical thinking in the world of minicomputers, but it
is very uneconomical thinking in the world of microprocessors.
A microprocessor application may be able to define two
number buffers of specific length, in specific areas of memory,
as the only number buffers which will ever be involved in
mathematical operations. A multibyte addition subroutine,
working within these restrictions, may have to be rewritten
for every new microprocessor application, but the subroutine
that results may use less than half of the memory storage
requirements demanded by the equivalent g~neral purpose
routine. When microprocessor systems are likely to be re­
produced tens of thousands of times, extra front-end pro­
gramming expense becomes trivial compared to the cost of
extra memory devices, multiplied ten thousand fold.

9-1

In the following sub-sections, program optimization informa­
tion is presented in the following sequence:

1) The concept of counting memory bytes and execution
cycles is described.

2) Some basic techniques that will always make Fa
programs more efficient are listed.

3) Some examples of execution speed versus memory
utilization tradeoffs are given.

9.1 COUNTING CYCLES AND BYTES
The Fa instruction set is summarized in Appendix D, where the
number of object program bytes is listed for every instruction.

Consider the data movement program described in Figure
5-1. This program is reproduced in Figure 9-1, along with
number of execution cycles and memory bytes required by
each instruction.

Counting bytes is usually unnecessary, since the assembler
listing prints the memory location where each object pro­
gram byte will be stored. Thus subtracting memory addresses
yields the length of any program, program segment or
subroutine.

9.2 ELEMENTARY OPTIMIZATION
TECHNIQUES

There are a number of instruction choices where one selec­
tion is always preferable. These obvious instruction choices
are described in the following sub-sections.

9.2.1 Scratch pad and RAM Memory

Always fill up the scratchpad before using RAM memory to
store constants or data buffers. It takes one cycle to move a
byte of data between the accumulator and a scratch pad byte;
it takes 2.5 cycles to move a byte of data between the accu­
mulator and external RAM. Both sets of instructions generate
one byte of object code.

9.2.2 Immediate Instructions

Immediate instructions are 2 or 3-byte instructions that spec­
ify data in the instruction operand.

Consider the 2-byte immediate instructions; these instruc­
tions specify a 1-byte operand, which is combined with the
contents of the accumulator in some way. An instruction
such as:

1M LI CNT LOAD COUNTER INTO
ACCUMULATOR

executes in 2.5 cycles and occupies two bytes of memory. If
this instruction occurs identically (with the same operand)
many times in a program, consider loading CNT into a scratch­
pad register, as follows:

ONE
TWO

THRE

LI
LR

LR

CNT
1,A

A,1 LOAD COUNTER INTO
ACCUMULATOR

Cycles Bytes

a a TITLE
a a MAXC:Pl.I

0 0 SYMBOL
a a XREF
a a BASE
a a BUFA EQU
a a BUFB EQU
a a ORG
6 3 ONE DCI
2 1 TWO XDC
6 3 THREE DCI
2.5 2 FOUR LI
1 1 FIVE LR
2.5 LOOP LM
2 SIX XDC
2.5 SEVEN ST
2 1 EIGHT XDC
1.5 1 NINE DS
3.5 2 BNZ
a a END
ill 17

* BNZ will usually return to LOOP

Total Bytes = 17
Total Cycles = 31.5
Total Cycles within iterative loop = 14

"SAMPLE PROGRAM TO MOVE DATA BETWEEN BUFFERS"
50 liMIT OF 50 S!:CONDS CPt.! T!ME SPEC!!=!ED

A SYMBOL TABLE WILL FOLLOW SOURCE PROGRAM
SYMBOLS CROSS LISTING WILL FOLLOW SOURCE PROGRAM

HEX HEXADECIMAL NUMBERS SPECIFIED FOR ASSEMBLY LISTING
H'0800' SET THE VALUE OF SYMBOL BUFA
H'08AO' SET THE VALUE OF SYMBOL BUFB
H'Ol00'
BUFA SET DCa TO BUFA STARTING ADDRESS

STORE IN DCl
BUFB SET DCa TO BUFB STARTING ADDRESS
H'80' LOAD BUFFER LENGTH INTO ACCUMULATOR
1,A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1

LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCa
EXCHANGE DCa AND DCl
STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCa
EXCHANGE DCa AND DCl
DECREMENT SCRATCH PAD BYTE 1

LOOP IF SCRATCHPAD BYTE 1 !S NOT ZERO, RnURN TO LOOP

Assuming 2 /-IS cycle time, time to move 128 bytes = 2*(14*128+17.5)
=3619/-1s

Fig. 9-1. Counting Cycles and Bytes

Instructions ONE and TWO execute in 3.5 cycles and occupy
three bytes of memory. Instruction THRE executes in one
cycle, occupies one byte of memory and replaces instruction 1M.

Clearly instruction 1M is better than ONE, TWO and THRE, if
1M occurs just once; however, if instruction 1M occurs iden­
tically n times, then it accumulates 2.5n cycles and 2n bytes
of memory, whereas ONE, TWO and THRE accumulate (3.5+n)
cycles and (3+n) bytes of memory, respectively. Therefore
ONE, TWO and THRE will execute faster when:

2.5n > 3.5 + n
or 1.5n > 3.5
or n > 2.33

ONE, TWO and THRE occupy less memory when:

2n > (3 + n)
or n> 3

In conclusion, if a 2-byte immediate instruction occurs iden­
tically (same operand) three or more times in a program, it
is more efficient to load the immed!ate opera!""!d !!""!!c a scra!ch­
pad byte out of which it is referenced (providing a scratch pad
byte is available).

9.2.3 Short Instructions

Always go over a source program, making sure that the short
instructions US, INS and OUTS have been used wherever
the operand is small enough.

9.2.4 Use of OS Instruction to Decrement and Test

Recall that when a OS instruction is used, the decremented
scratchpad byte may be tested for '·decrement-from-zero".

Since the OS instruction adds H'FF' to the designated scratch­
pad byte contents, the carry status will always be set unless
the scratch pad byte contained ° before it was decremented.
Therefore the instruction sequence:

OS n
BC BACK

will decrement scratch pad byte n, return to BACK if byte n
did not contain 0, but continue if byte n did contain 0.

9.2.5 Use of the BR7 Instruction

The BR7 instruction is very useful whe!""! manipulating data
buffers in scratch pad memory, as described in Section 7.1.

9.3 PROGRAMMING FOR SPEED OR MEMORY
ECONOMY

In the foHo'..I'!!!1g subsections, progr~mm;ng techniques that
tradeoff between execution speed and the amount of memory
used are described.

9.3.1 Macros and Subroutines

To gain execution speed, possibly with a heavy increase in
the amount of memory required, convert subroutines into
macros as described in Section 7.4.

I

Always carefully examine subroutines, particularly those
which are infrequently called or receive parameters from the
calling program, to see if converting the subroutine into a
macro would save memory bytes and, at the same time,
increase execution speed.

As described in Section 7.3, programs can be made much
faster and will require less memory if subroutine nesting is
limited to a first level. If a main program calls a subroutine,
the subroutine can then call another subroutine. However,
a subroutine cannot call another subroutine if it was, itself,
called by a subroutine. Limiting subroutine nesting to a level
of one means that return addresses can be stored in the
stack register (PC1) and in the K registers of the scratchpad,
eliminating the need for memory stacks.

9.3.2 Table Lookups Versus Data Manipulation
Program execution speed can frequently be increased by
looking up data out of tables in ROM.

The concept is illustrated below, for the simple case of a 1-
of-8 decoder.

An octal digit is input into the low order three bits of I/O port
O. The CPU must output, via I/O port 1, a data byte as follows:

Input From Port 0

00000001
00000010
00000011
00000100
00000110
00000111
OOOOOOOO

Output At Port 1

00000001
00000010
00000100
00001000
00100000
01000000
10000000

*ONE OF EIGHT DECODER PROGRAM, NOT USING TABLE
*LOOKUP

110

LOOP

OUT

INS
BNZ
LIS
LR
LIS
DS
BZ
SL

BR
OUTS

o
110
8
O.A
1
o
OUT
1

LOOP
1

INPUT OCTAL CODE
INPUT IS NOT ZERO
LOOP COUNTER
TO LOOP COUNTER
LOAD OUTPUT FOR 1
DECREMENT INPUT
BRANCH OUT IF END
SHIFT LEFT ONE BIT IF
NOT END

OUTPUT RESULT

9-3

*ONE OF EIGHT DECODER
*LOOKUPS

PROGRAM USING TABLE

LKUP DC 0
DC 2
DC 4
DC 8
DC 16
DC 32
DC 64
DC 128

INS 0
DCI LKUP

ADC

LM
OUTS

INPUT OCTAL CODE
LOAD TABLE BASE
ADDRESS
ADD INPUT CODE TO BASE
ADDRESS
LOAD OUTPUT
OUTPUT RESULT

Efficiencies compare as follows:

Instructions
Memory bytes
Execution cycles

Non-Table Lookup

10
13

min: 15
max: 69.5

Table Lookup

5
15
15
15

I
I

I

SOME USEFUL PROGRAMS

Some generally useful programs are given in this section.
Programs are not shown as subroutines or as macros. The
instructions implementing required logic are given, making it
easy to incorporate an example into a program as a sub­
routine, a macro or directly as a section of main memory.
These programs are intended to show programming techniques,
rather than to demonstrate optimum program efficiency.

10.1 GENERATING TEXT

10.1.1 Simple and Dedicated Text Programs

The simplest text generation logic takes characters out of a
memory buffer and outputs them via an 1/0 port. The 1/0
operation may be under program control, or interrupt 1/0 may
be used. In each case, text is fetched via an elementary
instruction sequence such as:

DCI TEXT LOAD TEXT BUFFER
STARTING ADDRESS

LOOP LM LOAD NEXT TEXT BYTE
*TEST FOR END-OF-RECORD CHARACTER. INSTRUCTIONS
*FOR THIS TEXT ARE NOT SHOWN, SINCE THEY ARE A FUNe­
*TION OF THE APPLICATION.

OUT PRTN

BR LOOP

OUTPUT CHARACTER VIA
PORT N
RETURN FOR NEXT
CHARACTER

10.1.2 Unpacking Decimal Digits
A byte containing two BCD digits is converted into two ASCII
digits as follows:

LM

LR O,A

SL 4

LOAD BYTE WITH TWO
BCD DIGITS
SAVE BYTE IN SCRATCHPAD
BYTE 0

SR 4 ISOLATE LOW ORDER DIGIT
AS 1 ADD HIGH ORDER FOUR

ASCII BITS
LR 2,A SAVE IN SCRATCHPAD

BYTE 2
LR AO LOAD TWO BCD DIGITS
SR 4 ISOLATE HIGH ORDER DIGIT
AS 1 ADD HIGH ORDER FOUR

BITS
*CHARACTER OUTPUT SEQUENCE FOLLOWS HERE

This instruction sequence assumes that scratch pad byte 0 is
available for temporary storage and that scratch pad byte 1
contains H'30'. Refer to Appendix B. A decimal digit becomes
an ASCII character as follows:

7 6 5 4 3 2 1 0 Bit No.
0011XXXX

-"--"-L r
L Decimal digit, 0000 through 1001

This code identifies an ASCII decimal digit

10-1

If scratch pad byte 0 is not, available, any other byte may be
used for data storage.

If scratch pad byte 1 is not available, any other scratchpad
byte, or the immediate instruction:

AI H'30'

may be used.

10.1.3 VariableText
It is possible to have a text generation program in ROM that
outputs variable text, temporarily stored in RAM. In other
words, a fixed ROM program outputs messages of variable
length and content. This is useful in word processing or human
dialog applications. For example, an Fa microprocessor may
drive a CRT used to collect data from convention attendees;
the text program described below allows the dialog that will
be displayed to be changed at any time, without changing the
text generation program.

The text table (labeled TEXT below) contains characters in
any mixed sequence.

The index table (labeled TIND below) consists of the following
3-byte sequence:

This variable text generation program uses two data tables:
a text table and an index table.

Bytes 1 and 2 - Displacement from TEXT to first character
to be output. If Byte 1 = H'FF', end of mes­
sage is indicated. Byte 1 displacement
cannot be H'FF'.

Byte 3 - Number of characters to be printed.

Messages are identified by number, starting at 1. A mes­
sage's number is its sequential location, as identified by H'FF'
codes in TIND.

Consider the following very simple example. The following
four messages are to be generated:

1) ENTER PRODUCT NUMBER:
2) NO SUCH PRODUCT RE-ENTER:
3) NUMBER OF UNITS:
4) PRODUCT SHIP DATE:

The following TEXT table will be needed:

RE-ENTERkSPRODUCT
kSNUMBER:kSNOkSSUCH
kSOFkSUNITS:SHIPkSD
ATE:kS

The following TrIO table will be needed: LR 10,A
LR OC,H

Byte No. Contents L3 LM LOAD NEXT CHARACTER TO
(Hexadecimal) (Hexadecimal) BE OUTPUT

0 ~\
Message 1 is 20 PI COUT OUTPUT CHARACTER

1 characters, starting at *ANY OUTPUT CODE MAY REPLACE THE CALL TO SUB-

Z 14 ; character 4 "ROUTINE COUT

3 FF End of message 1 DS 2 DECREMENT CHARACTER

4

~l
COUNTER

5 NO SUCH BNZ L3 RETURN FOR MORE

6 08 CHARACTERS

7

~l
XDC AT END OF MESSAGE

8 PRODUCT BR T10 SEGMENT, RESTORE TIND

9 08 ADDRESS TO DCO

A

~l
OUT END OF PROGRAM. ANY

B RE-ENTER OTHER INSTRUCTIONS MAY

C FOLLOW HERE

0 FF End of message 2
E

~l F NUMBER
10 06 TINO ORG X'08OO' ORIGIN ARBITRARILY

11

~l
SELECTED

12 OF UNITS DC H'oo' DISPLACEMENT TO HIGH

13 OA BYTE

14 FF End of message 3 DC H'03' DISPLACEMENT TO LOW

15

~l
BYTE

16 PRODUCT DC H'16' NUMBER OF CHARACTERS

17 08 IN THIS SEGM.ENT

18

~l
DC H'FF' END OF MESSAGE 1

19 SHIP DATE:
1A OB
1B FF End of message 4

DC H'OB'
The following program assumes that the message number DC H'FF'
is in the accumulator. The program generates the specified
message.

TGEN LR O,A SAVE MESSAGE NUMBER 10.2 MULTIBYTE ADDITION AND
IN BYTE 0 SUBTRACTION

DCI TIND LOAD TEXT INDEX STARTING
ADDRESS 10.2.1 16-Bit. Binary Addition and Subtraction

L1 DS 0 DECREMENT MESSAGE
COUNTER The following program adds a 16-bit value in scratchpad

BZ T10 MESSAGE FOUND bytes 1 (high) and 0 (low) to another 16-bit value in scratch-

L2 LM SEEK NEXT H'FF' BYTE IN pad bytes 3 (high) and 2 (low), as follows:

TIND
COM
BNZ L2 BYTE LOADED IS NOT H'FF'
BR L 1 BYTE LOADED IS H'FF' LR A.O LOAD LOW ORDER

T10 LM MESSAGE FOUND. LOAD AUGEND BYTE
LR O,A NEXT THREE BYTES OF TIND AS 2 ADD LOW ORDER
COM AND SAVE IN SCRATCHPAD ADDEND BYTE
BZ OUT BYTES 0, 1 AND 2. TEST LR 2,A SAVE ANSWER
LM FIRST BYTE FOR H'FF' LR A,1 LOAD HIGH ORDER

SIGNIFYING END OF AUGEND BYTE
MESSAGE LNK ADD ANY CARRY

LR 1,A BNO A1 IF NO OVERFLOW,
LM CONTINUE
LR 2,A BR ERROR MAKE ERROR EXIT FOR
XDC SAVE T!ND ADDRESS!N DC1 CARRY
DCI TEXT LOAD TEXT ADDRESS INTO A1 AS 3 ADD HIGH ORDER

DCO ADDEND BYTE
LR A,O ADD SCRATCH PAD BYTES LR 3,A SAVE ANSWER
ADC 1 AND 0 TO DCO BNO NEXT IF NO OVERFLOW,
LR H,DC CONTINUE
LR A,10 BR ERROR MAKE ERROR EXIT FOR
AS 1 CARRY

I

To perform 16-bit binary subtraction, the two's complement To perform multibyte decimal subtraction, the routine should
of the 16-bit value in scratch pad bytes 1 and 0 is added to be changed as follows:
the 16-bit value in H. Instructions required are as follows:

LR DC,H MOVE SUBTRAHEND TO DC BUFA EQU H'0838' THE CONTENTS OF BUFA
LR AO LOAD LOW ORDER BYTE BUFB EQU H'0920' AND BUFB ARE ADDED. THE

OF MINUEND BUFC EQU H'077C' RESllLT IS STORED IN BUFC.
COM COMPLEMENT IT CNT H'OA' 10 B','TE BUFFERS ARE
ADC ADD TO SUBTRAHEND ASSUMED.
LIS ADD 1 TO SUBTRAHEND
ADC
LR H,DC RESTORE PARTIAL SUM TO H
LR A1 LOAD HIGH ORDER BYTE ONE LIS CNT USE SCRATCHPAD

OF MINUEND TWO LR O,A REGISTER 0 AS A COUNTER
COM COMPLEMENT THREE DCI BUFC SAVE THE ANSWER BUFFER
AS 10 ADD HU TO ACCUMULATOR FOUR LR Q,DC STARTING ADDRESS IN Q
LR 10,A STORE ANSWER BACK FIVE DCI BUFA SAVE THE SOURCE BUFFER

SIX XDC ADDRESSES IN DCO
AND DC1

10.2.2 Multibyte Binary or Decimal Addition and
Subtraction SEVEN DCI BUFB

Subroutine MADD, in any of the forms and variations de- EIGHT LI H'66' LOAD IMMEDIATE H'66'
scribed in Section 7, performs multibyte binary addition. LR 2,A AND SAVE FOR LATER USE

LIS 1 INITIALLY SET CARRY TO 1
LOOP LR 8,A SCRATCHPAD BYTE 8 USED

To perform multibyte binary subtraction make changes as TO SAVE CARRY
follows. (Refer to the program version in Section 7.2.2): LM LOAD SUBTRAHEND INTO

ACCUMULATOR
Replace COM

ELEV XDC ADDRESS MINUEND
EIGHT COM INITIALLY CLEAR THE AMD ADD MINUEND

CARRY BIT LR J,W SAVE STATUS
LR J,W AS 8 ADD PRIOR BYTE'S CARRY

LOOP LM ASD 2 DECIMAL CORRECT BY
LR W,J ADDING H'66'

NINE LNK NNTN BNC TWTY+1 TEST IF DECIMAL CORRECT
CREATES A CARRY

with: TWTY LR J,W IF IT DOES, SAVE CARRY
THRT XDC READDRESS AUGEND

EIGHT LI H'FF' INITIALLY SET THE CARRY BUFFER
INC BIT BY LOADING H'FF' INTO

A, THEN INCREMENTING FRTN LR H,DC SAVE AUGEND ADDRESS

LR J,W SAVE STATUS TO FORCE IN H

TWOS COMPLEMENT FFTN LR DC,Q LOAD ANSWER BUFFER

LOOP LM LOAD NEXT BYTE ADDRESS

COM COMPLEMENT THE SXTN ST STORE THE ANSWER

ACCUMULATOR SVTN LR Q,DC SAVE ANSWER BUFFER

LR W,J RESTORE STATUS ADDRESS IN Q

NINE LNK ADD CARRY, IF PRESENT EGTN LR DC,H MOVE AUGEND ADDRESS
BACK TO H

LIS 2 LOAD CARRY FROM AMD
NS 9 OR ASD AND WITH SAVED

To perform multibyte decimal addition, referring again to the STATUS IN J
multibyte addition program as described in Section 7.2.2, SR SAVE IN SCRATCHPAD
replace BYTE 1

TWT1 DS 0 DECREMENT COUNTER
BNZ LOOP RETURN FOR MORE

TWEL AM ADD CORRESPONDING
ADDEND BYTE 10.3 MULTIPLICATION

There are a number of possible multiplication routines.
with:

Consider first the binary multiplication of two 8-bit, positive
TWEL AI H'66' PRIME AUGEND FOR numbers (in scratch pad bytes 0 and 1) to give a 16-bit prod-

DECIMAL ADDITION duct in scratchpad bytes 7 (high) and 6 (low). The following
AMD ADD ADDEND DECIMAL program performs the required multiplication:

10-3

*BINARY MULTIPLY SUBROUTINE
*SCRATCH REG 1 CONTAINS MULTIPLIER
*SCRATCH REG 2 CONTAINS MULTIPLICAND
"SCRATCH REGS 6 AND 7 CONTAIN PRODUCT (SR7=MSB)
BMPY LIS 8 INITIALIZE COUNTER TO 8

BMP1

BMP2

LR 5,A
US 0
LR 6,A
LR 7,A
LR A6
AS 6
LR 6,A
LR A7
LNK
AS
LR
LR
AS
LR
BNC

LR
AS
LR
LR
LNK
LR
OS
BNZ

7
7,A
A1
1
1,A
BMP2

A2
6
6,A
A7

7,A
5
BMP1

ZERO PRODUCT

SHIFT PARTIAL
PRODUCT LEFT 1

SHIFT MULTIPLIER
LEFT 1, BY ADD
IF CARRY IF SET
ADD MULTIPLICAND TO
PRODUCT
ADD
MULTIPLICAND
TO
PRODUCT

DECREMENT COUNT
NOT FINI, REPEAT

The above program occupies 26 bytes and executes in a maxi­
mum of 373 MS. Contrast this with the program in Section
9.3.3 which occupies just 12 bytes, but executes in between
20 M sand 1800.5 MS.

Very fast decimal multiplication can be achieved using table
lookups. Consider a 2-digit decimal number in scratch pad
byte 0, multiplied by a 2-digit decimal number in scratch pad
byte 1, to give a 4-digit answer in scratchpad bytes 7 (high)
and 6 (low). The routine uses 100 bytes of ROM, to hold the
following table:

TABX+OO 01 0203040506070809 OA OB OC 00 OE OF
holds: 00 00 00 00 00 00 00 00 00 00 Not Used

T ABX + 1 0 11 12 13 14 15 1 6 17 18 19 1 A 1 B 1 C 10 1 E 1 F
holds: 00 01 02 03 04 05 06 07 08 09 Not Used

TABX+20 21 2223242526272829 2A 2B 2C 20 2E 2F
holds: 00 02 04 06 08 10 1 2 14 16 18 Not Used

TABX+30 31 3233343536373839 3A 3B 3C 3D 3E 3F.
holds: 00 03 06 09 12 15 18 21 24 27 Not Used

TABX+40 41 4243444546474849 4A 4B 4C 40 4E 4F
holds: 00 04 08 12 16 20 24 28 32 36 Not Used

TABX+fiO 51 52 53 54 55 56 57 58 59 5,6, 58 5C 5D 5E 5F
holds: 00 05 10 15 20 25 30 35 40 45 Not Used

TABX+60 61 6263 64656667 68 69 6A 6B 6C 6D 6E 6F
holds: 00 06 12 18 24 30 36 42 48 54 Not Used

TABX+70 71 72 73 74757677 78 79 7A 7B 7C 7D 7E 7F
holds: 00 07 14 21 28 35 42 49 56 63 Not Used

IVA

TABX+80 81 8283848586878889 8A 8B 8C 80 8E 8F
holds: 00 08 16 24 32 40 48 56 64 72 Not Used

TABX+90 91 9293949596979899 9A 9B 9C 90 9E 9F
holds: 00 09 1827 3645 5463 72 81 Not Used

All numbers above are hexadecimal. Suppose TABX is equated
to H'2000'; then byte H'2oo8' contains H'OO'; byte H'2024'
contains H'08'; byte H'2094' contains H'36'; etc.

The table lookup proceeds as follows:

LR
SL
SR
LR
LR
SL
AS

DCI

LR

ADC
LM

LR

LR
SR
LR
LR
SR
SL
AS

LR

ADC
. LM

LR

LR
SL
AS

LR
ADC
LM
LR
SL
AI
ASD

'n
LR
LR
SR

LR
LNK

A,O
4
4
2,A
A1
4
2

TABX

H,DC

6,A

A,O
4
3,A
A,1
4
4
3

DC,H

7,A

A,1
4
3

DC,H

3,A
4
H'66'
6

1'''1 ..J,vv

6,A
A3
4

W,J

ISOLATE MULTIPLIER
LOW ORDER DIGIT

STORE IN BYTE 2
LOAD MULTIPLICAND
ISOLATE LOW ORDER DIGIT
ADD MULTIPLIER LOW
ORDER DIGIT X16
LOAD TABLE BASE
ADDRESS
SAVE BASE FOR FURTHER
USE
ADD ACCUMULATOR INDEX
LOAD PRODUCT FROM
TABLE
STORE IN LOW ORDER
BYTE OF ANSWER
LOAD MULTIPLIER
ISOLATE HIGH ORDER DIGIT
SAVE IN BYTE 3
LOAD MULTIPLICAND
ISOLATE HIGH ORDER DIGIT

ADD MULTIPLIER HIGH
ORDER DIGIT
LOAD TABLE BASE
ADDRESS
ADD ACCUMULATOR INDEX
LOAD PRODUCT FROM
TABLE
STORE IN HIGH ORDER BYTE
OF ANSWER
LOAD LOW ORDER DIGIT OF
MULTIPLICAND
ADD HIGH ORDER DIGIT OF
MULTIPLIER
OBTAIN PRODUCT

SAVE iN BYTE 3
ADD LOW ORDER DIGIT TO

HIGH ORDER DIGIT OF
BYTE 6

ISOLATE HIGH ORDER DIGIT
OF PRODUCT IN LOW
ORDER POSITION

OF ACCUMULATOR. ADD
LINK

I
I

I

AI H'66' LR W,J
ASD 7 ADD HIGH ORDER BYTE OF LNK OF ACCUMULATOR.

ANSWER ADD LINK
LR 7,A RESTORE HIGH ORDER BYTE AI H'66'

OF ANSWER ASD 7 ADD HIGH ORDER BYTE
LR A,1 LOAD HIGH ORDER DIGIT OF ANSWER
SR 4 OF MULTIPLICAND LR 7,A RESTORE HIGH ORDER
SL 4 BYTE OF ANSWER
AS 2 Al - 'c-OW ORDER DIGIT OF

MULTIPLIER More compact versions of this program could be written, but
LR DC,H OBTAIN PRODUCT they would take longer to execute.
ADC
LM SAVE IN BYTE 3 10.4 DIVISION
LR 3,A Division of positive numbers can be performed by a program
SL 4 ADD LOW ORDER DIGIT TO using successive subtraction as follows:
AI H'66'
ASD 6 HIGH ORDER DIGIT OF 1) Zero the answer

BYTE 6 2) Subtract the divisor from the dividend
LR J,W 3) Test for a negative result
LR 6,A 4) For a positive result, increment the answer and return
LR A,3 ISOLATE HIGH ORDER DIGIT to 2
SR 4 OF PRODUCT IN LOW ORDER 5) For a negative result, the division is finished. Add the

POSITION divisor to the dividend to obtain remainder.

10-5

I
I

I

APPENDIX A - BINARY NUMBER SYSTEM

The binary number system is a system of counting which
utilizes the digits 1 and a to represent numeric quantities.
The binary digits, referred to as BITs, are arranged in a se­
quence of decreasing significance based upon powers of two.
Each bit is numbered. By convention, the most significant
bit is on the left, and the least significant bit is on the right.

For example, consider the binary number:

Binary number
Bit number
Power of base two
Significance

a 1 1 a a 1
5 4 3 2 1 a
25 24 23 22 2' 20

32 16 8 4 2 1

As in any number system, the quantity represented by a bi­
nary number is calculated by multiplying each digit by its
significance, then summing products.

The binary number example is evaluated as follows:

Quantity = 0*25+1 *24+1 *23+0*22+0*2'+1 *20
= a + 16 + 8 + a + a + 1
= 25

Binary numbers may be used to represent any real number
positive or negative.

Non-integer numbers are represented in the same binary
format shown above except that the significance of the bits
changes. To indicate the correct interpretation of a binary
number, a "binary point" (which is analogous to a decimal
point in the decimal number system) is inserted. Consider
the binary number below:

Binary number
Bit number
Power of base two
Significance

a 1
6 5

1 a a 1 1
4 3 2 1 a

25 24 23 22 2' 20 2-'
32 16 8 4 2 1 V2

The number is evaluated as follows:

Quantity = 0*25+1 *24+1 *23+0*22+0*2'+1 *20+1 *2-'
= a + 16 + 8 + a + a + a + .5
= 25.5

The bits of a binary number may be grouped in fours and trans­
posed into the hexadecimal number system which includes
the following digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

The following example illustrates the procedure:

10011100 Binary number

10011100 -.---
9 A Hexadecimal number

In this manual, hexadecimal numbers are written within quo­
tation marks and preceded by an H. Consider the example:

H'27', H'AE1 0', H'F'

A-l

The octal number system includes the following digits:

0, 1, 2, 3, 4, 5, 6, 7.

Binary numbers are transposed into octal numbers by arrang­
ing the bits into groups of three as illustrated below:

101001 Binary number,

101 001 -.- -.-

5 Octal number

The Indirect Scratchpad Address Register (ISAR) uses two
octal digits to address 64 scratch pad registers.

Octal numbers are written within quotation marks preceded
by an 0 as follows:

0'27', 0'3', 0'3270'

Table A-1 illustrates the relationship between binary, decimal.
hexadecimal and octal numbers.

BINARY DECIMAL HEXADECIMAL OCTAL

0000 a a a
a a a 1 1 1 1
a a 1 a 2 2 2
a a 1 1 3 3 3
a 1 a a 4 4 4
a 1 a 1 5 5 5
a 1 1 a 6 6 6
a 1 1 1 7 7 7
1 000 8 8 10
1 a a 1 9 9 11
1 a 1 a 10 A 12
1 011 11 B 13
1 1 a a 12 C 14
1 1 a 1 13 D 15
1 1 1 a 14 E 16
1 1 1 1 15 F 17

Table A-1. Binary, Decimal, Hexadecimal and Octal Numbers

THE BYTE
The Fairchild F8 microprocessor is an 8-bit device, which
means that data is handled in eight binary digit (or one byte)
units. An 8-bit byte may represent 256 (28) possible permu­
tations of eight digits.

When referencing the 8-bit byte, this manual has established
the following conventions.

The bits are numbered from right to left with numbers a
through 7. The most significant bit is on the left; the least
significant bit is on the right.

Bit Number 7 6 543 2 1 a
I I I I I I I I I
t t

Most significant bit Least significant bit

An 8-bit byte may represent an instruction object code, an
ASCII code or a data word.

An 8-bit data word may be interpreted as a signed binary
number with a value of from 127 to -128 as illustrated in
Tabl~ A-2

It will become clear after reading the sections which follow
on binary arithmetic, that the signed binary number system
is a natural fallout of two's complement subtraction.

BINARY DECIMAL HEXADECIMAL

10000000 -128 80
10000001 -127 81
10000010 -126 82

- -

- -

- -
11111110 -2 FE
11111111 -1 FF
OOOOOOOO 0 0
00000001 1 1
00000010 2 2

- -

- -

- -

01111101 +125 70
01111110 +126 7E
01111111 +127 7F

Table A-2. Signed Binary Numeric Interpretations

Binary Number Addition

Addition of binary numbers is accomplished by following
three rules.

1) 1 bit
+ 1 bit
0 bit + a carry bit to the next significant bit

2) bit
+ 0 bit ,- bit

3) 0 bit
+ 0 bit
0 bit

Consider the addition of two positive 8-bit binary numbers:

Bit Number
H'93'

7 6 5 432 1 0
100 1 001 1

"'H'AS' 1 0 0 0 0 0
H'3B' [!] 0 0 1 1 1 0 1 1

• Carry Bit

The carry bit is set to indicate that the results of the addition
cannot be represented in the existing 8-bits. However, if the
carry bit represents the next higher significant bit. the results
are valid.

In a multiple byte addition, the carry bit from the most signif­
icant bit position of a byte is added to the least significant

A,-2

bit of the next (higher order) byte as follows:

H'13E2'
+H'4747'
H'5B29'

000 1 001 1
o 1 000 1 1 1

o 1 0 1 1 0 1 ~/1

o"fo--T'~r-o~lT

Binary Number Subtraction

11100010
o 1 000 1 1 1
0010100 1

Subtracting a binary number is the same as adding the two'~
complement of the number.

The two's complement of a number is generated by comple­
menting the number (replacing 0 with 1 and 1 with 0) and
adding one to the complement. Here is an example:

H'3C' 0 0 1 1 1 1 0 0
one's complement 1 1 0 0 0 0 1 1

1
two's complement 0 0 0 1 0 0

Observe that negative numbers in Table A-2 are the two's
complement of their positive equivalents. In this fashion, an
8-bit number can contain sign and value information for
numbers between 128 and -127.

When adding signed binary numbers, care must be taken to
indicate when the result exceeds the boundaries of the two's
complement notation. "

To exemplify the need for such indicators, consider some
simple examples using the set Of 3-bit signed binarynumbers
from 3 to -4.

Signed Binary Numbers

011
010
001
000
111
110
101
100

Decimal

3
2
1
o

-1
-2
-3
-4

Any number greater than 3 or less than -4 is outside the
boundaries of the set of 3-bit signed binary numbers.

-fhe addition of two numbers within this set may result in a
number which is not defined as part of the set.

Consider the addition of two numbers with like signs:

1) Bit No. 210 2) Bit No. 210
2 010 3 011

+ 1 001 + 1 001
3 01T 4 /100

no carry carry

3) Bit No. 210 4) Bit No. 210
-3 101 -3 101
-1 111 -2 110
=4 1~0 -5 1-..011

two carries carry

In example 1, no carry out of the two high order bits occured.
The result is defined and valid.

I
I
I

,

In example 2, carry out from the bit which precedes the sign
bit (carry out from bit 2) occurred. The result is undefined
and therefore invalid.

In example 3, a carry from bit 2 and 3 occurred. The result
is defined and valid.

In example 4, a carry from the sign bit occurred. The result
is undefined and invalid.

The explanation of the four examples illustrates the rules
which govern the error indication mechanism in the Fairchild
F8 microprocessor. If the addition of two 8-bit numbers causes
a result which is outside the boundary defined for 8-bit signed
binary numbers, (illustrated in Table A-1), an overflow status
bit is set.

The overflow status bit is defined as the EXCLUSIVE-OR of the
carry out of bit 6 and the carry out of bit 7. (EXCLUSIVE-OR is
defined later in this appendix.)

Consider binary number subtraction, (the addition of a binary
number to a two's complement number).

1) Bit No. 7 6 543 2 1 a
H'52' a 1 a 1 a a 1 a

two's complement 1010111 a

H'34' a a 1 1 a 1 a a
-H'52' 1 a 1 a 1 1 1 a
-H'18' @] 1 1 1 a a a 1 a

two's complement
H'18' a a a 1 1 a a a

2) Bit No. 7 6 543 2 1 a
H'2A' a a 1 a 1 a 1 a

two's complement 1101011 a

H'B6' a 1 1 a 1 a
-H'2A' 1 a 1 a 1 1 a
H'8A' IT] a a a 1 1 a a

In example 1, the subtrahend is larger than the minuend,
indicating a negative answer. In unsigned binary number
arithmetic, a negative result is indicated by no carry out of
the most significant bit and is in two's complement form.
There is no overflow because there is no carry out of either
bit 6 or bit 7.

In example 2, the subtrahend is smaller than the minuend
indicating a positive answer. In unsigned binary arithmetic,
a positive result is indicated by a carry from the most signif­
icant bit pOSition and is in straight binary form. There is no
overflow because there is a carry out of both bit 6 and bit 7.

Multiplication of binary numbers may be performed in two
ways: repetitive addition or in the fashion illustrated below,
which is similar to the long hand method for multiplying
decimal numbers:

Decimal

91
x 5
455

Binary

a 1 a 1 1
1 a 1

1 a 1 1 a 1 1
0000000
a 1 1 a 1 1
11000111

A-3

Division of binary numbers may be accomplished by repetitive
subtraction of one operand from another, or by an operation
similar to long hand division:

COMPUTER LOGIC

7
3~

111
11) 10101

11
100

11
11
11

--0

Assembly language instructions exist which perform logical
operations on operands. Three such logical operations are
described below (logical-OR, AND, and EXCLUSIVE-OR).

The logical-OR operation is illustrated for the two operands
I and J with the statement:

If I or J equals 1, then the result is 1. Otherwise, the result
is zero.

The symbol used to indicate the logical-OR operation is the
sign (V). Consider the logical-OR of two binary numbers:

A V B = C (read A "or" B equals C)

A 11010
B 01100
C 11110

The logical AND operation is illustrated for the two operands
I and J with the following statement:

If both I and J are 1, then the result is 1. Otherwise, the
result is zero.

The symbol used for the logical AND operation is (A).

Consider the logical AND of two binary numbers:

A A B = C (read A "and" B equals C)

A 11010
B 01100
C 01000

The logical EXCLUSIVE-OR operation is illustrated for the op­
erands I and J with the following statement:

If both I and J equal 1 or both I and J equal 0, the result is
zero, otherwise the result is 1.

The symbol used to indicate the logical EXCLUSIVE-OR
operation is a circled sign (CD).

Consider the logical EXCLUSIVE-OR of two binary numbers:

A CD B = C (read A "EXCLUSIVE-OR" with B equals C)

A 11010
B 01100
C 10110

I

APPENDIX B - ASCII CODES

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII

CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)

NULL 00 ACK 7C 1 31
SaM 01 Alt. Mode 7D 2 32
EOA 02 Rubout 7F 3 33
EOM 03 21 4 34
EaT 04 22 5 35
WRU 05 # 23 6 36
RU 06 $ 24 7 37
BELL 07 % 25 8 38
FE 08 & 26 9 39
H. Tab 09 27 A 41
Line Feed OA 28 B 42
v. Tab OB 29 C 43
Form OC 2A D 44
Return OD + 2B E 45
SO OE 2C F 46
SI OF 2D G 47
DCa 10 2E H 48
X-On 11 / 2F I 49
Tape Aux. On 12 3A J 4A
X-Off 13 3B K 4B
Tape Aux. Off 14 < 3C L 4C
Error 15 3D M 4D
Sync 16 > 3F N 4E
LEM 17 3F a 4F
SO 18 [5B p 50
S1 19 "- 5C Q 51
S2 1A] 5D R 52
S3 1B t 5E S 53
S4 1C 5F T 54
S5 1D @ 40 U 55
S6 1E blank 20 V 56
S7 1F 0 30 W 57

X 58
Y 59
Z 5A

8-1

I

APPENDIX C - CONVERSION TABLESjTlMER COUNTS

POWE RS 0 F TWO

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062
536 870 912 29 0.000 000001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 8D8 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 31 2 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4611686018427387904 62 0.000000000000 000 000 216 840 434 49710088680149056017398834228515625
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

C-l

TABLE OF POWERS OF SIXTEEN IO

16
n

1

16

256

4 096

65 536

1 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

152 921 504 606 846 976

n

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000

0.62500

0.39062

0.24414

0.15258

0.95367

0.59604

0.37252

0.23283

0.14551

0.90949

0.56843

0.35527

0.22204

0.13877

0.86736

00000 00000 00000 x 10

00000 00000 00000 x 10-1

50000 00000 00000 X 10-2

06250 00000 00000 x 10-3

78906 25000 00000 x 10-4

43164 06250 00000 x 10-6

64477 53906 25000 x 10-7

90298 46191 40625 x 10-8

06436 53869 62891 x 10-9

91522 83668 51807 x 10-10

47017 72928 23792 x 10- 12

41886 08080 14870 x 10-\3

13678 80050 09294 x 10- 14

46049 25031 30808 x 10-15

78780 78144 56755 x 10- 16

17379 88403 54721 x 10- 18

TABLE OF POWERS OF 1016

3

23

163

OEO

8AC7

A

64

o
1

2

3E8 3

2710 4

86AO 5

F 4240 6

98 9680 7

5F5 El00 8

3B9A

2 540B

17 4876

E8 04A5

918 4E72

5AF3

807E

8652

4578

B6B3

2304

107A

A4C6

6FCl

508A

A764

89E8

CAOO 9

E400 10

E800 11

1000 12

AOOO 13

4000 14

8000 15

0000 16

0000 17

0000 18

0000 19

1.0000

0.1999

0.28F5

0.4189

0.680B

0.A7C5

0.10C6

0.1.AD7

0.2AF3

0.44B8

0.60F3

O.AFEB

0.1197

0.lC25

0.2009

0.480E

0.734A

0.B877

0.1272

0.1083

0000 0000 0000

9999

C28F

9999

5C28

999A

F5C3 x 16- 1

374B C6A7 EF9E x 16-2

8BAC 710C B296 X 16-3

AC47 lB47 8423 X 16-4

F7 AO B5EO 8037 X 16-4

F29A BCAF 4858 X 16-5

10C4 6118 73BF X 16-6

2FAO

7F67

FFOB

9981

C268

3700

BE7B

CA5F

AA32

5001

C94F

l.-L

9B5A 52CC X 16-7

SEF6 EAOF X 16 8

CB24 AAFF X 16-9

20EA 1119 X 16-9

4976 81C2 X 16-10

4257

9058

6226

36A4

0243

B602

3604

5660

FOAE

B449

ABAl

AC35

X 16- 11

X 16- 12

X 16- 13

X 16- 14

X 16 -14

X 16- 15

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal. Hexadecimal Decimal

01000 4096 20000 131072
02 000 8192 30 000 196608
03 000 12288 40 000 262 144
04000 16384 50 000 327680
05000 20 480 60 000 393216
06 000 24576 70 000 458752
07 000 28672 80 000 524288
08 000 32768 90 000 589824
09 000 36864 AO 000 655360
OAOOO 40 960 BO 000 720 896
OB 000 45 056 CO 000 786432
OCOOO 49152 DO 000 851 968
00 000 53248 EO 000 917504
OE 000 57344 Fa 000 983040
OF 000 61440 100 000 1 048576
10 000 65536 200 000 2 097 152
11000 69632 300 000 3 145728
12000 73728 400 000 4194304
13 000 77 824 500 000 5242880
14000 81 920 600000 6291 456
15000 86 016 700000 7340032
16000 90112 800 000 8388608
17000 94208 900000 9437 184
18000 98304 AOO 000 10 485760
19000 102400 BOO 000 11 534336
lAOOO 106496 COO 000 12582912
lB 000 110592 000 000 13631 488
lC 000 114688 EOO 000 14680064
10 000 118784 Faa 000 15728640
1 E 000 122880 1 000 000 16777216
1 F 000 126976 2000 000 33554432

a 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

C·3

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

o 123

100 0256 0257 0258 0259
110 0272 0273 0274 0275
120 0288 0289 0290 0291

I 130 I
0304 0305 0306 0307

140 0320 0321 0322 0323
150 0336 0337 0338 0339
160 0352 0353 0354 0355
170 0368 0369 0370 0371

180 0384 0385 0386 0387
190 0400 0401 0402 0403
lAO 0416 0417 0418 0419
180 0432 0433 0434 0435

lCO 0448 0449 0450 0451
100 0464 0465 0466 0467
1EO 0480 0481 0482 0483
lFO 0496 0497 0498 0499

200 0512 0513 0514 0515
210 0528 0529 0530 0531
220 0544 0545 0546 0547
230 0560 0561 0562 0563

240 0576 0577 0578 0579
250 0592 0593 0594 0595
260 0608 0609 0610 0611
270 0624 0625 0626 0627

280 0640 0641 0642 0643
290 0656 0657 0658 0659
2AO 0672 0673 0674 0675

1
280 0688 0689 0690 0691

1

2CO 0704 0705 0706 0707
200 0720 0721 0722 0723
2EO 0736 0737 0738 0739
2FO 0752 0753 0754 0755

300 0768 0769 0770 0771
310 0784 0785 0786 0787
320 0800 0301 0802 0803
330 0816 0817 0818 0819

340 0832 0833 0834 0835

/350 / 0848 0849 0850 0851
360 0864 0865 0866 0867

1370 1 0880 0881 0882 0883

1380 1 0896 0897 0898 0899

I;: 1 ~~;
0913 0914 09i5
0929 0930 0931

380 0944 0945 0946 0947

3CO 0960 0961 0962 0963
300 0976 0977 0978 0979
3EO 0992 0993 0994 0995
3FO 1008 1009 1010 1011

4 5 6 7

0260 0261 0262 0263
0276 0277 0278 0279
0292 0293 0794 07%

~.-

0308 0309 0310 0311

0324 0325 0326 0327
0340 0341 0342 0343
0356 0357 0358 0359
0372 0373 0374 0375

0388 0389 0390 0391
0404 0405 0406 0407
0420 0421 0422 0423
0436 0437 0438 0439

0452 0453 0454 0455
0468 0469 0470 0471
0484 0485 0486 0487
0500 0501 0502 0503

0516 0517 0518 0519
0532 0533 0534 0535
0548 0549 0550 0551
0564 0565 0566 0567

0580 0581 0582 0583
0596 0597 0598 0599
0612 0613 0614 0615
0628 0629 0630 0631

0644 0645 0646 0647
0660 0661 0662 0663
0676 0677 0678 0679
0692 0693 0694 0695

0708 0709 0710 0711
0724 0725 0726 0727
0740 0741 0742 0743
0756 0757 0758 0759

0772 0773 0774 0775
0788 0789 0790 0791
0804 0805 0806 0807
0820 0821 0822 0823

0836 0837 0838 0839
0852 0853 0854 0855
0868 0869 0870 0871
0884 0885 0886 0887

0900 0901 0902 0903
0916 0917 0918 0919
0932 0933 0934 0935
0948 0949 0950 0951

0964 0965 0966 0967
0980 0981 0982 0983
0996 0997 0998 0999
1012 1013 1014 1015

r_d

8 9 A 8

-- -

0264 0265 0266 0267
0280 0281 0282 0283
0?Q6 n297 0298 0299
0312 0313 0314 0315

0328 0329 0330 0331
0344 0345 0346 0347
0360 0361 0362 0363
0376 0377 0378 0379

0392 0393 0394 0395
0408 0409 0410 0411
0424 0425 0426 0427
0440 0441 0442 0443

0456 0457 0458 0459
0472 0473 0474 0475
0488 0489 0490 0491
0504 0505 0506 0507

0520 0521 0522 0523
0536 0537 0538 0539
0552 0553 0554 0555
0568 0569 0570 0571

0584 0585 0586 0587
0600 0601 0602 0603
0616 0617 0618 0619
0632 0633 0634 0635

0648 0649 0650 0651
0664 0665 0666 0667
0680 0681 0682 0683
0696 0697 0698 0699

0712 0713 0714 0715
0728 0729 0730 0731
0744 0745 0746 0747
0760 0761 0762 0763

0776 0777 0778 0779
0792 0793 0794 07 95
0808 0809 0810 0811
0824 0825 0826 0827

0840 0841 0842 0843
0856 0857 0858 0859
0872 0873 0874 0875
0888 0889 0890 0891

0904 0905 0906 0907
0920 0921 0922 0923
0936 0937 0938 0939
0952 0953 0954 0955

0968 0969 0970 0971
0984 0985 0986 0987
1000 1001 1002 1003
1016 1017 1018 1019

C o E F

0268 0269 0270 0271
0284 0285 0286 0287
0300
0316

0331
0348
0364
0380

0396
0412
0428
0444

0460
0476
0492
0508

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
0684
0700

0716
0732
0748
0764

0780
0796
0812
0828

0844
0860
0876
0892

0908
0924
0940
nncc
V;;;J;"JU

n')n1
V~Vf

0317

0333
0349
0365
0381

0397
0413
0429
0445

0461
0477
0493
0509

0525
0541
0557
0573

0589
0605
0621
0637

0653
0669
0685
0701

0717
0733
0749
0765

0781
0797
0813
0829

0845
0861
0877
0893

0909
0925
0941
nnl:"l'
U::J;.JI

0302
0318

0334
0350
0366
0382

0398
0414
0430
0446

0462
0478
0494
0510

0526
0542
0558
0574

0590
0606
0622
0638

0654
0670
0686
0702

0718
0734
0750
0766

0782
0798
0814
0830

0846
0862
0878
0894

0910
0926
0942
U::KIO

I"\~.n~
VJUJ I

0319

0335
0351
0367
0383

0399
0415
0431
0447

0463
0479
0495
0511

0527
0543
0559
0575

0591
0607
0623
0639

0655
0671
0687
0703

0719
0735
0751
0767

0783
0799
0815
0831

0847
0863/
0879

1 0895

1 0911
0927

1
0943
0959

0972 0973 0974 0975
0988 0989 0990 0991
1004 1005 1006 1007
1020 1021 1022 1023

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1 H~5 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

C-5

I

700
710
720
730

740
750
760
770

780
790
7AO
780

7CO
7DO
7EO
7FO

800
810
820
830

840
850
860
87(1

880
890
8AO
8BO

8CO
8DO
8EO
8FO

900
910
920
930

940
950
960
970

980
990
9AO
980

9CO
9DO
9EO
9FO

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

o 2 3

1792 1793 1794 1795
1808 1809 1810 1811
1824 1825 1826 1827

I

1842 1843 1840 1841

1856 1857 1858 1859
1872 1873 1874 1875
1888 1889 1890 1891
1904 1905 1906 1907

1920 1921 1922 1923
1936 1937 1938 1939
1952 1953 1954 1955
1968 1969 1970 1971

1984 1985 1986 1987
2000 2001 2002 2003
2016 2017 2018 2019
2032 2033 2034 2035

2048 2049 2050 2051
2064 2065 2066 2067
2080 2081 2082 2083
2096 2097 2098 2099

2112 2113 2114 2115
2128 2129 2130 2131
2144 2145 2146 2147
2160 2161 2162 2163

2176 2177 2178 2179
2192 2193 2194 2195
2208 2209 2210 2211
2224 2225 2226 2227

2240 2241 2242 2243
2256 2257 2258 2259
2272 2273 2274 2275
2288 2289 2290 2291

2304 2305 2306 2307
2320 2321 2322 2323
2336 2337 2338 2339
2352 2353 2354 2355

2368 2369 2370 2371

1

2384 2385 2386 2387
2400 2401 2402 2403
2416 2417 2418 2419

1
2432 2433 2434 2435

1

2448 2449 2450 245j

2464 2465 2466 2467
2480 74Rl 2482 2483

2496 2497 2498 2499
2512 2513 2514 2515
2528 2529 2530 2531
2544 2545 2546 2547

4 5 6 7

1796 1797 1798 1799
1812 1813 1814 1815
1828 1829 1830 lR~l

1844 1845 1846 1847

1860 1861 1862 1863
1876 1877 1878 1879
1892 1893 1894 1895
1908 1909 1910 1911

1924 1925 1926 1927
1940 1941 1942 1943
1956 1957 1958 1959
1972 1973 1974 1975

1988 1989 1990 1991
2004 2005 2006 2007
2020 2021 2022 2023
2036 2037 2038 2039

2052 2053 2054 2055
2068 2069 2070 2071
2084 2085 2086 2087
2100 2101 2102 2103

2116 2117 2118 2119
2132 2133 2134 2135
2148 2149 2150 2151
2164 2165 2166 2167

2180 2181 2182 2183
2196 2197 2198 2199
2212 2213 2214 2215
2228 2229 2230 2231

2244 2245 2246 2247
2260 2261 2262 2263
2276 2277 2278 2279
2292 2293 2294 2295

2308 2309 2310 2311
2324 2325 2326 2327
2340 2341 2342 2343
2356 2357 2358 2359

2372 2373 2374 2375
2388 2389 2390 2391
2404 2405 2406 2407
2420 2421 2422 2423

2436 2437 2438 2439
2452 2453 2454 2455
2468 2469 2470 2471
2484 2485 7486 2487

2500 2501 2502 2503
2516 2517 2518 2519
2532 2533 2534 2535
2548 2549 2550 2551

r:-o

8 9 A 8

1800 1801 1802 1803
1816 1817 1818 1819
1R3? 1B33 1834 1835 ,- -

1848 1849 1850 1851

1864 1865 1866 1867
1880 1881 1882 1883
1896 1897 1898 1899
1912 1913 1914 1915

1928 1929 1930 1931
1944 1945 1946 1947
1960 1961 1962 1963
1976 1977 1978 1979

1992 1993 1994 1995
2008 2009 2010 2011
2024 2025 2026 2027
2040 2041 2042 2043

2056 2057 2058 2059
2072 2073 2074 2075
2088 2089 2090 2091
2104 2105 2106 2107

2120 2121 2122 2123
2136 2137 2138 2139
2152 2153 2154 2155
2168 2169 2170 2171

2184 2185 2186 2187
2200 2201 2202 2203
2216 2217 2218 2219
2232 2233 2234 2235

2248 2249 2250 2251
2264 2265 2266 2267
2280 2281 2282 2283
2296 2297 2298 2299

2312 2313 2314 2315
2328 2329 2330 2331
2344 2345 2346 2347
2360 2361 2362 2363

2376 2377 2378 2379
2392 2393 2394 2395
2408 2409 2410 2411
2424 2425 2471) 2427

2440 2441 2442 2443
2456 2457 2458 2459
2472 2473 2474 2475
2488 2489 2490 " ... n1 L'"+::>I

2504 2505 2506 2507
2520 2521 2522 2523
2536 2537 2538 2539
2552 2553 2554 2555

C D E F

1804 1805 1806 18071
1820 1821 1822 1823
1836 1837 1838 iR1y, -_ -

1852 1853 1854 1855

1868 1869 1870 1871
1884 1885 1886 1887
1900 1901 1902 1903
1916 1917 1918 1919

1932 1933 1934 1935
1948 1949 1950 1951
1964 1965 1966 1967
1980 1981 1982 1983

1996 1997 1998 1999
2012 2013 2014 2015
2028 2029 2030 2031
2044 2045 2046 2047

2060 2061 2062 2063
2076 2077 2078 2079
2092 2093 2094 2095
2108 2109 2110 2111

2124 2125 2126 2127
2140 2141 2142 2143
2156 2157 2158 2159
2172 2173 2174 2175

2188 2189 2190 2191
2204 2205 2206 2207
2220 2221 2222 2223
2236 2237 2238 2239

2252 2253 2254 2255
2268 2269 2270 2271
2284 2285 2286 2287
2300 2301 2302 2303

2316 2317 2318 2319
2332 2333 2334 2335
2348 2349 2350 2351
2364 2365 2366 2367

2380 2381 2382 2383
2396 2397 2398 2399
2412 2413 2414 2415
2428 2429 2430 2431

2444 2445 2446 2447
2460 2461 2462 2463
2476 2477 2478 2479
2492 2493 2494 249b

2508 2509 2510 2511
2524 2525 2526 2527
2540 2541 2542 2543
2556 2557 2558 2559

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
B80 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
t3FO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

C-7

0

DOO 3328
Dl0 3344
D20 3360

, D30 13376

D40 3392
D50 3408
D60 3424
D7e 3440

D80 3456
D90 3472
DAO 3488
DBO 3504

DCO 3520
CCO 3536
OEO 3552
DFO 3568

EOO 3584
El0 3600
E20 3616
E30 3632

E40 3648
E50 3664
E60 3680
E70 3696

E80 3712
E90 3728
EAO 3744
EBO 3760

1 ECO 3776
EDO 3792
EEO 3808
EFO 3824

FOO 3840
FlO 3856
F20 3872
F30 3888

F40 3904
1=

1

,50 I 3920
F60 I 3936

I, F70 13952

F80 13968
F90 3984

FAO 14000
FBO 4016

FCO 4032
FDO 4048
FEO 4064
FFO 4080

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

1 2 3

3329 3330 3331
3345 3346 3347
3361 3362 3363
""1"\""'''' 3378 3379 .l.ll I

3393 3394 3395
3409 3410 3411
3425 3426 3427
3441 3442 3443

3457 3458 3459
3473 3474 3475
3489 3490 3491
3505 3506 3507

3521 3522 3523
3537 3538 3539
3553 3554 3555
3569 3570 3571

3585 3586 3587
3601 3602 3603
3617 3618 3619
3633 3634 3635

3649 3650 3651
3665 3666 3667
3681 3682 3683
3697 3698 3699

3713 3714 3715
3729 3730 3731
3745 3746 3747
3761 3762 3763

3777 3778 3779
3793 3794 3795
3809 3810 3811
3825 3826 3827

3841 3842 3843
3857 3858 3859
3873 3874 3875
3889 3890 3891

3905 3906 3907
1 392, 3922 3923

3937 3938 3939
3953 3954 3955

3969 3970 3971
3985 3986 3987
4001 4002 4003
4017 4018 4019

4033 4034 4035
4049 4050 4051
4065 4066 4067
4081 4082 4083

4 5 6 7

3332 3333 3334 3335
3348 3349 3350 3351
3364 3365 3366 3367
3380 3381 3382 3383

3396 3397 3398 3399
3412 3413 3414 3415
3428 3429 3430 3431
3444 3445 3446 3447

3460 3461 3462 3463
3476 3477 3478 3479
3492 3493 3494 3495
3508 3509 3510 3511

3524 3525 3526 3527
3540 3541 3542 3543
3556 3557 3558 3559
3572 3573 3574 3575

3588 3589 3590 3591
3604 3605 3606 3607
3620 3621 3622 3623
3636 3637 3638 3639

3652 3653 3654 3655
3668 3669 3670 3671
3684 3685 3686 3687
3700 3701 3702 3703

3716 3717 3718 3719
3732 3733 3734 3735
3748 3749 3750 3751
3764 3765 3766 3767

3780 3781 3782 3783
3796 3797 3798 3799
3812 3813 3814 3815
3828 3829 3830 3831

3844 3845 3846 3847
3860 3861 3862 3863
3876 3877 3878 3879
3892 3893 3894 3895

3908 3909 3910 3911
" ~ ~ .l924 3920 3920 3927
3940 3941 3942 3943
3956 3957 3958 3959

3972 3973 3974 3975
3988 3989 3990 3991
4004 4005 4006 4007
4020 4021 4022 4023

4036 4037 4038 4039
4052 4053 4054 4055
4068 4069 4070 4071
4084 4085 4086 4087

r-R

8 9 A B

3336 3337 3338 3339
3352 3353 3354 3355
3368 3369 3370 3371
3384 3385 3386 3387

3400 3401 3402 3403
3416 3417 3418 3419
3432 3433 3434 3435
3448 3449 3450 3451

3464 3465 3466 3467
3480 3481 3482 3483
3496 3497 3498 3499
3512 3513 3514 3515

3528 3529 3530 3531
3544 3545 3546 3547
3560 3561 3562 3563
3576 3577 3578 3579

3592 3593 3594 3595
3608 3609 3610 3611
3624 3625 3626 3627
3640 3641 3642 3643

3656 3657 3658 3659
3672 3673 3674 3675
3688 3689 3690 3691
3704 3705 3706 3707

3720 3721 3722 3723
3736 3737 3738 3739
3752 3753 3754 3755
3768 3769 3770 3771

3784 3785 3786 3787
3800 3801 3802 3803
3816 3817 3818 3819
3832 3833 3834 3835

3848 3849 3850 3851
3864 3865 3866 3867
3880 3881 3882 3883
3896 3897 3898 3899

3912 3913 3914 3915
3928 3929 3930 3931
3944 3945 3946 3947
3960 3961 3962 3963

3976 3977 3978 3979
3992 3993 3994 3995
4008 4009 4010 4011
4024 4025 4026 4027

4040 4041 4042 4043
4056 4057 4058 4059
4072 4073 4074 4075
4088 4089 4090 4091

C D E

3340 3341 3342
3356 3357 3358
3372 3373 3374
3388 3389 3390

3404 3405 3406
3420 3421 3422
3436 3437 3438
3452 3453 3454

3468 3469 3470
3484 3485 3486
3500 3501 3502
3516 3517 3518

3532 3533 3534
3548 3549 3550
3564 3565 3566
3580 3581 3582

3596 3597 3598
3612 3613 3614
3628 3629 3630
3644 3645 3646

3660 3661 3662
3676 3677 3678
3692 3693 3694
3708 3709 3710

3724 3725 3726
3740 3741 3742
3756 3757 3758
3772 3773 3774

3788 3789 3790
3804 3805 3806
3820 3821 3822
3836 3837 3838

3852 3853 3854
3868 3869 3870
3884 3885 3886
3900 3901 3902

3916 3917 3918
3932 3933 3934
3948 3949 3950
3964 3965 3966

3980 3981 3982
3996 3997 3998
4012 4013 4014
4028 4029 4030

F

3343
3359
3::175 ,
3391

3407
3423
3439
3455

3471
3487
3503
3519

3535
3551
3567
3583

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903

3919 I

3935
1 3951

3967
1

3983
1 ~aaa

~~;~ 1

4031

4044 4045 4046 4047
4060 4061 4062 4063
4076 4077 4078 4079
4092 4093 4094 4095

TIMER COUNTS

CONTENTS COUNTS CONTENTS COUNTS CONTENTS COUNTS CONTENTS COUNTS
OF TO OF TO OF TO OF TO

COUNTER INTERRUPT COUNTER INTERRUPT COUNTER INTERRUPT COUNTER INTERRUPT
FE 254 40 189 02 124 9F 59
FD 253 9A 188 A5 123 3D 58
F8 252 34 187 48 122 7C 57
F7 251 69 186 96 121 F8 56
EE 250 03 185 20 120 Fl 55
DC 249 A7 184 58 119 E2 54
88 248 4F 183 87 118 C5 53
71 247 9E 182 6E 117 8A 52
E3 246 3C 181 DO 116 15 51
C7 245 78 180 8A 115 2A 50
8E 244 FO 179 75 114 55 49
10 243 EO 178 E8 113 AA 48
38 242 Cl 177 06 112 54 47
76 241 82 176 AD 111 A8 46
ED 240 04 175 5A 110 50 45
OA 239 09 174 85 109 AO 44
84 238 12 173 6A 108 41 43
68 237 24 172 05 107 83 42
01 236 48 171 A8 106 06 41
A3 235 90 170 56 105 00 40
47 234 21 169 AC 104 lA 39
8F 233 42 168 58 103 35 38
IF 232 85 167 81 102 68 37
3F 231 OA 166 62 101 07 36
7E 230 14 165 C4 100 AF 35
FC 229 28 164 88 99 5E 34
F9 228 51 163 11 98 80 33
F3 227 A2 162 22 97 78 32
E6 226 45 161 44 96 F6 31
CD 225 88 160 89 95 EC 30
98 224 17 159 13 94 08 29
36 223 2E 158 26 93 80 28
60 222 50 157 4C 92 60 27
08 221 88 156 98 91 CO 26
86 220 77 155 30 90 80 25
6C 219 EF 154 61 89 00 24
09 218 DE 153 C2 88 01 23
82 217 8C 152 84 87 03 22
64 216 79 151 03 86 07 21
C8 215 F2 150 10 85 OF 20
91 214 E4 149 20 84 lE 19
23 213 C9 148 40 83 3D 18
46 212 93 147 81 82 7A 17
80 211 27 146 02 81 F4 16
18 210 4E 145 05 80 E8 15
37 209 9C 144 08 79 DO 14
6F 208 38 143 16 78 Al 13
OF 207 70 142 2C 77 43 12
8E 206 El 141 59 76 87 11
70 205 C3 140 83 75 OE 10
FA 204 86 139 66 74 lC 9
F5 203 OC 138 CC 73 39 8
EA 202 18 137 99 72 72 7
04 201 31 136 32 71 E5 6
A9 200 63 135 65 70 C8 5
52 199 C6 134 CA 69 97 4
A4 198 8C 133 95 68 2F 3
49 197 19 132 28 67 5F 2
92 196 33 313 57 66 8F 1
25 195 67 130 AE 65 7F 0
4A 194 CE 129 5C 64 FE 254
94 193 90 128 89 63
29 192 3A 127 73 62
53 191 74 126 E7 61
A6 190 E9 125 CF 60

C-9

APPENDIX D - INSTRUCTION SUMMARY

ACCUMULATOR GROUP INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1) DMA
CODE AND(S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS 2)

SR 12 SHIFT RIGHT ONE 0 1/0 0
SR 4 14 SHIFT RIGHT ONE 0 1/0 0 1
SL 1 13 SHIFT LEFT ONE 0 1/0 0 1/0
SL 4 15 SHIFT LEFT FOUR 0 1/0 0 1/0
COM 18 ACC (ACC) G) 0 1/0 0 1/0

H'FF'
LNK 19 ACC -(ACC) + CB 1/0 1/0 1/0 1/0
INC 1 F ACC -(ACC) + 1 1/0 1/0 1/0 1/0
LIS 7i ACC-H'i'
CLR 70 ACC-H'OO' 1 1 1
LI 20 ACC--H'ii' 2.5 2 2

NI 21 ACC --(ACC)AH'ii' 0 1/0 0 1/0 2.5 2 2

01 22 ACC -(ACC) V H'ii' 0 1/0 0 1/0 2.5 2 2

XI 23 ACC -(ACC) G) H'ii' 0 1/0 0 1/0 2.5 2 2

AI 24 ACC-(ACC) + H'ii' 1/0 .1/0 110 1/0 2.5 2 2
(Binary Add)

CI 25 H'ii' + (ACC)+1 1/0 1/0 1/0 1/0 2.5 2 2

1) An interrupt request cannot be acknowledged until an instruction without interrupt privilege has completed execution.
2) This number of bytes can be transferred via DMA dUring the instruction's execution.

SCRATCHPAD REGISTER INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1) DMA

OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
2

) CODE AND(S) CODE

LR y,x

A,r* 4r
A,KU 00
A,KL 01
A,QU 02
A.QL 03
rA 5r

KU,A 04
KLA 05
QUA 06
QLA 07

AS Cr
ASD Dr

NS Fr
XS Er
OS 3r

* Operand r formats are:

FUNCTION

GENERAL LOAD
REGISTER FORMAT
ALLOWABLE OPER-
ANDS LISTED BELOW

ACC--(r)
ACC--tr12)
ACC--ir13)
ACC--tr14)
ACC-ir15)
r--{ACC)
r12.-...(ACC)
r13.-...(ACC)
r14--(ACC)
r15.-...(ACC)
ACC-(ACC)+(rXBinary) 1/0 1/0 1/0
ACC-(ACC)+(r) 1/01/0 1/0
(Decimal)

ACC-(ACC)A(r) 0 1/0 0
ACC-(ACC) G) (r) 0 1/0 0
r _(r)+H 'FF'(Decrement) 1/01/0 1/0

Direct Addressing

o through 11 (Decimal Form)
H'O' through H'B' (hexadecimal form)

0-1

1/0 1
1/0 2

1/0 1
1/0 1
1/0 1.5

Indirect Addressing

S or 12
I or 13
o or 14

2

DATA COUNTER INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1) DMA

CODE ANDIS) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS 2)

LR "r- OE r14---(DCU), r15--(DCL) 4 3 \.t,L/\....

LR H,DC 11 r1 O--(DCU) ; r11 --- (DCL) 4 3
LR DC,Q OF DCU--(r14); DCL ---(r15) 4 3
LR DC,H 10 DCU--(r10); DCL ---(r11) 4 3
ADC 8E DC ---(DC) + (ACC) 2.5 1 2
DCI iiii 2A DC---H'iiii' 6 3 5

XDC 2C DC - DC1 2 2 --->

[Memory Interface
Circuit Only]

INDIRECT SCRATCHPAD ADDRESS REGISTER INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1 \ DMA
CODe ANDISj CODE FUNCTiON OVF ZERO CARRY SiGN CYCLES CODE PRIVILEGE· , SLOTS 2)

LR A,IS OA ACC-(lSAR)
LR ISA OB ISAR-(ACC)
LlSU a 01100a* ISARu-a
LlSL a 01101 a* ISARL_a

.. a is 3 bits

MEMORY REFERENCE INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1) DMA
CODE ANDIS) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS 2)

LM 16 ACC ---((DC)) 2.5 2
ST 17 (DC) ---(ACC) 2.5 1
AM 88 ACC~(AC;C)T((DC)) 1/0 1/0 1/0 I/O 2.5 2

(Binary)
AMD 89 ACC -..(ACC)+((DC)) I/O I/O 1/0 I/O 2.5 2

(Decimal)
NM 8A ACC ___ (ACC) 1\ ((DC)) 0 I/O 0 1/0 2.5 2
OM 8B ACC -..(ACC) V ((DC)) 0 1/0 0 liO 2.5 2
XM 8C ACC ---(ACC) E>((DC)) 0 I/O 0 I/O 2.5 2

CM 80 ((DC)) + (ACe) + 1) 1/0 I/O I/O I/O 2.5 2

STATUS REGISTER INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1) DMA
CODE ANDIS) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS 2)

LR W,J 10 W __ (r9) 2 Yes' 2
W4 W3 W2 W1 Wo

liNT i OVF i ZERO i CARRY ISIGN I

(Privileged Instruction)'
LR J,W 1E r9 ___ (W)

, As a result of a privileged instruction execution, a request for Interrupt service is not acknowledged by the CPU until a
subsequent non-privileged instruction is executed.

MISCELLANEOUS INSTRUCTIONS

r-

i BYTES OF
OP OPER- OBJECT
CODE AND(S) CODE FUNCTION

STATUS BITS OBJECT INTERRUPT 1) DMA
OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS

2
)

NOP 2B NO OPERATION

0-2

PROGRAM COUNTER INSTRUCTIONS

BYTES OF
OP OPER- OBJECT STATUS BITS OBJECT INTERRUPT 1) DMA
CODE AND(S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS 2)

LR K,P 08 r12-(PC1U); r13--(PC1 L) 4 3
LR P,K 09 PC1U-(r12); PC1L--(r13) 4 3
LR PO,Q OD PCOU-(r14); PCOL--(r15) 4 3
PK OC PCOU-(r12) ; PCOL--(r13) 4 Yes* 3

and PC1-(PCO)
Privileged Instruction*

PI aaaa** 28 PC,-(PCO); PCO_H'aaaa' 6.5 3 Yes* 5

Privileged Instruction*
POP lC PCO--(PC1) 2 Yes* 2

Privileged Instruction*

BRANCH INSTRUCTIONS

BYTES OF
OP OPER- OBJECT
CODE ANDIS) CODE FUNCTION

STATUS BITS OBJECT INTERRUPT 1) DMA
OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS

2
)

BR aa 90 PCO-((PCO)+l) + H'aa' 3.5 2 3
aa

JMP aaaa 2 29 PCO-H'aaaa' 5.5 3 Yes 1 4
aa
aa Privileged Instruction*

BT t,aa 4 8t 4 PCO-((PCO)+ H'aa' 3.53 2 3
aa if any test is true or

PCO-(PCO)+ 2 if no test is true 3.0
STATUS BIT TESTS
22 2' 20

I ZERO I CARRY i SIGN I
BP aa 81 PCO-((PCO)+l)+ H'aa' 3.5 2 3

if SIGN=l
aa PCO-(PCO)+ 2 if SIGN=O 3.0

BC aa 82 PCO-((PCO)+l)+ H'aa' if CARRY=l 3.5 2 3
aa PCO-(PCO)+ 2 if CARRY=O 3.0

BZ aa 84 PCO-((PCO)+1) H'aa' if ZERO=1 3.5 2 3
aa PCO-(PCO)+ 2 if ZERO=O 3.0

BM aa 91 PCO-((PCO)+1)+ H'aa' if SIGN=O 3.5 2 3
aa PCO-(PCO)+ 2 if SIGN=1 3.0

BNC aa 92 PCO-((PCO)+1)+ H'aa' if CARRY=O 3.5 2 3
aa PCO-(PCO)+ 2 if CARRY=1 3.0

BNZ aa 94 PCO-((PCO)+1)+ H'aa' If ZERO-=O 3.5
aa PCO-(PCO)+ 2 if ZERO=l 3.0

BF t 5,aa 9t5 PCO-((PCO)+1)+ H'aa' 3.5 2 2 3
aa if selected status bits are all "0"

PCO--(PCO)+2 if any status bit is 1 3.0
TEST CONDITIONS
23 22 2' 2°

IOVF I ZERO I CARRY I SIGN I
BNO aa 98 PCO--((PCO)+1)+ H'aa' if OVF=O 3.52 2 3

aa PCO--(PCO)+ 2 if OVF=l 3.0
BRZ aa 8F PCO.-((PCO)+1)+ H'aa' if ISARi7 2.52 2 2

aa PCO.-(pCO)+ 2 if ISAR=7 2.0

1. As a result of a privileged instruction execution, a request for interrupt service is not acknowledged by the CPU until a
subsequent non-privileged instruction is executed.

2. The contents of the accumulator are destroyed.
3. 3,5 cycles if branch is taken. 3.0 cycles if branch is not taken.
4. t is only 3 bits
5. t is four bits
6. 2.5 cycles if branch is taken. 2.0 cycles if branch is not taken.

D-3

INTERRUPT CONTROL INSTRUCTIONS

BYTES OF
OP OPER- OBJECT
CODE ANDIS) CODE FUNCTION

STATUS BITS OBJECT INTERRUPT,) DMA
OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS

2
)

Di
EI

i A DiSABLE iNTERRUPT
lB ENABLE INTERRUPT

Pnvlleged InstructIon'"

INPUT/OUTPUT INSTRUCTIONS

2
YES* 2

BYTES OF
OP OPER- OBJECT
CODE ANDIS) CODE

STATUS BITS OBJECT INTERRUPT,) DMA
OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS

2
) FUNCTION

INS a Aa ACC -(INPUT PORT a) 0 1/0 0 1/0 4**
Input Ports 00 to OF only

I~I aa 26 ACC --(INPUT PORT aa) 0 1/0 0 I IV 4 2 II~

aa Input Ports 04 through FF only
OUTS a Ba OUTPUT PORT a-lACe) 4** YES""

Output Ports 00 to OF only
OUT aa 27 OUTPUT PORT aa -(ACe) 4 2 YES*

aa Output Ports 04 through FF only

* As a result of a privileged instruction execution, a request for interrupt service is not acknowledged by the CPU until a
subsequent non-privileged instruction is executed.

** 2 cycles when I/O port address is "0" or "1"

3

3

3

3

I
I

