LJ
Z
C
)

FAIRCHILD SEMI

OEOERLISIER

Preliminary Microprocessor User’s Manual

~HiLD

January 1975

Fairchild

F8

Microprocessor

INDEX

Organization ot the Manual
F8 Circuit Organization

3.1 Generdl

3.2 F8 Circuits

3.2.1 3850 Central Processing Unit; Overview
3.2.2 F8 Read Only Memory (ROM); Overview
3.2.2.1 Custom ROM Specifications

3.2.3 3852 Dynamic Memory Interface (MD); Overview
3.2.4 3853 Static Memory Interface (MI); Overview
3.2.5 3854 Direct Memory Access (DMA); Overview
3.3 Central Processing Unit (CPU)

3.3.1 CPU Data Path Organization and Control Circuits

3.3.1.1 F8 Data Busses
3.3.1.2 CPU Timing and Control

Major CPU Registers

1 Accumulator

2 Arithmetic Logic Unit (ALU)

.3 W (Status) Register

4 The Scratch Pad Registers and the Indirect
Scratch Pad Register (ISAR)

3.3.2.5 Input/Output Ports

3.4 ROM and MI Circuits

3.4.1 Data Path Organization and Control Circuits
3.4.1.1 Data Path Organization

3.4.1.2 Timing and Control Circuitry

Major Registers of the 3851, 3852, and 3853
Program Counter (PCO)

Stack Register (PC1)

Data Counter (DC)

The Incrementer/Adder

Addressable Ports

Page Select Logic

3

WwWwwwwaw
i N G N
NDMNNNNDNDNDND

o e
.
« e

O BWN -

PAGE

3.5 Local Timer

3.6 Interrupt

3.7 Input/Output

3.8 Initializing Requirements

3.9 Dynamic Memory Interface Circuits 3852
3. Memory and DMA Interface
;

9

9.1

.9.2 Control Circuits for Dynamic RAMs

9.3 Description of Pins of the 3852 Ml Chip

. *

3.10 Static Memory Interface Circuit 3853
3.10.1 Static Memory Interface: 3853
3.10.2 Description of Pins of the Static Circuit-MI 3853

Preliminary Specification; 3850 F8 Central
Processing Unit

Preliminary Specification; 3851 F8 ROM

4,9

[S)]
(=]

General

Machine Language Formats

Scratch Pad Memory

Data Counter

Status Register

Program Counter and Stack Register

5.3 Assembly Language Formats
5.4 Symbolic Nomenclature
5.5 Accumulator Group Instructions

5.6 Status Register Instructions

5.7 Indirect Scratch Pad Address Register Instructions

5.8 Scratch Pad Register Instructions

5.9 Data Counter Instructions

5.10 Memory Reference Instructions

S.11 Program Counter Instructions

5.11.1 Program Counter Instructions-Link Grouping

5.11.2 Program Counter Instructions-Call to Subrouting

5.11.3 Program Counter Instructions=Return from
Subrouting

5.12 Branch Instructions

5.12,1 Unconditional Branch Instructions

5.12,2 Conditional Branch Instructions

5.13 Input/Output Instruction Group

5.13.1 Input/Output Instructions

5.13.2 Programming The Timer

5.13.3 Programming the Local Interrupt Control Circuit

5.14 Interrupt Control Instructions

S.15 No Operation

5.16 Instruction Set: Condensed Listing

5.12

5.19

5.20

F8 Cross Assembler

Generadl

6.1 introduction

6.2 Instruction Fields

6.2.1 Labels

6.2.2 Operands

6.3 Assembler Commands

6.3.1 Equ-Equate Symbol

6.3.2 Org=-Set Location Counter
6.3.3 DC-Define Constant

6.3.4 Title, Eject = Format Commands
6.3.5 Xref - Cross Reference Listing
6.3.6 Symbol = Symbol Table Listing
6.3.8 Max CPU

6.3.9 End-End Assembly

6.4 Assembler Input/Output Files

6.5 Error Messages

E8 Cross Simulator
General

7.1 Introduction

7.2 Input Files
7.2.1 F8 TXT File
7.2.2 F8 SCL File

Configuration Control
.1 ROM Memory
.2 RAM Memory
.3 Port Address
.4 Interrupt Assignment
5END

*

L]

NN N N NN

WWWwwWwww

Control Language
Instruction Format
Clear

0

1

2

3 Output on Reference

.4 Dump

5 Trace

6 Environment Instructions
7 Run Instructions

8 Housekeeping Instructions

NN N N N N N N NN

iv

PAGE

|

o O~
))

. .

oN O8N O O
L
N NN -

OO ONONONONONO
L]
NNNNONOO0 00 OO0

(o]
L]
oo

¢)
L]
o

NN

N
.
—r

NN N
. « o
W ww

\l\l\l.\l\l\l
oG hWWW

e o o s o
— ol ol et O N ON
O ONW -0

\l\l\l\l‘\l\l\l\l

7.21

~l
N
N

INTRODUCTION

A microprocessor differs from a specifically designed logic
network in that the microprocessor contains generalized
Togic units (registers, counters, control elements, et al)
which are used for many different tasks during the operation
of the system. Thus, a register designated as an ACCUMULATOR
may receive the results of an arithmetic operation, or may
be used to input from or output to some other system; or may
have its contents shifted or modified as appropriate during
the operation of the system. The control sequence that
determines how each of the logic units is used during the
operation of the microprocessor is called the PROGRAM.

The program is composed of individual steps, or INSTRUCTIONS,
that moves or modifies information in a specific way as it
is passed through the microprocessor. A task, (for example:
adding two (10) digit numbers) may require that a program

be designed that contains just a few instructions or as

many as several thousand, (depending on the application).
Each instruction is performed or EXECUTED sequentially.

The most significant differences between a microprocessor
based system design and a dedicated logic based system
design is in the area of performance and the amount of logic
units required. A few generalized logic units of the micro-
processor design are used repetitively during the execution
of the programmed instructions. More time is required to
process the information to the system specifications. Thus,
the microprocessor based system trades off speed (or per-
formance) for fewer logic elements.

Since performance is sacrificed in designing a microprocessor
based system, the justification for using a microprocessor
must be Tower overall cost for implementing the system. There
are two areas of cost savings in designing a microprocessor
based system:

0 Fewer Logic Packages
o Shorter Design and Development Schedules

Writing a program for a microprocessor based system is
generally simpliey than designing the interconnections for
discrete logic nétworks. There is a finite set of instruc-
tions available in a microprocessor that is most usually
limited to no more than a few hundred instructions. Most
one chip microprocessors generally contain less than one
hundred unique instructions which are easy to learn and

apply. The design of logic networks, however, implies
infinitely more ways in which to interconnect a family
of logic components together to complete the required
design. Not only must the designer be aware of the
rules for logic interconnections, but, signal interface
compatibility, signal race conditions and logical
polarities must be accounted for. Additionally, unex-
pected interferences (or noise) must be ferreted out of
the design during the debugging of the first system.
A1l of these problems are greatly reduced when using a
microprocessor. The fewer total packages of a micro-
processor design produce fewer design and debugging
problems. Secondly, a program consisting of instruc-
tions is easier to write. A11 of these advantages mean
reduced design time and costs.

The manufacturing of microprocessor based systems is
also less costly because fewer total integrated circuits
are used, and this requires fewer printed circuits, less
power and smaller and simplier housings.

The F8 System is designed to provide the engineer the
maximum benefits possible in the area of reduced costs

and high performance. There are approximately 70 instruc-
tions available most of which are single byte in length,

More complicated functions and addressing modes are eliminat-
ed to compact total circuit size and thereby reduce costs.
The instructions, as a consequence, are easy to learn and
simple to use facilitating easier program design and shorter
development time.

The design of the F8 circuits has been carefully planned

to provide the most useful functions possible in the

limited chip area of reasonably producable circuits.
Partitioning of the internal logic has been arranged to
provide the maximum utilitarian use of the available external
circuit interconnections. For example, the program counter
has been Tocated in the memory circuits eliminating the need
for 16 address connections between F8 circuits. Input/Output
ports have been added to both the CPU and the F8 ROM circuits
and brought out to the now available 16 pins on each circuit
to give the designer more utilitarian functions available
for implementing his design.

A fully functional F8 microprocessor based system can be fab-
ricated with as few as only (2) F8 circuits and some passive
components (resistors and capacitors). Typical applications
for the 2 circuit configuration are noncomplicated control

1.2

or business machine applications. VYet, the F8 has the power
and flexibility to be used in more compiex systems having
up to 65,536 bytes of total addressable memory, direct memory

access and multiple level priority interrupts.

Additional circuits are included to add flexibility and minimize
the total system package count. The clock generator circuit

and power-on detect circuits are included in the CPU circuit

to simplify system design. Each memory chip contains a
programmable timer to facilitate generating real time events

or delays without disabling the processor. (The usual method
of creating time delays ties up the processor counting non-
functional instructions in a loop until the desired elapsed

time has occurred.)

A RAM of sixty-four words of 8 bits each is included in the
CPU as a fast operating scratchpad register array. Instruc-
tions that use the RAM (ADD, LOAD, OR, AND, Decrement, et al)
all execute within 2 microseconds*,

The F8 system of components is designed to provide you with

the most functional value at the lowest system cost possible
consistent with current technology.

* ghe Decimal ADD requires 4 usec. and the Decrement REQUIRES
Jsec..

1.3

ORGANIZATION CF THE MANUAL

The format for information provided in this publication is
organized to be used effectively as a training guide and

also as a reference guide to persons interested in a FAIRCHILD
F8 Microprocessor System of Components. As a training guide,
all information is developed in the sequence that a user not
having familiarity with the product might require as he
developes his understanding of the system and its applications.
During the discussion of particular technical areas, questions
might Togically arise that would require the introduction of
topics not yet presented. References are provided where this
occurs to direct the reader's attention to the section where
the new concepts are discussed.

This organization facilitates using the publication as a
reference guide by users who are familiar with the operating
concepts of the F8 system and need to refer to particular
topics. Each topical section is as brief as possible, only
discussing the main point of that section. Additional or
supplementary information relevant to an overall understand-
iE? of the topic under review are veferred to where appiic-
able.

Chapter 1 discusses the highlights of the F8 architecture
and the Fairchild philosophy for the organization
of the F8.

Chapter 2 is an introduction to the organization of the
User's Manual.

Chapter 3 describes the organization of the F8 circuits.
The functional block diagrams are discussed; and,
the functional relationship of each logical unit
within each of the circuits is discussed at the
processor system level. Examples are provided
where possible to suggest some of the possi-
bilities for the use of the F8 circuits.

Certain logical functions such as the PROGRAM
COUNTER and INDEX REGISTER (Data Counter) are
contained in more than one circuit when using
multiple circuit configurations. To avoid re-
petition and to develop the description of the
Circuits as directly as possible, references
are inserted in the appropriate areas of dis-
cussion to direct the reader to a more detailed
discussion,

CHAPTER 4 contains the static and dynamic interface
specifications for the F8 system and circuits.
Timing diagrams are provided where appropriate.

CHAPTER 5 Tists all of the machine instructions with
sufficient detail to permit a reader not familiar
with the F8 system to program a system with a
minimum of difficulty.

A condensed listing of the F8 instructions at
the end of this section provides a quick refer-
- ence to the function of the instructions.

CHAPTER 6 discusses programming in assembly language.
Complete instructions for using the assembler
are included. However, the procedures for
accessing the cross assembler will depend on
the system in which it resides (i.e. resident
IBM 370 System, Timeshare Service, et al) and
is not included in this section.

CHAPTER 7 discusses the use and operation of the Cross
Simulator written in FORTRAN IV. A computer
program that simulates the operation of the
F8 with an applications program is called
the Cross Simulator. This section discusses
the features, use and function of the F8
Simulator Program. Instructions for specifying
or setting up the Simulated Input/Output Signals,
Interrupts and all test and monitor points
gcalled TRACE & BREAK POINTS) are reviewed in

etail.

This publication is intended to provide all of the information
needed by the reader to design an effective F8 system. Both
the F8 instructions and electrical interface specifications
are discussed in detail.

Our objective in preparing the content of this publication

is to provide sufficient detail so that anyone having experi-
ence in designing a digital logic system can effectively
incorporate a microprocessor in his design with minimum other
special training. If you find the organization of this
material difficult or any material lacking, please pass your
suggestions along. A return mailer is provided in the back
of this publication for convenience in submitting your com-

ments,

3
D

GENERAL

The F8 family of microprocessor circuits are manufactured using
N Channel Isoplanar MOS technology. Some of the features and
characteristics of this microprocessor set are:

0

0

0

8-Bit Data Organization-

2 ps Instruction Cycle Time.

Over 70 Instructions -

64 General Purpose Read Write Registers .

Binary and Decimal Arithmetic and Logic Functions

Interna] Clock Generation

Internal Power-on and Reset

I/0 Capability Included on the Circuits

Multi-level Interrupt System

Programmable Interval Timers -

A complete microprocessor system constructed with F8 components
requires as little as two integrated circuits. Larger, more
power, systems may be built with additional F8 components. The
family of F8 parts contains:

0

0

o]

0

0

3850 F8
3851 F8
3852 F8
3853 F8
3854 F8

Central Processing Unit (CPU)
Read Only Memory (ROM)-
Dynamic Memory Interface (MI)
Static Memory Interface (MI)
Direct Memory Access (DMA)

These circuits may be combined to form an 8-bit microprocessor.
Additional semiconductor components such as memories may easily
be added to expand the full system capability.

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.5
3.6
3.7
3.8
3.9
3.9.1
3.9.2
3.9.3
3.10
3.10,1
3.10.2

INTRODUCTION

F8 Circuits

3850 CPU

3851 ROM

3852 Dynamic Memory Interface (MI)

3853 Static Memory Interface (MI)

3854 Direct Memory Access (DMA)

Central Processing Unit

CPU Data Path Organization and Control Circuits
Major CPU Registers

ROM and Memory Interface Circuits

Data Path Organization and Control Circuits
Major Register of the 3851, 3852, and 3853
Local Timer

Interrupt System

Input/Output

Initialization Requirements

Dynamic Memory Interface - 3852

Memory and DMA Interface

Control Circuits for Dynamic RAMs
Description of Inputs and Outputs - 3852
Static Memory Interface - 3853

Static Memory Interface Organization
Description of Inputs and Outputs - 3853

TABLE 3.1
ORGANIZATION OF SECTION 3

A detailed description of each circuit is given in this chapter.
Table 3.1 Tists the contents of each paragraph following. Data
sheets for the F8 circuits are in Chapter 4. A description of

the microprocessor instruction set is reserved until Chapter 5,

3.2

3l2

3.2.1

3.2.2

F8 CIRCUITS

This section is an overview of each member of the F8 circuit
family. A detailed description of the operation of the system
components is contained in Section 3.3.

3850 F8 CENTRAL PROCESSING UNIT

The 3850 CPU circuit controls the entire microprocessor
operation and executes the functions called for by each
instruction. The main functions of the CPU are:
© receive and decode an instruction
o transmit all necessary control signals to cause
all other microprocessor circuits to execute
required functions in synchronism with the CPU.
o execute the functions indicated by the instruction.
o handle interrupts
o complete an input from or output to an I/0 port
Figure 3.1 is the functional block diagram of the 3850 CPU
circuit. The discussion of the operation of circuits

internal to the CPU and of those contained in other F8
components is contained in Section 3.3.

F8 READ ONLY MEMCRY (ROM

The F8 ROM circuit contains 1024 bytes of read only

memory for Q'I:nmna the nrogram instructions. Additional

c1rcu1try is contained in the ROM so that 1t may be
attached to the F8 data bus.

The principle functions of the ROM circuit are:

0 Access Memory for either an instruction or a
constant

0 Maintain the program counter, stack register
and data counter

0 Control a local interrupt level

o Control two input/output ports

3.3

RESULT BUS
g 8 8 ® _§ E
SCRATCH
XFER W ALU PAD ISAR
GATE REGISTER |ACCUMULATOR REGISTERS
5 BITS g BITS 8 BITS 64 WORDS 8 BITS 6 BITS
5 8 B8 © H
LEFT MULTIPLEXER BUS RIGHT MULTIPLEXER BUS
g L |]a m
:' "_[E%HP : ; CONTROLI XFER INSTRUCTION
| Loglc | LOGIC GATE REGISTER
U @\C&:@zﬂ Tl Tl
| DATA BUS
FOWE_R_T ™~ Arke |
/o PORT Jo PORT| lg " on 'c.iéﬁffsl
A B P DETECT |
U —_T ﬁ @ WRITE
YO PORT /O PORT DATA RESET CLOCK
8) 8) BUS (8] REFERENCE

EXTERNAL DATA CONNECTIONS

CPU CIRCUIT: DATA PATH ORGANIZATION

3.2.2

3.2,2,1

F8 READ ONLY MEMORY (ROM) (Cont.)

Locating memory addressing circuits in the ROM minimizes
the circuit interconnections necessary to control and
access memory locations. These address registers are
discussed in Section 3.4.2.

The functional description of the 3850 ROM circuit is
shown in Figure 3.2.

The description and operation of the internal circuits
of the ROM is contained in Section 3.2.

A discussion of the interrupt circuits appears in
Section 3.6.

Each 3851 ROM contains two 8-bit I/0 ports. A hardware
description of the F8 I/0 structure is discussed in
section 3.7 while a software (programming) description
is given in Chapter 5, Section 5.13.

In addition to these circuit features, each 3851 ROM
has a programmable timer. The operation of this register
is discussed in Section 3.5

CUSTOM ROM SPECIFICATIONS

Each 3851 ROM is made to meet customer specifications.
The custom ROM pattern is produced with a custom
diffusion mask. Five items must be specified at the
time the proprietary mask is produced. These are:

o 1024 x 8-bit ROM pattern

o Memory page address (See Below)

o ROM Port Addresses (Refer to Section 3.4.2.5)

o' Interrupt Address Vector (Refer to Section 3.6)

o I/0 Port Electrical Options (Refer to Chapter 4)
The F8 uses 16 bits to specify a memory address. As
such, the 1024 Byte ROM wses the lower ten bits to

select the addressed byte. The remaining six bits
specify the active memory page.

Internal to the ROM chip is page selection logic
(Figure 3.2). For each memory access, this logic

3.5

'7v ADDRESS XFER BUS (I6 BITS)

A S S f
PROGRAM XFER DATA INCREMENTER[| UPPER
COUNTER COUNTER BYTE

8 |8 PCo GAT £ ADDRESS POINTER ADDER XFER
IT] T 1 1 GATE
MIXER BUS (I6) =
ADDRESS 16 ,
DEMUX | | 4 I 1 CROM 1 g LOWER
STACK | | TE
-~ REGISTER VFIT BY
4 PCi CONTROL S XFER | B
U | SleNALs GATE
w\/y \\/

7 ADDRESS BUS (l6 BITS)
G 1§ 8
8 PAGE BN ROM STORAGE
SELECT 1 1024 WORDS (8 BI1TS”WORD)

MASK OPTION
LBJ ‘\/L '\/'

DATA BUS (8 BITS)
1) - LJ UJ
INTE RRUP TERRUPT
B SELECT | 5 [GENERATOR

Vo PORT| | [o PorT| VO PORT

] O
_| ' ADDRESS

|MASK OPTION MASK OPTION : l ,L,‘
EXT INT PRI PRI
EXTERNAL INT REQ IN OUT

DATA BUS

BLOCK DIAGRAM OF ROM CIRCUIT

3.2.2.1

3l2l3

3.2.4

CUSTOM ROM SPECIFICATIONS (Cont.)

decodes the upper six bits by comparing them to those
specified by the customer. In this way the memory
page is decoded.

The interrupt address vector is discussed in Section
3.6. Briefly, it is the address to which the program
counter will be set after an interrupt has been ack-
nowledged.

3352 DYNAVIC MEMORY INTERFACE (MDD

The Dynamic Memory Interface circuit provides the 16
address Tlines and control signals necessary to interface
standard memory circuits to an F8 system. Both static
and dynamic memories may be used, dynamic memory refresh
is performed automatically and without any degradation in
system performance. Standard memories such as the
Fairchild 8101 (256 x 4) or the 2102 {1024 x 1) MOS RAMS
may be used with the 3852 MI. Dynamic memories, such as
the Fairchild 4096 may also be used. Figure 3.3 is a
functional diagram of the 3852.

In addition to controlling dynamic memories, the 3852 MI
may be used in conjunction with the 3854 DMA to allow
direct memory access channels to be established between a
peripheral and F8 memory.

A functional description of the 3852 circuit appears in
Section 3.4.

A discussion of the 3852 MI controlling dynamic memories
is included in Section 3,9,

3853 STATIC MEMORY INTERFACE (MDD

The 3853 Static Memory Interface provides the necessary
address lines and control signals to operate standard
static RAM circuits such as the Fairchild 8101 or 2102.
In addition to these MOS memories, bipolary memory will
also interface with the 3853.

The functional organization of the 3853 Static Memory

Interface circuit is shown in Figure 3.4. As the figure
shows, this circuit includes interrupt control logic.

3.7

ADDRESS XFER BUS (16 BITS)

ORI Y N
gggﬁ_’;gg XFER W IXER INCREMENTER Y By g |
g GATE ADDER XFER &
| | | GATE
9o B0 T
MIXER BUS ADDRESS
@ DATA DATA LOWER DEMUX
e COUNTER| [COUNTER [d BYTE
STACK ar e XFER | |8
REGISTER g 19 al | GATE
PCi MIXER BUS U 8
16 8
U 9 g U U
ADDRESS BUS (16 BITS) DATA BUS
{1 U
@ DMA MEMORY 16 DYNAMIC RAM
FOWER CONTROL | | controL CROM CONTROL BUF.
UPPLY | CIRCUIT U CIRCUIT @

cLock 7 ¥ v ¢ | ¥ AoDReESS A7)
LINES ¢cpy CYLE CPU pam | Depr LINES
BUSY REQ SLOT wRriTE CONTROL

CPU LI NES
READ

F8 MEMORY

EXTERNAL
OATA BUS

INTERFACE CHIP: 3852

ADDRESS XFER BUS (i6 BITS) J.._:.WJ

B C S i
oPROGRAM| | xFER INCREMENTER) UPPER
‘ ' MIXER
5Co GATE ADDER | XFER 8]
| | | - GATE
E B W 7
MIXER BUS ADDRESS
. G poliTen| foonTes DEMUX
STACK “j’g @ 6 3 8 75
REGISTER
PCI MIXER BUS
8
Tvel 16
J U U A
ADDRESS BUS (I6 BITS) DATA BUS
6 memory ||L—8 L 8 | INTERRUPT
CROM | [conTroL | |tnTERRUPT ADDRESS | [Pue| [TIMER CONTROL
POWER SUPPLY'S CENERATOR BITS
AND :
CLOCK LINES ADD\F/l'ESSCO@ROL R;{M l DE}DR EXTERNAL PRI INT EXT
LINES "L INES WRITE DATA BUS IN REQ INT
CPU 10
READ cPU

F8 MEMORY INTERFACE CHIP: 3853

3.2.4

3,2.5

3.3

3853 STATIC MEMORY INTERFACE (MI) (Cont.)

Refer to Section 3.6 for a full description of the
interrupt circuit. Included with the interrupt circuit
is a programmable interval timer. This is discussed in
Section 3.5.

3854 DIRECT MEMORY ACCESS (DMA)

The 3854 Direct Memory Access circuit sets up a high speed
data path between F8 memory and a high speed peripheral,

a FIFO, or another F8, The transfer is initiated by the
CPU under program control. Once started, the DMA transfer
will continue without CPU intervention. The CPU can sense
the flag line of the DMA to determine the completion of

a transfer,

CENTRAL PROCESSING WNIT (CPU)

The 3850 Central Processing Unit (CPU) is the heart of the F8
family of compatible microprocessor circuits. Its organization
is shown in Figure 3.1. In addition to performing processing
functions, the CPU generates timing and control signals for
F8 system operation. The main processing functions are:
0 receiving and decoding the instruction
0 transmitting necessary control signals to cause all
other microprocessor circuits to execute required
functions in synchronism with the CPU
o executing the function indicated by the instruction
o handling interrupts

CPU contains the following features:

o accumulator

o

64 scratchpad registers

o

2 I/0 ports

(=]

interrupt control circuitry

o

power-on detect

3.70

3.3

3.3.1

3i3illl

CENTRAL PROCESSING UNIT (CPU) (Cent.)

0 clock circuits that can be operated in one of three

modes :

HIV

an RC network
crystal control
external master frequency

This section describes the CPU circuits and all of its major
registers. Section 3.3.1 is a description of the major busses
and central circuits of the 3850. The major registers of the
central processor are explained in Section 3.3.2. The ROM

and Memory Interface circuits are discussed in the next sections
of this chapter. System functions such as the interrupt and

I/0 structure are described in later sections of Chapter 3.

(PU DATA PATH ORGANIZATION AND CONTROL CIRCLITS

This section describes the major busses in the 3850 CPU.
These busses transfer bytes of data between CPU registers
and other F8 system components. The gating of these
busses and the operation and timing of the CPU circuit is
performed by the CPU control circuit, also described in
this section.

F8 TATA BUSSES

Figure 3.1 shows the data path organization of all
major functional blocks in the CPU. Data within
this chip is transmitted between blocks via four
busses. These are:

0 The Result Bus: The result bus receives the

resuits of the arithmetic logic unit operation
and makes them available for storage in one
of the receiving registers associated with

the system, Data from the result bus is passed
on to either the W register (status), the
accumulator, the scratchpad register, the
indirect scratchpad address register, or is
gated to the data bus through the transfer
gate(s) for availability in the I/0 port or
for transmission over the external data bus

to the rest of the circuits in the F8 system.

Left Multiplexer Bus: The left multiplexer

bus gates the accumulator into one of the
operand ports in the arithmetic logic unit.

3.11

3.3.1.1

3,3,1.2

F8 DATA BUSSES (Cont.)

When the contents of the status register are
transferred, it is gated through the ALU from
the left multiplexer to the result bus.

o0 Right Multiplexer Bus: The right muitiplexer

bus transfers the second operand required by the
ALU. This operand may be taken from the scratchpad
registers, from the scratchpad address register,
from the instruction register (used only when
immediate operands are contained in the instruction).
or from the data bus via the transfer gates. The
data bus permits the operands to be extracted
either from other chips associated with the micro-
processor system or from the input/output ports
contained on the CPU.

o The Data Bus: The data bus is the principal path

for transmitting 8 bit bytes between the CPU and
other circuits in a microprocessor system. It
also transmits data between the CPU input/output
ports and the accumulator. Data entering the CPU
may originate from a ROM, a RAM or from the memory
interface circuits. Three types of information
are transmitted on the data bus:

o data (or operands)

o I/0 port addresses used for activating an
I/0 port designated by an I/0 instruction.

0 Program address transmitted during branch
or interrupt functions.

Information travels into and out of the CPU over
the data bus.

CPU TIMING AND CONTROL

Clock Circuits: The clock circuits generate two
clock signals used by all circuits in the micro-
processor system., The reference frequency of the
CPU may be selected from one of three modes, as
shown in Figure 3.5. In Figure A, the clock fre-
quency is established with the selection of an
external RC network. When a precise operating
frequency is required, an external crystal may be
used to select a frequency. This is shown in
Figure B. For applicaticns requiring 2 controlled
clock, an external c¢lock connection is made to the

micronvocessor, 28 snhewn in Figure O

CLOCK CONSIDERATIONS

RC Mode
60
& ¢
% ;
! :
8 40— | . B
z '
s
o
w
o]
je]
=
>
8]
5
L
o
w
&
Timing Considerations ‘
0 ;
VGG ; 1 2 3
FREQUENCY -~ MHz
4 : I
. C =20 pfF
39 | :
1 38s0 !

T 24 cPU R L N

s i ; ‘
38 - |

.
Q
&

vss 5
w
@
I
E
o
T
=

10 20 30 40 50
RESISTANCE -- ki)

Crystal Oscillator

40

3850
cPu

Cy Cp:10pF

C1 and C2 are not needed tor crystals in the range of 1 2 MHz They do, however, give an added
degree of frequency control for systems requiring a high degree of frequency stabiiity.

External Oscillator

vss
24
a0
3850
39 cpu
38
38
EXTERNAL

OSCILLATOR.

3.3.1.2

3.3!2

CPU TIMING AND CONTROL (Cont.)

The internal clock generator circuits of the CPU
create two clock signals to control the internal
registers of the CPU as well as other F8 circuits.
The two clock signals generated by the CPU are @
and WRITE, In a system with a 2MHz reference fre-
quency, the @ signal will occur every 500 ns and
the WRITE pulse will have a 2 us or 3 us period,
depending on the instruction. These signals are
fully described in Chapter 4.

Control Circuits: The control circuits of the CPU
generate the necessary register gating and control
signals for the entire microprocessor system. The
control circuits decode the instruction and pace
all the system timing and data gathering to cause
the instruction to be executed properly. The cir-
cuit consists of the following parts:

o Instruction Register
o State Generator
o Control ROM

The operation of the CPU control circuits is
sequential. An instruction is placed into the
instruction register and decoded. The instruction
decode is performed by the control ROM. Therefore,
the instruction op code is used to address the
necessary control signals. The control circuit
combines the control and timing signals to execute
each instruction. In addition, the control cir-

cuit generates five control lines to other F8 circuits
connected to the data bus.

F8 instructions may either be one, two, or three
bytes long. In all instructions, the op code is
contained in the first instruction byte. The
remaining bytes are used either as operands or
addresses. Thus, the second or third byte of
multiple byte instructions are never routed to the
instruction register; rather, they are used in the
appropriate data registers or program counters in
the F8 microprocessor system.

MAJOR CPU REGISTERS

Figure 3.1 shows the major CPU registers and their
relationship with respect to the CPU busses. These

3.14

3.3.2

3l3l2ll

3I-glzl?-

3.3.2,3

MAJOR CPU REGISTER (Cont.)

CPU

Each

registers are:

The Accumulator

The ALU

The W (STATUS) Register

The Scratchpad Registers and ISAR
The 1/0 Ports

OO0 O0O0O0

of these registers is described below.

THE ACCUMILATCR

The accumulator is an 8-bit storage register. It
retains the result of ALU operations and transfers
information into and out of the scratchpad memory,
bulk memory, and I/0 ports. The contents of the

accumulator may be either shifted or complemented.

ARITHMETIC LOGIC UNIT (ALL)

The ALU is an eight bit parallel logic network used
in the execution of the F8 instructions., Binary and
decimal ADD operations may be executed. In addition,
complement, Togical AND, Togical OR, logical XOR,
increment, compare, and decrement operations may
also be executed. One operand of the ALU is usually
supplied by the accumulator. The other operand may
be either scratchpad memory data, bulk memory data,
the ISAR, or the instruction register. Outputs

from the arithmetic logic unit are placed in the
accumulator via the result bus.

W (STATUS) REGISTER

The W register stores the status indications result-

ing from an arithmetic or logic operation. Figure 3.6
shows the bit assignments for the five status bits.

The status register instructions transfer the W register
to and from the scratchpad (See Section 5).

Table 3.2 1ists the conditions for which each bit is
set. These five bits are explained below.

3.15

1CB

OVERFLOW

ZERO

CARRY

SIGN

ICB - Interrupt Control Bit

Figure 3.6 The W Register

393:233

W (STATUS) REGISTER (Cont.)

ZERO

CARRY

SIGN

OVERFLOW = CARRY,(®) CARRYg

ALU; A BLUg A ALU; A ALU, A RLU3 A ALU, A ALU; 4 ALT,
= CARRY,

AT,

TABLE 3.2
THE STATUS REGISTER

The OVERFLOW BIT is the exc]ysive OR of the carry
propagated from the 26 and 2/ stage of the ALU.
If 2's complement notat;on is used, in which the
most significant bit (2’) represents the sign (+)
of the number the overflow bit detects a result
exceeding the boundries of two's complement nota-
tion,

Tpe CARRY BIT is set whenever a carry out of the
2’ stage is progagated as a result of an arithmetic
operation.

The ZERO BIT is set whenever the results of an
arithmetic or logic operation is @@@@ @@@@. Since
this bit is set on the results of the arithmetic
logic unit rather than the contents of the accumulator,
the state of the zero flip-flop does not necessarily
represent the current contents of the accumulator.
For example, if an arithmetic add is performed such
that the entire eight bits of the result are @, the
zero flag bit is-set in the W register. If the sub-
sequent instruction loads the accumulator with a new
byte from the memory or scratchpad, the zero flag
still remains set indicating that the previous

arithmetic function performed had resulted in a zero
condition.

3.17

3.3.2.3

3!3I2lq

W (STATUS) REGISTER (Cont.)

The SIGN BIT always assumes tge opposite po]afity)
of the bit contained in the 2/ stage of an arithmetic
or logic operation. Thus, if a function is performeg
such that the result is either 0 or positive (the 2
bit is 0), the sign bit will be set, 7The sign bit

is reset if the result is negative (2/ bit is one).

The INTERRUPT CONTROL BIT (ICB) is used to mask the
CPU interrupt sequence. If the ICB 1s set, the CPU
may be interrupted. However, a ZERO in the ICB

causes interrupts to be ignored. A detailed interrupt
discussion is contained in Section 3.6.

THE SCRATCHPAD REGISTERS AND THE INDIRECT SCRATCHPAD
ADDRESS REGISTER (ISAR)

The CPU contains 64, eight bit registers. Systems
requiring more than 64 bytes of read/write memory
may be expanded with multiple sourced memories such
as the 2102 connected to the CPU via an F8 memory
interface (MI) circuit.

There are two modes of addressing the scratchpad
registers. These are:

0 direct addressing of the lowest order 12
bytes of seratchpad.

0 indirect addressing of any of the 64 bytes
of scratchpad.

Direct address is performed by a one byte instruction.
The first four bits are the op code while the remain-
ing bits are the scratchpad memory location. Indirect
addressing of scratchpad memory locations is also
performed in one byte. In this case, however, the
indirect scratchpad address register (ISAR) points

to the desired scratchpad location.

Figure 3.7 is a diagram of the organization of the

scratchpad registers. Notice that only the lower
registers of the scratchpad may be directly addressed.

3.18

Directly

Addressable

From
Instructiong’

63

J_Register
H Register -
K Register —
Q Registéfm | | —_
B J

Figure 3.7 The Scratchpad Registers

3.3.2.4

THE SCRATCHPAD REGISTERS AND THE INDIRECT SCRATCHPAD
ADDRESS REGISTER (ISAR) (Cont.)

A11 64 registers in the scratchpad may be indirectly
addressed using the 6-bit indirect scratchpad address
register (ISAR).

Special assignments in the scratchpad are used by
specific instructions to link the program-counter,
the stack register, the status register and the data
counter to the scratchpad. This allows a multiple
level software system under interrupt control. The
Q and the K locations are generally used for stor-
ing address vectors of 16 bits from either the pro-
gram counter or the stack register. The Q registers
are scratchpad registers 14 and 15. The K registers
are address locations 12 and 13. Scratchpad location
10 and 11 are designed a$ the H registers while Toca-
tion 9 is the J register.

Memory reference instructions that access information
storage somewhere in 65,536 bytes of bulk memory use
a 16-bit address contained in the data counters in
the memory chips. Addresses may be loaded to the 16-
bit data counters from one of two memory locations
designated as either H or Q in the scratchpad.

Scratchpad Tocation 9 may be used for storing the
status register when handling interrupt routines.

Instructions in which the operation code designates
that the scratchpad is addressed by the 6-bit content
of the ISAR have one of three modes of execution:

o indirect address by the ISAR,

o indirect addressing by the ISAR followed by
incrementing the ISAR (lower 3 bits) at the
conclusion ?comp]etion) of the instruction
execution,

o indirect addressing by the ISAR followed by
decrementing the ISAR (Tower 3 bits) at the
conclusion of the instruction execution,

Thus, the ISAR is essentially an incrementing or
decrementing pointer to the scratchpad registers.
The lower three bits of the ISAR form a modulo
eight counter, when the incrementing and decrement-
ing modes are used. Thus, if the ISAR contains 30g,

3.20

3.3.2.4

3.3.2,5

g

THE SCRATCHPAD REGISTERS AND THE INDIRECT SCRATCHPAD

ADDRESS REGISTER (ISAR) (Cont.)

an incrementing instruction will reference this
location and increase the ISAR to 31g while a
decrementing instruction wili reference the same
location and decrement the lower three bits of
the ISAR, to yield 3g.

INPUT/OUTPUT PORTS

The CPU has two bidirectional I/0 ports. Each port
may be used for either gathering data from the exter-
nal electronics or for outputting data to other
circuits. Latches in the outbound side hold the
eight bits of output data. The CPU I/0 ports are
directly selected by the control circuits when the
OUTS or INS instruction is executed with an operand
of zero or one. Because the ports are directly
selected, input and output transfer to these are
faster than for other I/0 ports. The CPU I/0 ports
are designated by the 4-bit address 0000 and 0001.
The F8 I/0 configuration is fully described in Sec-
tion 3.8. The electrical characteristics of the
CPU output bits may be found in Chapter 4.

ROM AND MI CIRCUITS

While the CPU carries out the processing, the ROM and MI
circuits supply memory to an F8 system. To do this, several
registers are necessary to 1ink onto the F8 data bus. These
are:

o Program Counter (PCO)

o Stack Register (PC1
o Data Counter (DC)

0 An Incrementer/Adder

Each circuit, the 3851 ROM, 3852 Dynamic Memory Interface,
and the 3853 Static Memory Interface, contains these func-
tional registers described in Section 3.4.2. 1In addition,
the 3857 ROM and the 3853 Static Memory Interace each con-

: A
tains an interrupt level.

3.21

3.4

3,41

Slqllll

ROM AND MI CIRCUITS (Cont.)

The F8 interrupt structure is described in Section 3.6.

Both the 3852 MI and the 3853 MI have two data counters for
flexible memory referencing. The data path organization and
the control circuits of these three circuits are described
in the next section.

DATA PATH ORGANIZATION AND CONTROL CIRCUITS

This section describes the major busses in the 3851
ROM, 3852 MI and 3853 MI. These busses transfer bytes
of the data or address between the CPU, registers, each
other, and memory., The gating of these busses and the
operation and timing of the circuits is performed by
the control circuitry of each part, also described in
this section.

DATA PATH ORGANIZATION

The three circuits (3851 ROM, 3852 Dynamic MI,

and the 3853 Static MI) have very similar data
path organization, as figures 3.2, 3.3, and 3.4
reveal. The major registers of each of these
circuits are connected by three 16-bit busses

and one 8-bit bus. These busses, and the function
they perform, are:

o ADDRESS TRANSFER BUS: This 16-bit bus
transfers an address from the data bus to
the program counter, stack register, or
data counter(s). In addition, the con-
tents of the incrementer/adder and the
address bus may also be transferred to
Ehese registers via the address transfer

us.

o ADDRESS BUS: The address bus receives the
program counter, stack register, and data
counter(s) and passes these addresses to the
incrementer/adder. In addition, the 16
lines of the address bus are actually used
for memory reference from either the pro-
gram counter or data counter(s). In the
ROM, the upper 6 bits of the address bus
are used for selecting ROM pages (one of

3.22

3.4,1.2

3.4,2

DATA PATH ORGANIZATION (Cont.)

64, 1024 byte pages). The lower 10 bits

are used as the ROM address. In the

Memory Interface circuits, the 16-bit address
bus is outputted for use by external memory.
There is no paging performed by the MI cir-
cuits. ' .

0 MIXER BUS: The mixer bus selects either
the program counter or the address trans-
fer bus to be gated into the stack register.

o DATA BUS: The 8-bit data bus is the principal
path for transmitting 8-bit bytes between
the other circuits in the F8 system. Each of
the three circuits, 3851, 3852, and 3853 con-
tain four port assignments. (Refer to
Section 3.4,2.5) These are linked by the
data bus to the accumulator of the CPU. The
data bus also passes 8-bit addresses between
F8 circuits in a system. The four busses are
gated by signals produced by the control
circuitry, discussed in the next section.

TINING AND CONTROL CIRCUITRY

The 3851 ROM, 3852 MI, and 3853 MI are sequential
circuits. The logic states of these circuits are
selected by the five control lines generated by the
CPU. The central processor also supplies the tim-
ing for these circuits (the @ and WRITE signals).
For each instruction cvcle (defined by the period
of the WRITE signal) the five control lines

select a location of the control ROM located in
each circuit. The contents of the CROM address
are the control Tines used by internal gating of
the Togic. The clock lines are used to sequence
the circuit through its logic states.

MAJOR REGISTERS CF THE 3851, 3852, mvp 3853

The circuitry of the 3851 ROM, 3852 MI, and the 3853 MI
are similar., Each part contains a program counter,

stack register, data counter (the MI circuits each have
two) an incrementer/adder and four addressable borts

(eSS Loy

aQaressavieé ports,

3.23

3.26

3.4.2

3.4,2,1

3'4.2 l2

MAJOR REGISTERS OF THE 3851, 3852, AND 3853 (Cont.)

These registers are discussed in detail in this section,
In addition, memory paging in the ROM and MI chips are
described.

PROGRAM COUNTER (PCO)

The program counter contains the address of the
next instruction byte to be fetched from memory.
After a fetch cycle executes, the program counter
is automatically incremented. There are four ways
to modify the PCO under program control:

o From the CPU via the data bus using branch
instructions,

o From a memory address using JMP or PI
instructions,

0 From the stack pointer with a POP instruc-
tion.

o From the scratchpad memory using PK or LR
instructions.

Chapter 5 details changing the contents of PCO
with the instruction set.

STACK REGISTER (PC1)

The stack register is directly linked to the program
counter. It receives the contents of the program
counter whenever an interrupt is generated or when
the program counter is pushed to the stack register
with a push instruction (PI) or PK instruction. It
is the function of the stack register to simplify
the creation of address stack. Two sources of data
exist for the stack register. Information is
normally pushed from the program counter via the
mixer bus to the stack register during the push
instruction. The stack register may also be loaded
directly from the address transfer bus by a program
instruction. This facilitates loading the stack
register prior to executing a POP instruction for
returns from sub-routines back to the next higher
level programs in a multi-level program systenm.
Instructions exist to transfer the stack register
to and from scratchpad.

3.25

3,4.2,3

3.4,2.4

DATA COUNTER (DC)

The F8 contains a data counter for referencing memory
addresses. Because it is 16 bits Tong, the DC may
address up to 64K bytes of memory. A group of instruc-
tions exist which use the DC to point to their oper-
ands in the memory space. The data counter is incre-
mented by one at the conclusion of the memory access
cycle; thus it will be pointing to the next Tocation
in memory. This is convenient because control loops
for transferring data fields need not contain an

extra instruction to increment the data counter.
Specific instructions Tink the data counter to the

two bytes of storage located in the CPU scratchpad
designated as locations H and Q. Data field locations
may be stored in either of these locations and may

be transferred to the data counter prior to initiating
a routine that will fetch a field of data from bulk
memory. The 3852 and 3853 Memory Interface circuits
each have two data counters--one active and one in-
active. Both are 16 bits wide. The active data
counter is used to access memory and communicate to
the CPU. The active data counter is loaded directly
from an instruction operand using the DCI instruction.
In addition, the data counter may be transferred to
and from scratchpad with the LR DC, H, LR DC, Q,

LR H, DC, and LR Q, DC instructions. The instruction
XDC swaps the contents of the active and inactive
DC's. The active data counter is incremented after
every memory reference while the inactive data counter
is not.

THE INCREMENTER/ADDER

Each time the program counter or data counter is used
to fetch a byte from storage, it is either incremented
or modified, depending on the type of instruction to
be executed. The incrementer/adder receives the con-
tents of the counter from the address bus, increments
it and transfers the result back to the appropriate
counter. The incrementing is done over a full 16-bit
field. During the execution of branch and add to data
counter instructions, eight bits (a displacement
vector) are added to the present contents of the
register in the incrementer/adder and then returned.
In both cases the 8-bit vector is in 2's complement
notation; hence, the displacement vector may range
from -128 to +127.

3.26

3i4i2i5

3!4.2.6

ADDRESSABLE PORTS

The 3851, 3852, and 3853 each have four addressable
ports. These are 8-bit registers connected to the
data bus. They are Tinked to the accumulator of the
CPU by the instruction set. Each port is referenced
by an 8-bit address. The upper six bits of the
address refer to the circuit on which the ports are
Tocated while the Tower two bits select one of the
four ports. Thus, the port addresses are referred

to as X0, X1, X2, and X3; where X is a six-bit binary
number. Each port on the circuit may be written into
with output instructions. The contents of the I/0
ports may be read with input instructions. These
instructions transfer contents between ports and

the accumulator on the CPU. In the ROM circuit,

two ports are used as 8-bit I/0 ports (refer to
Section 3.7 for I/0 operation). The remaining two
ports are the 8-bit timer and the local interrupt
control circuitry (refer to Section 3.5 for timer
operation and Section 3.6 for F8 interrupt operations).
In the 3852, dynamic memory interface, one port is
used for controlling the dynamic refresh circuitry
and to select the state of the DMA control circuit.
One other port may be used as an 8-bit storage
register. The remaining ports are not assigned.

In the 3853, static memory interface circuit, one
port is assigned to the timer while another is
assigned to the local interrupt control circuitry.

In addition, two ports are used as a programmable
interrupt address vector. Table 3.3 lists the address-
able ports and their respective function.

PAGE SELECT LOGIC

Page select Togic is required in the memory of an F8
system for memory references and to drive the data
?us. The ROM circuit performs the page select
internally, comparing the upper six address bits

with a 6-bit page number. This page number is
selected by the user; it is a mask option. The

most significant six address lines are compared
against the ROM page number in the page select

block and a decision is made to activate or deactivate
the fetch control signals. The page select logic

1s external to the 3852 MI and 3853 MI circuits allow-
ing users total flexibility for memory addressing.

3.27

3.4.2.6

PAGE SELECT LOGIC (Cont.)

The internal logic of the memory interface circuits,
however, do require a page select signal. This is
used to drive the data bus whenever the CPU requests
the contents of the program counter or data counter.
Several instructions transfer PC1 and DC to the
scratchpad memory. If the address in the requested
register lies within the memory space of the MI (deter-
mined by the page select Tine) then that circuit will
respond. This also holds true for the ROM, however,
the page selection is performed internally. Both

the 3852 MI and 3853 MI have a pin, REGDR. The page
select Tine should be connected to this pin. The
REGDR pin is bidirectional. It may simultaneously
be used to control the enabling of a buffer/driver
for the data bus. The ROM circuit has a pin, DBDR,
to control the enabling of a buffer/driver for the
data bus.

3851 ROM

PORT ADDRESS

FUNCTION

X00
X01
X10
X11

ROM I/0 Port A

ROM 1/0 Port B

ROM Local Interrupt Control
ROM Timer

X is a 6-bit binary nunber; It cannot be O.

3852 DYNAMIC MEMORY INTERFACE

PORT . ADDRESS

FUNCTION

0C
0D
OE
OF

8-Bit Register

Control Bits for refresh and DMA
Not Assigned

Not.Assigned

3853 STATIC MEMORY INTERFACE

PORT ADDRESS

FUNCTION

oc MI Interrupt Vector, upper byte
0D MI Interrupt Vector, lower byte
OE MI Local Interrupt Control
i OF MI Timer
TABLE 3.3

3.28

3,5

3.6

LOCAL TIME]

Each memory circuit (ROM and MI) has a local timer to generate
program initiated delays. To the programmer, the timer is an
8-bit register, addressable via F8 output instructions to the
specified timer port address. Delay codes, calculated by the
assembler, are loaded into the accumulator and then transferred
to the timer (a polynomial shift register). An output instruc-
tion to the timer port number performs this function. After it
is loaded, the timer counts down. A table of delay codes
matched to delay times appears in the Appendix.

The timer runs continuously. It signals the interrupt control
circuitry after every timer cycle (3.953 ms). However, when

an OUTS instruction is executed with the timer port number as
the operand, the timer is jammed with a specific count and the
local interrupt control logic clears any stored timer interrupt.
The timer continues from that count to count down and generate
an internal interrupt request. Again, the timer continues to
cycle every 3,953 milliseconds (for a 2MH system). If the ICB
of the CPU is not set, or if the local interrupt control 1ogic
is not set for timer interrupts, a timer initiated interrupt
will be stored by the local interrupt control circuitry. When
the local interrupt control logic is finally set, the memory
chip will request interrupt service; the request will be serviced
when the ICB of the CPU is set.

Time delays between 0 and 254 counts may be chosen. The timer
s decremented once every 31 @ clock cycles. Therefore, the
counter may count as high as 7905 clock cycles. (For a system
at 2MHz, a @ clock cycle occurs every 500 ns.) Longer dura=
tions are achieved by counting multiple interrupts as they
occur. The timer may be stopped by loading it with all ONES.

INTERRUPT

Figure 3.8 is a block diagram of the interrupt interconnection
for a typical F8 system. Both the 3851 ROM and 3853 Static
memory Interface have the capability for either of two types

of interrupts, internal or external. The internal interrupts
may be generated by the programmable timer while the external
interrupt is stimulated by the outside world. A local interrupt
control circuit containing two latches is built on each chip.

3.29

CONTROL LINES (5

U

U

0

U

CPU ROM ROM ROM Mi
PRIORITY | | PRIORITY 2 PRIORITY (m) |LPRIGRITY
WzigG'STER LNl INTERRUPT[OVT IN] |NTERRUPT[OVUT IN| INTERRUPT|OUT INl INTERRUPT
[T JCONTROL [TJCONTROL [T SONTROL [TJCONTROL
a2 CIRCUIT CIRCUIT CIRCUIT CIRCUIT
[[}
\ 5
INTERRUPT REQUEST
BUS
icB
' EXTERNAL INTERRUPT LINES |
F8 INTERRUPT INTERCONNECTION

Fig 3.8

3.6

INTERRUPT (Cont.)

These latches are the Select Bit and the Interrupt Enable Bit.
LOCAL INTERRUPT CONTROL BITS
21 20

l

Select Bit Interrupt
Enable Bit

These two bits have four possible states:

Select Bit éggﬁggug?t Function
0 0 No Interrupt
0 1 External Interrupt Enabled
1 0 No Interrupt
1 1 Timer (Internal) Interrupt
Enabted

These control Tatches are loaded under program control using
an. output instruction. This loading clears the interrupt
control Togic, execpt for any pending Timer Interrupt. The
operand for the OUT or OUTS instruction must be the predefined
port number of the interrupt control circuit. (Section 3.4.2.5
Addressable Ports) The two control bits allow each interrupt
circuit to have independently controlled enable/disable cap-
ability; if enabled, the select bit may choose either internal
(timer generated) interrupts or external interrupts.

Each ROM has a PRIORITY IN and a PRIORITY OUT Tine so that they
may be daisy chained together, in any order, to form a priority
level of interrupts. The first circuit in Tine_should have its
PRIORITY IN line tied to Vgs (or tied to the TCB pin of the

CPU chip). The MI only ha3 a PRIORITY IN line, so it must be
at the end of the chain. A1l memory chips are tied back to the
CPU chip via the interrupt request bus, When an interrupt re-
quires servicing, the local interrupt Togic signals the central
processor via the interrupt request bus and does not pass on
the PRIORITY OUT signal. If the memory chip has no interrupt,
it simply passes the PRIORLTY OUT signal on to the next memory
chip in line. Again, the same decision is made by that unit.

3.31

3.6

INTERRUPT (Cont.)

By daisy chaining the priority lines, the interrupt levels
are set up. The first memory chip in Tine has the highest
interrupt level and the Tast units (Figure 3.8) are the
Towest. The MI in an F8 system will always be at the lowest
priority level,

To generate a timer interrupt, the timer must be set under
program control. An interrupt occurs when the timer times
out AND the interrupt control has been set (Select Bit =1,
Enable Bit = 1) AND ICB of the CPU is set. The timer may
time out before the Interrupt Control Bit is set or the
Local Interrupt Control is enabled for internal interrupts;
even so, an interrupt will still be initiated after the
required conditions have been met. Any pending timer inter-
rupt is cleared whenever the timer of the memory chip is
reloaded. The ICB is always cleared after the CPU has
acknowledged an interrupt request.

The generation of an external interrupt request is also controlled
by the Tocal interrupt control circuit. If the Select Bit is

set to zero and the Enable Bit is set to one, then the control
logic of the memory chip will be responsive to external interrupts.
To guarantee an interrupt, the external interrupt Tine must drop
from Vpp to Vgg (1 to 0), and stay down for a minimum of two

WRITE c?ock imes (4 ps for a 2 ps system clock). The ICB may

or may not be set when this occurs. If it is not set, the

request will be stored by the Tocal interrupt control logic

until the ICB is reenabled. However, the stored external
interrupt request will be lost whenever the control bits are
reloaded. The ICB will be cleared after the CPU has acknowledged
the interrupt request. The stored external interrupt request

will be cleared after the interrupt is serviced.

The operation of the local interrupt control circuitry is complex
The above word description may be an oversimplification of this
crucial function.

Within each local interrupt control circuit is a 16-bit interrupt
address vector. This vector is the address to which the program
counter will be set after an interrupt is acknowledged. Thus,

it is the address of the first executable instruction of the
interrupt routine. The 3851 ROM has a mask programmed interrupt

3.32

(#%]
(03]

address, selected by the user, It is another mask option of
the ROM (refer to Section 3.2). Fifteen bits are selected by
the designer. These are bits 0 thru 6 and 8 thru 15. Bit
seven (2/) is dependent upon the type of interrupt. This bit
will be a @ for internal timer generated interrupts and a 1 for
external interrupts. The interrupt address vector of the 3853
Static Memory Interface is programmable via output instructions.
Port OC of the 3853 MI is assigned to hold the upper eight bits
of the 16-bit address (bits 28 thru 215 while port OD hold the
seven Tower bits (bits 20 thru 26), Bit seven (27) of the
interrupt address vector (bit 7 of port OD) is controlled by
the Tocal interrupt hardware, just as in the F8 ROM chip. It
will be a @ if timer interrupts are enabled and a 1 if external
interrupts or no interrupts are enabled. The programmable
inte;rupt address vector of the 3853 MI is assigned the follow-
ing bits:

ikt A S e 7 ey

215 14 1,13 ,12 11] 510 09 ! 58 Port 0C

S

7 0
AR AR P R LN L B
7 _ 0

* This bit is controlled by the local interrupt control cir-
cuit.

- The interrupt vector may be loaded using an OUT or QUTS

instruction. It may be read back into the accumulator using an
IN or INS instruction with port OC or OD as operands.

When the interrupt Togic sends an interrupt request signal and
the CPU is enabled to service it, the normal state sequence of
the CPU is interrupted at the end of an instruction. The CPU
signals the interrupt circuits via the five control lines.

The requesting Tocal interrupt circuit sends a 16-bit interrupt
address vector (from the interrupt address generator) onto the
data bus in two consecutive bytes. The address is made avail-
able to the program counter via the address demultiplexer
circuits while simultaneously, it is made available to all other
circuits on the data bus. It is the address of the next instruc-
tion to be executed. The program counter (PCO) of each memory
chip is set with this new address while the stack register (PC1)
is Joaded with the previous contents of the program counter.

3.33

3.6

3.7

INTERRUPT (Cont.)

The information in PCl1 is lost. Thus, the next instruction
to be executed is determined by the value of the interrupt
address vector.

The Interrupt Control Bit (ICB) of the CPU (loaded in the W
register) allows interrupts to be recognized. Clearing the

ICB prevents acknowledgement of interrupts. The ICB is cleared
during power on, external reset, and after an interrupt is
acknowledged. The interrupt status of the ROM chibs are not

affected by the execution of the DISABLE INTERRUPT (DI) instruc-
tion. At the conclusion of most instructions, the fetch logic
checks the state of the Interrupt Request Line. If there is an
interrupt, the next instruction fetch cycle is suspended and

the system is forced into an interrupt sequence. The CPU allows
interrupts only after certain instructions.

The exceptions are the following F8 instructions.

(PK) PUSH K

(PI) PUSH IMMEDIATE

%POP? POP

JMP JUMP

(ouTs) OUTPUT SHORT (Excluding OUTS 01 and 02)
ouT) OUTPUT

EI) SET ICB

(LR W,J) LOAD THE STATUS REGISTER FROM SCRATCHPAD
POWER ON

Therefore, it is possible to perform one more instruction after
these CPU operations without being interrupted. This is
especially useful during routines which perform interrupt
housekeeping operations. For instance, whenever an interrupt
occurs, the program counter is pushed into the stack register
(PC1). Most likely, this value should be saved for later use.
If there were no way to block interrupts, another one could -
occur before PC1 has been safely stored into memory. Thus,

the ability to disable interrupts is essential.

INPUT/OUTPUT

A typical F8 system will have at least one CPU with one or more
ROM memory circuits and perhaps a Memory Interface Circuit
connected to the data bus. An F8 I/0 operation involves the
movement of data between the accumulator and an I/0 port. This
may be accomplished with one of four instructions (refer to
Chapter 5). These instructions are also used to reference

the interrupt control blocks and the timer registers (also

referred to as "ports". Refer to Section 3.5 for timer and

3.34

3.7

INPUT/QUTPUT (Cont.)

Section 3.6 for interrupt). An example of an output instruction
is:

OUT aa
In this example, byte aa refers to port address aa. Each port
(1/0, interrupt control block, timer) in an F8 system has a
predefined output port number. The two CPU ports are always

labeled 00 and 01; they are accessed by the INS and OUTS instruc-
tion only.

PORT ADDRESS

H'00' CPU circuit, I/0 port O
H'01' CPU circuit, I/0 port 1
H'02' not assigned
H'03' not assigned

The selection of the four ROM port addresses is a customer's

mask option while the Memory Interface port numbers are pre-
assigned. Each circuit, ROM or MI, will be given four sequential
port addresses; refer to Section 3.4.2.5 for an explanation of
address assignments,

The transfer of data from the accumulator to the 1/0 port is
completed with an OUT or OUTS instruction. Sampling of the
I/0 ports may be done with either an IN or INS instruction.

The OUTS and INS instructions are one byte in length; the first
four bits are the op code and the remaining four bits are the
port address. Thus, only 16 ports may be referenced with these
instructions. These are the lower 16 ports, 00 through OF.

The OUT and IN instructions are two bytes long. The first byte
is the op code while the second byte is the port number, Any
one of 256 ports may be referenced by this instruction. Ports

Ll o ANTO .

00 and 01 are addressable only with the OUTS and INS instruc-
tions.

Each I/0 port has an 8-bit Tatch on the output side; therefore,
it will retain the data of the last output instruction. These
ports are bidirectional, so data may also be read into the
accumulator from the same port. The only restriction is that
the output port bit latch must have a zero in it for input
data to be valid. This is a consequence of the wired-OR con-
nection of the I/0 ports (refer to Chapter 4). So, if a full
8-bit byte is to be transferred into the accumulator, the

I/0 port buffer must have previously been set to all zeros.

3.35

3.7

3,8

3.9

INPUT/OUTPUT (Cont.)
Unused I/0 ports may also be used as data latches. There can
be OUTPUT and INPUT bits on the same port.
The ROM chip offers three I/0 port options:
o Standard pullup
o Open drain
o Driver pullup

Chapter 4 details these configurations.

INITIALIZING REQUIREMENTS

The power on detect circuit for an F8 system is located in the
CPU. This circuit insures that all critical control circuits

and registers are in a valid operating condition when power is
first applied. It performs the following functions:

o Pushes previous contents of the program counter to
the stack register

o Resets the program counter to address "0000"
o Resets the Interrupt Control Bit (ICB)
o Sets control block on the 3852 MI circuit

When power is connected to the circuit or the reset line goes
Tow, the CPU clears the program counter (PCO), pushing its
previous contents into the stack register (PC1). Therefore,
the instruction in location zero is executed first. The
interrupt control bit is also cleared at this time. The rest
of the F8 system is initialized under program control. The
local interrupt block of the individual memory chips must be
loaded before allowing any interrupts to occur. Output latches
must be reset to zero before they may be used to input data.

DYNAMIC MEMORY INTERFACE CIRCUITS 3852

The 3852 memory interface circuit allows dynamic memory to
interface to an F8 system. This circuit will perform memory

3.36

3.9

3.9.1

DYNAMIC MEMORY INTERFACE CIRCUITS 3852 (Cont.)

refresh between CPU memory accesses. Memory refresh is
accomplished without degradating system performance. The

3852 memory interface circuit also interfaces to the 3854
direct memory access circuit to control DMA transfers into
and out of an F8 system. The principal features of this
circuit are:

0 Dynamic and Static Memory Interface

o 16 Bit Program Counter

o 16 Bit Stack Register

o Two 16 Bit Data Counters

0 On chip Incrementer/Adder

o DMA Control

Figure 3,3 shows a block diagram of the 3852 MI circuit.
MEMORY & DMA INTERFACE

The MI circuit requires the use of an external tristate
buffer with storage to 1ink memory to the F8 data bus.

Three control signals are supplied by the MI circuit to
control this buffer.

These signals are:
CYCLE REQ A signal to identify the start of a memory

access, This is useful for generating
strobes for dynamic RAMs.

CPU SLOT This line signals a time period during which
the CPU will perform a memory access.

CPU READ This 1line identifies a time period during

which the CPU requests a byte of data from
memory i.e. the CPU is reading a byte.

3.37

3.9.1 MEMORY & DMA INTERFACE (Cont.)
The interrelation of these signals to control the RAM-CPU
interface buffer is:

CYCLE ANp* CPU CPU STATE OF RAM-CPU INTERFACE BUFFER

REQ SLOT READ

0 Float outputs to F8 Data Bus
0 Float outputs to F8 Data Bus, load storage
1 Drive outputs to F8 Data Bus, from memory

1 Drive outputs to F8 Data Bus, from buffer
storage

* Logical AND

3.9.2

Figure 3.9 is a block diagram of a typical buffer. A
Read/Write signal is supplied by the MI to control the
operation of the memory chips.

The MEM IDLE pin of the 3852 MI is used to control the
DMA channel. The MEM IDLE 1ine is at Vpp when memory
is available. Memory is available for BHA use during
every cycle except for one of the two cycles of the
store instruction, ST.

CONTROL CIRCUITS FOR DYNAMIC RAYS

The 3852 memory interface chip provides a strobe

signal at the start of each memory cycle and contains
circuitry for refreshing dynamic memory devices. This
is implemented using two counters. One counter cycles
through 64 addresses doing a read in each, while the other
keeps track of the number of available DMA slots. Every
fourth or eighth DMA slot is used to refresh one memory
address. A complete refresh cycle will take 1.5 ms with
a worst case program running on a ZTps instruction cycie
time and using every eighth availabTe slot for refresh.
The signal MEM IDLE is held at Vgqg Tevel during a DMA
slot that is used for refreshing.

3.38

CPU READ

PAGE SELECT

S MPL,

DATA BUS

BIT ©
DATA BUS
BIT }
— :
~__,)
.—-———)
- al
. ; . {>_-. RAM WRITE DATA BIT |
f T
< RAM READ DATA BIT |
N
o
B {/\ & RAM WRITE DATA BIT O
—] A
I
(RAM READ DATA BIT O

DATA BUS BUFFER

FOR 3852 M
Eg&?

3.9.2 CONTROL CIRCUITS FOR DYNAMIC RAMS (Cont.)

The high to low transitions of MEM IDLE signals the
start of a memory access. There are either two or three
memory accesses during each CPU cycle. The number of
accesses during a cycle is a function of the CPU state.

The memory interface has a control block to set its

function under program control. This 3-bit register may
be referenced with an output instruction using 0D, as
the port address operand. The function of these %?ts are:

Bit # Function Logical Value
1 0
0 DMA OFF ON
1 Refresh ON OFF
2 Refresh Mode 1 Mode 2

Mode 1 - Every 4th DMA slot is used for refresh
Mode 2 - Every 8th DMA slot is used for refresh

The three bits are initialized to 1's during the power-on
reset.

The interfacing between an F8 system and the Fairchild
4K RAM is shown in Figure 3.10. Figure 3.11 is the exter-
nal circuitry necessary for generating the necessary con-

trol strobe. A detailed description of the timing of the
output signals is contained in Chapter 4.

3.9.3 DESCRIPTION OF PINS OF THE 3852 MI CHIP

Data Bus - 8 Lines, Bidirectional: These Tines form the
main communication bus for the F8 system.

ROMC 5 Lines, Input: ROMCO - ROMC4 are the five control
Tines originating from the CPU.

@ WRITE - 2 Lines, Input: These are the timing signals
generated by the CPU.

REGDR - 1 Line, Bidirectional: REGDR controls the passing of

3.40

o 1 I/o
- 3850
CP U
I |1 DAT S
CPU READ N
3831 3852 CPU_SLOT
wSMPL | BUFFER
ROM CONTROL*TIMING M I CYCLE REQ -

1

ST Voo | REGDR 3< J

L/ D
8 4 I
\II E[}IOK § £
L PAGE 8 8
SELECT D
|} Qp— J
. \/ v Y v
RA ADDRESS PAGE CYCLE DATA DATA
WRITE LINES SELECT REQ. IN our
N\
*OPEN COLLECTOR o T ’

3852 MEMORY INTERFACE IN AN F 8 SYSTEM

Frg. 3./0

ADDRESS

LINES RAM PAGE DATA ooAUTrA
/ Y SELETT I N
CYCLE REQ. MS B LS8 wﬁn{'z’ y Y A
Y)
g MUX*
960
R
L1700
L_ 7,15 -~ 8iT O
) MULTI- 6 Div Do
PLEXER 4‘2:'5
9602 RA. ADDRESS 4096
lr-—-——-—d_——\ 2
[©00 RAS
- ne CAS
Q| CAS
9602
L d N
[‘—'—/‘ 750
- nS

4096 X 8 MEMORY
#WHEN MUX IS HIGH, THE MSB BITS ARE SELECTED

3852 MEMORY REFRESH WITH 4096 DYNAMIC RAM

Fig. 3./

310

the PC1 or DC registers onto the F8 data bus during specific
instructions. An output from the memory page select logic
should be tied to this pin through an open collector gate.
This line is wired-AND ed with a second signal to internally
control data bus drivers.

RAM ADDR - 16 Lines, Output: These lines are the memory
address 1ines used to select the desired byte in memory .

RAM WRITE - 1 Line, Output: The RAM WRITE line specifies
the mode of memory addressing.

1

Read from memory
0 = Write into memory

C

YCL 1 Line, Output: Signals the start of each memory
acce

qQ -
nd controls the memory buffer,

E RE
ss a

S

CPU SLOT - 1 Line, Output: This line controls the memory
buffer. It identifies a CPU memory access time period.

CPU READ - 1 Line, Output: This line controls the memory
buffer. It identifies a CPU memory read time period.

MEM IDLE - 1 Line, Output: MEM IDLE indicates when memory
is available for DMA use.

STATIC MEMORY INTERFACE CIRCUIT 3853

The 3853 memory interface circuit is another compatible com-
ponent of the F8 microprocessor family. This chip allows
standard memory elements to be incorporated into an F8

system; it is used for interfacing with static memory elements
such as the 2102 (1024 x 1 static RAM) and has full interrupt
capability.

The principal features of the Static Memory Interface Circuit,
3853, are:

0 Static memory interface
0 16-Bit Program Counter

0 16-Bit Stack Register

0 Two 16-Bit Data Counters

3.43

3.10

3,10.1

3,10.2

STATIC MEMORY INTERFACE CIRCUIT: 3853 (Cont.)

o Local Interrupt Control Circuitry
(Independently set and reset under program control,
programmable interrupt vector)

0 On-Chip Incrementor/Adder

o Real Time Counter For Timing Functions

STATIC MEMCRY INTERFACE: 3853

The MI has a 16-bit wide address bus. These Tines
may be used for accessing up to 64K bytes of memory.
Two signals are used to control the added memory
circuits. One line, CPU READ, controls the exter-
nal buffers; this signal is True during instruction
cycles that reference memory or fetch instructions.
A buffer must be externally provided to .connect
memory data onto the F8 data bus. The other con-
trol Tine, RAM WRITE, determines whether the data
will be written into or read from the memory.

Figure 3.12 is an application showing the 3853 MI

in a memory intensive system. A detailed description
of the timing of the output signals is contained in
Chapter 4.

DESCRIPTION OF PINS OF THE STATIC CIRCUIT - MI 3853

Data Bus - 8 Lines, Bidirectional: Thes Tines form
the main communication bus for the F8 system.

ROMC- 5 Lines, Input: ROMCO - ROMC4 are the five
control lines originating from the CPU.

@, WRITE - 2 Lines, Input: These are the timing
signals generated by the CPU.

REGDR- 1 Line, Bidirectional: REGDR controls the
passing of the PC1 or DC registers onto the F8

data bus during specific instructions. An output
from the memory page select logic should be tied

to this pin through an open collector gate with a
pull-up resistor. This line is wire ANDed with a
second signal to internally control data bus drivers.

RAM ADDR - 16 Lines, Output: These lines are the
memory address lines used to select the desired
byte in memory.

RAM WRITE - 1 Line, Output: The RAM WRITE Tine
specifies the mode of memory accessing.

1 = Read From Memory
0 = Write Into Memory

3.44

™\ N\

1 1t
sl |8
CONTROL Nk N I
AND
TIMING 3850
(7) .
CPU
1T R
DATA BUS (8
; cPU
3853 READ
385/ MI BUFFER
REGDR 1 | (INSERT)
ROM ADDRESS -
| Yo I LINES LBJ H
T A
A9 I
PAGE DATA
SELECT (T0) (FROM)
(i0) MEMORY
N y
i V<
RAM MEMORY PAGE

WRITE ADDRESS SFLECT

¥ OPEN COLLECTOR

F 8
DATA

BIT n

8BUS

DATA IN- F 8 SYSTEM

P Bz
WITH 3853

L 4 Fr

DATA OUT-
BIT n STATIC MEMORY
INTERFACE
L_—OQ e RS§:§ =

BUFFER-| BIT

F/j. 3./2

3.10.2 DESCRIPTION OF PINS OF THE STATIC MEMORY INTERFACE (Cont.)

CPU READ - 1 Line, Output: This line helps to con-
trol the memory buffer.

PRIORITY IN - 1 Line, Input: This Tline is part of the
interrupt logic of the 3853 Memory Interface circuit.

INTERRUPT REQ - 1 Line, Output: This line is also
part of the interrupt control.

EXT INT - 1 Line, Input: This 1ine is part of the
MI interrupt control.

VDD’ VSS’ VGG: These supply power to the chip.

3,46

GENERAL DESCRIPTION:

family.

M0S PRELIMINARY SPECIFICATION

F8 CENTRAL

The 3850 is the Centra

Dec. 1974
3850
PROCESSING UNIT

1 Processing Unit of the F8 Microprocessor

When connected to an external clock, a crystal, or an RC network, the 3850

generates all the necessary timing and control signals to make a functioning system.

The CPU can decode and execute a complete set of over 70 machine instructions

operating on 8-bit bytes of information.

Isoplanar MOS technology.

The 3850 CPU is designed to interconnect to

build an 8-bit microprocessor.

FEATURES:

o 2 us CYCLE TIME

o 64-BYTE RAM

o TWO I/0 PORTS-WITH OUTPUT LATCHES

o 8-BIT ALU

o BINARY AND DECIMAL ARITHMETIC

o INTERRUPT CONTROL

o +5 V AND +12 V POWER SUPPLIES

The 3850 is manufactured using n-channel

the other chips in the F8 family to

o POWER O RESET

o MASTER CLOCK

o CLOCK CIRCUITS CAN BE OPERATED IN ONE OF 3 MODES
AN RC NETWORK
CRYSTAL CONTROL
EXTERNAL MASTER FREQUENCY

o OVER 70 INSTRUCTIONS

o LOW POWER DISSIPATION - TYPICALLY LESS THAN 300 mW

PIN NAMES
Pin Hames

DBO - DB7
T7000 - 17007
T/010 - T/017

ROMCO - ROMC4
RC

EXT RES
8, HRITE
TCB

TNT REQ

Data Bus
1/0 Port Zero

1/0 Port One

Control Lines

RC Timing Input
Crystal Clock Inputs
Externai Ciock input
External Reset

Clocks

Interrupt Control Bit
Interrupt Request

Power

Type

Bidirectional
Input/Output

Input/Output
Output

Input

Input

Input

Input
Output
Output

Input

Input

g 1
WRITE 2
Vop 3
Voo 4
1/003 5
DB3 6
17013 7
/012 8
DB2 9
1/002 10
1/001 1
DBI 12
17011 13
1/010 14
DBO 15
17000 16
ROMCO 17
ROMC1 18 |
ROMC2 19
ROMC3 20

3850
CPU

40 RC

39 XTL-X
38 XTL-Y
37 EXT RES
36 17004
35 DB4

34 17014
33 1/015
32 DB5

31 1/005
30 17006
29 DB6

28 17016
27 1/017
26 DB7

25 1/007
24 Ves

23 INT REQ
22 1CB

21 ROMCA

4.2

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Above whicn useful 1ife may be impaired)

'} +15 V to -0.3 ¥

GG

Yoo +7V t0 -0.3 V
A1l Inputs and Qutputs 415 V'to -0.3 V
Storage Temperature -55°C to +1503C
Operating Temperature 0°C to + 70°C

Note: A1l Voltages With Respect to VSS

DC CHARACTERISTICS: \lfSS =0.0V, Vg = #5 V # 5%, Voo = + 72V + 5%, TA = 0°C to + 70°C (Note 1)

DD

SUPPLY CURRENTS

SYMBOL CHARACTERISTICS MIN. TYP. MAX. UNITS TEST CONDITIONS

IDD VDD Current 30 80 mA f = 2MHz

IGG VGG Current 16 20 mA f = 2MHz

DATA BUS

SYMBOL CHARACTERISTICS RIN, TYP. MAX. UNITS TEST CONDITIONS

"m Infn&r{oY¥tage HIGH 3.5 vDD v

VIL Input Voltage LOW VSS 0.8 Y

Vou Output Voltage HIGH 3.9 Yoo v Isource = 1004

VGL Output Voltage LOW VSS 0.4 v !SINK = 1004

I Leakage Current 1.0 V=6V, Output In

L ’A IN 3-State

Mode
1/0 PORTS
VIH Input Voltage HIGH 2.9 VDD v Intern_a'IAPuH-up to
(Hysteresis Input*) Vpp provides TTL

Compatability

"n Input Voltage LOW VSs .8 v

VOH Output Voltage HIGH 2.9 VDD v ISOURCE=mg"A

Vou Output Voltage HIGH 3.5 Vop v Isource™ A

VOL Output Voltage LOW VSS 0.4 v ISINK =2.0mA

IIL Input Current LOW 1.2 mA VIN=VSS

*Hysteresis input provides 0.5V noise immunity

4.3

CONTROL LINES

SYFBOL CHERACTERISTIC MIN. TYP. MAX. UNITS TEST CONDITIONS

v ‘ ' v .

oL ONutput Voltage LOW VSS n.é4 XSINK 100 vA

VOH OQutput Voltage HIGH 3.9 VDD v ISOURCE = 100uA
EXTERNAL CLOCK INPUT

VXH Tnput Voltage HIBH 4.0 VDD v

Vic Input Voltage LOW Ve 0.8 v

lIJ Input Leakage Current 1.0 uA VIN = 6Y
EXTERNAL RESET

le Input Voltage HIGH 3.5 VDD v Internal Pull-up to VDD

Vu Input Voltage LOW VSS 0.8 v

lIL Innut Current LOW 0.3 mA VIN = VSS

4.4

CLOCK LINES

SYMBOL CHARACTERISTICS MIN. TYP. MAX, UNITS TEST CONDITIONS
VOH Gutput Voltage HIGH 4.4 Voo v :SOURCE = 100 pA
VoL Output Voltage LOW Vg 0.4 v Ising = 100 1A
INTERRUPT CONTROL BIT
Vou Output Voltage HIGH 3.9 Vos v !SOURCE = 100 LA
v Cutput Voltage LOW v 2
oL SS 0.4 ¥ Ioink = 100 LA
INTERRUPT REQUEST
VIH Input Voltage HIGH 3.5 VDD v Internal Pull-up
to VDD
vIL Input Voltage LOW v 0.8 \
SS
I Input iLow Current 1.0 mA Viy = 0.4V
NOTE 1: Junction Leakage Current, all pins:
1.0 pA max. when VIN = 6V, VDD = VGG = VSS
AC Characteristics: Vg = 0.0V, Vyy = 5.0V5%, Vo = 12V + 5%, T, = 0°C to 70%
f = 200 KH2 to 2 MH2, (Notes 2, 3)
901
i
=107,
OQUTPUT VOLTAGE WAVEFORM
PIN
NAME tr MAX. tf MAX. TEST CONDITIONS
[} 120 ns 80 ns CL = 100 pf
WRITE 120 ns 80 ns C, =100 pf
1/0 180 ns 140 ns CL = 100 pf
PARAMETER MIN MAX.
tr 0 50 ns
tf J 50 ns
tw (.4) x tp {.6) % i
ty AT SN

U us 4.5

F& Clock 7;/7;/'@

fe “m_ru

Tda

—fje,
g J JIEgEpipEpEpEpEpu R ERERERnn

k" Loy
NWRITE
L . J J
L_IWR T LSHORT T¢ tLONb 4|
[on3 Cyc /e = 6 Clock /Du/ses
: ' e = 4 Clock Fuf.
PARAMETER - TS Shorr C-yc o= H4Clock fy/ses
t 0.9 5 us
ta 0 200 ns
a2 0 200 ns
t43 0 400 ns
tSHoRT 2 20 us
t ong 3 30 us
twR 0.5 5 US
T
1 Nterropt Control Bi? /M9 £1. Enabie Totceesn Tnetrocnon
_ - ~
WRI 7+ ‘
ferch
Enablz CImcm,f Execute Fetch
Instruetion
I(AB \
—th‘d' I(__'
:Tf) Tercupt: 7;minc3
‘o i i Next Instoctio
L |] | e
i Ferch v - F_ t J
N:n—Rﬂwlq{ pd3
—— Instrocton Tractive
I C B _ Actrve
__9’ '[Fd .
Int Rer

I~ [l ‘.
(Frem [OLY) = =

ROMZ-

/o

CPU /0 Tirmmg

i 1 " /r C;\ ., .

if;::z;%(;;/) EX’-"“*’O” /Vf‘{(__r Znsteucten

| (INS Ogel) Fetch
WRI7£ l

Ovrpvt Data
CPU CHIP

(Data From Hevious Outs ><

tSErUP I ‘ IHOLD

Tnpot Dot Data Moy Change Data Most | Date May Change

CPU Chip Be Stelbie

Com‘m/ L/m.— mej,

WRI 7£

Control r- TP&P}

[ines | : Valid %

PARAMETER MIN. TYP. MAX. UNITS
tpd] 450 ns
tpd2 815 nS
tpd3 310 ns
tpd4 585 nS
tpd5 600 nS
tpdﬁ 710 nS
téetup 800 ns
thotd 160 nS

Note 2. Timing delays are referenced from valid input to
valid output. This includes input and output
rise and fall times.

Note 3. Maximum Capacitive Loading for 2 MHz system;
- 50 pf on 1CB pin.

- 100 pf on all other pins

o
~

C /CJC/'*’. c;’hsfc/-:'rc‘.‘/'/ons

RC Mode

2

-3
|

-4
i

PREQUENCY TOLERANCE — 1
TYPICAL FREQUENCY — MHy

—

|

i
[2
FREQUENCY - MHe

RC Oscillator Crysal Oscilleror External

Osciietor

L
(Y

Vs

Yas
}i’ Yo
3850 S a4l 3850 2¢) 3850

ou TC PU “CHY
DI—T Exteena

38 Oscillator

i lQ;

——
L

pRN—

&

C.=C,‘/0p‘f

Z/0 Con*F;g urations

TTL 70 &

——— - -y FoT o
1" !
o : hj
T
—y |
= : I = Inpu'f
- “Open Collector ‘ - Tre 0T T
T7 Ovtpt re
F& 7o T7Z
I F—=

3 T, T,

4.8

MOS PRELIMINARY SPECIFICATION
Dec. 1974

GENERAL DESCRIPTION: The 3851 provides 1K bytes ROM storage for an F8 microprocesser system.
Manufactured using nchannel isoplanar MOS technology, the 3851 requires two voltage
supplies, +5 volts and +12 volts. The,.F8 ROM receives control signals from the F8 CPU;
an 8-bit wide bidirectional data bus transfers data words between the‘CPU and the ROM.
The I/0 ports may be selected from one of three mask options for compatibility with

external signals,

FEATURES:
o 1024 8-bit ROM Storage o Programmable Timer
o 16 Bit Program Counter o Two, 8-bit I/0 Ports
0 16 Bit Stack Register o +5 volt and +12 volt power supply
o 16 Bit Data Counter 0 Incrementer/Adder
o Interrupt Control Circuitry o Low Power Dissipation - Typically less
than 300 miW
PIN NAMES:
Pin Names Type
T/0 R0 - T/U A7 170 Port A Input/Output
T/0B0 - T/0B7 1/0 Port B Input/Cutput
DBO ~ DB7 Data Bus Bidirectional
ROMCO - ROMC4 Control Lines Input
@, WRITE Clock Inputs Input
EXT INT External Interrupt Input
PRI IN Priority In Input
PRI OUT Priority Out Output
INT REQ Interrupt Request Output
DEDR Data Bus Driver Output

Vops Vsss Vgg Power

4.9

O
o LON 2
L Ve 3
Vo 4
oEXT_TNT__5
o PRLOUT 6
o HRITE 7
O ¢ 8
o I REQ 9
GLPRCIN 10
6-DBDR 11
o NOT USED_ 12
o-RoMea 13
oROMC3 14
oROMCZ 15
oROMCI 16
pRONE 17
o¥ss. 18
SO 18
o020

3851
ROM

40 DB7
O
39 DB6
O
38 T/086
37 TR
% __T0R
35 T/0B5
34 DBS
33 DB4 i
)
32 T0B4
N__TOM
30 T/OA
29 T/0B3
28 DB3
27 _ DB2
O
26 _T/0B2
25 TIOR2
24 TOAT
23 T/OBI
2L
21 DBY

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS {Above which useful life may be impaired)

VGG +15 Y to ~0.3 ¥

Von +7Vto-0.3YV
v

A1l Inputs and Outputs 415V to -0.3 ¥

Storage Temperature -55°C to +150°C

Operating Temperature 0°C to + 70°C

Note: A1l Voltages With Respect to VSS
DC CHARACTERISTICS: VSS =00V, VDD = 45 V 45%, Vg = +12 V 5%, Ty = 0°C to +70°C (Note 1)

SUPPLY CURRENTS

SYMBOL . . CHARACTERISTICS . MIN. TP, MAX. UNITS TEST CONDITIONS
Io 30 70 mA f = 2z
Igg 10 18 mA © fe=omz

EXTERNAL INTERRUPT

i Input Voltage LOW. V¢ 1.2 y
vIH lnput Voitage HIGH 3.5 VDD v
IIL Input LOW Current .5 mA Yy = VSS

CONTROL LINES

AND
PRIORITY IN
L Input Yol tége LOH Vg 0.8 Y
VIH Input Voltage HIGH 3.5 VDD Yy
IL Inpg‘t‘rt::!;age l' A VIN = 6V
PRIORITY OUT
vOL Output VYoltage LOW Vsg 0.4 ISINK = 100 2A
You Output Voltage HIGH 3.9 Vop ISOURCE = 100 LA

4.1}

DATA BUS

SYMBOL CHARACTERISTICS MIN. TYP. MAX. UNITS TEST CONDITIONS
le Input Voltage HIGH 3.5 VDD v

o Input Voltage LOW Vg 0.8 v

Vou Output Voltage HIGH 3.9 Vop v xSOURCE = 100uA
VOL Output Voltage LOW VSS 4 v ISINK = 100 uA
IL Leakage Current 1 uA VIN = 6V; Output

in 3-state mode

INTERRUPT REQUEST

VoL Output Voltage LOW Vgg .4 v Ik =) mA
You Output Voltage HIGH 3.9 Vop v Open drain out-
put
Pullup resistor
on CPU

DATA BUS DRIVER

Vo Output Voltage LOW Vo .4 v Ik = 2.5 mA

You Output Voltage HIGH 3.9 Voo v External 1.8K
Pullup to VDD

WRITE and @
Vi Input Yoltage HIGH 4.0 Vop v
ViL Input Voltage LOW Vss .8 v
I Input Leakage 1 uA VIN = 6V

Current

NOTE 1 Junction Leakage Current, all pins:

1.0 uA max. when Vyy = 6V, Voo = Vgg = Vgq

4.12

1/0 PORT OPTION A

OPEN DRAIN

SUMBOL 7 CHAPACT ERISTICS MIN. TYP. MAX. UNITS TEST CONDITIONS

You Output Voltage HIGH: - vgg iLeakage € Vou max = | #A max

VOL Output Voltage LOW VSS .4 v 'S!NC = 2 mA

Ty Rise Time Dependent on
External Pull-
up Resistor

T¢ Fall Time 140 nS €, = 100 pf

Yy Input YOltage HIGH 2.9 Vop v

o Input VOltege LOW VSS .8 v

1 Input Current HIGH 1.0 uA

OPEN DRAIN CONFIGURATION
BIDIRECTIONAL APPLICATION

———
_______ . Voo e
i R ‘
]
Ihpc/f A — ! i
! L
| |
— | - - - - '
| 77TL INPur
i !
|
_______ | : +
F8 T/0 for # OFiN COLLE
TTL OUTAUT

170 PORT OPTION B

STANDARD PULL UP

SYMBOL CHARACTERISTICS MIN. TYP, MAX. UNITS TEST CONDITIONS

Vou Output Voltage HIGH 3.5 Voo v Loiree = VWA

Voy Qutput Voltage HIGH 2.9 Vi v tSOURCE' 100 uA

VoL Output Voltage LOW Vsg .4 v) ¢ =2 mA
SINK

Te Rise Time 180 nS Cy = 100pf

Te Fall Time 140 ns C, = 100pf

Vin Input Voltage HIGH 2.9 Voo v intsrnﬂ Pullup
0 Provides

¥1L BBrpatabitity
V"_ Input Voltage LOW VSS .8 v
:IL Input Current LOW 1.2 mA VIN = vSS

STANDARD PULL UP CONFIGURATION

TTL 7o

Fe

OFzN COLLEcTOR
TTL OUTPOT

F8 7o TTL

i
T
|
|
i
i
{
i
t

F3 1/0 Porr

-
)

T TL NPT

1/0 PORT OPTION C

DRIVER PULL UP

SYMBOL CHARACTERISTICS MIN. TYP. MAX. UNITS TEST CONDITIONS
Vou Output Voltage HIGH Vg -1 Vop v Isoupce = 1 mA
Vou Output Voltage LOW Vg 4 Y Ismg =2 mA
T, Rise Time 120 n§ C = 100 pf
Tf Fall Time . 140 nS €, =100 pf

DRIVER PULL UP CONFIGURATION

QUTPUT ONLY
_________ 1
|
Voo i Voo
| 1
i

q}

F3

RO/ 20 7//T/s

WAITE

Ovtput Dare

[OUTO(-OU]'S Data In I/0 FPort from Frevious ‘ouT’or tours’

— T
|

Tnstructeen

In struction)

"—- Ts:wp’} !\“ Thold

Inpot Dt .
(IN or INS ‘ ' Data Moust
Thnetroction) Decta May Chanj{ Be Stable

INTERRUPT TIMING roreas

Tpdz

PRT OUT \

/

OR \ _—
"INT REQ
Rarameter Min. Typ. Max. |Units
tpd. . (o] 600 NS
Lpda A70 ns
Cpds 360 ns
..__Thﬂlc, /60 ns
Tscter I3 : M

NUte 2. PRI OUT 5 C“_‘SOP-(mex
INT REQ ’ CL_’« /00,1{ may

[T T T e e e e e

Use of DBDR Dote Bus Drivec ing Larﬂe Sysn‘m

4

[Feor e D
3851 |
1Rom

3850
CPUL

[
|
|
i (¢
T 1)
{
|
t
I Dere Bus
I Birn
|
]
1
]
| - ‘
! 4
4 { §
; L
el j::>
Dotea Bg;
Bitn

DBOR may be used in large systems (CL on Data Bus 100pf)

to control Data Bus Buffers. It is not required for
systems where CL 100pf on Data Bus Lines.

m—ﬁ Ltvelg

ROM Circuit Driving Data Bus Vs
ROM Circuit Not Driving Data Bus Voo

4

5.0 MACHINE INSTRUCTIONS

5.1

GENERAL

This chapter describes each of the process instructions used
when programming the F8, The instructions are given in the
ASSEMBLY LANGUAGE format since this is the most basic form of
the instructions usually used when writing a program. The
description for each instruction also gives the hexadecimal
equivalent called the MACHINE LANGUAGE format for convenient
reference when debugging programs.

Formats for writing the processor instructions are first explained
in Sections 5.2 and 5.3. Section 5.2 describes the format used
for instructions coded in machine language format. The assembly
language format for instructions is described in Section 5. 3.

A symbolic notation is included in the description of each
instruction. This permits the user who is familiar with the
instructions to quickly review the functions performed,

The description of each instruction also indicates how the
Status Register is affected by the instruction. Refer to
Section 3.3 for an explanation of the Status Register.

The instructions are divided into functional groupings,
Table 5.1 lists the instruction groups and the section which
contains the detailed descriptions of each.

INSTRUCTION GROUP FUNCTION SECTION
Accumulator Describes instructions that only 5.5
affect the contents of the
Accumulator (ACC)
Status Register Describes instructions in which data 5.6
moves between the Status Register
and a Scratchpad Register
Indirect Scratch-| Describes instructions to load the 5.7
pad Indirect Scratchpad Address Regis-
ter (ISAR) or load the Accumulator
from ISAR
Scratchpad Regis-| Describes instructions in which data 5.8
ter moves between a desianated Scratch-
pad Register and the Accumulator or
the ALU
Data Counter Describes instructions in which data 5.9
Reference moves between the Data Counter and the
Accumulator or designated Scratchpad
Registers
Memory Reference | Describes instructions in which data 5.10
moves between main memory and the ALU
or Accumulator
Program Counter Describes all instructions which use 5.11

Branch

Input/Output

No Operation

Interrupt Control

Condensed
Listing

or modify the contents of the program
counter (PCO) or the Stack Register (PC1)

except branch instructions. Includes
call to subroutine instructions.

Describes all Conditional and Uncondi-
tional Branch instructions

Describes the four Input/Output instruc-
tions

Describes the No-Op instruction

Describes the master interrupt control
instructions

Condensed listing of all instructions
with the function stated in symbolic
notation

TABLE 5.1

5.2

MACHINE LANGUAGE FORMATS

A1l instructions are actually stored as binary numbers in the

memory area assigned to store the programs. This binary representation
of instructions is known as MACHINE LANGUAGE. A1l binary numbers may
be grouped in 4 bit binary units called HEXADECIMAL DIGITS. Each
hexadecimal digit is assigned a sinale symbol as shown in Table 5.2

Decimal Binary Code
Symbo i Hexadecimal Symbol MSB LSB

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 oM

8 8 1000

9 9 1001

NA A 1010

NA B 1011

NA C 1100

NA D 1101

NA E 1110

NA F 1111

TABLE 5.2 NUMBER REPRESENTATIONS

Expressing binary numbers in hexadecimal notation simplifies

interpretation of the binary value and generally simplifies the
writina and reading of binary numbers,

For example; the binary number:

10010110

can be divided into 2 fields

1001 0110

which is assianed a hexadecimal notation of:
9 6

5.3

Through the rest gf this manual, hexadecimal notation will be used,
ixcept where clarity can be maintained by retaining the binary
orm,

A1l instructions are encoded in multiples of eight bit units called
BYTES. An instruction may be a one byte, two byte or three byte
instruction depending on the function to be performed. Table 5.3
shows the formats for the one, two, and three byte instructions.

' INSTRUCTION LENGTH FORMAT (HEXADECIMAL) NUMBER OF BITS
MEMORY LOCATION*
P P+1 P+2
MSB LSB
1 BYTE 1 A 8

MSB LSB | MSB LSB
2 BYTE 2 4 F F 16

MSB LSB | MSB LSB, |MSB LSB
3 BYTE 2 5 A A 0 0 24

* P is the address location of the instruction.

TABLE 5.3 ORGANIZATION OF INSTRUCTIONS

5.4

5.2,1

SCRATCHPAD MEMCRY

The scratchpad memory consists of sixty-four 8-bit bytes

of RAM. Scratchpad memory instructions set up data paths
hetween scratchpad and the accumulator. Seven bytes of
scratchpad have been assianed special functions with
specific instructions to 1ink these bytes to other registers.
These scratchpad locations are:

Register Function
9 J Register Tinked to status register
10 HU H Register
linked to data counter
11 HL H Register
12 KU K Register
Tinked to program counter
13 KL K Register
14 QU Q Register
linked to stack register to
i5 . QL Q Register the data counter

The first 12 scratchpad registers are directly addressable while the

entire 64 bytes may be indirectly addressed via the 6-bit Indirect

Scratchpad Address Register (ISAR). For example, the instruction

LR A,5 Toads the accumulator with the contents of scratchpad register

5. The directly addressed scratchpad location (5) is contained in

the one byte instruction. When using the ISAR to indirectly

address a scratchpad location, one of three addressing modes may be

used. In all instances, the ISAR supplies the register address. The
A

three modes are:

S - The ISAR contents are unchanged
I - The ISAR is incremented by one after execution
D - The ISAR is decremented by one after execution

For instance, if the ISAR contains

101 100 ISAR

the instruction|R A, I will load the accumulator with the contents
of scratchpad register 545 and increment the ISAR. After execution of
this instruction, the IS&% will contain:

5.5

5.2.2

5.2.3

101 101 ISAR

When incremented and decremented, the three least
significant bits of the ISAR form a modulo 8 counter;
the three most significant bits of ISAR remain un-
modified when addressinag with the I or D format. A
aroup of instructions loads the ISAR.

DATA COUNTER

The F8 microprocessor contains a 16-bit data counter to
indirectly address the 64K bytes of memory. Thus, all

memory reference instructions need no operand. An instruc-
tion, LM, will automatically transfer the contents of the
byte specified by the data counter from memory to: the
accumulator. At the end of all memory reference instructions,
the data counter is automatically incremented. The

data counter instructions modify and transfer the contents

of the data counter.

DC, 5 DCq
pcu [|

D, D,
pcL [1

STATUS REGISTER

The W Register in the CPU contains the following status bits.

Wy s W, Wy Wy

ICB OVER- | ZERO CARRY | SIGN
FLOW |

A 23 22 2! 20

5.6

5.2.4

The ICB is the INTERRUPT CONTROL BIT. Instructions exist
to set and reset this bit. The four remaining bits are
dependent on the results of ALU operations. Boolean
equations for these bits are:

OVERFLOW = Cl—\RRY7 ® CARRY6

ZERO = ALU7 A ALU6A ALU5 A ALU4 A ALU3 A-ALUZ A ALU] A ALU0
CARRY = CARRY7

SIGN = ALU7

Where ALUn are the eight bits resulting from ALU
operations CARRY7 is the carry bit from adding
the seventh stage. 'CARRYg is the carry generated
from adding the sixth stage,

A set of instructions transfer data between the W register
and r9 of the scratchpad. These instructions are useful for

. Storing and retrieving the CPU state during interrupts and
subroutine jumps,

PROGRAM COUNTER AND STACK REGISTER

The PROGRAM COUNTER contains the address of the next instruction
to be executed. Linked directly to the program counter is the
STACK REGISTER; the stack register is loaded with the contents
of the program counter during interrupts and subroutine Jumps.

The proaram counter (PCO) contains the location of the next
instruction to be executed.

PCO-15 PCO-8

PCOU [] PROGRAM COUNTER
PCO-7 PCO-0

PCOL T]

Proaram counter instructions load PCO with the contents of the
scratchpad registers or directly from an instruction. The
contents of the proaram counter may be transferred to and from
the stack reaister (PC1).

PC1-15 PC1-8
PCIU [] STACK REGISTER
PC1-7 PC1-0
PeiL [i

5.7

5.3

The stack register is useful for saving and restoring the
program counter during interrupts and subroutine jumps.
It is linked to scratchpad registers K and Q by special
instructions.

ASSEMBLY LANGUAGE FORMATS

The scope of this section is to familiarize the reader with

the format of the assembly language form of the F8 processor
instructions. The rules for programming in assembly language
are described in greater detail in Chapter 6.0, CROSS ASSEMBLER.
The descriptions of all the instructions in the following
garagraphs will be stated in terms of the assembly language
ormat.

There are two parts to an instruction written in assembly
language form. These are:

0 OPERATION CODE, or OP CODE
0 OPERAND(S)
The two parts of an instruction are written in assembly language

in the following format.

OP_CODE OPERANDS

LR A,KU

The oP coDE specifies what function is to be performed. For
example: the OP CODE may specify that an addition is to be
performed; or that a register is to be loaded; or than an input
port is to be read and the data present at the input stored in
the accumulator. OP CODES are always written with two to four
alphabetic letters only.

The second part of an assembly lanquage jnstruction is called
the OPERAND(S). (Some instructions contain two operands).
OPERANDS specify either (1) where the data that is to be used
in the execution of the instruction is to be found (OPERAND
ADDRESS); OR (2) contain the data content directly (IMMEDIATE
OPERAND). An F8 dinstruction will contain either one, two,or no
operands depending on the function to be performed.

For example: A load register instruction (LR A,QL) contains 2
operands. The first operand specifies that one byte of data is
to be loaded into the accumulator, and the second operand
specifies that the byte is to be obtained from Scratchpad
Register #15 (QL).

5.8

The shift right instructions (SR 4) contains one operand
which specifies that the data stored in the accumulator,
is to be shifted riaht toward the LSB four times.

5.4 SYMBOLIC NOMEMCLATURE

A functional notation is used in the descriptions of all
instructions to demonstrate what takes place when the in-
struction is EXECUTED or performed. Use of this notation
can replace the longer verbal descriptions of the function
of the instructions.

Throughout this chapter, symbols and variables are used to
define instructions.

Table 5.4 lists each of the symbols used and their definitions.

SYMBOL DEFINITION

« Is Replaced By. The entire expression to the rear of the
arrow replaces that at the head of the arrow.

—~

The Contents 0Of.

L

+ Addition. The symbol is used for both binary and decimal
addition,

A Logical And.

v Logical Or.

7N\ . .

& Logical Exclusive Or.

- Subtract.

The Value contained in quotes.

Table 5.4. Symbols Used In Descriptions Of Instructions And The Definition.

5.9

Definitions of operand variables are given in Table 5.5

Jperand DEFINITION

i Immediate Value

rn Scratchpad Register n; n is between 0 to 63

X Source Register

Y Destination Register

a Address Digit

t Test Condition; used in conditional Branch
instructions

d Digit Value; used in Table 5.6 format only.
Refer to Table 5.2 for acceptable digits.

Table 5.5 Definition of Variables

Table 5.6 lists the formats of constants which are used.

The correct format for expressing each constant is shown
in the column labeled OPERAND CONSTANT. If no format is
aiven, a decimal value will be assumed.

Alternate
ggﬁgiggt * Definition Form of
Operand
H'd' Hexadecimal Digit; d may be one
of the digits 0 thru 9,
A,B,C,D,E,F
D'd’ Decimal Digit; d may be one of
the digits 0 thru 9 d*
0'd' Octal Digit; d may be one of the
digits 0 thru 7
c'd' Character; 8 bits which are one of
the ASCII characters. Refer to
Appendi x
B'd' Binary Digit; d may be either "1"
Or. IIOII
T'd' Timer Counts

Table 5.6 Definition & Formats for Operand Constants

*Each character represents 4 binary bits. More than one digit
"d" may be used to represent the full value of the operand as
required.

Example: A 16 bit binary number 0110 0011 0100 1001 may be represented
in hexadecimal notation as:

H'6349'

2.11

5.5 ACCUMULATOR GROUP INSTRUCTIONS

Accumulator Group Instructions are instructions that affect
only the contents of the accumulator. Data moves from the
Accumulator to the ALU for modification and back to the
accumulator for restorage.

Operands used during the execution of these instructions
originate either in the Accumulator or are constants
called IMMEDIATE VALUES contained in the instruction word
directly.

INSTRUCTIONS WITH OPERANDS ORIGINATING IN THE ACCUMULATOR:

oP. MACHINE
CODE OPERAND FORMAT Description Bytes Cycles*

SR 1oréd 1 S Shift the contents of the 1 1
accumulator right 1 or 4
binary bits. The right most
bit in the accumulator (ACCO)
is not saved. The most signifi-
cant bit of the accumulator(ACC;)
is filled with zero.
Value of S Number of Bits Shifted

2 1
4 4

The Status bits are modified by execution
of this instruction*

OVF ZERO CARRY SIGN
0 1/0 0 1

* A 1/0 box of the status register
implies that the status bit may become
either a 1 or a 0 as a result of the
instruction execution.

Shift Right Example:
Accumulator Instruction Status Reaister

Before 10110101 SR 4 OVF ZERO CRY SIGN
After 00001011 0 O 0o 1

* Throughout this chapter, a cycle equals two microseconds for an F8 with
a 2MHz system clock.

5.12

OP. MACHINE
CODE OPERAND FORMAT

DESCRIPTION BYTES CYCLES

SL 1or4 1 S

Before
After

COM - 1 8

Before
After

Shift the contents of the 1 1
accumulator left "1" or "4n

binary bits. The left most

bit in the accumulator, ACC s

1s not saved. The least sig%ifi-

cant bit (ACC,) is filled with 0.

Value of S Number of Bits Shifted
3 1
5 4

The status bits are set by execution
of this instruction as follows:

OVF ZERO CARRY SIGN
0 1/0 0 140

Accumulator Instruction Status Register

11170010 SL 1 OVF ZERO CRY SIGN
11100100 0 0 0 0

COMPLEMENT 1 1
ACC « (ACC) 8 H 'FF!

The accumulator is loaded with the

binary "1"s complement of the original
contents of the accumulator.

The status bits are set by execution
of this instruction as follows:

OVF ZERO CARRY SIGN
0 1/0 0 1/0
Complement Example:

Accumulator Instruction Status Register
1000 1011 COM OVF ZERO CRY SIGN
0111 0100 0 0 0 1

5.13

oP.
CODE OPERAND

MACHINE
FORMAT

DESCRIPTION

BYTES CYCLES

LNK ---

INC ---

LINK CARRY TO THE ACCUMULATOR
ACC <« (ACC) + CB

A binary addition of the Carry
Bit (CB) to the current
accumulator contents is per-
formed. This instruction
facilitates programming multi-
ple precision arithmetic by
allowing carry from a lowered
valued byte to be added into
the byte of next higher power.

The status bits are set by exe-
cution of this dinstruction as
follows:

OVF ZERO CARRY SIGN
1/0 ¥/0 1/0 1/0

INCREMENT ACCUMULATOR
ACC «(ACC) +1

The accumulator value is
increased by one binary
count.

The status bits are set by
execution of this instruction
as follows:

OVF ZERO CARRY SIGN

1/0 1/0 1/0 1/0

INSTRUCTIONS WITH IMMEDIATE OPERANDS CONTAINED IN THE INSTRUCTION

LIS i

LOAD IMMEDIATE SHORT

ACC<«H 'i' The hexadecimal
digit 'i' is loaded into the
four least significant bits of
the accumulator, ACC0 through

ACC,. The most significant
four bits, ACC4 through ACC7
are set to "0".

5.14

1 1

OoP. MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

No status bits are modified by
execution of this instruction.

CLR -—- 7 0 CLEAR ACCUMULATOR 1 1
ACC « H'00'
A1l bits of the accumulator
are reset.

No status bits are modified by
execution of this instruction.

LI ii 2 0 LOAD IMMEDIATE 2 2.5
. ACC <« H 'ii!

The 8-bit binary value (hexa-

decimal) value ii contained in

the second byte of the instruc-

tion is placed in the accumulator.

No status bits are modified by
execution of this instruction.

NI ii 2 AND IMMEDIATE 2 2.5
ACC < (ACC) A H'ii!

The accumulator contents are

replaced by the present con-

tents of the accumulator "AND"

ed with the 8-bit binary value

(hexadecimal ii) contained in the

second byte of the instruction.

o amd

The status bits are modified by
execution of this instruction as
follows:

OVF ZERO CARRY SIGN
0 170 0 1/0

0I ii 2 2 OR IMMEDIATE 2 2.5
ACC « (ACC) V H'iq"
i i The contents of the accumulator
are replaced by the present con-
tents of the accumulator "OR"ed
with the 8-bit binary value

5.15

oP. MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

(hexadecimal ii) contained in the
second byte of the instruction.

The status bits are set by exe-
cution of this instruction as
follows:

OVF ZERO CARRY SIGN

0 1/0 0o 1/0

XI i 2 3 SELE%TIVE COMPLEMENT (EXCLUSIVE 2 2.5
IIORH
i i ACC <« (ACC) & H 'ii'

The contents of the accumulator
replaced with the present con-
tents of the accumulator
exclusive "OR"ed with the 8-bit
binary value (hexadecimal ii)
contained in the second byte of
the instruction.

The instruction selectively com-
plements those bits in the
accumulator which correspond to

the binary "1"s in the 8-bit binary
value (hexadecimal ii) contained

in the second byte of the instruc-
tion.

The status bits are modified by
execution of this instruction as
follows:

OVF ZERO CARRY SIGN
o 10 0 1/0

5.16

oP. MACHINE

CODE OPERAND FORMAT 7 DESCRIPTION BYTES CYCLES

Example: Load Immediate Short

Accumulator Instruction Status Register

Before 1010 1100 LIS 5 unchanged
After 0000 0101
5

Example: Exclusive gR Immediate
Accumulator Instruction Status Register

OVF ZERO CRY SIGN
Before 1011 0010 ruyare 00 0 0
0 o0 0 1

After 0001 0001

H'A3' = 1010 o001
A 3

1011 0010
@ 1010 0011
~ 0001 0007

Al ii 2 4 ADD IMMEDIATE 2 2.5
. ACC<«(ACC) + H ‘'ij"

This is a binary addition of

8 bits.

The accumulator contents are re-
placed by the result formed by the
binary addition of the 8 bit binary
value (hexadecimal 1) contained in
the second byte of this instruction
to the current contents of the
accumulator.

The status bits are modified as
follows:

OVF ZERO CARRY SIGN
1700 1/0 1/0 1/0

0P, MACHINE

CODE _ QPERAND FORMAT

cI i 2 5
i

DESCRIPTION BYTES CYCLES
COMPARE IMMEDIATE: 2 2.5
H'ii' + (ACC) + 1

The status bits of the "W"

register are determined by

the comparison of the accumu-

lator with the 8 bit binary value
(hexadecimal 'ii') contained in

the second byte of the COMPARE
IMMEDIATE INSTRUCTION. This in-
struction is useful when screening
fields of bytes to detect the
presence of a specific binary number.

The accumulator register is not
altered with the results of the
compare.

A11 status bits are modified:
OVF ZERO CARRY_ SIGN

1/0 1/0 1/0 1/0

5.18

5.6 STATUS REGISTER INSTRUCTIONS

Instructions in which data flows between the
Register are called STATUS REGISTER INSTRUCTI

pad is used for storing the STATUS BITS.

Status Register and the Scratchpad

ONS.

The J Register in the scratch-

oP. MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
LR W,J 1 D LOAD W FROM r9 1 2

W<« (r9)

The contents of scratchpad

register (r9) are loaded to
the status register (W).

The five least significant
bits of r9 have the following
bit assignments.

Wy Wy

Wy

Ws

ICB|OVF | ZERO [CARRY | SIGN r9

4 3

2 2

o1

o0

An interrupt will not be accepted
by the CPU at the completion of this

instruction.

LR J, W 1 E LOAD r9 FROM W

r9 « (W)

1 1

The contents of the status register (W)
are stored in scratchpad register {(r9).
The original contents of W are not

modified.

The three most sianificant bits of r9
are set to "0".

5.19

5.7 INDIRECT SCRATCHPAD ADDRESS REGISTER INSTRUCTIONS

INDIRECT SCRATCHPAD ADDRESS REGISTER instructions are used either to move
data between the Indirect Scratchpad Reaister (ISAR) and the Accumulator;
or to load the ISAR with an immediate address contained in the instruction.

1] 8 MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

LR A,IS 0 A LOAD ACCUMULATOR FROM ISAR 1 1
ACC <« (ISAR)
The 6-bit content of ISAR is
loaded into the Teast signifi-
cant six bits of the Accumulator.

Bits ACC6 and ACC7 of the Accumu-

lator are reset to "0".
The original contents of ISAR are
not changed.

Skatus bits are not modified during
execution of this instruction.

LR IS,A 0 B LOAD ISAR FROM ACCUMULATOR 1 1
ISAR « (ACC)
The least six sianificant bits of
the Accumulator are transferred to
the ISAR. Bits Acc6 and Acc7 of the

accumulator are not used.

The original contents of the accumulator
are not changed.

Status bits are not modified during
execution of this instruction.

LISU a 6 0 a* LOAD "a" TO ISAR UPPER OCTAL 1 1
DIGIT (ISAR U)
ISAR U « a
The 3-bit octal digit "a" is placed in the
three most significant bits of the ISAR,
The three least significant bits are not
altered. Address character "a" must be
one of the octal digits 0, 1, 2, 3, 4,
5, 6, or 7 only.

Status bits are not changed by the execution
of this instruction.

*Note that the 2° bit of the instruction
word is binary "0".

5'20

MACHINE

OP.
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
LISL a 0110 1 a * LOAD "a" to ISAR LOWER OCTAL 1 1
DIGIT (ISAR L)
ISARL « a

The 3-bit octal digit "a" is

placed in the three least sianificant
bits of the ISAR. The three most
sianificant bits are not altered.
Address character "a" must be

one of the octal digits 0, 1, 2,

3, 4, 5, 6 or 7 only.

Status bits are not modified by
execution of this instruction.

*Note that the 23 bit of the
instruction word is a binary "1",

5.21

5.8 SCRATCHPAD REGISTER INSTRUCTIONS

Instructions in which the data flows principally between the scratch-
pad register and the accumulator or ALU are grouped together as
Scratchpad Register Instructions. The scratchpad register is also
Tinked by instructions to the program counter and data counter;

those instructions will be treated in later sections.

OP. MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
LR Y. X - Load Register

y «(x)

The contents of register X

(source register) are transferred
to register y (destination regis-
ter). The contents of the source
register x are not altered. This
is a general format for transfer
of data between the accumulator
register and a designated register
in the scratchpad. The LR op code
is the same for all load register
instructions, however, the operands
will specify the specific transfer
to be performed.

A11 load register instructions of
the scratchpad group are one byte
instructions and execute in one
cycle. Table 5.7 shows the valid
operands for the Load Register
Instruction.

Any load register instruction of
the Scratchpad Register Instruction
group must use the Accumulator as
either a source or destination
register.

The status bits are not modified by
the Load Register Instruction.

5.22

OPERAND MACHINE

y X FORMAT DESCRIPTION

A p* 4r Load Accumulator from r# A<(r#)
A KU 00 Load Accumulator from Register 12 A<(r12)
A KL 01 Load Accumu]ator from Register 13 A<(r13)
A Q 02 Load Accumulator from Register 14 A<(r14)
A QL 03 Load Accumulator from Register 15 A<(r15)
r* A 5r Load Register r from Accumulator r<(A)
KU A 04 Load Register 12 from Accumulator r12«(A)
KL A 05 Load Register 13 from Accumulator r13<(A)
QU A 06 Load Register 14 from Accumulator r14<A)
QL A 07 Load Register 15 from Accumulator ri5«A)

TABLE 5.7
OPERAND FORMATS FOR LOAD REGISTER INSTRUCTIONS OF THE SCRATCHPAD GROUP

*Note: r is the implied address if the scratchpad register is used in
the instruction. It may designate either a register location
directly or that the register to be addressed is pointed to by
the contents of the indirect scratchpad address register.
Table 5.8 specifies the interpretation given to r,

5.23

5.8 SCRATCHPAD REGISTER INSTRUCTIONS (Cont.)

FORMATS FOR ADDRESS FUNCTION PERFORMED
0 thru 11 r = direct address of the scratchpad register (registers
#0 thru #11 may be addressed directly)
S The scratchpad register address is supplied by the
12 indirect scratchpad register (ISAR). ISAR contents are
unchanged.
I The scratchpad register address is supplied by the
13 indirect scratchpad address register (ISAR). ISAR is
incremented after the instruction is executed.*
D The scratchpad register address is supplied by the
14 indirect scratchpad address register {ISAR). ISAR is
decremented after the instruction is executed.*
15 Not assigned.

TABLE 5.8

FUNCTIONS SPECIFIED BY THE OPERAND ADDRESS DESIGNATOR, r.

*Note: The three least significant bits of the Indirect Scratchpad
Address Register (ISAR) forms a modolo eight counter when it
is incremented or decremented. The three most significant
bits of the ISAR remain unmodified by these instructions. These
can only be modified by executing the LISU Instruction or by the
LR IS,A instruction (refer to the Indirect Scratchpad Address
Register Instructions in section 5.7).

5.24

ont.)

[ep)

5.8 SCRATCHPAD REGISTER INSTRUCTIONS (

oP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
AS r Cr BINARY ADDITION: 1 1

ACC«(ACC) + (r)

The eight bits of the operand
implied by address r are added
to the contents of the accumu-
lator. The addition is binary.

status bits are modified with
the result of the addition.

OVF ZERO CARRY SIGN
1/0 1/0 1/0 1/0

Table 5.8 shows the formats for r.

ASD r D r DECIMAL ADDITION 1 2

ACC«+(ACC) + (r) 3 decimal values
The eight bits of the operand
implied by address r are added
to the eight bits of the accumu-
lator. The result is stored in
the accumulator.

The addition is performed on two
binary coded decimal digits stored
in the Tocation specified by r and
two binary coded decimal digits
stored in the accumulator. These
decimal digits are coded in BCD
code. Two machine cycles are re-
quired to execute the instruction.
The first cycle performs a binary
addition. The second cycle adjusts
the result to form BCD digits in the
accumulator.

The addition of decimal numbers is
performed in two steps. First,
execute a binary addition of H'66"
(hexadecimal 66) to one of the two
decimal number operands.

Next, execute the ASD instruction

on the two operands. The inter-
digit carrys and decimal adjust-
ment will be performed automatically.

5.25

5.8 SCRATCHPAD REGISTER INSTRUCTIONS (Cont.)

Example: ADD Bytes A and B to form C
Let A = 34 stored in BCD Format in ré
B = 72 stored in BCD Format in rb

The following subroutine will add the two decimal numbers to form the results
(€) in the accumulator.

carry accumulator content

X* 0011 0100 LR A4 Load A to accumulator
0 1001 1010 Al H'66' Add 66
1 0000 0110 ASD 5 Add B

* x is a don't care condition, its value is a result of the previous operand.

opP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

The status bits are modified at
the end of the first cycle and
before the decimal adjustment is
made in the second cycle.

The Status Bits are set by exe-
cution of this instruction as
follows:

OVF ZERO CARRY SIGN
1/0 1/0 1/0 1/0

NS r F or LOGICAL AND 1 1
ACC<+(ACC) A (r)
The contents of the register
implied by r are "AND"ed with
the contents of the accumulator.
The result is returned to the
accumulator.

The status bits are modified by
the AND instruction as follows:

OVF ZERO CARRY SIGN
0 1/0 0 1/0

5.26

opP MACHINE
CODE OPERAND FORMAT

DESCRIPTION BYTES CYCLES

XS r

DS r

Scratchpad
Register 27 ISAR

E

r

EXCLUSIVE OR 1 1
ACC«(ACC) & (r)

The contents of the register

implied by r are "EXCLUSIVE

OR"ed with the contents of

the accumulator and returned

to the accumulator.

A11 status bits are modified
when the XS instruction is
executed as follows:

OVF ZERO CARRY SIGN
0 1/0 0 1/0

DECREMENT 1 1.5

The scratchpad register implied
by r is decremented by one binary
count, The actual operation is
r< {r) + H'FF'

The status bits are modified when
the DS instruction is executed as
follows:

OVF ZERO CARRY SIGN

1/0 1/0 1/0 1/0

Accumulator Instruction Comment

Before 0001 1010 011 o1

After

0007 1010 011 010

1011 0101
0001 0000

NS 14 '"AND' Accumulator with
r27 and decrement ISAR

STATUS REGISTER

OVF ZERO CARRRY SIGN
0 0 0 1

5.27

5,9 DATA COUNTER INSTRUCTIONS

Instructions in which data flows principally between the Data Counter
and the Scratchpad or Accumulator are grouped as DATA COUNTER INSTRUC-
TI0NS. The Data Counter functions as an indirect address register for
referencing memory locations with one byte instructions. The Data
Counter instructions facilitate modifying the address of memory to be
used in memory reference instructions.

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
LR Ys X LOAD REGISTER y FROM REGISTER x 1 4

y <X

Tabie 5.9 lists the allowable
operands (y,x) for Data Counter
instructions. The Data Counter
(DC) must always be specified
as the destination or source
address (y or x). The other
operand must always be either
scratchpad locations Q or H as

follows:
{r14y
Q= and
{r15}
{r10}
H= and
{r1l1}

The LR instruction of the Data
Counter group always transfers
two bytes.

The status bits are not modified
when any DATA COUNTER LOAD
REGISTER instruction is executed.

5.28

5.9 DATA COUNTER INSTRUCTIONS (Cont.)

OPERAND MACHINE
y x FORMAT DESCRIPTION

Q DC 0 E The contents of the data counter is loaded to
locations Q in scratchpad
r14 « (DCU); r15 « (DCL)

H DC 1T 1 The contents of the data counter is loaded to
Tocations H in scratchpad
r10 « (DCU); r11 <« (DCL)

DC Q 0 F The contents of scratchpad locations Q is loaded

to the Data Counter
DCU « (r14); DCL <« (r15)

DC H 1T 0 The contents of scratchpad locations H is loaded

to the Data Counter
DCU <« (r10); DCL .« (r11)

TABLE 5.9

OPERAND FORMATS FOR DATA COUNTER GROUP LOAD REGISTER INSTRUCTION

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
ADC - 8 E Add Accumulator to DC 1 2.5

DC « (DC) + (AcC) ,

A dispiacement address to the
present Tocation specified by
the contents of DC is formed

by adding 8 binary bits of the
Accumulator to DC. The value of
of the Accumulator is treated as
a 2's complement number.

A displacement address of plus

127 or minus 128 memory locations
relative to the present data
counter address can be formed with
this instruction.

5.29

5.9

op
CODE

DCI

XDC

5,10

DATA COUNTER INSTRUCTIONS (Cont.)

MACHINE
OPERAND FORMAT DESCRIPTION BYTES CYCLES

The status bits are not modified
by the execution of the ADC
instructions.

iiiid 2 A LOAD DC IMMEDIATE 3 6
i i DC « H'iiii’

i i The 16 bit binary nunber contain-
ed in bytes 2 and 3 of the DCI
instruction are loaded into the
data counter. Instruction byte
2 gois to DCU (bits DCg thru
DC

In;%ruction byte 3 goes to DCL

(bits DCy thru DC)

No status bits are altered dur-

ing execution of this instruction.

-- 2 ¢ EXCHANGE DATA COUNTERS 1 2
DGy DCy

This instruction exchanges the
contents of DCy with DCy on the
Memory Interface Circui%. It is
only operative when the Memory
Interface Circuit is included in
the system configuration.

The status bits are not modified
by execution of this instruction.

MEMORY REFERENCE INSTRUCTIONS

Instructions in which the data flows principally between a designated
one byte storage location contained anywhere in memory (not designated
as scratchpad) and the Accumulator or ALU are grouped together as
Memory Reference instructions. A1l memory reference instructions are
one byte instructions. Any location within a total storage capacity
of 65,536 bytes may be accessed by a memory reference instruction.

The 16 bit Data Counter points to the memory location accessed in
memory reference instructions. The Data Counter is incremented at
the end of each memory reference instruction.

5.30

N

5.10 MEMORY REFERENCE INSTRUCTIONS {Cont.

opP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLE

LM - 1 6 LOAD ACCUMULATOR FROM MEMORY 1 2.5
ACC « ((DC))
The contents of the memory
addressed by the data counter
is loaded intc the accumulator.
The data counter is incremented
after the byte is accessed from
memory.

The status bits are not modified
by the execution of the LM
instruction.

ST - 1 7 STORE TO MEMORY 1 2.5
DC « (ACC)
The contents of the Accumulator
are transferred to the memory
location addressed by the contents
of the data counter. The Data
Counter is incremented after the
memory location “is loaded.

None of the status bits are
modified by the execution of the
ST instruction.

AM - 8 8 ADD MEMORY TO ACCUMULATOR, BINARY 1 2.5
ACC < (AcC) + ((DC)) {Binary ADD}
A11 8 bits of the memory Tocation
accessed by the address contained
in the Data Counter are added to
the contents of the Accumulator.
The results are stored in the
Accumulator.

The Data Counter is incremented
after the memory Tocation is
accessed,

The addition performed is binary.

5.31

5.10 MEMORY REFERENCE INSTRUCTIONS (Cont.)

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

The status bits are modified by
the execution of the AM instruc-
tion.

OVF ZERO CARRY SIGN
1/0 1/0 1/0 1/0

AMD -- 8 9 ADD MEMORY TO ACCUMULATOR: 1 2.5
DECIMAL
AcC < (Acc) + ((DC)) {DECIMAL
ADD}
A11 8 bits of the memory loca-
tion designated by the address
contained in the data counter
are added to the contents of
the Accumulator. The results
are stored in the Accumulator,
and adjusted to provide a
decimal number of two digits
in the accumulator at the end
of the execution of the AMD
instruction.*

The Data Counter is incremented
after the memory location in-
dicgted is accessed.,

The sfatqs bits are modified by
the execution of the AMD instruc-
tion.

OVF ZERO CARRY SIGN
1/0 1/0 1/0 1/0
NM -- 8 A 'LOGICAL AND FROM MEMORY 1 2.5

cC < (ACC) A ((DC))

A%l 8 bits of the memory loca-

tion indicated by the contents
of the Data Counter are "AND"ed
with' the contents of the Accumu-
lator. The result is stored in
the Accumulator. The Data Counter
is incremented after the memory
location is accessed.

(Refer to ASP instruction,

page 5.25, for a more detailed

explanation.) 5 2

5.10

oP
CODE

MEMORY REFERENCE INSTRUCTIONS (Cont.)

OPERAND

MACHINE
FORMAT

DESCRIPTION BYTES

oM

XM

The status bits are modified
by the execution of the NM
instruction.

OVF ZERO CARRY SIGN
0 1/0 0 1/0

The NM instruction may be used
as a selective mask instruction.
The mask word will be the byte
stored in the memory location
indicated by the contents of
the Data Counter.

LOGICAL "OR"™ FROM MEMORY 1
ACC « (AccC) y ((Dpc))

The 8 bits contained in the
memory location indicated by

the contents of the Data Counter
are logically "OR"ed with the
contents of the Accumulator.

The results are stored in the
Accumuiator. The Data Counter
is incremented after the memory
Tocation indicated is accessed.

A11 status bits are modified
by the execution of the OM
instruction as follows:

OVF ZERO CARRY SIGN
0 1/0 0 1/0

EXCLUSIVE OR FROM MEMORY 1
ACC « (AcC) & ((Dc))

The 8 bits contained in the
memory Tocation indicated by

the contents of the Data
Counter are logically "EXCLUSIVE
OR"ed with the contents of the
Accumulator. The result is
stored in the Accumulator. The
Data Counter is incremented
after the memory location in-
dicated is accessed.

5.33

2.5

2.5

5.10 MEMORY REFERENCE INSTRUCTIONS (Cont.)

op MACHINE
CODE OPERAND FORMAT
CM -- 8 D

DESCRIPTION BYTES

CYCLES

The status bits are modified
by the execution of the XM
instruction as follows:

OVF ZERO CARRY SIGN
0 1/0 0 1/0

COMPARE MEMORY TO ACCUMULATOR 1
((pc)) + ACC + 1

The 8 binary bits in the memory
location indicated by the con-
tents of the Data Counter are
compared to the 8 bits contained
in the Accumulator. The status
bits in the W register are set
by the results of the comparison.
The contents of the memory loca-
tion referenced and the contents
of the Accumulator are not
altered by execution of the CM
instruction,

The Data Counter is incremented
after the memory location {is
accessed.,

The status bits are modified by
executing the CM instruction.

OVF ZERO CARRY SIGN
1/0 1/0 1/0 1/0

5.11 PROGRAM COUNTER INSTRUCTIONS

2.5

Instructions which cause data to move between any two or more of the

counters or registers designated as the Program Counter (PC

)y, the

Stack Register (PC1), or the Scratchpad Registers are groupgd together
as PROGRAM COUNTER INSTRUCTIONS. Branch instructions are specifically
treated as a separate grouping in Section 5.12.

Three kinds of functions are performed by the PROGRAM COUNTER

INSTRUCTIONS:

o Link either the Program Counter (PCy) or the Stack Register
(PC1) to the Scratchpad. (refer to paragraph 5.11.1)

5.34

5.11 PROGRAM COUNTER INSTRUCTIONS (Cont.)

0 Call to Subroutine (refer to paragraph 5.11.2)

0 Return from Subroutine (refer to paragraph 5.11.3)

Instructions that link PC, and PC, to the scratchpad registers
facilitate handling of mu9ti-1eve1 interrupts under

program control, These instructions permit the programmer to
create an address stack of indefinite length in bulk Read/Write
storage, when used in conjunction with the Load Register instruc-
tions contained in the SCRATCHPAD REGISTER instruction group
(refer to section 5.8).

The Call to Subroutine instructions allows the programmer to
branch directly to a subroutine and automatically save the
address of the next instruction to be executed in the main program.

The Return from Subroutine or POP instruction is a return to a

higher level operating program from an immediately Tower level
subroutine,

5,11.1 PROGRAM COUNTER INSTRUCTIONS - LINK GROUPING

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLE
LR K,P 0 8 LOAD "K" REGISTERS FROM THE STACK 1 4

REGISTER (P 1) r12 < (PCyU); and
r13 <« (PC'lL)

Register 12 and 13 in the
scratchpad are Toaded with

16 bits from the Stack
Reg1ster (PC;), Bits (PCq)

8 through (PL) 15 are trans-
ferred to Register r12 and

bits (PCy) O through (

are transferred to Reg1sler r13.

The Stack Register contents are
transferred in two consecutive
bytes to the data bus. The first
transfer moves the eight most
significant bits of the Stack
Register (PC]U) to the Scratchpad
Register r12. The second trans-
fer moves the least significant
eight bits (PC,L) of the stack
register to sclatchpad register
ri3.

5.35

5.11.1 PROGRAM COUNTER INSTRUCTIONS - LINK GROUPING (Cont.)

opP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

This instruction is used to save
the main prodaram return address
in a multiple level program,
When used after an automatic
interrupt return can be stored
into memory for storage in
infinite levels.

Status bits are not modified by
execution of this instruction.

LR P.K 0 9 RESTORE "K" REGISTER CONTENTS 1 4
TO THE STACK REGISTER (PCy)
PC4U « (r12), and PC,L < lr13)
The contents of Scralchpad
Registers r12 and r13 are moved
to the Stack Register PCy. The
most significant 8 bits of PC,
(PCqU), bits (PCy) 8 through
(PCq) 15, receive the contents
of scratchpad register ri2. The
8 least significant bits of the
stack register (PC L;, bits
(PC;) O through (P&1‘ 7, receive
the contents of scratchpad
register r13. The move is com-
pleted in two consecutive trans-
fers on the data bus, The most
significant eight bits of (PC,U)
are transferred in the first move.
The least significant eight bits
(PCL) are transferred in the
second move.

This instruction is used to re-
store the main program return
address to the stack register just
before the POP instruction (refer
to 5.11.3) is executed to cause
return to the main routine.

When using a program with
multiple Tevel interrupt, the
program return address should

be stored in memory. The return

5,36

5.11.1 PROGRAM COUNTER INSTRUCTIONS - LINK GROUPING (Cont.)

opP MACHINE

CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

address will be pushed into the
stack register (PC;) automatical-
ly by the 1nterrupl. This address
should be saved in memory before
the interrupt control bit is re-
activated. This prevents a
second unexpected interrupt from
forcing the first interrupt
address (placed in PCy from the
first interrupt) into the stack
register before the original pro-
gram starting address was stored
safely in memory.

When returning from an interrupt
subroutine to the next higher

- program, it is suggested that
the following procedure be observed:

o Disable the interrupt system
0 Transfer the address of the
routine to be entered to the
stack register (PC])
0 Re-enable the interrupt
o Execute POP
Disabling interrupt prevents an
unexpected interrupt from occurring
after the return address is loaded
to the stack register and before the
return is executed.
Example of Return:

0P CODE OPERAND COMMENT

DI Disable interrupt

LR P,K Load return address to
Stack Register

EI Enable interrupt
POP Return

5.37

5.11.1 PROGRAM COUNTER INSTRUCTIONS - LINK GROUPING (Cont.)

oP MACHINE

CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
Status bits are not modified by
execution of this instruction.

LR P0,Q 0 D RESTORE "Q" REGISTER CONTENTS 1 4

TO THE PROGRAM COUNTER.
PCoU <« (r14); and, PCoL « (r15)
The contents of scratchpad
registers ri14 and ri15 are moved
to the program counter (
Sixteen bits are moved to Qhe
program counter in two successive
transfers of eight bits over the
data bus. The eight bits in
scratchpad register ri15 are moved
in the first transfer to the
e1ght]east significant bits of
bits (? 0 through (PC,) 7.
8 eight b1t in the scratchpad
reg1ster r14 are moved in the
second transfer to the eight most
significant bits of PCn, bits
(PC) 8 through (QS This
instruction affects a forced
branch to the address indicated
by the contents of Q (r14 and
r15). It can be used in lieu of
LRP,K to effect a return from an
address stack to a higher level
operating program. In this case,
the return to a higher routine
is completed with the LR P0,Q
instruction without requiring
use of the POP instruction.

The LR P0,Q instruction can be
used to perform indirect branches
within a program. If the Q
registers in the scratchpad are
treated as an indirect program
address registers, the actual
branch address can be modified.
The branch to the implied address
is then determined by executing
the LR PO,Q instruction. An
example of this application follows:

5.38

5.11.1

opP
CODE

PROGRAM COUNTER INSTRUCTIONS - LINK GROUPING (Cont.)

OPERAND

MACHINE
FORMAT

DESCRIPTION BYTES CYCLES

Example:

An intelligent terminal receives
messages from a communication
Tink with characters encoded in
eight bit ASCII format. The
next subroutine to be executed
in the program depends on the
nature of the next character to
be received as follows:

HEXADECIMAL FUNCTION ADDRESS
CHARACTER CHARACTER TO BE OF SUB-

RECEIVED CODE PERFORMED ROUTINE

SOH (Start of Header) 1] Scan Header 020F
for Label

STX (Start of Text) 02 Transfer 0202
text to
output
buffer

EOM (End of Message) 19 Terminate 0219
Line
Connection

If the next character to be ex-
amined is known to be one of the
above control characters, then
indirect branch to the appro-
priate control routine can be
expected as follows:

OP_CODE OPERAND COMMENT
LIS 2

LR Qu,A Load upper byte of Branch
Address

INS 0 Read next character in
from I/0 port "0"

LR QL,A

LR P0,Q

Status bits are not modified
by execution of this instruction.

5.39

511,2 PROGRAM COUNTER INSTRUCTIONS: CALL TO SUBROUTINE

There are two call to subroutine instructions. These are CALL
TO SUBROUTINE DIRECT (PK) and CALL TO SUBROUTINE IMMEDIATE (PI).

opP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
PK -- 0 ¢ CALL TO SUBROUTINE DIRECT 1 4

PC, <« (PCO); and PCyU « (r12);
and PCoL < (r13)

The current contents of the pro-
gram counter (PCy) are trans-
ferred to the stack register
(PC{) and the contents of
scrltchpad K registers (r12 and
r13) are transferred to the pro-
gram counter. The sixteen bits
contained in the K registers are
moved to the program counter in
two consecutive bytes on the

data bus. The full sixteen bits
of the program counter are trans-
ferred to the stack register (PC])
and the contents of scratchpad
register r13 are transferred to
the least eight significant bits
of PCO, bits (PCO) 0 through
(PCH)"7 on the first move. The
con%ents of scratchpad register
r12 are transferred in the second
move to the most significant
eight bits of PCy, bits (PCy) 8
through (PCO) 15,

Service for an interrupt is in-
hibited at the end of this instruc-
tion. (Refer to section 3.6 for
discussion of the interrupt system.)

The status bits are not modified by
execution of this instruction.

PI aaaa 2 8 CALL TO SUBROUTINE IMMEDIATE 3 6.5
PCy « (PCg); and PCy < H 'aaaa'

a a The sixteen bits of the program
counter (PC,) are transferred to

a a the stack Qegister (PCy) and the
sixteen bit address (hexadecimal
aaaa) is transferred to the Pro-
gram Counter.

5,40

5.11.2 PROGRAM COUNTER INSTRUCTIONS: CALL TO SUBROUTINE

oP MACHINE
CODE OPERAND FORMAT ‘ DESCRIPTION ‘BYTES CYCLES

A11 Program Counters are modified
with the same sixteen bit

address value. The immediate
call address H 'aaaa' is trans-
ferred from the instruction
memory location to all Program
Counters over the data bus.

ATl sixteen bits of the sub-
routine call address are fetched
before the Program Counter is
modified. The most significant
eight bits of the subroutine call
address are temporarily stored
in the Accumulator while this
instruction is being executed.
Any previous results stored in
he Accumulator are Tost.

The eight most significant bits

of the call address are contained

in the second byte of this instruction.
The 'eight least significant bits

of the call address are contained

in the third byte of this instruc-
tion.

Status bits are not modified dur-
ing execution of this instruction.

Service for an interrupt is inhib-
ited at the end of this instruc-
tion. (Refer to section 3.6 for
discussion of the interrupt system,)

51,5 PROGRAM COUNTER INSTRUCTIONS: RETURN FROM SUBROUTINE

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
pop - 1 C RETURN FROM SUBROUTINE 1 2

PCy « (PCy)
The sixteen bit contents of the

Stack Register (PC,) are trans-

ferred to the Program Counter (PCp).

5.41

5.11.3

op
CODE

512

PROGRAM COUNTER INSTRUCTIONS: RETURN FROM SUBROUTINE (Cont.)

MACHINE
OPERAND FORMAT DESCRIPTION BYTES CYCLES

Status bits are not modified by
execution of this instruction.

Interrupt service is inhibited
at the end of this instruction.
(Refer to section 3.6 for dis-
cussion of the interrupt system.)

BRANCH INSTRUCTIONS

The BRANCH INSTRUCTIONS also modify the operation of the program
by altering the contents of the program counter (Pco)o They are
grouped here separately from the program counter instruction
group to facilitiate frequent reference by the programmer.

There are two types of branches executed in the F8 design:
o Unconditional branch
o Conditional branch

A11 branch instructions except the branch immediate (JMP) are

two byte instructions in which the second byte is a relative
address. When a branch is executed the relative address byte

is added to the present contents of the program counter to obtain
the new address of the next instruction to be fetched. The present
contents of the program counter (P) will point to P + 1 where

P is the first storage location of the Branch instruction. If

no branch is to be taken, the next instruction to be fetched is
indicated by the present program counter contents incremented (P+1).

The relative branch address is always formed by adding the eight
bits in the second of the two byte relative branch instruction

to the present contents of the program counter. The value of the
second byte is treated as a 2's complement number. A relative
branch can reach another instruction within the field of memory
addresses bounded by an address 128 Tocations ahead of the current
program counter address or 127 locations behind the current pro-
gram counter address.

5,42

531231

op
CODE

BR

JMP

UNCONDITIONAL BRANCH INSTRUCTIONS

DESCRIPTION BYTES

AL

MACHINE

OPERAND FORMAT
aa 9 0

a a

daaa 2 9
a a

a a

UNCONDITIONAL BRANCH RELATIVE 2
PCO < (PCO) +H 'aa’

Branch to the memory location
found by adding the 8-bit

2's complement number (hexa-
decimal aa) to the present pro-
gram counter address which is
set to the Tocation of the
second byte of the two byte
UNCONDITIONAL BRANCH RELATIVE
instruction.

Status flags are not modified by
execution of this instruction.

BRANCH IMMEDIATE 3
PCO < H 'aaaa'

Branch to memory the location
indicated by the 16 bit binary
nunber (hexadecimal aaaa)

A11 sixteen bits of the address
contained in the BRANCH IMMEDIATE
instruction are fetched before

the program counter is modified.

The most significant eight bits of
the address are temporarily stored

in the accumulator while the instruc-
tion is executed. Any previous
results contained in the accumulator
are lost,

The most significant eight bits of
the branch address are contained in
Byte #2 of this instruction. The
eight least significant bits of the
branch address are contained in byte
#3 of this instruction.

Status flags are not modified by
execution of this instruction.

5.43

5.5

5.12.1 UNCONDITIONAL BRANCH INSTRUCTIONS (Cont.)

oP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES

Interrupt service is inhibited
at the end of this instruction.
(Refer to section 3.6 for dis-
cussion of the interrupt system.)

5,12,2 CONDITIONAL BRANCH INSTRUCTIONS

A11 conditional branch instructions are two byte relative address
instructions. The first byte contains the OP Code and the branch
test conditions when applicable. The second byte contains an
8-bit binary branch vector. The new Jocation (branch address) is
formed by adding the contents of the branch vector (2's comple-
ment) to the present value of the program counter. Thus, all
conditional branches are made relative to the present program
counter location. Relative branching is performed within a range
of 128 address locations forward (to a higher address) of the
present program counter Tocation* and 127 address locations be-
hind (lower address) the present program counter location.

*NOTE: P is the address of the second byte of the conditional
branch instruction.

oP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
BT t,aa* 8 t CONDITIONAL BRANCH TRUE 2 3.5%%
or
a a PCq +((PC0)+1)+H'aa'; if any test 3.0

is true. PCy < (PCO) + 23 if no
test is true.***

The Conditional Branch True causes
a program address modification
when any one or more of the select-
ed branch conditions is found to be
active (true). Any combination of

* t is the operand specifying the test conditions

** The execution time is 3.5 cycles if the branch is taken and
3.0 cycles if the branch is not taken.

*¥** PCy contains the address of the instruction being executed.

5044

5.12.2

CONDITIONAL BRANCH INSTRUCTIONS (Cont.)

oP MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
three possible tests may be made.
The three test conditions are:
0 RESULT IS POSITIVE
0 RESULT IS ZERO
0 CARRY IS SET
Table 5.10 Tists the Conditional
Branch True instructions and the
Branch conditions for each.
Status flags are not modified by
execution of this instruction.
OPERAND STATUS FLAGS TESTED
DEFINITION COMMENTS
t ZERO CARRY SIGN
0 0 0 0 Non Functional An effective
3 cycle NO-OP
1 0 0 1 Branch if positive Same as BP
2 0 1 0 Branch on Carry Same as BC
3 0 1 1 Branch if Positive
or on Carry
4 1 0 0 Branch if Zero Same as BZ
5 1 0 1 Branch if Positive Same as t=1
6 1 1 0 Branch if Zero or
on Carry
7 1 1 1 Branch if Positive Same as t=3
or on Carry
TABLE 5.10

5.45

CONDITIONAL BRANCH INSTRUCTIONS (Cont.)

5.12.2

oP MACHINE

CODE OPERAND FORMAT

BP aa 8 1
a a

BC aa 8 2
a a

DESCRIPTION

BYTES CYCLES

BRANCH IF POSITIVE

PCo «((PCy)+1)+H'aa’; 1f the
sign is positive

PCy « (PCy) + 25 if the sign

is negative

A branch to the address formed
by adding the eight bit binary
displacement vector (hexadecimal
aa) to the present program
counter value is taken when

the sign flag is binary ONE.
(sign flag indicates the result
is positive when set.) Other-
wise fetch the next instruction.
Note that a zero result always
sets the sign flag indicating
positive.

Status flags are not modified by
execution of this instruction,

BRANCH ON CARRY

PCo «<((PCo)+1)+H'aa'; if the
carry flag is set

PCy « (PCy) + 25 if the carry
flag is rgset.

A branch to the address formed
by adding the eight bit binary
displacement vector (hexadecimal
aa) to the present program
counter value is taken if the
carry flag is set. Otherwise
fetch the next instruction.

Status flags are not modified by
execution of this instruction.

** The execution time is 3.5 cycles if the branch is taken and
3.0 cycles if the branch is not taken.

5.46

2

2

3.5%*
or
3.0

3.5%*
or
3.0

5.12.2 CONDITIONAL BRANCH INSTRUCTION (Cont.)

opP MACHINE .
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
BZ aa 8 4 BRANCH ON ZERO 2 3.5%*
or
a a PCo «((PCp)+1)+H'aa'; if sign 3.0
flag is set.
PCy « (PCy) + 25 if sign flag
is reset.
A branch is taken if the zero
flag is set. The next instruc-
tion is fetched if the zero
flag is reset.
Status flags are not modified
by execution of this instruction.
BF t,aa 9 t BRANCH IF FALSE 2 3.5%*
or
a a PCo «((PCQ)+1)+H*aa*; if the 3.0
seQected status flags are all

reset (binary "0").

PCy « (PC,) + 2 3 if any of the
se?ected Qtatus flags are set
(binary "1").

The Branch On False is a generalized
branch instruction for testing the
absence of all flags selected.
Operand t is a 4-bit binary number
that selects the status flags to

be tested. It is specified as

one of the 16 possible hexadecimal
characters.

Table 5,17 shows the possibie combi-
nations of tests that can be specified
with the Branch False instruction

and the condition in which the branch
is taken.

Operand aa is an 8-bit address dis-
piacement vector that forms the
address of the instruction to be
fetched when the branch is taken.

cycles if the branch is taken and

is 3.
3.0 cycles if the branch is not taken.

.
Qo

5.47

5.12.2 CONDITIONAL BRANCH INSTRUCTIONS (Cont.)

opP MACHINE

CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
The branch address is formed by
adding the operand "aa" to the
present program counter contents
which is set to the Tlocation of
the second byte of the instruction.
The address displacement vector
is a 2's complement binary value.
OPERAND STATUS FLAGS TESTED
t “ERO CARRY STGN DEFINITION COMMENTS
0 0 0 0 0 Uncondi tional branch Refer: Sect. 5.12.1
relative
1 0 0 0 1 Branch on negative Same as BM
2 0 0 1 0 Branch if no carry Same as BNC
3 0 0 1 1 Branch if no carry
and negative
4 0 1 0 0 Branch if not zero Same as BZ
5 0 1 0 1 Same as t = 1
) 0 1 1 0 Branch if no carry &
result is no zero
7 0 1 1 1 Same as t = 3
8 1 0 0 0 Branch if there is no Same as BNO
overflow
9 1 0 0 1 Branch if negative and
no overflow
A 1 0 1 0 Branch if no overflow
and no carry
B 1 0 1 1 Branch if no overflow,
no carry & negative
C 1] 0 0 Branch if no overflow
and not zero
D 1 1 0 1 Same as t =9
E] 1 1 0 Branch if no overflow,
no carry & not zero
F 1 1 1 1 Same as t = B
TABLE 5.11

BRANCH CONDITIONS FOR BF INSTRUCTION

5.48

BNC

CONDITIONAL BRANCH INSTRUCTIONS

DESCRIPTION BYTES CYCLES

OPERAND FORMAT

aa

aa

MACHINE
9 8
a a
9 1
a a
9 2
a a

- BRANCH IF NO OVERFLOW

PCo <((PCn)+1)+H'aa'; 1if OVF
flag is A%set

PCo <« (PCO) + 2 3 if OVF flag

is set

A branch is taken if no overflow
is indicated. Otherwise the
next instruction is fetched.

Status bits are not modified by
execution of this instruction.

BRANCH ON NEGATIVE

PCo <((PCy)+1)+H'aa"; if sign
flag is reéset

PCqy + (PCO) +2 3 if sign flag
is set

A branch is taken if the sign
flag indicates a negative
result; otherwise the next
instruction is fetched.

Status bits are not modified by
execution of this instruction.

BRANCH IF NO CARRY

PCqo <« ((PCO)+1)+H'aa'; if carry
flag is reset

PCy < (PCO) +2 3 if carry flag
is set

A branch is taken if the carry
flag is reset, otherwise the
next instruction is fetched.

Status bits are not modified by
execution of this instruction.

** The execution time is 3.5 cycles if the branch is taken and
3.0 cycles if the branch is not taken.

5.49

2 3.5%*
or
3.0

2 3.5%*
or
3.0

5.12.2
oP
CODE
BNZ

BR7

CONDITIONAL BRANCH INSTRUCTIONS (Cont.)

MACHINE
OPERAND FORMAT DESCRIPTION BYTES CYCLES
aa 9 4 BRANCH IF NOT ZERO 2 3.5**
or
a a PCy < ((PC0)+1)+H'aa'; if zero 3.0
flag is réset
PCy < (PCO) + 2 3 if zero flag
is set
A branch is taken if the zero
flag indicates a non-zero
result. Otherwise, the next
instruction will be fetched.
Status bits are not modified by
execution of this instruction.
aa 8 F BRANCH ON ISAR 2 2.5%
or
a a PCp «((PCy)+1)+H'aa"'; if ISAR L 7 2.0

PC0 < (PCO) +2 3 if ISARL 7

If any of the lower 3 binary bits
of the indirect scratchpad address
register (ISAR L) are reset, a
branch is executed. The next
instruction will be fetched if an
address in ISAR is XXX 111 (X is

a don't care). The branch address
is formed by adding the 8 bit binary
displacement vector (2nd byte of
instruction) to the present program
counter contents.

The displacement vector is a
2's complement binary value.

Status bits are not modified by
execution of this instruction.

** The execution time is 3.5 cycles if the branch is taken and

3.0 cycles if the branch is not taken.

* 2.5 cycles if the branch is taken and 2.0 cycles if no branch is taken.

5,50

DO
< U

<

2.2

m

CONDITIONAL BRANCH INSTRUCTIONS (Con

MACHINE

OPERAND FORMAT DESCRIP

ot

\
o)

This instruction is useful for
handling multiple bytes of data
stored in the scratchpad under
control of a program loop. The
last byte of a data file may be
assigned to a scratchpad location
that is multiple of 8 storage
locations such that the indirect
scratchpad address is of the form
X7 (where X is any octal value).

Example: Assume 4 bytes were
stored in scratchpad locations
35, 36, 37, and 38.

to form the exclusive "OR" of
all four bytes can be written.

OP_CODE OPERAND

A program

COMMENT

LISU 4
LISL 3

CLR
Loop XS 13

BR7 LOOP

5.51

Load upper octal address into
ISAR U.

Load Tower octal address into
ISAR L.

Clear Accumulator

Form exclusive "OR" and
increment ISAR.

Not finished, go back Loop.

515

INPUT/OUTPUT INSTRUCTION GROUP

The input/output instructions involve data movement between the
1/0 port and the accumulator. Input and output instructions are
either:

e Short address, or one byte instructions
e Long address, or two byte instructions
Each input or output instruction contains two parts which are:
e OP CODE
e I/0 port address

The input or output short address instructions have both the op
code and the 1/0 port address contained in one byte. The four most
significant bits of the short address form the op code while the
four least significant bits form the I/0 port address. Each cir-
cuit connected to the F8 data bus has four, 8-bit port addresses.
In the ROM, for instance, two ports are I/0 ports they are Tatches
with outputs connected to the outside world. Another port in the
ROM is called the TIMER., This is an 8-bit counter, pulsed every 31
clock cycles. The fourth, and last, port on this circuit holds two
bits which determine the state of the local interrupt control
circuitry. Al1 four ports are accessible using I/0 instructions,
Tinking these registers with the accumulator. Table 5.12 lists

the four ports on each circuit and their corresponding addresses.
Ihglfbur ports have sequential addresses, as indicated in the

able.

5,52

5.13

INPUT/OUTPUT

INSTRUCTION GROUP (Cont.)

Port Address

Port Address

X0 X4 X8 Xc
X1 X5 X9 XD
X2 X6 XA XE
X3 X7 XB XF

CPU - 3850

Location

CPU, I/0 Port A
CPU, I/0 Port B
Not Assigned
Not Assigned

ROM - 3851

Location
ROM, I/0 Port A
ROM, I/0 Port B

Local Interrupt Control
ROM Timer

X is a four bit hexidecimal number.

The ROM port addre
address are selected b

e a user's mask option, thus, these four
y the user.

DYNAMIC MEMORY INTERFACE 3852

Port Address

Port Address

Location

8 Bit Register

RAM refresh and DMA control bits
Not Assigned

Not Assigned

STATIC MEMORY INTERFACE - 3853

Location

0C Interrupt Vector
0D Interrupt Vector
OE Local Interrupt Contro]
OF Timer
TABLE 5,12

PORT FUNCTIONAL ADDRESS ASSIGNMENTS

5.53

INPUT/OUTPUT INSTRUCTION GROUP (Cont.)

The Input or Qutput short address instructions will only address I1/0
ports "00" through "OF".

The Input or Output long address instructions are each two bytes long.
The OP CODE is contained in the first byte and the eight bit 1/0 port
address is contained in the second byte. A11 I/0 port addresses be-

tween "04" to "FF" may be addressed by the long address instructions.

Every 1/0 port is fully bidirectional and may be used alternately for
input or output during the operation of a program. However, the
latches used for an output function are electrically connected to the
input bus used by the input instructions (INS or IN). If an I/0 port
had been used for an output in a previous instruction the output
latches must be first cleared prior to executing the input instruction.
Only those latches that are connected to the input lines which are
actually used must be cleared. This permits the programmer to divide
an 1/0 port to use one or more of the 1/0 port lines to actively drive

while the others are used to sense an input simultaneously.

5,13.1 INPUT/QUTPUT INSTRUCTICHS

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
INS a A a INPUT SHORT ADDRESS 1 4*

ACC< (INPUT PORT a)

This instruction can address only
the 1/0 ports with the Towest 16
address ("00" to "OF").

The status bits are set by
execution of this instruction
as follows:

OVF ZERO CARRY SIGN
0o 1/0 0 1/0

*Note: Only 2 cycles when 1/0
port ADDRESS "00" or
"01" is used.

5.54

OPERAND

MACHINE

FORMAT

DESCRIPTION

BYTES CYCLES

ouTS

out

aa

aa

2

a

6

a

INPUT LONG ADDRESS

ACC < (INPUT PORT aa)

Transfer the contents of /0
port "aa" to the Accumulator.

Any input port with an address
between 4 and 255 can be moni-
tored with this instruction.

A full 8-bit byte is transferred
from I/0 port "aa" to the
Accumulator.

The status bits are set by
execution of this instruction
as follows:

OVF ZERO CARRY SIGN

0 1/0 0 1/0

OUTPUT SHORT ADDRESS

OUTPUT PORT "a" <« (ACC)

Transfer the contents of the
AccumuTator to output port “a".

One byte (8-bits) is transferred
from the Accumulator to the out-
put port addressed by the hexa-
decimal digit "a". The byte will
be held in the output port Tatches,
until the next OUT or OUTS instruc-
tion is executed for I/0 port "a".

The status bits are not modified by
execution of this instruction.

*Note: Only 2 cycles when 1/0 port
address "00" or "01" is
used.,

OUTPUT LONG ADDRESS

OUTPUT PORT “aa" « (ACC)

Transfer the contents of the Accumy-
lator to the Output Port "aa". One
byte (8-bits) is transferred from
the Accumulator to the output port

5.55

2

4

4%

5.13.1

INPUT/OUTPUT INSTRUCTIONS (Cont.)

op
CODE

MACHINE
OPERAND FORMAT DESCRIPTION BYTES CYCLES

5.15.2

addressed by the hexadecimal
address "aa". The byte will be
held in the output port latches
until the next OUT or OUTS
instruction is executed for I1/0
port "aa"only. 1/0 ports between
address 4 through 255 may be
addressed with this instruction.

The status bits are not modified
by execution of this instruction.

PROGRAMMING THE TIMERS

One timer is available on each of the 3851 ROM or 3853 MI Model A
circuits in an F8 system, The timers can be program controlied to
implement timing functions without the need to add external circuits.
Typical applications include driving printers, storing teletype
input signals, generating telephone ring signals or other necessary
time controlled functions.

The sequence for initiating the timer is:

o Load the timer counter [Execute OUT(S) to the timer port]

o Enable the internal timer.control [Execute OUT(S) to the
interrunt control portl.

Example: Assume a given 3851 ROM chip has been given an 1/0 port
group Address assignment:

ADDRESS FUNCTION
"o8" I/0 Port "A"
"o9" 1/0 Port "B"
"OA" Local Interrupt Control
"oB" Timer

5.56

5.13.2 PROGRAMMING THE TIMERS {Cont.)

The following subroutine uses the Timer with a duration before
interrupt of 1.55 mi1l4sec (Refer to Appendix for duration codes.)

JP_CODES OPERAND COMMENT

LI T'100" SET VALUE FOR 1,55 ms DELAY
ouTsS H'0B' SET TIMER

LIS 03 SET TIMER CONTROL CODE

ouTS H'OA' ENABLE LOCAL INTERRUPT*

*Note: The Interrupt does not need to be enabled immediately but can
be enabled anytime after the OUTS H'OA' instruction is executed
and prior to the 1.55 ms elapsed time. The timer is initiated

.

immediately after executing the OUTS H'OB' instruction.

Extended time delays are generated by initiating the timer and per-
mitting it to continue to generate interrupts. Each time the interrupt
occurs, the programmer may increment a memory location assigned to
count interrupts for the terminal count., The first interrupt will
occur at the preselected delay after the timer has been loaded. (The
OUTS aa instruction is executed.) Fach successive interrupt will occur
at intervals of 3.968 millisec. (For a system running at 2MH.)

The minjmum period for the timer is 15.5 us. (For a system running
at 2MH.)

Operation of the timer generated interrupt is terminated by disabling
the lo?a1 interrupt or by resetting the INTERRUPT mode select bit,
(Bit 2! in the Tocal interrupt control circuit, paragraph 5,13.3,
Table 5,13.)

5.13,3 PROGRAMMING THE LOCAL INTERRLPT CONTROL CIRCUIT

Each of the Local Interrupt circuits in the 3851 ROM or 3852 MI
circuits may be individually activated or deactivated, Two bits
are assigned to control the activation of the Local Interrupt Control
and to select the mode of interrupt. (Internal timer or external

interrupt)
Control is exercised by executing the following sequence:

® Load the accumulator with the required contro]
word (refer to Table 5.13).

¢ Transfer the control word to the appropriate
LOCAL INTERRUPT CONTROL circuit by executing
an OUT(S) instruction., (Note: only I/0
addresses’ "2 "X6", "XA" or "XE" access the
Tocal interrupt control circuits,)

5.57

3,13.3 PROGRAMMING THE LOCAL INTERRUPT CONTROL CIRCUIT (Cont.)

ACCUMULATOR CONTENT
(Binary)
LOCAL INTERRUPT CONTROL FUNCTION
ACC, Acc,
XXXXXX X0 Disable Local Interrupt
XXXXXX 01 Enable Local Interrupt; Select External
Interrupt Mode
XXXXXX 11 Enable Local Interrupt; Select Internal
Timer Mode
TABLE 5.13

LOCAL INTERRUPT CONTROL FUNCTION WORDS

5,14 INTERRUPT CONTROL INSTRUCTIONS

The Interrupt Control instructions turn on and off the Interrupt
Control Bit (ICB) in the CPU circuit. When the interrupt control
bit is reset the entire interrupt system is disabled.

op MACHINE
CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
DI - 1 A DISABLE INTERRUPT 1 2
The interrupt control bit is
reset to zero.
EI - 1 B ENABLE INTERRUPT 1 2
The interrupt control bit is
set to one.

Interrupt service is inhibited
until the completion of the
instruction that follows EI.

Refer to section 3.6 for a
description of the interrupt.
Refer to section 5.13 for des-
cription of the local interrupt
circuit programming.

5,58

515 NO OPERATION

0P MACHINE

CODE OPERAND FORMAT DESCRIPTION BYTES CYCLES
NoP - 2 B NO-OP 1 1

No function is performed.
The program counter is incre-
mented,

A11 undefined OP CODES are executed as NOP instructions.

5,59

5,16 INSTRUCTION SET: CONDENSED LISTING

ACCUMULATOR GROUP INSTRUCTIONS

hoe OPERAND (S) FopuaT- FUNCTION OVF 26R0 CARRY ‘stan CYCLES
SR 1 12 SHIFT RIGHT ONE 010 0 1 1
SR 4 14 SHIFT RIGHT FOUR o 10 0 1 1
SL 1 13 SHIFT LEFT ONE 0 10 0 10 1
sL 4 15 SHIFT LEFT FOUR 010 0 10 1
oM -- J8 ACC <« (ACC) @ H'FF' 0 1/0 0 1/0 1
N - 19 ACC « (ACC) + CB 101/0 10 10 1
I -- 1F ACC « (ACC) + 1 1010 1/0 10 1
Lis i ACC < H i - 1
R - 70 ACC < H '00' - 1
LI i 20 ACC«H i’ - 2.5
11
NI i1 21 Ace < (AcC) A H M0 10 0 1/0 2.5
1
o1 i 22 AC (ACO)VH 0 10 O 10 2.5
XI i1 23 ACC (ACC) O 0 1/0 0 10 2.5
AL i1 24 ACC < (ACC) + H 'ii* 1/01/0 10 10 2.5
ii (Binary Add)
CI i 25 H 'ii'+ (RCO)* 1 1/01/0 1/0 1/0 2.5

ii

5.60

5.16 INSTRUCTION SET: CONDENSED LISTING (Cont.)

SCRATCHPAD REGISTER INSTRUCTIONS

cove OPERAD (5) FCHINE FUNCTION OVF 2ER0 CARRY s1gn CYCLES
LR YsXx GENERAL LOAD REGISTER 1
FORMAT ALLOWABLE
OPERANDS LISTED BELOW
A,rx 4r ACC < (r) -
A,KU 00 ACC <« (r12) -
A,KL 01 ACC <« (r13) -
A,Qu 02 ACC <« (r14) -
A,QL 03 ACC <« (r15) -
r,A 5r r < (ACC) -
KU,A 04 r12 < (Acc) -
KL,A 05 r13 « (ACC) -
QU,A 06 r14 <« (Acc) -
QL,.A 07 r15 « (AcC) -
AS r Cr ACC < (ACC)+(r)(Binary)1/0 10 1/0 1/0 1
ASD r Dr ACC « (ACC)+(r)(Decima1)'l/0 10 170 170 2
NS r Fr ACC « (AcC) A (r) 0 1/0 0 1/0 1
XS r Er ACC « (AcC) @ (r) 0 1/0 0 1/0 1
DS r 3r r<(r) + H'FF'(Decrement§/0 1/0 1/0 1/0 1.5
* Operand r formats are: Direct Addressing Indirect Addressing
0 through 11 (Decimal Form) S or 12
H'0' through H'B' (Hexa- é g; ;2

decimal Form)

5.61

5.16 INSTRUCTION SET: CONDENSED LISTING (Cont.)

DATA COUNTER INSTRUCTIONS

o MACHINE STATUS BITS

cope OPERAND (S} kopmaT FUNCTION OVE ZERO CARRY sien CYCLES
LR Q,DC OF r14<(DCV) ; r15«(DCL) - a4
LR H,DC 11 r10<(DCU) ; r11<(DCL) - A
LR DC,Q OF DCU<(r14) ; DCL<(r15) - 1
LR DC,H 10 DCU=(r10) 3 DCL<(r11) - 4
ADC - 8f DC+(DC) + (ACC) - 2.5
Dcl iifi 2A DCeH 'iiid - 6

ii
i
b
XDC - 2c DC, DG i >
[Memory Interface
Circuit Only]
INDIRECT SCRATCHPAD ADDRESS REGISTER INSTRUCTIONS

op MACHINE STATUS BITS

cope OPERAND (S) popmaT FUNCTION OVF ZERO CARRY sign CYCLES
LR A, IS 0A ACC « (ISAR) - 1
LR 1S A OB ISAR < (ACC) - 1
LISU a 01100a* ISARU <« a - 1
LISL a 01107 a* ISARL < a ; 1

* 3 is 3 bits

5.62

MEMORY REFERENCE INSTRUCTIONS

SopE OPERAND () FORMA FUNCTION OVF ggégUgAggss'mN CYCLES
M- 16 ACC « ((DC)) - 2.5
ST - 17 (DC)< (ACC) - 2.5
M- 88 ACC+(ACC)+((DC)){Binary} 1/0 10 1/0 1/0 2.5
M - 8 ACC+(ACC)+((DC)){Decimal}1/0 10 1/0 1/0 2.5
N - 8A ACC <(ACC) A ((DC)) 0 10 0 1/0 2.5
oM - 88 ACC <(ACC) V ((DC)) 010 0 1/0 2.5
™M - ~8C AcC <(ACC) 8 ((DC)) 0 10 0 1/0 2.5
M - 80 ((DC)) + (ATT) + 1 1010 1/0 10 2.5

STATUS REGISTER INSTRUCTIONS

0P MACHINE STATUS BITS
cope OPERAND (S) popvar FUNCTION OVF ZERO CARRY sigy CYCLES

LR W,J D W< (r9) 2
Wy Wy Wy W
INT | OVF | ZERO | CARRY sxeq

(Privileged Instruction)*

LR J,NW 1E r9 « (W) - 1

*Privileged Instructions inhibit interrupt service at the end of the instruction.

5.63

5.16 INSTRUCTION SET: CONDENSED LISTING (Cont.)
MISCELLANEOUS INSTRUCTIONS
op MACHINE STATUS BITS
cope OPERAND (S) ropmat FUNCTION OVF ZERO CARRY sigN CYCLES
NOP - 28 NO OPERATION - 1
PROGRAM COUNTER INSTRUCTIONS
oP MACHINE STATUS BITS
cope OPERAND (S) popmat FUNCTION OVF ZERO CARRY sigN CYCLES
LR K,P 08 r12¢(PC;U) 5 r13«(PCyL) - 4
LR P,K 09 PCLUL(FI2) 3 PCL<(r13) - 4
LR PO,Q oD PCOU+(H4) PCL<(r15) - 4
PK - oc Ue(r12) ;3 PCL<(r13) - 4
9 PCy<(PCq)
Pr1v11eged ?nstruct1on*
PI aaaax*x 28 PC]+(PCO) ; PCo<H 'aaaa’ - 6.5
ii
ii Privileged Instruction*
POP - 1c _ 5

(PCy)
QV11eqed Instruction*

*

ek

The contents of accumulator are destroyed.

5.64

Privileged Instruction inhibit interrupt service request at the end of
the instruction.

5.16 INSTRUCTION SET:

CONDENSED LISTING (Cont.)

BRANCH INSTRUCTIONS

opP MACHINE STATUS BITS
cope OPERAND (S) pocvar FUNCTION OVF ZERO CARRY sigy CYCLES
BR aa 90 PCy « ((PCy)+1) + H'aa' 3.5
aa
JMP aaaa*kxk 29 PCy« H 'aaaa’ 5.5
aa
aa Privileged Instruction*
BT taaws 8t Peye((PCo)+T)+ Hiaa! 3. 5%k
aa if any test is true or
PCO+(PC0)+ 2 if no test 3.0
is true
QTATIIS B TS
22 21 2°
ZERO | CARRY SIGW
BP aa 81 PC +((PC J41)+ H'aa' if SIGN=1 3.5
aa PCO+(PC0 + 2 if SIGN=0 3.0
8C aa 82 PCy+ ((PCH)+1)+ H'aa' if CARRY=1 3.5
aa PC0+(PC0 + 2 if CARRY=0 3.0
BZ aa 84 PCUe((PC)+1)+ H'aa' if ZERD=1 3.5
aa PC0+(PC0;+ 2 if ZERO=0 3.0
BM aa 91 PCO*-((P)*1)+ H'aa' if SIGN=0 3.5
aa C0+ PCpJ)* 2 if SIGN=1 3.0
BNC aa 92 PCO+-((P)*1)+ H'aa' if CARRY=0 3.5
aa PC0+ PCO + 2 1f CARRY=1 3.0
BNZ aa 94 0+ ((PC M1)+ H'aa' if ZER0=0 3.5
aa +(PC0)? 2 if ZERO=1 3.0

* Pr1v1]eged Instr

of the instruction

*** ¢t is only 3 bits

uctions inhibit interrupt service request at the end

** 3.5 cycles if hranch is taken. 3.0 cycles if branch is not taken.

**** The contents of the accumulator are lost.

5.65

5.16 INSTRUCTION SET: CONDENSED LISTING (Cont.)

BRANCH INSTRUCTIONS (Cont.)

op MACHINE STATUS BITS
cope OPERAND (S) FopuaT FUNCTION OVF ZERO CARRY stan CYCLES
BF t*,aa gtx PCye((PCo)+1)+ H'aa' if - 3.5%%
aa selected status bits are
all "o
PC'+(PCq) + 2 if any status - 3.0
bit is
TEST CONDITIONS
23 22 2 20
OVF | ZERD [CARRY | STGN
BNO aa 98 PCUe((PCO)+1)+ H'aa' if OVF=0 - 3.5
aa PCge(PCo)+ 2 1f OVF=I - 3.0
BR7 aa 8F PCue ((PCo)+1)+ H'aa' if ISARFT - 2,5%
aa PLge(PCy)* 2 if ISAR<T - 2.0
INTERRUPT CONTROL INSTRUCTIONS
0P MACHINE STATUS BITS
cope OPERAND (S) FoRmaT FUNCTION OVF ZERD CARRY sigN C'CLES
L - 1A DISABLE INTERRUPT - 2
B - 18 ENABLE INTERRUPT

Privileged Instruction**¥**

* t is four bits

x* 3,5 cycles if branch is taken. 3.0 cycles if branch is not taken.
xxx 2 5 cycles if branch is taken. 2.0 cycles if branch is not taken.

**%% Ppivileged instructions inhibit interrupt service at the completion of
execution of the instruction.

5.66

o

5.16 INSTRUCTION SET: CONDENSED LISTING (Cont.)
INPUT/OUTPUT INSTRUCTIONS
opP MACHINE STATUS BITS
cooe OPERAND (S) popuat FUNCTION OVF ZERO CARRY sigN CYCLES
INS a Aa ACC«(INPUT PORT a) 0 1/0 0 1/0 4*
Input Ports 00 to OF only
IN aa 26 ACC«+(INPUT PORT aa) 0 1/0 0 1/0 4
aa Input Ports 04 through
FF only
OUTS a Ba OUTPUT PORT a +(ACC8 - 4
Output Ports 00 to OF only
ouT aa 27 OUTPUT PORT aa <« (ACC) - 4
aa Output Ports 04 through

FF only

2 cycles when I/0 port address is 0" or "1V,

5.67

6.0 F3 CROSS ASSEMBLER

6.0.1

6.1

GENERAL

This chapter describes the F8 Cross Assembler. Written

in Fortran IV, this routine will execute on a HOST machine.
The first section of this chapter lays the foundation for
using assemblers Section 6.2 describes the different
fields of the F8 assembler instructions. The next section,
6.3. details each F8 assembler command and its resulting
action. Section 6.4 briefly relates the F8 assembler to
another F8 software package, the simulator. (The simulator
is fully defined in the next chapter, Chapter 7.) Finally,
Section 6.5 1ists each assembler error statement and the
probable cause of the error.

INTRODUCTION

The basic programming language for any computer is machine
language; this involves writing out the one's and zero's
that make up a set of instructions. Assembly Tanguage
programming is more convenient than writing programs in
machine language. It allows the software writer to use
memonic codes instead of a bit configuration, For instance,
a branch instruction may be written BR, instead of 1001 0000,
The mnemonic Tisting of F8 instructions appears in Chapter 5,
Assembly language allows addresses to be symbolic instead of
absolute. Symbols are used to represent addresses or
absolute values. Therefore, a branch instruction may be
written:

Bz LOC1.

The symbol, LOC1, is defined elsewhere in the program,
Assembly language programs may be more easily read and
understood than those written in machine language. Comiments
can be added throughout the program for documentation.
Finally, assembly language programs ease the introduction

of program data by providing instructions to define constants.

A program called an assembler is needed to translate a
source program into an object program. The programmer, writ-
ing in assembly language, generates the source program,. The
assembler converts this to an object program, the machine
language 1isting of the assembler. The assembler does the
bookkeeping to keep track of the symbolic names used by the
programmer. In addition, it converts the mnemonics to
machine language, inserting the proper value of symbols and

LK Yo

Ta
1!(&!!'0])0

Using an assembler, the programmer can generate software
in a shorter time period with fewer errors. Debugging

a program is also easier using an assembler, Finally,
assembly language programs are easier to document and
maintain.

6.2 INSTRUCTION FIELDS

Assembler instructions have four fields: label, command,
operand and comment, Instructions are written in FREE
FORM. One or more blanks are used to separate fields.

The restrictions are that the label field, if used, must
start in the first position of a record and that multiple
operands are separated by commas. An asterisk in colum
one indicates a comment statement and a nonblank character
in column 72 indicates the following line is a continua-
tion of the present statement.

There are two types of assembler commands: control
instructions and F8 machine instructions. The control
instructions are for assembler "bookkeeping". F8 instruc-
tions have a one to one correspondence with actual F8
machine commands. The assembler converts the F8 mnemonics
into F8 machine language instructions.

The control instructions and the functions they perform
are listed in Table 6.1 and explained below. F8 instruc-
tions and their assembler mnemonics are discussed in
Chapter 5.

6.2.1 LABELS

Labels are used to identify lines of instruction. A
label, if used, must begin in record position one. The
first character of a label must be alphabetic; the remain-
ing characters may be alphanumeric, While a label may be
of any length, only the first four characters are retained
by the assembler,

6.2.2 OPERANDS

The operand field may be either a constant, an address, or
an expression. Each of these field types is described below.

6.2

6.2.2.1 Constant values can be specified in several number systems.
The particular number system is indicated by a letter
followed by the number in quotes. Table 6.2 lists the six
types of constant formats. These constants may be used
as the operand of both F8 and assembler instructions.
CONSTANT DEFINITION
nn If no letter appears, the default condition, a
decimal number is assumed.
D'nn? Decimal numbers are specified by the letter D.
H'nn' Hexadecimal numbers are specified by the letter H.
B'nn’ Binary numbers are specified by the letter B.
0'nn' Octal numbers are specified by the letter 0.
C'nn' ASCII characters ave specified by the letter C.
T'nn' F8 timer counts are specified by the letter T.
The assembler convert the number of specified
time delays into the appropriate F8 timer delay
code. Delays between 0 and 254 may be specified
in decimai notation.
TABLE 6.2
ASSEMBLER CONSTANT
6.2.2.2 Addressing fields refer either to program locations or

to data in memory. The forms are:
1) Symbol - An address label defined elsewhere.

2) *+Constant

*-Constant - The location of the present instruction

plus or minus the constant.
3) Constant - A constant value.

6.3

6.2.2,3 EXPRESSIONS
An operand may also be specified in terms of an expression.
An expression must be enclosed in parenthesis. Five basic
arithmetic operators may be used (+,-,*,/ and **) and up
to ten levels of parenthesis; however, only decimal con-
stants and symbols can appear in an expression. Multiple
operators are translated according to the standard rules
of algebra.
6.2.2.4 * COMMENT STATEMENT
An asterisk in position one of a statement denotes a
comment statement. The Tine will be printed in the
output but ignored by the assembler.
COMMAND OPERAND FUNCTION SECTION
EQU OPERAND Equates symbols for programming re- 6.3.1
sponses
ORG OPERAND Set the value of the assembler loca- 6.3.2
tion counter equal to the expression
DC CONSTANT Defines a one or two byte constants 6.3.3
in memory. 2 bytes
TITLE "HEADING" The "Heading" will be printed at the 6.3.4
top of each assembly page.
EJECT Skip to next page in assembly listing 6.3.4
XREF TA cross reference 1isting will be 6.3.5
printed at the end of the listing.
SYMBOL A symbol table will be printed at the 6.3.6
end of the listing.
BASE OCT,HEX, Selects the base of the numbers 6.3.7
DEC appearing in the output.
MAXCPU OPERAND Limits the amount of CPU execution 6.3.8
time.
END Signal the end of the program, 6.3.9
TABLE 6.1

ASSEMBLER INSTRUCTIONS

6.4

6.3.1

6.3.2

ASSEMBLER COMMANDS

Assembler commands assist the assembler by defining
symbols and entering values into the program. The F8
assembler commands are listed in Table 6.1 and described
below.

EQU - EQUATE SYMBOL
EQU instructions are used to define symbols; a symbol

is assigned the value in the operand field of the instruc-
tion. The format for this instruction is:

LABEL OPERATION OPERAND
SYMBOL EQU EXPRESSION, SYMBOL,
CONSTANT

The symbol is assigned the value of the expression. The
assembler will insert this value wherever it encounters
the symbol.

LABEL OPERATION OPERAND
BEGIN EQU 15

LAST EQU (*+2)
MIDDLE EQU (LAST - 4)
R14 EQU 14

The EQU instruction can be used to equate symbols to
scratchpad registers, memory locations or other specific
values.

ORG - SET LOCATION COUNTER

An ORG instruction sets the value of the assembler's
location counter to the expression. The format for the
ORG instruction is:

LABEL OPERATION OPERAND

Must be blank ORG OPERAND (Expression,
Symbol, or Constant)

A11 symbols used the expression must be previously defined.

The Tocation counter is an assembler counter. It keeps
track of where in memory the next instruction will be

6.5

6.3.3

6.3.4

6.. 3. 5

located. If the operand is omitted from an ORG
instruction, the location is set to the next unused
Tocation.

LABEL OPERATION OPERAND
Must be blank ORG 0
ORG (FIRST + 50)
ORG (*+20)

DC - DEFINE CONSTANT

DC instructionsset uyp storage locations for constant values.
The format for the DC instructions is:

LABEL OPERATION OPERAND
SYMBOL or DC CONSTANT
BLANK

A symbol may be used to name a constant or the first con-
stant of a table. The symbol can appear on the operand
field of an instruction or, as a relative address. The

DC instruction will set up one or two bytes of memory
storage for definition of the symbol. Thus, the DC instruc-
tion actually reserves memory locations for use in a pro-
gram,

TITLE, EJECT - FORMAT COMMANDS
These commands control the format of the output listing.

LABEL OPERATION OPERAND

TITLE "HEADING"

The TITLE command causes the operand to be printed at
the beginning of each page of the listing. The EJECT
command will skip the printer to the beginning of a new

page.
XREF - CROSS REFERENCE LISTING

The XREF instruction will cause a cross reference list-
ing to be printed at the end of a listing. This table

Jists each symbol, gives the source statement Tine item

in which the symbol appeared as a label, and Tists every
reference to that symbol.

6.6

The format for this instruction is:

LABEL OPERATION OPERAND

Must be blank XREF

6.3.6 SYMBOL - SYMBOL TABLE LISTING
The Symbol instruction causes a symbol table to be
printed out at the end of a listing. This table lists
the symbol and the location in the object code to which
the symbol refers. The format for this instruction is:
LABEL OPERATION OPERAND

Must be blank SYMBOL

6.3.7 BASE ~ SELECT OUTPUT BASE

This assenbler command controls the output format of
assembler number listings. There are three possible
output modes: Octal, Decimal and Hexadecimal. If a
base command does not appear, the output will be listed
in decimal. The format for this instruction is:

LABEL OPERATION OPERAND
BASE HEX
BASE 0CcT
BASE DEC
6.3.8 MAXCPU

The MAXCPU instruction 1imits the amount of CPU time for
each assembly run. This is to prevent unexpected excessive
computer usage. The operand field 1lists the maximum
amount of seconds allowed. Its format is:

LABEL OPERATION OPERAND
Must be blank MAXCPU CONSTANT
6.3.9 END - END ASSEMBLY
The END instruction is always the last statement in an
assembly program. It is used to terminate the assembly

6.7

of a program. The format for an END instruction
is:

LABEL OPERATION OPERAND

Must be blank END

6.4 ASSEMBLER INPUT/OUTPUT FILES
The F8 Cross Assembler treats the user's program as an
input file. Written in Fortran IV, the F8 assembler
passes through the input program twice. During the
first pass, the F8 assembler defines symbols and sets
up symbol tables. The second and final pass generates
the F8 machine code 1isting. The assembler outputs
two files, F8LIST and F8TXT. The first file is a list-
ing of a program after it is assembled. The F8TXT file
is intended as an input file to the F8 simulator.
6.5 ERROR MESSAGES
When the assembler reaches a point where it cannot
interpret the user's input, an error will be flagged.
F8 assenbler errors are listed in Table 6.3 along with
the section in which they are defined.
ERROR . MESSAGE SECTION

Syntax Error 6.5.1

Invalid Label 6.5.2

Label OV 6.5.3

Error ARG 1 6.5.4

Error ARG 2 6.5.5

Missing Comma 6.5.6

Missing 2nd Argument 6.5.7

Error Single Argument 6.5.8

Expression ER 6.5.9

Offset OV 6.5.10

TABLE 6.3
ERROR MESSAGES
6.8

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

6.5.6

6.5.7

6.5.8

6.5.9

When the assembler detects an.error, it will note the
error, output the faulty line, and put an X under the
point of confusion. The assembler will complete the
pass and note the number of detected errors at the end

of the listing.

SYNTAX ERROR

A syntax error is the result of a statement which cannot
be recognized. A spelling error may have occurred.
INVALID LABEL

A label was used which does not follow the proper label
format. For instance, the label may have begun with a
nunber.

LABEL OV

The symbol table has overflowed. Too many symbols were
used in the assembly program,

ERROR ARG 1

An error appeared in the first argument of an instruction
with two arguments in the operand.

ERROR ARG 2

An error appeared in the second argument of an instruction
with two arguments in the operand.

MISSING COMMA

A comma between two arguments in the operand has been
left out.

MISSING 2ND ARGUMENT

An instruction with two arguments in the operand has been
used; however, the argument does not have two operands.

ERROR SINGLE ARGUMENT

An error appeared in the only argument of a one argument
instruction.

EXPRESSION ER

An error occurred within an Xpression in the operand
e

field of an instruction. The xpression will be printed
with an X below the point of confusion.

6.9

6.5.10 OFFSET OV

This error occurs whenever a branch instruction offset
value is not within +128 or =127 bytes of the branch
instruction itself.

6.]0

O3/ Terzory F8A == VERSION 40 =- 2718775
LOC 0BJECTY CODE STMT SOURCE STATEMENT PAGE 1

PASS 1 COMPLETE 0.26 SEC

* THIS PROGRAM WILL ADD TWO 16 DIGIT DECIMAL NUMBERS

* BOTH OPERANDS ARE $TORED IN SCFAICHPAD

» UPERAND A - LOCATIONS 30 TO 37 (0CT)
L OPERAND 8 = LOCATIONS 40 10 47 (0CT)
% THE RESULT (R) WILL BE PLACED IN LOCATIUNS 40 TO 47 (CCT)
*x
X
¥ ORG O .
2 BASE HEX THE OUTPUT WILL APREAR IN HEX NOTATION
0 21 0 3 N1 0 CLEAR THE CARRY BIT
2z &3 4 Loop LISU 2 LOAD THE UPPLR BITS OF ISAR TO 3
3 4C 5 LR AyS GET UPERAND A
4 19 & LNK ADD THE PREVIOUS CARRY TO OPERAND A
5 2 1 LR 2 oA STORE THE RESULT IN TEMPORARY REG 2
& 64 g LIsSU 4 LOAD THE UPPER BITS OF ISAR T0 4
7 4C 9 LR AsS PUT OPERAND & INTO ACCUMULATOR
b 24 Go to Al HY66" DO A DECIMAL ADJUST UN OPERAND B
A D2 11 ASD 2 ADD DECIMAL OFERAND A AND OPERAND B
8 SE 12 LR DyaA STORE THE RESULT INTO SCRATCHPAD
C B8F F5 13 BR7 LOOP BRANCH BACK IF ANY DIGITS ARE REMAINING'
de SYMBOL PRINT A SYMBOL TABLE
15 XREF PRINT A CROSS REFERENCE TABLE
le END

Figure 6.1 Page 1 of 3
File FSLIST Produced By The F8 Cross Assembler

FEA == VERSION -4D == 2/187/75

C3/VY¥ /35 14335033
SYMEOL TASLE PAGE 2
LOC LABEL LGC LAGEL LoC LABEL Loc LABEL
2 LoOe -

Figure 6.1 Page 2 of 3
File FSLIST Produced By The F8 Cross Assembler

O35 1ee394S FEA ==—VERSION 4D == 2/18/75

CROSS~REFERENCE PAGE 3
LABEL STMT REFERENCES
~LOCP 4 13
PASS -2 COMPLETE- Te82 "SEC

NO ERRORS IN AE-(?VE-ASSEMBLY

Figure 6.1 Page 3 of 3
File FBLIST Produced By The F8 Cross Assembler

7.0 F8 CROSS SIMULATOR

7.0,1 GENERAL

This chapter describes the F8 Cross Simulator written in
Fortran IV, this routine will execute on a host computer.

The first section of Chapter 7 discusses simulators in general.
Section 7.2 describes the different files that are needed by
the cross simulator. F8 simulation commands are divided into
two control segments: configuration control and simulation
control. The configuration control instructions, defined in
Section 7.3, set up the hardware configuration of the F8
system to be simulated. Once the F8 model has been organized,
the simulation is ready to begin. Simulation control Tanguage
instructions, described in Section 7.4, Toad the F8 registers
with values, execute a specified instruction set, and monitor
the F8, cycle by cycle. Section 7.5 describes the output
files of the F8 simulator. The next section of this chapter,
Section 7.6, defines every message of the F8 simulator. The
final section of Chapter 7, section 7.7, gives examples of
actual simulation runs. Table 7.1 lists the seven sections

of this chapter and their contents.

INTRODUCTION

A very effective tool for the design engineer engaged in a
microprocessor application is a software simulator. For
several years, logic simulators have been used by logic
designers to check their circuit design. In a similar
fashion, a microprocessor simulator may be used to model

a specific microprocessor. Thus, a user may check out the
microprocessor programs to insure that they perform as
expected. In addition, factors externai to the microprocessor
may be entered into the simulation. A microprocessor simu-
lator allows designers to experiment with programs on another
computer. In addition to simulating the I/0 ports, the
simulator monitors every major register in the microprocessor.
Thus, the designer has access to register status that is not
normally available.

The designer is able to simulate the environment in which

the F8 will operate on a host computer. For instance, I1/0
information and external interrupts may be input at a specific
machine cycle. In addition, the user's program may be entered
into the simulator and modified where desired. The simulator
will output the status of specific registers and memory loca-
tions. A variety of trace and dump options are available to
monitor processor activity instruction by instruction.

INTRODUCTION 7.1

INPUT FILES 7.2

F8TXT 7.2.1
F8SCL 7.2.2

CONFIGURATION CONTROL |

ROM

RAM

PORT
INTERRUPT
END

.
(I%)

NNNNN N
.
WwWwwww
.
OTh WM —

-
.

SIMULATION CONTROL

~J
[]
s

CLEAR Instructions

SET Instructions

OUTPUT ON REFERENCE Instructions
DUMP Instructions

TRACE Instructions

ENVIRONMENT Instructions

RUN Instructions

HOUSEKEEPING Instructions

L]
el T -
L]

.
ONDATPWN e

e Y JEN RN |
* o
.. .

. .
Oy OO (o)} ol S

OUTPUT FILES

SIMULATOR MESSAGES
Warning Messages
Fatal Errors
Conclusion Messages

SIMULATION EXAMPLES !

NN~ ~ ~ NN
.

.
.
WN —

~d
[
~J

TABLE 7.1
TABLE OF CONTENTS

7.2.2

7.3

7.3.1

U]

PUT FILES

F8TXT FILE

Two input files are required by the F8 Simulator. The
first is the assembled program file, F8TXT. This file
was created by the F8 cross assembler. It consists of
a machine code listing of the user's instructions and

a symbol table relating symbols used in the assembler
to machine Tocations.

F8SCL FILE

The other simulator input file, the control file, directs
simulator operation. This file sets up a model F8
system, Memory locations may be loaded or altered. F8
operation can be initiated and the operation of the pro-
cessor monitored at every instruction. The control file
also directs the output format. Section 7.3 and 7.4
qgscribe the formation of the simulation control Tanguage
file.

CONFIGURATION CONTROL

The configuration control section lays out the F8 model for

the simulator. Using four control statements, ROM, RAM, PORT
and INTERRUPT, a full description of the F8 model can be con-
structed. Once a system is described, the F8 simulator will

be able to load the assembled program into the computer model

and begin the analysis,

ROM MEMORY

ROM Memory locations may be reserved by ROM control
instructions. The format for this command is:

OPERATION OPERAND

ROM ADDRESS

The only format restriction for this instruction is that
a blank appears between the OPERATION and the OPERAND.
The associated 4DDRESS field may be either a constant

or a symbol. The allowable constant formats are listed
in Table 7.2. The assembler symbol table is transferred
to the simulator in the assembled program file; thus, the

7.3

simulator can use the same symbols as the assembler.
Each ROM operation will reserve 1024 F8 memory locations
for read only memory storage. The memory assignment
begins at the value of ADDRESS and extends through the
next 1023 memory locations. Attempting to write into
ROM memory locations will be flagged by the simulator
(refer to Section 7.6 for simulator messages).

FORMAT MEANING
Symbo1 Address of assembly symbol value
nn Decimal Number
D'nn' Decimal Number
H'nn' Hexadecimal Number
B'nn' Binary Number
0'nn’ Octal Nunber
C'nn' ASCII Character
* Present Value of Program Counter
*+Constant Present Value of Program Counter + Constant
*-Constant Present Value of Program Counter - Constant
TABLE 7.2
ADDRESS FIELD FORMATS
7.3.2 RAM MEMORY

RAM configuration control instructions reserve RAM memory
Tocations in the simulator. Their format is:

OPERATION OPERAND

RAM ADDRESS

As before, a space must appear between the operation and
the operand, The address may be a symbol or a constant.

7.4

7.3.3

7.3.4

A RAM command reserves 256 bytes of F8 memory as read/
write memory. This block may be written in to or read
from. The starting Tocation of the RAM block is selected
by the operand and the block continues for another 255
address Tocations. The simulator will warn the user if

a ROM and/or a RAM segment overlap.

OPERATION OPERAND
RAM 0
RAM START
RAM H'00700"

PORT ADDRESS

I/0 port assignments are made with a PORT instruction to
assign an I/0 port in the simulator model. Each F8 I/0
port in a system requires one PORT command. The format
for this instruction is:

OPERATION OPERAND

PORT NUMBER
The port number may take on any of the constant formats
in Table 7.2. A reference to an unassigned port wiii
result in an error message. (Refer to Section 7.6
for simulator messages.)
OPERATION OPERAND

PORT 4

INTERRUPT ASSIGNMENT

F8 interrupts are either internal (timer generated)
interrupts or externally initiated interrupts. Each
interrupt has a unique interrupt address vector. The
value of this address is specified by the INTERRUPT
instruction. 7ihe format for this command is:

OPERATION OPERAND

INTERRUPT NUMBER ADDRESS, NUMBER ADDRESS-
External Internal
Interrupt Interrupt

7.5

7.3.5

There must ba a space between the operation and the
operand. Consecutive operands are divided by commas

but not spaces. The number refers to the port assign-
ment assigned to the Tocal interrupt control block while
the address is that of the associated interrupt address
vector. For internal interrupts, the NUMBER is the timer
port number. The first number and address of the OPERAND
are for the external interrupt while the second number
and address are those of the internal interrupt. The
simulator will flag any deviation from the normal F8
configuration. Interrupt priority is determined by the
order in which the INTERRUPT instructions appear. The
first INTERRUPT instruction has the highest priority.

OPERATION OPERAND
INTERRUPT 6 B'0000000000010010*,

7 B'0000000010010010"
INTERRUPT H'A' H'A540', H'B' H'A5BO'

END

The completion of the configuration control statements
must be marked by an END instruction.

OPERATION OPERAND
END

CONTROL LANGUAGE

After reading the END statement from the configuration control
section, the simulator turns on the power. The F8 program
counter is set to zero; the processor registers and memory
locations are set to a random number. Next, the simulator will
load the assembled program into the model F8.

The simulator divides each F8 instruction into simulation cycles.
Each simulation cycle is equivalent to 500 nsec. for an F8
running at 2MHz, Table 7.3 lists the instructions and their
corresponding cycles. Input data and interrupts may be entered
at selective machine cycles.

The simulator control statements are divided into eight general
categories:

o CLEAR Instructions (Section 7.4.1)
o SET Instruction (Section 7.4.2)

7.6

® OUTPUT ON REFERENCE (Section 7.4.3)

o DUMP Instructions (Section 7.4.4)

o TRACE Instructions (Section 7.4.5)

e ENVIRONMENT Instructions (Section 7.4.6)
® RUN Instructions (Section 7.4.7)

e HOUSEKEEPING Instructions (Section 7.4.8)

The CLEAR and SET Instructions may be used to enter new
data into the F8 registers or memory. To assist monitor-
ing the F8 model, OUTPUT ON REFERENCE, DUMP, and TRACE
Instructions will output microprocessors activity.
ENVIRONMENT Instructions model the outside world inter-
acting with the F8., They set data on the I/0 ports and
simulate F8 interrupts. RUN Instructions start and stop
the F8 simulation. Finally, HOUSEKEEPING Instructions
assist the operation of the simulation program.

/.4,0 INSTRUCTION FORMAT

The Simulation Control Language Instructions are written in
free form. The only restrictions are:

1) At least one space must appear between the operation
mnemonic and the operand field.

2) RANGE- This operand defines a range of addresses.
The format 1is:

VALUE TO VALUE

where value may be a defined symbol, a constant or an
asterisk. The * symbol is equal to the present value
of the F8 program counter. Relative addresses may be
referenced with *+Constant or *-Constant. The address
formats are Tisted in Table 7.2.

3) RNAME- These operands are mnemonics used to identify
the CPU registers. They are listed in Table 7.4.

4) DATA- Data appearing in operands may be either assembly
defined symbols or constants (listed in Table 7.5). Since
the data will be entered into an 8-bit register, its
?;n?ry value must Tie within the range 00000000 to 1111

11.

5) DATA LIST- This operand serially lists several DATA

items. The DATA values must be separated by at least
one space, but no commas. ‘

1.7

6) CYCLE- This operand is used to reference cycle numbers.
The cycle may be any constant from Table 7.2 or an
asterisk., In this case, the * refers to the present
cycle number. *+Constant and *-Constant may be used
to represent offsets of the cycle.

7) NUMBER- Any constant format in Table 7.2 may be used
for this operand.

8) COMMENT- An * in the first column indicates a comment

statement.
MEANING OPERAND
OPERAND DEFINITION
ACC ACCUMULATOR
W STATUS REGISTER
DC DATA COUNTER
ISAR INDIRECT SCRATCHPAD ADDRESS REGISTER
PCy PROGRAM COUNTER
PC1 STACK REGISTER
TABLE 7.4
RNAME OPERAND MNEMONICS
FORMAT MEANING
nn Decimal Number
D'nn' Decimal Number
H'nn' Hexadecimal Number
B'nn’ Binary Number
0'nn' Octal Number
T'nn' Timer Count (Refer to Appendix)
Symbo1 Assembler Defined Symbol

TABLE 7.5
DATA CONSTANT FORMATS

7.8

7.4.1

7.4.1.1

7.4.] 02

~d
o
——r
w

7.4.1.4

CLEAR

The CLEAR instructions set one register or several
registers to zero. The operand for this instruction
may refer to a counter, a memory location, an I/0
port, a register, or scratchpad registers. The format
for this instruction is:

OPERATION OPERAND
CLEAR ALL

CLEAR COUNT NUMBER
CLEAR MEM RANGE
CLEAR PORT NUMBER
CLEAR REG RNAME
CLEAR SCRATCH RANGE

Italics implies an optional operand.
CLEAR ALL

This instruction will clear the counters, the I/0
ports, the entire memory, the processor registers,
and the scratchpad.

CLEAR COUNT NUMBER

The clear count instruction loads an 8-bit counter
with all zeros. The number in the operand field
must correspond to a counter assigned in the con-
figuration control section. If no operand appears,
all of the timers are set to zero.

Nl AN MM o aar e
ULLCAR MM FANGE

ATT1 memory locations within the specified range are
set to zero. If no range is listed, all memory
locations will be cleared,

CLEAR PORT NUMBER

The 1/0 port called out by the operand will be
cleared by this instruction. For instance,

OPERATION OPERAND
CLEAR PORT 5

7.9

7.4.1.5

7.4.].6

7.4.2

7.4.2.1

SET

will clear I/0 port 5. This port was identified
in the configuration control section. If a number
does not appear in the operand, all of the I1/0
ports will be cleared.

CLEAR REG RNAME

Each F8 register has a mnemonic abbreviation. These
are listed in Table 7.3. To clear an F8 register,
the CLEAR REG instruction may be used; RNAME identi-
fies the register to be cleared. The default condi-
tion for this instruction (RNAME not given) will
CT?ar all six registers, ACC, W, DC, ISAR, PCO and
PC1.

CLEAR SCRATCH RANGE

The F8 has 64 scratchpad registers. Numerically,
these are referred to by the numbers 0 to 63. The
CLEAR SCRATCH instruction will set to zero all
scratchpad registers within the specified range,
inclusive. TIf no range is listed, all scratchpad
registers will be cleared.

In addition to clearing registers, simulation control
Tanguage allows registers to be set to a specified value.
The format for set instructions is:

OPERATION OPERAND

SET COUNT NUMBER DATA
SET MEM RANGE DATALIST
SET PORT NUMBER DATA
SET REG RNAME DATA

SET SCRATCH RANGE DATALIST

For each instruction, all of the operands must appear.

SET COUNT NUMBER DATA

The 8-bit counters may be set to any value from 0

to 255. The counter is a polynomial counter; the

count sequence is Tisted in the Appendix.
OPERATION OPERAND

SET COUNT 07 T'34t

7.10

7.4.2.2 SET MEM RANGE DATA

Memory Tocations may be set to specific values with
this instruction, The RANGE 1{sts the address loca-
tions to be filled. The first data item is placed
in the first memory address. Al1 locations are
filled in a sequential manner. A non-zero entry

in column 72 will cause the next 1line of input to

be a continuation of the previous record.

OPERATION OPERAND

SET MEM 700 TO 103 H*A3* H*05* H'23' H'50°

The SET MEM instruction is equivalent to entering
constants in the program.

7.4.2.3 SET PORT NUMBER DATA

This instruction loads the 8-bit F8 I/0 port with the
DATA entry. The port must be assigned by the con-
figuration control section. This is equivalent to
writing in an I/0 port.

7.4.2.4 SET REG RNAME DATA
The REG referred to by this instruction are listed

in Table 7.4. The SET command fills the appropriate
register with the DATA item given,

OPERATION OPERAND
SET REG ACC B'001111071"
7.4.2.5 SET SCRATCH RANGE DATA

This instruction will set scratchpad registers to

a given value. The first register to be set and
the Tast register to be set are given by the RANGE
operand. The data will be loaded sequentially,
starting with the Towest scratchpad register number.

OPERATION OPERAND

SET SCRATCH 5 TO 10 5 H'A5' B'00011011* 10 15
7.4.3 OUTPUT ON REFERENCE

This group of instructions is set by the programmer to
flag processor activity within a specific region of memory.

7.1

7.4.3.1 ACCESS

The Access instruction will output whenever CPU
references Tie within a specified area of storage.
An access may be either a read or a write into
memory. The format for this instruction is:

OPERATION OPERAND

ACCESS RANGE

The simulator will print out the value of the pro-
gram counter, the cycle number, the address accessed,
and the memory modification (if any) for each store
or fetch within the specified memory range. For

example:
OPERATION OPERAND
ACCESS 100 TO 1000

will monitor any memory read or memory write opera-
tions within memory locations 100 to 1000.

7.4,3.2 ALTER

To keep track of memory modification, the ALTER
instruction is helpful. The format for this instruc-

tion is:
OPERATION OPERAND
ALTER RANGE

The simulator will print the value of the program

counter, the cycle number, the memory address, and
the new data for each store within this specified

range.

7.4.3.3 SUPPRESS

Working in conjunction with the ACCESS and the ALTER
instructions, the SUPPRESS command negates the activity
of the ACCESS and ALTER instructions within the oper-
and specified range. The format for the SUPPRESS
instruction is:

OPERATION OPERAND

SUPPRESS RANGE

7.72

7.4.4

For instance, the user may want to monitor data
stores within memory locations 5000 through 5400

except for addresses 5100
through 5250,

through 5150 and 5200

Three tnstructions will accomplish

this:
OPERATION QPERAND
ALTER 5000 TO 5400
SUPPRESS 5100 TO 5150
SUPPRESS 5200 TO 5250
These instructions have the same effect as the
following:
OPERATION OPERAND
ALTER 5000 TO 5099
ALTER 5151 T0 5199
ALTER 5251 TO 5400

The SUPPRESS instruction reduces execution time by
deleting unwanted output.

DUMP

At a particular point in a simulation, the user may
want to look at the contents of memory locations or
other registers. The DUMP instructions provide a snap-
shot picture of the F8. These instructions are:

OPERATION OPERAND

DUMP ALL

DUMP COUNT NUMBER

DUMP MEM RANGE

DUMP PORT NUMBER

DUMP REG RNAME
RANGE

DUMP SCRATCH

Italics imply an optional operand.

7.13

7.4.4.1 DUMP ALL

The DUMP ALL instruction will print out the value
of the counters, I/0 ports, CPU registers, scratch-~
pad registers, and memory locations.

7.4.4.2 DUMP COUNT NUMBER

During simulation of an F8 program, the contents
of the counter can be obtained by issuing a DUMP
COUNT instruction. The operand refers to a parti-
cular counter number; this number must correspond
to a counter nunber defined in the configuration
control section, If no operand is present, all
counter values will be dumped.

7.4.4.3 DUMP MEM- RANGE
The DUMP MEM instruction prints out the value of
all locations within the specified memory range.
For instance:

OPERATION OPERAND
DUMP MEM 0 TO 100

will output the contents of memory locations 0 to
100. Sixteen memory locations are Tisted per
Tine. A typical output format will be:

MEMORY ADDRESS 16
VALUE 90 34 12 26 75 23 56 46 98 26 38 48 50 03 33 23

This output means that memory address 16 contains
90, address 17 contains 34, address 18 contains 12,
and so forth. The RANGE operand defines the section
of memory locations that will be dumped. If no
range is given, all memory locations defined in the
configuration control section will be printed.

7.4.4.4 DUMP PORT NUMBER

If the programmer is interested in observing the
contents of an I/0 port, a DUMP PORT instruction

7,14

7.4.4.5

7.4.4,6

can be used. This will print out the present value
that is contained in an I/0 port. Each I/0 port

is bidirectional; therefore. the contents of the‘

port 1s a logical "OR" of the value that is contained

in the port buffer and the external connections to
that port. The external connections are se1ecteq

by a PORT instruction defined later in this section.

If the operand is not present, all 1/0 ports defined
in the configuration control section will be outputted,

DUMP REG RNAME

The contents of the accumulator, data counter, ISAR,
and status register can be monitored using a DUMP

REG instruction. The operand determines the register
to be printed. The absence of an operand results in
Tisting the content of all four registers. For
instance,

OPERATION OPERAND

DUMP 74

will output the value of the scratchpad register in
the following format:

REGISTER w VALUE 0
DUMP SCRATCH rawge

The scratchpad registers may be monitored with a

DUMP SCRATCH instruction. As the name implies, the
DUMP SCRATCH instruction outputs the value of the
scratchpad registers within the specified range. If
no range is given, all sixty-four scratchpad registers
Will be Tisted. For example,

OPERATION OPERAND
DUMP SCRATCH 0 To16

Will print the value of the first seventeen scratch-
pad registers. The register values are listed sixteen
to a Tine in the following format:

SCRATCH ADDRESS 0
VALUE 12 23 84 85 67 34 56 98 38 45 56 03 47 18 45 98

SCRATCH ADDRESS 16

VALUE 55

e U L

7.15

In this example, scratchpad register 0 contains
12, scratchpad register 1 contains 23, and soforth,

7.4.5 TRACE

The six TRACE commands track the flow of F8 instructions.
The simulator offers threé tracing modes. In the first,
each instruction, regardless of type, is monitored. The
simulator will print out after each instruction executes
(the TRACE printout is described below). The second mode
of trace instructions only tracks branch and I/0 instruc-
tions. Finally, a trace instruction will monitor only the
I/0 instructions. The six trace instructions are:

OPERATION OPERAND
TRACE ON

TRACE ALL RANGE
TRACE BRANCH RANGE
TRACE 10 RANGE
TRACEVCLEAR RANGE
TRACE OFF

Italics imply an optional operand.

7.4.5.1 STANDARD TRACE OUTPUT

A11 of the Trace instructions produce a standard
trace output, as the example in Section 7.7 shows.
The Tisting occurs after instruction execution.
The BASE instruction selects the numeric format.
The standard trace output includes:

DATA QUTPUT COLUMN HEADING
1) The cycle number CYCLE
2) The program counter (set to the next instruction) PCO

3) The instruction mnemonic (of the completed instruction) oP
An * next to the OP mnemonics implies that a
branch was successful.

7.16

DATA OUTPUT

COLUMN_HEADING

4) The

5) The

6) The

11) The

storage being accessed
a) Address of data

The data may be either from scratchpad (S)
main memory (M) or an I/0 port (P). For
branch instructions, a C will appear for
condition codes.

b) Data Item

The data item is the 8-bit content of the
data source register. For branch instruc-
tions, it is the condition code of the
branch instruction.

content of the Accumulator (after instruction
execution)

status register (after instruction execution)

The status register will always appear as eight
binary bits. The three MSB are zero. The remain-
ing five bits are:

a) Interrupt Control Bit
b) Overflow Bit

c) Zero Bit

d) Carry Bit

e) Sign

contents of the data counter after the instruction
executes

contents of the indirect scratchpad address register
after the instruction executes appears as two octal
digits

contents of the stack register after instruction
execution

op code of the instruction

This Tisting is the actual instruction bytes read
from memory.

pending interrupts and timer contents

Pending interrupts are referenced by their priority
number and the type of interrupt - I for external,
C for the counter. A timer counting down will be
listed along with its contents. The timer count
down sequence is given in the Appendix., Only five
interrupts will be listed in this section. Pending

7.17

STORAGE
ADD

DATA

AcC

F ONO

ISAR

—t

)
(9]

INSTRUCTION

INTERRUPT

7.4.5.2

7.4.5.3

7.4.5.4

7.4.5.5

7.4.5.6

jnterrupts with highest priority are listed first,
followed by the highest priority counting timers,

TRACE ALL RANGE

This instruction turns on the trace operation within
the operand address range. For each instruction
address within the range, the simulator will produce
the standard trace output. If a range is not given,
the TRACE ALL command will output after every F8
instruction,

TRACE BRANCH RANGE

To monitor F8 operation within a software loop, the
TRACE BRANCH instruction may be used. This instruction
produces a trace output for each branch instruction;
in addition to tracing branches, the TRACE BRANCH
instruction will also monitor I/0 operations. An F8
I/0 operation may be one of four instructions: IN,
INS, OUT, and OUTS; therefore, writing into the local
interrupt control blocks and the F8 counters will also
be monitored. The output for the branch and I/0
instructions is the same standard trace output. The
operand of the TRACE BRANCH instruction is the range
of instruction addresses within which the TRACE BRANCH
instruction will function. If no range is listed,

the TRACE BRANCH will operate for all branch and I/0
instructions.

TRACE I0 RANGE

The Trace I0 instruction monitors the four F8 I/0
instructions IN, INS, OUT, and OUTS. A standard
trace output will be produced for each executed I/0
instruction within the operand range. If a range
is not Tisted, TRACE IO will monitor every ‘instruc-
tion.

TRACE CLEAR RANGE

The TRACE CLEAR instruction may be used in conjunc-
tion with the TRACE ON. It has the effect of negat-
ing the trace function for instructions with addresses
lying within the operand address range. If no range
is listed, the simulator will not trace any instruc-
tions.

TRACE ON

This instruction will cause the trace output, which
was turned off by a TRACE OFF command, to resume.

7.4.5.7

7.4.6

7.4.6.1

TRACE OFF

The TRACE OFF instruction stops trace printing;
however, the setting of all previous TRACE instruc-
tions is maintained and may be nr umed by a TRACE

ON instruction.

If no TRACE instructions appear in the simulator
control language, a trace will be performed for each
instruction. The trace operation consumes consider-
able CPU time in the host machine. Thus, an efficient
simulation program will only use trace instructions
where they are needed.

ENVIRONMENT INSTRUCTIONS

At some point in the simulation, the system surrounding
the F8 may interact with the microprocessor. This may

be modeled using the environment instruction. Thus, the
external world and its interaction with the F8 can be
simulated. The environment instructions allow data to

be entered into an I/0 port and interrupts to be activated.
The four environment instructions are: |

OPERATION . OPERAND

INTERRUPT NUMBER CYCLE (Section 7.4.6.1)

PORT NUMBER CYCLE DATA {Section 7.4.6.2)

EXTERNAL NuMBER MATCH pAT4 INTERRUPTNUMBER CYC
(Section 7.4.6.3)

EXTERNAL NuMBER MATCH pATA PORT NUMBER CYCLE D

(Section 7.4.6.4)

INTERRUPT NUMBER CYCLE

The INTERRUPT instruction will dynamically enter an
external interrupt into the system. The interrupt
structure was defined in the configuration control
section, Each interrupt was assigned a port number
corresponding to the port address of the interrupt
control block. This port number is referenced by
the ¥UMBER operand in the INTERRUPT instruction,
The cycle during which the external interrupt enters
the system is also selected by the operand of this
instruction. Thus, when the simulator reaches the
corresponding cycle number, an external interrupt
request will appear at the corresponding interrupt.

7.19

7.4.6.2

7.4.6.3

7.4.6.4

Note that just an interrupt REQUEST will appear;
the interrupt will be serviced according to the
F8 interrupt structure.

PORT NUMBER CYCLE DATA

Data may be entered into the F8 model with a PORT
instruction, The data is an 8-bit byte; this word
will appear at the I/0 port desighated by the operand
NUMBER CYCLE corresponds to F8 machine cycles. pATA
will be put on the I/0 port at the beginning of the
next instruction executed on a cycle equal to or
greater than the value of CYCLE appearing in the
operand. The data will stay valid at the port until
the next PORT instruction or EXTERNAL PORT instruc-
tion changes the input data. The actual information
that is read into the accumulator by an input instruc-
tion is the result of a Togical OR operation between
the DATA item and the contents of the I/0 buffer,
Thus, for the full eight bits to be read without error,
the output buffer must contain 00000000. When the
simulator initializes the F8 system, the external
Tines into the I/0 ports are set to zero.

EXTERNAL nUMBER MATCH DATA INTERRUPT NUMBER CYCLE

An EXTERNAL instruction can be used to enter an
interrupt into the simulation dependent on results
produced during the simulation. This instruction
has an 8-bit byte, DATA NUMBER. It monitors a
specific I/0 port, designated by matching the DATA
operand with the value contained in the I/0 buffer.
If, and when, the CPU writes a word into the I/0
port which matches DATA contained in the instruction
operand, an interrupt will be activated as soon as
the simulator has reached the corresponding cYCrIE.
The interrupt will occur at the interrupt labeled
NUMBER. Up to 13 EXTERNAL instructions that may
appear in the simulation control text. In effect,
if the data in the I/0 buffer matches DAT4 in the
operand, this instruction will operate as if it were
the following:

INTERRUPT NUMBER CYCLE
EXTERNAL wUMBER MATCH DATA PORT NUMBER CYCLE DATA
This EXTERNAL instruction will enter data into an
I/0 port dependent on the results produced during

operation. Once again, this instruction watches
the appropriate I/0 port (referenced by the first

7.20

NUMBER entry in the operand) waiting for the CPU

or a PORT instruction to write into that‘porg_a>__
word which matches the first DATA operand. If this
occurs, the simulator will then put the second pAT4
operand on the I/0 port referenced by the second
NUMBER operand. This data will appear on the port

at the beginning of the first instruction occurring
on or after the CYCIE listed. It will remain valid
until a PORT instruction or another EXTERNAL instruc-
tion changes the data.

7.4.7 RUN INSTRUCTIONS

The simulator will begin execution of the loaded program
when a RUN command is issued. Once the F8 memory and
registers have been loaded with the program and data,

and after the programmer has selected monitoring modes,

the simulation is ready to begin. The RUN instruction
specifies the address of the first instruction to be
executed, and the simulation begins. The model F8 wili
execute until the limit specified by the RUN statement
(either cycle number or instruction address). When the
simulation stops, all F8 registers and memory will remain
intact. Therefore, the system can very easily be restarted
by another RUN instruction. The three RUN instructions are:

OPERATION OPERAND
RUN ADDRESS TILL CYCLE NuMBER
RUN ADDRESS TILL ADDRESS VALUE
RUN ADDRESS TILL CYCLE NUMBER ADDRESS VALUE
7.4.7.1 RUN ADDRESS TILL CYCLE NUMBER

This RUN instruction will begin execution with the
instruction in location ApDRESS. E8 observations
during simulation are selected by the simulation
control language instructions. Execution will con-
tinue until the simulator reaches the CYCLE limit.

RUN ADDRESS TILL ADDRESS VALUE
The simulator will begin execution with the instruc-
tion specified by the first 4DDRESS listed in the

operand and continue till it has performed the instruc-
tion specified by the second operand, ADDRESS. Thus,

7.21

7.4.7.2

7.4.8

7.4.8.1

7.4.8.2

7.4.8.3

the first operand ADDRESS sets the program counter
(PCO). The last instruction simulated is contained
at the location selected by the second ADDRESS

operand.
RUN ADDRESS TILL CYCLE NUMBER ADDRESS VALUE

This instruction sets the simulator program counter
to the address determined by the first ADDRESS oper-
and. Execution will commence. The simulation will

stop when it reaches either of two conditions:

1) the cvcrze 1imit has been reached

2) the execution of the instruction specified by
the second ADDRESS operand has been completed.

HOUSEKEEPING INSTRUCTIONS

There are four simulator control instructions involved
with controlling the output. These are:

OPERATION OPERAND
BASE BIN, OCT, DEC, HEX
TITLE "HEADING'
MAXCPU VALUE
END

BASE BIN, OCT, DEC, HEX

This command controls the format of the numeric
simulation output. The four choices are binary BIN,
octal oCcT, decimal DEC, or hexadecimal HEX. Except
where noted in the text, the BASE instruction
selects the output mode..

TITLE 'HEADING'

The TITLE command will head the top of each output
page with the HEADING appearing in the operand.
MAXCPU VALUE

This instruction limits the amount of time that the
host computer executes. The VALUE operand is a

decimal number representing the maximum seconds that
the CPU can execute.

7.22

7.4.8.4

7.5

7.6

7.6.]
7.6.1.1

7.6.1.3

7.6.1.4

END

The completion of the simulation control language
statements is marked by an END instruction.

AT AL

OPERATION OPERAND

END

OUTPUT FILES

After the simulator has completed execution, it will generate
one file, FBTRACE. This file is a listing of the simulator's
output; it includes the input statement from the user as well
as the resulting simulator output. The sample program in
Section 7.7 are examples of the output files.

SIMILATOR MESSAGES

The simulator will output two types of error messages: warning
messages and fatal errors. The warning messages alert the

user that he is departing from standard F8 organization. They
do not end the simulation. Fatal errors, however, pose a
different problem for the simulator. These messages occur

when the simulator cannot proceed with the information provided.
Therefore, they result in a termination of the RUN.

WARNING MESSAGES

WARNING - DUPLICATE INTERRUPT NUMBER

Two interrupts with the same number were specified
with INTERRUPT instructions.

WARNING - INTERRUPT NUMBER NONSTANDARD

The interrupt number operand in an INTERRUPT instruc-
tion does not conform to the standard F8 configura-
tion.

WARNING - DUPLICATE PORT OR COUNTER NUMBER

The operand of a PORT instruction appeared in a
previous PORT or INTERRUPT instruction.

WARNING - COUNTER NUMBER NONSTANDARD

The counter number specified in an INTERRUPT instruc-
tion does not conform to the F8 configuration.

7.23

74641.5

7.6.1.6

7.6.].7

7.6.1.8

7.6.1.9

7.6.1.10

7.6.1.11

7.6.1.12

7.6.1.13

WARNING - INTERRUPT OR COUNTER NUMBER NONSTANDARD

The operand of the INTERRUPT instruction does not
conform to standard F8 configurations.

WARNING - PORT NUMBER NONSTANDARD

The operand of the PORT instruction does not conform
to standard F8 configurations.

WARNING - SEQUENCE ER AFTER CARD

If the assembly text was sequenced and if the simulator
detects an error in the sequence numbering, this warn-
ing will be issued.

WARNING - PROGRAM OVERLAY - ADDRESS

The user loaded two words into the same F8 memory
address.

WARNING - PROGRAM LOADED INTO RAM

The user loaded a section of program into the RAM.

Programs are normally loaded into ROM. (These ROM
sections were detailed in the configuration control
section.) '

WARNING - OUTSIDE MEMORY

The CLEAR, DUMP, or SET instructions listed an
address range which extends beyond the memory boundries
configured.

WARNING - ALTER ATTEMPT ON ROM

The ALTER instruction was issued for a memory range
which included ROM memory locations.

WARNING - INPUT CHANGED DURING INPUT OPERATION

The PORT instruction to input data was issued for a

cycle during which an F8 INPUT instruction was being
executed. In this case, the simulator does not use

this new data.

PORT NOT ACCESSABLE
The 1/0 port was not 1isted in the configuration

control instruction. The instruction will be treated
like a NO OP.

7.24

7.6,2

7.6.2.1

7.6.2.1.1

7.6.2.1.2

7.6.2.1.3

7.6.2.1.4

7.6.2.1.5

7.6‘2.2

7.6.2.20]

7.6.2.2.2

FATAL ERRORS

SYNTAX ERRORS

A1l syntax errors result because the simulator

can not comprehend the simulator instruction. The
Tine following the message will include the syntax
error. An X will appear under the character which
the simulator did not recognize.

SYNTAX ERROR CFG

A syntax error appeared in a configuration
control language instruction.

SYNTAX ERROR SCL

A syntax error appeared in the simulation
control Tanguage instruction.

SYNTAX ERROR IP

A syntax error occurred during an INTERRUPT,
PORT, or EXTERNAL instruction.

SYNTAX ERROR CDS

A syntax error occurred in either a CLEAR,
DUMP, or SET instruction.

SYNTAX ERROR LOD

A syntax error occurred in the assembly input
file.

LOAD TIME ERRORS
Load timer errors occur after the configuration con-
trol statements have been read. At this point,
the simulator is loading the program into the simulation
memory.

DF8 LOD ER

An error in the INPUT assembly text.

LABEL 0V

The Tabel table has overflowed (it holds only
1111 Tabels).

7.25

7.6.2.2.3

7.6.2.2.4

7.6.2.2.5

7.6.2.3

7.6.2.3.1

7.6.2.3.2

7.6.2.3.3

7.6.2.3.4

7.6‘2.4

7.6.2.4.1

PROGRAM STORAGE OV

The user tried to load a program larger than
the F8 configuration. The address for which
the error occurred is given.

PROGRAM OUTSIDE STORAGE
The program is loaded into an address outside

of the F8 configuration. The address at which
the error occurred is given,

SIMULATOR STORAGE ERROR

The simulator does not have enough storage
for the user,

CONFIGURATION MESSAGES

These messages occur when the programmer is con-
figuring the F8 system to be modeled.

PORT OR COUNTER

The simulator will only handle eight port and/
or counter numbers,

MEMORY OV
The simulator allows only 16K of memory.
MEMORY OVERLAP

The memory has been configured with two memory
areas overlapping.

READ OV

Too many continuation cards appear in the input
file.

RUN MESSAGES

RUN messages occur after the simulation program has
set up the model F8 and has begun to simulate the
execution of the user's program,

ATTEMPT TO REFERENCE OUTSIDE STORAGE

A simulation control command was issued with an
operand address outside of storage.

7.26

7.6.2.4.2

7.6.2.4.4

7.6.2.4.5

7.6.2.4.6

7.6.2.5

7.6.2.5.1

ILLEGAL OP CODE

An F8 op code could not be understood. The op
code will be given.

ADDRESS ERROR

An address in the program could not be interpreted.
The address will be given.

CONSTANT ERROR

A constant in the program could not be understood.
The constant will be given.

ATTEMPT TO ALTER ROM - ADDRESS - CYCLE

An attempt was made, during execution, to write
data in a ROM location. The address and cycle at
which this occurred will be Tisted.

ATTEMPT TO STORE VALUE GREATER THAN 255

A storage was attempted on a number which is
larger than 8 bits.

PROGRAM ERRORS
If the simulator reaches a point where it does not
know what to do next, one of the following error
messages may be issued. The messages indicate an
error has occurred in the register values.

F8 RA ER

F8 RB ER

F8 RC ER

F8 RD ER

F8 PC1 ER

F8 CC ER

DEC BIN ER

TRACE ER

I/0 ER UNIT

An error occurred within the machine hardware
resulting from an 170 unit.

7.27

7.6.3

CONCLUSION MESSAGES

At the end of a simulation run, one of the following error
messages will appear.

RUN TIME EXCEEDED SEC XXXX

The run time as greater than the amount specified by the
RUN instruction.

RUN COMPLETED SEC XXXX

The simulation run was completed without any fatal errors.
ERROR EXIT SEC XXXX
A fatal error occurred and the simulator terminated execution.

XXXX is the number of seconds used for execution.

7.28

62°L

NUMBER OF NUMBER OF NUMBER OF NUMBER OF

INSTRUCTION CYCLES INSTRUCTION CYCLES INSTRUCTION CYCLES INSTRUCTION CYCLES
ADC 10 LR A,QU 4 XI 10 IN 16
Al 10 LR QU,A 4 XM 10 INS 8 if ports 0 or 1
16 otherwise
AM 10 LR AL,A 4 XS 4 ouT 16
AS 4 LR AL,A 4 SL1 4 OuTS 8 if ports 0 or 1
16 otherwise
LNK 4 LR P,K 16 SL4 4
COM 4 LR K,P 16 SR1 4
CI 10 LR A,IS 4 SR4 4
CM 10 LR IS,A 4 BR7 10 if jump
8 if not
DS 4 LR P0O,Q 16 BF 14 if jump
12 if not
INC 4 LR Q,DC 16 BT 14 if jump
12 if not
DCI 24 LR NC,Q 16 BM 14 if jump
12 if not
LI 10 LR H,DC 16 BNC 14 if jump
12 if not
LIS 4 LR DC,H 16 BNZ 14 if jump
12 if not
LM 4 LR W,J 8 BNO 14 if jump
12 if not
LISL 4 LR J,W 4 BP 14 if jump
12 if not
PK 16 AMD 10 BZ 14 if jump
12 if not
LR A,SR# 4 ASD 8 BR 14 if jump
12 if not
LR SR#,A 4 NI 10 JMP 22
LR A,KU 4 NM 10 P1 26
LR KU,A 4 NS 4 POP 8
LR A,KL 4 0I 10 DI 8
LR KL,A 4 OM 10 EI 8

TABLE 7.3

7.7 SIMULATION EXAMPLE

This section gives an example of a F8 Simulation Run. Two input files

are required for the simulation. The first file, F8TXT, is generated by the
Cross Assembler. The second file, F8SCL, is produced by the user.

The F8SCL file used in this example is shown in Figure 7.1. The F8 Cross

Simulator generates an output file, F8TRACE, shown in Figure 7.2.

RCM 0O
— END , N R _
BASE HEX
SET_SCRATCH 0'30°' T0 0'35% H*22' H'76° H*89* HP54°% H'S54°% HYas" e e e e e
SET SCRATCH 0'36" TO 0337' H89! HQQ*
SET SCRATCH 0*40' TO 0%45° H'33% H'89Y® H'79% H'20% H'33°* He33%y — -
SET SCRATCH 0%46" TO O'Y47* H'27% Hv45 "
——DUMP MEM 0 TO 20 o .
DUMP SCRATCH
TRACE BRANCH _ —— — . —
RUN O TILL CYCLE H%400°"
DUMP_SCRATCH = . ~ — -
END
Figure 7.1
Figure 7.1 File F8SCL -

.. F85 == VERSICN 41 == 11/708/7& _ .

12712714 14227234 . o i
RKOW 0 SO S e e ot e PAGE __1

Figure 7.2 Page 10f 3 . -

File FBTRACE Produced By The F8 Cross Assembler /

12712714 14327334 e e FB8S == VERSION 41 == 11/08/74
e e . - _ - e - PAGE__.. 2.
BASE HEX
SET SCRATCH 0'30° 70 0°35' H'22% HY76 HIB9Y M54 11540 }es50
SET SCRATCH 0°'36' TO 0°'37% H'89% H'00°

SET_SCRATCH 0%40' TO 0'45¢

H'33°% H'E9® H'79' H'20°% HY33% H933°

SET SCRATCH 0°46" TO O'47¢ HI2T7V H46¢
DUMP_MEM 0 TO 20 e 4
MEMORY ADDRESS 0 VALUE 20 0 oF 21 0 51 63 4C 24 66 D1 S2 70 S1 42 B2
MEMORY __ADDRESS 10 VALUE C 64 > 26 66 _DC
DUMP SCRATCH
SCRATCH_ADDRESS 0 VALUE 15 D8 FT __2A__4F _5C__SF _EF __Al.__CC_ 22 _ 9A __ 68 . .2. 64_ 48
SCRATCH ADDRESS 10 VALUE 29 66 1B CB C€CB A) 9D 4 22 76 89 54 54 45 89 0
SCRATCH ADDRESS 20 VALUE 33__89._ 79 2033 33 27T 45 _BE_ D3 __41_ 1E__6A 67 B2._.87 . .
SCRATCH ADDRESS 30 VALUE EC C6 S5 FC F3 DT 7TE SE C7 56 1 2 FF EB8 73 86
TRACE. BRANCH
RUN O TILL CYCLE H'400"
CYCLE PCO op STORAGE ACC W oc ISAR PC1 INSTRUCTION INTERRUPT & COUNT
ADD . DATA o 10zCs_ . . {oCT) — —
46 11 87 c 2z 0 00000101 7EGE 37 0 82 C
6¢ 18 87 c 2 45_ 0000100} ___7E8E 46 ~0_82 A ...
78 6 BRT7 * 45 00001001 TEBE 46 0 B8F ED
AC 11 _ BT c 2 89 ____00000000__ TERE___ ___36._________ 0. 82 C e S
02 21 BT » c 2 16 00000011 7EBE 45 0 82 A
EC 18__BF _ # c o B ...00000001 __7E8E_____45___ . __0_90°F3 __ . _____ .
FA 6 BRT = 1 00000001 7EBE 45 0 8F ED
12E 11 BT c _2 46 00000001 7E8E___ 35 0. 82.C
154 18 BT c 2 79 00000001 7ESE 46 0 82 A
160 6__BR7_* 79 0000000]____7ERE 44 0__BF_ED. _
194 11 87 c 2 S4 00000001 7E8E 34 0 82 ¢
1BA 18 BT (] 87 00000000____7E8E 43 0_B2_ A_ -
1C6 6 BRT = 87 00000000 TESE 43 0 6F ED
1FA 11 BT c 2 54 00000001 ___7EBE 33 0_82_¢
220 18 BT c 2 74 00000001 TESE 42 0 82 A
22¢ 6 BRY * . 74 00000001 ___7EEE 42 0__8F_ED
260 11 87 c 2 89 00000000 7EBE 32 0 82 ¢
286 21 BT = c_ 2 68 .-00000011___7EBE 41 0_B2_A -
2A0 I8 BF % [1 00000001 7E8E 41 0 90 F3
2AE 6 _BR7 # 1 00000001 ___7EBE 41 0__ 8E_ED
2E2 11 87 c 2 77 00000001 T7EBE 31 0 82 ¢
308 21 _BT _* c 2 66 0000)01)___TERE 40 0._82_ A
322 18 BF = c o 1 00000001 7E&E 40 0 90 F3
330 6_BR7_* . 1 00000001 ___TJESE 40 0_ 8F._ED
364 11 BT c 2 23 00000001 TEBE 30 0 82 ¢
384 18 BT c_2 56 00000001___7EBE 47 O__82_ A
396 1A BR7 ‘ 56 00000001 TERE 47 0 8F ED
39€ 21 BF __# cC o 56 00000001 ___JESE 47 _ 0.90__6______ . e —
388 18 BF =* [1 0000000) TEBE 47 0 90 F3
ko) 1A BRY 1 0000000} 7EBE 47 0__BF_ED.
3CE 21 BF c o 1 00000001 TESE 47 0 9 6
3E8 18 BF # () 2 00000001 ___TE8E Cxi 0__90 F2a
3F6 1A~ BRT 2 00000001 TESE 47 0 BF ED

File F8TRACE Produced By The

Figure 7.2 Page 2 of 3

F8 Cross Simulator

!

12/712/74 14327334 S SUUPSR R — e A FBS == VERSION .41 == _11/08/74 . .
CYCLE PCO op STORAGE ACC M De 1SAR PC1__ INSTRUCTION. . . o _INTERRUPY. &_COUNT
1 ADD DATA 102C+ , (ocTy - ‘ PAGE 3
3EE 2)_BF % c o 2 00000001 JEBE 47 0_90__6
K DUMP SCRATCH - S
__SCRATCH_ADDRESS O VALUE 15 2 23 2A _4F 5C_ SF__FF Al CC 22 9A 68 2 64 4B
SCRATCH ADDRESS 10 VALUE 29 6D 1B C€B CB Al 9D 46 22 716 89. 54 54 45 89 o
SCRATCH ADDRESS 20 VALUE 56 - 66 68 T4 BT 79 16 45 BE_ D3 el _1E 6A _ 67 .82 BT
SCRATCH ADDRESS 30 VALUE EC _C6 S4 FC F3 D7 7€ SE CT 56 1 2 FF EB T3 86
' END ‘
RUN COMPLETED 2.01 SEC e I
Figure 7.2 Page 3 of 3 -
File FS8TRACE Produced By The F8 Cross Simulator

APPENDIX -TIMER COUNTS

c COUNTS TO
b02353$§ROF INTERRUPT
254

FD 253
F 252
F7 251
EE 250
DC 249
B8 248
71 247
E3 246
c7 245
8E 244
1D 243
3B 242
76 241
ED 240
DA 239
B4 238
68 237
D1 236
A3 235
47 234
8F 233
IF 232
3F 231
/E 230
FC 229
F9 228
F3 227
E6 226
CD 225
98 224
36 223
6D 222
DB 221
B6 220
6C 219
D9 218
B2 217
64 216
8 215
91 214
23 213
46 212
8D 211
18 210
37 209
6F 208
DF 207
BE 206
D 205
FA 204
F5 203
EA 202
D4 201
A9 200

52 199

CONTENTS OF COUNTS TO

COUNTER INTERRUPT
A4 198
49 197
92 196
25 195
4A 194
94 193
29 192
53 191
A6 190
4D 189
9A 188
34 187
69 186
D3 185
A7 184
4F 183
9E 182
3C 181
78 180
FO 179
EO 178
C1 177
82 176
04 175
09 174
12 173
24 172
48 171
90 170
21 169
42 168
85 167
0A 166
14 165
28 164
51 163
A2 162
45 161
8B 160
17 159
2E 158
5D 157
BB 156
77 155
EF 154
DE 153
BC 152
79 151
F2 150
E4 139
c9 148

A2

A3

-~ i o

COUNTS TO

INTERRUPT

147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115

114
[

113
112
m
110
109
108
107
106
105
104
103
102
101
100
99

CONTENTS OF COUNTS TO

COUNTER INTERRUPT
1 9¢
22 97
44 96
89 95
13 94
26 93
4c 92
98 91
30 90
61 89
c2 88
84 87
08 86
10 85
20 84
40 83
81 82
02 81
05 80
0B 79
16 78
2C 77
59 76
B3 75
66 74
cC 73
99 72
32 71
65 70
CA 69
95 68
2B 67
57 66
AE 65
5C 64
B9 63
73 62
E7 61
CF 60
9F 59
3E 58
7C 57
F8 56
F1 55
E2 54
C5 53
8A 52
15 51
2A 50
55 49

A&

CONTENTS OF
COUNTER

AS

o A

> U
RRUPT

——
=Z0
-~ CZ
l'l'l'25

-.l-_u-.-l._n_a_a_.l_.u..a_.nr\)m
o-—amwhmm\nootoo—-mw.bmm\nookoo—'

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	A-01
	A-02
	A-03
	A-04
	A-05

