
Q)

FUJITSU
Delivering the Creative Advantage.

1991

MB86930
SPARClite User's Guide

llll llllllll llll llll llll 11111111111111111111111111111111

Fujitsu Microelectronics, Inc.
Advanced Products Division

SPARClite User's Guide

CREDITS
Im Im 1!111111!11Illl!il1!11 lili Ill Ill l!il !iii !iii

Credit goes to all those normally unsung heroes in the design and product engineering groups who toiled diligently and
brought our first SPARClite™ processor to functional silicon (exceeding our 40 MHz goal) on the first try: S.M. Chuang,
V. Ding, C.W. Fu, K. Fujisaku, J. Hendriks, Y. Hino, D. Hsiu, J. Huey, M. Kong, H. Kotcherlakota, C.H. Lee, C.W. Liu,
J. Long, D. Maheshwari, B. McKeever, S.H. Park, J. Oin, C. Sainsbury, M. Somasundaram, M.M. Tarng, K. Tori,
J.J. Tseng, A. Watanabe, R. Yin, A. Yu, B. Zuravleff.

This book was written by Werthman Associates in conjunction with the marketing department of Fujitsu Microelectronics,
Inc., Advanced Products Division.

Book design & illustration by Communication Graphics. This book, excluding the cover, was illustrated, and produced on
Macintosh Computers using FrameMaker® workstation publishing software.

Cover design by lransphere International.

TRADEMARKS
lilimll!lllllili!llllmll!lllll!l!ill!lll!l!Wllmlm

NICE is a trademark of Fujitsu Microelectronics, Inc.
SPARC is a registered trademark of SPARC International, Inc. based on technology developed by Sun Microsystems, Inc.
SPARClite is a trademark of SPARC International exclusively licensed to Fujitsu Microelectronics, Inc.
SPARCstation is a trademark of SPARC International, Inc. Products bearing the SPARC trademarks are based on an
architecture develped by Sun Microsystems, Inc.

Macintosh is a registered trademark of Apple Computer, Inc. FrameMaker is a registered trademark of Frame Technology
Corporation.

All rights reserved. This publication contains information considered proprietary by Fujitsu limited and Fujitsu Microelectronics, Inc. Na part of this
document may be copied or reproduced in any farm or by any means or transferred to any third party without the prior written consent of Fujitsu
Microelectronics, Inc.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Consequently, complete information
sufficient for design purposes is not necessarily given.

Fujitsu Limited and its subsidiaries reserve the right to change products or specifications without notice. Fujitsu advises its customers to obtain the latest
version of device specifications ta verify, before placing orders, that the information being relied upon by the customer is current.

The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by Fuptsu
Limited or its subsidiaries. Fujitsu assumes no liability for Fujitsu applications assistance, customer's product design, or infringement of patents arising
from use of semiconductor devices in such systems' designs. Nor does Fujitsu warrant or represent that any potent right, copyright, or other intellectual
property right of Fujitsu covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used.

Fujitsu Microelectronics, Inc. 's Advanced Products Division 1s products are not authorized for use in life support devices or systems. Life support devices
or systems ore device or systems which are:

1. Intended far surgical implant into the human body.

2. Designed to support or sustain life; and when properly used according ta label instructions, can reasonably be expected ta cause
significant injury ta the user in the event al failure.

The information contained in this document has been carefully checked and is believed to be entirely accurate. However, Fujitsu Limited and Fujitsu
Microelectronics, Inc. assume no responsibility for inaccuracies.

This document is published by the marketing department of Fujitsu Microelectronics, Inc., Advanced Products Division, 77 Rio Robles, San Jose,
California, U.S.A. 95134-1807.

Co TS

111

Chapter 1 : Overview

1. 1 General Description ••• 1 -1

1.2 Special Features ••••••••••••••••••••••••...•••••••••••••••••.•••••••••••.••••..••••••••••••• 1-2

1.3 Programmer's Model .••••••.•.•••••••.•••••••••.••••••••••••••••••••.•••••••••••••••••.• 1-3

1.3.1 Program Modes .. 1-4
1.3.2 Memory Organization ... 1-4
1.3.3 Registers ... 1-6
1.3.4DataTypes ... 1-9
1.3.5 Instructions .. 1-10
1.3.6 Data and Instruction Caches ... 1-12
1.3.7 Interrupts and Traps ... 1-13

1.4 Internal Architecture •••••••••.••••••••...••••••...••••••.••••••••..•••••••..•••••••....• 1-15

1 .4. 1 Integer Unit. .. 1-15
1 .4.2 Data and Instruction Caches ... 1-16
1 .4.3 Bus Interface Unit .. 1-17
1 .4.4 Debug Support Unit ... 1-17

1.5 External Interface ••..••••••••••••••••••••••••••••••.••.••••••••••••••.•••••••••••.••••••• 1-17

1.5.1 Signals ... 1-17
1.5.2 Bus Operation ... 1-18

1 .5.3 System Support Functions ... 1-19

1.6 Development-Support Tools ••••••••.•••••.•.•.••••••.••••.•••••••.•••••••••••••••••• 1-19

Contents

iii

SP ARClite User's Guide

Chapter 2: Programmer's Model
2. 1 Program Modes •• 2-1

2.2 Memor)'" Organization••• 2-2

2.3 Registers ... 2-3
2.3.1 Register Windows .. 2-4
2.3.2 Special Uses of the r Registers ... 2-7
2.3.3 SPARC-Defined Special-Purpose Registers .. 2-7
2.3.4 Memory-Mapped Control Registers .. 2-12

2.4 Data Types•• 2-21

2.5 Instructions ••• 2-21
2.5.1 Instruction Formats ... 2-23
2.5.2 Logical Instructions ... 2-24
2.5.3 Arithmetic and Shift lnstructions .. 2-25
2.5.4 Control Transfer lnstructions ... 2-31
2.5.5 Load and Store lnstructions .. 2-37
2.5.6 Read and Write Control Register Instructions ... 2-40

2.6 Data and Instruction Caches •• 2-43

2.6.1 Structure ... 2-43
2.6.2 Operation ... 2-45

2.7 Interrupts and Traps •• 2-49

2.7.1 Trap Types .. 2-50
2.7.2 Trap Behavior .. 2-51
2.7.3 Reset and Error Modes ... 2-52

2.8 Debug Support Unit••• 2·53
2.8.1 Breakpoint Registers ... 2-53
2.8.2 Breakpoint Traps .. 2-56
2.8.3 Configuration at Reset .. 2-57

2.9 SPARC Compliance •• 2-57

Contents

iv

OJ
FUJITSU

Chapter 3: Internal Architecture

3. 1 Integer Unit ••••..••••••...•.•••••..••••..••..•••••.•..•...••.•....••••.......••••.•....••..••. 3-2
3.1.1 I Block .. 3-3
3.1.2 A Block .. 3-8
3.1.3 E Block ... 3-10
3.1.4 Programmer-Visible State and Processor State ... 3-15
3.1.5 IU Support for Debugging ... 3-16

3.2 Data and Instruction Caches ••••.••••••••.•• 3-16

3.3 Bus Interface Unit•• 3-17

3 .3 .1 Buffers .. 3-17
3.3.2 Exception Handling ... 3-18
3.3.3 Effect on the Pipeline .. 3-18

Chapter 4: External Interface

4. 1 Signals •.••••....•.•••••.•••.•.•••...••••••••••••.•••.•••.••..•••.•••...•••••..•..•••••••.•••••.• 4-1
4.1 .1 Processor Control and Status ... 4-3
4. 1 .2 Memory Interface .. 4-4
4. 1 .3 Bus Arbitration .. 4-6
4.1.4 Peripheral Functions ... 4-7
4. 1 .5 Emulator Bus ... 4-7
4.1.6 Test and Boundary-Scan ... 4-7

4.2 Bus Operation •••••••..••..•••••..••••.••.•.•.••.••••.•...••...••••..••••.•••..•••.•••..•••.• 4-8
4.2.1 Exception Handling ... 4-9
4.2.2 Bus Cycles .. 4-10

4.3 System Support Functions .••..••••.•.••••.•..••••••.••••••••••.•••••••.•••••••••..•• 4-16

4.3.1 System-Configuration Registers .. 4-17
4.3.2 Same-Page Detection ... 4-18
4.3.3 Programmable Timer .. 4-19

Contents

v

SP ARC lite User's Guide

Chapter 5: Programming Considerations

5.1 Initialization ..•.••••...••••••...••.••...•••••••..•.•.••.•••••••••••••.••••••..••••••••.••••••• 5-1

5.1.1 Establishing the Processor State ... 5-2
5.1.2 Configuring the System ... 5-2
5.1.3 Initializing the On-Chip Cache ... 5-4

5.2 Trap Handling •••••.•.••.•••.•.•••...•••..•.••.••..••..•••.••.•••••..••••.••.•••••••••.•••••• 5-5

5.3 Register and Stack Management ••••.••.•••...•••••.••••••..•••.•.•••••.••••••..• 5-12

5.3.1 Registers ... 5-12
5.3.2 Memory Stack ... 5-17
5.3.3 f unction5 Relur ning Aggregaie Values .. 5-18
5.3.4 Leaf Procedure Optimization ... 5-19
5.3.5 Register Allocation Within a Window ... 5-23
5.3.6 Other Register and Window Usage Models .. 5-24

5.4 Cache Management ••••••.••.•.•..•••.•••••..••.••••.•••••••••.••.•••••.•.••••••••••••.. 5-25

5.5 Division Routines Using the DIVScc Instruction •.••••••••.••••••...••.••••••• 5·26
5.5.1 Simple Divide Step Examples ... 5-26
5.5.2 Signed Division with Doubleword Dividend (divs2) .. 5-28
5.5.3 Signed Division with Word Dividend (divsl) ... 5-31
5.5.4 Unsigned Division with Doubleword Dividend (divu2) ... 5-33
5.5.5 Unsigned Division with Word Dividend (divul) ... 5-34
5.5.6 Divide Step In Support Of A To D Converter Compensation 5-36

5.6 Using the SCAN Instruction ..•••••.•••.•••••••••.••••••.••••.•..•.•••••••.•.••••••••• 5-38

5.6.1 Scan in Support of Software Floating Point .. 5-38
5.6.2 Scan in Support of Run Length Encoding ... 5-40

5.7 Multiply Routines Using the MULScc Instruction •••.••••.•..••••..••••••••.• 5·43
5.7.1 Simple Multiply Step Examples .. 5-43
5.7.2 Signed Multiplication Using Multiply Step ... 5-45
5.7.3 Unsigned Multiplication Using Multiply Step .. 5-46
5.7.4 Corner Turning Buffer Using Multiply Step ... 5-47

Contents

vi

cP
FUJITSU

Chapter 6: System Design Considerations

6.2 Memory and 1/0 Interfacing ••••.••.••..••••.••••...••.•.•.••••••.••..••••.•.••..••.• 6-2

6.2.1 Interfacing SRAM .. 6-3
6.2.2 Interfacing Page-Mode DRAM ... 6-4
6.2.3 Interfacing EPROM and Other Devices with Slow Turn-off 6-6
6.2.4 Illegal Memory Accesses .. 6-7
6.2.5 1/0 Interfacing Example: Ethernet Device ... 6-7

6.3 DMA and Bus Arbitration ..•.•....•••..••.....•......••..•.•.•••....•••...•••.....••... 6-9

6.4 MB86940 Peripheral Chip .•••••..•••...••....•....•....•••...•••.•.•••...•••.....•.• 6-1 0

6.4.1 Interrupt Control .. 6-10
6.4.2 Counter/Timers ... 6-11

6.4.3 USARTs .. 6-11

6.5 In-Circuit Emulation ••• 6-11

Chapter 7: Instruction Set

7.1 Suggested Assembly Language Syntax •.•••.••••.•••••••.••..•••••..•.•••.••..• 7-1

7.1.1 Register Names ... 7-2

7. 1.2 Special Symbol Names .. 7-2
7.1.3 Values .. 7-3

7.1.4 Labels .. 7-3
7.1.5 Comments .. 7-3

7 .2 Syntax Design .. 7-3

7 .3 Synthetic Instructions .. 7-3

7 .5 Instruction Set ... 7-10

Contents

vii

SP ARClite User's Guide

Appendix A: JTAG

A. 1 Introduction ••••••••••.•••••••.••••••••••••••••••••.•• A-1

A.2 Test Access Pons (TAP) •• A-2

A.2.1 TCK .. A-2
A.2.2 TMS .. A-2
A.2.3 TDI .. A-3
A.2.4 TDO .. A-3
A.2.5 -TRST .. A-3

A.3 Test Instructions ··························•• A-3
A.3.1 BYPASS ... A-4
A.3.2 SAMPLE/PRELOAD ... A-4
A.3.3 EXTEST .. A-5
A.3.4 JTAG Cells ... A-5
A.3.5 Input Cell ... A-5
A.3.6 Output Cell .. A-6
A.3.7 1/0 Cell .. A-6
A.3.8 Output Cell with Set .. A-6

A.4 Operation •••••••••••••••••.••••.•••.•••••••••••• A-8

A.5 The TAP Controller .•••••••••••.•••••••••••••••••••••.•••••••••••••••••••••••••••••.••••• A-10

A.5. 1 TAP Controller State Diagram ... A-10

Contents

viii

1111111111111 !II !II !1111111111111111111111111111111111111

Chapter 1: Overview

Lis'ti,bF
FIGlfltES

Address-Space Organization .. 1-5
Register Set ... 1-6
Register Windows ... 1-7
Internal Architecture (Block Diagram) ... 1-15
Instruction Pipeline ... 1-16
Input and Output Signals .. 1-18

Chapter 2: Programmer's Model
Addressing Conventions ... 2-3
Register Windows ... 2-5
Processor State Register .. 2-7
Window Invalid Mask Register .. 2-9
Trap Base Register ... 2-9
Y Register ... 2-10
Program Counter ... 2-11
Next Program Counter ... 2-11
Ancillary State Register 17 .. 2-12
Locations of Memory-Mapped Control Registers .. 2-12
Cache/Bus Interface Unit Control Register .. 2-13
Lock Control Register ... 2-14
Lock Control Save Register .. 2-14
Restore Lock Control Register .. 2-15
Cache Status Register ... 2-15
Same-Page Mask Register ... 2-15
Address Range Specifier Registers ... 2-16
Address Mask Registers .. 2-17
Wait-State Specifier Registers .. 2-18

List of Figures

ix

SP ARClite User's Guide

System Support Control Register ... 2-19
Timer Register .. 2-20
Timer Pre-Load Register ... 2-20
Data Types .. 2-21
Instruction Formats .. 2-23
Using the SCAN Instruction ... 2-31
Pipeline Sequence: Branch .. 2-34
Pipeline Sequence: Jump and Link .. 2-35
Pipeline Sequence: REIT ... 2-35
Pipeline Sequence: Load Double .. 2-39
Cache Organization .. 2-43
Cache Tag .. 2-44
Tag lock Bit ... 2-45
Caches ... 2-48
Trap and Interrupt Vectoring .. 2-49
Instructions Squashed by Trap ... 2-52
Debug Control Register ... 2-54
Debug Status Register ... 2-55

Chapter 3: Internal Architecture
Internal Architecture (Block Diagram) .. 3-2
Integer Unit Data Path ... 3-3
Instruction Pipeline ... 3-4
Instruction Pipeline Control Logic .. 3-5
Trap Coder ... 3-8
Address Pipeline .. 3-9
Execute Block .. 3-11
Cache Hit Detection Logic ... 3-17
Pipeline Operation: Cache Hits .. 3-19
Pipeline Operation: Prefetch Buffer Disabled ... 3-20
Pipeline Operation: Prefetch Buffer Enabled .. 3-21
Pipeline Operation: LOAD with Data Cache Turned Off .. 3-22
Pipeline Operation: Data Cache Miss ... 3-23

Chapter 4: External Interface

Load Timing .. 4-10
Load with Exception Timing ... 4-11
Store Timing .. 4-12
Store with Exception Timing ... 4-13
Atomic Load Store Timing .. .4-14
External Bus Request and Grant Timing ... 4-15
Reset Timing .. 4-16

List of Figures

x

cP
FUJITSU

System Support Control Register .. 4-16
Address Range Specifier Register Format ... 4-17
Address Mask Register Format .. 4-17
Wait-State Specifier Register Format .. 4-18
Same-Page Mask Register ... 4-19
Timer and Timer Preload Registers ... 4-19

Chapter 5: Programming Considerations
Example System Memory Map .. 5-2
SPARC Register Set, as Seen by a User-Mode Procedure .. 5-13
User Stack Frame .. 5-18

Chapter 6: System Design Considerations
SRAM Interfacing Example ... 6-3
Simplified State Diagram for DRAM Controller .. 6-5
MB86960 Interface Block Diagram ... 6-7
MB86960 Interface PAL State Diagram .. 6-8

Chapter 7: Instruction Set

Appendix A: JTAG
Input Cell Allowing Signal Capture Only .. A-6
Output Cell ... A-7
Output Cell with Set ... A-7
1/0 Structure .. A-7
Test Logic Operation: Instruction Scan .. A-8
Test Logic Operation: Data Scan ... A-9
TAP Controller State Diagram ... A-14
JTAG Cell Organization ... A-15

List of Figures

xi

SPARClite User's Guide

List of Figures

xii

llll llll Ill llll lllll Ill lllll lllll 111111111111111111111111111111

Chapter 1: Overview

L
T

Instruction Set .. 1·11
Trap Types and Priorities .. 1·14

Chapter 2: Programmer's Model
ASI Address Space Map .. 2-2
Logical Register Addressing .. 2-6
System Support Register Summary ... 2-20
Instruction Mnemonics .. 2-22
Logical Instructions ... 2-25
Addition and Subtraction Instructions ... 2-26
Tagged Arithmetic Instructions ... 2-27
Integer Multiply Instructions ... 2-27
Effect of Integer Multiplication on Condition Codes .. 2-28
Shift Instructions ... 2-29
Classification of Control Transfer Instructions ... 2-31
Branch Instructions ... 2-33
Conditions for Executing Delay Instructions ... 2-34
Trap Instructions .. 2-36
Order of Execution for Delayed Control-Transfer Couples ... 2-37
Load Instructions .. 2-38
Store Instructions ... 2-39
Atomic Load-Store Instructions ... 2-40
Swap Instructions ... 2-40
Read Control Register Instructions .. 2-40
Write Control Register Instructions ... 2-41
Cache Tag Addresses .. 2-45
Traps ... 2-50

List of Tables

xiii

SP ARClite User's Guide

Memory Locations of Debug Registers ... 2-56
Configuration of the Debug Support Unit at Reset ... 2-57

Chapter 3: Internal Architecture
Conditions Which Cause a Pipeline Hold .. 3-5
Detection of Trap Conditions ... 3-7
Booth's Algorithm ... 3-15

Chapter 4: External Interface
Input and Output Signals .. 4-2

Chapter 5: Programming Considerations
Alternative Register Allocation ... 5-24

Chapter 6: System Design Considerations

Chapter 7: Instruction Set
Mapping of Synthetic Instructions to SPARC Instructions7-4
SPARC Instructions Sorted by Opcode .. 7-6

Appendix A: JTAG
JTAG Pin Order .. A-16

List of Tables

xiv

11

About This Manual

The SP ARClite™ family is a collection of SP ARC®-based microprocessors opti­
mized for use in embedded systems. This manual describes the SP ARClite archi­
tecture, and discusses system-design issues. It is addressed to hardware system
designers and to system and application programmers. Previous knowledge of
the SP ARC architecture is not assumed.

Organization

Together with the data sheets for each processor, this manual provides all the
information necessary to use the SPARClite family in embedded-system designs.
There are six chapters and three appendices:

• Overview-Describes the special features of the SPARClite family; introduces
the SP ARClite architecture; lists some of the development-support tools
available for use in system design with family processors.

• Programmer's Model-Describes the SP ARClite processor as a collection of
resources available to software. It discusses the processor's modes of
operation, the organization of memory, the register set, the supported data
types and instructions, the on-chip caches, and interrupts and traps.

• Internal Architecture-Discusses the internal organization of the processor,
and describes each major functional block-the SP ARC Integer Unit, Data and
Instruction Caches, Bus Interface Unit, and Debug Support Unit.

• External Interface-Describes the processor's input, output, and bidirectional
signals, the operation of the bus, and the system-support functions

-1

SP ARClite User's Guide

-2

incorporated on-chip to minimize the amount of glue logic necessary in the
external system.

• Programming Considerations-Tells programmers how to use certain
processor resources-the register windows, for example--to best advantage.

• System Design Considerations-Describes how to interface the processor with
external hardware; discusses the use of the MB86940 peripheral chip.

• Appendices-Provide a summary of the bits and fields in the control and
status registers, a complete instruction-set reference, and an index of the
instructions by operation code.

Notation

This manual uses the following notational conventions:

• Active-low signal names are preceded with a dash, as in -RESET.

• Numerals without any special prefix are in base 10. Hexadecimal numerals are
preceded by Ox, and binary numerals are preceded by Ob. Thus, 28 = OxlC =
OblllOO.

Related Literature

Additional information can be found in the following documents:

• MB86930 SP ARClite 32-Bit RISC Microcontroller Data Sheet-Describes the
MB86930 processor in detail, including complete physical, electrical, and
timing characteristics. Available from Fujitsu Microelectronics' Advanced
Products Division.

• SPARClite Application Notes - Discuss specific design issues in detail.
Available from Fujitsu Microelectronics' Advanced Products Division.

c ER

111

Overvievv

The SPARClite family is a collection of SPARC-based microprocessors optimized
for use in embedded systems. Processors in the SP ARClite family conform to the
SPARC architecture definition; in particular, they are fully compatible with exist­
ing SP ARC code and existing SP ARC development environments. The MB86930
processor is the first member of the SPARClite family. This chapter provides a
quick introduction to the processor architecture. Subsequent chapters will review
this material in more detail.

1.1 General Description
The MB86930 is a high-performance processor suitable for use in embedded con­
trol applications such as printers, scanners, robotic machinery, telecom switches
and monitors, and 1/0 subsystems. It operates at clock speeds up to 50 MHz, exe­
cuting SP ARC instructions at a maximum rate of 46 MIPs, and includes 2 Kbytes
of instruction and 2 Kbytes of data cache on chip. It is available in a variety of
packages, depending on dock-speed and power-dissipation requirements.

The processor consists of a Harvard (Aiken) architecture Integer Unit (IU) core,
instruction and data caches, a Bus Interface Unit (BIU), and an In-Circuit
Emulator Unit (EMU). These units are connected internally over separate
instruction and data buses, and to external memory and 1/0 over a unified
(instruction and data) bus which carries 32 bits of address and 32 bits of data.

Overview - General Description

1-1

SP ARC lite User's Guide

The register file in the IU implements 8 register windows. An integer multiply
unit (MU) within the IU speeds applications which require integer multiplication.
The processor uses software to emulate floating-point instructions at rates up to 1
MFLOP.

The internal instruction and data caches make it possible to sustain a processing
rate close to one cycle per instruction by providing the IU at 50 MHz with a maxi­
mum aggregate data throughput of 400 Mbytes/sec (two 32-bit words per cycle).
The maximum external data throughput is 200 Mbytes/ sec (1 word per cycle). In
many applications, the internal caches make it possible to maintain high through­
put even with slow external memory; SP ARClite is therefore a cost-effective solu­
tion in embedded control applications that require high processing throughput
but cannot tolerate the cost of large, high-speed memories.

The MB86930 is designed with Fujitsu's AS technology, a 1µ and 3-level metal
process with minimum drawn transistor lengths of 0.8µ. The design of the data
path and other arrayed blocks is fully custom to optimize die area and speed.
Random control blocks are based on standard cells. All circuits are fully static.

While it does provide a mechanism for code and data protection, the MB86930 is
optimized for embedded applications which do not require virtual-to-physical
address translation. Using an MB86930 processor in a virtual-memory system,
while possible, would require an external Memory Management Unit for address
translation.

1.2 Special Features
This section lists some of the features which give the MB86930 its superior speed,
flexibility and efficiency and make it an ideal choice for a wide variety of low cost,
high-performance embedded systems.

• Fast Instruction Execution: The instruction set is streamlined and hardwired
for fast execution, with most instructions executing in a single cycle. At 50
(40,30,20) MHz, the MB86930 executes instructions at a peak rate of 50
(40,30,20) MIPs, and can sustain performance of 46 (37,28,18) MIPs. The
Integer Unit (IU) features a 5-stage pipeline which has been designed to
handle data interlocks, has an optimized branch handler for efficient control
transfers, and a bus interface to handle single cycle bus accesses to on-chip
cache.

• Large Register Set: An internal register file consisting of 136 registers
organized into eight overlapping windows speeds interrupt response time
and context switches. The register file minimizes accesses to memory during
procedure linkages and facilitates passing of parameters and assignment of
variables, reducing code in many programs. Reduced code, in turn, can fit
more easily into the instruction cache.

Overview - Special Features

1-2

cO
FUJITSU

• On-Chip Caches: On-chip data and instruction caches decouple the processor -
from external memory latency. The caches are organized as two-way set-
associative for improved hit rates, as compared with direct-mapped caches.

• Cache Locking: Both data and instruction entries can be locked into their
respective caches to ensure deterministic response and highest performance
for critical or frequently recurring routines. Maximum flexibility has been
designed into the cache to allow all or selected portions to be locked.

• Separate Instruction and Data Paths On-Chip: Separate 32-bit instruction and
data buses provide a high-bandwidth interface between the IU and on-chip
cache. These buses support single cycle instruction execution as well as single
cycle data transfers with the cache. The on-chip bus design also supports
future expansion of the MB86930.

• System Support Functions: The requirement for glue logic between the
MB86930 and the system is minimized by providing programmable chip
selects, programmable wait-state circuitry, and support for connection to fast
page-mode DRAM. Multiple bus masters are supported through a simple
handshake protocol.

• Clock Generator: To simplify clock design, a crystal can be connected directly
to the on-chip oscillator, or an external clock source can be used. A phase­
locked loop minimizes the skew between on- and off-chip clocks.

• Enhanced Instruction Set: The MB86930 incorporates a fast integer multiply
instruction which executes in a fast 5, 3 or 2 cycles for 32-bit, 16-bit or 8-bit
operands. An integer divide-step instruction cuts divide times by a factor of
5 to 10 over previous SP ARC implementations. A scan instruction supports a
single-cycle search for the most significant non-sign bit in a word.

• Fully Static Circuit Design: Its static design gives the MB86930 superior noise
immunity. Future members of the SPARClite family will support a low-power
mode, in which the processor clock can be slowed or stopped for arbitrary
periods of time to reduce operating current with no loss of internal state.

• Test and Debug Interface: The MB86930 supports production test through
industry standard JTAG boundary scan. Hardware emulation is supported
with on-chip breakpoint and single step logic. A dedicated emulator bus
provides a means to trace transactions between the integer unit and on-chip
cache.

1.3 Programmer's Model
This section briefly introduces those aspects of the SP ARClite processor architec­
ture which are visible to software: the user and supervisor modes of program
execution; the organization of the address space; the processor's register set,
supported data types, and instruction set; the on-chip caches; and interrupts and
traps. Each of the topics discussed here is developed more fully in subsequent
chapters.

Overview - Programmer's Model

1-3

SP ARClite User's Guide

1.3.1 Program Modes

The SPARClite architecture supports protection in multitasking environments by
providing two mutually exclusive modes of program execution, user mode and
supervisor mode. Certain instructions are privileged, and can only be executed
when the processor is in supervisor mode. Any attempt to execute a privileged
instruction in user mode causes a trap.

Typically, application programs run in user mode, while operating systems run in
supervisor mode. On reset, the processor is in supervisor mode. To enter user
mode, software must clear a bit in the Processor State Register. The processor
enters supervisor mode from user mode only when a hardware reset, an inter­
rupt, or a trap occurs.

1.3.2 Memory Organization

The processor can directly address up to 1 Terabyte of memory, organized into
256 address spaces of 4 GB each. Every external access involves an 8-bit Address
Space Identifier (ASI), as well as a 32-bit address. The ASI selects one of the
address spaces, and the 32-bit address selects a location within that space.

The use of four of the address spaces are defined in the SP ARC architecture: the
User Instruction, Supervisor Instruction, User Data, and Supervisor Data spaces.
SP ARClite defines additional address spaces, which are used for memory­
mapped control registers and for the data and instruction caches; two further
address spaces are reserved for hardware debug. The remaining spaces are
application-definable; any of them can be used for either data memory or I/0.
All I/O is memory-mapped. The organization of the entire addressable range is
illustrated in Figure 1-1.

Overview - Programmer's Model

1-4

FF FFFFFFFF

FE 00000000

10 00000000

OF 00000000

OE 00000000

OD 00000000

oc 00000000

OB 00000000

OA 00000000

09 00000000

08 00000000

04 00000000

03 00000000

02 00000000

01 00000000

00 00000000

8-Bit 32-Bit
Address Address

Space
indicator

(ASI)

Application-Definable (952 GB)

Supervisor Data (4 GB)'

User Data (4 GB)•

Supervisor Instruction (4 GB)•

User Instruction (4 GB)'

Application-Definable (16 GB)

Application-Definable (4 GB)

Memory and 1/0 Space
(240 Addressable Bytes)

*Note: Cacheable address spaces.

c:P
FUJITSU

l Reserved for Hardware Debug

J

<

!-=--::.._____ __ = I Data Cache-Data (2 KB impleniented) I
~~I Data Cache-Tags (512 implemented) I
--- llnstruction Cache-Data (2 KB implemented) J -------____ _cc=-

j Instruction Cache-Tags (512 implemented) J

/ I Data Cache-Tags (512 implemented)]

!--/~-----------
:---::-:~-- }nstruction Cache-Tags (512 implemented)]

==-- l -....... ___________ Control Registers (84 B)

(See Fig. 1-2, Register Set)

Memory-Mapped Registers
and On-Chip Cache

]

Figure 1-1. Address-Space Organization

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double
words between external memory (or 1/0) and processor registers. In user mode,
only the user instruction and data spaces are accessible; accessing any of the
remaining 254 address spaces requires the processor to be in supervisor mode.

The MB86930 processor does not contain memory-management hardware; vir­
tual-address translation can be handled by software, or by an external memory­
management unit with the on-chip caches disabled.

Overview - Programmer's Model

1-5

-

SP ARClite User's Guide

1.3.3 Registers

All registers are 32 bits wide. There are general-purpose registers, whose contents
have no pre-assigned meaning, and special-purpose registers, which contain control
and status information or special data values. Some of the special-purpose regis­
ters are defined in the SP ARC architecture; the rest are SP ARClite- or device­
specific. The non-SP ARC special-purpose registers are memory-mapped. The
general-purpose registers, and the special-purpose Y Register, are the only ones
which can be accessed in user mode. The register set is illustrated in Figure 1-2.

128 Windowed Registers

(See Fig. 1-3, Register Windows)

8 Global Registers

General-Purpose Registers

SPARC-Defined Registers (Not Memory-Mapped)

Processor State Register (PSR)

Window Invalid Mask Register (WIM)

Trap Base Register (TBR)

Y Register

Program Counter (PC)'

Next Program Counter (nPC)•

Ancillary State Register (ASR) 16 (reseNed)

Ancillary State Register (ASR) 17

• Not read/writable

Memory-Mapped Control Registers
(See Fig. 1-1, Address-Space Organization)

Cache/Bus Interface Unit Control Register

Lock Control Register

Restore Lock Control Register

Same-Page Mask Register

Address Range Specifier Registers (ARSR <5:1>)

Address Mask Registers (AMR <5:0>)

Wait-State Specifier Registers (WSSR <2:0>)

Timer Register

Timer Preload Register

System Support Control Register

Special-Purpose Registers

Figure 1 ·2. Register Set

General-Purpose Registers

In the MB86930, there are 136 general-purpose registers; 8 of these are global regis­
ters; the other 128 are divided into 8 overlapping blocks, or windows. Each

Overview - Programmer's Model

1-6

cO
FUJITSU

window contains 24 registers. Of these, 8 are local to the window, 8 are "out" reg- -
isters shared with the adjacent window below, and 8 are "in" registers shared
with the adjacent window above. This organization is illustrated in Figure 1-3.

6 J !-e_1~~-
\Wre~,- - - - - - _

- -""'lo I - - -
op of Diagram

Figure 1-3. Register Windows

At any given time, 32 general-purpose registers can be accessed directly: the 8
global registers, and the 24 registers of the currently active window. The value in
the Current Window Pointer (CWP) field of the Processor State Register (PSR)
determines which window is active.

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed are written to the "out" registers of the current
window, which are the same as the "in" registers of the adjacent window. A
SA VE instruction can then be used to decrement the Current Window Pointer,
making the parameter values available to the subroutine without moving any
data. A RESTORE instruction can be used to increment the CWP upon return

Overview - Programmer's Model

1-7

SP ARC lite User's Guide

from the subroutine. In effect, the general-purpose registers cache the top portion
of the run-time stack.

The window overlap also speeds interrupt handling, as interrupts automatically
decrement the CWP, giving the interrupt routing its own window. The SP ARC
architecture requires a free window to be available to handle these traps.

Special-Purpose Registers

The special-purpose registers include the control and status registers defined by
the SPARC architecture, plus a collection of memory-mapped registers which
control peripheral functions.

Special instructions exist for reading and writing each of the SP ARC control and
stalus register~, except for the Program Counter and the Next Program Counter.
The Y Register can be read and written in user mode; the instructions that access
the other SPARC-defined registers are privileged.

The memory-mapped registers can be read and written with the alternate-space
load and alternate-space store instructions, which are also privileged.

The SPARC-defined registers, shown in Figure 1-2 above, are:

• Processor State Register (PSR)-The primary processor control and status
register. It contains mode fields, which are set by the operating system to
configure the processor, and status fields, which are set by the processor to
indicate the effects of instruction execution.

• Window Invalid Mask Register (WIM)-Used by software to detect the
occurrence of register file underflows and overflows. It contains one mask bit
for each register window. If an operation which normally increments or
decrements the Current Window Pointer would cause the CWP to point to a
window whose corresponding WIM bit equals 1, a trap occurs.

• Trap Base Register (TBR)-Contains three fields used by the processor to
generate the address of the service routine when an interrupt or trap occurs.

• Y Register-Used in stepwise multiplication and division routines based on
the MULScc and DIVScc instructions. Also used for integer multiply
operations.

• Program Counter (PC)-Contains the word address of the instruction
currently being executed by the Integer Unit. The PC cannot be directly read
or written.

• Next Program Counter (nPC)-Contains the word address of the next
instruction to be executed, assuming that no trap occurs. The nPC cannot be
directly read or written.

• Ancillary State Registers (ASR[31:1])-The SPARC definition includes 31
Ancillary State Registers, 15 of which (ASR[15:1]) are reserved for future use.

Overview - Programmer's Model

1-8

cP
FUJITSU

The remaining ASR' s can be defined and used in any way by SP ARC
implementations. SP ARClite defines the following ASR:

ASR17- Used to enable and disable single-vector trapping. (When this fea­
ture is enabled, all traps vector to a single location.) Single vector trapping
provides a small memory alternative to the standard lK word trap table.

The memory-mapped SPARClite-specific registers, shown in Figure 1-2, are:

• Cache/Bus Interface Unit Control Register-Controls the operation of the data
and instruction caches, and the write and prefetch buffers of the Bus Interface
Unit.

• Lock Control Register-Controls the locking of individual entries in the data
and instruction caches.

• Restore Lock Control Register-Enables or disables the restoration of the Lock
Control Register upon return from an interrupt or a hardware trap.

• Same-Page Mask Register-Controls the operation of the same-page detection
logic by specifying which bits of the current ASI and address are to be
compared with those of the previous ASI and address.

• Address Range Specifier Registers (ARSR[S:l])-Control the assertion of the
Chip-Select outputs (-CS[S:l]). -CSn is asserted when the value on the address
bus falls in the address range specified by ARSRn. -CSO is asserted on accesses
to the lowest address range in Supervisor Instruction Space.

• Address Mask Registers (AMR[S:O])-AMRn controls the comparison of the
current address with ARSRn by specifying which bits are to be compared and
which are "don't cares."

• Wait-State Specifier Registers (WSSR[2:0])-Determine, for each address
range, the number of clock cycles between the time an address in that range
appears on the address bus and the time the processor automatically generates
the -READY signal. This makes it possible for memory and 1/0 devices with
different access times to be connected to the processor without additional
logic.

• Timer Register-Contains the current timer count.

• Timer Pre-Load Register-Contains the value which is loaded into the timer
when the timer overflows.

• System Support Control Register-Enables or disables same-page detection,
chip-select, programmable wait-states, and the timer, independently of one
another.

1.3.4 Data Types

SPARClite instructions support the Signed Integer, Unsigned Integer, and Tagged
data formats of the SP ARC definition. The Integer types are supported in byte
(8-bit), half-word (16-bit), word (32-bit), and double-word (64-bit) widths. The

Overview - Programmer's Model

1-9

I

~

SP ARC lite User's Guide

Tagged type is one word (32 bits) in width. Hardware support is not provided for
the floating-point types; these can be handled in software.

1.3.5 Instructions

SPARClite provides an upward-compatible superset of the SPARC (version 8)
instruction set. The additional instructions-integer divide-step, and scan for first
changed bit - are supported for the sake of higher performance in embedded
applications. Table 1-1 lists the SPARClite instruction set. In the MB86930 proces­
sor, the floating-point and coprocessor instructions defined in the SP ARC archi­
tecture are trapped for software emulation.

Each instruction is a single 32-bit word. The instruction set can be divided into
five functional groups:

1. Logical-Bit-wise boolean operations. Each logical instruction comes in two
versions: one leaves the integer condition codes in the Processor State Register
unchanged; the other changes the condition codes as a side effect.

2. Arithmetic and Shift-Integer arithmetic, logical and arithmetic shifts. Besides
the standard arithmetic operations, SP ARC provides instructions to perform
tagged arithmetic. In tagged arithmetic, the two least-significant bits of each
operand are used to indicate the (user-defined) data type of the operand. The
tagged arithmetic instructions set a condition code if the tag of an operand is
not zero.

Besides the arithmetic instructions defined in the SP ARC architecture,
SP ARClite provides:

• A divide-step instruction, which can be used to construct efficient iterative
integer division algorithms.

• A scan instruction, which determines the first bit in a word which differs
from the most-significant bit. The scan instruction can be used to simplify
and accelerate many important operations, like normalizing numbers with
redundant sign bits.

Most of the arithmetic instructions come in two versions: one of them leaves
the integer condition codes unchanged, while the other changes the condition
codes as a side effect of execution.

3. Control Transfer-Branches, calls, jumps, returns from trap, and conditional
traps. The target address of the control transfer is computed either by adding a
specified offset to the value in the Program Counter, or by adding two source
operands. The transfer of control either occurs immediately after the control
transfer instruction, or is delayed for one further instruction.

4. Load and Store-External accesses. Load and store are the only instructions that
read and write to external devices (including memory). Bytes, half-words,
words and double words can be transferred to and from processor registers.

Overview - Programmer's Model

1-10

cP
FUJITSU

Special instructions access alternate address spaces. Attempts at unaligned
accesses are trapped, and must be carried out under software control.

5. Read and Write Control Registers-Access the Program State Register, Window­
Invalid Mask Register, Trap-Base Register, Y Register, and Ancillary State
Registers. There are also instructions for incrementing and decrementing the
Current Window Pointer. With one exception, writes to the control registers
are delayed for three instruction cycles. The three instructions following a
write, therefore, should not attempt to use or modify the values written. A
write to the Y Register, however, is not delayed: it is completed before the next
instruction is executed.

Table 1-1: Instruction Set

Group Opcode Name

Logical AND (ANDcc) And (and modify cc)
ANON (ANDNcc) And Not (and modify ice)
OR (ORcc) Inclusive-Or (and modify ice)
ORN (ORNcc) Inclusive-Or Not (and modify ice)
XOR (XORcc) Exclusive-Or (and modify ice)
XNOR (XNORcc) Exclusive-Nor (and modify ice)

Arithmetic ADD (ADDcc) Add (and modify ice)
and Shift ADDX (ADDXcc) Add with Carry (and modify ice)

TADDcc (TADDccTV) Tagged Add

SUB (SUBcc) Subtract (and modify ice)
SUBX (SUBXcc) Subtract with Carry (and modify ice)

TSUBcc (TSUBccTV) Tagged Subtract and modify ice (and Trap on overflow)

MULScc Multiply Step and modify ice

SMUL Signed Multiply
UMUL Unsigned Multiply
SMULcc Signed Multiply (and modify ice)
UMULcc Unsigned Multiply (and modify ice)
DIVScc Divide-Step (and Modify ice)
SCAN Scan for bit different than MSB

SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic

Control Bice Branch on integer condition codes
Transfer

CALL Call
JMPL Jump and Link

RETT Return from Trap

Tice Trap on integer condition codes

Overview - Programmer's Model

1-11

I

~

SP ARClite User's Guide

Table 1-1: Instruction Set (Continued)

Group

Load
and Store

Read and
Write

Control
Registers

Opcode Name

LDSB (LDSBA) Load Signed Byte (from Alternate space)
LOSH (LDSHA) Load Signed Halfword (from Alternate space)
LDUB (LDUBA) Load Unsigned Byte (from Alternate space)
LDUH (LDUHA Load Unsigned Halfword (from Alternate space)
LDD (LODA) Load Doubleword (From Alternate space)

STB (STBA) Store Byte (into Alternate Space)
STH (STHA) Store Halfword (into Alternate space)
ST (STA) Store Word (into Alternate space)
STD (STOA) Store Doubleword (into Alternate space)

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in Alternate space)
SWAP (SWAPA) Swap r Register with Memory (in Alternate space)

SAVE Save caller's window
RESTORE Restore caller's window

SETHI Set High 22 bits of r register

ROY Read Y register
RDPSR Read processor State Register
RDWIM Read Window invalid Mask Register
RDTBR Read Trap Base Register
RDASR Read Ancillary State Register

WRY Write Y register
WRPSR Write processor State Register
WRWIM Write Window invalid Mask Register
WRTBR Write Trap Base Register
WRASR Write Ancillary State Register

UNIMP Unimplemented instruction

1.3.6 Data and Instruction Caches

Each member of the SP ARClite family contains separate data and instruction
caches on-chip. In the MB86930 processor, each cache is 2 Kbytes in size, orga­
nized into two banks of sixty-four 4-word lines. Each cache line has a 22-bit
address tag, which indicates the memory location to which the line is currently
mapped. A cache line, together with its address tag and status bits, is often called
a cache entry. The organization of each cache is two-way set associative; that is, each
address in memory can be mapped to either of two locations in the cache.

There are three modes of cache operation: normal, global locking, and local locking.
In normal mode, when the integer unit requests a read to a data or instruction
address which is not found in the appropriate cache, the memory block contain­
ing the requested address is read into the cache, replacing one of the current cache
entries. The locking modes prevent either an entire cache, or just selected entries,
from being over written in this way. The locking modes thus allow time-critical
routines to be locked into cache. Thanks to the set-associative organization, as

Overview - Programmer's Model

1-12

oO
FUJITSU

much as one whole bank of a cache can be locked while the remaining bank con­
tinues to operate as a direct-mapped cache.

In normal mode, the data cache uses a write-through update policy, and allocates
a cache entry only on a load. Writes to locked data entries, however, are not writ­
ten through to main memory. In this way, a portion of the data cache can be used
as fast on-chip RAM which is not mapped to external memory.

Cache tags and data are memory-mapped, and can be directly read and written
using the alternate-space load and store instructions. These instructions are privi­
leged.

Subsequent chapters discuss the cache in greater detail: Programmer's Model dis­
cusses cache locking; Programming Considerations contains hints for using the on­
chip cache to best advantage.

1.3. 7 Interrupts and Traps

In this manual, we distinguish between interrupts-which are initiated by exter­
nal interrupt signals, asynchronously with respect to processor operations, and
traps-which are caused by instructions, and so are necessarily synchronous. Dur­
ing system operation, external interrupts are generally unavoidable; traps, how­
ever, can and should be kept to a minimum by careful software design and
testing.

Interrupt response time is critical in many embedded applications. The total
response time includes the time required for the processor to finish its current
task after recognizing an interrupt, and the time required to switch contexts (if
necessary) and begin executing the interrupt service routine. In the SPARClite
family, non-interruptible multi-cycle events are minimized, (i.e., Cache refills
which take multiple cycles to completely fill a cache line, are designed so they can
be interrupted after every word load). This reduces both average and maximum
interrupt latency. When an interrupt is detected, the processor switches to a new
window. In this way, the current values in the general-purpose registers don't
have to be saved before interrupt service begins. Furthermore, service routines
can be locked into the cache, making them available for immediate access.

The MB86930 processor provides direct support for 15 distinct interrupt priority
levels; each level can service multiple interrupt sources, Supervisor-mode soft­
ware can mask up to 14 of these levels; the highest level is non-maskable (if
ET=l).

An interrupt or trap (other than reset) causes control to be transferred to an
address generated by the Trap Base Register. One field in the TBR contains the
base address of the trap dispatch table. Normally, an 8-bit trap type number serves
as an offset into this table. When single-vector trapping is enabled, however, control

Overview - Programmer's Model

1-13

SP ARClite User's Guide

passes to the base address of the trap table (with tt=O), regardless of the trap type.
Reset always traps to address 0.

Up to 256 trap types can be distinguished on the basis of the 8-bit trap type num­
ber. Of these, half are reserved for hardware interrupts and traps; all but one of
the others are programmer-initiated (see the discussion of the Tice instruction in
the Programmer's Model chapter). One trap type is defined in SPARClite to support
in-circuit emulation. The various trap types are listed, in order of priority, in
Table 1-2.

Table 1-2: Trap Types and Priorities

Trap Priority tt

reset 1 -

instruction_access_exception 2 1
privileged_instruction 3 2
illegal_instruction 4 3
fp_disabled 5 4
cp_disabled 5 36
window_overflow 6 5
window_underflow 7 6
mem _address_ not_ aligned 8 7
data_ access_ exception 10 9
tag_ overflow 11 10
trap_instruction (Tice) 12 128-254
instruction_breakpoint 13 255
data_ breakpoint 13 255

interrupt_level_ 15 14 31
interrupt_level_ 14 15 30
interrupt_level_ 13 16 29
interrupt_level_ 12 17 28
interrupt_level_ 11 18 27
interrupt_level_ 1 O 19 26
interrupt_level_9 20 25
interrupt_level_ 8 21 24
interrupt_level_7 22 23
interrupt_level_6 23 22
interrupt_level_5 24 21
interrupt_level_ 4 25 20
interrupt_level_ 3 26 19
interrupt_level_2 27 18
interrupt_level_ 1 28 17

The expression trapped instruction refers, in the case of a synchronous trap, to the
instruction which caused it. In the case of an interrupt, the trapped instruction is
the one which was about to execute when the interrupt occurred.

The Integer Unit supports precise traps-when an interrupt or trap occurs, the
saved state of the processor reflects the completion of all instructions prior to the
trapped instruction, but no subsequent instructions (including the trapped

Overview - Programmer's Model

1-14

cO
FUJITSU

instruction). Hardware guarantees that upon return from the service routine, the •
Program Counter points to the trapped instruction or the following instruction if
the trapped instruction was emulated.

1.4 Internal Architecture
The internal architecture of SP ARClite family processors is illustrated in
Figure 1-4. The processor core consists of an Integer Unit which implements a
superset of the SPARC integer instruction set. Separate on-chip caches are pro­
vided for data and instructions. The Bus Interface Unit handles the interface
between the processor and the system. A Clock Generator with built-in phase­
locked loop simplifies system clock design. Finally, the Debug Support Unit pro­
vides hardware support for in-circuit emulation. Internally, the various functional
units are connected by separate instruction and data buses. For connection with
external memory and I/O, a unified address bus and a unified data bus are
extended off-chip. The main functional units are discussed briefly below, and
more fully in the Internal Architecture chapter.

CLOCK
GENERATOR

CLK_OUT

DATA

BUS
ADDRESS INTERFACE

UNIT

ASI

CONTROL
DRAM SUPPORT

PWG
CHIP_SEL

16-BITTIMER
PAGE_DET

ADDRESS
REFRESH DECODE

32

32

32

32

SPARC INTEGER UNIT

2K INSTRUCTION
CACHE

!_DATA

l_ADDR

D_DATA

2K DATA
CACHE

f-z
::>
f-a:
0

EMULATOR a.
a.
::> BUS
(/)

(!l
::>

"' w
0

Figure 1 ·4. Internal Architecture (Block Diagram)

1.4.1 Integer Unit

The Integer Unit (IU) is a compact, fully custom implementation of the SP ARC
architecture. The IU is hard-wired for high performance. Its internal functional
units are designed around a modular architecture and can be customized to meet
different application requirements. In the MB86930, for example, this flexibility

Overview - Internal Architecture

1-15

SP ARClite User's Guide

was used to provide direct hardware support for integer multiplication, and to
extend the SP ARC instruction set by supporting divide-step and scan instruc­
tions.

The IU implements a five-stage instruction pipeline to allow a sustained execu­
tion rate of nearly one instruction per cycle. The operation of the pipeline under
ideal conditions is illustrated in Figure 1-5. The pipeline consists of the following
stages:

• Fetch (F)-One of the instruction memory spaces is addressed and returns· an
instruction. (Figure 1-5 below assumes a hit in the instruction cache.)

• Decode (D)-The instruction is decoded; the register file is addressed and
returns operands.

• Execute (E)-The ALU computes a result.

• Memory (M)-External memory is addressed (for load and store instructions
only; this stage is idle for other instructions).

• Writeback (W)-The result (or loaded memory datum) is written into the
register file.

Fetch Instruction 5 6

Decode Instruction 4 6

Execute Instruction 3 4 5 6

Memory Instruction 2 3 4 5 6

Write· Back Instruction 1 2 3 4 5

Figure 1-5. Instruction Pipeline

No instructions execute out-of-order; that is, if instruction A enters the pipeline
before instruction B, then instruction A necessarily reaches the writeback stage
before instruction B does. Conditions which hold up the pipeline, and the effect of
traps on pipeline operations, are discussed in the Internal Architecture chapter.

1.4.2 Data and Instruction Caches

The on-chip data and instruction caches allow designers to build high-perfor­
mance systems without incurring the cost of fast external memory and the
associated control logic.

In the MB86930 processor, each cache is 2 Kbytes in size, organized into two
banks of sixty-four 16-byte lines. Cache lines are refilled in 4-byte increments to
avoid the interrupt latency incurred by long, uninterruptible cache line replace­
ments.

Overview - Internal Architecture

1-16

cf)

FUJITSU

The data and instruction caches are accessed independently over separate data
and instruction buses, allowing data to be loaded from and stored to cache
concurrently with instruction fetches.

1.4.3 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic which allows the processor to
communicate with the system. The BIU receives requests for external memory
and 1/0 accesses from the cache control logic. When the BIU performs a read, it
returns the data to both the cache and the IU. Parallel paths make the data avail­
able to the IU in the same cycle that it is written to the cache.

The BIU has a one-word (32-bit) write buffer to hide external memory latency
from the IU. The BIU also has a one-word prefetch buffer for instruction fetches.
These buffers are enabled or disabled by bits in the Cache/Bus Interface Unit
Control Register.

1.4.4 Debug Support Unit

The Debug Support Unit supports hardware emulation with on-chip breakpoint
and single-step logic. A dedicated emulator bus is extended off-chip from the
debug unit; the emulator bus makes it possible to trace transactions between the
Integer Unit and on-chip cache.

1.5 External Interface
The processor's external interface consists of signals, bus operations, and system
support functions. This section gives an overview; details are discussed more
fully in the External Interface chapter. The System Design Considerations chapter
discusses issues that are likely to arise in the design of any SPARClite system.

1.5.1 Signals

The processor's external signals, illustrated in Figure 1-6, can be grouped by
function:

• Processor Control and Status-Reset, error, and clock signals.

• Memory Interface-Data and address buses, ASI and byte-enables, chip­
selects, and other control signals used to access external memory and
memory-mapped devices.

• Bus Arbitration-Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions-Interrupt-requests and timer overflow.

• Emulator Bus-Signals to support in-circuit emulation.

Overview - External Interface

1-17

SP ARClite User's Guide

• Boundary-Scan-Test signals used for hardware verification.

-CLK_EXT

CLKOUT1

Processor CLKOUT2
Control CLKIN I XTAL 1

& Status
XTAL2

-ERROR

-RESET

Peripheral (IRL <3:0>
Functions -TIMER_OVF

Bus (-BREQ
Arbitration -BGRNT

TDO

T~"~ [
TCK

(Boundary Scan) TMS

TDI

-TRST

MB86930
l/OSIGNALS

D <31:0>

ADR <31:2>

ASI <7:0>

-CS<5:0>

-BE <3:0>

-MEXC

-READY

RD/-WR

-LOCK

-AS
- -S~ME_PAGE J

Memory
Interface

EMU_D <3:0> Emulator

EMU SD <3:0> l
-EMU_BRK Bus

-EMU_ENB

Figure 1 ·6. Input and Output Signals

1.5.2 Bus Operation

At any given time, the Bus Interface Unit is handling requests for external mem­
ory and 1/0 operations, arbitrating for bus access, or idle. From the point of view
of the external system, bus transactions are handled in fairly standard ways:

• Memory and 1/0 Operations-Read and write transactions are initiated with
the BIU asserting the -AS signal. The RD /-WR output indicates the
transaction type. The -BE[3:0] outputs indicate the transaction width. The BIU
drives the address and ASI signals, and either drives (on stores) or reads (on
loads) the signals on the data bus. The transaction ends when the external
system or programmable wait-state generator asserts -READY.

An atomic load-store is executed as a load followed by a store, with no opera­
tion allowed in between. The -LOCK output is asserted to indicate that the bus
is being used for more than one consecutive memory operation.

• Arbitration-Any external device can request ownership of the bus by
asserting the -BREQ signal. The BIU three-states its bus drivers and asserts
-BGRNT to indicate that it is relinquishing control of the bus. On completion
of its transaction, the external device de-asserts -BREQ; the BIU responds by
de-asserting -BGRNT in the following cycle.

Overview - External Interface

1-18

cO
FUJITSU

The External Interface chapter gives further details concerning bus operations,
with timing diagrams, a bus state diagram, and a discussion of transactions that
are interrupted by exceptions.

1.5.3 System Support Functions

Built-in system support functions help to minimize the amount of glue logic
required in the external system. The support includes a set of system-configura­
tion registers, a timer for generating refresh requests, and same-page detection
logic.

The system-configuration registers (Address Range Specifiers, Address Masks,
and Programmable Wait-State Specifiers) allow software to define six different
address ranges. When an address driven by the processor is in one of these
ranges, the corresponding Chip-Select (-CS) pins are asserted. After a number of
clock cycles determined by the corresponding Programmable Wait-State Speci­
fier, the processor automatically generates the -READY signal. This makes it pos­
sible for memory and 1/0 devices with different access times to be connected to
the processor without additional logic.

The programmable timer causes the -TIMER_OVF output signal to be asserted at
software-defined intervals. This signal can be used to initiate DRAM refresh
cycles, or to control other periodic events in the external system.

The same-page detection logic determines whether the address of the current
memory transaction is on the same page as the previous transaction. If it is, the
processor asserts the -SAME_P AGE signal. The system can then take advantage
of the fast consecutive accesses possible within the page boundaries of fast-page
mode DRAM.

1.6 Development-Support Tools
A full range of development tools are available to support the development of
your SP ARClite application. The emergence of SP ARC as the industry standard
engineering workstation architecture provides a fully supported and cost effec­
tive source of native development environments. Furthermore, tools targeted at
embedded systems development are available as well.

Solutions are available to meet your emulation, logic analysis, logic modeling,
architectural simulation, real-time operating system, PC environment, bench­
marking and prototyping requirements. Call the SP ARClite customer hotline for a
complete list of support solutions.

Overview - Development-Support Tools

1-19

SP ARClite User's Guide

Overview - Development-Support Tools

1-20

~', 1:r::,'.':,,·,':
c";';;;:::,::":i;;':""

111

Programmer's Model

This chapter presents the SP ARClite processor architecture as a collection of
resources available to software. It discusses the user and supervisor modes, the
organization of the address space, the processor registers, the supported data
types, the instruction set, the on-chip caches, interrupts and traps and debug sup­
port. A separate section describes the internal state of the processor after reset.

The Programming Considerations chapter contains information about how to use
these processor resources to best advantage.

2.1 Program Modes
The SP ARC architecture provides two mutually exclusive modes of program exe­
cution, user mode and supervisor mode. The processor is in supervisor mode when
the S bit of the Processor State Register (PSR) is 1, and in user mode when this bit
is 0. Instructions which access either special-purpose registers or alternate mem­
ory spaces are privileged; the use of privileged instructions is restricted to supervi­
sor mode.

The distinction between user and supervisor modes provides system protection
in multitasking environments. System code runs in supervisor mode and has full
access to processor resources, while application code runs in user mode and is
kept from having unwanted side effects. Embedded systems connected to a net­
work can use a protection scheme based on the distinction between user and
supervisor modes. In such a scheme, network service routines intended to have

Programmer's Model - Program Modes

2-1

-

SP ARClite User's Guide

system-wide effects run in supervisor mode. Routines intended to have only local
effects, on the other hand, run in user mode.

In many embedded systems, however, this hierarchy is not required, and the pro­
cessor can operate exclusively in supervisor mode. In this way, application code
can directly manipulate the Current Window Pointer (in the PSR) and other pro­
cessor control fields.

On reset, the processor is in supervisor mode. To enter user mode, software must
clear the S bit in the PSR. The processor enters supervisor mode from user mode
only when a hardware reset, an interrupt, or a trap occurs. A return from trap
(RETT) instruction restores the value the S bit had before the trap was taken.

2=2 Memory Organization
The processor can directly address up to 1 Terabyte of memory, organized into
256 address spaces of 4 GB each. These address spaces may or may not overlap in
physical memory, depending on the system design. Every external access
involves an 8-bit Address Space Identifier (ASI) as well as a 32-bit address. The
ASI selects one of the address spaces, and the address selects a word within that
space (see Table 2-1). Only the user instruction and data spaces are available in
user mode; accessing any of the other 254 address spaces requires the processor to
be in supervisor mode.

Table 2· 1: ASI Address Space Map

ASI <7:0> Address Space

Ox1 Control Register
Ox2 Instruction Cache Lock
Ox3 Data Cache Lock

Ox4 - Ox? Application Definable
Ox8 User Instruction Space
Ox9 Supervisor Instruction Space
OxA User Data Space
OxB Supervisor Data Space
OxC Instruction Cache Tag RAM
OxD Instruction Cache Data RAM
OxE Data Cache Tag RAM
OxF Data Cache Data RAM

Ox10 - OxFE Application Definable
Ox FF Reserved for Debug Hardware

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double

Programmer's Model - Memory Organization

2-2

oO
FUJITSU

words between memory (or 1/0) and processor registers. Addressing conven-
tions for external accesses are "big-endian": ~!,
• Bytes-Increasing the address decreases the significance of a byte within the

word. That is, the most significant byte of a word-the "big end" of the
word-is accessed when bits [l:O] of the address are both 0. The least
significant byte is accessed when address bits [1 :O] are both 1. [

• Halfwords-The most significant halfword of a word is accessed when bit 1 of
the address is 0, and the least significant halfword when address bit 1 is 1.

• Doublewords-The most significant word of a doubleword is accessed when bit
2 of the address is 0, and the least significant word when address bit 2 is 1.

The address of a halfword, word, or doubleword is the address of its most signifi­
cant byte. The addressing conventions are illustrated in Figure 2-1.

address <1 :0> 0
Bytes

2 3

7 0 7 0 7 0 7 0

address <1 :0> 0
Halfwords

2

15 0 15 0

address <1 :0>
Word

0 31 0

address <2:0>
Doubleword

0 63 32

4 31 0

Figure 2-1. Addressing Conventions

Load and store operations require proper alignment of data in memory. An
aligned doubleword address is divisible by 8, an aligned word address is divisi­
ble by 4, and an aligned half-word address is divisible by 2. If a load or store
instruction generates an improperly aligned address, a memory _address_not_
aligned trap occurs, and the access must be performed piecemeal under software
control.

The processor does not contain memory-management hardware; virtual-address
translation can be handled by software, or by an external memory-management
unit.

2.3 Registers
There are two types of registers: the general-purpose, or r registers, whose contents
have no pre-assigned meaning, and the special-purpose registers, which contain

Programmer's Model - Registers

2-3

SP ARClite User's Guide

control and status information, or special-purpose data. All registers are 32 bits
wide. The register set is illustrated in Figure 1-2 of the Overview chapter.

The general-purpose (r) registers can be accessed in user mode. There are 136 r
registers; 8 of them are global registers; the other 128 are divided into 8 overlapping
blocks, called windows. The windowing system, and the special uses of certain r
registers, are discussed below.

The special-purpose registers are of two kinds: (1) registers defined by the SPARC
architecture, and (2) memory-mapped registers which control peripheral func­
tions. Special instructions exist for reading and writing each of the SP ARC regis­
ters, except for the Program Counter and the Next Program Counter. The
memory-mapped registers can be read and written with the alternate-space load
and store instructions. Except for reads and writes to the SPARC-defined Y regis­
ter, aii of the instructions which access special-purpose registers are privileged.

2.3.1 Register Windows

As specified by the SP ARC architecture, the general-purpose register set is orga­
nized into a set of 8 global registers, plus a collection of overlapping windows. In
the MB86930, there are 8 such windows. Each window contains 24 registers. Of
these, 8 are local to the window, 8 are "out" registers shared with the adjacent win­
dow below, and 8 are "in" registers shared with the adjacent window above. This
organization is illustrated in Figure 2-2.

At any given time, 32 general-purpose registers can be accessed directly: the 8
global registers, and the 24 registers of the currently active window. The value in
the Current Window Pointer (CWP) field of the Processor State Register (PSR)
determines which window is active. (See Section 5.3 for register addressing con­
ventions.)

Programmer's Model - Registers

2-4

' '

--- '

Register Addressing

---" ' Wraps t ,' '\ \
OBatt ,' \~ - ... - om Of o· I \ I

- - - - _1~~rarn :J '~
8 - - _, Windo ' " ours: w:r '..

' '
' " ' '

Figure 2·2. Register Windows

' ' ' ' ' '
'

' '
' '

oO
FUJITSU

There are up to three address fields associated with a SPARC instruction. In the
case of a three-address instruction, these are the rsl field, the rs2 field, and the rd
field. Rsl and rs2 are the logical register addresses of the two source operands of the
instruction while rd is the logical register address of the destination operand.

Programmer's Model - Registers

2-5

SP ARClite User's Guide

These addresses specify the location of the operands within the context of the cur­
rent window, as shown in Table 2-2.

Table 2·2: Logical Register Addressing

Addresses Registers

r[O] - r[7] global[O] - global[?]
r[B] - r[15] out[O] - out[?]
r[16] - r[23] local[OJ - local[?]
r[24] - r[31] in[O] - in[?]

The CWP field of the PSR register points to the current window. The combination
of a logical register address with the CWP produces a physical register address.
Physical register addresses are directly decoded by the Register File~ Doubleword
operands in the register file are assumed to have even-odd alignment. The even
numbered register contains the most significant 32 bits of the doubleword.
Instructions which act on doublewords must specify even-numbered register
addresses.

Since the CWP is part of the PSR register it is possible to change the value of the
CWP with software. In particular, the WRPSR, SA VE, RESTORE, and RETT
instructions can change the CWP. See the Instructions section below for details.
Hardware also can change the CWP when a trap or interrupt occurs. See the Traps
and Interrupts section.

Perlormance features

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed should be written to the "out" registers of the
current window, which are the same as the "in" registers of the adjacent window.
A SA VE instruction can then be used to decrement the Current Window Pointer,
making the parameter values available to the subroutine without moving any
data.

Register windows improve performance in embedded applications because they
function as local variable caches which retain either interrupt, subroutine, context
or operating system variables with no additional overhead. Since procedure calls
are efficient, optimizing compilers are not forced to replace them with inlined
macros; this reduces the size of the compiled code, saving memory space, and
making it possible to fit more complicated routines in the instruction cache.

Register windows can be dedicated to individual contexts to enable very fast
switching between contexts. When handling interrupts, the hardware immedi­
ately moves to the adjacent window to start executing the service routine. In this
way, an unused set of registers is made available in less than 3 processor cycles.

Programmer's Model - Registers

2-6

cO
FUJITSU

Each register in the register file has three read-only and one write-only port. The
four-port structure allows even store instructions-which may require three oper­
ands to be read out of the register file-to be completed in a single cycle.

2.3.2 Special Uses of the r Registers

Four of the r registers have special uses defined in the SP ARC architecture:

• When global register 0 (r[O]) is addressed as a source operand, the constant
value 0 is read. When r[O] is used as a destination operand, the data written is
discarded, and no r register changes value.

• The CALL instruction writes its own address into out register 7 (r[15]).

• When a trap is taken, the current window pointer is decremented. The
program counters PC and nPC are then automatically written into local
registers 1 and 2 (r[17] and r[18]) of the new register window.

2.3.3 SPARC-Defined Special-Purpose Registers

The registers discussed in this section are defined as part of the SP ARC architec­
ture.

Processor State Register (PSR)

The Processor State Register is the primary processor control and status register.
It contains 11 mode and status fields which configure the processor and report
processor status and exception results. The mode fields, shown in upper case in
Figure 2-3, are set by the operating system to configure the processor. The status
fields, shown in lower case, are set by the processor to indicate the effects of
instruction execution.

Except for several fields described below, the PSR can be written and read
directly with the privileged instructions WRPSR and RDPSR. The PSR can also be
modified by the SA VE, RESTORE, Tice, and RETT instructions, and by any
instruction that modifies the condition codes.

31 28 27 24 23 20 19 12 11 8 7 6 5 4 0

impl I ver reserved PIL CWP

Figure 2-3. Processor State Register

Bits 31-28: Implementation (impl}-ldentifies the implementation number of the processor. In the
MB86930 processor, it is hardwired to 0. The value in this field cannot be changed by a
WRPSR instruction.

Programmer's Model - Registers

2-7

-

SPARC lite User's Guide

Bits 27-24: Version (ver)-ldentifies the processor version, and is intended for factory use. It can be
read, but not written. The Version field is hardwired to 2 in the MB86930 processor.

Bits 23-20: Integer Condition Codes (icc)-Contains the negative (n), zero (z), overflow (v), and carry
(c) integer condition-code flags. These bits are modified by the WRPSR instruction, and
by arithmetic and logical instructions whose names end with the letters cc (for example,
ANDcc). The Bice (Branch on integer condition codes) and Tice (Trap on integer condi­
tion codes) instructions transfer program control based on the values of these bits. The
integer condition code flags are defined as follows:

n (Bit 23) Set to 1 if the ALU result was negative for the last instruction that modified
the ice field; equal to 0 otherwise.

z (Bit 22) Set to 1 if the ALU result was zero for the last instruction that modified the ice
field; equal to O otherwise.

v (Bit 21) If this bit equals 1, an arithmetic overflow occurred on the last instruction that
modiiied the ice fieid; it equais 0 otherwise. Logical instructions that modify
the ice field always reset the overflow bit to 0.

c (Bit 20) If this bit equals 1, either an arithmetic carry out of bit 31 occurred on the last
addition that modified the ice, or a borrow out of bit 31 occurred as the result
of the last subtraction that modified the ice. The carry bit equals 0 otherwise.
Logical instructions that modify the ice field always reset the carry bit to 0.

Bits 19-12: Reserved (reserved)-This field is reserved. When you use the WRPSR instruction, this
field should always be written with Os.

Bits 11-8: Processor Interrupt Level (PIL)-Specifies the levels of interrupt which the processor will
accept. The processor accepts only interrupts with level 15 (non-maskable interrupts), or
with levels higher than the value in the PIL field (maskable interrupts). Bit 11 is the most
significant bit, and bit 8 is the least significant.

Bit 7: Supervisor Mode (S)-Determines whether the processor is in supervisor mode (S=1) or
user mode (S=O). Since instructions that write the PSR are available only in supervisor
mode, the processor enters supervisor mode from user mode only when a reset, trap, or
interrupt occurs.

Bit 6: Prior S State (PS)-Records the value of the S bit when a trap is taken, so that the pro­
cessor can return to the proper operating mode (user or supervisor) on return from the
trap. Processor hardware changes the PS bit to the state of the S bit when entering a
trap, and changes the S bit to the state of the PS bit when returning from the trap.

Bit 5: Enable Traps (ET)-Enables traps (ET =1). When ET =0, traps are disabled and all inter­
rupts are ignored.

Bits 4-0: Current Window Pointer (CWP)-Points to the register window which is currently active.
The CWP is written and read by the WRPSR and RDPSR instructions, is decremented by
traps and the SAVE instruction, and is incremented by the RESTORE and RETT instruc­
tions. The SPARClite processor implements 8 out of the 32 windows allowed in the
SPARC definition, so only the 3 least significant bits of the CWP field are used. Arithmetic
on the CWP is always performed modulo 8. Attempting to write a value to the CWP field
which points to an unimplemented window results in an "illegal instruction" error.

Programmer's Model - Registers

2-8

cO
FUJITSU

Window Invalid Mask Register (WIM)

The Window Invalid Mask Register contains 8 register-window mask bits, each of
which corresponds to an implemented register window. If an operation which
normally increments or decrements the Current Window Pointer would cause the
CWP to point to a window whose corresponding WIM bit equals 1, a Window
Overflow or Window Underflow trap occurs.

The WIM can be written with the WRWIM instruction, and read with the RDWIM
instruction. Both of these instructions are privileged. Bits corresponding to unim­
plemented windows are read as Os; values written to these bits are ignored.

31 876543210

reserved

Figure 2·4. Window Invalid Mask Register

Bits 31-8: Reserved Field (reserved)-This field is reserved for potential future expansion to addi­
tional windows.

Bits 7-0: Window Masks (W7-WO)-Window mask bits, with W7 the mask bit for window 7, and so
on.

Trap Base Register (TBR)

The Trap Base Register contains three fields used by the processor to generate the
address of the service routine when an interrupt or trap occurs. (The reset trap
and breakpoint traps are the exception: They always bypass the TBR mechanism,
transferring control to address 0 and Ox000003f0, respectively.) One of the three
fields in the TBR can be written using the WRTBR instruction. The whole TBR can
be read with the RDTBR instruction. Both of these instructions are privileged.

31 12 11 4 3 0

TBA tt Null

Figure 2·5. Trap Base Register

Bits 31-12: Trap Base Address (TBA)-Contains the most significant 20 bits of the trap table base
address. The TBA field is written with the WRTBR instruction.

Bits 11-4: Trap Type (tt)-Contains an offset into the trap table corresponding to the last trap taken.
Each trap is identified by a unique 8-bit trap type number. The processor writes the
appropriate trap type into the tt field when it recognizes a trap, and then uses the number
as an offset into the trap table. The tt field remains unchanged until the next trap occurs.
The WRTBR instruction does not affect the tt field. When the single vector trapping (SVT)

Programmer's Model - Registers

2-9

SP ARClite User's Guide

is enabled, the Trap Type bits are ignored. The trap vector is the address pointed to by
TBA with all tt bits set to 0. The trap handler can read the tt field to find out the origin of
the current trap.

Bits 3-0: Null (null)-This field is hardwired to 0 to force 4-word increments of the trap vector. The
WRTBR instruction does not affect this field.

YRegister

The ''Y Register" is composed of a number of 32-bit latches, muxes, and bus driv­
ers which reside in the data path of the Execute Block (see the Internal Architecture
chapter). It is used during the multiply step instruction (MULScc) to contain the
multiplier and the least significant bits of the partial products as they are evalu­
ated. It is used during the divide step instruction (DIVScc) to contain the most sig­
nificant 32 bits of a 64-bit dividend and the partial remainders as they are
evaluated. It is also used by the multiply unit to hold the most significant words
of the partial products and, when the multiplication is completed, the high 32 bits
of the 64-bit product.

The Y register can be read and written with the ROY and WRY instructions,
respectively. WRY is not a "delayed write" instruction: the value written into the
Y register is available to the following instruction.

31 0

Figure 2-6. Y Register

• Multiply Step Support-At the beginning of a multiplication algorithm which
uses the MULScc instruction, the 32-bit multiplier is loaded into the Y register
with a WRY instruction. When the multiplication is completed, the least
significant word of the 64-bit product will be in the Y register.

• Divide Step Support-At the beginning of a division algorithm which uses the
DIVScc instruction, the most significant word of the dividend is loaded into
the Y register with a WRY instruction. At the end of the divide routine, the
remainder will be in the Y register and can be read with a ROY instruction.

• Multiply Unit Support-The Y register is also used by the Multiply Unit (MU)
during the UMUL, UMULcc, SMUL, and SMULcc instructions. The most
significant word of the 64-bit product will be in the Y-Register when the
multiplication completes.

Programmer's Model - Registers

2-10

Q)

FUJITSU

Program Counter (PC)

The Program Counter contains the word address of the instruction currently
being executed by the Integer Unit. The PC cannot be directly read or written.

31

Instruction Address

Figure 2-7. Program Counter

Next Program Counter (nPC)

0

The Next Program Counter contains the word address of the next instruction to
be executed, assuming a trap does not occur. The nPC cannot be directly read or
written.

In delayed control transfers, the instruction that immediately follows the control
transfer (the delay instruction) may be executed before control is transferred to
the target. (See the Instructions section, below.) The nPC is necessary for imple­
menting this feature. Most instructions complete by copying the contents of the
nPC into the PC, then updating the nPC. The nPC is incremented by 4, unless the
instruction implies a control transfer, in which case the computed target address
is written into the nPC. The PC now points to the instruction which will be exe­
cuted next, while the nPC points to the instruction which will be executed after
that.

31 0

Instruction Address

Figure 2-8. Next Program Counter

Ancillary State Registers (ASR[31: 1])

The SPARC definition includes 31 Ancillary State Registers, 15 of which
(ASR[15:1]) are reserved for future use. The remaining ASR's can be defined and
used in any way by SP ARC implementations. The MB86930 defines the following
ASR:

ASR17-Used to enable and disable single-vector trapping. When this feature
is enabled, all traps (except reset and breakpoint traps) vector to a single loca­
tion, the base address of the trap table, as specified by the TBA field of the TBR

Programmer's Model - Registers

2-11

SP ARClite User's Guide

register (tt==O). ASR17 can be read and written with the privileged instructions
RDASR and WRASR.

31

Bits 2-1:

Bit 0:

2 1 0

~I Reserved

SVT, RST=O ---~I Reserved

Figure 2-9. Ancillary State Register 17

Reserved Field (reserved)-When writing to ASR17, both of these bits must be written
with Os.

Single Vector Trapping (SVT)-Enables single vector trapping when set to 1. The SVT bit
equals O at reset.

2.3.4 Memory-Mapped Control Registers

In addition to the registers defined by the SP ARC architecture, the MB86930 pro­
vides a collection of memory-mapped registers which control peripheral func­
tions. Figure 2-10 shows these registers and their locations in memory. The
memory-mapped registers can be read and written with the alternate-space load
and store instructions, which are privileged.

oxoooooooo ASl=OX1 Cache/Bus interface Unit Control Register

Ox00000004 ASl=0X1 Lock Control Register

OxOOOOOOOB ASl=0X1 Lock Control Save Register

OxOOOOOOOC ASl=0X1 Cache Status Register

Ox00000010 ASl=Ox1 Restore Lock Control Register

OxOOOOOOBO ASl=0X1 System Support Control Register

Ox00000120 ASl=0X1 Same-Page Mask Register

Ox00000124 ASl=0X1 Address Range Specifier Registers (ARSR <5:1>)

Ox00000140 ASl=Ox1 Address Mask Register (AMR <5:0>)

Ox00000160 ASl=0X1 Wait-State Specifier Registers (WSSR <2:0>)

Ox00000174 ASl=Ox1 Timer Register

Ox00000178 ASl=Ox1 Timer Preload Register

Figure 2-1 O. Locations of Memory-Mapped Control Registers

Programmer's Model - Registers

2-12

cO
FUJITSU

Cache/Bus Interface Unit Control Register

The Cache/BID Control Register controls the operation of the data and instruc-
tion caches, and the write and prefetch buffers of the Bus Interface Unit. This reg- •
ister is located at address OxOOOOOOOO with an ASI of Oxl.

31 543210

Write Buffer Enable (Enabled= 1, Disabled=O, RST =0)

Prefetch Buffer Enable (Enabled=1, Disabled=O, RST =0) --~

Global Data Cache Lock (Lock 0n=1, Lock Off=O, RST =0) ---~

Data Cache Enable (Enabled=1, Disabled=O, RST =0) ----~

Global Instruction Cache Lock (Lock 0n=1, Lock Off=O, RST =0) -------'

Instruction Cache Enable (Enabled=1, Disabled=O, RST =0) -------~

Figure 2-11. Cache/Bus Interface Unit Control Register

Bit 5: Write Buffer Enabled-When set to 1, enables the write buffer of the BIU only if both the
instruction and data caches are enabled. At reset, this bit is 0. This bit should be changed
only when the instruction and data caches are off.

Bit 4: Prefetch Buffer Enabled-When set to 1, enables the prefetch buffer of the BIU only if
both the instruction and data caches are enabled. At reset, this bit is 0. This bit should be
changed only when the instruction and data caches are off.

Bit 3: Global Data Cache Lock-Locks the current entries into the on-chip data cache; with this
bit set to 1, no valid entry in the data cache will be replaced. To insure the best perfor­
mance with the cache locked, invalid words in allocated cache locations will be updated.
On write hits, with the data cache locked, the data is not written to external memory,
allowing the locked cache to be used as scratchpad RAM or a run-time stack, indepen­
dent of main memory. When the Data Cache Lock bit is 0, the cache operates normally.
At reset, this bit is 0.

Bit 2: Data Cache Enable-Turns the on-chip data cache on (1) and off (0). At reset, this bit
is 0.

Bit 1: Global Instruction Cache Lock-Locks the current entries into the on-chip instruction
cache; with this bit set to 1, no valid entry in the instruction cache will be replaced. To
insure the best performance with the cache locked, invalid words in allocated cache loca­
tions will be updated. When this bit is 0, the cache operates normally. Writes to the
Instruction Cache Lock bit do not affect cache operation for the following three instruc­
tions. At reset, this bit is 0.

Bit O: Instruction Cache Enable-Turns the on-chip instruction cache on (1) and off (0). Writes
to the Instruction Cache Enable bit do not affect cache operation for the following three
instructions. At reset, this bit is 0.

Programmer's Model - Registers

2-13

SP ARClite User's Guide

Lock Control Register

The Lock Control Register controls the locking of individual entries in the data
and instruction caches. It is located at address Ox00000004 with an ASI of Oxl.

31 1 0

Figure 2· 12. Lock Control Register

Bit 1 : Data Cache Entry Auto Lock-Enables (1) and disables (0) auto-locking for entries in the
on-chip data cache. Aii data accessed while this bit is 1 have the lock bits in their cache
tags set to 1. Writes to this bit affect all subsequent data accesses. At reset, this bit is 0.

Bit 0: Instruction Cache Entry Auto Lock-Enables (1) and disables (0) auto-locking for entries
in the on-chip instruction cache. All instructions fetched while this bit is 1 have the lock
bits in their cache tags set to 1. Writes to this bit do not affect cache operation for the fol­
lowing three instructions. At reset, this bit is 0.

Lock Control Save Register

When an external interrupt or hardware trap occurs, the auto-locking of entries in
on-chip cache is disabled. The Lock Control Save Register is used to re-enable
auto-locking after the interrupt has been serviced. The value of the Lock Control
Register before the interrupt or trap is automatically saved in the Lock Control
Save Register, located at address Ox00000008 with an ASI of Oxl. To restore the
correct auto-lock value on return from the service routine, software sets a bit in
the Restore Lock Control Register. This will cause the value saved in the Lock
Control Save Register to be moved to the Lock Control Register when a RETT is
executed. (See Section 2.6.2)

31 1 0

Previous Data Cache Entry Auto Lock (On= 1, Off=O, RST =0)

Previous Instruction Cache Entry Auto Lock (0n=1, Oif=O, RST =0) --~

Figure 2-13. Lock Control Save Register

Restore Lock Control Register

On return from an external interrupt or hardware trap service routine, the Lock
Control Register can have its previous value restored from the Lock Control Save
Register. The Restore Lock Control Register, located at address OxOOOOOOlO with

Programmer's Model - Registers

2-14

OJ
FUJITSU

an ASI of Oxl, controls this feature. When bit 0 of this register is set to 1 and a
RETT instruction is executed, the value in the Lock Control Save Register is
placed into the Lock Control Register.

There should be no traps between writing a 1 to bit 0 of the Restore Lock Control
Register and the corresponding RETT instruction. This bit is cleared to 0 on reset,
and also when a return from external interrupt or hardware trap is executed.

31 0

Restore Lock bit (Restore=1, lgnore=O, RST =0;
~I

Figure 2-14. Restore Lock Control Register

Cache Status Register

If an attempt is made to lock a cache entry which is already locked, bit 0 in the
Cache Status Register is set to 1. This bit can be cleared by software. The Cache
Status Register is located at address OxOOOOOOOC with an ASI of Oxl.

31 0

Cache Status, RST =0
~I

Figure 2-15. Cache Status Register

Same-Page Mask Register

The Sarne-Page Mask Register controls the operation of the same-page detection
logic by specifying which bits of the current ASI and address are to be compared
with those of the previous ASI and address. If the specified (i.e., unmasked) bits
all match, then the processor recognizes the two accesses as being "in the same
page," and asserts the -SAME_PAGE signal. These registers should not be writ­
ten if the bus interface unit will handle addresses that are affected by the change
in the next 3 processor cycles. The Sarne-Page Mask Register is located at address
Ox00000120 with an ASI of Oxl.

31 30 23 22

ASI Mask <7:0>
(Care=O, Don't Care=!, RST =Undefined)

Address Mask (ADR <31 :10>)
(Care=O, Don't Care=1, RST =Undefined)

1 0

Figure 2-16. Same-Page Mask Register

Programmer's Model - Registers

2-15

SP ARClite User's Guide

Bit 31: Reserved

Bits 30-23: ASI Mask-Specifies which bits in the ASI of the current external access are to be com­
pared with the corresponding bits in the ASI of the previous access. Only those bits are
compared for which the mask bit is 0. Mis-matches in any other bits do not prevent the
two accesses from being recognized as "on the same page." The bits of this field are
cleared to 0 on reset.

Bits 22-1: Address Mask-Specifies which of the 22 most significant bits in the address of the cur­
rent external access are.to be compared with the corresponding bits in the address of the
previous access. Only those bits are compared for which the mask bit is 0. Mis-matches
in any other bits do not prevent the two accesses from being recognized as "on the same
page." The bits of this field are cleared to 0 on reset.

Bit 0: Reserved

Address Range Specifier Registers (ARSR[S: 1])

Values in the Address Range Specifier Registers define up to five different
address ranges, which are used for various system-support functions. The ARSRs
are located in a contiguous block beginning at address Ox00000124 with ASI Oxl
(see Table 2-3).

The ARSRs, together with the Address Mask Registers, can be used to control the
assertion of the Chip-Select outputs (-CS[S:l]). -CSn is asserted when the value
on the address bus falls in the address range specified by ARSRn and AMRn. See
the discussion of the Address Mask Registers, below. -CSO is asserted when the
value on the address bus, as masked by AMRO, falls into the lowest range of
Supervisor Instruction Space. The range of -CSO (as masked by AMRO) is BK
words.

These registers should not be written if the bus interface unit will handle
addresses that are affected by the change in the next 3 processor cycles. The user
should be careful that two chip selects are never selected at the same time. A pro­
grammable wait-state generator is also associated with each address range. See
the discussion of the Wait-State Specifier Registers, below.

31 30

ASl<7:0>
(AST =Undefined)

23 22

ADR<31:10>
(AST =Undefined)

Figure 2·17. Address Range Specifier Registers

Bit 31: Reserved

1 0

Bits 30-23: ASl[7:0]-Specifies the ASI of a target address range. The value of this field is undefined
on reset.

Programmer's Model - Registers

2-16

cP
FUJITSU

Bits 22-1: ADR[31 :10]-Specifies the 22 most significant bits of a target address range. The value
of this field is undefined on reset.

Bit 0: Reserved

Address Mask Registers (AMR[S:O]}

AMRn works with ARSRn to define an address range. AMRn specifies which bits
of the currently driven ASI and address are to be compared with the contents of
ARSRn, and which bits are "don't cares." Except for AMRO, reset leaves the val­
ues in the AMR registers undefined (see Table 2-3). These registers should not be
written if the bus interface unit will handle addresses that are affected by the
change in the next 3 processor cycles. The AMRs are located in a contiguous block
beginning at address Ox00000140 with ASI Ox1.

31 30

ASI <7:0>
(AST =Undefined)"

*Except AMR[O]. See Table 2-3

Bit 31: Reserved

23 22

ADR<31:10>
(AST =Undefined)"

Figure 2· 18. Address Mask Registers

1 0

Bits 30-1: Mask-Specifies which bits in the ASI and address of the current external access are to
be compared with the corresponding bits in the address-range specifier. Only those bits
are compared for which the mask bit is 0. See Table 2-3 for reset value.

Bit 0: Reserved

Wait-State Specifier Registers (WSSR[2:0]}

The wait-state specifiers determine, for each of the address ranges defined by the
ARSR and AMR registers, the number of clock cycles between the time an address
in a given range appears on the address bus and the time the processor generates
an internal-READY signal. This makes it possible for memory and 1/0 devices
with different access times to be connected to the processor without additional
logic.

The wait-state specifiers for the six address ranges are kept in three Wait-State
Specifier Registers. These registers are located in a contiguous block beginning at
address Ox00000160 with ASI Ox1 (see Table 2-3). Each register contains the wait­
state specifiers for two address ranges. When the address currently being driven
by the processor matches the unmasked bits in one of the Address Range Specifi­
ers, the corresponding wait-state specifier is selected. These registers should not
be written if the bus interface unit will handle addresses that are affected by the
change in the next 3 processor cycles.

Programmer's Model - Registers

2-17

SP ARClite User's Guide

31

Count2
(RST =Undefined)

27 26 22 21 20 19 18 14 13

Count 1
(RST =Undefined)

Count2
(RST =Undefined)"

Count 1
(RST =Undefined)"

9 8 7 6 5

Walt Enable (0n=1, Off=O, AST="} ---1--+-------------~

Single Cycle (0n=1, Off=O, AST =0) ---<-+--------------'---!
Override (0n=1, Off-0, AST=·) ------------------~

• See Table 2-3

Figure 2·19. Wait-State Specifier Registers

0

Reserved

Bits 31-19: Wait-State Specifier-When an external access falls within an address range defined by
an ARSR and AMR, the corresponding wait-state specifier determines when, and
wheiher, ihe processor generates an internai -READY signai to terminate the access.

Count2 (Bits 31-27): The number of wait-states inserted before the internal -READY, under the fol-
lowing conditions: the Single Cycle bit equals O and the current access is on the
same page as the previous access. The number of wait-states i s the value of
this field + 1 (i.e., 0=1 wait-state, 1 =2 wait-states, etc.) The value of Count2 is
undefined on reset.

Count1 (Bits 26-22): The number of wait-states inserted before the internal -READY, under the fol­
lowing conditions: the Single Cycle bit equals O and the current access is not on
the same page as the previous access. The number of wait-states i s the value
of this field + 1 (i.e., 0=1 wait-state, 1 =2 wait-states, etc.) The value of Count1 is
undefined on reset.

Wait Enable (Bit 21): Enables and disables the wait-state generator for an individual address range.
If the Wait Enable bit of a wait-state specifier equals 0, the internal -READY is
not asserted when addresses in the corresponding range are accessed by the
processor. If Wait Enable is 1, the single cycle bit must be 0. See Table 2-3 for
reset value.

Single Cycle (Bit 20): Specifies the timing of the internal -READY signal. If the Single Cycle bit equals
1 when an address in the appropriate range is accessed, the internal -READY
is asserted in the same cycle. If the Single Cycle bit equals 0, and the current
transaction is in the same page as the previous transaction, then Count2 is
used as the number of cycles after which-READY is asserted internally. If the
transaction is not in the same page, Count1 is used instead. If Single Cycle is
enabled, the Wait Enable bit must be 0. See Table 2-3 for reset value.

Override (Bit 19): Allows the system to terminate a memory transaction before the internally spec­
ified time. If the Override bit equals 1, and external hardware asserts the exter­
nal-READY signal, then the wait-state generator will stop counting and will wait
for the neX1 transaction. This bit is cleared to O on reset.

Bits 18-6: Wait~State Specifier-The wait-state specifier for a second address range. This field is
organized just like bits 31-19.

Bits 5-0: Reserved

Programmer's Model - Registers

2-18

OJ
FUJITSU

System Support Control Register

The System Support Control Register enables or disables the various system-sup­
port features, independently of one another. However, the chip-select logic for
address range 0 is always enabled, regardless of the value in the System Support
Control Register. This register is located at address Ox00000080 with ASI Oxl (see
Table 2-3).

31 6543210

Reserved

Note: The chip select generation for Address
Range Specifier O is always enabled,
regardless of the value of the Chip Select
Enable Bit.

Same-Page Enable (0n=1, Off=O, RST =0)

Chip Select Enable (0n=1, Off=O, RST =0)

Programmable Wait-State (0n=1, Off=O, RST =1) ----'

Timer On/Off (0n=1, Off·O, RST =0) ----~

Reserved-----~

Figure 2-20. System Support Control Register

Bits 31-6: Reserved

Bit 5: Same-Page Enable-Enables (1) and disables (0) the same-page detection logic. When
this bit is 1, the -SAME_PAGE signal is asserted whenever the address of an external
access is on the same page as the previous access. The page size is controlled by the
Same-Page Mask Register (see above). When this bit is 0, -SAME_PAGE is never
asserted. The Same-Page Enable bit is cleared to 0 on reset.

Bit 4: Chip Select Enable-Enables (1) and disables (0) the generation of chip-select signals
for external accesses in address ranges 1 through 5. Regardless of the state of this bit,
however, -CSO is always asserted when the current address lies in address range 0. The
Chip Select Enable bit is cleared to 0 on reset.

Bit3:

Bit2:

Bits 1-0:

Note: Before enabling chip selects all chip select Address Mask and Address Range reg­
isters should be initialized so that two chip selects are never selected at the same time.

Programmable Wait-State-Enables (1) and disables (0) the programmable wait-state
generators for address ranges 1 through 7 (see the discussion of the Wait-State Specifier
Registers, above). Wait-state generation is always enabled for address range 0, regard­
less of the state of this bit. The Programmable Wait-State bit is set to 1 on processor
reset.

Timer On/Off-Enables (1) and disables (0) the timer. This bit is cleared to 0 on reset.

Reserved

Programmer's Model - Registers

2-19

SP ARClite User's Guide

, 2·3: System Support Register Summary

Chip
Selects

0

1

2

3

4

5

Affected by Address Range Specifier Address Mask Walt-State Specifier
Chip-8elect

Enable? Address Value at Reset Address Value at Reset Address Value at Reset
(ASl:OX01) (ASl:Ox01) (ASl:Ox01)

No N/A ASl=Ox09 oxoooo 0140 All mask bltsO OxOOOO 0160 Count 1,2 = 31
ADR<31 :10>=0 except (low halfword) Wait Enable=1

ADR<14:10> = 1 Single Cycle =0
Override=1

oxoooo 0124 oxoooo 0144 OxOOOO 0160
(high halfword)

oxoooo 1280 oxoooo 0148 oxoooo 0164
(low halfword)

Yes OxOOOO 012C Undefined OxOOOO 014C Undefined oxoooo 0164 Count 1,2 = Undefined

(high halfword) Wait Enable =0

oxoooo 0130 OxOOOO 0150 uxoooo 0168 Single O,•c!e =0

(low halfword)
Override;:()

OxOOOO 0134 oxoooo 0154 oxoooo 0168
(high halfword)

Timer Register

The Timer Register contains the current count of the internal 16-bit timer. When
the timer overflows, the processor asserts the -TIMER_ OVF signal and reloads
the Timer Register with the contents of the Timer Preload Register. The Timer
Register can also be loaded directly by writing to the address Ox00000174 with
ASI Oxl. The timer is clocked at the processor clock frequency.

31 16 15

Reserved

Figure 2·21. Timer Register

Timer Preload Register

Timer Value
(RST =Undefined)

0

The Timer Preload Register contains the value which is loaded into the timer
when the timer overflows. In effect, this register specifies the number of clock
cycles between assertions of the -TIMER_ OVF signal. The Timer Preload Register
is located at address Ox00000178 with ASI Oxl.

31 16 15

Reserved Timer Pre-Load Value
(AST =Undefined)

Figure 2-22. Timer Pre-Load Register

0

Programmer's Model - Registers

2-20

cO
FUJITSU

2.4 Data Types
Direct support is provided for signed and unsigned integers of various lengths, as
illustrated in Figure 2-23. A tagged word type is supported for tagged arithmetic, -
used in artificial intelligence applications. Other data types (character strings,
floating-point types, and so on) must be handled in software.

Signed Integer Byte 7 6 0
.-ls~I----~

I

Signed Integer Halfword 15 14 0
rsc-r-----------~

Signed Integer Word 31 30 0
~----------------------~ s

Signed Integer Double 31 30 0
so-oj .-s~i----------------------~ signed_integer [62:32] I

31 0
signed_integer [31 :OJ I SD-1 I

~---------~~~~~--------~

Unsigned Integer Byte 7 0
~----~

Unsigned Integer Halfword 15 0
~----------~

Unsigned Integer Word ,-3_1 ----------------------~O

Tagged Word .-3_1 _____________________ 2.,1____,o

tag

Unsigned Integer Double 31 O
UD-0 .-1 ---------u-ns-ig-n-ed-_i-nt-eg-e-r[6-2-:3-2]--------~I

~ 0

UD-1 ~I _________ un_si~gn_ed~_~in_te~ge_r~[3_1:0~] ________ ~1

Figure 2-23. Data Types

2.5 Instructions
SP ARClite provides an upward-compatible superset of the SPARC integer
instruction set. Each instruction is a single 32-bit word. There are only three basic
instruction formats, and few addressing modes.

The additional MB86930 instructions-integer divide-step, and scan for first
changed bit-are implemented to achieve higher performance in embedded
applications. Table 2-4 lists the MB86930 instruction set by function, and shows
how to interpret the instruction mnemonics.

Programmer's Model - Data Types

2-21

SP ARC lite User's Guide

Table 2·4: Instruction Mnemonics

Load and Store:

{
Byte

{ LoaD } { Signed } Halfword
ST ore Unsigned word

Double word

}{ normal }
Alternate

Control Transfer:

Logical:

atomic SWAP word
atomic Load-Store Unsigned Byte

Branch {integer CC } { normal }
Annul delay instr.

CALL
Trap on Integer CC
JuMP and Link
RETurn from Trap

{ ~~: } { ~~mal } { ~~;mal }

Arithmetic and Shilt:

{ ~~~~}{ ~~;~~ }
{ ~~~ } { ~~~~:~ed } { ~~;~~ }

Shift { Left } { Logical }
Right Arithmetic

Tagged { ADD } set cc { normal }
SUB Trap oVerflow

SCAN
DIVide Step set CC
MULtiply Step set CC
SETHI

Read/Write Control Registers:

{ ReaD }{~~~ }
WRite TBR

ASR

SAVE
RESTORE

In the MB86930 processor, the floating-point and coprocessor instructions defined
in the SP ARC architecture are trapped for software emulation.

Programmer's Model - Instructions

2-22

cP
FUJITSU

2.5.1 Instruction Formats

Figure 2-24 shows the three basic instruction formats.

Format 1 (op:1): CALL
31 0
op disp30

Format 2 (op=O): SETHI & Branches (Bice, FBfcc, CBccc)
31 30 29 28 25 24 22 21 0

rd op2 imm22
cond op2 disp22

Format 3 (op=2 or 3): Remaining instructions
31 30 29

op rd

op rd
op rd

op,op2,op3

25 24 19 18 14 13 12 5 4 0
op3 rs1 i=O asi rs2
op3 rs1 i=1 simm13

op3 rs1 opf rs2

Figure 2·24. Instruction Formats

One or more of these fields appear in every format to encode the
instruction. The 2-bit op field is used in all three formats, and is
interpreted as follows:

op Encoding (All Formats)

op Format Instructions

0 2 Bice, FBfcc, CBccc, SETHI
1 1 CALL
2 3 arithmetic, logical, shift and remaining
3 3 memory instructions

The 3-bit op2 field is used, along with the op field, to encode the
format 2 instructions, and is interpreted as follows:

op2 Encoding (Format 2)

op2 Instructions

0 unimplemented
1 unimplemented
2 Bice
3 unimplemented
4 SETHI
5 unimplemented
6 FBfcc
7 CBccc

Programmer's Model - Instructions

2-23

SP ARClite User's Guide

The 6-bit op3 field is used, along with the op field, to encode the
format 3 instructions. An Instruction Index by Operation Code is
given in Chapter 7 of this manual.

rd, rsl, rs2 These 5-bit fields contain register addresses, interpreted as dis­
cussed in the General-Purpose Registers section, above. The rd field
specifies the source operand for a store, or the destination oper­
and for some other operation. The rsl and rs2 fields specify
source operands.

disp30, disp22 These 30-bit and 22-bit fields contain word-aligned, sign­
extended, PC-relative displacements for a call or branch, respec­
tively.

a This bit is used in branch instructions to specify whether or not
the instruction following the branch can be annulled.

cond This 4-bit field selects the condition codes to test for a conditional
branch instruction.

imm22

simm13

asi

opf

Contains a 22-bit constant which the SETHI instruction places in
the upper end of a specified destination register.

Selects the second ALU operand for arithmetic and load/store
instructions. If i equals 1, the operand is r[rs2]. If i equals 0, the
operand is simm13, sign-extended from 13 to 32 bits.

Contains a sign-extended 13-bit immediate value used as the sec­
ond ALU operand for an arithmetic or load/ store instruction
when i equals 1.

Contains the 8-bit Address Space Identifier required for the load
alternate and store alternate instructions.

Encodes a floating-point operate or coprocessor operate instruc­
tion. All such instructions are trapped for software emulation.

2.5.2 Logical Instructions

The logical instructions perform bit-wise boolean operations. As shown in
Table 2-5, each logical instruction comes in two versions: one leaves the integer
condition codes in the Processor State Register unchanged; the other changes the
condition codes as a side-effect.

Programmer's Model - Instructions

2-24

cO
FUJITSU

Table 2·5: Logical Instructions

opcode operation

AND And
AN Dec And and modify ice
ANON And Not
ANDNcc And not and modify ice
OR Inclusive Or
ORcc Inclusive Or and modify ice
ORN Inclusive Or Not
ORN cc Inclusive Or Not and modify ice
XOR Exclusive Or
XO Rec Exclusive Or and modify ice
XNOR Exclusive Nor
XNORcc Exclusive Nor and modify ice

The logical instructions are all format 3 instructions. When the i field is 0, they
take their arguments from two source registers (r[rs1] and r[rs2]); when the i field
is 1, they take one argument from source register r[rs1] and the other from the
simm13 field (sign-extended to 32 bits). In both cases, the result is written to the
destination register r[rd].

2.5.3 Arithmetic and Shift Instructions
The integer arithmetic instructions are generally three-register instructions which
compute a result that is a function of the two source operands, and either write
the result into the destination register r[rd], or discard it. One of the source oper­
ands is always taken from register r[rs1]; the other source depends on the i bit in
the instruction. If i equals 0, the second operand is taken from register r[rs2]; if i
equals 1, the second operand is the value in the simm13 field of the instruction,
sign-extended to 32 bits. By specifying global register 0 as the destination, the
instruction effectively discards the result. (See Section 2.3.2, Special Uses of the r
Registers).

Besides the standard arithmetic operations, SP ARC provides instructions to per­
form tagged arithmetic. In tagged arithmetic, the two least-significant bits of each
operand are used to indicate the (user-defined) data type of the operand. The
tagged arithmetic instructions set a condition code if the tag of an operand is not
zero.

The shift instructions shift the contents of an r register by a constant or variable
number of bits. They do not affect the condition codes.

Programmer's Model - Instructions

2-25

I ..

SP ARClite User's Guide

Besides the instructions defined in the (Version 8) SPARC architecture, SP ARClite
provides:

• A divide-step instruction, which can be used to construct efficient iterative
integer division algorithms.

• A scan instruction, which determines the first bit in a word which differs from
the most-significant bit. The scan instruction can be used to simplify and
accelerate many important operations, like normalizing numbers with
redundant sign bits.

Add and Subtract

The integer addition and subtraction instructions, listed in Table 2-6, perform
two's-complement arithmetic. Each instruction comes in four versions: these
either affect integer condition codes in the Processor State Register or lea·ve tl1e111

unchanged and either include the carry bit in the result or ignore it.

Table 2·6: Addition and Subtraction Instructions

opcode operation

ADD Add
AD Dec Add and modify ice
ADDX Add with Carry
ADDXcc Add with Carry and modify ice

SUB Subtract
SU Bee Subtract and modify ice
SUBX Subtract with Carry
SUBXcc Subtract with Carry and modify ice

The integer addition and subtraction instructions are format 3 instructions. When
the i field is 0, they take their arguments from two source registers (r[rsl] and
r[rs2]); when the i field is 1, they take one argument from a source register and the
other from the simm13 field (sign-extended to 32 bits). The result is written to the
destination register r[rd].

In subtraction, the second argument, whether register (r[rs2]) or immediate
(simm13), is always subtracted from the first (r[rsl]).

The extended addition instructions ADDX and ADDXcc also add the carry bit (c)
of the Processor Status Register; that is, they compute either "r[rsl] + r[rs2] + c" or
"r[rsl] + sign-extended(simm13) +c," and store the result in r[rd].

The extended subtraction instructions SUBX and SUBXcc also subtract the carry
bit (c); that is, they compute either "r[rsl] - r[rs2] - c" or "r[rsl] - sign-extended(­
simm13) -c," and store the result in r[rd].

Programmer's Model - Instructions

2-26

cO
FUJITSU

Overflow occurs on addition if both operands have the same sign and the sign of
the sum is different. Overflow occurs on subtraction if the operands have differ­
ent signs and the sign of the difference differs from the sign of r[rsl].

A special comparison instruction for integer values is not needed, since it can be
easily synthesized from the SUBcc instructions (See Chapter 7).

Tagged Add and Subtract

The tagged arithmetic instructions, listed in Table 2-7, perform two's-complement
addition or subtraction on their operands.

Table 2·7: Tagged Arithmetic Instructions

opcode operation

TADDcc Tagged Add and modify ice
TAD Dec TV Tagged Add, modify ice and Trap on Overflow

TSU Bee Tagged Subtract and modify ice
TSU Bee TV Tagged Subtract, modify ice and Trap on Overflow

If either of operand has a non-zero tag, or if arithmetic overflow occurs, the
overflow bit of the Processor Status Register is set to 1. The trapping versions
(TADDccTV and TSUBccTV) also cause a tag_ overflow trap whenever they set
the overflow bit. Except for these special side effects, the tagged arithmetic
instructions work just like the ordinary addition and subtraction instructions,
which are described above.

TADDcc and TSUBcc modify the integer condition codes; TADDccTV and
TSUBccTV also modify the condition codes when they do not trap.

Multiply and Multiply-Step

The integer multiplication instructions, listed in Table 2-8, are directly supported
in hardware.

Table 2·8: Integer Multiply Instructions

opcode operation

UMUL Unsigned Integer Multiply
SMUL Signed Integer Multiply
UMULcc Unsigned Integer Multiply and modify ice
SMULcc Signed Integer Multiply and modify ice
MULScc Multiply Step and modify ice

The multiply instructions perform a signed or unsigned multiplication of a 32-bit
multiplicand (r[rsl]) and a 32-bit multiplier (either r[rs2] or simm13, sign-

Programmer's Model - Instructions

2-27

Ii
':!
fl

11

11

1·
rl

11

J

SP ARClite User's Guide

extended to 32 bits), resulting in a 64-bit product. The low order 32 bits of the
product are placed in the destination register (r[rd]), and the upper 32 bits of the
product are placed in the Y register.

In general, the multiplication requires 5 cycles, but there are three special cases of
early termination. If either the multiplier or the multiplicand is zero, the execution
takes 1 cycle. If the multiplier is an 8-bit integer or less, the execution takes 2
cycles. If the multiplier is a 9-bit to 16-bit integer, the execution takes 3 cycles.

UMUL and SMUL do not affect the integer condition codes. The effect of
UMULcc and SMULcc on the condition codes is shown in Table 2-7.

Table 2·9: Effect of Integer Multiplication on Condition Codes

ice bit

z
v
c

I UMULcc ~et if produci [31 j = 1
Set if product [31 :O] = 0
Zero
Zero

j SMULcc ~et if product i3ij = i
Set if product [31 :O] = 0
Zero
Zero

The multiply-step instruction, MULScc, treats r[rs1] and the Y register as a single,
64-bit, right-shiftable doubleword register. The least significant bit of r[rs1] is
treated as if it were the adjacent to the most significant bit of the Y register.

Multiplication with MULScc assumes that the Y register initially contains the
multiplicand, r[rs1] contains the most significant bits of the product, and r[rs2] (or
simm13) contains the multiplier. Upon completion of the multiplication, the Y reg­
ister contains the least significant word of the product. The operation of MULScc
is described in the Programming Considerations chapter.

Divide-Step

The divide-step instruction, DIVScc, performs one bit..,cycle of a non-restoring,
shift-before-add, signed or unsigned integer division algorithm. It operates on a
signed or unsigned dividend, with an unsigned divisor. It uses the integer condi­
tion code bits to carry the true sign of the remainder, and the previous quotient
bit, from one cycle to the next. Remainder and quotient are kept in correct relative
alignment because of the shift-before-add technique. Standard SP ARC instruc­
tions are therefore sufficient for initializing and terminating both signed and
unsigned division routines, eliminating the need for special divide-initialize,
divide-terminate or remainder correction instructions.

Division with DIVScc assumes that the Y register initially contains the most sig­
nificant word of the dividend, r[rs1] contains the least significant word of the div-

. idend, and r[rs2] (or simm13) contains the divisor. Upon completion of the
division, the Y register contains the remainder and r[rd] contains the quotient.

Programmer's Model - Instructions

2-28

OJ
FUJITSU

When DIVScc is used as expected, it will typically use the same register for rd and
rsl. One exception is a signed division with one word dividend, in which the ini­
tial value of r[rsl] is saved in the first divide step by using an rd different from
rs1.

DIVScc operates as follows:

1. The true sign is formed using the negative (n) and overflow (v) integer condi­
tion codes from the Processor Status Register. True sign = n XOR v.

2. The remainder is formed by upshifting the Y register (initially the most signifi­
cant word of the dividend) one bit, and setting the least significant bit of
remainder equal to most significant bit of r[rsl] (initially the least significant
word of the dividend).

3. The divisor is r[rs2] if the i field is 0, or simml3, sign-extended to 32 bits, if the i
field is 1.

4. If true sign= 0 (+),the ALU computes remainder - divisor. If true sign =1 (-),the
ALU computes remainder+ divisor.

5. Carry out from the ALU operation is noted as cO. The negative (n) condition
code is set to bit 31 of the ALU result. The zero (z) condition code is set if the
ALU result is 0 AND the true sign equals Y[31], else cleared.

6. The new true sign is formed as (true sign AND NOT Y[31]) OR (NOT cO AND
(true sign OR NOT Y[31])).

7. The overflow (v) condition code is formed as new true sign XOR bit 31 of the
ALU result. The carry (c) condition code is set to NOT new true sign. Y is set to
the 32-bit ALU result. If rd is not 0, then r[rd] is set to r[rs1], upshifted one bit
with NOT new true sign (the new quotient bit) in the least significant bit posi­
tion.

See the Programming Considerations chapter for sample signed and unsigned divi­
sion routines based on the DIVScc instruction.

Shih

The shift instructions, listed in Table 2-10, perform logical or arithmetic shifts on
values in r registers. The shift count for these instructions is either a constant (the
least significant 5 bits of simm13) or variable (the least significant 5 bits of r[rs2]),
depending on the value in the i field: The least significant 5 bits of the 2's comple­
ment of a shift count are the same as 32 minus the shift count. No shift occurs
when the shift count is 0.

Table 2·10: Shift Instructions

opcode operation

SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic

Programmer's Model - Instructions

2-29

~
I

SP ARClite User's Guide

SLL and SRL fill vacated bit positions with O's. SRA fills vacated bit positions with
the most significant bit of the r[rsl] operand; that is, SRA treats its result as a
two's-complement number, and sign-extends it to 32 bits. The shift instructions
do not affect the condition codes.

An arithmetic shift left can be effected using the ADDcc instruction.

Scan

The SCAN instruction scans a register from MSB to LSB looking for either the first
changed bit, first 1 or first 0 depending on the value of the source 2 operand.
SCAN is a superset to the standard SPARC instruction set. It is decoded in an
unused opcode and does not affect compliance with the SP ARC architecture stan­
dard.

The SCAN instruction is useful for supporting operations like floating-point nor­
malization by finding the number of sign bits in a single processor cycle. Data
compression schemes like run length encoding execute significantly faster using
SCAN as well.

SCAN works by computing the bitwise XOR of r[rsl] with a mask created by
right-shifting r[rs2] by one bit and sign-extending the result. It finds the first 1 in
the result, and writes this bit number to the destination register (r[rd]). Bit num­
bers range from 0 for the most significant bit to 31 for the least significant. If the
two operands are identical, the value 63 is written into r[rd].

Starting with the same number in r[rsl] and r[rs2], SCAN returns the number of
sign bits. Consider the first example shown in Figure 2-25. Both source registers
contain Ob00011.. .. The right-shifted, sign-extended, rs2 value is Ob000011..., and
the result of the bitwise XOR is ObOOOL .. The bit-position of the first 1 in this
result (counting from zero, from the left) is 3, which is also the number of sign bits
in the rsl value. Similarly, example 2 shows the case where the sign bits are ones.

By using global register 0, which always reads as 0, as the mask operand (rs2), the
bit position of the first 1 in rsl can be found, as in the third example shown in
Figure 2-25. Similarly, by using the immediate value -1, which extends to all l's,
as the mask operand, the bit position of the first 0 in rsl is found. (See example 4).

Programmer's Model - Instructions

2-30

SCAN does not affect the condition codes.

Example 1: finding the first changed bit (the first 1)

r[rs1] = Ob00011 ...
r[rs2] = Ob00011 ..
mask = Ob000011
xor = Ob00010 ...
r[d] =3

(source 1)
(source 2)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 2: finding the first changed bit (the first 0)

r[rs1] = Ob11100 ...
r[rs2] = Ob11100 ..
mask = Ob111100
xor = Ob00010 ...
r[d] = 3

(source 1)
(source 2)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

cO
FUJITSU

Example 3: finding the first 1

r[rs1] =0b00011 .. .
r[rs2] = ObOOOOO .. .
mask = ObOOOOOO
xor = Ob00010 ...
r[d] =3

(source 1)
(source 2, immediate value 0 or %g0)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 4: finding the first 0

r[rs1] =0b10000 .. .
r[rs2] =0b11111 .. .
mask =0b111111
xor =0b01111 ...
r(d] = 1

(source 1)
(source 2, immediate value -1)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Figure 2-25. Using the SCAN Instruction

Constants

The SETHI instruction loads a 22-bit immediate constant into an r register. SETHI
zeroes the 10 least-significant bits of r[rd], and replaces its 22 high-order bits with
the value from the imm22 field of the instruction. SETHI does not affect the inte­
ger condition codes. A SETHI instruction with rd = 0 and imm22 = 0 is the SP ARC
(Version 8) definition of a NOP.

2.5.4 Control Transfer Instructions

A control transfer instruction (CTI) is one which changes the value in the Next
Program Counter (nPC) register. There are five basic types of control transfer
instructions: conditional branches (Bice), calls (CALL), jumps (JMPL), returns
from trap (RETT), and conditional traps (Tice).

As shown in Table 2-11, the control transfer instructions can be classified accord­
ing to two criteria: how the target address is calculated, and when the control transfer
takes place, relative to the CTI.

Table 2· 11: Classification of Control Transfer Instructions

Control-Transfer Target Address Transfer Time
Instruction Calculation Relative to CTI

Bice PC-relative conditional-delayed
CALL PC-relative delayed
JMPL, RETT register-indirect delayed
Tice register-indirect-vectored non-delayed

Programmer's Model - Instructions

2-31

-

SP ARClite User's Guide

Three different schemes are used for computing target addresses:

• PC-Relative-Adds an address displacement to the current PC value. The disp30
(CALL) or disp22 (Bice) field of the instruction specifies the number of words
to be added to the PC; this number can be positive or negative. The disp value
is sign-extended, then left-shifted by two bits to create the (byte) address
displacement.

• Register-Indirect-Adds its two source operands (r[rsl] is always one of the
operands; the other is r[rs2] when i = 0, and simm13, sign-extended to 32 bits,
when i = 1).

• Register-Indirect-Vectored-Calculates the target address in two stages: it first
obtains a trap type by adding 128 to the least significant 7 bits of the sum of its
two source operands. r[rsl] is always one of the operands; the other is r[rs2]
when i = 0, and simm13, sign-extended to 32 bits, when i = 1. The trap type
number is then stored in the tt field of the Trap Base Register. The resulting
value in the TBR is the target address.

Control transfer can either occur immediately after the CTI, or be delayed. The
control transfer instructions fall into three classes:

• Delayed-Transfers control to the target address after a one-instruction delay.
The delay instruction-the one whose address is in the nPC register when a
delayed CTI is executed-is executed before the transfer of control to the
target address. Special care is required when the delay instruction is itself a
CTI; see the section on Delayed-Control Transfer Couples, below.

• Non-Delayed-Transfers control to the target address immediately after the
CTI is executed.

• Conditional-Delayed-Causes either a delayed or a non-delayed transfer of
control, depending on two things: the value of the a (annul) bit in the
instruction, and on whether or not the transfer itself is conditional. Details are
provided below, under the heading Branches.

Branches

The Bice instructions, listed in Table 2-12, perform program branches, either
unconditionally or conditioned on the current values of the integer condition
codes (bits 23-20 of the Processor Status Register). The branch target is specified
by a PC-relative displacement.

Programmer's Model - Instructions

2-32

cP
FUJITSU

Table 2· 12: Branch Instructions

opcode

BA
BN
BNE
BE
BG
BLE
BGE
BL
BGU
BLEU
BCC
BCS
BPOS
BNEG
BVC
BVS

cond operation ice test

1000 Branch Always 1
0000 Branch Never 0
1001 Branch on Not Equal notZ
0001 Branch on Equal z
1010 Branch on Greater not (Z or (N xor V))
0010 Branch on Less or Equal Z or (N xorV)
1011 Branch on Greater or Equal Not N xor V)
0011 Branch on Less N xor V
1100 Branch on Greater Unsigned not (Car Z)
0100 Branch on Less or Equal Unsigned (CorZ)
1101 Branch on Carry Clear (Greater than or Equal, Unsigned) note
0101 Branch on Carry Set (Less than, Unsigned) c
1110 Branch on Positive not N
0110 Branch on Negative N
1111 Branch on Overflow Clear not V
0111 Branch on Overflow Set v

The unconditional branch BA causes a PC-relative delayed control transfer,
regardless of the integer condition code values. If the a (annul) field is 0, the delay
instruction is executed; if the a field is 1, the delay instruction is annulled (not exe­
cuted).

The unconditional branch BN does not cause a transfer of control. BN acts like a
NOP when its a (annul) field is 0. When its a (annul) field is 1, the following
instruction (i.e., the delay instruction) is annulled.

The Bice instructions other than BA and BN perform conditional branches, based
on the current values of the integer condition codes. The test condition is coded
into the cond field of the instruction, as shown in Table 2-12. If the test condition
evaluates as true, the branch is taken, otherwise, no transfer of control takes place.

If a conditional branch is taken, the delay instruction is always executed, no mat­
ter what the value of the a (annul) field. If a conditional branch is not taken, and
the a (annul) field is 1, then the delay instruction is annulled.

Programmer's Model - Instructions

2-33

-

SP ARClite User's Guide

Table 2-13 summarizes the conditions under which the delay instruction is exe­
cuted, for the various types of branches.

Table 2· 13: Conditions for Executing Delay Instructions

a bit type of branch Delay instruction
executed?

a=O unconditional YES
conditional, taken YES
conditional, non taken YES

a=1 unconditional NO (annulled)
conditional, taken YES
conditional, non taken NO (annulled)

The effect of a branch instruction on the processor pipeline is shown in
Figure 2-26.

Fetch

Decode

Execute

Memory

Write-Back

Delay instruction may be annulled in
which case it is treated as a NOP

br delay

br

target

delay

br

Inst 1

target

delay

br

Inst 1

target

delay

br

Inst 1

target

delay

Inst 1

target

Figure 2-26. Pipeline Sequence: Branch

Call and Link

Inst 1

The CALL instruction writes the contents of the PC (i.e., the address of the CALL
itself) into out register 7 (r[lS]) of the current window. It then causes a delayed
control transfer to a PC-relative target address. The instruction field that specifies
the address displacement is 30 bits wide, so CALL can be used to transfer control
anywhere in the address space. The call instruction pipeline sequence is identical
to Figure 2-26, except that the delay instructions cannot be annulled.

Jump and Link

The JMPL instruction writes the contents of the PC (i.e., the address of the JMPL
itself) into the destination register r[rd]. It then causes a delayed control transfer to
a register-indirect target address. If the target address is not word-aligned, a
mem_address_not_aligned trap occurs.

Programmer's Model - Instructions

2-34

cO
FUJITSU

Forced "no operation"

Fetch jmpl delay nop target inst1

Decode jmpl delay nop target inst1

Execute jmpl delay nop target inst1

Memory jmpl delay nop target inst1

Write-Back jmpl delay nop target inst1

Figure 2-27. Pipeline Sequence: Jump and Link

Return from Trap

Unless it causes a trap, the RETT instruction does four things: it increments the
Current Word Pointer (modulo 8), causes a delayed control transfer to the regis­
ter-indirect target address, restores the processor to the operating mode (user or
supervisor) it was in before the trap was taken, and enables traps.

If traps are enabled (i.e., if the ET bit of the Processor Status Register is set to 1),
RETT will always cause a trap. A privileged_instruction trap will occur if the pro­
cessor is in user mode, and an illegal_instruction trap will occur if the processor is
in supervisor mode.

If traps are disabled (ET= 0), RETT can cause the following traps, in decreasing
order of priority:

• Privileged_instruction, if the processor is in user mode.

• Window _underflow, if the new CWP corresponds to a set bit in the Window
Invalid Mask register.

• Mem_address_not_aligned, if the target address of the control transfer is not
word-aligned.

In these cases, the processor will write the appropriate trap type number into the
tt field of the PSR, enter the error state, and halt.

Forced "no operation"

Fetch jmpl rett nop target inst1

Decode jmpl rett nop target inst1

Execute jmpl rett nop target inst1

Memory jmpl rett nop target inst1

Write-Back jmpl rett nop target inst1

Figure 2-28. Pipeline Sequence: RETI

Programmer's Model - Instructions

2-35

•

SP ARClite User's Guide

Sohware Traps

The Tice instructions, listed in Table 2-14, generate the trap_instruction trap,
either unconditionally or conditioned on the current values of the integer condi­
tion codes (bits 23-20 of the Processor Status Register). Tice can be used to imple­
ment breakpoints, traces, and system calls. It can also be used for run-time checks,
such as out-of-range array indexes or integer overflow.

Table 2· 14: Trap Instructions

opcode

TA
TN
TNE
TE
TG
TLE
TGE
TL
TGU
TLEU
TCC
TCS
TPOS
TNEG
TVC
TVS

cond operation ice test

1000 Trap Always 1
0000 Trap Never 0
1001 Trap on Not Equal not Z
0001 Trap on Equal z
1 f'\-1 l"I T .. -- -- r"-~--'"-- noi (Z or (N xor V)) IVIU I I aJJ UI I UI t;;ctLt;;I

0010 Trap on Less or Equal Z or (N xor V)
1011 Trap on Greater or Equal Not N xor V)
0011 Trap on Less N xorV
1100 Trap on Greater Unsigned not (Cor Z)
0100 Trap on Less or Equal Unsigned (C or Z)
1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C
0101 Trap on Carry Set (Less than, Unsigned) c
1110 Trap on Positive not N
0110 Trap on Negative N
1111 Trap on Overflow Clear notV
0111 Trap on Overflow Set v

The Tice instructions evaluate a boolean test condition based on the current val­
ues of the integer condition codes. The test condition is coded into the cond field of
the instruction, as shown in Table 2-14. If the test condition evaluates as true, and
no higher-priority trap or interrupt request is pending, the trap _instruction trap is
generated. Otherwise, the instruction behaves like a NOP. The test condition for
TA always evaluates as true, the condition for TN evaluates as false.

When Tice generates a trap, the trap type is written into the tt field of the Trap
Base Register. The trap type is calculated by adding 128 to the seven least signifi­
cant bits of the sum of the two instruction operands. Register r[rsl] is always one
of the operands; the other is r[rs2] when i = 0, and simm13, sign-extended to 32
bits, when i = 1. The 25 most significant bits of r[rs2], or the 6 most significant bits
of simm13, are unused and should be supplied as 0 by software.

Control is then transferred to the address in the TBR. The processor enters super­
visor mode, disables traps, decrements the CWP (modulo 8), and saves the PC
and nPC into r[17] and r[18] (local registers 1 and 2) of the new window. See the
section on Interrupts and Traps, below.

Programmer's Model - Instructions

2-36

0)

FUJITSU

Delayed Control-Transfer Couples

When a delayed control-transfer instruction is followed by another control-trans­
fer instruction, the pair of CTI' s is called a delayed control-transfer couple (DCTI
couple). The order of execution for DCTI couples is illustrated by the examples in
Table 2-15.

Table 2· 15: Order of Execution for Delayed Control-Transfer Couples

Case 12: CTI 40 16: CTI 60 Order of Execution by Address

1 DCTI unconditional DCTI taken 12, 16, 40, 60, 64 ...
2 DCTI unconditional B*cc (a=O) untaken 12, 16, 40, 44, ...
3 DCTI unconditional B*cc (a=1) untaken 12, 16, 44, 48, ... (40 annulled)
4 DCTI unconditional B*A(a=1) 12, 16, 60, 64, ... (40 annulled)
5 BA (a=1) any CTI 12, 40, 44, ... (16 annulled)
6 B*cc DCTI 12, 16, 40, 60, 64, 68 ...

Note: Where the a bit is not indicated above, it may be either 0 or 1. See next table for abbreviations.

Abbreviations used in Previous Table

Abbreviation Refers to Instructions

B*cc Bice (including SN, but excluding BA)
DCTI unconditional CALL, JMPL, RETT, or BA (with a=O)
DCTI taken CALL, JMPL, RETT, BA (with a=O), or B*cc taken

In the first five cases in Table 2-15, the first instruction causes an unconditional
control transfer. Common examples of such DCTI couples are the JMPL, RETT
sequences that can be used to return from a trap handler. In Case 6, the first
instruction is a conditional branch; the order of execution is implementation­
dependent.

2.5.5 Load and Store Instructions

The load and store instructions are the only ones that access memory and I/0,
allowing bytes, half-words, words and doublewords to be transferred to and from
processor registers.

Addressing modes are few and simple: the effective memory address is r[rsl] +
r[rs2] when i = 0, and r[rsl] + (simm13, sign-extended to 32 bits) when i = 1. The
destination field, rd, specifies the register that supplies the data for a store, or
receives it for a load.

The SP ARC addressing convention is big-endian: the address of a halfword,
word, or doubleword is the address of its most significant byte; increasing the
address generally decreases the significance of the unit being addressed.

Programmer's Model - Instructions

2-37

•

SP ARClite User's Guide

Attempts at unaligned accesses are trapped. An aligned doubleword address is
divisible by 8, an aligned word address is divisible by 4, and an aligned half-word
address is divisible by 2. If a load or store instruction generates an improperly
aligned address, a memory _address_not_aligned trap occurs, and the access must
be performed piecemeal under software control.

When performing an access, the processor generates an 8-bit Address Space Iden­
tifier along with the address. The ASI assignments for SP ARClite are shown in
Figure 1-1 in the Overview chapter. For a normal load or store instruction, the IU
automatically supplies an ASI of OxOA (user data space) or OxOB (supervisor data
space), depending on the current operating mode of the processor.

Privileged instructions exist for accessing the other address spaces. These instruc­
tions supply the Address Space Indicator explicitly in their asi fields. The "register
+ immediate" addressing mode is not available for these instructions; they cause
an illegal_instruction trap if their i field is set to 1.

Load

The load integer instructions, shown in Table 2-16, copy data from memory into
general-purpose registers. Bytes, half-words and words are copied into the desti­
nation register r[rd]. Doublewords are copied into an even-next odd r-register
pair.

Table 2· 16: Load Instructions

opcode operation

LDSB Load Signed Byte
LOSH Load Signed Halfword
LDUB Load Unsigned Byte
LDUH Load Unsigned Halfword
LD Load Word
LDD Load Doubleword

LDSBAt Load Signed Byte from Alternate space
LDSHAt Load Signed Halfword from Alternate space
LDUBAt Load Unsigned Byte from Alternate space
LDUHAt Load Unsigned Halfword from Alternate space
LDAt Load Word from Alternate space
LDDAt Load Doubleword from Alternate space

t. privileged instruction

Fetched bytes and halfwords are right-justified in the destination register r[rd],
and either sign-extended or zero-extended on the left, depending on whether the
load is signed or unsigned.

For a doubleword load, the effective memory address is that of the most signifi­
cant word. This word is copied into the even-numbered register r[rd]; the last bit

Programmer's Model - Instructions

2-38

6)

FUJITSU

of the rd field is ignored, and should be supplied as 0. The least significant word is
copied from the effective memory address + 4 into the following odd-numbered r
register. A successful doubleword load operates atomically.

Execute

Memory

Write-Back

Store

ldd ldd(d)

ldd

Stalled instructions

inst 1

ldd(d)

ldd

Inst 2

inst 1 Inst 2

inst 1

Figure 2-29. Pipeline Sequence: Load Double

Inst 2

The store integer instructions, shown in Table 2-17, copy data from r registers into
memory. Bytes, half-words and words are copied from the register r[rd]. Double­
words are copied from an even-odd r register pair.

Table 2· 17: Store Instructions

opcode operation

STB Store Byte
STH Store Halfword
ST Store Word
STD Store Doubleword

STBAt Store Byte into Alternate space
STHAt Store Halfword into Alternate space
STAt Store Word into Alternate space
STDAt Store Doubleword into Alternate space

t. Privileged instruction.

Byte (and halfword) stores take their data from the least significant byte (or half­
word) of the register r[rd].

For a doubleword store, the effective memory address is that of the most signifi­
cant word. This word is copied from the even-numbered register r[rd]; the last bit
of the rd field is ignored, and should be supplied as 0. The least significant word is
copied from the following odd-numbered r register to the effective memory
address + 4. A successful doubleword store operates atomically.

Programmer's Model - Instructions

2-39

I

..J
I
I

SPARClite User's Guide

Atomic Load-Store

The atomic load-store instructions, LDSTUB and LDSTUBA, copy a byte from
memory into r[rd], and then rewrite the addressed byte with the value OxFF. Inter­
rupts and deferred traps cannot separate the load operation from the store.

Table 2· 18: Atomic Load-Store Instructions

opcode operation

LDSTUB Atomic Load-Store Unsigned Byte
LDSTUBAt Atomic Load-Store Unsigned Byte into Alternate space

t. Privileged instruction.

Swap

The SW AP and SW AP A instructions exchange the contents of r[rd] and the
addressed memory location. Interrupts and deferred traps are not permitted to
intervene.

Table 2·19: Swap Instructions

opcode operation

SWAP SWAP r register with memory
SWAPAt SWAP r register with Alternate space memory

t. Privileged instruction.

2.5.6 Read and Write Control Register Instructions

These instructions access the SP ARC control and status registers. Except for SA VE
and RESTORE, each one reads or writes the contents of an entire register. SA VE
and RESTORE decrement and increment (respectively) the Current Word Pointer
field of the Program Status Register.

Read Control Register

Each of the instructions shown in Table 2-20 copies data from a particular SPARC
register into the destination register r[rd].

Table 2·20: Read Control Register Instructions

opcode operation

RD AS Rt Read Ancillary State Register
ROY Read Y Register
RDPSRt Read Processor State Register
RD WI Mt Read Window Invalid Mask Register
RDTBRt Read Trap Base Register

t. Privileged instruction.

Programmer's Model - Instructions

2-40

c9
FUJITSU

The rsl field of the RDASR instruction specifies which Ancillary State Register
(ASR) is to be read. In SPARClite, only ASR16 and ASR17 are implemented.
Attempts to read any other ASR result in an illegal_instruction trap. I

Write Control Register

Each of the instructions shown inTable 2-21 copies data into the writable fields of
a particular SP ARC register. The data to be written is calculated as the bitwise
XOR of the two source operands. Register r[rsl] is always one of the sources; the
other is r[rs2] when i = 0, and simm13, sign-extended to 32 bits, when i = 1.

The write control register instructions cause delayed writes. In a delayed write, the
new value of the register is not available for some number of instructions after the
write instruction. Table 2-21 shows the number of delay instructions for the
SPARClite family processors. (Note: The SPARC architecture allows the number
of delay instructions to take up to 3 cycles. If it is important to assure code com­
patibility with all implementations of SP ARC the maximum delay should be
assumed).

Table 2·21: Write Control Register Instructions

opcode operation
write delay

(cycles)

WRASRt Write Ancillary State Register 0
WRY Write Y Register 0
WRPSRt Write Processor State Register 2
WRWIMt Write Window Invalid Mask Register 2
WRTBRt Write Trap Base Register 2

t. Privileged instruction.

Attempts to use or modify the contents of a register (except for the Y Register),
after writing to it with a write control register instruction, have the following
results:

1. Writing to any field of the same register within the write delay makes the con­
tents of that field undefined.

Exception: A second instance of the same write control register instruction,
even if it follows within three instructions of the first, will write the register as
intended.

Note that many instructions implicitly write fields (Current Word Pointer, Inte­
ger Condition Codes) of the Program Status Register: the logical and arith­
metic instructions whose mnemonics end in "cc"; SAVE and RESTORE; Tice
(when taken); and CALL.

Programmer's Model - Instructions

2-41

-

SPARClite User's Guide

2. Reading any changed field of the same register within the write delay yields an
unpredictable value.

Note that many instructions implicitly read fields of the PSR: ADDX, SUBX,
MULScc, DIVScc; SA VE and RESTORE; Bice and Tice.

3. If any of the two instructions following a write control register instruction
causes a trap, a read control register instruction in the trap handler will get the
register's new value.

If any of the two instructions following a WRTBR causes a trap, the Trap Base
Address used will be the new value of the TBA field.

If any of the two instructions following a WRPSR causes a trap, the values of
the S and CWP fields read from the PSR while taking the trap will be the new
values.

WRPSR appears to write the ET and PIL fields immediately with respect to inter­
rupts.

If an WRPSR instruction would cause the CWP field of the Processor Status Regis­
ter (PSR) to point to an unimplemented window, it causes an illegal_instruction
trap instead, and does not modify the PSR in any way.

The rsl field of the WRASR instruction specifies which Ancillary State Register
(ASR) is to be written. In SPARClite, only ASR17 is implemented. Attempts to
write any other ASR result in an illegal_instruction trap.

Modify Current Word Pointer

The SAVE instruction decrements the Current Window Pointer (CWP) field of the
Processor Status Register, thus saving the caller's window. The RESTORE instruc­
tion increments the CWP, restoring the caller's window. CWP arithmetic is per­
formed modulo 8, the number of implemented windows.

If the new CWP value corresponds to a bit of the Window Invalid Mask register
that is set to 1, a trap is generated: the window_overflow trap for a SAVE, and the
window_underflow trap for a RESTORE.

If a trap is not generated, then, besides modifying the CWP, both SAVE and
RESTORE act like integer addition instructions. The source operand fields rsl and
(when i = 0) rs2 are interpreted as register addresses in the old window, while
destination field rd is interpreted as a register address in the new window.

The SA VE instruction can be used to allocate a new window in the register file,
and a new software stack frame in memory, in a single atomic operation. See the
Programming Considerations chapter for details.

Programmer's Model - Instructions

2-42

cO
FUJITSU

2.6 Data and Instruction Caches
Each member of the SP ARClite family contains separate data and instruction _

1

1

caches on-chip. The caches are designed for maximum flexibility of operation. -
Under software control, individual entries or entire banks can be locked. The data
cache can be decoupled from external memory and used as a fast on-chip scratch-
pad RAM. This section discusses the structure and operation of the caches, as
seen from the programmer's point of view.

2.6.1 Structure

In the MB86930 processor, each cache is 2 Kbytes in size, divided into 128 lines of
4 words (16 bytes) each. The contents of the cache data memory and tag memory
is undefined at reset.

The cache organization, illustrated in Figure 2-30, is two-way set associative; that is,
each address in memory can be cached in either of two locations. Each cache is
divided into two banks, with 64 li.'les per bank. The 64 pairs of lines are called sets.
On a cache access, the address bits ADR[9:4] are used to select a set; the corre­
sponding data or instruction values can be in either bank.

word3 word 2 word1 wordO SET word3 word2 word 1 wordO

I I I I :

0

I I I

•

I
2

3

• . • • • • • .
• • • • • • • • • • • • • • • •

63

BANK1 BANK2

Figure 2-30. Cache Organization

Associated with each cache line is a tag, which indicates the memory location to
which the line is currently mapped, and contains status information for the
cached data or instructions. Data cache tags are located in the address space with
ASI OxE, and instruction cache tags in the address space with ASI OxC (see
Table 2-22). A cache entry consists of a cache line together with the corresponding
tag. The structure of a cache tag is illustrated in Figure 2-31.

Programmer's Model - Data and Instruction Caches

2-43

SPARClite User's Guide

31

Address TAG
(RST =Undefined)

10 9

Sub Block Valid (Valid=1, lnvalid=O, RST =Undefined)

6 5

User/Supervisor (User=O, Supervisor=1, RST =Undefined) ----~

1 0

Least Recently Used (RST =Undefined) --------~

Entry Lock (Locked=1, Unlocked=O, RST =Undefined) ------------'

Figure 2-31. Cache Tag

Bits 31-10: Address Tag-Contains the 22 most significant bits of the memory address of the data or
instructions cached in the corresponding line. Undefined on reset.

Bits 9-6:

Bit5:

Bits 4-3:

Bit 1:

Bit 0:

Sub-Block Valid-Contains one Valid bit for each of the 4 words in the corresponding line.
When a Valid bit is 1, it indicates that the corresponding cache word contains a current
data or instruction value for the address indicated by the tag. Undefined on reset.

User/Supervisor-Indicates whether the data or instructions cached in the corresponding
line come from user space (User/Supervisor bit= 0) or from supervisor space (User/
Supervisor bit= 0). Undefined on reset.

Reserved

Least Recently Used (Bank 1 Only)-lndicates, for a given set, which bank contains the
least recently used entry. When this bit is 1, it indicates that the entry in Bank 1 was the
least recently used. Otherwise, Bank 2 was the least recently used. The value of this bit
determines which of the two entries is replaced when a new line needs to be allocated,
and both entries are valid. Undefined on reset.

Entry Lock-Locks the current address into the cache tag entry. An access which com­
petes with currently locked entries in both banks of the cache is treated as non-cache­
able. Undefined on reset.

A faster way to set and clear the tag entry-lock bits is to write the Tag Lock Bit
addresses as shown in Table 2-22. Writes to these locations map to the same entry
lock bits in the instruction and data cache tags described in Figure 2-31 above. The
advantage of writing the entry lock bit using these alternate memory locations is
that only the lock-bit is affected on a write, the reset of the associated tag is not
affected. The same operation using the cache tag address would require a read­
modify-write so as not to change the rest of the tag value.

Programmer's Model - Data and Instruction Caches

2-44

cP
FUJITSU

31 0

Entry Lock (Locked=1, Unlocked=O, RST =Undefined;
~I

Figure 2-32. Tag Lock Bit

Bit 0: Entry Lock- Locks the current address into the cache tag entry. An access which com­
petes with a currently locked entry in the cache is treated as non-cacheable. Writing this
bit has the same effect as writing the corresponding bit in the cache tags except that the
rest of the tag remains unaffected by a write to this location.

Table 2-22: Cache Tag Addresses

Bank 1 Bank2

Cache Tag
Tag Lock Bit

Cache Tag
Tag Lock Bit SET Address SET Address

ASl:OxC
ASbOx2

ASl:OxC
ASl:Ox2

Q)
.s::
()

0 Ox 0000 0000 Ox 0000 0000 0 Ox 8000 0000 Ox 8000 0000 111
0 1 Ox 0000 0010 Ox 0000 0010 1 Ox 8000 0010 Ox 8000 0010 c:

2 Ox 0000 0020 Ox 0000 0020 2 Ox 8000 0020 Ox 8000 0020 0
;: 3 Ox 0000 0030 Ox 0000 0030 3 Ox 8000 0030 Ox 8000 0030 ()

2 4 Ox 0000 0040 Ox 0000 0040 4 Ox 8000 0040 Ox 8000 0040
7i)
.5

63 Ox 0000 0400 Ox 0000 0400 63 Ox 8000 0400 Ox 8000 0400

Cache Tag
Tag Lock Bit

Cache Tag
Tag Lock Bit

SET Address SET Address
ASl:OxE

ASl:Ox3
ASl:OxE

ASbOx3

Q) 0 Ox 0000 0000 Ox 0000 0000 0 Ox 8000 0000 Ox 8000 0000 .s::
() 1 Ox 0000 0010 Ox 0000 0010 1 Ox 8000 0010 Ox 8000 0010
111
0 2 Ox 0000 0020 Ox 0000 0020 2 Ox 8000 0020 Ox 8000 0020
111 3 Ox 0000 0030 Ox 0000 0030 3 Ox 8000 0030 Ox 8000 0030 10 4 Ox 0000 0040 Ox 0000 0040 4 Ox 8000 0040 Ox 8000 0040 c

63 Ox 0000 0400 Ox 0000 0400 63 Ox 8000 0400 Ox 8000 0400

2.6.2 Operation

This section discusses software initialization of the caches and the various cache
operating modes.

Programmer's Model - Data and Instruction Caches

2-45

SP ARClite User's Guide

Initialization

On reset, both caches are turned off, and all memory requests are sent to the Bus
Interface Unit. In order to use the caches, software must initialize the Valid, Least
Recently Used and Entry Lock bits by writing O's to the appropriate alternate
address spaces. After initializing the cache, a program can write l's to the Cache
Enable bits of the Cache/BID control register to turn the caches on. Due to the
pipeline in the IU, all writes are delayed by three instruction cycles.

Norma/ Operation

Accesses to the user and supervisor data spaces, and fetches from the user and
supervisor instruction spaces, are generally cacheable. Stores to the instruction
address space are not supported. Loads and stores to alternate memory spaces are
not cacheable. I/O registers and other locations that need to be prevented from
being cached should therefore be mapped to an alternate space. Atomic load/
store transactions, including the SWAP instruction, are not cacheable. If an atomic
operation references data already in cache, the entry for that data will be invali­
dated.

On any cacheable access, the address bits ADR[9:4] are used to select a set in the
appropriate cache. Address bits ADR[3:2] are used to select a word from each of
the two lines in the set; the Valid bits corresponding to those words are checked.
The address bits ADR[31:10] are compared with the address tags. The User/
Supervisor bit is tested against the ASI indicated by the IU.

A cache hit occurs if all of the following are true; otherwise, a cache miss occurs:

• ADR[31:10] matches the address tag in either set.

• The User/Supervisor bit corresponds to the ASI indicated by the IU.

• The Valid bit corresponding to the word being accessed is 1.

In the case of a read hit, the requested data or instruction is in the cache. The data
or instruction is returned to the IU, and the pipeline is not held up. The LRU bit is
updated. The lock bit may be updated based on the value of the Cache Entry Auto
Lock bit in the Lock Control Register (see Locking Modes, below).

A read miss freezes the IU pipeline, and sends the request on to external memory.
Though each cache line is four words long, only a single word is fetched on a
miss. Assuming neither global nor local locking is in force, the fetched word will
overwrite the appropriate word in one of the entries in the set. (Under global or
local locking, a different policy is followed; see Locking Modes, below).

Sometimes a read miss occurs only because the Valid bit for the requested word is
not set. In this case, a cache line has already been allocated for a 4-word memory
block which includes the requested address. The fetched word simply overwrites
the appropriate word in this line; the Valid bit for the word is then set.

Programmer's Model - Data and Instruction Caches

2-46

0)

FUJITSU

Otherwise, a new line needs to be allocated on a read miss, and one of the two
entries in the set corresponding to the requested address must be selected for
replacement. The least recently used entry, as determined by the Least Recently
Used bit for the set, is replaced. The fetched word overwrites the appropriate
word in this line; its Valid bit is then set, and the Valid bits for the other words in
the line are cleared.

The data cache follows a write-through memory update policy. On a write hit, the
data is written both to the cache and to main memory (write-through). If there is a
write miss, the data is written only to the external memory (no write-allocate). (A
different policy is followed if the write is to a locked location; see Locking Modes,
below.)

Locking Modes

Without locking, read misses can cause cache lines to be re-allocated. Entire
caches, or selected entries corresponding to time-critical routines, however, can
be locked into cache. Locked entries cannot be re-allocated. Thanks to the set­
associative organization, one bank of each cache can continue to operate as a fully
functional direct-mapped cache, no matter how many entries in the other bank
are locked.

On a read miss, if one of the entries in the addressed set is locked, the unlocked
one is re-allocated, whether or not it was the least recently used. If both entries, or
the entire cache, are locked, then the access will be treated as non-cacheable.

Writes to locked data entries, moreover, are not written through to main memory.
In this way, a portion of the data cache can be used as fast on-chip RAM which is
not mapped to external memory.

There are two modes of cache locking:

• Global Locking - Affects an entire cache. When a cache is locked in this way,
valid entries are not replaced; invalid words in allocated cache locations will
be updated. Bits in the cache/Bus Interface Unit Control Register enable or
disable the global locking mode independently for each cache. Enabling global
locking does not affect the Entry Lock bits of individual Cache lines; when
global locking is subsequently disabled, lines with clear Entry Lock bits are
once again subject to re-allocation.

• Local Locking-Affects individual cache lines.

Bits in the Lock Control Register enable or disable, independently for each cache,
an auto lock mode in which all subsequent cache accesses automatically set the
Entry Lock bit of the accessed entry. Software can also lock and unlock an indi­
vidual entry by writing the lock bit in that entry's tag.

Programmer's Model - Data and Instruction Caches

2-47

j .. 1

11

Ii
I!
1:

Ii

I
11

~
I

SP ARC lite User's Guide

With auto-locking enabled for either the instruction or data cache, any lines
accessed in that cache have their entry-lock bit set. This makes it easy to lock a
routine into the cache by setting the auto lock bit in the Lock Control Register at
the beginning of the routine and then executing the routine to lock the entries.
The auto lock bit is cleared in one of two ways. Normally, software clears the auto
lock bit at the end of the routine being locked. If a trap or interrupt occurs the auto
lock bit will be cleared by hardware. This disables the locking mechanism so that
the service routine is not locked into cache by mistake.

Two registers are provided to make it easy to re-enable the auto locking when the
processor returns from the interrupt. The value of the Lock Control Register
before the interrupt is automatically saved in the Lock Control Save Register
when an interrupt or trap occurs. To restore the correct auto-lock value on return
from the service routine, software sets a hit in the Restore Lock Control Register.
This will cause the value saved in the Lock Control Save Register to be moved to
the Lock Control Register when a RETT is executed (see Figure 2-33).

or
or
sta

Code to be locked { :

%g0, Ox4, %10
%g0, Ox1, %g1
%g1, [%10]1

Lock Register Values

O Restore Lock Control Register
'--------~~

1 enable instruction auto-lock J l~I ------~I _x~l _x_,I Lock Control Save Register

~~------~l_o~l_1~I Lock Control Register

Traporlnterrupt --------------------------------

Service Routine { ~

End of Trap or Interrupt

or
rd
and
wr
sta
nop
nop
nop
jmpl
rett

%g0, Ox1, %g 1
%psr, %g1
%g1, Oxffdf, %g1
%g1, %g0, %psr
%g1,[%10]1

'-··-{
or o/ogO, OxO, %10
or %g0, Ox1, %g1
sta %g1, [%10]1

! get current psr

! disable traps

.__ ______ ___.__o_, Restore Lock Control Register

_______ I _o~l_1_I Lock Control Save Register

_______ I _o~l_o_I Lock Control Register

!setRestoreLockbit-; ~
----L._______L_ Restore Lock Control Register

.__ _____ ___._I _o~l _1_,I Lock Control Save Register

.__ _____ ___._I _o~l_o_,I Lock Control Register

O Restore Lock Control Register
-------~~

_______ I _x~l_x_I Lock Control Save Register

_______ I _o~l_1_I Lock Control Register

! disable instruction auto-lock~[~-----~~~ .-------~o~ Restore Lock Control Register

I X I X I Lock Control Save Register

.__ _____ ___._I _o~l_o~I Lock Control Register

Figure 2·33. Caches

Programmer's Model - Data and Instruction Caches

2-48

oO
FUJITSU

2. 7 Interrupts and Traps
An interrupt or trap (other than reset) causes a vectored transfer of control
through a trap table which contains the first four instructions of each service rou- •
tine. The Trap Base Address field in the Trap Base Register contains the base
address of the table. Associated with each trap type is an 8-bit number, which
(left-shifted by 4 bits) is used as an offset into the table. From the trap table, con-
trol typically passes (via a JMPL instruction) to the appropriate trap handler. The
control transfer for traps other than reset and breakpoint traps is illustrated in
Figure 2-34. Reset always traps to address 0 and breakpoints always traps to
Ox000003FO.

initialized by kernel

Trap Base Address (high 20 bits)

trap/interrupt (in) trap/interrupt (out)

'
tt (trap type) I O O O O I TBR

.J

~--Tr_ap_t_ab_le_~ - TBA

} ti• 16 (bytes)

~------------<
instruction 1

instruction 2
instruction 3

------------------·----------~

instruction 4

Trap handler
routine

1:1
t=Ej

Figure 2-34. Trap and Interrupt Vectoring

A feature called single vector trapping allows all traps to vector to a single location,
specified by the 20 high-order bits of the TBR, filled out on the right with O's.
After the trap is taken, the trap type can be determined by reading the tt field of
the TBR. Single vector trapping can save code space and improve the response
time of traps, since all of the trap service routines can potentially fit in cache. This
feature, disabled at reset, can be enabled by setting the SVT bit of ASR17.

The Trap Enable bit (ET) of the Processor State Register enables (ET= 1) and dis­
ables (ET= 0) interrupts and traps. When ET= 0, interrupts are ignored, and traps
cause the Integer Unit to halt and enter the error mode.

The processor provides direct support for 15 interrupt priority levels. The exter­
nal interrupt request level (on input pins IRL[3:0]) is compared with the value in
the Processor Interrupt Level field of the PSR. If the request level equals 15, or if it
exceeds the PIL value, the interrupt is taken.

Programmer's Model - Interrupts and Traps

2-49

SP ARClite User's Guide

2. 7 .1 Trap Types

Up to 256 trap types can be distinguished on the basis of the 8-bit trap type num­
ber. Of these, half are reserved for external interrupts and hardware-enforced
instruction exceptions. The various trap types are listed in order of priority, with
their causes, in Table 2-23.

Table 2·23: Traps

Trap Priority tt Cause

reset 1 - The external system asserted the -RESET input,
signalling a reset request. Alternatively, the processor
entered error mode and so generated an internal reset.

instruction_access_exception 2 1 A blocking error exception occurred on an instruction
access (for example. an MMU indicaterl that the page
was invalid or read-protected).

privileged _instruction 3 2 An attempt was made to execute a privileged instruction
in user mode.

illegal_instruction 4 3 An attempt was made to execute an instruction with an
unimplemented opcode, or an UNIMP instruction, or an
instruction that would result in illegal processor state (for
example, writing an illegal CWP into the PSR). Note that
unimplemented FPop and unimplemented CPop
instructions generate fp_exception and cp_exception
traps.

fp_disabled 5 4 An attempt was made to execute an FPop, FBfcc, or a
floating-point load/store instruction.

cp_disabled 5 36 An attempt was made to execute a CPop, CBccc, or a
coprocessor load/store instruction.

window_overflow 6 5 A SAVE instruction attempted to cause the CWP to point
to a window marked invalid in the WIM.

window_underflow 7 6 A RESTORE or RETT instruction attempted to cause
the CWP to point to a window marked invalid in the WIM.

mem_address_not_aligned 8 7 A load/store instruction would have generated a memory
address that was not properly aligned according to the
instruction, or a JMPL or RETT instruction would have
generated a non-word-aligned address.

data_access_exception 10 9 A blocking error exception occurred on a load/store data
access. (For example, an MMU indicated that the page
was invalid or write-protected).

tag_ overflow 11 10 A TADDccTV or TSUBccTV instruction was executed,
and either arithmetic overflow occurred or at least one of
the tag bits of the operands was nonzero.

trap_instruction (Tice) 12 128-254 A Tice instruction was executed and the trap condition
evaluated to true.

breakpoint trap 13 255 Instruction or Data Breakpoint encountered.

Programmer's Model -Interrupts and Traps

2-50

OJ
FUJITSU

Table 2·23: Traps (Continued)

Trap Priority tt Cause

interrupt_level_ 15 14 31
interrupt_level_ 14 15 30
interrupt_level_ 13 16 29
interrupt_level_ 12 17 28
interrupt_level_ 11 18 27
interrupt_level_ 1 O 19 26
interrupt_level_9 20 25 External Interrupt Request
interrupt_level_8 21 24
interrupt_level_7 22 23
interrupt_level_6 23 22
interrupt_level_5 24 21
interrupt_level_ 4 25 20
interrupt_level_3 26 19
interrupt_level_2 27 18
interrupt_level_ 1 28 17

2. 7 .2 Trap Behavior

The expression trapped instruction refers, in the case of a synchronous trap
(instruction exception), to the instruction which caused it. In the case of an inter­
rupt, the trapped instruction is the one which was about to enter the Writeback
stage of the pipeline when the interrupt occurred.

The Integer Unit supports precise traps-when an interrupt or trap occurs, the
saved state of the processor reflects the completion of all instructions prior to the
trapped instruction, but no subsequent instructions (including the trapped
instruction). Hardware guarantees that upon return from the service routine, the
Program Counter points to the trapped instruction (or its successor if the trapped
instruction was emulated).

The integer unit tests for exceptions generated by an instruction just before that
instruction enters the Writeback stage. If an exception is detected, and no higher­
priority request is pending, and traps are enabled, the processor takes a trap. If
more than one exception is detected, the processor takes the trap with the highest­
priority. When a trap is taken, the processor does the following things:

1. Writes the trap type number into the tt field of the Trap Base Register.

2. Saves the current processor mode (user or supervisor) by copying the value of
the S bit of the Processor Status Register into the PS bit.

3. Enters supervisor mode by setting the S bit of the PSR to 1.

4. Disables traps by clearing the ET bit of the PSR to 0.

5. Saves the window of the interrupted routine by decrementing the Current
Window Pointer (modulo 8). The Window Invalid Mask is not checked for
window underflow or overflow.

Programmer's Model - Interrupts and Traps

2-51

-

SP ARC lite User's Guide

6. Stores the current Program Counter and Next Program Counter values in r[17]
and r[18] of the new window.

7. Transfers control to the address specified by the TBR.

An instruction is said to be squashed when its execution is aborted after it has
entered the pipeline. A taken trap always squashes either 2 or 3 instructions.
Asynchronous traps and interrupts squash 3 instructions as shown in Figure 2-35.
Software traps (Tice) only squash 2 instructions because the processor holds the
next instruction fetch when the trap instruction reaches the memory stage (in
Figure 2-35, instruction 4 is replaced by a hardware generated NOP).

CLu--
Fetch I Inst 1

Decode I

Execute I
Memory ,II.

Write-Back

Inst 2

Inst 1

synchronous or asynchronous trap

T , first trap handler instruction
I . I
I I

1 Inst 20 I Inst 21 I'

Inst 3 I Inst 4/nop I Inst 20 Inst 21

Inst 2
1

1

1

• Inst 3 ,· Inst 20 1

1

Inst 21

Inst 1 Inst 2 Inst 3 Inst 4/nop Inst 20

lnst2

Inst 3

Inst 1

I 1~~~+-~~--+--,~~~1
! ~nst 1 I Inst 3 ; Inst 4/nop I

no result written back to register
file, however PC is written back

Figure 2·35. Instructions Squashed by Trap

Inst 21

lnst20

The trap handler must insure that a window is available (for taking another trap),
and then re-enable traps by setting ET to 1. The code for handling the exceptional
condition that caused the trap can then be executed. Traps must be disabled (ET
cleared to O) before returning, via a RETT instruction, from the service routine.

Unless it causes a trap, the RETT instruction does four things: it increments the
Current Word Pointer (modulo 8), causes a delayed control transfer to a register­
indirect target address, restores the processor to the operating mode (user or
supervisor) it was in before the trap was taken, and enables traps. The trap han­
dler must ensure that a window is available so that RETT can increment the CWP
without causing a window underflow and sending the processor into error mode.

2. 7 .3 Reset and Error Modes

As defined in the SPARC architecture, the SPARClite integer unit has reset, error,
and execute modes which are states of the processor. The processor is in execute
mode during the normal execution of instructions. The processor enters error
mode if a synchronous trap is encountered while the traps are disabled (the ET bit
is O). The processor enters reset mode when the -RESET input is asserted, and
enters execute mode when the -RESET line is de-asserted.

Programmer's Model - Interrupts and Traps

2-52

cP
FUJITSU

Once it is in error mode, the processor must be reset in order to return to normal
operations. The external system can detect an error condition by monitoring the
-ERROR signal which is asserted for a minimum of one cycle.

Processor reset occurs whenever the -RESET input is held active for 4 cycles after
the clock stabilizes. Reset does the following:

1. Writes 0 into the Program Counter and 4 into the Next Program Counter.
When -RESET is de-asserted, the processor will begin fetching instructions at
address OxOOOOOOOO in supervisor instruction space (ASI Ox09).

2. Zeroes or sets to the appropriate NOP instruction all registers in the instruc­
tion pipeline. This insures that:

• No instructions are left half-executed in the instruction pipeline.

• No traps are taken prior to the instruction at address zero.

• No control transfer instructions are in progress.

• No interlock or bypass conditions will be detected prior to the instruction at
address zero.

• No state will be written back prior to the instruction at address zero.

3. Enters supervisor mode by setting the S bit in the PSR.

4. Disables traps by clearing the ET bit in the PSR.

2.8 Debug Support Unit
The Debug Support Unit (DSU) supports target monitors and hardware emula­
tors with on-chip breakpoint and single-step logic. To be available for use, the
DSU must be enabled when the processor is reset. The signals used to configure
the DSU during reset are discussed below.

A dedicated emulator bus is extended off-chip from the DSU. This bus allows
transactions between the IU and cache to be monitored by external hardware. In­
circuit emulators and other debug and diagnostic hardware can monitor this bus
to trace processor activity.

This section discusses the breakpoint logic of the DSU. (For more information on
in-circuit emulation of SP ARClite designs, refer to the documentation provided
with your emulator.)

2.8.1 Breakpoint Registers

There are six on-chip Breakpoint Descriptor Registers, two for Instruction
Addresses, two for Data Addresses, and two for Data Values. A Debug Control

Programmer's Model - Debug Support Unit

2-53

SP ARClite User's Guide

Register (Figure 2-36) and a Debug Status Register (Figure 2-37) control the opera­
tion of the breakpoint logic, and reflect its current status.

31 24 23 16 15 14 13 9876543210

ASI Value for Data Address 2 ASI Value for Data Address 1 reserved

User/Supervisor Bit for Data Address 2 ----'
User/Supervisor Bit for Data Address 1 -----'

Enable Data address 2 break----------~
Enable Data address 1 break---------------'

Enable Instruction address 2 break-------------~
Enable Instruction address 1 break---------------'

Single_Step---------------~

Data Value Transaction Type----------------~
Data Value Condition--------------------'

Data Value Mask-------------------~

Figure 2·36. Debug Control Register

Bits 31-11: Data Address 2 ASI: Specifies the ASI match value for Data Address 2.

Bit 23-16: Data Address 1 ASI: Specifies the ASI match value for Data Address 1.

Bit 15: Data Address 2 User/Supervisor Bit: Specifies either a User or Supervisor Mode match
for data address 2.

Bit 14: Data Address 1 User/Supervisor Bit: Specifies either a User or Supervisor Mode match
for data address 1.

Bit 13-9: Reserved.

Bit 8: Enable Data Address 2 Break-Enables (1) or disables (0) the breakpoint comparison for
Data Address Descriptor 2.

Bit 7: Enable Data Address 1 Break-Enables (1) or disables (0) the breakpoint comparison for
Data Address Descriptor 1.

Bit 6: Enable Instruction Address 2 Break-Enables (1) or disables (0) the breakpoint compari­
son for Instruction Address Descriptor 2.

Bit 5: Enable Instruction Address 1 Break-Enables (1) or disables (0) the breakpoint compari­
son for Instruction Address Descriptor 1.

Bit 4: Single Step-Enables single-step operation when set. During single-step operation, a
breakpoint trap is issued on every instruction.

Bits 3-2: Data Value Transaction Type-Determines the class of instructions (loads, stores, or
both) that can cause a Data Value breakpoint trap.

00 Break only on Loads
01 Break only on Stores
10 Break on Load or Store
11 Break Always

Programmer's Model - Debug Support Unit

2-54

cP
FUJITSU

Bit 1: Data Value Condition-Determines whether a Data Value breakpoint trap is caused by
values inside the range specified by the Data Value Descriptor Registers, or outside this
range (assuming that the Data Value Mask bit is 0.)

Bit 0: Data Value Mask-Controls the interpretation of the Data Value Descriptors. When the
Data Value Mask bit is 1, Data Value Descriptor 2 is used as a mask for Data Value
Descriptor 1. When the Data Value Mask bit is 0, the Data Value Descriptors specify the
upper and lower bounds of an address range.

31 6 5 4 3 2 1 0

Bits 31-6: Reserved

Data Address 2 Match

Data Address 1 Match
Instruction Address 2 Match ---~

Instruction Address 1 Match ------'
EMU_ENBL_on Reset-----~

EMU_BRK_on Reset--------'

Figure 2·37. Debug Status Register

Bit 5: Data Address 2 Match-set to (1) if address matched. Software should clear this bit after
reading it.

Bit 4: Data Address 1 Match-set to (1) if address matched. Software should clear this bit after
reading it.

Bit 3: Instruction Address 2 Match-set to (1) if address matched. Software should clear this bit
after reading it.

Bit 2: Instruction Address 1 Match-set to (1) if address matched. Software should clear this bit
after reading it.

Bit 1: -EMU_ENBL Asserted on Reset-Set on reset if the -EMU_ENBL input is asserted;
cleared on reset otherwise. Maintains its value until the next reset. -EMU_ENBL and
EMU_BRK are used to configure the DSU on reset. This bit is read only.

Bit 0: EMU_BRK Asserted on Reset-Set on reset when the EMU_BRK input is asserted;
cleared on reset otherwise. Maintains its value until the next reset. -EMU_ENBL and
EMU_BRK are used to configure the DSU on reset. This bit is read only.

Programmer's Model - Debug Support Unit

2-55

SP ARClite User's Guide

The breakpoint descriptor and control registers are memory-mapped to ASI Oxl;
their addresses are listed in Table 2-24.

Table 2·24:Memory Locations of Debug Registers

OxOOOOFFOO Instruction Address Descriptor Register 1

OxOOOOFF04 Instruction Address Descriptor Register 2

OxOOOOFF08 Data Address Descriptor Register 1

OxOOOOFFOC Data Address Descriptor Register 2

OxOOOOFF10 Data Value Descriptor Register 1

OxOOOOFF14 Data Value Descriptor Register 2 or Mask Register

OxOOOOFF18 Debug Control Register
nvnnnncc-t r- n i... •• - C'-+ ... + n ... -:a.--

2.8.2 Breakpoint Traps

Breaks in code execution can be caused by pre-setting a break condition in one of
the breakpoint descriptor registers, or by setting the Single Step bit in the Debug
Control Register. Do not attempt to use the breakpoint registers while using an
emulator for system debugging.

The breakpoint traps have trap type number 255, and a priority less than the other
synchronous traps, but greater than trap instructions or external interrupts. When
a breakpoint trap is recognized by the IU, it branches to address Ox000003FO
regardless of the value of the TBA field in the Trap Base Register.

Each of the Address Descriptor Registers specifies a break address. If the address
of an access matches the register contents, a breakpoint trap occurs. There is one
bit in the Debug Control Register associated with each Address Descriptor Regis­
ter, which enables or disables the breakpoint comparison for that register.

The Data Value Descriptor Registers work in either of two ways. If the value of
Data Value Mask bit in the Debug Control Register is 1, then Data Value Descrip­
tor 2 is used as a mask for Data Value Descriptor 1. In this mode only those bits of
the Data Value Descriptor 1 are compared, for which the mask bit is 1. All other
bits are ignored in the breakpoint comparison.

If the Data Value Mask bit is 0, the Data Value Descriptors 1 and 2 act as the lower
and upper bound respectively, for a range comparison. The break condition is
determined by the values of the Data Value Condition bit in the Debug Control
Register. If the Data Value Condition bit is a 0, then the break condition is given
by the expression:

Data Value Descriptor 1 5 Accessed Value 5 Data Value Descriptor 2

Programmer's Model - Debug Support Unit

2-56

o')

FUJITSU

If the Data Value Condition bit is al, this break condition is inverted, turning the
comparison into an "out-of-range" test.

The Data Value comparison may be conditioned by the type of transaction (load
or store) that is being performed. The following encoding of the Data Value
Transaction Type bits in the Debug Control Register is used:

00 Break only on Loads
01 Break only on Stores
10 Break on Load or Store
11 Break Always

The chip always ANDs the results of the Data Address 1 comparison and the Data
Value comparison. To break on all data address matches, use the Break Always
condition.

It is the responsibility of monitor code to restore all register window values (with
the exception of the breakpoint trap window) to their pre-break values before
returning from the trap.

2.8.3 Configuration at Reset

The initial configuration of the DSU is determined by the values on the -EMU_
ENB and EMU_BRK input pins during the reset, as shown in Table 2-25.

Table 2·25: Configuration of the Debug Support Unit at Reset

Values on RESET
Function

-EMU_ENB EMU_BRK

0 0 Reserved

0 1 Reserved

1 0 Debug Registers are cleared on RESET; breakpoint registers
are enabled.

1 1 Debug Registers are cleared on RESET; all breakpoints are
disabled.

2.9 SPARC Compliance
SP ARClite processors are fully compliant with the SPARC architectural specifica­
tion.

Compatibility with existing and planned SP ARC standards is a cornerstone of the
SPARClite family strategy.

Programmer's Model - SP ARC Compliance

2-57

J
I
I
I

I

SP ARClite User's Guide

Compatibility assures:

1. a wide range of silicon implementations meeting different price/performance
targets.

2. a ready availability of native development environments and tools

3. a large and growing base of application software which is object code compat­
ible

4. an established and commerically viable processor architecture which is likely
to be around well into the future.

The SP ARC architecture was originally developed by SUN Microsystems, Inc.
and first implemented by Fujitsu. SP ARC International has since been formed to
independently promote and control the evolution of the architecture.

Aii SP ARC processor implementations conform to one of two architecture revi­
sion levels. The first commercially available version of the architecture is referred
to as SPARC architecture Version 7. All existing silicon implementations and con­
sequently SUN Microsystems, Inc. SP ARCstations™ (1, 1+,2, SLC, ELC, IPC, IPX)
and SPARC compatible workstations conform to Version 7. A revised version of
the SPARC architecture, Version 8, became final in March 1991. Future SPARC
workstations will migrate to SP ARC Version 8 processors. All OS and application
code written for Version 7 processors will run without modification on SP ARC
Version 8 processors. SP ARClite series processors conform to Version 8 of the
SP ARC Architecture.

Version 8 of the SPARC Architecture adds these primarily features to Version 7.

• multiply- integer multiply instruction

• divide- integer divide instruction

• write/read ASR- read and write Ancillary State Register instructions which
are used as additional control registers and implementation definable control
registers

The architecture does not require that all instructions and features be imple­
mented, only that the processor will trap on unimplemented features so that they
can be emulated in software. SP ARClite implements the Version 8 multiply
instruction and read and write ASR instructions. The integer divide instruction is
not directly supported in hardware.

The MB86930 implements two instructions not defined by SP ARC Version 8.
These are the Scan and Divide Step instructions. These instructions are decoded
in unused opcodes and provide a superset of SP ARC Version 8. If code developed
using these instructions is run on Version 7 or Version 8 SP ARC processors other
than SPARClite an unimplemented instruction trap will occur.

Programmer's Model - SP ARC Compliance

2-58

c ER

••••••••••••••
Internal Architecture

The internal architecture of SP ARClite family processors is illustrated in
Figure 3-1. The processor consists of a Clock Generator, an Integer Unit, separate
on-chip caches for data and instructions, a Bus Interface Unit, and a Debug
Support Unit to support the use of in-circuit emulators and target monitors. Inter­
nally, the various functional units are connected by separate instruction and data
buses. For connection with external memory and I/O, a unified address bus and a
unified data bus are extended off-chip. This chapter discusses the individual
functional units in turn, giving an overview of the flow of data and control signals
through the processor.

Internal Architecture -

3-1

SP ARClite User's Guide

2K INSTRUCTION
CACHE

2KDATA
CACHE

Figure 3-1. Internal Architecture (Block Diagram)

3.1 Integer Unit
The Integer Unit (IU) is a compact, fully custom implementation of the SP ARC
architecture. It is hard-wired for maximum performance; that is, it uses no micro­
code. It contains three functional units:

• Instruction Block-Contains the instruction pipeline; decodes instructions into
control signals for tb_e other blocks.

• Address Block-Performs all instruction-address manipulations.

• Execute Block- Performs all data manipulations; generates operand addresses
for load and store instructions and effective addresses for some of the control
transfer instructions.

As shown in Figure 3-2, the IU is based on a Harvard (Aiken) architecture. There
are separate address buses for instructions and data. There are also two 32-bit
data interfaces: the instruction data bus, and the data bus. The use of these four

Internal Architecture - Integer Unit

3-2

cP
FUJITSU

buses allows the IU to retrieve data and instructions simultaneously from on-chip
cache.

IDATA

I ADDRESS D ADDRESS D DATA

Figure 3-2. Integer Unit Data Path

3.1.1 I Block
The instruction block (I Block) contains the five-stage instruction pipeline and the
logic which decodes instructions into control signals for the rest of the IU. The
I block detects all bypass and interlock conditions.

The main interfaces to the I block are:

• Instruction data bus from the instruction cache or main memory.

• Immediate data field which goes to the A block for computing PC relative
control transfers, and to the E block to be used as immediate data.

• Control signals to the A block and E block, including the register file read and
write addresses, register enable signals, multiplexer controls, and partly or
fully decoded operation codes for the ALU /Shifter.

• Status signals back from the E block, including possible trap conditions such
as memory_address_not_aligned or tag_overflow.

Internal Architecture - Integer Unit

3-3

SP ARClite User's Guide

Instruction Pipeline

The IU implements a five-stage instruction pipeline to allow a sustained execu­
tion rate of nearly one instruction per cycle. The operation of the pipeline under
ideal conditions is illustrated in Figure 3-3. The pipeline consists of the following
stages:

1. Fetch (F)-One of the instruction memory spaces is addressed and returns an
instruction. (The figure below assumes a hit in the instruction cache.)

2. Decode (D)-The instruction is decoded; the register file is addressed and
returns operands.

3. Execute (E)-The ALU computes a result.

4. Memory (M)-External memory is addressed (for load and store instructions
only; this stage is idle for other instructions).

5. Writeback (W)-The result (or loaded memory datum) is written into the
register file.

Fetch Instruction 5 6

Decode Instruction 4 5 6

Execute Instruction 3 4 5 6

Memory Instruction 2 3 4 5 6

Write-Back Instruction 1 2 3 4 5

Figure 3-3. Instruction Pipeline

No instructions execute out-of order; that is, if instruction A enters the pipeline
before instruction B, then instruction A necessarily reaches the writeback stage
before instruction B does.

The control logic for the instruction pipeline is illustrated in Figure 3-4. At each
cycle a horizontal control word is available which is wider than 32 bits and con­
trols every multiplexer, latch-enable, and unit op-code in the chip. The horizontal
control word is composed of control signals active during the decode stage of
instruction N, the execute stage of instruction N-1, the memory stage of instruc­
tion N-2 and the writeback stage of instruction N-3. Some control bits require no
decoding and are simply hardwired from the appropriate bits in the instruction
register. Because the SPARC instruction set is not completely orthogonal (not
every instruction field has the same meaning in every instruction) most bits
require some decoding based on a single instruction in the pipeline. Some control

Internal Architecture - Integer Unit

3-4

<P
FUJITSU

bits require decoding using logic that looks at two instructions in the pipeline, as,
for example, in controlling multiplexers to select data bypass paths.

Instructions

Combinational
Logic

Horizontal
Control Word

Figure 3-4. Instruction Pipeline Control Logic

Pipeline Hold

The IU does not complete one instruction on absolutely every cycle. On a load
instruction, for example, external memory may be slow in returning the requested
data. Because the IU does not execute or complete instructions out of order, the
pipeline must be held up until the requested data is returned. Only then can the
instruction complete and only then can the subsequent instructions continue.

There are also some hazards built into the IU datapath which require interrupting
the one-cycle-per-instruction sequence of the pipeline. For example, a double­
word load cannot be performed in one cycle because there is not enough memory
or register-file bandwidth to move the data through the datapath. Another exam­
ple is a load to a register which is followed by an instruction which uses that
register. Because the operand of the second instruction is required in the decode
stage but is not available, this instruction must be delayed until the operand is
available.

Conditions which hold up the processor pipeline are handled uniformly by the
I Block control logic and are referred to as hold conditions. A complete list of possi­
ble hold conditions is given in Table 3-1.

Table 3-1: Conditio!'IS Which Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

ihold Processor is attempting to fetch an Fetch Any instruction
instruction that is not yet available.

dhold Data is not yet available Memory Loads and Stores

mhold Multiplication in progress Execute Integer Multiplication

Internal Architecture - Integer Unit

3-5

SP ARClite User's Guide

Table 3-1: Conditions Which Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

Interlock An instruction in the pipeline must Load/Use and
wait for some prior instruction to be CALUUse r15
completed (through Writeback). Instruction Pairs

Multicycle An instruction which inherently Execute Load and Store
Instruction requires more than one cycle is in the Double-word, Atomic

pipeline Load/Store

The interlock conditions are:

• Load/Use Instruction Pairs-If a load instruction which has rd=N as its
destination register is followed by an instruction which uses rs=N as one of its
source operands, then the load must proceed through Writeback before the
following instruction can enter the Execute stage.

• CALL/Use %r15 Instruction Pairs-Similarly, since the CALL instruction
implicitly writes the current value of the PC into rlS, it must proceed to
Writeback before any following instruction which uses rlS can enter the
Execute stage.

Any time an interlock is detected, a NOP is inserted into the pipeline. The address
block is signaled, so that the address of the instruction which causes the interlock
is replicated in the address pipe. The NOP itself cannot cause a trap.

The multicycle instructions are LOO, LODA, STD, STOA, LDSTUB, LDSTUBA,
SWAP, and SW AP A. When a multicycle instruction enters the Execute stage, it
and the instruction in the d_ir register are frozen for an additional cycle.
Although it is possible to detect a multicycle instruction while it is in the Decode
stage (unlike interlocks, which cannot be detected without looking at two instruc­
tions, those in the d_ir and e_ir registers), the I Block allows it to progress to the
Execute stage before a hold is generated and inserted. This simplifies control
somewhat because there are fewer points at which the pipeline must be held.

Note that the maximum number of internally generated hold cycles an instruction
can cause is two, as in the following case:

LDD [%r1+%r2],%0r4
ADD %r5,%r5,%r6

The LOO takes two cycles, and it generates an interlock because the next instruc­
tion uses the data loaded in the second data memory cycle of the LOO instruction.

When a hold condition occurs, combinational logic generates one or more freeze
signals, which prevent latches from being updated, and hence keep the pipeline
from advancing. For some hold~hold, for example-the entire pipeline is

Internal Architecture - Integer Unit

3-6

cO
FUJITSU

frozen, with freeze signals being generated for all stages in the pipeline. For other
holds-interlock conditions, for example-later stages in the pipeline must
advance for the hold condition to be resolved. Thus only the earlier stages of the
pipeline are frozen.

Trap Logic

SP ARClite supports precise traps; that is, when a trap occurs, the saved program­
mer-visible state of the processor reflects the completion of all instructions prior
to the trapped instruction, and no subsequent instructions including the trapped
instruction. Thus, when an instruction causes a trap, one of two statements is true:

• No results from that instruction have been written into the programmer­
visible registers (the register file or the PSR, TBR, WIM, or Y registers).

• Or, if data has been written into a programmer-visible register, the data
contained in that register prior to being written by the trapped instruction is
saved by the processor and can be restored when the trap is taken.

Table 3-2 shows the pipeline stages in which the various trap conditions are
detected.

Table 3-2: Detection of Trap Conditions

Priority Trap Type Stage Detected Trap

1 reset (hardware reset)

1 - D reset
2 1 F instruction_access_exception
3 2 D illegal_instruction
3 2 D priv _instruction
4 3 D illegal_instruction

5 4 D fp_disabled
5 36 D cp_disabled
6 5 D window_ overflow
7 6 D window _underflow

8 7 E mem_address_not_aligned
10 9 M data_access_exception
11 10 E tag_ overflow
12 128-254 D trap_instruction (Tice)
13 255 F instruction_ breakpoint
13 255 M data_ breakpoint

14 31 interrupt_level_ 15
15 30 interrupt_level_ 14

28 17 interrupt_level_ 1

Internal Architecture - Integer Unit

3-7

-

SP ARClite User's Guide

As shown in Table 3-2, the latest stage in which a trap can be detected is the Mem­
ory stage (a data memory exception for a load or store). If a programmer-visible
register is updated prior to this stage, its original contents must be restored when
and if the trap is taken.

Due to the pipelined operation of the IU, a trap condition for one instruction may
actually be detected before a trap condition for a prior instruction. Thus, it is nec­
essary to align the detected trap conditions so that all trap conditions for instruc­
tion N are considered together, before considering any trap conditions resulting
from instruction N + 1.

The trap coder is illustrated in Figure 3-5. Its purpose is to align in time the (possi­
bly multiple) trap sources for a single instruction, to determine if a trap is to be
taken or not, and if so, to determine the highest priority trap and code its trap
type.

Fetch-stage trap sources---+----------------~

Decode-stage trap sources---+-----------~

Execute-stage trap sources---+--------,

Memory-stage trap sources -+-~

Memory-stage
instruction reg

Combinational Block

qualify, prioritize, encode

Figure 3·5. Trap Coder

trap? yes/no

trap type
{to A block)

When a trap is taken, the trap type field goes to the A Block where it is used
immediately as a trap target address (when concatenated with the Trap Base
Address) and is latched into the Trap Base Register.

3.1.2 A Block
The A Block contains the address pipeline. Along with the E Block, it is responsi­
ble for all instruction-address manipulations. The A Block executes the CALL and
Bice instructions. The A Block and E Block are used together to execute the JMPL,
Tice, and RETT instructions; in these cases, the A Block controls the update of the
Program Counter. The A Block's main interface to the rest of the chip outside the
IU is the instruction address bus.

Internal Architecture - Integer Unit

3-8

cP
FUJITSU

The address pipeline is illustrated in Figure 3-6. The fetch-stage program counter
(PC) is used to address instruction memory via the instruction address bus.
Because a CALL, JMPL, or trap may require that the address of an instruction be
written back to the register file, the address of every instruction tracks the instruc-
tion itself in the instruction pipeline so that it is available in the memory stage if it J
needs to be written back to the register file. These address pipeline registers are
the decode, execute, and memory program counters. Each of these registers con-
tains the address from which the instruction in the corresponding instruction
register was fetched.

immediate data
(30bits)---~

jump address
(from E Block)

instruction address
(to instruction memory)

return address
(to E Block)

this path used
for multicycle
instructions

Figure 3-6. Address Pipeline

The PC has five possible sources:

1. +4 incrementer, for normal, sequential instruction fetch.

2. The address adder, for PC-relative control transfer (Bice or CALL instruction).
The immediate data field contains offset information and comes from the
I Block.

Internal Architecture - Integer Unit

3-9

SP ARClite User's Guide

3. The jump address for a JMPL or RETT instruction. The jump address bus
contains jump target information, and comes from the E block by way of the
register file and ALU.

4. The TBR, concatenated with the trap type (tt) or with zeroes (when Single­
Vector Trapping is enabled), on a Tice instruction or an interrupt or trap. The
trap type comes from the trap priority encoder, part of the I Block; when
concatenated with TBR[31:12], it gives the target address for a trap.

5. Zeroes, concatenated with the trap type, for reset.

Note that "+4" is used to indicate that the (byte) address is incremented by 4 to
fetch the next instruction. In reality, the two least significant bits of the address
are not implemented in hardware because they are never used. Word alignment,
for the case of a jump address coming from the E Block is verified in the E Block
(and to some extent, the I Block).

The return address bus is written back to the register file in the case of a CALL,
JMPL or Trap.

Several control signals come from the I block. These include:

• PC input-select signals which control the PC input multiplexer.

• The address adder control signal, which determines whether a 30-bit or a 22-
bit immediate address field is added to the previous value of the PC (now
found in the decode-stage PC).

• Pipeline freeze signals which can prevent the updating of registers in the
pipeline when a hold condition is detected.

3.1.3 E Block
The E Block is responsible for all IU data manipulations. It generates operand
addresses for load and store instructions and effective addresses for some of the
control transfer instructions.

As shown in Figure 3-7, the E Block contains the Store Align Unit (SAU), the Load
Align Unit (LAU), the Register File (RF), and the Adder, Shift, and Logic Unit
(ASLU). The E Block also contains the result bypass logic that determines which
operands are driven into the ASLU, and the store bypass logic that determines
what data is latched for stores.

Internal Architecture - Integer Unit

3-10

cO
FUJITSU

D ADDRESS D DATA

Figure 3-7. Execute Block

Adder, Shih, and Logic Unit {ASLU)

The ASLU incorporates an integer adder, a barrel shifter, a logic unit, and a scan
unit. The integer adder calculates the results of the addition, subtraction, multi­
ply-step, and divide-step instructions, and generates the carry, overflow, nega­
tive, and zero condition code values. It is used in load and store operations to
calculate effective data addresses, and in register-indirect control transfers to cal­
culate the new address to be placed in the PC register of the A Block. The integer
adder also serves the multiplication unit by adding the "sum" and "carry" vectors
during integer multiplications. The barrel shifter /logic unit executes the logic and
shift instructions. The scan unit exists solely to support the scan instruction.

Results from the integer adder, the barrel shifter, the logic unit, and the scan unit
are multiplexed into the R (Result) Register. Results from the integer adder are
also made available to the Y Register.

Register file

The register file contains 136 registers of 32 bits each. The organization of these
registers into windows is discussed in the Programmer's Model chapter. The regis­
ter file has one write port and three read ports. The write port is used for the
instruction destination register (denoted rd in instruction descriptions). Two of
the read ports are used for the two instruction source registers (rsl and rs2). The

Internal Architecture - Integer Unit

3-11

SP ARClite User's Guide

remaining port is used for the data to be stored when a store or swap instruction
is executed. In this way, even store instructions can be executed in a single cycle.

The register file also contains the address decoders for all four ports. Each address
presented to the decoders consists of 8 bits derived from an instruction field and
the Current Window Pointer. These are physical addresses into the register file
memory array.

Bypass Logic

As shown in Figure 3-7, the A and B operand registers have inputs which come
from sources other than the register file or immediate data bus. These inputs are
results from previous instructions which have not yet written back to the register
file. There are two such bypass paths in the E Block:

• Result Bypass-The result of an ALU operation in the R register is written back
to the A or B operand register in the Memory stage of the following ALU
operation.

• Write Bypass-The data in the W register is written to the A or B operand
register, in the Writeback stage.

The result bypass path is selected when one instruction generates a result that can
be used by the immediately following instruction. More precisely, if an instruc­
tion in the Decode stage of the pipeline has rsl = N and the instruction in the
Execute stage has rd = N, the rsl operand will not come from the register file, but
directly from the R register in the ALU through the result bypass. Since an inter­
vening SA VE or RESTORE instruction may have changed the Current Word
Pointer, it is the physical addresses of the register source and destination which are
compared, not the logical addresses (which depend on the CWP).

As an example, consider the instruction sequence:

add %rl, %r2, %r3
add %r3,%r4,%r5

rl + r2 -> r3
r3 + r4 -> rS

The second add instruction takes its A source operand not from the register file
but directly from the result of the ALU, through the result bypass.

The write bypass is selected when an instruction in the Decode stage has rsl = N
and the instruction in the Memory stage has rd = N. In this case, the rsl operand
will not come from the register file, but from the W register through the write
bypass. In the following instruction sequence, the third instruction uses the write
bypass as its A source operand:

Internal Architecture - Integer Unit

3-12

add %rl,%r2,%r3
add %r4, %r5, %r6
add %r3, %r7, %r8

rl + r2 -> r3
r4 + r5 -> r6
r3 + r7 -> r8

If both bypass conditions apply, the result bypass takes precedence.

OJ
FUJITSU

There is a third bypass path, called the store bypass. It can be seen in Figure 3-7.
The register file has a dedicated store port which is used for reading the rd regis­
ter of a store instruction; this register contains the data to be stored. The store port
is read in the Execute stage of the store. When a store and the immediately pre­
ceding instruction access the same rd register, a bypass from the Writeback stage
of the preceding instruction to the Memory stage of the store is needed. In the
code sample below, the result of the first instruction becomes available to the
Memory stage of the store by means of the store bypass path.

add %r4, %r5, %r6
st %r4, %r5, %r3

Branch Evaluation Logic

r4 + r5 -> r3
r3 -> mem[r4 + r5]

The branch evaluation logic, which forms part of the E Block, evaluates branch
conditions based on the current values of the integer condition codes of the PSR
register. The ice bits n (negative), z (zero), c (carry) and v (overflow) form part of
the branch evaluation block. The interpretation of these bits is discussed in the
Programmer's Model chapter.

There are several ways the ice bits can be modified. First of all, they can be written
and read via the jump address bus by the instructions WRPSR and RDPSR.

Certain arithmetic instructions modify the ice bits as a side effect. When one of
these instructions is executing, the new ice values are generated in the E Block
during the Execute stage, latched at the end of this stage, and loaded into the PSR
during the Memory stage.

Another path leads to the ice bits from the Writeback-stage copy of the PSR. When
a trap occurs on an instruction which alters the ice bits, this path allows the pre­
trap ice values to be restored to the PSR.

The combinational logic which does the branch evaluation for the IU condition
codes has as inputs:

• Integer Condition Codes-Directly from the ALU, if the instruction in the
Execute stage is one of those that can modify the ice; from the multiplication
unit; or from the ice bits of the PSR, if the instruction in the Execute stage is not
one that can modify the ice.

Internal Architecture - Integer Unit

3-13

SP ARClite User's Guide

• The cond Field-From the branch instruction in the Execute stage. (See the
discussion of the Bice instruction in the Programmer's Model chapter.)

• Bice Indicator-A control signal indicating whether or not the instruction in the
Decode stage is a Bice instruction. This signal remains valid into the Execute
stage.

The output of the combinational logic is a single signal which, when active, causes
the branch target address to be loaded into the PC during the Execute stage;
otherwise, PC+4 is loaded into the PC.

Load Align Unit (LAU) and Store Align Unit (SAU)

The LAU and SAU align data for loads and stores, respectively. Bytes and half­
words to be loaded are right-justified in a 32-bit word, and either sign-extended
or zero-extended on the left, depending on whether the load instruction specified
signed or unsigned operation. The LAU performs the alignment and extension
during Writeback.

Byte and halfword stores take their data from the least significant byte or half­
word of the register specified in the instruction's rd field. The SAU performs the
necessary alignment for writing the data to the byte or halfword memory address
specified in the instruction.

Multiply Unit

The E Block contains hardware to perform integer multiplications. The Multiply
Unit (MU) multiplies two 32-bit signed or unsigned integers to produce a 64-bit
product. Some multiplication instructions modify the integer condition codes as a
side effect; others do not. The multiplication instructions are discussed in the
Programmer's Model chapter.

The multiply hardware implements a version of Booth's algorithm. Booth's algo­
rithm is similar to a "shift and add" multiply algorithm in that it scans the multi­
plier from the least significant to the most significant bit and, based on the bit
string encountered, iteratively adds the multiplicand to produce partial products.
It is also similar in that the resulting partial product is right shifted to ready it for
the following iteration of the algorithm. Booth's algorithm differs from a "shift
and add" algorithm in that it can also be used directly with a negative multiplier
(whereas "shift and add" requires a positive multiplier). It differs also in that the
hardware must provide for both addition and subtraction of the multiplicand. In
particular, a 1-bit Booth's algorithm examines two multiplier bits per iteration,
looks for a bit transition, and either adds the multiplicand, subtracts the multipli­
cand, or adds zero to the existing partial product to produce the new partial prod­
uct. It "retires" one bit of the multiplier per iteration. For a 1-bit Booth's, Table 3-3

Internal Architecture - Integer Unit

3-14

o:>
FUJITSU

shows the possible bit transitions encountered in the multiplier and the value
which is added to the multiplicand for each transition.

Table 3-3: Booth's Algorithm

Multiplier Bits

Current Previous Add to Shifted Partial Product

0 0 +O
0 1 +multiplicand
1 0 -multiplicand
1 1 +O

This technique can be extended so that more than one bit is examined during a
given iteration. In particular, the MU performs an 8-bit Booth's algorithm. It
examines 9 bits of the multiplier at a time and, based on the eight transitions of
these nine bits, determines what multiple of the multiplicand to add to the old
partial product to produce the new partial product. The addition is performed in
theALSU.

The MU produces 8 bits of the final product and "retires" 8 bits of the multiplier
per cycle, and therefore requires only 5 cycles to do a 32x32 bit multiply (produc­
ing a 64-bit result).

The execution of the instruction is controlled by a synchronous state machine
which generates control signals for the multiply hardware. Since instructions do
not execute out of order, the Integer Unit (IU) must be frozen during the multiply
instructions which take more than 1 cycle. Conceptually, the multiply instruction
goes through all the pipeline stages (F,D,E,M,W), but its Execute stage is from 1 to
5 machine cycles long. During the Fetch and Decode stages, the multiply instruc­
tion progresses like other instruction.

3.1.4 Programmer-Visible State and Processor State

The SP ARC Architecture defines the programmer-visible state of the processor as a
collection of registers, and then specifies the effects of instructions in terms of
these registers. These definitions implicitly assume that every instruction com­
pletes before the next one begins. The SPARClite processor, however, is pipe­
lined, so that normally four subsequent instructions begin before the first one
completes. The actual processor state (excluding the register file) therefore encom­
passes more than the programmer-visible state. For most of the programmer­
visible registers, there is a corresponding register in the processor associated with
the Writeback stage of the pipeline. That is, instructions normally update the reg­
ister file and programmer-visible state registers in the Writeback stage.

Internal Architecture - Integer Unit

3-15

-

SP ARC lite User's Guide

An instruction may update staged copies of the PSR before Writeback, making the
new values available to subsequent instructions sooner, but these staged copies
are not user visible. The PSR associated with the Writeback stage can never be
updated early; if an instruction traps, it will not have altered any state which can
not be restored.

3.1.5 IU Support for Debugging

The IU supports the on-chip Debug Support Unit as well as external ICE circuitry
and software with the following features:

• A special breakpoint trap type instruction_breakpoint/ data_breakpoint: This
is a synchronous trap with trap type 255 and a priority less than the other
synchronous traps, but greater than the software traps or interrupts. It is
analogous to the instruction_access_exception and data_access exception traps,
but has the following special characteristics:

• Any instruction can cause a breakpoint exception (unlike the data_access_­
exception, which can only occur for load/store instructions).

• The trap vector for this taken trap is not the TBR concatenated with the trap
type, but zero concatenated with the trap type. That is, the trap target
address is Ox000003FO regardless of the value in the TBR.

3.2 Data and Instruction Caches
The SPARClite architecture provides separate data and instruction caches, allow­
ing designers to build high-performance systems without incurring the cost of
fast external memory and its associated control logic. The software-visible fea­
tures of the caches are discussed in detail in the Programmer's Model chapter,
above.

The data and instruction caches are accessed independently over separate data
and instruction buses, allowing data to be loaded from and stored to cache at
peak rates of one cycle per instruction. The instruction cache is read-only, one
word at a time. The data memory is readable and writable by bytes, halfwords,
words or doublewords.

In the MB86930 processor, each cache is 2 Kbytes in size, organized into two
banks of sixty-four 16-byte lines. Cache lines are refilled in 4-byte increments to
avoid the interrupt latency incurred by long, uninterruptible cache line replace­
ments. In a unified (instruction and data) external memory, the instruction and
data memory segments should be at aligned 4-word (line size) boundaries.

The instruction cache has four major RAM arrays. There are two arrays for
instruction memory and two arrays for tags. In addition to the tag memory, the
tag arrays also contain the logic to compare the address tag with the address that

Internal Architecture - Data and Instruction Caches

3-16

rJ)

FUJITSU

is being accessed. It also checks the V AUD bits in the tag. The hit-detection logic
is illustrated in Figure 3-8.

SET1

ADA <31 :2> ADA <9:4> TAG

ADA <31:10>

ASI <7:0>

HIT 1

Valid
User/

Suprvsr TAG

HIT2

SET2

Valid
User/

Suprvsr

Figure 3·8. Cache Hit Detection Logic

The organization of the data cache is similar to the instruction cache. In addition,
the data memory has individual write control for each byte. This makes it possible
to do byte or half-word writes without using read-modify-write cycles.

3.3 Bus Interface Unit
The Bus Interface Unit (BIU) contains the logic which allows the processor to
communicate with the system. The BIU receives requests for external memory
and I/O accesses from the cache control logic. When the BIU performs a read, it
returns the data to both the cache and the IU. Parallel paths make the data avail­
able to the IU in the same cycle that it is written to the cache. The BIU also handles
external requests for control of the bus. The external signals of the BIU, and the
relative timing of events in typical bus operations, are discussed in the External
Interface chapter, below. That chapter also treats the various system-support
features of the processor in detail.

3.3.1 Buffers

The BIU has a one-word (32-bit) write buffer to hide external memory latency
from the IU. When the BIU receives a request for a write transaction it stores the
write data and address in the write buffer and indicates the completion of the
write to the IU. It then proceeds to complete the write to external memory. This
allows the IU to continue operation from the cache. The write buffer can be

Internal Architecture - Bus Interface Unit

3-17

-

SP ARClite User's Guide

enabled by setting bit 5 of the Cache/BID Control Register, as discussed in the
Programmer's Model chapter, above. The write buffer enable bit should be written
to, only when the instruction and data caches are off. The write buffer works only
when both instruction and data caches are on.

The BIU also has a one-word prefetch buffer for instruction fetches. After an
external instruction fetch, the prefetch buffer will initiate an access to the next
sequential address, on the next available cycle. Instructions are prefetched only
when the BIU does not have a request for a bus transaction from the IU, and no
external device is requesting use of the bus. Pref etching is suspended if the buffer
is full; this occurs if the prefetched instruction is a hit in the instruction cache or if
the prefetched instruction is not used as in the case of a branch to a different
address. The buffer restarts again after the next instruction cache miss. If an
exception occurs during an instruction prefetch, tl1e excepilor1 is not sent to the IU
unless the instruction is actually requested by the IU. The prefetch buffer operates
only when the instruction cache is on.

3.3.2 Exception Handling

The external memory system can indicate an exception during a memory opera­
tion by asserting the -MEXC input. If -MEXC is asserted during an instruction
fetch, the BIU indicates an instruction memory exception to the cache control
logic and the IU. If -MEXC is asserted during a data fetch, the BIU indicates a
data access exception to the cache control logic and the IU.

As indicated above, the IU can continue to operate after putting the data and
address for a store into the write buffer. If an exception is detected while complet­
ing this buffered write then the BIU indicates a data access exception. Any system
which wants to recover from this error should store the address and data for the
write causing the exception, in a register. It should also have a status bit to indi­
cate that the exception was caused during a write operation. It will be the respon­
sibility of the data access exception service routine to determine the cause of the
exception and recover accordingly.

3.3.3 Effect on the Pipeline

The pipeline hold signals, ihold and dhold, are generated if an instruction or data
cannot be made available in the cycle that it is required by the pipeline. Normally
ihold and dhold are not asserted if the required instruction or data is already in
cache. On the other hand, if a cache miss occurs the cache controller requests that
the appropriate data or instruction be fetched from the external system. On a
cache miss, the transaction will be available on the bus in the following clock cycle
if nothing of higher priority is pending (see below). A bypass exists that allows an

Internal Architecture - Bus Interface Unit

3-18

cP
FUJITSU

instruction or data word to be made available in the same cycle that it is being
written into cache.

In general the following hierarchy rules apply to the bus interface unit:

• the bus cycle currently in progress will complete

• if the write buffer is full, the buffer will be emptied

• if there is a pending request for a load or store operation it will be serviced

• if there is a pending request for an instruction it will be fetched

• if the prefetch buffer is empty, a prefetch cycle will be initiated

This section illustrates the effect of bus operations on the instruction pipeline for
some representative cases.

Case 1: Cache Hits

Figure 3-9 illustrates a sequence of hits in the instruction cache. The instruction
fetched in cycle 0 is a STORE to location OxFO. The data is written to the Write
Buffer in cycle 3, and to the bus in cycle 4. Since the write buffer is empty, the
pipeline can move at a rate of one instruction per cycle, even when handling a
STORE. LOAD instructions also do not hold up the pipeline, provided the source
of the load is in the data cache.

0 2 3 4 5 6 7 8 9 10 11 12

Fetch OxOO Ox04 Ox08 oxoc Ox10 Ox14

Decode OxOO Ox04 Ox OB OxOC Ox10 Ox14

Execute OxOO Ox04 Ox OB OxOC Ox10 Ox14

Memory OxOO Ox04 Ox OB OxOC Ox10 Ox14

Write-Back OxOO Ox04 Ox08 OxOC Ox10

Cache Status I hit I hit I hit I hit I hit

CGl!figuration: Instruction Cache: ON Pre-Fetch Buffer: Enabled Memory Wait-Sta1e: 1
Data Cache: - Write Buffer: Enabled

Figure 3-9. Pipeline Operation: Cache Hits

Internal Architecture - Bus Interface Unit

3-19

~
I

SPARClite User's Guide

Case 2: Prefetch Buffer Disabled

Figure 3-10 illustrates the operation of the pipeline on instruction cache misses
when the prefetch buffer is disabled. The address of each missed instruction is
available on the processor external bus in the cycle following the miss. Since data
becomes available to both the IU and the cache on the same cycle, the pipeline can
proceed in the cycle immediately following the cycle in which the data appears on
the external bus.

0 2 3 4 5 6 7 8 9 10 11 12

Fetch OxOO OxOO OxOO Ox04 Ox04 Ox04 OxOS ...

Decode OxOO OxOO OxOO Ox04 Ox04 Ox04

Execute oxoo oxoo oxoo Ox04

Memory OxOO

Write-Back I

Cache Status I I miss stall stall I miss stall stall I miss stall stall
!

Configuration: Instruction Cache: ON Pre-Fetch Buffer: Disabled Memory Wait-State:
Data Cache: - Write Buffer:

Figure 3-1 O. Pipeline Operation: Prefetch Buffer Disabled

Internal Architecture - Bus Interface Unit

3-20

cO
FUJITSU

Case 3: Prefetch Buffer Enabled

Figure 3-11 illustrates the operation of the pipeline on instruction cache misses
when the prefetch buffer is enabled. The address of the instruction missed on
cycle 0 is available on the system bus in cycle 1. In cycle 3, the pre-fetch buffer
logic drives the next sequential word address onto the address lines. The instruc-
tion cache miss at this location therefore causes the pipeline to be stalled for only ~
one cycle. Contrast this with Case 2, above. Since the prefetched instruction is ~
actually used by the processor, the prefetch buffer drives the next sequential
word address in cycle 5. This saves a cycle on each access when executing sequen-
tial code not already in cache.

0 2 3 4 5 6 7 8 9 10 11 12

Fetch OxOO OxOO OxOO Ox04 Ox04 Ox OB Ox OB

Decode OxOO OxOO Ox04 Ox04

Execute OxOO OxOO Ox04

Memory

Write-Back

Cache Status I miss stall stall I miss stall I miss stall I miss

Configuration: Instruction Cache: ON Pre-Fetch Buffer: Enabled Memory Wait-State:
Data Cache: Write Buffer:

Figure 3-11 . Pipeline Operation: Prefetch Buffer Enabled

Internal Architecture - Bus Interface Unit

3-21

SP ARC lite User's Guide

Case 4: Data Cache Off

Figure 3-12 illustrates the operation of the pipeline on loads, with the data cache
turned off and the instruction cache turned on. The instruction fetched in cycle 0
is a LOAD from memory location OxFO. The data is fetched when this instruction
reaches the Memory stage in cycle 7. Since the data cache is off, the data must be
fetched externally; this delays the next instruction fetch until cycle 9.

Whenever a prefetch operation is held up by a load or store operation, the pre­
fetch buffer address gets updated if the instruction it is pointing to is a hit in the
instruction cache. Therefore, when prefetch starts at cycle 9 the IAOxlO instruction
address goes out on the address bus instead of OxOc which has already hit in the
cache.

0 2 3 4 5 6 7 8 9 10 11 12

Fetch OxOO OxOO OxOO Ox04 Ox04 Ox OB Ox08 OxOC OxOC Ox10 Ox10 Ox10 Ox10

Decode I oxoo oxoo Ox04 Ox04 Ox OB Ox08 OxOC OxOC Ox QC Ox QC

Execute I OxOO OxOO Ox04 Ox04 Ox08 Ox OS Ox OB Ox OB

Memory I OxOO OxOO Ox04 Ox04 Ox04 Ox04

Write-Back OxOO

Cache Status I miss stall stall I miss stall l miss stall D Fetch
I hit

stall l miss stall stall

Configuration: Instruction Cache: ON Pre-Fetch Buffer: Enabled Memory Wait-State:
Data Cache: OFF Write Buffer:

Figure 3-12. Pipeline Operation: LOAD with Data Cache Turned Off

Internal Architecture - Bus Interface Unit

3-22

cP
FUJITSU

Case S: Data Cache Miss

Figure 3-13 illustrates the operation of the pipeline on loads, when the data access
misses in the cache. The instruction fetched in cycle 0 is a LOAD from memory
location OxFO. The data is required when this instruction reaches the Memory ·
stage in cycle 7. The access misses in the cache, so the data must be fetched exter- 1
nally. At cycle 7, the prefetch operation has already started so the external load
operation is delayed until the prefetch completes. At cycle 9, the external load
operation takes place. At cycle 11, the now empty prefetch buffer initiates the next

1 sequential instruction fetch at address OxlO.

I
0 2 3 4 5 6 7 8 9 10 11 12

Fetch OxOO OxOO OxOO Ox04 Ox04 OxOS Ox OS OxOC oxoc OxOC OxOC OxOC

Decode OxOO oxoo Ox04 Ox04 Ox OS OxOS Ox OS OxOS Ox OS OxOC

Execute OxOO OxOO Ox04 Ox04 Ox04 Ox04 Ox04 OxOS

Memory OxOO OxOO OxOO OxOO OxOO Ox04

Write-Back OxOO

Cache Status I miss s1all stall I miss stall I miss stall /Dmiss stall stall stall stall stall

Configuration: Instruction Cache: ON Pre-Fetch Buffer: Enabled Memory Wait-State:
Data Cache: ON Write Buffer:

Figure 3-13. Pipeline Operation: Data Cache Miss

Internal Architecture - Bus Interface Unit

3-23

SP ARClite User's Guide

Internal Architecture - Bus Interface Unit

3-24

c ER

••••••••••••••
External Interface

The processor's external interface consists of signals, bus operations, and system
support functions. This chapter details the MB86930 signal set, gives the relative
timing of events in the principal types of bus operation, and describes the pro­
grammable wait-state generator, on-chip timer, and same-page detection logic.
For specific electrical and timing values, see the MB86930 Data Sheet. The System
Design Considerations chapter of this document discusses issues that are likely to
arise in the design of any SP ARClite system.

4.1 Signals
The processor's external signals are illustrated in Figure 1-6 of the Overview chap­
ter, and are listed in Table 4-1 below. A dash at the beginning of a signal name, as
in -RESET, indicates that the signal is active-low.

External Interface - Signals

4-1

-

SP ARClite User's Guide

Table 4-1: Input and Output Signals

Symbol Type Symbol Type Symbol

ADR<31:2> 0 -CSO,-CS1 0 -LOCK
S(L) -CS2,-CS3 S(L)
G(Z) -CS4,-CS5 G(1)
1(1) 1(1)

-AS 0 D <31:0> 1/0 -MEXC
S(L) S(L)
G(Z) G(Z)
1(1) l(Z)

ASl<7:0> 0 EMU_BRK I -SAME_PAGE
S(L)
G(Z)
1(1)

-BE 3-0 0 EMU_D.,3·0> !/O RD/-\A/R
S(L)
G(Z)
I (0)

-BGRNT 0 -EMU_ENB I -READY
S(L)
G(O)
l(Q)

-BREQ I EMU_SD <3:0> 1/0 -RESET
S(L)

CLKOUT1 0 -ERROR
CLKOUT2 G(Q)

l(Q)

CLK_ECB I IRL <3:0>

NOTE: I = Input Only Pin

O = Output Only Pin

l/O = Either Input or Output Pin

= Pins "must be" connected
as described

S(L) = Synchronous: Inputs must
meet setup and hold times
relative to CLKIN Outputs
are Synchronous to CLKIN

External Interface - Signals

4-2

0 TCK
S(L)
G(Q)
l(Q)

I TOI
A(L)

A(L) = Asynchronous: Inputs may
be asynchronous to
CLKOUT.

G(...) = While the bus is granted to
another bus master
(-BGRNT =asserted), the
pin is

G(1) is driven to V cc
G(O) is driven to Vss
G(Z) floats
G(Q) is a valid output

Type Symbol

0 TOO
S(L)
G(Z)
1(1)

I -TIMER_OVF
S(L)

0 TMS
S(L)
G(1)
1(1)

0 -TRST
S(L)
G(Z)
1(1)

I XTAL1 (CLKIN)
S(L) XTAL2

I
A(L)

I

I

I(...) = While the bus is between bus
cycles (or being reset) and is
not granted to another bus
master, the pin is

I (1) is driven to Vee
I (0) is driven to Vss
I (Z)floats
I (Q) is a valid output

Type

0

0
S(L)
G(Q)
l(Q)

I

i

I
0

G(Q)
l(Q)

oO
FUJITSU

The following sections describe the signal set in detail, arranged by functional
group:

• Processor Control and Status-Reset, error, and clock signals.

• Memory Interface-Data and address buses, ASI and byte-enables, chip­
selects, and other control signals used to access external memory and
memory-mapped devices.

• Bus Arbitration-Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions-Interrupt-requests and timer overflow.

• Emulator Bus-Signals to support in-circuit emulation.

• Boundary-Scan-Test signals used for board verification, following JTAG
specifications.

4.1.1 Processor Control and Status

Signal Function

CLKOUT1 CLOCK OUTPUTS (0): MB86930 bus transactions can be referenced against
CLKOUT2 these outputs. CLKOUT1 has the same frequency and phase as the internal

oscillator, or the signal applied to CLKIN. CLKOUT2 is the same as
CLKOUT1, but phase-shifted 180 degrees.

-ERROR ERROR SIGNAL (0): Asserted by the CPU to indicate that it has halted in an
error state as a result of encountering a synchronous trap while traps are
disabled. In this situation, the CPU saves the Trap Type (tt) value in the Trap
Base Register, enters into an error state and asserts the -ERROR signal. The
system can monitor the -ERROR pin and initiate a reset to recover from the
error condition.

-RESET SYSTEM RESET (I): Resets the processor to a known internal state. -RESET
should be asserted for at least 4 processor cycles after the clock has
stabilized. The internal state of the processor immediately after reset is
described in the Programmer's Model chapter.

XTAL 1 (CLKIN) EXTERNAL OSCILLATOR (XT AL 1, XTAL2): Determines the execution rate
XTAL2 and timing of the processor. Connecting a crystal across these pins forms a

complete crystal oscillator circuit. The processor operating frequency is the
same as the crystal oscillator frequency.
The processor can also be driven by an external clock. In this case, the clock
signal is applied to XTAL1 (CLKIN); XTAL2 should be left unconnected. The
processor operating frequency is the same as the external clock frequency.

External Interface - Signals

4-3

SP ARClite User's Guide

4.1.2 Memory Interface

Signal Function

ADR[31:2] ADDRESS BUS (0): Specifies the data or instruction address of a 32-bit
word. Reads are always one word in size while byte, half-word, or word
transaction sizes for writes are identified by separate byte-enable signals
(-BE3-0). The value on the address bus is valid for the duration of the bus
transaction.

-AS ADDRESS STROBE (0): Asserted by the MB86930 or other bus master to
indicate the start of a new bus transaction. A bus transaction begins with the
assertion of-AS and ends with the assertion of -READY. During cycles in
which neither the processor nor another bus master is driving the bus, the bus
is idle, and -AS remains de-asserted. See Table 4-1 for signal values while
the bus is idle. The MB86930 asserts -AS for 1 clock cycle.

ASl[7:0] ADDRESS SPACE IDENTIFIERS (0): Indicates which of the 256 avai!ab!e
address spaces the current bus transaction is accessing. The ASI values are
defined as follows:

ASI <7:0> ADDRESS SPACE

Ox1 Control Register
Ox2 Instruction Cache Lock
Ox3 Data Cache Lock

Ox4 - Ox? Application Definable
Ox8 User Instruction Space
Ox9 Supervisor Instruction Space
OxA User Data Space
OxB Supervisor Data Space
OxC Instruction Cache Tag RAM
OxD Instruction Cache Data RAM
OxE Data Cache Tag RAM
OxF Data Cache Data RAM

Ox10 - OxFC Application Definable
OxFD - OxFF Reserved for Debug Hardware

The ASI values specified as "application definable" can be used by privileged
(supervisor mode) instructions such as load and store alternate. The ASI value
is available in the same cycle in which the corresponding address value is
asserted on the address bus. The values on the ASI pins are valid for the
duration of the bus transaction. Transactions with ASI values of Ox8, Ox9, OxA,
and OxB are cacheable.

-BE3-0 BYTE ENABLES (0): Indicate whether the current load or store transaction is
a byte, half-word or word transaction. The BYTE ENABLE value is available in
the same cycle in which the corresponding address value is asserted on the
address bus. The values on the byte enable pins are valid for load and store
operations and for the duration of the bus transaction (the byte enable signals
can be ignored during load operations).

Possible values for -BE3-0 are as follows:
31 0

Byte Writes [1 1 1 011 1 a 1I1 0 1 1Jo 1 1 1]
Half-Word Writes [1 1 0 0 I 0 0 1 1 j Word Writes l 0 0 0 0

External Interface - Signals

4-4

cP
FUJITSU

Signal Function

-CS[S-0] CHIP SELECTS (0): One of these signals is asserted when the value on the
address bus lies in the range specified by the corresponding Address Range
Specifier Register. The -CS signals are used to decode the current address
into one of eight address ranges. Address ranges should not overlap. Each
address range has a corresponding wait-state specifier which is used to
generate an internal -READY signal after a user-defined number of processor
clock cycles. This allows a variety of memory and 1/0 devices with different
access times to be connected to the MB86930 without the need for additional
logic. CSO is enabled at reset (See Chapter 2).

D[31:0] DATA BUS (110): D31 corresponds to the most significant bit of Byte 0. DO
corresponds to the least significant bit of byte 3. A double word is aligned on -an 8-byte boundary, a word is aligned on a 4-byte boundary, and a half-word
is aligned on a 2-byte boundary. If a load or store of any of these quantities is
not properly aligned, a mem_address_not_aligned Trap will occur in the
processor.

During write cycles, the point at which data is driven onto the bus depends on
the type of the preceding cycle. If the preceding cycle was a write, data is
driven in the cycle immediately following the cycle in which -READY was
asserted. If the preceding cycle was a read, data is driven one cycle after the
cycle in which -READY was asserted, in order to minimize bus contention
between the processor and the system.

-LOCK BUS LOCK (0): Asserted by the processor to indicate that the current bus
transaction requires more than one transfer on the bus. The Atomic Load
Store instruction, for example, requires contiguous bus transactions and so
causes the BUS LOCK signal to be asserted. The bus will not be granted to
another bus master as long as -LOCK is active. -LOCK is asserted with the
assertion of -AS and remains active until -READY is asserted at the end of
the locked transaction

-MEXC MEMORY EXCEPTION (I): Asserted by the memory system to indicate a
memory error on either a data or instruction access. Assertion of this signal
initiates either a Data or Instruction Access Exception trap in the IU. The
current bus access is invalidated by asserting the -MEXC in the same cycle
as the -READY signal. The IU ignores the value on the data bus in cycles
where -MEXC is asserted.

RD/-WR READ/WRITE BUS TRANSACTION (0): Specifies whether the current bus
transaction is a read or a write operation. When -AS is asserted and RD/-WR
is high, then the current transaction is a read. With -AS asserted and RD/-WR
low, the current transaction is a write. RD/-WR remains active for the duration
of the bus transaction and is de-asserted with the assertion of-READY.

External Interface - Signals

4-5

SP ARClite User's Guide

Signal Function

-READY READY (I): Asserted by the external memory system to indicate that the
current bus transaction is being completed and that it is ready to start with the
next bus transaction in the following cycle. In case of a fetch from memory, the
processor will strobe the value on the data bus at the rising edge of CLKIN
following the assertion of-READY. In the case of a write, the memory system
will assert -READY when the appropriate access time has been met.

In most cases, no external logic is required to generate the -READY signal.
On-chip circuitry can be programmed to assert -READY internally, based on
the address of the current transaction. The external system can override the
internal ready generator to terminate the current bus cycle early. Up to 6
address ranges each with different transaction times can be programmed.
(See the System Support Functions section, below.)

-SAME_PAGE SAME-PAGE DETECT (0): Asserted when the address of the current
memory access is within the same page as the previous memory access.
-SAME_PAGE can be used to take advantage of fast consecutive accesses
within page-mode DRAM page boundaries. -SAME_PAGE is asserted with
-AS and remains active for one processor cycle. -SAME_PAGE is never
asserted in the first transaction following a transaction by another device on
the bus. The page size is specified by writing the Same-Page Mask Register.
(See the System Support Functions section, below.)

4.1.3 Bus Arbitration

Signal

-BGRNT

-BREQ

External Interface - Signals

4-6

......
Function

BUS GRANT (0): Asserted by the CPU in response to a request from a
device wanting ownership of the bus. The CPU grants the bus to other devices
only after all transfers for the current transaction are completed. All bus drivers
are three-stated with the assertion of the BUS GRANT signal.

BUS REQUEST (I): Asserted by another device on the bus to indicate that it
wants ownership of the bus. The request must be answered with a bus grant
(-BGRNT) from the MB86930 before the device can proceed by driving the
bus. Once the bus has been granted, the device has ownership of the bus until
it de-asserts -BREQ. The user should ensure that devices on the bus do not
monopolize the bus to the exclusion of the CPU. The assertion of -BREQ is
recognized by the processor even when -RESET is being asserted.

cO
FUJITSU

4.1.4 Peripheral Functions

Signal Function

IRL(3:0] INTERRUPT REQUEST BUS (I): The value on these pins defines the external
interrupt level. IRL[3:0]=1111 forces a non-maskable interrupt. An IRL value of
0000 indicates no pending interrupts. All other values indicate maskable
interrupts as enabled in the Processor Interrupt Level field of the Processor
Status Register (PSR). Interrupts should be latched and prioritized by external
logic and should be held pending until acknowledged by the processor. An
interrupt controller is available on the MB86940 peripheral chip. IRL inputs are
sampled by the processor in cycle 1, synchronized in the following cycle, and
recognized by the processor in the third cycle. --TIMER_OVF TIMER OVERFLOW (0): Indicates that the processor's internal 16-bit timer
has overflowed. This signal can be used to initiate a DRAM refresh cycle or a
one-cycle periodic waveform. On reset, the timer is turned off and
-TIMER_OVF is high.

4.1.5 Emulator Bus

Signal Function

-EMU_BRK EMULATOR BREAK REQUEST LINE (I): Used to configure the debug unit
on reset. See section 2.6. This pin should be left unconnected.

EMU_D[3:0] EMULATOR DATA BITS (0): Reserved. These pins should be left
unconnected.

-EMU_ENB EMULATOR ENABLE (I): Used to configure the debug unit on reset. See
section 2.6. This pin should be left unconnected.

EMU_SD(3:0] EMULATOR STATUS/DATA BITS (1/0): Reserved. These pins should be left
unconnected.

4.1.6 Test and Boundary-Scan

Signal Function

-CLK_ECB EXTERNAL CLOCK BYPASS (I): When tied high, causes the CLKIN signal to
bypass the on-chip phase-locked loop. This signal is intended primarily for
testing the chip.

TCK TEST CLOCK (I): JTAG compatible test clock input.

ro1t TEST DATA IN (I): JTAG compatible test data input.

root TEST DATA OUT (0): JTAG compatible test data output.

TM St TEST MODE (I): JTAG compatible test mode select pin.

-rnsrt TEST RESET (I): Asynchronous reset for JTAG logic. If not using JTAG, this
signal must be pulled low.

t. See appendix for more information

External Interface - Signals

4-7

SP ARClite User's Guide

4.2 Bus Operation
At any given time, the Bus Interface Unit is handling requests for external mem­
ory and I/ 0 operations, arbitrating for bus access, or idle. From the point of view
of the external system, bus transactions are handled in fairly standard ways:

• Memory and 1/0 Operations-Read and write transactions are initiated with
the processor asserting the -AS signal. The RD /-WR output indicates the
transaction type. The -BE[3:0] outputs indicate the transaction width. The
processor drives the address and ASI signals, and either drives (on stores) or
reads (on loads) the signals on the data bus. The transaction ends when
-READY is asserted.

An atomic load-store is executed as a load followed by a store, with no opera­
tion allowed in between. The -LOCK output is asserted to indicate that the bus
is being used for more than one consecutive memory operation.

• Arbitration-Any external device can request ownership of the bus by
asserting the -BREQ signal. The processor three-states its bus drivers and
asserts -BGRNT to indicate that it is relinquishing control of the bus. On
completion of its transaction, the external device de-asserts -BREQ; the
processor responds by de-asserting -BGRNT in the following cycle.

The BIU receives requests for external memory operations from the Cache Con­
trol Logic. In the case of reads from external memory, it performs the read opera­
tion and returns the data to the Cache and IU. A parallel path is used to make the
data available to the IU in the same cycle that it is written to the cache.

In the case of a write to external memory, the BIU makes use of a write buffer
which can hold a one word write transaction. When the BIU receives a request for
a write transaction, it stores the write data and address in the write buffer, allow­
ing the IU to continue operating out of on-chip cache. The BIU then proceeds to
complete the write to external memory. In most cases the write buffer will hide
external memory latency from the IU. The exceptions are in cases where the write
buffer is still filled from a previous transaction or if the subsequent IU cycle
results in an instruction cache miss. In these cases, IU execution is held until the
write buffer is emptied. The write buffer operates only when the instruction and
data caches are both on.

The BIU includes a one stage prefetch buffer for instruction fetches. This buffer is
used to fetch the next sequential instruction after an instruction cache miss. The
instruction is prefetched only if the BIU do.es not have a request for a bus transac­
tion from the IU nor is any external device requesting use of the bus. The prefetch
buffer operation is suspended if the buffer is full. This occurs if the prefetched
instruction is a hit in the instruction cache or if a control transfer causes the
sequential instruction to be skipped. The buffer restarts after another instruction
cache miss. If an exception occurs during an instruction prefetch, the exception is

External Interface - Bus Operation

4-8

oO
FUJITSU

not sent to the IU unless the instruction is actually requested by the IU. The
prefetch buffer operates only when the instruction cache is on.

In any cycle the BIU can receive a request for accesses to either or both instruction
and/ or data memory. If it receives a request for both in the same cycle, it com­
pletes the data memory transaction first.

4.2.1 Exception Handling

The external memory system can indicate an exception during a memory opera-
tion. The BIU signals the appropriate data or instruction exception to the IU -
which will trap accordingly.

As mentioned above, the IU can continue operation after putting the data and
address for a store in the write buffer. If an exception is detected while complet­
ing this buffered write, then the BIU indicates a data access exception to the IU.

Any system which needs to recover from this error should store the address and
data of such write transactions in hardware. If the system can generate both read
and write exceptions, then the system must also provide a status bit which indi­
cates whether the exception was generated on a read or on a write transaction.
With access to this information the data access exception service routine can
determine the cause of the exception and recover accordingly.

External Interface - Bus Operation

4-9

SP ARClite User's Guide

4.2.2 Bus Cycles
This section presents the relative timing of events in representative bus transac­
tions.

Load

Whenever an instruction fetch or a load from data memory has a miss in the
cache, the BID performs a read from external memory.

A read transaction begins with the BID asserting-AS, to indicate a new bus trans­
action. The -AS signal is de-asserted after one cycle. At the same time the
ADR<31:2> and ASI<7:0> bits are driven with the location to be read. The BID
drives the RD/-WR signal high to indicate a read transaction. Note that the-BE
lines indicate byte; halfword or word operations during load operations although
their use is optional. The processor loads a word regardless of the size of data
requested (byte, halfword, word).

The external memory system responds with the read data on pins D<31:0>. It also
asserts the -READY signal when the data is ready (unless internal ready genera­
tion is selected). For slow memory, the -READY signal is delayed until data is
valid.

A load double operation is treated as back-to-back reads.

' ' LOAD1 ' LOAD2 '

CLK_IN 1 \~---~{ \~---~{
ADR<31 :2> lr ~/ !:':,

-~~~~:g~ r A1 r A2 j

_,, [j • !:::::.I '""-r ,,.
-READY ! ~ //~--~'\ !

'
0<31:0> 02

Figure 4· 1. Load Timing

External Interface - Bus Operation

4-10

cf)

FUJITSU

Load with Exception

If the external memory system sees a memory exception, it can terminate the cur­
rent memory transaction by asserting the -MEXC and-READY signals. The data
on the data bus is ignored by the MB86930.

CLK_IN

ADR<31:2>
ASk?:O>

-BE<3-0>

-AS

RD/-WR

-READY

-MEXC

D<31 :0>

LOAD 1

' ' i ~~~~~i

~~~~~~-A-1~~~~----<~~~~~~~x~~-A-2~~__,__ 

'~: ·~,Js;&i• !~ ~~ !~ 
' ' ' 

Figure 4·2. Load with Exception Timing 

External Interface - Bus Operation 

4-11 

-



SP ARClite User's Guide 

Store 

A write transaction begins with the BIU asserting -AS, to indicate a new bus 
transaction. The -AS signal is de-asserted after one phase. At the same time the 
ADR<31:2> and ASl<7:0> pins are driven with the location to be written while 
the D<31:0> pins has corresponding write data. The-BE3-0 pins indicate byte, 
half-word or word transaction width. The BIU drives the RD /-WR signal low to 
indicate a write transaction. 

The external memory system responds by asserting the -READY signal when it 
has stored the data. There is always one idle bus cycle between the termination of 
a read cycle and the beginning of a write cycle to provide time for switching of the 
data bus drivers. 

A store double operation is treated as back-to-back writes, 

' STORE 1 ' STORE2 ' ' 

CLK_IN { \ 1 \ 1 
ADR<31:2> x 

A1 k A2 i ASk7:0> : 
-BE<3-0> ' 

' ' ,, 
-AS i • 

•w-wR ~ ... 
' \\ :// \\ -READY i 

l 
0<31:0> x 01 ~ 02 

Figure 4·3. Store Timing 

External Interface - Bus Operation 

4-12 



oO 
FUJITSU 

Store with Exception 

If an access exception occurs on a write, the external memory system can termi­
nate the current memory transaction by asserting the -MEXC and -READY sig­
nals. The external memory system is expected to ignore the data on the data bus 
in this situation. 

STORE 1 

CLK _ _IN i I ~---~~ ~---~: 

A~~;n~ ~-----A1 ____ __,x,__· ____ ··-~-··_··:_;~,:_·.,·_·__,*"-========-A-N=======----+.;..-!:,:i-
-AS D I. '·;k:"\ . 

' ' 

RD/-WR \ l . 1::::0.::/., ; : .. . ' , . . l 
-READY 

-MEXC 

Figure 4-4. Store with Exception Timing 

External Interface - Bus Operation 

4-13 

-



SP ARClite User's Guide 

Atomic Load Store 

An atomic load store executes as a load followed by a store with no operation 
allowed in between. The -LOCK signal is asserted to indicate that the bus is being 
used for more than one external memory operation. 

There is one cycle between the termination of the read and the beginning of the 
write to provide time for the switching of the data bus drivers. 

Idle Cycle 

CLKINt LOAD
1 

\ ~- STORE
1 

\A

2 

t \_ 
ADR<31~2> '----~ ~ ~-----
M~~ M ~ 

-BE<3-0> ~-----

-AS 

RD/-WR 

-READY 

-LOCK 

0<31:0> 02 

Figure 4-5. Atomic Load Store Timing 

External Interface - Bus Operation 

4-14 



cP 
FUJITSU 

External Bus Request and Grant 

Any external device can request ownership of the bus by asserting the -BREQ sig­
nal. The BIU asserts the -BGRNT signal to indicate that it is relinquishing control 
of the bus and also three-states all of its bus drivers. In the following cycle, the 
external device can complete its transaction. On completion of its transaction the 
external device de-asserts the -BREQ signal. The BIU responds by de-asserting 
the -BGRNT signal in the following cycle. 

The MB86930 is the default owner of the bus. 

Processor Bus Cycle n Complete ~ Processor Bus Cycle n+ 1 Start~ 

CLK_IN 

-BREQ 

·~ : : ' 

' ' ' ~ ' ' ' 
' ' ' 
' ' ' 
' ' ' 

~ALL BUS DRIVERS THREE-STATE 

-BGRNT 

Figure 4-6. External Bus Request and Grant Timing 

External Interface - Bus Operation 

4-15 

-



SP ARClite User's Guide 

Processor Reset 

The MB86930 is reset by asserting the - RESET signal for a minimum of 4 clock 
cycles (see Figure). Systems using an external crystal to clock the processor 
should be sure that -RESET is asserted for at least 4 cycles after the crystal has 
started up and has stabilized. 

If the processor is reset following a halt in Error Mode, and if power to the proces­
sor is not removed, the tt field after reset will contain the value of the Trap that 
caused the processor to halt. 

I I I I I I I 

CLK_IN j'\J'~J11011~J"0"0 
I I I I I I 

RESET 

:+--4 CYCLE MINIMUM-(~ : ) : : 

1 : ~I : {I 
I I I 

: : ) I : : 

: : l "4--- a cvCLEs----((+l 
I I I I I 
I I I I I 

I 

ADDR oxoooo 000 

Figure 4·7. Reset Timing 

4.3 System Support Functions 
Built-in system support functions help to minimize the amount of glue logic 
required in the external system. The support includes programmable chip select 
logic, programmable wait-state generation, same-page detection logic and a timer 
for generating refresh requests. For a more detailed description of the program­
ming of these registers refer to chapter 2. 

The System Support Control Register turns the various system support features 
on and off. 

31 

Reserved 

3 3 3 2 1 0 

Same-Page Enable (On=1, Off=O) 

Chip Select Enable (0n=1, Off=O) 

Programmable Wait-State (On=1, Off=O) --~ 

Timer On/Off (0n=1, Off-0) -----' 
Reserved-----~ 

Figure 4·8. System Support Control Register 

External Interface - System Support Functions 

4-16 



cP 
FUJITSU 

4.3.1 System-Configuration Registers 

The system-configuration registers (Address Range Specifiers, Address Masks, 
and Programmable Wait-State Specifiers) allow software to define six different 
address ranges. When an address driven by the processor is in one of these 
ranges, the corresponding Chip-Select (--CS) pin is asserted. After a number of 
clock cycles determined by the corresponding Programmable Wait-State Speci­
fier, the processor automatically generates an internal -READY signal. This 
makes it possible for memory and 1/0 devices with different access times to be 
connected to the processor without additional logic. -

The contents of the Address Range Specifier Registers 1-5 (ARSR[S:O]) define five 
of the six address ranges. An additional address range is available, corresponding 
to --CSO. For this address range, ADR is hardwired to 0, and ASI is hardwired to 
Ox9 (Supervisor Instruction Space). With Mask Register AMRO,-CSO ranges 8K 
words. --CSO is enabled at reset. --CSl, --CS2, --CS3, -CS4 and -CS5 are disabled at 
reset. 

31 30 23 22 1 0 

I I ASI <7:0> ADR <31:10> I I 
Figure 4-9. Address Range Specifier Register Format 

An Address Mask Register is associated with each address range. Any address 
driven by the chip is compared with the value in all address range specifiers. 
Only those bits of the register are compared for which the corresponding mask 
bits are 0. If the specified bits of the current address match one of the address 
range specifiers, the corresponding chip-select (--CS) pins are asserted. When no 
bus transaction is being performed, all the --CS pins are high (inactive). The 
Address Mask Register corresponding to --CSO is initialized to compare all bits 
except ADR<14:10>. 

31 30 23 22 1 0 

I I ASI <7:0> ADR<31:10> I I 

Figure 4· 1 O. Address Mask Register Format 

External Interface - System Support Functions 

4-17 



SP ARClite User's Guide 

A Programmable Wait-State Specifier is associated with each address range. 
Three registers are used to specify the wait states for the six address ranges. Each 
register contains the wait-state specifiers for two address ranges. 

When the address currently being driven by the processor matches the unmasked 
bits in one of the Address Range Specifiers, the corresponding wait-state specifier 
is selected. The format of Wait-State Specifier Registers is shown in Figure 4-11. 

31 27 26 22 21 20 19 18 14 13 9 8 7 6 5 

Count2 Count 1 Count 2 Count 1 

Wait Enable ·0n=1, Off=O) --+--+--+----------~ 

Single Cycle (0n=1, Off=O) ---+--+-----------~ 

Override {0n=1, Ofl-0} ----+------------~ 

Figure 4-11. Wait-State Specifier Register Format 

Reserved 

If the Single Cycle bit equals 1, an internal -READY signal is generated in the 
same cycle. If the Single Cycle bit equals 0, and the current transaction is in the 
same page as the previous transaction (see the Same-Page Detection Logic section, 
below), then Count2 + 1 is used as the number of cycles after which-READY is 
asserted internally. If the transaction is not in the same page, Countl + 1 is used 
instead. If the Wait Enable bit equals 0, the internal -READY is not asserted. 

0 

The Override bit allows the user to terminate a transaction earlier than the speci­
fied time. If this bit equals 1, and external hardware asserts the external -READY 
signal, then the wait-state generator will stop counting and will wait for the next 
transaction, which can occur as soon as the next clock cycle. 

The Countl and Count2 fields of the Wait-State Specifier corresponding to-CSO 
have all their bits set to 1 on reset. In this way, 32 wait-state cycles (the maximum 
number) are inserted into the processor's first instruction accesses. The override 
bit for -CSO is enabled as well. 

4.3.2 Same-Page Detection 

The same-page detection logic determines whether the address of the current 
memory transaction is on the same page as the previous transaction. If it is, the 
processor asserts the -SAME_P AGE signal. The system can then take advantage 
of the fast consecutive accesses possible within fast-page mode DRAM page 
,boundaries. The same-page detection logic consists of a mask register, a register 
to store the address and ASI bits of the previous transaction, and a comparator. 

External Interface - System Support Functions 

4-18 



cO 
FUJITSU 

The Same-Page Mask Register specifies which bits of the current address and ASI 
must be compared with the previous address and ASL Only those bits are com­
pared for which the mask bit is 1. 

31 30 23 22 1 0 

AS\ Mask 
(Card=O, Don't Care=1) 

Address Mask (ADR [31 :10]) 
(Card=O, Don't Care,,,1) 

Figure 4-12. Same-Page Mask Register 

The -SAME_PAGE signal is never asserted for the first transaction following a 
transaction by another device on the bus. When using the internal wait-state gen­
erator, DRAM control logic should issue a bus request when initiating a refresh 
cycle so that the -SAME_PAGE logic is reset appropriately. The -SAME_PAGE 
feature is disabled at reset. 

4.3.3 Programmable Timer 

The 16-bit programmable timer causes the -TIMER_ OVF output signal to be 
asserted at software-defined intervals. This signal can be used to initiate DRAM 
refresh cycles, or to control other periodic events in the external system. 

The current timer count is kept in the Timer Register.-When the timer overflows, 
it is loaded with the value in the Timer Preload Register. The contents of both of 
these registers are undefined on reset. 

31 16 15 0 

Reserved Timer Value 

31 16 15 0 

Reserved Timer Pre-Load Value 

Figure 4-13. Timer and Timer Preload Registers 

The timer can also be loaded by writing directly to the Timer Register. The timer 
can be turned off by writing a 0 to the Timer On/ Off bit in the System Support 
Control register. The timer is clocked at the processor clock frequency. 

External Interface - System Support Functions 

4-19 

-



SP ARClite User's Guide 

External Interface - System Support Functions 

4-20 



c ER 

11111111111111111111111111111111111111111111 

Programming Considerations 

This chapter gives programmers information and advice about how to make the 
best use of SP ARClite processors. It discusses the initialization of a SP ARClite 
system, the design of trap handlers, window management, the use of on-chip 
cache, and SP ARClite-specific instructions. 

Because of the availability of high-performance optimizing compilers, real-time 
operating systems, target monitors and application software, many programmers 
will never need to program at the detail described in this chapter. However, for 
those writing their own kernels or operating systems, and for those wanting to 
hand optimize compiler code, sections in this chapter will prove useful. 

Most of the sections in this chapter contain code fragments illustrating the points 
under discussion. In some sections, complete subroutines are provided which can 
be used without modification in real systems; the integer multiplication and 
division routines are a good example. 

To follow the discussion and examples in this chapter, you should be familiar 
with the contents of Chapter 2, Programmer's Model. You should also know how to 
read SPARC assembly language (see Chapter 7). 

5.1 Initialization 
Processor reset occurs when the external system asserts the -RESET input. Upon 
reset, the processor is in supervisor mode. It begins fetching and executing 
instructions starting at address OxOOOOOOOO in Supervisor Instruction Space (ASI 

Programming Considerations - Initialization 

5-1 

-



SP ARClite User's Guide 

Ox9). The S bit of the PSR is set to 1; the ET bit is cleared to 0. The tt field of the 
Trap Base Register remains unchanged and identifies the last trap encountered if 
reset occurs without removing power from the processor. This provides a way to 
trace the origin of a halt to error mode (on power-up, the tt field is undefined). All 
other fields of the SP ARC control and status registers (PSR, WIM, TBR, and Y) are 
undefined on reset. 

The Cache/BIU Control Register and System-Support Register are cleared to O; 
that is, the various features controlled by these registers are turned off (except for 
-CSO). The contents of the on-chip cache and the various system-configuration 
registers are undefined (see Chapter 2 for details). 

5.1.1 Establishing the Processor State 

The first task of initialization code is to establish the processor state, as in the 
following code fragment: 

Reset 
wr 

wr 
wr 

Initialization 
%g0, Ox0fa7,%psr 

%g0, OxO, %wim 
%g0, OxO, %tbr 

Set psr: mask interrupts, mode=S, Pmode=U, 
traps enabled, CWP=7 
Initialize wim to window 0 
Initialize tbr to 0 

Writes to the PSR, WIM, and TBR registers are delayed by three instruction cycles; 
that is, the value in the register undefined for three instructions following the 
write. Accessing one of these registers, either explicitly or implicitly, within three 
instructions after a write can lead to unpredictable results. 

5.1.2 Configuring the System 

Initialization code must also configure the system by writing appropriate values 
into the system-configuration registers (Address Range Specifiers and Masks, 
Wait-State Specifiers, Same-Page Mask, and the Timer Registers). Figure 5-1 
shows the memory map of a simple example system. 

Unused 

1----------1 Ox20000000 

-CS1 Subsystem 
1-----------1 Ox10000000 

EPROM 
'-----------' OxOOOOOOOO 

Figure 5-1. Example System Memory Map 

Programming Considerations - Initialization 

5-2 



cP 
FUJITSU 

The following code sets the various system-configuration registers to values 
appropriate for the example system. 

Address Range Register and Address Mask Register for -CSO and 
-CSl are set here. Only the highest nibble of the addresses 
are used for mapping the different -CS signals as shown in Figure 5-1. 
Note: Address range register for -CSO is preset to Ox04 80 00 00 
ASI=Ox9, addr<31:10>=0x0 

set hi %hi(Oxfdf<<19), 
xnor %g0, %10, %10 
or %g0, Oxl40, %11 
sta %10, [%11] 1 

%10 
Set address mask register for -CSO 
ASI<l>=x, addr<27:0>=0xXXXXXXX 
SI and SD ASI, addr=OxOXXXXXXX 

set hi %hi (0xb1<<19), %10 Set address range register for -CSl: 
or 
sta 
set hi 
xnor 
or 

%g0, Ox124, %11 
%10, [%11] 1 
%hi(Oxfcf<<l9), 
%g0, %10, %10 
%g0, Oxl44, %11 

%10 

ASI=Oxb, addr<31:28>=0xl 

Set address mask register for -CSl 
ASI<l,O>=xx, addr<27:0>=0xXXXXXXX 

sta %10, [%11] 1 SI, SD, UI and UD ASI,addr=OxlXXXXXXX 

Set Wait State Specifier Registers 
Note: count=WS-1, WS+l=cycles, count=cycles-2 
Wait state value is for -CSO (ROM) and is set to: 

count=6, wait en=l, single cyc=O, override=O 
Wait state value is for -CSl (subsystem) and is set to: 

count=O, wait en=O, single cyc=O, override=O 

or %g0, Ox160, %11 ! -CSO and -CSl WSS Register 
or %g0, Ox634, %10 
sll %10 I 6, %10 
sta %10, [%11] 1 

.align 4 

.word Oxa3802001 Set Ancillary Register 17 bit 0 
to enable single vector trapping. 
Machine code is used here for assemblers 
which do not have the WR ASR intruction. 

or %g0, 0, %10 
sta %10, [%g0] 

set Oxffff, %10 
or %g0, Ox174, 
sta %10, [%11] 

set Ox7f800006, 
or %g0, Ox120, 
sta %10, [%11] 

1 

%11 
1 

%11 
%10 

1 

Write 0 into Cache/BIU Control Reg 
disabling all caches 

Set Timer Pre-Load Register 
Reload value is set to Oxffff 

Set Same-Page Mask Register 
Page size is set to lK for any ASI 

Programming Considerations - Initialization 

5-3 

• 



SP ARClite User's Guide 

or 
or 
sta 

%g0, Ox3c, %10 
%g0, Ox80, %11 

%10, [%11] 1 

Set System Support Control Reg: 
-SAME_PAGE, -CS<S-1>, WS generator and 
-TIMER OVF are all enabled 

5.1.3 Initializing the On-Chip Cache 

On reset, both caches are turned off, and all memory requests are sent to the Bus 
Interface Unit. In order to use the caches, software must initialize the Valid, Least 
Recently Used and Entry Lock bits by writing O's to the appropriate alternate 
address spaces. After initializing the cache, a program can write l's to the Cache 
Enable bits of the Cache/BIU control register to turn the caches on. The prefetch 
and write buffers of the BIU can be turned on in the same operation. 

The following code initializes the data and instruction caches, then enables cach­
ing and BIU buffering. 

#define set size 64 -
#define ini tag -
#define adrl 
#define adr2 Ox80000000 

#define CTL BITS 

#define icache lock bit 

Ox35 /*turn on i-cache, ct-cache, prefetch buf., write buf.*/ 

Oxl -
#define dcache lock bit Ox3 -
#define icache lock Ox8 -
#define dcache lock Oxa -
#define icache enlock Oxl -
#define dcache enlock Ox2 -
#define lock _reg_ adr Ox4 

#define lock save adr Ox8 -

.seg "text" 

set set size, %17 -
set adrl, %00 

set adr2, %02 

set ini _tag, %10 

loopinit: 

sta %10, [%00] Oxc 

sta %10, [%00] Oxe 
sta %10, [%02] Oxc 

sta %10, [%02] Oxe 
add %00, 16, %00 

sub cc %17, 1, %17 

bne loopinit 

add %02, 16, %02 

set O, %11 

set 

sta 
nop 
nop 
nop 

nop 

CTL_BITS,%i7 

%i7, [%11]1 

/* 

I* 
/* 

I* 

RAM size */ 

start address, set 
start address, set 
initial tag value 

write set 1, itag 
write set 1, dtag 
write set 2, itag 

write set 2, dtag 

1 */ 

2 */ 
*/ 

inc by 4 words (each tag serves 4 words) 

delay slot 

turn on caches. 

some nap's for transition 

Programming Considerations - Initialization 

5-4 



OJ 
FUJITSU 

5.2 Trap Handling 
An interrupt or trap (other than reset) causes a vectored transfer of control into a 
trap table. The first four instructions of each trap handler are in the trap table 
itself. The Trap Base Address field in the Trap Base Register contains the base 
address of the table. Associated with each trap type is an 8-bit value, which (left 
shifted by 4 bits) is used as an offset into the table. From the trap table, control 
typically passes (via a JMPL or BA instruction) to the appropriate trap handler. A 
trap table with base address OxOOOOOOOO is shown in the following code fragment. 

Note that since -CSO is selected for address range Ox0-0x3fff, the branch after reset 
at address OxO must vector within this address range if the internally generated 
chip select is being used. There is sufficient space after the trap handler (at label 
"start" below) yet still within the CSO default range to write the CSO mask register 
if required. 

0 T reset: 
4 

/* 

mov OxeO, %psr 
mov %g0, %tbr 

/* 0 -> TBR assumes boot is from fast memory, and that only the 
/* first 4 instructions of the response to reset are there. Single 
/* Vector Trapping is to remain disabled. 
*/ 
8 

c 

10 T_instr_access_exception: 
14 
18 
le 
20 T_unimplemented_instruction: 
24 
28 
2c 
30 T_privileged_instruction: 
34 
38 
3c 
40 T_fp_disabled: 
44 
48 

4c 
50 T window overflow: 
54 
58 

Sc 

ba 
mov 

rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 

start 
%g0, %wim 

%tbr, %13 
%psr, %10 
iae handler 

%tbr, %13 
%psr, %10 
illegal 

%tbr, %13 
%psr, %10 
privileged 

%tbr, %13 
%psr, %10 
fp_ disabled 

%tbr, %13 
%psr, %10 
win overflow 

Programming Considerations - Trap Handling 

5-5 

-



SPARClite User's Guide 

60 T window underflow: 
64 
68 
6c 
70 T_mem_addr_not_aligned: 
74 
78 
7c 
80 T_fp_exception: 
84 
88 
Be 
90 T data - access exception: - -
94 
98 
9c 
aO T _tag_ overflow: 
a4 
a8 
ac 

bO 
b4 
b8 
be 
co 
c4 
c8 
cc 

100 
104 
108 
lOc 
110 T int 1: 
114 
118 
llc 
120 T int 2: 
124 
128 
12c 

lfO T int 15: 
lf 4 
lf8 
lfc 

Programming Considerations - Trap Handling 

5-6 

rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 
rd 
rd 
ba 
n~n 
~~ '-' .t"' 

rd 
rd 
ba 
nop 

rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 

rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 
rd 
rd 
ba 
nop 

rd 
rd 
ba 
nop 

%tbr, %13 
%psr, %10 
win underflow 

%tbr, %13 
%psr, %10 
misaligned_ addr 

%tbr, %13 
%psr, %10 
unimplemented_trap 

%tbr, %13 
%psr, %10 
dae handler -

%tbr, %13 
%psr, %10 
tag_ overflow 

%tbr, %13 
%psr, %10 
unimplemented_trap 

%tbr, %13 
%psr, %10 
unimplemented_ trap 

%tbr, %13 
%psr, %10 
unimplemented_trap 

%tbr, %13 
%psr, %10 
int handler 

%tbr, %13 
%psr, %10 
int handler 

%tbr, %13 
%psr, %10 
int handler 



cO 
FUJITSU 

200 T rferr: rd %tbr, %13 
204 rd %psr, %10 
208 ba unimplemented_trap 
20c nop 
210 T iaerr: rd %tbr, %13 
214 rd 9opsr, %10 
218 ba iae handler 
21c nop 
220 rd %tbr, %13 
224 rd %psr, %10 
228 ba unimplemented_ trap 
22c nap 
230 rd %tbr, %13 
234 rd %psr, %10 
238 ba unimplemented_trap • 23c nap 
240 T cp disabled: rd %tbr, %13 - -
244 rd %psr, %10 
248 ba cp disabled -
24c nap 
250 rd %tbr, %13 
254 rd %psr, %10 
258 ba unimplemented_trap 
25c nap 
260 rd %tbr, %13 
264 rd %psr, %10 
268 ba unimplemented_trap 
26c nap 
270 rd %tbr, %13 
274 rd %psr, %10 
278 ba unimplemented_trap 
27c nap 
280 T cp exception: rd %tbr, %13 -
284 rd %psr, %10 
288 ba unimplemented_trap 
28c nap 
290 T daerr: rd %tbr, %13 
294 rd %psr, %10 
298 ba dae handler 
29c nap 
2a0 rd %tbr, %13 
2a4 rd %psr, %10 
2a8 ba unimplemented_trap 
2ac nap 
2b0 rd %tbr, %13 
2b4 rd %psr, %10 
2b8 ba unimplemented_trap 
2bc nap 

Programming Considerations - Trap Handling 

5-7 



SP ARClite User's Guide 

800 software _traps: rd %tbr, %13 
804 rd %psr, %10 
808 ba trap_instr 
80c nop 
810 rd %tbr, %13 
814 rd %psr, %10 
818 ba trap instr -
81c nop 

feO rd %tbr, %13 
fe4 rd %psr, %10 
fe8 ba trap_ instr 
fee nop 
ffO rd %tbr, %13 
ff4 rd %psr, %10 
ff8 ba emu_exception 
ffc nop 

1000 start: 

When a trap is taken, the processor writes the trap type number into the tt field of 
the Trap Base Register, and disables traps by clearing the ET bit of the Processor 
Status Register. The processor enters supervisor mode (S=l), saving the old state 
of the S bit in the PS field of the PSR. The Current Window Pointer is 
automatically decremented. 

Each of the illustrated trap handlers (except for reset) begins by saving the values 
of the TBR and PSR, and then jumps, by means of an unconditional branch, to the 
next instruction in the service routine. 

Each trap handler must then: 

1. Ensure that a window is available, in case another trap occurs. (When it takes a 
trap, the processor automatically saves the window of the interrupted routine 
by decrementing the Current Window Pointer.) 

2. Re-enable traps by setting the ET bit of the PSR. 

3. Handle the exceptional condition that caused the trap. 

4. Ensure that a window is available, so that the RETT (return from trap) 
instruction can restore the window of the interrupted routine by incrementing 
theCWP. 

5. Disable traps by clearing the ET bit of the PSR. 

6. Execute a JMPL/RETT instruction pair. The address for the return is found in 
r[17] (When it takes a trap, the processor loads r[17] with the value in the PC). 
The RETT instruction automatically re-enables traps. 

Programming Considerations - Trap Handling 

5-8 



cP 
FUJITSU 

To re-execute the trapped instruction when returning from a trap handler use the 
sequence: 

JMPL %1 7, %0 
rett %18 

old PC 
old nPC 

To return to the instruction after the trapped instruction (e.g., when emulating an 
instruction) use the sequence: 

jmpl %18, %0 
rett %18 + 4 

old nPC 
! old nPC + 4 

Two example trap handlers are shown below. 

rerun_trap instr: 
andn %10, Ox20, 
wr %10, %psr 
or %g0, Oxl, 
or %g0, OxlO, 
sta %gl, [%10] 
jmpl %11, %g0 
rett %12 

%10 

%gl 
%10 
1 

Disable traps. 

Set Restore Lock bit, 
in case an autolock sequence 
is in effect. 

Return to instruction at pc. 

Return routine for skipping the trapped instruction. 

skip _trap_instr: 
andn %10, 
wr %10, 
or %g0, 

or %g0, 
sta %gl, 

jmpl %12, 
rett %12+4 

instr access: 

illegal instr: 

_privil instr: 

fp_disable: 

FUNCTION 
win ovf 

DESCRIPTION 

Ox20, 
%psr 
Oxl, 
OxlO, 
[ %10 l 
%g0 

%10 

%gl 
%10 
1 

Disable traps. 

Set Restore Lock bit, 
in case an autolock sequence 
is in effect. 

Return to instruction at npc. 

This routine is the trap handler for register window overflow trap. 
Priority: Ox06 
Upon entry, the cwp points to the trap window, which is 1 less than 
the register window that must be saved to the stack. the stack is 

Programming Considerations - Trap Handling 

5-9 

-



SP ARClite User's Guide 

organized with %i6 = %06 - (Ox40 + local stack used) . the ins and 
locals are saved, and the wim is adjusted for the new window. 

INPUTS 
- None. 

INTERNAL DESCRIPTION 
- Move the invalid window to the next window by rotating the %wim 

register left by one slot. 
- Get into the previously invalid window, the one that caused the trap, 

and save all of the registers in it. 
- Get back into the previously valid window and let the trapped routine 

execute the save again. 

RETURNS 
- %00 = 1 so execution s~ar~s at the trapped instruction. 

win overflow: 
or %10, Ox20, %10 
wr %10, %psr 
rd %wim, %14 
mov %gl, %17 
srl %14, 1, %gl 

sll %14, NWINDOWS-1, 
or %15, %gl, %gl 
save 
wr %gl,%g0, %wim 
nop 
nop 
nop 
st %i0, [%sp + OxO 
st %il, [%sp + Oxl 
st %i2, [%sp + Ox2 
st %i3, [%sp + Ox3 
st %i4, [%sp + Ox4 
st %i5, [%sp + Ox5 
st %i6, [%sp + Ox6 
st %i 7, [%sp + Ox7 
st %10, [%sp + Ox8 
st %11, [%sp + Ox9 
st %12, [%sp + Oxa 
st %13, [%sp + Oxb 
st %14, [%sp + Oxc 
st %15, [%sp + Oxd 
st %16, [%sp + Oxe 
st %17, [%sp + Oxf 
restore 
mov %1 7 I %gl 

_rerun_trap_instr: 
andn %10, Ox20, %10 

%15 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

* 4] 

enable traps 

Get wim at trap time. 
Save %gl. 
Next WIM %gl = 
rol(WIM, 1, NWINDOW). 

Get into window to be saved. 
! Install new wim. 
must delay three instructions 
before using these registers, so 
put nops in just to be safe 
save all local and uin" registers 

Go back to trap window. 
Restore 9ogl. 

Disable traps. 

Programming Considerations - Trap Handling 

5-10 



wr %10, 
or %g0, 

or %g0, 

sta %gl, 
jmpl %11, 
rett %12 

FUNCTION 
win unf 

DESCRIPTION 

%psr 
Oxl, %gl 
OxlO, %10 
[%10 l 1 
%g0 

cO 
FUJITSU 

Set Restore Lock bit, 
in case an autolock sequence 
is in effect. 

Return to instruction at pc. 

This routine is the trap handler for register window underflow trap. 
Priority: Ox07 
Upon entry, the cwp points to the trap window, which is 1 more than 
the register window that must be restored from the stack. The stack 
is organized with %i6 = %06 - (0x40 + local stack used). The ins 
and locals are restored, and the wim is adjusted for the new window. 

INPUTS 
- None. 

INTERNAL DESCRIPTION 

RETURNS 
- %00 = 1 so execution starts at the trapped instruction. 

win underflow: 
or %10, Ox20, %10 
wr %10, %psr 
mov 
sll 
srl 
or 
mov 
nop 
nop 
nop 
restore 
restore 
ld 
ld 
ld 
ld 
ld 
ld 
ld 
ld 
ld 
ld 
ld 

%wim, %14 
%14, 1, %15 

%14, NWINDOWS-1, %16 
%16, %15, %16 
%16, %wim 

[%sp + OxO 
[%sp + Oxl 
[ 9osp + Ox2 
[%sp + Ox3 
[%sp + Ox4 
[%sp + Ox5 
[%sp + Ox6 
[%sp + Ox7 
[%sp + Ox8 
[%sp + Ox9 
[%sp + Oxa 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

4]' 
4]' 
4]' 
4]' 
4]' 
4]' 
4]' 
4]' 
4]' 
4]' 
4]' 

%i0 
%il 
%i2 
%i3 
%i4 
%i5 
%i6 
%i7 
%10 
%11 

%12 

enable traps 

Get wim. 
Next WIM 

Install it. 

rol(WIM, 1, NWINDOW). 

must delay three instructions 
before using these registers, so 
put nops in just to be safe 
Back to user window. 
Get into window to be restored. 
restore all registers 

Programming Considerations - Trap Handling 

5-11 

• 



SP ARClite User's Guide 

ld [%sp + Oxb * 4]' 
ld [%Sp + Oxc * 4]' 
ld [%sp + Oxd * 4]' 
ld [%sp + Oxe * 4], 
ld [%sp + Oxf * 4]' 
save 
save 

_rerun_trap_instr: 
andn %10, Ox20, %10 
wr %10, %psr 
or %g0, Oxl, %gl 
or %g0, OxlO, %10 
sta %gl, [%10] 1 
jmpl %11, %g0 
rett %12 

%13 
%14 
%15 
%16 
%17 

Get back to original window. 

Disable traps. 

Set Restore Lock bit, 
in case an autolock sequence 
is in effect. 

Return to instruction at PC. 

5.3 Register and Stack Management 
This section describes the standard conventions for using the register file. Most 
SP ARC compilers comply with this convention as this is the standard adopted on 
SPARC workstations. (Compilers are available that optimize code differently for 
embedded applications if required.) 

This section describes standard conventions for using the register file. 

5.3.1 Registers 

Register usage is typically a critical resource allocation issue for compilers. The 
SPARClite architecture provides windowed integer registers (in, out, local), and 

Programming Considerations - Register and Stack Management 

5-12 



cP 
FUJITSU 

global integer registers. Figure 5-2 summarizes the SPARC register set, as seen by 
a user-mode procedure. · 

in %i7 (%r31) return address t 

%fp,%iS (%r30) frame pointer t 

%i5 (%r29) incoming param st 

%i4 (%r28) incoming param st 

%i3 (%r27) incoming param 4t 

%i2 (%r2S) incoming param 3t 

%i1 (%r25) incoming param 2t 

%i0 (%r24) incoming pa ram 1 I return value to caller t 

local %17 (%r23) local 7t 

%sp,%16 (%r22) local st 

%IS (%r21) local st 

%14 (%r20) local 4t 

%13 (%r19) local 3t 

%12 (%r18) local 2t 

%11 (%r17) local 1t 

%10 (%r1S) local ot 

out %07 (%r1S) temporary value I address of CALL instruction* 

%06 (%r14) stack pointer t 

%oS (%r13) outgoing param s* 

%04 (%r12) outgoing param s* 

%03 (%r11) outgoing param 4* 

%02 (%r10) outgoing param 3* 

%01 (%r9) outgoing param 2* 

%00 (%r8) outgoing param 1 I return value from callee* 

global %g7 (%r7) global 7 (SPARC ABI: use reserved) 

%gS (%r6) global S (SPARC ABI: use reserved) 

%gS (%rS) global S (SPARC ABI: use reserved) 

%g4 (%r4) global 4 (SPARC ABI: global register variable) 

%g3 (%r3) global 3 (SPARC ABI: global register variable) 

%g2 (%r2) global 2 (SPARC ABI: global register variable) 

%g1 (%r1) temporary value* 

%g0 (%r0) 0 

state o/oy (%r30) Y register (used in multiplication/division)* 

(ice field of %psr) Integer condition codes* 

f. assumed by caller to be preserved across a procedure call 
:j:. assumed by caller to be destroyed (volatile) across a procedure call. 

Figure 5-2. SPARC Register Set, as Seen by a User-Mode Procedure 

In and Out Registers 

The in and out registers are used primarily for passing parameters to subroutines 
and receiving results from them, and for keeping track of the memory stack. 

Programming Considerations - Register and Stack Management 

5-13 

-



SP ARClite User's Guide 

Certain roufules can also use out registers 0 through 5 as fast temporary storage; 
these include leaf routines-which contain no procedure calls-and routines 
which pass parameters using only shared memory or global registers. In general, 
when a procedure is called, the caller's outs become the callee's ins. 

One of a procedure's out registers (%06) is used as its stack pointer, %sp. It points 
to an area in which the system can store %rl6 ... %r31 (%10 ... %i7) when the 
register file overflows (window_overflow trap); it is used to address most values 
located on the stack. See Figure 5-3. A trap can occur at any time, which may 
precipitate a subsequent window _overflow trap, during which the contents of the 
user's register window at the time of the original trap are spilled to the memory to 
which its %sp points. 

A procedure may store temporary values in its out registers, with the exception of 
%sp, with the understanding that those values are volatile across procedure calls. 
% sp cannot be used for temporary values for the reasons described in the Register 
Windows and %sp section below. 

Up to six parameters can be passed by placing them in out registers %00 ... %05; 
additional parameters are passed in the memory stack. The stack pointer is 
implicitly passed in %06, and a CALL instruction places its own address in %07. 

When an argument is a data aggregate being passed by value, the caller first 
makes a temporary copy of the data aggregate in its stack frame, then passes a 
pointer to the copy in the argument out register (or on the stack, if it is the 7th or 
later argument). 

After a callee is entered and its SA VE instruction has been executed, the caller's 
ou-t registers are accessible as the callee's in registers. 

The caller's stack pointer %sp (%06) automatically becomes the current 
procedure's frame pointer %fp (%i6) when the SAVE instruction is executed. 

The callee finds its first six parameters in %i0 ... %i5, and the remainder (if any) 
on the stack. 

For each passed-by-value data aggregate, the callee finds a pointer to a copy of 
the aggregate in its argument list. The compiler must arrange for an extra derefer­
encing operation each time such an argument is referenced in the callee. The addi­
tional code in the callee program uses the pointer to access aggregate values on 
the stack. 

If the callee is passed fewer than six parameters, it may store temporary values in 
the unused in registers. 

If a register parameter (in %i0 ... %i5) has its address taken in the called proce­
dure, the callee stores that parameter's value on the memory stack. The parameter 
is then accessed in that memory location for the lifetime of the pointer(s) which 

Programming Considerations - Register and Stack M.anagement 

5-14 



cP 
FUJITSU 

contains its address (or for the lifetime of the procedure, if the compiler doesn't 
know the pointer's lifetime). 

The six words available on the stack for saving the first six parameters are deliber­
ately contiguous in memory with those in which additional parameters may be 
passed. This supports constructs such as C's varargs, for which the callee copies to 
the stack the register parameters which must be addressable. 

A function returns a scalar integer value by writing it into its ins (which are the 
caller's outs), starting with %i0. Aggregate values are returned using the mecha­
nism described in the Functions Returning Aggregate Values section. 

A procedure's return address, normally the address of the instruction just after 
the CALL' s delay-slot instruction, is simply calculated as %i7 + 8. 

Local Registers 

The locals are used for automatic variables-those whose lifetimes are no longer 
than the lifetimes of their containing procedures-and for most temporary values. 
For access efficiency, a compiler may also copy parameters (i.e., those past the 
sixth) from the memory stack into the locals and use them from there. Procedures 
only calling several leaf routines may be more efficient if some of the procedure's 
automatic variables are referenced by their address rather than have the values 
passed for each leaf routine call and return. If an automatic variable's address is 
taken, the variable's value must be stored in the memory stack, and be accessed 
there for the lifetime of the pointer(s) which contains its address (or for the life­
time of the procedure, if the compiler doesn't know the pointer's lifetime). 

If a routine creates variables that can be used by other called routines, these vari­
ables should either be stored in the memory stack and referenced by pointers, or 
stored in the global registers, unless the register window does not change when 
the other routines are called. 

Register Windows and %sp 

Some caveats about the use of o/osp and the SA VE and RESTORE instructions are 
appropriate. It is essential that: 

• o/osp always contains the correct value, so that when (and if) a register window 
overflow or underflow trap occurs, the register window can be correctly 
stored to or reloaded from memory. 

• User (non-supervisor) code use SA VE and RESTORE instructions carefully. In 
particular, "walking" the call chain through the register windows using 
RESTOREs, expecting to be able to return to where one started using SA VEs 
does not work as one might suppose. This fails because the "next" register 
window (in the "SA VE direction") is reserved for use by trap handlers. Since 

Programming Considerations - Register and Stack Management 

5-15 

-



SP ARClite User's Guide 

non-supervisor code cannot disable traps, a trap could write over the contents 
of a user register window which has "temporarily" been RESTORE' d. 

For example, if a routine at the fourth calling level returns to its caller at third 
level and restores the third-level window, an intervening trap at third level 
can change registers in the fourth-level window. A subsequent call and SAVE 
to a routine at fourth level will not find the register contents the same as they 
were on exit from the last fourth-level routine. 

The safe method is to flush the register windows out to user memory (the 
stack) in supervisor state using a software trap designed for that purpose. 
Then, user code can safely "walk" the call chain through user memory, instead 
of through the register windows. 

The rule-of-thumb which will avoid such problems is to consider all memory 
below %sp on the user's stack, and the contents of all register windows ''below" 
the current one to be volatile. Below means decreasing memory address and win­
dow pointer, corresponding to call space of subsequent routines by the current 
routine. In embedded control applications complex enough to require partition­
ing the process into re-usable tasks driven by a master sequencer, this view can be 
critical to ensure correct functioning in all cases. 

Global Registers 

Unlike the ins, locals, and outs, the globals are not part of any register window. The 
globals are a set of eight registers with global scope, like the register sets of more 
traditional processor architectures. The globals (except %g0) are conventionally 
assumed to be volatile across procedure calls. However, if they are used on a per­
procedure basis and expected to be non-volatile across procedure calls, either the 
caller or the callee has to take responsibility for saving and restoring their con­
tents. 

Global register %g0 has a "hardwired" value of zero. It always reads as zero, and 
writes to it have no effect. 

The global registers other than %g0 can be used for temporaries, global variables, 
or global pointers-either user variables, or values maintained as part of the pro­
gram's execution environment. For example, one could use globals in the execu­
tion environment by establishing a convention that global scalars are addressed 
via offsets from a global base register. In the general case, memory accessed at an 
arbitrary address requires two instructions, e.g.: 

sethi %hi(address), reg 
ld [req+%lo(adcfress)], reg 

Programming Considerations - Register and Stack Management 

5-16 



cP 
FUJITSU 

Use of a global base register for frequently accessed global values would provide 
faster (single-instruction) access to 213 bytes of those values, e.g.,: 

ld [%gn+offset], reg 

Global register n would hold the address of the center of a block of global values. 
The offset, varying from -4096 to 4095 bytes, would point to a particular value. 

The current convention is that the global registers (except %g0) are assumed to be 
volatile across procedure calls. The convention used by the SPARC Application 
Binary Interface (ABI) is that %gl is assumed to be volatile across procedure calls, 
%g2 ... %g4 are reserved for use by the application program (for example, as glo-
bal register variables), and %g5 ... %g7 are assumed to be nonvolatile and • 
reserved for (as-yet-undefined) use by the execution environment. 

5.3.2 Memory Stack 
Space on the memory stack, called a stack frame, is normally allocated for each 
procedure. Under certain conditions, optimization may enable a leaf procedure to 
use its caller's stack frame instead of one of its own. In that case, the leaf proce­
dure allocates no space of its own for a stack frame. The following description of 
the memory stack applies to all procedures, except leaf procedures which have 
been optimized as shown in 5.3.4. 

The following are always allocated at compile time in every procedure's stack 
frame: 

• 16 words, always starting at %sp, for saving the procedure's in and local 
registers, should a register window overflow occur. 

The following are allocated at compile time in the stack frames of non-leaf proce­
dures: 

• One word, for passing a "hidden" (implicit) parameter. This is used when the 
caller is expecting the callee to return a data aggregate by value; the hidden 
word contains the address of stack space allocated (if any) by the caller for that 
purpose. See the section titled Functions Returning Aggregate Values. 

• Six words, into which the callee may store parameters that must be 
addressable. 

Space is allocated as needed in the stack frame for the following at compile time: 

• Outgoing parameters beyond the sixth. 

• All automatic arrays, automatic data aggregates, automatic scalars which must 
be addressable, and automatic scalars for which there is no room in registers. 

• Compiler-generated temporary values (typically when there are too many for 
the compiler to keep them all in registers). 

Programming Considerations - Register and Stack Management 

5-17 



SP ARClite User's Guide 

Space can be allocated dynamically (at runtime) in the stack frame for the follow­
ing: 

• Memory allocated using the al lo ca ( ) function of the C library 

Addressable automatic variables on the stack are addressed with negative offsets 
relative to %fp; dynamically allocated space is addressed with positive offsets 
from the pointer returned by alloca ( ) ; everything else in the stack frame is 
addressed with positive offsets relative to %sp. 

The stack pointer %sp must always be doubleword-aligned. This allows window 
overflow and underflow trap handlers to use the more efficient STD and LDD 
instructions to store and reload register windows. 

Figure 5-3 illustrates the stack frame of an active non-leaf procedure. 

%fp (old %sp) -

%fp - offse 

alloca() -

%sp + offse 

%sp + offse 

%sp + offse 

1-

1-

1-

1-

%sp + offse 1-

%sp + offse 

%sp __.. 

1-

Space (if needed) for automatic arrays, aggregates, 
and addressable scalar automatics 

Space dynamically allocated via alloca (), if any 

Space (if needed) for compiler temporaries 

Outgoing parameters past the sixth, if any 

6 words into which callee may store register 
arguments 

one-word hidden parameter (address at which callee 
should store aggregate return value) 

16 words in which to save register window (in and 
local registers) 

~ 
Stack Growth 

(decreasing memory addresses) 

Figure 5-3. User Stack Frame 

Previous Stack Frame 

Current Stack Frame 

Next Stack Frame 
(not yet allocated) 

5.3.3 Functions Returning Aggregate Values 

Some programming languages, including C, dialects of Pascal, and Modula-2, 
allow the user to define functions that return aggregate values. Examples include 
a C struct or union, ora Pascal record. Since such a valuemaynotfitintothe 
registers, another value-returning protocol must be defined to return the result in 
memory. 

Re-entrancy and efficiency considerations require that the memory used to hold 
such a return value be allocated by the function's caller. The address of this mem­
ory area is passed as the one-word hidden parameter mentioned in section 5.3.2 
"Memory Stack", above. Where it is known that re-entrancy is not required, global 

Programming Considerations - Register and Stack Management 

5-18 



cO 
FUJITSU 

or shared memory allocated by the master sequencer can be an effective alterna­
tive, especially if the amount of memory required is small enough to be held in 
locked data cache. 

Because of the lack of type safety in the C language, a function should not assume 
that its caller is expecting an aggregate return value and has provided a valid 
memory address. Thus, some additional handshaking is required. 

When a procedure expecting an aggregate return value from a called function is 
compiled, an UNIMP instruction is placed after the delay-slot instruction follow­
ing the CALL to the function in question. The immediate field in this UNIMP 
instruction contains the low-order twelve bits of the size (in bytes) of the area allo­
cated by the caller for the aggregate value expected to be returned. 

When the aggregate-returning function is about to store its value in the memory -
allocated by its caller, it first tests for the presence of this UNIMP instruction in its 
caller's instruction stream. If it is found, the callee assumes the hidden parameter 
to be valid, stores its return value at the given address, and returns control to the 
instruction following the caller's UNIMP instruction. If the UNIMP instruction is 
not found, the hidden parameter is assumed not to be valid and no value is 
returned. 

On the other hand, if a scalar-returning function is called when an aggregate 
return value is expected (which is clearly a software error), the function returns as 
usual, executing the UNIMP instruction, which causes an unimplemented­
instruction trap. 

5.3.4 Leaf Procedure Optimization 

A leaf procedure is one that is a "leaf" in the program's call graph; that is, one that 
does not call (e.g. via CALL or JMPL) any other procedures. 

Each procedure, including leaf procedures, normally uses a SA VE instruction to 
allocate a stack frame and obtain a register window for itself, and a corresponding 
RESTORE instruction to de-allocate it. The time costs associated with this are: 

• Possible generation of register-window overflow /underflow traps at runtime. 
This only happens occasionally, but when either underflow or overflow does 
occur, it costs dozens of machine cycles to process. 

• The two cycles expended by the SA VE and RESTORE instructions themselves 

There are also space costs associated with this convention, the cumulative cache 
effects of which may not be negligible. The space costs include: 

• The space occupied on the stack by the procedure's stack frame 

• The two words occupied by the SA VE and RESTORE instructions 

Of the above costs, the trap-processing cycles are typically the most significant. 

Programming Considerations - Register and Stack Management 

5-19 



SPARClite User's Guide 

Some leaf procedures can be made to operate without their own register window 
or stack frame, using their caller's instead. This can be done when the candidate 
leaf procedure meets all of the following conditions: 

• Contains no references to %sp, except in its SAVE instruction 

• Contains no references to %fp 

• Refers to (or can be made to refer to) no more than 8 of the 32 integer registers, 
inclusive of %07 (the "return address"). 

Such procedures can be converted into routines which share the caller's stack 
frame and register window-an optimization that saves both time and space. 
When optimized, such a procedure is known as an optimized leaf procedure. It 
may only safely use registers that its caller already assumes to be volatile across a 
procedure calt namely, %00 ... %05, %07, and %gl. 

The optimization can be performed at the assembly-language level using the fol­
lowing steps: 

• Change all references to registers in the procedure to registers that the caller 
assumes volatile across the call: 

• Leave references to %07 unchanged. 

• Leave any references to %g0 ... %g7 unchanged. 

• Change % iO ... % i5 to %00 ... %05, respectively. If an in register is changed 
to an out register that was already referenced in the original unoptimized 
version of the procedure, all original references to that out register must be 
changed to refer to an unused out or global register. 

• Change references to each local register into references to any register 
among %00 ... %05 or %gl that remains unused. 

• Delete the SA VE instruction. If it was in a delay slot, replace it with a NOP 
instruction. If its destination register was not %g0 or %sp, convert the SAVE 
into the corresponding ADD instruction instead of deleting it. 

• If the RESTORE' s implicit addition operation is used for a productive purpose 
(such as setting up the procedure's return value), convert the RESTORE to the 
corresponding ADD instruction. Otherwise, the RESTORE is only used for 
stack and register-window de-allocation; replace it with a NOP instruction (it 
is probably in the delay slot of the RET, and so cannot be deleted). 

• Change the RET (return) synthetic instruction to RETL (return-from-leaf­
procedure synthetic instruction). 

• Perform any optimizations newly made possible, such as combining 
instructions, or filling the delay slot of the RETL with a productive instruction. 

After the above changes, there should be no SA VE or RESTORE instructions, and 
no references to in or local registers in the procedure body. All original references 
to ins are now to outs. All other register references are to either %gl, or other outs. 

Programming Considerations - Register and Stack Management 

5-20 



<P 
FUJITSU 

Costs of optimizing leaf procedures in this way include: 

• Additional intelligence in the peephole optimizer to recognize and optimize 
candidate leaf procedures. 

• Additional intelligence in debuggers to properly report the call chain and the 
stack traceback for optimized leaf procedures. 

The following code fragment shows a simple procedure call with a value 
returned, and the procedure itself: 

CALLER: 
int i; 

i ~ sum3 ( 1, 2, 3 } ; 

mov l,%00 

rnov 2, %ol 

call sum3 
mov 3, %02 

mov %00, %17 

#define SA (x} ( ( (x) +7) & (-Ox07)) 
#define MINFRAME ((16+1+6)*4) 

CALLEE: 
int sum3 (a, b, c) 
int a, b, c; 

return a+b+c; 

surn3: 
save %sp, -SA (MINFRAME), %sp 

add %i0, %il, %17 

add %17, %i2, %17 
ret 

restore %17, O, %00 

/* compiler assigns ''i" to register %17 */ 

! first arg to sum3 is 1 

second arg to sum3 is 2 

' the call to sum3 
last parameter to sum3 in delay slot 
copy return value to %17 (variable "i") 

/* rounds "x" up to doubleword boundry */ 
/* minimum size frame */ 

/* args received in %i0, %il, and %i2 */ 

!set up new %sp; alloc min. stack frame 

! compute sum in local %17 

(or %i0 could have been used directly) 
! return from sum3, and ... 

move result into output reg & restore 

Since "sum3" does not call any other procedures (i.e., it is a "leaf" procedure), it 
can be optimized to become: 

sum3: 

add 
retl 

add 

%00, %ol, %00 

%00 I %02 f %00 

(must use RETL, n'ot RET, 

to return from leaf procedure) 

If a leaf routine is being created at the assembly level for use in an environment 
such as embedded control where all the caller routines are known, then a differ­
ent approach can be taken. 

Programming Considerations - Register and Stack Management 

5-21 

-



SP ARClite User's Guide 

Form a register map which identifies all of the in and local registers which contain 
information to be used by the leaf routine. Additionally, to accommodate the 
most restrictive of caller routines, identify those in and local registers which must 
be preserved for the caller. 

Initially attempt to write the leaf routine so that it changes only out and global 
registers, but uses information in the in and local registers. If the code requires 
storing temporary values in memory and retrieving them later in the routine, or 
regenerating a value in a register later in the routine because the register was 
overwritten to hold some other value, then examine the in and local registers to 
see if any of them can be changed by the leaf routine. 

If so, modify the routine appropriately. If not, or if after modification there is still 
temporary memory use or register value regeneration, try to relax the restrictions 
of caller routines by changing code tu regenerate some of the variables saved in 
registers. 

Usually leaf routines are associated with inner loops and are executed much more 
frequently than the routines that call them. Total program performance will be 
improved with the most efficient inner loops and leaf routines, even at the 
expense of less efficient outer-loop and set-up routines. 

The following short function code shows an example of a leaf routine written 
directly at the assembly level and satisfying the requirements for safe calling by 
other routines: 

/*RGB_I 

* 
*Convert red, green, blue pixel planes to intensity pixel plane: 

* 
* Y(i,j)= [a*A(i,j)+ b*B(i,j)+ c*C(i,j)]/256 

* 
* 
* 
* 
* 

Since there is no distinction between the i and j indexes as 
used by this process, the arrays can be accessed linearly with 
a single index that runs through the total 512 by 512 pixel 
space. i= 511 -> 0, j= 511 -> 0. Each pixel is one byte. 

*Inputs: 

* 
* 
* 
* 

base address Y 
base address A 
base address B 
base address C 
pointer to Scalar Constant Array Base for a,b,c and other 

* constants. 
*Outputs: Y(i,j) 

*Time: 

* 
3932169 + 458753W cycles, 
where W is number of wait states for DRAM access of data. 

Programming Considerations - Register and Stack Management 

5-22 



cO 
FUJITSU 

*REGISTER MAP: 
*iO [Y (0, 0)] 10 oO aA+bB+cC, y (i, j) gO 0 
*il [A (0, 0)] 11 ol A (i, j) gl a 
*i2 [B ( 0, 0)] 12 o2 B (i, j) g2 b 
*i3 [C (0, 0)] 13 o3 c (i, j) g3 c 
*i4 14 o4 bB, cc g4 
*i5 15 o5 512j+i(2~1s-1 ->0) g5 [Y(0,0)]+1 

*i6 FP 16 06 SP g6 
*i7 general return 17 o7 leaf return g7 SCAB 

*The following instructions take one cycle unless otherwise noted. 

*/ 

rgb i: sethi 256,%05 
sub 
add 

ldub 
ldub 

%o5,l,%o5 
%i0,l,%g5 

[%g7+cnsta],%gl 
[%g7+cnstb],%g2 

!preset index to last pixel for fetch. 
!start at end & work toward beginning. 
!offset store base to compensate for 
!fetch index being ahead one pass 
!of store index 
!get weighting coefficients 
!l+W cycles for 1st byte - cache miss. 

ldub [%g7+cnstc],%g3 !l cycle each for rest - cache hit. 
/*inner loop begin*/ 
tl: ldub [%il+%o5],%ol !fetch A. l+W cycles for 1st byte. 

umul %ol,%gl,%o0 
ldub [%i2+%o5],%o2 
umul %o2,%g2,%o4 
add %o0,%o4,%o0 
ldub [%i3+%o5],%o3 
umul %o3,%g3,%o4 

add %o0,%o4,%o0 
sra %o0,8,%o0 
sub cc %o5,1,%o5 
bg tl 
stb %00, [%g5+%o5] 

/*inner loop end*/ 
retl 
nop 

!l cycle for remaining 3 bytes in word. 
!2 cycles for byte multiplier 
!fetch B. l+W/4 cycles. 
!2 cycles. 
!update accumulator 
!fetch C. l+W/4 cycles. 
!2 cycles. 
!update accumulator 
!scale sum of products to form Y 
!decrement & test index 
!loop if index >0 
!store Y using offset base since 
!index has decremented. 
!l+W cycles - always cache miss. 

!2 cycles 
!exit 

5.3.5 Register Allocation Within a Window 

The usual SPARC software convention is to allocate eight registers (% 10-% 17) for 
local values. A compiler could allocate more registers for local values at the 
expense of having fewer outs/ins available for argument passing. 

For example, if instead of assuming that the boundary between local values and 
input arguments is between r[23] and r[24] (%17 and %i0), software could by con-

Programming Considerations - Register and Stack Management 

5-23 

-



SPARClite User's Guide 

vention assume that the boundary is between r[25] and r[26] (%il and %i2). As 
illustrated in Table 5-1, this would provide 10 registers for local values and 6 
"in" I" out" registers. 

Table 5-1: Alternative Register Allocation 

Standard "10-Local" Arbitrary 
Register Register Register 

Model Model Model 

registers for local values 8 10 n 

"in"/"out" registers: 
reserved for %sp/%fp 1 1 1 
reserved for return address 1 1 1 
available for arg passing 6 4 14-n 

total "ins"/"outs" 8 6 16-n 

5.3.6 Other Register and Window Usage Models 

In general-purpose computers, procedure calls are assumed to be frequent rela­
tive to both context switches and User-Supervisor state transitions. A primary 
goal in these applications is to minimize total overhead, which includes time 
spent in both context switches and procedure calls. As more register windows are 
shared among competing processes, total procedure call time decreases (due to 
execution of fewer window overflow and underflow traps), while total context­
switch time may increase (the average number of register windows saved during 
a context switch increases). The task is to strike a balance to minimize the sum of 
these two factors. 

In embedded and/ or real-time systems, the following factors are often more 
important than total overhead: 

• Minimal average context-switch time 

• A constant (or small worst-case deterministic) context-switch time 

• A constant (or small worst-case deterministic) procedure-call time 

In these cases, it can be worthwhile to use a different scheme for managing the 
SP ARC register windows than the standard one described so far. This section pro­
vides a few examples of modifications that can be made to the standard conven­
tions. You can then design a register-usage scheme appropriate to the specific 
needs of your application. 

1. Divide the register file into "supervisor mode" register windows and "user 
mode" register windows. In cases where user I supervisor transitions are fre­
quent, this will reduce register-window overflow and underflow overhead. 

To be effective in a workstation environment, where the coding style is charac­
terized by deep nesting of procedure calls, such a scheme would require a 

Programming Considerations - Register and Stack Management 

5-24 



OJ 
FUJITSU 

SPARC implementation with at least 14 windows in hardware (a minimum of 
7 for user code plus 7 for supervisor code). In embedded control, however, the 
nesting of procedure calls is typically shallow, and windows will be used 
more sparingly. 

2. Use multiple l's in the Window Invalid Mask Register (WIM) to partition the 
register file into groups of at least two registers each. Assign each group of 
registers to an executing task. This technique can be useful in real-time pro­
cessing, where extremely fast context switches are desirable. A context switch 
would consist of loading a new stack pointer, resetting the CWP to the new 
task's block of register windows, and saving and restoring whatever subset of 
the global registers is assumed to be nonvolatile. In particular, note that no 
window registers would need to be loaded or stored during a context switch. 

This technique assumes that only a few tasks are present, and, in the simplest -
case, that all tasks share a single address space. The number of hardware regis-
ter windows required is a function of the number of windows reserved for the 
supervisor, the number of windows reserved for each task, and the number of 
tasks. Register windows could be allocated to tasks unequally, if appropriate. 

3. A void the normal register-window mechanism, by not using SA VE and 
RESTORE instructions. Software would effectively see 32 general-purpose 
registers instead of SP ARC' s usual windowed register file. In this mode, 
SP ARC would operate like processors with a more traditional flat register 
architecture. Procedure call times would be more deterministic (since there 
would be no window overflow or underflow traps), but for most types of soft­
ware, average procedure call time would significantly increase, due to 
increased memory traffic for parameter passing and saving and restoring local 
variables. 

A number of existing SP ARC compilers produce code using this register orga­
nization. 

It would be awkward, at best, to attempt to mix (link) code using the SA VE/ 
RESTORE convention with code not using it in the same process. If both con­
ventions were used in the same system, two versions of each library would be 
required. 

It would be possible to run user code with one register-usage convention and 
supervisor code with another. With sufficient intelligence in the supervisor, user 
processes with different register conventions could be run simultaneously. 

5.4 Cache Management 
Effective cache usage is based on the following principles: 

• Compactness of Code-Critical loops should fit entirely in the cache. They can 
then be locked into the cache to prevent their being displaced when other, less-

Programming Considerations - Cache Management 

5-25 



SP ARClite User's Guide 

often-used routines are called. In some cases, it may be advisable to disable 
compiler in-lining optimizations in order to keep your code compact. 

• Program Profiling-Knowing where your program spends its time will help 
you decide what instructions and data to lock into cache. 

• Data and Instruction Locality-If possible, a large program or data set should be 
partitioned in such a way that one portion at a time can be locked into cache 
and used for a while before another portion needs to be loaded. For example, 
there are numerical routines which perform as many of their required 
computations as possible on one block of data before proceeding to the next 
block. 

5.5 Division Routines Using the DIVScc Instruction 
This section shows how integer division routines can be created using the DIVScc 
instruction. Signed and unsigned divisions are included for both word and dou­
bleword dividends. The divisor is always a single word. These routines can serve 
as models for your own use of DIVScc, or they can be incorporated into your pro­
grams and used without modification. These sample routines do not set the inte­
ger condition codes in exactly the same way as the SP ARC Version 8 integer 
division instructions. 

5.5.1 Simple Divide Step Examples 

In each of the following examples, a cycle by cycle view of divide step with 
reduced word size (3 bits) is given 

Register Use: 

outO most significant half Dividend/ Remainder 
outl least significant half Dividend/ Quotient 

out2 Divisor 

Note: TS, True Sign = N xor V from condition codes 
Note: adjustment of negative quotient is also 

conditional on remainder. Details omitted 

here. See signed division example code. 

Examples ol SIGNED division 

7/2 = +3 & +1 rmdr; 010-> 02, 111-> ol, 000-> oO 

!Y ol TS ALUin ALU out 
mov %o0,%y msh dividend -> Y reg 

! 000 111 
tst %00 initialize cc with sign dividend 

! 000 1111 0 
divscc %ol,%o2,%ol 0001-0010 1111 divide step 1 

!111 1110 1 
divscc %ol,%o2,%ol 1111+0010 0001 divide step 2 

Programming Considerations - Division Routines Using fhe DWScc Instruction 

5-26 



cO 
FUJITSU 

!001 1101 

divscc %ol,%o2,%ol 0011-0010 0001 divide step 3 

!001 011 0 

tst %00 dividend & quotient sign? 
!001 011 

bl,a lf 

!001 011 

add %ol,1,%o adjust quotient if negative from 

!001 011 l's to 2's complement form 

1 :mov %y,%o0 !001 -> oO retrieve remainder 

-11/3 ~ -3 & -2 rmdr; 011-> 02, 101-> ol, 110-> oO 

!Y ol TS ALU in ALUout 

mov %o0,%y msh dividend -> y reg 

! 110 101 -tst %00 initialize cc with sign dividend 
! 110 1101 

divscc -%ol, %02, %ol I 1101+0011 0000 divide step 

!000 O 111 

divscc %ol,%o2,%ol 0000-0011 1101 divide step 
!101 1110 

divscc %ol,%o2,%ol 1011+0011 1110 divide step 

! 110 100 1 

tst %00 dividend & quotient sign? 
! 110 100 

bl,a 1f 
1 110 100 

add %ol,l,%ol 100+001 101 adjust quotient if negative from 

! 110 101 l's to 2's complement form 

1 :mov %y,%o0 !110 -> oO retrieve remainder 

Examples of UNSIGNED division 

11/3 ~ 3 & 2 rrndr; 011-> 02, 011-> ol, 001-> oO 

!Y ol TS ALU in ALU out 

mov %o0,%y msh dividend -> y reg 

!001 011 

tst %g0 initialize cc as non negative 
!001 0111 dividend 

divscc %ol,%o2,%ol 0010-0011 1111 divide step 

! 111 1110 

divscc %ol,%o2,%ol 1111+0011 0010 divide step 2 
1 010 1101 

divscc %ol,%o2,%ol 0101-0011 0010 divide step 3 

!010 011 TS is last remainder sign 

mov %y,%o0 !010 -> oO retrieve remainder 
!---

reg oO 

!010 011 

bl,a 1f 

!010 011 

Programming Considerations - Division Routines Using the DWScc Instruction 

5-27 



SP ARClite User's Guide 

add %o0,%o2,%o0 
!010 

l:nop 

33/5 ~ 6 & 3 rmdr; 

!Y 

mov %o0,%y 
!100 

tst %g0 
!100 

divscc %ol,%o2,%ol 
! Oll 

divscc %ol,%o2,%ol 
!001 

divscc %ol,%o2,%ol 
! llO 

mov %y,%o0 
!---

reg oO 
! llO 

bl, a lf 

!llO 
add %o0,%o2,%o0 

!011 
l:nop 

Oll 

101-> 02, 001-> ol, 
ol TS ALU in 

001 

0101 0 
1000-0101 

Dill 0 
Oll0-0101 

11 ll 0 
OOll-0101 

llO 
110 -> oO 

l10 

l10 
l10+101 

llO 

100-> oO 
ALU out 

OOll 

0001 

l110 

Oll 

adjust remainder if negative 

msh dividend -> Y reg 

initialize cc as non negative 
dividend 

divide step 1 

divide step 2 

divide step 3 
TS is last remainder sign 
retrieve remainder 

adjust remainder if negative 

5.5.2 Signed Division with Doubleword Dividend (divs2) 
This subroutine for signed division of a 64-bit dividend by a 32-bit divisor pro­
duces a 32-bit signed quotient and a 32-bit remainder. Special treatment is given 
to borderline overflow when the absolute value of the quotient is 231, in order to 
support the math operator INTEGER PART OF: Q=-231 does not overflow; 
Q=+231 overflows with a special overflow code. 

Remainder is zero if the division is exact; otherwise, the remainder is the same 
sign as original dividend. There is a check for divide by zero and a check for over­
flow with non-zero divisor. The check for divide by zero is kept separate to sup­
port the SP ARC-recommended trap for divide by zero. In applications where the 
user knows the numerical ranges of the operands, or controls them, these checks 
can be omitted. Division with divide by zero fault takes 6 cycles, sets the overflow 
flag in the integer condition code, and leaves Oxfffff800 in register out3. 

Division with non-zero divisor overflow takes 17 to 23 cycles (17or19 if the origi­
nal dividend is positive, 18 or 23 if the original dividend is negative); it sets the 
overflow flag in the integer condition code, and leaves Ox800 in register out3. 

Division leading to a quotient of absolute value 231 takes 20 cycles if the original 
dividend is positive, and 23 cycles if the original dividend is negative. It leaves 
the correct remainder in register outO, -231 in outl as quotient and 0 in out3. It 

Programming Considerations - Division Routines Using the DWScc Instruction 

5-28 



cP 
FUJITSU 

clears the overflow condition code if the actual guotient is -231 , and sets the over­
flow condition code if the actual quotient is +231 . 

Division without fault takes 49 to 60 cycles; it clears the overflow condition code, 
and leaves 0 in register out3. Exact division with last partial remainder = 0 takes 
49 cycles. Exact division with last partial remainder = ±divisor, as happens with 
non-restoring division algorithms, takes 53 or 54 cycles. Inexact division, with 
non-zero final remainder, takes 56 to 60 cycles. 

!Calling Convention 

mov %10,%00 
mov %11,%ol 
call divs2 
orcc %g0,%12,%o2 

!Register Map 

reg# 

!msh dvdnd->oO 
!lsh dvdnd->ol 
!DIVISION SUBROUTINE CALL 
'dvsr->o2 & test 

outO msh dividend/remainder 
outl lsh dividend/quotient 
out2 divisor 
out3 overflow indication 

overflow divide by zero/Oxfffff800 and V=l 
overflow divide by non-zero/Ox800 and V=l 
overflow quotient =+2A31/0 and V=l 
no overflow/O and V=O 

out4 scratch for final remainder calculations 
outs absolute value of divisor 
y msh dividend/successive partial remainders 
call to divs2 must be made with cc indicating sign of divisor 

.global divs2 

divs2: bne Of !go on if divisor not zero 
mov %o2,%o5 !copy divisor in oS, D 
set hi Oxlfffff,%03 !divide by zero indicator 
retl !exit with 
add cc %o3,%o3,%o3 !overflow set 

0: bl, a 1f 

sub %g0,%o5,%o5 !if divsr neg, D=-divsr 
1: mov %o0,%y !msh dvdnd->Y 

tst %00 !initialize cc for first divide 
!with sign dividend for signed 

step 
divide 

bl 2f !skip ahead for negative dividend 
DIVS CC (9,0xd,9) !divide step 1 

!equivalent to divscc %ol,%o5,%ol 
!don't change cc except by DIVSCC until last divide step done 

Programming Considerations - Division Routines Using the DIVScc Instruction 

5-29 

-



SP ARClite User's Guide 

9: 

s: 

2: 

9: 

s: 

3: 

bl 3f 
mov %g0,%o3 
srl %ol,1,%o4 
bg Sf 
subcc %o4,%o5,%g0 
bge Sf 

sethi Ox200000,%ol 

tst 
bg,a 

%02 
9f 

addcc %ol,%ol,%g0 
retl 
mov %o4,%o0 
sethi Ox200001,%o3 
retl 
addcc %o3,%o3,%o3 
bge 3f 
mov 
mov 
add cc 
bne 
srl 
set hi 
or 
addcc 
ble 

tst 
bl, a 
addcc 
retl 
mov 
set hi 
retl 

%g0,%o3 
%y,%o0 
%o0,1,%g0 
Sf 
%ol,1,%o4 
Ox200000,%ol 
%ol,%o4,%o4 
%o4,%o5,%g0 
Sf 

%02 
9f 
%ol,%ol,%g0 

%o4,%o0 
Ox200001,%o3 

addcc %o3,%o3,%o3 
DIVSCC(9,0xd,9) 
DIVSCC(9,0xd,9) 

DIVSCC(9,0xd,9) 
DIVSCC ( 9, Oxd, 9) 

be 6f 

mov %y, %04 
bg 4f 
addcc %o4,%o5,%g0 
be, a 6f 

!ok if different 
!clear overflow indicator 
!get lsh rmdr 
!if msh rmdr >0 then overflow 
!if lsh rmdr <D then Q is +/-2A31 
!& o4 is correct final rmdr 
!check if overflow on Q = +2A31 
!set -2A31 -> Q 
!else overflow 
!if original divisor >0 
!which implies quotient =+2A31 
!set ovrlfw cc with o3 = 0 
!exit 
!with correct remainder in oO 
!overflow divide by non-zero indicator 
texit t·1ith 
!overflow set 
!ok if different 
!clear overflow indicator 
!get msh rmdr 
!is it -1 
!if <-1 then overflow 
!get lsh rmdr except for leading 1 
!set -2A31 ->Q 
!insert leading 1 in lsh rmdr 
!if lsh rmdr >-D then q is +/-2A31 
!& o4 is correct final rmdr 
!check if overflow on Q = +2A31 
!else overflow 
!if original divisor <0 
!which implies quotient =+2A31 
!set ovrlfw cc with o3 = 0 
!exit 
!with correct remainder in oO 
!overflow divide by non-zero indicator 
!exit with 
!overflow set 
!divide step 2 
!divide step 3 

!divide step 32 

!if final remainder is zero, 
!go fix quotient polarity 
!final remainder from Y to o4 
!skip ahead if rmdr+; continue if rmdr­
!is neg rmdr + abs divsr =O 
!if so, go fix quotient polarity and 

Programming Considerations - Division Routines Using the DWScc Instruction 

5-30 



mov 
tst 
bl 
tst 
ba 
add 

4: sub cc 
be, a 
mov 
tst 
bge 
tst 
sub 

S: bl, a 
add 

6: tst 
bl, a 
sub 

7: retl 
mov 

%g0,%o4 
%00 
Sf 
%ol 
Sf 
%o4,%o5,%o4 

%o4,%o5,%g0 
6f 
%g0,%o4 
%00 
Sf 
%ol 
%o4,%o5,%o4 

6f 
%ol,1,%ol 

%02 
7f 
%g0,%ol,%ol 

%o4,%o0 

oO 
FUJITSU 

!clear rmdr. if not, don't clear 
!test original dvdnd 
!if neg, go check neg Q 
!sign Q 

!if orig dvdnd pos and final rmdr neg, 
!correct rmdr; then go check neg Q 
!is pos rmdr - abs divsr =O 
!if so, go fix quotient polarity and 
!clear rmdr. if not, don't clear 
!test original dvdnd 
!if pos, go check neg Q 
!sign Q 
!if orig dvdnd neg and final rmdr pos, 
!correct rmdr; then go check neg Q 
!skip ahead if Q pos 
!if neg Q, l's complement to 
!2's complement; annul if pos Q 
!check original divisor sign 

!if neg divsr, negate quotient 
!exit 
!with correct remainder in oO 

5.5.3 Signed Division with Word Dividend (divs 1 ) 

This subroutine for signed division of a 32-bit dividend by a 32-bit divisor pro­
duces a 32-bit signed quotient and a 32-bit remainder. Remainder is zero if the 
division is exact; otherwise the remainder is the same sign as the original divi­
dend. There is no check for divide by zero. It is not possible to overflow with non­
zero divisor. If the calling routine knows that divide by zero cannot happen, no 
test is needed. If divide by zero is possible, a simple test just after the call can 
abort the division. 

Division without fault takes 47 to 58 cycles. Exact division with last partial 
remainder = 0 takes 47 cycles. Exact division with last partial remainder = 
±divisor, as happens with non-restoring division algorithms, takes 51 or 52 cycles. 
Inexact division, with non-zero final remainder, takes 54 to 58 cycles. 

!Calling Convention 

mov 
or cc 
call 
be 

!Register Map 

%11,%00 
%g0,%12,%o2 
divsl 
dvbyO 

!dvdnd->oO 
!dvsr->o2 & test 
!DIVISION SUBROUTINE CALL 
!abort division if divide by zero 

Programming Considerations - Division Routines Using the DWScc Instruction 

5-31 

• 



SP ARClite User's Guide 

reg# 
outO 
outl 
out2 
out4 
out5 
y 

dividend/remainder 
quotient 
divisor 
scratch for final remainder calculations 
absolute value of divisor 
initially sign extension of dividend/ 

successive partial remainders 
call to divsl must be made with cc indicating sign of divisor 

.global divsl 
divsl: 

1: 

2: 

4: 

mov %g0,%y 
mov %o2,%o5 
bl,a lf 
sub %g0,%o5,%o5 
tst ioo 

bl,a 2f 
mov -1,%y 
DIVS CC (8,0xd,9) 

DIVSCC (9,0xd,9) 

DIVSCC (9,0xd,9) 
DIVSCC (9,0xd,9) 

DIVS CC (9, Oxd, 9) 
DIVS CC (9, Oxd, 9) 

be 6f 
mov %y, %04 
bg 4f 
add cc %o4,%o5,%g0 
be, a 6f 
mov %g0,%o4 

tst %00 
bl 5f 
tst %ol 
ba 5f 

add %o4,%o5,%o4 

sub cc %o4,%o5,%g0 
be, a 6f 
mov %g0,%o4 
tst %00 

!O -> y 

!copy divisor in o5, D 

!if divsr neg, D=-divsr 
!initialize cc for first divide sLe~ with 
!sign dividend for signed divide 

!-1 -> Y only if dvdnd neg 
!divide step 1 
!equivalent to divscc %o0,%o5,%ol 
!leave original dividend in oO 
!do partial remainders & quotient in ol 
!don't change cc except by DIVSCC until 
!last divide step is done 
!divide step 2 
!equivalent to divscc %ol,%o5,%o0 
!divide step 3 
!divide step 4 

!divide step 32 

!if final remainder =0, go fix quotient polarity 
!final remainder from Y to o4 
!skip ahead if rmdr+; continue if rmdr­
!is neg rmdr + abs divsr =0 
!if so, go fix quotient polarity and 
!clear rmdr. if not, don't clear 
!test original dvdnd 
!if neg, go check neg Q 
!sign Q 

!if orig dvdnd pos and final rmdr neg, 
!correct rmdr; then go check neg Q 
!is pos rmdr - abs divsr =0 
!if so, go fix quotient polarity and 
!clear rmdr. if not, don't clear 
!test original dvdnd 

Programming Considerations - Division Routines Using the DIVScc Instruction 

5-32 



FUpTSU 

5: 

6: 

7: 

bge 
tst 
sub 

bl, a 
add 

tst 

5f 
%ol 

!if pos, go check neg Q 
!sign Q 

%o4,%o5,%o4 !if orig dvdnd neg and final rmdr pos, 
!correct rmdr; then go check neg Q 

6f !skip ahead if Q pos 
%ol,l,%ol !if neg Q, l's complement to 

!2's complement; annul if pos Q 
%02 !check original divisor sign 

bl, a 7 f 
sub %g0,%ol,%ol !if neg divsr, negate quotient 
retl 
mov %o4,%o0 

!exit 
!with correct remainder in oO 

5.5.4 Unsigned Division with Doubleword Dividend 
(divu2) 

This subroutine for unsigned division of a 64-bit dividend by a 32-bit divisor pro­
duces a 32-bit unsigned quotient and a 32-bit remainder. Remainder is zero if the 
division is exact, and positive otherwise. There is a check for divide by zero and a 
check for overflow with non-zero divisor. The check for divide by zero is kept 
separate in order to support the SP ARC-recommended trap for divide by zero. In 
applications where the user knows the numerical ranges of the operands, or con­
trols them, these checks can be omitted. 

Division with divide by zero fault takes 6 cycles; it sets the overflow flag in the 
integer condition code, and leaves Oxfffff800 in register out3. Division with a non­
zero divisor overflow takes 9 cycles; it sets the overflow flag and leaves Ox800 in 
register out3. Division without fault takes 42 cycles, clears the overflow flag, and 
leaves 0 in register out3. 

!Calling Convention 

mov %10,%00 
mov %11,%ol 
call divu2 
orcc %g0,%12,%o2 

!Register Map 

reg# 

!msh dvdnd->oO 
!lsh dvdnd->ol 
!DIVISION SUBROUTINE CALL 
!dvsr->o2 & test 

outO msh dividend/remainder 
outl lsh dividend/quotient 
out2 divisor 
out3 overflow indication 

overflow divide by zero/OxfffffBOO and V=l 
overflow divide by non-zero/OxBOO and V=l 
no overflow/O and V=O 

Programming Considerations - Division Routines Using the DIVScc Instruction 

5-33 

-



SP ARClite User's Guide 

y msh dividend/successive partial remainders 
call to divs2 must be made with cc indicating if divisor zero 

global 
divu2: 

1: 

2: 

3: 

divu2 
bne lf 

mov %o0,%y 
set hi Oxlfffff,%03 
retl 
add cc %o3,%o3,%o3 
sub cc %o0,%o2,%g0 
bes 2f 
or cc %g0,0,%o3 

sethi Ox200001,%o3 
retl 
add cc %o3,%o3,%o3 
DIVS CC (9,0xa,9) 

DIVSCC (9,0xa,9) 
DIVSCC (9,0xa,9) 

DIVSCC (9, Oxa, 9) 
DIVSCC (9, Oxa, 9) 

bl 3f 
mov %y,%o0 
retl 
add cc %o0,0,%o0 
retl 
add cc %o0,%o2,%o0 

!go on if divisor not zero 
!msh dvdnd->Y 
!divide by zero indicator 
!exit with 
!overflow set 
!is msh dvdnd < dvsr 
!ok if so 
!initialize cc for first divide step 
!with positive sign for unsigned divide 
!clear overflow indicator 
!overflow divide by non-zero indicator 
r ----.! ..L. w..lLh :t;!A..l..l... 

!overflow set 
!divide step 1 
!equivalent to divscc %ol,%o2,%ol 
!don't change cc except by DIVSCC until 
!last divide step is done 
!divide step 2 
!divide step 3 

!divide step 32 

!skip ahead if rmdr-
!final remdr from y to oO 
!exit 
!clear ovrflw cc if on 
!exit 
!correct rmdr & clear ovrflw cc if on 

5.5.5 Unsigned Division with Word Dividend ( divu 1 ) 

This subroutine for unsigned division of a 32-bit dividend by a 32-bit divisor pro­
duces a 32-bit unsigned quotient and a 32-bit remainder. Remainder is zero if the 
division is exact, and positive otherwise. There is no check for divide by zero. It is 
not possible to overflow with non zero divisor. If the calling routine knows that 
divide by zero cannot happen, no test is needed. If divide by zero is possible, a 
simple test just after the call can abort the division. 

If not aborted, the division takes 39 cycles; it clears overflow flag and leaves 0 in 
register out3. If the remainder is of no interest and only the quotient correspond­
ing to INTEGER(dvdnd/ dvsr) or FLOOR(dvdnd/ dvsr) for unsigned numbers is 

Programming Considerations - Division Routines Using the DIVScc Instruction 

5-34 



cO 
FUJITSU 

wanted, then the last steps of this routine can be modified as indicated. Quotient­
only unsigned division takes 36 cycles. 

!Calling Convention 

mov %11,%ol 
orcc %g0,%12,%o2 
call divul 
be dvbyO 

!dvdnd->ol 
!dvsr->o2 & test 
!DIVISION SUBROUTINE CALL 
!abort division if divide by zero 

!Register Map 

reg# 
outO 
outl 
out2 
out3 
y 

remainder 
dividend/quotient 
divisor 
0 if divide by non zero 
zero/successive partial remainders 

.global divul 
divul: mov %g0,%y !0->Y 

or cc %g0,0,%o3 !initialize cc for first divide step 
!with positive sign for unsigned divide 
!clear divide by zero indicator 

DIVSCC (9,0xa,9) 

DIVSCC (9,0xa,9) 
DIVSCC (9,0xa,9) 

DIVSCC (9,0xa,9) 
DIVSCC (9, Oxa, 9) 
retl 
DIVSCC (9, Oxa, 9) 

!divide step 1 
!equivalent to divscc %ol,%o2,%ol 
!don't change cc except by DIVSCC until 
!last divide step is done 
!divide step 2 
!divide step 3 

!divide step 31 
!exit for quotient-only divide 
! di vi de step 32 

!ALL the following steps may be omitted for quotient-only divide 

bl lf !skip ahead if rmdr-

mov %y,%o0 !final rmdr from y to oO 
retl !exit 
addcc %o0,0,%o0 !clear ovrflw cc if on 

1: retl !exit 
addcc %o0,%o2,%o0 !correct rmdr & clear ovrflw cc if on 

Programming Considerations - Division Routines Using the DIVScc Instruction 

5-35 

-



SPARClite User's Guide 

5.5.6 Divide Step In Support Of A To D Converter 
Compensation 

The following code fragment shows compensation for errors in quantization 
codes of an analog to digital converter that has been calibrated with the Walsh 
Transform techniques developed at Schlumberger (Fairchild) Test Systems. Refer 
to "A System For Converter Testing Using Walsh Transform Techniques" by E.A. 
Sloane presented as paper 11.3 at the IEEE International Test Conference, October 
1981. 

As the paper shows, for well designed and manufactured analog to digital con­
verters, the relation between codes and actual voltage values of the mid point of 
each quantization bin is as close to linear as technology and economics permit. So 
the power of two order Wals!i .. coefficients dorrdnatc over fhe cross ter111s. Cu11se­
quently, this example only uses the quantization bits as is and doesn't cover the 
exclusive or combinations between some of the more significant bits. For each bit 
of additional accuracy, only another instruction pair of add & set condition codes 
and divide step is required. To do this with table lookup would require doubling 
the table size, consuming data cache. Simple gain and offset corrections based on 
least square linear fit don't offer as much accuracy and usually are based on static 
rather than dynamic tests, which are more suited to actual use. 

The operation shown in the code fragment is: 

At each stage whether the next term is added or subtracted depends on whether 
the corresponding bit of quantization in a register pointed to by symbol xis 0/1. 

mov 
addcc 

divs cc 

addcc 
divs cc 
addcc 
divs cc 
addcc 
divs cc 
add cc 
divs cc 

O,%y 
x,x,x 

%g0,A9,%g0 

x,x,x 
%g0,A8,%g0 
x,x,x 
%g0,A7,%g0 
x,x,x 
%g0,A6, %g0 
x,x,x 
%g0,A5,%g0 

!clear Yreg 
!left shift code from upper bits of register x 
!with msb setting N & V to force true sign 
!only add or subtract immediate value to Yreg 
!no other register is affected 

Programming Considerations - Division Routines Using the DIVScc Instruction 

5-36 



Q) 

FUJITSU 

addcc x,x,x 
divs cc %g0,A4,%g0 
add cc x,x,x 
divs cc %g0,A3,%g0 
addcc x,x,x 
divs cc %g0,A2,%g0 
addcc x,x,x 
divscc %g0,Al,%g0 
addcc x,x,x 
divscc %g0,AO, %g0 
mov %y,%gl !gl holds compensated value of quantization code 

from x scaled by a factor chosen to make most 
use of the 13 bit precision available for 
immediate values. 
here with 10 bits, results are scaled by 2A9 
relative to coefficients. 

As an example, a 10 bit offset binary analog to digital converter might be set to 
operate over a range of -5.12 to +5.12 volts with nominal 10 millivolt quantization 
resolution. If ideal, with no errors, the coefficients for each bit expressed as milli­
volts would be: 

m 9 8 7 6 5 
a(m) ·2560 -1280 -640 -320 -160 

4 
-80 

3 
-40 

2 

-20 -10 
0 
-5 

If the process technology is limited to± 0.5% accuracy of the converter's resistive 
ladder, then the actual coefficients for each bit in millivolts could be: 

m 
a(m) 

9 8 7 6 5 
-2572.59 -1274.24 -642.94 -319.97 -159.87 

4 

-80.34 
3 

-39.86 

2 

-20.02 
1 

-10.05 
0 

-4.98 

These coefficients would be scaled by 29-m, corresponding to the order of entering 
Yreg which gets left shifted each time, and rounded to integer. 

m 9 8 7 6 5 4 3 2 O 
A(m) -2573 -2548 -2572 -2560 -2558 -2571 -2551 -2563 -2572 -2547 

Driving the analog to digital converter with a 4.000 Volts, 5 MHz sine wave, sam­
pling at 64 MHz and collecting 64 consecutive samples allows performing spec­
trum analysis with FFT to determine effective bits under the test conditions. 
Because of the sine wave frequency relative to the sample frequency, the signifi-

Programming Considerations - Division Routines Using the DNScc Instruction 

5-37 

-



SPARClite User's Guide 

cant distortion harmonics don't alias into the fundamental frequency analysis bin. 
Number of effective bits is approximately: 

0 5 1 ( 2 power spectrum at fundamental ) 
. x og - x . 

3 sum of power spectrum at all other freqenc1es 
log (2) 

The nominal 10 bit converter with ideal coefficients at each code bit shows 9.52 
effective bits under dynamic rather than static testing. The converter with± 0.5% 
errors in the resistive ladder taken at nominal value without Walsh based calibra­
tion shows 7.57 effective bits. With Walsh base calibration, it shows 9.05 effective 
bits. A least square straight line fit for compensation shows only 7.57 effective bits 
but VJith reduced error in measurir1g peak a1nplitude. 

This less obvious use of divide step allows fast compensation for an appropriately 
calibrated analog to digital converter. Recovery for this example of about 3 I 4 of 
the lost number of effective bits at the price of two cycles per quantization bit plus 
2 cycles overhead. 

5.6 Using the SCAN Instruction 
The code examples in this section illustrate the use of the SCAN instruction. In the 
first example, SCAN is used to simplify and speed up floating-point normaliza­
tion. 

5.6.1 Scan in Support of Software Floating Point 

The following code fragment shows post normalization of floating point add or 
subtract for the case where the result requires calculating the difference of the 
magnitudes of the numbers. The IEEE754 format, which is used in SP ARC archi­
tecture as well, is assumed. This uses sign, offset exponent, hidden leading bit 
when normalized and fraction. Only the logic of normalize numbers is shown 
here. Number values are in sign and magnitude form rather than two's comple­
ment. 

31 30 23 22 0 
normalized values 

e O<e<255 
~------~----------------~ X=·1 5 x2•-127 •(1+tx2-23) 

The operation is x+y=z or x-y=z. If subtract, then sign y is complemented. The 
magnitudes of the numbers have to be compared and the one with the lesser 
exponent right shifted to align its decimal point with the greater. If exponents are 

Programming Considerations - Using the SCAN Instruction 

5-38 



cO 
FUJITSU 

equal, magnitudes must be compared if signs differ to see what the sign of the 
result will be. This is assumed to have taken place before the code fragment 
shown here, which shows the logic of handling numbers with different signs and 
different exponents. Symbol x points to the larger number; y to smaller. 

set hi Ox3fe, %g5 

sll %g5,1,%g4 
xor %g4,%g5,%g4 
srl x,23,%g2 
and %g2,0xff,%g2 
srl y,23,%g3 
and %g3, Oxff, %g3 
sub %g2,%g3,%gl 
andn y,%g5,%g3 
or %g3,%g4,%g3 
srl %g3,%gl,%g2 
sub %g0,%gl,%gl 
sll %g3,%gl,%g3 
addcc %g3,%g3,%g0 

andn x,%g5,%gl 
or %gl,%g4,%gl 
subx %gl,%g2,%gl 

!--------
scan %gl,O,%g2 

sub cc %g2,32,%g0 
bl lf 
sub %g2,8,%g2 

!underflow due to loss of 

'mask for sign and exponent with and 
!or for fraction with andn 

'single one at bit 23 for hidden bit 

!x exponent 

1 y exponent 
!alignment difference 
'Y fraction 
!y hidden bit 
!downshift y magnitude to g2 
!complement of shift 
!upshift left over y for test 
!test left over for rounding 
!note: not IEEE754 rounding here 
!x fraction 
!x hidden bit 
!difference of magnitudes with 
!simple rounding 

!scan difference for leading one. 
!Use of 0 as the scan mask is because 
!of sign magnitude arithmetic assumed 
!in this example. Leading 8 bits are 
!guaranteed to be zero because of 
!format. Question is, how many more 
!till the first one? 
!If two's complement arithmetic had 
!been assumed, then there could have 
!been leading ones or leading zeros 
!depending on sign of result. Then 
!instead of 0 as mask, scan would have 
!used %gl as mask as well as value. 
!Question would have been, how many 
!leading bits are the same as the sign? 
!test if all significant bits lost 

!remove effect of format's 8 leading O's 
significant bits code would follow here 

Programming Considerations - Using the SCAN Instruction 

5-39 

• 



SPARClite User's Guide 

1: sll 
andn 
srl 
and 
sub cc 
bgf 
sub 

!exponent 

2: sll 

retl 
or 

%gl,%g2,%gl 
%gl,%g4,%gl 
x,23,%g3 
%g3,0xff,%g4 
%g4,%g2,%g0 
2f 
%g3,%g2,%g3 

underflow code 

%g3,23,%g3 

%gl,%g3,z 

would 

!normalize result 
!hide leading bit 

!x exponent in g4 
!test exponent underflow 

!subtract normalization shift from 
!result sign and exponent 
follow here 

!place sign and exponent result in 
!format position 
!exit(2 cycles) 
!combine with fraction 

Each inslructiun in this code fragment runs one cycle out of instruction cache 
except for the leaf return which takes two. That's 32 cycles for this fragment. 
Without scan as a hardware instruction, the function would have to be performed 
as a software routine that takes 43 to 52 cycles for usual cases. The fragment 
would take 74 to 83 cycles, more than double. A software substitute for scan 
would consume instruction cache space. Attempts to speed up the binary tree 
search in the software routine by look-up tables based on leading bits would con­
sume data cache space. 

5.6.2 Scan in Support of Run Length Encoding 

The following code fragment shows compression of long binary strings by look­
ing for runs of all ones or all zeros and coding these so that lossless reconstruction 
is possible. For the example, runs less than four in length are ignored and directly 
transmitted and runs greater than sixteen are broken up for coding efficiency and 
coding simplification. Best compression occurs for low information content long 
binary strings such as background sections of black and white raster lines. 

code 
00000 
00001 
00010 
00011 

00100 
00101 
00110 

01111 
10000 

value 
reserved 

00001 ... or 11110 .. . 
000001 ... or 111110 .. . 
0000001 ... or 1111110 .. . 

0000 0000 0000 0001 ... or 1111 1111 1111 1110 ... 
0000 0000 0000 0000 1 ... or llll 1111 llll llll 0 ... 

Programming Considerations - Using the SCAN Instruction 

5-40 



10001 
10010 
10011 

11110 

11111 

0001 .. . 
0010 .. . 
0011 .. . 

1110 ... 

toggle 

cP 
FUJITSU 

The code fragment omits starting up the loop, reloading buffers with new data, 
storing code and terminating the loop. Symbol x points to data segment in some 
register ready for compression and symbol y points to its immediate successor. • 

0: scan x,x,%gl !scan for how many bits are same as msb. 
!gl = 1 to 31 or 63 if all in x register. 
!x is used as both the value to be scanned(rsl) 
!and the mask(rs2). 

sub cc %gl,4,%g0 !test if run at least length 4 
bge lf 

subcc %gl,16,%g0 !test if run greater than length 16 
!handle fixed length code, gl<4 

srl 
or 
sll 
add cc 
bes 
add cc 
bes 
mov 
ba 
mov 

2: bee 
mov 
mov 

3: srl 
or 
sll 
ba 

x,28,%g2 
%g2,16,%g2 
x,3,x 
x,x,x 
2f 
x,x,%g0 
3f 
1,%g4 
3f 
O,%g4 

3f 
l,%g4 
O,%g4 

y,28,%g3 
x,%g3,x 
y,4,y 
5f 

!extract leading 4 bits of x as compression code 
!insert leading bit of code for fixed length 
!shift rest of x in 2 steps 
!complete x shift and test last of 4 bits outgoing 
!separate cases for 1 or 0 
!test without shifting first of remaining bits 
!if last out bit =0 and first remaining bit =1 
!set new low priority toggle indicator 

!otherwise clear toggle indicator 
!fixed length code overwrites any pending toggle 
!if last out bit =1 and first remainging bit =0 
!set new low priority toggle indicator 
!otherwise clear toggle indicator 
!fixed length code overwrites any pending toggle 
!extract leading 4 bits of y 
!move them to right end of x 
!shift rest of y with incomming trailing zeros 

subcc %g5,4,%g5 !decrement counter of how many bits of x left 
!handle run length code 
1: bl 4f !skip ahead if run less than 16 

sll %g4,1,%g4 !shift incomming toggle indic. to higher priority 

Programming Considerations - Using the SCAN Instruction 

5-41 



SP ARClite User's Guide 

!handle runs at least 16 
mov 
sll 
srl 
or 
sll 
ba 

16,%g2 
x, 16,x 
y,16,%g3 
x,%g3,x 
y,16,y 
Sf 

!set compression code to 16 
!ignore leading 16 bits of x and shift rest of x 
!extract leading 16 bits of y 
!move them to right end of x 
!shift rest of y with incomming trailing zeros 

subcc %gS,16,%gS !decrement counter of how many bits of x left 
!handle runs of length 4 to lS 
4: mov %gl,%g2 !set compression code to scan result 

!one 
s: 

sub %g0,%gl,%gl 
sll x,%g2,x 
srl y,%gl,%g3 
or x,%g3,x 
sll y,%g2,y 
.sub cc %g5,%g2,%g5 
or %g4,l,%g4 
compression code 
bg 6f 

to 

!complement scan result 
!ignore leading g2 bits of x and shift rest of x 
!extract leading 32-gl bits of y 
!move them to right end of x 
!shift rest of y with incomming trailing zeros 
!decrement counter of how many bi.Ls of x left 
!toggle following compression code too 

go 
!skip ahead if there are still bits of x left 

subcc %g6,l,%g6 !decrement counter of code fields left 
!code for reloading y and shifting part of it into x if the old y had 
!trailing zeros and resetting gS to 32-#trailing zeros. 

6: bg 7f !skip ahead if room for more codes 
andcc %g4,2,%g0 !test if toggle has priority 

!code for storing codes and reinitializing g6 

7: sll z, 5, z !make room for new code 
be, a Ob !if g4 bitl off then no additional code 

!if g4 bitl on then insert toggle code first 
or z,%g2,z !insert new data code 
andn %g4,2,%g4 !clear high priority toggle indicator 

!without disturbing low priority toggle indicator 
ba Sb !check how much code space left and append toggle 
or z,Oxlf,z !back through S, 6, 7 just once 

Each instruction in this code fragment runs one cycle out of instruction cache if it 
is in the active path for a particular case. Scan is in the active path for all cases. 
Without hardware implementation of scan, the function would require a software 
subroutine taking 43 to 52 cycles instead of 1 cycle. Additionally, that routine 
would consume instruction cache space. Alternate versions that might attempt to 

Programming Considerations - Using the SCAN Instruction 

5-42 



cP 
FUJITSU 

speed up the binary tree search with table look-up using leading bits as an index 
would consume data cache space. 

5. 7 Multiply Routines Using the MULScc Instruction 
This section shows examples of doing integer multiplication using the multiply 
step instruction. With hardware implementation of multiply in SPARClite, these 
routines are not required for usual situations. However, these examples illustrate 
how MULScc works and may serve as models for use in unusual situations. 

These sample routines do not set the integer condition codes in exactly the same 
way as SMULcc and UMULcc Version 8 integer multiplication. 

5. 7 .1 Simple Multiply Step Examples 

In each of the following examples a cycle by cycle view of multiply step is given. 

Multiply Step With Reduced Word Size (32 to 3 Bits) 

Register Use: 
outO Multiplier 
outl Multiplicand 
out2 most significant half Product 
out3 least significant half Product 

Note: TS, True Sign = N xor V from condition 

Examples of SIGNED multiplication 

2 * 3 = 6; 010 -> ol, 011 
o2 y TS ALU in 

mov %00, %y 
011 

an dee %g0,0,%o2 
!0010 0111 0 

mulscc %o2,%ol,%o2 000+010 
!0110 0011 0 

mulscc %o2,%ol,%o2 001+010 
!0111 0010 0 

mulscc %o2,%ol,%o2 001+000 
!0011 1010 0 

mulscc %o2,0,%o2 000+000 
!000 110 

tst %00 
!000 110 0 

bl, a 1f 
!000 110 

sub %o2,%ol,%o2 
!000 110 

l:mov %y,%o3 110 -> o3 

codes 

-> oO 
ALU out 

010 

011 

001 

000 

multiplier -> Y reg 

clear product accumulator & cc 

active multiply step 1 

active multiply step 2 

active multiply step 3 

final double shift without 
add to align result 

multiplier sign? 

adjust msh product if 
multiplier negative 

retrieve lsh product 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-43 

-



SP ARClite User's Guide 

-2 * 3 = -6; llO -> ol, Oll -> oO 
o2 y TS ALU in ALU out 

mov %00, %y multiplier -> Y reg 
Oll 

andcc %g0,0,%o2 clear product accumulator & cc 
!0010 0111 0 

mulscc %o2,%ol,%o2 OOO+llO 110 active multiply step 1 
! 1110 0011 1 

mulscc %02, %ol, %02 111+110 101 active multiply step 2 
!1011 0010 1 

mulscc %o2,%ol,%o2 110+000 110 active multiply step 3 
!1110 1010 1 

mulscc %o2,0,%o2 111+000 lll final double shift without 
!111 010 1 add to align result 

tst %00 multiplier sign? 
!111 010 0 

bl, a 1f 

!111 010 
sub %o2,%ol,%o2 adjust msh product if 

!lll 010 multiplier negative 
1 :mov %y,%o3 010 -> o3 retrieve lsh product 

3 * -2 = -6; Oll -> ol, 110 -> oO 
o2 y TS ALU in ALUout 

mov %00, %y multiplier -> Y reg 
110 

andcc %g0,0,%o2 clear product accumulator & cc 
!0010 1110 0 

mulscc %o2,%ol,%o2 000+000 000 active multiply step 1 
!0010 0111 0 

mulscc %o2,%ol,%o2 000+011 011 active multiply step 2 
!0111 0011 0 

mulscc %o2,%ol,%o2 001+011 100 active multiply step 3 
!1010 1010 0 

mulscc %02,0,%02 010+000 010 final double shift without 
!010 010 0 add to align result 

tst %00 multiplier sign? 
!010 010 

bl,a 1f 
!010 010 

sub %o2,%ol,%o2 010-011 111 adjust msh product if 
!111 010 multiplier negative 

1 :mov %y,%o3 010 -> o3 retrieve lsh product 

Examples of UNSIGNED multiplication 

3 * 6 18; 011 -> ol, 110 -> oO 
o2 y TS ALU in ALU out 

mov %00, %y multiplier -> Y reg 
110 

andcc %g0,0,%o2 clear product accumulator & cc 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-44 



cP 
FUJITSU 

!0010 1110 0 
mulscc %o2,%ol,%o2 000+000 000 active multiply step 1 

!0010 0111 0 
mulscc %o2,%ol,%o2 000+011 011 active multiply step 2 

!0111 0011 0 
mulscc %o2,%ol,%o2 001+011 100 active multiply step 3 

!10 IO 1010 0 
mulscc %o2,0,%o2 010+000 010 final double shift without 

!010 010 0 add to align result 
tst %ol msb multiplicand? 

!010 010 0 
bl,a 1f 

!010 010 
add %o2,%o0,%o2 adjust msh product if unsigned 

!010 010 multiplicand treated as if 
negative 

l:mov %y,%o3 010 -> o3 retrieve lsh product 

6 * 3 = 18; 110 -> ol, 011 -> oO 
o2 y TS ALU in ALU out 

mov %00, %y multiplier -> Y reg 
011 

andcc %g0,0,%o2 clear product accumulator & cc 
!0010 0111 0 

mulscc %o2,%ol,%o2 000+110 110 active multiply step 1 
!1110 0011 1 

mulscc %o2,%ol,%o2 111+110 101 active multiply step 2 
!1011 0010 1 

mulscc %o2,%ol,%o2 110+000 110 active multiply step 3 
!1110 1010 1 

mulscc %o2,0,%o2 111+000 111 final double shift without 
! 111 010 1 add to align result 

tst %01 msb multiplicand? 
!111 010 1 

bl,a 1f 

! 111 010 
add %o2,%o0,%o2 111+011 010 adjust msh product if unsigned 

!010 010 multiplicand treated 
negative 

l:mov %y,%o3 010 -> o3 retrieve lsh product 

5. 7 .2 Signed Multiplication Using Multiply Step 

/* 
* Procedure to perform a 32-bit by 32-bit signed multiply. 
* Pass the multiplier in %00, and the multiplicand in %ol. 
* The least significan 32 bits of the result are returned in %00, 

as 

* and the most significant in %01. Multiplies take 47 to 51 instruction cycles. 

* 
* 

* 

call 
nop 

.mul 
! (or set up last parameter here) 

*Note that this is a leaf routine; i.e., it calls no other routines and does 

if 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-45 

-



SP ARClite User's Guide 

* all of its work in the out registers. Thus, the usual SAVE and RESTORE 

* instructions are not needed. 
*I 

global .mul 
.mul: mov %00, %y multiplier to Y register 

and cc %g0, %g0, %04 zero the partial product and clear N and v conditions 

mulscc %04, %ol, %04 first iteration of 33 
mulscc %04, %ol, %04 
mulsoc %04, %ol, %04 

mulscc %04, %ol, %04 
mulscc %04, %ol, %04 
mulscc %04, %ol, %04 32nd iteration 
mulscc %04, %g0, %04 last iteration only shifts 

if %00 (multiplier) was negative, the result is: 
(%00 * %ol) + %ol * (2**32) 

we fix that here. 

tst %00 
rd %y, 
bl,a lf 

sub %04, 

1: retl 
mov %04, 

%00 

%ol, 

$ol 

%04 bit 33 and up of the product are in 
%04, so we don't have to shift %ol 
leaf-routine return 
return high bits 

5. 7 .3 Unsigned Multiplication Using Multiply Step 

/* 
* Procedure to perform a 32-bit by 32-bit unsigned multiply. 
* Pass the multiplier in %00, and the multiplicand in %ol. 
* The least significan 32 bits of the result are returned in %00, 
* and the most significant in %ol. Multiplies take 46 or 58 instruction cycles. 

* 
.umul 

* 
call 
nap (or set up last parameter here) 

* 
* Note that this is a leaf routine; i.e., it calls no other routines and does 
* all of its work in the out registers. Thus, the usual SAVE and RESTORE 
* instructions are not needed. 

*I 

.global .umul 
.mul: mov 

and cc 
%00, %y 
%g0, %g0, %04 

mulscc %04, %ol, %04 

multiplier to Y register 
zero the partial product and clear N and V conditions 

first iteration of 33 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-46 



cO 
FUJITSU 

mulscc %04, %ol, %04 

mulscc %04, %ol, %04 

mulscc %04, %ol, %04 

rnulscc %04, %ol, %04 

mulscc %04, %ol, %04 32nd iteration 

rnulscc %04, %g0, %04 ! last iteration only shifts 

I* 
* Normally, with the shift and add approach, if both numbers are 

* positive, you get the correct result. With 32-bit two's-complement 

*numbers, -x can be represented as ( (2 - (x/ (2**32)) mod 2) * 2**32) 

* To avoid a lot of 2**32's, we just move the radix point up to be 

* just to the left of the sign bit. So: 

x y (xy) mod 2 

-x * y (2 - x) mod 2 * y 

x -y x * (2 - y) mod 2 

-x -y (2 - x) * (2 - y) 

(2y - xy) mod 

(2x - xy) mod 2 

4 2x - 2y + xy) mod 2 

* For signed multiplies, we subtract (2**32) * x from the partial 

* product to fix this problem for negative multipliers (see .mul in 
* Section 1. 

* because of the way the shift into the partial product is calculated 

* (N xor V), this term is automatically removed for the multiplicand, 

* so we don't have to adjust 

* But for unsigned multiplies, the high order bit wasn't a sign bit, 

* and the correction is wrong. So for unsigned multiplies where the 

* high order bit is one, we end up with xy - (2**32) * y. To fix it 
* we add y * (2**32). 

*/ 
tst 

bl, a 

add 

1: rd 

retl 

mov 

%ol 

lf 

%04, 

%y, 

%04, 

%00, 

%00 

$ol 

%04 

return least sig. bits of prod 

leaf-routine return 

Delay slot; heturn high bits 

5. 7 .4 Corner Turning Buffer Using Multiply Step 

Multiply Step In Support Of Corner Turning Buffer For Image 
Precessing 

The following code fragment shows implementation of an 8 by 8 bit corner turn­
ing buffer in the local register files. This supports bit plane image rotation by 90 
degrees. The form of the implementation uses register files to hold and manipu­
late the lowest level of data structure and use data cache to reduce access to the 
larger image plane. The multiply step is used for its ability to couple information 
from one register to another in a single step in a way not expected from its main 
purpose. 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-47 

-



SP ARClite User's Guide 

The total image plane is divided in 8 by 8 bit blocks. Blocks are accessed as groups 
of 4 that rotate into corresponding positions on edges square to each other. These 
form concentric squares. 

Each byte of block loads to Yreg and controls multiply step with constant, 1 in bit 
15, to make local registers 0 to 7 into comer turning buffer. The constant remains 
in a fixed position but the nominal partial product keeps shifting to the right, 
making room for new input. Choosing a large enough constant allows old pro­
cessed data to remain in the local registers long enough so that it can be extracted 
with shift by a differing amount that depends on which processed byte is desired. 
This allows overlapping of storing results with fetching new input. To accommo­
date the need for differing shift amounts, casing is used to select one and only one 
instruction out of a block on each pass. A delayed control transfer couple is 
formed '-vi.th jump and link i..T.mediately follovv'"cd in the delay slot by brar1ch 
always. The target address of jump and link steps backwards by one instruction 
each pass. As soon as new data is removed from target destination, one byte of 
rotated block is stored there. 

FROM this TO that 

a7 a6 a5 a4 a3 a2 al aO h7 g7 f7 e7 d7 c7 b7 a7 
b7 b6 b5 b4 b3 b2 bl bO h6 g6 f6 e6 d6 c6 b6 a6 
c7 c6 c5 c4 c3 c2 cl co h5 g5 f5 e5 d5 c5 b5 a5 
d7 d6 d5 d4 d3 d2 dl dO h4 g4 f4 e4 d4 c4 b4 a4 
e7 e6 e5 e4 e3 e2 el eO h3 g3 f3 e3 d3 c3 b3 a3 
f7 f6 f5 f4 f3 f2 fl fO h2 g2 f2 e2 d2 c2 b2 a2 
g7 g6 g5 g4 g3 g2 gl gO hl gl fl el dl cl bl al 
h7 h6 h5 h4 h3 h2 hl hO hO gO fO eO dO co bO aO 

local a7a6a5a4a3a2ala0 input 1st byte - ldub 
reg 
0:0 ... Oa7 x x x x x x x x 
1:0 ... Oa6 x x x x x x x x 
2: O ... Oa5 x x x x x x x x 
3: 0 ... Oa4 x x x x x x x x 
4: O ... Oa3 x x x x x x x x 
5:0 ... Oa2 x x x x x x x x 
6: 0 ... Oal x x x x x x x x 
7: 0 ... OaO x x x x x x x x 

local b7b6b5b4b3b2blb0 input 2nd byte - ldub 
reg 
0:0 ... Ob7a7 x x x x x x x x 
l:O ... Ob6a6 x x x x x x x x 
2:0 ... Ob5a5 x x x x x x x x 
3:0 ... 0b4a4 x x x x x x x x 
4: 0 ... Ob3a3 x x x x x x x x 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-48 



5:0 ... 0b2a2 xx xx xx xx 
6:0 ... Oblal x xx x x xx x 
7:0 ... ObOaO xx xx xx xx 

local c7c6c5c4c3c2clc0 input 3rd byte - ldub 
reg 
0:0 ... Oc7b7a7 x x x x x x x x 
1:0 ... Oc6b6a6 x x x x x x x x 
2: 0 ... Oc5b5a5 x x x x x x x x 
3:0 ... 0c4b4a4 x x x x x x x x 
4: 0 ... Oc3b3a3 x x x x x x x x 
5:0 ... Oc2b2a2 x x x x x x x x 
6:0 ... Oclblal x x x x x x x x 
7:0 ... OcObOaO x x x x x x x x 

* 
* 
* 

local h7h6h5h4h3h2hlh0 input 8th byte - ldub 
reg 
O:O ... Oh7g7f7e7d7c7b7a7 x x x x x x x x <1 
l:O ... Oh6g6f6e6d6c6b6a6 x x x x x x x x 
2:0 ... 0h5g5f5e5d5c5b5a5 x x x x x x x x 
3:0 ... 0h4g4f4e4d4c4b4a4 x x x x x x x x 
4:0 ... 0h3g3f3e3d3c3b3a3 x x x x x x x x 
5:0 ... 0h2g2f2e2d2c2b2a2 x x x x x x x x 
6:0 ... 0hlglfleldlclblal x x x x x x x x 
7:0 ... OhOgOfOeOdOcObOaO x x x x x x x x 

next edge byte 1 A7A6A5A4A3A2A1AO - ldub 
local h7g7f7e7d7c7b7a7 output rotated byte 1 - stb <1 
reg 
0:0 ... OA7h7g7f7e7d7c7b7a7 xx xx xx x 
l:O ... OA6h6g6f6e6d6c6b6a6 xx xx xx x <2 
2:0 ... OA5h5g5f5e5d5c5b5a5 xx xx xx x 
3:0 ... OA4h4g4f4e4d4c4b4a4 xx xx xx x 
4:0 ... OA3h3g3f3e3d3c3b3a3 xx xx xx x 
5:0 ... OA2h2g2f2e2d2c2b2a2 x x x x x x x 
6:0 ... OAlhlglfleldlclblal xx xx xx x 
7:0 ... OAOhOgOfOeOdOcObOaO xx xx xx x 

B7B6B5B4B3B2B1BO next edge byte 2 - ldub 
local h6g6f6e6d6c6b6a6 output rotated byte 2 - stb <2 
reg 
O:O ... OB7A7h7g7f7e7d7c7b7a7 x x x x x x 
1:0 ... OB6A6h6g6f6e6d6c6b6a6 x x x x x x 
2:0 ... 0B5A5h5g5f5e5d5c5b5a5 x x x x x x <3 
3:0 ... OB4A4h4g4f4e4d4c4b4a4 x x x x x x 
4:0 ... OB3A3h3g3f3e3d3c3b3a3 x x x x x x 
5:0 ... OB2A2h2g2f2e2d2c2b2a2 x x x x x x 
6:0 ... 0BlAlhlglfleldlclblal x x x x x x 
7:0 ... 0BOAOhOgOfOeOdOcObOaO xx xx xx 

C7C6C5C4C3C2ClCO next edge byte 3 - ldub 
h5g5f 5e5d5c5b5a5 output rotated byte 3 - stb <3 

cO 
FUJITSU 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-49 

-



SP ARClite User's Guide 

local 
reg 

* 
* 
* 

0:0 ... OG7F7E7D7C7B7A7h7g7f7e7d7c7b7a7 x 
1:0 ... 0G6F6E6D6C6B6A6h6g6f6e6d6c6b6a6 x 
2:0 ... 0G5F5E5D5C5B5A5h5g5f5e5d5c5b5a5 x 
3:0 ... OG4F4E4D4C4B4A4h4g4f4e4d4c4b4a4 x 
3:0 ... OG3F3E3D3C3B3A3h3g3f3e3d3c3b3a3 x 
5:0 ... 0G2F2E2D2C2B2A2h2g2f2e2d2c2b2a2 x 
6:0 ... 0GlFlElDlClBlAlhlglfleldlclblal x 
7:0 ... 0GOFOEODOCOBOAOhOgOfOeOdOcObOaO x <8 

H7H6H5H4H3H2H1HO next edge byte 8 - ldub 
hOgOfOeOdOcObOaO output rotated byte 8 - stb <8 

* 
* 
* 

/* INNER LOOP 0 for each square, position, edge, byte */ 
tO: ldub [%i1+%i4],%ol !get input for next pass 

mulscc %11,%05,%11 
mulscc %10,%05,%10 
sra 
mov 
jmpl 
ba 

%i4,4,%i4 
%ol,%y 
%g1+%i4,%g0 
t2 

!il is base of fetch, controlled elsewhere 
!i4 is pointer to target byte 
!finish corner turning with previous input 
!garbage 1st time, reg o5 = 2A15 
!downshift adrs pointer for extract pointer 
!new input 
!for i=7->0 
!select 1 extract result instruction 

!only one srl %lx,z,%o0 done on each pass 
!use of casing keeps code compact while still avoiding self modifying code 
!gl points to tl 

tl: 
t2: 

srl %10,8,%00 
srl %11,7,%00 
srl %12,6,%00 
srl %13,5,%00 
srl %14,4,%00 
srl %15,3,%00 
srl %16,2,%00 
srl 
sll 
stb 

%17,1,%00 
%i4,4,%i4 
%00, [%i0+%i4] 

mulscc %17,%05,%17 
mulscc %16,%05,%16 
mulscc %15,%05,%15 
mulscc %14,%05,%14 
mulscc %13,%05,%13 
mulscc %12,%05,%12 

!upshift extract pointer for adrs offset 
!store 1 result 
!iO is base of store, controlled elsewhere 
!iO = il 3 times out of 4 
!start corner turning with new input 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-50 



addcc %i4,64,%i4 
ble to 
orcc %g0,1,%g0 

* 
* 
* 

cO 
FUJITSU 

!dee adrs offset 

!set N & V =0 
!keep left input to multiply partial 
!product zero 

This less obvious use of multiply step and less common use of delayed control 
transfer couple allow efficient implementation of a fast corner turning buffer to 
support bit plane image processing. 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-51 

-



SPARClite User's Guide 

Programming Considerations - Multiply Routines Using the MULScc Instruction 

5-52 



c ER 

Ill II 1111 II 1111 1111 II II II II II II II 1111 

System Design Considerations 

The MB86930 SP ARClite microcontroller is suitable for a wide range of embedded 
controller applications due to its high performance and low unit cost. In design­
ing a system, several issues and trade-offs must be considered to balance the 
needs of performance, low hardware cost, low development cost, and short time 
to market. This chapter provides detailed information on some specific design 
considerations: 

• The clock signals and type of clock source 

• The sizes, types, and interface requirements of the system memory and 
peripherals 

• The possible need for OMA capability and bus arbitration 

• The possible use of an MB86940 Peripheral Chip for interrupt control, timers, 
and USARTs 

• In-circuit emulation capability 

• Other hardware implementation issues 

System Design Considerations -

6-1 

• 



SP ARClite User's Guide 

6.1 Clocks 
Either of two possible clock sources can be used to drive a SP ARClite system: the 
internal oscillator of the MB86930 processor, or a separate external oscillator. In 
the former case, a crystal is connected across inputs XTALl and XTAL2. In the 
latter case, the clock signal is connected to the XT ALl input pin; XT AL2 is left 
unconnected. Using the internal oscillator has a lower hardware cost, but is less 
flexible than using an external oscillator. 

There are two clock output signals from the processor, CLKOUTl and CLKOUT2. 
CLKOUTl has the same frequency and phase as the internal oscillator or the 
signal applied to XTALl. CLKOUT2 is the same as CLKOUTl, but phase-shifted 
180 degrees. The rising edge of either CLKOUTl or CLKOUT2 can be used by the 
external system for timing purposes. 

The output clocks are controlled by a phase-locked loop implemented in the pro­
cessor. The phase-locked loop minimizes the skew between the input clock signal 
and CLKOUTl, and controls the duty cycles of the output clocks. The input clock 
signal applied to XT ALl can have a relatively wide range of duty cycles. (See the 
data sheet for the clock timing specifications.) The duty cycle of the output clocks 
is somewhat less than 50%, reflecting the fact that the processor requires its inter­
nal clock phases to have non-overlapping transitions. 

The drive capability of the clock output signals is limited. Depending on the 
number of inputs that must be driven and the clock speed, it may be necessary to 
buffer these signals for use elsewhere in the system. To minimize clock skew for 
systems that exceed the drive capability of CLKOUTl or CLKOUT2, a buffered 
external clock can be used to drive both the processor and the system. 

6.2 Memory and 1/0 Interfacing 
The SP ARClite processor minimizes the need for external logic by providing a 
programmable on-chip address decoder and six independent chip-select output 
signals. The address decoder compares the current address against the pro­
grammed address ranges, and automatically asserts the appropriate chip-select 
signal. The on-chip address decoder is more economical than a separate external 
decoder, and also operates faster. 

Each programmable address range has an associated wait-state generator, which 
generates a Ready signal internally at a programmed number of access cycles. 
Either this internal Ready signal can be used, or the conventional -READY signal 
input from the external memory controller can be used to end the transaction. The 
processor can also be programmed to use the internal wait-state generator, while 
allowing the -READY signal to override the internal count to end the bus cycle 

System Design Considerations - Memory and I/O Interfacing 

6-2 



o:> 
FUJITSU 

sooner. The internally generated Ready signal is not visible external to the 
processor. 

If you use a single chip-select signal from the processor to select multiple memory 
or I/O devices, all those devices will have the same number of wait states gener­
ated when they are accessed. Different chip select signals, however, can be indi­
vidually programmed to different numbers of wait states. 

Any area of memory not mapped to one of the chip selects (-CSS-0) will use the 
external -READY. 

6.2.1 Interfacing SRAM 

The address bus, data bus, and chip select signals of the SRAM can be connected 
directly to the address bus, data bus and a chip select of the processor. The output 
enable signal can be generated by gating RD /-WR high and Chip select low to 
produce output enable low. Write enable for the SRAMs requires more consider- -
ation. 

The processor data hold time for a write is specified as zero hold after rising edge 
of clock. RD/-WR hold time at the end of a write operation can be 0 after rising 
edge of clock, or can be held low if the next cycle is also a write. Thus an imple­
mentation cannot use RD/-WR directly as-WE for the SRAMs. 

Figure 6-1 shows a timing diagram for an example implementation using 2 cycle 
access SRAM running at 40 MHz. It was implemented in a combinatorial PAL 
(see Figure 6-4). Individual -WE signals are generated for each of the 4 bytes in 
the data word. 

Figure 6-1. SRAM Interfacing Example 

System Design Considerations - Memory and I/O Interfacing 

6-3 



SP ARClite User's Guide 

!clkd = !clkpl; 
!soe = rw & !scs 
!swe3 !rw & !as & !be3 & !clkpl 

# !rw & !as & !be3 & !clkd 
# !rw & !scs & !swe3 & clkpl 
# !rw & !scs & !swe3 & clkd; 

!swe2 !rw & !as & !be2 & !clkpl 
# !rw & !as & !be2 & !clkd 
# !rw & !scs & !swe2 & clkpl 
# !rw & !scs & !swe2 & clkd; 

!swel !rw & !as & !bel & !clkpl 
# !rw & !as & !bel & !clkd 
ii !LW & !scs & !swel Ix clkpl 
# !rw & !scs & !swel & clkd; 

!sweO !rw & !as & !beO & !clkpl 
# !rw & !as & !beO & !clkd 
# !rw & !scs & !sweO & clkpl 
# !rw & !scs & !sweO & clkd; 

Clock low and -AS low and -BE low and RD /-WR low cause -WE to be asserted. 
Clock high and -CS low and -BE low and RD /-WR low cause -WE to stay low. 
When clock goes low again, -WE is negated. This way there is sufficient data hold 
time. 

For this implementation, CLKOUTl from the processor was used since it has 
better duty cycle control than an oscillator clock. 

6.2.2 Interfacing Page-Mode DRAM 

Interfacing Dynamic RAM requires a DRAM controller for generating RAS and 
CAS (Row Address Strobe and Column Address Strobe), and for handling 
refresh. The DRAM controller is typically implemented as a state machine. The 
DRAM controller and signal interfaces should be designed carefully to accommo­
date refresh operations and fast page mode access. 

The programmable 16-bit timer provided in the SP ARClite processor can be used 
for timing the refresh interval. The timer output signal, -TIMER_OVF (Timer 
Overflow), goes low for a single clock cycle at the end of each timer interval. The 
timer interval is programmed in software, the correct amount of time depending 
on how the refresh operation is implemented. 

System Design Considerations - Memory and I/O Interfacing 

6-4 



oO 
FUJITSU 

There are two ways to implement the correct number of wait states: either the 
processor's internal wait-state generator can be used, or the DRAM controller can 
generate a -READY signal for the processor. 

The processor supports fast "page mode" access to DRAM. When the current 
DRAM address is within the same page as the previous DRAM access, the 
-SAME_PAGE (Same-Page Detect) signal is asserted. This tells the DRAM con­
troller that DRAM can be accessed using CAS only, without selecting a new row 
of the DRAM, saving time. Page-mode accesses thus provide timing advantages 
comparable to the burst-mode accesses of some other processors. 

To take advantage of page hits, RAS is asserted and left asserted to continuously 
select a row. CAS is asserted, one access at a time, to select a memory location in 
that row. Accesses need not be in consecutive locations. As long as each access is 
in the same row, RAS can be left asserted and CAS asserted once to access each 
memory location. RAS remains asserted between accesses. 

The wait-state generator can be programmed to use a different (smaller) number 
of clock cycles for a "page hit" (when the current address is within the same page 
as the previous DRAM access). 

When using the internal wait-state generator instead of the external -READY 
signal, the processor has no way of detecting a refresh operation that occurs dur­
ing an access. One solution is to have the DRAM controller take control of the bus 
during refresh using-BREQ (Bus Request), thereby preventing the processor 
from requesting a memory access for the duration of the refresh operation. The 
disadvantage of this solution is that the processor is forced to remain idle. An 
alternative solution is to disable the internal wait-state generator and let the 
DRAM controller generate the -READY signal for all DRAM accesses. 

Figure 6-2 is a simplified state diagram for a DRAM memory controller. Upon 
reset, the state machine starts in the RAS Precharge and Idle state, and remains in 
that state until a memory access or refresh request occurs. 

Note: Each state may represent 
multiple clock cycles 

New-Page Access 
or Refresh Request 

Figure 6-2. Simplified State Diagram for DRAM Controller 

System Design Considerations - Memory and I/O Interfacing 

6-5 

-



SP ARClite User's Guide 

If a refresh request occurs, the state machine goes into the Refresh state. (In prac­
tice, this will actually be a number of sequential states.) When the refresh opera­
tion is complete, the state machine returns to the RAS Precharge and Idle state. 

When the processor requests a DRAM memory access, the state machine enters 
the RAS state, in which the RAS signal is asserted to select the row. From there it 
goes to the CAS state, in which the CAS signal is asserted to select the column. At 
this point, data is clocked into the appropriate part and the bus cycle ends. 

From there the state machine enters the Page Wait state, in which the state 
machine waits for something to happen; either another memory access or a 
refresh request. In this state, RAS is asserted and CAS is negated. If there is a 
memory access to the same page of DRAM (as indicated by the -SAME~PAGE 
signal), the state machine goes directly to the CAS state, and CAS is asserted to 
select the memory location. If there is a memory access to a different page of 
DRAM, or if a refresh request occurs, the state machine goes to the RAS Precharge 
and Idle state, and from there to the requested operation. Until one of these events 
occurs, the state machine waits with RAS asserted. 

For more information, refer to SPARClite Application Note #1 on DRAM 
interfacing. 

6.2.3 Interfacing EPROM and Other Devices with Slow 
Turn-off 

One characteristic of EPROM memory to consider is its relatively long turn-off 
time-the delay from the negation of the Chip Select input or Output Enable 
input to the three-stating of the data outputs. In high-speed systems, contention 
on the data bus between different peripheral devices can occur, depending on the 
organization of different memory and peripherals in the system. 

When using EPROM in the system (or other memory or 1/0 devices that are slow 
to tum off), carefully study the timing diagrams in the External Interface chapter 
of this manual and in the data sheet, and determine the worst-case access situa­
tions. If contention on the data bus can occur, consider adding fast data buffers 
between the EPROM outputs and the system data bus. These data buffers will 
allow the EPROM outputs to be quickly isolated from the data bus at the end of 
an EPROM access cycle. 

The worst-case timing situation typically involves two consecutive loads from 
different devices. In back-to-back loads from different devices, there must be 
sufficient time for the first device to get off the data bus before the second device 
tries to drive its data. A load followed by a store is not critical since the processor 
inserts a "dead cycle" in this sequence to allow the external device to fully relin­
quish the bus. 

System Design Considerations - Memory and I/O Interfacing 

6-6 



6.2.4 Illegal Memory Accesses 

cP 
FUJITSU 

The external memory or 1/0 interface circuit can detect illegal memory accesses 
and prevent the processor from completing such accesses by asserting the -MEXC 
(Memory Exception) and -READY signals. (See Figure 4-2, Load with Exception 
Timing, and Figure 4-4, Store with Exception Timing.) The current bus access is 
invalidated by the assertion of this signal, and the processor ignores the value on 
the data bus in that cycle. An instruction-access or data-access exception trap is 
initiated in the processor, allowing the software to handle the illegal memory 
access. 

The memory-exception mechanism can be used for protection, by preventing 
user-mode accesses to certain regions of the processor's address space. External 
logic can also be used to detect and signal out-of-range access attempts. 

6.2.5 1/0 Interfacing Example: Ethernet Device 

As an example of an 1/0 device interface, consider the MB86960 Ethernet inter­
face device, also known as the NICE™ chip, used on the SPARClite Evaluation 
Board. In the evaluation board implementation, a PAL and two data transceivers 
are used to handle the interface. A block diagram of the interface is shown in 
Figure 6-3. 

A.. J.. IA.. J.. 
DATA Data Transceivers N_DATA 

~ v 
OE 

,~ v 
MB86930 

1 
MB86960 

SPARClite Ethernet Device 
Processor 

N_RD 

RD/-WR 
PAL 

N_WR 

-CS NCS 

READY N_READY 

Figure 6·3. MB86960 Interface Block Diagram 

The MB86960 NICE chip is completely asynchronous, has a non-deterministic 
access time, and has a long turn-off delay for the data pins. The PAL handles the 
synchronization of the control signals (Read, Write, Chip-Select, and Ready) 
between the processor and the NICE chip. The two data transceivers are used to 

System Design Considerations - Memory and I/O Interfacing 

6-7 

-



SP ARC lite User's Guide 

isolate the output pins from the data bus when a data access is complete. 
Figure 6-4 is a state diagram for the PAL. 

!Reset_ 

else 

!Snrdy_ := \nice_ready_ 

Figure 6-4. MB86960 Interface PAL State Diagram 

Read and write operations are strobed by the assertion of the signals N_RD and 
N_ WR (the read and write input pins of the NICE chip). To ensure that the 
address and the NICE chip Select signals are stable during strobing, the state 
machine waits one clock cycle before asserting N_RD or N_ WR. When a transac­
tion is finished, the NICE chip asserts its N_READY signal. Since N_READY is 
asynchronous, it is synchronized by a flip-flop in the PAL, producing a synchro­
nized ready signal, which can then be used elsewhere inside the PAL and by the 
processor. 

In a write operation, the synchronized Ready signal causes N_ WR to be negated 
and the processor's -READY signal to be asserted. The data input setup and hold 
times of the NICE chip are based on the transition of the N_ WR signal from 
asserted to negated; early negation ensures that there will be enough hold time 
because the processor won't stop driving the data bus until the next clock cycle. 

In a read operation, the synchronized Ready signal causes the processor's 
-READY signal to be asserted, and on the next cycle, the -READY signal and 
N_RD are negated. Since data setup and hold times of the processor are based on 
the rising edge of the clock while -READY is asserted, enough hold time is 
ensured. The setup time requirement is ensured because there are almost two 
clock cycles between N_READY and the processor sampling the data. 

In the case of back-to-back reads of the NICE chip, a new cycle can't start until 
N_READY is negated from the previous cycle. 

System Design Considerations - Memory and I/O Interfacing 



cO 
FUJITSU 

The data transceivers are enabled by -CS asserted and -AS negated. Thus, during 
the uncertain period at the beginning of a bus cycle, the transceivers are not driv­
ing the data bus. 

The byte order for the NICE chip (little-endian) is opposite that of the SP ARClite 
processor (big-endian). The byte order is swapped in hardware: SP ARClite data 
bits 8-15 connect to NICE bits 0-7, and SPARClite data bits 0-7 connect to NICE 
bits 8-15. The NICE chip can operate in both 8-bit and 16-bit modes. 

6.3 DMA and Bus Arbitration 
Some systems require support for multiple bus masters, such as for OMA (Direct 
Memory Access). An external device requests control of the bus by asserting the 
-BREQ (Bus Request) signal. External bus requests take precedence over internal 
requests. The processor, upon completing the current bus transaction, three-states 
its bus drivers and ass~rts -BGRNT (Bus Grant) to indicate that it is relinquishing -
control of the bus. The external device then takes control of the bus. 

Upon completion of the OMA transfer or other bus operation, the external device 
de-asserts the -BREQ signal. The processor responds by de-asserting the -BGRNT 
signal and taking control of the bus, continuing with the next processor transac­
tion. 

The chip-select logic of the processor does not monitor the address bus and does 
not operate during the time that the bus is granted to another bus master. There­
fore, an external address decoder should be used to generate the chip select sig­
nals for the external bus master. Also, the -CS outputs of the processor are held 
high (negated), but not three-stated, while the bus is granted to the external bus 
master. Therefore, for each memory device that is to be accessed by the external 
bus master, an OR gate must be provided at the chip select input to accept the 
signal from either the processor or the external address decoder. An alternative 
method is to not use the -CS signals from the processor at all, and to use the exter­
nal address decoder all of the time (although the propagation delay for on-board 
chip selects is less). 

A OMA operation that writes to system memory must be designed in such a 
manner that it will not modify cached data. Otherwise, the external memory data 
would no longer match the data stored in the processor's cache, resulting in 
errors. One way to meet this requirement is to locate the OMA-accessed memory 
in an address space that is not cached. The only address spaces that are cached are 
the User /Supervisor Instruction and Data spaces, corresponding to ASI (Address 
Space Identifier) values Ox8, Ox9, OxA, and OxB. Locating the OMA-accessible 
memory only in other address spaces (i.e., ASI values OxlO-OxFE) will ensure that 
no cached data will be modified. 

System Design Considerations - DMA and Bus Arbitration 

6-9 



SPARClite User's Guide 

Another way to handle this requirement is to use software to invalidate the data 
stored in cache when the external memory is modified. The software must keep 
track of what is cached and what is being modified. Each time a cached memory 
space is modified, the software invalidates the corresponding data stored in 
cache, in effect forcing an update to the cache whenever its contents are out-of­
date. 

Alternatively, embedded control task monitor software can be used to control the 
dynamic assignment of buffers between DMA inputs and outputs and processing 
inputs and outputs. The software can then ensure that no DMA transfers involve 
currently cached memory. 

6.4 MB86940 Peripheral Chip 
The MB86940 is an optional peripheral device that interfaces directly with the 
MB86930 SPARClite processor, and operates at the same clock speeds. It provides 
a variety of support features; a 15-level interrupt controller, a set of four counter I 
timers, and a set of two USARTs. With a MB86940 Peripheral Chip in the system, 
you can use any or all of these support features. The Peripheral Chip is a low­
power CMOS device in either 120-pin PQFP or 135-pin CPGA packages. 

A brief overview of the Peripheral Chip features is provided below. For detailed 
information on the chip functions, interfacing, and specifications, refer to the 
MB86940 User's Guide. 

6.4.1 Interrupt Control 

The interrupt controller on the Peripheral Chip has 15 separate interrupt-request 
inputs. The trigger conditions and active signal levels are individually program­
mable. The interrupt controller arbitrates the pending requests, and based on the 
SPARClite priority levels, issues an asynchronous interrupt to the processor. The 
interrupt is held pending until acknowledged by the processor. 

The SPARClite processor has four interrupt inputs, (IRL3-IRLO). The value on 
these pins defines the level of the external interrupt. The value 0000 indicates no 
pending interrupt, while 1111 forces a non-maskable interrupt. Intermediate 
values indicate maskable interrupts with the corresponding priority levels. 

System Design Considerations - MB86940 Peripheral Chip 

6-10 



d) 

FUJITSU 

6.4.2 Counter /Timers 

The Peripheral Chip has four general-purpose 16-bit counter/timers. Each timer 
can be individually programmed to operate in any of several modes: time-out 
interrupt mode, rate generation mode, square wave generation mode, external­
trigger one-shot mode, and software-trigger one-shot mode. Each timer can be 
reloaded at any time. Two prescalers are provided to optionally reduce the oper­
ating frequency of the timers. 

6.4.3 USARTs 

Two USART (Universal Synchronous/ Asynchronous Receiver /Transmitter) 
channels are provided in the Peripheral Chip. The channels are individually pro­
grammable. Each channel is capable of sending and receiving serial data at rates 
up to 64K baud in synchronous mode and up to 19.2K baud in asynchronous 
mode. Data can be five to eight bits per character. 

6.5 In-Circuit Emulation 
SP ARClite processors have ten pins used for in-circuit emulation: four emulator 
status/ data bits, four emulator data bits, an emulator break request line, and an 
emulator enable pin. All of these pins should be left unconnected in the design for 
proper system operation. 

To allow for compatibility with an in-circuit emulator, the system's reset circuit 
should be designed to allow the in-circuit emulator to take control of the -RESET 
signal. For example, a jumper in the -RESET input line close to the processor can 
be included, allowing the normal Reset circuit to be easily disconnected from the 
processor. 

To simplify the task of emulating the processor especially for boards that do not 
socket the processor, it is recommended that the processor's emulator pins be 
connected to a standard format 20-pin connector. Access to these pins allow the 
emulator to take full control of the processor as well as to trace processor activity. 
If this socket is included on production boards, an emulator can be used for board 
diagnostics and maintenance later in the product life cycle. For more information 
contact Fujitsu Microelectronics' Advanced Products Division or your emulator 
vendor. 

System Design Considerations - In-Circuit Emulation 

6-11 

• 



SP ARC lite User's Guide 

6.6 Physical Design Issues 
Multiple VCC and VSS pins are provided on the SPARClite device for power and 
ground connections. The circuit board should be designed using separate power 
and ground planes for power distribution. Every VCC pin must be connected to 
the power plane, and every VSS pin must be connected to the ground plane. Any 
pins identified in the data sheet as "NC" must be left unconnected in the system. 

To minimize the effects of spikes on output transitions, a generous amount of 
decoupling capacitance should be connected near the MB86930 device. It is 
important to use low-inductance capacitors and interconnections, especially in 
high-speed systems. Inductance can be minimized by making the board traces as 
short as possible between the processor and the decoupling capacitors. 

Por reliable operation, alternate bus masters must drive any signals that are three­
stated by the processor when the processor grants control of the bus. Among the 
signals that must be driven are -LOCK, ADR31 through ADR2, ASI7 through 
ASIO, -BE3 through -BEO, -AS, and RD /-WR. These pins are normally driven by 
the processor during active and idle bus states, and don't require external 
pullups. D31 through DO should be pulled up. 

When designing the system, take into account the amount of load on the signal 
lines driven by the processor. The standard load is specified in the data sheet. If 
the actual load in the system is larger, the system may not be able to operate at the 
speeds specified in the data sheet timing diagrams, making it necessary to use a 
slower clock or to use buffers for the heavily loaded signals. 

System Design Considerations - In-Circuit Emulation 

6-12 



Instruction Set 

This chapter presents the SP ARClite processor instruction set. Sections discussing 
recommended assembly language syntax, a table of instructions listed by opcode, 
and an alphabetized instruction set reference are included. 

7 .1 Suggested Assembly Language Syntax 
This section provides guidelines that describe the typical SPARC syntax accepted 
by most SP ARC assemblers. It is intended to be a guide to help in understanding 
the code examples shown throughout this manual. Consult your assembler man­
ual for a compete syntax description. 

Instruction Set - Suggested Assembly Language Syntax 

7-1 

-



SP ARClite User's Guide 

7 .1.1 Register Names 
reg A reg is an integer register name1. It can have one of the following values: 

asr_reg 

%r0 ... %r31 

%g0 ... %g7 

%00 ... %07 

%10 ... %1 7 

%i0 ... %i 7 

%fp 

%sp 

(global registers; same as %r0 ... %r7 ) 

(out registers; same as %r8 ... %r15) 

(local registers: same as %r16 ... %r23) 

(in registers: same as %r24 ... %r31) 

(frame pointer, conventionally same as % i 6) 
(stack pointer, conventionally same as %06) 

Subscripts further identify the placement of the operand in the binary 
instruction as one of the following: 

regrsl 
regrs2 
reg,d 

(rsl field) 
(rs2 field) 
(rd field) 

An asr _reg is an Ancillary State Register name2• It can have one of the following 
values: 

%asrl ... %asr31 

Subscripts further identify the placement of the operand in the binary 
instruction as one of the following: 

asr _regrsl (rsl field) 
asr _reg,d (rd field) 

7 .1.2 Special Symbol Names 

The symbol names and the registers or operators to which they refer are as 
follows: 

%psr 

%wim 

%tbr 

%y 

%hi 

%lo 

Processor State Register 
Window Invalid mask Register 
Trap Base Register 
Y register 
Unary operator which extracts high 22 bits of its operand 
Unary operator which extracts low 10 bits of its operand 

1. In actual usage, the %sp, %fp, %gn, %on, %ln and %in forms are preferred over %rn 

2. The MB86930 allows only % as r 1 7. 

Instruction Set -

7-2 



o') 

FUJITSU 

7 .1.3 Values 

Some instructions use operands comprising values as follows: 

simm13 
const22 
asi 

7 .1.4 Labels 

A signed immediate constant that can be represented in 13 bits 
A constant that can be represented in 22 bits 
An alternate address space identifier (0 to 255) 

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z {upper 
and lower case distinct]), underscores(_), dollar signs($), periods(.), and decimal 
digits (0-9). A label may contain decimal digits, but cannot begin with one. 

7 .1.5 Comments 

Two types of comments are accepted by most SPARC assemblers: C-style 
"/* ... */"comments (which may span multiple lines), and"!. .. " comments, which 
extend from the "!" to the end of the line. 

7.2 Syntax Design 
The suggested SP ARC assembly language syntax is designed so that: 

• The destination operand (if any) is consistently specified as the last (right­
most) operand in an assembly language statement. 

• A reference to the contents of a memory location (in a Load, Store, or SW AP 
instruction is always indicated by square brackets([]). A reference to the 
address of a memory location (such as in a JMPL, CALL, or SETHI) is specified 
directly, without square brackets. 

7 .3 Synthetic Instructions 
Table 7-1 describes the mapping of a set of synthetic (or "pseudo") instructions to 
actual SP ARC instructions. These synthetic instructions may be provided in a 
SP ARC assembler for the convenience of assembly language programmers. 

Note that synthetic instructions should not be confused with "pseudo-ops", 
which typically provide information to the assembler but do not generate instruc-

Instruction Set -

7-3 

• 



SP ARClite User's Guide 

tions. Synthetic instructions always generate instructions; they provide more 
mnemonic syntax for standard SP ARC instructions. 

Table 7-1: Mapping of Synthetic Instructions to SPARC Instructions 

Synthetic Instruction SPARC lnstruction(s) Comment 

cmp regrst• regrs2 sub cc regrst• regrs2• %g0 compare 
cmp regrst• simm13 sub cc regrst• simm13, %g0 

jmp regrst + regrs2 jmpl regrst + regrs2• %g0 
jmp regrst +!- simm13 jmpl regrst +/- simm13, %g0 

call regrst + regrs2 jmpl reg rs! + reg rs2, %0 7 
call regrst +!- simm13 jmpl regrst +/- simm13, %07 

tst regrs2 or cc %g0, regrs2, %g0 test 

ret jmpl %i7+8, %g0 return from subroutine 
retl jmpl %07+8, %g0 return from leaf subroutine 

restore restore %g0, %g0, %g0 trivial restore 
save save %g0, %g0, %g0 trivial save 

(Warning: trivial save should 
only be used in kernel code!) 

set value, regrd set hi %hi(value), regrd (when ((value&Ox1fff) == 0)) 
or 

or %g0, value, regrd (when -4096 :o; value :o; 4095) 
or 

set hi %hi(value), regrd (otherwise) 
or regrd, %lo(va/ue), regrd 

Warning: do not use set in the 
delay slot of a OCT!. 

not regrst• regrd xnor regrst• %g0, regrd one's complement 
not regrd xnor regrd, %g0, regrd one's complement 

neg regrst• regrd sub %g0, regrs2, regrd two's complement 
neg regrd sub %g0, regrd• regrd two's complement 

inc regrd add regrd• 1, regrd increment by 1 
inc simm13, regrd add regrd• simm13, regrd increment by const13 
inccc regrd addce regrd• 1, regrd increment by 1 and set ice 
ineee simm13, regrd addee regrd, simm13, regrd increment by const13 and set ice 

dee regrd sub regrd• 1, regrd decrement by 1 
dee simm13, regrd sub regrd, simm13, regrd decrement by const13 
deeec regrd subee regrd• 1, regrd decrement by 1 and set ice 
deeec simm13, regrd subee reg,d, simm13, regrd decrement by const13 and set ice 

btst regrst + regrs2 andee regrst + regrs2, %g0 bit test 
btst regrst +/- simm13 andee regrst +!- simm13, %g0 bit test 
bset reg rs 1 + reg rs2 or regrst + regrs2, %g0 bit set 
bset regrst +!- simm13 or regrst +!- simm13, %g0 bit set 
bclr regrst + regrs2 andn regrst + regrs2• %g0 bit clear 
belr regrst +/- simm13 andn regrst +!- simm13, %g0 bit clear 
btog reg rs 1 + reg rs2 xor regrst + regrs2, %g0 bit toggle 
btog regrst +!- simm13 xor regrst +/- simm13, %g0 bit toggle 

Instruction Set -

7-4 



OJ 
FUJITSU 

Table 7-1: Mapping of Synthetic Instructions to SPARC Instructions 

clr 
clrb 
clrb 
clrh 
clrh 
clr 
clr 

mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 

Synthetic Instruction 

regrd 
[reg rs 1 + reg rs:d 
[regrst +/- simm13] 
[reg rs 1 + reg rs:d 
[regrst +!- simm13} 
[reg rs 1 + reg rs:d 
[regrst +/- simm13] 

or 
stb 
stb 
sth 
sth 
st 
st 

regrst, regrd or 
regrs1 +!- simm13, regrd or 
%y, regrd rd 
%asrn, regrd rd 
%psr, regrd rd 
%wim, regrd rd 
tbr, regrd rd 
regrst• %y wr 
simm13, %y wr 
regrs1• %asr_reg wr 
simm13, %asr_reg wr 
regrs1• %psr wr 
simm13, %psr wr 
regrs1• %wim wr 
simm13, %wim wr 
regrs1' %tbr wr 
simm13, %tbr wr 

SPARC lnstruction(s) 

%gO, %g0, regrd 
%g0, [regrs1 + regrs:d 
%g0, [regrst +/- simm13] 
%g0, [regrst + regrs:d 
%g0, [reg,s 1 +!- simm13] 
%g0, [regrs1 + regrs:d 
%g0, [regrst +!- simm13] 

%g0, regrst' regrd 
%g0, regrs 1+!-simm13, regrd 
%y, regrd 
%asrn, regrd 
%psr, regrd 
%wim, regrd 
tbr, regrd 
regrst• %y 
simm13, %y 
reg rs I• %asr _reg 
simm13, %asr_reg 
regrsl• %psr 
simm13, %psr 
regrst• %wim 
simm13, %wim 
regrst• %tbr 
simm13, %tbr 

Comment 

clear (zero) register 
clear byte 
clear byte 
clear halfword 
clear halfword 
clear word 
clear word 

Instruction Set -

7-5 



SP ARClite User's Guide 

7 .4 Binary Opcodes 
The following table provides a mapping by binary opcode of the SPARC instruc­
tions mnemonics. In the table, the 32-bits that make up an instruction are divided 
into 4 fields. Field 1 for bits 31-30, field 2 for bits 24-19, field 3 for bits 29-25, and 
field 4 for bits 13-5. When using the table, look first for a match in field 1, then a 
match in field 2, followed by fields 3 and 4 until the desired mnemonic is found. 

Table 7-2: SPARC Instructions Sorted by Opcode 

Bits Bits Bits Bits 
31:30 29 ... 25 24 ... 19 13 ... 5 

Field 1 Field 3 Field 2 Field4 Instruction Mnemonic 
00 xxxxx OOOxxx xxxxxxxxx UN IMP 
00 xOOOO OlOxxx xxxxxxxxx EN 
00 xUUOl OlOxxx xxxxxxxxx BE 
00 x0010 OlOxxx xxxxxxxxx BLE 
00 xOOll OlOxxx xxxxxxxxx BL 
00 xOlOO OlOxxx xxxxxxxxx BLEU 
00 x0101 OlOxxx xxxxxxxxx BCS 
00 x0110 OlOxxx xxxxxxxxx BNEG 
00 xOlll OlOxxx xxxxxxxxx BVS 
00 xlOOO OlOxxx xxxxxxxxx BA 
00 xlOOl OlOxxx xxxxxxxxx ENE 
00 x1010 OlOxxx xxxxxxxxx BG 
00 xlOll OlOxxx xxxxxxxxx EGE 
00 xllOO OlOxxx xxxxxxxxx BGU 
00 xllOl OlOxxx xxxxxxxxx BCC 
00 xlllO OlOxxx xxxxxxxxx BPOS 
00 xllll OlOxxx xxxxxxxxx BVC 
00 xxxxx lOOxxx xxxxxxxxx SETHI 
00 00000 lOOxxx xxxxxxxxx NOP 
00 xOOOO llOxxx xxxxxxxxx FEN t 

00 xOOOl llOxxx xxxxxxxxx FBNE t 

00 x0010 llOxxx xxxxxxxxx FBLG 
-f 

00 xOOll llOxxx xxxxxxxxx FBUL T 

00 xOlOO llOxxx xxxxxxxxx FBL t 

00 x0101 llOxxx xxxxxxxxx FBUG t 

00 x0110 llOxxx xxxxxxxxx FBG t 

00 xOlll llOxxx xxxxxxxxx FBU t 

00 xlOOO llOxxx xxxxxxxxx FBA t 

00 xlOOl llOxxx xxxxxxxxx FEE t 

00 x1010 llOxxx xxxxxxxxx FBUE t 

00 xlOll llOxxx xxxxxxxxx FBGE T 

00 xllOO llOxxx xxxxxxxxx FBUGE t 

00 xllOl llOxxx xxxxxxxxx FBLE T 

00 xlllO llOxxx xxxxxxxxx FBULE t 

00 xllll llOxxx xxxxxxxxx FBO t 

00 xOOOO lllxxx xxxxxxxxx CBN t 

00 xOOOl lllxxx xxxxxxxxx CB123 t 

00 xOOlO lllxxx xxxxxxxxx CB12 T 

Instruction Set -

7-6 



cP 
FUJITSU 

Table 7-2: SPARC Instructions Sorted by Opcode (Continued) 

Bits Bits Bits Bits 
31:30 29 ... 25 24 ... 19 13 ... 5 
Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic 

00 xOOll lllxxx xxxxxxxxx CB13 t 

00 x0100 lllxxx xxxxxxxxx CBl t 

00 x0101 lllxxx xxxxxxxxx CB23 t 

00 x0110 lllxxx xxxxxxxxx CB2 t 

00 xOlll lllxxx xxxxxxxxx CB3 t 

00 xlOOO lllxxx xxxxxxxxx CBA t 

00 xlOOl lllxxx xxxxxxxxx CBO t 

00 x1010 lllxxx xxxxxxxxx CB03 t 

00 xlOll lllxxx xxxxxxxxx CB02 T 

00 xllOO lllxxx xxxxxxxxx CB023 t 

00 xllOl lllxxx xxxxxxxxx CBOl t 

00 xlllO lllxxx xxxxxxxxx CB013 t 

00 xllll lllxxx xxxxxxxxx CB012 t 

01 Olxxx xx xx xx xxxxxxxxx CALL 
10 xxxxx 000000 xxxxxxxxx ADD 
10 xxxxx 000001 xxxxxxxxx AND 
10 xxxxx 000010 xxxxxxxxx OR 
10 xxxxx 000011 xxxxxxxxx XOR • 10 xxxxx 000100 xxxxxxxxx SUB 
10 xxxxx 000101 xxxxxxxxx ANON 
10 xxxxx 000110 xxxxxxxxx ORN 
10 xxxxx 000111 xxxxxxxxx xNOR 
10 xxxxx 001000 xxxxxxxxx AD Ox 
10 xxxxx 001010 xxxxxxxxx UMUL 
10 xxxxx 001011 xxxxxxxxx SMUL 
10 xxxxx 001100 xxxxxxxxx SUBx 
10 xxxxx 001110 xxxxxxxxx UDIV t 

10 xxxxx 001111 xxxxxxxxx SDIV t 

10 xxxxx 010000 xxxxxxxxx ADD cc 
10 xxxxx 010001 xxxxxxxxx AND cc 
10 xxxxx 010010 xxxxxxxxx OR cc 
10 xxxxx 010011 xxxxxxxxx XO Rec 
10 xxxxx 010100 xxxxxxxxx SUB cc 
10 xxxxx 010101 xxxxxxxxx AND Nee 
10 xxxxx 010110 xxxxxxxxx ORN cc 
10 xxxxx 010111 xxxxxxxxx xNORcc 
10 xxxxx 011000 xxxxxxxxx ADDxcc 
10 xxxxx 011010 xxxxxxxxx UMULcc 
10 xxxxx 011011 xxxxxxxxx SMULcc 
10 xxxxx 011100 xxxxxxxxx SUBxcc 
10 xxxxx 011101 xxxxxxxxx DIVS cc 
10 xxxxx 011110 xxxxxxxxx UDIVcc t 

10 xxxxx 011111 xxxxxxxxx SD IV cc t 

10 xxxxx 100000 xxxxxxxxx TADD cc 
10 xxxxx 100001 xxxxxxxxx TSUBcc 
10 xxxxx 100010 xxxxxxxxx TADDccTV 
10 xxxxx 100011 xxxxxxxxx TSUBccTV 

Instruction Set -

7-7 



SP ARClite User's Guide 

Table 7-2: SPARC Instructions Sorted by Opcode (Continued) 

Bits Bits Bits Bits 
31:30 29 ... 25 24 ... 19 13 ... 5 

Field 1 Field3 Field 2 Field 4 Instruction Mnemonic 
10 xxxxx 100100 xxxxxxxxx MULScc 
10 xxxxx 100101 xxxxxxxxx SLL 
10 xxxxx 100110 xxxxxxxxx SRL 
10 xxxxx 100111 xxxxxxxxx SRA 
10 00000 101000 xxxxxxxxx STEAR T 

10 xxxxx 101000 xxxxxxxxx RDASR (or RDY if rsl=O) 
10 xxxxx 101001 xxxxxxxxx RDPSR 
10 xxxxx 101010 xxxxxxxxx RDWIM 
10 xxxxx 101011 xxxxxxxxx RDTBR 
10 xxxxx 101100 xxxxxxxxx SCAN 
10 xxxxx 110000 xxxxxxxxx WRASR 
iO 00000 110000 xxxxxxxxx WRY 
10 xxxxx 110001 xxxxxxxxx WRPSR 
10 xxxxx 110010 xxxxxxxxx WRWIM 
10 xxxxx 110011 xxxxxxxxx WRTBR 
10 xxxxx 110100 011000111 FqTOs t 

10 xxxxx 110100 011000111 FdTOs T 

10 xxxxx 110100 011000100 FiTOs t 

10 xxxxx 110100 011001000 FiTOs t 

10 xxxxx 110100 001101001 FsMULd T 

10 xxxxx 110100 001001111 FDIVd t 

10 xxxxx 110100 011001001 FsTOd t 

10 xxxxx 110100 001101110 FsMULq T 

10 xxxxx 110100 011001100 FiTOq t 

10 xxxxx 110100 011010010 FdTOi T 

10 xxxxx 110100 011010011 FqTOi t 

10 xxxxx 110100 011010001 FsTOi T 

10 xxxxx 110100 011001110 FdTOq t 

10 xxxxx 110100 001001111 FDIVq t 

10 xxxxx 110100 011001101 FsTOq T 

10 xxxxx 110100 011001011 FqTOd t 

10 xxxxx 110100 000000001 FMOVs T 

10 xxxxx 110100 001000001 FADDs t 

10 xxxxx 110100 001000010 FADDd t 

10 xxxxx 110100 001000011 FADDq T 

10 xxxxx 110100 000101011 FSQRTq t 

10 xxxxx 110100 000101010 FSQRTd t 

10 xxxxx 110100 001001101 FD IVs t 

10 xxxxx 110100 000001001 FABSs t 

10 xxxxx 110100 000101001 FSQRTs T 

10 xxxxx 110100 001000101 FSUBs t 

10 xxxxx 110100 000000101 FNEGs T 

10 xxxxx 110100 001001010 FMULd t 

10 xxxxx 110100 001001011 FMULq t 

10 xxxxx 110100 001000110 FSUBd T 

10 xxxxx 110100 001001001 FMULs t 

10 xxxxx 110100 001001011 FMULd T 

Instruction Set -

7-8 



cO 
FUJITSU 

Table 7·2: SPARC Instructions Sorted by Opcode (Continued) 

Bits Bits Bits Bits 
31:30 29 ... 25 24 ... 19 13 ... 5 
Field 1 Field3 Field 2 Field4 Instruction Mnemonic 

10 xxxxx 110100 001001001 FMULq t 

10 xxxxx 110100 001001001 FMULs T 

10 xxxxx 110100 001000111 FSUBq t 

10 xxxxx 110101 001010111 FCMPEq t 

10 xxxxx 110101 001010001 FCMPs t 

10 xxxxx 110101 001010011 FCMPq t 

10 xxxxx 110101 001010110 FCMPEd T 

10 xxxxx 110101 001010101 FCMPEs t 

10 xxxxx 110101 001010010 FCMPd T 

10 xxxxx 110110 xxxxxxxxx CPopl T 

10 xxxxx 110111 xxxxxxxxx CPop2 t 

10 xxxxx 111000 xxxxxxxxx JMPL 
10 xxxxx 111001 xxxxxxxxx RETT 
10 xOOOO 111010 xxxxxxxxx TN 
10 xOOOl 111010 xxxxxxxxx TE 
10 xOOlO 111010 xxxxxxxxx TLE 
10 xOOll 111010 xxxxxxxxx TL 
10 xOlOO 111010 xxxxxxxxx TLEU • 10 x0101 111010 xxxxxxxxx TCS 
10 x0110 111010 xxxxxxxxx TNEG 
10 x0111 111010 xxxxxxxxx TVS 
10 xlOOO 111010 xxxxxxxxx TA 
10 xlOOl 111010 xxxxxxxxx TNE 
10 xlOlO 111010 xxxxxxxxx TG 
10 xlOll 111010 xxxxxxxxx TGE 
10 xllOO 111010 xxxxxxxxx TGU 
10 xllOl 111010 xxxxxxxxx TCC 
10 xlllO 111010 xxxxxxxxx TPOS 
10 xllll 111010 xxxxxxxxx TVC 
10 xxxxx 111011 xxxxxxxxx FLUSH t 

10 xxxxx 111100 xxxxxxxxx SAVE 
10 xxxxx 111101 xxxxxxxxx RESTORE 
11 xxxxx 000000 xxxxxxxxx LD 
11 xxxxx 000001 xxxxxxxxx LDUB 
11 xxxxx 000010 xxxxxxxxx LDUH 
11 xxxxx 000011 xxxxxxxxx LDD 
11 xxxxx 000100 xxxxxxxxx ST 
11 xxxxx 000101 xxxxxxxxx STB 
11 xxxxx 000110 xxxxxxxxx STH 
11 xxxxx 000111 xxxxxxxxx STD 
11 xxxxx 001001 xxxxxxxxx LDSB 
11 xxxxx 001010 xxxxxxxxx LDSH 
11 xxxxx 001101 xxxxxxxxx LDSTUB 
11 xxxxx 001111 xxxxxxxxx SWAP 
11 xxxxx 010000 xxxxxxxxx LLDA 
11 xxxxx 010001 xxxxxxxxx LDUBA 
11 xxxxx 010010 xxxxxxxxx LDUHA 

Instruction Set -

7-9 



SP ARClite User's Guide 

Table 7-2: SPARC Instructions Sorted by Opcode (Continued) 

Bits Bits Bits Bits 
31:30 29 ... 25 24 ... 19 13 ... 5 

Field 1 Field3 Field2 Field4 Instruction Mnemonic 
11 xxxxx 010011 xxxxxxxxx LDDA 
11 xxxxx 010100 xxxxxxxxx STA 
11 xxxxx 010101 xxxxxxxxx STBA 
11 xxxxx 010110 xxxxxxxxx STHA 
11 xxxxx 010111 xxxxxxxxx STDA 
11 xxxxx 011001 xxxxxxxxx LDSBA 
11 xxxxx 011010 xxxxxxxxx LDSHA 
11 xxxxx 011101 xxxxxxxxx LDSTUBA 
11 xxxxx 011111 xxxxxxxxx SWAP A 
11 xxxxx 100000 xxxxxxxxx LDF t 

11 xxxxx 100001 xxxxxxxxx LDFSR t 

11 xxxxx 100011 xxxxxxxxx LDDF r 

11 xxxxx 100100 xxxxxxxxx STF t 

11 xxxxx 100101 xxxxxxxxx STFSR t 

11 xxxxx 100110 xxxxxxxxx STDFQ t 

11 xxxxx 100111 xxxxxxxxx STDF t 

11 xxxxx 110000 xxxxxxxxx LDC t 

11 xxxxx 110001 xxxxxxxxx LDC SR t 

11 xxxxx 110011 xxxxxxxxx LDDC t 

11 xxxxx 110100 xxxxxxxxx STC t 

11 xxxxx 110101 xxxxxxxxx STCSR t 

11 xxxxx 110110 xxxxxxxxx STDCQ t 

11 xxxxx 110111 xxxxxxxxx STDC t 

t. These instructions are not implemented in hardware. 

7 .5 Instruction Set 
This section provides a reference of all instructions supported in hardware on the 
SP ARClite MB86930. For additional information on the instructions refer to 
Chapter 2 "Programmer's Model" and to Chapter 5 "Programming Considerations" 
for code use examples. 

Instruction Set -

7-10 



ADD 

rP 
FUJITSU 

ADD 

Add 

Description: 

Computes either "r[rs1]+r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" 
if the i field is one, and places the result in the destination specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 000000 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 000000 I rs1 

Syntax: 

add 
add 

regrsl• regrs2• regrd 
regrsl• immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

mov 2, %11 
mov 4, %12 
add %11, %12, %13 %13= 6 

13 12 5 4 0 

I i~O I unused (zero) I rs2 I 
13 12 0 

I ;~1 I simm13 I 

Instruction Set - Add 

7-11 

• 



SP ARC lite User's Guide 

AD Dec AD Dec 

Add and modify ice 

Description: 

Computes either "r[rsl]+r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" 
if the i field is one, and places the result in the destination specified by the rd field. 

ADDcc modifies the integer condition codes. 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

addcc 
add cc 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 010000 I rs1 

25 24 19 18 14 

rd I 010000 I rs1 

regrs1' regrs2' regrd 
regrsl' immediate, regrd 

Condition Code Modified: 

n,z,v,c 

Example: 

mov 2, %11 

13 

I i=O I 
13 

I i=1 I 

add cc %11, -5, %13 %13= -3 
nzvc=lOOO 

Instruction Set - Add and modify ice 

7-12 

12 5 4 0 
unused (zero) I rs2 I 

12 0 
simm13 I 



ADDX 

Add with carry 

Description: 

cO 
FUJITSU 

ADDX 

Computes either "r[rs1]+r[rs2]+c" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)+c" if the i field is one, and places the result in the destination 
specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 001000 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 001000 I rs1 

Syntax: 

addx 
addx regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

mov -1, %11 
add cc 
addx 

%11, %11, %12 
%g0, %g0, %13 %13= 1 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

Instruction Set - Add with carry 

7-13 

-



SP ARClite User's Guide 

ADDXcc ADDXcc 

Add with carry and modify ice 

Description: 

Computes either "r[rsl]+r[rs2]+c" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)+c" if the i field is one, and places the result in the destination 
specified by the rd field. 

ADDXcc modifies the integer condition codes. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 011000 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 011000 I rs1 

Syntax: 

addxcc 
addxcc 

regrsl1 regrs21 regrd 
regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

n, Z, V, C 

Example: 

mov -1, %11 
mov %11, %13 

13 

I i~O I 
13 

I i~1 I 

nzvc=lOOl 

12 5 
unused (zero) 

12 
simm13 

addcc %11,%11,%12 
addxcc %13,0,%13 %13=0, nzvc=OlOl 

Instruction Set - Add with carry and modify ice 

7-14 

4 0 

I rs2 I 
0 

I 



AND 

cO 
FUJITSU 

AND 

And 

Description: 

Implements a bitwise logical And to compute either "r[rs1] and r[rs2]" if the i field 
is zero, or "r[rs1] and sign_ext(simm13)" if the i field is one, and places the result 
in the destination specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 000001 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 000001 I rs1 

Syntax: 

and regrsl' regr82 , regrd 
and regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

mov Ox5, %11 
mov Ox3 %12 
and %11, %12, %13 %13= Oxl 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

Instruction Set - And 

7-15 

-



SP ARClite User's Guide 

AN Dec AN Dec 

And and modify ice 

Description: 

Implements a bitwise logical And to compute either "r[rsl] and r[rs2]" if the i field 
is zero, or "r[rsl] and sign_ext(simm13)" if the i field is one, and places the result 
in the destination specified by the rd field. 

ANDcc modifies the integer condition codes. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 010001 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 010001 I rs1 

Syntax: 

and cc 
an dee 

regrsl• regrs2• regrd 
regrsl• immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

n, z, v=O, c=O 

Example: 

mov Ox5, %11 

13 

I i=O I 
13 

I i=1 I 

12 5 
unused (zero) 

12 
simm13 

and %11, Oxa, %13 %13= OxO, nzvc=OlOO 

4 0 

I rs2 I 
0 

I 

Instruction Set - And and modify ice 

7-16 



ANDN 

0) 

FUJITSU 

ANDN 

And Not 

Description: 

Implements a bitwise logical And Not to compute either "rlrs1] andn r[rs2]" if the 
i field is zero, or "r[rs1J andn sign~ext(simm13)" if the i field is one, and places the 
result in the destination specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 000101 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 000101 I rs1 

Syntax: 

andn regrsl' regrs2' regrd 
andn regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

mov OxS, %11 
mov Ox3 %12 

andn %11, %12, %13 %13= Ox4 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

Instruction Set - And Not 

7-17 

-



SP ARClite User's Guide 

ANDNcc ANDNcc 

And Not modify ice 

Description: 

Implements a bitwise logical And Not to compute either "r[rsl] andn r[rs2]" if the 
i field is zero, or "r[rs1] andn sign_ext(simm13)" if the i field is one, and places the 
result in the destination specified by the rd field. 

ANDNcc modifies the integer condition codes. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 010101 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 010101 I rs1 

Syntax: 

andncc 
andncc 

regrsl• regrs2• regrd 
regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

n, z, v=O, c=O, 

Example: 

mov Ox5, %11 

13 

I i=O I 
13 

I i=1 I 

12 5 
unused (zero) 

12 
simm13 

andncc %11, Ox3, %13 %13= Ox4, nzvc=OOOO 

Instruction Set - And Not modify ice 

7-18 

4 0 

I rs2 I 
0 

I 



BA 

cP 
FUJITSU 

BA 

Branch Always 

Description: 

BA causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", regardless of the value of the condition code bits. 

If the annul field of the branch instruction is 1, the delay instruction is annulled 
(not executed). If the annul field is 0, the delay instruction is executed. (Note: this 
is the reverse of the case for other conditional branches) 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 1 ooo I 01 o I 

Syntax: 

ba 
ba,a 

Traps: 

(none) 

label 
label 

Condition Code Modified: 

(none) 

Example: 

ba xyz 

mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch Always 

7-19 

-



SPARClite User's Guide 

BCC BCC 

Branch on Carry Clear (Branch Greater or Equal Unsigned) 

Description: 

BCC causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if the carry (C) bit in the PSR is clear. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 1101 I 01 o I 

Syntax: 

bee 
bgeu 
bee, a 
bgeu,a 

Traps: 

(none) 

label 
label 
label 
label 

Condition Code Modified: 

(none) 

Example: 

bcc,a xyz 
mov Ox4, %11 

disp22 

alternate mnemonic 
annul bit set 

delay slot not executed if branch not taken 

Instruction Set - Branch on Carry Clear (Branch Greater or Equal Unsigned) 

7-20 



BCS 

oO 
FUJITSU 

Branch on Carry Set (Branch on Less Than, Unsigned) 

Description: 

BCS causes a PC-relative, delayed control transfer to the address "PC + (4 x 
sign_ext(disp22))", if the carry (C) bit in the PSR is set. 

BCS 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo lal 0101 010 I 

Syntax: 

bes 
blu 
bes, a 
blu,a 

Traps: 

(none) 

label 
label 
label 
label 

Condition Code Modified: 

(none) 

Example: 

bes xyz 
mov Ox4, %11 

disp22 

alternate mnemonic 
annul bit set 

delay slot 

Instruction Set - Branch on Carry Set (Branch on Less Than, Unsigned) 

7-21 

-



SP ARClite User's Guide 

BE 

Branch on Equal (Branch on Zero) 

Description: 

BE causes a PC-relative, delayed control transfer to the address "PC + (4 x 
sign_ext(disp22))", if Z is set. 

BE 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 0001 I 010 

Syntax: 

be label 
bz 
be, a 

label 
label 

bz,a label 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

bz xyz 
mov Ox4, %11 

disp22 

alternate mnemonic 
annul bit set 

delay slot 

Instruction Set - Branch on Equal (Branch on Zero) 

7-22 



BG 

Branch on Greater 

Description: 

0) 

FUJITSU 

BG 

BG causes a PC-relative, delayed control transfer to the address 11PC + (4 x 
sign_ext(disp22))", if 11not(Z or (N xor V))" is true. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 1010 I 010 

Syntax: 

bg 
bg,a 

Traps: 

(none) 

label 
label 

Condition Code Modified: 

(none) 

Example: 

bg 
mov 

xyz 
Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Greater 

7-23 

-



SP ARClite User's Guide 

BGE BGE 

Branch on Greater or Equal 

Description: 

BGE causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if "not(N xor V)" is true. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 
31 30 29 28 25 24 22 21 

I oo I a I 1011 I 010 

Syntax: 

bge label 
bge,a 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

bge 
mov 

xyz 
Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Greater or Equal 

7-24 



BGU 

cP 
FUJITSU 

BGU 

Branch on Greater, Unsigned 

Description: 

BGU causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if "not(C or Z)" is true. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 11 oo I 01 o I 

Syntax: 

bgu 
bgu,a 

Traps: 

(none) 

label 
label 

Condition Code Modified: 

(none) 

Example: 

bgu xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Greater, Unsigned 

7-25 

-



SP ARClite User's Guide 

BL 

Branch on Less 

Description: 

BL causes a PC-relative, delayed control transfer to the address "PC + (4 x 
sign_ext(disp22))", if "N xor V" is true. 

BL 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 
31 30 29 28 25 24 22 21 

I oo I a I 0011 I 01 o 

Syntax: 

bl label 
bl, a 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

bl xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Less 

7-26 



BLE 

cP 
FUJITSU 

BLE 

Branch on Less or Equal 

Description: 

BLE causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if "Z or (N xor V)" is true. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 0010 I 010 

Syntax: 

ble 
ble,a 

Traps: 

(none) 

label 
label 

Condition Code Modified: 

(none) 

Example: 

ble xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Less or Equal 

7-27 

• 



SP ARClite User's Guide 

BLEU BLEU 

Branch on Less or Equal, Unsigned 

Description: 

BLEU causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if "C or Z" is true. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 0100 I 010 

Syntax: 

bleu label 
bleu,a 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

bleu xyz 

mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Less or Equal, Unsigned 

7-28 



BN 

cP 
FUJITSU 

BN 

Branch Never 

Description: 

BN acts like a "NOP" except that if the annul field is one, the delay instruction is 
not executed (annulled). If the annul (a) field is zero, the delay instruction is exe­
cuted. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 0000 010 I 

Syntax: 

bn label 
bn,a 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

bn xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch Never 

7-29 

• 



SPARClite User's Guide 

BNE BNE 

Branch on Not Equal (Branch on Not Zero) 

Description: 

BNE causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if Z is clear. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 1001 I 01 o I 

Syntax: 

bne 
bnz 
bne,a 
bnz,a 

Traps: 

(none) 

label 
label 
label 
label 

Condition Code Modified: 

(none) 

Example: 

bnz xyz 
mov Ox4, %11 

disp22 

alternate mnemonic 
annul bit set 

delay slot 

Instruction Set - Branch on Not Equal (Branch on Not Zero) 

7-30 



BNEG 

Branch on Negative 

Description: 

cO 
FUJITSU 

BNEG 

BNEG causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if N is set. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 0110 I 010 

Syntax: 

bneg 
bneg,a 

Traps: 

(none) 

label 
label 

Condition Code Modified: 

(none) 

Example: 

bneg xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Negative 

7-31 

• 



SP ARClite User's Guide 

BPOS BPOS 

Branch on Positive 

Description: 

BPOS causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if N is clear. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 111 o I 01 o 

Syntax: 

bpos label 
bpos,a 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

bpos xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Positive 

7-32 



BVC 

cP 
FUJITSU 

BVC 

Branch on Overflow Clear 

Description: 

BVC causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if Vis clear. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo lal 1111 I 010 I 

Syntax: 

bvc 
bvc,a 

Traps: 

(none) 

label 
label 

Condition Code Modified: 

(none) 

Example: 

bvc xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Overflow Clear 

7-33 

-



SPARClite User's Guide 

BVS BVS 

Branch on Overflow Set 

Description: 

BVS causes a PC-relative, delayed control transfer to the address "PC+ (4 x 
sign_ext(disp22))", if Vis set. 

The annul bit only affects execution if the branch is not taken. With the annul (a) 
bit set, the delay instruction is annulled (not executed). With the annul (a) bit 
clear, the delay instruction is executed. 

Format: 

31 30 29 28 25 24 22 21 

I oo I a I 0111 I 01 o 

Syntax: 

bvs label 
bvs,a 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

bvs xyz 
mov Ox4, %11 

disp22 

annul bit set 

delay slot 

Instruction Set - Branch on Overflow Set 

7-34 



CALL 

Q) 

FUJITSU 

CALL 

Call Instruction 

Description: 

The CALL instruction causes an unconditional, delayed, PC-relative control 
transfer to address "PC+ (4 x disp30)". Since the word displacement field is 30 
bits wide, the target address can be arbitrarily distant. The CALL instruction also 
writes the value of PC, which contains the address of the CALL, into %07 (r[lS]). 

Format: 

31 30 29 

01 

Syntax: 

call 

Traps: 

(none) 

label 

Condition Code Modified: 

(none) 

Example: 

call xyz 
mov Ox4, %11 

disp30 

delay slot 

Instruction Set - Call Instruction 

7-35 

-



SP ARClite User's Guide 

DIVSCC DIVSCC 

Divide Step 

Description: 

The DIVScc instruction performs one bit-cycle of a non-restoring, shift-before­
add, signed or unsigned division. Initially, the most significant half of the divi­
dend is in the Y register, the least significant half is in r[rsl]. The divisor is in 
r[rs2]. Subsequently, the most significant half of the partial remainder is in the Y 
register, the least significant half is in r[rsll. 

DIVSCC operates as follows: 

1. The true sign is formed using the negative (n) and overflow (v) integer condi­
tion codes from the Processor Status Register. True sign = n XOR v. 

2. The remainder is formed by upshifting the Y register (initially the most signifi­
cant word of the dividend) one bit, and setting the least significant bit of 
remainder equal to most significant bit of r[rsl] (initially the least significant 
word of the dividend). 

3. The divisor is r[rs2] if the i field is 0, or simm13, sign-extended to 32 bits, if the i 
field is 1. 

4. If true sign= 0 (+),the ALU computes remainder - divisor. If true sign =1 (-),the 
ALU computes remainder + divisor. 

5. Carry out from the ALU operation is noted as cO. The negative (n) condition 
code is set to bit 31 of the ALU result. The zero (z) condition code is set if the 
ALU result is 0 AND the true sign equals Y[31], else cleared. 

6. The new true sign is formed as (true sign AND NOT Y[31]) OR (NOT cO AND 
(true sign OR NOT Y[31])). 

7. The overflow (v) condition code is formed as new true sign XOR bit 31 of the 
ALU result. The carry (c) condition code is set to NOT new true sign. Y is set to 
the 32-bit ALU result. If rd is not 0, then r[rd] is set to r[rsl], upshifted one bit 
with NOT new true sign (the new quotient bit) in the least significant bit 
position. 

Instruction Set - Divide Step 

7-36 



Divide Step (Continued) 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

divs cc 
divs cc 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 011101 I rs1 

25 24 19 18 14 

rd I 011101 I rs1 

regrsl• regrs2• regrd 
regrsl• immediate, regrd 

Condition Code Modified: 

n,z,v,c, 

Example: 

cO 
FUJITSU 

13 12 5 4 0 

I i~O I reserved I rs2 I 
13 12 0 

I i~1 I simm13 I 

See Chapter 5 "Programming Considerations" for sample signed and unsigned divi­
sion routines based on the DIVScc instruction as well as some application exam­
ples. 

Instruction Set - Divide Step (Continued) 

7-37 

-



SP ARC lite User's Guide 

JMPL JMPL 

Jump and Link 

Description: 

The JMPL instruction causes a register-indirect control transfer to an address 
specified by either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)" if the i field is one. 

The JMPL instruction writes the PC, which contains the address of the JMPL 
instruction, into the destination r register specified in rd field. 

If either of the low-order two bits of the jump address is nonzero, a mem_ad­
dress_not_aligned trap occurs. 

Format: 
31 30 29 25 24 19 18 14 

I 10 I rd I 111000 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 111000 I rs1 

Syntax: 

jmpl regrsl' regrs21 regrd 
jmpl regrsl' immediate, regrd 

Traps: 

mem_address_not_aligned 

Condition Cocle Moclifiecl: 

(none) 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

Instruction Set - Jump and Link 

7-38 



oO 
FUJITSU 

Jump and Link (Continued) 

Example: 

jmpl %12+0xf8, %g0 
mov Oxfe, %11 ! delay slot 

notes:-JMPL with rd=%g0 can be used to return from a subroutine. 

• For a non-leaf subroutine the typical return address is "r[31]+8", if the sub­
routine was entered by a call instruction. (Note: The pseudo operation "ret'' 
invokes this return address). A leaf subroutine (no use of save, no call to 
other subroutines) can use "r[15]+8" as the return address. (Note: Pseudo 
operation "retl" invokes this return address). 

• JMPL with rd = 15 can be used as a register-indirect CALL. 

• When the delay slot instruction of JMPL is RETT, the target of the JMPL is • 
the address space pointed to by the state of the machine after the RETT is 
executed (this is important when returning from a trap (which is supervisor 
space) to user address space). 

Instruction Set - Jump and Link (Continued) 

7-39 



SP ARC lite User's Guide 

LD LD 

Load Word 

Description: 

The LD instruction moves a word from memory into the r register defined by the 
rd field. The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, 
or "r[rsl] + sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LD instruction traps, the destination register (rd) remains unchanged. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000000 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000000 I rs1 I i=1 I 

Syntax: 

ld 
ld 

[regrs1+ regrs2l' regrd 
[regrsl +/-immediate], regrd 

Traps: 

mem_address_not_aligned 
data_access_exception 

Condition Code Modified: 

(none) 

Example: 

ld 

5 4 0 
unused (zero) I rs2 I 

0 

simm13 I 

ld 
[%g0 + OxfeOJ, %14 
[ OxfeO J, %14 !recognized as equivalent 

Instruction Set - Load Word 

7-40 



LDA 

cP 
FUJITSU 

LDA 

Load Word from Alternate Space 

Description: 

The LDA instruction moves a word from memory into the r register defined by 
the rd field. The source value is loaded from "r[rsl] + r[rs2]" with the ASI field 
designating the ASI value. 

If the LDA instruction traps, the destination register (rd) remains unchanged. 
LDA is a privileged instruction which can only be executed in supervisor mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010000 I rs1 I i~O I 

Syntax: 

lda 

Traps: 

mem_address_not_aligned 
data_ access_ exception 
privileged_instruction (if not supervisor mode) 

illegal_ instruction (if i=l) 

Condition Code Modified: 

(none) 

Example: 

lda [%11 + %12]0xf, %14 

5 4 0 
ASI I rs2 I 

ASI value 15 decimal 

Instruction Set - Load Word from Alternate Space 

7-41 

• 



SP ARClite User's Guide 

LDD LDD 

Load Doubleword 

Description: 

The LDD instruction moves two words from memory into an r register pair. The 
most significant word at the effective memory address is moved into the even r 
register. The least significant word, which is at the effective memory address + 4, 
is moved into the odd r register. The least significant bit of the rd field is ignored. 

The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LDD instruction traps while loading the second word the even destination 
register (rdeven> will have been changed. 

Format: 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000011 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000011 I rs1 I i=1 I 

Syntax: 

ldd [regrsl+ regrs2 l, regrd 
ldd [regrsl +/- immediate], regrd 

Traps: 

mem_address _not_aligned 
data_access_exception 

Condition Code Modified: 

(none) 

Example: 

ldd [%i5 + %12], %g2 

5 4 0 
unused (zero) I rs2 I 

0 
simm13 I 

Instruction Set - Load Doubleword 

7-42 



LDDA 

oO 
FUJITSU 

LDDA 

Load Doubleword from Alternate Space 

Description: 

The LDDA instruction moves two words from memory into an r register pair. 
The most significant word at the effective memory address is moved into the even 
r register. The least significant word, which is at the effective memory address+ 
4, is moved into the odd r register. The least significant bit of the rd field is 
ignored. 

The source value is loaded from "r[rsl] + r[rs2]" with the ASI field designating the 
ASI value. 

If the LDD instruction traps while loading the second word the even destination 
register (rdeven) will have been changed. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010011 I rs1 li=OI 

Syntax: 

ldda [regrsl + regrs2l, regrd 
ldda [regrsl +/- immediate], regrd 

Traps: 

mem_address_not_aligned 
data_ access_ exception 
privileged_instruction (if not supervisor mode) 
illegal_ instruction (if i=l) 

Condition Code Modified: 

(none) 

Example: 

ldda [%g7 - 5]0xl, %04 

5 4 0 
ASI I rs2 I 

Instruction Set - Load Doubleword from Alternate Space 

7-43 

• 



SPARClite User's Guide 

LDSB LDSB 

Load Signed Byte 

Description: 

The LDSB instruction moves a byte from memory into the r register defined by 
the rd field. The fetched byte is right-justified in rd and is sign-extended. The 
source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + 
sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LD instruction traps, the destination register (rd) remains unchanged. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 001001 I rs1 I i~O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 001001 I rs1 I i~1 I 

Syntax: 

ldsb [regrsl + regr52], regrd 
ldsb [regrsl +/- immediate], regrd 

Traps: 

data_access _exception 

Condition Code Modified: 

(none) 

Example: 

ldsb [ %g0 + OxfeO] , %14 

5 4 0 

unused (zero) I rs2 I 
0 

simm13 I 

Instruction Set - Load Signed Byte 

7-44 



LDSBA 

d) 

FUJITSU 

LDSBA 

Load Signed Byte from Alternate Space 

Description: 

The LDSB instruction moves a byte from memory into the r register defined by 
the rd field. The fetched byte is right-justified in rd and is sign-extended. The 
source value is loaded from "r[rs1] + r[rs2]" with the ASI field designating the ASI 
value. 

If the LDSBA instruction traps, the destination register (rd) remains unchanged. 
LDSBA is a privileged instruction which can only be executed in supervisor 
mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 011001 I rs1 I i=O I 

Syntax: 

ldsba 

Traps: 

data_access_exception 
privileged_instruction (if not supervisor mode) 
illegal_instruction (if i=l) 

Condition Code Modified: 

(none) 

Example: 

ldsba [%11 + %12]0xf, %14 

5 4 0 
ASI I rs2 I 

ASI value 15 decimal 

Instruction Set - Load Signed Byte from Alternate Space 

7-45 

-



-- ---------· ----

SP ARClite User's Guide 

LDSH LDSH 

Load Signed Halfword 

Description: 

The LDSH instruction moves a halfword from memory into the r register defined 
by the rd field. The fetched halfword is right-justified in rd and is sign-extended. 
The source value is loaded from either "r[rs1] + r[rs2]" if the i field is zero, or 
"r[rs1] + sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LDSH instruction traps, the destination register (rd) remains unchanged. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 001010 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 001010 I rs1 I i=1 I 

Syntax: 

ldsh [regrsl + regr82], regrd 
ldsh [regrsl +/- immediate], regrd 

Traps: 

data_access_ exception 
mem_address_not_aligned 

Condition Code Modified: 

(none) 

Example: 

ldsh [%g0 + OxfeO], %14 

5 4 0 
unused (zero) I rs2 I 

0 
simm13 I 

Instruction Set - Load Signed Halfword 

7-46 



LDSHA 

cP 
FUJITSU 

LDSHA 

Load Signed Halfword from Alternate Space 

Description: 

The LDSH instruction moves a halfword from memory into the r register defined 
by the rd field. The fetched halfword is right-justified in rd and is sign-extended. 
The source value is loaded from "r[rsl] + r[rs2]" with the ASI field designating the 
ASI value. 

If the LDSHA instruction traps, the destination register (rd) remains unchanged. 
LDSHA is a privileged instruction which can only be executed in supervisor 
mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 011010 I rs1 li=DI 

Syntax: 

ldsha [regrsl + ASI, regrd 

Traps: 

data_ access_ exception 
mem_address _ not_aligned 
privileged_instruction (if not supervisor mode) 

illegal_instruction (if i=l) 

Condition Code Modified: 

(none) 

Example: 

ldsha [%11 + %12] Oxf, %14 

5 4 0 

ASI I rs2 I 

ASI value 15 decimal 

Instruction Set - Load Signed Halfword from Alternate Space 

7-47 

-



----·-~-- -~- - --~-

SP ARClite User's Guide 

LDSTUB LDSTUB 

Atomic Load-Store Unsigned Byte 

Desc:ription: 

The LDSTUB instruction moves a byte from memory into an r register identified 
by the rd field and then rewrites the same byte in memory to all ones atomically 
(without allowing intervening asynchronous traps). The value in the rd register is 
right justified and zero-filled. 

The source value is loaded from either "r[rs1] + r[rs2]" if the i field is zero, or 
"r[rs1] + sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LDSTUB instruction traps, memory remains unchanged. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 001101 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 001101 I rs1 I i=1 I 

Syntax: 

ldstub 
ldstub 

[regrsl + regrs2l, regrd 
[regrsl +/- immediate], regrd 

Traps: 

data_access_exception 

Condition Code Modified: 

(none) 

Example: 

ldstub [%g7 - Oxfb], %ol 

5 
unused (zero) 

simm13 

4 0 

I rs2 I 
0 

I 

Instruction Set - Atomic Load-Store Unsigned Byte 

7-48 



cP 
FUJITSU 

LDSTUBA LDSTUBA 

Atomic Load-Store Unsigned Byte into Alternate Space 

Description: 

The LDSTUBA instruction moves a byte from. memory into an r register identified 
by the rd field and then rewrites the same byte in memory to all ones atomically 
(without allowing intervening asynchronous traps). The value in the rd register is 
right justified and zero-filled. 

The source value is loaded from. "r[rsl] + r[rs2]"with the ASI field designating the 
ASI value. 

If the LDSTUBA instruction traps, memory remains unchanged. LDSTUBA is a 
privileged instruction which can only be executed in supervisor mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 011101 I rs 1 I i=O I 

Syntax: 

ldstuba [regrsl + ASI, reg rd 

Traps: 

data_access _exception 
privileged_instruction (if not supervisor mode) 

illegal_instruction (if i=l) 

Condition Code Modified: 

(none) 

Example: 

ldstuba [%11 + %12] Oxf, %14 

5 4 0 

ASI J rs2 J 

ASI value 15 decimal 

Instruction Set - Atomic Load-Store Unsigned Byte into Alternate Space 

7-49 

• 



SP ARClite User's Guide 

LDUB LDUB 

Load Unsigned Byte 

Description: 

The LDUB instruction moves an unsigned byte from memory into the r register 
defined by the rd field. The fetched halfword is right-justified in rd and is zero­
filled. The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, 
or "r[rs1] + sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LDUB instruction traps, the destination register (rd) remains unchanged. 

Format: 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000001 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000001 I rs1 I i=1 I 

Syntax: 

ldub [regrsl + regr82], regrd 
ldub [regrsl +/-immediate], regrd 

Traps: 

data_access_ exception 

Condition Code Modilied: 

(none) 

Example: 

ldub [ %g0 + OxfeO], %14 

5 4 0 
unused (zero) I rs2 I 

0 
simm13 I 

Instruction Set - Load Unsigned Byte 

7-50 



LDUBA 

cO 
FUJITSU 

LDUBA 

Load Unsigned Byte from Alternate Space 

Description: 

The LDUBA instruction moves a byte from memory into the r register defined by 
the rd field. The fetched byte is right-justified in rd and is zero-filled. The source 
value is loaded from "r[rsl] + r[rs2]" with the ASI field designating the ASI value. 

If the LDUBA instruction traps, the destination register (rd) remains unchanged. 
LDUBA is a privileged instruction which can only be executed in supervisor 
mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010001 I rs1 I i=O I 

Syntax: 

lduba 

Traps: 

data_ access_ exception 
privileged_instruction (if not supervisor mode) 
illegal_instruction (if i=l) 

Condition Code Modified: 

(none) 

Example: 

5 4 0 

ASI I rs2 I 

lduba [%11 + %12] Oxf, %14 !ASI value 15 decimal 

Instruction Set - Load Unsigned Byte from Alternate Space 

7-51 

• 



SP ARC lite User's Guide 

LDUH LDUH 

Load Unsigned Halfword 

Description: 

The LDUH instruction moves a halfword from memory into the r register defined 
by the rd field. The fetched halfword is right-justified in rd and is zero-filled. The 
source value is loaded from either "r[rsl] + r[rs2J" if the i field is zero, or "r[rsl] + 
sign_ext(simm 13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the LDUH instruction traps, the destination register (rd) remains unchanged. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000010 I rs1 I i~O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000010 I rs1 I i~1 I 

Syntax: 

lduh [regrsl + regr52 , regrd 
lduh [regrsl +/- immediate], regrd 

Traps: 

data_ access_ exception 
mem_address_not_aligned 

Condition Code Modified: 

(none) 

Example: 

lduh [%g7 - Oxfeb], %14 

5 4 0 

unused (zero) I rs2 I 
0 

simm13 I 

Instruction Set - Load Unsigned Halfword 

7-52 



LDUHA 

cO 
FUJITSU 

LDUHA 

Load Unsigned Halfword from Alternate Space 

Description: 

The LDUHA instruction moves a halfword from memory into the r register 
defined by the rd field. The fetched halfword is right-justified in rd and is zero­
filled. The source value is loaded from "r[rsl] + r[rs2]" with the ASI field desig­
nating the ASI value. 

If the LDUHA instruction traps, the destination register (rd) remains unchanged. 
LDUHA is a privileged instruction which can only be executed in supervisor 
mode. 

Format: 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010010 I rs1 I i~O I 

Syntax: 

lduha 

Traps: 

data_access _exception 
privileged_ instruction (if not supervisor mode) 
illegal_ instruction (if i = 1) 

Condition Code Modified: 

(none) 

Example: 

lduha [%g7 - Oxfeb]Oxee, %13 

5 4 0 
ASI I rs2 I 

Instruction Set - Load Unsigned Halfword from Alternate Space 

7-53 

• 



SP ARC lite User's Guide 

MULScc MULScc 

Multiply Step Instruction 

Description: 

The MULScc can be used to generate up to 64-bit products of two signed or 
unsigned words. MULScc works as follows: 

1. Compute the value obtained by shifting "r[rsl]" (the incoming partial prod­
uct) right by one bit and replacing its high-order bit by "N xor V" (the sign of 
the previous partial product). 

2. If the least significant bit of the Y register (the multiplier) is set, the value from 
step (1) is added to the multiplicand. The multiplicand is "r[rs2]" if the i field 
is zero or is "sign_ext(simml3)" if the i field is one. If the LSB of the Y register 
is not set, then zero is added to the value from step (1). 

3. The result from step (2) is written into "r[rd]" (the outgoing partial product). 
The PSR' s integer condition codes are updated according to the addition per­
formed in step (2). 

4. The Y register (the multiplier) is shifted right by one bit and its high_ order bit 
is replaced by the least significant bit of "r[rsl]" (the incoming partial prod­
uct). 

It should be noted that, for most applications, the UMUL/SMUL instructions are 
a faster and more efficient means of multiplying integer values. However 
MULScc can be used for other bit manipulations. See Chapter 5 "Programming 
Considerations" for details. 

Format: 
31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

mulscc 
mulscc 

I 

25 24 19 18 14 
rd I 100100 I rs1 

25 24 19 18 14 
rd I 100100 I rs1 

regrsl• regrs2• regrd 
regrsl• immediate, regrd 

13 12 5 4 0 

I i=O I reserved I rs2 I 
13 12 0 

I i=1 I simm13 I 

Instruction Set - Multiply Step Instruction 

7-54 



o') 

FUJITSU 

Multiply Step Instruction (Continued) 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

mulscc %04, %ol, %04 

Instruction Set - Multiply Step Instruction (Continued) 

7-55 

-



SPARClite User's Guide 

NOP NOP 

No Operation 

Description: 

The NOP instruction changes no program-visible state (except the PC and nPC) 

Format: 

31 30 29 25 24 22 21 

I oo I 00000 I 100 

Syntax: 

nop 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

bz target 

000000000000000 

nop !delay slot 

Instruction Set - No Operation 

7-56 



OR 

OJ 
FUJITSU 

OR 

Inclusive OR 

Description: 

Implements a bitwise logical inclusive Or to compute either "r[rs1] or r[rs2]" if the 
i field is zero, or "r[rsl] or sign_ext(simm13)" if the i field is one, and places the 
result in the destination specified by the rd field. 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 

Syntax: 

or 
or 

10 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 000010 I rs1 

25 24 19 18 14 

rd I 000010 I rs1 

regrsl• regrs2• regrd 
regrsl• immediate, regrd 

Condition Code Modified: 

(none) 

Example: 

13 12 5 4 0 

I i~O I unused (zero) I rs2 I 
13 12 0 

I i~1 I simm13 I 

or %g0, -1, %03 mov -1, %03 equivalent 

Instruction Set - Inclusive OR 

7-57 

-



-··--···---~~-

SP ARClite User's Guide 

OR cc OR cc 

Inclusive OR and modify ice 

Description: 

Implements a bitwise logical inclusive Or to compute either "r[rsl] or r[rs2]" if the 
i field is zero, or "r[rsl] or sign_ext(simm13)" if the i field is one, and places the 
result in the destination specified by the rd field. 

Format: 
31 30 29 25 24 19 18 14 

I 10 1 rd I 010010 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 010010 I rs1 

Syntax: 

orcc regrsl' regr82 , regrd 
orcc regrsl' irrunediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

n, z, v=O, c=O 

Example: 

mov -1, %03 

13 12 5 4 

I i=O I unused (zero) I rs2 

13 12 

I i=1 I simm13 

or cc %03, 0, %g0 tst %03 equivalent, nzvc=lOOO 

0 

I 
0 

I 

Instruction Set - Inclusive OR and modify ice 

7-58 



ORN 

o') 

FUJITSU 

ORN 

Inclusive Or Not 

Description: 

Implements a bitwise logical inclusive Or Not to compute either "r[rs1] orn r[rs2]" 
if the i field is zero, or "r[rs1] orn sign_ext(simm13)" if the i field is one, and places 
the result in the destination specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 000110 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 000110 I rs1 

Syntax: 

orn regrsl' regrs2r regrd 
orn regr51 , irrunediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

orn %g0, 3, %ol all l's except bottom two bits to reg ol 

Instruction Set - Inclusive Or Not 

7-59 

-



SP ARC lite User's Guide 

ORN cc ORN cc 

Inclusive Or Not and modify ice 

Description: 

Implements a bitwise logical inclusive Or Not to compute either "r[rs1] om r[rs2]" 
if the i field is zero, or "r[rs1] om sign_ext(simm13)" if the i field is one, and places 
the result in the destination specified by the rd field. 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

orncc 
orncc 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 010110 I rs1 

25 24 19 18 14 

rd I 010110 I rs1 

regrsl' regrs2' regrd 
regrsl' immediate, regrd 

Condition Code Modified: 

n,z=O,v,c=O 

Example: 

orncc %g0, -1, %03 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

Instruction Set - Inclusive Or Not and modify ice 

7-60 



RDASR 

cP 
FUJITSU 

RDASR 

Read Ancillary State Register 

Description: 

Reads the contents of the ancillary state register specified by the rsl field into the 
destination register rd. 

On the SPARClite MB86930 a valid value for rsl is 17. All other values of rsl will 
generate an illegal instruction trap. 

All reserved fields should be programmed as 0. RDASR is a privileged 
instruction. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 10 I rd I 101000 I rs1 I reserved I 

Syntax: 

rd asr_regrs1' regrd 

Traps: 

illegal_instruction 
privileged_ instruction 

Condition Code Modified: 

(none) 

Example: 

rd %asr17, %gl 

reserved 

Instruction Set - Read Ancillary State Register 

7-61 

-



---·--- ---------- ·--· --~· 

SP ARClite User's Guide 

RDPSR RDPSR 

Read Processor State Register 

Description: 

RDPSR reads the contents of the Processor State Register into the destination 
register rd. 

All reserved fields should be programmed as 0. RDPSR is a privileged instruction. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 10 I rd I 101001 I reserved I reserved I 

Syntax: 

rd %psr, regrd 

Traps: 

privileged_ instruction 

Condition Code Modified: 

(none) 

Example: 

rd %psr, %gl 

reserved 

Instruction Set - Read Processor State Register 

7-62 



RDTBR 

cP 
FUJITSU 

RDTBR 

Read Trap Base Register 

Description: 

RDTBR reads the contents of the Trap Base Register into the destination register 
rd. 

All reserved fields should be programmed as 0. RDTBR is a privileged 
instruction. 

Format: 

31 30 29 25 24 19 18 14 13 12 0 

~l_1o~l~_r_d~~I ~-10_10_1_1~-l~re_se_~_ed~~lr_es_eN_ed_l~~~-re_se_~_ed~~~-I 

Syntax: 

rd %tbr, regrd 

Traps: 

privileged_instruction 

Condition Code Modified: 

(none) 

Example: 

rd %tbr, %gl 

Instruction Set - Read Trap Base Register 

7-63 

• 



SP ARClite User's Guide 

RDWIM RDWIM 

Read Window Invalid Mask Register 

Description: 

RDWIM reads the contents of the Window Invalid Mask Register into the destina­
tion register rd. 

All reserved fields should be programmed as 0. RDWIM is a privileged 
instruction. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 1 O I rd I 101010 I reserved I reserved I 

Syntax: 

rd 0 • -owim, regrd 

Traps: 

privileged_ instruction 

Condition Code Modified: 

(none) 

Example: 

rd %wim, %g0 

reserved 

Instruction Set - Read Window Invalid Mask Register 

7-64 



RDY 

cO 
FUJITSU 

RDY 

Read Y Register 

Description: 

RDY reads the contents of the Y register into the destination register rd. 

Unlike the other read state register instructions, RDY is not privileged. All 
reserved fields should be programmed as 0. 

Format: 

31 30 29 25 24 19 18 14 13 12 

J 1 O J rd J 101000 J 00000 J reserved J 

Syntax: 

rd 

Traps: 

(none) 

%y' reg rd 

Condition Code Modified: 

(none) 

Example: 

rd %y, %00 

reserved 

Instruction Set - Read Y Register 

7-65 

-



SP ARClite User's Guide 

RESTORE RESTORE 

Restore Caller's Window 

Description: 

The RESTORE instruction adds one (modulo 8) to the Current Window Pointer 
(CWP) of the PSR and compares this value (new_CWP) against the Window 
Invalid Mask (WIM) register. If the WIM bit corresponding to the new_ CWP is 0, 
the new_ CWP is written into the CWP field of the PSR. This causes the CWP+ 1 
window to become the current window, thereby restoring the caller's window. If 
the WIM bit corresponding to the new_CWP is 1, a window_underflow trap is 
generated and the CWP is left unchanged. 

If an overflow trap is not generated, RESTORE behaves like an ADD instruction 
except that the source operands r[rsl] and r[rs2] are read from the old window 
and the sum is written into r[rd] of the new window. 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 111101 I rs1 I i=O I unused (zero) I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

I 10 I rd I 111101 I rs1 I i=1 I simm13 I 

Syntax: 

restore 
restore 

regrsl• regrs2• regrd 
regrsl• immediate, regrd 

Traps: 

window _underflow 

Condition Code Modified: 

(none) 

Example: 

ret 
restore %i5, %11, %05 

return from non-leaf subroutine 
add number sampled processed with this call 

to running total kept in callee's reg i5 
and same register, caller's reg o5. 

Instruction Set - Restore Caller's Window 

7-66 



RETI 

<:P 
FUJITSU 

RETI 

Return from Trap Instruction 

Description: 

If RETT does not cause a trap, it adds 1 to the CWP (modulo 8), causes a delayed 
control transfer to the target address, restores the S field of the PSR from the PS 
field, and sets the ET field of the PSR to 1. The target address is "r[rs1] + r[rs2]" if 
the i field is zero, or "r[rs1] + sign_ext(simml3)" if the i field is one. 

RETT can cause one of several traps. In order of highest to lowest priority: 

• If traps are enabled (ET=l) and the processor is in user mode (S=O), a 
privileged_instruction trap occurs. 

• If traps are enabled (ET=l) and the processor is in supervisor mode (S=l), a 
privileged_instruction trap occurs. 

• If traps are disabled (ET=O) and the processor is in user mode (S=O), 
privileged_instruction trap code is placed in tt (trap type) field of TBR and the -
processor enters error_mode state. 

• If traps are disabled (ET =0) and a window underflow condition is detected, 
window _underflow trap is placed in tt (trap type) field of TBR and the 
processor enters error_mode state. 

• If traps are disabled (ET=O) and either of the low-order two bits of the target 
address is nonzero, then memory _address_not_aligned code is placed in tt 
(trap type) field of TBR and the processor enters error_mode state. 

The instruction executed immediately before an RETT must be a JMPL instruc­
tion. 

RETT is a privileged instruction. 

Format: 
31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I reserved I 111001 I rs1 I i=O I reserved I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

I 10 I reserved I 111001 I rs1 I i=1 I simm13 I 

Instruction Set - Return from Trap Instruction 

7-67 



SP ARClite User's Guide 

Return from Trap Instruction (Continued) 

Syntax: 

ret t reg rsl, reg rs2 

rett regrsl' immediate 

Traps: 

privileged_ instruction 
illegal_ instruction 
window_ underflow 
mem_address_not_aligned 

Condition Code Modified: 

(none) 

Example: 

To re-execute the trapped instruction when returning from the trap handler use 
the sequence: 

jmpl 
rett 

%rl7,%r0 
%rl8 

!old PC 
!old nPC 

To return to the instruction after the trapped instruction (for example, after emu­
lating an instruction) use the sequence: 

jmpl 
rett 

%rl8,%r0 
%rl8+4 

!old nPC 
!old nPC + 4 

Instruction Set - Return from Trap Instruction (Continued) 

7-68 



SAVE 

cO 
FUJITSU 

SAVE 

Save Caller's Window 

Description: 

The SA VE instruction subtracts one (modulo 8) from the Current Window Pointer 
(CWP) of the PSR and compares this value (new_CWP) against the Window 
Invalid Mask (WIM) register. If the WIM bit corresponding to the new_ CWP is 0, 
the new_ CWP is written into the CWP field of the PSR. This causes the CWP -1 
window to become the current window, thereby saving the caller's window. 
Otherwise a window _overflow trap is generated and the CWP is left unchanged. 

If an overflow trap is not generated, SA VE behaves like an ADD instruction 
except that the source operands r[rsl] and r[rs2] are read from the old window 
and the sum is written into r[rd] of the new window. 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 111100 I rs1 I i=O I unused (zero) I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

I 10 I rd I 111100 I rs1 I i=1 I simm13 I 

Syntax: 

save regrsl' regr52 , regrd 
save regrsl' immediate, regrd 

Traps: 

window _overflow 

Condition Code Modified: 

(none) 

Example: 

save 
save 

%sp, -64, %sp 
9006, -64, %06 

equivalent statements to make 
room for 16 more words in call stack 

Instruction Set - Save Caller's Window 

7-69 

-



SPARClite User's Guide 

SCAN SCAN 

Scan for MSB 

Description: 

The scan instruction returns the location of the first nonsign bit or the location of 
either the most significant one or most significant zero of source register r[rs1]. 

SCAN works as follows: 

(1) The r[rs1] value is "xored" on a bit-wise basis with the value obtained by shift­
ing right by one bit and sign extending the value in r[rs2]. 

(2) The bit position of the first "l" in the value obtained above is returned to the 
destination register r[rd]. A "1" in the MSB positions returns a value of 0, while 
the first "1" in the LSB position returns a value of 31. If no bit is set, a value of 63 is 
returned. 

See figure 2-25 for additional details 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 101100 I rs1 I i=O I unused (zero) I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

I 10 I rd I 101100 I rs1 I i=1 I simm13 I 

Syntax: 

scan regrsl' regr52 , regrd 
scan regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

scan %gl, 0, %g2 

scan %gl, %gl, %g2 

scan reg gl for position of first one 
from the msb end and put position 
number in reg g2 
scan reg gl for position of first bit 
that differs from msb reg gl 

Instruction Set - Scan for MSB 

7-70 



SETHI 

cO 
FUJITSU 

SETHI 

Set High 22 bits 

Description: 

SETHI zeroes the least significant 10 bits of the destination register (r[rd]), and 
replaces its high-order 22 bits with the value from the immediate field. 

A SETHI instruction with rd=O and imm22=0 is defined to be a NOP instruction. 

Format: 

31 30 29 25 24 22 21 

I oo I rd I 100 

Syntax: 

Sethi 
Sethi 

Traps: 

(none) 

const22, regrd 
%hi(value), regrd 

Condition Code Modified: 

(none) 

Example: 

Sethi %hi(label_trig_table, %17 
or %17, %lo(label_trig_table), %17 

imm22 

address pointer of 
trig_table to %17 

Instruction Set - Set High 22 bits 

7-71 

• 



SPARClite User's Guide 

SLL SLL 

Shift Left Logical 

Description: 

SLL shifts the value of r[rsl] left by the count specified by the lower 5 bits of either 
"r[rs2]" if the i field is zero, or "simm13" if the i field is one. The vacated positions 
(least significant bits) are filled with zeroes. The shifted result is placed in the r 
register specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 100101 I rs1 I i=O I unused (zero) I rs2 I 
31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 100101 I rs1 I i=1 I unused (zero) I shcnt I 

Syntax: 

sll regrs1' regrs2t regrd 
sll regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

sll 

sub 
srl 

or 

%11, %gl, %ol 

%g0, %gl' %gl 
%11, %gl, %00 

%00, %ol, %00 

left justify least significant part of regll 
by shift count in reg gl 

negate reg gl 
right justify most significant part of reg 11 

by 32 - original shift count 
join parts to complete left rotate by 

original shift count 

Instruction Set - Shift Left Logical 

7-72 



SMUL 

cP 
FUJITSU 

SMUL 

Signed Integer Multiply 

Description: 

SMUL performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x 
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product 
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register. 

The SMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles 
to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte 
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of 
r[rs2] against the sign bit at run time. If the bits match, the SMUL instruction will 
terminate in 3, 2 or 1 cycle respectively. 

SMUL assumes a signed integer word operand and computes a signed integer 
doubleword product. • 

Format: 
31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 001011 I rs1 I i=O I unused (zero) I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

I 10 I rd I 001011 I rs1 I i=1 I simm13 I 

Syntax: 

smul regrslt regrs2t regrd 
smul regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

smul 
rd 

%02, %03, %ol 
%y' %00 

least significant half product to %ol 
most significant half product to %00 

Instruction Set - Signed Integer Multiply 

7-73 



SP ARC lite User's Guide 

SMULcc SMULcc 

Signed Integer Multiply and Change Condition Codes 

Description: 

SMULcc performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x 
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product 
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register. 

The SMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles 
to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte 
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of 
r[rs2] against the sign bit at run time. If the bits match, the SMUL instruction will 
terminate in 3, 2 or 1 cycle respectively. 

SMULcc assumes a signed integer word operand and computes a signed integer 
doubleword product. SMULcc writes the integer condition code (see below). 

Format: 
31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

smulcc 
smulcc 

I 

25 24 19 18 14 

rd I 011011 I rs1 

25 24 19 18 14 

rd I 011011 I rs1 

regrsl, regrs2r regrd 
regrsl' immediate, regrd 

13 12 5 4 0 

I i~O I unused (zero) I rs2 I 
13 12 0 

I i~1 I simm13 I 

Instruction Set - Signed Integer Multiply and Change Condition Codes 

7-74 



Fuprsu 

Signed Integer Multiply and Change Condition Codes (Continued) 

Traps: 

(none) 

Condition Code Modified: 

ice bit SMULcc 

N Set if product [31] = 1 
z Set if product [31 :O] = 0 
v Zero 
c Zero 

Example: 

smulcc %02, %03, %ol 
rd %y, %00 

least significant half product to %ol 
most significant half product to %00 

Instruction Set - Signed Integer Multiply and Change Condition Codes (Continued) 

7-75 

-



SP ARClite User's Guide 

SRA SRA 

Shift Right Arithmetic 

Description: 

SRA shifts the value of r[rsl] right by the count specified by the lower 5 bits of 
either "r[rs2]" if the i field is zero, or "simml3" if the i field is one. The vacated 
positions (most significant bits) are filled with the most significant bit of r[rsl]. 
The shifted result is placed in the r register specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 100111 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 100111 I rs1 

Syntax: 

sra regrsli regr82 , regrd 
sra regrsli immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 5 4 0 

I i=1 I unused (zero) I shcnt I 

sra %gl, 4, %gl right shift reg gl 4 bits and extend sign 

Instruction Set - Shift Right Arithmetic 

7-76 



SRL 

cO 
FUJITSU 

SRL 

Shift Right Logical 

Description: 

SRL shifts the value of r[rs1] right by the count specified by the lower 5 bits of 
either "r[rs2]" if the i field is zero, or "simm13" if the i field is one. The vacated 
positions (most significant bits) are filled with zeroes. The shifted result is placed 
in the r register specified by the rd field. 

Format: 
31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 100110 I rs1 I i=O I unused (zero) I rs2 I 
31 30 29 25 24 19 18 14 13 12 5 4 0 

I 10 I rd I 100110 I rs1 I i=1 I unused (zero) I shcnt I 

Syntax: 

srl regrsl• regrs2• regrd 
srl regrsl• immediate, regrd 

Traps: 

(none) 

Condition Code Modilied: 

(none) 

Example: 
sll 

sub 
srl 

or 

%11, %gl, %ol 

%g0 f %gl f %gl 

%11, %gl, %00 

%00, %ol, %00 

left justify least significant part of regll 
by shift count in reg gl 

negate reg gl 
right justify most significant part of reg 11 

by 32 - original shift count 
join parts to complete left rotate by 

original shift count 

Instruction Set - Shift Right Logical 

7-77 

-



SP ARClite User's Guide 

ST ST 

Store Word 

Description: 

The ST instruction moves a word from the r register specified by the rd field into 
memory. The effective memory address is either "r[rsl] + r[rs2]" if the i field is 
zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. If the ST instruction traps, 
memory remains unchanged. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

Format: 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000100 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000100 I rs1 I i=1 I 

Syntax: 

st 
st 

[regrsl + regrs2l' regrd 
[regrsl +/- immediate], regrd 

Traps: 

mem_address_not_aligned 
data_access _exception 

Condition Code Modified: 

(none) 

Example: 

%14 

5 
unused (zero) I 

simm13 

ld 
ld 

[%g0 + OxfeOJ, 
[OxfeOJ, %14 ! recognized as equivalent 

4 0 
rs2 I 

0 

I 

Instruction Set - Store Word 

7-78 



STA 

o:> 
FUJITSU 

STA 

Store Word in Alternate Space 

Description: 

The ST A instruction moves a word from the r register specified by the rd field into 
memory. The source value is stored to "r[rsl] + r[rs2]" with the ASI field designat­
ing the ASI value. If the STA instruction traps, memory remains unchanged. STA 
is privileged and may only be executed in supervisor mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

! 11 I rd I 010100 I rs1 li~ol 

Syntax: 

sta [regrsl + ASI, regrd 

Traps: 

mem_address _ not_aligned 

data_ access_ exception 
illegal_instruction (if i= 1) 
privileged_instruction (if not supervisor mode) 

Condition Code Modified: 

(none) 

Example: 

sta [%11 + %12]0xf, %14 

5 4 0 

ASI I rs2 I 

ASI value 15 decimal 

Instruction Set - Store Word in Alternate Space 

7-79 

-



SP ARC lite User's Guide 

STB STB 

Store Byte 

Description: 

The STB instruction moves the least significant byte from the r register specified 
by the rd field into memory. The effective memory address is either "r[rsl] + 
r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. If the 
STB instruction traps, memory remains unchanged. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

Format: 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000101 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000101 I rs1 I i=1 I 

Syntax: 

stb [regrsl + regr82 ], regrd 
stb [regrsl +!- immediate], regrd 

Traps: 

data_access_ exception 

Condition Code Modified: 

(none) 

Example: 

stb [%i5 + %12], %g2 

5 4 0 
unused (zero) I rs2 I 

0 

simm13 I 

Instruction Set - Store Byte 

7-80 



STBA 

oO 
FUJITSU 

STBA 

Store Byte in Alternate Space 

Description: 

The STBA instruction moves the least significant byte from the r register specified 
by the rd field into memory. The source value is stored to "r[rs1] + r[rs2]" with the 
ASI field designating the ASI value. If the STBA instruction traps, memory 
remains unchanged. STBA is privileged and may only be executed in supervisor 
mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010101 I rs1 I i=O I 

Syntax: 

stba 

Traps: 

data _access_ exception 
illegal_instruction (if i= 1) 

privileged_instruction (if not supervisor mode) 

Condition Code Modified: 

(none) 

Example: 

stba [%g7 - S]Oxl, %04 

5 4 0 

ASI I rs2 I 

Instruction Set - Store Byte in Alternate Space 

7-81 

-



SP ARClite User's Guide 

STH STH 

Store Halfword 

Description: 

The STH instruction moves the least significant halfword from the r register spec­
ified by the rd field into memory. The effective memory address is either "r[rsl] + 
r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. If the 
STH instruction traps, memory remains unchanged. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000110 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000110 I rs1 I i=1 I 

Syntax: 

sth [ regrsl + regr52 ], regrd 
sth [regrsl +/- immediate], regrd 

Traps: 

data_access_exception 
mem_address_not_aligned 

Condition Code Modified: 

(none) 

Example: 

sth [%g0 + OxfeO], %14 

5 4 0 
unused (zero) I rs2 I 

0 
simm13 I 

Instruction Set - Store Halfword 

7-82 



STHA 

cP 
FUJITSU 

STHA 

Store Halfword in Alternate Space 

Description: 

The STHA instruction moves the least significant byte from the r register specified 
by the rd field into memory. The source value is stored to "r[rsl] + r[rs2]" with the 
ASI field designating the ASI value. If the STHA instruction traps, memory 
remains unchanged. STHA is privileged and may only be executed in supervisor 
mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010110 I rs1 li=OI 

Syntax: 

st ha 

Traps: 

data_access _exception 
illegal_instruction (if i=l) 
mem _address _not_aligned 
privileged_instruction (if not supervisor mode) 

Condition Code Modified: 

(none) 

Example: 

stha [%12 + %13]0x3, %i4 

5 4 0 

ASI I rs2 I 

Instruction Set - Store Halfword in Alternate Space 

7-83 

• 



SP ARClite User's Guide 

STD STD 

Store Doubleword into Alternate space 

Description: 

The STD instruction moves a doubleword from an even/next-odd r register pair 
into memory. The even r register (which contains the most significant word) is 
written into memory at the effective address and the odd r register (with the least 
significant word) is written into memory at the effective address + 4. The effective 
memory address is either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)" if the i field is one. 

The address space identifier (ASI) indicates either user data (OxA) or supervisor 
data (OxB) according to the S bit of the PSR. 

If the STD instruction traps while writing the first word to memory, memory 
remains unchanged. If the STD instruction traps while the second word is being 
written, the first word written (the most significant word at the highest address) 
will have been changed. 

Format: 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000111 I rs1 I i=O I 
31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 000111 I rs1 I i=1 I 

Syntax: 

std [regrsl + regrs2l / regrd 
std [regrsl +/- irrunediate], regrd 

Traps: 

data_access_ exception 
mem_address_not_aligned 

Condition Code Modified: 

(none) 

Example: 

std (%13 - 4], %02 

5 4 0 
unused (zero) I rs2 I 

0 
simm13 I 

Instruction Set - Store Doubleword into Alternate space 

7-84 



STDA 

oO 
FUJITSU 

STDA 

Store Doubleword in Alternate Space 

Description: 

The STOA instruction moves a doubleword from an even/next-odd r register pair 
into memory. The even r register (which contains the most significant word) is 
written into memory at the effective address and the odd r register (with the least 
significant word) is written into memory at the effective address + 4. The source 
value is stored to "r[rsl] + r[rs2]" with the ASI field designating the ASI value. 
STOA is privileged and may only be executed in supervisor mode. 

If the STD instruction traps while writing the first word to memory, memory 
remains unchanged. If the STD instruction traps while the second word is being 
written, the first word written (the most significant word at the highest address) 
will have been changed. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 010111 I rs1 li=OI 

Syntax: 

Traps: 

data_ access_ exception 
illegal_ instruction (if i = 1) 
mem _address _not_aligned 
privileged_instruction (if not supervisor mode) 

Condition Code Modified: 

(none) 

Example: 

stda [%12 + %13]0x3, %i4 

5 4 0 
ASI I rs2 I 

Instruction Set - Store Doubleword in Alternate Space 

7-85 

-



SP ARC lite User's Guide 

SUB SUB 

Subtract 

Description: 

Computes either "r[rs1]-r[rs2J" if the i field is zero, or "r[rsl] - sign_ext(simm13)" 
if the i field is one, and places the result in the destination specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 000100 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 000100 I rs1 

Syntax: 

sub regrslr regrs2r regrd 
sub regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

mov 4, %11 
mov 2, %12 
sub %11, %12, %13 

Instruction Set - Subtract 

7-86 

%13= 2 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 



SU Bee 

cP 
FUJITSU 

SU Bee 

Subtract and modify ice 

Description: 

Computes either "r[rs1]-r[rs2]" if the i field is zero, or "r[rs1] - sign_ext(simm13)" 
if the i field is one, and places the result in the destination specified by the rd field. 

SUBcc modifies the integer condition codes. Overflow occurs on subtraction if the 
operands have different signs and the sign of the difference differs from the sign 
of r[rs1]. 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

sub cc 
sub cc 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 010100 I rs1 

25 24 19 18 14 

rd I 010100 I rs1 

regrsl' regrs2' regrd 
regrsl' immediate, regrd 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

Condition Code Modified: 

n,z,v,c 

Example: 

mov 
sub cc 

sub cc 

4 I %11 
%11, Ox2, %13 

%11, Ox7, %14 

%13= 2 
nzvc = 0000 
%14 = -3 

nzvc = 1001 

Instruction Set - Subtract and modify ice 

7-87 

-



SP ARClite User's Guide 

SUBX SUBX 

Subtract with Carry 

Description: 

Computes either "r[rs1]-r[rs2]-c" if the i field is zero, or "r[rsl] -
sign_ext(simm13)-c" if the i field is one, and places the result in the destination 
specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 001100 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 001100 I rs1 

Syntax: 

subx regrsl' regr82 , regrd 
subx regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

(none) 

Example: 

sub cc 
subx 

%g0, 255, %g3 
%g0, 0, %g2 

reg g3 
reg g2 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

-255, nzvc = 1001 
-1, sign extended 

Instruction Set - Subtract with Carry 

7-88 



SUBXcc 

0) 

FUJITSU 

SUBXcc 

Subtract and modify ice 

Description: 

Computes either "r[rs1]-r[rs2]-c" if the i field is zero, or "r[rs1] -
sign_ext(simm13)-c" if the i field is one, and places the result in the destination 
specified by the rd field. 

SUBXcc modifies the integer condition codes. Overflow occurs on subtraction if 
the operands have different signs and the sign of the difference differs from the 
sign of r[rsl]. 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

subxcc 
subxcc 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 011100 I rs1 

25 24 19 18 14 

rd I 011100 I rs1 

regrsll regrs21 regrd 
regrsl' immediate, regrd 

Condition Code Modified: 

n,z, v, c 

Example: 

mov -1, %11 reg 11 = 
srl %11, 1, %12 reg 12 = 

13 12 5 4 0 

I i~O I unused (zero) I rs2 I 
13 12 0 

I i~1 I simm13 I 

Oxffffffff 
Ox7fffffff 

or cc %g0, o, %g0 nzvc = 0100 
subxcc %12, %11, %gl reg gl Ox80000000, nzvc 1011 
subxcc %12, %11, %g2 reg g2 = Ox7fffffff, nzvc 0001 

Instruction Set - Subtract and modify ice 

7-89 

-



SP ARClite User's Guide 

SWAP SWAP 

SWAP Register with Memory 

Description: 

The SW AP instruction exchanges the contents of the r register identified by the rd 
field with the contents of the addressed memory location. This is performed 
atomically without allowing intervening asynchronous traps. 

The effective address of the swap instruction is either "r[rsl] + r[rs2]" if the i field 
is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. 

If the SWAP instruction traps, memory remains unchanged. 

Format: 

31 30 29 25 24 19 18 14 13 

I 11 I rd I 001111 I rs1 I i~O I 
31 30 29 25 24 19 18 14 13 

I 11 I rd I 001111 I rs1 I i~1 I 

Syntax: 

swap [ regrsl + regr52 ], regrd 
swap [regrsl + immediate], regrd 

Traps: 

data_ access_ exception 
mem_address_not_aligned 

Condition Code Modified: 

(none) 

Example: 

swap [%g7-23], %g6 

12 5 
unused (zero) 

12 

simm13 

4 0 

I rs2 I 
0 

I 

Instruction Set- SWAP Register with Memory 

7-90 



SWAPA 

cP 
FUJITSU 

SWAPA 

SWAP Register with Alternate Space Memory 

Description: 

The SWAP A instruction exchanges the r register identified by the rd field with the 
contents of the addressed memory location. This is performed atomically without 
allowing intervening asynchronous traps. 

The effective address of the swap instruction is "r[rsl] + r[rs2]" with the ASI field 
designating the ASI value. 

If the SW AP A instruction traps, memory remains unchanged. SW AP A is privi­
leged and may only be executed in supervisor mode. 

Format: 

31 30 29 25 24 19 18 14 13 12 

I 11 I rd I 011111 I rs1 I i=O I 

Syntax: 

swapa 

Traps: 

data_access_exception 
illegal_ instruction (if i= 1) 
mem_address_not_aligned 

privileged_instruction (if not supervisor mode) 

Condition Code Modified: 

(none) 

Example: 

swapa [%15 + 125]oxf, %14 

5 4 0 

ASI I rs2 I 

Instruction Set - SWAP Register with Alternate Space Memory 

7-91 

-



SP ARClite User's Guide 

TA TA 

Trap Always (Trap on Zero) 

Description: 

The TA instruction generates a trap _instruction trap if no higher priority traps are 
pending. The trap_instruction trap causes the tt field of the Trap Base Register 
(TBR) to be written with 128 plus the least significant seven bits of either "r[rs1] + 
r[rs2)" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. 

All bits indicated as reserved in the instruction formats should be supplied as 
zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap _instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 29 28 25 24 

I 10 I reserved I 1000 I 111010 

31 30 29 28 25 24 

I 10 I reserved I 1000 I 111010 

Syntax: 

ta 
ta 

regrslt regrs2 
regrslr irmnediate 

Traps: 

trap_instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I rs1 

19 18 

I rs1 

ta %g0+35 tt=163 

14 13 12 5 4 0 

I i=O I reserved I rs2 I 
14 13 12 7 6 0 

I i=1 I reserved I software trap # I 

Instruction Set - Trap Always (Trap on Zero) 

7-92 



TAD Dec 

cO 
FUJITSU 

TADDcc 

Tagged Add and modify ice 

Description: 

The TADDcc instruction computes either "r[rsl] + r[rs2]" if the i field is zero, or 
"r[rsl] + sign_ext(simm13)" if the i field is one. An overflow condition exists if bit 
1 or 0 of either operand is not zero, or if the addition generates an arithmetic over­
flow. 

If TADDcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it 
does not cause an overflow, the overflow bit is cleared. In either case, the remain­
ing integer condition codes are also updated and the result of the addition is writ­
ten into the r register specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 100000 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 100000 I rs1 

Syntax: 

taddcctv regrsl' regrs21 regrd 
taddcctv regrsl' immediate, regrd 

Traps: 

(none) 

Condition Code Modified: 

n,z,v,c 

Example: 

13 12 5 4 0 

I i=O I unused (zero) I rs2 I 
13 12 0 

I i=1 I simm13 I 

taddcc %g0, 1, %g0 nzvc 0010 

Instruction Set - Tagged Add and modify ice 

7-93 

• 



SPARClite User's Guide 

TADDccTV TAD Dec TV 

Tagged Add and modify ice and Trap on Overflow 

Description: 

The TADDccTV instruction computes either "rlrsll + r[rs2]" if the i field is zero, 
or "r[rsl] + sign_ext(simm13" if the i field is one. An overflow condition exists if 
bit 1 or 0 of either operand is not zero, or if the addition generates an arithmetic 
overflow. 

If TADDccTV causes an overflow condition, a tag_ overflow trap is generated and 
the destination register and condition codes remain unchanged. If T ADDccTV 
does not cause an overflow condition, all the integer condition codes are updated 
(in particular, the overflow bit (v) is set to O) and the result of the addition is writ­
ten into the r register specified by the rd field. 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 100010 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 100010 I rs1 

Syntax: 

taddcctv regrsl• regr32 , regrd 
taddcctv regrsl• immediate, regrd 

Traps: 

tag_ overflow 

Condition Code Modified: 

n,z,v,c 

Example: 

13 

I i=O I 
13 

I i=1 I 

taddcctv %g0, 1, %g0 nzvc=OOlO 

12 5 4 0 

unused (zero) I rs2 I 
12 D 

simm13 I 

Instruction Set - Tagged Add and modify ice and Trap on Overflow 

7-94 



TCC 

oO 
FUJITSU 

TCC 

Trap on Carry Clear (Trap on Greater Than or Equal, Unsigned) 

Description: 

The TCC instruction causes a trap_instruction trap if (not C)=l and if no higher 
priority trap is pending. The trap_instruction trap causes the tt field of the Trap 
Base Register (TBR) to be written with 128 plus the least significant seven bits of 
either "r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if the i 
field is one. 

If (not C)=O, a trap_instruction trap does not occur and the instruction behaves 
like a NOP. All bits indicated as reserved in the instruction formats should be 
supplied as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

Note: if single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR and the tt field will 
be ignored) • 

Format: 
31 30 29 28 25 24 

I 10 I reserved I 1101 I 111010 

31 30 29 28 25 24 

I 10 I reserved I 1101 I 111010 

Syntax: 

tee regrs1' regrs2 
tee regrs1' immediate 
tgeu regrsll regrs2 
tgeu regrs1' immediate 

Traps: 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I 
19 18 

I 

tee %g0 + 33 tt 

rs1 

rs1 

161 

14 13 12 5 4 

I i=O I unused (zero) I rs2 

14 13 12 7 6 

I i=1 I reserved I software trap # 

!alternate mnemonic 
!alternate mnemonic 

0 

I 
0 

I 

Instruction Set - Trap on Carry Clear (Trap on Greater Than or Equal, Unsigned) 

7-95 



SP ARClite User's Guide 

res res 
Trap on Carry Set (Trap on Less Than, Unsigned) 

Description: 

The TCS instruction causes a trap_instruction trap if C=l and if no higher priority 
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if the i field is 
one. 

If C=O, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 

I 10 

31 30 

I 10 

Syntax: 

tcs 
tcs 
tlu 
tlu 

Traps: 

29 28 25 24 

I reserved I 0101 I 111010 

29 28 25 24 

I reserved I 0101 I 111010 

regrsl' regrs2 
regrsl' immediate 
regrsl' regrs2 
regrsl, immediate 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I 
19 18 

I 

tcs %g0 + 34 tt 

rs1 

rs1 

162 

14 13 12 5 4 

I i=O I reserved I rs2 

14 13 12 7 6 

I i=1 I reserved I software trap # 

alternate mnemonic 
alternate mnemonic 

0 

I 
0 

I 

Instruction Set - Trap on Carry Set (Trap on Less Than, Unsigned) 

7-96 



TE 

cO 
FUJITSU 

TE 

Trap on Equal 

Description: 

The TE instruction causes a trap_instruction trap if Z=l and if no higher priority 
trap is pending. The trap _instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is 
one. 

If Z=O, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) • 

Format: 
31 30 

I 10 

31 30 

I 10 

Syntax: 

te 
te 

Traps: 

29 28 25 24 

I reserved I 0001 I 111010 

29 28 25 24 

I reserved I 0001 I 111010 

regrsl1 regrs2 
regrsl• immediate 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I 
19 18 

I 

te %g0 + 36 tt 

14 13 12 5 4 0 

rs1 I i=O I reserved I rs2 I 
14 13 12 7 6 0 

rs1 I i=1 I reserved I software trap # I 

164 

Instruction Set - Trap on Equal 

7-97 



SP ARC lite User's Guide 

TG TG 

Trap on Greater 

Description: 

The TG instruction causes a trap_instruction trap if "not(Z or (N xor V))" is true 
and if no higher priority trap is pending. The trap_instruction trap causes the tt 
field of the Trap Base Register (TBR) to be written with 128 plus the least signifi­
cant seven bits of either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + 
sign_ext(simm13)" if the i field is one. 

If "not (Z or (N xor V))" is false, a trap_instruction trap does not occur and the 
instruction behaves like a NOP. All bits indicated as reserved in the instruction 
formats should be supplied as zero as should the most significant 25 bits of r[rs2] 
if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 

I 10 

31 30 

I 10 

Syntax: 

tg 
tg 

Traps: 

29 28 25 24 

I reservedj 1010 I 111010 

29 28 25 24 

I reserved I 1010 I 111010 

regrslf regrs2 
regrsl' immediate 

trap_ instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I rs1 

19 18 

I rs1 

tg %g0+36 tt=164 

14 13 12 5 4 0 

I i=O I reserved I rs2 I 
14 13 12 7 6 0 

I i=1 I reserved I software trap # I 

Instruction Set - Trap on Greater 

7-98 



TGE 

oO 
FUJITSU 

TGE 

Trap on Greater Than or Equal 

Description: 

The TGE instruction causes a trap_instruction trap if "not(N xor V)" is true and if 
no higher priority trap is pending. The trap_instruction trap causes the tt field of 
the Trap Base Register (TBR) to be written with 128 plus the least significant seven 
bits of either "r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if 
the i field is one. 

If "not(N xor V)" is false, a trap_instruction trap does not occur and the instruc­
tion behaves like a NOP. All bits indicated as reserved in the instruction formats 
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i 
field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will • 
be ignored) 

Format: 

31 30 29 28 25 24 

I 1 O J reserved J 1011 I 111010 

31 30 29 28 25 24 

I 10 J reserved J 1011 I 111010 

Syntax: 

tge regrsl• regrs2 
tge regrsl• immediate 

Traps: 

trap_instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I 
19 18 

I 

14 13 12 5 4 0 
rs1 I i=O I reserved I rs2 I 

14 13 12 7 6 0 
rs1 I i=1 I reserved I software trap # I 

tge %g0+37 tt=l65 

Instruction Set - Trap on Greater Than or Equal 

7-99 



SP ARClite User's Guide 

TGU TGU 

Trap on Greater Unsigned 

Description: 

The TGU instruction causes a trap_instruction trap if "not (C or Z)" is true and if 
no higher priority trap is pending. The trap_instruction trap causes the tt field of 
the Trap Base Register (TBR) to be written with 128 plus the least significant seven 
bits of either "r[rs1] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if 
the i field is one. 

If "not (C or Z)" is false, a trap_instruction trap does not occur and the instruction 
behaves like a NOP. All bits indicated as reserved in the instruction formats 
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i 
field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 29 28 25 24 19 18 

I 10 I reserved I 1100 I 111010 I rs1 

31 30 29 28 25 24 19 18 

I 10 I reserved I 1100 I 111010 I rs1 

Syntax: 

tgu regrsl' regrs2 
tgu regrsl, immediate 

Traps: 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

tgu %g0+38 tt=l66 

14 13 12 5 4 0 

I i=O I reserved I rs2 I 
14 13 12 7 6 0 

I i=1 I reserved I software trap # I 

Instruction Set - Trap on Greater Unsigned 

7-100 



TL 

cO 
FUJITSU 

TL 

Trap on Less 

Description: 

The TL instruction causes a trap_instruction trap if "N xor V" is true and if no 
higher priority trap is pending. The trap_instruction trap causes the tt field of the 
Trap Base Register (TBR) to be written with 128 plus the least significant seven 
bits of either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if 
the i field is one. 

If "N xor V" is false, a trap_instruction trap does not occur and the instruction 
behaves like a NOP. All bits indicated as reserved in the instruction formats 
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i 
field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will -
be ignored) 

Format: 

31 30 29 28 25 24 

I 10 I reserved I 0011 I 111010 

31 30 29 28 25 24 

I 10 I reserved I 0011 I 111010 

Syntax: 

tl 
tl 

regrsl' regrs2 
regrsl' immediate 

Traps: 

trap_instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I rs1 

19 18 

I rs1 

tl %g0 + 40 tt=l68 

14 13 12 5 4 0 

I i=O I reserved I rs2 I 
14 13 12 7 6 0 

I i=1 I reserved I software trap # I 

Instruction Set - Trap on Less 

7-101 



SP ARClite User's Guide 

TLE TLE 

Trap on less Than or Equal 

Description: 

The TLE instruction causes a trap_instruction trap if "Z or (N xor V)" is true and if 
no higher priority trap is pending. The trap_instruction trap causes the tt field of 
the Trap Base Register (TBR) to be written with 128 plus the least significant seven 
bits of either "r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if 
the i field is one. 

If "Z or (N xor V)" is false, a trap_instruction trap does not occur and the instruc­
tion behaves like a NOP. All bits indicated as reserved in the instruction formats 
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i 
field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 29 28 25 24 19 18 14 13 12 

I 10 I reserved I 0010 I 111010 I rs1 I i=O I 
31 30 29 28 25 24 19 18 14 13 12 

I 10 I reserved I 0010 I 111010 I rs1 I i=1 I 

Syntax: 

tle regrs11 regrs2 
tle regrslr immediate 

Traps: 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

tle %g0 + 41 tt 169 

5 4 0 
reserved I rs2 I 

7 6 0 
reserved I software trap # I 

Instruction Set - Trap on Less Than or Equal 

7-102 



TLEU 

oO 
FUJITSU 

TLEU 

Trap on Less Than or Equal Unsigned 

Description: 

The u instruction causes a trap_instruction trap if "C or Z" is true and if no higher 
priority trap is pending. The trap_instruction trap causes the tt field of the Trap 
Base Register (TBR) to be written with 128 plus the least significant seven bits of 
either "r[rs1] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i 
field is one. 

If "C or Z" is false, a trap_instruction trap does not occur and the instruction 
behaves like a NOP. All bits indicated as reserved in the instruction formats 
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i 
field is 0. 

(note: If single vector trapping is enabled, the trap _instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will • 
be ignored) 

Format: 
31 30 29 28 25 24 19 18 14 13 12 

J 10 JreservedJ 0100 J 111010 J rs1 J i=O J 

31 30 29 28 25 24 19 18 14 13 12 

J 10 JreservedJ 0100 J 111010 J rs1 J i=1 J 

Syntax: 

tleu regrs1' regrs2 
tleu regrsl, immediate 

Traps: 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

tleu %g0+42 tt =170 

5 4 0 
reserved I rs2 I 

7 6 0 
reserved I software trap # I 

Instruction Set - Trap on Less Than or Equal Unsigned 

7-103 



SP ARClite User's Guide 

TN TN 

Trap Never 

Description: 

The TN instruction acts like a "NOP". 

All bits indicated as reserved in the instruction formats should be supplied as 
zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

Format: 
31 30 29 28 25 24 19 18 

I 10 I reserved I 0000 I 111010 I 
31 30 29 28 25 24 19 18 

I 10 I reserved I 0000 I 111010 I 

Syntax: 

tn 
tn 

regrs1' regrs2 
regrs1, irrunediate 

Traps: 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

tn %g0 + 39 nop 

Instruction Set - Trap Never 

7-104 

14 13 12 5 4 0 
rs1 I i=O I reserved I rs2 I 

14 13 12 7 6 0 
rs1 I i=1 I reserved I software trap # I 



TNE 

cP 
FUJITSU 

TNE 

Trap on Not Equal (Trap on Not Zero) 

Description: 

The TNE instruction causes a trap _instruction trap if Z=O and if no higher priority 
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is 
one. 

If Z=l, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) • 

Format: 

31 30 29 28 25 24 

I 10 I reserved I 1001 I 111010 

31 30 29 28 25 24 

I 10 I reserved I 1001 I 111010 

Syntax: 

tne regrsl' regrs2 
tne regrsl' immediate 

tnz regrsl' regrs2 
tnz regrsl' immediate 

Traps: 

trap _instruction 

Condition Code Modified: 

(none) 

Example: 

19 18 

I 
19 18 

I 

tne %g0 + 43 ! tt=l 71 

14 13 12 5 4 0 

rs1 I i~O I reserved I rs2 I 
14 13 12 7 6 0 

rs1 I ;~1 I reserved I software trap # I 

Instruction Set - Trap on Not Equal (Trap on Not Zero) 

7-105 



SP ARClite User's Guide 

TNEG TNEG 

Trap on Negative 

Description: 

The TNEG instruction causes a trap_instruction trap if N=1 and if no higher prior­
ity trap is pending. The trap_instruction trap causes the tt field of the Trap Base 
Register (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is 
one. 

If N=O, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 29 28 25 24 19 18 

I 10 I reserved I 0110 I 111010 I 
31 30 29 28 25 24 19 18 

I 10 I reserved I 0110 I 111010 I 

Syntax: 

tneg regrsl' regrs2 
tneg regrsl' immediate 

Traps: 

trap_instruction 

Condition Code Modified: 

(none) 

Example: 

tneg %g0 + 44 tt 

14 13 12 5 4 0 

rs1 I i=O I reserved I rs2 I 
14 13 12 7 6 0 

rs1 I i=1 I reserved I software trap # I 

172 

Instruction Set - Trap on Negative 

7-106 



TPOS 

cO 
FUJITSU 

TPOS 

Trap on Positive 

Description: 

The TPOS instruction causes a trap_instruction trap if N=O and if no higher prior­
ity trap is pending. The trap_instruction trap causes the tt field of the Trap Base 
Register (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is 
one. 

If N=l, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) • 

Format: 

31 30 29 28 25 24 19 18 

I 10 I reserved I 1110 I 111010 I 
31 30 29 28 25 24 19 18 

I 10 I reserved I 1110 I 111010 I 

Syntax: 

tpos regrsl' regrs2 
tpos regrsl' immediate 

Traps: 

trap_ instruction 

Condition Code Modified: 

(none) 

Example: 

tpos %g0 + 45 tt 

14 13 12 5 4 0 
rs1 I i=O I reserved I rs2 I 

14 13 12 7 6 0 

rs1 I i=1 I reserved I software trap # I 

173 

Instruction Set - Trap on Positive 

7-107 



SP ARClite User's Guide 

TSU Bee TSU Bee 

Tagged Subtract and modify condition codes 

Description: 

Computes either "r[rsl]-r[rs2]" if the i field is zero, or "r[rs1J - sign_ext(simm13)" 
if the i field is one, and places the result in the destination specified by the rd field. 

TSUBcc modifies the condition codes. The overflow bit of the PSR is set if bit 1 or 
bit 0 of either operand is nonzero. The overflow bit is also set if the operands have 
different signs and the sign of the difference differs from the sign of r[rsl]. 

Format: 

31 30 29 

I 10 I 
31 30 29 

I 10 

Syntax: 

tsubcc 
tsubcc 

Traps: 

(none) 

I 

25 24 19 18 14 

rd I 100001 I rs1 

25 24 19 18 14 

rd I 100001 I rs1 

regrslr regrs2r regrd 
regrsl' immediate, regrd 

13 

I i=O I 
13 

I i=1 I 

Condition Code Modified: 

n, Z, V, C 

Example: 

tsubcc %g0, 2, %g0 nzvc 1011 

12 5 4 0 

unused (zero) I rs2 I 
12 0 

simm13 I 

Instruction Set - Tagged Subtract and modify condition codes 

7-108 



oO 
FUJITSU 

TSUBccTV TSU Bee TV 

Tagged Subtract, modify condition codes and Trap on Overflow 

Description: 

Computes either "r[rsl]-r[rs2]" if the i field is zero, or "r[rsl] - sign_ext(simm13)" 
if the i field is one, and places the result in the destination specified by the rd field. 

A tag_ overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the sub­
traction generates an arithmetic overflow (the operands have different signs and 
the sign of the difference differs from the sign of r[rsl]). 

If TSUBccTV causes a tag_ overflow, a tag_ overflow trap is generated and the des­
tination register (rd) and condition codes remain unchanged. If a tag_ overflow 
does not occur, the integer condition codes are updated (v=O). 

Format: 

31 30 29 25 24 19 18 14 

I 10 I rd I 100011 I rs1 

31 30 29 25 24 19 18 14 

I 10 I rd I 100011 I rs1 

Syntax: 

tsubcctv regrsl• regrs2• regrd 
tsubcctv regrsl• immediate, regrd 

Traps: 

tag_ overflow 

Condition Code Modified: 

n,z,v,c 

Example: 

13 

I i=O I 
13 

I i=1 I 

tsubcctv %g0, 2, %g0 nzvc 1011 

12 5 4 0 

unused (zero) I rs2 I 
12 0 

simm13 I 

Instruction Set - Tagged Subtract, modify condition codes and Trap on Overflow 

7-109 

-



SP ARClite User's Guide 

TVC TVC 

Trap on Overflow Clear 

Description: 

The TVC instruction causes a trap _instruction trap if V =0 and if no higher priority 
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simrn.13)" if the i field is 
one. 

If V=l, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 
be ignored) 

Format: 

31 30 29 28 25 24 19 18 

I 1 o I reserved I 1111 I 111010 I 
31 30 29 28 25 24 19 18 

I 1 o I reserved I 1111 I 111010 I 

Syntax: 

tvc regrslr regrs2 
tvc regrsl, immediate 

Traps: 

trap_ instruction 

Condition Code Modified: 

(none) 

Example: 

tvc %g0, + 146 tt 

14 13 12 5 4 0 
rs1 I i=O I reserved I rs2 I 

14 13 12 7 6 0 
rs1 I i=1 I reserved I software trap # I 

174 

Instruction Set - Trap on Overflow Clear 

7-110 



TVS 

cO 
FUJITSU 

TVS 

Trap on Overflow Set 

Description: 

The TVS instruction causes a trap_instruction trap if V=l and if no higher priority 
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either 
"r[rs1] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if the i field is 
one. 

If V=O, a trap_instruction trap does not occur and the instruction behaves like a 
NOP. All bits indicated as reserved in the instruction formats should be supplied 
as zero as should the most significant 25 bits of r[rs2] if the i field is 0. 

(note: If single vector trapping is enabled, the trap_instruction trap will vector to 
the location pointed to by the Trap Base Address in the TBR, and the tt field will 

~~~ -
Format:

31 30 29 28 25 24 19 18

I 10 I reserved I 0111 I 111010 I
31 30 29 28 25 24 19 18

I 10 I reserved I 0111 I 111010 I

Syntax:

tvs regrsl' regrs2
tvs regrsl' immediate

Traps:

trap_ instruction

Condition Code Modified:

(none)

Example:

tvs %g0 + 147 tt

14 13 12 5 4 0

rs1 I i=O I reserved I rs2 I
14 13 12 7 6 0

rs1 I i=1 I reserved I software trap # I

175

Instruction Set - Trap on Overflow Set

7-111

SPARClite User's Guide

UMUL UMUL

Unsigned Integer Multiply

Description:

UMUL performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register.

The UMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles
to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of
r[rs2] against the sign bit at run time. If the bits match, the UMUL instruction will
terminate in 3, 2 or 1 cycle respectively.

UMUL assumes an unsigned integer word operand and computes an unsigned
integer doubleword product.

Format:
31 30 29 25 24 19 18 14

I 10 I rd I 001010 I rs1

31 30 29 25 24 19 18 14

I 10 I rd I 001010 I rs1

Syntax:

umul regrsl• regrs2• regrd
umul regrsl• immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

13 12 5 4 0

I i=O I unused (zero) I rs2 I
13 12 0

I i=1 I simm13 I

umul %02, %03, %ol ! least significant half product to reg ol
rd %y, %00 most significant half product to reg oO

Instruction Set - Unsigned Integer Multiply

7-112

cP
FUJITSU

UMULcc UMULcc

Signed Integer Multiply and Change Condition Codes

Description:

UMULcc performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register.

The UMULcc operation takes 5 cycles to compute a 32 bit x word operation, 3
cycles to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x
byte operation. To do this, the hardware tests the most significant 16, 24 or 32 bits
of r[rs2] against the sign bit at run time. If the bits match, the UMULcc instruction
will terminate in 3, 2 or 1 cycle respectively.

UMULcc assumes an unsigned integer word operand and computes an unsigned
integer doubleword product. UMULcc writes the integer condition code bits (see •
below)

Format:
31 30 29

I 10 I
31 30 29

I 10

Syntax:

umulcc
umulcc

I

25 24 19 18 14

rd I 011010 I rs1

25 24 19 18 14
rd I 011010 I rs1

reg rsl' reg rs2' reg rd
regrslr immediate, regrd

13 12 5 4 0

I i=O I unused (zero) I rs2 I
13 12 0

I i=1 I simm13 I

Instruction Set - Signed Integer Multiply and Change Condition Codes

7-113

SP ARClite User's Guide

Signed Integer Multiply and Change Condition Codes (Continued)

Traps:

(none)

Condition Code Modified:.

ice bit UMULcc

N Set if product [31] = 1
z Set if product [31 :O] = 0
v Zero
c Zero

Example:

umulcc
rd

%02, %03, %ol ! least significant half product to reg ol
%y, %00 ! most significant half product to reg oO

Instruction Set - Signed Integer Multiply and Change Condition Codes (Continued)

7-114

<:P
FUJITSU

WRASR WRASR

Write Ancillary State Register

Description:

WRASR writes "r[rs1] xor r[rs2]" if the i field is zero, or "r[rs1] xor
sign_ext(simm13)" if the i field is one, to the writable fields of the ASR register
specified in rsl (16-31).

On the SPARClite MB86930 a valid rsl value is 17. All other values of rsl will gen­
erate an illegal instruction trap.

WRASR is a privileged instruction.

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 110000 I rs1 I i=O I unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12 0

I 10 I rd I 110000 I rs1 I i=1 I simm13 I

Syntax:

wr
wr

regrsl' regr32 , asr_regrd
regrsl' immediate, asr_regrd

Traps:

illegal_ instruction
privileged_ instruction

Condition Code Modified:

(none)

Example:

wr
wr

%g0, 1, %asrl 7
%g0, O, %asrl 7

enable single vector trapping
disable single vector trapping

Instruction Set - Write Ancillary State Register

7-115

•

SP ARClite User's Guide

WRPSR WRPSR

Write Processor State Register

Description:

WRPSR causes a delayed write of "r[rsl] xor r[rs2]" if the i field is zero, or "r[rs1]
xor sign_ext(simm13)" if the i field is one, to the writable fields of the PSR
register.

WRPSR is a privileged instruction. See section 2.4.7 for programming consider­
ations.

Format:
31 30 29 25 24 19 18 14 13 12

I 10 I reserved I 110001 I rs1 I i=O I
31 30 29 25 24 19 18 14 13 12

I 10 I reserved I 110001 I rs1 I i=1 I

Note: reserved fields should be programmed as 0.

Syntax:

wr
wr

Traps:

regrsl' regrs21 %psr
regrs11 immediate, %psr

privileged_ instruction

Condition Code Modified:

(none)

Example:

5 4 0

unused (zero) I rs2 I
5 4 0

I I

wr %g0, Oxec7, %psr e to pil, 1 to S & PS, 0 to et, 7 to cwp

Instruction Set - Write Processor State Register

7-116

WRTBR

cP
FUJITSU

WRTBR

Write Trap Base Register

Description:

WRTBR causes a delayed write of "r[rsl] xor r[rs2]" if the i field is zero, or "r[rsl]
xor sign_ext(simm13)" if the i field is one, to the writable fields of the TBR
register.

WRPSR is a privileged instruction.

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I reserved I 110011 I rs1 I i=O I unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12 0

I 10 I reserved I 110011 I rs1 I i=1 I simm13 I

Note: reserved fields should be programmed as 0.

Syntax:

wr
wr

regrs1' regrs2r %tbr
regrslr immediate, %tbr

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %g0, OxlOOO, %tbr

Instruction Set - Write Trap Base Register

7-117

•

SP ARClite User's Guide

WRWIM WRWIM

Write Window Invalid Mask Register

Description:

WRWIM causes a delayed write of "r[rsl] xor r[rs2]" if the i field is zero, or "r[rs1]
xor sign_ext(sirnm13)" if the i field is one, to the writable fields of the WIM
register.

WRWIM is a privileged instruction.

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0
I 10 I reserved I 110010 I rs1 I i=O I unused (zero)· I rs2 I

31 30 29 25 24 19 18 14 13 12
I 10 I reserved I 110010 I rs1 I i=1 I

Note: reserved fields should be programmed as 0.

Syntax:

wr
wr

regrsl'
regrslt

Jl. • regrs2t oWlffi

immediate, %wim

Traps:

privileged_ instruction

Condition Code Modified:

(none)

Example:

simm13

wr %g0, -256, %wim only windows 0 to 7 valid
windows 8 and above invalid

Instruction Set - Write Window Invalid Mask Register

7-118

WRY

Write Y Register

Description:

WRY writes "r[rs1J xor r[rs2]" if the i field is zero, or "r[rs1] xor
sign~ext(simm13)" if the i field is one, to the Y register.

cO
FUJITSU

WRY

Unlike the other write state register instructions, WRY is not a privileged
instruction.

Format:

31 30 29 25 24 19 18 14 13 12

I 10 I 00000 I 110000 I rs1 I i=O I
31 30 29 25 24 19 18 14 13 12

I 10 I 00000 I 110000 I rs1 I i=1 I

Note: reserved fields should be programmed as 0.

Syntax:

wr
wr

Traps:

(none)

regrsl' regrs2• %y
regrsl' immediate, %y

Condition Code Modified:

(none)

Example:

wr %g0 f 0 f %y clear reg y

5 4 0
unused (zero) I rs2 I

0

simm13 I

lnstruction Set - Write Y Register

7-119

-

SP ARClite User's Guide

XNOR XNOR

Exclusive NOR

Description:

Implements a bitwise logical exclusive Nor to compute either "r[rsl] xnor r[rs2]"
if the i field is zero, or "r[rsl] xnor sign_ext(simm13)" if the i field is one, and
places the result in the destination specified by the rd field.

Format:
31 30 29 25 24 19 18 14

I 10 I rd I 000111 I rs1

31 30 29 25 24 19 18 14

I 10 I rd I 000111 I rs1

Syntax:

xnor regrsl' regr32, regrd
xnor regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

13 12 5

I i=O I unused (zero)

13 12

I i=1 I simm13

xnor %11, 0, %11 complement reg 11

4 0

I rs2 I
0

I

Instruction Set - Exclusive NOR

7-120

cO
FUJITSU

XNORcc XNORcc

Exclusive NOR and modify ice

Description:

Implements a bitwise logical exclusive Nor to compute either "r[rsl] xnor r[rs2]"
if the i field is zero, or "r[rsl] xnor sign_ext(simm13)" if the i field is one, and
places the result in the destination specified by the rd field.

XNORcc modifies the integer condition codes.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 010111 I rs1 I i=O I unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12 0

I 10 I rd I 010111 I rs1 I i=1 I simm13 I

Syntax:

xnorcc
xnorcc

regrsl• regrs2• regrd
regrsl• immediate, regrd

Traps:

(none)

Condition Code Modilied:

n, z=O, v, c=O

Example:
xnorcc %11, %12, %g0

bne xyz

do any bits in reg 11 match corresponding bits
in reg 12?

skip ahead if not

Instruction Set - Exclusive NOR and modify ice

7-121

-

SP ARClite User's Guide

XOR XOR

Exclusive OR

Description:

Implements a bitwise logical exclusive Or to compute either "r[rs1] xor r[rs2]" if
the i field is zero, or "r[rsl] xor sign_ext(simm13)" if the i field is one, and places
the result in the destination specified by the rd field.

Format:
31 30 29 25 24 19 18 14

I 10 I rd I 000011 I rs1

31 30 29 25 24 19 18 14

I 10 I rd I 000011 I rs1

Syntax:

xor regr81 , regr82 , regrd
xor regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

13 12 5

I i=O I unused (zero)

13 12

I i=1 I simm13

xor %11, -1, %11 complement reg 11

4 0

I rs2 I
0

I

Instruction Set - Exclusive OR

7-122

XO Rec

cP
FUJITSU

XORcc

Exclusive NOR and modify ice

Description:

Implements a bitwise logical exclusive Or to compute either "r[rs1] xor r[rs2]" if
the i field is zero, or "r[rsl] xor sign_ext(simm13)" if the i field is one, and places
the result in the destination specified by the rd field.

XORcc modifies the integer condition codes.

Format:

31 30 29

I 10 I
31 30 29

I 10

Syntax:

xorcc
xorcc

Traps:

(none)

I

25 24 19 18 14

rd I 010011 I rs1

25 24 19 18 14

rd I 010011 I rs1

regrsl• regrs2• regrd
regrsl• immediate, regrd

Condition Code Modified:

n,z=O,v,c=O

Example:

13 12 5 4 0

I i=O I unused (zero) I rs2 I
13 12 0

I i=1 I simm13 I

xorcc %11, -1, %11 complement reg 11 and test result

Instruction Set - Exclusive NOR and modify ice

7-123

-

SP ARClite User's Guide

Instruction Set - Exclusive NOR and modify ice

7-124

IX

Ill Ill Ill 11111 11111 Ill Ill II 1111 Ill 1111 1111 1111 1111

JTAG

A.1 Introduction
With the increased use of surface mount devices and the ever-increasing density •
of printed circuit boards, traditional in-circuit and functional testing has become
difficult and expensive. To reduce the complexity of board testing, a boundary-
scan test technique has been adopted by the Joint Test Action Group (JTAG).

The JTAG standard requires that a boundary-scan cell be between each compo-
nent pin and the chip logic within an IC. On SP ARClite a boundary-cell consists
of at least one shift register bit and some multiplexing. All the boundary- scan
cells within SP ARClite are connected as one long shift register. This allows test
access to the component pins. Components with JT AG can be connected serially
on a board to provide test access to all the components plus access to the board
traces. For more detailed information, consult IEEE Standard 1149.1.

JT AG - Introduction

A-1

SP ARClite User's Guide

A.2 Test Access Ports {TAP)
SPARClite has five dedicated pins for JTAG.

Name Input/Output Weak pull-up Function

TCK Input No Test Clock

TMS Input Yes Test Mode Select

TOI Input Yes Test Data Input

TOO Output No Test Data Output

-TRST Input Yes Test Reset

A.2.1 TCK

JT AG uses a test clock independent of component-specific system clock. This is
necessary to be able to shift the serial test data through components with different
operating frequencies. An independent test clock allows shifting of test data con­
currently with the system operation of the component and without changing the
state of the on-chip system logic. Following are the JTAG requirements and clock
specifications.

1. The JTAG test logic state will remain unchanged indefinitely when TCK=O.

2. A 50% duty cycle clock is recommended.

A.2.2 TMS

The sequence of TMS inputs is used to put the JTAG test logic into a particular
test mode. The test logic must be in the correct test mode to shift-in instructions,
to do data-shifts and do other operations.

1. TMS input is sampled by the test logic at the rising edge of TCK.

2. Undriven TMS input appears as a logic "1" to the test logic. This is to ensure
that the test logic will sequence to the Test_Logic_Reset state if the TMS is held
high for at least five rising edges of TCK. The test logic will remain in the
Test_Logic_Reset state as long as TMS=l. (See "Test Logic Reset" on
page A-10.)

]TAG-Test Access Ports (TAP)

A-2

<):)

FUJITSU

A.2.3 TDI
The TOI pin is used to input test instructions and test data.

1. The TOI input is sampled by the test logic at the rising edge of TCK.

2. Undriven TDI input appears as a logic "l" to the test logic.

3. No logic inversion takes place when data is being shifted from TDI towards
TDO.

4. TOI input change at the falling edge of TCK is recommended.

A.2.4TDO
TDO is the serial output for the test instructions and data from the test logic.

l. TDO output is valid after the falling edge of TCK.

2. TDO output is in the high-impedance state when data or instruction is not
scanned.

A.2.5-TRST

- TRST is an asynchronous test logic reset pin.

1. The test logic is forced into the Test_Logic_Reset state asynchronously when a
logic "O" is applied to the -TRST pin.

2. If it is not being driven, -TRST pin appears as a logic "l" to the test logic. This
is to ensure normal test operation in the event of an unterminated -TRST.

3. -TRST does not initialize any system logic within the component.

4. To ensure deterministic operation of the test logic, the TMS input should be
held at 1 while the -TRST signal changes from 0to1.

A.3 Test Instructions
SPARClite implements the three JTAG public instructions; BYPASS, SAM­
PLE/PRELOAD and EXTEST.

SP ARClite contains a two bit JT AG instruction register which receives the instruc­
tion serially from the TDI input. The instruction bits are shifted-in at the rising
edge of TCK. For fault isolation of the board level serial test data path, a constant
binary "01" pattern is loaded into the instruction shift register at the start of the
instruction-shift cycle. Therefore, a "01" pattern will appear at the TDO output in
the beginning of the instruction-shift cycle.

When shifting the instruction into the instruction register, the least significant bit
of the instruction needs to be shifted in first, followed by the most significant bit.

ff AG - Test Instructions

A-3

•

SP ARClite User's Guide

A.3.1 BYPASS

The BYPASS instruction is used to bypass a component that is connected in series
with other components. This allows more rapid movement of test data through
the components of the board, bypassing the ones that do not need to be tested.
The BYPASS operation enables the bypass register, which is a single stage shift
register, between TOI and TDO.

1. The binary code for the BYPASS instruction is 11.

2. The BYPASS instruction is forced into the instruction register output latches
during the Test_Logic_Reset state. Note the distinction between the "01" con­
tent of the instruction shift register and the "11" content of the instruction reg­
ister output latch. Therefore, at the start of the instruction-shift cycle, a "01"
pattern will be seen instead of "11".

3. The BYPASS operation does not interfere with the component operation at all.
If the TDI input trace to the component is somehow disconnected, the test
logic will see a "11" at TDI input during the instruction-shift state. Therefore,
no unwanted interference with the on-chip system logic occurs.

A.3.2 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction is used to sample the state of the compo­
nent pins. The sampled values can be examined by shifting out the data through
TDO. This instruction can also be used to preload the boundary-scan cell output
latches with specific values. The preloaded values are then enabled to the output
nins hv thP FXTP.~T .I. J - - - ~- - - -- - •

l. The binary code for the instruction is 01.

2. The SAMPLE/PRELOAD instruction selects the boundary-scan cells to be
connected between TDI and TDO in the Shift_DR TAP controller state (see
section A.4).

3. The values of the component pins are sampled on the rising edge of TCK in
the Capture_DR TAP controller state.

4. The preload values shifted into the boundary-scan cells are latched into the
boundary-scan output latch at the falling edge of TCK in the Update_DR TAP
controller state.

]TAG - Test Instructions

A-4

oO
FUJITSU

A.3.3 EXTEST

EXTESt instruction allows testing of off-chip circuitry and board level intercon­
nections. The PRELOAD /SAMPLE instruction is used to preload the data into the
latched parallel outputs of the boundary-scan shift register stages. Then, the
EXTEST instruction enables the preloaded values to the components output pins.

l. The binary code for the instruction is 00.

2. SP ARClite outputs the preloaded data to the pins at the falling edge of TCK in
the Update_IR TAP controller state at which point the JTAG instruction regis­
ter is updated with the EXTEST.

3. The EXTEST instruction selects the boundary-scan cells to be connected
between TDI and TDO in the Shift_DR test logic controller state.

4. Once the EXTEST instruction is effective, the output pins can change at the
falling edge of TCK in the Update_DR TAP controller state.

A.3.4 JTAG Cells

SPARClite's JTAG test data scan path is composed of input cells, output cells, 1/0
cells and output cells with set control. The basic structures of the cells are shown
in the accompanying figures. As the name implies, the input cell is used for input­
only pins and the output cell is used for output-only pins. The I/ 0 cell is used for
the 1/0 pins and the output cell with set control is used for 1/0 buffer control. -

With each group of 1/0 pins there is an 1/0 buffer control JTAG cell which is
used to control the direction of the 1/0 pins during EXTEST operation. This
implies that within the data-scan path there are cells which do not correspond to a
pin, but are used for 1/0 buffer control during EXTEST operation.

Note that the output cell and the 1/0 cell have an output latch separate from the
shift register. This allows the output to remain unchanged during a data-shift
operation during the EXTEST mode. The cell output latches are updated during
the Update_DR state (see section A.4).

A.3.5 Input Cell

For SP ARClite, an input cell structure with signal capture only capability has
been chosen to minimize the propagation delay from the input pins to the on-chip
system logic. Using the SAMPLE/PRELOAD instruction, the user can sample the
input pin and scan out the sampled value.

JT AG - Test Instructions

A-5

SP ARClite User's Guide

A.3.6 Output Cell

The output cell has the capability to output a preloaded value to the output pin
during EXTEST. During EXTEST, the source of the output changes from the chip
logic to the output latch of the JTAG output cell. The output value in the cell is
preloaded using the SAMPLE/PRELOAD instruction.

A.3. 7 1/0 Cell

The I/O cell is actually composed of an input cell and an output cell. Therefore,
for each 1/0 pin there are two cells associated with the pin. Hence, when the data
is shifted out through TDO, two bits for each I/O pin will be seen. As mentioned
previously, an 1/0 buffer control cell is associated with each group of I/O pins.
For example, the 32-bit data bus is controlled by the data 1/0 buffer control cell.
The 1/0 buffer control cell is also in the data scan path through which the user
can control the direction of the 1/0 buffer for the EXTEST.

A.3.8 Output Cell with Set

This cell is used as the 1/0 buffer control cell. The output latch of the cell is set
during Test_Logic_Reset state so that if EXTEST is entered after reset, the 1/0
pins are in the input mode. There is one 1/0 buffer control cell for each group of
1/0 signals.

1/0 buffer control cell name

emudiojo
emuenblio
dbusiojo
tstatejo

t. Not all output pins are three-statable

1/0 pins

EMU_D<3:0>, EMU_SD<3:0>
-EMU_ENB
D<31 :0>
Output Pins t

To Next Cell

ShiftDR From ClockDR
Last
Cell

Figure A-1. Input Cell Allowing Signal Capture Only

JT AG - Test Instructions

A-6

Mode

Data From
Internal Logic

Output Control

ShiftDR

ShiftDR To Next Cell

1D

C1 C1

From Last Cell Clock DR UpdateDR

Figure A-2. Output Cell

To Next Cell Mode

From Internal -----<11----t--------------+-------i
Logic

1D 1D

C1 C1 S

From Last Cell ClockDR UpdateDR set

Figure A-3. Output Cell with Set

To Next Cell

cP
FUJITSU

To Output
Enable

Output Enable
1-----+1EN

,___.,________,. System Pin

To/From
Internal Logic Input Data

Output Data

From Last Cell

Figure A-4. 1/0 Structure

JT AG - Test Instructions

A-7

•

SP ARClite User's Guide

A.4 Operation
The JTAG control logic, which is also referred to as the TAP controller, is imple­
mented with a synchronous finite state machine. The asynchronous reset input
(-TRST) and the TMS input control the state transition of the TAP controller. To
shift instructions into the instruction register and to do test data-scans, the TAP
controller needs to be in the appropriate state (see Figure A-5 and Figure A-6 for
timing relationship). A TAP state transition diagram is provided with examples
in the following pages.

The usual sequence of operations is as follows. Initially, the TAP controller is
forced into the reset state, Test_Logic_Reset, by-TRST=O. Next, TMS is set to a
"1" and the -TRST is deasserted at the falling edge of TCK. At the next rising edge
of TCK, the TMS= 1 value is sampled by the test logic and the TAP controller
remains in the reset state. The first thing that needs to be done is to shift in the 2
bit instruction into the JTAG instruction register.

TCK

TMS

TDO Enable Inactive Active Inactive Active

m c

~i
:0 '­

:0

Inactive

Figure A·S. Test Logic Operation: Instruction Scan

To do so, the TAP controller needs to be transitioned to the Shift_IR state. In order
to make the state transition from Test_Logic_Reset to Shift_IR state, the correct

JT AG - Operation

A-8

cP
FUJITSU

TMS sequence would have to be 0 -> 1->1 -> 0 -> 0. Remember that the TMS
input should change at the falling edge of TCK so that enough setup time is avail­
able with respect to the rising edge of TCK at which point the TMS input is sam­
pled. The TAP controller changes state at the rising edge of TCK. Once in the
Shift_IR state, the instruction bits at TOI will be shifted into the JTAG instruction
register at the rising edge of TCK. Suppose the instruction shifted in was a SAM­
PLE/PRELOAD. Then as soon as the instruction is shifted in, the TAP controller
must transition to the Exit1_IR state to terminate the instruction-scan. Otherwise,
more than 2 bits will be shifted into the instruction register.

For the SAMPLE/PRELOAD instruction, data shifts need to take place either to
output the sampled value of the pins or to shift in the preload value for EXTEST.
Therefore, the TAP controller needs to change state from Exit1_IR to the Shift_DR
state. This is accomplished by giving the 1->0 -> 1 -> 0 -> 0 TMS sequence. Once,
in the Shift_DR state, the TOI input will be scanned into the shift register portion
of the boundary scan cells at the rising edge of TCK. Once data-scan is finished,
the TAP controller state can be transitioned to the Run_Test/ldle state for the next
JTAG instruction.

TCK

TMS
---~

gi
0 m

\' ~ '!) ~
CJ ~ :s::
)> <il CJ 0

~
6 :D :D
:D

m .§'
~. 0..

~ * CJ '
:D CJ

:D

Controller State

TOI --------<et:'IJ~------<cx:t:'IJ~--------

IR Shift-Register
~~----~~~~-~~~-~-~~~~~~~~~

TOR Shift Register
~~-~~~

Parallel Output of TDR ________ O_ld_D_a_ta _______ ~X New Data

Register Selected ~~~~·~··~::·~:X~ ____ T_e_st_O_at_a_Re~g_ist_er ___ ~X:':.;;: ••:<' '.'.i;};.> , .. ·

TOO Enable ___ lna_c_tiv_e __ ~ Inactive X Active X~ ___ lna_c_tiv_e __ _

TOO --------<et:'IJ-------<cx:t:'IJ>----------
Figure A-6. Test Logic Operation: Data Scan

JT AG - Operation

A-9

-

·····------- --------- ---~-------------------·· ---------·--·--------- ----

SP ARClite User's Guide

A.5 The TAP Controller

A.5.1 TAP Controller State Diagram

Specifications

Rules

1. The state diagram for the TAP controller is shown in Figure A-7. (Note the
value shown adjacent to each state transition arc in this figure represents the
signal present at TMS at the time of a rising edge at TCK.)

2. All state transition of the TAP controller must occur based on the value of TMS
at the time of a rising edge of TCK.

3. Actions of the test logic occur on either the rising or the falling edge of TCK in
each controller state.

Description

The behavior of the TAP controller and other test logic in each of the controller
states is briefly described as follows. Note the term, Test Data Registers, refers to
either the Bypass Register or the 152 JTAG cells connected as a shift register.

Test Logic Reset

The test logic is disabled so that normal operation of the on-chip system logic (i.e.,
in response to stimuli received through the system pins oniy) can continue unhin­
dered. This is achieved by initializing the instruction register with the BYPASS
instruction. No matter what the original state of the controller may be, the con­
troller will enter Test-Logic-Reset when the TMS input is held high for at least five
rising edges of TCK. The controller remains in this state while TMS is high.

If the controller should leave the Test-Logic-Reset controller state as a result of an
erroneous low signal on the TMS line at the time of a rising edge on TCK (for
example, a glitch due to external interference), it will return to the Test-Logic­
Reset state following three rising edges of TCK with the TMS line at the intended
high logic level. The operation of the test logic is such that no disturbance is
caused to on-chip system logic operation as the result of such an error. On leaving
the Test-Logic-Reset controller state, the controller moves into the Run-Test/Idle
controller state where no action will occur because the current instruction has
been set to select operation of the bypass register. The test logic is also inactive in
the Select-DR-Scan and Select-IR-Scan controller states.

Note that the TAP controller will also be forced to the Test-Logic-Reset controller
state by applying a low logic level to the TRST* input.

JT AG - Operation

A-10

cO
FUJITSU

Run-Test/Idle

A controller state between scan operations. In the Run-Test/Idle controller state,
activity in selected test logic occurs only when certain instructions are present.

For instructions which do not cause functions to execute in the Run-Test/Idle
controller state, all test data registers selected by the current instruction must
retain their previous state (i.e., Idle).

The instruction does not change while TAP controller is in this state.

Select-DR-Scan

This is a temporary controller state in which all test data registers selected by the
current instruction retain their previous state.

If TMS is held low and a rising edge is applied to TCK when the controller is in
this state, then the controller moves into the Capture-DR state and a scan
sequence for the selected test data register is initiated. If TMS is held high and a
rising edge is applied to TCK the controller moves on to the Select-IR-Scan state.

The instruction does not change while the TAP controller is in this state.

Select-IR-Scan

This is a temporary controller state in which all test data registers selected by the •
current instruction retain their previous state.

If TMS is held low and a rising edge is applied to TCK when the controller is in
this state, then the controller moves into the Capture-IR state and a scan sequence
for the instruction register is initiated. If TMS is held high and a rising edge is
applied to TCK the controller returns to the Test-Logic-Reset state.

The instruction does not change while TAP controller is in this state.

Capture-DR

In this controller state data may be parallel loaded into test data registers selected
by the current instruction on the rising edge of TCK.

The instruction does not change while TAP controller is in this state.

Shift-DR

In this controller state, the test data register connected between TDI and TDO as a
result of the current instruction shifts data one stage towards its serial output on
each rising edge of TCK.

The instruction does not change while the TAP controller is in this state.

JT AG - Operation

~ A-11

SP ARClite User's Guide

Exitl-DR

This is a temporary controller state. If TMS is held high, a rising edge applied to
TCK while in this state causes the controller to enter the Update-DR state, which
terminates the scanning process. If TMS is held low and a rising edge is applied to
TCK, the controller enters the Pause-DR state.

All test data registers selected by the current instruction retain their previous state
unchanged.

The instruction does not change while TAP controller is in this state.

Pause-DR

This controller state allows shifting of the test data register in the serial path
between TDI and TDO to be temporarily halted. All test data registers selected by
the current instruction retain their previous state unchanged.

The instruction does not change while TAP controller is in this state.

Exit2-DR

This is a temporary controller state. If TMS is held high and a rising edge is
applied to TCK while in this state, the scanning process terminates and the TAP
controller enters the Update-DR controller state. If TMS is held low and a rising
edge is applied to TCK, the controller enters the Shift-DR state.

All test data register selected by the current instruction retain their previous state
unchanged.

The instruction does not change while the TAP controller is in this state.

Update-DR

Some test data registers are provided with a latched parallel output to prevent
changes at the parallel output while data is shifted in the associated shift-register
path in response to certain instruction (e.g., EXTEST). Data is latched onto the
parallel output of these test data register from the shift-register path on the falling
edge of TCK in the Update-DR controller state. The data held at the latched paral­
lel output should not change other than in this controller state.

All shift-register stages in test data registers selected by the current instruction
retain their previous state unchanged.

The instruction does not change while the TAP controller is in this state.

fT AG - Operation

A-12

o::>
FUJITSU

Capture-JR

In this controller state the shift-register contained in the instruction register loads
a pattern of fixed logic values on the rising edge of TCK.

Test data registers selected by the current instruction retain their previous state.
The instruction does not change while the TAP controller is in this state.

Shift-JR

In this controller state the shift-register contained in the instruction register is con­
nected between TDI and TDO and shifts data one stage towards its serial output
on each rising edge of TCK.

Test data register selected by the current instruction retain their previous state.
This instruction does not change while the TAP controller is in this state.

Exit I-JR

This is a temporary controller state. If TMS is held high, a rising edge applied to
TCK while in this state causes the controller to enter the Update-IR state, which
terminates the scanning process. If TMS is held low and a rising edge is applied to
TCK, the controller enters the Pause-IR state.

Test data registers selected by the current instructions retain their previous state.
The instruction does not change while the TAP controller is in this state and the •
instruction register retains its state.

Pause-JR

This controller state allows shifting of the instruction register to be temporarily
halted.

Test data registers selected by the current instruction retain their previous state.
The instruction does not change while the TAP controller is in this state and the
instruction register retains its state.

Exit2-JR

This is temporary controller state. If TMS is held high and a rising edge is applied
to TCK while in this state causes termination of the scanning process and the TAP
controller enters the Update-IR controller state. If TMS is held low and a rising
edge is applied to TCK the controller enters the Shift-IR state.

Test data registers selected by the current instruction retain their previous state.
The instruction does not change while the TAP controller is in this state and the
instruction register retains its state.

JT AG - Operation

A-13

SPARClite User's Guide

Update-JR

The instruction shifted into the instruction register is latched onto the parallel out­
put form the shift-register path on the falling edge of TCK in this controller state.
Once the new instruction has been latched it becomes the current instruction.

Test data registers selected by the current instruction retain their previous state.

The Pause-DR and Pause-IR controller states are included so that shifting of data
through the test data or instruction register can be temporarily halted. For exam­
ple, this might be necessary in order to allow an ATE system to reload its pin
memory from disc during application of a long test sequence.

JT AG - Operation

A-14

Test Logic Reset ---------------------~

Run Test/Idle Select DR Scan Select IR Scan

Update DR Update IR

Figure A-7. TAP Controller State Diagram

15
I-

152 CK

CLK_ENB

147 CK

AOR<31>

118 CK

AOR<2>

117 CK

ASk7>

110 CK

ASl<O>

I-
en ><'.

en 0 er: ::;; 0 "I 0
I- I- I-

JTAG
Controller

24

Chip Logic 25

26

87

88

tstatejo

Figure A-8. JTAG Cell Organization

rP
FUJITSU

-TIMER_OVF

XTAL1

0<31>

0<31>

/TAG- Operation

A-15

•

SP ARClite User's Guide

1.6 JTAG Pin List
The }TAG cells are arranged in a shift register configuration (see Figure A-8).
When shifting in a }TAG pattern through TDI, the LSB should correspond to the
}TAG cell value for -TIMER_ OVF pin whereas, the MSB of the pattern should cor­
respond to the CLK_ENB pin's JTAG cell. As far as JTAG output through TOO is
concerned, the first bit out corresponds to -TIMER_ OVF JT AG cell value and the
last output bit corresponds to the CLK_ENB JTAG cell value. Table A-I lists the
order of all of the JT AG cells.

Table A-1: JTAG Pin Order

Order JTAG Cell
JTAGCell

Function
Type

1 -TIMER_OVF output Timer Overflow pin

2 XTAL1 input Crystal input

3 EMU_BRK input Emulator break input

4 icediojot output EMU_O bus bidirectional control signal
emudiojo = 1: EMU_O bus is input
emudiojo = 0: EMU_O bus is output

5 EMU_O_k7> input Input bit 7 of EMU_0<7:0> bus

6 EMU_O_o<7> output Output bit 7 of EMU_0<7:0> bus
. .

19 EMU_O_i<O> input Input bit 0 of EMU 0<7:0> bus

20 EMU_O_o<O> output Output bit 0 of EMU_0<7:0> bus

21 iceenbliot output -EMU_ENB bus bidirectional control signal
emuenblio = 1: -EMU_ENB bus is an input
emuenblio = 0: -EMU_ENB bus is an output

22 -EMU_ENB_i input Input bit of-EMU_ENB pin

23 -EMU_ENB_o output Output bit of -EMU_ENB pin

24 dbusiojot output 0<31 :0> bus bidirectional control signal
dbusiojo = 1 : 0<31 :0> bus is an input
dbusiojo = 0: 0<31 :0> bus is an output

25 O_k31> input Input bit 31 of 0<31 :0> bus

26 0_0<31> output Output bit 31 of <31 :0> bus
.

87 O_i<O> input Input bit 0 of <31 :0> bus

88 O_o<O> output Output bit 0 of <31 :0> bus

89 -RESET input Chip reset pin

90 -BREQ input Bus request input

91 -MEXC input Memory exception input

[I' AG - Operation

A-16

OJ
FUJITSU

Table A-1: JTAG Pin Order

Order JTAG Cell
JTAGCell

Function
Type

92 -READY input External memory transaction complete signal

93 tstatejot output Three-state control signal
If tstatejo=1 then the following pins are three-stated.

ADR<31 :2>, ASk7:0>, -BE<3:0>, -AS, RD/WR,
-LOCK

94 -BGRNT output Bus grant output signal

95 -ERROR output Error output signal

96 -LOCK output Bus lock output signal

97 -RD/WR output Memory Read/Write output signal

98 -AS output Start of memory transaction output signal

99 -CS<O> output LSB of chip select output signal

104 -CS<5> output MSB of chip select output signal

105 -SAME_PAGE output Same-Page output signal

106 -BE<3> output Byte 3 enable output signal

109 -BE<O> output Byte 0 enable output signal

110 ASkO> output LSB of ASI output pins

117 ASk7> output MSB of ASI output pins

118 ADR<2> output LSB of Address output pins

147 ADR<31> output MSB of Address output pins

148 IRL<3> input MSB of interrupt request pin

151 IRL<O> input LSB of address output pins

152 CLK_ENB input PLL control pin.
CLK_ENB=1: PLL on
CLK_ENB=O: PLL off

t. These are internal 1/0 control signals. Therefore, there are no corresponding external pins.
1. The following pins are not three-statable: -SAME_PAGE, -CS<5:0>, -BGRNT, TIMER_OVF, -ERROR.
2. The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, -TRST, TCK, TMS, TDI, TDO.

JT AG - Operation

A-17

-

SP ARC lite User's Guide

JT AG - Operation

A-18

llllllllllUllllllllllllll/1111111111111111111111111111

A

A Block, 3-8
Adder, Shift, and Logic Unit (ASLU), 3-11
Addition and Subtraction Instructions, 2-26
Address Mask Registers (AMR[5:0]), 1-9, 2-17

Address Mask, 2-16
Address Pipeline, 3-9
Address Range Specifier Registers (ARSR[5: 1]), 2-16
Address Space Identifier (ASI), 1-4
Addressing Conventions, 2-3
Addressing Modes, 2~37
Address-Space Organization, 1-5
Alignment of Data in Memory, 2-3
Ancillary State Registers, 1-8
ASR17, 1-9, 2-11
Arithmetic and Shift Instructions, 2-25
ASI, 1-4
ASI Address Space Map, 2-2
ASI Mask, 2-16
Assembly Language Syntax, 7-1

Comments, 7-3
Labels, 7-3
Register Names, 7-2
Special Symbol Names, 7-2
Values, 7-3

Atomic Load Store, 4-14
Automatic Variables, 5-15

B

Barrel Shifter, 2-25, 3-11
Binary Opcodes, 7-6
Booth's Algorithm, 3-14
Branch Evaluation Logic, 3-13
Branch Instructions, 2-32, 3-13
Breakpoint Registers, 2-53
Breakpoint Trap, 2-56, 3-16
Bus Arbitration, 1-18, 4-8
Bus Arbitration Signals, 4-7
Bus Cycles, 4-10

I

Bus Effects on the Instruction Pipeline, 3-1 8
Bus Interface Unit (BIU), 1-17, 3-17
Bus Operation, 1-1 8
Buses, 3-2
Bypass Logic, 3-12

c
Cache Hit, 2-46
Cache Hit Detection Logic, 3-17
Cache Locking, 1-12, 2-47
Cache Management, 5-25
Cache Miss, 2-46
Cache Operation, 2-46
Cache Organization, 2-43
Cache Status Register, 2-15
Cache Tag Addresses, 2-45
Cache Tags, 2-43

Index-1

SP ARClite User's Guide

Cache Update Policy, 1-13, 2-47
Cache/Bus Interface Unit Control Register, 1-9, 2-13,

2-47
Cacheable Accesses, 2-46
Call and Link, 2-34
Chip-Select Outputs, 1-19, 2-16
Clocks, 6-2
Conditional Branches, 2-33, 3-13
Conditions for Executing Delay Instructions, 2-34
Configuring the System, 5-2
Control Transfer Instructions, 2-31
Coprocessor Instructions, 2-22
Corner Turning Buffer Using Multiply Step, 5-47
Counter/Timers (MB86940 Peripheral Chip), 6-10
Current Window Pointer (CWP), 1-7, 2-6, 2-8, 2-42

D

Data and Instruction Caches, 1-12, 1-16, 2-43, 3-16
Data Types, 1-9, 2-21
Debug Control Register, 2-54
Debug Status Register, 2-55
Debug Support Unit, 1-17, 2-53
Debugging: IU Support, 3-16
Decode Stage, 3-4
Deiay insiruciion, 2-32, 2-33
Delayed Control-Transfer Couples, 2-37
Delayed Control-Transfer Instruction, 2-32
Delayed Writes, 2-41
Detection of Trap Conditions, 3-7
Development-Support Tools, 1-19
Divide Step In Support Of A To D Converter

Compensation, 5-36
Divide-Step Instruction, 1-10, 2-28
Division Routines Using the DIVScc Instruction, 5-26
Division, examples of

SIGNED, 5-26
UNSIGNED, 5-27

DMA and Bus Arbitration, 6-9
DRAM Memory Controller, 6-5

Index-2

E

Emulator Bus, 4-7
Error Mode, 2-52
Establishing the Processor State, 5-2
Exception Handling, 3-18, 4-9
Execute Block, 3-1 0
Execute Mode, 2-52
Execute Stage, 3-4
External Accesses, 2-2
External Bus Request and Grant, 4-15
Extern a I Interface, 1-1 7

F

Fetch Stage, 3-4
Floating-Point Instructions, 2-22
Freeze Signals, 3-6
Functions Returning Aggregate Values, 5-1 8

G

General-Purpose Registers, 1-6
Global Locking, 2-47
Global Registers, 1-6, 5-16

H

Hold Conditions, 3-5

I Block, 3-3
1/0 Interfacing Example: Ethernet Device, 6-7
Illegal Memory Accesses, 6-7
In and Out Registers, 1-7, 5-13
In-Circuit Emulation, 6-11
Initialization Software, 5-1
Initializing the Cache, 2-46, 5-4
Input and Output Signals, 1-18, 4-2
Instruction Block (I Block), 3-3
Instruction Fetches, 4-8

Instruction Formats, 2-23
Instruction Mnemonics, 2-22
Instruction Pipeline, 1-16, 3-4
Instruction Set, 1-11
Instructions, 1-10, 2-21 , 7-1 0
Instructions Squashed by Trap, 2-52
Integer Condition Codes, 2-8, 2-32, 2-36, 3-13
Integer Unit, 1-15, 3-2
Interfacing EPROM and Other Devices with

Slow Turn-off, 6-6
Interfacing Page-Mode DRAM, 6-4
Interfacing SRAM, 6-3
Internal Architecture, 1-15
Interrupt Control (MB86940 Peripheral Chip), 6-10
Interrupt Priority Levels, 1-1 3
Interrupts and Traps, 1-13, 2-49

J

JTAG
BYPASS, A-4
Capture-DR, A-11
Capture-IR, A-13
Description, A-10
Exit 1-DR, A-1 2
Exitl-IR, A-13
Exit2-DR, A-12
Exit2-IR, A-13
EXTEST, A-5
1/0 Cell, A-6
Input Cell, A-5
Introduction, A-1
JTAG Cells, A-5
JTAG Pin List, A-16
Operation, A-8
Output Cell, A-6
Output Cell with Set, A-6
Pause-DR, A-12
Pause-IR, A-13
Run-Test/Idle, A-11
SAMPLE/PRELOAD, A-4
Select-DR-Scan, A-11
Select-IR-Scan, A-11
Shift-DR, A-11
Shift-IR, A-13
Specifications, A-10
TAP Controller State Diagram, A-1 0

cO
FUJITSU

TCK, A-2
TDI, A-3
TDO, A-3
Test Access Ports (TAP), A-2
Test Instructions, A-3
The TAP Controller, A-1 0
TMS, A-2
-TRST, A-3
Update-DR, A-12
Update-IR, A-14

Jump and Link, 2-34

L

Leaf Procedure Optimization, 5-19
Load Align Unit (LAU), 3-14
Load and Store Instructions, 2-37
Load Bus Cycle, 4-10
Load Instructions, 2-38
Load with Exception, 4-1 1
Local Locking, 2-47
Local Registers, 1-7, 5-15
Lock Control Register, 1-9, 2-14, 2-48
Lock Control Save Register, 2-14
Locking Modes, 2-47
Logic Unit, 3-1 1
Logical Instructions, 2-24
Logical Register Addresses, 2-5
Logical Register Addressing, 2-6

M

MB86940 Peripheral Chip, 6-10
Memory and 1/0 Interfacing, 6-2
Memory and 1/0 Operations, 1-18, 4-8
Memory Interface Signals, 4-4
Memory Organization, 1-4, 2-2
Memory Stack, 5-17
Memory Stage, 3-4
Memory-Mapped Control Registers, 2-12
Multicycle Instructions, 3-6
Multiplication Instructions, 2-27
Multiplication, examples of

SIGNED, 5-43
UNSIGNED, 5-44

Index-3

----- ----·------- .. -··---· ~----

SP ARClite User's Guide

Multiply Routines Using the MULScc Instruction, 5-43
Multiply Step In Support Of Corner Turning Buffer

For Image Processing, 5-47
Multiply Step With Reduced Word Size, 5-43
Multiply Unit, 3-14
Multiply-Step Instruction, 2-28

N

Next Program Counter (nPC), 1-8, 2-11
Normal Operation, 2-46
Notation, 2

0

Opcodes, Binary, 7-6
Out and In Registers, 1-7, 5-13
Out-of-Order Execution, 1-16

p

Page-Mode Accesses, 6-5
PC-Relative Control Transfer Instructions, 2-32
Peripheral Functions, 4-7
Phy~ical Design Issues, 6-12
Physical Register Address, 2-6
Pipeline Hold, 3-5
Pipeline Operation: Cache Hits, 3-19
Pipeline Operation: Data Cache Miss, 3-23
Pipeline Operation: LOAD with Data Cache

Turned Off, 3-22
Pipeline Operation: Prefetch Buffer Disabled, 3-20
Pipeline Operation: Prefetch Buffer Enabled, 3-21
Power and Ground Connections, 6-12
Precise Traps, 1-14, 2-51
Prefetch Buffer, 3-1 8
Privileged Instructions, 2-1
Processor Interrupt Level, 2-49
Processor Interrupt Level (PIL}, 2-8
Processor Reset, 2-53
Processor State Register (PSR}, 1-8, 2-7
Program Branches, 2-32
Program Counter (PC), 1-8, 2-11, 3-9
Program Modes, 1-4, 2-1

Index-4

Programmable Timer, 1-19, 4-19
Programmable Wait-State Specifier, 4-18
Programmer's Model, 1-3
Programmer-Visible State and Processor State, 3-15

R

r Registers, 2-3
Read Control Register Instructions, 2-40
Register Addressing, 2-5, 2-7
Register Allocation Within a Window, 5-23
Register and Stack Management, 5-12
Register and Window Usage, Non-standard, 5-24
Register File, 3-11
Register Names, 7-2
Register Set, 1-6
Register Windows, 1-7, 2-4, 5-15
Register-Indirect-Vectored Control Transfer

Instructions, 2-32
Registers, 1-6, 2-3
Registers: Special-Purpose, 1-6, 1-8, 2-7
Related Literature, 2
Reset Mode, 2-52
Reset Timing, 4-16
Restore Lock Control Register, 1-9, 2-14
D-... f, 11 .. --·· 'l 1 ')
l\.V.JUll i..o11'"'U'1'11 ... rl.&..

Return from Trap, 2-52

s
Same-Page Detection, 4-18
Same-Page Detection Logic, 1-19
Same-Page Mask Register, 1-9, 2-15
Scan in Support of Run Length Encoding, 5-40
Scan in Support of Software Floating Point, 5-38
SCAN Instruction, 1-10, 2-30
Scan Unit, 3-11
Shift Instructions, 2-29
Signal Loading, 6-12
Signals, 1-17, 4-1
Signed Division with Doubleword Dividend (divs2), 5-28
Signeq Division with Word Dividend (divs 1}, 5-31
Signed Integer, 1-9
Signed Multiplication Using Multiply Step, 5-45
Simple Divide Step Examples, 5-26

Simple Multiply Step Examples, 5-43
Single Vector Trapping, 1-13, 2-49
Software Traps, 2-36
SPARC Addressing Convention, 2-37
SPARC Compliance, 2-57
SPARC International, 2-58
SPARC Version 8 Processors, 2-58
Special Symbol Names, 7-2
Squashed Instructions, 2-52
Stack Frame, 5-17
Status Signals, 4-4
Store Align Unit (SAU), 3-14
Store Bus Cycle, 4-12
Store Bypass, 3-13
Store Instructions, 2-39
Store with Exception, 4-13
Supervisor Mode, 2-1
Swap Instructions, 2-40
Syntax Design, 7-3
Synthetic Instructions, 7-3
System Support Control Register, 1-9, 2-19
System Support Functions, 1-19, 4-16
System-Configuration Registers, 1-19, 4-17

T

Tagged Add and Subtract, 2-27
Tagged Arithmetic Instructions, 2-27
Tagged Data Formats, 1-9
Tagged Word, 2-21
Test and Boundary-Scan Signals, 4-7
Three-Stated Signals, 6-12
Timer Pre-Load Register, 1-9
Timer Pre-load Register, 2-20
Timer Register, 1-9, 2-20
Trap Base Address (TBA), 2-9
Trap Base Register (TBR), 1-8, 2-9
Trap Behavior, 2-51
Trap Coder, 3-8
Trap Enable Bit (ET), 2-49
Trap Handling, 5-5
Trap Instructions, 2-36
Trap Logic, 3-7
Trap Table, 2-49
Trap Type, 1-13, 2-9, 2-35, 2-36, 2-50

Trap Types and Priorities, 1-14
Trapped Instruction, 1-14, 2-51

u
Unaligned Accesses, 2-38
Unconditional Branch, 2-33
Unsigned Division with Doubleword

Dividend (divu2), 5-33

cP
FUJITSU

Unsigned Division with Word Dividend (divu l), 5-34
Unsigned Integer, 1-9
Unsigned Multiplication Using Multiply Step, 5-46
USARTS (MB86940 Peripheral Chip), 6-10
User Mode, 2-1
User Stack Frame, 5-18

v
Virtual-Address Translation, 1-5

w
Wait-State Specifier Registers (WSSR[2:0]), 1-9, 2-17
Window Invalid Mask Register (WIM), 1-8, 2-9
Write Buffer, 2-13, 3-17
Write Bypass, 3-12
Write Control Register Instructions, 2-41
Writeback Stage, 3-4
Write-Through Memory Update Policy, 2-47

y

Y Register, 1-8, 2-10

Index-5

SP ARClite User's Guide

Index-6

0)

FUJITSU
FUJITSU MICROELECTRONICS, INC. SALES OFFICES

CALIFORNIA
10600 N. DeAnza Blvd., #225
Cupertino, CA 95014
(408) 996-1600

Century Center
2603 Main Street, #510
Irvine, CA 92714
(714) 724-8777

COLORADO
5445 OTC Parkway, #300
Englewood, CO 80111
(303) 740-8880

GEORGIA
3500 Parkway Lane, #21 O
Norcross, GA 30092
(404) 449-8539

ILLINOIS
One Pierce Place, #91 O
Itasca, IL 60143-2681
(708) 250-8580

MASSACHUSETTS
75 Wells Avenue, #5
Newton Center, MA 02159-3251
(61 7) 964-7080

MINNESOTA
3460 Washington Drive, #209
Eagan, MN 55122-1303
(612) 454-0323

NEW YORK
898 Veterans Memorial Hwy.
Building 2, Suite 310
Hauppauge,NY 11788
(516) 582-8700

OREGON
15220 N.W. Greenbrier Pkwy.,
#360
Beaverton, OR 97006
(503) 690-1909

TEXAS
14785 Preston Rd., #670
Dallas, TX 75240
(214) 233-9394

For further information outside the U.S., please contact:

ASIA

Fujitsu Microelectronics Pacific Asia Ltd.
616-617, Tower B, New Mandarin Plaza,
14 Science Museum Rd., Tsimshatsui East,
Kowloon, Hong Kong
Tel: 723-0393 ·Fax: 721-6555

Fujitsu Limited
Semiconductor Marketing
Furukawa Sego Building
6-1 Marunouchi, 2-chome
Chiyoda-ku, Tokyo 100, Japan
Tel: 03-3216-3211 •Fax: 03-3216-9771

EUROPE

Fujitsu Mikroelektronik GmbH
lmmeuble le Trident
3-5 voie Felix Eboue
94024 Creteil Cedex, France
Tel: 01-42078200 •Fax: 01-42077933

Fujitsu Mikroelektronik GmbH
Am Siebenstein 6-10
6072 Dreieich-Buchschlag, Germany
Tel: 06103-6900 •Fax: 06103-690122

Fujitsu Mikroelektronik GmbH
Carl-Zeiss-Ring 11
8045 lsmaning, Germany
Tel: 089-9609440 •Fax: 089-96094422

Fujitsu Mikroelektronik GmbH
Am Joachimsberg 10-12
7033 Herrenberg, Germany
Tel: 07032-4085 •Fax: 07032-4088

Fujitsu Microelectronics Pacific Asia Ltd.
1906, No. 333 Keelung Rd., Sec. 1,
Taipei, 10548, Taiwan, R.O.C.
Tel: 02-7576548 •Fax: 02-7576571

Fujitsu Microelectronics PTE Ltd.
51 Bras Basah Rd.
Plaza by the Park
#06-04/07 Singapore 0718
Tel: 336-1600 ·Fax: 336-1609

Fujitsu Microelectronics Italia, S.R.L.
Centro Direzionale Milanofiori
Strada 4-Palazzo A/2
20094 Assago (Milano), Italy
Tel: 02-8246170/176 •Fax: 02-8246189

Fujitsu Mikroelektronik GmbH
Europalaan 26A
5623 LJ Eindhoven, The Netherlands
Tel: 040-447440 •Fax: 040-444158

Fujitsu Microelectronics Ltd.
Torggatan 8
17154 Solna, Sweden
Tel: 08-7646365 • 08-280345

Fujitsu Microelectronics Ltd.
Hargrave House
Belmont Road
Maidenhead
Berkshire SL6 6NE, United Kingdom
Tel: 0628-76100 ·Fax: 0628-781484

PRINTED IN THE U.S.A.

5991WCCGE

SP ARClite User's Guide

Notes:

