MB86860 Series Programming Manual

FUJITSU

SPARCIite
MB386860 Series
Programming Manual

Edition 1.0 - Jun. 22, 1999

Fujitsu Ltd.

FUJITSU

MB86860 Series Programming Manual

Contents

0. Introduction........ccceeiiiceiiiiiinesisies s ssssscs s rsssn e s sssssn s cssssss s s e s ssamn s s 0-1

L0 0 PP Configuration of

TNIS CAPTETt e 0-1

02 e Nomenclature
0-1

0.3 e Appended

PrOGIAMMING ... ettt ettt et et e 0-1

1. Programming MoOdeIS........c.eeuuuiiiiiiiieeemeeiiiiiiiiieeemensssissserreesnmsssssssseeeeesnnnnns 1-1

PP PP Program

1Y ol [T PO PP TPPTTUPPRPIN 1-1

L e Setting

=0 1S3 =] £ 1-1

2 O 1O B B (=0 £ (= 1-1

1.2.2. U Control/Status REQISEISvuuiit i eei e e e e e e 1-3

1.2.3.Memory Mapped REQISIEISuiie i ee et e e 1-3

R PP PP UPPT Address

RS 0= Lo PP 1-3

1.3.1. ASI (Address Space [dentifiers)........couueiu i 1-3

PP PRI Data Types
1-4

R TP PP PPT PP Instruction

FOMMAL. ... e 1-5

P Trap Models
1-6

G300 0 1 o RS) I = 1 L 1-6

G I = o R 1Y o1 P 1-7

2. Initialization........cccceeieeeriiiieesiisscsssessscesessssee s easssse e cessssne s sas s s rasamn e sananae 2-1

2L e System

1T o 1= 2-1

TP PPPRR Initialize Flow
2-1

A T TP Processor

L L= 22 o] o 2-2

TP PPPRR Processor

TYPE JUAGIMENTS ...ttt ettt et e e e et e e e e e e e enn s 3-3

2 D e Memory Area

121U o o E PRSPPI RPPTI 2-3

MB86860 Series Programming Manual

2.5.1. SPARCIite BUS Area SetiNgS......ovvuiiiieii e e 2-3

2.5.2. SDRAM BUS Ar€a SetINGS.....uuiiuiiiiiiiie e e e e 2-4

2.5.3. USING AL e ittt e 2-4

2.5.4, SAMPIE PrOgramMS oui it e e e 2-5

L T PP PPT SDRAM-IF
2-7

A A I = U= 1) (= 2-7

A IS O = = To 1] (T £ 2-7

2.6.3. Verifying Completion of SDRAM Initialization..............cccccoeeiiiiiiiiiiie e 2-7

2 PRSPPI Stack Frame

(07 (== i o] o PRSPPI 2-8

R S TP Cache

INIEALIZALION .. et e e e 2-8

2.8.1. Cache Initialization FIOW..........coouuiiiiii e 2-8

B T rAPS ..iiiiiiiiiieiiiiiiiieeiecaas i ierressamasssseersasnnnsssssssteressnansssssssseressnnnnnnsnnssesnnns 3-1

0t PP Operations

When Traps are GENEIAEMccuuiiirieiiie e 3-1

B2 Trap TaDIES. ... 3-1

TR PP Trap Handlers
34

3.3.1. Processing inside Trap Handlersccoooviiiiiiiiiii e 34

B Trap Handler

EXAMIPDIES e 34

3.4.1. Window Overflows/UNderflows...........c.ooouiiioiii e 34

3.4.2. Window Overflow Handlers........ ..o e 3-6

3.4.3. Window Underflow HandIers.oouiiiiiie e 3-7

3.4.4. Trap Return ROULINESiiiiiiiiic et 3-8

4. Low Power Consumption Modesceeuuuiiiiiiiiieeemmnniiiiiiereeeemmsssssssrereees 4-1

PP Operating

1T o 1= 4-1

B e Sleep Mode
4-1

e PP Stop Mode
4-1

FUJITSU

MB86860 Series Programming Manual

0. Introduction

MB8686 Series processors are 32-bit RISC processors for installation which have architecture conforming
to SPARC Version 8. In this Manual the architecture and actual programming methods in the system of
the MB86860 Series processor are discussed. This Chapter concerns system programs and application
programs which use MB86860 Series processors.

0.1. Configuration of this Chapter

0.2. Notation

In this Manual, the MB86860 Series Processor is denoted as the MB8686x Processor. For product
characteristic information, the nomenclature is like that of the MB86860 and MB86861.
Register notationis asfollows:

X - Register Name
X.AXBX.C -Indicatesbit fieldsinside registers.
X[5:0] - Indicates register interior broken down by bits (bits 5-0)

(X.A=X[31:24], X.B=X[23:16] , X.C=X[15:0])

Register Name: X
31 24 23 16 15 0
| A | B | C |

Figure 0-1 Register Notation

Radix Notation
prefix
Decima - No prefix used
Binary : “0b” isused as prefix

0.3. Attached Program Listings

The program listings attached to this Manual are all drafted with the Cygnus Corporation “ GNUPro
Toolkit for SPARC86x” as the development environment.

01

FUJITSU

MB86860 Series Programming Manual

1. Programming Models

MB8686 Series processors are high capacity processors for installation which have architecture conforming to
SPARC Version 8. Inthis Manual implementationsin SPARC architecture programming model M B8686
processors are explained.

1.1. Program Modes

Two operating modes are defined in the SPARC architecture- user mode and supervisor mode, and program and
data protection functions are supported in a multitask environment. Issuance of privileged instructions is
restricted for programs operating in User Mode (Issuance of privileged instructions by user mode programs
causes privileged instruction traps to occur). Program Mode moves cause traps, and traps are caused by RETT
instructions. (See*3. Traps” for details).

1.2. Setting Registers

MB8686 processors, broadly divided, have the following 3 kinds of registers:

IU r-registers

32-bit general purpose registers. Consists of 8 global registers and windowed register fields.
IU Control/Status registers

Registers used for displaying processor status and for processor control purposes.
Memory Mapped registers

Registers mapped in memory spaces. Used as system control or status display registers.

IU-registers Memory-M apped registers
Processor Status Register
(PR)
Window Invalid Register ASI8=0x1
(WIM)
Trap Base Register (TBR) or
Ancillary Register 30 (DIAG) AS=0x4, 0x80000000=0xffffffff
Ancillary Register 31 (ICCR)
Y register (Y) .
IU r-registers Slipervilsor Access
(136 x 32 hits) Only
Usell Mode accessis
available

Figure 1-2 Setting Registers

1.2.1. IU r-registers

FUJITSU

MB86860 Series Programming Manual

IU r-registers are 32-hit registers which can be used for general purposes. The MB86860 Series processor has 8
global registers stipulated by the SPARC architecture and 128 windowed registers (number of windows=8) built
in. 8 global registers and 24 windowed registers can be accessed at any time.

1-2

MB86860 Series Programming Manual FUﬁTSU

1.2.1.1. Register Windows
The SPARC architecture uses windowed register file models. Figure 1-3 shows register window model
drawings. Programs can access the 8 global registers and the 24 r-registers inside register windows at any time.
The 24 registers are further classified into 3 kinds of registers:

OUT registers (r[18] - r[15] or o[0]-0[7])
share next-window IN register.
LOCAL registers (r[16]-r[23] or 1[0]-1[7])
characteristic register in current window.
IN registers (r[24]-r[31] or i[Q]-i[7])
share previous window OUT register.

By taking advantage of this register mechanism and using shared registers, transfer of parameters in function
calls can be executed at high speed. CWP (Current Window Pointers) which indicate current window positions
aresetin PSR and CWP fields. CWPs can be operated by the SAVE and RESTORE instructions.

SAVE

CWP is moved to the Next Window. (CWP -~ (CWP-1) (moduloNWINDOWS)
RESTORE or RETT

CWP is moved to Previous Windows. (CWP - (CWP+1) (moduloNWINDOWS)

SAVE operations are automatically performed when traps occur.

Here, NWINDOWS shows the number of windows being implemented. In MB8686 processors this is
NWINDOWS=8. CWP decrements by SAVE instructions and increments by RESTORE instructions are
performed in NWINDOWS modulo units. Thus window(0-1)=window(NWINDOS-1)
window(NWINDOWS)=window(0).

0] (= 0x0)
R[1]

1 GLOBALS Next Window
7] (CWP-1)mod NWINDOWS)

OUTS
LOCALS
Current Window
(CWP)

18 18

1 OuUTS 1 OUTS INS SAVE Instructions
115 115
116 116 -

1 LOCALS 1 LOCALS
23 123 .
24 124

1 INS ouTS 1 INS
31 /31 ‘

RESTORE Instructions
LOCALS
INS

Previous Window

1-3

MB86860 Series Programming Manual

FUJITSU

((CWP+1) mod NWINDOWS)

Figure 1-3 Register Windows

1-4

FUJITSU

MB86860 Series Programming Manual

1.2.1.2. Window Overflow/Window Underflow

When aregister is used up, the oldest registers used must be saved in memory. WIM (Window Invalid Masks)
must be set to detect these overflows (or underflows). When a SAVE instruction isissued and CWP+1 matches
awindow set to WIM, it generates a window overflow trap. When a RESTORE or RETT instruction is issued
and the next window matches a window set to WIM, it generates an underflow trap. Register savelreturn
processing must properly be performed by window overflow/underflow traps.

[Note] PSR and CWP fields and WIM registers are undefined when the power isturned on. PSand WIM must
be set by activation processing programs after the power isturned on.

[Note] An automatic SAVE operation is performed when a trap occurs, but no window overflow checks are
performed. Itistherefore necessary to check window overflow inside trap handlers.

[Note] It is always possible that traps may occur while programs are running. In preparation for the occurrence
of traps 1 window must be kept empty.

1.2.1.3. Special r-Registers

Some of the waysin which they are used have been predetermined inside the r-Registers.

r[01(g1[0])
Thisregister is used as a zero register. 0x0 isread when it is used as a source operand, and when it
is used as a destination operand, write datais discarded.

For CALL instructions, the address of the instruction itself iswritten to r[15[](0[7]).
When traps occur, program counter PC and nPC are saved respectively in new windows r[17](1[1]) and
r[18](1[2]),
1.2.2. IU Control / Status Registers
U (Integer Unit)

1.2.3. Memory Mapped Registers

1.3. Address Spaces

1.3.1. ASI (Address Space ldentifiers)

MB8686 Series processors configure addresses of 1T bytes using ASls (Address Space |dentifiers) indicated
by 8 bits together with the 32-bit address spaces which they have. In 86x processors, ASIs are assigned as
shown is Table 1-1, and ASI=0x9 and Oxb (supervisor), ASI=0x8 and Oxa (user) are assigned to program and data
areas. These spaces can be accessed by ordinary load/store instructions, but for other spaces having ASls
STA and LDA (privileged instructions) must be used. Hence the above ASIs must be assigned to memory
devices which store programs and data. Also, ASI=0x4-0x7 can be used as user I/O space. (However, the STA
and LDA instructions must be used).

1-5

MB86860 Series Programming Manual

FUJITSU

Table 1-1 MB86860/MB86861 ASI Assignments

ASI Function
Oh reserved
1h special regs.
2h reserved
3h reserved for TLB probe
4h internal regs. / user 1/O
5h - 7h user i/o regs.
8h user inst.
9h supervisor inst.
ah user data
bh supervisor data
ch | Cache TAG diagnostic
dh | Cache Set diagnostic
ch-th reserved
10h-14 | Cache/D Cache line flush IB/RB flush
15h-17 reserved
18h-1b | Cache line flush IB flush
1ch D Cache TAG diagnostic [reserved
1dh D Cache Set diagnostic L] sunervisar access Onlv
1ch-30h | reserved] Supervisor /User mode
31 Flush entire | Cache/D Cache |IB/RB flush
32h-ffh reserved

1.4. Data Types

MB8686 processors support the following data types:

Signed 7 6
Byte | s |
Unsigned 15 14
Byte | S |
Signed 31 30
Word | S |

Signed Integer Double Word

Signed Integer Double Word [62:32]

Signed Integer Double Word [31:0]

0

31 30
SD-0 s |
SD-1
Unsigned 7
Integer Half Word |
Unsigned 15
Integer Half Word |

1-6

MB86860 Series Programming Manual

Unsigned 31 0
Integer Word | |
Unsigned Tagged 31 2 1
Integer Word | | tag |
Unsigned Integer Double
Word
31 0
UD-0 | |
31 0
UD-1 | |
S :Signflag

SD-0: Signed Integer Double Word (Address alignment Omod8 word data)
SD-1: Signed Integer Double Word (Address alignment 4mod8 word data)
UD-0: Unsigned Integer Double Word (Address alignment Omod8 word data)
UD-1: Unsigned Integer Double Word (Address alignment 4mod8 word data)

1.5. Instruction Format

Instruction Format

Format 1 (OP=1) :CALL instruction
3130 29 0
| op | disp30
Format 2 (OP=0) :SETH instruction, BRANCH instruction
3130 2028 25242 21 0
OP rd OP2 imm22
OoP a| cond | OP2 disp22

Format 3 (OP=2 or 3) :Instructions other than CALL, SETH, BRANCH

3130 29 5 24 19 18 14 13 12 5 40
OP rd OP3 rd i asi | 12
OP rd OP3 rs i smml13
OP rd OP3 rd opf | rs2
OP, OP2, OP3
These 3 fields are op codes. Most op code instructions are as shown below. For details, see the Instruction
Set Manual.
OP | OP2 OP3 Instruction Format
000 — not loaded
001 — not loaded
010 — Bicc

FUJITSU

MB86860 Series Programming Manual

011 — not loaded
00 100 — SETHI 2
101 — not loaded
110 — FBfcc
111 — CBccc
01 — — CALL 1
1X — XOOXXX Except CALL, SETH, 3
BRANCH(Bicc,FBfcc,CBccc

rd, rsl, rs2
These 3fields are fields which indicate register addresses of general purpose registers.
rd fields omit showing source operands in ST (Store) instructions and indicate destination operands. All rsl
and rs2 fields indicate source operands except when executing ST instructions.

disp30, disp22
These 30-bit and 22-bit fields show PC (Program Counter) relative displacement. These displacements are
used word-aligned and sign-expanded.

a
Thisfield is contained in the BRANCH instruction, and it specifies cancellation of execution of instructions
which exist in delay slots.

cond
This field is contained in conditional BRANCH instructions, and they specify the condition codes which
test the BRANCH conditions.

imm22
Thisfield is contained in the SETH instruction, and it displays constants set to the upper order 22 bits of
destination registers.

i

Thisfield iscontained in arithmetic instructions and load/store instructions, and it isthe field which selects
the method of specifying the 2nd operand. If I=0, the rs2 field indicates a register address, and for the 2nd
operand, general purpose register r[rs2] is selected. If 1=1, the smm13 field indicates an immediate value of
13 bits, and an immediate val ue sign-expanded to 32 bitsis the 2nd operand.

smml3

This field is contained in arithmetic and load/store instructions where the i field is“1”, and it indicates an
immediate value of 13 bits. An immediate value sign-expanded to 32 bits is the 2nd operand of the
instruction.

asi

Thisfield is contained in load/store alternate instructions and indicates the address spaces to be sel ected.
opf

This is the 4th operand field which encodes floating point instructions and coprocessor instructions.

Floating point units and coprocessors are not loaded in the MB8683 Series. Floating point instructions and
coprocessor instructions are trapped for software emulation.

1.6. Trap Models

1-8

FUJITSU

MB86860 Series Programming Manual

1.6.1. Kinds of Traps
Strict Traps
Strict traps are activated by specific instructions, and they occur before conditions which can be
recognized by programs are changed by these instructions. If a strict trap occurs, some conditions
must be kept in force.
Delay Traps

Interrupt Traps

1-9

FUJITSU

MB86860 Series Programming Manual

1.6.2. Trap Types

Table 1-2 shows an overview of trap typesin MB8686x processors.

Table 1-2 Overview of Trap Types

Trap

Priority

TBR.tt

Causes

Reset

1

External system asserted pin RESET#.

Instruction Acces Exception

2

Input signal to MEXC# pin was asserted
during instruction access to external
buses.

Privileged Instruction

Privileged instruction was executed in

User Mode.

lllegal Instruction

Undefined instructions, UNIMP
instructions and instructions giving rise to
incorrect processor conditions (incorrect
values written to CWP fields of Register
PSR etc.) were executed. However,
undefined FPop and CPop instructions
become FPU absent exception and
coprocessor absent exception traps.

FPU Absent Exception

FPop, FBfcc or floating point load/store
instructions were executed.

Coprocessor Absent Exception

36

CPop, CBccc or coprocessor load/store
instructions were executed.

Window Overflow

A SAVE instruction gave rise to a CWP
pointing to a window invalidated by
Register WIM.

Window Underflow

A RESTORE or RETT instruction gave rise
to a CWP pointing to a window invalidated
by Register WIM.

Address Misalign

Load/Store generated addresses which
are not properly aligned. JMPL or RETT
instructions generated addresses which
are not word-aligned.

Data Access Exception

10

Input signal was asserted to MEXC# pin
during data access to external buses.

Tag Overflow

11

10

At least 1 operand bit is not “0”, or an
arithmetic overflow occurs during
execution of TADDccTV or SUBccTV
instructions.

Trap Instruction

12

128-255*

Ticc instruction was executed and a
judgment made that trap condition is true.

Break Point

15

255

An instruction or data matches a break
point.

Interrupt Level 15-1

14-28

31-17

External interrupt request.

*Specifications which generate 255 in a field are prohibited.

110

FUJITSU

MB86860 Series Programming Manual

2. Initialization
When external reset requests are input to the processor, the processor generates reset traps and starts running
programs from 0x0 addresses (CSO0# areas). Establishing processor status, assignment of address spaces to all
system resources and other initialization processing must be performed by initialization programs which start at
0x0 addresses. In this Chapter, required setting methods for each kind of register and matters requiring
attention etc. in initialization programs which are run following reset cancel will be discussed.

2.1. Register Models

This Chapter explains initialization programs for system configurations using SPARCIite-S, with the system
configuration shown below as an example.
- System Clock Frequency 33MHz, Clock Frequency Multiple 3

Configuration using 64Mbit (16 bits/'word) SDRAM X 4 and 4 chip-select areas.

(SDRAM capacity) = (8BMbyte) x 4 x 4 = 128Mbyte
Uses Boot-ROM in 16-hit bus width, and access wait number = 7 system clock cycles.
Uses 1/01~1/03 in 32-bit bus width, and all 1/0 wait numbers = 3 system clock cycles.

Figure 2-4 shows an example of system configuration, and Figure 2-5 shows memory mapping.

ASI=0x8, 9, a b

' o CSO# 0x00000000 ROM Area
. cpit ROM wait cycle=6 cycle
64bit Boot (non-cache Area)
ROM
MB8686x
bit h SCSo# 0x40000000
/01 SDRAMO S(DRi:M Are)a
cache area,
SCS04 SCS1# 0x42000000
SDRAMO bit 4 SDRAM1
SCsl# Z /o2 SCS2# 0x44000000
SDRAM?2 SDRAM Area
SDRAM 1 E it CS3n (non-cache area)
0
2 SCS3# 0x44000000
SCS2# A = 1103 SDRAM3
SDRAM?2 =) = [O%yiiiiii
i =
SCS3# 2 () = MB86860
SDRAM3 [AS|=0x7
= 64bit
64bit CS1# oL 0x100000000
SDRAM Area
wait cycle = 3 cycles
[] cahe Area cso# 0x20000000 (non-cache area)
1/02 (CS1,CS2,C)
|:| Non-cache Area
CS3# 0x30000000
1/03
Figure 2-4 Example of System Configuration Figure 2-5 Memory Maps

SPARC processors assert CS0# after reset cancel and start running from 0x0 addresses (ASI=0x9). Therefore, boot
processing programs must be mapped in 0x0 addresses.

2.2. Initialize Flow

The following settings must be made by initialization programs:
Processor intialization (TBR, WIM, PSR)

1

FUJITSU

MB86860 Series Programming Manual

Address space assignments (ARSR, AMR, WSSR, SDARS, SDAM)
Stack frame creation
Cache and buffer initialization

From Section 2.3 onward, individual initialization processing will be explained.

2.3. Processor Initialization

After reset cancel, processors are in the status shown below and start running.
Supervisor Mode (PSR.S=1)
Interrupts prohibited (PSR.ET=0)
Program Counter =0x0 nPC=0x4.
All other 1U control/status register fields keep pre-reset values (undefined when power isturned on).

In boot programs following reset cancel, it isfirst of all necessary to initialize the |U control/status registers
(PSR, TBR, WIM) in order to define processor status. Status register read/write instructions (RD/WRPSR,
RD/WRTBR, RD/WRW!IM) are used for reads/writes to the IU control/status registers. Status register
read/write instructions are provileged instructions.

list2-1 Processor Initialization
/ *
* |nitialize processor at reset
* PSRPIL <= Oxf — Mask al interrupts except for NMI
* PSR.S <= Ox1 — Supervisor mode
* PSRPS <= Ox0 — User mode
* PSRET <= Ox1 — EnableTraps
* PSR.CWP <= 0Ox7 — Current Window Pointer = Ox7
* PSRWIM <= 0x1 — Window Invalid Mask = window O

* PSRTBR <= X0 - Trap Base Address
*/
_reset:

wr %g0, OxOfa7, %psr

wr %g0, Ox1, %wim

wr %g0, Ox0, Y%tbr

nop

nop

nop

(Note] Read values of registers which perform writesin the 3 instructions following Status register write instructions
(WRPSR, WRTBR, WRWIM) are not guaranteed.

[Program Configuration]

In list2-1, settings are made to TBR=0x0 (ROM ared). Hence the trwmrgg be set to 0x00000000-
(0°(00000ji 8 —~

Reset vectors are always set to 4 words starting from 0x0 addresses. An instruction branching to an
initialization routine must be contained in these reset vectors .

@
Boot ROM must have a program configuration such as that ‘sh/ov:/n inFigure 2-6.
(0x000000000 | reset vector The arrows show
0x000000010 [Trap Table program flow.

FUJITSU

MB86860 Series Programming Manual

0x000001000 | Trap Handler

0x00000xxxx | !nitialization Program

0x00000xXXX

l@

Figure 2-3 Program Configuration

FUJITSU

MB86860 Series Programming Manual

2.4. Processor Type Judgments

In MB8686 Series processors, type judgments between processors can be made using PSR.imp bits, PSR.ver
bitsand IDR registers (address=0x80000ff0 asi=0x4).

Table 2-1 SPARCIite Processor Judgments

PSR.imp PSR.ver
0000 except 1111 | MB86930Series
1111 MB86830 Series

0001 1111 MB86860 Series
IDR(address=0x80000ff0, asi=0x4)
ID=0x0860xxxx — MBB86860
ID=0x086Dboxxx — MB86861
ID=0x08620xxx — MBB86862

(Lower order 16 bits undefined)
2.5. Memory Area Settings

Address space assignments, bus widths, access methods and other settings for each device must be madein
order to establish connections between the processor and all types of resourcesin the system. Thefollowing
registers are used to set memory areas.

SPARCIite buswidth — ARSR, AMR, WSS
SDRAM buswidth - SDARS, SDAMR

2.5.1. SPARCIite Bus Area Settings
2.5.1.1. Address Area Settings

CS Area address range settings use the ARSR registers and the AMR registers. The ARSR and AMR are both
set, and, by accessing the appropriate addresses, the corresponding signals are asserted.

[Setting Examples]

[CS1# Areas]
Address Range 0x10000000 — OxIfffffff
ASl X7
Bus Width 32bit
Cacheahility non-cacheable

Set Values:
Bit Field Set Vaue Explanation
ARSR1 0xab071000
ARSRLN Ox1 non-cache
ARSR1.BW Ox1 32-bit bus width
ARSRLASI X7 AS=0x7
ARSR1.Address 0x1000 Start=0x10000000

MB86860 Series Programming Manual

FUJITSU

Bit Field Set Value Explanation

AMR1 (0x00000fff

AMR1.ASImask ox0 ASI=0x7

AMR1.Addressmask OxOfff address = 0x10000000 -
OXAfffffff

2.5.1.2. Wait State Controller Settings
MB8686 Series processors have built in wait state controllers, and wait states can be set for each CSarea. The
number of wait statesisCNT1, CNT2 (set value+1).

[Setting example]

CS1# Areas.
Number of Wait States 3cycles
Burst Transfer not used
Parity Function not used
Override not used

Set Values:
Bit Fields Set Values | Remarks
WSSR1 (0x00000850
WSSR1.CN1 ox2 wait cycle=2+1
WSSR1.CN2 ox2 wait cycle=2+1
WSSR1.WE Ox1 wait enable
WSSR1.OVR ox0
WSSR1.SCB ox0
WSSR1.PE ox0

2.5.2. SDRAM Bus Area Settings
The registers shown below are used in setting SDRAM areas. Please note that setting registers and setting
methods differ between the MB86860 and the MB86861.

[Setting example€]

SDCS0# Area
Address Range 0x40000000 - Ox43ffffff
ASI 0x8,9,a b
Cacheahility Cacheable

MB86860:

Set Values
Bit Fields Set Values Remarks
SDARSD 0x00084000
SDARSO.N Ox0 | Cacheable
SDARS0.ASI Ox8 | ASI=0x8
SDARS0.Address 0x4000 | Start = 0x40000000
Bit Fields Set Values Remarks
SDAMO 0x00033fff
SDAMO.ASImask 0x3
SDAMO.Addressmask Ox3fff | address= 0x40000000 -

MB86860 Series Programming Manual

FUJITSU

OxASffEfff |

MB86861:
(T.B.D.)

2.5.3. Using ASls

In SPARCIlite SS processors, ASls are regulated as shown below. Use ASI=0x8,9,a,b in program memory and

ASl 0x4,5,6,7 in user 1/0O assignments.

AS|

Function

Oxd

Internal registers/ User |/O

Ox5-7

User I/O

ox8

User instruction

x9

Supervisor instruction

Oxa

User data

Oxb

Supervisor instruction

[Note] ASI=0x4 and Address=0x80000000 - Oxffffff areas are reserved as internal register areas. When using
ASI=0x4 as /O areas, use the Address=0x00000000 - Ox 7ffffff range.

2.5.4. Sample Programs

SPARCIite Bus and SDRAM Bus area mapping examples are shown.
list2-2 Example of SPARCIlite Bus / SDRAM Bus Area Memory Mapping (MB86860)

#define SPL_860_AS

#defi ne MB86860
#defi ne MB86861

Ox4
0x860
0x861

/* NMB86860 nenory-mapped regi ster address settings */

/* SPARClite-bus area settings */

#defi ne ARSR BASE 0x80000100

#def i ne AMR_BASE 0x80000200

#defi ne WBSR_BASE 0x80000400

#defi ne SDARS_BASE 0x80000130

#def i ne SDAM BASE 0x80000230

/* CSO#area settings */

#defi ne ARSRO_DAT 0x40080000 /* 16bit-bus, cacheabl e */

#defi ne AMRO_DAT 0x00030f f f /* adr=0x00000000-0f ffffff, */
/* asi=0x8, 9, a, b /*

#def i neWSSRO_DAT 0x00001cf O /* wait cycle=0x7, wait enable */

[* CS1# area settings*/

#defi ne ARSR1_DAT 0xa0071000 /* 32bit-bus, non-cache */

#defi ne AMRL_DAT 0x00000f f f /* adr =0x100000000- 1fffffff */
/* asi=0x7 */
/*

#def i ne WBSR1_DAT
/* CS2# area setti
#defi ne ARSR2_DAT
#def i ne AMR2_DAT

#defi ne WeSR2_DAT

[* CS3# area setti

0x00001cf 0O

ngs */
0xa0072000
0x00000f f f

L

~ N~~~

0x00001cf O

ngs */

wait cycle=7, wait enable */

32bit-bus, non-cache */

adr =0x200000000- Ox2f ffffff */
asi =0x7 */

wait cycl e=0x7, wait enable */

FUJITSU

32bit-bus, non-cache */

adr =0x300000000- Ox3fffffff */
asi =0x7 */

wait cycl e=0x7, wait enable */

MB86860 Series Programming Manual

#defi ne ARSR3_DAT 0xa0073000
#defi ne AMR3_DAT 0x00000f f f

~ N~~~
L

#defi ne WESR3_DAT 0x00001cf O

/* SDRAMbus area settings */
/* SDCSO# area settings */

#defi ne SDARSO_DAT 0x00084000
#defi ne SDAMD_DAT 0x000303f f

64bi t - bus, cacheabl e *
adr =0x40000000- Ox43ffffff */
asi =0x8, 9, a, b /*

~~
* %k

/* SDCS1# area settings */
#defi ne SDARS1L_DAT 0x80084400
#defi ne SDAML_DAT 0x000307f f

16bi t - bus, cacheabl e *
adr =0x44000000- Ox47ffffff */
asi =0x8, 9, a, b /*

~~
* F ok

/* register setting macros */
* 10 - register address */

/* 11 - data to set */

/* arsr getting macro */

#define SET_ARSR (reg_num data) \
sethi %i (ARSR_BASE+(reg_num *8), %d0; \
or %40, 9% o(ARSR _BASE*(reg_num 8*), %l0; \
sethi %i ((data)), %1 ; \
or %1, %o((data)), %1, \

sta %41, [9%0] SPL_REG ASI

/* anr setting macro /*

#define SET_AMR (reg_num data) \
sethi %i (AMR_BASE+(reg_num *8), 9%0; \
or %40, 9% o(AMR_BASE*(reg_num 8*), ©9%0; \
sethi %i ((data)), %1 ; \
or %1, %o((data)), %1, \

sta %1, [9%0] SPL_REG ASI

/* wssr setting macro /*

#define SET_WSSR (reg_num data) \
sethi %i (WSSR_BASE+(reg_num *8), %0; \
or %40, 9% o(WSSR_BASE*(reg_num) 8*), %0; \
sethi %i ((data)), %1 ; \
or %1, %o((data)), %1, \

sta %1, [9%0] SPL_REG ASI

/* sdars setting macro /*

#defi ne SET_SDARS (reg_num dat a) \
sethi %hi (SDARS_BASE+(reg_num *8), %0; \
or %40, 9% o(SDARS_BASE*(reg_num 8*), %d0; \
sethi %i((data)), %1 ; \
or %1, %o((data)), %1, \

sta %1, [9%0] SPL_REG ASI

/* sdam setting macro /*

#define SET_SDAM (reg_num data) \
sethi %i (SDAM BASE+(reg_num *8), %d0; \
or %40, 9% o(SDAM BASE*(reg_num 8*), %l0; \
sethi %i ((data)), %1 ; \
or %1, %o((data)), %1, \

sta %1, [9%0] SPL_REG ASI

MB86860 Series Programming Manual

FUJITSU

[* get psr.inmpl */

#defi ne GETPSR_I MPL(r eQ)
rd %sr, % eg;
srl % eg, 28, % eg

GETPSR_| MPL(12)

/* SPARCIite-bus area settings /*
SET_ARSR(0, ARSRO_DAT)/* CSO# area settings
SET_AMR(0, AMRO_DAT)

SET_WSSR(0, WSSRO_DAT)

SET_ARSR(1, ARSRL_DAT)/* CS1# area settings
SET_AMR(1, AMRL_DAT)
SET_WSSR(1, WSSR1_DAT)

SET_ARSR(2, ARSR2_DAT)/* CS2# area settings
SET_AMR(2, AMR2_DAT)
SET_WSBSR(2, WSSR2_DAT)

*/

*/

*/

MB86860 Series Programming Manual FUﬁTSU

SET_ARSR(3, ARSR3 _DAT)/* CS3# area settings */
SET_AMR(3, AMR3_DAT)
SET_WSBSR(3, WSSR3_DAT)

subcc $12, 0x1, %gO0

be error
nop
sdram 860:
SET_SDARS(0, ARSRO_DAT) /* SDCSO# area settings */
SET_SDAM 0, AMRO_DAT)
SET_SDARS(1, ARSR1_DAT) /* SDCS1# area settings */
SET_SDAM 1, AMRL_DAT)
ba, a nsxt _stage
error:

next - st age:

2.6. SDRAM-IF

SDRAM-IF are modules that control data transfers between SDRAM and the processor. SDRAM access is made
possible by setting the kinds of SDRAM in the system to match the system configuration and activating the
SDRAM-IF. Thefollowing procedures must be followed in making these settingsin order to use SDRAM-IF.

Perform SDRAM area mapping using the SDARS and SDAM registers for the MB8686 and the SSAR and

SAMR registersfor the MB86861 (see 2.5.2. SDRAM Bus Area Settings).

Perform SDRAM settings CS by CS using the CSCR register (MB86861 only)

Make ART register settings— set SDRAM refresh spaces.

Set SCR Register — set SDRAM Operation Mode and activate SDRAM-IF

Verify completion of SDRAM initialization — check SS Registers

2.6.1. ART Register
SDRAM refresh spaces are set by setting the ART.TC hit.
(Refresh spaces)=(ART.TC vaue)/(input clock (CLKIN) frequency)” (clock frequency multiple)
If input clock frequency = 33.3MHz, clock frequency multiple = 3 and SDRAM refresh spaces are set to 151 sec,
then

ART.TC=15" 10°" (333" 10°" 3)=1498=0x5da

2.6.2. SCR Register
Make settings in keeping with SDRAM type and SDRAM configuration.
Set SCR.CL, SDCFG.ST, SDCFG, SDCFG.PRC in accordance with the SDRAM standard in use.
Set SDRAM buswidth to SCR.BS,
Use SCR.SPC and SDCFG.SP to set parity functions.
Activate SDRAM-IF by setting SCR.SE = 1.

2.6.3. Verifying Completion of SDRAM Initialization
Following SDRAM activation, SDRAM-IF performs SDRAM initialize operation. Completion of SDRAM initidize
operations can be verified by the SSR.SD bit. Be sureto veryfy that SSR.SDI=1 before accessing SDRAM.
SDRAM-IF setting sample codes are shown below.

list2-3 SDRAM Set / Activate (MB86860)

MB86860 Series Programming Manual

FUJITSU

#define SPL_860 ASI 0x4

#define ART_ADR (0x80000808
#define ART_DAT 0x000005da
#define SCR_ADR (0x80000800
#define SCR_DAT (0x000006dd
#define SCR_ADR (0x80000810

#define SDI_FLG ox1

/* set ART register */
sethi %i (ART_ADR), %0

or %40, | o(ART_ADR), 90

sethi %i (ART_DAT), %1

or %1, % o(ART_DAT), %1

sta %1, [9%10] SPL_860_ASI

/* set sdram control register */
sethi %i (SCR_ADR), %0

or %40, | o(SCR_ADR), %0

sethi %i (SCR_DAT), %1

or %1, 9% o(SCR_DAT), %1

sta %11, [%0] SPL_860_ASI

/* check ssr register */
sethi %hi (SSR_ADR), %0

or %40, | 0o(SSR_ADR), 9%i0

/* check ssr.sdi bit */
check_ssr:

| da [940] SPL_860_ASl, %1
andcc %1, SDI _FLG 9%g0

be check_ssr

nop

/* SDRAM initialization conpleted !
go_next:

2.7. Stack Frame Creation

*/

It is always possible that traps may occur during user program operations. For this reason, stack pointers must
always be set correctly in order safely to save register windows. Moreover, for the same reason, when using

register windows, 1 window should be left empty.

Thefollowing registers are used as stack pointersin the SPARC architecture:

%sp(Stack Pointer) — %06(%14) ... current window stack pointer
%fp(Frame Pointer) — %i6(r30) ... previous window stack pointer

list2-4 Stack Frame Creation

#define NW NDOWS 8
#define SDRAM END 0x48000000
#define DEFAULT_STACK FRAME (NW NDOWS* 16)

set hi %hi (SDRAM END), % p
*/

/* Initialize frame pointer

210

FUJITSU

add % p, DEFAULT_STACK FRAME, %sp /* Allocate
stack frame */

MB86860 Series Programming Manual

save Y%sp, DEFAULT_STACK FRAME, %sp

2.8. Cache Initialization
In SPARCIite SS processors, a 16K byte-4 way set associative (D-cache iswrite through) cacheis built in together with |-
cache and D-cache. In order validly to take advantage of cache functions inside the core, a data buffer part is provided
between BIU (Businterface Units). When using cache functions, the data buffer part must also be enabled.

2.8.1. Cache Initialization Flow

Thefollowing regis{ejmtbngs are made for cache/buff

Cache Control ~=7FCR{RRR31) Register 1/D-cache dissble

Buffer Control +— B&R Euter Control Register) ASR31.CE<=0
In Figure 2-7 an exampleofcaet .cli. itratization flow, and in Irst2=5an tr)\oullpiu f sample code is shown.

Flush Entire I/D-cache Flush Entire I/D-cache
Write to ASI=0x31 Write to ASI=0x31

1/D-cache enable]
ASR31.CE<=0 Buffer dissble (BCR)

Buffer enable (BCR)

~

Figure 2-7 Cache Initialization Flow

list2-5 Example of Cache Control Routine

#define BCR_ADR 0x80000000
#define BCR_DAT 0x8000003f
/* Cache on */
cache_on:
wr %90, %90, %asr31 /* cache off */
nop
nop
nop
sta %90, [990+%90] O0x31 /* |/D cache flush all */
nop
nop

wr %90, 0x3, %asr3l1 /* cache on */
nop

nop

nop

sethi %i (BCR_ADR), %g1

21

MB86860 Series Programming Manual

or %91, 9% o(BCR_ADR), %gl
or %90, BCR_DAT, %g2
sta %92, [Ygl] SPL_860_ASI
nop
i mpl %07+8, %0
nop
/* Cache off */
cache-of f:
sethi %i (BCR_ADR), %gl
sta %90, [%gl]4 /* Buffer disable */
nop
wr %0, %g0, %asr31 I cache off : arsr3l <=
nop I IFTD <=0, CE <=0
i mpl Y%07+8, %0
nop

FUJITSU

0

212

FUJITSU

MB86860 Series Programming Manual

3. TRAPS
When interrupts and traps occur in SPARC processors, a move is made to the control vectors specified by the
trap table. Thefirst 4 instructions of each trap handler are contained in the trap table. In this chapter, methods of
creating and examples of creating trap tables and trap handlers are shown.

3.1. Operations when Traps are Generated

When PSR.ET=1, the following processor operations are performed by traps:
- Disable Traps (PSR.ET <=1)
Preserve the mode at trap time (PSR.S) in PSR.PS. (PSR.PS <= PSR.S)
Change mode to Supervisor Mode (PSR.PS <= 1)
Advance register window to new window. (CWP<=((CWP-1)modNWINDOWYS)
Save program counter value when trap occurred to new windows %11 and %12. (r[17]<=PC, r[18]<=nPC)
Write special valuesidentifying exceptions and interrupt requeststo TBR.tt bit. (except reset)

When PSR.ET=0, the processor goes into ERROR mode if a trap occurs, asserts ERROR# signals and stops.
External interrupts are ignes<<s

4 TBA
tt=0
User TBA+tt*4(word)
Program =1
Running =2 Trap Table

—{— TBA+0x1000

\)! Trap

Handler

Figure 3-8 Trap Operations
3.2. Trap Tables
Trap tables consist of 4 words~ 256 = 1Kword, with the TBA (Trap Base Address) as the top address. Trap
vectors corresponding to each trap type contain the first 4 words of the service routine. Control is moved to trap
handlers through these vectors.

Figure 3-9 Trap Table Example

_start:

_traptbl:

/* tt = undefined */
reset _trap:

rd %psr, %0 [* %0=psr at trap tinme.*/
rd % br, %3 [* %3=tbr at trap tinme.*/
ba _reset_entry /* Branch to the reset trap
handl er. */

nop

31
1

MB86860 Series Programming Manual

FUJITSU

[* tt =1 */
i nstr_access_trap
rd Y%psr, %O
rd % br, %3
ba, a _chk4ovflo
ba, a _instr_access
[* tt =2 */
illegal _instr_trap:
rd %psr, %0
rd % br, %3
ba, a _chk4ovflo
ba, a _illegal _instr
/* tt =3 */
privil_instr_trap:
rd Y%psr, %0
rd % br, %3
ba, a _chk4ovflo
ba, a _privil_instr
[* tt =4 */
fp_di sabl e_trap:
rd %psr, %0
rd % br, %3
ba, a _chk4ovflo
ba, a _fp_disable
/* tt =5 */
wi n_ovf _trap:
rd Y%psr, %0
rd % br, %3
ba Wi n_ovf
nop
/* tt =6 */
wi n_unf _trap:
rd %psr, %0
rd % br, %3
ba _Wi n_unf
nop
[* tt =7 */
mem msalign_trap
rd Y%psr, %O
rd % br, %3
ba, a _chk4ovflo
ba, a _mem_m salign
/* tt =8 */
fp_exception_trap:
rd %psr, %0
rd % br, %3
ba, a _chk4dovflo
ba, a _fp_exception
[* tt =9 */
data_access_trap:
rd Y%psr, %0
rd % br, %3
ba, a _chk4ovflo
ba, a _data_access
/* tt = 10 */
tag_ovf _trap:
rd %psr, %0

~ —~
*

/*
/*

~ —~
*

/*
/*

~ —~

/*

%0=psr at trap tine.
%l3=tbr at trap tine.
check for reg w ndow

%0=psr at trap tine.
%3=tbr at trap tine.
check for reg w ndow

%0=psr at trap tine.
%l3=tbr at trap tine.
check for reg w ndow

%0=psr at trap tine.
%3=tbr at trap tine.
check for reg w ndow

tine.
tinme.

% 0=psr at
%13=t br at

trap
trap

time.
tine.

%1 0=psr at
%d3=t br at

trap
trap

%d0=psr at trap tine.
%l3=tbr at trap tine.
check for reg w ndow

%0=psr at trap tine.
%3=tbr at trap tine.
check for reg w ndow

%10=psr at trap tine.
%l3=tbr at trap tine.
check for reg w ndow

%l0=psr at trap tine.

* [
*/
over fl ow*/

*/
*/
overfl ow/

* [
* [
over fl ow*/

*/
*/
overfl ow/

*/
*/

*/

* [
* [
over fl ow*/

* [
*/
overfl ow/

* [
* [
over f | ow*/

*/

32

FUJITSU

rd % br, %3 [* %3=tbr at trap tinme.*/
ba, a _chk4ovflo /* check for reg wi ndow overfl ow/
ba, a _tag_ovf

/* tt = 11 */

MB86860 Series Programming Manual

[* tt =12 */
nop
nop
nop
nop
/* tt = 13 */
nop
nop
nop
nop
[* tt = 14 */
nop
nop
nop
nop
/[* tt = 15 */
nop
nop
nop
nop
/* tt = 16 */
nop
nop
nop
nop
[* tt =17 */
int_1 trap:
rd %psr, %0 [* %0=psr at trap tinme.*/
rd % br, %3 [* %3=tbr at trap tinme.*/
ba, a _chk4ovflo /* check for reg wi ndow overfl ow/
ba, a _int_1
/* tt = 18 */
int_2 trap:
rd %psr, %0 [* %0=psr at trap tinme.*/
rd % br, %3 [* %3=tbr at trap tinme.*/
ba, a _chk4ovflo /* check for reg wi ndow overfl ow/
ba, a _int_2
/* tt =19 */
int_3_trap:
rd %psr, %0 [* %0=psr at trap tinme.*/
rd % br, %3 [* %3=tbr at trap tinme.*/
ba, a _chk4ovflo /* check for reg wi ndow overfl ow*/
ba, a _int_3

33

MB86860 Series Programming Manual FUﬁTSU

/* tt = 253 */
Ticc_126_trap:
rd %psr, %0 /[* %0=psr at trap tinme.*/
rd % br, %3 [* %3=tbr at trap tinme.*/
ba, a _chk4ovflo /* check for reg wi ndow overfl ow*/
ba, a _Ticc_126
[* tt = 254 */
Ticc_127_trap:

rd %psr, %0 [* %0=psr at trap tinme.*/
rd % br, %3 [* %43=tbr at trap tinme.*/
ba, a _chk4ovflo /* check for reg wi ndow overfl ow/

ba, a _Ticc_127
/* tt = 255 */
enmul ation_bp_trap:

rd %psr, %0 [* %0=psr at trap tinme.*/

rd % br, %3 [* %3=tbr at trap tinme.*/

ba, a _chk4ovflo /* check for reg wi ndow overfl ow*/
ba, a _enul ation_bp

[Note]: The chk4ovflo routine checks whether a window overflow has occurred or not when a trap occurs. For
window overflow/underflow checks not to be run when traps occur, window overflow checks must be run inside
each trap handler.

3.4. Trap Handlers

3.4.1. Processing Inside Trap Handlers
The followig things must be donein all trap handlers:

Verify whether a window can be used or not when a new trap occurs. (When atrap occurs, the processor
automatically savesthe interrupted routine window by decrementing the Current Window Pointer.)
Re-enable traps by setting PS ET bits.
Process exception conditions which generate traps.
Disable traps by clearing PS ET bits.
Execute IMPL/RETT instruction pairs. Return addresses are kept in r[17].
RETT instructions automatically select ET=1
The return sequence for returns from trapsis as follows:
When re-running trapped instructions:
jmpl %r17, %g0
rett %r18

When re-starting execution starting from the next instruction after a trapped instruction:

jmpl %r18, %g0
rett %r18+4

34

FUJITSU

MB86860 Series Programming Manual

3.5. Trap Handler Examples

3.5.1. Window Overflows/Underflows

In this section, examples are shown of window overflow/underflow handlers in SPARC processors which are
essential in normal use.

list3-1 Window Overflow Check Routine

This routine checks whether or not there are window overflows in trap handlers, and if a window overflow
happens, saves the oldest window in the register window to memory.

/* FUNCTI ON */

/* _chkdovrflo */

/ * DESCRI PTI ON */

/* This code is branched to before each trap (except reset */
/* ~win_unf, and wn_ovf) handler. */

/* It checks to see if we have noved into the invalid w ndow */
/* and performs fixup ala _wi n_ovf. */

/* I NPUTS *7

/* — $10 = psr at trap time */
/* — %1 = pc at trap tine */
/* — %2 = npc at trap time */
/* — %3 = tbr at trap time */

/* | NTERNAL DESCRI PTI ON */

/* RETURNS */

/* _None. */
_chk4ovfl o:
and %0, Ox1F. 9%5 /* get the cwp */
set 1, $14 /* conmpare the cwp with the wim
*/
rd o m %6 /[* read the wim*/
nop
nop
nop
sl | $14, %5, %4 /* conpare */
andcc %4, %6, %0
bz _ret2tthbl * not valid w ndow, just return
*/
nop

/* in line version of _wi n_ovf */
#i f ndef | NT_MODE1

or %40, Oxf20, %7 /* enable traps, disable interrupts
*/
wr ol7. %g0, Ypsr
#endi f
or %90, %gl, %7 /* Save 9%gl. */
srl ule, 1, %l /* Next WM = 9%gl = */
/* rol (WM 1, NWNDOW. */

35

FUJITSU

MB86860 Series Programming Manual

sl | %16, NW NDOWS-1, %5
or %5, %gl, %l
save /* Get into wi ndow to be saved. */
wr %91, %0, 9 m /* install new wim?*/
nop /* must delay three instructions */
nop /* before using these registers, so
*/
nop /* put nops in just to be safe. */
/* save all local registers */
std %40, [%sp + Ox0 * 4]
std %2, [Y%sp + Ox2 * 4]
std od4, [Y%sp + Ox4 * 4]
std %16, [%sp + Ox6 * 4]
std % 0, [%sp + O0x8 * 4]
std % 2, [Y%sp + Oxa * 4]
std % 4, [Y%sp + Oxc * 4]
std % 6, [%sp + Oxe * 4]
restore /* Go back to trap
wi ndow */
or %90, %7, %l /* Restore %gl. */
_ret2tthl:
/* It is safe nowto allocate a stack frame for this w ndow */
/* because all overflow handling will have been acconplished */

/* in the event we trapped into the invalid w ndow */
/[* i.e. all of this wi ndow % regs (next w ndow % regs) */

/* will have been safely stored to the stack before we overwite
Y%sp */

add % p, DEFAULT_STACK_FRAME, %sp

or %13, Oxc, %3 /* add Oxc to % br value to obtain */

/[* ttbl instruction addr we canme from + 0x4 */

j mpl %13, %0 /* junp back into table at aforenentioned
addr . */

nop

list3-2 Window Underflow Check Routine

This routine checks to see whether or not a window underflow has occurred when returning from atrap, and if an underflow
haa occurred saves the RESTORE destination window to memory.

/* FUNCTI ON */

/* _chk4uflo */

/* DESCRI PTI ON */

/* This code is branched to before each trap (except reset */
/* _win_unf, and wi n_ovf) handlers. */

/* It checks to see if we are about to nove to the invalid
wi ndow */

/* on ensuing rett instruction and performs fixup ala _w n_unf.
*/

/* 1 NPUTS */

/* - $10 psr at trap time */

/* - %1 pc at trap tine */

36

FUJITSU

MB86860 Series Programming Manual

I * - %2
/* - %3

npc at trap time */
tbr (ord w Oxc) at trap time */

/* | NTERNAL DESCRI PTI ON */

/* RETURNS */

/* _None. */
_chk4ufl o:
/* Test that the window we are noving into is valid */
and %40, Ox1F. %5 /* get the cwp */
subcc %4, (NW NDOWs-11), %O /* test for being in
hi gh wi ndow */
be Wi n7
nop
add $14, 1, %4 /* conpare with the next hi ghest
wi ndow*/
ba not 7
nop
wi n7: or %90, %g0, %4
not7: or %90, Ox1l, %5 /* conmpare cwp with the wim */
sl %15, 914, %5 /* if they are the sane then */
rd %im %6 /* read the wim */
nop
nop
nop
andcc %5, %6, %0
ba _trap_return
nop
ba _Wi n_unf
nop

3.5.2. Window Overflow Handlers

Window overflow handlers save the oldest windows to memory when window overflows occur.

/* FUNCTI ON*/

/* _Win_ovf*/

DESCRI PTI ON*/
This routine is the trap handler for register overflow trap.*/
Priority: 0x06*/
Upon entry, the cwp points to the trap wi ndow, which is 1 |ess

an*/
the register wi ndow that nust be saved to the stack. The stack is*/
organized with %6 = $06 - (0x40 + local stack used). The ins and*/
|l ocals are saved, and the wimis adjusted for the new w ndow. */

~ e~~~ — —

* ok kT ok ok ok F

[* | NPUTS*/

/* - %0=psr at trap tinme*/
/* - %1=pc at trap tinme*/
/* - %2=npc at trap tinme*/
/* - %3=tbr at trap tinme*/

| NTERNAL DESCRI PTI ON*/
- Move the invalid window to the next wi ndow by rotating the % nt/

37

MB86860 Series Programming Manual

FUJITSU

/* regi ster |left

/*

trap, */

/* and save al

/*

routine*/

/* execute the save again.*/

/* RETURNS*/

/* - %7 =

- Wi n-ovf:

#i findef | NT_MODE1
or %40, Oxf20, %7
wr o%L7, %g0, Ypsr

#endi f
rd o m %44
or %90, %gl, %7
srl uld4, 1, %l
sl %4, NW NDOWS- 1,
or %5, %gl, %l
save
s %91, %0, 9% m
nop
nop
nop
std %40, [%sp + OxO
std %W2, [¥%sp + 0x2
std uld, [Y%sp + Ox4
std %16, [Y%sp + 0x6
std % 0, [%sp + 0x8
std % 2, [%p + Oxa
std % 4, [Y%sp + Oxc
std % 6, [%sp + Oxe
restore

wi ndow. */
or %90, %7, %l
or %90, 1, %7

trapped*/
ba _trap_return
nop

- Get back into the previously valid wi ndow and |let the trapped

/* Turn on traps again so that we do not go into error state.*/

by one sl ot*/
- Get into the previously invalid w ndow,

of the registers init.*/

1 so execution starts at the trapped instruction.*/

3.5.3. Window Underflow Handlers

E R D

%5

/*

~ —~

enabl e traps,

Get wimat trap tine.*/

Save %gl.*/

Next WM = %gl =*/

rol (WM 1,

NW NDOW . */

the one that caused the

di sable interrupts.*/

Get into window to be saved. */
Install new wim*/
must delay three instructions */

before using these registers,

put nops in just to be safe.
save all |ocal registers */

/* Restore %gl.*/
Tell _trap_return to rerun

/*
/*

instruction.*/

Window underflow handlers save restore destination windows to memory when window underflows occur.

/*
/*

/*
/*
/*

FUNCTI ON*/

Wi n_unf*/

DESCRI PTI ON*/
This routine is the trap handler for register
Priority: Ox07*/

overflow trap.*/

38

so */
* [

/* Go back to trap

FUJITSU

/* Upon entry, the cwp points to the trap wi ndow, which is 1 nore
t han*/

MB86860 Series Programming Manual

the register wi ndow that nust be restored fromthe stack. The stack
*/

* k() *

organized with %6 = $06 - (0x40 + local stack used). The ins and*/
|l ocals are restored, and the wimis adjusted for the new w ndow. */

~ — — ~—

[* | NPUTS*/

/* - %0=psr at trap tinme*/
/* - %1=pc at trap time*/
/* - %2=npc at trap tinme*/
/* - %3=tbr at trap tinme*/

/* | NTERNAL DESCRI PTI ON*/
/* RETURNS*/
/* - %7 = 1 so execution starts at the trapped instruction.*/

-w n-unf:
/* Turn on traps again so that we do not go into error state.*/
#i findef | NT_MODEL

or %10, Oxf20, %7 /* enable traps, disable interrupts.*/
wr %7, %m0, %Ypsr
#endi f
rd %\ m %44 [* Get wim*/
nop
nop
nop
sl | %4, 1, %5 /* Next WM=rol (WM 1, NW NDOW . */
srl %4, NW NDOWS-1, %16
or %6, %5, %6
nmv %16, % m /[* Install it.*/
nop /* must delay three instructions */
nop /* before using these registers, so */
nop [* put nops in just to be safe. */
/* Back to user w ndow. */
/* Get into window to be restored.*/
/* restore registers from stack*/
subcc %13, 0x6, %O
bne notunfl
restore
restore
not unf 1:
| dd [%p + Ox0 * 4], %0
| dd [%sp + Ox2 * 4], %2
| dd [%sp + Ox4 * 4], %4
| dd [%sp + Ox6 * 4], %6
| dd [%sp + Ox8 * 4], %O
| dd [%p + Oxa * 4], %2
| dd [%8p + Oxc * 4], % 4
| dd [%p + Oxe * 4]. %6
subcc %3, 0x6, %0
bne notunf2
save /* Get back to original w ndow. */
save
not unf 2:

39

FUJITSU

MB86860 Series Programming Manual

or %90, 1, %7 [* Tell _trap_return to rerun
trapped*/

ba _trap_return /[* instruction.*/

nop

3.5.4. Trap Return Routines
Trap return routines return from traps to programs executing processing. Before executing a RETT instruction, interrupt
disable status (PSR.ET=1) must bein effect.

/* FUNCTI ON*/

/* _trap_return*/

[* DESCRI PTI ON*/

/* This routine is called by all traps except reset to perform sone*/
/* common setup tasks before returning froma specific handler. 1t*/
/* is a | eaf procedure.*/

/* | NPUTS*/

/* - 947 = rerun instruction flag*/

/* - %40 = psr upon return*/

/* - %1 = pc at trap tinme*/

/* - %42 = npc at trap tinme*/

| NTERNAL DESCRI PTI ON*/
- Deternmine whether to start exectuion at pc or npc.*/
- Disable traps.*/
- Prepare cache autol ock return sequence*/
- Return fromtrap or pc or npc.*/

~ — — ~— ~—
* Ok kX %

RETURNS* /
- None. */

~ —~
* ok

_trap-return

subcc %7,1, %0 [* 1If trap handler returns 1, then*/
be _rerun_trap_instr /* rerun the trapping instruction*/
nop /* else do not.*/

ba _skip_trap_instr

nop

/* Returnlroutine for executing the trapped instruction like for page
faults.*/

_rerun_trap_instr:

andn %0, 0x20, %0 /* Disable traps*/

wr %40, %g0, %psr

[* or %90, Ox1, %7 */ /* Set Restore Lock bit,*/

[* or %90, O0x10, %0 */ /* in case an autol ock
sequence*/

/* sta o7, [9d0] 1 */ [* is in effect.*/

j mpl od1, %o /* Return to instruction at pc.*/

rett %2+%g0

/* Return routine for skipping the trapped instruction.*/

! Translator’s Note: All code in this document was in English in the Japanese original and is copied exactly asis.
The English contained therein isthe programmer’s, not the translator’s.

310

MB86860 Series Programming Manual

FUJITSU

_skip_trap_instr:

andn %40, 0x20, %0
wr %40, %g0, %psr
j mpl ol2, %go

rett %l2+4

/* Disable traps.*/

/* Return to instruction at

3l1

npc. */

FUJITSU

MB86860 Series Programming Manual

4. Low Power Consumption Modes
SPARCIite SS processors have 2 operating modes for low power consumption: SLEEP Mode and STOP Mode. In this
chapter, the operating sequence when shifting operating modes will be discussed from a program standpoint.

4.1. Operating Modes
Operating Mode status transitions are shown in Figure 4-10

1
| RESET#

~/4; QN

SR30) 4 (SVR)
i
i

RESET# ‘/STOP#

Figure 4-1 SPARCIite SS Processor Operating Status Transitions

CACHE-OFF Mode — Operating Mode after aRESET cancel.
NORMAL Mode — Operating Mode during Cache operation.
SLEEP Mode — Stops clocks except PLL.

STOP Mode — Stops all internal clocks

RESET# input is required to restart operation.

4.2. SLEEP Mode
In order to shift to SLEEP Mode, the previous processor operating modes, CACHE-OFF and CACHE, must be flushed.
Sleep Mode is entered by writing “1” to the SLP bit of the Sleep Mode Register (SMR) (ASI=0x1,
address=0x00002004). See Figure 4-11.

4.3. STOP Mode
In Sleep Mode, the processor enters STOP Mod
only restarted from Stop Mode by a RESET# inpL

> @nastops operating by asserting external pin STOP. Operation is

Sleep Mode Entry
SMR.SLP<=1

Sleep Mode

WKUP signal STOP signal
assert assert
Cache-off Mode STOP Mode
Restart execution Restart execution
only

4-1
11

FUJITSU

MB86860 Series Programming Manual

Figure 4-11 Low Power Consumption Mode Operating Flow

4-2

	. Introduction
	. Programming Models
	. Initialization
	. TRAPS
	. Low Power Consumption Modes

