PRICE $8.00

SERIES 1600

MICROPROCESSOR SYSTEM

GENERAL INSTRUMENT
MICROELECTRONICS

SOFTWARE
DOCUMENTATION

"3;-|.|||nm.-nL | B A% T e
g I by (o e o2
518 Mmmesesanii: 1 T EET

I i
!g L

R B k| bl

oL 11'4] L L "
. | ,."‘"' ";:e!!

ot 11 -

l.lll IITN -
&
1
i

" ai, ;..._.. g

L
‘.“E 1 FRN R RO R W) |

L er)

THE SERIES 1600 SEMICONDUCTOR LINEUP

1625 - 20K Bits *

1624 - 16K Bits

10K Bits #*

1623 -

1622 - 8K Bits

'.IL

1621 - 5K Bits
sBaleleBelaloBololoVeal

1620 — 4K Bits
ROM

MEMORIES

1635 -

1638 — 4Kx1 Static %

1Kx1 Static

1631 — 256x4 w/latch
nnanAnnaaodnon

1630 — 256x4 Static
RAM

JUUWLUYUUUUUU

MICROPROCESSORS

cp
1600 — Basic Inst. Set

* Available Fali 1975

1640 — User Microprogrammable *

|° 1644 — Column Printer
g avh kgt REVETIVIVIVINEY]

PROGRAMMABLE INTERFACE

CONTROLLERS

1645 — Ser. Line Printer

1647 — CRT

G S IS B Y S A
[1648 - Mag. Card
G TOETLTTET

v

SERIES 1600 MICROPROCESSOR SYSTEM
SOFTWARE DOCUMENTATION

CROSS ASSEMBLER/SIMULATOR

USERS MANUAL

This manual contains a detailed specification of the
Series 1600 Symbolic Assembly Language and in-
formation pertaining to the operating commands,
input/output options; and utility functions provided
by the Series 1600 Cross Software Package.

© Copyright 1975
All rights reserved

GENERAL INSTRUMENT CORPORATION ® MICROELECTRONICS DIVISION = 600 W. John St., Hicksville, N.Y. 11802 » 516-733-3107

Title:
Document No. :
Revision Level:

Subject Programs:

Scope:

Operating Environment:

Support Programs:

Reference Documents:

SUMMARY

Series 1600 Cross Assembler/Simulator Users Manual
S16DOC-XALSIM-02, May 1975
Supersedes S16DOC-XALSIM-01, November: 1974

S16XSFT Series 1600 Cross Software Package

S16XAL-1 Series 1600 Symbolic Cross Assembler
S16SIM-1 Series 1600 Simulator

SI6LNK-1 Series 1600 Object Module Linker
S16XRF-1 Series 1600 Concordance (XREF) Generator
S16BPT-1 Series 1600 Binary Paper Tape Generator
S16RTG-1 Series 1600 ROM Tape Generator

o Qo o

This manual describes the Cross Assembler (S16XAL-1)

and Simulator (S16SIM-1) programs which support the

General Instrument Corporation Series 1600 Microprocessor
System. In addition, four companion programs, the Object
Module Linker (S161.NK-1), Concordance Generator (S16XRF-1),
Binary Paper Tape Generator (S16BPT-1), and ROM Tape
Generator (SI6RTG-1) are described.

The Series 1600 Cross Software Package is written in F level
Fortran IV and is specifically designed to operate in a 16-bit
minicomputer environment. Versions are available for the
following systems and require 12 to 16K words of memory, a
disc operating system, and a terminal device:

a. DEC-PDP11 S16XSFT-PDP11
b. DGC-NOVA S16XSFT-NOVA

~The total S16XSFT Series 1600 Cross Software Package is also

available for use on the General Electric Time-Share Computer
Network.

Host Computer System Editing Facilities

S16DOC-SXFT11-00 Series 1600 Cross Software
Operators Guide - PDP11

S16DOC-XSFTNV-00 Series 1600 Cross Software
Operators Guide - NOVA

S16DOC-XSFTGE-J0 Series 1600 Cross Software
Operators Guide - G.E. Time-Share

TABLE OF CONTENTS

CHAPTER 1: S16XAL SYMBOLIC CROSS ASSEMBLER
1.1 INTRODUCTION

1.2 FEATURES

1.3 BASIC OPERATION

1.4 SOURCE PROGRAM FORMAT

-
[¥}

1.4.1 Label

1.4.2 Operator
1.4.3 Operarand
1.4.4 Comment
SYMBOLS
LITERALS

1.6.1 Octal
1.6.2 Decimal
1.6.3 Hexidecimal
1.6.4 ASCI Character
EXPRESSIONS
ASSEMBLY DIRECTIVES
1.8.1 PAGE
1.8.2 HEAD
1.8.3 REL
1.8.4 ABS

1.8.5 ENTR
1.8.6 GLOB
1.8.7 EXT
1.8.8 ORG
1.8.9 EQU
1.8.10 RES
1.8.11 ZERO
1.8.12 BITS
1.8.13 MEML
1.8.14 WORD
1.8.15 BYTE
1.8.16 TEXT
1.8.17 END
1.8.18 EOT
1.8.19 NLST
1.8.20 LST
1.8.21 IFEQ
1.8.22 IFNE
1.8.23 ENDC
PROGRAM LISTING
DIAGNOSTICS

INTERACTIVE DIALOGUE

CHAPTER 2: S16 LNK OBJECT MODULE LINKER

INTRODUCTION
FEATURES

BASIC OPERATION
INTERACTIVE DIALOGUE
DIAGNOSTICS
LIMITATIONS

MDD
N Ul i W N =

CHAPTER 3: S16SIM SIMULATOR

INTRODUCTION
FEATURES
OPERATION
INITIAL CONDITIONS
SYSTEM LOADING
CONTROL COMMAND SEQUENCE
TRAPS AND TRACES
INPUT/OUTPUT AND INTERRUPT SIMULATION
EXTERNAL CONDITION SIMULATION
TELETYPE SIMULATION
COMMAND STRING FORMAT
SYSTEM PARAMETER DEFINITION
12,1 Load Binary Program
.12, Set Data Display Radix
.12, Display/Modify CPU Clock Rate
.12, Define Memory
.12, Remove Memory Definition
.12, Display Memory Blocks
.12, Set Stack Limits
.12, Remove Stack Limits

.12.10 Display Maximum Stack Used
YSTEM CONTROL COMMANDS
.13.1 Execute
.13.2 Execute and Display Registers

O 0 N ONUL i WIN

et
o

WWWwWwwwwwwwwow
=
—

[
N

O 00 N O N

3.13

. 13,3 Step
.13. Continue
. 13. Exit

.13. Keyboard Interrupt

. 13. Display Elapsed Time

.13. Display Registers

.13.9 Display Addresses

.13.10 Search Addresses

.13.11 [Initialize Addresses

.13.12 Display/Modify Addresses
.13.13 Display/Modify Registers
.13.14 Display/Modify Status Register

.13.15 Branch Destination Modification

wwwwwwwwmwmwwwwmmc»cuoocnoawc»oa
o N O\ Ui

3.13.16

Jump Destination Modification

3.13.17 Display Symbols
3.13.18 Display Previous Addresses
3.13.19 Clear Previous Addresses
3.13.20 Set Software Interrupt Vector
3.14 TRACE/TRAP COMMANDS
3.14.1 Memory Trap or Trace
3.14.2 Register Trap or Trace
3.14.3 Remove Register Trap or Trace
3.14.4 Remove Memory Trap or Trace
3.14.5 Display Register Trap or Trace
3.14.6 Display Memory Trap or Trace
3.15 INPUT/OUTPUT COMMANDS
3.15.1 Define I/O Buffer Register
3.15.2 Remove I/0O Buffer Register Definition
3.15.3 Display 1/0 Buffer Register Table
3.15.4 Define L. O Status Register
3.15.5 Remove I/0 Status Register Definition
3.15.6 Display I/O Status Register Table
3.15.7 Define Interrupt
3.15.8 Display Interrupt Table
3.15.9 Remove Interrupt Definition
3.16 EXTERNAL CONDITION COMMANDS
3.16.1 Define External Condition
3.16.2 Remove External Condition Definition
3.16.3 Display External Condition Table
3.17 INFORMATIVE MESSAGES
CHAPTER 4: S16XRF CONCORDANCE (XREF) GENERATOR
4.1 INTRODUCTION
4.2 OPERATION
4.3 INTERACTIVE DIALOGUE
4.4 ERROR MESSAGES
4.5 LISTING FORMAT
4.6 LIMITATIONS
CHAPTER 5: S16BPT BINARY PAPER TAPE GENERATOR
5.1 INTRODUCTION
5.2 OPERATION
5.3 ERROR MESSAGES
CHAPTER 6: S16 RTG ROM TAPE GENERATOR
6.1 INTRODUCTION
6.2 OPERATION
6.3 ERROR MESSAGES

1.1

1.2

1.3

. CHAPTER 1
S16XAL SYMBOLIC CROSS ASSEMBLER

INTRODUCTION

The Series 1600 Symbolic Cross Assembler (S16XAL) is a program preparation
aid which supports General Instrument's family of 16-bit microprocessors. It
translates ASCII coded alphanumeric source programs into several different
types of binary coded object modules. The S16XAL Symbolic Cross Assembler
is written in F level Fortran IV and is designed for operation in a 16-bit data
word environment making it compatible with all minicomputers as well as larger
computer systems.

FEATURES
The S16XAL Symbolic Cross Assembler provides the following major features:

* Symbolic language representation of all instructions
+ Literal representations in four formats; Octal, Decimal, Hexadecunal
Character
Arithmetic evaluation of operand expressions
Assembly directives for
Controlling memory allocation
Defining character strings
Specifying input/output options.
Establishing conditional assemblies
.Declaring global and external gymbols
Assembly in three forms
Absolute
Relocatable
Relocatable/Linking
Program listings
Error detection

OPERATION

The S16XAL Symbolic Cross Assembler converts symbolic source programs into
machine code format in a two pass process. During the first pass through the
source file;, all user specified symbols are placed in a symbol table containing
the symbol, its value, and several other attributes. During the second pass
through the source file, symbolic inst ruction mnemonics are translated, symbol
references resolved, errors diagnosed, a machine code file generated, and an
optional program listing produced.

The machine code file produced by the S16XAL Cross Assembler can be of several
forms. If the source program specified an absolute assembly, the binary file will
be an absolute load module. An absolute load module can be directly loaded and
executed by the Series 1600 Simulator (S16SIM) or punched on paper tape for sub-

sequent loading in a microprocessor system by the resident loader (S16 LDR).

If the source program contains global symbol definitions and/or external symbol
definitions and/or external symbol references, the binary file will be a relo-
catable object module. Relocatable object modules must be linked together by
the Series 1600 Object Module Linker (S16LNK) to form one relocatable load
module for input to the Series 1600 Simulator (S16SIM). Alternatively, relo-
catable object modules or load modules may be punched on paper tape for sub-
sequent loading in a microprocessor system by the resident relocatable/linking
loader (S16LDR). If the source program does not contain global or external sym-
bol references, the binary file will be a relocatable load module which can be di-
rectly loaded and executed by the Series 1600 Simulator (S16SIM) or punched on
paper tape for loading on a microprocessor system by the resident loader
(S16LDR). These options are shown diagramatically in Fig. 1.3.1.

SOURCE PROGRAM FORMAT

A S16XAL source program is composed of a sequence of statements with each
statement contained on a single line. A statement is terminated by a carriage
return character or is punched on one computer card. A statement may contain
up to four fields which are identified by their order of appearance from left to
right. The general format of a S16XAL statement is: Label, Operator, Operand,
Comment. The label and comment are optional, while the operator is always re-
quired. The presence and nature of the operand depends upon individual operators.
It is recommended that statements be limited to approximately 50 characters so
that assembled programs can be printed on teletype or CRT terminals.

1.4.1 Label

A label is a 'user defined character string, used to symbolically refer -
ence a specific location within a program. If a statement contains a label,
the label must begin in the first position of the statement. Labels may
contain up to six characters, the first of which must be a letter (A-Z), a
currency symbol ($), a question mark (?), or an ampersand (&). The re-
maining five optional characters may be any valid character (EBCIDIC or
ASCII) except a blank space, since this character is the label terminator.
Labels containing more than six characters cause a diagnostic to be issued
and are truncated after the sixth character. Labels must be unique in the
first six characters, i.e., a specific character string cannot be used in
the label field of a statement more than once in a program. Multiple use
of a label causes a diagnostic to be issued and the subsequent definitions
of the label to be ignored.

1.4.2 Operator

An operator follows the label field in a statement. A statement operator
contains up to four characters and may be an instruction mnemonic or an
assembly directive. Instruction mnemonics are symbolic character

strings which represent the various Series 1600 instructions. Assembly
directives are also symbolic character strings but are used to represent

Series 1600
Source
Program

S16XAL
CROSS ASSEMBLER

No Global or
External Symbols

Global or
External Symbols

Relocatable
Object
Module Other Relocatable

Object Modules

SI6LNK
OBJECT LINKER

v

S16BPT Relocatable
Load
PAPER TAPE GEN. Module

S16SIM
SIMULATOR

Program Tape

S16RLL/LDR
LOADERS

Figure 1.3.1

certain functions or actions performed by the assembler during the
assembly process. If a statement does not contain a label, the operator
must be preceded by at least one blank space. If the operator is the
last field in a statement, it is followed by a carriage return, otherwise -
it is followed by a blank space.

1.4.3 Q_Eerand

An operand follows the statement operator separated by at least one
blank space. The operand represents an item or items to be operated
upon by the statement operator. Operands may be symbols, literals or
expressions. When multiple operands are used, they are separated by
commas. If an operand is the last field in a statement it is followed by
a carriage return, otherwise it is followed by the comment field.

1.4.4 Comment

The comment field is optional in all statements and must be preceded by

a semicolon (;). The contents of the comment field are printed on the
program listing but have no effect on the assembled program. Entire
lines may serve as comments if the first non blank character is a semi-
colon. Blank lines are printed on the program listing but otherwise ig-
nored so that statements may be separated in order to enhance program
readability. The liberal use of commentary is strongly recommended

so that the function and operation of programs is evident from the program
listing.

1.5 SYMBOLS

A symbol is a character string which appears in an operand and represents the
value assigned to the symbol. A symbol is given a value by direot assignment
via an assembly directive or by appearing in the label field of a statement. Labels
are assigned the value of the assembly location counter for the instruction on which
they appear. The assembler recognizes the exclamation (!) sign as a special symbol for
the current value of the program counter.

1.6 LITERALS

Literals are character strings which serve as sources of data, i.e., cannot be
changed and are interpreted by the assembler as constants. The assembler accepts
literals expressed as octal, decimal, hexadecimal and character. Numeric literals
may be preceded by a plus or minus to signify sign. Plus is assumed unless a minus
is present.

1.7

1.8

1.6.1 Octal (Default Radix)

5000000 - s optional + or -, +assumed

o=0-7
oooooo = 0 to 177777

1.6.2 Decimal

s«dddd - S
d=0-9
ddddd = - 32768 to 32767

optional +or -, +assumed

1.6.3 Hexadecimal

sX'hhhh' -

I

optional +or -, +assumed
0-9, A-F
hhhh = 0 to FFFF

[=n
I

1.6.4 ASCII Character

1 A} —

"cc" or 'c' - or' = delimiter
¢ = any ASCII character

One or two characters may be packed into each

16-bit word. If one character is specified (''c" or 'c’)
it is placed in the low order byte of the word with
zeros in the high order byte. If two characters are
specified ("ab" or 'ab') the first (a) is placed in the
low order byte and the second (b) is placed in the high
order byte.

EXPRESSIONS

Arithmetic operators (+and =) may be used to form operand expressions. An
element of an expression may be: a user defined symbol, the current assembly
location counter symbol (!), or a literal. Expressions may contain up to six
elements separated by either + or — operators. The total expression may be
terminated by a comma, a carriage return or a semicolon.. Expressions are
always evaluated from left to right with no parenthetical groupings allowed.

ASSEMBLY DIRECTIVES

Assembly directives are used to control the assembly process and in some cases
cause data to be generated. In the following assembly directive descriptions op-
tional elements are enclosed in [] . Comments may be used with all assembly
directives.

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

LABEL

OP

PAGE

HEAD

REL

ABS

ENTR

OPRND

Cccc...C

[name]

v

ACTION

Advance program listing to the top
of the next page. Sixty lines are
normally printed on each page.

Use the character string specified as
the operand as a page heading for the
next page. The first character in the
string is used as the string terminator.

Generate a relocatable assembly and

use the six character name as the ob-
ject module identifier. If no name is
specified, an unnamed relocatable ob-
ject module is generated. The module
name is used by the Series 1600 Object
Module Linker (S16 LNK) to identify ob-
ject modules on its load module map.
The REL directive must be encountered
by the S16XAL assembler before any
data generating operators are processed.
If this is not the case, an informative di-
agnostic is issued and an unnamec relo-
catable object module generated. If no
REL or ABS directive is specified, an
unnamed relocatable object module is
generated; i.e., REL is the default
assembly mode.

Generate an absolute assembly; the binary
file generated by the S16XAL assembler
will be an absolute load module. It can-

not be relocated or linked when loaded.

The ABS directive must be encountered

by the S16 XA L assembler before any data
generating operators are processed. If

this is not the case, an informative diagnos-
tic is issued and an unnamed relocatable
ohbject module is generated.

Establish the program entry point; i.e.,
the point at which execution is to begin.
The operand may be either a symbol or
a literal. :

1.8.6

1.8.7

1.8.8

1.8.9

1.8.10

1.8.11

1.8.12

1.8.13

LABEL

SYMBOL

[LABEL]

[LABEL]

opP OPRND

GLOB S[,S,...,S]

EXT SL, S, ...,S]

ORG expr
EQU v

RES expr
ZERO expr
BITS expr

MEML exprlf, expr2]

ACTION

Declare the symbol(s) as global. Global
Global symbols must be def ined as labels
in the current program unit but can be
referenced from other program units.

Declare the symbol(s) as external. Ex-
ternal symbols reference global symbols
in other program units. Both external
and global symbol references are re-
solved by the Series 1600 Object Module
Linker (S16 LNK) and the relocatable/
linking loader (S16LDR) resident in the
microprocessor system.

Set the assembly location counter to the
value of expr, default is zero.

Assign the value of the operand to the sym-
bel. The operand may be a symbol, a
literal or the assembly location counter
symbol (f). If ! is specified it may be
followed by + or - and a literal.

Reserve a block of storage whose length

is specified by expr. The contents of
individual storage locations is undefined.

If a label is specified, it is assigned a value
equal to the address of the first word in

the block.

Zero a block of storage whose length is
specified by expr. If a label is specified,
it is assigned a value equal to the address
of the first word in the block.

Specify the number of bits in a memory
word as the value of expr. The word size
is used by the assembler to check gener -
ated data for magnitude exceeding word
size. The default is 16 bits.

Specify lower and upper memory address
limits as the values of exprl and expr2.

If only exprl is specified, its value will
be used as the upper memory address
limit and the lower limit will be set to
zero. These limits are used by the as-
sembler to check the validity of addresses
assigned to generated code. The defaults
are 0 and 17777.

1.8.14

1.8.15

1.8.16

1.8.17

1.8.18

1.8.19

1.8.20

1.8.21

LABEL OP

[LABEL] WORD

[LABEL] BYTE

[LABEL] TEXT

END

EOT

NLST

LST

IFEQ

OPRND

expr [, expr, ..

expr [, expr,

expr

CC...

.CC

ACTION

.,expr] Generate a data word for each
operand expression. The contents of
each word is set equal to the value of the
respective expr. If a label is specified it
is assigned a value equal to the address
of the first word.

...,expr] Generate twe data bytes for each

operand expression. The operation is the
same as with but 8 bit data is gen-
erated for use with double byte addressing
in 10 bit memory.

Generate a word or words of data which
contain the seven bit ASCII code for each
character. Two characters are packed

in each word, low byte to high byte. In-
complete words contain a blank in the high
byte. If a label is specified, it is assigned
a value equal to the address of the first
word generated.

End of the program, the assembly is
terminated on the previous statement

End of tape indicator, used to separate

a source program into several paper tapes.
This directive is ignored by the file
oriented cross assembler.

Disable the program listing. The assembly
proceeds normally but with the listing
suppressed. This directive is used, for
example, to avoid printing a length ZERO
block.

Enable the program listing. This directive
is used to cause a listing to again be pro-
duced after a NLST directive.

Start conditional assembly. The state-
ments that follow will be assembled if expr
is equal to zero. If expr is not equal to
zero, the statements will be listed but not
assembled. Conditional assemblies are
useful when a program has statements which
are to be assembled only under certain
conditions. For example, statements

which are to be assembled only during
debugging of the program.

LABEL OP OPERAND ACTION

1.8.22 IFNE expr Start conditional assembly. The follow-
ing statements will be assembled if
expr is not equal to zero, the following
statements will be listed but not assembled.

1.8.23 ENDC .End conditional assembly, i.e., resume
normal assembly.

PROGRAM LISTING

The S16XAL Symbolic Cross Assembler produces a listing of the assembled program
containing the following fields: line number; six octal digits of address; six octal
digits of contents; the statement label, operator, operand and comments. The oper-
ator, operand and comments are tabulated to enhance program readability. If the
assembled word is subject to modification when the program is loaded at an address
different than that of assembly; i.e., relocated, the contents are followed by the
letter "R". If the assembled word references an external symbol, the contents are
followed by the letter "X".

Each page of listing contains sixty lines and begins with a one or two line heading.
The first heading line contains the module name, the version of the assembler in
use, the time and date of the assembly and the page number. If the user has speci-
fied a heading via the HEAD directive, it follows on the next line. The program
listing follows, separated from the page heading by a blank line.

At the end of the program listing, all user defined symbols are summarized followed
by the number of diagnostics issued. The symbol summary contains each symbol

in alphabetical order, its octal value, and its attributes. The following table lists
the codes used for symbol attributes:

U - symbol is undefined

A - symbol is absolute

R - symbol is relocatable

X - symbol is external

IN - symbols is an instruction label

EQ - symbol is defined by an EQU statement
RS - symbol is a RES or ZERO statement label
DT - symbol is a WORD BYTE, or TEXT statement label

G - symbol is global

E - symbol is entry point

DD - symbol is doubly defined
" UR - symbol is unreferenced

1.10

DIAGNOSTICS

The S16XA L Symbolic Cross Assembler performs extensive error checking
during program assembly issuing both error and informative diagnostics.
Each diagnostic is printed on the program listing on a line immediately pre-
ceeding the offending statement. Diagnostics and the associated statement are
always listed even though the program listing is_surpressed or no listing was
requested by the user.

The S16XAL assembly error codes are listed in the following table:

ERROR CODE

MEANING

L (E) LABEL label illegal or missing

D (E) DBL DEF label is doubly defined

U (E) UNDF SYM reference to undefined symbol

M (E) MDEF REF reference to multi defined symbol

O (E) OP UNREC operator is unrecognized

S (E) SYNTAX syntax illegal

R (E) REGISTER register designator illegal or use of reg illegal
C (E) CHR ILL character is illegal string terminator

B (E) DBL BYTE double byte data sequence illegal

P (E) PHASE label's value differs in phase 2

X (E) EXT NUM more than one external symbol in expression
V (E) VAL OPRN value of operand illegal

N (E) NUMBER value of literal illegal

Q (I) 7 SYNTAX questionable syntax

W (D) WRD SIZE word size exceeded

A (I) ADR/DEST address out of range or destination questionable
T (I) TRUNCATN possible statement truncation

E (I) END ? END directive missing

70 ? USE questional use of directive

L @) MEM LIMIT memory limits exceeded

1.11 INTERACTIVE DIA LOGUE

The S16 XA L Assembler is available for use on several interactive computer
systems. In order to assemble programs, the user must first estalish communi-
cations with the computer and log in with a valid account number or user code

(see appropriate System Operation Manuals). After the log in has been completed,
the computer operating system responds with a prompt character ($ or * used on
many systems). The user responds by entering a command which requests the
operating system to load and begin execution of the SI6XAL assembler. The assembler
first identifies the version in use by displaying S16 XAL-VXX, then displays the
message: SOURCE FILE, ACCNT?. The user must enter an appropriate source
file name followed by a comma. and the account in which the file exists. On

some systems, if the source file exists in the current account the comma and

account may be omitted. Next the assembly listing option is requested by the
message: LISTING? (Y/NOR F = NAME). If Nis entered, no listing except
for diagnostics will be produced, if Y is entered the program listing will be
output on the interactive terminal. If F=name is entered the listing will be
output to the named file. Finally the object file name is requested by the mes-
sage: OBJECT FILE?. At the end of the assembly if no terminal listing was
requested the number of diagnostics issued is summarized. This concludes the
current assembly and another source file is requested for the next assembly.

If only a carriage return is entered, the assembler returns control to the op-
erating system.

2.1

2.2

2.3

2.4

CHAPTER 2
S16LNK OBJECT MODULE LINKER

INTRODUCTION

The Series 1600 Object Module Linker (S16 LNK) is a support program to the
Series 1600 Symbolic Cross Assembler (S16XAL). It combines or links to-
gether two or more relocatable object modules produced by the SI6XAL
Assembler to form the single relocatable load module necessary for input to
the Series 1600 Simulator (S16SIM). The S16LNK Object Module Linker is
written in F level Fortran IV and is designed for operation in a 16-bit data
word environment making it compatible with all minicomputers as well as
larger computer systems.

FEATURES

The S16 LNK Object Module Linker performs the following functions on object
modules generated by the S16XAL Cross Assembler:

Resolves global symbol declarations

Satisfies external symbol references

Relocates and links multiple object modules into one load module

Produces a load module memory map

Generates a load module file for subsequent execution by the
S16SIM Simulator

OPERATION

The S16 LNK Object Module Linker performs the linkage function by making two
passes through the specified object modules. During the first pass, a table of
global symbols and their assigned addresses is constructed and a load module
memory map is generated. The map lists the object modules in order of linkage,
the relocated base address of each object module, all global symbols and their
associated addresses in each module, and the size of each module. At the end
of the first pass, a linkage summary is produced which indicates the initial ad-
dress, the final address, and the entry address of the relocatable load module.
During the second pass, each object module is again read and the load module
file is constructed.

INTERACTIVE DIALOGUE

The S16 LNK Object Module Linker operates interactively with the user via any
appropriate terminal. Upon program initiation the current version is use is iden-
tified and the user is requested to name the resultant linked load module file by
the message: LOAD MODULE ?

If a load module file currently exists with the same name, it is deleted and a

2,5

new file of the same name created. Next, the user is requested to select a
load map option by the message: MAP ? (Y/N or F = NAME)

If the user enters "N", no map will be produced; if a "Y" is entered the map
will be output on the terminal. If, however, F = NAME is entered the map will
be output on a file with the specified name. Finally, the user is requested to
enter the names of the object modules to be linked by the message: OBJECT
MODULES ?

The user enters each object module file name in response to a prompt ":".

If an object module exists in an account which is different than the current
account, the account code is entered on the same line immediately after the file
name separated by a comma ",". The end of the object module identification
sequence is indicated by entering a null line, i.e., only a carriage return.

The S16 LNK Object Module Linker then performs the required linkage and re-
sponds with the load map if the user so requested, followed by the linkage sum-
mary.

ERROR DIAGNOSIS

During the linkage process, S16LNK detects several error conditions and issues
the following diagnostic messages:

FILE DOES NOT EXIST !
The last object module file specified does not exist,
enter another file name.

OBJECT MODE : x x x x x x NO LONGER EXISTS !
The indicated object module file has been deleted during
linkage, link aborted.

MODULE :xx x x xx NOT REL, CANNOT LINK !
The indicated file is not relocatable, i.e., it was

declared absolute via the ABS assembly directive, link aborted.

! I MULTIPLE ENTRY DEFINITION : x x x X x x IGNORED
More than one entry point was specified, link continues.

CANNOT ACCOMMODATE ANY MORE GLOBALS !!
The global symbol table has overflowed, link aborted.

! | MULTIPLE GLOBAL DEFINITION : x x x X x x IGNORED
A global symbol has been defined more than once, link
continues.

UNSATISFIED EXTERNALS
SSSSSS NNNNNN
The indicated external symbol references could not be
resolved because corresponding global symbols are
not known. NNNNNN is the address of the first word of
the instruction containing the external reference. The
symbol is assigned value zero and the link continues.

ILLEGAL LINKAGE CODE
A non valid linkage code was detected, link aborted.

2.6 LIMITATIONS

Since S1I6LLNK is not a program loader, the linked relocatable load module size
is limited only by available file space, not by memory size of the host computer.

3.1

3.2

3.3

CHAPTER 3
S16SIM SIMULATOR

INTRODUCTION

The Series 1600 Simulator (S16SIM) is a program debugging aid for the Series
1600 Microprocessor System. Its input is either a relocatable or absolute
load module derived from the Series 1600 Symbolic Cross Assembler (S16XAL)
or from the Series 1600 Object Module Linker (S16LNK). The S16SIM Simu-
lator executes each instruction of a Series 1600 program in a simulated micro-
processor environment allowing detailed examination of program flow and dyn-
amic conditions in the simulated system. The S16SIM Simulator is written in
F level Fortran IV and is designed for operation in a 16-bit data word environ-
ment making it compatible with all minicomputers as well as larger computer
systems.

FEATURES

The S16SIM Simulator provides a comprehensive simulation facility for debugging
and testing Series 1600 programs before they are executed on an actual actual
microprocessor. It provides the following major features:

Simulation of all Series 1600 instructions
Simulation of full 65K memory

Simulation of I/O via data files

Simulation of external interrupts

Simulation of external branch conditions

Simulation of TTY I/0 via interactive terminal device
Execution in run or step mode

Access to all registers and memory locations

Trap or breakpoint on register or memory activity
Trace or monitor registers or memory activity
Simulate varying memory configurations and speeds
Display actual program execution time

Determine actual stack depth used

OPERATION

The user communicates interactively with the S16SIM Simulator using a vocabulary
of commands which control the simulation environment and program execution.
The user can inspect, change, or monitor microprocessor registers and bus ad-
dresses; begin and suspend program execution; execute a program one instruction
at a time; simulate real time input/output operations, external interrupts and ex-
ternal conditions and determine actual program execution time for various com-
binations of ROM/RAM/CPU clock rates.

3.4 INITIAL SIMULATOR CONDITIONS

After the S16SIM Simulator is initially loaded and before any user program is
loaded or executed the following conditions exist:

Register 0-7 are set to zero.

Status bits S, Z, C and OV are set to zero.

Interrupts are disabled.

Privileged instruction mode prevails.

Double byte data is disabled.

CPU clock rate is 400 nanoseconds.

External bus accesses are defined at 700 nanoseconds.

RAM memory is assigned to bus addresses 0-167767 and
is initialized at zero.

TTY simulation is assigned to bus addresses 167775-167777.

All tables are initialized.

3.5 SYSTEM LOADING

The S16SIM Simulator provides simulation of the full 65K address capability

of the Series 1600 microprocessor by virtual memory techniques. The user
may relocate and load any number of load modules produced by the Series 1600
Symbolic Cross Ass=mbler (S16XAL) or Object Module Linker (S16 LNK).

Prior to program execution, the user may redefine memory blocks as Read
Only (ROM), modify access times, and change word size. Up to 8 sets of
parameters are accommodated. In addition, the upper and lower limits of the
memory stack area can be defined. The S16SIM Simulator issues various error
messages based on these memory definition values.

During program execution, the S16SIM Simulator generates a pseudo real time
execution clock which is used to schedule simulated input/output and interrupt
activities. The microprocessor cycle time can be varied from its 400 nsec de-
fault value to simulate different system speeds. The memory access times and

the microprocessor cycle time determine if delays are required while waiting

for memory accesses. If the microprocessor cycle time is 400 nsec, then memory
access times from 1-700 nsec produce no wait, from 701-1100 nsec produce 1

wait cycle, 1101-1500 nsec produce 2 wait cycles, etc.

3.6 CONTROL COMMAND SEQUENCE

After program load and environment definition, the program can be executed or
single-stepped. Appropriate commands may be entered to display registers or
memory locations; search memory for bit patterns; or modify registers or mem-
ory. A table is kept of the last 10 program execution addresses in order to allow
the user to retrace program flow. When the simulator is ready for input commands
the message "ENTER COMMAND" is displayed; after the programmer has com-
pleted his input he may continue simulation with a Continue (C), Step (S), or
Execute (E). The C will remain in either the Step or Execute mode while the S

and E will reset the mode.

3.7

3.8

3.9

When in the execute mode the simulation may be interrupted by depressing the
"Break" key on the console.

TRAPS AND TRACES

The S16SIM Simulator provides program monitoring capability on CPU registers
0-7 and on any bus address. A trace provides a dynamic display of activities
when specified conditions are met. A trap provides a suspension of program
execution, i.e., a breakpoint, when specified conditions are met. Since register
7 serves as the CPU program counter, a trap on register 7 serves as a program
trap or breakpoint and a trace on register 7 serves as a program flow trace. A
memory address trap on a specific address may also serve as a breakpoint when
a memory address is accessed during execution. Both traps and traces are in-
spected after the instruction is executed.

INPUT/OUTPUT AND INTERRUPT SIMULATION

S16SIM providesfor simulation of up to eight input/output devices and up to eight
ext ernal interrupts. These activities are controlled by tables which specify when
such events are to occur relative to real execution time. During program simu-
lation, execution time is accumulated and used to schedule 1/O operations and
interrupts. This scheduling is relative to zero time, i.e., the start of program
execution.

Interrupts are scheduled by defining the start time and the repitition rate. Input/
output simulation is provided for through use of data register and status register
tables. If a polled or sensed device is to be simulated, it is defined by corres-
ponding entries in both data and status register tables. The status register table
defines when and how a device becomes ready, while the data register table de-
fines the data source or destination. If an interrupt driven device is to be simu-
lated it is defined by entries in the interrupt table and the data register table. The
eight simulated I/O devices correspond to eight data files named: SI65IMOn, where
nis O to 7. If input is to be simulated, the corresponding data file must be cre-
ated by the user beforehand. Output files are created and extended during simula-
tion. When output occurs on a file which already exists, it is deleted and a new file
is created with the same name.

EXTERNAL CONDITION SIMULATION

S16SIM provides for simulation of 16 external sensed conditions. In a real system
configuration four lines derived from the four lower bits of the BEXT instruction
are available at CPU output pins. These signals may be decoded externally to ob-
tain up to 16 test points with the selected one being returned to the CPU for the
branch decision. In order to siriulate these external sensing activities, a 16 posi-
tion table is used to control when each of the possible 16 decodes isto be true or
false. In a manner similar to I/O and interrupt simulation, the external condition
activities are scheduled relative to program execution time accumulated since the
start-of execution. The external conditions are scheduled by defining a start time
and with what repetition rate they are to occur. In addition, the logical condition
of individual external conditions when active or ready may be specified as true

(high) or false (low). An external condition not defined by a table entry always
results in a false evaluation.

3.10 TELETYPE SIMULATION

The input/output of ASCII characters from and to an ASR-33 teletype machine or
equivalent is simulated without timing via bus addresses 167774-167777. The
TTY is simulated during program execution by the user terminal which functions
in a character by character mode. All other terminal activities are record,
i.e., line oriented.

Bus addresses 167774 and 167776 simulate the TTY keyboard and printer status
registers respectively. Input from either of these addresses always returns
000001, indicating device ready. Bus address 167775 simulates the TTY keyboard
data buffer register while bus address 167777 simulates the TTY printer data
buffer register. Data input from the TTY is always 7 bit ASCII and data output

to the TTY must always be 7 bit ASCII. Note that character literal data generated
by the S16XAL assembler is 7 bit ASCII compatible with TTY data.

3.11 €OMMAND STRING FORMAT

S16SIM interactive command strings must comform to a format which always
contains a keyword or verb and seven elements which may be optional depending
on the nature of the command verb. The general command string format is:

VERB, n;e1, e2, €3, €4, esy

The indicated element separators, i.e., commas and semicolon, must be used
as shown. Command strings are limited in length to 60 characters and must be
complete on one line.

S16SIM recognizes a set of control commands which are entered on the terminal
keyboard in response to the "ENTER COMMAND" display. If a command is entered
which cannot be recognized, a question mark (?) is displayed under the question-
able area of the command and "ENTER COMMAND" is again displayed.

In the following descriptions, required command string elements are underlined,
optional elements are not underlined and J/ represents a carriage return. Com-
mand elements to the right of the semicolon (;) may be symbols from a S1I6XAL
assembly, literals or expressions composed of symbols and literals.

Expression operators may be addition (+) and subtraction (=). Command elements
indicated by n which are to the left of the semicolon (;) must be literals. Literals
may be octal, decimal, hexadecimal, or ASCII and are expressed as follows:

3.12

OCTAL

DECIMAL

8000000 (Default Radix)

s = optional +or -, +assumed

d=0-7
@00000 = (to 177777

- s.ddddd

. =decithal indicator

ddddd = -32768 to +37767

HEXADECIMAL - sX'hhhh'

s = optional +or -, +assumed
X' ' =hexadecimal indicator

ASCI -

‘hhhh = 0 to FFFF

lcci or "CCH

'or" = delimiters
¢ - any ASCII character

One or two characters are packed into each 16 bit word.
If one character is specified (''c" or 'c') it is placed in
the low order byte of the word with zeros in the high

order byte.

If two characteis are specified ("ab" or 'ab') the first
(a) is placed in the low order byte and the second (b)
is placed in the high order byte.

In the following descriptions "ENTER COMMAND" and ":" serve as user
prompts, i.e., the user must respond with a keyboard entry. After each com-
mand action is completed by S16SIM, the user is again prompted.

LOADING AND SYSTEM PARAMETER DEFINITIONS

3.12.1

3.12.2

Load Binary Program

ENTER COMMAND

: LOAD, n J

ENTER BINARY FILE NAME,
ACCOUNT

: name, account)

Set Data Display Radix

ENTER COMMAND
:RADX, n)

Load indicated S16XAL generated binary
program file at address n, if n is not
specified the program will be loaded at
the assembly base address. If the file
exists in the current account, the account
may be omitted. Any number of binary
program files may be loaded.

Octal radix = 8, decimal radix = 10,
ASCII = 0, hexadecimal radix = 16. If no

radix is specified, octal is used.

3.12.3 Set Time Limit

:TLIM, t J Set program execution time limit of t
microseconds. Program execution will
be suspended after t microseconds have
been accumulated. If t is not specified,

- the time limit is removed.

3.12.4 Display / Modify CPU Clock Rate
ENTER COMMAND

:CLK
CLK < nnnn:Nsec If nnn is entered the Clock rate will be
‘nnnny changed. If only a carriage return is entered

the clock rate will not be changed.

3.12.5 Define Memory

ENTER COMMAND
:RAM, n ; addl, addh, t, b, f y, Define a Read/Write Memory Block.

n Position in the memory table for this entry.
If not specified, the memory definition is
added to the end of the table until eight
(0-7) definitions have been accumulated.

If more than eight memory definitions are
specified, the most recent is replaced.

addl Low bus address assigned to memory
segment n.

addh High bus address assigned to memory

© segment n.

t Memory access time in nanoseconds. If
not specified, the current CPU clock rate
is used.

f Fill mode, if word size is less than 16 bits.

f specifies how data is read out of memory.
If f is not specified, mode 0 is assumed.

0 - right justified, 0's left fill.
1 - right justified, 1's left fill.
2 - right justified, sign bit extension.
3 - left justified, o's right fill.
4 - left justified, 1's right fill.

.13

3.12.6

3.12.7

3.12.8

3.12.9

3.12.10

Remove Memory Definition

ENTER COMMAND
:RAM, n L

or
ENTER COMMAND
:ROM, n Ly

In the above command strings if n is specified, the corresponding mem -
ory definition table entry will be removed. If n is not specified all en-

tries will be removed.

Display Memory Blocks

ENTER COMMAND
: DMB ‘/

Set Stack Limits

ENTER COMMAND
: SLIM ; addl, addh J

Remove Stack Limits

ENTER COMMAND
: SLIM J

Display Maximum Stack Used

ENTER COMMAND
: DMXS J
MAX STACK =XXXXXX .

BASIC CONTROL COMMANDS

3.13.1

ENTER COMMAND
: E ; addri, addrf J

The memory block table will be dis-
played with all associated definitions.

Set the lower stack limit to address add 1 and
the upper stack limit to address addh.
Program execution is suspended if the

stack pointer (R6) exceeds these limits.

Remove stack limits.

X X X X X X is the maximum value that the
stack pointer reached during execution.

Execute a program beginning at location
addri and suspend execution when addrf is
reached. If no addri is specified, execution
begins using the current value of the program
counter (register 7). If no addrf is specified,
execution continues until: a HALT instruction
is executed, a "BREAK" interrupt is issued
by the user via the terminal keyboard, the
execution time limit is exceeded, or a trap
condition is reached.

3.13.2

3.13.3

3.13.4

3.13.5

3.13.6

- 3.13.7

Execute and Display Registers

ENTER COMMAND
: EDR ; addri, addrf',

Step

ENTER COMMAND
: §_ ; addr Ly

Continuz

ENTER COMMAND
: C /.
¥

Exit
ENTER COMMAND
X,

¥

Keyboard Interrupt

"BREAK"

Display Elapsed Time

ENTER COMMAND
: DET

Same as above, except the registers are
displayed after each instruction is exe-
cuted.

Step (one instruction at a time) a program
beginning at location addr. If no addr is
specified, the program is stepped using
the current value of the program counter
(register 7).

Continue program execution from current
location. C is used when in STEP mode,
after a TRAP or after a "HLT" instruction.

Exit from S16SIM to the operating system
Monitor.

One depression of the "BREAK' Key gener -
ates an interrupt to the S16SIM executive.
This interrupt can be used during simulation
to suspend program execution or to suspend
extended terminal outputs requested by DA
or SA commands. If the interrupt is issued
during program execution, "BREAK" will be
displayed followed by the ENTER COMMAND
request. If the interrupt is issued during a
non execution activity, the activity will be
suspended and the ENTER COMMAND re-
quest will be displayed.

Display program execution time in micro=
seconds.

3.13.8

3.13.9

3.13.10

3.13.11

3.13.12

Display Registers

ENTER COMMAND
: DR

Display Addresses

ENTER COMMAND
: DA ; addrl, addrh/

Search Addresses

ENTER COMMAND

Display the current contents of: Registers
0-7; status register bits S, Z, C, OV;
INTFF and NONINT.

Display the current contents of bus locations
addr1 through addrh inclusive. If addrl

and addrh are not specified all bus locations
are displayed.

: SA ; addrl, addr2, value, mask Search bus locations addr1 through

Initialize Addresses

ENTER COMMAND

-addr2 inclusive for value using mask to "and"
out corresponding bits. If value and/or
mask are not specified, 0 and 177777 are
used.

: TA, addrl, addr2, value, mask Initialize bus locations addrl through

Display/Modify Addresses

ENTER COMMAND
* A addry

nonnnn = nonnnn
mnnnnn,

addr2 inclusive using value and mask to
set bits. If value and/or mask are not
specified 0 and 177777 are used.

Open bus address addr for display and
modification.

If no ; addr is specified, address O is opened.
if the contents of the currently open address
is to be changed, the new value is entered
followed by optional "x" and a carriage re-
turn. If no change is to be made, only
optional "x" and a carriage return is entered.
The character "x" represents either / or +
and —-. These characters are used to indi-
cate if the next address (/ or +) or the pre-
vious address (=) is to be opened after the
current location is closed. If no "x" is
specified the current location is closed.

3.13.13 Display/Modify Registers

ENTER COMMAND

:R, n Y, Open registers n (0-7) for display and
Rn = nnnnnn modification. If no n is specified, RO
. nnnnn Y is opened. If the contents of the currently

open register is to be changed, the new
value is entered followed by optional "x"
and a carriage return. If no change is to be
made, only optional "x'' and a carriage re-
turn is entered. The character "x'" repre-
sents either / or +and —. These charac-
ters are used to indicate if the next register
(/ or 1) or the previcus register (=) is to
be opened after the current register is

closed.
3.13.14 Display/Modify Status Register
ENTER COMMAND
¢+ SR Open status register S, Z, C, OV bits for
e display and modification.

S=N After the current value of each bit is displayed
'n (N), a new value (n =0 or 1) may be entered.
Z=N If no change is to be made, only a carriage
'n return is entered.
C=N
:n

C=N
'n
Ov=N
'n

3.13.15 Branch Destination Modification

ENTER COMMAND
: MB ; addrl, addr2 Y/ Modify branch instruction at addrl and
addrl + 1 for destination addr2.

3.13.16 Jump Destination Modification

ENTER COMMAND
: MJ ; addrl, addr2 ” Modify jump instruction at addrl, addr +1
and addrl + 2 for destination addr2.

3.13.17 Display Symbols

ENTER COMMAND
: DSYM J Display the current symbol table,

3.14

3.13.18 Display Previous Addresses

ENTER COMMAND
: DPA j
’j

3.13.19 Clear Previous Addresses

ENTER COMMAND
:CPA

3.13.20 Set Software Interrupt Vector

ENTER COMMAND
: §1_N_ ; addr 1

TRAP/TRACE COMMANDS

3.14.1 Memory Trap or Trace

ENTER COMMAND

Display the 10 most recent program
counter (R7) values.

Clears the 10 most recent program counter
(R7) values.

Specify SIN (software interrupt) vector ad-
dress. If a SIN is executed and no vector
address is specified, the instruction is exe-
cuted as a NOP. The current vector can be
deactivated by entering only the command.

:MT, n;addr, mode, f, v, m/ Set memory address trap or trace.

n=0-7

addr

mode =0
1
2
3

f

v

m

MT number; if not specified each MT will be
accumulated until MT 7 has been specified.
Subsequent MT entries will then be accumu-
lated by replacing the current MT 7 entry.

address at which a trap (breakpoint) is to be
set or which is to be traced.

trap when addr is referenced. (Default con-
dition)

trace when addr is referenced.

trap when contents of addr are changed.

trace when contents of addr are changed.

frequency of occurence, i.e., the number of
times the specified condition will be satisfied
before the trap or trace is activated. De-
fault value 1.

value of contents of addr which will activate
trap or trace. Default, unconditional trap
or trace.

Mask used to extract a value to be compared
with V. Default value 177777.

3.14.2

3.14.3

3.14.4

3.14.5

3.14.6

Register Trap or Trace

ENTER COMMAND

:RT, n; mode, f, v, m) Set register trap or trace.
n=0-7 Register number.
mode = 0 trap when register n is referenced. (Default
condition)

1 trace when register n is referenced.
2 trap when contents of register n are changed.
3 trace when contents of register n are changed.

f frequency of occurrence, i.e., the number of

times the specified condition will be satisfied
before the trap or trace is activated. De-
fault value 1.

v value of register n which will activate trap
or trace. Default, unconditional trap or
trace.

m mask used to extract a quantity to be com-

pared with v. Default, 0177777.

Remove Register Trap or Trace

ENTER COMMAND

:RT, n) Remove Register n trap or trace. If n is not
specified, all register traps or traces are
removed.

Remove Memory Trap or Trace

ENTER COMMAND
:MT, n J : Remove memory address trap or trace n.
: If n is not specified, all memory address
traps or traces are removed.

Display Register Traps or Traces

ENTER COMMAND

:DRT, n J Display register trap or trace table entry n.
If n is not specified all entries in the table
are displayed.

Display Memory Traps or Traces

ENTER COMMAND

:DMT, n J Display memory address trap or trace table
entry n. If n is not specified all entries in
the table are displayed.

3.15 INPUT/OUTPUT COMMANDS

3.15.1

3.15.2

3.15.3

3.15.4

Define 1/O Buffer Register

ENTER DOMMAND
:IOBR, n;addr, d »

n

addr

Define an I/O buffer register.

Entry in buffer register table. If not speci-
fied the buffer register is added to the end
of the table until eight (0-7) definitions have
been accumulated. If more than eight buffer
registers are defined, the most recent is
replaced.

Buffer register bus address.

The direction of data transfer, 0 = output,
1 =input. If not specified output is assumed.

Remove I/0 Buffer Register Definition

ENTER COMMAND
:IOBR, n J

Remove buffer register definition n. If n is
not specified, all buffer register definitions
are removed.

Display I/O Buffer Register Table

ENTER COMMAND
:DIOB L/

Define I/O Status Register

ENTER COMMAND
:IOSR, n;addr, r,time, rate’/

n

addr

time

rate

Display the 1/O Buffer Register Table.

Define an 1I/0O status register.

Entry in status register table. If not specified
the status register is added to the end of the
table until eight (0-7) definitions have been
accumulated. If more than eight status reg-
isters are defined the most recent is replaced.

Status register bus address.

The contents of the status register when ready.
No ready is the complement of r. If r is not
specified, zero is used.

Time of the initial ready state in microseconds.
If not specified the status register will become
ready after the first instruction is executed.

Rate at which the status register subsequently
becomes ready in microseconds after (time).
If not specified the status register will ready
after the next instruction. If rate is equal to

zero the status register will ready only once
(time).

3.15.5 Removal I/O Status Register Definition

ENTER COMMAND
:IOSR, n /

Remove status register definition n. If n
is not specified, all buffer register defini-
tions are removed.

3.15.6 Display I/0 Status Register Table

ENTER COMMAND
:DIOS ,
4

3.15.7 Define Interrupt

ENTER COMMAND
: E\]’__T, n;addr, time, rate /

n

addr

time

rate

3.15.8 Display Interrupt Table

ENTER COMMAND
: DINT 4

Y,
3.15.9 Remove Interrupt Definition

ENTER COMMAND
:INT, ny

Display I/O Status Register Table.

Define an interrupt.

Entry in interrupt table. If not specified,
the interrupt definition is added to the end

of the table until eight (0-7) definitions have
been accumulated. If more than eight in-
terrupt definitions are specified, the most
recent is replaced. The position in the table
represents the relative interrupt priority,
i.e., 0-7 with 7 having the highest priority.

Interrupt vector address.

Time of the initial occurrence of interrupt
in microseconds. If not specified the in-
terrupt will occur immediately after the ex-
ecution of the first instruction which enables
interrupts.

Time of interrupt re-occurrence in micro-
seconds. If not specified the interrupt will
occur at the maximum rate possible, i.e.,
after every instruction which enables in-
terrupt. If rate is equal to zero the in-
terrupt will occur only once at (time).

Display Interrupt Table.

Remove interrupt definition n. If n is not
specified, all interrupt definitions are re-
moved.

3.16 EXTERNAL CONDITION COMMANDS

3.16.1 Define External Condition

ENTER COMMAND
:EXT, n;ext, time, rate/

n

time

rate

Define an external condition.

External condition (0-15) which corresponds
with an appropriate BEXT instruction. Ifn
is not specified, each EXT definition is ac-
cumulated starting with EXTO until EXT 15
has been defined. Additional definitions
will then replace EXT 15.

The logical condition of the external condi-
tion when ready, 0 = false, 1 =true. When
not ready the external condition is in the
complement condition.

Time of the initial ready state in micro-
seconds. If not specified, the external con-
dition will become ready after the first in-
struction is executed.

Rate at which the external condition sub-
sequently becomes ready in microseconds
after (time). If not specified the external
condition will remain ready. If rate is
equal to zero, the external condition will
ready only once at (time).

3.16.2 Remove External Condition Definition

ENTER COMMAND
:EXT,n /

.3.16.3

Remove external condition definition n. . If
n is not specified, all external condition
definitions are removed.

Display External Conditions Table

ENTER COMMAND
»

Display the External Condition Table.

3.17

INFORMATIVE MESSAGES

During program debugging and simulation using S16SIM, certain conditions may occur
which cause one or more of the following messages to be displayed on the terminal:

UNDEF BUS ADDR =xxxxXxxXPC=YYYYYY

A reference to an undefined bus address has been detected. Program
execution is suspended.

ILL ROM WRITE BUS ADDR =x x xx x x BUS DATA = YYYYYY PC = Z7Z777Z

An attempt to write into a bus. address defined as read only memory has
been detected. Program execution is suspended.

INVALID ADDRESS, LOAD ABORTED

A program load resulted in reference to an undefined memory address.
The load is terminated at that address.

"HLT" AT XXX XX X
A halt instruction has been executed, program execution is suspended.

"BREAK"

The "BREAK" Key on the user terminal was depressed during program
execution. Program execution is suspended.

REGn TRAP CONTENTS =xxxxxx PC=YYYYYY

REGn TRAC CONTENTS =xxxxxx PC=YYYYYY
A reference to a CPU register which has been specified in the register
trace and trap table has been detected. A trace allows program execution
to continue, while a trap suspends program execution.

MEM ADDR TRAP n AT x x X x XX DATA = YYYYYY PC =ZZZZ77Z

MEM ADDR TRACn AT xxxxxx DATA=YYYYYY PC=7Z7ZZZZ7Z7Z
A reference to a memory address which has been specified in the memory

address trap and trace table has been detected. A trace allows program
execution to continue, while a trap suspends program execution.

"SDBD'" PRECEDES NON DBL BYTE DATA INSTR, PC=Xx XXX XX

The double byte data flip flop was set during execution of a non double
byte data instruction. The flip flop is cleared and program execution
continues.

STAK LIMIT VIOLATIONy PC=xxxxXX SP=xXXXXX

The stack pointer, R6, has exceeded the currently specified stack
limits. Program execution is suspended.

"TIME LIMIT" AFTER xx x X X X X USEC

The user specified simulated execution time limit has been exceeded.
Program execution is suspended.

EIS & DIS SET ON JSR OR J INSTR AT x x x x x X IGNORED.
Both interrupt enable and disable bits were detected set during execution

of a JSR or J instruction. Interrupts are unchanged and program execution
continues.

CANNOT RELOCATE ABS BINARY FILE, LOAD ABORTED

The user has requested load relocation on a binary file generated by an
absolute assembly.

DEVICE DATA EXHAUSTED AFTER n INPUTS BUS =xxxxxx PC=YYYYYY

More data has been requested from a simulated input device than the
device data file contains. Program execution is suspended.

BUS ADDRx x x x X Xx CONFLICT

An attempt to redefine a bus- address which is already defined. The
current bus address definition is not affected.

MEMORY BLOCK FROM x x x x X x TO YYYYYY CONFLICTS WITH PREVIOUS DEFINITION

An attempt to redefine a memory block which is already defined. The
current memory block definition is not changed.

DATA WORD SIZE, ADDR =xxxxXx X, DATA =YYYYYY, PC=Z7ZZZ7Z7Z7Z7

An attempt to write into memory with data which is greater in magnitude
than the defined memory word size. Program execution is suspended.

OUTPUT TO TTY OF NON ASCII CHAR xxxxxx PC=YYYYYY

An output to the simulated teletype at bus address 177777 of a non
ASCII character has been detected. The character is replaced by an
ASCII blank and program execution continues.

INPUT FROM TTY OF NON ASCII CHAR xxxxxX PC=YYYYYY
A non ASCII character has been received from the simulated teletype
at bus address 167775. The character is replaced by an ASCII blank
and program execution continues.

OUTPUT TO INPUT BUFFER REGxxx xxx BUS DATA = YYYYYY PC=7ZZZ7Z7Z7Z

An output to a buss address defined as a simulated device input buffer
register has been de. acted. Program execution is suspended.

INPUT FROM OUTPUT BUFFER REGx-xxxxx PC=YYYYYY

An input from a buss address defined as a simulated device output buffer
register has been detected. Program execution is suspended.

4.1

4.2

4.3

4.4

4.5

CHAPTER 4

S16XRF CONCORDANCE (XREF) GENERATOR

INTRODUCTION

The Series 1600 Concordance Generator program (S16XRF) provides the user
with a concordance or cross reference listing of Series 1600 assembly language
programs. A cross reference listing consists of program statement symbols
and all references to each symbol. Cross reference listings are useful when
debugging and modifying large programs.

OPERATION

S16 XRF produces a symbol cross reference listing of Series 1600 assembly
language source program by reading the source file and noting all symbols and
references. A listing is then produced which indicates each symbol, the line
number on which each symbol is defined and all references to each symbol by
ascending line number. The symbols are listed in alphabetical order down the
page while the line numbers of all references are listed across the page.

INTERACTIVE DIALOGUE

Upon initial startup, S16XRF identifies the version in use and then requests
identification of the assembly language source file for which the cross reference
listing is to be produced by displaying: SOURCE FILE, ACCNT? The user must
then enter the name of an appropriate file followed by a comma and the file ac-
count or user code. If the file exists in the current account, the comma and ac-
count may be omitted. Next, the user is requested to specify a listing file by the
message: LIST FILE? If the user enters a file name, the symbol cross refer-
ence listing will be output to the named file. If no file is named, i.e., only a
carriage return is entered, the listing will be output on the user's terminal.

ERROR MESSAGES

If the named source file does not exist as specified, the message "FILE DOES
NOT EXIST!" is displayed and another source file is requested.

If the named source file contains more symbols than can be assommodated by the
version of SI6XRF in use, the message "TOO MANY SYMBOLS AT LINE # nnnn!"
is displayed. In this case the cross reference listing will not contain symbol
references on or after the indicated line number.

LISTING FORMAT

The symbol cross reference listing which is produced by S16XRF contains
symbols in alphabetical order and references to each symbol in numerical order
as follows:

4.5

SYMBOL LINE # REFERENCES

MAX 25 35 89 602 702 703
NUMBER 30 208

QTY 51 2 3 201

v 98 95 205 208 352
LIMITATIONS

S16XRF-1 (Version 1) can accommodate 300 symbols and 1200 symbol refer-
ences. These limitations are related to the size of the memory available on
the particular host computer in use.

5.1

5.2

5.3

CHAPTER 5

S16BPT BINARY PAPER TAPE GENERATOR

INTRODUCTION

The Series 1600 Binary Paper Tape Generator program (S16BPT) is used to

punch on paper tape an object module file produced by the Series 1600

Symbolic Cross Assembler (S16XAL) or a load module file produced by the Series
1600 Object Module Linker (SI6LNK). A paper tape is required when a program
which has been assembled and/or linked on a host computer system is to be
loaded and executed on a Series 1600 microprocessor system. The format of the
tape produced is compatible with the Series 1600 Relocating Linking Loader,

OPERATION

Upon initial startup (via appropriate host system Run or Execute command)
S16BPT identifies the current version in use and requests object file identification
by the message: "ENTER BINARY FILE NAME, ACCNT". The user must enter
the name of an appropriate Series 1600 binary file followed by a comma and the
file's account identification. On many systems if the file exists in the current
account, the comma and account may be omitted. Next, the user is requested

to ready the paper tape punch and acknowledge when ready. When the paper tape
punching is complete, the user is requested to-enter another file to be punched;
if only a carriage return is entered, control is returned to the host computer
operating system monitor.

ERROR MESSAGES

Several error conditions are detected by S16BPT and are reported to the user by
the following messages:

FILE DOES NOT EXIST!! - the named object file does not exist, enter another
file name.

INVALID OBJECT CODE SEQUENCE, TAPE ABORTED!! - the named object file
contains erroneous or invalid object data, tape aborted.

6.1

6.2

6.3

CHAPTER 6

S16RTG ROM TAPE GENERATOR

INTRODUCTION

The Series 1600 ROM Tape Generator program (S16RIG) produces data
from which Read Only Memories for the CP-1600 microprocessor are
fabricated. A load module produced by the Series 1600 Cross Assembler

(S16XAL) or the Series 1600 Object Module Linker (S16LNK) is converted

to data patterns which are input to General Instrument Corporation's auto-
mated ROM manufacturing facility for processing.

OPERATION

Upon initial startup (via appropriate host system RUN or EXECUTE
command), S16RTG identifie$ the current version in use and requests

load module identification by displaying"'LOAD MODULE NAME, ACCT?".
The user must enter the file name of the load module which is to be
placed on a ROM followed by a comma and the file's account identifica-
tion. On many host systems, if the file exists in the current account,

the comma and account identification may be omitted. Next, the user

is requested to enter a program relocation address by the message:
"RELOCATION ADDRESS?". S16RTG includes a program relocation facili-
ty so that the load module need not be assembled at the actual ROM ad-
dresses. The user is next requested to specify a name for the ROM

data pattern file which is to be produced by the display: "ROM PATTERN
FILE NAME?". The user must enter a suitable file name of one to eight
characters, with the first alphabetic (A-Z) and the rest alphanumeric
(A-Z, 0-9). S16RTG produces a EBCDIC or ASCII sequential ROM data
pattern file of 129 eighty character records which may be transferred to
punched cards, magnetic tape or paper tape for transmittal to General
Instrument Corporation for ROM processing. Next, the user is requested
to enter a ROM pattern number by the message: "ROM PATTERN
NUMBER?". This three digit number is used to identify the ROM patterns
during processing and must be obtained from General Instrument Corporation
prior to producing the ROM pattern file. Finally, the user is requested to
specify the particular ROM base address by the message: "ROM BASE
ADDRESS?". This address is the one at which S16RTG will commence
producing data patterns and must be equal to or greater than the reloca-
tion address and have the three least significant octal digits equal to 000.
The 512x10 bit ROMs are assigned addresses xxx000 - xxx777. When

file generation is complete, another load module file name is requested.

If a name is entered the process is repeated, if, however only a carriage
return is entered, control is returned to the host computer operating system
monitor. :

ERROR MESSAGES

Several error conditions are detected by S16RTG and are reported to the

user by the following messages:

STRING ERRORI!! - The load module file name, account specification
contains an error.

FILE DOES NOT EXIST!! - The specified file does not exist.

FILE NAME CONFLICT!! - The specified ROM pattern file name is

the same as the specified load module file name.

NON SEQUENTIAL ADDRESSING IN ROM, ZEROS USED IN UNDEFINED
ADDRESSES =~ The load module contains a RES or an ORG assembly
directive, resulting in unspecified contents for ROM locations. It is
recommended that the user use the ZERO assembly directive for speci-
fying unused ROM locations.

LOAD MODULE CONTAINS LINKAGE INFORMATION, ROM ABORTED!! -
The specified load module was not a load module, but probably an object
module.

ABS LOAD MODULE, CANNOT RELOCATE, ROM ABORTED!! - The
user has requested relocation of an ABS assembly load module.

APPENDIX A

SAMPLE S16XAL ASSEMBLY

The listing shows a sample assembly performed by the S16 XA L
Symbolic Cross Assembler. The program is a generalized code
conversion utility routine. A number of intentional errors have
been incorporated into the source program to show the error
diagnostics of the SI6XAL Assembler.

INASC al S16XAL VERy 01E 12119 JAN 30,175 PAGE 1

-
e
w
e
e
«e

SOURCE FILE = INASCSR
OBJECT FILE = INASCEB

®e ®e e B¢ S

ikl
REL INASE
HEAD 'e¢9 ASCII 76 BINARY CONVERSION ¢!
PAGE

VoeeNOO & W

INASC Gl Slexal VER, QtE 12319 JAN 30,175 PAGE
se ASCII TB BINARY CONVERSION e

10 IENRNY]
11 ; .
12 i ASCII TO BINARY CONVERSION ROUTINE
13 ;
14 : HEXBIN » HEXADECIMAL ASCII TO BINARY
15 i INTBIN = INTEGER ASCJII T@ BINARY
16 i BCTBIN = BCTAL ASCII TO BINARY
37 H BINBIN = BINARY ASCII T® BINARY
18 H
19 i CALLING SEQUENCEL
20 ;
a1 H R1 = INPUT FIELD BASE ADDRESS
a2 i R2 wm # CHARACTERS T@ BE CONVERTED
as i JSR R5,NAME
24 ;
as ; RO = CONVERTED BINARY VALUE
26 ; RL = POINTER T® END BF CONVERSION
¥ i R2 = R4 DESTROYED
as i
29 i CONVERSIEBN TERMINATES ON FIRST NON NUMERIC
30 5 CHARARACTER ENCOAUNTEREDy LEADING SBACES ARE
31 i IGNOREDs LEADING + OR = ARE WANDLED?
32 ;
33 IRNRER|
¥» L fE) LABEL !
34 EGU 0
3% R1 EGU 1
36 R2 EQU 2
37 _ R3 EQU 3
3s R4 EGuU 4
39 R5 EQU =]
* 5 {E) SYNTAX !
40 SP EGU
41 PC EQU 7
42 GLOB HEXBIN)INTBIN,OCTBINSBINBIN

43 PAGE

INASC -Gl SleXxAL VER,; 01E 12119 JAN 30,175 PAGE
1o ASCII 7@ BINARY CONVERSIBN s

44 000000 0012874 HEXBIN MVII 16sRé iRADIX 16
000001 ©ogueQ
*¥ M {E) MDEF SYM |
45 000002 CO10UQ B ASC1
000003 000QU1lR
* @ 41) 2 SYNTAX !
»» S {E) SYNTAX , !
w6 000004 001270 INTBIN MVII 10R4 iRADIX 10
000005 000012
*» M 4E) MDEF SYM H
%7 000006 00100GQ B ASCl
0000Q7 000V0E
48 000010 001E74 OCTBIN MVII BsR4 }RADIX 8
000011 000010
» M {E) MDEF 5YM !
#«9 000012 001000 B ASC1
060013 ooouoLe
»x G (1) 2 SYNTAX !
50 000044 00174 BINBIN MVII 2 R4 {RADIX 2
000045 000U0R
»¥» D f(E) DBL DEF !
51 000Cie 000ee3 ASCl MBVR R2:R3
»» 0 {E) DBsL ULEF !
§2 000017 00URe3 ASCl MBVR R2sR3 i# CHRS
53 000020 001165 PSHR RS iSAVE RETWRN
*» U (E) UNDF sYM H
84 00po021 000700 CLRR RO $INIT BIN ACCUN
B85 00002z 000/75%H CLRR RH JINIT STR STRTY FLG
B6 000023 001212 ASC2 MYId R1sR2 iPICK UP CHR
87 000024 00025% TSTR RS iSTR STRT YET ?
58 000025 001ul4 BNZE ASC4 iYES, NO LLDNG GHRS
00026 000UZQ ‘ ’
9 000027 goid/e CMPI ' '2R2 iSPC @
000030 000U40 ‘
60 000031 001004 BEQ ASC7 IYES: BYPASS
V0p032 000UV63 ,
61 000033 001572 CHMP] w1 y)R2 iMINUS ?
000034 000VDH
62 000035 0Qlulée BNEG ASC3 iNB, CHK FOR PLUS
000036 000UVG3
63 000037 000025 DECR RS 3YES, SET MINUS FLG
64 000040 001UUQ B ASC7 i1BYPASS MINUS

000041 0O0UD4
*¥ R {E) REGISTER !

65 000042 000V1Q ASC3 INCR 55 iSET PLUS FLG

66 DO0O43 ovib72 CMPI '#',R2 iPLUS ?
000G#4 000ULD3

67 000045 001004 BEQ ASC7 iYES, BYPASS 1IT
0000ke 000U47

*% § {E) SyYNTAX !

68 000047 001470 ASC4 suBl 06w iSTRIP ASCII MASK
0000S0 00V0VED

69 0000B1 00Q1v13 8M1 ASCF IN INON DIGy, TRMN ENVRT
000082 000U47 '

70 000053 001502 CMP Q21sR2 iCHK FOBR A=F

000054 GLOG2}
71 000055 001005 BLT ASCH iNBT

INASC

¥¥% S
¥ Q
12

U
73

74

75
76

77
78

*»x U
79
80

81
82

- U
83
84

8%
86

*¥%
87
38

*» U
89
90
91
22

¥ G
23
24

¥ U
25
96
97

LY BNV
98

»¥ U
929

190

GI SleXxAlL VER, 0lE
e ASCII TO BINARY CONVERSION e

000056 0QOULOE
{f{E) SyYNTAX

1) % syNTAX
9000587 001570
900060 VOLLZe
{1I) 2 SYNTAX
V0QLel 0010le
000062 0pLL37
000063 001472
00064 000UL7
W00065 000542
000066 00lUlH
900067 0OLL3R
P00C70 001574
000071 OQLwl2
000072 001004
WOpO73 000033
1TE) UNDF ®Tn
Q00074 000I3Y
Q0075 001luuy}
000076 000uvE3
000077 001974
vw00100 OQuuue
V00101 001004
0001902 o0ooule
1E) UNDF 5YH
000103 00034
000104 00100}
000105 000Ul4
0001906 GU1574
000107 000U1Q
900110 C©Olul4
000111 00VOVU3I
fE) UNUF SYHM
000142 000130
000113 001v0}
000114 0VOLUUSB
{E) UNDF SYM
00011% c0op320
V00116 GOOULL
Q00117 0Q0Ve3
000120 001Ub4
000121 00CU76
1) ? SYNTAX
Qop1@2 oupeds
000183 0QIuL3
Q00124 0LOULUY
fE) UNLF B8YM
V00125 u0uU4y
Vop126 ©V1ce7
000127 ooller
k) UNCF SYM
000130 coveve
fE) UNDF 5YiM
QU131 0QUL34
00132 00104}
000133 000ulL}

CMPI

BGT
susl

ASCS CMPR
8GE

CMP]
BEQ
SLLC
6C
CMPI
BEQ
SLLC
BC
CMPI
BEQ

sLLC
8cC

ASCe ADDR
ASC7 INCR
DECR
BNZE

!
ASCF INNNTSTR
8PL

NEGR
ASCXIT PULR
ASCl0 PSHR

MOVR

SLLC
BC

12319 JAN 30,175 PAGE
}
!
Q261 ,4R2
!
ASCFIN NON DIGs TRMN CNVYRT
072R2 1ADJ A®F w> 310%15
R4sR2 ICMPR DIG & # BASE
ASCF IN INBON DIGy TRMN CNVRT
10sR4 iCHK FBR DEC CNXRT
ASCL1O
!
RO IMULT ACGUM BY 2
ASCF IN
Qs R4 iCHK FOBR BASE 2
ASG6E
!
ROas2 IMULT ACCUM mY 8
ASCF IN
82 R4 iCHK FOBR BASE 8
ASC6
o
RO JMULT ACCUM BY 16
ASCFIN
}
R2sRO iINSRT CURRNT D]IG
R1 $INCR CHR STR PIR
R3 ICHK FOR ALL CHRS CNVRT
ASC2 iNBT, GET NXT CHR
RS JICHK SIGN FLG
ASCXIT iPLUS
!
RO iMINUS
PC IEXIT
R2 iSAVE CURR DIG
. f
ROsRR iMULT ACCUM BY 10
H
ROg2
ASCFIN

INASC

Gl Si1exAl. VEKg 01E

ge ASCI1 7O BINARY CONVERSIAN oo

*» U
101
»» U
192
193

Y
104
»% L
105
106

107
198

109

fE€) UNDF SYM
000134 00042Q
{E) UNDF SYM
000135 00013Q
000136 001041
900137 000V1lH
TE) UNDF SYM
V00140 GUO4%eQ
fE) WNDF SYM
000141 00033Q
000142 001U4}
000143 ©oov2]
000144 (OleeR
900145 001040
000146 000031
000146

SUBR
SLLC
8C

SUBR

SLLC
B8C

PULR
B

END

12119 JAN 30.'75 PAGE

!
R22RO
[

*
RO
ASCF IN

!
R22RO
!
RO
ASCFIN

RE iGET CURR DIG
ASCe i INSRT D16

INASC Gl

ASCFIN Ogo1Re
ASC1 Opogple
ASC2 000923
ASC4 000047
ASCe 000115
BINBIN 000014
INTBIN 000004

PC 000007
R2 oQoooe
R4 000004
SP 000000

21 SYMBELS

C»>» P XXTXTXXTXD

IN
IN
IN
IN
IN
In
IN
(¥
(3¢
B
EQ

38 DIAGNESTIC(S)

SOURCE FILEISAMPLE

S16XAL VER, 01E
9o ASCIIl To BINARY CUNVERSION 4

Lo

URr
LR

UR

23 ERRBR(S)

BINARY FILE}SO

12119 JAN 30,175

ASCXIT 000126
ASCl0 0poi27
ASC3 000042
ASCS 000065
ASE7 0Q011e
HEXBIN 0Q00QO0O
9CTBIN 000010

R1 000001
R3 000003
RS 000005

5 INFORMATIVE(S)

P>V X

IN
IN
IN
IN
IN
IN
IN
EQ
EQ
EQ

G
G

PAGE

UR
UR

6

APPENDIX B

INSTRUCTION SET

REGISTER - REGISTER:

. MNEMONIC | OPERAND | CYCLES| INSTRUCTION . DESCRIP’TION : . . STATUS CHANGE

] .
MOVR ‘| §SS, DDD 6* 0010 SSS DDD . MOVe contents of Register SSS to register DDD. *If DDD is 6 or 7 add 1 to Cycles. | S, Z
TSTR SSS 6* 0010 SSS SSs TeST contents of Register SSS. *If SSS is 6 or 7 add 1 to Cycles. 1S Z
JR | sss | 7 ~]o0010 sss 111 .| Jump to address in Register SSS. (Move address to Register 7). ' 1.8 2
ADDR SSS, DDD | - 6 0011 'SSS DDD |- ADD contents of Register SSS to contents of reglster DDD. Results to DDD ~ -) 'S, Z, C, OV
SUBR | S8S,DDD | 6 |0100 S8SS DDD | SUBtract of Register SSS from contents of register DDD. Results to DDD_ | 8 Z,C, OV
CMPR | Sss, DDD 6 0101 SSS DDD’ CoMPare Register SSS with register DDD by subtraction. - Results not stored. 1.8 Z, Cy, OV
ANDR sss, DDD | 6 [0110 sSS DDD | logical AND contents of Register SSS with contents of register DDD.Results to DDD | S, Z
XORR sss, DDD | 6 = |01i1 7SSS DDD | eXclusive OR contents of Register SSS with contents of register DDD.Resuits to DD} S, Z o
CLRR DDD 6 0111 DDD DDD | CLeaR Register to zero. S, Z]
INCR bbb [6 0000 001 DDD | INCrement contents of Register DDD. Results to DDD Sz
DECR DDD 6 0000 010 DDD DECrement contents of Register DDD.- Results to DDD -5, Z R
COMR DDD 6] 0000 011 DDD_ | one's COMplement contents of Register DDD. Results to DDD s,z
 NEGR_ | DDD 6] 0000 100 DDD | Two's complement contents of Register DDD. Results to DDD 18.2,C, C OV
ADCR DDD 6 0000 101 DDD ADd Carry bit to contents of Register DDD. Resuits to DDD S, Z, C, OV

REGISTER SHIFT Executable only with Register 0, 1, 2, 3.
Shift Right instructions set the S flip-flop with Bit 7 of the result after the instruction.
Add 2 cycles if shift is 2 bits or two bytes.

Shifts are not interruptable. ,
SWAP RR,n> 6 0001 000 NRR N = 0, SWAP bytes of register RR. S equals Bit 7 of results of SWAP. S, Z
e e 8 N =1, SWAP bytes of register RR, then swap them back tooriginal form. S, Z
T sLL RRGn> | 6 0001 001 NRR | N=0. Shift Logical Left one bit, zero to low bit. 8. Z
NN A N - SR RO - | N-=1, Shift Logical Left two bits, zero to low 2 bits. o) . S, Z
RLC RRGn > 6 0001 010 NRR N =0, Rotate Left one bit using Carry bit as bit 16. 182 C
1 1.8 o1 N-=1, Rotate Left two bits using C as bit 17 andQV asbit16. . - |.§,.Z, C, OV
SLLC RRn> 6 0001 O0l1 NRR N =0, Shift Logical Left one bit using C as bit 16, zero to low bit. S, Z, C
L R | N =1, Shift Logical Left two bits using C as bit 17, OV as bit 16, zero to low 2 bits.| 'S, Z, C, OV
SLR RR<n > 6 0001 100 NRR N =0, Shift Logical Right one bit, zero to high bit. s,z
) N T .. Ao e N =1, Shift Logical Right two bits, zero to high two bits. S, Z
SAR RR<n > 6 0001 101 NRR N = 0, Shift Arithmetic Right one bit, sign bit copied to high bit. ' S, 2
8 1 . N = 1, Shift Arithmetic Right two bits, sign bit copied to high bits. S, 2
RRC RRGh > | 6 0001 110 NRR N =0, Rotate Right one bit using Carry as bit 16. T TS, 2, T
1 8 1 - N= 1, Rotate Right two bits using C as bit 16, OV as bit 17. .S8.Z,C, OV |
SARC RR<n > 6 0001 111 NRR N = 0, Shift Arithmetic Right one bit, thru Carry, sign bit cop:ed to high bit. S, Z, C
8 N = 1, Shift Arithmetic Right two bits, thru Carry and OV, sign bit copied to high
2 bits S, Z, C, OV

S

-Bl-

APPENDIX B
INSTRUCTION. SET (continued)

BRANCHES The Branch instructions are Program Counter Relative, i.e., the Fffective Address = PC+Displacement. PPPPPPPPPP is the Nisnlacement.and S
is 0 for +, 1 for —. 1f Memory is greater than 10 bits then the appropriate number of lead bits pppppp will be a part of the Displacement. For a forward
branch an addition is performed; for a backward btanch a ones complement subtraction is performed. Computation performed on PC+2.

‘yNEMONICJ! OPERAND | CYCLES INSTRUCTION DESCRIPTION : STATUS CHANGE -
B | DA 7/9 1000 SO 0000 | Branch unconditional, Program Counter Relative (+1025to -1024)
pepedp. PPPP PP PPPP | ' ' '
NOPP | 7 1000 SO 1000 | NoOPeration, two words
) .ppPPPP . PPPP_ PP PPPP
BC DA 7/9 1000 SO - 0001 Branch on Carry. C=1
BLGT DA ppPPPP PPPP PP PPPP Branch if Logical Greater Than. . C =]
BNC DA 7/9 1000 SO 1001 | Branch en No Carry. C=0 '
BLLT DA pPPPPP_ PPPP _ PP PPPP | Branch if Logical Less Than. C =0
BOV DA 7/9 1000 SO 0010 Branch on OVerflow. OV =1
PPPPPP PPPP PP PPPP
BNOV DA 7/9 1000 SO0 1010 Branch on No OVerflow. OV =0
} pPPPPP PPPP PP PPPP
BPL DA 7/9 1000 SO 0011 Branch on PLus. S =0
.pppPPP PPPP PP PPPP
BMI DA 7/9 1000 SO 1011 Branch on MInus. S -'1
: pPPPPP PPPP . PP PPPP
BZE DA 7/9 1000 SO 0100 Branch on ZEro. Z =1
BEQ DA pPPPPE PPPP PP PPPP | Branch if EQual. Z -1 - .
BNZE DA 7/9 1000 SO 1100 Branch on No ZEro. Z =0
BNEQ DA pPpPPPP PPPP PP PPPP | Branch if Not EQual. Z =0
BLT DA 7/9 1000 SO 0101 Branch if Less Than. SOV =1
prprPP PPPP PP PPPP 4
BGE DA 7/9 1000 SO 1101 Branch if Greater than or Equal. S0V =0
ppprpp PPPP PP PPPP |
BLE DA 7/9 ~ 77 71000 SO 0110 | Branchif Less than or Equal. ZV (S%0V) =1
PrppPP PPPP PP PPPP 1
BGT DA 7/9 ‘ 1000 SO 1110 | Branch if Greater Than. ZV (S%O0V)=0
pppppP PPPP PP PPPP ‘ !
BUSC DA 7/9 77 1000 SO 0111 Branch if Unequal Sign and Carry C¥§ =1
popppp PPPP PP PPPP
BESC DA 7/9 |7 7771000 S8 1111 | Branch if Equal'Sign and Carry C-%S =0’
. |veopep PPPP PP PPRP |]
BEXT DAE 7/9 1000. S1 EEEE | Branch if EXternal condition is True. Field E is externally decoded
‘ to select 1 of 16 conditions. Response is tested for true condition.
pepppp PPPP PP PPPP .

-B2-

APPENDIX B
INSTRUCTION SET _ (continued)

CONTROL
MNEMONIC JOPERAND | CYCLES INSTRUCTION DESCRIPTION STATUS CHANGE
GSWD ‘DD 6 0000 110 ODD Get Status WorD in register DD. Bits 0-3, 8-11 set to 0.
' Bits 4, 12=C;5, 13=0V;6, 14=127;7, 15=8.
NOP <> 6 0000 110 10N No operation. '
SIN <> 6 0000 110 1IN Software Interrupt; pulse to PCIT * pin
RSWD SSS 6 0000 111 SSS Restore Status Word from register SSS; Bit 4 to C. Bit 5 to OV, Bit 6 to Z, S, Z, C, OV
: Bit 7 to S. :
HLT 4 0000 000 000 "HaLT after next instruction is executed. Resume on control start
EIS 4 0000 000 010 Enable Interrupt System. Not Interruptable.
DIS 4 0000 000 011 Disable Interrupt System. Not Interruptable.
TCI 4 0000 000 101 Terminate Current Interrupt. Not Interruptable. .
CLRC 4 0000 000 110 __CLeaR Carry to zero. Not Interruptable. , C
SETC 4 0000 000 111 SET Carry to one. Not Interruptable. . C
JUMP
I DA 12 0000 000 100 Jump to address. ~ Program counter is set to 16 bits of A's. .
11AA AAA A0
~ AAAA AAA AAA
JE DA 12 - 0000 000 100 - Jump to address.” Enable interrupt sys;ein. Program counter is set to
11AA AAA A0l 16 bits of A's.
AAAA AAA AAA ’
JD DA 12 0000 000 100 “Jump to address. Disable interrupt system. Program counter is set
11JAA AAA AlO to 16 bits of A's.
AAAA AAA AAA
JSR BB, DA 12 0000 000 100 Jump and Save Return address (PC+3) in register designatec by 1BB.
BBAA AAA A00 Program counter is set to 16 bits of A's. BB#11
AAAA AAA AAA
JSRE BB, DA 12 0000 000 100 Jump and Save Return and Enable interrupt system. Return (PC+3) is °
| BBAA AAA A0l saved in register IBB. Program counter is set to 16 bits of A's. BB#11
:» AAAA AAA AAA
' ISRD BB, DA 12 0000 000 100 Jump and Save Return and Disable interrupt system. Return (PC+3)
; BBAA AAA A0 is saved in register 1BB. Program counter is set to 16 bits of A's. BBy11
AAAA AAA AAA
L.

B3~

DIRECT ADDRESSED DATA - MEMORY

INSTRUCT’ION SET (continued)

Field aaa aaa is dependeht on the width of memory. 16 bits is maximum for aaaaaa AAAAAAAAAA.

MNEMONIC | OPERAND |CYCLES .INSTRUCTION DESCRIPTION STATUS CHANGE
MVO SSS, A 11 1001 000 SSS MoV Out data from register SSS to address A - A.
aaaaaa AAAA AAA AAA) .) . e
TTMVI A, DDD | 10 s 1010 000 DDD | MoVe In data from address A - A to register DDD.
_— e - aaaaaa AAAA AAA AAA | e e]
ADD A, DDD 10 1011 000 DDD ADD data from address A - A to register DDD. Results to DDD. S, Z, C, OV
aaaaaa AAAA AAA AAA)
SUB ~ |A,DDD | 10 1100 000 DDD | SUBtract data from address A - A from register DDD. Results to DDD. S, Z, C, OV
aaaaaa AAAA AAA AAA | L
 CMP A, SSS |10 1101 000 SSS CoMPare data from address A - A with register SSS by subtraction. S, Z, C, OV
o aaaaaa AAAA AAA AAA Results not stored. .
AND A, DDD 10 -1110 000 - DDD logical AND data from address A - A with register DDD. Results to DDD.|S, Z
aaaaaa AAAA AAA AAA B
T XOR A,DDD ~ | 10 ' " 1111 000 DDD- | eXclusive OR data from address A - A with register DDD. Results to DDD.|S, Z
aaaaaa AAAA AAA AAA

INDIRECT ADDRESSED DATA - REGISTER

MMM Source data is located at the address contained in Register.
MMM = 4, 5 post increment R4 or RS.
MMM = 6 - MVO instruction - post increment R6. PUSH data from Register SSS to the Stack.
Other instructions - pre-decrement R6. PULL data from the Stack to be used as the first operand.

. . \
l MVO@ ! SSS, MMM 9 - 1001 MMM SSS ‘ MoVe Out data from register SSS to the address in register MMM :
i 3 . Note: SSS= MMM =4, 5, 6 or 7 not supported. '
| PSHR SSS 9 ! 1001 110 SSS | PuSH data from Register SSS to the stack. !
haes e i, bemas ~ . : : —_— e - ______‘_...'__.,.A e e emmmimee e e
1 Mvi@ ' MMM, DDD 8% ! 1010 MMM DDD ! MoVe in data to register DDD from address in register MMM. i
ULR DDD 11 1010 110 DDD | PULLI data from the stack to Register DDD. ‘
SR - - ' 1
i '
ADD@ MMM, DDD 8* 1011 MMM DDD (ADD data located at address in register MMM to the contents of register :
e i _ .. . ! DDD. Results to DDD. 1S, 2z, C, OV
| SUB@ MMM, DDD 8* . 1100 MMM DDD | SUBtract data located at address in Reglster MMM from contents of)
j R I Y i register DDD. Results toDDD. ____ . . S 1S Z, C, OV
CMP@ MMM, DDD 8* 1101 MMM SSS ; CoMPare data located at address in Reglster MMM with contents of '
l . N N e _+ _register SSS, by subtraction. Results not stored. 5, 2, C,_OV
i AND@ MMM, DDD 8* { 11100 MMM DDD logical AND contents of register DDD with data located at address in !
%“__‘_ N S _ _ ; __register MMM. Results to DDD. . S, Z
XOR@ MMM, DDD 8*) 1111 MMM DDD | eXclusive OR contents of register DDD with data located at address !
= | | in register MMM. Results to DDD. 'S, Z
J_ *Add 3 to number of cycles if MMM=6. L

-B4-

APPENDIX B
INSTRUCTION SET (continued)

IMMEDIATE DATA - REGISTER" The number of iiiiii bits depends on the memory width, 16 bits is maximum.
ONIC OPERAND CYCLES INSTRUCTION ' , DESCRIPTION — STATUS CHANGEH

MVOI Sss,I 9 i 1001 111 SSs MoVe Qut Immediate data from register SSS to PC+l

T S 1 iiiiii IIIT IIT IIx | (field). -
MVII I,DDD 8 1010 111 DDD MoVe In Immediate data to register DDD from PC+1l

_— S e iiidii IIIT IIXI. IXIX | (field -). . o v
ADDI : I1,DDD 8) 1011 111 DDD ADD Immediate data to contents of reglster 'DDD. : s, 2, ¢, ov
:)) iiiiii IIII III III " Results to DDD.

SUBI I,DDD 8 . 1100 111 DDD | SUBtract Immediate data from contents of register s, 2. C. OV
ST L J.iiiii IIII I1I II1 DDD. Results to DDD. B
CMPI I,sss 8 1101 111 sss. CoMPare Immediate data from contents of register s, 2, C, ov
.) Jiiiiii IIXI III _ III | SS5 by subtraction. Results not stored.)) .

ANDI 1,DDD 8 1110 111 DDD | logical AND Immediate data with contents of s, z

ST S o iiiiii IIlI III IIT register DDD. Results to DDD. T]
XORI I,DDD 8 1111 111 DbD eXclusive OR Immediate data with contents of S, 2
‘ i iiiiii IIII I11 IIT register DDD. Results to DDD.
SDBD [' 4" - 0000 000 001 Set Double Byte Data for the next instruction which must be an
' : . ' external reference instruction. The effective address of the
;‘;f)lﬁrbl;c ;l?;naiss's:n rg‘:ruzs external reference instruction will address the low order data
required to p ropeﬂy generate byte; the address of the high order data byte will be EA+1 if
méchihe code. , register 4, 5or 7 is used. If register 1-3 is used the EA will
o .access the same byte twice resulting in both bytes of data being
the same. Use of modes 0 and 6 are not supported by this instruction

INDIRECT ADDRESSED DOUBLE BYTE DATA - REGISTER

SDBD ' 4 0000 000 - 001 MoVe In double byte data from the address in register MMM to

Mvi@ MMM, DDD 10 v -lo10. - MMM DDD | register DDD. o

SDBD : - 4 000 000 001 | ADD double byte data from the address in register MMM to the S, Z, C, OV

_ADD@ MMM, DDD| 10 | 1011 MMM _DDD | content of register DDD. Results to DDD. .

"~ SDBD 4 ' 0000 000 001 SUBtract double byte data located at address MMM from the S, 2,C, OV

SUB@ ..MMM, DDD} ~ 10 | 1100 MMM DDD | content of register DDD. Results to DDD. L

SDBD ' 4 0000 000 001 CoMPare double byte data located at address in regxster MMM S, Z, C, OV
_CMP@ MMM, DDD 10 o _.....no1- MMM SSS with the content of register SSS by subtraction. Results is not stored. v

SDBD ' 4 0000 000 001 logical AND double byte data located at address in register MMM S, Z

AND@ MMM, DDD| 10 110 MMM __DDD | withthe content of register DDD. Results to DDD.

sbBb | T 1T 4 ' 0000 000 001 eXclusive OR double byte data located at address in register MMM S, 2

XOR@ MMM, DDD| 10 111 MMM DDD with the content of register DDD. Results to DDD.

-BS-

APPENDIX B

INSTRUCTION SET (continued)

IMMEDIATE DOUBLE BYTE DATA - REGISTER Note: The SDBD command is provided by the assembler when the immediate data is greater than the
memory width and requires two bytes.
MVII 1,DDD 14 0000 - 000 001 MoVe In Immediate double byte data to register
: 1010 111 DDD DbD. L's will be low byte and U's upper byte.
XXLL LLL LLL XX = don't care.
XXuu uuu uuu s 3z, C, OV
ADDI1 I,pDD 14 0000 000 001 ADD Immediate double byte data to contents of v &, G
1011 111 DDD register DDD. Results to DDD. L's indicate low
XXLL LLL LLL byte of literal, U's upper byte.
XXUU UUU UUU v s 3. ¢ OV
SUBI I,Dby 14 0000 000 001 SUBtract Immediate double byte data from contents ¢ Gy Co
' 1100 111 DDD of register DDD. Results to DDD. L's indicate
XXLL LLL LLL low byte of literal, U's upper byte.
XXUU UUU UUU 4
CMPI 1,888 14 0000 000 001 CoMPare Immediate double byte data with contents $,2,¢C, 0
1101 111 sss of register SSS by subtraction. Results not
XXLL LLL LLL stored. L's indicate low byte of literal, U's
XXUyu UUU Uuu upper byte. s, z
ANDI I,DDD. 14 0000 000 001 logical AND Immediate double byte data with the ’
1110 111 DDD contents of Register DDD. Results to register
‘XXLL LLL LLL DDD. L's indicate low byte of literal, U's upper
XXuyu UUU OUU byte.: s, 2
XORI 1,DDD 14 0000 000 OO eXclusive OR Immediate double byte data with the ’
1111 111 DDD contents of register DDD. Results to Register
XXLL LLL LLL DDD. L's indicate low byte of literal, U's upper
XXUU 91614} uuu byte.
GLOSSARY OF TERMS -
88§ - :Source Register , MMM - Address Mode %
‘DDD - Destination Register 000 - direct address in location following instruction. !
jn - Number of Shifts . o 001 - indirect address for Register 1 |
RR. - Register to Shift (only 0-3 allowed) 010 - indirect address for Register 2 j
.. AAAAAA - -Memory address for Jump. 011 - indirect address for Register 3
AAAAAAAAAA (new Program Counter) 100 - indirect address for Register 4, post increment
‘| BB - Register to save old PC in for Jump. (Reg = 1BB, 4,5, or 6) 101 - indirect address for Register 5, post increment
S - Sign of address displacement for Branch (PC relative). 110 - indirect address for Register 6, post increment for MVO only .
prpppp PPPPPPPPPP - Address displacement for Branch indirect address for Register 6, pre decrement for all instruc- :
» B PPPppp is dependent on the memory word size. 1. tions except MVO. » :
aaaaaa AAAAAAAAAA - Direct address of data word. 111 - indirect address for Register 7, post increment. !

fiiiit INIHHO
LLLLLLLL: Lower 8 bits of double byte data.
UUUUUUUU Upper 8 bits of double byte data.

word size.

aaaaaa is dependent on the memory word size.
- Immediate data word. iiiiii is dependent on memory

(Immediate data in lecation following instruction.)

APPENDIX C

S16LNK OBJECT MODULE LINKER

SAMPLE DIALOGUE

S16LNK VER. 0O1A

LOAD MODULE ?
: I0CONVRT

MAP ? (Y/N OR F=NAME)
$Y

OBJECT MODULES

¢ I0CNVROB

: INASCOB

: 0UTASCOB

¢t TTYINOB

t TTYOUTOR

H

GI S16LNK VEne 0O1A 10:18 JAN 30,°'75
LOAD MODULE:IOCQONVRT

*k ok
<BASE 000000>
MODULE :CNVRT
GLOBALS
I'OCNVR 000000
<SIZE 000375>
* ok sk ok
<BASE 000375>
MODULE: INASC
GLOBALS
HEXBIN 000375
INTBIN 000401
OCTBIN 000405
BINBIN 000411
<SIZE 000146>
* ok k ok
<BASE 000543>
MODULE:QOUTASC
GLOBALS
HEXASC 000543
INTASC 000547
0OCTASC 000555
BINASC 000561
<SIZE 000246>
* ok ok k
<BASE 001011>
MODULESTTYIN
GLOBALS
TTYIN 001011
<SIZE 000223>
e ok 3k
<RASE 001234>
MODULEsTTYOUT
GLOBALS
TTYOUT 001234
TYPCHR 001257
TYPR2 001270
<SIZE 000053>

LINKAGE SUMMARY:
INITIAL ADDRESS 000000
FINAL ADDRESS 001306
ENTRY ADDRESS 000000

APPENDIX D

ASCII CHARACTER CODES

Char 7 Bit Octal Code _ Char 7 Bit Octal Code
Space 040 @ 100
! 041 A 101
" 042 B 102
043 C 103
$ 044 D 104
% 045 E 105
& 046 F 106
' 047 G 107
(050 H 110
) 051 I 111
* 052] 112
+ 053 K 113
, 054 L 114
- 055 M 115
056 N 116
/ 057 o) 117
0 060 P. '20
1 061 Q 121
2 062 R 122
3 063 S 123
4 064 T 124
5 065 U 125
6 066 A% 126
7 067 w 127
8 070 X 130
9 071 Y 131
: 072 Z 132
; 073 C 133
074 \ 134
= 075 J 135
076 1 136
? 077 - 137

-D1-

APPENDIX E

GENERAL INSTRUMENT CORPORATION
S16SIM-1 SIMULATOR COMMANDS

RT SET REGISTER TRACE OR TRAP

MT SET MEMORY TRACE OR TRAP

RAM DEFINE RANDOM ACCESS MEMORY BLOCK
ROM DEFINE READ ONLY MEMORY BLOCK
IOSR DEFINE 1/0 DEVICE STATUS REGISTER
IODR DEFINE 1/0 DEVICE DATA REGISTER
INT DEFINE INTERRUPT

EXT DEFINE EXTERNAL CONDITION

LOAD LOAD PROGRAM

E EXECUTE PROGRAM

EDR EXECUTE AND DISPLAY REGISTERS

S STEP PROGRAM

C CONTINUE PROGRAM

X EXIT SIMULATOR

IA INITIALIZE ADDRESSES

SA SEARCH ADDRESSES

CPA CLEAR PREVIOUS ADDRESSES

TLIM SET EXECUTION TIME LIMIT

RADX SET DISPLAY RADIX

SLIM SET STACK LIMITS

MB MODIFY BRANCH INSTRUCTION

M] MODIFY JUMP INSTRUCTION

DRT DISPLAY REGISTER TRAPS AND TRACES
DMT DISPLAY MEMORY TRAPS AND TRACES
DMB DISPLAY MEMORY BLOCKS

DIOS DISPLAY 1/0 DEVICE STATUS REGISTERS
DIOD DISPLAY 1/0 DEVICE DATA REGISTERS
DINT DISPLAY INTERRUPTS

DEXT DISPLAY EXTERNAL CONDITIONS

R DISPLAY/MODIFY REGISTER

A DISPLAY/MODIFY ADDRESS

SR DISPLAY /MODIFY CPU STATUS REGISTER
CLK DISPLAY/MODIFY CPU CLOCK RATE
INFF DISPLAY/MODIFY INTRPT FF

DR DISPLAY REGISTERS

DA DISPLAY ADDRESSES

DET DISPLAY EXECUTION TIME

DSYM DISPLAY. SYMBOL VALUES

DPA DISPLAYY PREVIOUS ADDRESSES, IE, PC VALUES

DMXS DISPLAY MAXIMUM STACK USED

APPENDIX F

OBJECT FILE FORMAT

The object file produced by SI6XAL contains relocatable object code generated during
the assembly process. The file is composed of one or more 64 word records, each
containing a three word header and up to 61 object data werds.

The first word in all records is equal to either 1 or 2 (-1 or -2 if the record is the
last) which indicates a relocatable or absolute module respectively. The second word
in the first record contains the assembly base address or origin, in subsequent records
the second word has no significance. The third word in all records contains the number
of object words following in the record. The remaining significant words in each record
contain object code sequences derived from the assembly of instructions or directives.

RELOCATABLE BINARY FILE
RECORD FORMAT

‘ 16-bit record header
word ,
assembly base address
number of data containing
words in record
64 word data word 1
record

data word 2

data word n

RELOCATABLE OBJECT CODE SEQUENCES

The data information in each record of a S1I6XAL object file is grouped into sequences
of variable length. The first word in each sequence contains a link/load code which
indicates the number and nature of object words following in the sequence.

Code

O 00 NN i WO = O

No. Data Words

BN b W WN N = WK WK = WK -

Object Word Significance

address adjustment

absolute word

absolute word

absolute word

relocatable word

absolute word, relocatable word

absolute word, 2 relocatable 8-bit bytes

2 relocatable 8-bit bytes

absolute word, 2 relocatable 10-bit bytes
external reference word

absolute word, external reference word
absolute word, external reference displacement
absolute word, 2 external reference 8-bit bytes
2 external reference 8-bit bytes

absolute word, 2 external reference 10-bit bytes
entry address word

module name’

global symbol

external symbol

APPENDIX G

BINARY PAPER TAPE FORMAT

Binary paper tapes produced by S16BPT consist of variable length records which contain
a four frame header and up to 132 data frames. The first significant frame in all
records indicates a relocatable or absolute tape, 001 or 002 respectively (377 or 376 in
the last record). The second and third frames in the first record contain the assembly
base address or origin (low byte, high byte respectively); in subsequent records these
two frames have no significance. The fourth frame contains the number of object data
frames in the remainder of the record. The last data frame is followed by a record
checksum frame which is used during loading to verify that the record has been read
correctly. Object code sequences are the same as in a relocatable binary file except
that the link/load code occupies one tape frame and each object data word occupies two
tape frames, low byte, high byte respectively. The first record on a tape is preceded
by approximately 50 frames of blank leader, the last record is followed by blank trailer
of the same length and each record is separated by two blank frames.

BLANK LEADER f HEADER CODES
f HEADER ' '
_Address (Low 8 bits) . | 1 - Relocatable
_Address (High 8 bits) 2 - Absolute
B | Frame Count o -1 - Last Block of Relocatable
L | | Link/load Frame ___ - 2 - Last Block of Absolute
Low 8 bits, Word 1 »
-O | I'High 8 bits, Word 1 T
c Link / Load Frame=0 L LINK/LOAD CODES
Address Displacement Low 8 bits .
K < Address Displacement High 8 bits Same as codes for OBJECT FILE

: ORMAT.
¢ Lihk / Load Frame F

1 | Low 8 bits, Word 2
| | High 8 bits, Woxrd 2
&___M,_.,m‘.,h e T N

KLJ

P U p———

L | CHECKSUM FRAME
BLANK GAP
BLANK GAP

Header
Blank Address
Blank Address

e

Frame Count
L/L Frame

< Low
High

___L/L Frame
Low

CHECKSUM FRAME

THE SERIES 1600 SOFTWARE LINE UP

Series 1600
Semiconductors &
Microcomputers

RESIDENT ON-LINE

MINICOMPUTER TIMESHARE
FIRMWARE SOFTWARE

SOFTWARE SOFTWARE

S16MTR Biﬁsmm S16AL S16XAL S16XAL
MONITOR Routines Assembler H Assembler ! Assembler
= ! N J
\
S1sopp c i‘ﬁgCR S16TXE S165IM S16SIM
n--ine -ode Lonver- Text Editor 1 Simulator Simulator
Debug Program sion Routines
=\ — = N = N\l
S16LDR S1610D N S16RLL) S16LNK S16LNK
Relocatable Input/Output Relocatable Object Module Object Module
Loader || Drivers | Linking Loader ||| Linker ! Linker
j\ L \\ o ey \
S16UTL S16FPR S16DGS S16XRF S16XRF
Basic Floating Point Diagnostics Concordance Concordance
Utilities I Routines |} g H Generator Generator :
= g A\ = —\ h«! £~ 7‘! \
S16DMP S16DMR S16MPC S16BPT S16BPT
Memory Decimal Math Macro Binary Tape Binary Tape
Dump Routines) Processor }4 Generator H Generator
E——! N o ! = !
N) ————\) N)
S16S0P) S16LGP S16RTG S16RTG
String Language Gener- ROM Tape ROM Tape
Operators | ation Package |} Generator |H Generator -

GENERAL INSTRUMENT CORPORATION
e
.
EASTERN AREA SALES HEADQUARTERS, 600 W. John St., Hicksville, N.Y. 11802, (516) 7333107

CENTRAL AREA SALES HEADQUARTERS, 3101 West Pratt Blvd., Chicago, Il. 60645, (312) 338-9200
WESTERN AREA SALES HEADQUARTERS, 7120 Hayvenhurst Ave., Van Nuys, Calif. 31406, (213) 781-0489

GENERAL INSTRUMENT CANADA LTD., 61 Industry St., Toronto 337, Ontario, Canada, Tel: (416) 763-4133

GENERAL INSTRUMENT MICROELECTRONICS LTD., 57/61 Mortimer St., London, WIN 7TD, England, Tel: 01-636-2022

GENERAL INSTRUMENT EUROPE S.P.A., Piazza Amendola 9, 20149 Milano, Italy, Tel: 463-7751

GENERAL INSTRUMENT FRANCE SA, 11-13 Rue Gandon, 75-Paris-13eme, France, Tel: 588-74-31

GENERAL INSTRUMENT DEUTSCHLAND GMBH, (Mos Produkigruppe) N , 1A 8000 N 40 Tel: 28-40-31

GENERAL INSTRUMENT INTERNATIONAL CORP., Fukide Building, 17 Fukide-cho, Minato-ku, Tokyo 106, Japan, Tel: (03) 437-0281-5
GENERAL INSTRUMENT OF TAIWAN LTD., P.0. Box 22226 Taipei, Taiwan, Tel: 933861-3

Printed in U.S.A.

© 1975, General Instrument Corporation

