
SERIES 1BDD
MICROPROCESSOR SYSTEM

r:I GENERAL INSTRUMENT L!!.I MICRDELECTRDNICS

SOFTWARE
DOCUMENTATION

PRICE $8.00

THE SERIES 1600 SEMICONDUCTOR LINEUP

• MEMORIES

MICROPROCESSORS

CP

1600 - Basic Insl. Set

• Available Fall 1975

•
1630 - 256)(4 Static

RAM

PIC

PROGRAMMABLE INTERFACE
CONTROLLERS

© Copyright 1975
All rights reserved

SERIES 1600 MICROPROCESSOR SYSTEM
SOFTWARE DOCUMENTATION

CROSS ASSEMBLER/SIMULATOR

USERS MANUAL

This manual contains a detailed specification of the
Series 1600 Symbolic Assembly Language and in­
formation pertaining to the operating commands,
input/ output options; and utility functions provided
by the Series 1600 Cross Software Package.

GENERAL INSTRUMENT CORPORATION. MICROELECTRONICS DIVISION. 600 W. John St .• Hicksville.li.Y. 11802.516·733·3107

Title:

Document No. :

Revision Level:

Subject Programs:

SUMMARY

Series 1600 Cross Assembler/Simulator Users Manual

S16DOC-XAJBIM-02, May 1975

Supersedes S16DOC-XALSIM-Ol. November 1974

S16XSFT Series 1600 Cross Software Package

a. S16XAL-l
b. S16SIM-1
c. S16LNK-1
d. S16XRF-l
e. S16BPT-l
f. S16RTG-1

Series 1600 Symbolic Cross Assembler
Series 1600 Simulator
Series 1600 Object Module Linker
Series 1600 Concordance (XREF) Generator
Series 1600 Binary Paper Tape Generator
Series 1600 ROM Tape Generator

Scope: This manual describes the Cross Assembler (S16XAL-1)
and Simulator (S16SIM-l) programs which support the
General Instrument Corporation Series 1600 Microprocessor
System. In addition, four companion programs, the Object
Module Linker (S16LNK-l), Concordance Generator (S16XRF-l),
Binary Paper Tape Genel'ator (S16BPT-l), and ROM Tape
Generator (S16RTG-1) a,re described.

Operating Environment: The Series 1600 Cross Software Package is written in F level
Fortran IV and is specifically designed to operate in a 16-bit
minicomputer environment. Versions are available for the
following systems and require 12 to 16K words of memory, a
disc operating system, and a terminal device:

Support Programs:

Reference Documents:

a. DEC-PDPll
b. DGC-NOVA

S16XSFT-PDPll
SI6XSFT-NOVA

The total S16XSFT Series 1600 Cross Software Package is also
available for use on the General Electric Time-Share Computer
Network.

Host Computer System Editing Facilities

S16DOC-SXFTll-00 Series 1600 Cross Software
Operators Guide - PDPll

S16DOC-XSFTNV-OO Series 1600 Cross Software
Operators Guide - NOVA

S16DOC-XSFTGE-OO Series 1600 Cross Software
Operators Guide - G.E. Time-Share

TABLE OF CONTENTS

CHAPTER 1: S16XAL SYMBOUC CROSS ASSEMBLER

1.1 INTRODUCTION
1.2 FEATURES
1.3 BASIC OPERATION
1.4 SOURCE PROGRAM FORMAT

1.4.1 Label
1.4.2 Operator
1.4.3 Operar.and
1.4.4 Comment

1.5 SYMBOLS
1.6 LITERALS

1. 6.1 Octal
1.6.2 Decimal
1. 6.3 Hexidecimal
1. 6.4 ASCII Character

1.7 EXPRESSIONS
1.8 ASSEMBLY DIRECTIVES

1. 8.1 PAGE
1. 8. 2 HEAD
1. 8. 3 REL
1. 8.4 ABS
1. 8.5 ENTR
1. 8. 6 GLOB
1. 8. 7 EXT
1. 8. 8 ORG
1. 8. 9 EQU
1. 8.10 RES
1. 8.11 ZERO
1. 8.12 BITS
1. 8.13 MEML
1. 8.14 WORD
1. 8.15 BYTE
1. 8.16 TEXT
1. 8.17 END
1. 8. 18 EOT

·1.8.19 NLST
1. 8. 20 LST
1. 8. 21 IFEQ
1. 8. 22 IFNE
1. 8. 23 ENDC

1.9 PROGRAM USTING
1.10 DIAGNOSTICS
1.11 INTERACTIVE DIALOGUE

CHAPTER 2: S16LNK OBJECT MODULE UNKER

2. 1 INTRODUCTION
2.2 FEATURES
2. 3 BASIC OPERATION
2.4 INTERACTIVE DIALOGUE
2. 5 DIAGNOSTICS
2.6 UMITA TIONS

CHAPTER 3: S16SIM SIMULATOR

3. 1 INTRODUCTION
3. 2 FEATURES
3. 3 OPERATION
3.4 INITIAL CONDITIONS
3.5 SYSTEM LOADING
3.6 CONTROL COMMAND SEQUENCE
3.7 TRAPS AND TRACES
3.8 INPUT/OUTPUT AND INTERRUPT SIMULATION
3.9 EXTERNAL CONDITION SIMULATION
3. 10 TELETYPE SIMULATION
3. 11 COMMAND STRING FORMAT
3.12 SYSTEM PARAMETER DEFINITION

3. 12. 1 Load Binary Pro gram
3. 12.2 Set Data Display Radix
3. 12.4 Display /Modify CPU Clock Rate
3. 12. 5 Define Memory
3. 12. 6 Remove Memory Definition
3. 12. 7 Display Memory mocks
3. 12. 8 Set Stack Limits
3. 12. 9 Remove Stack Limits
3.12.10 Display Maximum Stack Used

3.13 SYSTEM CONTROL COMMANDS
3. 13. 1 Execute
3. 13.2 Execute and Display Registers
3.13/3 Step
3. 13. 4 Continue
3.13.5 Exit
3. 13. 6 Keyboard Interrupt
3.13.7 Display Elapsed Time
3. 13. 8 Display Registers
3. 13.9 Display Addresses
3. 13. 10 Search Addresses
3.13.11 Initialize Addresses
3. 13. 12 Display /Modify Addresses
3. 13. 13 Display /Modify Registers
3. 13. 14 Display /Modify Status Register
3. 13. 15 Branch Destination Modification

3. 13. 16 Jump Destination Modification
3.13.17 Display Symbols
3. 13. 18 Display Previous Addresses
3.13.19 Clear Previous Addresses
3.13.20 Set Software Interrupt Vector

3. 14 TRACE/TRAP COMMANDS
3. 14. 1 Memory Trap or Trace
3. 14. 2 Register Trap or Trace
3. 14. 3 Remove Register Trap or Trace
3. 14. 4 Remove Memory Trap or Trace
3.14.5 Display Register Trap or Trace
3.14.6 Display Memory Trap or Trace

3.15 INPUT/OUTPUT COMMANDS
3. 15. 1 Define I/O Buffer Register
3. 15. 2 Remove I/O Buffer Register Definition
3.15.3 Display I/O Buffer Register Table
3. 15. 4 Define 1. 0 Status Register
3. 15.5 Remove I/O Status Register Definition
3.15.6 Display I/O Status Register Table
3. 15. 7 Define Interrupt
3. 15. 8 Display Interrupt Table
3. 15. 9 Remove Interrupt Definition

3. 16 EXTERNAL CONDITION COMMANDS
3. 16. 1 Define External Condition
3. 16. 2 Remove External Condition Definition
3. 16.3 Display External Condition Table

3.17 INFORMATIVE MESSAGES

CHAPTER 4: S16XR.F CONCORDANCE (XR.EF) GENERATOR

4.1 INTRODUCTION
4.2 OPERATION
4.3 INTERACTIVE DIALOGUE
4.4 ERROR MESSAGES
4.5 LISTING FORMAT
4.6 liMITATIONS

CHAPTERS: S16BPT BINARY PARER TAPE GENERATOR

5. 1 INTRODUCTION
5.2 OPERATION
5.3 ERROR MESSAGES

CHAPTER 6: S16 RTG ROM TAPE GENERATOR

6. 1 INTRODUCTION
6.2 OPERATION
6.3 ERROR MESSAGES

CHAPTER 1

S16XAL SYMBOUC CROSS ASSEMBLER

1. 1 INTRODUCTION

The Setie3 1600 Symbolic Cross Assembler (SI6XAL) is a program preparation
aid which supports General Instrument's family of 16-bit microprocessors. It
translates ASCII coded alphanumeric source programs into several different
types of binary coded object modules. The S16XAL Symbolic Cross Assembler
is written in F level Fortran IV and is designed for operation in a 16 -bit data
word environment making it compatible with all minicomputers as well as larger
computer systems.

1.2 FEATURES

The S16XAL Symbolic Cross Assembler provides the following major features:

Symbolic language representation of all instructions
Literal representations in four formats; Octal, Decimal, Hexadecimal,

Character
. Arithmetic evaluation of operand expressions

Assembly directives for
Controlling memory allocation
Defining character strings
Specifying input/output options
Establishing conditional assemblies

. Declaring global and external' gymbols
Assembly in three forms

Absolute
Relocatable
Relocatable/ Linking

. Program listings
Error· detection

1. 3 OPERATION

The S16XAL Symbolic Cross Assembler converts symbolic source programs into
machine code format in a two pass process. During the first pass through the
source file:;, all user specified symbols ar.e placed in a symbol table containing
the symbol, its value, and several other attributes. During the second pass
through the source file, symbolic inst,ruction mnemonics are translated, symbol
references resolved, errorS diagnosed, a machine code file generated, and an
optional program listing produced.

The machine code file produced by the S16XAL Cross Assembler can be of several
forms. If the source program specified an absolute assembly, the binary file will
be an absolute load module. An absolute load module can be directly loaded and
executed by the Series 1600 Simulator (SI6SIM) or punched on paper tape for sub-

sequent loading in a microprocessor system by the resident loader (SI6LDR).
If the source program contains global symbol definitions and/or external symbol
definitions and/or external symbol references, the binary file will be a relo­
catable object module. Relocatable object modules must be linked together by
the Series 1600 Object Module linker (S16LNK) to form one relocatable load
module for input to the Series 1600 Simulator (SI6SIM). Alternatively, relo­
catable object modules or load modules may be punched on paper tape for sub­
sequent loading in a microprocessor system by the resident relocatable/linking
loader (S16LDR). If the source program does not contain global or external sym­
bol references, the binary file will be a relocatable load module which can be di­
rectly loaded and executed by the Series 1600 Simulator (S16SIM) or punched on
paper tape for loading on a microprocessor system by the resident loader
(S16 LOR). These options are shown diagramaticaily in Fig. 1. 3. 1.

1.4 SOURCE PROGRAM FORMAT

A,s16XAL source program is composed of a sequence of statements with each
statement contained on a single line. A statement is terminated by a carriage
return character or is punched on one computer card. A statement may contain
up to four fields which are identified by their order of appearance from left to
right. The general format of a S16XAL statement is: Label, Operator, Operand,
Comment. The label and comment are optional, while the operator is always re­
quired. The presence and nature of the operand depends upon individual operators.
It is recommended that statements be limited to approximately 50 characters so
that assembled programs can be printed on teletype or CRT terminals.

1.4.1

1.4.2

Label

A label is a . user defined character string, used to symbolically refer­
ence a specific location within a program. If a statement contains a label,
the label must begin in the first position of the statement. Labels may
contain up to six characters, the first of which must be a letter (A-Z), a
currency symbol ($), a question mark (?), or an ampersand (&). The re­
maining five optional characters may be any valid character (EBCIOIC or
ASCII) except a blank space, since this character is the label terminator.
Labels containing more than six characters cause a diagnostic to be issued
and are truncated after the sixth character. Labels must be unique in the
first six characters, i. e., a specific character string cannot be used in
the label field of a statement more than once in a program. Multiple use
of a label causes a diagnostic to be issued and the subsequent definitions
of the label to be ignored.

Operator

An operator follows the label field in a statement. A statement operator
contains up to four characters and may be an instruction mnemonic or an
assembly directive. Instruction mnemonics are symbolic character
strings which represent the various Series 1600 instructions. Assembly
directives are also symbolic character strings but are used to represent

Global or
External Symbols

S16BPT
PAPER TAPE GEN.

Program Tape

S16RLLjLDR
LOADERS

S16XAL
CROSS ASSEMBLER

No Global or

Other Relocatable
Object Modules

Figure 1. 3.1

S16SIM

SIMULATOR

External Symbols

1.4.3

1.4.4

1. 5 S YMBO LS

certain functions or actions performed by the assembler during the
assembly process. If a statement does not contain a label, the operator
must be preceded by at least one blank space. If the operator is the
last field in a statement, it is followed by a carriage return, otherwise·
it is followed by a blank space.

Operand

An operand follows the statement operator separated by at least one
blank space. The operand represents an item or items to be operated
upon by the statement operator. Operands may be symbols, literals or
expressions. When multiple operands are used, they are separated by
commas. If an operand is the last field in a statement it is followed by
a carriage return, otherwise it is followed by the comment field.

Comment

The comment field is optional in all statements and must be preceded by
a semicolon (;). The contents of the comment field are printed on the
program listing but have no effect on the assembled program. Entire
lines may serve as comments if the first non blank character is a semi­
colon. Blank lines are printed on the program listing but otherwise ig­
nored so that statements may be separated in order to enhance program
readability. The liberal use of commentary is strongly recommended
so that the function and operation of programs is evident from the program
listing.

A symbol is a character string which appears in an operand and represents the
value assigned to the symbol. A symbol is given a value by direot assignment

via an assembly directive or by appearing in the label field of a statement. Labels
are assigned the value of the assembly location counter for the instruction on which
they appear. The assembler recognizes the exclamation (!) sign as a special symbol for
the current value of the program counter.

1.6 LITERALS

literals are character strings which serve as sources of data, i. e., cannot be
changed and are interpreted by the assembler as constants. The assembler accepts
literals expressed as octal, decimal, hexadecimal and character. Numeric literals
may be preceded by a plus or minus to 3ignify sign. Plus is assumed unless a minus
is present.

1. 6.1 Octal (Default Radix)

soooooo

1. 6.2 Decimal

s~dddd

1. 6.3 Hexadecimal

sX'bhhh'

1. 6.4 ASCII Character

"cc" or 'c'

1. 7 EXPRESSIONS

s = optional + or -, + assumed

o = 0 - 7

000000 = 0 to 177777

s = optional + or -, + assumed

d = 0 - 9

ddddd = - 32768 to 32767

s = optional + or -, + assumed

h = 0-9, A - F

bhhh = 0 to FFFF

"or' = delimiter

c = any ASCII character

One or two characters may be packed into each
16-bit word. If one character is specified ("c" or 'c')
it is placed in the low order byte of the word with
zeros in the high order byte. If two characters are
specified· ("ab" or 'ab ') the first (a) is placed in the
low order byte and the second (b) is placed in the high
order byte.

Arithmetic operators (+and -) may be used to form operand expressions. An
element of an expression may be: a user defined symbol, the current assembly
location counter symbol (!), or a literal. Expressions may contain up to six
elements separated by either + or - operators. The total expression may be
terminated by a comma, a.. carriage return or a :semicolom· Expressions are
always evaluated from lefj: to right with no parenthetical groupings allowed.

1.8 ASSEMBLY DIRECTIVES

Assembly directives are used to control the assembly process and in some cases
cause data to be generated. In the following assembly directive descriptions op­
tional elements are enclosed in []. Comments may be used with all assembly
directives.

LABEL OP

1. 8.1 PAGE

1. 8. 2 HEAD

1.8.3 REL

1. 8.4 ABS

1. 8.5 ENTR

OPRND

'ccc ... c'

[name]

v

ACTION

Advance program listing to the top
of the next page. Sixty lines are
normally printed on each page.

Use the character string specified as
the operand as a page heading for the
next page. The first character in the
string is used as the string terminator.

Generate a relocatable assembly and
use the six character name as the ob­
ject module identifier. If no name is
specified, an unnamed relocatable ob­
ject module is generated. The module
name is used by the Series 1600 Object
Module Linker (S16 LNK) to identify ob­
ject modules on its load module map.
The RE L directive must be encountered
by the S16XAL assembler before any
data generating operators are processed.
If this is not the case, an informative di­
agnostic is issued and an unnamed relo­
catable object module generated. If no
REL or ABS directive is specified, an
unnamed relocatable object module is
generated; 1. e., REL is the default
assembly mode.

Generate an absolute assembly; the binary
file generated by the S16XAL assembler
will be an absolute load module. It can­
not be relocated or linked when loaded.
The ABS directive must be encountered
by the S16XAL assembler before any data
generating operators are processed. If
this is not the case, an informative diagnos­
tic is issued and an unnamed relocatable
ohj..ect module is generated.

Establish the program entry point; 1. e. ,
the pOint at which execution is to begin.
The operand may be either a symbol or
a literal.

LABEL

1.8.(s

1. 8. 7

1. 8. 8

1.8.9 SYMBOL

1. 8.10 [LABEL]

1. 8.11 [LABEL]

1. 8.12

1. 8.13

OP

GLOB

EXT

ORG

EQU

RES

ZERO

OPRND ACTION

S[, S, ... , S] Declare the symbol(s) as global. Global
Global symbols must be defined as labels
in the current program unit but can be
referenced from other program units.

S[, S, ... , S] Declare the symbol(s) as external. Ex­
ternal symbols reference global symbols
in other program units. Both external
and global symbol references are re­
solved by the Series 1600 Object Module
Linker (SI6LNK) and the relocatable/
linking loader (SI6LDR) resident in the
microprocessor system.

expr

v

expr

expr

Set the assembly location counter to the
value of expr, default is zero.

Assign the value of the operand to the sym­
bol.' The operand may be a symbol, a
literal or the assembly location counter
symbol (t). If! is specified it may be
followed by + or - and a literal.

Reserve a block of storage whose length
is specified by expr. The contents of
individual storage locations is undefined.
If a label is specified, it is assigned a value
equal to the address of the first word in
the block.

Zero a block of storage whose length is
specified by expr. If a label is specified,
it is assigned a value equal to the address
of the first word in the block.

BITS expr Specify the number of bits in a memory
word as the value of expr. The word size
is used by the assembler to check gener­
ated data for magnitude exceeding word
size. The default is 16 bits.

MEML exprl[, expr2] Specify lower and upper memory address
limits as the values of exprl and expr2.
If only expr 1 is specified, its value will
be used as the upper memory address
limit and the lower limit will be set to
zero. These limits are used by the as­
sembler to check the validity of addresses
assigned to generated code. The defaults
are 0 and 17777.

LABEL OP

1. 8.14 [LABEL] WORD

1. 8. 15 [LABE L] BYTE

1.8.16 [LABEL] TEXT

1. 8.17 END

1. 8.18 EOT

1. 8.19 NI.ST

1. 8. 20 LST

1. 8. 21 IFEQ

OPRND ACTION

expr[, expr, ... , expr] Generate a data word for each
operand expression. The contents of
each word is set equal to the value of the
respective expr. If a label is specified it
is assigned a value equal to the address
of the first word.

expr[, expr, ... , expr] Generate twCD data bytes for each
operand expression. The operation is the
same as with but 8 bit data is gen-
erated for use with double byte addressing
in 10 bit memory.

'cc cc' Generate a word or words of data which
contain the seven bit ASCII code for each
character. Two characters are packed

expr

in each word, low byte to high byte. In -
complete words contain a blank in the high
byte. If a label is specified, it is assigned
a value equal to the address of the first
word generated.

End of the program, the assembly is
terminated on the previous statement

End of tape indicator, used to separate
a source program into several paper tapes.
This directive is ignored by the file
oriented cross assembler.

Disable the program listing. The assembly
proceeds normally but with the listing
suppressed. This directive is used, for
example, to avoid printing a length ZERO
block.

Enable the program listing. This directive
is used to cause a listing to again be pro­
duced after a NLST directive.

Start conditional assembly. The state­
mentsthat follow will be assembled if expr
is equal to zero. If expr is not equal to
zero, the statements will be listed but not
assembled. Conditional assemblies are
useful when a program has statements which
are to be assembled only under certain
conditions. For example, statements
which are to be assembled only during
debugging of the program.

LABEL OP

1. 8. 22 IFNE

1. 8. 23 ENDC

1. 9 PROGRAM LISTING

OPERAND ACTION

expr Start conditional assembly. The follow­
ing statements will be assembled if
expr is not equal to zero, the following
statements will be listed but :&lOt assembled.

.End conditional assembly, i. e., resume
normal assembly.

The S16XAL Symbolic Cross Assembler produces a listing of the assembled program
containing the following fields: line number; six octal digits of address; six octal
digits of contents; the statement label, operator, operand and comments. The oper­
ator, operand and comments are tabulated to enhance program readability. If the
assembled word is subject to modification when the program is loaded at an address
different than that of assembly; i. e., relocated, the contents are followed by the
letter "R". If the assembled word references an external symbol, the contents are
followed by the letter "X".

Each page of listing contains sixty lines and begins with a one or two line heading.
The first heading line contains the module name, the version of the assembler in
use, the time and date of the assembly and the page number. If the user has speci­
fied a heading via the HEAD directive, it follows on the next line. The program
listing follows, separated from the page heading by a blank line.

At the end of the program listing, all user defined symbols are summarized followed
by the number of diagnostics iSBued. The symbol summary contains each symbol
in alphabetical order, its octal value, and its attributes. The following table lists
the codes used for symbol attributes:

U - symbol is undefined
A - symbol is absolute
R - symbol is relocatable
X - symbol is external
IN - symbols is an instruction label
EQ - symbol is defined by an EQU statement
RS - symbol is a RES or ZERO statement label
DT - symbol is a WORD BYTE, or TEXT statement label

G - symbol is global
E - symbol is entry point
DD - symbol is doubly defined
UR - symbol is unreferenced

1. 10 DIAGNOSTICS

1.11

The S16XAL Symbolic Cross Assembler performs extensive error checking
during program assembly issuing both error and informative diagnostics.
Each diagnostic is printed on the program listing on a line immediately pre­
ceeding the offending statement. Diagnostics and the associated statement are
always listed even though the program listing is-surpressed or no listing was
requested by the user.

The S16XAL assembly error codes are listed in the following table:

ERROR CODE

L (E) LABEL
D (E) DBLDEF
U (E) UNDFSYM
M (E) MDEF REF
o (E) OP UNREC
S (E) SYNTAX
R (E) REGISTER
C (E) CHRILL
B (E) DBL BYTE
P (E) PHASE
X (E) EXT NUM
V (E) VAL OPRN
N (E) NUMBER
Q (I) ?SYNTAX
W (I) WRD SIZE
A (I) ADR/DEST
T (I) TRUNCATN
E (I) END?
? (I) ? USE
L (I) MEM UMIT

INTERACTIVE DIALOGUE

MEANING

label illegal or missing
label is doubly defined
reference to undefined symbol
reference to multi defined symbol
operator is unrecognized
syntax illegal
:register designator illegal or use of reg illegal
character i3 illegal string terminator
double byte data sequence illegal
label's value differs in phase 2
more than oneexterrial symbol in expression
va1lle of operand illegal
value of literal illegal
questionable syntax
word size exceeded
address out of range or destination questionable
possible statement truncation
END directive missing
questional use of directive
memory limits exceeded

The S16XAL Assembler is available for use on several interactive computer
systems. In order to assemble programs, the user must first estalish communi­
cations with the computer and log in with a valid account number or user code
(see appropriate System Operation Manuals). After the log in has been completed,
the computer operating system responds with a prompt character ($ or * used on
many systems). The user responds by entering a command which requests the
operating system to load and begin execution of the S16XAL assembler. The assembler
first identifies the version in use by displaying S16XAL-VXX, then displays the
message: SOURCE FILE, ACCNT? The user must enter an appropriate source
file name followed by a comma. and the account in which the file exists. On
some systems, if the source file exists in the current account the comma and

account may be omitted. Next the assembly listing option is requested by the
message: LISTING? (YIN OR F = NAME). If N is entered, no listing except
for diagnostics will be produced, if Y is entered the program listing will be
output on the interactive terminal. If F=name is entered the listing will be
output to the named file. Finally the object file name is requested by the mes­
sage: OBJECT FILE? At the end of the assembly if no terminal listing was
requested the number of diagnostics issued is summarized. This concludes the
current assembly and another source file is requested for the next assembly.
If only a carriage return is entered, the assembler returns control to the op­
erating system.

CHAPTER 2

S16LNK OBJECT MODULE UNKER

2. 1 INTRODUCTION

The Series 1600 Object Module linker (S16LNK~is a support program to the
Series 1600 Symbolic Cross Assembler (S16XAL). It combines or links to­
gether two or more relocatable object modules produced by the S16XAL
Assembler to form the single relocatable load module necessary for input to
the Series 1600 Simulator (S16SIM). The S16LNK Object Module linker is
written in F level Fortran IV and is designed for operation in a 16 -bit data
word environment making it compatible with all minicomputers as well as
larger computer systems.

2. 2 FEATURES

The Sl6LNK Object Module linker performs the following functions on object
modules generated by the S16XAL Cross Assembler:

Resolves global symbol declarations
Satisfies external symbol references
.Relocates and links multiple object modules into one load module
Produces a load module memory map
Generates a load module file for subsequent execution by the

Sl6SIM Simulator

2.3 OPERATION

The S16LNK Object Module linker performs the linkage function by making two
passes through the specified object modules. During the first pass, a table of
global symbols and their assigned addresses is constructed and a load module
memory map is generated. The map lists the object modules in order of linkage,
the relocated base address of each object module, all global symbols and their
associated addresses in each module, $d the size of each module. At the end
of the first pass, a linkage summary is produced which indicates the initial ad­
dress, the final address, and the entry address of the relocatable load module.
During the second pass, each object module is again read and the load module
file is constructed.

2.4 INTERACTIVE DIALOGUE

The S16LNK Object Module linker operates interactively with the user via any
appropriate terminal. Upon program initiation the current version is use is iden­
tified and the user is requested to name the resultant linked load module file by
the message: LOAD MODULE?

If a load module file currently exists with the same name, it is deleted and a

new file of the same name created. Next, the user is requested to select a
load map option by the message: MAP? (YIN or F = NAME)

If the user enters "N", no map will be produced; if a "Y" is entered the map
will be output on the terminal. If, however, F = NAME is entered the map will
be output on a file with the specified name. Finally, the user is requested to
enter the names of the object modules to be linked by the message: OBJECT
MODULES?

The user enters each object module file name in response to a prompt ":".
If an object module exists in an account which is different than the current
account, the account code is entered on the same line immediately after the file
name separated by a comma ", ". The end of the object module identification
sequence is indicated by entering a null line, i. e., only a carriage return.
The S16LNK Object Module Linker then performs the required linkage and re­
sponds with the load map if the user so requested, followed by the linkage sum­
mary.

2, 5 ERROR DIAGNOSIS

During the linkage process, S16LNK detects several error conditions and issues
the following diagnostic messages:

FILE DOES NOT EXIST I
The last object module file specified does not exist,
enter another file name.

· OBJECT MODE: x x x x x x NO LONGER EXISTS!
The indicated object module file has been deleted during
linkage, link aborted.

· MODULE: x x x x x x NOT REL, CANNOT LINK I
The indicated file is not relocatable, i. e., it was
declared absolute via the ABS assembly directive, link aborted.

1 I MULTIPLE ENTRY DEFINITION : x x x x x x IGNORED
More than one entry point was specified, link continues.

· CANNOT ACCOMMODATE ANY MORE GLOBAlS I !
The global symbol table has overflowed, link aborted.

I 1 MULTIPLE GLOBAL DEFINITION: x x x x x x IGNORED
A global symbol has been defined more than once, link
continues.

. UNSATISFIED EXTERNALS
SSSSSS NNNNNN

The indicated external symbol references could not be
resolved because corresponding global symbols are
not known. NNNNNN is the address of the first word of
the instruction containing the external reference. The
symbol is assigned value zero and the link continues.

. ILLEGAL liNKAGE CODE
A non valid linkage code was detected, link aborted.

2.6 UMITATIONS

Since S16LNK is not a program loader, the linked relocatable load module size
is limited only by available file space, not by memory size of the host computer.

CHAPTER 3

S16SIM SIMULATOR

3. 1 INTRODUCTION

The Series 1600 Simulator (S16SIM) is a program debugging aid for the Series
1600 Microprocessor System. Its input is either a relocatable or absolute
load module derived from the Series 1600 Symbolic Cross Assembler (S16X.AL)
or from the Series 1600 Object Module Linker (S16LNK). The S16SIM Simu­
lator executes each instruction of a Series 1600 program in a simulated micro­
processor environment allowing detailed examination of program flow and dyn­
amic conditions in the simulated system. The S16SIM Simulator is written in
F level Fortran IV and is designed for operation in a 16-bit data word environ­
ment making it compatible with all minicomputers as well as larger computer
systems.

3. 2 FEATURES

The S16SIM Simulator provides a comprehensive simulation facility for debugging
and testing Series 1600 programs before they are executed on an actual ~ctual
microprocessor. It provides the following major features:

Simulation of all Series 1600 instructions
Simulation of full 65K memory

'. Simulation of I/O via data files
Simulation of external interrupts
Simulation of external branch conditions
Simulation of TTY I/O via interactive terminal device
Execution in run or step mode
Access to all registers and memory locations
Trap or breakpoint on register or memory activity

. Trace or monitor registers or memory activity
Simulate varying memory configurations and speeds
Display actual program execution time
Determine actual stack depth used

3.3 OPERATION

The user communicates interactively with the S16SIM Simulator using a vocabulary
of commands which control the simulation environment and program execution.
The user can inspec~ change, or monitor microprocessor registers and bus ad­
dresses; begill and suspend program execution; execute a program one instruction
at a time; simulate real time input/output operations, external interrupts and ex­
ternal conditions and determine actual program execution time for various com­
binations of ROM/RAM/CPU clock rates.

3.4 INITIAL SIMULATOR CONDITIONS

After the S16SIM Simulator is initially loaded and before any user program is
loaded or executed the following conditions exist:

Register 0-7 are set to zero.
Status bits S, Z, C and OV are set to zero.
Interrupts are disabled.
Privileged instruction mode prevails.
Double byte data is disabled.
CPU clock rate is 400 nanoseconds.
External bus accesses are defined at 700 nanoseconds.
RAM memory is assigned to bus addresses 0-167767 and

is initialized at zero.
TTY simulation is assigned to bus addresses 167775 -167777.
All tables are initialized.

3.5 SYSTEM LOADING

The S16SIM Simulator provides simulation of the full 65K address capability
of the Series 1600 microprocessor by virtual memory techniques. The user
may relocate and load any number of load modules produced by the Series 1600
Symbolic Cross Ass'~mbler (S16XAL) or Object Module Linker (S16LNK).

Prior to program execution, the user may redefine memory blocks as Read
Only (ROM), modify access times, and change word size. Up to 8 sets of
parameters are accommodated. In addition, the upper and lower limits of the
memory stack area can be defined. The S16SIM Simulator issues various error
messages based on these memory definition values.

During program execution, the S16SIM Simulator generates a pseudo real time
execution clock which is used to schedule simulated input/output and interrupt
activities. The microprocessor cycle time can be varied from its 400 nsec de­
fault value to simulate different system speeds. The memory access times and
the microprocessor cycle time determine if delays are required while waiting
for memory accesses. If the microprocessor cycle time is 400 nsec, then memory
access times from 1-700 nsec produce no wait, from 701-1100 nsec produce 1
wait cycle, 1101-1500 nsec produce 2 wait cycles, etc.

3.6 CONTROL COMMAND SEQUENCE

After program load and environment definition, the program can be executed or
single-stepped. Appropriate commands may be entered to display registers or
memory locations; search memory for bit patterns; or modify registers or mem­
ory. A table is kept of the last 10 program execution addresses in order to allow
the user to retrace program flow. When the simulator is ready for input commands
the message "ENTER COMMAND" is displayed; after the programmer has com­
pleted his input he may continue simulation with a Continue (C), Step (S), or
Execute (E). The C will remain in either the Step or Execute mode while the S
and E will reset the mode.

When in the execute mode the simulation may be interrupted by depressing the
"Break" key on the console.

3.7 TRAPS AND TRACES

The S16SIM Simulator provides program monitoring capability on CPU registers
0-7 and on any bus address. A trace provides a dynamic display of activities
when specified conditions are met. A trap provides a suspension of program
execution, i. e., a breakpoint, when specified conditions are met. Since register
7 serves as the CPU program counter, a trap on register 7 serves as a program
trap or breakpoint and a trace on register 7 serves as a program flow trace. A
memory address trap on a specific address may also serve as a breakpoint when
a memory address is accessed during execution. Both traps and traces are in­
spected after the instruction is executed.

3.8 INPUT/OUTPUT AND INTERRUPT SIMULATION

S16SIM providesfor simulation of up to eight input/output devices and up to eight
ext ernal interrupts. These activities are controlled by tables which specify when
such events are to occur relative to real execution time. During program simu­
lation, execution time is accumulated and used to schedule I/O operations and
interrupts. This scheduling is relative to zero time, i. e., the start of program
execution.

Interrupts are scheduled by defining the start time and the repitition rate. Input/
output simulation is provided for through use of data register and status register
tables. If a polled or sensed device is to be simulated, it is defined by corres­
ponding entries in both data and status register tables. The status register table
defines when and how a device becomes ready, while the data register table de­
fines the data source or destination. If an interrupt driven device is to be simu­
lated it is defined by entries in the interrupt table and the data register table. The
eight simulated I/O devices correspond to eight data files named: SI6SIMOn, where
n is 0 to 7. If input is to be simulated, the corresponding data file must be cre­
ated by the user beforehand. Output files are created and extended during simula­
tion. When output occurs on a file which already exists, it is deleted and a new file
is created with the same name.

3.9 EXTERNAL CONDITION SIMULATION

S16SIM provides for simulation of 16 external sensed conditions. In a real system
configuration four lines derived from the four lower bits of the BEXT instruction
are available at CPU output pins. These signals may be decoded externally to ob­
tain up to 16 test points with the selected one being returned to the CPU for the

iF'

branch decision. Lll order to simulate these external sensing activities, a 16 posi-
tion table is used to control when each of the possible 16 decodes is to be true or
false. In a manner similar to I/O and interrupt simulation, the external condition
activities are scheduled relative to program execution time accumulated since the
start· of execution. The external conditions are scheduled by defining a start time
and with what repetition rate they are to occur. In addition, the logical condition
of individual external conditions when active or ready may be specified as true

(high) or false (low). An. external condition not defined by a table entry always
results in a false evaluation.

3.10 TELETYPE SIMULATION

The input/output of ASCII characters from and to an ASR-33 teletype machine or
equivalent is simulated without timing via bus addresses 167774 -167777 . The
TTY is simulated during program execution by the user terminal which functions
in a character by character mode. All other terminal activities are record,
i. e., line oriented.

Bus addresses 167774 and 167776 simulate the TTY keyboard and printer status
registers respectively. Input from either of these addresses always returns
000001, indicating device ready. Bus address 167775 simulates the TTY keyboard
data buffer register while bus address 167777 simulates the TTY printer data
buffer register. Data input from the TTY is always 7 bit ASCII and data output
to the TTY must always be 7 bit ASCII. Note that character literal data generated
by the S16XAL assembler is 7 bit ASCII compatible with TTY data.

3. II COMMAND STRING FORMAT

S16SIM interactive command strings must comform to a format which always
contains a keyword or verb and seven elements which may be optional depending
on the nature of the command verb. The general command string format is:

VERB, n ; e1, e2, e3, e4, e~

The indicated element separators. i. e., commas and semicolon, must be used
as shown. Command strings are limited in length to 60 characters and must be
complete on one line.

S16SIM recognizes a set of control commands which are entered on the terminal
keyboard in response to the "ENTER COMMAND" display. If a command is entered
which cannot be recognized, a question mark (?) is displayed under the question­
able area of the command and "ENTER COMMAND" is again displayed.

In the following descriptions, required command string elements are underlined,
optional elements are not underlined and; represents a carriage return. Com­
mand elements to the right of the semicolon (;) may be symbols from a S16XAL
assembly, literals or expressions composed of symbols and literals.

Expression operators may be addition (+) and subtraction (-). Command elements
indicated by n which are to the left of the semicolon (;) mu~t be literals. Literals
may be octal, decimal, hexadecimal, or ASCII and are expressed as follows:

OCTAL - 8000000 (Default Radix)

s = optional + or -, + assumed
d = 0-7
000000 = 0 to 177777

DECIMAL - s.ddddd

• = d,ecifual indicator
ddddd = -32768 to +37767

HEXADECIMAL - s:{('hhhh'

s = optional + or -, + assumed
X' , = hexadecimal indicator
hhhh = 0 to FFFF

ASCII - 'cc' or "cc"

'or" = delimiters
c - any ASCII character
One or two characters are packed into each 16 bit word.
If one character is specified ("c" or 'c') it is placed in

the low order byte of the word with zeros in the high
order byte.

If two characte:Ls are specified ("ab" or 'ab') the first
(a) is placed in the low order byte and the second (b)
is placed in the high order byte.

In the following descriptions "ENTER COMMAND" and ":" serve as user
prompts, i. e., the user must respond with a keyboard entry. After each com­
mand action is completed by SI6SIM, the user is again prompted.

3.12 LOADING AND SYSTEM PARAMETER DEFINITIONS

3.12.1

3.12.2

Load Binary Program

ENTER COMMAND
: LOAD, flJ
ENTER BINARY FILE NAME,

ACCOUNT
: name, account;.

Set Data J::>i.splay Radix

ENT~R COMMAND
:RADX, n;,

Load indicated S16XAL generated 'binary
program file at address n, if n is not
specified the program will be loaded at
the assembly base address. If the file
exists in the current account, the account
may be omitted. Any number of binary
program fUes may be lC1)aded.

Octal radix = 8, decimal radix = 10,
ASCII = 0, hexadecimal radix = 16. If no
radix is specified, octal is used.

3.12.3

3.12.4

3.12.5

Set Time Limit

:TLIM, tl Set program execution time limit of t
microseconds. Program execution will
be suspended after t microseconds have
been accumulated. If t is not specified,

. the tiroe limit is removed.

Display / Modify CPU Clock Rate

ENTER COMMAND
:CLK,;
CLK::: nnnn·Nsec
:nnnn~

Define Memory

ENTER COMMAND

If nnn is entered the Clock rate will be
changed. If only a carriage return is entered
the clock rate will not be changed.

:RAM, n ; add1, addh, t, b, f/ Define a Read!WriteMemory mock.

n

add!

addh

t

f

Position in the memory table for this entry.
If not specified, the memory definition is
added to the end of the table until eight
(0-7) definitions have been accumulated.
If more than eight memory definitions are
specified, the most recent is replaced.

Low bus address assigned to memory
segment n.

High bus address assigned to memory
segment n.

Memory access time in nanoseconds. If
not specified, the current CPU clock rate
is used.

Fill mode, if word size is less than 16 bits.
f specifies how data is read out of memory.
If f is not specified, mode 0 is assumed.

o - right justified, 0' s left fill.

1 - right justified, l' s left fill.

2 - right justified, sign bit extension.

3 - left justified, 0 's right fill.

4 - left justified, l' s right fill.

3.12.6

3.12.7

3.12.8

3.12.9

Remove Memory Definition

ENTER COMMAND
: RAM, n;

or
ENTER COMMAND
: ROM, n,
In the above command strings if n is specified, the corresponding mem -
ory definition table entry will be removed. If n is not specified all en­
tries will be removed.

Display Memory Blocks

ENTER COMMAND
: DMB~

Set Stack Limits

ENTER COMMAND
: SUM; addl, addh)

Remove Stack Limits

ENTER COMMAND
: SUM"

The memory block table will be dis­
played with all associated definitions.

Set the lower stack limit to address a.dd 1 and
the upper stack limit to address addh.
Program execution is suspended if the
stack pOinter (R6) exceeds these limits.

Remove stack limits.

3. 12. 10 Display Maximum Stack Used

ENTER COMMAND
: DMXSJI
MAX STACK = x x x x x x

3.13 BASIC CONTROL COMMANDS

3.13.1 ENTER COMMAND
: ~ ; addri, addrf JJ.

x x x x x x is the maximum value that the
stack pOinter reached during execution.

Execute a program beginning at location
addri and suspend execution when addrf is
reached. If no addri is specified, execution
begins using the current value of the program
counter (register 7). If no addrf is specified,
execution continues until: a HALT instruction
is executed, a "BREAK" interrupt is issued
by the user via the terminal keyboard, the
execution time limit is exceeded, or a trap
condition is reached.

3.13.2 Execute and Display Registers

ENTER COMMAND
: EDR ; addri, addrfl

3.13.3 Step

3.13.4

ENTER COMMAND
: ~; addr,

Continue

ENTER COMMAND
: C I

-/I.

3.13.5 Exit

3.13.6

3.13.7

ENTER COMMAND
:X /
-;I-

Keyboard Interrupt

"BREAK"

Display Elapsed Time

ENTER COMMAND
: DET j

Same as above, except the registers are
displa yed after each instruction is exe­
cuted.

Step (one instruction at a time) a program
beginning at location addr. If no addr is
specified, the program is stepped using
the current value of the program counter
(register 7).

Continue program execution from current
location. C is used when in STEP mode,
after a TRAP or after a "HLT" instruction.

Exit from S16SIM to the operating system
Monitor.

One depression of the "BREAK" Key gener­
ates an interrupt to the S16SIM executive.
This interrupt can be used during simulation
to suspend program execution or to suspend
extended terminal outputs requested by DA
or SA commands. If the interrupt is issued
during program execution, "BREAK" will be
displayed followed by the ENTER COMMAND
request. If the interrupt is issued during a
non execution activity, the activity will be
suspend~d and the ENTER COMMAND re­
quest will be displayed.

Display program execution time in micro­
seconds.

3.13.8

3.13.9

Display Registers

ENTER COMMAND

:DRJ

Display Add;resses

ENTER COMMAND
: DA ; addr1. addrh;

Display the current contents of: Registers
0-7; status register bits S. Z. C. OV;
INTPF and NONINT.

Display the current contents of bus locations
addr 1 through addrh inclusive. If addr 1
and addJ<h are not specified all bus locations
are displayed.

3. 13. 10 Search Addresses

ENTER COMMAND
: SA ; addr1. addr2. value. mas~ Search bus locations addr1 through

.addr2 inclusive for value using mask to "and"
out corresponding bits. If value and/or

3.13.11 Initialize Adctresses

ENTER COMMAND

mask are not specified. 0 and 177777 are
used.

: rAJ addr1. addr2. value. mas~ Initialize bus locations addr1 through
addr2 inclusive using value and mask to
set bits. If value and/or mask are not
specified 0 and 177777 are used.

3.13.12 Display/Modify Addresses

ENTER COMMAND
: ~ ; addrJ
nnnnnn = nnnnnn
:nnnnnn,

Open bus address addr for display and
modification.
If no ; ad<4' is specified. address 0 is opened.
if the contents of the currently open address
is to be changed. the new value is entered
followed by optional "x" and a carriage re­
turn. If no change is to be made. only
optional "x" and a carriage return is entered.
The character "x" represents either / or +
and -. These characters are used to indi­
cate if the next address (/ or+) or the pre­
vious address (-) is to be opened after the
current location is closed. If no "x" is
specified the current location is closed.

3. 13. 13 Display/Modify Registers

ENTER COMMAND
: R, n)
Rn = nnnnnn
: nnnnn;

3. 13. 14 Display/Modify Status Register

ENTER COMMAND

:~)

S= N
:n
Z=N
:n
C=N
:n
C=N
:n
OV= N
:n

3. 13. 15 Branch Destination Modification

ENTER COMMAND
: MB; addrl, addr~1

3. 13. 16 Jump Destination Modification

ENTER COMMAND
: MJ ; addr 1, addr2J

3.13.17 Display Symbols

ENTER COMMAND
: DSYMI

Open registers n (0-7) for display and
modification. If no n is specified, RO
is opened. If the contents of the currently
open register is to be changed, the new
value is entered followed by optional "x"
and a carriage return. If no change is to be
made, only optional "x" and a carriage re­
turn is entered. The character "x" repre­
sents either / or + and -. These charac­
ters are used to indicate if the next register
(/ or +) or the previous register (-) is to
be opened after the current register is
closed.

Open status register S, Z, C, OV bits for
display and modification.
After the current value of each bit is displayed
(N), a new value (n = 0 or 1) may be entered.
If no change is to be made, only a carriage
return is entered.

Modify branch instruction at addr 1 and
addr 1 + 1 for destination addr2.

Modify jump instruction at addr 1, addr + 1
and addrl + 2 for destination addr2.

Display the current symbol table.

3. 13. 18 Display Previous Addresses

ENTER COMMAND
: DPA i

,;

3.13.19 Clear Previous Addresses

ENTER COMMAND
:CPA;

3.13.20 Set Software Interrupt Vector

ENTER COMMAND
: SIN ; addr I.

3.14 TRAP/TRACE COMMANDS

3.14.1 Memory Trap or Trace

ENTER COMMAND

Display the 10 most recent program
counter (R7) values.

Clears the 10 most recent program counter
(R7) values.

Specify SIN (software interrupt) vector ad­
dress. If a SIN is executed and no vector
address is specified, the instruction is eXe­
cuted as a NOP. The current vector can be
deactivated by entering only the command.

: MT, n; addr , mode, f, v, ml Set memory address trap or trace.

n = 0-7

addr

mode = 0

f

v

m

1

2

3

MT number; if not specified each MT will be
accumulated until MT 7 has been specified.
Subsequent MT entries will then be accumu­
lated by replacing the current MT 7 entry.

address at which a trap (breakpoint) is to be
set or which is to be traced.

trap when addr is referenced. (Default con­
dition)

trace when addr is referenced.

trap when contents of addr are changed.

trace when contents of addr are changed.

frequency of occurence, i. e., the number of
times the specified condition will be satisfied
before the trap or trace is activated. De­
fault value 1.

value of contents of addr which will activate
trap or trace. Default, unconditional trap
or trace.

Mask used to extract a value to be compared
with V. Default value 177777.

3.14.2

3.14.3

3.14.4

3.14.5

3.14.6

Register Trap ,or· Trace

ENTER COMMAND
: RT, n; mode, f, v, mi-

n = 0-7

mode = 0

f

v

m

1

2

3

Remove Register Trap or Trace

ENTER COMMAND
: RT, n;

Remove Memory Trap or Trace

ENTER COMMAND
:MT, nJ

Set register trap or trace.

Register number.

trap when register n is referenced. (Default
condition)
trace when register n is referenced.

trap when contents of register n are changed.

trace when contents of register n are changed.

frequency of occurrence, i. e., the number of
times the specified condition will be satisfied
before the trap or trace is activated. De­
fault value 1.

value of register n which will activate trap
or trace. Default, unconditional trap or
trace.

mask used to extract a quantity to be com­
pared with v. Default, 0177777.

Remove Register n trap or trace. If n is not
specified, . all register traps or traces are
removed.

Remove memory address trap or trace n.
If n is not specified, all memory,address
traps or traces are removed.

Display Register Traps or Traces

ENTER COMMAND
:DRT, n~ Display register trap or trace table entry n.

If n is not specified all entries in the table
are displayed.

Display Memory Traps or Traces

ENTER COMMAND
:DMT, n; Display memory address trap or trace table

entry n. If n is not specified all entries in
the table are displayed.

3.15 INPUT/OUTPUT COMMANDS

3.15.1

3.15.2

3.15.3

3.15.4

Define I/O Buffer Register

ENTER DOMMAND
:IOBR, n;addr, d,

n

addr

d

Define an I/O buffer register.

Entry in buffer register table. If not speci­
fied the buffer register is added to the end
of the table until eight (0-7) definitions have
been accumulated. If more than eight buffer
registers are defined, the most recent is
replaced.

Buffer register bus address.

The direction of data transfer, 0 = output,
1 = input. If not specified output is assumed.

Remove I/O Buffer Register Definition

ENTER COMMAND
:IOBR, n~ Remove buffer register definition n. If n is

not specified, all buffer register definitions
are removed.

Display I/O Buffer Register Table

ENTER COMMAND
:DIOBj

Define I/O Status Register

ENTER COMMAND
:IOSR, n;addr, r,time, rate"

n

addr

r

time

rate

Display the I/O Buffer Register Table.

Define an I/O status register.

Entry in status register table. If not specified
the status register is added to the end of the
table until eight (0-7) definitions have been
accumulated. If more than eight status reg­
isters are defined the most recent is replaced.

Status register bus address.

The contents of the status register when ready.
No ready is the complement of r. If r is not
specified, zero is used.

Time of the initial ready state in microseconds.
If not specified the status register will become
ready after the first instruction is executed.

Rate at which the status register subsequently
becomes ready in microseconds after (time).
If not specified the status register will ready
after the next instruction. If rate is equal to

zero the status register will ready only once
(time).

3.15.5

3.15.6

3.15.7

3.15.8

3.15/9

Removal I/O Status Register Definition

ENTER COMMAND
:IOSR,nl Remove status register definition n. If n

is not specifi~, all buffer register defini­
tions are removed.

Display I/O Status Register Table

ENTER COMMAND
:DIOS I

-I
Define Interrupt

ENTER COMMAND
: INT, n;addr, time, rate)

n

addr

time

rate

Display Interrupt Table

ENTER COMMAND
: DINT;

l'
Remove Inte'i-ltUpt Definition

ENTER COMMAND­
: INT, n).

Display I/O Status Register Table.

Define an interrupt.

Entry in interrupt table. If not specified,
the interrupt definition is added to the end
of the table until eight (0-7) definitions have
been accumulated. If more than eight in­
terrupt definitions are specified, the most
recent is replaced. The position in the table
represents the relative interrupt priority,
i. e., 0-7 with 7 having the highest priority.

Interrupt vector address.

Time of the initial occurrence of interrupt
in microseconds. If not specified the in­
terrupt will occur immediately after the ex­
ecution of the first instruction which enables
interrupts.

Time of interrupt re-occurrence in micro­
seconds. If not specified the interrupt will
occur at the maximum rate possible, i. e.,
after every instruction which enables in­
terrupt. If rate is equal to zero the in­
terrupt will occur only once at (time).

Display Interrupt Table.

Remove interrupt definition n. If n is not
specified, all interrupt definitions are re­
moved.

3. 16 EXTERNAL CONDITION COMMANDS

3.16.1

3.16.2

. 3. 16.3

Define External Condition

ENTER COMMAND
:EXT, n;ext, time, rate,

n

ext

time

rate

Define an external condition.

External condition (0-15) which corresponds
with an appropriate BEXT instruction. If n
is not specified, each EXT definition is ac­
cwnulated starting with EXTO until EXT 15
has been defined. Additional definitions
will then replace EXT 15.

The logical condition of the external condi­
tion when ready, 0 = false, 1 = true. When
not ready the external condition is in the
complement condition.

Time of the initial ready state in micro­
seconds. If not specified, the external con­
dition will become ready after the first in­
struction is executed.

Rate at which the external condition sub­
sequently becomes ready in microseconds
after (time). If not specified the external
condition will remain ready. If rate is
equal to zero, the external condition will
ready only once at (time).

Remove External Condition Definition

ENTER COMMAND
:EXT, n.l Remove external condition definition n. . If

n is not specified, all external cpndition
definitions are removed .

Display External Conditions Table

ENTER COMMAND
:DEXT , ,. Display the External Condition Table.

3.17 INFORMATIVE MESSAGES

During program debugging and simulation using 516S 1M, certain conditions may occur
which cause one or more of the following messages to be displayed on the terminal:

UNDEF BUS ADDR = x x x x x x x PC = yyyyyy

A reference to an undefined bus address has been detected. Program
execution is suspended.

ILL ROM WRITE BUS ADDR = x x x x x x BUS DATA = YYYYYY PC = ZZZZZZ

An attempt to write into a bus address defined as read only memory has
been detected. Program execution is suspended.

INVALID ADDRESS, LOAD ABORTED

A program load resulted in reference to an undefined memory address.
The load is terminated at that address.

"HLT" ATx xxx·x x

"BREAK"

A halt instruction has been executed, program execution is suspended.

The "BREAK" Key on the user terminal was depressed during program
execution. Program execution is suspended.

REGn TRAP CONTENTS = x x x x x x PC == YYYYYY

REGn TRAC CONTENTS = x x x x x x PC = YYYYYY

A reference to a CPU register which has been specified in the register
trace and trap table has been detected. A trace allows program execution
to continue, while a trap suspends ?rogram execution.

MEM ADDR TRAP n AT x x x x x x DATA == YYYYYY PC = zzzzzz

MEM ADDR TRAC n AT x x x x x x DATA = YYYYYY PC == zzzzzz

A reference to a memory address which has been specified in the memory
address trap and trace table has been detected. A trace allows program
execution to continue, while a trap suspends program execution.

"SDBD"PRECEDES NON DBL BYTEDATA INSTR, PC = x x x x x x

The double byte data flip flop was set during execution of a non double
byte data instruction. The flip flop is cleared and program execution
continues.

STAK LIMIT VIOLATION,' PC = x x x x x x SP = x x x x x x

The stack pointer, R6, has exceeded the currently specified stack
limits. Program execution is suspended.

"TIME LIMIT" AFTER x x x x x x x USEC

The user specified simulated execution time limit has been exceeded.
Program execution is suspended.

EIS & DIS SET ON JSR OR J INSTR AT x x x x x x IGNORED

Both interrupt enable and disable bits were detected set during execution
of a JSR or J instruction. Interrupts are unchanged and program execution
continues.

CANNOT RELOCATE ABS BINARY FILE, LOAD ABORTED

The user has requested load relocation on a binary file generated by an
absolute assembly.

DEVICE DATA EXHAUSTED AFTER n INPUTS BUS' = x x x x x x PC = YYYYYY

More data has been requested from a simulated input device than the
device data file contains. Program execution is suspended.

BUS ADDRx x x x x x CONFLICT

An attempt to redefine a bus· address which is already defined. The
current bus address definition is not affected.

MEMORY BLOCK FROM x x x x x x TO YYYYYY CONFLICTS WITH PREVIOUS DEFINITION

An attempt to redefine a memory block which is already defined. The
current memory block definition is not changed.

DATA WORD SIZE, ADDR = x x x x x x, DATA = YYYYYY, PC = ZZZZZZ

An attempt to write into memory with data which is greater in magnitude
than the defined memory word size. Program execution is suspended.

OUTPUT TO TTY OF NON ASCn CHAR x x x x x x PC = YYYYYY

An output to the simulated teletype at bus address 177777 of a non
ASCn character has been detected. The character is replaced by an
ASCn blank and program execution continues.

INPUT FROM TTY OF NON ASCII CHAR x x x x x x PC = YYYYYY

A non ASCn character has been received from the simulated teletype
at bus address 167775. The character is replaced by an ASCII blank
and program execution continues.

OUTPUT TO INPUT BUFFER REG x x x x x x BUS DATA = YYYYYY PC = ZZZZZZ

An output to a buss address defined as a simulated device input buffer
register has been de. acted. Program execution is suspended.

INPUT FROM OUTPUT BUFFER REG xx x x x x PC = YYYYYY

An input from a buss address defined as a simulated device output buffer
register has been detected. Program execution is suspended.

CHAPTER 4

S16XRF CONCORDANCE (XREF) GENERATOR

4.1 INTRODUCTION

The Series 1600 Concordance Generator program (S16XRF) provides the user
with a concordance or cross reference listing of Series 1600 assembly language
programs. A cross reference listing consists of program statement symbols
and all references to each symbol. Cross reference listings are useful when
debugging and modifying large programs.

4. 2 OPERATION

S16XRF produces a symbol cross reference listing of Series 1600 assembly
language source program by reading the source file and noting all symbols and
references. A listing is then produced which indicates each symbol, the line
number on which each symbol is defined and all references to each symbol by
ascending line number. The symbols are listed in alphabetical order down the
page while the line numbers of all references are listed across the page.

4.3 INTERACTIVE DIALOGUE

Upon initial startup, S16XRF identifies the version in use and then requests
identification of the assembly language source file for which the cross reference
listing is to be produced by displaying: SOURCE FILE, ACCNT? The user must
then enter the name of an appropriate file followed by a comma and the file ac­
count or user code. If the file exists in the current account, the comma and ac­
count may be omitted. Next, the user is requested to specify a listing file by the
message: LIST FILE? If the user enters a file name, the symbol cross refer­
ence listing will be output to the named file. If no file is named, i. e., only a
carriage return is entered, the listing will be output on the user's terminal.

4.4 ERROR MESSAGES

If the named source file does not exist as specified, the message "FILE DOES
NOT EXISTl" is displayed and another source file is requested.

If the named source file contains more symbols than can be. as sommodated by the
version of S16XRF in use, the message "TOO MANY SYMBOLS AT LINE # nnnn!"
is displayed. In this case the cross reference listing will not contain symbol
references on or after the indicated line number.

4.5 LISTING FORMAT

The symbol cross reference listing which is produced by S16XRF contains
symbols in alphabetical order and references to each symbol in numerical order
as follows:

SYMBOL

MAX

NUMBER

QTY

Z

4.5 LIMITATIONS

LINE #

25

30

51

98

REFERENCES

35 89 602 702 703

208

2 3 201

95 205 208 352

S16XRF-1 (Version 1) can accommodate 300 symbols and 1200 symbol refer­
ences. These limitations are related to the size of the memory available on
the particular host computer in use.

CHAPTER 5

S16BPT BINARY PAPER TAPE GENERATOR

5. 1 INTRODUCTION

The Series 1600 Binary Paper Tape Generator progTam (SI6BPT) is used to
punch on paper tape an object module file produced by the Series 1600
Symbolic Cross Assembler (SI6XAL) or a load module file produced by the Series
1600 Object Module Linker (SI6LNK). A paper tape is required when a progTam
which has been assembled and/or linked on a host computer system is to be
loaded and executed on a Series 1600 microprocessor system. The format of the
tape produced is compatible with the Series 1600 Relocating Linking Loader.

5.2 OPERATION

Upon initial startup (via appropriate host system Run or Execute command)
S16BPT identifies the current version in use and requests object file identification
by the message: "ENTER BINARY FILE NAME, ACCNT". The user must enter
the name of an appropriate Series 1600 binary file followed by a comma and the
file's account identification. On many systems if the file exists in the current
account, the comma and account may be omitted. Next, the user is requested
to ready the paper tape punch and acknowledge when ready. When the paper tape
punching is complete, the user is requested to "enter another file to be punched;
if only a carriage return is entered.. control is returned to the host computer
operating system monitor.

5.3 ERROR MESSAGES

Several er:ror conditions are detected by S16BPT and are reported to the user by
the following messages:

FILE DOES NOT EXISTII - the named object file does not exist. enter another
file name.

INVALID OBJECT CODE SEQUENCE, TAPE ABORTEDII - the named object file
contains erroneous or invalid object data, tape aborted.

CHAPTER 6

S16RTG ROM TAPE GENERATOR

6.1 INTRODUCTION

The Series 1600 ROM Tape Generator program (SI6RIG) produces data
from which Read Only Memories for the CP-1600 microprocessor are
fabricated. A load module produced by the Series 1600 Cross Assembler
(~16XAL) or the Series 1600 Object Module Linker (SI6LNK) is converted
to data patterns which are input to General Instrument Corporation's auto­
mated ROM manufacturing facility for processing.

6.2 OPERATION

Upon initial startup (via appropriate host system RUN or EXECUTE
command), S16RTG identifieS the current version in use and requests
load module identification by displaying:"WAD MODULE NAME, ACCT?".
The user must enter the file name of the load module which is to be
placed on a ROM followed by a comma and the file's account identifica­
tion. On many host systems, if the file exists in the current account,
the comma and account identification may be omitted. Next, the user
is requested to enter a program relocation address by the message:
"RELOCATION ADDRESS?". S16RTG includes a program relocation facili­
ty so that the load module need not be assembled at the actual ROM ad­
dresses. The user is next requested to specify a name for the ROM
data pattern file which is to be produced by the display: "ROM PATTERN
FILE NAME?". The user must enter a suitable file name of one to eight
characters, with the first alphabetic (A-Z) and the rest. alphanumeric
(A-Z, 0-9). S16RTG produces a EBCDIC or ASCII sequential ROM data
pattern' file of 129 eighty character records which may be transferred to
punched cards, magnetic tape or paper tape for transmittal to General
Instrument Corporation for ROM processing. Next, the user is requested
to enter a ROM pattern number by the message: "ROM PATTERN
NUMBER 7". This three digit number is used to identify the ROM patterns
during processing and must be obtained from General Instrument Corporation
prior to producing the ROM pattern file. Finally. the user is requested to
specify the particular ROM base address by the message: "ROM BASE
ADDRESS?". This address is the one at which S16RTG will commence
producing data patterns and must be equal to or greater than the reloca­
tion address and have the three least significant octal digits equal to 000.
The 512xlO bit ROMs are assigned addresses xxxOOO - xxx777. When
file generation is complete. another load module file name is requested.
If a name is entered the process is repeated. if. however only a carriage
return is entered. control is returned to the host computer operating system
monitor.

6.3 ERROR MESSAGES

Several error conditions are detected by S16RTG and are reported to the

user by the following messages:

STRING ERRORII
contains an error.

The load module file name, account specification

FILE DOES NOT EXISTII The specified file dres not exist.

FILE NAME CONFIlCTII The specified ROM pattern file name is
the same as the specified load module file name.

NON SEQUENTIAL ADDRESSING IN ROM, ZEROS USED IN UNDEFINED
ADDRESSES The load module contains a RES or an ORG assembly
directive, resulting in unspecified contents for ROM locations. It is
recommended that the user use the ZERO assembly directive for speci­
fying unused ROM locations.

LOAD MODULE CONTAINS IlNKAGE INFORMATION, ROM ABORTEDII -
The specified load module was not a load module, but probably an object
module.

ASS LOAD MODULE, CANNOT RELOCATE, ROM ABORTEDII - The
user has requested relocation of an ABS assembly load module.

APPENDIX A

SAMPLE Sl6XAL ASSEMBLY

The listing shows a sample assembly performed by the S16XAL
Symbolic Cross Assembler. The program is a generalized code
conversion utility routine. A number of intentional errors have
been incorporated into the source program to show the error
diagnostics of the S16XAL Assembler.

INASC

1
2
3
4t

5
6
7
8
9

12119 JAN 30,'75

I 6eURCE FILE • INASCSR
; OBJECT FILE • INASCOB
;

REL INASe

PAGE 1

HEAD '" ASCII TO BINARY CeN~~BSION ,.'
PA3E

IN4SC OJ SloXA~ VERt 01i PAGE
,. ASCII TO BINARY C6NVERSl~N "

10
11
12
13
1 At<

15
16
17,
18 ,9
20
11
12
13
RAt<
as
26
a'l
i8
iI19
,iO
;il .2
33

•• L fE) LA~EL
34
35
J.i6
37
at;
39

•• & (~) SYNTAA
.. 0

"1
1:+2
.. 3

;
~ HExeIN. HEXADECIMA~ ASCII TO BINA8Y

INTBIN • INTEGE~ ASCII TO BINARY
; ~CTBIN· OCTAL ASCII T~ BINARV
~ 8INBIN. BINARy ASCII TO BINARY
;
; CALLING SEQUENCEI

I Rl. INPUT fIELD BASE AOORiSS
; Ri. f CHARACT[RS T6 BE CONVERTEb
; JSR R5,NAME
l
I RO. CONVERTEO BINARY VALUE
; Rl .. POINTi~ T~ END OF CONVERiiON
; R2. RI:+ DESTROYED
I
; CONVERSION TERMINATiS ON FIRST NeN ~YMERIC

'~ARARACTER ENCeVNTERED, LEADING seACES ARE
; IGN~RED~ LEADING. OR • ARE ~ANbt~~.

Rl
R2
R3
R4
R5

SP
PC

EttlU iJ
EGiU 1
EttlU 2
EQU ~
EQu 1:+

E(,IU I)

I
EQU
EQU 7
GLOB HExelN/INTBIN/ecTBlN/BlN~IN
PAGE

2

INASC . Gl Sl b1. AI.. VERt 01E i~ 119 JAN :iO,'75 PAGE 3 , . ASCII Te al N~kY ceNVERS leN ••
tAt 000000 0011;71+ HEXSIN MYU .1.~,Rt IfUDXX 16

000001 ooovC:O

•• ~ (E) MOE.F GYM I
,5 00001)2 0010vO B AiCl

oooooa 000V1~
iloilo Q ~'1 t ., SYNTAX
•• S fE) SYNTAX r

"6 00000" 001~70 IN1'SIN MY 11 10Rlt ; FUDIX 10
000005 OOOv12

•• M of'E» MOEF $YM I
.. 7 000006 001000 B Aiel

00000'7 0000v6
*8 000010 001~71+ eJCfBIN MV 11 a,R" IRADIX 8

0000 11 000010

•• M tfE) MUEF &YM I
*9 000012 001000 Aeel

OOOOl3 000V02
iloilo Q 1 I » , SYNTAX r

50 000014 OOlc11+ 61NBIN MV 11 i IH ,RACIX 2
000015 OOOVOI:!

iloilo D tE) DBL DE.F
"

51 00003,b 000~23 AStl MeVR ~2,R'
iloilo 0 fE) OBL DEf I

52 000017 OOv~2~ ASCl MeYR R~,R:J

"
CHRS

13 ooooao OV1~65 PSHR R5 ISAVE RETURN
iloilo U 1 E) UNOF GYM J

~H oOcoal 000/00 CLRR RO UNIT BIN AecUtJ
i5 000022 00070t) CLRR R5 IINIT STR STeT If Lo,G
66 000023 001212 Asca MY HI RllRI ,PICK UP CHR
57 OOOOi4 000255 TSTR R5 ISTR STRT YET ,
i8 0000er5 OV1V11+ BNZE ASC;I+ IYES, Nfl LoDNG C;~RS

OOOOib 000020
S~ 000027 01)1512 CMPI , 'I A2 ,spe q

000030 OVOO'+O
00 000031 001001+ SEQ Ase7 iYES, ~YPASS

000032 000063
61 1;)00033 OV157~ CHPI ,,, 'I R2 IMINuS ,

000034 000v5~
62 JOO03b 0011,,11,. BNEQ Asea INO, CHI< F'6R PtUS

000036 OOOOu~
63 000037 000025 DECR R~ IYES, SET MINuS FLoG
,At 0000.0 001UOQ B Alie7 ~aYPAS$ Ml~US

00004-1 OOovb~
iloilo R (E. r REGISfER

65 0000~2 0001,,110 A~C:.a INCR e>5 ,SiT PI.YS FloG
6b 000043 001b72 CMPI '+ ' .. M2 'PLUS

,
0000.1+ 0001,,153

67 0000,.5 OOlOO,. BEQ Aiel ,YES .. BYPASS IT
000086 0001.1'+ ,

•• S .tEl SyNTAX I
68 0000,.7 001'+70 ASCIt iUSI 060 I STR IP A st. 11 MASK

OOooeo OOOObO
69 000061 0011,)1:.3 8MI Ail;FIN fNeJN D l(~, TRt1N tNVRT

000062 0000'+1
70 000063 00150~ CMf? O~hR2 ICHI< FOR A"F

000064 000021
71 000065 001005 SLT ASCS INOT

IN,SC Gl SloX.AL. ViR I Oli: ~2119 JAN 30,'75 PAGE

• • ASC 1 I T~ 61NMH CONVERSIeN ••
OOOOS6 ooouO~

•• S (E) SyNTAX. I
•• Q 0) 7 SYNTAX I

12 000u57 001';)70 CMPI 02~I,R2
OOOO~O 000U26

•• 1.1 0(I I 7 SYNTAX I
13 1.)00Obl 001v16 t3G T ASCF' IN NON Dl G, TRMN CN~RT

000062 oOOu;;Jl
11+ 0000063 0011+7c SUBI 07,RI ,AOJ A-F -> a.oO:l!~

1)00061+ 000l,)U7
15 \,)00065 OOOb4tie AS C5 CMPR R,+,Ra ICMPR DIG & f ·t1ASE
71;) 000061;, COluiS aGE ASCF"!N ,,"eN DIU, TRMN CNVRT

ijOOO67 ooou3i
77 GOOO 10 OOlb7'+ CMPI 10,R,. ;CIo4K F elf(DEC CN~RT

000011 00(1)12
78 000072 OOlU(.I1+ BEQ AtiCl0

000073 OOou33
•• U 1£) UNDF Q)'M I

7') 000071+ 000.1.31,) SLI..C RO sMUL.T ACCUM BY i
80 000075 0Oluu1 &C ASCF IN

000076 00Ou23
81 000077 001';)7 .. CMPI i,R4t I CHI< FI;JR BASE e

U00100 OOOUU2
82 U0010l 0010041- BEQ ASC6

000102 000012
•• U 1 E I lINDF SYI1 t

83 000103 OO<HJI+ SllC RO,2 I MUI..T ACCUM SY 8
i4 000101+ 001uuJ, B(,; ASeF!N

000105 000011+
85 000101;) 001b7", CMPI 'h R4f. iCHK FOR SASE II

OU0107 0000lQ
it) 000110 001\,104f. 8EQ AS{;6

000111 ooooo~
•• IJ 1 E. I UN[)F bYM I

17 000112 000130 SllC RO iMUI.. T ACCYM BY Ib
88 000113 0OluO~ BC ASCFIN

000111+ OOOUvp
•• lJ 1 E I UNDF ~'(M I

i9 000115 000320 ASC6 ~DDR R~,RO HN$RT CURRNT DIG
iO (')00116 000011 Ase7 INCR Rl ; 1 NCR CHR ST& eTR
91 (WOll7 OOOl,)2~ DE.CR R3 I CHI< FOR AI..L. ctles CNVRT
i2 000120 001uo4+ BNZE 46C2 ,NeT .. GET NXT Ct.iR

000121 0001.170
•• (i; tCl I 7 SY'I"fTA'(I

i3 0001i2 ()OOCO 5 AS C~· IN NN TS TR Rei ,CHK S~GN FlG
i"+ 000113 001003 BPl,. ASeXIT iPl.US

000124 ooouo~
•• II ~F.l UNLJF GYM I

i5 10100120 (J 00 U~ IJ NEGR RO ,IMINUS
i6 000126 0011:67 ASCXIT PUl,.R PC; IEXIT
'j7 000127 001~1;,2 ASelO PSHR R2 iSAVE CURR DIG

•• lJ 11;.) UNOF SYM J
i8 000130 000;:02 MOVR RO,R2 I MUL.:T ACCUM BY 10

•• u f E) UND'F QYI., J
99 OU0131 OOO~31t SlL.C ROle

1IJO UOO132 OO16~1 BC .SCF%N
000133 0001.11,1

IN.se Gl SlbXAI,. VER, (Hi 12119 JAN ao,'75 PAGE 5
• • ASC 11 Ttl 6IN~RY C6NVER&ICN t •

•• u n·1 UNDF SYM I
lQ1 0001341- OOO't20 SUBR R21Ro

•• 1.::1 fE) UNDF lHM l

'. 102 000135 00O~30 SLLC RO
103 Q001;36 OO10't~ Be AiCFIN

0OOlJ7 000015
•• tJ fE) UNDF SYM I

lQ4 1)0011+0 000420 SUBR R?,RO

•• U fE.) UNDF SYM J
1(.)5 OOOlil 00OJ,30 SLLC ~o
106 0001*2 001041 6e ASCF IN

000143 000021
1Q7 0001*4 OOl~62 PULf< R2 I GiT' CURR 0113
lilB 60014105 OO10'tO B AseQ 11 NSRT DIG

0001t~ 000031
109 00011+6 ENO

IN,SC Gl SlbXAL.. VER. OlE lZ 119 JAN 30 .. '75 PAGE 6

•• ASCII Ttl t:3IN~;.(Y (.;t:lNVE.Rf.'ilflN • •
ASCF IN u001Z2 R IN AS ex IT 000126 R IN
ASCl OOo.u16 R IN DO ASC10 000127 R IN
Ase2 000023 I< IN M:iC3 000042 R IN
ASC4+ 00004+ 7 R IN ASes 000065 R IN
ASC6 °00U5 R IN ASe? 000116 R IN
BINBIN 000014 k IN (.J UI< HEXSIN 000000 R IN G UR
INTBIN 00000". R IN G UR deTBIN 000010 R IN G UR
PC 000007 A t.1l! Rl 000001 A EQ
R2 OOOQO'c! A t.Q R3 000003 A EQ
R4 000004 A t.Q 1<5 000005 A EQ
SP GOOOOO lJ EQ uR

21 s YMBeLS
as o I A ON tiS T 1 C (s) 23 ERR 6R (S) 6 IN 1"0 Rf'I A T I V e; (S)

SOk;lRCE FILe;:SAMPi.t:. BINARV FILEISO

Al,'PENDrx B

INSTRUCtION SBT

REGISTER -REGISTER

, MNBMONIC' OPBRANp·1 CYCLBS' INSTRUCTION DBSCRlPi10N STATUS CHANGE
I

MOVR
TSTR
JR
ADDR
SUSR"
CMPR--
ANDR
XORR
CLRR
INCR
DBCR
COMR
NBGR
ADCR-"

SSS.DDD
sss
sss

'ssS; 000-
SSS. '000 -+ . __ ... - ._ .. - -..

·SSS. DOD
SSS. '000
SSS, bob'
DOD
000'
DOD
DOD
DOD
ODD

6 * 0010 sss .ODD
6 * 0010 SSS SSS
7 0010 SSS III
6-- .. -. oofiSsS DOO
(). .~H~_ .. _~~_._. pt>.rL
6 0101 SSS DOD
6 'ono SSS' DOD

'6- . ''OiIi ·-sss~· DOD
6 0111 DOD ODD
6- 0000' 6Of' ... DOD

6 0000 010 ODD
6 0000 011 DOD
6 0000 100 riluj-' : 6 ... -.. 0000-' 10i--- -DDi)-

MOVe coutents of Register .sss to register DOD. *If DDD!s 6 or 7. add 1 to Cycles.
TeST contents of Register SSS. *If SSS is 6 or 7 add 1 to Cycles.
J~p.~~_.addressin Regtster sss. (Moye a~sst~.Register 7) •.. ____ "_'._' .
.ADD contents of RegisterSSS to cOuteuts 'of register DOD. Results to DOD' '.
SUBiract of 'Register SSS from contents ~ register i:>DO; Results to ~ _:.::~

. COMPUe RegisterSSS with register DOD'by subtraction. Results' not stored. .
l~_~~(:outent8 of Regi'8ter SSS . Wlth. c()JiteDt~ of r~sister DDD~~~~lt~ t~ DOD.
eXclusive OR contents of Register SSSwith contents of register ,DOD. Results to DOD
CLeaR RegiSter to zero.

. INCrement contents of Register. DOD. ·ReSults to DOD
. DBCremeut contents of Register DOD. . Resuitsto DOD
orie's COMpiement contents of Register DOD •. Restilts to ODD

... ~·s. c~plement eotitentsof~~gisterDDD. ~~ltsto.DDD
ADd Carry bit to contents of Register pOD. Results to DOD

s. Z
S.Z
S. Z

·S·.:-z.·C. ov-
S;' .Z~ '~';'QL
s. z. C" mf I S.Z··· _ .. -.... -.-
S. Z
S,Z
S, Z . -. g,-'Z" .----
S~ Z

.§..L;.Z.· CJ;JV .. ~
S, Z, C.OV

RBGISTBR SHIFT Executable onlywitb Register O. 1. 2. 3-

SWAP
1-..

SLL

RLC

SLLC

~. SLR

SAR

~
I

itRC

I SARC

Shift Right instructions set the S flip-flOp with Bit 7 of the result after the instructIon.
Add 2 cycles if shift 1s 2 bits or two bytes.
ShIfts are not 1DI:erruptable.

RR~D. 6 0001 --000 NRR N-= o~ SWAP bYtes of register -RR--:-S equals Bit 7 ·ofresults of SWAP. s. Z
... _._._._._. __ ~~ __ . ______ N'" 1. SWAr.!»y!~s()f registerRR, ~n~p.t~m.~~~ to_o.r.!gi~!.!<!.!ID' ___ §~~_
RR~n'> 6 0001 001 NRR N = 0. Shift Logical Left one bit, zero to low.bit~ S. Z

........ ___ __ _.~ __N.=.'_l,Shift .LogiC!l ~~f;Wo b~~. zero to)ow_2 .. l>i~s. ____ . _________ . S~._! .. _____ .
RR<ln> 6 0001 010 NRR N = 0, Rotate Left one bit using Carry bit as bit 16.S, Z. C

• .' .•.. _~, _. _ ... > __ __ ___ .~._ .. ___ .N ~ 1.t.. R~t~_t.~ft two bits ,using c:: ~8. bit JI and9yali .. l?.i..t..cl§.... ___ ... _ ... ____ .. . S. Z!C • .QL
RR<;n:::> 6 0001 011 NRR N = O. Shift LOgical Left one hit using Cas bit 16. zero to low bit. S, Z, C

...... _._.. 8 _ _____ • N ':" J,Sll1!L~B!ealJ,.~._two .I)!t~_.!!8i!IK.9_as_~JJ7_d~.Y ~'_~ __ ~H9 to IOW_2/:)i~, .S ... L...C. OV
RR<;n> 6 0001 100 NRR N- 0, Shift Logical Right one bit. zerotohigb bit. S, Z

...• _ .. _. __ __ . _ .. _I! _____ ... _. ___________ . N = 1, Shift Lo.gigJ..L~two ~~ zero to high.1!'O ~i!~..!.._ .. ____ S Z
RR<,n > 6 0001 101 NRR N = 0, Shift Arithmetic Right one bit. sign bit C:Opled to high bit. S, Z

RR<:;il >"
8 N .. 1, Shift Arithmetic Right tw~ bits, lIi~gn bit .copied to high bits. S. Z

·6---- -. "ooo'f- 110 NRR -. N = 0, Rotate'Rl8iJt' one·bit"uliingC8.:rrj·as·hi£ 16. ---.. ------.------------- --S-,' Z~-C--·--'
8 N= 1, RotateRigbt two bits using C ~bit 16. OV as .bit 17... . .' _._~.1-~, C, OV

RR<;nYT -'-6 . 0001 Iii NRR N= 0, Shift Arithmetic Right ODe bit,-thruCarry, sign bit coPied to high bit. S, Z, C
8 N.: 1, Shift Arithmetic Right two bits,thru Carry and OV. sign bit copied to high

2 bite S, Z. C. OV

-Bl-

'BRANCHES

APPENDIX B

INS T R U C T I 0 .N SET (continued)

The Branch instructions are Program Counter Relative. I. e •• the Effective Address =PC+Displacement. PPPPPPPPPP is the ntsnlacementand S
is 0 for +. 1 for -. If Memory is greater than 10 bits then the appropriate number of lead bits pppppp will be a part of the Displacement. For a ~d
branch an addition is performed; for abaclcward branch a ones complement subtraction is performed. Computation performed on PC+2.

\1:,\EMONIC I OPERAND CYCLES INSTRUCTION DESCRIPTION STATUS CHANGE

B DA 7/9 1000 SO 0000 Branch unconditional, Program Counter Relative (+1025to -1024)
ppPPf)p~ ppyp PP PPPP

NOPP 7- 1000 SO 1000 NoOPeration t two words
Ipppppp PPPP PP PPPP

BC I DA \ 7/9 - 1000 SO 0001 Branch on Carry. C= 1
BLGT ! DA pppppp pppp pp.pppp Branch if Logical Greater Than. _ C = J
BNC i DA 7/9 1000 SO 1001 Branch on No Carry. C = 0
BLL T I DA PPPPPP_ pp?p_ pp _ PPPP Branch if Logical LeSSTha. n. C = 0
BOV DA 7/9 1000 SO 0010 Branch on OVerflow; OV = 1

! pppppp pppp PP pppp
9N:::>V I DA 7/9 1000 SO 1010 Branch on No OVerflow. OV = 0

I pppppp Pm PP PPPP
BPL I DA 7/9 1000 SO 0011 Branch on PLus. S =0 I

-pppppp pppp pp pppp
BMI DA 7/9 1000 SO 1011 Branch on Minus. S - 1

pppppp PPPP pp pppp
BZE DA 7/9 -- -- 1000 SO 0100 Branch on ZEro. Z = 1
BEQ DA peppPI PPPP PP PPPP Branch if EQual. Z- 1
BNZE DA 7/9 1000 SO 1100 Branch on No ZEro. z· 0
BNEQ DA PPPRlP pppp PP PPPP Branch if Not EQual. Z = 0
BLT DA 7/9 1000 SO 0101 Branch if Less Than. S¥OV=l

pppppp pppp PP PPPP
BGE \- DA 7/9 - - 1000 SO 1101 Branch if Greater than or Equal. S-\l-OV = (I

PPPI1'P PPPP PP PPPP
BLE I DA 7/9----- -100050 0110 Branch if Less than or Equal. ZV(S..-y.OV) = 1

! pppppp PPPP PP PPPP
BGT DA 7/9 - 1000 SO 1110 Branch if Greater Than. Z V (S-¥-OV) = 0

\- pPpppp PPPP PP PPPP
BUSC DA 7/9 .-. - - - 1000 SO 0111 Branch if Unequal Sign and Carry C-¥' S = 1

PWPW-' pppp PP PPPP -
BESC DA 7/9-------- -fOi:xf--gO' 1111 Bran!:h if Equal-Sign and Carry C4lo-!': '" 0

ppPWR pppp. PP PPPP
BEXT DA t E 7/9 l000~ SI EEEE Branch if EXternal condition is True; Field E is externally decoded

to select 1 of 16 conditions. Response is tested for true condition.
pppppp PPPP PP PPPP

- ~_ I _ _. __ ._.__ _._ .__ _ _._ _ _ _ _ _ _. __ ._

-B2-

CONTROL

Mr>.TEMONlC OPERAND CYCLES

GSWO 00 6

NOP .<n;> 6
SIN . <~- 6
RSWO SSS 6

HLT 4
EIS 4
OIS 4
TCl 4
CLRC 4
SETC 4

JUMP

J DA 1 12

JE DA 12

JO OA 12

JSR 88.0A 12

JSRE BB.OA 12

INSTRUCTION

0000 110 OOD

0000 110 ION
0000 110 UN
0000 111 SSS

0000 000 000
0000 000 010
0000 000 011
0000 000 101
0000 000 110
0000 000 111

0000 000 _ 100
11M AM 1lOO_
MAA AAA AAA

-0000 000 100
HAA AM AOl
AMA MA AM
0000 000 100
11M AM AIO
AAM MA AAA
OdO()----OOO -100
88M AAA AOO
AAM AM AM
0000 000 100
BBM MA AOI

APPENDIX B

INSTRUCTION SET (coDtinued)

DESCR1P110N -. - -
Get Status WorD in registerDD. Bits 0-3. 8-11 set to O.
Bits 4. 12= C;S.- 13 = av; 6,14 = Z; 7, --IS == s.
NO .
Software lDterrupt; pulse to Pen" * pin -.
Restore Status Word from register _ SSS;Bit 4 to c. Bit 5 to OV. Bit 6 to-z.
Bit 7 to S.

-HaLT afterllex:t iDstrUctionis executed" Resmne on co.utrol start.
Enable lD:errupt System. Not·1nt Ie.
Disable interrUPt Systeni. Notlnt • hie.
Terminate CutTent interrUPt. Not Jnt~1JI)table.
CLeaR CaiTvto zero; Not -Interruptable.-
SET Carry toone. Not Int Ie •.

Jump to address. Program counter is set to 16 bits .of A's. _

Jump to address.-~Enable interrupt system. Program counter is set to
16 bits of A's.

-Jump to address. Disable interrupt system. Program counter is set
to 16 bits of A's.

Jump and save Return address (PC+3) in register designatec by 1B8.
Program counter is set to 16 bits olA's; BM 11

i AMA AAA AM

Jump and Save Return and Enable interrupt system. Return (PC+3) is -
saved in register lBB. Program counter is set to 16 bits of A's. BBfll

; JSRO 0000 000 100 Jump _and save Return and Disable interrupt system. Return (PC+3)
88M AAA AlO is saved in register 11m. Program counter is set to 16 bits of A's. Be,tll
AAM AAA AM ,

I 1-._-----_.

..B&-

STATUS CHANGE

S. Z. C, OV
~

C I

C I

INS T R U C T ION SET (continued)
D1REcr ADDRESSED DATA - MEMORY

Field aaa aaa is dependent on the width of memory. 16 bits is maximum for aaaaaaAAAAAAAAAA.

MNEMONIC OPERAND CYCLES . INSTRUCTION DESCRIPTION STATUS·CHANGE I
MVO SSS. A 11 1001 000 SSS Mo V Out data from register SSS to address A-A.

aaaaaa AAAA AAA AAA ---- - .'~ .-
·MVI A. ·ODD-- - 10 1010 OOU ODD Mo Ve In data from address A - A to register ODD.

aaaaaa AAAA AAA AAA
,..-~-.- -.-.-.--- -- -"-"- ---,.-.-----._- - " .. ~~ .. ---. •• O_·"_·~· . -. ,. -- -. - - '_'"-" -" ---- -... _- .. -.' -ADtf-----·· A: DDO--- 10 1011 000 DDD ADD data from address A - A to register DOD. Results to DDD. S. Z. C. ov

aaaaaa AAAA AAA AAA
Soo------- A;-rmtf· lO 1100 000 DDD - SUBtract data from address A - A from' register DOD. Results to DOD. S. Z. C. ov

aaaaaa AAAA AAA AAA .• ---..., .. _ .. _ ..

A: SSS
.- ·-To ~ •.. - - ." ---._. _.. .

CMP 1101 000 SSS CoMPare data from address A - A with register SSS by subtraction. S. Z. C. OV
aaa aaa AAAA AAA AAA Results .not stored. - .

AND A. DOD 10 ·1110 000 DDD logical AND data from address A - A with register DDD. Results to DDD. S. Z
aaaaaa AAAA AAA AAA

-xoiC· A. Dim - 10 1111 000 DDD eXclusive OR data from address A - A With register DDD. Results to ODD. S. Z
aaaaaa AAAA AAA AAA

--~---.

INDlREcr ADDRESSED DATA - REGISTER

I

MMM
MMM
MMM

MVO@ I SSS, MMM

1 PSHR \ SSS
i· 1 I MVl@ \ MMM. DDD

I

Source data is located at the address contained in Register.
4. 5 post increment R4 or R5.
6 - MVO instruction - post increment R6. PUSH data from Register SSS to the Stack.

Other instructions - pre-decrement R6. PULL data from the Stack to be used as the first operand.

9 1001 MMM SSS MoVe Out data from register SSS to the address in register MMM
Note: SSS = MMM = 4, 5, 6 or 7 not supported.

9 1001 110 SSS PuSH data from RegisterSSS to the stack.

8* 1010 MMM DDD I MoVe In data to register DDD from address in register MMM.

1 1010

! .-----r----..... ,
!
i

I P~~R lDDD 1

~DD@ ____ i~MM.DDD8_~_1 1011 MMM DOD. ~:. "':.!.,":':: ~'o~". in,,,,:--, MMM to the oontent. Of~"'ote' is. Z.£.O'

I SUBt@ \ MMM. DDD 8 *.1 lIOO MMM DDD: SUBtract data located at address in Register MMM from contents of :

110 ODD! PULl data from the stack to Register DDD.

8 1011

I CM~ ___ MMM=~~D 8:t--ilOl--MM~-~ !_=:;~ :'~::~~:::e:::~::o~M ;,jth~S;'-- ,S. Z. c. pV
i ANOO MMM. DDD 8 • I illO MMM DDD -t 1"'",,1 AND """ents of regi"~ DOD with data 100ated at a

txOR'@MMM, DOD 8 * Ull MMM DDD 1·~~~I:i:~~M~o~~::t~~f ~~!;r DOD with~ta -l~~t-;d~t ad~es;---· ! v'

L i in register MMM. Results to ODD. _ ... __ . __

i~z. C, OV

1 * Add 3 to number of cycles if MMM=6.

-84-

I

I
I

I
I
I
I

IMMBD-IATB DATA -'REGISTER'

!WOI
1-=0,.., -

MVII

C

~----,-"
ADDI

t~~~
ANDI

'XOlU:· .. ·,· .. "

iDBD'
,

OPBRAND

SSSiI

'-Z;DDD

I,DDD

'I,DDO-··

I,SSS

I~DDD

I,DDD

CYCL$S

9

B

8

8

8

II

8

4'

APPENDlXB

IN S TRue T 10 N SET (continued)

The number of iiiiii, bits depends ()n the lIleJIIOry width, 16 bits is 1U.Ximum.

tiiiii

, __ iiiii! ','

iiiiii

iiiiii

iiii,it

iiiiii

iii iii

INSTRUCTION

1001 111
II II III
1010 111
.tUI.~, ,.lII,
1011 111
III I III
1100 111
lUI III
1101 111
IIII' III
ino Iii
IIII UI
1111 111
IIII III

0000 000

f'his instruction is nonnally
supplied by .the. assenmleras
required to properly generate
machine cqde.

-DESCIU:P'l'ION

SSS ~ KoVeOUt Immediate data from register SSS to PC+l
III' (field) -
DDD 'MoVe In Immediate data to register DDD from PC+l

'~~~ , ~ ~~~~~iate data :to contents of' register"' DDD.
III Resu1 ts to DDD,.
ODD SUBtract Immediate data from contents of register
III DDD~ Results to DDD.
SSS CoMPare Immediate data from contents of register
III SSSby subtract,~I,t.",,~~u.li;.s ,~qt ,si;.Qr.@q.
DDD logical AND Immediate data with contents of
III register DOD. Resu.lts to ODD.
DOD eXclusive OR Immediate data with contents of
III' reqisterDDD. Results to DOD.

001 Set DOuble Byte Data for the next iD8t1'tK:tion which must be an
external ,reference instruCtion. The effective address of the
external reference instruction will address the low order data
byte; the. address of the bighorder data byte will be EA+l if
register 4. 5 or 7 is used. If register 1-3 is used the EA wil.
access the same byte twice resulting in both bytes of data being
the same. Use of modes' 0 aud6 are not supponed by this instruction

a'~A'",va

S, Z, C, OV

S, Z~ C. OV

S, Z, C, OV

S, Z
-• --s, z

.INDIRECT ADDRESSED DOUBLE BYTE DATA ;.. REGISTER

SDBD 4 0000 000 001 MoVe In double byte data from the address in register MMM to
MVI@ MMM.QQQ.. 10 . , 1010 MMM DDD t--~e!_~p:.._ " "
SDBD"

f-"'-'---- f- -"---"._"---'''.'--' 000 001' S. z. c.-bv
,.

4 000 ADD double byte data from the address in register MMM to the
ADD@: MMM. I?QP 10 . .loil MMM DDD _~ntel!t,Q.L~!!&!!~~1:. POO· ._R~JIJ!JJJ.9J;mD ... - - .. -,,-'--'~ ----"".,,-----0000- '''000'''''' 001' " SOOD 4 SUBtract double byte data located at address. MMM from the S. Z. c. OV
SUB@ ,MMM~.PD.D, 10 -.......... _ .. ~. 1190 ¥~M DOD , contentof,!:~gt~~LPQP~, ,.R~(J~!!...t2...Q.Pp.._,_, ____ ._~_"' __ .. , __ 1'---- , ..
SooD '·"4 0000 000 001 CoMPa~e doublebyte' data located at address in registerMMM S. Z. C, OV
CMP@ MMM.P!?Q: 10 ' 1101 MMM SSS _~~_content of register SSS by subtraction. Results is not store~~,
SDSD

-:--';4'" ,,' ., ':- . "'.--.-.".". '"-''-OOOO··-''-~'-~''' logical AND double byte data located at address in register MMM S, Z
AND@ . MMM, DDD 10 1110. MMM DOD ~th tb~colitent of rgister DDD~ Results to DDD. " I". 500D----- _ ... ".- ... , _'_ .. .•. '4- .. , "0000 -'OOO-~- eXclUSive OR double byte data located at address in register MMM S, Z
XOR@ MMM, DDD 10 111 MMM DDD with the content of register DDD. Results to DDD. I

.. S5-

I

I

APPENDIX B

INS T R U C T ION SET (coDtinued)

IMMEDIATE DOUBLE am DATA - REGISTER Note: '1ll~ 8OBD.command is provided by the assembler wIlea the immediate data 1s greater than the
meQlory width and require!! twO ~es.

MVII I,DDO 14-

ADDl t,DOD n

SUBX .1,DDU 14-

CJU>1 1,585 14-

ARD:f I~DDD. 14

x.U 1.DDD 14-

,
-'----~-.--

GLOSSARY OF TSaNS

Sss - :~a~r
·OJ)p" . ~ri 1legtste.-.
n ~'ofSbifts
RR: . RegtatettoSb1ft(OIllY 0'·3 aBowed)

".AAA/tAA 'Memory- addres8for Jwnp.
AAAMAAAAA (new Program Counter)

00'00 . 000
1010 III
XXLL LLL
XXUU OW
0000 000
1011,. 111
XXLL LLL
XXW UUU
0000 000.
1100 III
XXLL LLL
xxutJ ODD
0000 00.0
1101 111
XXLL LLL
XXW UUU
0000 0.00
1;110 111

'XXLL LLli
XXDU WU
0000 000.
1111 111'
XXLL LLL
XXUU OW

BBRe8f$tet to save old PC in for JUlnp. (Reg = 188, 4,5. or 6)
S.Sjgn of address disp1acemeIlt for 8ranch(PC relative).
pppppp Pl'PPPPPPPP ;. Address displacement for Branch

pppppp is dependent on the memory word size.
aaaaaa AAAAAAAAAA - Direct address of data word. .

001
DOD
LLL
UUU
001
DOD
LLL
OW
001
DOD
LLL
DUU
001
SSS
LLL
UUU
001
DOD
t.i.i.
lJUU
0.01
QeD
LLL
OW

aaassa is dependerit"on the memory word size.
liiiU nnmnr': Immediate data word. . liiiii is dependent on memory
LLl;..LLLLL Lower 8 bits of double byta data. word size.
UUUUUUUU Upper 8 bits ot doUble .bytedata.

MoVe In Immediate double bYte data to reqister
DOD. L's will be low byte and U's upper byte.
XX = don't care.

ADDDRmediate double b,yte data to contents of
register DOD. Results to DOD. L's indicate low
byte of literal, U's upper byte.

SUBtract I .. ediate double byte data from contents
of register DOD. Reaul ts to DOD. L's indicate
low byte of literal,U's upper byte.

coilPare DRmediate double b,yte data with contents
of' register SSS by subtraction. Results not

L's indicate low byte of literal, U's stored.
upper byte.
logical AND Immediate double byte' d~ta with the
contents of RegisterDDD. Results to regiater
ODD. L's in~cate low byte of literal, U's upper
.byte .•
exclusive OR Immediate double byte data with the
contents of registerDDO. Results to Regiater

L's indicate low byte of literal, U's upper DOD.
byte ..

AddresS Mode
direct address in location following instruction.
indirect address for Register 1
Indirect address for Register 2
indirect address for Register 3
. indirect addrep for Register 4, post increment

,. indirect address for ReJrister 5, post increment

5, Z, C, OV

5, Z, C, OV

5, Z, C, OV

S, z

s, Z

MMM
000
001
oio
011
100
101
110 indirect address for Register 6. post increment for MVO only

indirect address for RegiSter 6. pre decrement for all instruc­
tions except MVO.

III

·86-

indirect address for Register 7. POSt increment.
(Immediate data in I.cation following instruction.)

APPENDIX C

S16LNK OBJECT MODULE UNKER

SAMPLE DIALOGUE

S16LNK VER.-OIA

LOAD MODULE ?
: IOCONVRT"

MAP ?'lY/N OR F=NAME)
:Y

OBJECT MODULES
:10CNVROB
:INASCOB
:OUTASCOB
:TTYINOB
:TTYOUTOR
:

GI S16LNK V~n.01A ,0:18 JAN 30,~75

LOAD MODULE:IOCQ..NV.~T

<BASE 000000>

MODULE:Cl'-lVRT
GLOBALS

IOCNVR 000000
<SIZE 000375>

<BASE 000375>

MODULE: INASC
GLOBALS

HEXBIN 0003.15
INTBIN 000401
OCTBIN 000405
BINBIN 000411
<SIZE 000146>

<BASE 000543>

MODULE:OUTASC
GLOBALS

HEXASC 000543
INTASC 000547
OCTASC 000555
BINASC 000561
<SIZE 000246>

<BASE 001011>

MODULE:TTYIN
GLOBALS

TTYIN '001011
<SIZE 000223>

<BASE 001234>

MODULE:TTYOUT
GLOBALS

TTYOUT 001234
TYPCHR 001257
TYPH2 001~70

<SIZE 000053>

LINKAGE SUMMARY:
INITIAL ADDRESS 000000
FINAL ADDAESS 001306
ENTRY ADDRESS 000000

APPENDIX D

ASCII CHARACTER CODES

Char 7 Bit Octal Code Char 7 Bit Octal Code

Space 040 @ 100

041 A 101

" 042 B 102

043 C 103

$ 044 D 104

% 045 E 105

& 046 F 106

047 G 107

(050 H 110

) 051 I 111

* 052 J 112

+ 053 K 113

054 L 114

055 M 115

056 N 116

/ 057 a 117

0 060 P. '20

1 061 Q 121

2 062 R 122

3 063 S 123

4 064 T 124

5 065 U 125

6 066 V 126

7 067 W 127

8 070 X 130

9 071 Y 131

072 Z 132

073 [133

074 \ 134

= 075 J 135

076 t 136

? 077 .- 137
-D1-

RT
MT
RAM
ROM
10SR
10DR
INT
EXT

LOAD
E
EDR
S
C
X

IA
SA
CPA
TLIM
RADX
SLIM

MB
MJ

DRT
DMT
DMB
DIOS
DIOD
DINT
DEXT
R
A
SR
CLK
INFF
DR
DA
DET
DSYM
DPA
DMXS

APPENDIX E

GENERAL INSTRUMENT CORPORATION

S16SIM~1 SIMULATOR COMMANDS

SET REGISTER TRACE OR TRAP
SET MEMORY TRACE OR TRAP
DEFINE RANDOM ACCESS MEMORY BLOCK
DEFINE READ ONLY MEMOR Y BLOCK
DEFINE I/O DEVICE STATUS REGISTER
DEFINE I/O DEVICE DATA REGISTER
DEFINE INTERRUPT
DEFINE EXTERNAL CONDITION

LOAD PROGRAM
EXECUTE PROGRAM
EXECUTE AND DISPLAY REGISTERS
STEP PROGRAM
CONTINUE PROGRAM
EXIT SIMULATOR

INITIALIZE ADDRESSES
SEARCH ADDRESSES
CLEAR PREVIOUS ADDRESSES
SET EXECUTION TIME LIMIT
SET DISPLAY RADIX
SET STACK LIMITS

MODIFY BRANCH INSTRUCTION
MODIFY JUMP INSTRUCTION

DISPLA Y RE GlSTER TRAPS AND TRACES
DISPLA Y MEMOR Y TRAPS AND TRACES
DISPLAY MEMORY BLOCKS
DISPLAY I/O DEVICE STATUS REGISTERS
DISPLAY I/O DEVICE DATA REGISTERS
DISPLA Y INTERR UPTS
DISPLA Y EXTERNAL CONDITIONS
DISPLA Y /MODIFY REGISTER
DISPLA Y /MODIFY ADDRESS
DISPLAY /MODIFY CPU STATUS REGISTER
DISPLA Y /MODIFY CPU CLOCK RATE
DISPLA Y /MODIFY INTRPT FF
DISPLA YREGISTERS
DISPLA Y ADDRESSES
DISPLA Y EXECUTION TIME
DISPLA Y. SYMBOL VALUES
DISPLAY PREVIOUS ADDRESSES, IE, PC VALUES
DISPLAY MAXIMUM STACK USED

APPENDIX F

OBJECT FILE FORMAT

The object file produced by S16XAL contains relocatable object code generated during
the assembly process. The file is composed of one or more 64 word records, each
containing a three word header and up to 61 object data words.

The first word in a"ll records is equal to either 1 or 2 (-lor -2 if the record is the
last) which indicates a relocatable or absolute module respectively. The second word
in the first record contains the assembly base address or origin, in subsequent records
the second word has no significance. The third word in all records contains the number
of object words following in the record. The remaining significant words in each record
contain object code sequences derived from the assembly of instructions or directives.

64 word
record

RE LOCATABLE BINARY FILE
RECORD FORMAT

16-bit
word

~ ----------------~

record header

assembly base address

number of data containing
words in record

data word 1

data word 2

data word n

RELOCATABLE O~ECT CODE SEQUENCES

The data information in each record of a S16XAL object file is grouped into sequences
of variable length. The first word in each sequence contains a link/load code which
indicates the number and nature of object words following in the sequence.

Code No. Data Words Object Word Significance

0 1 address adjustment
1 1 absolute word
2 2 absolute word
3 3 absolute word
4 1 relocatable word
5 2 absolute word, relocatable word
6 3 absolute word, 2 relocatable 8 -bit bytes
7 2 2 relocatable 8 -bit bytes
8 3 absolute word, 2 relocatable lO-bit bytes
9 1 external reference word

10 2 absolute word, external reference word
11 2 absolute word, external reference displacement
12 3 absolute word, 2 external reference 8 -bit bytes
13 2 2 external reference 8 -bit bytes
14 3 absolute word, 2 external reference lO-bit bytes
15 1 entry address word
16 2 module name"
1V 2 global. symbol
18 2 external symbol

APPENDIX G

BINAR Y PAPER TAPE FORMAT

Binary paper tapes produced by S16BPT consist of variable length records which contain
a four frame header and up to 132 data frames. The first significant frame in all
records indicates a relocatable or absolute tape, 001 or 002 respectively (377 or 376 in
the last record). The second and third frames in the first record contain the assembly
base address or origin (low byte, high byte respectively); in subsequent records these
two frames have no significance. The fourth frame contains the number of object data
frames in the remainder of the record. The last data frame is ·followed by a record
checksum frame which is used during loading to verify that the record has been read
correctly. Object code sequences are the same as in a relocatable binary file except
that the link/load code occupies one tape frame and each object data word occupies two
tape frames, low byte, high byte respectively. The first record on a tape is preceded
by approximately 50 frames of blank leader, the last record is followed by blank trailer
of the same length and each record is separated by two blank frames.

B

L

_0

C

K

1

BLANK LEADER f
HEADER

,,------------ -"--_ .. __ .-_ .. __ .•.
CHECKSUM FRAME

I-...::B:::::.L~A!.:.N.!.!K~G~A~P ______ . _____ _
BLANK GAP

Header
Blank Address

\ Blank Address

I Frame Count
I __ L/ L Fram~ .. __ .. _____ ... _ .. ~. __ .
i Low I .. _ -.- -.. ---.- -----.--,,-.-..... .
I High

i-~t·~~~~e __ .. __ ~- ·------01

~gh
, -------.... ~~-.--...... ~"",-," ... - -. ,,'." -.. ~ .

HEADER CODES

I - Relocatable
2 - Absolute

- 1 - Last Block of Relocatable
- 2 - Last Block of Absolute

UNK/ LOAD CODES

Same as codes for OBJECT FILE
FORMAT.

THE SERIES 1600 SOFTWARE LINE UP

~

RESIDENT ON-LINE MINICOMPUTER TIMESHARE
FIRMWARE SOFTWARE SOFTWARE SOFTWARE

I
S16MTR ~ S16BMR ~l] S16AL]1] S16XAL

J.l
S16XAL ~] MONITOR Binary"Math Assembler Assembler Assembler Routines

I
S160DP]J S16CCR Wl S16TXE

W
S16SIM

1.
S16SIM ~] On-Line Code Conver- Text Editor Simulator Simulator

Debug Program sion Routines

I
S16L~ S16~l S16RLL ID S16LNK ~ S16LNK ~] Relocatable I nput(Output Relocatable Object Module Object Module
Loader IJ" Drivers p" Linking Loader Linker Linker

I
S16UTL

1.
S16FPR

.....] 1
S16XRF

W
S16XRF

m Basic Floating Point S16DGS
Concordance Concordance

Utilities Routines Diagnostics
Generator Generator

I
S16Dn]

S16DMR 1] S16MPC

1 S16BPT 111 S16BPT

1:
Memory Decimal Math Macro Binary Tape Binary Tape
Dump Routines Processor Generator Generator

)
S16S0P

l.
S16LGP ~ S16RTG 1 S16RTG

J String Language Gener- ROM Tape ROM Tape
Operators ation Package Generator Generator

GENERAL INSTRUMENT CORPORATION

EASTERN AREA SALES HEADDUARTERS, SOO W. John St" Hicksville, N,Y, 11802, 151S) 733·3107
CENTRAL AREA SALES HEADQUARTERS, 3101 West Pratt Blvd., Chicago, III. SOS45, 1312) 338·9200
WESTERN AREA SALES HEADQUARTERS, 71 20 Hayvenhurst Ave. , Van Nuys, Calif. 9140S, 1213) 781-0489

GENERAL INSTRUMENT CANADA LTD" 61 Industry St ., Toronto 337, Ontario, C. nad. , Te l: 14 16) 763-4133
GENERAL INSTRUMENT MICROELECTRONICS LTD" 57161 Mortimer St. , London, WI N 7TO, England, Tel : 01·636·2022
GENERAL INSTRUMENT EUROPE S.P.A., Piazza Amendola 9, 20149 Milano, ltaly, Tel: 469·7751
GENERAL INSTRUMENT FRANCE SA, 11-13 Rue Gandon, 75·Par is·13eme, France, Tel: 588·74·31
GENERAL INSTRUMENT DEUTSCHLAND GMBH,IMo. Produkigruppe) Nordendstrasse, lA 8000 Mu nchen 40 Tel: 28-40·31
GENERAL INSTRUMENT INTERNATIONAL CORP., Fukide Building, 17 Fukide·cho .. Minato·ku, Tokyo 105, Japan, Tel : (03) 437·0281-5
GENERAL INSTRUMENT OF TAIWAN LTD ., P,O. Box 22226 Taipei , T. iwan, Tel: 933861·3

Pr inted in U,S,A,

© 1975, General I nstrument Corporation

