SERIES 1600

MICROPROCESSOR SYST;EM.’_ iy

GENERAL INSTRUMENT
MICROELECTRONICS

SEMICONDUCTOR
DOCUMENTATION

«-Lr.'::: i

LT

2 'J,‘,\

=W N —

e i\;PI."' Fa.m, TN
RN RO EIE W |

THE SERIES 1600 SEMICONDUCTOR LINEUP

1625 — 20K Bits *
1624 - 16K Bits

1623 ~ 10K Bits #

rL 1622 - BK Bits

1621 - 5K Bits
anaoAnnnoonn

1620 — 4K Bits
ROM

MEMORIES

1638 — 4Kx 1 Static %

1635 - 1Kx1 Static

1631 — 256x4 w/latch
pannNnnooonn
1630 — 256x4 Static

RAM

Ld
JUUUUUUUUUY

MICROPROCESSORS

cp
1600 — Basic Inst. Set

* Available Fali 1975

v

PROGRAMMABLE INTERFACE
CONTROLLERS

1640 — User Microprogrammable *

'. 1641 — Keybd/Display

P 1642 — Asy/Syn. Comm. Line

o000 U0UgUUguouUuueau
1643 — Cassette

QuUd
1644 — Column Printer

l&: 1646 — Floppy Disc
fo pvpuisgeavisgégijegejogijrgifsye i)
. 1647 — CRT

I D VT e B Y S A Y
° 1648 — Mag. Cord
l‘ﬁ"ﬁ‘u‘ﬁ TOCOEToTEIaR T

SERIES 1600 MICROPROCESSOR SYSTEM
SEMICONDUCTOR DOCUMENTATION

CP-1600 MICROPROCESSOR
USERS MANUAL

This manual contains a dctailed specification of the
CP-1600 microprocessor array including thecory of
opcration, clectrical paramcters, instruction sct,
and somc typical applications cxamplces.

@Copyright 1975
All rights rescerved

GENERAL INSTRUMENT CORPORATION m MICROELECTRONICS DIVISION m 600 W. John St., Hicksville, N.Y. 11802 = 516-733-3107

Title:
Document No. :
Revision Level:

Scope:

SUMMARY

CP1600 Microprocessor Users Manual
S16DOC-CP1600-04, May 1975
Supersedes S16DOC-CP1600-C3, March 1975

This manual describes the CP 1600 microprocessor array.
It includes information on the theory of operation of the
processor, timing diagrams of all operational sequences,
electrical parameters, and details of the instruction set.
In addition, a number of systems configurations of the

CP 1600 are shown by way of typical interface examples.

Reference Documents:

S16DOC-GIC1600-00 GIC1600 Microcomputer Users Manual
S16DOC-XALSIM-01 Series 1600 Cross Software Manual

TABLE OF CONTENTS

CHAPTER 1 - GENERAL DESCRIPTION
1.0 INTRODUCTION
CHAPTER 2 - PROCESSOR SPECIFICATION
2.0 PROCESSOR DESCRIPTION
2.1 PROCESSOR SIGNALS
2.2 INTERNAL CPU ARCHITECTURE
2.2A Basic Functional Blocks
2.2B Processor Timing
2.2C Processor Sequences
2.3 TIMING DIAGRAMS
2.4 ELECTRICAL SPECIFICATIONS
CHAPTER 3 - INSTRUCTION SET
3.0 GENERAL INSTRUCTION FORMAT
3.1 INSTRUCTION DESCRIPTION
3.1.1 Symbolic Notation
3.1.2 Operation of Status Bits
3.1.3 Instruction List
3.2 EXTERNAL REFERENCE INSTRUCTIONS
3.2.1 Data Access Instructions
3.2.2 Conditional Branch Instructions
3.3.3 External Reference Addressing Modes
3.3 INTERNAL REFERENCE INSTRUCTIONS
3.3.1 Register to Register
3.3.2 Register Shift
3.3.3 Single Register
3.3.4 Internal Control
3.3.5 Jump/Jump and Save Return

TABLE OF CONTENTS

(Continuation)

3.4 PROGRAM EXAMPLES

.1 Loop or Iteration Control
Table Access

Transfer via Dispatch Table
Evaluate Variables
Arithmetic Operations

Stack Operations

Interrupt Processing

Subroutines

O 00 N O U o N

BE XT Instruction

W W W W W W W W wWw w
T N N L . T N

.10 Code Conversion Examples
CHAPTER 4 - SYSTEM CONFIGURATIONS
4.0 BASIC IMPLEMENTATION
4.1 BUS STRUCTURE
4.2 CLOCKS
4.3 EXTERNAL SENSE LOGIC
4.4 START/STOP - HALT FUNCTIONS
4.5 INTERRUPT SYSTEM
4.6 BASIC INPUT/OUTPUT PORTS
4.7 SIMPLE COMMUNICATION INTERFACE

APPENDIX - SERIES 1600 MICROPROCESSOR PRODUCTS
SEMICONDUCTOR COMPONENTS
SOFTWARE
MICROCOMPUTER HARDWARE

1.0

CHAPTER 1

CP1600 GENERAL DESCRIPTION

INTRODUCTION

The CP1600 MicroProcessor Unit is a compatible member of the Series 1600
MicroProcessor Products family. It is a complete, 16-bit, single chip, high
speed MOS-LSI MicroProcessor. The Series 1600 is fabricated with General
Instrument's N-Channel Ion-Implant GIANT II process, insuring high performance
with proven reliability and production history. All members of the Series 1600
Family, including Programmable Interface Controllers, Read Only Memories, and
Random Access Read/Write Memories, are fully compatible with the CP1600.

The CP1600 MicroProcessor Unit is designed for high speed data processing and
real time applications. Using a 5 MHz, 2-phase clock, the CP1600 completes a
microcycle in 400 nanoseconds. Typical applications include programmable cal-
culator systems, peripheral controllers, process controllers, intelligent termin-
als and instruments, data acquisition and digital communication processors, nu-
merical control systems, and many general purpose computer applications. The
MicroProcessor can readily support a variety of peripheral equipment such as
TTY, CRT display, tape reader/punch, A/D & D/A converter, keyboard cassette
tape, floppy disk, and RS-232C data communication lines.

The CP1600 MPU utilizes third generation minicomputer architecture with eight
general purpose registers to achieve a versatile, sophisticated microcomputer
system. The 16-word enables fast and efficient processing of alpha-numeric or
byte oriented data. The 16-bit address capability permits accessing of 65, 536
words in any combination of program memory, data memory, or peripheral devices.
This single address space concept, combined with a powerful instruction set and
microprogrammable Peripheral Interface devices, provides an efficient solution
to all microcomputer and many minicomputer -based product requirements.

87 BASIC INSTRUCTIONS
16-BIT, TWO's COMPLEMENT ARITHMETIC AND LOGIC OPERATIONS
STATUS REGISTER - OVERFLOW, CARRY, SIGN, ZERO, INTERRUPT
ENABLE
ARITHMETIC, LOGICAL, AND CIRCULAR SHIFTS
8 INTERNAL PROGRAM ACCESSIBLE GENERAL REGISTERS (16-BIT)
MEMORY STACK POINTER/UNLIMITED STACK DEPTH
IMMEDIATE DATA, DIRECT (65K), AND REGISTER INDIRECT (65K)
ADDRESSING
PROGRAM COUNTER RELATIVE ADDRESSING ON CONDITIONAL BRANCH
CONDITIONAL BRANCH - STATUS REGISTER, AND 16 EXTERNALS
TWO PROGRAMMABLE INTERRUPT LINES WITH PRIORITY RESOLUTION
AND SELF IDENTIFYING ADDRESSES
DMA CHANNELS FOR HIGH SPEED DEVICE TRANSFERS
TTL COMPATIBLE/SIMPLE BUS STRUCTURE
CYCLE TIME: 400 NSECS
ADDS TWO 16-BIT INTERNAL REGISTERS IN 2.4 uSECS
MEMORY TO REGISTER ADD TWO 16-BIT NUMBERS IN 3.2 pSECS

2.0

CHAPTER 2

CP 1600 PROCESSOR SPECIFICATION

PROCESSOR DESCRIPTION

The General Instrument Corporation CP 1600 microprocessor is a high speed,
16-bit machine featuring full 16-bit address/data transfer and a 400 hanosecond
internal cycle time. Full instruction execution times range from 1.6 to 4.8
microseconds.

The processor contains 8 general purpose 16-bit program accessible registers,
a high speed ALU, an instruction register and microcontrol unit, and TTL com-
patible input/output buffers. The CP 1600 is supplied in a 40 pin dual-in-line
ceramic package with input/output signals shown in Fig. 2-1.

\f
] 017 *.002

. — !
EBCI— 1 40 |~ PCIT* 4 &J |
MSYNC*— 2 39 |- GND
BC1— 3 38 | 01 |
BC2— 4 . 37 | @2 |
BDIR— 5 g 36 VDD }
DIS— 6 § 35 |~ VBB !
pu— 7 34 1~ vce
D13~ 8 E 33 |- BDRDY o)
D12— 9 S S 32 ~ STPSTY g
DIl— 10 2 © 31 [~ BUSRQ* o
DI0—{ 11 & 30 |- HALT
D9— 12 Z {3 29 |- BUSAK* R
D8— 13 | 28 |- INTR* >
DO 14 < 27 |- INTRM* ' F
DI 15 o 26 |- TCI ' Q
o7 16 F 25 |~ EBCAO o
D6 17 © 24 |- EBCAl _l
D5— 18 23 |- EBCA2 %
D4—{ 19 22 |- EBCA3
D3 20 21 |- D2] f :\;:‘Ei—T
1 |
e 500 — — jmo
.88

00
g-‘ ,OlO:«%oai

. GOO —=f

Logic Conventions:

* Negative logic (low assertion)
1‘ Low to high edge trigger
‘, High to low edge trigger

All others Positive logic (high assertion)

FIG. 2 -1

2.1

PROCESSOR SIGNALS

D0 - D15 (input/output/high impedance)
DATA 0 - 15 (Positive Logic)

These 16 signals comprise the 16-bit bidirectional bus used by the CPU to
send both data and addresses to the external subsystems and receive data
and instructions from the external subsystems, i.e., memory, printers,

keyboards, displays, A/D and D/A converters, magneatic tape, cassettes,
and other peripherals of various types. All operations on the bus involve
16-bit transfers of either data, address or instruction words.

BDIR (output)
BUS DIRECTION (Positive Logic)

This signal indicates the direction of the 16-bit bidirectional bus at the CPU.
A logic "1" (High) indicates that DO-D15 are outputting to the bus. A logic "0"
(Low) indicates that DO-D15 are either inputting from the bus or are in a high
impedance state.

BC1, BC2 (outputs)
BUS CONTROL 1, 2 (Positive Logic)

These signals in conjunction with BDIR are used to control all external bus
operations. In simple systems, they can be used directly as control signals
while in more elaborate ones they can be decoded in a single 3 to 8 decoder to
provide all eight external bus control functions listed below:

o BUS

— —

O 8 o CcoNTROL FUNCTION

‘0 0 1 BAR BUS TO ADDRESS REGISTER This signal is used
to load the contents of the bus into the external
address register. D0-DI15 are in an output mode.

0O 1 1 DWS DATA WRITE STROBE This signal is used as a
write enable for memory or any peripheral device.
DO0-D15 are in an output mode.

1 0 1 Dw DATA WRITE This signal is functionally identical

to DWS except that it occurs one machine cycle
time prior to DWS. It is used for extended write
operation purposes. DO0-DI15 are in an output mode.

1 1 1 INTAK INTERRUPT ACKNOWLEDGE This signal denotes
CPU acceptance of an interrupt and is used by the
interrupting devices to resolve priority. The
INTERRUPT SEQUENCE of the internal CPU state
timing logic commences with this acknowledgement.
Further details of the interrupt service are given

BUS
CONTROL FUNCTION

BCl1
BC2
BDIR

in the section on INTERNAL CPU ARGHITECTURE.
D0-D15 are in an output mode.

O 1 O IAB INTERRUPT ADDRESS TO BUS This signal which
occurs during the INTERRUPT SEQUENCE of the
CPU, serves to gate the starting address of the
interrupt service routine for the acknowledged
interrupting device onto the bus. DO0-DI15 are in
an input mode. The CPU will input this starting
address into the PC to commence execution of the
service routine. IAB also occurs during the power -
up initialization sequence to input the starting ad-
dress of the main program to the PC.

1 0 O ADAR ADDRESSED DATA TO ADDRESS REGISTER
This signal causes the addressed contents of
memory to be gated onto the bus and strobed into
the address register. It is activated during all in-
structions which specify direct addressing. DO-
D15 are in the high impedance state.

1 1 O DTB DATA TO BUS This signal is used to gate data
from memory or any peripheral device onto the
bus. Data in this sense can mean instructions,
addresses, or data. DO-DI15 are in an input mode.

0O 0 O NACT NO ACTION This signal indicates the CPU is not
using the bus. DO0-D15 are in the high impedance
state.

EBCA0, EBCA1, EBCA2, EBCA3 (outputs)
EXTERNAL BRANCH CONDITION ADDRESS 0, 1, 2, 3 (Positive Logic)

These lines are the buffered outputs from the 4 least significant bits of the
instruction register (bits 0-3) and are used to externally select one of sixteen
digital states to be sampled by the CPU during the execution of the BEXT
(Branch on EXTernal) instruction.

EBCI (input)
EXTERNAL BRANCH CONDITION IN (Positive Logic)

This is the return signal of the 1 of 16 selection made by EBCA 0, 1, 2, 3.
It is high active such that a logic "1" (High) would test as true and cause
the branch to occur as part of the BEXT instruction. A logic"0" would
not allow a branch to occur.

MSYNC* (input)
"MASTER SYNC (Negative Logic)

This signal is used to synchronize the internal clock generator logic to the
main @1, P2 clock phases. Synchronization is achieved by remaining
active (low) for at least ten milliseconds after power is applied to the CPU
and becoming inactive (high) on any rising edge of a @1 clock. That @1
clock corresponds to an internal TS3. This signal also disables the in-
terrupt system.

VDD
Nominal 12 volts power supply input to the CPU.

VCC
Nominal 5 volts power supply input to the CPU.

VBB
Nominal -3 volts power supply input to the CPU.

BDRDY (input)
BUS DATA READY (Positive Logic)

This signal is used to make the CPU "wait" and resynchronize itself to per-
ipheral subsystems that cannot respond to requests for reads and writes at
full CPU speed. This is intended primarily for synchronization to slow
speed memories. The duration of the "wait" period must be less than

40 microseconds to preserve the dynamic state of the CPU.

INTR*, INTRM* (inputs)
INTERRUPT REQUEST* (Negative Logic)
INTERRUPT REQUEST MASKABLE* (Negative Logic)

These two signals are low active signals that request the CPU to honor an
interrupt at the completion of any interruptable instruction under the follow-
ing conditions.

a) INTR* is always honored by the CPU and hence is the highest priority
interrupt request line.

b) INTRM* is honored by the CPU only if the internal CPU interrupt flip-
flop, INTFF, is set. This flip-flop is controlled via the EIS and DIS
instructions and several others that have similar capability as described
in the instruction set.

The CPU will enter the INTERRUPT SEQUENCE if either INTR* is active

or if INTRM* is active and INTFF is set. During this sequence, the CPU
will store the PC onto the top of the memory stack and resolve interrupt
device priority by enabling INTAK. This is followed by inputting the start-
ing address of the interrupt service routine from the appropriate interrupting

device into the PC by enabling IAB. The next instruction is fetched from
the location pointed to by the new PC and execution of the service routine
begins from that point.

TCI (output)
TERMINATE CURRENT INTERRUPT (Positive Logic)

This high active pulse signal is generated via the TCI instruction to term -
inate the highest priority interrupt presently in service.

Q1, @2 (inputs)
These signals supply the high-level, high-speed, non-overlapping two phase
clocks to the CPU.

PCIT* (input/output)
PROGRAM COUNTER INHIBIT*/TRAP* (Negative Logic)

This pin provides two functions.

a) As an input, this signal is a low active signal that prevents the incre-
mentation of the program counter (R7) during the fetch phase of all
instructions. Care should be used when utilizing this function during
multiword instructions.

b) As an output, this signal will generate a low active pulse during the
execution of the SIN (Software INterrupt) instruction. Properly used,
this signal can be returned to the CPU by the interfacing hardware as
an interrupt request on either of the INTR* or INTRM* input pins.
The interrupt will be acknowledged at the end of the SIN instruction.

These functions will not interact with each other under normal operation.
The Pin Timing Diagrams in Section 2.3 will precisely describe the
timing of each function.

BUSRQ* (input)
BUS REQUEST* (Negative Logic)

This signal is low active and causes the CPU to relinquish all control of the
bus to allow other devices to carry out direct bus transfer operations. The
CPU grants use of the bus only after the completion of an interruptable in-
struction (refer to the instruction listings for those instructions which are
interruptable and those which are not). The CPU signifies release of the
bus by causing BUSAK* to go low and the CPU will remain in this condition
until the external device releases BUSRQ*.

BUSAK* (output)
BUS ACKNOWLEDGE* (Negative Logic)

This is a low active signal used to inform external devices that the bus has
been released by the CPU in response to the BUSRQ™ signal.

STPSTV (input)
STOP START (Negative Edge Triggered)

This is an edge-triggered signal used to control the running condition of the
CPU. If the CPU is presently running, the negative transition of STPST‘
will cause the CPU to stop but only after the completion of an interruptable
instruction. The CPU will generate a high active HALT signal acknowledg-
ing the stopped mode. The next negative transition of STPST} will cause
the CPU to return to the run mode. The HALT output will then return to

a logic "0" (Low) condition.

HALT (output)
HALT (Positive Logic)

This is a high active signal indicating that the CPU is in the stopped mode.
This mode can occur by either the toggle action from the STPST} input or
by the execution of a HALT instruction by the CPU.

2.2

INTERNAL CPU ARCHITECTURE

The CP 1600 is a general register oriented, central processing unit con-
sisting of eight 16-bit registers. These registers may be used as accum-
ulators or as addressing pointers to locations external to the CPU. R7 and
R6 have special characteristics which distinguish them from the other
registers. R7 serves as the program counter (PC) and points to the next
instruction to be executed. R6 serves as a stack pointer (SP) which points
to the next available location in the "last-in, first-out" stack maintained
anywhere in main memory.

A. Basic Functional Blocks

A basic internal block diagram of the CP 1600 showing major sub-
systems and data flow is shown in Figure 2-2. It is noted that all
data transfers within the machine are performed on 16-bit words
processed in two 8-bit bytes. Internally, the architectural effect
of this byte serial technique is to organize all data paths as 8 bits
in width. In communicating with external devices, however, the
CPU transfers 16 bits in parallel.

The major logic blocks through which all data flow are the Arith-
metic Logic Unit (ALU), Shifter, Register Array, and the Internal
16-bit Bus.

The ALU is the primary data processing element of the CPU. It ac-
cepts two data words each 8 bits wide from the internal 16-bit bus and
produces an 8-bit resultant.

The ALU passes the resultant to the Shifter which is also 8 bits wide.
The Shifter can transfer data to the register array transpar=ntly or
can skew data one bit position right or left. The Shifter in combina -
tion with the ALU can effect changes in the four status bits which
monitor CARRY OUT from the most significant bit of the resultant,
ARITHMETIC OVERFLOW, SIGN DETECT, and ZERO DETECT.

The Register Array is comprised of the eight 16-bit registers with one
8-bit write port and two 8-bit read ports. The write port can direct
data to any one of the eight registers and then either to that register's
lower or upper 8-bit byte. The read ports can simultaneously output
to the internal bus any two byte combination, be they from the same
register, different registers, left or right byte.

The Internal 16-bit Bidirectional Bus is the primary link for all informa-
tion transfers between the CPU and the external world. Communications
between the internal bus and the external bus are governed by the bus
control signals BC1, BC2, and BDIR. ~

BDIR &«——

BC1 «—¢.

\

EXTERNAL
16 BIT

BIDIRECTIONAL BUS

N

DO-D15

A)

BC2 €—

4
EBCAO-3 €——

ﬁ

BUS CONTROL]

F__J

75

L

BIDIRECTIONAL BUFFERS]

@16

L
&10 '

STPST ——>

HALT &—

BDRDY —>;
PCIT* —>
TCl€—

/
IR DECODE §

8ﬁ ﬁs

ARITHMETIC

INSTRUCTION
REGISTER

SOV |

MAIN DECODE

LOGIC UNIT
(ALU)

& CONTROL

ROM

/N

STATE

TIMING

INTR*- e
INTRM* >

BUSRQ* —3
BUSAK* «<—

EBCl —>

Vpp —>

ROM

TS1 TS2 TS3 TS4

T4+ 11

SHIFTER -

e

7

CLOCK GENERATOR

T

MSYNC* ¢1 $2

[WRITE PORT]
RO

e o —
e = - —— —— ——
e o - o —— —— —— —
b = e~ —— —— —

READ PORTS

S|Z|oV|C
“Js|zov]d]

_/'8 _/'8

STATUS
FLAGS

REGISTER
ARRAY

FIG. 2-2 INTERNAL BLOCK DIAGRAM

INTERNAL

16 BIT
BIDIRECTIOIIAL
BUS

Processor Timing

The sequential operation of the CPU is governed by an internal State Timing
ROM. This network generates next addresses to the Main Decode and
Control ROM. It maps these addresses from the Instruction Register con-
tents and makes next address decisions based on conditions in the machine
and/or the present microinstruction. The Main Decode and Control ROM
generates 21-bit microinstructions or micro states during each processor
cycle. These micro states are grouped into various Fetch states, Address
states, Execute states, Wait states, states which control the Interrupt and
Bus Request Sequences, and others. Each micro state time is defined as
four internal time slots - TS1, TS2, TS3, TS4 - as generated by the Clock
Generator from the external non-overlapping clocks. See Figure 2-3.

If the CPU is driven by a 5 MHz, two-phase clock system as shown, then
the duration of each micro state is 400 nanoseconds.

The State Timing ROM operates in parallel with the data processing logic
thus keeping the Control ROM synchronous with the data flow operations.
Thus, during any internal state time, the Control ROM and the Instruction
Register Decode ROM are dictating the data processing functions in the
ALU, Shifter, and the Register Array.

The CP 1600 achieves high internal processing speed through the use of
microinstruction overlapping and data pipelining (Fig. 2-4). During each
400 nanosecond cycle, a 21-bit control word is executed while the next ad-
dress decision is made and the new control word accessed. In addition,
the Register/ALU data loop is pipelined so that two sets of byte pairs are
being processed during each cycle . Before the result of an ALU operation
is complete and returned to the Registers, the next operation on new data
has already started.

In order to achieve this ''data streaming" effect, the microinstruction word
of the processor is divided into three major fields (Fig. 2-5). The first
controls the top of the pipe which includes the READ PORTS and front end
of the ALU logic. The second controls the bottom of the pipe which in-
cludes the lookahead carry network, the final part of the ALU logic and
shifter, and the rewrite to the registers. The third field controls the
selection of the next control state.

Finally, each state has its own unique pattern of bus control signals (BC1,
BC2, BDIR). For example, in the first fetch state, the bus controls signals
will be decoding BAR. In the next, they decode NACT, and, in the next,
they decode DTB.

State Timing

Although it is not necessary for the user to understand the exact sequenc-
ing through the internal microcoded states, it is important to understand

or T LT L —J LT L__I L
g2 L o - 1 LTI

BDIR
BC1,2

DO-15

DO-15

FIG. 2-3 BIDIRECTIONAL BUS TIMING

- 1 LCYCLE — 1 W CYCLE -
TSt Ts2 _, TS3 | Ts4 _| TSt _, Ts2 _| TS3 _, Ts4 TS1
BRI I
CHANGING = L vALID =\\\\\\\\~—————— VALID — =\\\\\\\\
AN AN ' | \ \
ARRBRRNNY ‘ SASRNNY :
PREVIOUS |ESTABLISH ESTABLISH | N
STATE |BUS DIREC, [Py & QUT = VALID——=15;5 pjgec, [DRIVE, QYT {=— VALID
l
CPU TO BUS ouTPUT) :
‘ NESTABLISH JESTABLISH| ., \
NBUS oigec,| VAHD [\ \ \BUS piRec,| VALID k
l
BUS TO CPU (|NPUT)| I

1 2
DECODE SCURCE
& DEST. READ
ANDRESSES
READ
» REGISTERS
PROPAGATE

BUS CONTROL

1 2

PROPAGATE

SELECT LOGIC

NETWORKS

VALID
OR

OUTPUT
BUFFERS

e

[INPUT DATA]

PROPAGATE

-

‘CONTROL VALID

I

NEXT STATE DECISION

4 1 2
START PROCESSING
==—— |NEXT SET OF
DATA BYTES
STROBE BUS
DATA
(IF OUTPUT)
FINISH CARRY GENERATE
GENERATE FIRST| GENERATION FINAL
PARTIAL SUM SUM
T &
START CARRY
4 1 2

MAIN CONTROL ROM ACCESS

CONTROL VALID

]

NEXT STATE.DECISION

3 4
ON
— S
PERFORM
SHIFT
DECODE WRITE
PORT ADDRESS
& CONDITIONAL
REWRITE
WRITE REG.
3 4
MAIN CONTROL ROM ACCESS

FIG. 2-4 PIPELINE TIMING

4

10

A

TOP OF PIPE

BOTTOM OF PIPE

NEXT ADDRESS

FIG. 2-5 MICROINSTRUCTION FORMAT

0
[SV]

the general state flow and how it relates to the execution of instructions
and their interaction with the various interfacing signals like BDRDY,
BUSRQ*, INTR* and others. A basic state flow diagram is shown in
Fig. 2-6.

There are six major state sequences through which the CPU passes:
Initialization, Fetch, Address, Execute, Bus Request, and Interrupt Re-
quest sequences. Each of the sequences consist of one or more micro

states (indicated by rectangular blocks). However, the decoded bus control
signal in parenthesis indicates only the primary bus function to be performed
during that functional operation. (Recall there is a unique set of bus control
signals for each microcode state). Illlustrations of the exact timing during
each of these sequences is given in the "Pin Timing Diagrams" section.

Initialization Sequence

When power is first applied to the CPU, the MSYNC#* signal must be at an
active (low) level. This will force the CPU to an inactive state in which
DO0-D15 are in a high impedance state with the bus control signals issuing
NACT. All other signals are in their inactive state and the interrupt
system is disabled. All eight internal registers and the status bits contain
arbitrary, undefined data. When MSYNC* goes inactive (high), the bus
control signals issue IAB, and the CPU inputs from the bus into the PC the
starting address of the main program. Note that the initialization address
can be defined by the user at any desired bus address or can be the default
address resulting from the logical state of the non-driven bus.

Fetch Sequence

The Instruction Fetch sequence will be entered after the initialization of the
CPU, or after the execution of the previous instruction and the resolution of
pertinent bus and interrupt requests. During the first microstate, the bus
control signals issue BAR. During this state, the CPU will output the current
contents of the PC onto the bus. BAR will strobe this data from the bus into
the address register to fetch the instruction pointed to by the PC. Internally,
the CPU increments PC and returns it to R7.

Beginning in the next micro state, the CPU will sample the BDRDY ihput line.
If BDRDY is at a logic "1" level, the CPU will proceed to the next state where
the fetched instruction will be inputted into the CPU via the signal DTB. If
BDRDY is at a logic "0" level, the CPU will enter a WAIT state and remain
in this state until BDRDY is brought to a logic 1" level. This WAIT state
cannot be of indefinite duration; it must last no longer then 40 microseconds
in order to preserve the dynamic characteristics of the CPU during this fetch
sequence. The bus control signals will change to NACT throughout the WAIT
state. External systems will need to utilize this WAIT state when their ac-
cess times cannot meet the CPU speed requirements. As long as the CPU is
in the WAIT state, it will sample the BDRDY line every microcycle (every
400 nanoseconds if the ¢lock input is 5 MHz).

Once BDRDY is high, the CPU will issue the DTB bus signal. The external
system presently addressed will gate data (in this instance the fetched instruc-
tion word) onto the bus. The instruction will be inputted to the CPU and loaded
into its instruction register.

BASIC STATE FLOW DIAGRAM

MSYNC*

y

INPUT
STARTING PC
(IAB)

BORDY =1

INTERNAL
REFERENCE
INSTRUCTION

OuUTPUT
CURRENT PC
(BAR)

BDRDY=0

WAIT

BORDY = |

(NACT)

INPUT .
INSTRUCTION
(DT8)

v

1

BDRDY=0

EXTERNAL
REFERENCE
INSTRUCTION

OUTPUT
EFFECTIVE ADDRESS
(BAR)

BORDY=J‘

BORDY = O

BORDY = |

WAIT
“l (NACT)

INPUT
EXTERNAL DATA
(DTB)

v

UN-
INTERRUPTABLE
INSTRUCTION

!

EXECUTE
INSTRUCTION

¥

BUSRQ* =|

BUS
REQUEST. 2505
NO

INTERRUPTABLE
INSTRUCTION

YES
RQ*=0

BORDY= O

WAIT

OUTPUT BUSAK¥*

(NACT)

BUSRQ* = |

ouTPUT
SP
(INTAK)

y

WRITE
CURRENT PC
(DwW & DWS)

¥

INPUT
DEVICE PC
(1AB)

v

BUSRQ¥*=0

FIG. 2-6 INTERNAL FLOW DIAGRAM

1l

i
]

Il

1l

INITIALIZATION
SEQUENCE

L

| FETCH

SEQUENCE

ADDRESS
SEQUENCE

—
p—

EXECUTE
SEQUENCE

—
—

BUS REQUEST
SEQUENCE

i

INTERRUPT
SEQUENCE

C.3

C.4

Address Sequence

The Address Sequence will only be entered if the instruction just
fetched is of an External Reference type. The distinctions between
external and internal reference types will be made clearer in the
chapter "Instruction Set''. Basically, External Reference instructions
need to retrieve external data to complete execution of the instruction.
For example, those instructions which specify the contents of a register
to be the address of an operand are all of external reference type. In-
ternal Reference instructions process operands already held within the
registers of the CPU.

The Address Sequence is very similar to the Fetch Sequence. The CPU
will begin by issuing BAR and outputting some computed effective ad-
dress on the bus. The particular instruction will determine how the ef-
fective address is computed. The effective address will be gated into
the address register. The CPU will then sample BDRDY exactly as be-
fore. Again, if a WAIT state is entered, its duration must be less than
40 microseconds. Once BDRDY has been resolved, the CPU will issue
a DTB which will gate the retrieved data onto the bus. The CPU inputs
this data which will be used as an operand in executing the instruction.

Note: This sequence becomes slightly more complex if the
instruction specifies direct addressing. The CPU
will issue BAR, sample BDRDY, then issue ADAR to
readdress memory, sample BDRDY again, and finally
issue DTB.

Execute Sequence

After the data operands have been obtained, the CPU will execute the
instruction. Execution can take as few as two microcode states or
as many as six for the most complex instructions. Different types of
bus control signals are activated according to instruction type. Ex-
amples are shown in the following table.

Instruction Class # of Micro States Bus Control Signals

External Reference

Input Group 2 DTB, NACT

Move Out 3 DW, DWS, then NACT

Double Byte Data 3 BAR, NACT, and then
DTB

Internal Reference
Register - Register 2 NACT
Shift 2or 4 2 or 4 NACT

C.5

C.6

Bus Request Sequence

If there are no Bus Requests or Interrupt Requests following the exe-
cution of the present instruction, the CPU will return to the Fetch
Sequence and fetch the next instruction from memory.

If some external device has activated the BUSRQ* input line (by pulling
it low) prior to the completion of the execution of the current interrupt-
able instruction, the CPU will honor the Bus Request by causing the out-
put signal BUSAK* to go low. The CPU will enter a WAIT state and re-
main in this state until BUSRQ* is brought to a logic "1" level. This
WAIT state can be of indefinite duration. BUSAK™ will be low for as
long as the CPU is in this state and the CPU will not use the bus; the bus
control signals will be issuing NACT. All other signals will be in their
inactive state.

The BUSRQ* input signal can be activated asynchronously with respect
to the CPU clocks. The CP 1600 digitally synchronizes BUSRQ* during

every TS1 time.

Interrupt Sequence

The CPU will enter its Interrupt Sequence after all bus requests have
been resolved and either of the following conditions have been met:

a) The INTR* input signal has been activiated, i.e., it has been pulled
to a logic "0" level in sufficient time for the CPU to recognize the
input as a valid interrupt request; or,

b) The INTRM* input signal has been similarly activated AND the in-
ternal interrupt flip-flop, INTFF, is set (enabled).

Once an interrupt request has been accepted by the CPU, the CPU per-
forms the following functions automatically:

1. The first micro state will issue the bus control signal INTAK. The
presence of this signal denotes acceptance by the CPU of the interrupt
request and can be used by the peripheral devices to resolve inter -
rupt priority. During this state, the CPU will output the current
contents of Register 6, the Stack Pointer, to the Address Register
in preparation for saving the program counter on the Stack.

2. The CPU will then output the PC as data to be stored and issue bus
signals DW and DWS to write the Program Counter into the location
pointed to by the Stack. Pointer. That is, the CPU will store the PC
into the top of the STACK. The Stack Pointer will be incremented
after this store operation.

3. Finally, the CPU will issue bus signal IAB which will bring the
starting address of the interrupt service routine into the program
counter. The CPU will then return to the Fetch Sequence and
execution continues in normal fashion from the new PC supplied

by the interrupting device.

Again, in a manner similar to that of the BUSRQ* line, the CPU samples
the INTR* and INTRM* inputs every TS1 time. In addition, the CPU
will honor Bus Requests before it will honor Interrupt Requests.

2.3 TIMING DIAGRAMS

The functional operation and relative timing of all CP 1600 sequences
are shown in the following diagrams. These include:

Initialization Sequence
Instruction Fetch

Instruction Fetch & Data Access
Write Sequence

External Condition Test Sequence
TCI Instruction Timing

PCIT * Pin Timing

Interrupt Sequence
BUSRQ/BUSAK Sequence

BDRDY Operation

START
HERE

1 [| ' [} ' ! t !
TS| TSR TS31TS A TSITS2 [TS3ITSAITS I {TS2{TS3iTSAlTS 1162l TS3TSA| TSI TS2ITS3ITSAI T TS2iTS3ITS4] TSI TS2Ts3:

AW AW AW A A AW AW AW AW AW AW AW AW AWAWAWAW

e NN NN N NN NN NNNNNNNTS

|
|
BCI 3 | ,
y 35 /
|
|
BC2 , P | / \ /
7 a7 P4
|
|
BDIR I i ! /—_—_/
J 77
ot
—i —=ltus
*x i —
MSYNC J, ” ;f
BUS comam.jﬁ NACT 7/ BRI, NACT Y _BAR W 7
:\ Il J’[l A
00-015 . FLOAT X X FLOAT NEN ,
<>

LEEND: NN R Sinecrion

INPUT STARTING
PROGRAM COUNTER

INITIALIZATION SEQUENCE

€<—>
OUTPUT STARTING
PROGRAM COUNTER

—>FIRST READ HERE

! |
{TS11TS2{ TS3ITS 4TS ITS2 TS 3T 4TS (TS2ITS3ITSAITS1 TS21TS3]

WA WA WA WA WaY
e\ N\ NN\ NS

BCI / \
7
BC2 / \
! .
BOIR [\

BUS CONTROL:; v BA DA NAGT DA 08 A NACTJ':

po-015 FromnX XN\ riowr X X Fioar

<> <>
OUTPUT INPUT
PROGRAM COUNTER FETCHED INSTRUCTION

EGEND: ‘! DO-
HEOE NN BaReine DiRecrion

INSTRUCTION FETCH

TS| 11521 TS3/TS A TS | 1TS21TS3ITSAITS | TS21 T3 T4l TSI TSl SISl TS TSI TsaiTSal TSI 52 T3iTs 4l TS MsaiTs3 TS arTs | 72!
o N\ N NN NN NN NN NN NS
AN AN AN AN AN AN AN AW AW AW AW AW AW AW AW AW
BCI . / \ m
J

otk [\ [\

BUS CONTROL ﬁ UV BAR U774 NACT D77 D18 P7d NACT D74 BAR 70 NACT D74 D18 /A4

“n

L

DO-DISjZFLOAT\\\\W XX\ roar X X o W XS rowr XY fow

rd

<> <> <> <>
OUTPUT INPUT OUTPUT INPUT
PROGRAM COUNTER FETCHED INSTRUCTION EFFECTIVE ADDRESS FETCHED OPERAND

: \ -DI5 BUS
HEGERD \\\\\\\\ l(z,al\ND(SlII‘JGBL:)IREC'HON

INSTRUCTION FETCH & DATA ACCESS
(INDIRECT REG. MODE)

TSI TS2ITS3ITSATS TSR TS3 /TSl TSI TS2i TS3i TSI TSI TS 21 TS3ITS 4! TSI TS T3/ TSI TS | ITS2iTS3{TSAITS | TS2ITS3ITSAITS! TS2 I TS31TSaITS TS TS3iTs4iTS! |
o« NN NN NN NN NN NN NN,
2\ N\ NN NN NN NN NN NN NN NNSTS

BCI / \

| [[y

BC2 / \

L
In

sore [\ [\

~

N

BUS CONTROL:; Y/ BAR DA NACT U/ DIB_ P4 NACT U7 BAR U/ NACT VA ADAR /A4 NACT ¥/ DIB V/Aj

oo O froar X X o NN XN Frow

D0-DI5 |
:

<> <> “—>

OUTPUT INPUT - QUTPUT

PROGRAM COUNTER FETCHED INSTRUCTION EFFECTIVE ADDRESS

LEGEND: \ DO-DI5 BUS
\\\\\\\ CHANGING DIRECTION

INSTRUCTION FETCH & DATA ACCESS
(DIRECT ADDR. MODE)

X XFLOAT’

INPUT
FETCHED OPERAND

TSITS2ITS3TSATS| 2132513331345731 Erszsrsairs:az TS| Erszirs3ir54§m Erszsrssirso,im Evszfrssfrsfafrsn 3152513331345131 frsz}rssimzrsn frszfrssi
Y ANWAWAWAWAWAWAWAWAW AW AW AW AW AW AW AW AWAW
AN AN AN AN AN AN AN AN AN AN AW AN AW AW AW AW AW AW X

BCI S\ | [\ 5

7

o, [T\ T N

BUS CONTROL ‘P71 BAR P71 Wact ©Z4 018 ©74 WAt PZl AR P74 WAl P oW 274 s P71 WAcT,

DO-DI5 :}LOAT\\\\\\X A\ Foar XX __Fuowr AN XN FLoaT \NW W rroar

<> <> «—> <€
ouTeUT INPUT ouTPUT OUTPUT DATA
PROGRAM COUNTER FETCHED INSTRUCTION EFFECTIVE ADDRESS

LEGEND: \ DO -DIS BUS
\\\\\\\ CHANGING DIRECTION

MVO TIMING (WRITE OPERATION)

1TSIITS2 TS3{TSAITSIITS21TS3iTS4 1TS1 TS21TS3 4] o1 T2 TS3 Ts4l TSI Ts2iTs3 TsaiTs1 Tsei

A AW A AW AW AW AW AW AW AW AW
AN AN AW AN AW AWAWAWAWAWAS
8C! [\

ra

J

BC2 / \

4

BDIR ’__/—\ /——__‘

~

~

, e 1= .
EBCA ’
5 ’)(X)()(}(XX UNDEFINED JOXOXXXXXCXR STABLE AS LONG AS ADDRESS IS STABLE

l

) l-‘—— tAI ——1 ,

EBCI —= DON'T CARE —){ = DON'T CARE —=—
VALID NPUT

THROUGHOUT TSI
A BAR U4 NACT U7 DIB U4 NACT b4 BAR /4

BUS CONTROL

po-0i5 Float WX O rowr X X riowr WX)@:
<> <>
OUTPUT INPUT

PROGRAM COUNTER ~ BEXT INSTRUCTION

OUTPUT PC+!-TO
FETCH DISPLACEMENT

LEGEND: ' DO-DI5S BUS
\\\\\\\\ CHANGING DIRECTION

BRANCH ON EXTERNAL INSTRUCTION

TSI {TS2iTS 31154 TSITS21TS3ITSAITSI 152 i1s3 51545151 i1S2 51535734579 Erszfrss ETS4ET3| Ersz irss ETS4ETSIETSZ irssimim i

AN AN AN AW AW AW AW AW AW AW AW AW AWAWAW
|

2NN\ N NN NN NN LN NNNS

Bct / \ / \
oo, [\ [T\ .,

l tTO tTW
o "1 F—-’j___,

BUS CONTROL _ D70 BAR D/ NACT U D018 NACT_ D/ BAR P NACT D2 018U

D0-DIS FLOATANWX X\ FLoaT X X FLOAT NN\ X\ FLOAT X X FLOAT
4
ouTPUT INPUT OUTPUT INCREMENTED INPUT
PROGRAM COUNTER ~ TCI INSTRUCTION PROGRAM COUNTER NEXT INSTRUCTION

LEGEND: ' DO-DI5 BUS
AN\ CHANGING DIRECTION

TCI INSTRUCTION TIMING

| 1 1 1 [} (| o | ! o
ETSI Erszirs3:rs4f TSI Erszfrssgmi TSI Erszirssimi TSI ;Tszfrsssrsqm ITS2!TS3TS4! TSITS2ITS3 TSA! TS :TSZ:TS3ETS45TSI iTSZS

o1, NN\ NN NNNNNNNNNNS

AN AN AN AN AW AW AW AW AW AN AW AW AW AWAN AW

BCI / \

J

ha

‘e

AN

EXTERNAL WORLD PULLS PCIT® TO LOGIC "0
TO PREVENT INCREMENTATION OF PROGRAM COUNTER
DURING INSTRUCTION FETCH. IT IS RECOMMENDED
THAT PCIT* BE PULLED DOWN ONLY WHEN THE CPU
IS IN THE STOPPED CONDITION. RETURNING TO
INCREMENTATION OF PC ALSO WILL BE DONE WHEN
THE CPU IS IN THE STOP CONDITION.

7

N (OUTPUT)

e s e
~

OUTPUT PULSE _

FROM CPU AS A
RESULT OF SIN
INSTRUCTION

S

BUS CONTROL [/ BAR V1 NACT 4 0DIB8 P

NACT

V. BAR VA

po-0i5° Froara X\ Foar X X

FLOAT

<> <>
OUTPUT INPUT
PROGRAM COUNTER FETCHED INSTRUCTION

DA\ DO-DI5
LEGEND &\\\\\\ DO-DIS BUS % NEGATIVE LOGIC

CHANGING DIRECTION

PCIT+ TIMING

LS
<>

OUTPUT
PROGRAM COUNTER

s NN NN NN NN NN NN NN NN NN
=\ NN\ NN NN NNNNNNNANNNNANNNTS

BCII_/——_L___/—L

LN

/A Y

Bc2 [\ -,

3

{

BDIR [\ / \ /

BUS CONTROL __ /7] INTAK D74 NACT P4 DW D74 OWS U4 NACT D24 1AB DA NACT V/A BAR U4

po-ois’ oo X XN Froar W Y o XX FLOAT X
)

—> € > <> €«<—>

OUTPUT WRITE CURRENT INPUT STARTING ADDRESS QUTPUT
STACK POINTER PROGRAM COUNTER OF SERVICE ROUTINE INTO PROGRAM COUNTER

ONTO MEMORY STACK PROGRAM COUNTER

: \ D0-DIS
LEGEND &\\\\\\ ?:SAn%"NGBgISRECT'ON

INTERRUPT SEQUENCE

TO FETCH FIRST
INSTRUCTIOX CF
SERVICE ROUTINE

[O I I LI R
TS| TS2ITS3ITSA{TS | TS2TS3ITSAITS! TS2iTS3TSalTS! Ts2!

[} [} [} [}] [}]
TS TSI TS2ITS31TS4!
mJ’\/\ﬂ\/"\/\/\/"\f\/‘\/\/\/\/’\/‘\/’\F
WA AW AW AW AW WA A WA WA WA WA WAl
BCI}_ ——————— -7 A
e - — = if B —
END OF CURRENT
______ | _ INTERRUPTABLE ——
82 == INSTRUCTION I a
;— —————— - ""-ff— -)’/’) o o __'-"
—————— — e — ——————
BDIR I} \
—————— — — = s S —
CPU SAMPLES BUSRQ* ,
BUSRQ* ‘\‘::\:\:\‘ {?UR ING TSI A ‘l'/’l:l:l:l' ’
5 ; ity =" —itauj™—]
BUSAK®’ i B I F 1
———_—— — ——- -_ == -
BUS CONTROL — — — [~ — 7 7 7T NACT - — -~ "~ _}
po-pis =TT T T T T T FLowT =N)@:
——_t e ———— -
<«—>
% OUTPUT
BUSNRQHRCSANGES PROGRAM COUNTER
AS\\IN/% 78 %gﬁu TO RECOMMENCE
MAIN PROGRAM

BUS REQUEST/ACKNOWLEDGE

SEQUENCE

OR STACK POINTER)
TO SERVICE INTERRUPT

! [f ! 1 1
TSI TS2ITS TS A TSI TSATS TS A TSI TS TSI TSA TSI TS2 TS TS 4rTS TS TS2ITS 3 TSAITS TS2ITS3 TS TSI TS2iTS3TS TSI TSl TS TSl TSI T2 Ts3iTs e Tl
1 |

o, NN\ NNNNNS, NSNS

e NN NN NNNT AN TUNNAN

BCI | \ [
§

-

BC2 / \ -

oz, [|\ P A |

-
BORDY ~ - \[=———CPU SAMPLES BDRDY FOR DELAY \ / ’
BUS CONTROL _[/4 BAR 7] NACT YA o8 A U8R NACT 7777
s \} N : —
o0-015"_ SO XX WWE'N XX,
> <> <> >
OUTPUT INPUT OUTPUT INPUT
ADDRESS INSTRUCTION OR ADDRESS INSTRUCTION OR

DATA OPERAND

LEGEND: \ DO-DI5 BUS
§\\\\\ CHANGING DIRECTION

BUS DATA READY (BDRDY) TIMING

DATA OPERAND

2.4

ELECTRICAL SPECIFICATIONS (Tentative)

Maximum Ratings

VDD, VCC, GND, and all other input.or output

voltages with respect to VBB -0.3V to +18.0V
Storage Temperature -55°C to +150°C
Temperature Under Bias 0°C to 70°C

Exceeding these ratings could cause permanent damage to the device.

Functional operation at these conditions is not implied - operating
conditions are specified below.

Recommended DC Operating Conditions & Characteristics

All signals referenced to GND, unless otherwise noted.

TA = OOC to 7OOC, unless otherwise noted.

Symbol Min. Typ. . Max. Units Conditions

Supply Voltage VDD 11.4 12.0 12.6 V Ipp=70mA (typ)
VCC 4.75 5.0 5.25 V Igc=12mA (typ)
VBB -2.7 -3.0 -3.3 V Igg=lmA (typ)
Clock Input High Voltage VIHC 10.4 VDD A%
Clock Input Low Voltage VILC 0 .5 A%
Input Logic High Voltage VIH
D0-D15 2.4 vVCC \%
BDRDY 3.0 vCC A
All other 2.4 vCC A%
Input Logic Low Voltage VIL 0 .65 \Y%
Output High Voltage VOH 2.4 V IOH=100pA
Output Low Voltage VOL
D0-D15 .3 V IOL~l.6mA
BDIR, BCl1, BC2 .45 V I0L=2.0mA
All other .45 V IOL~1.6mA

A. C. Characteristics

Tp=0°Cto70°C, Vpp=12V+5%, Vco=5V+5% VpB= -3 +10%,

unless otherwise noted.

All notations refer to the BUS TIMING DIAGRAM unless otherwise noted.

Symbol Min. Typ.* Max. Units Conditions
Pulse Width of P1 D1 70 ns
Pulse Width of P2 'p2 70 ns
Clock Delay between
Pl & P2 t12 0 ns
Clock Delay between
02 & O1 t21 0 ns
Clock Period tey 2 5.0 us
Clock Rise & Fall Times tr, tf 15 ns
D0-D15 Bus Delay from
{1 (float to output) tBo 70 ns)
D0-D15 Bus Input
from @2 (output to 5:32 50 ns 5 1 TTL & 25 pf
float) load
BC1, BC2, BDIR Output
Delay from Q1 'be 70 ns |
D0-D15 Bus Input
Set-up Time before
D1 tB1 0 ns
D0-D15 Bus Input
Hold Time after @1 3:7 10 ns
MSYNC* Input Delay
from Q1 tMs 30 ns
BUSAK* Output Delay -
from Q1 BU 150 ns
TCI Output Delay
from Q1 tTo 200 ns | 1TTL & 25 pf
load
TCI Pulse Width tTw 300 ns
EBCA Output Delay from
input of BEXT instruc-
tion 'DE 150 ns |
EBCA to EBCI Input Delay tAI 400 ns

*at 250C and nominal supply voltages

CAPACITANCE

Tp = 25°C; Vpp = 12.0V, Vg =5.0V, Vpg= -3.0V

tpl1 = tp2 = 100 ns

Symbol Min. Typ. Max. Units

@1 Clock Capacitance Cop1 20 30 pf
@2 Clock Capacitance Coa 20 30 pf
Input Capacitance Cin

D0-D15 6 12 pf

All other 5 10 pf
Output Capacitance Cout

D0-D15 bus high

impedance state 8 15 pf

Notes on Some Timing Signals

1. BDRDY

The CPU samples the BDRDY input line every TS1 immediately following
every micro state in which a BAR or ADAR bus control signal is issued.
The following details apply:

a) BDRDY must go to logic low requesting a wait state no later than
50 nsec into TS1. It will never go to logic low in any time slot
other than TSI.

b) BDRDY must stay low for a minimum of 50 nsec.

c) BDRDY maygo to a logic "1" level asynchronously to the CPU clocks.
The CPU will synchronize this signal during TS4.

2. STPST¢
The STPST é signal is sensitive to high-to-low transitions. The width of

the pulse at the low level is 200 nsec minimum, with a maximum fre-
quency of 800 kHz.

s+, , 12 1S3 , TSs4 , TSI , TS2 ,, TS} , TS4 , SV , TS2 , TS3 , TS4 ,, TSI ,
' L LI | I]

L] LN] L Vi LI | LI L 1 Al

=

[~ —

o

E-3

: <
o
(3]
<

=

!
|
|
|
|
! a
| !
u | |
_d b ' . |
BCI, BC2, Vg |
BDIR . 1 0.5V { — | . t | t
' —— t | b=
‘ + ={lgo= —= L = B~ T F e '
7 [2.2V ! 1 1 !
.] 0.5V | i N
’ ; b b P '
e sk fe—| e—>
BUS BUS BUS INPUT
CHANGING FROM OUTPUT CHANGING FROM INSTRUCTION
FLOAT MODE T0 VALID OUTPUT MODE TO OR DATA
OUTPUT MODE FLOAT MODE OPERAND

BUS TIMING DIAGRAM

3.0

CHAPTER 3

CP-1600 INSTRUCTION SET

GENERAL INSTRUCTION FORMAT

The basic instruction word format for the CP 1600 microprocessor consists

of 10 bits located in the low order bit positians of a 16-bit processor word.

The high order 6 bits of every 16-bit word supplied to the CP 1600 as an in-
struction word are ignored by the internal microcontrol logic. This results

in a compact, highly efficient 10-bit instruction word that can be implemented
directly in a single 10-bit wide ROM instead of dual 8-bit wide ROMs for those
systems requiring the ultimate in ROM bit efficiency. The 8 internal working
registers, all data operands, displacement constants, and arithmetic and logi-
cal operations are implemented to full 16-bit significance providing the per -
formance, flexibility, and efficiency of 16-bit operation.

The 10-bit instruction word is divided into 3 functional fields to which most
instructions conform. This is shown in Fig. 3.0.1.

15 - - - - - 10l 8 7 6|5 4 3l2 1 0
Future Use * Operation F1 F2

*This field is not implemented by the microcontrol logic in the CP160C.

FIG. 3.0.1

The most significant 4 bits of the CP 1600 instruction word is the Operational
Field which provides 16 basic operations. The 16 operations are evenly divided
into 2 groups of 8 instructions each; the External Reference group and the In-
ternal Reference group.

3.1

INSTRUCTION DESCRIPTION

All Series 1600 symbolic instructions are expressed as statements containing

an operator (OP Code) and in most cases one or two operands (Source/Address
Mode and Destination). In general, the first three characters of an operator
mnemonic represent the operation to be performed while the last character
represents the addressing mode, such as ADDR for ADD Registers. The follow-
ing description of instructions depicts both the symbolic format and also the
binary translation. The timing, status register change, and instruction de-
scription is also shown.

The timing of each instruction is shown in terms of CPU cycle times. In ad-
dition to the basic number of cycle times for each instruction there are also
potential wait times for every memory access associated with that instruction.
Each wait time is dependent on the access time of the particular segment of
memory being accessed. If the CPU cycle time is 400 nanoseconds and the
memory speed is 1-700 nanoseconds, then W=0; if the memory speed is 701~
1100 nanoseconds, then W=1; and if the memory speed is 1101-1500 nanoseconds
then W=3; etc. For example, each instruction fetch has an associated wait time
as does each word of a multi word instruction. If data is addressed during ex-
ecution of an instruction, this additional memory access also has an associated
potential wait time. Thus for an external reference instruction that is itself
accessed from fast memory but its data is accessed from slow memory the
following might hold:

Number of Cycles = 8 +2W=8 + W+ W
8+0+2
10 cycles total

1

3.1.1 SYMBOLIC NOTATION

The following symbolic notation is used in all Series 1600 instruc-

tion documentation:

Address Modes: R
'blank’

<>

ov

Functions:
Status: S
Operands: SSS

DDD
MMM

RR
RRR

EEEE

<1+ "®

Z>

register

direct address
indirect address
immediate data

addition
subtraction
inclusive OR
exclusive OR
AND

contents of

is replaced by
optional operand
Sign bit

Zero bit

Carry bit
OVerflow bit
Source Register

Destination Register
Address Mode (register)

, Last bit of Register address

Register (0-3)

Register (0-7)

Number of Shifts (1 or 2)

Sign of Address Displacement
External Condition Code (0-15)

3.2

3.1.2 OPERATION OF STATUS BITS

‘During arithmetic and logical operations in the CPU, the ALU
Status Bits are used to monitor and record four characteristics
of the resultant data. These bits are Carry (C) out of the ALU,
arithmetic OVerflow (OV) from the ALU, Zero (Z) result from
the output of the Shifter, and Sign (S) detect from the output of
the Shifter. These bits operate in the following manner:

C - set if the result of an ADD, SUB, or CMP instruction
produces a carry; cleared otherwise (SUB and CMP are
performed by addition of two's complement of the sub-
trahend operand).

OV - set if the result of an ADD, SUB, or CMP instruction pro-
duces arithmetic overflow (two's complement notation);
cleared otherwise (SUB and CMP are performed by addi-
tion of two's complement of the subtrahend operand).

Z - set if the result of an operation produces an all zero re-
sult; cleared otherwise.

S - set if the result of an operation contains a "one" in the
high order bit position; cleared otherwise.

EXTERNAL REFERENCE INSTRUCTIONS

The External Reference instructions, which have a one in the high order bit po-
sition of the Operation Field, route data into or out of the CP 1600 to externally
located bus addresses. Since a single address bus structure is utilized in the

CP 1600 architecture, both memory and peripheral devices reside in the same
Address Space. Only the system address allocation, as defined by the user,
differentiates memory from I/0 devices; therefore, no special input/output in-
structions are.required and any External Reference instruction can access mem-
ory or peripheral devices. The CP 1600 utilizes a full 16-bit addressing structure
which provides access to 65, 536 unique bus locations.

3.2.1

DATA ACCESS INSTRUCTIONS

The format for 7 of the 8 External Reference instructions is shown
in Fig. 3.2.1.

5----- 101918 7 6|5 4 312 1 0

Future Use 1 [Operation| Mode | Dest.Reg.

MoVe Out (MVO) 001 000 - - Direct address in next
memory location
MoVe In (MVI) 010 001 - - Indirect address thru R1
ADD (ADD) 011 010 - - Indirect address thru R2
SUBtract (SUB) 100 011 -- Indirect address thru R3
CoMPare (CMP) 101 100 - - Indirect address thru
R4, R4+1-*R4
logical AND (AND) 110 101 -~ Indirect address thru
RS, R5+1-+RS5
eXclusive OR (XOR) 111 110 -~ Stack thru R6; Post Incre-

ment if Output; Pre-Decre-
ment if Input

‘111 -- Immediate data in next
memory location

FIG. 3.2.1

These instructions use the lower 3 bits of the word as the register desig-
nator. This register is the source of data for output operations and the
destination for data on input operations. The Mode Field of the instruction
specifies the addressing mode to be used to access the Address Space.
Mode 0 indicates that the contents of the next memory location is to be

used directly as an external ‘address. Modes 1, 2 and 3 indicate that regis-
ters 1, 2 and 3 respectively contain the external address. Modes 4 and 5 in-
dicate indirect addressing through registers 4 and 5 with the contents of
the register automatically incremented after use as the address; i.e.,

post increment. Mode 6 indicates stack operations, i.e., indirect

through register 6 with the contents of the register post incremented for
output operations (push) and pre-decremented for input operations (pull).
The Stack is maintained by register 6 and expands upward in external
memory from low address to high address. Mode 7 indicates that the

next memory location holds data to be used directly; i.e., immediate

data.

In order to utilize an efficient 10-bit instruction ROM and also refer-
ence 16-bit data from the same memory area, a Double Byte Data
feature is available on the CP-1600. When a Set Double Byte Date (SDBD)

3.2.2

instruction preceeds an external reference instruction, two words of
memory are accessed. The least significant data byte is obtained
from the low order eight bits of the first word and the most signifi-
cant data byte is obtained from the low order eight bits of the second
word. These bytes are then combined by the processor to form a
16-bit data word. Double byte data may be accessed via indirect
addressing modes 4, 5, and 7. If modes 1, 2 and 3 are used only
one word is accessed with both bytes of data obtained from the lower
eight bits of the same word. Modes 0 and 6 are not supported in the
double byte data operation.,

CONDITIONAL BRANCH INSTRUCTIONS

The eighth.instruction in the External Reference group is the Conditional
Branch type which has the format shown in Fig. 3.2.2.

15 -----~ 10]9|18 7 6 | 51413 2 1 0
Future Use 1 [OP Code | +|I/E| Condition
(000) Code

Address Displacement

FIG. 3. 22

This instruction tests any one of 32 conditions and causes a branch in
the program if the test has a true result. The 32 conditions are evenly
divided into 2 groups of 16 each. The Internal Condition Codes com -
prise various tests on the state of the status register bits of the ALU
while the External Condition Codes comprise 16 tests on external
digital status signals of the user's choice. (Bit 4 = 1 for external.)

In case of a false result, the program continues to the next sequential
instruction. When the appropriate conditions are true, the instruction
transfers program control to the specified destination. The actual
destination address is determined by adding or subtracting the address
displacement contained in the second word of the instruction to the pro-
gram counter. If the destination direction bit of the instruction (1) is
zero, then the displacement is added to PC+2. If it is one, then the dis-
placement is one's complemented and then added to PC+2.

3.2.3 EXTERNAL REFERENCE ADDRESSING MODES

All of the instructions in the external reference group require that
data be accessed from the external Address Space of the processor.
The detailed sequence for each of the various addressing modes is
shown in Fig. 3.2.3 to Fig. 3. 27.

The effective address (EA) is used to access the first operand. The
second operand is always contained in an internal CPU register with
the result of the operation replaced in this same register. Note that
the program counter (R7) is incremented before the Operation Code
is performed; thus, if the destination register (DDD) specified by the
instruction is R7, the incremented program counter is modified cre-
ating the effect of a branch in the program sequence.

DIRECT ADDRESS (Mode=000)

PC Future Use| 1| OPCode| 0 C 0| D D D
PC+l1 | aaaaaa |A A A AJAAA AAA

PC «#——PC + 2
EA-e——3322aa AAAAAAAAAA

Note: aaaaaa is dependent upon the memory word size.
FIG. 3.2.3

INDIRECT ADDRESS (Mode=001 to 110)

PC Future Use| 1| OPCode | M M M|{D D D
MMM = 001, 010, 011 MMM = 100, 101
PC=—PC +1 PC=—PC +1
EA=—(MMM) EA=—(MMM)

(MMM)=-=—(MMM) + 1

MMM = 110 for MVO only MMM = 110 for non-MVO

PC~—PC + 1 PC~—PC + 1
EA=—(MMM) (MMM)=~MMM) -- 1
(MMM)~<—(MMM) + 1 E A=—(MMM)

FIG. 3. 2.4

IMMEDIATE DATA (Mode=111)

PC Future Use |1 [OPCode |1 1 1 |D D D
PC+1 iiiiii |1 1 11 111 111
PC=—PC +2 EA=—PC +1

.......

FIG. 3.2.5

INDIRECT ADDRESSED DOUBLE BYTE DATA

PC-1 Future Use[0 O U " 070 0 O 0 11 SDBD instruction

PC Future Use| 1 |OP Code |{M MM |D D D
PC=—PC +1
fMMM=1, 2, 3 If MMM =4, 5
EA[«—(MMM) EA[=—(MMM)
EAp-(MMM) (MMM)=—(MMM) + 1
EAHq=——(MMM)

(MMM)<+— (MMM) +1

Note: The SDBD instruction must immediately preceed the external
reference instruction. Mode 000 and 110 are not supported
for double byte data operations by this version of the CP-1600.

FIG. 3.2.6
IMMEDIATE DOUBLE BYTE DATA

PC-1 Future Use |0 |0 O 0|0 O 0j0 O 1 | SDBD instruction
PC Future Use | 1 |OPCode (I I 1 {D D D
PC+1 Not Used L L LLLLUL L
PC+2 Not Used U U UUU UUUuU
PC=—PC +3
EA[~—(PC+1)
EAH-=—(PC+2)

Note: The assembler will automatically generate the SDBD instruction
preceeding the external reference instruction when the constant
specified by the assembly language statement exceeds the mem-
ory word size specified. If the user specifies the SDBD, then
the data word will always be generated to fill two bytes.

FIG. 3.2.7

3.3 INTERNAL REFERENCE INSTRUCTIONS

The Internal Reference instructions, which has a zero in the high order bit
position of the Operation Field, process data already held within the 8 work-
ing registers of the CP-1600. These instructions are grouped into register
to register, register shift, single register, and internal control instructions.
The basic formats are depicted in Fig. 3.3.1 to Fig. 3. 3.5.

3.3.1 REGISTER TO REGISTER

15----- 10918 7 6 4 312 10
Future Use 0|J]OPCode{S S S|DD D
OPERATION
(010) MOVe Register (MOVR)
(011) ADD Register (ADDR)
(100) SUBtract Register (SUBR)
(101) CoMPare Register - (CGMPR)

(110) logical AND Register (ANDR)
(111) eXclusive OR Register (XORR)

FIG. 3.3.1
3.3.2 REGISTER SHIFT
15 - - - - - 1019 6{5 4 3 211 0
Future Use 0/0 0 1|/B L A N{D D
MODE
B=1, Right Shift B=0, Left Shift
L=1, With Link Bits I=0, No Link Bits
A=1, Arithmetic A=0, Logical or Rotate
N=1, 2 Position Shift N=0, 1 Position Shift

Note: Shifts can only be performed on Registers

RO - R3.

FIG. 3.3.2

33 .3 SINGLE REGISTER

3.3.4

15----- 101918 7 6{5 4 312 1 0
Future Use 0{0 0 O0|OPCode|{D DD

OPERATION
001 INCrement Register (INCR)
010 DECrement Register (DECR)
011 COMplement Register (COMR)
100 NEGate (2's complement) Register (NEGR)
101 ADd Carry bit Register (ADCR)
110 Get Status WorD register * (GSWD)
111 Restore Status WorD register (RSWD)
FIG. 3.3.3
INTERNAL CONTROL
15 = = = = = 101918 7 6|5 4 3|2 1 0

Future Use 00 O 0|0 O O |OPCode

OPERATION
000 HaLT (HLT)
001 Set Double Byte Data (SDBD)
010 Enable Interrupt System (EIS)

011 Disable Interrupt System (DIS)
101 Terminate Current Interrupt (TCI)

110 CLeaR Carry Bit (CLRC)
111 SET Carry Bit (SETC)
FIG. 3. 3.4

*The GSWD instruction can use only RO, R1, R2, or R3 as register specifications
for true Get Status Word operation. Use of R4 or RS results in a NOP instruc-

tion. Use of R6 or R7 results in a NOP internal to the CP-1600 and causes a

pulse to be outputted on the PCIT* pin. This can be used to cause an interrupt to

form a Software Interrupt (SIN) or Trap instruction.

23.5 JUMP/JUMP AND SAVE RETURN

PC Future Use |O {0 O 0|0 O Of1 O O
PC+l | Future Use |B B|A A A A A A|D E
PC+2 | Not Used A A A A A A A AAA
PCH3

FIG. 3.3.5

The instructions in the jurp group occupy three consecutive memory locations
and are used to perform direct jumps and subroutine calls. In addition the
interrupt system can be either enabled or disabled by bits 0-1 of the second
word of the instruction.

On direct jumps the return address is not saved. The destination address is
formed by using bits 2-7 of the second word as bits 10-15 of the jump address
and using bits 0-9 of the third word as bits 0-9 of the jump address.

On subroutine jumps, the return address (PCH?} is saved in register 4, 5, or

6. This register designation is formed by usirg bits 8-9 of the second word

{field BB) and adding 4. Note if BB=3, the designrated register becomes 7 (the

PC) which is the jump instruction. By using one of the jump and Save instructions,
the linkage to a subroutine is accomplished with the return address saved in reg-
ister 1BB.

INSTRUCTION SET

REGISTER - REGISTER

| \iXEMONIC | OPERAND | CYCLES| INSTRUCTION DESCRIPTION STATUS CHANGE
MOVR SSS, DDD 6 * 0010 SSS DDD MOVe contents of Register SSS to register DDD. *If DDD is 6 or 7 add 1 to Cycles. S, Z
TSTR SSS 6 * 0010 SSS SSS TeST contents of Register SSS. *If SSS is 6 or 7 add 1 to Cycles. S, Z
JR SSS 7 0010 SSS 111 Jump to address in Register SSS. (Move address to Register 7). o s,z
ADDR SSS, DDD 6 0011 SSS DDD ADD contents of Register SSS to contents of register DDD. Results to DDD S, Z, C, OV
SUBR SSS, DDD 6 | 0100 SSS DDD SUBtract of Register SSS from contents of register DDD. Results to DDD~ S, Z, C, OV_|
CMPR SSS, DDD 6 0101 SSS DDD CoMPare Register SSS with register DDD by subtraction. Results not stored. S, Z, C, OV
ANDR SSS, DDD 6 0110 SSS DDD logical AND contents of Register SSS with contents of register DDD.Results to DDD | S, Z
XORR SSS, DDD 6 01i1 "SSS DDD eXclusive OR contents of Register SSS with contents of register DDD.Results to DDO} S, Z i
CLRR DDD 6 0111 DDD DDD CLeaR Register to zero. S, Z
INCR DDD 6 0000 001 DDD INCrement contents of Register DDD. Results to DDD S, Z
DECR DDD 6 0000 010 DDD DECrement contents of Register DDD. Results to DDD S, Z
COMR DDD 6 0000 011 DDD one's COMplement contents of Register DDD. Results to DDD S, Z
NEGR DDD 6 0000 100 MDD + ~Two's complement contents of Register DDD. Results to DDD S, 2, C, OV_|
ADCR DDD 6 0000 101 DDD ADd Carry bit to contents of Register DDD. Results to DDD S, Z, C, OV
REGISTER SHIFT Executable only with Register 0, 1, 2, 3.
Shift Right instructions set the S flip-flop with Bit 7 of the result after the instruction.
Add 2 cycles if shift is 2 bits or two bytes.
Shifts are not interruptable.
SWAP RRn> 6 0001 000 NRR N = 0, SWAP bytes of register RR. S equals Bit 7 of results of SWAP. S, Z
o 8 I _ N =1, SWAP bytes of register RR, then swap them back tooriginal form. S, Z
SLL RR<Gn> 6 0001 001 NRR N = 0. Shift Logical Left one bit, zero to low bit. S, Z
1l 8 o N = 1, Shift Logical Left two bits, zero to low 2 bits. S, Z
RLC RR<Gn> 6 0001 010 NRR N = 0, Rotate Left one bit using Carry bit as bit 16. S, Z,C
8 . » N =1, Rotate Left two bits using C as bit 17 and OV as bit 16. S, Z, C, OV
SLLC RR<,n > 6 0001 011 NRR N = 0, Shift Logical Left one bit using C as bit 16, zero to low bit. S, Z, C
8 v 1 N-=1, Shift Logical Left two bits using C as bit 17, OV as bit 16, zero to low 2 bits.| S, Z, C, OV
SLR RR<,n > 6 0001 100 NRR N = 0, Shift Logical Right one bit, zero to high bit. S, Z
8 A o L N=1, shift Logical Right two bits, zero to high twobits. S, Z
SAR RR<n > 6 0001 101 NRR N =0, Shift Arithmetic Right one bit, sign bit copied to high bit. S, Z
: 8 N = 1, Shift Arithmetic Right two bits, sign bit copied to high bits. S, Z
RRC I RR<n > 6 0001 110 NRR N = 0, Rotate Right one bit using Carry as bit 16. S, Z,C
g 8 N = 1, Rotate Right two bits using C as bit 16, OV as bit 17. S, Z, C, OV |
SARC . RR<n > 6 0001 111 NRR N = 0, Shift Arithmetic Right one bit, thru Carry, sign bit copied to high bit. S, Z, C
! 8 N = 1, Shift Arithmetic Right two bits, thru Carry and OV, sign bit copied to high
J 2 bits | S, Z, C, OV

INSTRUCTION S E T (continued)

The Branch instructions are Program Counter Relative, i.e., the Fffective Address = PC+Displacement. PPPPPPPPPP is the Disnlacement and S

BRANCHES
is 0 for +, 1 for —=. If Memory is greater than 10 bits then the appropriate number of lead bits ppoppp will be a part of the Displacement. For a forward
oranch an addition is performed; for a backward branch a ones complement subtraction is performed. Computation performed on PC+2.
_MNEMONIC { OPERAND | CYCLES | INSTRUCTION DESCRIPTION STATUS CHANGE
B DA 7/9 | 1000 SO 0000 Branch unconditional, Program Counter Relative (+1025to -1024)
! pppppp PPPP PP . PPPP
NOPP 7 | 1000 SO 1000 | NoOPeration, two words.
| ppPPPP PPPP PP PPPP)
BC DA 7/9) 1000 SO 0001 Branch on Carry. C =1
BLGT DA Il pppppp PPPP PP PPPP | Branch if Logical Greater Than. C =1
BNC DA 7/9 | 1000 SO 1001 | Branch on No Carry. C =0
BLLT DA ! pppppp PPPP PP PPPP Branch if Logical Less Than. C =0
BOV DA 79 | 1000 SO 0010 | Branch on OVerflow. OV = 1
ppppPP PPPP PP PPPP
INOV DA 7/9 1000 SO 1010 Branch on No OVerflow. OV =0
pepppp PPPP PP PPPP
BPL DA 7/9 1000 SO 0011 Branch on PLus. S=0
ppPPPP PPPP PP PPPP
BMI DA 7/9 1000 SO 1011 Branch on MInus. S -1
pppPPP PPPP PP PPPP
BZE DA 7/9 . 1000 SO 0100 Branch on ZEro. Z =1
BEQ DA pppPPP PPPP PP PPPP Branch if EQual. Z -1
BNZE DA 7/9 1000 SO 1100 Branch on No ZEro. Z =0
BNEQ DA ppprPP PPPP PP PPPP Branch if Not EQual. Z =0
BLT DA 7/9 1000 SO 0101 Branch if Less Than. SOV =1
ppppPp PPPP PP PPPP
BGE DA 7/9 1000 SO 1101 Branch if Greater than or Equal. SOV =(
ppppPP PPPP PP PPPP .
BLE DA 7/9 1000 SO 0110 Branch if Less than or Equal. ZV (S%0V) =1
ppppPP PPPP PP PPPP
BGT DA 7/9 1000 SO 1110 Branch if Greater Than. ZV (S30V) =0
ppppPP PPPP PP PPPP
BUSC DA 7/9 1000 Sso 0111 Branch if Unequal Sign and Carry C%S =1
popppp° PPPP PP PPPP
BESC DA 7/9 1000 SO 1111 Branch if EqualSign and Carry C-%S =0
prpppp PPPP PP PPPP
BEXT DA,E 7/9 1000. Sl EEEE | Branch if EXternal condition is True. Field E is externally decoded
to select 1 of 16 conditions. Response is tested for true condition.
pppppp PPPP PP PPPP

DIRECT ADDRESSED DATA

- MEMORY

Field aaa aaa is dependent on the width of memory-

INSTRUCTION

S E T (continued)

16 bits is maximum for aaaaaa AAAAAAAAAA.

MNEMONIC | OPERAND |CYCLES INSTRUCTION DESCRIPTION STATUS CHANGL
MVO SSS, A 11 1001 000 SSS MoV Out data from register SSS to address A - A.
aaaaaa AAAA AAA AAA
MVI A, DDD 10 1010 000 DDD [MoVe In data from address A - A to register DDD.
- aaaaaa AAAA AAA AAA _ .
| ADD A, DDD 10 1011 000 DDD | ADD data from address A - A to register DDD. Results to DDD. S, Z, C, OV
aaaaaa AAAA AAA AAA
SUB A, DDD 10 1100 000 DDD SUBtract data from address A - A from register DDD. Results to DDD. S, Z, C, OV
aaaaaa AAAA AAA AAA))
CMP A, SSS 10 1101 000 SSS CoMPare data from address A - A with register SSS by subtraction. S, Z, C, OV
aaaaaa AAAA AAA AAA Results not stored.
AND A, DDD 10 1110 000 DDD logical AND data from address A - A with register DDD. Results to DDD.|S, Z
aaaaaa AAAA AAA AAA
XOR A, DDD 10 1111 000 DDD eXclusive OR data from address A - A with register DDD. Results to DDD.|S, Z
aaaaaa AAAA AAA AAA
INDIRECT ADDRESSED DATA - REGISTER
MMM Source data is located at the address contained in Register.
MMM = 4, 5 post increment R4 or RS5.
MMM = 6 - MVO instruction - post increment R6. PUSH data from Register SSS to the Stack.
Other instructions - pre-decrement R6. PULL data from the Stack to be used as the first operand.
i —
i ! :
[Mvo@ | SSS, MMM 9 1061 MMM SSS | MoVe Out data from register SSS to the address in register MMM
| Note: SSS= MMM =4, 5, 6 or 7 not supported.
PSHR SSS 9 1001 110 SSS PuSH data from Register SSS to the stack.
MVI@ MMM, DDD 8 1010 MMM DDD MoVe In data to register DDD from address in register MMM.
PULR DDD 11 1010 110 DDD PULI data from the stack to Register DDD.
’..
| ADD@ MMM, DDD 8 1011 MMM DDD ADD data located at address in register MMM to the contents of register
- i DDD. Results to DDD.) ~ 1S, Z, C, OV
' SUB@ MMM, DDD | 8* 11000 MMM DDD SUBtract data located at address in Register MMM from contents of
| _ . register DDD. Results to DDD. S. Z. C, OV
rCMP@ MMM, DDD 8* livl MMM SSS CoMPare data located at address in Register MMM with contents of
' | register SSS, by subtraction. Results not stored. S, 2, C, OV
[AND@ | MMM, DDD 8§~ 1110 MMM DDD logical AND contents of register DD with data located at address in
X re