GENERAL
INSTRUMENT

PIG SERIES
MIGROGOMPUTER
DATA MANUAL

Microelectronics Division
General Instrument Corporation

GENERAL
INSTRUMENT

PIG SERIES
MIGROGOMPUTER
DATA MANUAL

ARCHITECTURE
INSTRUCTION SET
PRODUCTION CYCLE
ROUTINES
APPLICATIONS

TABLE OF CONTENTS—PAGE 2

APRIL 1983

©Copyright 1983 GENERAL INSTRUMENT CORPORATION

The information in this publication, including schematics, is
suggestive only. General Instrument Corporation does not warrant,
nor will it be responsible or liable for,{a) the accuracy of such
information, (b) its use or (c) any infringement of patents or other
rights of third parties.

Tableof 1. INTRODUCTION
1.1

Gontents

[0 1=T:T o7 o4 T o T 5

B2 - | (= 5
B EC TS 10 o o Yo o G 6
1.4 Microcomputer Fundamentalsccoiiiiiiiiiiiien, 6
1.4.1 Basic Microcomputer Architecture 7
1.4.2 CPU Functional Description...........c.oovvviiinnn.. 8
1.4.3 The Programcciiiiiiiiirinnreennonnnsneonanesn 11

1.5 Development Cycleovii ittt it ie e easanns 13
1.5.1 Software Development..........coiiiiiiiiiiinriniennn, 14
1.5.2 Hardware Development iiiiviiniiniieanns 19
1.5.3 In-Circuit Emulationottt i, 19
1.5.4 Field Demonstrationcoviiineiiiniinnrennronns 19

2. ARCHITECTURE \,
2.1 PIC Basic Functional BIoCKS.......oviiiiieeiiininnennnnenss 20
2.1.1 Instruction Decode and Control Unit................... 23
2.1.2 Program Counter (F2)cciviriineniveennniannnns 23

P2 I T - o 23
2.1.4 File Select Register (F4)ccvviiiiiiiirinrenenrenns 24
2.1.5 Arithmetic Logic Unit (ALU)...........ccovviiivin.., 25
2.1.6 Working Register (W)civiiiiiiiiiiniierinneenanes 25
2.1.7 Status Word Register (F3).......c.iiiiiiiniiinnnnnn, 25
2.1.8 Real-Time Clock Counter Register..................... 26
219 ORBRegisterviiiiii ittt ittt et 27
2.1.10 Program Memory (ROM)cciiiiiiiiiiiinnnnnnas 28
2.1.11 Data Memory (RAM) ... ittt ittt ieniiene s 28
2.1.12 Clock Generator feee et etae ettt 31

2.2 PICIBE0A . i e e e e e e 34
2.8 PICIB54 ... it e e et i e 34
P B e (O 211 N A 34
P2 T o [[T 0 P 34
26 PIC1656ciiit ittt ittt e 35
2.6.1 Interrupt LOGIC ... oo iit i i it c i i e 35
2.6.2 Status Register.........coviiiii it i i i e 36
2.8.3 StaCK. ...t ittt it i e i i e i e e 38
264 RTCC Register.oviii ittt ittt ittt it eninennes 38
2.6.5 I/O Registers (F5-F7) ...cviiiiiiii ittt iinaannn 38
2.6.6 Clock Generatorcoviiieriiiiineernnrennronans 38

PO A o T [7 PP 39
271 Interrupt System i e e s 39
2.7.2 External Interruptcoiiiiiiiii i i i i i e 39
2.7.3 Real-Time Clock Interruptciiiiirii it i 39
2.7.4 Input/Output Capabilitycooiviiiir it ieneenn 41

2.8 Pin ASSIgNmeNtsttt it i e 43

3. INSTRUCTION SET

3.1 General Instruction Formatcoi ittt 46
3.2 General File Register Operations...............ccovviiieen... 49
3.2.1 Data Transfer Operationsccviviiieirriennnnns 50
3.2.2 Arithmetic Operationscciiviiiiiiininnnenn. 51
3.2.3 Logical Operations e et e 55
3.24 Rotate Operationsovviiiiiiniir i ineenennennns 57

3.3 Bit Level File Register Operationsccoiieiiieiiiinnns 59
3.3.1 Bit Manipulations.coviiiiiiiiiieiriiiiiiiinnnns 59
3.3.2 Conditional Skipson Bit Test...........ccevivviinnnnnn. 60

3.4 Literal and Control Operations............cccoiiiiiiiieenrnnn. 61
3.4.1 Literal Operationsc..vvviiinirreeenrennnnnnnnns 61
3.4.2 Control Operationsvvviiiiineiiiiiierinanennss 63

3.5 Special Instruction Mnemonicsccciiiiiiiiiinnnn, 65
3.56.1 Move File ToW Registerccciiiiiiiiiiinan... 65
352 Test File ..oo it it et e i et aanenens 65
3.5.3 Two’s Complement Register Contents 66
3.5.4 Unconditional Branchccciiiiiiiiinnnnnen.. 66
3.5.5 Status Bit Manipulationsccovviiiniiiniiinernnen 66
3.5.6 Conditional Skips on Status Bit Test 68
3.5.7 Conditional Branches on Status Bit Test................. 69
3.5.8 Carry and Digit Carry Arithmetic 71

3.6 PIC1670 Series Instruction Set..........ccoivviiiiiiiiinnnnn, 74
3.6.1 Additional Instructions..............ccciiiiiiiiiinnn.. 75

3.7 /O Programming Cautioncoiviiiineneeneneereeeennnnns 79

3.8 Sample Programcoviiiitiiiiin ittt ittt 81

4. PRODUCTION CYCLE

4.1 Hardware Supportttt i it ittt i 91
4.1.1 ROMless Development PIC....... ettt e 91
4.1.2 PICES II-PIC In-Circuit Emulation System............... 92
4.1.3 PFD-PIC Field Demo Systemcooviiviinenninnnans 94

4.2 Software SUPPOrtvii i ittt ittt it e 95
4.2.1 PICAL-PIC Macroassembler............coiviinieeenrnnn. 95

5. MATH ROUTINES

5.1a Unsigned BCD Additionciviiiiiiniirrinnnersnnnes 96

5.1b Unsigned BCD Addition of 2 Digitscvvvuvninniennn. 98

5.2 Unsigned BCD Subtraction.............ioiiiiiiiiinnnieenns 100

5.3 Signed BCD Additionciiviiiiiiiininreennnsnennns 102

5.4 Signed BCD Subtractioncciiiiiiiiiiiinrennennnens 106

5.5 Two Digit BCD MUItiply . ..o iv vt it i iiiiee e 109

56 Four Digit BCD Divideccvviviinennnninnenneneannes 112

5.7a Binary To BCD Conversion Method I...............covvvienen 120

5.7b Binary To BCD Conversion (2 digits) Method Il 123

5.8 BCD To Binary Conversion.......coviviiiiiieieenannsonanss 125

5.9 Double Precision Signed Integer Math Package 128

5.10 Floating-Point Double Precision Math Package............... 134

5.11 Square Root Algorithm Using Newton’s Method.............. 143

6. MISCELLANEOUS ROUTINES _
6.1 Keyboard Scan Program Reads And Debounces 16 Keys And

Stores Key Closures in TWo Filescovviniinninennenn, 146
6.2 Eight Digit Seven-Segment Display Refreshing Program 146
6.3 Pseudo Random Number Generator............ccovviininnnan 152
6.3.1 7 Bit Pseudo Random Number Generator 152
6.3.2 16 Bit Pseudo Random Number Generator 153
6.4 Potentiometer A/D Conversion Routine....................... 154
6.5 Analog To Digital Conversion............coiiiiiiniiinrenennn 154
6.5.1 How The Program WOrksccvvivnennernnnnnnns 155
B.5.2 CONCIUSION . tviitetit i iiitieiiiitsetensansonnsnnnas 158

6.6
6.7

7.1
7.2
7.3
74
7.5
7.6

7.7

Time Delay Routine.ooiiiiin it iiiiiiirieaerannenns 158
A Digital Clock Subroutine Using the PIC Microcomputer...... 159
L 20 0 T I 4T 159
6.7.2 Time Counting .. .oovvtiiiii it i i iiiiienes 160
6.7.3 Use in Programc.cviviniirnnriinenascnnsennaines 161
6.74 Use of TIMADD as Time Setcoovvviiinnnnennn 161
7. APPLICATION NOTES

Serial Data Transmission with a PIC Microcomputer 162
PIC Microcomputer as a Keyboard Encoder 166
Sound Generation Using a PIC Microcomputer 175
Frequency Locked Loop Tuning with a PIC Microcomputer 188
PIC Microcomputers in Subscriber End Equipment 194
PIC Microcomputer-Based Control Smoothes Universal

Motor Performance ...ttt iiiiiieinnns 202
Interfacing a PIC Microcomputer with the ER1400 EAROM 211
Interfacing the PIC Microcomputer with the ER2055 EAROM ... 220

7.8

1.1
Description

1.2
Features

INTRODUCTION

The General Instrument PIC Family is a series of MOS/LSI 8-bit micro-
computers manufactured to meet the requirements of the cost-
competitive controller market. The PIC microcomputer contains
RAM, I/0 and a central processing unit, as well as customer-defined
ROM on asingle chip. The 8-bit input/output registers provide latched
lines for interfacing to a limitless variety of applications including:

O Industrial timing

O Radio/TV Tuning

O Consumer appliances

O Motor control

O Display control

O Repertory dialers

O Vending machines

O Security devices

O Automotive dashboard

The architecture of each device in the PIC Family is based on a register
file concept with a concise yet powerful instruction set designed to
perform bit, byte and register transfer operations. The architectural
features of the PIC family are outlined below:

/0 INSTR.

PART ROM RAM LINES SPEED INTERRUPT PACKAGE
PIC1650A 512x12 32x8 32 4 usec NO 40 PIN
PIC1654 512x12 32x8 12 2 usec NO 18 PIN
PIC1655A 512x12 32x8 20 4 psec NO 28 PIN
PIC16C58 512x12 32x8 20 4.5 usec NO 28 PIN
PIC1656 512x12 32x8 20 4 usec YES 28 PIN
PIC1670 1024 x 13 64x8 32 2 usec YES 40 PIN

PIC1672 2048 x13 64x8 32 2 usec YES 40 PIN

The PIC microcomputer was designed to be an efficient control pro-
cessoras well as an arithmetic processor. It has an instruction set which
allows the user to directly set, reset and to test and skip on the status of
any RAM bit, including 1/0 lines. The “wide” instruction word (12 or 13
bits) gives the PIC Family capabilities which are not found in other 8-bit
microcomputers:

O All Instructions Single Word

O All Registers Directly Addressable

O Registers Indirectly Addressable

0O Set, Clear any Bit in any Register

O Test and Skip on Bit Status

O 2 Destinations for ALU Operations

O More Than 20 I/0 Instructions

. ___]
5

13
Support

14
Microcomputer
Fundamentals

These added capabilities allow the user to produce compact and effi-
cientcode. In other words, many functions requiring a 1024 x 8 bit ROM
may very well be programmed into a 512 x 12 bit ROM resident in the
P1C1650 and at a lower cost.

Hardware and software development support is provided by a wide
range of products available from General Instrument. These support
products include the ROMless development microcomputer, the PIC
In-Circuit Emulation System (PICES 1I), the PIC Field Demo System
(PFD), and the PIC Cross-Assembler (PICAL).

B The PIC1664 DEVELOPMENT MICROCOMPUTER is designed as a
useful tool for engineering prototyping and field trial demonstration.
The contents of the program counter (ROM address) and the instruc-
tion word lines (ROM data) are brought out to pins for connection to
external RAM or EPROM. The addition of a HALT pin enables single-
stepping of the development program.

B The PIC IN-CIRCUIT EMULATION SYSTEM allows the user toload
his PIC program into RAM and test it in the actual environment of his
hardware application. A powerful interactive debugging program (PIC-
BUG) is provided for easy troubleshooting and program corrections.
The PICES system is provided complete with its own enclosure and
power supply for stand-alone or peripheral applications.

WM The PICAL CROSS-ASSEMBLER PROGRAM converts symbolic
source programs into object code for the P1C family of microcomputers.
PICAL, coded in FORTRAN I¥ or BASIC, is intended for use on mini-
computer, larger main-frame computers, and time-sharing systems.

A microcomputer provides, on a single-chip, all of the functional
elements of a minicomputer or a large main-frame computer. Basi-
cally, these functional elements include a central processing unit
(CPU), program memory (ROM), data memory (RAM), and an input/
output interface (1/0). It also provides the means for implementing
many combinations of arithmetic and logical operations. By select-
ing the proper combinations of operations relevant to a particular
application, a microcomputer can be used to perform logical pro-
cessing, basic code conversions, formatting, and to generate funda-
mental timing and control signals for 1/0 devices.

A microcomputer is best suited for applications in which the cost of
developing and manufacturing customized controller hardware
would exceed the cost and/or space requirements of a general-
purpose microcomputer with a specially-designed control program.

1.4.1 BASIC MICROCOMPUTER ARCHITECTURE

Figure 1 is a functional block diagram of a typical microcomputer,
including the CPU, ROM, RAM, and I/0O.

B Central Processing Unit. The CPU performs the processing and
control functions of the microcomputer. The CPU fetches instruction
words from memory, decodes them, and generates the appropriate
signals that cause the instruction to be executed. The CPU implements
its various arithmetic and logical operations on operands obtained
from memory. It also tests the results of arithmetic and logical opera-
tions, and as a result of these tests, chooses between alternate
branches in the program.

B Program Memory. The instructions for the CPU to execute are
stored in a Read-Only Memory (ROM). The ROM provides perma-
nent non-volatile storage of the program. Power interruptions or
equipment shutdown will not alter the contents of the ROM.

Program memory size is defined by the number of addressable
locations available for program storage and by the size of the word
(number of bits) stored in each location.

Fig. 1 TYPICAL MICROCOMPUTER BLOCK DIAGRAM s

INSTRUCTION WORD

PROGRAM ADDRESS
) PROGRAM
(SEQUENCE CONTROL) MEMORY
(ROM)
EXTERNAL
< INTERNAL DATA BUS > Vo CONNECTIONS
GCENTRAL INTERFACE CF >
PROCESSING
UNIT PN
(CPU)
DATA
MEMORY
(RAM)
1 ADDRESS BUS
READ/WRITE CONTROL SIGNAL

For example, the notation 512 x 12 specifies that there are 512
addressable locations for program words and each word has 12 bits.

Each instruction word is selected from the program memory (ROM)
by a combination of 1’s and 0's on the address bus. Each unique
combination of 1's and 0's addresses a unique location in program
memory; the number of locations that can be addressed is therefore
determined by the number of combinations of 1’s and 0's available.
This, of course, is a function of the number of address lines (i.e., the
number of bits in the program counter).

MW Data Memory. The data memory provides temporary storage for
data processed by the CPU. Data memory is usually a Random-
Access Memory (RAM). Any data stored can be obtained from the
same location (address) in which it was stored. RAM is volatile, which
means that after equipment shutdown or a power interruption, valid
data is no longer present. Since the information stored is usually of a
temporary nature anyway, volatility is not a serious consideration.
The size of data memory (RAM) is defined using the same notation
described in the program memory (ROM) discussion.

The same address is used with RAM to both read data from and write
data to a particular memory location. A read/write signal determines
the direction of data transfer.

B I/0 Interface. The I/O interface permits the microcomputer to
communicate with external devices. A typical interface consists of
one or more I/0 registers communicating with an external I/O bus or
individual 1/0 lines. The CPU can address these |/O registers and
either input data from an external device or output the result of its
processing to an external device. In order for information to be
transferred between the I/O ports and the external devices at
appropriate times, the program logic must be written so as to
anticipate significant external events.

For example, to determine if data is present, one or more bits of an
input port can be tested periodically. When data from a particular
input device is made available, the corresponding “flag” bit can be set
by the external device. This “flag” bit could then be reset via an output
port once the input data has been stored.

In some microcomputers, “interrupt” logic is incorporated in the
CPU to direct the control function when an external device signals for
service by activating an external interrupt line.

1.4.2 CPU FUNCTIONAL DESCRIPTION

Figure 2 is a functional block diagram of a typical CPU. The typical
CPU consists of an instruction decode and control unit, an arithmetic
logic unit (ALU), and several special purpose registers. These
registers usually include at least an accumulator, a status register, a
program counter, and a stack or stack pointer.

B Instruction Decode and Control Unit.The instruction decode and
control unit fetches an instruction word from the program memory,
decodes it, and generates the appropriate signals that cause the
desired operations to take place. The instruction decode and control
unit also controls the program counter.

B Program Counter. The program counter is a register that holds the
address of the next instruction to be fetched out of program memory.
Since a program is usually executed in the order in which it is written,
the program counter is automatically incremented by one after the
execution of every instruction, except for the following operations:

—A conditional jump instruction whose criteria have been met
—An unconditional jump instruction

—A jump to subroutine (call) instruction

—A return from subroutine instruction

—An interrupt

B Stack. The stack is a group of registers used for temporary storage
of program addresses required for returns from subroutines. A
subroutine is a frequently used group of instructions that, for
convenience and for program economy, is written once and is
located in a separate part of program memory. Whenever this group
of instructions is to be executed, the subroutine is called. This is
accomplished by storing the contents of the program counter
plus one (PC+1) in the top element of the stack and placing the
starting address of the subroutine into the program counter. When
the subroutine has been executed, the program must return to the
next instruction following that which called the subroutine. This is
accomplished by transferring the contents of the top element of the
stack (PC+1) back into the program counter.

Fig. 2 TYPICAL CPU ARCHITECTURE ==

INSTRUCTION WORD

STACK

i}

SEQUENCE PROGRAM
CONTROL. | PROGRAM ADDRESS || PrROGRAM |__]
COUNTER 21 MEMORY
INSTRUCTION
DECODE [achormer TE O REGISTERS
AND == AND DATA
CONTROL MEMORY
UNIT DATA
ADDRESS DATA

ADDRESS” | MEMORY
BUS

4 EXTERNAL
CONNECTIONS

DATA BUS
ACCUMU- ALU < 1/0 ¢:>
LATOR REGISTERS

)

STATUS
REGISTER

CPU

It is not uncommon for one subroutine to call a second subroutine,
and perhaps the second subroutine to call a third subroutine, and so
forth, in a process called nesting. To provide for the proper execution
of nested subroutines and the subsequent return to the main
program, the last subroutine, after it has executed, must return to the
preceding subroutine from which it had been called. After the
preceding subroutine has finished executing, it in turn must return to
the subroutine from which it had been called. This sequence
continues until the first subroutine has executed fully and the
program counter is returned to the main program.

In order for this sequence to be implemented, there must be enough
elements in the stack to accommodate each of the return addresses.
As each subroutine is called, its return address is pushed onto the
stack.The previous return addresses can be pushed down to accom-
modate each new address until the stack is filled. The stack is a LIFO
(last-in, first-out) storage device. As each nested subroutine is exe-
. cuted, the last return address at the top of the stack is popped off and
placed into the program counter. The next to last return address pops
to the top of the stack ready to be transferred to the program counter
when the next to last subroutine is finished executing. This process
continues until the first return address is at the top of the stack and is
finally transferred to the program counter.

If the CPU architecture does not provide a stack for return addresses,
the programmer must allocate a block of data memory to serve as a
stack. When the stack is part of memory, it must be addressed when
data is to be pushed on or popped off. Therefore, a register is
provided that points to the stack location in the same manner that the
program counter points to the location in program memory of the
next instruction word. This register is known as the stack pointer. The
stack pointer points to the next stack location at which a return
address will be pushed or popped.

If no stack or stack pointer is provided in the CPU and the program
must be written with nested subroutines, a portion of memory may be
allocated for a stack pointer and stack (software stack).

B Arithmetic Logic Unit (ALU). The ALU implements various binary
arithmetic and logical operations utilizing one or two operands. The
arithmetic operations include binary addition and subtraction.
Boolean logic operations include AND, OR, Complement and
Exclusive OR.

B Accumulator. The accumulator is a register that provides tempo-
rary storage for one of the operands to be manipulated by the ALU.
The other operand is usually located in memory. The results of the
operations may be stored in the accumulator.

B Status Register. A status register is provided to store the condition
of the most recent ALU operation. Conditions such as a zero or non-
zero result, carry or digit-carry will be stored. The contents of the status
register can be interrogated under program control to determine the
program sequence to be performed next. Depending upon the con-
tents of the status register, a jump, skip, or subroutine call may be
executed.

10

1.4.3 THE PROGRAM

The microcomputer has the capability of performing many different
data manipulations and transactions. However, it requires a program
to direct it to perform even the simplest of operations.

The program is a series of instruction words that direct internal
processing functions and the transfer of data between the external
devices and the CPU.

The instruction word for any CPU contains a fixed number of bits that
is determined by the instruction format of the particular CPU. Some of
these bits are used for an OP Code (operation). The OP Code is a
description of the operation to be performed. The remaining bits fol-
lowing the OP Code are the operand(s) and contain either a literal, an
address from which data can be obtained, or the address of the next
instruction.

The complete sequence of operations required to carry out a single
instruction is referred to as an instruction cycle. Each instruction
cycle consists of two parts: a fetch cycle and an execute cycle. In the
fetch cycle, the address in the program counter accesses a location
in program memory. The program memory releases the instruction
word stored in the addressed location. The CPU stores this instruc-
tion in an instruction word register. During the execute cycle, this
word is decoded and control signals are generated to direct activities
during the remainder of the execute cycle.

The program becomes operational when power is turned on. The
program counter is set to an address that holds the first line
(instruction word) of the program. This first instruction word is
fetched and is executed by the instruction decode and control unit.
The program counter is then incremented by one count and the next
instruction word is fetched from memory. This orderly progression
through the program continues until an instruction is fetched or an
interrupt occurs that causes a jump or a branch to another location in
program memory.

An instruction may specify an unconditional jump or branch to
another address, in which case the contents of the program counter
are changed. The instruction may specify that a particular bit in the
status register be interrogated for a particular condition. Based upon
the results of the status bit interrogation, the program counter may be
incremented to the next instruction, it may skip the next instruction,
or it may be changed to the address of a different area of the program.

If an instruction calls a subroutine, the contents of the program
counter plus one (PC+1) are placed on the stack, and the starting
address of the subroutine is loaded into the program counter. If the
contents of the accumulator, status register, or other registers are
needed later and cannot be kept in their present locations while the
subroutine is being executed, these contents will have to be tempo-
rarily stored elsewhere. This may be accomplished as part of the
subroutine, or other subroutines may be called to store and then
replace the contents of these registers.

1

Depending upon the nature of the data to be processed and the
number of alternate branches and subroutines available to the pro-
gram, a program may rarely repeat the same sequence of instructions,
or it may rarely deviate from the same sequence of instructions. The

complexity of the program is dependent upon the application in which
the microcomputer is being used.

12

1.5
Development
Cycle

Fig. 3

As a prerequisite to the development of a product utilizing micro-
computer control and/or processing, a product specification provid-
ing functional details of the product and its hardware and software
requirements must be generated.

Once a microcomputer has been selected that can satisfy the soft-
ware requirements and interface successfully with the hardware, the
development process can be undertaken.

As shown in Figure 3, the development cycle consists of hardware
and software development, in-circuit emulation and debugging, and
field demonstration. The final objective of the development cycle is to
generate an application program in a binary format (PIC object code)
on paper tape that can be used to directly mask program the PIC
microcomputer chips during the production cycle. This program is
also known as the object program.

DEVELOPMENT CYCLE s

PRODUCT
SPECIFI-
CATIONS

"l

SOFTWARE HARDWARE
DEVELOP- |€~ =—— — — —3{ DEVELOP-
MENT MENT

N IN CIRCUIT
EMULATION
AND DEBUG

MACHINE
CODE

SOFT-
WARE
MODIFICA-
TION?

YES

FIELD
DEMONSTRA-
TION

FINAL NO

PRODUCT?

RELEASE CODE
TO PRODUCTION
CYCLE

13

1.5.1 SOFTWARE DEVELOPMENT
Before proceeding with any coding, the hardware and software
specifications must be analyzed. Once the programmer fully under-
stands the software requirements of the particular application, he
can then proceed to develop his application program by performing
the following steps:

a. Flow charting

b. Code writing

c. Assembling

d. Editing (debugging).
Flow charting enables the programmer to list the major logical
sequences of his program and to graphically depict input/output
operations, decision points, branches, and instruction modifications
to change the program and initialize a routine.

Basic symbols used in flow charting are:

START, STOP, HALT,
INTERRUPT

INTERNAL
PROCESSING
FUNCTION

INPUT OR
OUTPUT
OPERATION

DECISION

PREPARATION
(SET FLAG,
INITIALIZE FILE
SELECT REGISTER,
INITIALIZE A
ROUTINE, ETC.)

Jouyr

ONE OR MORE NAMED
PROGRAM STEPS
SPECIFIED IN A SUB-
ROUTINE OR ANOTHER
SET OF FLOW CHARTS

14

An example of a flow chart utilizing these symbols is shown in Figure 4.

The program that is written by the programmer to eventually be
translated into the object program is known as the source program.
There are many different ways to write a source program. One way is
to write the program in binary code and directly punch this code onto
paper tape. Although this method is direct, it is virtually impossible to
implement. Writing a program in object code makes it exceedingly
difficult to locate and correct mistakes. It is very difficult to analyze
the program logic and make changes mandated by application
updates.

Another way to write the source program is to code in octal or
hexadecimal notation. An octal or hexadecimal loader program can
be used to convert the octal or hexadecimal coding into the binary
equivalents. This method is a little easier to read and requires less
writing (4 octal or 3 hexadecimal digits as compared to 12 binary
bits). However, it is still very error prone and the program logic
remains inscrutable.

The most common method of writing a source program for a micro-
computer is in assembly language. Assembly language provides a
compromise between the symbolic notation understood by humans
and the machine code understood by the microcomputer. Assembly
language is the closest link to the actual machine code that still
retains some speaking language characteristics.

An assembler program is required to assemble and convert the
source program written in assembly language into the object pro-
gram. The assembler program also provides many program develop-
ment and debugging aides.

Each type of computer has its own individual assembly language and
assembler. This is because the assembly language and assembler are
designed to interface directly with the CPU’s unique architecture and
processing modes.

It is understood that in assembly language, there is a simple relation-
ship between each line of source code and each line of object code.
In higher level languages such as FORTRAN, PASCAL, COBAL,
RPG, BASIC, etc., there is no such simple relationship between
source code and object code. One line of code in a higher level
language can accomplish the equivalent of many lines of code in an
assembly language. This is known as a macro-instruction and when
executed, results in a specified sequence of machine instructions.

The program responsible for converting a source program written in
a higher level language into an object program is known as a
compiler.

Whereas in an assembler operation, there is a direct conversion of the
assembled source program into an object program, in a compiler
operation, one extra conversion is required. The source code written
in high level language must be converted into the equivalent assem-
bly-type codes (macro-conversion). Then the source program is
assembled and converted to object code.

15

Fig. 4 FLOW CHART OF PROGRAM TO MOVE DATA
FROM ONE EXTERNAL DEVICE TO ANOTHER s

‘ START ’

INPUT
DATA
FROM
DEVICE 1

RESET
INPUT
FLAG

)

SET
OUTPUT
FLAG

)

WAIT
16us

A

OUTPUT
DATA TO
DEVICE

2

A

RESET
OUTPUT
FLAG

)

EXIT

J

16

The object code for the PIC microcomputer must be generated on
another computer via a process known as cross-assembling. This
process is enabled by loading a program known as a Cross-Assem-
bler into the host computer. The Cross-Assembler is written in the
language of the host computer’s resident assembler or compiler. The
Cross-Assembler enables the host computer to translate the PIC
assembly language source instructions and provide object code
formatted for PIC applications rather than object code for the host
computer’s internal CPU.

The PIC Cross-Assembler, PICAL, executes on any minicomputer or
large scale computer having a resident editor and FORTRAN I¥ com-
piler or BASIC interpreter. PICAL enables the host computer to
assemble the PIC source program and provide an object program that
can execute on the PICES in-circuit emulation system.

After the source program has been loaded and assembled, a program
listing may be printed out. Each line of the source program is listed
exactly as coded. This includes the label, OP Code, operand(s) and
comment fields. In addition, three other columns are provided: the
first column is the line number; the second column is the program
location (address) expressed in octal; the third column is the object
code, also expressed in octal.

If there are syntax errors in any of the assembly statements or any
illegal operations, the Cross-Assembler will flag the statements in
which these errors are found and generate an error message. The
programmer, once he analyzes the error messages has the option of
correcting and re-assembling the source program, or entering simple
corrections directly to the object program.

17

FORMAT OF PIC ASSEMBLER LISTING:

L ENE ADDR B B2 FIC MACKD ASSEMELER VER 1.0 FAGE 3
1000020 LOINFO EQU W16 JTOTAL NUMBER OF DATA EITS
2 000310 LOLTIM £0U 200 JMAX 1LOOF TIN
3 000003 LOTELY EQU .3 FINTER-FULSE DELAY
4 000034 LOOLOW EQU .28 30 BIT PULSE COUNT
5000044 LOOHT EQU .36 ; 4
& 000054 LOLLOW EQU .44 51 BIT FULSE COUNT
7 000064 EQU W52 p/e 4
000010 EQU .8 {8 BITS IN COMMAND WORID
pd 4
10 000011, EQU 11
11000012 F EGU
12 000013 FOINFO EQU
13 000001 FORTCC EQU
14 000014 FOLTIM EQU
15 000015 FOCSAY EQU
16 000016 F EQu
17000004 Fo EQU
18]
19 § CMDREC CODED COMMANI FROM TR TRANSMI)
¥ LDECODE ANII STORE TN FOCMD
3
000000 CMIREC 0
000000 01%3, FOCMD R COMMANT WO
000001 0152 FOCMF COMMAND COM

§ AN
000002 4011 FCOMMAND WORD IN T
246 000003 0044

27000004 LO1HY
Rk DUFLTCATE LAREL

GO0004 6020

LOINFQ j1é6 INFORMATION BITS
§

000005 0053 FOTINFD
000004 CHEL00 - o

000006 0141
000007 4310
D000LO 0054
000011 0155
000012 oMnLoL
1041
37000013 00

FORTCC FFULSE COUNT =0
LOLTIM FMAX LOOP TIME

FOLTIM H

FOCsAY FSAVED FULSE COUNT =0

Q
FORTCC FANY DATA?

G

38 3103

k4 o2 CMIoL iNO, WALT FOR DATA
40 Q00016 CMII102 0

4L 000016 FORTCC,W 5ANY MORE DATA

42 000017 FOCEAY

v]
A% 000020 0000 0000
Hsork OFCOL

CMILO4 yNO,
FOLBAV FYES,

44 000024
47 000025 1240

kK INVALID FILE REGISTER
A8 ND00026 H003
A9 000027 00%56
50 000030 CHMIL03
Tl D000X0 134

18

1.5.2 HARDWARE DEVELOPMENT

During the hardware development phase, a circuit is developed that
interfaces with the programmed PIC microcomputer and performs in
accordance with the product specifications. During this phase, the
operating voltage requirements of the PIC chip and input/output
loading requirements are analyzed. The number of inputs and outputs
and input/output timing requirements are also analyzed and 1/0O lines
allocated. Interrupts, I/O flag and real-time clock counter functions are
worked out and I/O specifications provided for software development.
Design of the external clock circuit (RC or crystal driver) is imple-
mented, based upon the timing requirements of the application hard-
ware and use of the real time clock generator.

1.5.3 IN-CIRCUIT EMULATION

In-circuit emulation allows the user to integrate the hardware and

software functions and debug the system. PICES II (PIC In-Circuit-

Emulation System) is a low cost development tool consisting of:

O A 16 bit control processor to execute the debug facilities

O A “personality” module containing a ROMless development PIC
microcomputer configured to emulate one of the processorsin the
PIC Family ’

O An optional EPROM programmer

The PICES II system enables the user to execute an application pro-
gramin real time or in the trace mode. In addition, the contents of all the
PIC registers can be displayed and modified. Refer to the PICES II
user's manual for a detailed description of the system’s capabilities.

1.5.4 FIELD DEMONSTRATION :

Once the hardware and software are functioning correctly within the
in-circuit emulation setup, field demonstrations can be performed
using the PIC Field Demo System. The PFD modules consist of a
ROMless PIC microcomputer that can emulate the entire PIC family,
sockets for erasable PROMSs, and a 40- or 28-lead cable for connection
to the applications hardware. The E/PROMSs hold the application pro-
gram. This unit, when connected to the application hardware, provides
field demonstration of the integrated hardware/software system.

19

2.1

PIC Basic
Functional
Blocks

ARCHITEGTURE

The various members of the PIC family of microcomputers have the
same basic architecture and almost identical instruction sets. Major
differences are in the 1/0 port arrangement and in interrupt handling.
Therefore the following description is of PIC functional blocks in
general terms. Each PIC microcomputer will be described in terms of
differences in the following sections.

Figure 5is a functionail block diagram of a PIC microcomputer. The PIC
microcomputer consists of the following functional elements:

Instruction Decode and Control Unit

Program Counter

Hardware Stack

File Select Register (for indirect addressing)

Arithmetic Logic Unit (ALU)

Accumulator (W register)

Status Word Register

Real-Time Clock Counter Register

Program ROM

Data RAM

8-Bit I/0 Registers

Interrupt Logic

Internally, the functional elements of a PIC microcomputer are tied
together by a bidirectional data bus. The transfer of data via the bus is
controlled by the instruction decode and control logic which decodes
the instruction to provide an address and/or control signals to each

location that is to receive, transmit, and/or manipulate data transferred
via the bus.

The special registers (RTCC register, PC, status word register and file
select register), the four I/0 registers, and the data RAM are organized
as a RAM file. Each register has its own unique RAM file address.

Oooo00oooooooo

20

RAM ORGANIZATION-PIC1650 SERIES mesmummmemmmmemmmesmm

W

Vs

y /A

LAY

— 8 BITS

L

FO
F1
F2
F3
F4
F5

'

F8
F9

F31

SPECIFIES INDIRECT ADDRESSING
REAL TIME CLOCK COUNTER
PROGRAM COUNTER

STATUS WORD REGISTER

FILE SELECT REGISTER

I/0 PORTS

GENERAL REGISTERS

RAM ORGANIZATION —PIC1670 SERIES soommumessmsnmmssamssm

L L

A
/147, -

L 8 BITS

FO
F1
F2
F3
F4
F5
F6
F7
F8

SPECIFIES INDIRECT ADDRESSING
WORK REGISTER

PROGRAM COUNTER

STATUS WORD REGISTER

FILE SELECT REGISTER
INTERRUPT STATUS

REAL TIME CLOCK COUNTER A
REAL TIME CLOCK COUNTER B
1/0 PORTS

GENERAL REGISTERS

21

[44

PROGRAM]
1 counter —— K DATA

RAM
ﬁ ROM —

1
STACK 8| K=)[FiLE sELECTJe-
p ¥ ;
g A
INSTRUCTION
DE-CODE &
CONTROL
=)
INTERRUPT
LOGIC

{__T_rm_le_—li__'C) K[status ¢
L K| 1

Fig. 5 PIC BLOCK DIAGRAM

File registers can be directly addressed by the instruction word, or
indirectly addressed by specifying FO when the contents of the file
select register (FSR) is to be used as the file address.

The purpose of each of the functional elements of the PIC1650A is
described in the following paragraphs.

2.1.1 INSTRUCTION DECODE AND CONTROL UNIT

The instruction decode and control unit receives the 12-bit instruc-
tion word from program memory, decodes it, and issues the appro-
priate control signals to cause the desired operations to take place.
At the same time, the instruction decode and control unit, depending
upontheinstructiontype, issues a file address, aliteral OPERAND, or
a program address that vectors a call or GOTO operation.

2.1.2 PROGRAM COUNTER (F2)

The program counter is an addressable register that points to the
address of the next instruction to be fetched out of program memory.
The PC provides for direct addressing of all memory locations.

The program counter is incremented by one under control of the
instruction decode and control unit after the execution of every
instruction. Exceptions are conditional and unconditional skips and
branches and subroutine calls and returns.

When performing a skip operation, the program counter is incre-
mented by one, but a NOP instruction replaces the next instruction
from the main program. When a GOTO operation is performed, the
program counter is vectored to the specified address. When a sub-
routine is called, the contents of the program counter plus one
(PC+1) are pushed onto the stack and the value in the program
counter is vectored to the specified address. When there is a return
from the subroutine, the contents of the top level of the stack are
transferred to the program counter, also, the contents of the second
level of the stack move to the top.

Bits 0 through 7 (but not bit 8) of the program counter may be read and
transferred to a data location to construct a software stack pointer and
stack in data memory. The program counter may be used as the
destination of any operand, but bit 8 will always be zero.

2.1.3 STACK

A hardware stack is provided to accommodate two return addresses.
This facilitates execution of nested subroutines.

When executing a nested subroutine, the contents of the stack are as
follows:

STACK

CALL 1: LEVEL 1
(PC+1)—Stack Level 1 CALL 1 RETURN ADDRESS

LEVEL 2

23

STACK
CALLZ: LEVEL 1
Call 1 RA—Stack Level 2 CALL 2 RETURN ADDRESS
(PC+1)—Stack Level 1 LEVEL 2
CALL 1 RETURN ADDRESS

When returning from a nested subroutine, the contents of the stack are
as follows:

STACK

LEVEL 1
CALL 2 RETURN ADDRESS

LEVEL 2
CALL 1 RETURN ADDRESS

STACK

RETURN FROM CALL 2: LEVEL1 .
PC+-Call2RA CALL 1 RETURN ADDRESS
t
Call 1 RA LEVEL 2

STACK

RETURN FROM CALL 1: LEVEL1
PC<Call 1 RA

LEVEL 2

2.1.4 FILE SELECT REGISTER (F4)
The FSR is an addressable five-bit register used to indirectly address
the register file.

An address can be written into the FSR via the eight-bit internal data
bus. Only the lower order of the eight-bit word is relevant.

When the indirect address mode (FO0) is indicated, the contents of the
register pointed to by the FSR will be accessed. For example, the
expression ADDWF 0, W specifies that the contents of the W register
and the contents of the register pointed to by the FSR will be added and
the result will be placed in the W register.

The contents of the file select register can be stored in another location
by directly addressing the FSR (F4), and moving its contents to the
accumulator. From the accumulator, the contents can be moved to
another register. However, the three high order bits are read as 111 if
the FSR is specified in an instruction. For example:

MOVF 4, W (F4)—W
MOVWEF 23 (W)—F23
The contents of the FSR can be restored by reversing the procedure:
MOVF 23 W (F23)—W
MOVWF 4 (W)—F4

24

2.1.5 ARITHMETIC LOGIC UNIT (ALU)

The ALU implements various binary arithmetic and Boolean logic
operations utilizing one or two 8-bit operands. One operand is fetched
from any of the file locations or is a literal in the instruction itself. The
other operand (if applicable) is held in the accumulator. Operations
performed by the ALU are as follows:

O Add/Subtract

O Increment/Decrement

O AND, OR, Exclusive OR

O Complement, Clear

O Rotate Left/Right, Swap Half-Bytes

By using one or a combination of these operations, the ALU performs
binary addition, subtraction, multiplication, and division on 8-bit
operands. When 16-bit operands are required, double-precision
arithmetic operations can be implemented. BCD, mask operations,
and bit and field manipulations can also be performed.

2.1.6 WORKING REGISTER (W)

The W register serves as the accumulator for the ALU. The W register
holds one of the operands operated on during an arithmetic or logical
operation and may store the result.

2.1.7 STATUS WORD REGISTER (F3)

The status word register is an addressable register that stores the
condition of the most recent ALU operation. Bits 0 through 2 of the
status register are used to store the carry, digit carry, and zero status.
The bits in the status register can be set or cleared by bit level program
instructions, or by the MOVW F3 instruction. Only file register opera-
tions which do not affect any status bit can be used on the status
register.

7-4 3 2 1 0

Notusedf OV | Z |DC]| C

C (Carry): Stores the carry out of arithmetic opera-
tions and acts as a bit link in rotate opera-
tions. This bit is also set to a one during a
subtract operation if the absolute value in
the file register is greater than the absolute
value in the W register.

DC (Digit Carry): Stores the carry out of the low order digit (4
LSB’s) in an arithmetic operation. This bitis
also set to a one during a subtract operation
if the absolute value of the four LSB’s in the
file register is greater than the absolute
value of the four LSB'’s in the W register.

Z (Zero): Set if the result of the arithmetic operation
is zero.
OV (Overflow): Setifthe carry out from the MSB is opposite

to the carry out from MSB-1.

25

2.1.8 REAL-TIME CLOCK/COUNTER REGISTER

The RTCC register is an addressable eight-bit up-counter that is used
to time or to count external events. The RTCC register can be preset
under program control to any elght -bit binary value. The countinputto
the RTCC register is applied via the external RTCC pin. The counter
increments on the falling edge of RTCC. When it reaches 3775, it keeps
on counting through 000s but does not set the carry flag.

The RTCC register can be used to count up to 256 external events via
the RTCC line. The program requirement may be to count a
predetermined number of events, or the program requirement may be
to count an undetermined number of events occurring within a
particular program sequence.

If an unknown number of events is to be counted, the RTCC register
will first be set to zero under program control. The counter will then
increment on each event input at the RTCC pin. The contents of the
RTCC register (number of events counted) are interrogated under
program control.

If a count of more than 256 is required, a number of bits in a data
register can be appropriated to accumulate and store the carry bits
from the RTCC register. In this way, the magnitude of the event count
can be increased.

Figure 6 is a flow chart of program logic that can be used to implement
this operation. Assume that the four low order bits of a data register
(F23) are assigned to accumulate the carries from the RTCC register
and that its high order bit is used as a flag to signal when RTCC bit 7
sets. When the RTCC register subsequently attains a full count and
then resets (RTCC bit 7 resets), the carry register will be incremented
and the flag bit reset.

The following is a sample program illustrating the coding required to
implement the logic illustrated in Figure 6. (Refer to Section 3 for an
explanation of the coding.)

Program Steps Description
BTFSC1,7 Skip if RTCC (7) is zero
GOTO NOTO Jump if RTCC (7) is not zero
BTFSS 23,7 Skip if FLAG is set
INCF 23 Increment Carry Register
BCF 23,7 Reset FLAG
GOTOB EXIT

NOTO: BSF23,7 Set FLAG
GOTOB EXIT

When the RTCC register is used to count a predetermined number of
events, the number of events is subtracted from zero (two’s
complement) and this number is preset into the counter. When the
counter increments to zero, the required number of events has
occurred. Similar logic to that shown in Figure 6 can be used to
determine when the counter has reset on a full count.

26

Fig. 6 RTCC COUNT EXPANSION FLOW CHART s

INCREMENT
CARRY
REGISTER

RESET
FLAG

NOTE:

/ FLAG BIT IS SET
ON RTCC (7)

B TRANSITION FROM
0TO 1.

The RTCC register can also be used to time events or the interval
between events. These events may be input via the input/output ports
or may be generated by the program.

The timing clock may be a real-time clock (e.g. 60 Hz) applied to the
RTCC input, the external clock generated by the PIC1650A, or any
other clock applied to the RTCC input that is within the RTCC timing
specifications.

2.1.9 1/0 REGISTERS

The PIC has up to four 8-bit bidirectional input/output registers (A
through D) providing a total of 32 bidirectional input/output lines for
interfacing with external devices.

The equivalent circuit for an individual bit of an I/O port is shown in
Figure 7 as it would interface with input and output TTL devices. As
shown in Figure 7, data written to a port for outputting is strobed into
the 1/0 port latch from the internal data bus by a WRITE command.
This data remains unchanged until rewritten. Data applied to the port
for inputting is not latched.

27

Fig. 7

TYPICAL INTERFACE, BIDIRECTIONAL I/0 LINE

PIC /O BIT r_ Voo

o [’ |
(INTERNAL D
DATA BUS) 1

|
WRITE ——{C g T
(INTERNAL r b
SIGNAL) I __{ Q, I un. DEVICE INPUT
MCLR

xe; '

o

| =

READ ' TTL DEVICE OUTPUT
(INTERNAL l_(open-couscron)
SIGNAL} —

*Pull-up resistor may be deleted via a mask option.

Input data is available on the I/O line for a period of time determined by
the input device. The input data is transferred to the accumulator via
the internal data bus when the READ line is high.

Each I/0O line is pulled up to Voo through pullup transistor Q1 which
provides sufficient source current for a TTL high level, yet can still be
pulled down by a TTL low level. When inputting data through an 1/O
port, the latch must be set to alogic 1 level under program control. This
turns off Q2 which allows the TTL open collector device to drive the
pin, pulled up by Q1.

The bidirectional interface illustrated in Figure 7 is only one of many
possible input/output configurations.

Any of the bitsinan I/O register can be used as an individual dedicated
input or output line. I/0 lines are normally grouped together into 1/0
files to minimize software servicing.

An input operation is performed when an external input device has
valid input data for the PIC. This input data may be available at pre-
determined intervals during the program or at intervals monitored by
the RTCC register. At these intervals, the program will set the output
latches to logical 1's and execute an input instruction that loads the
input data into the W register, from where it may be transferred or
manipulated.

2.1.10 PROGRAM MEMORY (ROM)

The ROM contains the customer-defined operational program. Since
the instruction word is wider than 8 bits, instructions are all single
word, more versatile, and usually require only one machine cycle to
execute.

2.1.11 DATA MEMORY (RAM)

Data memory consists of special purpose registers and general pur-
pose registers. Data memory can be directly addressed via the internal
address bus or indirectly addressed via the FSR.

28

Input data may be available from more than one input device and may
be asynchronous. With this type of input arrangement, the program
must determine when valid input data is available and which external
device is inputting before it executes an input operation. Moreover, if
more than one device has input data available at the same time,
priorities must be assigned to determine which set of inputs will be
serviced first.

In order foreach input device to signal that it has data available,an 1/0
register, or a portion thereof, may be utilized as a “flag” register. Each
flag bit is assigned to an associated input device which, when it has
data ready, causes its associated flag bit to set. The program
periodically interrogates the flag bits to determine which devices have
input data and then performs the necessary input operations.

Figure 8 illustrates program logic that could be utilized for this type of
input operation.

Assume that there are four input devices and that bits 0 through 3 of I/0
register F7 are used as flags for each of the devices. Bit 0 is associated
with the highest priority device (A); bit 3 with the lowest priority device
(D). When a bit is set, it means that the associated device has data for
the PIC. If more than one bit is set, it means that more than one device
has data available. Data will be input in the order of highest priority.
Figure 8 is a flow chart of the bit interrogation logic.

The following is a sample program illustrating the coding required to
implement the logic illustrated in Figure 8. (Refer to Section 3 for an
explanation of the coding.)

Program Steps Description

BTFSZ7,0 . Skip if bit 0 is zero

CALL INPUT A Call INPUT A subroutine
BTFSZ7,1 Skip if bit 1 is zero
CALLINPUTB Call INPUT B subroutine
BTFSZ7,2 Skip if bit 2 is zero
CALLINPUTC Call INPUT C subroutine
BTFSZ7,3 Skip if bit 3 is zero
CALLINPUTD Call INPUT D subroutine
GOTOB ' EXIT

When a port is dedicated to output operations only, data can be written
to that port at any time, and the output latch can be used for data
manipulations.

When an I/0 portis used for bidirectional transfer of data, caution must
be exercised when performing output operations. Bit manipulations
performed on output data stored in the output latch can be affected by
data input by an external device at the same time the output data in the
latch is accessed. Extraneous input bits having logical 0 values may be
introduced. To avoid this possibility, output data can be stored in adata

29

Fig. 8 INPUT FLAG INTERROGATION FLOW CHART

NO YES INPUT A

INPUT B -

INPUT C

INPUT D

30

register where it can be accessed for bit manipulation without being
affected by input operations. When the data is ready for output, it is
transferred to the output port.

NOTE: Any output line sinking more than 5SmA could be read as a logic 1.

Each I/0 port can be individually time-multiplexed between input and
output functions under software control. Forinformation on I/0 timing
refer to PIC data sheets.

2.1.12 CLOCK GENERATOR

The clock generator generates the internal clocks from which the
microprocessor machine cycle is derived. It also generates an external
clock at the instruction cycle rate. The clock generator frequency is
controlled externally for the devices which do not directly support a
crystal oscillator (PIC1650A, PIC1655A). Frequency control may be
established by an RC network connected to the OSC input pin, or in
applications where more precise timing is required, by a buffered
crystal driver.

The PIC1650A and PIC1655A clock generator divides by four the fre-
quency measured at the OSC pin. Therefore, a 1MHz frequency at the
OSC pin results in a machine cycle of 4us (0.25MHz). The minimum
machine cycle time is 4us; the maximum is 20us. Therefore, the fre-
quency at the OSC pin must range between 1MHz and 200KHz.

Figure 9 is a timing diagram that illustrates the relationship between
OSC, MCLR, and CLK OUT, assuming a frequency at the OSC pin of
1MHz. Figure 10 illustrates resistance values required to obtain instruc-
tion execution speeds of 50 to 250KHz, where the external capacitance
is 47pf and the value of R is selected within the range of 14K to 28K.

The oscillator itself consists of 7 inverters connected in a ring fashion
as shown in Figure 11A. The diagram in Figure 11B describes the
technique for supplying an external clock.

31

Fig. 9 CLOCK GENERATOR TIMING DIAGRAM

|
CLK OUT / \ / -

Note: PIC1650A, PIC1655A only.

Fig. 10 TYPICAL OSCILLATOR RC CHART

30KQ
26KQ \
\ Vop = 5.0V
22KQ N C = 47pF
Rexr \ \\ Ta = 25°C

\
18KQ \
\ AN

TYPICAL /

14KQ

40 60 B0 100 120 140 160 180 200 220 240 260

INSTRUCTION CYCLE TIME (kHz)
Oscillator Frequency With Typical Unit To Unit Variance

Unit to Unit Variation at Vpp = 5.0V, Ta = 25°C is 1£25%
Variation from Voo = 4.5V —7.0V referenced to 5V is —3%, +9%
Variation from Ta = 0°C —70°C referenced to 25°C is +3%, —5%

Note: PIC1650A, PIC1655A only.

32

Fig. 11A OSCILLATOR CIRCUITs

INTERNAL
CLOCK

*Q, may be deleted via a mask option when an external clock drive is desired.

S

-

The first inverter from the OSC pin is a high gain Schmitt trigger to
provide trip point control, while Q in combination with the external
resistor serves to form the 7th inverter in the ring.

Fig. 1B EXTERNAL CLOCK ™=

When driving the oscillator directly from a buffer, it is necessary that the buffer
be capable of pulling the input to a level of Voo —1 Volts driving 100K ohms.
When the positive threshold of the input (Schmitt trigger) is reached, Q1 turns
on pulling the input to ground. The buffer must then be capable of sourcing
sufficient current to keep the input above 2.0V driving 120 ohms (Q1 on
resistance) during the remaining positive haif cycle. During the negative half
cycle the input must be driven below 0.8 Volts. The oscillator duty cycle should
be between 20 and 60%.

EXTERNAL o
CLOCK SOURCE >—"D0———9 TO OSC PIN
7404/06 OR

EQUIVALENT
An alternate external buffer circuit which consumes much less power is as shown.

7404/06 OR
EQUIVALENT

5V
47pf
EXTERNAL || \
CLOCK SOURCE 7 {>° |) TO OSC PIN

However, when an external clock is to be used, it is recommended that the
options which remove Q, (Fig. 11A) be specified.

33

2.2
PIC1650A

23
PIC1654

24
PIC1655A

2.9
PIC16G58

Stack
ROM RAM /O Interrupt (Levels) Timer Package Process
512x12 32x8 32 No 2 Yes 40 Pin NMOS

Four 8-bit 1/0 registers are provided. These registers (A, B, C and D) are
addressable as F5 through F8.

Stack
ROM RAM 1/O Interrupt (Levels) Timer Package Process
512x12 32x8 12 No 2 Yes 18 Pin NMOS

The PIC1654 provides the same architectural features of the PIC1650A in
an 18-pin package. The PIC1654 has 12 I/O lines compared to the
PIC1650's 32 lines.

One 4 bit and one 8 bit bidirectional I/O registers are provided. These
registers (A and B) are addressable as F5 and F6. F7 and F8 are general
purpose registers.

Stack
ROM RAM /0 Interrupt (Levels) Timer Package Process
512x12 32x8 20 No 2 Yes 28Pin NMOS

The PIC1655A provides the same architectural features of the
PIC1650A in a 28-pin package. The major difference is that the
PIC1655A has 20 1/0 lines rather than the 32 1/0 lines of the PIC1650A.

One 4-bit and two 8-bit I/0 registers are provided. These registers (A,
B, and C) are addressable as F5 through F7, respectively. Register A
(F5) controls four dedicated non-latching input lines; register B (F6),
which cannot be read internally, controls eight dedicated latched out-
put lines; and register C (F7) controls eight bidirectional input/output
lines. Register file F10, which in the PIC1650A was I/O register D, is an
additional general purpose data register in the PIC1655A.

The PIC1655A utilizes the same instruction set as the PIC1650A.

Stack
ROM RAM 1/O Interrupt (Levels) Timer Package Process
512x12 32x8 20 No 2 Yes 28Pin CMOS

The PIC16C58 is the low power CMOS version of the PIC1655A. The
PIC16C58 has an additional architectural feature in that all 1/0 lines can
be putin the tri-state mode. It also has an ultra-low power standby mode,
wherein the oscillator is stopped and the chip draws only leakage current
while the RAM contents are retained. Refer to the PIC16C58 data sheet
for complete description.

34

2.6
PIG1656

Stack
ROM RAM /O Interrupt (Levels) Timer Package Process
512x12 32x8 20 Yes 3 Yes 28 Pin NMOS

The PIC1656 employs the same basic architecture as the PIC1655A
with the addition of an interrupt system (Fig. 12). Toaccommodate the
interrupt logic, five status bits have been added to the status register.
The interrupt logic operates in conjunction with the RT input pin, the
RTCC register and the status register.

The RT pin can be used to provide a clock input for the RTCC register
or it can be used as an external interrupt input. The function of this pin
is controlled by the contents of the status register. When the RT pin is
used as an external interrupt pin, a high-to-low transition initiates a
vectored interrupt (external interrupt mode) if IE is'set.

The status word also controls the count function of the RTCC register.
It enables the RTCC register to increment on the internal clock (same
clock as CLK OUT) or on the input at the RT pin. When the RTCC
register overflows, it initiates a vectored interrupt (RTCC interrupt
mode), if interrupts are enabled (RTCE set.)

2.6.1 INTERRUPT LOGIC

The interrupt logic generates an interrupt request to the control unitto
initiate a vectored interrupt. One of two possible interrupt requests
(external interrupt request or RTCC interrupt request) can be gener-
ated. Only one interrupt at a time can be serviced. Nested interrupts
are not possible since additional interrupts are disabled by an internal
latch.

The contents of the status register indicate whether any interrupts are
pending. If only one interrupt is pending, it is serviced immediately
providing the interrupt is enabled (i.e., IE or RTCE is set) and the
processor is not already servicing another interrupt. If both external

- and RTCC interrupts are pending and enabled, the external interrupt

has priority. If an external interrupt is input on the RT pin while another
external interrupt is being serviced, a new external interrupt request
will be generated to the processor which will reinterrupt immediately
upon its return from the current interrupt.

CAUTION

A return from an interrupt routine must not be executed using any other
instruction but RETURN. If any other instruction is executed to restore the return
address to the program counter, the interrupt logic will not be enabled. This
effectively prevents any other interrupts from being serviced. If the interrupt
routine contains subroutines, returns from the subroutines should be made
using the RETLW instruction. If the RETURN instruction is used mistakenly,
additional interrupts that occur while the first interrupt routine is in process will
be enabled and can corrupt the interrupt routine in process.

35

2.6.2 STATUS REGISTER
The Status register (F3) of the PIC1656 is provided with additional
status bits that control the interrupt logic and the count function of the
RTCC register. The status register is configured as follows:

7 6 5 4 3 2 1 0
CNT |RTCR| IR |RTCE| IE z DC

W BITS 0-2: Carry, digit carry and zero status bits. Same function as
PIC1650A.

B BIT 3: Interrupt Enable (IE) status bit. When set to a one, this bit
enables the external interrupt to occur when and if the interrupt
request (IR) status bit (bit 5) is also set. When reset to a zero, the
external interrupt is disabled.

B BIT 4: Real-Time Clock Enable (RTCE) status bit. When settoa one,
this bit enables the real-time clock/counter interrupt to occur when
and if the real-time clock interrupt request (RTCR) status bit (bit 6) is
also set. When reset to a zero, the interrupt is disabled.

B BIT 5: Iinterrupt Request (IR) status bit. This bit is set by a high-to-
low transition on the RT pin, generating an interrupt request. If and
when the interrupt enable (IE) bit (bit 3) is also set, an interrupt will
occur. This causes the current PC address to be pushed onto the stack
and the processor to execute the instruction at location 760s. The IR bit
isthen immediately cleared. Note that the IR bit can be set regardless of
the state of the IE bit, thus requesting an interrupt which can be
serviced or not at the programmer’s option.

B BIT 6: Real-Time Clock/Counter Interrupt Request (RTCR) status
bit. This bit is set when the RTCC register (File 1) transitions from a full
count (377s) to a zero count (000s). If and when the RTCE bit is also set,
an interrupt will occur. This causes the current PC address to be
pushed onto the stack and the processor to execute the instruction at
location 740s. The RTCR bit is then immediately cleared. Note that the
RTCR bit can be set regardless of the state of the RTCE bit, thus
requesting an interrupt which can be serviced or not, at the pro-
grammer’s option.

NOTE: Although the processor cannot be interrupted during an interrupt
(i.e., until the RETFI instruction is executed), (an)other interrupt(s)
can be requested (status bits 5 and/or 6 can be set). This will cause the
processor to reinterrupt immediately upon its return from the current
interrupt assuming the interrupt(s) is (are) enabled. (Pending external
interrupts have priority over pendingreal-time clock/counterinterrupts.)

B Bit 7: Count Select (CNT) status bit. When the CNT bit is set to a
one, the RTCC register will increment on each high-to-low transition at
the RT pin. If the CNT bit is reset to a zero, the RTCC register will in-
crement at the internal clock rate (1/16 of the frequency atthe OSC pins).

36

A

CNT
__ (BIT7)
BT EDGE TO SYNC ~ - INTERNAL
PiN PULSE GEN CLOCK
IR
(BIT 5)
[— Q S
R
LOAD PULSE PROGRAM
RTCR COUNTER
(BIT 6)
OVERFLOW
Q S == RTCC 9
| ' |
IE
(BIT 3)
N : . 760g 740
1 CYCLE
¢ DELAY
1 CYCLE al—
DELAY
INTERRUPT
CONTROL
I RET FLIP FLOP
RTCE MCLR
(BIT 4)

Fig. 12

INTERRUPT SYSTEM

2.6.3 STACK

A three-level stack is provided to accommodate three return ad-
dresses. One level of the stack should be reserved to store the return
address of an interrupt. The other two levels provide storage for two
return addresses from a nested subroutine.

NOTE: One level of the stack must always be available to accommodate an
interrupt return address. When an interrupt occurs, the firmware
automatically pushes the return address onto the stack. Should three
subroutines be nested, the returnaddress of the current subroutine will
be destroyed. Only if the PIC1656 is not programmed for interrupts is it
permissible to use all three levels of the stack.

2.6.4 RTCC REGISTER

The RTCC register (F1), in conjunction with the status register, is
programmabile for internal clock or RT clock operation.

Bit 7 of the status register, when set to a one, selects the RT pin as the
clocking source and, when reset to a zero, selects the internal clock as
the clocking source. When the RTCC register transitions from a count
of 377s to a count of 000g, bit 6 (RTCR) of the status register sets to a
one, requesting a real-time clock interrupt. An interrupt to 740s is
generated if RTCE (bit 4) is set.

The RTCC register can be preset and read under program control at
any time. If the RTCC registeris not used as a counter, itcan be used as
a general-purpose data register provided the RT pin is tied low and
CNT is set to a one. (Note MCLR resets CNT.)

2.6.5 1/0 REGISTERS (F5-F7)

The 1/0O interface consists of three 1/O registers controlling 20
input/output lines. These registers (A, B, and C) are addressable as
F5 through F7, respectively. Register A (F5) controls four dedicated
non-latching input lines. Register B (F6) controls eight dedicated
latched output lines, and register C (F7) controls eight bidirectional
input/output lines. As with the PIC1655A, register file F10, which in the
PIC1650A was I/O register D, is an additional general purpose register
in the PIC1656.

2.6.6 CLOCK GENERATOR

The internal timing rate of the PIC1656 is controlled by an external
control source connected across two input pins, OSC 1 and OSC 2.
This may be established by an RC network (RC control) connected
across the OSC 1 and OSC 2 pins or by a non-buffered external crystal
connected across the OSC 1 and OSC 2 pins.

The PIC1656 clock generator divides the frequency at the OSC 1 and
OSC 2 pins by 16 to derive the internal machine cycle rate. A 4MHz
frequency at the OSC 1 and OSC 2 pins will result in a 4us (0.25MHz)
instruction cycle. This enables the use of a low-cost standard
3.568MHz crystal to provide a machine cycle of approximately 4us.

38

2.7
PIC1670

Stack
ROM RAM 1/0 Interrupt (Levels)i Timer Package Process
1024x 13 64x8 32 Yes 6 Yes 40Pin NMOS

The PIC1670 has several distinct differences from the PIC1650 series.
The 13 bit wide ROM enables the PIC1670 to directly address all 64
registers in addition to enhancing the PIC1650 series instruction set.
The interrupt system (Fig. 12) is similar to the PIC1656 interrupt system
(a separate interrupt status register is added).

2.7.1 INTERRUPT SYSTEM

The interrupt system of the PIC1670 is comprised of an external inter-
rupt and a real-time clock counter interrupt. These have different
interrupt vectors, enable bits and*s*tatus bits. Both interrupts are con-
trolled by the status register (F5)° "~ shown below.

NOT USED| CNTE A/B CNTS RTCIR XIR RTCIE XIE

*

7 6 5 4 3 2 1 0

* . .
Bit 7 is unused and is read as zero.
* % M .
Register 5 will power up to all zeroes.

2.7.2 EXTERNAL INTERRUPT"

On any high to low transition of the RT pin the external interrupt
request (XIR) bit will be set. This request will be serviced if the external
interrupt enable (XIE) bit is set or if it is set at a later point in the
program. The latter allows the processor to store a request (without
interrupting) while a critical timing routine is being executed. Once
external interrupt service is initiated, the processor will clear the XIR
bit, push the current program counter on to the stack and execute the
instruction at location 1760s. This program setup requires two instruc-
tion cycles and no new interrupts can be serviced until a return from
interrupt (RETFI) instruction has been executed.

2.7.3 REAL-TIME CLOCK INTERRUPT

The real-time clock counter (RTCCA & RTCCB, file registers F6 and
F7) have a similar mechanism of interrupt service. The RTCCA register
will increment if the count enable (CNTE) bit is set. If this bit is not set
the RTCCA & RTCCB will maintain their present contents and can
therefore be used as general purpose RAM registers. The count source
(CNTS) bit selects the clocking source for RTCCA. If CNTS is cleared
to a ‘0’, then RTCCA will use the internal instruction clock and incre-
ment at 1/8 the frequency present on the OSC pins. If CNTS issetto a
1", then RTCCA willincrement on each high to low transition of the RT
pin. RTCCB can only be incremented when RTCCA makes a transition
from 377sto 0 and the A/B status bitis set. This condition links the two
eight bit registers together to form one sixteen bit counter. An interrupt
request under these conditions will occur when the combined registers
make a transition from 1777775 to 0. If, however, the A/B bit is not set,
then RTCCA will be the only incrementing register and an interrupt
request will occur when RTCCA makes a transition from 377gt0 0. (In
this setup the RTCCB register will notincrement and can be used as a

39

ov

INTERRUPT SYSTEM BLOCK DIAGRAM, PIC1670

CNT
(BIT 4)
— S
AT EDGE TO SYNC INTERNAL
PIN PULSE GEN CLOCK
il I
RTCCA (R6)
CARRY OUT ‘B’ moos m
‘B’ INPUT TRIGGER|
XIR (BIT 2) FROM ‘A’ OVERFLOW
—Q S
R CNTE
(BIT6)
LoAD PULSE _ | proGRAM
COUNTER
RTCIR (BIT 3)
Qa s o
R
XIE
(BIT0)
1760s 1740s
- 1 CYCLE
DELAY
INTERRUPT CONTROL
FLIP-FLOP
1 CYCLE
DELAY R Q
s
RETFI
ATCIE MCLR
(BIT 1) d

general purpose RAM register). Once a request has come from the
real-time clock counter, the real-time clock interrupt request (RTCIR)
bit will be set. At this point, the request can either be serviced imme-
diately if the real-time clock interrupt enable (RTCIE) bit is set or be
stored if RTCIE is not set. The latter allows the processor to store a
real-time clock interrupt while a critical timing routine is being exe-
cuted. Once interrupt service is initiated, the processor will clear the
RTCIR bit, push the present program counter onto the stack and
execute the instruction at location 1740s. This setup requires two
instruction cycles and no new interrupts can be serviced until a RETFI
instruction has been executed.

The RETFI instruction (00002s) must be used to return from any inter-
rupt service routine if any pending interrupts are to be serviced. Exter-
nal interrupts have priority over RTCC driven interrupt in the event
both types occur simultaneously. Interrupts cannot be nested but will
be serviced sequentially. The existence of any pending interrupts can
be tested via the state of the XIR (bit 2) and RTCIR (bit 3) in the status
word F5.

2.7.4 INPUT/OUTPUT CAPABILITY

The PIC1670 provides four complete quasi-bidirectional input/output
ports. A simplified schematic of an I/0 pin is shown below. The ports
occupy address locations in the register file space of the PIC1670.
Thus, any instruction than can operate on a general purpose register
can operate on an I/0 port. Two locations in the register file space are
allocated for each 1/0 port. Port RAO-7 is addressable as either F10 or
F11. Port RB0-7 is addressable as either F12 or F13. Port RC0-7 is
addressable as either F14 or F15 and Port RDO-7 is addressable as
either F16 or F17. An I/0 port READ on its odd-numbered location will
interrogate the chip pins whilean I/0 port READ on its even-numbered
location will interrogate the internal latch in that I/0 port. This simpli-
fies programming in cases where a portion of a single port is used for
inputting only, while the remainder is used for outputting as illustrated
in the following example:

——» RAQ
——» RA1
——» RA2
-««————— RA3
-«——— RA4
-«—— RA5
-«——— RA6
-«—— RA7

PIC

1

Here, the low 3 bits of port RA are used as output-only, while the high 5
bits are used as input-only. During power on reset (MCLR low), the
latches in the 1/0 ports will be set high, turning off all pull down
transistors as represented by Q, in Figure 13. During program execu-
tion if we wish to interrogate an input pin, then, for example,

BTFSS 11,6

will test pin RAG and skip the next instruction if that pin is set. If we wish
to modify a single output, then, for example,

BCF 10,2
will force RA2 to zero because its internal latch will be cleared to zero.
This will turn on A, and pull the pin to zero.

The way this instruction operates internally is the CPU reads file 10 into
the A.L.U., modifies the bit and re-outputs the data to file 10. If the pins
were read instead, any input which was grounded externally would
cause a zero to be read on that bit. When the CPU re-outputted the data
to the file, that bit would be cleared to zero, no longer useful asan input
until set high again.

During program execution, the latches in bits 3-7 should remain in the
high state. This will keep A, off, allowing external circuitry full control
of pins RA3-RA7, which are being used here as input.

Fig. 13 BIDIRECTIONAL INPUT-OUTPUT PORT s s s

INTERNAL Voo Voo
BUS —
MCLR
[|-‘ Q.
S
7o)
b a PIN
——-| —-1 Q.
c
WRITE Ves Vss

A

READ EVEN @ I/O FILE #

pd
Y

READ ODD @ I/O FILE #

42

2 8 The PIC family is supplied in dual in-line packages with the pin
P_' assignments as shown in Figs. 14-19, respectively.
in

Assignments

Flg. 14 PIC1650A PIN ASSIGNMENTS

Top View
Vgs] @1 ~ M Vyx
RA0[] 2 39 Voo
RA1C] 3 38 ORTCC
RA2[] 4 37 JMCLR
TEST S 36{]0SC
RA3[16 35 CLK OUT
RA41 7 34 ERD?
RA5(] 8 33 [JRD6
RA6[] 9 32[]RD5
RA7[] 10 31[0JRD4
RBOC] 11 30 [JRD3
RB1E 12 29 [1RD2
RB2[] 13 28 [JRD1
RB3[] 14 27 [JRDO
RB4[] 15 26 JRC7
RB5(] 16 25 [1RC6
RB6[] 17 24 [JRC5
RB7[] 18 23 []RC4
RCO[] 19 22 [OQRC3
RC1(] 20 21 gRC2
C S

Fig. 16 PICI654 PIN ASSIGNMENTS

Top View
RA2 [] o1 ~ 18] RAT1
RA3 []2 17] RAO
RTCC []3 16] osc1
MCLR [] 4 15[] osc2
Vss []5 1417 Voo
RBO [] 6 13[] RBY7
RB1 [] 7 12[] RB6
RB2 [} 8 1] RBS
RB3 []9 107] RB4

43

Fig. 16 PIC1655A PIN ASSIGNMENTS

Top View

RTCC o1 28 [1 MCLR
Voo [2 27 [0 OsC
Vax O 3 26 [7 CLKOUT
Vss [4 257 RC7

TEST O5 24 [7 RC6
RAO (16 23 [RC5
RA1 7 22 [1 RC4
RA2 []8 21 p RC3
RA3 [9 20 ;1 RC2
RBO (] 10 19 [RCt
RB1] 11 18 [RCO
RB2 [12 17] RB7
RB3] 13 16 {1 RB6
RB4] 14 15 [1 RB5

Fig. 17 PIC16C58 PIN ASSIGNMENTS

Top View
oscrler ~ 28p 8BV
Voo 2 27 0 MCLR
RTCC O3 26 {] CLK OUT
Vg] 4 251 RC7
TEST 5 247 RC6
RAO []6 23[] RC5
RA1 07 227 RC4
RA2 [8 21[J RC3
RA3 O 9 203 ReC2
RBO [] 10 197 RC1
RB1 Q11 18 |1 RCO
RB2 [] 12 171 RB7
RB3 []13 16 {1 RB6
RB4 [14 15 [1 RBS

44

Fig. 18 PIC1656 PIN ASSIGNMENTS

Top View
oscicler 28 0S¢ 2
Voo [} 2 27 AMCLR
RT3 26 [J CLK OUT
Vss [4 25 [1RC7
TEST[]5 24 [JRC6
RAO] 6 23 [JRC5
RA1[]7 22 [1RC4
RA2 [8 21 [IRC3
RA3]9 20 RC2
RBO [10 19 [JRC1
RB1[J 11 18 [JRCO
RB2] 12 17 [JRB7
RB3 (] 13 16 [1RB6
" RB4 [14 15§R85

Fig. 19 PIC1670 PIN ASSIGNMENTS

Top View
osci gje1 >~ 40 Voo
osc2 2 391 MCLR
RA0 O3 380 RT
RA1 4 371 RD7
RA2 [5 36 [1 RD6
RA3 6 35[] RD5
CLKouUT 7 341 RD4
RA4 18 333 RD3
“RA5 9 327 RD2
RA6 []10 310 RD1
RA7 O 11 303 RDO
RBO []12 29[7] RC7
RB1 []13 28[1 RC6
RB2 114 270 RC5
RB3] 15 26{] RC4
RB4] 16 25[] RC3
RB5] 17 241 RC2
RB6 [] 18 231 RCH
RB7 []19 22[7] RCoO
Vss [20 210 TEST

45

3

3.1
General
Instruction
Format

INSTRUGTION SET

The P1C1650 series instruction set has a basic repertoire of 30 instruc-
tion words. These instructions fall into three general categories:

B General file register operations (byte-oriented)

B Bit level file register operations

B Literal and control operations.

Each instruction word consists of 12 binary bits. The instruction
word, when expressed in binary, is also known as a machine code or
object code. A certain number of bits in the instruction word are
allocated as an operator (OP Code). An OP Code specifies the type of
operation to be performed. The balance of the instruction word
includes one or more operands which further specify the operation of
the instruction.

In general file register operations, six bits are allocated for the OP
Code. In bit level file register operations, four bits are allocated; and
in control and literal operations, three or four bits are allocated for the
OP Code.

The operand field can provide the following information:

File address of the register from which data is to be obtained.

File address of the register into which data from the W register
is to be written.

Destination (file register or W register) of the results of an
operation.

Bit number of the bit affected by a bit level file register
operation.

Instruction address to which the program counter will be
vectored.

Literal value stored in the program memory (ROM).

An example of a PIC instruction, in object code, to move a numeric
literal, octal 26, to the W register is 110000010110, with the OP Code
and operand as follows:

OP Code Operand
1100/00010110

OP Code 1100 specifies that a literal shall be placed in the W register.
The operand is the binary equivalent of the literal 26s. The complete
12-bit binary object code is used by the processor to execute the
instruction.

It is normally very difficult for the programmer to read or write more
than a few lines of this type of code. Therefore programs are usually
written in a symbolic language that is easily understood by the
programmer and is also executable by the PIC Cross Assembler.

Using symbolic notation, the OP Code is expressed as a mnemonic.
The operand(s) can be expressed in octal, binary, hexadecimal,
decimal, or symbolic notation. However, unless otherwise specified,
all operands are considered octal.

46

The PIC object code instruction
110000010110

just described can be expressed as:

OP Code Operand

MOVLW 26
Other examples of the same instruction with the operand expressed
in different notations include:

MOVLW B00010110
where: the B preceding B00010110 specifies binary
notation for Octal 26

MOVLW X16
where: the X preceding 16 specifies hexadecimal nota-
tion for Octal 26

MOVLW .22
where: the period preceding 22 specifies decimal nota-
tion for Octal 26

MOVLW SAMPLE
where: SAMPLE is the symbolic notation for Octal 26.
This symbol must be defined in an appropriate
place in the program so the assembler can
substitute the correct binary value when the
notation “SAMPLE” occurs.
The use of an Assembler enables an instruction or group of instruc-
tions to be identified by a label. In branch and call instructions, which
provide the address of an instruction to be branched to as an
operand, the label may be substituted for the address as the operand.
This label must exactly match the label of the instruction to which a
branch is specified. The Assembler will substitute the proper address
in the operand field containing the label.

The instruction to branch to program location 472 can be expressed
as:

GOTO 472

or

GOTO OVFLO, where OVFLO is the label or symbolic name
for the address of the referenced instruction.

In PIC object code, this instruction would be written as:

101100111010

The Assembler also provides a comments field. This field is for the
convenience of the programmer in documenting his program. A
typical assembly language line therefore consists of the following:

Label OP Code | Operand | Comments

The label and comments fields are not always used.

All instructions, except for subroutine calls and conditional skips and
branches, are executed during one machine cycle. The exceptions
are executed in two machine cycles.

47

PIC1650 SERIES INSTRUCTION SET

BYTE-ORIENTED
FILE REGISTER
OPERATIONS

(11-6)

(5) (4-0)

OP CODE

d { (FILE #)

Ford = 0, {—W (PICAL accepts d = 0 or d = W in the mnemonic)

d=1 f—~f (If dis omitted, assembler assigns d = 1.)

Instruction-Binary (Octat) Name Mnemonic, Operands Operation Status Affected
000 000 000 000 (0000) No Operation NOP - - None
000 000 1ff tff (0040) Move W to f (Note 1) MOVWF f wW—f None
000 001 000 000 (0100) Clear W CLRW — 0—W Z
000 001 tff fff (0140) Clearf CLRF f 0—f _ z
000 010 dff fff (0200) Subtract W from f SUBWF f. d f - W—d [f+W+1—d] Cc.DC.z
000 011 dff fff (0300) Decrementf DECF f, d f-1—d z
000 100 dff fff (0400) Inclusive OR W and f IORWF f, d wvif-d Z
000 101 dff fff (0500) ANDWandf ANDWF f. d Wef—d z
000 110 dff fff (0600) Exclusive OR W and f XORWF f. d Wef-d Zz
000 111 dff fff (0700) Add W and f ADDWF f. d W+f—d c.bDC.z
001 000 dff fff (1000) Move f MOVF f.d f—~d Z
001 001 dft fff (1100) Complementf COMF f, d f-d V4
001 010 dff fff (1200) increment f INCF f, d f+1—-d z
001t 011 dff fff (1300) Decrement f, Skip if Zero DECFSZ f, d f - 1—d, skip if Zero None
001 100 dff fff (1400) Rotate Rightf RRF f.d f(n)—d(n-1), (0)—C, C—d(7) Cc
001 101 dff fff (1500) Rotate Left f RLF f. d f(n)—d(n+1), f(7)—C, C—d(0) (o}
001 110 dff fff (1600) Swap halves f SWAPF f. d f(0-3)=f(4-7)—d None
00t 111 dff fff (1700) increment f, Skip if Zero INCFSZ f,d f+1—d, skip if zero None

BIT-ORIENTED (11-8) (7-5) (4-0)
FILE REGISTER
OPERATIONS OP CODE b (BIT #) f (FILE #)

Instruction-Binary (Octal) Name Mnemonic, Operands Operation Status Affected
010 Obb bff fff (2000) BitClearf BCF f.b 0—f(b) None
010 1bb bff fff (2400) Bit Setf BSF f.b 1—f(b) None
011 Obb bff fff (3000) Bit Testf, Skip if Clear BTFSC f.b Bit Test f(b): skip if clear None
011 1bb bff fff (3400) Bit Test f, Skip if Set BTFSS f.b Bit Test f(b): skip is set None

(11-8) (7-0)
LITERAL AND CONTROL
OPERATIONS OP CODE k (LITERAL)
Instruction-Binary (Octal) Name Mnemonic, Operands Operation Status Affected

100
100
101
110
110
111
111

Okk
1kk
k k k
Okk
Tkk
Okk
Tkk

kkk
k k k
kkk
kkk
k k k
k k k
kkk

kk k
k k k
kkk
kkk
kkk
Kk kk
Kk k

(4000)
(4400)
(5000)
(6000)
(6400)
(7000)
(7400)

Return and place Literal in W RETLW

Call subroutine (Note 1)
Go To address (k is 9 bits)
Move Literal to W

Inclusive OR Literal and W

AND Literal and W

Exclusive OR Literal and W

CALL
GOTO
MOVLW
IORLW
ANDLW
XORLW

x X X X XXX

k—W, Stack—PC

PC+1 — Stack, k — PC
k—PC

k—W

kVW—-W

ke W—W

kO@W—-W

None
None
None
None

Z

Z

Zz

48

3.2

General File
Register
Operations

This group of instructions is used to operate on data located in any of
the file registers including the I/0 registers.

Operations performed using general file register instructions include:

[0 Two data transfer operations

O Six arithmetic operations

O Six logical operations

O Three rotate operations.

One of two different address modes (direct address or indirect
address) is used in a general file register instruction. The most
commonly used address mode is direct addressing.

The direct address mode is specified by any file address of one through
375 in the operand field. The operation called for by the OP Code will be
performed on the data stored in the specified file location.

The indirect address mode is specified by a file address of zero in the
operand field. The operation called for by the OP Code will be
performed on the data in the file location pointed to by the five LSB’s
of the file select register, F4. Since the file select register must be
loaded under program control, an instruction must be executed to
load the FSR with an appropriate file address prior to using the
indirect address mode.

For example: Assume that file address F23 has been previously

loaded into the FSR. When the indirect address instruction MOVF

0,W s issued, the file select register is pointing at file register F23.

The contents of file register 23 are read and transferred to the W

register.

The format of the general file register instructions is as follows:
(11-6) 5 (4-0)

OP Code | d f

f = file register address (normally expressed in octal notation)
d = destination of result where: 0=W register
1=file register
The instruction may be expressed symbolically as:
OP Code f,d
where: f may be expressed in octal (ASSUMED), or
may be expressed in binary, hexadecimal,
decimal, or symbolic notation. d may be
expressed as a 0 or W for the W register, or
as a 1 or a blank for the file register.

Note that if no destination is specified (d operand position left blank),
a default value of 1 is assumed (the file register becomes the destina-
tion). :

Examples: Increment File

N2 -

INCF 6,1 ~
NoT 2 l(F6)-|—1 F6

49

3.2.1 DATA TRANSFER OPERATIONS

Two move instructions are provided in the PIC instruction set. One
instruction (MOVWF) moves data from the W register to a file register
(W — f). The other instruction (MOVF) moves data from a file register to
the W register (f — W). A variation of the MOVWF instruction (NOP) is
also provided. This instruction is a do-nothing instruction that uses up
a period of time equal to one machine cycle.

MOVWF f Move Contents of W register to File Register

OP Code d File
0 0O0O0COO|1|f f f f f (W) — 1

Status Bits affected: None

Example: MOVWF 11

ooooool1o1oo1 (W) — F11

The contents of the W register are moved to file register 11s.

NOP No Operation

OP Code Operand
000O0O0O|0OI0OO0O0DO

Status bits affected: None

MOVF f,d Move Contents of File Register

OP Code File
00100O0Ofd|f f f f f (fy —d

Status bits affected: Zero
Example: MOVF 22,W
001000[0j1 O01TO0 +(F22) — W

The contents of file register 22s are moved to the W register. If the
contents of the register are zero, the Zero status bit will be set.

Example: MOVF 22

001000O0}J1j1 0010 . (F22) — F22

The contents of file register 22 are moved to the ALU and back to File
22. This instruction can be used to examine the contents of a file regis-
ter since, if the contents of the register are zero, the Zero status bit
will be set.

50

3.2.2 ARITHMETIC OPERATIONS

Six arithmetic instructions are provided in the PIC instruction set:
ADD (ADDWEF), Subtract (SUBWF), Increment (INCF), Increment
and skip if zero (INCFSZ), Decrement (DECF), and Decrement and
skip if zero (DECFSZ). The result of each operation can be placed in
the W register or the file register. All arithmetic operations affect the
status register. In addition to performing a subtract operation, the
SUBWEF instruction, when combined with interrogation of the status
register, can be used to perform a compare operation. The INCFSZ
and DECFSZ instructions are commonly used in loop operations.

ADDWF f,d Add Contents of W Register to Contents of File Register

OP Code File
00011 1|dff f f f f fy + (W) —d

Status bits affected: Carry, Digit Carry, Zero
Example: ADDWF 6,W

0001111000110 (F6) + (W) =W

The contents of the W register are added to the contents of file
register 6. The result is placed in the W register (d=0). The contents
of F6 are not affected.

Example: ADDWF 6

6000111100110 (F6) + (W) — F6

The contents of the W register are added to the contents of file
register 6. The result is placed in F6 (d=1). The contents of the W
register are not affected.

Assume 2425 in F6 and 1175 in the W register to see the effect of the
ADDWEF instruction on the status bits:

10100010 STATUS
+01001111 Cc|DC| z
11110001 — F6 0|10

The Carry bit is reset, indicating no overflow (sum of 8-bit values in W
register and file register <<255). The Digit Carry bit is set indicating a
digit overflow (sum of 4 LSB’s in W register and file register>>15). The
Zero bit is reset, indicating that the result of the addition has not
provided an 8-bit value of zero.

51

SUBWF f,d Subtract Contents of W Register from Contents of File

Register
OP Code File
000O0O1TO(d|f f f f f fH— W) —d
Status bits affected: Carry, Digit Carry, Zero E;;‘_?_e(tv—?/l)l’+ 1—d]
Example: SUBWF 17,W
roooo1o|oto1111 (F17) — (W) — W

The contents of the W register are subtracted from the contents of file
register 17g (using two’s complement addition). The result is placed in
the W register (d=0). The contents of F17 are not affected.

Assume 104g in F17 and 50g in the W register to see the effect of the
SUBWEF instruction on the status bits:

01000100 STATUS
—00101000 C |DC|Zz
00011100 —W 110 1(0

The Carry bit is set, indicating no overflow (absolute value in W
register not greater than absolute value in F17). The Digit Carry bit is
reset, indicating a digit-overflow (absolute value of 4 LSB’s of F17
greater than absolute value of 4 LSB’s of W Register).

Assume 505 in F17 and 104s in the W register:

00101000 STATUS
—01000100 cibC|Z
11100100 — W 0f11]0

The Carry bit is reset, indicating an overflow (absolute value in the W
register is greater than absolute value in F17). The Digit Carry bitis set,
indicating no digit overflow.

Note that the result obtained when a higher absolute value is sub-
tracted from a lower absolute value is the two’s complement of the
correct result. In this case 3445 was obtained which is the two’s com-
plement of the actual difference between the two values (34s, or
000111000). Thus, C = 0 indicates a negative result and it is in two's
complement form. Assume 50g in F17 and 50s in the W register:

00101000 STATUS
—00101000 c|bC|z
00000000 —W 1111

52

The SUBWEF instruction can be used to compare two values; one in
the W register, the other in the file register. After the SUBWF
instruction is implemented, it can be determined if the value in W is >,
< or=to the value in a file register by testing the status bits as follows:

Condition True False
W>F C=0 C=1
W<F C=1 C=0
W=F Z=1 Z=0

INCF f,d Increment Contents of File Register

OP Code File
0010 10[d|fffff f+1—f

Status bits affected: Zero

Example: INCF 32

001010111010 (F32) +1 — F32

The contents of file register 32 are incremented. The result is placed
in F32 (d=1). The contents of the W register are not affected.

Assume that the contents of F32 are 01010111 before the INCF
instruction. After the INCF instruction, the contents of F32 are
01011000.

INCFSZ f,d Increment Contents of File Register, Skip If Zero

OP Code File
001 11 1|dif f f f f (f) +1 — d, skip if zero

Status bits affected: None
Example: INCFSZ 17

00111 11{01 111 (F17) + 1 — F17, skip if zero

Assume that a table is to be accessed seven times to perform an
update operation. The file select register F4 will be loaded with the
starting address of the table. The two's complement of the number of
passes to be made (loops) will be loaded into F17s.

Aside from the table update, two operations will be performed during
each loop: (1) The table address will be incremented; (2) The pass
count will be incremented.

53

MOVLW TABLE ; Load starting address into W

MOVWF 4 ; Move starting address into F4 (FSR)

MOVLW 371 ; Two's complement (octal) of 7

MOVWEF 17 ; Move number of passes into F17
LOOP: ADDWF 0 ; Add contents of W register to

contents of table at location
referenced by FSR.

INCF 4 ; Increment table address.
INCFSZ 17 ; Increment count, skip if zero.
GOTO LOOP

EXIT

At the end of the end of the seventh loop, F17 increments to zero and
a skip past the GOTO LOOP instruction is made.
DECF f,d Decrement Contents of File Register

OP Code File
000O0 1T 1{d|f f f f f f—1—d

Status bits affected: Zero

Example: DECF 6,W

000011000110 (F6) —1 — W

The contents of file register 6 are decremented. The result is placed in
the W register (d=0). The contents of F6 are not affected.

Assume that the contents of F6 are 00000001 before DECF. When the
contents are decremented, the result is 00000000 and the Zero status
bit is set.

DECFSZ f,d Decrement File Register, Skip |f Zero

OP Code File
00101 1[(d|f f f ff (f) —1 — d, skip if zero

Status bits affected: None

Example: DECFSZ 17, W

0010110101111 (F17) — 1 — F17, skip if zero

This instruction operates similarly to the INCFSZ instruction in the
table update example except that the actual loop count is loaded into
the loop register rather than the two’'s complement of the loop count.
On the last loop count, the register decrements to zero and skips the
next instruction.

54

3.2.3 LOGICAL OPERATIONS

Six logical instructions are provided in the PIC instruction set: Clear
Contents of W register (CLRW), Clear Contents of File Register
(CLRF), AND Contents of W Register and Contents of File Register
(ANDWF), Inclusive OR Contents of W Register and Contents of File
Register (IORWF), Exclusive OR Contents of W register and Con-
tents of File Register (XORWF) and Complement Contents of File
Register (COMF).

CLRW Clear Contents of W Register

OP Code d File
00000C61/0/|0O0O0O0O0 0—Ww

Status bits affected: Zero

CLRF f Clear Contents of File Register

OP Code d File
000O0O 1f{1|f f f f f 0—f

Status bits affected: Zero

Example: CLRF 12

looooo 1[1]f ¢ 1] 0 — F12

ANDWF f.d AND contents of W Register and Contents of File
Register

OP Code File
00010 1/d|f ffff| (W) e (f) —d

Status bits affected: Zero

Example: ANDWF 27 W

00010 10|11 0111 (W) o (F27) =W

The contents of the W register are ANDed with the contents of file
register 27s. The result is placed in the W register (d=0). The contents
of F27 are not affected.

Assume that it is required to pack two bytes of BCD data into one
register. The high order bits in the W register and the low order bits in
F27 are packed with 1's. When the two registers are ANDed:

1{1]1[1] BcD W
[]
TB(&LD’: |1|1|1[1| Fo7
The result is:
o [R]

55

IORWF f,d Inclusive OR Contents of W Register and Contents of
File Register

OP Code File
0001O0O|d|f f f f f W)vf)—d

Status bits affected: Zero

Example: IORWF 27

000100110111 (W) V (F27) — F27

The contents of file register 275 are inclusive ORed with the contents
of the W register. The result is placed in F27 (d=1). The contents of W
are not affected.

Assume that it is required to pack two bytes of BCD data into one
register. The high order bits in the W register and the low order bits in
F27 are packed with 0's. When the two registers are ORed:

olofo]o| BCD W
Bco' |olofofo F27

The result is:
'BéD: ‘BCD - W

XORWF f,d Exclusive OR Contents of W Register and Contents of
File Register

OP Code File
000 1O0O0(d|f f f ff W e @ —d

Status bits affected: Zero

Example: XORWF 37

[o 001 1 o|1|1 11 1 ﬂ (W) ® (F37) — F37

The contents of the W register are exclusive ORed with the contents
of file register 37s. The result is placed in F37 (d=1). The contents of
the W register are not affected.

Assume that it is required to compare the contents of the W register
with the contents of F37. If the contents are the same, the result of the
Exclusive OR will be zero and the Zero status bit will be set.

56

COMF f,d Complement Contents of File Register

OP Code File
00100 1|d|f f f ff ®—d

Status bits affected: Zero

Example: COMF 27

[oo1oo1|1[1o117| (F27) — F27

The contents of file register 27 are complemented. The result is
placed in F27 (d=1). The contents of the W register are not affected.

Assume that the contents of F27 are 01110110 before the COMF
instruction. After the COMF instruction is executed, the contents of
F27 are 10001001.

3.2.4 ROTATE OPERATIONS

Three rotate instructions are provided in the PIC instruction set.
These instructions permit data in any file register to be rotated left or
right. These operations are useful in a wide range of applications,
including serial output operations and binary multiplication and
division. A special rotate instruction allows two halves within a
register to be swapped. This instruction is useful in packing and
unpacking data and also aids in BCD arithmetic.

RLF f,d Rotate Contents of File Register Left Through Carry

OP Code File

00110 4|d|f ffff I—D-q—

Status bits affected: Carry C f(7) (0)
C — d(0), f(6-0) — d(7-1), f(7) —C

Example: RLF 20

Assume the value stored in file register 203 is to be doubled, and that
the Carry bit has been reset:

IE' ofojt1j1]j0}]1]0]|1 Before Rotate Left

0 oftj1|oj1|0|1{0 After Rotate Left

The value stored in F20 has been doubled from 65g to 152s.

57

RRF f,d Rotate Contents of File Register Right Through Carry

OP Code File

001100dfffffl|->D-—>

Status bits affected: Carry C §(7) f(0)
C — d(7), f(7-1) — d(6-0), f(0) — C

Example: RRF 20

Assume the contents of file register 20g are to be serially shifted out,
using the Carry bit as the link:

EI o(of1|1]0f1]0]1 Before Rotate Right

1 ofofof1i1{o|1{0 After Rotate Right

The Carry bit can be interrogated and its contents -output after each
rotate instruction.

SWAPF f,d Swap halves of File Register

OP Code File ! y £(0)
00111 0fd|[ft 11 SR R (!
Status bits affected: None f(7) 4 ""‘-’l

Example: SWAPF 7,W

001110{0j001 11 [F7(3-0) = F7(7-4)] — W

Assume that it is required to pack two bytes of BCD data into one
register. One byte of BCD data is located in F7. Another byte is
located in F10s. Each register contains the BCD byte in the four low
order bits. Zeros are packed into the four high order bits.

7 0
000 0| BCD
1 1 1 A 1 1

The instruction SWAPF 7,W swaps the BCD byte and the zeros and
places the result in the W register:

7 0
'BCD |00 0 0

By inclusive ORing the contents of the W register and F10 using the
instruction
IORWF 10 the two BCD bytes are packed into F10.

'BCD | BCD' |~ F10

Il L 1

58

3.3

Bit Level File
Register
Operations

This group of instructions provides the ability to manipulate and test
individual bits in any addressable register. These instructions use
the same address modes (direct and indirect) as the general register
instructions.

The format of the bit level file register instructions is:

(11-8) (7-5) (4-0)
OP Code b f

f = file register address
b = bit number

The instruction may be expressed symbolically as:
OP Code f,b '
where: f and b are expressed in octal (AS-
SUMED), binary, hexadecimal, deci-
mal, or symbolic notation.

3.3.1 BIT MANIPULATIONS

Two instructions are included in the PIC instruction set to manipulate
individual bits in the register file. One instruction (BCF) clears a bit;
the other instruction (BSF) sets a bit.

BCF f,b Clear Bit in File Register

OP Code Bit File
0100ibbb|f f f ff 0 — f(b)

Status bits affected: None

Example: BCF 7,2 .

0100j010f{001 11 0 — F7(2)

Assume that contents of F7 are 11111111 before the BCF instruction.
After the BCF instruction, the contents of F7 are 11111011.

BSF f,b Set Bit in File Register

OP Code Bit File
0101bbb|f f f f f 1 — f(b)

"~ Status bits affected: None

Example: BSF 7,2

]o1o1]01000111 1 —F7(2)

Assume that contents of F7 are 11111011 before the BSF instruction.
After the BSF instruction, the contents of F7 are 11111111,

59

3.3.2 CONDITIONAL SKIPS ONBIT TEST

Two instructions are provided in the PIC instruction set to test an
individual bit. One instruction (BTFSC) skips the next instruction if the
bit tested is clear (is a zero). The other instruction (BTFSS) skips the
next instruction if the bit tested is set (is a one). These instructions are
used to interrogate status and flag bits and, based upon the result of
the interrogation, go to different points in the program.

BTFSC f,b Test Bit in File Register, Skip If Clear

OP Code Bit File

B1 1 ob b blf f f f f—| Test F(b), skip if clear
Status bits affected: None

Example: BTFSC 37,0

o1 10f0o0o0]11111] Test F37(0), skip if clear

The content of bit 0 of file register 37; is tested. If bit O is a zero, the
next instruction is skipped.

Assuming that bit 0 of F37 is an overflow bit, coding might be written
as follows:

BTFSC 37,0
INCF 23
GOTO SCAN

If there is an overflow, F23 is incremented before going to SCAN
routine. If there is no overflow, F23 is not incremented.

BTFSS f,b Test Bit in File Register, Skip if Set

OP Code Bit File
011 1ibbb|f f f ff Test F(b), skip if set

Status bits affected: None

Example: BTFSS 7,1

011100 1j00 11 1 Test F7(1), skip if set

The contents of bit 1 of file register 75 is tested. If bit 1 is a one, the
next instruction is skipped.

Assuming that bit 1 of F7 is an input flag bit, coding might be written
as follows:

BTFSS 7,1

GOTO CALC

GOTO INPUT

If bit 1 is set, the program will jump to the INPUT routine. If bit 1 is
clear, the program will jump to the CALC routine.

60

34

Literal and
Control
Operations

This group of instructions is used to operate on literals located in
program memory or to branch to or call instructions located in
program memory.

Operations performed using literal instructions are:

O Move literal to W '

O Logical operations on literals

Operations performed using control instructions are:

O Jump

O Calls and Returns

The literal and control instructions employ immediate addressing.
The instruction word consists of an OP Code (three or four high order

bits) immediately followed by an 8 or 9-bit literal (constant). This
literal can be used as an operand in arithmetic and logical operations.

3.4.1 LITERAL OPERATIONS

Four literal instructions are provided in the PIC instruction set. One
instruction (MOVLW) moves a literal to the W register. The other
three instructions (IORLW, XORLW, and ANDLW) perform a logical
operation between the literal and the contents of the W register.

The format of the literal instructions is as follows:
11-8 7-0
OP Code k

The instruction may be expressed symbolically as:

OP Code k
where: k is expressed in octal (ASSUMED), binary,
hexadecimal, decimal, or symbolic notation.
MOVLW k Move Literal k to W Register

OP Code Literal
1100k k k kK k k k k k—W

Status bits affected: None

Example: MOVLW 377

1100t 1111111 377 — W

61

ANDLW k AND Literal k and Contents of W Register

OP Code Literal
(1110kkkkkkkk ke (W) — W

Status bits affected: Zero

Example: ANDLW 17

111000001111 17g0 (W) — W

The four MSBs in the W register are masked by ANDing them with the
zeros in the four MSBs of the literal. The four LSBs of the W register
are not affected.

Assume that the contents of the W register are 01001001 before the
ANDLW 17 instruction. After the ANDLW 17 instruction, the contents
of the W register are 00001001.

IORLW k Inclusive OR Literal k and Contents of W Register

OP Code Literal
110 1|k k k Kk k k k k kV(W)—-W

Status bits affected: Zero

Example: IORLW 200

1101(10000O00O00O0 200 V (W) = W

Assume that it is required to change the sign bit from positive to
negative during an arithmetic operation. By inclusive ORing 200s
(1000000) with the contents of the W register, the sign bit (MSB) will
be set to 1 (negative sign).

Assume that contents of W register are 01101110 before the IORLW
200 instruction. After the IORLW 200 instruction, the contents of the
W register are 11101110.

XORLW k Exclusive OR Literal k and Contents of W Register

OP Code Literal
111 1]k k k k k k k k k® (W) =W

Status bits affected: Zero

Example: XORLW 307

111111000111 307s ® (W) — W

3075 is Exclusive ORed with the contents of the W register. If the
contents are the same, the result of the Exclusive OR will be zero and
the Zero status bit will be set to a one.

62

3.4.2 CONTROL OPERATIONS

Four control instructions are provided in the PIC instruction set for
jumps, calls, and returns. One instruction (GOTO) is an unconditional
jump (branch). The address of the instruction to be branched to is
loaded into the program counter.

The call and return instructions are provided for calling subroutines
and returning to the main program. The CALL instruction pushes the
address of the location immediately following the CALL instruction
(PC + 1) onto the stack before the address of the subroutine is loaded
into the program counter.

Two return instructions are provided. One of these, RETURN, is a
special instruction for the PIC1656 that provides for a return from
interrupt. The other return instruction, RETLW, is a return from
subroutine instruction. All return instructions pop the return address
off the Stack and into the program counter. In addition, RETLW
moves a literal that is specified by the operand into the W register,
and RETURN allows any pending interrupt request to proceed.

In the PIC1656, the RETURN instruction (return from interrupt) can
also be used as a return from subroutine, with the W register unaf-
fected. This instruction must not be used instead of RETLW as a
return from subroutine during an interrupt service routine since only
RETURN enables further interrupts.

GOTO k Go to address k (Note that k for this instruction is 9 bits)

OP Code Address
10 1|k k k k kK kK k k k k — PC

Status bits affected: None
Example: GOTO 677

101|110 11 1111 677s — PC

CALL k Call Subroutine at Address k

OP Code Address
100 1ik k k k k k k k (PC) + 1 — Stack
Status bits affected: None k — PC

63

This instruction increments the contents of the program counter by
one and places the result (PC + 1) into the stack. Then the subroutine
address specified in the program is placed in the program counter.
The program executes at this location.

NOTE: Any instruction address up to 377 can be represented by an 8-bit
binary number (377s = 11111111). Any address past 3775 requires a
ninth bit. The ninth bit of the program counter is a zero for a CALL or
MOVWEF F2 instruction. THEREFORE, SUBROUTINES MUST BE
LOCATED IN PROGRAM MEMORY LOCATIONS 0-377s. However,
subroutines can be called from anywhere in the program memory
since the Stack is 9 bits wide (Not a restriction in PIC1670).

Example: CALL 256

1001110101110

Assume program is at location 417: 417 + 1 — Stack
256 — PC

RETLW k Return and Place Literal k in W Register

OP Code Literal

1000/k k k k k k k k k=W
(Stack) — PC

Status bits affected: None

This command is used at the end of a subroutine to return to the
address immediately following the CALL instruction. The contents
of the top level of the Stack are popped off and placed in the program
counter. The literal value is placed in the W register.

RETFI Return From Interrupt (PIC1656 only)

OP Code Operand
‘oooooooooo1ol (Stack) — PC

Status bits affected: None

This command is used at the end of an interrupt routine to return to
the address immediately following the interrupt. The contents of the
top level of the Stack are popped off and placed in the program
counter. The contents of the W register are not affected. Any pending
interrupt is enabled.

64

35

Special
Instruction
Mnemonics

Frequently used operations such as conditional skips and branches
on status bit test, two's complement register contents, carry and digit
carry addition can all be performed using file, bit, literal and control
instructions in combination with the specific operands required.

These operations can be performed using special mnemonics that
are recognized by the PIC Assembler. These mnemonics do not
imply that there are additional instruction words. Each of these
special mnemonics calls up one or more or the PIC instructions. The
Assembler inserts the proper operands required for specific loca-
tions and destinations.

Special instruction mnemonics are provided for the following opera-
tions:

Move file to W register

Test file

Two’s complement file register contents

Unconditional branch

Six status bit manipulations

Six conditional skips on status bit test

Six conditional branches on status bit test

Four Carry and Digit Carry arithmetic operations.

OooOooooo

3.5.1 MOVE FILE TO W REGISTER

A special instruction mnemonic is provided to move the contents of
file register to the W register.

MOVFW f Move Contents of File Register to W

OP Code d File
0010O0O0O|Of f f f f =W

Status bits affected: Zero
Equivalent file operation: MOVF 1,0

3.5.2 TEST FILE

One special instruction mnemonic is provided to test the contents of
a file register for zero. This instruction moves the contents of a file
register back into itself. In the process, the Zero status bit is set to a
one if the contents of the file are zero.

TSTF f Test Contents of File Register

OP Code d File
001000|1|f ffff (f) —f

Status bits affected: Zero
Equivalent file operation: MOVF f,1

65

3.5.3 TWO’s COMPLEMENT REGISTER CONTENTS

A special instruction mnemonic is provided to obtain the two’s
complement of the contents of a file register. This mnemonic calls up
two instructions. The first instruction complements the contents of
the addressed file register. The second instruction adds binary 1 to
the least significant bit.

NEGF f,d Negate File Register Contents

OP Code d File
00100 1|1|f f f ff N —f
OP Code File
oo1o1o|d|fffff M +1—d

Status bits affected: Zero

Equivalent file operations: COMF f,1
INCF f,d

3.5.4 UNCONDITIONAL BRANCH

A special instruction mnemonic is provided for an unconditional
branch instruction.

B k Branch to Address k (Note that k for this instruction is 9 bits)

OP Code Address
10 1]k K k Kk k k kK k k k — PC

The 9-bit instruction address is placed into the program counter,
causing the program to jump to that location.

Equivalent control operation: GOTO k

3.5.5 STATUS BIT MANIPULATIONS

Six special instruction mnemonics are provided to set and clear the
Carry, Digit Carry, and Zero status bits.

CLRC Clear Carry

OP Code Bit File
0100{00O0/00O0T11 0 — F3(0)

Bit O (Carry bit) of status register F3 is cleared to a zero.
Equivalent bit operation: BCF 3,0

66

SETC Set Carry

OP Code Bit File
|o1o1|ooo|ooo11J 1 — F3(0)

Bit O (Carry bit) of status register F3 is set to a one.
Equivalent bit operation: BSF 3,0
CLRDC Clear Digit Carry

OP Code Bit File
0100{00O0(0O0O0T11 0 — F3(1)

Bit 1 (Digit Carry bit) of status register F3 is cleared to a zero.
Equivalent bit operation: BCF 3,1

SETDC Set Digit Carry

OP Code Bit File
010100100011 1 — F3(1)

Bit 1 (Digit Carry bit) of status register F3 is set to a one.
Equivalent bit operation: BSF 3,1
CLRZ Clear Zero

OP Code Bit File
0100/010/00011 0 — F3(2)

Bit 2 (Zero bit) of status register F3 is cleared to a zero.
Equivalent bit operation: BCF 3,2
SETZ Set Zero

OP Code Bit File
0101010/000 11 1 — F3(2)

Bit 2 (Zero bit) of status register F3 is set to a one.
Equivalent bit operation: BCF 3,2

67

3.5.6 CONDITIONAL SKIPS ON STATUS BIT TEST
Six special instruction mnemonics are provided for a skip operation
that is conditional on the result of a status bit test.

SKPC Skip On Carry

OP Code Bit File
0111/000{000 11 Test Carry, skip if set

Bit O (Carry bit) of the status register F3 is tested. If it is a one, the next
instruction is skipped.

Equivalent bit operation: BTFSS 3,0
SKPNC Skip On No Carry

OP Code Bit File
0110J000/000O0 11 Test Carry, skip if reset

Bit 0 (Carry bit) of status register F3 is tested. If it is a zero, the next
instruction is skipped.

Equivalent bit operation: BTFSC 3,0
SKPDC Skip On Digit Carry

OP Code Bit File
0111/001j]000 1 1 Test Digit Carry, skip if set

Bit 1 (Digit Carry bit) of status register F3 is tested. If it is a one, the
next instruction is skipped.

Equivalent bit operation: BTFSS 3,1
SKPNDC Skip On No Digit Carry

OP Code Bit File
0110|001/000 11 Test Digit Carry, skip if reset

Bit 1 (Digit Carry bit) of status register F3 is tested. If it is a zero, the
next instruction is skipped.

Equivalent bit operation: BTFSC 3,1

68

SKPZ Skip On Zero

OP Code Bit File
0111]010j00O011 Test Zero bit, skip if set

Bit 2 (Zero bit) of status register F3 is tested. If it is a one, the next
instruction is skipped.

Equivalent bit operation: BTFSS 3,2
SKPNZ Skip On No Zero

OP Code Bit File
0110|010|j000T1 1 Test Zero bit, skip if reset

Bit 1 (Zero bit) of status register F3 is tested. If it is a zero, the next
instruction is skipped.

Equivalent Bit operation: BTFSC 3,2

3.5.7 CONDITIONAL BRANCHES ON STATUS BIT TEST

Six special instruction mnemonics are provided for branch opera-
tions conditional on the result of a status bit test. Each of these
mnemonics calls two instructions. The first instruction tests the
status bit. If the required condition is present, the second instruction
places the specified 9-bit program address in the program counter,
causing a program jump to this address. If the required status
condition is not present, the jump instruction (GOTO) is skipped and
the program continues.

BC k Branch On Carry to Address k

OP Code Bit File

0110/000[(00CO0 11 Skip if Carry is clear
OP Code Address

10 1|k k k k k k k k k k — PC

The Carry bit is tested. If it is a zero, the GOTO instruction is skipped.
If it is one, the 9-bit instruction address (k) is placed in the program
counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSC 3,0
GOTO k

69

BNC k Branch On No Carry to Address k

OP Code Bit File

0111/0 0000011 Skip if Carry is set
OP Code Address

10 1fk k kK k k k k k k k — PC

The Carry status bit is tested. If it is a one, the GOTO instruction is
skipped. If it is a zero, the 9-bit instruction address (k) is placed in the
program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSS 3,0
GOTO k

BDC k Branch On Digit Carry to Address k

OP Code Bit Fite

0110/001|0 00 11 Skip if Digit Carry is clear
OP Code Address

L101kkkkkkkkk k — PC

The Digit Carry status bit is tested. If it is zero, the GOTO instruction
is skipped. If it is a one, the 9-bit instruction address (k) is placed in
the program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSC 3,1
GOTO k

BNDC k Branch On No Digit Carry to Address k

OP Code Bit File

01t10{001|000 11 Skip If Digit Carry is set
OP Code Address

10 1|lk k k k k k K k k k — PC

The Digit Carry status bit is tested. If it is a one, the GOTO instruction
is skipped. If it is a zero, the 9-bit instruction address (k) is placed in
the program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSS 3,1
GOTO k

70

BZ k Branch On Zero to Address k

OP Code Bit File

0110|/010/000O011 Skip if Zero bit is reset
OP Code Address

10 1}k k k k k k k k k k — PC

The Zero status bit is tested. If it is a zero, the GOTO instruction is
skipped. If it is a one, the 9-bit instruction address (k) is placed in the
program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSC 3,2
GOTO k

BNZ k Branch On No Zero to Address

OP Code Bt File
011101000011 Skip if Zero bit is set
OP Code Address

[1 0 1]k k k k k k k k & k — PC

The Zero status bit is tested. If it is a one, the GOTO instruction is
skipped. If it is to zero, the 9-bit instruction address (k) is placed in the
program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSS 3,2
GOTO k

3.5.8 CARRY AND DIGIT CARRY ARITHMETIC

Four special instruction mnemonics are provided to add the Carry or
Digit Carry bits to a file register or to subtract the Carry or Digit Carry
bits from a file register. Each of these mnemonics calls up two
instructions. The first instruction tests the content of the Carry or
Digit Carry bit. If the content is a one, the second instruction
increments or decrements the file register. If the content is a zero, the
second instruction is skipped.

ADDCF f,d Add Carry to Contents of File Register

OP Code Bit File

0110|/000{0OO0O0H1 ﬂ Skip if Carry is clear
OP Code File

00101O0|d|f f f f f fHH+1—d

Status bits affected: Zero

The Carry status bit is tested. If it is a zero, the increment instruction
is skipped. If it is a one, the file register is incremented.

Equivalent bit and file operations: BTFSC 3,0
INCF f,d

71

SUBCF f,d Subtract Carry From Contents of File Register

OP Code Bit File

0110(00O0|0OO0CO0 11 Skip if Carry is clear
OP Code File

00001 1|d|f ffff fH—-1—d

Status bits affected: Zero

The Carry status bit is tested. If it is a zero, the decrement instruction
is skipped. If it is a one, the file register is decremented.

Equivalent bit and file operations: BTFSC 3,0
DECF f,d

ADDDCF f,d Add Digit 'Carry to Contents of File Register

OP Code Bit File

|o 11 o|o 0 1|o 0011 Skip if Digit Carry is clear
OP Code File

00101 0[d[f ffff) +1 —d

Status bits affected: Zero

The Digit Carry status bit is tested. If it is a zero, the increment
instruction is skipped. If it is a one, the file register is incremented.

Equivalent bit and file operations: BTFSC 3,1
INCF f,d

SUBDCF f,d Subtract Digit Carry From Contents of File Register

OP Code Bit File

[0 110[00 1{0 001 1] Skip if Digit Carry is clear
OP Code File

|oooo11|d|fffff|) —1 —d

Status bits affected: Zero
The Digit Carry status bit is tested. If it is a zero, the decrement
instruction is skipped. If it is a one, the file register is incremented.

Equivalent bit and file operations: BTFSC 3,1
DECF fd

72

SUPPLEMENTAL INSTRUCTION SET SUMMARY

The following supplemental instructions summarized below
represent specific applications of the basic PIC instructions. For
example, the “CLEAR CARRY” supplemental instruction is equiv-

alent to the basic instruction BCF 3,0 (“Bit Clear, File 3, Bit 0").
These instruction mnemonics are recognized by the PIC Cross
Assembler (PICAL).

Mnemonic, Equivalent Status
Instruction-Binary (Octal) Name Operands Operation(s) Affected

010 100 000 O11 (2403) Set Carry SETC BSF 3,0 —
010 000 100 011 (2043) Clear Digit Carry CLRDC BCF 3,1 -
010 100 100 011 (2443) Set Digit Carry SETDC BSF 3, 1 —
010 001 000 011 (2103) Clear Zero CLRZ BCF 3, 2 —
010 101 000 011 (2503) Set Zero SETZ BSF 3, 2 -
011 100 000 011 (3403) Skip on Carry SKPC BTFSS 3,0 -
011 000 000 O11 (3003) Skip on No Carry SKPNC BTFSC 3,0 —
011 100 100 011 (3443) Skip on Digit Carry SKPDC BTFSS 3, 1 -
011 000 100 011 (3043) Skip on No Digit Carry SKPNDC BTFSC 3,1 -
011 101 000 011 (3503) Skip on Zero SKPZ BTFSS 3, 2 —
011 001 000 011 (3103) Skip on No Zero SKPNZ BTFSC 3, 2 -
001 000 1ff fff (1040) Test File TSTF f MOVF f, 1 z
001 000 Off fff (1000) Move File to W MOVFW f MOVF f, 0 z
00t 001 1ff (1140) Negate File NEGF f.d COMF f, 1

001 010 dff (1200) INCF f, d Z
011 000 000 011 (3003) Add Carry to File ADDCF f, d BTFSC 3,0

001 010 dff fff (1200) INCF f, d z
011 000 000 011 (3003) Subtract Carry from File SUBCF f,d BTFSC 3,0 ,
000 011 dff fff (0300) DECF f, d z
011 000 100 011 (3043) Add Digit Carry to File ADDDCF f,d BTFSG 3,1

001 0’10 dff fff (1200) INCF f,d V4
011 000 100 011 (3043) Subtract Digit Carry from File SUBDCF f,d BTFSC 3,1

000 011 dff fff (0300) DECF fd 4
101 kkk kkk kkk (5000) Branch Bk GOTO k —
011 000 000 011 (3003) Branch on Carry BC k BTFSC 3,0

101 kkk kkk kkk (5000) GOTO k -
011 100 000 011 (3403) Branch on No Carry BNC k BTFSS 3,0

101 kkk kkk kkk (5000) GOTO k —
011 100 100 011 (3043) Branch on Digit Carry BDC k BTFSC 3,1

101 kkk kkk kkk (5000) GOTO k -
011 001 000 011 (3443) Branch on No Digit Carry BNDC k BTFSS 3,1

101 kkk kkk kkk (5000) GOTO k -
011 101 000 011 (3103) Branch on Zero BZ k BTFSC 3,2

101 kkk kkk kkk (5000) GOTO k -
011 101 000 011 (3503) Branch on No Zero BNZ k BTFSS 3,2

101 kkk kkk kkk (5000) GOTO k -

73

3 6 The PIC1670 series instruction set is a superset of the PIC1650 series

- instruction set — the software is upwardly compatible.
PIG1670 Series
Instruction
Set

BYTE ORIENTED (12-7) (6) (5-0)
FILE REGISTER | opcooe [a| 1(FLEW

OPERATIONS
Instruction—Binary (Octal) Name Mnemonic, Operands Operation Stetus Atfected
0 000 000 000 100 (00004) Decimal adjustW DAW - (Note 1) [o]
0 000 001 t¢tt tff (001000 MoveW to file MOVWF f Wt -
0 000 1d t¢¢ ¢+t (00200) SubtractW from file w/borrow SUBBWF f.d f+W+c —d ov,c.nC.z
0 000 10d ftff ¢t (00400) SubtractW from file SUBWF f.d +W+ 1—d ov,C.DC.Z
0 000 11d f¢t1t ¢ttt (00600) Decrement tile DECF f.d f-1—d ov.c.0C.Z2
0 001 00d fft{ 11 (01000) InclusiveorW with file 10RWF 1.d WVi-d r4
0 001 O01d ftff ¢t (012000 AndW with file ANDWF f.d Wei—d r4
0 001 10d ffft f+t1{ (01400) Exclusive OR W with file XORWF 1.d w®t-d z
0 001 11d #ftf {11 (01600) AddW with file ADDWF f.d W+i—-d ov.C.DC.Z
0 010 00d fff ¢t (020000 AddW to tilewith carry ADCWF f.d W+i+c—~d Ov,C.0C2
0 010 01d fff 4§ (022000 Complement file COMPF f.d f—-d 4
0 010 10d ftff 1+t (02400) Increment file INCF f.d t+1—d ov,C.DC.Z2
0 010 t1t1d fff ff1{ (02600) Decrement file, skip if zero DECFSZ f.d f - 1— d, skip if zero -
0 011 00d ft1{1f tt¢{ (03000) Rotate file right thru carry RRCF fd f(n)—d(n—1), c—~d(7), f(0)~c C
0 011 01d fftf 11 (03200) Rotate fileleft thru carry RLCF t.d f(n)—~d(n+1), c—~d(0). {7)—c C
0 011 10d fff t¢t1{ (03400) Swap upper and lower nibble of file SWAPF t.d 1(0-3)= (4-7)—~d —
0 011 t1a (1t f1{{f (03600) Increment file, skip if zero INCFSZ f.d f+1—d. skip if zero -
(12-6) (5-0)
OP CODE f (FILE #)
Instruction— Binary (Octal) Name Mnemonic, Operands Operation Status Affected
1 000 000 fftf fff (10000) MoveliletoW MOVFW f —-W z
1 000 001t ffft fff (10100) Clear file CLRF f ot ra
t 000 010 ftft ¢t (102000 Rotate file right/no carry RRNCF { f{n)—d(n—1), 1(0). ~K7) —
t 000 011 fff f1ff (10300) Rotate file left/no carry RLNCF f f(n)—d(n+1), 1(7), —~HO0) -
1t 000 100 ff¢t f{f (10400) Compare filetoW, skipif F< W CPFSLT f f-W, SkipifC =0 -
1 000 101 fff f¢t1f (10500) Compare filetoW, skipif F=W CPFSEQ t f-W, SkipifZ =1 -
1 000 110 ff¢ ftf (10600) Compare filetoW, skipif F>W CPFSGT t f-W, SkipitZ.C =1 -
1 000 111 fft 11 (10700) Move file to itself TESTF — f—t P4
B8IT ORIENTED (12-9) (8-6) (5-0)
FILE REGISTER
OPERRTIONS | opcoDE [b@Ts) | 1(FLEN) |
Instruction — Binary (Octal) Name Mnemonic, Operands Operation Status Affected
0 100 bbb ftf fff (04000) Bitclear file BCF f.b 0-- (b} -
0 101 bbb fff {11 (05000) Bitsetfile BSF f.b 1—-f(b) -
0 110 bbb fff ¢ (06000) Bittest, skipif clear BTFSC f.b Bit Test {(b): skip if clear —
0 111 bbb {ff {1 f (07000) Bit test, skip if set BTFSS f.b Bit Test {(b): skip if set -
(12-8) (7-0)
LITERAL AND CONTROL z
OPERATIONS OP CODE k (LITERAL)
Instruction—Binary (Octal) Name Mnemonic, Operands Operation Status Atfected
0 000 000 000 00O (00000) No Operation NOP — - -
0 000 000 000 0OT7 (00001) Haltin PIC1665 HALT - - -
0 000 000 000 010 (00002) Returnfrom interrupt RETFI — Stack — PC -
0O 000 000 000 011 (00003) Returntfrom Subroutine RETFS — Stack — PC -
1 001 Okk kkk kkk (11000) Move Literal to W MOVLW k k—W -
1 001 1kk kkk kkk (11400) Add Literal to W ADDLW K K+W-W ov.c.0C.2
1 010 Okk kkk kkk (12000) Inclusive OR Literal to W 10RLW 3 KVW—-W 2
1 010 1kk kkk kkk (12400) And Literal and W ANDLW k keW—-W 2
1 011 Okk kkk kkk (13000) Exclusive OR Literal and W XORLW K k@W-W Z
1 011 tkk kkk kkk (13400) Return and load literal in W_ RETLW k k—W, Stack —-PC -
(12-10) (9-0)
| opcope | k (LITERAL) B
Instruction—Binary (Octal)) Name Mnemonic, Op ds Operati Status Affected
1 10k kkk kkk kkk (14000) Go to address GOTO k k—=PC -
1 11k KkKkk kkk kkk (16000) Cal Subroutine CALL" k PC+1-Stack, k—~PC —_—

NOTE: If the lower nibble is greater than 9 or the digit carry flag (DC) is set, 06 is added to the W register.

74

3.6.1 ADDITIONAL INSTRUCTIONS
ADCWF f,d Add with carry

OP Code FK
001000O0[d|f fffff H+ W) +c—d

Status bits affected: OV, C, DC, Z
Example: ADDWF 6 (F6)+ (W)+C —F6

00100O0O(1T(f0OO0O0T1TT1TO

The contents of the W register and carry flag are added to the contents
of file register 6. The contents of the W register are not affected.

SUBBWEF, f,d Subtract with borrow

OP Code File
000O0O tf{d|f f f f f f

Status bits affected: OV, C, DC, Z
Example: SUBBWF 17, W (FIH+W)y+C d

000O0O0OT1|0O|OO01T 1T 11

The contents of the W register are complemented, added with the carry
flag and register 17s. The result is placed in the W register (d = 0).

ADDLW K Add literal to W Register

OP Code Literal
10011]K K K K K K K K K+ (W) W

Status bits affected: OV, C, DC, Z '
Example: ADDLW 200 2004+ (W) W

100111 0000O0O0O0

The 8 bit literal 200s is added to the contents of the W register.

CPFSLTf Compare Fileto W, Skipisf W

OP Code File
100010O0/|f f ffff (f) — (W), Skipif C=0

Status bits affected: None

Example: CPSLT 27

1000100|010111 (F27) — (W), Skipif C=0

If the contents of register 275 are less than the contents of the W
register, the next instruction is skipped.

75

CPFSEQf Compare Fileto W, Skipif F=W

OP Code File
100101t f f f f f (f) — (W), Skip if Z=1

Status bits affected: None

Example: CPSEQ 27

1000100010111 (F27) — (W), Skipif Z=1

If the contents of register 27s equals the contents of the W register, the
next instruction is skipped.

CPFSGTf Compare Fileto W, Skipif F>W

OP Code File
10011 0}f f f §f f f

Status bits affected: None

Example: CPFSGT 27

1000110010111 (F27)— (W), SkipifZ:C=1

If the contents of register 27g are greater than the contents of the W
register, the next instruction is skipped.

RLNCF f Rotate Contents of File Register Left

OP Code File
10000 1T 14f ¢ f £ f f
Status bits affected: None f(1)—d(0), F(6-0)—d(7-1)

Example: RLNCF 20
Assume the value stored in file register 20g is to be doubled:

ojojt1}1j0j1]0]1 Before Rotate Left

o|1|1|1|o|1[1r0| After Rotate Left

The value stored in F20 has been doubled from 65s to 152¢

76

RRNCF f Rotate Contents of File Register Right

OP Code File
100001 O0|f f f f f f
Status bits affected: None f(0)—d(7), f(7-1)—d(6-0)
Example: RRNCF 20

o[of1j1j011|0|1 Before Rotate Right

0|0|0|1]1]0}1]0 After Rotate Right

TESTF t Test Contents of File Register

OP Code File
100011 1}f f f f f f f)— f

Status bits affected: Zero

This instruction moves the contents of a file register back into itself. In
the process, the Zero status bit is set to a one if the contents of the file
are zero.

RETFS Return From Subroutine

OP Code
00000O0OO0O0OO0OO0T11 Stack — PC

Status bits affected: Zero

This command is used at the end of a subroutine to return to the
address immediately following the CALL instruction. The contents of
the top of the Stack are popped off and placed in the program counter.
The W register is unaffected.

DAW Decimal Adjust W

OP Code
00000O0OOO0O0OO0T1TDO01

This instruction adjusts the eight bit number in the W register to form
two valid BCD (binary coded decimal digits, one in the lower and onein
the upper nibble). (The results will only be meaningful if the numberin
W to be adjusted is the result of adding together two valid two digit
BCD numbers.)

77

The adjustment obeys the following two step algorithm:

1. If the lower nibble is greater than 9 or the digit carry flag (DC) is set,
06 is added to the W register.

2. Then, if the upper nibble is greater than 9 or the carry from the
original or step 1 addition is set, 60 is added to the W register. The
carry bit is set if there is a carry from the original, step 1 or step 2
addition.

Example: Assume the W register contains 1011 1010 (the result of
adding 65 + 55 = 1204, for instance).

C DC W
0 0 1011 1010
0110 Add6toW
0 1 1100 0000
0110 0000 Add60toW
1 0 0010 000 Result (20) left in W, with C set

.78

3.7

170
Programming
~ Gaution

The use of the bidirectional 1/O ports and the dedicated input or
output ports are subject to certain rules of operation. These rules
must be carefully followed in the instruction sequences written for
I/0 operation.

Bidirectional I/0O Ports

The bidirectional ports may be used for both input and output
operations. For input operations these ports are non-latching. Any
input must be present until read by an input instruction. The outputs
are latched and remain unchanged until the output latch is rewritten.
For use as an input port the output latch must be set in the high state.
Thus the external device inputs to the PIC circuit by forcing the
latched output line to the low state or keeping the latched output
high. This principle is the same whether operating on individual bits
or the entire port.

Some instructions operate internally as input followed by output
operations. The BCF and BSF instructions, for example, read the entire
port into the CPU, execute the bit operation, and re-output the result.
Caution must be used when using these instructions. As an example a
BSF operation on bit5 of F7 (Port C-PIC1650) will cause all eight bits of
F7 to bereadinto the CPU. Then the BSF operation takes place on bit5
and F7 is re-output to the output latches. If another bit of F7 is used as
an input (say bit 0) then bit 0 must be latched high. If during the BSF
instruction on bit 5 an external device is forcing bit 0 to the low state
then the input/output nature of the BSF instruction will leave bit 0
latched low after execution. In this state bit 0 cannot be used as an
input until it is again latched high by the programmer.

Successive Operations on Bidirectional 1/0 Ports

Care must be exercised if successive instructions operate on the same
I/0 port. The sequence of instructions should be such to allow the pin
voltage to stabilize (load dependent) before the next instruction which
causes that file to be read into the CPU (MOVF, BIT SET, BIT CLEAR,
and BIT TEST) is executed. Otherwise, the previous state of that pin
may be read into the CPU rather than the new state. This will happen if
tpd (See I/0 Timing Diagram) is greater than Ytcy (min). When in doubt,
it is better to separate these instructions with a NOP or other
instruction.

Input Only Ports

The input only port of the PIC1655A and PIC1656 consists of the four
LSBs of F5 (port RA). An internal pull-up device is provided so that
external pull-ups on open collector logic are unnecessary. The four
MSBs of this port are always read as zeroes. Operations whose results
are placed in F5 are not defined. File register instructions whose results
are placed in W can be used. Note that the BTFSC and BTFSS instruc-
tions are input only operations and so can be used with F5.

79

Output Only Ports

The output only port contains no input circuitry and is therefore not
capable of instructions requiring an input followed by output opera-
tion. The only instructions which can validly use F6 are MOVWF and
CLRF.

EXAMPLE 1:

h—1

OUTPUT INPUT

T 1

F7

i)

What is thought to be happening:

BSF 7,5
Read into CPU: 00001111
Set bit 5: 00101111

Write to F7: 00101111
If no inputs were low during the instruction execution,

there would be no problem.
110

OUTPUT INPUT

EXAMPLE 2:

2024

F7

What could happen:

BSF 7,5
Read into CPU: 00001110
Set bit 5: 00101110

Write to F7: 00101110

In this case bit 0 is now latched low and is no longer
useful as an input until set high again.

80

3_8 Example 1: Generate a 3ms pulse on 1/0 line C5 (F7, bit 5).

Sample
Program

‘ START ’

A

MOVE
DECIMAL
250 TO
LOOP
COUNTER

SET
C (5)

ra

A

DECREMENT
LOOP
COUNTER

IS
LOOP

COUNTER

EXIT

81

Program Steps Description
MOVLW .250 LOAD decimal 250 into W.
MOVWF 11 Transfer 250 to F11
BSF 7,5 Set output file 7, bit 5 high.
A: DECFSZ 111 Decrement F11, skip if zero.
GOTO A This GOTO instruction will cause F11 to be

decremented 250 times. The decrement exe-
cutes in 4us while the GOTO takes 8us.
Therefore the loop executes in (4 + 8) us x
250 = 3ms.

BCF 7,56 Reset output file 7, bit 5 low.
NOTE: For precise timing generation, an external crystal oscillator must be

used. Otherwise the actual timing is dependent on the tolerances of
the external RC components.

82

Example 2: Compare contents of F37 to a constant, if equal GOTO
OK; if not equal GOTO NO.

‘ START)

F37—-W
COMPARE

DATA
AND

LITERAL

YES NO
\
GOTO OK GOTO NO

Program Steps Description

MOVF 37,W Move the contents of F37 to the working
register W.

XORLW CONST Exclusive OR the contents of W and the
literal CONST. If they are equal, all zero bits
will result in W and bit 2 in the status register
(F3) will be set to a one. Although the
SUBWEF instruction could be used, it would
also alter the Carry status bit.

BTFSS 3,2 If bit 2 in F3 is a one, skip the next step. (Bit
2 is the Zero status bit.)

GOTO NO They are not equal.

GOTO OK They are equal.

83

Example 3: Serially output the 8 bits in a file register. In this example,
file register F24’s contents are outputted via I/0 CO (F7, bit 0). I/O line
C1 (F7, bit 1) is used to synchronize the output using the rising edge.

' START ’

LOAD 8
INTO

RESET

SYNC
COUNTER OuTPUT

LOOP

A
CLEAR END
SYNC
OUTPUT

ROTATE
DATA
ONE BIT
RIGHT

YES NO

A y
SET RESET
DATA DATA

OUTPUT OUTPUT

A

SET
SYNC
OUTPUT

DECREMENT
LOOP
COUNTER

84

Program

MOVLW .8
MOVW 11

LOOP: BCF 71
RRF 24,1
BTFSS 3,0
GOTO A
BSF 7,0
GOTO B

A: BCF7,0

B: BSF7,1
DECFSZ 11
GOTO LOCP
BCF 7,1
END

Description

LOAD the decimal 8 into working register W.
Put decimal 8 into F11 (General Purpose
register).

Clear the sync output.

Rotate F24 one bit right. Bit 0 to Carry.

Test Carry (F3, bit 0), skip if set to a one.
Carry clear, go to A.

Carry set, set CO; i.e., output positive signal
Go to B.

Carry clear, clear CO;i.e., output negative signal
Raise sync line

Have output all eight bits?

No, output next bit.

Yes, clear sync output to a zero.

If File Register F24 contains 153 (octal), then the output will be as

follows:

C(1)SYNCCLOCK| | |||l | | |l||l‘||

BTy | o

I
C(0) DATA OUT | |
I
I

|
L__I__J:
!

| [
|
| |
Il 3 | 4 | s 6 | 7 |

85

Example 4: Convert a BCD held in a 4 LSBs of F24 (the 4 MSBs are
assumed zero) to a 7-segment code. The 7-segment code is output

via /O port F7. This program illustrates the use of acomputed GOTO
instruction.

(CALL >
START CONVRT

\
ADD THE
MOVE BCD BCD OFFSET CONVRT
NUMBER TO
W REGISTER ADDRESS ROUTINE
TO PC
RETURN
CONVRT WITH”h_I\'/rVERAL
ROUTINE
OUTPUT THE
7-SEGMENT
CODE VIA 1/O
PORT F7
(EXIT)
a
f g b Typical 7-Segment bar position. The PIC Assembler recognizes
the format B’bbbbbbbb’ as an eight-bit binary data word where
e ¢ bis0Oor1. The LED bar positions are thus B'0Oabcdefg’.

86

Program Steps Description -

MOVF 24, W Starting address of table
Move BCD number as offset into
the W register.

CALL CONVRT Call the conversion subroutine.
The program counter executes
the next instruction at CONVRT.

MOVWEF 7 Output the 7-segment code via
1/0 port F7. The 7-segment
display will now show the BCD
number and this output will
remain stable until F7 is set to a
new value.

END

CONVRT: ADDWF, PC Add the BCD offset to the PC.
This is a computed GOTO.
Because the ninth bitof PCis set to
zero by a ADDWF 2 the CONVRT
routine must be located within 000
to 377s.

RETLW B’'00000001’ complement of 0 in 7-segment
code

RETLW B'01001111’ complement of 1 in 7-segment
code

RETLW B’'00010010’ complement of 2 in 7-segment
code

RETLW B’'00000110’ complement of 3 in 7-segment
code

RETLW B'01001100’ complement of 4 in 7-segment
code

RETLW B’'00100100’ complement of § in 7-segment
code

RETLW B'01100000’ complement of 6 in 7-segment
code

RETLW B’00001111’ complement of 7 in 7-segment
code

RETLW B’00000000’ complement of 8 in 7-segment
code

RETLW B'00001100’ complement of 9 in 7-segment
code

NOTE: The RETLW instruction loads the W register with the specified
literal value and returns to the instruction following the CALL
instruction (MOVWF 7). The complement of the 7-segment code is
used when the LED display unit is common anode (a bar is
activated when the output is set low).

87

Example 5: Move one of two literals to W depending on the condition of
a flag bit. This example illustrates a more efficient way (Method 2) of

implementing the code.

W “— LITERAL 1 W <~ LITERAL 2

CONTINUE

Method 1
1. BTFSC FLAG, BIT ; TEST FLAT
2 GOTO A
3. MOVLW LITERAL 1 i FLAG=0
4, GOTO CONTINUE
5 MOVLW LITERAL 2 ; FLAG =1
Method 2
1. MOVLW LITERAL 1
2, BTFSS FLAG, BIT ; TEST FLAG
3. MOVLW LITERAL 2 ; FLAG =1

88

Example 6: Output the file pointed to by F37 via I/O register C (F7).
Assume octal 24 in F37 and octal 100 in F24. Therefore, the following

program will output 100s via F7.

Program Steps
MOVF 37,W

MOVWF 4

MOVF 0,W

MOVWF 7

Description

Move the contents of F37 to W.
After execution, W contains 24s.
Move the contents of W to FSR
(F4). After execution, F4 contains
24, ‘

Move the contents of the file
pointed to by the FSR (the
contents of F24) to W. Thus, W
contains 100 after execution. .
Move the contents of W to F7
where 100g will be latched.

Example 7: Clear files F5 to F37. This program illustrates the use of the
File Select Register (F4) and the indirect addressing mode using FO.

Program Steps
MOVLW 5

MOVWF 4

LOOP: CLRFO

INCFSZ 4,1*

GOTO LOOP

END

Description

Move the literal 5 to the working
register W.

Move the literal 5 to the File
Select Register (F4)..These two
steps initialize the FSR to 5.
Clear the contents of the file
pointed to by the FSR.
Increment the FSR. The PC
counter will skip after File 37 is
cleared.

Repeat the steps beginning at
loop to clear the next file.

Files F5 to F37 are cleared.

*The upper three bits of the FSR are always read as ones. When the FSR points
to F37 all bits of the FSR are ones. The INCFSZ instruction reads this value into
the ALU and increments it. The result of this incrementequalling zero causes a
skip. If the FSR is read after this operation, however, the resuit will be 340s.

89

4 PRODUCTION GYCLE

Figure 20 is a flow chart of the production cycle. During the produc-
tion cycle, the customer developed application program is verified, a
prototype is masked and verified, and then production of mask
programmed PIC microcomputers for the customer is initiated.

Fig. 20 PRODUCTION CYCLE m

FROM
SYSTEM
DEVELOPMENT

CUSTOMER
DEFINED
APPLICATION
PROGRAM
SUBMITTED TO
GENERAL INSTRUMENT

y

GENERAL INSTRUMENT
PROVIDES
VERIFICATION
LISTING OF ROM
CODING TO
CUSTOMER

CUSTOMER
VERIFICATION
OF ROM CODING

y

GENERAL INSTRUMENT
PROVIDES
MASKED
PROTOTYPE OF
PIC CHIPS

CUSTOMER
VERIFIES
PROTOTYPE

PRODUCTION
BEGINS

90

4.1
Hardware
Support

Hardware support available from General Instrument includes:

00 ROMiIless Development Microcomputer

O PICES PIC In-Circuit Emulation System

O PFD Field Demo System

The ROMless PIC microcomputers can emulate the operation of the
entire PIC family. Pins are provided for connection to an external RAM
or E/PROM that hold the application program.

The ROMless PIC is used as part of the PICES II In-Circuit Emulation

System and the PFD Field Demo System. The ROMless PIC can also be
used as part of a customer designed in-circuit emulation system.

The PICES II is an in-circuit emulation system than can be used in a
stand-alone mode with a teletypewriter terminal or can be used as a
peripheral in a large computer system. When the PICES Il is used as a
peripheral, the user's computer facility becomes a one-station total
development system. ’

The PFD is a field demo system that demonstrates the integrated
hardware/software application.

4.1.1 ROMiess DEVELOPMENT PIC
B Description and Features. The ROMless PIC MOS/LSI circuitarray
employs the same basic architecture as the ‘PIC microcomputers
except that the ROM is removed and the ROM address and data lines
are brought out to pins, resulting in a 64-pin package. Basic features
are:

PIC ROM can be replaced with RAM or E/PROM

HALT pin for single stepping or stopping program execution

TTL-compatible input/output lines

4.5 to 7.0V power supply operation

Same instruction set as that of PIC microcomputer being
emulated.

One additional instruction, HALT (0001s) is provided.

Note: Refer to Data Sheets for additional information.

9

4.1.2 PICES II-PIC IN-CIRCUIT EMULATION SYSTEM

B Features.
O Complete in-circuit emulation and debug capability
O Multiple system configurations to match user requirements
O Standard serial interface for system integration
0 Powerful 16-bit microprocessor for system control
O Multiple breakpoints, single step, program trace and editing
capabilities
O On-board diagnostics for system hardware troubleshooting

The PICES II system is an in-circuit emulation and debug facility
designed to provide the user with a complete tool for testing, trouble-
shooting, and modifying both the software program for the PIC
circuit as well as the total system application. The PICES II is a
self-contained unit which can operate in a stand-alone configuration
or as a peripheral device to a host computer.

B Architecture. The PICES II system contains two processors. The
user processor is a ROMless PIC microcomputer with external RAM.
With the RAM loaded with the user’s application program, the ROMIless
PIC emulates the operation of the entire PIC family. A 40- or 28-pin
in-circuit emulation cable attaches from the ROMless to the applica-
tion system. The control processor is a CP1600 16-bit microprocessor
with 12K words of program ROM and 2K words of RAM. This processor
controls the functions of the PICES II including I/0 interfacing,
manipulation of the user processor and interpretation and execution
of the PICES II command set.

B Operation. The PICES II operates in several configurations:

STAND-ALONE MODE. The PICES 11 is attached directly to a serial I/O
device; typically a teletype. The user program is entered either using
the paper tape reader/punch unit on the teletype or by manually setting
each location in the PIC program memory to the desired value. Once
the program memory is loaded, all PICES II emulation and debug
commands can be issued on the teletype keyboard and PICES II
responses are returned on the teletype printer. The serial interface can
be either RS232C or currentloop and the baud rate is switch selectable.

PERIPHERAL MODE. The PICES II can be configured such that the
unit itself is a serial peripheral device attached to another computer
system. The PICES II can be attached as an additional peripheral
device or in series with the system TTY or CRT device. In this mode, the
user’'s computer facility can become a one station total development
system. The computer text editor is used to develop the PIC source
code. The PIC Cross Assembler (PICAL) will translate this source code
into PIC object code; the object code is then downloaded into the
PICES II. All PICES II commands are entered through the system
terminal. Minor modifications can be done directly on the PICES II.
Major changes require re-editing the source code, re-assembling, and
re-loading of the PICES IL.

92

Fig. 21

B Reference Manual. A detailed PICES II Data Manual is available.
This manual describes the installation and operation of the PICES II

system. Included in the manual are explanations of the PICES II com-
mand set with examples for illustration.

STAND ALONE MODE

TELETYPE

PICES

MODULE

PERIPHERAL CONFIGURATION B

DiISK
UNIT

TERMINAL

PERIPHERAL CONFIGURATION A

COMPUTER <

PICES

LINE
PRINTER

PAPER
TAPE
READER/
PUNCH

DISK
UNIT TERMINAL
COMPUTER PICES
PAPER
LINE TAPE
PRINTER READER/
PUNCH MODULE

C]

MODULE

PERIPHERAL CONFIGURATION C

MAIN

COMPUTER

FACILITY

REMOTE
TERMINAL

TELEPHONE
LINK

MODEM

PICES

93

4.1.3 PFD-PIC FIELD DEMO SYSTEM

B Features.
O 5 Volt, single supply, operation
O Low power —55 mA maximum
O Optional external clock
O Optional external power-on-clear
O Dimensions: 4" x 4%"
O Cable length: 14"

B Description. The PIC Field Demo System provides the user with a
compact and portable method of evaluating and demonstrating appli-
cation performance before the commitment is made to ROM masking
of the PIC circuit.

The PFD module contains a ROMIess PIC microcomputer, sockets for
two ultraviolet-erasable PROMs, an on-board oscillator and power-on
clear circuitry. A cable is provided to interface the PFD to the user’s
system.

B Reference Manual. A complete description of the PFD systems is
contained in the PIC Field Demo Systems Data Manual.

Fig. 22 DEVELOPMENT SYSTEMS »

TARGET ROMiless DEVELOPMENT
MICROCOMPUTER MICROCOMPUTER SYSTEM PFD BOARD

PIC1650 PIC1664 PICESII PFD1000
PIC1654 PIC1664 PICESII PFD1007
PIC1655 PIC1664 PICESII PFD1000
PIC1656 PIC1664 PICES I PFD1010
PIC16C58 PIC16C63 PICES II PFD2010
PI1C1670 PI1C1665 PICES I PFD1020

94

4 2 Software support available from General Instrument includes the PIC

‘ cross-assembler, PICAL.
Software

Support 421 PICAL-PIC MACROASSEMBLER

H Features.

O Symbolic representation of instructions

O User defined six character symbols

O Octal, decimal, hexadecimal, ASCIl, and EBCDIC literals

O Expression evaluation

O Extensive assembly directives

O Full program and sorted symbol listing

O Extensive error detection

O User-defined macro generation. ‘
W Description. PICAL is loaded into any minicomputer or large-scale
computer having an editor and FORTRAN IV compiler. PICAL, written
in FORTRAN 1V, enables the host computer to assemble the PIC
source programs and provide object programs that can execute on the
PICES emulation system. The PICAL Cross-Assembler also enables
the generation of user-defined macro-instructions. PICAL also gener-
ates a program listing, in which any syntax errors, illegal operations, or
ROM overflow are flagged. An object program cannot be generated
until all errors are corrected.

B Reference Manual. A completedescription of PICAL, its installation
and operation is provided in the PICAL Users Manual.

95

9

5.1a
Unsigned BGD
Addition

MATH ROUTINES

This section describes commonly used math routines. Itis intended to
be a guide to the programmer and engineer, who can use the routines
as is or modify them appropriately for their particular application. Also,
coding techniques can be learned by studying the descriptions, flow-
charts and listings, and then applying them to other tasks.

Doing straight binary addition of BCD Numbers necessitates adjust-
ment of the result for it to be interpreted as BCD digits.

This routine uses two steps to accomplish this:

1. If the least significant four bits of the result represent a number

> 9, or if the DC bit is set to 1, 6 is added to the result (DC
must propagate) otherwise no addition occurs.
After completion of Step 1—if the most significant four bits of the
result represent a number > 9, or if the CY bit from the original or
Step 1 addition is set to 1, 60 is added to the result (or 6 added to
MSD) otherwise no addition is done.

NOTE: To extend routine to more than two digits, all additions must be

performed with carry (or DC). Otherwise same rules as above apply to

each digit. A carry from any of the three additions (Original, Step 1 or
Step 2) constitutes an overflow to the next digit, if any.

PERFORM BINARY DO 2'S COMPLEMENT
ADDITION BINARY ADDITION

o

SUBTRACT 6
FROM LSD

ADD 6 TO
LSD

‘2

ADD 6 TO
e THE MSD

SUBTRACT 6
FROM MSD

RETURN

RETURN

DC = DIGIT CARRY

CY = CARRY

LSD = LEAST SIGNIFICANT DIGIT (LS 4 BITS)
MSD = MOST SIGNIFICANT DIGIT (MS -4 BITS)

96

LINE

OO N O B G DD

39

ASSENBLER ERRORS =

ADDR

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
0000135
000016
000017
000020
000021
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036

Bl

1011
0752
0151
1355
3043
3014
6006
0752
3443
0252
2003
016
5006
0752
1551
6140
0752
3003
3411
30135
3030
0252
5035
6001
0051
3035
0151
1551
4000

b2

9033

0

UNSIGNED BCD ADDBITION

TITLE

UBCDAD MOVF

ADJSTL
OVR1

OVR

ADDWF
CLRF
RLF

SKPNDC

6070
HOULY
ADDWF
SKPDC
SUBWF
CLRC
6070
MOVLY
ADDWF
RLF
NOULW
ADDWF
BC
BTFSS
BTFSC
6010
SUBWF
GO0
HOVLW
NOVWF
G070
CLRF
RLF
RET
END

PAGE 1

'UNSIGNED BCD ADDITION’

W
12
11
15

ADJSTL
N)
12

12
OVR1

12

1
140
12
OVR-2
11,0
15,0
OVR-5
12
VR

i
OVR
1
1

;PERFORMS 2 DIGIT UNSIGNED BCD ADDITION.
sROUTINE ASSUMES THE AUGEND IN F12 &
;THE ADDUEND IN F11.ROUTINE RETURNS
+WITH THE SUM IN F12 AND OVERFLOW
;CARRY IN Fil.

;D0 BINARY ADDITION

-a wn g

’

¥

;SAVE CY.

;BC=17

;YES! ADJUST LSD OF RESULY
;TEST FOR LSD>9(ADD 6-

7IF DC=1 THEN LSD>9).

i
+DC=0(L5SD<9} S0 RESTORE RESULT,

]

H
7ADJUST-ADD 6 TO LSD

]
sSAVE CY.
sADD 6 TO MSD.

;
sTEST FOR MSDY9 (CY=1 AFTER ADDING 4).
sTEST SAVED CY.

sDITTO.

sCY76=1--KEEP ADJUST.

sCY75=0--NO ADJUST.

i
;SAVE OVERFLOW.

;
sSAVE OVERFLOW.

97

o.1b

Unsigned BGD
Addition of

2 Digits

It is often necessary to add together two 8-bit registers containing 2
unsigned BCD digits in each. The following algorithm is used:
Algorithm:

. Add augend to addend.

. Add carry in to result of Step 1.

3. Add hexadecimal 66(146s) to result of Step 2.

. Add the following correction factor to the result of Step 3, with carry
out (CO) set as noted:

N =

H

if. C=0 and DC=0, add HEX 9A (232s); CO=0
C=0and DC=1, add HEX A0 (240s); CO=0
C=1and DC=0, add HEX FA (372s); CO=1
C=1 and DC=1, add HEX 00 (000s); CO=1

The flow chart and program for the above algorithm follows. Note that
itis assumed that Step 1 has been done and the resultisin the register
pointed to by the FSR (F4) when the routine ADJ is called. Carry in is
in CIN.

I ADJ I

(F4) *= (F4) + CIN

'

(F4) == (F4) + 146,

CIN * CIN +1

(F4) *— (F4) + W

RETURN

98

1 ADJ. MOVF CIN, W
2 ADDWF 0 :(F4) = (F4) + CARRY IN
3 MOVLW 146 -, |
4 ADDWF 0 .(F4) = (F4) + 1464
5 CLRF CIN .CIN=0
6 MOVLW 240 :DC =1
7 BTFSS 3, 1 .TEST DC
8 MOVLW 232 :DC =0
9 BTFSS 3,0 “TEST CARRY
10 GOTO ADJO
11 INCF CIN SET CARRY IN BIT
12 MOVLW 372 :DC =0
13 BTFSS 3, 1 -TEST DC
14 ADJO ADDWF 0 :(F4) = (F4) + CORRECTION
FACTOR
15 RET

NOTE: Normally one would not use an entire register to store the carry in bit
—a single bit of aregister is all that is needed. In this case, the following
changes would be made:

1. ADJ BTFSCC f,0 TEST CARRY IN BIT

2. INCF 0 :ONE, ADD 1

3. BCF f,0 :CLEAR CARRY IN BIT
11 BSF f, 0 ‘SET CARRY IN BIT

99

5.2
Unsigned BGD
Subtraction

Straight binary subtraction (two’s complement addition) of two 2-digit
BCD numbers necessitates the adjusting of the result for it to be
interpreted as a BCD number.

This is done in two steps:

1. If the least significant 4 bits of the result is > 9 or if DC is not set
(0) then subtract 6 from the least significant 4 bits (LSD) of the
result (DC propagated is added to next digit), otherwise no sub-
traction is done.

2. After Step 1 is complete—if the most significant 4 bits (MSD) of the
result is > 9 or if CY is not set (0), subtract 6 from the most
significant 4 bits (MSD) of the result, otherwise no subtraction is
done.

NOTES: 1. To extend routine to more than two digits, same rules as above
apply to each BCD digit.
2. The CY tested (in Step 2) is that obtained after two’s complement
addition.
3. When F11 has .9, result is —VE. Take ten's complement to get its
value.

100

LINE ADDR Bl B2 UNSIGNED BCD SUBTRACTION , FAGE 1
1 TITLE ‘UNSIGNED BCD SUBTRACTION'
2 ;PERFORNS 2 DIGIT UNSIGNER ECD
3 $SUBTRACTION. ROUTINE ASSUMES MINUEND
4 ;IN F12 & THE SUBTRAHEND IN Fil. THE
3 ;ROUTINE RETURNS WITH THE DIFFERENCE
b ;IN F12 & THE OVERFLOW CARRY (SIGN) 1IN Fil,
7000000 1011 UBCDSE MOVF 11,U ;00 BINARY TWO'S COMPLEMENT
g 000001 0252 SURWF 12 3SURTRACTION.
9 000002 0151 CLRF 11 ;
10000003 1551 RiF 11 $SAVE CY.
i1 000004 3443 SKPOC 3 0E=0?
12000005 5014 6070 ADJSTL $YES! ALLJUST LSD OF RESULT.
13000006 3552 BTFSS 12,3 NO! TEST FOR LSIDY.
14 000007 35016 G0TO OVRL H
15 000010 2112 BIFSC 12,2 ;
16 000011 35014 GOTD ARUSTL ;YES! AIJUST LSD OF RESULT.
17 000012 3452 BTFSS 12,1 ;
18 000013 5016 G0T0 OVRL ;NDY GO FOR MSD
19 000014 6006 ADJSTL HOVLW 6 * 3ADJUST-SUBTRACT 6 FROM LSI

20 000015 0252 SUmgF 12 H
21 000016 341t OVRl BTFSS 11,0 ;CY=07
22000017 5027 60TO ADJST2 ;YES! ADJUST MSD OF RESULT.
23000020 0151 CLRF 11 H
24000021 3752 BTFSS 12,7 ;ND! TEST FOR MSIG9.
25 000022 5036 6070 OWR :
26 000023 3312 BIFSC 12,6 H
27 000024 50X7 6070 ADJST2 $YES! ADJUST MSD.
8 000025 3432 ETFSS 12,5 H
28000026 5034 G070 OUR ;NO! DONE-RETURN.
30 000027 6140 AIST2 MOVLW 140 +ADJUST-SUBTRACT & FROM
1 000030 Q252 SUBWF 12 ;M50 OF RESULT.
312000031 0151 CLRF 11 H
33000032 3403 SKPC ;TEST CY-IF SET UNDERFLOW.
34 000033 5036 GOTO OWR ;CY=0IND UNDERFLOW-DONE.
35 000034 4011 MOVLE 11 ;LY=11UNDERFLOW SET -VE SIGN.
16 000033 0031 MOVWF 11 i
37 000036 4000 VR RET
38 000037 ERD

ASSEMBLER ERRORS = 0

101

53
Signed BCD
Addition

This routine performs Signed BCD Addition by performing Unsigned
BCD Addition and adjusting the sign of the BCD result according to the
sign of the augend and addend. The sign nibble is set to .9 fora —VE
result and 0 for a positive result. The overflow nibble is set according to
Table 1: ‘

TABLE 1
Sign Overflow Overflow
Nibble
+VE 0 0
+VE 1 1
—VE 0 9
—VE 1 .8

The values in Table 1 are arrived at in accordance with ten’s comple-
ment arithmetic.

NOTE: In ten’s complement arithmetic the sign nibble is 0 for a+VE number
and .9 for a —VE number.

102

(sBCDAD)

S BCD SB

ADD AUGEN

(WITHOUT SIGN)

D & ADDEND

SUBTRACT SUBTRA-
HEND FROM...999A (HEX)

Y

DECIMAL ADJUST

SAVE CY BIT
- CY 1

PERFORM SIGNED

BCD ADDITION

RETURN

DECIMAL ADJUST

(STEP 2)

(BOTH SIGNS + VE)

SAVE CY BIT
—-Cr2'

ADD SIGNS
— SIGNS

622 SN (NO OVFLW)

SIGN = 07?

TAKE 10'S COMPLEMENT
OF SUBTRAHEND

Y (SIGNS OPPOSITE)

(ovrLw) [y
SIGN/OVFLW | | SIGN/OVFLW
REG—¢1 REG—¢¢
e !
- (NO
OVFLW) Y (OVFLW)
SIGN/OVFLW | | SIGN/OVFLW
REG - .99 REG — .98

N
SIGN/OVFLW
REG—¢¢ SIGN/OVFLW
REG — .99

L.

RETURN

103

LIN ADDR B1 B2 SIGNED-BCD ADDITION PAGE 1

1 TITLE 'SIGNED-BCD ADDITION'

2 i

3 ;

4 sPERFORMS 2-DIGIT SIGNED-BCD ADDITION.
5 +THE ROUTINE ASSUMES AUGEND IN F11 &
b ;F12 (LSD OF F11 IS SIGN DIGIT), &

7 ;THE ADDEND IN F13 & F14 (LSD OF F13
8 ;1S SIGN DIGIT).THE ROUTINE RETURNS
9 sWITH RESULT IN F13 & F14 (LSD OF F13
10 ;15 OVERFLOW DIGIT & MSD OF F13 IS
1 $SIGN DIGIT).

12 ;

13 H

14 :

15 000000 1012 SBCDAD MOVF 12,0 ;D0 BINARY ADDITION,

16 000001 0754 ADDWF 14 i

17 000002 0152 CLRF 12 H

18 000003 1555 RLF 15 H

19 000004 3043 SKPNDC +D0 BCD DECINAL ADJUST--SEE UNSIGNED
20 000005 35014 GOTOD ADJST1 yBCD ADDITION ROUTINE.

21 000006 6006 HOVLW .6 '

22 000007 0754 ADDWF 14 :

23 000010 3443 SKPDC H

24 000011 0254 SUBWF 14 i

25 000012 2003 CLRC ;

26 000013 35016 GOTO OVRi i

27 000014 4006 ADJSTL HOULW & :

28 000015 0754 ADDWF 14 H

2% 000016 1532 OVRT RLF 12 $SAVE CY.

30 000017 6140 HOVLW 140 '

31 000020 0754 ADDNF 14 H
32 000021 3003 35032 BC OVR-1 ;

33 000023 3412 BIFSS 12,0 ;

34 000024 3015 BTFSC 15,0 H

35 000025 5031 GOTO OVR-2 H
36 000026 0234 SUBWF 14 H

37 000027 2003 CLRC ;

38 000030 5032 GOT0 OVR-1 H

39 000031 2403 SETC ;

40 000032 1552 RLF 12 H

41 000033 10i1 OVR HOVF 11,8 +ADD SIGNS.
42 000034 0753 ADDWF 13 ;

43 000035 3103 SKPNZ $RESULT=07

44 000036 5064 GOT0 BROS ;YES!-- BOTH SIGNS +VE.

45 000037 1013 MOVF 13,0 sNO! THEN RESULT=9?

46 000040 7411 XORLW 11 ;

A7 000041 3103 SKPNZ H
48 000042 35053 GOTO OPPST $YES!-- SIGNS OPPOSITE-NO OVERFLOW.

104

LINE

49
50
51
32
33
1]
39
36
37
a8
39
80
b1
62
63
64
65
b6
67
- 48
69
70
n
72
73
74

AGSEMBLER ERRORS =

ADIR

000043
000044
000045
000044
000047
000050
000051
000052
000053
000054
000055
000056
000057
000040
000061
000042
000063
000044
000065
000066
000047
000070
000071
000072
000073
000074

Bl

3412
3050
6231
0033
3073
6230
0053
3073
3012
3062
3052
3062
6234
0053
W73
0153
5073
3012
3071
6000
0053
w073
6001
0053
4000

B2 SIGNED-BCD ADDITION

OVFLW

oPPST

POS

BPOS

OVFLWL

FIN

0

BTFES
GoTo
HOVLYW
HOVWF
G070
NOVLW
MOVYF
6070
BTFSC
5OTO
BTFSC
6070
HOVLY
HOVWF
6070
CLRF
6070

BTFSC

60TO
HOVLW
NOVWF
60TO
MOVLY
MOVWF
RET
END

12,0
OVFLW
231
13
FIN
230
13
FIN
12,0
POS
12,1
POS
231
13
FIN
13
FIN
12,0
OVFLW
00
13
FIN

1

13

4NO!-- BOTH SIGNS -VE.

;TEST SAVED CY.CY=0-OVERFLOW.
;CY=1-NO OVERFLOW.
$SET 5IGN -VE.

;UUERFLUH-SET 516N -VE &
;0VERFLOW DIGIT =1.

yTEST SAVED CV.
;CY=11
¢TEST CY FROM 1ST ADJUST.

+SET SIGN -VE.

..

; SET SIGN HUE.

;TEST SAVED CY.

sCY=11 OQVERFLOW,

+CY=0! NO OVERFLOW-SET SIGN
+#VE & OVERFLOW DGT 0.

H

;SET SIGN +VE & OVER-

;FLOW 6T 1.
sFINISHED-RETURN.

PAGE

105

5.4
Signed BGD
Subtraction

This routine performs signed BCD subtraction by taking ten’s comple-
ment of the subtrahend and adding the minuend with signed BCD
addition.

The routine takes ten’'s complement of the subtrahend by subtracting
the least significant digit (of the subtrahend) from ten and subtracting
each of the other digits (including the sign digit) from nine.

106 -

LINN ADDR B1 B2 SIGNED-BCD SUBTRACTION v PAGE 1

1 TITLE ‘SIGNED-BCD SUBTRACTION'

2 '

3 i

4 ;PERFORMS 2-DIGIT SIGNED-BCD SUBTRACTION,
3 ;THE ROUTINE ASSUMES AUGEND IN F11 &
b +F12 (L5D OF F11 IS SIGN DIGIT), &

7 +THE ADDEND IN F13 & F14 (LSD OF F13
8 +15 SI6N DIGIT).THE ROUTINE RETURNS

9 sWITH RESULT IN F13 & F14 (LSD OF F13
10 ;15 OVERFLOW DIGIT & MSD OF Fi3 IS

1 ;SIGN DIGIT).SUBTRACTION IS DONE BY
12 sTAKING THE TEN'S COMPLEMENT OF THE
13 sSUBTRAHEND & THEN DOING SIGNED BCD
14 ;ADDITION.

15 H

16 H

17 H
18 ;

19 000000 4011 SBCDSB MOULW 11 ;TAKE TEN'S COMPLEMENT OF THE SUBTRAHENE.
20 000001 0055 MOVWF 15]
21 000002 4232 MOVLY 232 H
22 000003 0054 NOWF 14 ;
23 000004 1013 MOVF 13,H ;THIS IS DONE BY SUBTRACTING THE LSD
24 000005 0215 SUBWF 15,W sFROM .10 & EACH OF THE MORE SIGNIFICANT
25 000006 0053 MOVWF 13 +DIGITS FROM .9.
26 000007 1014 MOVF 14,0 H
27 000010 0216 SUBNF 16,W ;
28 000011 0054 NOVWF 14 H
27 000012 1012 MOVF 12,W ;D0 BINARY ADDITION.
30 000013 0754 ADDWF 14 H
31 000014 0152 CLRF 12 ;
32 000019 1555 RLF 15 $SAVE CY,
33 000016 3043 SKPNDC ;00 BCD DECIMAL ADJUST--SEE UNSIGNEDR
34 000017 5026 GOTO ADJSTL ;BCD ADDITION ROUTINE.
35 000020 4004 MOVLE .6 ;
36 000021 0754 ADDWF 14 ;

37 000022 3443 SKPDC H
I8 000023 0254 SUBMF 14 H

39 000024 2003 CLRC H
40 000025 5030 60T0 OVR1 H

A1 - 000026 4006 ADJSTL MOVLM 6 H

42 000027 0754 ADDWF 14 H

43 000030 1552 OVR1 RLF 12 ;SAVE CY.
44 000031 6140 MOVLW 140 ;

45 000032 0754 ADDWF 14 H

4 000033 3003 5044 BC OVR-1 ;

47 000035 3412 BTFSS 12,0 ;

48 000036 3015 BIFSC 15,0 :

107

LINE ADDK

47 000037
50 000040
31 000041
52 000042
33000043
34 000044
35 000045
96 000046
37 000047
a8 000050
39 000051
&0 000052
b1 000053
62 000054
63 000055
&4 000056
65 000057
66 000060
67 000061
68 000062
69 000063
70 000064
71000065
72 000066
73 000067
74 000070
75 000071
76 000072
77 000073
78 000074
79 000075
80 000076
81 000077
82 000100
83 000101
84 000102
85 000103
86 000104
87 000105
88 000106

ASSENBLER ERRORS =

Bl

3043
0254
2003
5044
2403

1552 °

1011
0753
3103
3076
1013
7411
3103
9063
3412
3062
6231
0053
9105
6230
0053
9105
3012
3074
3052
3074
6231
0053
3103
0153
9105
3012
9103
6000
0053
5105
6001
0053
4000

B

SIGNED-BCD SUBTRACTION

OVR

OVFLW

OPPST

POS
BPOS

OVFLW!

FIN

6010
SUBMF
CLRC
G0TO
SETC
RLF
NOVF
ADDNF
SKPNZ
6010
HOVF
XORLW
SKPNZ
6070
BTFSS
6010
HOvLW
HOVWF
6010
MOVLK
HOVWF
6010
BTFSC
GOTO
BTFSC
6OT0
NOVLY
HOVRF
6010
CLRF
6010
BTFSC
6070
KOVLW
NOVWF
6070
NOVLW
HOVWF
RET
END

OVR-2
14

OVR-1

12
11,4
13

BPOS
13,4
1

OPPST
12,0
QVFLM
231
13
FIN
230
13
FIN
12,0
POS
12,1
POS
23
13
FIN
13
FIN
12,0
OVFLWL
00

13
FIN

1

13

PAGE

- 4% ws WS ws WE wa

ADD SIGNS.

sRESULT=07

sYES!-- BOTH SIGNS HVE.
sNO! THEN RESULT=9?

-

!

7

;YES!-- GIGNS OPPOSITE-NO OVERFLOM.
sNO!-- BOTH SIGNS -VE.

;TEST SAVED CY.CY=0-OVERFLOW.
CY=1-NO OVERFLOM.

7SET SIGN -VE.

i
;OVERFLOW-SET SIGN -VE &
;OVERFLOW DIGIT =t.

i

s TEST SAVED Cv.

;CY=1!

;TEST CY AFTER 1ST ADJUST,

- .

SET SIGN -VE.

-a A% -

; SET SIGN HVE.

s TEST SAVED CY.

sCY=1! OVERFLOW.

;CY=0! ND OVERFLOW-SET SIGN
+4VE & OVERFLOW DGT 0.

y

$SET SIGN HVE & OVER-

sFLOW DGT 1.
sFINISHED-RETURN.

2

108

5.5 Program Name:

TW(]' Diit Objective:
BCGD Multiply Input Data:

Output Data:
Approach:

BCDM2D

This routine yields a 4 BCD digit product when
two 2 BCD digit numbers are input.

1. 2 digit BCD multiplier in register A
2. 2 digit BCD multiplicand in register B

4 digit product in registers A, B

The algorithm used to compute the product of
two 2 digit numbers is as follows:
if A= A1,A2 and B = B1,Bz
where A,,A2,B,,B; are single BCD digits
AB=Aze B>+ 10 * A1B> + 10 * A:B;
+ 100 * A,B;,
The single digit multiply is accomplished via
repeated addition.
This routine may be used to multiply two 4 digit
BCD numbers by using the same algorithm above
but calling BCDM2D instead of the single digit
multiply routine as follows:
A= A1A2A3A4 B = 81828384
A,B — A3A4 * BaB4 + 100(A1A2 * 8384)
+ 100 (A3A4 * B4B2) + 10000(A/A2 * B1B2)
The multiply by powers of 10 is accomplished by

shifting left one BCD digit (4 bits) for each power
of 10.

NOTE: This routine uses 2 levels of subroutine nesting, so it can only be called
from the main line program in a PIC1656. For use in a PIC1650A or
PIC1655A, either do not use this routine as a subroutine, or modify it to
use only one level of subroutine nesting.

109

(BCDM2D >

P:;:O

DMULT

Ps= AL ® B

DMULT

P = Ay ® B,

PPROD

P3, Ps =
P1, P2 ’F Pg, P4

DMULT

P, = AL ® By
P, =0

PPROD

Ps, P4y =
P‘], P2 4 PQ, P4

DMULT

Py = Ay ® By
P, =0

DADD

Pg,P4 —
Py, P2 4 P3, Py

(RETURN)

2x2 BCD MULTIPLY

IN: MULTIPLIER IN A
MULTIPLICAND IN B

OUT: PRODUCT IN A, B

110

LLL

~\ UPDATE ADD DIGIT
DIVIDEND QUOUPD)\
B=8B-A 1 (Qu, Qu)
T = TH, TL TO QUOT'ENT
ADJ =0 A=A A _
= DCNT =
* B=Bu B COUNT —1
UBCDSB { (__PPrROD)
T.=B-A DCNT = !
SFTFAC (DCNT)
TABLE LOOK-UP
SHIFT
P:, P2
T.>0 N ADJ = 1 it
L= S DIGIT
QH, QL
LEFT *
Y DADD
UBCDSB DCNT = Ps, Ps = Py, P2
m—_— DCNT —1 + Ps, Py
RETURN
N
Tw=0
Y
RETURN
N UBCDSB
ADJ =0
TH=TH_ADJ

RETURN

FORM PARTIAL

PRODUCT

Ps, Pa= Py, P,
DADD + Py, Py

UBC DAD

Ps =P, + Ps,
CARRY 0

!

UBCDAD

P: = P;s + CARRY O,
CARRY 1

1

UBCDAD

Ps = P; + CARRY 1

RETURN

5.6
Four Digit
BGD Divide

Program Name: BCDD4D '
Objective: This routine yields a 4 digit BCD quotient when
two 4 digit BCD numbers are input.
Input Data: 1. 4 digit BCD divisor in registers An, AL
2. 4 digit BCD dividend in registers Bn, B
Output Data: 1. 4 digit quotient in registers An, AL
2. Remainder in registers By, B
Approach: The algorithm used to compute the quotient is

similar to that used in long division.

The divisor is first normalized such that the most
significant digit (MSD) is in the 1000 place digit
position.

The normalized divisor is then repeatedly sub-
tracted from the dividend until the result is nega-
tive. The number of times that the divisor is
subtracted is the decimal digit that is stored in
the quotient. The dividend is restored to the
value it had before the negative result, the divisor
is shifted right one digit, and the above process is
repeated. This process continues until the entire
quotient is computed. An example is shown
below.

DIVISOR = 25

DIVIDEND = 625

1. Divisor normalized to 2500
2. Digit count = 4 — no. of shifts necessary to normalize divisor = 2

025

2500 -0625
<—2500 DC =2,COUNT =0 PLACE O IN POSITION 2

—1875
0625 :
0250 DC =1, COUNT =0
0375
0250 DC =1, COUNT =1

0125
<0250 DC =1, COUNT =2 PLACE 2 IN POSITION 1
—125

0125

0025 DC =0, COUNT =0
0100

0025 DC =0, COUNT =1
0075 :

0025 DC =0, COUNT =2
0050

0025 DC =0, COUNT =3
0025

0025 DC = 0, COUNT =4

—25

0000
(0025 DC =0, COUNT =5 PLACE 5 IN POSITION 0
REMAINDER

112

4 DIGIT BCD DIVIDE BCDD4D

IN: DIVISOR IN A
DIVIDEND INB

OUT: QUOTIENT IN A

COUNT =4
QUOTIENT =0

évum =0

AN

COUNT =
COUNT — 1

SHIFT L

SHIFT A
r— LEFT

ONE DIGIT

COUNT =
5 — COUNT

REMAINDER IN B

DIVUPD

UPDATE
DIVIDEND
B=B—A

IN

SHIFTR

SHIFT A
RIGHT
ONE DIGIT

!

QUOUPD

UPDATE
QUOTIENT

COUNT =
COUNT —1

B=T H‘o=o+1 |

QUOTIENT

RETURN

|

113

LINE

E-JN -~ B - R 4 BT S B

ADDR

000004
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022

000000
000004
000360
000017

000013
000014
0000135
000016
000017
000020
000022
000023
000011
000011
000024
000025
000026

000000
000001
000002
000003
000004

Bl

0742
0000
4004
4010
A014

B2

BCI OPERATIONS

TITLE ‘BCD OPERATIONS’

- gy @s

PAGE

FILE DEFINITIONS

FSR EQU 4 ;FILE SELECT REGISTER
TENPH EW 11 ; TENPORARY HIGH
TEMPL EQU 12 ; TEMPORARY LOW
A B 13 +INPUT MULTIPLICAND/QUTPUT HI PRODUCT
B EQU 14 + INPUT WULTIPLIER/QUTPUT LO PRODUCT
Pl QU 15 ;FIRST PARTIAL PRODUCT
p2 B 16 ;SECOND ° '
P3 g 17 ;THIRD * '
P4 EU 20 ;FOURTH ° !
COUNT EW 21 sHULTIPLY COUNTER
MULTC EQU 22 sMULTIPLY MULTIPLIER
'
MTEN EQU 4 SHIFT 10
UBNSK EQU X‘FO’ ;UPPER DIGIT MASK
LBNSK EQU X‘OF' ;LONER DIGIT MASK
; DIVIDE DEFINITIONS
y
AH EQU A sHI DIVISOR/HI QUOTIENT
AL EGU B ;L0 DIVISOR/LO QUOTIENT
BH B Pt sHI DIVIDEND
BL 31| B +LO DIVIDEND/REMAINDER
OH EQy P3 sHI PARTIAL GUOTIENT
a EQU P4 ;L0 PARTIAL GUOTIENT
QUOTH EQGU MULTC sHI QUOTIENT(TENP)
auotL EU 23 ;L0 QUOTIENTCTEMP)
SIGN EQU TEMPH ;SIGN INDICATOR
DCNT EQU TEMPH ;SHIFT COUNTER
TH EQU 24 ;TENP DIVIDEND
T U 25 i '
ADJ EOU 26 ;CARRY ADJUST FOR SUBTRACTION
H
L4
3 SHIFT FACTOR FOR BCD DIGITS
14
SFTFAC ADDNF 2
NOP
RETLW .4
RETLW .8
RETLW .12

1

114

LINE ADDR Bl B2 BCD OPERATIONS PAGE 2
49 000005

50 H

51 5 4 DIGIT DIVIDE: (BH,BL)/(AH,AL) ---> {AH,AL),BL
52 H

53 000005 0142 BCDDAD CLRF GUOTH

54 000006 0163 CLRF @QuoTL

99 000007 6004 NOVLW 4

36 000010 0041 HOVWF COUNT

97 000011 6012 NORM MOVLK .10

38 000012 0213 SUBWF AH,N

59 000013 3003 SKPNC ;IF AH IS >10

&0 000014 35021 B v ;DIVISOR(A) IS NORMALIZED,DO DIVIDE
51 000015 4507 CALL SHIFTL sELSE SHIFT ONE DIGIT LEFT

62 000016 1341 DECFSZ COUNT sKEEP TRACK OF SHIFTS

43 000017 5011 B NORM

44 000020 5050 B EXIT sDIVISOR=0, EXIT

&5 H

46 000021 48006 biJLY HOULR &

47 000022 0261 SUBWF COUNT sUSE COUNT FOR QUOTIENT DIGIT COUNT
48 000023 1141 COMF COUNT

69 000024 0140 BLOOP CLRF 0L

70 000025 0157 CLRF OH

71 000026 4451 NLDOP CALL DIVUPD sSUBTRACT DIVISOR FROM FARTIAL DIVIDEND
72 000027 1051 TSTF SIGN

73 000030 3503 8KPZ s IF NEGATIVE, ADD @ TO QUOTIENT
74 000031 35040 B SAVED

75 000032 1024 MOVF TH,W

76 000033 0055 MOVWF BH sUPDATE DIVIDEND

77 000034 1025 HNOVF - TL,K

78 000035 0054 HOVWF BL

79 000036 1260 INCF L

80 000037 5026 B NLOOP

B1 000040 4517 SAVEQ CALL SHIFTR sSHIFT DIVISOR RIGHT ONE DIGIT

82 000041 4527 CALL QUOUPD sUPDATE QUOTIENT

83 000042 1361 CHKCNT DECFSZ COUNT ;UPDATE COUNT

84 000043 5024 B pLOOP

85 000044 1022 MOVF QUOTH, W +1F COUNT=0,5AVE QUOTIENT,EXIT

86 000045 00353 HOVWF AH

87 000046 1023 MOVF QUOTL,W

88 000047 0054 MOVWF AL

89 000030 4000 EXIT RET

91 ;

92 3 SUBTRACT DIVISOR FROM DIVIDEND
93 s (BH,BL)-(AH,AL} ---> SIGN,TH,TL
94 H

95 000091 0166 DIVUPD CLRF ADJ

P46 000092 1016 MOVF BL,W

97 000033 0052 MOVWF TEMPL

98 000054 1014 MOVF AL,W

99 000055 0051 MOVWF TEMPH

100 000054 4716 CALL UBCDSE ;s TEMFL~TEMPH

115

LIN ADDR B1I B2 BCD OPERATIONS PAGE 3

101 000057 1012 MOVF TEMPL,W

102 000060 0065 MOWF TL sRESULT

103 000061 1051 TSTF TEMPH 3

104 000062 3503 8KPZ +IF RESULT (-),

105 000043 1266 INCF ADJ ;8DJ=1

106 000044 1015 MOVF BH,¥

107 000065 0052 HOVWF TEMPL

108 000066 1013 HOVF AH,W

109 000067 0051 MOVKF TEMPH H

110 000070 4714 CALL UBCDSB s TEMPL-TEMPH

111 000071 1051 TSTF TEMPH

112 000072 3503 SKPZ

113 000073 35106 R EXIT1 ;IF RESULT NEGATIVE,EXIT

114 000074 1046 TSTF ADJ

115 000075 3103 SKPNZ :

116 000076 35104 B SAVE ;ADJ=0,ND ADJUSTHENT

117 000077 1015 NOVF BH,M

118 000100 0052 MOVWF TEMPL

119 000101 1026 HOVF ADJ M

120 000102 0051 MOVKF TEMPH

121 000103 4714 CALL UBCDSB $ADJUST HI RESULT

122 000104 1012 SAVE HOVUF TEMPL,M

123 000105 0044 MOVWF TH sHI RESULT

124 000106 4000 EXIT1 RET

126 H

127 s SHIFT AH,AL LEFT ONE BCD DIGIT

128 H

129 000107 4004 SHIFTL MOVLW 4

130 000110 0051 HOVWF DCNT

131 000111 2003 SLLOOP CLRC

132 000112 1354 RLF AL

133 000113 1533 RLF AH

134 000114 1351 DECFSZ DONT

135 000115 5111 : B SLLOOP

136 000116 4000 RET

137 '

138 3 SHIFT AH,AL RITE ONE DIGIT

139 ; '

140 000117 4004 SHIFTR MOULW 4

1A1 000120 0051 MOVWF DCNT

142 000121 2003 SRLOOP CLRC

143 000122 1453 RRF AH

144 000123 1454 RRF AL

145 000124 1351 DECFSZ DONT

146 000125 S12A B SRLOOP

147 000126 4000 RET

148 H

149 3 UPDATE QUOTIENT BY SHIFTING O AND ADDING IT TO 0
-UOTIENT

150 H

116

LIE ADDR B1 B2 BCD OPERATIONS PAGE 4
151 000127 1021 QUOUPD MOVF COUNT,M

152 000130 0051 MOVMF DCNT

153 000131 1351 DECFSZ DCNT

154 000132 5134 6OTD FNDSFT sIF COUNT=/=1, SHIFT

155 000133 51M GOTO ORGUOT iND SHIFT

156 000134 1011 FNDSFT MOVF DCNT,M

157 000135 4400 CALL SFIFAC

158 000135 0051 MOVNF DCNT $BET SHIFT FACTOR

15¢ 000137 2003 SQLOOP CLRC

160 000140 1560 RF 0L

161 000141 1557 RF M

162 000142 1351 DECFSZ DCNT

163 000143 5137 B SOLOOP

164 000144 1017 ORGUOT MOVF OH, M

165 000145 0462 | I0RVF QUOTH sADD TO QUOTIENT

166 000146 1020 WOVF oL,W

167 000147 0463 T0RWF QUOTL

168 000150 4000 RET

170 ;

171 ; DOUBLE DIGIT BCD MULTIPLY
172 ;

173 s INPUT: 2 DIGIT NULTIPLICAND IN REGISTER A
174 ; 2 DIGIT NULTIPLIER IN REGISTER B
175 i

176 s OUTPUT: 4 DIGIT PRODUCT IN A,B
{77 ;

178 000151 0157 BCDNZD CLRF P3 ;CLEAR PARTIAL PRODUCT 3
179 000152 0155 CLRF Pt ; AND PARTIAL PRODUCT 1

180 000153 6017 HOVLW LBMSK

181 000154 0513 ANDNF A, ¥ AL

182 000155 0060 HOWWF P4

183 000156 4017 MOULW LBMSK i

184 000157 0514 ANDHF B,M Bl

185 000160 0062 HOWF NULTC

186 000161 4020 HOWLW P4

187 000162 0044 "HOWWF FSR sFSR=PA

188 000163 4664 CALL DNULT $ALERL

189 000164 6360 MOVLW UBMSK

190 000165 0513 ANDUF A,

191 000186 0056 WOWF P2 3AH

192 000167 1656 SWAPF P2

193 000170 4016 HOULW P2

194 000171 0044 HOVWF FSK sFSR=P2

195 000172 4664 CALL DNULT JAHSBL

196 000173 6004 HOVLW NTEN

197 000174 0041 MOVWF COUNT sSHIFT P1,P2 BY TEN

198 ;FORM PARTIAL PRODUCT IN P3,P4
199 000175 2003 PPRDI CLRC

200 000176 155 RIF P2

201 000177 1555 RF PL

202 000200 1361 DECFSZ COUNT

117

LIN ADDR BL B2 BCD OPERATIONS PAGE S
203 000201 5175 B PPRIM

204 000202 4644 CALL DADD

205 :

206 000203 0155 CLRF Pl

207 000204 4360 MOVLW UBMSK

208 000205 0514 ANDWF B, ;BH

209 000206 0042 MOVWF NULTC

210 000207 1462 SWAPF NULTC

211 000210 4017 HOVLYW LBMSK

212 000211 Q513 ANDWF A M ;AL

213 000212 0056 HOVWF P2

214 000213 6016 HOULY P2

215 000214 0044 HOVWF FSR ;FSR=P2

216 000215 4664 CALL DNULT sALXBH

217 000216 4004 HOVLY NTEN

218 000217 0061 HOVMF COUNT $+SHIFT P1,P2 BY TEN

219 ;FORM PARTIAL PRODUCT IN P3,P4
220 000220 2003 PPRD2 CLRC

221 000221 1556 RLF P2

222 000222 1555 RLF P

223 000223 1341 DECFSZ COUNT

224 000224 5220 B PPRD2

225 000225 4644 CALL DADD

226 i

227 000226 0156 CLRF P2

228 000227 4360 MOVLW UBNSK

229 000230 0513 ANDHF AN |

236 000231 0055 MOVWF P1

231 000232 1655 SWAPF P sPRODUCT IN P1 TO SHIFT BY 100
232 000233 6015 HOVLE P1

233 000234 0044 HOVWF FSR sFSR=P1

234 000235 44664 CALL DMULT ;AHXBH

235 000236 4644 CALL DADD ;ADD P1,P2 TO P3,P4 FOR FINAL PRODUCT
236 000237 1017 HOVF P3N

237 000240 0053 HOVWF A sFINAL HIGH PRODUCT

238 000241 1020 MOVF P4,W

239 000242 0054 MOVHF B sFINAL LO PRODUCT

250 000243 4000 RET

242 H

43 ; ADD P1,P2 TO P3,P4 AND STORE RESULT IN P3,P4
244 ;

243 000244 1014 DADD MOVF P2,¥

246 000245 0051 HOVWF TEMPH ;P2 IN TEMPH FOR UBCDAD
247 000246 1020 MOVF PaN

248 000247 0052 HOVWF TEMFL ;P4 INU TEMPL FOR UBCDAD
249 000250 4716 CALL UBCDAD sP24P4

250 000251 1012 HOVF TEMPL,H

251 000252 0040 HOUNF P4 ;L0 RESULT IN P4

252 000253 1017 HOVF P3,W

233 000234 0052 MOVWF TEMPL

294 000235 4716 CALL UBCDAD sP2HP34CARRY 0

118

LINE

255
26
257
258
289
260
82
263
264
265
266
267
268
269
270
N
272
273
274
275
276
277
278
279
280
281
202
2683

283
286
287
268
289
290
291
292

ADDR Bl

000256
000257
000260
000261
000262
000263

000264
000245
000266
000267
000270
000271
000272
000273
000274
000275
000276
000277
000300
000301
100302
000303
000304
{00305
000306
000307
000310
000311
000312
000313
000314
000315

1015
0051
4716
1012
0057
4000

1000
3103
9315
1300
3273
1022
S314
1022
3503
3300
0040
3315
0061
1361
3304
EX 1K)
1000
0052
1000
0051
4716
1361
3306
1012
0040
4000

B2 BCD OPERATIONS

HOVF P1,W
HOUWF TEMPH
CALL UBCDAD
HOVF TEMPL,M
HOVWF P3

RET

DNULT MOVF O,¥
SKPNZ

B EXITN
DECFSZ 0,W

B CHKN
MOVF MULTC,W
B STRF
MOVF MULTC,W
SKPZ

B CONT
HOWHF 0

B EXITH
HOVWF COUNT
DECFSZ COUNT

B ML

B EXITH
WL MOVF O,M
HOVWF TEMPL
HOVF O,W
HOVKF TEMPH
CALL UBCDAD
DECFSZ COUNT
B LOOP
MOVF TEMPL,N
STRF MOWWF 0

EXITH RET

CHKM

CONT

Loop

PAGE

sPLPIHCARRYOHCARRYL
sHI RESULT IN P3
SINGLE BCD DIGIT MULTIPLY

INPUT- MULTC: MULTIPLIER
FSR: MULTIPICAND/PRODUCT

- WA gy WE an

sFRS=FGR, EXIT

;FSR=1,FSR=NULTC

sNULTC=0,FSR=FSR, EXIT
sCOUNT=HULTC-1
sMULTC=1,FSR=FSR EXIT

;ADD NULIPLICAND TO ITSELF
$HULTIPLIER TIMES

+L0 RESULT IS FINAL
+ADD CARRY TO UPPER DIGIT

b

119

5.7a

Binary To

BCD Conversion
Method 1

Program Name:
Objective:

Input Data:

Output Data:

Approach:

BINTOB

This routine converts a 16 bit binary numbertoab
digit BCD number.

The 16 bit binary number is input in registers S0,
S1 with S0 containing the high order byte.

The 5 digit BCD numberis outputin registers RO,
R1, R2 with RO containing the MSD in its right-
most nibble.

Avery simple algorithmis used toaccomplishthe
conversion. The binary number is shifted left one
bit into the BCD number. If 16 shifts were per-
formed, the program exits. Otherwise, each BCD
digitis checked for avalue greater than 4. if this is
the case, 3 is added to the digit. The above pro-
cess is then repeated.

MSD LSD MSB LSD

BCD ——— BINARY

(5 DIGITS) (16 BITS)

120

BINARY TO BCD
CONVERSION

(BINTOB)

COUNT =16
RO=0
R1=0
R2=0

SHIFT So, S1
LEFT INTO
RO, R1, R2
(ONE BIT)

ADJBCD

ADJUST R2

/

ADJBCD

ADJUST R1

\

ADJBCD

ADJUST RO

IN: BCD #IN RO, R1, R2
OUT: BINARY #IN S0, S1

BCD
MSD
RO R1 R2

LSD MSB LSB

S0 S1

RO = MSD; R2 = LSD
S0 = HIGH ORDER BYTE
S1 = LOW ORDER BYTE

" RETURN
ADJBCD

FSR =2 DIGIT
BCD #

LSD =
LSD + 3

i

MSD =
MSD + 3

RETURN

121

LIN ADDR Bl B2 PIC MACRD ASSEMBLER VER 1.0 PAGE 3
48 ;
9 3 BINARY TO BCD CONVERSION
50 ; INPUT 14 BIT BINARY NUMBER IN 50,51
b} 3 OUTPUT 5 DIGIT BCD NUMBER IN RO,R1,R2
2 ;
53 000036 6020 BINTOB MOVLE .16
94 000037 0054 MOVNF COUNT
95 000040 0151 CLRF RO ;CLEAR BCD NO.
56 000041 0152 CLRF Rl
37 000042 0153 CLRF R2
58 000043 1555 LOOPC RLF S sSHIFT BINARY INTO BCD NO,
59 000044 1554 RLF S0
40 000045 1553 RLF R2
b1 000044 1552 RLF Ri
62 000047 1551 RLF RO
b3 000050 1356 DECFSZ COUNT
4 000051 5053 B ADJDEC
65 000052 4000 RET sEXIT IF 16 SHIFTS
bb ;
67 000053 4013 ADJDEC MOVLW R2
48 000054 0044 MOVWF FSR
69 000055 4465 CALL ADJBCD $ADJUST R2
70 000056 4012 MOVLE Rl
71 000057 0044 MOVWF FSR
72 000040 4465 CALL ADJBCD sADJUST Rt
73 000061 6011 NOVLW RO
74 000062 0044 HOWF FS5R
75 000063 4465 CALL ADJBCD sADJUST RO
76 000064 5043 B LoorC
77 H
78 000065 6003 ADJBCD NOVLW X’03’
79 000066 0700 ADDWF 0,0 sADD 3 TO LSD
80 000047 0057 MOVWF TEMP
81 000070 3157 BTFSC TENP,3 sIF RESULT > 7
82 000071 0040 NOWWF 0 sSAVE INTO LSD
83 000072 46040 MOVLM X‘30’
84 000073 €700 ADDWF O,W $ADD 3 TO MSD
85 000074 0057 HOVWF TEWP
84 000075 3357 BTFSC TEMP,? ;IF RESULT > 7
87 000076 0040 HOVWF 0 1SAVE INTO MSD
88 000077 4000 RET
89 000100 END

ASSEMBLER ERRORS = 0

122

5.7b

Binary To BCD
Conversion

(2 digits)
Method Il

This routine converts the 8 bit binary number in the W register to a 2
digit BCD number, which is then converted to drive 2 7-segment LED
displays from ports 6 and 7.

STEMP 1 is the temporary register which will contain the least signifi-
cant digit on conversion.

STEMP 2 is the temporary register which will contain the most signifi-
cant digit on conversion.

DIG 1 is the least significant digit output port.
DIG 2 is the most significant digit output port.

123

OUTPUT
GTENTH

GSEGL

AA
GSEG2
CC

CONVRT
TBSTRL

CLRF
MOVWF
MOVLW
SUBWF
SKPC
GOTO
MOVWF
INCF
GOTO
MOVLW
ADDWF
CALL
MOVWF
MOVLW
ADDWF
CALL
MOVWF
RET
MOVWF
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW

STEMP2
STEMP1
10 ; sub .10 from STEMP1
STEMP1,W
; Positive
GSEGL
STEMP1 ; Yes
STEMP2
GTENTH
TBSTRL
STEMP1,W
CONVRT
DIG1
TBSTRL
STEMP2,W
CONVRT
DIG2

2
300 : Decimal to 7 seg. conversion table
371
244
260
231
222
202
230
200
230

The algorithm used here is to count the number of times 10 (ten) can be subtracted from the binary
number before a negative result is obtained. The count then becomes the 10’s digit. The units digit.is the
remainder before the last subtraction.

124

5_8 Program Name:

BGD To

Obijective:

Bi“arv Input Data:

Gonversion

Output Data:

Approach:

BCDTOB

This routine converts a 5 digit BCD numberto a
16 bit binary number.

The 5 digit BCD number is input in registers RO,
R1, R2 with RO containing the MSD in its right-
most nibble.

The 16 bit binary number is output in registers
S0, S1 with S0 containing the high order byte.

The program uses a very simple algorithm to
accomplish the conversion. The BCD number is
shifted right one bit into the binary number. If 16
shifts were performed, the program exits. Other-
wise, each BCD digit is checked for a value
greater than 7. If this is the case, 3 is subtracted
from the digit. The above processisthenrepeated.

MSD LSD MSB LSB

BCD —————- BINARY

(5 DIGITS) (16 BITS)

126

BCD TO BINARY
CONVERSION

(BcDTOB)

COUNT = 16
So =0
S =0

—

SHIFT Ro, R1, Re
RIGHT 1 BIT
INTO So, S

ADJBIN

ADJUST R2

!

ADJBIN

ADJUST R1

1

ADJBIN

ADJUST RO

]

IN: BCD #IN RO, R1, R2
OUT: BINARY #IN S0, S1

BCD

MSD LSD MSB LSB

| roR1R2 | sost |

RO = MSD: R2 = LSD
S0 = HIGH ORDER BYTE
S1 = LOW ORDER BYTE

RETURN
FSR = 2 DIGIT
ADJBIN BCD #
LSD =
LSD -3

MSD =
MSD — 3

RETURN

126

LIN ADDR Bl B2 PIC MACRD ASSEMBLER VER 1.0 PAGE 2
10 ' :
i s BCD TO BINARY CONVERSION

12

-u WE o

+ 5 DIGIT BCD NUMBER INPUT IN RO,R1,R2

13 ; 16 BIT BINARY NUMBER OUTPUT IN 50,51
14 :

{5 000000 4020 BCDTOB MOVLW .16

16 000001 0056 NOVWF COUNT

17 000002 0134 CLRF 80 sCLEAR BINARY NOD.

18 000003 (1535 CLRF &1

19000004 2003 LOOPD CLRC

20 000005 1451 RRF RO $SHIFT BCD INTO BINARY NO.
21 000006 1452 RRF K1

22000007 1453 RRF A2

23 000010 1454 RRF S0

24 000011 1435 RRF 51

25 00001z 1356 DECFSZ COUNT

26 000013 5015 B ALJOCT

27 000014 4000 RET sEXIT IF 16 SHIFTS
2B '

29 000015 6013 ADJOCT HOVLW R2

30 000016 0044 HOVWF FSR

3000017 4427 £ALL ADJBIN 1ADJUST R2
32000020 4012 MOVLW R

33000021 0044 HOVWF FSR

34000022 4427 CALL ADUBIN 3ADJUST R

35 000023 4011 MOVLW RO

36 000024 0044 MOVWF FSK

37 000025 4427 CALL ADJBIN $ADJUST RO

38 000026 5004 B L.OOPT

39 :

40 000027 4003 ADJBIN MOVLW X'03’

41 000030 3140 ETFSC 0, sIF »7

42 000031 0240 SUBWF 0 +SUBTRACT 3 FROM LSD
43 000032 4060 MOVLW X'307

44 000033 3340 BTFSC 0,7 JIF 57

43 000034 0240 SURNF ¢ sSUBTRACT 3 FROM M5D
46 000035 4000 RET

127

5 9 The following is the program listing for a double precision signed
" integer math package, which does addition, subtraction, multiplication

Double Precision and division.
Signed Integer
Math Package

128

LINE ADDR Bl B2 HATHS . PABE 1
1 TITLE 'MATHS’
2 7 DOUBLE PRECISION SIGNED INTEGER MATH PACKAGE
3 V
4 3 DEFINE THE FOLLOWING SYMBOLS:
3 H
4 ; ACCA BEGINNING OF 2 REGISTER FILE FOR FIRST OPE
: ~RAND
7 ;+ ACCB BEGINNING OF 2 REGISTER FILE FOR SECOND OP
~ERAND
8 + ACCC 2 REGISTER FILE FOR WPY/DIV
9 ; ACCD *° "
10 ; MATORG ORIGIN FOR LOAD OF PACKAGE
1 ; TEMP TEMPORARY SCRATCH REGISTER
12 s SIGN TEMPORARY SCRATCH REGISTER
13 H
14 + USAGE:
15 3 LOAD ACCA AND ACCB WITH THEIR RESPECTIVE
16 s+ CONTENTS, CALL THE SUBROUTINE, AND OBTAIN RESULT
17 ¢+ IN ACCB. ACCA IS HIGH 8 BITS, ACCA+1 IS LOW S8 K
-I78.
18
19
20 000000
21 000000 MATORG EQU 0
22 000011 TENP EQU 11
23 000012 ACCA EQU 12
24 000014 ACCB EQU 14
23 000016 ACCC EOU 16
26 000020 ; ACCD EQU 20
27 000022 SIGN EW 22
28 000000
29 000000
30 ORG MATORG
31 000000
32 ¢ 55X SUB 33
3 3 ACCB - ACCA --> ACCB
34 000000
35 000000 4565 NSUB CALL NEGA
36 000001
7 : §-====-> INPORTANT {--—-
38 ; NADD NUST FOLLOW...
39 §— > INPORTANT {~==—-~
40 000001
4 ;33% ADD 3%3
2 3 ACCA+ACCB --> ACCB
43 000001
44 000001 1013 MADD MOVF ACCAHL,M
45 000002 0755 ADDNF ACCBH1
4 000003 3003 BIFSC 3,0 3 ADD IN CARRY
47 000004 1254 INCF ACCB

129

LINE

48
L
30
)
2
33
94
b
96
57
o8
by
60
b1
62
63
64
65
b6
67
68
69
70
n
72
73
74
75
76
77
78
"
80
81
82
83
84
85
86
87
88
89
20
)
92
93
4
5]
4
97
%

000005
000006
000007
000010

000010
000010
000011
000012
000013
000014
000013
000016

000016
000014
000017
000020
000021
000022
000023

000023
000023
000024
000025
000026
000027
000030
000031
000032

000032
000032
000033
000034
000035
000036
000037

000037
000037

ADDR B1

1012
0754
4000

2003
3354
2403
1454
1455

4000 -

0051
4410
1351
3017
4000

2003
1555
1554
2354
3003
2754
4000

0051
4423
1351
3033
4000

1255

B2

MATHS

NASR1

HASR
MRLOOP

HASLL

MASL
HLOOP

NINC

HOVF ACCAM
ADDWF ACCE
RET

CLRC

BTFSC ACCB,7
SETC
RRF
RRF
RET

ACCB
ACCBtL

HOVWF TENP
CALL MASR1
DECFSZ TEMP
GOTO MRLOOP
RET

CLRC
RLF
RLF
BCF
SKPNC
BSF
RET

ACCBH
ACCB
ACCB, 7

ACCB,7

NOVWF TEWP
CALL MASL1
DECFSZ TEMP
GOTO MLOOP
RET

INCF ACCBH1

PAGE 2

;33% SHIFT RIGHT, ARITHMETIC ¥3%
; SHIFT ACCB RIGHT ONE PLACE
¢ SIGN OF OPERAND IS PRESERVED (OPTIONAL)

i $%30PTIONAL FOR SIGN
¢ KS3SET CARRY IF < 0

;43% SHIFT RIGHT, ARTTHMETIC, NULTIPLE PLACES
; SHIFT ACCB RIGHT THE NUMBER OF PLACES IN W
; CALLS MASR1

¢ SAVE COUNT

;433 SHIFT LEFT, ARITHMETIC %%
; SHIFT ACCB LEFT ONE PLACE
s SIGN OF OPERAND IS PRESERVED (OPTIOMAL)

; $XXOPTIONAL FOR SIGN
Rt
+ ¥XECARRY... SET SIGN

;%33 SHIFT LEFT, ARITHMETIC, MULTIPLE PLACES 3%
; SHIFT ACCB LEFT THE NUMBER OF PLACES IN W
+ CALLS MASL1

3 SAVE COUNT

;4x% INC 3%
: ACCB41 --> ACCB

130

LI ADDR B1 B2 MATHS PAGE 3
99 000040 3103 SKPNZ

100 000041 1254 INCF ACCB

101 000042 4000 RET

102 000043

103 ;35 DEC $k%

104 ; ACCB-1 --> ACCEH
105 000043

106 000043 1055 MDEC TSTF ACCBH1

107 000044 3103 SKPNZ

108 000045 0354 DECF ACCB

109 000046 0355 DECF ACCBHi

110 000047 4000 RET

111 000050

112 ;3xX MPY X1k

113 ; A%B --> (B,C) , HIGH ORDER B, LOW C
114 000050

115 000050 4351 WPY CALL PSIGN

116 000051 4502 CALL SETUP

117 000052 1440 NPLOOP RRF ACCD s ROTATE D RIGHT
118 000053 1461 RRF ACCDH

119 000054 3003 SKPNC ¢ NEED TO *ADD® 77
120 000055 4401 CALL MADD ;ADDATOB

121 000056 1454 RRF ACCB ; ROTATE (B,C) RIGHT
122 000057 1455 RRF ACCBH

123 000060 1456 RRF ACCC

124 000061 1457 RRF ACCCHL

125 000062 1351 DECFSZ TEMP ; LOOP TILL DONE
126 000063 5052 GOTO MPLOOP

127 000064 3762 BTFSS SIGN,7

128 000045 4000 RET

129 000066 1157 CONF ACCCH 3 RESTORE THE SIGN

130 000067 1257 INCF ACCCH

131 000070 3103 SKPNZ

132 000071 0356 DECF ACCC

133 000072 1136 COMF ACCC

134 000073 3103 SKPNZ

135 000074 0355 NEGB DECF ACCBH ;%K% NEGB #3x

136 000075 1155 COMF ACCBH1 3 & NICE WAY TO WORK THE

137 000076 3103 SKPNZ 3 ROUTINE IN...uue
138 000077 0354 DECF ACCB

139 000100 1154 COMF ~ ACCB

140 000101 4000 RET

141 000102

142 000102

143 000102 4020 SETUP MOVLW .16 ; 16 PLACE SHIFT
144 000103 0051 HOVNF TEMP

145 000104 1014 HOVF ACCB,W s HOUEBTOD

146 000105 0040 KOVWF ACCD

147 000106 1015 NOVF ACCBH1,W

148 000107 0061 NOVWF ACCDHL

149 000110 0154 CLRF ACCB ; CLEAR B

131

LINE ADDR BI B2 HATHS PAGE 4
150 000111 0155 CLRF ACCBH

151 000112 4000 RET

152 000113

153 ;453 DIV 353

154 7 ACCB/ACCA --> ACCB, REMAINDER IN ACCC
155 000113

156 000113 4551 DIV CALL PSIGN

157 000114 4302 CALL SETUP

158 000115 0156 CLRF ACCC

159 000116 0157 CLRF ACCCt!

160 000117 1361 DLOOP RLF ACCDH ; ROTATE (C,D) LEFT

161 000120 1560 RLF ACCD

162 000121 1557 RLF ACCCH

163 000122 1356 RLF ACCC

164 000123 1012 HOVF ACCA,N ; CHECK IF A C

165 000124 0216 SUBWF ACCC,M

166 000125 3503 SKPZ

167 000126 5131 GOTO NOCHK

168 000127 1013 HOVF ACCA+1,M ; HIGH’S EQUAL...CHECK LOWS
169 000130 0217 SUBWF ACCCHL,W

170 000131 3403 NOCHK SKPC

171 000132 5142 G0T0 NOGO ; A>C, SHIFT CLEAR CARRY
172 000133 1013 MOVF ACCAt1,N i C-A-=>C

173 000134 0257 SUBWF ACCCH

174 000135 3403 BTFSS 3,0

175 000136 0356 DECF ACCC

176 000137 1012 HOVF ACCA,W

177 000140 0256 SUBNF ACCC

178 000141 2403 SETC 7 SHIFT IN A ONE

179 000142 1355 NOGD RLF ACCBt1 ; SHIFT B LEFT

180 000143 1554 RLF ACCB

181 000144 1351 DECFSZ TEMP 7 LOOP TILL DONE

162 000145 5117 GOTO DLooP

183 000146 3762 BTFSS SIGN,7 ; FIX SIGN, IF NEG.

184 000147 4000 RET

185 000150 5074 GOTO NEGB

186 000151

187 000151 1012 PSIGN MOVF ACCA,W ; PREPARE SIGN

188 000152 0614 XORWF ACCB, W

189 000153 0062 HOVWF SIGN

190 000154 3754 BTFSS ACCB,7

191 000155 5163 60T0O TRYA

192 000156 1155 COMF ACCBH ¢ NEGB.... CANT CALL SUBR
193 000157 1255 INCF ACCBH1

194 000160 3103 SKPNZ

195 000161 0354 DECF ACCB

196 000162 1154 CONF ACCB

197 000143 3752 TRYA BTFSS ACCA,7

198 000164 4000 RET

199 000165

200 o > IMPORTANT <-=~---

132

LIN ADDR BL B2 HATHS PABE 5
201 s NEGA MUST FOLLOW,..

202 jm-====5 INPORTANT {--—--
203 000165

204 ;835 NEGA %33

205 s (-ACCA) —-> ACCA

206 000165

207 000165 1153 NEGA CONF ACCAH

208 000146 1253 | INCF ACCAH

209 000167 3103 SKPNZ

20 000170 0352 DECF ACCA

A1 000171 1152 CONF ACCA

212 000172 4000 RET

213 000173

214 000173 END

ASSENBLER ERRORS = 0

133

5.10
Floating-Point
Double Precision
Math Package

Addition, Subtraction, Multiplication and Division routines for a
floating-point double precision calculations are given below. Detailed
flowcharts given below describe the algorithms used. It may be
observed that the powerful instruction of the PIC reduce the entire
package to only 152 lines of code leaving enough space for most
application programs. It is recommended that the normalize routine be
called as often as possible in order to maintain the precision of the
calculations. Also, since many subroutines are nested, they should be
called only from the mainline.

ACCA is the beginning of 3 register accumulator
ACCB is the beginning of 3 register accumulator
ACCC 2 register file for MPY/DIV

ACCD 2 register file for MPY/DIV

TEMP Temporary Scratch Register

SIGN Temporary Scratch Register

To use the math package, load ACCA and ACCB with their respective
contents, call the subroutines and obtain resultin ACCB. ACCA is high
8 bits, ACCA + .1 is low 8 bits.

134

FSuB SUBTRACTION ROUTINE
ACCB — ACCA — ACCB

OBTAIN 2S COMPLEMENT
OF ACCA
(CALL NEGA)

FADD ADDITION ROUTINE

SUBTRACT
EXPONENT A
FROM
EXPONENT B

SWAP THEM
| (CALL FSWAP)

SUBTRACT EXP B
FROM EXP B
EXP B REG HAS THE
DIFFERENCE

SHIFT ACCB RIGHT
PRESERVING THE
SIGN
INCREMENT EXP B

DETERMINE SIGN
OF RESULT

1
ADD THE TWO
16-BIT NOS
(CALL MADD)

]
CHECK AND
CORRECT FOR
OVERFLOW

L RETURN

135

MULTIPLICATION ROUTINE

DETERMINE SIGN OF
FINAL ANSWER
OBTAIN 2'S COMPLEMENT
OF — VE #S

MOVE ACCB TO ACCD
CLEAR ACCB
INITIATE TEMP TO .16

——

SHIFT ACCD RIGHT

ONE BIT
ADD MULTIPLICAND
Y TO THE PARTIAL
' PRODUCT (CALL
MADD) IN ACCB
N

ROTATE ACCB
RIGHT ONE BIT

DECREMENT
TEMP REG

,*

ADD THE EXPONENTS
EXP A +EXPB— EXPB

1S
SIGN
OF ANSWER
+ OR —

OBTAIN 2'S
COMPLEMENT
OF ACCB

+VE

+.____

NORMALIZE ACCB
TO MAINTAIN
PRECISION

RETURN

136

DIV DIVISION ROUTINE

DETERMINE SIGN
OF FINAL ANSWER
OBTAIN 2'S COMPLE-
MENT OF —VE #'S

MOVE ACCB TO ACCD
CLEAR ACCB; ACCC
INITIATE TEMP TO .16

—

ROTATE ACCD LEFT
ONE BIT INTO ACCC
CHECK IF ACCA IS
> =0R< ACCC

N SUBTRACT ACCA
FROM ACCC
‘ I
CLEAR CARRY SET CARRY

+¢ J

ROTATE ACCB
1 BIT LEFT TO
SHIFT IN CARRY

DECREMENT
TEMP REG

<Cr>

Y

SUBTRACT
EXPONENTS

ADJUST ACCB IF
FINAL ANSWER
WAS TO BE —VE

(RETURN)

137

-2

LINN ADDRK B1 B2 NATHF PAGE 1
1 TITLE 'MATHF'
2 3 DOUBLE PRECISION FLOATING POINT MATH PACKAGE
3 i
4 3y DEFINE THE FOLLOWING SYMBOLS:
3 ;
8 + ACCA BEGINNING OF 3 REGISTER ACCUMULATOR
7 = hccn st [1} s []]
8 ;s ACCC 2 REGISTER FILE FOR MPY/DIV
9 + ACCD *° "
10 3+ NATORG ORIGIN FOR LOAD OF PACKAGE
1 ;+ TENP TEMPORARY SCRATCH REGISTER
12 7 SIGN TEMPORARY SCRATCH REGISTER
13 H
14 3 USAGE:
15 ; LOAD ACCA AND ACCB WITH THEIR RESPECTIVE
16 ; CONTENTS, CALL THE SUBROUTINE, AND OBTAIN RESULT
17 s IN ACCB. ACCA IS HIGH 8 BITS, ACCA+1 IS LOW B B
~1T8.
18 H
19 ; NOTE: MANY SUBROUTINES ARE NESTED, SO DO NOT CA
-lL
20 :+ ANY OF THE ROUTINES OTHER THAN FROM THE MAINLINE
2 H
22 000000
23 000000 NATORG EQU O
24 000017 TENP EQU 17
23 000011 ACCA EQU U
26 000013 EXPA EQU 13
27 000014 ACCE EQU 14
28 000014 EXPB EQU 16
29 000020 ACCC EQU 20
30 000022 ACCD EQU 22
31 000024 SIGN EQU 24
32 000000
33000000
3 ORG MATORG
35 000000
3 ; ¥8% SUB %X
7 3 ACCB - ACCA --> ACCB
38 000000
39 000000 4545 FSUB CALL NEGA
40 000001
)] §———- > INPORTANT (==~
42 3 FADD MUST FOLLOW...
XS g————— > IMPORTANT {--—--
44 000001
A5 s32% ADD %%
4% 3 ACCAACCB --> ACCB
47 000001

138

LINE ADDR Bl B2 KATHF PAGE 2

48 000001 1013 FADD MOVF EXFA,M SCALE MANTISSAS

- W

49 000002 0216 : SUBWF EXPB,W FIND GREATER EXPONENT

30 000003 3103 SKPNZ

51 000004 35014 GOTO PAID : EXPONENTS EQUAL...ALD

32 000005 3003 SKPNC

93 000006 4406 CALL FSWAF i B> A, SWAP ‘EN

34 000007 1013 MOVE EXPA,¥ ; COUNT FOR SHIFT RIGHT

33 000010 0236 SURWF EXFB

6 000011 4437 SCLODP CALL MASRI

37 000012 1756 INCFSZ EXFE

58 000013 5011 GOTG SCLOGF

49 000014 1013 NOVF EXPAW

60 000015 0056 KOVWF EXPB

61 000016 1011 PADD MOVF ACCA,W ; FIND SIGN OF RESULT

62 000017 0414 I0RWF ACCB,W ; FOR OVERFLOW CHECK

63 000020 0064 MOVWF SIGN

&4 000021 4430 CALL MADD

65 000022 3764 BTFSS SIGN,7 ; CHECK FOR OVERFLOW

b6 000023 3754 BTFES ACCB,7

67 000024 4000 RET

68 000025 2003 CLRC

69 000026 1256 INCF EXPB i WE OVERFLOWED...

70 000027 5047 GOTD ASRHCK ; SCALE TO RIGHT

71000030

72000030 1012 MADD MOVF ACCAHLK

73 000031 0735 ADIWF ACCBHL

74 000032 3003 BTFSC 3,0 ; ADD IN CARRY

75 000033 1234 INCF ACCE

76 000034 1011 MOVF ACCA,W

77 000035 0754 ADDWF ACCR

78 000036 4000 RET

79 000037

80 $%%% SHIFT RIGHT, ARITHMETIC ¥3%
81 ; SHIFT ACCB RIGHT ONE PLACE
82 ' ; SIGN DF OPERAND IS PRESERVED (OPTIONAL}
83 000037

84 000037 2003 MASRI CLRC

85 000040 3354 ETFSC ACCE,7 3 XXXOPTIONAL FOR SIGN

86 000041 2403 SETC s BRIGET CARRY IF < 0

87 000042 1454 ASRHCK RRF ACCR

88 000043 1455 RRF ACCRH

89 000044 4000 RET

70 000045

b)) $¥%% GHIFT LEFT, ARITHMETIC %kx
9 ; SHIFT ACCR LEFT ONE PLACE
93 ; SIGN OF OPERAND IS PRESERVED (OPTIONAL)
74 000045

25 000045 2003 HASLI CLRC

§6 000044 1355 RLF ACCBH

97 000047 1554 RLF ACCE

139

LINE ADDR B1 B2 HATHF PAGE 3
98 000050 2354 BIF ACCH,7 : $¥30PTIONAL FOR SIGN
99 000051 3003 SKPNC : ¥4k

100 000052 2754 BSF ACCB,7 + SXKCARRY... SET SIGN

101 000053 4000 RET

102 000054

103 SEEK NPY 2%

104 : ACCA$ACCB --» ACCB

105 000054

106 000054 4551 FMPY CALL PSIGN

107 000055 4501 CALL SETUP

108 000056 1462 MPLOOP RRF ACCD : ROTATE U RIGHT

109 000057 1443 RRF ACCDH

110 000050 3003 SKPNC : NEED O "ADD* 77

111 000061 4430 CALL MADD : ADD A TO B

112 000062 1454 RRF ACCR + ROTATE B RIGHT

113 000063 1455 RRF ACCBH

114 000044 1357 DECFSZ TEMP : LOOP TILL DONE

115 000065 5056 GOTD MPLOOP
116 000066 1013 HOVF EXPA,M : ADD EXPONENTS

117 000067 0756 ADDWF EXFB
118 000070 1256 INCF EXPR

119 000071 3744 FINUP BTFSS SIGN,?
120 000072 5173 GOTO NORM

124 000073 0355 NEGR DECF ACCRH 1555 NEGB ¥3%

122 000074 1155 CONF ACCHH : A NICE WAY TO WORK THE

123 000075 3103 SKPNZ 3 ROUTINE IN......

124 000076 0354 DECF ACCB

125 000077 1154 CONF ACCR

126 000100 5173 GOTD NORN

127 000101
128 000101

129 000101 4020 SETUF MOVLW .16 i 16 PLACE SHIFT
130 000102 0057 MOVKF TEMP

131 000103 1014 MOVF ACCR.M s MOVERTOD

132 000104 0062 HOVWF ACCD

133 000105 1015 MOVF ACCBHLM

134 000106 0063 MOVNF ACCDHL

135 000107 0154 CLRF ACCR ; CLEAR B

136 000110 0155 CLRF ACCBt1

137 000111 4000 RET

138 000112

137 $XE% DIV ki

140 ; ACCB/ACCA --> ACCB, REMAINDER IN ACCC
141 000112

142 000112 4358 DIV CALL PSIGM

143 000113 4501 CALL SETUP

144 000114 0160 CLRF ACCC

145 000115 0161 CLRF ACCCH

146 000116 1363 DLOOP RLF ACCDHL 3 ROTATE (C,D) LEFT
147 000117 1562 RLF ACCE

148 000120 1361 RLF - ACCC41

140

LINE ADDR Bl 22 MATHF PAGE 4
149 000121 1560 RLF ACCC

150 000122 1011 HOVF ACCA,U ; CHECK IF A > €

191 000123 0220 SUBWF ACCC,¥

152 000124 3503 5KFZ

153 000125 5130 §0TO NOCHK

194 000126 1012 MOVF ACCAH1,W ; HIGH'S EQUAL...CHECK LOWS
133 000127 Q221 SUBWE ACCCH W

156 000130 3403 NDCHK SKPC

157 000131 5141 GOTO NOGO s+ A»C, SHIFT CLEAR CARRY
158 000132 1012 MOVF ACCAHLW i A > C

159 000133 0261 SUBWF ACCCH ;

160 000134 3403 BTFSS 3,0

161 000133 0360 DECF ACCC

162 000136 1011 MOVF ACCA, U

163 000137 0260 SUBWF ACCC

164 000140 2403 SETC 7 SHIFT IN A ONE

165 000141 1355 NOGD RLF ACCB1 ; SHIFT B LEFT

166 000142 1554 RLF ACCR

167 000143 1357 DECFSZ TEMP ; LOOP TILL DOME

168 000144 5116 60T DLOOF

169 000145 6341 NOVLE -.15 ¢ SUBTRACT EXPONENTS

170 000146 0713 ADDWF EXPAM

171 000147 0236 SUBWF EXPB

172 000150 35071 60TO FINUF

173 000151

174 000151 1011 PSIGN MOVF ACCA,W ; PREPARE SIGN

175 000152 0614 XORWF ACCE,W

176 000133 0044 MOVWF SIGN

177 000154 3754 BTFSS ACCB,7

178 000155 35163 GOTO TRYA

17% 000156 1155 COMF ACCBH1 + NEGB.... CANT CALL SUBR
18¢ 000157 1255 INCF ACCRH1

181 000160 3103 SKPNZ

182 000161 0354 DECF ACCR

183 000162 1154 CONF ACCB

184 000163 3751 TRYA BTFSS ACCA,7

185 000164 4000 RET

186 000163

187 - » IMPORTANT <{----—-
188 i NEGA MUST FOLLOW...
189 - > IKPORTANT ¢~~~
190 000145

191 sXEE NEGA ¥xx

192 3 (-ACCA) -~ ACCA

193 000163

194 000165 1152 NEGA COMF ACCAHL

195 000166 1252 INCF ACCAH

196 000167 3103 EKPNZ

197 0001706 0351 DECF ACCA

198 000171 1151 COMF ACCA

179 000172 4000 RET

141

LINE

200
201

ADDR Bl

000173

202

203
204

205
206
207

209
210
211
212
243
214
215
216
217
218
a9
220
21
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

000173
000173
000174
000175
000176
000177
000200
000201
000202
000203
000204
000205
000206

000204
000206
000207
000210
000211
000212
000213
000214
000215
000216
000217
000220
000221
000222
000223
000224
000225
000226
000227
000230
000231

1054
3503
3201
1055
3103
4000
3314
4000
4445
0356
3201

1011
0057
1014

- 0031

1017
0054
1012
0057
1015
0052
1017
0055
1013
0057
1016
0053
1017
0034

B2 HATHF

NORM

CNORM

FSWAP

TSTF
9KPZ
601D
TSTF
SKPNZ
RET
BTFSC
RET
CALL
DECF
GoT0

HOVF
HOVNF
HOVF
HOVNF
NOVF
MOWF
HOVF
HOVRF
HOVF
NOVWF
HOVF
HOVWF
NOVF
HOVWF
HOVF
HOVWF
HOVF
HKOVRF
RET

ACCR

CNORM
ACCBt1

ACCB,6

MASLY
EXPB
CNORM

ACCA, U
TENP
ACCB, W
ACCA
TENP
ACCB
ACCAHL, W
TEWP
ACCBH M
ACCAH
TENP, W
ACCBH
EXPA, ¥
TENP
EXPB, U
EXPA
TENP ¥
EXPB

PAGE 5

;%3% NORMALIZE %%

; NORMALIZES ACCB FOR USE IN FLOATING POINT CALCUL
-ATIONS

; -~--» IT IS RECOMENDED THAT ONE CALLS THIS ROUTI
-NE

; FREQUENTLY SO AS NOT TO ALLOW LOSS OF PREC
-ISION

;%53 FOUAP X3k
; (ACCA,EXPA) {---» (ACCB,EXPB)

142

5.11

Sguare Root
Algorithm Using
Newton’s Method

Abstract: Newton’s method is used in this program to find
the square root of a number represented by two
8-bit registers as its mantissa and one 8-bit regis-
ter as its exponent.

Description: The algorithm uses subroutines of the double
precision floating point math package and is
intended to be used only as part of the main pro-
gram for processors with 2-level stacks (PIC1650
and PI1C1655).

NEWTON’'S METHOD
If N = Number and x = Square Root of N;
Then
X2 —N=0=1(x)

f (x1)
X1—X2

tan 8 = f'(x;) =

f
X2 = X1 — "("'—'X1)

()

X1 2“‘N
2X1

_X1

=2X12"‘“X12+N =X12"*‘N
2X1 2X1

= 1(x: +), where x; = old value
! X2 = new value

143

(SQRT >

\

TEMP 1 =16

Y

ACCA = 256 EO

—

ACCB =N

CALL DIV

CALL FADD

DECF EXP B

CALL NORM

CALL FSWAP

TEMP 1 = TEMP 1-1

; X =256

: N/

3 X1+ N/X%,

CF (X + N/Xy)

f(X)

(%)

X1 — Xo =——pom

X

144

O
Subroutines: FSUB : ACCB — ACCA—ACCB
FADD : ACCA + ACCB—ACCB

FMPY : ACCA*ACCB—ACCB
Div . ACCB/ACCA—ACCB

Registers: MATORG EQU 0
TEMP EQU 17
ACCA EQU 11
EXPA EQU 13
ACCB EQU 14
EXPB EQU 16
ACCC EQU 20
ACCD EQU 22

SIGN EQU 24
PROGRAM
Registers: TEMP1=25 N=26 EXPN = 30
TEMP1 EQU 25
SQRT MOVLW .16 - TEMP1 = 16
MOVWF TEMP1
CLRF ACCA : x; = 256EO=ACCA

CLRF ACCA+1
CLRF EXPA

INCF ACCA
BSF EXPA,7
‘NEWTON MOVF N,W ; N=ACCB

MOVWF ACCB
MOVF N+1WwW
MOVWF ACCB + 1
MOVF EXPN,W
MOVWF EXPB

CALL DIV ;7 N/x4

CALL FADD ;X1 + N/xq

DECF EXPB ; Ye(x1 + N/X1)

CALL NORM ; NORMALIZE RESULT

CALL FSWAP ; ACCA—ACCB
DECFSZ TEMP1 ; DO16 ITERATIONS
GO TO NEWTON

END ; ACCA = /N’

145

6.1

Keyhoard Scan
Program, Reads
And Debhounces
16 Keys And
Stores Key
Closures

In Two Files

6.2

Eight Digit
Seven-Segment
Display
Refreshing
Program

MISGELLANEOUS ROUTINES

The display is blanked at the start of the keyboard SCAN program to
prevent corruption of the display when reading the keys. Aftercomple-
tion, the display SCAN program should be run in order to restore the
display.

The SCAN file is initialized to all ones (377) and the carry bit cleared.
The GETKEY subroutine rotates the SCAN file left once, which moves
the carry into bit 0. The key column is enabled by the transfer of SCAN
to SCNOUT and the four keys are read by File 5. A key closure will be
read as a low and the complement will be stored in atemporary (TEMP)
file.

The lower 4 bits (nibble) of TEMP is swapped with the upper 4 bits and
the GETKEY subroutine is called. Eight keys are now positioned in
TEMP and compared with the key information in Debounce Reg 1
(DEBNSH1).

If the results of the XOR instruction is zero, the same key closures exist
and the key data is stored in KEYREGH1. If the result is not zero, key
closures have not stabilized and the key data is stored in DEBNS1.

The program is then repeated for the last two columns with the results
stored in DEBNS2 or KEYREG2.

At the start of the program File 10 (SCAN) is initialized to 376 (bit 0 low)
and the FSR REGISTER is initialized to 30. Data (in 7-segment code
format) has been stored in Files 30 through 37 by an external conver-
sion program.

The FSR REGISTER is addressed indirectly by the MOVF O,W instruc-
tion and the contents of File 30 is transferred to F6 (DATOUT). Next the
SCAN File contents are transferred to the SCNOUT File which in turn
enables the first digit. DIGIT1 information will now be displayed.

Before the next loop through the program, the SCAN File is rotated left
once and the FSR REGISTER is incremented. Now the program will
display the information for DIGIT2. This continues until the FSR REG-
ISTER contains a zero at which time all eight digits have been scanned.
A delay loop is added to the program to control the refresh rate of the
display, but in most cases the total program delay can be set to elimi-
nate this loop. To prevent the display from flickering, set the refresh
rate at 250-500Hz.

146

EIGHT DIGIT

SEVEN-SEGMENT DISPLAY

REFRESHING PROGRAM

qD

SET UP
SCAN REG = 376
FSR REG = 370

'

FSR REG POINTS TO
REG WITH 7 SEGMENT
DATA

!

OUTPUT 7 SEGMENT
DATA TO LEDS

!

TURN ON LED
DIGIT

!

SET SCAN
RATE

!

KEYBOARD SCAN PROGRAM READS
AND DEBOUNCES 16 KEYS AND STORES
KEY CLOSURES IN TWO FILES

(KEYSON)

BLANK DISPLAY
COLUMN SCAN =377
CLEAR CARRY

P

SELECT NEXT
LED DIGIT

{

INCREMENT FSR
REG

SAVE IN
DEBOUNCE REG 1

-

GET KEY

GET KEY

ROTATE KEY
COLUMN SCAN

i

Y

SWAP

READ 4 KEYS
& STORE

!

GET KEY

ALL

FSR N]
Lo >—

Y

ALL DIGITS
HAVE BEEN
UPDATED

CONTINUE

4

A

ARE
THE KEYS IN

AS DEBOUNCE
REG 1

COLUMNS 1 + 2 SAME

KEYS READ

ARE
THE KEYS IN
COLUMNS 3 + 4 SAME
AS DEBOUNCE
REG 2

SAVE IN
KEY REG 1

SAVE IN
DEBOUNCE REG 2

SAVE IN
KEY REG 2

]

>y

f.
Lo

(RETURN)

—)

RETURN

147

HARDWARE CONFIGURATION
(COMMON ANODE DISPLAY)

PIC1655A
- DIGIT 1 DIGIT 8

RB O AN | - - =]

(F7)

RC 7

RA O

1 KEYBOARD

(F5)

RA 3

148

+6Vv

HARDWARE CONFIGURATION
(COMMON CATHODE DISPLAY)

PIC1655A

RBO

<
<

A
vy

AAA—$

AA
A A4

DIGIT 1 DIGIT 8

(F7)

RC7

RA O

(F5)

RA 3

KEYBOARD

149

KEY F5
TEMP F11
DEBNS1 =F12
KEYREG1 = F13
DEBNS2 =F14
KEYREG2 = F15

KEY #
KEY REGISTER 1 87|6|54]|3|2]1

KEY #
KEY REGISTER 2 16|15]14|13[12|11]10] 9

GETKEY RLF SCAN ; This subroutine rotates file left.
First rotate will move the carry

MOVWF KYREG1
MOVWF DEBNSH1

If same, save in Key Reg1
If different update debounce Reg1.

MOVF SCAN,W ; bit into Bit 0 of SCAN.
MOVWF SCNOUT ; SCAN transferred to SCNOUT.
COMF KEY,W ; Read complement of key into W
ANDLW 17 ; Zero upper 4 bits of W
IORWF TEMP ; Store in Temp. File.
RETLW 377 ; RETURN
KEYSCN MOVLW 377 ; START
* DATOUT ; Blank Display
MOVWF SCAN ; Sets up SCAN and CARRY BIT
BCF 3,0 . for rotating a zero through the file
CTSCN CLRF TEMP ; TEMP =0
CALL GETKEY
SWAPF TEMP ; Swap Key Data from lower nibble to
; upper nibble.
CALL GETKEY
MOVF TEMP,W ; Temp contains key info for 2 columns
BTFSC SCAN,1 ; Test if scan has read columns 1 and 2
GOTO LSTKEY ; Last Key read. End SCAN.
XORWF DEBNS1 ; Compare new key data with previous
; key data.
BTFSC 3,2 ; Skip on no zero
GOTO CTSCN ; Scan last two columns.
LSTKEY XORWF DEBNS2
BTFSC 3,2 ; Same as above debounce

MOVWEF KEYREG?2
MOVWF DEBNS2
RETLW 377 ; RETURN TO MAIN PROGRAM

*For common anode display use “MOVWF”, for common cathode use “CLRF”

150

DATOUT = F6
SCNOUT = F7
SCAN =F10
DISDLY = F20
DIGIT1 = F30
DIGIT2 = F31
DIGIT3 = F32
DIGIT4 = F33
DIGITS = F34
DIGIT6 = F35
DIGIT? = F36
DIGIT8 = F37
STSCN MOVLW
MOVWF
MOVLW
MOVWF
CTSCN *
MOVWF
MOVF
MOVWF
DLYLP DECFSZ
GOTO
MOVLW
MOVWF
BSF3,0
RLF
INCFSZ
GOTO
GOTO

OUTPUT REGISTER FOR SEGMENTS
OUTPUT REGISTER FOR DIGITS
SELECTS ONE OF EIGHT DIGITS
SETS SPEED OF SCAN

STORES 7-SEGMENT DATA FOR
EACH DIGIT. UPDATED BY AN
EXTERNAL CONVERSION ROUTINE.

376
SCAN
30

4

ow

DATOUT
SCAN,W
SCNOUT

DISDLY
DLYLP
100
DISDLY

SCAN
4,F
CTSCN

STSCN

CONFIGURES SCAN REGISTER WITH LSB
SET TO “0”

FSR REGISTER POINTS TO FIRST DIGIT,
BUT WILL BE READ AS 370.

MOVES CONTENTS OF THE REGISTER POINTED
TO BY FSR TO THE SEGMENTS.

SELECTS DIGIT THAT WILL

DISPLAY ABOVE DATA

PROGRAM DELAY LOOP
DETERMINES SPEED OF SCAN

CARRY BIT SET TO PREVENT A

ZERO ROTATED INTO THE LSB OF SCAN.
ZERO ROTATED LEFT TO NEXT BIT

FSR POINTS TO NEXT DIGIT

CONTINUE SCAN UNTIL ALL

DIGITS HAVE BEEN REFRESHED

OTHER PROGRAMS
START SCAN REFRESH

*For common anode display use “COMF”, for common cathode display use “MOVF".

151

6.3

Pseudo Random
Number
Generator

This polynomial generator is typically used to generate white noise for
sounds such as “bang”, “screech”, “breathing”, as well as for “random”
sequence generation. The seed number in the generator, if necessary,
can be randomized by external events such as contact closures. This
permits, for example, games to start randomly and continue pseudo
randomly according to the output of the polynomial generator.

The algorithm used to generate a pseudo random number sequence
uses a shift register and a feedback loop in the following fashion:

—~af———— SHIFT DIRECTION

Q7| Qe Qs [QalQa] Q2| Qs

7 BIT SHIFT REGISTER

The feedback connections vary for different length shift registers. The
chart below gives the connections for shift registers from 4 to 16 bits.

N s=2"—1
4 Qs D Qs
5 Q: D Qs
6 Qs D Qs
7 Qe D Q;
8 Q:P Q3D Q. D Qe
9 Qs D Qo
10 Q7 D Qo
11 Qo D Qpy
12 Q: P Q10D Q1 D Qe
13 Qi PQr1DQ2DQys
14 QP Q12D Q13D Qua
15 Q1D Qs
16 Qs@D Qia @ Qs D Que

The two routines given here are 7 and 16 bits which generate pseudo
random numbers of non-repeating length of 127 and 65535. In either
case, there is one singularity “all zeroes” that must be avoided during
initialization.

6.3.1 7 BIT PSEUDO RANDOM NUMBER GENERATOR

The 7 bit routine aligns bits Qe and Q- in registers SEED and W. Then
the registers are exclusive-ored and the unwanted bits are masked out
leaving register W in the following state:

oOla:@asfofofojofjolfo

152

If register W equals zero, then the carry bit is cleared, otherwise it is set
(carry bit gets the value of Qs + Q7). Then the carry is shifted into bit 0
of the register SEED.

SEED holds random number
—upon initialization set SEED to 1, avoid lockup

RAND7 RLF SEED,W
XORWF SEEDW ;exclusive or bits Q¢ & Q7
ANDLW 100 ; mask out other bits
SETC ; set carry
SKPNZ ; if Qe @ Q7 equal 0, clear carry
CLRC ; else clear carry
RLF SEED ; shift left
RETLW O

Routine takes 36 usec including CALL

6.3.2 16 BIT PSEUDO RANDOM NUMBER GENERATOR

The 16 bit routine aligns the proper bits (Q1s, Q1a, Q12, Qs) and performs
an exclusive or. Bit 7 of register WORK holds the result of the exclusive
or’s of the proper bits.

Q15| Q14| Q13[Q12[QA1 {Q10] Qo | Qs | Q7 { Q6| Qs | Q4 | Q32| Q2] Q1 | Qo

0
D

7
RANDH is the MSB’s of the random number
RANDL is the LSB’'s of the random number
WORK is the temporary register

RAND16 MOVFW RANDH
MOVWF WORK
RLF WORK
XORWF WORK,W ; exclusive or Qs & Qua

RLF WORK S
RLF WORK e
XORWF WORK : exclusive or with Q42

SWAPF RANDLW

XORWF WORK ; exclusive or with Q3

RLF RANDL

RLF RANDH ; shift left

BSF RANDL,O

BTFSS WORK,7 ; if the result of the exclusive or's
BCF RANDL,O ; is O, clear RANDL bit O
RETLW O : else set RANDL bit O

Routine takes 68 usec including CALL

153

6.4
Potentiometer
A/D Gonversion
Routine

6.5

Analog To
Digital
Conversion

This routine shows how a potentiometer setting can be sampled by a
very simple A/D conversion which utilizes the RC time constant con-
cept. In the normal state transistor T1is ON and transistor T2is OFF. In
order to start the conversion, transistor T1 is turned OFF and transistor
T2 is turned ON. Simultaneously, the program then loops in a count
routine waiting for the input (RAQ) to go low. The count obtained
reflects the setting of the pot—the greater the count, the greater is the
resistance. There is a maximum value of 255 for the count since only
one register is incremented in the count loop.

For a more precise measurement, the ratio of the count for the potenti-
ometer to the count for a known resistor R should be used. In this case,
the subroutine should be called a second time with transistor T3 turned
ON to obtain a reading for R.

ADCONV MOVLW 374 ; Turns T1 OFF and T2 ON
MOVWF 6 ;. Start Conversion
LOOP BTFSS 5,0 ; Count Loop
GOTO EXIT
INCFSZ TEMP ; Count is in Temp Register
GOTO LOOP
MOVLW 377 : Overflow
MOVWEF TEMP
EXIT MOVLW 377 : Turns T1 ON and T2 OFF
MOVWEF 6
RET
Rrer POT
T3 Egcé, T2 TO PIC RBO
| TO PIC RAO
1

(o}

Veno
T4 iy

FROM PIC 4 ’
RB1 ™ —
= |

RAMP

Vi

—_fm—————

START CONVERSION
{T1-OFF
T2 or T3~ON)

END CONVERSION

In this example an analog signal (whose value is to be digitized) is
compared with the analog output of a ladder network. The output from
the comparator goes to the PIC microcomputer, and the input to the
ladder network comes from the chip. (Refer to diagram on page 61.)

The subroutine shown in this example.can be called from anywhere in
the PIC program by the statement:
CALL ATOD

and about 300us later the file OUTPUT will contain the digital value of
the analog signal, which can then be used as necessary further in the
PIC program.

154

+5v

(FOR ON-
CHIP CLOCK)

L

+5V ov

2R

Voo Vss

FILE
OUTPUT
WITH
OPEN DRAIN
OUTPUTS

PI1C1650A
MICROCOMPUTER

File 'CONTL’

R/2R
LADDER
R NETWORK

INPUT

ANALOG

7
7 6 5§ 4 3 2 10 SIGNAL -

COMPARATOR WITH
TTL LEVEL OUTPUT

(Bit 0 of file CONTL is also known as COMPIN in this exampie)

6.5.1 HOW THE PROGRAM WORKS

The flow diagram for the conversion shown should be followed
through in conjunction with the program to properly understand how
the conversion works.

NOTES:

1)

At 0, COMPIN is set because we wish to use COMPIN as an
input. Since the 32 1/0 lines of the PIC are both inputs and
outputs it is possible to obtain a wire-AND at each pin of the
output with the current input.

Note how the carry is cleared by BCF STATUS, CARRY. Thisisa
bit clear instruction of bit 0 in file 3, which in fact is the carry flag.
Note how the PIC assembier accepts literals in decimal (.9),
binary (B‘10000000’) or octal (by default). Hexadecimal (x ‘F9’)
and character (‘Q’) are also supported.

The subtraction at 11 is done by exclusive OR (XORWF OUT-
PUT) instead of subtraction (SUBWF OUTPUT) since the latter
would set the carry bit and necessitate an extra clear carry
instruction.

155

5) At 12 the utility register is rotated to the right through the carry
bit:

UTILITY REG > C

6) The utility register always keeps just one bit set, all others clear.
The bit corresponds to the bit on OUTPUT that is currently being
worked on. When the bit drops out of the right of the utility
register into the carry bit the conversion is complete and the
subroutine terminates, restoring control to the main program

(step 15).

CLEAR OUTPUT AND
CARRY FLAG

SET BIT COMPIN TO 1 (0.1.2)

SO THAT COMPIN CAN

BE USED AS AN INPUT

PUT 10000000 INTO

UTILITY REGISTER (3.4)
(file 9 in this '
example)
ADD UTILITY REGISTER 5.6
TO OUTPUT 5.6)
(7.10)
TEST = 0 (output too high)
COMPIN
=1 (output too low) /
SUBTRACT
UTILITY (11
CONTENT FROM
OUTPUT
» |
<
ROTATE UTILITY RIGHT
USING CARRY AS (12)
LINK BIT
(13.14)

(15)

=1
RETURN TO MAIN
PROGRAM

(THE NUMBERS IN BRACKETS SHOW THE ADDRESSES OF THE
INSTRUCTIONS WHICH PERFORM THIS STEP.)

156

TNE

QCENSADOIE—

10

Ao K

23

ADDR K1 B2 ATOD
TITLE /ATOD

38 BIT A TO I SUCCESSIVE APFPROXIMATION
sROUTINE FOR PIC MICROCOMFUTER

;OUTPUT TO LADDER NETWORK IS FILE ‘OQUTFUT’
s INFUT FROM COMFARATOR 18

sBIT OCCALLED ‘COMPIN’)OF FILE CONTL.
sCOMFARATOR GIVES 1LLOGIC 1 IF CURRENT
sVALUE OF ‘OUTRUT I8 TOO LOW

sUTILRG IS BIT COUNT CONTROL REGISTER.
sEXECUTION TIME I8 304 US

000003 - 8TATUS = 3

000000 CARRY = 0

000011 UTILRG = 9

000005 OUTFUT =]

000006 CONTL = b

000000 COMPIN = 0

000000 2406 ATOD RSF CONTL , COMPIN
000001 0145 CLRF ouUTPUT
000002 2003 EBCF 8TATUS , CARRY
000003 6200 MOVLW B 10000000
000004 0051 MOVWF UTILRG
000005 1011 CYCLE MOVF UTILRG,W
000006 0749 ADDWF QUTRUT
000007 3006 BTFSC CONTL,COMFIN
000010 S012 GOTO ENDTST
000011 0645 XORWF QUTPUT
000012 1451 ENDTST RRF UTILRG
000013 3403 BTFS8S 8STATUS,CARRY
000014 5005 GOTO0 CYCLE

000015 4000 RET

000016 END

157

6.6
Time Delay
Routine

6.5.2 CONCLUSION

This example brings out several important and unique features of the

PIC1650A microcomputer.

1) Hardware stack: When the CALL is made to asubroutine, the return
address is stored in a hardware stack.

2) Bit set, clear, and test: Any bit of any file, (even an output file as in
this example) can be set, cleared or tested. NO use of literals for bit
manipulation is needed as in other microprocessors claiming bit
handling capability and as a result time and ROM space is saved.

3) Outputs are just like other files: No distinction is made between a
file connected to the outside world such as OUTPUT, and internal
onesas UTILRG. This simplifies the instruction set resulting in less
ROM space per instruction (always 12 bits only ie: one word). There
are 4 output files, meaning 32 1/0 lines (files 5,6, 7 & 8).

4) Special purpose registers are just like other files: In this example
the file status (file 3) is used. This contains carry, zero, and other
flags. Likewise the real-time clock (file 1), the program counter (file
2), the indirect file pointer (file 4) and the register pointed to (file 0),
are all treated (with one exception) as normal files. This again cuts
down ROM space and program execution time.

Other important aspects of the single chip PIC microcomputer not
shown by this example are the real-time-clock and the fact that there are
a total of no less than 31 separate registers. There are 512 words of 12 bit
ROM on the chip and since no instruction takes more than one word,
this is similar to 1K words of 8 bit ROM on machines with earlier
architecture. The whole is contained in a 40 lead dual in line package,
(PIC1650A) and a version with off-chip ROM/PROM/RAM (PI1C1664B).

Many applications require precision timing as in, for example, sound
generators, loop timing compensator, phase angle control, etc. Two
routines are included, one for minimum size and 12us resolution. The
other for the maximum resolution of 4us. Both the 12us and 4us resolu-
tion delay routines are called with the variable number of 12us or 4us
intervals (assuming an instruction cycle time of 4 usec) in the W
register. There is a fixed delay associated with calling this routine and
returning from the mainline that should be accounted for when deter-
mining the total delay.

158

6.7

A Digital Clock
Subroutine
Using The PIC
Microcomputer

a. 4us Resolution Delay

; 4us resolution time delay (1 instruction time)

VTL MOVWF TEMP
: CLRC
RRF TEMP
SKPNC : ADD 4us
GOTO VTLA1 ; Yes
VTLA CLRC
RRF TEMP
SKPC ; ADD 8us
GOTO VTL3 : No
GOTO VTL2 : Yes
VTL2 NOP
VTL3 DECFSZ TEMP
GOTO VTL2
RET

b. 12us Resolution Delay

DELAY MOVWEF TEMP
DECFSZ TEMP
GOTO DELAY + 1
RET

Additional sales appeal can often be added to consumer and industrial
products by adding a digital clock as a feature. This application note
describes PIC routines needed to form a digital clock.

6.7.1 THEORY

The three basic methods of keeping accurate time using microcom-
puter methods are as follows:

Accurate Oscillator, fixed length instruction loop — This method allows
the part to act as its own time keeping device by executing a certain
number of machine cycles in a given amount of time. It requires no
additional time inputs, but does require a crystal controlled oscillator.

Inaccurate Oscillator, variable instruction time—This method allows
the programmer to construct routines without the need for careful
fixed-loop time writing. It only requires that the program wait fora zero
crossing or RTCC pin input before proceeding with the complete
program loop.

Inaccurate Oscillator, fixed length instruction loop—This method pro-
vides for maintaining an instruction loop whose length is dependent
upon an external time keeping signal (ordinarily 60 cycles). It provides
for accurate time keeping and the “freezing” of current oscillator set-
tings in case wall power should vanish, requiring the use of battery
back-up.

159

6.7.2 TIME COUNTING

In all methods of clock programming, it is most convenient to keep the
current (and target) times in BCD format for display. The following
routine is provided to facilitate the time BCD manipulation:

Its features include:

Constant loop length for accurate timing

Add from 1 to 59 to time in BCD

Performs “time” decimal adjust

Rolls over at midnight

Keeps time in 24 hour clock for alarm purposes
Allows use with more than one clock

KRR RN

ROUTINE TO TIME AID TWO FOUR DIGIT RCD NUMBERS
EREE RN

ADNEND AND RESULT IN TWO FILES FOINTED

TO RY F4

ADDER IN FILE ‘FARMLZ (TWO RCO DIGITS MAX)
LOWER TWO RCH DIGITS IN EVEN LOCATIONY
UFFER TWO RCD DIGITS IN ODD LOCATION FOLLOWING

LIMIT OF A = 59 RBRCD

RETURNS WITH Z BIT ON IF LAST ALD CAUSED HIGH ORDER BCOH TO
GO TO RCD 2% (AROUND MIDNIGHT)
R R R R R RN R R R R R R N S R R R RN R R]
TIMADD MOVLW 246

ADDWFE FARML »UW

CLRF FARMI

ANDWE O 3ADD TO LOW ORDER DIGITS

RTFSC 390 $SEE IF CARRY SET

INCF FARMIL

MOVELW 132

BTFSC 390

GOTO ADDé

RTFSC 3y

MOVILLW 140

GOTO ANING SCAN RE REMOVED- IN FOR TIME FAD ONLY
ADDG NOF §CAN BE REMOVED- IN FOR TIME PAIN ONLY
ADDS NOF
AL ADDWF O
ANNG RTFSS 420 FHEE IF SECOND SET OF DIGITS

GOTO AnDa

INCF 4

GOTO TIMALD
A4 MOVLW X7 2357

XORWF Qs W

RET
Al MOVLUW 372
BTFSC 3v1
MOVILW O
GOTO A2

W Wy WF WP GE WS W WP € W W w> WS e

+
PEFFEIIIIIIIIIIIIIIIIIRIS

160

6.7.3 USE IN PROGRAM
The routine would be used in the following manner:

START INITIALIZE TIME
X
X
L.QorF GET DIGIT 1-4
X
¥
GET SEGMENTS
FUT 0UT
X
X
CONSTANT LENGTH
FROGRAM OR LOOF
X
X
LAST OF 4 DIGITS? %% NO Xx> TO LOOF
X
X

TOO EARLY FOR 60 CYCLE xx: LOOF CONSTANT INCREMENT
X

X
TOO LATE FOR 40 CYCLE XX LOOF CONSTANT DECREMENT
X
*
AL TO SECONDS COUNT
CTIMALIDD
X

X
LEGS THAN SECOND Xxx:= TO LOOF
X
X
ADLD TO MINUTES/HOURS
CTIMADDD
X
X
TO LOOF

6.7.4 USE OF TIMADD AS TIME SET

The routine can also be used to increment the present time in the set
mode. Note that when time is being set, constant loop length is
maintained.

MOVWF 4 3SET IN FS8R FOR TIMADD

MOVLW G 3INCREMENT TIME RBY MINUTES ITF AllL CONDITIONS MET
BTF88 FLAGSy INSET FCHECK IF IN SET MODE (SWITCH DEPRESSED)
MOVLW O $NOT IN SET MODE

BTF88 FLAGS,»TICK F8EE IF ONE SECOND UF FOR TICK

MOVLW O sALREADY TICKED THIS SECOND

BCF FLAGS»TICK §SET TO SERVICED

CALL TIMADD 3ADD ZERO OR 3 FOR CONSTANT TIME

161

7.1

Serial Data
Transmission
with a PIC
Microcomputer

Fig. 23

Fig. 24

APPLICATION NOTES

This section contains a variety of application notes which illustrate the
versatility and performance capability of PIC microcomputers.

INTRODUCTION

Serial data transmission is becoming more common in microcomputer
applications. Even though the PIC does not contain a serial 1/O port,
the PIC can transmit serial data via an I/0 line under software control.
This application note describes the software techniques involved.

There will be two main tasks:

a) Control of the main application

b) Transmission of serial data

Since the timing of both tasks may be critical, the processor cannot
suspend its control functions while transmitting a message — the
processor must do both tasks “simultaneously.” This can be accom-

plished by incorporating the control functions into a subroutine which
is called by the transmit routine.

Usually, a delay subroutine is used to create the bit time:

SERIAL DATA CALL DELAY | CALL DELAY
ouT CALL DELAY
F 0BIT : 1BIT 1

DEFINITIONS OF
TRANSMITTED

CODE oy 778 . 7.78 L
1 LI 1 1 1

256 msec msec 256

msecC msec

However, if the control section were made a subroutine, it could be
called in place of the delay subroutine.

CALL CONTROL

SERIAL DATA
ouT

CALL CONTROL CALL CONTROL

162

Fig. 25

To use the control subroutine as an accurate delay, every path must be
of equal time and padded to (in this example) 2.56 msecs.

In Figure 24, the control subroutine is called once to create the 2.56
msec delay and itis called three (3) consecutive times to create the 7.78
msec delay.

This technique was used in a PIC-controlled garage door opener. The
PIC had to operate the motor, detect heat, carbon monoxide and
intrusion, and indicate the garage status by various light and sound
patterns. In addition, the PIC had to transmit a ten bit word (five bits
address, five bits status) to a receiver in the home. The transmitted
code was of the format shown in Figure 23.

All the control functions were organized into a subroutine.

OPERATE MOTOR

READ AND
CONTROL DEBOUNCE SWITCHES
APPLICATION

§ ALARM SEQUENCES
LIGHT SEQUENCES

The control subroutine was padded to 2.56 msec to create an accurate
software timer. The general flowchart is shown in Figure 24. This
scheme can be used in most applications that require serial data
transmission including:

O Keyboard encoders

O Alarm systems

O UAR/T

O Systems using remote control

163

ENTER

GET BIT

1

SET SERIAL
OUT LINE

BIT

=1
YES

NO

COUNT <= 3

COUNT 1

CONTROL
APPLICATION

y

DECREMENT
COUNT

NO
YES

CLEAR SERIAL
OUT LINE

O

BIT=1

YES

NO

COUNT “— 1

COUNT “— 3

-

CONTROL
APPLICATION

y

DECREMENT
COUNT

164

Another way of creating the correct bit time is by utilizing the Real Time
Clock Counter (RTCC). By connecting the clockout output to the
RTCC input, the RTCC register will increment every four micro-
seconds (PIC1655A) independent of program execution. Thus, by pre-
setting the RTCC register and testing for zero and wide range of bit
times can be generated.

The value with which the RTCC is preset determines the interval to be
timed, e.g., RTCC preset to 1514,

The interval would be 256 — 151 x 4 usec.
420 usec = 1 bit @ 2400 Baud

This technique was used in a PIC-controlled keyboard encoder. The
PIC had to read and debounce keys plus perform the UAR/T transmit
function.
SERIAL 0 0
DATA ' '
OUT ——J 420 usec | 420 usec 420 usec ! 420 usec L____
| 420 usec 1
In this example the control routine read, debound and stored key
status.

Since the RTCC register will time the interval all paths through the
control routine need not be of equal length. However, the longest path
must be less than the bit time.

Flow diagram of program steps:

{

SET/CLEAR
SERIAL DATA
ouT

'

PRESET
RTCC
REGISTER

'

CONTROL
ROUTINE

NO

YES

165

1.2

PIC
Microcomputer
as a Keyhoard
Encoder

After the RTCC rolis over to zero, one bit has been transmitted.

In the previous flow diagram, the wait loop can be expressed by the
following PIC code:

WAIT BTFSC RTCC,7 NOTE: RTCC increments at end of
GOTO WAIT instruction cycle
This is a twelve microsecond loop which checks for RTCC rollover. Itis
assumed that the RTCC register will have a value of at least 1284,. The
loop waits for the most significant bit to change from one to zero.

The wait loop produces twelve microsecond accuracy, if four micro-
second accuracy is required, the following instructions must be added:
WAIT INCF RTCC, W One Cycle

BTFSC RTCC,7 One/Two Cycles
GOTO WAIT Two Cycles

ADDWF PC Two Cycles
NOP One Cycle
NOP One Cycle
NOP One Cycle

The wait loop is now sixteen microseconds, however by adding the
error from the loop to the program counter the appropriate number of
NOP’s will be executed to normalize the loop. This loop is exited seven
cycles after the RTCC rolls over. When presetting the RTCC register,
subtract seven from the computed value. This routine generates the
accuracy needed for higher baud rates.

CONCLUSION

This application note has shown simple techniques for implementing
serial communications under software control. Additional techniques
using the interrupt system in the PIC1656 and PIC1670 will be covered
in a future application note.

INTRODUCTION

This application note describes the use of a PIC1650A microcomputer
as a capacitive keyboard encoder. In the example explained, 128 keys
are scanned sequentially. Upon detection of a key closure, encoding of -
the key position and outputting of the appropriate code is performed.

Depending upon I/0 needs and the number of keys to be encoded, the
software routines described may also be used with a PIC1655A or
P1C1656 microcomputer.

CIRCUIT DESCRIPTION

Figure 26 is the keyboard encoder schematic. Ports RA and RB (X0-
X15) selectively scan each column of the keyboard matrix. Only one of
these scan lines will be high at any time. The CD4051 is an_ eight
channel analog multiplexer, which is controlled by the I/O pins YA, YB,
and YC. Row selection is obtained through control of this device. The
output of the multiplexer will therefore correspond to that produced by
the key at the junction of the column being scanned and the row
selected.

166

it

91

PIC1650A 27! 28| 29| 30| 31| 32| 33| 34| 26I 24 25]
Db Dy D, D; D, D;s Dg D;; STR RC5RC6
L 0 1 - 4 5 6 7J RC7
RD
RA RB)
[! I ! 4 RCORC1RC2 RC3 RC4
Xo X1 Xp Xg X4 X5 Xo X7 Xg Xg Xig Xyt Xip Xig Xy Xis Ya Ys Yc HYS KEY
1] 10] 9 +%V +ov
0 1 1 A B C
DN 2[r\ 3/*\ AN 5/\ Vi 7r\ ?r e 2 S s 14r5 5r\ 131y Q 2 30K
16\ YT YYVPYVYFVYYIVYVVYVYY \/31\1 0 3 6.8K ;; 510K R
14
'A) 4 D D Yy 10K LM393
32133 47 , VWA
N AN 15 +
*7an sy "4 Y2 o LM393
48 63 910QQ A1 i
D-P— D21y, 1 100k _
64 165 79 CD4051 A 0.0014 A2
ra a Ny cT +5v
80\]51\/ 95\4 4 e -
S N sl 3 6.8K 4
o S 5 1 =
&0 S—2v, = o
126
112, 11%\114 415, 116{417{41%&19,420 121/422/421} 124/425, 0 127/"\ 4 v 3
VAN VAR W ARN VAN VAN VWV VWU \U'\V Y U A\ 4 / 7

16I 6] 7] 8 6.8K
+5V =

Fig. 26 PiC1650A KEYBOARD ENCODER

The detector circuit transforms this analog signal into a usable level at
the KEY input of the microcomputer. The first stage of the detector
circuit is a comparator formed by A1. The voltage reference for the
comparator is established at the positive input by the resistor network.
This reference is approximately 2.5 volts when HYS is high and slightly
lower when HYS is low. Keys that have already been detected as being
down are scanned with the lower threshold to provide hysteresis which
prevents “teasing” of the keys. When the key being scanned is down,
the scan line is capacitively coupled to the output, producing a positive
going spike followed by a negative going spike. During the time that the
magnitude of the positive spike is greater than the reference voltage
the output will go low.

The second stage of the detector circuit serves as a one-shot to provide
a pulse of approximately 21us at the KEY input of the microcomputer
when a key is down. The positive input of A2 will go low when a key is
detected as being down. This is for a very short time however, so the
RC network is used as a time delay to lengthen the low pulse at the
output of A2. The procedure used to calculate the time delay is shown
below.

V= Vg (1—e"VRC)
The voltage at which the output will switch is 0.5V, since the voltage

divider network on the negative input establishes a reference of 0.5V,
The equation then becomes:

0.5V = Vg (1—e~VRC)

0.5 = (1—e~¥RC)

0.5 = e VRC

in0.5=—1/RC

t=—RCIn0.5

t=.693 RC

With R = 30KQ, and C = .001uf, t = 20.8us.

This delay provides the needed time to sense the key status once the
key has been scanned.

SOFTWARE DESCRIPTION

Figure 27 shows the internal register assignments used in the PIC1650A.
F5 through F10 correspond to the 1/O ports provided by the PIC1650A.
SCANR isascan register which is used to control the column in the key
matrix to be scanned. WR is a working register used to store temporary
data. Registers F20 through F37 provide the storage area required to
record the status of each key. Each bit in the memory matrix corre-
sponds to a key position. A bit equal to a one represents a key that is
down, with azero representing a key thatis up. The numbers shownin
the memory matrix registers correspond to the keys in the keyboard
matrix. However these numbers do not remain in the same bit position
within the register. During the scan routine, the data is rotated in a left
to right fashion. When key 0 is scanned, the data in F20 is rotated right.
Thus, the carry bit represents the status of key 0. Knowing this status
and the result of the scan determines if key 0 has changed. The carry bit
is moved into bit seven of the F20 to retain the status of key 0. Key 1 will

168

be scanned next, with F21 being rotated as F20 was. Keys 2through 15
will then follow in the scan sequence, with F22 through F37 containing
the respective data of each key.

The end of the memory matrix is reached after register F37, so the
pointer, which is F4, is reset to point at F20 and the Y-select lines
change to scan the next row. The next row contains keys 16 through 31.
The same scanning routine is used now since the key status data for
these keys is in bit 0 of each memory register.

Figure 28A is a flowchart showing the major steps in the scan routine. A
listing of the program then follows with a detailed flowchart (Fig. 28B) of
each command step being shown last.

It should be noted that upon power up, F5 and F6 should be cleared,
along with the Y-select lines and all the internal registers of the
PIC1650A. Key 0 will then be the first key scanned since YA, YB,and YC
are all low, and the memory matrix data will indicate all keys being up
astheinitial condition. After the power-up routine is executed, the scan
routine is executed beginning at the ENT label.

SUMMARY

An understanding of the hardware and software described previously
will give the user a basis upon which a complete keyboard encoder can
be designed. The user will need to consider the number of keys to be
scanned, the technology of the keys being used, the input-output
configuration required, the coding requirements, and any other fea-
tures desired in designing the PIC series microcomputer into a key-
board encoder system.

169

Fig.27 PIC1650A KEYBOARD ENCODER REGISTER ASSIGNMENTS s

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

F4 RTC F22(.18) | 114| 98 | 82| 66| 50 | 34 | 18 | 2

FS| X7 | Xe | Xs | Xa | X3 | X2 | Xy | X, | (RA) F23(.19) [115[99 {83 | 67 |51 |35 |19 | 3

F6 | Xis | Xaa [Xiz | Xeo | X41 | Xio | Xo | Xg | (RB) F24 (.20) |116|100 |84 | 68 | 52 |36 [20 | 4

F7 |STR KEY[HYS Yol Ys | Y, | IOR (RC) F25(.21) |117|101 |85 | 69 |53 [37 |21 | 5
F10(.8) | D7 [Dg | Ds {Ds | D3 | D2 | D1 | D, | DATA (RD) F26(.22) |118|102 |86 | 70 | 54 58 22 | 8
F11 (.9) SCANR F27(23) (119103 |87 | 71 |55 |39 (23| 7
F12 (.10) WR F30(.24) (120104 |88 | 72 | 56 | 40 | 24 | 8
F13 (.11) F31(.25) [121(105]{89 | 73 |57 |41 |25 | 9
Fi4 (.12) F32(.26) [122 (106 (90 | 74 | 58 | 42 | 26 | 10
F15 (.13) ‘ F33(.27) [123 (107 91| 75 |59 [43 | 27 | 1
F16 (.14) F34 (.28) |124.[108| 92 | 76 | 60 | 44 | 28 | 12
F17 (.15) F35(.29) |125(109(93 | 77 { 61 | 45 [29 | 13
F20(16) (11296 | 80 |64 |48 | 32|16 | 0 |) oy F36 (.30) (126|110 94 | 78 | 62 | 46 | 30 | 14

MATRIX
F21 (17) [113]97 |81 |65 |49 |33 | 17 | 1 DATA - F37(31) [127 |111 |95 [79 | 63 | 47 | 31 [15

170

Fig. 2884 BLOCK FLOWCHART ¢

'

UPDATE MEMORY
MATRIX POINTER

v

UPDATE Y-SELECT
LINES IF NECESSARY

'

ROTATE SCANR TO
:SCAN NEXT LINE

!

RESTORE HYS
AND KEY

¥

OBTAIN STATUS OF
KEY TO BE SCANNED

K]

SET HYS ACCORDING
TO STATUS

|

SCAN KEY

NO

YES

SCAN KEY AGAIN

KEY CHANGE
VALID

STORE NEW KEY
STATUS IN MATRIX

K|

ENCODE KEY
POSITION

Y

OBTAIN KEYCODE

'

OUTPUT KEYCODE

1 -

171

cll

BCF I0R. HYS
INCF 10R.1

[

20— wW
W — Fa
& — SCANR
1 — CARRY

N H
Y
RLF SCANR, 1

BSF IOR, HYS
BSF IOR, KEY
RRF ¢, 1

INCREMENT MEMORY
MATRIX POINTER

TEST FOR END OF
MATRIX BLOCK

INCREMENT Y-SELECT LINES

RESTORE MEMORY
MATRIX POINTER

CLEAR SCAN REGISTER

ROTATE SCANR AND
ADJUST IF NECESSARY

PRESET HYS AND KEY

ROTATE FO

DETERMINE STATUS OF HYS

RESTORE FO IF NECESSARY

0 F5
0™ F6
XORWF 0,0
ANDLW 200

OUTPUT SCANR INFORMATION
TO PROPER 1/O REGISTER

SET W ACCORDING
TO KEY DATA

CLEAR F5 and F6 (NO SCAN)

COMPARE W WITH

KEY MATRIX DATA

GOTO B IF RESULT
INDICATES KEY CHANGE

OUTPUT SCANR INFORMATION
TO PROPER I/0O REGISTER AGAIN

0™ F5
0™ F6
XORWF 0,0
ANDLW 200

N

XORWF 0, 1

SWAPF IOR, 0
I0RLW 217
ANDWF 4,0
ANDLW 177
W — WR

CALL TABLES
OUTPUT KEY
CODES

Fig. 28B DETAILED FLOWCHART

SET W ACCORDING
TO KEY DATA

CLEAR F5 AND F6

COMPARE W WITH MATRIX DATA
IF RESULT INDICATES KEY CHANGE,
ENCODE KEY

UPDATE MATRIX DATA WITH NEW
KEY CHANGE

ENCODE KEY POSITION

USE TABLES TO
OBTAIN KEY CODE

OUTPUT KEY CODE

1 TITLE “KEYROARD ENCODEFR

2. 3

3 FFERFORMS SCANNING ANI ENCODING OF
4 $A 128 KEY CAPACITIVE KEYROAKD
5 ;

6 PREGISTER ASSTGNMENTS
7000007 10k = 7

8 000011 SCANR = 11

9 000012 WK " 12

10 ;

11 SRIT ABHIGNMENTS

12 000003 HYS - 3

13 000004 KEY = 4

14

15 000000 2003 A KOCF 390

16 000001 1744 INCFSZ 491

17 000002 H011 (T NOT

18 00000F 2147 T TORYHYS ¢ OV

19 000004 1247 INGF O CLE

20 000005 60R0 ENT MOULW 20

20 000006 0044 MOVWE 4 EEGINNTNG
22 000007 0151, CLEF SCANK

23 000010 2403 390

24 000011 1H51 G0 SCANF Y 1 ; :

25000012 3003 390 ¢ CARRY OUT

26 000013 1551 BCANFy 1 CARRY BACK IN
27000014 2547 TORyHYS

28 000015 2607 TOR s KEY

29 000016 1440 Orl O MATRIX REGISTER
30 000017 3003 390

31000020 2147 TORYHYS FHYS~>0 TF SCANNING KEY THAT 16 DOWN
32 000021 3003 390
33000022 2740 B Or7 FAIJUST MATRIX REGISTER IF NECESSARY
34000023 1011 MOVE SCANRs O FEOANR b

35 000024 3544 (TESS 43

36 000025 0045 MOUWE & IF F4 < 30
37 000026 3144 ETFGC 493

3B 000027 0046 MOVWE & IF F4 3 OF = 30
39 000030 6200 MOVLW 200 ACCORNING TO KEY
40 000031 3207 BTFSC TORyKEY
4L 000032 6000 MOVLW O
42 000033 0145 CLEF 5 ¢ E
43 000034 0146 CLR 6 : Fé
44 000035 0600 XORWF 050 FCOMPARE W WITH KEY MATRIX DATA
45 000036 7200 ANDLW 200 SLOOK AT BIT 7 ONLY
46 000037 3103 HTFSC 392 SRIN KEY CHANGE®

47 000040 5000 GOTO A $NOs SCAN NEXT KEY
48 000041 1011 MOVF SCANRy O FYESy SCAN AGATIN
49 000047 3544 ETFGS 493
50 000043 004% MOVWE 5 SWwx FS OLF F4 30
51 000044 3144 BTFSE 493
52 000045 0046 MOVWE & e Fé IF B4
53000046 6200 MOVLW 200 ET W ACCORBING 1O
54000047 3207 BTESC TORSKEY

173

4000 O
Q1457 C i1 FOLE
Qlaé Gl é $CLEAR M6
0600 XORWE Qv 0 FCOMFARE W WITH MATRIX DATA
7200 [200 FLOOK AT RIT 7
3103 Fy2 FREY STYLL CHANGEDT
000056 HO0O A FNU
Q000%N7 0440 Orl
000060 1607 TOR»0
0000461 6617 217 YR YA L 11l
000062 0504 4y0 YR YA (4 LSE OF F4)
000063 7L77 ANDLW 177 =0
0000464 O MOVWF WR FREY FOSITION IN WR
FTARLES CAN NOW RE CaLl
FFOR : W
A COnE Cf
FFORMAT REQUIRE TXEC
FTO LAREL A TO CONTINUE SCANNING.
Q00065 ENI
EMRLER ERRORS = [¢]
BYMROL TARLE
A 000000 ENT 00000% HY & 000003 TOR 000007
KEY 000004 sc2 Q00011 SCANR 000011 WR 000012
KEY
EOF 188
O

174

1.3

Sound
Generation
Using a PIG
Microcomputer

This application note describes a circuit (Figure 29) using the
PIC1655A to produce the following sounds commonly used for elec-
tronic toys and games.

O Machine gun and Ricochet

European Siren '

Phasor

Racing Car Engine — Rev Up/Down
Car Tire Screech

Car Crash

Mortar Shell Whistle and Explosion
Tune 1 — Charge

Tune 2 — Snake Charmer’'s Song

Each sound is created by one or more of the following techniques:
1. Pulse train of fixed frequency.

2. Periodic increase/decrease of frequency.

3. Superimposing an exponential decay (or ramp) envelope of 1 sec or
2 sec time constants on the sound.
4. Beating (mixing) together two frequencies.

5. White noise generation — Random Pulse Output.

ooooooo

Exponential Decay Generator

Channels 1 and 2 (Figure 29) each have an envelope generator circuit
(1 sec and 2 sec RC time constant, respectively) at the base of the
switching transistor. On Channel 1, a low on RC7 discharges the
capacitor and the transistor switches on. A high on RC7 activates the
RC circuit and the capacitor charges up exponentially to 6V. This
appears as an exponential decay at the collector of the transistor. If the
pulsetrainis fed to the emitter, itappears at the collector with the decay
superimposed on it. See Figure 30.

Machine Gun and Ricochet (Created on Channel 1)

A random number (created by routine RANGEN) between 1 and 15
gives the number of shots per burst of machine gun fire. Each shot is
produced by outputting random pulses (white noise) of a width of 28us
forabout 7ms. These are superimposed by a decay of 1 sec. Each shot
is separated by a delay of 40ms.

Each burst of machine gun fire is followed by a ricochet. This sound is
created by superimposing a decay envelope of 1 sec over a pulse train
(50% duty cycle) whose frequency is decreased slowly in 80Hz steps
(every 15 cycles) from 3KHz to 1KHz.

175

Fig. 29 SCHEMATIC om0 e ARSI

])
vy / 5/ Vat / A / /!
A 4 -! ‘./
p 4
2 2 W
b p
s A, A N,/
L 1L L 1L
) J
4/ /) 8/ / / A / /|
Ll e |y
of 8] 7] & 13 12 11 10
RA3 RA2 RAT RAO _RB3 RB2 RB1__ RBO
Ve PP 9——0 8V SUPPLY
Vg P i; 100K *
PIC1655A WciR |22
== auf eV
s 1
Vss
RCO RC1 RC3 RC2 __RC7 RC6 % 270
18 9] 21 25 24 80
SPEAKER
PH——bi
% 10M V.J
¢ 2N3904
2N3904 _]_ A I\\ Pl
g CHANNEL 1
333k b wes

1uF
Pl
l CHANNEL 2 I\ u4s
—@04
- P

CHANNEL 3. v

176

Fig. 30 EFFECT OF ENVELOPE ON PULSE TRAIN

1 SEC DECAY
ENVELOPE

—1 SEC—:' D [\' .
russe [ﬂ H H [_L '

European Siren (Created on Channel 1)

The siren is made up of two components. The higher frequency part at
500Hz and the low frequency component of 300Hz. Both components
are created by pulse trains of fixed frequency. Starting with the high
frequency sound, the effect of the siren is obtained by switching back and
forth between the two (high and low frequency) sounds. Duration of
the high frequency sound before switching is 256ms, while that of the
low frequency is about 400ms.

Phasor (Channel 3)

The phasor finds an application as the sound of a “phasor” gun in
space war games. Starting with a frequency of about 1KHz, the fre-
qguency is decreased (in steps of 40Hz every 1/2 cycle) down to 200Hz.
This is repeated for a burst of phasor fire.

Racing Car Engine — Rev Up/Down (Channel 3)

The engine sound is produced by beating (mixing) two low frequency
pulse trains together. This is simulated in software by having a fixed
frequency variable duty cycle output.

Starting with a frequency of 70Hz and 15% duty cycle, the duty cycle is
increased in steps of 14%, until it reaches about 100% (7 cycles). The
frequency is then switched to 80Hz and duty cycle is then decreased in
14% steps to 0. This is then switched back to 70Hz and the procedure
repeated. The effectis to have a beat every 7th cycle (at frequencies of
10 and 11Hz). To rev up, the higher (80Hz) beating frequency is
increased in Y2Hz steps up to 300Hz. To rev down, frequency is
decreased in 2Hz steps, back down to 80Hz

Car Tire Screech (Channel 1)

The effect of atire screech is produced by superimposing an exponen-
tial ramp followed by a decay upon a white noise output. (See Figure
31.) Each ramp and decay is separated by a random delay.

177

Fig. 31 EFFECT OF RAMP AND DECAY ON WHITE NOISE

RANDOM
PULSES
(WHITE NOISE) M h
RAMP RANDOM h h (l

DECAY

Car Crash (Channel 2)
Superimposing a 2 second exponential decay upon a white noise
output creates this sound.

Shell Whistle and Explosion (Channel 3)

The method of creating a whistle sound is similar to that for the phasor
except that all software loops must be equal length. Starting with a
frequency of about 4KHz, the frequency of the pulse train is decreased
in 150Hz steps (every 32 cycles) down to about 900Hz. When the
frequency is at its minimum (=900Hz), the crash routine is called to
simulate an explosion.

Tunes — “Charge” and “Snake Charmer’s Song” (Channel 3)
Each tune is a collection of notes. Each note is of fixed frequency and
duration. This information is coded into a 8 bit word called “note data.”
Each note has a duration of 80 cycles. The most significant bit of note
data gives the number of times the note must be repeated for that part
ofthetune. The7 least significant bits gives the frequency.
e.g. Note data — 352 = 11101010
MSB — 1: The note must be repeated once, i.e. double note.
The frequency is determined by 1525 or 106 decimal.
ltisa12usloop: T =2x[(12x106)+24] us
=2592us
f =385Hz.
Fig.32 A“NOTEDATA” OUTPUT — 352, meemsmsesmans

(12 X 106 + 24) us

ka

|«————s0cycLEs e 80 CYCLES
(1 NOTE) (REPEAT PREVIOUS NOTE)

The note data is in the form of a table. The software fetches each note
datain turn, decodes itand outputs as shown in Figure 32.

A computer assembly listing of the routines used follows (Figure 32A).

178

Fig. 32A NOTE DATA OQUTPUT: SOUND DEMO
PROGRAM - SOUND EFFECTS

1 TITLE “SOUND EFFECTS/
2 LIST Pl GGG E
3 GOUND DEMO FROGRAM
4 :
H 000000
6 00000% IN EQU K]
7000006 our EQuU é
8 000007 10 EQu 7
¢ 000011 EQU 11
! 000012 EQU 12
Q00013 EQU 13
000014 TEMF EQU 14
Q0001 OUTRUF EQU 15
000016 INEUF EQU 16
o a - 17

000017
000024
0000:
000027

o
28

000030

j WORK L £l 3
000036 FOINT EQU 3é
’
¥
¥
000000 O1THS! RUMEBLE Gl
000001 0 SH
000002 01015 QUTEUF v W
000003 00047 o
0C0004 04000
000005
[elelelelolvt
IR R R R R R R R N R R R R R R R R R R R R N R N
§ H
FOSIXTEEN RIT WHITE NOISE GENERATOR
. ’
R R R R N R R R R R R RN R R R R R R R R R R R R A
00000
Q0000 RANGEN MOVF Sl W FOXOR RITS 2518
Q00006 MOVWF TEMF
000007 SWAFF TEMP
000010 RiL.F TEMF
46 000011 01012 MOVF GHr W
47 000012 0048%4 XORWF TEMF
48 000013 0155 TEMF
49 000014 Gl
0 0000135 GH
51 0000146 04000
G2 §
53 H
4 AR R R R R R R R R R R R N R R R R R R R R R R R RN
G5 i H
b6 FR0USEC RESOLUTION DELAY ROUTINE §
57 § i
58 AR 2]
59 §
60 000017 05020 DELAY GOTO DELAY+1
61 000020 013454 DECFSZ TEMFP
42 000021 05017 GOTO DELAY
463 000022 0137 LECFSZ TEMF2
64 000023 05017 GOTO DELAY
6% 000024 04000 RET
66 ;
&7 3
68 AR R R R R R R R R R R R R R N R R R R R R R R R R
34 3 P
70 FAUSEC RESOLUTION DELAY ROUTINE §
71 § ¥
72 AR R R N RN R R R R R R R R R R R N R R R R R R R RN
73 [
74 000025 00057 LEL4 MOVWF TEMF2
79 000026 02003 CLRC
76 000027 01457 RRF TEMP2
77 000030 03003 SRENC

179

78 000031 05032 GOTO VTL1

79 000032 02003 VTL.1 CLRC

80 000033 01457 RRF TEMF2

81 000034 03403 SKFC

82 000035 05040 GOTO VTL3

83 000034 05037 GOTO VTL2

84 000037 00000 VTL.2 NOF

85 000040 01357 VTL3 NECFSZ TEMF2

846 000041 0%0X7 GOTO VTL2

87 000042 04000 RET

88 i

89 #

20 I SRR AR N]
91 § 3
92 FCHANNEL SWITCHING~ENVELOFE DECAY [
93 P 4
94 PEEPEISEIBIIRS IR RBBIINIIBSIEIRIIIGTS
% 3

?6 000043 06377 LECAY MOVLW 377

97 000044 000%4 MOVWF TEMF

98 000045 06100 MOVLW 100

?9 000046 00057 MOVWF TEMF2

100 000047 04417 CALL NELAY

101 O0Q0%0 04000 RET

102 i

103 i

104 FEFIFIFIITINIIFSFTITRIIIIIIRIIRIIIIITS
105]]
106 $/WILD CHARGE TUNE-~NOTE DATA i
107 § §
108 X AR R R R R R R R R R R N R R R R R R R R AR R R K]
109 H .

110 000051 00742 LAY ADDWF 2

111 000052 04074 RETLW 74

112 000053 04107 RETLW 107

113 0000%4 04274 RETLW 274

114 000055 04107 RETLW 107

1% 0000%6 04131 RETLW 131

116 ’ H

117 R R RN R X
1i8 § [
119 # “SNARE CHARMERS ¢ TUNE~NOTE DATA §
120 i i
131 FIFIIIIIIRIIIIBRSRIBIIIIRIRISIIIISIIIES
122 ’

123 000057 00742 FLAY1 AnWE 2

124 000040 041647 RETLW 167

125 0000461 04144 RETLW 144

126 000062 04152 RETLW 152

127 000063 0412 RETLW 120

128 000064 04144 RETLW 144

129 000065 04152 RETLW 152

130 000066 04167 RETLW 167

131 000067 04367 RETLW 367

132 000070 043%G2 RETLW 352

133 000071 04344 RETILW 344

134 000072 04152 CRETLW 152

135 [

136 §

137 §

138 i

139 000073 06377 REYFADl MOVLW 377

140 000074 00046 MOVWF OuT

141 00007% 06004 MOVLW 4

142 000076 00054 MOVWF TEMF

143 000077 06367 MOVLW 3647

144 000100 00057 MOVWF TEMF2

145 000101 01017 REY1 MOVF TEMF2sW

146 000102 00046 MOVWF OUT

147 000103 0100% MOVF INsW

148 000104 07017 ANDLW 17

149 00010% 07417 XORLW 17

150 000106 03103 SKENZ

151 000107 05143 GOTO ROTAT

1852 000110 000%é MOVWF INRUF

183 000111 031%6 BTFSC INERUFs3

154 000112 06122 MOVLW SNDTEL-1

155 000113 03116 ETFSC INBUFy2

186 000114 06126 MOVL.W «4+GNITRL -1

157 000115 030%6 KTFSC INHRUF»y1

158 000116 06132 MOVLW +8+SNITEL~1

180

159 000117 03016
160 000120 06136

161 0001 00714
162 000122 00042
163

le4 000123 0G0O73
164 (

166

167 0001 :‘)

168 000127

169 000130
000131
171 00013%
172 000133
Q001
Q0013
000136
000137
000140
000141

0%634

XTEXTOES AND GIMATIL.
179 000142 OH373
180
181 000143
182 000144

183 000145

184 000146

185 000147

1864

187

188

169

190

191

192

193

194000150 06281

195 00047

196 0008

197 04443

198 044085

199 01014

200 06401

201 0¢ OPOLY

y 000140 00063
000161 06377

000162 00072
000163 00074
000164

0N01L6%
Q00 1és
000167

i QOQ%N4
06001
QOOG?
04417

onR1L
01363
05161

ARE

GNITERL

NOW AVATILARLE

ROTAT

MOGN

MUGN2

MOGNI

GUN

GLNY

GUNZ

GUN3

Ty

DLYIN

MIJUL W
ALDWE
MOVWF

FOR
GOTO

GOTO

MOVIW
MOVWF
M()UN!

L(JM W
ANDHLW
MOVWF
MOVI.W
MOVUWE
MOVWEF
MOVL.W
M(WNF

caLl.
MOULtW
MOUKE

eV
GOTO

USE oo

231
10

(lUH‘clH'

34

X4
()UI}!UF"/

GUNL

OQUTEUF &
GUNR

OUTRUF v &
RUMRILE

2

" GUNS

QUTRUF ¢ 2

2 34

MUUI W
MOVWF
MOVLW
MOVWF
Call.
GOTO
TE
G

GUN
36
GUN
32

lll YIIN

TEMF2

LELAY
nLy

L 23

MEGNL

-

IR R R R R R R R R R R R R A R R R R R R R R R R R R R E
]
MACHINE GUN AND RICOCHET H
§
H

AR R R R R R N R R R R RN R R R N R R R R R R R

e wr > e W e W X

§ OTURN OFF ALL SOUNIY CHANNELS

RANDOM #1135 ¢ NUMRER
IN 1 M0 GUN RURST.

e

CREATE 1 ¢
RANIIOM LI

T OF M/C GUN
(WHITE NOTSE

e

51 M0 GUN SHOT OVER.

i REFEAT SHOT FOR A RURST OF FIRE.

181

0002224
000225
Q00226
000227
OOOL’JO

00023 3
000234
000235
000236
000237
000240
000241
Q00245
000243
000244
Q0024%
G00% ’«'46

()00 LJ/
000260
000261

DO0262
000263
0002464
000265
000266
0002467
000270
000271
000272
Q00273
000274
Q00275
Q002764
QO0277
000300
000301
000302
000303
Q00304
QOO30%
000306
Q00307
000310
000311
000312
000313
000314
Q0031%G
000316
000317
000320
000321
000322
000323
000324
000325
000326
()006;'/

000: K.S.:I
000334

Q2355
01015
00047
06030

()101 5
00047
06100
QOLES
0LO1E
00047

()6()1’1&0
00077
01265
()AlqO

0(5(5()()
01 ()""

06131
00047
06377
00074
06001
00075
06331
00045
06"()()

02425
046300
(e 3ak3
01015
00047
01013
()00()’4
014

03403
():H()Ji

05335

INRICO

RICOL

RICOR2

NOF1

VUTL

SIREN

STRENL

FHER1

SOONT

SLOOF

BCF OQUTRUE 57
MOVF OUTBUF W
MOVWE 10
MOULW 30
MOVWE 37
MOVWE 25
HGF OUTRUE 7
MOVE OUTHUF W
MOVWE 10
MOVLW 100
XORWE OUTRUF
MOVE OUTRUF »W
MOWWE 10

37
5070 NOFA
MOVLW 30
MOVWE 37
INCF 25
MOVLW 150
XORWE 255U
ETFSS 3,2
GOTO VTL
GOTO KEYPAD
GOTO NOP1+1
GOTO NOPLH2
GOTO NOF1+3
NOF
MOVE 25
caLL I
GOTO RICO1
MOVLW 131
MOVWE 10
MOVLW 377
MOVWE 34
MOVLY 1
MOVWE 35
MOVLW 331
MOVWE OUTRUF
MOVLW 200
MOVWE SFREQ
HCF SWITCHY O
GOTO SCONT
MOVLW 350
MOVWE SFREQ
ESF SWITCHY O
MOVLW 300
XORWE OUTHUF
MOVE OUTEUF W
MOVWE 10
MOVE SFREQsW
MOUWF TEMF
RKF TEME
DECFSZ TEMF
GOTO SLODP
MOVE WAY W
ADDWE SFREQ
MOVLW 375
SUBWF SFREQsW
XORLW 50
SKFNZ
G0 NEGWAY
LE 34
GOTO RET
DECESZ 3%
GOTO RPT
MOULW 3
MOVWE 36
MOVLW 377
MOVWF 37
GOTO A+l
GOTO At2
GOTO A+3

H

»

y

N

> W e W > > e

a

’

.

’

- e e

-

START RICOCHET,

START ENVELOFE

OQUTFUT FULSE

IEERERERRERR R RN
EUROFEAN STREN

I AR RN R R AR R

HI FREQUENCY FART OF

LO FREQUENCY FART OF

REFEAT CURRENT

NECAY CLBEC) .

TRATIN.

3§

-
-
-
-
e
-
b
-
-
.
-
-
-
-

Pisies

-
-
-
-
-
-
-
-
-
.

SIREN.,

GIREN.

SOUNDT (HI OR LOD

TILL COUNTER HAS COUNTED DOWN

TO ZERO.

ABUSEC DELAY.

-
- e e e

-

182

DO03IBG 05336 GOTO At4

000336 05337 GOTO A+

000337 05340 GOTO Até

000340 01 NECFSZ 37

000341 GOTO A

000342 01376 NECFSZ 36

000343 05332 GOTO A

000344 06377 CHNGE MOVLW 377 # SWITCH SOUND JUST MADE (MI
000345 00074 MOVWF 34 3 FREQ. TO LO FREQ. OR VICE
000346 06001 MOVLW 1 § VERSA) .
000347 00078 MOVWE 3%

000350 03420 RTFS8 SWITCH»O

QO03GL QU276 GOTO PHSR1

QOO3GE 0600“ MOVILW 2

000 MOVWF 35

Q00 GOTO SIRENL

000 RET RTFGC SWITCHYO

Q003 Ouﬁ/é GOTO FHSR1

000357 06367 MOVLW 367

GOO360 000446 MOVUWE 6

000341 01005 MOVF Gl

000362 000%6 MOVWF 16

Q00363 03116 RTFSC 1692

000364 GOTO REYFAD

000368 GOTO SIREN1

000366 NEGWAY COMF WAY

0003647 INCF WAaY

000370 BTFGS SWITCH»O

000371 GOTO FHSR L

000372 OuJOl GOTO SCONT
¥
§
FISFISIERIIISBIIRIRRINIIRIIIIIIIIS
i]
SAUTOMORILE ENGINE REVV UF/ON 5
$ i
PIETFOIPIIIIFIISITIRTISFOFRIIIIT
i

000373 06001 AUTGR MOVLW 1

000374 00073 MOVWF 33

0037% 06031 MOVLW 31

0D0376 00047 MOVWF 10

ODOZ77 00070 MOVWF = 30

000400 0622 MOVLW 225

000401 00060 MOVWF 20

Q00402 00061 MOVWF 21

000403 06200 MOVLW 200

000404 00062 MOVWF 22

000405 000563 MOVWF 23

Q00406 06377 MOVLW 377

Q00407 00071 MOVWF 31

Q00410 06003 MOVLW F

000411 00072 MOVWF 32 .

000412 013460 ENG NECFSZ 20 $ L0 FREQUENGCY .,

000413 05447 GOTO FAD

000414 01021 MOVF 214

000415 00040 MOVWF 20

000414 02470 REF 30y1

000417 01362 ENG1 NECFSZ 22 1 FREQUENCY o THE 2 SOUNDS ARE

000420 05470 GOTO FAll § MIXED TOGETHER TO (REATF REATS,

000421 01023 MOVF 2354

000422 00062 MOVWF 22

000423 02470 RBSF 3091

000424 01030 ENGR MOVF 30 W

000425 00647 XORWF 10

000426 00170 CLRF 30

000427 01371 NECFSZ 31

000430 05471 GOTO FAD2

000431 01372 NECFSZ 32

000432 06472 GOTO FAn2+1

000433 06003 MOVLW 3

000434 00072 MOVWF 32

00043% 03433 KTFSS 33,0 i REVV UF/DN FLAG SET?

000436 05460 GOTO REVIIN § NO!-FR UU NOWN .«

000437 00363 REVUF nECE . 23 §

000440 06030 MOVULW 30 H

000441 00623 XORWF 23,UW

000442 03503 BRFPZ § REVVED UF TO MAX FREQUENCY?

000443 05446 GOTO KEYFR § NO! CHECK IF KEY FRESSED,

000444 06031 MOVLW 31 FOYES! MANTAIN MAX FREQ TILL KEY

000445 00063 MOVWF 23 i RELEASED FOR REVV DIOWN,

000444 06367 KEYFR MOVLW 367 § LOOK FOR KEY RELEASE.

183

401 000447 00046 MOVWF OUT
402 000450 01005 MOVF INsW
403 000451 00056 MOVWF INBUF
404 000452 03416 BTFSS INBUF0O
405 000453 05456 GOTO KEYFR1
404 000454 02033 RCF 3340 # KEY RELEASEN-REVVDOWN.
407 000455 05412 GOTO ENG
408 000456 02433 KEYPR1 ESF 3310 $ KEY STILL PRESSED-REW UP
409 000457 05412 60TO ENG # OR CONTINUE AT MAX FREQUENCY.
410 b
411 0004460 01243 REVDN INCF 23 # INCREMENT COUNTER (DECREMENT
412 000461 06200 MOVLW 200 $ FREQUENCY) .,
413 0004462 00623 XORWF 23y
414 000463 03503 SKPZ $ FREQ REACHED ORIGINAL (MIN) VALUE?
415 000464 05446 GOTO KEYPR $ NO!-CHECK FOR KEY CLOSURE.
416 0004465 00147 CLRF IO } YES!-SOUND OVER.
21; 000466 05073 GOTO KEYFAD
’
419 000447 05417 PAD GOTO ENG1 # TIME PADS TO EQUALIZE PROG LOOPS.
420 000470 05424 PADIL GOTO ENB2
421 000471 05472 FAL2 GOTO PAL2+1
422 000472 05473 GOTO PAD2+2
422 000473 05474 GOTO PAD2+3
424 000474 05475 GOTO PAD2+4
425 000475 05476 GOTO PAD2+S
426 000476 05477 GOTO PAD2+6
427 000477 05412 GOTC ENG
428 '
429 ’
430 FOSIBIIBIBIIBIINIBIBBIIPIIBIPIIIIISY
431 ’ ’
432 $TIRE SCREECH SOUND ’
433 : ' ’
434 PRINBOINONIDINIIIDRIBBEIBINBIIRIIGIS
435 4
436 000500 06121 TSCRCH MOULW 121
437 000501 00055 MOVWF OUTBUF
438 000502 00047 MOVWF IO
439 000503 08200 SCRCH1I MOVLW 200
440 000504 00655 XORWF QUTRUF
441 000505 04405 CALlL. RANGEN § OUTFUT RANDOM FULSES-WHITE NOISE.
442 000506 02003 CLKC
443 000507 03754 BTFSS TEMF,7
444 000510 02403 SETC
445 000511 04400 call RUMBLE
446 000512 01011 MOVF SLoW
447 000513 07017 ANILW 17
448 000514 06440 I0RLW 40
449 000315 00054 WAIT MOVWF TEMF b RANDOM LELAY,
450 000516 01354 WALOOF DECKFSZ TEMF
4%l 000517 05516 GOTO WALOOFP
452 000520 06373 : MOVLW 373 # CHECK IF KEY PRESSED?
453 000521 00046 MOVWF &
454 000522 0100% MOVF SsU
455 000523 000%56 MOVWE 16
456 000524 03556 BTFSS 1693
457 000525 05503 GOTO SCRCHL § YES! CONTINUE SOUNID,
4%8 000526 05073 GOTO KEYFAD $ NO! SOUND DONE.
459 §
460 '
441 DESBSERE NSRRI RPIFIINIIIIIIING
462 i b
463 JCAR CRASH/EXFLOSION SOUND '
444 $ i
465 PIBRIIIBIIIIIIIIINIIBITRONIIIIS
464 '
467 000527 06225 CRASH MOVLW 229
468 000530 00055 MOVWF OQUTBUF
469 000531 00047 MOVWF 10
470 000532 04443 CALL DECAY
471 000533 06377 MOULW 377
472 000534 00076 MOVWF 36
473 000535 06155 MOVLW 155
474 000536 00077 MOVWF 37
475 000%37 02155 RCF OUTBUF »3 _# DISCHARGE ENVELOFE GEN. CAF. FOR FAST R
476 000540 04405 CCONT CALL RANGEN # OUTPUT RANDOM PULSES-WHITE NOISE.
477 000541 03354 BTFSC TEMFy7
478 000542 05546 G0TO DOIT
479 000543 02003 CLRC
480 000544 02115 BCF OUTBUF»2
481 000545 05550 GOTO SOFF
482 000546 02403 noIT SETC

184

106002

QQOHAEO
[eLeTek TN
Q00562

000%63
000564
0000AEY
000566
000567
Q00570
0()0'&:/1
[¢10193+]
000! ;7

‘5

000577
000600
000601
Q004602
000603
000604
000605
000606
000607

000610
000611
Q00612
000613
000414
000615
0006164
000617
000620
000621
000622
000623
000624
000625
000626
000627
QODE30

0440(‘

06252
00047
06030
0003
06002
00074
06003
00647
06001
00057

i 01013

0004

06200
00613

06202
00047
046030
00053
06100
00074
01013
04425
06003
00647

0%614
0527
00000

31 06632

00063! K

000634
000635
000636

05633
05616

06252
00047
00065

SOFF

WLOOF

FHASOR

WISTLE

LL3

TUNE

MUUI«I

OUTRUF 2
RUMELE

()l.HXHJI v

7 36
CCONT
57 37
GOTO CCONT
GOTO KEYFAD
MOVLW 252
MOVWE 7
MOVLW 30
MOVWE SFREQ
MOVILW 2
MOVWE 34
MOVLW 3
XORWE 7
MOULW 1
MOVWE TEMF2
MOVE SEREQ» W
MOVWE TEMF
CALL DELAY
LECKFSZ 34
GOTO L3
INCF SFREQ
MOVILW 200
XORWF SFRER W
HKEZ
GOTO L2
GOTO KEYPAD
MOVLW 252
MOVWE 10
MOVLW 30
MOUWF SFREQ
MOVLY 100
MOVWE 34
MOVF SFREQ»W
CALL DEL4
MOVLW 3
XORWF 7
DECKFSZ 34
GOTO LL3
INCF SFREQ
BTFSS SFREQ,7
GOTO LIl
GOTO CRASH
NOF
GOTO LL3+2
GOTO LL3+3
30TO LL2
MOVLW 252
MOVWE IO
MOVWF 25

POBTART 1LOSEC DECAY ON SOUND QUTRUT.

RECAY QVER-SOUND DONE

4
i
i
PETFFBTNGINSRIIRIRIIIRIRIIITIRIITS
§

FEHASOR GUN SOUNID

- e e e e o

¥
PEISIPIIBESIIBIINIBINIIIIRIIIEIBIS
1

POINITIAL FREQUENCY.

§ DURATION REFORE DECK. FREQ. (F OF FULSES)

FOOUTFUT FULBES OF FREQUENCY-:>SFREQ.

DURATION FOR CURRENT
NO-CONTINUE AT SAME TQUENCY
YES - INCREMENT COUNTER (DEC

CFREQUENCY REACHED MINY
NO-CONTINUE SOUNI.
YES 1 -GOUND DONE .

-

-
- e e e

PIIN asssasasadasissssaaaan
FEIFSSIFIISIENIIIIITEIIFIFIESY

MORTAR WHISTLE & EXFLOSION

o W e W WS eR e N e W D e e e e
-
>
N
"
>
-
>
>
-
-
-
-
>
>
>
>
-
-
-
-
-
-
=
-
-
-
-
-
-
-
-

i QUTFUT FULSES OF FREQUENCY-3

¥ IURATION FOR FREQUENCY OVER?

¥ NOD CONTINUE AT SAME FREQUENCY.
F OYES! INCREMENT COUNTER (DEC
FREQUENCY REACHED MINIMUM?
y
H
4

NO! CONTINUE .,
YES! SOUND DONE.
TIME FADS FOR EQUAL LOOF LENGTHS.

LI' CHARGE’ & ‘SNAKE CHARM

33"'1
w1
o
ZE
G}H

~E.F

. wr e er e e e s e e
1S

‘WILD CHARGE '’ TUNE.

EQUENCY OVER?

REMENT FREQUE

SFREQR.

REMENT FREQUE

185

5464 000637 02025 BCF 2590 b} CLEAR FLAG FOR ‘WILIN CHARGE’ TUNE.
565 000640 06005 MOVLUW S
G566 000641 00076 MOVWF FOINT i FOINTER TO TABRLE FOR ‘WILL CHRG’ NOTE IA
567 000642 00378 STLOOFP DECF FOINT
348 000643 01036 MOVF FOINT W
567 000644 03025 BTFSC 2Gy0 § WHICH TUNE?
570 000645 05650 GOTO u i
971 000646 04451 CaLl. FLAY $ GET NOTE DATA FROM TAERLE FOR WC TUNE
572 000647 05651 GOTO ul
573 000650 04457 u CALL PLAY1 # GET NOTE DATA FROM TARLE FOR SCS TUNE
574 000651 00072 U1 MOVWF 32
975 000652 01572 RLF 32 § DECODE NOTE DATA.
576 0004653 034645 ETFSS 20,1 ? CHECK IF LAST NOTE.
977 000654 06657 GOTO J1 i LAST NOTE ALREADY DECODEI- SKIF.
578 000655 00177 CL.RF 37
G79 000656 01577 RLF 37
580 000657 02003 J1 CLRC
581 000660 01472 RRF 32 P F32 HAS NOTE FREQUENCY.
382 000661 01277 INCF 37 # F37 HAS NOTE DNURATION.
83 000662 06240 NN1 MOVLW 240
584 0006463 00067 MOVWF 27
583 000664 01032 NNZ2 MOVF 32e U
586 000665 00066 MOVWF 26
387 000666 06001 MOVLW 1
388 000667 00647 XORWF 10
589 000670 01366 NN3 DECFSZ 26
590 000471 05670 GOTO NN3
SP1 000672 01367 DECFS8Z 27
592 0004673 05664 GOTO NN2
G923 000674 01377 DECFSZ 37
594 000678 05662 GOTO NN1
995 0004676 01076 SNIIN TSTF FOINT i FOINTER AT LAST NOTE?T
596 000677 03103 SKFNZ
S97 000700 05073 GOTO KEYFAD POYES! TUNE DONE.,
398 000701 01036 MOVF FOINT W
G99 000702 07401 XORLW 1 § POINTER AT SECOND LAST NOTE®?
400 000703 03503 BRFZ
401 000704 05642 GOTO STLOOF 3 NO!D QUTPUT NEXT NOTE.
4022 000705 06003 MOVLW 3 § YES! LAST NOTE DURATION 3.
603 000706 00077 MOVUWF 37
404 000707 02065 RCF 2091 i CLEAR LAST NOTE FLAG.
405 000710 05642 GOTO STLOOF POOUTPUT LAST NOTE.
606 L4
607 000711 046252 TUNE1 MOVLW 232 i GNAKE CHARMERS SONG/
608 000712 00047 MOVUWF 10
609 000713 00065 MOVWF 25
4610 000714 02425 KSF 2890 i SET FLAG FOR ‘SNAKE CHARMER’ TUNE .
611 000718 06013 MOVLW .11 i OSET POINTER TO TARLE FOR ‘SNKE CHMR‘ NOT
612 000716 0%is4l GOTO STLOOF-1
613 §
414 : i
615 ORG 777
416 000777 05073 GOTO KEYFAI
617 4
618 L
619 001000 END
ASSEMBLER ERRORS = Q0

186

SYMREOL. TARLE

A 000332 AUTGR 000373 COONT 000540 CHNGE 000344
CRASBH 000627 DECAY 000043 DEL4 Q00025 DELAY 000017
oLy 000211 DL YIN 000222 norr 000546 ENG 000412
ENG1 000417 ENG2 000424 FREQ 000027 GUN 000167
GUN1 000175 GUNZ2 000177 GUN3Z 000202 HOLIIN 000032
IN 000008 INRUF 000016 INRICO 000237 10 000007
Ji 000657 KEY1 000101 KEYFAD 000073 KEYFR 000444
KEYFR1 0004%6 L1 Q0056S L2 Q00567 1.3 000571
L1 000614 L2 000616 LL3 000630 MCGN 000150
MCGNL 000161 MOGN2 000154 NEGWAY 000366 NN1 000662
NN2 000664 NNJ 000670 NOF1 000253 OFFSET 000026
ouT 000006 OUTEUF 000013 FaAl 000467 FALDL 000470

FADZ 000471 FHASOR 000563 FHESR1 000276 FLAY 0000851
FLAYL 000057 FOINT 000036 RANGEN 000003 REVIN 000460
REVUF 000437 RICOL 000235 RICOR 000241 ROTAT 000143

RFT 000355 RUMELE 000000 SCONT 000301 SCRCHL 000503
SFREQ 000013 SH 000012 SIREN 000262 SIRENL 000272
8L 000011 SLOOF 000310 SNDN 000676 SNITEL. 000123
SOFF 000550 STLOOF 000642 SWITCH 000025 TEMF 000014
TEMP2 000017 TEMFH 000033 TONE 000031 TSCRCH 000500
TUNE 000634 TUNE 1 000711 U 000650 U1 0006451
VUTL 000257 VTL.1 000032 UTL2 000037 UTL.3 000040
WAIT Q00513 WALOOF 000516 WAY 000030 WISTLE 000610
WL.OOF 000553 WORK 000034 WORK1 000035

EQF 1676

0

187

14

Frequency
Locked Loop
Tuning

with a PIC
Microcomputer

INTRODUCTION

Tuning of AM/FM radios and televisions has evolved in the past ten
years from manually varying inductances and capacitors to injecting a
precise DC voltage on a varactor controlled tuner. Although the
mechanics of tuning has changed, the theory of varying the RF mixer
oscillator frequency remains the same.

The varactor tuner offers the advantage over conventional tuners by
eliminating mechanical slugs, contacts and ganged condensers from
the system and replacing them with a voltage controlled oscillator,
specifically a varactor oscillator. This improves system reliability by
removing the mechanical devices and gives system flexibility by a
variety of ways to control the oscillator.

Up until now, most varactor tuners were either controlled in an open
loop configuration (viaa DC voltage generated from a D/A conversion)
orwith aclosed loop Phase Locked Loop (PLL) circuitry. The open loop
system does not compensate for frequency drift in a receiver system
caused by components and by temperature changes. The closed loop
PLL system has the disadvantages of being inherently noisy due to
continuous voltage corrections (usually at a 2.5KHz rate) and costly
utilizing many components.

General Instrument has devised a way of using its standard PIC series
microcomputer as a controller for the varactor tuner in a “Frequency
Locked Loop” (FLL) configuration. Due to the unique architecture and
characteristics of the PIC, it performs the function of a frequency
comparator and adjusts the DC control voltage out of a charge pump
chip to the varactor tuner to maintain the desired frequency. The PIC,
being a programmable microcomputer, is not only capable of perform-
ing FLL tuning, but can also do other tasks to further reduce system
costs. These additional tasks include keyboard decoding, direct LED
drive, band switching, remote control decoding, On/Off control, audio
amplifier muting, volume control and storage of favorite stations in
external memory. The FLL program can be included with various other
program options which customize the system features to the manufac-
turer's needs and requirements.

THEORY OF OPERATION

The FLL program designates two 1/O pins as outputs to drive a charge
pump. The charge pump output is filtered and delivers a DC control
voltage to the varactor-controlled local oscillator in the tuner whose
frequency will vary according to the control voltage.

To close the control loop, the local oscillator frequency is divided down
to a suitable comparison frequency by a prescaler, and in input to the
PIC microcomputer through the Real Time Clock Counter (RTCC) pin.

Inside the PIC, the frequency on the RTCC pin is measured and
compared to the desired frequency generated by the microcomputer
program. The outputs to the charge pump adjust the DC control
voltage up or down until the local oscillator's frequency matches the
desired frequency.

The PIC microcomputer continuously checks for frequency drift and
makes corrections as necessary to hold a station locked in until
another station frequency is selected.

188

The basic concept of FLL can be used in various types of RF tuned
receivers.

The additional features that can be programmed into a television
receiver are: P
1. Favorite (local) channel storage
Favorite channel scan up and down
Direct channel entry
Automatic volume mute during channel change
Remote and local On/Off control
Remote and local volume control
Remote and local channel selection

HARDWARE REQUIREMENTS OF FLL

As shown in Figure 33, the total hardware requirements consist of a
prescaler, an optional non-volatile ROM (ER2055), a PIC1650A micro-
computer, and acharge pump (CT2017). The memory, microcomputer
and charge pump are all integrated circuits available from General
Instrument.

Figure 34 shows atypical hardware comparison of FLL to PLL systems.
A considerable savings can be seen here.

SOFTWARE OPERATION

In its most basic form, the PIC operates as a counter with a gate time of
128 msecs. It obtains a count of the local oscillator frequency and
compares it with an expected count for the particular station. If the
actual count is different from the expected count, it charges or dis-
charges the voltage on a capacitor which corrects the frequency error
of the varactor tuned local oscillator.

In order to respond quickly to a station change requested from a local
or remote keyboard, this 128 msec loop is broken down into 4 loops
consisting of 16 msec, another 16 msec, 32 msec and 64 msec; ie, %th,
“sth, Yth, % and full counts will be obtained at the end of the above
loops.

For instance, in the first 16 msec loop, the count obtained is multiplied
by 8 and then compared with the expected count. If there is a signifi-
canterror, it will be corrected right away. If there is no significant error,
the PIC will accumulate pulses for another 16 msec and add it to the
previous count. This total count of 32 msecs is then muitiplied by 4 and
again compared with the expected count, and so on. If there is no error
at the end of 128 msec the process will start over again.

The program scans the keyboard every time it makes a correction, as
well as at the end of the 128 msec loop. The maximum time the
keyboard is sensed is 128 msecs and the minimum time is 16 msecs.

The display whether static or directly driven is updated every time a
station change is made. The remote control input is looked at during
the count loop. When a valid “start” code is received, the program
leaves the count loop and receives the rest of the code, decodes it and
takes action. It then returns to the tuning control loop.

The PIC also does the band switching, on/off control, volume control,
muting and ' memory control functions.

NoOoOok~ODND

189

CONCLUSION

In concluding the Frequency Locked Loop configuration, the PIC
offers an economical tuning controller which can be used in TV
receivers, cablevision converters and video recorder front ends. It
offers quality performance with a minimum number of parts and a

low control system cost.

Fig.33 BASIC FLL BLOCK DIAGRAM semsmsmmsmsamsmmn:

Fig. 3¢ TYPICAL HARDWARE COMPARISON-—PHASE
LOCKED LOOP VS FREQUENCY LOCKED LOOP =s=

MEMORY*
ER2055
*NON-VOLATILE
“EAROM" MEMORY
DEVICE SUGGESTED
PRESCALER ‘_:' N e
flo
VARACTOR PIC
CONTROL
TUNER VOLTAGE MICRO-
< COMPUTER
CHG UP PIC1650A
CHARGE CONTROL
PUMP KEYBOARD
crao0m CHG DOWN ﬂ

PLL SYSTEM FLL SYSTEM

MICROCOMPUTER

1

1

MEMORY 1 1
FREQUENCY SYNTHESIZER 1 NONE
CRYSTALS 2 1
TRANSISTORS 26 8
CAPACITORS 57 26
RESISTORS 104 35
DISPLAY DRIVER 2 NONE
KEYBOARD MULTIPLEXER 1or2 NONE
TRIMMER RESISTORS 1 NONE
TRIMMER CAPACITORS 1 NONE

EXTRATTL

190

GENERAL FLL TUNING FLOWCHART ses

«D

——

SET FIRST STATION FREQUENCY
CLEAR RTCC (16 BIT COUNTER)
SET LOOP POINTER =0
SET SM LOOP EQUAL TO VALUE
FROM TABLE 1

v

(START

DELAY FOR A TIME
EQUAL TO CHKERR
AND COUNT ROUTINES

PERFORM SYSTEM TASKS SUCH
AS SCAN KEYBOARD, REFRESH
DISPLAY, STATION STORAGE IN
NON-VOLATILE MEMORY, CLOCK,
REMOTE CONTROL, ETC.

Y

DECREMENT SM LOOP

[

SM LOOP =07

COUNT

CHKERR

ACTUAL COUNT
GREATER THAN DESIRED
COUNT

NO

\

SML ERR

OUTPUT N 4uSEC
PULSES ON CHARGE UP
OR CHARGE DOWN
LINE (DEPENDANT ON FLAG 0)
WHERE N IS DETERMINED
BY THE ERROR

START

BIG ERR

0

TURN ON CHARGE UP
OR CHARGE DOWN
LINE (DEPENDENT ON FLAG 0)
FOR A PERIOD OF
TIME DETERMINED

CLEAR FLAG 0 SET FLAG 0 BY THE ERROR
SML ERR
LARGE YES
ERROR?
NO BIG ERR
SMALL YES NO HAs RTCC
ERROR (LOW 8 BITS)
OVERFLOWED
NO SML ERR

INCREMENT LOOP
POINTER

LOOP

POINTER
=47

LOAD SM LOOP
WITH APPROPRIATE
VALUE FROM TABLE 1

y

I TABLE 1 |

INCREMENT UPPER
8 BITS OF RTCC

RETURN

SM LOOP

LOOP POINTER

16
16
32
64

0
1
2
3

191

c6i

A o B> ' —O +5V (AB)
4’ K 1, K V¥
g ;, 1 470 +
4M 10uF
1B s
(9) AM fe? Fandy J
osc ~ L] S My
+5a S GND > T O GND
20pF =
) Y 1 OH
= = 1 28
O1uF 1 8 5 23,10 5581 OsC3 27K (4
(10) FM - i 14 1 = 21 AAA
) £ O—H_—T—I '——— <ea7 . 1A o0 i c3 VWA
$n s s 4 741593 12
S c2 20 AAA,
VWA
1_| 1/4 4016
1 O ci|2 AA-
cof8 A~ 4
MSD LsD
A > 390 (7) @ 3 2 , 3
3 10K ol A | L S
13 | 81 :; —AAA/ ! — —c]
(5} AM B2 AN S] e
TUNING aru 10K - n HP. - 3]
VOLTAGE + 1/4 4016 cs B3 VA mmm? :
1/25 c1 Be ™ —AAA~ —] —
BS ‘v"‘v
1"
= = Bs e M — i—— —
.
IN914
PICT656 £ x5 & %W $ s
E F D c >
6 A
A0
Vel 7 7 7
i 44016 Ve z AVA LA LA
AN cs
VOLTAGE +) W Y i : s ¥ ¥h ¢ ¢ sex
1725 ~=C2 1’5 A > al Vil
L = A LA LA LA
- 51 test afe G ! i (°
[Ve / / 7
= /(IF
ol ¥ £Ly4 LA
Vd 71 7 7/ 2
e AR 2%
(7) STATION __ +12
DETECT
+5A 10K
10K 10K
AM (3
. 10K 10K @
(8) MUTE)-
10K 17 24 A“:KA
NOTES: |87 c6 VWA
1. TERMINATING RESISTOR, R M AM =
DIFF WITH DIFF SYSTEM Voo Vss MCLR -
2.CAPACITORS, C1 AND C2 4 L =
DIFF WITH DIFF SYSTEM = = 2 4 27| +5A = G
3.ALL NPN TRANS 2N3904 =
ALL PNP TRANS 2N3906 +54
4.KEYBOARD = GRAYHILL #33881-001 = 10K
5. TOGGLE SWITCH (SPST)
6. TWO IDENTICAL CIRCUITS A & B .
0.4pF

I

- RADIO TUNING SYSTEM

20K

AAA

10K

AAA

IF-vA—g—A—0

10
12 2
@ LT
je: 7493N |
13 7
QA (g
8
== —
5V
10K
22 _é).r.\‘w_____
10K
- 29
047 2N3804 _.J D2
A7
HILO 31},
Iatot ON/OFF
32 D5
'9 CHG UP_ 27 D2

15V
30 —)-

4b
aton @
‘D

5.8V/%W I

|1a CHG DOWN__ 28| 1y

Y

10uF/26V

VWA

2N3904

PIC1650A

<
<

2N3904

VWA—-

S <
4 20K :.

VOLUME
CONTROL
as8v

1.2K (4W)

W

CJ ESN B BT
co®m >0
eTmMODOO >

B4
85

16

86

17

87

18

Om_"l“

©@TMTmMO O D >

TV TUNING SYSTEM

1
2
3
4
s
8
_I.. 7
= 01
=
- o1
8
]
10
1
12
13
— 14
L. _I.
o1
=z
1]
=z
L
18
2.
< 17
££ 18
< 19
€ 20

T

Ll

1K

193

15

PIC
Microcomputers
in Subscriber
End Equipment

INTRODUCTION

Single chip microcomputers have become the standard circuit module
of the 1980’s. In this paper, General Instrument PIC series microcom-
puters will be reviewed and will be shown where and how they can be
used to provide cost effective solutions in the design of telecommunica-
tions systems.

PIC Series Microcomputers

The PIC series of microcomputers are MOS/LSI circuit arrays contain-
ing a central processing unit, RAM, I/0 and customer defined ROM on
a single chip.

The power and versatility of the design combined with the low cost
afforded by mass production and the use of proven technology has
made this LS| family among the best selling 8 bit microcomputers.

The architecture of PIC microcomputers is register oriented optimized
to perform control oriented tasks.

Internally, PIC microcomputers contain 5 functional blocks connected
by a single 8 bit bidirectional bus:

1. Register files divided into two functional groups: Special Regis-
ters and General Purpose Registers. The Special Purpose Regis-
ters include:

O Real Time Clock/Counters

O Status Registers

O Program Counter

O 1/0 Registers

O File Select Registers (Used to indirectly address any register.)
Any bit, nibble or byte in the register files can be tested or modified
under program control.

2. Arithmetic logic unit and working register (W) that provide full
complement of arithmetic and logic operations.

3. Program ROM containing the user defined application program,
supported by an instruction decoder and instruction register.

4. Multilevel stack used for subroutine and interrupt nesting.

5. Interrupt logic allowing external and real time clock counter vec-
tored interrupts.

In addition, a PLA and on chip oscillator are used to provide instruction
decoding and generation of timing and control signals.

Overlapping of the fetch and execution cycles, or pipelining, permits
PIC to execute each of its instructions in a single clock cycle.

The instruction set of PIC microcomputers is compact, but very power-
ful. Each one of the instructions is contained in a 12 bit (13-bit PIC1670)
wide single line of ROM. This width permits complete operands that
can address all PIC file registers and there is no need for a second
trailing line of code (very often required to complete the operand in
other microcomputers such as 8048 or 3870), which takes ROM space
and increases the execution time.

194

Microcomputer Controlled Voice Switched Speakerphone

and Repertory Dialer

The speakerphoneis an instrument that offers hands free telephony by
means of replacing the usual telephone handset with separate loud-
speaker and microphone. In order to compensate for the loss intro-
duced by moving the handset away from the user’s head, gain is
inserted in the transmitting and receiving channels. This gain, how-
ever, is limited by a problem known as “singing.” A signal from the
microphone reaches the loudspeaker traveling through the transmitter
channel, the sidetone path and the receiving channel. From the loud-
speaker, this signal comes back to the microphone through the acoustic
coupling of the room thus creating a closed loop (Figure 35). If the total
gain within the loop is greater than or equal to 0dB, oscillation (“singing”)
will occur. Another unpleasant effect is caused by the acoustic coup-
ling of the microphone and the loudspeaker in the form of an “echo”
noticed at the end of the distant party. Standard telephones are usually
held close to the user’'s head and are not affected by the acoustic
properties of the room and the ambient noise level, on the contrary the
performance of the speakerphone is severely limited by them.

The common solution for these limitations is to allow transmission in
only one direction or voice switching. Figure 36 shows a block diagram
of a voice switched speakerphone. A microphone preamplifier and a
power amplifier provide the desired gains within the transmit and the
receive channels respectively. A hybrid network interfaces the speaker-
phone to the telephone line. Two variable attenuators are incorporated,
one in the transmit and one in the receive channel. The decision
making unit within the speakerphone is the control unit. It compares
the signal levels in the transmit and receive channels and by acting on
the variable attenuators, decides the transmission direction. Obviously,
the quality of the transmission through a speakerphone is a function of
the intelligence of its control circuit. There are only a few high quality
speakerphones avaitable presently and all of them use highly complex
analog type control circuits. Some ingenious circuits have been
designed in order to minimize such problems as false switching due to
high ambient noise levels, clipping due to finite switching time, etc.

With the cost of computing and control power steadily decreasing, it
becomes feasible to incorporate a single chip microcomputer in the
control circuit of a speakerphone. Figure 37 shows a block diagram of a
microcomputer controlled speakerphone. Its building blocks can be
defined as follows:

B Digitally Programmable Transmit and Receive Attenuators. The loss
of the attenuators is controlled by a digital binary word. For example,
five bit word can provide dynamic range of 0 to 31dB at a 1dB incre-
ment. The advantages offered by these types of attenuators are: ease in
generation of the loss-time curves; maintenance of constant gain
within the speakerphone loop by inverse tracking of the transmit and
the receive attenuators’ losses; and implementation of automatic gain
control.

195

B Level Sensing Circuit. Its role is to monitor the voltage levels at the
inputs of the transmit and receive channels and to convert them in a
digital binary form for use by the microcomputer.

B Microcomputer. It provides the necessary intelligence to the con-
trol circuit of the speakerphone. Inputs from the level sensing circuit
are taken by the microcomputer and are used as a base for generating
outputs to the programmable attenuators. The amount of intelligence
packed within the microcomputer depends on the algorithm used by
the designer and is no longer a function of the circuit complexity.

The presence of a microcomputer in a speakerphone gives the
designer an opportunity to add to it repertory dialing capabilities.
Figure 38 shows a block diagram of a repertory dialer in additionto a
speakerphone. Some of the features that such an addition can provide
are as follows:

O Display showing the number being dialed
O DTMF or pulse dialing

O Nonvolatile repertory storage by using EAROM (General Instrument
ER3400) :

O Digital clock and interval timer
O Automatic redial of busy numbers

Microcomputer Based Multiline Telephone Instruments

for Use in Electronic Key Telephone Systems

A Key Telephone System (KTS) is an arrangement of multiline tele-
phone station apparatus and associated equipment which allows a
user to selectively answer, originate, or hold calls over a specific
central office, PABX or other line facilities.

Key Telephone Systems on the market, until recently, have enjoyed a
high degree of industry standardization, whereby, many subsystems
such as instruments and line cards have been interchangeable, regard-
less of the origin of manufacture. During the 1970’s a number of new
Key Telephone Systems using electronic and digital techniques were
introduced. These systems are of a design unique to each manufac-
turer, thus digressing from the principle of standardization. The use of
advanced electronic and digital technology made possible the intro-
duction of proprietary instruments with multiline capability utilizing
drastically reduced cabling, thus overcoming the inherent disadvan-
tages of the old Electromechanical Key Telephone Systems which
require many wire pairs to interconnect each instrument. In addition,
the Electronic Key Systems offer many features previously provided
only by PBXs.

Figure 39 shows a block diagram of an Electronic Key System. A
common control unit interfaces a number of electronic multiline
instruments to the central office, PABX, or other line facilities. Three
wire pairs connect each instrument to the common control unit. One of
the wire pairs provides power to the instrument and the other two are
used as serial data and voice links. The common control unit scans the
instrument through the serial data links interrogating them about the
status of their keys and hook switches and supplying appropriate sets

196

with the new status of their lamp fields and ringers. The electronic
multiline instrument provides the user with a standard talking path, a
nonlocking key field used to access individual lines or features, alamp
field indicating the status of the line or feature select keys and an
electronic tone ringer. Obviously, complex logic circuitry is required
within the electronic multiline instrument in order to perform those
functions. A cost-effective solution in this case can be provided by a
single chip microcomputer.

Figure 40 shows a single chip microcomputer based multiline tele-
phone instrument. Standard 500 type speech network terminates the
voice wire pair. A power amplifier/loudspeaker is added to enable
paging and receive only conferences. Data transceivers interface the
instrument to the serial data link, thus providing data communication
over a single wire pair. Power to the instrument is supplied over a
separate wire pair. The microcomputer is the main logic component of
the instrument. The software contained in its program memory per-
forms the following functions:

B LED Lamp Field Control. Part of the data memory of the micro-
computer holds the status of the lamp field with binary 0 and 1 indicat-
ing off/on condition for each separate lamp respectively. This informa-
tion is supplied to the lamp field through the microcomputer 1/0
periodically, thus saving power and improving the brightness of the
LED’s.

B Key Field Scan and Encoding. The key field of the instrument is
arranged in a form of matrix and directly interfaces with the I/0 of the
microcomputer. Periodic scan of the key field detects key closures and
enables key debouncing and encoding. The encoded version of each
key closure is stored in atemporary location in the data memory of the
microcomputer.

B Serial Data Communication. Asynchronous serial data communi-
cation enables the multiline electronic instrument to communicate
_ with the common control unit. The common control unit periodically
sends commands to the instrument instructing it to change the status
of the lamp field, initiate ringing, or connect/disconnect the receive
only power amplifier/loudspeaker to the voice wire pair. The instru-
ment then responds by transmitting the encoded version of any key
closure that has occurred and the status of the hook switch. Two single
bit microcomputer 1/0 ports are used as receive and transmit ports.
Timing, decoding, and encoding of the serial data is performed by the
microcomputer. Any command after being received and decoded is
acted upon by changing the contents of the microcomputer’'s data
memory allocated for lamp field status, ring generation, or by perform-
ing other specified tasks.

B Ring Generation. A piezoelectric transducer can be used as a
ringer. in such case the microcomputer controls the volume, pitch, and
interruption rate of the ringer.

B Hook Switch Sense and Power Amplifier/Loudspeaker Actuation.
Two single bit microcomputer 1/0O ports are dedicated to sense the
status of the hook switch (up/down) and actuate the receive only
power amplifier (on/off).

Some hardware external to the microcomputer is required in order to
achieve the functions described above but will not be discussed here.

197

Conclusion

Single chip microcomputers are versatile parts and their widespread
use in telecommunication systems is imminent. The intention of this
paper was to review briefly one of the popular microcomputer families
and show a few of its many possible applications.

198

 Fig. 35

LINE
MICROPHONE T T LOUDSPEAKER
' | HYBRID » .‘
——— e

HYBRID SIDETONE

oy

ACOUSTIC COUPLING

Fig. 36
MICROPHONE R
TVA V
/ ACCOUSTIC CONTROL LINE
COUPLING CIRCUIT HYBRID HYBRID
SIDETONE
\DD <l’— RVA
LOUDSPEAKER
Fig. 37

MICROPHONE/PREAMPLIFIER

TRANSMIT
DIGITALLY
PROGRAMABLE
ATTENUATOR

T
r LINE

MICROCOMPUTER HYBRID
I—
LEVEL
SENSING
CIRCUIT
RECEIVE
DIGITALLY
PROGRAMABLE
ATTENUATOR

LOUDSPEAKER/AMPLIFIER

199

Fig. 38

Fig. 39

DISPLAY

KEYBOARD

ELECTRONIC
MULTILINE
INSTRUMENT

DIALING
CIRCUIT
MICRO-
COMPUTER
EEROM

DATA

ELECTRONIC
MULTILINE
INSTRUMENT

TRANS -
CEIVERS

ELECTRONIC
MULTILINE
INSTRUMENT

"

MAINTENANCE
14

(o]

CALL PROCESSING
ADMINISTRATION
AND MAINTENANCE
SOFTWARE

h

VOICE

SWITCHING
NETWORK

Co,
O PBX

COMMON CONTROL UNIT

LINES
O

200

Fig. 40

VOICE PAIR

HAND SET

HOOK

POWER AMPLIFIER/LOUDSPEAKER

SWITCH

DATA PAIR

VOICE
NETWORK

DATA
TRANS-
CEIVER

POWER
PAIR

MICRO-

KEY FIELD

COMPUTER

POWER
CONVERTER

v

LAMP FIELD

201

1.6

PIC
Microcomputer-
Based Gontrol
Smoothes
Universal Motor
Performance

Universal motors, so-called because they can run on either an alternat-
ing or a direct current, are widely used in vacuum cleaners, blenders,
power tools, sewing machines, and other consumer appliances that
need to operate at varying speeds. These motors supply high horse-
power relative to their weight and size, easy speed control, high start-
ing torque, and economical operation. But they also demand high
starting current, generate a lot of noise, overheat at low speed, and
suffer from inherently poor speed regulation as well as poor efficiency
when the load is variable.

A microprocessor-based closed-loop motor controller (Figure 41)
reduces or eliminates these disadvantages. Being less costly and more
reliable than a closed loop built with discrete devices, it is practical for
a great many more consumer applications. It is also a cost-effective
means of adding several desirable operating features.

Forinstance, the input speed of a power tool may now be set through a
digital keypad or potentiometer. (In the latter case, the microcomputer
converts the analog input into digital form before setting tool speed.)
Moreover, microprocessor-controlied automatic current limiting en-
hances the reliability and life of the universal motor, replacing the
passive components that generally keep its starting and overload cur-
rents to levels that are safe for its brushes, on-off switch, and owner’s
housewiring. In addition, such current limiting protects the motor from
overheating.

Open Versus Closed Loop

With a constant voltage input, the load that a universal motor must
move determines its speed. But as Figure 42 shows, the speed-torque
curve that describes this open-loop relationship (solid black line) is
highly nonlinear, and it remains just as nonlinear throughout any
change in driving current used to shift it (dashed black line) and thus
alter motor speed. Moreover, full torque is not available at lower speeds
in any case.

The operating curve for a motor with closed-loop speed control is
entirely different. Now the speed remains almost constant under a
variable load (nearly horizontal solid colored line) so long as the peak
load does not exceed the available torque.

Itis worth noting at this point that a universal motor with a closed-loop
control and a variable load draws less current as a function of torque
(colored dotted and dashed line) than does one without such a control
(black dotted and dashed line). This not only saves power but also
reduces the amount of audible noise because, when a motor uses less
current, it is slower and therefore less noisy—and what is more, inter-
feres less with its user’s television reception.

A microcomputer-based implementation of such a closed loop requires
only a few external components, including a speed pickup, a triac, and
a power supply (see Figure 41). It assumes ac, not dc, operation of the
universal motor.

A typical speed pickup might consist of a 20-pole magnetic disk and a
Hall-effect sensor. Such an arrangement would feed back 10 pulses per

202

motor revolution to the microcomputer, since a high-resolutioninputis
necessary if the loop is to have refined control over its output to the
triac.

Triac Triggering

The loop triggers the triac at varying times after the ac reference
signal’s zero crossing. This variable firing angle in turn varies the power
delivered to the motor by setting the average current fed to the series
windings. Typically the triac is rated at 6 to 15 amperes and drives a
motor of 0.5 to 2 horsepower.

The user’s input to the loop may be made through a keypad and
display, incorporated in it with the addition of a few extra components
as shown in the figure. This keypad can be scanned and the display
multiplexed at up to a 250KHz rate by the microcomputer—a more-
than-adequate rate for consumer applications.

In operation, the microprocessor continually compares the speed set
by the user with the speed measured by the Hall-effect pickup and then
adjusts the power delivered to the motor to minimize any error in
performance.

Forinstance, in a blender application, the desired motor speed and run
time would be entered by the user, and the microcomputer would then
send the triac the pulses appropriate for applying a steadily rising
current to the motor until it reached the desired speed. In larger
appliances, of course, this “soft” start would limit the typically very
large initial surge currents of the universal motor, thus safeguarding
switches and wiring.

Moreover, current limiting of the universal motor is readily achieved by
limiting the firing angle of the drive triac as a function of the maximum
speed desired. In essence, the maximum allowable number of pulses
from the speed pickup in a given period of time is made to determine
the maximum firing angle.

The operating characteristic of the motor is then modified to follow the
solid vertical colored line of Figure 42 in an overload condition. (It is
to be noted that * on the colored dotted and dashed current curve
corresponds to this limit.)

This principle can be extended to protect the motor from overheating
when it is being forced by heavy loading to run at low speed. A simple
timer incorporated into the control loop just rolls back the current to a
safe limit after a predetermined time (indicated by the colored dotted
line in Figure 42).

In sum, then, the operation of the universal motor is limited to the
horizontal solid colored line of Figure 42 for various loads until the
overload condition is reached. Then its speed drops while a constant
current is maintained along the vertical line. In this condition, the
motor is overheating, and after a period of time predetermined by the
microcomputer, the current rollback feature moves the load line back
to the dotted line in the figure. When the load is reduced, the operating

- point will move up the dotted line to the horizontal one and into the

normal region.

203

02

|||——-I

|||-—-|

20 POLE \
MAGNETIC{ @
DISK s

PN

HALT EFFECT

UNIVERSAL
MOTOR

SPEED TRIAC _[
PICKUP
- J — . S
p 1 :
JUU. 2
— N
ZERO
RTCC 170 170 CROSSING
MCLR 4 v L
PIC 1655A
MICROCOMPUTER Voo
10SC
1/0 VE Vss '—]—

[

I

[T

T
\l

[]

[]

vV
AAA
VVv
AAA,
Vv~
AAA
Vv
AAA
VWv

B
<

-

N

SWITCH/KEYBOARD MATRIX

Q
+5vV +5V +5V

CLOSE THE LOOP

Fig. 41

NOTE: Older feedback loops for motor control had many
parts and offered few features at a high cost. But the
microprocessor approach allows the use of just a few inex-
pensive additional components and gives the user more
precise control over the motor.

Firing Angle Control

Universal motor torque is a nonlinear function of firing angle and speed
(Figure 43a). In order to linearize it, so that a speed variation produces
a corresponding change in torque, the deviation of the actual from the
set speed—the speed error—must be mapped into the phase angle,
which can then be used to adjust matters.

Done empirically, this mapping (Figure 43b) yields a curve of speed
error versus torque that is almost linear. This curve’s independence of a
specific speed is assured by correlating speed error with firing angle
for each of various speeds.

Fig. 42 CHANGE THE CURVE

Ll b LI 1 1

24

= OPEN-LOOP J/
S Hob SPEED-TORQUE

x 20N CURVE ‘ 128

a \

I

g 1er 1202
g 12f Bo
- =]
8 (&)
w 8| $ ~ b~

% ‘ \\\s 10

N
]
J
L 0.
. $
J
&

4r o/CURRENT CLOSED-LOOP -5
SPEED-TORQUE

0 1 i]] L o

0 025 050 075 1.00 1.25 ft-lb
0 48 96 144 192 240 in.-oz
TORQUE

NOTE: The speed-torque curve of a universal motor determines the
motor’'s operating point for a constant voltage input and applied load.
Only a closed-loop controller will allow the speed to be kept relatively
constant in the face of a variable load.

205

Fig. 43 MAPPINGS

5,000 rpm
N
Q
c 10,000 rpm
w
o]
a
G
= 20,000
rpm
1 \
0° 20° 90° 180°
() FIRING ANGLE (°)
00
w 5,000 rpm
]
4
P=3
Y]
Z 10,000 rpm
[ia
o
n
20,000 rpm
180°
—10 -5 0
(b) PERCENT SPEED ERROR

(ACTUAL/SET SPEED x 100)

NOTE: Starting from no motor movement at all, the first load line of the
motor—which corresponds to a small firing angle—is followed up to the
first speed switch point, where the next firing angle takes over. This
process continues until the motor runs out of torque.

206

Speed Measurement

The speed control algorithm built into the microcomputer uses the
percentage error between the actual and set speed. For relatively small
changesin speed, the percentage change in the period of revolution is
approximately the same as the percentage change in speed.

If measurements for all possible set speeds in the same length of time
are made with sufficient resolution, by picking up many pulses per
motor revolution, the percentage error difference between the set
period and actual period is approximately the negative percentage
speed error.

This is easily shown mathematically. The fractional error in speed, Eg,
is of course the difference between the set speed, Sg, and the actual
speed, S,, expressed as a fraction of Sg, or:

ES=(SS—SA)/SS (1)
The speed in revolutions per minute is 60 times the product of the
reciprocals of N, the number of pulses per revolution, and P, the period
in seconds of those pulses. So by substitution in Eq. 1:

Es = [(60/NPg) — (60/NP4)]/(60/NPg)

= (1/Pg— 1/Pp)/(1/Pg)

=1—[Ps/(Ps ~ Pg)]

= —Pg/(Pg— Pg)
where Py, Pg, and Pg are respectively the actual, set, and error periods
in seconds. But if the error period is very much smaller than the set
period (the usual case), Eg = —Pg/Pg, as was stated.

For these constant or near constant measurement period approxi-
mations, the error in period is proportional to the percentage speed
error and can replace it in the firing angle mapping to achieve proper
control (Figure 44). For fixed speeds, the values of N and P can be
stored in a look-up table, and for variable speed control they can be
calculated by means of a divide routine. Both of these are stored in the
microcomputer.

Ripple Control

To refer back to Figure 43b, it is important to note the sharp change in
torque for a given change in firing angle around 90°. The resolution of
the firing angle at this point determines how much ripple there is in
motor speed. At low speed inadequate resolution can cause sputtering
where the torque change is such that it produces very noticeable jerks
in speed.

For instance, when the motor starts from zero speed, the first load line
corresponding to a small firing angle (Figure 45) is followed up to the
first speed point. There a second and larger firing angle is switched in.
This discrete control is continued until the motor runs out of torque.
From this diagram it is clear that any ripple will be determined by the
step size in measurement made by the speed pickup and the resolution
of the firing angle as set by the microcomputer.

207

]
Fig. 44 PERIOD mesmmmssess st o s e e i o e s me s

180°

90°

FIRING ANGLE (°)

20°

00
PERIOD ERROR
(ACTUAL/SET PERIOD OF REVOLUTION)

NOTE: For small changes in speed, the change in the period of motor
revolution is the same as its change in speed. Consequently, the error in
the motor period is proportional to its speed error and can therefore
replace that variable in the firing-angle mapping.

Fig. 45 JUNPY oo s s e s SR s sy

20,000

12,000

8,000

>
o
o
(=)

SPEED (rpm)

25 50 75
TORQUE (in.-0z)

NOTE: Torque is a nonlinear function of both triac firing angle and motor
speed (a). For linear motor speed regulation, the speed error must be
mapped into firing angle (b). If done properly, a linear speed-error versus
torque curve is achieved.

208

Microcomputer Requirements

A microcomputer used in universal motor speed control must have an
8-bit data word and an instruction execution rate of at least 250KHz to
perform the functions discussed. And of course it should and does
consume relatively little power.

The first two requirements are important because of the relatively
complex calculations that must be performed quickly and the high
resolution required for the triac firing angle at low motor speeds.

The General Instrument NMOS PIC1655A was specifically designed to
meet these constraints. A one-chip microcomputer that uses only 35
milliamperes from a 4.5-to-7-volt supply, it has a pipelined architecture,
12-bit instructions, and an 8-bit data path.

Pipelining, or fetching the next instruction while executing the current
one, shortens its instruction execution time to 4 microseconds. Also,
the internal functions—the arithmetic and logic unit, memory, and
input/output—need have data settling times of only 2 to 3us to permita
conservative design and extended temperature ranges.

The 12-bit instruction word is long enough to eliminate the need for
multiple fetches of instructions. The instruction set includes, in addi-
tion to common operations such as add, subtract, AND, OR, and
exclusive-OR, other powerful bit operations like bit set, bit clear, and
bit test. For example, the BSFSC 7, 2 instruction will skip the next
instruction when bit 2 of 1/0 register 7 is low.

The 8-bit data path is adequate for most control applications. However,
the PIC can handle the double precision necessary when 16-bit resolu-
tion is required. Its double-precision signed-integer math routines,
including addition, subtraction, multiplication and division, are con-
tained in 90 instructions.

Application Example A

What can a microcomputer do forahome vacuum cleaner? On the one
hand, the vacuum motor can have a soft start. That is, currentis limited
during startup. With this feature, larger motors can be installed to allow
higher vacuums and greater air flow without dimming the lights, blow-
ing fuses, or exceeding Underwriters Laboratories specifications on
turn-on.

In addition, the vacuum motor can be run at maximum efficiency.
Depending on motor design, this might correspond to a constant
speed of about 15,000 revolutions per minute for about 70% to 80%
efficiency. Now the centrifugal blower can also be optimized for con-
stant speed operation, further enhancing efficiency and lowering peak
noise.

Note that the term “constant speed” means speed regulation within a
certain limit, which will depend on the application. A speed decrease of
about 10% from no load to full load is actually desirable since an
increase of about 30% in vacuum pressure in fact accompanies
decreased flow.

209

Application Example B

An alternative to constant pressure control is constanttorque opera-
tion—allowing the speed to vary to maintain constantair flow. Further-
more, it permits the use of a motor designed for very high speeds, but
one that normally draws too much current at lower speeds. Higher
available vacuum pressure than would otherwise be possible is the
resuit.

An improvement desirable in a vacuum cleaner is a reliable “bag full”
indication. The indication of a full bag is low air flow over a period of
time. Since the flow is most often proportional to torque in constant
speed operation, the microcomputer can digitally filter the torque input
signaland turnalamp on. Ifthe vacuum is run with constant torque, the
bag will be full when the average speed goes over a certain limit. And
finally, it is easy to hook up several push buttons to preset carpet beater
speed and vacuum level.

210

1.7
Interfacing
aPIC
Microcomputer
with the ER1400
EAROM

INTRODUCTION

Organized as 100 14-bit words, the ER1400 is an electrically erasable
and reprogrammable non-volatile memory. Individual words may be
erased and reprogrammed.

The ER1400 consists of a memory array, control circuitry, twenty bit
serial to parallel shift register for addressing, and a 14-bit serial to
parallel, parallel to serial shift register for data i/O. In the accept address
mode, the address is shifted serially into the ER1400. The address
consists of two consecutive one-of-ten codes controlling the “tens”
digit and the “units” digit respectively. The Accept Address command
may be followed by either Erase, Accept Data, Write (for reprogram-
ming), or Read, and Shift Data Out (for reading).

With its serial address/data flow, the ER1400 only requires 5 1/0 ports to
interface with the microcomputer: one for clocking, three for control,
and one foraddressing and data flow. On the other hand, a 64 word x 8
bit EAROM such as the ER2055 requires 17 1/O ports: one for clocking,
two for control, six for addressing, and eight for bidirectional data flow.
However, the read cycle time for the ER2055 is much shorter than the
ER1400.

Data is transferred to or from the ER1400 by first serially inputting two
ten bitaddress words and then serially shifting in or out the 14-bit data
word. Control of these operations is done by three chip control lines
and 14KHz clock. It is essential that the clock is not interrupted
between Accept Address and Shift Data Out and between Accept
Address and Accept Data. Write and erase cycles require a 18 msec
delay (with clocking) before changing modes to guarantee data
retention.

HARDWARE

A PIC with open drain outputs can directly drive the 10 volt I/O lines for
the ER1400 as shown in Figure 46. The outputs of the PIC can be pulled
more positive than the chip’s power supply. High level outputs are pulled
to the 10 volt supply by the 15K resistors, while low levels are pulled to
ground by the output transistors on the PIC. In Figure 46, the point C2 is
low for data or address transfers to the ER1400, and high for data
transfers to the PIC. Thus the 100K resistor provides a pull-up for data
write cycles and a 100K resistor is provided to ground when the ER1400 is
outputting. Note that alogic “0” to the EAROM is a high voltage level, and
alogic “1” is a low voltage level. According to Figure 46, a high voltage
level is +10 volt and a low voltage level is 0 volt.

21

SOFTWARE

This software package consists of five subroutines as follow:

1. READ —

MSB

Before calling READ, the read address should be
stored in register LOCATN in BCD format as
shown below.

MSB LSB
LOCATN: TENS i UNITS

ft—— 8 BITS —>]

The subroutine ADEAR will be called to convert
this BCD address into two 10-bit addresses in
one-of-ten code as required by the ER1400 and
transfer this address into the address register in
the EAROM. After the content of this location
has been read into the data register in the
EAROM, this 14-bit data will be shifted out
serially to two consecutive files in the PIC called
DATA1 and DATA2.

LSB

o0 |

DATA2]._ DATA1

I

2. WRITE —

3. ADEAR —

14 BITS —=]

When this is finished, the PIC will put the ER1400
into standby mode. A flowchart of the READ
operation is shown on page 5.

Before calling WRITE, the write address in BCD
format should be stored in file LOCATN as de-
scribed above. The 14-bit data waiting to be written
into the EAROM should be stored in files DATA1
and DATAZ2. By calling ADEAR, the write address
will be transferred into the EAROM. The content
of this location is erased to logic ‘1’ before data
can be written in. After the content of DATA1 and
DATAZ2 has been written into the EAROM, the PIC
will put the EAROM into standby mode. A flow-
chart for the WRITE operation is shown on page 6.

Accordingtothe 2 digitBCD address in LOCATN,
this subroutine will create a 20-bit address (2 con-
secutive one-of-ten codes) which is required by
the EAROM. This 20-bit address is stored in three
consecutive files called CONAD1, CONAD2 and
CONADSZ in the following configuration:

CONAD3

C XXXX !

le«—{ CONAD2 H CONAD1 [-<J

CARRY lt—LOW ORDER —Wttt————HIGH ORDER ——¥~|

BIT

ADDRESS ADDRESS

When this address is formed, this subroutine will
automatically call ERTRAN which will send out
the address to the EAROM.

212

4. ERTRAN — Thissubroutine transfers the 20-bit address to the

5. WISBMS —

EAROM or the 14-bit data to/from the EAROM. On
entry, the W register should contain the EAROM
control code, file COUNT should contain the
number of clock cycies for the EAROM, and the
File Select Register (F4) should point to the start
of the information file waiting to be transferred.
This subroutine clocks the information to/from
the EAROM at a rate of 13.8KHZ. The internal
oscillator on the PIC runs at IMHz providing an
instruction cycle time of 4 microseconds. Thus a
programming loop of 18 instruction cycie times
can be used to generate the 14KHz clock for the
ER1400. The complete software listing for the PIC-
EAROM interface is given on pages 209-211.

This subroutine waits 18ms while the PIC is clock-
ing the EAROM. This is required when an erase or
write operation to the EAROM is called for.

Fig. 46 PIC MICROCOMPUTER TO ER1400 INTERFACE semmsas

+5V +10V
,
-
s
Voo 15K Vss
[—'\Nv—-o
6
1/00 L 4 CLOCK
15K L
| 7
1701 . 4 C1
15K
)
Hi=READ g
170 2 @ c2
LOW = WRITE
15K
PICH A ER1400
17103 9 S [ox}
>

&
]

HI = WRITE
LOW = READ
100K
12
170 4 \ 4 o DATA

16K

170

Vaa

1

15K ZJ-

—25V

*PIC Microcomputer with open drain 1/0 ports

213

CLOCK
CYCLES

ER1400
MODE CONTROL

20

C1 c2 C3

READ

SEND READ
ADDRESS TO
ADDRESS REGISTER

l

READ FROM
MEMORY TO
DATA REGISTER

.

SHIFT OUT
CONTENTS
OF DATA
REGISTER

|

PLACE
ER1400
IN STANDBY

INPUT:

20 BIT READ ADDRESS
FOR ER1400

OUTPUT: 14 BIT DATA
FROM READ ADDRESS

CLOCK
CYCLES

ER1400
MODE CONTROL

20

C1 c2 c3

WRITE

SEND WRITE
ADDRESS TO
ADDRESS REGISTER

T

ERASE
MEMORY

ACCEPT SERIAL
INPUT DATA
INTO DATA REGISTER

INPUT:

a) 20 BIT WRITE ADDRESS
FOR ER1400

b) 14 BIT DATATO BE
WRITTEN INTO WRITE
ADDRESS
OUTPUT: NONE

— —1 DELAY 18ms

WRITE CONTENTS
OF DATA
REGISTER TO MEMORY

PLACE
ER1400
IN STANDBY

EXIT

— — DELAY 18ms

214

e

DENOW SN0~

BN NEWUW MU RNDLNLG DG =~ - -
N R R IR R RV R i Sttt i vl o

-INE

29
40
41
42
43
44
45
46
47
48
49
=0
51
52
53
54
55
56
57
58
59
60

61
62

[=3
6

66
67
68
69
7@
71
7a
73

202000
Q02202
202000
202000
200002
002200

Qoraed
P20
222000
20220
20220@
022222

ADDR

avapee
o200

200000
Q22005
200002
200000
200002
222002

00000
200000
888882
200003
200024
200000
020020
200D
200020
20O0OD
QR

Bl

Ba

TITLE *16S@-ER14QQ’
LIST E,X,P=1650

IR a LA A X S LR L2 2 g bl Ll T rE 2y T ey

[ERE 22 T X Ty ppvgvpvpnrn
T _ »
1% % PROJECT: PIC165@-ER1490 INTERFACE #»
g »*
1* #* ADDRESS:1GENERAL INSTRUMENT CORP. #
g * MICROELECTRONICS DIVISION %
[620 WEST JOHN STREET *
R HICKSVILLE, NY iise2 *
§% * PHONE: (516) 733-3000 *
§e * »

AR A i sl bl S 2L E T Ll Rt ST YT T R Y

¥ ok k k Kk k Xk k ¥ %k X

IR R Rl 2 LR XL 2 B BT T T T T L e Y

§ A TIEIE I NN AT T T T A F AT I I T T
IR Rl b f S S Ll L bl sl L I e S L T e)

g *

y* * COPYRIGHT 1982 GENERAL INSTRUMENT CORPORATION

% * THIS FROGRAM IS FROTECTED AS AN UNPUBLISHED
1% #* WORK UNDER THE COPYRIGHT ACT OF 1976 AND THE

§* + COMPUTER SOFTWARE ACT OF 1980.
%

*

*
*
*
*
*

IR SRR L L f 2 R X L LTI TR I Y Y ey
IR AR R R kL R L ST SR S L2t 2 X S IR T T T ETT ST LYY X

1650-ER1400

IRZ 222 X2 Ll st At sty

3% *
1% 1/0 FILE ASSIGNMENT =
i *

(a2 L LIS DX LT Tt FrE sy

I0REG = S

R S L
3

t*# 1/0 BITS ASSIGNMENT FOR FORT R (FS)
(L

$* A +5 VOLT ON THE CONTROL BIT MEANS
t# LOBIC @ FOR THE EAROM. @ VOLT ON
§% THE CONTROL BIT MEANS LOGIC 1 FOR
y* THE ER1400 EAROM.

(1]

(R TR T T R R e R i S S s i

ERCLK = @

c1 = 1

ca = =4 3

c3 - 3 u
ERDATA = 4

% %k % % %k ¥ % ¥

;ADDRESS OF PORT A

1.
2.

3.

* % %k %k % k %k %

14 KHZ CLOCK TO THE ER1400.
3 EAROM CDNIRDL BIT
" "

]
;SERIAL DATA TO OR FROM EAROM.

215

JINE ADDR Bl B2 1652-ER14020
75 Q0000
76 R e R e T e R R e S S Bl
77 * *
78 :* FILE REGISTER ASSIBNMENTS. *
79 [*
8a 3% THIS EAROM INTERFACE ROUTINE UTILIZES »
81 g% F39 TO F37 IN THE PICi65@. IT IS *
az2 3% IMPORTANT THAT THESE EIGHT REGISTERS
83 y* ARE DEDICATED TO THIS ROUTINE ONLY. *
84 §* *
as EA 222 TS 2 e S E R R s BN Lt T S 2 e L st st
86 0000
87 o0voed4s FSR = 4 jFILE SELECT REGISTER.
88 0eoe3e COUNT - 30 sEAROM ROUTINE INTERNAL COUNTER.
a9 s THIS COUNTER IS USED TO COUNT THE
90 $NUMBER OF EAROM CLOCKS.
91 o031 CONARD3 = 31 $THE LSB OF THE 2@-BIT EAROM
92 0VoRe32 CONAD2 = 32 JADDRESS IN ONE-OUT-OF TEN
93 o00es33 CONAD1 = 33 tCODE FORMAT.
94 000034 TEMP - 34 s TEMPORY REGISTER USED BY EARROM.
Q95 00’d3s LOCATN = 35 3ON ENTRY, THIS REGISTER CONTAINS
39 s THE BCD EAROM ADDRESS. THIS
$ROUTINE WILL CONVERT THIS ECD
98
$INTO THE FINAL ONE OF TEN CODE
99 o0eRa3s DATA1L = 36 1 THIS IS THE LSB OF THE 14 BITS
120 §EAROM DATA.
101 Qevas7 DATAZ = 37 tTHIS IS THE MSB OF THE 14 RITS
192 §EAROM DATA.
103 o022
LINE ADDR Bi B2 1650-ER1400
102 (R 2 X 2T AT TR S R T P X Y T e Y Y T
10 3 *
107 3% THIS IS THE READ EAROM ROUTINE. THE FOLLOWING *
ie8 ;% PARAMETER ARE NEEDED BEFORE CALLING THIS ROUTINE: *
109 (L] *
11@ 1% PARAMETER: LOCATN (F35)-—-— THE BCD ADDRESS OF *
111 (R THE EAROM LOCATION THRAT HAS TO *
112 1% BE READ. *
113 §% *
114 g OUTPUT: DATAL (F36)——— THE LSB OF THE 14 *
115 3 * BITS EAROM DATA. *
il1e §* DATAZ (F37)--- THE MSE OF THE 14 *
117 y* BITS EAROM DATA. *
118 % *
119 § T I NI BB I TN I DI I I NN NN NN
120 @oe22
igi oQooedd READ RES a §READ EAROM ROUTINE ENTRY POINT.
122 QU2 B4446 CALL ADEAR JADDRESS ER14@0. COUNT LEFT AT ZERO
123 002201 RB2430 BSF COUNT, 2 §SET COUNTER TO ONE
124 02VVR2 VE3T7S MOVILW B?11111101" sCONTROL. CODE FOR READ
125 ;DATA AND CLOCK HIGH
126 Q0003 V4474 CALL ERTRAN $READ THE DATA REGISTER, COUNT LEFT AT ZE
187 00004 B2630 BSF COUNT, 4 $SHIFT OUT 16 BRITS (14 PLUS & TO
128 $NORMALIZE DATA TO LOWER
129 36 RITS OF DATARE)
132 Q00005 VE136 MOVLW DATAR1 1]
131 Q00006 V@44 MOVWF FSR tPOINT TO DATR REGISTERS
132 Q02007 V6345 MOVLW B'ii11o@1@1’ ;CON CODE FOR SHIFT DATA OQUT
133 DROV1I2 B4474 CALL ERTRAN $SHIFT DATA OUT. LEAVE 77 IN W
igg d2ev11 evs77 ANDWF DATARZ $ENSURE BITS 6-7 CL.EAR
1 .
136 Qg1 EXEAKR RS 4] H
137 @vediz 06377 MOVLW B'11111111" jCONTROL CODE FOR STRNDBY
138 JWITH CLOCK BIT SET
139 000013 VBB4S MOVWF IOREG 1OUTFUT CONTROL CODE
140 Q22214 V4000 RETLW ©@

216

LINE ADDR B1 B2 1650-ER1400
142 0015
143 PR T T T e
144 > *
145 1* THIS IS THE EAROM WRITE ROUTINE. THE FOLLOWING *
146 i* PARAMETERS MUST BE SET UP BEFORE THIS ROUTINE *
147 y% IS INVORKED. *
148 3% *
149 g PARAMETERS: LOCATN (F55)-~- THE BCD ADDRESS OF THE *
152 (53 EAROM LOCATION THAT NEW *
151 (L3 DATA 1S GOINB TO BE STORED INTO *
152 3 DATAL (F56)-—— THE LOWER 8 BITS OF *
153 1 NEW DATA. »
154] DATAZ (FS7)-—-- THE UPPER 6 BITS OF THE *
155 g NEW DATA PLUS TWOD DON'T CARE BITS. #
156 '™ *
157 §* OUTPUT: NONE *
158 g *
159 PR L A v)
160 0VB1LS
161 ©VVRR1S WRITE RES] $EAROM WRITE -ENTRY POINT.
162 Q00815 04446 CALL. ADEAR JADDRESS THE EAROM.
163 00RViE BE373 MOVLW BY'11i11@11° $CON CODE FOR EREASE
164 $DATA & CLOCK HIGH
165 Q00017 20045 MOVWF IOREG]
166 QOOB22 B4436 CALL wi8ms yDELAY 18MS. ON RETURN,
167 y14 I8 STORED IN W.
168 0QQOG21 0007R MOVWF COUNT $SEND OUT 14 CLOCK PULSES.
169 0ERREE VER36 MOVLW DATA1L $STORE THE RADDRESS OF THE LOW
170 QU023 VOR44 MOVWF FSR $BYTE OF NEW DATA INTO 'FSR'.
171]
172 @e0B24 V6361 MOVLW BY11110001° jCON CODE FOR ACCERT DATA
173 jDRTA & CLOCK HIGH
174 QOOR2Z V4474 CALL ERTRAN 38BHIFT THE DATA INTO THE EAROM.
175 3
176 @VOR26 V6371 MOVLW B?11111001? jCON CODE FOR WRITE
177 Q00027 00V4S MOVWF IO0OREG tDATA & CLOCK HIBH
178 QVOA3B Q4436 CALL wi1ams sDELAY 18MS WITH CONTINOUS CLOCK.
179 002031 2%v1iz 60TO EXEAR JEXIT FROM THIS EAROM INTERFACE
180 $ROUTINE AND RETURN TO MAIN PROGRAM.
181 $THE ER1402 IS PUT INTO STANDBY MODE.

182 oove32
183 @opd3z

LINE ADDR Bl B2 165@-ER1400

185 0032

186 § I BB I U TN B 36U N D B I T TN I I 3B 3 I

187 g™ *

188 1% THIS IS AN 18MS DELAY ROUTINE REQUIRED WHEN #

189 1% WRITING DATA INTOQ THE ER1422 EAROM. DURING #*

190 s* THIS 18MS PERIOD, A 14 KHZ EAROM CLOCK MUST #

191 $% BE MAINTAINED. ON RETURN, THIS ROUTINE PUT »

192 §% A DECIMAL NUMBER 14 INTO THE W REBISTER. *

193 § % *

194 R 22 A I A A S L e e S T A T S A Y P S T T

195 ooge3:2

196 o3z WMID RES 2

197 Q0032 BOE4S XORWF IOREG § TOBBLE THE EAROM CLOCK
198 @RUR33 A3V3D BTFSC COUNT,®

199 20234 04016 RE LW .14 JRETURN TO CALLING ROUTINE.
200 VIRD3S R2430 BSF COUNT, @

201 ©Vevv36 W1i8mMs RES 2 $ENTRY POINT FOR 18 MS DELAY.
202 QOP036 VB174 CL.RF TEMP

203 0037 W3eus RES @

204 ©Q0RV37 V1374 DECF8Z TEMP

205 VAVV4V OTV4E . G070 WNZYET

206 QOoR41 05032 GOTO WMID

207 V42

208 0Q00R42 WNZYET RES "}

209 00VY42 V6001 mMovLW 1

210 00eR43 Q0645 XGRWF IOREG $ TOBBLE THE EAROM CLOCK.
211 Q20044 05045 GOTO WPAD

212 0o02R45 05037 WFRAD GOTO W3eus

213 Q0046
214 0Dov246
215 0ed46
216 DoOV4E

217

LINE ADDR Bl B2 1652-ER1400
218 Qvv4s
219 [ELET I ET 2R PR A R A 2 2 e L R e e S i L
o2 1% *
221 % THIS ROUTINE TRANSFORMS THE ECD EAROM ADDRESS *
aea y* STORED IN REGISTER 'LOCATN' INTO THE 2@-BIT *
2e3 t* ONE-OUT-OF-TEN CODE REQUIRED RY THE ER142@ EAROM. *
=2 3% THIS ONE-OF-TEN CODE IS STORED IN *CONAD1?, *
225 % *CONAD2' AND *CONARD3' WITH THE L8B IN *'EOMAD3'. *
226 1R *
227 1% WHEN THI8 Z0-BIT ADDRESS 18 FORMED, IT I8 AUTO- *
ggg ;: pg;;ggh%YR§5¥;NED THE EAROM BY EXECUTING THE *
¥ . *
232 (L *
231 R 2 TT L AT B TR S SR RS R R PR T R S R S e I)
835 888%:
233 4 ADERR RES "} $ENTRY POINT FOR ADDRESS TRANSFORM.
234 Q00046 01035 MOVFW LOCATN sPUT LOW NIBBLE OF ADDRESS
235 Q00047 Q7017 LOADDC ANDLW 17 $IN LOW NIBBLE OF TEMP
236 0V0205d VOB74 MOVWF TEMP
237 0oodSi 060iz MOVLW . 1@ §NO OF LOORPS BEFORE
236 0DOOVSE BVO7Q MOVWF COUNT §THIS ADDRESS PART COMPLETE
239 000053 6OVi1 MOVLW 1 §DECREMENT FOR RADDRESS
240 Q00034 00274 ROT3SR SUBWF TEMP jCLRS CARRY IF THIS PART OF ADDRESS
241 1HAS NOW REACHED ZERO
242 000055 V1573 RLF CONAD1 §SHIFT THE *SHIFT REGISTER'
243 Q00056 Q1572 RLF CONARDZ2
244 BOBOS7 B1571 RLF CONAD3
245 DOBRED 01370 . DECFSZ COUNT y. 10 SHIFTS DONE YET ?
Q0261 @SaS54 GOTO ROT3ER $NOT YET
223 gomosa 23505 BTFS8 I0OREG,Z §YES. WAS THIS SECOUND ADDRESS ?
248 Q@063 BSR67 8070 OPADD YES. NOW OUTPUT CONVERTED RDDRESS
249 000064 02105 BCF I0REG, 2 §NO. NOW CONVERT HIGH ADDRESS
250 vaveS B1635 SWARF LOCATN, @ JREADY FOR HMIBH NIBBLW OF ADDRESS
251 DoDRE6 V5047 GOTO LOADDC 380 DO HIBGH ADDRESS
252 QOVVE7 Q6133 OPRDD MOVLW CONAD1 {PT FBR TO START OF CONVERTED ADDREES
253 Q0Pd72 20R44 mgzr: Fgg 31 3-REGBISTER *SHIFT REGISTER'
71 Q6024 .
Eig 888372 ava7a MOVWF COUNT $SET FOR 1@ RIT TRANSFER TO ER1400
56 0AeR73 06363 MOVLW B?11112@11° $ACCEPT ADDRESS CONTROL CODE
257 sDATAR HIBH, CLOCK HIGH
L?ﬁg ADDR Bl B& 1652—-ER14002 180 INTO 1/0 ROUTINE *ERTRAN'
gg? I I e 2 I U U T I U e U U T U 3 I I B I I
i *
ggg y* TRANSFER DATA OR ADDRESS TO OR FROM THE ER1409Q *
§* *
gg; jo ON ENTRY *
g s *
ggs 1% FSR (F4) — POINTS TO START OF INFORMATION FILE *
cea :: (CONRD1 IF ADDRESS, DATA1 IF DATRA) *
»
Sgg :: FILE COUNT - NUMBER OF ER14@@ CLOCK CYCLES OR BITS *
*
2;; % W = ER140Q CONTROL CODE *
LR *
g;z 000074 H *******-lv********-I-*************************************
275 00074 ERTRAN RES "}
276 QovR74 BBR4LS MOVWF IOREG 1OUTPUT CONTROL WORD
277 ©@YR7S DED10 MOVLW 8
278 0OVR7E PRB74 MOVWE }EMP jOUTPUT 8 BITS BEFQORE
275 oooe77 STLOOP RES A §MOVING TO NEXT INFO FILE
Zg? ggg?;g gg?gg BSF IOREG, ERCLK $SET THE EAROM CLLOCK BIT
282 000181 ©S107 BTFSC 1OREG, C2 yINFUTTING TO THE PIC?
2 GOTO RECEIV $YES, INPUT TO PIC FROM ER1400,
83 oovid2 GIVE RES 2 EL
$ELSE, QUTPUT DATA FROM
ggg gggxoa 22605 BSF IOREG, ERDATA sPIC TO EAROM
103 01440 RRF 2 sROTATE INFO FILE INTO CARRY
266 00104 23403 SKPC
287 0OBLOS ozpE $IS THE INFO BIT A ZERO ?
] BCF I0REG, ERDATA $YES, SHIFT A ZERD TO EAROM.
208 0Qeviee 05114 B0TO NEXTI
§GET NEXT INFO BIT
289 oesid7 RECEIV RES "]
290 000107 V26S {RECEIVE DATA FROM EAROM.
2 BSF I0REG, ERDATA sENSURE FIN NOT LATCHED AT ZERO
291 0oo01id 22003 CLRC
292 Q00111 03205 BTFSC I10REG, ERDATA !?EQD THE INFUT FROM EAROM
A
293 Q0R1i2 0z403 seTC ’ ;Ygs” A LOBIC 17 2
294 Q@113 21442 RRF 2
295 Q00114 NEXTI RES - 1STORE THE DATA INTQ PIC.

218

296 V2Vii4 V2VRS BCF IOREG, ERCL.K 1CLEAR THE EAROM CLOCK EIT

297 ©00e115 21374 DECFSZ TEMP tDONE 8 BITS YET ?

298 ©@R2116 05125 6aTo STRAD §NO, MORE TO GO

299 0Pe117 ves574 BSF TEMF, 3 JELSE, RESET COUNTER TO EIBTH
300 QPR1E0 V1244 INCF FSR § INCREMENT FSR TO NEXT INFO FILE
301 ©voe1a1 FINL? RES "]

302 Q0el21 Bl1s/v DECFSZ COUNT sFINISH ALL INFO FILES ?

303 wovoise aSe77 6070 8TLOOP §NO.

304 QOR1E3 V2405 BSF I0OREG, ERCLK jELSE, SET EAROM CLOCK BIT HIGH
305 @uvaiz4 @4277 RETLW 77 §END OF EAROM I/0 WITH 77 IN W.
306 Qv1as STPAD RES]

307 0ee1g5 eSial GOTO FINL? §TIMING COMRENSATION.

398 ©vovize

309 oodize END

ASSEMBLER ERRORS = a
1650—-ER1400

CROSS REFERENCE

LABEL VALUE REFERENCE

ADEAR RARdD4LE 128 162 -a233

Ci1 202201 -64

ce ooRdRE -65 a81

c3 ABRAR3 ~66

CONAD1 202033 -93 24 es5e

CONAD2 vavasz -92 243

CONAD3 20031 -91 e44

COUNT [l X -88 183 ie7 168 198 200 238 245
25S 30e

DATAL 200036 -99 132 169

DATAR aeeaz7 -101 134

ERCLK o, Ll e 1o -63 280 236 304

ERDATA 1. 2 -&7 e84 287 29e 292

ERTRAN 200074 ie6 133 174 -g75

EXEAR roraL2 -136 179

FINL? Qoe1z1 -3e1 3a7

FSR 200204 -a7 131 17a 253 3ea

BIVE @010 -283

IOREG 200085 -47 139 165 177 197 e1e 247 249
276 280 261 284 287 e90 292 296

: 304

LOADDC 202047 -235 &51

LOCATN Q0235 -95 234 250

NEXTI o114 288 -295

OPADD oeaae7 248 -2%52

RERD V2B ~-121

RECEIV ova1a7 28 289

ROT3SR 202254 -240 246

STL.OOF o077 -2879 303

STPAD oea12s 2968 -36

TEMP 200034 ~-94 aee a4 236 240 278 e97 299

Wiams 200136 166 178 -291

W36uUs 202037 -2a3 aig

WMID oelv3e -196 206

WNZYET [r.2 1. " 244 205 -208

WPAD 20245 211 -212

WRITE V22015 -161

EOF : 366

@)

219

1.8

Interfacing the
PIG1650
Microcomputer
with the
ER2055 EAROM

Fig. 47

The ER2055 is a 64 x 8 EAROM with parallel address and 1/O. Seven-
teen I/0 pins are required in this routine to interface with the PIC1650.
Figure 47 shows the configuration of these 1/O ports.

The address of the EAROM is stored in the Tower 6 bits of F6. Bit6 and
7 of the F6 are used to store the mode control inputs C1 and C2
respectively.

On entry to READ or WRITE, the address should be stored in the W
register and the two most significant bits must be zero. Before calling
WRITE, data waiting to be written into the EAROM must be in File 5. On
return from READ, the data read from the EAROM is in File 5 and can
be transferred to another register, if desired.

Figure 48 shows the hardware connections of the 1/O ports. The
ER2055 is fully TTL compatible and thus no external hardware is
needed. The EAROM has two chip select lines which are hard-wired so
that the EAROM is always selected. The controlling software will
always set the EAROM in the read mode except when writing data to
the EAROM. However, the 2-20us clock pulse required to read the
EAROM need be generated only when the READ subroutine is called.
In order to give the correct clock pulse, the clock bit must be initialized
to zero at the beginning of the program. Before writing data into the
EAROM, that location has to be erased first. The erase and write cycle
time is set to 22 msec by calling the DELAY subroutine. The EAROM
will again set back to the read mode when the write cycle is finished. It
takes 40 microseconds to read data from and 43.2 msec to write data to
the EAROM.

VO PORTS ARRANGEMENT ros s s i

ft——8 BITS —>- j<—6BITS —» LsB
DATA C2|C1| ADDRESS CLOCK

FILE 5 (F5) FILE 6 (F6) FILE 7 (F7)

ER2055 VS ER1400
Since the ER2055 uses parallel addressing and I/O, seventeen /O pins
are required to interface with PIC. There are eight bidirectional data
lines, six address lines, two mode control lines and one clock input.
Since the eight data lines are only used during read/write operations,
these data lines may also be used for some other purposes such as
7-segment display. On the other hand, it only needs six 1/0 lines to
interface the ER1400 with the PIC since data and address are sent
serially. However, the read cycle time for the ER1400 is much longer
than the ER2055. To read a location, the ER1400 needs 3.4ms while the
ER2055 only takes 40 microseconds.

220

Fig. 48 PICTIE50 TO ER2055 INTERFACE semaeseme st s it

+5V
6 17
Vs cs1
RAo }2 2f o
1
RAT |2 2 by
Az | 22 b2
6 1
RA3 D3
7 5
RA4 D4
RAs |2 4 os
RA6 | 3 oe
RA7 HO 2 o7
1 12
PIC1650A RBO |- AO Egggs“s"
RB1 2 LT W
RB2 2 190 a2
1
RB3 4 9 A3
RB4 |2 81 as
1
RBs 2 I as
15
RB6 | c1
1
RB7 2 8l co
Rco |2 Bl ok
Ves Va1 CS2 Vaa
1 19 18 14l
—28v

221

L 000000
2 000000
3 TITLE FICLOHO-ER20GS INTERFACE ROUTINE
4 000000
G000000
6 00000% naTA EQu G
7 0000064 AR EQU 4]
g 000007 CTRL EQL 7
9 000000 CLOCK Q
O 000006 1 &
000007 c2 7
Q00020 TEMF1 EQU 20
Q00021 TEMF2 EQU 21
000000
Q00000
FOON ENTRYy ADRDRESS SHOULD RE IN THE
5o L0 4 RITH OF THE W REGISTER AND
§OTHE MOST SIGNIFICANT 2 RITS SHOULD
ORE ZERO. ON EXITs IATA READ IS IN
i THE W REGIS)
Q00000
Q00000 Q4500 REAT FORLW 100
Q00001 00046 MOVWE AR § IN REAI MODE
Q00002 06377 MOVILW 377 § THE T/0 PORT INFUT
000003 00043 MOVWF IIATA
000004 02407 CTRLy CLOCK i CLOCK THE READ OFERATION
00Q00% QRO07 CTRLy CLOCK
Q00006 04000 QO
000007
Q00007
i S8 GHOULD BE IN THE
§ NATA TN THE DATA REGISTER.
000007 06400 WRLTE TORLW 200
Q00010 00044 MOVUWE ALK § SET IN ERASE MOLE
QO00LL 04416 CAll. Y
000012 02344 g g 02 §oOBET IN WRITE MODE
Q00013 04414 n Y
000014 027064 ALY L iOBET IN READ MODE
QO00LE 04000 Q
0000Lé
ioOTHIS GIVE 22M8 DELAY TIME
¥
Q0001Ls 06007 NELAY
Q0040
LOOF
QOOO2G
000024
0000264
ORG 100
000100 06123 TESTWR MOVLW 123 FTEST WRITING ROUTINE
QOOLOL 0004 MOVWE DATA
000 0600 MOVILW & i OTHLIS 18 THE aDIRESS OF THE EAROM
e 000103 04407 CALl. WRITE
&0 000104
&1 000104
462 000104
&3 EARING ROUTINE
&4 000104 06008 TESTRI MOVLW THE EAROM
&% 0001035 04400 Cal.l.
Géd 0 000106 01008 MOVE ¥ THE UTATA INTO W REGISTER
a7 000107
&8 000107 END
AGHEMRBILER ERRORS = 0
SYMEOL TARLE
AL 000004 000006 000007 CLOCK Q00000
CTRL. Q00007 00000 O000LE Q00021
READ Q00000 000020 000021 Q00104
TESTWR 000100 Q00007
EOQOF 84
[(R3

222

NOTES

223

NOTES

224

INSTRUMENT

_a
v,

.
/[N

-~

NORTH AMERICA

UNITED STATES:
MICROELECTRONICS DIVISION
NORTHEAST—600 West John Street
Hicksville, New York 11802

Tel: 516-733-3107, TWX: 510-221-1866

20th Century Plaza

Daniel Webster Highway

Merrimack, New Hampshire 03054
Tel: 603-424-3303, TWX: 710-366-0676
858 Welsh Road

Maple Glen, Pennsylvania 19002

Tel: 215-643-5326

SOUTHEAST—7901 4th Street. N., Suite 208
St. Petersburg, Florida 33702

Tel: 813-577-4024, TWX: 810-863-0398
1616 Forest Drive

Annapolis, Maryland 21403

Tel: 301-269-6250, TWX: 710-867-8566
4921C Professional Court

Raleigh, North Carolina 27609

Tel: 919-876-7380

408 North Cedar Biuff Road, Suite 390
Knoxville, Tennessee 37923

Tel: 615-690-2233

SOUTH CENTRAL—5520 LBJ Frwy., Suite 330
Dallas, Texas 75240
Tel: 214-934-1654, TWX: 910-860-9259

CENTRAL—A4524 S. Michigan Street
South Bend, Indiana 46614

Tel: 219-291-0585, TWX: 810-299-2518
5820 West 85th Street, Suite 102
Indianapolis, Indiana 46278

Tel: 317-872-7740, TWX: 810-341-3145
2355 S. Arlington Hts. Road, Suite 408
Arlington Heights, lllinois 60005

Tel: 312-981-0040, TWX: 910-687-0254
32969 Hamilton Court, Suite 210
Farmington Hills, Michigan 48018

Tel: 313-5563-4330, Telex: 231193

230 North River Ridge Circle, Suite 116
Burnsville, Minnesota 55337

Tel: 612-894-1840, TWX: 910-5760240

SOUTHWEST—201 Standard Street
El Segundo, California 90245
Tel: 213-322-7745, TWX: 910-348-6296

NORTHWEST—3080 Olcott Street, Suite 230C
Santa Clara, California 95051
Tel: 408-496-0844, TWX: 910-379-0010

Microelectrnics Division/General Instrument Corporation
WORLDWIDE SALES OFFICES

N \'!! a 4

N . IV,
N\

EUROPE

NORTHERN EUROPE

Times House, Ruislip, Middlesex, HA4 8LE
Tel: (08956), 35700, Telex: 23272
Sandhamnsgatan 67

S-115 28, Stockholm

Tel: (08) 67 99 25, Telex: 17779
SOUTHERN EUROPE

5-7 Rue De L'Amiral Courbet

94160 Saint Mande, Paris

Tel: (1) 365 72 50, Telex: 213073

Via Quintiliano 27, 20138 Milano

Tel: (02) 5062648, Telex: 843-320348
CENTRAL EUROPE

GENERAL INSTRUMENT DEUTSCHLAND GmbH
Freischuetzstr. 96

Postfach 81 03 29

8000 Muenchen 81

Tel: (089) 956001, Telex: 528054

6070 Langen Bei Frankfurt A Main
Wilhelm-Leuschner Platz 8, Postf. 1167
Tel: (6103) 23 051, Telex: 415000

ASIA

HONG KONG:

GENERAL INSTRUMENT HONG KONG LTD.
139 Connaught Road Central, 3/F, San-Toi Building
Tel: (5) 434360, Telex: 84606

JAPAN:

GENERAL INSTRUMENT INTERNATIONAL CORP.
Fukide Blidg. 8th Floor, 1-13 Toranomon 4-Chome
Minato-ku, Tokyo 105

Tel: (03) 437-0281, Telex: 2423413

KOREA:

GENERAL INSTRUMENT MICROELECTRONICS
Dong Young Building, 903

82, 1-KA, Ulgiro, Chung Ku

Seoul, South Korea

Tel: (2) 777-3848, Telex: K 26880 DAEHO
SINGAPORE:

GENERAL INSTRUMENT HONG KONG LTD.
Suite 1714, Shaw Centre

1 Scotts Road, Singapore 0922

Tel: (65) 235-8030, Telex: GIS'PORE RS 24424
TAIWAN:

GENERAL INSTRUMENT
MICROELECTRONICS TAIWAN

77 Pao Chiao Road, Hsin Tien

Taipei, Taiwan

Tel: (02) 914-6234, Telex: 785-3111

MANUFACTURING FACILITIES

U.S.A.—Hicksville, New York ® Chandler, Arizona ® EUROPE—GIenrothes, Scotland ® ASIA—Kaohsiung, Taiwan

APPLICATIONS CENTERS

U.S.A.—Hicksville, New York e Chandler, Arizona ® Los Angeles, California
EUROPE—Gilenrothes, Scotland e London, England e Paris, France ® Munich, Germany e Stockholm, Sweden

ASIA—Kaohsiung, Taiwan e Tokyo, Japan ® Hong Kong

