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1 Introduction

The Harris Real Time Express (RTX) 2000 Family of microcontrollers is a
highly integrated family of 16-bit CMOS microcontrollers designed for real-time
control systems requiring high performance with low power consumption.

1.1 The RTX 2000, 2001A, And 2010 Microcontrollers

The architecture of the RTX 2000 Series of products results in high instruction
execution rates. The highly parallel architecture allows the RTX to perform
several functions in one instruction cycle, and all instructions execute in either
one or two clock cycles. Instructions are fetched from memory and executed
immediately; there are no instruction "pipelines" or caches to flush when
performing branches or calls. '

The RTX 2000, 2001A and 2010 Microcontrollers have on-chip support
hardware for performing many of the functions typically needed in a real-time
system, including an interrupt controller, a memory page controller, two stack
controllers, and three 16-bit counter/timers. In addition to these "on-chip
peripherals”, the RTX 2000 provides a 16-by-16 hardware multiplier, while the
RTX 2010 provides a 16-by-16 hardware multiplier-accumulator along with a 32-
bit Barrel Shifter and a 32-bit Leading Zero Detector for Floating Point support.
Table 1.1 shows a break-out of the features of each of these products.

The RTX 2000 Class architecture was designed to execute the high-level
language Forth as its "assembly language”. The instruction set provides the
features necessary for implementing much of the Forth language directly.
Instructions are available for manipulating stacks, performing memory access,
controlling program flow, and basic math and logic operations.

One RTX instruction may combine the functions of two or three high level Forth
instructions, resulting in an effective processor throughput which is faster than
the processor clock speed. :
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The stack oriented architecture of the RTX also makes it well suited for running
such computer languages as C.

RTX 2000
Interrupt
Controller

Stack
Controller

Two 256-Word
Stacks

Three 16-Bit
Timer/Counters

1-Cycle 16-Bit
Multiplier

RTX 2001A
Interrupt
Controller

_Stack
Controller

Two 64-Word
Stacks

Three 16-Bit
Timer/Counters

RTX 2010
Interrupt
Controller

Stack
Controller

Two 256-Word
Stacks

Three 16-Bit
Timer/Counters

1-Cycle 16-Bit
Mult./Accum.

1-Cycle 32-Bit
Barrel Shifter;
Floating Point
Support

TABLE 1.1: RTX On-Chip Hardware Peripherals
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1.2 The RTX 2000 Family Programmer’s Reference Manual

Figure 1.1 offers an overview of the interface between a user and an RTX
Microcontroller. The documentation which supports each layer of this interface
is also shown. '

User Support Documentation

User ‘ I
Interface Application Notes
Development Softw Ref Quick
System M e ouals oce | |Reference
Software Card
RTX Forth Programmer’s Reference|| ©
Primitives Manual 2
......... /7]
RTX Hardware Reference g
~Hardware : Manual o

FIGURE 1.1: USER/RTX INTERFACE
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The Programmer’s Reference Manual describes the RTX 2000, RTX 2001A, and
RTX 2010 Microcontrollers from a programmer’s point of view, including
architecture, registers, data paths, hardware interfaces, and primitive instructions.
Topics described in various sections of this manual include: ‘

- Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter 10

VoA Wns-WDN

Overall architecture of RTX microcontrollers
General operation of RTX microcontrollers
The RTX register set

Memory Interface .

On-chip Peripheral Devices

-RTX Instruction Set

Implementation of Multi-step Math Functions
Implementing Forth on the RTX
Code Optimization Techniques

Some functional differences exist between the different members of this family
of microcontrollers. When such differences exist, the applicable sections of this
manual describe those differences. Where major differences exist, they are
broken into separate paragraphs, and are offset with a side bar for clarification.

For additional information specific to your microcontroller, please refer to the
appropriate data sheet.
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2 RTX Architecture

This chapter provides an overview of the programmer’s model of the RTX
Microcontroller architecture. Figures 2.1, 2.2 and 2.3 show block diagrams for
the RTX 2000, RTX 2001A, and RTX 2010 Microcontrollers respectively.

The RTX microcontroller is a stack based machine with two on-chip stacks.
Most math, I/O and memory reference operations take their operands from the
Parameter Stack, and leave their results on the Parameter Stack. Subroutine calls
use the Return Stack for saving their return addresses.

There are twenty-three registers on the RTX 2000, twenty-four registers on the
RTX 2001A, and twenty-five registers on the RTX 2010. These registers control
processor configuration and status, hold intermediate results during computations,
and provide an interface between the processor and its on-chip peripheral
devices.

The RTX registers and staéks are interconnected through a series of 16-bit data
buses which transfer data within the processor and with the outside world.

CONTROL TIMER INTERRUPT
INPUTS INPUTS INPUTS

CLOCK AND TIMER/ INTERRUPT .
CONFIGURATION|  |counTers| | | | conTRoL MULTIPLIER

! $ ¢
—t

A 4

MEMORY (< RTX CORE
MEMORY S romence | [ VEmORY PROCESSOR [*” INTERFAGE K= PERIHERALS
CONTROLLER )

'y ‘

PARAMETER| RETURN
STACK STACK
h 4
PROGRAMMABLE

STACK CONTROLLERS

FIGURE 2.1: RTX 2000 BLOCK DIAGRAM
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OFF CHIP MAIN
PERIPHERALS MEMORY
e
ASIC BUS MEMORY BUS RTX 2001 A
) INTERFACE INTERFACE
CONTROL -~ gkggsl‘w% N 4 4 4
INPUTS »{CONFIGURATI Mixggv
CONTROL J
- v A y
INTERRUPT :
_|INTERRUPT T
B RTX CORE [ |+
: - = = CONTROLLERS
TIMER R PROCESSOR 4> |PARAMETER
INPUTS | counters| it STACK
FIGURE 2.2: RTX 2001A B_LOCK DIAGRAM
OFF CHIP MAIN
PERIPHERALS MEMORY
—p
! ASIC BUS MEMORY BUS RTX 201 0
INTERFACE INTERFACE
comtmow | | ciock wo i
CONTROL MBaGE
CONTROL
INTERRUPT
INPUTS e I %W .
RTX CORE ["L=&1 _
CONTROLLERS
TIMER PROCESSOR|_[Z= o2
INPUTS L_sTAack .
MAC

FIGURE 2.3: RTX 2010 BLOCK DIAGRAM
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2.1 On-Chip Stacks

The RTX microcontroller contains two on-chip last-in-first-out (LIFO) stack
memories. The top elements of each stack are immediately accessible through
registers. The remainder of each stack is located in on-chip RAM arrays. The
control logic associated with each stack determines which stack locations are to
be read or written, and monitors the stacks for overflow and underflow
conditions. See Section 3.1 for a description of stack operations.

Stacks on the RTX 2000 and RTX 2010 are each 256
elements deep; stacks on the RTX 2001A are 64
elements deep. :

2.1.1 The Parameter Stack

The 16-bit wide Parameter Stack provides the operands for most math, logic, and
memory reference instructions. It is used for passing parameters between
subroutines, and as a scratchpad area for temporary storage of data. -

The top two elements of the Parameter Stack are the TOP Register, which
contains the top element, and the NEXT Register, which contains the second
element. For certain instructions, TOP or NEXT are the implicit data source or
destination, and the RTX can perform operations dealing with TOP and NEXT in
one clock cycle. For more information about TOP and NEXT, see Chapter 4.

2.1.2 The Return Stack

The 21-bit wide Return Stack is used for storing subroutine return addresses and
for holding index counts for loops and repeated instructions, and can also be used
as a temporary storage area. The top element of the Return Stack is comprised
of the 16-bit wide I register and the 5-bit wide IPR Register. The RTX can move
data between the top elements of the Parameter and Return Stacks in a single
clock cycle. For more information about I and IPR, see Chapter 4.
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2.2 RTX 2000 Series Bus Architecture

The RTX 2000 Series bus architecture provides for unidirectional data paths and

simultaneous operation of some data buses. This parallelism allows for

maximum efficiency of data flow. External:data is transferred via the ASIC Data

Bus and the Memory Data Bus. Addresses for external access are output via the
g Memory Address Bus and the ASIC Address Bus.

2.2.1 Data Buses

The RTX QUAD Bus™ architecture consists of 4 independent 16-bit data buses,
all of which may be active simultaneously.

° The Memory Data Bus carries program instructions and program data
to and from Main Memory. 16-bit data words (but not program
instructions) are passed through byte-swapping hardware which allows
the processor to control the order of storage in memory for the low
and high bytes of the word.

e  The ASIC Bus™ is the I/O and register interface bus. This bus
provides the interface between the Parameter Stack and the processor
registers and external 1/0 devices. The ASIC Bus passes input data
through the on-chip Arithmetic/Logic Unit (ALU) before pushing the
data onto the Parameter Stack. This allows the RTX to perform math
(adding, subtracting), logic (masking), and shifting operations on the
data as it is being read. ‘

e  The Parameter Stack Bus carries data between the top-of-stack
registers and the Parameter Stack RAM.

e  The Return Stack Bus carries data between the top-of-stack registers
and the Return Stack RAM.
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2.2.2 Address Buses

‘For off-chip communications, the RTX microprocessor has two address buses:
the 19-bit Memory Address Bus, and the 3-bit ASIC Address Bus.

L The Memory Address Bus (MA19-MAO1) carries the address of the
Main memory location to be accessed, either for instruction fetches or
memory read/write operations. This is a 19-bit bus, along with Upper
Data Strobe (UDS) and Lower Data Strobe (LDS), which allows the
RTX to address 1 megabyte of memory.

e ' The ASIC Address Bus (GA02-GA00) carries address information for
external ASIC devices. '

See Chapter 5 for information about RTX External Bus Interfaces.
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2.3 Registers

The RTX 2000 Series microcontrollers contain three types of registers. Stack
related registers, Status/Control registers, and Internal Processor registers.
2.3.1 Stack Related Registers

Stack related registers contain the top eler;nentsv of the Parameter and Return
Stacks. These registers are the implicit source and destination for many of the
processor operations, and are described in detail in Chapter 4.

2.3.2 Status/Control Registers

Status/Control registers are accessed through the ASIC Bus, and determine the
operating environment for the processor by controlling the processor
configuration and on-chip penpheral devxces These registers are described in
detail in Chapter 4.

2.3.3 Internal Processor Registers

Internal Processor registers are not du'ectly access1ble to the programmer, and
are described in Chapter 4.
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2.4 Memory

The RTX 2000, RTX 2001A, and RTX 2010 Microcontrollers directly address
1 Megabyte (512K 16-bit words) of memory. This memory is divided into 16
pages of 64K bytes (32K words) each, and may be made up of any combination
of ROM, RAM, or memory mapped I/O devices.

The RTX memory interface is described in detail in Chapter 5.
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3 Operations

This chapter provides an overview of the internal processor operations. The
operations are described in greater detail in Chapter 7, "Instruction Set".

3.1 Instruction Execution

The RTX Microcontrollers have an Instruction Decoder which provides control
of all data paths and the Program Counter Register (PC). This hardware
determines what function is to be performed by looking at the contents of the
Instruction Register (IR), and subsequently determines the sequence of operations
through data path control. ‘

In one-cycle operations, the instruction which is to be executed is latched into IR
at the beginning of a clock cycle, then is decoded. All necessary internal
operations are performed simultaneously with fetching the next instruction. See
Figure 3.1.

Instructions which perform memory access require two clock cycles to be
executed. During the first cycle of a memory access instruction, the instruction
is decoded, the address of the memory location to be accessed is placed on the
Memory Address Bus (MA19-MAO1), and the memory data (MD15-MDO00) is
read or written. During the second cycle, the address of the next instruction to
be executed is placed on the Memory Address Bus, and the next instruction is
fetched, as indicated in Figure 3.1. :
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. . .
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FIGURE 3.1: INSTRUCTION EXECUTION
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3.2  Stack Operation

The RTX Microprocessors utilize a Last-in, First-out (LIFO) stack architecture.
In this type of architecture, the last data element stored in the memory stack will
be the first element retrieved from that region of memory. See Figure 3.2.

NN N LN S 7

) 20 | C3] | 20| Caa | |20 | | ] | |emery
)| 20| OO0 20|
[1] (1]

FIGURE 3.2: STACK OPERATION

This structure for information storage and retrieval provides the computer with
one central location for temporary storage of information.

The RTX takes advantage of this architecture, utilizing two separate on-chip
stacks. The first, the Parameter Stack, is used for temporary storage of data and
for passing parameters between subroutines. The second, the Return Stack, is
used to store return addresses during subroutine calls and returns. The Quad
Bus™ architecure of the RTX Microcontrollers allows both stacks to be accessed
in parallel by a single instruction, this dual stack arrangement allows overhead
to be minimized during subroutine operations. The Return Stack can also be
used for temporary storage of values when it is not being used during a
subroutine call or return.

For faster access, both the Parameter Stack and the Return Stack utilize registers
for the top elements and on-chip memory (Stack Memory) for the remaining
elements.

For more detailed information about RTX stack operation, see Section 6.1.
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3.3  Subroutine Calls and Returns

An RTX subroutine call instruction has the address of the routine to be called
embedded in the instruction. When the subroutine call is executed, the address
of the instruction following the call instruction is pushed onto the Return Stack.
When the subroutine is completed, a Return-from-Subroutine instruction will pop
the return address from the stack, and execution will resume with the instruction
following the call.

The RTX architecture is optimized for performing subroutine calls and returns
with minimum processor overhead. A subroutine call within the same memory
page can be made in one clock cycle. A call to a location in a different memory
page takes 3 clock cycles.

Subroutine returns take 0 clock cycles if perfbrmed as part of another instruction,
and 1 cycle if executed as a separate instruction.
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3.4 Branching And Looping

The RTX can perform unconditional branches or conditional branches, based on
the contents of the top elements of the Parameter and Return Stacks. All
branches take one clock cycle, regardless of whether or. not the branch is
performed.
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3.5 Streamed Instructions

‘The RTX processor has a "streamed" instruction feature, in which an instruction
is repeated a specified number of times. w1thout repeating the instruction fetch
cycle. This feature is useful for doing fast data transfers, loops and some math’
functions.

‘See Chapter 7, "Instruction Set" for more details about the "streamed” instruction
feature.

. Co v . .
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3.6 Math/Logic Oper_ations

Math and logic operations are performed by the ALU circuitry of the RTX. The

operations which may be performed include the simple math operators + and -, -
and the logic operators AND, OR, XOR, NOR, NAND, XNOR, and NOT. |

See Section 6.3 for information about the on-chip hardware
multiplier, multiplier/accumulator, barrel shifter, and Floating
Point support features. _ _ ‘

The TOP register is always one input to the ALU. The second, "Y", input may
come from a variety of sources, as indicated in Figure 3.3.

PROGRAM v

- MEMORY : ) T -BUS
’ i <
5 Least -y
Significant p—
Bits
2
]
>
External -
Memory Dm
!DECDD_EI )

: Opehnd
(A)

|
P
II
!
'
|
|

NOTE: Data Paths are represented by solid lines. Control Paths are represented by quhod lines.

FIGURE 3.3: ALU DATA FLOW
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3.6.1 Registers And I/O Devices

The contents of the TOP and NEXT registers are always available as operands to
the ALU, and are the implicit operands for most of the RTX Math/Logic
instructions. '

The contents of the other registers and external I/O devices are addressable as
devices on the ASIC Bus.

3.6.2 Memory

Data may be fetched from, and stored to, Main Memory using the Word and

Byte access instructions (Classes 14 and 15 in Chapter 7, the "Instruction Set")
and User memory access instructions (Class 12).

3.6.3 Literals

A literal is a constant value to be pushed onto the stack, or to be used as the
second operand of an arithmetic or logic operation. The RTX processor
recognizes two types of literals - short literals and long literals.

A short literal is a 5-bit value between 0 aﬁd 31 and is encoded as a field in a
machine instruction. '

A long literal may be any signed or unsignedfl6-bit integer, and is stored in main
memory immediately following the opcode that utilizes it.
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3.7  Stack Operations

The top two locations of the Parameter Stack are TOP and NEXT, and the
remainder of the stack memory is located in on-chip RAM. Because of this, the
RTX Microcontrollers have the ability to manipulate stack elements to allow
optimization of many instructions. - Descriptions of these stack manipulation
operations are given in the following sections. These primitives can be combined
with other operations to allow one-cycle execution of multiple operations. See
Chapter 7 for information about specific instructions.

3.7.1 DUP

oup copies the top element of the Parameter Stack, and pushes the result onto the
stack, leaving the stack with two identical elements in the top two stack locations.

Parameter ' Parameter
Stack Stack
Before After

] TOP 2
(11| NEXT (2]

Stack 1]
Memory

FIGURE 3.4: STACK EFFECTS OF DUP
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3.7.2 SWAP

swap flips the top two elements of the Parameter Stack, causing the top element
to move to the second location, and the second element to move to the top
location.

. Parameter . ' Parameter

Stack : Stack
Before After

1] Stack ' (1]

Memory‘
__
FIGURE 3.5: STACK EFFECTS OF SWAP

3.7.3 DROP

DROP PODS the Parameter Stack dropping the top element. That element is lost,
and is not used in subsequent operations. i

Parameter ' Parameter
Stack | Stack
Before " After

= ror [Tz

(C21] Nexr |1
(1]} stack

Memory‘x
. |
FIGURE 3.6: STACK EFFECTS OF DROP
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3.7.4 OVER

over copies and pushes the third Parameter Stack element into the top location.

Parameter Parameter
Stack Stack
Before . After

FIGURE 3.7: STACK EFFECTS OF OVER

3.7.5 >R

>k (called "to R") takes the information in TOP and stores it in the least
significant 16 bits (I) of the top location of the Return Stack. This causes the
current Code page value to be written to IPR, the most significant 5 bits of the
top location of the Return Stack.

Before After Bt st CPR
/ *} 7
ol vl vt only & b7y
, 4 W hat m‘bdm(“ \';'/L;
[3] [2] (3] +h 2 b7
@| |m @ grIrn
Kl Ty

FIGURE 3.8: STACK EFFECTS OF >R
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3.7.6 R>

R> (called "R from") retrieves the information in the least significant 16 bits of
the top element of the Return Stack and pushes it into TOP.

Before | After
Parameter Return l?arameter Return
Stack Stack © Stack Stack
(2] (c] 1]
1] (2] [A]
[A] (1]

FIGURE 3.9: STACK EET'ECTS OF R>

3.7.7 R@

Ra (called "R fetch") copies the top of the Return Stack to the top of the
Parameter Stack.

Before After
Parameter Return Parameter Return
Stack Stack - Stack Stack
zl| | @l |
(1] 2]
[A] JIEE [A]

FIGURE 3.10: STACK EFFECTS OF R@
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3.8 Interrupts

The RTX processor may be interrupted from several sources, both from internal
devices and from external inputs. :

The on-chip Interrupt Controller has fourteen interrupt request inputs. Thirteen
of these interrupt request inputs are maskable interrupts, and one is a Non-
Maskable Interrupt (NMI) request.

3.8.1 Maskable Interrupts

The Interrupt Controller samples the request inputs during each instruction,
prioritizes any active interrupt requests, and signals the processor when an
interrupt request is present.

For more information about interrupt acknowledgement, disabling interrupts, and
software interrupts, see Section 6.2.

3.8.2 Non-Maskable Interrupts (NMI)

The NMI is an external, edge-sensitive input which requires a rising edge to
request an interrupt.

3.8.2.1 On the RTX 2000

The NMI can cause the processor to perform an Interrupt Acknowledge
cycle in the middle of such operations as Step Math instructions, Streamed
instructions, and other operations that could result in the loss of data or
misoperation of the hardware if interrupted. For this reason, a "Return
From Subroutine” should not be performed from the NMI service routine.
Instead, the NMI handler should re-initialize the system.
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3.8.2.2 On the RTX 2001A

On the RTX 2001A, the NMI input has a glitch filter circuit which
requires that the signal that initiates the NMI must last at least two cycles
of ICLK.

The NMI can cause the processor to perform an Interrupt Acknowledge
cycle in the middle of such operations as Step Math instructions, Streamed
instructions, and other operations that could result in the loss of data or
misoperation of the hardware if interrupted. For this reason, a "Return
From Subroutine" should not be performed from the NMI service routine.
Instead, the NMI handler should re-initialize the system.

3.8.2.3 On the RTX 2010

On the RTX 2010, the NMI has two modes 6f operation which are
controlled by the NMI_MODE Flag (bit 11 of the CR).

When CR bit 11 is cleared (=0), the NMI cannot be masked and can
interrupt any cycle. This allows a fast response to the NMI, but does not
guarantee that a Return From Interrupt will always provide correct
operation. The NMI MODE Flag is cleared at Reset.

When the NMI_MODE bit is set (=1), the NMI may be inhibited by the
processor during certain critical operations, and further NMIs and
maskable interrupts are disabled until the NMI Interrupt Service Routine
has been completed and a return has been executed. In this mode, a
return from the NMI Interrupt Service Routine will allow the processor
to resume correct execution at the point where it was interrupted.
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CHAPTER 4

RTX REGISTERS
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4 RTX Registers

The three types of registers which the RTX microcontrollers use are: Stack
Related Registers, Internal Processor Registers, and Status/Control Registers.

At power up or Reset, the RTX registers are initialized. The reset states for the
RTX 2000 are shown in Table 4.1. The reset states for the RTX 2001A are
shown in Table 4.2. The reset states for the RTX 2010 are shown in Table 4.3.
In each of these tables, the read and write capabilities of each register are
indicated in the R/W column, where: '

R-W  Indicates that the register can be either read from or written to.

R Indicates a read-only register.

A\ Indicates a write-only register.

R/W  Indicates that the first register is read-only and the second register

is write-only (as in the case of the Tlmer/Counter and Timer
Preload Registers). :

* Indicates that individual bits in the register may be read-only or
write-only and that the bit map for that register should be consulted.

N Indicates that the register cannot be read from or written to.

Reglster addresses are given in hexadecmal denoted by "H" here and elsewhere
in this manual.

The sections which follow describe each of the registers in more detail.
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\

TABLE 4.1: RTX 2000 REGISTER INITIALIZATION

\

ASIC INITIALIZATION .
REGISTER |ADDR VALUES R/W | COMMENTS
TOP 0000 0000 0000 0000 | R-W
NEXT 1111 1111 1111 1111 | R-W
IR 0000 0000 0000 0000 N
OOH 1111 1111 111 1111 | R-W
(]]
02H
CR 034 | 0100 0000 0000 1000 | * Interrupts disabled, BOOT=1, Byte
Order=0
MD O4H 1111 111 111 1111 | R-W
SR 06H | 0000 0000 0000 0000 | R-W
1PC 07H ] 0000 0000 0000 0000 | R-W
IMR 08H | 0000 0000 0000 0000 | R-W | AL interrupts unmasked
SPR O9H | 0000 0000 0000 0000 | R-W | First stack location
SLR 0BH | 1111 1111 1111 1111} W Limit for each stack set to 255
IVR 0BH | 0000 0010 0000 0000 | R Read only; initialized to
“No Interrupt Value*
IPR OCH | 0000 .0000 0000 0000 | R-W { Initialize for Code Page 0
DFR 00H | 0000 0000 0000 0000 | R-W | Initialize for Data Page O
UPR OEH | 0000 0000 0000 0000 | R-W | Initialize for User Page 0
CPR OFH | 0000 0000 0000 0000 | R-W | Initialize for Code Page 0
IBC 104 | 0000 0000 0000 0000 | * Interrupt Base=0, Counters on
internal clocks, no rounding,
use CPR for data accesses
UBR 114 | 0000 0000 0000 0000 | R-W | User Base Address = O
TCO0/TPO 131 | 0000 0000 0000 0000 | R/W | ALL Timer/Counters set to
TC1/TP1 14H R/M | time-out after 65536 counts
TC2/TP2 15H R/
MLR 164 | 1111 1111 0000 0000 | - R Read| only; Mult. Low Prodpct
MHR 70 1111 1111 1111 1111 R Readjonly; Mult. High Product

36
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TABLE 4.2: RTX 2001A REGISTER INITIALIZATION

ASIC INITIALIZATION

REGISTER |ADDR VALUES R/W | COMMENTS

TOP 0000 0000 0000 0000 { R-W

NEXT 1111 1111 1111 111 | R-W

IR 0000 0000 0000 0000 | N

I O00H | 1111 1111 1111 111 | R-W

O1H .
02H

CR 034 | 0100 0000 0000 1000 * Interrupts disabled, BOOT=1,
Byte Order=0

MD 04H | 1111 1111 1111 1111 | R-W

SR O06H | 0000 0000 0000 0000 | R-W

PC 07” 0000 0000 0000 0000 | R-W

IMR 08H | 0000 0000 0000 0000 | R-W | All interrupts urwmasked

SFR 094 | 0000 0000 0000 0000 | R-W | Stack start addresses set to 0 '

SUR OAH | 0000 0011 0000 0011 | R-W | Stack underflow limits set

SVR 0BH | 1111 1111 1111 1111 | W Write only; each stack overflow
limit set for max. stack size

IVR 0BH | 0000 0010 0000 0000| R Read only; Interrupt Vector init-
ialized to "No Interrupt* value

IPR | OCH ] 0000 0000 0000 0000 | R-W | Initialized for Code Page 0

DFR ODH | 0000 0000 0000 0000 { R-W | Initialized for Data Page 0

UPR OEH | 0000 0000 0000 0000 | R-W | Initialized for User Page 0

CPR OFH | 0000 0000 0000 0000 | R-W lnitjilized for Code Page 0

IBC 10H | 0000 0000 0000 0000 | * Interrupt Base=0, Counters on
. | internal clocks, no rounding,
use CFR for data accesses

UBR 11H | 0000 0000 0000 0000 | R-W | User Base address set to 0
TCO/TPO 134 | 0000 0000 0000 0000 | R/W | ALl Timer/Counters set to
TC1/TP1 14H R/W | time-out after 65536 counts
TC2/TP2 15H R/M

RX 164 000_0 0000 0000 0000 | R-W | Scratchpad/Counting Register
RH 174 | 0000 0000 0000 0000 | R-W | Scratchpad Register
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TABLE 4.3: RTX 2010 REGISTER INITIALIZATION

|

ASIC INITIALIZATION ;
REGISTER |ADDR VALUES R/W | COMMENTS
TOP 0000 0000 0000 0000 | R-W :
NEXT 1111 1111 1111 1111 | RV ‘
IR 0000 0000 0000 0000 | N |
1 O0H | 1111 1111 1911 1111 | R-W ‘1
O1H
02H ‘
034 | 0100 0000 0000 1000] * Interrupts disabled, BOOT=1,
Byte: Order=0 .
04H | 1111 1111 1111 1111 | R-W ’
068 | 0000 0010 0000 0000 | R-W
074 | 0000 0000 0000 0000 | R-W N
08K [ 0000 0000 0000 0000 | R-W | All interrupts unmasked
094 | 0000 0000 0000 0000 | R-W snelf: start addresses set to 0
OAH | 0000 0111 0000 0111 | R-W Stacl“: underflow Limits set
0BH | 1191 1111 1111 1111} W write only; each stack overflow
limit set for max. stack size
0BH | 0000 0010 0000 0000| R | Read only; Interrupt Vector init-
falized to “No Interrupt® value
|
OCH | 0000 0000 0000 0000 | R-W | Initialized for Code Page 0
0oH | 0000 0000 0000 0000 | R-W | Initialized for Data Page 0
}
OEH | 0000 0000 0000 0000 } R-W lniti}.lizod for User Page 0
CPR OFH | 0000 0000 0000 0000 | R-W | Initialized for Code Page 0
IBC 104 | 0000 0000 0000 0000 | * | Interrupt Base=0, Counters on
internal clocks, no rounding,
use CFR for data accesses
UBR 114 | 0000 0000 0000 0000 | R-W | User Base address set to 0
MXR 120 | 0000 0000 0000 0000 | R-W | MAC Extension Register; L2D 0 Count;
Barrel Shifter Count
TCO/TPO | 134 | 0000 G000 0000 0000 | R/W | ALl Timer/Counters set to
TCI/TP1 | 144 © | RW | time-out after 65536 counts
TC2/TP2 | 154 R/ [
MLR 164 | 0000 0000 0000 0000 | R-W | Multiplier and MAC Low Register
MHR 174 | 0000 0000 0000 0000 | R-W | Multiplier, Barrel Shifter, and L2D

High Register; MAC Middle Register

38
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4.1 Stack Related Registers

These registers contain the top elements of the Parameter and Return Stacks, and
are the implicit source and destination for many of the processor operations.
4.1.1 Tor Register ' (Parameter Stack)

‘The TOP Register contains the top element of the Parameter Stack, and has no
ASIC address assignment.

This is the primary working register for the processor, and is the implicit data
source or destination for certain instructions.

All ALU results are loaded into TOP. The output from TOP may be written to
any ASIC Bus register and to external I/O devices.
4.1.2 NEXT Register (Parameter Stack)

The NEXT Register contains the second element of the Parameter Stack, and has
no ASIC address assignment.

During arithmetic operations, this register holds the lower 16 bits of a 32-bit
operand. NEXT is also the source of data for all memory writes.
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4.1.3 1 Register - (Return Stack)

The Index Register, I, can be accessed at three different ASIC addresses, and the
choice of ASIC address determines the type of operation to be performed.

As a Stack Related Register at ASIC addresses 00H (Hex) and O1H, I contains
the lower 16 bits of the top element of the 21-bit wide Return Stack. IPR
contains the other 5 bits. See Section 4.1. 4 for more details about IPR.

The contents of I may be accessed in either push/pop mode, in which values are
moved to/from Return Stack memory as required, or in read/write mode in which
the Return Stack is not affected.

In addition to its use in holding return address bits, at ASIC address 02H, this
register is also used to hold the count for streamed (repeated) instructions and
loop instructions. Operation of I at this ASIC address is described in more detail
in Section 4.1.3.3. I access operations and the associated addresses are shown
in Table 4.4. :

TABLE 4.4: I ACCESS OPERATIONS

OPERATION | RETURN ASIC

(g-read, BIT ADDRESS '
g-write) VALUE 99999 REGISTER i FUNCTION
R [} 00000 [1] Pushes the contents of [ into ST (with no pop of the Returmn Stack)
R 1 00000 ] Pushes the contents of [] into [{SI5, then performs a Subroutine Retun
w 0 00000 [1] Pops the contents of [EI5 into [] (with no push of the Retur Stack)
w 1 00000 1] Performs a Subroutine Retum, then pushes the contents of [8Iz into [ (: -
R [ 00001 [1] Pushes the contents of [] into XS5 popping the Retum Stack
R 1 00001 [] Pushes the contents of ] into [EI5 without popping the Retum Stack, then
executes the Subroutine Retum
w [} 00001 g Pushes the contents of IfSIZ into [l popping the Parameter Stack
w 1 00001 [} Performs a Subroutine Retum, then pushes the contenta of IS5 into [] 4é'
R o | oooto [ P\mw-eommommmbymm.hbm
(Mﬂmmsmkhnotmmd)
R 1 00010 [1] Pumm-emmmnmmuyommhmm«mnomm
Stack is not then sS: tine Retum
w [} 00010 o Pushes the contents of [{e]Z into [] as a “stream” count, indicating that
the next instruction is 1o be performed & specified number of times;
the Parameter Stack is popped ,
w 1 00010 o Performs a Subroutine Return, then pushes the stream count into []
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4.13.1 1 At Address 00H

Location 00H is used to access I without causing any n_e'tv pushes or pops of the
Return Stack. :

Reading from this location pushes the contents of I onto the Parameter Stack.

‘Reading from this location as part of a subroutine return pushes the contents of
I onto the Parameter Stack, then performs a Return-From-Subroutine.

Writing to this location during normal operation pops the top item on the
Parameter Stack into I; the original contents of I are lost. -

Writing to this location as part of a subroutine return operation first executes the
return, then pushes the top item of the Parameter Stack onto the Return Stack.

4.13.2 1 ' ' At Address 01H

I at address O1H is used to push and pop the Return Stack.

Reading thlS location during normal operation pushes the contents of I onto the
Parameter Stack and pops the Return Stack.

Reading this location as part of a subroutine return operation pushes the contents
of I onto the Parameter Stack Wlﬂ}gngJplng the Return Stack, then executes

the subroutine return. See Sectio: for more mfom};%mm&non
during subroutine returns. (ﬁ hn Hon B i)
. Wy -

Writing to this location during normal operatlon pushes the top item from the
Parameter Stack onto the Return Stack, popping the Parameter Stack.

Writing to this location as part of a subroutine return operation first executes the
subroutine return, then pushes the top Parameter Stack item onto the Return
Stack. See Section 5.1.1 for more information about subroutine return operation.
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4.1.3.3 1 At Address 02H (Stream Count/Loop Count)

Reading this location pushes the contents 6f I shifted left by one bit onto the

Parameter Stack. The Return Stack is not popped.

7,@ “P \3 Reading this location as part of a subroutine return pushes the contents of I
g’\f* 0 P shifted left by one bit into TOP (the Return Stack is not popped), and then
- x “« b performs a Return-From-Subroutine.

Y /9 Writing to this location during normal operation pushes the top Parameter Stack

item into I as a "stream” count, indicating that the next instruction is to be
Specified number of times} the Parameter Stack is popped.

4| Writing to this location as part of a subrdutine return operation executes the
1| subroutine return first, then pushes the stream count onto the Return Stack.

5% Qec,’hm '7 ! -Frg o #P l,,ﬁ?{'/‘,%.,.,m
I gﬂ"ffc,a,/&y\i /\}‘fﬁv\c&mns
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4.1.4 1Pr Register (Return Stack)

The IPR Register, at ASIC Address 0CH (Hex), can be described as both a Stack
Related Register and as a Control/Status Register. -See Section 4.3.10 for more
information. This register contains the 5 most significant bits of the top element
of the Return Stack (the I Register contains the other 16 bits). .

Reading from or writing directly to IPR does not push or pop the Return Stack,
but pushes or pops of the Return Stack (when reading or writing to I) do cause
the contents of IPR to be overwritten. Writing to I during non-subroutine
operations causes the current Code Page value to be written to IPR.

W about b+ &7

-
Te this tonded  w1Th pPRSEL =

RTX Registers, Chapter 4 43



rv

4.2 Internal Processor Registers
Internal Processor Registers are not directly accessible to the programmer.
The Instruction Register, IR, is actually a:latch which contains the instruction

currently being executed. This register is loaded directly from main memory via
an instruction fetch, and is not accessible under program control.

The bits of the instruction in IR are decoded to determine which operations to
perform, to determine the location of the next instruction to be executed, and to
provide data for immediate operations.
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4.3 Control/Status Registers

The contents of the RTX microcontroller’s Control/Status Registers determine the
operating environment for the processor, and allow the processor to monitor and
‘control the various I/O devices on the chip. ' ' 3
All internal registers are accessed through the ASIC Bus. ASIC addresses B/ «

through 23 (17 hexadecimal) are assigned to on-chip registers and devices, and -
are described in this section. Section 7.7 describes the RTX instructions which
access the ASIC Bus.

RTX Registers, Chapter 4 45



4.3.1 The Configuration Register - Address 03H
The Configuration Register, CR, controls the setup/status of the RTX processor.

Reading this location pushes the current contents of the register onto the
Parameter Stack. '

Writing to this location pops the top Paraineter Stack item into CR, updating the
control bits. The Interrupt Base/Control Register contains additional processor
control bits. ‘

The bits in CR are assigned as shown in Table 4.5.
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TABLE 4.5: CONFIGURATION REGISTER BIT ASSIGNMENTS

msB [1L|RID|+RES|RES|{RES|RES |RES|RES|RES |RES|RES|SID|BOOT|BYTE|CCY|CY|LSB
ARCE[ ' |NMIM ,

IL Bit 15 Read-only; Interrupt Latch: When set to 1,
N (MSB) indicates that an interrupt request is
’ pending. See Section 6.2.

.3
~38%

RID Bit 14 Read-only; Read Interrupt Disable: Status
of Interrupt Disable bit. When set to 1,
indicates that interrupts are disabled. )
Resets to 1. Use SID bit to set value. ff

—

See Section 6.2.

RES | Bit 13 | Reserved on the RTX 2000 and RTX 2001A. |
ARCE ' On the RTX 2010: When this bit is set, the
PCLK cycle for every ASIC bus read is

extended. See Section 5.1 for more details.|!

RES | Bit 12 Reserved

+RES | Bit 11 Reserved on the RTX 2000 and RTX 2001A.
NMIM On the RTX 2010: When this bit =1, return
: from a Non- Interrupt can be :l?d(ex/
See Sectim{’ 3.5.2§ for more informatiofi.

RES | Bits 5-10| Reserved

rg

SID Bit 4 Hrlte-only,é;;l_yrgl 2ero;* -
= Set Interrupt Dis set to 1, the "=
P processor will not respond to interrupts.

RID bit contains true value of Interrupt
Disable bit. See Section 6.2.

P BOOT | Bit 3 R/M; BOOT: Controls BOOT output pin. May

‘{,;__'“: i be used to select boot memory on power up.
BYTE | Bit 2 R/W; Byte Order: Controls order in which

A ) bytes of data will be read from or written

Ty : ~to memory. See Section 5.2.2.1 -

ccy Bit1 -R/W; Complex Carry: Carry bit from ALU

- - extension. See Section 8.3.

H cy Bit 0 R/W; Carry: ALU Carry output. See Sect. 8.3.
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4.3.2 The Mp Register - Address 04H

The MD Register is used to hold intermediate values during step math operations
(see Chapter 8). It may also be used as a general purpose scratchpad register.

Reading this location pushes the contents of the MD Register onto the Parameter
Stack. .

Writing to this location pops the top Parameter Stack item into the MD Register,
replacing its previous contents.

4.3.2.1 Mp On The RTX 2000 and RTX 2010
On the RTX 2000, MD is the MultiStep Divide Register. During

multistep divide operations, this register holds the divisor, whlle TOP and
NEXT hold the 32-bit dividend.

4.3.2.2 Mp On The RTX 2001A

On the RTX 2001A, MD is the Multlply/Dmde Register. This reglster
holds the divisor durmg step divide operatlons (the 32-bit dividend is in
TOP and NEXT). During step multiply operations, this register holds the
multlpller whlle NEXT holds the multiplicand.

s jmplies sk MHrp Aoesn o
’E’W;!‘” fV\V 2009, ’ZO(” Th); 1% (/W‘*fm
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4.3.3 The sQ Register - Address 05H
This address is a "pseudo-register” for step math operations (see Chapter 8).
Reading this location reads the contents of the MD Register, shifts the result left

by one bit, then logically OR’s this value with the contents of the SR Register.
The result is pushed onto the Parameter Stack.

Writing to this location shifts the top Parameter Stack item left by 8 bits, then
pops this value into the MD Register.
| R 7 s eves shifled inte lrw

g Lits 7

4.3.4 The SR Register - Address 06H

.The Square Root Register is used to hold intermediate values during the
calculation of square roots. It may also be used as a general purpose scratchpad
register.

Reading this location pushes the contents of the SR Register onto the Parameter
Stack.

Writing to this location pops the top Parameter Stack item into the SR Register,
replacing its previous contents. .
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4.3.5' The PC Register -

Address 07H

The Program Counter Register, PC, contains the lower 16 bits of the address of

- the instruction following the one currently executmg

Readmg this location pushes the contents of the PC (the address of the instruction

following the one which reads the PC) onto the Parameter Stack

address contained in the top Parameter Stack item; the P Stei
popped. Writing to this location as part of a subroutine return operation pushes
the top Parameter Stack item onto the Return Stack, then executes the subroutme
return; the Parameter Stack is popped. ‘

See Table 4.6 for PC Register access operatiions.

TABLE 4.6: PC REGISTER ACCESS OPERATIONS

T T

OPERATION | RETURN | ASKC
(g-read, BIr ADDRESS
g-write) VALVE | gogoy | REGISTER . FUNCTION
R [] 00111 Pushes the contents of (8 into [IIE
R 1 00111 Pushes the contents of (8 into [TEI3, then performs & Subroutine Retum
w [} 00111 a8 ca ddre nE
. the Perameter Steck
w 1 00111 Pushes th # [ISIZ onto the Retum Stack beto
the Subroutine Relum

50

RTX 2000 Family Programmer’s Reference Manual




4.3.6 The Interrupt Mask Register, IMR - Address 08H

The bits in the Interrupt Mask Register, IMR, cause individual interrupt request
inputs to the Interrupt Controller to be enabled or disabled. When a bit is set to
1, the corresponding input is masked (disabled). The IMR resets to all 0’s - all
~ interrupts unmasked. Only NMI, the Non-Maskable Interrupt cannot be masked.

Reading this locatlon pushes the current contents of the IMR onto the Parameter
Stack.

~ Writing to this location pops the top Parameter Stack item into the IMR, updating
the mask values. See Table 4.7 for bit assignments.

TABLE 4.7: INTERRUPT MASK REGISTER BIT ASSIGNMENTS

MSB RES|RES|SWI |EIS|EI4|EI3|T2|T1|TO|EI2|RSV|PSVIRSU|PSU|EI1|{RES| LSB
RES - | Bits 14-15| Reserved. Always read as 0; should
: be set =0 during Write operations.
\ SWI Bit 13 Software Interrupt -
EIS Bit 12 External Input Pin 5
El4 Bit 11 External Input Pin 4
E13 | Bit 10 External Input Pin 3
T2 Bit 9 Timer/Counter 2 Interrupt
T Bit 8 Timer/Counter 1 Interrupt
T0 Bit 7 Timer/Counter 0 Interrupt _
Elé Bit 6 External Input Pin 2
RSV Bit 5 Return Stack Overflow
PSV Bit 4 Parameter Stack Overflow
RSU Bit 3 Return Stack Underflow
PSU Bit 2 Parameter Stack Underflow
EIM Bit- 1 External Input Pin 1
LRES B Bit O Reserved. Always reads as 0. B
1 1 )
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4.3.7 The Stack Pointer Register, SPR - Address 09H

This location contains the combined registers for the Parameter Stack Pointer and
Return Stack Pointer, which are accessed together. Bits 0-7 contain the pointer
for the Parameter Stack, bits 8-15 contain the pointer for the Return Stack.

Reading this location pushes the contents of the register onto the Parameter
Stack. The value read for the Parameter Stack pointer will reflect the Parameter
Stack contents after the register value is puShedq

Writing to this location pops the top Parameter Stack item into the Stack Pointer
Register. ‘

4.3.8 Address 0AH

The assignment and utilization of this address is different for the RTX 2000,
RTX 2001A, and RTX 2010 Microcontrollers.

I 4.3.8.1 On The RTX 2000 ‘
This location is reserved on the RTX 2000

4.3.8.2 On The RTX 2001A and RTX 2010

On the RTX 2001A and RTX 2010, mﬁs address is used for the Stack
Underflow Limit Register, SUR. This register holds the underflow limit
values for the Parameter Stack and the Return Stack, which must be
accessed together.

This register can be utilized to define the use of substacks for both
stacks. See Section 6.1.3 for more stack/substack configuration
information.
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4.3.9 Address 0BH: IVR, SVR, And SLR

This address serves as two registers, and may be utilized by either the Interrupt
Controller or the Stack Controllers, depending on whether a read operation or
a write operation is being performed.

In the read-only mode, this is the Interrupt Vector Register on all RTX 2000
Family Microcontrollers, and is used to hold the current Interrupt Vector value.
This register is initialized to the "No Interrupt" value. Reading this location
pushes the value of the current vector being generated by the Interrupt Controller
onto the Parameter Stack and clears any pending Timer/Counter interrupts.

In the write-only mode, this address is utilized for stack limit operations by the
Stack Controller. The specific function of this address differs depending on
which processor is being used.

4.3.9.1 Write-only On The RTX 2000: SLR

In the write-only mode, this address is used as the Stack Limit Register.
At Reset, this register is set to its maximum value of 255. '

Writing to this location loads new values into the Parameter Stack and
Return Stack Limit Registers. Bit 0-7 are assigned to the Parameter
Stack, bits 8-15 to the Return Stack, and both are accessed together.

4.3.9.2 Write-only On The RTX 2001A: SVR

In the write-only mode, this address is used for the Stack Overflow Limit
Register and holds the overflow limits for the Parameter Stack and the
Return Stack. These limits must be accessed together. The maximum
overflow limit value for each stack on the RTX 2001A is 64.
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4.3.9.3 Write-only On The RTX 2?010: SVR

In the write-only mode, this address is used for the Stack Overflow Limit
Register and holds the overflow limits for the Parameter Stack and the
Return Stack. These limits must be accessed together The maximum
overflow limit value for each stack on the RTX 2010 is 256.
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4.3.10 Index Page Register - Address 0CH

This 5-bit register contains bits 16-20 of the top item of the Return Stack. Bits
0-3 of the Index Page Register, (IPR), contain the contents of the Code Page
Register at the time the current subroutine was called (i.e., the memory page
number to which the processor will return when execution of the current
subroutine has been completed. Bit 4 contains the value of the Data Page
Register Select Bit (DPRSEL) at the time the current subroutine was called. See
Figure 4.1 and Section 5.2.2.

Bit Assk ts During 8 o

T, Type of Retum

Interrupt Retuma:
BitO= 1
Subroutine Returns:
Delhu'.. Retum Bto= o

Where DPRSEL Bit
stored during ln!on'upt
or Subroutine Call

Blhdomnnh_ During Non - Subroutine Operations

I 0 1) +|

20,19181716§1514131211109:8/7,6,5,4/3/2,1,0] . \/\o

FIGURE 4.1: RETURN STACK BIT ASSIGNMENTS

The Index Page Register provides a mechanism to access the upper bits of the
subroutine return address. Reads and writes to the IPR do not pop or push the
Return Stack. However, operations which push an /gog,%e Return Stack do -
overwrite the contents of IPR. These operations¢includé subroutine calls,
subroutine returns, and reads and writes to the Index | ‘ eglster at ASIC Bus———"

addresses O1H and 02H. 7wl aou @@“7 ‘5 Fh's o Cdmy’

Reading this location pushes the contents of the IPR onto the Parameter-Stack-—

Writing to this location loads a new 5-bit value into the IPR. This operation
should be used with caution, because it will change the subroutine return address.

v
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4.3.11 Data Page Register, DPR - Ahdress ODH

When the DPRSEL bit (bit 5 of the IBC Rlegist'er) is set =1, this 4-bit register .
d¢s —seemtains the number of the memory page which will be accessed by memory

v
? (o reference instructions. See Sections 4.3. 14 and 5.2.1.

'4.3.12  User Page Register, UPR - -Address OEH

This 4-bit register contains the number of the memory page which will be
accessed by User Memory Space instructions. See User Memory Access
Instructions in Chapter 7. .

4.3;;13 Code Page Register, CPR - Aﬂdress OFH

This register contains the number of the memory page which will be accessed by
all mstruetlon fetch cycles. Addmonally, af the DPRSEL bit 1s set =0, this

|
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4.3.14 Interrupt Base/Control Register - Address 10H

The bits in this register control special proééssor setup and configuration values.
See Table 4.8 for the IBC Register bit assignments. See Section 4.3.1 for
information about additional control/status bits in CR.

MSB
Maslt: OyxFco0

mast! Ox 0309

0%

o040

OO0

m/w/'fe/if/"

TABLE 4.8: IBC REGISTER BIT ASSIGNMENTS

IB5[1B4|1B3|1B2]1B1|IBO|TB1|TBOJCYCEXT |ROUND [DPRSEL[RES] * | * | * | * | LSB
I1BO-1B5 |Bits Interrupt Vector Base Address: Provides bits 10-15 of
10-15 Interrupt vector generated by the Interrupt Controller
during an INTA cycle. See Section 6.2.
T80 Bit 8 Timer Clock Select: Determine the source for the input
81 Bit 9 clock signals for the 3 Counter/Timers. See Sec. @
CYCEXT |[Bit 7 CYCEXT on the RTX 2000 and 2001A: When =1, extends bus
cycle by 1 PCLK period. for every INTA cycle or User
Memory Instruction cycle. See Sec. 5.1.1 and 5.1.2.
CYCEXT on the RTX 2010: Allows extended cycle length
for User Memory Instruction cycles. See Sec. 5.1.
ROUND Bit 6 On the RTX 2000 and RTX 2010: ROUND option; when set
to 1, the least significant 16 bits of the multiplier
output are rounded into the most significant 16 bits.
See Section 6.3.
On the RTX 2001A: Reserved; should be set to 0 during
write operations.
DPRSEL |[Bit 5 Data Page Register Select: Determines whether source
of bits 16-19 of Memory Address Bus are from CPR or
DPR for memory access instructions. See Sec. 5.2.2.
* Bits On the RTX 2000, these bits are reserved and should be
0-4 set to 0.
On the RTX 2010 and RTX 2001A, these are used as read-
only stack controller flags where:
Bit 0 Fatal Stack Error Flag;
Bit 1 Parameter Stack Underflow Flag;
Bit 2 Return Stack Underflow Flag;
Bit 3 Parameter Stack Overflow Flag;
Bit &4 Return Stack Overflow Flag.
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4.3.15 User Base Register, UBR - Address 11H
The contents of this register point to the bekinning of a 32 word memory block

which will be used for all User Memory Access instructions. See Section 5.2.3
for information about User Memory Space.

4.3.16 Address 12H
The function of this address is determined by the RTX processor being used.

4.3.16.1 On The RTX 2000 and RTX 20014
This location is reserved on the RTX 2000 and RTX 2001A.

43162 On The RTX 2010: MXR

The MAC Extension Register, MXR, is a 16-bit read/write register which
holds the most significant 16 bits of the MAC Accumulator. For the
Barrel Shifter instructions, this register holds the shift count. For the
Leading Zero Detector instructions, the leading zero count is stored in
this register.
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4.3.17 Timer/Counter 0 - Address 13H

Reading this location pushes the current contents of Timer/Counter 0 onto the
Parameter Stack. See Section 6.4 for more infqrmation about Timer/Counters.

Writing to this location lbads the pre-load register for Timer/Counter 0.

4.3.18 Timer/Counter 1 - Address 14H

Reading this location pushes the current contents of Timer/Counter 1 onto the
Parameter Stack. See Section 6.4 for more information about Timer/Counters.

Writing to this location loads the pre-load register for Timer/Counter 1.

4.3.19 Timer/Counter 2 - Address 15H

Reading this location pushes the current contents of Timer/Counter 2 onto the
Parameter Stack. See Section 6.4 for more information about Timer/Counters.

Writing to this location loads the pre-load register for Timer/Counter 2.
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4.3.20 Address 16H
Operations using this address depend upon whether the RTX 2000, RTX 2010 TN
or the RTX 2001A Microcontroller is bemg used. . \
4.3.20.1 RTX 2000 - MLR | | / |
On the RTX 2000, this address is the Multiplier Low Register, MLR, and ‘
is used with the RTX 2000 on-chip hardware multiplier. ¢
Reading this location pushes the lower ! 16 bits of the multiplier output
onto the Parameter Stack. The contents of TOP are pushed into NEXT,

but NEXT is not pushed onto the stack

The MLR Register is a read-only reglster on the RTX 2000.

4.3.20.2 RTX 2001A - RX, Scrat(:hpad/Coﬁnting Register

On the RTX 2001A, this address is the RX Register. The RX Register
is a general purpose Read/Write scratch pad register.  Special
instructions are available to increment or decrement RX in one cycle.
This allows the RX register to be easnly utilized as a 16-bit program
controlled counting reglster

Incrementing the reglster contents beyond the "all ones” state results in
a wrap to the "all zeros" state. Decrementing the register below the "all
zeros" state results in a wrap to the "all' ones" state.

4.3.20.3 RTX 2010 - MLR

On the RTX 2010, this address is for the Multiplier Low Register, MLR,
and holds the least significant 16 bits of the 32-bit product generated by
the on-chip hardware multiplier. This register is also used to hold the
least significant 16 bits of the MAC Accumulator, and Barrel Shifter.

See Section 6.3.2 for information about the Multlpher/Accumulator

The MLR can be read or written on the RTX 2010.
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4.3.21 Address 17H

Operations at this address depend upon whether the RTX 2000 Microcontroller
or the RTX 2001A Microcontroller is being used.

4.3.21.1 RTX 2000 - MHR

On the RTX 2000, the Multiplier High Register, MHR, is used with the
on-chip hardware multiplier.

Reading this location pushes the upper 16 bits of the multiplier output
onto the Parameter Stack. The contents of TOP are pushed into NEXT,
but NEXT is not pushed onto the stack. The MHR Register is a read-only
register on the RTX 2000.

4.3.21.2 RTX 2001A - rRH
On the RTX 2001A, this address is for the RH Register. This is a 16-bit

scratchpad register for data storage, which provides faster access than
access to memory or a location buried in the stack.

4.3.21.3 RTX 2010 - MHR

'On the RTX 2010, the Multiplier High Register, MHR, holds the most
significant 16 bits of the 32-bit product generated by the on-chip
hardware multiplier. If the IBC Register’s ROUND bit is set, this
register contains the rounded 16-bit output of the multiplier. In the
Accumulator context, this register holds the middle 16 bits of the MAC,

- or the most significant 16 bits of the Barrel Shifter. See Section 6.3.2
for information about the Multiplier/Accumulator.
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CHAPTER 5

EXTERNAL BUS INTERFACE
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5 External vBus Interfaces

Addresses for access to external memory or ASIC devices are output via either
the Memory Address Bus (MA19-MAO1) or the ASIC Address Bus (GA02-
GAO00). . .

External data is transferred by the ASIC Data Bus (GD15-GD00) and the
Memory Data Bus (MD15-MDO00), which are both bidirectional buses.
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5.1 ASIC Bus Interface

The ASIC Bus services both internal processor core registers and the on-chip
peripheral registers, and eight external off-chip ASIC Bus locations.

All ASIC Bus operations require a single cycle to execute and transfer a full 16-
bit word of data. The external ASIC Bus maps into the last eight locations of the
32 location ASIC Address Space. The three least significant bits of the address
are available as the ASIC Address Bus. See Table 5.1 for the address map.

TABLE 5.1: ASIC BUS MAP

ASIC BUS SIGNAL
ASIC ADDRESS
GA02 | GAO0 |GA00
0 0 0 18H
0 0 1 19H
0 1 0 : 1AH
0 1 1 1BH
1 (] 0 | 1CH
1 0 1 ; 1DH
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5.1.1 RTX 2000 and RTX 2001A Extended Cycle Operation

On the RTX 2000 and RTX 2001A, bus cycle timing can be extended by
1 PCLK period to allow the use of some slow memory devices without
requiring the addition of external Wait states. When the CYCEXT bit (IBC
bit 7) is set equal to 1, extended cycles are used for all User Memory and
Interrupt Acknowledge cycles.
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5.1.2 RTX 2010 Extended Cycle Operation

On the RTX 2010, the user has the option of independently extending bus
cycle operations by 1 PCLK period for either User Memory Cycles or for
ASIC Bus Read operations. This provides the ability to interface to some
peripherals and slow memory devices without using externally generated
Wait states. s

Setting the Cycle Extend bit (CYCEXT),’ bit 7 of the IBC Register, will
cause extended cycles to be used for all accesses to User memory.

Setting the ASIC Read Cycle Extend bit (ARCE), bit 13 of the CR Register,
will cause extended cycles to be used for all Read accesses on the external
ASIC Bus. ‘

Both the CYCEXT bit and the ARCE ;bit are cleared on Reset.
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5.2 Memory Interface

The RTX processors directly address 512K words of memory, divided into 16
pages of 32K words each.

The memory page currently being addressed is selected by one of three 4-bit
"address page" registers, depending on what type of memory access is being
performed.

The RTX addresses 3 types of memory space, each with an associated address
page register. These are Code space, Data space, and User space.

® Code Memory Space is accessed by all instruction fetch operations.
See Section 5.2.1.

e Data Memory Space refers to all memory locations accessed by
memory reference instructions. See Section 5.2.2.

¢ User Memory Space provides efficient access to a block of 32 words
which may reside anywhere in the processor’s memory space. See
Section 5.2.3.

The RTX instruction set includes classes of instructions for referencing each type
of memory space. With the exception of instruction fetches and streamed MAC
operations, RTX memory accesses involve the TOP and NEXT registers.

The TOP register contains the address of the memory location -to be read or
written. The NEXT Register interfaces to the Memory Data Bus. For memory
writes, the value contained in NEXT is written to the location addressed by the
contents of TOP. For memory reads, the contents of the memory location
addressed by the contents of TOP are loaded into NEXT, then the stack is popped,
dropping the address and leaving the memory data in TOP.
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The RTX’s memory reference instructions have various forms which determine
the net stack effect of the memory read or write. Depending on the instruction
format, the contents of TOP and NEXT may be overwritten by memory data,
preserved on the stack, or modified through ALU operations.

The RTX’s 20-bit Memory Address Bus is composed of the 16-bit address from
the TOP register, and 4 bits from the appropriate address page register.

The Code Page Register is used for all references to Code memory space, and
the Data Page or Code Page Register for all references to Data Space. The Code
and Data Page Registers may point to the same memory page, as in a system
containing all RAM memory, or to different pages, as in a system with mixed
ROM and RAM. Additionally, the CPR and DPR may point to the same page for
small RAM/ROM systems. User Space addresses are a special case, and are
discussed in Section 5.2.3.

The page address registers may be read or written by using ASIC Bus access
instructions (see Chapter 7). The registers may be read at any time to determine
the current active memory pages.

70 RTX 2000 Family Programmer’s Reference Manual



5.2.1 Code Memory Space

Code memory space contains machine instructions to be executed by the RTX f &
Pprocessor. ’

5.2.1.1 Subroutine Calls and Returns

RTX subroutine calls take place within the memory page specified by the Code
Page Register. Any instruction with Bit 15 (the most significant bit) set to 0 will
cause a subroutine call to the address contained in the lower 15 bits of the
instruction. The address to be called is calculated by shifting the value contained
in the instruction left by one bit and inserting a zero in the least significant bit.
For example, the machine instruction 3211H (Hex) will cause a subroutine call
to location 6422H. See Table 5.2.

Long Calls may be made to a memory page other than the current Code page by
first loading the appropriate page number into the Code Page Register, then
executing the subroutine call.

Loading a value into the Code Page Register performs two special functions.
First, the effect of loading the Code Page Register is delayed by one instruction,
so that the instruction following the load instruction is fetched from the current
code page. Second, interrupts are disabled for one clock cycle following the load
instruction. This guarantees that the instruction following the load (typically the
Call instruction) will be executed without an intervening Interrupt Service
Routine which might corrupt the contents of the registers.

Subroutine calls save their 21-bit return address on the Return Stack (th
element is composed of the Index Register and the Index Page Register). As
subsequent calls occur, the storing of subroutine return addresses in IPR and I
causes the previous contents of IPR and I to be pushed into the Return Stack.
The 21-bit return address is contained in the Index Register and the Index Page
Register and consists of the following:
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" Index Register (1), at address O1H

¢ Bit0 Set to 1 if call results from an interrupt acknowledge, 0
' otherwise. As mdlcated by "i" in Figure 5.2.

e Bits 1-15 Word address to which to return (bits 1-15 of Program
Counter). The least significant bit of the return address is
implicitly O since instructions are always fetched on word

- boundaries.

Index Page Register (IPR)
e Bits 0-3  Code page to which to fetum

* Bit4 Value of DPRSEL bit (see description of Data Memory). As
indicated by "D" in Figure 5.2.

| €=-==IPR---> | <=-=seccoccaccncnnaas f-emmmemm oo > |

4| 3| 2| 1| o]1s|14(13[12|11|10| 9| 8| 7| 6| 5| 4| 3] 2| 1| 0

] IPR and 1

D -CPR Program Counter ‘ i] Registers
(current

return address)

) . Top stack memory
D CPR Program Counter i] element of Return
Stack (previous |
return address)

: : Second stack
D CPR Program Counter ) : i] memory element
: (etc.)

FIGURE 5.2: RETURN STACK STRUCTURE
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Example: Code executing at location 1220H in Code Page 3 calls a
subroutine located at address 3322H in Code Page 4. See Table 5.2.

TABLE 5.2: SAMPLE SUBROUTINE CALL AND RETURN

Actual
Address Address
Cycle Code Page (PC) (MA19-MAO1) Instruction
1 3 1220 31220 Set CPR = 4
2 3 1222 31222 Call location 3322H
3 4 3322 43322 1st subroutine instruction
4 4 3324 43324 2nd instruction
5 4 3326 43326 Return From Subroutine
6 3 1224 31124 1st instruction after Call
/\ v

5.2.1.2 Branching

Branching instructions work similarly to subroutine calls. Branches may be -
performed across page boundaries by first loading the Code Page Register with
the new page number (the current page plus 1 for forward branches, the current
page minus one for backward branches). See Chapter 7 for specific details on
branch instructions.

If the instruction following a "Load Code Page Register" instruction is not a Call
or Branch, it will be executed, then the next instruction will be fetched from the
memory page specified by the new contents of the Code Page Register.
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5.2.2 Data Memory Space

Data Memory refers to memory locations accessed by the RTX’s "Data Memory
Access" class of instructions. These would typically be RAM locations used for
variables and data storage. _

5.2.2.1 Memory Page Selection

The memory page réferenced by data memory instructions may be selected by
either the Data Page Register or the Code Page Register. The DPRSEL bit (Data
Page Register Select bit, IBC bit 5) determines which register will be used.

When DPRSEL = 0, all main memory accesses will occur in the memory page
addressed by the Code Page Register. This is the default mode. In this mode,
code and data memory spaces t0 reside in the same memory page, and would
typically be used in systems with 64K bytes or less of memory. In such a
system, the Memory Address Bus bits generated by the page select loglc (bits
MA19-MA16) would not be required.

When DPRSEL = 1, all main memory accesses will occur in the memory page
addressed by the Data Page Register. The Data Page Register may point to the
same page as the Code Page Register, or to a separate page.

The state of the DPRSEL bit may be controlled through three methods. First,
DPRSEL is dlrectly readable and can be set as a bit in the Interrupt Base/Control -
register. Second, it may be set or reset in one clock cycle by special forms of
the Register read/wfite instructions pertaining to the Data Page Register (see
"Predefined ASIC Bus Instructions” in Chapter 7). Third, DPRSEL is saved as
bit 4 of the Index Page Register during subroutine calls. The value in IPR may
be modified by a subroutine; the new value will be written into the DPRSEL bit
and take effect as soon as a Subroutine Return instruction is executed.
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5.2.2.2 Memory Access Mode Selection

To support the use of shared memory interfaces with other processors, the RTX
can be configured to access Data Memory in either of two modes which
determine whether the byte order in memory will be High-Low (Mode 0) which
is the default mode, or Low-High (Mode 1). Bit 2 of the Configuration Register
is used to select the Data Memory Access Mode.

The default, Mode 0, is selected when CR bit 2 = 0. This means that the most
significant byte of data in the processor register (NEXT) will be read from or
written to the even byte address in memory, and the least significant byte of data
in NEXT will be read from or written to the odd byte address in memory.

Mode 1 is selected when CR bit 2 = 1. This means that the most significant
byte of data in NEXT will be read from or written to the odd byte address in
memory, and the least significant byte of data in NEXT will be read from or
written to the even byte address in memory. See Figure 5.3.

MODE 0 MODE 1

Data Byte

[ MS BYTE | LS BYTE J [ MS BYTE ] LS BYTE Order

- in NEXT ,

Data Byte

| MS BYTE l LS BYTE | [ LS. BYTE L Ms BYTE order in
Memory

| Even Address | 0Odd Address | | Even Address | 0Odd Address |

. FIGURE 5.3: MEMORY ACCESS MODES

In addition to allowing selection of byte order, the RTX allows the user to
choose between accessing Data Memory in either 16-bit words or 8-bit bytes.

ot dpes  This ks 7
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5.2.2.3 Memory Access Examples

Byte reads from locations 1000H and 1001H will both read a byte from word
address 1000H. CR bit 2 and bit 0 of TOP determine which byte of the memory
location will be accessed. For 8-bit writes, only bits 0-7 of NEXT are transferred
to memory. For 8-bit reads, data from memory is transferred into bits 0-7 of
NEXT; bits 8-15 of NEXT are set to 0.

Example: Reading and Writing a 16-bit value (1234H) to memory location
1000H (all values are in hexadecimal) yields the results shown in Figure 5.6 at

the end of the first cycle.
Memory Read
CRbit2=0 CR bit 2 = 1§
Memory 1000 1001 1000 1001
12 | 34 12 | 34
TOP 1000 1000
NEXT - 1234 3412
Memory Urite.

CRbit2=10 CR bit2=1

ToP 1000 1000

NEXT 1234 1234

Memory 1000 1001 1000 1001
[12 [ |« 3% | 12
| I E—| [ I B

FIGURE 5.6: 16-BIT READ/WRITE Td EVEN MEMORY ADDRESS
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The least significant bit of the memory address contained in TOP may also be
used to control the Byte-swapping feature. If the LSB of TOP is 1 when
performing a 16-bit memory access, then an odd byte address is being accessed.
This means that the same word address will be read or written, but the bytes of
the word read or written to memory will be swapped.

Accessing a word with the LSB of the address set to 1 effectively inverts the Byte
Order bit.

Example: Reading and Writing a 16-bit value (1234H) to memory location
1001H (all values are in hexadecimal) yields the results shown in Figure 5.7 at
the end of the first cycle.

Memory Read
CR bit2=0 CR bit 2 =1
Memory 1000 1001 1000 1001
12 ]34 12 ] 3 |
TOP 1001 1001
NEXT 3412 1234
[ S I
Memory Write
CR bit2=0 CR bit 2 =1
TOP 1001 1001
NEXT 1234 1234
Memory 1000 1001 1000 1001
34 | 12 12 | 34
| I S | SN —

FIGURE 5.7: 16-BIT READ/WRITE TO ODD MEMORY ADDRESS
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The Byte Order bit also affects 8-bit memory accesses. If the Byte Crder bit is
set to 1, the LSB of the address contained in TOP is inverted before performing
the memory read or write. Following are two examples. .

Example: Reading and Writing an 8-bit value to memory location 1000H yields

the the results shown in Figure 5.8 at the end of the first cycle:

Memory

TOP
NEXT

TOP
NEXT

Memory

Memory Read ;
CR bit2=0 CR bit 2 = 1
1000 1001 1000 ' 1001
|12 |3 12 | 3
1000 1000
0012 0034
— —
Memory Write
CR bit 2 = CR bit 2 =
1000 1000
0012 0012
v E v )
12 | nc nc | 12 nc = not changed
1000 1001 1000 1001

- FIGURE 5.8: 8-BIT READ/WRITE TO EVEN MEMORY ADDRESS
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Example: Reading and Writing an 8-bit value to memory location 1001H yields
the results shown in Figure 5.9 at the end of the first cycle.

Memory Read
CRbit2=0 CR bit 2 = 1
Memory 1000 1001 1000 1001
12 | 34 12 [ 34
TOP 1001 ' 1001
NEXT 0034 0012
[ e—_ 1
Memory Write
CRbit2=0 CR bit 2 =1
TOP 1001 1001
NEXT 0012 0012
)
v v
Memory nc | 12 l 12 | nc nc = not changed
1000 1001 1000 1001

FIGURE 5.9: 8-BIT READ/WRITE TO ODD MEMORY ADDRESS
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5.2.3 User Memory Spéce

User Memory space is a block of 32 words whlch the RTX processor can access
without having to first calculate an address and load it into TOP. The logical
address to be referenced within the 32-word block is embedded in the machine
instruction which accesses the memory locatlon :

User Memory space would typlcally be used to hold data which must be accessed
frequently, such as system parameters or context save areas in a multi-tasking
system. See Chapter 7 for descrxptlons of the User Memory Reference
Instructions.

The physical address to be accessed when addressing User Memory space is
~ derived from several components, shown in Figure 5.10.

The User Page Register (UPR bits 03-00) points to the memory page to be used
for User Memory Access. - The User Base Address Register (UBR bits 15-06)
contains the offset for the particular 32-word block to be accessed by User
Memory Instructions. The exact word in the 32-word User block to be accessed
is specified by the address contained in the lower 5 bnts of the User Access
Instruction. ’ 4

As indicated in Figure 5.10, bits 05-01 'of the UBR Register are logically OR’ed
with the 5 address bits embedded in the User Access Instruction (IR bits 04-00),
and the results yield the next five memory address bits (MA05-MAO1). Because
of the logical OR which takes place, only the ten most significant bits of UBR
should be used to specify the User Base Address, since setting the lower bits will
have the effect of reducing the user block size by duplicating addresses.

Finally, since User accesses are always on word boundaries, bit 0 of the UBR
should always be zero.

Table 5.3 provides some samples of addresses, as- determmed by the contents of
UPR, UBR, and IR.
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USER PAGE
REGISTER [1514131211109:8/7,6,5,4/3,2,1,0

RESERVED*
MA19
MA18
MA17

A 4 4 A

USER BASE [uBR]
ADDRESS -
REGISTER (1514131211109,8/7,6,5,4(3,2,1,0

L]
MA15 - MAOS «——— g
MAO5 ( @
MAO4 (
MAO3 (
" MAO2 (

NOT USED TO
GENERATE
THIS ADDRESS

A
INSTRUCTION [151413121110978]776'5'4]3'21170
I

REGISTER

FIGURE 5.10: USER MEMORY ADDRESS COMPONENTS
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TABLE 5.3: USER MEMORY ADDRESS EXAMPLES

. UPR (4 bits) UBR (10 bits) Address fielt‘i:l (5 bits) Actual Address (20 bits)

from IR
OH 1240H oM  01246H
2H 3140H OFH | . . 2315EH
- 33104 T 2333EH

Note that in the third example some locatioﬂs within the 32-word block will not
be accessible because bit 4 in the User Base Register is set to 1 and will cause
the corresponding bit of the address to always be set due to the OR operation.

By adjusting the contents of the User Page Register and User Base Register, an
application may have any number of 32-word User spaces (up to 1 megabyte).

The byte-swapping operations described for the Data Memory accesses do not
affect User Memory accesses. ‘
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6 On-Chip Peripherals

The RTX 2000- Series microcontrollers contain hardware to support many of the
functions typically needed in real-time control systems. These include two Stack
Controllers, an Interrupt Controller, and three 16-bit Counter/Timers.

In addition, the RTX 2000 offers an on-chip 16-by-16 Hardware
Multiplier, while the RTX 2010 offers an on-chip Multiplier/
Accumulator, Leading Zero. Detector, 32-bit Barrel Shifter,
hardware floating point support, and multi-tasking stack support.

All on-chip peripheral devices are accessible through the ASIC Bus by the use
of ASIC Bus Read and Write instructions. The contents of the TOP register may
be written to the devices, and the outputs of the devices may be read through the
ALU into the TOP register.

This section contains the information necessary for programming the On-Chip
Peripheral devices. Refer to Chapter 4 for more information about the ASIC Bus
addresses for each device. ’
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6.1 Stack Controllers

Each RTX Microcontroller contains two identical stack controller circuits, one
for the Parameter Stack, and one for the Return Stack. The RTX Stack
Controllers utilize stack pointers and stack limits for control of stack operations.
Specific details of how the stack controllers work are determined by the type of
processor being used.

On the RTX 2000, operation of the Programmable Stack Controllers
depends on the contents of two registers, the Stack Pointer Register
(SPR), and the Stack Limit Register (SLR).

On the RTX 2001A, operation of the Programmable Stack
Controllers depends on the contents of three registers. These
registers are the Stack Pointer Register (SPR), the Stack Overflow
Limit Register (SVR), and the Stack Underflow Limit Register
(SUR).

On the RTX 2010, operation of the Programmable Stack Controllers
depends on the contents of three registers. These registers are the
Stack Pointer Register (SPR), the Stack Overflow Limit Register
(SVR), and the Stack Underflow Limit Register (SUR). To use these -
registers to perform Multitasking operations, see Section 6.1.3.2.
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 6.1.1 Stack Pointer Operation

The Stack Pointers for both stacks are combined into one 16-bit register for

access through the ASIC Bus. This register may be used to read and write both
stack pointers in parallel. The stack pointers are used to determine the "top"

location in stack memory for each stack.

6.1.1.1  Stack Pointers For the RTX 2000

On the RTX 2000, the value for each stack pointer is initialized to

a value of O at reset, and can range from 0 to 255. Each stack

pointer indicates the position of the "top” item in stack memory,

which contains the data that was most recently pushed into the
. stack. See Figure 6.1.

FIGURE 6.1: RTX 2000 STACK CONTROL

On-Chip Peripherals, Chapter 6

87




- The Stack Pointer Reglster is at ASIC address 09H, and may be
used to read and write both stack pomters Bits 0-7 contain the
stack pointer value for the Parameter Stack, while bits 8-15 contam
the pointer value for the Return Stack (see Figure 6.2)..

B SPR

151511311g11|10958l7;6|5 4 3|2,1;0

t————-— PSP, Parameter
. Stack Pointer

» RSP, Retum
Stack Pointer

FIGURE 6.2: RTX 2000 ST ACK POINTER REGISTER

During a stack push operation, the SPR is incremented by 1 before
the new item is pushed onto the stack (i.e., when the operation
begins, the register contains the address of the next stack location
to be written for each stack). The Stack Pointer may be set to a
new value by writing to SPR; the value written to the register should
be one less than the address of the first location to be written.

During a stack Read operation, the pointer indicates the next item
which can be popped from the stack memory. After that item has
been popped, the stack pointer is decremented by 1. Since reading
the stack pointer pushes a value onto the Parameter Stack, the value
read will be 2 more than the number of items on the Parameter
Stack prior to reading the Stack Pointer Register.

Stack Underflow on the RTX 2000 - The SPR monitors the total

number of items on the stacks, and will generate a "stack .
underflow" interrupt request if more items are popped from the

stack than were pushed onto it. The underflow signals are fed to

the Interrupt Controller (see Section 6.2) and may be masked

through the Interrupt Mask Register (IMR).
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6.1.1.2  RTX 2001A and RTX 2010 Stack Pointers

On the RTX 2001A and RTX 2010, the value for each stack pointer
is initialized to a value of 0 at reset. On the RTX 2001A the stack
pointer values can range from 0 to 63; on the RTX 2010 they can
range from 0 to 256.

Each stack pointer indicates the position of the "top" item in stack
memory, which contains the next stack element to be accessed in a
stack write operation. After a stack write ("push”) operation, the
stack pointer is incremented.

In a stack read operation, the stack memory location with an address
one less than the pointer location will be accessed. After a stack
read ("pop") the pointer is decremented. See Figure 6.3.

[ ﬂ ]
15,141312111109,8 [7,6,5,4,3,2, 1,0
| E ]
15141312,1%10,0,87,8,6,4,3,2,1,0,

ETER

T AN
“_' l‘lﬂl'._7.5lli'0

1214109,8,7,6,5,4,3,2,1,0

STACK MEMORY
(ON -CHP)

2
|

% W&%%W%@&&WW%
A — N\
igididizifide’sre 87473727 170)

SVt

FIGURE 6.3: RTX 2001A/2010 STACK CONTROL
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On the RTX 2001A, bits 0-5 contain the stack pointer value for the
Parameter Stack, while bits 8-13 contain the pointer value for the
Return Stack. See Figure 6.4.

15,1 18,12[1110/9,8]7,6,5,4]3,2,1,0

) I PSP, Parameter Stack
Pointer

Reserved *

RSP, Ret Stack
Pointer

Reserved *

FIGURE 6.4: RTX 2001A STACK POINTER REGISTER

On the RTX 2010, bits 0-7 contain the stack pointer value for the
Parameter Stack, while bits 8-15 contain the pointer value for the
Return Stack. See Figure 6.4.

15,1413 12|11,10,9 ,8(7,6,5,4[3,2,1,0
J\.

) S PSP, Parameter Stack

Pointer

RSP, R Stack
Pointer

FIGURE 6.5: RTX 2010 STACK POINTER REGISTER
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6.1.2 Stack Limit Operation

Stack limits are used to prevent data stored in the stack from being overwritten.
Since the stacks wrap around, existing data on the stack will be overwritten by
the new data when an overflow occurs. Underflows occur when an attempt is
made to pop data off an empty stack, causing invalid data to be read from the
stack. Since the processor can take up to four clock cycles to respond to an
interrupt, the values set into the stack limit registers should include a safety
margin which allows valid stack operation until the processor executes the
interrupt service routine.

On the RTX 2000, RTX 2010, and RTX 2001A, a buffer zone may
be set up so that stack error interrupts are generated prior to an
actual overflow. In addition, the RTX 2001A and RTX 2010
Underflow Limit Registers provide the capability to define an
underflow buffer.

The RTX 2000 Family processors utilize ASIC Address OBH for the
16-bit, write-only register which contains the maximum stack size
limits for the Parameter and the Return Stacks. On the RTX 2000,
this register is called the Stack Limit Register, (SLR). On the RTX
2001A and RTX 2010, it is called the Stack Overflow Limit
Register, (SVR).

6.1.2.1 Stack Limits For the RTX 2000

On the RTX 2000, the maximum limit for the Parameter Stack is in
bits 0-7 of the Stack Limit Register; bits 8-15 contain the maximum
limit for the Return Stack (see Figure 6.6). These limit values
determine the number of items which may be pushed onto each
stack before the Interrupt Controller will generate a "Stack
Overflow" interrupt signal. The Limit Register for both stacks must
be initialized on powerup or reset, if stack error interrupts are to be
used.
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15:14131211»109|8I7‘6.5,4[3.211.0‘
15141312

> RSL Retum
Stack Limit

FIGURE 6.6: RTX 2000 STACK LIMIT REGISTER

6.1.2.2 Stack Limits For the RTX 2001A

The RTX 2001A and RTX 2010 Microcontrollers utilize two
registers to provide stack limit control. They are the Stack
Overflow Limit Register, SVR at ASIC address 0BH, and the Stack
Underflow Limit Register, SUR at ASIC address 0AH; SVR is write-
only register.

Overflow limits: The overflow limit is the number of items which
may be pushed onto the stack before an interrupt will be detected.
Bits 0-5 of the Stack Overflow Limit Register contain the maximum
limit for the Parameter Stack, and bits 8-13 contain the maximum
limit for the Return Stack (see Figure 6.7).

QVH
15,14,1312[11/%0,9,8]7,6,5,4]3,2, 1,0

L— PVL: Parameter
Stack Overflow Limit
Reserved, shouid be set
=0 duﬂng Write operations

RVL: Return Stack
Overfiow . Limit

Reserved, should be set
=0 durlng Write opouﬁonl

FIGURE 6.7: RTX 2001A STACK OVERFLOW LIMITS
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Underflow limits: Bits 3-7 of the Stack Underflow Limit Register
contain the underflow limit for the Parameter Stack, and bits 11-15
contain the underflow limit for the Return Stack. See Figure 6.8.

15,14/1312] 1110/9,8/7,6,5,4]3,2, 1,0
Y - PSF:- Parameter Stack

Start Flag

Parameter Substack bit:
= 0: two 32 word stacks
= 1: one 64 word stack

l———— Reserved * )

PSU: Parameter
Stack Underflow Limit
0 - 31 words from
bottom of stack

RSF: Return Stack
Start Flag

Return Substacks bit:
. = 0: two 32 word stacks
\ = 1: one 64 word stack

Reserved *

RSU: Return Stack
Underflow Limit

0 - 31 words from
bottom of stack

FIGURE 6.8: RTX 2001A STACK UNDERFLOW LIMITS

6.1.2.3 Stack Limits For the RTX 2010

The RTX 2010 Microcontroller utilizes two registers to provide
stack limit control. They are the Stack Overflow Limit Register,
SVR at ASIC address OBH, and the Stack Underflow Limit
Register, SUR at ASIC address 0AH.

Overflow limits: The overflow limit is the number of items which
may be pushed onto the stack before an interrupt will be detected.
Bits 0-7 of the Stack Overflow Limit Register contain the maximum
limit for the Parameter Stack, and bits 8-15 contain the maximum
limit for the Return Stack (see Figure 6.9).
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15,14|13|12|11|101948 7,6,5,4/3,2,1,0

/\

¥ PVL: Parameter

Stack Overflow Limit.
Number of words from
top of current substack
RVL: Return Stack
Overflow Limit.
Number of words from
top of current substack

FIGURE 6.9: RTX 2010 STACK OVERFLOW LIMITS

Underflow limits: Bits 3-7 of the Stack Underflow Limit Register
contain the underflow limit for the Parameter Stack, PSU, and bits
11-15 contain the underflow limit for the Return Stack, RSU. See
Figure 6.10. In addition, this register is utilized to define the use
of substacks for both stacks (see Section 6.1.3). All Stack
Underflow Limit Register values must be accessed together.

1514,13,12]1110,9,8]7,6,5,4]3,2, 1,0
— - PSF: Parameter Stack

Start Flag

Parameter Substack bits:
= 00: eight 32 word stacks
= 01: four 64 word stacks
= 10: two 128 word stacks
= 11: 0ne 256 word stack

PSU: Parameter
Stack Underflow Limit
0 - 31 words from
bottom of substack

RSF: Return Stack
Start Flag

Return Substack bits:

- = 00: eight 32 word stacks
= 01: four 64 word stacks
= 10: two 128 word stacks
= 11: one 256 word stack

RSU: Return Stack
Underflow Limit

0 - 31 words from
bottom of substack

FIGURE 6.10: RTX 2010 STACK UNDERFLOW LIMITS
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6.1.3 = Configuration Of Substacks

The enhanced Stack Controller logic on the RTX 2001A and RTX
2010 allows the stack related registers to be used for configuring
substacks.

6.1.3.1 Substack Configuration On The RTX 2001A

Each 64-word stack may be subdivided into two substacks under
hardware control for simplified management of multiple tasks. Each
substack is 32 words deep. Stack size is selected by writing to bit
1 of the Stack Underflow Limit Register for the Parameter Stack,
and bit 9 for the Return Stack. See Figure 6.7.

Substacks are implemented by making bits- 5 or 13 of the Stack
Pointer Register control bits (i.e. they are not incremented when the
stack size is 32 words). Using this, a particular substack is selected
by writing a value which contains both the stack pointer value and
the substack number to the Stack Pointer Register.

Each stack has a Stack Start Flag which may be used for virtual
stacks. This is bit 0 of the SUR for the Parameter Stack, and bit 8
of the SUR for the Return Stack. If the Stack Start Flag is one, the
stack starts at the bottom of the stack or substack (location 0). If
the Stack Start Flag is 0, the substack starts in the middle of the
stack. In a stack 64 elements deep, this is location 32; In a stack 32
elements deep, this is location 16. An exception to this occurs if
the overflow limit in the Stack Overflow Limit Register is set for a
location below the middle of the stack. In this case, the stacks
always start at the bottom locations.
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Manipulating the Stack Start Flag provides a mechanism for creating
~ a virtual stack in memory which is maintained by interrupt driven
handlers.

Possible applications for substacks include use as a recirculating
buffer (to allow quick access for a series of repeated values such as
coefficients for polynomial evaluation or a digital filter), or to log
a continuous stream of data until a triggering event (for analysis of
data before and after the trigger without having to store all of the
incoming data), as in the case of a digital oscilloscope or logic
analyzer.

Seé Table 6.1 for control bit settings for possible stack/substack
configurations. In Table 6.1, note the following:

1. SPR is the Stack Pointer Register; SVR is the Stack Overflow
Limit Register; SUR is the Stack Underflow Limit Register.

2. PO through P15 are the SPR bits; VO through V15 are the SVR
bits; UO through U15 are the SUR bits.

3. The Overflow Limit is the stack memory address at which an
overflow condition will occur during a stack write operation.

4. The Underflow limit is the stack memory address below which an
underflow condition will occur during a stack read operation.

5. The Fatal limit is the stack memory address at which a fatal error
condition will occur during a stack read or write operation.

6. Stack error conditions remain in effect until a new value is
written to the SPR.

7. Stacks and substacks are circular. After writing to the highest
location in the stack, the next location to be written to will be
the lowest location; after reading the lowest location, the

highest location will be read next.

96 RTX 2000 Family Programmer’s Reference Manual



duag dn-uo

sy

9 433dvy) ¢

L6

1°9 AT4VL

.
.

NOLLVENOLINOD MJVISINS VIN0Z XL

CONTROL BIT SETTINGS: PARAMETER STACK CONFIGURATION:
STACK STACK RANGE -

SR size | Lowest |monest | EataL UNDERFLOW LIMIT OVERFLOW LIMIT

ps | vs | va Ju2 Ju1 |uo | (worps) | AbDRESS |ADDRESS | LmiT | s |4 |3 J2 |1 |o|s]|a]|3]2|1]o0
o]lx]ojojo}]x 32 o 31 31 o ]|o|usfusjusjuafo |o |va]va|vi]|vo
olx}1]ojo}o 32 [ 31 15 o |1 Jus|us]usjua|o o Jvafva]|vi|vo
oflx]1jofo]r 32 o 31 31 oo jusfusjusfjusafjo |1 Jvafva|vi|vo
1|xjo]ojo|x 32 32 63 63 1 |oJusfusjusjus|1 o Jva|vza|vi|wvo
1|x|1]ofjo]o 32 32 e3 a7 1 ]1 Jusfusjuajua|1 o |va|vz|vi]vo
1{x|1]o]o]|1 32 32 63 63 1 |0 |uejusjusfuaf1 1 jva]va]vi]vo
x|lolx|o|1]|x 64 o0 63 63 o |uz jue|us|us|uz|o |va]va|va|vr|vo
x|t |x]ojl1]o 64 o e3 a1 1 Juz Jus Jus fusjua] o Jva]va|vz|vi|vo
xj1[x]ofr | 84 0 63 63 0 {uz Jus fus |uausa |1 {vajva]va|vi|vo
CONTROL BIT SETTINGS: RETURN STACK CONFIGURATION:

STACK STACK RANGE
a2 | LowesT | HIGHEST | FATAL UNDERFLOW LIMIT OVERFLOW LIMIT

|p1a]vis]vi2Juto] us | us | (wonbs) | aobress |aooress | umit | s a3 21 ]o|s|afa]2]1]o0
olxjo]ojo|x 32 ) 31 31 o | o Jurafurajur2urr| o | o fvi1|vio[ve |vs
] X 1 ] 4] ] 32 ] 31 15 ] 1 |Uajui3jur2juit | o 0 |viivio|ve |v8
olx|1]ojo]n 32 o 31 31 o | o Jutajuiaurzjurr| o | 1 fviifvio|ve |vs
1t |{x]o]ojo}x 32 32 63 63 1 | o fura|uiz|urzfutr| 1 | o |vii|vio|ve |vs
1|x]1]ojo}o 32 32 63 a7 1] 1 |utajuizjurzfurr| 1 | o |vit|vio|ve |vs
1{xj1]ofo |1 32 32 63 63 1 ] o jutajuniajurzfurr] 1 | 1 Jvirfvio|ve |vs
xjolx|o 1 |x .7} 0 63 63 o |uisjuiajuizjurzjurr| o |vizfvii |vio|ve |vs
xli1Ix]o]1]o 64 o 63 31 1 |uis|uta juiajuizutt] o |viz|vit |vio|ve | ve
xf{1x]of1 ] 64 .0 63 63 o |uis|utafurafuizurr| 1 fviz|vitfvio|ve | v




6.1.3.2 ‘Substack Configuration On The RTX 2010

Each 256-word stack may be subdivided into up to eight 32-word
substacks, four 64-word substacks, or two 128-word substacks.
This is accomplished under hardware control for simplified
management of multiple tasks. Stack size is selected by writing to
bits 1 and 2 of the SUR for the Parameter Stack, and bits 9 and 10
for the Return Stack.

Substacks are implemented by making bits 5-7 of the SPR (for the
Parameter Stack) and bits 13-15 of the SPR (for the Return Stack)
control bits. For example, if there are eight 32-word substacks
implemented in the Parameter Stack, bits 5-7 of the SPR are not
incremented, but instead are used as an offset pointer into the
Parameter Stack to indicate the beginning point (i.e. substack
number) of each 32-word substack implemented. Because of this,
a particular substack is selected by writing a value which contains
both the stack pointer value and the substack number to the SPR.

Each stack has a Stack Start Flag which may be used for virtual
stacks. This is bit 0 of the SUR for the Parameter Stack, and bit 8
of the SUR for the Return Stack.

If the Stack Start Flag is one, the stack starts at the bottom of the
stack or substack (location 0). If the Stack Start Flag is 0, the
substack starts in the middle of the stack. In a stack 256 elements
deep, this is location 128; In a stack 128 elements deep, this is
location 64; In a stack 64 elements deep, this is location 32; In a
stack 32 elements deep, this is location 16.

An exception to this occurs if the overflow limit in the Stack
Overflow Limit Register is set for a location below the middle of
the stack. In this case, the stacks always start at the bottom
locations. See Tables 6.2 and 6.3 for the possible stack
configurations. Manipulating the Stack Start Flag provides a
mechanism for creating a virtual stack in memory which is
maintained by interrupt driven handlers.
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Possible applications for substacks include use as a recirculating
buffer (to allow quick access for a series of repeated values such as
coefficients for polynomial evaluation or a digital filter), or to log
a continuous stream of data until a triggering event (for analysis of
data before and after the trigger without having to store all of the
incoming data). The latter application could be used in a digital
oscilloscope or logic analyzer. ' .
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._CONTROL BIT SETTINGS PARAMETER STACK CONFIGURATION
STACK RANGE
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x x o xlo 1 «x 64 P7 P& 0 0O O O O O|P?7 P& 1 1 1 1 1 1
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6.1.4 Stack Error Conditions

Stack errors which may occur on the RTX 2000, RTX 2001A, and RTX 2010
Microcontrollers are overflow and underflow.

An overflow occurs when an attempt is made to push data onto a full stack.
Since the stacks wrap around, the result is that existing data on the stack will be
overwritten by the new data when an overflow occurs.

An underflow occurs when an attempt is made to pop data off an empty stack,
causing invalid data to be read from the stack.

A buffer zone may be set up using the stack limits to cause a stack error interrupt
to be generated prior to an actual overflow or underflow occurs.

6.1.4.1 RTX 2001A and RTX 2010 Fatal Stack Errors

In addition to the overflow and underflow stack errors, the RTX
2010 and RTX 2001A provide a fatal error flag.

A Fatal Stack Error occurs when an attempt is made to push data
onto or to pop data off of the highest location of the substack. It
does not generate an interrupt (since the normal stack limits can be
used to generate the interrupt). The fatal errors for the stacks are
logically OR’ed together to produce bit 0 of the Interrupt Base
Control Register, and they are cleared whenever SPR is written to.
The implication of a fatal error is that data on the stack may have
been corrupted or that invalid date may have been read from the
stack.
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6.2 Interrupt Controller

The RTX 2000 Series Interrupt Controller prioritizes 13 interrupt requests, masks
undesired interrupts, signals the processor core when a valid interrupt has
occurred, and provides a vector to an interrupt handler to service the interrupt.

Inputs to the Interrupt Controller come from both internal and external sources.
Internal sources are the stack overflow and underflow signals, the three
counter/timers, and the Software Interrupt signal. External sources are the Non-
Maskable Interrupt' (NMI) input, and the External Interrupt pins EI1-EIS. EI
. pins 3, 4, and 5 may be shared with the Counter/Timers for external event
counting. See Section 6.4 for details.

Except for NMI, the interrupt inputs may be individually enabled or disabled
through the Interrupt Mask Register (IMR) at ASIC address 08H. Each bit of the
IMR corresponds to one interrupt level; Table 6.2 shows the bit associated with
each level. Setting a bit to 1 disables the corresponding level. Note that the
Interrupt Disable bit in the Configuration Register must be 0 for any maskable
interrupts to be recognized by the core.- The NMI input may not be disabled
through the IMR.

When the RTX receives an interrupt request, it saves the current contents of the
Program Counter and Code Page registers in the IPR and I registers, which form
the logical top element of the Return Stack, then initiates an Interrupt
Acknowledge (INTA) cycle. During the INTA cycle, the Interrupt Controller
generates a vector to the appropriate interrupt service routine. The RTX sets the
Code Page Register to 0, then reads the vector from the Interrupt Controller to
determine the address of the first instruction to execute for the interrupt service
routine.

The vector provided by the Interrupt Controller consists of three parts:

¢ Bits 10-15 Come from bits 10-15 of the Interrupt
Base/Control Register (IBC).

B Bits 5-9 Come from the interrupt vector and depend on
the interrupt level; see Table 6.2.

* Bits 04 Are always 0.
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The interrupt vector points into a 544 byte table located in Code Page 0 of the
RTX memory. Each interrupt service routine is allocated 32 bytes in this table.
If the service routine will not fit in 32 bytes, it may make calls to any address
in the RTX’s memory space. The interrupt service routine must include a
Return-From-Subroutine instruction.

The interrupt service Table must be located on a 1024-byte address boundary;
that is, address bits 0-9 must be 0. The IBC register should be initialized with
the upper 6 bits of the address of the table. For example, if the table is located
at location 1000H, IBC bits 15-10 should be set to 00010 binary. Table 6.2
shows the interrupt service routine address associated with each interrupt level.

The Interrupt Controller samples the interrupt request inputs during each
instruction at the rising edge of PCLK (except when executing in streamed
mode). If one or more inputs are active, the Interrupt Controller generates the
vector corresponding to the input with the highest priority, and signals the core
processor that an interrupt request is present. The core then initiates an INTA
cycle. For the timer interrupts, which are edge triggered interrupts, the INTA
cycle from the processor clears the highest priority timer interrupt and allows the
Interrupt Controller to process lower priority interrupts.

The Interrupt Vector Register, IVR, which is a read-only register at ASIC address
OBH, contains the current vector being generated by the Interrupt Controller. If
no interrupt request is present, bits 5-9 of the register will contain 10000 binary.

The IVR vector may be polled for interrupt request information. Note that a
particular request level must be unmasked in order for the interrupt controller to
generate a vector for it.

Conditions may occur in which an interrupt request goes active and then inactive
prior to the INTA cycle. An example would be a stack operation that overflows
the stack and a subsequent stack operation that corrects the condition. If the
interrupt is active long enough, an INTA cycle will be initiated. This results in
the generation of a "No Interrupt" vector as a valid address and program
execution will transfer to the location indicated. Programmers should install a
service routine for "No Interrupt” to account for this situation.

104 RTX 2000 Family Programmer’s Reference Manual



Example:

The interrupt vector table is located at 2000H. The IBC regiSter should be loaded
with the binary value 00100xxxxxxxxxx where xooooooox depends on system
configuration. The Interrupt Controller would generate the following vectors:

No interrupt - - 2200H
NMI ‘ - 21EOH
EIl pin - 21COH
Timer 0 ’ - 2100H
SWI - 2040H
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TABLE 6.2: INTERRUPT CONTROLLER

Priority Source IMR Type Vector Address
- Bit (binary)
0 Non-Maskable none | Edge vvvv w1 1110 0000
Interrupt NMI
1 EI1 pin 1 Level | vvvv w01 1100 0000
2 Parameter Stack 2 | Level | vvwv w01 1010 0000
underflow
3 Return Stack 3 Level | vvvv vv01 1000 0000
underflow
4 Parameter Stack 4 Level | vvvv w01 0110 0000
overflow
5 Return Stack 5 Level | vvvv w01 0100 0000
overflow
6 EI2 pin 6 Level | vvvv vv01 0010 0000
7 Timer 0 7 Edge vvvv vv01 0000 0000
8 Timer 1 8 Edge vvvv w00 1110 0000
9 Timer 2 9 Edge vvvv w00 1100 0000
10 EI3 pin 10 Level | vvvv vv00 1010 0000
" El4 pin 1" Level | vvvv w00 1000 0000_
12 EIS pin 12 | tevel | vvvv vw00 0110 0000
13 Software 13 Level | vvvv vv00 0100 0000
Interrupt
N/A No Interrupt N/A N/A vvvv w10 0000 0000

Where:
vvvvvv = bits 10-15 from IBC register
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6.2.1 Interrupt Acknowledgement

If interrupts are enabled when the processor receives the Interrupt Controller’s
signal, it enters an Interrupt Acknowledge (INTA) cycle. During this cycle, the
processor saves the current execution address on the Return Stack, disables
interrupts as described in Section 3.5.2, then reads a vector from the Interrupt .
Controller which points to the address of a service routine to handle the
particular interrupt. Section 6.2 describes the Interrupt Controller interface in
more detail. , ‘

The INTA cycle sets the least significant bit of the return address saved on the
Return Stack to a 1, to indicate that the subroutine (Interrupt Service Routine)
was called as a result of an interrupt.

When the service routine executes a Return-From-Subroutine instruction to
resume execution from the point where the processor was interrupted, the set
LSB of the Return Stack causes interrupts to be enabled automatically. The
Interrupt Service Routine can also re-enable interrupts, but is then subject to
being interrupted by another interrupt.
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6.2.2 Disabling Interrupts

The processor can enable or disable all maskable interrupts at any time by
controlling the state of the Set Interrupt Disable bit in the Configuration Register
(CR bit 4). Setting this bit to 1 disables interrupts; this is the state of the bit
when the RTX is reset. The processor will not recognize interrupts until the bit
is reset to 0 by writing to the CR register.

The CR register contains two bit positions associated with the Interrupt Disable
bit. ,

The Set Interrupt Disable (SID) bit is a write-only bit which is used to set or
reset the bit under program control; this bit will always read as 0 no matter what
the bit is set to. This provides a convenient mechanism for quickly enabling
interrupts, whereby the CR register is read onto the Parameter Stack (reading the
SID bit as a 0), then immediately rewritten, effectively clearing the SID bit to 0
(enabled). This process requires only two clock cycles, eliminating the extra
time it would take to read the register, mask the bit, then rewrite the register.

The Interrupt Disable Status bit (CR bit 14) is a read-only bit which contains the
true state of the Interrupt Disable bit.

CR bit 15 indicates the status of the core interrupt request input from the
interrupt controller. This bit may be polled to determine interrupt status when
core interrupts are disabled.
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6.2.3 Software Interrupt_

The RTX has a single level Software Interrupt capability. A special form of one
of the RTX I/O write instructions sets a flip-flop attached to one input of the
Interrupt Controller. If the interrupt level associated with the Software Interrupt
is unmasked (see Section 6.2), this input causes the Interrupt Controller to
generate a vector pointing to the service routine corresponding to the Software
Interrupt.

A separate I/0 instruction clears the Software Interrupt Request flip-flop. The
service routine for the Software Interrupt must execute this instruction before re-
enabling interrupts or returning to normal program execution to prevent another
SWI cycle from being executed. This interrupt request input is level-sensitive
and will continue to generate interrupts until the flip-flop is reset. See
"Predefined ASIC Instructions” in Chapter 7 for the machine instructions which

set and clear the flip-flop. '

Due to internal delays in generating the interrupt request, and the fact that the
Software Interrupt is assigned to the lowest priority level, the interrupt will not
be serviced for two instructions following execution of the Software Interrupt
instruction. This means that the instructions immediately following the Software
Interrupt should not assume that the interrupt has been serviced.

Inserting two nops between the Software Interrupt Instruction and the instruction
which follows it will guarantee that the software interrupt will be serv1ced before
the following instruction is executed.
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On-Chip Hardware Math Support

- For math intensive applications, the RTX 2000 Microcontroller is
provided with a 16-bit on-chip hardware multiplier.

The RTX 2010 is provided with a 16-bit on-chip hardware
Multiplier/Accumulator, - 32-bit Barrel Shifter, Leading Zero
Detector, and hardware Floating Point support.

The RTX 2001A does not have these features.

6.3.1 RTX 2000 Multiplier Operation

The hardware multiplier on the RTX 2000 multiplies two 16-bit
numbers, yielding a 32-bit product, in one clock cycle. The

. multiplier can treat the input operands as either signed (two’s
complement) or unsigned integers, and can optionally round the
result to 16 bits.

The multiplier’s input operands come from the TOP and NEXT
registers. The multiplication function is activated by a special form
of the ASIC Bus write instructions to the Multiplier High (MHR) or
Multiplier Low Register (MLR) address.

The form of the instruction used determines whether the operands
will be treated as signed or unsigned values. See Section 7.7.1 for
the exact instruction coding. Note that the multiply instructions do
not pop the Parameter Stack; the contents of TOP and NEXT remain
intact. A

The product is stored in the Multiplier High and Muitiplier Low
Registers. The Multiplier High Register contains the upper 16 bits
og the product, while the Multiplier Low Register contains the lower
16 bits.

The registers may be read in either order, and there is no

requirement that both registers be read. Reading either register

moves its value into the TOP register, and pushes the original value
_in TOP into NEXT. The original value of NEXT is lost; it is not
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pushed onto the Parameter Stack. This permits overwriting the
original operands left in TOP and NEXT, which were not popped by
the multiply operation. See Figure 6.8.

If 32-bit precision is not required, the multiplier output may be
rounded to 16 bits. This is accomplished by setting the ROUND bit
in the Interrupt Base/Control Register to 1. The ROUND bit
functions independently of signed or unsigned mode.

If the ROUND bit is set to one, all operations that use the multiplier
automatically round the lower 16 bits of the result into the upper 16
bits. The rounding is achieved by adding 8000H to the least
significant 16 bits (during the same cycle as the multiply). Thus,
if the ROUND bit is set, after a multiply the result will be as
follows: _

¢ If the most significant bit of the MLR is set (=1), the MHR is

incremented and the MSB of MLR will be 0.

o If the most significant bit of the MLR is not set (=0), the MLR is
left unchanged, and the MSB of the MLR will be 1.

The multiply instructions disable interrupts during the multiplication
cycle, and for the next two clock cycles. Reading either result
register also disables interrupts during the read, and for the next
clock cycle. This allows a multiplication operation to be performed,
and both the upper and lower registers to be read sequentially, with
no danger of an interrupt service routine corrupting the contents of
the registers between reads. _
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FIGURE 6.8: RTX 2000 MULTIPLIER OPERATION

Example 1: A typical multiplication sequence without rounding

Set ROUND bit to O (if not already set)

Load multiplier and multiplicand into TOP and NEXT
Execute appropriate signed or unsigned "multiply"
instruction (interrupts are disabled)

Read lower result register (interrupts are disabled)
Read upper result register (interrupts are disabled)

ok Vo=

The 32-bit product is now on the Parameter Stack, the most
significant 16 bits are in TOP, the least significant 16 bits are in
NEXT, and interrupts are enabled.

Example 2: A typical multiplication sequence with rounding

Set ROUND bit to 1 (if not already set)

Load multiplier and multiplicand into TOP and NEXT
Execute appropriate signed or unsigned "multiply”
instruction (interrupts are disabled)

Read upper result register, MHR (interrupts are disabled)
Exchange TOP and NEXT registers (interrupts are disabled)
Discard top stack item (interrupts are enabled)

QR W

The 16-bit product is-now in the TOP Register and interrupts are
enabled.
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6.3.2 RTX 2010 Hardware Math Support

In addition to an on-chip multiplier, the RTX 2010 provides
additional hardware ‘on-chip to support Multiply-Accumulate
operations, 32-bit shift operations, and Leading Zero Detection.

6.3.2.1 RTX 2010 Multiplier/Accumulator Operation

The Hardware Multiplier/Accumulator (MAC) on the RTX 2010
functions as both a Multiplier, and as a Multiplier-Accumulator.

‘When used as a Multiplier alone, it multiplies two 16-bit numbers,
yielding a 32-bit product in one clock cycle.

When used as a Multiplier-Accumulator, it multiplies two 16-bit

numbers, yielding an intermediate 32-bit product, which is then

added to the 48-bit Accumulator This entire process takes place in
a single clock cycle.

The MAC'’s input operands come from three possnble sources (see
Figure 17): .

¢ The TOP and NEXT Registers
¢ The Parameter Stack and memory
¢ The ASIC Bus and memory

These inputs can be treated as either signed (two’s complement) or
unsigned integers, depending on the form of the instructions used.
In addition, if the ROUND option is selected, the Multiplier can
round the result to 16 bits. Note that the MAC instructions do not
pop the Parameter Stack; the contents of TOP and NEXT remain
intact.

For the Multiplier, the product is read from the Multiplier High
Product Register, MHR, which contains the upper 16 bits of the
product, and the Multiplier Low Product Register, MLR, which
contains the lower 16 bits.
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For the Multiplier-Accumulator, the accumulated product is read
from the Multiplier Extension Register, MXR, which contains the
upper 16 bits, the MHR, which contains the middle 16 bits, and the
MLR, which contains the low 16 bits.

The registers may be read in any order, and there is no requirement
that all registers be read. Reading from any of the three registers
moves its value into TOP, and pushes the original value in TOP into
NEXT.

If the read is from MHR or MLR, the original value of NEXT is lost,
i.e. it is not pushed onto stack memory. This permits overwriting
the original operands left in TOP and NEXT, which are not popped
by the MAC operations.

If the read is from MXR, the original value of NEXT is pushed onto
the stack.

In addition to this, any of the three MAC registers can be directly
loaded from TOP. This pops NEXT into TOP and the Parameter
Stack into NEXT.

If 32-bit precision is not required, the multiplier output may be
rounded to 16 bits. The RTX 2010 ROUND mode functions
exactly like the RTX 2000 ROUND mode. See Section 6.3.2.1 for
details.

The multiply instructions suppress interrupts during the
multiplication cycle. Reading MHR or MLR also suppresses
interrupts during the read. This allows a multiplication operation to
be performed, and both the upper and lower registers to be read -
sequentially, with no danger of a non-NMI interrupt service routine
corrupting the contents of the registers between reads (for
compatibility with the RTX 2000). The Multiply-Accumulate
instructions do not suppress interrupts during instruction execution.
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6.3.2.2 RTX 2010 Barrel Shifter and LZD Operation .

The RTX 2010 has both a 32-bit" Barrel Shifter and an 32-bit
Leading Zero Detector (LZD) for added floating point and DSP
performance. The input to the Barrel Shifter and Leading Zero
Detector is TOP and NEXT. See Figure 6.9.
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FIGURE 6.9: RTX 2010 FLOATING POINT/DSP LOGIC

The Barrel Shifter uses a five bit count stored in the MXR Register
to determine the number of places to right or left shift the double
word operand contained in TOP and NEXT. The output of the Barrel
Shifter is stored in MHR and MLR, with the most significant 16 bits
in MHR and the least significant 16 bits in MLR.

The Leading Zero Detector is used to Normalize the double word
operand contained in the TOP and NEXT Registers. The number of
leading zeroes in the double word operand are counted, and the
count stored in MXR. The double word operand is then logically
shifted left by this count, and the result stored in MHR and MLR.
Again the upper 16 bits are in MHR, and the lower 16 bits are in
MLR. This entire operation is done in one clock cycle.
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6.4 Counter/Timers

The RTX 2000 Family of microcontrollers contains three identical 16-bit
Counter/Timers. Each counter may be configured as either an external event
counter, in which case its clock input comes from an RTX input pin, or as a
timer, in which its clock input comes from the processor’s internal TCLK signal.
Each Counter/Timer circuit consists of a pre-load register, a 16-bit down-
counter, clock selection circuitry, and an interrupt output. See Figure 6.10.
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FIGURE 6.10: TIMER/COUNTER OPERATION

6.4.1 Counter/Timer Operation

Writing to a counter’s ASIC Bus address loads a 16-bit value into its pre-load
register. This value is loaded into the counter on the counter’s next input clock
cycle. Each subsequent input clock cycle decrements the counter by 1. The
counters are free-running in that they do not stop when they reach 0, but rather
reload from the pre-load register and continue counting. Loading a counter with
0 is equivalent to loading it with 65536.
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The counters clock synchronously with the processor’s internal TCLK signal.
This prevents the clocking from occurring during an I/O read, and means that the
contents of each counter may be read at any time without disturbing the count or
interfering with the counting process. This also means that the processor clock
must be running for counting (from either an internal or external clock) to take
place, and that the maximum counting rate with an external clock source cannot
exceed one-half the processor’s clock rate.

When a counter is written, the value is not loaded until one TCLK or EI pulse
later, depending on which is the source to the counter.

6.4.2 Counter/Timer Interrupts

Each counter generates an interrupt signal when it reaches 0. These signals are
routed through the Interrupt Controller, and may be masked by setting the
appropriate bits in the Interrupt Mask Register. -

The counter interrupts are reset during the corresponding Interrupt Acknowledge
cycle. This means that it is possible that there will be an interrupt request
present when the interrupt levels associated with each counter are unmasked,
especially if the counters have been running for some time before being loaded
with a count value.
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6.4.3 Clock Selection

The clock selection circuit determines the source for each counter input clock.
Each counter may be clocked from either the processor’s internal TCLK signal,
or from one of the processor’s External Input (EI) pins. The 3 EI pins EI3, EI4,
and EI5 are shared with the interrupt controller. Each pin may either be an input
to the Interrupt Controller, or a clock input to a counter. Bits 8 and 9 in the
Interrupt Base/Control Register determine the usage of each pin. See Table 6.3.

TABLE 6.3: TIMER/COUNTER EI PIN ASSIGNMENTS

1BC bit 9 | 1BC bit 8 | EI3 El6 | EIS
0 0 wrio | nrn | eme2
0 1 cko | wnmia | T2
1 0 ctko | ctkr | INT12
1 1 cko | ckr | cike

Notes:
INTn - input to Interrupt Controller, level n
CLKn - clock input to Counter/Timer n

If a counter input is not assigned to an EI pin, it is decremented
by the processor’s TCLK signal.

If an Interrupt Controller input is not assigned to an EI pin, it
is held inactive.
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INSTRUCTION SET
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7 Instruction Set -

This section describes each of the i ction operation codes (“opcodes")
available on the RTX processor. Since Forth is th€ "assembly language" for the
processor, the instruction set is described in terms of Forth primitives;
Appendix A presents the opcodes in Forth format. This chapter presents each
of the instructions in terms of thelr stack and register effects

7.1  General Ihformation

Instructions are always aligned on word boundaries, with the most significant
byte of the instruction at the even address, and the least significant byte at the
next higher odd address. All instructions are 16 bits long, with the exception of
~ long literals which require 16 bits for the instruction and 16 bits for the literal
value

All RTX instructions execute in either one or two clock cycles. ‘All instructions
which do not perform memory accesses execute in a single clock cycle.
Instructions which perform memory accesses or load long literal data require two
clock cycles. This consistency of execution time makes it possible to write code
with very predictable behavior.
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7.1.1 Streamed Execution Mode /
At

(
The RTX processor has a "streamed"” instruction feature, in which an instruction ?f\
is made to repeat a specified number of times by writing a count value into the ( \:X 0 YA -y
Index Register. This feature is useful for doing fast data transfers, loops and ' N ( A
some math functions. N AR

The count is written into the Index Register using an ASIC Bus write instruction
to the Index Register at ASIC Address 02H. See Section 4.3.1.3 fﬁ;jiay

The value written must be 1 less than the desired number of repetitions.

Only the first cycle of a two cycle instruction is repeated. The second cycle is
performed only once, after the first cycle has been repeated the desired number
of times.

Interrupts are disabled during streamed instruction execution. Only a Non-
maskable interrupt (NMI) will interrupt streamed execution. '

The RTX 2010 provides the ability to set the NMI_MODE Flag (bit 11 of
the CR Register). If this bit is set, (MODEL1), then the NMI is suppressed
until the streamed instruction has been completed.

7.1.2 The Auto-decrementing Loop Instruction

The RTX provides a fast auto-decrementing loop instruction called nexr. The
NEXT instruction branches based on a count previously pushed onto the Return |
Stack (in I). '

The next branch instruction tests the contents of the I Register at the end of each
loop. If the contents are not 0, the I Register is decremented, and a branch
(typically to the beginning of the loop) is executed; if the I Register contains 0,
the Return Stack is popped, and execution continues with the instruction
following the conditional branch instruction.
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7.2 Format

All processor instructions are 16 bits, with the following general fields:

[15 vevennen. 2]1 veeeeenn.. Bl7 vee 6] 5 |4 vevenenannnnnnn 0|
Class ALV sc | R Data

Class  General type of instruction:
8,9 : Branches and Loops

10 : Math/Logic Functions

11 : - Register and Short Literal Operations
12 : User Memory Access

13 : Long Literals

14 : Memory Access By Word -

15 : Memory Access By Byte

Each class is discussed separately.

ALU - ALU function to be performed.

SC -  Subclass. Function depends on Class field.
R = Return bit. When set, causes a Return-From-Subroutine.
Data - Depending on Class, indicates shift operation, short literal data,

ASIC Bus address, or memory address.

Opcode descriptions use the format which follows.
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PRIMARY CLASSIFICATION [Functional Title]

Functional representation of the instruction

DItS: [15 veueseencenneennsannennsnnansennsanssanssansnanssansanneans 0]

binary

Description:
Number of cycles:

Processor operations:

Notations: N = T

*N = T
N = (T)

N => Pstack

Rstack => PC

Parameter Stack effect:

Describes the net effect of the operation.

Total number of processor cycles required.

The register and memory operations performed by
the processor during each cycle of the instruction.
Contents of NEXT Register (N), are written to TOP (T)

Contents of NEXT are written to TOP with 1’s
complement performed if "i" bit in instruction is 1

C‘ontents of NEXT are written to the Memory location
addressed by TOP

Contents of NEXT are pushed'onto the Parameter Stack
Return Stack popped into Program Counter (PC) Register

Net effect of instruction on Parameter Stack, shown
as:
before -- after

1’s complement of “a", if “i" bit is set

the result of ALU operation “op", performed between "a"
and "b". The order of the operands is significant for
subtraction operations only.

the result of performing the shift operation on value a.

Notations:
. *a
a-op-b
shiftlal
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The right-hand item in each list is the top stack element. "T" and "N" are used -
to represent the contents of TOP and NEXT before the instruction is executed
For example ‘ _

NT-*T

shows that the instruction starts with values in TOP and NEXT, and ends with the

contents of NEXT being diseaeded and the contents of TOP beingw cond R o / ;)

When reading the "Processor operations" descriptions, it is important to keep in
mind that the RTX performs the indicated operations in parallel when executing
an instruction. Thus, the original contents of a register may be used as an

operand for an instruction even though the register is loaded with a new value -

during execution of the instruction.

For example, the contents of TOP and NEXT may be used as operands for a math
operation which replaces the contents of TOP with the results of the operation and
pops the Parameter Stack into NEXT.

In the descriptions of Processor operations for two cycle instructions, the values

shown for "T" and "N" during the second cycle of the instruction represent the

values loaded into TOP and NEXT during the first cycle of the instruction, not the
contents of TOP and NEXT before the instruction was executed.

For example,

Processor operations: -

1st cycle: - N = T ‘m = N
2nd cycle: N = T T = N

Parameter Stack effect:
NT--Nm

should be interpreted as described on the following page.
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During the first cycle, the contents of NEXT are written to TOP, overwriting the
contents of TOP. At the same time, the contents (m) of the memory location
addressed by the original contents of TOP are loaded into NEXT.

During the second cycle, the new contents of NEXT (the memory data) are
written into TOP, while the new contents of TOP (the original contents of NEXT)
are written back into NEXT. The net effect of this operation is to replace the
contents of TOP with the contents of the memory locatlon addressed by the -
contents of TOP. - -
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7.3  Subroutine Call

Any instruction which has bit 15 set to 0 will perform a Subroutine Call. The
contents of the Code Page Register and the address of the instruction following
the Call are pushed onto the Return Stack. The Program Counter Register is
then loaded with the address contained in the instruction.

The address bits in the instruction represent the word address to be executed.
The actual address may be calculated by shifting the value left by 1 bit, and
inserting a O in the least significant bit. For example, an instruction code of
2A45H would cause a call to location 548AH: -

2A45: 0010 1010 0100 0101
shift and insert 0: 0101 0100 1000 1010 = 548AH

If a Subroutine Call is to be made to a Code page other than the one containing
the Call instruction, the instruction immediately preceding the Call must load the
correct page number into the Code Page Register.

Oaaaaaaaaaaaa'aaal

Description: Subroutine-Call.
Number of cycles: 1

Processor operations:

IPR, | => Rstack Save return address on Return Stack
PC =1 :
CPR => IPR

asaaaaaaaaaaaaaal => PC Load Call address into Program Counter
Parameter Stack effect:

no change
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7 4 Subroutine Return

Any non-call/branch instruction which has the Subroutine Return bit (bit 5) set
will cause a Return-From-Subroutine operation. The Return Stack is popped into
the Program Counter Register and Code Page Register, causing execution to
resume with the instruction following the call to the current subroutine.” The
Subroutine Return bit is shown in the opcode formats as "R".

1

Description: Return-From-Subroutine.

Number of cycles: ‘1 if coded as a separate instruction; 0 if coded as
part of the last instruction in a subroutine

Processor operations:
I = PC IPR => CPR Rstack => I, IPR

Parameter Stack effect:

no change

The Subroutine Return bit may not be used in the following circumstances:
e A Branch or Call instructioﬁ. All bits of the; instruction are signiﬁcant. |
® Any instruction which popS the Return Stack. "Return Stack pop"

instructions which have the Return bit set behave as non-popping "Index
" Register Read" instructions.
In these situations, a stand-alone return instruction must be added as the last

instruction of the subroutine. This would typically be a No Operatlon (NOP)
instruction with the Return bit set.
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7.5 Classes 8 and 9: Bfanches and Loops

These instructions cause either a conditional or unconditional branch. The RTX
Branch Instruction treats each Code Memory page as 64 "blocks" of 512 words
-each. Bits 15-10 of the Program Counter determine the block number; bits 9-0
determine the word offset within the block.

In order to perform branches in a single clock cycle, RTX branch instructions
encode the branch address within the instruction.

The limited number of bits available for encoding the address requires that all
branch destinations must be within the same, next, previous, or first memory
block. Except for the "Branch to block 0" instruction, the longest branch which
the processor can perform is + 1K words.

RTX branch instructions have the following general form:

10‘0'ccbbaa'aaa'aaaa

cc - Determine conditions for branching. See Table 7.1.

"bbaaaaaaaaa” Branch address.

"bb" - Block Select. Determines new value of bits 15-10 of
' ' Program Counter. See Table 7.2.

"aaaaaaaaa”

Replaces bits 9-1 of Program Counter (word offset
from address 0 in the new block).

Bit 0 of the Program Counter Register is set to 0 (word aligned instructions).
The resulting branch address is designated "ADR" in the instruction descriptions.
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TABLE 7.1: BRANCH CONDITIONS

cc | Branch conditions

00 | Branch if contents of TOP

0. Don’t pop stack.
01 | Branch if contents of TOP = 0. Pop stack.
10 | Unconditional branch

11| 1f contents of Index Register # 0, branch and decrement I

TABLE 7.2: BLOCK BRANCHING ASSIGNMENTS

bb result

00 Branch within same memory block (no change to bits 15-10)

01 Branch to next memory block (add 1 to value represented
by bits 15-10)

10 | Branch to Block 0 (set bits 15-10 to 0)

1" Branch to previous block (add -1 to value represented by
v bits 15-10)

The most important thing to note when calculating the address field for a branch
instruction is that, when the branch instruction is executed, the Program Counter
will already be pointing to the instruction following the branch instruction. The
"bb" field will be - applied to this address, not the address of the branch
instruction. ‘

This is only important when the branch instruction is the last instruction in a 512
word block. In this case, the Program Counter is already pointing to the first
word in the next block, and the "bb" field must be calculated based on that block
number, not the block containing the branch instruction.

Example: A branch instruction is located at address 07FEH, the last instruction
in block #1 (bits 15-10 = 000001). When this instruction executes, the Program
Counter is pointing to the instruction at 0800H, the first instruction in block #2.
- To perform a branch to a location in block #2, the "bb" field must be set to 00
(branch to same block) rather than 01 (branch to next block).
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Branch Address Examples: (bbaaasaaaa = bits 0 - 9 of opcode)

Example 1: Branch to same block
I3 address of branch instruction: 0001 0100 1010 0100
address to branch to: 0001 0100 1111 0000
bbaaaaaaaaa : 1001 000 001111000
resulting address: :
PC-Register bits 15-10 => 0001 01
PC-Register bits 9-1 => 00 1111 000
PC-Register bit 0 => 0.

..............................................

Final branch address => 0001 0100 1111 0000

Example 2: Branch to next block
address of branch instruction: 0001 0100 1010 0100
address to branch to: 0001 1000 0101 1110
bbaaaaaaaaa : 1001 001 000101111
resulting address:
PC-Register bits 15-10 => 0001 01

+ 1
=> 0001 10
PC-Register bits 9-1 => 00 0101 111
PC-Register bit 0 => 0

..............................................

Final branch address => 0001 1000 0101 1110

Example 3: Branch to block 0
address of branch instruction: 0001 0100 1010 0100
address to branch to: 0000 0000 1100 1010
bbaaaaaaaaa : 1001 010 001100101
resulting address:
PC-Register bits 15-10 => 0000 00
PC-Register bits 9-1 => 00 1100 101
PC-Register bit 0 => 0

..............................................

Final branch address => 0000 0000 1100 1010

Example 4: Branch to previous block
address of branch instruction: 0001 0100 1010 0100
address to branch to: 0001 0000 1101 1110
bbaaaaaaaaa : - 1001 011 001101111
resulting address:
PC-Register bits 15-10 => 0001 0}

=>-0001 00
PC-Register bits 9-1 => 00 1101 111
PC-Register bit 0 = : 0

Final branch address => 0001 OQOO 1101 1110
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BRANCH ' Unconditional Branch

Unconditional Branch

Description: Branch to address indicated by bbaaaaaaaaa.
Number of cycles: 1

Processor operations:

ADR => PC

Parameter Stack effect:

no change
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BRANCH Branch if T=0, Pop stack

Branch if T=0, Pop stack

1/]0|(]0{0]J]1|b|b|laja|al|lajajalal|ala

Description:

IfT=0 Performs branch. Pops the Parameter Stack.
IfFT+0 Pops the Parameter Stack. |

Number of cycles: 1

Processor operations:
IfFT=0 N = T Pstack = N ADR => PC

IfT+0 N = T Pstack => N

Parameter Stack effect:
IfT=0 NT--N
IfT#0 . NT--N
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BRANCH Branch if T=0, don’t pop stack

Branch if T=0, don’t pop stack

1({0|l{0|]0}jJO0O|b|b|jajJajalalajala]al]a

Description: |

IfT=0 Performs branch. Pops the Parameter Stack.
IfFT+0 No effect.

Number of cycles: 1

Processor operations:

fT=0 N = T Pstack => N ADR => PC

fT+0 no operation

Parameter Stack effect:

T =0 NT--N
HT+0 NT--NT
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BRANCH NEXT

Branch if I # 0

Description: This branch instruction is referred to as the "Next"
instruction, and is useful for implementing a fast auto-
decrementing loop.

IfFI+0 Branch and decrement the Index Register (I), if I is not equal
to 0.
IfI=0 If 1 contains 0, the Return Stack is popped. Execution

continues with the next sequential instruction.

Number of cycles: 1

Processor operations:
IFI+0 -1 =1 ADR = PC

IfI=0 Rstack => |

Parameter Stack effect:

no change
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7.6 Class 10: ALU Operations

This class of instructions allows the processor to perform arithmetic and logic
operations between the contents of the TOP and NEXT registers. These
operations fall into two general categories: Single step and Multi-step. Multi-
step Math operations are discussed in Chapter 8. The single step operations
category covers those functions which may be completed in one clock cycle:

Addition - Stack manipulations
‘Subtraction Boolean logic operations
1-bit shifting (*2 and /2)

All ALU operatlons are perfonned between the contents of the TOP Register and
another operand which is determined by the instruction. The results of the
operation are loaded into TOP. The ALU function to be performed is encoded
as a ﬂeld in the instruction and is shown in the opcode formats as either "ccec”
or "aaa".

Table 7.3 lists the ALU functions the RTX can perform. "T" indicates the
contents of the TOP Register. "Y" indicates the source for the second ALU
input. For single step math functions, Y is always the NEXT Register. For other
classes of instructions, the source for Y will vary, depending on the instruction.

The "Resulting Carry" column indicates the new value which will be latched into

the processor’s Carry bit as a result of the operation. v T

TABLE 7.3: RTX ALU FUNCTIONS—
ceee aaa | function ’/,/’ﬁgeulting Carry
0010 001 TAND Y no change
0011 I NOR Y no change
0100 010 T ALU carry
0101 - with borrow ALU carry
0110 011 T OR Y no change
0111 T NAND Y no change
1000 100 T + Y ALU carry
1001 : T + Y with carry ALU carry
1010 101 T XOR Y no change
1011 T XNOR Y no change
1100 110 = ALU carry
1101 - with borrow ALU carry

£

T
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7.6.1 Carry Bit

The Carry-out signal from the ALU is bit 0 (CY) of the Configuration Register,
CR, and may be used for performing multi-precision addition and subtraction'
operations. The Configuration Register bit may be directly set or read under
program control. '

All addition and subtraction operations set the carry bit, but only the "add with
carry” (cccc = 1101, see Table 7.3), "subtract with borrow" (cccc = 1101) and
"swapped subtract with borrow" (cccc = 0101) use the value of the carry bit
during calculations. None of the Boolean logic functions use or affect the carry.

Addition operations add the two ALU inputs, then optionally add the Carry-in
bit (CY) to the least significant bit (LSB) of the sum. The Carry-out bit of the
ALU becomes the new value for CY; 1 indicates an overflow out of the most
significant bit (MSB).

Subtraction operations add the minuend (A in the examples below) to the 1’s
complement of the subtrahend (B in the examples), then optionally add the Carry-
in (borrow) bit to the LSB of the sum. The Carry-out of the ALU indicates the
borrow status; CY = 0 means that the result of the subtraction was negative and
that a borrow should be performed from the next most significant stage of the
subtraction.

TABLE 7.4: Examples: Cout = ALU Carry-out

A B Carry-in _ without carry/borrow with carry/borrow
’ A+B Cout A-B Cout A+B Cout A-B Cout
0 O 0 0 0 0 1 0 o0 -1 0
0 o 1 0 0 0 1 1 0 0 1
0 1 0 1 0 -1 0 1 0 2 0
0 1 1 1 0 -1 0 2 0 -1 0
1 0 0 i 0 1 1 1 0 0 1
1 0 1 1 0 1 1 2 0 11
1 1 0 2 0 0 1 2 0 -1 0
1 1 1 2 .0 0 1 3 0 0o 1
-1 0 0 -1 0 -1 1 -1 0 -2 1
-1 0 1 -1 0 -1 1 0 1 -1 1
-1 1 0 0 1 2 1 0 1 -3 1
-1 1 1 0 1 2 1 1 1 -2 1
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7.6.2 Shift Operations

The single step math/logic functions allow the output of the ALU to be shifted
as a 16-bit quantity, or the output of the ALU and the contents of the NEXT
Register to be shifted as a 32-bit quantity in either direction before being loaded
into the TOP (and NEXT) registers.

The shift function is embedded in the inStruction, and is shown in the opcode
formats as "ssss". Each of the shift functions is described in Tables 7.5 and 7.6,
which use the following notations:

Zn

TNn

Cy

C
T15,Tn,TO

N15,Nn,N0O

Bit n of ALU output (15 - 0) _

Bit n of NEXT Register before shift (15-0)

Old value of Carry bit as a result of ALU operation

New value of Carry bit as a result of the shift operation
MSB, typical bit, and LSB of TOP Register after the shift -
operation

MSB, typical bit, and LSB of NEXT Register after the shift
operation

The first 8 shift functions affect only the TOP Register. The remaining shift
functions affect either just the NEXT Register, or the TOP and NEXT registers
combined as a 32-bit quantlty

In the 32-b1t form, the TOP Reglster represents the most significant word of the
32-bit quantity and the NEXT Register the least significant.

138

RTX 2000 Family Programmer’s Reference Manual



TABLE 7.5: 16-BIT SHIFT FUNCTIONS

shift Status | TOP Register | NEXT Register
ssss |name| effect . fof C [TI5| Tn | TP | N15] Nn| NP
0000 no shift operation is performed cYy Z15| Zn | 2P |TN15 | TNn | TNR

0001 | 0< | Sign extend: The sign bit (bit cYy Z215| 215| 215|TN15 | TNn | TND
15) of TOP is propogated to all
bit positions in TOP.

0010 | 2* | Left Shift: TOP is shifted 215 | 214|Zn-1] O |TN15| TNn | TNP
left by 1 bit, with 0 shifted
into the LSB. MSB is shifted
into the carry bit.

0011 |2*c |.Rotate Left: TOP is shifted left| 215 | 214|zn-1]| CY |TN15 | TNn | TNP
by 1 bit, with the carry bit
shifted into the LSB. MSB is
shifted into the carry bit.

0100 |cu2/] Right Shift Out of Carry: TOP is 0 CY |Zn+1] 21 |TN15| TNn | TNG
shifted right by 1 bit, with the
carry bit shifted into the MSB.
The LSB is discarded and 0 is
shifted into the carry bit.

0101 |c2/ | Rotate Right Through Carry: TOP yd') CY |Zn+1| 21 |TN15 | TNn | TNP
is shifted right by 1 bit, with
the carry bit shifted into the
MSB. The LSB is shifted into
the carry bit.

0110 ju2/ | Logical Right Shift: TOP is 0 0 |Zn+1] 21 |TN15 ] TNn | TNP
shifted right by 1 bit, with 0 |

shifted into the MSB and carry
bits. The LSB is discarded.

0111 | 2/ | Arithmetic Right Shift: Bits 215 | 215j2n+1| 21 |TN15 | TNn | TNP
14-1 of TOP are shifted right by
1 bit. Bit 15 remains unchanged
and is shifted into the carry
bit and bit 14. The LSB is
discarded.

1000 |N2* | Left Shift of NEXT: NEXT is CY |215] 2n | 2P |TN14 [TNn-1] O
shifted left by 1 bit, with 0
shifted into the LSB. TOP and
the carry bit are unchanged.

1001 |N2*c| Rotate NEXT Left: NEXT shifts CY | 215] 2n | 2P |TN14 [TNn-1| CY
left 1 bit, with the carry bit
shifted into the LSB. TOP and

the carry bit are unchanged.
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TABLE 7.6: 32-BIT SHIFT FUNCTIONS

shift
ssSs

name

effect

F

tatus
of C

TOP Register

_NEXT Register

T15

Tn

9

N15

Nn

[T)

1010

1011

1100

1101

1110

"M

|p2s

D2*

WDZ*C

cUD2/

cD2/

un2/

32-bit Left Shift: TOP and

NEXT are shifted left 1 bit,

with the MSB of NEXT shifted into
the LSB of TOP, the MSB of TOP
shifted into the carry bit, and

0 shifted into the LSB of NEXT.

32-bit Rotate Left: TOP and NEXT
are shifted left 1 bit, the MSB
of NEXT is shifted into the LSB
of TOP, the carry bit is shifted
into the LSB of NEXT, and the
MSB of TOP is shifted into the
carry bit.

32-bit Right Shift Out of Carry:
TOP and NEXT are shifted right by
1 bit, the carry bit shifts into
the MSB of TOP, the LSB of TOP

is shifted into the MSB of NEXT,
the LSB of NEXT is discarded,

and 0 shifts into the carry bit.

32-bit Rotate Right Through Carry:

TOP and NEXT are shifted right by|

1 bit, the carry bit shifts into

the MSB of TOP, the LSB of TOP is
shifted into the MSB of NEXT, and
LSB of NEXT shifts into the carry

32-bit Logical Right Shift: TOP
and NEXT are shifted right 1 bit
with 0 shifted into MSB of TOP
and the carry bit, the LSB of TOP
is shifted into the MSB of NEXT,
and LSB of NEXT is discarded.

32-bit Arithmetic Right Shift:
Bits 14-0 of TOP and all of NEXT
are shifted right 1 bit; Bit 15
of TOP remains unchanged and is
shifted into the carry bit and
bit 14. The LSB of TOP is shifted
into the MSB of NEXT; the LSB of

NEXT is discarded.

215

215

NG

215

214

214

cy

cYy

215

Zn-1

Zn-1

Zn+1

2n+1

Zn+1

2n+1

TN15

TN15

Z21

Z1

21

21

TN14

TN14

z9

i)

z9

2P

TNn-1

TNn-1

TNN+1

TN+

TNn+1

TNn+1

0

CY |

TN

N1

TN1

N1
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ALU/SHIFT OPERATIONS Shift T

Invert/Shift T

Description:
Ifi=0 Performs shift operation ssss. Original contents of NEXT are
- left intact unless affected by shift operation.

Ifi=1 Inverts TOP, performs shift operation ssss. Original contents
of NEXT are left intact unless affected by shift operation.
Note that if both i and ssss are 0, this is a 1-cycle No
Operation (NOP) instruction.

Number of cycles: 1

Processor operations:
- Ifi=0 shiftfrt] = T

Ifi=1 shiftl*1] = T

Parameter Stack effect:
Ifi=0 T -- shiftT]

Ifi=1 T -- shift[*T]
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ALU/SHIFT OPERATIONS N=>T, Invert/shift -

N=>T, Invert/shift

11010} 1]1{1}ijJOJO0O|R|O]s|s|s]|s

Description: |

ifi=0 Loads contents of TOP with contents of NEXT, then performs
shift operation ssss. Original contents of NEXT are left intact
unless affected by a shift operation. .

Ifi=1 Loads contents of TOP with contents of NEXT, inverting the
value, then performs shift operation ssss. Original contents
of NEXT are left intact unless affected by a shift operation.

Number of cycles: 1

Processor operations:
Ifi=0 shift(N] = T

Ifi=1 shifti*N] = T

Parameter Stack effect:
Ifi=0 N T -- N shiftiN]

Ifi=1 N T -- N shift[*N]
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ALU/SHIFT OPERATIONS T-op-N Shift

T-op-N Shift

Description: Loads TOP with results of ALU operation cccc and shift
operation ssss on TOP and NEXT registers. Original contents
of NEXT are left intact unless affected by shift operation.

Number of cycles: 1

Processor operations:

shift{T-op-Nl . => T

Parameter Stack effect:

NT--N shift[T-op-N]
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ALU/SHIFT OPERATIONS Invert/Shift, Pstack=>N

Invert/Shift, Pstack=>N

10..10000‘i01k'0sss|s|

Description:

Ifi=0 Performs shift operation ssss on TOP and original contents
of NEXT. Pops stack into NEXT.

Ifi=1 Inverts TOP and performs shift operation ssss on TOP and
original contents of NEXT. Pops stack into NEXT.

Number of cycles: 1

' Processor operations:
Ifi=0 Pstack => N  shift(nl = T

Ifi=1 Pstack => N shift[*T)

n
v
-5

Parameter Stack effect:
Ii=0 NT-- shiftrn

Ifi=1 N T -- shift[*71]
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" ALU/SHIFT OP

N=>T, Invert/Shift, Pstack=>N

N=>T, Invert/Shift, Pstack=>N

oj1|1{1|4ijJo0j1T|{R|O]}Ss

Description:
Ifi=0
Ifi=1

Moves NEXT into TOP, performing shift operation ssss.

Pops stack into NEXT.

Moves NEXT into TOP, inverting it, and performing shift
" operation ssss. Pops stack into NEXT.

Number of cycles: » 1

Processor operations:

Ifi=0 shiftiN] => T Pstack => N
Ifi=1 shift[*N] = T Pstack => N
Parameter Stack effect:

Ifi=0 NT -- shiftIN]

Ifi=1 NT -- shift[*N]
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ALU/SHIFT OPERATIONS  T-op-N, Shift, Pstack=>N

T-op-N, Shift, Pstack=>N

1010|c

Description:

Number of cycles:

Processor operations:

shiftiT-op-N] => T

Parameter Stack effect:

Loads TOP with results of ALU operation cccc and
shift operation ssss on TOP and NEXT registers.
Pops stack into NEXT.

Pstack => N

N T -- shiftiT-op-N]
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ALU/SHIFT OPERATIONS T= >N, Invert/Shift

T= >N, Invert/Shift

1010000i'1]o]a0ssss|

Description:
Ifi=0 Copies TOP into NEXT, replacing original contents of NEXT.
Performs shift operation ssss.
Ifi=1 Copies TOP into NEXT, inverting TOP and replacing original
- contents of NEXT. Performs shift operation ssss.
Number of cycles: 1

Processor operations:

Ifi=0 T = N shift[T]

n
v
-

Ifi=1 T = N shift[*T] = T

Parameter Stack effect:
Ifi=0 NT--T shift[T]

Ifi=1 N T -- T shift[*T]
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ALU/SHIFT OPERATIONS T <= >N, Invert/Shift

T< = >N, Invert/Shift

1010I111i|10RJ01ssssJ

Doscriptioh:
Ifi=0 Exchanges the contents of TOP and NEXT, then performs
: shift operation ssss.
Ifi=1 . Exchanges the contents of TOP and NEXT, inverting TOP
(original contents of NEXT) then performs shift operation
SSSS. '
Number of cycles: 1

Processor operations:
Ifi=0 T = N shiftIN] => T

Ifi=1 T = N shift[*N] = T

Parameter Stack effect:
f

I 0 ' NT == T shiftn
Ifi=1

NT -- T shift[*N]
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ALU/SHIFT OPERATIONS T-op-N, T=>N, Shift

T-op-N, T= >N, Shift

110111 0fcjc|c|ec)]1|O0OJR|O]s]|s

Description: Loads TOP with results of ALU operation cccc and shift
operation ssss on TOP and NEXT registers. Loads NEXT
with original contents of TOP.

Number of cycles: 1

Processor operations:

T = N T-op-N => T
Parameter Stack effect:
NT-- T shift[T-op-N]
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" ALU/SHIFT OP N=>Pstack, T= >N, Invert/Shift

N= >Pstack, T= >N, Invert/Shift

1/0]1 o|o olo iI1 1|{r|o]s s’|srs|

Description:

Ifi=0 , Pushes original contents of NEXT onto stack, copies TOP into
NEXT, and performs shift operation ssss.

Ifi=1 ’ Pushes original contents of NEXT onto stack, copies TOP into
NEXT, inverts TOP, and performs shift operation ssss.

Number of cycles: 1

Processor operations:
Ifi=0 N => Pstack T = N shift(tl => T

Ifi=1 N => Pstack T = N ‘shiftr*Ty = T

Parameter Stack effect:
Ifi=0 NT--NT shiftIn

Ifi=1 NT -- NT shift*T]
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ALU/SHIFT OP N=>Pstack, T <= >N, Invert/Shift

N=>DPstack, T < = >N, Invert/Shift

1010111i|11R05sss|

Description:

Ifi=0 Pushes NEXT onto stack, pushes TOP to NEXT, copies
original contents of NEXT to TOP, and performs shift
operation ssss. :

Ifi=1 : Pushes NEXT onto stack, pushes TOP to NEXT, and copies
original contents of NEXT to TOP. Inverts TOP (original
contents of NEXT), and performs shift operation ssss.

Number of cycles: 1

Processor operations:
Ifi=0 N = Pstack T = N shiftiN] = T

Ifi=1 N => Pstack T = N, shift[(*N] => T

Parameter Stack effect:
Ifi=0 NT--NT shiftIN

Ifi=1 “ NT == NT shift[*N]
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ALU/SHIFT OPERATIONS N=>DPstack, T-op-N, Shift

 N=>Pstack, T-op-N, Shift

clclc]1T|1T|R|Ofs|s]|s]|s

Description:

Number of cycles:

Processor operations:

N => Pstack

Parameter Stack effect:

Pushes NEXT onto stack, pushes TOP into NEXT,
loads TOP with results of ALU operation cccc and
shift operation ssss on-original contents of TOP and
NEXT registers..

T => N - shift[T-op-N] => T

NT-=--NT shift[T-op-N]

152

0

RTX 2000 Family Programmer’s Reference Manual



7.7  Enhanced Processor-Specific Operations

Each member of the RTX 2000 Family of Microcontrollers has on-chip
hardware which is specifically designed to support operational requirements
in the field of applications for which that Microcontroller is intended.

Utilization of these microprocessor hardware features to achieve enhanced
performance is possible through use of the product specific instructions for
each microcontroller.
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RTX 2000 Specific Instructions

sy

A
10_11000[_1}'10»:10110

Description: The Unsigned Multiply operation is initiated. The contents
of the TOP and NEXT registers are multiplied, with the 32-bit
result available in the Multiplier output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

T*N => MHR:MLR

Parameter Stack effect:

no effect
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RTX 2000 Specific Instructions - Signed Multiply

Description: The Signed Multiply operation is initiated. The contents of
the TOP and NEXT registers are multiplied, with the 32-bit
result available in the Multiplier output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

T*N => MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Chapter 7 155



RTX 2000 Specific Read Multiplier High Register

MHR@

Description: The middle 16 bits of the Multiplier High Register (MHR)
- are pushed onto the Parameter Stack. The contents of TOP
are pushed into NEXT, but NEXT is not pushed onto the
stack; the contents of NEXT are lost. Interrupts are disabled
during the execution of this instruction.

Number of cycles: 1

Processor operations:

MHR = T ' T = N

Parameter Stack effect:

NT -- T MHR
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RTX 2000 Specific Read Multiplier Low Register

MLR@

Description:: The low 16 bits of the Multiplier Low Register (MLR) are
pushed onto the parameter stack. The contents of TOP are
pushed into NEXT, but NEXT is not pushed onto the stack;
the contents of NEXT are lost. Interrupts are disabled during
the execution of this instruction.

Number of cycles: 1

Processor operations:

MLR = T T => N

Parameter Stack effect:

NT -- T MLR
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RTX 2001A Specific Instructions Increment rx

Increment RX

Description: Increments the contents of RX by one. Incrementing the
contents of the register beyond FFFF Hex results in a wrap
to 0000 Hex.

Number of cycles: 1

Processor operations:

(RX) -> (RX) +'1

Parameter Stack effect:

no change
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RTX 2001A Specific Instructions Decrement RX

Decrement RX

Description: Decrements the contents of RX by one. Decrementing the
contents of the register beyond 0000 Hex results in a wrap
to FFFF Hex.

Number of cycles: 1

Processor operations:

(RX) -> (RX) -1

Parameter Stack effect:

no change
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RTX 2010 Specific Instructions 0=

Description:

If TOP = 0 Change TOP to FFFF (implement Forth 0=).
If TOP #+ 0 Change TOP to 0000 (implement Forth 0=).
Number of cycles: 1

Processor operations:
IfTOP=0 FFFF = T

If TOP # 0 0000 = T

Parameter Stack effect:
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RTX 2010 Specific Clear MAC Accumulaior

- CLEARACC

Description: Clear the MAC Accumulator (MXR, MHR, MLR).
Number of cycles: 1

Processor operations:

0 => MLR 0 => MHR 0 => MXR

Parameter Stack effect:

no change
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RTX 2010‘Specific - Double Shift Left_ Logical

DSLL

Description: Double Shift Left Logical Shift the double word operand
‘ in TOP and NEXT left logically by the 5-bit count stored in -
- the MXR Register. The result is stored in MHR and MLR

Number of cycles: 1

Processor operations:

CDSLL (T:N) => MHR:MLR

‘Parameter Stack effect:

no effect
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RTX 2010 Specific Double Shift Right Arithmetic

DSRA

Description: Double Shift Right Arithmetic Shift the double word
operand in TOP and NEXT right arithmetically by the 5-bit
count stored in the MXR Register. The result is stored in
MHR and MLR. :

Number of cycles: 1

Processor operations:

DSRA (T:N) => MHR:MLR

Parameter Stack efféct:

no effect
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RTX 2010 Specific Double Shift Right Logical

DSRL

Description: Double Shift Right Logical Shift the double word operand
in TOP and NEXT right logically by the 5-bit count stored in
the MXR Register. The result is stored in MHR and MLR.

Number of cycles: 1
Processor operations:

DSRL (T:N) => MHR:MLR

Parameter Stack effect:

no effect
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RTX 2010 Specific Store MAC High Register

MHR!

Description: Store the contents of TOP into the MAC Accumulator MHR.
NEXT is popped into TOP and Pstack is popped into NEXT.

Number of cycles: 1

Processor operations:

T => MHR N = T Pstack => N

. Parameter Stack effect:
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RTX 2010 S[;eciﬁc : Read Multiplier High Register

Description: The middle 16 bits of the MAC register (MHR) are pushed
onto the Parameter Stack. The contents of TOP are pushed
-into NEXT, but NEXT is not pushed onto the stack; the
contents of NEXT are lost. Interrupts are disabled during the
execution of this instruction.

Number of cycles: 1

Processor operations:

MHR = T T = N

Parameter Stack effect:

NT -- T MHR
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RTX 2010 Specific

Description: - Store the contents of TOP into the MAC Accumulator MLR.
NEXT is popped into TOP and Pstack is popped into NEXT.

Number of cycles: 1

Processor operations:

T => MLR N = T Pstack => N

Parameter Stack effect:

MLR --

Instruction Set, Chapter 7 167



RTX 2010 Specific Read Multiplier Low Register

MLR@

_ Description: The low 16 bits of the MAC register (MLR) are pushed onto
the parameter stack. The contents of TOP are pushed into

- NEXT, but NEXT is not pushed onto the stack; the contents

of NEXT are lost. Interrupts are disabled during the

execution of this instruction.

Number of cycles: 1

Processor operations:

MLR = T T = N

Parameter Stack effect:

NT -- T MLR
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RTX 2010 Specific Mixed Sign Multiply Accumulate

MULACM
1o 1)1 |{1]ijojofrR[1]O]1]1]0
Description: The Mixed Mode (signed and unsigned) Multiply

Accumulate operation is initiated. The contents of the TOP
and NEXT registers are multiplied (TOP contains the signed
value and NEXT contains the unsigned value), the 32-bit
result is added to the 48-bit accumulator (MXR, MHR, MLR).
This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

(T*N)+MXR:MHR:MLR => MXR:MHR:MLR

Parameter Stack effect:

no effect
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RTX 2010 Specific | Signed Multiply Accumulate

MULACS

Description: A Signed Multiply Accumulate operation is initiated. The
contents of the TOP and NEXT registers are multiplied, the
32-bit result is added to the 48-bit acumulator (MXR, MHR,
MLR). This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

(T*N)*MXR:MHR:MLR => MXR:MHR:MLR

Parameter Stack effect:

no effect
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RTX 2010 Specific =~ = Unsigned Multiply Accumulate

MULACU
1|lo{1|1]ofojofijJolo|rR|{1]of[1]1]0
Description: The Unigned Multiply Accumulate operation is initiated.

The contents of the TOP and NEXT registers are multiplied,
the 32-bit result is added to the 48-bit accumulator (MXR,
MHR, MLR). This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

(T*N)+MXR:MHR:MLR => MXR:MHR:MLR

Parameter Stack effect:

no effect

Instruction Set, Chapter 7 ‘ 171



RTX 2010 Specific - Mixed Sign Multiply

MULM

Description: - The Mixed Sign Multiply operation is initiated. . The
contents of the TOP and NEXT registers are multiplied, with
the 32-bit result available in the MAC output registers MHR,
MLR. The operand in TOP is assumed to be signed and the
operand in NEXT unsigned. Interrupts are disabled during
the execution of this instruction. This instruction does not
modify the stack. ' ' ‘

Number of c_yclo@s:' ‘ 1

Processor operations:
T™N = MHR:MLR
Parameter Stack effect:

no effect
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RTX 2010 Specific Signed Multiply

Description: The Signed Multiply operation is initiated. The contents of
' - the TOP and NEXT registers are multiplied with the 32-bit
result available in the MAC output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

T*N => MHR:MLR

" Parameter Stack effect:

no effect
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RTX 2010 Specific Signed Multiply And Subtract

Description: The Signed Multiply and Subtract from Accumulator
operation is initiated. The contents of the TOP and NEXT
registers are multiplied, the 32-bit result is subtracted from
the 48-bit accumulator (MXR, MHR, MLR). This instruction
does not modify the stack.

Number of cycles: 1

Processor operations:

MXR:MHR:MLR-(T*N) => MXR:MHR:MLR

Phrameter Stack effect:

no effect
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RTX 2010 Specific Unsigned Multiply

MULU
1{ofl1|1]ojojojij1|o|rR|1]Oof1]1]0
Description: The Unsigned Multiply operation is initiated. The contents

of the TOP and NEXT registers are multiplied, with the 32-bit
result available in the MAC output registers MHR, MLR.
Interrupts are disabled during the execution of this
instruction. This instruction does not modify the stack.

Number of cycles: 1

Processor operations:

T*N => MHR:MLR

Parameter Stack effect:

no effect
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RTX 2010 Specific ~ Read MAC Extension Register

MXR@_"

1fofa|a]rfa|a]ilofo|r]|1]of[o|1]0

Description: -~ Pushes the contents of the 16-bit extension register of the
- MAC output onto the parameter stack.

Number of cycles: 1

Processor operations:
MXR = T J T => N . N => Pstack
Parameter Stack effect:

== MXR
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RTX 2010 Specific Store MAC Extension Register

Description: Stores the contents of TOP into the MAC Accumulator MXR.
NEXT is popped into TOP and the Parameter Stack is popped
into NEXT.

Number of cycles: 1

Processor operations:

T = MXR, N = T pstack => N

Parameter Stack effect:

MXR --
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RTX 2010 Specific ~ Normalize

NORM

Description: _ The Normalize Operation counts the number of leading zeros
, in the double word operand in TOP and NEXT. This count
is stored in MXR. TOP and NEXT are also shifted left
logically by this count to eliminate all leading zeros. The
shifted result is in MHR and MLR. ‘

Number of cycles: 1

Processor operations:

NORM(T:N) => MHR:MLR Count => MXR

Parameter Stack effect:

no effect
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RTX 2010 Specific Shift MAC Register Right

RSACC

Description: This operation shifts the MAC output registers right (MXR -
> MHR, MHR -> MLR, sign fills MXR, contents of MLR
are lost.) This is useful in implementing double precision
multiply operations.

Number of cycles: 1

Processor operations:

MXR => MHR MHR => MLR signfill => MXR

Parameter Stack effect:

no effect
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RTX 2010 Specific Streamed MAC - ASIC/Memory

Description: =~ Streamed MAC between ASIC Bus and Memory is an
instruction which indicates to the processor that the next
instruction is a streamed instruction that will initiate a
streamed MAC between the ASIC bus and memory. See
Section 7.7.1 for detailed information.

Number of cycles: 1

Processor operations:

N/A

Parameter Stack effect:

no effect
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RTX 2010 Specific Streamed MAC - Stack/Memory

SMACS

Description: Streamed MAC between Stack and Memory is an instruction
- which indicates to the processor that the next instruction is
a streamed instruction that will initiate a streamed MAC
between the stack and memory. See Section 7.7.1 for
detailed information.

Number of cycles: 1

Processor operations:

N/A

Parameter Stack effect:

no effect
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7.7.1 Streamed MAC Instructions On The RTX 2010

One of the features of the RTX-2010 is the ability to perform a high speed
(one clock cycle per iteration) multiplication and accumulation of two
streams of data. One stream is a list of data in external memory, and the
other is either a list of data on the parameter stack or a stream of values
input from the ASIC bus. :

smaca is the instruction to initiate a streamed MAC with the ASIC bus and
sMAcs initiates a streamed MAC with list on the Parameter Stack. In general,
the code to implement the algorithm is as follows:

mem_addr count-1 SMACS OF( "“DMA"
mem_addr g-addr SR! count-1 SMACA OF( “DMA"

where:
mem_addr is the address of first data item in memory list
count-1 is the number of items in list
OF( is the instruction to implement streaming
"DMAY is instruction to read sequential items from memory.
g-addr is the ASIC Bus address to be streamed

The "smacA” and "smacs" instructions are used to set the source of one input
data stream, and are part of a special opcode sequence which is used
exclusively in the RTX-2010. These commands initiate a processor state
which affects the operation of the instructions that follow it. The
instructions for streamed MAC must occur in the sequence previously
described. smaca and smacs suppress interrupts so that the or¢ instruction is
guaranteed to follow without interruptions.

The "pma" opcode is an existing RTX instruction that normally reads data
from memory into NEXT, over writing the data in NEXT. During each
cycle, the contents of the memory location addressed by TOP are read into
the NEXT Register. Concurrently, the contents of TOP are incremented by
the value of the five bit literal field of the instruction, to generate the next
memory address to be read. '
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When used following the sMaca or sMacs instructions, the operation of the
"oMa" opcode is modified. In the special processor state that is initiated by
SMACA Or sMAcs, the pMa instructions cause the contents of NEXT to be
multiplied by the contents of a pipeline register from the stack or ASIC Bus,
and added to the 48-bit accumulator. In the same clock cycle, the oma
instruction also performs its normal operation, reading the next data item
from memory into NEXT and auto-incrementing the address in TOP.

The following is an example of a streamed multiply/accumulate operation
between a list of data in memory and another list of data on the stack. The
stack list is assumed to be in another stack area, necessitating the saving and
restoring of a stack pointer.

\ ( mem_addr count-1 stack_addr -- answer )
SPRa MD! SPR! \ save & set stack pointer

SMACS \ set streamed mac instruction execution
OF( . \ set stream count

DMA \ execute streamed MAC DMA
DROP DROP \ eliminate address and last data from stack
"MD@ SPR! \ restore the stack pointer ‘

MLR2 MHRQ MXRQ \ fetch 48-bit accumulated value

The next example performs the same operation, with the exception of the
second argument being a stream of input from the ASIC Bus data. The sMaca
instruction requires the desired ASIC address to be stored in the SR Register.

\ ( mem addr count-1 ‘asic_addr -- answer)
SR! \ set ASIC bus address
SMACA \ set streamed mac instruction execution
OF( \ set stream count
DMA \ execute streamed MAC DMA
DROP DROP \ ‘eliminate address and last data from stack

MLR® MHR® MXR@ \ fetch accumulated value

The opcode for DMA is E842H.
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7.8 Class 11-a : ASIC Bus Access -

This class of instructions manipulates the contents of devices attached to the
ASIC Bus. This includes the RTX internal registers (Index Register,
Configuration Register, Multi-step/Multiply Divide, Square Root, and Program
Counter), On-Chip Peripheral devices (Stack Controllers, Interrupt Controller,
Multiplier, Counters), and external I/O devices such as UARTs or SCSI
controllers. .

The processor is able to directly access 32 ASIC Bus devices/registers. The
specific ASIC Bus address is encoded as a 5-bit field in the instruction (indicated
by "ggggg" in the instruction formats). See Section 7.8.1 for more information
in instructins which use this instruction format. ‘

ASIC Addresses 0 - 17H are used internally by the RTX processor for registers.
Chapter 4 describes the register address assignments. Some of these addresses
perform special functions when referenced with different forms of the ASIC Bus
instructions. Section 7.8.2 describes these special instruction forms.

ASIC Addresses 18 - 31H are provided for access to off-chip ASIC devices.
7.8.1 ASIC Bus Instructions

Instructions which access ASIC Bus locations have the spek:iﬁc lbcation encoded

‘ ~as a 5-bit field in the instruction. This field is indicated by "ggggg" in the

instruction formats. The 5-bit field enables the processor to directly access 32
ASIC Bus devices/registers.

Some of the ASIC Bus instructions perform ALU operations on the data
accessed. These operations are indicated by "cccc” in the instruction formats and
are the same as those described in the "Single-step Math Functions” class.
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ASIC Access G-read, DROP, Invert

" G-read, DROP, Invert

Description:

Ifi=0 Reads and discards data from ASIC address ggggg. Useful
for performing "dataless” I/O accesses, in which an I/0
device needs to be addressed, but no data transfer needs to
take place. See Sectio Jfor limitations on the use of
this opcode. N

Ifi=1 Reads and discards data from ASIC address ggggg, inverts
TOP. See remainder of description above.

Number of cycles: 1

Processor operations:
Ifi=0 T = 1

Ifi=1 * = T

Parameter Stack effect:
Ifi=0 NT -- NT

Ifi=1 NT -- N*T
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ASIC Access N=>Pstack, T= >N, (gggzg)=>T, Invert

N=>Pstack, T= >N, (ggggg)=>T, Invert

1{ol11p1f11]iJo|loirR|[g]a]lalels

Description:

Ifi=0 Pushes NEXT onto stack, TOP into NEXT then reads data
from address ggggg into TOP.

Ifi=1 . Pushes NEXT onto stack TOP int0o NEXT, then reads data.
from address ggggg into TOP, inverting data.

Number of cycies: 1

Processor operations:

n
v
-

Ifi=0 N = Pstack T = N (99999)

> T

Ifi=1 N = Pstack L *(gg999)

Parameter Stack effect:
Ifi=0 NT--NTd

Ifi=1 NT--NT*
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ASIC Access

N= >Pstack, T= >N, T-op-(gzgzs)

N=>DPstack, T=>N, T-op-(ggggg)

1]1]0(1[1

c

chcOORsssss

Description:

‘Number of cycles:

Processor operations:

N => Pstack

Parameter Stack effect:

Pushes NEXT onto stack, TOP into NEXT, then reads
data from ASIC address ggggg and loads TOP with
results of ALU operation cccc on original contents
of TOP and data.

T = N T-op-(gg9ggg) => T

NT--NT T-op-d
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ASIC Access T= > (ggggg), Invert

T=>(ggggg), Invert

1lol1{1}ofolo|if1|o|rR|g)g|lg]|a]s

Description:
Ifi=0 Writes contents of TOP io ASIC address ggggg.
' contents of NEXT are left intact. See Section
limitations on the use of this opcode.
Ifi=1 ~ Writes contents of TOP to ASIC address ggggg. Inverts
original contents of TOP. Original contents of NEXT are left
intact.

Number of cycles: = 1

Processor operations:
Ifi=0 T = (gg999) T =7

Ifi=1 T => (g9g999) *T = T

Parameter Stack effect:

If

-—e

0 ur--'u"r.
1

Ifi

-NT =< N*
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ASIC Access T=>(ggggg), N=>T, Pstack= >N, Invert

T=> (ggggg), N= >T, Pstack= >N, Invert

Description:

Ifi=0 ~ Writes contents of TOP to ASIC address ggggg. Copies
NEXT into TOP. Pops stack into NEXT.

Ifi=1 Writes contents of TOP to ASIC address ggggg. Copies
NEXT into TOP, inverting value. Pops stack into NEXT.

Number of cycles: 1

Processor operations:
Ifi=0 T => (gg9999) N = T Pstack => N

Ifi=1 T => (ggggg) *N = T Pstack => N

Parameter Stack effect:
Ifi=0 , NT--N
i=1

If NT--*N
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ASIC Access ‘ (ggggg)-op-T

Description: Reads data from ASIC address ggggg, and loads
TOP with results of ALU operation cccc on contents
of TOP and data. Original contents of NEXT are left
unchanged.

Number of cycles: 1

Processor operations:

(g99ggg)-op-T => T

Parameter Stack effect:

NT--N d-op-T
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17.8.2 Predefined ASIC Bus Instructions

Some RTX ASIC Bus opcodes are predefined to perform specific functions.
These include "Select Data Page Register”, "Select Code Page Register”,
"Software Interrupt”, and "Remove Software Interrupt". Descriptions of these
opcodes follow.

The Multiply, MAC, and Barrel Shifter are also controlled using predefined
ASIC instructions. See Section 7.7 for descriptions.
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Memory Page Access

X

Select Dati Page Register

1011000{0\/10R0_1101|

n—

Description: Sets DPRSEL Bit to 1, causing all data memory accesses to
be addressed through the Data Page Register.
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Memory Page Access Select Code Page Register

Select Code Page Register

Lifofrfr]ofojofofofofrfo]r]tjofr]

Description: Sets DPRSEL Bit to 0, causing all data memory accesses to
be addressed through the Code Page Register.
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Interrupts ~ Software Interrupt Request

Set SOFTINT

Description: Sets the Software Interrupt Request flip-flop, generating a
Level 13 interrupt to the processor. Due to the time
required by the processor internally to generate and process
the interrupt signal, this instruction should be followed by
two 1-cycle instructions which do not depend on whether or
not the interrupt has been serviced (NOPs, for example).
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Interrupts

Description: ~ Resets Software Interrupt Request flip-flop. The interrupt
service routine for the Software Interrupt (level 13) must
execute this instruction before re-enabling interrrupts or
executing a subroutine return.
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7.9 Class 11b - Short Literals
This class of instructions generates short literals (positive values 0 to 31).

The value of the literal is embedded in the instruction and is shown as "ddddd" .
in the instruction formats. The value represented by "ddddd" is loaded into bits
0-4 of the TOP register; bits 5-15 are set to 0. If the value is inverted by having
the "i" bit set in the instruction, all 16 bits of the value are inverted.

Some of these instructions perform ALU operations using the literal data. These
operations are indicated by "cccc” in the instruction formats and correspond to
Table 7.3.
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Short Literals : d Invert

d Invert
1{ol1|1]1]1{1]ijJoj1|R|d]d|d]|d]|d
Description: '
Ifi = 0 Pushes NEXT onto stack, copies TOP into NEXT, loads the
value ddddd into TOP.
Ifi=1 Pushes NEXT onto stack, copies TOP into NEXT, loads the
‘value ddddd into TOP, and inverts the value.
Number of cycles: 1

- Processor operations:
Ifi=0 N => Pstack - ST = N ddddd => T

Ifi=1 N => Pstack T = N *ddddd = T

Parameter Stack effect:
Ifi=0 N T -- N T ddddd

Ifi=1 . N T --NT *ddddd
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Short Literals | N=>Pstack, T=>N, T-op-d

N=>Pstack, T= >N, T-op-d

1011cccc01Rddddrd|

Description: Pushes NEXT onto stack, copies TOP into NEXT,
then loads TOP with result of ALU operation cccc
between contents of TOP and value ddddd.

Number of cycles: 1

Processor operations:

N => Pstack T = N T-op-ddddd => T

Parameter Stack effect:

NT--NT T-op-ddddd
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Short Literals ‘ d=>T, Invert

d=>T, Invert

|1 o|1 1-|1J1|1 i]1 1|alde d d|d|

Description:

Ifi=0 Loads the value ddddd into TOP. Original contents of NEXT
are left unchanged.

Ifi=1 Loads the value ddddd into TOP, inverting all 16 bits of the
value. Original contents of NEXT are left unchanged.

Number of cycles: 1

Processor operations:
Ifi=0 ddddd = T

Ifi=1 *ddddd = T

Ifi=0 NT--N ddddd

Ifi=1 NT-- N *ddddd
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- Short Literals | | d-op-T

d-opQT

|,1|011cc.cc1‘1Rddd]dd“l

Description: - Loads TOP with results of ALU operation cccc
- between value ddddd and contents of TOP. Original
contents of NEXT are left unchanged.

Number of cycles: 1

Processor operations:

ddddd-op-T => T

Parameter Stack effect:

N T -- N ddddd-op-T
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7.10 Class 12: User Memory Access

This class of instructions performs reads and writes to the User Memory Space.
The User Page Register and User Base Register determine the address of the 32-
word user memory block. '

The address to be accessed within the User Space is encoded as a 5-bit field in
the instruction, and is indicated by "uuuuu” in the descriptions. Note that
"uuuuu” represents the word address of the location to be referenced. For
example, uuuuu = 3 will perform a read or write to word #3 (byte #6) in the
User Space. All User Memory Space accesses read or write a 16-bit value.

The data written to or read from the User location is indicated in the descriptions
as "(u)". .

Some of these instructions perform ALU operations using the memory data.
These operations are indicated by “cccc” in the instruction formats and
correspond to Table 7.3.
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User Memory Access N=>Pstack, (u)=>N, Invert

N=>DPstack, (u)=>N, Invert

Description:
Ifi=0 Pushes NEXT onto stack, then reads data from user location
uuuuu into NEXT.
Ifi=1 Pushes NEXT onto stack, then reads data from user location -
' uuuuu into NEXT. Inverts TOP.
Number of cycles: 2

Processor operations:

Ifi=0 1st cycle: = N => Pstack (u = N
2nd cycle: NOP

Ifi=1 1st cycle: N => Pstack (w = N
2nd cycle: T = *T

Parameter Stack Effect:

Ifi=0 NT==N(@T
Ifi=1 NT=-N(u*
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User Memory Access

(u)=>T, Invert

1(1|ofjof1{1|1]iJo|lo|R|u
| o prsher ' 7o
Description: , A 4
Ifi=0 Reads data from user location uuuuu TOP. Original
contents of, NEXT are left unchanged.
» LTM’L
Ifi=1 Reads data from user loc tion uuuuu ifito TOP, inverting

data. Original contents of NEXT are left unchanged

(

Number of cycles: 2

Processor operations: ¢ gt e

Ifi=0 1st cycle: GN = (w = N
2nd cycle: N = T T = N

Ifi=1 1st cycle: N = T (w = N
2nd cycle: *N = T T = N

Parameter Stack effect:
Ifi=0 U-:—s—umfw% NvNoT = )
Ifi=1 NeT N+ u)-3p A T — M T % { W
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User Memory Access

N=>Pstack, T= >N, T-op-(u)=>T

111]0]0]Jc|cfec|le}]O0]|]0|R|uUuJu]jJu]ul|u

Pushes NEXT onto stack, TOP into NEXT, then loads

Description: s
- ~TOP with result of ALU operation cccc on contents
of TOP and data read from user location uuuuu.
Number of cycles: 2

~Processor operations:
1st cycle: N => Pstack ()

2nd cycle: T => N N-op-T => T

Parameter Stack effect:

‘NT--NT T-op-(u)
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User Memory Access T=>uuuuu, Invert

T= >uuuuu, Invert

[1(1 ofo ﬁLo ol o|n u|u'u|u|u|

Description:

Ifi=0 : Writes the contents of TOP to user location uuuuu. Original
contents of NEXT are left unchanged.

Ifi=1 Writes the contents of TOP to user location uuuuu. Inverts

contents of TOP (after write operation). Original contents of
NEXT are left unchanged. '

Number of cycles: 2

Processor operations:

"Ifi=0 1st cycle: T = uuuw
2nd cycle: T = T

Ifi=1 ist cycles T = uuuw
* 2nd cycle: *T => T

Parameter Stack effect:
Ifti =0 NT--NT

Ifi=1 NT--N*
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User Memory Access

T= >uuuuu, N=>T, Pstack= >N, Invert

t{1fofofrfr1|iJ1|o|R|ujululu]|u

Description:

Ifi=0 Writes contents of TOP to user location uuuuu. Moves
NEXT into TOP. Pops stack into NEXT. :

Ifi=1 Writes contents of TOP to user location uuuuu. Moves
NEXT into TOP, inverting the value. Pops stack into NEXT.

Number of cycles: 2

Processor operations:

Ifi=20 1st cycle: T = uuuuu

2nd cycle: N = T ) Pstack => N
Ifi=1 1st cycle: T => uuuuu

2nd cycle: N o= T Pstack => N

Parameter Stack effect:
Ifi=20 NT--N

Ifi=1 ' NT--*N
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User Memory Access

T-op-(u)=>T

Description: ~ Loads TOP with results of ALU operation cccc on contents
of TOP and data read from user location uuuuu. Original
contents of NEXT are left unchanged.

Number of cycles: 2

Processor operations:
ist cycle: - N = Pstack (w = N

2nd cycle: T-op-N => T Pstack => N

Paraméter Stack effect:

NT--N T-op-(u)
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7.11 Class 13: Long Literals

This class of instructions generates 16-bit literal values. The 16-bit value is
contained in the memory location following the Long Literal instruction. The -
value contained in this location is identified in the descriptions by "D". Long
Literal instructions are the only RTX instructions which occupy two memory
locations. '

Some of these instructions perform ALU dpérations using the literal data. These
operations are indicated by "cccc” and correspond to Table 7.3.
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Long Literals ‘ N=>Pstack, D= >N, Invert

N= >Pstack, D= >N, Invert

Description:

Ifi=0 Pushes NEXT onto stack, loads literal value into NEXT.

Ifi=1 Pushes NEXT onto stack, loads literal value into NEXT,
inverts TOP.

Number of cycles: 2

Processor operations:

Ifi=0 1st cycle: N => Pstack D = N
2nd cycle: NOP

Ifi=1 1st cycle: N => Pstack D = N
2nd cycle: *T = T

Parameter Stack effect:
Ifi=0 NT--NDT

Ifi=1 NT--ND*T
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Long Literals N= >Pstack, T=>N, D=>T, Invert

N=>Pstack, T=>N, D=>T, Invert

Description:

Ifi=0 Pushes NEXT onto stack, TOP into NEXT, then loads literal
value into TOP.

Ifi=1 Pushes NEXT onto stack, TOP into NEXT, then loads literal
value into TOP, inverting the value.

Number of cycles: 2

Processor operations:

Ifi=0 1st cycle: N => Pstack : D => N
2nd cycle: T = N N = T
Ifi=1 1st cycle: N => Pstack D = N
) 2nd cycle: T = _N ‘ *N = T
Parameter Stack effect:
Ifi=0 NT--NTD
Ifi=1 NT--NT*
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Long Literals N=>Pstack, T=>N, T-opD=>T

2

N=>Pstack, T=>N, T-op-D= >T

Description: ‘ Pushes NEXT onto stack, TOP into NEXT, then loads
- TOP with results of ALU operation cccc between
original contents of TOP and literal.

Number of cycles: 2

Processor operations:
ist cycle: N => Pstack D = N

2nd cycle: T = N T-op-N => T

Parameter Stack effect:

NT--NT T-0p-D
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- Long Literals | | D=>T, Invert

D=>T, Invert

'Descripti'on:
Ifi=0 Loads literal value into TOP. Ongmal contents of NEXT are
left unchanged.
Ifi=1 » Loads literal value into TOP, inverting the value. Original
~contents of NEXT are left unchanged.
Number of cycles: 2

Processor operations:

Ifi=0 . 1st cycle: ‘N = Pstack D => N
2nd cycle: N = T = ! Pstack => N
Ifi=1  1st cycle: N => Pstack ‘D = N

-2nd cycle: W= T Pstack => N

Parameter Stack effect:
Ifi=0 ' NT--ND

Ifi=1 ’ » NT--N“'D
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Long Literals m= >T

Description: Loads TOP with result of ALU operation cccc between literal
value D and contents of TOP. Original contents of NEXT are
left unchanged.

Number of cycles: 2

Processor operations:
1st cycle: N => Pstack : D == N

2nd cycle: T-op-N => T Pstack => N

Parameter Stack effect:

M@_«? w T -—— W Top-P
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7.12 Classes 14 and 15: Data Memory Access

These two classes of instruction perform reads and writes to Data Memory
Space. The DPRSEL bit controls which page address register selects the
memory page. '

- The address within the page of the location to be accessed is contained in the
TOP register. For memory reads, the data is moved from memory into the NEXT
register. For memory writes, the data moves from NEXT into memory.

The instruction formats are identical for both word and byte access. The "s" bit
(blt 12) of the instruction dictates the size of the operand (s = 0 for 16-bit word
= 1 for 8-bit byte).

For byte writes to memory, the contents of bits 0-7 of NEXT are written to the
memory location addressed by TOP. For byte reads, the memory data is read
into bits 0-7 of NEXT; bits 8-15 of NEXT are set to 0.

The data read from or written to memory is identified in the descriptions as "m"
Short literals are identified.as "ddddd".~“The memory Iocation addressed by fie
Ccontents of TOP is identified as ‘ -\ T

Some of the instructions may perform ALU operatlons on the data These
operations are identified by either "cccct, or "aaa” in the instruction format, and
correspond to the values in Table 7.3. '\
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- Data Memory Access . N=>T, m=>N, Invert

N=>T, m= >N, Invert

Description:
Ifi=0 Moves NEXT into TOP. Loads memory data contained in the
~ location addressed by TOP into NEXT.
Ifi=1- Moves NEXT into TOP, inverting value. Loads memory data
contained in the location addressed by TOP into NEXT.
Number of cycles: 2

Processor operations:

Ifi=0 1st cycle: N o= T  m o= N
2nd cycle: T =T i

Ifi=1  isteycles N = T m = N
2nd cycle: *T = T o

~ Parameter Stack effect;
Ifi=0 NT mN
i=1

If NT--m*N
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Data Memory Access m=>T, Invert

m=>T, Invert

111s|111i00Rxxxxx

Description:

Ifi=0 Loads memory data into TOP. Ongmal contents of NEXT

‘ are left unchanged. »

Ifi=1 Loads memory data into TOP, inverting data. Original
contents of NEXT are left unchanged.

Number of cycles: 2

Processor operations:

Ifi=0 1st cycle: N = T m = N
2nd cycle: N = T T => N
Ifi=1 1st cycle: N = T m.=> N
2nd cycle: *WN = T T = N

Parameter Stack effect:
Ifi=0 NT--Nm

Ifi=1 NT--N*m
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Data Memory Access

Description: - Loads TOP with results of ALU operation cccc
between memory data and contents of NEXT.
Original contents of NEXT are left unchanged.

Number of cycles: 2

Processor operations:

_1st cycle: N =T m = N
2nd cycle: T => N , T-op-N => T
Parameter Stack effect: A
NT - N W
uwrv-ff“n—m-“é‘pﬁ% '
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Data Memory Access {N=>DPstack}, m=>N

- {N=>Pstack}, m=>N

111]1|s]o0]Oo|[O0O|pPp]O|[T|R|X]}X]|X]|Xx]|X

Description:

Ifp=20 Loads memory data into NEXT. Original contents of TOP
are left unchanged.

Ifp=1 Pushes NEXT onto stack. Loads memory data into NEXT.
Original contents of TOP are left unchanged.

Number of cycles: 2

Processor operations:

Ifp=20 ist cycle: m = N
2nd cycle: - no operation

ifp=1 ist cycle: N => Pstack m o= N
2nd cycle: no operation

Parameter Stack effect:
Ifp=0 NT-mT
Ifp=1 NT-NmT
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Data Memory Access {N=>Pstack}, m=>N, d=>T

{N=>Pstack}, m=>N, d=>T

I111s111p01Rddddd|

Description:

Ifp=20 Loads memory data into NEXT, and short literal value ddddd
into TOP.

Ifp=1 Pushes NEXT onto stack, loads memory data into NEXT, and
short literal value ddddd into TOP.

Number of cycles: -2

Processor operations:

Ifp=0 st cycle: m = N ddddd = T
2nd cycle: no operation

Ifp=1 1st cycle: N = Pstack m = N ddddd = T
2nd cycle: no operation

Parameter Stack effect:
Ifp=20 : N T -- m ddddd

Ifp=1 NT--Nm ddddd
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Data Memory Access

{N=>Pstack}, m=>N, T-op-d=>T

111saaap01Rddddd|

Description:

Ifp=0  Loads memory data into NEXT. Loads TOP with results of
ALU operation aaa between the contents of TOP and short
literal ddddd.

Ifp=1 Pushes NEXT onto stack. Loads memory data into NEXT.
Loads TOP with results of ALU operation aaa between the
contents of TOP and short literal ddddd.

Number of cycles: 2

Processor operations:

Ifp=0 ist cycle: m = N T-op-ddddd => T
2nd cycle: no operation
Ifp=1 1st cycle: N => Pstack m = N T-op-ddddd => T-1

2nd cycle: no operation

Parameter Stack effect:
Ifp=20
Ifp=1
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Data Memory Access

N=>(T), N=>T, Invert, Pstack=>N

Description:

Ifi=0 \ Writes data in NEXT to location addressed by TOP. Copies
NEXT into TOP, pops stack into NEXT.

Ifi=1 Writes data in NEXT to location addressed by TOP. Copies
NEXT into TOP, inverting contents, then pops stack into
NEXT.

Number of cycles: 2

Processor operations:

IfFi =0 st cycle: N = (D N = T Pstack = N
2nd cycle: T = T

Ifi=1 1st cycle: N = (D N = T Pstack => N
2nd cycle: *T => T

Parameter Stack effect:
Ifi=0 : NT--N

Ifi=1 NT--*N
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~Data Memory 'Acces_’s - N=>(T), Pstack=>N,T, In‘vei't"

N—>GLBM&->NTHMM

[1]1]1 |1|1 1] o.y_a x x’x'xrxly

Dcscription: '
Ifi=0  Writes contents of NEXT to locatlon addressed by TOP.
' Pops new values mto TOP and NEXT.
Ifi=1 Writes contents of NEXT to location addressed by TOP.
v Pops new values into TOP and NEXT. Invetts new contents
of TOP
Numbér of cycles: 1 2

~ Processor operations:

Ifi =0  1st cycle: N (T N = Pstack => N

T
2nd cycle: N o= T Pstack => N
-Ifi =1 1st cycle: N B (T ‘N -=>. T  Pstack = N

2nd cycle: W = T Pstack => N
:Parameter Stack effect:
Ifi=0 SNT--s

Fi=1  sui--ws
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N-op-"
Data Memory Access A=op=N=>T, Pstack=>N

M ~og-i"
m=op-N=>T, Pstack=>N

111scccc10Rxxx_xx|

- Description: Loads TOP with results of ALU operation cccc between
memory data and contents of N. Pops stack into N.

Number of cycles: 2

Processor operations:
1st cycle: - N = T “m => N

2nd cycle: T-op-N => T Pstack => N

Parameter Stack effect:
N T — m-op-N— W -2 Ig -m
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Data Memory Access N=>(T), {Pstack= >N}

N=>(T), {Pstack= >N}

11111]sjojofo|pl1|[1T|R}IXxX]IXx|Xx]|x]X

Description:
Ifp=20 Writes contents of NEXT to memory location addressed by
' TOP. Original contents of TOP (address) are left unchanged.
Ifp=1 Writes contents of NEXT to memory location addressed by
TOP. Original contents of TOP (address) are left unchanged.
Stack is popped into NEXT.
Number of cycles: 2

Processor operations:

Ifp =0 1st cycle: N = (T)
2nd cycle: no operation

Ifp=1 |1st cycle: N = (T) Pstack => W
2nd cycle: no operation ‘

Parameter Stack effect:

Ifp=290 NT-==NT

Ifp=1 | NT--T
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Data Memory Access ~N=>(T), d=>T, {Pstack=>N}

N=>(T), d=>T, {Pstack= >N}

111s111p11Rdd|ddd|

Description:

Ifp=0 Writes contents of NEXT to location addressed by TOP.
Loads short literal ddddd into TOP. :

Ifp=1 Writes contents of NEXT to location addressed by TOP.
Loads short literal ddddd into TOP. Pops stack into NEXT.

Number of cycles: 2

Processor operations:

Ifp=0 1st cycle: N = (D ddddd = T
2nd cycle: no operation

Ifp=1 |1st cycle: N = (T) Pstack => N ddddd => T
2nd cycle: no operation

Parameter Stack effect:
Ifp=0 N T -- N ddddd

Ifp=1 N T -- ddddd
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Tof~ Tor

Data Memory Access \ N=>(T), &op-FT=>T

N=>(T), dmL'l;=>T

111]|sjalalajpl1i{1|R|d]Jd]jdjd}d

Description:

I p=0 Writes contents of NEXT to location addressed by TOP.
Loads TOP with results of ALU operation aaa between short
literal ddddd and contents of TOP.

Ifp=1 Writes contents of NEXT to location addressed by TOP.
Loads TOP with results of ALU operation aaa between short
literal ddddd and contents of TOP. Pops stack into NEXT.

Number of cycles: 2

Processor operations:

Ifp=20

Ifp=1

Parameter Stack effects:

ist eycle: N = (T) ddddd-op-T => T

2nd cycle: no operation

ist cycle: N = (T) Pstack => N ddddd-op-T => T
2nd cycle: no operation )

\_y,ﬂv{ﬁ(dﬂ(d{

Ifp=0 NT-- N gddddzop:T g ]
Ifp=1 NT - dddddeop T &
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7.13 Undefined opcodes

The following bit patterns are reserved for future use and should not be used for
opcodes:

User Space:

Long Literal:

I1101xxxxx1xxxxxx
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CHAPTER 8

STEP MATH FUNCTIONS
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8  Step Math Functions

The Harris RTX 2000 Series Microcontrollers all include a unique and powerful
set of instructions known as Step Math Instructions. These instructions allow
- the RTX microcontrollers to perform certain math operatlons much more qu1ck1y
~ than would be poss1b1e without them.

78.1 | Introduction

Step math operations include signed and unsigned multiplication, unsigned
division, integer square root, bit reversal and cyclic redundancy checks. They
also expand the RTX processors’ ability to perform logical rotation operations.

In order to achieve this increase in efficiency, the processor operates differently
than when performing ordinary math. To explain this in simplified terms,
-intuitive mnemvonics will be used here because of the number of operations that
“can happen in a single cycle. Forth descriptions are used only where doing so
clarifies the operation. In general, it is best to consider step math operatlons as
Forth pnmmves

8.1.1 Step Math Using The RTX 2000

- All of the step math functions listed above can be performed on
"the RTX 2000 Microcontroller. However, because of the
hardware multiplier which is incorporated on-chip with this
product, a special set of single cycle instructions is used to
perform multiplication in the place of step math operations. See
Section 6.3.1 for more detailed information about the on-chip
hardware multiplier.
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812 Step Math Using The RTX 2001A

'On the RTX 2001A step math operatxons are used to perform all
of the functions hsted in the Introductlon

813 Step Math Usmg The RTX 2010

- All of the step math funcnons llsted can be performed on the
RTX 2010 Microcontroller. - However, because this product
provides the hardware Multiplier/Accumulator, Barrel Shifter, and

“other Floating Point Support on-chip, spec1al instructions are used

-to" perform some math operations in place of step math
operations. See Section 6.3.2 for more detailed information about
the on-chip hardware math support for the RTX 2010. '

. 226 : ' " RTX 2000 Family Programmer's Referénce Manual



8.2 Data Flow in Step Math

Figure 8.1 shows the data flow diagram for all step math operations. Even
though the hardware to perform step math is always present, much of it is
inactive when not performing step math and therefore it is not emphasized outside
of discussions on step math.

Note that the- ALU is folloWed by a shifter. This allows an ALU operation and
~a shift to be performed in a single cycle without passing the data through the
ALU twice.

Step math operations also use two special purpose registers (MD and SR) and one |
pseudo register (SQ) in their operations. There are also dedicated shift blocks
and logical OR blocks used with the MD and SR registers so that data in them
does not have to pass through the ALU to be updated.

'Ihe result of this architecture is that the equivalent of five ALU operations can
be performed in a single cycle, and the cycles required to transfer data for these
ALU operations are eliminated also.
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FIGURE 8.1: RTX STEP MATH DATA FLOW DIAGRAM
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83 17-Bit Math

- cycle, though these values are not necessarily true carry bits. When this is the

W16 and W17. In working with step math it is essential to remember that CY
and CCY do nOt exactly indicate the contents of CRO and CRI~\y iyt 7 '

/f’

Many of the step math operations treat the TOP register as a 17-bit wide register
to accomplish their tasks. Correspondingly, the ALU is extended to 17 bits for
these operations by the 17th-bit adder. Since the 17-bit result is sometimes
shifted left one bit, an 18th bit is also needed to store the shifted bit. The 17th
and 18th bits are held in bits zero and one of the Configuration Register (CR),
and consequently change only at the end of a cycle on the rising edge. of PCLK.

}'Iv'h‘ese' bits are sometimes referred to in the data sheets as the carry (CY) and .
complex carry (CCY) bits, respectively, but in the context of step math, this may
be misleading nomenclature. In this case, these bits are more accurately thought

of as'an extens1on of the TOP reg1ster and will be referred to here only as CRO
and CR1.

There are"valuesv referred to as CY and CCY m other sections in this manual,
which under certain conditions are clocked into CRO and CR1 at the end of a

case, CRO and CR1 may contain the CY _or CCY result of the previous math or
step math instruction. In this chaptemes referred to as

Note that CRO only changes when performing an ALU or shift operation, and
CR1 only changes during step math operations that include an arithmetic ALU

operation. Also note that CRO and CR1 are sometimes referred to as CQ and'_

CCQ respectlvely, in other sections of this manual.
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8.'4 " The Step Math Instructlon Format

- All step math operatlons ‘have the same fonnat, Wthh is similar to that of :

ordinary math operations. The op code for step | math instructions is divided into

groups of micro opcodes, each of which has a specific effect on the instruction.
‘The general format for step math instructions is shown in Figure 8.2

8| 1I°f| o] [elef-lofvlafufefelefs]

| < - >|<T>|<——--—->L I P

>|<[>|

"L signed/Unsigned
Micro Opcode
Field

Uncondltional shift
Micro Opcode Field

Conditional Behavior
Micro Opcode Field

Register Selection
Micro Opcode Field

— ALU Micro Opcode Fleld'

"~ FIGURE 8.2: STEP MATH INSTRUCTION FORMAT _

As is evident from the step math instruction format, there are ten bits, not
including the Return bit, that determine the step math operation, which implies.
- that there are 1024 possible step math operations. While this is true, not all of
- these operatlons are useful
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84.1 ALU Micro Opcode Field (aaa)
- Step math operations usually include a conditional ALU operation between the

- math operations may also include an ALU No-Operation or a conditional ALU

S 001 | YES = 1 => TOP and REG --> TOP

- 010 | YES = 1 => TOP - REG --> TOP
’ 011 | YES = 1 => TOP or REG --> TOP

100 | YES = 1 => TOP + REG --> TOP

101 | YES = 1 => TOP xor REG —--> TOP

110 | YEs = 1 => REG - TOP --> TOP

111 | yEs =1 => - REG --> TOP

TOP register and another register, either the MD or the SQ pseudo register. Step

load from the MD or SQ register.

TABLE 8.1: STEP MATH ALU FUNCTIONS

aaa Function

000 No ALU operation

Whether the conditional ALU operation occurs depends on a pseudo variable,
called "YES". If YES is true (1), the conditional ALU operation will be
performed; if YES is false (0), the contents of TOP will be preserved, though in
either case the contents of TOP may be shifted by an unconditional shift
operation. The procedure for determining YES will be explained shortly.

The 18-bit result of the conditional ALU operation, as determined by YES, results
in a value called "W," as shown in Figure 8.1. This value is then shifted to
determine the value shifted into CR1, CRO,.TOP_and NEXT. If the ALU
operation is not arithmetic (i.e. + or -),(W17 and W16 are the value stored in CR1"

- \ e ]
and CRO respectively. s Tho 7
) pe d ("\— M ‘*\AM\-‘C w:,:@mmg AW‘”\TJ% (D ‘
Conditional ALU operations during step math are summarized . References
to "REG" indicate the MD or the SQ register as determined by the|"r" bit (bit 8), \

as described in Section 8.4.2 and shown in Table 8.2.

P n T(’]\\W‘\Q %
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8.4.2 Registér Selection Micro Opcode Field (r)

The register selecuon micro opcode ﬁeld (bit 8) determines whether the mput to
the ALU operation will be the MD or the SQ register. If r = 0, the input will be
the MD register; if r = 1 the input will be: the SQ register.

The SQ register is actually a pseudo reglster. there is not a unique re‘gister"
associated with it. When reading the SQ register, the value obtained is the
contents of the MD register shifted left one bitk'and then logically OR’ed with the :
contents of the SR register. Jeve o Hed i ’," - B

Also, the most significant bit of MD (bit 15) is fed into the 17th-bit adder. As
we shall see, this allows the RTX processors to calculate the square root of an
integer without using Newton’s method. Also, writing data to the SQ register
(ASIC Bus address 5) has the effect of multiplying the data by 256 and placing
it into the MD register. Applications for this procedure is useful 1nclude
.calculation of some cyclic redundancy checks.

.The "r" bit has another function in step math. ' If r = 1, i.e. the SQ register is

selected, the data in MD and SR will be modified at the end of the cycle. The

data in MD will canditienally be replaced with MD loglcally OR’ed thh the data
~ in SR, and the data in SR W1 be shifted right one bit. &— :

P e NP

The condmon that determines Whether this happens is the same condition that

determines whether an ALU operation will be performed (YES). This behavnor Y g \ ‘
is useful in both square root and bit reversal operations. . ) Y
. : : nv: 19,
The behavior of MD and SR-as determined by " is summarized in Table 8.2. e c}u{ #g |
. 3 S s 7 /
. Y 3 !
TABLE 8.2: MD AND SR OPERATION 0 W

. = @ I~

r | YES | M SR TOP : 3 AR
(X

0 1]o MD SR TOP (shift) . 157

o |1 MD SR TOP (alu op) MD (shift) 780 NN

1 ]o MD SR / 2 | ToP (shift) e ,\HU‘

1 1 MD or SR SR / 2 TOP (alu op) SQ (shift): . o ()\\

» o0 e

14 (‘\\ WO/.
o) V {L A
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843 Conditional Behavior Micro Opcode Field (yy)

The conditional behavior micro opcode field (yy, bits 6 and 7) determines the
value of the pseudo variable "YES "

In general, YES is detcrmmed by the logical combination of one or more bits in
registers or by the carry out bit from the 17-bit ALU operation. The bits involved
are the carry out bit :CJEG), bits zero and three of the opcode (Instruction Register
bits IR0 and IR3), CR b;t\zero of the TOP Register (T0), and bit zero of the
NEXT Register (N@). Th— _

e
e e,

Another factor that may affect the result is whether the ALU 6peration is
arithmetic or logical. The behavior of YES is summarized in Table 8.3.

TABLE 8.3: BEHAVIOR OF YES
Yy Yﬁs : ‘ ) ,/; K/Jt‘ {

00 IF ARITHﬂBTIC THEN égg?jgg;; IR0

01 (IF ARITHMETIC THEN 6 ELSE IRO) or CRl
10 ) IF IR3 = 0 THEN TO ELSE N@
11 TO xor N@ ’

So far, little has been said about the carry out bits, C15 and C16. These are
outputs of the 16-b1t ALU and the 17th-bit adder

‘When addition is performed, the carry bits are set if the result of the addition is
too large to place in the available number of bits. When subtraction is performed,
‘however, the carry bit represents an inverted borrow bit. In this. case, the carry
bit i is cleared if the result of the subtraction is negative.

In step math, the carry bits are used primarily in operations that involve a
conditional subtraction, namely division and square roots. In these cases, the
carry bit is set if the subtraction was successful, which causes the result of the
subtraction to replace the original value in TOP. Both of these cases also shift
the result left one bit, which is why an extra bit (CR1) is required, since it always
contains the 17th bit of the result of the most recent anthmeuc step math
operation.
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84.4 Subrohtine Return Micro O'pCOde’ Field (R) |

The operation of the subroutme return micro opcode field (bxt 5) is exactly the '
same as for other RTX instructions. :

If thls bit equals one, a subroutine return is executed along with the instruction.
If it equals zero, the next sequentlal instruction is executed
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845 Uncondltlonal Shlft MlCl'O Opcode Fleld (sss)

Every step math operatlon may mclude an uncondmonal shlft operatxon, (blts 1,
2, and 3) which is performed on W. Since the shift is performed in a separate
section from the ALU the shift may occur in the same cycle as the ALU

operation.

Shift operations occurring during‘step méth differ from thosé occutﬁng during

ordinary math operations. In particular, the sources of carry in bltS to the shifts

= may be dlfferent, and may come from YES and CRl

‘ 'Shlfts may operate on TOP NEXT or both. The various shxﬁ operations are

summanzed w1th Forth mnemonics in Table 8.4.

' TABLE 8.4: STEP MATH SHIFT OPERATIONS

sss | NAME CR1 ~CRO T15. 'Th TO N15 Nn . N@
000 NONE W17 W16 W15  Wn wo N15 Nn ‘N@
001 | 2%’ W16 W15 Wl4 Wn-l1. YES N15 Nn  NO
010 c2/' | W17 W17 W16 Wn+l Wl N15 Nnm NO@
011 2/ Wwl7 - W17 = YES Wn+l Wl N15 Nn NG
100 | N2*’. W17 W16 W15 wWn - ‘WO . Nl4 Nn-1 YES
.101 | D2*’ ‘W16~ W15 ~Wl4 wWn-1 N15 N14 Nn-1 YES
110 | cp2/’ Wi7 - W17 W16 Wn+l Wl WO © Nn+l N1
111 D2/’ - W17 © W17 YES Wn+l Wl. WO Nn+l N1

Note that. bits

WO through W17 are the result of the conditional

ALU operation as determined by YES

3

‘ 'I'here are several 1mportant exceptlons to Table 8. 4 ‘First, the value clocked mto
CR1 for opcode A057 (hex) is W17 instead of W16 as indicated by the table. -
The second special case occurs when the shift operation is ¢D2/’ and the "S" bit

(bit zero of the opcode) is 1, as it is in the case of signed multiply step

instructions. For

Cffer’from W16.

€se 1nstruchons, the value of the bit shifted mto T15 may

Siep Math Funé_tiom, qhapter 8

235



' 8.4.6 Signed/Unsigned Micro Opcode Field (S)

The signed/unsigned micro opcode field (bit 0) has a double purpose. FirstMwit

determines whether right shifts and additions are treated as signed or unsigned -

during multiply steps; and second, it is used with yy = 01 to allow manual control

of conditional logical ALU operations. This allows unconditional 17-bit shifts,

for example. When used with arithmetic ALU operations, the "S" bit affects the
: mputs to-the 17th-bit adder. ‘ _

If S 0 (unmgned), the adder operates on CRO and a zero bit. This is
because the zero is treated as the 17th bit of the MD reglster Since MD
is considered to be unmgned its 17th bit is always a zero. _

IfS=1 (s1gned), the adder will operate on CRO and MDI5. In this
case, the sign bit of MD is extended into its 17th bit. If the operation is
subtraction, one of the inputs to the adder will be inverted, as will be
discussed below. The "S" bit also affects right shifts during signed -
.muluphes, to determme the value shifted into TOP ;
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. 8.5  Operation of the 17th-Bit Adder

The 17th-bit adder is an extensmn of the ALU for addmon and subtraction
operations. It can be used for subtraction as well as addition because its mputs
may be inverted depending on the operation.

When performing addition, the carry out indicates that the result is negative; or
has overflowed, as is the case with the ALU.

When performing subtraction, the carry indicates an inverted borrow, i.e. a cany
out indicates that the subtraction of the 17th bit did not require a borrow, and that
the result is non-negative. This is also the same as a carry out during subtraction
for the ALU.

The operahon of the 17th-b1t adder is summarized in Table 8.5.

TABLE 8.5: 17th-BIT ADDER OPERATION

(=]
[
2]
-
~N
Q
o

PP POOOO
n—-n—-oo»—-p—-o.o
. Héwowowo
HQOHOHHO
PR PRPOFRLOOO
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8.6 Interrupting Step Math Operations

In general step math operations may be interrupted as long as the interrupt
handlers are well behaved; i.e. they save and restore any shared resources they
may use.. This is. in agreement with good interrupt handler design for any
processor. o .

The shared resources that affect step math operauons are CR bits 0 and 1, MD :
and SR. Any handler that affects these should make sure they are in the same
state upon returning from the interrupt that they were in when the interrupt
occurred. ,

One exceptlon is the signed step multlply operation. If it is interrupted, there is |

prevent the last step (which is not streamed) from bemg 1nterrupted
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87 - Some Useful Opcodes

It may help to look at some specific step math operations to get a feel for how
they are used before considering specific cases. Table 8.6 provides a list of
useful step math opcodes with their Forth mnemonics and a brief description.
- The following sections describe these operations in more detail. -

TABLE 8.6: SOME USEFUL STEP MATH, OPCODES

OPCODE FORTH DESCRIPTION

A012 2%r, 17 Bit left shift

AQ9E RDR Rotate TOP:NEXT right

A096 RTR Rotate TOP right

A89D *ro Signed multiply steps 1-15

49D xn Signed multiply step 16

A89C g’ Unsigned multiply steps 1-16
A49C gxn Mixed sign multiply step 16
A894 BU*’ Byte unsigned multiply steps 1-8
A494 BU*» Byte mixed sign multiply step. 8
A41A u/1’ Unsigned divide step -1

A45A u/’ Unsigned divide steps 2-15

A458 u/n Un'signed divide step 16

A418 u/1n» Alternate unsigned divide step 16
Ad412 BU/’ Byte unsigned divide steps 1-8
A51a | s1’ Square root step 1

A55A - Square root steps 2-15

A558 s» Square root step 16-

A512 BS1’/ Byte Square root step 1

A552 BS’ Byte square root steps 2-8
A196 R’ Bit réversal step

AADE c’ CRC step )
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8.8  Step Multiplication

In applications in which multiplication is needed, the RTX 2001 A Microcontroller
uses the step multiplication operations which are described in the following
sections. These step math multiplication operations would not normally be
performed on the RTX 2000 Microcontroller due to the increased speed available
through its on-chip hardware multiplier. v

8.8.1 Signed Step Multiplication

The primitive signed step multiplication operation operates on two signed
numbers. One of these numbers, the multiplier, is initially in NEXT, and the
other, the multiplicand, is in the MD register. The product is a signed, double
precrsron number on the stack

Pnor to performmg 51gned step mulnpllcatlon both CRO and CR1 should be
initialized to zeros and TOP should be initialized to zero. TOP may optionally
be initialized to a signed number which will be added to the product.

If step signed multiplication is interrupted, the result may be incorrect.
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8.8.2 Signed Step Multiplication Op Codes

*r

Signed Multiplication Steps 1 Through 15

A89D = 1010 1000 1001 1101

aaar = 1000 ==> ALU OP = TOP + MD --> TOP
yy = 10 ==> YES = N@

‘sssS = 1101 ==> shift = cD2/’ signed

If N@ =

TOP + MD --> TOP
' TOP:NEXT / 2 ==> TOP:NEXT

*0
Signed Multiplication Step 1

. A49D = 1010 0100 1001 1101
aaar = 0100 -
yy = 10 - - =
sssS = 1101 =
If NO =

TOP - MD --> TOP
TOP:NEXT / 2 --> TOP:NEXT

TOP - MD --> TOP

ALU OP =
YES = N@
shift =

cD2/’ signed

This step differs from *’ in that MD is conditionally subtracted from TOP
instead of added. This is because the value originally in NEXT is in
two’s complement form and as such the most significant bit represents a
negative multiple of a power of 2, i.e. 25,

'8.8.3 Signed Step Multiplication Example Program

HEX

:M* (nn--4d)
CR@ DUP 2* 0< 10 AND OR >R
CR@ 10 OR CR!
MD!
0
0 +
PYL
*7 k7 *7 kP k! k7 *7 *r
*r *7 *x7 k! *r *7 Xkt *xn

R> CR! ;

P A A

Save state of int disable bit
Disable’ interrupts

.Set up MD

Set up TOP
Clear CRO
Clear CR1

Perform the multlplication

Restore int disable bit’

Step Math Fanctbons,(%@apter 8
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884 Mixed Sign Multiplication Type A

Type A mixed sign multiplication is similar to signed multiplication except that
the value ongma]ly in NEXT is treated as a 16-bit unsigned integer. Because of
this, the last step is the same as the ﬁrst 15 steps, which are the same as for =
signed multiplication.

. This type of multlphcatlon is useful for calculatmg the partlal product of a'
~ multiple precision multlphcatlon

Because all the multiplication steps are the same, the .operation can be streamed‘ -
to dlsable interrupts, which reduces the overhead for this type of multiplication.

._8.'8.5 Type A Mlxed Sign Multiplication Example Program:

;MA*(un—-d)“

MD! \ Set up MD

0 \ Set up TOP

0+ \' Clear CRO -

S2%! -\ Clear CR1 :
F-OF( ** ; \ Perform the multiplication.
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8.8.6 Unsigned Multiplication

- Unsigned multiplication is similar to signed multiplication except that the
multiplier and mult1p11cand are both treated as unsigned 16-bit values. Also, 8-bit
unsigned multiplication is supported. This allows a faster multlphcauon in the

“event the multlpher and multiplicand are both 8-bit values.

~ Since the mult1phcand (MD) is always positive in unsigned mull:lphcatlon CRO
is added to a zero bit instead of the most significant bit of MD in the the 17th-bit
adder. Otherwise unsigned multiplication is similar to signed multiplication.

8.8.7 | Unsigned 'Multiplication Op Codes

Ll

Unsigned Mmltiplieation stop- 1 Throuqh 16
A89C = 1010 1000 1001 1100 : ' )
TOP + MD --> TOP

aaar = 1000 ==> ALU OP =

yy = : 10 : ==>"YES = N@

sssS = 1100 ==> shift = cD2/’ unsigned
If NG =

TOP + MD -——> TOP
TOP:NEXT / 2 --> TOP:NEXT

au-' : :
8-Bit Unsigned nultiplication steps through 8

A894.'= 1010 1000 1001 0100 . i -

aaar = 1000 ==> ALU OP = TOP + MD --> TOP
yy. = 10 ==> YES =10 . )
sssS = .. 0100 ==> shift = c2/’ unsigned

If =1

TOP + MD --> TOP
TOP / 2 -=> TOP
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8.8.8 Unsigned Multiplication Example Program:

: UM* (uu --du )

MD! 3 \ Set up MD

0 : i \ Set up TOP

0 + \ Cléar CRO

2% \ Clear CR1 . .

UX? U*r Uxs Ux?r U’ Uxr Ukt Uk’ \ Perform the multiplication

Ux’ U*I U*I U*' U*l U*I‘U*I U*l H

8.8.9 8-Bit Unsigned Multiplication Example Program:

: BUM* ( bu bu == u )

sQ! \ Set up multiplicand

0 + ) \ Clear CRO-

2%r 2/ o \ Clear CR1

8U*’ 8U*’ 8U*’ 8UX’ : \ Perform the multiplication

BU*’ 8U*’ BU*’ BU*’ ;
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8 8 10 Mixed Slgn Multlpllcatlon Type B

Type B mlxed s1gn multlphcatlon is similar to un31gned multiplication except that
the value originally in NEXT is treated as a 16-bit signed integer. Because of
this, the last step is different (i.e. MD is subtracted from instead of added to TOP)
from the first 15 steps, which are the same as for uns1gned multiplication. This
is for the same reason that a dlfferent step is required in signed multiplication.

This - type of mult.lpllcatlon is useful for calculating the partial product of a
multiple precxsnon multlphcatlon, and is also supported for 8-bit operands.

8.8.11 Mixed Sign Multiplication Type B Op Codes

Uk
-Unliqned Mnltiplication Step 16

A49C = 1010 0100 1001 1100 .

aaar = 0100 ==> ALU OP = TOP = MD =-> TOP
yy = 10 ==> YES = N@ '

sssS = 1100 ==> shift. = cD2/’ unsigned
IEND =1 ‘

TOP - MD --> TOP
. TOP:NEXT / 2 --> TOP:NEXT

BU*"
8-Bit Unsiqned Multiplication Step 8

A494 = 1010 0100 1001 0100 .

aaar = 0100 ==> ALU OP = TOP - MD --> TOP .
yy = 10 ==> YES =T9 )
sssS = 0100 ==> shift = c2/’ unsigned
IfT =1

TOP --MD --> TOP
° TOP / 2 --> TOP
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8.8.12 Type B Mixed Sign Multiplication Example Programs:

: MB¥ (nu - d )

~MD! . ) \ Set up MD
0 ) i "7\ Set up TOP
0 + - ’ . .\ Clear CRO
2%/ ) . \ Clear CR1
U*? U*r U’ U*? U*r U’ Uxr Uy’ . \ Perform the multiplication

Ukt Ukr Ukt Uk Ukr Ukr Uk Uke :

8.8.13 8-Bit Unsigned Multiplication Example Program:

: BMB* ( b bu == n )

sQ! . '\ Set up multiplicand

255 AND o : \ Make 8-bit negative numbers .
0 + . \ Clear CRO

2%r 2/ - \ Clear CR1l L

. BU*’ 8U*’ 8UX’ BUX’ : . \ Perform the multiplication
8U*’ 8U*’ 8U*’ 8U*" ; . . :
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- 89 Step Dmsnon

Step d1v1s10n is performed in 16 steps usmg long d1v1s1on and sxgned division is
- not supported A . : :

v‘ A 32-bit d1v1dend in TOP and NEXT is divided by a 16-bit d1v1sor in MD
leaving a 16-bit remainder in TOP and a 16-bit quotient in NEXT.

Because the quotlent is limited to 16 bltS, not all dividends and divisors yield a
quotient small enough to be represented. In these cases, the result is invalid. The
only way to check the validity of a result is to multiply the quotient by the
divisor and add the remainder. Also, division by zero yields an invalid result.

Two versions of the division program follow. The standard version (see Section
8.9.1) tests the value of CR1 for steps 2 through 16. The alternate version (see
Section 8.9.2) does not.

It can be proven that CR1 will always be zero for any division that yields a valid
result, so the standard and alternate versions both work the same as long as the
result is valid. Inthe event the result is invalid, however, their results may differ.

There is also an 8-bit version of step division, which is faster than the 16-bit
version. In the 8-bit version, a 16 bit unsigned number in TOP is divided by an
8-bit unsigned number in MD, leaving an 8-bit result in TOP. The same
restrictions that apply to 16-bit division also apply to 8-bit division.
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891 Step Division Opcodes
w1

Unsigned Divide step 1
~ A41A = 1010 0100 0001 1010

aaar = 0100 ==> ALU OP = TOP - MD --> TOP
Yy = 00 © ==>YES = = Cl6

‘'sssS = 1010 ==> shift = D2*’ unsigned

If C16 = 1 ' - ( TOP - MD >= 0 )

TOP - MD ~--> TOP
- TOP:NEXT * 2 --> TOP: NEXT

YES --> N@

v/’
Unsigned Divide Steps 2 through 15

A45A = 1010 0100 0101 1010

aaar = 0100 ==> ALU OP = TOP - MD --> TOP R
YY = 01 ==> YES = Cl6 + CRIl

sssS = 1010 ==> shift = D2*’ unsigned

If C16 + CR1 =1 ( TOP -— MD >= 0 )

TOP - MD --> TOP
TOP :NEXT * 2 —-> TOP:NEXT

YES -=> N@

- This step differs from U/1’ in that the conditional subtraction will be
perfonned also if the previous subtraction also. produced a result with 1
in the most significant bit (now shifted into CR1) even though the
subtractmn was successfully performed.

It can be proven that this only happens when the dividend is too lafge to
produce a 16-bit quotient when divided by the current divisor.
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u/"

Unsigned Divide Step 16
A458 = 1010 0100.0101 1010 . ‘
OP - MD --> TOP

. aaar = 0100 ==> ALU OP = T
yy = o1 . ==> YES = Cl6 + CRl
sssS = 1010 ==> shift = N2*’ unsigned
If.Cl16 + CRl = 1 - ~ (TOP - MD >=0 )

TOP - MD --> TOP
NEXT * 2 --> NEXT
YES --> N@

This step differs from U/’ in that only NEXT is shxfted This allows the
»correct remamder to be left in TOP

0/1"
Alternate Unsigned Divide Step 16

' A418 = 1010 0100 0101 1010 ) ‘ ' .
aaar = 0100 => ALU OP = TOP - MD --> TOP
yy . = 00 ==> YES =Cl6 .
sssS = 1010 ==> shift = N2*’ unsigned
If €16 = 1 : ( TP - MD >= 0 )

TOP - MD --> TOP
NEXT * 2 -=> NEXT
. YES -=> N@

This step differs from U/l’ in that only NEXT is smfted Ttus allows the
_ correct remainder to be left in TOP.

BU/’ ' ' ‘
' .8-Bit Unsigned Divide Steps 1 through 8

A412 = 1010 0100 0001 0010 .

aaar = 0100 ) ==> ALU - OP = TOP - MD --> TOP
yy = 00 - ==>-YES = Cl6

sssS = 0010 ==> shift = 2*’ unsigned

1f£ C16 = 1 © (TOP - MD >= 0 )

TOP - MD --> TOP
TOP * 2 -=> TOP
- YES --> T9.
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892 Standard Division Program Example

This version of the d1v1s1on program tests the value of CR1 for steps 2 through‘
16

s UM/MOD ( ud u -- ur uq ) :
) . Set up divisor

MD! \

D2* \ Clear CRO, 17 divide steps not needed
u/1’ ) : \ Step 1

U/’ u/r u/’ u/r u/? \ Steps 2 - 15

u/’ u/! u/r u/’r U/’
U/’ u/r u/r u/t

u/e - g ) step 16

SWAP ; . ’ \. Put quotient, remainder in right places

re

8.9. 3 Alternate Dmsnon Program Example

Th1s version of the d1v1s1on program does not test the value of CR1 for steps 2

through 16
: UM/MOD ( ud u -~ ur uq ) :
- MD! ) . \ Set up divisor
D2* : o \ Clear CRO, 17 divide steps not needed’
‘u/1s v/’ u/i’ u/1r \ Steps 1-- 15

u/1’.u/1’ u/1’ u/1’

‘u/1s u/1’ u/1’ u/l’

u/1’ u/1" u/1’ .
u/1" ) \ Step 16

_SWAP ; . ) ) - ‘\ Put quotient, remainder in right places

8 9.4 8-B1t Division Program Example

Tlns version of the d1v1s1on program also does not test the value of CR1 for steps :

1 through 8.
- =
: 80/ ( ud u == ur uq ) . :

sQ! - . ) ; \ Set up divisor

2% ' : \. Clear CRO

8u/’ 8u/' 8uU/’ 8U/’ ) = \ Divide it

8u/’ 8u/’ 8u/’ 8uU/! R S .

FF AND ; : ) : . -\ Discard remainder *-2
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‘810  Step Square Root

- The RTX 2000 Series of Microcontrollers implement an exact algorithm (vs. an
approxunate algorithm such as Newton’s method) for finding the square root of
an integer.

In the event the input value is not a perfect square, a root and a remainder are
found. The remainder is similar to the remainder of division: if the remainder is
added to the square of the root, the original input value is found. It is possible
for the remainder to exceed the 16 bits of the TOP register, though the 17th b1t
will always be contained in CRO. '

Pﬁor to executing the square root steps, the 32-bit input value is placed into TOP
and NEXT, MD is cleared, and a value of 8000 hex is placed in SR.

-~ Square root steps are similar to division steps but subtract the SQ register instead
of MD from TOP. They also use CR1 to determine whether to perform the

conditional subtraction. This is needed for square root steps because the value

being subtracted changes from step to step. '

Step Square Root Algorithm

The pseudo-division square root algorithm is similar to restoring long division.
That is, it consists of repeatedly subtracting a subtrahend from the input value.
If the result of the subtraction is negative, however, the value prior to the
subtraction is restored. This can also be thought of as a conditional subtraction.

" The difference from long division lies mostly in the value of the subtrahend,

which changes from step to step depending on which of the previous subtractions
were successful.” A subtraction is successful if it leaves ‘a non-negative

- intermediate result. If a subtraction is successful, a one is shifted into the least

significant bit of the result; otherwise a zero is shifted in. To get a feeling for

how the subtrahends are generated, let us consider the 8 bit square root of a 16

- bit number using hardware similar to that in the RTX. The bits of the root are

represented by r, with r; being the most significant bit. The trial subtrahends are
shown aligned with the square from which they are to be subtracted.
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_ TABLE 8.7: SQUARE ROOT TRIAL SUBTRAHENDS

Se | se Sa Se Sp Sa Sy | Se | S S¢ | Ss | sS4 | S3|S2 S So
0 1 0 0 0 0 -0 o o 0 0 o |o 0 0 0
0 r, 0 1 0 0 0 0 0 0 o oo 0 0 o]
0. 0 r, re | O 1 0 0 0o o0 0 o {o 0 o 0
0o o 0 r, | ¢ s 0 1 1o 0 o oo 0o o 0
0 0 0 0 r, T Iy r, 0 1 0 .0 0 o] 0 o]
0] 0 o 0 0 r, re re r, r, 0 110 o] 0 0
Y 0 0 0 0 0 r, r¢ rs r, I, r, { 0 .1 0 0
0 0 [¢] 0 ‘0 o0 o] r, rse @ rg T, ry | r, I o] 1

As is evident from the table, each trial subtrahend is dependent only on the results
of the trial subtractions executed prior to the current trial. The values in this table
are also the same as the first 8 subtrahends for the 16-bit square root, and it -
- should be apparent how the remaining 8 subtrahends are generated. These
subtrahends are generated directly by MD, SR and the surrounding circuitry.

‘Unless you are a mathematician, it is probably not obvious why subtractmg these
values should give you the square root of a number.. The remainder of this
‘ secnon may help you to understand how this algorithm works. .

Consider two numbers, r (an N-blt unmgned integer) and s (an uns1gned integer
with 2N bits). Let s be the square of r. One can represent rasa polynomlal of
powers of 2: _ , -

r = r2" + r,. 12"'1 toeet 12 + 1,

where n-N-l and I, through r, are enher Zero or one. Smce s 1s the square of 1,
§ can also be expressed asa polynom1a1 of powers of 2 :

-s8'= rr

= [r2*™ ¥ orr. l.22’"1 +ooot £r2"] +
[Lp1Ta2® ™ + r, 122"'2 Foeet Cpale2™] +
ees + . .

[rora2™ + rore,2"t +aeot ol
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Notice that since r, can only equal 1 or 0, r,r, = r,. It is useful to visualize the
terms of s as values in a square array, as shown in Table 8.8:

- TABLE 8.8: TERMS OF S AS VALUES IN A SQUARE ARRAY

r,2" 2™ . r,2 r,
r,2" 2> - o L eee r,r;2™ r,ro2"
rp2™? LaLpp22? r, 23" eee LI 2" TpLe2™?
r,2 r,r, 2™t rpr2° . r,22 r,re2
T, r,ro2" - | rpare2t .. 1,52 ro

Notice that all the perfect squares are on the diagonal running from the upper left
comer to the lower right comer, and the rest of the array is symmetrical about the
diagonal, and each term in the lower left half of the array has an identical term
in the upper right half. Like terms can be combined by adding the terms in the
upper right half to those in the lower left half. Each row in the new triangular
matrix may then be used to form a trial subtrahend, t, through t,, that may be
used for finding the square root of s:

t, = r,2*
tper = ILaln122® + T,
tha = Lplpn22™2 + IpTan2™! + r, ;2202

2(n-1)
n-12

ty, = rpr;2™2 + r,,r2™ +...+ r,r;2' + r,2?

to = Lalo2™ + I, re2™ +...+ 0,122 + 1,

Notice that t, depends only on r,, t,,_'1 depends only onr, and r, ,, t,,_g depends only
onr,,,r 4 and 1,5, and so on. ' -

The technique for using these tnal subtrahends for finding the root of s is
straightforward. If r, is assumed to be 1, and t, can be subtracted from s, then r,
is indeed 1. If, however; the result of the subtraction is negative, r, is 0, and s
must be restored to its value prior to the subtraction. Once r, is known, it can be

used to find r,, by the same method, and so on to 1, Thxs is exactly what
happens when subtractmg the trial subtrahends in Table 8.7.
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For further illustration we can find the subtrahends for the 8 bit square root in
table 1. In this case the root is:

T =127 + 2%+ 125+ r2% + 2% + 22 + 2+ rg .

The square is: -

s = rr B .

C = [r,2M 4 rpres®® + Lol + ror2’] 4
S [Eer2™ + T2+ ... 4 Lerg2f] 4+
cee +

[rer,27 + rere2® + oov + Xyl .

By combining like terms and groupiﬁg into subtrahends we obtain:

t, = r,2M
te = r,re2't + rg2¥?
ts = r,rs2'? + rerg2!? + r2'°

to = ILe2% + rero2” + ... + 122 + 1, ,
] 7+ 0 -0 1+o ]

which is identical to the deSCn'ption'of the subtrahends in Table 8.7.
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An Example:

For'a specific example, let us find the 8 bit square root of a 16 bit number. Let
the input value equal 8163H (hex), i.e. 1000000101100011 binary.

10110101
)1000000101100011
-0100000000000000 1st subtraction
0100000101100011 Successful
-0101000000000000 2nd- Subtraction
1111000101100011 Not Successful
0100000101100011 Restore Previous Value
-0010010000000000 3rd Subtraction
0001110101100011 Successful
-0001010100000000 4th Subtraction
0000100001100011 Successful
-0000101101000000 5th Subtraction
1111110100100011 Not Successful .
0000100001100011 Restore Previous Value
. =0000010110010000 6th Subtraction
0000001011010011 Successful
-0000001011010100 7th Subtraction
1111111111111111 Not Successful
0000001011010011 Restore Previous Value
-0000000101101001 8th Subtraction :

-0000000101101010 Successful, Also Remainder

~Note that the remainder is a 9 bit value though the root is an 8 bit value. This
is possible because the difference between two successive perfect squares is:

' “(n+1)2 = n* = (n? + 2n + 1) -n? = 2n + 1.

Therefore the largest possible r_emainder,”whiéh is one less than this difference is
2n, which requires one more bit to represent than n does. ’
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8.10.1

Step Square Root Opcodes

s1’
Square Root Step 1
AS1A = 1010 0101 0001 1010

- aaar = 0101 ==> ALU OP = TOP - SQ --> TOP
yy = 00 ==> YES = Cl6- o
sssS = 1010 ==> SHIFT = D2*’ UNSIGNED
1I£Cl6 =1 ' . (TOP - 5Q >= 0 )

TOP - SQ --> TOP

. TOP:NEXT * 2 --> TOP: NEXT

YES -=-> NO
MD + SR --> MD
SR / 2 -- SR

8’

'Square Root Steps 2 Through 15

'AS5A = 1010 0101 0101 1010

aaar = 0101 ==> ALU OP = TOP - SQ --> TOP
yy = 01 ==> YES = C16 + CR1

sssS = 1010 ==> SHIFT = D2*’ UNSIGNED
If Cl6 + CRL.= 1 : ‘ ( TOP - SQ >= 0 )

TOP - SQ --> TOP
TOP:NEXT * 2 --> TOP:NEXT
YES --> NO
MD + SR --> MD
SR./ 2 == SR

S’ differs from Sl’ in that CR1 is considered to detenmne YES. This ,
is necessary because sometimes a successful subtraction will result in
the most significant bit being 1.  Once thlS bit is shlfted into CR1, it
cannot be subtracted.

.- Square Root Step 16
A558

= 1010 0101 0101 1000 S .
aaar = . 0101 ==> ALU OP =.TOP - - SQ --=>.TOP
vy = 01 . . ==>YES = Cl6 + CRL.

. .SssS = 1000 ==> SHIFT = NZ*' UNSIGNED

_If C16 + CRL = 1 : : + TOP - SQ >= 0

© TOP - SQ ==> TOP
NEXT * 2 --> NEXT
‘YES --> NO

MD + SR --> MD
SR./ 2 == SR~

256
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S" differs from S’ i in that only NEXT is shifted mstead of both NEXT
and TOP This is done SO that the remamder is correct.

BS1’ ]
8-Bit Square Root Step 1
A512 = 1010 0101 0001 0010

TOP - SQ -=> TOP -

aaar = - 0101 © ==> ALU OP =
yy = . 00 . ==> YES. = Cl6
sss§ =. . 0010 ==> SHIFT = 2*’ UNSIGNED
If C16 = R ('TOP - 5Q >= 0 )

. TOP = so --> ToR
TOP * 2 =--> TOP .

_YES --> TO. .
MD + SR ==>MD - -
SR / 2 —= SR’ ‘

I3

BS’
. 8-Bit Square Root. stepc 2 '.'I.'hrough a

A552 = 1010 0101 0101 0010 o
-.aaar = . 0101 ==> ALU OP = TOP - SQ --> TOP

yy. = 01 : > YES ‘= Cl6 + CR1

§ssS = © 0010 ==> SHIFT ' =.2*’ UNSIGNED

If C16 + CR1L = 1 - T ((TOP -.5Q>= 0 )~

TOP - SQ —=-> TOP
TOP. * 2 =-> TOP
YES --> TO
‘MD + SR =-> MD

SR / 2 == SR
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8.10.2.

Square Root Program Example

HEX

: ROOT ¢ du - uroot uremainder )

8000 SR!

0000 MD!

D2*

s1’ :
S’ s’ §* s’ s’
s’ s* s’ s’ s’
s" ; :

st
s’

s
s’

Set
Set

up SR

up. MD ’

Get lined up for 1st subtraction
lst step .

Steps 2 - 15_

PP

\ Last step

8-Bit Square Root Progfam Exainple

8.10.3
HEX
: BROOT ( word -- byte )
8000 sSR! . \ 'Set up SR
0000 MD! \'.Set up MD
2% \ Line up for first subtraction
BS1’ . . \ Step 1
BS’ BS’ BS’ BS’ BS’ BS’ Bs’ \ Steps 2-8
FF AND ; : \.Discard remainder * 2 -
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8.11  Step Bit Reversal

Bit reversal reverses the order in which b1ts appear in a word. For example
ILalchldllelfrglhllrilnjlkllllm(nlol_,pll

would become: o | o

leToI'nILll.l'l.kTﬂLillhlglflelldlcllbl'all

Using step math allows bit reversal of a 16-bit word in 23 éycles éompared to 48
cycles without step math. - Bit reversal is useful for calculating address during
FFT operations and also is needed to calculate certain types of CRC’s.

8.11.1 -Stép Bit Reversal Opcbdes

Rl
Bit Reversal stop
A196 = 1010 0001 1001 0110

aaar = 0001 ==> ALU OP = NO OP, OPERATE. ON SQ
uu. = . 10 - | ==> YES = TO o
sssS = =2/ UNSIGNED

0110 ==> SHIFT

If TO = 1 I
MD or SR —-> MD
" SR /.2 --> SR
TOP / 2 -=> TOP

' 8.11.2_ Step Bit Reversal Example Program
' ) HEX - - ‘

s BIT- REVERSE (u - u' )

'8000- SR! .\ set up SR

0000 MD! e \ ‘Set ‘up MD o

R’ R’ R’ R’ R’ R’ R’ \ Put bit reversed version of TOP into MD.
R’ R’ R’ R’ R’ R” R’

‘R” R/ .

DROP ' * "\ Discard garbage in TOP

MD@ ' ) \ Retrieve‘result‘
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8.12 _Step Cyclic Redundancy Check (CRC)

The cychc redundancy check (CRC) is used for 1dent1ﬁcat10n and error checking
of blocks of data, i in much the same way a checksum is used

The advantage of the CRC is that more errors can be detected with a CRC than
by a checksum. For example, a 16-bit CRC can detect all errors in a 16-bit frame
of a stream of data. - There are several de facto standard data transfer protocols, .
_including XMODEM, X 25 and Kenmt that use variations of CRCs for error'
checking. , v

The basis for calculating a CRC of a stream of bits is to perform a modulo-2 long
division of the stream (multiplied by an appropnate power of two) by an
irreducible modulo-2 polynomlal The quotient is dnscarded and the remamder
is the CRC . .

In modulo-2‘subtraction there is no carrying or borrowing from bit to blt, )
subtraction is the same as a bitwise logical exclusive OR function. The
polynomial is a value that cannot be evenly divided modulo-2 by another
polynomlal much like a pnme number.

Most 16-bit CRCs are calculated with the polynomlal x16 +x2 + x +1, which
can also be expressed as 10001000000100001 :

For example, to calculate the XMODEM style CRC of the ASCII character LR
(54 hex), perform the following long d1v1s1on : _ '

-10001000000100001)010101:000000000000000000
10001000000100001
10000000010000100
10001000000100001 :
’ 10000101001010000
10001000000100001 .

« ) - 0001101001110001 = 1A71 hex

To calculate the CRC of a stream of characters, s1mply XOR the CRC’s of each
character with the CRC of the preceding characters. ~ This can also be
accomplxshed by replacing the 16 nght-hand bits of the above d1v1dend w1th the
previous CRC. _
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One useful aspect of the CRC calculation is that it can be implemented in
hardware with 16 shift registers and 3 exclusive OR gates. To see how this is
- done, think of the above dividend as being in a 16-bit shift register.

When a 1is shlfted out of the reglster the contents of the register are excluswe
.OR’ed with the 16 least significant bits of the polynomial.

When a zero bit is shlfted out no exclusxve OR’i mg takes place After elght
smfts the reglster holds the CRC. :

Smce many serial data protocols transmlt the least s1gmﬁcant bit of the data ﬁrst,
many CRC'’s are calculated on the bit reversed image of the transmitted character
so that the CRC may be calculated in the simple hardware noted above. In such
cases, the resulting CRC is also bit reversed and must be un-reversed, though this
only needs to be done once for each packet of data. Examples of protocols that
- use this type of CRC are X 25 and Kerm1t , :

Other variations on the CRC are to use a nNon-zero 1mt1al value for the CRC
usually FFFF hex. The other variation is to exclusive OR the CRC with a non-
zero value, also usually FFFF hex, before transmmmg it. An example of thlS is.
the X.25 protocol. ,

The CRC in RTX step math is implemented such that bit reversed CRC’s are
generated directly. The result does not need to be bit reversed in these cases
because the shifting is done to the right instead of to- the left. The polynomial,
however, must be bit-reversed before exclusive OR’mg it with the data stream.
This causes no performance loss, however, because it is usually a constant. For
implementing CRC’s that- do not use bit-reversal, such as those used by
XMODEM, the data and CRC’s must be bit reversed. - :

8.12.1 Steb CRC Opcodes |

c'
cYclic Rndundancy check stop
AADE 1010-1010 1101 1110 o
aaar = 1010
Yy
sssS

==> ALU OP = TOP xor MD --> TOP
11 ~.==> YES = TO xor N@
1110 ==> SHIFT - = 2/’ UNSIGNED-

A

If (TO xor N@) =1
TOP xor MD -->.TOP

TOP:NEXT / 2 --> TOP:NEXT
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8.12.2  Step CRC Example Program
HEX .
0811 CONSTANT POLY "\ Bit reversed generator polynomial

:.CRC ( crc byte ;f crc’ )

SWAP \ Rearrange data and original CRC
POLY MD! -\ Set up MD

cr ¢crcrcrcrcrcer e \ Calculate new CRC

NIP ; \ Discard partial quotient

To use this program to calculate a CRC for Kermit or CRC-CCITT, use an initial
CRC value of zero. To use this program to calculate-a CRC for X.25 protocol,
use an initial CRC value of FFFF hex and invert the resulting CRC before
transmitting it with the packet. '

The CRC for two characters can be calculated at once by using 16 C’ steps
instead of eight, while placing the first character received in the least significant
byte of the data word.

8.123 XMODEM CRC Example Program
HEX '

: CRCX ( crc byte =-- crc’ )

BIT-REVERSE \ Reverse data byte
SQ! MD@. . ‘\ Left justify data byte
SWAP BIT-REVERSE SWAP \' Reverse original CRC
" CRC \ Calculate new CRC
\

BIT-REVERSE. ; Un-reverse new CRC

Note that in calculating the CRC for a long string of characters, the CRC only
- needs to be reversed and un-reversed at the beginning and end of the stnng of
characters.
If the initial CRC is zero, as it is in XMODEM,, it only needs to be un-reversed
at the end of the string of characters. Every character, however, needs to be
reversed.
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8.13  Step Math Reference
bits: . .
B N P * I I
Lelol 1'| ofafafel] rVII‘v vlrjifsl=]=] ]
- . |'< .

— | <1

> | <

>

<

>|<[>I .
! Signed/Unsigned
' Micro Opcode
Field

Unconditional Shift
Micro 0pcode Field

Conditional Behavior

. Micro Opcode Fleld

- Register Selection

Micro Opcode Field

— ALU Micro Opcode Field

FIGURE 8. 2 STEP MATH INSTRUCTION FORMAT

TABLE 8.8: STEP MATH ALU FUNCTIONS

111

aaa Function
© 000 - No ALU. operation = - S
{001 |.YES = 1 => TOP -and REG.-->-TOP
010 | YES = 1. => TOP - REG --> TOP °
011 |- YES = 1'=> TOP or REG --> TOP
100 | YES = 1 => TOP' + - REG --> TOP
©101 ‘| YES ='1'=> TOP xor REG =--> TOP'
7110 | YES = 1 => REG = TOP .-=> TOP
CYES = 1 => - " REG ==> TOP -

'TABLE 8.9: MD AND SR OPERATION

r"r | yes | wp SR ToP
0 | o MD . SR TOP © (shift) '
011 MD SR | TOP (alu op) MD (shift)
1o |w sR /2 | Top . (shift)
111 MD or SR | SR /:2 | TOP (alu op) SQ- (shift)"

Step Math Functions, Chapter 8




_ TABLE 8.10: BEHAVIOR OF YES

vy | ¥ES

00 IF ARITHMETIC THEN COlG ELSE IRO :
-01 AIF ARITHMETIC 'THEN C016 ELSE IRO) or CRl
10 ] IF IR3 .= 0 THEN TO ELSE N0 .
11 -] TO xor NG = = -~

' TABLE 8.11: STEP MATH SHIFT OPERATIONS

sss | wamMe TS Tn - TO  N15 Ni_ . N@ .
000 .| “NONE Wi5 Wn_ WO N1 Nn  N@.
001 | 2% ¢ Wl4  Wn-1 YES °N15. Nn ~ N@.
010" | c2/° W16 Wn+l WL  N1F Nn . -NO -
o011 | 277 YES Wn+l Wl N15 Nn N@ -
100+ | N2*¢ W15 . Wn WO N14 ~Nn-1 . YES
©101: | D2*r W14  Wn-1  N15 - N14. Nn-1 - YES
~110 | ep2/*; Wi6 -Wn+l W1 WO. : Nn+l N1

111 D2/'v | YES Wil WL WO Nn+l ' N1

) TABLE 8 12 SOME USEFUL STEP MATH OPCODES

OPCODE F'ORTH DESCRIPTION -
- 'A012 2*’ s 17. Bit left shift
AO9E | RDR | Rotate TOP:NEXT right
. AO%6 RTR - Rotate’ TOP right CO
A89D *r "l signed multiply steps 1—15
A49D | *m | signed multiply step 16 -
| A89C | U’ - .Unsigned multiply steps 1- 16
RA49c: Uxe | Mixed sign multiply step 16 . .
A894 - | BU** | Byte unsigned multiply steps 1-8
R494 . | BU*" - | Byte mixed sign multiply step 8 - -
"A41Av J u/1r Unsigned divide step 1 L
"A45A U/’ | Unsigned divide steps 2-15
2458 | U/ .Unsigned divide step 16 : .
A418 u/1" * | Alternate. unsigned divide step 16
©A412 | BU/’ ' | Byte unsigned-divide steps 1 8
_A51K ° | "s1*. - .| ‘Square root: step 1., ...
| 'A55A° | s’ . | Square root steps 2- 15"
A558 | s" Square root step 16 ..
A512 | BSl’ .| Byte Square root step 1l
A552 - | Bs’: ‘Byte square. root. steps. 2-8.
A196 | R* . | Bit reversal ‘step . .
L BADE | C* - | CRC step’

Lo
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USING THE RTX2000 STACK CONTROLLER

C—

Two of the pawerful‘faatﬁrea of the RTX2000 are its two on-chip stacks:
the parameter stack and the return stack. Because these stacks can oper-
ate simultangously with the memory data bus and and ASIC data bus, they
increase the performance of the RTX2000 by maximizing the guantity of data
~ that can move in ona procassor cycle (refer to the RTX2000 block

diagram). In addition to incressing the speed of the RTX2000, the stacks
can interrupt thg/ﬁraaaasnr in tha event of a stask overflow or underflow.

FARAMETER STACK STRUCTURE

The parameter stack is a 258 word by 16 bit stack that is used for stering
data and addresses for arithmetic and logical oparations. The top of the
parametar stack is the TOP register in the RTX processor <Core, the next
stack location is the NEXT register in the RTX core, and the remaining 256
locations are in on-chip RAM controlled by an RTX stack controller.

RETURN STACK STRUCTURE

The return stack is a 2%6 word by 21 bit stack that is ussd for storing
return sddresses for subroutine calla and loop counters for certain opera-
tions. The top of the return stack is in the processor core index regis-
ter (I) and the ramaining locations are in on-chip RAM controlled by an
RTY stack controller. You may have noticed that the return stack has 21
bite per word. This is partly because thae RTX2000 supports a twenty bit
address. Howaver, since op codes are on word boundaries, only nineteen
bits are required to define a return address for a subroutine csll. Thesze
are bits one through nineteen, where bit zero is the least significant bit
and bit twenty is the most significant bit, Bit zerse is used to determine
whether the address 1a for a return from an interrupt (1) or a return from
a gubroutine call (0). This allows interruptsz to be enabled whan return-
Ing from an interrupt. Bit 20 18 used to store the data page register
select bit (DPRSEL) which is used to determine which memory page is used
for data fetch and store operations. When the return stack is used for
gtoring loop variables ( >R and R> ), only bits zere through fifteen are
used for data. Bits sixteen through twenty are loaded with ths content of
the ¢E?e page register (CPR) during an intsrrupt, subroutine ¢all or *R
execution, . ‘

RTX INTERRUPT CONTROLLERS

The RTX2000 interrupt controller circuitry consists of two identical sec-
tions, one for the parameter stack and one for the return stack. Each
section has two user accessible 8-bit registers that control the operation
of its stack: a stack pointer register (SPR) and a stack limit register
(SLR). Since the data path on the RTX2000 iz sixteen bits wide, the SPR
for the parameter stack and the SPR for the return stack are concatenated
te form a single sixteen-bit SPR for the purpose of accessing them by the
brocessor. Similarly, the SLR for the parameter stack is concstenated
with the SLR for the return stack. The SPR may ba read as well as written
to, but the SLR is a write-only register. In both cases, data bits 0

through 7 apply to the parameter stack and data bits 8 through 1% apply to
the raturn stack. :
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STACK OPERATION

Both =ztacks have 256 words, numbered from zere to 255. When data is
pushed onto the stack, it is written to the location above that pointed to
by the SPR, and the 8PR is incremented (this is equivalent to a
pre-incrament). When data is pepped off the stack, it is read from the
location pointed to by tha SPR, and then the $PR is decremented
(post-decrement). When the RTX2000 is reset, the SPRs are resat to zero,
0 tha first location written to will ba location ona. If an attempt is
made to push data onte a stack beyond word 255, the stack will wrap around
and start pushing at location zero. Similarly, if an attempt is made to
poup data off the stack below location zero, the stack will wrap around to
location 285, For this reason the parameter stack can be uged as a
recirculuting 256 word buffer. Also, because the stacks are circular,
they must be managed carefully to prevent overflows and underflows from
producing incorrect results., The stack controller helps to accomplish
this by generating overflew and underflow interrupts.

STACK ERROR INTERRUPTS

The RTX ztack controller regquests an overflow interrupt anytime the value
of the SPR is greater than the SLR. Since the SPR can naver sxceed 255,
the stack controller cannot generate an overflow interrupt with the SLR at
its reset value of 255, Therefora the user sghould sat the SLR to a value
less than 258, which alse provides an overflow buffer that allows for the
axtra cycles required to acknowledge the interrupt. Another point about
uging everflow interrupts ls that a push-pop sequence can genarate an
interrupt regquest that goes away before it is zerviced, Tha result of
tn@s is that the interrupt controller causes the procassor to execute code
puinted %o by the "no interrupt" vector. This is referred to as a phantom
interrupt. Therefore, this location should always be initialized to a
valld code sequence, even if it is only a "no=-op, return' secquenca.

The RTX stack controller handles underflows similarly to overflows. The
gontroller requests an underflow interrupt when data is popped off loca-
tion gne, Also, if data is pushed onto tha stack until it wraps around,
an underflow interrupt will be generated when data is pushed onto location
zero. Becausa popping data off location one causes an interrupt and loca-
tion one is normally the first stack location used, the interrupt generat-
@d when data is popped off location one would occur even though the data
is valid. Therefore, whenever underflow interrupts are used, the first
location used should be location two. This is most easily done by pushing
dummy data to location one at start up. The "DUP" instruction will accom-
plish this for the parameter stack, and the sequence "DUP »>R" will accom-
plish this for the return stack. Because pushing data onto location zero
will request an underflow interrupt, the validity of the stack can be
managed with just the underflew interrupt, while the overflow interrupt is
ugeful for managing a virtual stack greatar than 256 words or multitask-
ing, The underflow interrupt only method alsc allows the greatest number
of words to be used (254 out of 256) while using stack error interrupts.
I? stack error interrupts are not used, the entire stack is usables.
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The underflow interrupt also can exist for a short encugh time to produce
phantom interrupts. This can happen if & pop from lecation one is immedi-
ately followed by a push te location one. For this reason, it is neces-
gary to provide valid code at the memory location pointed to by the
no=interrupt vector. -

USING THE STACK POINTER REGISTER

It is pgsaiblg to perfarm stack mepipulatisms by rsading and writilng the
SPR., Because of the intricate interaction bhetween the SFR and the stacks,
great care must be exercised to prevent the processor from getting lost.

READING THE STACK POINTER REGISTER

The stack pointers are both read in a single cycle by éexecuting a SPRE
instruction. The parameter stack pointer is retrieved in the least
significant byte and the return stack is retrieved in the most significant
byte. The value obtained 1s not exactly the value of the stack pointers
‘prier to the SPRE cycle, howaver. The outputs of the stack peinters
‘normally pass through incrementers on thelr way to beilng read. 1In
addition to this, pushes and pops on either stack during the SPRE cycle
cause the stack pointers to change in the middle of the cycle. This can
cause additional increments and dacrements to the values obtained angd .
should, therefore, be avoided. For example, returning from a subroutine
during & SPRE cycle wauses the value for the return stack to be
decremented instead of incremented.

Reading the SPR usually results in a push on to the parameter stack. This
causas the parameter stack pointer to be incremented in the middle of the
@$PR cycle. The ocutput of the incremented stack pointer then passes
through the incrementer before it is read: The raeasult is that the value
obtained ieg the value of the parameter stack prior to executing tha $FR@
plus two. Because of the number of steps that must be performed on the
value from the stack pointer in the last half of the SPR@ cycle, it is
reconmanded that the stack pointers ba read without performing any stack
operations during the fetch c¢ycle., This can be done as follows:

L. Do not combine a SPRE with a return from subrautine.

2. Combine the SPR@ with an arithmetic or logical function to prevent the
ragult from pushing the previous top of stack down on the stack. An
afﬁective way to obtain the values of the stack pointers follows:

HEX \ BASE 16 FOR THIS DISCUSSION
=102 \ CORRECTION FACTOR :
\ RETURN STACK: 1
PARAMETER STACK: 2
BPRE€ + \ SINGLE QP CODE: NO STACK OPERATIONS
NOP : \ IF A RETURN FOLLOWS, MAKE IT A SEPARATE OF CODE
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WRITING TO THE $TACK POINTER REGISTERS

Bince stsck operstions de not change the value storad in the SPR, it may
be written to by & simple SPR! instruction. There is one thing to watch
put for, however. If a SPR! is combinad with a return from subroutine,
the value popped off the return stack inte the I register will be
detarmined by the value in tha SPR prior te the execution of the SPR!
instruction.
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