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1 Introduction 

The Harris Real Time Express (RTX) 2000 Family of microcontrollers is a 
highly integrated family of 16-bit CMOS microcontrollers designed for real-time 
control systems requiring high performance with low power consumption. 

1.1 The RTX 2000, 2001A, And 2010 Microcontrollers 

The architecture of the RTX 2000 Series of products results in high instruction 
execution rates. The highly parallel architecture allows the RTX to perform 
several functions in one instruction cycle, and all instructions execute in either 
one or two clock cycles. Instructions are fetched from memory and executed 
immediately; there are no instruction "pipelines" or caches to flush when 
performing branches or calls. 

The RTX 2000, 2001A and 2010 Microcontrollers have on-chip support 
hardware for performing many of the functions typically needed in a real-time 
system, including an interrupt controller, a memory page controller, two stack 
controllers, and three 16-bit counter/timers. In addition to these "on-chip 
peripherals", the RTX 2000 provides a 16-by-16 hardware multiplier, while the 
RTX 2010 provides a 16-by-16 hardware multiplier-accumulator along with a 32-
bit Barrel Shifter and a 32-bit Leading Zero Detector for Floating Point support. 
Table 1.1 shows a break-out of the features of each of these products. 

The RTX 2000 Class architecture was designed to execute the high-level 
language Forth as its "assembly language". The instruction set provides the 
features necesszj for implementing much of the Forth language directly. 
Instructions are available for manipulating stacks, performing memory access, 
controlling program flow, and basic math and logic operations. 

One RTX instruction may combine the functions of two or three high level Forth 
instructions, resulting in an effective processor throughput which is faster than 
the processor clock speed. 
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The stack oriented architecture of the RTX also makes it well suited for running 
such computer languages as C. 
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RTX2000 RTX2001A 
Interrupt Interrupt 

Controller Controller 

Stack Stack 
Controller Controller 

Two ·256-Word Two 64-Word 
Stacks Stacks 

Three 16-Bit Three 16-Bit 
Timer/Counters Timer/Counters 

1-Cycle 16-Bit 
Multiplier 

RTX2010 
Interrupt 

Controller 

Stack 
Controller 

Two 256-Word 
Stacks 

Three 16-Bit 
Timer/Counters 

· 1-Cycle 16-Bit 
Mult./Accum. 

1-Cycle 32-Bit 
Barrel Shifter; 
Floating Point 
Support 

TABLE 1.1: RTX On-Chip Hardware Peripherals 
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1.2 The RTX 2000 Family Programmer's Reference Manual 

Figure 1.1 offers an overview of the interface between a user and an RTX 
Microcontroller. The documentation which supports each layer of this interface 
is also shown. 

User Support Documentation 

User 
Interface Application Notes 

Development S ftw R f Quick 
o are e erence Reference System 

Software 

RTX Forth 
Primitives 

RTX 
Hardware 

Introduction, Chapter 1 

Manuals Card 

Programmer's Reference 
Manual 

Hardware Reference 
Manual 

FIGURE 1.l:·USER/RTXINTERFACE 
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The Programiner's Reference Manual describes the RTX 2000, RTX 2001A, and 
RTX 2010 Microcontrollers from a programmer's point of view, including 
architecture, registers, data paths, hardware interfaces, and primitive instructions. 
Topics described in various sections of this manual include: · 

. Chapter 2 
Chapter 3 
Chapter 4 
Chapter 5 
Chapter 6 
Chapter 7 
Chapter 8 
Chapter 9 
Chapter 10 

Overall architecture of RTX microcontrollers 
General operation of RTX microcontrollers 
The RTX register set · 
Memory Interface 
On-chip Peripheral Devices 
RTX Instruction Set 
Implementation of Multi-step Math Functions 
Implementing Forth on ithe RTX 
Code Optimization Tecbniques 

Some functional differences exist between the different members of this family 
of microcontrollers. When such difference8 exist, the applicable sections of this 
manual describe those differences. Where major differences exist, they are 
broken into separate paragraphs, and are offset with a side bar for clarification. 

For additional information specific to your microcontroller, please refer to the 
appropriate data sheet. 

6 RTX 2000 Family Programmer's Reference Manual 



CHAPTER 2 

RTX ARCHITECTURE 

RTX Architecture, Chapter 2 7 



8 RTX 2000Family Programmer's Reference Manual 



2 RTX Architecture 
This chapter provides an overview of the programmer's model of the RTX 
Microcontroller architecture. Figures 2.1, 2.2 and 2.3 show block diagrams for 
the RTX 2000, RTX 2001A, and RTX 2010 Microcontrollers respectively. 

The RTX microcontroller is a stack based machine with two on-chip stacks. 
Most math, 1/0 and memory reference operations take their operands from the 
Parameter Stack, and leave their results on the Parameter Stack. Subroutine calls 
.use the Return Stack for saving their return addresses. 

There are twenty-three registers on the RTX 2000, twenty-four registers on the 
RTX 2001A, and twenty-five registers on the RTX 2010. These registers control 
processor configuration and status, hold intermediate results during computations, 
and provide an interface between the processor and its on-chip peripheral 
~~- . 

The RTX registers and stacks are interconnected through a series of 16-bit data 
buses· which transfer data within the processor and with the outside world. -

MAIN 
MEMORY 

CONTROL 
INPUTS 

CLOCK AND 
CONRGURATION 

CONTROL 

TIMER 
INPUTS 

IEMORY 
PAGE 

CONTFIOUER 

INTERRUPT 
INPUTS 

MULTIPUER 

RTX CORE 
PROCESSOR 

PROGAAMMMILE 
STACK CONTROUERS 

ASICBUS 
INTERFACE 

FIGURE 2.1: RTX 2000 BLOCK DIAGRAM 
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CLOCK AND 
CONFIGURATION 
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2.1 On-Chip Stacks 

The RTX microcontroller contains two on-chip last-in-first-out (LIFO) stack 
memories. The top elements of each stack are immediately accessible through 
registers. The remainder of each stack is located in on-chip RAM arrays. The 
control logic associated with each stack determines which stack locations are to 
be read or written, and monitors the stacks for overflow and underflow 
conditions. See Section 3.1 for a description of stack operations. 

I 
2.1.1 

Stacks on the RTX 2000 and RTX 2010 are each 256 
elements deep; stacks on the RTX 2001A are 64 
elements deep. 

The Parameter Stack 

The 16-bit wide Parameter Stack provides the operands for most math, logic, and 
memory reference instructions. It is used for passing parameters between 
subroutines, and as a scratchpad area for temporary storage of data. · 

The top two elements of the Parameter Stack are the TOP Register, which 
contains the top element, and the NEXT Register, which contains the second 
element. For certain instructions, TOP or NEXT are the implicit data source or 
destination, and the RTX can perform operations dealing with TOP and NEXT in 
one clock cycle. For more information about TOP and NEXT, see Chapter 4. 

2.1.2 The Return Stack 

The 21-bit wide Return Stack is used for storing subroutine return addresses and 
for holding index counts for loops and repeated instructions, and can also be used 
as a temporary storage area. The top element of the Return Stack is comprised 
of the 16-bit wide I register and the 5-bit wide IPR Register. The RTX can move 
data between the top elements of the Parameter and Return Stacks in a single 
clock cycle. For more information about I and IPR, see Chapter 4. 
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2.2 RTX 2000 Series Bus Architecture 

The RTX 2000 Series bus architecture provides for unidirectional data paths and 
simultaneous operation of some data buses. This parallelism allows for 
maximum efficiency of data flow. External:data is transferred via the ASIC Data 
Bus and the Memory Data Bus. Addresses for external access are output via the 
Memory Address Bus and the ASIC. Addre8s Bus. 

2.2.1 Data Buses 

The RTX QUAD Bus™ architecture consists of 4 independent 16-bit data buses, 
all of which may be active simultaneously. 

• The Memory Data Bus carries program instructions and program data 
to and from Main Memory. 16-bit data words (but not program 
instructions) are passed through b}'te-swapping hardware which allows 
the processor to control the order of storage in memory for the low 
and high bytes of the word. 

• The ASIC Bus™ is the I/O and register interface bus. This bus 
provides the interface between the Parameter Stack and the processor 
registers and external I/O devic~. The ASIC Bus passes input data 
through the on-chip ArithmeticlLl>gic Unit (ALU) before pushing the 
data onto the Parameter Stack. This allows the RTX to perform math 
(adding, subtracting), logic (masldng), and shifting operations on the 
data as it is being read. 

• The Parameter Stack Bus carries data between the top-of-stack 
registers and the Parameter Stack :RAM. 

• The Return Stack Bus carries data between the top-of-stack registers 
and the Return Stack RAM. 
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2.2.2 Address Buses 

'For off-chip communications, the RTX microprocessor has two address buses: 
the 19-bit Memory Address Bus, and the 3-bit ASIC Address Bus. 

• The Memory Address Bus (MA19-MA01) carries the address of the 
Main memory location to be accessed, either for instruction fetches or 
memory read/write operations. This is a 19-bit bus, along with Upper 
Data Strobe (UDS) and Lower Data Strobe (LDS), which allows the 
RTX to address 1 megabyte of memory. 

• The ASIC Address Bu8 (GA02-GAOO) carries address information for 
external ASIC devices. 

See Chapter 5 for information about RTX External Bus Interfaces. 
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2.3 Registers 

The RTX 2000 Series microcontrollers contain three types of registers. Stack 
related registers, Status/Control registers, and Internal Processor registers. 

2.3.1 · Stack Related Registers 

Stack related registers contain the top elements of the Parameter and Return 
Stacks. These registers are the implicit source and destination for many of the 
processor operations, and are described in detail in Chapter 4. 

2.3.2 Status/Control Registers 

Status/Control registers are accessed through the ASIC Bus, and determine the 
operating environment for the processor by controlling the processor 
configuration and on-chip peripheral devices. These registers are described in 
detail in Chapter 4. 

2.3.3 Internal Processor Registers 

Internal Processor registers are not directly accessible to the programmer, and 
are described in Chapter 4. 
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2.4 Memory 

The RTX 2000, RTX 2001A, and RTX 2010 Microcontrollers directly address 
1 Megabyte (512K 16-bit words) of memory. This memory is divided into 16 
pages of 64K bytes (32K words) each, and may be made up of any combination 
of ROM, RAM, or memory mapped I/O devices. 

The RTX memory interface is described in detail in Chapter 5. 
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3 Operations 

This chapter provides an overview of the internal processor operations. The 
operations are described in greater detail in Chapter 7, "Instruction Set". 

3.1 Instruction Execution 

The RTX Microcontrollers have an Instruction Decoder which provides control 
of all data paths and the Program Counter Register (PC). This hardware 
determines what function is to be performed by looking at the contents of the 
Instruction Register (IR), and subsequently determines the sequence of operations 
through data path control. 

In one-cycle operations, the instruction which is to be executed is latched into IR 
at the beginning of a clock cycle, then is decoded. All necessary internal 
operations are performed simultaneously with fetching the next instruction. See 
Figure ,3.1. 

Instructions which perform memory access require two clock cycles to be 
executed. During the first cycle of a memory access instruction, the instruction 
is decoded, the address of the memory location to be accessed is placed on the 
Memory Address Bus (MA19-MA01), and the memory data (MD15-MDOO) is 
read or written. During the second cycle, the address of the next instruction to 
be executed is placed on the Memory Address Bus, and the next instruction is 
fetched, as indicated in Figure 3.1. 
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3.2 Stack Operation 

The RTX Microprocessors utilize a Last-in, First-out {LIFO) stack architecture. 
In this type of architecture, the last data element stored in the memory stack will 
be the first element retrieved from that region of memory. See Figure 3.2. 

~ ~ ~ L ~ L L 
[!] rn [!] rn rn rn [!] 

LJ [!] rn [!] rn DJ 
·. 

[!] [!] 

FIGURE 3.2: STACK OPERATION 

This structure for information storage and retrieval provides the computer with 
one central location for temporary storage of information. 

The RTX takes advantage of this architecture, utilizing two separate on-chip 
stacks. The first, the Parameter Stack, is used for temporary storage of data and 
for passing parameters between subroutines. The second, the Return Stack, is 
used to store return addresses during subroutine calls and returns. The Quad 
Bus™ architecure of the RTX Microcontrollers allows both stacks to be accessed 
in parallel by a single instruction, this dual stack arrangement allows overhead 
to be minimized during subroutine operations. The Return Stack can also be 
used for temporary storage of values when it is not being used during a 
subroutine call or return. 

For faster access, both the Parameter Stack and the Return Stack utilize registers 
for the top elements and on-chip memory (Stack Memory) for the remaining 
elements. 

For more detailed information about RTX stack operation, see Section 6.1. 
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3.3 Subroutine Calls and Returns 

An RTX subroutine call instruction has the address of the routine to be called 
embedded in the instruction. When the subroutine call is executed, the address 
of the instruction following the call instruction is pushed onto the Return Stack. 
When the subroutine is completed, a Return-from-Subroutine instruction will pop 
the return address from the stack, and execution will resume with the instruction 
following the call. 

The RTX architecture is optimized for performing subroutine calls and returns 
with minimum processor overhead. A subroutine call within the same memory 
page can be made in one clock cycle. A call to a location in a different memory 
page takes 3 clock cycles. 

Subroutine returns take 0 clock cycles if performed as part of another instruction, 
and 1 cycle if executed as a separate instruction. 
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3.4 Branching And Looping 

The RTX can perform unconditional branches or conditional branches, based on 
the contents of the top elements of the Parameter and Return Stacks. All 
branches take one clock cycle, regardless of whether or. not the branch is 
performed. 
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3.S Streamed Instructions 

The RTX processor has a "streamed" instruJ,ction feature, in which an instruction 
is repeated a specified number of times without repeating the instruction fetch 
cycle. This feature is useful for doing fast \data transfers, loops and some math 
functions. 

See Chapter 7, "Instruction Set" for more d~tails about the "streamed" instruction 
feature. 
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3.6 Math/Logic Operations 

Math and logic operations are performed by the ALU circuitry of the RTX. The 
operations which may be performed include the simple math operators + and - , " 
and the logic operators AND, OR, XOR, NOR, NAND, XNOR, and NOT. 

I See Section 6.3 for information about the on-chip hardware 
multiplier, multiplier/accumulator, barrel shifter, and Floating 
Point ~upport features. 

The TOP register is always one input to the ALU. The second, "Y",. input may 
come from a variety· of sources, as indicated in Figure 3.3. 

PROGRAM 
MEMORY 

5 Least 
Significant 

Bila 

T ·BUS 

"W~v~~·------
lnternal 
Registers------

..._----------iUllDECODE 

I 

i . 
> 

Operand 
(A) 

NOTE: Data Path8 .,. NpteHnled by 8Cllid linea. Conltol Palh8 .,. Npreaenled by dashed linea. 

FIGURE 3.3: ALU DATA FLOW 
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3.6.1 Registers Andl/0 Devices 

The contents of the TOP and NEXT registers are always available as operands to 
the ALU, and are the implicit operands ,for most of the RTX Math/Logic 
instructions. 

The contents of the other registers and external I/O devices are addressable as 
devices on the ASIC Bus. 

3.6.2 Memory 

Data may be fetched from, and stored to, Main Memory using the Word and 
Byte access instructions (Classes 14 and 15 •in Chapter 7, the "Instruction Set") 
and User memory access instructions (Class 12). 

3.6.3 Literals 

A literal is a constant value to be pushed onto the stack, or to be used as the 
second operand of an arithmetic or logic operation. The RTX processor 
recognizes two types of literals - short literals and long literals. 

A short literal is a 5-bit value between 0 and 31 and is encoded as a field in a 
machine instruction. 

A long literal may be any signed or unsigned 16-bit integer, and is stored in main 
memory immediately following the opcode that utilizes it. 
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3. 7 Stack Operations 

The top two locations of the Parameter Stack are TOP and NEXT, and the 
remainder of the stack memory is located in on-chip RAM. Because of this, the 
RTX Microcontrollers have the ability to manipulate stack elements to allow 
optimization of many instructions. Descriptions of these stack manipulation· 
operations are given in the following sections. These primitives can be combined 
with other operations to allow one-cycle execution of multiple operations. See 
Chapter 7 for information about specific instructions. 

3.7.1 DUP 

ouP copies the top element of the Parameter Stack, and pushes the result onto the 
stack, leaving the stack with two identical elements in the top two stack locations. 

Operations, Chapter 3 

Parameter 
Stack 
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FIGURE 3.4: STACK EFFECTS OF DUP 
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3.7.2 SWAP 

SWAP flips the top two elements of the Parameter Stack, causing the top element 
to move to the second location, and the second element to move to the top 
location. 

3.7.3 DROP 

. Parameter . 
Stack 

Parameter 
Stack 

Before After 

I TOP 12 ..... . .......... NExrT""······· .. r .. :iT" ... . 
· ··· ··········s1~~k· 1, .......... ··err ... . 

Memor\j 

FIGURE 3.5: STACK EFfECTS OF SW AP 

DROP pops the Parameter Stack, dropping the top element. That element is lost, 
and is not used in subse uent 0 erations. r 
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3.7.4 OVER 

ovER copies and ushes the third Parameter Stack element into the top location. 

3.7.5 >R 

Parameter 
Stack 

Before 

Parameter 
Stack 

After 

W TOP W ..... ·riT ............ N.Eii ........... T 3 ... ( .. . 
..... T .. 1 .. ·r .......... s~~~k ........... ··r2··c- ··· 

Memory DJ 

FIGURE 3.7: STACK EFFECTS OF OVER 

>R (called "to R") takes the information in TOP and stores it in the least 
significant 16 bits (I) of the top location of the Return Stack. This causes the 
current Code page value to be written to IPR, the most significant 5 bits of the 
top location of the Return Stack. 

Before After 

Parameter Return Parameter Return 
Stack Stack Stack Stack 

00 00 w 00 
w [A] [jJ 00 
[jJ [A] 

FIGURE 3.8: STACK EFFECTS OF >R 
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3.7.6 R> 

R> (called "R from") retrieves the information in the least significant 16 bits of 
the top element of the Return Stack and ushes it into TOP. 

Before After 

Parameter Return l;>arameter Return 
Stack Stack Stack Stack 

[j] ~ ~ [ID 
[[] 00 [2J [A] 

[A] [[] 

FIGURE 3.9: STACK EFFECTS OF R> 

3.7.7 R@ 

Ra (called "R fetch") copies the top of the Return Stack to the top of the 
Parameter Stack. 

~~~~~~~~~~"---~~~~~~-

Before After 

Parameter Return Parameter Return 
Stack Stack . Stack Stack 

[j] ~ CID CID 
[LJ [[] [gJ [[] 

[A] [LJ [A] 

FIGURE 3.10: STACK EFFECTS OF R@ 
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3.8 Interrupts 

The RTX processor may be interrupted from several sources, both from internal 
devices and from external inputs. 

The on-chip Interrupt Controller has fourteen inteq-upt request inputs. Thirteen 
of these interrupt request inputs are maskable interrupts, and one is a Non­
Maskable Interrupt (NMI) request. 

3.8.1 Maskable Interrupts 

The Interrupt Controller samples the request inputs during each instruction, 
prioritizes any active interrupt requests, and· signals the processor when an 
interrupt request is present. 

For more information about iiiterrupt acknowledgement, disabling interrupts, and 
software interrupts, see Section 6.2. 

3.8.2 Non-Maskable Interrupts (Nl\.fl) 

The NMI is an external, edge-sensitive input which requires a rising edge to 
request an interrupt. 

3.8.2.1 On the RTX 2000 

The NMI can cause the processor to perform an Interrupt Acknowledge 
cycle in the middle of such operations as Step Math instructions, Streamed 
instructions, and other operations that could result in the loss. of data or 
misoperation of the hardware if interrupted. For this reason, a "Return 
From Subroutine" should not be performed from the NMI service routine. 
Instead, the NMI handler should re-initialize the system. 
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3.8.2.2 On the RTX 2001A 

On the RTX 2001A, the NMI input bas a glitch filter circuit which 
requires that the signal that initiates the NMl must last at least two cycles 
oflCLK. . 

The NMI ·can cause the processor to p¢rform an Interrupt Acknowledge 
cycle in the middle of such operations as :step Math instructions, Streamed 
instructions, and other operations that could result in the loss of data or 
misoperation of th~ hardware if interrupted. For this reason, a "Return 
From Subroutine" should not be perform~ from the NMI service routine. 
Instead, the NMI handler should re-initialize the system. 

3.8.2.3 On the RTX 2010 

On the RTX 2010, the NMI has two modes of operation which are 
controlled by the NMI_MODE Flag (blt 11 of the CR). 

When CR bit 11 is cleared (=O), the NMI cannot be masked and can 
interrupt any cycle. This allows a fast response to the NMI, but does not 
guarantee that a Return From Interrupt will always provide correct 
operation. The NMI _MODE Flag is cl~ed at Reset. 

When the NMI_MODE bit is set{= 1), the NMI may be inhibited by the 
processor during certain critical operations, and further NMis and 
maskable interrupts are disabled until the NMI Interrupt Service Routine 
has been completed and a return has b1een executed. In this mode, a 
return from the NMI Interrupt Service Routine will allow the processor 
to resume correct execution at the point 'where it was interrupted. 

RTX 2000 Family Programmer's Reference Manual 



33 



CHAPTER4 

RTX REGISTERS 



34 RTX 2000 family Programmer's Reference Manual 



4 RTX Registers 

The three types of registers which the RTX microcontrollers use are: Stack 
Related Registers, Internal Processor Registers, and Status/Control Registers. 

At power up or Reset, the RTX registers are initialized. The reset states for the 
RTX 2000 are shown in Table 4.1. The reset states for the RTX 2001A are 
shown in Table 4.2. The reset states for the RTX 2010 are shown in Table 4.3. 
In each of these tables, the read and write capabilities of each register are 
indicated in the R/W column, where: 

R-W 

R 

w 

R/W 

* 

N 

Indicates that the register can be either read from or written to. 

Indicates a read-only register. 

Indicates a write-only register. 

Indicates that the first register is read-only and the second register 
is write-only (as in the case of the Timer/Counter and Timer 
Preload Registers). 

Indicates that individual bits in the register may be read-only or 
write-only and that the bit map for that register should be consulted. 

Indicates that the register cannot be read from or written to. 

Register addresses are given in hexadecimal, denoted by "H" here and elsewhere 
in this manual. 

The sections which follow describe each of the registers in more detail. 
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TABLE 4.1: RTX 2000 REGISTER INITIALIZATION 

ASIC INITIAUZA TION 
REGISTER ADDR VALUES R/W COMMENTS 

TOP 0000 0000 0000 0000 R-W 

NEXT ,,,, ,,,, ,,,, ,,,, R·W 

IR. 0000 0000 0000 0000 N 
! 

I OOH ,,,, ,,,, ,,,, ,,,, R·W 
01H 
02H 

CR 03H 0100 0000 0000 1000 * Jntitl"rupts disabled, BOOT=1, Byte 
Ol"dttl"-0 

MD 04H 1111 1111 1111 1111 R·W : 

SR 06H 0000 0000 0000 0000 R-W 

. PC 07H 0000 0000 0000 0000 R·W 

IMR 08H 0000 0000 0000 0000 R·W All ,fntel"ruptl i.nnasked 

SPll 09H 0000 0000 0000 0000 R·W Ff nit steck location 

SLR OBH 1111 1111 1111 1111 w Ll•i.t fol" each stack set to 255 

IVR OBH 0000 0010 0000 0000 R Read only; initial !zed to 
•No lntel"rupt Value• 

IPR OCH 0000.0000 0000 0000 R·W Inti I el fze fol" Code Pege O 

DPR ODH 0000 0000 0000 0000 R·W Jnftiellze fol" Oete Page 0 

UPll OEH 0000 0000 0000 0000 R·W Jnltlal.fze fol" Usel" Pege O 

CPR OFH 0000 0000 0000 0000 R·W lnltiellze fol" Code Page 0 

IBC 10H 0000 0000 0000 0000 * Interrupt BaseaiO, Countel"s on 
internal clocks, no l"ounding, 
use CPR fol" data accesses 

UDR 11H 0000 0000 0000 0000 R·W Usel"' Beae Addl"ess • 0 

TCOfl'l'O 13H 0000 0000 0000 0000 RIV All 'ri•l"/Countel"s set to 
TClfl'Pl 14H RIV ti•'-out sher 65536 counts 
TCUTP.2 15H RIV 

MLR 16H 1111 1111 0000 0000 R Reec:1': only; Mul t. Low Pl"oduct 

MBR 17H 1111 1111 1111 1111 R Reed: only; Mult. High·Pl"oduct 
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TABLE 4.2: RTX 2001A REGISTER INITIALIZATION 

ASIC INITIAUZA TION 
REGISTER ADDR VALUES R/W COMMENTS 

TOP 0000 0000 0000 0000 R-11 

NEXT 1111 1111 1111 1111 R-11 

IR 0000 0000 0000 0000 N 

I OOH 1111 1111 1111 1111 R·ll 
01H 
021i 

CR 03H 0100 0000 0000 1000 * Interrupts disabled, BOOTz1, 
Byte Order=O 

MD 04H 1111 1111 1111 1111 R·ll 

SR 06H 0000 0000 0000 0000 R·ll 

PC 07H 0000 0000 0000 0000 R-11 

IMR 08H 0000 0000 0000 0000 R·ll All interrupts i.wasked 

SPR 09H 0000 0000 0000 0000 R-11 Stack st•rt addresses set to 0 

SUR OAH 0000 0011 0000 0011 R·ll Stsck U'lderflow liaits set 

SVR OBH 1111 1111 1111 1111 II I/rite only; each stack overflow 
l h1i t set for INIJI. 1 tsck size 

IVR OBH 0000 0010 0000 0000 R Reed only; Interrupt Vector inlt-
!el ized to •No Interrupt• value 

IPR. OCH 0000 0000 0000 0000 R·ll Initialized for Code Page 0 

DPR. OOH 0000 0000 0000 0000 R·ll Initialized for D•t• Page 0 

UPR OEH 0000 0000 0000 0000 R·ll Initialized for User Page 0 

CPR OFH 0000 0000 0000 0000 R-11 Initialized for Code Page o 

IBC 10H 0000 0000 0000 0000 * Interrupt Base=O, Counters on 
internal clocks, no rounding, 
use CPR. for date scceHn 

UDR 11H 0000 0000 0000 0000 R·ll User Bise address set to O 

TCO/TPO 13H 0000 0000 0000 0000 R/11 All Ti•r/Counters set to 
TCl/TPl 14H R/11 ti11e-out •fter 65536 counts 
TC2fl'P2 15H R/11 

RX 16H 0000 0000 0000 0000 R-11 Scretchpad/Counting Register 

RH 17H 0000.0000 0000 0000 R·ll Scr1tchped Register 
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TABLE 4.3: RTX 2010 REGISTER INITIALIZATION 

ASIC INITIAUZA TION 
REGISTER ADDR VALUES R/W COMMENTS 

TOP 0000 0000 0000 0000 R·ll _:_ 

NEXT 1111 1111 1111 1111 R·ll 

IR 0000 0000 0000 0000 N 

I OOH 1111 1111 1111 1111 R·ll 
01H 
02H 

Cll 03H 0100 0000 0000 , 000 • Interrupts disabled, BOOT,.1, 
Byte, Order•O 

MD 04H 1111 1111 1111 ,,,, R·ll 

SR 06H 0000 0010 0000 0000 R·ll 

PC 07H 0000 0000 0000 0000 R·ll 

IMR 08H 0000 0000 0000 0000 R·ll All interrupts 1.111111skec:I 

SPR 09H 0000 0000 0000 0000 R·ll Staci st•rt mdclresses set to 0 

SUR OAH 0000 0111 0000 0111 R·ll St•c~ IS!derflow l i111its set 

SVll OBH ,,,, 1111 ,,,, ,,,, II \lrtt• only: ellCh st•ck overflow 
. li•it set for .u. st•ck size 

IVll OBH 0000 0010 0000 0000 R Relld 'only: Interrupt Vector init· 
ial Uec:I to "No Interrupt" value 

I 

IPR OCH 0000 0000 0000 0000 R-11 lnltl•l lzed for Code P•11e 0 

DPR. OOH 0000 0000 0000 0000 R·ll lniti.•lizec:I for Dat• P•11e 0 
I 

UPR OEH 0000 0000 0000 0000 R·ll lniti•lized for User P•11e 0 

CPR. OFH 0000 0000 0000 0000 R·ll lnitl•l izec:I for Code P•11e 0 

me 10H 0000 0000 0000 0000 • I nter'rupt BaseaO, .COWlters on 
internal clocks, no rlM'lding, 
use CPR. for detm accesses 

i 

UBR 11H 0000 0000 0000 0000 R·ll User 1Base mdclress •et to 0 

MXR. 12H 0000 0000 0000 0000 R·ll MAC Ext-ion Revister: LZD 0 COWlt; 
B•rrel Shifter CIM'lt 

TCO/T.PO t3H 0000 0000 0000 0000 R/11 Al l T. I mer /COW1ters set to 
TClJTPl 14H R/11 ti•-~ •fter 65536 CIM'ltl 
TC2/Tl'l 15H R/11 

i 

MLll 16H 0000 0000 0000 0000 R·ll Mui tlpl ter end MAC Low Register 

MBR 17H 0000 0000 0000 0000 R·ll Multiplier, Barrel Shifter, end LZD 
High ~egister: MAC Middle Register 
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4.1 Stack Related Registers 

These registers contain the top elements of the Parameter and Return Stacks, and 
are the implicit source and destination for many of the processor operations. 

4.1.1 TOP Register (Parameter Stack) 

The TOP Register contains the top element of the Parameter Stack, and has no 
ASIC address assignment. 

This is the primary working register for the processor, and is the implicit data 
source or destination for certain instructions. 

All ALU results are loaded into TOP. The output from TOP may be written to 
any ASIC Bus register and to external 1/0 devices. 

4.1.2 NEXT Register (Parameter Stack) 

The NEXT Register contains the second element of the Parameter Stack, and has 
no ASIC address assignment. 

During arithmetic operations, this register holds the lower 16 bits of a 32-bit 
operand. ~is also the source of data for all memory writes. 
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4.1.3 1 Register (Return Stack) 

The Index Register, I, can be accessed at three different ASIC addresses, and the 
choice of ASIC address determines the type of operation to be performed. 

As a Stack Related Register at ASIC addre8ses OOH (Hex) and OlH, I contains 
the lower 16 bits of the top element of the 21-bit wide Return Stack. IPR 
contains the other 5 bits. 'see Section 4.1.4 for more details about IPR. 

The contents of I may be accessed in either push/pop mode, in which values are 
moved to/from Return Stack memory as required, or in read/write mode in which 
the Return Stack is not affected .. 

OPERATION AETVRN ASIC 
(g--d. BIT AODRESS 
1r-wrlt•J VALUE 1111111111 REGISTER FUNCTION 

R 0 00000 D PuahN thecon~olD lnloll!lli(wllh no POP of the Return Stack) 

R 1 00000 D PuahN thecont9ntao!D lnloll!lli. then ""'°"""asub<outine Return 

w 0 00000 D Popa the conlln~ of ll!li1 Into D (with no pulh of the Return 5mck) 

w 1 00000 D Perform• a SUbfou1IM Return, thin pUlhN the conllnta of um; lnlo D ~. 
Fl 0 00001 D PuahN thecon~ o1g1n1owm POPPing the Return Stack 

R 1 00001 D PuahN the conn or D lnlo um; wt'-! POPPing the Return Slack, then 
execulHtheS~Return 

w 0 00001 D . PuaNa the con'°l'to of ll!li1lnlO0 POPping the Ponlmeter Stack 

w 1 00001 D Perform•. - Return, thin puahea the confenta of ll!li1 Into D k' 
R 0 00010 D PUlhN the conterta o!O lhlfled lell by one lli~.lntoll!lli 

(the Return Sfack: la nol Pofll)ed) · 

R 1 00010 D Puahea the contoimt o!O lhlfled lell by one~ lnlo ll!li1 (the Return 
Stack la nol ~~thin perlonna a Subroutine Rolurn 

w 0 00010 D PUlhN theconi.irta ofll!li11nlOOaaa ·-m"c:ount, Indicating that 
the next lnatruction ill lo be performed a epecified number of times; 

1~/1 the Parwnetar S~ck la PoPPed 

w J 1 00010 D Perfonne a ~tin• Return, then puahea the otrMm count lntoD "1 v 
""" -'-
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4.1.3.1 I At Address OOH 

Location OOH is used to access I without causing _any net pushes or pops of the 
Return Stack. 

Reading from this location pushes the contents of I onto the Parameter Stack. 

Reading from this location as part of a subroutine return push.es the contents of 
I onto the Parameter Stack, then performs a Return-From-Subroutine. 

Writing to this location during normal operation pops the top item on the 
Parameter Stack into 1; the original contents of I are lost. 

Writing to this location as part of a subroutine return operation first executes the 
return, then pushes the top item of the Parameter Stack onto the Return Stack. 

4.1.3.2 I At Address OlH 

I at address OlH is used to push and pop the Return Stack. 

Reading this location during normal operation pushes the contents of I onto the. 
Parameter S~ck and pops the Return Stack. · 

Writing to this location during normal operation pushes the top item from the 
Parameter Stack onto the Return Stack, popping the Parameter Stack. 

Writing to this location as part of a subroutine return operation first executes the 
subroutine return, then pushes the top Parameter Stack item onto the Return 
Stack. See Section 5 .1.1 for more information about subroutine return operation. 
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4.1.3.3 I At Address 02H (Stream Count/Loop Count) 

Reading this location pushes the contents Of I shifted left by one bit onto the 
J . Parameter Stack. The Return Stack is not popped. 

'}tff~,v'~eading this location as part of a subrou(ine return pushes the con.tents of I 
~~() f · ~ ~~ifted left by one bit into TOP (the Return Stack is not popped), and then 
~ "1 v ~ performs a Return-From-Subroutine. · 
' ' ' '1' 7',. 

Y Writing to this location during normal oper~tion pushes the top Parameter Stack 

1 

item into I as a "stream" count, indicating that the next instruction is to be 
performed ecified num er of times, the i.Parameter Stack is popped. 

Writing to this location as part of a subroutine return operation executes the 
subroutine return first, then pushes the stream count onto the Return Stack. 
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4.1.4 IPR Register (Return Stack) 

The IPR Register, at ASIC Address OCH (Hex), can be described as both a Stack 
Related Register and as a Control/Status Register. See Section 4.3.10 fo~ more 
information. This register· contains the 5 most significant bits of the top element 
of the Return Stack (the I Register contains the other 16 bits). 

Reading from or writing directly to IPR does not push or pop the Return Stack, 
but pushes or pops of the Return Stack (when reading or writing to I) do cause 
the contents of IPR to be overwritten. Writing to I during non-subroutine 
operations causes the current Code Page value to be written to IPR. 

~ 
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4.2 Internal Processor Registers 

Internal Processor Registers are not directly accessible to the programmer. 

The Instruction Register, IR, is actually a ;latch which contains the instruction 
currently being executed. This register is lc)aded directly from main memory via 
an instruction fetch, and is not accessible under program control. 

The bits of the instruction in IR are decoded to determine which operations to 
perform, to determine the location of the next instruction to be executed, and to 
provide data for immediate operations. 
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4.3 ControVStatus Registers 

The contents of the RTX microcontroller's Control/Status Registers determine the 
operating environment for the processor, and allow the processor to monitor and 
control the various I/O devices on the chip. 

J 
All internal registers are accessed through the ASIC Bus. ASIC addresses~ , 
through 23 (17 hexadecimal) are assigned to on-chip registers and devices, and 
are described in this section. Section 7. 7 describes the RTX instructions which 
access the ASIC Bus. 
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4.3.1 The Configuration Register - A~dress 03H 

The Configuration Register, CR, controls the setup/status of the RTX processor. 

Reading this location pushes the current , contents of the register onto the 
Parameter Stack. 

Writing to this location pops the top Parameter Stack item into CR, updating the 
control bits. The Interrupt Base/Control R¢gister contains additional processor 
control bits. 

The bits in CR are assigned as shown in Table 4.5. 
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TABLE 4.5: CONFIGURATION REGISTER BIT ASSIGNMENTS 

MSB IL RID tRES RES tRES RES RES RES RES RES RES SID BOOT BYTE CCY CY LSB 
ARCE ' NMIM 

IL Bit 15 Read-only; Interrupt Latch: When set to 1, 
(.MSB) indicates that an interrupt request is 

pending. See Section 6.2. 

RID Bit 14 Read-only; Read Interrupt Disable: Status 
of Interrupt Disable bit. When set to 1 , ' r indicates that interrupts are disabled. 

I Resets to 1. Use SID bit to set value. 
See Section 6.2. 

-

I 
tRES Bit 13 Reserved on the RTX 2000 and RTX 2001A. ii 
ARCE On the RTX 2010: When this bit is set, the' 

PCLK cycle for every ASIC bus read is I 
extended. See Section 5.1 for more' details. 

RES Bit 12 Reserved 

tRES Bit 11 Reserved on the RTX 2000 and RTX 2001A. ' 
NMIM On the RTX 2010: When this bit =1, re~ 

from a Non~1s, Interrupt can be made 
See Sectio' ~- n. 

l 
j 

I 
RES Bits 5·10 Reserved 

_ .--r··""•~1--<"-:.:.r'.r·.,•-,-_,. .. , .. , .• 
.;,i-r -··"'"""1.i..~~:\' ' 

SID Bit 4 Mr i te-on l y, ~ lW_ljl}'.§"'J:~ljlg,tJ.A,.S,0J:e.r:o, "'""'·'''·"'""''''''~'""" 
Set InterrupCiHsable: When set to 1, the·,,,, 
processor will not respond to interrupts. 
RID bit contains true value of Interrupt 
Disable bit. See Section 6.2. 

BOOT Bit 3 R/M; BOOT: Controls BOOT output pin. May 
be used to select boot memory on power up. 

BYTE Blt 2 R/M; Byte Order: Controls order in which 
bytes of data will be read from or written 
to memory. See Section 5.2.2.1 

' ' 

CCY Bit 1' R/M;. Coq>lex Carry: Carry bit from ALU 
extension. See Section 8.3. 

CY Bit 0 R/M; Carry: ALU Carry output. See Sect. 8.3. 

RTX Registers, Chapter 4 47 



r 

4.3.2 The :MD Register - 4.ddress 04H 

The :MD Register is used to hold intermediate values during step math operations 
(see Chapter 8). It may also be used as a general purpose scratchpad register. 

Reading this location pushes the contents of the :MD Register onto the Parameter 
Stack. 

Writing to this location pops the top Parameter Stack item into the :MD Register, 
replacing its previous contents. 

14.3.2.1 :MD On The RTX 2000 and RTX 2010 

On the RTX 2000, :MD is the Multistep Divide Register. During 
multistep divide operations, this register !holds the divisor, while TOP and 
NEXT hold the 32-bit dividend. 
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4.3.2.2 :MD On The RTX 2001A 

On the RTX 2001A, :MD is the Multiply/Divide Register. This register 
holds the divisor during step divide operations (the 32-bit dividend is in 
TOP and NEXT). During step multiply operations, this register holds the 
multiplier, while NEXT holds the multiplicand. 
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4.3.3 The SQ Register - Address OSH 

This address is a "pseudo-register" for step math operations (see Chapter 8). 

Reading this location reads the contents of the MD Register, shifts the result left 
57'by one bit, then logically OR's this value with the contents of the SR Register. 

/ ' The result is pushed onto the Parameter Stack. 

Writing to this location shifts the top Parameter Stack item left by 8 bits, then 
pops this value into the MD Register. 7 f ,_ J · J _ 

? e vtJ;, s i, 1 tu"- ' "" 7""" 

fj h 11 .f $ ? 
4.3.4 The SR Register - Address 06H 

. The Square Root Register is used to hold intermediate values during the 
calculation of square roots. It may also be used as a general purpose scratchpad 
register. 

Reading this location pushes the contents of the SR Register onto the Parameter 
Stack. 

Writing to this location pops the top Parameter Stack item into the SR Register, 
replacing its previous contents. 
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4.3.5 The PC Register - Address Om: 

The Program Counter Register, PC, contains the lower 16 bits of the address of 
the instruction following the one currently executing. 

Reading this location pushes the contents of the PC (the address of the instruction \L' 
following the one which reads the PC) onto, the Parameter Stack. ·· 

Writing to this location during normal ope~ation causes a subroutine call to the 
address contained in the top Parameter Stack item; the arame er tack is 
popped. Writing to this location as part of a subroutine return operation pushes 
the top Parameter Stack item onto the Return Stack, then executes the subroutine 
return; the Parameter Stack is popped. 

See Table 4.6 for PC Register access operations. 

TABLE 4.6: PC REGISTER ACCESS OPERATIONS 
I . 

C>PmlATIOll 11!11111N ASIC ,,,.._ BIT -.-J VAL.Ill! .,,.,,,, Al!GISTBI l'UNCTION 

A 0 00111 Ill ................. olllil!llnlolltD 

A 00111 1111 -V.-ollil!IW.toillm""'~"S..bn>utinoRotum 

w 0 00111 111!1 -·•~C.Utolho __ .,ID_ 
~ .. _. 

w 00111 Ill _ .. ""'"°""'olll!lliantoV.---·•OC<lting 
tlloS..bnlutlMROloim 
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4.3.6 The Interrupt Mask Register, IMR - Address 08H 

The bits in the Interrupt Mask.Register, IMR, cause individual interrupt requesr 
inputs to the Interrupt Controller to be enabled or disabled. When a bit is set to 
1, the corresponding input is masked (disabled). The IMR resets to all O's - all 
interrupts unmasked. Only NMI, the Non-Maskable Interrupt cannot be masked. 

Reading this location pushes the current contents of the IMR onto the Parameter 
Stack. . 

Writing to this location pops the top Parameter Stack item into the IMR, updating 
the mask values. See Table 4.7 for bit assignments. 

TABLE 4. 7: INTERRUYI' MASK REGISTER BIT ASSIGNMENTS. 

MSB RES RES SWI EIS EI4 Ell T2 T1 TO EI2 RSV PSV RSU PSU EI1 RES LSB 

RES . Bits 14·1S Reserved. Always read as O; should 
be set =O during Write operations. 

SWI Bit 1l Software Interrupt -

EIS Bit 12 External Input Pin S 

EI4 Bit 11 External Input Pin 4 

Ell Bit 10 External Input Pin l . 

T2 Bit 9 Timer/Counter 2 Interrupt 

T1 Bit 8 Timer/Counter 1 Interrupt 

TO Bit . 7 Timer/Counter 0 Interrupt , 

EI2 Bit 6 External Input Pin 2 

RSV Bit s Return Stack overflow 

PSV Bit 4 Parameter Stack overflow 

RSU Bit l Return Stack Underflow 

PSU Bit 2 Parameter Stack Underflow 

EI1 Bit 1 External Input Pin 1 

RES Bit 0 Reserved. Always reads as O. 
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4.3. 7 The Stack Pointer Register, s1* - Address 09H 

This location contains the combined registei;s for the Parameter Stack Pointer and 
Return Stack Pointer, which are accessed together. Bits 0-7 contain the pointer 
for the Parameter Stack, bits 8-15 contain the pointer for the Return Stack. 

Reading this location pushes the contents of the register onto the Parameter 
Stack. The value read for the Parameter Stack pointer will reflect the Parameter 
Stack contents after the register value is pu~hed. 

Writing to this location pops the top Parameter Stack item into the Stack Pointer 
Register. 

4.3.8 Address OAH 

The assignment and utilization of this address is different for the RTX 2000, 
RTX 2001A, and RTX 2010 Microcontrollers. 

14.3.8.1 On The RTX 2000 

This location is reserved on the RTX 2000. 
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4.3.8.2 On The RTX 2001A and RTX 2010 
' 

On the RTX 2001A and RTX 2010, th~s address is used for the Stack 
Underflow Limit Register, SUR. This register holds the underflow limit 
values for the Parameter Stack and the Return Stack, which must be 
accessed together. ' 

This register can be utilized to define. the use of substacks for both 
stacks. See Section 6.1.3 for more stack/substack configuration 
information. 
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4.3.9 Address OBH: IVR, SVR, And SLR 

This address serves as two registers, and may be utilized by either the Interrupt 
Controller or the Stack Controllers, depending on whether a read operation or 
a write operation is being performed. 

In the read-only mode, this is the Interrupt Vector Register on all RTX 2000 
Family Microcontrollers_, and is used to hold the current Interrupt Vector value. 
This register is initialized to the "No Interrupt" value. Reading this location 
pushes the value of the current vector being generated by the Interrupt Controller 
onto the Parameter Stack and clears any pending Timer/Counter interrupts. 

In the write-only mode, this address is utilized for stack limit operations by the 
Stack Controller. The specific function of this address differs depending on 
which processor is being used. 

4.3.9.1 Write-only On The RTX 2000: SLR 

In the write-only mode, this address is used.as the Stack Limit Register. 
At Reset, this register is set to its maximum value of 255. · 

Writing to this location loads new values into the Parameter Stack and 
Return Stack Limit Registers. Bit 0-7 are assigned to the Parameter 
Stack, bits 8-15 to the Return Stack, and both are accessed together. 

4.3.9.2 Write-only On The RTX 2001A: SVR 

In the write-only mode, this address is used for the Stack Overflow Limit 
Register and holds the overflow limits for the Parameter Stack and the 
Return Stack. These limits must be accessed together. The maximum 
overflow limit value for each stack on the RTX 2001A .is 64. 
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4.3~9.3 Write-only On The RTX lOlO: SVR 

In the writ<H>nly mode, this address is u~ed for the Stack Overflow Limit 
Register and holds the overflow limits for the Parameter Stack and the 
Return Stack. These limits must be accessed together. The maximum 
overflow limit value for each stack on the RTX 2010 is 256. 
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4.3.10 Index Page Register - Address OCH 

This 5-bit register contains bits 16-20 of the top item of the Return Stack. Bits 
0-3 of the Index Page Register, (IPR), contain the contents of the Code Page 
Register at the time the current subroutine was called (i.e., the memory page 
number to which the processor will return when execution of the current 
subroutine has been completed. Bit 4 contains the value of the Data Page 
Register Select Bit (DPRSEL) at the time the current subroutine was called. See 
Figure 4.1 and Section 5.2.2. 

~-------• WheN DPRSEL BHll 
atored during lntenupt 
or Subroutine Cail 

F1GURE 4.1: RETURN STACK BIT ASSIGNMENTS 

The Index Page Register provides a mechanism to access the upper bits of the 
subroutine return address. Reads and writes to the IPR do not pop or push the 
Return Stack. However, operations which push and~~·· ~e Return Stac,k fill · . ' 
overwrite the contents of IPR. These operations(1nclu · subroutine calls, . -c~---
subroutine returns, and reads and writes to the Index- egister ~LASIC-Bus-~-~~~·{k \ r \5 \-~---/'J_.) 
addresses OlH and 02H. -7· 'W. 1.-v,~ O\ \,.0.,

1
} tr'' 0 U 1 ~.< ~~'<-:_-~. +""1'"7. 01 oJ ll"'f ~ · '7 

v n ~ .. ~ . cJ r t11ot , 
Reading this location pushes the contents of the IPR onto the Paramet-er-Staek-:-- . 

Writing to this location loads a new 5-bit value into the IPR. This operation 
should be used with caution, because it will change the subroutine return address. 
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4.3.11 Data Page Register, DPR - Attdress ODH 

When the DPRSEL bit (bit 5 of the me Rbgister) is set = 1, this 4-bit register 
, ;IJ@:mains the· number of the memory page !which will be accessed by memory 

reference instructions. See Sections 4.3.14 and 5.2.1. · 

4.3.12 User Page Register, UPR -Address OEH 
. I 

I 

l'his 4-bit register contains the ·number df the memory page which will be 
accessed by User Memory Space instruqtions. See User Memory Access 
Instructions in Chapter 7. 

4.3.13 Code Page Register, CPR - Address OFH 
! 

This register contains the number of the memory page which will be accessed by 
all instruction fetch cycles. · Additionally, lif the DPRSEL bit is set =O, this 
register ~ the number. for the memoty page to be accessed by memory 
refere ce instructionso 1

1 

I 
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4.3.14 Interrupt Base/Control Register - Address lOH 

The bits in this register control special processor setup and configuration values; · 
See Table 4.8 for the me Register bit assignments.· See. Section 4.3.1 for. 
information about additional control/status bits in CR. 

TABLE 4.8: me REGISTER BIT ASSIGNMENTS 

MSB IB5 IB4 IB3 IB2 IB1 IBO TB1 TBO CYCEXT ROUND DPRSEL RES * * * * LSB 

IB0-IB5 Bits Interrupt Vector Base Address: Provides bits 10-15 of 
10-15 I.nterrupt vector generated by the Interrupt Controller 

during an INTA cycle. See Section 6.2. 

TBO Bit 8 Timer Clock Select: Determine the source for the i~ 
TB1 Bit 9 clock signals for the 3 Counter/Timers. See Sec. ~-~ 

CYCEXT Bit 7. CYCEXT on the RTX 2000 and 2001A: When =1, extends bus 
cycle by 1 PCLK period.for every INTA cycle or User 
Memory Instruction cycle. See Sec. 5.1.1 and 5.1.2. 
CYCEXT on the RTX 2010: Al lows extended cycle length · 
for User Memory Instruction cycles. See Sec. 5.1. 

ROUND Bit 6 On the RTX 2000 and RTX 2010: ROUND option; when set 
to 1, the least significant 16 bits of the 111Jltiplier 
output are rounded into the most significant 16 bits. 
See Section 6.3. 
On the RTX 2001A: Reserved; should be set to 0 during 
write operations. 

DPRSEL Bit 5 Data Page Register Select: Determines whether source 
0 ()'1-.-0 of bits 16-19 of Memory Address Bus are from CPR or 

DPR for memory access instructions. See Sec. 5.2.2. 

* Bits On the RTX 2000, these bits are reserved and should be 
0-4 set to 0. 

On the RTX 2010 and RTX 2001A, these are used as read-
only stack controller flags where: 

Bit 0 Fatal Stack Error Flag; 
Bit 1 Parameter Stack Underflow Flag; 
Bit 2 Return Stack Underflow Flag; 
Bit 3 Parameter Stack Overflow Flag; 
Bit 4 Return Stack Oyerflow Flag. 

_J_ _J_ J 
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4.3.15 User Base Register, UDR - A4dress llH 

The contents of this register point to the beginning of a 32 word memory block 
which will be used for all User Memory A¢cess instructions. See Section 5.2.3 
for information about User Memory Space.: · 

4.3.16 Address 12H 

The function of this address is determined by the RTX processor being used. 

14.3.16.1 On The RTX 2000 and ~TX 2001A 

This location is reserved on the RTX 2000 and RTX 2001A. 
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4.3.16.2 On The RTX 2010: MXR 
The MAC Extension Register, MXR, is a! 16-bit read/write register which 
holds the most significant 16 bits of th;e MAC Accumulator. For the 
Barrel Shifter instructions, this register! holds the shift count. For the 
Leading Zero Detector instructions, the leading zero count is stored in 
this register. 

' 
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4.3.17 Timer/Counter 0 - Addr~ 13H 

Reading this location pushes the current contents of Timer/Counter 0 onto the 
Parameter Stack. See Section 6.4 for more information about Timer/Counters. 

Writing to this location loads the pre-load register for Timer/Counter 0. 

4.3.18 Timer/Counter 1 - Addr~ 14H 

Reading this location pushes the current contents of Timer/Counter 1 onto the 
Parameter Stack. See Section 6.4 for more information about Timer/Counters. 

Writing to this location loads the pre-load register for Timer/Counter 1. 

4.3.19 Timer/Counter 2 - Addr~ lSH 

Reading this location pushes the current contents of Timer/Counter 2 onto the 
Parameter Stack. See Section 6.4 for more information about Timer/Counters. 

Writing to this location loads the pre-load register for Timer/Counter 2. 
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4.3.20 Address 16H 

Operations using this address depend upon :Whether the RTX 2000, RTX 2010, 
or the RTX 2001A Microcontroller is being used. 
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4.3.20.1 RTX 2000 - MLR 

On the RTX 2000, this address is the Multiplier Low Register, MLR, and 
is used with the RTX 2000 on-chip hardware multiplier. 

Reading this location pushes the lower' 16 bits of the multiplier output 
onto the Parameter Stack. The contents of TOP are pushed into NEXT, 
but NEXT is not pushed onto the stack. 

The MLR Register is a read-only regist~r on the RTX 2000. 

4.3.20.2 RTX 2001A - RX, Scratehpad/Counting Register 

On the RTX 2001A, this address is theiRX Register. The RX Register 
is a general purpose Read/Write scratch pad register. Special 
instructions are available to increment br decrement RX in one cycle. 
This allows the RX register to be easily utilized as a 16-bit program 
controlled counting register. 

Incrementing the register contents beyond the "all ones" state results in 
a wrap to the "all zeros" state. Decrem¢nting the register below the "all 
zeros" state results in a wrap to the "alt ones" state. 

4.3.20.3 RTX 2010 - MLR 

On the RTX 2010, this address is for the Multiplier Low Register, MLR, 
and holds the least significant 16 bits of the 32-bit product generated by 
the on-chip hardware multiplier. This ~egister is also used to hold the 
least signiticant l(i bits of the MAC Accumulator, and Barrel Shifter. 
See Section 6.3.2 for information about the Multiplier/Accumulator. 
The MLR can be read or written on the !RTX 201:0. 
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4.3.21 Address 17H 

Operations at this address depend upon whether the RTX 2000 Microcontroller 
or the RTX 2001A Microcontroller is being used. 

4.3.21.1 . RTX 2000 - MHR 

On the RTX 2000, the Multiplier High Register, MHR, is used with the 
on-chip hardware multiplier. 

Reading this location pushes the upper 16 bits of the multiplier output 
onto the Parameter Stack. The contents of TOP are pushed into NEXT, 
but NEXT is not pushed onto the stack. The MHR Register is a read-only 
register on the RTX 2000. 

14.3.21.2 RTX 2001A - RH 

On the RTX 2001A, this address is for the RH Register. This is a 16-bit 
scratchpad register for data storage, which provides faster access than 
access to memory or a location buried in the stack. 

4.3.21.3 RTX 2010 - MHR 

On the RTX 2010, the Multiplier High Register, MHR, holds the most 
significant 16 bits of the 32-bit product generated by the on-chip 
hardware multiplier. If the me Register's ROUND bit is set, this 
register contains the rounded 16-bit output of the multiplier. In the 
Accumulator context, this register holds the middle 16 bits of the MAC, 
or the most significant 16 bits of the Barrel Shifter. See Section 6.3.2 
for information about the Multiplier/Accumulator. 

RTX Registers, Chapter 4 61 



I 
62 RTX 2000 Family Programmer's Reference Manual 

I . . 



CHAPTER 5 

EXTERNAL BUS INTERFACE 
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5 External Bus Interfaces 

Addresses for access to external memory or ASIC devices are output via either 
the Memory Address Bus (MA19-MA01) or the ASIC Address Bus (GA02-
GAOO). 

External data is transferred by the ASIC Data Bus (GD 15-GDOO) and .the 
Memory Data Bus (MD15-MDOO), which are both bidirectional buses. 
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5.1 ASIC Bus Interface 

The ASIC Bus services both internal processor core registers and the on-chip 
peripheral registers, and eight external off-~hip ASIC Bus locations. 

All ASIC Bus' operations require a single cycle to execute and transfer a full 16-
bit word of data. The external ASIC Bus maps intO the last eight locations of the 
32 location ASIC Address Space. The thre¢ least significant bits of the address 
are available as the ASIC Address Bus .. S~ Table 5.1 for the address map. 

i 

TABLE 5.1: ASIC BUS MAP 

i 

ASIC BUS SIGNAL 
I ASIC ADDRESS 

GA02 GAOO GAOO 

0 0 0 
' 

18H 

0 0 1. ' 19H 
I 

0 1 0 lAH 

0 1 1 ! lBH 

1 0 0 lCH 

1 0 1 lDH I 
I 
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5.1.1 RTX 2000 and RTX 2001A Extended Cycle Operation 

On the RTX 2000 and RTX 2001A, bus cycle timing can be extended by 
1 PCLK period to allow the use of some slow memory devices without 
requiring the addition of external Wait states. When the CYCEXT bit (IBC 
bit 7) is set equal to 1, extended cycles are used for all User Memory and 
Interrupt Acknowledge cycles. 
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5.1.2 RTX 2010 Extended Cycl~ Operation 

On the RTX 2010, the user has the option of independently extending bus 
cycle operations by 1 PCLK period for either User Memory Cycles or for 
ASIC Bus ~ead operations. This proyides the ability to interface to some 
peripherals and slow memory device8 without using externally generated 
Wait states. 

Setting the Cycle Extend bit (CYCEXT), bit 7 of the me Register, will 
cause extended cycles to be used for all accesses to User memory. 

Setting the ASIC Read Cycle Extend bit (ARCE), bit 13 of the CR Register, 
I 

will cause extended cycles to be used for all Read accesses on the external 
ASIC Bus. 

Both the CYCEXT bit and the ARCE bit are cleared on Reset. 
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S.2 Memory Interface 

The RTX processors directly address 512K words of memory, divided into 16 
pages of 32K words each. 

The memory page currently being addressed is ·selected by one of three 4-bit 
"address page" registers, depending on what type of memory access 'is being 
performed. 

The RTX addresses 3 types of memory space, each with an associated address 
page register. These are Code space, Data space, and User space. 

• Code Memory Space is accessed by all instruction fetch operations. 
See Section 5.2.1. 

• Data Memory Space refers to all memory locations accessed by 
memory reference instructions. See Section 5.2.2. 

• User Memory Space provides efficient access to a block of 32 words 
which may reside anywhere in the processor's memory space. See 
Section 5.2.3. 

The RTX instruction set includes classes of instructions for referencing each type 
of memory space. With the exception of instruction fetches and streamed MAC 
operations, RTX memory accesses involve the TOP and NEXT registers. 

The TOP register contains the address of the memory location -to be read or 
written. The NEXT Register interfaces to the Memory Data Bus. For memory 
writes, the value contained in NEXT is written to the location addressed by the 
contents of TOP. For memory reads, the contents of the memory location 
addressed by the contents of TOP are loaded into NEXT, then the stack is popped, 
dropping the address and leaving the memory data in TOP. 
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The RTX' s · memory reference instructions have various forms which determine 
the net stack effect of the memory read or write. D~pending on the instruction 
format, the contents of TOP and NEXT . may be ove~ritten by memory data, 
preserved on the stack, or modified through ALU operations. 

The RTX's 20-bit Memory Address Bus.is composed of the 16-bit address from 
the TOP register, and 4 bits from the appropriate address page register. 

The Code Page Register is used for all references to Code. memory space, and 
the Data Page or Code Page Register for all references to Data Space. The Code 
and Data Page Registers may point to the same memory page, as in a system 
containing all RAM memory, or to differel'.lt pages, as in a system with mixed 
ROM and RAM. Additionally, the CPR and'DPR may point to the same page for 
small RAM/ROM systems. User Space addresses are a special case, and are 
discussed in Section 5.2.3. 

The page address registers may be read or' written by using ASIC Bus access 
instructions (see Chapter 7). The registers may be read at any time to determine 
the current active memory pages. 
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5.2.1 Code Memory Space 

Code memory space contains machine instructions to be executed by the RTX 
processor. 

5.2.1.1 Subroutine Calls and Returns 

RTX subroutine calls take place within the memory page specified by the Code 
Page Register. Any instruction with Bit 15 (the most significant bit) set to 0 will 
cause a subroutine call to the address contained in the lower 15 bits of the 
instruction. The address to be called is calculated by shifting the value contained 
in the instruction left by one bit and inserting a zero in the least significant bit. 
For example, the machine instruction 321 lH (Hex) will cause a subroutine call 
to location 6422H. See Table 5.2. 

Long Calls may be made to a memory page other than the current Code page by 
first loading the appropriate page number into the Code Page Register, then 
executing the subroutine call. 

Loading a value into the Code Page Register performs two special functions. 
First, the .effect of loading the Code Page Register is delayed by one instruction, 
so that the instruction following the load instruction is fetched from the current 
code page. Second, interrupts are disabled for one clock cycle following the load 
instruction. This guarantees that the instruction following the load (typically the 
Call instruction) will be executed without an intervening Interrupt Service 
Routine which might corrupt the contents of the registers. 

Subroutine calls save their 21-bit return address on the Return Stack(~­
element is composed of the Index Register and the Index Page Register). As 
subsequent calls occur, the storing of subroutine return addresses in IPR and I 
causes the previous contents of IPR and I to be pushed into the Return Stack. 
The 21-bit return address is contained in the Index Register and the Index Page 
Register and consists of the following: 
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Index Register (I), at address OlH 

• Bit 0 Set to 1 if call results from an interrupt acknowledge, 0 
otherwise. As indicated by "i" in Figure 5.2. 

• Bits 1-15 Word address to which to return (bits 1-15 of Program 
Counter). The least significant bit of the return address is 
implicitly 0 since insillictions are always fetched on word 
boundaries. 

Index Page Register (IPR) 

• Bits 0-3 

• Bit 4 

Code page to which to return 

Value of DPRSEL bit (see description of Data Memory). As 
indicated by "D" in Figure 5.2. 

I <----IPR---> I <--------------------·---·------------------> I 

I 41 31 21 11 ol1sj14l13l12l11l1ol 9[ sl 11 61 sl 41 31 21 ii ol 

D CPR 

D CPR 

~ 

D CPR 

72 

Program Counter i 

Program Counter i 

Program Counter i 
. 

FIGURE 5.2: RETURN STACK STRUCTURE 

IPR and I 
Registers 
(current 
return address) 

Top stack memory 
element of Return 
Stack (previous 

return address) 

Second stack 
memory element 

(etc.) 
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Example: Code executing at location 1220H in Code Page 3 calls a 
subroutine located at address 3322H in Code Page 4. See Table 5.2. 

TABLE 5.2: SAMPLE SUBROUTINE CALL AND RETURN 

Actual 
Address Address 

C~cle Code Page ~PC2 ~MA19-MA012 Instruction 

1 3 1220 31220 Set CPR= 4 
2 3 1222 31222 Call location 3322H 
3 4 3322 43322 1st subroutine instruction 
4 4 3324 43324 2nd instruction 
5 4 3326 43326 Return From Subroutine 
6 3 1224 31124 1st instruction after Call 

r-----

5.2.1.2 Branching 

Branching instructions work similarly to subroutine calls. Branches may be 
performed across page boundaries by first loading the Code Page Register with 
the new page number (the current page plus 1 for forward branches, the current 
page minus one for backward branches). See Chapter 7 for specific details on 
branch instructions. 

If the instruction following a "Load Code Page Register" instruction is not a Call 
or Branch, it will be executed, then the next instruction will be fetched from the 
memory page specified by the new contents of the Code Page Register. 
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S.2.2 Data Memory Space 

Data Memory refers to memory locations accessed by the RTX's "Data Memory 
Access" class of instructions. These would ,typically be RAM locations used for 
variables and data storage. · 

S.2.2.1 Memory Page Selection 

The memory page referenced by data mempry instructions may be selected by 
either the Data Page Register or the Code Page Register. The DPRSEL bit (Data 
Page Register Select bit, IBC bit 5) det~es which register will be used. 

When DPRSEL = 0, all main memory acc¢sses will occur in the memory page 
addressed by the Code Page Register .. This. is the default mode. In this mode,· 
code and data memory spaces to reside in the same memory page, and would 
typically be used in systems with 64K bytes or less of memory. . In such a 
system, the Memory Address Bus bits gen~rated by the page select logic (bits 
MA19-MA16) would not be required. · 

When DPRSEL = 1, all main memory acc$ses will occur in the memory page 
addressed by the Data Page Register. The Data Page Register may point to the 
same page as the Code Page Register, or to a separate page. ' 

The state of the DPRSEL. bit may be controlled through three methods. First, 
DPRSEL is directly readable and can be set ;ls a bit in the Interrupt Base/Control · 
register. Second; it may be set or reset in one clock cycle by special forms of 
the Register read/write instructions pertaining to the Data Page Register (see. 
~Predefined ASIC Bus Instructions" in Chap~er 7). Third, DPRSEL is saved as 
bit 4 of the Index Page Register during subroutine calls. The value in IPR may 
be modified by a subroutine; the new value will be written into the DPRSEL bit 
and take effect as soon as a Subroutine Return instruction is executed. 
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5.2.2.2 Memory Access Mode Selection 

To support the use of shared memory interfaces with other processors, the RTX 
can be configured to access Data Memory in either of two modes which. 
determine whether the byte order in memory will be High-Low (Mode 0) which 
is the default mode, or Low-High (Mode 1). Bit 2 of the Configuration Register 
is 'used to select the Data Memory Access Mode. 

The default, Mode 0, is selected· when CR bit 2 = 0. This means that the most 
significant byte of data in the processor register (NEXT) will be read from or 
written to the even byte address in memory, and the least significant byte of data 
in NEXT will be read from or written to the odd byte address in memory. 

Mode 1 is selected when CR bit 2 = 1. This means that the most significant 
byte of data in NEXT will be read from or· written to the odd byte address in 
memory, and the least significant byte of data· in NEXT will be read from or 
written to the even byte address in memory. See Figure 5.3. 

MODEO MODEi 

MS BYTE LS BYTE I I MS BYTE LS BYTE 1 
Data Byte 
Order 
in NEXT 

1 
Data Byte 

MS BYTE LS BYTE I I LS BYTE MS BYTE Order in 
Memory 

Even Address I Odd Address I I Even Address I Odd Address I 
. FIGURE 5.3: MEMORY ACCESS MODES 

In addition to allowing selection of byte order, the RTX allows the user to 
choose between accessing Data Memory.in either 1&: · o s or 8-bit bytes. 

I 
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S.2.2.3 Memory Access Examples 

Byte reads from locations lOOOH and 1001H will both read a byte from word 
address lOOOH. CR bit 2 and bit 0 of TOP determine which byte of the memory 
location will be accessed. For 8-bit writes, pnly bits 0-7 of NEXT are transferred 
to memory. For 8-bit reads, data from m~mory is transferred into bits 0-7 of 
NEXT; bits 8-15 of NEXT are set to 0. 

Example: Reading and Writing a 16-bit value (1234H) to memory location 
lOOOH (all values are in hexadecimal) yields the results shown in Figure 5.6 at 
the. end of the first cycle. 

76 

Memory Read : 

CR bit 2 = o 
Memory 1000 1001 

TOP 

NEXT 

12 34 

CR bit 2 = 1 
1000· 1001 

12 34 

Memory Write 

TOP 

NEXT 

CR bit 2 = o 
1000 

1234 

Memory 1000 1001 

I 12 I· 34 I 
I I I 

CR bU 2 = 1 

1000 

1234 

1000 1001 

I 34 I 12 I 

FIGURE 5.6: 16-BIT READ/WRITE TO EVEN MEMORY ADDRESS 
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The least significant bit of the memory address contained in TOP may also be 
used to control the Byte-swapping feature. If the LSB of TOP is 1 when 
performing a 16-bit memory access, then an odd byte address is being accessed. 
This means that the same word address will be read or written, but the bytes of 
the word read or written to memory will be swapped. 

Accessing a word with the LSB of the address set to 1 effectively inverts the Byte 
Order bit. 

Example: Reading and Writing a 16-bit value (1234H) to memory location 
1001H (all values are in hexadecimal) yields the results shown in Figure 5.7 at 
the end of the first cycle. 

Memory Read 

CR bit 2 = o 
Memory 1000 1001 

12 34 

TOP 

NEXT 

CR bit 2 = 1 
1000 1001 

12 34 

l1001l 
rw.-1 

Memory Write 

CR bit 2 = o CR bit 2 = 1 

TOP 1001 1001 

NEXT 1234 · 1234 

Memory 1000 1001 1000 1001 

I 34 I 12 I I 12 I 34 I 
I I I I I I 

FIGURE S. 7: 16-BIT READ/WRITE TO ODD MEMORY ADDRESS 

External Bus lnteiface, Chapter 5 77 



The Byte Order bit also affects 8·bit memory accesses; If the Byte Order bit is 
set to 1, the LSB of the address contained ip TOP is inverted before performing 
the memory read or write. Following are ~o examples. 

. ' 

. Example: Reading and Writing an 8-bit value to memory location lOOOH yields 
the the results shown in Figure 5.8 at the end of the first _cycle: 
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Memory Read ' 

CR bit 2 = o 
Memory 1000 1001 

TOP 

NEXT 

12 34 

CR t!it 2 = 1 
1000 i 1001 

12 : 34 

Memory Write : 

CR bit 2 = o CR bit 2 = 1 

~ 
TOP 1000 

NEXT 2 0012 
l 

:T 
y ·y 

Memory I 12 I nc I I nc 112 I 
l 

1000 1001 1000 1001 

nc .. not changed 

FIGURE 5.8: 8-BIT. READ/WRITE TOi EvEN MEMORY ADDRESS 
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Example: Reading and Writing an 8-bit value to memory location lOOlH yields 
the results shown in Figure 5.9 at the end of the first cycle. 

Memory Read 

CR bit 2 = o CR bit 2 = 1 
Memory 1000 1001 1000 1001 

12 12 34 

TOP ~ ~ NEXT 4 2 

Memory Write 

TOP 

NEXT 

CR bit 2 = o 

~ ,. 

Memory I nc I 12 I 
1000 1001 

CR bit 2 = 1 

~ 
12 I nc I 

1000 1001 

nc = not changed 

FIGURE 5.9: 8-BIT READ/WRITE TO ODD MEMORY ADDRESS 
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S.2.3 User Memory Space 

User Memory space is a block of 32 words ;which the RTX processor can access 
without having to first calculate an address and load it into TOP; The logical 
address to be referenced within the 32-wo[d block is embedded in the machine 
instruction which accesses the memory loc.tion. 

User Memory space would typic3lly be used to hold data which must be accessed 
frequently, such as system param~ers or ~ntext save areas in a multi-tasking 
system. See Chapter 7 for descriptions of the User Memory Reference 
Instructions. · 

The physical address tO be accessed when addressing User Memory space is 
derived from several components, shown in Figure 5.10. 

The User Page Register (UPR bits 03-00) p9ints to the memory page to be used 
for User Memory Access. ·The User Base Address Register (UDR bits 15-06) 
contains the offset for the particular 32-word block to be accessed by User 
Memory Instructions. The exact word in thf' 32-word User block to be accessed 
is specified by the address contained in t:Qe lower 5 bits of the User Access 
Instruction. 

. . . ' 

As indicated in Figure 5.10, bits 05-01. of the UDR Register are logically OR'ed 
with the 5 address bits embedded in the User Access Instruction (IR bits 04-00), 
and the results yield the next five memory address bits (MA05-MA01). Because 
of the logical OR which takes place, only the ten most significant bits of UDR 
should be used to specify the User Base Address, since setting the lower bits will 
have the effect of reducing the user block s~e by duplicating addre8ses. 

Finally, since User accesses are always on ·word boundaries, bit 0 of the UDR 
should always be zero. · 

Table 5.3 provides some samples of addresses, as determined by the contents of 
UPR, UDR, and IR. 
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RESERVED* ·-----' 
MA18 ----------' 
MA18 
MA17 -----------------
MA18 

ESS I USER BASE 
ADDR 
REGISTER 

llmD ] 
I 1~~13~1111Q918l7..L8..L5..14l3_i~ 1_i0] 

MA15 -MA08~ 

--.~ MA05 

MA04 

MA03 

MA02 

MA01 

---
..... 

INSTRUCTION 
REGISTER 

~ 

~~ 
'::::! 
_r [ 

- -"'£. 

NOT USED TO 
GENERATE 

THIS ADDRESS 
-1. 

~14f1-m111~e'aI7'e's'4IaT2T1ToJ 

DD J 

• 

I 

FIGURE S.10: USER MEMORY ADDRESS COMPONENTS 
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TABLE 5.3: USER MEMORY ADDRESS EXAMPLES 

UPR (4 bits) UBR (10 bits) Address field CS bits) Actual Address (20 bits) 
from IR 

OH 

2H 

2H 

1240H 

3140H 

3310H 

03H 

OFH 

1Fli 

01246H 

2315EH 

2333EH 

Note that in the third example some locations within the 32-word block will not 
be accessible because bit 4 in the User Base Register is set to 1 and will cause 
the corresponding bit of the address to always be set due to the OR operation. 

By adjusting the contents of the User Page Register and User Base Register, an 
application may have any number of 32-word User spaces (up to 1 megabyte). 

The byte-swapping operations described for the Data Memory accesses do not 
affect User Memory accesses. 
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CHAPTER 6 

· ON-CHIP PERIPHERALS 
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6 On-Chip Peripherals 

The RTX 2000 Series microcontrollers contain hardware to support many of the 
functions typically needed in real-time control systems. These include two Stack 
Controllers, an Interrupt Controller, and three 16-bit Counterffimers. 

I 
In addition, the RTX 2000 offers an on-chip 16-by-16 Hardware 
Multiplier, while the RTX 2010 offers an on-chip Multiplier/ 
Accumulator, Leading Zero. Detector, 32-bit Barrel Shifter, 
hardware floating point support, and multi-tasking stack support. 

All on-chip peripheral devices are accessible through the ASIC Bus by the use 
of ASIC Bus Read and Write instructions. The contents of the TOP register may 
be written to the devices, and the outputs of the devices may be read through the 
ALU into the TOP register. 

This section contains the information necessary for programming the On-Chip 
Peripheral devices. Refer to Chapter 4 for more information about the ASIC Bus 
addresses for each .device. 
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6.1 Stack _controllers 

Each RTX Microcontroller contains two identical stack controller circuits, one 
for the Parameter Stack, and one for the Return Stack. The RTX Stack 
Controllers utilize stack pointers and stack limits for control of stack operations. 
Specific details of how the stack controllers· work are determined by the type of 
processor being used. 

I 
I 
I 
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On the RTX 2000, operation of the Pmgrammable Stack Controllers 
depends on the contents of two registers, the Stack Pointer Register 
(SPR), and the Stack Limit Register (SLR). 

On the RTX 2001A, operation of the Programmable Stack 
Controllers depends on the contents of three registers. These 
registers are the Stack Pointer Register (SPR), the Stack Overflow 
Limit Register (SVR), and the Stack Underflow Limit Register 
(SUR). 

On the RTX 2010, operation of the Programmable Stack Controllers 
depends on the contents of three registers. These registers are the 
Stack Pointer Register (SPR), the Stack Overflow Limit Register 
(SVR), and the Stack Underflow Limit Register (SUR). To use these 
registers to perform Multitasking operations, see Section 6.1.3 .2. 
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6.1.1 Stack Pointer Operation 

The Stack Pointers for both stacks are combined into one 16-bit register for 
access through the ASIC Bus. This register may be used to read and write both 
stack pointers in parallel. The stack pointers are used to determine the "top" 
location in stack memory for each stack. 

6.1.1.1 Stack Pointers For the RTX 2000 

On the RTX 2000, the value for each stack pointer is initialized to 
a value of 0 at reset, and can· range from 0 to 255. Each stack 
pointer indicates the position of the "top" item in stack memory, 
which contains the data that was most recently pushed into the 
stack. See Figure 6.L 

FIGURE 6.1: RTX 2000 STACK CONTROL 
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The Stack Pointer Register is at ASIC address 09H, and may be 
used to read and write both stack pointers. Bits 0-7 contain the 
stack pointer value for the Paramete~ ~tack, while bits 8-15 contain 
the pointer value for the Return Stac.k (see Figure 6.2). 

PS Pk Parameter 
Stac Pointer 
RSP1.Retum 
StaCK Pointer 

FIGURE 6.2: RTX 2000 STACK POINTER REGISTER 

During a stack push operation, the s:fR is. incremented by 1 before 
the new item is pushed onto the stack (i.e., when the operation 
begins, the register contains the address of the next stack location 
to be written for each stack). The Stack Pointer may be set to a 
new value by writing to SPR; the value written to the register should 
be one less than the address of the first location to be written. 

During a stack Read operation, the pointer indicates the next. item 
which can be popped from the stack memory. After that item has 
been popped, the stack pointer is decremented by 1. Since reading 
the stack pointer pushes a value onto qie Parameter Stack, the value 
read will be 2 more than the number of items on the Parameter 
Stack prior to reading the Stack Poin~er Register. 

Stack Underflow on the RTX 2000 '- The SPR monitors the total 
number of items on the stacks, and will generate a "stack 
underflow" interrupt request if mor~ items are popped from the 
stack than were pushed onto it. The: underflow signals are fed to 
the Interrupt Controller (see Sectio1;1 6.2) and may be masked 
through the Interrupt Mask Register 0MR). 
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6.1.1.2 RTX 2001A and RTX 2010 Stack Pointers 

On the RTX 2001A and RTX 2010, the value for each stack pointer 
is initialized to a value of 0 at reset. On the RTX 200 lA the stack· 
pointer v8Iues can range from 0 to 63; on the RTX 2010 they can 
range from 0 to 256. 

Each stack pointer indicates the position of the "top" item in stack 
memory, which contains the next stack element to be accessed in a 
stack write operation. After a stack write ("push") operation, the 
stack pointer is incremented. 

In a stack read operation, the stack memory location with an address 
one less than the pointer location will be accessed. After a stack 
read ("pop") the pointer is decremented. See Figure 6.3 .. 

8TACK MllllORY 
CON ·CllPI 

8TACIC MEMORY 
CON ·CllPI 

FIGURE 6.3: RTX 2001A/2010 STACK CONTROL 
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On the RTX 2001A, bits 0-5 contain the stack pointer value for the 
Parameter Stack, while bits 8-13 contain the pointer value for the 
Return Stack. See Figure 6.4. 

.__ __ PSP, Parameter Stack 
Pointer 

....__ _____ ReMrnd* 

'----------- RSP, Return Stack 
Pointer 

'-------------- ReMrnd* 

FIGURE 6.4: RTX 2001A STACK POINTER REGISTER 

On the RTX 2010, bits 0-7 contain the stack pointer value for the 
Parameter Stack, while bits 8-15 contain the pointer value for the 
Return Stack. See Figure 6.4. 

[ . IDD J 
l15-114 J.0_(12 tt 11>-1 e 1aI7_i a J. s-14I3_L 2_L 1 Joj 

'(.___ ___ PSP, Parameter Stick 
Pointer 

'----------- RSP, Return Stack 
Pointer 

FIGURE 6.5: RTX 2010 STACK POINTER REGISTER 
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6.1.2 Stack Limit Operation 

Stack limits are used to prevent data stored in the stack from being overwritten. 
Since the stacks wrap around, existing data on the stack will be overwritten by 
the new data when an overflow occurs. Underflows occur when an attempt is 
made to pop data off an empty stack, causing invalid data to be read from the 
stack. Since the processor can take up to four clock cycles to respond to an 
interrupt, the values set into the stack limit registers should include a safety 
margin which allows valid stack operation until the processor executes the 
interrupt service routine. 

On the RTX 2000, RTX 2010, and RTX 2001A, a buffer zone may 
be set up so that stack error interrupts are generated prior to an 
actual overflow. In addition, the RTX 2001A and RTX 2010 
Underflow Limit Registers provide the capability to define an 
underflow buffer. 

The RTX 2000 Family processors utilize ASIC Address OBH for the 
16-bit, write-only register which contains the maximum stack size 
limits for the Parameter and the Return Stacks. On the RTX 2000, 
this register is called the Stack Limit Register, (SLR). On the RTX 
2001A and RTX 2010, it is called the Stack Overflow Limit 
Register, (SVR). 

6.1.2.1 Stack Limits For the RTX 2000 

On the RTX 2000, the maximum limit for the Parameter Stack is in 
bits 0-7 of the Stack Limit Register; bits 8-15 contain the maximum 
limit for the Return Stack (see Figure 6.6). These limit values 
determine the number of items which may be pushed onto each 
stack before the Interrupt Controller will generate a "Stack 
Overflow" interrupt signal. The Limit Register for both stacks must 
be initialized on powerup or reset, if stack error interrupts are to be 
used. 
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6.1.2.2 

PSL. Parameter 
~-.Slack Limit 

RSL Retum 
Stack Limit 

JilGUllE 6.6: KTX 20M STACK UMIT REGisrEll 

Stack Limits For the RTX 2001A 

The RTX 2001A ·and RTX 2010 Microcontrollers utilize two 
registers to provide stack limit control. They are the Stack 
Overflow Limit Register, SVR at ASIC address OBH, and the Stack 
Underflow Limit Register, SUR at ASIC address OAH; SVR is write­
only register. 

Overflow limits: The overflow limit is the number ofitems which 
may be pushed onto the stack before an interrupt will be detected. 
Bits 0-5 of the Stack Overflow Limit Register contain the maximum 
limit for the Parameter Stack, and bits 8-13 contain the maximum 
limit for the Return Stack (see Figure 6.7). 

PVL: Parameter 
Slack Overflow Llml 
Reurved, •hould be HI 
• O during Wrlle operallona 

RVL: Relum Slack 
Overflow. Llmll 
Renrved, ahould be nl 
• O during Wrlle operallon• 

JilGUllE 6.7: KTX 2001A STACK OVERFLOW LIMITS 
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Underflow limits: Bits 3-7 of the Stack Underflow Limit Register 
contain the underflow limit for the Parameter Stack, and bits 11-15 
contain the underflow limitfor the Return Stack. See Figure 6.8. 

PSF:· Parameter Stack 
Start Flag 

Parameter Subatack bl: 
= 0: two 32 word stacks 
= 1: one 84 word alack 

Reaerved* 
.__ ___ PSU: Parameter 

Stack Underflow Limit 
O - 31 word• from 
bottom of stack 

'------- RSF: Return Stack 
Start Flag 

'-------- Return Subatacka bl: 
= 0: two 32 word alacks 
= 1: one 84.word alack 

'--------- Reaerved * 
....._ ________ ...,... RSU: Return Stack 

Underflow Limit 
O - 31 words from 
bottom of stack 

F1GURE 6.8: RTX 2001A STACK UNDERFLOW LIMITS 

6.1.2.3 Stack Limits For the RTX 2010 

The RTX 2010 Microcontroller utilizes two registers to provide 
stack limit control. They are the Stack Overflow Limit Register, 
SVR at ASIC address OBH, and the Stack Underflow Limit 
Register, SUR at ASIC address OAH. 

Overflow limits: The overflow limit is the number of items which 
may be pushed onto the stack before an interrupt will be detected. 
Bits 0-7 of the Stack Overflow Limit Register contain the qiaximum 
limit for the Parameter Stack, and bits 8-15 contain the maximum 
limit for the Return Stack (see Figure 6.9). 
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l1s 114 1 13112J111101e1~ 61514 J 312 11101 
\ !~~------,.-~~ 

1 PVL: Parameter 
Stack Overflow Limit. 
Number of words from 
top of current aubstack 

RVL: Return Stack 
Overflow Limit. 
Number of words from 
top of current aubstack 

FIGURE 6.9: R.TX 2010 Sl'~CK OVERFWW LIMITS 

Underflow limits: Bits 3-7 of the Stack Underflow Limit Register 
contain the underflow limit for the Parameter Stack, PSU, and bits 
11-15 contain the underflow limit for the Return Stack, RSU. See 
Figure 6.10. In addition, this register is utilized to define the use 
of substacks for both stacks (see Section 6.1.3). All Stack 
Underflow Limit Register values must be accessed together. 

[ mmJ J 
[151141131~111101e18}7.L 6..J. 5.L4l3.L2.i 1..J.0J 
'----.. r---''-y-' L PSF: Parameter Stack 

Start Flag 

Parameter Substack bHs: 
• 00: eight 32 word stacks 
• 01: tour 64 word stacks 
• 10: two 128 word stacks 
• 11: one 256 word stack 

PSU: Parameter 
Stack Underflow LlmH 
0· 31 words from 
bottom of substack 

RSF: Return Stack 
Start Flag 

Return Substack bHs: 
. • 00: eight 32 word stacks 

• 01: four 64 word stacks 
• 10: two 128 word stacks 
• 11: one 256 word stack 

RSU: Return Stack 
Underflow LlmH 
0· 31 words from 
bottom of substack 

FIGURE 6.10: R.TX 2010 Sl'ACK UNDERFLOW LIMITS 
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6.1.3 Configuration Of Substacks 

The enhanced Stack Controller·logic on the RTX 2001A and RTX 
2010 allows the stack related registers to be used for configuring 
substacks. 

6.1.3.1 Substack Configuration On The RTX 2001A 

Each 64-word stack may be subdivided into two substacks under 
hardware control for simplified management of multiple tasks. Each 
substack is 32 words deep. Stack size is selected by writing to bit 
1 of the Stack Underflow Limit Register for the Parameter Stack, 
and bit 9 for the Return Stack. See Figure 6. 7. 

Substacks are implemented by making bits 5 or 13 of the Stack 
Pointer Register control bits (i.e. they are not incremented when the 
stack size is 32 words). Using this, a particular substack is selected 
by writing a value which contains both the stack pointer value and 
the substack number to the Stack Pointer Register. 

Each· stack has a Stack Start Flag which . may be used for virtual 
stacks. This is bit 0 of the SUR for the Parameter Stack, and bit 8 
of the SUR for the Return Stack. If the Stack Start Flag is one, the 
stack starts at the bottom of the stack or substack (location 0). If 
the Stack Start Flag is 0, the substack starts in the middle of the 
stack. In a stack 64 elements deep, this is location 32; In a stack 32 
elements deep, this is location 16. An exception to this occurs if 
the overflow limit in the Stack Overflow Limit Register is set for a 
location below the middle of the stack. In this case, the stacks 
always start at the bottom locations. 
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Manipulating the Stack Start Flag provides a mechanism for creating 
a virtual stack in memory which is maintained by interrupt driven 
handlers. 

Possible applications for substacks include use as a recirculating 
buffer (to allow quick access for a series of repeated values such as 
coefficients for polynomial evaluation or a digital filter), or to log 
a continuous stream of data until a triggering event (for analysis of 
data before and after the trigger. without having to store all of the 
incoming data), as in the case of a digital oscilloscope or logic 
analyzer. 

See Table 6.1 for control bit settings for possible stack/substack 
configurations. In Table 6.1, note the following: 

1. 

2. 

3. 

4. 

s. 
6. 

7. 

SPR is the Stack Pointer Register; SVR is the Stack Overflow 
Limit Register; SUR is the Stack Underflow Limit Register. 
PO through P15 are the SPR bits;. VO through V15 are the SVR 
bits; UO through U15 are the SUR bits. 
The Overflow Limit is the stack memory address at which an 
overflow condition will occur during a stack write operation. 
The Underflow limit is the stack memory address below which an 
l.l'lderflow condition will occur during a stack read operation. 
The Fatal limit is the stack memory address at which a fatal error 
condition will occur during a stack read or write operation. 
Stack error conditions remain in effect until a new value is 
written to the SPR. 
Stacks and substacks are circular. After writing to the highest 
location in the stack, the next location to be written to will be 
the lowest location; after reading the lowest location, the 
highest location will be read next. 

RTX 2000 Family Programmer's Reference Manual 



~ 
I 

~ 
~ ,;. 
ir 

~ ~ 

i 
~ 
0\ 

~ 
i., 

a OI 

N = = 

CONTROL BIT SETTINGS: PARAMETER STACK CONFIGURATION: 

STACK STACK RANGE 

Im! mm l!1!lil SIZE LOWEST HIGHEST FATAL UNDERFLOW LIMIT OVERFLOW LIMIT 

PS vs V4 U2 U1 uo (WORDS) ADDRESS ADDRESS LIMIT s ' 3 2 , 0 s ' 3 2 , 0 

0 x 0 0 0 x 32 .o 31 31 0 0 U6 us U4 U3 0 0 V3 V2 V1 VO 
0 x 1 0 0 0 32 0 31 1S 0 1 U6 us U4 U3 0 0 V3 V2 VI VO 
0 x 1 0 0 1 32 0 31 31 0 0 U6 us U4 U3 0 1 V3 V2 V1 VO 

1 x 0 0 0 x 32 32 63 63 1 0 U6 us U4 U3 1 0 V3 V2 VI VO 
1 x 1 0 0 0 32 32 63 47 1 1 Uil us U4 U3 1 0 V3 V2 VI VO 
1 x ~ 0 0 1 32 32 63 63 1 0 ue us U4 U3 I 1 V3 V2 VI VO .... 

>-

; 
>-n 
~ 

x 0 x 0 1 x 64 0 63 63 0 U7 U6 us U4 U3 0 V4 V3 V2 VI VO 

x 1 iC 0 1 0 64 0 63 31 1 U7 ue us U4 U3 0 V4 V3 V2 V1 VO 
x 1 x 0 1 1 84 0 63 63 0 U7 ue us U4 U3 1 V4 V3 V2 VI VO 

CONTROL BIT SETTINGS: RETURN STACK CONFIGURATION: 

STACK STACK RANGE 

!!ID l!m m SIZE LOWEST HIGHEST FATAL UNDERFLOW LIMIT OVERFLOW LIMIT 

n P13 V13 V12 U10 UI us (WORDS) ADDRESS ADDRESS LIMIT s ' 3 2 , 0 s ' 3 2 1 0 

~ 

! 
i 

0 x 0 0 0 x 32 0 31 31 0 0 U14 U13 U12 U11 0 0 V11 V10 V9 ve 
0 x 1 0 0 0 32 0 31 15 0 1 u14 U13 U12 U11 0 0 V11 V10 V9 ve 
0 x 1 0 0 1 32 0 31 31 0 0 U14 Ul3 U12 Ull 0 1 V11 V10 V9 ve 
1 x 0 0 0 x 32 32 63 63 1 0 U14 U13 U12 U11 I. 0 V11 VIO V9 ve 
1 x 1 0 0 0 32 32 63 47 1 1 U14 U13 U12 U11 1 0 V11 V10 V9 ve 
1 x 1 0 0 1 32 32 63 63 1 0 U14 U13 U12 U11 1 1 V11 V10 V9 ve 
x 0 )( b 1 x 84 0 63 63 0 U1S U14 U13 U12 U11 0 V12 V11 VIO V9 ve 
x 1 x 0 1 0 64 0 63 31 1 U1S U14 U13 U12 U11 0 Vl2 Vl1 VIO V9 ve 
x 1 x 0 1 1 64 ,0 63 63 0 UIS U14 U13 U12 U11 1 V12 Vl1 V10 V9 VB 
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6.1.3.2 · Substack Configuration On The RTX 2010 

Each 256-word stack may be subdivided into up to eight 32-word 
substacks, four 64-word substacks, or two 128-word substacks. 
This is accomplished under hardware oontrol for simplified 
management of multiple tasks. Stack size is selecte4 by writing to 
bits 1 and 2 of the SUR for the Parameter Stack, and bits 9 and 10 
for the Return Stack. 

Substacks are implemented by making bits 5-7 of the SPR (for the 
Parameter Stack) and bits 13-15 of the SPR (for the Return Stack) 
control bits. For example, if there are eight 32-word substacks 
implemented in the Parameter Stack, bits 5-7 of the SPR are not 
incremented, but instead are used as an offset pointer into the 
Parameter Stack to indicate· the beginning point (i.e. substack 
number) of each 32-word substack implemented. Because of this, 
a particular substack is selected by writing a value which contains 
both the stack pointer value and the substack number to the SPR. 

Each stack has a s·tack Start Flag which may be used for virtual 
stacks. This is bit 0 of the SUR for the Parameter Stack, and bit 8 
of the SUR for the Return Stack. 

If the Stack Start Flag is one, the stack starts at the bottom of the 
stack or substack (location 0). If the Stack Start Flag is 0, the 
substack starts in the middle of the stack. In a stack 256 elements 
deep, this is location 128; In a stack 128 elements deep, this is 
location 64; In a stack 64 elements deep, this is location 32; In a 
stack 32 elements deep, this is location 16. 

An exception to this occurs if the overflow limit in the Stack 
Overflow Limit Register is set for a location below the middle of 
the stack. In this case, the stacks always start at the bottom 
locations. · See Tables 6.2 and 6.3 for the possible stack 
configurations. Manipulating the Stack Start Flag provides a 
mechanism for creating a virtual stack in memory which is 
maintained by interrupt driven handlers. 
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Possible applications for substacks include use as a recirculating 
buffer (to allow quick access for a series of repeated values such as 
coefficients for polynomial evaluation or a digital filter), or to log 
a continuous stream of data until a triggering event (for analysis of 
data before and after the trigger without having to store all of the 
incoming data). The latter application could be used in a digital · 
oscilloscope or logic analyzer. 
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CONTROL lf!IT SETTINGS PARAMETER STACK CONFIGURATION 

SVR . SUR FATAL LIMIT UNDERFLOW LIMIT OVERFLOW LIMIT· 

V7 VI vs v• U2 Ut UO 1 I I • 3 2 t 0 1 I !i • 3 2 1 0 1 I 5 4 3 2. t o· 
.X x x 0 0 0 x P7 Pl P5 1 1 1 1 1 P7 PS P5 0 us us U4 U3 P7 PS PS 0 V3 V2 V1 VO 

0\ 

ha 
x x x 1 0 0 0 P7 PS PS 0 1 1 1 1 P7 PS PS 1 us us U4 -U3 P7 PS PS 0 V3 V2 V1 VO 
x x x 1 0 0 1 P7 PS PS 1 1 1 1 1 P7 P8 PS 0 us us U4 U3 P7 P8 PS 1 V3 V2 V1 VO 
x x 0 x 0 1 x P7 P8 1 1 1 1 1 1 P7 P8 0 U7 us us U4 U3 P7 P8 0 V4 V3 V2 V1 VO 

a x x 1 x 0 1 0 P7 P8 0 1 1 1 1 1 P7 .PS 1 07 us us U4 U3 P7 PS o· li4 V3 V2 V1 VO 
x x 1 x 0 1 1 P7 PS 1 1 1 1 1 1 P7 PS 0 U7 U8 U5 U4 U3 P7 P8 1 V4 V3 V2 V1 VO 
x 0 x x 1 0 x P7 1 1 1 1 1 1 1 P7 0 0 U7 us us U4 U3 P7 0 vs V4 V3 v2. V1 VO 

~ .... 
~ = 

~ N 

§ -~ 
.. :ii;; 

i' ~ 
.... n '< 

~ ~ 

i ~ 
,,.. :::! 

~ i 
~ 

x 1 x x 1 0 0 P7 0 1 1 1 1 1 1 P7 1 0 U7 us us (J4 U3 P7 0 vs V4 V3 V2 V1 VO 
x 1 x .X 1 0 1. P7 1 1 1 1 1 1 1 P7. (), 0 U7 us us U4 U3 P7 1 VS V4 V3 V2. v1· vo 
0 x x x 1 1 x· 1 1 1 1 1 1 1 1 0 0 . 0. U7 Uli us U4 (J3 0 VS VS V4 V3 ' V2 V1· VO 
1 x x x ·1 . 1 0 0 1 1 1 1 1 1 1 1 0 0 U7 ua us U4 U3 0 VS .VS V4 V3 . V2 V1 VO 
1 x x x 1 1 1 1 1 1 1 1 1 ; 1 0 0 0 U7 us us U4 U3 1 VS vs V4 V3 V2 V1 VO 

CONTROL BIT SETTINO PARAMETER STACK CONFIGURATION 

SVR SUR · FATALLIMIT UNDERFLOW LIMIT OVERFLOW LIMIT 

V15 V14 VtS V12 U10 UI UI 1 I 5 4 3 2 , 0 1 II s 4 3 2 , 0 1 • 5 4 3 2 1 0 

x· x x 0 0 0 x Pili .P14 P13 1 1 1 1 1 P15 P14 P13· 0 U14 U13 012 U11 P15 Pl.4 P13 0 V11 V10 V9 VB 
x x x 1 0 0 0 P15 P14 P13 0 1 1 1 1 PIS P14 Pl3 I U14 U13 U12 u11 P15 P14 P13 0 V.11 V10 vg· VB 
x x x 1 0 0 1 P15 P14 P13 1 1 1 1 1 PIS P14 P13 0 U14 U13 Ul2 U11 PIS ·p14 P13 1 V11 V10 V9 VB. 
x x 0 x a 1 x P15 P14 1 1 1 1 1 I P15 P14 0 UIS U14 Ul3 U12 t.i11 PIS P14 0 V12 V11 V10 V9 lie 
x x 1 ·x 0 ,. 0 P15 Pi4 0 1 1 ., I 1 PIS P14 1 Ul5 U14.U13 U12 U11 P15 P14 0 v12· Vil V10 V9 VB 
x x 1 x 0 1 , PIS P14 1 1 1 1 ,. 1 P15 P14 o. UIS U14 U13 U12 Ul1 P1s· P14 1 V12 V11 V10 V9. VB 
x 0 x x 1 0 x P15 1 1 1 1 1 1 1 P15 0 0 UIS U14 U13 U12 U11 1>1s 0 V13 Vl2 v11 V10 V9 va 
x 1 x x 1 0 0 P15 0 1 1 1 1 1 1 P15 1 0 U15 -U14 U1"3 Ul2 U11 P15 0 V.13 V12 V11 V10 V9 VB 
x 1 x x 1 0 1 P15 1 1 1 1 1 1· 1 P15 0 0 U15 U14 Ul3 U12 U11 P15 1 V13 Vl2 Vl-1 V10 Vll VB 
0 x x x 1 1 x 1 1 1 1 1 .1· 1 1 (), 0 ·o U15 U14 :U13 U12 U11 0 V14 V13 V12 V11 V10 V9 VS 
1 x x x 1 1 0 0 1 1 1 1 1 1 1 1 0 0 U15 U14 Ut3 U12 U11 0 V14 V13 V12 l/11 V10 V9 VS 
1· x x x 1 1 1 1 1 1 1 1 1 1 1 0 0 0 U15 U14 U13 U12 U11 1 V14 V13 i/12 V1"1 V10 V9 VB 
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CONTROL BIT SETIINOS 

SVR SUR STACK SIZE 
V7 VII vs V4 u:z U1 uo WORDS 

x x x 0 0 0 x 32 
x x x 1 0 0 0 32 
x x x 1 0 0 1 32 
x x 0 x 0 1 x 64 
x x 1 x 0 1 0 64 
x x 1 x 0 1 1 64 
x 0 x x 1 0 x 126 
x 1 x x 1 0 0 126 
x 1 x x 1 0 1 126 
0 x x x 1 1 x 2S6 
1 x x x 1 1 ,0 256 
1 x x x 1 1 1 256 

CONTROL BIT SETTINGS 

SVR SUR 
STACK SIZE 

V15 V14 V13 V12 U10 UI ua WORDS 

x x x 0 0 0 x 32 
x x x 1 0 0 0 32 
x x x 1 0 0 1 32 
x x 0 x 0 1 x 64 
x x 1 x 0 1 0 64 
x x 1 x 0 1 1 64 
x 0 x x 1 0 x 128 
x 1 x x 1 0 0 128 
x 1 x x 1 0 1 128 
0 x x x 1 1 x 256 
1 x x x 1 1 0 256 
1 x x x 1 1 1 256 

PARAMETER STACK CONFIGURATION 

STACK RANGE 

LOWEST ADDRESS HIGHEST ADDRESS 

7 II 5 4 3 2 1 0 7 II 5 4 3 2 1 0 

P7 P6 PS 0 0 0 0 0 P7 P6 P5 1 1 1 1 1 
P7 P6 PS 0 0 0 0 0 P7 P6 P5 1 1 1 1 1 
P7 P6 PS 0 0 0 0 0 P7 P6 PS 1 1 1 1 1 
P7 P6 0 0 0 0 0 0 P7 P6 1 1 1 1 1 1 
P7 P6 0 0 0 0 0 0 P7 P6 1 1 1 1 1 1 
P7 P6 0 0 0 0 0 0 P7 P6 1 1 1 1 1 1 
P7 0 0 0 0 0 0 0 P7 1 1 1 1 1 1 1 
P7 0 0 0 0 0 0 0 P7 1 1 1 1 1 1 1 
P7 0 0 0 0 0 0 0 P7 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

RETURN STACK CONFIGURATION 

STACK RANGE 

LOWEST ADDRESS HIGHEST ADDRESS 

7 II 5 4 3 2 1 0 7 II 5 4 3 2 1 0 

P15 P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1 
P15 P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1 
P15 P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1 
P15 P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1 
P15 P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1 
P15 P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1 
P15 0 0 0 0 0 0 0 P15 1 1 1 1 1 1 1 
P15 0 0 0 0 0 0 0 P15 1 1 1 1 1 1 1 
P15 0 0 0 0 0 0 0 P15 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 O· 0 0 0 0 1 1 1 1 1 1 1 1 



6.1.4 Stack Error Conditions 

Stack errors which may occur on the RTX 2000, RTX 2001A, and RTX 2010 
Microcontrollers are overflow and underflow. 

An overflow occurs when an attempt is made to push data onto a full stack. 
Since the stacks wrap around, the result is that existing data on the stack will be 
overwritten by the new data when an overflow occurs. 

An underflow occurs when an attempt is made to pop data off an empty stack, 
causing invalid data to be read from the stack. 

A buffer zone may be set up using the stack limits to cause a stack error interrupt · 
to be generated prior to an actual overflow or underflow occurs. 

102 

6.1.4.1 RTX 2001A and RTX 2010 Fatal Stack Errors 

In addition to the overflow and underflow stack errors, the RTX 
2010 and RTX 2001A provide a fatal error flag. 

A Fatal Stack Error occurs when an attempt is made to push data 
onto or to pop data off of the highest location of the substack. It 
does not generate an interrupt (since the normal stack limits can be 
used to generate the interrupt). The fatal errors for the stacks are 
logically OR'ed together to produce bit 0 of the Interrupt Base 
Control Register, and they are cleared whenever SPR is written to. 
The implication of a fatal error is that data on the stack may have 
been corrupted or that invalid date may have been read from the 
stack. 
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6.2 Interrupt Controller 

The RTX 2000 Series Interrupt Controller prioritizes 13 interrupt requests, masks 
undesired interrupts, signals the processor core when a valid interrupt has 
occurred, and provides a vector to an interrupt handler to service the interrupt. 

Inputs to the Interrupt Controller come from both internal and external sources. 
Internal sources are the stack overflow and underflow signals, the three 
counter/timers, and the Software Interrupt signal. External sources are the Non­
Maskable Interrupt' {NMI) input, and the External Interrupt pins Ell-EIS. EI 
pins 3, 4, and 5 may be shared with the Counterffimers for external event 
counting. See Section 6.4 for details. 

Except for NMI, the interrupt inputs may be individually enabled or disabled 
through the Interrupt Mask Register (IMR) at ASIC address 08H. Each bit of the 
IMR corresponds to one interrupt level;· Table 6.2 shows the bit associated with 
each level. Setting a bit to 1 disables the corresponding level. Note that the 
Interrupt Disable bit in the Configuration Register must be 0 for any maskable 
interrupts to be recognized by the core.· The NMI input may not be disabled 
through the IMR. 

When the RTX receives an interrupt request, it saves the current contents of the 
Program Counter and Code Page registers in the IPR and I registers, which form 
the logical top element of the Return Stack, then initiates an Interrupt 
Acknowledge (INTA) cycle. During the INTA cycle, the Interrupt Controller 
generates a vector to the appropriate interrupt service routine. The ~TX sets the 
Code Page Register to 0, then reads the vector from the Interrupt Controller to 
determine the address of the first instruction to execute for the interrupt service 
~~ ' 

The vector provided by the Interrupt Controller consists of three parts: 

•Bits 10-15 

• Bits 5:..9 

• Bits 0-4 

Come from bits 10-15 of the ·Interrupt 
Base/Control Register (me). 

Come from the interrupt vector and depend on 
the interrupt level; see Table 6.2. 

Are always 0. 
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The interrupt vector points into a 544 byte table located in Code Page 0 of the 
RTX memory. Each interrupt service routine is allocated 32 bytes in this table. 
If the service routine will not fit in 32 bytes, it may make calls to any address 
in the RTX's memory space. The interrupt service routine must include a 
Return-From-Subroutine instruction. 

The interrupt service Table must be located on a 1024-byte address boundary; 
that is, address bits 0-9 must be 0. The me register should be initialized with 
the upper 6 bits of the address. of the table. For example, if the table is located · 
at location lOOOH, me bits 15-10 should be set to 00010 binary. Table 6.2 
shows the interrupt service routine address associated with each interrupt level. 

The Interrupt Controller samples the interrupt request inputs during each 
instruction at the rising edge of PCLK (except when executing in streamed 
mode). If one or more inputs are active, the Interrupt Controller generates the 
vector corresponding to the input with the highest priority, and signals the core 
processor that an interrupt request is present. The core then initiates an INT A 
cycle. For the timer interrupts, which are edge triggered interrupts, theINTA 
cycle from the processor clears the highest priority timer interrupt and allows the 
Interrupt Controller to process lower priority interrupts. 

The Interrupt Vector Register, IVR, which is a read-only register at ASIC address 
OBH, contains the current vector being generated by the Interrupt Controller·. If 
no interrupt request is present, bits 5-9 of the register will contain 10000 binary. 

The IVR vector may be polled for interrupt request information. Note that a 
particular request level must be unmasked in order for the interrupt controller to 
generate a vector for it. 

Conditions may occur in which an interrupt request goes active and then inactive 
prior to the INTA cycle. An example would be a stack operation that overflows 
the stack and a subsequent stack operation that corrects the condition. If the 
interrupt is active long enough, an INT A cycle will be initiated. This results in 
the generation of a "No Interrupt" vector as a valid address and program 
execution will transfer to the location indicated. Programmers should install a 
service routine for "No Interrupt" to account for this situation. 
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Example: 

The interrupt vector table is located at 2000H. The me register should be loaded 
with the binary value OOlOOxxxxxxxxxx where xo:xxmx:x depends on system 
configuration. The Interrupt Controller would generate the following vectors: 

No interrupt 
NMI 
Ell pin 
Timer 0 
SWI 

On-Chip Peripherals, Chapter 6 

2200H 
21EOH 
21COH 
2100H 
2040H 
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TABLE 6.2: INTERRUFI' CONTROLLER 

Priority Source IMR Type Vector Address 
Bit (binary) 

0 Non-Maskable none Edge vvvv vv01 1110 0000 
Interrupt NMI 

1 El1 pin 1 Level vvvv vv01 1100 0000 

2 Parameter Stack 2 Level vvvv vv01 1010 0000 
underflow 

3 Return Stack 3 Level vvvv vv01 1000 0000 
underflow 

4 Parameter Stack 4 Level vvvv vv01 0110 0000 
overflow 

5 Return Stack 5 Level vvvv vv01 0100 0000 
overflow 

6 EI2 pin 6 Level vvvv vv01 0010 0000 

7 Timer 0 7 Edge vvvv vv01 0000 0000 

8 Timer 1 8 Edge vvvv vvOO 1110 0000 

9 Timer 2 9 Edge vvvv vvOO 1100 0000 

10 EI3 pin 10 Level vvvv vvOO 1010 0000 

11 EI4 pin 11 Level vvvv vvOO 1000 0000 

12 EIS pin 12 Level vvvv vvOO 0110 0000 

13 Software 13 Level vvvv vvOO 0100 0000 
Interrupt 

N/A No Interrupt N/A N/A vvvv vv10 0000 0000 

Where: 
vvvvvv = bits 10-15 from IBC register 
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6~2.1. Interrupt Acknowledgement 

If interrupts are enabled when the processor receives the Interrupt Controller's 
signal, it enters an Interrupt Acknowledge {INTA) cycle. During this cycle, the 
processor saves the current execution address on the Return Stack, disables 
interrupts as described in Section 3.5.2, then reads a vector from the Interrupt 
Controller which points to the address of a service routine to handle the 
particular interrupt. ·Section 6.2 describes the Interrupt Controller interface in 
more detail. 

The INT A cycle sets the least significant bit of the return address saved on the 
Return Stack to a 1, to indicate that the subroutine {Interrupt Service Routine) 
was called as a result of an interrupt. 

When the service routine executes a Return-From-Subroutine instruction to 
resume execution from the point where the processor was interrupted, the set 
LSB of the Return Stack causes interrupts to be enabled automatically. The 
Interrupt Service Routine can also re-enable interrupts, but is then subject to 
being interrupted by another interrupt. 
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6.2.2 Disabling Interrupts 

The processor can enable or disable all maskable interrupts at any time by 
controlling the state of the Set Interrupt Disable bit in the Configuration Register 
(CR bit 4). Setting this bit to 1 disables interrupts; this is the state of the bit 
when the RTX is reset. The processor will not recognize interrupts until the bit 
is reset to 0 by writing to the CR register. 

The CR register contains two bit positions associated with the Interrupt Disable 
bit. 

The Set Interrupt Disable (SID) bit is a write-only bit which is used to set or 
reset the bit under program control; this bit will always read as 0 no matter what 
the bit is set to. This provides a convenient mechanism for quickly enabling 
interrupts, whereby the CR register is read onto the Parameter Stack (reading the 
SID bit as a 0), then immediately rewritten, effectively clearing the SID bit to 0 
(enabled). This process requires only two clock cycles, eliminating the extra 
time it would take to read the register. mask the bit, then rewrite the register. 

The Interrupt Disable Status bit (CR bit 14) is a read-only bit which contains the 
true state of the Interrupt Disable bit. 

CR bit 15 indicates the status of the core interrupt request input from the 
interrupt controller. This bit may be polled to determine interrupt status when 
core interrupts are disabled. 
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6.2.3 Software Interrupt 

The RTX has a single level Software Interrupt capability. A special form of one 
of the RTX 1/0 write instructions sets a flip-flop attached to one input of the 
Interrupt Controller. If the interrupt level associated with the Software Interrupt 
is unmasked (see Section 6.2), this input causes the Interrupt Controller to 
generate a vector pointing to the service routine corresponding to the Software 
Interrupt. 

A separate· 1/0 instruction clears the Software Interrupt Request flip-flop. The 
service routine for the Software Interrupt must execute this instruction before re­
enabling interrupts or returning to normal program execution to prevent another 
SWI cycle from being executed. This interrupt request input is level-sensitive 
and will continue to generate interrupts until the flip-flop is reset. See 
"Predefined ASIC Instructions" in Chapter 7 for the machine instructions which 
set and clear the flip-flop. 

Due to internal delays in generating the interrupt request, and the fact that the 
Software Interrupt is assigned to the lowest priority level, the interrupt will not 
be serviced for two instructions following execution of the Software Interrupt 
instruction. This means that the instructions immediately following the Software 
Interrupt should not assume that the interrupt has been serviced. 

Inserting two NOPS between the Software Interrupt Instruction and the instruction 
which follows it will guarantee that the software interrupt will be serviced before 
the following instruction is executed. 
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6.3 On-Chip Hardware Math Support 

110 

For math intensive applications, the RTX 2000 Microcontroller is 
provided with a 16-bit on-chip hardware multiplier. 

The RTX 2010 is provided with a 16-bit on-chip hardware 
Multiplier/Accumulator, · 32-bit Barrel Shifter, Leading Zero 
Detector,. and hardware Floating Point support. 

The RTX 2001A does not have these features. 

6.3.1 RTX 2000 Multiplier Operation 

The hardware multiplier on the RTX 2000 multiplies two 16-bit 
numbers, yielding a 32-bit product, in one clock cycle. The 
multiplier can treat the input operands as either signed (two's 
complement) or unsigned integers, and can optionally round the 
result to 16 bits. 

The multiplier's input operands come from the TOP and NEXT 
registers. The multiplication function is activated by a special form 
of the ASIC Bus write instructions to the Multiplier High (MHR) or 
Multiplier Low Register (MLR) address. 

The form of the instruction used determines whether the operands 
will be treated as signed or unsigned values. See Section 7.7.1 for 
the exact instruction coding. Note that the multiply instructions do 
not pop the Parameter Stack; the contents of TOP and NEXT remain 
intact. 

The product is stored in the Multiplier High and Multiplier Low 
Registers. The Multiplier High Register contains the upper 16 bits 
of the product, while the Multiplier Low Register contains the lower 
16 bits. 

The registers may be read in either order, and there is no 
requirement that both registers be read. Reading either register 
moves its value into the TOP register, and pushes the original value 

. in TOP into NEXT. The original value of NEXT is lost; it is not 
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pushed onto the Parameter Stack. This permits overwriting the 
original operands left in TOP and NEXT, which were not popped by 
the multiply operation. See Figure 6.8. 

If 32-bit precision is not required, the multiplier output may be 
rounded to 16 bits. This is accomplished by setting the ROUND bit 
in the Interrupt Base/Control Register to 1. The ROUND bit 
functions independently of signed or ·unsigned mode. 

If the ROUND bit is set to one, all operations that use the multiplier 
automatically round the lower 16 bits of the result into the upper 16 
bits. The rounding is achieved by adding 8000H to the least 
significant 16 bits (during the same cycle as the multiply). Thus, 
if the ROUND bit is set, after a multiply the result will be as 
follows: 

• If the most significant bit of the MLR is set (= 1), the MHR is 
incremented and the MSB of MLR will be 0. 

• If the most significant bit of the MLR is not set ( =O), the MLR is 
left unchanged, and the MSB of the MLR will be 1. 

The multiply instructions disable interrupts during the multiplication 
cycle, and for the next two clock cycles. Reading either result 
register also disables interrupts during the read, and for the next 
clock cycle. This allows a multiplication operation to be performed, 
and both the upper and lower registers to be read sequentially, with 
no danger of an interrupt service routine corrupting the contents of 
the registers between reads. 
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READMH 

READ RESULTS 
I 32 • Bl Praduc:t I 

READML 

FIGURE 6.8: RTX 2000 MULTIPLIER OPERATION 

Example 1: A typical multiplication sequence without rounding 

• 1. Set ROUND bit to 0 (if not already set) 
• 2. Load multiplier and multiplicand into TOP and NEXT 
• 3. Execute appropriate signed or unsigned "multiply" 

instruction (interrupts are disabled) 
• 4. Read lower result register (interrupts are disabled) 
• 5. Read upper result register (interrupts are disabled) 

The . 32-bit product is now on the Parameter Stack, the most 
significant 16 bits are in TOP, the least significant 16 bits are in 
NEXT, and interrupts are enabled. 

Example 2: A typical multiplication sequence with rounding 

• 1. Set ROUND bit to 1 (if not already set) 
• 2. Load multiplier and multiplicand into TOP and NEXT 
• 3. Execute appropriate signed or unsigned "multiply" 

instruction (interrupts are disabled) 
• 4. Read upper result register, MHR (interrupts are disabled) 
• 5. Exchange TOP and NEXT registers (interrupts are disabled) 
• 6. Discard top stack item (interrupts are enabled) 

The 16-bit product is- now in the TOP Register and interrupts are 
enabled. 
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6.3.2 RTX 2010 Hardware Math Support 

In addition to an on-chip multiplier, the RTX 2010 provides 
additional hardware ·on-chip to support Multiply-Accumulate 
operations, 32-bit shift operations, and Leading Zero Detection. 

6.3.2.1 RTX 2010 Multiplier/ Accumulator Operation 

The Hardware Multiplier/Accumulator (MAC) on the RTX 2010 
functions as both a Multiplier, and as a Multiplier-Accumulator. 

When used as a Multiplier alone, it multiplies two 16-bit numbers, 
yielding a 32-bit product in one clock cycle. 

When used as a Multiplier-Accumulator, it multiplies two 16-bit 
numbers, yielding an intermediate 32-bit product, which is then 
added to the 48-bit Accumulator. This entire process takes place .in 
a single clock cycle. 

The MAC's input operands come from three possible sources (see 
Figure 17): 

• The TOP and NEXT Registers 
• The Parameter Stack and memory 
• The ASIC Bus and memory 

These inputs can be treated as either signed (two's complement) or 
unsigned integers, depending on the form of the instructions used. 
In addition, if the ROUND option is selected, the Multiplier can 
round the result to 16 bits. Note that the MAC instructions do not 
pop the Parameter Stack; the contents of TOP and NEXT remain 
intact. 

For the Multiplier, the product is read from the Multiplier ffigh 
Product Register, MBR, which contains the upper 16 bits of the 
product, and the Multiplier Low Product Register, MLR, which 
contains the lower 16 bits. 
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For the Multiplier-Accumulator, the accumulated product is read 
from the Multiplier Extension Register, MXR, which contains the 
upper 16 bits, the MHR, which contains the middle 16 bits, and the 
MLR, which contains the low 16 bits. 

The registers may be read in any order, and there is no requirement 
that all registers be read. Reading from any of the three registers 
moves its value into TOP, and pushes the original value in TOP into 
NEXT. 

If the read is from MHR or MLR, the original value of NEXT is lost, 
i.e. it is not pushed onto stack memory. This permits overwriting 
the original operands left in TOP and NEXT, which are not popped 
by the MAC operations. 

If the read is from MXR, the original value of NEXT is pushed onto 
the stack. 

In addition to this, any of the three MAC registers can be directly 
loaded from TOP. This pops NEXT into TOP and the Parameter 
Stack into NEXT. 

If 32-bit precision is not required, the multiplier output may be 
rounded to 16 bits. The RTX 2010 ROUND mode functions 
exactly like the RTX 2000 ROUND mode. See Section 6.3.2.1 for 
details. 

The multiply instructions suppress interrupts during the 
multiplication cycle. Reading MHR or MLR also suppresses 
interrupts during the read. This allows a multiplication operation to 
be performed, and both the upper and lower registers to be read 
sequentially, with no danger of a non-NMI interrupt service routine 
corrupting the contents of the registers between reads (for 
compatibility with the RTX 2000). The Multiply-Accumulate. 
instructions do not suppress interrupts during instruction execution. 
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6.3.2.2 RTX 2010 Barrel Shifter and LZD Operation 

The RTX 2010 has both a 32-bit Barrel Shifter and an 32-bit 
Leading Zero Detector (LZD) for added floating point and DSP 
performance. The input to the Barrel Shifter and Leading Zero 
Detector is TOP and NEXT. See Figure 6.9. 

FIGURE 6.9: RTX 2010 FLOATING POINT/DSP LOGIC 

The Barrel Shifter uses a five bit count stored in the MXR Register 
to determine the number of places to right or left shift the double 
word operand contained in TOP and NEXT. The output of the Barrel 
Shifter is stored in MHR and MLR, with the most significant 16 bits 
in MHR and the least significant 16 bits in MLR. 

The Leading Zero Detector is used to Normalize the double word 
operand contained in the TOP and NEXT Registers. The number of 
leading zeroes in the double word operand are counted, and the 
count stored in MXR. The double word operand is then logically 
shifted left by this count, and the result stored in MHR and MLR. 
Again the upper 16 bits are in MHR, and the lower 16 bits are in 
MLR. This entire operation is done in one clock cycle. 
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6.4 Counter/Timers 

The RTX 2000 Family of microcontrollers contains three identical 16-bit 
Counter/Timers. Each counter may be configured as either an external event 
counter, in which case its clock input comes from an RTX input pin, or as a 
timer, in which its clock input comes from the processor's internal TCLK signal. 
Each Counter/Timer circuit consists of a pre-load register, a 16-bit down­
counter, clock selection circuitry, and an interrupt output. See Figure 6.10. 

TCLK TCLK INTA CYCLE 
OR 

RISING RISING ASIC READ 
EDGE EDGE COMMAND 

L-i L..i ~ I 
mli I 

I I 
REGISTER I I I 

LOAD IIiliJ ACTIVATE INTERRUPT 
TIMER I TIMEOUT 

RESET COUNTER INTERRUPT 

LOADll!IJ EXECUTE ACTIVATE INTERRUPT INTERRUPT 
TIMER I COUNT TIMEOUT 

CONTROLLER RESET. COUNTER INTERRUPT 

LOADll!iS EXECUTE ACTIVATE INTERRUPT 
TIMER I COUNT TIMEOUT RESET COUNTER INTERRUPT 

FIGURE 6.10: TIMER/COUNTER OPERATION 

6.4.1 Counter/Timer Operation 

Writing to a counter's ASIC Bus address loads a 16-bit value into its pre-load 
register. This value is loaded into the counter on the counter's next input clock 
cycle. Each subsequent input clock cycle decrements the counter by 1. The 
counters are free-running in that they do not stop when they reach 0, but rather 
reload from the pre-load register and continue counting. Loading a counter with 
0 is equivalent to loading it with 65536. 
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The counters clock synchronously with the processor's internal TCLK signal. 
This prevents the clocking from occurring during an I/O read, and means that the 
contents of each counter may be read at any time without disturbing the count or 
interfering with the counting process. This also means that the processor clock 
must be running for counting (from either an internal or external clock) to take 
place, and that the maximum counting rate with an external clock source cannot 
exceed one-half the processor's clock rate. 

When a counter is written, the value is not loaded until one TCLK or EI pulse 
later, depending on which is the source to the counter. 

6.4.2 Counter/Timer Interrupts 

Each counter generates an interrupt signal when it reaches 0. These signals are 
routed through ·the Interrupt Controller, and may be masked by setting the 
appropriate bits in the. Interrupt Mask Register. · 

The counter interrupts are reset during the corresponding Interrupt Acknowledge 
cycle. This means that it is possible that there will be an interrupt request 
present when the interrupt levels associated. with each counter are unmasked, 
especially if the counters have been running for some time before being loaded 
with a count value. 
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6.4.3 Clock Selection 

The clock selection circuit determines the source for each counter input clock. 
Each counter may be clocked from either the processor's internal TCLK signal, 
or from one of the processor's External Input (El) pins. The 3 EI pins EI3, EI4, 
and EIS are shared with the interrupt controller. Each pin may either be an input 
to the Interrupt Controller, or a clock input to a counter. Bits 8 and 9 in the 
Interrupt Base/Control Register determine the usage of each pin. See Table 6.3. 
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TABLE 6.3: TIMER/COUNfER EI PIN ASSIGNMENTS 

IBC bit 9 JBC bit 8 EI3 EI4 

0 0 INT10 JNT11 

0 1 CLKO INT11 

1 0 CLKO CLK1 

1 1 CLKO CLK1 

Notes: 

INTn - input to Interrupt Controller, level n 

CLKn - clock input to Counter/Timer n 

EIS 

JNT12 

JNT12 

INT12 

CLK2 

If a counter input is not assigned to an EI pin, it is decremented 
by the processor's TCLK signal. 

If an Interrupt Controller input is not assigned to an EI pin, it 
is held inactive. 
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CHAPTER 7 

INSTRUCTION SET 
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one-
1 Instruction Set l ~ 
This section describes each of ~e i · ction o eration codes ("opcodes") 
available on the RTX processor. Since orth is "assembly language" for the 
processor, the instruction set is described in terms of Forth primitives; 
Appendix A presents the opcodes in Forth format. This chapter presents each 
of the instructions in terms of their stack and register effects. 

7 .1 General Information 

Instructions are always aligned on word f>coundaries, with the most significant 
byte of the instruction at the even address, and the least significant byte at the 
next higher odd address. All instructions are 16 bits long, with the exception of 
long literals which require 16 bits for the instruction and 16 bits for the literal 
value. 

All RTX instructions execute in either one or two clock cycles. All.instructions 
which do not perform memory accesses execute in a single clock cycle. 
Instructions which perform memory accesses or load long literal data require two 
clock cycles. This consistency of execution time makes it possibleto write code 
with very predictable behavior. 
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7.1.1 Streamed Execution Mode 

The RTX processor has a "streamed" instruction feature, in which an instruction 
is made to repeat a specified number of times by writing a count value into the 
Index Register. This feature is useful for doing fast data transfers, loops and 
some math functions. 

;//~ 
I ,LP/\ 

, ""~"' vJ,v 
( \\O~OI ~:~f 1'\\ 

\r c " 
The count is written into the Index Register using an ASIC Bus write instruction / /i { e!J V' · ' ' ,A. 
to the Index Register at ASIC Address 02H. See Section 4.3.1.3 for details./ ) }OJ iO fl 
The value written must be 1 less than the desired number of repetitio~ . ~ t1f.. , 

. \ \ ~ 

Only the first cycle of a two cycle instruction is repeated. The second cycle is \(1" <\ '-v 
performed only once, after the first cycle has been repeated the desired number J 1 ' , lf· 1 

. I 1 ·<1' 
~~- if ~ . 

(?- ~y Interrupts are disabled during streamed instruction execution. Only a Non­
maskable interrupt (NMI) will interrupt streamed execution. 

I The RTX 2010 provides the ability to set the NMI_MODE Flag (bit 11 of 
the CR Register). If this bit is set, (MODE!), then the NMI is suppressed 
until the streamed instruction has been completed. 

7.1.2 The Auto-decrementing Loop Instruction 

The RTX provides a fast auto-decrementing loop instruction called NEXT. The 
NEXT instruction branches based on a count previously pushed onto the Return 
Stack (in I). 

The NEXT branch instruction tests the contents of the I Register at the end of each 
loop. If the contents are not 0, the I Register is decremented, and a branch 
(typically to the beginning of the loop) is executed; if the I Register contains 0, 
the Return Stack is popped, and execution continues with the instruction 
following the conditional branch instruction. 
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7.2 Format 

All processor instructions are 16 bits, with the following general fields: 

115 ••••••••• 12111 •••••••••• 817 ••• 61 5 14 ••••••••••••••• 01 

Class I ALU I . SC . I R I Data I 
Class General type of instruction: 
8,9 Branches and Loops 
10 Math/Logic Functions 
11 · Register and Short Literal Operations 
12 User Memory Access 
13 Long Literals 
14 Memory Access By Word · 
15 Memory Access By Byte 

Each class· is discussed separately. 

ALU - ALU function to be performed. 

SC Subclass. Function depends on Class field. 

R Return bit. When set, causes a Return-From-Subroutine. 

Data Depending on Class, indicates shift pperation, short literal data, 
ASIC Bus address, or memory address. 

Opcode descriptions use the format which follows. 
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PRIMARY ·CLASSIFICATION [Functional Title] 

Functional representation of the instruction 
bits: I 15 • • . . • • • • • • • • • • • • . • • • • • . • • . . • • . • • • • . • • • • • • . . . • • • • • . • • . • • • • . o I 

Description: 

Number of cycles: 

Processor operations: 

Notations: N => T 

I binary 

Describes the net effect of the operation. 

Total number of processor cycles required. 

The register and memory operations performed by 
the processor during each cycle of the instruction. 

Contents of NEXT Register (N), are written to TOP (T) 

*N => T Contents of NEXT are written to TOP with 1 's 
c~Lement performed if 11 i 11 bit in instruction is 1 

N => (T) Contents of NEXT are written to the Memory Location 
addressed by TOP 

N => Pstack Contents of NEXT are pushed onto the Parameter Stack 

Rstack => PC Return Stack popped into Program Counter <PC) Register 

Parameter Stack effect: Net effect of instruction on Parameter Stack, shown 
as: 

Notations: 
*a 

a-op-b 

shift [a] 

124 

before -- after 

1's c~Lement of "a", if "i" bit is set 

the result of ALU operation "op", performed between "a" 
and 11b'1 • The order of the operands is significant for 
subtraction operations only. 

the result of performing the shift operation on value a. 
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The right-hand item in each list is the top stack element. "T" and "N" are u.sed 
to represent the contents of TOP and NEXT before the instruction is executed. 
For example, 

NT-*T 

shows that the instruction starts with values in TOP and NEXT, and ends with the 
contents of NEXT being discarded and the contents of TOP beingeverted. ~ cAJ f'ld ; f 1dz..i 0 /17 
When reading the "Processor operations" descriptions, it is important to keep in 
mind that the RTX performs the indicated operations in parallel when executing 
an instruction. Thus, the original contents of a register may be used as an 
operand for an instruction even though the register is loaded with a new value 
during execution of the instruction. 

For example, the contents of TOP and NEXT may be used as operands for a math 
operation which replaces the contents of TOP with the results of the operation and 
pops the Parameter Stack into NEXT. 

In the descriptions of Processor operations for two cycle instructions, the values 
shown for "T" and "N" during the second cycle of the instruction represent the 
values loaded into TOP and NEXT during the first cycle of the instruction, not the 
contents of TOP and NEXT before the instruction was executed. 

For example, 

Processor operations:· 

1st cycle: 
2nd cycle: 

N => T 
N => T 

Parameter Stack effect: 

m => N 
T => N 

N T -· N m 

should be interpreted as described on the following page. 
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During the first cycle, the contents of NEXT are written to TOP, overwriting the 
contents of TOP. At the. same time, the contents (m) of the memory location 
addressed by the original contents of TOP are loaded into NEXT. 

During the second cycle, the new contents of NEXl' (the memory data) are 
written into TOP, while the new contents of TOP (the original contents of NEXT) 
are written back into NEXT. The net effect of this operation is to replace the · 
contents of ToP with the contents of the memory location addressed by the 
c6ntent$ of TOP. · 
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7.3 Subroutine Call 

Any instruction which has bit 15 set to 0 will perform a Subroutine Call. The 
contents of the Code Page Register and the address of the instruction following 
the Call are pushed onto the Return Stack. The Program Counter Register is 
then loaded with the address contained in the instruction. 

The address bits in the instruction represent the word address to be executed. 
The actual address may be calculated by shifting the value left by 1 bit, and 
inserting a 0 in the least significant bit. For example, an instruction code of 
2A45H would cause a call to location 548AH: 

2A45: 0010 1010 0100 0101 
shift and insert 0: 0101 0100 1000 101Q ; 548AH 

If a Subroutine Call is to be made to a Code page other than the one containing 
the Call instruction, the instruction immediately preceding the Call must load the 
correct page number into the Code Page Register. 

I 0 I a I a I a I a I a I a I a I a I a I a I a I a I a a I a I 
Description: Subroutine" Call. 

Number of cycles: 1 

Processor operations: 

IPR, I 
PC 

CPR 

;> Rstack Save return address on Return Stack 
;> I 
;>IPR 

aaaaaaaaaaaaaaaO ;> PC Load Call address into Program Counter 

Parameter Stack effect: 

no change 
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7.4 Subroutine Return 

Any non-call/branch in&truction which has _the Subroutine Return bit (bit 5) set 
will cause a Return-From-Subroutine operation. The Return Stack is popped into 
the Program Counter Register and Code Page Register, causing· execution to 
resume with the instruction following the call to the current subroutine. The 
~ubroutine Return bit is shown in the opcode formats as "R". 

Description: Return-From-Subroutine. 

Number of cycles: 1 if coded as a separate instruction; 0 if coded as 
part of the last instruction in a subroutine 

Processor operations: 

I => PC IPR => CPR Rstack => I, IPR 

Parameter Stack effect: 

no change 

The Subroutine Return bit may not be used in the following circumstances: 

• A Branch or Call instruction. All bits of the instruction are significant. 

• Any instruction which pops the Return Stack. "Return Stack pop" 
instructions which have the Return bit set behave as non-popping "Index 

·Register Read" instructions. 

In these situations, a stand-alone return instruction must be added as the last 
instruction of the subroutine. This would typically be a No Operation (NOP) 
instruction with the Return bit set, 
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7 .S Classes 8 and 9: Branches and Loops 

These instructions cause either a conditional or unconditional branch. The RTX 
Branch Instruction treats each Code Memory page as 64 "blocks" of 512 words 
each. Bits 15-10 of the Program Counter determine the block number; bits 9-0 
determine the word offset within the block. 

In order to perform branches in a single clock cycle, RTX branch instructions 
encode the branch address within the instruction. 

The limited number of bits available for encoding the address requires that all 
branch destinations must be within the same, next, previous, or first memory 
block. Except for the "Branch to block O" instruction, the longest branch which 
the processor can perform is ± lK words. 

RTX branch instructions have the following general form: 

I 1 I 0 I 0 1 c I c I b I ~ I a I a I a I a I a I a I a I a I a I 

"cc" 

"bbaaaaaaaaa" -

"bb" 

"aaaaaaaaa" 

Determine conditions for branching. See Table 7 .1. 

Branch address. 

Block Select. Determines new value of bits 15-10 of 
Program Counter. See Table 7.2. 

Replaces bits 9-1 of Program Counter (word offset 
from address 0 in the new block). 

Bit 0 of the Program Counter Register is set to 0 (word aligned instructions). 
The resulting branch address is designated "ADR" in the instruction descriptions. 
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TABLE 7.1: BRANCH CONDmONS · 

cc Branch conditions 

00 Branch if contents of TOP = 0. Don't pop stack. 

01 Branch if contents of TOP = 0. Pop stack. 

10 Unconditional branch 

11 ' If contents of Index Register ~ O, branch and decrement I 

TABLE 7.2: BLOCK BRANCIDNG ASSIGNMENTS 

bb result 

00 Branch within same memory block (no change to bits 15-10> 

01 Branch to next memory block (add 1 to value represented 
by bits 15-10) · · 

10 Branch to Block O (set bits 15·10 to 0) 

11 Branch to previoLlsblock (add -1 to value represented by 
bits 15-10) 

The most important thing to note when calculating the address field for a branch 
instruction is that, when the branch instruction is executed, the Program Counter 
will already be pointing to the instruction following the branch instruction. The 
"bb" field will be applied to this address, not the address of the branch 
instruction. 

This is only important when the branch instruction is the last instruction in a 512 
word block. In this case, the Program Counter is already pointing to the first 
word in the next block, and the "bb" field must be calculated based on that block 
number, not the block containing the branch .instruction. 

Example: A branch instruction is located at address 07FEH, the last instruction 
in block #1 (bits 15-10 = 000001). When this instruction executes, the Program 
Counter is pointing to the instruction at 0800H, the first instruction in block #2 . 

. To perform a branch to a location in block #2, the "bb" field must be set to 00 
(branch to same block) rather than 01 (branch to next block). 
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Branch Address Examples: (bbaaaaaaaa = bits o - 9 of opcode) 

Exaq:>le 1~ Branch to same block 
address of branch instruction: 0001 0100 1010 0100 
address to branch to: 0001 0100 1111 0000 
bbaaaaaaaaa : 1001 000 001111000 
resulting address: 

PC-Register bits 15-10 => 0001 01 
PC-Register bits 9-1 => 00 1111 000 
PC·Register bit 0 => o. 
Final branch address => 0001 0100 1111 0000 

Exaq:>le 2: Branch to next block· 
address of branch instruction: 0001 0100 1010 0100 

0001 1000 0101 1110 
1001 001 000101111 

address to branch to: 
bbaaaaaaaaa : 
resulting address: 

PC·Register bits 15-10 => 0001 01 
+ 1 

=> 0001 10 
PC·Register bits 9-1 •> 00 0101 111 
PC-Register bit 0 => 0 

Final branch address => 0001 1000 0101 1110 

Exaq:>le 3: Branch to· blo~k 0 
address of branch instruction: 0001 0100 101.0 0100 

0000 0000 1100 1010 
1001 010 001100101 

address to branch to: 
bbaaaaaaaaa : 
resulting address: 

PC·Register bits 15-10 => 0000 00 
PC·Register bits 9-1 => 00 1100 101 
PC•Register bit 0 => O 

Final branch address => 0000 0000 1100 1010 

Exaq:>le 4: Branch to previous block 
address of branch instruction: 0001 0100 1010 0100 
address to branch to: 0001 0000 1101 1110 
bbaaaaaaaaa : 1001 011 001101111 
resulting address: 

PC-Register bits 15-10 => 0001 01 
- 1 

PC-Register bits 9-1 
PC·Register bit 0 

=> 0001 00 
=> 00 1101 111 
=> 0 

Final branch address => 0001 0000 1101 1110 
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BRANCH Unconditional Branch 

Unconditional Branch 

I 1 I 0 I 0 I 1 I 0 I b I b I a I a I a I a I a I a I a I a I a I 

Description: Branch to address indicated by bbaaaaaaaaa. 

Number of cycles: 1 

Processor operations: 

ADR => PC 

Parameter Stack effect: 

no change 
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BRANCH Branch if T=O, Pop stack 

Branch if T=O, Pop stack 

I 1 I 0 I 0 I 0 I 1 I b I b I a I a I a I a I a I a I a I a I a I 

Description: 

If T = 0 Performs branch. Pops the Parameter Stack. 

If T =I= 0 Pops the Parameter Stack. 

Number of cycles: 1 

Processor operations: 

IfT=O 

IfT=l=O 

N => T 

N => T 

Parameter Stack effect: 

lfT=O 

lfT =I= 0 
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N T -- N 

N T -- N 

Pstack => N 

Pstack => N 

ADR => PC 
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BRANCH Branch if T=O, don't pop stack 

Branch if T=O, don't pop stack 

I 1 I 0 I 0 I 0 I 0 I b I b I a I a I a I a I a I a I a I a I a I 

Description: 

If T = 0 Performs branch. Pops the Parameter Stack. 

If T :/= 0 No effect. 

Number of cycles: 1 

Processor operations: 

If T = 0 

If T ':/: 0 

N => T 

no operation 

Parameter Stack effect: 

lfT = 0 

If T ':/: 0 
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Pstack => N ADR => PC 

N T -- N 

N T 0 • N T 
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BRANCH NEXT 

Branch if I ':/= 0 

I 1 I 0 I 0 I 1 I 1 I b I b I a I a I a I a I a I a I a I a I a I 

Description: 

lfl ':/= 0 

Ifl = 0 

This branch instruction is referred to as the "NEXT" 

instruction, and ·is useful for implementing a fast auto­
decrementing loop. 

Branch and decrement the Index Register (I), if I is not equal 
to 0. · · 

If I contains 0, the Return Stack is popped. Execution 
continues with the next sequential instruction. 

Number of cycles: 1 

Processor operations: 

lfl ':/= 0 

lfl = 0 

Parameter Stack effect: 

· Instruction Set, Chapter 7 

I - 1 => I ADR => PC 

Rstack => I 

no change 
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7 .6 Class 10: ALU Operations 

This class of instructions allows the processor to perform arithmetic and logic 
operations between the contents of the TOP and NEXT registers. These 
operations fall into two general categories: Single step and Multi-step. Multi­
step Math operations are discussed in Chapter 8. The single step operations 
category covers those functions which may be completed in one clock cycle: 

Addition 
Subtraction 
1-bit shifting (*2. and /2) 

Stack manipulations 
Boolean logic operations 

All ALU operations are performed between the contents of the TOP Register and 
another operand which is determined by the instruction. The results of the 
operation are loaded into TOP. The ALU function to be performed ·is encoded 
as a field in the instruction and is shown in the opcode formats as either "cccc" 
or "aaa". 

Table 7 .3 lists the ALU functions the RTX can perform. . "T" indicates the 
contents of the TOP Register. "Y" indicates the source for the second ALU 
input. For single step math functions, Y is always the NEXT Register. For other 
classes of instructions, the source for Y wm·vary, depending on the instruction. 

The "Resulting Carry" column indicates the new value which will be latched into 
the processor's Carry bit as a result of the operation. 

Y- T 
TABLE 7.3: RTX ALU FUNC~ 

cc cc aaa function esulting Carry 

0010 001 no change 
0011 no change 
0100 010 ALU carry 
0101 J - with borrow ALU carry 
0110 011 T OR y no change 
0111 T NANO Y no change 
1000 100 T + y ALU carry 
1001 T -lo y with carry ALU carry 
1010 101 T XOR y no change 
1011 T XNOR Y no change 
1100 110 0 with borrow 

ALU carry 
1101 ALU .carry 

~ .. T-./ ----
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7 .6.1 Carry Bit 

The Carry-out signal from the ALU is bit 0 (CY) of the Configuration Register, 
CR, and may be used for performing multi-precision addition and subtraction' 
operations. The Configuration Register bit may be directly set or read under 
program control. · 

All addition and subtraction operations set the carry bit, but only the "add with 
carry" (cccc = 1101, see Table 7.3), "subtract with borrow" (cccc = 1101) and 
"swapped subtract with borrow" (cccc = 0101) use the value of the carry bit 
during calculations. None of the Boolean logic functions use or affect the carry. 

Addition operations add the two ALU inputs, then optionally add the Carry-in 
bit (CY) to the least significant bit (LSB) of the sum. .The Carry-out bit of the 
ALU becomes the new value for CY; 1 indicates an overflow out of the most 
significant bit (MSB). 

Subtraction operations add the minuend (A in the examples below) to the 1 's 
complement of the subtrahend (Bin the examples), then optionally add the Carry­
in (borrow) bit to the LSB of the sum. The Carry-out of the ALU indicates the 
borrow status; CY = 0 means that the result of the subtraction was negative and 
that a borrow should be performed from the next most significant stage of the 
subtraction. 

TABLE 7.4: Examples: Cout =ALU Carry~ut 

A B Carry-in without carry/borrow with carry/borrow 
A+B Cout . A-B Cout A+B Cout A-B Cout 

0 0 0 0 0 0 1 0 0 -1 0 
0 0 1 0 0 0 1 1 0 0 1 
0 1 0 1 0 -1 0 1 0 -2 0 
0 1 1 1 0 -1 0 2 0 -1 0 
1 0 0 1 0 1 1 1 0 0 1 
1 0 1 1 0 1 1 2 0 1 1 
1 1 0 2 0 0 1 2 0 -1 0 
1 1 1 2 .o 0 1 3 0 0 1 

-1 0 0 -1 0 -1 1 -1 0 -2 1 
-1 0 1 -1 0 -1 1 0 1 -1 1 
-1 1 0 0 1 -2 1 0 1 ~3 1 
-1 1 1 0 -2 1 -2 1 
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7 .6.2 Shift Operations 

The single step math/logic functions allow the output of the ALU to be shifted 
as a 16-bit quantity, or the output of the ALU and the contents of the NEXT 
Register to be shifted as a 32-bit quantity in either direction before being loaded 
into the TOP (and NEXT) registers. 

The shift function is embedded in the instruction, and is shown in the opcode 
formats as "ssss". Each of the shift functions is described in Tables 7.5 and 7.6, 
which use the following notations: 

Zn 
TNn 
CY 
c 
T15,Tn,T0 

N15,Nn,N0 

Bit n of ALU output (15 - 0) 
Bit n of NEXT Register before shift (15 - 0) 
Old value of Can-y bit as a result of ALU operation 
New value of Carry bit as a result of the shift operation 
MSB, typical bit, and LSB of TOP Register after the shift 
operation 
MSB, tyPical bit, and LSB of NEXT Register after the shift 
operation 

The first 8 shift functions affect only the TOP Register. The remaining shift 
functions affect either just the NEXT Register, or the TOP and NEXT registers 
combined as a 32-bit quantity. 

In the 32-bit form, the TOP Register represents the most significant word of the 
32-bit quantity and the. NEXT Register the least significant. 
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TABLE 7.5: 16-BIT SlllFT FUNCTIONS 

Shift Status TOP Rltll_ister NEXT Rltll_i st er 
ssss name effect of C T15 Tn Tfl N15 Nn NII 

0000 no shift operation is performed CY Z15 Zn Zfl TN15 TNn TNfl 

0001 O< Sign extend: The sign bit (bit CY Z15 Z15 Z15 TN15 TNn TNfl 
15) of TOP is propogated to all 
bit positions in TOP. 

0010 2* Left Shift: TOP is shifted Z15 Z14 Zn-1 0 TN15 TNn TNfl 
left by 1 bit, with 0 shifted 
into the LSB. MSB is shifted 
into the carry bit • 

0011 2*c . Rotate Left: TOP is shifted left Z15 Z14 Zn-1 CY TN15 TNn TNfl 
by 1 bit, with the carry bit 
shifted into the LSB. MSB is 
shifted into the carry bit. 

0100 cU2/ Right Shift Out of Carry: TOP is 0 CY Zn+1 Z1 TN15 TNn TNfl 
shifted right by 1 bit, with the 
carry bit shifted into the MSB. 
The LSB is discarded and 0 is 
shifted into the carry bit. 

0101 c2/ · Rotate Right Through Carry: TOP Zfl CY Zn+1 Z1 TN15 TNn TNfl 
is shifted right by 1 bit, with 
the carry bit shifted into the -
MSB. The LSB is shifted into 
the carry bit. 

0110 U2/ Logical Right Shift: TOP is 0 0 Zn+1 Z1 TN15 TNn TNfl 
shifted right by 1 bit, with 0 
shifted into the MSB and carry 
bits. The LSB is discarded. 

0111 2/ Arithmetic Right Shift: Bits Z15 Z15 Zn+1 Z1 TN15 TNn TNfl 
14-1 of TOP are shifted right by 
1 bit. Bit 15 remains unchanged 
and is shifted into the carry 
bit and bit 14. The LSB is 
discarded. 

1000 N2* Left Shift of NEXT: NEXT is CY Z15 Zn Zfl TN14 ~Nn-1 0 
shifted left by 1 bit, with 0 
shifted into the LSB. TOP and 
the carry bit are unchanged. 

1001 N2*c Rotate NEXT Left: NEXT shifts CY Z15 Zn Zfl TN14 ~Nn-1 CY 
left 1 bit, with the carry bit 
shifted into the LSB. TOP and 
the carry bit are unchanged. 
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TABLE 7.6: 32-BIT SIDFT FUNCTIONS 

Shift jstatus TOP R~.s_ister NEXT R~g_i ster 
ssss name effect of c T15 Tn Hl N15 Nn N8 

1010 02* 32-bit Left Shift: TOP and Z15 Z14 Zn-1 TN15 TN14 TNn-1 0 
NEXT are shifted left 1 bit, 
with the MSB of NEXT shifted into 
the LSB of TOP, the MSB of TOP 
shifted into the carry bit, and 
0 shifted into the LSB of NEXT. 

1011 02*c 32-bit Rotate Left: TOP and NEXT Z15 Z14 Zn-1 TN15 TN14 TNn-1 CY 
are shifted left 1 bit, the MSB 
of NEXT is shifted into the LSB 
of TOP, the carry bit is shifted 
into the LSB of NEXT, and the 
MSB of TOP is shifted into the 
carry bit. 

1100 cU02J 32-bit Right Shift Out of Carry: 0 CY Zn+1 Z1 ze TNn+1 TN1 
TOP and NEXT are shifted right by 
1 bit, the carry bit shifts into 
the MSB of TOP, the LSB of TOP 
is shifted into the MSB of NEXT, 
the LSB of NEXT is discarded, 
and 0 shifts into the carry bit. 

1101 c02/ 32-bit Rotate Right Through Carry: TN8 CY Zn+1 Z1 ze TNn+1 TN1 
TOP and NEXT are shifted right by · 
1 bit, the carry bit shifts into 
the MSB of TOP, the LSB of TOP is 
shifted into the MSB of NEXT, and 
LSB of NEXT shifts into the carry 

1110 U02/ 32-bit Logical Right Shift: TOP 0 0 Zn+1 Z1 ze TNn+1 TN1 
and NEXT are shifted right 1 bit 
with 0 shifted into MSB of TOP 
and the carry bit, the LSB of TOP 
is shifted into the MSB of NEXT, 
and LSB of NEXT is discarded. 

1111 02/ 32-bit Arithmetic Right Shift: Z15 Z15 Zn+1 Z1 ze TNn+1 TN1 
Bits 14-0 of TOP and all of NEXT 
are shifted right 1 bit; Bit 15 
of TOP remains unchanged and is 
shifted into the carry bit and 
bit 14. The LSB of TOP is shifted 
into the MSB of NEXT; the LSB of 
NEXT is discarded. 
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\ .. 

ALU/SIDF'f OPERATIONS Shift T 

Invert/Shift T · 

I 1 I 0 I 1 I 0 I 0 I 0 I 0 I i I 0 I 0 I R I 0 I s I s I s I s I 

Description: 

If i = 0 

If i = 1 

Performs shift operation ssss. Original contents of NEXT are 
left intact unless affected by shift operation. 

Inverts TOP, performs $hift operation ssss. Original contents 
of NEXT are left intact unless affected by shift operation. 

Note that if both i and ssss are 0, this is a 1-cycle No 
Operation (NOP) instruction. 

Number of cycles: 1 

Processor operations: 

If i = 0 shiftCTJ => T 

If i = 1 shiftC*Tl => T 

Parameter Stacie effect: 

If i = 0 T -- shift[TJ 

If i = 1 T -· shift[*TJ 
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ALU/SffiFf OPERATIONS N = > T, Invert/shift · 

N = > T, Invert/shift 

, , I 0 , , I 0 I 1 I 1 I· 1 I< i I 0 I 0 I R I 0 I s I s I s 1, s I 

Description: 

If i = 0 Loads contents of TOP with contents of NEXT, then performs 
shift operation ssss. Original contents of NEXT are left intact 
unless affected by a shift operation. 

If i = 1 Loads contents of TOP with <;<>ntents of NEXT, inverting the 
value, then performs shift operation ssss. Original contents 
of NEXT are left intact unless affected by a shift operation. 

Number of cycles: 1 

Processor operations: 

If i = 0 

If i = 1 

shift[NJ s> T 

shift [*NJ => T 

Parameter Stack effect: 

lfi = 0 

If i = 1 

N T -- N shift [NJ 

N T -- N shiftC*NJ 
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ALU/SIDFT OPERATIONS T-op-N Shift 

T-op-N Shin 

I 1 I 0 I 1 I 0 I c I c I c I c I 0 I 0 I R I 0 I s I s I s I s I 

Description: Loads TOP with results of ALU operation cccc and shift 
operation ssss on TOP and NEXT registers. Original contents 
of NEXT are left intact unless affected by shift operation. 

Number of cycles: 1 

Processor operations: 

shift[T-op-Nl => T 

Parameter Stack effect: 

N T -- N shift[T-op-N] 
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ALU/SIDFf OPERATIONS Invert/Shift, Pstack= > N 

Invert/Shift, Pstack = > N 

I 1 I 0 I 1 I 0 I 0 I 0 I 0 I i I 0 I 1 I R I 0 I s I s I s I s I 

Description: 

lf i = 0 Performs shift operation ssss on TOP and original contents 
of NEXT. Pops stack into NEXT. 

If i = 1 Inverts TOP and performs shift operation ssss on TOP and 
original contents of NEXT. Pops stack into NEXT. 

Number of cycles: 1 

Processor operations: 

If i = 0 Pstack => N shift[TJ => T 

If i = 1 Pstack => N shift[*TJ => T 

Parameter Stack effect: 

If i = 0 N T -- shift[TJ 

If i = 1 N T -- shiftC*Tl 
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ALU/SillFf OP N = > T, Invert/Shift, Pstack= > N 

N = > T, Invert/Shift, Pstack = > N 

l1joj1jol1i1j1 ilol11Rlolslslslsl 

Description: 

If i = 0 Moves NEXT into TOP, performing shift operation ssss. 
Pops stack into NEXT. 

If i = 1 Moves NEXT into TOP, inverting it, and performing shift 
operation ssss. Pops stack into NEXT. 

Number of ~ycles: 1 

Processor operations: 

If i = 0 shiftCNl => T Pstack => N 

If i = 1 shift[*Nl => T Pstack => N 

Parameter Stack effect: 

If i = 0 N T shift[Nl 

If i = 1 N T shift C*Nl 
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ALU/SIIlFr OPERATIONS T-op-N, Shift, Pstack= > N 

T-op-N, Shift, Pstack= > N 

I 1 I 0 I 1 I 0 I c I c I c I c I 0 I 1 I R I 0 I s I s I s I s I 

Description: 

Number of cycles: 

Processor operations: 

shift[T-op-N] => T 

Parameter Stack effect: 

146 

Loads TOP with results of ALU operation cccc and 
shift operation ssss on TOP and NEXT registers. 
Pops stack into NEXT. 

1 

Pstack => N 

N T -- shiftCT-op-Nl 
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ALU/SIDFT OPERATIONS T = > N, Invert/Shift 

T= > N, Invert/Shift. 

l1iol1iololololil1iojRjolsjsjsjsl 

Description: 

If i = 0 Copies TOP into NEXT, replacing original contents of NEXT. 
Performs shift operation ssss. 

If i = 1 Copies TOP into NEXT, inverting TOP and replacing original 
contents of NEXT. Performs shift operation ssss. 

Number of cycles: 1 

Processor operations: 

If i = 0 

If i = 1 

T => N 

. T => N 

Parameter Stacie effect: 

If i = 0 N T •· T shif.t[T] 

shift[Tl => T 

shift C*TJ => T 

If i = 1 N T -- T shiftC*Tl 
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ALU/SffiFf OPERATIONS T < = > N, Invert/Shift 

T< = > N, Invert/Shift 

l1!0!1lol1!1j1jil1lolRlolslslslsl 

Description: 

If i = 0 Exchanges the contents of TOP and NEXT, then performs 
shift operation ssss; 

If i = 1 Exchanges the contents of. TOP and NEXT, inverting TOP 
(original contents of NEXT) then performs shift operation 
ssss. 

Number of cycles: 1 

Processor operations: 

If i = 0 T => N shiftCNl => T 

If i = 1 T => N shift[*Nl => T 

Parameter Stack effect: 

If i = 0 N T -- T shiftCNl 

If i = 1 N T · 0 T shiftC*Nl 
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ALU/SIDFT OPERATIONS T-o~N, T= > N, Shift 

T-op-N, T= > N, Shift 

I 1 I 0 I 1 I 0 I c I c I c I c I 1 I 0 I R I 0 I s I s I s I s I 

Description: Loads TOP with results of ALU operation cccc and shift 
, operation ssss on TOP and NEXT registers. Loads NEXT 

with original contents of TOP. 

Number of cycles: 1 

Processor operations: 

T => N T·op·N => T 

Parameter Stack effect: 

N T ·· T shift[T·op·Nl 
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ALU/SIDFf OP N = > Pstack, T= > N, Invert/Shift 

N = > Pstack, T = > N, Invert/Shift 

11 !0!1 !olo!ojol 11 !1 !Rlolslslslsl 

Description: 

If i = 0 Pushes original contents of NEXT onto stack, copies TOP into 
NEXT, and performs shift operation ssss. 

If i = 1 Pushes original contents of NEXT onto stack, copies TOP into 
NEXT, .inverts TOP, and performs shift operation ssss. 

Number of cycles: 1 

Processor :operations: 

If i = 0 N => Pstack T => .N shift[Tl => T 

If i = 1 N => Pstack T => N shi ft[*Tl => T 

Parameter Stack effect: 

If i = 0 N T •• N T shift[Tl 

If i = 1 N T •• N T shiftC*Tl 
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ALU/SffiFf OP N = > Pstack, T < = > N, Invert/Shift 

N = > Pstack, T < = > N, Invert/Shift 

l1lol1lol1l1l1j1l1l11Rlolslslslsl 

Description: 

If i = 0 Pushes NEXT onto stack, pushes TOP to NEXT, copies 
original contents . of NEXT to TOP, and performs shift 
operation ssss. 

If i = 1 Pushes NEXT onto stack, pushes TOP to NEXT, and copies 
original contents of NEXT to TOP. Inverts TOP (original 
contents of NEXT), and performs shift operation ssss. 

Number of cycles: 1 

Processor operations: 

If i = 0 N => Pstack T => N 

If i = 1 N => Pstack T => N. 

Parameter Stack effect: 

If i = 0 

If i = l 

N T -- N T shift[NJ 

N T -- N T shift[*Nl 
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shiftCNJ => T 

shift[*Nl => T 

151 



ALU/SillFT OPERATIONS N= >Pstack, T-op-N, Shift 

N= >Pstack, T-op-N, Shift 

I 1 I 0 I 1 I 0 I c ] c I c I c I 1 I 1 I R I 0 I s I s I s I s I 

Description: 

Number of cycles: 

Processor operations: 

N => Pstack 

Parameter Stack effect: 

152 

Pushes NEXT onto stack, pushes TOP into NEXT, 
loads TOP with results of ALU operation cccc and 
shift operation ssss on -original contents of TOP and 
NEXT registers. 

1 

T => N shift[T-op-Nl => T 

N T 0 - N T shift[T-op-Nl 
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7. 7 Enhanced Processor-Specific Operations 

Each member of the RTX 2000 Family of Microcontrollers has on-chip 
hardware which is specifically designed to support operational requirements 
in the field of appiications for which that Microcontroller is intended. 

Utilization of these microprocessor hardware features to achieve enhanced 
performance is p9ssible through use of the product specific instructions for 
each microcontroller. 
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Unsigned Multiply 

· Description: The Unsigned Multiply operation is initiated. The contents 
of the TOP and NEXT registers are multiplied, with the 32-bit 
result available in the Multiplier output registers MHR, MLR. 
Interrupts are disabled during the execution of this 
instruction. This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

T*N => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2000 Specific Instructions Signed Multiply 

MULS 

l1io!1!1lo!ololil1io!Rl1loi1!1!1I 

Description: The Signed Multiply operation is initiated. The contents of 
the TOP and NEXT registers are multiplied, with the 32-bit 
result available in the Multiplier output registers MHR, MLR. 
Interrupts are disabled during the execution of this 
instruction. This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

T*N => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2000 Specific Read Multiplier High Register 

MHR@ 

I 1I 0 I1l 1I1I1I1Ii1° I 0 IR I 1I 0 I1I1I1 I 

Description: The middle 16 bits of the Multiplier High Register (MHR) 
are pushed onto the Parameter Stack. The contents of TOP 
are pushed into NEXT, but NEXT is not pushed onto the 
stack; the contents of NEXT are lost. Interrupts are disabled 
during ,the execution of this instruction. 

Number of cycles: 1 

Processor operations: 

MHR => T T => N 

Parameter Stack effect: 

N T -- T MHR 
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RTX 2000 Specific Read Multiplier Low Register 

MLR@ 

, , I 0 j 1 j 1 , , 1 ·1 j 1 I i I 0 I 0 I R j 1 I 0 j 1 j 1 I 0 I 

Description:• The low 16 bits of the Multiplier Low Register (MLR) are 
pushed onto the parameter stack. The contents of TOP. are 
pushed into NEXT, but NEXT is nQ1 pushed onto the stack; 
the contents of NEXT are lost. . Interrupts are disabled during 
the' execution of this instruction. 

Number of cycles: 1 

Processor operations: 

MLR => T T => N 

Parameter Stack effect: 

N T -- T MLR 
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RTX 2001A Specific Instructions Increment llX 

Increment RX 

Description: Increments the contents of RX by one. lncr~menting the 
contents of the register beyond FFFF .Hex results in a wrap 
to 0000 Hex. 

Number of cycles: 1 

Processor operations: 

(RlC) -> (R)() +·1 

Parameter Stack effect: 

no change 
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RTX 2001A Specific Instructions Decrement RX 

·Decrement RX 

I 1 I 0 , , , , I 0 I 0 I 0 I 0 I 0 I 0 I R , , I 0.11 , , I 0 I 

Description: Decrements the contents of RX by one. Decrementing the 
contents of the register beyond 0000 Hex results in a wrap 
to FFFF Hex. 

Number of cycles: 1 

Processor operations: 

<RX> ·> <RX> - 1 

Parameter Stack effect: 

no change 
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RTX 2010 Specific Instructions 0= 

O= 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I R I 0 I 1 I 0 I 0 I 0 I 

Description: 

If TOP = 0 Change TOP to FFFF {implement Forth O= ). 

If TOP -=/:. 0 Change TOP to 0000 (implement Forth O= ). 

Number of cycles: 1 

~ocessor operations: 

If TOP= 0 FFFF => T 

lfTOP :F 0 0000 => T 

Parameter Stack effect: 

n-b 
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RTX 2010 Specific Clear MAC Accumulator 

CLEARACC 

l1joj1j1loiojojolojojRjol1j1joiol 

Description: Clear the MAC Accumulator (MXR, l\fiIR, MLR). 

Number of cycles: 1 

Processor operations: 

0 => MLR 

Parameter Stack effect: 

Instruction Set, Chapter 7 

0 => MHR 

no change 

0 => MXR 
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RTX 2010 Specific Double Shift Left Logical· 

DSLL 

I i. I 0 I 1 I ·1 I 0 I 0 I 0 I 0 I 0 ·1 ° I R I 0 I 1 I 1 I 1 I 0 I 

Description: Double.·Shift Left Logical Shift the double word operand 
in TOP and NEXT left logically by the S•bit count stored in 
the MXR Register. The result is stored .in MHR and MLR 

Number of cycles: 1 

Processor operations: 

DSLL CT:N) => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Double Shift Right Arithmetic 

DSRA 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I R I 0 I 1 I 0 I 0 I 1 I 

Description: Double Shift Right Arithmetic Shift the double word 
operand in TOP and NEXT right arithmetically by the 5-bit 
count stored in the ~ Register. The result is stored in 
MHRandMLR. 

Number of cycles: 1 

Processor operations: 

DSRA CT:N) => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Double Shift Right Logical 

DSRL 

l 1 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I o·I RI 0 l 1 I 0 I 1 l 0 I 

Description: Double Shift Right Logical Shift the double word operand 
in TOP and NEXT right logically by the 5-bit count stored in 
the MXR Register. The result is stored in MHR and MLR. 

Number of cycles: 1 

Processor operations: 

DSRL (T:N) => MHR:MLR 

Parameter Stack effect: 

no effect 

164 RTX 2()()() Family Programmer's Reference Manual 



RTX 2010 Specific Store MAC High Register 

Description: Store the contents of TOP into the MAC Accumulator MHR. 
NEXT is popped into TOP and Pstack is popped into NEXT. 

Number of cycles: 1 

Processor operations: 

T => MHR N => T Pstaclc => N 

Parameter Stack effect: 

MHR --
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RTX 2010 Specific Read Multiplier High Register 

MllR@ 

Description: The middle 16 bits of the MAC register (MHR) are pushed 
onto the Parameter Stack. The contents of TOP are pushed 

· into NEXT, but NEXT is not pushed onto the stack; the 
contents of NEXT are lost. Interrupts are disabled during the 
execution of this instruction. 

Number of cycles: 1 

Processor operations: 

MHR => T T => N 

Parameter Stack effect: 

N T -- T MHR 
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RTX 2010 Specific Store MAC Low Register 

MLR! 

Description: · Store the contents of TOP into the MAC Accumulator MLR. 
NEXT is popped into TOP and Pstack is popped into NEXT. 

Number of cycles: 1 

Processor operations: 

T => MLR N => T Pstack => N 

Parameter Stack effect: 

MLR --
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RTX 2010 Specific Read Multiplier Low Register 

MLR@ 

Ii I 0 I iii Ii Ii Ii I; I 0 I 0 IR Ii I 0 Ii Ii I 0 I 

Description: The low 16 bits of the MAC register (MLR) are pushed onto 
the parameter stack. The contents of TOP are pushed into 
NEXT, but NEXT is iUll pushed onto the stack; the contents 
of NEXT are lost. Interrupts are disabled during the 
execution of this instruction. 

Number of cycles: 1 

Processor operations: 

MLR => T T => N 

Parameter Stack effect: 

N T -· T MLR 
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RTX 2010 Specific Mixed Sign Multiply Accumulate 

MULACM· 

Ii Io l·i.l i Ii 1i1 i Ii Io Io IR 1 i I oj i Ii l.ol 

Description: The Mixed Mode (signed and unsigned) Multiply 
Accumulate operation is initiated. The contents of the TOP 
and NEXT registers are multiplied (TOP contains the signed 
.value and NEXT contains the unsigned value), the 32-bit 
result is added to the 48-bit accumulator (MXR, MHR, MLR). 
This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

(T*N)+MXR:MHR:MLR => MXR:MHR:MLR 

Parameter Stacie effect: 

no effect 
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RTX 2010 Specific Signed Multiply Accumulate 

MULA CS 

I 1Ioi1I1 Io lo Io Ii Io Io IR I 1IoI1j1j1 I 

Description: A Signed Multiply Accumulate operation is initiated. The 
contents of the TOP and NEXT registers are multiplied, the 
32-bit result is added to the 48-bit acumulator (MXR, MHR, 
MLR). This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

(T*N)+MXR:MHR:MLR => MXR:MHR:MLR 

Parameter Stack effect: 

no effect 

170 RTX 2000 Family Programmer's Reference Manual 



RTX 2010 Specific Unsigned Multiply Accumulate 

MULA CU 

!1!0!1!1lo!olol;lololRl1lol1!1!ol 

Description: The Unigned Multiply Accumulate operation is initiated. 
The contents of the TOP and NEXT registers are multiplied, 
the 32-bit result is added to the 48-bit accumulator (MXR, 
MHR, MLR). This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

CT*N)+MXR:MHR:MLR => MXR:MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific · Mixed Slgn Multiply 

MULM 

I 1 I 0 r 1 I 1 I 0 Io.I 0 I I 0 I 0 IR I 1 I 0 I 0 j 1 I 1 I 

Description: The Mixed Sign Multiply operation is ·initiated. , The 
contents of the TOP and NEXT registers are multiplied, with 
the 32-bit result available in the MAC output registers MHR, 
¥LR.. The operand in TOP is assumed to be signed and the 
operand in NEXT unsigned. Interrupts are disabled during 
the execution of this instruction. This instruction does not 
modify the stack. 

Number of cycles: 1 

Processor operations: 

T*N => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Signed Multiply 

MULS 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 I i I 1 I 0 I R I 1 I 0 I 1 I 1 I t I 

Description: The Signed Multiply operation is initiated. The contents of 
the TOP and NEXT registers are multiplied, with the 32-bit 
result available in the MAC output registers MHR, MLR. 
Interrupts are disabled during the execution of this 
instruction. This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

T*N => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Signed Multiply And Subtract 

MUI.SUB 

I 1 I o I 1 I 1 I o. I o I o I ; I o I o I R I 1 I o I 1 I o I o I 

Description: The Signed Multiply and Subtract from Accumulator 
operation is initiated. The contents of the TOP and NEXT 
registers are multiplied, the 32-bit result is subtracted from 
the 48-bit accumulator (MXR, MHR, MLR). This instruction 
does not modify the stack. 

Number of cycles: 1 

Processor operations: 

MXR:MHR:MLR·CT*N) => MXR:MHR:llilLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Unsigned Multiply 

MULU 

l1lol1l1lololol l1!0IRl1lol1l1lol 

Description: The Unsigned Multiply operation is initiated. The contents 
of the TOP and NEXT registers are multiplied, with the 32-bit 
result available in the MAC output registers MHR, MLR. 
Interrupts are disabled during the execution of this 
instruction. This instruction does not modify the stack. 

Number of cycles: 1 

Processor operations: 

T*N => MHR:MLR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Read MAC Extension Register 

MXR@ 

I 1jo!1j1I1j1j1 Ii lo lo l R j 1Ioloj1 Io I 

Description: Pushes the contents of the 16-bit extension register of the 
MAC output onto the parameter stack. 

Number of cycles: 1 

Processor operations: 

MXR => T T .,> N N => Pstack 

Parameter Stack effect: 

-- MXR 
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RTX 2010 Specific Store MAC Extension Register 

MXR! 

f1Jol1!1f1l1!1!1l1lolRl1lolol1lol 

Description: Stores the contents of TOP into the MAC Accumulator.~­
NEXT is popped into TOP and the Parameter Stack is popped 
into NEXT. 

Number of cycles: 1 

Processor operations: 

T => MXR, N => T Pstack = > N 

Parameter Staclc effect: 

MXR --
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RTX 2010 Specific Normalize 

NORM 

I 1 I o I 1 I 1 I o I o I o I i lo I o I R I o I 1 I 1 I 1 I 1 I 

Description: . The Nonnanze operation counts the number of leading zeros 
in the double word operand in TOP and NEXT. This count 
is stored in MXR. TOP and NEXT are also shifted left 
logically by this count to eliminate all leading zeros. The 
shifted result is in MHR and MI.R. 

Number of cycles: 1 

Processor operations: 

NORMCT:N) => MHR:MLR Count => MXR 

Parameter Stacie effect: 

no effect 
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RTX 2010 Specific Shift MAC Register Right 

RSA CC 

Description: This operation shifts the MAC output registers right (MXR -
> MHR, MHR - > · MLR, sign fills MXR, contents of MLR 
are lost.) This is useful in implementing double precision 
multiply operations. 

Number of cycles: 1 

Processor operations: 

MXR => MHR MHR => MLR s i gnfi ll => MXR 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Streamed MAC - ASIC/Memory 

· SMACA 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 I; I ;.I 0 IR I 1 I 0 I 0 1· 1 I 0 I 

Description: Streamed MAC between ASIC Bus and Memory is an 
instruction which indicates to the processor that the next 
instruction is a streamed ·instruction that will initiate a 
streamed MAC between the ASIC bus' and memory. See 
Section 7. 7 .1 for detailed information. 

Number of cycles: 1 

Processor operations: 

NIA 

Parameter Stack effect: 

no effect 
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RTX 2010 Specific Streamed MAC.- Stack/Memory 

SMACS 

, , I 0 I 1j1I0 I 0 I 0 Ii I 0 I 0 IR,,, 0 I 0, ,., 0 I 

Description: . Streamed MAC between Stack and Memory is an instruction 
which indicates to the processor that the next instruction is 
a streamed instruction that will initiate a streamed MAC 
between the stack and memory. See Section 7. 7 .1 for 
detailed information. 

Number of cycles: . 1 

Processor operations: 

NIA 

Parameter Stacie effect: 

no effect 
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7.7.1 Streamed MAC Instructions On The RTX 2010 

One of the features of the RTX-2010 is the ability to perform a high speed 
(one clock cycle per iteration) multiplication and accumulation of two 
streams of data. One stream is a list of data in external memory, and the 
other is either a list of data on the parameter stack or a stream of values 
input from the ASIC bus. 

SMACA is the instruction to initiate a streamed MAC with the ASIC bus and 
SMACS initiates a streamed MAC with list on the Parameter Stack. In general, 
the code to implement the algorithm is as follows: 

mem_addr count-1 SMACS OF( "OMA" 

mem_addr g·adclr SR! count·1 SMACA OF( "OMA" 

where: 
mem_addr 
count-1 
OF( 
"OMA" 

g-addr 

is the address of first data item in memory list 
is the number of items in list 
is the instruction to implement streaming 
is instruction to read sequential items from memory. 
is the ASIC Bus address to be streamed 

The 11 sMACA" and "sMAcs 11 instructions are used to set the source of one input 
data stream, and are part of a special opcode sequence which is used 
exclusively in the RTX-2010. These commands initiate a processor state 
which affects the operation of the instructions that follow it. The · 
instructions for streamed MAC must occur in the sequence previously 
described. SMACA and sMAcs suppress interrupts so that the oFc instruction is 
guaranteed to follow without interruptions. 

The "oMA" opcode is an existing RTX instruction that normally reads data 
from memory into NEXT, over writing the data in NEXT. During each 
cycle, the contents of the memory location addressed by TOP are read into 
the NEXT Register. Concurrently, the contents of TOP are incremented by 
the value of the five bit literal field of the instruction, to generate the next 
memory address to be read. 
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When used following the sMAcA or sMAcs instructions, the operation of the 
"DMA" opcode is modified. In the special processor state that is initiated by 
SMACA or sMAcs, the DMA instructions cause the contentS of NEXT to be 
multiplied by the contents of a pipeline register from the stack or ASIC Bus, 
and added to the 48-bit accumulator. In the same clock cycle, the DMA 

instruction also performs its normal operation, reading the next data item 
from memory into NEXT and auto-incrementing the address in TOP. 

The following is an example of a streamed multiply/accumulate operation 
between a list of data in memory and another list of data on the stack. The 
stack list is assumed to be in another stack area, necessitating the saving and 
restoring of a stack pointer. 

\ ( mem_addr· count-1 stack_addr -- answer ) 
SPRa MD! SPRI \ save & set stack pointer 
SMACS \ set streamed mac instruction execution 
OF( \ set stream count 

DMA \ execute streamed MAC DMA 

DROP DROP \eliminate address and last data from.stack 
MDa SPR! \ restore the stack pointer 
MLRa MHRa MXRa'\ fetch 48-bit accumulated value 

The next example performs the same operation, with the exception of the 
second argument being a stream of input from the ASIC Bus data. The SMACA 

instruction requires the desired ASIC address to be stored in the SR Register. 

\ ( mem_addr count-1 asic_addr -- answer) 
SRI \ set ASIC bus address 
SMACA \ set streamed mac instruction execution 
OF( \ set stream count 

DMA \execute.streamed MAC DMA 

DROP DROP \'eliminate address and last data from stack 
MLRa MHRa MXRa \ fetch accumulated value 

The opcode for DMA is E842H. 
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7.8 Class 11-a: ASIC Bus Access 

This class of·instructions· manipulates the contents of devices attached to the 
ASIC Bus. This includes the RTX internal registers (Index Register, 
Configuration: Register, Multi-step/Multiply Divide, Square Root, and Program 
Counter), On-Chip Peripheral devices (Stack Controllers, Interrupt Controller, 
Multiplier, Counters), and external 1/0 devices such as UARTs or SCSI 
controllers. 

The processor is able to directly access 32 ASIC Bus devices/registers. The 
specific ASIC Bus address is encoded as a 5-bit field in the instruction (indicated 
by "ggggg" in the instruction formats). See Section 7.8.1 for more information 
in instructins which use this instruction format. 

ASIC Addresses 0 - · 17H are used internally by the RTX processor for registers; 
Chapter 4 describes the register address assignments. Some of these addresses 
perform special functions when referenced with different forms of the ASIC Bus 
instructions. Section 7 .8.2 describes these special instruction forms. 

ASIC Addresses 18 - 31H are provided for access to off-chip.ASIC devices. 

7.8.1 ASIC Bus Instructions 

Instructions which access ASIC Bus locations have the specific location encoded 
as a 5-bit field in the instruction. This field is indicated by "ggggg" in the 
instruction formats. The 5-bit field enables the processor to directly access 32 
ASIC Bus devices/registers. 

Some of the ASIC Bus instructions perform ALU operations on the data 
accessed. These operations are indicated by "cccc" in the instruction formats and 
ate the same as those described in the "Single-step Math Functions" class. 
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ASIC Access G-read, DROP, Invert 

G-read, DROP, Invert 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 I i I 0 I 0 I R I g I g I g I g I g I 

Description: 

If i = 0 Reads and discards data from ASIC address ggggg. Useful 
for performing "dataless" I/O accesses, in which an I/O ~----~ _ 
device needs to be addressed but no data transfer needs to 
tak. e place. See Sectio, 7.7'.1 for limitations on the use of H \ 7 
th d -------~--~-,., VI I) r 1s opco e. - 11v-Q,tl'-

If i = 1 Reads and discards data from ASIC address ggggg, inverts 
TOP. See remainder of description above. 

Number of cycles: 1 

Processor operations: 

If i = 0 T => T 

If i = 1 *T => T 

Parameter Stack effect: 

If i = 0 N T N T 

If i = 1 N T N *T 
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ASIC Access N = > Pstack, T= > N, (ggggg)= > T, Invert 

N= >Pstack, T= >N, (ggggg)= >T, Invert 

I 1IoI1I1I1I1! 1I 1 I 0 1° IR I 9 I 9 I 9 I 9 I 9 I 

Description: 

Iti = 0 

If i = 1 

Number of cycles: 

Pushes NEXT onto stack, TOP into NEXT, then reads data 
from address ggggg into TOP. 

PUshes NEXT onto stack, TOP into NEXT, then reads data 
from address ggggg into TOP, inverting data. 

1 

Processor operations: 

lfi = 0 N => Pstack T => N (ggggg) => T 

If i = 1 N => Pstack T => N *(ggggg) => T 

Parameter Stack effect: 

If i = 0 N T •• N T d 

If i = 1 N T •• N T *d 
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ASIC Access N = > Pstack, T= > N, T-op-(ggggg) 

N= >Pstack, T=>N, T-op-(ggggg) 

I 1 I 0 I 1 I 1 I c I c I c I c I 0 I 0 I R I g I g I g I g I g I 

Description: 

Number of cycles: 

Processor operations: 

N => Pstack 

Parameter Stack effect: 

Instruction Set, Chapter 7 

Pushes NEXT onto stack, TOP into NEXT, then reads 
data from ASIC address ggggg and loads TOP with 
results of ALU operation .cccc on original contents 
of TOP and data. 

1 

T => N T·op-(ggggg) => T 

N T -- N T T·op·d 
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ASIC Access T= > (ggggg), Invert 

T= > (ggggg), Invert 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 I i I 1 I 0 I R· 1 g I g I g I g I g I 

Description: 

If i = 0 

if i = 1 

Number of cycles: 

Writes contents of TOP to ASIC address ggggg. &· inal 
contents of NEXT are left intact. See Section . 7 .. 1 for 
limitations on the use of this opcode. . '-----r-

Writes contents of TOP· to ASIC address ggggg. Inverts 
original contents of TOP. ·Original contents of NEXT are left 
intact. 

1 

Processor operations: 

If i = 0 T => (ggggg) 

If i = 1 T => (ggggg) 

Parameter Stack effect: 

lfi = 0 

Iti = 1 
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N T •· N T 

. N .T -- N *T 

T => T 

*T => T 
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ASIC Access T= > (ggggg), N = > T, Pstack= > N, Invert 

T= >(ggggg), N= >T, Pstack= >N, Invert 

I 1 I 0 I 1 I 1 I 1 I 1 I 1 I i I 1 I 0 I R I g I g I g I g ,1 g I 

Description: 

If i = 0 Writes contents of TOP to ASIC address ggggg. Copies 
NEXT into TOP. Pops stack into NEXT. 

If i = 1 Writes contents of TOP to ASIC address ggggg. Copies 
NEXT into TOP, inverting value. Pops stack into NEXT. 

) 

Number of cycles: 1 

Processor operations: 

lfi = 0 T => (ggggg) N => T Pstack => N 

If i = 1 T :> (ggggg) *N => T Pstack => N 

Parameter Stack effect: 

If i = 0 N T -- N 

If i = 1 N T -- *N 
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ASIC Access (ggggg)-op-T 

(ggggg)-op-T 

1 ·1 I 0 l 1 I 1 1.c I c I c I c I 1 r ·0 I R I 9 I 9 I s l s I 9 I 

Description: 

Number of cycles: 

Processor operations: 

(99999)-op-T => T 

Parameter Stack errect: 

190 

Reads data from ASIC address ggggg, and loads 
TOP with results of ALU operation cccc on contents 
of TOP and data. Original contents of NEXT are left 
unchanged. 

1 

N T -- N d-op-T 
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7 .8.2 Predermed ASIC Bus Instructions 

Some RTX ASIC Bus opcodes are predefined to perform specific functions. 
These include "Select Data Page Register", "Select Code Page Register", 
"Software Interrupt", and "Remove Software Interrupt". Descriptions of these 
opcodes follow. 

The Multiply, MAC, and. Barrel Shifter are also controlled using predefined 
ASIC instructions. See Section 7.7 for descriptions. 
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Memory Page Access 

0 

Description: 

192 

Select Da \ Page Register 

0 R 0 0 

Sets DPRSEL Bit to 1, causing all data memory accesses to , 
be addressed through the Data Page Register" 
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Memory Page Access Select Code Page Register 

Select Code Page Register 

l1 iol1 l1lololololololRlol1 j1 iol1I 

Description: Sets DPRSEL Bit to 0, causing all data memory accesses to 
be addressed through the Code Page Register. 
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Interrupts , Software Interrupt Request 

SetSOFfINT 

I 1 I 0 j 1 I 1·1 0 I 0 I 0 I. 0 I 1 I· 0 I R I 1 I 0 I 0. I 0 I 0 I 

Description: 

194 

Sets the Software Interrupt Request flip'"flop, generating a 
Level 13 interrupt to the processor. Due to the time 
required by the processor internally to generate and process 
the interrupt signal, this instruction should be followed by 
two 1-cycle instructions which do not depend on.whether or 
not the interrupt has been serviced (NOPs, for example). 
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Interrupts Remove Software Interrupt 

Clear SOFI'INT 

I 1 I 0 I 1 I 1 I 0 I 0 I 0 . I 0 I 0 ·I 0 I R I 1 I 0 I 0 · I 0 I 0 I 

Description: Resets Software Interrupt Request flip-flop. The interrupt 
service routine for the Software Interrupt (level 13) must 
execute this instruction before re-enabling interrrupts or 
executing a subroutine retum. 
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7 .9 · Class llb - Short Literals 

This class of instructions generates short literals (positive values 0 to 31). 

The value of the literal is embedded in the·instruction and is shown as "ddddd" 
in the instruction formats .. The value represented by "ddddd" is loaded into bits 
0-4 of the TOP register; bits 5-15 are set to 0. If the value is inverted by having 

· the "i" bit set in the instruction, all 16 bits of the value are inverted. 

Some of these instructions perform ALU operations using the literal data. These 
operations are. indicated· by "cccc" in the instruction formats and correspond to 
Table 7.3. · 
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Short Literals 

Description: 

If i = 0 

If i = 1 

Number of cycles: 

d Invert 

d Invert 

Pushes NEXT onto stack, copies TOP into NEXT, loads the 
value ddddd into TOP. 

Pushes NEXT onto stack, copies TOP into NEXT, loads the 
value ddddd into TOP, and inverts the value. 

1 

. Processor operations: 

If i = 0 N => Pstack T => N cldcldd => T 

If i = 1 N => Pstack T => N *cldcldd => T 

Parameter Stack effect: 

If i = 0 N T -- N T cldcldd 

If i = 1 N T -- N T *ddddcl 
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Short Literals N= >Pstack, T= >N, T-op-d 

N= >Pstack, T= >N, T-op-d 

I 1 I 0 I 1 I 1 I c I c I c I c I 0 I 1 I R I d I d I d I d I d I 

Description: 

Number of cycles: 

Processor operations: 

N z> Pstack 

Parameter Stack effect: 

198 

Pushes NEXT onto stack, copies TOP into NEXT, 
then loads TOP with result of ALU operation cccc 
between contents of TOP and value ddddd. 

1 

T => N T·op·ddddd => T 

N T •• N T T·op·ddddd 
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Short Literals d= >T, Invert 

d= >T, Invert 

I , I o I , I , ·I 1 I , I , 

Description: 

If i = 0 

If i = 1 

Number of cycles: 

Loads the value ddddd into TOP. Original contents of NEXT 
are left unchanged. 

Loads the value ddddd into TOP, inverting all 16 bits of the 
value. Original contents of NEXT are left unchanged. 

1 

Processor operations: 

If i = 0 ddddd => T 

If i = 1 *ddddd => T 

Parameter Stack effect: 

If i = 0 N T -- N ddddd 

If i = 1 N T -- N *ddddd 
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Short Literals d-op-T 

d"'°p-T 

I 1 I 0 I 1 I 1 I c I c I c I c I 1 I 1 I R I d I d I d I d I d I 

Description: 

Number of cycles: 

Processor operations: 

ddddd·op-T => T 

Parameter Stack effect: 

200 

Loads TOP with results of ALU operation cccc 
between value ddddd and contents of TOP. Original 
cont~nts of NEXT are left unchanged. 

1 

N T -- N ddddd~op·T 
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7.10 Class 12: User Memory Access 

This class of instructions performs reads and writes to the User Memory Space. 
The User Page Register and User Base Register determine the address of the 32-
word user memory block. 

The address to be accessed within the User Space is encoded as a 5-bit field in 
the instruction, and is indicated by "uuuuu" in the descriptions. · Note that 
"uuuuu" represents the word address of the location to be referenced. For 
example, uuuuu = 3 will perform a read or write to word #3 (byte #6) in the 
User Space. All User Memory Space accesses read or write a 16-bit value. 

The data written to or read from the User location is indicated in the descriptions 
as "(u)". 

Some of these instructions perform ALU operations using the memory data. 
These operations are indicated by "cccc" in the instruction formats and 
correspond to Table 7.3. 
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User Memory Access N= >Pstack, (u)= >N, Invert 

N = > Pstack, (u) = > N, Invert 

o I o I o I o I o I 0 I 0 I R I u I u I u I u I u I 

Description: 

If i = 0 Pushes NEXT onto stack, then reads data from user location 
uuuuu into NEXT. 

If i = 1 Pushes NEXT onto stack, then reads data from user location 
uuuuu into NEXT. Inverts TOP. 

Number of cycles: 2 

Processor operations: 

If i = 0 1st cycle: N => Pstack (U) => N 
2nd cycle: NOP 

If i = 1 1st cycle: N => Pstack (U) => N 
2nd cycle: T => *T 

Parameter Stack Effect: 

If i = 0 N T e• N (U) T 

If i = 1 N T ~- N (U) *T 
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User Memory Access 

Description: 

(u)= >T, Invert 

(u) = > T, Invert 

I 0 I 0 I R I u I u I u I u I u I 
L. , "\to 

/'i..wJ._ f~7~ I 

If i == 0 

If i = 1 

Reads data from user location uuuuu~ fl,. TOP. Original 
contents of1NEXT are left unchanged. 

l--T()f L 
Reads data from use~ton uuuuu · . TOP, inverting 
data. Original contents of NEXT are left unchanged. 

Number of cycles: 2 

Processor operations: 

If i = 0 

If i = 1 

1st cycle: 
2nd cycle: 

1st cycle: 
2nd cycle: 

Parameter Stack effect: 

If i = 0 

If i = 1 

Instruction Set. Chapter 7 

T~r~t 
N => T 

*N => T 

tJ T 

N f 

I 

i 
( 

(U) => N 
T => N 

(U) => N 

T => N 

--
--
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User Memory Access 

N= >Pstack, T= >N, T-op-(u)= >T 

I 1 I I 0 I 0 I c I c I c I c I 0 I 0 I R I u I u I u I u I u I 

Description: Pushes NEXT onto stack, TOP into NEXT, then loads 
. TOP .with result of ALU operation cccc on contents 

of TOP and data read from user location uuuuu. 

Number of cycles: 2 

. Processor operations: 

1st cycle: N => Pstack (U) => N . 

2nd i:ycle: T => N N-op•T => T 

Parameter Stack. effect: 

N T -- N T T-op·(u) 
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User Memory Access T= > uuuuu, Invert 

T= > uuuuu, Invert 

I 1 I 1 I 0 I 0 I 0 I 0 I 0 I i I 1 I 0 I R I u I u I u I u I u I 

Description: 

If i = 0 Writes the contents of TOP to user location uuuuu. Original 
contents of NEXT are left unchanged. 

If i = 1 Writes the contents of TOP to user location uuuuu. Inverts 
contents of TOP (after write operation). Original contents of 
NEXT are left unchanged. 

Number of cycles: 2 

Processor operations: 

If i = 0 1st cycle: T => uuuuu 
2nd cycle: T => T 

If i = 1 1st .cycle: T => uuuuu 
' 2nd cycle: *T => T 

Parameter Staclc effect: 

Ifi = 0 N T -- N T 

If i = 1 N T -- N *T 
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User Memory Access 

T= >uuuuu, ~= >T, Pstack= >N, Invert 

I lolol1j1l1lil1lolRlululululul 

Description: 

If i = 0 Writes contents of TOP to user location uuuuu. Moves 
NEXT into TOP. Pops stack into NEXT. 

If i = 1 Writes contents of TOP to user location uuuuu. Moves 
NEXT into TOP, inverting the value. Pops stack into NEXT. 

Number of cycles: 2 

Processor operations: 

If i = 0 1st cycle: T 
2nd cycle: N 

If i = 1 1st cycle: T 
2nd cycle: *N 

Parameter Stack effect: 

N T -· N lfi = 0 

If i = 1 N T -- *N 

=> uuuuu 
·=> T Pstack => N 

=> uuuuu 
=> T Pstack => N 
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User Memory Access T-op-(u)= > T 

T-op-(u)= >T 

·1 1 1 1 I 0 I 0 I c I c I c I c I 1 1 0 I R I u I u I u I u I u I 

Description: Loads TOP with results of ALU ·operation cccc on contents 
of TOP and data read from user location uuuuu. Original 
contents of NEXT are left unchanged. 

Number of cycles: 2 

Processor operations: 

1st cycle: 

2nd cycle: 

Parameter Stack errect: 

Instruction Set. Oiapter 7 

N => P11tack 

T-op-N => T 

N T -- N T·op-(u) 

(U) => N 

Pstack •> N 
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7.11 Class 13: Long Literals 

This class of instructions generates 16-bit literal values. The 16-bit value is 
contained in the memory location following the Long Literal instruction. The . 
value contained in this location is identified in the descriptions by "D". Long 
Literal instructions are the ·only RTX instructions which occupy two memory 
locations. 

Some of these instructions perform ALU operations using the literal data. These 
operations are indicated by "cccc" and correspond to Table 7 .3. 
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Long Literals N = > Pstack, D= > N, Invert 

N = > Pstack, D= > N, Invert 

Description: 

If i = 0 Pushes NEXT onto stack, loads literal value into NEXT. 

If i = 1 Pushes NEXT onto stack, loads literal value into NEXT, 
inverts TOP. 

Number of cycles: 2 

Processor operations: 

If i = 0 

If i = 1 

1st cycle: 
2nd cycle: 

1st cycle: 
2nd cycle: 

Parameter Stack effect: 

Ifi = 0 

If i = 1 

/nstnlaion Set, Chapter 7 

N => 

NOP 

N => 

*T => 

N T -- N D T 

N T -- N D *T 

Pstack D => N 

Pstack D => N 
T 
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Long Literals N= >Pstack, T= >N, D= >T, Invert 

N = > Pstack, T = > N, D = > T, Invert 

1 I 0 I 0 I R I x I x I x I x I x I 

Description: 

If i = 0 Pushes NEXT onto stack, TOP into NEXT, then loads literal 
value into TOP. 

If i = 1 Pushes NEXT onto stack, TOP into NEXT, then loads literal 
value into TOP, inverting the value. , 

Number of cycles: 2 

Processor operations: 

lfi = 0 1st cycle: N ::> Pstack D => N 
2nd cycle: T => N N => T 

If i = 1 1st cycle: N => Pstack D => N 
2nd cycle: T => N *N => T 

Parameter Stack effect: 

If i = 0 

If i = 1 N T 0 - N T *D 
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Long Literals N=>Pstack, T=>N,·T-op-D=>T 

N= >Pstack, T= >N, T-op-D= >T 

I 1 I I 0 I 1 I c I c I c I c I 0 I 0 I R I ~ I x I x I x I x I 

Description: Pushes NEXT onto stack, TOP into NEXT, then loads 
TOP with results of ALU operation cccc between 
original contents of TOP and literal. 

Number of cycles: 2 

Processor operations: 

1st cycle: N => Pstack D => N 

2nd cycle: T => N T·op·N => .T 

Parameter Stack effect: 

N T •• N T T·op·D 
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Long Literals D= >T, Invert 

D= >T,Invert 

I 0 . I I 0 I R l x I x I x ·I x I x I 

Description: 

If i = 0 Loads literal value into TOP. Original contents of NEXT are 
left unchanged. 

If i = 1 Loads literal value into TOP, inverting the value. Original 
contents of NEXT are left unchanged. 

Number of cycles: 2 

Processor operations: 

If i ,= 0 . 1st cycle: N => Pstaek D => N 
2nd cycle: N => T Pstack => N 

If i = 1 1st cycle: N => Pstack D => N 

2nd cycle: *N => T .Pstack => N 

Parameter Stack effect: 

If i = 0 N T -- N D 

Ifi = 1 N T -- N "'D 
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Long Literals 

~ =>T 

I 1 I 1 I 0 I 1 I c I c I c I c I 1 I 0 I R I x I x I x I x I x I 

Description: Loads TOP with result of ALU operation cccc between literal 
value D and contents of TOP. Original contents of NEXT.are 
left unchanged. 

Number of cycles: 2 

Processor operations: 

1st cycle: N => Pstack D => N 

2nd cycle: T-op-N => T Pstack => N 

Parameter Stack errect: 

Al T -- ~ 
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7.12 Classes 14 and 15: Data Memory Access 

These two classes of instruction perform reads and writes to Data Memory 
Space. The DPRSEL bit controls which page address register selects the 
memory page. 

· The address within the page of the location to be accessed is contained in the 
TOP register. For memory reads, the data is moved from memory into the NEXT 
register. For memory writes, the data moves from NEXT into memory. 

The instruction formats are identical for both word and byte access. The "s" bit 
(bit 12) of the instruction dictates the size of the operand (s = 0 for 16-bit word, 
s = 1 for 8-bit byte). 

For byte writes to memory, the contents of bits 0-7 of NEXT are written to the 
memory location addressed by TOP. For byte reads, the memory data is read 
into bits 0-7 of NEXT; bits 8-15 of NEXT are set to 0. 

The data read from or written to memory ,is identified in the descriptions as "m". 
Short literals are identified_;_as "ddddd" .~loatiotratltln:s-sm-oy e 
conten of TOP is identified~ • 

Some of the instructions may perfo . ALU operations on the data. These 
operations are identified by either "ccc~' or "aaa" in the instruction format, and 
cqrrespond to the values in Table 7.3. 
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Data Memory Access N=>T, m=>N, Invert 

N= >T, m= >N, Invert 

I 1 I 1 I 1 I s I 0 I 0 I 0 I I 0 I 0 I R I x I x I x I x I x I 

Description: 

If i = 0 Moves NEXT into TOP. Loads memory data contained in the 
location addressed by TOP into NEXT. 

If i = 1 , Moves NEXT into TOP, inverting value. Loads memory data 
contained in the location addressed by TOP into NEXT. 

Number of cycles: 2 

Processor operations: 

lfi = 0 1st cycle: N 
2nd cycle: T 

If i = 1 1st cycle.: N 
2nd cycle: *T 

Parameter Stack effect: 

If i = 0 

If i = 1 

N T -- m N 

N T -- m *N 

Instruction Set. Chapter 7 

=> T m => N 
=> T 

=> T m => N 
=> T 
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Data Memory Access m=>T, Invert 

Description: 

If i = 0 

If i = 1 

m= >T, Invert 

I .0 I 0 R I x I x I x I x I x I 

Loads memory data into TOP. Original contents of NEXT 
are left unchanged. 

Loads memory data into TOP, inverting data. Original 
contents of NEXT are left unchanged. 

Number of cycles: 2 

Processor operations: 

If i = 0 1st cycle: N 
2nd cycle: N 

If i = 1 1st cycle: N 
2nd cycle: *N 

Parameter Stack efrect: 

If i = 0 N T -- N m 

If i = 1 N T -- N *m 

=> 

=> 

==> 
=> 

T 
T 

T 
T 

m => N 
T => N 

m => N 
T => N 
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Data. Memory Access 

1v-01 ~Y'1 . 

..,...-m::op:N = > T 

I 1 I 1 I 1 I s I c I c I c I c I 0 I 0 I R I x I x I x I x I x I 

Description: 

Number of cycles: 

Processor operations: 

1st cycle: N => T 

2nd cycle: T => N 

Parameter Stack effect: 

Instruction Set, Chapter 7 

Loads TOP . with results of ALU operation cccc 
between memory data and contents of NEXT. 
Original contents of NEXT are left unchanged. 

2 

m => N 

T-op-N => T 

N T --
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Data Memory Access {N=>Pstack}, m=>N 

. {N= >Pstack}, m= >N 

I 1 I 1 I 1 I s I 0 I .0 I 0 I P I 0 I 1 I R I x l x I x I x I x I 

Description: 

If p = 0 Loads memory data into NEXT. Original contents of TOP 
are left unchanged. 

If p = 1 Pushes NEXT onto stack. Loads memory data into NEXT. 
Original contents of TOP are left unchanged. 

Number of cycles: 2 

Processor operations: 

Ifp=O 1st cycle: m => N 
2nd cycle: · no operation 

if p = 1 1st cycle: N => Pstack 
2nd cycle: no operation 

Parameter Stack effect: 

lfp=O 

Up= 1 

NT--mT 

NT-NmT 

m => N 
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Data Memory Access {N= >Pstack}, m= >N, d= >T 

{N= >Pstack}, m= >N, d= >T 

Description: 

If p = 0 Loads memory data into NEXT, and short literal value ddddd 
into TOP. 

If p = 1 Pushes NEXT onto stack, loads memory data into NEXT, and 
short literal value ddddd into TOP. 

Number of cycles: 2 

Processor operations: 

If p = 0 1st cycle: 
2nd cycle: 

If p = 1 1st cycle: 
2nd cycle: 

Parameter Stack effect: 

If p = 0 

If p = 1 

Instruction Set, Chapter 7 

m => N c:ldddc:l => T 

no operation 

N => Pstack 
no operation 

N T -- m c:ldddc:l 

N T -- N m c:ldddc:l 

m => N c:ldddc:l => T 
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Data Memory Access 

{N = > Pstack}, m = > N, T-op-d = > T 

I 1 I 1 I 1 I s I a I a I a I p I 0 I 1 I R I d I d I d I d I d I 

Description: 

If p = 0 Loads memory data into NEXT. Loads TOP with results of 
ALU operation aaa between the contents of TOP and short 
literal ddddd. 

If p = 1 Pushes NEXT onto stack. Loads memory data into NEXT. 
Loads TOP with results of ALU operation aaa between the 
contents of TOP and short literal ddddd. 

Number of cycles: 2 

Processor operations: 

Ifp=O 

If p = 1 

1st cycle: 
2nd cycle: 

1st cycle: 
2nd cycle: 

Parameter Stack effect: 

Ifp=O 

If p = 1 

220 

m => N T-op·ddddd => T 

no operation 

N => Pstack 
no operation 

m => N T·op-c:ldddd => T-1 
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Data Memory Access 

N= > (T), N= >T, Invert, Pstack= > N 

I 1 I 1 I s I 0 I 0 I 0 I i I 1 I 0 I R I x I x I x I x I x I 

Description: 

If i = 0 Writes data in NEXT to location addressed by TOP. Copies 
NEXT into TOP. pops stack into NEXT. 

If i = 1 Writes data in NEXT to location addressed by TOP. Copies 
NEXT into TOP, inverting contents, then pops stack into 
NEXT. 

Number of cycles: 2 

Processor operations: 

If i = 0 1st cycle: N => (T) N => T Pstack => N 
2nd cycle: T => T 

If i = 1 1st cycle: N => (T) N => T Pstack => N 
2nd cycle: *T => T 

Parameter Stack effect: 

If i = 0 N T -- N 

If i = 1 N T -- *N 
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Data Memory Access N .· >(T), Pstack=>N,T, Invert 

N=>(T), Pstack=>N,T, Invert. 

, , I 1 I 1 I s I 1 I 1 j 1 I ll 1 I 0 I R I x Ix I x I x I x I 

Description: 

If i = 0 Writes contents of NEXT to location addressed by TOP~ 
Pops new values into TOP and NEXT. 

If i = 1 Writes contents of NEXT to location addressed by TOP. 
Pops new values into TOP and NEXT. Inverts new contents 

. of TOP. 

Number of cycles: 2 

Processor operations: 

If i = 0 1st cycle: N => (T) N ·=> T Pstack => N 
2nd cycle: N => T Pstack => N 

If i = 1 1st cycle: N => (T) N => T Pstack => N 
2rid cycle: *N => T Pstack => N 

Parameter. Stack effect: 

If i = .0 S N T •• S 

If i = 1 S N T •• *S 
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fJ-() f-rV'< 

Data Memory Access ~cop=N=>T, Pstack=>N 

tJ ~f-ff' 
;n=op:"N = > T, Pstack= > N 

I 1 I 1 I 1 I s I c I c I c I c I 1 I 0 I R I x I x I x I x I x I 

. Description: Loads TOP with results of ALU operation cccc between 
memory data and contents of N. Pops stack into N. 

Number of cycles: 2 

Processor operations: 

1st cycle: N => T m => N 

2nd cycle: T·op·N => T Pstack => N 

Parameter Stack effect: 
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Data Memory Access N-· > (T), {Pstack-:- > N} 

N= > (T), {Pstack= >N} 

I 1 I 1 I 1 I s I 0 I .o I 0 I p I 1 I 1 I R I x I x I x I x I x I 
Description: 

If p = 0 Writes contents of NEXT to memory location addressed by 
TOP. Original contents of TOP (address) are left unchanged. 

If p = 1 Writes contents of NEXT to memory location addressed by 
TOP. Original contents of TOP (address) are left unchanged. 
Stack is popped into NEXT. 

Number of cycles: 2 

Processor operations: 

If p = 0 1st cycle: 
2nd cycle: 

If p = 1 1st cycle: 
2nd cycle: 

Parameter Stack effeet: 

lfp=O 

If p = 1 

224 

N => (T) 

no operation 

N => (T) 

no operation 

N T CG N T 

N T •· T 

Pstack => N 
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Data Memory Access N=>(T), d= >T, {Pstack= >N} 

N= > (T), d= >T, {Psta:ck= >N} 

l 1 l 1 l 1 lsl 1 l 1 l 1 lpl 1 l 1 IRldldldldldl 

Description: 

Up = 0 Writes contents of NEXT to location addressed by TOP. 
Loads short literal ddddd into TOP. 

If p = 1 Writes contents of NEXT to location addressed by TOP. 
Loads short literal ddddd into TOP. Pops stack into NEXT. 

Number of cycles: 2 

Processor operations: 

If p = 0 1st ·cycle: 
2nd cycle: 

If p = 1 1st cycle: 
2nd cycle: 

Parameter Stack effect: 

lfp = 0 

If p = 1 

Instruction Set. Chapter 7 

N => (T) ddddcl => T 
no operation 

N => (T) 

no operation 

N T -- N ddddd 

N T -- ddddd 

Pstack => N ddddd => T 
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Data Memory Access 

\ N= >(T), ct.ro~T= >T 

N= > (T), dw&~~ > T 

I 1 I 1 I 1 I s I a I a I a I P I 1 I 1 I R I d I d I d I d I d I 

Description: 

If p = 0 Writes contents of NEXT to location addressed by TOP. 
Loads TOP with results of ALU operation aaa between short 
literal ddddd and contents of TOP. 

If p = 1 Writes contents of NEXT to location addressed by TOP. 
Loads TOP with results of ALV operation aaa between short 
literal ddddd and _contents of TOP. Pops stack into NEXT. 

Number of cycles: 2 

Processor operations: 

If p = 0 1st cycle: 
2nd cycle: 

If p = 1 1st cycle: 
2nd cycle: 

Parameter Stack effects: 

lfp = 0 

If p = 1 
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N => CT> 
no operation 

N => CT> 
no operation 

N T -- N 

=> T 

=> T 
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7 .13 Undefined opcodes 

The following bit patterns are reserved for future use and should not be used for 
opcodes: 

User Space: 

I , I , I o I o I x I x I x I x I x I , I x I x I x I x I x I x I 

Long Literal: 

I , I , I o I , I x I x I x I x I x I , I x I x I x I x I x I x I 
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8 . Step Math Functions 

The Hams RTX 2000 Series Microcontrollers all include a unique and powerful 
set of instructions known as Step Math Instructions. These instructions allow 
the RTX microcontrollers to perform certain math operations much more quickly · 
than would be possible without them . 

. 8.1 Introduction 

Step math operations include signed and unsigned multiplication, unsigned 
. division, integer square root, bit reversal and cyclic redoodancy checks. Tuey 
also expand the RTX processors'. ability to perform logical rotation operations. 

In order to achieve this increase in efficiency, the processor operates differently 
than when performing ordinary math. To explain this in simplified terms, 

,intuitive mnemonics will be used here because of the_mimbei" of operations that 
··can happen in a single cycle;. Forth descriptions are used only where doing so 
clarifies the operation. In general, it is best to consider step math operations as 
Forth primitives. 

8.1.l Step Math Using The RTX 2000 . 

· All of the step math. functions listed above can be performed on 
· the RTX 2000 Microcontroller. However, because of the 
hardware multiplier which is incorporated on-chip. with this 
product, a special set of single cycle instructions is used to 
perform multiplication in· the place of step math operations. See 
Section 6.3. l for more detailed information about the on-chip 
hardware multiplier. 
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226 

8.1.2 Step Math Using The RTX 2001A 

On the RTX 2001A, step math operations are used to peffonn all 
of the functions listed in the Introduction. 

. . . . . . 

· 8~1.3 · Step Math Using The RTX 2010 · 

· All of the step math functions listed can be perfonned on the 
RTX 2010 Mkrocontroller. · However, because this product• 
provides the hardware Multiplier/ Accumulator, Barrel Shifter, and 
other Floating Point Support on-chip, special instructions are used 
to.· perfonn some math opera1;ion8 ·in place of step math. 
operations. See Section 6.3.2 for more detailed infonnation about 
the on-chip hardware math support for the RTX 2010. 
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8.2 Data Flow in Step Math 

Figure 8.1 shows the data flow diagram for all step math operations. Even 
though the hardware to perfonn step math is always present, much of it is 
inactive when not performing step math and therefore it is not emphasized outside 
of discussions on step math. 

Note that the-ALU is followed by a shifter. This allows an ALU operation and 
a shift to be perfonned in· a single cycle without passing the data through the 
ALU twice. 

Step math operations also use two special purpose registers (MD and SR) and one · 
pseudo register (SQ) in their operations. There are also dedicated shift blocks 
and logical OR blocks used with the MD and SR registers so that data in them 
does not have to pass through the ALU to be updated. 

The result of this architecture is that the equivalent of five ALU operations can 
be perfonned in a single cycle, and the cycles required to transfer data for these 
ALU operations are eliminated also. 
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FIGURE 8.1: RTX STEP MATH DATA FLOW DIAGRAM 
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8.3 17-Bit Math 

·Many of the step math operations treat the TOP register as a 17-bit wide register 
to accomplish their:tasks. Correspondingly, ·the ALU is extended ·to 17 bits for 
these operations by the 17th-bit adder. Since the 17-bii. result is sometimes 
shifted left one bit, ari 18th bit is also needed to store the shifted bit. The 17th 
and 18th bits are held in bits zero and one of the Configuration Register (CR), 
and consequently change only at the end of a cyCle on the rising edge of PCLK. 

These bits are sometimes referred to in the data sheets as the . carry (CY) and 
complex carry (CCY).bits, respectively, but in the context of step math, this may 
be misleading nomenclature. In this case, these bits are more accurately thought· 
of as an e:i:ctension of the TOP register, and will be referred to here only as CRO 
and CRl. 

There are values referred to a8 CY and CCY in other sections in this manual, 
which UQ.der ceri:ain conditions are clocked into CRO and CRl at the end of a 
cycle, though these values are not necessariiy true carry bits. When this is the 
case, CRO and CRl may contain the CY . r CCY result of e previous math__or. 
step math instruction. In this chapte the values are sometimes referred to' as 
W16 and Wl7. In worki,ng with step math it is essential to remember at 
and CCY do not exactly indicate the contents of CRO and CRl. "'-"' k ~ 

/" Note that CRO only changes when performing an ALU or shift operation, and 
{ CRl only changes during step math operations that include an arithmetic ALU 
\ · .' operation. Also note that CRO and CRl are sometimes referred to as CQ and 
~ CCQ, respectively~ in other sections of this manual. 

-------.··'"'---------



8~4 The Step 'Math Instruction Format 

· All step math operations have the same format, which is similar to that of · · 
ordinafy math operations. The op code for step math. instructions is divided into 
groups of micro opcodes, each of which has a specific effect on the instruction. 
The general format for step math instructions is shown i.n Figure 8.2 · 

bits: .. 
11s· ••••••••• · •• · ••••.•.•••••• ; ••••••• ~. · ••• , ••••••••••• ;. · •• ·; .•••• >. o I 

I 1 0 I 1 I 0 I a I a I a I_ r II Y I Y I R I iJ s I s I s I .s II 
1<·....,......---·>1< >1< >I· l<I· .. >1<1>1 

· . Signed/Unsigned 
Micro op~ode 

. Field . . 

· . . Unconditional Sh;l.ft 
Micro Opcode Field 

Conditional Behavior 
Micro Opcode Field 

Reqi·ster Selection 
Micro Op.code .Field 

ALU Micro Opcode Field' 

FIGURE 8.2: STEP MATH INSTRUCTION FORMAT · 
. . . . ~ . . . 

As is evident from · the step math instruction format, there. are ten bits, not 
including the Return bit, that determine ~e step math operation, which implies 
that there . are· 1024 ·possible step math operations. While this is true, not all of 
thes~ operations are useful. 
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8.4.1 ALU Micro Opcode Field (aaa) 

Step math operations usually include a conditional ALU operation between the 
TOP register and another register, either the MD or the SQ pseudo register. Step 
math operations may also include an ALU No-Operation or a conditional ALU 
load from the MD or SQ register. · 

TABLE 8.1: STEP MATH ALU FUNCTIONS 

aaa ·Function 

000 No ALU operation 
001 YES = 1 => TOP and REG.--> TOP 
010 YES • 1 => TOP - REG -->.TOP 
011 YES = 1 => TOP or REG --> TOP 
100 YE$ = 1 •> TOP + REG·--> TOP 
101 YES = 1 => TOP xor REG --> TOP 
110 YES = 1 => REG - TOP --> TOP 
111 YES = 1 => REG --> TOP 

Whether the conditional ALU operation occurs depends on a pseudo variable, 
called "YES". If YES is true (1), the conditional ALU operation will be 
perfonned; if YES is false (0), the contents of TOP will be preseived, though in 
either case the contents of TOP may be shifted by an unconditional shift 
operation. The procedure for determining YES will be explained shortly. 

The 18-bit result of the conditional ALU operation, as determined by YES, results 
in a value called "W," as shown in Figure 8.1. This vafoe is then shifted t6 
detennine the value shifted into CRl CR.Q,_ .. '(Qe and NEX.T. · If the ALU . 
operation is not arithmetic (i.e. + or-), Wl 7 and WC are the value stored in CRl · .· · rJ 
and CRO respectively. /fif·-,-~;~--;;ffe;:r~;c/ ----fl-t~ fo, 1 ·7 . ~~t; (j) ~ 

l .. ' ' ~ell"''"'. /l'j •11"'' -

Conditional ALU operations during step math are summarized 1:. References 
to "REG" indicate the MD or the SQ register as determined by the "r" bit (bit 8), \ 
as described in Section 8.4.2 and shown in Table 8.2. . · · .· \~ e. 

. . \ ti\ T o,'v; 
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8.4.2 Register Selection Micro Opcode Field (r) 

The register selection micro opcode field (bit 8) detennines whether the input to 
the ALU operation will be the MD or the SQ register. If r = 0, the input will be 
the MD. register; if r = 1, the input will be· the SQ register. 

The SQ register is actually a pseudo register: there is not a unique register 
associated with it. When reading the . SQ register, the value obtained is the 
contents of the MD reg~ster shifted left one bi~ and then logically OR'ed with the 
contents of the SR register. · L 1-~ vd G ~~ t(..e..J )· VI ~ -"'-------

Also, the most significant bit of MD (bit 15) is fed into the 17th-bit adder. As 
we shall see, this allows the RTX processors to calculate the square root of an 
integer without using Newton's method. Also, writing data to the SQ register 
(ASIC Bus address 5) has the effect of multiplying the data by 256 and placing 
it ·into the MD register. Applications for this procedure is useful include 
calculation of some cyclic redundancy checks. 

The "r" bit has another function in step math. If r = 1, i.e. the SQ register is 
selected, the data in MD and SR will be modified at the end of the cycle. The 
data in MD will y be replaced with MD logically OR'ed with the data 
in SR, and the data in SR ·n be shifted right one bit. A.'-· -----~---

The condition that detennines whether this happens is the same condition that 
detennines whether an ALU operation will be perfonned (YES). This behavior 
is useful in both square root and bit reversal operations. 

The behavior of MD and SR"as detennined by "r" is summarized in Table 8.2. 

TABLE 8.2: MD AND SR OPERATION 

r YES MD SR TOP 

0 0 MD SR TOP (shift) 
0 . 1 MD SR TOP (alu op) MD (shift) 
1 0 MD SR I 2 TOP (shift) 
1 1 MD or SR SR I 2 TOP (alu op) SQ (shift) · 
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8.4.3 Conditional Behavior Micro Opcode Field (yy) 

The conditional behavior micro opcode field (yy, bits 6 and 7) determines the 
value of the pseudo variable "YES." 

In general, YES is detennined by the logical combination of one or more bits in 
registers or by the Clll!X, out bit from the 17-bit ALU operation. The_ bits involved 
are the carry out bit @f 6), bits zero and three of the opcode (Instruction Register 
bits IRO and IR3), CR!>bil zero of the TOP Register (TO), and bit zero of the 
NEXT Register (N0). -----_ ___ _ 

------~---~ 
Another factor that may affect the result is whether the . ALU operation is 
arithnietic or logical. The behavior of YES is summarized in Table 8.3. 

TABLE 8.3: BEHAVIOR OF YES 

yy YES 

00 IF ARITHMETIC THEN ·~~ IRO 
01 (IF ARITHMETIC THEN~CTl6 ELSE IRO) or CRl 
10 IF IR3 = 0 THEN TO ELSE Nl<l 
11 TO xor N0 

So far, little has been said about the carry out bits, Cl5 and· C16. These are 
outputs of the 16-bit ALU and the 17th-bit adder. 

When addition is perfonned, the carry bits are set if the result of the addition is 
too large to place in the available number of bits. When subtraction is performed, 
however, the carry bit represents an inverted borrow bit. In this case, the carry 
bit is cleared. if the result of the subtraction is negative. 

In step math, the carry bits are used primarily in operations that involve a 
conditional subtraction, namely division and square roots. In these cases, the 
carry bit is set if the subtraction was successful, which causes the result of the 
subtraction to replace the original value in TOP. Both of these cases also shift 
the result left one bit, which is. why an extra bit (CRl) is required, since it always 
contains the 17th bit of the result of the most recent arithmetic step math 
operation. 
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8.4.4 Subroutine Return Micro Opcode Field (R) 

The operation of the subroutine return micro opcode ·field (bit 5) is exactly the 
same as for other 'RTX instructions. · 

If this bit equals one, a subroutine return is executed· along with the instruction. 
If it equals zero, the next sequential instruction is executed. 
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8.4.5 Unconditional Shift Micro Opcode Field (sss) 

Every step math operation may include an unconditional shift operation, (bits l, 
2, and 3) which is perfonned on W. Since the shift is perfonned in a separate 
section from the ALU, the shift may occur in the same cycle as the ALU 
operation. 

Shift operations occurring during step math differ from those occurring during 
ordinary math operations. In particular, the sources of carry in bits .to the shifts 
may be different, and may come from YES and CRl. 

Shifts may operate on TOP, NEXT or both. The various shift operations are 
summarized with Forth mnemonics in Table 8.4. · 

TABLE 8.4: STEP MATH SHIFf OPERATIONS 

sss NAME CRl CRO Tl5 Til TO Nl5 Nn N(il 

000 NONE Wl7 Wl6 Wl5 Wn WO Nl5 Nn N(il 
001 2.*' Wl6 Wl5 Wl4 Wn-1 YES Nl5 Nn Nfil 
010 c2/' Wl7 Wl7 Wl6 Wn+l Wl Nl5 Nn· Nfil 
011 2/' Wl7 w17 YES Wn+l Wl Nl5 Nn Nfil 
100 N2*' Wl7 Wl6 Wl5 Wn WO Nl4 Nn-1 YES 
101 02*' Wl6 Wl5 Wl4 wn-1 Nl5 Nl4 Nn-1 YES 
110 c02/' Wl7 Wl7 Wl6 Wn+l Wl WO Nn+l Nl 
111 02/' Wl7 Wl7 YES Wn+l Wl WO Nn+l Nl 

Note that bits WO through Wl 7 are _the result of the conditional 

ALU. operation· as determined by YES. 

There ~re several important exceptions to.Table 8.4. First, the value clocked into 
CRl for opcode A057 (hex) is W17 instead of Wl6 as indicated by the table. 
The second special case occurs when the shift operation is cD2/' and the "S" bit 
(bit zero of the opcode) is 1, as it is in the case oLsignecLmulti.p4'JleJt 
instructj.cnr~ese instructions, the value of the bit shifted into TlS may· --

iffe-rfrom Wt 6. 
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· 8.4.6 Signediunsigned Micro Opcode Field, (S) 

The signed/unsigned micro opcode field (bit 0) has a double purp0se. FirstMwit 
determines whether rignt shifts and .additions are treated as signed· or unsigned 
during multiply steps; and second, it is used with yy = Olto allow manual control 
of conditional logical ALU operations. This allows unconditional 17-bit shifts, 
for example. When used with arithmetic ALU operations, the "S" bit affects the 

. Jnputs to the 17th-bit adder. · 
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. ·. , . . . . ·. 

It S = 0 .(unsigned), the adder operates on CRO and a zero bit. This is 
. because the zero is treated as the 17th bit of the MD register. Since MD 

is considered to be unsigned, its 17th bit is always a zero. · · · 

If S ..; 1 (signed), . the adder will opera~ on CRO and MD15. ·1n this 
case, the s~ bit of MD is extended into its 17th bit. If the operation is 
subtraction, one of the inputs to the adder will be inverted, as will be · 
discussed below. The ~'S" bit also affects right shifts during signed 
multiplies, to detennine the value shifted into. TOP; · · 
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8.5 Operation of the 17th-Bit Adder 

The 17th-bit adder is an extension of the ALU for addition and subtraction 
operations. It can be used for subtraction as well as addition because its inputs 
may be inverted depending on the operation. 

When perfonning addition, the carry out indicates that the result is negative, or 
has overflowed, as is the case with the ALU. 

When perfonning subtraction, the carry indicates an inverted borrow, i.e. a carry 
out indicates that the subtraction of the 17th bit did not require a borrow, and that 
the result is non-negative. This is also the same as a carry out during subtraction 
for the ALU. 

The operation of the 17th-bit adder is summarized in Table 8.5. 

TABLE 8.5: 17th-BIT ADDER OPERATION 

T y CI z co 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 
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8.6 Interrupting Step Math Operations 

In general step math operations may be interrupted as long as the interrupt 
handlers are well behaved; i.e. they save and restore any shared resources they 
may use. This is in agreement with good interrupt handler design for any 
processor. 

The shared resources that affect step math operations are CR bits 0 and l, MD 
and SR. Any handler that affects these should make sure they are in the same 
state upon returning from the interrupt that they were in when the interrupt 
occurred.· 

One exception is the signed step multiply operation. If it is interrupted, there is 
a probability that the~_result wjJJJ~~Jnc_o~ct, though this. gepe_nd§ on the· values 

,~~~:~~~~~,,. :~~,·~~~f~~!llaa;~,~~ 
·s1 ed--in t1plicaffori · is<"rtot~su:ffiCierit-=te~ prevent interrupts, as this does. not 
prevent the last step (which is not streamed) from being interrupted. 
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8. 7 · Some Useful· Opcodes 

It may help to look at some specific step math operations to get a feel for how 
they are used before considering specific cases. Table 8.6 provides a list of 
useful step math opcodes with their Forth mnemonics and a ·brief description. 
The following sections describe these operations in more detail. 

TABLE 8.6: SOME USEFUL STEP MATH. OP<:;ODES 

OPCODE FORTH DESCRIPTION 

A012 2*' 17 Bit left shift 
A09E RDR Rotate TOP:NEXT right 
A096 RTR Rotate TOP right 
A89D *' Signed multiply steps 1-15 
A49D *" Signed multiply step 16 
A89C U*' Unsigned multiply steps 1-16 
A49C U*" Mixed sign multiply step 16 
A894 BU*' Byte unsigned multiply steps 1-8 
A494 BU*" Byte mixed sign multiply step 8 
A41A U/1' Unsigned divide step 1 
A4SA U/' Unsigned divide steps 2-lS 
MS8 U/" Un'signed divide step 16 
A418 U/l" Al"ternate unsigned divide step 16 . 
A412 BU/' Byte unsigned divide steps 1-8 
ASlA Sl' Square root stei.p 1 
ASSA S' Square root steps 2-:lS 
ASS8 S" Square root step 16· 
AS12 BSl' Byte Square root step 1 
ASS2 BS' Byte square root s·teps 2-8 
Al96 R' Bit reversal step 
AADE C' CRC step 
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8.8 Step Multiplication 

In applications in which multiplication is needed, the RTX 2001A Microcontroller 
uses the step multiplication operations which are described in the following 
sections. These step math multiplication operations would not nonnally be 
perfonned on the RTX 2000 Microcontroller due to the increased speed available 
through its on:chip hardware multiplier. · 

8.8.1 Signed Step Multiplication 

The primitive signed step ·multiplication operation operates on two signed 
numbers. One of these numbers, the multiplier, is initially in NEXT, and the 
other, the multiplicand, is in the MD register. The product is a signed, double 
precision number on the stack. 

Prior to perfonning signed step multiplication, both CRO and CRl should be 
initialized to zeros and TOP should be initialized to zero. TOP may optionally 
be initialized.to a signed. number which will be added to .the product 

If step signed multiplication is interrupted, the result may be incorrect. 
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8.8.2 Signed Step Multiplication Op Codes 

*' 
Siqn.ci Mllltiplication Step• 1 Through 15 
A89D = 1010 1000 1001 1101 
aaar = 1000 ==> ALU OP = TOP + MD --> TOP 
yy 10 ==> YES = Nill 
ssss = 1101 ==> shift = cD2/' signed 

If Nill = 1 
TOP + MD --> TOP 

TOP:NEXT I 2 --> TOP:NEXT 

... 
siqned Mllltiplication step 16 
A49D = 1010 0100 1001 1101 
aaar = 0100 ==> ALU OP = TOP - MD --> TOP 
yy 10 ==> YES = Nill 
ssss = 1101 ==> shift = cD2/' signed 

If Nill = 1 
TOP - MD --> TOP 

TOP:NEXT I 2 --> TOP:NEXT 

This step differs from*' in that MD is conditionally subtracted from TOP 
instead of added. This is because the value originally in NEXT is in 
two's complement form and as such the most significant bit represents a 
negative multiple of a power of 2, i.e. 215• 

. 8.8.3 Signed Step Multiplication Example Program 

HEX 

M* n n -- d ) 
CR@ DUP 2* 0< 10 AND OR >R 
CR@ 10 OR CR! 
MD! 
0 
0 + 
2*' 
*' *' *' *'" *' *' *' *' 
*' *' *' *' *' *' *' *" 
R> CR! ; 

Step Math Functions, Chapter 8 

\ Save state of int disable bit 
\ Disable interrupts 
\ .. Set up MD 

. \ Set up TOP 
\ Clear CRO 
\ Clear CRl 
\ Perform the multiplication 

\ Restore int disable bit 
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8.8.4 Mixed Sign Multiplication Type A 

Type A mixed sign multiplication is similar to signed multiplication except that 
the value originally in NEXT is treated as a 16-bit unsigned integer. Because of 
this, the last step is the same as the first 15 steps, w_hich are the same as for 
signed multiplication. 

This type of multiplication is useful for calculating· the partial IJroduct of a 
multiple precision multiplication. 

Because all the multiplication steps are the same, the operation can be streamed 
to disable interrupts, which reduces the overhead for this type. of multiplication. 

8~8.5 Type A Mixed Sign Multiplication Example Program: 

: MA* ( u n -- d ) 
MD! 
0 
0 + 
2*' 

F OF( *' 
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\ Set up MD 
\ Set up TOP 
\ Clear CRO 
\ Clear CRl 

\ Perform the multiplication 
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8.8.6 Unsigned Multiplication 

Unsigned multiplication is similar to signed multiplication except that ·.the 
multiplier and multiplicand are both treated as unsigned 16-bit values. Also, s~bit 
unsigned multiplication is supp0rted. This allows. a faster multiplication in the 

· event the multiplier and muitiplicand ate both 8-bit values. · 

Since the multiplicand (MD) is always positive in unsigned multiplication, CRO 
is added to a zero bit instead of the most significant bit of MD in the the 17th-bit 
adder. Otherwise unsigned multiplication is similar to signed multiplication. 

8.8~7 Unsigned Multiplication Op Cocies 

o•• 
11n•J.gned. 11111.Upl.i.cat:J.on Step• 1 ~uqh 1' 
A89C m 1010 1000 1001 1100 
aaar = 1000 · ==> ALU OP = TOP + MD --> TOP 
yy 10 ="'> YES = Nil 
sssS • 1100 ==> shift = cD2/' unsigned 

If Nil = 1 
TOP t MD --> TOP 

TOP:NEXT. I 2 --> TOP:NEXT 

BU*' 
S~Bit: 'Onaigned. ~ul.t:1pi1cat:1on at:epa 1 t:lirough 8 
A89.4. • 1010 1000 1001 0100 
aaar = 1000 . ==> ALU OP = TOP + MD --> TOP 
yy 10 
ssss = 

If Tll = 1 
TOP + MD --> TOP 

TOP I 2 --> TOP 

.. Step Math FUnt:tions, Ghapter 8 
. . ~ 

==>YES =Tll 
0100 ==> shift = ·c2/' unsigned 
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8.8.8, Unsigned Multiplication Example Program: 
UM* <"uu--du ) 

MD! \ Set up MD 
0 \ Set up TOP 
0 + \ Clear CRO 
2*' \ Clear CRl 
U*' U*~ U*·' U*'· U*' U*' U*' U*' \ Perform the multiplication 
U*' U*' U*' U*' U*' U*' U*' U*' 

8.8.9 8-Bit Unsigned Multiplication Example Program: 
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BUM* ( bu bu -- u ) 
SQ! 
0 + 
2*' '21 
SU*' SU*' SU*' BU.*' 

SU*' SU*' SU*' BU.*' 

\ Set up multiplicand 
\ Clear CRO ·· 
\ Clear CRl 
\ Perform the multiplication 
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. 8.8.10 Mixe.d Sign Multiplicatfon Type B . 

. Type B·mixed sign multiplication.is similar to unsigned multiplicatiort except that 
the value origirially in NEXT is treated as a 16-bit signed integer. Because of_ 
this, the last step is different (i.e. MD is subtracted from instead of added to TOP) 
from the first .15 steps, whicb are the same as for unsigned multiplication. This 
is for the same reason that a different step is required in signed multiplication. 

. . 

This ·type of multiplication is useful for calculating the partial product of a 
multiple precision multiplic.ation, and is also supported for 8-bit operands. 

8~8~11 Mixed Sign Multiplication Type B Op Codes 
. . 

U*" . 
Un;.ignad ..U1tiplicat;ion step is 
A49C = 1010. 0100 1001 1100 
aaar = 0100 ==> ALU OP = TOP . .;. MD.--> TOP .. 
yy 10 ==> YES = NQJ 
ssss = 1100 ==> shift. =. cD2/' unsigned 

If NQJ = 1 
TOP - MD --> '.I'OP 

- TOP :NEXT I 2 .;.:::-> TOP :NEXT 

BU*" 
&".'Bit onai:gned Multiplication step B 
A494 ·• 1010 0100 1001 0100 
aaar = . 0100 . ==>· ALU OP = TOP - MD ;.._> . TOP 
yy 10 ==>YES =·TQJ 
SSS$ = 0100 ==> shift ~· c.21' unsigned 

If T'1l • 1 
TOP .- MD --> TOP 

TOP I 2 --> TOP 
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8.8.12 Type B Mixed Sign Multiplication ~xample Programs: 
MB* ( n u -- d ) 
MD! 
0 
0 + 
2*' 
U*' U*' 
U*' U*' 

U*' U*' 

U*' U*' 

U*' U*' 

U*' U*' 

\ Set up MD 
\ Set up TOP 
\ Clear CRO 
\ Clear CRl 

U*' U*' \ Perform the multiplication 

U*' U*" 

8.8.13 8-Bit Unsigned Multiplication Example Program: 

BMB* ( b bu -- n ) 
SQ! 
255 AND 
0 + 
2*' 21 
'SU*' SU*' SU*' SU*' 

SU*' SU*' SU*' SU*" 

\ Set up mult;iplicarid 
\ Make S-bit negative numbers -
\ Clear CRO 
\ Clear CRl 
\ Perform the multiplication 
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8.9 Step Division 

Step division is performed in 16 steps using long division, and signed division is 
not supported. 

A 32-bit dividend in TOP and NEXT is divided by a 16-bit divisor in MD, 
leaving a 16-bit re!Jlainder in TOP and a 16-bit quotient in NEXT. 

·/l.. .IA-(" ·~· · , Bee. a. use the quotient is. limited to 16 bits, not all dividends and divisors yi.eld a 
17 V I l) quotient small enough to be represented. In these cases, the result is invalid. The 

. co/' only way to check the validity of a result is to multiply the quotient by the 
IJ/'t. p,,r.· · · divisor and add the remainder. Also, division by zero yields an invalid result. 

~· } . . 

c.;::.. /J-(<Jvl (~\\ ~ . Two versions of the division pfogram follow. The standard version (see Section 
r(}N"£Y fd 8.9.1) tests the value of CRl for steps 2 through 16. The alternate version (see 

\"'- ll 'i{;t Section 8.9.2) does not. 
c'U 'irfl\ . 

(d'- 7 t\)'\ c, ' ·.· .. J.J It can be proven that CRl will always be zero for any division that yields a valid 
· ~ result, so the standard and alternate versions both work the same as long as the 

result is valid. In the event the result is invalid, however, their results may differ. 

There is also an 8-bit version of step division, which is faster than the 16-bit 
version. In the 8-bit version, a 16 bit unsigned number in TOP is divided by an 
8-bit unsigned number in MD, leaving an 8-bit result in TOP. The same 
restrictions that apply to 16-bit division also apply to 8-bit division. 
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8.9.1 Step Division Opcodes 

248 

TJ/l' 
Undgned DJ.vi.de Step 1 
A41A = 1010 0100 0001 1010 
aaar = 0100 
yy 00 

=~> ALU .OP = TOP - MD --> TOP 
==> YES = C16 

·sssS = 1010 ==> shift = D2*' unsigned 

If C16 = 1 
TOP - MD --> TOP 

TOP:NEXT * 2 --> TOP:NEXT 

YES --> N0 

TJ/' 

( TOP - MD >= 0 ) 

Un11J.gned DJ.vi.de Step11 2 through 15 
A45A = 1010 0100 0101 1010 
aaar = 0100 ==> ALU OP = TOP - MD --> TOP 
yy 01 ==> YES = C16 + CRl" 
ssss = 

If Cl6 + CRl = 1 
TOP - MD "'."-> TOP 

1010 ==> shift = D2*' unsigned 

(. TOP - MD >= 0 ) 

TOP:NEXT * 2 --> TOP:NEXT 

YES --> N0 

This step differs from U/1' in that the conditional subtraction will be 
perfortned also if the previous subtraction also produced a result with 1 
in the most significant bit (now shifted into CRl) even though the 
subtraction was successfully performed. 

It can be proven that this oilly happens when the dividend is too large to 
produce a 16-bit quotient when divided by the current divisor. 
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TJ/" 
11ndgned Div:l.cW Step 16 
A458 ~ 1010 0100.0101 1010" 
aaar = 0100 a=> ALU OP = TOP - MD --> TOP 

01 ==>YES ~_Cl6 + CRl 

If.C16 + CRl = 1 
TOP - MD --> TOP 

NEXT * 2 --> NEXT 
YES --> Nli'l 

101.0 ==> shift = N2*' unsiqned 

( TOP - MD >= 0 

· This step differs from U/' in that only NEXT is shifted. This allows the 
correct remainder to be left in TOP. . 

TJ/1" . 
-Al.t.ernat• 11n•igned Div:l.cW step 16 

' A418 ,;. 1010 0100 0101 1010' 
aaar = 0100 =•> ALO OP • TOP_ ~ MD --> TOP 
yy 00 
ssss = 

If Cl6 • 1 
TOP - MD --> TOP 

NEXT * 2 -"'-:> NEXT 
YES.--> N[ll 

==> YES = C16 
1010 ==> shift = N2*' unsiqned 

( TOP - MD >= 0 ) 

this step differs from _D/l' in that only NE~T is shifted. This allows the 
correct remainder to be left in TOP. 

BTJ/' . 
. 8-Bit unsigned Divide Step• 
A412 = 1010 0100 0001 0010 
aaar = 0100 
yy 00 

1 throuqh 8 

==>ALU OP= TOP - MD--> TOP 
==> YES = Cl6 

sssS = 0010 ==> sh,ift = 2*' unsiqned 

If Cl6 = 1. 
TOP - MD --> TOP 

TOP * 2 --> TOP 
YES --> .Trll ·. 

Step Math Functions, G!!_apter 8 

( TOP - MD >~ 0 ) 
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8.9.2 Standard Division Program Example 

This version of the division program tests the value of CR 1 for steps 2 through 
16. 

: UM/MOD ( ud u -- ur uq ) 
MD! 
D2* 
U/l' 
U/' U/' U/' U/' U/' 
U/' U/' U/' U/' U/' 
U/' U/' U/' U/' 
U/" 
SWAP ; 

\. Set up divisor 
\ Clear CRO, 17 divide steps not needed 
\ Step 1 
\ Steps 2 - 15 

\ Step 16 

\. Put quotient, remainder in right places 

8.9.3 Alternate Division Program Example 

This version of the division program does not test the value of CRl for steps 2 
through 16. · 

UM/MOD ( ud u -- ur uq ) 
MD! 
D2* 
U/l' U/1' U/l' U/1' 
U/l' U/l' U/1' U/l' 
U/l' U/l' U/1' U/1' 
U/l' U/l' U/1' 
U/1" 

SWAP ; 

\ Set up divisor 
\ Clear CRO, 17 divide steps not needed 
\ .Steps 1 ·- 15 

\ Step 16. 

\Put quotient, remainder in·right places 

8.9.4 8-Bit Division Program Example 

This version of the division program also does not test the value of CRl ·for steps 
1 through 8. · 
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SU/ ( ud u -- ur uq ) 
SQ! 
2* 
SU/' BU/' BU/' BU/' 
BU/' SU/' BU/' BU/' 

FF AND ; 

\ Set up divisor 
\ Clear CRO 
\ Divide it 

\ Discard remainder * 2 
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. 8.10 Step Square Root 

The RTX 2000 Series of Microcontrollers implement an exact algorithm (vs. an 
approximate algorithm such as Newton's method) for finding the square root of 
an integer. · 

In the event the input value is not a perfect square, a root and a remainder are 
found. The remainder is similar to the remainder of division: if the remainder is 
added to the square of the root, the original input value is found. It is possible 
for the remainder to exceed the 16 bits of the TOP register, though the 17th bit 
will always be contained in CRO. 

Prior to executing the square root steps, the 32~bit input value is placed into TOP 
and NEXT, MD is cleared, and a value of 8000 hex is placed in SR. 

Square root steps are similar to division steps but subtract the SQ register instead 
of MD from TOP. They also use CRl to determine whether to perform the 
conditional subtraction. This is needed for square root steps because the value 
being subtracted changes from step to step. 

Step Square Root Algorithm 

The pseudo-division square root algorithm is· similar to restoring long division. 
That is, it consists of repeatedly subtracting a subtrahend from the input value. 
If the result of tlie subtraction is negative, however, the value prior to the 
subtraction is restored. This can also be thought of as a conditional subtraction. 
The difference from long division lies mostly in the value of the• subtrahend, 
which changes from step to step depending on which of the previous subtractions 
were successful. · A subtraction is successful if it leaves a non~negative 
intermediate result. .Jf a subtractionis successful, a one is shifted into the least 
significant bit of the result; otherwise a zero is shifted in. To get a feeling for· 
how the subtrahends are generated, let us consider the 8 bit square root of a 16 
bit number using hardware similar to that in the RTX. The bits of the root are 
represented by rn with r7 being the most significant bit. The trial subtrahends are 
shown aligned with the square from which they are to be subtracted. 
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JABLE 8.7: SQUARE ROOT TRIAL SUBTRAHENDS 

s, s. sd s. s. s. s, s, S7 s, Ss s, s,· s. S1 So 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 r, 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 r, r, 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 r, r, rs 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 r, r, rs r, 0 1 0 .0 0 0 0 0 
0 0 0 0 0 r, r, rs r, r, 0 1 0 0 0 0 
0 0 0 0 0 0 r, r, rs r, r, r, 0 . 1 0 0 
0 0 0 0 0 0 0 r., r, rs r, r,. r, rl 0 1 

As is evident from the table, each trial subtrahend is dependent only on the results 
of the trial subtractions executed prior to the current trial. The values in this table 
are also the same as the first 8 subtrahends for the 16-bit square root, and it 
should be apparent how the remaining · 8 subtrahends are generated. These 
subtrahends are generated directly by MD, SR and the surrounding circuitry. 

Unless you are a mathematician, it is probably not obvious why subtracting these 
values should give you the square root of a number. The remainder of this 
section may help you to understand how this algorithm works. 

Consider two numbers, r (an N-bit unsigned integer) ands (an unsigned integer· 
with 2N bits). Lets be the square of r. One can represent r as a polynomial of 
powers of 2: 

where n=N-1 and r0 through rn are either zero or one. Since s is the square of r, 
scan also be expressed as a polynomial of powers of 2: 

s·.= rr 
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[rn22n + r~rn-122n-l + ••• + rn.ro2"] + 
[rn-1rn22n-1 + rn-122n-2 + ••.. + rn-1ro2n-l_] + 
••• + 
[r0r.2• + r 0r._12•-1 + ••• + r 0] • 
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. Notice that since rn can only equal 1 or 0, rnrn = rn. It is useful to visualize the 
terms of s as values in a square array, as shown in Table 8.8: 

TABLE 8.8: TERMS OFS AS VALUES IN A SQUARE ARRAY 

rn2n rn-12n-1 r 12 ro 

rn2" rn2.2n rnrn-122n-1_ rnr12n•l rnro2." 

rn-12n-1 rnrn-122n-1 rn-122n-2 rn-1r12" rn-1r~2n-l 

r 12 :r;nr12~+1 rn-1r12" r 1 2 2 · r 1r 02 

ro rnro2" rn-1ro2n-l r 1r 02 r. 

Notice that all the perfect squares are on the diagonal running from the upper left 
comer to the lower right comer, and the rest of the array is symmetrical about the 
diagonal, and each term in the lower left half of the array has an identical term 
in the upper right half. Like terms can be combined by adding the terms in the 
upper right half to those in the lower left half. Each row in the new triangular 
matrix may then be used to form a trial subtrahend, to through t,,, that may be 
used for finding the square root of s: 

t1 = rnr12n+2 + rn-1r12n+1_ + •• ·.+ r2r1.2" + r122 

to = rnrozn+l + .rn-1ro2" + •• -· + r1·ra22 + ro 

Notice that t,, depends only on rn, t,,_1 depends only on r0 and r 0 _1, lu.2 depends orily 
on rn, rn-1 and rn-2• and so on. . 

The technique for using these trial subtrahends for finding the root· of s is 
straightforward. If rn is assumed to be 1, and t,, can be subtracted from s, then r0 

is indeed 1. If, however, the result of the subtraction is negative, rn is 0, and s 
must be restored to its value prior to the subtraction. · Once rn is known, it can be 
used to find rn-l by the same method, and so on to .r0• This is exactly what 
happens when subtracting the trial subtrahends in Table 8.7. 
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For further illustration we can find the subtrahends for the 8 bit square root in 
table 1. · In this case the root is: 

r = r 727 + r,2• + r 525 + r,2 4 + r 323 + r 222 + r 12 ·+ r 0 

The square is: 

s = rr 
[r7214 + r 7r 0s 13 + 
[r0r 7213 + r,212 + 
••• + 

+ r 7r 02 7 ] + 
+ r5r~2•1 + 

[r0r 727 + r 0r 626 + ••• + r 0 ] • 

By combining like terms and grouping into subtrahends we obtain: 

t 7 = r,21• 
t 6 = · r 7r 6 214 + r 6 212 

t 5 = r 7r 5213 + r 6r 5212 + r 5 210 

which is identical to the description of the subtrahends in Table 8.7. 
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· An Example: 

For a specific example, let us find the 8 bit square root of a 16 bit number. Let 
the inputvalue equal 8163H (hex), i.e. 1000000101100011 binary. 

10110101 
)1000000101100011 
-0100000000000000 1st subtraction 

0100000101100011 •uccessful 
-0101000000000000 2nd Subtraction 

1111000101100011 Not Successful 
0100000101100011 Restore previous Value 

-0010010000000000 3rd subtraction 
0001110101100011 Successful 

-0001010100000000 4th Subtraction 
0000100001100011 Successful 

-0000101101000000 5th Subtracti6n 
11111101P0100011 Not Successful 
0000100001100011 Restore Previous Value 

-000001011001000~ 6th Subtraction 
0000001011010011 Successful 

-0000001011010100 7th Subtraction 
1111111111111111 Not succ~ssful 
0000001011010011 Restore Previous Value 

-0000000101101001 8th subtraction 

·0000000101.101010 Successful, Also Remainder 

Note that the remainder is a 9 bit value though the root is an 8 bit value. This 
is possible because the difference between two successive perfect squares is: 

(n+l)2 ..., n2 ~ (n2 + 2n + 1) - n2 = 2n + 1 • 

Therefore the largest possible remainder, which is one less than this difference is 
2rt, which requires one more bit to represent than n does. · 
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8.10.1 
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Step Square Root Opcodes 

Sl' 
$quar• Root Step 1 
ASlA = 1010 0101 0001 1010 
aaar ~ 0101 ==> ALU OP = TOP - SQ --> TOP 
yy 00 ==> YES = Cl6 
ssss = 1010 ==> SHIFT = D2*' UNSIGNED 

If Cl6 = 1 
TOP - SQ --> TOP 

TOP:NEXT * 2 --> TOP:NEXT 
YES -'--> NO 
MD + SR --> MD 
SR I 2 -- SR 

S' 

( TOP - SQ >= 0 ) 

Square Root ,Step• 2 Through 15 
·ASSA = 1010 0101 0101 1010 
aaar = 0101 ==>ALU OP= TOP -.SQ--> TOP 
YY 01 ==> YES = Cl6 + CRl 
sssS = 1010 ==>SHIFT =_D2*' UNSIGNED 

If Cl6 + CRl = 1 
TOP - SQ --> TOP 

TOP:NEXT * 2 --> TOP:NEXT 
YES --> NO 
MD + SR :--> MD 
SR I 2 -- SR 

( TOP - SQ >= 0 

S' differs frorri S l' in that CRl is considered to detennine YES. This 
is necessary because sometimes a successful subtraction will result in 
the most significant bit being 1. Once this bit is shifted into CRl, it 
cannot be subtracted. · · 

S" 
Square Root step 16 
ASS8 = 1010 0101 0101 1000 
aaar = 0101 ==>ALU OP TOP- SQ--> TOP 
yy 01 ==> YES Cl6 + CRl 
sssS = 1000 ==> SHIFT N2*' UNSIGNED 

If Cl6 + CRl = 1 ; TOP - SQ' >= 0 
TOP - SQ -,-> TOP 

NEXT * 2 --> NEXT 
YES --> NO 
MD + SR --> MD 
SR I 2 ~- SR 

RTX 2000 Family Programmer's Reference Manual 



S" differs from S' in that only NEXT is shifted instead of both NEXT 
and TOP. This is done so that the remainder is correct 

BSl' 
8-Bit Square Root Step 1 
A512 = 1010 0101 0001 0010 
aaar = 0101 
YY 00 

==> ALU OP = TOP - SQ -•> TOP 
==> YES Cl6 

sssS = 0010 ==> SHIFT = 2*' UNSIGNED 

If Cl6 = 1 
TOP - SQ --> TOI;' 

TOP * 2 --> TOP 
YES --> TO 
.MD + SR --> MD 
SR I 2 -- SR 

BS' 

( TOP - SQ >= 0 ) 

S~Bit Square Root Step• 2 Through 8 
A552 = 1010 0101 0101 0010 
aaar = . 0101 
YY 01 
sssS = 

If Cl6 + CRl = l 
TOP - SQ -->. TOP 

TOP * 2 --> TOP. 
YES --'> TO 
MD + SR --> MD 
SR /. 2 -- SR 

Step Math FW&Ctions, G!!_apter 8 

==> ALU OP ~ TOP - SQ --> TOP 
==> YES = Cl6 + CRl 

0010 ==> SHIFT = 2*'· UNSIGNED 

( TOP - SQ >~ 0 ) · 
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8.10.2. Square Root Program Example 

8.10.3 

258 

HEX 

ROOT ( du - urodt uremainder ) 
8000 SR! 
0000 MD! 
02* 
S1' 
S' S' S' S' S' S' S; 
S' S' S' S' S' S' S' 
S" 

\ Set up SR 
\ Set up. MD 
\ Get line.d up for 1st subtraction 
\ 1st step 
\ Steps 2 - 15 

\ Last step 

8-Bit Square Root Program Example 
HEX 

BROOT ( word -- byte 
8000 SR.! 
0000 MDI 

BSl' 
BS' BS' BS' BS' BS' BS' BS' 
FF ANil ; 

\Set up SR 
\ Set up MD 
\ Line up for first subtraction 
\ Step 1 
\ Steps 2-8 

. \ Discar.d remainder * 2 
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8.11 Step Bit Reversal 

Bit reversal reverses the order in which bits appear in a word. For example: 

I a I b I c I d II e I f I g. I h II i I ·j I k. I 1 II m I n I 0 I p ~ 

would become: 

II p I 0 I n I m II 1 l k I j I i II h I g I f. I e II d I c I b I a ~ 

Using step math allows bit reversal of a 16-bit word in 23 cycles compared to 48 
cycles without step math. Bit reversal is useful for calculating address during 
FFf operations and also is needed to calculate certaintypes of CRC's. 

8.11.1 .Step Bit Reversal Opcodes 
R' 
B~t Reveraai Step 
A196 = lOlb 0001 1001 bllO 
aaa.r = 0001 ==> ALU OP = NO OP, OPERATE. ON SQ 

10 ==:;> YES. = TO uu 
sssS = 0110 ==> SHIFT = 21' UNSIGNED 

If TO = 1 
· MD or SR --:;> MD 

SR I 2 --> SR 
TOP I 2 --> TOP 

8.11.2 Step Bit Reversal Example Program 
HEX · 

BIT-REVERSE ( u -- u• ) 
BOOOSR! 
0000 MD! 

\ Set up SR. 
\ Set up. MD 

R' R' R' R' R' R' R' \ Put bit reversed version of TOP into MD 
R' R' R' R' R' R' 
R' R' 
DROP 

MD@ ; 

Step Math Functions, Chapter ,8 

R' 

\ Discard garbage in TOP 

\ Retrieve result 
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8.12 Step Cyclic Redundancy Check (CRC) 

The cyclic redundancy check (CRC) is used for identification and error checking 
of blocks of data, in much tJ:le same way a checksum is used. 

The advantage of the CRC is that more errors. can .be detected with a CRC than 
by a checksum. For example, a 16-bit CRC can detect all errors in a 16-bit frame 
of a stream of data. · There are several de facto standard data transfer protocols, 
including XMODEM, · X.25 and Kermit,· that use variations of CR Cs for error 
checking. · 

The basis for calculating a CRC of a stream of bits is to perform a modulo_, 2 long 
division of the stream (multiplied· by an appropriate power of two) by an 
irreducible modulo-'2 ·polynomial. The quotient is discarded, and the remainder 
is the CRC. · 

In modulo-2 ·subtraction, there is no carrying. or borrowing from bit to bit, so 
subtraction . is the same as a bitwise logical exclusive OR function. The 
polynomial i~ a value that cannot be eveilly divided modulo-2 by another 
polynomial, much like a prime number; · 

Most 16-bit CRCs are calculated with the polynomial x16 + x12 + x5 + l, which 
can also be expressed as 10001000000100001. 

For example, to calculate the XMODEM style CRC ofthe ASCII character "T" 
(54 hex), perform the following long division: · 

·lOOOlOOOOOOioriod1ro10101000000000000000000· 
10001000000100001 

10000000010000100 
10001000000100001 

10000101001010000 
·10001000000100001 . 

0001101001110001 = 1A71 hex 
' . - . . . . . ' . ' 

To calculate the CRC of a stream of characters, simply XOR the CRC'sof each 
.character with the CRC . of . the preceding characters. This · can also be 
accomplished by replacing the 16 right-hand bits of the above dividend with the 
previous CRC. 
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One useful aspect of the CRG calculation is· that it can .be. implemented hi. 
hardware with ·16 shift registers and 3 exclusive OR gates ... To ·see ·how this is 

. done, think of the abOve dividend as being in a 16-bit shift register. . 

When a 1. is ·shifted·01~t of the .register, the contents of the·tegister are exclusive•· 
. OR'ed with the 16 least sigilificant bits of the polynomial. 

: . . 

When a zero bit is shifted out, no exclusive OR 'irtg take~ place. After eight 
shifts, the register holds the CRC~ · · · 

. . ' . . 

Since many Serial data protocols transmit the least signiflcant blfof the data first, . 
many CRC's are calculated on the bit reversed. image of the transmitted character 
so that the CRC may be calcwated in the simple hardware noted above.. In such 
cases, the resulting CRC is also bit reversed and inust be un-reversed, though this. 
ortly needs to be done once for each packet of data, Examples of protocols that 
use this tYPe of CRC are X.25 and Kermit. · · · · · · 

Other variations on the CRC are to use a non-zero initial value for the CRC, 
usually FFFF hex. The other variation is to exclusive OR the CRC with a non- · 
zero value, also usually FFFF hex, before transmitting it. An example of this. is 
the X25 protocol. · · · · · 

The CRC in -RTX step math is implemented .such that' bit reversed CRC's are. 
· geneta~oo directly. The result does not need to be bit reversed in these cases 
because the shifting is done to the rightinstead of to· the left. The polynomial, 
however, must be _bit-reversed before exclusive OR'ing it with the data stream, 
This causes no performance loss, however, because it is usually a constant. For 

· implementing CRC's -that do not use bit-reversal, such as those used by 
XMODEM, the data and CRC's must be bit reversed. 

·' . - . .. ' ·. 

8.12.1 Step CRC Opcodes _-
. C' .· . . . ·. 

Cyclic ~dancy -Check Sta~ 
AADE = .1010·1010 1101 1110 

. aaar • 1010 ==> ALU OP = .TOP xor MI)··~-> TOP · 
yy il ==> YES ' = TO xor N0 
sssS = illO ;...:)._ SHIFT.·.~ 21' UNSIGNED 

If (TO xor N0) = 1 
TOP xor MD .. --> .. TOP 

.. TOP:NEXT l 2 --> TOP:NJ;:XT. 
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8.12.2 Step CRC Example Program 

HEX 

0811 CONSTANT POLY 

CRC ( ere byte -- ere' 
SWAP 
POLY MD! 
C' C' C' C' C' C" C' C' 

NIP ; 

\ Bit reversed generator polynomial 

\ Rearrange data and original CRC 
\ Set up MD 
\ Calculate new· CRC 

\ Discard partial quotient 

To use this program to.calculate a CRC for Kermit orCRC-CCITI, use an initial 
CRC value of zero. To use this program to calculate a CRC for X.25 protocol, 
use an initial CRC value of FFFF hex and invert the resulting CRC before 
transmitting it with the packet 

The CRC for two characters can be calculated at once by using 16 C' steps 
instead of eight, while placing the first character received in the least significant 
byte of the data word. 

8.12.3 XMODEM CRC Example Program 

HEX 

CRCX ( ere byte -- ere' 
BIT-REVERSE \ Reverse data byte 
SQ! MD@ · \ Left justify data byte 
SWAP BIT-REVERSE SWAP \ Reverse original CRC 
CRC \ Calculate new CRC 

BIT-REVERSE ; \ Un-reverse new CRC 

Note that in calculating the CRC for a long string of characters, the CRC only 
needs to be reversed and un-reversed at the beginning and end of the string of 
characters. 

If the initial CRC is zero, as it is in XMODEM, it only needs to be un-reversed 
at the end of the string of characters. Every character, however, needs to be 
reversed. 
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8.13 Step Math Reference 

bits: 
115 •.•••••••••••••••••••••••• _ •••••••••.•••.••••••••••••••••••••• ·a I 

1 0 1 

r 

0 
0 
1 
1 

a a a r 

!<----....,.....,-: 

R 1 s s s S 

l<T>'<r>' 
L Signed/Unsigned 

Micro Opcode 
Field , 

Unconditional Shift 
Micro Opcode Field 

Condit-ional Behavior 
Micro Opcode Field 

Register Selection 
Micro Opcode Field 

ALU Micro Opcode Field 

FIGURE 8.2: STEP MATH INSTRUCTION FORMAT 

TABLE 8.8: STEP MATH ALU FUNCTIONS 

aaa Function 

000 No ALU operation 
001 YES = 1 => TOP and REG --> TOP 
010 YES = 1 => TOP - REG --> TOP 
011 YES = 1 => TOP or REG --> TOP 
100 YES = 1 => TOP + REG --> TOP 
101 YES = 1' => TOP xor REG --> Top· 

. 110 YES = 1 => REG - TOP --> TOP 
111 YES = 1 => REG --> TOP 

TABLE· 8.9: MD AND SR OPERATION 

YES MD SR TOP 

0 MD SR TOP (shift) 
1 MD SR TOP (alu op) MD (shift) 
0 MD SR/ .2 TOP (shift) 
1 MD or SR SR I 2 TOP (alu op) SQ (shift) 
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2.64 

TABLE 8.10: BEHAVIOR OF YES 
.. 

:0.... YES 

00 IF ARITHMETIC THEN C016 ELSE IRO 
01 .(IF ARITHMETIC THEN C016 ELSE IRO) or CRl 
10 IF IR3 = 0 THEN TO ELSENlil 
11 TO xor Nlil ~ 

TABLE 8.11: STEP MATH SIDFT OPERATIONS 

SSS NAME CRl CRO Tl5 Tn TO N15 Nri Nlil 
.. 

000 NONE wn ·' Wl6 W15 Wn. WO Nl5' Nn Niil< 
001 2*' Wl6,:.' Wl5 Wl4 Wn-1 YES N15 Nn Nii! 
010 62/' W17' wn W16 Wn+l Wl Nlp Nn · Nlil 
011 2/' Wl7 W17 YES Wn+l Wl Nl5 Nn Nii! 
.100 N2*' Wl7 W16 Wl5 Wn WO N14 Nn-1 YES 
101 02*' W16.· W15 W14 Wn-1 Nl5 N14 Nn-1 YES 
110 cD2/' Wl7 Wl7 W16 Wn+l Wl WO Nn+l Nl 
111 02/' Wl7 W17 YES Wn+l Wl WO Nn+l N-1 

. TABLE 8.12: SOME USEFUL STEP MATH OPCODES 

OPCODE 

A012 
A09E 
A096 
A89IY 
A49D 
A89C 
A49C 
A894 
A494 
A41A 
A45A 
A458 
A418 
A412 
A51A 
ASSA 
A558 
A512 
A552 
A19.6 

· AADE 

FORTH 

2*' . 
RDR 
RTR 
*' 
*" 
U*' 
U*" 
BU*' 
BU*" 
U/l' 
U/' 

. U/" 
U/l" 
BU/' 
Sl' 
S' 
S" 
i3Sl' 
BS' 
R' 
C' 

DE SCRIP.TI ON 

17.Bit left shift 
Rotate TOP:NEXT right 
Rotate :roe.right · 
Signed multiply steps 1:-15 
Signed multiply step 16 

. Unsigned multiply steps 1~16 
Mixed sign multiply step 16 
Byte unsigned multiply steps 1~8 
Byte mixed sign multiply step. 8 
UnSigned .divide step 1 
Unsigned divide steps 2-15 
Unsigned divide step 16 
Alternate unsigned divide step 16 
Byte unsigneddivide steps l-'-8 
Square roo.t step 1 
Square root steps 2-15 
Square root step 16 
Byte Square root·. step 1 
Byte square root .steps 2-8 
Bit reversal step 
CRC step 
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P.2 

RTX2000 STACK CONTROLLER 

Two ot tha powertul fee.t\(~es of the RTX2000 are its two on-chip stacks: 
the paramete;:,_etack and the return stack. Because these stacks can oper ... 
ate simultajfeJ:n.J.sly with the memory data bus and and AS:tc data bum, they 
incl;"easa the performance of the RTX2000 by maximizin9 th• quantity of data 
that can move· in one processor cycle (refer to the RTX2000 block . 
diagram). I'n addition to incraasinq the S!;)tl:ed of the RTX2000, the stacks 
can interrupt the7processor in the event of a staQk overflow or underflow. 

/· ,.. 
PARAMET!R STAC~~STRUC~URE 

/ ,. 
The paramet$r stack is a 258 word by 16 bit stack that is used for storing 
dat., i!li.nd addresses for arithmetic and logical ope.rat.ions. The top of the 
p~raim•tiar stack is the TOP register in the RTX processor core, the next 
•t•ck 'location is th• NEXT reqi•ter in the RTX core, and the remaining 256 
loq~tions are in on-chip RAM controlled by an RTX stack controller. 

RE+URN STACX STRUCTURE 

The return stack is a 256 word by 21 bit stack that is used for storing 
teturn addresses for subroutine calls and loop counters for eertain opera­
tions. Tha top of the return stack is in the proc••sor oore index reqis­
ter (I) and the remaininq locations are in on~chip RAM controlled by an 
RTX stack controller. You may have noticed that the return stack has 21 
bits per word. This is partly because th• RTX2000 supports a twenty bit 
ad~re~s. However, since op codes are on word boundaries, only nineta&n 
bi~s are required ~o d~fine a return address tor a· subrcutine call. These 
ar- bit~ one through nineteen, whe+e bit zero is the least siqnifioant bit 
anq bit twenty is the most significant bit. Bit zero is used to determine 
wh~ther the a4dres• i• for a r•turn trom an interrupt (1) er a return, from 
a ~ubroutine call (O). This allows interrupts to be enabled when return~ 
in9 from an int•rrupt. Bit 20 is used to store the data paqe register 
select bit (CPRSEL) which is used to determine whioh memory paqa is used 
tor data fetch and store operations. When the return stack is used for 
$toring loop variabl•s (>Rand R> ), only bits zero throuqh fifteen are 
used for data. Bits sixtoen throuqh twenty are loaded with th• content of 
the code page register (CPR) durinq an interrupt, subroutine call or >R 
execution. 

RTX IN~ERRUPT CONTROLLERS 

The RTX2000 interrupt controller circuitry consists cf two identical sec­
tions, one for the parameter stack and one tor the teturn stack. Each 
saetion has two user aeoe1sible a-bit reqisters that control the opergtion 
of it~ stack: a stack pointer register (SPR) and a stadk limit register 
(SLR) - Since the data path on the RTX2000 is sixteen bits wide, the SPR 
for the parameter stack and the SPR for the return stack are concatenated 
to fo~m a sinqle •ixteen-bit SPR for the purpose of acc•ssin9 them by the 
proc~•~or. Si~ilarly, the SLR for the param•ter stack is ooneatenated 
with the SLR for the return staok. The SPR rna.y be read. a• w•ll as written 
to, but the SLR is a writewonly register. In both oases, data bits o 
throuqh 7 apply to the parameter stack and data bits s throuqh 15 apply to 
the return stack. 
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s·rAcl< OPERATION 

Both stacks Aave 256 words, numbered from zero to 255. When data is 
pushed onto th• stack,· it is written to the location above that pointed to 
by the SPR, and the SPR is incremented (this is equival@nt to a 
pre-incra:ment). When data is popped off th• stack, it is read from the 
location pointed to by the SPR, and then the SPR is decremented 
(post ... decrement). When the RTX2000 is reset, the Sl"lts are reset to tero," 
so th~ tir$t location written to will b• location ona. If an attempt is 
m4de to pu~h data onto a sta6k beyond word 255, the etaok will wrap around 
and start pushinq at location zero. Similarly, if an attempt is made to 
p~p d«ta o~f the stack below location zero, tha stack will wrap around to 
l~eation 2$!. For this reason the parameter stack oan be used ae a 
r~circ4l~einq 256 word bufter. Also, beoaus• th• stacks are circular, 
th•Y muet be manageq oaretully to ptevent ove~f lowe and underflows from 
pwoduein; incorrect results. The stack controller helps to accomplish 
t~is by generatinq overflew and undertlow interrupts. 

STACK E~OR INTERRUP'l'S 

The RTX ~tack controller requests an overflow interrupt anytim• the value 
of th• S~R is 9r•ater than th• SLR. sinoa the SPR oan never exceed 255, 
th~ atac~ controller cannot qenerate an o~ertlow interrupt with tho SLR at 
it.•1 r$,,et value of 255. Therefor• tha user should ••t the SLR to a value 
l~~s than 25!, whioh also provides an overflew buffer that allows for the 
'~tra oy~les requir•~ to aoknowledqe th• interrupt. Another point about 
u~ing ov~rflow inte~rupts is that a push-pop sequence can generate an 
hr~:e:rrup1e reque1,1t that qoes away before it is servic•d. The result of 
t!1~s j.:a ~hat th• interr\tpt controller causes th• proc•••or to execute oode 
pointed ~o by the "no interrupt" vector. This is ref!arred to as a phantom 
i"terrup~. The~efore, this location should always b- initialized to a 
'(aii<:i qo~e Sflique,nce, even it it is only a "no-op, returnu sequ•nee. 

Th~ RTX stack controller handles underflows similarly to overflows. The 
qontr~ll•r ~•quests an underflow interrupt when data is popped off loca­
tiQn qne~ Also, it data is pushad onto the staok until it w~aps around, 
an ~nderf low interrupt will be generated when data is pushed onto location 
~ero. aecause poppin9 data off location ona oauses an int•rrupt and looa­
tion on~ i1 normally the first stack location used, th• interrupt generat­
~d wh~n d$ta is poppe4 Qff location one would occur even though the data 
~$ valid. Th11reto;e, whenever underflow interrupts are used, the first 
lQcation used should l?• lc:ication two. Thia iia most easily done by pushing 
eN~ZlllY data to loe•tion one at start up. The 0 DUP'' instruction will accom­
plish this for the parameter stack, and the sequence 11 DUP >R" will accom­
plish thi~ ~o~ th• return stack. Secauae puahin9 data onto looation zero 
wi~l requ~st an. underflow intgrtupt, the validity of the stack can be 
r1ar1aged,. with juat the und•rflow interrupt; ~hile the ov•rflcw interrupt ie 
4~•ful tor ~a~a!inq a virtual stack greater than 256 words or multitask­
in~ ~ Tho Ul'!)~111r:r;low int•rtupt only method also allows the 9roatest number 
o~ wo;~s to b~ U~•d (254 out of 256) whila usinq stack error int~rrupts. 
It stack e~ro~ int~r~upts are not us$d, the entire staok ia usable. 
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The undertlow interrupt also can exist tor a short enough time to ~roduca 
phantom intarrupts. '!'his can happen if a pop trom location one is immedi­
ately followed by ~ push to location one. For this reason, it is neces~ 
~ary to provide valid eode at the memory location pointed to by the 
no•interrupt VQOtor. 

USING THE STACK POINT~R REGISTE~ 

It. is possible: to p1P1rfri':rm st.eek m11,nipulatia::r1111 by raaeU.ng and writing U11ii · 
spa. Because Qf the intricate interaction between tha SPR and the stacks, 
qrsat ~are must be exercised to prevent the processor from qetting lost. 

READING THE ~TACK POINTER RtGISTER 

Tpe st~ok pointers are both read in a sinqle cycl• ~y •~ecutinq a SPR@ 
instru~tion. The parameter stack pointer is retrieved in the least 
siqnif icant byte and the return stack is ~•trieved in the most si9nif icant 
byt~. The value obtained is not exactly the value of the stack pointer~ 

·priC!r to th~ SPR@ cycl~, howev•r. The outputs of the stack pointers 
nor-ally pa~s through incramenters on th•ir way to beinq read. In 
a~dition t~ this, pushes and pops on eith•r atack durinq the SPR@ cycle 
Q•use t~e stack pointers to chanqe in the middle of th• oycle. This can 
Qaus~ ~dditional increments and deeremente to the values obtained and . 
shouldp therefore, be avoided. For example, returnin9 trom a subroutine 
durinq a SPR@ cycle c,auses the value tor the return stack to be 
docr~mented instead of incremented. 

R~adinq th- SPR usually results in a push on to th• parameter stack. This 
caus's the p~rameter stack pointer to be inoremented in the middle of the 
e~PR cycle. The output of the incremented stack pointer then passes 
throuqh the inorarnenter before it is readi The res\llt is that. the value 
obta~n~d 1$ tht value of the parameter stack prior to executing the SPR@ 
vlus two. Because Qf the numb•r of steps that must be performed on the 
v•lue from the stac~ pointer in the last halt of the SPR@ cycle, it is 
;~co~mended that th~ stack pointers be read without pertortninq any stack 
operati~ns durinq the fetch cycle. This can be done as follows: 

~. Do not combine a SPR@ with a return from subroutine. 

a. combine the SPR@ with an arithmetic or loqical function to prevent the 
~·~ult from pushin; the previous top of stack down on the stack. An 
ef~eQtive way t~ obtain the values of the stack pointer~ follows: 

HEX \ BASE 16 FOR '!"HIS DISCUSSION 
-102 \ CORRICTION rACTOR : 

\ R~TURN STACK: 1 
\ PARAMETER STACK: 2 

$PR@ + \ SINGLE OP COOE: NO STACK OPERATIONS 
~OP ; \ IF A RETURN FOLLOWS, MAKI IT A S!~ARATE OP CODE 
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WRITING TO THE $'!'ACK POINTER REGISl'ERS 

Since stack operations do m:it chanqe the value stored in the SPR, it may 
b~ writt•n to by a simple SPR! instruction. Thore is one thing to W8toh 
out for, however. tf a SPR1 is oom.bined with a return from $Ubroutine, 
1t:he value popped of:t! the return stack into the I re9i111ter will be 
~•te;nnined by the value in the SPR prior to the execution of the SPR1 
instruction. 
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