s AR & e T A
i ‘/"

' Digital Signal Processor
"HD6718108B |
User's Manual

@ HITACHI

A World Leader in Technology

’
y

A

F

DIGITAL
SIGNAL PROCESSOR HD61810B

USER’'S MANUAL

@ HITACHI

CONTENTS

1. FEATURES .:.cveceeoccecsccecoansosocseasossnsssasoasssases 1
2., SYSTEM CONFIGURATION ceeeccncseesesseseenn . 3
2.1 Terminal Functionsceceeeeee Ceesecseserenans 3
2.2 Internal Functions e cerecnaesaas 1
3. ARITHMETIC OPERATIONcecseevcscancns ceesessesene 14
3.1 General ctsecscccenss ceesereans ceeeeaee 14
3.2 Data Formatc.cciveeeneccecnannn cesesescseaes. 16
3.3 Addition/Subtraction of Floating Point 19
3.4 Floating Point Multiplication Ceeeeeenn cees 27
4. DATA MEMORYcicevesescncccnnas tececcsencssssnccne 32
4.1 Configurationc.. e V]
4.2 Dat@ RAM .. .uiietveensecsceassecsnosnnsssscsssnsna 35
4.3 Data ROM ...ceviennenncnonennns et 37
4.4 Memory Addressing Mode e v
4.5 Memory Data FOrmatceeievescccncsosnconannaas 40
5. INTERNAL REGISTERS ..¢icevecacnss ceeressessessatenae 41
5.1 Accumulator (ACC) ..:veesnvennons ceeeeaen ceeenane . 41
5.2 Condition Code Register (CCR)....:ecevveessncannsa 43
5.3 Control Register (CTR) ..eeceveeans . . 44
5.4 Status Register (STR)veeeeeecccaneanncnanness 46
5.5 Repeat Counter (RC) .cveeeereeeoeansoanosannnnns .. 49
5.6 Address Pointer (RAM Pointer A/B, ROM Pointer) ... 50

5.7 Delay Register (DREG)eeveeececoneonnnnas eee. 52

ii

6. INPUT/OUTPUT INTERFACE ..cueveececcncccscasasnacsans

6.1
6.2
6.3
6.4
6.5
6.6
7.
7.1

7.2

Function Controlceeeeeecccsocnccncaccnscns
Parallel Port (Microcomputer) Interface
Serial INPUt/OULPUL .e.eevreosesocsosascssscsscnses
Interrupts .ciieeiieeieeeneeeecaoecccsoososeonsnnsns
DMA (Direct MemOXrY ACCESS) ceeevsecsosscascsnccans

Bit I/0 tiiiiiiiiiiiiiteeeeeeceeacncconcanasacacnnns

INSTRUCTIONS .iciereeeencecsosocesacscosancoansosnsons

7= ¢ = o=

Set Of INStructionNsS ...cecececasscccasscessssccnas

55
55
59
61
64
69
73
75
75
78

7.3 Examples Of Programceeeeecescescsccceesessss 100

8.

8.1

8.2

9.

Stand-alone Configurationceececeenscas

Peripheral LSI of 8-Bit Microcomputer (6800)

ELECTRICAL CHARACTERISTICS ...cccceeeccncccanncnnas

APPLICATION SYSTEM CONFIGURATIONceceeeeee.. 104

104
104
106

When using this manual, the reader should keep the following in mind:

1.
2.

3.

This manual may, wholly or partially, be subject to change without notice.

All rights reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part
of this manual without Hitachi’s permission.

Hitachi will not be responsible for any d to the user that may result from accidents or any
other reasons during operation of his unit according to this manual.

This 1 neither the enfi of any industrial properties or other rights, nor
sanctions the enforcement right thereof.

iii

HD61810 HSP

APPLICATIONS

Signal Processing Telecom Speech Processing
o Digital Filtering e Data Scrambling e Speech Synthesis

® Fast Fourier Transforms e Data Compression ® Speech Analysis

e Seismic Processing e Data Encryption ® Speech Recognition
e Radar and Sonar e High Speed Modems

e ECM e /A Law Conversion Image Processing

e Image Enhancement
e Image Compression
e Pattern Recognition

EXTERNAL APPEARANCE AND DIMENSIONS

(DC-40)
A
e
of e (™ i
== o
|
-
H
-]
o
&
2
[
4
20 20
14.90
5.08max
1526 Joz0-030

iv

FEATURES

A High Performance Signal Processor HSP (Model HD61810B)
aims at high speed digital signal processing and is composed

of a single chip-based on a stored program format. Presented

below are its features.

(1) Hardware

(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

Low power consumption, high speed VISI processor
which avails itself of 3 pym CMOS LSI technology.

A dedicated multiplier and adder/subtractor are
built in which permit high speed, high accuracy
floating point operation.

High performance operation processing in implemented
by pipe line control and horizontal micro instruc-

tions.

Large capacity memories are built in.
2-port accessible data RAM: 200 x 16 bits
Data ROM: 128 x 16 bits

Instruction ROM: 512 x 22 bits

8 bit and 16 bit microcomputers (6800, 68000) are
compatible with an interface (synchronous inter-
face).

A DMAC permits the exchange of DMA with external

memories.

A serial I/O interface for up to 16 bits is
provided.

Two levels of subroutine and interruption are
provided.

An I/0 transfer end interrupt function of one level

(x)

(xi)
(xii)

(xiii)

and three factors is provided.
Operating rates

Input clock: 16 MHz

Internal clock: 4 MHz

Instruction cycle: 250 ns

Product/Sum cycle (throughput by pipe line
implementation): 250 ns

A single power supply of +5 V
Consumption power: 250 mW typ

40-pin ceramics/plastic package

(2) Software

(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

A horizontal type 22-bit microprogram is capable
of reading instructions and data, multiplication
and addition/subtraction, simultaneously, and is
provided with high throughput instructions.

Multiplication and addition/subtraction are pipe
line implemented, allowing high throughput product/

sum operations.

The address mode of data memories is adapted to

signal processing operation.

Arithmetic and logical operation instructions are
provided.

Floating point and fixed point operations may be
selected by instructions.

A repeat instruction permits high-speed repeated
product/sum operations.

Data may be written into a control register through

a microcomputer interface.

(vii) Addresses may be set externally to a program

counter through the microcomputer interface.

2. SYSTEM CONFIGURATION

2.1 Terminal Functions

ves [J1 ~ 4[] osc
TEST [] 2 39 [7] SYNC
TxAK [] 38 [RES
D15 [4 37 [NC)
D7 s 36] SO
Dis [s 35} BIT 1/0
De [34 [] TxRQ
D13 [] s 38 [] SICK
ps [o 32 [J SOEN
piz 1o 31 [] SOCK
ps [n 30 [] SIEN
D11 [20 [SI
D3 s 28 [T] DEND
Dieo [J14 27 F3
Dz (s 26 g F2
Do e 25 [F1
D1 [DY 24 7] Fo
ps [Jis 23] CS _
Do O 22] /W
Vee [J20 21 IE
Fig. 2-1 Pin Arrangement
(Top View)

(4) D (Data Bus):

0-15

Fig. 2-1 shows the HSP pin
arrangement. The package is of
a 40 pin dual line.

The following are the functions

of each terminal:

(1) Vss, Vcc: Power supplies
of OV and 5 V.

(2) TEST: Input
Terminal for testing chips.
(Fix the terminal to ground
for use.)

(3) TxAK (Transfer Acknowledge) :
Input
To be used for a DMA transfer
mode. DMA data transfer
acknowledge input signal.

Input/output, three states

Dual direction port having input and output registers.

The direction is determined by a read/write (R/W)

control signal.

Unless a chip select (CS) signal is active, the high-
impedance state is established. 8-bit or l6-bit
transfer mode may be selected by the contents set in

(6)

(7)

(8)

(9)

(10)

an internal control register and those of function

0-3
IE (Interface Enable): Input
Data transfer timing signal of data buses (DO—IS)‘ The

inputs (F

data on a data'bus are set to an internal register of
the HSP by this signal, which becomes valid when CS is

active.

An interruption may be produced inside the HSP using
the fall of IE after a data transfer.

R/W (Read/Write): Input
Control of switching the directions of data buses

(Py-15
low level writing. Valid, only when CS is active.

). The high level provides reading, while the

CS (Chip Select): Input
A chip select input signal which makes a microcomputer
interface valid. If this signal is put in the low level,

DO—15’ F0_3, R/W and IE become valid.

FO_3 (Function Control): Input

Input of selectively controlling internal registers of
the HSP during the exchange of data with the micro-
computer. Connected to address buses of microcomputers

(6800, 68000).

DEND (DMA End): Input
DMA data transfer end signal. This signal, when it is
put in the low level, terminates.the DMA data transfer

mode.

SI (Serial data Input): Input

Enters serial input data into an internal shift register
synchronously with a serial input clock (SICK). Data

is entered into an internal shift register during the
fall of SICK.

(11) SIEN (Serial Input Enable): Input

(12)

(13)

(14)

(15)

When this input goes high, serial input data commences
being fetched into an internal shift register. At the
completion of a fetch, an interruption may be produced
in the HSP,

SOCK (Serial Output Clock): Input
Serial data is output synchronously with this clock.

SOEN (Serial Output Enable): Input

When this input is in the high level, serial output data
is output from an internal shift register. An inter-
ruption may be produced in the HSP during the fall of
this signal after the transfer of serial data.

When this signal is in the low level, the SO terminal
goes high impedance.

SICK (Serial Input Clock): Input
Serial data is entered synchronously with this clock.

TxRQ (Transfer Request): Output, open drain

Used mainly in the DMA data transfer mode. This signal
is used to request an external device (DMAC) to transfer
the data stored in data buses DO-lS' In the DMA mode,
this output is set upon the setting of the DMA transfer
mode flag of a control register. Then, this output,
until DEND is entered, automatically goes active (high),
whenever data is exchanged with an accumulator, and is
reset to the low level, after TxAK is entered. Also

in the DMA transfer mode, data is transferred among

I/0 registers (IR, OR), accumulator (ACC) and memories
in the HSP, through program control.

Merely used as an output terminal in the non-transfer
DMA mode, permitting setting and resetting by the
progranm.

(16)

(17)

(18)

(19)

(20)

Bit I/O (Bit Input/Output): Input/output, open drain
One-bit bidirectional I/0 terminal which may be set/
reset by the program. For input, the flip-flop for bit
I/0 in the HSP is to be set to "1". 1In that case, the

input state of a terminal is read-in by an instruction.

SO (Serial data Output): Output, three states

The serial output data of an internal shift register
is output synchronously with the serial output clock
(SOCK). Data is output from the rise of SOCK. When
SOEN is in the low level, this output terminal goes
high impedance.

RES (Reset): Input

A reset terminal in the HSP. This input causes "0" to
be set in a program counter and an interrupt mask flag
IM to be set, establishing an inte;rupt mask state.

The other registers are not changed. When this input
is released, the program starts. The program is
executed from the address 1, and the instruction of the
address 0 is not executed. (For resetting, the level
"0" is to be entered for more than 1 ps with OSC
applied).

SYNC (Synchronous Clock): Input

Generates an internal operation clock of the HSP. Its
frequency is 1/4 times as high as that of the input
clock (0OsC).

OSC: Input
The fundamental clock used to operate the HSP. The
standard frequency is 16 MHz.

2.2 Internal Functions

The HSP contains high-speed multipliers, adder/subtractor,

programmable data ROMs, and instruction ROMs.

The architecture

is designed to be adapted to a wide range of applications.

Hence, the HSP may be applied to voice processing and

communication systems, etc. by writing coefficient and instruc-

tion sequence appropriate to an application system into data
ROMs and instruction ROMs.

Fig. 2-2 shows the system block diagram of the HSP.

)

o)

C
16 1 1
E%W] SIRUG SOR (6

SI SICK SO SOCK
O

20

[L 1
l RAM Pointer A6} l IRAM' Pointer B(G) I | ROM Pointer (8) l
o m— . - —
|=————== e __ __I'._..._1 ’.:
| Al
I CRi® Data RAM| |Data ROM g‘
IGR 218 200x 16 128x 16)
GR 11 Pl
GRo0il8 % 4
DREGGE | | 3
MUX .
| - - —_—
| S pu— 4\.: _-_—J :—‘:"—I
* >
16 [Minxw] [mMInyus]
MULT VY
1645 (Floating 16
16 Multiplier
. L
ABus 10} [MouTe] - Bus
L] 4 x ‘ J;.T__;_._

ALD”Y
(Floating 4 l___l'ccm'
rit tic

laccaco |

|accae|

4

£

th h
1 1

[orR (lg I
ISTRm) ICTRG” l Rcm)l
-—20 IE
STACK 1 ln:rmpr —-——OSOgN
] o —O SIEN
PC(9) 1 STACK o Contral | ——OQ Ty AK
Denp
- ~—OQOTxRQ
a —OQR/w
N Program ROM Function| =—QOCS
- ~——QBit 1O
5 512x22 Control OTEST
" -—QORES
~—QF,.
[ostRe®] s 7
—CQosc
CPG
—OSyne
Instruction
Control
& Timing
Fig. 2-2 Block Diagram

Presented below are the functions of components.

(1) IR (Input Register)

16-bit register. The data entered from data buses

. ' R
(DO~15) are set-'at IE's timing.

The following two modes are provided to transfer data.
The mode is selected using control flags in the control
register (CTR).

(i) Word transfer mode: 16-bit data are set simultaneous-
ly. Interconnected to the
16-bit microcomputer (68000)
in the sync interface mode.

(ii) Byte transfer mode: 8-bit data are divided into
the upper bytes and lower
bytes for setting. Compatible
with the interface of the 8-
bit microcomputer (6800).

(2) OR (Output Register)

(3)

16-bit register. The contents of this register are
0-15)+ Until data is
set by an HSP's program, the previously set data is

output to external data buses (D

not changed and exists.

The data transfer mode, like the IR, falls into the
word transfer mode and byte transfer mode.

SIR (Serial Input Register)

16-bit shift register dedicated to serial input. The
serial entry data from an SI terminal is input synchro-
nously with the timing clock from a SICK terminal.

The entry value of the shift register is fed via internal
16-bit buses connected in parallel to an accumulator

(ACC) by an internal instruction. Up to 16 bits of
serial input data may be entered.

The SIR is cleared, after data is transferred to an
accumulator by the program.

(4) SOR (Serial Output Register)
l6-bit shift register dedicated to serial output. The
data set from an internal bus in the HSP in 16-bit
parallel are output from a serial output terminal (SO)
by bit synchronously with the serial output timing clock
entered into the SOCK terminal. Up to 16 bits of output
data may be selected, as the user desires. The number
of output bits is determined by the number of shift
clocks entered into the SOCK terminal during an active
period of the input signal at a serial output enable
terminal (SOEN).

The SOR is cleared, after data is output to the outside.
(5) Inst Reg (Instruction Register)

Register which buffers a 22-bit instruction read from
an instruction ROM.

(6) PC (Program Counter)

A 9-bit address counter dedicated to the instruction ROM.
The PC generates ROM addresses in the range from addresses
0 thru 511.

Addresses 0 thru 255 may be set by an external control
via an external data bus. In that case, the run start
instruction address is a set address plus 1.

(7) STACKO/1 (Stack Register)

9-bit stack register dedicated to save the PC. The
contents of the PC are saved, when a subroutine jump
or interruption occurs.

10

(8)

(9)

(10)

(11)

(12)

Two stack registers are provided, allowing nesting of
two levels.

RC (Repeat Counter)

6-bit down counter. Used to repeatedly execute the
same instruction and to process the loop by a jump
instruction.

The counter allows to reduce the program steps of
repeated product/sum operation, and also the processing
time period.

ROM Pointer

5-bit address pointer dedicated to the data ROM. Generates
the effective address of a data ROM by introducing the
X/Y page address (3 bits) in an instruction code.

RAM Pointer A/B

6-bit address pointer dedicated to a data RAM. Generates
the effective address of a data RAM by introducing the
X/Y page address (3 bits) in an instruction code. Two
pointers having the same function are provided each of
which may be selected by the instruction. Two RAM
pointers allow complex operation programs such as FFT

to be efficiently constructed.

X/Y-Page (X/Y-Page Address Register)

3-bit buffer register dedicated to a page address.
Generates the effective address of data ROM/RAM by
combining its contents with the value of the ROM/RAM
pointer.

GR 0, 1, 2, 3 (General Register)

General 16-bit register. Used as a working register.
The contents may be input/output only via a Y-bus.

(13)

(14)

(15)

(16)

(17)

(18)

(19)

MINX (Multiplier Input X - Register)

Stores data from the X-bus or internal data bus, and
holds it for multiplication. 16-bit register.

MINY (Multiplier Input Y - Register)

Stores data from the Y-bus, and holds it for multiplica-
tion. 1l6-bit register.

MOUT (Multiplier Output Register)

Buffer register which stores the output of a multiplier.
Holds the output data of a multiplier for a one instruc-
tion cycle period. 20-bit register which is made up

of a mantissa comprising 16 bits and an exponent part
comprising 4 bits.

DREG (Delay Register)

16-bit register. Holds data to be output to the Y-bus
for one-instruction cycle period. Used to efficiently
change the address which saves RAM's data. Validly
used to shift one by one the data storage addresses
on a data RAM for a one-sample delay function in signal

processing.
ACC A/B (Accumulator A/B)

20-bit accumulator. ALU's output is set. Two accumulators
A/B are selected by the instruction.

CCR (Condition Code Register)

Made up of condition flags which reflect the operation
results of the ALU. Three flags are provided: carry
(C), negative (N) and zero (Z).

STR (Status Register)

8-bit register which reflects the inner conditions of
the HSP.

11

12

(20)

(21)

(22)

(23)

CTR (Control Register)

5-bit control register which sets conditions used to
control the operation of the HSP. Able to be set by
external control via an HSP's instruction and I/0
terminals Do_15°

Data RAM

Its size is 200 words x 16 bits. Separated to four
pages. Each page consists of 50 words, 2-word data
may be read from a different page. Output to X/Y buses,
and only one word is read in from the data bus.

Data ROM

Its size is 128 words x 16 bits., Separated to four
pages. Each page consists of 32 words. Only one word
is read, and is output to the X or Y bus.

Instruction ROM

Its size is 512 words x 22 bits., 22-bit instructions
are simultaneously read to the Inst. Register during
each instruction cycle. ’

Once reset, the instruction ROM starts from the address
0, whereas the instruction is executed from the address
1. If a jump to the address 0 occurs during execution
of the instruction, the instruction stored in the
address 0 is also normally executed.

Since the end address ($1FF) of the ROM is used as the
vector address, the user must write a jump instruction
dedicated to a jump to an interrupt processing routine.
The user cannot use the address range from $1E7 to
$1FE in the ROM, for they are used to save LSI test
programs.

(24)

(25)

MULT (Multiplier)

Devoted to floating point multiplication (mantissa

12 bits x 12 bits ~ 16 bits, exponent 4 bits + 4 bits
+ 4 bits) and fixed point multiplication (12 bits x
12 bits » 16 bits).

Each operation mode is switched by the instruction.
Details will be described later.

ALU (Arithmetic Logic Unit)

Devoted to arithmetic and logical operations. A floating
point addition/subtraction mode (mantissa 16 bits,
exponent 4 bits) or a fixed point addition/subtraction
mode (16 bits) is selected by the instruction. Details
will be described later.

13

14

ARITHMETIC OPERATION

General

The signal processing for voice and communication involves
high-accuracy and high-speed arithmetic operations. The
HSP embodies operation accuracy well adapted to signal
processing, implementing a high-speed floating point
operation circuit on a single-chib LSI. The floating point
operation provides a dynamic range (maximum amplitude of
operation data) necessary to improve operation accuracy

in a smaller multiplier and data memory vis-a-vis the fixed
point operation, and thus is advantageous in LSI implementa-
tion. The floating point operation is put in the spotlight
as the architecture of the second generation for the signal

processor.

The floating point operation of the HSP is designed to meet
the accuracy required from the application system given by
hatches, as shown in Fig. 3-1. This floating point operation
avails itself of the feature that the significant bit length,
like the fixed point operation, varies in proportion to

the data amplitude, if is low, but is sufficiently met by

16 bits maximum, if the data amplitude exceeds 16 bits

(2°8). In accordance with the data amplitude, the fixed
point operation method and the floating point operation
method are automatically switched to each other.

RESOLUTION (BIT)

32

28

28

24

20

16

12

Fig. 3-1 Operation Accuracy of Signal Processing

[I— 32b DYNAMIC RANGE /

Only fixed point
operation

Only floating point operation

ALU

\

Multiplier, Memory

Automatic switching

Floating point

[EETIE U U AN U TN SN SN T T AU N A AT A RN A

|
|
|
|
|
|
Fixed poirlt
|
]
2~0

2=24 2720 9=16 9=12 2=4 20 24

AMPLITUDE (NORMALIZED VALUE)

Application System

28

15

3.2 Data Format

The HSP has the data format shown in Fig. 3-2, applying to
floating point and fixed point operations.

(1) Adder/Subtractor
(A) Fixed point data

(i) Binary expression: Expresses the range of
0 to 216-1.

(ii) 2's complement : The most significant bit
expression is a sign bit.

(B) Floating point data

Both mantissa and exponent part express data in

2's complement. For both the mantissa and exponent
part, the most significant bit is a sign bit, and
the decimal point is placed between the bit 215
(most significant bit) and the bit 2%4.

Mantissa: Expresses the range of -1 to 1 =~ 2_15.
Exponent part: Expresses the range of -8 to 7.
(2) Multiplier
(A) Fixed point data

Expressed only in a 2's complement. The most
significant bit is a sign bit. The input data is
composed of 12 bits and the output data of 16 bits.

(B) Floating point data

Both the mantissa and the exponent part are expressed
only in 2's complements. The input data of the
mantissa is composed of 12 bits, and the output data
of 16 bits.

16

For the exponent part, both input and output data
are composed of 4 bits. The decimal point is

placed between the bit 215 and 214.

Mantissa: Input: Capable of expressing the range
of -1 to 1 - 2711,

Output: Capable of expressing the range

of -1 to 1 - 2715,

Exponent part : Capable of expressing the range
of -8 to 7.

17

-18

T 1 1 T 1 1 T T T i 1 I 1 T T
Binary expression
MSB LSB
I 1 1 I 1 1 T T 1) 1 I 1 1 U i
2's camplement 8.
expression
(a) Fixed point data format E "
15 Mantissa o Pt
T T T T T T T T 1 T T 1 T 1 1 1 I T
2's camplement s. s
expression
MSB LSB MSB LSB
(b) Floating point data fommat
(A) Adder/Subtractor
15
T T L) | LI LI 1
2's complement S Input data
expression
15 0 :
1 T L) T T T 1 T T T 1 L} T T
s Output data
(a) Fixed point data format
Exponent
s Mantissa })art o
' l t i 1 1 1 1 i 1 1 1 I T ¥ 1 T
2's complemen .
expression S: Input data "
15 0 3 0
1 | T T] T 1] l T T 1 T T T T) T
S. Output data §

(b) Floating point data format

(B) Multiplier

Fig. 3-2 Data Format of Operational Circuit

3.3 Addition/Subtraction of Floating Point

(1) Arithmetic Operation

The HSP is provided with the dedicated floating point
adder/subtractor circuit (FAUL) as shown in Fig. 3-3.
Shifters for digit matching or normalization of floating
point data are provided before and after the ALU which
is engaged in fixed 16-bit point operation, implementing
high-speed floating point operation. The arithmetic
operation of a floating point is executed as shown in

the following expression:

Am A +A; =

ayx2C14a,x2Ce
2C1 (ay+agx2(C2—Ci)y ; Digit matching

ag X 2C|

ax2C > Normalization

Note) FALU input data :A;=a,;x2Ct, A, =2, x2C2

(Ca= C,)

FALU output data :A=axs2C

19

20

Data A, | Mantissa J| Exponent

Data A, | Mantissa Exponent
S | bk | ekt | L——-u
Switching Comparison

l__.________________________
E
B
s
8

& L4
| — ==~
| |Automatic switchihg
| ——
——__"1
Accumulator i
____________________ —_——

Fig. 3-3 Floating Point Adder/Subtractor Circuit

In the above operation, the value of A is transferred

to the ACC, as it is, the exponent value C of the last
output data is equal to or greater than -8 and is equal
to or less than +7. If the value of C is out of the
above range, the following overflow/underflow protection
operations are carried out:

(A) Overflow

If C is greater than +7, the exponent part is fixed

(B)

to +7 so that the absolute value of the mantissa
may be made to be maximum (the sign is not changed).

-15

As a result, the output data is (1 - 2) X 27 or

(-1) x 27.

The protect operation is carried out for the overflow
during the arithmetic operation of the fixed point too,
when the overflow protection bit (OVEP) of the

control register CTR is set ("1").

Underflow

If C is less than -8, the dynamic range of arithmetic
operation is extended using the above-mentioned
floating point/fixed point switching method. 1In

that case, no general normalization is carried out.
The value of the exponent part is fixed to -8, while
the bits of the mantissa are shifted to the left
direction by (-8-C) in the normalizing shifter.

Fig. 3-4 shows an example.
Mantissa Exponent part

15 0 3 0

T T T T T L T T T T T T T 1) T T ¥
0.1 1111 1111111111 000 0

1 T T T T T T T Ll T T T T T L 1 1] T
, 0.1 1 1111111111000 000 0
1 1 1 T T T T Ll] T T T T T T) 1 T
0.0 0 00 1 1100 00GOCGO 00 1 00 0

Fig.

3-4 Operation during Underflow

2]

If the exponent parts of two inputs are =8, the
above operation is conducted, as if arithmetic

fixed point operation were carried out.

The above technique reduces the circuit scale of
the whole LSI, implementing the data amplitude of
32-bit data.

(2) Operation Error of Floating Point Adder/Subtractor
(i) Truncation by digit matching

If there is a great difference between the values
of the exponent parts of two floating point data
inputs, the contents of the lower bit of the
mantissa in data with the smaller exponent part
are truncated during digit matching operation.

In normalizing operation, "0" is carried from

the lower bit, resulting in an error.

(ii) Error caused during subtraction

The floating point subtraction is essentially

conducted as follows:

A — A =N, - 2'Mn —N, - a2 M2
=N - 2M oy (Ny+1) -2 M
2M N+ (N+1) 2" MM}y, > M,

pM oy pm (M) L (N+1)} My =M,

The operation of the above parenthesized terms
using the HSP's ALU results in:

{2M-(N1+IT2-2(MI—M3)) My > M,

2M2 . (Nl . "_(M'_M')'*N_g-#x) M <M,

If Ml is greater than M2, the addition of 2~ (M1™M2)
is not carried out in the operation of the mantissa,
causing an error.

Errors during arithmetic floating point operation,
if the number of repeated products/sums reaches
several thousands to several 10 thousands, may be
accumulated.

If such an error is serious, the input from the
multiplier to the FALU should be normalized insofar
as possible (operated after storage into the ACC),
and the addition should be substituted for the
subtraction, after NEG (Negate) operation is
carried out.

(3) Data Format Transformation

In the signal processing application system, the input
data from the A/D converter and the output data to the
D/A converter, in general, are of the fixed point data
format. Inside the HSP, arithmetic operation is
conducted in the floating point data format to implement
high Accuracy. (See Fig. 3-5.)

To efficiently convert the data format, the HSP is
capable of interchanging the floating point data format
and the fixed point data format with each other through
the execution of a one-step instruction. The instruc-
tion provides transformation using a transformation
scaling factor on a data memory (ROM or RAM).

23

ye

A/ D

Sz

Fixed point

data (16P)

)
I
<4 L

Floating point
data
Man. 16®

Exp. 4b

Floating point

arithmetic

dynamic range
x sz b

Floating poant

data
Man. 16°
Exp. 4b

(]
4 b

Fixed point
data (160)

Fig. 3-5 Data Format Transformation

<=

D/ A

7

(1)

(ii)

From fixed point data to floating point data
(See Fig. 3-6.)

n 1

Ax 2" =21 x2" (only for normalizing operation)
A: Entered fixed point data
n: Scaling factor (in data memory)
Al: Mantissa after transformation
nl: Exponent after transformation

The floating point transforming data is basically
A x 2n, and Al x 2nl
finally stored into an accumulator.

obtained by normalizing A is

From floating point to fixed point (See Fig. 3-7.)

m

Bx2"+0x2"=51x2"

B: Mantissa before transformation
m: Exponent before transformation

f2: Scaling factor (in data memory)
Factor after transformation (unnecessary)

Bl: Fixed point data after transformation

Data of B x 2™ is normalized at 21 for output. If
£ is equal to or greater than m, the mantissa is
arithmetically right-shifted by &-m, resulting in
Bl. On the contrary, if & is less than m, the
mantissa of B is arithmetically left-shifted by
m-%, resulting in Bl. If an overflow occurs,
however, the maximum positive or negative value

is automatically assigned to Bl.

25

26

T — o ——

15 43 0

Note) Z: any
Z l numeric
L value
Ax2°® Zx 32t
Vv
FALU
§ A x2h
ACC

Fig. 3-6 Data Format Transformation Operation
(From Fixed Point to Floating Point)

Data memory

15 43 0
0 | 2
Bxz2™

ox 3t

\'4

FALU

B, x (2¢)
ACC

Fig. 3-7 Data Format Transformation Operation
(From Floating Point to Fixed Point)

— a———— > —— —

3.4 Floating Point Multiplication

(1) Multiplier Configuration

The HSP's multiplier is composed of a section which
multiplies the mantissa and a section which adds the
exponent part for execution of floating point operation.
The I/O data configuration is:

Mantissa: 12 bits x 12 bits »+ 16 bits
Exponent part: 4 bits + 4 bits + 4 bits

The secondary Booth algorithm is used to multiply the
mantissa part.

The following is the fundamental expression:

Z =X -Y

5 .
‘ié’o(\hi-n +yz2ite —2y2i+s)-X-22%

Pi - 22l

byen

i=o
SR = X - yi+, +Pi+,

Fig. 3-8 shows the basic multiplier configuration.
Fig. 3-9 shows the whole floating point multiplier
block diagram.

27

yai+3 =] logic
of
i +4 00—
Y2iTe Booth's

Yi

L Yai+s o—efaigorithm

x

U

exchange of
X, 2X

U

exchange of
Add,/Sub

N

carry look ahead
Adder

U
Sk

A=Y,y +,@yai +,

B=Ysi ¥5 - Ya2i*a*Yai+s

+¥2i*s5-Vai ¥4 ¥ai 73

C=y,j +;

CPH‘

Fig. 3-8 Basic Multiplier Block Diagram

12bits
X4 Xy n " T
L 8bits | 8bits L 10bits L 12bits L 12bits Lt 12bits
Ve > vs <> v <L > vo <> i <> Vis <>
Vs HDec.1 :::}Be_c;z :: M Dec.3 ;:‘o:’)l):c: ;:::}Dee.s ;:::aDoc.o
Sel.l ' Sel.2 Sel.-3 Sel4 Sel.5 Sel.6
Tbits 9bits llbits H’labiti ‘I,[flﬂbits j;r 3bits
< % J VL LI
ZA 2B 2D
,{mbiu " 14bits Lt 15bits
h ’J
zC
4bits
:t: ~x
l4bits 2bits Xo 3
Fz—_—_ Yo~¥s
note, Dec: Decoder S S
Sel: Selector JE Mantissa ADD | Exponent
operation operation

28

L16bits

Fig. 3-9 Floating Point Multiplier Block Diagram

< sbita

— —— . v —

(2) Overflow/Underflow Protect Function

The HSP's multiplier protects three items of an exponent
part's overflow and underflow and mantissa'a overflow.
For floating point multiplication, the mantissa must
have been normalized, if the exponent parts is greater
than -8. Unless this condition is met, this will cause
an error.

(i) Exponent part's overflow protection

Assume that the addition of the exponent part during
the multiplication of floating point results in
the exponent equal to or greater than +8.

(a) Unless the mantissa is normalized, the mantissa
is 1-bit shifted to the left direction and the
exponent part is made to be +7, if the exponent
part is equal to +8.

If the exponent part is greater than +8, the
mantissa is made to be the maximum absolute value
(the sign is not changed.) and the exponent part
is made to be equal to +7.

(b) If the mantissa is normalized, the exponent part
is made to be equal to +7, and the mantissa is
made to be the maximum absolute value (the sign
is not changed.).

(ii) Exponent part's underflow protection

If floating point multiplication provides an exponent's
value n of -8 or less, protection is accomplished
as follows:

The exponent is fixed at -8, and the mantissa is
shifted to the lower value direction by the number

30

(iii)

T — - ——— —

of bits corresponding to a value of (-8-n). For

the items (ii), see processing in the ALU section.
Mantissa's overflow

In the mu%tiplication of the HSP's mantissa, the
weight of the most significant bit may be made to
be -20, if the significant bit length of an output
value is required to pbe greater. If two input data
are -1, the result is +1, which cannot be expressed
by the HSP.

For (-1) x (-1), a correction is made so that the

mantissa may be approximated using the maximum

positive value (1 - 2713,

(3) Multilier's Error

The HSP does not operate a partial product placed at

the lower six bits during the multiplication of the

mantissa. The configuration is such that the upper

16 bits are output as the result. (See Fig. 3-10.)

As a result, an error of 2

-1/16 -2/16

or 2 may be

caused vis-a-vis the operation result obtained by

rounding the leat significant bit between 0 and 1

at 17 bit output configuration multiplication.

(4)

Even though the X input is $000, the multiplication

result may not be $000, unless the Y input is $000.

If the Y input is $000, the multiplication result is
$000 for any value of the X input.

Other Notes

When entering the multiplication result into the adder/

subtractor in the next instruction cycle, the previous
cycle must be multiplied in the floating point operation

mode, if the floating point mode is applied to that

addition/subtraction.

If the fixed point mode is applied

to addition/subtraction, multiplication must be also

conducted in the fixed point mode.

x)

xﬂixl‘ x18x|’xllxlox9 x. xf xO x5 x{
Yo Yy Y Yy Y Yoo Yo Y, Yy Y, Y, Y,

Pro- 0

Pro

? |

Prl.zl

Pry

1

Prg.g+¢

Prs

e

Pl"a‘ 26

Pr3

Prg: 28
Prs - g1o

Prg
Prs

+)

L

SN N | X |

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

HSP multiplier's output

Added portion
in HSP

Fig. 3-10 Multiplier's Error

Unadded portion
—= in HSP

31

32

T r—" W e —— -

DATA MEMORY
Configuration

To improve the throughput of product sum operations, the
HSP is providea with a data RAM of 200 words x 16 bits
(for data), a data ROM of 128 words x 16 bits (for coef-
ficients), and four general registers (GRs) that serve as
working registers. From these memories, data of 2 words
is transferred at the same time to the multiplier (FMULT)
and the adder (FALU) through two buses (X and Y). Data
is written into the RAM and GRs through the data bus.

[

The memory configuration is shown in Fig. 4-1.

The data RAM and the data ROM are partitioned into pages.
FPage partitioning and address assignment are detailed in
Fig. 4-2.

SR o 200"x16P0 128%x16°
GR 1
GR z Data RAM Data ROM
GR 3
{\ YN
X — Bus
L lo Y
b J\/, Y-Bus <
[4
Data Bus 16

20

Fig., 4-1 Memory Configuration

16

33

34

Pointer

Page Data RAM Page Pointer Data ROM Page GR

3 (G} (3) (5)
[N] [] [] 0 GRO]
1 =] 1 R 1 — GrR1]
2 -] 2 —] 2 |~ er2]
? N] 3 [~ N 3 GR 3

0 : 4 ai - -
" B]
0 B _ [) N]
| | . :| E]
sl N sl | Z

1 : 5 al F -4
49 - -1
of L - 0 » N
1 - - 1 L .
2] 2 R]
3 = N 3 L -

2 i 6 sl F .
49 -
0 L i 0 B]
1 N _ 1 = R
2 N N 2 -]
3 N 7 3 N]

3 i 7 al F .
o| -

Note: The figure in () means the count of address bits.

)
Fig. 4-2 Data Memory Configuration
and Address Assignment

4.2

- —— - = ————

Data RAM

The data RAM has a size of 200 words x 16 bits. As shown
in Fig. 4-2, the RAM is partitioned into four pages (page
addresses are 0 to 3), each of which consists of 50 words.
The RAM is of 2-port accessible structure. This permits
different data items to be read at the same time from
different pages if the pointer addressing mode explained
later is employed.

In the pointer addressing mode, data is read out through

a combination of the 6-bit address of the RAM pointer and
the two 3-bit addresses of the instruction code. 1In this
case, the address in each page (or the pointer address)
has a common value because they use the output of a single
RAM pointer. This is detailed in Fig. 4-3. Output goes
to the X bus from the page address selected in the X-page
part of an instruction; and to the Y bus from the page
address selected in the Y-page part.

Through the data bus, data is written into the RAM; that
is, into the address determined by a combination of the

RAM pointer and the Y-page. Write data to the data RAM

comes from the ACC and the DREG.

In the direct addressing mode, data of 9 bits contained in
the address part of the instruction code comes to the Y-
page and RAM pointer input line (shown in Fig. 4-3), where
the address of a single page is selected and one word is
found out.

35

36

Page address
0 1

Decoder

PO

Pointer address

A\

TN

48

49

1
!
|
|
|
[}
3
l
L

-1

L

RAM Pointer

X

—Page ()

—

[T

0
X —Selector

—_—————

r

5
B |
|

i 1

{]

0 1
Y —Page

2 3
Y=Selector _j

e
X —Page 1€r

L Z L 4

‘ Y~—-Bus /J

Fig. 4-3 Data RAM Access Method
(Pointer Addressing Mode)

4.3

Data ROM

The data ROM, as shown in Fig. 4-2, has a size of 128
words x 16 bits. As with the RAM, the ROM is partitioned
into four pages (page addresses are 4 to 7). The page
addressing mode generates effective addresses through
combining an instruction's X/Y page address part (each

3 bits) and the ROM pointer (6 bits). The data ROM is
different from the RAM in that only one word of data may
be read out at a time. However, it is possible to send
the same data to the X bus and Y bus, as shown in Fig.
4-4, It should be noted that the same page address must
be used if the page address of the X-page and that of the
Y-page indicate page addresses of the data ROM.

Memory Addressing Mode

The HSP provides two major memory addressing modes. They
are pointer addressing mode and direct addressing mode.

The pointer addressing mode generates effective addresses
by combining the value in the RAM/ROM pointer and the page
address part in the instruction code. This mode may be
effectively used for gaining access to data of two words
during product sum operations or for reading repeated data
from successive addresses. This pointer addressing mode
includes a mode which provide access to ROM/RAM data and
GR data at the same time.

The direct addressing mode handles the value of the 9-bit
address part of the instruction code as an effective ad-
dress.

37

Page address
4 5 [} 7

®w ® -~ O

77777
|

\

kY
\

Decoder
Pointer address

w o
[~}

ROM Pointer

L

] 1

X —Page * 5!___;___\ ° X —Selector !
i L} ! i
Y —Page ‘ 51[___6__\ ’ Y —Selector !
X-Bus ‘:v Vi
| va
Y—Bus £ 54

Fig. 4-4 Data ROM Access Method
(Pointer Addressing Mode)

The direct addressing mode is suitable for multiplication
of one-word data in the ROM/RAM memory and data in the
ACC or for reading out data of discrete addresses in the

memory.

The above discussion is summarized in Table 4-1.

Table 4-1 Addressing Modes

6¢

Effective Addressing Multiplier
Addressing Mode | Symbol Operand Instruction Note
X Y/G
<RAM>=(RAM Pointer <RAM>=(RAM Pointer Combination of the bus
A/B) A/B) output memory
+(X—Page) +(Y-Page)
X-Y P=X-Y RAM(X)—RAM(Y)
<ROM>=(ROM Pointer <ROM>=(ROM Pointer) ALU operation RAM (X)—ROM(Y)}{Possible
A/B) +(Y-Page) NOP RAM (X)—ROM(Y)
Pointer +(X—Page) Repeat etc. ROM (X)—ROM(Y)XPage=Y Pagd
Addressing
<RAM>=(RAM Pointer (GR)=(Y—Page)
A/B RAM(X)—GR .
+(X—Page) ROM(X)—GR] Pessible
X-G P=X"‘G
<ROM>=(ROM Pointer)
+(X—Page)
ALU operation
. <RAM>/<ROM> NOP
Direct . D - =Inst(Direct P=ACC-Y Repeat etc.
Addressing Address)
(Note) <RAM> (Note)
)Address P=Product
<ROM>

40

4.5 Memory Data Format

Figure 4-5 shows the formats of data stored in the data
ROM, data RAM and GRs.

It should be remembered, for floating point data, that

only the upper 12 bits of the ACC's 16-bit mantissa part
are stored.

(1) Fixed point data (16 bits)

13 0
T T T L) T T T T T T T T v T T
° Binary
15 0
L T T L} T L) L L) L T L} L) T L} L}
° 2's complement s

(2) Floating point data (16 bits)

° 2's complement S. s

Fig. 4~5 Data Format in Data Memory

INTERNAL REGISTERS

Accumulator (ACC)

The HSP has two 20-bit accumulators (ACCA and ACCB).
Either ACCA or ACCB may be freely selected by setting the
accumulator select bit in the instruction code.

Figures 5-1 and 5-2 each show the input/output data of the
accumulator available when the mode of operation is fixed
and floating point representations.

When it is necessary to store floating point data which
consists of 16 bits for its mantissa and 4 bits for its
exponent, use either ACCA or ACCB as a storage accumulator;
or store the data in the 2-word portion of the data memory
(RAM or GR).

This may be done by the following approach:

(1) To store accumulator data

(a) Store accumulator data of fixed point representation
in RAM1.

(b) Using floating point representation, store the same
data in RAM2.

(2) To transfer the contents of data RAM to the accumu-
lator

(a) Store the contents of data RAM1 in the accumulator.

(b) By regarding the contents of data RAM2 as a scaling
constant, convert the accumulator data from fixed to
floating point representation.

41

%6 bits T

I’
/

FaLU ﬁxponent
Mantissa part | part
i

\Vau

16 bits
19 43 °

ACC A/B | Fixed point data | DSeii-

NSB LSB
16 bits

Data Bus (D,.,)

Fig. 5-1 Accumulator Input/Output Data
(Fixed Point Arithmetic Operation)
RAM, GR

12

D4-15 |4
%
D
1 o.-s

!
/
/

Y

A4

FALU
/Exponen

Mantissa part | part
L

< 0

ACC A/B Mantissa xponent

F L]

Data Bus (Dy-,5)

,_-_
B e

Fig. 5-2 Accumulator Input/Output Data
(Floating Point Arithmetic Operation)

5.2 Condition Code Register (CCR)

Each flag in the CCR reflects the result of arithmetic
operation in the ALU of the FALU. There are three differ-
ent flags: =zero flag (Z), negative flag (N) and carry (C).

These flags correspond to the bit positions D13 to D15 of
the data bus. The contents may be transferred between the
CCR and the ACC in response to an instruction.

Z, N, C : Affected by fixed point

15 14 18 . . .
arithmetic operation

¢ N z Z, N : Affected by floating point
arithmetic operation
Flag Set/Clear condition
Zero flag Cleared (0) when M # 0
Set (1) when M = 0
Negative flag| Cleared (0) when M > 0
Set (1) when M < 0
Carry flag Cleared (0) when C = 0
Set (1) when C # 0
Note: M = Mantissa part after arithmetic operation
C = ALU's carry after arithmetic operation

Fig. 5-3 CCR Set/Reset Condition

43

44

5.3 Control Register

(CTR)

Data from the ACC may be transferred to the control reg-
ister by an instruction from the HSP. It is also possible
to transfer data from the parallel ports DO - D15. It
should be noted that the condition of each flag remains
indefinite during the HSP's reset operation.

The internal data bus DO - D15 is connected to bits 9 - 7.

7 8 5 4 1 0
Bit | Tx
\'s MA
W’B 10| RQF OVF| D

L- Parallel I/0 DMA mode

Overflow protect of ALU

Transfer request flag

Bit I/0

Parallel port transfer
data size selection

Note: See the next page for the contents of each flag.

Fig. 5-4 Control Register Functions

Bit 0 --

Bit 1 --

Bit 4 --

Bit 5 --

Bit 7 --

Parallel I/O DMA mode

1l : DMA data transfer mode
0 : Non-DMA data transfer mode

A microcomputer system outside the HSP operates
in the DMA mode. Inside the HSP, however, data
is transferred between the parallel I/0O port
and the ACC under program control.

Overflow protect of ALU

1l : Fixes the mantissa part to its greatest
absolute value if there is an overflow in
the mantissa of the ALU.

0 : Accomplishes no overflow protection.

Transfer request flag

In the DMA mode, this flag is set for a request
of data transfer during a transfer cycle of each
data element.

In response to an entry of TxAK, this flag is
reset and again set automatically. Entry of a
DEND signal does not cause the flag to be set.
In the non-DMA mode, this flag is effective as

a programmable output.

Bit I/0

Connected to the Bit I/O terminal. Has both of
the input and output functions.

For input, this flag is set to a 1 before infor-
mation of the bit I/O terminal is entered
directly into the data bus.

Parallel port transfer data size selection

1 : Transfers data of 16 bits (word)
0 : Transfers data of 8 bits (byte)

45

46

5.4

Status Register (STR)

The contents of the status register may be transferred to
the ACC by an internal instruction. It is also possible
in the internal program to transfer the value of the ACC

to some flags (UF, I I

Isor Isr Tpr Iy -
The flags SOF, SIF and PF are reset when the contents of
the STR are transferred to the ACC by an internal instruc-

tion.

The status register is connected to the internal data bus
D0 - D7.

UF | Iso| Isr | Ip Ix | SOF| SIF| PF

Parallel I/O transfer
end flag

L—————~ Serial input transfer
end flag

‘————— Serial output transfer
end flag

Interrupt mask flag

Parallel I/0 interrupt
mask flag

Serial input interrupt
mask flag

Serial output interrupt
mask flag

User's flag

Fig. 5-5 Status Register Functions

Bit 0 -- Parallel I/O transfer end flag

This flag is set at the trailing edge of IE, or
after the end of data transfer in DO - D15.

(In the byte transfer mode, the flag is set at
the trailing edge after the higher byte has been
transferred.)

The flag is set also when an interrupt disable
condition is established.

Under an interrupt enable condition, if the flag
is set, an interrupt occurs in the HSP.

The flag is reset when data is transferred from
STR to ACC.

Bit 1 -- Serial input transfer end flag

This flag is set after the end of serial input
data transfer.

The flag is set also when an interrupt disable
condition is established.

Under an interrupt enable condition, if the flag
is set, an interrupt occurs in the HSP.

The flag is reset when data is transferred from
STR to ACC.

Bit 2 -- Serial output transfer end flag

This flag is set after the end of serial output
data transfer.

The flag is set also when an interrupt disable
condition is established.

Under an interrupt enable condition, if the flag
is set, an interrupt occurs in the HSP.

The flag is reset when data is transferred from
STR to ACC.

47

48

Bit 3 --

Bit 4 --

Bit 5 --

Bit 6 --

Bit 7 --

Interrupt mask flag

This flag masks the interrupt of every factor.
The flag may be set/reset also by an instruction.
It is automatically set when an interrupt has
taken place; and reset by an RTI instruction.
The flag is a 1 under a mask condition; and a 0

under a non-mask condition.

Parallel I/O interrupt mask flag

This flag masks an interrupt generated by a
parallel I/O (when the PF is set).

The flag is set/reset by an instruction.

It is a 1 under a mask condition; and a 0 under

a non-mask condition.

Serial input interrupt mask flag

This flag masks an interrupt generated by serial
input (when the SIF is set).

The flag is set/reset by an instruction.

It is a 1 under a mask condition; and a 0 under
a non-mask condition.

Serial output interrupt mask flag

This flag masks an interrupt generated by serial
output (when the SOF is set).

The flag is set/reset by an instruction.

It is a 1 under a mask condition; and a 0 under

a non-mask condition.

User's flag

This flag may be used at will by the user.
The flag is set/reset by an instruction.

5.5 Repeat Counter (RC)

The repeat counter is used mainly for repeated program

operations.

The individual bits of this counter are connected to bits
10 - 15 of the data bus; and this should be remembered
when data is transferred from the ACC.

15 14 13 12 11 10

T T T T T
R C

MSB CSB

Fig. 5-6 Repeat Counter

Here are examples in which repeated operations are used

in this counter.

(1) Repeated operations by repeat instruction

Step 1

Step

Step

(2) Repeated

Step
Step
Step
Step
Step

2

3

(S I~ OV 8)

RC =-—= #n

where the "n" indicates the number of repe-
titions.

Repeat instruction

which allows the next instruction to be
repeated.

Arithmetic instruction (RC - 1)

which enables n+l operations.

operations by jump instruction

RC === #n

Instruction 1

Instruction 2

Jump to step 2 if (RC) # 0 and (RC) -1

s e e e

Example (2) repeats instructions 1 and 2 until the
value of the RC reaches a zero, and advances to step
5 when (RC) = 0 is reached.

Note that this' repeat counter is automatically decremented
when an ACC arithmetic operation has incremented the RAM
pointer or ROM pointer.

Address Pointer (RAM Pointer A/B, ROM Pointer)

The data memory has three address pointers: two for RAM
and one for ROM. Each of the pointers is connected to
bits 10 - 15; and this should be remembered when address
data is transferred from the ACC. Figure 5-8 shows how
to generate effective addresses for the data RAM and data
ROM by means of the address pointers.

A combination of the instruction code's page address part
(X-page and Y-page) and these address pointers generates
9-bit effective addresses.

The RAM reads out 2-word data at the same time with the
help of two page addresses and one pointer address. Data
is written into addresses generated by the Y-page and RAM
pointer.

The ROM can read out only one word at a time. Therefore,
any X-page and Y-page addresses in the ROM area must be
contained in the same page.

An instruction enables selection between the RAM pointer
A and the RAM pointer B. It should be noted that each
pointer may be automatically incremented during the same
instruction cycle as memory access.

RAM Pointer A

RAM Pointer B

ROM Pointer

15 14 18 12 11 10

15 14 18 12 11 10

15 14 138 12 11 10

MSB LSB

Fig. 5-7 Address Pointers

(a) Generating RAM effective addresses

(b)

(Pointer address format)

8 6 5 0
1 T 1 i 1 ‘. U XTP’
—-Page
Ay Ap < (an) N
T T T T
N RAM Pointer
8 8 5 0 y, (Ap)
T T i .7 m— T Ylpl //
= ra
Ay i Ap o= i ol ¢
Effective address Instruction Address
code's page pointer
(Page addresses = 0-3) address part

Generating ROM effective addresses
(Pointer address format)

8 8 5 0

T T T T T

j
| X-Page
Ax 101 Ae Nl KT N

N\ T T T T
ROM Pointer
8 6 5 0 (Ap)
T T T T T T Yjpaée //
Ay 0 Ap <: (Ay) 4
Effective address Instruction Address
code's page pointer
(Page addresses = 4-7) address part

Fig. 5-8 Generation of Effective Addresses

51

52

5.7 Delay Register (DREG)

The arithmetic operation for signal processing requires,
for example, a transversal filter (as shown in Fig. 5-9)
which has a function (equivalent to Z-l) of delaying an
input data string by one sample for each sampling cycle.
For the HSP in which input data is arranged on RAM, it is
necessary to effectively implement the function that
delays the data storage by one address for each sampling
cycle.

For this reason, the output of the RAM is provided with a
DREG, as shown in Fig. 5-10. Composed of a 2-stage latch
ciurcuit, the DREG holds the data read from the RAM until
the next instruction cycle is reached, as shown in Fig.
5-11; and writes the data into memory after data is read
out from an updated address. When repeated, this opera-
tion will shift addresses in the data group memory, as
shown in Fig. 5-11(b).

Writing from DREG to RAM may be controlled by the descrip-
tion in the instruction code.

It should be noted that the DREG permits data to be
exchanged not only with the RAM but with the GR as well.

INPUT

W, Wn-1 Wn-2 Wn-N+1

\\\S?TPUT
z

\

N
Qp =23 Ci xWp-34; Wi =Wy
i=1

Fig. 5-9 Transversal Filter

Data RAM/GR
15 l l [
DREG
X — Bus 4 L ﬁ
& - {
Y - Bus L

Fig. 5-10 Location of DREG

53

54

Instruction cycle

RAM read w‘! w,!

|
X
<

DREG N

<
]
A, x X

wﬂ
wl
N\
RAM write C] @
X

RAM address | A, X A,

(a) Timing

A, W,

A

1 W Before change
A! wl

A, W,

Ao W,

A L} After change
A, W,

Ay W,

(b) Changing Memory Contents

Fig. 5-11 DREG-Based Shifting of RAM Data Addresses

INPUT/OUTPUT INTERFACE

Function Control

The HSP uses input information (code) at input terminals
FO0-F3 to transfer data between the inside of the HSP and
the outside bus through parallel ports D0-D15.

Input information at F0-F3 is effective when input termi-
nal CS is active. A part of this function control works
to halt the clock working in the HSP. As shown in Fig.
6.1, the HSP gets into a stop mode when an instruction
cycle is over after function information is internally
detected. The stop mode is released after a change in
function information is detected, and this is followed by
the execution of the subsequent instructions to be left
behind before the stop action began.

Because of it dynamical operation, the HSP must internally
deal with halts of 10 microseconds or less. Function
information is detected in accordance with the timing of
the internal clock, so that it is necessary for the func-
tion input to remain active during one or more instruction
cycles.

The direction of input/output transfer is controlled by
input signals at the R/W terminal.

55

56

Instruction cycle

Fo_y

’ T

o

: \ \ py
Instruction 7/

< Program et
operation stop

Fig. 6-1 Program Operation Stop

——— —— o ———

Table 6-

1 Details of Function Control

cs F3 F2 F1 FO

Operation [Operation mode & Interrupt]

No I/O operation

[Operation mode] Program mode
[Interrupt] -

No I/O operation

[Operation mode] Program mode

[Interrupt] -
0 0 1 O Data transfer (Lower byte)
CTR(W/B) =0
Read : DO0-D7 === ORO0-OR7
Write : DO0-D7 === IRO-IR7
[Operation mode] Program mode
[Interrupt] None
0 0 1 1 Data transfer

(1) Byte transfer mode
CTR(W/B) =0
Upper byte transfer
Read : DO-D7 =-- OR8-OR15
Write : DO0-D7 --= IR8-IR15

(2) Word transfer mode

CRT (W/B) =1
Word (l6-bit) parallel transfer
Read : DO-D15 =-- ORO0-OR15

Write : DO0-D15 --»= IRO-IR15

-cont'd-

58

——— o — e~ ——

(of] F3 F2 F1 FO Operation [Operation mode & Interrupt]
0 0 0 1 1 [Operation mode] Program mode

[Interrupt] possible

0 1 0 O CTR transfer
"Write" only

Write : DO-D7 === CTRO-CTR7

[Operation mode] Stop mode
[Interrupt] None

1 0 0 o PC transfer

"Write" only
Write : DO0-D7 —-= PCO-PC7
(Setting as D10=1, D9=0 and D8=0)

Set CTR's interrupt mask flag.
No other register conditions are
guaranteed.

The contents of RAM are reserved.

[Operation mode] Stop mode

[Interrupt] None

—~——— ——— - —————

6.2 Parallel Port (Microcomputer) Interface

The HSP's parallel input/output terminals D0-D15 form a
bidirectional three-state bus. There are three different
types of data transfer between input/output terminals D0-D15
and the inside of the HSP.

(1) Word data transfer

Input/output data at input/output terminals D0-D1l5, as
16-bit data, is transferred in parallel between input
registers TRO-IR15 and output registers ORO-OR15.

(2) Byte data transfer

Input/output data at input/output terminals DO-D7 is
divided into the upper byte (IR8-IR15 & OR8-OR1l5) and
the lower byte (IR0-IR7 & OR0-OR7) by function control
information, and transferred between the IR registers
and the OR registers.,

(3) CTR & PC data transfer

Input/output terminals D0-D15 are connected directly
to the 16-bit data bus (D0-D15) in the HSP, and data
is transferred with each register in the HSP. 1In this
case, the operation in the HSP is brought to a halt so
that the HSPs data bus is connected directly to the
external bus.

Data is set in each of these registers according to the
IE's timing.

|
|
|
|
; 8
// st-u
l
| u | ™
| 2 u
| 1 x 8 X
|
| OR
| 8 8=18
|
8 M T
-—-ﬁD.-”, U I
8 X ‘
]
| e s e . e o e St S o . e 2o J H ~
1]
| g a
| 2l 8
| 8 al a
| A)
| AR
I E'U E'U
| ; 3 |8
| 7 IRy, M A H
| U
| 8 X
' oyt
8 v s | ORo-r NN
~f=1Dys vea Y Vs
8 X
| »
| ”: |
| O
Outside I Inside
HSP | HSP

Note: Each dotted line denotes a signal path for testing.

Fig. 6-2 Parallel Port Interface

6.3 Serial Input/Output

The serial input/output function is intended mainly as an
interface for A/D and D/A converters. The HSP provides
serial input/output of up to 16 bits.

The functions of serial input and serial output are given
in Table 6-2.

(1)

Serial Input

A serial input takes place on an MSB first basis. Even
for less than 16 bits, the internal counters are used
and data is automatically shifted so that the MSB of
data goes to the most significant bit of the shift
register. It should be noted, however, that an SI input
signal is, as it is, applied to the lower bits after the
specified bit. In this case, it is mecessary to enter
more than 16 clocks of SICK even when the SIEN is in the
non-active mode.

No data transfer to the ACC is allowed while serial input
is in process. The SIR is cleared when data is trans-
ferred to the ACC.

SICK A M uuuJuuuuunuuuuurLuTe

(
SIEN y

SI

| S

f2X3XsXsXeX7X8X5 XtoX11X12X13X14X15X16)

Fig. 6=3 Serial Input Timing

61

—— e ——

(2) Serial Output

The basic timing is the same as with serial input.

For the HSP's serial output, "O" goes to the SOR after
data is transferred to the outside. See Table 6-2 for
other information.

Table 6~2 Serial Input/Output

Serial input Serial output

[Block diagram]

18, Internal Data Bus 16, Internal Data Bus
{ 1
Input Shift Reg |=———oS1I Output Shift Reg | s SO
(SIR)16bits TOJ__-asxcx (SOR) 16bits Sock
Enable to Interrupt

Carry SOEN
Bit Counter CTL Block
4bits ccT SIEN

Clock l

to Interrupt Block Terminal SO gets a three-

state condition when SOEN
is non-active.

[Input/output data bit numbers]

-/ ey SI o fm SO

MSB LSB| LSB ' " MSB -
2[5] 21]‘ J b 12‘120 30|gll of o lz“lz“
Input from MSB Output from MSB

-cont'd-

———— —— — ———

Serial input

Serial output

[Input/output bits control]

Even if, during an active
SIEN interval, there is an
input of 16 or more SICK
clocks, any input of data
of 16 bits or more is
automatically disabled.

If there are less than 16

| SICK clocks during an
active SIEN interval, input
data is shifted to the

high order. However, it is
necessary to enter SICK in

advance.

Even if, during an active
SOEN interval, there is an
input of 16 or more SOCK
clocks, the SO output sends
out "O" for bit 16 and
following bits.

If there is an output of
data of less than 16 bits,
SOEN gets non-active when
the count of bits as output
has reached the specified
value.

[Interrupt generation]

Counting of 16 clocks starts
at the leading edge of SIEN,
When 16 bits of data has
been entered into SIR, the
internal interrupt generator
circuit (SIF) is initiated.

At the trailing edge of
SOEN, the internal inter-
rupt generator circuit
(SOF) is initiated.

[Shift register set/reset]

After a transfer instruction
(SIR-ACC) has been executed,
the register is reset (all
bits are 0s).

In response to a transfer
instruction (ACC—-SOR),
data is set in the shift
register.

63

64

6.4

——— ——

Interrupts

The HSP is capable of generating interrupts after the end
of data transfer (microcomputer interface, serial input/
output) so as to effectively process internal arithmetic
operations and data input/output. A schematic of the
interrupt circuit is shown in Fig. 6-4.

(1) Interrupt level and factors

There is only one interrupt level. The level has three
factors. They are:

(a) End of parallel port (microcomputer interface)
transfer

(b) End of serial input transfer

(c) End of serial output transfer

These factors are identified by program.

(2) Masking

I and I

It is possible to mask each of the IM' IP' ST SO

flags in the status register.

IM : Mask flag for all interrupts.
When there is an interrupt, the flag is set
automatically, resulting in a masked condition.
The flag is reset by an RTI instruction, thus
resulting in a demasked condition.
The flag may be set/reset also by a transfer
instruction (ACC-STR).
1 = Mask; 0 = Nonmask

IP : Mask flag for an interrupt at the end of para-

llel port transfer.
The flag is set/reset by a transfer instruction.
1 = Mask; 0 = Nonmask

(3)

(4)

————— — — a——

ISI : Mask flag for an interrupt at the end of serial
input transfer.
The flag is set/reset by a transfer instruction.

1l = Mask; 0 = Nonmask

ISo : Mask flag for an interrupt at the end of serial
output transfer.
The flag is set/reset by a transfer instruction.
1 = Mask; 0 = Nonmask

Even under these interrupt mask conditions, each of the
input flags PF, SIF and SOF is set by an external input.

Stack

The program counter (PC) has two stacks. Therefore, a
2-level nesting for interrupts or subroutines is pos-
sible.

There are two ACCs (ACCA and ACCB). One may be used
for the main program; and the other, for an interrupt
program.

Programming is made so that the other registers are
saved in the RAM. It should be remembered that, if
data is transferred in the floating point mode when it
is stored into RAM, then the lower 4 bits of the ACC's
mantissa part encounter an error.

Interrupt wait

At the execution of a repeat instruction or any instruc-
tion initiated by a repeat instruction, or during the
execution of a jump instruction (only for jump action)
or an RTN or RTI instruction, the initiation of an
interrupt has to wait until the above instruction comes
to an end.

65

(5) Vectoring

When an interrupt occurs, the contents of address $1FF
are set in the program counter. This address is the
final address of the instruction ROM. Therefore, pro-
gramming requires that a jump goes to the beginning of
the interrupt handling program when the jump instruction
is stored at the final address of the instruction ROM.
An example is illustrated in Fig. 6-5. .

(6) Pipeline control

Since output data of the multiplier is reserved during
only one instruction cycle, if an interrupt occurs
while a pipeline-based product sum operation is in
process, it destroys the result of multiplication out-
put. At a portion of a program which is carrying out
an arithmetic operation under pipeline control, it is
necessary to keep the part under an interrupt disable
condition.

STR

|lso|1sn|lp|lul

STR
E— o
PF
L
ISIEX S
SIF l-t;;::v'
p—i R
_—
s
R PC
Control
Instruction (STR—ACC)
PC
PC STACK 0 PC—all*1"
Stack
STACK 1

Fig. 6-4 Interrupt Circuit Configuration

67

68

——— — ————

Address Label Instruction

100 INT Save ACC

(Save CCR
STR --- ACC : Reset PF, SIF, SOF
ACC --- Memory : Save to STR memory
Save register : ROM/RAM pointer

° Factor identification

° Interrupt handling program

Return register

Return CCR
Return ACC
RTI : Reset IM' main
routine pattern
IFF JMP INT

Fig. 6-5 Example of Interrupt Handling Program

——— —— ~—

6.5 DMA (Direct Memory Access)

6.5.1 General

The DMAC (direct memory access controller) for an 8-bit
microcomputer 6800 permits data transfer between the HSP
and the memory.

Through input/output terminals D0-D15, data is transferred
directly, not by way of the CPU of the microcomputer,
between the HSP's IR or OR and the external memory or I/O
device.

Inside the HSP, the DMA flag in the CTR controls the mode
as follows:

CTR(DMA)
CTR(DMA)

L}
[
.

DMA transfer mode
Non-DMA transfer mode

]
o
.

This DMA transfer mode brings the microcomputer to a stop.
A DMA action takes place between the IR or OR inside the
HSP and the external memory or I/0 device; and a program
action occurs between the IR or OR inside the HSP and the
ACC or memory.

The HSP's DMA mode permits the HALT burst mode as one of
the DMA transfer approaches possessed by the microcomputer
6800.

Figure 6-7 shows an example of connection of control lines
for the HSP, DMAC and 6800 CPU. The HSP is provided with
terminals TxRQ, TxXAK and DEND intended for the DMA transfer
mode.

— — ———— ——

HD61810B(HSP)

TxRQ | 3%
3
TxAK 4—
28
DEND
HD6844(DMAC) %+5V
TxRQ1 81
HD74155
€S/TxaKkB |2 3g TxAK1
85 13 Y,
Tx AKA A
1C 1G

TxSTB :s—"oD—

— e 38 I X
TRQ/DEND p 4/
DGRNT |—
a8 HALT
DRQH

HD6800(MPU) %HV
2

HALT
HALT é
sa L2 BA
vMA
vMa |2

Fig. 6-6 Example of Connection between HSP and DMAC

— —— —— ———

6.5.2 Operation

Setting the CTR(DMA) to a 1 results in a DMA transfer mode.
Once the CTR(DMA) has been set at a 1, it will keep the
DMA mode unless it is reset to a 0 by program or DEND
signal generates.

(1) Word Transfer

A DMA word transfer may be produced by setting the CTR's
W/B flag to a 1 and by setting the each of the CTR's DMA
flag and transfer request TxRQ flag to a 1. Reception
of a TxAK signal causes the TxRQ to be a zero. In this
case, the PF is set, and under an interruptable condi=-
tion, the inside encounters an interrupt at the end of
parallel port input/output transfer. As a result, the
HSP transfers data from IR to ACC, and then to memory
with the help of a program.

At the end of data transfer from IR to ACC, the TxRQ

is again set to a 1 automatically, giving the DMAC a
request of the next data transfer. For output from the
OR, if data is read out from the OR under an interrupt-
able condition, the PF is set and an interrupt occurs.
The result is that data is transferred from ACC to OR
by the HSP's interrupt handling program. When data is
transferred to the OR, the TxXRQ is again set to a 1,
giving the DMAC a request of the next data transfer.
For the final word to be transferred in the DMA mode,
if it is entered together with a DEND signal, the flag
for the DMA mode is reset, resulting in a non-DMA mode.

Under an interrupt disable condition, a change in the

72

(2)

— S — ————

PF flag is monitored so that the end of input/odtput is
searched.

Byte Transfer

A DMA transfer mode may be established by setting the
CTR's W/B flag to a 0, the DMA flag to a 1, and the TxRQ
flag to a 1. The DMA byte transfer mode provides data
input/output in the order of the lower part and the upper
part. Inside the HSP, after the end of a transfer of

2 bytes, data is transferred between the IR or OR and

the ACC. The transfer sequence is the same as with word
transfer, except that one word is covered instead of 2
bytes.

The above discussion is summarized in Table 6-3.

Table 6~3 DMA Mode Data Transfer

Byte transfer
Mode Word transfer Y -
Approach 8 bits
DMA "y
c TxRQF
ontrol Ww.B <1 O
Fo “0”:Lower / "1”:Upper
0| Word, 16 bits 0 Lower
Data -
arrangement 1| Word, 16 bits 1 Upper
2 | Word, 16 bits 2 Lower
3| Word, 16 bits 3 Upper

6.6 Bit I/O

The bit I/O may be used as shown in Fig. 6-7. The input/

output signal serves as a l-bit input/output terminal.

(1) As Input Terminal

(2)

A transfer instruction (ACC-CTR) is used to write a 1
into the corresponding bit of the CTR's bit I/O. This
turns off the output MOS transistor of the bit I/0, thus
allowing external data to be entered. With a transfer
instruction (CTR-—ACC), the input takes in data into the
ACC through the data bus. Note that it is necessary to
reserve input data at the terminal while the transfer
instruction is being executed.

As Output Terminal

Because of an open drain, the output of the bit I/O must
have a pull-up resistor connected externally. This out-
put signal may be used as, for example, as control of
peripherals. It may serve also as an interrupt signal
to a microcomputer.

73

74

T

Vee

- Input signal
to HSP

HSP
Internal
Data Byg | CTR
Bit L/O —-Do—-l
Ds Latch |

Controlled by
TFR A, CTIR

]

Controlled by
TFR CTR, A

HSP

&
T

Fig. 6-7

ON at input of external data;
OFF at output

— Output signal
from HSP

Bit I/O Usage

- ——— — — ——

7. INSTRUCTIONS

General

The instruction system of the HSP is designed so as to

provide fast, efficient signal processing and arithmetic
operation. The HSP has a total of 53 different instruc-
tions, covering not only arithmetic operations but also

logical operations and data transfer as basic instructions

for a general-purpose microcomputer.

Major features of the HSP are detailed below.

(1)

(2)

Floating point arithmetic operation

The HSP, as mentioned in section 3, carries out floating
point arithmetic operations, providing a 32-bit dynamic
range and a 16-bit resolution (effective bit length).
This provides accuracies suitable for signal processing
in the voice frequency band, thus enabling arithmetic
operations at high speed and high accuracy to be done on
LSIs. The HSP has a set of instructions that effectively
carry out such floating point arithmetic operations, as
well as fixed point arithmetic operations in general use
in microcomputers.

Horizontal-type microinstructions

To improve the throughput of arithmetic operations, the
HSP offers horizontal-type microinstructions, so that
more than one operation may be executed during a single
instruction cycle.

A single instruction allows the following operations to
be executed in parallel mode.

75

76

(3)

(a) ALU operation

(b) MULT operation

(c) Memory read

(d) Memory write

(e) Address pointer auto-increment and repeat counter
auto-decrement

Pipeline control

Computer pipeline control can give better throughputs

to repeated product sum operations which are frequently
seen in signal processing. The HSP cause multiply and
add/subtract operations to be generated under pipeline
control, so that the time required to execute a product
sum operation is apparently equivalent to one instruc-
tion cycle. Pipeline control is also used for such
operations as instruction prefetch and data memory read;
this is enough to implement instructions of high through-
put. The sequence of pipeline operations is shown in
Fig. 7-1.

- —— — e —

M Ms Ms M4 Mg Mg
Ty | T | Ta 5 Ty [T [Ty ! Ty Ty Ty Ty T
]
i

$0 (4MHz) N

#1 (sMHz) |~ e/ L/ N N L N—]

$2 (4MHz) ‘__/‘“'x_/—‘_ﬁx_/‘x_/‘x

#8 (sMHz) N—TO M—] ® M © M ~— \

PC 250ns (L 2224 SOITIAR LRI ¥

Inst ROM QUT : Xz £ AN ANANRN AN\ 3 EAS SRIDAIY,)
n

Inst Reg. { V014 V084848 NN\ AN\

X/Y Page l 2z /acm ’
ROM/RAM Pointer ! \T77TN7777. m} |
ROM/RAM Address 1 RIZITITZ. ANRARNANN) }

Data ROM/RAM OUT | gz SO ! :
X/Y Bug i Zz | S | !
MIN X/Y 777778 <> | |
MULT OUT I ezt I,
(ALU TEMP) c . !
ALU OUT 1 | \‘GB :
ACC i ! N\
Dats Byg &y
[}
SIR ! ! \
Register so‘:‘n ! I i SVED “3.3'4'
ete | 1
RC i b=« X
DREG ! ! ssrsreses.
RAM Write ! ! \‘!® ! !

®e

©

Multiply X1 Y1
Multiply X2 Y2
Add Acc + X1 Y1
Register transfer

Fig. 7-1 Pipeline Operation Sequence

7.2 Set of Instructions

Depending on their types, the HSP's instruction codes are
classified as follows:

I. ALU operation
II. Immediate data
III. Jump
IV. Register transfer operation
V. Register increment/decrement
VI. Subroutine return

The HSP's instructions are configured so as to provide
most effective operation for the instructions related to
ALU operation.

This set of instructions includes no multiply-related
instructions. Multiplication operates in every instruc-
tion cycle. If multiply operation is required, it is
necessary to select input data of the multiplier and
execute an ALU operation using the result of multiplica-
tion in the next cycle. In other words, it is necessary
to select one of the addressing modes shown in Table 4-1
and thus set required addresses. Any instruction of the
HSP, as shown in Fig. 7-2, consists of 32 bits.

In the following paragraphs are described the function of
each instruction and the instruction formats for assembler
description.

See Table 7-1, which lists the mnemonics, operations,
instruction codes and CCR changes of the HSP's instruc-
tions.

——— e - —

The overflow protection for the result of arithmetic
operation differs from one ALU operation instruction to
another. To be more specific, the instructions may be
divided into two groups. One is those instructions that
placed under overflow protection even if the CTR's OVF
is not set; and the other is those instructions that are
under overflow protection only when the OVFP is set.
This is detailed in Table 7-1.

79

80

—— o —— ———

Table 7-1 Instruction Formats

21 20 19 18 17 16 15 14 18 121110 9 8 7 6 5 438 2 1 0

I
OP Address Control
Pointer (x, y)|FL/ |ACC RAMIBQA
addressing OP Code poin{pointpoin—|
mode —ALU |FX |A/B| ACC/|1|X-Y

Direct
addressing
mode

t t
DREG X/-G X~-page | Y-page iﬁrc INC. v

(v RCDecl

ol o Direct address
(X/Ypage)(Pointer address)

ACC A/B — Immediate data (16 bits)

RC+ Immediate
data(8 bits)

ROM Pointer+
Immediate data /
RAM Pointer

(8 bits)

OP Code

Jump Condition
OP Code - Jump Address

[RC
I.(_ZNZ

oJump if (Jump condition) A(CCR)*x0

o Jump condition =all"0” for noncoditional jump
o When RC*=0, jump against (RC)#0

° When RC*=1, jump against (RC)#0 and (RC)-1

21 14 18 12 1 10
CC | ACC RAM
v,) Code A Pointer
4 Input|Output Not Used A/8

]
l:Selsc'.ion of ACC AorB
0; ACCA, 1; ACCB

L Selection of RAM Pointer A or B
0; RAM Pointer A, 1; RAM Pointer B

0 RAM
v Op Code 0 Not Used v
T
L 0; RAM Pointer A
1; RAM Pointer B
v Op Code 0 Not Used 0

Fig. 7-2 HSP

Instruction Formats

81

82

—— o ———— ————

7.2.1 ALU Operation Instructions

(1) ALU Operation

Each instruction
the following:
input bus selection, data memory address control, read/
write control, address pointer control, and repeat counter

given here performs, at the same time,
ALU action, arithmetic operation, ALU

control. There are two addressing modes available.

No Mnemonic Contents
1 FADA Floating point arithmetic operation
FL[(o) +(B) ~ACCA]
2 FADB Floating point arithmetic operation
FL[(a?+(s) + ACCB]
3 ADA Fixed point arithmetic operation
FX[(a)+(B) »ACCA]
>4 ADB Fixed point arithmetic operation
FX[(a)+(B) ~ACCB]
5 FSBA Floating point arithmetic operation
FL[(a)-(B) +ACCA]
6 FSBB Floating point arithmetic operation
FL[(a)=-(B) »~ACCB]
7 SBA Fixed point arithmetic operation
FX[(a)=-(B) +ACCA]
8 SBB Fixed point arithmetic operation
FX[(a)=-(B) +ACCB]
9 FLDA Floating point arithmetic operation
FL((8) »~Aaccal
10 FLDB Floating point arithmetic operation
FL((B) +ACCB]
-cont'd-

P — — o — ——

No Mnemonic Contents

11 LDA Fixed point arithmetic operation
FX[(B) >~ ACCA]

12 LDB Fixed point arithmetic operation
FXI[(B) + ACCB]

13 ANDA Fixed point arithmetic operation
FX[(a)A(B) ~ACCA]

14 ANDB Fixed point arithmetic operation
FX[(a)A(B) > ACCB]

15 ORA Fixed point arithmetic operation
FX[(a)Vv(B) > ACCA]

16 ORB Fixed point arithmetic operation
FX[(a)V(B) » ACCB]

17 EORA Fixed point arithmetic operation
FX[(a)®(B) »~ACCA]

18 EORB Fixed point arithmetic operation
FX[(a)®(B) » ACCB]

19 FABSA FL[(no change in ACCA) > ACCA]
where "no change in ACCA" means that
there is no change in the absolute value
of the mantissa and the exponent of the
ACCA.

20 FABSB FL((no change in ACCB) > ACCB]
where "no change in ACCB" means that
there is no change in the absolute value
of the mantissa and the exponent of the
ACCB.

21 ABSA FX[(ACCA's absolute value) > ACCA]

22 ABSB FX[(ACCB's absolute value) » ACCB]

23 FRPTA Causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in floating
point form.

-cont'd-

83

No Mnemonic Contents

24 FRPTB This causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in floating
point form.

25 RPTA This causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in fixed
point form.

26 RPTB This causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in fixed
point form.

27 | FNEGA FL([-(ACCA) > ACCA]

28 FNEGB FL[-(ACCB) + ACCB]

29 NEGA FX[-(ACCA) + ACCA]

30 NEGB FX [~ (ACCB) + ACCB]

31 INCA FX[(ACCA)+1 + ACCA]

32 INCB FX[(ACCB)+1 ~ ACCB]

33 DECA FX[(ACCA) -1 + ACCA]

34 DECB FX[(ACCB) -1 + ACCB]

35 SRA This arithmetically shifts the ACCA to
the right.

T N S I e (o]

-cont'd-

84

—— —— — —-——

No Mnemonic Contents
36 SRB This arithmetically shifts the ACCB to
the right.
I R I B el ()
37 SLA This arithmetically shifts the ACCA to
the left.
-T2 TT -0
38 SLB This arithmetically shifts the ACCB to
the left.
ol o I I I [[]<0
39 FLTA This converts the ACCA's mantissa part

to floating point data (mantissa and
exponent) and sets it in the ACCA.
For details, see 3.2(3).

40 FLTB This converts the ACCB's mantissa part
to floating point data (mantissa and
exponent) and sets it in the ACCB.

For details, see 3.2(3).

41 FIXA This converts the ACCA's floating point
data (mantissa and exponent) to fixed
point data (mantissa part) and sets it
in the ACCA.

For details, see 3.2(3).

42 FIXB This converts the ACCB's floating point
data (mantissa and exponent) to fixed
point data (mantissa part) and sets it
in the ACCB.

For details, see 3.2(3).

43 FCLRA FL[The contents of the ACCA are cleared.]
(Mantissa = 0; exponent = =8)

44 FCLRB FL[The contents of the ACCB are cleared.]
(Mantissa = 0; exponent = -8)

45 CLRA FX[The contents of the ACCA are cleared.]

46 CLRB FX[The contents of the ACCB are cleared.]

-cont'd-

85

86

- — ————

No Mnemonic Contents

47 FNOPA FL [The ALU is a non-operation. The
contents of the ACCA/B remain the same.

p The contents of the operand are

48 FNOPB effective.]

49 NOPA FX [The ALU is a non-operation. The
contents of the ACCA/B remain the same.
The contents of the operand are

50 NOPB effective.]

51 FSGYB FL [If the sign bit of data entered
from the Y-bus is the same as the sign
bit of the ACCA/B, the contents of the

52 FSGYB ACCA/B remain the same. If the sign
bits are different, -(AACA/B) - ACCA/B]

53 SGYA FX [If the sign bit of data entered
from the Y-bus is the same as the sign
bit of the ACCA/B, the contents of the

54 SGYB ACCA/B remain the same. If the sign
bits are different, -(ACCA/B) -+ ACCA/B]

It should be noted that an interrupt operation must wait

while a repeat instruction (FRPTA, FRPTB, BPTA or RPTB)

is being executed or while any instruction which has been

initiated by a repeat instruction is being cycled.

(2) Instruction Format

-- Page Addressing Mode (Type I)

Description in the assembly language looke like the

following:

where [1]

Label A Operation A [1]A[2]A[3] [4] ; Comment

- [4] are operands.

———— ——— — —

[1] Selection between ALU's two input data items
(Note that this operand is not required for the
instructions 19-54.)

Contents Notation Bit assignment
16 15
(product, ACC)—ALU PA 0 0
(Y—Bus , ACC)—ALU YA 0 1
(product, X—Bus) —ALU PX 1 0
(Y—-Bus , X—Bus) =ALU YX 1 1

Note: 1In the contents block, () refers to a and
B in that order.

[2] RAM write control

. Bit assignment
Contents Notation
12 11
ACC—+Data Bus, M(Y)not write EE 0 0
ACC—Data Bus —=M(Y)write A 0 1
ACC—Data Bus, M(Y)not write EE 1 (]
ACC—Data Bus. DREG—M(Y)write D 1 1

[3] Data memory output

Notati Bit assignment
Contents otation 1059:876 5438
ROM/RAM—X or Y—Bus XY(n,m) 1}0{ n m
ROM,RAM—»X— Bus , GR—Y-Bus XG(n,2) |11l a | ¢
(n,m)
n : Page address of output data to X-bus
m : Page address of output data to Y-bus
2 ¢ GR address
0-3 : RAM
4-7 : ROM
0-3 : GR

——— v —— ———

[4] Automatically incrementing ROM/RAM pointer
Automatically incrementing repeat counter
Selecting RAM pointer

BT
Contents RAM pointer | Notation assfgnment
selgggigner 2] 110
RAM Pointer : not affected A RA, RO 0ofo0|o
ROM Pointer : not affected B RB, RO 001
RAM Pointer : auto increment A RA+, RO | 1] 0|0
ROM Pointer i not affected B RB+ RO | 1[0 |1
RAM Pointer : not affected A RA, RO+ o|1}0
ROM Pointer : auto increment B RB, RO+ 0f11|1
RAM Pointer : auto increment A RA+, RO+| 1 |1 |0
ROM Pointer : auto increment B RB+, RO+ 1 1 1

Automatically decrementing repeat counter (RC)

The logical sum (OR) of bits 2 and 1 is:

22\V/2! =0 ; not affected

22\/2!'=1 ; auto Decrement

(3) Instruction Format

-- Direct Addressing Mode (Type I)

Label A Operation A [1]A[2]A[3] ; Comment

where [1] - [3] are operands.

[1] Selecting ALU's two input data items

Same as with Page Addressing Mode.

[2] RAM write control

Same as with Page Addressing Mode.

——— e ——

[3] Direct addressing (n,m)

Bit assignment
8 7 615 4 8 2 1 0

Contents

ROM/RAM—Y — Bus
(ACC—X—Bus

F=—=-T"1

n : Page address

m : Pointer address
(Note that memory is addressed directly, not
by way of the pointer.)

(4) Multiplication

By addressing data memory with an ALU operation instruc-
tion, the data sent out to the X- or Y-bus is entered,
as it is, into the multiplier. The multiplier operates
whenever any instruction has been executed. The output
(product) of the multiplier will be held only during
the next instruction cycle. For the sum of products,

it is necessary to select data to be sent out to the

X- and Y buses for the instruction executed before the
add instruction.

In the case of floating point product sum, specify suc-
cessive arithmetic instructions in the form of floating
point.

Example: (1) Correct description
FNOPA
FADA
(2) Incorrect description
FNOPA
ADA

89

—————— — —

7.2.2 Immediate Instructions

An immediate instruction sets the immediate data on the
instruction ROM into the ACCA/B, RAM/ROM pointer, and RC.

(1) Operation

No Mnemonic Contents

1 LIA Immediate data (16 bits)
-== ACCA

2 LIB Immediate data (16 bits)
--= ACCB

3 LIRA Immediate data (6 bits)

--= RAM Pointer A

4 LIRB Immediate data (6 bits)
~-= RAM Pointer B

5 LIRO Immediate data (6 bits)
--= ROM Pointer

6 LIRC Immediate data (6 bits)
--= Repeat Counter

(2) Instruction Format (Type II)

Label A Operation A [1] ; Comment

where [1l] is an operand.

[1] Immediate data

Instructions Immediate data bit asSignment

15 ~ 0
LIA, LIB (MSB) (LSB)

15 ~ 10
LIRA, LIRB, LIRO, LIRC (MSB) (LSB)

— e — ———

7.2.3 Jump and Conditional Jump Instructions

There are some kinds of jump instructions available:
unconditional jump, conditional jump, and subroutine jump.
If the jump conditions are satisfied, then any interrupt

operation must wait.

(1) Operation

No Mnemonic Contents

1 Jcs A jump occurs when the CCR's carry flag
is a 1.

2 JNS A jump occurs when the CCR's negative
flag is a 1.

3 Jzs A jump occurs when the CCR's zero flag
is a 1.

4 JSR Subroutine jump

(PC -—= stack 0, PC stack 0 --- stack 1)

5 JINZ A jump occurs when the repeat counter
(RC) is not a 0.

6 JNZM A jump occurs when the repeat counter
(RC) is not a 0; at the same time, the
repeat counter is decremented.

7 JMP Unconditional jump

(2) Instruction Format (Types III & III')

Label A Operation A [1] ; Comment

where [1] is an operand.

[1] Jump address

This consists of nine bits: bit 8 through bit 0.

92

7.2.4 Data Transfer Instructions

A data transfer instruction is intended to transfer data

between registers.. Different registers have different
data sizes and bit locations. Note that the contents of

a register from which data is sent out remain the same.

Every data transfer instruction deals with fixed point
After data transfer to the ACC, the value of the
exponent part of the ACC selected is not guranteed.

data.

(1) Operation

No Mnemonic Contents

1 TFR A, STR Transfers the contents of bits 0-7
of ACCA to STR.

2 TFR B, STR Transfers the contents of bits 0-7
of ACCB to STR.

3 TFR A, CTR Transfers the contents of bits 0-7
of ACCA to CTR.

4 TFR B, CTR Transfers the contents of bits 0-7
of ACCB to CTR.

5 TFR A, RC Transfers the contents of bits 10-15
of ACCA to RC.

6 TFR B, RC Transfers the contents of bits 10-15
of ACCB to RC.

7 TFR A, OR Transfers -the contents of bits 0-15
of ACCA to parallel output register OR.

8 TRF B, OR Transfers the contents of bits 0-15
of ACCB to parallel output register OR.

9 TFR A, RO Transfers the contents of bits 10-15
of ACCA to ROM pointer.

-cont'd-

No Mnemonic Contents

10 TFR B, RO Transfers the contents of bits 10-15
of ACCB to ROM pointer.

11 TFR A, RA Transfers the contents of bits 10-15
of ACCA to RAM pointer A.

12 TFR B, RA Transfers the contents of bits 10-15
of ACCB to RAM pointer A.

13 TFR A, RB Transfers the contents of bits 10-15
of ACCA to RAM pointer B.

14 TFR B, RB Transfers the contents of bits 10-15
of ACCB to RAM pointer B.

15 TFR A, CCR Transfers the contents of bits 13-15
of ACCA to CCR.

16 TFR B, CCR Transfers the contents of bits 13-15
of ACCB to CCR.

17 TFR STR, A Transfers the contents of STR to bits
0-7 of ACCA.
After STR transfer, each of the PF,
SIF and SOF flags is reset.

18 TFR STR, B Transfers the contents of STR to bits
0-7 of ACCB.
After STR transfer, each of the PF,
SIF and SOF flags is reset.

19 TFR CTR, A Transfers the contents of CTR to bits
0-7 of ACCA.

20 TFR CTR, B Transfers the contents of CTR to bits
0-7 of ACCB.

21 TFR RC, A Transfers the contents of RC to bits
10-15 of ACCA.

22 TFR RC, B Transfers the contents of RC to bits
10-15 of ACCB.

23 TFR IR, A Transfers the contents of parallel
input register to bits 0-15 of ACCA.

-cont'd-

93

94

- — o — " m—

No Mnemonic Contents

24 TFR IR, B Transfers the contents of parallel
input register to bits 0-15 of ACCB.

25 TFR RO, A Transfers the contents of ROM pointer
to bits 10-15 of ACCA.

26 TFR RO, B Transfers the contents of ROM pointer
to bits 10-15 of ACCB.

27 TFR RA, A Transfers the contents of RAM pointer A
to bits 10-15 of ACCA.

28 TFR RB, A Transfers the contents of RAM pointer
to bits 10-15 of ACCA.

29 TFR RA, B Transfers the contents of RAM pointer A
to bits 10-15 of ACCB.

30 TFR RB, B Transfers the contents of RAM pointer B
to bits 10-15 of ACCB.

31 TFR CCR, A Transfers the contents of CCR to bits
13-15 of ACCA.

32 TFR CCR, B Transfers the contents of CCR to bits
13-15 of ACCB.

33 TFR SIR, A Transfers the contents (16 bits) of
serial input register SIR to ACCA.

34 TFR SIR, B Transfers the contents (16 bits) of
serial input register SIR to ACCB.

35 TFR A, B Transfers the contents of ACCA to
ACCB.
Only for fixed point data.

36 TFR B, A Transfers the contents of ACCB to

ACCA.

Only for fixed point data.

— e

(2) Instruction Format (Type IV)

Label A Operation A Reg 1, Reg 2 A ; Comment

where Reg 1 and Reg 2 are operands.

1) Operation : TFR for every instruction
2) Reg 1 : Register on the source side
3) Reg 2 : Register on the destination side

Refer to the mnemonic column.

7.2.5 Increment/Decrement Instructions

There are increment and decrement instructions for the
address pointer and repeat counter.

(1) Operation

Mnemonic Contents
INCRA . (RAM PointerA)+1—RAM PointerA
INCRB (RAM PointerB)+1—RAM PointerB
: INCRO (ROM Pointer)+1—ROM Pointer
DECRA . (RAM PointerA)—1—RAM PointerA
DECRB (RAM PointerB)—1—RAM PointerB
DECRO (ROM Pointer)—1—~ROM Pointer
DECRC Repeat counter (RC) -1-+RC

(2) Instruction Format (Type V)

Label A Operation ; Comment

At bit 0, only the RAM pointer selects between A and B.
Note that assembler description is included in the
mnemonic. (Bit 0 = 0/1 = RAM pointer A/B)

96

7.2.6 Subroutine Return Instructions
There are subroutine return and interrupt return instruc-
tions available. Any interrupt operation must wait while

such an instruction is being executed.

(1) Operation

No Mnemonic Contents

1 RTN Subroutine return
Stack 0 --» PC
Stack 1 --» PC stack 0

2 RTI Interrupt return
Stack 0 --» PC
Stack 1 --» PC stack O

Resets the interrupt mask flag IM,

enabling an interrupt.

(2) Instruction Format (Type VI)

Label A Operation ; Comment

— - —p———

Table 7-1 HSP Instruction Set

TRUCTION

MN ENONIC] OPERATION
12/11 10 0 8]7 6 5 4[8 3 1 0

3
-
®
(=3
Lol
J
-
-
-
>
—
>
-2

FADA | P/YF+A/X—A(FLT)
FADB |P/Y+B/X-B(FLT)
ADA | P/Y+A/X—A
ADB | P/Y+B/X~B
FSBA | P/Y—-A/X—A(FLT)
FSBB | P/Y-B/X-B(FLT)
SBA | P/Y—-A/XA
SBB | P/Y-B/X—B

: X

Pointer addressing

Inc

0,P, 1Y

FLDA [P/Y—A (FLT)
FLDB |P/Y-B (FLT)
LDA |P/Y—A
LDB | P/Y-B

0,ACC, 1

X-G

1;

ANDA | P/YAA/X—A
ANDB | P/YAB/X~B

X—Page
Y —Page

0;X-Y,

0;RA,

ORA | P/YVA/X—A
ORB | P/YVB/X—B

U

ROM Base 0; Not inc,1;Inc

RAM Base 0; Not inc,1;

L

EORA | P/YPA/X—A
EORB | P/Y®B/X—B

A

RC
Inst 2v Inst 1=0 ; Not dec
Inst2v Inst 1=1; Dec

FABSA| |AI—A (FLT)
FABSB| IBI—B (FLT)
ABSA| 1AI—A
| ABSB| IBI—=B
FRPTA |[(Repeat nexty (FLT)
FRPTB || Instruction | (FLT)
RPTA [juse A/B
RPTB |{Until RC=0.
FNEGA | —A—A (FLT)
FNEGB | —B~B (FLT)
NEGA | —A—A
NEGB|—-B—B
INCA| A+1—A Not protect
INCB | B+1—B
DECA| A—1—A ”
DECB| B—1—B

SRA

SR E‘LI:J:;D:}@
SLA 0
| SLB Vi

FLTA | A(FIX)—A(FLT) by Y
FLTB B(FIX)—B(FLT) by Y ®)

Direct addressing

0| 0| Page Pointer

WO#QVOﬂOﬁOVOﬂo#OVOHOHOﬁOWOﬂOﬂOﬂOﬂQHOHOﬂO““

O Oojlo oo Clovjoo|loC|oc OO~ HIOOOOOO|OC|OCIO0C OO0 O OO0 OC

FIXA T)—A(FIX) byY (0}
FIXB | B(FLT)—B(FIX) byY @

A—M(Y), 1; D>M(Y)
Not write, 1 ;Write

.

FCLRA| 00008 —A
FCLRB| 00008 =B
CLRA | 0000 —A
CLRB | 0000s—B
FNOPA ALL T
FNOPB [no opention] %Tg
NOPA |{use A/B
NOPB
FSGYA |(A/B—A/B Y}G’L’I')
t Y

»
’

0
[]

FSGYB || Ifsign A/B=signY|FLT)
SGYA —~A/B—A/B
SGYB |\IfsignA/Biesign

gt et bt e et bt] et bt bt] D O] b 1] 1t] © O 1 i et b e b e e e e O OjlOo Oje Ol e M HoOO O Oloo OO
1t et i1t 1t pt i b O O O O]lo O o Ol 0 0 O M i e e e e e e o © © olo © o olB
I L R e L R e L o o Ee I e I e] P e]] R N PR Y |~

HwﬂwwnwwwwnwnunwunwwwuocccOowwuwoecoeOeawweooooooooooﬂ

COOOIOCO0OOOCOO|OOI- MK HIOO|- Hr OO OO i HIMKHIOCIOCIOC OQ| I HFIOO OO

Ccooojoo 00|~ mr o oo ojo ojoojlocjloslococoojlocoo oo o e
ot g e e OO OO O Ol OloO|lOCm I mIOoCO O OO0 OO

O OO Ofr vt 1 pif bt pt et s
- k- k- - k-

-cont'd-

T e —

N Y | 1 o
=3 | pene -4 pe I DD
o [X) 0 0|0 00 0/0 0/0 00 00000 [XX]
o X X[¥ XX XX *[*X XX *x * X[¥ ¥
(=] - o oo Ojlo Ol O|O OO0 OO0 O|O O ~ o o|leoo
- o o|lo ojlo o|lo ojo ojo ojo ojo ojo ojo o o ojoo
N o olo o|lo o|lo ojo Ojo Ojo O|o O|C O|lo O o ol o
© . o olo ojo ojo ojo ojo o|o Oojo ojo Oo|jo © o Qoo
- m oo|lo oo ojo o o Oojo oo oje OO0 Oo|o O|o O|o o0 O|C O o ojloo
w W o ojo ojo ojlo o o ojlo olo o|jo ojo ojo o|o o|o o|lo ojle o oloo
© a o oo oo o|ec o olo ojlo ojlo ojo o|c ojlo-oje ojo ©jlo © o ojlo o
N7 m o oo ojoo|eo o o ojo ojo o|o o|o o|jo ojo olo ojo o|jo © o ojo o
Ol « i o oo oo oo o olo ojo ojo ojo ojo ojo ojo ojo ojo © o Qo o
Lol
= m cCoo0oo0oo00Q o oo oo o olo ojo ojlo o|lo ojo oo o|lo Ojlooje © o oo ©
”m o000 O00CO o ojleo oo ojo o olo ojo o|o ojo ojo Oo|jo ojo o|o ojlo o o oo o
Rn cocoo0o0O0O o oo ojlo oo o olo ojo ojlo ojo Ojo ojlo ojo O|lo o|jo @ o ojo o
Tm coo0o0O0O0C0O O O O =IO ~ oo ~lo o ol Oojo ojlo Olo o|eo o|lo © oo -~
@
Nm oco~0oco00O0 o oloocjoo|o o 0000000101010101010.1 D O -
alb S~mo0c00O0O0 o oo ofm ~ © O|m ~|o olo Ol 1o O] A~ ~|o o|lo o ~ o o
"u. ~oc o000 ~0 OO~ ~O OO © - et O OO OO Ol et O Ofrt |t~ O Ol -
mj OO0 OO MO O OO Ot |t ~ e~ O OO OO OO OO Ot et et~ o ojlo o
” C OO0 M Mm~moO o Qo ojo o|lo O o olo ol ~|O ol Oj0 OO O|lo Ojo oje ©] L
m coo0oo0oo0O00 o oloo|o oo o O OO OO Ofmt mifrt mil =t rt]rd et =t - - [l LA
m et ot et et e et o o0 oo o o|lo ojo ojo ojo o]jo o|jo ©ojo ©ojo Ojlo © o oo o
W coco0o00CQ Ll IR EE R E el il e e i e I B I e A D B B B L B] e L
m et ot et et e il L Il L B T e el el e L e L | B B B E B E Bl K B L B L B]
MmO O m i~
NABMRR g mw
5ILLLLLL. . S=8
3] - 1 teke
) EEERSE SXo -
< Sosvoo|ll il _..mC_\u. o o
s ummuumCNZ RMM — —
an |8 SSSH Sluwww owFMglmminx el < @< @ <<
o 3 “"wmlnHlErouEzlog @ mlo Ol O M <qldngRdpja @
M e e e i
[N [SXS) M MO Of = =
- IJJJJJJJAPAPAPAPAPAPA APAPSSCCRRIIRRMMRRCCSSAP
a 4mMQO0O B o @ e <M< m <mi<m
mABRRRRSSSREZPJTTTTCCRROOAABBCCOO-,.,ABABABABA N T
- MMMMMMCNZSNNMSSCCRROORRRRRRCCSSRRRR s ole 2le .;mA - ol e im <
by byt by ry il o ol n ol o ol e al e afa ol e o] & ol & o BB EO O O O M@0 O | ~ =
3 < m|< m|< m|< m|< m|< m|< mf<ml<mfn wo ofe @j- e 2R Blo Ojv nj<m
- = (441 : DINONINW)

-cont'd-

98

— o —————

INSTRUCTION CCR
MNEMONIC| OPERATION 21 20]10 18 17 16]15 14 18[12[11 10 ® 8|7 6 5 4]8 2 1 0 gicnz
INCRA | RATI—RA 1 11 0 00|0 000/0000j0000j0 00 0[Heee
INCRB | RB+1—-RB 1 1/1 000/0o010/0000/000 0|00 o0 1|Kese
INCRO | RO+1-RO 1 11 0 0 0/o 1 0 0/o 00 0/lo o0 o0lo o 0 0lxee
DECRA | RA—1—RA 1T 1]1 01 0[0 0 100 000[000L0|00L0 0|Heee
DECRB | RB—1—-RB 11/1 010|000 0|oooofooooflooo 1|Heee
DECRO | RO—1-RO 11/1010[0110[/0000ofoo0o0oflooo o|Heee
DECRC | RC—1-RC 1 101 01 0/1 00 0/o o0 o0/looo0o0|oo 0 0l|xese
RTI Returm from imerrapt |1 1]1 1 1 0]0 0 1 0[0 0 0 0]0 0 0 0]0 0 0 0 |[He®e
RTN Retumfromaubroutinell111001000000000000004000

+ 0o «OOPOPO®OO © ©

A ! Accumulator A
B ! Accumulator B

CCR : Condition code register
STR : Status register

X : X-BUS memory outpt CTR : Control register
Y ! Y-BUS memory output

P : Multiplier output

G : General register

D : Delay register
PC : Program counter
RC : Repeat counter
RO : ROM Pointer
RA © RAM Pointer A
RB ! RAM Pointer B
IR : Input register
OR : Output register

register A/B(15~10) <*RC/RO/RA/RB(5~0)
A/B(15~18) «CCR(2~0)
A/B(7~0) ++STR/CTR(7~0)

7 6 5 4 8 2 1 0
ccrR_ T [[[Jcin]a]

CTR[WB[~Trms[0 [~ ~JOVF|pMA|
STR[UF]1so[1s1] 1p [1m|SOF|sTF| PF|

SIR : Serial input register
SOR : Serial output register

Generated by
(The same as

Generated by
(The same as

Indefinite

1 when A/B =

1 when A/B =

1 when A/B #

1 when sign A
OVF (CTR(1))

Y, Mant : fre
Y, Mant : $00
Affected

Not affected

free for CTR

-
=]

the OVFP colu

the mantissa part of two inputs
with FIX)

the mantissa part of two inputs
with FIX)

$0000; otherwise 0

$FFFF; otherwise 0

$0000; otherwise 0

/B # sign Y and A/B = $0000; otherwise 0
= 0 : Not protect, 1 : Protect

e

00, Automatic Overflow Protect

(1)

mn, a "1" means "Automatic Overflow Protect".

——————— v —

7.3 Examples of Program

Here are examples of program for the typical filters:
biquad filter and transversal filter. See Fig. 7-3 and
Fig. 7-4.

The coding of the program is based on the HSP's assembler
description.

The example of the biquad filter follows the sequence:
receives 16-bit data from the serial input register (SIR),
makes an arithmetic operation on it using fixed point
representation, and sets the result in the serial output
register (SOR). One stage of processing is contained in
the filter's arithmetic operation. Since the HSP has an
instruction cycle of 250ns, the rate of processing for
8kHz sampling is great enough to implement a 82-stage
biquad filter. Because the data ROM for coefficients is
limited to 128 words, however, it is practically possible
to implement a 32-stage biquad filter.

Wn=Xn+A, Wn-;+ A XWn -,
Yn=Wn+B; Wn-, +B, XWn-,
Wn-y 2 Wn-,, Wn—Wn -,

Fig. 7-3 Biquad Filter

100

- ——————

OUTPUT

N
Qn=32 Ci*Wn-i+1

i=1

Wn~i+1-Wn-i, N=32

Fig. 7-4

In the example of the transversal filter, the sequence is:
receives data from the serial input register (SIR), con-
verts the data from fixed point to floating point, makes
a transversal filter arithmetic operation in the form of
flaoting point, converts the data again from floating
point to fixed point, and finally sends out to the serial

output register (SOR).

This program enables a 32-tap transversal filter to be

Transversal Filter

executed in a period of 10.5 microseconds.

(1) Biguad Filter

A biquad filter can be
Wa=Xn+A1 * Wa-1

Yo =Wn +B1 *#Wa-1

The assembler program

LIRA 0
LIRO 0
TFR SIR, A
LIRC n

L1 NOPA EE XY(4,0)

represented as
+Az *Wn-2 (1)

+B2 *Wp-2 2

for these equations is
; 0 — RAM Pointer
; 0 = ROM Pointer
; SIR— ACCA
; n — RC

RA ;A1 oWa-1

101

102

- ———— —

ADA PA EE XY(5,1) RA ; A2+Wn-2 ACCA+P — ACCA

ADA PA EE XY(7, 1) RA ; B2*Wn-2’ ACCA+P — ACCA

ADA PA A XY(6,0) RA ; BlsWn—1" ACCA+P — ACCA,
Wn-1— DREG., ACCA — Wn-1
ADA PA D XY(7, 1) RA+ RO+ ; DREG. — Wn-2’" ACCA+4P — ACCA,
RAM POINTER + 1, ROM POINTER + 1
IJNZ L1 ; Jump to L1 if (RC)=e0
TFR A, SOR . ACCA — SOR
Data Page address
memory 0 1 2 3 4 5 [7
00 Wn-1 | Wn-2 Ay A, B, B,
Pointer| o1 Wn'-1 | Wn'-2 A} Az B; B2
address| , Wa-1 | Wn'-2 Al Al B! BY
03

(2) Transversal Filter

The 82-tap transversal

filter
32
Q =3 C =W
i=-1 i n=-i+1
w - W
n=i+1 n=-i

One sampling delay of

program for

LIRO)
LIRA 0
LIRC 31
TFR SIR, A
FLTA EE 6, 00
FCLRA " A 0,00
FRPTA EE 4, 00

these equations is

the filtering

is represented by;

[t)]

“

is shown as Eq.(7). The assembler
0 — ROM POINTER

0 - RAM POINTER
31— RC ‘

i SIR— ACCA
iFixed = Floating

sNext
FADA PA D XY(4, 0) PA+ RO+ ;

0 — ACCA, ACCA — Wn
inst. repeat

ACCA+C i*Wn—-i+1, Wn—i+1— Wn-i

FADA PA EE 0, 00 s ACCA+C82 *Wn-81
FIXA EE 6, 00 iFloating — Fixed
TFR A, SOR 1ACCA — SOR
105us
Data Page address
memory 0 1 2 3 4 5 8 7
00 Wn C|
Wn-1 CQ
Pointer Wn-2 Cs
address ! :
| !
31 |Wi-n+1 Cn

103

104

8.1

W ————

APPLICATION SYSTEM CONFIGURATION

Stand-alone Configuration

The HSP has functions and instructions as possessed by a
single-chip microcomputer, so that it is possible to
configure a system consisting of one or more HSP units.
See Fig. 8.1(a).

By making the chip select input terminal CS non-active
("1"), this configuration disables HSP control based on
function control input F0-F3. The result is that the HSP
operates only in the internal program mode.

Peripheral LSI of 8-Bit Microcomputer (6800)

Shown in Fig. 8.1(b) is the interface where the HSP is
used as the peripheral LSI of an 8-bit microcomputer
(6800) .

Because of being compatible with the 6800 bus interface,
the HSP requires no complicated interface, as understood
from Fig. 8.1(b). The bit I/0 output is of open drain
output and so may be used also as interrupt signals to
the microcomputer.

HSP
Analog b sI SO b Analog
Input Output

J L SIEN SOEN oo 7
SNeee ——————1SICK SOCK e =
CSp—1
all"o” =°|F,_,

(s) Stand-alone System

_LDBE Do-7 K A rcg HSP ¢, ‘
= SIEN joe
Ag_1s % =} Fy.. -~
6800 R’d SICK
% IE SOCK
t
RES N
1RQH K= - Do-7 so
ol |2
all..
25l 3 El H
- ENE

(b) #—Com (6800) Interface

Fig. 8-1 HSP's Application System Configuration

105

106

9. ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Rating

Parameter Symbol Standard range Unit
Power voltage Vee -0.3 to +7.0 \
Terminal voltage Vin -0.3 to Vcc+0.3 \Y
Operating temperature Topr -20 to +70 °C
Storage temperature Tstg =55 to +150 °C

201

9.2 Electrical Characteristics

(1) DC Characteristics

Unless otherwise specified, VCC = 5.0V +5%, VSs and T, = -20 to +70°C.
Parameter Symbol Condition Min TYyp Max Unit
Input HIGH 0osCc, IE, SICK, _
level voltage | SOCK 2.2 VCC+0'3 v
v
. IH
Other input _
terminals 2.0 VCC+0’3 v
Input LOW O0SC, I1IE, SICK, _ _
level voltage | SOCK 0.3 0.6 v
v
. IL
Othe; input -0.3 _ 0.8 v
terminals
Input leak TEST, _TXAK, IE,| |Ip | |V, =0 to 2.4v - - 10 ua
current R/W, CS, FO-F3,
DEND, SI, SIEN,
SOCK, SOEN,
SICK, RPSE,
oscC
Three-state D0-D15, SO |1 [fv. = 0 to 2.4v - - 10 pA
TSI in
(off) current
Open drain TxRQ, BIT I/O |1LOH| V. = 0 to 2.4V - - 10 uA

(off) current

-cont'd-

801

Parameter Symbol | Condition Min Typ Max Unit

Output HIGH D0-D15, SO, —IOH= 400uA 2.4 - - v
level voltage SYNC VOH

—IOH— 10uAa VCC 0.5 - - v
Output LOW All output VOL IOL= 1.6mA - - 0.4 v
level voltage terminals
Input All input C. vV, = 0v, £ = 1MHz, - - 12.5 PF
capacity terminals in in

T, = 25°C
Current Icc No load at output - 50 100 HA
consumption :

(2) AC Characteristics (Basic Clock)

Unless otherwise specified, V_,.= 5.0V +5%, V..= OV and Ta= -20 to +70°C.

CcC SS
Parameter Symbol Condition Min TYyp Max Unit
Clock (0SC) cycle ¢cyc 61.5 |62.5| 70.0 ns
Clock (0SC) pulse width ¢WH 20 - - ns
¢WL See Fig. 9-1. 20 - - ns
Clock (0SC) rise time ¢r - - 10 ns
Clock (0sc) fall time ¢f - - 10 ns

(3) Serial Input/Output Timing

Unless otherwise specified, VCC= 5.0V +5%, VSS= 0V and
T,= -20 to +70°C.

Parameter Symbol Condition Min | Typ| Max Unit
Clock cycle Sc c See Figs. 9-2 1.0 - 110.0 us
(SICK/SOCK) Y and 9-5.

Clock pulse SWH 450 - - ns
width

(SICK/SOCK) SWL 450 - - ns
Clock rise S, - - 25 ns
time

(SICK/SOCK)

Clock fall Sf - - 25 ns
time

(SICK/SOCK)

Serial input t 100 - - ns
data setup SDs

time

Serial input t 100 - - ns
data hold SDH

time

Serial output tSDD - - 250 ns
data delay

time

Enable delay tED 50 - - ns
time

Enable setup tES 100 - - ns
time

109

— ——— -

(4) Bus Interface Timing

Unless otherwise specified, VCC= 5.0V +5%, VSS= 0V and
T, = -20 to +70°C.
Parameter Symbol Condition Min | Typ | Max Unit
IE cycle tc c See Figs. 9-3 [1.0 - 10.0 us
Y and 9-5.
IE pulse width tWH 450 - - ns
tWL 450 - - ns
IE rise time tr - - 25 ns
IE fall time tf - - 25 ns
CS setup time tCS 140 - - ns
CS hold time tCH 10 - - ns
Address setup tAS‘ 140 - - ns
time
Address hold tAH 10 - - ns
time
Address setup tAC 10 - - ns
time
Address hold tCA 20 - - ns
time
Input data t 120 - - ns
setup time Dsw
Input data t 10 - - ns
hold time DHW
Output data t - - 220 ns
delay time DDR
Output data t - - 10 ns
hold time DHR

110

(5) DMA Interface Timing

Unless otherwise specified, VCC= 5.0V +5%, VSS= 0V and
Ta= =20 to +70°C.
Parameter Symbol Condition Min | Typ | Max | Unit
TxAK setup tAS See Figs. 9-4 |140 - - ns
time and 9-5.
TxRQ delay tTR - - 470 ns
time

oscC

SICK
SOCK

SIEN
SOEN

SI

SO

12

Fig. 9-1 Basic Clock Waveform

. fwi

¢ eye

tsps

SDH

Vor(22V)
VoL (06V)

R

Fig. 9-2 Serial Input/Output Waveform

teyc
te} twr Itr twH
Vig L A
e \
ViL
f— tog —o
—~ tcu
V
cs IH
- ViL
le— tCaA
tac — — taH
=
RW - | Vin)
F¢~Fs L ViL J
tas e tpSW—|
- tpHw
Do~Dy; Vi 7L
(BUS—HSP) Vi X
=— tppR — - tDHR
Do“D15 ; OH(22V)
(HSP—-BUS) D VoL (08V)

Note: The HSP makes a halt operation at BUS --» CTR, PC.
The halt consists of the logic of CS and FO-F3. It
is necessary to secure the above tAC and tCH values
to prevent a temporary halt at a point where the
signal changes. If, however, no halt is expected
to take place at such a change (F2 and F3 are fixed
at LOW), the t and t conditions are each "don't

AC CA
care".

Fig. 9-3 Bus Timing

113

Lt \
. /
l—— tAs—--

tAH
tig
Tx AK

trr
TxRQ \ toL(08V)
e
Fig. 9-4 DMA Timing
Vee Vee
RL-S.Sk RL-‘Jk
R ¢ 182074@® C=00pF
Rw=56k
C=90pF
Applicable terminal Applicable terminal
(DO - D15, SO0) (Tx RQ)

Fig. 9~5 Load Circuit (for Timing Test)

14

HITACHI #8-3

HITACHI

A World Leader in Technology

Hitachi Americaq, Lid.

Semiconductor and IC Sales and Service Division
1800 Bering Drive, San Jose, CA 95112 1-408-292-6404

Printed in US.A

