

DIGITAL

SIGNAL PROCESSOR HD61810B

USER'S MANUAL

• HITACHI

----~-- -- ~- _._------

CONTENTS

1. FEATURES. •• 1

2. SYSTEM CONFIGURATION •••••••••••••••••••••••••.•••.•• 3

2.1 Terminal Functions ••••••••••••••••••••••.•••.••••• 3

2.2 Internal Functions •••••••••..••••••••••••••••••••• 7

3. ARITHMETIC OPERATION ••••••••••••••••••.•••••••..•.• 14

3.1 General.......... •• 14

3.2 Data Format •••••••••••••••.••••••••••••••••••••.• 16

3.3 Addition/Subtraction of Floating Point .:.......... 19

3.4 Floating Point Multiplication ••••••••••..•••••••• 27

4 • DATA MEMORY ••••••••••••••.•••••••••••.••••.•••••••• 32

4.1 Configuration. •• 32

4 • 2 Da ta RAM •. •••••••••••••••••••••••••••••••••.•••• 35

4.3 Data ROM ••••••••••••••.••••..••••••••••••••••.••• 37

4.4 Memory Addressing Mode ••••.•••••••••••••••••••••• 37

4.5 Memory Data Format •••••••••.•.•••••••••.••••••••• 40

5.. INTERNAL REGISTERS •••••••••••..••••••••.• ~ • • • • • • . .• 41

5 .1 Accumulator (ACC) •••••••••••.••••••••••••••••.••• 41

5.2 Condition Code Register (CCR) •••••••••••••••.•..•.• 43

5.3 Control Register (CTR) •••••••••••••••••••••.•••.• 44

5.4 Status Register (STR) •••.•••••••••••••••••.•••••• 46

5.5 Repeat Counter (RC) •••••••••••••.•••••••••••.•••• 49

5.6 Address Pointer (RAM Pointer A/B, ROM Pointer) ••• 50

5.7 Delay Register (DREG) •.•••••••••••••.•••••••.••.• 52

ii

6. INPUT/OUTPUT INTERFACE •..••••••••••••..••.••••••••• 55

6.1 Function Control 55

6.2 Parallel Port (Microcomputer) Interface •••••••••• 59

6.3 Serial Input/Output .••.•.•.••••••...•••••••••.••. 61

6.4 Interrupts............ • • . • . • • • • • • . • • • . . • • • • • • . • •. 64

6.5 DMA (Direct Hemory Access) 69

6.6 Bit I/O•...•...••.•.•.••••..•••.•••.•••••. 73

7. INSTRUCTIONS. • • • • . . • • . . . • • . • . • . . . • • • • • •. • • • . • •• 75

7.1 General ..•...••..••...••.•••••...••.••••••••••••• 75

7.2 Set of Instructions 78

7.3 Examples of Program 100

8. APPLICATION SYSTEM CONFIGURATION •.•..•.••••••.•••• 104

8.1 Stand-alone Configuration .•....•.•..••.•.•.••.•. 104

8.2 Peripheral LSI of 8-Bit Microcomputer (6800) 104

9. ELECTRICAL CHARACTERISTICS •.•.•..•••..•..••••••••• 106

When using this manual, the reader should keep the following in mind:

I. This manual may, wholly or partially, be subject to change without notice.

2. All rights reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part
of this manual without Hitachi's permission.

3. Hitachi will not be responsible for any damage to the user that may result from accidents or any
other reasons during operation of his unit according to this manual.

4. This manual neither ensures the enforcement of any industrial properties or other rights. nor
sanctions the enforcement right thereof.

iii

HD61810 HSP

APPLICATIONS

Signal Processing Telecom Speech Processing
• Digital Filtering • Data Scrambling • Speech Synthesis
• Fast Fourier Transforms • Data Compression • Speech Analysis
• Seismic Processing • Data Encryption • Speech Recognition
• Radar and Sonar • High Speed Modems

• ECM • J.I / A Law Conversion Image Processing
• Image Enhancement
• Image Compression
• Pattern Recognition

EXTERNAL APPEARANCE AND DIMENSIONS

(DC·401

II

14.90

A 0.20-0.38

~

Input Output

iv

1. FEATURES

A High Performance Signal Processor HSP (Model HD6l8l0B)

aims at high speed digital signal processing and is composed

of a single chip-based on a stored program format. Presented

below are its features.

(1) Hardware

(i) Low power consumption, high speed VISI processor

which avails itself of 3 ~m CMOS LSI technology.

(ii) A dedicated multiplier and adder/subtractor are

built in which permit high speed, high accuracy

floating point operation.

(iii) High performance operation processing in implemented

by pipe line control and horizontal micro instruc­

tions.

(iv) Large capacity memories are built in.

2-port accessible data RAM: 200 x 16 bits

Data ROM: 128 x 16 bits

Instruction ROM: 512 x 22 bits

(v) 8 bit and 16 bit microcomputers (6800, 68000) are

compatible with an interface (synchronous inter­

face) •

(vi) A DMAC permits the exchange of DMA with external

memories.

(vii) A serial I/O interface for up to 16 bits is

provided.

(viii) Two levels of subroutine and interruption are

provided.

(ix) An I/O transfer end interrupt function of one level

2

and three factors is provided.

(x) Operating rates

Input clock: 16 MHz

Internal clock: 4 MHz

Instruction cycle: 250 ns

Product/Sum cycle (throughput by pipe line

implementation): 250 ns

(xi) A single power supply of +5 V

(xii) Consumption power: 250 mW typ

(xiii) 40-pin ceramics/plastic package

(2) Software

(i) A horizontal type 22-bit microprogram is capable

of reading instructions and data, multiplication

and addition/subtraction, simultaneously, and is

provided with high throughput instructions.

(ii) Multiplication and addition/subtraction are pipe

line implemented, allowing high throughput product/

sum operations.

(iii) The address mode of data memories is adapted to

signal processing operation.

(iv) Arithmetic and logical operation instructions are

provided.

(v) Floating point and fixed point operations may be

selected by instructions.

(vi) A repeat instruction permits high-speed repeated

product/sum operations.

(vii) Data may be written into a control register through

a microcomputer interface.

(vii) Addresses may be set externally to a program

counter through the microcomputer interface.

2. SYSTEM CONFIGURATION

2.1 Terminal Functions

VIS OSC Fig. 2-1 shows the HSP pin
TEST SYNC

arrangement. The package is of TxAK RES
015 (NC) a 40 pin dual line.
07 SO
01 .. BIT I/O The following are the functions
06 TxRQ
018 SICK of each terminal:
05 SOEN
012 SOCK (1) Vss, Vcc: Power supplies
0 .. SIEN of OV and 5 V.
011 SI
08 OENO (2) TEST: Input
010 Fa
OE FE Terminal for testing chips.
09 Fl (Fix the terminal to ground
01 Fo
08 cs for use.)
DO R/W
Vee IE (3) TxAK (Transfer Acknowledge) :

Input
Fig. 2-1 Pin Arrangement To be used for a DMA transfer
(TOp View) mode. DMA data transfer

acknowledge input signal.

(4) DO-IS (Data Bus): Input/output, three states

Dual direction port having input and output registers.

The direction is determined by a read/write (R/W)

control signal.

Unless a chip select (CS) signal is active, the high­

impedance state is established. a-bit or l6-bit

transfer mode may be selected by the contents set in

3

4

an internal control register and those of function

inputs (FO_ 3)

(5) IE (Interface Enable): Input

Data transfer timing signal of data buses (00-15). The

data on a data'bus are set to an internal register of

the HSP by this signal, which becomes valid when CS is

active.

An interruption may be produced inside the HSP using

the fall of IE after a data transfer.

(6) R/W (Read/Write): Input

Control of switching the directions of data buses

(00-15). The high level provides reading, while the

low level writing. Valid, only when CS is active.

(7) CS (Chip Select): Input

A chip select input signal which makes a microcomputer

interface valid. If this signal is put in the low level,

00-15' F O- 3 ' R/W and IE become valid.

(8) FO_ 3 (Function Control): Input

Input of selectively controlling internal registers of

the HSP during the exchange of data with the micro­

computer. Connected to address buses of microcomputers

(6800, 68000).

(9) DEND (DMA End): Input

DMA data transfer end signal. This signal, when it is

put in the low level, terminates the DMA data transfer

mode.

(10) SI (Serial data Input): Input

Enters serial input data into an internal shift register

synchronously with a serial input clock (SICK). Data

is entered into an internal shift register during the

fall of SICK.

(11) SIEN (Serial Input Enable): Input
When this input goes high, serial input data commences
being fetched into an internal shift register. At the
completion of a fetch, an interruption may be produced
in the HSP.

(12) SOCK (Serial Output Clock): Input
Serial data is output synchronously with this clock.

(13) SOEN (Serial Output Enable): Input
When this input is in the high level, serial output data
is output from an internal shift register. An inter­
ruption may be produced in the HSP during the fall of
this signal after the transfer of serial data.

When this signal is in the low level, the SO terminal
goes high impedance.

(14) SICK (Serial Input Clock): Input
Serial data is entered synchronously with this clock.

(15) TxRQ (Transfer Request): Output, open drain
Used mainly in the DMA data transfer mode. This signal
is used to request an external device (DMAC) to transfer
the data stored in data buses DO- 1S• In the DMA mode,
this output is set upon the setting of the DMA transfer
mode flag of a control register. Then, this output,
until DEND is entered, automatically goes active (high),
whenever data is exchanged with an accumulator, and is
reset to the low level, after TxAK is entered. Also
in the DMA transfer mode, data is transferred among
I/O registers (IR, OR), accumulator (ACC) and memories
in the HSP, through program control.

Merely used as an output terminal in the non-transfer
DMA mode, permitting setting and resetting by the
program.

5

6

(16) Bit I/O (Bit Input/Output): Input/output, open drain

One-bit bidirectional I/O terminal which may be set/

reset by the program. For input, the flip-flop for bit

I/O in the HSP is to be set to "1". In that case, the

input state of a terminal is read-in by an instruction.

(17) SO (Serial data Output): Output, three states

The serial output data of an internal shift register

is output synchronously with the serial output clock

(SOCK). Data is output from the rise of SOCK. When

SOEN is in the low level, this output terminal goes

high impedance.

(18) RES (Reset): Input

A reset terminal in the HSP. This input causes "0" to

be set in a program counter and an interrupt mask flag

1M to be set, establishing an interrupt mask state.

The other registers are not changed. When this input

is released, the program starts. The program is

executed from the address 1, and the instruction of the

address 0 is not executed. (For resetting, the level

"0" is to be entered for more than 1 jJS with OSC

applied) •

(19) SYNC (Synchronous Clock): Input

Generates an internal operation clock of the HSP. Its

frequency is 1/4 times as high as that of the input

clock (OSC).

(20) OSC: Input

The fundamental clock used to operate the HSP. The

standard frequency is 16 MHz.

2.2 Internal Functions

The HSP contains high-speed multipliers, adder/subtractor,

programmable data ROMs, and instruction ROMs. The architecture

is designed to be adapted to a wide range of applications.

Hence, the HSP may be applied to voice processing and
communication systems, etc. by writing coefficient and instruc­

tion sequence appropriate to an application system into data

ROMs and instruction ROMs.

Fig. 2-2 shows the system block diagram of the HSP.

I
RAM Pointer AIRI RAM' Pointer BIGI ROM Polnler (II

.J.._':t:='- ~. r---- ---- ------ -----, ~

I Data RAM Data ROM f- if-
I ~R SilS 131

I criT;ia 200lC18 128lC18 ,-
I 'G"il;IQ Y

I (i'Wm J I r if-I I [DREOGlJ 1 1 ~ . .!!!

Lr-_--;-~----__;:-;:;;~"·;~ ,.,--- -+ t':d
18 LMINXnS I IMINYn&J

r-t r-
18

18

18

..,Ar-B_U.,..S __ ~l...l!8~tL,:,,?:lM=O~U!T!rlO:II=P-iaB~US:..1
"-- 40 ~ x: I 20

"' (Ff:a~1 nc / ..JCcii,:.'l--"\.:Arl tnmetic -L:::::.:.I-

I
I

IACCAI20 I I ACCBra»1

40 hh

~lJ:'1:,?!' ~ :;:. I
..
"

_1
STACK 1

L PC (9) 1Jl STACK 0

I

i%l Program ROM

.. 512X22
~

IInat Re .. (23 I

Instruction
Control

& Timing

--OlE
'nt .. "". ---0 SOE N
.M ---0 SIEN

Con".' ---OaXAK
--0 END
--QTxRQ
--QR/W

Function --QCS
--0 Sit I/O

Control --0TEST

--0ims
--oF._ s

40

EJ --OOSC
CPG

--oSync

Fig. 2-2 Block Diagram

7

8

Presented below are the functions of components.

(1) IR (Input Register)

16-bit register. The data entered from data buses

(OO~lS) are set 'at IE's timing.

The following two modes are provided to transfer data.

The mode is selected using control flags in the control

register (CTR).

(i) Word transfer mode: l6-bit data are set simultaneous­

ly. Interconnected to the

l6-bit microcomputer (68000)

in the sync interface mode.

(ii) Byte transfer mode: 8-bit data are divided into

the upper bytes and lower

bytes for setting. Compatible

with the interface of the 8-

bit microcomputer (6800).

(2) OR (Output Register)

l6-bit register. The contents of this register are

output to external data buses (00- 15). Until data is

set by an HSP's program, the previously set data is

not changed and exists.

The data transfer mode, like the IR, falls into the

word transfer mode and byte transfer mode.

(3) SIR (Serial Input Register)

l6-bit shift register dedicated to serial input. The

serial entry data from an SI terminal is input synchro­

nously with the timing clock from a SICK terminal.

The entry value of the shift register is fed via internal

16-bit buses connected in parallel to an accumulator

(ACC) by an internal instruction. Up to 16 bits of

serial input data may be entered.

The SIR is cleared, after data is transferred to an

accumulator by the program.

(4) SOR (Serial Output Register)

l6-bit shift register dedicated to serial output. The

data set from an internal bus in the HSP in l6-bit

parallel are output from a serial output terminal (SO)

by bit synchronously with the serial output timing clock

entered into the SOCK terminal. Up to 16 bits of output

data may be selected, as the user desires. The number

of output bits is determined by the number of shift

clocks entered into the SOCK terminal during an active

period of the input signal at a serial output enable

terminal (SOEN).

The SOR is cleared, after data is output to the outside.

(5) Inst Reg (Instruction Register)

Register which buffers a 22-bit instruction read from

an instruction ROM.

(6) PC (Program Co~nter)

A 9-bit address counter dedicated to the instruction ROM.

The PC generates ROM addresses in the range from addresses

o thru 511.

Addresses 0 thru 255 may be set by an external control

via an external data bus. In that case, the run start

instruction address is a set address plus 1.

(7) STACKO/l (Stack Register)

9-bit stack register dedicated to save the PC. The

contents of the PC are saved, when a subroutine jump

or interruption occurs.

9

10

Two stack registers are provided, allowing nesti~g of
two levels.

(8) RC (Repeat Counter)

6-bit down counter. Used to repeatedly execute the
same instruction and to process the loop by a jump
instruction.

The counter allows to reduce the program steps of
repeated product/sum operation, and also the processing
time period.

(9) ROM Pointer

5-bit address pointer dedicated to the data ROM. Generates
the effective address of a data ROM by introducing the
x/y page address (3 bits) in an instruction code.

(10) RAM Pointer A/B

6-bit address pointer dedicated to a data RAM. Generates
the effective address of a data RAM by introducing the
X/Y page address (3 bits) in an instruction code. Two
pointers having the same function are provided each of
which may be selected by the instruction. Two RAM
pointers allow complex operation programs such as FFT
to be efficiently constructed.

(11) x/Y-Page (X/Y-Page Address Register)

3-bit buffer register dedicated to a page address.
Generates the effective address of data ROM/RAM by
combining its contents with the value of the ROM/RAM
pointer.

(12) GR 0, 1, 2, 3 (General Register)

General l6-bit register. Used as a working register.

The contents may be input/output only via a Y-bus.

(13) MINX (Multiplier Input X - Register)

Stores data from the X-bus or internal data bus, and

holds it for mUltiplication. l6-bit register.

(14) MINY (Multiplier Input Y - Register)

Stores data from the Y-bus, and holds it for mUltiplica­

tion. l6-bit register.

(15) MOUT (Multiplier Output Register)

Buffer register which stores the output of a multiplier.

Holds the output data of a multiplier for a one instruc­

tion cycle period. 20-bit register which is made up

of a mantissa comprising 16 bits and an exponent part

comprising 4 bits.

(16) DREG (Delay Register)

l6-bit register. Holds data to be output to the Y-bus

for one-instruction cycle period. Used to efficiently

change the address which saves RAM's data. Validly

used to shift one by one the data storage addresses

on a data RAM for a one-sample delay function in signal

processing.

(17) ACC A/B (Accumulator A/B)

20-bit accumulator. ALU's output is set. Two accumulators

AlB are selected by the instruction.

(18) CCR (Condition Code Register)

Made up of condition flags which reflect the operation

results of the ALU. Three flags are provided: carry

(C), negative (N) and zero (Z).

(19) STR (Status Register)

8-bit register which reflects the inner conditions of

the HSP.

11

12

(20) CTR (Control Register)

5-bit control register which sets conditions used to

control the operation of the HSP. Able to be set by
external control via an HSP's instruction and I/O

terminals 0 0- 15 ,

(21) Data RAM

Its size is 200 words x 16 bits. Separated to four
pages. Each page consists of 50 words. 2-word data
may be read from a different page. Output to X/Y buses,
and only one word is read in from the data bus.

(22) Data ROM

Its size is 128 words x 16 bits. Separated to four
pages. Each page consists of 32 words. Only one word
is read, and is output to the X or Y bus.

(23) Instruction ROM

Its size is 512 words x 22 bits. 22-bit instructions
are simultaneously read to the Inst. Register during
each instruction cycle.

Once reset, the instruction ROM starts from the address
0, whereas the instruction is executed from the address
1. If a jump to the address 0 occurs during execution
of the instruction, the instruction stored in the
address 0 is also normally executed.

Since the end address ($lFF) of-the ROM is used as the

vector address, the user must write a jump instruction
dedicated to a jump to an interrupt processing routine.
The user cannot use the address range from $lE7 to
$lFE in the ROM, for they are used to save LSI test
programs.

(24) MULT (Multiplier)

Devoted to floating point multiplication (mantissa

12 bits x 12 bits ~ 16 bits, exponent 4 bits + 4 bits
~ 4 bits) and fixed point multiplication (12 bits x

12 bits + 16 bits).

Each operation mode is switched by the instruction.

Details will be described later.

(25) ALU (Arithmetic Logic unit)

Devoted to arithmetic and logical operations. A floating

point addition/subtraction mode (mantissa 16 bits,

exponent 4 bits) or a fixed point addition/subtraction

mode (16 bits) is selected by the instruction. Details
will be described later.

13

14

3. ARITHMETIC OPERATION

3.1 General

The signal pr~cessing for voice and communication involves

high-accuracy and high-speed arithmetic operations. The

HSP embodies operation accuracy well adapted to signal

processing, implementing a high-speed floating point

operation circuit on a single-chip LSI. The floating point

operation provides a dynamic range (maximum amplitude of
operation data) necessary to improve operation accuracy

in a smaller multiplier and data memory vis-a-vis the fixed
point operation, and thus is advantageous in LSI implementa­

tion. The floating point operation is put in the spotlight

as the architecture of the second generation for the signal

processor.

The floating point operation of the HSP is designed to meet

the accuracy required from the application system given by
hatches, as shown in Fig. 3-1. This floating point operation

avails itself of the feature that the significant bit length,

like the fixed point operation, varies in proportion to

the data amplitude, if is low, but is sufficiently met by

16 bits maximum, if the data amplitude exceeds 16 bits
(2-8). In accordance with the data amplitude, the fixed

point operation method and the floating point operation

method are automatically switch~d to each other.

:z:
0 ...
E-o
::>
...:I
0
rIl
!iii
It:

88 -------------------------------

28

20

18

12

8

S2b DYNAMIC RANGE

Only fixed point
operation

Only floating point operation

8-" 2- 11 8°

AMPLITUDE (NORMALIZED VALUE)

Fig. 3-1 Operation Accuracy of Signal Processing
Application System

15

16.

3.2 Data Format

The HSP has the data format shown in Fig. 3-2, applying to

floating point and fixed point operations.

(1) Adder/Subtractor

(A) Fixed point data

(i) Binary expression: Expresses the range of

o to 216_1.

(ii) 2's complement The most significant bit

expression is a sign bit.

(B) Floating point data

Both mantissa and exponent part express data in

2's complement. For both the mantissa and exponent

part, the most significant bit is a sign bit, and

the decimal point is placed between the bit 215

(most significant bit) and the bit 214.

Mantissa: Expresses the range of -1 to 1 _ 2-15 •

Exponent part: Expresses the range of -8 to 7.

(2) Multiplier

(A) Fixed point data

Expressed only in a 2's complement. The most

significant bit is a sign bit. The input data is

composed of 12 bits and the output data of 16 bits.

(B) Floating point data

Both the mantissa and the exponent part are expressed

only in 2's complements. The input data of the

mantissa is composed of 12 bits, and the output data

of 16 bits.

For the exponent part, both input and output data

are composed of 4 bits. The decimal point is

placed between the bit 215 and 214.

Mantissa: Input: Capable of expressing the range

of -1 to 1 -11 - 2 •

Output: Capable of expressing the range

of -1 to 1 -15 - 2 •

Exponent part Capable of expressing the range

of -8 to 7.

17

18

15 ~

BinaIy eJq?ression ... 1_' ______________ ' 1

MSB LSB

2's aarple:nent
eJq?ression

2's aarplemant
eJq?ression

2's aarplemertt
eJq?ression

2' s aarplemant
expression

(a) Fixed point data format

Mantissa
i j , i i i

MSB

(b) Floating point data format

(A) J\dder/Subtractor

15

r·
, , i i i i i I I i

Input data

15

Is
, , I I I I

Output data

(a) Fixed point data format

15 Mantissa

1"
I , , i i

Input data

15

Is.'
i I i I i

Output data

(b) FioatIng point data fOlll\:it

(B) Multiplier

•

•

Exponent

o~ o

LSB MSS LSS

I
'-....
I I

I
'-....
, i I

0

Exponent

part 0

R
o

Fig. 3-2 Data Format of Operational Circuit

3.3 Addition/Subtraction of Floating Point

(1) Arithmetic Operation

The HSP is provided with the dedicated floating point

adder/subtractor circuit (FAUL) as shown in Fig. 3-3.

Shifters for digit matching or normalization of floating

point data are provided before and after the ALU which

is engaged in fixed 16-bit point operation, implementing

high-speed floating point operation. The arithmetic

operation of a floating point is executed as shown in

the following expression:

a I x 2 C1 + a. x 2 C.

2 CI (al + az x 2 (Cz - c1)) Digit matching

a a x 2 Ct

a x 2 C Nonnalization

Note) FALU input data : At = 31 X 2C 1 , A. = a. x 2C,

(C.:.;; C 1

FALU OUtput data : A = a x 2 C

19

20

---,
AOctJnu1.ator I

I L ________________________ J

Fig. 3-3 Floating Point Adder/Subtractor Circuit

In the above operatio'n, the value of A is transferred
to the ACC, as it is, the exponent value C of the last
output data is equal to or greater than -8 and is equal
to or less than +7. If the value of C is out of the
above range, the following overflow/underflow protection
operations are carried out:

(A) Overflow

If C is greater than +7, the exponent part is fixed

to +7 so that the absolute value of the mantissa

may be made to be maximum (the sign is not changed) •

As a result, the output data is (1 - 2-15) x 27 or

(-1) x 27.

The protect operati'on is carried out for the overflow

during the arithmetic operation of the fixed point too,

when the overflow protection bit (OVEP) of the

control register CTR is set ("1").

(B) Underflow

-)

If C is less than -8, the dynamic range of arithmetic

operation is extended using the above-mentioned

floating point/fixed point switching method. In

that case, no general normalization is carried out.

The value of the exponent part is fixed to -8, while

the bits of the mantissa are shifted to the left

direction by (-8-C) in the normalizing shifter.

Fig. 3-4 shows an example.

Mantissa

I.

1 1 1 1 1111111

1 1

o 0 0 1

Exponent part

o

G

Fig. 3-4 Operation during Underflow

21

22

If the exponent parts of two inputs are ~8, the

above operation is conducted, as if arithmetic

fixed point operation were carried out.

The above technique reduces the circuit scale of

the whole LSI, implementing the data amplitude of

32-bit data.

(2) Operation Error of Floating Point Adder/Subtractor

(i) Truncation by digit matching

If there is a great difference between the values

of the exponent parts of two floating point data

inputs, the contents of the lower bit of the

mantissa in data with the smaller exponent part

are truncated during digit matching operation.

In normalizing operation, "0" is carried from

the lower bit, resulting in an error.

(ii) Error caused during subtraction

The floating point subtraction is essentially

conducted as follows:

- Nt 2 Mi + (Nz + 1) • 2 Mz

_ {2 M1 • { NI + (Nz + 1) .2 -(MI - Mz) }

2 M2 • { NI . 2 -(M2 -Mi) + (N; + 1) }

M t > M.

The operation of the above parenthesized terms

using the HSP's ALU results in:

_ { z MI • (NI + Ni . z - (MI - Me »)

z Me • (NI • Z - (Me - MI) + N; + 1)

If M1 is greater than M2, the addition of 2-(M1-M2)

is not carried out in the operation of the mantissa,
causing an error.

Errors during arithmetic floating point operation,
if the number of repeated products/sums reaches
several thousands to several 10 thousands, may be

accumulated.

If such an error is serious, the input from the
multiplier to the FALU should be normalized insofar
as possible (operated after storage into the ACC) ,

and the addition should be substituted for the
subtraction, after NEG (Negate) operation is
carried out.

(3) Data Format Transformation

In the signal processing application system, the input
data from the A/D converter and the output data to the
D/A converter, in general, are of the fixed point data
format. Inside the HSP, arithmetic operation is
conducted in the floating point data format to implement
high accuracy. (See Fig. 3-5.)

To efficiently convert the data format, the HSP is
capable of interchanging the floating point data format
and the fixed point data format with each other through
the execution of a one-step instruction. The instruc­
tion provides transformation using a transformation
scaling factor on a data memory (ROM or RAM).

23

~

r- HSP -- - ...

Fixed point Floating point Floating po.nt

data (16 b)
ar i thmet i. data

Man. lob j

"
,..,

~ ~ Exp. .b J\.
A/D

I I
D/A ... t-

rY rv , V ,.,
Floating point. ..! L.

~ I II I II data_(l~11 I _ _ .. - Ilr-·~an. lob 11111 I II~

dat!l dynami. range Fixed point
Man. lob x 82 b data (lob)
Exp. .b

Fig. 3-5 Data Format Transformation

(i) Erom fixed point data to floating point data

(See Fig. 3-6.)

A x 2n = Al x 2nl (only for normalizing operation)

A: Entered fixed point data

n: Scaling factor (in data memory)

AI: Mantissa after transformation

nl: Exponent after transformation

The floating point transforming data is basically

A x 2n, and Al x 2nl obtained by normalizing A is

finally stored into an accumulator.

(ii) From floating point to fixed point (See Fig. 3-7.)

B x 2m + 0 x 2~ = BI x 2~

B: Mantissa before transformation

m: Exponent before transformation

~: Scaling factor (in data memory)

Factor after transformation (unnecessary)
:

BI: Fixed point data after transformation

Data of B x 2m is normalized at 2~ for output. If

~ is equal to or greater than m, the mantissa is

arithmetically right-shifted by ~-m, resulting in

BI. On the contrary, if ~ is less than m, the

mantissa of B is arithmetically left-shifted by

m-~, resulting in Bl. If an overflow occurs,

however, the maximum positive or negative value

is automatically assigned to BI.

25

- ------------

26

408

z n

o
Note) Z: any

numeric
value

Fig. 3-6 Data Format Transformation Operation

(From Fixed point to Floating Point)

Data memory
4>3 o

Fig. 3-7 Data Format Transformation Operation

(From Floating Point to Fixed Point)

3.4 Floating Point Multiplication

(1) Multiplier Configuration

The HSP's multiplier is composed of a section which

multiplies the mantissa and a section which adds the

exponent part for execution of floating point operation.

The I/O data configuration is:

Mantissa: 12 bits x 12 bits ... 16 bits

Exponent part: 4 bits + 4 bits'" 4 bits

The secondary Booth algorithm is used to multiply the
mantissa part.

The following is the fundamental expression:

Z - X . Y

5
-i~O(Y2i+3 +Yzi+. -BYzi+s) ·X·zli

- ~ Pi. azi
i£o

Sa - X . yi+.+Pi+,

Fig. 3-8 shows the basic multiplier configuration.

Fig. 3-9 shows the whole floating point multiplier

block diagram.

27

28

y.
y.

f y.i + 3

Yi Y2i+,

l Y. i +.

Sk

B = y.i + •• Y 2i + •• Y. i + •

+ Y.i +. 'Y,i +. ·Y.i +.

Fig. 3-8 Basic Multiplier Block Diagram

Ubi t.

note, Dee: Decoder
Sel: Selector Exponent

operation

Fig. 3-9 Floating Point Multiplier Block Diagram

(2) Overflow/Underflow Protect Function

The HSP's multiplier protects three items of an exponent

part's overflow and underflow and mantissa'a overflow.

For floating point multiplication, the mantissa must

have been normalized, if the exponent parts is greater

than -S. Unless this condition is met, this will cause

an error.

(i) Exponent part's overflow protection

Assume that the addition of the exponent part during

the multiplication of floating point results in

the exponent equal to or greater than +S.

(a) Unless the mantissa is normalized, the mantissa

is I-bit shifted to the left direction and the

exponent part is made to be +7, if the exponent

part is equal to +S.

If the exponent part is greater than +8, the

mantissa is made to be the maximum absolute value

(the sign is not changed.) and the exponent part

is made to be equal to +7.

(b) If the mantissa is normalized, the exponent part

is made to be equal to +7, and the mantissa is

made to be the maximum absolute value (the sign

is not changed.).

(ii) Exponent part's underflow protection

If floating point multiplication provides an exponent's

value n of -S or less, protection is accomplished

as follows:

The exponent is fixed at -8, and the mantissa is

shifted to the lower value direction by the number

29

30

of bits corresponding to a value of (-8-n). 'For

the items (ii), see processing in the ALU section.

(iii) Mantissa's overflow

In the multiplication of the ijSP's mantissa, the

weight of the most signifiqant bit may be made to

be _2°, if the signifi~ant bit length of an output

value is required to ne greater. If two input data

are -1, the result is +1, which cannot be expressed

by the HSP.

For (-1) x (-1), a correction is made so that the

mantissa may be approximated using the maximum

positive value (1 _ 2-15).

(3) Multilier's Error

The HSP does not operate a partial product placed at

the lower six bits during the mUltiplication of the

mantissa. The configuration is such that the upper

16 bits are output as the result. (See Fig. 3-10.)

As a result, an error of 2- 1/ 16 or 2-2/16 may be

caused vis-a-vis the operation result obtained by

rounding the leat significant bit between ° and 1

at 17 bit output configuration multiplication.

Even though the X input is $000, the multiplication

result may not be $000, unless the Y input is $000.

If the Y input is $000, the multiplication result is

$000 for any value of the X input.

(4) Other Notes

When entering the multiplication result into the adder/

subtractor in the next instruction cycle, the previous

cycle must be multiplied in the floating point operation

mode, if the floating point mode is applied to that

X)

Pro' z.

Pq , 2'

Prz ' Z.

Pra' Z,

P r 4 .. 2'

addition/subtraction. If the fixed point mode is applied

to addition/subtraction, multiplication must be also

conducted in the fixed point mode.

Prz

Pra

X" x,. x" Xu x,, x,. x. x. X, x, x. x.
Y,. Y,. Y" YII YI\ Y,. Y. Y. Y, Y, Y. Y.

Pro

Prs,z'G 1L-____________ ~P~r~5~ ________________ J

+)

Z2 21 20 19 18 17 16 15 14, 13 12 11 10 9 8

HSP multiplier's output

lidded portion
in HSP

Fig. 3-10 Multiplier's Error

.. a 2 o

unadded portion
-- in HSP

31

32

4. DATA MEMORY

4.1 Configuration

To improve the throughput of product sum operations, the

HSP is provided with a data RAM of 200 words x 16 bits

(for data), a data ROM of 128 words x 16 bits (for coef­

ficients), and four general registers (GRs) that serve as

working registers. From these memories, data of 2 words

is transferred at the same time to the multiplier (FMULT)

and the adder (FALU) through two buses (X and Y). Data

is written into the RAM and GRs through the data bus.

The memory configuration is shown in Fig. 4-1.

The data RAM and the data ROH are partitioned into pages.

Fage partitioning and address assignment are detailed in

Fig. 4-2.

GR 0 200"'X1U b 12S"'X16 b

GR 1

GR 2 Data RAM Data ROM

GR 3

X- Bus
===::::3

16
y- Bus •
Data Bus 16

I 16

I
V

{tlU
16

16
v

1
16

FMULT

A

f==11. X I J.p Y
20

it 20 {t 20

\
v

/ FALU

20

H2O

I ACC

~

Fig. 4-1 Memory Configuration

33

Page

(3)

0

s

34

Pointer

16)

0
1
2
3

49

o
1
2
3

Data RAM Page

(3)

•

8

Pointer Data ROM Page GR

(5)

0
1
2
3

I
31 I

I I
I I
I I L _____

Note: The figure in) mean·s the count of address bits.

Fig. 4-2 Data Memory Configuration

and Address Assignment

4.2 Data RAM

The data RAM has a size of 200 words x 16 bits. As shown

in Fig. 4-2, the RA}1 is partitioned into four pages (page

addresses are 0 to 3), each of which consists of 50 words.

The RAM is of 2-port accessible structure. This permits

different data items to be read at the same time from

different pages if the pointer addressing mode explained

later is employed.

In the pointer addressing mode, data is read out through

a combination of the 6-bit address of the RAM pointer and

the two 3-bit addresses of the instruction code. In this

case, the address in each page (or the pointer address)

has a common value because they use the output of a single

RAM pointer. This is detailed in Fig. 4-3. Output goes

to the X bus from the page address selected in the X-page

part of an instruction; and to the Y bus from the page

address selec.ted in the Y-page part.

Through the data bus, data is written into the RM1; that

is, into the address determined by a combination of the

RAM pointer and the Y-page. Write data to the data RA}1

comes from the ACC and the DREG.

In the direct addressing mode, data of 9 bits contained in

the address part of the instruction code comes to the Y­

page and RAM pointer input line (shown in Fig. 4-3), where

the address of a single page is selected and one word is

found out.

35

36

.. ..
~

"

..
o
u ..

Q

X-Pag

Y-P

Page address
0 1 a 8

0

~ 1
~ S
'U

'2 8 '///////, ~~
QI ! ... I c

I : c2 I 1
.7 I

.8 I I
409 I L"""1

:h _b h hI
lOX-Selector 1

a 8 I
e L ____________

I

t •
,

" 0 1 a 8 I
alte _---..!=~.!!.!.!!!:..-...J

X-Page

Y-B us

Fig. 4-3 Data RAM Access Method

(Pointer Addressing Mode)

J

4.3 Data ROM

The data ROM, as shown in Fig. 4-2, has a size of 128

words x 16 bits. As with the RAM, the ROM is partitioned

into four pages (page addresses are 4 to 7). The page

addressing mode generates effective addresses through

combining an instruction's X/Y page address part (each

3 bits) and the ROM pointer (6 bits). The data ROM is
different from the RAM in that only one word of data may

be read out at a time. However, it is possible to send

the same data to the X bus and Y bus, as shown in Fig.

4-4. It should be noted that the same page address must
be used if the page address of the X-page and that of the

Y-page indicate page addresses of the data ROM.

4.4 Memory Addressing Mode

The HSP provides two major memory addressing modes. They

are pointe.r addressing mode and direct addressing mode.

The pointer addressing mode generates effective addresses
by combining the value in the RAM/ROM pointer ,and the page

address part in the instruction code. This mode may be

effectively used for gaining access to data of two words
during product sum operations or for reading repeated data
from successive addresses. This pointer addressing mode

includes a mode which provide access to ROM/RM1 data and
GR data at· the same time.

The direct addressing mode handles the value of the 9-bit

address part of the instruction code as an effective ad­
dress.

---- ... _----_._--

37

..
" -
" 0

1'1..

::s
0
..:

38

..
" '" 0
OJ

" Q

X-

P dd age a ress

.. 5 6 7

0

1
III
III 2 QI

~~
3 V///////

i
... I
QI I
s:: I
g 30 i

31 I

I
1--,

h ml h h .. 51 I tI 7
Page LJ. __ X-Selector

~ li .. 51
Y-Page L __

h

X-Bus

Y-Bus

Fig. 4-4 Data ROM Access Method
(Pointer Addressing Mode)

l T
tI 7

Y-Selector

The direct addressing mode is suitable for multiplication

of one-word data in the ROn/RAM memory and data in the

ACC or for reading out data of discrete addresses in the

memory.

The above discussion is summarized in Table 4-1.

I

eN
-0

Addreuing Mode

Poinler

Addressing

Di rec I

Addressing

Symbol

X·y

X·G

D

(Note)

Table 4~1 Addressing Modes

Effective Addressing

X

<8AM>=(RAM Pointer
A/B)
+(X-Page)

<ROM>-(ROM Pointer
A/B)
+(X-Page)

<RAM>=(RAM Poinler
A/B
+(X-Page)

<ROM>=(ROM Poinler)
+(X-Page)

-

<RAM>
)Address

<ROM>

Y/G

<RAM>=(RAM Poinler
A/II)
+(Y-Page)

<ROM>==(ROM Pointer)
+(Y-Page)

(GR)=(Y-Page)

<RAM>/<ROM>
=lnsl(Di reel

Address)

(Note)

Mulliplier
Operand

P=X·y

P=X·G

P=ACC·Y

P- Produci

Instruction Nole

Combination of Ibe bus
ou t pu t memory

RAM(X)-RAM(Y)}
ALU operalion RAM(X)-ROM(Y) Possible
NOP RAM (X)-ROM(Y)
Repea I etc. ROM (X)- ROM (Y)XPage=YPag.

RAM(X)-GR} .
ROM(X)-GR PossIble

ALU operalion
NOP
Repea I elc.

.40

4.5 Memory Data Format

Figure 4-5 shows the formats of data stored in the data
ROM, data RAM and GRs.

It should be remembered, for floating point data, that

only the upper 12 bits of the ACC's l6-bit mantissa part
are stored.

(1) Fixed point data (16 bits)

o

o Binary

o

o 2's complement I ~s __ ' ______________________________ ~

(2) Floating point data (16 bits)

• 8 o

o 2's complement

Fig. 4-5 Data Format in Data Memory

5. INTERNAL REGISTERS

5.1 Accumulator (ACC)

The HSP has two 20-bit accumulators (ACCA and ACCB) .

Either ACCA or ACCB may be freely selected by setting the

accumulator select bit in the instruction code.

Figures 5-1 and 5-2 each show the input/output data of the

accumulator available when the mode of operation is fixed

and floating point representations.

When it is necessary to store floating point data which

consists of 16 bits for its mantissa and 4 bits for its

exponent, use either ACCA or ACCB as a storage accumulator;

or store the data in the 2-word portion of the data memory

(RAM or GR).

This may be done by the following approach:

(1) To store accumulator data

(a) Store accumulator data of fixed point representation

in RAMI.

(b) Using floating point representation, store the same

data in RAM2.

(2) To transfer the contents of data RAM to the accumu­

lator

(a) Store the contents of data ~1l in the accumulator.

(b) By regarding the contents of data RAM2 as a scaling

constant, convert the accumulator data from fixed to

floating point representation.

41

42

19

ACC A/B

FALU

Mantissa part

16 bits

16 bits

o

I Indefi­
I nite

LSB
16 bits

Data Bu. (00-,,)

Fig. 5-1 Accumulator Input/Output Data

(Fixed Point Arithmetic Operation)

12

D'_II r ",40
0 0 _ 3

\
v ,Ln-/ FALU

Mantissa part I part

... ""
19 8 7 4i 3 0

I I ~xponentl Mantissa I
I

ACC A/B

'" 12 II 40

Data Bu. (0 0 - ..)

RAM.GR

RAM.GR

T

Fig. 5-2 Accumulator Input/Output Data

(Floating Point Arithmetic Operation)

5~2 Condition Code Register (CCR)

Each flag in the CCR reflects the result of arithmetic

operation in the ALU of the FALU. There are three differ­

ent flags: zero flag (Z), negative flag (N) and carry (C).

These flags correspond to the bit positions 013 to 015 of

the data bus. The contents may be transferred between the

CCR and the ACC in response to an instruction.

1& 1. Z, N, C: Affected by fixed point
'th t' t' 18 ar1 me 1C opera 10n

I c I N I z z, N : Affected by floating point
arithmetic operation

Flag Set/Clear condition

'- Zero flag Cleared (0) when M F 0

Set (1) when M = 0

Negative flag Cleared (0) when M > 0

Set (1) when M < 0

Carry flag Cleared (0) when C = 0

Set (1) when C F 0

Note: M Mantissa part after arithmetic operation

C ALU's carry after arithmetic operation

Fig. 5-3 CCR Set/Reset Condition

43

44

5.3 Control Register (CTR)

bata from the ACC may be transferred to the control reg­
ister by an instruction from the HSP. It is also possible

to transfer data from the parallel ports DO - 015. It
should be noted that the condition of each flag remains

indefinite during the HSP's reset operation.

The internal data bus DO - 015 is connected to bits 0 - 7.

Parallel I/O DHA mode

Overflow protect of ALU

Transfer request flag

Bit I/O

Parallel port transfer
data size selection

Note: See the next page for the contents of each flag.

Fig. 5-4 Control Register Functions

Bit 0 -- Parallel I/O DMA mode

1 DMA data transfer mode

o Non-DMA data transfer mode

A microcomputer system outside the HSP operates

in the DMA mode. Inside the HSP, however, data

is transferred between the parallel I/O port

and the ACC under program control.

Bit 1 -- Overflow protect of ALU

1: Fixes the mantissa part to its greatest

absolute value if there is an overflow in

the mantissa of the ALU.

o Accomplishes no overflow protection.

Bit 4 -- Transfer request flag

In the DMA mode, this flag is set for a request

of data transfer during a transfer cycle of each

data element.

In response to an entry of TxAK, this flag is

reset and again set automatically. Entry of a

DEND signal does not cause the flag to be set.

In the non-DMA mode, this flag is effective as

a programmable output.

Bit 5 -- Bit I/O

Connected to the Bit I/O terminal. Has both of

the input and output functions.

For input, this flag is set to a 1 before infor­

mation of the bit I/O terminal is entered

directly into the data bus.

Bit 7 -- Parallel port transfer data size selection

1 Transfers data of 16 bits (word)

o Transfers data of 8 bits (byte)

45

46

5.4 Status Register (STR)

The contents of the status register may be transferred to

theACC by an internal instruction. It is also possible

in the intern~l program to transfer the value of the ACC

to some flags (UF, ISO' lSI' I p ' I M).

The flags SOF, SIF and PF are reset when the contents of
the STR are transferred to the ACC by an internal instruc­
tion.

The status register is connected to the internal data bus

DO - D7.

6 8 B o

l UFJ 1.0 I 1 .. 1 Ir I 1M I sorl slrl PF I
Parallel I/O transfer
end flag

Serial input transfer
end flag

Serial output transfer
end flag

Interrupt mask flag

Parallel I/O interrupt
mask flag

Serial input interrupt
mask flag

S.erial output interrupt
mask flag

User's flag

Fig. 5-5 Status Register Functions

Bit 0 -- Parallel I/O transfer end flag

This flag is set at the trailing edge of IE, or

after the end of data transfer in 00 - 015.

(In the byte transfer mode, the flag is set at

the trailing edge after the higher byte has been

transferred.)

The flag is set also when an interrupt disable

condition is established.

Under' an interrupt enable condition, if the flag
is set, an interrupt occurs in the HSP.

The flag is reset when data is transferred from

STR to ACC.

Bit 1 -- Serial input transfer end flag

This flag is set after the end of serial input

data transfer.
The flag is set also when an interrupt disable

condition is established.
Under an interrupt enable condition, if the flag

is set, an interrupt occurs in the HSP.
The flag is reset when data is transferred from

STR to ACC.

Bit 2 -- Serial output transfer end flag

This flag is set after the end of serial output

data transfer.

The flag is set also when an interrupt disable

condition is established.
Under an interrupt enable condition, if the flag

is set, an interrupt occurs in the HSP.
The flag is reset when data is transferred from

STR to Ace.

--~--~. -------------~-- -----~~--------~-

47

48

Bit 3 -- Interrupt mask flag

This flag masks the interrupt of every factor.

The flag may be set/reset also by an instruction.

It is automatically set when an interrupt has

taken place~ and reset by an RTI instruction.

The flag is a 1 under a mask condition~ and a 0

under a non-mask condition.

Bit 4 -- Parallel I/O interrupt mask flag

This flag masks an interrupt generated by a

parallel I/O (when the PF is set).

The flag is set/reset by an instruction.

It is a 1 under a mask condition~ and a 0 under

a non-mask condition.

Bit 5 -- Serial input interrupt mask flag

This flag masks an interrupt generated by serial

input (when the SIF is set).

The flag is set/reset by an instruction.

It is a 1 under a mask condition~ and a 0 under

a non-mask condition.

Bit 6 -- Serial output interrupt mask flag

This flag masks an interrupt generated by serial

output (when the SOF is set).

The flag is set/reset by an instruction.

It is a 1 under a mask condition~ and a 0 under

a non-mask condition.

Bit 7 -- User's flag

This flag may be used at will by the user.

The flag is set/reset by an instruction.

5.5 Repeat Counter (RC)

The repeat counter is used mainly for repeated program

operations.

The individual bits of this counter are connected to bits

10 - 15 of the data bus; and this should be remembered

when data is transferred from the ACC.

1S 11 10
i
R e

Msa esa

Fig. 5-6 Repeat Counter

Here are examples in which repeated operations are used

in this counter.

(1) Repeated operations by repeat instruction

Step 1

Step 2

Step 3

(2) Repeated

Step 1

Step 2

Step 3

Step 4

Step 5

RC lin

where the "n" indicates the number of repe­

titions.

Repeat instruction

which allows the next instruction to be

repeated.

Arithmetic instruction (RC - 1)

which enables n+1 operations.

operations by jump instruction

RC lin

Instruction 1

Instruction 2

Jump to step 2 if (RC) 'F 0 and (RC) - 1

49

so

Example (2) repeats instructions 1 and 2 until the

value of the RC reaches a zero, and advances to step

5 when (RC) = 0 is reached.

Note that this' repeat counter is automatically decremented

when an ACC arithmetic operation has incremented the RAM

pointer or ROM pointer.

5.6 Address Pointer (RAM Pointer AlB, Rm1 Pointer)

The data memory has three address pointers: two for RAM

and one for ROM. Each of the pointers is connected to

bits 10 - 15~ and this should be remembered when address

data is transferred from the ACC. Figure 5-8 shows how

to generate effective addresses for the data RAM and data

ROM by means of the address pointers.

A combination of the instruction code's page address part

(x-page and Y-page) and these address pointers generates

9-bit effective addresses.

The RAM reads out 2-word data at the same time with the

help of two page addresses and one pointer address. Data

is written into addresses generated by the Y-page and RAM

pointer.

The ROM can read out only one wo~d at a time. Therefore,

any X-page and Y-page addresses in the ROM area must be

contained in the same page.

An instruction enables selection between the RAM pointer

A and the RAM pointer B. It should be noted that each

pointer may be automatically incremented during the same

instruction cycle as memory access.

15 140 18 12 11 10

RAM Pointer A

15 14 18 12 11 10

RAM Pointer B

15 14. 18 12 11 10

ROM Point er C><]
MSB LSB

Fig. 5-7 Address Pointers

(a) Generating RAM effective addresses

(Pointer address format)
8 6 5 0

Ax Ap ¢::::::J , , ,
8 6 5 0 /

i /

¢::::::J
/

Ay Ap

Effective address Instruction
code's page

(Page addresses = 0-3) address part

(b) Generating ROM effective addresses

(Pointer address format)

8 6 5 0

Ax i 0 1
Ap ¢:=l , , ,

8 6 5 0 /

i ! /

¢::::::J /
Ay

\ 0 ! Ap

Effective address Instruction
code's page

(Page addresses = 4-7) address part

RAM Pointer
CAp)

Address
pointer

ROM Pointer
CAp)

Address
pointer

Fig. 5-8 Generation of Effective Addresses

51

52

5.7 Delay Register (DREG)

The arithmetic operation for signal processing requires,
for example, a transversal filter (as shown in Fig. 5-9)
which has a Junction (equivalent to Z-l) of delaying an

input data string by one sample for each sampling cycle.
For the HSP in which input data is arranged. on RAM, it is
necessary to effectively implement the function that
delays the data storage by one address for each sampling
cycle.

For this reason, the output of the RAM is provided with a
DREG, as shown in Fig. 5-10. Composed of a 2-stage latch
ciurcuit, the DREG holds the data read from the RAM until
the next instruction cycle is reached, as shown in Fig.
5-llJ and writes the data into memOry after data is read
out from an updated address. When repeated, this opera­
tion will shift addresses in the data group memory, as
shown in Fig. 5-ll(b).

Writing from DREG to RAM maybe controlled by the descrip­
tion in the instruction code.

It should be noted that the DREG permits data to be
exchanged not only with the RAM but with the GR as well.

INPUT

N
Qn-.EC\XWn-i+l W;->W;-l

i-I

Fig. 5-9 Transversal Filter

Data RAM/GR

il'
U II 0

I DREG I
X- Bils "i

Y - Bils ~

Fig. 5-10 Location of DREG

53

Instruction cycle

I,

RAM read

RAM write

RAM address
1--"----'

(a) Timing

A. W,
A, w. Before change
A. w,
A. w.

~

A. 'w,
A, w, After change
A. w.
A. W.

(b) Changing Memory Contents

Fig. 5-11 DREG-Based Shifting of RAM Data Addresses

54

6. INPUT/OUTPUT INTERFACE

6.1 Function Control

The HSP uses input information (code) at input terminals

FO-F3 to transfer data between the inside of the nsp and

the outside bus through parallel ports DO-D15.

Input information at FO-F3 is effective when input termi­

nal CS is active. A part of this function control works

to halt the clock working in the HSP. As shown in Pig.

6.1, the HSP gets into a stop mode when an instruction

cycle is over after function information is internally

detected. The stop mode is released after a change in

function information is detected, and this is follo\.,ed by

the execution of the subsequent instructions to be left

behind before the stop action began.

Because of it dynamical operation, the HSP must internally

deal with halts of 10 microseconds or less. Function

information is detected in accordance with the timing of

the internal clock, so that it is necessary for the func­

tion input to remain active during one or more instruction

cycles.

The direction of input/output transfer is controlled by

input signals at the R/W terminal.

------------~ ----

55

IE

¢o

Instruct

56

Instruction cycle

I

eTR/pc

IL I
ion If J

~ '\

I

transfer

I
-I,

Program
operation stop

Fig. 6-1 Program Operation Stop

~ L
'(/

X \

Table 6-1 Details of Function Control

CS F3 F2 Fl FO Operation [Operation mode & Interrupt]

1 * * * * No I/O operation

[Operation mode] Program mode

[Interrupt] --

0 0 0 0 0 No I/O operation

[Operation mode] Program mode

[Interrupt] --

0 0 I 0 Data transfer (Lower byte)

CTR(W/B)=0

Read : 00-07 --- ORO-OR7

Write : DO-D7 --- IRO-IR7

[Operation mode] Program mode

[Interrupt] None

0 0 I I Data transfer

(1) Byte transfer mode

CTR(W/B)=0

Upper byte transfer

Read : DO-D7 --- ORB-ORIS

Write : DO-D7 --- IRB-IRIS

(2) Word transfer mode

CRT(W/B)=l

Word (16-bit) parallel transfer

Read : DO-DIS --- ORO-ORIS

Write : DO-DIS --- IRO-IRIS

-cont'd-

57

CS F3 F2 F1 FO Operation [Operation mode & Interrupt]

0 0 0 1 1 [Operation mode] Program mode

[Interrupt] possible

0 1 0 0 CTR transfer

"Write" only

Write : 00-07 -- CTRO-CTR7

[Operation mode] Stop mode

[Interrupt] None

1 0 0 0 PC transfer

"Write" only

Write : 00-07 -- PCO-PC7

(Setting as 010=1, 09=0 and 08=0)

Set CTR's interrupt mask flag.

No other register conditions are

guaranteed.

The contents of RAM are reserved.

[Operation mode] Stop mode

[Interrupt] None

58

6.2 Parallel Port (Microcomputer) Interface

The HSP's parallel input/output terminals 00-015 form a

bidirectional three-state bus. There are three different

types of data transfer between input/output terminals 00-015

and the inside of the HSP.

(1) Word data transfer

Input/output data at input/output terminals 00-015, as

l6-bit data, is transferred in parallel between input

registers IRO-IRIS and output registers ORO-ORIS.

(2) Byte data transfer

Input/output data at input/output terminals DO-07 is

divided into the upper byte (IR8-IRIS & OR8-0RlS) and

the lower byte (IRO-IR7 & ORO-OR7) by function control

information, and transferred between the IR registers

and the OR registers.

(3) CTR & PC data transfer

Input/output terminals 00-015 are connected directly

to the .16-bit data bus (00-015) in the HSP, and data

is transferred with each register in the HSP. In this

case, the operation in the HSP is brought to a halt so

that the HSPs data bus is connected directly to the

external bus.

Data is set in each of these registers according to the

IE's timing.

59

60

8
L

/

8
,/

-
I
I
I
I
I
I
I
I
I

/ I R.- to -
M
U

r- X

I - I.....- ORA_to

~6,~ ~. I
~ X I I 1--- ---- __________ J

I l.....-

I
I
I
I
I
I
I

8
L

a

L I
I
I

8

8

D._7 r--/T---~--~
8

M
U
X

8

1

I
I
I

1-., !
'-- I I L.. ___________ J

Outside II Inside --HSP I HSP

M
U
X

Lr-
M
U
X

Note: Each dotted line denotes a signal path for testing.

Fig. 6-2 Parallel Port Interface

~ .. , ,
c- Q

<II <II
:l :l
.0 .0

'" '" M M

'" '" '" '" COO coo
cv cv
c c
H H

8 8"

6.3 Serial Input/Output

The serial input/output function is intended mainly as an
interface for A/D and D/A converters. The HSP provides

serial input/output of up to 16 bits.

The functions of serial input and serial output are given
in Table 6-2.

(1) Serial Input

A serial input takes place on an MSB first basis. Even
for less than 16 bits, the internal counters are used
and data is automatically shifted so that the MSB of
data goes to the most significant bit of the shift
register. It should be noted, ho, ... ever, that an SI input

signal is, as it is, applied to the lower bits after the
specified bit. In this case, it is necessary to enter
more than 16 clocks of SICK even when the SIEN is in the
non-active mode.

No data transfer to the ACC is allowed while serial input
is in process. The SIR is cleared when data is trans­
ferred to the ACC.

SICK

SIEN

SI

Fig. 6-3 Serial Input Timing

61

62

(2) Serial Output

The basic timing is the same as with serial input.

For the HSP's serial output, "0" goes to the SOR after

data is transferred to the outside. See Table 6-2 for

other information.

Table 6-2 Serial Input/Output

Serial input Serial output

[Block diagram)

16, Internal Data Bus

rr;;;;tSiillia;;;;-l-----o S I
SICK

SIEN

to Interrupt Block

[Input/output data bit numbers)

Input from MSB

-cont'd-

16, Internal Data Bua

~--~~----~----SO
Output Shift Rec
<SOR) 16bita SOCK

to Interrupt
Block SOEN

Terminal SO gets a three­

state condition when SOEN

is non-active.

Output from MSB

Serial input

[Input/output bits control]

Even if, during an ~~tive

SIEN interval, there is an

input of 16 or more SICK
clocks, any input of data
of 16 bits or more is

automatically disabled.

If there are less than 16

SICK clocks during an

active SIEN interval, input

data is shifted to the

high order. However, it is

necessary to enter SICK in
advance.

[Interrupt generation]

Counting of 16 clocks starts
at the leading edge of SIEN.
When 16 bits of' data has

been entered into SIR, the

internal interrupt generator
circuit (SIF) is initiated.

[Shift register set/reset]

Serial output

Even if, during an active

SOEN interval, there is an

input of 16 or more SOCK
clocks, the SO output sends
out "0" for bit 16 and

following bits.

If there is an output of

data of less than 16 bits,
SOEN gets non-active when

the count of bits as output

has reached the specified

value.

At the trailing edge of

SOEN, the internal inter­

rupt generator circuit

(SOF) is initiated.

After a transfer instruction In response to a transfer

(SIR-ACC) has been executed, instruction (ACC-SOR),
the register is reset (all data is set in the shift

bits are Os). register.

63

64

6.4 Interrupts

The HSP is capable of generating interrupts after the end

of data transfer (microcomputer interface, serial input/

output) so as to effectively process internal arithmetic

operations and data input/output. A schematic of the

interrupt circuit is shown in Fig. 6-4.

(1) Interrupt level and factors

There is only one interrupt level. The level has three

factors. They are:

(a) End of parallel port (microcomputer interface)

transfer

(b) End of serial input transfer

(c) End of serial output transfer

These factors are identified by program.

(2) Masking

It is possible to mask each of the I M, Ip' lSI and ISO

flags in the status register.

IM Mask flag for all interrupts.

When there is an interrupt, the flag is set

automatically, resulting in a masked condition.

The flag is reset by an RTI instruction, thus

resulting in a demasked condition.

The flag may be set/reset also by a transfer

instruction (ACC - STR) .

1 = Mask; 0 = Nonmask

Ip l1ask flag for an interrupt at the end of para­

llel port transfer.

The flag is set/reset by a transfer instruction.

1 = Mask; 0 = Nonmask

lSI Mask flag for an interrupt at the end of serial

input transfer.

The flag is set/reset by a transfer instruction.

1 = Mask; 0 = Nonmask

ISO Mask flag for an interrupt at the end of serial

output transfer.

The flag is set/reset by a transfer instruction.

1 = Mask; 0 = Nonmask

Even under these interrupt mask conditions, each of the

input flags PF, SIF and SOF is set by an external input.

(3) Stack

The program counter (PC) has two stacks. Therefore, a

2-level nesting for interrupts or subroutines is pos­

sible.

There are two ACCs (ACCA and ACCB). One may be used

for the main program; and the other, for an interrupt

program.

Programming is made so that the other registers are

saved in the RAM. It should be remembered that, if

data is transferred in the floating point mode when it

is stored into RAM, then the lower 4 bits of the ACe's

mantissa part encounter an error.

(4) Interrupt wait

At the execution of a repeat instruction or any instruc­

tion initiated by a repeat instruction, or during the

execution of a jump instruction (only for jump action)

or an RTN or RTI instruction, the initiation of an

interrupt has to wait until the above instruction comes

to an end.

65

66

(5) Vectoring

When an interrupt occurs, the contents of address $lFF

are set in the program counter. This address is the

final address of the instruction ROM. Therefore, pro­

gramming requires that a jump goes to the beginning of

the interrupt handling program when the jump instruction

is stored at the final address of the instruction ROM.

An example is illustrated in Fig. 6-5.

(6) Pipeline control

Since output data of the multiplier is reserved during

only one instruction cycle, if an interrupt occurs

while a pipeline-based product sum operation is in

process, it destroys the result of multiplication out­

put. At a portion of a program which is carrying out

an arithmetic operation under pipeline control, it is

necessary to keep the part under an interrupt disable

condition.

STR

I n.truction (STR-ACC)

Stack PC {

PC

STACK 0

STACK 1

PC-all"l"

Fig. 6-4 Interrupt Circuit Configuration

67

Address Label Instruction

100 INT Save ACC

(Save CCR

STR ACC Reset PF, SIF, SOF

ACC Memory Save to STR memory

Save register ROM/RAM pointer

o Factor identification

o Interrupt handling program

Return register

Return CCR

Return ACC

RTI Reset I M, main

routine pattern
IFF JMP INT

Fig. 6-5 Example of Interrupt Handling Program

68

6.5 DMA (Direct Memory Access)

6.5.1 General

The DMAC (direct memory access controller) for an 8-bit
microcomputer 6800 permits data transfer between the HSP
and the memory.

Through input/output terminals 00-015, data is transferred

directly, not by way of the CPU of the microcomputer,

between the HSP's IR or OR and the external memory or I/O
device.

Inside the HSP, the DMA flag in the CTR controls the mode
as follows:

CTR(DMA)

CTR(DMA)
1

o
DMA transfer mode
Non-DMA transfer mode

This DMA transfer mode brings the microcomputer to a stop.
A DMA action takes place between the IR or OR inside the
HSP and the external memory or I/O device; and a program

action occurs between the IR or OR inside the HSP and the

ACC or memory.

The HSP's DMA mode permits the HALT burst mode as one of
the DMA transfer approaches possessed by the microcomputer

6800.

Figure 6-7 shows an example of connection of control lines

for the HSP, DI~C and 6800 CPU. The HSP is provided with

terminals TxRQ, TxAK and DEND intended for the DMA transfer
mode.

69

HD61810B(HSP)

TxRQ at

8
TxAK

DIND
lIB

8 .. (I»4AC) i +5V

TxRQl 81

HDe

HE.!..!.!.! 5

TxAKB t-!---! B TxAKI

Tx AKA
81 18 Yl

i-'-"-- A

lfi;
TxSTB ~

Q/DEND
88 Ln

~

88
DGRNT

DRQH .88 HALT

800(MPU) 1+5V

iJALlI"
Z HALT

HDo

BA
, BA

~ VMA

VMA
5 -

Fig. 6-6 Example of Connection between HSP and DMAC

70

6.5.2 Operation

Set'ting the CTR(DHA) to a 1 results in a m~ transfer mode.

Once the CTR(DMA) has been set at a 1, it will keep the

DMA mode unless it is reset to a 0 by program or DEND
signal generates.

(1) Word Transfer

A DMA word transfer may be produced by setting the CTR's

W/B flag to a 1 and by setting the each of the CTR's m~

flag and transfer request TxRQ flag to a 1. Reception

of a TxAK signal causes the TxRQ to be a zero. In this
case, the PF is set, and under an interruptable condi­

tion, the inside encounters an interrupt at the end of

parallel port input/output transfer. As a result, the

HSP transfers data from IR to ACC, and then to memory
with the help of a program.

At the end of data transfer from IR to ACC, the TxRQ
is again set to a 1 automatically, giving the DMAC a
request of the next data transfer. For output from the

OR, if data is read out from the OR under an interrupt­

able condition, the PF is set and an interrupt occurs.

The result is that data is transferred from ACC to OR

by the HSP's interrupt handling program. When data is

transferred to the OR, the TxRQ is again set to a 1,

giving the DMAC a request of the next data transfer.

For the final word to be transferred in the D~~ mode,

if it is entered together with a DEND signal, the flag
for the DlQ. mode is reset, resulting in a non-DMA mode.

Under an interrupt disable condition, a change in the

71

72

PF flag is monitored so that the end of input/output is

searched.

(2) Byte Transfer

A DMA transfer mode may be established by setting the

CTR's W/B flag to a 0, the DHA flag to a 1, and the TxRQ

flag to a 1. The DMA byte transfer mode provides data

input/output in the order of the lower part and the upper

part. Inside the HSP, after the end of a transfer of

2 bytes, data is transferred between the IR or OR and

the ACC. The transfer sequence is the same as with word

transfer, except that one word is covered instead of 2

bytes.

The above discussion is summarized in Table 6-3.

Table 6-3 DMA Mode Data Transfer

~ Word transfer
Byte transfer

Approach 8 bits
DMA • 1 •
TxRQF

Control
W/B • 1 " " 0 "

FO -- • 0 • : L o. we r / "l":Upper

0 Word, 16 bits 0 Lower
Data
arrangement 1 Word, 16 bits 1 Upper

2 Word, 16 bits 2 Lower

3 Word, 16 bits 3 Upper

6.6 Bit I/O

The bit I/O may be used as shown in Fig. 6-7. The input/

output signal serves as a l-bit input/output terminal.

(1) As Input Terminal

A transfer instruction (ACC-CTR) is used to write a 1

into the corresponding bit of the CTR's bit I/O. This

turns off the output MOS transistor of the bit I/O, thus

allowing external data to be entered. With a transfer

instruction (CTR-ACC), the input takes in data into the

ACC through the data bus. Note that it is necessary to

reserve input data at the terminal while the transfer

instruction is being executed.

(2) As Output Terminal

Because of an open drain, the output of the bit I/O must

have a pull-up resistor connected externally. This out­

put signal may be used as, for example, as control of

peripherals. It may serve also as an interrupt signal

to a microcomputer.

73

74

HSP
Internal ,....~~.,

D&

Controlled by
TFR A, CTR

,

I
i
I

Controlled by ft I
TFR CTR, A HS!,..]

Fiq. 6-7 Bit I/O Usaqe

_ Input signal
to HSP

ON at input of external data;
OFF at output

_ Output signal
from HSP

7. INSTRUCTIONS

7.1 General

The instruction system of the IISP is designed so as to

provide fast, efficient signal processing and arithmetic

operation. The HSP has a total of 53 different instruc­

tions, covering not only arithmetic operations but also

logical operations and data transfer as basic instructions

for a general-purpose microcomputer.

r1ajor features of the HSP are detailed below.

(1) Floating point arithmetic operation

The HSP, as mentioned in section 3, carries out floating

point arithmetic operations, providing a 32-bit dynamic

range and a l6-bit resolution (effective bit length).

This provides accuracies suitable for signal processing

in the voice frequency band, thus enabling arithmetic

operations at high speed and high accuracy to be done on

LSIs. The HSP has a set of instructions that effectively

carry out such floating point arithmetic operations, as

well as fixed point arithmetic operations in general use

in microcomputers.

(2) Horizontal-type microinstructions

To improve the throughput of arithmetic operations, the

HSP offers horizontal-type microinstructions, so that

more than one operation may be executed during a single

instruction cycle.

A single instruction allows the following operations to

be executed in parallel mode.

75

76

(a) ALU operation
(b) MULT operation
(c) Memory read
(d) Memory write
(e) Address pointer auto-increment and repeat counter

auto-decrement

(3) Pipeline control

Computer pipeline control can give better throughputs
to repeated product sum operations which are frequently
seen in signal processing. The HSP cause multiply and
add/subtract operations to be generated under pipeline
control, so that the time required to execute a product
sum operation is apparently equivalent to one instruc­
tion cycle. Pipeline control is also used for such
operations as instruction pre fetch and data memory read,
this is enough to implement instructions of high through­
put. The sequence of pipeline operations is shown in
Fig. 7-1.

;0 (4MB.)

;1 (4MB.)

;8 (4MB.)
;8 (4MB.)

PC r-'"["-;""];:!I!I!!i!!iI!!!!!~t"""1'" Inat ROM OOT
Inat Reg.
X/Y Page

ROWRAM Pointer

ROM/RAM Addre ..

Data ROM/RAM OUT '-~ $
JVY Bus <z,zfzz> m
MIN JVY \

MULT OUT
(ALU TEMP)

ALU OUT

ACC

Data Bus

SIR

Register ~~R
e_

RC
DREG

"c~--1'--
I
I
I
I
I
I
I

RAM Wri te '-1m

® Hultiply Xl Yl

® Multiply X2 Y2

Add Acc + Xl Yl

© Register transfer

Fig. 7-1 Pipeline Operation Sequence

77

78

7.2 Set of Instructions

Depending on their types, the HSP's instruction codes are

classified as follows:

I. ALU operation
II. Immediate data

III. Jump

IV. Register transfer operation

V. Register incrementidecrement
VI. Subroutine return

The HSP's instructions are configured so as to provide

most effective operation for the instructions related to

ALU operation.

This set of instructions includes no multiply-related

instructions. Multiplication operates in every instruc­
tion cycle. If multiply operation is required, it is

necessary to select input data of the multiplier and
execute an ALU operation using the result of multiplica­

tion in the next cycle. In other words, it is necessary

to select one of the addressing modes shown in Table 4-1

and thus set required addresses. Any instruction of the

HSP, as shown in Fig. 7-2, consists of 32 bits.

In the following paragraphs are described the function of

each instruction and the instruction formats for assembler
description.

See Table 7-1, which lists the mnemonics, operations,
instruction codes and CCR changes of the HSP's instruc­
tions.

The overflow protection for the result of arithmetic

operation differs from one ALU operation instruction to

another. To be more specific, the instructions may be

divided into two groups. One is those instructions that

placed under overf1m ... protection even if the CTR's OVF

is not set; and the other is those instructions that are

under overflow protection only when the OVFP is set.

This is detailed in Table 7-1.

79

Table 7-1 Instruction Formats

I
Bl BO 19 18 it 18 15 1. 18 11 11 10 9 8 7 8 5 • 8 a 1 0

OP Address Control

Pointer (x, y) FV ACC RAM = :: address in. OP Code poin
mode -ALU FX .vB ACC/ 1 X·y ter ter

~ DREG / X-page Y-page INC. INC.
Mam XoQ

Direct 00 Be Dee

address in.
Direct address mode 0 0 (~page)(Pointer address)

ACC A/B - immediate data (18 bi tal

RC-Immediate

I OP Code
data(8 bits)

ROM Pointer-
Iamedi ate da ta /
RAM Pointer

(8 bi ta)

Jump Condl lion

I OP Code Jqmp Addr ...

oJump if (Jump condition)I\(CCR)~O

o Jump condition-all·O" for noncoditional jump

o When RC*=O, jump against (RC)~O

o When RC*:l, jump against (RC)~O and (RC)-l

80

Op Code

Selection of ACC A or B
0; ACCA. 1; ACCB

Op Code

Op Code

Used

Selection of RAM Pointer A or B
0; RAM Pointer A. 1; RAM Pointer B

L 0; RAM Pointer A

o Ip.~'1
i

Not Used

1; RAM Pointer B

Not Used
o

Fig. 7-2 HSP Instruction Formats

81

82

7.2.1 ALU Operation Instructions

Each instruction given here performs, at the same time,

the following: ALU action, arithmetic operation, ALU

input bus selection, data memory address control, read!

write control, address pointer control, and repeat counter

control. There are two addressing modes available.

(1) ALU Operation

No Mnemonic Contents

1 FADA Floating point arithmetic operation
FL [(a) + (S) + ACCA)

2 FADB Floatin? point arithmetic operation
FL [(a + (S) + ACCB)

3 ADA Fixed point arithmetic
FX [(a) + (13) + ACCA)

operation

4 ADB Fixed point arithmetic operation
FX [(a) + (S) + ACCB)

5 FSBA Floating point arithmetic operation
FL [(a) - (13) + ACCA)

6 FSBB Floating point arithmetic operation
FL [(a) - (13) + ACCB]

7 SBA Fixed point arithmetic operation
FX[(a)-(S) ACCA]

8 SBB Fixed point arithmetic operation
FX [(a) - (S) + ACCB]

9 FLDA Floating point arithmetic operation
FL[(S) ACCA]

10 FLDB Floating point arithmetic operation
FL[(13) +ACCB]

-cont'd-

No Mnemonic Contents

11 LOA Fixed point arithmetic operation
FX[un -+- ACCA]

12 LOB Fixed point arithmetic operation
FX[(!3) -+- ACCB]

13 ANOA Fixed point arithmetic operation
FX[(a.}I\(!3} -+-ACCA]

14 ANDB Fixed point arithmetic operation
FX [(il) 1\ (!3) -+- ACCB]

15 ORA Fixed point arithmetic operation
FX[(a.}V(!3} -+-ACCA]

16 ORB Fixed point arithmetic operation
FX[(a.}V(!3) -+- ACCB]

17 EORA Fixed point arithmetic operation
FX [(il) Ell (!3) -+- ACCA]

18 EaRS Fixed point arithmetic operation
FX [(il) Ell (!3) -+- ACCB]

19 FABSA FL [(no change in ACCA) -+- ACCA)
where "no change in ACCA" means that
there is no change in the absolute value
of the mantissa and the exponent of the
ACCA.

20 FABSB FL«no change in ACCB)-+- ACCB)
where "no change in ACCB" means that
there is no change in the absolute value
of the mantissa and the exponent of the
ACCB.

21 ABSA FX[(ACCA's absolute value) ... ACCA)

22 ABSB FX [(ACCB' s absolute value) -+- ACCS]

23 FRPTA Causes the next instruction to be
repeated, where the operand is effective
and mUltiplication is made in floating
point form.

-cont'd-

83

------.

no Mnemonic Contents

24 FRPTB This causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in floating
point form.

25 RPTA This causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in fixed
point form.

26 RPTB This causes the next instruction to be
repeated, where the operand is effective
and multiplication is made in fixed
point form.

27 FNEGA FL [- (ACCA) + ACCA]

28 FNEGB FL [- (ACCB) + ACCB]

29 NEGA FX[-(ACCA) + ACCA]

30 NEGB FX [- (ACCB) + ACCB]

31 INCA FX [(ACCA) +1 + ACCA]

32 INCB FX [(ACCB) +1 + ACCB]

33 CECA FX [(ACCA) -1 + ACCA]

34 CECB FX [(ACCB) -1 ... ACCB]

35 8RA This arithmetically shifts the ACCA to
the right.

CEI I I :::::::IIJ-+[[J

-cont'd-

84

-.,- -- ---

No Mnemonic Contents

36 SRB This arithmetically shifts the ACCB to
the right.

4L1 I I =======IIJ [£J

37 SLA This arithmetically shifts the ACCA to
the left.

© o:::r:::::-::::IIJ 0

38 SLB This arithmetically shifts the ACCB to
the left.

[Q]+-o:::r:::=:~~:IIJ"'" 0

39 FLTA This converts the ACCA's mantissa part
to floating point data (mantissa and
exponent) and sets it in the ACCA.
For details, see 3.2 (3) •

40 FLTB This converts the ACCB's mantissa part
to floating point data (mantissa and
exponent) and sets it in the ACCB.
For details, see 3;2 (3) .

41 FIXA This converts the ACCA's floating point
data (mantissa and exponent) to fi}{ed
point data (mantissa part) and sets it
in the ACCA.
For details, see 3.2 (3) •

42 FIXB This converts the ACCB's floating point
data (mantissa and exponent) to fixed
point data (mantissa part) and sets it
in the ACCB.
For details, see 3.2 (3) .

43 FCLRA FL[The contents of the ACCA are cleared.]
(Mantissa = 01 exponent = -8)

44 FCLRB FL[The contents of the ACCB are cleared.]
(Mantissa = 01 exponent = -8)

45 CLRA FX[The contents of the ACCA are cleared.]

46 CLRB FX[The contents of the ACeB are cleared.]

-cont'd-

85

86

--- ----.....

No Mnemonic Contents

47 FNOPA FL [The ALU is a non-operation. The
contents of the ACCA/B remain the same.

48 FNOPB The contents of the operand are
effective.]

49 NOPA FX [The ALU is a non-operation. The
contents of the ACCA/B remain the same.
The contents of the operand are

50 NOPB effective.]

51 FSGYB FL [If the sign bit of data entered

52

53

54

from the Y-bus is the same as the sign
bit of the ACCA/B, the contents of the

FSGYB ACCA/B remain the same. If the sign
bits are different, - (AACA/B) ACCA/B]

SGYA FX [If the sign bit of data entered
from the Y-bus is the same as the sign
bit of the ACCA/B, the contents of the

SGYB ACCA/B remain the same. If the sign
bits are different, ~ (ACCA/B) ACCA/B]

It should be noted that an interrupt operation must wait

while a repeat instruction (FRPTA, FRPTB, BPTA or RPTB)

is being executed or while any instruction which has been
initiated by a repeat instruction is being cycled.

(2) Instruction Format

-- Page Addressing Mode (Type I)

Description in the assembly language looke like the
following:

Label /:, Operation /:, [1] /:, [2] /:,[3] [4] Comment

where [1] - [4] are operands.

[1] Selection between ALU's two input data items

(Note that this operand is not required for the

instructions 19-54.)

Contents Notation
Bit assignment

16 15

(product, ACC) ALU PA 0 0

(Y-Bus ,ACC) ALU YA 0 1

(product, X-Bus)-ALU PX 1 0

(Y-Bus ,X-BuS) ALU YX 1 1

Note: In the contents block,

S in that order.

) refers to a and

[2] RAM write control

Contents Notation
Bit assignment

12 11

ACC Data Bus, M(Y) not write EE 0 0

ACC Data Bus -M(Y)wri te A 0 1

ACC Data BUB, M(Y) not wri te EE 1 0

ACC-Data Bus. DREG-M(Y)wri te D 1 1

[3] Data memory output

Contents Notation
Bit assignment
10 I 9 I 8 7 6 I 5 40 3

ROM/RAM -X or Y-Bus XY(n,m) 1 : 0: n I m I

ROM/RAM-X- Bus, GR Y-Bus XG(n, ~) 1 I 11 n I ~

(n,m)
n Page address of output data to X-bus
m Page address of output data to Y-bus
R, GR address

0-3 RAM
4-7 ROM
0-3 GR

87

88

[4] Automatically incrementing ROM/RAM pointer

Automatically incrementing repeat counter

Selecting RAM pointer

Contents Notation ~.g0:J.n\;er sele tlon
RAM Pointer ; not affected A RA.RO

ROM Pointer ; not affected B RB.RO

RAM Pointer : auto increment A RA+.RO

ROM Pointer : not affected B RB+. RO

RAM Pointer : not affected A RA.RO+

ROM Pointer : auto increment B RB. RO+

RAM Pointer : auto incr ement A RA+. RO+

ROM Pointer ; aulo increment B RB+. RO+

Automatically decrementing repeat counter (RC)

The logical sum (OR) of bits 2 and 1 is:

a·va' =0

a·va' =1

(3) Instruction Format

not affected

auto Decrement

-- Direct Addressing Mode (Type I)

Label ~ Operation ~ [1]~[2]~[3]

where [1] - [3] are operands.

Comment

[1] Selecting ALU's two input data items

Same as with Page Addressing Hode.

[2] RAM write control

Same as with Page Addressing r-1ode.

asstgrunent
z 1 0

0 0 0

0 0 1

1 0 0

1 0 1

0 1 0

0 1 1

1 1 0

1 1 1

[3] Direct addressing (n,m)

Contents
Bit assignment

10 I 9 I 8 7 6 I 5 ~ 8 2 1

ROM/RAM-Y-Bus I I I

o : o i I
n I m

(ACC-X-Bus I I I
I

n Page address

m Pointer address

(Note that memory is addressed directly, not

by way of the pointer.)

(4) Multiplication

0

By addressing data memory with an ALU operation instruc­

tion, the data sent out to the X- or Y-bus is entered,

as it is, into the multiplier. The multiplier operates

whenever any instruction has been executed. The output

(product) of the multiplier will be held only during

the next instruction cycle. For the sum of products,

it is necessary to select data to be sent out to the

X- and Y buses for the instruction executed before the

add instruction.

In the case of floating point product sum, specify suc­

cessive arithmetic instructions in the form of floating

point.

Example: (1) Correct description

FNOPA

FADA

(2) Incorrect description

FNOPA

ADA

89

90

7.2.2 Immediate Instructions

An immediate instruction sets the immediate data on the

instruction ROM into the ACCA/B, RAM/ROM pointer, and RC.

(1) Operation

No Mnemonic Contents

1 LIA Immediate data (16 bits)
--- ACCA

2 LIB Immediate data (16 bits)
--- ACCB

3 LIRA Immediate data (6 bits)
--- RAM Pointer A

4 LIRB Immediate data (6 bits)
--- RAM Pointer B

5 LIRO Immediate data (6 bits)
--- ROM Pointer

6 LIRC Immediate data (6 bits) --- Repeat Counter

(2) Instruction Format (Type II)

Label f:!. Operation f:!. [1) Comment

where [1) is an operand.

(1) Immediate data

Instructions Immediate data bit assignment

LIA, LIB 15 - 0
eMSB) eLSB)

LlRA,LIRB,LIRO,LIRC u - 10
eMSB) eLSB)

7.2.3 Jump and Conditional Jump Instructions

There are some kinds of jump instructions available:

unconditional jump, conditional jump, and subroutine jump.

If the jump conditions are satisfied, then any interrupt

operation must wait.

(1) Operation

No Mnemonic Contents

1 JCS A jump occurs when the CCR's carry flag
is al.

2 JNS A jump occurs when the CCR's negative
flag is a l.

3 JZS A jump occurs when the CCR's zero flag
is a l.

4 JSR Subroutine jump
(PC -- stack 0, PC stack o --- stack 1)

5 JNZ A jump occurs when the repeat counter
(RC) is not a O.

6 JNZM A jump occurs when the repeat counter
(RC) is not a 0; at the same time, the
repeat counter is decremented.

7 JMP Unconditional jump

(2) Instruction Format (Types III & III')

Label t:, Operation t:, [1] Comment

where [1] is an operand.

[1] Jump address

This consists of nine bits: bit 8 through bit o.

91

92

7.2.4 Data Transfer Instructions

A data transfer instruction is intended to transfer data

between registers. Different registers have different

data sizes ~nd bit locations. Note that the contents of

a register from which data is sent out rem.ain the same.

Every data transfer instruction deals with fixed point

data. After data transfer to the ACC, the value of the

exponent part of the ACC selected is not guranteed.

(1) Operation

No Mnemonic Contents

1 TFR A, STR Transfers the contents of bits 0-7
of ACCA to STR.

2 TFR B, STR Transfers the contents of bits 0-7
of ACCB to STR.

3 TFR A, CTR Transfers the contents of bits 0-7
of ACCA to CTR.

4 TFR B, CTR Transfers the contents of bits 0-7
of ACCB to CTR.

5 TFR A, RC Transfers the contents of bits 10-15
of ACCA to RC.

6 TFR B, RC Transfers the contents of bits 10-15
of ACCB to RC.

7 TFR A, OR Transfers ·the contents of bits 0-15
of ACCA to parallel output register OR.

B TRF B, OR Transfers the contents of bits 0-15
of ACCB to parallel output register OR.

9 TFR A, RO Transfers the contents of bits 10-15
of ACCA to ROM pointer.

-cont'd-

No Mnemonic Contents

10 TFR B, RO Transfers the contents of bits 10-15
of ACCB to ROM pointer.

11 TFR A, RA Transfers the contents of bits 10-15
of ACCA to RAM pointer A.

12 TFR B, RA Transfers the contents of bits 10-15
of ACCB to RAM pointer A.

13 TFR A, RB Transfers the contents of bits 10-15
of ACCA to RAM pointer B.

14 TFR B, RB Transfers the contents of bits 10-15
of ACCB to RAM pointer B.

15 TFR A, CCR Transfers the contents of bits 13-15
of ACCA to CCR.

16 TFR B, CCR Transfers the contents of bits 13-15
of ACCB to CCR.

17 TFR STR, A Transfers the contents of STR to bits
0-7 of ACCA.
After STR transfer, each of the PF,
SIF and SOF flags is reset.

--
18 TFR STR, B Transfers the contents of STR to bits

0-7 of ACCB.
After STR transfer, each of the PF,
SIF and SOF flags is reset.

19 TFR CTR, A Transfers the contents of CTR to bits
0-7 of ACCA.

20 TFR CTR, B Transfers the contents of CTR to bits
0-7 of ACCB.

21 TFR RC, A Transfers the contents of RC to bits
10-15 of ACCA.

22 TFR RC, B Transfers the contents of RC to bits
10-15 of ACCB.

23 TFR IR, A Transfers the contents of parallel
input register to bits 0-15 of ACCA.

-cont'd-

93

No Mnemonic Contents

24 TFR IR, B Transfers the contents of parallel
input register to bits 0-15 of ACCB.

25 TFR RO, A Transfers the contents of ROM pointer
to bits 10-15 of ACCA.

26 TFR RO, B Transfers the contents of ROM pointer
to bits 10-15 of ACCB.

27 TFR RA, A Transfers the contents of RAM pointer A
to bits 10-15 of ACCA.

28 TFR RB, A Transfers the contents of RAM pointer B
to bits 10-15 of ACCA.

29 TFR RA, B Transfers the contents of RAM pointer A
to bits 10-15 of ACCB.

30 TFR RB, B Transfers the contents of RAM pointer B
to bits 10-15 of ACCB.

31 TFR CCR, A Transfers the contents of CCR to bits
13-15 of ACCA.

32 TFR CCR, B Transfers the contents of CCR to bits
13-15 of ACCB.

33 TFR SIR, A Transfers the contents (16 bits) of
serial input register SIR to ACCA.

34 TFR SIR, B Transfers the contents (16 bits) of
serial input register SIR to ACCB.

35 TFR A, B Transfers the contents of ACCA to
ACCB.
Only for fixed point data.

36 TFR B, A Transfers the contents of ACCB to
ACCA.
Only for fixed point data.

94

(2) Instruction Format (Type IV)

Label ~ Operation ~ Reg 1, Reg 2 ~ 1 Comment

where Reg 1 and Reg 2 are operands.

1) Operation

2) Reg 1

3) Reg 2

TFR for every instruction

Register on the source side

Register on the destination side

Refer to the mnemonic column.

7.2.5 Increment/Decrement Instructions

There are increment and decrement instructions for the

address pointer and repeat counter.

(1) Operation

Mnemonic Contents

INC RA (RAM PointerA)+l-RAM PointerA

INCRB (RAM PointerB)+l-RAM pointer B

INC RO (ROM Pointer)+l-ROM Pointer

DECRA (RAM PointerA)-l-RAM Po i n t erA

DECRB (RAM pointer B)-l-RAM po i n t e r B

DEeRO (ROM Pointer)-l-ROM Po in t e r

DEeRe Repeat counter (RC) -l+RC

(2) Instruction Format (Type V)

Label ~ Operation Comment

At bit 0, only the RAM pointer selects between A and B.

Note that assembler description is included in the

mnemonic. (Bit 0 = 0/1 = RAM pointer A/B)

95

96

7.2.6 Subroutine Return Instructions

There are subroutine return and interrupt return instruc­
tions available. Any interrupt operation must wait while

such an instruction is being executed.

(1) Operation

No Mnemonic Contents

1 RTN Subroutine return
Stack 0 --. PC
Stack 1 --.. PC stack 0

2 RTI Interrupt return

Stack 0 --. PC
Stack 1 --. PC stack 0

Resets the interrupt mask flag IM,
enabling an interrupt.

(2) Instruction Format (Type VI)

Label 6 Operation Comment

Table 7-1 HSP Instruction Set

T~ INSTRUCTION
MNIBIONI~ OPEI\ATION 21 20 19 18 17 16 15 14. 18 111 11 10 9 8
FADA P/Y+AlX-A~FL~2 0 0 0 0 0 0 0
FADB P/Y+B/X-B(FLT) 0 0 0 0 0 0 1

ADA P/Y+A/X-A 0 0 0 0 0 1 0
ADB P/Y+B/X-B 0 0 0 0 0 1 1

FSBA Ply A/X-A(FLT) 0 0 0 0 1 >< ><ITI
FSBB P/Y-B/X-B(FLT) 0 0 0 0 1 ...• 0 1

S BA P /Y-A/X-A 0 0 0 0 1 1 0
SBB P/Y-B/X-B 0 0 0 0 1 (.) ",g

I FLDA P/Y-A (FLT) 0 1 1 0 0 (.) .• 0 0
FLDB P/Y-B (FLT) 0 1 1 0 0 < '" 0 1

LDA P/Y-A 0 1 1 0 0" 1 0
LDB P/Y-B 0 1 1 0 0'" g
ANDA P/YI\A/X-A 0 0 1 1 0 1 0
ANDB P/YI\B/X-B 0 0 1 1 0 1 1
ORA P/YVA/X-A 0 0 1 (j 0 1 0
ORB P/yVB/X-B 0 0 1 0 0 ::> ~
EORA P/Y>HA/X-A 0 0 1 0 1:l T-ro
EORB P/Y@B/X-B 0 0 1 0 1 < 1 1

FABSA IAI-A (FLT) 0 1 1 0 1 0 0 0 0
FABSB I B I-B (FLT) 0 1 1 0 1 0 0 0 1

ABSA IAI-A 0 1 1 0 1 0 0 1 0
ABSB I B I-B 0 1 1 0 1 0 0 1 1

1 •
><
><
(5

1111 CCR
7 6 5 40 8 2 1 ollcNZ

FRPTBI1Instruction (FLT) 11110 00 0 1
FRPTA !IRepeat next} (FL~2 1 1 1 1 0 0 0 0 0

RPTA 11 use A/B 1 1 1 1 0 0 0 1 0 Direct addressing

I'

RPTB IlUntii RC=O 1 1 1 1 0 0 0 1 1
FNEGA A-A (FLT) 0 1 0 0 0 0 1 0 0
FNEGB -9->8 (FLT) 0 1 0 0 0 0 1 0 1

NEGA -A-A 0 1 0 0 0 0 1 1 0
NEGB -9->8 0 1 0 0 0 0 1 1 1
INCA A+I-A Not protect 0 1 0 0 1 0 0 1 0
INCB B+I-B " 0 1 0 0 1 0 0 1 1
DECA A l-A " 0 0 1 1 1 0 0 1 0
DECB B-I-B " 0 0 1 1 1 0 0 1 ~ E

~:~ c:rn::~~ ~ ~ ~ ~ ~ ~ ~ ~ 1~ .~
~t~ ~;;:r:o-O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

FLTA ~~IX)-~!"L,!?bYY~IU 1 1 1 1 0 1 0 0
FLTB B(FDO-B(FLT)hYY 9 0 1 1 1 1 0 1 OlE .~

g~~ ~~~~~;g:i~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f :
FCLRA 00008-A 1 1 1 1 0 1 0 0 0 < :z:
FCLRB 00008 B 1 1 1 1 0 1 0 0 1 '" '"

CLRA OOOO.-A 1 1 1 1 0 1 0 1 0
CLRB OOOO.-B 1 1 1 1 0 1 0 1 1

FNOPB no operation G'L ') 1 1 1 0 0 1 0 1
FNOPA {ALL } G'LTT) 11 1 1 1 0 0 1 0 0

NO PAule AlB 1 1 1 1 0 0 1 1 0
NOPB 1 1 1 1 0 0 1 1 1

F S GYB Ulla1tA/B ... I,nY CFrm 0 1 1 1 0 0 1 0 1
FSGYA {A/B-+AlB }G'LT) 0 1 1 1 0 0 1 u 0

S G Y A -AlB-A/B 0 1 1 1 0 0 1 1 0
SOYB lTfol_AJ1:Ii...ilrnY 0 1 1 1 0 0 1 1 1

-cOl1t'd-

97

OPERAND OPERATION
INSTRUCTION I CCR

2120 19181916 Ul.18121110 987 8 5 • 8 2 1 0 CNZ
LIA Immediate data-A 1 00000 ,*.U
LIB Immediate data-B 1 0 o 0 0 1 Data *.U

I LIRA Immediate data- RA 1 0 o 0 1 0 o 0 0 0 0 0 0 0 0 o * ~ ..
LIRB Immediate data-RB 1 0 o 0 1 1 O. 0 0 0 0 0 0 0 0 o * ~ ..
LIRO Immediate data-RO 1 0 o 1 0 0 Data o 0 0 0 0 0 0 0 0 o * •••
LIRC Immediate data- ltC 1 0 o 1 0 1 o 0 0 0 0 0 0 0 0 o * •••
JCS Jwnp if C= 1 1 0 1 0 o 0 1 0 0 0 0 0 0 1*··· JNS Jump if N= 1 1 0 1 0 o 0 0 1 0 0 0 0 0 * •••
JZS Jwnp if Z= 1 1 0 1 0 0 0 0 0 I 0 0 0 0 * •••

II JSR Jump to subroutine 1 0 1 0 1 0 0 0 0 0 0 0 0 Jump addresa 1*··· JNE J\lDP if RC~O 1 o 1 0 1 1 0 0 0 0 0 0 0 1*··· JNZM JIIqI if ~O.OO-l-OllC 1 0 1 0 1 1 1 0 0 0 0 0 0 1*··· JMP J UI11P always 1 0 1 0 0 0 0 0 0 0 o 0 0 1* •••
A.STR A-STR 1 1 0 ••• B. STR B-STR 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 " ...
A.CTR A-CTR 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i"··· B.CTR B-CTR 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 I".·. A.RC A-RC 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •••
B.RC B-RC 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 I".·· A.OK A-OR 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •••
B.OR B-OR 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 I"··· A.RO A-RO 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I"··· B.RO B-RO 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 •••
A.RA A-RA 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I".·· B.RA B-RA 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ••• IY A.RB A-RB 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 I".·· B.RB B-RB 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 •••
A.CCR A-CCR 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *In B.CCR B-CCR 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A.SOR A-SOR 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "' ...
B.SOR B-SOR 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 * •••
STR.A STR-+A 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *. * STR.B STR->B 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 *.
CTR.A CTR-+A 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :~' CTR B CTR-+B 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

,.... RC.A RC-A 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *.
~ RC.B RC-B 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ". IR.A IR-A 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • Eo<

t) IR.B IR-B 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 I*e ... RO.A Ro-A 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1*· :z RO.B Ro-B 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1*. i RA.A RA-A 1 1 0 1 0 1 1 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 1*· I'iI1

! RA.B RA-B 1 1 0 1 0 1 1 0 1 0 o ,0 0 0 0 0 0 0 0 0 0 0 I".
RB.A RB-A 1 1 0 1 0 1 1 0 0 0 o 0 0 0 0 0 0 0 0 0 0 1 I"· RB.B RB-B 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 I".
CCR.A CCR-A 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I"· CCR B CCR-B 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 I".
SIR.A SIR-A 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I"· SIR. B SIR-B 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 I".
A.B A-B (FIX only) 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I"~t B.A B-A (FIX only) 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 I".

-cont'd-

98

IINBNONle

INCRA
INCRB
INCRO

V DECRA
DECRB
DECRO
DECRC

1I
RTI
RTN

OPERATION

RA+l-+RA
RB+l RB
RO+l RO
RA I-+RA
RB-l-+RB
RO-l RO
RC-l-+RC
Returm from interrupt
Returm from subroutine

A : Accunrulatcr A
B : Accunrulatcr B

21 20
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

X : X-BUS ,m,m..y output
Y : Y-BUS memory output
P : Multiplier output register
G : General register
D : Delay register

INSTRUCTION
19 18 17 16 15 14 18 12 11 10 9 8
1
1
1
1
1
1
1
1
1

0 0 0 0 0 0 0 0 0
0 0 o 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0

1 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0

CCR : Condition code register
S TR : Status register
CTR : Control register

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

A/B(15-10)-RC/RO/RA/RB(5-0)
.A!B(l5-18)-CCR(2-0)
.A!B(7-0)-STR/crR(7-0)

7 6
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

6 ~ 8 2 0

5
0
0
0
0
0
0
0
0
0

PC : Program counter
RC : Repeat counter
RO : ROM Pointer
RA : RAM Pointer A
RB : RAM Pointer B
I R: Input register
OR : Output register

CCRI c I N I z I
CTRlw/BI/I··1I»'1 w VlZloVFIDMA!
STRI UF I Isol Ist! Ip 11M ISOFI SIFI PFI

SIR : Serial input register
SOR : Serial output register

Generated by the mantissa part of two inputs
(The same as with FIX)

Generated by the mantissa part of two inputs
(The same as with FIX)

Indefinite

1 when A/B $0000, otherwise 0

1 when A/B $FFFF, otherwise 0

1 when A/B r $0000, otherwise 0

~

0
0
0
0
0
0
0
0
0

1 when sign A/B r sign Y and A/B = $0000, otherwise 0

OVF (CTR(l)) = 0 : Not protect, 1 : Protect

•
*

Y, Mant

Y, Mant

Affected

free

$0000, Automatic Overflow Protect

Not affected

free for CTR (1)

8 2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

In the OVFP column, a "1" means "Automatic Overflow Protect".

1 0 ri~ C NZ
0 0 I"'··· 0 1 * •••
0 0 * •••
0 o I'" •••
0 1 * •••
0 0 i"'· ••
0 0 * •••
0 0 * •••
0 0 I"'···

99

100

7.3 Examples of Program

Here are examples of program for the typical filters:

biquad filter and transversal filter. See Fig. 7-3 and

Fig. 7-4.

The coding of the program is based on the HSP's assembler

description.

The example of the biquad filter follows the sequence:

receives 16-bit data from the serial input register (SIR),

makes an arithmetic operation on it using fixed point

representation, and sets the result in the serial output

register (SOR). One stage of processing is contained in

the filter's arithmetic operation. Since the liSP has an

instruction cycle of 250ns, the rate of processing for

8kHz sampling is great enough to implement a 82-stage

biquad filter. Because the data ROM for coefficients is

limited to 128 words, however, it is practically possible

to implement a 32-stage biquad filter.

Wn=Xn+A, *Wn-,+A.XWn-.

Y n =Wn +B, *Wn-, +B. XWn-.

Wn-l -.Wn-z, Wn-+Wn-.

Fig. 7-3 Biquad Filter

...... --~--

N
Qn=:E C i *Wn-i + 1

i=l

Wn-i+1-Wn-i,N=88

Fig. 7-4 Transversal Filter

In the example of the transversal filter, the sequence is:
receives data from the serial input register (SIR), con­
verts the data from fixed point to floating point, makes
a transversal filter arithmetic operation in the form of
flaoting point, converts the data again from floating
point to fixed point, and finally sends out to the serial
output register (SOR).

This program enables a 32-tap transversal filter to be
executed in a period of 10.5 microseconds.

(1) Biquad Fiiter

A biquad filter can be represented as

W.=X.+At .W.-t +At *W.-2 (1)

The assembler program for these equations i s

LIRA 0 ; o - RAM Pointer

LIRO 0 ; o - ROM Pointer

TFR SIR,A ; SIR- ACCA

LIRC n n - RC

L1 NOPA EE XY(", 0) RA At .W.-t

101

ADA PA EE XY (5, 1) RA Az*Wn-z ACCA+P -+ ACCA

ADA PA EE XY(7,1) RA BZ*Wn-Z' ACCA+P -+ ACCA

ADA PA A XY(6,O) RA BloWn-1' ACCA+P -+ ACCA,

Wn -1- DREG., ACCA - Wn-1

ADA PA D XY(7, 1) RA+, RO+ DREG. - Wn-Z' ACCA+P -+ ACCA,

RAM POINTER + 1, ROM POINTER +
JNZ L1 Jump to L1 if (RC)~O

TFR A, SOR ACCA- SOR

Data Page address

memory 0 1 2 3 4 ~ 6 7

00 Wn-1 Wn-2 A, A. B, B.
Pointer 01 Wn'-1 Wn'-2 A; A~ B; B~
address 02 Wn't.l Wn'-2 A; A; B: B;

03

102

(2) Transversal Filter

The' aa-tap tranlverl.1 fi Iter il represented by;

a8
Q -2: C .w (3)

i-I i n-I+l

W W (4)
n-I+l n-i

One .ampl in. de I ay of the

pro.ram for the. e equatlonl

filterln. I •• hown II Eq.(n, The "Iembler

I I

LIRO

LIRA

LIRe

TFR

FLTA

FCLRA

FRPTA

FADA

FADA

FlXA

TFR

Data
memory

Pointer
address

0 o ROM POINTER

0 o ... RAM POINTER

81 81'" RC

SIR.A ; S I'e-. ACCA

EE 1.00 ;Flxed Float In.

A O. 00 ; 0 ACCA. ACCA Wn

EE .,00 ;Next inst, repe~t

PA D XY(., 0) PA+. RO+ ; ACCA+C I*Wn-i +1.

00

81

PA EE 0, 00

EE I, 00

A. SOR

0

Wn'

Wn-l

Wn-Z .
I , ,

Wi -n+l

1

;ACCA+C88 *Wn-81

;Floatin,"" Fixed

;ACCA SOR

Page address
I 8 •

C,

C1

C. , , ,
dn

Wn-i+l Wn-i

10.5.a1

5 8 7

103

104

8. APPLICATION SYSTEM CONFIGURATION

8.1 Stand-alone Configuration

The HSP has functions and instructions as possessed by a

single-chip microcomputer, so that it is possible to

configure a system consisting of one or more HSP units.

See Fig. 8.l(a).

By making the chip select input terminal CS non-active

("1"), this configuration disables HSP control based on

function control input FO-F3. The result is that the HSP

operates only in the internal program mode.

8.2 Peripheral LSI of 8-Bit Microcomputer (6800)

Shown in Fig. 8.l(b) is the interface where the HSP is

used as the peripheral LSI of an 8-bit microcomputer

(6800) •

Because of being compatible with the 6800 bus interface,

the HSP requires no complicated interface, as understood

from Fig. 8.l(b). The bit I/O output is of open drain

output and so may be used also as interrupt signals to

the microcomputer.

Ana1 0c
Input

HSP
">-----1 S I SO Ana10c

Output

~ -...,...----1 SIEN SOEN 1----­
..n..rI..._ SICK SOCK 1-----

all '0·

(a) Stand-alone Syatem

OBE e'S" HSP SI

0800 ~~t~t~~~~=~ SIEN 1---A~ ~ SICKi---
R AU I E SOCK 1----
" .. "R::+-~-l-IiI------I Im"S SOEN 1---
til Bit I/O

Im"S
IRQ 0.- 1 SO

8

(b) }l-Com (6800) Interface

Fig. 8-1 HSP's Application System Configuration

lOS

9. ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Rating

Parameter Symbol Standard range Unit

Power voltage VCC -0.3 to +7.0 V

Terminal voltage Vin -0.3 to VCC+O.3 V

Operating temperature Topr -20 to +70 DC

Storage temperature Tstg -55 to +150 DC

106

9.2 Electrical Characteristics

(1) DC Characteristics.

Unless otherwise specified, VCC S.OV +S%, VSS OV and Ta -20 to +70°C.

Parameter Symbol Condition Min Typ Max Unit

Input HIGH OSC, IE, SICK, 2,2 - Vcc+O.3 V level voltage SOCK

Other input
VIH

terminals 2.0 - Vcc+0.3 V

Input LOW OSC, IE, SICK, -0.3 - 0.6 V level voltage SOCK

Other input
VIL

terminals -0.3 - 0.8 V

Input leak TEST, TXAK, IE, IIIN I Vin= 0 to 2.4V - - 10 llA
current R/W, CS, FO-F3,

DEND, SI, SIEN,
SOCK, SOEN,
SICK, RPSE,
OSC

Three-state DO-DIS, SO IITSII v. = 0 to 2.4V - - 10 llA
(off) current ~n

Open drain TxRQ, BIT I/O I I LOH I V in = 0 to 2. 4V - - 10 llA
(off) current

-cont'd-

......

~

.....
o
CO

Parameter Symbol Condition Min Typ Max

Output HIGH 00-015, SO, -IOH= 400llA 2.4 - -
level voltage SYNC VOH

-IOH= 101lA Vcc-0.5 - -

Output LOW All output VOL I OL= 1.6mA - - 0.4
level voltage terminals

Input All input C. Vin= OV, f = lMHz, - - 12.5
capacity terminals ~n

Ta = 25°C

Current ICC No load at output - 50 100
consumption

(2) AC Characteristics (Basic Clock)

Unless otherwise specified, VCC= 5.0V ~5%, VSS= OV and Ta= -20 to +70°C.

Parameter Symbol Condition Min Typ Max

Clock (OSC) cycle !6cyc 61.5 62.5 70.0

Clock (OSC) pulse width !6WH 20 - -

!6WL See Fig. 9-l. 20 - -

Clock (OSC) rise time !6r - - 10

Clock (OSC) fall time !6f - - 10

Unit

V

V

V

pF

llA

Uri it

ns

ns

ns

ns
I

ns

(3) Serial Input/Output Timing

Unless otherwise specified, VCC= 5.0V ~5%, VSS= ov and
Ta= -20 to +70 o C.

Parameter Symbol Condition Min Typ Max Unit

Clock cycle Scyc see Figs. 9-2 1.0 - 10.0 I.Is
(SICK/SOCK) and 9-5.

Clock pulse SWH 450 - - ns
width
(SICK/SOCK) SWL 450 - - ns

Clock rise Sr - - 25 ns
time
(SICK/SOCK)

Clock fall Sf - - 25 ns
time
(SICK/SOCK)

Serial input t SDS 100 - - ns
data setup
time

Serial input tSDH 100 - - ns
data hold
time

Serial output tSDD - - 250 ns
data delay
time

Enable delay tED 50 - - ns
time

Enable setup t ES 100 - - ns
time

109

110

(4) Bus Interface Timing

Unless otherwise specified, VCC= 5.0V ~5%, VSS= OV and

Ta= -20 to +70 o C.

Parameter Symbol Condition Min Typ Max Unit

IE cycle t See Figs. 9-3 1.0 - 10.0 llS cyc and 9-5.
IE pulse width ~H 450 - - ns

~L 450 - - ns

IE rise time t r - - 25 ns

IE fall time t f - - 25 ns

CS setup time tcs 140 - - ns

CS hold time tCH 10 - - ns

Address setup tAS 140 - - ns
time

Address hold tAH 10 - - ns
time

Address setup t AC 10 - - ns
time

Address hold tCA 20 - - ns
time

Input data tosw 120 - - ns
setup time

Input data tOHW 10 - - ns
hold time

Output data tOOR - - 220 ns
delay time

Output data tOHR - - 10 ns
hold time

(5) DMA Interface Timing

Unless otherwise specified, Vcc= 5.0V ~5%, VSS= OV and

T = -20 to +70°C. a

Parameter Symbol Condition Min Typ Max Unit

TxAK setup tAS See Figs. 9-4 140 - - ns
time and 9-5.

TxRQ delay tTR - - 470 ns
time

111

112

OSC

SICK

SOCK

SIEN
SOEN

SI

SO

Fig. 9-1 Basic Clock Waveform

Fiq. 9-2 Serial Input/output Waveform

IE

cs

RW

F~-F3

D.-Dn
(BUS HSP)

tCl"C

tf 1----- t WL ----I tr 1----- t WI!

tDSW

D.-o\5 ~OH(22V) ~
DDR

(HSP BUS~) --------------0::: ~OL(O.6V)

Note: The HSP makes a halt operation at BUS --. CTR, PC.

The halt consists of the logic of CS and FO-F3. It

is necessary to secure the above t AC and tClI values

to prevent a temporary halt at a point where the

signal changes. If, however, no halt is expected

to take place at such a change (F2 and F3 are fixed

at LOW), the t AC and tCA conditions are each "don't

care".

Fig. 9-3 Bus Timing

113

114

IE

TxAK

TxaQ

Fig. 9-4

a c

Applicable terminal
(DO - 015, SO)

DMA Timing

,Applicable terminal
(Tx RQ)

Fiq. 9-5 Load Circuit (for Timinq Test)

