@ HITACHI SISl
6301 CROSS ASSEMBLER
USER'S MANUAL

1S1S-I
6301 CROSS ASSEMBLER
USER’S MANUAL

@ HITACHI

When using this manual, the reader should keep the following in mind:
1. This manual may, wholly or partially, be subject to change without notice.

2. All rights reserved: No one is permitted to reproduce or duplicate, in any
form, the whole or part of this manual without Hitachi’s permission.

3. Hitachi will not be responsible for any damage to the user that may result
from accidents or any other reasons during operation of his unit according
to this manual.

4. This manual neither ensures the enforcement of any industrial properties
or other rights, nor sanctions the enforcement right thereof.

INTRODUCTION

The S31MDS1-F is a cross assembler which runs on Intel* development systems under the
ISIS-II operating system, and processes assembly language programs for the HD6800
micro-processor and HD6801 and HD6301 single-chip microcomputers. The assembler
accepts ISIS-II files containing 6800/6801/6301 source statements, and produces
assembly listings and object files.

*“Intel” is a registered trademark of Intel Corporation, Santa Clara, CA.

The cross assembler is provided in the form of a single sided, double density floppy disk.

1
2

2.

2.

TABLE OF CONTENTS

PAGE

DESCRIPTION OF ASSEMBLER - ----o-ooom oo oo 1
FORMAT OF STATEMENTS - ~-------------——--——--——————-— 3
1 General Concepts ------—--——---——-=--=---———-——-- 5
2.1.1 Constants ------—-----=-------=-=----=--=="" g
2.1.2 location Counter ----—----—-—-—-----—c-—- 7
2.1.3 Symbols ----—-----------—-- - 7
2.1.4 Expressions ---—=---m--—mmommmmmmm o — 9
2.1.5 Fields —--=---—--=-------------m————- 10

2 Instructions = ------cemmmmm - m e 13
2.2.1 Inherent Addrssing Mode —=-----=—c—conme--. 13
2.2.2 Immediate Addressing Mode —--—--———---—---- 14
2.2.3 Direct and Extended Addressing Modes ------ 15
2.2.4 Indexed Addressing Mode ——--ee-emmo——-- 16
2.2.5 Relative Addressing Mode -=---—ecememaa-- 16
2.2.6 Immediate-Direct Addressing Mode -~--—----- 17
2.2.7 Immediate—~Indexed Addressing Mode ---—---- 17
2.2.8 Bit-Direct Addressing Mode —----——--—-w-- 18
2.2.9 Bit-Indexed Addressing Mode —— e 18

Table of Contents -- Continued

PAGE

2.3 DirectivesS = - - oo _____._ 18
2.3.1 END @~ e e e 19
2.3.2 ENDC —-—m o 20
2.3.3 EQU @ —— e e e e ol 21
2.3.4 FCB g g S 23
2.3.5 FCC mm oo e e e m e = 24
2.3.6 FDB - mmmerr e e e e e e 25
2.3.7 IFXX —~ === o mmm e e m e 26
2.3.8 ORG - mmrm e e ———— 28
2.3.9 BRMB m ;e mm e e e e - - 29
2.3.10 SET o 30
2.3.11 SPC g S 31

3 USING THE ASSEMBLER ~— - —---- oo e e e e e 32
3.1 Primary vs General Controls e
3.2 Primary Controls —-=—---~—-——————-—— —w-— . 33
3.3 General Controls - ——— — - - e e o 35
3.4 Initial Settings of Controls —---cemmmoeemmno_ 36
4 DESCRIPTION OF FILES PRODUCED @ - -—- cm oo e o 37
4.1 Listing File W — - - - mmmmm o oo oo 37
4.1.1 Source Listing Format -—-----=--=—=c-eoa—_ 37
4.1.2 Error Messages -——----=—=—==~-——=—-—_——«~--- 39
4,1.3 Symbol Table Format ~-—--------—-=-—--- 40
4.1.4 Cross Reference Format T T T L
4.2 Object File - —=-m-—mmmmm e e e 42

4.3 Console Output e T P

APPENDIX A INSTRUCTION TABLE - —— —— — — = — = = — — — _ — — — _ 43
APPENDIX B EXAMPLE OF PROGRAMMING == — —~—— — — — — — — — — — _ 46
APPENDIX C EXAMPLE OF PROGRAM DEVELOPMENT - - - — — — — — — — — — — 52

1 DESCRIPTION OF ASSEMBLER

The ISIS-I1 6301 Cross Assembler runs on Intel development systems under the ISIS-II
operating system, and processes assembly language programs for the HD6800 micro-
processor and HD6801 and HD6301 single-chip microcomputers. The assembler accepts
ISIS-II files containing HD6800/6801/6301 source statements, and produces assembly
listings and object files.

This manual assumes familiarity with the Intel development system, the ISIS-II operating
system, and the HD6800 microprocessor and/or the HD6801 and/or HD6301 micro-
computers. The purpose of the manual is to assist a user already familiar with the
HD6800/6801/6301 instruction set and architecture in using the assembler. For further
information on the development system and ISIS-II, consult the Intel publications:
ISIS-IISYSTEM USER’S GUIDE, 9800306 and the publication describing your version
of the MDS (development system). For information on the architecture and instruction set
of the HD6800, HD6801, and/ or HD6301, consult the appropriate Programming Refer-

ence Manual from the processor’s manufacturer.

To use the assembler, you will require an Intel disk-based Microcomputer Development
System with 32K or more of RAM memory and two or more disk drives, ISIS-II

operating system software, and a diskette containing the program ASM31.*

*Program name is ASM31. HITACHTs Part No. is S3IMDSI-F. Please note the

difference.

HITACHI

1

Section 2 of this manual will describe the required assembly language statement format.
Section 3 will describe the command lines used to invoke the assembler. Section 4 covers
the files produced, including the source listing (with a list of possible error messages) and

the object file.

The assembler normally assumes the opcodes to be for the HD6800 microprocessor. Use
of the MODO! or MOD3I control (see section 3.2) is necessary to enable use of the full
HD6801 opcode set (of which the HD6800 opcodes are a subset). Use of the MOD31
control is necessary to enable use of the full HD6301 opcode set (of which the HD6800 and
HD6801 opcodes are a subset).

2 HITACHI

2 FORMAT OF STATEMENTS

An assembly language program consists of a series of source
lines, which fall into four categories:

1: Blank lines - contain no printing characters.

2: Comment lines - begin with an asterisk ("*").

3: Control lines - begin with a dollar sign ("S").

4: Assembly language statements, including instructions

and directives.

Blank lines, which contain no characters other than spaces or
tabs, and comment lines, which are identified by an asterisk as
the £irst character, are ignored by the assembler except for
purposes of listing, and can be included at any point before
the END statement. Controls will be described in section 3,
assembly language instructions in section 2.2, and assembler
directives in section 2.3.

Each line consists of a series of ASCII characters ending with
a carriage return and line feed. Tabs are converted to one or
more spaces, as required to advance the listing to the next tab
position on the line. (Tab positions occur at every eight
columns starting at the first character cf the line.)

HITACHI1

3

assembly language statement

- ---comment line

assembly language statement

STITLE(F 2-1) ====—--~--—------~~--—-—control line
INCHNF Eoid SOLR0
NEGDAT Equ FUS mmmmmmemmmmmm e
~--=-------—-—---------—Dblank line
RS FOLAD
INFUT ONE HEXALDECIMAL CHAR ZONVERT T BCD
NEG CONLIITION CODE. RESET=G000 HEX . SET=NOT
INIH &R INCHNP
SRR CMEFA #$30 < CONVERT BCZD TO HEX
Bl INLHE NOT HEX —~-=---eeeew--
CMFA #4372
BLE INLHG G030 HEX
ZMEA #$41
BMI INIHE NOT HEX
CHFA #3544
BHI INIHEB NOT HEX
SLEA #7
IN1HG ANDE #EF MASE TO RID-RESET NESG
RTS
INIHE T2TA HEF SET NEG ZONDITOIN CODE
RTS
END
Fig. 2-1 Sample of source program

4 HITACHI

2.1 General Concepts

Before describing the formats of individual instruction and
directive statements, this manual will explain the general form

of assembly language statements.

z2.1.1 Constants

Constants can be specified as numbers (in binary, octal,
decimal, or hexadecimal notation) or characters.

Number constants consists of one or more digits valid in the
particular base in which they are expressed, preceded (except
in the case of decimal numbers) by a special character to
indicate the base. The base-designation prefixes and valid
characters are given for each base in the table below:

Base Prefix Char Valid Digits
2 (binary) % 0,1
8 (octal) Q 0..7
10 (decimal) (none) 0..9
16 (hexadecimal) s 7 0..9, A..F

For example, the number 19 decimal could be expressed as "19",
"$13", "@23", or "%10011",

The allowable range of values for constants is 0..65535 decimal
($0..$FFFF hexadecimal). If a larger constant is specified, the
constant is converted to a value within the allowed range.

HITACHI

5

Character strings are identified by their first character,
which is a single-guote character ("'"). The single-gquote is
followed by one or more ASCII characters and a closing
single-quote. To represent the single-gquote character itself
as one of the characters in the string, the single-quote must
occur twice in a row between the opening and closing

single-quote marks.

For example, a space would be coded as "' '", the capital
letter 2 as "'2'", and the word "CAN'T" as "'CAN''T'".

Note that non-printing ASCII characters cannot be coded in this
fashion. They must be coded by their numerical egquivalents;
for instance, a carriage return can be coded as "$SOD".

The interpreted value of the string is dependent on how the
string is used. Each string is encoded as a series of bytes,
one per character. The first byte corresponds to the €£first
character of the string, and so on. If a one-character string
is used in an expression, the wvalue returned is the numeric
equivalent of the ASCII character in that string, in the range
$0020..S007F. If a two-character string is used, the wvalue
returned has the first character in the left-hand (more
significant) byte and the second character in the right-hand
(less significant) byte of a two-byte value. Each byte is
again in the range $20..$7F.

For example, "'A'" returns $41, while "'AB'" returns $4142.
Strings of more than two characters are not meaningful in

expressions; their use is limited to the FCC directive (see
section 2.3.5) and the TITLE control (see section 3.3).

6 HITACHI

2.1.2 Location Counter

The location counter is an internal value maintained by the
assembler. It indicates the address where the next instruction
or data byte will be placed. The assembler assumes a starting
location counter value cf $0000. The location counter can be
changed at any time using the ORG directive (see section
2.3.8).

Whenever a byte of code is stored (resulting from a 6800/6801/
6301 instruction or a dat; definition directive), the location
counter 1is incremented by one (1). For example, 1if the
location counter value is $013A, and the instruction "LDAA #1"
is encountered, the two-byte code for the instruction will be
stored at locations $013A and $013B, and the location counter
value will be changed to $013C.

The wvalue of the location counter can be used in expressions
via the asterisk ("*") in an expression-operand position. (In
an expression-operator position, the asterisk denotes
multiplication.) The location counter value is in the range
$0000..SFFFF.

2.1.3 Symbols

Symbols are specified as a sequence of one to six alphanumeric
characters, the first of which must be alphabetic. They can
take on any values in the range $0000..SFFFF.

Some examples of valid symbol names are: "a", "LOCTN1", and
"FFFF". Note that the latter 1is a symbol name and not a
hexadecimal constant because it begins with a letter, not "$".

HITACHI

7

8

Symbols are defined when used as labels of instructions or
directives. A symbol first defined as the label of a SET
directive can be redefined later in the program via another SET
directive. Prior to the first definition of that label, its
value will be the last value to which it is SET in your
program. After the first definition (including in the symbol
table listing), the symbol always has the most recent value
assigned to it by a SET directive. For example:

;é;erence 1 to symbol SYMBl
SYMB1 ;It:';.‘ 4

;;éerence 2 to symbol S¥YMBI1
swsl ser 15

;;;erence 3 to symbol SYMBI1

END

In the above program, references 1 and 3 to symbol SYMBl would
return the value 15, while reference 2 would return the wvalue
4., The symbol table would show the value 15 ($000F).

Any symbol first defined as a label of some statement other
than SET may not be redefined later in the program. Attempting
to redefine such a symbol will result in an error (see section
4.1.2). Attempting to redefine, by means other than SET, a
symbol first defined via SET will result in a similar error.

HITACHI

2.1.4 Expressions

Expressions are combinations of symbols, constants, location
counter references, and/or operators which produce a value.
They are used in the operand field of a statement (see section
2.1.5 for more on statement fields). The minimum expression
consists of a single symbol or constant or 1location counter
reference, Using arithmetic and 1logical operators and
additional symbols and/or constants, more complex expressions

can be constructed.

The allowed operators (all single characters) are:
* multiplication
/ division
+ addition
- subtraction (or negation if used as unary operator)

In addition, 1left and right parentheses ("(", ")") are
available for grouping and for overriding operator priorities,
which are as follows (all operators on the same line have the
same priority; operators on higher lines are executed first):

unary -
* /
+ -

As mentioned above, any subexpression in ©parentheses |is

executed first, using the above priorities.

As an example of priorities of expression evaluation, the

expression "5+(3+4)*2" would produce the value 19.

HITACHI

9

2.1.5 Fields

Each assembly statement (instruction or directive) is divided
into up to four fields as follows:

BHI INIH®E NIOT HEX
SLIEA #7

INL1HG ANDIA #BF MASK TO BID-RESET NEG
RTS

INLHB rsTA H#BE SET NEG CONDITION CODE
RTE
END

comment field
operand field
opcode field
label field

Fig. 2-2 Fields

(1) Field Usage

Only the opcode field is required in all assembly statements.
(These fields do not apply to blank lines, comment lines, or
control lines.) The opcode field contains the name of the
instruction or directive. The requirements of the other fields
are dependent on which instruction or directive 1is 1in the
opcode field.

The label field is used for symbol definition in instructions,
data definition directives, and EQU and SET directives, as
described previously (see section 2.1.3).

If the instruction or directive in the opcode field uses an
operand, the operand field is required. 1If no operand is used
for that particular instruction or directive, the operand field
is omitted. The contents of the operand field vary with the
type of instruction or directive.

The comment field 1is 1ignored by the assembler except for

purposes of 1listing. It allows the programmer to insert
remarks into the text of the assembly language program.

10 HITACHI

Next come up to four pairs of hexadecimal digits, in one to
four columns. For one-byte instructions, there is one column
with two digits, representing the byte of code generated. For
two-byte instructions, there are two columns with two digits
each. For three-byte instructions, there are two columns --
the first with two characters, the second with four characters
(representing two bytes). Data definition directives list up
to four bytes per line, each as two hexadecimal characters.

After these columns is the line number and the source line.

HITACHI 11

(2) Field Formatting

The label field may optionally end with a <c¢olon (":")
immediately following the symbol name. The label field must
begin with the first character on the line (ie, it may not have
any spaces or tabs preceding it), whether it is used with or

without a colon.

If the label field is present, it is followed by one or more
spaces and/or tabs followed by the opcode field. If the label
field is omitted, the line must begin with one or more spaces
and/or tabs followed by the opcode field.

If the opcode field contains a four-letter instruction name
which references a register (A, B, D, or X) with the fourth
letter (for example, LDAA), the fourth letter may optionally be
separated from the first three with a space or tab. For
example, LDAA can be written as "LDAA" or "LDA A".

The operand field, if present, 1is separated from the opcode
field by one or more spaces and/or tabs.

The comment field, if present, 1s separated from the field
preceding it (the opcode field if there is no operand, the
operand field if an operand is present) by one or more spaces
and/or tabs.

12 HITACHI

2.2 Instructions

Instructions are statements which generate actual code to be
executed by an HD6800/HD6801/HD6301. They are classified here
according to the addressing modes they use. The addressing
mode, in turn, determines the use of the operand £field of an

instruction.

2.2.1 Inherent Addressing Mode

Instructions with inherent addressing have no operands; the
operand field is thus omitted with these instructions.

The following instructions use inherent addressing

(exclusively):

ABA ASLA ASLB ASRA ASRB CBA CLC CLI

CLRA CLRB CLV CoMA COMB DAA DECA DECB

DES DEX INCA INCB INS INX LSRA LSRB

NEGA NEGB NOP PSHA PSHB PULA PULB ROLA

ROLB RORA RORB RTI RTS SBA SEC SEI

SEV SWI TAB TAP TBA TPA TSTA TSTB

TSX TXA WAI

(for HD6801/HD6301 only: ABX ASLD LSLA LSLB LSLD
LSRD MUL PSHX PULX)

(for HD6301 only: SLP XGDX)

These instructions generate one byte of code each.

HITACHI 13

2.2.2 Immediate Addressing Mode

Instructions with immediate addressing require an operand field
consisting of the character "#" followed by an expression (for
example, "LDAA #VALUEl-1".

All instructions which can use immediate addressing can also
use direct, extended, and indexed addressing (discussed in
sections 2.2.3 and 2.2.4 below).

The following instructions can use immediate addressing. The
expression in the operand field should produce a value in the
range 0..255 ($0..$FF) for the two-byte instructions and
0..65535 ($0..$FFFF) for the three-byte instructions. The
two-byte immediate instructions are:

ADCA ADCB ADDA ADDB ANDA ANDB BITA BITB
CMPA CMPB EORA EORB LDAA LDAB ORAA ORAB
SBCA SBCB SUBA SUBB

The three-byte immediate instructions are:

CPX LDS LDX
(for HD6801/HD6301 only: ADDD LDD SUBD)

14 HITACHI

2.2.3 Direct and Extended Addressing Modes

Instructions with direct and extended addressing require an
cperand field consisting o©f an expression (which the
HD6800/6801/6301 interprets as an address). If the

instruction can use direct addressing, and the expression
contains no forward references (see section 2.3.3 for an
explanation of forward references) and evaluates to a value in
the range 0..255 ($0..$FF), direct addressing will be
automatically selected, and the instruction will produce two
bytes of code. 1In all other cases, extended addressing will be
used, and the instruction will produce three bytes of code.

The following instructions can use either direct or extended

addressing:

ADCA ADCB ADDA ADDB ANDA ANDB BITA BITB
CMPA CMPB CPX EORA EORB LDAA LDAB LDS
LDX ORAA ORAB SBCA SBCB SUBA SUBB

(for HD6801/HD6301 only: ADDD LDD STD SUBD)

The £following can use extended but not direct addressing:

ASL ASR CLR coM DEC INC JMP JSR
LSR NEG ROL ROR TST
(for HD6801/HD6301 only: LSL)

For HD6801/HD6301 only: JSR can use direct as well as extended

addressing.

HITACHI

15

2.2.4 Indexed Addressing Mode

Instructions with indexed addressing require an operand field
consisting of an expression (interpreted by the 6800/6801/6301
as an address) followed immediately by the two-character suffix
"X", For example: "LDAA OFFSET,X". They generate three
bytes of code.

The following instructions can use indexed addressing. Note
that they are the same instructions as those which can use
extended addressing:

ADCA ADCB ADDA ADDB ANDA ANDB ASL ASR
BITA BITB CLR CMPA CMPB coM CpX DEC
ECRA EORB INC JMP JSR LDAA LDAB LDS
LDX LSR NEG ORAA ORAB ROL ROR SBCA
SBCB SUBA SUBB TST

(for HD6801/HD6301 only: ADDD LDD LSL STD SUBD)

2.2.5 Relative Addressing Mode

Instructions with relative addressing require an operand field
consisting of an expression producing as a value an address
which is in the range *-126 to *+129 where "*" is the location
counter value prior to processing the instruction (ie, "*" is
the address at which the first byte of the instruction will be
placed).

16 HITACHI

The following instructions use relative addressing

(exclusively):

BCC BCS BEQ BGE BGT BHI BLE BLS
BLT BMI BNE BPL BRA BSR BVC BVS
(for HD6801/HD6301 only: BHS BLO BRN)

2.2.6 Immediate-Direct Addressing Mode (HD6301 only)

Instructions with immediate-direct addressing require two
operands: the character "#" followed by an expression (in the
range 0..255, or $0..3%FF), and a direct address value (in the
range 0..255, or $0..$FF), separated by commas. For example:
"AIM #S$7F,$D5".

The following HD6301 instructions use immediate-direct

addressing (plus immediate-indexed addressing):
AIM EIM OIM TIM
2.2.7 Immediate-Indexed Addressing Mode (HD6301 only)

Instructions with immediate-indexed addressing require two
operands: the character "#" followed by an expression (in the
range 0..255, or $0..$FF), and an expression (with a value in
the range 0..255, or $0..%FF) followed immediately by the
two-character suffix ",X", separated by commas. For example:
"OIM #$18,2,%X".

See section 2.2.6 above for the HD6301 instructions which use

immediate-indexed (and immediate-direct) addressing.

HITACHI 17

2.2.8 Bit-Direct Addressing Mode (HD6307 only)

Instructions with bit-direct addressing require two operands:
the bit number (in the range 0..7) and a direct address value
(in the range 0..255, or $0..$FF), separated by commas. For
example: "BSET 4,$3B".

The following HD6301 instructions use bit-direct (and

bit-indexed) addressing:
BCLR BSET BTGL BTST
2.2.9 Bit-Indexed Addressing Mode (HD6301 only)

These instructions (the same ones as listed in section 2.2.8
above) require two operands: the bit number (in the range
0..7), and an expression (with a value in the range 0..2533, or
$0..3FF) follcwed immediately by the two-character suffix ",Xx",
separated by commas. For example: "BTGL 3,0FST,X".

2.3 Directives

Directives differ from instructions in that they do not produce
code for instructions which can be executed by the 6800/6801l/
6301. Some place data constants into the code; others generate
no code at all, but are used by the assembler for other
purposes, such as changing the location counter or signifying
the end of your program. The valid assembler directives are:

END ENDC EQU FCB FCC FDB IFC IFEQ
IFGE IFGT IFLE IFLT IFNC IFNE ORG RMB
SET SpC

18 HITACHI

2.3.1 END

The END directive is used to indicate the end of your program.
It cannot be omitted, and must be the last line of the program.
Any lines folleowing the first END statement occurring in the
file will be ignored (they will not even be listed). The END
statement does not use the operand field.

TEIS-11 &301 CROZZ ASIEMBLER. V1,0, HITACHI LTL. FAGE

1 %0031
e
3 4 END DIRECTIVE
4 *

1600 & RS $ 1000

1000 T 0000 7 START LoD #O

1003 FIO 1004 = =STO VAL.

1O0A 10 VAl RMEB z

100 11 ENL

AZSEMBLY COMPLETE. N0 ERRIORE.

Fig. 2-3 END directive

HITACHI 19

2.3.2 ENDC

The ENDC directive is used to indicate the end of a conditional

assembly

section

initiated by a corresponding IFC directive

(see section 2.3.7). The maximum nesting depth allowed for
conditional assembly directives (IFxx..ENDC blocks) is eight.

151511 4301 CROSE

OO0l
QOO

OO0 20
QOO4 45
OODE 45

oOOa 2O
QOCE 45
O01E 4%

OOL4s

AZZEMBELY

20 HITACHI

41 53 =X
ap 42 4T

20

41 S3 =5
40 42 4C

20

COMHLETE.

ASSEMELER > V1.0. HITACHI LTD. FASE
1o
2 % CONDITIONAL ASSEMELY
3w
S FLAGL SE] 1
& FLAGZ SET 2
2 IFEG FLAGL
9 Foc EKIP
10 ENLIC

12 IFNE]
13 Foo ASZEMBLE
14

15

14 ENLC

L IFED FLAGL-1

19 Foi * ASZEMBLE °
o

) ENDIZ

24 END

N ERRORS.

Fig. 2-4 ENDC directive

2.3.3 EQU

The EQU (equate) directive 1is used to assign a value to a
symbol. While a symbol may be defined by placing the symbol
name in the label field of an instruction statement or a data
constant directive, that definition can only give the symbol
the value of the location counter at that point in the program.
Sympol definition with the EQU directive allows the symbol to
take on any value, which is stated as an expression in the
[required] operand field. For example:

VAL EQU 5+(3+4)*2
Loca EQU *
Locs LDAA #VAL

would assign the value 19 to VAL and use that value as the

immediate operand of the LDAA instruction. LOCA and LOCB would
both be assigned the same value, that of the locaticn counter

before the LDAA instruction is processed.

13158-11 4301 CROSS ASSEMBLER. V1.0, HITACHLI LTL. FAGE 1

3
+ EGd DIRECTIVE
+

[A

OOO0 & LARL RME 100
Q003 2 LARZ ER LABL+S
OO0S 10 LAB3A EGiL LAEZ
12 LABY Ei TEHS1LE/100
13 LAERS Bt
14 LLABRA [=Aain Blaw/s
15 LAR7 gl 17200+2/ 100
QO0L4 17 END

EMELY COMFLETE. NO ERROMZ,

Fig. 2-5 EQU directive

HITACHI 21

One symbol may be used in defining another symbol. If the
symbol used in an operand field expression is defined later in
your program than its use in that expression, then it is said
that the expression contains a "forward reference™ to the
symbol. Two-level forward referencing is when the definition
of a forward-referenced symbol itself contains a forward
reference. Such two-level forward referencing cannot be
handled by the assembler, which will not be able tc define the
first symbol in the chain. Consider this section of a program:

VALl EQU 1

VAL2 EQU VAL4
VAL3 EQU VAL
VAL4 EQU VAL®6
VALS EQU VAL4
VALG EQU 6

VAL7 EQU VAL3

In the above example, VALl is set to 1 and VAL6 1is set to 6.
VAL3 is also set to 1, then VAL7 is set to 1. Now consider
VAL4; it «contains a forward reference to VAL6 but the
definition of VAL6 itself contains no forward references, soO
VAL4 will be correctly set to 6. VALS uses VAL4 after VAL4 has
been defined, so again there is no problem. But VAL2 has a
forward reference to VAL4, which 1in turn has a forward
reference to VAL6. This is two levels of forward referencing,
and cannot be processed correctly. VAL2 will be flagged as
undefined.

22 HITACHI

2.3.4 FCB

The FCB (form constant byte) directive requires one o©r more
operands separated by commas (","). The value of each of the
operands should be in the range 0..255 ($0..3FF -~ 8 bits).

Each operand value will be stored as one byte in the generated

code, in the order that the operands occur, left to right.

1EIE-11 4301 CROSS ASSEMBLER. V1.0, HITACHI LTD, FAGE
1 =
d o« FCOR LDIRECTIVE
3 ok
0000 FF 5 FLCR FFF
0001 O1 01 I FIZR #2001
0003 04 7 LAR FLR bR Oy
OO04 OF 07 O3 2 FZBR LAG 7.2
0007 7 ENL!
AZSEMRLY COMFLETE. NO ERRORZ,

Fig. 2-6 FCB directive

HITACHI

23

2.3.5 FCC

The FCC (form constant character string) directive requires in
the operand field either: (1) a character string enclosed in
single gquotes; or (2) a number, followed by a comma, followed
by a string in single guotes. Each character in the string
will be stored as one byte in the generated code, in the order
that the characters occur, left to right. If the second form
of the operand is used, the number given will determine the
number of bytes to be generated. If the number is greater than
the count of characters in the string, space characters (" ",
or $20) will be appended to the string until the specified

number of bytes has been generated. Examples:

FORM1 FCC 'STRING OF TEXT!
FORM2 FCC 80, 'STRING TO WHICH SPACES ARE APPENDED'
JEIE-11 4301 CROZS ASSEMELER. V1.0, HITACHI LTL. FaGE
1 =
2 % FID DIRECTIVE
3 %
0000 54 45 S S oMo Fioi *TEX1?
& MSIEE Fs YLTTEXT

Q0G4 54 45
DOOE 20 0=
OO0 2
QOO

PO TORN

ENI!

AZSEMBLY COMPLETE. NI ERRORS,

Fig. 2-7 FCC directive

24 HITACHI

2.3.6 FDB

The FDB (form double-byte constant) directive requires one or
more operands separated by commas. The value of each operand
can be anywhere in the range 0..65535 ($0..3$FFFF =-- 16 bits).
Each operand value will be stored as two consecutive bytes

(more significant byte first) in the generated code.

15I5-11 4301 CROZE ASTSEMBLER. V1.0 HITACHI LTL. FAIGE
1
2« FIOR DIRECTIVE
3
OO0 OO O = FLE =&
OOOZ OO OF 00 FF LAR Fog $F ~SFF s EFFF . 8FFFF

0004 OF FF FF FF
QODA OO 04
DOOC

FD3 LAR+E
ENLI

PO YIEN)

ASSEMBLY COMPLETE. NO ERRORS.

Fig. 2-8 FDB directive

HITACHI 25

2.3.7 IFxx

These directives allow the assembler to conditionally assemble
the section of your program between the IFxx directive and the
corresponding ENDC directive. Two forms are available:

IFtypel stringl,string2
IFtype2 expression

With the first form, the two strings are compared. If they
compare and the IFC directive is used, or if they do not
compare and the IFNC directive is used, the conditional program
section will be assembled; otherwise it will skipped.

With the second form, the expression is evaluated and compared
to zero. The result of that comparison, along with the
specific directive used, determines whether or not the
conditional code will be assembled. The 1list of directives
used with this form, along with the comparison results which
will cause assembly of the conditional code to take place, is
as follows:

IFEQ expression = 0
IFGE expression >= 0
IFGT expression > 0
IFLE expression <= 0
IFLT expression < 0
IFNE expression # 0

The maximum nesting depth allowed for IFxx..ENDC blocks is
eight.

26 HITACHI

1EIS-11 &301

OO0,
QOO

0000 20 41 S3 53
OOG4 43 40 42 4C
OO0 45 20

QO0A Z0 41 53 S3

OOGE 45 40 42 40
GOLZ 45 20

0ol4

ASSEMRLY CIOMPLETE.

RS

ASTSEMBLER »

Vi.0x

HITAIRI LTO.

FAGE

1+
2 % CIONDITIONAL ASSEMELY
3w

v FLAGL

& FlsiEz

1z
20
21

-y
e

24

N ERRORE.

Fig. 2-9

ZET
ZET

IFEX
o
ENLHZ
IFNE
Foo
ENJ
IFER
Fio
ENDIC

END

IFxx directive

AZSEMBLE 7

FLAEL~1
* ASSEMRLE

HITACHI 27

2.3.8 ORG

The ORG (origin) directive is used to change the value of the
location «c¢ounter to the wvalue of the expression in the
[required] operand field. The expression may not contain any

forward references.

ISI5-11 4301 CROES ASSCMBLER. V1.0, HITACKI LTI FAGE

1 =
2 % RS DIRECTIVE
3 %

QOO0 4 My 10

0020 s DIRG B20

OO0 7 RME S

G100 7 DR1G $100

0100 11 ENiLt

AZSEMBLY COMPLETE. NO ERRORE,

Fig. 2-10 ORG directive

28 HITACHI

2.3.9 RMB

The RMB (reserve memory bytes) directive adds the value of the
[required] operand field expression to the location counter, in
order to reserve a block of memory, which is not set to any

value. The expression may not contain any forward references.

ISTE-11 4301 CROSES ASZEMEBLER. V1.0, HITACHI LTO. FAISE 1

1
e
3 4 RMR DIRECTIVE
4

OO0 & CLARL RME 1

0001 7 CLARZ RiE 10

OOOR B ENU

AZTEMBRLY COMPLETE. NI ERRORE,

Fig. 2-11 RMB directive

HITACHI 29

2.3.10 SET

The SET directive functions like the EQU directive (see section
2.3.3) except that it allows redefinition of the symbol in the
label field. An operand is required. For a clarification of
the difference between EQU and SET, see the explanation on the
definition of symbols (section 2.1.3).

IslE-11 éSOI.QRUSS AZSEMMBLER . V1.0, HITACHI LTD. FAISE i

1 =*
2 % SET DIRECTIVE
S

QOO0 & SLARL SEN H

GO0 2 SLARE SET SLARL

(e 10 ZLABZ TE1 b

0004 12 SLABZ SET sSlAg2-1

OGO0 14 ENL

ASZEMBLLY CSAFLETE. NO ERRORSE.

Fig. 2-12 SET directive

30 HITACHI

2.3.11 SPC

The SPC (space) directive is used to skip a number of blank
lines on the listing. The line with the SPC directive is not
printed, but in 1its place are inserted blank Llines. The
{required] operand value is the number of blank lines to be
inserted (limited to the number of 1lines remaining on the
listing page). "SPC 1" produces the same effect as a blank
source line. "SpC 255" produces the same effect as a page

eject control with normal length pages.

HITACHI1 31

3 USING THE ASSEMBLER

BAn assembly is initiated by one of the following commands to
the ISIS-II operating system:

ASM31 sourcefile controls
:F1:ASM31 sourcefile controls

:Fn:ASM31 sourcefile controls

The first form is used if the assembler program, ASM31l, is on
the diskette inserted into drive 0 (typically your system
diskette). The second form is used if the assembler is on the
diskette inserted into drive 1. The third command is a general
form of the second, where the drive number where the diskette
with the assembler is located is substituted for the letter "n"
in ":Fn:ASM31",

"sourcefile" is the name of a file containing the program to be
assembled. A typical name might be ":Fl:TEST2.M31" (if the

file is on the diskette in drive 1).

"controls" is an optional list of assembly controls, in any
order, as discussed below.

32 HITACHI

3.1 Primary vs General Controls

Controls are classified according to where they can be used. a
primary control may appear in the console command, or as an
embedded control line before the first assembly language
statement, blank line, or comment line in the source file. A
general control may appear in the console command, or as an
embedded control line at any location in the source file prior

to the END statement.

An embedded control 1line in the source file begins with a
dollar sign ("$") as the first character and may contain one or

more controls.

Some controls require a file name or a number enclosed in
parentheses following the control name. There may optionally
be one or more spaces between the control name and the open

parenthesis character ("(").

3.2 Primary Controls

PRINT (name) Causes an assembly listing to be written to the
specified file or device. Examples:
PRINT (:LP:) == list to the line printer
PRINT (:F1:TMPFIL.LST) =-- list to file
PRINT (:C0O:) =-- list to the console

NOPRINT Suppresses the assembly listing.

HITACHI 33

OBJECT (name)

NOOBJECT

MODO1

MOD31

SYMBOLS

NOSYMBOLS

XREF

NOXREF

PAGING

NOPAGING

Causes an object module in Intel* hexadecimal
paper tape format to be written to the
specified file or device. Examples:
OBJECT (:F1l:O0BJFIL.HEX) -- to disk file
OBJECT (:HP:) -- output to tape punch

Suppresses the object module.

Allows use of HD6801 opcodes (see section 1).
Allows use of HD6301 opcodes (see section 1).
Causes a sorted 1listing of all user-defined
symbols to be written on the list device at the
end of the assembly.

Suppresses the symbol table listing.

Causes a sorted cross reference listing of all
symbols, giving the 1line numbers where the
symbol was used and defined, to be written on
the list device at the end of the assembly.
Suppresses the cross reference listing.

Causes the assembly 1listing to be segmented
into pages, with a page number and header at

the top of each page.

Suppresses the paging option.

* "Intel" is a registered trademark of Intel Corporation.

34 HITACHI

FORMS Causes the assembler to issue a form feed
character for moving the listing to the top of

a new page.

NOFORMS Suppresses the forms option; causes the
assembler to issue several line feed characters

instead of the form feed character.

PAGEWIDTH (nn) Causes the assembler listing pages to be "nn"
columns wide. Examples:
PAGEWIDTH (132)
PAGEWIDTH (80)

PAGELENGTH (nn) Causes the assembler listing pages to be "nn"
lines long. Examples:

PAGELENGTH (84) =-- legal size paper
PAGELENGTH (66) -- letter size paper

3.3 General Controls

LIST Enables the listing of source statements until

the next NOLIST control is encountered.

NOLIST Disables the listing of statements until the

next LIST control is encountered.
TITLE ('text') Causes the specified text 1line (maximum 72
characters) to be printed as a title at the top

of each page of the listing.

EJECT Causes the next line of the listing to begin at
the top of a new page.

HITACHI 35

INCLUDE (name) Following this control line, the assembler will
input source lines from the file specified by
"name"; at the end of the "name"d file, input
of source lines will resume from the original
source file, immediately following the INCLUDE
control 1line. INCLUDEs can be nested to a
depth of five.

3.4 Initial Settings of Controls

If not, or until, explicitly set in the command line or in
embedded control line statements, the default settings of the
controls are as follows:

PRINT (sourcefilename.LST)
OBJECT (sourcefilename.HEX)
SYMBOLS

NOXREF

PAGING

FORMS

PAGEWIDTH (120)

PAGELENGTH (66)

In explanation of the default PRINT and OBJECT controls: if
not explicitly specified and not suppressed by the NOPRINT or
NOOBJECT controls, the default listing and object files have
the same name and disk drive number as the source file, and the
extensions .LST for the listing file and .HEX for the object
module file.

The MOD0Ol1 and MOD3l options are not assumed unless explicitly
requested; without them ASM31l recognizes only HD6800 opcodes.

36 HITACH!

4 DESCRIPTION OF FILES PRODUCED

4.1 Listing File

The listing file (normally produced unless suppressed by the
NOPRINT control) contains a listing of your source program with
generated object code and any error messages, a symbol table
(unless suppressed by the NOSYMBOLS control), and (if selected
by the XREF control) a cross reference table. These sections
of the listing are described in further detail in the following
sections. (This description assumes that you are using the
PAGING option.)

4.1.1 Source Listing Format

The first line on each page identifies the version of the
assembler and gives the page number of the listing. The second
line contains the title specified by the TITLE directive, 1if

any.

The rest of the page consists of source £file lines, one per
listing line. There are several items on each listing line to
the left of the source line. The first is the error character,
normally blank unless the assembler detected an error in
processing the source line. ©Next is a four-hexadecimal-digit
value: on EQU and SET statements, it is the value assigned to
the symbol in the label field. On ORG statements, it is the
new location counter value. On instruction and data definition
directive statements, it 1is the location at which the first
byte is placed.

HITACHI 37

ISIS-11 4301

0100

OLO0
0101
QL03

Q207 AX
OB 2T
ozoDn 7C
0210 20
O21Z E3
0214 34
215 FF
OELE FE
OZLE HE
021D A7

0101
0ZZF
Q100
00
a5
0100
F7
Q0
0103
0101
30
Q0

0101

QOLO3

oy o o

DD 0237

ASZEMBLY COMPLETE.

38 HITACHI

A O

10
=2
&4
OA
01

-

SMI0E1

REV]

#* (A-B
€ (X)

Lo BN s SR IR oY

10 SAVEA
11 SAVEX
2 SAVEXL
15 CVRTO

17 CVDECL
13 CVLCCZ

22 CVIECD

=
31
3

3
4
=
&

INEARARN

I3 sk CIONS
39

7 R10K

NOERRORS.

Fig. 4-1

HION 1

) BIMARY VALUE

FOINTER TO
* TEMPORARY

ORG

RiME
RivH
Ri18

ORGE
STX
LoX
LR
SLBD
RIS
INC
ERA
ADDD
FSHA
STX
LOX
ADDA
STAA
FULA
INX
ETX
.OX
INX
INX
CFX
ENE
WAI

TANTS
FIDE
FoB
FLE
FDRE
FLR
EnND

STURE D

STIORAGE

FOR

100

t by e

$Z00
SAVEX
10K
SAVEA
0.X
CVIDEDS
SAVEAR
CVDEDZ
c).‘x

SAVEX]
SAVEX
#3320
GaX

SAVEX
SAVEXL

#L10E+10
CVDECL

CIONVERST
10000
1000

100

10

1

Source listing

CROSS ASSEMELER. V1.0, HITACHI LTD. FAGE i

4 ZONVERT BINARY TO DECIMAL 2 STORE S CHAR

Al IMAL CHARE

ACTUMULATOR A
STORE DATA FUOINTER
FOINTER TO0 CONSTANTS

SAVE DATA FOINTER
(X) POINTER TO CONSTANTE
INZ DEC CHAR

OVERFLOW
INC CHAR BEING BUILT

RESTORE FARTICAL RESLLT
X - STORE CHAR FOINTER
MakE ASCIT CHAR

REZTORE A

X=PUINTER TO CONSTANTS

0N

4.1.2 Error Messages

The first error detected by the assembler on any source line

processed is reported by a single letter placed in the first

column of the listing line. The possible error codes are:

A - 1Invalid addressing mode.
B ~ Relative branch range error.
C..

Command line error. An embedded control line in error, or

a primary control occurring after an assembly statement.

D - Depth error. Complex expression overflows internal stack.
I - Invalid character in source.
L - 1Invalid label in label field.
M - Multiple symbol definition.
N - Nesting error. Parentheses or quotes do not match.
O - Opcode error. Unrecognizable opcode.
P - Phase error. Due to illegal forward references elsewhere.
Q - Questionable syntax.
R - 1Invalid or missing register specification.
S - Syntax error. Missing or extra operands.
U - Undefined symbol reference.
V - Value error. Operand exceeds allowed range.
12I5-11 4301 CROEE ASSEMBLER. V1.0, HITACHI LTD. FAIGE 1
L OO0 1 OR1G5 S 1000 START AT 1000 HEX
2o
OO4E 3 IMMED Ef 01001110
1FFO 4 LONSI EQU S1FFO
OOAF S DIRECT EQU SLF
QO3C & INDEX ERL $3C
_—
T 1000 IO Q0SR b AlD A
—F 1003 42 9 AsL A
B 1004 2O 7D 10 BRA F2@23
1004 BD QOAF 11 JER DIRECT
2o
1007 13 END

AZTITEMEBLY COMFLETE. 2 ERRUORS.

(error code)

Fig. 4-2

Error Message

HITACHI 39

At the end of the source listing (after the END statement), a

line is printed which says:

ASSEMBLY COMPLETE. n ERRORS.

where "n" is the number of lines in which errors were detected.

In addition to the error messages on the listing, some error
messages may appear on the console. Discussion of these 1is
deferred to the description of the console output (section
4.3).

4.1.3 Symbol Table Format

The symbol table starts on a new page. Each entry (there are
several per line) consists of a symbol's name and its value (as
a four-hexadecimal-digit number).

ISIE-11 4305 CROSS ASSEMBLER. V1.0, HITACHI LTI FASE
CVBID 0200 CVDECL 0204 CVOECDZ 02097 CVDECS 0212 K 1OK OTIF
SAVEA 0100 SAVEX 0101 SAVEX1 0103

SYMBOL LISTING COMPLETE.

Fig. 4-3 Symbol table

40 HITACHI

4.1.4 Cross Reference Format

The cross reference table starts on a new page. Each 1line
gives the symbol name followed by a list of lines where it is
referenced. Any line where the symbol 1is defined has the

character "#" following the line number.

1ZI5-11 &301 CROES EMBLER . V1.0s HITACHI LT, FAGE 3
VBRI 15H

CVIEC 17# 35D

CVIOECZ 124 2

CVIECS 17 ZE%

E 1Ok 14 54 37#

SAVEA 1OH# 17 20

ZAVEX IR 1% 253 30

TAVEX L 124 24 31

CRIXZS REFERENCE COMPLETE.

Fig. 4-4 Cross reference table

HITACHI 41

4.2 Object File

The object file contains a series of records in the Intel*
hexadecimal paper tape format. To convert the file to an
ISIS-II compatible absolute object £file, wuse the ISIS-II
command HEXOBJ:

HEXOBJ filename.HEX to filename.OBJ

Remember to prefix the "filename" with the appropriate disk

drive number in each case.

4.3 Console Output

Unless PRINT or OBJECT output is directed to the console (in
which case see sections 4.1 and 4.2 for a description of that
output), the console output is limited to the following:

1 A banner giving the version number of the assembler

2 "ASSEMBLY COMPLETE. n ERRORS." (as in listing file)

3 "COMMAND ERROR." if there 1is a problem with the
controls in the command line invoking the ASM68
assembler.

4 "SYMBOL TABLE OVERFLOW." 1if the program being

assembled has more labels than can be contained in
available memory. Note: specifying the XREF option
reduces the number of labels that can be handled.

5 "ERROR n USER PC xxxx": ISIS-II error messages which
can occur at any time, due to disk errors, etc. A
common cause of ERROR 35 (end of file): no END line.

* "Intel" is a registered trademark of Intel Corporation, Santa
Clara CA.

42 HITACHI

APPENDIX A

INSTRUCTION TABLE

OP : operation code
Vv : cycle count
: byte count

Mnemonic
Code

6801/6301

6301 only
only

Addressing Mode

Inherent

Immediate]

Direct

Extened | Indexed

Relative

Immediat%
-Direct

Bit
(Direct

Bit
-Indexed

Tmmediate]
-Indexed

OP |~ | #

OP | v | # PP

#{OP | v | #|OP | V| #

OP |~ | #

oP| Vv | #

PP |~ |# DP |V | #|OP |~ [#

IB| 2|1
3a|3]1

48
58
U3

w N
=

47
571211

L8]
.

89
Cc9
8B
CB
c3

99
D9
9B
DB

p3

94
D4

NI SR N S Y
W NN

84
c41212

[N
N

85

(¥}
N

95
D5

Nwwww

w

w

A9
E9
AB
EB
E3

NN NN
o
™
P NIV
wwwww
PN NS
DN DN

N
w
s
S
w

Ad
E4
68 16| 2

S
[N

N
]
N
'S
w
'S
(S}

77 16| 3|67 |6 2

A5 (4} 2
E5 4] 2

[}
=]

wWwWwwwww

NN NN N

[¥]

w
WWwwwwwwww
NN NNDNONNDNDN

@
>}
o
[N]

711 6|3

71 (6 3|61 7|3

7216 |3(6217]3

75 | 6

w

6517 (3

7B 6

[

6B| 7 |3

HITACH! 43

Addressing Mode
> =
i |23 i Qi Bit it

Mrcl:f;emlc 2§> Inherent |Immediate Direct |Extended|Indexed |Relative fgiZi:tef?:Zeizge—D;rect —?xl]dexed

8187

OO0 jop| vt #lop| vl #op [] #lop A #|oP [~ #jop [~ #lop [a o [~ #fop]) #lop | v)4
BVC 28|32
BVS 29|32
CBA 1121
cLc oc| 2|1
cLI OE| 2|1
CLR 7F | 6| 3|6F | 6] 2
CLRA 4r| 2 |1
CLRB SF| 2|1
cLv oal21
CMPA gLi2 (201 (3]|2|B1|4| 3]|a1l|4a]2
CMPB ci|2|2p1 |3|2|F1|4]| 3|E1|4]2
coM 73(6(3(63 (6] 2
COMA 43| 2|1
COMB 53|21
cPX 8c|4|3fc (s|2(Bc|6] 3[(ac (6] 2
DAA 1921
DEC 7a| 6| 3lea|6]| 2
DECA 421
DECB sal 2|1
DES 34| 3|1
DEX 0931
EIM [] 75 |6 {3165 |73
EORA gg|2]21(98 |3|2(Bs| 4| 3lag|4]2
EORB cg (2|28 [3|2(F8|4(3|E8 |42
INC 7c| 6] 3l6c|6] 2
INCA ac| 2|1
INCB scf2(1
INS 31 311
INX 08 3|1
JMP 7E| 3| 3|6E | 3] 2
JSR o |5|2|ep| 6| 3laD |62
LDAA g6|2|2[96 |3]|2|Be] 4| 3lae|al2
LDAB c6|2|2p6 |3]2|r6| al3|E6| 4|2
LDD ® cc|3|3ppc|a|2|rc|s]|3|ec|s5]2
1DS 8e| 3|39 |4|2|BE| 5| 3|AE|5]| 2
LDX CE|{3|3ppE |4]|2|FE} 5| 3|EE|5] 2
LSL [] 78| 6| 3|68 |62
LSLA ® (48| 2|1
LSLB ® (5321
LSID ® 05)3f1
LSR 74| 6} 3|64|6]|2
LSRA 441 21
LSRB 54l 2|1

44 HITACHI

Addressing Mode
Tja‘
: I .) . .

Mr;rgznlc j§ o Inherent |Immediate] Direct [Extened |Indexed [Relative fgzjz;itef?sgi}t:ge]Ell:;zrect —iigexed

O |1© ~

™M |0 o

€| O |op| ~v| #|oP # OP| | #[OP| | #|OP [~ | #|OP| ~| #|OP| ~ | #joP| ~ | #|oP | ~| #OP| ~ | #
LSRD ® |osf 3|1
MUL ® |30|10{11
NEG 70| 6| 3]60| 61 2
NEGA 40| 2| 1
NEGB 50| 2| 1
NOP o1 2|1
oM [7216|362 7]3
ORAA 8a 2f9a| 3] 2|Ba| 4| 3|an |42
ORAB ca 2pa) 3] 2|Fa| 4| 3|EAa |42
PSHA 36| 3|1
PSHB 37| 3] 1
PSHX ® |3c| 4|1
PULA 320 4{1
PULB 33| 4f 1
PULX @® |38|5(1
ROL 79| 6] 3|69 |62
ROLA 49] 211
ROLB 59] 21
RTI 3B(10| 1
RTS 39151
SBA 101 2| 1
SBCA 82 2192 | 312|B2} 4| 3[(Aa2 (4|2
SBCB c2 2&3232F243E242
SEC op| 2|1
SEI OF| 2| 1
SEV 0Bl 2|1
SLP o 1al 4|1
STAA 97 | 3| 2(B7 | 4| 3|A7 |42
STAB D7 | 3| 2(F7 | 4] 3[(E7 [4]2
STD ® pD | 4| 2|FD| 5| 3|ED |5 |2
STS OF | 4| 2(BF | 5| 3|aF {5 |2
STX PF| 4| 2|(FF| 5] 3[EF [5(2
SUBA 80 290 (3|2|BO|4|3|a0 (42
SUBB co 2PO|3|2(FO} 4] 3{E0([4]2
SUBD [J 83 31935 2|B3|6|3[a3 |62
SWI 3Ff12] 1
TAB 621
TAP o621
TBA 17]2(1
TIM ® 78 |6 |3B|7]3
TPA 0721
TST 70| 6| 3|6p |6 |2
TSTA ap| 2|1
TSTB sp| 2|1
TSX 30 3|1
TXS 351 3(1
WAI 3E| 9] 1
XGDX @ 18| 2|1

HITACHI 45

APPENDIX B EXAMPLE OF PROGRAMMING

B.1 CVBTD Binary-to-Decimal Conversion Subroutine

CVBTD is a subroutine to convert a 16-bit binary number to S-character

decimal data.

Linkage: As shown below, sets the high-order 8 bis of input data in
accumulator A and the low-order 8 bits in accumulator B.

Then, sets the address to store output data in the index

register.
15 0
ACCA, ACCB | Binary l Set input data
15 0
Ix | Data address | Address to store
output data
7 0
DATA+Q 10000s
1 1000s
2 100s | L Output data (ASCII code)
3 10s
4 Ls)

Result: 5-character ASCII codes are output to the addresses after Data

address shown in the above.

46 HITACHI

IZ15-11 &301 CROSS ASSEMBLER. Vi.0. HITACHI LTL.

1 sM0D3L

* REVISION |

=
4 « CONVERT BINARY TO LDECIMAL & STORE S CHAR
S = (A,B) BINARY VALUE
& %= (X) FUOINTER T ZTORE DACIMAL CHARS
7 = TEMPORARY 3TIIRASE
0100 8 ORG $10Q
0109 10 SAVEA RMB 1 ACCLIMULATIOR A
10t 11 SAVEX RME z STORE DATA PUIINTER
0103 2 BAVEX1 RMB 2 POINTER TO CON3STANTS
Q200 14 ORG $200
0200 FF 0101 1S CVBTD 3TX SAVEX SAVE DATA POINTER
0203 CE 022F 16 LOX #E 10K (X) PCQINTER TO CONSTANTS
0206 7F 0100 17 CVDEC! CLR SAVEA INZ DEC ClIAR
Q20T A3 QO 18 CVYDECZ SURD a-X
020B 25 05 19 BIZS CVDECS QVERFLIDW
Q20D 7C 0100 20 INC SAVEA INC CHAR BEING RUILT
0210 20 F7 2 BRA LVDELC2
0212 E3 00 22 CVUECS ALDD 0. X RESTORE PARTICAL RESLLT
0214 34 23 P3hA
0215 FF 0103 24 STX SAVEX1L
0z12 FE 0Lol 2 LoXx SAVEX X = STORE CHAR PUOINTER
0218 8B 30 26 ADDA #3330 MAKE ASCII CHAR
021D A7 0O 2 3TAA 0:X
OZ1F 32 29 PULA RESTORE A
0220 03 29 INX
0zZ1 FF 0101 30 STX SAVEX
0224 FE 0103 31 LDX SAVEX1 X=FDINTER TO CONSTANTS
3 INX
INX
cPX #KIOK+10
BNE CVDEC!
WAI

33 = CUNSTANTS FIOR CONVERSIUN
10 39 K1oK FOE 10000
E3 40 DB 1000
b4 41 FUEB 100
OA 42 FOB 10
o1 43 FLR 1
44 END

Fig. B-1 Binary-to-Decimal Conversion Subroutine

HITACHI 47

B.2 MOVE Memory-to-Memory Transfer Subroutine

Sets the starting address of transfer destination in the address which IX
indicates, the starting address of transfer source in the IX+2 address,
and the number of bytes to be transferred in the IX+4 address. Calls this
subroutine after setting the address in which the starting address of

transfer destination is stored.

2 bytes 2 bytes 1 byte
Transfer- Transfer- Number
destination source of
starting starting transfer
address address bytes

X

48 HITACHI

I2l3-11 &301¢

Q400
0400
0402

2000
2000

2007
2004

20000
Z00F
2011
2012
2015
2017
2012
01k
2010
z01D
201E
2020

2021

ASSEMBELY CUOMFLETE. NO

ge

> FUD

g2
FD
Ab

FE
£6
3
FE
€7
08
FF
35
03
sA
25
3E

Q0
Q400
0z
[#2-Te)4
04

0400
QO

402
00

0402

CRIOSE ASIZEMBLERS V1.0

1 $M2D31

HITACHI LTO.

3
4 w *
S -
A o MIVE : THIZ PRIWSRAM MOVE DATA -
7 = BY SFECIFY LENGTH *
3 . L
G = IX = PARAMFIER ADDRESS *
10 = -
11 = IX+0 ¢ BEGIN ADDRESS (2) -
12 = IX+2 ¢ DESTINATIUN ADORERS (2) =
13 = IX+4 : LENSTH (1) *
14 = *
1S = *
16
1e ORG

19 MUVBES RMB
20 MOVIST RME

22 2R3
<3 MaveE gl
24 Loo
P STO
26 Luo
27 STD
23 LDAA
27
30 Lox
31 MOVOL1O LDAR
32 PisHX
33 LOX
34 3TAB
35 INX
356 3TX
37 PULX
33 INX
32 DECA
40 BNE
41 WAl
2 END
ERRUORE.,

$400
>

$2000
Bl

0sX
MUVEEG
2:X
MCVDST
4.X

MOVBES
QX

MOVLST
X

MOVDST

MINVOLO

SET PARAMETER

Fig. B-2 Memory-to—Memory Transfer Subroutine

HITACHI 49

B.3 MULTI 16-Bit Multiplication Subroutine

MULTI is a subroutine to multiply 16-bit binary numbers and to output the
product of 32-bit binary data.

Input parameter : ACCAB = Multiplicand
IX = Multiplier
OQutput parameter : Stored in 4-byte RESULT starting at the

address 3404, as shown below.

RESULT +0 Highest-order byte
+1
+2
+3 Lowest-order byte

50 HITACHI

,_
G
—
I
1
—
—

[Y213}
0400
0402
0404

2000
2000
2000
2003
2006
2009
2002
200F
2012
2015
2016
2019
20112
201F
2020

2023

Ry
2040
2043
2044
2047

2048A
204H

ASSEMILY COMPLETE.

FD
FF
7F
7F
7
Bé&
i
3D
FD
BbH
Fis

3u

24
7C

BS

2E Fb

30
F3
Fo

: 24

7
BA
Fh
3u
F3
Fu
3E

0400
0402
0404
0405
0404
Q401
0403

0404
Q400
0403

0405
0a0%
a3

Q404
0441
G402

0403
0Aans
O3

G404
[%2-Yele}
02402

D404
G404

Fig. B-3

EMELER -

V1i.0s HITACHI LTT.

1 $MID31

BVRTORNE AT IR Y]

10
13
14
15
14
17
13
19
20

21

23
24

26

1 D1 D1 il D D) O D1 D) b1 B3N

FRQWNO U DD OO W

B H D
[NI

b
7

4

>
~

i s p
SN

1

a1
;

LY RN RT R RL N
R RNID AN A

* »
- MULTIFLY TWO 14-BIT POSITIVE VALULS K
* TO BENERATE A 32-BIT PROULCT *
* AT TERMINATION , BOTH INMUT VALURS -
* AND THE REZLT WILL BE IN MEMIRY -
- *
- (A:B) = (2:D) = ACH:ACL "
* + AlNH: ADL *
- + BICH: BICL £
i + BOH: BOL -
* e e e
L *
- (NFUT ¢ ACICAB = MULTIPLICANU "
#* :IX = MULTIPLIER *
* -»
“ QUTPUT ¢ RESULT <4RYTERD -
* -

DR $400
MULAND RME 2
MULIER RMB 2
RESILT RMH 4

1IR3 $ 2000
MULT EQU A

21D MIILAND 3 BAVE MULTIPLICAND

2TX MULIER 3 SAVE MULTIPLIER

LR RESLT

CLR RESLLT+1

CLR RE=ZILT+2

LDAA MLIL AND+ 1 i #A LS BYIE

LDAR MULIER+L : #B L3 BYTE

ML

37D REZLLT+2

LDAA MIJLAND 3 #A MS BYTE

LDAB MULIER+L i #B LS BYTE

ML

ACDD REIULT+1

STD RESULT+1

BCC MULTLG

INC RESULT
MILTLIO LDAA ML AND+ L 3 #A L3 BYTE

Lhag MULIER i #B MS BYTE

ML

ADDD RESLILT+1

2TD REZLILT+1

BCC ML TZ20

INC REZULT
MULTZO0 LDARA MULANT i %A MS BYTE

LDAB MUL IER P #E M3 BYTE

ML

ADDD R T

sSTD RESLLT

WAI

END

NO ERRONWS.

16~Bit Multiplication Subroutine

HITACHI 51

APPENDIX C EXAMPLE OF PROGRAM DEVELOPMENT

The following shows an example of program development with the
program shown in "Appendix B.2 MOVE Memory-to-Memory Transfer
Subroutine”. In this case, ISIS-II system diskette is set in
unit 0 and the diskette containing 6301 cross assembler, in unit
1.

C.1 Producing Source Program

The following explains about producing source program with an
example which uses ISIS-II text editor.

-EDIT :F1:MOVE.SRC CCR) (a)

When inputting (a), the file of MOVE.SRC is assigned to the
diskette in unit 1.
*I<Csource line>CRD

<source 1line>CR

<source line>CRD

$$
s displayed when keying in (ESC.

Key in I command first and source lines in succession. After
completing the key-in of source lines, key in @ twice.

* E§S

Key in E command, and then key in @ twice. With this opera-

tion, the file of MOVE.SRC is produced in the diskette in unit
1. Contol returns to ISIS-II mode.

52 HITACHI

C.2 Assemble
~F1:ASM31 :F1:MOVE.SRC XREF PRINT(:LP:) CR —_——— (b)

When inputting (b), cross assembler ASM31 is loaded from the
diskette in unit 1 and assembles., In this example, source file
is input from the file of MOVE.SRC in the diskette in unit 1.
Object file named MOVE.HEX is output to the diskette in unit 1.
For lists, source object, symbol table and cross reference lists
are output to the line printer. Fig., C-1, C-2 and C-3 show the
output lists.

C.3 Conversion of Object File

~-HEXOBJ :F1:MOVE.HEX TO :F1:MOVE.O0BJ B>

(e)

When inputting (c), the object file MOVE.HEX in Intel hexadecimal
paper tape format which is output to the diskette in unit 1 by
cross assembler is converted into the object file MOVE.OBJ in
absolute format in the same diskette.

HITACHI 53

ISIS=11 &30% CROES ASSEMBLER, V1.0. HITACHI LTD.

040G
0400
(402

2000
2000
2000
2002
2005
2007
200A

200C
200F
2011

2012
2015
2017
2018
20LE
201C
201D
201E
2020
2021

1 $MOD3!
3
4 » -
S "=
6 » MOVE : THIS PROGRAM MOVE DATA -
7w BY SPECIFY LENGTH »
8 » -
9 = IX = PARAMETER ADDRESS -
10 = »
11 = IX+(¢ ¢ BEGIN ADDRESS (2) -
12 = IX+2 : DESTINATION ADDRESS (2) =
13 = IX+4 : LENGTH (1) e
14 = »
1S5 » -
16
i8 ORG 400
19 MOVBES RMR 2
20 MOVDST RME 2
2z ORG $2000
23 MQVE EQU *

EC 00 24 LDD DX ;32T PARAMETER

FD 0400 20 STD MOVEREG

EC 02 26 DD 2,X H

FD 0402 27 sTL MOVIST 3

AL 04 23 LDAA 4,X
29 =

FE 0400 30 LDX MOVEES

E& QO 31 MOVOL1O LDAE (94

3 32 PSHX .

FE 0402 33 LDX MOVDST

E7 00 34 3TAB 0-X

(€] 35 INX

FF 0402 36 3TX MOVDST

38 37 PULX

o2 33 INX

4A 39 DECA

26 EF 40 BNE MOVO10

3E 41 WAI
42 END

ASSEMBLY COMPLETE. NO ERRORS.

Fig. C-1 Source Object List

ISI2-]1 46301 CRUSE ASSEMBLER. V1.0. HITACHI LT,

MQVO10 200F MOVBES 0400 MOVD3T 0402 MOVE 2000

SYMBOL LISTING COMPLETE.

Fig. C-2 Symbol Table List

I[2IS-11 4301 CRUSS ASSEMBLER. V1.0. HITACHI LTOD.

MUVOLO 31# 40

MOVBEG 19%] 30
MOVDST 20#% 27 33 34
MOVE 234

CRUSS REFERENCE 1COMMLETE.

Fig. C-3 Cross Reference List

54 HITACHI

@ HITACHI

A World Leader in Technology

Hitachi America, Ltd.
Semiconductor and IC Sales and Service Division

1800 Bering Drive, San Jose, CA 95112
1-408-292-6404

HITACHI #U29 Printed in U.S.A.

