

#U29

ISIS-11
6301 CROSS ASSEMBLER

USER'S MANUAL

@HITACHI S31MDS1-EM

When using this manual, the reader should keep the following in mind:

I. This manual may, wholly or partially, be subject to change without notice.

2. All rights reserved: No one is permitted to reproduce or duplicate, in any
form, the whole or part of this manual without Hitachi's permission.

3. Hitachi will not be responsible for any damage to the user that may result
from accidents or any other reasons during operation of his unit according
to this manual.

4. This manual neither ensures the enforcement of any industrial properties
or other rights, nor sanctions the enforcement right thereof.

INTRODUCTION

The S31MDS1-F is a cross assembler which runs on Intel* development systems under the

ISIS-II operating system, and processes assembly language programs for the HD6800

micro-processor and HD6801 and HD6301 single-chip microcomputers. The assembler

accepts ISIS-II files containing 6800/ 6801/6301 source statements, and produces

assembly listings and object files.

*"Intel" is a registered trademark of Intel Corporation, Santa Clara, CA.

The cross assembler is provided in the form of a single sided, double density floppy disk.

1

2

TABLE OF CONTENTS

DESCRIPTION OF ASSEMBLER ---------------------------

PAGE

1

3

5

FORMAT OF STATEMENTS ------------------------------

2.1 General Concepts ----------------------------

2.1.l Constants - ------------------------------- 5

2 .1. 2

2 .1. 3

2 .1. 4

2 .1. 5

Location Counter -------- ------- ------- 7

Symbols 7

Expressions --------------------------- 9

Fields ----------------------------- 10

2.2 Instructions ---------------------------- 13

2.2.1 Inherent Addrssing Mode ------------------ 13

2.2.2 Immediate Addressing Mode --------------- 14

2.2.3 Direct and Extended Addressing Modes ------ 15

2.2.4 Indexed Addressing Mode --------------- 16

2.2.5 Relative Addressing Mode --------------- 16

2.2.6

2.2.7

2.2.8

2.2.9

Immediate-Direct Addressing Mode --------- 17

Immediate-Indexed Addressing Mode -------- 17

Bit-Direct Addressing Mode

Bit-Indexed Addressing Mode

------------- 18

--- ---------- 18

Table of Contents -- Continued

PAGE
2.3 Directives -------------------------- 18

2.3.1 END ---------------------------- 19
2.3.2 ENDC ------------------------------ 20

2.3.3 EQU 21
2.3.4 FCB - - -------------------------------- 23

2.3.5 FCC ------------------------------------ 24
2. 3. 6 FDB -------------------------------- 25

2.3.7 IF xx -------------------------------- 26

2.3.8 ORG - -------- --- - ----- ------ ---------- 28

2.3.9 RMB ------------------------------- 29

2.3.10 SET - ---------------------------- 30

2. 3.11 SPC 31
3 USING THE ASSEMBLER ------------ -------------- 32

3.1 Primary vs General Controls 33
3.2 Primary Controls ---------------- ---- ---- 33

3.3 General Controls ------------------------ 35

3.4 Initial Settings of Controls ---------------- 36

4 DESCRIPTION OF FILES PRODUCED - - - - - - - - --- -- - - - 37

4.1 Listing File -------------------------- 37

4.2

4.3

4.1.l Source Listing Format ------------------- 37

4 .1. 2

4.1. 3

4 .1. 4

Error Messages -------------------- 39

Symbol Table Format - --- - - -- ----- - - - - 40

Cross Reference Format -------------- 41
Object File

Console Output

- -- - - - - - 4 2

42

APPENDIX A INSTRUCTION TABLE --- -- - - - - - - - - - - - - - - 43

.APPENDIX B EXAMPLE OF PROGRAMMING - - - - - - - - - - - - - - - - - 4 6

.APPENDIX C EXAMPLE OF PROGRAM DEVELOPMENT - - - - - - - - - - - - - 52

DESCRIPTION OF ASSEMBLER

The ISIS-II 6301 Cross Assembler runs on Intel development systems under the ISIS-II

operating ~stem, and processes assembly language programs for the HD6800 micro­

processor and HD6801 and HD6301 single-chip microcomputers. The assembler accepts

ISIS-II files containing HD6800/6801/6301 source statements, and produces assembly

listings and object files.

This manual assumes familiarity with the Intel development system, the ISIS-II operating

system, and the HD6800 microprocessor and/or the HD6801 and/or HD6301 micro­

computers. The purpose of the manual is to assist a user already familiar with the

H D6800/6801 / 6301 instruction set and architecture in using the assembler. For further

information on the development system and ISIS-II, consult the Intel publications:

ISIS-II SYSTEM USER'S GUIDE, 9800306 and the publication describing your version

of the MDS (development system). For information on the architecture and instruction set

of the HD6800, HD6801, and/ or HD6301, consult the appropriate Programming Refer­

ence Manual from the processor's manufacturer.

To use the assembler, you will require an Intel disk-based Microcomputer Development

System with 32K or more of RAM memory and two or more disk drives, ISIS-II

operating system software, and a diskette containing the program ASM3 l. *

*Program name is ASM31. HITACHl's Part No. is S31MDS1-F. Please note the

difference.

HITACHI

Section 2 of this manual will describe the required assembly language statement format.

Section 3 will describe the command lines used to invoke the assembler. Section 4 covers

the files produced, including the source listing (with a list of possible error messages) and

the object file.

The assembler normally assumes the opcodes to be for the HD6800 microprocessor. Use

of the MODOl or MOD31 control (see section 3.2) is necessary to enable use of the full

HD6801 opcode set (of which the HD6800 opcodes are a subset). Use of the MOD31

control is necessary to enable use of the full HD630 I opcode set (of which the HD6800 and

HD6801 opcodes are a subset).

2 HITACHI

2 FORMAT OF STATEMENTS

An assembly language program cons is ts of a series of source

lines, which fall into four categories:

1: Blank lines - contain no printing characters.

2: Comment lines - begin with an asterisk ("*").

3: Control lines - begin with a dollar sign (''S").

4: Assembly language statements, including instructions

and directives.

Blank lines, which contain no characters other than spaces or

tabs, and comment lines, which are identified by an asterisk as

the first character, are ignored by the assembler except for

purposes of listing, and can be included at any point before

the END statement. Controls will be described

assembly language instructions in section 2. 2,

directives in section 2.3.

in section 3,

and assembler

Each line consists of a series of ASCII characters ending with

a carriage return and line feed. Tabs are converted to one or

more spaces, as required to advance the listing to the next tab

position on the line. (Tab positions occur at every eight

columns starting at the first character of the line.)

HITACHI 3

FI 13. 2-· 1 ') - ------ -- - - - -----------control line
$06AO

$TITLE<'
Il\ICHNP
NEGDc~T

EG!U
E1~~U 2~-~5 ---------------------------assembly language statement

- -- -------------------blank line
Or\G $(ll.A5

:+: INPUT ONE HEXADECii'1AL CH,~R CONVER r TO BCD - ---comment line
* NLB CONLJITI~~ CODE. RES~1=GC~D HLX. SET=NOT
IN 1 H .8:::;R I NCHNP
CBCDHK CMPA #$30

BMI IN1H.B

IN1l IG

INlHB

Cl"ll:.·A
BLS
CMr1 A
Bt1I
CMF--'A
BHI
SUElt~
ANDA
RT::::
f:3TA
RTf.:
END

4 HITACHI

#$3'=)

INlHG
#$41
IN1HB
#$46
IN1HB
tfl
*~$F

#$F

< CONVtRT BCD TO HEX >
NOT HEX -- -- ----------assembly language statement

GOOD HEX

NOT HEX

NOT HEX

MASK TO BCD-RESET NEG

SET NEG CONDITION CODE

Fig. 2-1 Sample of source program

2. l General Concepts

Before describing the formats of individual instruction and

directive statements, this manual will explain the general form

of assembly language statements.

2. l. l Constants

Constants can be specified as numbers (in binary, octal,

decimal, or hexadecimal notation) or characters.

Number constants consists of one or more digits valid in the

particular base in which they are expressed, preceded (except

in the case of decimal numbers) by a special character to

indicate the base. The base-des igna ti on pref ix es and valid

characters are given for each base in the table below:

Base Pref ix Char Valid Digits

2 (binary) % 0,1

8 (octal) @ o .. 7

10 (decimal) (none) 0 •• 9

16 (hexadecimal) $ ·- 0 • • 9 I A .• F

For example, the number 19 decimal could be expressed as "19",

"$13", "@23", or "%10011".

The allowable range of values for constants is o .• 65535 decimal

($0 .. $FFFF hexadecimal). If 'a larger constant is specified, the

constant is converted to a value within the allowed range.

HITACHI 5

Character strings are identified

which is a single-quote character

followed by one or more ASCII

by their first character,
(If I")• The single-quote is

characters and a closing

single-quote. To represent the single-quote character itself

as one of the characters in the string, the single-quote must

occur twice in a row between the opening and closing

single-quote marks.

For example, a space would be coded as II I I II the capital

letter Z as "'Z'", and the word "CAN'T" as "'CAN''T'".

Note that non-printing ASCII characters cannot be coded in this

fashion. They must be coded by their numerical equivalents;

for instance, a carriage return can be coded as "$OD".

The interpreted value of the string is dependent on how the

string is used. Each string is encoded as a series of bytes,

one per character. The first byte corresponds to the first

character of the string, and so on. If a one-character string

is used in an expression, the value returned is the numeric

equivalent of the ASCII character in that string, in the range

$0020 •. $007F. If a two-character string is used, the value

returned has the first character in the left-hand (more

significant) byte and the second character in the right-hand

(less significant) byte of a two-byte value. Each byte is

again in the range $20 •. $7F.

For example, "'A'" returns $41, while "'AB'" returns $4142.

Strings of more than two characters are not meaningful in

expressions; their use is limited to the FCC directive (see

section 2.3.5) and the TITLE control (see section 3.3).

6 HITACHI

2. 1 . 2 Location Counter

The location counter is an internal value maintained by the

assembler. It indicates the address where the next instruction

or data byte will be placed. The assembler assumes a starting

location counter value of $0000. The location counter can be

changed at any time using the ORG directive (see section

2.3.8).

Whenever a byte of code is stored (resulting from a 6800/6801/

6301 instruction or a data definition directive), the location

counter is incremented by one (1). For example, if the

location counter value is $013A, and the instruction "LDAA #1"

is encountered, the two-byte code for the instruc~ion will be

stored at locations $013A and $013B, and the location counter

value will be changed to $013C.

The value of the location counter can be used in expressions

via the asterisk ("*") in an expression-operand position. (In

an expression-operator position, the asterisk denotes

multiplication.) The location counter value is in the range

$0000 •. $FFFF.

2. 1. 3 Symbols

Symbols are specified as a sequence of one to six alphanumeric

characters, the first of which must be alphabetic. They can

take on any values in the range $0000 .. $FFFF.

Some examples of valid symbol names are: "A", "LOCTNl", and

"FFFF". Note that the latter is a symbol name and not a

hexadecimal constant because it begins with a letter, not "$".

HITACHI 7

Symbols are defined when used as labels of instructions or

directives. A symbol first defined as the label of a SET

directive can be redefined later in the program via another SET

directive. Prior to the first definition of that label, its

value will be the last value to which it is SET in your

program. After the first definition (including in the symbol

table listing), the symbol always has the most recent value

assigned to it by a SET directive. For example:

reference 1 to symbol SYMBl

SYMBl SET 4

reference 2 to symbol SYMBl

SYMBl SET 15

reference 3 to symbol SYMBl

END

In the above program, references l and 3 to symbol SYMBl would

return the value 15, while reference 2 would return the value

4. The symbol table would show the value 15 ($000F).

Any symbol first defined as a label of some statement other

than SET may not be redefined later in the program. Attempting

to redefine such a symbol will result in an error (see section

4. 1. 2) • At tempting to redefine, by means other than SET, a

symbol first defined via SET will result in a similar error.

8 HITACHI

2. l. 4 Expressions

Expressions are combinations of symbols, constants, location

counter references, and/or operators which produce a value.

They are used in the operand field of a statement (see section

2 .1. 5 for more on statement fields). The minimum express ion

consists of a single symbol or constant or location counter

reference. Using arithmetic and logical operators and

additional symbols and/or constants, more complex expressions

can be constructed.

The allowed operators (all single characters) are:

*
I
+

multiplication

division

addition

subtraction (or negation if used as unary operator)

In addition, left and right parentheses ("(", ")") are

available for grouping and for overriding operator priorities,

which are as follows (all operators on the same line have the

same priority; operators on higher lines are executed first):

unary -

* I
+

As mentioned above, any subexpression in parentheses is

executed first, using the above priorities.

As an example of priorities of expression evaluation, the

expression "5+(3+4)*2" would produce the value 19.

HITACHI 9

2.1.5 Fields

Each assembly statement (instruction or directive) is divided

into up to four fields as follows:

BHI

IN1Wl

IN1HB

(1) Field Usage

IN 11-fG
#7
#$t=

NOT HEX

MASK TO BCD-RESET NEG

SET NEG CONDITION CODE

[comment field
field

Fig. 2-2 Fields

Only the opcode field is required in all assembly statements.

(These fields do not apply to blank lines, comment lines, or

control lines.) The opcode field contains the name of the

instruction or directive. The requirements of the other fields

are dependent on which instruction or directive is in the

opcode field.

The label field is used for symbol definition in instructions,

data definition directives, and EQU and SET directives, as

described previously (see section 2.1.3).

If the instruction or directive in the opcode field uses an

operand, the operand field is required. If no operand is used

for that particular instruction or directive, the operand field

is omitted. The contents of the operand field vary with the

type of instruction or directive.

The comment field is ignored by the assembler except for

purposes of listing. It allows the programmer to insert

remarks into the text of the assembly language program.

10 HITACHI

Next come up to four pairs of hexadecimal digits, in one to

four columns. For one-byte instructions, there is one column

with two digits, representing the byte of code generated. For

two-byte instructions, there are two columns with two digits

each. For three-byte instructions, there are two columns -­

the first with two characters, the second with four characters

(representing two bytes). Data definition directives list up

to four bytes per line, each as two hexadecimal characters.

After these columns is the line number and the source line.

HITACHI 11

(2) Field Formatting

The label field may optionally end with a colon (":")

immediately following the symbol name. The label field must

begin with the first character on the line (ie, it may not have

any spaces or tabs preceding it) , whether it is used with or

without a colon.

If the label field is present, it is followed by one or more

spaces and/or tabs followed by the opcode field. If the label

field is omitted, the line must begin with one or more spaces

and/or tabs followed by the opcode field.

If the opcode field contains a four-letter instruction name

which references a register (A, B, D, or X) with the fourth

letter (for example, LDAA), the fourth letter may optionally be

separated from the first three with a space or tab. For

example, LDAA can be written as "LDAA" or "LDA A".

The operand field, if present, is separated from the opcode

field by one or more spaces and/or tabs.

The comment field, if present, is separated from the field

preceding it (the opcode field if there is no operand, the

operand field if an operand is present) by one or more spaces

and/or tabs.

12 HITACHI

2.2 Instructions

Instructions are statements which generate actual code to be

executed by an HD6800/HD6801/HD6301. They are classified here

according to the addressing modes they use. The addressing

mode, in turn, determines the use of the operand field of an

instruction.

2.2.l Inherent Addressing Mode

Instructions with inherent addressing have no operands; the

operand field is thus omitted with these instructions.

The following instructions use inherent addressing

(exclusively):

ABA ASLA ASLB ASRA ASRB CBA CLC CLI

CLRA CLRB CLV COMA COMB DAA DECA DECB

DES DEX INCA INCB INS INX LSRA LSRB

NEGA NEGB NOP PSHA PSHB PULA PULB ROLA

ROLB RORA RORB RTI RTS SBA SEC SEI

SEV SWI TAB TAP TBA TPA TSTA TSTB

TSX TXA WAI

(for HD6801/HD6301 only: ABX ASLD LSLA LSLB LSLD

LSRD MUL PSHX PULX)

(for HD6301 only: SLP XGDX)

These instructions generate one byte of code each.

HITACHI 13

2.2.2 Immediate Addressing Mode

Instructions with immediate addressing require an operand field

consisting of the character "#" followed by an expression (for

example, 11 LDAA #VALUEl-1".

All instructions which can use immediate addressing can also

use direct, extended, and indexed addressing (discussed in

sections 2.2.3 and 2.2.4 below).

The following instructions can use immediate addressing. The

expression in the operand field should produce a value in the

range O •• 255 ($0 .. $FF) for the two-byte instructions and

0 .. 65535 ($0 .. $FFFF) for the three-byte instructions. The

two-byte immediate instructions are:

ADCA

CMPA

SBCA

ADCB

CMPB

SBCB

ADDA

EORA

SUBA

ADDB

EORB

SUBB

ANDA

LDAA

ANDB

LDAB

The three-byte immediate instructions are:

CPX LDS LDX

(for HD6801/HD6301 only: ADDO LDD SUBD)

14 HITACHI

BITA

ORAA

BITB

ORAB

2.2.3 Direct and Extended Addressing Modes

Instructions with direct and extended addressing

operand field consisting of

HD6800/6801/6301 interprets as an

an express ion

address). If the

require an

(which the

instruction can use direct addressing, and the expression

contains no forward references (see section 2.3.3 for an

explanation of forward references) and evaluates to a value in

the range 0 •• 255 ($0 .• $FF), direct addressing will be

automatically selected, and the instruction will produce two

bytes of code. In all other cases, extenqed addressing will be

used, and the instruction will produce three bytes of code.

The following instructions can use either direct or extended

addressing:

ADCA

CMPA

LDX

ADCB

CM.PB

ORAA

ADDA

CPX

ORAB

ADDB

EORA

SBCA

(for HD6801/HD6301 only: ADDD

ANDA

EORB

SBCB

LDD

ANDB

LDAA

SUBA

STD

BITA

LDAB

SUBS

SUBD)

BITB

LDS

The following can use extended but not direct addressing:

ASL ASR CLR COM DEC INC JMP JSR

LSR NEG ROL ROR TST

(for HD6801/HD6301 only: LSL)

For HD6801/HD6301 only: JSR can use direct as well as extended

addressing.

HITACHI 15

2.2.4 Indexed Addressing Mode

Instructions with indexed addressing require an operand field

consisting of an expression (interpreted by the 6800/6801/6301

as an address) followed immediately by the two-character suffix

", X". For example:

bytes of code •

"LDAA OFFSET,X". They generate three

. The following instruct ions can use indexed addressing. Note

that they are the same instructions as those which can use

extended addressing:

ADCA ADCB ADDA ADDB ANDA ANDB ASL ASR

BITA BITB CLR CMPA CMPB COM CPX DEC

EORA EORB INC JMP JSR LDAA LDAB LDS

LDX LSR NEG ORAA ORAB ROL ROR SBCA

SBCB SUBA SUBB TST

(for HD6801/HD6301 only: ADDD LDD LSL STD SUBD)

2.2.5 Relative Addressing Mode

Instructions with relative addressing require an operand field

consisting of an expression producing as a value an address

which is in the range *-126 to *+129 where "*" is the location

counter value prior to processing the instruction (ie, "*" is

the address at which the first byte of the instruction will be

placed).

16 HITACHI

The following instructions use relative addressing

(exclusively):

BCC BCS BEQ BGE BGT BHI BLE BLS

BLT BMI BNE BPL BRA BSR BVC BVS

(for HD6801/HD6301 only:BHS BLO BRN)

2.2.6 Immediate-Direct Addressing Mode (HD6301 only)

Instructions with immediate-direct addressing require two

operands: the character "#" followed by an expression (in the

range 0 .. 255, or $0 .. $FF), and a direct address value (in the

range 0 .. 255, or $0 .. $FF), separated by commas.

II A IM # $ 7 F ' $ D 5 II •

For example:

The following HD6301 instructions use immediate-direct

addressing (plus immediate-indexed addressing):

AIM EIM OIM TIM

2.2.7 Immediate-Indexed Addressing Mode (HD6301 only)

Instructions with immediate-indexed addressing require two

operands: the character "#" followed by an expression (in the

range 0 •. 255, or $0 .. $FF), and an expression (with a value in

the range 0 .• 255, or $0 .. $FF) follQwed immediately by the

two-character suffix ",X 11
, separated by commas. For example:

"OIM #$18,2,X".

See section 2.2.6 above for the HD6301 instructions which use

immediate-indexed (and immediate-direct) addressing.

HITACHI 17

2.2.8 Bit-Direct Addressing Mode (HD630l only)

Instructions with bit-direct addressing require two operands:

the bit number (in the range 0 .. 7) and a direct address value

(in the range 0 •• 255, or $0 .. $FF) , separated by commas. For

example: "BSET 4,$3B".

The following HD6301 instructions use bit-direct (and

bit-indexed) addressing:

BCLR BSET BTGL BTST

2.2.9 Bit-Indexed Addressing Mode (HD630l only)

These instructions (the same ones as listed in section 2.2.8

above) require two operands: the bit number (in the range

0 •• 7), and an expression (with a value in the range 0 •• 255, or

$0 .. $FF) fo11C'wed immediately by the two-character suffix ",X",

separated by commas. For example: "BTGL 3, OFST, X".

2.3 Directives

Directives differ from instructions in that they do not produce

code for instructions which can be executed by the 6800/6801/

6301. Some place data constants into the code; others generate

no code at all, but are used by the assembler for other

purposes, such as changing the location counter or signifying

the end of your program. The valid assembler directives are:

END

IFGE

ENDC

IFGT

SET SPC

18 HITACHI

EQU

IFLE

FCB

IFLT

FCC

IFNC

FOB

IFNE

IFC

ORG

IFEQ

RMB

2. 3. l END

The END directive is used to indicate the end of your program.

It cannot be omitted, and must be the last line of the program.

Any lines following the first END statement occurring in the

file will be ignored (they will not even be listed). The END

statement does not use the operand field.

ISI&-II 6301 CR~3S ASSEMBLER. v1.o. HITACHI LTD.

i (i(i(l
1000 cc 0000
i 003 FD 10(>6

1006
1 oo:::

1 $i"'IOD31
2 *
3 * END DIRECTIV~

4 *
6 ORC
7 START LD:O
....
·=· '.:HD

10 VAL RMB
11. ENLI

$1000
#(i
VAL

A~~~MBLY COM~_ETE. ~J ERRORS.

Fig. 2-3 END directive

PAGE

HITACHI 19

2.3.2 ENDC

The ENDC directive is used to indicate the end of a conditional

assembly section initiated by a corresponding IFC directive

(see section 2. 3. 7). The maximum nesting depth allowed for

conditional assembly directives (IFxx •. ENDC blocks) is eight.

lSIS-II 6301 CROSS ASSEMBLER, Vl.O, HITACHI LTD.

(l(l(l 1
0002

(l(l(l(>

0004
(i(i(>::;:

20
4t::' ·-'
45

41. c--._ .. :_, ~.~

4D 4·-· ..:;. 4C
20

~)OA 20 41. 53 5~
OOOE 4'.5 4D 42 4C
(l(l 1. 2 4~· 20

0014

20 HITACHI

:+:

2 * CONDITIONAL ASSEM~LY
3 :+:

!5 FLAG1. :::;c.·1
(:, FLAG2 ::;ET .-,

..:;.

::: IFEG' FLAl31
"1 FCC ·' :::KIP '

1. (l ENUC

12 IFNE FLP~C:i2
1.3 FCC ' Pis:::EMBLE
14
15
16 ENDC

1 ·-· , ... , IFEG! FU~Cil-1

19 FCC ' AS::;EMBLE '
20
21
22 ENDC

24 END

Fig. 2-4 ENDC directive

F'AGE

2.3.3 EQU

The EQU (equate) directive is used to assign a value to a

symbol. While a symbol may be defined by placing the symbol

name in the label field of an instruction statement or a data

constant directive, that definition can only give the symbol

the value of the location counter at that point in the program.

Symbol definition with the EQU directive allows the symbol to

take on any value, which is stated as an. expression in the

[required} operand field. For example:

VAL

LOCA

LOCB

EQU

EQU

LDAA

5+(3+4)*2

*
#VAL

would assign the value 19 to VAL and use that value as the

immediate operand of the LDAA instruction. LOCA and LOCB would
both be assigned the same value, that of the location counter

before the LDAA instruction is processed.

lSIS-II 6301 CROSS ASSEMBLER. v1.o. HITACHI LTD.

(l(>(l(l

(l(H)'.5

(l(l(l5

01 :::o
(J 1 ::::(l
9600
(J 1 :~:(l

0064

1 *
2 * EQU DIRECTIVE
.3 *

6 LAB1 RMB

:3 LA82 EOU

1. (l LAB3 EQU

12 LAB4 i:::ou
13 LAB5 EG!U
14 LAB6 EG!U
15 LAB/ EQU

17 END

ASSEMBLY COHPLElE. NO ERRO~S.

Fig. 2-5 EQU directive

1. 00

LAB 1+~:5

LAB2

"J5:+:512/ 1 (H)

$ l:::o
'.:i 12:+:/:..:i
1 '7'200:+: 2 I 1 00

PAGE

HITACHI 21

One symbol may be used in defining another symbol. If the

symbol used in an operand field expression is defined later in

your program than its use in that expression, then it is said

that the expression contains a "forward reference" to the

symbol. Two-level forward referencing is when the definition

of a forward-referenced symbol itself contains a forward

reference. Such two-level forward referencing cannot be

handled by the assembler, which will not be able to define the

first symbol in the chain. Consider this section of a program:

VALl

VAL2

VAL3

VAL4

VALS

VAL6

VAL7

EQU

EQU

EQU

EQU

EQU

EQU

EQU

1

VAL4

VALl

VAL6

VAL4

6

VAL3

Ir. the above example, VALl is set to 1 and VAL6 is set to 6.

VAL3 is also set to 1, then VAL 7 is set to 1. Now consider

VAL4; it contains a forward reference to VAL6 but the

def ini ti on of VAL6 its elf con ta ins no forward references, so

VAL4 will be correctly set to 6. VALS uses VAL4 after VAL4 has

been defined, so again there is no problem. But VAL2 has a

forward reference to VAL4, which in turn has a forward

reference to VAL6. This is two levels of forward referencing,

and cannot be processed correctly. VAL2 will be flagged as

undefined.

22 HITACHI

2.3.4 FCB

The FCB (form constant byte) directive requires one or more

operands separated by commas (","). The value of each of the

operands should be in the range 0 .. 255 ($0 .. $FF -- 8 bi ts) .

Each operand value will be stored as one byte in the generated

code, in the order that the operands occur, left to right.

ISIS-II 6301 CROSS ASSEMBLER. v1.o. HITACHI LTD.

1 *
2 * FCB DIRECTIVE
3 *

(>(l(l(l Fr· :1 FCB $FF
O(H) 1 01 01 /:.. FCB * • '.i'~(l 1
0003 0<'.i 7 LAB FCB 5:+:2
(>(H)4 03 O'i 0:3 !3 FCB LA.8 .. ~ ,-, :- •:1
000 7 ''l END

AS3EMBLY DJMPLETE. ~J ERRORS.

Fig. 2-6 FCB directive

HITACHI 23

2.3.5 FCC

The FCC (form constant character string) directive requires in

the operand field either: (1) a character string enclosed in

single quotes; or (2) a number, followed by a comma, followed

by a string in single quotes. Each character in the string

will be stored as one byte in the generated code, in the order

that the characters occur, left to right. If the second form

of the operand is used, the number given will determine the

number of bytes to be generated. If the number is greater than

the count of characters in the string, space characters (11 11

or $20) will be appended to the string until the specified

number of bytes has been generated. Examples:

FORMl

FORM2

FCC

FCC

'STRING OF TEXT'

80,'STRING TO WHICH SPACES ARE APPENDED'

ISIS-II 6301 CROS$ ASSEMBLER, Vl.O, HITACHI LTD.

(>(l(J(l 54 45 58
0004 54 4-=

.... ·-· j:3
000::: 20 20 20
oooc 20
000 D

~54

~54

2(1

1 *
2 * FCC DikECTlVE
3 :+:

c:
·-' M::::Gl FCC
6 i'1:::132 FCC
7
:=:
":! END

'TEXl'
'?,'TEXT ..

ASSEMBLY COMPLETE. ~J ERRORS.

Fig. 2-7 FCC directive

24 HITACHI

2 .3.6 FOB

The FOB (form double-byte constant) directive requires one or

more operands separated by commas. The value of each operand

can be anywhere in the range O •• 65535 ($0 .. $FFFF -- 16 bits).

Each operand value will be stored as two consecutive bytes

(more significant byte first) in the generated code.

lSIS-II 6301 CROSS ASSEMBLER, Vl.O, HITACHI LTD.

(>(H)(l 00 02
0002 00 OF
(l(HX. OF FF
OOOA (H) 04
(l(i(i(:

00 FF
FF FF

1 *
2 * FDB DIRECTIV~
3 *
5
6 LAB
7

FDB
F0.8

FOB
ENLI

ASSEMBLY OJMPLETE. NO ERRORS.

Fig. 2-8 FOB directive

$F,SFF,SFFF,$FFFF

LA.8+:2

F'AGE

HITACHI 25

2. 3. 7 IFxx

These directives allow the assembler to conditionally assemble

the section of your program between the IFxx directive and the

corresponding ENDC directive. Two forms are available:

IFtypel stringl,string2

IFtype2 expression

With the first form, the two strings are compared. If they

compare and the IFC directive is used, or if they do not

compare and the IFNC directive is used, the conditional program

section will be assembled; otherwise it will skipped.

With the second form, the expression is evaluated and compared

to zero. The result of that comparison, along with the

specific directive used, determines whether or not the

conditional code will be assembled. The list of directives

used with this form, along with the comparison results which

will cause assembly of the conditional code to take place, is

as follows:

IFEQ expression = 0

IFGE expression >= 0

IFGT expression > 0

IFLE expression <= 0

IFLT expression < 0

IFNE expression ~ 0

The maximum nesting depth allowed for IFxx .. ENDC blocks is

eight.

26 HITACHI

lSIS-II 6301 CROSS AS3EMBLER. v1.o. HITACHI LTD.

(l(l(l 1
0002

(l(l(i(l

0004
0(H)::;:

(100A
OOOE
(i(l J.2

0014

20
45
45

20
4'.3
45

4 1 ~53 53
4[1 42 4C
20

41 53 !53
40 42 4C
20

1 :+:

2 * COl\ID IT I Of\IAL AS::;EMl-Jl Y
3 *
5 FLAl.31 '.::El'
1;,. FLAG2 '.:;ET .-,

..::.

:::: IFE1~J FLA61
'i FCC • '.:;1< IF' •

1 (l ENDC

1 ·-· ..::. IFNE FLAG2
13 FCC ' ASSEMBLE
14
15
16 ENDC

1:3 IFEG! FLA13t-·1
Fl FCC ' A::;::;;E MBL E
20
21
22 ENDC

24 END

ASSEMBLY CC~PLETE. NO EkRORS.

Fig. 2-9 IFxx directive

F'AGE

HITACHI 27

2.3.8 ORG

The ORG (origin) directive

location counter to the

[required] operand field.

forward references.

is used to change the value of the

value of the expression in the

The expression may not contain any

lSIS-II 6301 CROSS ASSEMBLER, Vl.O, HITACHI LTD.

1 * .-. ...:. * or.:r:i DIRECTIVE
~3 *

(H)(H) 4 J=::l'1}3 1 (;

0020 6 ORG '.il:20
002(> 7 RMB C"

·-'

(> 1 (l(l 9 ORG $100

(l 1 (l(l 11 END

ASSEMBLY OJMPLETE. ~J ERRORS.

Fig. 2-10 ORG directive

28 HITACHI

2.3.9 RMB

The RMB (reserve memory bytes) directive adds the value of the

[required] operand field expression to the location counter, in

order to reserve a block of memory, which is not set to any

value. The expression may not contain any forward references.

1818-II 6301 CROSS ASSEMBLER. v1.o. HilACHI LTD.

(l(;(l(l

(i(H) 1
000 B

2 *
3 * RMB DIRECTIV~
4 :t:

t::O CLAB1 RMB
7 CLAB2 RMB
:3 ENl.f

ASSEMBLY OJMPLETE. NO ERRORS.

Fig. 2-11 RMB directive

1 (l

PAGE

HITACHI 29

2.3.10 SET

The SET directive functions like the EQU directive (see section

2.3.3) except that it allows redefinition of the symbol in the

label field. An operand is required. For a clarification of

the difference between EQU and SET, see the explanation on the

definition of symbols (section 2.1.3).

ISIS-II 6301 fROSS ASSEM~LER, v1.o, HllACHI LTD.

1 *
2 * SET DIRECTIVE
3 *

(l(l(l(i ~. :~;LAB1 !~;E°I *
0000 :3 :3LA82 ::;ET ::::LAB 1

OOOG 1 (l :~:LAB2 ::::El 5

0004 1 ·-:· ..:. ::;;LAB:2 SET ::;LAB:2-1

(l(i(l(l 14 END

ASSEMBLY OJ~~LETE. NO ERRORS.

Fig. 2-12 SET directive

30 HITACHI

2.3.ll SPC

The SPC (space) directive is used to skip a number of blank

lines on the listing. The line with the SPC directive is not

printed, but in its place are inserted blank lines. The

[required] operand value is the number of blank lines to be

inserted (limited to the number of lines remaining on the

listing page). "SPC 1 11 produces the same effect as a blank

source line. "SPC 255 11 produces the same effect as a page

eject control with normal length pages.

HITACHI 31

3 USING THE ASSEMBLER

An assembly is initiated by one of the following commands to

the ISIS-II operating system:

ASM31 sourcef ile controls

:Fl:ASM31 sourcefile controls

:Fn:ASM31 sourcefile controls

The first form is used if the assembler program, ASM31, is on

the diskette inserted into drive 0 (typically your system

diskette). The second form is used if the assembler is on the

diskette inserted into drive 1. The third command is a general

form of the second, where the drive number where the diskette

with the assembler is located is substituted for the letter "n"

in ":Fn:ASM31".

~sourcefile" is the name of a file containing the program to be

assembled. A typical name might be ":Fl:TEST2.M31" (if the

file is on the diskette in drive 1).

"controls" is an optional list of assembly controls, in any

order, as discussed below.

32 HITACHI

3.1 Primary vs General Controls

Controls are classified according to where they can be used. A

primary control may appear in the console command, or as an

embedded control line before the first assembly language

statement, blank line, or comment line in the source file. A

general control may appear in the console command, or as an

embedded control line at any location in the source file prior

to the END statement.

An embedded control line in the source file beg ins with a

dollar sign ("$") as the first character and may contain one or

more controls.

Some controls require a file name or a number enclosed in

parentheses following the control name. There may optionally

be one or more spaces between the control name and the open

parenthesis character ("("}.

3.2 Primary Controls

PRINT (name)

NOPRINT

Causes an assembly listing to be written to the

specified file or device. Examples:

PRINT (:LP:) -- list to the line printer

PRINT (:Fl:TMPFIL.LST) -- list to file

PRINT (:CO:) -- list to the console

Suppresses the assembly listing.

HITACHI 33

OBJECT (name)

NOOBJECT

MODOl

MOD31

SYMBOLS

NOSYMBOLS

XREF

NOXREF

PAGING

Causes an object module in Intel* hexadecimal

paper tape format to be written to the

specified file or device. Examples:

OBJECT (:Fl:OBJFIL.HEX) -- to disk file

OBJECT (:HP:) -- output to tape punch

Suppresses the object module.

Allows use of HD6801 opcodes (see section 1) .

Allows use of HD6301 opcodes (see section 1).

Causes a sorted listing of all user-defined

symbols to be written on the list device at the

end of the assembly.

Suppresses the symbol table listing.

Causes a sorted cross reference listing of all

symbols, giving the line numbers where the

symbol was used and defined, to be written on

the list device at the end of th~ assembly.

Suppresses the cross reference listing.

Causes the assemb+y listing to be segmented

into pages, with a page number and header at

the top of each page.

NOPAGING Suppresses the paging option.

* "Intel" is a registered trademark of Intel Corporation.

34 HITACHI

FORMS

NOFORJ.'1.S

Causes the assembler to issue a form feed

character for moving the listing to the top of

a new page.

Suppresses the forms option; causes the

assembler to issue several line feed characters

instead of the form feed character.

PAGEWIDTH (nn) Causes the assembler listing pages to be "nn"

columns wide. Examples:

PAGEWIDTH (132)

PAGEWIDTH (8 0)

P.i\GELENGTH (nn) Causes the assembler listing pages to be "nn"

lines long. Examples:

PAGELENGTH (84) legal size paper

PAGELENGTH (66) letter size paper

3.3 General Controls

LIST

NOLIST

Enables the listing of source statements until

the next NOLIST control is encountered.

Disables the listing of statements until the

next LIST control is encountered.

TITLE ('text') Causes the specified text line (maximum 72

characters) to be printed as a title at the top

of each page of the listing.

EJECT Causes the next line of the listing to begin at

the top of a new page.

HITACHI 35

INCLUDE (name) Following this control line, the assembler will

input source lines from the file specified by

"name"; at the end of the "name"d file, input

of source lines will resume from the original

source file, immediately following the INCLUDE

control line. INCLUDEs can be nested to a

depth of five.

3.4 Initial Settings of Controls

If not, or until, explicitly set in the command line or in

embedded control line statements, the default settings of the

controls are as follows:

PRINT (sourcefilename.LST)

OBJECT (sourcefilename.HEX)

SYMBOLS

NOXREF

PAGING

FORMS

PAGEWIDTH (120)

PAGELENGTH (66)

In explanation of the default PRINT and OBJECT controls: if

not explicitly specified and not suppressed by the NOPRINT or

NOOBJECT controls, the default 1 is ting and object files have

the same name and disk drive number as the source file, and the

extensions .LST for the listing file and .HEX for the object

module file.

'!'he MODOl and MOD31 options are not assumed unless explicitly

requested; without them ASM31 recognizes only HD6800 opcodes.

36 HITACHI

4 DESCRIPTION OF FILES PRODUCED

4.1 Listing File

The listing file (normally produced unless suppressed by the

NOPRINT control) contains a listing of your source p~ogram with

generated object code and any error messages, a symbol table

(unless suppressed by the NOSYMBOLS control), and (if selected

by the XREF control) a cross reference table. These sections

of the listing are described in further detail in the following

sections. (This description assumes that you are using the

PAGING option.)

4. l. l Source Listing Format

The first line on each page identifies the version of the

assembler and gives the page number of the listing. The second

line contains the title specified by the TITLE directive, if

any.

The rest of the page consists of source file lines, one per

listing line. There are several items on each listing line to

the left of the source line. The first is the error character,

normally blank unless the assembler detected an error in

processing the source line. Next is a four-hexadecimal-digit

value: on EQU and SET statements, it is the value assigned to

the symbol in the labe 1 field. On ORG s ta temen ts , it is the

new location counter value. On instruction and data definition

directive statements, it is the location at which the first

byte is placed.

HITACHI 37

ISIS-II 6301 CR~~; A~SEMBLER, v1.o, HITACHI LTD. PAGE 1

0100

01 <)(I

0101
0103

0200
0200 FF 0101
0203 CE 022F
0:.206 7F 0100
02(>'7' A3 00
0208 2!5 05
02(>[1 7C 01. (l(l
0:21 (> 20 F7
0212 E::.; (H)

0214 36
021.5 Fr: (> 103
021:3 f"E 0101
02l.B ::m 30
021 D A7 00
021F 32
0220 08
02:21 FF 0101.
0:.224 FE 0103
0227 o:::
022:3 0:3
022'1' :~~c 023'=i
022(: :2tS o:::
022E 3~

02:2'F 27 1 (l
O:Z31 03 E:3
022~:.; (i(l M
0235 (>(I OA
02.?.:/ (l(l 01
023'?

$i'10D31

3 * F:EVI::;;IOf\I
4 * CONV~RT BINARY TO DECIMAL & STORE 5 CHAR
5 * CA,B> BINARY VALUE
6 * <X> POINTER TO STURE DACIMAL CHARS
7 * Tt:MPORARY STORAGE

10 SAVEA
11 SAVEX
12 ::;AVEX 1

14
1!5 CVBTO
16
17 CVDEC1
1:3 CVL1CC2
19
20
21
22 CVDEC~·
23
24
25
26
:2 i

2·1
30
31
32
. .:\3
34
35
36

FMB
RM El
1;:i"1.8

0Rt3
STX
LDX
CLR
SUEID
BC::;
INC
BRA
ADDD
p:;:;HA
STX
LDX
ADDA
STAA
PULA
INX
::;Tx
LDX
INX
INX
CPX
BNE
WAI

3:3 * CON::;TANT:;
3'=? ~::101< FDB
40 FDB
41 FLIB
42 FDB
43 FDB
44 END

$100

2
2

$200
::;AVE::X
#I< 101<
Sf.iv'EA
o,x
CVDt:C5
::;;,~Vt:A

CVDEC2
o,x

::;;AVC:X1.
::;AV'EX
*~$~30
o,x

SAVEX
::;f.WEX 1

#K 101< + 1 O
CVDEC1

ACCUi"IULATOR A
:;TORE DATA POINTER
POINTER TO C0~3TANrs

SAVE DATA POINTCR
<X> POINTEk 10 CONSTANlS
INZ DEC Cllr~R

OVEF:1=u:1w
INC CHAn BEING BUILT

RESTORE PARTICAL RE~JLT

x - s·roRE CHAR ~~INTER
Mt=il<E ASC I I CH1:ir.:

X=POINr~R TO OJNSTANTS

FOR CONVER::; I ON
1 (l(l(l(J

1 (H)(l

1 (le)

10
1.

ASSEMBLY crn~?LETE. NO ERRORS.

Fig. 4-1 Source listing

38 HITACHI

4. l. 2 Error Messages

The first error detected by the assembler on any source line

processed is reported by a single letter placed in the first

column of the listing line. The possible error codes are:

A - Invalid addressing mode.

B - Relative branch range error.

C Command line error. An embedded control line in error, or

a primary control occurring after an assembly statement.

D - Depth error. Complex expression overflows internal stack.

I - Invalid character in source.

L - Invalid label in label field.

M - Multiple symbol definition.

N - Nesting error. Parentheses or quotes do not match.

0 - Opcode error. Unrecognizable opcode.

P - Phase error. Due to illegal forward references elsewhere.

Q - Questionable syntax.

R - Invalid or missing register specification.

S - Syntax error. Missing or extra operands.

U - Undefined symbol reference.

V - Value error. Operand exceeds allowed range.

lSIS-II 6301 CROSS ASSEMBLER. v1.o. HITACHI LTD. F'A(3E

·=:
~

B

1 (l(l(l

004E
lFFO
00/.:.F
003C

1 (l(l(l
1 (l(l.3
1 (l(l4
1006

1 (l(l'?

30 oo:::B
4:3
20 7D
BD 006F

A~SEMBLY COMPLETE.

(error code)

. -. ..:.

.-. ..::. * ·.3 IMi"lt::D
4 LONi:3I
5 DIRECT
6 INDEX
7 * :::
't

1 (l
11
12 *
13

ERROF\S .

ORG

EG!U
E1~~U

EGJU
EG:!U

ADD A
A::::L A
BRA
.j::;R

END

$1000 START AT 1~)0 HEX

'./~01001110
$1FFO
$/.:.F
$3C

DIRECT

Fig. 4-2 Error Message

1

HITACHI 39

At the end of the source listing (after the END statement), a

line is printed which says:

ASSEMBLY COMPLETE. n ERRORS.

where "n" is the number of lines in which errors were detected.

In addition to the error messages on the listing, some error

messages may appear on the console. Discussion of these is

deferred to the description of the console output (section

4. 3).

4.1.3 Symbol Table Format

The symbol table starts on a new page. Each entry (there are

several per line) consists of a symbol's name and its value (as

a four-hexadecimal-digit number).

ISIS-II 6301 CROSS ASSEMBLER. v1.o. HITACHI LTD.

CVBTD
:::;1=iVEA

0200
01 (l(I

40 HITACHI

CVDECl
:::;,~VEX

0206
0101

CVDC::C2 0209
::;AVEX 1 0103

CVDEC5 021:2

Fig. 4-3 Symbol table

PAGE

Kl OK 022F

4.1 .4 Cross Reference Format

The cross reference table starts on a new page. Each line

gives the symbol name followed by a list of lines where it is

referenced. Any line where the symbol is defined has the

character "#" following the line number.

lSIS-II 6301 CROSS ASSEMBL~R. v1.o. HITACHI LTD. F'AGE

CVB m 15:1*
CVDCC1 17# 3~.
CVDEC2 i::::# 21
Cl./DEC.:5 1'7' 22#
K 1 o~::: 16 :34 39*
::;;,~tv't:.A 1. (i:fl: l 7 20
::;;A\'EX 1 1 ·I* 1 ·=-·-' 25 .30
:::;AVE.X 1. 12# 24 31.

CRa~3 REFERENCE COMPLETE.

Fig. 4-4 Cross reference table

HITACHI 41

4.2 Object File

The object file contains a series of records in the Intel*

hexadecimal paper tape format. To

ISIS-II compatible absolute object

command HEXOBJ:

HEXOBJ filename.HEX to filename.OBJ

convert the file to an

file, use the ISIS-II

Remember to pref ix the "filename" with the appropriate d i!:~ik

drive n~mber in each case.

4.3 Console Output

Unless PRINT or OBJECT output is directed to the console (in

which case see sections 4.1 and 4.2 for a description of that

output), the console output is limited to the following:

1 A banner giving the version number of the assembler

2 "ASSEMBLY COMPLETE. n ERRORS." (as in listing file)

3 "COMMAND ERROR." if there is a problem with the

4

controls in the command line invoking the ASM68

assembler.

II SYMBOL TABLE OVERFLOW. II if the program being

assembled has more labels than can be contained in

available memory. Note: specifying the XREF option

reduces the number of labels that can be handled.

5 "ERROR n USER PC xxxx": ISIS-II error messages which

can occur at any time, due to disk errors, etc. A

common cause of ERROR 35 (end of file): no END line.

* "Intel" is a registered trademark of Intel Corporation, Santa

Clara CA.

42 HITACHI

APPENDIX A INSTRUCTION TABLE

Mnemonic
Code

ABA
ABX
ADCA
ADCB
ADDA
ADDB
ADDD
AIM
ANDA
ANDB
ASL
ASLA
ASLB
ASLD
ASR
ASRA
ASRB
BCC
BCLR
BCS
BEQ
BGE
BGT
BHI
BHS
BITA
BITE
BLE
BLO
BLS
BLT
BMI
ENE
BPL
BRA

I
BRN

BSET

I BSR

i
BTGL
BTST

:>,.--l
.--l 0
>:: M
0 l.O

" .--l .--l :>,

Inherent Immediate Direct

Addressing Mode

OP operation code
"' : cycle count
byte count

Extened Indexed! IR 1 t' Immediat~Immediate Bit
e a ive -Direct -Indexed ~Direct

Bit
-Indexed

0 O.--ll--~~~-+-~~~~1--~~~1--~~~+-~~~---+-~~---.---+~~~~-+----.-~.,----+-~..---~---+-~~~--1
M CXl >::
'° '° o OP # OP "' # OP "' # OP "' # pP ~ # PP "' # OP ~ # # OP # OP ~

•

•

•
• •

•

•

lB
3A

48 2 1
SS 2 1

• 05 3 1

•

•

47 2 1
S7 2 1

89
C9
SB
CB
C3

!
2 I 2 99
2 2 D9
2 2 9B
2 2 jDB
4 3 jD3

3
3
3
3
s

84 2 2 94 3
C4 2 2 ID4 3

2 B9 4
2 F9 4
2 BB 4
2 FE 4
2 F3 6

3 A9 4 2
3 E9 4 2
3 AB 4 2
3 EB 4 2
3 E3 6 2

2 B4 4 3 A4 4 2
2 F4 4 3 E4 4 2

78 6 3 68 6 2

77 6 3 67 6 2

SS 2 2 9S 3 2 BS 4 3 AS 4 2
CS 2 2 DS 3 2 FS 4 3 ES 4 2

l

24 3 2

2S 3 2
27 3 2
2C 3 2
2E 3 2
22 3 2
24 3 2

2F 3 2
25 3 2
23 3 2
2D 3 2
2B 3 2
26 3 2
2A 3 2
20 3 2
21 3 2

SD 6 2

71 6 3 61 7 3

71 6 3 61 7 3

72 6 3 62 7 3

7S 6 3 6S 7 3
7B 6 3 6B 7 3

HITACHI 43

Addressing Mode
;>,.-I

.-I 0

MneIOC>nic i:: (") IrnmediatEj IrnmediatEj Bit Bit 0 \.0 Inherent Irnmediat<j Direct Extended Indexed Relative
Code '- -Direct .-I .-I:>. -Indexed -Direct -Indexed

0 0.--1
(") CXl i::
\.0 \.0 0 OP 'V # OP 'V #PP 'V # OP 'V # OP 'V # OP 'V # OP 'V #PP 'V # jc"lP 'V # OP '\, #

BVC 28 3 2
BVS 29 3 2
CBA 11 2 1
CLC oc 2 1
CLI OE 2 1
CLR 7F 6 3 6F 6 2
CLRA 4F 2 1
CLRB SF 2 1
CLV OA 2 1
CMPA 81 2 2 91 3 2 Bl 4 3 Al 4 2
CMPB Cl 2 2 jDl 3 2 Fl 4 3 El 4 2
COM 73 6 3 63 6 2
COMA 43 2 1
COMB S3 2 1
CPX BC 4 3 9C s 2 BC 6 3 AC 6 2
DAA 19 2 1
DEC 7A 6 3 6A 6 2
DECA 4A 2 1
DECB SA 2 1
DES 34 3 1
DEX 09 3 1
EIM • 7S 6 3 6S 7 3
EORA 88 2 2 98 3 2 BB 4 3 AB 4 2
EORB cs 2 2 DB 3 2 F8 4 3 EB 4 2
INC 7C 6 3 6C 6 2
INCA 4C 2 1
INCB SC 2 1
INS 31 3 1
INX 08 3 1
JMP 7E 3 3 6E 3 2
JSR 9D s 2 BD 6 3 AD 6 2
LDAA 86 2 2 96 3 2 B6 4 3 A6 4 2
LDAB C6 2 2 D6 3 2 F6 4 3 E6 4 2
LDD • cc 3 3 DC 4 2 FC s 3 EC s 2
LDS BE 3 3 9E 4 2 BE s 3 AE s 2
LDX CE 3 3 DE 4 2 FE s 3 EE s 2
LSL • 78 6 3 68 6 2
LSLA • 48 2 1
LSLB • SB 2 1
LSLD • OS 3 1
LSR 74 6 3 64 6 2
LSRA 44 2 1
LSRB S4 2 1

44 HITACHI

Addressing Mode
~.-I

.-I 0

Mnemonic .:: M Immediate Immediate Bit Bit
~~ ~ Inherent Immediate Direct Extened Indexed Relative

Code -Direct -Indexed -Direct -Indexed
0 0 .-I
M CO .::

\.D '° 0 OP '\, # OP ·v #PP '\, # OP '\, # OP '\, # OP '\, # OP '\, #PP '\, # OP '\, # OP '\, #

LSRD • 04 3 1
MUL • 3D 10 11
NEG 70 6 3 60 6 2
NEGA 40 2 1
NEGB 50 2 1
NOP 01 2 1
OIM • 72 6 3 62 7 3
ORAA SA 2 2 9A 3 2 BA 4 3 AA 4 2
ORAB CA 2 2 joA 3 2 FA 4 3 EA 4 2
PSHA 36 3 1
PSHB 37 3 1
PSHX • 3C 4 1
PULA 32 4 1
PULB 33 4 1
PULX • 38 5 1
ROL 79 6 3 69 6 2
ROLA 49 2 1
ROLB 59 2 1
RTI 3B 10 1
RTS 39 5 1
SBA 10 2 1
SBCA 82 2 2 92 3 2 B2 4 3 A2 4 2
SBCB C2 2 2 jo2 3 2 F2 4 3 E2 4 2
SEC OD 2 1
SEI OF 2 1
SEV OB 2 1
SLP • lA 4 1
STAA 97 3 2 B7 4 3 A7 4 2
STAB jo7 3 2 F7 4 3 E7 4 2
STD • joD 4 2 FD 5 3 ED 5 2
STS 9F 4 2 BF 5 3 AF 5 2
STX joF 4 2 FF 5 3 EF 5 2
SUBA 80 2 2 90 3 2 BO 4 3 AO 4 2
SUBB co 2 2 joo 3 2 FO 4 3 EO 4 2
SUBD • 83 4 3 93 5 2 B3 6 3 A3 6 2
SWI 3F 12 1
TAB 16 2 1
TAP 06 2 1
TBA 17 2 1
TIM • 7B 6 3 ~B 7 3
TPA 07 2 1
TST 7D 6 3 6D 6 2
TSTA 4D 2 1
TSTB SD 2 1
TSX 30 3 1
TXS 35 3 1
WAI 3E 9 1
XGDX • 18 2 1

HITACHI 45

APPENDIX B EXAMPLE OF PROGRAMMING

B.l CVBTD Binary-to-Decimal Conversion Subroutine

CVBTD is a subroutine to convert a 16-bit binary number to 5-character

decimal data.

Linkage: As shown below, sets the high-order 8 bis of input data in

accumulator A and the low-order 8 bits in accumulator B.

Then, sets the address to store output data in the index

register.

ACCA, ACCB

I X

DATA+O

1

2

3

4

15

15

7

Binary

Data address

0
lOOOOs

1000s

lOOs

10s

lS

0

I
0

I

Set input data

Address to store
output data

..... Output data (ASCII code)

Result: 5-character ASCII codes are output to the addresses after Data

address shown in the above.

46 HITACHI

I :::rs- I I C;..3(11 CROSS: ASSEMBLER. Vl. (>, Hl TACHI LTD.

(ll (l(>

0100
01(>1
0103

(>2(>(>
0201) FF 0101
0203 C:E 022F
0206 7F <) l (H)

(>209 A.3 (H)

021)8 ·25 05
0200 7C O l 00
l):.210 20 F7
0212 E3 00
0214 36
(>215 FF 0103
l)21!'.3 FE l)l(>l
021B 88 30
0210 A7 Ot)
021F 32
0220 0:3
0221 FF C>101
0224 FE 0103
0227 08
0228 0:3
022·1 :::c 0239
022C ·?.6 0:3
C>22E 3E

C>22F 27 l(>
0231 03 E:3
(>233 (H) 64
0235 00 OA
(>237 I)(> C>l
023''1

$MIJD.31

3 "' REVIS;ION
4 • CONV~RT BINARY TO DECIMAL ~ STORE 5 CHAR
5 * IA.Bl BINARY VALUE
6 * CXl POINTER TO STORE DACIMAL CHARS
7 * TEMPORARY STORAGE
8 Of\G Sl(>(>

10 SAVEA
11 SAVE:X
12 :3AVEX l

14
15 CVBTD
16
17 CVDEC1
18 CVDEC2
l '1
20
21
22 CVLIEC5
2.3
24
25
26
27
28
29
3(>
31
3~
.33
34
35

RMS
RMB
HMB

ORG
::>TX
LDX
CLR
SUBD
8>:::3
I NC.
BRA
ADDI'.!
P:3HA
STX
LD:X
ADDA
STAA
PULA
IN:X
STX
LOX
INX
INX
CPX
8NE
WAI

2

S2(l(>
:3AVEX
~KlC>K
:;AVEA
(I, x
CVDEC5
:::AVEA
1_:VDEC:2
(>, x

SAVE:Xl
:;AVEX

l) 'x

SAVEX
:3AVEX 1

i.K1C>K+10
CVDECl

ACCUMULATOR A
STOf\E DATA POINTER
P01NTER TO CON:3TANT:3

SAVE DATA POINTER
CXl POINTER TO CONSTANTS
INZ DEC C: IAR

OVERFLOW
INC CHAR BEING E<UIL T

RESTORE PART I CAL.. RE::;uL T

X - STORE: CHAR PO rNTER
MAKE ASCII CHAR

X-'PIJINTER TO CONSTANTS

3:~ "' CJJNSIANTS F;::R CONVER:3It_1N
39 KlOK FDB 1~)00
40 r-·oe l ()()(I
41 FDB l (>(>

42 FOB 10
43 FDB 1
44 END

ASSEMBLY C:OMPLEl~. NO ERRORS.

Fig. B-1 Binary-to-Decimal Conversion Subroutine

HITACHI 47

B.2 MOVE Memory-to-Memory Transfer Subroutine

Sets the starting address of transfer destination in the address which IX

indicates, the starting address of transfer source in the IX+2 address,

and the number of bytes to be transferred in the IX+4 address. Calls this

subroutine after setting the address in which the starting address of

transfer destination is stored.

t
IX

48 HITACHI

Transfer­
destination
starting
address

Transfer­
source
starting
address

Number
of
transfer
bytes

ISIS-LI 6301 c~~;s ASSEMBLER. v1.o. HITACHI LTD.

(140(>
l)41)<)

(1402

20<)<)

2000
200(> E1: <)<)
2(J(l2 FD (l4(J(l

2005 EC (>2

2007 FD (14(>2
2(lOA A6 (>4

200C FE 040<)
200F E6 00
2011 3C
2012 FE (>402
2015 E7 <)(l

2017 (18
201:3 FF <)402
201B 38
201C <):3

::(>lD 4A
201E 26 EF'
202<) 2iC:
2021

ASSEMBLY C:OMF'LE·re;. NO

$i'10D3 l

3 :+c:-tc:;t:~***:-'4C='lc*:.+l:.f':*:;t>fc:4c)fe:fC:otc:tc:-tc:-tc:~:;c:f(:+c:-tc:-t1:+c:tc:+c**:+iat:iC:-tc*:+c:-ts***:41'

4 "'
5 .tr

6 ,., MIJVE
7 *
8 "'
9 "'

1<) *
11 *
12 *
13 •
14 , ..
15 .•

TH I:; PROGRAM MOVE DAT A

IX+O
IX+2
IX+4

BY SPECIFY LENGTH

BEEIN ADDRESS 12l
DE:3TINATIUN ADDRE:3:3 12l
LEN•.:lTH I 1 l

...
* ...
* ...
....
...
*
*

16 **"'"'"'"'**"'**"'***"'***"'**********'•***********'"*

i-=- OR6 $4(l(l
19 i'1UVBE13 RMB 2
20 MOVDST RMB 2

.-,.-, l)Rl3 S20UO
23 MOVl:: EGIU :it

24 LDD 0 .x :=:ET PARAMETER
25 :::TD MUVBEG
26 LUO 2 .. x
27 STD MOVDS1
2:3 LDAA 4,X
z·=t ~·
30 LDX MOVBEG
31 MOVOlO LDAB (l, x
32 P:::>HX
33 LDX MOVLIST
34 :3TAB 0 ,x
35 INX
36 :3TX MOV0:3T
37 PULX
.3:3 INX
39 DECA
40 8NE Ml)VOlO
41 WAI
42 ENO

ERRORS.

Fig. B-2 Memory-to-Memory Transfer Subroutine

HITACHI 49

B.3 MULTI 16-Bit Multiplication Subroutine

MULTI is a subroutine to multiply 16-bit binary numbers and to output the

product of 32-bit binary data.

Input parameter

Output parameter

RESULT

50 HITACHI

+O

+1

+2

AC CAB Multiplicand

IX Multiplier

Stored in 4-byte RESULT starting at the

address $404, as shown below.

Highest-order byte

+3 Lowest-order byte

04(lc)
<)4(l(l

04<)2
(J4(l4

2000
:;::(l(l(l
20<)<) FD
::::003 FF
21)0/.> 7F
2(1(l9 7F
21)<)•: 7F
200F 86
2012 F6
2015 31.)
2016 r .. D
2(>19 86
2(>1C F6
201F 3L.1
2020 F3
2023 FD
2026 24
2028 7C
2(l28 86
202E F6
2031 .30
~·032 F3
2035 FD
2<)3;::: 24
21)3A 7C
::o3i:• 8.:.
204<) Ff:.
2(J43 3L•
.2044 F3
2047 FU
204A 3E
2048

A.-:;.~:EME1L Y

1)400
(l402
l)4<)4
(l4(l5
l)406
(l4(>1
040:3

l)4<)6
(l4(l(l
l)4<)3

04(>5
(>405
l)3
(>4(>4
l)4(l1
l)4(>2

(>40'.3
l)4(l~

l)3
l)4<)4
(14(l(l
l)4(».2

(J4l)4
(14<)4

COMPLETE. NO

$MOD.3 l

9 "'
1 (I "'
11 ...
12 ,..
13 ,..

14 *
15 ,..
16 ,..
17 ,..
1:3 "'
19 "'
2(l *

MULTIPLY TWO 16-BIT POSITIV~ VALUCS
TO GENERATE A 32-8IT PROUUCT
AT TERMINATION ' BOTH INru1 VALU~S
AND THE RE:3UL T W ! LL BE IN MEMORY

CA: Bl • CC: Dl ·= ACH: ACL

iNPUT

OUTPUT

AftH: AttL
+ BCH:BCL

BDH: ar1L

ACCAB = MUL T!PLICANL)
IX = MULTIPLIER

RE:::UL T < 48YTC: >

.c.

* ,..
...
...

21 :+c:t&:.+c*:fl***:•:+::«*:<fl;fl**:iC:ie:••:fC*******~****•*****•*:itc*

23 ORG
24 MULA ND RMr:i
2S 111JLIER Rt18
26 RESJJL T RMB

2:3 ORG
2'7 MULT EG!U
.3<) :;YD
31 STX
3:2 CLR
33 CLR
34 CLR
35 LDAA
31:- LDAB
37 MUL
3:3 :;To
39 LDAA
4<) LOAB
41 MUL
42 ADDO
43 STD
44 BCC
45 INC
46 i'1ULT10 LDAA
47 Lf1A8
4•::. ;·11_tL
49 ADDO
5(l :;TD
51 8CC
52 1NC
5~5 Ml_rL T2(l L.t•AA
54 LDAB ... ,,, _. l"lUL
56 Al)CtD
57 STD
5:3 WAI
59 END

ERROi\$.

$4(l(l
2
.-,

4

$21)1)(>

*
t1ULAND
MULIER
RE3ULT
RC:S:UL T+l
RE:=:IJL T+2
MULAND+l
MIJLIER+i.

RE·=:UL T+2
MULANLl
r1ULIER+l

RE:.3ULT+1
RC:.SULT+l
MULTlO
RESULT
MUl .. AND+l
MULIEk

RES:UL T+l
RE:::ULT+l
MULT20
r\t:::31JL T
MUL.ANl1
MUL!ER

RE:::ULT
RES:UL T

:3AVE MULTIPLICAND
SAVE:. MULTIPLIER

ltA LS BY"tE
1*8 L:3 BYTE

l*A MS BYTE
#8 L.S BYTE

#A LS BYTE
i.B MS BYTE

ltA MS BYTE
#.Et MS BYTE

Fig. B-3 16-Bit Multiplication Subroutine

HITACHI 51

APPENDIX C EXAMPLE OF PROGRAM DEVELOPMENT

The following shows an example of program development with the
program shown in "Appendix B.2 MOVE Memory-to-Memory Transfer
Subroutine". In this case, ISIS-II system diskette is set in
unit 0 and the diskette containing 6301 cross assembler, in unit
1.

C.l Producing Source Program

The following explains about producing source program with an
example which uses ISIS-II text editor.

-EDIT :Fl:MOVE.SRC (QiD

When inputting (a), the file of MOVE.SRC is assigned to th~
diskette in unit 1.

*I<source line>~

<source line>~

<source line><:®

$$
........ ~~~~~~~~~~---displayed when keying in~-

Key in I command first and source lines in succession. After
completing the key-in of source lines, key in~ twice.

* E$$

(a)

Key in E command, and then key in ~ twice. With this opera­
tion, the file of MOVE.SRC is produced in the diskette in unit
1. Contol returns to ISIS-II mode.

52 HITACHI

C.2 Assemble

-Fl:ASM31 :Fl:MOVE.SRC XREF PRINT(:LP:) (@ (b)

When inputting (b), cross assembler ASM31 is loaded from the
diskette in unit 1 and assembles. In this example, source file
is input from the file of MOVE.SRC in the diskette in unit 1.
Object file named MOVE.HEX is output to the diskette in unit 1.
For lists, source object, symbol table and cross reference lists
are output to the line printer. Fig. C-1, C-2 and C-3 show the
output lists.

C.3 Conversion of Object File

-HEXOBJ :Fl:MOVE.HEX TO :Fl:MOVE.OBJ ~ (c)

When inputting (c), the object file MOVE.HEX in Intel hexadecimal
paper tape format which is output to the diskette in unit 1 by
cross assembler is converted into the object file MOVE.OBJ in
absolute format in the same diskette.

HITACHI 53

ISIS-I I 63(11 CROSS ASSEMBLER, Vl. (1, HllAC:HI L Tl).

(14(l(i
1)4<)0
(1402

201)1)
2(1(1(1
21)1)(1 EC 1)0
~0(12 FD (14(1(1
201)5 EC 1)2
2(1(>7 FD (14(12

200A A6 04

200C FE 1)41)1)
200F El· C>O
2011 3C
2012 FE (>4(12
2015 E7 01)

2(117 OE<
2018 FF 0402
201B 38
201C 08
2010 4A
201E 26 EF
2(12(1 3E
2021

SM0031

3
4 * ...
s *
b * MOVE
7 *
8 ...
9 ...

10 ...
11 ...
12 *
13 ...
14 *
15

THIS PROGRAM MOVE DATA
BY SPECIFY LENGTH

IX = PARAME::TC.R Ar•DRESS

I X+(I

IX+2
IX+4

BEGIN ADD~ESS C2J
DESTINATION ADDRESS C2>
LENGTH Cll

* ...
...
* ...
*

* ...
*

16 ********************************~***********

18 ORG $4(1(1
19 t10VBE'3 RMB 2
2(1 MOVDST RhB -,

22 ORG $2(11)1)

23 MOVE EQU *
24 LDD (l ,X ~:;~r PARAM!:::::Tt::R,, STD MOVBEG
26 LOO 2.x
27 STD MOVDST
23 LOAA 4,X
29 *
30 LOX Ml)VBEi'5
31 MOVOlO LDAB (1, x
32 PSHX
33 LOX MUVlJST
34 STAB 0 .x
35 INX
36 STX MIJVO::>T
37 PULX
38 INX
39 DECA
40 BNE MOV011)

41 WAI
42 END

ASSEMBLY COMPLETE. N(I ERRORS.

Fig. C-1 Source Object List

ISIS-II 6301 CROSS ASSEMBLER. v1.o. HITACHI LTD.

MOV010 201)F MOVBE13 041)1) i'10VO::>T 0402 MOVE

SYMBOL LI ST I NG COMf'LETE.

Fig. C-2 Symbol Table List

ISIS-II 6301 CROSS ASSEMBLER, v1.o. HITACHI LTD.

M•JV011)
MOVBEG
MIJVOST
MOVE

31#
19#
20#
23-lt

41)

2~ 30
27 33 .36

CROSS REFERENCE COMl-'LeTE.

Fig. C-3 Cross Reference List

54 HITACHI

2001)

@>HITACHI
A World Leader 1n Technology

Hitachi America, Ltd.
Semiconductor and IC Sale~ and Service Division
1800 Bering Drive, San Jose, CA 95112
1-408-292-6404

HITACHI #U29 Printed in U.S.A.

