
I

20151 Bahama Street
Chatsworth, California 91311

(213}~7596
(B1B) 7()(}8700 (B1B) 341-4411

H068450 OMAC
(Direct Memory Access Controller)

APPLICATION NOTE

#U60 .HITACHI H680DMAC-EAN

When using this manual, the reader should keep the following in mind:
1. This manual may, wholly or partially, be subject to change without notice.

2. All rights reserved: No one is permitted to reproduce or duplicate, in any
form, the whole or part of this manual without Hitachi's permission.

3. Hitachi will not be responsible for any damage to the user that may result
from accidents or any other reasons during operation of his unit according
to this manual.

4. This manual neither ensures the enforcement of any industrial properties
or other rights, nor sanctions the enforcement right thereof.

HD68450 DMAC

The HD68450 DMAC is a 16-bit microprocessor that is bus-compatible with
HMCS68000 systems, and has the following features:

• 4 independent DMA channels (programmable priority order)
• Maximum Transfer Rate is 4M Bytes/sec (8MHz)
• Various Multi-Data-Block Transfer Modes: Continue Mode, Array Chaining

Mode, and Linked Array Chaining Mode
• High Reliability of Data Transfer facilitated by Error Detect, Error Interrupt

Vector, and Exception features.
• 16M-Byte Address Space (same as the HD68000)
• Memory-to-I/O Device Transfer, Memory-to-Memory Transfer
• Programmable Operation Mode and Transfer Mode
• External Transfer Request, Internal Transfer Request (Auto-Request)
• Programmable System Bus Bandwidth Utilization

The HD68450 is also applicable in other processor systems (the 8086 system).

CONTENTS
page

I. HD68450 DMAC Operation .. .
1.1 HD68450 Operating State .. " .. , , , I
1.2 Transfer Types " . " '" .. , ... , ... , , ... 1
1.3 Internal Registers. .. 5
1.4 Signals. .. 7
1.5 Exceptions. .. 8

2. System Example ... 10

3. HD68450 Transfer Operation and Circuit Examples , 13
3.1 FIFO Register Operation .. 13
3.2 FC Application Examples. .. 13
3.3 DMAC Interrupt Request Examples .. 13
3.4 Peripheral Control Line (PCL) Operations 16
3.5 Demultiplex Examples for Address/ Data Multiplexed Bus , 17
3.6 HIBYTE Application Example ~ .. 17
3.7 Low Speed I/O Device Circuit Example 18
3.8 High Speed I/O Device Circuit Example 18
3.9 6800 Family Application Examples ... 18
3.10 Encode Example for Exceptions ... , 18
3.11 Priority Circuit Example (Daisy Chaining) 18
3.12 8086 System Application Examples ... 18

4. HD68450 DMAC Control Program .. 39
4.1 Basic Control Routine 39
4.2 Transfer Termination Routine ... , 39
4.3 Continue Mode Program Example .. , 39
4.4 A Program Example in Array Chaining Mode , 39
4.5 A Program Example in Linked Array Chaining Mode 45

5. Data Sheets ... 49

HD68450, HD68450Y DMAC ... 51

HD68000 Series ... 99

I. HD684S0 DMAC Operation

I.I HD684S0 Operating State
The H D68450 has internal control registers and performs

required operations through control w"rds written into the regis­
ters by the MPU. The DMAC state is divided into three modes:
I) MPU Mode: A bus master (MPU, DMAC) chip-selects the

DMAC, or the MPU acknowledges the DMAC's interrupt
request, reading or writing the contents of the DMAC's
internal registers.

2) DMA Mode: The DMAC owns bus mastership, and is
transferring data or preparing for data transfer.

3) IDLE Mode: The DMAC is waiting for a transfer request or
MPU access, and most of the bus control signals are
three-stated.

In normal operation, the DMAC transfers operands in the fol~
lowing sequence:

(I) The initiation phase, in which the MPU sets up control regis­
ters, transfer address, and transfer counts. The DMAC is
enabled to accept transfer request.

(2) The transfer phase; the DMAC receives requests, transfers
data, and writes the transfer status into the error register and
internal status register after completion of the transfer.

(3) The termination phase; the M PU checks the post-transfer
status.

The M PU determines the operation types and checks the
transfer state by writing and reading the contents of the internal
registers.

In addition to normal operations, bus exceptions are also
prepared (see Chapter 1.5 Exceptions).

1.2 Transfer Types

1.2.1 Classification of the transfer modes in terms of request
generation methods.

Transfer modes which the DMAC supports are shown in Table
1.1.

The External Request is generated by asserting the R'E'<Y pin
(transfer request pin), and has two modes: Cycle Steal Mode
which is edge-sense, and Burst Mode which is level-sense. Auto­
Request is generated internally and the transfer starts by the
DMAC itself. This is suitable where an external device has no
transfer request mechanism (e.g., memory-to-memory transfer),
or where an external device can not determine the timing to make
a transfer request.

If the request generation method of "Auto-Request + External
Request" is used, the DMAC transfers the 1st operand by the

CD (?)

L., IDLE MODE ... MPU MODE f- IDLE MODE -..

Waiting for
the MPU
access

The MPU is
writing
control

Waiting for
transfer
requests

words in
the registers.

Auto-Request when a certain internal condition is satisfied. The
R'EQ signal outputted can then inform an external device of the
start of transfer. The 2nd and succeeding operands can be trans­
ferred with External Request.

1.2.2 Block Transfer Classification
The DMAC supports data block transfers by request genera­

tion methods shown in Table 1.1.
In Continue Mode, the DMAC transfers a pair of blocks

without software intervention. It can transfer multi blocks by
giving the next block information (address and word count) to
the DMAC internal registers, and setting CNT bit again during
the transfer of the second block.

In Array Chaining Mode, the MPU prepares for the array table
(transfer address and word count listed in main memory). The
DMAC transfers multi data blocks up to "2'· = 64K" according to
the order in the array.

Linked Array Chaining Mode is almost the same as Array
Chaining Mode, except the block information in the array need
not be listed in the transfer order sequentially. Instead, linked
address (block information which is going to be transferred next)
is given as a part of the block information.

Examples of array tables are shown in Figure 1.2. The Linked
Array Chaining Mode is more flexible in composing an array
table, to change the order of transfer, or to skip blocks in the
transfer order. For example, when block #2 is skipped in Array
Chaining Mode, block #2 address and word counts must be
replaced by block #3 information in an Array Table, and the
former block #3 must be replaced by block #4, etc.

Linked Array Chaining Mode provides an easy method of
changing only "block #2 information address" in block #1 infor­
mation to "block #3 information address." When one block
transfer has been completed, the DMAC automatically reads the
next transfer block information to the internal registers. Array
Chaining has 3 word read cycles, whereas Linked Array Chaining
has 5 word read cycles (larger overhead).

In Continue Mode, fewer clock cycles are required to transfer
information between the DMAC internal registers. The MPU,
however, must write the next block information in those DMAC
internal registers when 3 or more blocks are transferred.

Selection of a suitable mode for multi block transfers should
consider such factors as time, I/O device speed, and program
developing effort. Table 1.3 shows overhead clock cycles for each
mode:

1.2.3 Transfer Classification by I/O Device Type
The DMAC can select a transfer mode as follows: For devices

which are chip-selected with ACK signal, Single Addressing
Mode is used, and an operand is transferred in one bus cycle

(?) Q) ®

I DMA MODE I f+ IDLE MODE r-- MPU MODE -

Transferring Waiting for The MPU is
reading the
contents of
the registers.

data the MPU
access

(checking errors)

FIGURE 1.1 HD68450 Operation State

TABLE 1.1 Classification of Transfer Modes
in Terms of Request Generation

Cycle Steal Mode
The DMAC transfers a single
operand and relinquishes the
bus after each transfer.

r----External Request-----+--Cycle Steal with Hold Mode
(using an REQ pin) The DMAC transfers a single

operand and relinquishes the
bus after each transfer, but
holds the bus for a specified
period of time after completion
of the single operand transfer.

Burst Mode
The DMAC transfers plural
operands continuously.

Request-t----Auto-Request--------,,--Limited Rate
Method (not using an The DMAC transfers plural

REQ pin) operands continuously, but
relinquishes the bus during
the operation.

Maximum Rate
The DMAC transfers plural
operands continuously, but
does not relinquish the bus
until the end of the operation.

Auto-Request (only the first
transfer) + External Request
(transfers after the second)

TABLE 1.2 Block Transfer Classification

Single data block transfer---------------_______ The MPU gives transfer
address and transfer
counts to the DMAC
internal registers.

M ulti-data block transfer Continue Mode------The MPU gives transfer
address and transfer
counts to the DMAC
internal registers, and
sets CNT bit to inform
the DMAC of the existence
of the next data block.

Array Chaining Mode-----The MPU installs an array
table in main memory.

Linked Array Chaining---The MPU installs a linked
Mode array table in main memory.

2

Main Memory Main Memory

(*) Blockll2 address (4 bytes)

Blockll2 words (2 bytes)
Blocklll address

(4 bytes)
Blockll3 information address (4 bytes)

Block/11 words
(2 bytes)

Blockl12 address Blocklll address

Blockll2 words Block/II words

Blockll3 address Blockll2 information address (*)

Blockll3 words

. .
Block!!3 address

Block!!3 words

- 0 - (END)

Array for the
Array Chaining Mode Array for the Linked Array Chaining Mode

FIGURE 1.2 Example of Chaining Mode Array Tables

3

TABLE 1.3 Overhead Required for Loading Block Information

Transfer Mode Overhead Clock Cycles Note

1. Continue Mode 24 clock cycles Overhead for loading the 2nd

2.

3.

DMAC

block information

Array Chaining 38 clock cycles
Mode

Read Cycle : 4 clock cycles

Linked Array 50 clock cycles (NO wait state)
Chaining Mode

TABLE 1.4 Classification of Transfers by I/O Device Types

-[

The device chip-selected by ACK.

Single Addressing

The device chip-selected by ACK and outputs READY to transfer.

-[

The device chip-selected by decoding address lines (68000-type).

Dual Addressing
The device chip-selcctcd by decoding address lines; synchronous
transfer (6800-type).

~~l . <
JA p=: 0

o -

1/ ~

~ -- ONE

c--- \' ACK

MEM

BUS CYCLE

I/O
DEVICE

llMAC

FIFO
REGISTER

I~BIT:~BI'l1

MEM

~==iI/O
I====t DEVICE

OR
MEM

OPERAND SIZE = or t I/O PORT SIZE
OPERAND SIZE = I/O PORT SIZE

(BYTE OR WORD)
EX) I/O: 8 BIT PORT, DEVICE~MEM TRANSFER

~ST CYCLE I/O~FIFO 8 BIT READ
2ND CYCLE I/O~FIFO 8 BIT READ
3RD CYCLE FIFO~MEM 16 BIT WRITE

Figure 1.3 Single Addressing Mode Figure 1.4 Dual Addressing Mode

4

(Figu2!..!.:3). In this mode, the DMAC outputs memory address
and ACK signal in the same bus cycle, informing the I/O device
of the transfer start, and transfers data between memory and the
device.

. Futhermore, when the I/O device has READY signal to
mform the DMAC of the completion of a transfer the DMAC
finishes the bus cycle, confirming the READY sign~l. When the
I/O device is chip-selected by decoding address lines (68000 bus
compatible device), the DMAC requires bus cycles for addressing
to memory and the I/O device respectively. This transfer mode is
cjllled Dual Addressing, in which the DMAC uses the internal
FIFO reg~ster (First In First Out), which temporarily keeps the
operand mputted from the memory or device source and
tr~nsfers it to the destination in the following bus cycle~ (see
Figure 1.4). The ACK signal is usually outputted when the
DMAC addresses the I/O device, and not outputted when it
~ddresses memory. For 68000-type devices, and when the request
IS Auto:Request, A<;:K signal is not outputted. For Single
Addressmg, the port size of the I/O device and operand size must
be the same, whereas in Dual Addressing, they need not be the
same because ofthe FIFO register. The relative data is shown in
Table 1.5.

Users can independently designate each mode described in
secti~ns 1.2.1 through 1.2.3. For example, users can transfer
,?ulll data blocks (I~ in Continue Mode, (2) with request genera­
tIOn of Cycle Steal with Hold, and (3) by means of single Address­
ing. T~ese operation modes are designated by writing control
words mto the DMAC internal registers.

I. 3 Internal Registers
The DMAC internal registers shown in Figs. 1.5 and 1.6 can be

addressed with address lines AI-A7, lOS, and UDS.

l2C11. is a register to designate an external I/O device. It
designates the external request generation method device
type and port size, and PCl, line operation (described further
on),

DC R designates the transfer operation. It designates the data
transfer directi~n, operand size, chain operation types, and
request generatIOn method.

SCR designates the increment/decrement sequence of both
memory and device (source and destination) addresses.

CC R designates the channel operation. It designates the
operation start, the continuous operation presence, HALT,
abort, and interrupt enable/disable.

CSR has the channel status. It shows the channel operation
completion, block transfer completion, normal termination,
error status, channel active state, and 1'(1 signal line
information.

C E R indicates occurrence of error types.

CPR determines the priority of the channel.

MTC is a 16-bit register to hold transfer counts. The block
size (transfer counts) is written when one data block is trans­
ferred. When multi blocks are transferred in Continue Mode
and Chaining Mode, the next block size is automatically
loaded in MTC after completion of the previous block
transfer.

BTCis used in Continue Mode and Array Chaining Mode. In
Continue Mode, the first block size is stored in MTC after
completion of the first block transfer. When more than two
blocks are transferred in this mode, BTC and BAR (described
further on) are rewritten, and CNT bit in CCR is set again
during the second or third block transfer. In Array Chaining
Mode, BTC holds the number of blocks being transferred.

MAR contains the memory address being outputted at each
transfer cycle. In block transfer, the beginning address ofthe
block is written in MAR as an initial value. The content of
MAR varies according to the contents of OCR and the SIZE
bits (operand size) in SCR after one operand transfer. In
Continue Mode and Chain Modes, MAR is rewritten
according to BAR or the array information in memory when
a block transfer completes.

pA Ris used to address an I/Odevice(orto address memory,
10 memory-to-memory transfer). DAR is used only in Dual
Addressing Mode, and changes its content according to SCR
and SIZE bits in OCR.

BA R is used in Continue Mode and Chain Modes. In Con­
tinue Mode, the start address of the 2nd block is written in

TABLE 1.5 Possible Choice of Port Size & Operand Size

Device Operand
Transfer Mode Port Size size Transfer Request

bit 8 16 32
8 External Request

OK OK OK Auto-Request

Dual Addressing
16 OK OK OK Auto-Request

16 NG OK OK External Request
Auto-Req+External Req.

Single AddreSSing 8 OK NG NG External Request
Auto-Request

16 NG OK NG

5

o
CSR
CER

DC R
OCR
SCR
CCR
N I V
EIV
CPR
MFC
DFC

15 BFC

I MTC
31 I BTC

MA R
DA R
BAR

cc:OO-Channel +O,OI-Channel +1
IO-Channel +2,II-Channel +3

Address
Regi ster 7 6

Channel Status Register c c
Channel Error Register c c
Device Control Register c c
Opera t ion Control Register c c
Sequence Control Register c c
Channel Control Regi ster c c
Normal Interrupt Vector c c
Error Interrupt Vector c c
Channel Priority Register c c
Memory Function Codes c c
Device Func t ion Codes c c

Base Func t i on Code s c c
Memory Transfer Counter c c
Base Transfer Counter c c
Memory Address Register c c
De vic e Ad d res s Register c c
Base Address Reg i s te r c c

ss:OO-high-order,OI-upper middle
IO-lower middle,ll-Iow-order

b : 0 - h i g h - 0 r de r , 1- I ow- 0 r d e r

5
0

0

0

0

0

0

0

0

0

0

0

Bi t s
4 3 2 0 Mode
0 0 0 0 0 R/W*

0 0 0 0 I R
0 0 I 0 0 R/W
0 0 0 I R/W
0 0 I 0 R/W
0 0 R/W
0 0 0 R/W
0 0 R/W
0 0 R/W
0 0 0 R/W
1 0 0 0 R/W

0 0 I R/W
0 0 b R/W
1 0 b R/W
0 1 R/W

0 R/W
R/W

* :"Write" is valid only for resetting the register.
u

OCR Oen('ral Control Register R/W}one per DMAC

FIGURE 1.5 Internal Registers and Address Assignment

COMPOSITION OF REGISTERS REGISTER ARRANGEMENT OF CHANNEL 0

00 01

CHANNEL 0
BE
40

CHANNEL 1
7E
80

CHANNEL 2

BE IF
CO CI

CHANNEL 3

FE GCR FF

NOTE: Each register can be accessed by
byte, word, and long word. How­
ever when STR bit in CCR is set,
only byte is possible.

B

0

00
02
04
06
os
OA
OC
OE
10
12
14
16
I
lA
IC
IE
2
2 2
2 4
2 6
B 2

2A
2C
E
0
2

6

A

34
3
3B
8
3C
E

15 B 7 0
CSRO CERO

DCRO OCRO
SCttO CCRO

MTCO
MAno H
MARO (L

DARO H
DARO L

BTCO
A 0

BARO L

NIVO
EIVO
MFCO

CPRO

DFCO

BFCO

FIGURE 1.6 Whole Arrangement of Registers

6

0
03
05
0

0

7
09

B
OD
OF
I
I
I

I
3
5

I
I

17
9
B

10
IF
21
23
25
27

29
2B
2D
2F
31
33
35
37
39
3B
8D
SF

,...;
<II s:: s::
<U

..c::
tJ

I-<
<II
p..

.j.J

<II

'"
<II s::
0

BAR. This BAR is used in the same way as BTC. In Chain
Modes, it keeps the address where the information of the next
block is contained.

M.EJ;;, DEC and BFCare used with MAR, DAR, and BAR,
respectively. The MFC" DFC, and BFC are used with the
same purpose as the FC outputted from the MPU.

Since the FC registers in the DMAC can be written, the DMAC
can also transfer data between the supervisor program area (FC =
110) and the user program area (FC = 010).

NOTE: Each register can be accessed by byte, word, and long
word. However, when STR bit in CCR is set, only byte is
possible.

NIVand EIVkeep the vector numbers outputted in the vector
number fetch cycle (Interrupt Acknowledge Cycle), which the
MPU performs for the interrupt requested by the DMAC. If no
error(ERR bit ofCSR is not set) occurs, the DMACoutputs NIV
contents. When error occurs (ERR = I), the DMAC outputs EIV
contents. In both cases, the DMAC does not output the vector
address containing software routine for the interrupt process, and
instead outputs the necessary data for the vector address calcula­
tion. Therefore, the contents of NIV and EIV are outputted onto
the lower data bus (Do - 0 7). This scheme is equivalent to
HMCS68000 bus protocol.

GCR is common to all four channels and determines the
DMAC's bus use ratio and sample interval in Limited Rate
Auto-Request Mode. During transfer operation in this mode, the
DMAC supervises the bus bandwidth by dividing the transfer
time into the equal time interval called "sample interval." This
sample interval consists of 2(BT+BR+5) clock cycles. BT and BR
have 2 bits respectively in GCR and a sample interval can be 32 to
2048 clock cycles. The DMAC performs the DMA cyeles during
the first 2(BT+4) clock cycles in the sample interval, and relin­
quishes the bus in the latter part (see Figure 1.7).

2(BT + Bit + 5)

SAMPLE INTERVAL

~LUJ
Limited Rate
Auto-Request
Interval

FIGURE 1.7 SAMPLE INTERVAL in Limited Rate
Auto-Request

The DMAC monitors BGACK signal (described later). When
BGACK is asserted, the DMAC starts counting the clock cycle.
The DMAC compares the count with 2<BT+4). When the 2<BT+4)
clock cycle is in the middle of a bus cycle, the DMAC continues
the operation (overruns) until the end of the bus cycle, and
relinquishes the bus. When the DMAC overruns, it does not
transfer any operands in the subsequent sample interval, because
the Limited Rate Auto-Request Mode has the premise to return
the bus to the M PU. This mechanism enables the M PU bus cycles
even in multi DMAC environment.

In HMCS68000, BGACK signals that a device other than the
MPU is using the bus. Since all system DMAC's monitor the
common BGACK signal, they each count the BGACK clock
cycles as bus masters, even if only one DMAC is the bus master,
and determine whether to transfer operands in the following
sample interval.

7

In Maximum Rate Auto-Request Mode, the DMACtakes the
bus mastership and transfers all operands until they are
exhausted. When the higher priority channels request transfer in
this mode, the channel with the Maximum Rate Auto-Request
stops the transfer temporarily, and the higher priority channel is
serviced. The Maximum Rate channel resumes the transfer after
that.

1.4 Signals
HD68450 is bus-compatible with the HMCS68000. Signal

lines are shown in Figure 1.8. The address lines A I through A 7
are used to address the DMAC internal registers. A8 through A23
and DO through DIS are time multiplexed.

The 68000 and system bus control signals and bus arbitration
lines are compatible. Chip select (CS) is made by decoding
address lines. Since the DMAC monitors the bus status through
BGACK (Bus Grant Acknowledge) line, the BGACK line is the
input / output.

Figure 1.9 shows the bus arbitration timings. The DMAC
starts data transfer by 16-20 clock cycles after the transfer request
recognition. The interrupt request/ acknowledge lines are used
to interrupt the MPU according to the interrupt request from I/O
devices, or to prepare the vector number ouput by obtaining the
interrupt acknowledge cycle from the MPU. An I/O device can
request the DMAC for an interrupt through the PCL line (men­
tioned further on).

The DMAC requests the MPU for an interrupt in the following
cases:

I) When the channel operation completes
2) When the block transfer completes
3) When the PCL lines are asserted
When the DMAC receives lACK signal from the MPU, it

outputs the vector number DO to 07. The address/data demulti­
plex lines are used to demultiplex the time-multiplexed address/
data bus.

The ~ signal is asserted when the operand size is byte in
Single Addressing Mode, and when the operand is on the upper 8
bits in the data bus; i.e., when the operand in even address is
accessed. This signal is used to switch a byte data position
between the upper data bus and the lower data bus. BECO-BEC2
are the encoded signals for Exceptions (Refer to Chapter 1.5).
FCO-FC2 are function code output signals and are compatible
with the H M CS68000 function codes.

An I/O device in each channel is controlled with REQ, ACK,
and PCI lines. REQ is a transfer request signal which is sensed by
the edge in Cycle Steal Mode, and sensed by the level in Burst
Mode. The ACK signal informs the I/O device of the transfer
start, and is used for device chip select, or for negating REQ. It is
usually outputted when the DMAC addresses an I/O device, but
it is not outputted when a 68000 compatible device and Auto
request are programmed. By making use of this feature, any
channel can operate Memory-to-Memory transfer without
addressing the I/O device.

PCl (Peripheral Control Line) isa mUltiple purposed signal to
control a peripheral device. PCL is designated by the PCL bits
and DTYP bits of OCR, and can be used as status, interrupt,
abort, READY, and (E) enable clock inputs, and as start pulse
output.

Abort input is used to abort the channel operation, and abort
error is recorded in CER. The READY input is used when the
I/O device has the READY output, and the DMAC completes
the bus cycle after the recognition of the READY signal. The
Enable (E) clock input is used when the device is programmed as a
6800 compatible device, and the data transfer becomes syn­
chronous.

The start pulse is outputted when the STR bit of CCR is set and
the channel is activated. This is a single active low pulse asserted
during four clock cycles which informs the I/O device of the
transfer start. DONE and DTC signals indicate the transfer com­
pletion. DONE indicates block transfer completion, which is

b {
A.-A23/ Address us 0 0 -0"

Data bus A,-A,

68000 I
bus control

Bus arbitration{

Interrupt reques t / {
Recognition

AddreSS/Data!
demultiplex

Exception {

Function cOde{

CS
AS

f.DS
VDS
H/\V

DTACK

Bit
BG

BGACK

IRQ
lACK

OWN
VAS

IIJIlYTE
DilEN
DOli!

BEC o
BEC,
BEC,

FC o
FC,
Fe,

Vcc (2) eLK
II ~

<"- ...l'>
~

/L

HD68450

DMAC

II
Vss 121

-
I/O device

control

DOSE] Transfer
signal

llTC

end

FIGURE 1.8 HD68450 Signal Lines

outputted at the end of each block transfer in Continue Mode,
and when al\ blocks are completely transferred in Chain Modes.
This signal is asserted at the same time as the last ACK signal of
the transfer. DONE, therefore, is not outputted in the transfer
cycle to the memory in the very last bus cycle when the transfer is
from device to memory Dual Addressing.

DONE is also used as an input signal in order that the I/O
device informs the DMAC of the transfer completion. The
DMAC monitors the signal during asserting ACK signal. After
the DONE assertion, the DMAC stops data transfer when the
operand transfer is completed, and the channel operation termi­
nates. When the DMAC and I/O device simultaneously assert
DONE, the DONE inputted from the device is ignored. The
DMAC outputs DTC whenever it recognizes DTACK. In the
case of a 6800 compatible device, the DMAC detects the trailing
edge of E clock to output DTC. I/O devices can latch the data by
using the falling edge of the DTC assertion (DTACK is also
useful). The DTC negation indicates the bus cycle completion.
This signal is not outputted when i5'i'ACiC. is not inputted, or if
exceptions are entered, in order that the I/O device can detect
transfer abnormality.

1.5 Exceptions
To be sure of data transfer, the DMAC can stop the bus cycle

and retry it, or leave the recovery to the other bus master if an
abnormal transfer occurs. The Exceptions are requested by the
external devices and are encoded into 3 signals. BECO-BEC2, and
inputted into the DMAC. BEC exception conditions are shown
in Table 1.6.

The DMAC samples BEC signals with the rising edge of the
clock and recognizes an exception condition if the ~ signals
remain in the same level for two or more clock cycles. The DMAC
carries out 1rnC" exceptions only when BEC assertion starts

8

simultaneously, or before ~ assertion, and the BEC values
remain in the same level for two or more clock cycles. The HALT
exception is not implemented until DTACK input. If BEC's are
asserted after DTACK, the bus cycle occurs normally.

Halt
When Halt is asserted during DMA transfer, the DMAC relin­

quishes the bus after receiving DTACK, and after normal bus cycle
completion. The D MAC does not arbitrate the bus until HALT is
negated.

Halt is useful in the following cases:
(I) When DMAC turns over the mastership to another bus

master without changing the number of the DMAC's bus
cycles. Even when the DMAC is using the bus continuously
and does not relinquish it, another bus master can get the
mastership by halting the DMAC. In this case the DMAC
resumes the bus cycle after the bus arbitration (total number
of the DMAC's bus cycles does not change).

(2) When transfer "trace" is performed by executing single step
bus cycle.

Bus error
When an error occurs during transfer. and the DMAC can not

continue the operation or can not get the correct results. Bus error
is asserted to stop the transfer abnormality.

The DMAC Bus error sequence is as follows.
(!)stops the transfer and sets COC bit and ERR bit in CS~
o checks INT bit in CCR. If INT = I. the DMAC asserts IRQ

signal to interrupt the MPU.
CD Keeps the address where the bus error took place and the

transfer count left over in the Address Register and Transfer
Counter respectively in the channel.

CD relinquishes the bus without other channels' transfer requests.

co

C L K 1...S1.JLs1J"L

BR

BG

BGACK

BUS cycle

ACK

DTC

CLK

Cycle Steal Mode
(sensed by

min" 2 clocks

eD I

2~:l.5 cI ocks

rising edge of REQ)

l.'~:1.5 clocks

J® .-

(3)

rb)

o C)ock---MPIJ"CyC le

MPU cycle (4)

(b)

MAX. 12.5 clocks+MPU cycle ,

MPU cycle .,

FIGURE 1.9 Bus Arbitration Timing

®
(a)

4.5 •. 5 clocks

BUS Idle

,.
I

I

I\.
"

® 7
DMAC cycle MPU cycle

\ "

'--V'-

DMAC cycle --+- Idle +MPU
cycle

TABLE 1.6 (BEC) Exception Condition Types

BEC2 BECI BECo Exception Applications
Conditions

1 1 1 No exceptions Usual operation

1 1 0 Halt Used when DMA trnsfer is stopped
temporarily by external circuits.

1 0 1 Bus error Used when a serious system error
occurs. For example, the DMAC bus
cycle does not terminate.

1 0 0 Retry Used when the DMAC bus cycle has not been
carried out correctly, and needs retry.

0 1 1 Relinquish Used when the MPU uses the bus before the
and Retry termination of the DMAC bus cycle ,and

when the DMAC cycle must be continued
from the following cycle.

0 1 0 Not used --

0 0 1 Not used --

0 0 0 Reset Power on reset. System reset.

Bus error is useful in the following cases:
(I) When preventing system dead lock (not receiving DTACK

signal), "a watch dog timer" is used, and the Bus error is
asserted when the time is out. .

(2) When page fault is recognized in virtual memory environ­
ment, Bus error is asserted.

Retry
When Retry is recognized during the DMAC bus cycle, the

DMAC stops the bus cycle and repeats the same bus cycle right
after the negation of the Retry signal. During the whole sequence,
the DMAC holds the bus (OWN and BGACK are kept asserting).

When the DMAC accesses memory or device, and an error is
detected in the transferred operand, external circuitry asserts
Retry to transfer the operand again. For example, when an error
is found through parity information during a bus cycle, or when
DTACK does not return in spite of correct address, Retry can be
performed.

Relinquish and Retry
When the DMAC recognizes Relinquish and Retry, it sets all

control lines, data bus, and address bus to three state, and
releases the bus temporarily. If the BEC exceptions are negated,
the DMAC outputs BR again to get the bus mastership and
retries the bus cycle in which Relinquish and Retry are asserted.

10

Relinquish and Retry can be used when the MPU service is
necessary to correctly transfer the operand after the bus cycle
starts. If the I/O device asserts Relinquish and Retry while
requesting an interrupt to the MPU, the DMAC releases the bus
so that the M PU may service the interrupt routine, and negates
Relinquish and Retry-recovering the fault with minimum over­
head. The DMAC obtains the bus again and resumes the transfer.

Reset
When the DMAC recognizes Reset, it relinquishes the bus,

clears GCR, and resets DCR, OCR, SCR, CCR, CSR, CPR, and
CER of all channels. The interrupt vector registers are set to $
OF(HEX), un initialized interrupt vector number.

2. System Example
HD68450 DMAC in HMCS68000 is shown in Figure 2.1.

Since only basic signals are shown, users are required to add
necessary circuitry to an actual system (See Chapter 3). If whole
address space is managed with a memory management unit
(MMU), the MPU physical address space is the system address
bus. The Circuit example is shown in Figure 2.2. The MMU's
page fault is encoded to be the DMAC's Bus error input signal.
Refer to Chapter 3 for further examples of each circuit.

,........ Do~ D" Do ~D,. - r- r-

~==;=~~====1Data & Address Bus Iv----YI

Interface
FDC,
etc.

I---­
HDC, :=-
etc.

- REQo}
~ ACK Channe 1

o +0
'------- PC Lo

P;lrall ed
I/O
Device,
~,tc .

-RE(.!,}
'-----lACK, ~~anne 1

'-----lpc I.,
HD6845U

REQ2} OMAC
/---------;ACK channel
1------llPi'iC"'IC,: + 2

H0680UO
MPU

AI---A71¢==~

CS~
ASI-----l

LDSI-----l

lJDSI-----l

R/WI-------j
DTACKI-----l

lJi)S

IVW
DTACK

VPA
VMA

E

~

P r=
f--

r-
f--

r-
r-
'--

r---

,...-

-
-r-
-
-

3 §=r-Ene, r--
....

FIGURE 2.1 Basic System Configuration

11

--
--

AS -----
-
-

r--
I-
t--

I-
I-
I-

t--
t--

'- '-

J.,
Do ""'-'D15

-y

-" A,~A23 -------v
Mem &
MMU

AS

LDS

lJDS

IVW
DTACK

FCo-FC,
ERROR

Periphr.

-
-
1-----+---1E

1------11 RQ

R!W

AS

AI-A23

HD68000
MPU

FCo-FC2

IPLo-IPL2

R/W
-
AS

FCo-FC2

AI-A23

IRQ

OWN

H068+50

OMAC

BEC2

BEe.
BECo

r5V +5V

1

23

+5V PAI -PA7

t 7

MMU

0--- ~ R/W
-
AS

3
16

As-A23

MAS e 5 AI-A,

Circuit FCo-FC2

r-r- PAs-PA23

T 3

23
IRQ

~~+5V !+!iV HV~
1 r FAULT 1 ~

7b
~) :>--<: O2 60

D--{; 0\ 50

0 +0

30
BERR

2

10

~~
Priority
Encoder

FIGURE 2.2 Conceptual Diagram of the
DMAC in virtual address

12

16

~

.c

"" <N

'-'
~ '" :s

I:Q
.c

'" <0 '" ,... ~
'" '-' "'0

"'0 :s

'" <: I:Q
:s

I:Q OJ '0
I-

! .:; C ., I- 0
~ > U

3. "D68450 Transfer Operation and Circuit Examples

3.1 FIFO Register Operation (Data Pack and Unpack)
As shown in Figure 3.1, the DMAC possesses a 3-byte FIFO

(First In First Out) register, which reads and writes an operand in
byte or word unit. The FIFO register makes it possible to operate
on various operand sizes (abbreviated as OP), and to operate on
I/O devices with various port sizes (data bus bit length, abbre­
viated as P) for memory to I/O transfer. In these operations, the
transfer mode is Dual Addressing.

In Figure 3.1, I/O is an I/O device with P=8, and even address.
When the DMAC transfers operands from 1/0-1 to memory I to
6, it reads two byte-operands in the first and second bus cycles
from 1/0-1 into the FIFO, and writes a word operand in the third
bus cycle from FIFO to memory. Thus, the bus efficiency of
DMA transfer is increased with PACK operation (to transfertwo
byte-operands as one word). When the transfer is from memory
to I/O-I, a word operand is read from memory I and 2 into the
FIFO, and is written as two byte-operands into 1/0-1 by
UNPACK operation (one word into two bytes).

3.2 FC Application Examples
The DMAC possesses the following three registers in each

channel:
• MFC (Memory Function Code register)
• DFC JJ)evice Function Code register)
• BFC (Base Function Code register)

In memory access bus cycles in both Single Addressing Mode
and Dual Addressing Mode, the MFC contents are outputted
through FCO-FC2 pins at the same time as address output. In
device access bus cycles in Dual Addressing Mode, the DFC
contents are outputted. In Array Chain and Linked Array Chain
Modes, the BFC contents are outputted in the bus cycles which
load the block information from the Array Table in memory.
Because arbitrary values can be written in those function code
registers, the data transfer between different memory spaces

/'

• 1/0-1
(OP=8, P=8,A=EVEN)

I':

assigned in a 68000 system (e.g., the supervisor data area or the
user data area) becomes possible in Dual Addressing Mode. (See
Table 3.1)

TABLE 3.1 68000 Function Code Table

Function Code

Classification
FC2 FCl FCO

0 0 0 (Unassigned)
0 0 1 User Data
0 1 0 User Program
0 1 1 (Unassigned)
1 0 0 (Unassigned)
1 0 1 Supe~visor Data
1 1 0 Supervisor Program
1 1 1 Interrupt Acknowledge

FCO-FC2= III indicates the interrupt acknowledge cycle. The
DMAC should not output this code. When lACK input is
asserted during DMA transfer, address error occurs.

3.3 DMAC Interrupt Request Examples
The DMAC can output ~ to request an interrupt to the

MPU under the conditions shown in Table 3.2. "L ~ means IRQ
assertion. I RQ is asserted as long as those conditions are satisfied.
To negate I RQ (make "H~ level), INT bit in CCR must be reset, or
"FF(HEX)" must be written in CSR to reset CSR.

:'\

• 1/0-3
• DMAC (OP=8 or 1 6,P=16)

G) (3) (2) (i) ~ t:::)

1/0-2
¢ (OP=B, P=B, A~ ODD)

•

(I) (3l @ (1) ~

"-

r- - - - --- -- - -- - -- ----,
, I , ,

I
I , FIFO I , I ,

~
, ,

(2)

(t)
,
I , I , I , I L ___________________ ~

D. - D" data bus

Do- D7 data bus

(i) (2)

(3) (I)

(5) (6)

• Mem. (OP=B or 16, P=lti)

FIGURE 3.1 Data Bus Connection Example
in Dual Addressing Mode

13

<=:> ® 0 ®
I---

¢: ~ CD ® ®

-I

JID68000

MPU

HV

IPLo p---~Ao
IPk AI
IPL, A.

EI

JID68450

DMAC

b-----~-qIRQ

FIGURE 3.2 Connection Example of IRQ and lACK

Various transfer examples using FIFO are given in the followings.

Example 1) I/O (OP=8, P=8, A=EVEN, CD to @)--...Memory «2) to ®)

DMAC bus cycle
R-B 1 byte read from I/O (<D)
W-B 1 byte write to memory (~)
R-B 1 byte read from I/O (~)
W-B 1 byte write to memory (Q»
R-B 1 byte read from I/O (Q)) *
W-B 1 byte write to memory (®)

* When TC (Transfer word Counter)~ 2, and P=8, PACK does not
occur.

Example 2) I/O (OP=8, P=8, A=EVEN, ®to <D j~Memory (®to <D)
DMAC bus cycle

R-B --- 1 byte read from I/O (®)
R-B --- 1 byte read from I/O (Q»
W-W --- 1 word write to memory (® Q» *
R-B 1 byte read from I/O (~)
W-B 1 byte write to memory (®)
R-B 1 byte read from I/O (CD)
W-B 1 byte write to memory (<D)

* Data inputs in the order which address decreases.

14

Example 3) I/O (OP=8, P=8, A=ODD, CD CD <D*)--.Memory (CD CD CD *)

DMAC bus cycle
R-B --- 1 byte read from I/O (CD)
W-B --- 1 byte write to memory (CD)
R-B --- 1 byte read from I/O (CD)
W-B --- 1 byte write to memory (CD)
R-B 1 byte read from I/O (CD)
W-B --- 1 byte write to memory (CD)

* does not count the address

Example 4) Memory (CD to ®)_ I/O (OP=8, P=8, A=EVEN, ® to CD)

DMAC bus cycle
R-W --- 1 word read from memory (CD ®)
W-B --- 1 byte write to I/O (®)
W-B --- 1 byte write to I/O (Q»
R-W --- 1 word read from memory (@ ®)
W-B --- 1 byte write to I/O (@)
W-B --- 1 byte write to I/O (CD)

Example 5) Memory (CD to ®)--.1/0 (OP=8, P=16, ® to G))
DMAC bus cycle

R-W --- 1 word read from memory (CD ®
W-B --- 1 byte write to I/O (~)
R-W --- 1 word read from memory (Q) ®)
W-W --- 1 word write to I/O (@ ®)
W-B --- 1 byte write to I/O (~)

Example 6) Memory (Q) to CD)~I/O (OP=8, P=16, ~ to ®)

DMAC bus cycle
R-B --- 1 byte read from memory (@)
R-W --- 1 word read f rom memory (~ CD)
W-B --- 1 byte write to I/O (~)
W-W --- 1 word write to I/O (@ ®)

Example 7) Memory (CD CD Q) <D)---..I/O (OP=8, P=16, ~ ~ ~ ~)

DMAC bus cycle
R-B --- 1 byte read from memory (CD)
R-B --- 1 byte read from memory (CD)
W-B --- 1 byte write to I/O (~)
W-B --- 1 byte write to I/O (®)
R-B --- 1 byte read from memory (CD)
W-B --- 1 byte write to I/O (®)
R-B --- 1 byte read from memory (CD)
W-B --- 1 byte write to I/O (®)

Example 8) Memory (CD to @ >---- I/O (OP=16 or 32, P=16, CD to ®)

DMAC bus cycle
R-W --- 1 word read from memory (CD (6) or I/O (CD ®)
W-W --- 1 word write to I/O (CD ®) or memory (CD @)
R-W --- 1 word read from memory (® ®) or I/O (Q) ®)
W-W --- 1 word write to I/O (Q) ®) or memory (@ ®)

15

Figure 3.2 shows IRQ/lACK examples in the DMAC and the
MPU system, where the interrupt level of the DMAC is four.
However, this level is arbitrary.

When the multi block transfer is in Continue Mode or in
Chaining Modes, the transfer status needs to be checked between
block transfers in some applications. In Continue Mode, since the
BTC bit is set after the first block transfer completes, the
DMAC can request interrupt according to Table 3.2.

In Chaining Modes the DMAC cannot request interrupt at the
end of each block transfer. Instead, when the last block transfer
completes, interrupt request is possible because the COC bit is
set. In Chaining Modes, if the DMAC needs to request interrupt
at the end of each block transfer, circuits shown in Figure 3.3. are
required. Appropriate values have been written in BFC, MFC,
and DFC, and the PCL signal is formed by decoding thefunction
codes, to enable the DMAC to request interrupt. (It should be
determined whether the FC's are used by the Memory Manage­
ment Unit (MMU).

Figure 3.4 shows BIT mask example. Because an interrupt has a
higher priority than a data transfer, BG should be masked in
lACK cycle.

3.4 Peripheral Control Line (PCL) Operations
rn. pin of each channel can be used for four different func­

tions realized by setting PCL bits and DTYP bits in DCR as
shown in Table 3.3. However, Mode 3 becomes invalid when the
device type is 6800, or ACK type with IrnAUY, or 68000-type in
AutO-Request Mode. Similarly, Mode 4 becomes invalid when
the device type is 6800, or ACK type with READY.

In Mode I, PCT bit in CSR is set when PCL line is asserted
("H" to "L"). Mode I is usefulto record a status change of an 1(0
device. The timing chart for setting the PCT bit is shown in Figure
3.5.

Mode 2 is the function to interrupt the MPU via the DMAC
from the I/O device, using the PCL signal change from "H" to
"L". In this case, the INT bit of CCR should be set. The timing

TABLE 3.2 IRQ Output Condition

CCR

INT

a

1

1

1

1

0068000

MPU

C S R
IRQ Output

cac BTC NDT ERR ACT PCT'" PCS

x

0

1

0

0

x x x x x X

0 0 0 x 0 X

X X X a x x

1 0 0 1 X X

0 0 0 X 1 X

*: When the PCL function is set on interrupt input.
X: don't care.

LSl408

EI

FC.
FC,
FC.

AS
00684050

DMAC

t.:>--+-d IRQ

FIGURE 3.3 Circuit Example to Generate Interrupt at the
end of each block transfer in Chaining Modes

16

H

H

L

L

L

.. o BR

HV ~ "'p---c I3G

L LS 161

RESET

CLK

S
D Q

LS74-

C\ Q

~

t=
r--

HD6R450
CLEAH DMAC
E.p
ET

>CK ~ImY

CLK

1

FIGURE 3.4 BG input Mask example

chart from PCl signal change to I RQ output is shown in Figure
3.5.

Mode 3 is used to ascertain the internal process time interval to
activate channels, since the STR bit of CCR is set. Table 3.4
shows the necessary ClK cycles in Mode 3 from the MPU write
cycle to set STR bit until start pulse output.

Mode 4 aborts the current transfer. This signal is inputted
through Pet,and EXTERNAL ABORT ERROR is recorded in
CER, and ERR bit is set in CSR. Timing is shown in Figure 3.5.

3.5 Demultiplex Examples for Address/Data Multiplexed Bus
As described in Chapter 1.4, (JWliI, UAS, 1'5lffiN, and DDIR

are used for bus demultiplexing. OWN is used for bi-directional
buffer control. Signal application examples are shown in Figure
3.6.

3.6 HIBYTE Application Example (Bus Matching)
Data transfer between devices with different port sizes in Dual

Addressing Mode is described in Chapter 3.1. In Single

TABLE 3.3 Conditions to set PCl functions

Mode PCL Fune t i on Mode

1

2

3

4

Status Input

Status Input with Interrupt

Start Pu I se ,Nega t ive 1/8 CLK

Abort In pu t

CLK

pCL Input
(Mode 1)

PCT Bi t Set
----4-~.J

(Mode 2)
PCT Bit Set

IRQ UJtput

(Mode 4)

_____ ~..J

PCT Bit Set ______ -J

DCR OCR

PCL,H PCL,L DTYP,H DTYP,L REQG,H

0 0 x x X

0 1 X X x

1 0 x
1 0

x 0 1

1 1 x 0 x

x : don't care

I

ERR Bit Set __ ~/

FIGURE 3.5 Timings for Mode 1,2, and 4

17

TABLE 3.4 Clock Cycles from the MPU Write Cycle
to set STR bit to output Start Pulse (Mode 3)

Trans fe r Mode CLK Numbers*

No Chain 39
A r ray Chain 59

Link Array Chain 61

*MPU write cycle: 14 clock cycles
DMAC memory read cycle: 4 clock cycles

Addressing Mode, HrnY'fE is used for bus matching.
Figure 3.7 gives an example of bus matching between an 8-bit

I I 0 device and a 32-bit memory system. As shown, the I I 0 device
must be in the lowest byte of the data bus. HIBYTE is outputted
only when even address is accessed, and when the DMAC oper­
ates byte operand in the Single Addressing Mode. See Figure 3.5.

The example shown in Figure 3.8 is between a 16-bit II 0 device
and a 32-bit memory system.

3.7 Low Speed I/O Device Circuit Example
Figure 3.9 shows a circuit for a low speed 110 device; e.g.,

floppy disc controller. Figure 3.10 gives the timing chart. Since a
DMA transfer request signal (DRQ) from a low speed 110 device
is generated in every D M A transfer cycle, the channel is pro­
grammed to be External Request and Cycle Steal Mode. The data
latch timing in write cycle (memory-device) is the timing when
the write enable signal (WE) changes from "L"-"H". Data on the
data bus is valid only while the data strobe signal (UDS or LDS)
is "L"; therefore, the data latch timing must be made from DTC
assertion timing ("H"-"L"). This assertion occurs at least 30ns
earlier than the UDS or LDS negation ("L"-"H").

.. 3.8 High Speed I/O Device Circuit Example
FIFO is used as external data buffer in the example shown.

Figure 3.11 shows the application of the DMAC and FIFO.
Figure 3.12 gives the control timing chart in read and write cycles
to FI FO. Since data of several words is continuously transferred
in DMA transfer between FIFO and memory, the external
request mode should be set to Burst Mode. The data write timing
to FIFO is derived from DTC output, and the timing to negate
the Burst request from "L" to "H" is made with up I down counter.

In write cycles to FIFO, the Burst request is negated synchro­
nously with DTC assertion, when the counter number reaches
"the operand number transferred in a burst"(" I 6" in Figure 3.11).

In read cycles from FIFO, the Burst request is negated syn­
chronously with DTC when the counter number becomes two. In
Burst Mode, the Burst request in both read and write cycles
should be negated before the last transfer starts. In the last DMA
transfer when TC=O (transfer words counter = 0), DONE is out­
putted at the same timing as ACK. This signal is used to reset the
Burst request.

3.9 6800 Family Application Examples
Since 6800 family devices are given their addresses on 68000

memory, and are used by memory mapping, the transfer mode is
Dual Addressing. The block diagram is shown in Figure 3.13.
Please note:
I) E clock is inputted from the PCL pin, and is used to syn­

chronize 6800 devices and the DMAC.
2) 6800 devices close the data bus at the falling edge of E clock in

read cycle from the 6800 device. The D MAC, however, latches
the data when DTC is asserted. Therefore, the data outputted
from the 6800 device needs to be latched by the external latch.

3) For 6800 device chip select, the address decoder and the
address strobe are used.

18

Figure 3.14 shows an application of HD68A43 (FDC) and
HD68B21 (PIA). The FDC makes a request by setting TxRQ
High. The negated TxRQ is inputted to PCL as READY.

3.10 Encode Example for Exceptions
An Exception request is made by external circuits and is

inputted into the DMAC's BEC" ~ BEC2• Figure 3. I 5 indicates an
encode example.

Exception Examples: Figure 3.16 shows the bus cycle time out
error example. The transfer stop example is given in Figure 3.17.

If the DMAC does not have the bus, do not input the bus
Exceptions. Exceptions should be inputted after the AS output
(or UAS negation), as shown in Figure 3.15.

3.1 I Priority Circuit Example (Daisy Chaining)
When multi DMAC's are used, priority circuits like Daisy

Chain are required. In the following example, the D MAC nearer
the MPU has higher priority.

3.12 8086 System Application Examples
Applied in an 8086 system, the H D68450 .is superior to other

DMAC alternatives because of the following features:
I) High speed data transfer operation by Single Addressing

Mode
2) Ease of operation for multi block transfer
3) Maximum bus exception utilization
Basic differences between the 8086 system and the H D68450

are as follows:
I) Address bus, data bus
2) Memory Structure
The H D68450 and the 8086 are different in arrangement of

address and data bus. Address bus is connected to the system bus
through LS373 latch. Data bus is connected to the system bus
through LS245, bi-directional transceiver.

BIlE

ADo - AD I ~---",I

Do-D '5

8086

LDS LDS

UDS UDS

A, - A7 <===============> A, - A7

Do-D'5

HD68450

The H D68450 and the 8086 have different ways to address
memory. When HD68450 is used in the 8086 system, UI)S'
(Upper Data Strobe) should be connected to AOand LDS (Lower
Data Strobe) to BHE. For data bus, the upper byte bus and the
lower byte bus must be switched. In this configuration, the 8086
can access the internal registers of the H D68450 by the same
method as memory.

THV THV
r- r- r-

r 8 tol8

< ~ As-AI'
8 AIS -A23

1'8
CS

~
8 8 A 8

r- - 8

25LS2521 25LS2521

Comparntor Comparator

JID684.50 r-- -
-

DMAC Y Y AS
r-- ------'

Do/A.-
IDs-Ij.I

D,/A" / LS24.5 LS24.5 f-+s 'M 8

~
~idirectional ~idi roctional

Buffer Buffer

DB EN InTH .) OE ,> OE DIR

DDIR
1 1DIR A OE ro-ny

'8

LS24.5

Do/AI8 - ~idiroctional ps-Dt;,

D,./A .. ~~ Buffer 'll
HV OE

f
r- ~ ~

-

R/W LS24.5 R/W
~

~idiroctional HIBYTE *
f--

HIBYTE
Buffer BGACK

BGACK ~ r-- ~

L '---
LS373 A.-AI'

1='

D-type 8

Latch

UAS jG~
V OE

OWN

~ LS373
~

D-type '" AIS-A23 ~

Latch 8 i:1l !!

'" '" al
'-' ., -'" '-' '" :I :I
al

'"
al

LS24.5 AI -A7 '" " A.-A, / idiroctional '"
al '0

7 7 ~ ...
Buffer

"" !! §

t ~
.,

jDIR
0 u

OE

IDIR OE

LDS LS24.5 LDS
------'

UDS
Bidiroctional IUDS

------' Buffer r--

--- "'- "'- '"'-• LS245 IS used as a buffer for HIBYTE signal.
FIGURE 3.6 Demultiplex Examples for Time Multiplexed Bus

19

II-BUS

32 bit memory lJIIlh----< R!W
31 0
LH IMH iMLi LI

AI UDS LDS
H ···0 L II

MH ···0 H L
ML ···1 L H
L ... 1 H L

8o-S3; select input
(II. MH . ML. L)

8 Bit
I/O

FIGURE 3.7 Bus Matching (8 bit 1/0-32 bit memory)

32 bit memory

31 0
IH!MH!ML!LI

AI DDS LDS
H ···0 L II

MH ···0 H L
ML ···1 L H
L ... 1 H. L

So-§; ; select input
(H, MH, ML, L)

H-BUS

16 Bit
I/O

FIGURE 3.8 Bus Matching (16 bit 1/0-32 bit memory)

20

,-,n--+-< HIBYTE
AI

data bus

DTC

P-----------------------------~DRQ

ACK p---lr--------~--------------__qCS
+5V

I

I

I
I

I

I
I

I

I
I
I
1
I

I
1
I

Address Bus { 1\0
AI

Data Bus

Low Speed
I/O Device

AO} register
select "11"

At data registe

* to negate WE when DTe is not outputted

FIGURE 3.9 Low Speed I/O Device Application

Jf-'-\
I

I

ttT-/1 J"- :::-.
\i I I I \1

I I ~ 1
\ I

I j I I I

\ I I I 1 I
I 1 11 I

J
-;\ I

LJ I 'U I
1 1 1 I ~ j [\ I JL

I \

. " 1

'J ~
" y ,~

~J ", ~
I I

\
I

I JJ
1 1

1 I , I I
I 1
1 I

1"'1 o...----READ eYeLE.----~o-J1
1-1 ·--WRITE eyeLE~

FIGURE 3.10 Timing chart of Fig. 3.9

21

r- r--

MPU
A .. FIFO

" y

Qo Do A
I I

Q15 DIS

r:-AD cycle

MEM A • HDC , WRITE cycle ,

L FIFO

Do Qo
I I

DIs QIS

DMAC ..
" "

.......
System Bus Local Bus

* Hard Disc Controller

(a) System Example of FIFO used as HOC Buffers

FIGURE 3. I I FIFO Application Examples

22

H/W .

I Data In

{write eye Ie)

FIFO

Do
CLKA

:-l~ \
D. CLKB

~ -<X'1-
S 225 write
(x4) control

Data Ou

(read eye

"-
t

Ie)

Qo

\

UNLOAn.

11n-eLK
OE

V

('OI'l'TER

tlor 1:1SET

Q. read
control

COUNTER
COUNT r -voo.

>-----< LOAD UP '.:l <1::::=
;~ A mUNT 5V B DOM'I

~INfIDL C LS193 REQ SET
D

QA ~ '"1 latch
Qa -....

S
Qc }

QD <~~
LS740
CK

~
R

-Lr
RESEr

ACK

AS .
LDS

UDS

ADDRESS A

FCo-Fe2 <,.

(b) Circuit Example Between the DMAC and FIFO

23

+5V

i
R!W

f5V

IYI'C

ACK

t:
REQ

OONE

(l.C

HD6St50
DMAC

~r
~+5V

IYI'ACK

AS
~HV

LOS tV
UDS

AI-A.
Aa/Do-Au IDI5

Feo-Fe!

~ __________ ~I~---------4~--~I~h£e~L~au'ut .. ILra~n~'Ur.e.r ______ ~~

------~II~I--~----~~I~I------~/: \ r:---
=--=~f-----J..--_ ---"~_,. __ ------,J:=~ =~=====:E

AS
Memory

LDS Access

UDS

R/W

Memory {~t Out DTACK
---~H~------~~~:====~r------~======j~

,. ~l-I ______ ---'Ir ---'""'\ 'r-

ACK
FIFO

~I r---\~ __________ ~!~,-

{ Control DIC

REQ {cgWlER ------;;-f:llf---.:..: --------C-O-O)-H-I:;#" ;~ ,"". ~
Generator REQ CI~ HEQ: - ~

J, I ,

Memory

Access

Memory
Out

(a) Write (MEM-FIFO)

A S I~-------------,I : \~ _________________ ~r,--
LDS I~------------I I~:~-------------\,-________ ---,~ '--__________ ..J. , . ,
UDS 1~~ _________ ..Jlr~:-------------\~--------~r+----
---i~ , '

R/W , ~1~1-----------~r---\'------------------~: ,-
{DTACK ---il ! I~ ~ \\..------------..:fr--

fData ---iJ r-I''''' ========::'=~ ________ -{=========~:::::: tOut:--__ • ~I:. : 1 : >-
FIFO ! ACK ---il ~,.... ________________ +: ...J/~:......------.\ : r-
co_::_:, {~ '''~I~:(OI)H l;:, "~-----(-OO-)-H---""+
FIFO

Out

Generator _ -<M.IAL REQ ~ :::E REQ ~~I~:------______ --I~ __________ ---'

(b) Read (FIFO-MEM)

FIGURE 3.12 Control Timing Chart of Figure 3.11 (b)

24

E
Do-D 7 '\ Do-D7

'\.r--------------------------./ 6800 H device
.----- CS

f--------------------..,/ dec f------- RS
~--~ ~--~ AS

00-07 E
0 0 -0 7 / 6800

~-------------.---------.-v device

~ ~ f---------------.----,/H ~ ~
C/l e AS ----.. '-----'
;:3 m

I:Q 0 *+5V
C/l 0 L--*-------!--l---I--l AS
C/l 0
QJ 0
,... 00

'"0 ""

~
o
o
o
00

""

~
PCL,

.----+-~=_< ~:=±:±--H ACK
+5~f PCL~

,----+-----,1 ~e- :m
M r r--

~---~lD ~, D~~C
\ \ Do-D~ Do-D

8 D 81.; .,.. BUS Iso;,le!'t
74LS373 V-" Do-D15/

CNT!. ~/ 5\ A.-A'3
Do-D" / CKT

f------------------~ DB EN
A.-A23 f-- DDIR

Do-D,

~

FIGURE 3.\3 6800 Device Application Example

25

LS 74

LS 161

D~ type Posi tive Edge-Trigger F-F

Synchronous 4-bi t Binary Counter ~

,-----.,1-_'-----------'1 ~:~:eS8
R R LDS 0----' r6 r- I--"

CS~~--------~--~)~------------~~----!-P!~ t-- I---" HD68A4S

FDC nl E TxAKAr--- HV

~ T x RQ 1_--+-,1...,-1':>0-.
i-V ~ mID, ENABLE

-------.... ~ l~CLR ti HR~S74 P'frJ--'VVY-+5V L~16~~
H~;50 ~V t I

A C Ko ~ ~ '--------------
PC Lo p..>--__ --+ ____ --l

REQo~~-_===~,_-~------~

~~====tf-ri=~==V~~~~---------_r-------------l
UAS 1>----~k¢l>---I A,-A"

PCL, f-c AalDo-~~~~ 1-*lo~' ----=~=-,ocl CO=~;Ol 1------+.10" -+--:-0-"0---=0-=,,'-------1 ~
c 'kt I-------,f:loc,--' -+-~----=-"'-----------

E
r---

E
'--

DDIR ~
H ~

ACK, "r '--_.... 0 -D Do-D,

REQ, .-p-~-__l~,-<:1-'-a---..Fp_(R.f.r to Fig 3 .. 6.) I 0; ~ DI--I--cc6-s --=--''---''--'-----1

ACK,,..

REQ, p-t- OE

R/wl--~~~--~

lv

H~~~OO~LKI-~~+---- LDS __ ~
VPAb-~_+~-------+-+_---_+------V~P~A__I __ ~
VMA b-+-l-l--l------___ +-___ -+ _______ VL~"'IEA__t __ ~

~

~--+----------+---------A~2--t I--"

CS ~~------4---~
Ro- R,I-+-f-______________ ---j---,rf-__ -'A-:,c..-_A...:''--j I--"

2
I RQA [)-+-I----__I X)------- +5 V

V -.6. 11lAi'i, tNABLE
,..-;,~".......,

CLRj3-LSlol
'lIL~

I RQ B b-__l------I

FIGURE 3.14 Circuit Example of HD68450,
HD68A43 (FDC) and HD68B21 (PIA)

26

2
c
o

()

VAS

HD68450

DMAC

BEC,

BEC,

BECo

+r
......... ,....

7

LSIH 60

50

D, 4

D, 3

Do 2

1
Priority

00
Encoder

EI C

FIGURE 3.15 Exception Encode Example

27

R&R
RETRY
BERR
HALT

RESET

HD68000

MPU

4MHz ClK

OWN D------""""l

HD684:;O

DMAC

BEC,O----aD 2

BEC, D1

BECo Do

CLR

A

LS393

QD 1
L... __ T6

CLR Binary Counter

A lJA

LS393 QB

NC

Qc 1---0-

QDI---0-

FIGURE 3.16 Bus Cycle Time Out Error Example

28

I HQI

I IlQ2

I HQ3

I HQ4

I HQ.

I HQ6

I HQ7

INTERHUPT1
INTEHHUPT2

Il\:TEHHUPT3

+5V

=v-
P-

~ P-->J

* -

HALT to----
BEHH to-- '"

R&H Lo--- ,.,

Priori ty
Encoder

~ o LS148

1

2 Do
3 0 1

4 O2

5

6

7

'~

----,~ k LDS
~riori ty - L----c
Encoder

C
OL8148

I-A7

1

2 Do I'"

C 3 0 1

4 O2

C 5 +5V +5V

C 6 I

f L---c 7

04
n INTERRUPT3 becomes "H"_ "L", ·Whe

DMA
And

T
transfer is stopped.

the MPU is interrupted.

FIGURE 3.17 Transfer Stop Example

29

IPL o

IPL I

IPL 2

HD68000
MPU

RES

Do

-

CS

BEC o

BEC I

BEC 2

HD68450
DMAC

OWN

UAS

IHQ

+.v

AS G AS
B BR
B

--a.J BO
oom<: H068000 .. PRiiliii'i'\'1N • . .

MPU I. t. (PRiORITY IN) r-- (PRIlIUTY our)

-~
~O Q

r-- ~ '''LS3'18 --<0 Q
'-I--- 0 70183'18

~ PIUORrlY our
'--- ~ -0

'---

I~
Igj lfil ~ I: I~
H068 .. 0 HOU .. O

OMAC OMAC

*This PRIORITY IN must be grounded.
**Open collector buffer.

FIGURE 3.18 Daisy Chain Example

Ds - DI5

Do-D7

Ds- DI5

Do-D7

~
SEL A,,-A1

UPPER (ODD)

512kX8bi t

It

8086

~
SEL Ao-A2

UPPER (EVEN)

8MX8bi t

U
HD68450

1
SEL Ao-A1

LOWER (EVEN)

512kxHbi t

lr

1
SEL Ao-A22

LOWER (ODD)

8MX8bi t

IT

The 8086 system allows one word operand whose upper and
lower bytes are located at both contiguous and diagonal position
in memory, as in the figure at the top of page 31. HD68450 does
not allow one word operand (see (2) in the figure). However, if the
operand size is programmed as a byte, and memory count is
programmed as increase in Dual Addressing Mode, the "diag­
onal" position can be supported by the HD68450.

In addition to the Dual Addressing Mode (Chapter 3.1), the
HD68450 supports Single Addressing Mode, in which OP=P
must be satisfied. For one word operand in diagonal position (2),
OP=P=8 is required, and the I/O device must be connected to the

30

upper byte. When an operand is transferred from the I/O device
to the lower byte of memory, HIBYTE signal must be used. See
Chapters 3.5 and 3.6 for circuit examples of HIBYTE.

Figure 3.19 shows an application example of the H D68450 in
the 8086 system, which requires the following circuits:

(I) CS, lACK GENERATOR .•. Read/Write control for
HD68450 internal
registers

(2) BUS ARBITER 8086 bus arbitration
control

(3) STATUS GENERATOR Control for form status
input to 8288 from
FCO-FC2

(4) RDY GENERATOR Synchronizing 8086 and
HD68450 in internal reg­
ister read / write cycles

(I) CS, lACK GENERATOR
Figures 3.20 and 3.21 show a circuit example and timing chart

ofCSand l'i\'CK GENERATOR. CSand lACK are formed from
the 10RC, ATOWC, and INTA outputted from 8288. The
read/write cycle of the 8086 MPU to the HD68450 starts when
CS, LDS, UDS, and R/W become valid, and ends when both
LDS and UDS become inactive.

Since the H D68450 must output data to the lower byte of the
data bus, both lower bytes of 8086 and HD68450 need to be
directly connected, and the output from 8286 must be masked to
avoid bus conflict.

(2) BUS ARBITER
Figures 3.22 and 3.23 show the bus arbiter circuit and its timing

chart. As long as the HD68450 outputs BR or BGACK, bus
mastership is requested to the MPU, and bus conflict does not
take place. BR becomes inactive one clock after BGACK output,
and the bus request does not become inactive before the
HD68450 becomes bus master.

(3) STATUS GENERATOR
Figures 3.24, 3.25 and 3.26 show the Status Generator circuit

and the DMA read/write cycle timing charts. This circuit gener­
ates status signals to inform the DMAC's bus ownership to 8288.
The H D68450 outputs VCO-FC2 in every bus cycle. These values
can be varied by writing different values into MFC, DFC, and

III (2)

l~O 3 Z

5 4

l~O 3 2

5 4

The following examples show various data transfer between memory and I/O
device in Dual Addressing Mode.

Example 1 Memory ~I/O (P=16, OP=16, MTC=2) Mem I/O
R-W (CD I])) 1 word read from memory (I/O)
W-W (CD ®) word write to I/O (memory)

I I]) I CD 1 __ 1 ® I CD I R-W (® CIl) word read from memory (I/O) CIl ® CIl ®
W-W (® CIl) word write to I/O (memory)

Example 2 Memory ~I/O (P=16, OP=8, MTC=4) Mem I/O
R-W (CD I])) 1 word read from I/O
W-B (CD) 1 byte write to memory

[§j~ Rr-W (® CIl) 1 word read from I/O ® ~-CIl ®
W-W (I]) ®) 1 word write to memory
W-B (CIl) 1 byte wirte to memory

Example 3 Memory ~ I/O (P=8, OP=8, MTC=4)
R-B (CD) 1 byte read from I/O
R-B (I])) 1 byte read from I/O Mem I/O
W-W (CD I])) 1 word write to memory
R-B (®) 1 byte read from I/O

II])ICDI 7 0 W-B (®) 1 byte write to memory CIl ® -I CD 'V CIlI
R-B (CIl) 1 byte read from I/O
W-B (CIl) 1 byte write to memory

31

w
I\)

HV

l' ROY ~
RDY
GEN.

(j)

SYsTEMI
ROV

+-

".. 1
;~~~ :: ~: nK:o)
RESET S. 51 AMWTC m-- ~ DT/Ii ~ 8US

AI.E ~ "" Ii ""fNfi I I I 1111
MPU

~~===n~~~5~ -A,-A,

[,.Lll.d~±;;j· A,-Au

~=+====~t=~t====+~=+~==================:~ I- LOCK

1¢~~~~~::;;:=ri=~~~~==~~~~==~~~==:::=:~~====~=======>D.-D"

n: ,s

1i'i'AfK Ni

~r
fAi'"K
RAVI

IRQ i'i'DS
Ws

ii"fT;-
fU:C,

GRF.C.

HDB ~. ~ 0
DMAC

ROO"
ACK.
REQ,
AC'K,
R:EQ;
ACk.
lffi'

~ __ ==------,II

FIGURE 3.19 Application Example of HD68450
in the 8086 System

+5V

~
DMAC SELECT OWN

IORC CS

AIOWC R/W

INTA

+5[
lACK

LOCK
IRQ

BHE) l:=k ~I'f , LOS (,)
(,)

HD684t50
DMAC

Ao)
Jj < UDS

+5V

AS

FIGURE 3.20 CS and lACK Generator

'" .j>.

CLK
lORC

AlOWC

INTA

CS, lACK

LDS , ODS

R/W

DTACK

RDY

ASYNC

ALE

READY

Ti

~
T2

~
~

~

,
\

"L"

T3 TW TW

r~ ~ r
I
I

I
I

J'

I
I

., I
I
I

60 I
" i ' . NOTE 1)

Ii\
If

.,
I
I

I
I

I

-~ I

NOTE 2)1

WRITE tiATA TO DMAC

I
1
I
I

NOTE I) Read and INTA cycles, consist of 13 clocks and write cycle consists of to clocks.
NOTE 2) DMAC Latches the data at a falling edge of this clock.

TW

~
I
I

I
I

I
I

I
I
I

I
1

35

I
I
I
I
I

I
READ DATA

I

1

1
I
1

FIGURE 3.21 Timing Chart of Fig. 3.20

TW T4 Ti I
r "- r ~~

I 1: I
I -I I
I

~j
I
I
I

\t: I
I
I

k:~ I

1
I
I I I
1
I I

B
fl \ : '1 I

FROM DMAC

I
1

I
I

1 1
I 1
1 1

CLK ----------------------------------~

CLK

BR

A

B

B
74.LS78

x)-~-I-IJ Q
CJ1(

KCLRQ

FIGURE 3.22 Bus Arbitration Circuit

FIGURE 3.23 Bus Arbitration Timing

35

}---------- BG

'I4.S02

R

74.LS04.

BFC (Memory Function Code register, Oevice Function Code
register and Base Function Code register). When the values in the
table are written in the registers, 8288 outputs bus commands
synchronizing with the OMAC's bus cycle, and the OMAC can
address devices on the 8086 system bus.

cycle, it is possible to prolong the H068450 bus cycle by changing
the outputs of LS 191 to "4."

(4) ROY GENERATOR
Figure 3.27 shows the ROY Generator circuit. See Figure 3.21

for the OMAC's ROY timing. In Figure 3.27, the STEM ROY
signal is used when the 8086 accesses devices other than the
H068450.

Figure 3.24 shows the shortest bus cycle, consisting of 5 clock
cycles. OSO-OS2 turn idle when the outputs from LS 191 are "3."
When access to memory or I/O device is not in time for the bus

"IT Sf

0 0

0 0

0

0

0

1 0

eLK

UfACK IN
(to Fig. 3

SO

0

0

0

1

0

.27)

0

,
,

8086 STATUS

interrupt acknowledge -------------- lNTA output

read I/O port ---------------------- 10RC output

write I/O port --------------------- IOWC, AlOWC output

halt ------------------------------- None

code access ------------------------ MRDC output

read memory ------------------------ MRDC output

write memory ----------------------- MWTC, AMWTC output

idle ------------------------------- None

I

EJ eLK
+5V

CK: ~ ~ --
UAS

LSl91
I

LOAD ~
QA l-I Q8 t-

Q Qc I-
Qo t-

n

+5V

HD68450

6 D\lAC

Q
;,;

Dt--

LS 74

Q
R

CK: ~

~
+5V ~ +5V

FC.
+5V ~ +5V

+5V~ +5V
Fe,
Fe,

FIGURE 3.24 Status Generator

36

CI.K(8Mllz)

UAS

FC.-FC z

DSz,DS"DS.

ALE

DT/R

DEN

'1'1

~ 67

I";l
i 1.00

I
I
I
I

I
I

I

I

I

I
I
I
I
I
I

I

I

I
I

'1'1 '1'1

r - r
I J I

.;\
JU

I ~NOTE I)

1.\
Olt ~ i!!f

I It It.
NOtE 2) I

d I
'~ I
I \ I

I I
I

~ I

I I \

I I
I I
I I

I I

~
I
I
I

I " I
I

I I
I

I I

I I

'1'2 '1':1 'rw '1'4-

~ :-----r}; -r
I I I \

~
~NOTEJ) i

I II I
I

I I I I
I I

I
I

I I ~I
I I II

HIlI'- I f-it-ll
I I I'

I ~
I I I t

f1IIio1 ~ tttt
\. I i I
I

~\ -~I I
'1 I fiq4 I~ I

I I
(DATA IN N0TJ94) I I

r'-DMAC ~ memory a~cess. I
I mlll. 92 ns latches. t r--....

'\ i!l,INOTE J)

\1

I
I

i' /
~

:
I

NOTE 4)

)'
I/O latch

timing

I
I
I
I J
!

'1'1 1'1 T2

T' r f\-"I I
I

/ I
I I

XI I

I

I \ I
I

I
II :'-t-

I
I X
I

I
I

I
I

I
I

-.l I
I
I I

I I
I I
I J.

I
I I
I I

I I
I I

I
I I

I I
I I

NOTE I) OS2, OSI and OSOcorrespond to Si, Si, and SOin the 8086 system, and are from FCO-FC20fthe DMAC. When the OMACis
used, each bus cycle needs one idle state (T1), and the basic bus cycle consists of five clock cycles.

NOTE 2) OWN and UAS of the OMAC are used, and ALE of the 8288 is not used to latch address AI-A23.
NOTE 3) 15S2, IJS1, and DSli are used to terminate the 8288 cycle, and OTACK is used to terminate the DMAC. __
NOTE 4) Oata latch in Dual Addressing Mode, and from I/O device in Single Addressing Mode is with the falling edge of OTC.

FIGURE 3.25 H068450 READ Cycle Timing Chart

37

W
<Xl

CLK(8MHz)

UAS

FCo- FC 2

DS 2 , DS, , DS o

ALE

A,- A23

LDS, UDS

DEN

AMWTC, AIOWC

MWTC, IOWC

ACK

R/W

Tl Tl

-T' l'
I I

I / I I

I I
L I

I
1 L
I I \
I I
I I

I

I I
L \
I

I I
\ \
I \

I
I

I
I

\
I
I

I I
I
I

\

I
I I

I

I .2:.1 I

I I '\

Tl T2

.1 r' I'
I I

!
I

I I

\ I I

I

I I I

L
I

! I

I \
I

I
I

\ I

I 60
NOTE I)

I \1
I I 60

~I , I
I
I I I I

1
I I

~ \ I 10
DMAC ACCESS 180 I

I
~

I
I I

I I
~ 11 I/O ACCESS

I !\
Th I

~I I

I
11 I I I
~~ I

DTACK I I
I I

I I I
DTC I I

I I 1
I I I

NOTE I) LDS, UDS (corresponding AO, BHE) become valid late.
NOTE 2) Data hold time is 10 ns.

\1
\
I
I
I

T3

T'
I

I
I

~ I

~I

i,
I
I

I

I
I

I
I

I
~ I 10

I

~ I

\ I

I
I

I
I

I
I

~.
I

I
I \ I
I

FIGURE 3.26 HD68450 WRITE Cycle Timing Chart

T4 Tl TI T 2

r---' T' -----.r--' i\.-I I
I

I
I I
I I / I

I I I

I I
I

I I

I I I

I I \ I

I I
I I

I / L I--
I I

I ~
I I

/1 I
I I

I

I \ I
I
I

I
I I

I I I I
I I I

I' I I
~ NOTE 2) I I

I I

I}
I
I

..w..
I

I
I
I
I

I
I
I
I

I

+5V

CLK
-tsv

RDY

SYSTEM RDY)------'

RESET)----------~

HD68450

DTACK IN)-------t....J DMAC

FIGURE 3.27 ROY Generator Circuit

4. HD68450 DMAC Control Program

4. I Basic Control Routine
Figure 4.1 shows the flow chart for the DMAC control pro­

gram by the MPU. The flow from START I sets the transfer
mode on a channel and does the data transfer operation. Once the
transfer mode is set, it is not necessary to set the mode again, as
long as the data transfer is performed in the same mode. The data
transfer for another data block in the same mode can be operated
according to the flow from START 2.

The device address setting is necessary only for dual address
mode (68000 and 6800 c~atible devices). It is not necessary for
devices with ACK, or ACK and READY.

Example I is of an H 068000 M PU program based on Figure
4.1. The DMAC's internal registers are mapped onto addresses
from $1000 to $!OFF. This program transfers 2000-word data
from the I/O device to memory location from address $100000
and up.

When STR (START) bit in CCR is set, the DMAC sets ACT
(Channel Active) bit in CSR, and at the same time resets STR bit
in CCR automatically. After the internal initialization (opera­
tions like configuration error check, etc.), the DMAC can start
the data transfer. REQ signals can be received by the DMAC
while STR bit or ACT bit is set. Therefore, REQ signal can be
accepted even during the internal initialization, but the data
transfer for the request starts only after the initialization
completion.

4.2 Transfer Termination Routine
When the DMAC completes a transfer operation, COC

(Channel Operation Complete) bit in CSR is set. If an error
occurs during the transfer, ERR bit is also set. The MPU can
detect the 0 M A transfer completion by monitoring the COC bit.
Figure 4.2 is the flow chart for transfer termination. If the M PU
monitors COC bit set, the operation starts from START I. This
method requires many clock cycles because some MPU read
cycles are associated. Instead, interrupt can be used to shorten the
termination cycles. The D MAC issues interrupt request when
COC bit is set, if INT (Interrupt enable) bit has been set. In order
to enable the interrupt request, the 12th line instruction in
Example I should be replaced by MOVE.B #$88, $1007.

In Example I, since NIV (Normal Interrupt Vector) is set to
$80, the MPU services the interrupt routine shown by vector

39

number $80, unless error has occurred. For this routine, the
program beginning from START 2 in Example I is applied. If
error occurs, the M PU services the interrupt routine shown by
vector number $81. The routine starting from START 2 in Figure
4.2 is used in this situation.

Error routines should be programmed case by case according
to their applications. For bus error and address error, CER
(Channel Error Register) can determine which address register
caused the error, and the address where the error occurred is kept
in the address register. CER also determines which ofthe transfer
counters between MTC and BTC caused an error.

_ 4.3 Continue Mode Program Example
Example 2 shows a program to start Continue Mode, setting

the same operation modes as Example I. The differences are to
write information of the second data block (3000-word transfer to
memory starting from $20000) in BA R, BTC, and BFC, and to set
CNT (Continue) bit in CCR.

When CNT bit is set, the DMAC renews the transfer informa­
tion of the first block which is specified by MAR, MTC, and
M FC to that of the second block, at the end of the first block
transfer by setting BTC (Block Transfer Complete) bit, and cop­
ying the data from BAR to MAR, BTC to MTC, and BFC to
MFC. The DMAC resets CNT bit. If the INT (Interrupt) bit is
set, it requests an interrupt to the MPU. If the DMAC receives
transfer request, it starts the second block transfer.

To continue block transfer in this mode, it is necessary for the
M PU to write the next block information in each base register,
and to set CNT bit again by means of monitoring BTC bit, or
receiving interrupt due to BTC. Figure 4.3 shows a flow chart for
the routine executed by BTC interrupt. In this way the DMAC
can transfer multi data blocks continuously in Continue Mode.

The multi block transfer in Continue Mode is usually done by
Cycle Steal Mode because of the MPU access to the DMAC.
Burst Mode or Auto Request Mode is also possible in Continue
Mode if the number of blocks is two. When three or more blocks
are transferred in Continue Mode, caution should be excercised,
because an operation timing error will be caused if the MPU sets
CNT bit after the completion of the second block transfer.

4.4 A Program Example in Array Chaining Mode
In Array Chaining Mode, the MPU forms an array table in

memory which has memory addresses and transfer counts of the

(START 2) NOTE 1)

NOTE I) If the same transfer mode is used from START I, the
transfer mode setting can be skipped.

NOTE 2) Necessary only for Dual Address Mode.

POWER ON

I
RESET

I
START 1

1
SETTING
DMAC
TRANSFER MODE

----J
RESETTING
STATUS REGISTER

I
SETTING
MEMORY ADDRESS

I
SETTING
DEVICE ADDRESS

I
SETTING
TRANSFER COUNTS

I
SETTING
STR BIT

I
END

FIGURE 4.1 Flow Chart of Control Program

40

NOTE 2)

Example I: Basic Control Program

Line number
1
2
3
4
5
6
7
8
9

10
11
12
13

START 1 EQU *
MOVE. W I/$A892, $1004
MOVE. B 11$04, $1006
MOVE. B 11$80, $1025
MOVE. B 11$81, $1027
MOVE. B 11$01, $1029
CLR. B $102D

START 2 EQU *
MOVE. B II $FF, $1000
MOVE. L 111 00000 , $ 100C
MOVE. w 112000, $10OA
MOVE. B 11$80, $1007
RTS

Comment

setting DCR,
OCR) " SCR

" NIV
" EIV
" MFC
" CPR

resetting CSR
setting MAR

" MTC
DMAC start routine
returning to
main routine

Correspondance
to Flg.4.1

Setting Transfer Mode

Resetting Status Register
Setting Memory Address
Setting Transfer Counts
Setting STR bit

(NOTE). The DMAC internal registers are mapped onto address SIOOO through SIOFF.
• Channel 0 is used.
• In Dual Addressing Mode, DAR and DFC should be set.

The DMAC transfer mode set in Example I is as follows:
• Cycle Steal Mode without Hold
• 16-bit I/O Device with ACK
• PCL is the Status Input.
• Transfer from I/O Device to Memory
• Word data transfer
• No Chaining
• External Request through REQ pin
• Counts up Memory Address
• FC's output user data code (FCO=I, FCI=O, FC2=O)
• Channel Priority: 0 (the highest priority)

41

.".
I\)

(TO THE NEXT
ROUTINE)

ERROR
ROUTINE

END

NOTE: This is necessary only in the case of PCL=ABORT.lfPCL=ABORT, and the ABORT is inputted in the final bus cycle which is
terminated by DONE signal from the 110 device, the ABORT signal is ignored and no error code is recorded in ERR bit, nor in CER. PCT
bit should be monitored to determine the ABORT input.

C START2)

y

ROUTINE

ERROR
ROUTINE

BUS ERROR
ROUTINE

COUNT ERROR
ROUTINE

ABORT ERROR
ROUTINE

FIGURE 4.2 Flow Chart of Transfer Termination
(TO THE NEXT ROUTINE)

Example 2: Start Program of Continue Mode

Line number Comment
1 CONT EQU ,,<

2 MOVE. W /t$A892, $1004 setting
3 MOVE. B /t$04, $1006 " SCR setting

DCR, OCR}
transfer

4 MOVE. B 11$80, $1025 NIV n:ode
5 MOVE. B /t$81, $1027 " EIV
6 CLR. B $102D " CPR
7 MOVE. B II$FF, $1000 resetting CSR
8 MOVE. L /t$100000, $10OC setting MAR
9 MOVE. W 112000, $1OOA " MTC },etting the

10 MOVE. B /t$01, $1029 " MFC data block
11 MOVE. L 11$200000, $101C " BAR
12 MOVE. W /t3000, $101A " BTC }setting the
13 MOVE. B 11$05, $1039 " BFC data block
14 MOVE. B iI$C8, $1007 " STR, CNT, INT bits
15 RTS returning to main routine

(NOTE). The DMAC is mapped onto address $1000 through $IOFF.
• Channel 0 is used.
• Modes are the same as those in Example I.
• If the modes are already set, the lines from the 2nd through 6th are not necessary.
• The 1st data block is transferred to memory location from address $100000 plus 2000 words. In this

case, FCO= I, FCI=O, and FC2=0 are outputted.
• The 2nd data block is transferred to memory location from address $200000 plus 3000 words. In this

case, FCO= I, FCI=O, and FC2= I are outputted.
• In Dual Addressing Mode, DAR and DFC should be set.

43

1st

2nd

S TAR T

y
COC = 17

END

N

Starting by interrupt caused
by BTC bit

Resetting
BTC bit

Setting memory address
of the next block in
BAR

Setting transfer counts
of the next block in
BTC

Setting function codes
of the next block in
BFC

Setting CNT
bit

END

(To routine which starts the
next continue operation)

(returning to main routine)

FIGURE 4.3 Flow Chart of Continue Mode

44

multi blocks. The DMAC transfers the multi data blocks contin­
uously by referring to the array table. The M PU does not have to
access the DMAC in between block transfers in this mode.

The transfer example in Array Chaining Mode is shown in
Figure 4.4. First, the M PU forms an array table for the multi
block transfer. Second, it gives the device addresS, the number of
blocks being transferred, and the top address of the array table to
the DMAC's, DAR, BTC, and BAR, respectively. Third, the
DMAC reads the memory address and the transfer count of the
first block from the table into the DMAC's internal MAR and
MTC, after the MPU sets STR bit in CCR. Fourth, the DMAC
decrements the content of BTC (number of blocks) and starts the
internal initialization process. Finally, the DMAC waits for a
transfer request.

When the transfer of the first block is completed, the DMAC
reads the second block information from the array table, renews
MAR and MTC, and then transfers the second block. The
DMAC repeats these chaining operations until BTC is exhausted
(becomes zero). Example 3 is a program example for the transfer
shown in Figure 4.4.

FCs (Function Codes) are not renewed in Array Chaining
Mode. The contents in BFC are outputted when the DMAC
reads the array table.

4.5 A Program Example in Linked Array Chaining Mode
Linked Array Chaining Mode is similar to Array Chaining

Mode, but differs in the arrangement of the table for block
transfer. In Array Chaining Mode, the array table must be pre­
pared in contiguous space in memory, in the order of the block
transfer. In Linked Array Chaining Mode, the array table does
not have to be contiguous in memory block by block.

Example 3: Program Example in Array Chaining Mode (Cor­
responding to Fig. 4.4)

line number
1 ARRAY EQU *
2 MOVE. W II$A89A, $1004
3 MOVE. B 11$04, $1006
4 MOVE. B 11$80, $1025
5 MOVE. B 11$81, $1027
6 MOVE. B 11$01, $1029
7 MOVE. B 11$05, $1039
8 CLR. B $101D
9 MOVE. B II $FF, $ 1000

Figure 4.5 shows a transfer example in Linked Array Chaining
Mode. The information of each block is linked with the linked
address-i.e., the top address from where the information of the
next block is stored. The information of each block can be
distributed anywhere in memory by being linked with the linked
address.

First, the MPU prepares for the linked array table in memory.
Second, it gives the device address and the top address of the
linked array table to the DMAC's DAR and BAR, respectively.
Third, the DMAC reads the top address of the table designated
by BA R and the memory address, and the transfer counts into
MAR and MTC, respectively, after the MPU sets STR bit in
CCR. Finally, the DMAC waits for a transfer request after
initialization operation.

The DMAC transfers data blocks in the order of Block A,
Block B, and Block C in Figure 4.5. When the DMAC reads "0"
from linked address in the table, it terminates the chaining opera­
tion after the block transfer.

Example 4 is a program to execute the Linked Array Chaining
in Figure 4.5. In this mode, BTC is not used. Contents of BFC are
outputted when the DMAC refers to the table, but they are not
renewed.

A linked array table is larger than an array table, but permits
easier editing of the block transfer order. When a block is added
or cancelled in the array table, the data in the table must be
shifted. But in the linked array table, the editing is performed only
by changing the linked address. For example, when Block B is
cancelled in Figure 4.5, the linked address "X"(H)(L) is changed
to the linked address "Y"(H)(L), and transfer counts "C" must be
shifted to the location of the memory address "B"(H)(L) and
transfer counts "B."

setting OCR,DCR
SCR
NIV
EIV setting transfer
MFC mode
BFC
CPR

resetting CSR
10 MOVE. L II table top address, $101C setting BAR
11
12
13

(NOTE) •

•
•
•

MOVE. W 113, $101A BTC
MOVE. B 11$80, $1007 STR bit
RTS returning to main

The DMAC is mapped onto address from $1000 through $IOFF.
Channel 0 is used.
The same modes are set as those in Example I except Array Chaining Mode.
In Dual Addressing Mode, DAR and DFC should be set.

45

routine

array table -

H D 6 8 4- 5 0

D M A C
HD68000

M P U

~[
MAR *
DAR device address

BAR table top address

MTC *
BTC number of blocks

being transferred

* loaded from the array table

memory

Bi tl5 Bit 0

table t9P
address -

<=>

.y memor
addre

C

memor
addre

A

memor
addre

B

SE

-y
ss

y
ss

-devic
addre

e
ss

memory address A(H)

memory address A(L

transfer counts A
memory address B(H
memory address B(L)
transfer counts B
memory address C(H
memory address C(L

transfer counts C

--
.-

block C

block A

block B

--
--

I/O device
or

memory

--

number of
blocks
transfered
(3 in this
example)

transfer
counts C

} transfer
counts A

transfer
counts B

FIGURE 4.4 Transfer Example in Array Chaining Mode

46

linked array table_

HD68450

DMAC

HD68000 MAR *
MPU DAR

:::!> BAR

MTC

BTC

* loaded from
array table

device address

table top address

*
(not used)

memory
Bit 1.5. - ~

linked address X memory address B(H)
memory address B(L)
transfer counts B
linked address Y(H)
linked address Y(L)

linked address Y memory address C(H)
memory address C(L)
trans er counts (;
"All 0" (terminator)

table top address ; memory address A(H)
memory address A(~).
transfer counts A
linked address X(H)
linked address Y(L)

I.--

---memory
address C -- block C t

c

o

ransfer
ounts C

~ ~ ~

memory
address A

memory
address B

--

-
i.-'

devi ce ,.,.-

block A

block B

address -. __ }-------------------4
I/O device
or memory

- ---

transfer
counts A

transfer
counts B

FIGURE 4.5 Linked Array Chaining Mode Transfer Examples

47

Example 4: Program Example in Linked Array Chaining Mode
(corresponding to Fig. 4.5)

line number comment
1 LINKA EQU * 2 MOVE. W II$A89E, $1004 setting OCR, nCR
3 MOVE. B 11$04, $1006 setting SCR
4 MOVE. B II $80, $1025 setting NIV
5 MOVE. B 11$81, $1027 setting EIV Setting Transfer
6 MOVE. B 11$01, $1029 setting MEC Mode
7 MOVE. B 11$01, $1039 setting BFC
8 CLR, B $10lD setting CPR
9 MOVE. B II $FF, $1000 T'esetting CSR

10 MOVE. L IItable top address, $101C setting BAR
11 MOVE. B 11$80, $1007 setting STR bit
12 RTS returning to

main routine

(NOTE). The DMAC is mapped onto address from $1000 through $IOFF.
• Channel 0 is used.
• The same modes are set as those in example I except Linked Array Chaining Mode
• In Dual Addressing Mode, DAR and DFC should be set.

48

DATA
SHEETS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

HD68450,HD68450Y
DMAC (Direct Memory Access Controller)

APRIL 1984

Microprocessor implemented systems are becoming increas­
ingly complex, particularly with the advent of high-performance
l6-bit MPU devices with large memory addressing capability. In
order to maintain high throughput, large blocks of data must be
moved within these systems in a quick, efficient manner with
minimum intervention by the MPU itself.

The HD684S0 Direct Memory Access Controller (DMAC)
is designed specifically to complement the performance and
architectural capabilities of the HD68000 MPU by providing the
following features:

• HMCS68000 Bus Compatible
• 4 independent DMA Channels
• Memory-to-Memory, Memory-to-Device, Device·to-Memory

Transfers
• MMU Compatible
• Array-Chained and Linked-Array-Chained Operations
• On·Chip Registers that allow Complete Software Control by

the System MPU
• Interface Lines for Requesting, Acknowledging, and

Incidental Control of the Peripheral Devices
• Variable System Bus Bandwidth Utilization
• Programmable Channel Prioritization
• 2 Vectored interrupts for each Channel
• Auto-Request and External-Request Transfer Modes
• +5 Volt Operation

The DMAC functions by transferring a series of operands
(data) between memory and peripheral device; operand sizes can
be byte, word, or long word. A block is a sequence of opera­
tions; the number of operands in a block is determined by a
transfer count. A single-channel operation may involve the
transfer of several blocks of data bctween memory and devicc.

• TYPE OF PRODUCTS

Type No. Bus Timing Packaging

HD68450-4 4MHz

HD68450-6 6MHz

HD68450-8 8M Hz DC·64

HD68450-10 10MHz

HD68450Y4 4MHz

HD68450Y6 6MHz

HD68450Y8 8MHz PGA·68

HD68450Yl0 10MHz

51

-The specifications for HD68450-10 and HD68450V10 are
preliminary.-

HD68450-4, HD68450-6,
HD68450-8, HD68450-10,

(DC-64)

HD68450Y4, HD68450Y6,
HD68450Y8,
HD68450Yl0,

(PGA-68)

• PROGRAMMING MODEL

ConlrOIReglsrer I} One Per DMAC

"

"y" stands for Pin Grid
Arrav Package.

Status Regl5ler

Error Reglsle.

ConlfolReglS\e,

Operallon
Control RegIster

Sequence
Control Regl&ter

Channel
Control RegIster

Normal
Interrupt Vector

Error
Interrupt Vector 4 Sets

\--..:.:.:.::.:,c:::.,,:.:., ==---H (One Set Per
Priority Register Channel)

Memory
Function Codes

functIon Codes

I Memory Tr~nsfer Counter

I Base Transler Counler

Memory Address Rag,ster

DtlVlCI! Address RegISter

Base Address flaglster

HD68450,HD68450Y---

• PACKAGING INFORMATION (Dimensions in mm)
• DC-64 (SiDE-BRAZED CERAMIC DIP)

,@ ..

"1-___ +""'-.1.
2256-

020-03B

• PIN ARRANGEMENT
• HD68450

oolR
oBEN
HIBYTE

, UAS
OWN
BR

5 lfG
A,
A,
A,
A.

5 As
, A.

51 Vee
A,

Vss
A.ID.
A,ID,
A,.ID,
AIIID,
A"/o.
A"/D,
A,.ID.

1 AI"s/D7
A .. /O.
A"/O,

3 Au/DIO
37 Au/Oll

A,./o"
A" 10"

Fe, 31 , A" 10,.
FC._' ______r- A"/015

(Top View)

• PGA-68 (PIN GRID ARRAY PACKAGE)

f-o--------- 211.2-----_____..0

• HD68450Y

(Bottom View)

52

---HD68450,HD68450Y

• ABSOLUTE MAXIMUM RATINGS

Item Symbol Value Unit

Supply Voltage Vee
. -0.3-+7.0 V

I nput Voltage V in
.

-0.3 - +7.0 V

Operating Temperature Range Topr 0-+70 DC

Storage Temperature T stg -55 - +150 DC

• With respect to Vss (SYSTEM GNO)

(NOTE) Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions.
If these conditions are exceeded, it could affect reliability of LSI.

• RECOMMENDED OPERATING CONDITIONS

Item Symbol min typ max Unit

Supply Voltage Vee · 4.75 5.0 5.25 V

V IH · 2.0 - Vee V
I nput Voltage

V IL · -0.3 0.8 V -
Operating Temperature Topr 0 25 70 DC

• With respect to Vss (SYSTEM GNO)

• ELECTRICAL CHARACTERISTICS
• DC CHARACTERISTICS (Vee = 5V ±5%, Vss = OV, Ta = O-+70DC, unless otherwise noted.)

Item Symbol Test Condition min typ max Unit

Input "High" Voltage V IH 2.0 - Vee V

Input "low" Voltage V IL Vss-0.3 - 0.8 V

~ lACK, BG, ClK,
Input leakage Current BECo - BEC2 lin - - 10 IlA

REQo- REQ3

AI -A7 , Do -Dis/As -A23 ,

Three-5tate (Off State) AS, UDS, lDS, R!W, UAS,
DTACK, BGACK, OWN, DTC, ITSI - - 10 IlA I nput Current
HIBYTE, DDIR, DBEN,
FCo -FC2

Open Drain (Off State)
IREQ, DONE 1001 - - 20 IlA I nput Current

AI - A 7 , Do - Dis/As - A 23 ,

AS, (J[)S", lDS, R!W. UAS,

Output "High" Voltage DTACK, BGACK, BR, OWN, VOH 10H = -4001lA 2.4 - - V
DTC, HIBYTE, DDIR, DBEN,
ACKo - ACK3 , PClo - PCl3 ,

FCo -FC2

AI - A 7 , FCo - FC2 VOL 10L = 3.2mA - - 0.5

Do - Dis/As - A23 , AS, UDS,
lOS, R/W,DTACK, B~

Output "low" Voltage OWN, DTC, HIBYTE, DDIR, VOL 10L =5.3mA - - 0.5 V
DBEN, ACKo - ACK3 , UAS,
PClo - PCl3 , BGACK

IRQ, DONE VOL 10L =8.9mA - - 0.5

Power Dissipation Po f = 8 MHz,Vee =5.0 V
Ta = 25°C

- 1.4 2.0 W

Capacitance Cin
Vin=OV,
Ta = 25DC, f = 1 MHz

- - 15 pF

53

HD68450.HD68450Y--~-------------

LOAD A
+5V

Test 15000
~ r 130pF

Test
Point

LOAD B

+5V

1.11kQ

Figure 1 Test Loads

LOAD C

+5V

7100

152074 <Rl
0'

Equivalent

• AC ELECTRICAL SPECIFICATIONS (Vee = 5V ±5%, VSS = OV. Ta = O-+70°C)

T"t H~a~~4 Ho"6'ji;0-6 ~Brai~~8 No. Item Symbol Condition H06 450Y4 H06 50Y6
min max min ma. min ma.

Frequency of Operation f 2 4 2 6 2 8

1 Clock Period teve 250 500 167 500 126 500

2 Clock Width Low tCL 115 250 75 250 55 250

3 Clock Width High tCH 115 250 75 250 56 250

4 Clock Fatl Time tef 10 10 10

5 Clock Rise Time tc, 10 10 10

6 Asynchronous Input Setup Time tASt 30 25 20

7 Data in to DBEN Low IOIDSL 0 0 - 0

8 OTACK Low to Oats Invalid IOTLOI 0 0 0
9 Address in to AS in Low tAIASl 0 0 0

10 AS, D'S" in High to Address in Invalid tSIHAIV 0 0 0

11 Clock High to COlA Low tCHORl - 90 - 80 - 70

12 Clock High to DOIA High tCHDRH - 90 - 80 70

13 OS in High to DOIA High Impedance tOSHDRZ 160 140 120

14 Crock Low to DBrn Low tCLDBl - 90 - 80 - 70

15 Clock Low to OBEN High tCLDBH - 90 80 70

16 D'S" in High to beEN High Impedance tosHOBZ 160 - 140 120
17 Clock High to Data Out Valid (MPU read) tCHDVM 290 230 180
18 OS in High to Data Out Invalid tOSHOZn 0 0 0 -
19 OS in High to Data High Impedance tOSHOZ 160 140 120

20 Clock Low to OTACK Low tCLoT - 90 - 80 - 70

21 OS in High to OTACK High tOSHOTH - 160 - 130 - 110

22 OTACK Width High tOTH 10 10 10

23 OS in High to DTACK High Impedance tOSHOTZ - 220 - 200 - 180
24 DTACK Low to OS in High tOTLOSH 0 - 0 - 0 -
25 REO Width Low tREQL 2.0 2.0 2.0

26 REO Low to SR Low tREL8RL 500 334 250
27 Clock High to i:fR Low tCH8RL Fig. 1"" 90 80 70
26 Clock High to SR High tCHBAH

Fig.S
90 80 70

29 SG Low to BGACK Low tBGLBL 4.5 - 4.5 - 4.5 -
30 SR Low to MPU Cycle End (AS in High) tBRLASH 0 - 0 - 0 -
31 MPU Cycle End (AS in High) to BGACK Low tASHBL 4.5 5.5 4.5 5.5 4.5 5.5
32 FiEij Low to BGACK Low tREQLBL 12.0 12.0 12.0

33 Clock High to BGACK High tCHBL 90 80 70
34 Clock High to BGAc-K High tCHBH 90 80 70
35 Clock Low to BGACK High Impedance tCLBZ 120 100 80
36 Clock High to FC Valid tCHFCV 140 120 100
37 Clock High to Address Valid tCHAV 160 140 120
38 Clock High to Address/FC/Data High Impedance tCHAZx 140 120 100
39 Clock High to Address/FC/Data Invalid tCHAZn 0 0 0
40 Clock Low to Address High Impedance tCLAZ 140 120 100
41 Clock High to ~ Low tCHUL 90 80 70
42 Clock High to UAS High tCHUH - 90 - 80 - 70
43 Clock Low to 01\5 High Impedance tCLUZ 120 100 80
44 UAS High to Address Invalid tUHAI 50 40 30
45 Clock High to AS, OS Low tCHSL 80 70 60
46 Clock Low to DS Low (write) tCLDSL - 80 - 70 60
47 Clock Low to AS, OS High tCLSH 90 80 70
48 Clock Low to As.. OS High Impedance tCLSZ 120 - 100 80
49 AS Width Low tASL 645 - 350 - 255
50 DSWidth Low tD~L 420 265 190
51 AS, OS Width High tSH 286 - 180 - 160 -
62 Address/FC Valid to AS'. t:m Low tAVSL 50 - 40 - 30 -
53 AS, OS High to Address/FC/Data Invalid tSHAZ 50 40 - 30 -
54 Clock High to R/W Low tCHRL 90 80 70
55 Clock High to R/W High tCHRH - 90 - 80 - 70

* Preliminary
54

H~~':~~-;O Unit HD68450Y10
min ma.

2 10 MHz

100 500 ns

46 250 n.

45 250 ns

10 n,

10 n.

15 ns

0 ns

0 ns

0 ns

0 ns

- 60 n.

60 ns

110 n.

- 60 n.

60 ns

110 ns

160 ns

0 n.

110 ns

- 60 ns

- 110 ns

10 ns

- 160 ns

0 - ns

2.0 clk. per.

200 ns

60 ns
60 ns

4.5 - clk. per.

0 - ns

4.5 5.5 elk. per.

12.0 elk. per.

60 ns

60 n.

70 ns

90 ns

110 n.

100 n.

0 n.

90 ns

60 ns

- 60 n.

70 ns

20 ns

55 ns

- 55 ns

60 ns

70 ns

195 - n.

146 n.

105 - ns

20 - ns

20 ns

- 60 ns

- 60 ns

(continued)

--HD68450,HD68450Y

Test H068~~O_4 Ho"i.~0-6 HD684~.8 HD6845~-;O
Unit No. Item Symbol Condition HD68450Y4 HD6 50Y6 HD68450Y8 HD68450Y10

min max min max min max min max

56 Clock Low to R/W High Impedance tCLAZ - 120 - 100 - 80 - 70 ns

57 Address/Fe Valid to R/V\/' Low lAVRl 100 40 20 10 ns

58 R/W Low to OS Low (write) tRLSL 285 170 120 90 ns

59 OS High to R/W High tSHAH 60 50 40 20 ns

60 Clock Low to 0Wfif Low tCLOL 90 80 70 60 ns

61 Clock Low to OWN High teloH 90 80 70 60 ns

62 Clock High to OWN High Impedance tCHoZ 120 100 80 70 ns

63 lj"ijijNLowto~Low tOLBL 50 40 30 20 ns

64 BGACK High to OWN High tBHaH 50 40 30 20 ns

65 OWN Low to UAS Low lOLUL 50 40 30 20 ns

66 Clock High to ACK Low tCHACL 90 80 70 60 ns

67 Clock Low to ACK Low tCLACL 90 80. 70 60 ns

68 Clock High to ACK High tCHACH 90 80 - 70 60 ns

69 AC K Low to OS Low tACLDSL 230 140 100 80 ns

70 OS High to ACK High tOSHACH 50 40 30 20 ns

71 Clock High to HJ8YTE Low tCHHIL 90 80 70 60 ns

12 Clock Low to HIBYTE Low tCLHIL 90 80 70 60 ns

73 Clock High to HTBV'fE" High tCHHIH 90 80 70 60 ns

74 Clock Low to HIBYTE High Impedance tCLHIZ - 120 - 100 - 80 70 ns

75 Clock High to DTC-Low tCHDTL 90 80 70 60 ns

76 Clock High to i5TCHigh tCHDTH Fig. 1 ~ 90 80 70 60 ns

77 Clock Low to DTC High Impedance tCLDTZ
Fig.8 - 120 100 80 70 ns

78 DTC Width Low tDTCL 230 147 105 80 ns

79 DTC Low to DS High tOTLDH 95 50 30 20 ns

80 Clock High to DONE Low tCHOOL 90 80 70 60 ns

81 Clock Low to iJOiiifE" Low tCLOOL 90 80 70 60 ns

82 Clock High to DONE High tCHOOH 150 140 130 120 n,

83 Clock Low to DDIR High Impedance tCLDRZ - 120 100 80 70 ns

84 Clock Low to DBEN High Impedance tCLOBZ 120 - 100 80 70 ns

85 DDiF Low to DBEN Low tORLDBL 50 40 30 20 ns

86 beEN High to J:j"[jj"R High tOBHDRH 50 40 30 20 ns

87 DBEN Low to Address/Data High Impedance tOBLAZ 17 17 17 17 ns

88 Clock Low to PCL Low (1/8 elock) tCLPL 90 80 70 60 ns

89 Clock Low to PCI."High (118 clock) tCLPH 90 80 70 60 ns

90 PCL Width Low (118 clock) tPCLL 4.0 4.0 4.0 4.0 elk. per.

91 DTACK Low to Data In (setup time) tOALDI 320 200 150 115 ns

92 OS High to Data Invalid (hold time) tSHOI 0 0 0 0 ns

93 os High to DTACK High tSHOAH 0 240 0 160 0 120 0 90 ns

94 Data Out Valid to OS Low tOOSL 0 0 0 0 - ns

95 Data In to Clock Low (setup time) tOICL 30 25 15 15 ns

96 BEC Low to OTACK Low tBECDAL 50 - 50 - 50 - 50 ns

97 BEC Width Low tBECL 2.0 2.0 2.0 2.0 elk. per.

98 Clock High to IRQ Low tCHIRL 90 80 70 60 ns

99 Clock High to IRITHigh tCHIRH 150 140 130 120 ns

100 READ In to DTC Low (ReacH tRALDTL 270 180 145 120 ns
101 R= In to OS Low (Write) tRALOSL 395 - 240 - 205 - 170 ns
102 OS High to REA'iJVHigh tOSHRAH 0 240 0 160 0 120 0 90 ns

103 I DONE In Low to OTACKLow tOOLOAL 50 50 50 50 ns

104 i US High to DUNE In High tOSHDOH 0 240 0 160 0 120 0 .0 ns
105 Asvnchronous Input Hold Time tASIH 15 15 15 15 ns . Preliminary

CD

Figure 2 Input Clock Waveform

55

HD68450,HD68450Y---

.
4 28 29 30 31 32 33 34 35 36 1 3 4 23 24 25 26 27 28 29 30

ClK

AS __ ~ __ ~------~I--i--r---t--------~=---~i=~------<~_i--------t_t_-J
CS. __ ~t::f:======~;:::=I==I====I=========:!.__~

R/W

UDS
lDS------~t-------~~-t-l----t---------1-----------~====~~~======~=*~=+~--

Data In @ @
DTACK--------------------~~--1_------_1=,====~====~~

• Data are latched at the end of clock 25.
Figure 3 AC Electrical Waveforms - MPU Read/Write

ClK

REO

(Falling Edge Pick-up)

BR

@

BGACK-------t------------t:======:Jr===~======~------------------~~-----4S------_tA

BUS CVCle===j=====M~P~U~C~v~cl~e=====:I:==~~;;;;!;;;;;1=~D~M~A. ~ = Cycle

ClK

. REQ is sampled allhe rising edge of CLK in cycle steal and Burst modes.
"nR" isn't asserted while a BEG exception condition exists or DMAC is accessed by MPU.

Figure 4 AC Electrical Waveforms - Bus Arbitration

56

--HD68450,HD68450Y

4 4 9 10

CLKF\J'f-li-J ' J~'\f-Jrur\W' ~~I\J\-
BGACK (64)

',1/1.'

FCo-FC2 Re d Cvcle Write Cycle

L .J~I'----

'"I
I

~---------~~----------i------
• DTACK is sampled at the rising edge of ClK. This is different from HD68000.

** This timing is not related to DMA Read/Write (Single Cycle) sequence.

Figure 5 AC Electrical Waveforms - DMA Read!Write (Single Cycle)

57

HD68450,HD68450Y--

LKF\.J\J"'G~ ~~~~WWL
h

2 3 4 5 6 7" 8 3 4 6 9 10

C

CK

Feo-FC,

A,-A,

-Ao/Do
Au/ 0 ..

Data In

A

AS

u OS

OS

(W R

OW N

DO IR

DB EN

HIBY TE

CK

o TC

A CK

CL""

B EC···

;::=
,--

,--

,--

I

f

Read Cycle X Write Cycle

IX
)(

~ **** * -- ----. J. ~ r-

< ~ A=L
'\ ®

\

~ '"f-
h

-ill .. \
-"'

~
1 \

'---1
\ - "l-

~ ***; I
\ l-

I

• Data is latched at the end of clock 7. This timing is the same as HD68000 .

- ~

'"- -;.

'"- !""""'I.

-- !""""'I. ,-.
!.C'-

@-

~
I

LJ'
I ~ ..

•• This timing is not related to DMA ReadlWrite (Dual Cycle) sequence. This timing is only applicable when 1/8 clock pulse mode is selected.
*"'. This timing is applicable when a bus exception occurs .

•••• If #6 is satisifed for both l:lTACR' and ~, #96 may be Dns.
'* If the propagation delay of the external bidirectional buffer LS245 is less than 17nsec, a conflict may occur between the address output of the DMAC and

the system data bus. In this case, the output of Ol'!rn must be delayed externally.

Figure 6 AC Electrical Waveforms - DMA ReadlWrite (Dual Cycle)

58

H 068450, H o 68450Y

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ClK

AI A 7 X X x::
XDo - XDI5 >---<) (>-

GAS '---J '---l 'L
AS -..I \ I \ r-

UDS

lDS

R/W

OWN low

HIBYTE

DTACK
(lOry /Joz)

PCL(READY)

DTC
®

ACKo

ACK,

ClK
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7 AC Electrical Waveforms - OMA Read/Write (Single Cycle with PCl)

59

HD68450,HD68450Y--

ClK

AI -A 7

XD. - XDI5

UAS

As

UDS

lOS

R!W

OWN low

HIBYTE High
(0)

DTACK

DONE IN

ACK.

ACKI

DTC

ClK
3 4 5 6 8 2 3 4 5 6 7 8 9 10

• If #6 is satisfied for both DTACK and DONE, #103 may be Ons.

Figure 8 AC Electrical Waveforms - DONE Input

(NOTES for Figure 3 through 8)

1) Setup time for the asynchronous inputs BG, BGACK, CS, lACK, AS, UDS, lOS, and RNi guarantees their recognition at the next
falling edge of the clock. Setup time for BEC. - BEC" REO. - REO" PCl. - PCL." lITACK, and IX5l\IE guarantees their
recognition at the next rising edge of the clock.

2) Timing measurements are referenced to and from a low voltage of O.B volts and a high voltage of 2.0 volts.
3) These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not

intended as a functional description of the input and output signals. Refer to other functional descriptions and their related diagrams
for device operation.

60

--HD68450,HD68450Y

• SIGNAL DESCRIPTION

The following section identifies the signals used in the
DMAC. In the definitions, "MPU mode" refers to the state
when the DMAC is chip selected by MPU. The term "DMA
mode" refers to the state when the DMACassumes ownership of
the bus. The DMAC is in the "IDLE mode" at all other times.
Moreover, the DMA bus cycle refers to the bus cycle that is
executed by the DMAC in the "DMA mode".

NOTE) In this data sheet, the state of the signals is
described with these words: active or assert, inactive
or negate.

This is done to avoid confusion when dealing with a mixture
of "active-low" and "active-high" signals. The term assert or
assertion is used to indicate that a signal is active or true inde­
pendent of whether that voltage is low or high. The term negate
or negation is used to indicate that a signal is inactive or false.

As-A23! <:;=:::::::>1
00-0,.

A,-A7 '-r---.""
cs---~
AS-----i

Ii5S-----i
UDS-----i
RIW-----i

DTACK---~

BR-----I
irn-----I

BGACK-----i

TRQ------1
~-----I

OWNi-----I
"liAS------1

HI BYTE------1
Dmf
DDIR:-----I

BECo-----i
BEG,-----!
BEC2'-----!

FCo------1
FC,-----I
FC2-----I

HD68450

DMAC

Vss(2)

Figure 9 I nput and Output Signals

• Address/Data Bus (As/Do through An/DIs)

Input/Output
Active-high

Three-statable

RE02
ACi<2
PCL2

RE03
ACK3
PCL3

These lines are time multiplexed for the address and data
bus. The lines DDIR, DBEN, VAS and OWN are used to con­
trol the demultiplexing of the data and address lines externally.
Demultiplexing is explained in a later section. The bi-directional
data bus is used to transfer data between DMAC, MPU,
memory and I/O devices.

Address lines are outputs to address memory and I/O devices.

61

• Address Bus (AI through A7)

Input/Output
Active-high

Three-statable

In the MPU mode, the DMAC internal registers are accessed
with these lines and LDS, UDS. The address map for these
registers is shown in Table I. During a DMA bus cycle, Al -A7
are outputs containing the low order address bits of the location
being accessed.

• Function Code (FCo through FC2)

Output
Active-high

Three-statable

These output signals provide the function codes during
DMA bus cycles. They are three-stated except in the DMA bus
cycles. They are used to control the HMCS68000 memories.

• Clock (ClK)

Input

This is the input clock to the HD68450, and should never be
terminated at any time. This clock can be different from the
MPU clock since HD68450 operates completely asynchronously.

• Chip Select (CS)

Input
Active low

This input signal is used to chip select the DMAC in "MPU"
mode. If the CS input is asserted during a bus cycle which is
generated by the DMAC, the DMAC internally terminates the
bus cycle and signals an address error. This function protects
the DMAC from accessing its own register.

• Address Strobe (AS)

Input/Output
Active low

Three-statable

In the "MPU mode," this line is an input indicating valid
address input, and during the DMA bus cycle it is an output
indicating a valid address output from the DMAC on the address
bus.

The DMAC monitors these input lines during bus arbitration
to determine the completion of the bus cycle by the MPU or
other bus masters.

• Upper Address Strobe (UAS)

Output
Active low

Three-statable

This line is an output to latch the upper address lines on the
multiplexed data/address lines. It is three-stated except in the
"DMAmode".

• Own (OWN)

Output
Active low

Three-statable

HD68450,HD68450Y---

This line is asserted by the DMAC during DMA mode, and is
used to control the output of the address line latch. This line
may also be used to control the direction of bi-directional
buffers when loads on AS, LDS, UDS, R/W and other signals
exceed the drive capability. It is three-stated in the "MPU
mode" and the "IDLE mode"

• Data Direction (DDfR)

Outputs Three-statable
Active low (when data direction is input to

theDMAC)
Active high (when the data direction is output

from the DMAC)

This line controls the direction of data through the bidirec­
tional buffer which used to demultiplex the data/address lines.
It is three-stated during the "IDLE mode"

• Data Bus Enable (DBEiii)

Output
Active low

Three-statable

This line controls the output enable line of bidirectional
buffers on the multiplexed data/address lines. It is a three-stated
during the "IDLE mode".

• High Byte (HlBY'fE)

Output
Active low

Three-statable

This line is used when the operand size is a byte in the single
addressing mode. It is asserted when data is present on the upper
eight bits of the data bus. It is used to control the output of the
bidirectional buffers which connect the upper eight bits of the
data bus with the lower eight bits. It is three-stated during the
"MPU mode" and the "IDLE mode."

• Read/Write (R/W)

Input/Output
Active low (write)
Active high (read)

Three-statable

This line is an input in the "MPU mode" and an output
during the "DMA mode". It is three-stated during the "IDLE
mode". It is used to control the direction of data flow.

• Upper Data Strobe (UDS). Lower Data Strobe (LOS)

Input/Output
Active low

Three-statable

These lines are extensions of the address lines indicating
which byte or bytes of data of the addressed word are being
addressed. These lines combined corresponds to address line
Ao in table 1.

• Data Transfer Acknowledge (Dl'ACi<)

In pu t/ Ou tpu t
Active low

Three-statable

In the "MPU mode", this line is an output indicating the
completion of Read/Write bus cycle by the MPU.

In the "DMA mode", the DMAC monitors this line to deter­
mine when a data transfer has completed. In the event that a
bus exception is requested, except for HALT, prior to or con­
current with DTACK, the DTACK response is ignored and the
bus exception is honored. In the "IDLE mode", this signal is
three-stated.

• Bus Exception Controls (BECo through BEC;')

Input
Active low

These lines provide an encoded signal input.indicating an
exceptional condition in the DMA bus cycle. See bus exception
section for details.

• Bus Request (SR)

Output
Active low

This output line is used to request ownership of the bus by
the DMAC.

• Bus Grant (00)

Input
Active low

This line is used to indicate to the DMAC that it is to be the
next bus master. The DMAC cannot assume bus ownership until
both AS and BGACK becomes inactive. Once the DMAC ac­
quires the bus, it does not continue to monitor the BG input.

• Bus Grant Acknowledge (BGACi<)

62

Input/Output
Active low

Three-statable

Bus Grant Acknowledge (BGACK) is a bidirectional control
line. As an output, it is generated by the DMAC to indicate that
it is the bus master.

As an input, BGACK is monitored by the DMAC, in limited
rate auto-request mode, to determine whether or not the
current bus master is a DMA device or not. BGACK is also
monitored during bus arbitration in order to assume bus owner­
ship.

• Interrupt Request (iRa)

Output
Active low

Open drain

This line is used to request an interrupt to the MPU.

• Interrupt Acknowledge (lACK)

Input
Active low

This line is an input to the DMAC indicating that the current
bus cycle is an interrupt acknowledge cycle by the MPU. The

---HD68450,HD68450Y

DMAC responds the interrupt vector of the channel with the
highest priority requesting an interrupt. There are two kinds of
the interrupt vectors for each channel: normal (NIV) or error
(EIV). lACK is not serviced if the DMAC has not generated
IRQ.

• Channel Request (RE"Clo through FfE<l;)

Input
Active low or falling edge

These lines are the DMA transfer request inputs from the
peripheral devices.

These lines are falling edge sensitive inputs when the request
mode is cycle steal. They are low-level sensitive when the
request mode is burst.

• Channel Acknowledge (ACKo through ~)

Output
Active low

These lines indicate to the I/O device requesting a transfer
that the request is acknowledged and the transfer is to be per­
formed. These lines may be used as a part of the enable circuit
for bus interface to the peripheral.

• Peripheral Control Line (PEL;; through PeL;)

Input/Output
Active low

Three-statable

The four lines (pCLo - PCL3) are mUlti-purpose lines which
may be individually programmed to be a START output, an
Enable Clock input, a READY input, an ABORT input, a
STATUS input, or an INTERRUPT input.

• Done (DONE)

Input/Output
Active low

Open Drain

As an output, this line is asserted concurrently with the
ACKx timing to indicate the last data transfer to the peripheral
device. As an input, it allows the peripheral device to request a
normal termination of the DMA transfer.

• Device Transfer Complete (DTC)

Output
Active low

Three-statable

This line is asserted when the DMA bus cycle has terminated
normally with no exceptions. It may be used to supply the data
latch timing to the peripheral device. In this case, data is valid at
the falling edge of DTC.

• INTERNAL ORGANIZATION

The DMAC has four independent DMA channels. Each chan­
nel has its own set of channel registers. These registers define
and control the activity of the DMAC in processing a channel
operation.

63

St8~a=_ (CSR)
Channel (CER) Error RegIIII1'
Device (OCR) Control RlIgislfl

co~:r=':st.r (OCR)
con=-~~r (SCR)
con~::r~_r (CCR)

Interru~~vector (NIV)
I"terru~;ovector (EIV)
Priorft~R~ister (CPR)

One set per

channel

conl~:t~~ISI8' j(GCR) - One per
DMAC

Figure 10 I nterna) Registers

• Register Organization
The' internal register addresses are represented in Table 1.

Address space not used within the address map is reserved for
future expansion. A read from an unused location in the map
results in a normal bus cycle with all ones for data. A write
to one of these locations results in a normal bus cycle but no
write occurs.

Unused bits of the defined registers in Table 1 read as zeros.

Table 1 Internal Register Addressing Assignments
Address Bits

Register 7 6 5
Channel Status Register c c 0
Channel Error Register c c 0
Device Control Register c c 0
Operation Control Register c c 0
Sequence Control Register c c 0
Channel Control Register c c 0
Memory Transfer Counter c c 0
Memory Address Register c c 0
Device Address Register c c 0
Base Transfer Counter c c 0
Base Address Register c c 0
Normal Interrupt Vector c c 1
Error Interrupt Vector c c 1
Channel Priority Register c c 1
Memory Function Codes c c 1
Device Function Codes c c 1
Base Function Codes 1
General Control Register 1

cc:OO-Channel #O,OI-Channel # 1.
10-Channel # 2,11·Channel # 3,

ss :OO-high-order, 01-upper middle,
10-lower middle.1 , -low-order

b: O-high-order. 1 -low-order
* see Channel Status Register Section

• Device Control Register (OCR)

4 3
0 0
0 0
0 0
0 0
0 0
0 0
0 1
0 1
1 0
1 1
1 1
0 0
0 0
0 1
0 1
1 0
1 1
1 1

2 1 0 Mode
0 0 0 R w*
0 0 1 R
1 0 0 R W
1 0 1 R W
1 1 0 R W
1 1 1 R W
0 1 b R W
1 s s R W
1 s R W
0 b R W
1 s R W
1 0 R W
1 1 R W
1 0 R W
0 0 R W
0 0 R W
0 0 R W
1 1 R W

The OCR is a device oriented control register. The XRM bits
specifies whether the channel is in burst or cycle steal request
mode. The DTYP bits define what type of device is on the
channel. If the DTYP bits are programmed to btillMCS6800
device, the PCL definition is ignored and the PCL line is an
Enable clock input. If the DTVP bits are programmed to be a
device with READY, the PCL definition is ignored and the PCL
line is a READY input. The DPS bit defines the port size (eight
or sixteen bits) of the peripheral device. (A port size is the largest
data which the peripheral device can transfer during a DMA bus
cycle.) The PCL bits define the function of the PeL line. If the
DTVP bits are programmed to be HMCS6800 device, or Device
with ACK and READY, these definitions are ignored. The XRM

HD68450,HD68450Y--____ __

bits are ignored if an auto-request mode (REQG = 00 or 01 in
Operation Control Register) is selected.

7 6 5 4 3 2

XRM DTYP DPS o PCl

XRM (EXTERNAL REQUEST MODE)
00 Burst Transfer Mode
o I (undefined, reserved)
10 Cycle Steal Mode without Hold
II Cycle Steal Mode with Hold

DTYP (DEVICE TYPE)
00 H068000 compatible device, explicitly addressed

(dual addressing mode)
01 HD6800 compatible device, explicitly addressed

(dual addressing mode)
10 Device with ACK, implicitly addressed

(single addressing mode)

o

II Device with ACK and READY, implicitly addressed
(single addressing mode)

DPS (DEVICE PORT SIZE)
o 8 bit port
I 16 bit port

PCL (pERIPHERAL CONTROL LINE)
00 Status Input
01 Status Input with Interrupt
10 Start Pulse
II Abort Input

Bit 2 Not Used

• Operation Control Register (OCR)
The OCR is an operation control register. The DIR bit

defines the direction of the transfer. The SIZE bits define the
size of the operand. The CHAIN bits define the type of the
CHAIN mode. The REQG bits define how requests for transfers
are genera ted.

7 6 5 4 3 2

DIR I 0 SIZE CHAIN

DIR (DIRECTION)
o Transfer from memory to device

(transfer from MAR address to DAR address)
Transfer from device to memory
(transfer from DAR address to MAR address)

SIZE (OPERAND SIZE)
00 Byte (8 bits)
01 Word (16 bits)
10 Long Word (32 bits)
11 (undefined, reserved)

CHAIN (CHAINING OPERATION)
00 Chain operation is disabled
01 (undefined, reserved)
10 Array Chaining
II Linked Array Chaining

REQG (DMA REQUEST GENERATION METHOD)

o

REQG

00 Auto-request at transfer rate limited by General Control
Register (Limited Rate Auto-Request)

o I Auto-request at maximum rate

10 REQ line requests an operand transfer
II Auto-request the first operand, external request for

subsequent operands
Bit 6 Not Used

• Sequence Control Register (SCR)
The SCR is used to define the sequencing of memory and

device addresses.

7 6 5 4 3 2 o

o MAC DAC

MAC (MEMORY ADDRESS COUNT)
00 Memory address register does not count
o I Memory address register counts up
10 Memory address register counts down
II (undefined, reserved)

DAC (DEVICE ADDRESS COUNT)
00 Device address register does not count
o I Device address register counts up
10 Device address register counts down
II (undefined, reserved)

Bits 7, 6, 5, 4 Not Used

• Channel Control Register (CeR)
The CCR is used to start or terminate the operation of a

channel. This register also determines if an interrupt request is
to be generated. Setting the STR bit causes immediate activa­
tion of the channel; the channel will be ready to accept request
immediately. The STR and CNT bits of the register cannot
be reset by a write to the register. The SAB bit is used to
terminate the operation forcedly. Setting the SAB bit will reset
STR and CNT. Setting the HLT bit will halt the channel opera­
tion, and clearing the HLT bit wi! resume the operation. Setting
the start bit must be done by a byte access. Otherwise, a timing
error occurs.

7 6 5 4 3 2 o

STR CNT I HlT I SAB INT o

STR (START OPERATION)
o No operation is pending
I Start operation

CNT (CONTINUE OPERATION)
o No continuation is pending
I Continue operation

HLT (HALT OPERATION)
o Operation not halted
I Operation halted

SAB (SOFTWARE ABORT)
o Channel operation not aborted
I Abort channel operation

INT (INTERRUPT ENABLE)
o No interrupts enabled
I Interrupts enabled

Bits 2, I, 0 Not Used

• Channel Status Register (CSR)
The CSR is a register containing the status of the channel.

64

---H068450,H068450Y

7 654 3 2 o

BTC I NOT I ERR o PCT pcs

COC (CHANNEL OPERATION COMPLETE)
o Channel operation incomplete
I Channel operation complete

BTC (BLOCK TRANSFER COMPLETE)
o Block transfer incomplete
I Block transfer complete

NDT (NORMAL DEVICE TERMINATION)
o No normal device termination by DONE input
I Device ~erminated operation normally by DONE input

ERR (ERROR BIT)
o No errors
I Error as coded in CER

ACT (CHANNEL ACTIVE)
o Channel not active
I Channel active

PCT (pCL TRANSITION)
o No PCL transition occurred
I PCL transition occurred

PCS (THE STATE OF THE PCL INPUT LINE)
o PCL "Low"
I PCL"High"

Bit 2 Not Used

• Channel Error Register (CER)
The CER is an error condition status register. The ERR bit of

CSR indicates if there is an error or not. Bits 0-4 indicate what
type of error occurred.

7 6 5 4

Error Code
00000 No error
00001 Configuration error
000 10 Operation timing error
00 10 1 Address error in MAR
00110 Address error in DAR
00111 Address error in BAR
01001 Bus error in MAR
01010 Bus error in DAR
01011 Bus error in BAR
01101 CounterrorinMTC
01111 Count error in BTC
10000 External abort
10001 Software abort

Bits 7, 6, 5 Not Used

• Channel Priority Register (CPR)

3 2 o

ERROR CODE

The CPR is used to define the priority level of the channel.
Priority level 0 is the highest and priority level 3 is the lowest
priority.

7 6 5 4 3 2 o

o o CP

65

CP (CHANNEL PRIORITY)
00 Priority level 0
o I Priority level 1
10 Priority level 2
11 Priority level 3
Bit 7 through 2 Not Used

• General Control Register (GCR)
The GCR is used to define what portion of the bus cycles is

available to the DMAC for limited rate auto-request generation.
GCR is also used to specify the hold time for cycle steal mode
withhold.

7 6 5 4 3 2 o

BT BR

BT (BURST TIME)
The number of DMA clock cycles per burst that the DMAC

allows in the auto-request at a limited rate of transfer is con­
trolled by these two bits. The number is 2(BT+4) (two to the
BT+4 power).
BR (BANDWIDTH RATIO)

The amount of the bandwidth utilized by the auto-request at
a limited rate transfer is controlled by these two bits. The ratio
is 2(BR+ I) (two to the BR+ I powcr).

The hold time for cycle steal mode with hold is defined to
be minimum of I sample interval and maximum of 2 sample
intervals. A sample interval is defined to be 2(BT+BR+5) (two
to the BT+BR+5 power) clock cycles.

Bits 7 through 4 Not Used

• Address Registers (MAR, 'DAR, BAR)
Three 32-bit registers arc utilized to implement the Memory

Address Register, Device Address Register, and the Base Address
Register. Only the least significant twenty-four bits are con­
nected to the address output pins. The content of the MAR is
ou tputted when the memory is accessed in single or dual adress­
ing mode. The content of the DAR is outputted when the
peripheral device is accessed. The contents of the BAR is out­
putted when reading chain information from memory in the
Array Chaining Mode or the Linked Array Chaining Mode. It is
also used to set the top address of the next block transfer in
Continue mode.

• Function Code Registers (MFC, OFC, BFC)
The DMAC has three function code registers per channel:

the Memory Function Code Register (MFC), Device Function
Code Register (DFC), and the Base Function Code Register
(BFC). The contents of these registers are outputted from FCo
through FC 2 lines when an address is outputted from MAR,
DAR, or BAR, respectively. The BFC is also used to set the
MFC for the transfer of the next data block in the Continue
mode.

7 6 5 4 3 2 0

o o o o o FC2 FC1 FCO

Bits 3 through 7 Not Used

• Transfer Count Registers (MTC, BTC)
Each channel has two 16-bit counters: the Memory Transfer

Counter (MTC) and the Base Transfer Counter (BTC). The MTC

HD68450,HD68450Y---

counts the number of transfer words in one block, and is de­
creased by one for every operand transfer.

The BTC is used to count the number of data blocks in the
Array Chaining Mode. BTC is also used to set the number of
operands to transfer for the next data block in the Continue
Mode.

• Interrupt Vector Registers (NIV, EIV)
Each channel has a Normal Interrupt Vector register and an

Error Interrupt Vector register.
When an interrupt acknowledge cycle occurs, an interrupt

vector is outputted from one of these registers. If the error bit
(CSR) is set for the channel with interrupt pending, then con­
tent of EIV is outputted, otherwise content of NIV is out­
putted.

• OPERATION DESCRIPTION

A DMAC channel operation proceeds in three principal
phases. During the initialization phase, the MPU sets the channel
control registers, supply the initial address and the number of
transfer words, and starts the channel. During the transfer
phase, the DMAC accepts requests for data operand transfers,
and provides addressing and bus controls for the transfers. The
termination phase occurs after the operation is completed.

This section describes DMAC operations. A description of
the MPU/DMAC communication is given first. Next, the transfer
phase is covered, including how the DMAC recognizes requests
and how the DMAC arranges for data transfer. Following this,
the initialization phase is described. The termination phase is
covered, in troducing chaining, error signaling, and bus excep­
tions. A description of the channel priority seheme rounds out
the section.

Al-A23
FCo-FC2

AS ~----
CS ~----

R/W

UDS ~---
LOS ~----

DDIR --r-----

DSEN ,----

• ReadlWrite of the DMAC Registers by MPU
The MPU reads and writes the DMAC internal registers and

controls the DMA transfer. Figure II indicates the timing dia­
gram when the MPU reads the contents of the DMAC register.
The MPU outputs AI-An, FCo-FC" AS, R/W, UDS, and LDS,
and accesses the DMAC internal register. The specific internal
register is selected by AI-A7, LDS and UDS. The CS and lACK
lines are generated by the external circuit with As-A23 and
FCo-FC,. The DMAC outputs data on the data bus, together
with DDIR, DBEN and DTACK. The DDIR and DBEN control
the bidirectional buffer on the bus and the DTACK indicates

c that the data has been sent or received by the DMAC. Read
Cycle is eighteen CLKs. Figure 12 shows the MPU write cycle.
Write cycle is fifteen CLKs.

Note the following points.
(I) The clock reference shown in this figure is the DMAC input

clock.
(2) The DDIR and the DBEN are three-stated at the beginning

which detects CS and the ending of the cycle.
(3) During the MPU read cycle, the DTACK is asserted after

the data is valid on the system bus.
(4) During the MPU write cycle, the DDIR line will be driven

low to direct the data buffers toward to DMAC before the
buffers are enabled.

(5) During the MPU write cycle, the DMAC will latch the data
before asserting DT ACK. Then it will negate DBEN and
DDIR in the proper order.

(6) After the MPU cycle and the LDS and the UDS are negated
by the MPU, the DMAC will put DBEN, DDIR and the
address data lines to a high impedance state.

(7) DTACK will once go "High" and then to a high impedance
state after negating LDS and UDS.

/II \\\

ltl ~\

tQ m
l(l \\\
, ,-

\\\ 0/
,.--

As/Do-A23/D15 _n-{« >})
XDo-XD15 ------«(») (External system data bus)

DTACK \\\ or
Figure 11 MPU Read from DMAC - Word

66

--H068450,H068450Y

Al-A23
FCo-FC2

AS ~ HI m
CS m /Il \X\

R/W ~ ~
UOS m 01 \n
LOS \S~ ,1/ ,~~

OOIR
,-u_,

III' r-

OBEN ,.-----

As/Oo-A23/015 -----«(»)

XOO-X015 C--- >>> «C (External System Data Bus)

i5'fACj(\" fl{'

Figure 12 MPU Write to OMAC - Word

• Bus Arbitration
The DMAC must obtain ownership of the bus in order to transfer
data. Figure 13 indicates the DMAC bus arbitration timing. It is
completely compatible with that of HD68000 MPU. The DMAC
asserts the Bus Request (BR) to request the bus mastership. The
MPU recognizes the request and asserts BG, then it grants the
ownership in the next bus cycle. After the end of the current cycle

ClK

Sci
(68000 output)

----. ¥

2-3.5 clocks'

I
1.5 - 3.5 clocks
10---

(AS is negated), the MPU relinquishes the bus to the DMAC.
The DMAC asserts the bus grant acknowledge (BGACK) to
indicate that it has the bus ownership. A half clock before
BGACK is asserted, the DMAC asserts OWN. OWN is kept
asserted for a half clock after BGACK is negated at the end of the
DMA cycle. BR is negated one clock after BUACK is asserted.

.,

I

\ I~ OWN

1rnm o clock - 1 MPU Cycle

BUS Cycle

ACK

MPU Cycle
4.5 - 5.5 clocks

\ DMA Cycl.
max. 12.5 clocks + lMPU Cycle

ClK

• This case assumes that no exception condition exists and DMAC isn't accessed by MPU.

Figure 13 OMAC Bus Arbitration Timing

67

U
Ie ~ yc

HD68450,HD68450Y---

• Device/DMAC Communication
Communication between peripheral devices and the DMAC is

accomodatedby five signal lines. Each channel has REQ, ACK
and PCL, and the last two lines the DONE and DTC lines, are
shared among the four channels.
(1) Request (REQ)

The peripheral devices assert REQ to request data transfers.
See the "Requests" section for details.
(2) Acknowledge (ACK)

This line is used to implicitly address the device which is
transferring the data (This device is not selected by address
lines.) It is also asserted when the content of DAR is out­
putted during memory-to-memory transfer except for the auto­
request mode at a limited rate or at the maximum rate.
(3) Peripheral Control Line (PCl)

The function of this line is quite flexible and is determined
by the OCR (Device Control Register).

The DlYP bits of the OCR define what type of device
is on the channel. If the DTYP bits are programmed to be a
HMCS6800 device, the PCL definition is ignored and the PCL
line is an Enable clock (E clock) input. If the DlYP bits are pro­
grammed to be a device with READY, the PCL definition as
ignored and the PCL line is a ready input.
PCl As a Status Input

The PCL line may be programmed as a status input. The
status level of this line can be determined by the PCS bit in the
CSR, regardless of the PCL function determined by the OCR.
If a negative transition occurs and remains stable for a mini­
mum of two clocks, the PCT bit of the CSR is set. This PCT
bit is cleared by resetting the DMAC or the writing" I" to the
PCTbit.
PCl As an InterNpt

The PeL line may be programmed to generate an interrupt
on a negative transition. This enables an interrupt which is re­
quested if the PeT bit of the" CSR is set. When using this func­
tion, it is necessary to reset the PCT bit in the CSR before the
PCL bit in the DCR is set to interrupt, in order to avoid
assertion ofIRQ line at this time.
PCl As a Starting Pulse

The PCL line may be progranuned to output a starting pulse.
This active low starting pulse is outputted when a channel is
activated. and is "Low" for a period of four clock cycles.
PCl As an Abort Input

The PeL line may be programmed to be a negative transition
above input which terminates an operation by setting the ex­
ternal abort error in CER. It is necessary to reset the PeT bit in
the CSR before activating the channel (Setting the ACT bit of
CCR) so that the channel operation is not immediately aborted.
PCl As an Enable Clock (E Clock) Input

If the DTYP bits are programmed to be a HMCS6800 device,
the PeL definition is ignored and the PCL line is an Enable
Clock input. The Enable clock downtime must be as long as five
clock cycles, and must be high for a minimum of three DMAC
clock cycles, but need not be synchronous with the DMAC's
clock.
PCl As a READY Input

If the DTYP bits are programmed to be a device with
READY, the PeL defmition is ignored and the PeL line is a
READY input. The READY is an active low input.
(4) DONE (DONE)

This line is an active low Input/Output signal with an open
drain. It is asserted when the memo~y transfer couilt is ex­
hausted in a single block transfer. In the chaining operation,
DONE" is asserted only at the last transfer to the peripheral

68

device of the last data block. In the continue mode, DONE is
asserted for each data block. It is asserted and negated in coin­
cident with the ACK line for the last data transfer to the
peripheral device. It is also outputted in coincident with the
ACK line of the last bus cycle, in which the address is outputted
from the DAR, in the memory-to-memory transfer (dual
addressing mode) that uses the ACK line.

The DMAC also monitors the state of the DONE line during
the DMA bus cycle. If the device asserts DONE during ACK
active, the DMAC will terminate the operation after the transfer
of the current operand. If DONE is asserted on the first byte of
2 byte operation or the first word of long word operation. the
DMAC does not terminate the operation until the whole ope­
rand transfer is completed. If DONE is inserted. then the DMAC
terminates the operation by clearing the ACT bit of the CSR,
and setting the COC and NDT bits of the CSR. If both the
DMAC and the device assert DONE, the device termination is
not recognized, but the channel operation does terminate.
DONE is outputted again for the retry exceptions bus cycles.
(5) Data Transfer Complete (DTC)

DTC is an active low signal which is asserted when the actual
data transfer is accomplished. It is also asserted in the bus cycle
when a chain information is read from memory in the Chaining
mode. However, if exceptions are generated and the DMA bus
cycle terminates, DTC is not asserted. DTC is asserted one half
clock before LDS and UDS are negated, and negated one half
clock after LDS and UDS are negated.

• Requests
Requests may be externally generated by circuitry in the

peripheral device, or internally generated by the auto-request
mechanism. The REQG bits of the OCR determine these modes.
The DMAC also supports an operation in which the DMAC
auto-requests the first transfer and then waits for the peripheral
device to request the following transfers.
(1) Auto-request Transfers

The auto-request mechanism provides generation of requests
within the DMAC. These requests can be generated at either of
two rates: maximum-rate and limited-rate. In the former case,
the channel always has a request pending.

The limited rate auto-request functions by monitoring the
bus utilization.

limited-rate Auto-request

Previous
Sample Interval

TIME-+

Next
Sample Interval

Figure 14 DMAC Sample Intervals

In the Iimited-rate auto-request the DMAC devides time into
equal length sample intervals by counting clock cycles. The end
of one sample interval makes the beginning of the next. DUring
a sample interval, the DMAC monitors by means of BGACK pin
the system bus activity of the DMAC and other bus master
devices. At the end of the sample interval, decision is made
whether or not to perform the channel's data transfer during
the next sample interval. Namely, based on the activity of
the DMAC or other bus master devices during the current
sample interval, the DMAC allows limited-rate auto-requests for
some initial portion of the next sample interval.

The length of the sample interval, and the portion of the
sample interval during which limited·rate auto·requests can be

---HD68450.HD68450Y

made (the limited-rate auto-request interval) are controlled by
the BT and BR bits in the GCR. The length in clock cycles of
the limited-rate auto-request interval is 2(BT+4) (2 raised to the
BT+4 power). For example, if BT equals 2 and the DMA utiliza­
tion of the bus was low' during the previous sample interval,
then the DMAC generates the auto-request transfers during the
first 64 clock cycles.

The ratio of the length of the sample interval to the length
of the limited-rate auto-request interval is controlled by the BR
bits. The ratio of the system bus utilization of the MPU to
other bus master devices including he DMAC is 2(BR+ I) (2
raised to the BR+ I power). If the fraction of DMA clock cycles
during the sample interval exceeds the programmed utilization
level, the DMAC will not allow limited-rate auto-requests during
the next sample interval.

For example, if BR equals 3, then at most one out of 16
clock cycles during a sample interval can be used by the DMAC
and other bus master devices, and still the DMAC would allow
limited rate auto-request during the next sample interval.
Therefore, from the viewpoint of long period, the ratio of the
system bus utilization of the MPU to I/O devices including the
DMAC is about 16: I. The sample interval length is not a direct
parameter, but it is equal to 2(BT+BR+5) clock cycles. Thus,
the sample interval can be programmed between 32 and 2048

ClK

clock cycles.
The DMAC uses the BGACK to differentiate between the

MPU bus cycle and DMAC or other bus master devices. If
BGACK is active, then the DMAC assumes that the bus is used
by a DMAC or other bus master devices. If it is inactive, then
the DMAC assumes that it is used by the MPU.
Maximum-rate Auto-request

If the REQG bits in the OCR indicate auto-request at the
maximum rate, the DMAC acquires the bus after the start bit is
set and keeps it until the data transfer is completed.

If a request is made by another channel of higher priority,
the DMAC services that channel and then resumes the auto­
request sequence. If two or more channels are set to equal
priority level and maximum rate auto-request, then the channels
will rotate in a "round robbin" fashion.

If the HMCS68000 compatible device is connected to a
channel, the ACK line is held inactive during an auto-request
operation. Consequently, any channel may be used for the
memory-to-memory transfer with the auto-request function in
addition to the operation of data transfer between memory and
peripheral device with using the REQ pin. Refer to Figure 15
for the timing of the memory-to-memory transfer. In this mode,
the ACK, HIBYTE and DONE outputs are always inactive.

1 2 3 9 1011121314151617181920212223242526272829

FCo-FC2-=:JJ// XIII XIII ~
A'-A7::u~" __________ ~u~n~ ______________ ~uwn~ __________ ~~
A8/DO_~d:ess Out Data In Address Out Data Out AdDress Out rrn_;;;.D;;.;at.;;.a,;.;ln;""'/T7/mrr-
A23/D,s..J// VII XIII wI 'lJt1 YIIl _OOL-

XDo- XD,slIllIID--<1O Oml';----<Jm~~II~"=====~O~O>--<J17 000>-
(External System Data ~~~ ~~=====~~'UL..Jll~ ill-.llI ~

AS \\\ ill \\\ m \\\ m

ACK
ClK

\\\
\\\

\\\

Read One Word
From Memory

01
OJ

..111
ULJJJ

8 9 10
I

\\\

Write One Word
to Memory

Figure 15 Memory-to-Memory Transfer
Read-Write-Read Cycles

69

Read One Word
From Memory

"HD68450,HD68450Y--____________ ___

(2) External Requests
If the REOG bits of the OCR indicate that the REO line

generates requests, the transfer requests are generated exter­
nally. The request line associated with each channel allows the
device to externally generate requests for DMA transfers. When
the device wants an operand transferred, it makes a request by
asserting the request line. The external request mode is deter­
mined by the XRM bits of the OCR, which allows both burst
and cycle steal request modes. The burst request mode allows a
channel to request the transfer of mUltiple operands using
consecutive bus cycles. The cycle steal request mode allows
a channel to request the transfer of a single operand. The

following is the description of the burst and the cycle steal
modes.
Bu rst Request Recognition

In the burst request mode, the REO line is an active low
input. The level sampled at the rising edge of the clock. Once
the burst request is asserted, it needs to be hel,d low until the
first DMA bus cycle starts in order to insure at least one data
transfer operation. In order to stop the burst mode transfer
after the current bu~le, the REQ line has to be negated
one clock before the DTC output clock of this cycle. Refer to
Figure 16 or the burst mode timing.

MPU cycle -+-- Idle --t- DMA cycle -+ MPU cycle --r- DMA cycle -r- Idle
or Idle

Figure 16 Burst Mode Request Timing
(Only one channel is active)

Cycle Steal Request Recognition
In the cycle steal request mode, the peripheral device re­

quests the DMA transfer by generating an falling edge at the
REO line. 111e REO line needs to be held "low" for at least 2
clock cycles. In the cycle steal mode, if the REO line changes
from "Higll" to "Low" between ACK output and one clock be­
fore the clock that outputs DTC, then the next DMA transfer
is performed without relinquishing the bus. If the bus is not
relinquished, then maximum of 5 idle clocks is inserted between
bus cycles. Refer to Figure 17 for the request timing of the
cycle steal mode. I f the XRM bits specify cycle steal with­
out hold, the DMAC will relinquish the bus. If the XRM bits
specify cycle steal with hold, the DMAC will retain ownership.
The bus is not given up for arbitration until the channel opera-

tion terminates or until the device pauses. The device is deter­
mined to have paused if it does not make any requests during
the next full sample interval. The sample interval counter is free
running and is not reset or modified by this mode of operation.
The sample interval counter is the same counter that is uSed for
Limited Rate Auto Request and is programmed via the GCR.
Figure 18 shows the request timing in the cycle steal bus
hold. If the REO is inputted during the hold tinle, the ACK
is outputted after a maximum of 7.5 clock cycles from the
picked-up clock. On the cycle steal with hold mode, the DMAC
will hold the bus even when the transfer count is exhausted and
the last data has been transferred. If DMA transfer is requested
from other channels during this period, they are executed
normally.

ClK JUlfl.fLJ1JUlfLJUU1JlIltlJUUUlJ f1..Il..IlJ1JlJ
REQ~: : LC: r '--=Fuu LJ

BR \ I ~bUS \R9IinqUishth9bU:. ___ ----1
BG \ : I ~ j"\ ,,---

BGACK :: rna:. 5 clocks ,,_;:~-_~====~ __
~~~lES : >" ~s-( >--C:)-" ---<---!:=n-~}--

ACK 0 ""41 \\ 0----- \\ ,,---
DrC ~J U U-
ClK 

MPU cycle -+- Idle 

micro cleanup 

DMAcycle 

I11lIlI1IUUlI 
MPU cycle .~ DMA cycle 

or Idle --r----

Figure 17 Cycle Steal Mode Request Timing 

70 



------------------------------------------------------------------HD68450,HD68450Y 

CLKJ1IL 

REO'----I 
BR--, 
BG---_'-,----I-----J 

',-. ___ ----" 
BGACK ---------11-----\ max. 5 clocks 

BUS -_--- f~ CYCLES -J II (}--! }--

ACK ij" ~I~~==~~-~--~~~U-­
DTC-------~f~J \L1J 'U....IJ 

Figure 18 Cycle Steal Bus Hold Mode Request Timing 

Request Recognition in Dual-address Transfers 
In the following section dual-address transfers is defined. 

Dual address transfer is an exception to the request recognition 
rules in the previous paragraphs. In the cycle steal request mode, 
when there are two or more than transfers between the DMAC 
and the peripheral device during one operand transfer, the re­
quest is not recognized until the last transfer between the 
DMAC and the I/O device starts. 
(3) Mixed Request Generation 

A single channel can mix the two request generation 
methods. By programming the REQG bits of the OCR to "II ", 
when the channel is started, the DMAC auto-requests the first 
transfer. Subsequent requests are then generated externally by 
the device. The ACK and PCL lines perform their normal func­
tions in this operation. 

• Data Transfers 
All DMAC data transfers are assumed to be between memory 

and the peripheral device. The word "memory" means a 16-bit 
HMCS68000 bus compatible device. By programming the OCR, 
the characteristics of the peripheral device may be assigned. 
Each channel can communicate using any of the following 
protocols. 

DTYP Device Type 
ao- HMCS68000 compatible deViCe} 

01 HMCS6800 compatible device 
Dual Addressing 

10 Device with ACK } 
II Device with ACK and READY 

Single Addressing 

71 

(1) Dual Addressing 
HMCS68000 and HMCS6800 compatible devices may be 

explicitly addressed. This means that before the peripheral 
transfers data, a data register within the device must be address­
ed. Because the address bus is used to address the peripheral, 
the data cannot be directly transferred to/from the memory 
because the memory also requires addlessing. Instead, the data 
is transferred from the source to the DMAC and held in an 
internal DMAC holding register. A second bus transfer between 
the DMAC and the destination is then required to complete 
the operation. Because both the source and destination of the 
transfer are explicitly addressed, this protocol is called dual­
addressed. 
HMCS68000 Compatible Device Transfers 

In this operation, when a request is received, the bus 'is 
obtained and the transfer is completed using the protocol as 
shown in Figures 19 and 20. Figures 21 through 24 show the 
transfer timings. Figure 21 and 24 show the operation when 
the memory is the source and the peripheral device is the desti­
nation. Figures 22 and 23 show the transfer in the opposite 
direction. The peripheral device is a l6-bit device in Figures 21 
and 22, and a 8-bit device in Figures 23 and 24. 



HD68450,HD68450Y---------------------------____ _ 

DMAC 

Address Device 
1) Set R/W to Read 
2) PIIoC8 Address on A. - A .. 
3) Place Function Codes on 

FC. -FC. 
4) Assert Address Strobe (AS) 
5) Assert Upper Dale Strobe 

(UDS) and Lower Data 
Strobe (LOS) 

6) Assert Acknowledge (ACK) 

I 

f 
Acquire Data 

1) Load Data into Holding 
Register 

2) Assert Device Transfer 
Complete (DTC) 

3) Negate UDS and LOS 
4) Negate AS, ACR andl5'fC 

f 
Slert Next Cycle 

HMCS68000 Device 

, 
Present Data 

1) Decode Address 
2) Place Data on D. - 0 II 
3) Assert Data Transfer 

Acknowledge (DT ACK) 
I 

Terminate Cycle 
1) Remove Data from D. -' 0" 
2) Negate"OTACK 

I 

Figure 19 Word Read Cycle Flowchart HMCS68000 Type Device 

DMAC 

Address Device 
1) Place Address on A. - A .. 
2) Place Function Codel on 

FC. -FC. 
3) Assert Address Strobe (A!) 
4) Set RMto Write 
5) Place Data on D. - 015 

6) Assert Acknowledge (ACK) 
7) Assert Upper Data Strobe 

(TIi5S) and Lower Data 
Strobe ('[Os) 

HMCS68000 Device 

~.------------------------------------" 

. f 
Term.nate Output Transfer 

1) Assert Device Transfer 
Complete (DTC) 

2) Negate UDS and LOS 
3) Negate AS", AC K and D"i'C 
4) Remove Data from D. - 0 15 

5) Set RiW to Read 

, 
Start Next Cycle 

Accept Dale 
1) Decode Address 
2) Store Data on D. - 0" 
3) Assert Data Transfer 

AcknO~edge(DTACK) 
I 

Terminate JCle 
1) Negate DTACK 

I 

Figure 20 Word Write Cycle Flowchart HMCS68000 Type Device 

72 



-------------------------------------------------------------------HD68450,HD68450Y 

CLK 

FCo-FC, 

A,-A, 

AB/Do 
-A23/D,s 

XDo-XD,s 
(External System Data Bus) 

UAS 
AS 

UDS 
LOS 

RW 

OWN 
DDIR 

DBEN 

HIBYTE 

DTACK 

~ 

ACK 
i50NE 

CLK 

ClK 

AB/Do 
-A23/D,s 

XDo-XD'5 

Data In Address Out Data Out 

~Ul 
mOl/) 

il7 
m UJ ~X~ £0 
U\ LU ~~ 

\\\ 

~i\ OJ 
~ llJ ~~ {]j 

~ m \\\ 
\\\..JJ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 
----r-- Read One Word -----j--- Write One Word ---r-

From Memory To Device 
The Last Transfer 

Figure 21 Dual Addressing Mode, ReadlWrite Cycle, 
Destination = 16·bit Device, Word Operand 

~========~V~I~/============~ w-________ ~vull~ ____________ ~ 
Data Out 

'IIIC. 
(External System Data Bus) 

UAS 
AS 

UDS 
LOS 

RW 

OWN 

DDIR 

DBEN 

HiiiYi'E 

ill 10 
\\\ UJ 

\\\ 
\\\ 10 

rrr--
ill rrr--
\\\ rrr--

m II1 

0/ 

'Xl nr 

~\ II1 DTACK ~ 
i5'fC ~ 
ACK \\\ 

DONE 

CLK 

--t--Read One Word ----t-- Write One Word 
From Device To Memorv 

The Last Transfer 

Figure 22 Dual Addressing Mode, ReadlWrite Cycle, 
Source = 16·bit Device, Word Operand 

73 



HD68450,HD68450Y-------------------------------------------------------------------

ClK 

ABloo 
-A23/O,. 

XoO-Xo15 
(External System Data Bus) 

UAS 
AS 

Ui5S 
rns 
RW 

OWN 
m>iR 
l5BEN 

HiB'fTE" 
oTACK 

oTC 
~ 

ClK 

ClK 

ABloo 
-A23/O,. 

Xoo-Xo,. 
(External System Data Bus) 

DAS 
AS 

Dos 

lOS 
RW 

OWN 
Dlmi 
oBEN 

HiBY'i'E 
DTACK 

"D'i'C 
ACK 

ClK 

Address Out Data In Address Out Data In Address Out ..... --!o~a~ta:.;O:;:;u:.!t __ ,....--

~l rur:::::::JHJ 'IlIl::::::J//I ~ 
~~U~====~lmm~U~ml~,~====~n~m~~~l~n=========/~"~ 
~ \LJlJ 'LJlJ 'M-JlJ 
-11l \\\ III \\\ m \\\ III ill 
-11l \\\ III \\\ 
-11l \\\ III \\\ III \\\ III \\\ 

\w\\ __________ -War---
01 

11/ \\\ III \\\ 

--+-- Read One Byte ---'+---Read One Byte --+-- Write One Word 
From Device From Device To Memory 

Figure 23 Dual Addressing Mode, Read/Write Cycle 
Source = 8-bit Device, Word Operand 

A;;:ddiTr::,:es::..s ,:;:O.;ut ..... .:D;::a:.::ta:.,:'.:.:.n......:.;Address Out Data Out Addre .. Out 
--QJL:JIO YDJ::::::]Jl1 1JlL...JIl1 
=nJJ-<l~O!!!::====::;:o~mr::.,>---u~I;;;m;:::::=======:n~l>----<IO" 
""""LJJJ 'LJ11 'LJ11 
o ill III \\\ III ill 
o ill 0/ 

III o \\\ III \w\\,--_~ 
ill fl'T"""""W. 

\\\ 0/ 
ill III \\\ ur--'\\\ 

10 \\\ III \\\ 

Data Out 

\S~ 

\~ 

-+- Read One Word ----t-- Write One Byte 
. From Memory To Device 

Write One Byte 
To Device 

Figure 24 Dual Addressing Mode, Read/Write Cycle, 
Destination = 8-bit Device, Word Operand 

74 

or 

I/lL 
IW>­
\\L or-

or-
nr 

Iff 



---------------------------------HD68450,HD68450Y 

HMCS6800 Compatible Device Transfers 
When a channel is programmed to perform HMCS6800 com­

patible transfers, the PCL line for that channel is defined as an 
Enable clock input. The DMAC performs data transfers between 
itself and the peripheral device using the HMCS6800 bus proto­
col, with the ACK output providing the VMA (valid memory 

DMAC (MASTERI 

Initiate Cycle 
1) Start a normal Read or Write 

Cycle 
21 Monitor Enable until it is low 
31 Assert Acknowledge (ACj() 

I 

T .f ermonate Cycle 
1) The master waits until Enable 

goes low. 
21 Assert Device Transfer Complete 

(i5'f'C1 (On a Read cycle the 
data is latched as clock goes low 
when i5'f'C is asserted. 1 

31 Negate AS, UDS, LOS, ACK 
andDTC • 

Start Next Cycle 

address) signal. Figure 25 illustrates this protocol. Refer to 
Figure 26 for the read cycle timing and Figure 27 for the write 
cycle timing. In Figure 26, the DMAC latches the data at the 
falling edge of clock 19, so a latch to hold the data is necessary 
as shown in Figure 47. 

HMCS6800 Device 

Transfer tate 
11 Wait until Enable is active 
21 Transfer the Data 

I 

Figure 25 HMCS6800 Cycle Flowchart 

ClK 

FCo-FC2 

A.-A, 

AslDo 
-A23/D.s 

XDo-XD.5 
(External System Data Bus) 

UAS 
AS 

liDS 
illS 
Rliiii 

OWN 
i5iiiR 
DBEN 

HIBYTE 

Address Out Data In 

-:=:JCj/1UOllUl/WMWM/W0l0l0l 
(00/1101 

u 
0--

\\ 
o 

DTACK J 
~_ =::~:::~~~~:_~~\\==============~~u----
l>TC ~ 

~E~) r 
ClK 

Figure 26 Dual Addressing Mode, HMCS6800 Compatible 
Device, Read Cycle 

75 



HD68450,HD68450Y-------------------------------------------------------------------

ClK 

A./Do Jm'7mrrnr--..;,A,;;;d;:jidress Ou;:.;t:..-______ ..:D:.::a~ta:.;O:::;u:::t'__ _______ _ 

-A23/D,. 1177JmmJ 1I'fLJJ~================~ii 
XDo-XD'5 -4JIOO I>--<!~================:::::;~ (External System Data Bus) " n 

UAS u....u 
AS ~ 

UDS 

lDS 

R/W 

~~ _______________________ --Uw--

OWN 

liDiR 
nBEN 

HIBYTE 

DTACK 

\\ rr 
u 

rr 

ACK ~===n~/~J===============~\~\=========~~U-­DTC - UJJ ~ 

PCL(E Clock ) ---:I!-:::-:::-:::-::~;-----__'i..='""'='""'='""'""...,J"----J:_:_=_=_=_ 
ClK 

8910111213141516171819202122232425262728 
------1--- Sync. on E Clock --t-Wite One Byte To 6800 Device-r----

Figure 27 Dual Addressing Mode, HMCS6800 Compatible 
Device, Write Cycle 

(2) Single Addressing Mode 
Implicitly addressed devices are peripheral devices selected 

not by address but by ACK. They do not require addressing of 
data register during data transfer. Transfers between memory 
and these devices are controlled by the request/acknowledge 
protocol. Such peripherals require only one bus cycle to transfer 
data, and the DMAC internal holding register is not used. Be­
cause only the memory is addressed during a data transfer and a 
transfer done in only on bus cycle, this protocol is called 
single-address. 
Device with ACK Transfers 

Under this protocol, the communication between peripheral 
device and the DMAC is performed with a two signal REQ/ ACK 
handshake. When a request is generated using the request 
method programmed in the DMAC's internal control registers, 
the DMAC obtains the bus and responds with ACK. The DMAC 
asserts all the bus control signals required for the memory access. 
Refer to Figure 28 for the flowchart of the data transfer from 
memory to the device with ACK. Figure 29 shows the flowchart 
of the data transfer from the device with ACK to memory. 
When a request is generated using the request method pro­
grammed in the control registers, the DMAC obtains the bus and 
responds with acknowledge. The DMAC asserts all HMCS68000 
bus control signals needed for the transfer. When the DMAC 
accepts DTACK from memory, it asserts DTC and informs the 

76 

peripheral device of the transfer termination. Figure 30 and 31 
show the transfer timings of the device with ACK: the port size 
for the former figure is 8-bit and the latter is 16-bit respectively. 

When the transfer is from memory to a device, data is valid 
when DT ACK is asserted and remains valid until the data 
strobes are negated. The assertion of DTC from the DMAC may 
be used to latch the data. 

When the transfer is from device to memory, data must be 
valid on the HMCS68000 bus before the DMAC asserts the data 
strobes. The data strobes are asserted one clock period after 
ACK is asserted. When the DMAC obtains the bus and starts a 
DMA cycle, the tri-state of the OWN line is cancelled a half 
clock earlier than other control lines. If the DMA Cycle ter­
minates and the DMAC relinquishes the bus, all the control 
signals get tri-stated a half clock before OWN. The DDIR and 
DBEN lines are not asserted in the single addressing mode. Four 
clocks cycle is the smallest bus cycle for the transfer from 
memory to device. Five clocks cycle is the smallest bus cycle for 
the transfer from device to memory. If the device port size is 8-
bit, either LDS or UDS is asserted. In the single adressing mode, 
As-Au are outputted for only one and a half clock from the 
beginning of the DMA bus cycle. Therefore, As through A23 

needs to be latched externally just like in the dual addressing 
mode. 



------------------------------------------------------------------HD68450,HD68450Y 

DMAC 

Address Memory 
1) Set R /W to Read 
2) Place Address on AI - A" 
3) Place Function Codes on FC, - FC, 
4) Assert Address Strobe (;t;;s) 
5) Assert Upper Data Strobe (~) 

and Lower Data Strobe (Ii'5m 
6) Assert Acknowledge (ACK) 

Memory 

~'-----------------, 
Present'Data 

, 
Terminate Transfer 

1) Assert Device Transfer Complete 
(DTC) 

2) Negate UDS and LDS 
3) Negate AS, ACK and DTC 

I 

Start Next ~YCle 

1) Decode Address 
2) Place Data on D, - D" 
3) Assert Data Transfer Acknowledge 

(D"fACi() 

TerminatJ Cycle 
1) Negate DTACK , 

Figure 28 Word from Memory to Device with ACK 

DMAC Memory 

Address Memory 
1) Place Address on AI - A" 
2) Place Function Codes on FC, - FC, 
3) Assert Address Strobe (AS) 
4) Set R/W to Write 
5) Assert Acknowledge (ACK) 

ACK Device 

Acqu i'e Data 
1) Load Data 

ACK Device 

I~------------------------------------------~+ 
Present Data 

f 
Enable Data 

1) Assert Upper Data Strobe (UDS) 
and Lower Data Strobe (LOS) 

I 

Terminate Tt.nsfer 

1) Assert Device Transfer Complete (DTC) 
2) Negate UDS and LDS 
3) Negate~, ACK and DTC 

I 

+ Start Next Cycle 

Accept tata 
1) Decode Address 
2) Load Data 
3) Assert Data Transfer Acknowledge 

(5TAci() 

TerminaJ Cycle 
l) Negate DTACK 

I 

Figure 29 Word from Device with ACK to Memory 

77 

l) Place Data on D, - 0" 

I 



HD68450,HD68450Y-----------------------------------------------------------------

ClK 

FCo-FC, 

A,-A, 

As/Do-A'3/D,. 

XDo-XD,. 
(External System Data Bus) 

UAS 

=:J//lH/!:!:"==~n!!:!/l>---<I~ IIWI 
~ 'UL-'11 
---11l \\\ m \\\ 

/Of}-­
\lL ur-­

\\\ ",-­
\w\\ __ ~ur--

ClK 

BGACK 

FCo-FC, 

A.-A, 

As/Do-A'3/D,. 

XDo-XD,. 
(External System Data Bus) 

UAS 
AS 

UDS 

lDS 

R/W 
OWN 
DDIR 

DBEN 
HIBYTE 

DTACK 

DTC 

AtKo 

ACK, 

ClK 

AS 

UDS 

IDS 
RliiV 

---11l \\\ III 
---11l ill m 

'w~ ______ -mmr-
OWN Low ======================== High 
DBEN 

HIBYTE 

DTACK 

ACKo 
ACK, 

DTC 

ClK 

High 
High 

---..III--m JU \\\ or--\\\ '----~Ilfrl---~===::!:!!...-
\\\ 

12345678910111213141516171 
--+-Memory to Device--!--Device to Memory --1---

Channel 0 Channel 1 

Figure 30 Single Addressing Mode with 16-Bit Devices as 
Source and Destination (Read-Write Cycles) 

{'(f'~--

\\\ flf''----
ill milllOlI "' /llIIOmll 
~ ~-----_____ ,~\\=======~/~n===~----~~~----

-- Idle ----t-- Memory to Device -+--- Device to Memory -+- Idle 
Channel 0 Channel 1 

Figure 31 Single Addressing Mode with 8-Bit Device as 
Source and Destination (Read-Write Cycles) 

78 



-------------------------------------------------------------------HD68450,HD68450Y 

Device with ACK and READY Transfers 
Under this protocol, the communication between peripheral 

device and the DMAC is performed using a three signal 
REQ/ ACK/READY handshake. The READY input to the 
DMAC is provided by the PCL line. The READY line is active 
low. When a request is generated using the request method 
programmed in the control registers, the DMAC obtains the bus 
and asserts ACK to notify the device that the transfer is to take 
place. The DMAC waits for READY (pCL input), which is a 
response from the device, in addition to DT ACK which is a 
response from memory. 

When the DMAC accepts both signals, it terminates the trans­
fer. Refer to Figures 33 and 34 for the flowcharts of the data 
transfer betw/ien memory and the device with ACK and 
READY. Refer to Figure 35 for the transfer timing of the 8-bit 
device. When the data transfer is from memory to a device, data 
is valid from the assertion of DT ACK to the negation of LDS 
and UDS. DTC is asserted a half clock before LDS and UDS are 
negated, so this line may be used for latching the data by the 
peripheral device. In this case, READY (pCL input) indicates 
that the device has received the data. Both DTACK and READY 
(pCL input) signals are needed for terminating the DMA cycle. 

When the data transfer is from the device to memory, data 
must be valid on the bus before the DMAC asserts LDS and 
UDS. Therefore, READY (pCL input) is used as the signal to 
indicate that the peripheral device has outputted the data on the 
bus. When the DMAC detects PCL (READY input), then it 

DMAC 

Address Memory 
1) Set RM to Read 
2) Place Address on A, - A" 
3) Place Function Codes on FC. - FC, 
4) Assert Address Strobe (AS) 
5) Assert Upper Data Strobe (UDS) 

and Lower Data Strobe (LOS) 
6) Assert Acknowledge (ACK) 

asserts LDS and UDS. After asserting LDS and UDS, the DMAC 
terminates the cycle when DTACK signal from the memory is 
detected. 

When Array Chain or Link Array Chain is set in Device with 
ACK and READY Transfer mode, READY input is also neces­
sary during DMA bus cycles for reading the chain information 
from memory. The circuit as shown in Figure 32 may be used 
in order to generate READY input when reading the chain 
information from memory. 

HD68450 
DMAC 

L-______________ --(READy 

Figure 32 READY Circuit When Array or Link Array 
Chain is set for Device with ACK and READY 

Memory ACK and iiEADY Device 

~I-------------------------, Present bata 

Terminate T'ansfer 
1) Assert Device Transfer Complete 

(D'i'C) 
2) Negate 1Ji)5 and IDS 
3) Negate AS, ACK and DTC 

1) Decode Address 
2) Place Data on D. - 0" 
3) Assert Data Transfer 

Acknowledge (DTACK) 
I 

L __________________________ ~ 

t 
Terminate Cycle 

1) Negate DT ACK 
I 

f 
Start Next Cycle 

Figure 33 Word from Memory to Device with ACK and READY 

79 

Acquire tata 
1) Load Data 
2) Assert READY 



HD68450.HD68450Y------------------------------------------------------__________ __ 

DMAC Memory ACK and READY Device 

Address Memory 
1) Place Address on A, - An 
2) Place Function Codes on FC. - FC, 
3) Assert Address Strobe (AS) 
4) Set RM to Write 
5) Assert Acknowledge (ACK) 

L' __________________________________________________________ -, 

PreJnt Data 

+ Enable Data 
1) Assert Upper Data Strobe (UDS) 

and Lower Data Strobe (LOS) 

I 

f 
Terminate Transfer 

1) Assert Device Transfer Complete 
(DTC) 

2) Negate iJi5S and iJ5S 
3) Negate AS". ACK and DTC 

I 

f 
Start Next Cycle 

Accept Data 
1) Decode Address 
2) Load Data 
3) Assert Data Transfer 

Acknowledge (DTACK) 
I 

Terminate JYCle 
1) Negate DTACK , 

Figure 34 Word from Device with ACK and READY to Memory 

ClK 

FCo-FC2 

A,-A, 

As/Do-A23/D,. 

1) Place Data on D. - DIS 
2) Assert READY 

I 

XDo-XD,. ~ 
(External System Data Bus) ~ ... 11======:!~~ m.,.... 

UAS ---m...JJJ- ID-
~ ~~~---\~~==========~a~/---~==========~------~ar---~ 

ODS J \\\ ",---
ms -'1J;:;,r-I7I~-:. .... \.!!:"!:::::======:::::::{~n---__m 
R~ ---10\ ~"~ _______________ ~ar-
~ Low 

mmI High 
Dmii 

fil'D\'i'E' 
~ 

m(Jmij)y) 

~ 

ACKo 

AcK7 

ClK 

High 

\\\ 

\\\ 

---I-----Device to MemorY----;---
Channel 0 Channell 

Figure 35 Single Addressing Mode with 8-Bit Devices as Source and 
Destination with PCl Used as a READY Input (Read-Write Cycles) 

80 



------------------------------------------------------------------HD68450,HD68450Y 

Operands and Addressing 
Three factors enter into how the actual data is handled: 

port size, operand size and address sequencing. 

Port Size 
The OCR is used to program the device port size. 

DPS Device Port Size 
o 8 bit port 
I 16 bit port 

The port size is the number of bits of data which the device 
can transfer in a single bus cycle. During a DMAC bus cycle, 
a 16-bit port transfers 16 bits of data on Do - DIs, while an 
8-bit port transfers 8 bits of data, either on Do - D7 or on D8 
- DI s. The memory is always assumed to have a port size of 16. 

Operand Size 
OCR is used to program the operand size. 

SIZE Operand Size 
00 Byte 
01 Word 
10 Long word 
II (undefined, reserved) 

The operand size is the number of bits of data to be trans­
ferred to honor a single request. Multiple bus cycles may be 
required to transfer the operand through the device port. A 
byte operand consists of 8 bits of data, a word operand consists 
of 16 bits of data, a long word operand consists of 32 bits of 
data. The transfer counter counts the number of operands 
transferred. 

Table 2 indicates the combinations supported by the DMAC 
about the peripheral devices with different port size and 
operand sizes in the single and dual addressing mode. In the 
single addressing mode, port size and operand size must be the 
same. In the dual addressing mode, byte operand cannot be used 
when the port size is sixteen and the REQG bit is 10 or II. 

Table 2 Operation Combinations 

Addressing Device Type Port 

Dual 68000,6800 8 
Dual 68000,6800 16 
Dual 68000,6800 16 
Single with ACKor 8 

ACJ< & Ff£AijV 16 

o ; enable X ; disable 

(3) Address Sequencing 
The sequence of addresses generated depends upon the port 

size, operand size, whether the addresses are to count up, down 
or not change and whether the transfer is executed in the single 
addressing mode or the dual addressing mode. The memory 
address count method and the peripheral device address count 
method is programmed using the Memory address count (MAC) 
bit and the Device address count (DAC) bit in the Sequence 
Control Register (SCR). 

(i) Single addressing mode 
In the single addressing mode, memory address sequenc-

Byte 

0 
0 
X 

0 
X 

Operand REQG bits 
Word Long Word of OCR 

0 0 00,01,10, 11 
0 0 00,01 
0 0 10,11 
X X 00,01,10,11 
0 X 00,01,10, 11 

ing is shown in Table 3. If the operand size is byte, the 
memory address increment is one (1). If the operand 
size is word, the memory address increment is two (2). If 
the memory address register does not count, the 
memory address is unchanged after the transfer. 
If the memory address counts up, the increment is 
added to the memory address; if the memory address 
counts down, the increment is subtracted from the 
memory address. The memory address is changed after 
the operand is transferred. 

Table 3 Single Address Sequencing 

Port Size Operand Size 
Memory Address Increment 

+ (increment) = (unchanged) - (decrement) 
8 Byte +1 ° -1 

16 Word +2 ° -2 

81 



HD68450,HD68450Y--------------------------------------------------~--------------

(ii) Dual addressing mode 
In the dual addressing 'mode, the operand size need not 
match the port size. Thus the transfer of an operand 
may require several DMA bus cycles. Each DMA bus 
cycle, between memory and DMAC and between DMAC 
and the device, is called the operand part and transfers a 
portion or all of the operand. The addresses of the 
operand parts are in a linear increasing sequence. The 
step between the addresses of the operand is two. The 
size of the operand parts is the minimum of the port size 
and the operand size. The number of the operand part 
is the operand size divided by the port size. In the dual 
addressing mode, memory is regarded as a device whose 
port size is 16-bi ts. 
If the port size is 16 bits, the operand size is byte, and the 

request generation method is auto request or auto request at 
a limited rate, the DMAC packs consecutive transfers. This 
means that word transfers are made from the associated address 
with an address increment of two (2). If the initial source ad­
dress location contains a single byte, the first transfer is a byte 
transfer to the internal DMAC holding register" and subsequent 
transfers from the source are word transfers. If the initial 
destination location contains a single byte, the first transfer is 
a byte transfer from the internal DMAC holding register, and 
any remaining byte remains in the holding register. Likewise, 
if either the final source or destination location contains a single 
byte, only a byte transfer is done. Packing is not performed 
if the address does not count; each byte is transferred by a 
separate access to the same location. The dual address sequenc­
ing is shown in Table 4. 

Table 4 Dual Address Sequencing 

Port Size Operand Size Part Size Operand Part Address Increment 
Address + - -

8 Byte Byte A +2 0 -2 
8 Word Byte A,A+2 +4 0 -4 
8 Long Byte A, A+2, A+4, A+6 +8 0 -8 

16 Byte Pack A 
16 Word Word A 

16 Long Word A,A+2 

P = 1 .f packing .s not done 
= 2 if packing is done 

Pack = byte.f packing is not done 
= word if packing is done 

An Example of a Dual Address Transfer 
This section contains an example of a dual address transfer 

using Table 4 of Dual-Address Sequencing. The table is repro­
duced here as Table 5. The transfer inode of this example is the 
following: 

1. Device Port size = 8 bits 
2. Operand size = Long Word (32 bits) 
3. Memory to Device Transfer 
4. Source (Memory) Counts up, Destination (Device) Counts 

Down 
5. Memory Transfer Counter = 2 

+P 0 -P 

+2 0 -2 

+4 0 -4 

In this mode, a data transfer from the source (memory) is 
done according to the 6th row of Table 5, since the port size 
of the memory is always 16 bits. A data t(ansfer to the destina­
tion (device) is done according to the 3rd row of Table 5. 
Table 6 shows the data transfer sequence. 

The memory map of this example is shown in Table 7. The 
operand consists of BYTE A through BYTE D in memory 
of Table 7. Prior to the transfer, MAR and DAR arc set to 
00000012 and 00000108 respectively. The operand is trans­
ferred to the 8 bit port device according to the order of transfer 
number in Table 6. 

Table 5 Dual-Address Sequencing (Table 4) 

Row No. Port Size Operand Size 
Operand 

Operand Part Addresses 
Address Increment 

Part Size + = -
1 8 BYTE BYTE A +2 0 -2 

2 8 WORD BYTE A,A+2 +4 0 -4 

@ 8 LONG BYTE A,A+2,A+4,A+6 +8 0 -8 
*4 *3 *5 *7 *8 *10 

4 16 BYTE PACK (BYTE 
orWORD)" 

A +P 0 -P 

5 16 WORD WORD A +2 0 -2 

® 16 LONG WORD A,A+2 +4 0 -4 
*2 *1 *6 *9 

• Numbers in Table 5 correspond to ones in Table 6 and 7 . 
•• Refer to Address Sequencing on Operand Part Size and PACK. 

82 



---------------------------------------------------------------------HD68450,HD68450Y 

Table 6 An Example of a Data Transfer for One Operand 

SRC: Source (Memory), DST Destination (Device), HR: Holding Register (DMAC Internal Reg.) 

Transfer Address Data Size DMAC Registers after Transfer 

No. 
Data Transfer Output on 8us 

Comment 
MAR DAR 

0 
00000012 00000108 Initial Register Setting - - -

1 SRC4 HR 00000012 WORD 00000014 00000108 Higher order 16 bits of operand is 
*1 *2 fetched. 

2 HR -+ DST 00000108 BYTE 00000014 0000010A 
*3 *4 Higher order 16 bits of operand is 

0000010A BYTE 00000014 0000010C transferred. 
3 HR -+ DST *5 *4 *10 

4 SRC-+ HR 00000014 WORD 00000016 0000010C Lower order 16 bits of operand is 
*6 *2 *9 fetched 

5 HR -+ DST 0000010C BYTE 00000016 0000010E 
*7 *4 Lower order 16 bits of operand is 

0000010E BYTE 00000016 00000110 transferred. 
6 HR 4DST *8 *4 *10 

6' 
00000016 000001101 MAR, DAR are pointing the next 

- - - operand addresses when the 
transfer is complete. 

Mode: Port size = 8, Operand size = Long Word, Memory to Device, Source (Memory) Counts Up, Destination (Device) Counts Down 

Table 7 Memory Map for the Example of the Data Transfer 

ADDRESS 

00000010 

00000012 

00000014 

00000016 

I 
I 

BYTE A I BYTE B 
*1 *1 

BYTE C I BYTE 0 
*6 *6 

I 
I 

Source (Memory) 

• Initiation and Control of Channel Operation 
(1) Operation Initiation 

ADDRESS 

00000011 

00000013 

00000015 

00000017 

To initiate the operation of a channel the STR bit of the 
CCR is set to start the operation. Setting the STR bit causes 
the immediate activation of the channel, the channel will be 
ready to accept requests immediately. The channel initiates 
the operation by resetting the STR bit and setting the channel 
active bit in the CSR. Any pending requests are cleared, and the 
channel is then ready to receive requests for the new operation. 
If the channel is configured for an illegal operation, the config­
uration error is signaled, and no channel operation is run. The 
illegal operations include the selection of any of the options 
marked "(undefined, reserved)". If the MTC is set to zero in any 
operation or BTC is set to zero in the array chaining mode, then 
the count error is signaled and the channel is not activated. The 
channel cannot be started if any of the ACT, COC, BTC, NDT 
or ERR bits is set in the CSR. In this case, the channel signals 
the operation timing error. 
(2) Operation Continuation (Continue Mode) 

83 

ADDRESS 

00000106 

00000108 

0000010A 

0000010C 

0000010E 

00000110 

I 
I 

BYTE A I *3 
BYTE B I *5 
BYTE C I *7 
8YTE 0 I *8 

I 

Destination (Device) 

00000107 

00000109 

0000010B 

00000100 

000001 OF 

00000111 

The continue bit (CNT) allows multiple blocks to be trans· 
ferred in unchained operations. The CNT bit is set in order 
to continue the current channel operation. If an attempt is 
made to continue a chained operation, a configuration error 
is signaled. The base address register and base transfer counter 
should have been previously initialized. 

The continue bit may be set as the channel is started or while 
the channel is still active. The operation timing error bit is 
signaled if a continuation is otherwise attempted. 

When the memory transfer counter is exhausted and the con­
tinue bit of the CCR is set, the DMAC performs a continuation 
of the channel operation. The base address, base function code, 
and base transfer count registers are copied into the memory 
address, memory function code, and memory transfer count 
registers. The block transfer complete (BTC) bit of the CSR 
is set, the continue bit is reset, and the channel begins a new 
block transfer. If the memory transfer counter is loaded with 
a terminal count, the count error is signaled. 
(3) Operation Halting (Halt) 



H068450,H068450Y----------'------------------------

The CCR has a halt bit which allows suspension of the opera­
tion of the channel. If this bit is set, a request may still be 
generated and recognized, but the DMAC does not attempt to 
acquire the bus or to make transfers for the halted channel. 
When this bit is reset, the channel resumes operation and serv­
ices any request that may have been received while the channel 
was halted. However, in the burst request mode, the transfer 
request should be kept asserted until the initiation of the first 
transfer after cielring the halt bit. 
(4) Operation Abort by Software (Software Abortl 

Setting the software abort bit (SAB) in the CCR allows the 
current operation of the channel to be aborted. In this case, the 
ERR bit and the COC bit in the CSR are set and the ACT bit is 
reset. The error code for the software abort is set in the CER. 
The SAB bit is designed to be reset if the ERR bit is reset. When 
the CCR is read, the SAB always reads as zero(O). 
(5) Interrupt Enable 

The CCR has an interrupt enable bit (INT) which allows the 
channel to request interrupts. If INT is set, the channel can 
request interrupts. If it is clear, the channel will not request 
in terrupts. 

• Channel Operation Termination 
As part of the transfer of an operand, the DMAC decrementll 

the memory transfer counter (MTC). If the chaining mode is 
not used and the CNT bit is not set or the last block is trans­
ferred in the chaining mode, the operation of the channel is 
complete when the last operand transfer is completed and the 
MTC is zero. The DMAC notifies the peripheral device of the 
channel completion via the DONE output. 

However, in the continue mode, DONE is outputted at the 
termination of every data block transfer. When the channel 
operation has been completed, the ACT bit of the CSR is 
cleared, and the COC bit of the CSR is set. 

The occurrence of errors, such as the bus error, during 
the DMA bus cycle also terminates the channel operation. In 
this case, the ACT bit in the CSR is cleared, the ERR and the 
COC bits are set, and at the same time the code corresponding 
to the error that occurred is set in the CER. 
(1) Channel Status Register (CSR) 

The channel status register contains the status of the channel. 
The register, except for ACT and PeS bits, is cleared by writing 
a one (I) into each bit of the register to be cleared. Those bits 
positions which contain a zero (0) in the write data remain un­
affected. ACT and PCS bits are unaffected by the write opera­
tion. 
COC 

The channel operation complete (COC) bit is set if the 
channel operation has completed. The COC bit must be cleared 
in order to start another channel operation. The COC bit is 
cleared only by writing a one to this bit or resetting the DMAC. 
PCS 

The peripheral status (PCS) bit reflects the level of the PC[ 
line regardless of its programmed function. If PCL is at "High" 
level, the PeB bit reads as one. If JiCL is at "Low" level, the 
PeS bit reads as zero. The PCS bit is unaffected by writing to 
the CSR. 
PCT 

The peripheral control transition (PCT) bit is set, if a falling 
edge transition has occurred on the PeL line. (The PeL line 
must remain at "low" level for at least two clock cycles.) The 
PeT bit is cleared by writing a one to this bit or resetting the 
DMAC. 
BTC 

Block transfer complete (BTC) bit is set when the con tinue 
(CNT) bit of CCR is set and the memory transfer counter 
(MTC) is exhausted. The BTC bit must be cleared before the 
another continuation is attempted (namely, setting the CNT bit 
again), otherwise an operation timing error occurs. The BTC bit 
is cleared by writing a one to this bit or resetting the DMAC. 
NOT 

Normal device termination (NOT) bit is set when the 
peripheral device terminates the channel operation by asserting 
the DONE line while the peripheral device was being acknowl­
edged. The NDT bit is cleared by writing a one to this bit or re­
setting the DMAC. 
ERR 

Error (ERR) bit is set if any errors have been signaled. When 
the ERR bit is set, the code corresponding to the kind of the 
error that occurred is set in the CER. The ERR bit is cleared by 
writing a one to this bit or resetting the DMAC. 
ACT 

The active (ACT) bit is asserted after the STR bit has been 
set and the channel operation has started. This bit is remains set 
until the channel operation is terminated. The ACT bit is un­
affected by write operations. This bit is cleared by the termi­
nation of the channel or resetting the DMAC. 
(2) Interrupts 

The DMAC can signal the termination of the channel opera­
tion by generating an interrupt request. The INT bit of the CCR 
determines if an interrupt can be generated. The interrupt 
request is generated by the following condition. 

(1) INT = I 
and 

® COC = i or BTC = I or ERR = i or NOT = I or PCT = I 
(the PCL line is an interrupt input) 

This may be represented as 
IRQ = INT· (COC + BTC + ERR + NOT + PCT*) 

(*PCL line is programmed as an in terrupt input.) 
When the IRQ line is asserted, changing the INT bit from one 
to zero to one will cause the IRQ output to change from "low" 
to "high" to "low" again. The I"R"Q should be negated by 
clearing the COC, the BTC, the ERR, the NOT and the PCT 
bits. 

If the DMAC receives lACK from the MPU during asserting 
the IIDJ, the DMAC provides an interrupt vector. If multiple 
channels have interrupt requests, the determination of which 
channel presents its interrupt vector is made using the same 
priority scheme defined for the channel operations. 

The bus cycle in which the DMAC provides the interrupt 
, vector when receiving an lACK from the MPU is called the 

interrupt acknowledge cycle. The interrupt vector retumed to 
the MPU comes from either the normal or the error interrupt 
vector register. The normal interrupt register is used unless the 
ERR bit of CSR is set, in which case the error interrupt vector 
register is used. The content of the interrupt vector register is 
placed on 0 0 - 0 7 , and DTACK is asserted to indicate that the 
vector is on the data bus. If a reset occurs, all interrupt vector 
registers are set to SOF (binary 00001111), the value of the 
uninitialized interrupt vector. The timing of the interrupt 
acknowledge cycle is shown in Figure 36. The HD68000 MPU 
outputs the interrupt level into A1-A3 and ~-A7 is held "high" 
during the interrupt acknowledge cycle, but .the HD68450 
DMAC ignores these signals. 

84 



----------------------------------------------------------------------HD68450,HD68450Y 

ClK LrLnY 
1 2 3 4 5 30 31 32 33 34 35 36 37 38 

Al-A7 <llZ :: >--
AS ~~~ fl.l Si 

lACK n~ llZll 
R;W It 

UDS ~H ;; Zll 
em; \\\ III ~~ 

DDIR (ft \ 

DBEN r'\J\ I 

A16/Ds-A23/D15 fS 

As/Do-A15/D7 s~llll ) 
XDo-XD15 ~~m7 lD (External System Data Bus) 

DTACK $1 fJ'--
ClK u-LJl..JSS 

1 2 3 4 5 30 31 32 33 34 35 36 37 38 

Figure 36 MPU lACK Cycle to DMAC 

(3) Multiple Data Block Transfer Operation 
When the memory transfer counter (MTC) is exhausted, the 

channel operation still continues if the channel is set to the 
array chaining mode or the linked array chaining mode and the 
chain is not exhausted. The channel operation also continues if 
the continue bit (CNT) of the CCR is set. The DMAC provides 
the initialization of the memory address register and the 
memory transfer counter in these cases so that the DMAC can 
transfer the multiple blocks. 
Continued Operation 

The continued operation is described in the Initiation and 
the Control of the Channel Operation section. 
Array Chaining 

This type of chaining uses an array in memory consisting of 
memory addresses and transfer counts. Each entry in the array 
is six bytes long and, consists of four bytes of address followed 
by two bytes of transfer count. The beginning address of this 
array is in the base address register, and the number of entries in 
the array is in the base transfer counter. Before starting any 
block transfers, the DMAC fetches the entry currently pointed 

85 

to by the base address register. The address information is 
placed in the memory address register, and the count informa­
tion is placed in the memory transfer counter. As each chaining 
entry is fetched, the base transfer counter is decremented by 
one. After the chaining entry is fetched, the base address 
register is incremented to point the next entry. When the 
base transfer counter reaches a terminal count of zero, the chain 
is exhausted, and the entry just fetched determines the last 
block of the channel operation. 

An example of the array chaining mode operation and the 
memory fonnat for supporting for array chaining is shown 
in Figure 37. The array must start at an even address, or the 
entry fetch results is an address error. If a terminal count is 
loaded into the memory transfer counter or the base transfer 
counter, the count error is signaled. Since the base registers may 
be read by the MPU, appropriate error recovery information is 
available should the DMAC encounter an error anywhere in the 
chain. Contents of the BFC is outputted as the function code 
when the DMAC is accessing the memory using the base address 
register. The value of the function code registers are unchanged 
in the array chaining operation. 



H 068450, Ho68450Y------------------------------------------------------------------

Array table -+ 

HD6B450 
DMAC 

HD6BOOO 
MPU 

~{ 
MAR * 
DAR peripheral device address 

BAR top address of the table 

MTC * 
BTC 

* to be loaded from the array table 

Note: The number of data blocks being 
transferred in this example is 3. 

Bit 15 

top address of -+ 
the table 

¢:/ 

... emory 
address C 

memory 

address A 

memory 

address B 

memory 

memory address A(H) 

memory address A(L) 

transfer count A 

memory address B(H) 

memory address B (L) 

transfer count B 

memory address C(H) 

memory address C (L) 

transfer count C 

.- -
r" -

block C 

block A 

block B 

...- -

BitO 

} 

} 

transfer 
count C 

transfer 
count A 

trensfer 
count B 

peripheral device .-.----------. 

address-+ 

.-

peripheral device 
or 

memory 

Figure 37 Transfer Example of the Array Chaining Mode 

Linked Array Chaining 
This type of chaining uses a list in memory consisting of 

memory address, transfer counts, and link addresses. Each entry 
in the chain list is ten bytes long, and consists of four bytes of 
memory address, two bytes of transfer count and four bytes of 
link address. The address of the first entry in the list is in the 
base address register, and the base transfer counter is unused. 
Before starting any block transfers, the DMAC fetches the 
entry currently pointed to by the base address register. The 
address information is placed in the memory address register, 
the count information is placed in the memory transfer counter, 

and the link address replaces the current contents of the base 
address register. The channel then begins a new block transfer. 
As each chaining entry is fetched, the update base address 
register is examined for the terminal link which has all 32 bits 
equal to zero. When the new base address is the terminal ad­
dress, the chain is exhausted, and the entry just fetched deter­
mines the last block of the channel operation. 

An example of the linked array chaining mode operation and 
the memory format for supporting it is shown is Figure 38. 

In Figure 38, the DMAC transfers data blocks in the order of 
Block A, Block B, and Block C. In the linked array chaining 

86 



-----------------------------------HD68450.HD68450Y 

linked array table --+ 

H068450 
OMAC 

H068000 
MPU MAR * 

DAR peripheral device address 

:::> BAR top address of the table 

MTC * 
8TC (not used) 

• to be loaded from the linked array table 

memory 
Bit 15 

link address X -+ 

link address Y -+ 

top address of 
the table 

<==> 

memory 
-+ 

address C 

memor~ 

address A 

memor~ 

address B 

peripheral 
device address --

memory address B (H) 

memory address B(L) 

transfer count B 

link address Y(H) 

link address Y (L) 

memory address C(H) 

memory address C (Ll 

transfer count C 

"All 0" terminator 

"All 0" terminator 

memory address A(H) 

memory address A(L) 

'-""'" 

...-

transfer count A 

link address X(H) 

link address X(L) --
block C 

block A 

block B 

-
peripheral device 
or memory 

Figure 38 Transfer Example of the Linked Array Chaining Mode 

87 

Bit 0 

} ~"""Oo"" 

f "~",, ~M A 

} ,.~" oooM • 



HD68450,HD68450Y------------------------------------------------------------------

mode, the BTC is not used. When the DMAC refers to the linked 
array table, the value of the BFC is outputted as the function 
code. The values of the function code registers are unchanged 
by the linked array chaining operation. 

This type of chaining allows entries to be easily removed or 
inserted without having to reorganize data within the chain. 
Since the end of the chain is indicated by a terminal link, the 
number of entries in the array need not be specified to the 
DMAC. 

The linked array table must start at an even address in the 
linked array chaining mode. Starting the table at an odd address 
results in an address error. If "0" is initially loaded to the 
MTC, the count error is signaled. Because the MPU can read 
all of the DMAC registers, all necessary error recovery informa­
tion is available to the operating system. 

The comparision of both chaining modes is shown in Table 8. 

Table 8 Chaining Mode Address/Count Information 

Chaining Mode Base Address Base Transfer Completed 
Register Counter When 

address of the number of data Base Transfer Array Chaining array table blocks being Count = 0 transferred 

Linked Array address of the Linked linked array (unused) Chaining table Address = 0 

(4) Bus Exception Conditions 
The DMAC has three lines for inputting bus exception condi­

tions called BECo, BEC 1> and BEC2 • The priority encoder can 
be used to generate these signals externally. These lines are 
encoded as shown in Table 9. 

Table 9 

BEC2 BEC t BECo Exception Condition 

1 1 1 No exception condition 

1 1 0 Halt 

1 0 1 Bus error 

1 0 0 Retry 

0 1 1 Relinquish bus and retry 

0 1 0 (undefined, reserved) 

0 0 1 (undefined, reserved) 

0 0 0 Reset 

88 

In order to guarantee, reliable decoding, the DMAC verifies that 
the incoming code has been statable for twoDMACclock,cycles 
before acting on it. The DMAC picks up BECo-BEC 2 at the 
rising edge of the clock. If BECo-BEC2 is asserted to the un­
defined code, the operation of the DMAC does not proceed. 
For example, when the DMAC is waiting for DTACK, inputting 
DTACK does not result in the termination of the cycle if BECo-
BEC2 is asserted to the undefmed code. In addition, when the 
transfer request is received, BR is not asserted if the BECo-
BEC2 is not set to no exception condition. 

If exception condition, except for HALT, is inputted during 
the DMA bus cycle prior to, or in coincidence with DTACK, 
the DMAC terminates the current channel operation immediate­
ly. Here coincident means meeting the same set up require­
ments for the same sampling edge of the clock. If a bus excep­
tion condition exists, the DMAC does not generate any bus 
cycles until it is removed. However, the DMAC still recognizes 
requests. 

Halt 
The timing diagram of halt is shown in Figure 39. This 

diagram shows halt being generated during a read cycle from the 
68000 compatible device in the dual addressing mode. If the 
halt exception is asserted during a DMA bus cycle, the DMAC 
does not terminate the bus cycle immediately. The DMAC 
waits for the assertion of DTACK before terminating the 
bus cycle so that the bus cycle is completed normally. In 
the halted state, the DMAC puts all the control signals to high 
impedance and relinquishes the bus to the MPU. The DMAC 
does not output the BR until halt exception is negated. When 
halt exception is negated, the DMAC acquires the bus again and 
proceeds the DMA operation. In order to insure a halt excep­
tion operation, the BEC lines must be set to halt at least until 
the assertion of DTC. 

If the DMAC has the bus, but is not executing any bus 
cycle, the DMAC relinqUishes the bus as soon as halt exception 
is asserted. 



-------------------------------------------------------------------HD68450,HD68450Y 

Bus Error 

ClK 

AID BUS 

UAS 

AS 

UDS 

LOS 

R!W 
OWN 

iJIDR 

DEiEfiI 

HIBYTE 

---------------------------\L __ ~"------,--,n ~ \\IL\\ ___ m \a. 

__________________ _W~~~ ____________________ _ 

~~~ _______________ _w~ 

~~" ________ ~~w ~ __ _J

----------------------~~~~------------------

DTACK ~ __________ ~~ ~~~ ____ -wmr--

HALT
(BECo-BEC2)*

BGACK
BR

BG

ClK

'LlII'-,-----'"--~

\\\ Ilf ~~~ ____ IIIur_

\\\ un f(

------------------~~---------------------
'\~ ___ HJ

----------------~I'~~ _____________ m

67891011121314151617119221222324252627282930313233
Read Other Bus Master Write

from Device I Rear~rgation I to Memory

Halt Asserted ---~I'-DMA Halted .,If--- DMA cycle

• BEe. - BEC, = (011)

Figure 39 Halt Operation

The bus error exception is generated by external circuitry
to indicate the current transfer cannot be successfully com­
pleted and is to be aborted. The recognition of this exception
during a DMAC bus cycle signals the internal bus error con­
dition for the channel for which the curren t bus cycle is being
run. As soon as the DMAC recognizes the bus error exception,
the DMAC immediately terminates the bus cycle and proceeds
to the error recovery cycle. In this cycle, the DMAC adjusts the

values of the MAR, the DAR, the MTC and the BTC to the
values when the bus error exception occurred. 25 clocks are
required for the error recovery cycle in the single addressing
mode and in the read cycle of the dual addressing mode. 29
clocks are required in the write cycle of the dual addressing
mode. If the DMAC does not have any transfer request in the
other channels after the error recovery cycle, the DMAC relin·
quishes the bus.

The diagram of the bus error timing is shown in Figure 40.

89

HP68450,HD68450Y--

Retry

ClK

AID BUS

UAS

AS ~ _____________ , \\\

UDS -'II \\\ /U""---i'~

lOS -' \\\ /U I~

R!W

OWN

tllL~ _________ or-'"

DDIR ~

DBEN

'~
tw" ____________ ~or-"I '---

HIBYTE

DTACK ~

DTC
\m \m \ \\\ \\ \\\\\YII/

ACK

Bus Error
(BE'Co-BEC2)'

ClK

t ... ,, _______ r-ll

\\\

--+-- Berr on Write to Device I- Error • r- Other Channels'"
Recovery Cycle*·

• BEC.-BEC, = (101)
•• In the single addressing mode and in the read cycle of the dual addressing mode: 25 clocks

In the write cycle of the dual addressing mode: 29 clocks
••• The DMAC keeps the bus because the other channels have requests pending. If other channels

do not have requests, the DMAC relinquishes the bus after the error recovery cycle.

Figure 40 Bus Error Operation

The retry exception causes the DMAC to terminate the
present operation and retry that operation when retry is re-

moved, and thus will not honor any requests until it is removed.
However, the DMAC still recognizes requests. The retry timing
is shown in Figure 41.

90

--HD68450,HD68450Y

ClK.

AID BUS

~ '\SL-DI
m m 0/ ill

OAS ---m...JJ
AS J \\\

01'5S J
~ ~~~------~----------~----------~----~----

ill 0/ \\\ m
m iT] \n al

R/W \\\ m \\\ ",--

~ ~LO=W== DDIR High
OBEN --;;;;"---mm 01 \\\

HIBYTE

9 1 11 12131415161718192021 22232425262728293031

--!---- Write to Device Retry Asserted 1 Write Cycle Retry --1-1 ---
• 8EC,-BEC. = (001)

Figure 41 Retry Operation

Relinquish and Retry (R&R)
The relinquish and retry exception causes the DMAC to

relinquish the bus and three-state all bus master controls and
when the exception is removed, rearbitrate for the bus to retry

91

the previous operation_
The diagram of the relinquish and retry timing is shown in

Figure 42_

HD68450,HD68450Y--

ClK

AID BUS

UAS

AS

UDS

lOS

R!W --------------------~~~~--------------

OWN ------------------~~~-------------
DDIR -a ___________ ~~
DBEN ---" ~~

HIBYTE --------------------~~I

DTACK -.JJ \\\\\\\\\\\\\\\\\\\\\\1' " 1",,~\ ___ '---

DTC -------~~~I-_'r--~~

ACK _a __________ .IIIrf \\ ____ T'-.
R&R

(i:lECo- BEC2)' \\\ IUlUumllm
BGACK

BR m
BG I

ClK

----+- Read Retry -1-----
Rearbitration

* BECo·BEC, = (110)

Figure 42 Relinquish and Retry Operation

Reset
The reset provides a means of resetting and initializing the

DMAC If the DMAC is bus master when the reset is asserted,
the DMAC relinquishes the bus. Reset clears GeR, OCR, OCR,
SCR, CCR, CSR, CPR, and CER for all channels. The NIV and
the EIV are all set to (OF)16, which is the uninitialized interrupt
vector number for the HD68000 MPU. MTC, MAR, DAR, BTC,
BAR, MFC, DFC, and BFC are not affected. In order to insure a
reset, BECo - BEC2 must be kept at "Low" level for at least
ten clocks.
(5) Error Conditions

When an error is signaled on a channel, all activity on that
channel is stopped. The ACT bit of the CSR is cleared, and the
COC bit is set. The ERR bit of the CSR is set, and the error
code is indicated in the CER. All pending operations are cleared,
so that both the STR and CNT bits ofCCR are cleared.

Enumerated below are the error signals and their sources.
(a) Configuration Error - This error occurs if the STR bit is

set in the following cases.
(i) the CNT bit is set at the same time STR bit in the

chaining mode.
(ii) DTYP specifies a single addressing mode, and the

device port size is not the same as the operand size.

92

(iii) DTYP specifies a dual addressing mode. DPS is 16
bits, SIZE is 8 bits and REQG is "10" or "II" .

(iv) an undefined configuration is set in the registers.
The undefmed configurations are: XRM ~ 01, MAC
~ II, DAC ~ 11, CHAIN ~ 01, and SIZE ~ II.

(b) Operation Timing Error - An operation timing error
occurs in the following cases:
(i) when the CNT bit is set after the ACT bit has been

set by the DMAC in the chaining mode, or when
the STR and the ACT bits are not set.

(ii) the STR bit is set when ACT, COC, BTC, NDT or
ERR is set.

(iii) an attempt to write to the OCR, OCR, SCR, MAR,
DAR, MTC, MFC, or DFC is made when the STR
bit or the ACT bit is set.

(iv) an attempt to set the CNT bit is made when the
BTC and the ACT bits are set.

(c) Address Error - An address error occurs in the following
cases:
(i) an odd address is set for word or long word

operands.
(ii) CS or lACK is asserted during the DMA bus cycle.

(d) Bus Error - Bus error occurs when a bus error excep-

---HD68450,HD68450Y

tion is signaled during a DMA bus cycle.
(e) Count Error - A count error occurs in the following

cases:
(i) The STR bit is set when zero is set in the MTC

and the MTC and the chaining mode is not used.
(ii) the STR bit is set when zero is set in STC for the

array chaining mode.
(iii) zero is loaded from memory to the STC or the MTC

in the chaining modes or the continue mode.
(f) External Abort - External abort occurs if an abort is

asserted by the external circuitry when the PCL line is
configured as an abort input and the STR or the ACT
bit is set.

(g) Software abort - Software abort occurs if the SAS bit
is set when the STR or the ACT bit is set.

Error Recovery Procedures
If an error occurs during a DMA transfer, appropriate infor­

mation is available to the operating system (OS) to allow a
software failure recovery operation. The operating system must
be able to determine how much data was transferred, where the
data was transferred to, an what type of error occurred.

The information available to the operating system consists of
the present value of the Memory Address, Device Address and
Base Address Registers, the Memory Transfer and Base Transfer
Counters, the channel status register, the channel error register,

I ANYSTATE~
RESETTING ,I

,--jALL CHANNELS

NON
HLT. BER. RTY. RRT

and the channel control register. After the successful comple­
tion of any transfer, the memory and device address registers
points to the location of the next operand to be transferred and
the memory transfer counter contains the number of operands
yet to be transferred. If an error occurs during a transfer, that
transfer has not completed and the registers contain the values
they had before the transfer was attempted. If the channel
operation uses chaining, the Base Address Register points to the
next chain entry to be serviced, unless the termination occurred
while attempting to fetch an entry in the chain. In that case,
the Base Address Register points to the entry being fetched.
However, in the case of external abort, there are cases in which
the previous values are not recovered.

Bus Exception Operating Flow
The bus exception operating flow in the case of multiple

exception conditions occurring continuously in sequence is
shown in Figure 43. Note that the DMAC can receive and exe­
cute the next exception condition. For example, if the retry
exception occurs, and next the relinquish and retry exception
occurs while the DMAC is waiting for the retry condition to be
cleared, the DMAC relinquishes the bus and waits for the
exception condition to be cleared. If a bus error occurs during
this period, the DMAC executes the bus error exception
operation.

The flow diagram of the normal operation without exception
operation or errors is shown in Figure 44.

Y IDLE MODE I y IDLE MODE
()'fACl(& HLT (DTC)

NON WAITING FOR I
~

BER IDLE MODE BE"CCLEAR
~ WAITING FOR

1

BEC CLEAR ~T
TO RETRY

DMAC YIELDS BUS

- --------- 1-------- ----- -
DMAC OWNS BUS

REO "0' ~ "" eo, RRT. HLT RRT. HLT

1 DMA MODE DMA MODE DMA MODE
NO ACTIVE NON ~TlNGFOR: BER

WAITING FOR
BEC CLEAR CYCLE BEC CLEAR
TO RETRY

I BER. RTY I
BER NON

START
RTY

DMA MODE
NON

OTACK & NON
BUS CYCLE ACTIV

(OTC)

OTACK & HLT (OTC)

Figure 43 Bus Exception Flow Diagram

93

-- i--

RST
NON
HLT
BER
RTY
RRT
REO
REON
START
DTACK
DTC

: reset
: no exception
: halt
: bus error
: retry
: relinquish and retry

external request
no external request
bus cycle start
DTACK signal asserted
DTC signal asserted

HD68450,HD68450Y--

Bus Cycle Start

':Ieset All Channels

oMA Mode Bus

Cycle Active

Idle Mode
oMA Mode Waiting for

Bus Cycle to Start

No Transfer
r---------------~ r--------~

oMA Mode Waiting for

Bus Cycle to Start
Idle Mode

Figure 44 Flow of Normal Operation Without Exception
or Error Condition

• Channel Priorities
Each channel has a priority level, which is determined by the

contents of the Channel Priority Register (CPR). The priority
of a channel is a number from 0 to 3, with 0 being the highest
pri~rity level. When mUltiple requests are pending at the DMAC,
the channel with the highest priority receives first service. The
priority of a channel is independent of the device protocol or
the request mechanism for that channel. If there are several
requesting channels at the highest priority level, a round-robin
resolution is used, that is, as long as these channels continue to
have requests, the DMAC does operand transfers in rotation.

Resetting the DMAC puts the priority level of all channels
to "0", the highest priority level.

+5V9

D :> '"

74LS04
.....
.....

OWN UAS

16 16
As/Do-A23/D15

HD68450 +5V9
DMAC t-

! 8
~

DBEN
DDIR

~
L--......,

I

0

A

G
DIR

A

G
DIR

• APPLICATIONS INFORMATION

Examples of how to interface HD684S0 to a HD68000 based
system are shown in Figure 4S and Figure 46.

Figure 45 shows an example of how to demultiplex the
address/data bus. OWN and VAS are used to control 74LS373
for latching the address. DBEN and DDIR are used to control
the bi-directional buffer 74 LS245.

Figure 46 shows an example of inter-device connection in
the HMCS68000 system.

~
G OE

G OE

16
QQ ~ As - A23 (Address Bus)

74LS373

x2 -

74LS245 B~

(Data Bus)

74LS245 B~

Figure 45 An Example of the Demultiplexed Address Data Bus

94

---HD68450,HD68450Y

t""

~

~

~

" ID

~~
E
S
>.

U)

Do

FDC,
etc.

HOC,
etc.

c

~ 0
.~

" '" ~ " g E
E c
0 0
u u

D15

Data & Address

Bus Interface

-- ~

I~ I~ Ii Ii 18
0

0'-
o ~
'-«
:(1

t------- L.
REOO}

~
'--- ACKo Channel #0
~ PClo

L----o REO,}
'-----lACK, Channel #1

L-----~PCl, HD68450

1------1 REO, DMAC

1+-----lACK,} Channel #2
1-------IPCl,

Do- D15 r- r- r-

Al-A7k::==:::::j

::~
AS

L DSI------I
U DSI-------I

R/WI-------I
DTACK 1-------1

3

<= I---
I---
'--
~

~ == -
AS -- ~ --

-- I----
-- I---
-- I---
-- I---

I) Do -D15

~ A,-A23

MEM & MMU

r------ AS
1-----0 LDS
r--- UDS
~ R/W - DTACK

FCo-FC,I--f-----1ri -- ~ I--- ~ ~ FCo-FC,
I- ~ -- till--- ~ -L.E_R_R_O_R ____l

ID 0

,-----jACK3 Channel #3 lACK IJ-- 8 /"'";j! I--- 8 1-----'" Do- D15
RE03 } IRO n _ e ~ ~ I--- ~

c-J I r--- PTI3 _ _ E 'v-- E r- E 1------,V1_
e p rv;:r; BECo-BEC2 .e.s.el DS

~ nD:rT7"C'Tn:--]nn-="'lr~ I~A=' ~_-;:A-3....j.-I-I--I~ --~ £- R/W

~ .~- DONE I iG lsystem ~ -- I--- I--~-----I~ '" " I~ g « Interrupt '-- CS

0. 0 CPG ~~: g liII~rl~l "-~ ~ AS Dec. RS ~~~~~r.
3 ~ r- I IL.:~~:O~S===~

FCo-FC, -+-- Y-:'RES

1===~~Do-D7 ¢: r-Do~D15 I---
A, A23 ~

'--

~
AS -- I----HD68000

MPU
LDS -- 1----"
U5S --
R/W --

DTACK --
VPA --

VMA --
E --

3 -§:= --
Ene.

--T

-
The address bus and the system control bus in each device
are omitted in this Figure.

I----
I----
--
f--

--
--
--
--

Figure 46 An Example of I nter-device Connection in
the HMCS68000 System

95

-

~~~~ ~ 
6800 

I--+-+-+--IR/W Periphr. 

-
-
1-----l--lE 

I-------/IRO 



H068450,H068450Y---------------------------------------------------------------------

• ATTENTION ON USAGE 

(I) How to interface various 6800 type peripheral devices to 
the OMAC based system. 

OMAC latches the data when orr is asserted and not at the 
falling edge of E clock. The 74LS373 need to be provided ex­
ternally as shown in Figure 47 so that the data from the 6800 
device can be held on the bus for a large period of time until 
the OMAC can latch the correct data. When the OMAC is reading data from the 6800 device, the 

.. 
" !D 

l!l .. a 

8 
00 

'" 

E 
/'-------::0-0---::0:""7-----........ 00- 07 

6800 Type 

in=~-8 r-- cs Device 

:g8 f-RS 
~-------;::;r~<~o~~ L ______ ~ 

AS 

E 
/'------0-0---:0:-1-7------' ........ 00- 07 

6800 Type 

AS 

~+5V 
'----'-----+++1 AS 

Device 

~ PCl2 

L- +5~f ~ ~g: 
V ~-~~ 

I~ H068450 
OE G r--- OMAC 

~_----I1D 1 Q ~ 
00-D7 I I Do'--D}1.~ 0 0 -0, 

8D 8Q ---v .3 ~t 
74lS373 I "' As/Do g ~~ -A23/D15 
00-D15 8 + V 

~ DBEN 
As-A23 OOIR 

-
Figure 47 An Example of Connection with 6800 type Peripheral Devices 

(channel 2 and 3 are used) 

(2) When"external abort"is inputted during the DONE input cycle inputted at the timing described above. If PCT = I, ERR = 0, 
and NOT = I, then an external abort has occurred. When the transfer direction is from the peripheral device to 

memory and PCL signal is set to the external abort input mode 
in the dual addressing mode, the external abort will be ignored 
during the subsequent write cycle from the OMAC's internal 
holding register to memory ifJ"5ONE is inputted during the read 
cycle from the peripheral device to the OMAC's internal holding 
register. 

In this case, the channel status register (CSR) and the 
channel error register (CER) show the normal termination 
caused by DONE Input. The user is able to examine the PCT 
bit and the ERR bit in order to detect the external abort 

96 

(3) Multiple Errors 
The OMAC will log the first error encountered in the channel 

error resister. If an error is pending in the error register and 
another error is encountered the second error will not be logged. 
Even though the second error is not logged in the CER, it will 
still be recognized internally and the channel will not start. 
(4) The use of thick wiring is recommended between Vss of the 
H068450 and the ground of the circuit board. When a socket is 
used to install the OMAC on the board, please make sure that 
the contact of the Vss pins are made well. 



------------------------------------------------------------------HD68450,HD68450Y 

PRECAUTIONS: 

1. Extra Data Transfer In the Burst Mode 
In certain conditions when two or more channels are active 

and the REQ signal for the channel which is transferring in burst 
mode has negated, the transfer operation will terminate one data 
transfer later than specified in the data sheet. The condition on 
which this occurs is shown in Figure 2. Problems may occur in 
applications that need to control exact data transfer count using 
the REQ line in the burst mode. 

(Countermeasure) 
When switching the channel of operation using the burst 

request signals, negate the RE:Q signal within the period 
bounded by (3) and (4) in Figure 48. (DTC falling edge may be 
used for obtaining the timing for the negation of REQ.) 

Caution must be taken when this countermeasure is used since 
this external circuit will not be compatible with the next mask 
version which will have this anomaly fixed. 

NOTE I: If transfer request is asserted in channell, before (I) 
which is I clock before DTC assertion of channel 0, the next bus 
cycle should be the bus cycle for channell according to the data 
sheet. However, the current DMAC transfers one more data for 
channel 0 from 13th clock as shown above, before it changes to 
channel I. 

NOTE 2: If channel I has higher priority than channel 0, then 
NO extra data is transferred even if request for channel I is 
asserted before (2). In this case, data transfer for channell starts 
from the 13th clock as specified in the data sheet. 

"'The timing in which one extra data is transferred in the burst 
mode (the case for changing from channel 0 to channel I). 

I 2 3 4 5 

2. One Byte of Transfer Data Is Left In the DMAC 
When the DMAC is set to dual addressing mode, port size 8 

bits, external request mode, and data transfer from peripheral 
device to memory, the last byte of the transfer may be left inside 
the DMACs internal register without being transferred to 
memory if the transfer is stopped before the transfer count is 
exhausted. The last byte that is left inside the DMAC becomes 
inaccessible by the MPU. 

In this mode, the DMAC transfers data repeating the fol­
lowing bus cycles: 
(I) READ BYTE 

(Byte is read from the peripheral device to DMAC) 
(2) READ BYTE 

(Byte is read from the peripheral device to DMAC) 
(3) WRITE WORD 

(Word is written to memory from DMAC) 

If the transfer is terminated after (I) READ BYTE (see 
NOTE·), then the byte data that was ready by (I) READ BYTE 
bus cycle is not written to memory and is left inside the DMACs 
internal holding register. The 0 MACs internal holding register 
cannot be accessed by the MPU, so that it becomes "lost." 

This will not occur when single addressing mode is used. So, 
please use the single addressing mode when the transfer needs to 
be terminated before the transfer is exhausted. 

Note:"'The methods to terminate the transfer operation before 
the transfer counter becomes zero are (I) assert external 
abort using the PCL, (2) set the SAB bit to cause software 
abort. 

6 7 8 9 10 II 12 13 14 

BUS----------~r-------~--------~ 

CYCL~E~ __ #_O ____ ~~------~--------~ 

i5'fC __ ____ 

""fiE"O"O (Burst) __ L-. ___ --<-+ ______ ....J 

CD NOTE 2 CD NOTE I 

Figure 48. Extra Data Transfer In the Burst Mode" 

97 



98 



HD68000 [H068000-4, H068000-6, H068000-a H068D00-10, H068000-l2) 
HD68000lr [H068000Y4, H068000Y6, H068000ya H068000Yln H068000Y12) 

MPU (Micro Processing Unit) 

Advances in semiconductor technology have provided the 
capability to place on a single silicon chip a microprocessor at 
least an order of magnitude higher in performance and circuit 
complexity than has been previously available. The HD68000 
is one of such VLSI microprocessors. It combines rate-of-the-art 
technology and advanced circuit design techniques with cem­
puter sciences to achieve an architecturally advanced l6-bit 
microprocessot. 

The resources available to the HD68000 user consist of the 
following. 

As shown in the programming model, the HD68000 offers 
seventeen 32-bit registers in addition to the 32-bit program 
counter and a l6-bit status register. The first eight registers 
(00-D7) are used as data registers for byte (8-bit), word 
(i 6-bit), and long word (32-bit) data operations. The second set 
of seven registers (AO-A6) and the system stack pointer may be 
used as software stack pointers and base address registers. In 
addition, these registers may be used for word and long word 
address operations. All 17 registers may be used as index 
registers. 

• FEATURES 
• 32-Bit Data and Address Registers 
• 16 Megabyte Direct Addressing Range 
• 56 Powerful Instruction Types 
• Operations of Five Main Data Types 
• Memory Mapped I/O 
• 14 Addressing Modes 
• Compatible with MC68000L4, MC68000L6, MC68000L8, 

MC68000L 10 and MC68000L 12 

• PROGRAMMING MODEL 
31 1 15 87 o 

_ DO 

01 

- - 02 

- - 03 - -
_ _ 04 

_ _ 05 

~ _ 06 

Eight 
Data 
Registers 

L-____________ ~----~----~07 

~ "iii:" ~~ 
EL ______________ L... _____________ 3 .. ,~~ Regine" 

16 87 0 
I System Byte: Use, Byte I Status 

Register 

99 

- The specification for HD68000-10/-12 and HD68000 
Y4/Y6/Y8/Yl0/Y12 are preliminary. -

HD68000-4, HD68000-6. HD68000-8. 
HD68000-10, HD68000-12 

(DC·64) 

HD68000Y4, HD68000Y6. 
HD68000Y8, HD68000Yl0. 
HD68000Y12 

(PGA-68) 

"Y" stands for Pin Grid 
Array Package. 



HD68000,HD68000Y-----------------------------------------------------

• PACKAGE DIMENSIONS (Unit: mm) 
• DC-64 (Side-brazacl Ceramic DIP) 

," .. .---.......... r 
i 

32 'I-___ -f~33 I 

22.58 

06.4 • 0.3 

0.20-0.38 
- 22"- . 

• PIN ARRANGEMENT 

O. 

0, 

0, 
0, 
0, 

AS 
IJ15S 

Fe, 
FC, 

0, 

0, 

0, 

0, 
0 .. 

On 

°u 
°u 
0 .. 

°u 
v" 
A .. 

Vee 
A .. 

A .. 
Au 

Au 
A!,. 

A .. 
A .. 

Au 
Au 

An 
A .. 

Fe" A, 
AI A. 

AI A1 

A) A. 
A • ..... ________ J"" A, 

(Top View) 

• PGA-68 (Pin Grid Arrav) 

==.~Y-----r-------~~ 

Pin No. Function 
1 N/C 
2 OTACK 
3 8GACK 
4 iR 
5 CLK 
8 HALT 
7 liMA 
8 E 

9 8ERR 
10 N/C 
11 FC, 
12 FCo 
13 A. 
14 A, 
15 Ao 
18 Ao 
17 A, 

100 

(Bottom View) 

Pin No. Function PinNa. Function Pin No. Function 

18 A, 36 D, 52 A" 
19 N/C 36 AS 53 A" 
20 A,. :f1 LDS 54 All 
21 A,. 36 BG 65 Vee 
22 A" 39 Vee 58 Vss 
23 A" 40 Vss 67 Au 
24 A .. 41 RES 58 D,. 
25 All 42 VPA 59 Du 
26 An 43 IPL, 50 0, 
27 0" 44 IP4 61 D. 
28 0" 46 FC. B2 D, 
29 0 ,• 48 N/C 63 D. 
30 D. 47 A, 64 UDS 
31 0, 48 A. 65 RM 

32 D. 49 Ao 65 IPL. 
33 D. 50 A,. 67 A" 
34 D, .61 Au 68 0" 



-----------------------------------------------------------------HD68000,HD68000Y 

• ABSOLUTE MAXIMUM RATINGS 

Item Symbol Value Unit 

Supply Voltage Vee * -0.3 - +7.0 V 

Input Voltage V in * -0.3 -+7.0 V 

Operating Temperature Range Topr 0-+70 °c 

Storage Temperature Tstg -55 - +150 °c 

• With respect to Vss (SYSTEM GNDI 

(NOTE) Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions. 
If these conditions are exceeded. it cauld affect reliability of lSI. 

• RECOMMENDED OPERATING CONDITIONS 

Item Symbol min typ max 

Supply Voltage Vee * 4.75 5.0 5.25 

VIH * 2.0 - Vee 
Input Voltage 

VIL * -0.3 - O.B 

Operating Temperature Topr 0 25 70 

• With respect to Vss (SYSTEM GNDI 

• ELECTRICAL CHARACTERISTICS 

• DC CHARACTERISTICS (Vee = 5V ±5%, Vss = OV, Ta = 0 - +70°C, Fig. 1,2,3, unless otherwise noted.) 

Item 

Input "High" Voltage 

Input "low" Voltage 

BERR, BGACK, BR, DTACK, 

Input leakage Current IPlo-TiiI., VPA, ClK 

HALT, RES 

Three-State (Off State) AS, A, -A.3 , Do - D,s, 

Input Current FCo -FC., lOS, RIW, UDS, 
VMA 

AS,A,-A~G,~~ 
FCo-FC., lOS, R ,UDS, 

Output "High" Voltage VMA 
E* 

HALT 

Output "low" Voltage A, -An, BG, FC. -FC. 

RES 

AS, Do -015 , lOS, RIW, E, 
UDS, VMA 

Power Dissipation 

Capacitance (Package Type Dependent) 

* With external pull up register of 470 n 

+5V +5V 

910!l 2.9k!l 

~130PF 

I 70PF 

Figure 1 RES Test Load Figure 2 HALT Test Load 

Symbol 

VIH 
VIL 

lin 

ITSI 

VOH 

VOL 

Po 

Cln 

Test Condition 

@5.25V 

@2.4V/0.4V 

IOH = -4001lA 

IOL = 1.6mA 

IOL = 3.2mA 

IOL =5.3mA 

IOL =5.3mA 

f = BMHz 

Vln = OV, Ta = 25°C, 
f = 1 MHz 

Test 
POint 

min typ 

2.0 -
Vss-0.3 -

- -
- -

- -

2.4 -
Vee-O·75 -

- -
- -
- -
- -
- -

- 10.0 

CL = 130 pF (includes all Parasitics) 
RL =6.0 k!lfor AS,A,-~" im,~D", E, 

FC, -FC" LOS, R/W,~, VMA 
*R = 1.22 k!l for A, -A", iiG, E, Fe, -FC, 

Unit 

V 

V 

V 
°c 

max Unit 

Vee V 

O.B V 

2.5 
IlA 

20 

20 JJ.A 

-
V 

-
0.5 

0.5 V 
0.5 

0.5 

1.5 W 

20.0 pF 

+5 V 

lS2074<fj) 
or 

Equivalent 

Figure 3 Test Loads 
101 



HD68000,HD68000Y-----------------------------------------------------------------

• AC CHARACTERISTICS (VCC = 5.0V ±5%. Vss = OV. Ta = 0 - +70oC. unless otherwise noted.) 

4MHz 6MHt 8M Hz 10MHz 12.5MHz 
Version Version Version Vel'Sion Version 

Number Item Symbol Test HD680QO-4 HD6BOOO·6 H~~sg~:· HD68000·10· 1"1068000·12 " Unit Condition Ho68000V4" HD68000YS" HD68000Y10* H068000V12" 

min max min max min max min max min max 

Frequency of Operation f 2.0 4.0 2.0 6.0 2.0 B.O 2.0 10.0 2.0 12.5 MHz 

<D Clock Period toyc 250 500 167 500 125 500 100 500 BO 500 ns 

@ Clock Width "Low" tCL 115 250 75 250 55 250 45 250 35 250 ns 

@ Clock Width" High" tCH 115 250 75 250 55 250 45 250 35 250 ns 

@J Clock Fall Time tCf - 10 - 10 - 10 - 10 - 5 ns 

® Clock Rise Time tCr - 10 - 10 - 10 - 10 - 5 ns 

® Clock "Low" to Address tCLAV - 90 - 80 - 70 - 55 - 55 ns 

@ Clock "High" to FC Valid tCHFCV - 90 - 80 - 80 - 60 - 55 ns 

!J) 
Clock "High" to AddressIData High 

Impedan.ce (Maximum) 
tCHAZx - 120 - 100 - 80 - 70 - 60 ns 

® Clock "High" to AddressjFC Invalid (Minimum) tCHAZn 0 - 0 - 0 - 0 - 0 - ns 

@1 Clock "High" to AS. DS"Low"(Maximum) tCHSLx - 80 - 70 - 60 - 55 - 55 ns 

@) Clock "High" to AS, DS"Low "(Minimum) tCHSLn 0 - 0 - 0 - 0 - 0 - ns 

@' Address to AS, OS (Read) "Low" /AS Write tAVSL 55 - 35 - 30 - 20 - 0 - ns 

@' FC Valid to AS, OS (Read) "Low" /AS Write tFCVSL 80 - 70 - 60 - 50 - 40 - ns 

@1 Clock "Low" to AS, OS "High" tCLSH - 90 - 80 - 70 - 55 - 50 ns 

@' AS, OS "High" to Address/FC Invalid tSHAZ 60 -- 40 - 30 - .20 - 10 - ns 

@',s AS, OS Width "Low" (Read)jAS Write tSL 535 - 337 - 240 - 195 - 160 - ns 

@' DS Width "Low" (Write) - 285 - 170 - 115 - 95 - 80 - ns 

@' AS, OS Width "High" tSH 285 - 180 - 150 - 105 - 65 - ns 

® Clock "High" to AS, OS High Impedance tCHSZ - 120 - 100 - 80 - 70 - 60 ns 

@' AS, DS "High" to R/W "High" tSHRH 60 - 50 - 40 - 20 - 10 - ns 

®'. Clock "High" to RjW "High" (Maximum) tCHRHx - 90 - 80 - 70 - 60 - 60 ns 

® Clock "High" to RjW "High" (Minimum) tCHRHn 0 - 0 - 0 - 0 - 0 - ns 

@' Clock "High" to RjW "Low" tCHRL - 90 - 80 - 70 - 60 - 60 ns 

@' Address Valid to R/W "Low" tAVRL 
Fig.4 45 - 25 - 20 - 0 - 0 - ns -Fig. 7 

@, FC Valid to R/W "Low" tFCVRL 80 - 70 - 60 - 50 - 30 - ns 

@' R/W "Low" to DS "Low" (Write) tRLSL 200 - 140 -- 80 - 50 - 30 - ns 

@ Clock "Low" to Data Out Valid tCLDO - 90 - 80 - 70 - 55 - 55 ns 

@' DS "High" to Data Out Invalid tSHDO 60 - 40 - 30 - 20 - 15 - ns 

@' Data Out Valid to OS "Low" (Write) tDOSL 55 - 35 - 30 - 20 - 15 - ns 

@' Data In to Clock "Low" (Setup Time) tDICL 30 - 25 - 15 - 15 - 15 - ns 

@' AS. DS "High" to DTACK "High" tSHDAH 0 240 0 160 0 120 0 90 0 70 ns 

@ OS "High" to Data Invalid (Hold Time) tSHDI 0 - 0 - 0 - 0 - 0 - ns 

@ AS. DS "High" to BERR "High" tSHBEH 0 - 0 - 0 - 0 - 0 - ns 
<ij)1,6 DTACK "Low" to Data In (Setup Time) tDALDI - lBO - 120 - 90 - 65 - 50 ns 

@ HALT and RES Input Transition Time tRHrf 0 200 0 200 0 200 0 200 0 200 . ns 

@ Clock "High" to BG "Low" tCHGL - 90 - BO - 70 - 60 - 50 ns 

@ Clock "High" to BG "High" tCHGH - 90 - BO - 70 - 60 - 50 n. 

@ BR "Low" to BG "Low" tBRLGL 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk.Per. 

@ BR "High" to BG "High" tBRHGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk.Per. 

@ BGACK "Low" to BG "High" tGALGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk.Per. 

@ 
BG "Low" to Bus High Impedance 

120 100 80 70 60 
(With AS "High") 

tGLZ - - - - - ns 

@ BG Width "High" tGH 1.5 - 1.5 - 1.5 - 1.5 -- 1.5 - Clk.Per. 

@ BGACK Width "Low" tBGL 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - Clk.Per. 

@' Asynchronous Input Setup Time tASI 30 - 25 - 20 - 20 - 20 - ns 

@ BERR "Low" to DTACK "Low" (Note 3) tBELDAL 50 - 50 - 50 - 50 - 50 - ns 

@ Data Hold from Clock "High" tCHDO 0 - 0 - 0 - 0 - 0 - ns 

@ R/W to Oata Bus Impedance Change tRLDO 55 - 35 - 30 - 20 - 10 - ns 

@ HALT JRES Pulse Width (Note 4) tHRPW 10 - 10 - 10 - 10 - 10 - Clk.Per. 

* Preliminary (to be continued) 

102 



-----------------------------------------------------------------HD68000,HD68000Y 

OMH. 
Version ,,:'r:n V~'r.ra~ V=rc;~ tt.~sio~Z 

N umber Item Symbol Test H068OOO-4 HD68Q00.6 H068OOO-8 H068OO().10· HDBBOOO·12 • 
Unit Condition HD68000Y4- HD68000YS- HD6BOOOYS- H068000Y10· HD68000Vt2-

min max min max min max min max min max 

18 Clock "High" to R/W. VMA High Impedance tCHRZ - 120 - 100 - 80 - 70 - 60 ns 

@ Clock "Low" to VMA "Low" tCLVML - 90 - 80 - 70 - 70 70 ns 

@ Clock "Low" to E Transition tCLE - 100 - 85 - 70 - 55 - 45 ns 

@I E Output Rise and Fall Time tEr! - 25 - 25 - 25 - 25 - 25 ns 

~ VMA "Low" to E "High" tvMLEH 325 - 240 - 200 - 150 - 90 - ns 

@ AS, OS "High" to VPA "High" tSHVPH Fig. 45, 0 240 0 160 0 120 0 90 0 70 ns 

@ E "Low" to Addrass/VMA/FC Invalid tELAI Fig. 46 55 - 35 - 30 - 10 - 10 - ns 

@ E "Low" to AS, ~ Invalid tELSI -80 - -80 - -80 - -80 - -80 - ns 

8 E Width "High" tEH 900 - 600 - 450 - 350 - 280 - ns 

@ E Width "Low" tEL 1400 - 900 - 700 - 550 - 440 - n. 

I@ E Extended Rise Time tclEHX 80 - 80 - 80 - 80 - 80 - ns 

9 Data Hold from E "Low" IWrite) tELOOZ 60 - 40 - 30 - 20 - 15 - ns 

• Preliminary 

INOTES) 1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the values given in these columns. 
2. Actual value depends on clock period. __ 
3. If #47 is satisfied for both OTACK and BERR, #48 may be 0 ns. 
4. After V CC has been applied for 100 ms. 
5. For the mask version 68000 #14 and #14A are one clock period less than the given number. 
6. If the asynchronous setup time 1#47) requirements are satisfied, the OTACK low-toodate setup time 1#31) requirement can be ignored. 

The data must only satisfy the data~n to clock·low setup time 1#27) for the following cycle. 

~----------------tcvc------------~~ 

ter 

Figure 4 Input Clock Waveform 

103 



HD68000,HD68000Y-------------------------------

-CD-
3_ @ I-- ®SO S1 S2 S3 S4 S5 sa S7 

ClK 

AI -Au 

,........., 

~ 
~ 
~ ~ ~ '®-~ 1-0-. 

~ 

AS 
- i-@ - I-® 

-"' r-@ 
""" 114 r-® 
~ 

@ ..... --:! .-@ 
~ I.-QD:'" 

lDS/UDS J 

RtW 

H!"~ 

~~~ I-t-
II

FC. -FC, }[

~-i-e>-
-@

Asvnchronous
Inputs)i

(Note 1)

~-
HAlT/m ~

---~ 11 - ~
®

BERR/BR
(Note 2) -@- """ , '<Y

DTACK

@ ..:::: ~ ~

@ - ..",

l
--®- :---@-

Data In -----------------~ ~

(NOTES) 1. Setup time for tha asynchronous inputs BGACK, IPLo - IPLo and VilA guarantees thair recognition at tha naxt falling edge of the clock.
2. BR need fall at this time onlv in order to insure being recognized at the end of this bus cycla.
3. Timing maasurements are refarenced to and from a low voltage of O.B volts and a high voltaga of 2.0 volts, unless otherwise noted.

Figure 5 Read Cycle Timing

104

---HD68000,HD68000Y

elK

RtW

Data Out

Fe. -Fe.

Asynchronous
Inputs

--::::

-
J ~

J'-

CD-

~

50 51 52 53 54

~ ~
,....---...

~
~ '------'

f-®
~ - ~1

f-® ~ -®

f-@ ...
®

@-. ~

--- 4-

- ... ®>
~®- """ =

~
-. i-@

--@- r.;.,
='

I.

- ~
~

@
>-

~ -
®---- f-® I-

= "'"
I--@-

\.
--to

\

@

55 56 57 so

V\-I ~

" /

- --@
"" 'U'

f-®
@)

..

!- ---®

r-- @

@

f4-®-

I

I--@ .. "'"
='

~

I

(NOTE) Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts. unless otherwise noted.

Figure 6 Write Cycle Timing

105

HD68000,HD68000Y--

Strobes
and RIW ---------'

14---@--+I

~----~,®------~
BGACK---t--------------------\~~----+__,@,----~--~r---------------------r--

BG ---------~

ClK

(NOTES) 1. Setup time for the asynchronous inputs BERR, BGACK, BR, DTACK, IPL. -IPl., and VPA guarantees their recognition at the
next falling edge of the clock. .

2. Waveform measurements for all inputs and outputs are specified at: logic high = 2.0 volts, logic low = O.B volts .
. 3. These waveforms should only be referenced in regard to the edge·to-edge measurement of the timing specifications. They are

not intended as a functional description of the input an output signals. Refer to other functional descriptions and their related
diagrams for device operation.

Figure 7 AC Electrical Waveforms - Bus Arbitration

• SIGNAL DESCRIPTION
The following paragraphs contain a brief description of the

input and output signals. A discussion of bus operation during
the various machine cycles and operations is also given.

• SIGNAL DESCRIPTION
The input and output signals can be functionally organized

into the groups shown in Figure 8. The following paragraphs
provide a brief description of the signals and also a reference
(if applicable) to other paragraphs that contain more detail
about the function being performed.

Vcc(2)
2 A,-A"

ClK

0.-0"

FC. Asynchronous

Processor { HD6BOOO Bus
Status FC Control

HMCS6BOO{
E BR

~
Bus

1m Peripheral
'iiJ5A

Arbitration
Control Control

System {
R IPl.

ES IPL } Interrupt
Control IPL Control

Figure 8 Input and Output Signals

ADDRESS BUS (AI through A23)
This 23-bit, unidirectional, three-state bus is capable of

addressing 8 megawords of data. It provides the address for bus
operation during all cycles except interrupt cycles. During
interrupt cycles, address lines AI, A2, and A3 Provide infor­
mation about what level interrupt is being serviced while address
lines A4 through A23 are all set to a logic high.

DATA BUS (Do through DIS)
This 16-bit, bidirectional, three-state bus is the general

purpose data path. It can transfer and accept data in either
word or byte length. During an interrupt acknowledge cycle,
an external device supplies the vector number on data lines
Do -07 •

ASYNCHRONOUS BUS CONTROL
Asynchronous data transfer' are handled using the following

control signals: address strobe, read/write, upper and lower
data strobes, and data transfer acknowledge. These signals
are explained in the following paragraphs.

Address Strobe (AS)
This signal indicates that there is· a valid address on the

address bus.

Read/Write (R/W)
This signal defines the data bus transfer as a read or write

cycle. The R/W signal also works in conjunction with the upper
and lower data strobes as explained in the following paragraph.

106

--
---H068000,H068000Y

Upper and Lower Data Strobes (UDS, LOS)
These signals control the data on the data bus, as shown

in Table I. When the R/W line is high, the processor will read
from the data bus as indicated. When the R/W line is low, the
processor will write to the data bus as shown.

Table 1 Data Strobe Control of Data Bus

UOS LOS R/W 0 8 - DIS 0 0 -07

High High - No valid data No valid data

Low Low High Valid data bits Valid data bits
8-15 0-7

High Low High No valid data Valid data bits
0-7

Low High High Valid data bits No valid data B -15

Low Low Low Valid data bits Valid data bits
B-15 0-7

High Low Low Valid data bits Valid data bits
0-7* 0-7

Low High Low Valid data bits Valid data bits
8-15 8 -15*

• These conditions are a result of current implementation and may not
appear on future devices.

Data Transfer Acknowledge (DTACK)
This input indicates that the data transfer is completed.

When the processor recognizes DTACK during a read cycle,
data is latched and the bus cycle terminated. When DTACK
is recognized during a write cycle, the bus cycle is terminated.

An active transition of data transfer acknowledge, DTACK,
indicates the termination of a data transfer on the bus.

If the system must run at a maximum rate determined by
RAM access times, the rel!ltionship between the times at which
DTACK and DATA are sampled are important.

All control and data lines are sampled during the H068oo0's
clock high time. The clock is internally buffered, which results
in some slight differences in the sampling and recognition of
various signals. 8068000 allow BERR or ~ to be recog­
nized in S4, S6, etc., which terminates the cycle·. The DTACK
signal, like other control signals, is internally synchronized to
allow for valid operation in an asynchronous system. If the
required setup time (#47) is met during S4, 0'l'ACi{ will be
recognized during S5 and S6, and data will be captured during
S6. The data must meet the required setup time (#27).

If an asynchronous control Signal does not meet the required
setup time, it is possible that it may not be recognized during
that cycle. Because of this, asynchronous systems must not
allow DTACK to precede data by) more than parameter #31.

Asserting DTACK (or BERR on the rising edge of a clock
(such as S4) after the assertion of address strobe will allow
a HD68000 system to run at its maximum bus rate. If setup
times #27 and #47 are guaranteed, #31 may be ingnored.
• The mask version 68000 allowed DTACK to be recognized as early

as S2 (bus state 2).

BUS ARBITRATION CONTROL
These three signals form a bus arbitration circuit to deter­

mine which device will be the bus master device.

Bus Request (BR)
This input is wire ORed with all other devices that could

be bus masters. This input indicates to the processor that
some other device desires to become the bus master.

Bus Grant (BG)
This output indicates to all other potential bus master

devices that the processor will release bus control at the end
of the current bus cycle.

Bus Grant Acknowledge (BGACKI
This input indicates that some other device has become the

bus master. This signal cannot be asserted until the following
four conditions are met:

(1) A Bus Grant has been received
(2) Address Strobe is inactive which indicates that the

microprocessor is not using the bus
(3) Data Transfer Acknowledge is inactive which indicates

that neither memory nor peripherals are using the bus
(4) Bus Grant Acknowledge is inactive which indicates that

no other device is still claiming bus mastership.

INTERRUPT CONTROL ffii[o, IPLI • IPL2)

These input pins indicate the encoded priority level of the
device requesting an interrupt. Level seven is the highest priority
while level zero indicates that no interrupts are requested.
The least significant bit is given in IPLo and the most significant
bit is contained in IPL2 •

SYSTEM CONTROL
The system control inputs are used to either reset or halt

the processor and to indicate to the processor that bus errors
have occurred. The three system control inputs are explained
in the following paragraphs.

Bus Error (BERR)
This input informs the processor that there is a problem

with the cycle currently being executed. Problems may be a
result of:

(1) Nonresponding devices
(2) Interrupt vector number acquisition failure
(3) Illegal access request as determined by a memory man­

agement unit
(4) Other application dependent errors.
The bus error signal interacts with the halt signal to deter­

mine if exception processing should be performed or the current
bus cycle should be retried. I

Refer to BUS ERROR AND HALT OPERATION paragraph
for additional information about the interaction of the bus
error and halt signals.

Reset (RES)
This bidirectional signal line acts to reset (initiate a system

initialization sequence) the processor in response to an external
reset signal. An internally generated reset (result of a RESET
instruction) causes all external devices to be reset and the
internal state of the processor is not affected. A total system
reset (processor and external devices) is the result of external
HALT and RESET signals applied at the same time. Refer to
RESET OPERATION paragraph for additional information
about reset operation.

Halt (HALT)
When this bidirectional line is driven by an external device,

107

HD68000,HD68000Y---

it will cause the processor to stop at the completion of the
current bus cycle. When the processor has been halted using
this input, all control signals are inactive and all three~tate lines
are put in their high-impedance state. Refer to BUS ERROR
AND HALT OPERATION paragraph for additional information
about the interaction between the halt and bus error signals.

When the processor has stopped executing instructions, such
as in a double bus fault condition, the halt line is driven by the
processor to indicate to external devices that the processor has
stopped.

HMCS6800 PERIPHERAL CONTROL
These control signals are used to allow the interfacing of

synchronous HMCS6800 peripheral devices with the asynchro­
nous HD68000. These signals are explained in the following
paragraphs.

Enable (E)
This signal is the standard enable signal common to all

HMCS6800 type peripheral devices. The period for this out­
put is ten HD68000 clock periods (six clocks low; four clocks
high).

Valid Peripheral Address (VPA)
This input indicates that the device or region addressed is

a HMCS6800 family device and that data transfer should. be
synchronized with the enable (E) signal. This input also indi­
cates that the processor should use automatic vectoring for an
interrupt. Refer to INTERFACE WITH HMCS6800 PERIPHER­
ALS.

Valid Memory Address (VMA)
This output is used to indicate to HMCS6800 peripheral

devices that there is a valid address on the address bus and the
processor is synchronized to enable. This signal only responds
to a valid peripheral address (vp A) input which indicates that
the peripheral is a HMCS6800 family device.

PROCESSOR STATUS (FCo• FC!. FC2)

These function code outputs indicate the state (user or
supervisor) and the cycle type currently being executed, as
shown in Table 2. The information indicated.,Ey the function
code outputs is valid whenever address strobe (AS) is active.

Table 2 Function Code Outputs

FC2 FC! FCo Cycle Type

Low Low Low (Undefined, Reserved)

Low Low High User Data

Low High Low User·Program

Low High High (Undefined. Reserved)
High Low. Low (Undefined, Reserved)
High Low High Superviser Data

High High Low Supervisor Program
High High High Interrupt Acknowledge

CLOCK (CLK)
The clock input is a TTL-compatible signal that is internally

buffered for development of the internal clocks needed by the
processor. The clock input sha1l be a constant frequency.

SIGNAL SUMMARY
Table 3 is a summary of all the signals discussed in the

previous paragraphs.

Table 3 Signal Summary

Signal Name Mnemonic Input/Output Active State Three State
Address Bus AI -A23 output high yes

Data Bus Do - 015 input/output high yes

Address Strobe AS output low yes

ReadlWrite RiW output read-high yes write-low
Upper and lower Data Strobes UDS, TI5S output low yes

Data Transfer .i\cknowledge DTACK input low no
Bus Request BR input low no
Bus Grant BG output low no

Bus Grant Acknowledge BGACK input low no
Interrupt Priority level IPlo, WL" IPl, input low no
Bus Error BERR input low no
Reset RES input/output low no'

Halt HALT input/output low no'

Enable E output high no
Valid Memory Address VMA output low yes
Valid Peripheral Address VPA input low no

Function Code Output FCo,FCI ,FC2 output high yes

Clock ClK input hjgh no

Power Input Vcc input - -
Ground Vss input - -

* Open drain

108

--
--HD68000.HD68000Y

• REGISTER DESCRIPTION AND DATA ORGANIZATION
The following paragraphs describe the registers and data

organization of the HD68000.

• OPERAND SIZE
Operand sizes are defmed as follows: a byte equals 8 bits,

a word equals 16 bits, and a long word equals 32 bits. The
operand size for each instruction is either explicitly encoded
in the instruction or implicitly defmed by the instruction
operation. All explicit instructions support byte, word or long
word operands. Implicit instructions support some subset of
all three sizes.

• DATA ORGANIZATION IN REGISTERS
The eight data registers support data operands of 1, 8, 16,

or 32 bits. The seven address registers together with the active
stack pointer support address operands of 32 bits.

DATA REGISTERS
Each data register is 32 bits wide. Byte operands occupy

the low order 8 bits, word operands the low order 16 bits, and
long word operands the entire 32 bits. The least significant bit
is addressed as bit zero; the most significant bit is addressed
as bit 31.

When a data register is used as either a source or destination
operand, only the appropriate low-orderportion is changed;
the remaining high-order portion is neither used nor changed.

ADDRESS REGISTERS
Each address register and the stack pointer is 32 bits wide

and holds a full 32 bit address. Address registers do not support
byte sized operands. Therefore, when an address register is used
as a source operand, either the low order word or the entire
long word operand is used depending upon the operation size.
When an -address register is used as the destination operand, the
entire register is affected regardless of the operation size. If the
operation size is word, any other operands are sign extended
to 32 bits before the operation is performed.

• STATUS REGISTER
The status register contains the interrupt mask (eitht levels

available) as well as the condition codes; extend (X), negative
(N), zero (Z), overflow (V), and carry (C). Additional status
bits indicate that the processor is in a trace (T) mode and/or
in a supervisor (S) state.

Status Register

Interrupt
Mask

Unused. read as zero.

Overflow

Carry

• DATA ORGANIZATION IN MEMORY
Bytes are individually addressable with the high order byte

having an even address the same as the word, as shown in
Figure 9. The low order byte has an odd address that is one
count higher than the word address. Instructions and multibyte
data are accessed only on word (even byte) boundaries. If a
long word datum is located at address n (n even), then the
second word of that datum is located at address n + 2.

The data types supported by the HD68000 are: bit data,
integer data of 8, 16, or 32 bits, 32-bit addresses and binary
coded decimal data. Each of these data types is put in memory ,
as shown in Figure 10.

• BUS OPERATION
The following paragraphs explain control signal and bus

operation during data transfer operations, bus arbitration, bus
error and halt conditions, and reset operation.

• DATA TRANSFER OPERATIONS
Transfer of data between devices involve the following leads:
(I) Address Bus Al through A23
(2) Data Bus Do through 015
(3) Control Signals
The address and data buses are separate parallel buses used

to transfer data using an asynchronous bus structure. In all
cycles, the bus master assumes responsibility for deskewing
all signals it issues at both the start and end of a cycle. In
addition, the bus master is responsible for deskewing the ac­
knowledge and data signals from the slave device.

The following paragraphs explain the read, write, and read­
modify-write cycles. The indivisible read-modify-write cycle
is the method used by the HD68000 for interlocked multi­
processor communications.

(NOTE) The terms _rtion and negation will be used extensively.
This Is done to avoid confusion when dealing with a mixture
of "active-low" and "active-high" signals. :Ibe term assert or
assertion Is used to indicate that a signal Is active or true in­
dependent of whether that voltage Is low or high. The term
negate or negation is used to indicate that a signal is inactive or
false.

Read Cvcle
During a read cycle, the processor receives data from memo­

ry or a peripheral device. The processor reads bytes of data
in all cases. If the instruction specifies a word (or double word)
operation, the processor reads both bytes. When the instruction
specifies byte operation, the processor uses an internal Ao bit to
determine which byte to read and then issues the data strobe
required for that byte. For bytes operations, when the Ao bit
equals zero, the upper data strobe is issued. When the Ao bit
equals one, the lower data strobe is issued. When the data is
received, the processor correctly positions it internally.

A word read cycle flow chart is given in Figure 11. A byte
read cycle flow chart is given in Figure 12. Read cycle timing is
given in Figure 13. Figure 14 details word and byte read cycle
operations. Refer to these illustrations during the following
detailed.

109

HD68000,HD68000Y---

At state zero (SO) in the read cycle, the address bus (AI
through A23) is in the high impedance state. A function code
is asserted on the function code output line (FCo through FC2).

The read/write (R/W) signal is switched high to indicate a read
cycle. One half clock cycle later, at state 1, the address bus is
released from the high impedance state. The function code
outputs indicate which address space that this cycle will operate
on.

In state 2, the address strobe (AS) is asserted to indicate that
there is a valid address on the address bus and the upper and
lower data strobe (UDS, LDS) is asserted as required. The mem­
ory or peripheral device uses the address bus and the address
strobe to determine if it has been selected. The selected device
uses the read/write signal and the data strobe to place its infor­
mation on the data bus. Concurrent with placing data on the
data bus, the selected device asserts data transfer acknowledge
(DTACK).

Data transfer acknowledge must be present at the processor
at the start of state S or the processor will substitute wait states
for states Sand 6. State 5 starts the synchronization of the

returning data transfer acknowledge. At the end of state 6
(beginning of state 7) incoming data is latched into an internal
data bus holding register.

During state 7, address strobe and the upper and/or lower
data strobes are negated. The address bus is held valid through
state 7 to allow for static memory operation and signal skew.
The read/write signal and the function code outputs also remain
valid through state 7 to ensure a correct transfer operation. The
slave device keeps its data asserted until it detects the negation
of either the address strobe or the upper and/or.1ower data
strobe. The.slave device must remove its data and data transfer
acknowledge within one clock period of recognizing the nega­
tion of the address or data strobes. Note that the data bus might
not become free and data transfer acknowledge might not be
removed until state 0 or 1.

When address strobe· is negated, the slave device is released.
Note that a slave device must remain selected as long as address
strobe is asserted to ensure the correct functioning of the read­
modify-write cycle.

110

- -
HD68000,HD68000Y

15 14 13 12 11 10 9 S 7 6 5 4 3 2 0

Syte 000000
WOrd.OOooOO

SyteOOOOOl

Byte 000002
Word,OOOO02

Byte 000003

<'
Byte FFFFFE

WOrdtFFFFE
Byte FFFFFF

Figure 9 Word Organization in Memory

Bit Data
1 Byte ~ S Bits

7 6 5 4 3 2 0

I nteger Data
1 Byte ~ S Bits

15 14 13 12 11 10 9 S 7 6 5 4 3 2 0

n IMSB
SyteO

LSBI
Byte 1

I

n+l

Syte2 Byte 3 n+3 n+2

1 Word = 16 Bits

15 14 13 12 11 10 9 S 7 6 5 4 3 2 0

::I~'
Word 0

~'I
n+l

Word 1 n+3

Word 2 n+5

1 Long Word = 32 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

n MSS High Order n+l
1--- Long Word 0 ---------- -------:....------ - - ---

n+2 Low Order LSB n+3

n+4 n+5
---Long Word 1--------------- - -- ----- ------

n+6 n+7

n+S n+9
-- -Long Word 2-- ------- --- - ---------- ------

n+l0 n+11

Addresses
1 Address = 32 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

n MSB High Order n+l

n+2

n+4

n+6

n+8

n+l0

n

n+2

- - Address 0 --
low Order LSB n+3

- - Address 1-------- - ----- -----------------

__ .Address2. __________________________ - ---

MSB = Most Significant Bit
LSB = Least Significant Bit

Decimal Data
2 Binary Coded Decimal Digits = 1 Byte

15 14 13 12 11
MSD BCDO

BCD4

.. MSD = Most S,gnificant DIgIt
LSD = Least Significant Digit

10 9 'S 7 6 5

BCDI LSD BCD2

BCD5 SCD6

4

Figure 10 Data Organization in Memory
111

3 2 1 0

BCD3

BCD7

n+5

n+7

n+9

n+l1

n+l

n+3

HD68000,HD68000Y-------------------------------

BUS MASTER SLAVE

Address Device
1) Set R!W to Reed
2) Place Function Code on FC. - FC.
3) Place Address on AI - An
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (iJi5S) or Lower

Data Strobe (lOS)

I

Acquire Data
1) Latch Data
2) Negate ~ and IDS
3) Negate~

r
Start Next Cycle

Input Data
1) Decode Address
21 Place Data on D. - DIS
3) Assert Data Transfer Acknowledge

(DTACKI

~
Terminate Cycle

11 Remove Data from D. - DIS
2) Negate DTACK

Figure 11 Word Read Cycle Flow Chart

BUS MASTER

Address Device
11 Set R/Wto Read
2) Place Function Code on FC. - FC2

3) Place Address on AI - A ..
4) Assert Addre •• Strobe (AS)

SLAVE

5) Assert Upper Data Strobe (iJDS) and Low­
er Data Strobe (lOS) (besed on A.)

1) latch Data

I

Input Data
1) Decode Address
2) Place Data on D. - 0, or D. - DIS (based

on UDS or lOS)
3) Assert Data Transfer Acknowledge

(i5fACi()

l
Acquire Data

2) Negate ~ or IDS
3) Negate AS

1
Terminate Cycle

1) Remove Data from D. - 0, or D. - DIS
2) Negate DTACK

r
Start Next Cycle

Figure 12 Byte Read Cycle Flow Chart

so S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 w w w w S5 S6 S7

ClK

ASI \ ~~~----~~~------~~~------------~~
~------------~~

UDS / \ ~ ______ -JI
LOS / \ I

Figure 13 Read and Write Cycle Timing Diagram

112

---HD68000,HD68000Y

ClK

A I A t3 H H >-
A.' I

AS ;---\ I \ I \ r-
UDS I \ I \ r-
lOS I \ I \ I
R/W

DTACK J \ ;---\ I \ I
0 8 -DIS :J < > < r-
D. -0, => () (>

FC. -FC, ::::x X X x::=
• Internal Signal Only

f- -- -- Word Read - - +--- -Odd Byte Read- - + -- Even Byte Read ---1

Figure 14 Word and Byte Read Cycle Timing Diagram

Write Cycle
During a write cycle, the processor sends data to memory

or a peripheral device_ The processor writes bytes of data in
all cases_ If the instruction specifies a word operation, the pro­
cessor writes both bytes. When the instruction specifies a byte
operation, the processor uses an internal Ao bit to determine
which byte to write and then issues the data strobe required
for that byte. For byte operations, when the Ao bit equals zero,
the upper data strobe is issued. When the Ao bit equals one,
the lower data strobe is issued. A word write cycle flow chart is
given in Figure 15. A byte write cycle flow chart is given in
Figure 16. Write cycle timing is given in Figure 13. Figure 17
details word and byte write cycle operation. Refer to these
illustrations during the following detailed discussion.

At state zero (SO) in the write cycle, the address bus (AI
through A23) is in the high impedance state. A function code is
asserted on the function code output line (FCo through FC2).

(NOTE) The read/write (R/W) signal remains high until state 2 to pre­
vent bus conflicts with preceding read cycles. The data bus is
not driven until state 3.

One half clock later, at state 1, the address bus is released
from the high impedance state. The function code outputs
indicate which address space that this cycle will operate on.

In state 2, the address strobe (AS) is asserted to indicate
that there is a valid address on the address bus. The memory
or peripheral device uses the address bus and the address strobe
to determine if it has been selected. During state 2, the read/
write signal is switched low to indicate a write cycle. When
external processor data bus buffers are required, the read/write
line provides sufficient directional control. Data is not asserted
during this state to allow sufficient turn around time for ex­
ternal data buffers (if used). Data is asserted onto the data bus
during state 3.

In state 4, the data strobes are asserted as required to indi­
cate that the data bus is stable. The selected device uses the

read/write signal and the data strobes to take its information
from the data bus. The selected device asserts data transfer
acknowledge (DTACK) when it has successfully stored the data.

Data transfer acknowledge must be present at the processor
at the start of state 5 or the processor will substitute wait states
for states 5 and 6. State 5 starts the synchronization of the
returning data transfer acknowledge.

During state 7, address strobe and the upper and/or lower
data strobes are negated. The address and data buses are held
valid through state 7 to allow for static memory operation and
signal skew. The read/write signal and the function code outputs
also remain valid through state 7 to ensure a correct transfer
operation. The slave device keeps its data transfer acknowledge
asserted until it detects the negation of either the address strobe
or the upper and/or lower data strobe. The slave device must
remove its data transfer acknowledge within one clock period
after recognizing the negation of the address or data strobes.
Note that the processor releases the data bus at the end of state
7 but that data transfer acknowledge might not be removed
until state 0 or I. When address strobe is negated, the slave
device is released.

Read-Modify-Write Cycle
The read-modify-write cycle performs a read, modifies the

data in the arithmetic-logic unit, and writes the data back to the
same address. In the HD68000 this cycle is indivisible in that
the address strobe is asserted throughout the entire cycle. The
test and set (TAS) instruction uses this cycle to provide mean­
ingful communication between processors in a multiple pro­
cessor environment. This instruction is the only instruction that
uses the read-modify-write cycle and since the test and set in­
struction only operates on bytes, all read-modify-write cycles
are byte operations. A read-modify-write cycle flow chart is
given in Figure 18 and a timing diagram is given in Figure 19.
Refer to these illustrations during the following detailed discus-

113

HD68000.HD68000Y--~~--------------

sions.
At state zero (SO) in the read-modify-write cycle, the address

bus (AI through Al3) is in the high impedance state. A function
code is asserted on the function code output line (FCo through
FCl). The read/write (R/'ii) signal is switched high to indicate
a read cycle. One half clock cycle later, at state 1, the address
bus is released from the high impedance state. The function
code outputs indicate which address space that this cycle will
operate on.

In state 2, the address strobe (AS) is asserted to indicate that
there is a valid address on the address bus and the upper or
lower data strobe (UDS, LOS) is asserted as required. The mem­
ory or peripheral device uses the address bus and the address
strobe to determine if it has been selected. The selected device
uses the read/write signal and the data strobe to place its infor·
mation on the data bus. Concurrent with placing data on the
data bus, the selected device asserts data transfer acknowledge
(DTACK).

Data transfer acknowledge must be present at the processor
at the start of state 5 or the processor will substitute wait stat!ls
for states 5 and 6. State 5 starts the synchronization of the
returning data transfer acknowledge. At the end of state 6
(beginning of state 7) incoming data is latched into an internal
data bus holding register.

During state 7, the upper or lower data strobe is negated.
The address bus, address strobe, read/write signal, and function
code outputs remain as they were in preparation for the write'
portion of the cycle. The slave device keeps its data asserted
until it detects the negation of the upper or lower data strobe.
The slave device must remove its data and data transfer ac­
knowledge within one clock period of recognizing the negation
of the data strobes. Internal modification of data may occur
from state 8 to state 11.
(NOTE) The read/write signal remains high until state 14 to prevent bus

conflicts with the preceding read portion of the cycle and the
data bus is not asserted by the processor until state 15.

In state 14, the read/write signal is switched low to indicate
a write cycle. When external processor data bus buffers are
required, the read/write line provides sufficient directional
control. Data is not asserted during this state to allow sufficient
turn around time for external data buffers (if used). Data is
asserted onto the data bus during state 15.

In state 16, the data strobe is asserted as required to indicate
that the data bus is stable. The selected device uses the read/
write signal and the data strobe to take its information from the
data bus. The selected device asserts data transfer acknowledge
(DTACK) when it has successfully stored its data.

Data transfer acknowledge must be present at the processor
at the start of state 17 or the processor will substitute wait
states for states 17 and 18. State 17 starts the synchronization

of the returning data transfer acknowledge for the write portion
of the cycle. The bus interface circuitry issues requests for
subsequent internal cycles during state 18.

During state 19, address strobe and the upper or lower data
strobe is negated. The address and data buses are held valid
through state 19 to allow for static memory operation and
signal skew. The read/write signal and the function code outputs
also remain valid through state 19 to ensure a correct transfer
operation. The slave device keeps its data transfer acknowledge
asserted until it detects the negation of either the address strobe
or the upper or lower data strobe. The slave device must remove
its data transfer acknowledge within once clock period after
recognizing the negation of the address or data strobes. Note
that the processor releases the data bus at the end of state 19
but that data transfer acknowledge might not be removed until
state 0 or 1. When address strobe is negated the slave device is
released.

• BUS ARBITRATION
Bus arbitration is a technique used by master-type devices

to request, be granted, and acknowledge bus mastership. In its
simples form, it consists of:

(I) Asserting a bus mastership request.
(2) Receiving a grant that the bus is available at the end of

the current cycle.
(3) Acknowledging that mastership has been assumed.
F:igure 20 is a flow chart showing the detail involved in a

request from a single device. Figure 21 is a timing diagram
for the same operations. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that the bus request is negated
at the time that an acknowledge is asserted. This type of oper­
ation would be true for a system consisting of the processor
and one device capable of bus mastership. In systems having
a number of devices capable of bus mastership, the bus request
line from each device is wire ORed to the processor. In this
system, it is easy to see that there could be more that one bus
request being made. The timing diagram shows that the bus
grant signal is negated a few clock cycles after the transition
of the acknowledge (BGACK) signal.

However, if the bus requests are still pending, the processor
will assert another bus grant within a few clock cycles after
it was negated. This additional assertion of bus grant allows
external arbitration circuitry to select the next bus master
before the current bus master has completed its requirements.
The following paragraphs provide additional information about
the three steps in the arbitration process.

114

-------------------------------HD68000,HD68000Y

BUS MASTER SLAVE

Address Device
1) Place Function Code on FC. - FC,
2) Place Address on A, - Au
3) Assert Address strobe (AS)
4) Set R /W to Write
5) Place Data on D. - 0"
6) Assert Upper Data Strobe (iJEiS) and

Lower Data Strobe ([OS)

1

1
Input Data

1) Decode Address
2) Store Data on D. - 0"
3) Assert Data Transfer Acknowledge

(DTACJ<)

Terminate Output Transfer
1) Negate UDS and lOS
2) Negate AS
3) Remove Data from D. - 0"
4) Set R/W to Read

I

Start Next Cycle

1
Terminate Cycle

1) Negate~

Figure 15 Word Write Cycle Flow Chart

1)
2)
3)
4)
5)

6)

BUS MASTER SLAVE

Address Device
Place Function Code on FC. - FC,
Place Address on AI"'" Au
Assert Add ress Strobe (AS)
Set R/iN to Write
Place Data on Do 0, or Os DIS (according
to Au)
Assert Upper Data Strobe ('liDS) or lower
Data Strobe ([OS) (based on A.)

Input Data
1) Decode Address
2) Store Data on D. - 0, if [[is is asserted

Store Data on D. - 0" if ODS is asserted
3) Assert Data Transfer Acknowledge

IDTACK)

~
Terminate Output Transfer

1) Negate iJDS and lOS
2) Negate AS
3) Remove Data from D. - 0, or D. - DIS
4) Set RIW to Read

Terminate Cycle
1) Negate D'fACK

I

Start Next Cycle

Figure 16 Byte Write Cycle Flow Chart

SO SI S2 S3 54 55 56 57 SO SI 52 53 54 55 S6 S7 50 SI S2 53 54 55 S6 57

ClK

A."

A5~ I \ I \ r-
UDS \ I \ r-
lD5 \ I \ I
RIWJ\ 1\ 1\ r

DTACK \ I \ I \ r
D. -0 15) < > < > < ~
0.-0,) (> (> < ~

FC. -FC, :x X X >
"Internal Signal Only

I- - - - Word Write - --+ --Odd Byte Write - - - + --Even Byte Write - - --I

Figure 17 Word and Byte Write Cycle Timing Diagram

115

HD68000,HD68000Y-------------------------------

BUS MASTER

Add Device
11 Set R/W to Read
21 Place Function Code on FC. - FC2
31 Place Address on AI - Au
41 Assert Add Strobe (ASI
51 Assert Upper Data Strobe (UDSI or

Lower Data Strobe (~l

i
Acquire Data

11 Latch Data
21 Negate tm'S" or ~
31 Start Data Modification

i
Start Output Transfer

11 Set R/W to Writa
21 Place oeta on O. - 0, or O. - 0 ..
31 Assert Upper Data Strobe (UoSl or Lower

Data Strobe (rDJ)

Termlnata Output Transfer
1') Nagata OM or 1:DI
21 NegateAS
31 Remove Data from O. -0, or O. -0 ..
41 Set R/W to Reed

Start Next Cycle

SLAVE

Input Data

11 Decode Add
21 Place Data on O. -0, or O. -0 ..
31 Assert Data Transfer Acknowledge

(oTACKI

Terminata Cycle

1) Remove Data from O. - 0, or o. - 0 ..
21 Negate~

11 Strobe Data on O. - 0, or O. - 0 ..
21 Assert Data Transfer Acknowledge

(oTACKI

Termlnata Cycle
11 Negate~

I

Figure 18 Read·Modify-Write Cycle Flow Chart

CLK

'~ ______ ~============~ __ JI
Uos or res ----"'\ I '\.. __ ..J,r---

R/W-----=======~-,....~~~~------~\==~--~r--
~ ---~, I 'r__

o. - 0, orO. -0.. () (}---
FC.- FC2 ::x ______________________________________ x:::

r-- ----------Indivisible Cycle - - - - - - - - - - ~

Figure 19 Read-Modify·Write Cycle Timing Diagram

116

---HD68000,HD68000Y

PROCESSOR REQUESTING OEVICE

Request the Bus

1) Assert Bus Request (BR)

I

Grant Bus Arbitration

1) Assert Bus Grant (BGI
~I--------------,

~
Acknowledge Bus Mastersh ip

1) External arbitration determines next bus
master

2) Next bus master waits for current cvcle to
complete

3) Next bus master asserts Bus Grant
Acknowledge (BGACK) to become new
master

4) Bus master negates BR

I

Terminate Arbitration

1) Negate BG (and wait for BGACK to be
negated)

Operate as Bus Master

11 Perform Data Transfers (Read and Write
cycles) according to the same rules the pro-
cessor uses.

Release Bus Mastership

11 Negate BGACK

Re-Arbitrate or Resume Processor
Operation

Figure 20 Bus Arbitration Cycle Flow Chart

CLK

AS

LDS/UDS

R/W

DTACK

Do -015

FC. -FC,

Requesting the Bus
External devices capable of becoming bus masters request

the bus by asserting the bus request (BR) signal_ This is a wire
ORed signal (although it need not be constructed from open
collector devices) that indicates to the processor that some
external device requires control of the external bus_ The pro­
cessor is effectively at a lower bus priority level that the ex­
ternal device and will relinquish the bus after it has completed
the last bus cycle it has started_

When no acknowledge is received before the bus request
signal goes inactive, the processor will continue processing
when it detects that the bus request is inactive _ This allows
ordinary processing to continue if the arbitration circuitry
responded to noise inadvertently.

Receiving the Bus Grant
The processor asserts bus grant (BG) as soon as possible_

Normally this is immediately after internal synchronization.
The only exception to this occurs when the processor has made
an internal decision to execute the next bus cycle but has not
progressed far enough into the cycle to have asserted the address
strobe (AS) signal. In this case, bus grant will not be asserted
until one clock after address strobe is asserted to indicate to
external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-(;hained
network or through a specific priority-encoded network. The
processor is not affected by the external method of arbitration
as long as the protocol is obeyed.

Acknowledgement of Mastership
Upon receiving a bus grant, the requesting device waits

until address strobe, data transfer acknowledge, and bus grant
acknowledge are negated before issuing its own BGACK. The
negation of the address strobe indicates that the previous
master has completed its cycle, the negation of bus grant
acknowledge indicates that the previous master has released
the bus. (While address strobe is asserted no device is allowed
to "break into" a cycle.) The negation of data transfer acknowl­
edge indicates the previous slave has terminated its connection
to the previous master. Note that in some applications data

BR

~ \
BGAcK ,

I
I

I
~--------~\~==~-----~I

r---------~\====~~I
,"-----

Processor - - +--DMA Device -+- - - -- Processor - - - -+--- DMA Device - - - -

Figure 21 Bus Arbitration Cycle Timing Diagram

117

HD68000,HD68000Y--~--------------------

transfer acknowledge might not enter into this function. Gen­
eral purpose devices would then be connected such that they
were only dependent on address strobe. When bus grant ac­
knowledge is issued the device is bus master until it negates
bus grant acknowledge. Bus grant acknowledge should not be
negated until after the bus cycle{s) is (are) completed. Bus
mastership is terminated at the negation of bus grant acknowl­
edge.

The bus request from the granted device should be drop­
ped after bus grant acknowledge is asserted. If a bus request
is still pending, another bus grant will be asserted within a few
clocks of the negation of bus grant. Refer to Bus Arbitration
Control section. Note that the processor does not perform
any external bus cycles before it re-asserts bus grant.

• BUS ARBITRATION CONTROL
The bus arbitration control unit in· the HD68000 is im­

plemented with a fmite state machine. A state diagram of this
machine is shown in Figure 22. All asynchronous signals to the
HD68000 are synchronized before being used internally. This
synchronization is accomplished in a maximum of one cycle
of the system clock, assuming that the asynchronous input
setup time (#47) has been met (see Figure 23). The input
signal is sampled on the falling edge of the clock and is valid
internally after the next falling edge.

As shown in Figure 22, input signals labeled R and A are
internally synchronized on the bus request and bus grant

RA

R - Bus Request Internal
A - Bus Grant Acknowledge Internal
G - Bus Grant
T • Three-State Control to Bus Control logic
X • Don't Care

• State machine will not changa state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

Figure 22 State Diagram of HD68000 Bus
Arbitration Unit

acknowledge pins respectively. The bus grant output is lebeled
G and the internal three-state control signal T. If T is true, the
address, data, function code line, and control buses are placed
in a high-impedance state when AS is negated. All signals are
shown in positive logic (active high) regardless of their true
active voltage level.

State changes (valid outputs) occur on the next rising edge
after the internal signal is valid.

A timing diagram of the bus arbitration sequence during a
processor bus cycle is shown in Figure 24. The bus arbitration
sequence while the bus is inactive (i.e., executing internal
operations such as a multiply instruction) is shown in Figure 25.

If a bus request is made at a time when the MPU has already
~un a bus cycle but AS has not been asserted (bus state SO),
BG will not be asserted on the next rising edge. Instead, BG will
be delayed until the second rising edge following it's internal
assertion. This sequence is shown in Figure 26.

• BUS ERROR AND HALT OPERATION
In a bus architecture that requires a handshake from an ex­

ternal device, the possibility exists that the handshake might not
occur. Since different systems will require a different maximum
response time, a bus error input is provided. External circuitry
must be used to determine the duration between address strobe
and data transfer acknowledge before issuing a bus e~ror sign;d.
When a bus error signal is received, the processor has two
options initiate a bus error exception sequence or try running
the bus cycle again.

118

Internal Signal valid--------.1
External Signal samPled. +

ClK

BR (Externall-----"

@

BR Unternall------------t-,

Asychronous
I nput Delay'

• This delay time is equal to parameter #33, tCHGL'

Figure 23 Timing Relationship of External Asynchronous
I nputs to I nternlll Signals

---HD68000,HD68000Y

ClK
50 51 52 53 54 55 56 57

Bus released from three state and

Processor starts next bus CYClefl
BGACK negated internalll
BGACK sampled
BGACK negated

50 51 52 53 54 55 56 57 50 51

BR -------, /

BG=========~~~~~S\:::~=~--~I BGACK \ / ~ ___ ...J

A. -Au () (

A5 \~ ___ _JI'--------------~~ ___ ~I
U05 \ I' ~ r----
l05 \ f"'\ ~ r----

FC.-FC, -=:::::x~~~~~~~)======~(~~~~~C~ RtW = , ,
OTACK _____________ ~\<======/~------------------------__ ~\~:c====:J;----o. - 0.. () (r---

_I" Alternate Bus Master _I.. Processor Processor

Figure 24 Bus Arbitration During Processor Bus Cycle

.~ ,~ ~'" -~, ,-.~ ow ,~",'. I
BGACK negated

BR valid internal
BR sampled
BR asserted

ClK
W~~~S4~~D W~~~54

\ I
\

BR
BG-------------~=======\------J

BGACK \
I

I
, A.-A,. --<[~====;t:====~=========~(~~= A5~ I ~

U05~~=====~fl---------~~----------------~~ l05~ Ir----------~ __________________ ~~

FC. -FC, :x) (
RtW-------------~'----------~-----

OTACK \ I '---
0.-0 .. -------:----~::::==}_--~~~~------------:: __ ~:_~_._------------~~~::

Processor Bus Inactive Alternate Bus Master Processor - -I" "I- "I"

Figure 25 Bus Arbitration with Bus Inactive

119

HD68000.HD68000Y--

so 81 82 83 S4 S5 56 87 SO 81 82 S3 S4 85 56 87 SO 81 SA, I
BG \ I

BGACK \ I
A,-A .. < > < >-C

A8 \ I' r--"\ I
U08 \ I' ~ I
iJ5S \ I' r---""\ I

FC. -Fe. =:J< > (x::
RiW \ I

i5'i'ACK \ I \ I
0.-0" () (>--Processor -I- Altarnate Bus Master -I- Proceaor .. •

Figure 26 Bus Arbitration During Processor Bus Cycle Special Case

Exception Sequence
When the bus error signal is asserted, the current bus cycle

is tenninated. If BERR is asserted before the falling edge of
S4, AS will be negated in S7 in either a read or write cycle.
As long as BERR remains asserted, the data and address buses
will be in the high-impedance state. When BERR is negated,
the processor will begin stacking for exception processing.
Figure 27 is a timing diagram for the exception sequence.
The sequence is composed of the following elements.

(1) Stacking,the program counter and status register
(2) Stacking the error information

(3) Reading the bus error vector table entry
(4) Executing the bus error handler routine
The stacking of the program counter and the status register

is the same as if an interrupt had occurred. Several additional
items are stacked when a bus error occurs. These items are used
to determine the nature of the error and correct it, if possible.
The bus error vector is vector number two located at address
5000008. The processor loads the new program counter from
this location. A software bus error handler routine is then
executed by the processor. Refer to EXCEPTION PROCESS·
ING for additional information.

120

---HD6S000,HD6S000Y

Re-Running the Bus Cycle
When, during a bus cycle, the processor receives a bus error

signal and the halt pin is being driven by an external device,
the processor enters the re-run sequence. Figure 28 is a timing
diagram for re-running the bus cycle.

The processor terminates the bus cycle, then puts the address
and data output lines in the high-impedance state. The processor
remains "halted," and will not run another bus cycle until the
halt signal is removed by external logic. Then the processor
will re-run the previous bus cycle using the same address, the

ClK

same function codes, the same data (for a write operation), and
the same controls. The bus error signal should be removed at
least one clock cycle before the halt signal is removed.

(NOTE) The processor will not re-run a read-modify-write cycle. This
restriction is made to guarantee that the entire cycle runs cor­
rectly and that the write operation of a Test-and-Set operation
is performed without ever releasing AS. If BERR and HALT
are asserted during a read-modify-write bus cycle, a bus error
operation results.

AS ______ \~----------------------------JI
loS/UoS \ /"'---

\

'--Rm \
oTACK--~

0.-0" ::~::::~(~~~~~~~~~~~~~~~~~~2:::::j
FC. - FC, ::::::x:

BERR==~====================~\-------------~~==

HAlT-------------~==============~---

(

L--Initiat~ . -+- . _1_ Initiate Bus r- - - - Response Fallure- - - - - Bus Error oetectlon- - - ~ - - - - - - ---Read Error Stacking

Figure 27 Sus Error Timing Diagram

\'-___ ~I
r-------------------------~\ /~---

~- - - - - Reed - - - ~- - - - - - - Halt- - - - - - +- -- - Rerun- - --.\

Figure 28 Re-Run Bus Cycle Timing Information

121

HD68000,HD68000Y-------------------------------

The processor terminates the bus cycle, then puts the ad­
dress, data and function code output lines in the high-impedance
state. The processor remains "halted," and will not run another
bus cycle until the halt signal is removed by external logic. Then
the processor will re-run the previous bus cycle using the same
address, the same function codes, the same data (for a write
operation), and the same controls. The bus error signal should
be removed before the halt signal is removed.

Halt Operation with No Bus Error
The halt input signal to the HD68000 perform a Halt/Run/

Single-Step function in a similar fashion to the HMCS6800
halt function. The halt and run modes are somewhat self ex­
planatory in that when the halt signal is constantly active the
processor "halts" (does nothing) and when the halt signal is
constantly inactive the processor "runs" (does something).

The single-step mode is derived from correctly timed transi­
tions on the halt signal input. It forces the processor to execute
a single bus cycle by entering the "run" mode until the pro­
cessor starts a bus cycle then changing to the "halt" mode.
Thus, the single-step mode allows the user to proceed through
(and therefore debug) processor operations one bus cycle at a
time.

Figure 29 details the timing required for correct single-step
operations. Some care must be exercised to avoid harmful
interactions between the bus error signal and the halt pin
when using the single cycle mode as a debugging tool. This
is also true of interactions between the halt and reset lines
since these can reset the machine.

When the processor completes a bus cycle after recognizing
that the halt signal is active, most three-state signals are put
in the high-impedance state. These include:

(J) Address lines
(2) Data lines

ClK

AI-Au

AS \ 1

This is required for correct performance of the re-run bus
cycle operation.

While the processor is honoring the halt request, bus arbitra­
tion performs as usual. That is, halting has no effect on bus
arbitration. It is the bus arbitration function that removes the
control signals from the bus.

The halt function and the hardware trace capability allow
the hardware debugger to trace single bus cycles or single in­
structions at a time. These processor capabilities, along with
a software debugging package, give total debugging flexibility.

Doubla Bus Faults
When a bus error exception occurs, the processor will at­

tempt to stack several words containing information about
the state of the machine. If a bus error exception occurs during
the stacking operation, there have been two bus errors in a row.
This is commonly referred to as a double bus fault. When a
double bus fault occurs, the processor will halt. Once a bus
error exception has occurred, any bus error exception occurring
before the execution of the next instruction constitutes a dou­
ble bus fault.

Note that a bus cycle which is re-run does not constitute a
bus error exception, and does not contribute to a double bus
fault. Note also that this means that as long as the external
hardware requests it, the processor will continue to re-run
the same bus cycle.

The bus error pin also has an effect on processor operation
after the processor receives an external reset input. The pro­
cessor reads the vector table after a reset to determine the ad­
dress to start program execution. If a bus error occurs while
reading the vector table (or at any time before the flfSt instruc­
tion is executed), the processor react,s as if a double bus fault
has occurred and it halts. Only an external reset will start a
halted processor.

\1.-___ --11
lDS/UOS \ ~-----------------~\ I~----1

RIW
OTACK \ 1
0.-0 .. ()

FC. -FC. ::x X
HALT \ 1

I-- - --Read- - - +- - - - -Halt'- - - -+-- - -Read- --.,

Figure 29 Halt Signal Timing Characteristics

122

--HD68000,HD68000Y

SINGLE
STEP

RUN/SINGLE STEP

a

STEP

+5V

HALT
(To Processor).

* OPEN COLLECTOR
DEVICE

K ~I----""

AS" (From Processor)
RESET

Figure 30 Simplified Single-Step Circuit

• THE RELATIONSHIP OF DTACK, BERR, AND HALT
In order to properly control termination of a bus cycle for a

re-run or a bus error condition, DTACK, BERR, and HALT
should be asserted and negated on the rising edge of the
H068000 clock. This will assure that when two signals are
asserted simultaneously, the required setup time (#47) for
both of them will be met during the same bus state.

This, or some equivalent precaution, should be designed
external to the HD68000. Parameter #48 is intended to ensure
this operation in a totally asynchronous system, and may be
ignored if the above conditions are met.

The preferred bus cycle terminations may be summarized
as follows (case numbers refer to Table 4):

Normal Termination: DTACK occurs first (case 1).
Halt Termination: HALT is asserted at same time, or

precedes DTACK (no BERR) cases 2 and 3.
Bus Error Termination: BERR is asserted in lieu of, at same

time, or preceding DTACK (case 4); BERR negated at same
time,orafterDTACK.

Re-Run Termination: HALT and BERR asserted at the
same time, or before DTACK (cases 6 and 7); HALT must be
negated at least I cycle after BERR. (Case 5 indicates BERR

may precede HALT which allows fully asynchronous assertion)"
Table 4 details the resulting bus cycle termination under

various combinations of control signal sequences. The nega­
tion of these same control signals under several conditions is
shown in Table 5 (DTACK is assumed to be negated normal­
ly in all cases; for best results, both DTACK and BERR should
be negated when address strobe is negated.)

Example A: A system uses a watch-dog timer to terminate
~ to un-populated address space. The timer asserts
DT ACK and BERR simultaneously after timeo{)ut. (case 4)

Example B: A system uses error detection on RAM con­
tents. Designer may (a) delay DTACK until data verified, and
return BERR and HALT simultaneously to re-run error cycle
(case 6), or if valid, return DTACK; (b) delay DTACK until
data verified. and return BERR at same time as DTACK if
data in error(case 4); (c) return D'fACK prior to data verifica­
tion, as described in previous section. If data invalid, BERR is
asserted (case 1) in next cycle. Error.nandling software must
know how to recover error cycle.

* For the mask version 68000, HALT and BERR must be asserted at
tile same time.

123

HD68000,HD68000Y---

Table 4 DTACK, BERR, HALT Assertion Results

Asserted on R isi ng
Case No. Control Signal Edge of State Result

N N+2

DTACK A S
1 BERR NA X Normal cycle terminate and continue.

HALT NA X
DTACK A S

2 BERR NA X Normal cycle terminate and halt. Continue when HALT removed.
HALT A S
DTACK NA A

3 BERR NA NA Normal cycle terminate and halt. Continue when HALT removed.
HALT A S

DTACK X X
4 BERR A S Terminate and take bus error trap.

HALT NA NA

DTACK NA X
5 BERR A S Terminate and re-run*.

HALT NA A

DTACK X X
6 BERR A S Terminate and re-run.

HALT A S

DTACK NA X
7 BEAR NA A Terminate and re-run when HALT removed.

HALT A S

Legend: • For the mask version 68000, unpredictable results, no re-run, no error
N - The number of the current even bus state (e.g., 54, 56, etc.) trap; usuallv traps to vector number O.
A - Signal is asserted in this bus state
N A - Signal is not asserted in this state
X - Don't care
S - Signal was asserted in previous state and remains asserted in this state

Table 5 BERR and HALT Negation Results

Conditions of Negated on Rising
Termination in Control Signal Edge of State

Table A N N+2

Bus Error BERR • or •
HALT • or •

Re-run BERR • or •
HALT •

Re-run BERR •
RA[j •

Normal B'Elm' •
HALT • or •

Normal BERR •
HALT • or none

• RESET OPERATION
The reset signal is a bidirectional signal that allows either the

processor or an external signal to reset the system. Figure 31
is a timing diagram for reset operations. Both the halt and reset
lines must be applied to ensure total reset of the processor.

When the reset and halt lines are driven by an external
device, it is recognized as an entire, system reset, including
the processor. The processor responds by reading the reset
vector table entry (vector unumber zero, address $000000)
and loads it into the supervisor stack pointer (SSP). Vector
table entry number one at address $000004 is read next and
loaded into the program counter. The processor initializes
the status register to an interrupt level of seven. No other

Results - Next Cycle

Takes bus error trap.

Illegal sequence; usually traps to vector number O.

Re,runs the bus cycle.

May lengthen next cycle.

If next cycle is started it will be terminated as a bus error.

registers are affected by the reset sequence.
When a RESET sequence is executed, the processor drives

the reset pin for 124 clock pulses. In this case, the processor
is trying to reset the rest of the system. Therefore, there is
no effect on the internal state of the processor. All of the
processor's internal registers and the status register are un­
affected by the execution of a RESET instruction. All external
devices connected to the reset line should be reset at the com­
pletion of the RESET instruction.

Asserting the Reset and Halt pins for 10 clock cycles will
cause a processor reset, except when Vee is initially applied
to the processor. In this case, an external reset must be applied
for 100 milliseconds.

124

------------------------------·-----------------------------------HD68000,HD68000Y

CLK

Plus 5' Volts

Vee t > 100 Millis.conds--!,.... _____________ _

RES1~-------------------II~------------------
HALT ,~ ______________________ ~

1----1 t <4
Bus Cycl.s

(NOTESI
11 Internal start-up tim. 41 PC High r.ad in here
21 SSP High read in here 51 PC Low read in here

(21 (61

Bus State Unknown: ~

31 SSP Low read in here 61 First instruction fetched here. All Control Signals Inactive. >--<
Data Bus In Read Mode:

Figure 31 Reset Operation Timing Diagram

• PROCESSING STATES
This section describes the HD68000 which are outside the'

normal processing associated with the execution of instructions.
The functions of the bits in the supervisor portion of the status
register are covered: the supervisor/user bit, the trace enable bit,
and the processor interrupt priority mask. Finally, the sequence
of memory references and actions taken by the processor on
exception conditions is detailed.

The HD68oo0 is always in one of three processing states:
normal, exception, or halted. The normal processing state is
that associated with instruction execution; the memory ref­
erences are to fetch instructions and operands, and to store
results. A special case of the normal state is the stopped state
which the processor enters when a STOP instruction is exe­
cuted. In this state, no further memory references are made.

The exception processing state is associated with interrupts,
trap instructions, tracing and other exceptional conditions.
The exception may be internally generated by an instruction
or by an unusual condition arising during the execution of
an instruction. Externally, exception processing can be forced
by an interrupt, by a bus error, or by a reset. Exception process­
ing is designed to provide an efficient context switch so that
the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic
hardware failure. For example, if during the exception pro­
cessing of a bus error another bus error occurs, the processor
assumes that the system is unusable and halts. Only an external
reset can restart a halted processor. Note that a processor in the
stopped state is not in the halted state, nor vice versa.

NORMAL

EXCEPTION

HALTED

PROCESSING STATES

INSTRUCTION
EXECUTION
(INCLUDING STOP)

INTERRUPTS
TRAPS
TRACING ETC.

HARDWARE HALT
DOUBLE BUS FAULT

• PRIVILEGE STATES
The processor operates in one of two states of privilege:

the "user" state or the "supervisor" state. The privilege state
determines which operations are legal, is used by the external
memory management device to control and translate accesses,
and is used to choose between the supervisor stack pointer
and the user stack pointer in instruction references.

The privileges state is a mechanism for providing security
in a computer system. Programs should access only their own
code and data areas, and ought to be restricted from accessing
information which they do not need and must not modify.

The privilege mechanism provides security by allowing
most programs to execute in user state. In this state, the ac­
cesses are controlled, and the effects on other parts of the
system are limited. The operating system executes in the super­
visor state, has access to all resources, and performs the over­
head tasks for the user state programs.

SUPERVISOR STATE
The supervisor state is the higher state of privilege. For

instruction execution, the supervisor state is determined by
the S-bit of the status register; if the S-bit is asserted (high),
the processor is in the supervisor state. All instructions can be
executed in the supervisor state. The bus cycles generated by
instructions executed in the supervisor state are classified as
supervisor references. While the processor is in the supervisor
privilege state, those instructions which use either the system
stack pointer implicitly or address register seven explicitly
access the supervisor stack pointer.

All exception processing is done in the supervisor state,
regardless of the setting of the S-bit. The bus cycles generated
during exception processing are classified as supervisor refer­
ences. All stacking operations during exception processing use
the supervisor stack pointer.

USER STATE
The user state is the lower state of privilege. For instruction

execution, the user state is determined by the S-bit of the status
register; if the S-bit is negated (low), the processor is executing
instructions in the user state.

Most instructions execute the same in user state as in the
supervisor state. However, some instructions which have im­
portant system effects are made privileged. User programs
are not permitted to execute the STOP instruction, or the

125

HD68000,HD68000Y---

RESET instruction. To ensure that a user program cannot
enter the supervisor state except in a controlled manner, the
instructions which modify the whole status register are privi­
leged. To aid in debugging programs which are to be used as
operating systems, the move to user stack pointer (MOVE
USP) and move from user stack pointer (MOVE from USP)
instructions are also privileged.

The bus cycles generated by an instruction executed in
user state are classifred as user state references. This allows
an external memory management device to translate the ad­
dress and to control access to protected portions of the address
space. While the processor is in the user privilege state, those
instructions which use either the system stack pointer im­
plicitly, or address register seven explicitly, access the use stack
pointer.

PRIVILEGE STATE CHANGES
Once the processor is in the user state and executing instruc­

tions, only exception processing can change the privilege state.
During exception processing, the current setting of the S-bit
of the status register is saved and the S-bit is asserted, putting
the processing in the supervisor state. Therefore, when instruc­
tion execution resumes at the address specified to process the
exception, the processor is in the supervisor privilege state.

USER/SUPERVISOR MODES

TRANSITION ONLY MAY OCCUR
DURING EXCEPTION PROCESSING

TRANSITION MAYBE MADE BY:
RTE; MOVE, ANDI, EORI TO STATUS WORD

REFERENCE CLASSIFICATION
When the processor makes a reference, it classifies the kind

of reference being made, using the encoding on the three func­
tion code output lines. This allows external translation of ad­
dresses, control of access, and differentiation of special pro­
cessor states, such as interrupt acknowledge. Table 6 lists the
classification of references.

Table 6 Reference Classification

Function Code Output
Reference Class

FCz FC1 FCo
0 0 0 (Unassigned)

0 0 1 User Data
0 1 0 User Program

0 1 1 (Unassigned)

1 0 0 (Unassigned)

1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 Interrupt Acknowledge

• EXCEPTION PROCESSING
Before discussing the details of interrupts, traps, and tracing,

a general description of exception processing is in order. The
processing of an exception occurs in four steps, with variations
for different exception causes. During the flIst step, a tem­
porary copy of the status register is made, and the status register
is set for exception processing. In the second step the exception
vector is determined, and the third step is the saving of the
current processor context. In the fourth step a new context is
obtained, and the processor switches to instruction processing.

EXCEPTION VECTORS
Exception vectors are memory locations from which the

processor fetches the address of a routine which will handle
that exception. All exception vectors are two words in length
(Figure 32), except for the reset vector, which is four words.
All exception vectors lie in the supervisor data space, except
for the reset vector which is in the supervisor program space.
A vector number is an eight-bit number which, when multiplied
by four, gives the address of an exception vector. Vector num­
bers are generated internally or externally depending on the
cause of the exception. In the· case of interrupts, during the
interrupt acknowledge bus cycle, a peripheral provides an 8-bit
vector number (Figure 33) to the processor on data bus lines Do
through D7 • The processor translates the vector number into
a full 24-bit address, as shown in Figure 34. The memory
layout for exception vectors is given in Table 7.

As shown in Table 7, the memory layout is 512 words
long (1024 bytes). It starts at address 0 and proceeds through
address 1023. This provides 255 unique vectors; some of these
are reserved for TRAPS and other system functions. Of the
255, there are 192 reserved for user interrupt vectors. However,
there is no protection on the flISt 64 entries, so user interrupt
vectors may overlap at the discretion of the systems designer.

KINDS OF EXCEPTIONS
Exceptions can be generated by either internal or external

causes. The externally generated exceptions are the interrupts
and the bus error and reset requests. The interrupts are requests
from peripheral devices for processor action while the bus
error and reset inputs are used for access control and processor
restart. The internally generated exceptions come from instruc­
tions, or from address error or tracing. The trap (TRAP), trap
on overflow (TRAPV), check register against bounds (CHK)
and divide (DIY) instructions all can generate exceptions as
part of their instruction execution. In addition, illegal instruc­
tions, word fetches from odd addresses and privilege violations
cause exceptions. Tracing behaves like a very high priority,
internally generated interrupt after each instruction execution.

EXCEPTION PROCESSING SEQUENCE
Exception processing occurs in four identiftable steps. In

the flIst step, an internal copy is made of the status register.
After the copy is made, the S-bit is asserted, putting the pro­
cessor into the supervisor privilege state. Also, the T -bit is
negated which will allow the exception handler to execute
unhindered by tracing. For the reset and interrupt exceptions,
the interrupt priority mask is also updated.

In the second step, the vector number of the exception is
determined. For interrupts, the vector number is obtained by
a processor fetch, classified as an interrupt acknowledge. For
all other exceptions, internal logic provides the vector number.
This vector number is then used to generate the address of
the exception vector.

126

---HD68000,HD68000Y

Word 0

Word 1

A23

Vector
Number(s)

0

-
2

3
4

5

6

7

8

9

10

11

12"

13"

14"

15

16 - 23"

24

25

26

27
28

29

30
31

32-47

48-63"

64-255

New Program Counter (High) AO=O,Al=O

New Program Counter (Low) AO=O,Al=1

Figure 32 Exception Vector Format

015 0807 DO

Ignored

Where:
v7 is the MSB of the Vector Number
vO is the LSB of the Vector Number

Figure 33 Peripheral Vector Number Format

Al0 A9 A8 A7 A6 A5 A4 A3 A2 Al AO

All Zeroes

Figure 34 Address Translated From 8-Bit Vector Number

Table 7 Exception Vector Assignment

Address
Assignment

Dec Hex Space

0 000 SP Reset: I nitial SSP

4 004 SP Reset: Initial PC

8 008 SO Bus Error

12 OOC SO Address Error

16 010 SO Illegal Instruction

20 014 SO Zero Divide

24 018 SO CH K Instruction

28 01C SO TRAPV Instruction

32 020 SO Privilege Violation

36 024 SO Trace

40 028 SO Line 1010 Emulator

44 02C SO Line 1111 Emulator

48 030 SO (UnaSSigned, reserved)

52 034 SO (UnaSSigned, reserved)

56 038 SO (Unassigned, reserved)

60 03C SO Uninitialized Interrupt Vector

64 04C
SO (Unassigned, reserved)

95 05F

96 060 SO Spurious Interrupt

100 064 SO Level 1 Interrupt Autovector

104 068 SO Level 2 Interrupt Autovector

108 06C SO Level 3 Interrupt Autovector
112 070 SO Level 4 Interrupt Autovector

116 074 SO Level 5 Interrupt Autovector

120 078 SO Level 6 Interrupt Autovector

124 07C SO Level 7 Interrupt Autovector

128 080

191 OBF
SO TRAP Instruction Vectors

192 oeo
255 OFF

SO (Unassigned, reserved)

256 100

1023 3FF
SO User Interrupt Vectors

SP: Supervisor program, SO: Supervisor data
• Vector numbers 12, 13, 14, 16 through 23 and 48 through 63 are reserved for future enhancements by Hitachi.

No user peripheral devices should be assigned these numbers.

127

HD68000,HD68000Y

The third step is to save the current processor status, ex­
cept for the reset exception. The current program counter
value and the saved copy of the status register are stacked
using the supervisor stack pointer. The program counter value
stacked usually points to the next unexecuted instruction,
however for bus error and address error, the value stacked
for the program counter is unpredictable, and may be incre­
mented from the address of the instruction which caused the

error. Additional information defining the current context is
stacked for the bus error and address error exceptions.

The last step is the same for all exceptions. The new program
counter value is fetched from the exception vector. The pro­
cessor then resumes instruction execution. Then instruction
at the address given in the exception vector is fetched, and
normal instruction decoding and execution is started.

Figure 35 Exception Processing Sequence (Not Reset)

128

--- -
---HD68000.HD68000Y

MULTIPLE EXCEPTIONS
These paragraphs descnbe the processing which occurs

when multiple exceptions arise simultaneously. Exceptions
can be grouped according to their occurrence and priority. The
Group 0 exceptions are reset, bus error, and address error.
These exceptions cause the instruction currently being executed
to be aborted, and the exeception processing to commence
within two clock cycles. The Group I exceptions are trace and
interrupt, as well as the privilege violations and illegal instruc­
tions. These exceptions allow the current instruction to execute
to completion, but preempt the execution of the next instruc­
tion by forcing exception processing to occur (privilege viola­
tions and illegal instructions are detected when they are the
next instruction to be executed). The Group 2 exceptions
occur as part of the normal processing of instructions. The
TRAP, TRAPV, CIIK, and zero divide exceptions are in this
group. For these exceptions, the normal execution of an instruc­
tion may lead to exception processing.

Group 0 exceptions have highest priority, while Group 2
exceptions have lowest priority. Within Group 0, reset has
highest priority, followed by address error and then bus error.
Within . Group I, trace has priority over external interrupts,
which in tum takes priority over illegal instruction and privi­
lege violation. Since only one instruction can be executed at
a time, there is no priority relation within Group 2.

The priority relation between two exceptions determines
which is taken, or taken fust, if the conditions for both arise
simultaneously. Therefore, if a bus error occurs during a TRAP
instruction, the bus error takes precedence, and the TRAP
instruction processing is aborted. In another example, if an
interrupt request occurs during the execution of an instruction
while the T -bit is asserted, the trace exception has priority,
and is processed fust. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruc­
tion processing commences fmally in the interrupt handler
routine. A summary of exception grouping and priority is given
in Table 8.

Table 8 Exception Grouping and Priority

Group Exception Processing

Reset Exception processing begins 0 Address Error
Bus Error within two clock cycles.

Trace

1 Interrupt Exception processing begins
Illegal before the next instruction
Privilege

TRAP. TRAPV Exception processing is started by
2 CHK.

Zero Divide normal instruction execution

RECOGNITION TIMES OF EXCEPTIONS.
HALT. AND BUS ARBITRATION

END OF A CLOCK CYCLE
RESET

END OF A BUS CYCLE
ADDRESS ERROR
BUS ERROR
HALT
BUS ARBITRATION

END OF AN INSTRUCTION CYCLE
TRACE EXCEPTION
INTERRUPT EXCEPTIONS
ILLEGAL INSTRUCTION
UNIMPLEMENTED INSTRUCTION
PRIVILEGE VIOLATION

WITHIN AN INSTRUCTION CYCLE
TRAP. TRAPV
CHK
ZERO DIVIDE

• EXCEPTION PROCESSING DETAILED DISCUSSION
Exceptions have a number of sources, and each exception

has processing which is peculiar to it. The following paragraphs
detail the sources of exceptions, how each arises, and how each
is processed.

RESET
The reset input provides the highest exception level. The

processing of the reset signal is designed for system initiation,
and recovery from catastrophic failure. Any processing in pro­
gress at the time of the reset is aborted and cannot be recovered.
The processor is forced into the supervisor state, and the trace
state is forced off. The processor interrupt priority mask is set
at level seven. The vector number is intema11y generated to
reference the reset exception vector at location 0 in the super­
visor program space. Because no assumptions can be made about
the validity of register contents, in particular the supervisor
stack pointer, neither the program counter nor the status
register is saved. The address contained in the rust two words
of the reset exception vector is fetched as the initial supervisor
stack pointer, and the address in the last two words of the
reset exception vector is fetched as the initial program counter.
Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be pointed
to by the initial program counter.

The RESET instruction does not cause loading of the reset
vector, but does assert the reset line to reset external devices.
This allows the software to reset the system to a known state
and then continue processing with the next instruction.

129

HD68000.HD68000Y------------------------------------~---------------------------

Yes >------- to Address Error or Bus Error Exception Processing

Figure 36 Reset Exception Processing

INTERRUPTS but are made pending. Pending interrupts are detected between
Seven levels of interrupt priorities are provided. Devices instruction executions. If the priority of the pending interrupt

may be chained externally within interrupt priority levels, is lower than or equal to the current processor priority, exe-
allowing an unlimited number of peripheral devices to inter- cution continues with the next instruction and the interrupt
rupt the processor. Interrupt priority levels are numbered exception processing is postponed. (The recognition of level
from one to seven, level seven being the highest priority. The seven is slightly different, as explained in a following paragraph.)
status register contains a three-bit mask: which indicates the If the priority of the pending interrupt is greater than the
current processor priority, and interrupts are inhibited for current processor priority, the exception processing sequence
all priority levels less than or equal to the current processor is started. First a copy of the status register is saved, and the
priority. privilege state is set to supervisor, tracing is suppressed, and

An interrupt request is made to the processor by encoding the processor priority level is set to the level of the interrupt
the interrupt request level on the interrupt request lines; a being acknowledged. The processor fetches the vector number
zero indicates no interrupt request. Interrupt requests arriving from the interrupting device, classifying the reference as an
at the processor do not force immediate exception processing, interrupt acknowledge and displaying the level number of

130

---HD68000,HD68000Y

the interrupt being'acknowledged on the address bus. If external
logic requests an automatic vectoring, the processor internally
generates a vector number which is determined by the interrupt
level number. If external logic indicates a bus error, the inter­
rupt is taken to be spurious, and the generated vector number
references the spurious interrupt vector. The processor then
proceeds with the usual exception processing, saving the pro­
gram counter and status register on the supervisor stack. The
saved value of the program counter is the address of the instruc­
tion which would have been executed had the interrupt not
been present. The content of the interrupt vector whose vector
number was previously obtained is fetched and loaded into the
program counter, and normal instruction execution commences
in the interrupt handling routine. A flow chart for the interrupt
acknowledge sequence is given in Figure 37, a timing diagram
is given in Figure 38, and the interrupt exception timing se·
quence is shown in Figure 39.

Table 9 Internal Interrupt Level

Level 12 11 10 Interrupt

7 1 1 1 Non·Maskable Interrupt

6 1 1 0
5 1 0 1

4 1 0 0 Maskable Interrupt

3 0 1 1

2 0 1 0
1 0 0 1
0 0 0 0 No I nterru pt

(NOTE) The internal interrupt mask level U2,.!,1.IO) are inverted to the
logic level applied to the pins (TPL., II'L, , J15'(0).

ClK

I
I '\j \
~ \ ,..,.

/

~
}----/\

~§
last Bus Cycle of Instruction

(Read or Write)

\
\
\

PROCESSOR INTERRUPTING DEVICE

Request Interrupt

Grant Interrupt
1) Compare interrupt level in status register

and wait for current instruction to complete
2) Place interrupt level on A, , A" A.
3) Set R/W to read
4) Set function code to interrupt acknowledge
5) Assert address strobe (AS)
6) Assert lower data strobe (LOS)

I

1
Provide Vector Number

1) Place vector number of Do - 0,
2) Assert data transfer acknowledge (OTACK)

I

Acquire Vector Number
1) latch vector number
2) Negate lOS
3) Negate AS'

!!!!!!!!
1) Negat.~

r
Start I nterrupt ProceSSing

Figure 37 Interrupt Acknowledge Sequence
FlowChart

~
~ \ r
~ '---.r
~

\

<

lACK Cycle
(Vector Number Acquisition

~

'I

~

"" ~
7 ~

\

'---.r
\

\
<
<

Stack and,
Vector Fetch

Figure 38 Interrupt Acknowledge Sequence Timing Diagram

131

HD68000,HD68000Y---

last Bus Cycle lACK of Instruction Stack Cycle Stack Stack
(During Which f--- PCl - f--- Status f--- PCH -+
I nterrupt Was (SSPI (Vector Number (SSP) (SSP)
Recognized) Acquisition)

Read Read Fetch First Word

~ Vector - Vector - of Instruction
High low of Interrupt

(A .. -A .. I (A. - AI5I Routine

Figure 39 Interrupt Exception Timing Sequence

Priority level seven is a special case. Level seven interrupts
cannot be inhibited by the interrupt priority mask, thus pro­
viding a "non-maskable interrupt" capability. An interrupt is
generated each time the interrupt request level changes from
some lower level to level seven. Note that a level seven interrupt
may still be caused by the level comparison if the request level
is a seven and the processor priority is set to a lower level by an
instruction.

UNINITIALIZED INTERRUPT
An interrupting device asserts VP A or provides an interrupt

vector during an interrupt acknowledge cycle to the HD68000.
If the vector register has not been initialized, the responding
HMCS68000 Family peripheral will provide vector IS, the
unitialized interrupt vector. This provides a uniform way to
recover from a programming error.

SPURIOUS INTERRUPT
If during the interrupt acknowledge cycle no device responds

by asserting DTACK or VP A, the bus error line should be assert­
ed to terminate the vector acquisition. The processor separates

,the processing of this error from bus error by fetching the
spurious interrupt vector instead of the bus error vector. The
processor then proceeds with the usual exception processing.

INSTRUCTION TRAPS
Traps are exceptions caused by instructions. They arise

either from processor recognition of abnormal conditions
during instruction execution, or from use of instructions whose
normal behavior is trapping.

Some instructions are used specifically to generate traps.
The TRAP instruction always forces an exception, and is useful
for implementing system calls for user programs. The TRAPV
and CHK instructions force an exception if the user program
detects a runtime error, which may be an arithmetic overflow
or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DNU) in­
structions will force an exception if a division operation is
attempted with a divisor of zero.

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS
Illegal instruction is the term used to refer to any of the

word bit patterns which are not the bit pattern of the first
word of a legal instruction. During instruction execution, if
such an instruction is fetched, an illegal instruction exception
occurs.

Word patterns with bits 15 through 12 equaling 1010 or
1111 are distinguished as unimplemented instructions and
separate exception vectors are given to these patterns to per­
mit efficient emulation. This facility allows the operating
system to detect program errors, or to emlllate unimplemented
instructions in software.

0011

t
MOVE
WORD

ILLEGAL INSTRUCTION EXAMPLE

MOVE DO, #$1000

+
MOVE OPWORD

+
100111

t
IMMEDIATE

000

t
DATA

REGISTER
DIRECT

000

t
REGISTER
NUMBER

"0"

PRIVILEGE VIOLATIONS
In' order to provide system security, various instructions

are privileged. An attempt to execute one of the privileged
instructions while in the user state will cause an exception.
The privileged instruction are:

STOP AND (word) Immediate to SR
RESET EOR (word) Immediate to SR
RTE OR (word) Immediate to SR
MOVE to SR MOVE USP

TRACING
To aid in program development,. the HD68000 includes

a facility to allow instruction by instruction tracing. In the
trace state, after each instruction is executed an exceptions
is forced, allowing a debugging program to monitor the exe­
cution of the program under test.

The trace facility uses the T -bit in the supervisor portion
of the status register. If the T -bit is negated (off), tracing is
disabled, and instruction execution proceeds from instruction
to instruction as normal. If the T -bit is asserted (on) at the
beginning of the execution of an instruction, a trace exception
will be generated after the execution of that instruction is
completed. If the instruction is not executed. either because
an interrupt is taken, or the instruction is illegal or privileged,
the trace exception does not occur. The trace exception also
does not occur if the instruction is aborted by a reset, bus

132

---HD68000,HD68000Y

error, or address error exception. If the instruction is·indeed ex­
ecuted and an interrupt is pending on completion, the trace
exception is processed before the interrupt exception. If, during
the execution of the instruction, an exception is forced by that
instruction, the forced exception is processed before the trace
exception.

As an extreme illustration of the above rules, consider the
arrival of an interrupt during the execution of a TRAP instruc­
tion while tracing is enabled. First the trap exception is pro­
cessed, then the trace exception, and fInally the interrupt ex·
ception. Instruction execution resumes in the interrupt handler
routine.

TRACE MODE
IFT= 1

STATUS REGISTER

AFTER EACH
INSTRUCTION

ADDRESS OBTAINED
FROM VECTOR TABLE

MAIN
PROGRAM

RETURN TO
EXECUTE
NEXT
INSTRUCTION

1. If, upon completion of an instruction, T = 1,
go to trace exception processing.

2. Execute trace exception sequence.
3. Execute trace service routine.
4. At the end of the service routine, execute

return from exception (RTE).

BUS ERROR
Bus error exceptions occur when the external logic requests

that a bus error be processed by an exception. The current bus
cycle which the processor is making is then aborted. Whether
the processor was doing instruction or exception processing,
that processing is terminated, and the processor immediately
begins exception processing.

Exception processing for bus error follows the usual se­
quence of steps. The status register is copied, the supervisor
state is entered, and the trace state is turned off. The vector
number is generated to refer to the bus error vector. Since the
processor was not between instructions when the bus error
exception request was made, the context of the processor is
more detailed. To save more of this context, additional infor­
mation is saved on the supervisor stack. The program counter
and the copy of the status register are of course saved. The value
saved for the program counter is advanced by some amount,
two to ten bytes beyond the address of the f11"St word of the
instruction which made the reference causing the bus error. If
the bus error occurred during the fetch of the next instruction,
the saved program counter has a value in the vicinity of the
current instruction, even if the current instruction is a branch,
a jump, or a return instruction. Besides the usual information,
the processor saves its internal copy of the fust word of the
instruction being processed, and the address which was being
accessed by the aborted bus, cycle. Specific information about
the access is also saved: whether it was a read or a write, wheth­
er the processor was processing an instruction or not, and the
classification displayed on the function code outputs when

the bus error occurred. The processor is processing an instruc­
tion if it is in the normal state or processing a Group 2 excep­
tion; the processor is not processing an instruction if it is pro­
cessing a Group 0 or a Group.l exception. Figure 40 illustrates
how this information is organized on the supervisor stack.
Although this information is not sufficient in general to effect
full recovery from the bus error, it does allow software diag­
nosis. Finally, the processor commences instruction processing
at the address contained in the vector. It is the responsibility
of the error handler routine to clean up the stack and determine
where to continue execution.

If a bus error occurs during the exception processing for a
bus error, address error, or reset, the processor is halted, and
all processing cases. This simplifIes the detection of catastrophic
system failure, since the processor removes itself from the
system rather than destroy all memory contents. Only the
RESET pin can restart a halted processor.

ADDRESS ERROR
Address error exceptions occur when the processor attempts

to access a word or a long word operand or an instruction at
an odd address. The effect is much like an internally generated
bus error, so that the bus cycle is aborted, and the processor
ceases whatever processing it is currently doing and begins
exception processing. After exception processing commences,
the sequence is the same as that for bus error including the
information that is stacked, except that the vector number
refers to the address error vector instead. Likewise, if an address
error occurs during the exception processing for a bus error,
address error, or reset, the processor is halted. As shown in
Figure 42, an address error will execute a short bus cycle follow·
ed by exception processing.

• INTERFACE WITH HMCS6800 PERIPHERALS
Hitachi's extensive line of HMCS6800 peripherals are di­

rectly compatible with the HD68000. Some of these devices
that are particularly useful are:

HD6821 Peripheral Interface Adapter
HD6843 Floppy Disk Controller
HD684SS CRT Controller
HD46508 Data Acquisition Unit
HD6850 Asynchronous Communication Interface

Adapter
HD6852 Synchronous Serial Data Adapter

To interface the synchronous HMCS6800 peripherals with
the asynchronous HD68000, the processor modifieS its bus
cycle to meet the HMCS6800 cycle requirements whenever an
HMCS6800 device address is detected. This is possible since
both processors use memory mapped JjO. Figure 44 is a flow
chart of the interface operation between the processor and
HMCS6800 devices.

• DATA TRANSFER OPERATION
Three signal on the processor provide the HMCS6800 inter­

face. They are: enable (E), valid memory address (VMA), and
valid peripheral address (vp A). Enable corresponds to the
E or tP2 signal in existing HMCS6800 systems. The bus fre­
quency is one tenth of the incoming HD68000 clock frequency.
The timing of E allows 1 MHz peripherals to be used with
an 8 MHz HD68000. Enable has a 60/40 duty cycle; that
is, it is low for six input clocks and high for four input clocks.
This duty cycle allows the processor to do successive VP A ac­
cesses on successive E pulses.

HMCS6800 cycle timing is given in Figure 45 and 46. At

133

HD68000,HD68000Y--

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Lower Address IRtWl I/N I Function Code

High

~-·AccessAddre .. -----------------------------------· low \

Instruction Register

Status Register

High

-- -Program Counter----- -------------------------- ----
low

R/W (reed/write): write ~ 0, read = 1. I/N (Instruction/not!: instruction = 0, not a 1

Figure 40 Supervisor Stack Order (Group 0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
lower AddreSS Status Register

High

Higher Address r ----Program Counter ---- ------------------------------ ::v: -------

Figure 41 Supervisor Stack Order (Group 1, 2)

ClK

A,-Au

AS \ / \ I \
UDS

" \ / \ / '\4 \
iJ5! \ I I

,
\ \
~ RtW

, ,
DTACK \ I " '---

D. - 0 .. <) (}----I\ (

I- Read -I- Aerr I Approx. 8 Clocks + Write Stack .. Write II .. Idle

Figure 42 Address Error Timing

state zero (SO) in the cycle, the address bus is in the high­
impedance state. A function code is asserted on the function
code output lines. One-half clock later, in state 1 the address
bus is released from the high-impedance state.

During state 2, the address strobe (AS) is asserted to in­
dicate that there is a valid address on the address bus. If the
bus cycle is a read cycle, the upper and/or lower data strobes
are also asserted in state 2. If the bus cycle is a write cycle,

134

---HD68000,HD68000Y

D. - 0, (or 0, - DIS)

~=============~D. -0,
Address

Address &
Bus CS's

AS CS
HD68000

Block of
VPA HMCS6800

Devices

VMA CS

E E

Figure 43 Connection of HMCS6800 Peripherals

the read/write (R/W) signal is switched to low (write) during
state 2. One half clock later, in state 3, the write data is placed
on the data bus, and in state 4 the data strobes are issued to
indicate valid data on the data bus. The processor now inserts
wait states until it recognizes the assertion of VP A.

The VP A input signals the processor that the address on the
bus is the address of an HMCS6800 device (or an area reserved
for HMCS6800 devices) and that the bus should conform to
the tP2 transfer characteristics of the HMCS6800 bus. -Valid
peripheral address is derived by decoding the address bus,
conditioned by address strobe.

After the recognition of VP A, the processor assures that
the Enable (E) is low, by waiting if necessary, and subsequently
asserts VMA. Valid memory address is then used as part of the
chip select equation of the peripheral. This ensures that the
HMCS6800 peripherals are selected and deselected at the
correct time. The peripheral now runs its cycle during the
high portion of the E signal. Figures 4S and 46 depict the best
and worst case HMCS6800 cycle timing. This cycle length is
dependent strictly upon when VPA is asserted in relationship
to the E clock.

During a read cycle, the processor latches the peripheral
data in state 6. For all cycles, the processor negates the address
and data strobes one half clock cycle later in state 7, and the
Enable signal goes low at this time. Another half clock later,
the address bus is put in the high-impedance state. During a
write cycle, the data bus is put in the high-impedance state
and the read/write signal is switched high. The peripheral logic
must remove VP A within one clock after address strobe is
negated.

Figure 47 shows the timing required by HMCS6800 pe­
ripherals, the timing specified for HDCS6800, and the corre­
sponding timing for the HD68000. Two example systems with
HMCS6800 peripherals are showin in Figures 48 and 49. The
system in Figure 48 reserves the upper eight megabytes of
memory for HMCS6800 peripherals. The system in Figure 49
is more efficient with memory and easily expandable, but more
complex.

DTACK should not be asserted while VPA is asserted.
Notice that the HD68000 VMA is active low, contrasted with
the active high HMCS6800 VMA. This allows the processor
to put its buses in the high-impedance state on DMA requests
without inadvertently selecting peripherals.

135

PROCESSOR

I nitiate Cycle
1) The processor starts a normal Read or

Write cycle

SLAVE

Define HMCS6800 Cycle
1) External hardware asserts Valid Peripheral

Address (i7PA)

!
Synchronize With Enable

1) The processor monitors Enable (E) until it is
low (Phase 1)

2l The processor asserts Valid Memory Address
(VMA)

Transfer Data
1) The peripheral waits until E is active and

then transfers the data

Terminate Cycle
1) The processor waits until E goes low. (On a

Read cycle the data is latchad as E goes
low internally)

2l The processor negates VMA
3) The processor negates AS, UDS, and LOS

1
Start Next Cycle

Figure 44 HMCS6800 Interface Flow Chart

HD68000,HD68000Y---

50 51 52 53 S4 w w w w w w w w w w w w 55 56 57 50

ClK

AI - An

A5

51
E

VPA

VMA

Data Out

Data In ------------- ----- ------------- - - - --- -- ---

FC.-F~ ____ _J~ __ _Jr_-----

(NOTE) This figure represents the best case HMC56800 timing where VPA falls before the third system clock cycle after the falling edge of E.

Figure 45 HMCS6800 Timing - Best Case

W~~~S4wwwwwwwwwwwwwwwwwwwwwwwwwwww~~~W

ClK

A.-An

E

VPA

VMA

RtW
(Read)

Data In

UDS/lDS
Read

R/WWrite

Data Out

~/~
Write

.rv-:
J-{

\

\

\
@

FC. - FC.

~JL.Cf~~FIJ'LJ

~
@

---< r-®
"1' J ~

® --@ ~ ~
\ -@---

-- -@J - ~@
- :I-®

®

--- f-@
@-- --< r--@

\

K

Figure 46 HMCS6800 Timing - Worst Case

136

---HD68000,HD68000Y

HMCS6800· Peripheral'""

~150 n.~ Type B t= 70 n.~ Type B
180 ns Type A 140 ns Tvpe A
270n. ~S.;;'d;-.___ 140n. S.d

HMCS6800 VMA, RIW I
==~~~----~==~------HMCS6BOOAddress ~

--l 1--1~0~n .. s":H':':M~C~S::68=OO:::'·:---------------- Peripheral il

......j ~ 10 ns Peripheral· Type B ~ 180 ns===s ~ ~ 10 ns HMCS6800·
Type A 220 ns ~ r-- 10 ns Peripheral

HMCS6800 E Clock Freq. Type

1.5MHz

B 2.0 MHz

A

1.0 MHz S.d

~ =m I
HMCS6800 Read 00'0 ----------------'W&#dIff/l#$))------

Type B ~pe,,~e~:3" I
Type A 80 ns
Std 195 ns

HMCS6800WriteData ______________ --<~)~-----

HD68000 Address ~'"""fj'"' _________________________ .J)

HD68000 (8 MHz!

l--200n.~
VMA----------------------~~~~

~---~~=====-------------~
Write Data

HD68000CLK

.. Times are expressed for different device clock frequencies.

Figure 47 HD6BOOO to HMCS6BOO Peripheral Timing Diagram

AS

VMA

Do -ou

AI-Au

HD6BOOO

VPA

Fe,
Fe,
Fe,

IPL
IJiL,
11't",

E
RIW

33k
+5V

I ~
I

I
I

~ J

C
I

~ I';
0

~ I::i .; ,. .i ci Ii
CS; eSI eso RS. ASo CS1 CS1 AS eso

HD6821 PIA H06850 ACtA

L.- tiV ~ li'l I'" a: It ~ E RIW iR1l E AtW

}e

RES

3.3k

IT J

Figure 48 HMCS6800 Interface - Example 1

137

?
>

C
I

0

.....
Co>
(XI

HD68000

+5 3.3k

~~ J
Al

VQA

Do-DIS

AI-An

.c
~ .c
L L .c I~ .c

)' 133

cf VPA 1>-l

~ ~ A 74LS y,
138

~B y.
A, y,
~C y,

G1Gu.
Fe. ~ G,. +s
FC.

~ l ,/..

-rlr:. ,,~
" 74LS I,

348 h r--
IPL. r4LS I.

AoI48 I
IPL A. 1.1""---IPL A, I NMI

RES

1:

RIW ___

y •

~ 74LS y.

.-.& A 138 ~' -- ~ ~ 8 y. -- ! ~ C y,

~ y,
~ «

y, ~ c .c

33~f ~ -.l'" ...
cs. CS. CSo RS. RSo

+5 HD6821 PIA
-

I~ I~ ~ w I~

3.3k

:.

--- --_._-

Figure 49 HMCS6800 Interface - Example 2

6800 Addr_

2
.

~
" ~ 0 0
8 '" J J CD :I
'" > 7' ~ cs. CS •. CSO RS

HD6850ACIA

~ w I~

-

::t
C
0)

§
%
c
0)
(XI

~

--HD68000,HD68000Y

• INTERRUPT OPERATION
During an interrupt acknowledge cycle while the processor

is fetching the vector, if VPA is asserted, the HD68000 wi1l
assert VMA and complete a normal HMCS6800 read cycle as
shown in Figure 50. The processor wi1l then use an internally
generated vector that is a function of the interrupt being serv­
iced. This process is known as autovectoring. The seven auto­
vectors are vector numbers 25 through 31 (decimal).

This operates in the same fashion (but is not restricted to)
the HMCS6800 interrupt sequence. The basic difference is that

ClK

A, -A.

A. - Au)-J

AS \ r--\
UOS \ r--\
lOS \ r--\
R/W \ I

DTACK '---1
o. -0" c::::::J
D. - 0, ()

FC. -FC, X y

Jlf[. - l"P"L; e,

there are six normal interrupt vectors and one NMI type vector.
As with both the HMCS6800 and the HD68000's normal
vectored interrupt, the interrupt service routine can be located
anywhere in the address space. This is due to the fact that
while the vector numbers are fixed, the contents of the vector
table entries are assigned by the user.

Since VMA is asserted during autovectoring, the HMCS6800
peripheral address decoding should prevent unintended ac­
cesses.

\..-

,-
,-
,-

L-
VPA

\~ __________________________ _J,___
VMA --~\ ,--

Interna! ~PC low Stacking--oI-l •• ------Autovector Operation _________ ~I •• lnternal
Process,ng--r- Processing

Figure 50 Autovector Operation Timing Diagram

• DATA TYPES AND ADDRESSING MODES
Five basic data types are supported. These data types are:
• Bits
• BCD Digits (4-bits)
• Bytes (8-bits)
• Word (16-bits)
• long Words (32-bits)

In addition, operations on other data types such as memory
addresses, status word data, etc., are provided for in the instruc­
tion set.

The 14 addressing modes, shown in Table 10, includs six

basic types:
• Register Direct
• Register Indirect
• Absolute
• Immediate
• Program Counter Relative
• Implied

Included in the register indirect addressing modes is the capa­
bility to do postincrementing, pred.,crementing, offsetting and
indexing. Program counter relative mode can also be modified
via indexing and offsetting.

139

HD68000,HD68000Y---

Table 10 Addressing Modes • INSTRUCTION SET OVERVIEW

Mode

Register Direct Addressing
Data Register Diredt
Address Register Direct

Absolute Data Addressing
Absolute Short
Absolute Long

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

Register Indirect Addressing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

I mmediata Data Addressing
Immediate
Quick Immediate

Implied Addressing
Implied Register

(NOTES)
EA = Effective Address
An = Address Register
Dn = Data Register
Xn = Address or Data Register used

as Index Regi.ter
SR = Status Register
PC = Program Counter
() = Contents of

Mnemonic Description

ABCD Add Decimal with Extend
ADD Add
AND Logical And
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right

Bee Branch Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test

Generation

EA=Dn
EA=An

EA = (Next Word)
EA = (Next Two Words)

EA = (PC) + d ..
EA = PC) + (Xn) + d.

EA= (An)
EA = (AN), An <-An + N
An <-An - N, EA = (An)
EA = (An) + d,.
EA = (An) + (Xn) + d.

DATA = Next Word(.)
Inherent Data

EA = SR, USP, SP, PC

d. = Eight-bit Offset
(displacement!

d ,. = Sixteen-bit Offset
(displacement)

N = 1 for Byte, 2 for
Words and 4 for Long
Words

..... = Replaces

Table 11

Mnemonic

The HD68000 instruction set is shown in Table 11. Some
additional instructions are variations, or subsets, of these and
they appear in Table 12. Special emphasis has been given to
the instruction set's support of structured high-level languages
to facilitate ease of programming. Each instruction, with few
exceptions, operates on bytes, words, and long words and most
instructions can use any of the 14 addressing modes. Combining
instruction types, data types, and addressing modes, over 1000
useful instructions are provided. These instructions include
signed and unsigned multiply and divide, "quick" arithmetic
operations, BCD arithmetic and expanded operations (through
traps).

The following paragraphs contain an overview of the form
and structure of the HD68000 instruction set. The instruc­
tions form a set of tools that include all the machine functions
to perform the following operations:

Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined
with the flexible addressing modes described previously pro­
vide a very flexible base for program development.

I nstruction Set

Description Mnemonic Description

EOR Exclusive Or PEA Push Effective Address
EXG Exchange Registers
EXT Sign Extend

RESET Reset External Devices
ROL Rotate Left without Extend

JMP Jump ROR Rotate Right without Extend
JSP Jump to Subroutine ROXL Rotate Left with Extend
LEA Load Effective Address ROXR Rotate Right with Extend
LINK Link Stack RTE Return from Exception
LSL Logical Shift Left RTR Return and Restore
LSR Logical Shift Right RTS Return from Subroutine

MOVE Move SBCD Subtract Decimal with Extend
MOVEM Move Multiple Registers Sec Set Conditional
MOVEP Move Peripheral Data STOP Stop

CHK Check Register Against Bounds MULS Signed Multiply SUB Subtract
CLR Clear Operand MULU Unsigned Multiply SWAP Swap Data Register Halves
CMP Compare NBCD Negate Decimal with Extend TAS Test and Set Operand
DBee Test Condition, Decrement and NEG Negate TRAP Trap

Branch NOP No Operation TRAPV Trap on Overflow
DIVS Signed Divide NOT One's Complement TST Test
DIVU UnSigned Divide OR Logical Or UNLK Unlink

140

--HD68000.HD68000Y

Table 12 Variations of Instruction Types

Instruction Variation Description Type

ADD ADD Add
ADDA Add Address
ADOQ Add Quick
ADDI Add Immediate
ADDX Add with Extend

AND AND Logical And
ANDI And Immediate

CMP CMP Compare
CMPA Compare Address
CMPM Compare Memory
CMPI Compare Immediate

EOR EOR Exclusive Or
EORI Exclusive Or Immediate

• ADDRESSING
Instructions for the HD68000 contain two kinds of infor­

mation: the type of function to be performed. and the location
of the operand(s) on which to perform that function. The
methods used to locate (address) the operand(s) are explained
in the following paragraphs.

Instructions specify an operand location in one of three
ways:

Register Specification - the number of the register is given
in the register field of the instruction.

Effective Address - use of the different effective address
modes.

Implicit Reference - the defmition of certain instructions
implies the use of specific registers.

• DATA MOVEMENT OPERATIONS
The basic method of data acquisition (transfer and storage)

is provided by the move (MOVE) instruction. The move instruc­
tion and the effective addressing modes allow both address
and data manipulation. Data move instructions allow byte.
word. and long word operands to be transferred from memory
to memory. memory to register. register to memory. and regis­
ter to memory. and register to register. Address move instruc·
tions allow word and long word operand transfers and ensure
that only legal address manipulations are executed. In addition
to the general move instruction there are several special data
movement instructions: move multiple registers (MOVEM).
move peripheral data (MOVEP). exchange registers (EXG).
load effective address (LEA). push effective address (PEA).
link stack (LINK). unlink stack (UNLK). and move quick
(MOVEQ). Table 13 is a summary of the data movement
operations.

• INTEGER ARITHMETIC OPERATIONS
The arithmetic operations include the four basic operations

of add (ADD). subtract (SUB). multiply (MUL). and divide
(DIY) as well as arithmetic compare (CMP). clear (CLR). and
negate (NEG). The add and subtract instructions are available
for both address and data operations. with data operations
accepting all operand sizes. Address operations are limited
to legal address size operands (16 or 32 bits). Data. address.
and memory compare operations are also available. The clear

141

Instruction Variation Description Type

MOVE MOVE Move
MOVEA Move Address
MOVEQ Move Quick
MOVE fromSR Move from Status Register
MOVE to.5R Move to Status Register
MOVE to CCR Move to Condition Codes
MOVE USP Move User Stack Pointer

NEG NEG Negate
NEGX Negate with Extend

OR OR Logical Or
ORI Or Immediate

SUB SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend

and negate instructions may be used on all sizes of data oper­
ands.

The multiply and divide operations are available for signed
and unsigned operands using word multiply to produce a long
word product. and a long word dividend with word divisor to
produce a word quotien with a word remainder.

Multiprecision and mixed size arithmetic can be accomplish­
ed using a set of extended instructions. These instructions are:
add extended (ADDX). subtract extended (SUBX). sign extend
(EXT). and negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition
codes as a result of a compare of the operand with zero is also
available. Test and set (TAS) is a synchronization instruction
useful in multiprocessor systems. Table 14 is a summary of
the integer arithmetic operations.

Table 13 Data Movement Operations

Instruction Operand Size Operation

EXG 32

LEA 32

LINK -

MOVE 8.16.32

MOVEM 16.32

MOVEP 16.32

MOVEa 8
PEA 32

SWAP 32

UNLK -
(NOTES)

s = source
d =: destination
[I = bit numbers

Rx <+ Ry

EA An

(An SP@-;
SP An;
SP+d SP

(EA)s EAd

(EA) An. On
An. On EA
(EA) on
Dn EA

#Xxx On

EA SP@-

on[31:16) ... on[15:0)

(An SP;
SP@+ An

@ - = indirect with predecren'lent
@+ = indirect with postdecrement

H068000,H068000Y---

Table 14 Integer Arithmetic Operations • INSTRUCTION FORMAT

Instruction Operand Size

8,16,32

AOD

16,32

ADDX 8,16,32
16,32

CLR 8,16,32
8,16,32

CMP

16,32
DIVS 32+ 16
OIVU 32+ 16

EXT
8 16
16 32

MULS 16·16 32
MULU 16·16 32
NEG 8,16,32
NEGX 8,16,32

8,16,32

SUB

16,32

SUBX 8,16,32

TAS 8
TST 8,16,32

(NOTE) [I = bit number

15 14 13

Operation

On + (EA) On
(EA+ On EA
(EA) + #Xxx EA
AN + (EA) An

Dx+ Dy+ x Ox
Ax@-+Ay@-+X Ax@

0 EA

On - (EA)
(EA) - #Xxx
Ax@+-Ay@+
An - (EA)

Dn/(EA) On

Dn/(EA) On

(On)s Onl6
(On) 16 On32

Dn.(EA)"'" On

On*(EA) On

0- (EA) EA

0- (EA) - X - EA

On - (EA) On
(EA) - On EA
(EA) - #Xxx EA
An - (EA) An

Ox - Oy - X Ox
Ax@--Ay@--X4Ax@

(EA) - 0,1 EA[7]

(EA) -0

12 11 10 9 8

Instructions are from one to five words in length, as shown
in Figure 51. The length of the instruction and the operation
to be performed is specified by the first word of the instruction
which is called the operation word. The remaining words
further specify the operands. These words are either immediate
operands or extensions to the effective address mode specified
in the operation word.

• PROGRAM/DATA REFERENCES
The HD68000 separates memory references into two class­

es: program references, and data references. Program refer­
ences, as the name implies, are references to that section of
memory that contains the program being executed. Data refer­
ences refer to that section of memory that contains data.
Generally, operand reads are froin the data space. All operand
writes are to the data space.

• REGISTER SPECIFICATION
The register field within an instruction specifies the register

to be used. Other fields within the instruction specify whether
the register selected is an address or data register and how the
register is to be used.

• EFFECTIVE ADDRESS
Most instructions specify the location of an operand by using

the effective address field in the operation word. For example,
Figure 52 shows the general format of the single effective ad­
dress is composed of two 3-bit fields: the mode field, and the
register field. The value in the mode field selects the different
address modes. The register field contains the number of a
register.

The effective address field may require additional informa­
tion to fully specify the operand. This additional information,
called the effective address extension, is contained in the
following word or words and is considered part of the instruc­
tion, as shown in Figure 51. The effective address modes are
grouped into three categories: register direct, memory address­
ing, and special.

7 6 5 4 3 2 1 0
Operation Word

(F irst Word Specifies Operation and Modes)

Immediate Operand
(If Any, One or Two Words)

Source Effective Address Extension
(If Any, One or Two Words)

Destination Effective Address Extension
(If Any, One or Two Words)

Figure 51 Instruction Format

5 4 3 2 o
Effective Address

Mode Register

Figure 52 Single-Effective-Address Instruction Operation Word General Format

142

---HD68000,HD68000Y

REGISTER DIRECT MODES Data Register Direct
These effective addressing modes specify that the operand

is in one of the 16 multifunction registers.
The operand is in the data register specified by the effective

address register field.

EXAMPLE

MPU MEMORY

$OOlFOO

iOOOOASCDi DO

OWL 31CO
MOVE DO, $1 FOO OWL+2 lFOO

Address Register Direct
The operand is in the address register specified by the effec­

tive address register field.

EXAMPLE

MPU MEMORY

1000012341 A4

OWL 33CC
I---------~

MOVE A4,$201000
OWL + 2 ~_....;00:..:..::2.:.0 _ ___1

OWL+4 1000
1------1

143

COMMENTS

• EA = On

• Machine Level Coding

MOVE DO, $1 FOO

0011 0001 1100 0000
.I" IIJ.;-., Move
Word

Absolute
Short

COMMENTS

• EA = An

Data
Register
Direct

• Machine Level Coding

MOVE A4, $201000

ITIl00~
Word Absol ute

Long
Address
Register
Direct

HD68000,HD68000Y

EXAMPLE COMMENTS

MPU MEMORY
.EA =An
• Address Register Sign Extended
• Machine Level Coding

MOVE $201000,A4

1000012341 A4 0011 1000 0111 1001

I 1[-Move ~
Word Absolute

Long
Reg#4

Address
Register
Direct

OWL 3879

MOVE $201000, A4
OWL+2 0020

OWL+4 1000

MEMORY ADDRESS MODES Address Register Indirect
These effective addressing modes specify that the operand

is in memory and provide the specific address of the operand.
The address of the operand is in the address register specified

by the register field. The reference is classified as a data refer­
ence with the exception of the jump and jump to subroutine
instructions.

EXAMPLE

MPU MEMORY

1000010001 AO

OWL 1-_..;;.30,;;.1;.,;0_--1

MOVE (AO), DO

144

COMMENTS

.EA~ (An)

• Machine Level Coding

MOVE (AO), DO

~ jiOOO¥OQ.1:' ~
Word ~

Register
Direct

Reg #0 ARI
(Address
Register
Indirect)

-------------------------------HD68000,HD68000Y

Address Register Indirect With Postinerement
The address of the operand is in the address register specified

by the register field. After the operand address is used, it is
incremented by one, two, or four depending upon whether
the size of the operand is byte, word, or long word. If the

address register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to
keep the stack pointer on a word boundary. The reference is
classified as a data reference.

COMMENTS

MPU MEMORY
• EA = (An); An + M-An

Where An-.Address Register

00000100 A4

00000102

MOVE (A4) +,$2000

OWL 31DC
I-----~

OWL + 2 1-_...;;2;.;00.;;..;.0_-1

M -1,2,or4
(Depending Whether
Byte, Word, or
Long Word)

• Machine Level Coding

MOVE (A4) +, $2000

I r0001

1r:

101 ~ Move
Word Absolute

Short ARI with
Increment

Address Register Indirect With Predecrement
The address of the operand is in the address register specified

by the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether
the operand size is byte, word, or long word. If the address

register is the stack pointer and the operand size· is byte, the
address is decremented by two rather than one to keep the
stack pointer on a word boundary. The reference is classified
as a data reference.

EXAMPLE

MPU MEMORY

00000100 A3

OOOOOOFE

OWL 31E3

MOVE - (A3),$4000
OWL + 2 ~--4-000----i

145

COMMENTS
• An - M_An; EA = (An)

Where An_Address Register
M -1,2,or4

(Depending Whether
Byte, Word, or
Long Word)

• Machine Level Coding

MOVE - (A3), $4000

:tI0001 11~10011
Move with
Word Pred ie·

Absolute rament
Short

Reg #3

HD68000,HD68000Y------------------------------·-----------------------------------

Address Register Indirect With Displacement
This address mode requires one word of extension. The ad­

dress of the operand is the sum of the address in the address

register and the sign-extended 16-bit displacement integer in
the extension word. The reference is classified as a data refer­
ence wlth the exception of the jump to subroutine instructions.

MPU

1000010001 AD

MOVE $100(AOI,$30oo

AQDRESS
CALCULATION:
AO - 00001000
d,. - 00000100

00001100·

MEMORY

$1100 I--";~=-__ ~

$3000 I-__ ~=-__ -I

OWL 1-_.::3~1 E:::8::"""_-I

OWL+21-_~0~lOO~_--I

OWL+41-_~3~000~_--1

COMMENTS
• EA = An +d,.

Where An -Pointer Register
d,. -16·Bit Displacement

• d,. Displacement is Sign Extended
• Machine Level Coding

MOVE $100(AOI,$3000

:r
Move
Word

0001 1110 1000

.::::c- t I-Absolute Reg #0
Short

ARI
with
Displacement

Address Register Indirect With Index
This address mode requires one word .of extension. The

address of the operand is the sum of the address in the address
register, the sign-extended displacement integer in the low order

eight bits of the extension word, and the contents of the index
register. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

MPU

100002BDCI DO

1000020001 AO

MOVE $04(AO, 001,
$1000

ADDRESS
CALCULATION:
AO - 00002000
DO • 00002BDC
d -00000004

ooo04BEO

EXAMPLE

MEMORY

OWL .31FO
OWL+2r--~0~004~--~

OWL+41-__ 1~00~0::""" __ -I

146

COMMENTS
• EA - An + Rx + d.

Where
An _ Pointer Register
Rx - Designated Index Regilter,

(Either Address Register or
Data Registed

d. _ 8·Bit Displacement
• Rx & d. are Sign Extended
• Rx mey be Word or Long Word

Long Word may be Designated with Rx.L
• Machine Level Coding

MOVE $04(AO, 001, $1000

0011
---=r
Move
Word

0001 1111 0000

~I:.::r::.-Absolute Reg #0
Short

ARI
with
Index

0000 0000 0000 0100

olI wfra1 Jr.ii
Reg #0 onstant Zeros

---HD68000,HD68000Y

SPECIAL ADDRESS MODE Absolute Short Address
The special address modes use the effective address register

field to specify the special addressing mode instead of a register
number.

This address mode requires one word of extension. The ad·
dress of the operand is the extension word. The 16-bit address
is sign extended before it is used. The reference is classified
as a data reference with the exception of the jump and jump
to subroutine instructions.

EXAMPLE COMMENTS
• EA = (Next Word)

MPU MEMORY • 16-Bit Word is Sign Extended

~ • Machine Level Coding

NOT.L$2000

$2000 FFFF 0000 0100 0110 1011 1000

t t.w~ $2002 OOOO FFFF
Absolute Not Instruction Short

OWL 46B8

OWL+2 2000
NOT.L$2000

EXAMPLE COMMENTS
• EA = (Next Word)

MPU MEMORY • 16-Bit Word is Sign Extended

$1000
• Machine Level Coing

MOVE $1000, $2000

$2000 0011 0001 1111 1000 -.r-I~ Move
Word Short

Absolute
Short

MOVE $1000, $2000
OWL 31F8

OWL+2 1000

OWL+4 2000

147

HD68000.HD68000Y--

Absolute Long Addnss
This address mode requires two words of extension. The

address of the operand is developed by the concatenation of
the extension words. The high-<>rder part of the address is the

EXAMPLE

fust extension word; the low-order part of the address is the
second extension word. The reference is classified as a data
reference with the exception of the jump and jump to sub­
routine instructions.

COMMENTS
• EA - (Next Two Words)

MPU MEMORY

NEG $014000

OWL 4479

OWL + 2 1-__ ..:.°00;;.;;.,;1 __ -1
OWL + 4 1-__ ...;.400;;.;;.,;0 __ -1

• Machine Lavel Coding

NEG $014000

0100 0100 01~

=roo:.. k. ---.L..
NEG Absolute
I nstruction Long

Program Counter With Displacemant
This address mode requires one word of extension. The

address of the operand is the sum of the address in the program
counter and the sign-extended 16-bit displacement integer in

the extension word. The value in the program counter is the ad­
dress of the extension word. The reference is classified as a pro­
gram reference.

MPU

MOVE (LABEL), 00

ADDRESS
CALCULATION:
PC = 0000B002

EXAMPLE

MEMORY

d = 00001000 < LABEL> $9002
00009002 1----------1

148

COMMENTS

• EA = (PC) + dl6
• d .. is Sign Extended
• Machine Laval Coding

MOVE (LABEL). 00

I
Move
Word

---HD68000,HD68000Y

Program Counter With Index
This address mode requires one word of extension. This

address is the sum of the address in the program counter, the
sign-extended displacement integer in the lower eight bits of
the extension word, and the contents of the index register.
The value in the program counter is the address of the extension
word. This reference is classified as a program reference.

EA = (PC) + (Rx) + d •.

(NOTE)

Extension Word

7654320

Displacement Integer
Beginning }
Addr ... of PC + d. D/A : Data Register = 0, Address Register = 1
Data Table Register: Index Register Number

W/L : Sign-extented, low order Word integer

Desir<:d D!,ta I PC + d + Rx
LocatIon In Table •

EXAMPLE

MPU MEMORY

IXXXX3456IDO $8000 ~
$8002~

<CA~~,~

MOVE (LABEL) (AO), DO

ADDRESS $9022 3456
CALCULATIONS: 1------;
PC = 00008002
AO = 00001010

d = 00000010
00009022

149

in Index Register = 0
Long Word in I ndex Register = 1

COMMENTS
• EA = (PC) + (Rx) + d.

Where
PC-Current Program Counter
Rx_Designated Index Register
(Either Data or Address Register)
d. _8·Bit Displacement

• Rx and d. are Sign Extended
• Rx may be Word or Long Word

Long Word is Designated with Rx.L
• Machine Level Coding

MOVE (LABEL) (AO), DO

0011 ---..r-
Move
Word

0000 0011 1011

~- P!With
~Index
Data Register
Direct

1000 0000 00010000

Add!!IT T 8litbiSPlacement
RegIster _

Register Constant Zeros
Number

;-1 n-;dL-ex-L;-"e--n-::gt""h

HD68000,HD68000Y-------------------------------

Immediate Data
This address mode requires either one or two words of ex­

tension depending on the size of the operation.
Byte operation - operand is low order byte of extension

word
Word operation - operand is extension word
Long word operation - operand is in the two extension

words, high-order 16 bits are in the fust extension word,
low-order 16 bits are in the second extension word.

MPU MEMORY

MOVE #$1000, AO

EXAMPLE

MPU MEMORY

MOVEQ #$5A, 03

150

Extension Word

15 87 o
10 0 0 0 0 0 0 0: Byte

15 or o
Word

15 or 0
~ High Order 1 ---- LongWord--- ---- - r-- - --- ---.. owOrder

COMMENTS
• Data = Next Word (s)
• Data is Sign Extendad

for Address Register
but not Data Register

• Machine Leval Coding

MOVE #$1000, AO

I
Move
Word

~1J011Lj-1Q2
Reg #0 Immadiate

Data

COMMENTS
• Inherent Data

Address
Register
DireCt

• Data is Sign Extandad to Long Word
• Destination must be a Data Register

• Machine Level Coding

MOVEQ #$5A, 03

0111 011 0 0101 1010

I ~ J..ad Im!adiate
Move Zero Data
Quick

---HD68000,HD68000Y

Condition Codes or Status Register
A selected set of instructions may reference the status regis-

ter by means of the effective address field. These are:
ANDIto CCR
ANDIto SR
EORIto CCR
EORIto SR
ORItoCCR
ORIto SR

MPU

EXAMPLE

$1020

MEMORY

0010

COMMENTS
• EA = (Next Word)
• Note: This Example is a Privileged

Instruction

• Machine Level Coding

MOVE $1020, SR

0100 0110 1111 1000

:"1';'"
0010 ~

f
Move to SR
~
Absolute
Short

OWL 46F8

MOVE $1020, SR
OWL+2 1020

• EFFECTIVE ADDRESS ENCODING SUMMARY
Table IS is a summary of the effective addressing modes

discussed in the previous paragraphs.

Table 15 Effective Address Encoding Summary

Addressing Mode Mode Register

Data Register Direct 000 register number

Address Register Direct 001 register number

Address Register Indirect 010 register number

Address Register Indirect with 011 register number Postincrement

Address Register Indirect with
100 register number Predecrement

Address Register I ndirect with 101 register number Displacement

Address Register Indirect with 110 register number Index

Absolute Short 111 000

Absolute Long 111 001

Program Counter with 111 010 Displacement

Program Counter with Index 111 011

Immediate 111 100

• IMPLICIT REFERENCE
Some instructions make implicit reference to the program

counter (PC), the system stack pointer (SP), the supervisor

stack point~r (SSP), the user stack pointer (USP), or the status
register (SR).

SYSTEM STACK
The system stack is used implicitly by many instructions;

user stacks and queues may be created and maintained through
the addressing modes. Address register seven (A 7) is the system
stack pointer (SP). The system stack pointer is either the super­
visor stack pointer (SSP) or the user stack pointer (USP), de­
pending on the state of the S-bit in the status register. If the
S-bit indicates supervisor state, SSP is the active system stack
pointer, and the USP cannot be referenced as an address re­
gister. If the S-bit indicates user state, the USP is the active
system stack pointer, and the SSP cannot be referenced. Each
system stack fills from high memory to low memory.

USP -

SYSTEM STACK POINTERS

-
User Stack

A7 -

-_/
• Accessed when S = 0
• PC is Stacked on

Subroutine Cells in
User State

• IncreaSing Addresses

SSP --

Supervisor Stack

A7' - ------

• Accessed when S = 1
• PC is Stacked on

Subroutine Calls in
Supervisor State

• Used for Exception
Processing

151

HD68000,HD68000Y--

The address mode SP @- creates a new item on the active
system stack, and the address mode SP @+ deletes an item from
the active system stack.

The program counter is saved on the,active system stack on
subroutine calls, and restored from the active system stack on
returns. On the other hand, both the program counter and the
status register are saved on the supervisor stack during the
processing of traps and interrupts. Thus, the correct execution
of the supervisor state code is not dependent on the behavior
of user code and user programs may use the user stack pointer
arbitrarily.

In order to keep data on the system stack aligned properly,
data entry on the stack is restricted so that data is always put
in the stack on a word boundary. Thus byte data is pushed on
or pulled from the system stack in the high order half of the
word; the lower half is unchanged.

USER STACKS
User stacks can be implemented and manipulated by employ­

ing the address register indirect with postincrement and pre­
decrement addressing modes. Using an address register (on of
AO through A6), the user may implement stacks which are filled
either from high memory to low memory, or vice versa. The
important things to remember are:

- using predecrement, the register is dEicremented before its
contents are used as the pointer into the stack,

- using postincrement, the register is incremented after its
contents are used as the pointer into the stack,

- byte data must be put on the stack in pairs when mixed
with word or long data so that the stack will not get
misaligned when the data is retrieved. Word and long
accesses must be on word boundary (even) addresses.

Stack growth from high to low memory is implemented with
An@- to push data on the stack,
An@+ to pun data from the stack.

After eigher a push or a pun operation, register An points to
the last (top) item on the stack. This is illustrated as:

low memory

(freel

An_ top of steck

· '7 · '" ·
bottom of steck

high memory

Stack growth from low to high memory is implemented with
An@+ to push data on the stack,
An@- to pun data from the stack.

After either a push or a pull operation, register An points to
the next available space on the stack. This is illustrated as:

lowmemorv

bottom of steck

· · ·
top of stack

An- (freel

high memory

QUEUES
User queues can be implemented and manipulated with the

address register indirect with postincrement or predecrement
addressing modes. Using a pair of addreSs registers (two of AO
through A6), the user may implement queues which are filled
either from high memory to low memory, or vice versa. Because
queues are pushed from one end and pulled from the other, two
registers are used: the put and get pointers.

Queue growth from low to high memory is implemented with
Aput@+ to put data into the queue,
Aget@+ to get data from the queue. .

After a put operation, the put address register points to the
next available space in the queue and the unchanged get address
register points to the next item to remove from the queue.
After a get operation, the get address register points to the next
item to remove from the queue and the unchanged put address
register points to the next available space in the queue. This is
illustrated as:

low memory

last get (freel

Aget_ next get

• ? · ·
last put

(freel

high memory

If the queue is to be implemented as a circular buffer, the
address register should be checked and, if necessary, adjusted
before the put or get operation is performed. The address regis­
ter is adjusted by subtracting the buffer length (in bytes).

Queue growth from high to low memory is implemented with
Aput@- to put data into the queue,
Aget@ - to get data from the queue.

After a put operation, the put address register points to the
last item put in the queue, and the unchanged get address
register points to the last item removed from the queue. After a
get operation, the get address register points to the last item
removed from the queue and the unchanged put address register
points to the last item put in the queue. This is illustrated as:

152

---HD68000,HD68000Y

low memory

(free)

Aput_ last put

· · ·
next get

Aget- last get (free)

high memory

If the queue is to be implemented as a circular buffer, the
get or put operation should be performed first, and then the
address register should be checked and, if necessary, adjusted.
The address register is adjusted by adding the buffer length
(in bytes).

• LOGICAL OPERATIONS
Logical operation instructions AND, OR, EOR, and NOT

are available for all sizes of integer data operands. A similar
set of immediate instructions (AND!, ORI, and EORI) provide
these logical operations with all sizes of immediate data. Table
16 is a summary of the logical operations.

Table 16 Logical Operations

Instruction Operand Size Operation

DnA(EA)~ On
AND 8,16,32 (EA)ADn~ EA

(EA)A#XXX~ EA

On v (EA)- On
OR 8,16,32 (EA) v Dn~ EA

(EA) v #xxx - EA

EOR 8,16,32
(EA) .. Dv- EA
(EA) .. #XXX - EA

NOT 8,16,32 - (EA)- EA

[NOTE] - = invert

• SHIFT AND ROTATE OPERATIONS
Shift operations in both directions are provided by the

arithmetic instructions ASR and ASL and logical shift instruc­
tions LSR and LSL. The rotate instructions (with and without
extend) available are ROXR, ROXL, ROR, and ROL. All
shift and rotate operations can be performed in either registers
or memory. Register shifts and rotates support all operand
sizes and allow a shift count specified in the instruction of
one to eight bits, or 0 to 63· specified in a data register.

Memory shifts and rotates are for word operands only and
allow only single-bit shifts or rotates. Table 17 is a summary
of the shift and rotate operations.

Table 17 Shift and Rotate Operations

Instruction Operand Size Operation

ASl 8,16,32 @£H. 1_0
ASR 8,16,32 c:L .~
lSl 8,16,32 ~ • /-0
lSR 8,16,32 0-1 .~
ROl 8,16,32 ~. P
ROR 8,16,32 L:j • i4TI
ROXl 8,16,32 ern· I4[bJ
ROXR 8,16,32 I:[ffi • fl.cD

• BIT MANIPULATION OPERATIONS
Bit manipulation operations are accomplished using the

following instructions: bit test (BTST), bit test and set (BSET),
bit test and clear (BCLR), and bit test and change (BCHG) .
Table 18 is a summary of the bit manipulation operations.
(Bit 2 of the status register is Z.)

Table 18 Bit Manipulation Operations

Instruction Operand Size Operation

BTST 8,32 - bit of (EA)-Z

BSET 8,32 C bit of (EA) - Z;
l-bitof EA

BClR 8,32 (: bit of (EA) - Z;
0- bit of EA

BCHG 8,32 (- bit of (EA)-Z;
- bit of (EA) ~ bit of EA

• BINARY CODED DECIMAL OPERATIONS
Muitiprecision arithmetic operations on binary coded deci­

mal numbers are accomplished using the following instructions:
add decimal with extend (ABeD), subtract decimal with extend
(SBeD), and negate decimal with extend (NBCD). Table 19 is
a summary of the binary coded decimal operations .

Table 19 Binary Coded Decimal Operations

Instruction Operand Size Operation

ABCD 8
Dx 10 + OYID + X - Ox
Ax@ - •• + Ay@ - •• + X - Ax@

SBCD 8 Dx 10 -OVID -X - Ox
Ax@ - •• - Ay@ - l' - X - Ax@

NBCD 8 O-(EA) •• -X - EA

153

HD68000.HD68000Y--

• PROGRAM CONTROL OPERATIONS
Program control operations are accomplished using a series

of conditional and unconditional branch instructions and return
instructions. These instructions are summarized in Table 20.

The conditional instructions provide setting and branching
for the following conditions:

CC - carry clear
CS - carry set
EQ - equal

LS
LT
MI
NE
PL
T
VC
VS

low or same
less than
minus

F - never true
GE - greater or equal
GT - greater than

not equal
plus
always true
no overflow
overflow

HI - high
LE - less or equal

Table 20 Program Control Operations

I nstructlpn

Conditional

Bee

DBee

Sec
Unconditional
BRA

BSR

JMP
JSR

Rltums
RTR
RTS

Operation

Branch conditionallv (14 conditions)
B· and 160blt displacement

Test condition, dec;rement. and branch
160bit displacement

Set byte condltionallv (16 conditions)

Branch alwavs
8-and 160blt displacament

Branch to subroutine
8- and 160bit displacement

Jump
Jump to subroutine

Return and restore condition codas
Return from subroutine

• SYSTEM CONTROL OPERATIONS
System control operations are accomplished by using privi­

leged instructions, trap generating instrpctions, and instructions.
that use or modify the status register. These instructions are
summarized in Table 21.

Table 21 System Control Operations

Instruction

Privileged
RESET
RTE
STOP
ORI to SR
MOVE USP
ANDI toSR
EORI toSR
MOVE EA to SR

Trap GeneratilllJ
TRAP
TRAPV
CHK
Status Register
ANDI toCCR
EORI to CCR
MOVE EA to CCR
ORI to CCR
MOVE SR to EA

Operetion

Reset external devices
Return from exception
Stop progrem execution
Logical OR to status register
Move user stack pointer
Logical AN 0 to status register
Logical EOR to status register
Load new status register

Trap
Trep on overflow
Check register against bounds

Logical AN 0 to condition codas
Logical EOR to condition codes
Load n!lw condition codes
Logical OR to condition codes
Store status register

• BRANCH INSTRUCTION ADDRESSING

BRANCH INSTRUCTION FORMAT

Operetion Word

Extension Word

15 8 7
Operation Code 8 bit Displacement

16 bit Displacement if 8 bit Displacement = 0

o

RELATIVE, FORWARD REFERENCE, 8·BIT OFFSET

EXAMPLE COMMENTS
I Offset Contained in 8 LSBs of Op Word

MPU MEMORY • Offset is 2's Complement Number

BEQNEXT

PC+2=5002
d =OOIE

5020

$5020 Next OP Code

154

• If Offset = 0 then Word Offset is Used
• Machine Level Coding

BEQ NEXT

0110 0111 0001 1110

BrZnchl ;k
Branch If
Equal

---HD68000,HD68000Y

RELATIVE, 8ACKWARD REFERENCE 8-BIT OFFSET

MPU

BNE NEXT

PC+2=4022
d =£!:Q£

4000

EXAMPLE

MEMORY

$4020 t-__ 66_O_E_-I

COMMENTS
• Offset Contained in a LSBs

of OpWord
• Offset is 2's Complement Number
• If Offset = 0 then Word

Offset is Used
• Mach ine Level Coding

BNE NEXT
0110 0110 1101 1110

~L~
Branch If
Not Equal

RELATIVE, FORWARD REFERENCE, l6-BIT OFFSET

COMMENTS
• Offset in Next Word

MPU MEMORY • a-Bit Offset Field = 0
• 2's Complement Offset

8
$40oo~
$4002~

• Machine Level Coding
Bee NEXT
0110 0100 0000 0000

B?:h~ero ·Offset

Branch If
Carry Clear

Bee NEXT

PC+2=4002
d=+10oo

5002

$5002 Next OP Code

• CONDITION CODES COMPUTATION
This provides a discussion of how the condition codes were

developed, the meanings of each bit, how they are computed,
and how they are represented in the instruction set details.

• CONDITION CODE REGISTER
The condition code register portion of the status register con­

tains five bits:
N - Negative
Z - Zero

v - Overflow
C - Carry
X - Extend

The first four bits are true condition code bits in that they
reflect the condition of the result of a processor operation.
The X-bit is an operand for multiprecision computations_ The
carry bit (C) and the multiprecision operand extend bit (X)
are separate in the HD68000 to simplify the programming
model.

155

HD68000,HD68000Y---

• CONDITION CODE REGISTER NOTATION
In the instruction set details, the description of the effect on

the condition codes is given in the following fonn:
Condition Codes:

Where
N (negative)

Z (zero)
V (overflow)

C (carry)

x N Z v c

set if the most significant bit of the result
is set. Cleared otherwise.
set ifthe result equals zero. Cleared otherwise.
set if there was an arithmetic overflow. This
implies that the result is not representable
in the operand size. Cleared otherwise.
set if a carry IS generated out of the most
significant bit of the operands for an addition.
Also set if a borrow is generated in a subtrac­
tion. Cleared otherwise.

x (extend) transparent to data movement. When affect­
ed, it is set the same as the C-bit.

The notational convention that appears in the representation
of the condition code registers is:

* set according to the result of the operation
not affected by the operation

o cleared
I set
U undefmed after the operation

• CONDITION CODE COMPUTATION
Most operations take a source operand and a destination

operand, compute, and store the result in the destination
location. Unary operations take a destination operand, com­
pute, and store the result in the destination location. Table 22
details how each instruction sets the condition codes.

Table 22 Condition Code Computations

Operations

ABCD

ADD.ADDI,
ADDO

ADDX

AND,ANDI,
EOR.EORI,
MOVEO, MOVE,
OR,ORI,
CLR, EXT,
NOT. TAS, TST

CHK

SUB,SUBI
SUBO

SUBX

CMP,CMPI.
CMPM

OIVS,OIVU

MULS,MULU

SBCO, NBCO

NEG
NEGX

BTST, BCHG,
BSET, BCLR

ASL

ASL (, = 0)

LSL, ROXL

LSR (, = 0)

ROXL (,=0)

ROL
ROL (, =0)

ASR, LSR, ROXR

ASR, LSR (, = 0)

ROXR (,=0)

ROR

ROR (,=0)

- Not affected
U Undefined
? Other- see Special Definition

X N

· U

· ·
· ·

· -

· -· ·
· ·

· -

· - · -· U

· · · ·
- -

· ·
,

· -· · · - · - · - · -· · · - · - · - · -

Z V C

? U ?

· ? ?

? ? ?

· 0 0

U U U

· ? ?

? ? ?

· ? ?

· ? 0

· 0 0

? U ?

· ? ?
? ? ?

? - -

· ? ?

· 0 0 · 0 ? · 0 0

· 0 ?

· 0 ? · 0 0

· 0 ? · 0 0 · 0 ?

· 0 ? · 0 0

• General Case:
X=C
N = Rm
Z = Riii· ... • i'Ili

156

Special Definition

C = Decimal Carry
Z =Z' Rm· ... • RO

V=Sm'Dm'Rm+Sm'Dm'Rm
C = Sm • Om + Rm • Om + Sm • Rm

V = Sm • Om • Ifrii + Siij • Om • Rm
C = Sm • Om + Ifrii • Om + Sm • Rm
Z = Z' Rm' RO

V = Siij • Om • Am + Sm • om . Rm
C = Sm • om + Rm • IJrii + Sm • Rm

V=Siij'Om'Rm+Sm'Om'Rm
C = Sm • Om + Rm • Om + Sm • Rm
Z = Z' Rm - RO

V=Siij'Om'Rm+Sm'Om'Rm
C = Sm • Om + Rm • Om + Sm • Rm

V = Division Overflow

C = Decimal Borrow
Z =Z' Rm· ... • RO

V = Om • Rm, C = Om + Rm
V = Om .:1!m, C =.Q.m + Rm
Z =Z' Rm' RO

Z =On

V = Om' (Om_' + ... + t>;;;:;)
+ Om • (Om_' + ... + Om_,)

C = Dm~r+1

C = Dm_r+1

C=X

C = Dm_r+1

C =0,_1

C=X

C -0,_1

Sm - Source operand molt lignificant bit
Om - DeBtinatlon operand most significant bit
Rm - Result bit mOlt lignificant bit
n - bit number
r - shift amount

---HD68000,HD68000Y

• CONDITIONAL TESTS
Table 23 lists the condition names, encodings, and tests

for the conditional branch and set instructions. The test associ­
ated with each condition is a logical formula based on the
current state of the condition codes. If this formula evaluates to

1, the condition succeeds, or is true. If the formula evaluates to
0, the condition is unsuccessful, or false. For example, the T
condition always succeeds, while the EQ condition succeeds
only if the Z bit is currently set in the condition codes.

Table 23 Conditional Tests

Mnemonic Condition

T true

F false

HI high

LS low or same

CC carry clear

CS carry set

NE not equal

EQ equal

VC overflow clear

VS overflow set

PL plus

MI minus

GE greater or equal

LT less than

GT greater than

LE less or equal

• INSTRUCTION SET
The following paragraphs provide information about the

addressing categories and instruction set of the HD68000.

• ADDRESSING CATEGORIES
Effective address modes may be categorized by the ways

in which they may used. The following classifications will
be used in the instruction definitions.
Data If an effective address mode may be used to refer

to data operands, it is considered a data address­
ing effective address mode.

Memory If an effective address mode may be used to refer
to memory operands, it is considered a memory
addressing effective address mode.

Alterable If an effective address mode may be used to refer
to alterable (writeable) operands, it is considered
an alterable addressing effective address mode.

Control If an effective address mode may be used to refer
to memory operands without an associated size, it
is considered a control addressing effective address
mode.

Table 24 shows the various categories to which each of the
effective address modes belong. Table 25 is the instruction set
summary.

The status register addressing mode is not permitted unless
it is explicitly mentioned as a legal addressing mode.

These categories may be combined so that additional, more
restrictive, classifications may be dermed. For example, the
instruction descriptions use such classifications as alterable

Encoding Test

0000 1
0001 0
0010 C·Z

0011 C+Z

0100 C

0101 C

0110 'Z
0111 Z

1000 V
1001 V

1010 N

1011 N

1100 N·V+N·V

1101 N·V+N·v

1110 N·V·Z+N·V·Z

1111 Z+N·V+N·V

memory or data alterable. The former refers to those address­
ing modes which are both alterable and memory addresses, and
the latter refers to addressing modes which are both data and
alterable.

• INSTRUCTION PRE-FETCH
The HD68000 uses a 2-word tightly-coupled instruction

prefetch mechanism to enhance performance. This mechanism
is described in terms of the microcode operations involved.
If the execution of an instruction is dermed to begin when the
microroutine for that instruction is entered, some features of
the prefetch mechanism can be descnbed.

157

1) When execution of an instruction begins, the operation
word and the word following have already been fetched.
The operation word is in the instruction decoder.

2) In the case of multi-word instructions, as each addi­
tional word of the instruction is used internally, a fetch
is made to the instruction stream to replace it.

3) The last fetch from the instruction stream is made when
the operation word is discarded and decoding is started
on the next instruction.

4) If the instruction is a single-word instruction causing a
branch, the second word is not used. But because this
word is fetched by the preceding instruction, it is im­
possible to avoid this superfluous fetch. In the case of
an interrupt or trace exception, both words are not used.

5) The program counter usually points to the last word
fetched from the instruction stream.

HD68000,HD68000Y---

Table 24 Effective Addressing Mode Categories

Effective
Address Mode Register
Modes

On 000 register number
An 001 register number
An@ 010 register number

An@+ 011 register number
An@- 100 register number
An@(d) 101 register number

An@(d,ix) 110 register number
xxx.W 111 000
xxx.L 111 001
PC@(d) 111 010
PC@(d,ix) 111 011
#xxx 111 100

The following example illustrates many of the features of
,instruction prefetch. The contents of memory are assumed to
be as illustrated in Figure 53.

RESTART:

LABEL:

ORG

DC.L
DC.L

ORG
DC.L

ORG

NOP

o
INiSSP
RESTART

INTVECTOR
INTHANDLER

BRA.S LABEL
ADD.W 00,01

SUB.W
CMP.W
SGE.B

DISP(AO), A1
02,03
07

INTHANDLER:
MOVE.W LONGADR1, LONGADR2
NOP
SWAP.W

Data
Addressing Categories

Memory Control

X - -
- - -
X X X

X X -
X X -
X X X

X X X
X X X
X X X

X X X
X X X
X X -

DEFINE RESTART VECTOR

INITIAL SYSTEM STACK POINTER
RESTART SYSTEM ENTRY POINT

Alterable

X
X
X

X
X
X
X
X
X

-
-
-

DEFINE AN INTERRUPT VECTOR
HANDLER ADDRESS FOR THIS VECTOR

SYSTEM RESTART CODE

NO OPERATION EXAMPLE
SHORT BRANCH
ADD REGISTER TO REGISTER

SUBTRACT REGISTER INDIRECT WITH OFFSET
COMPARE REGISTER TO REGISTER
See TO REGISTER

MOVE WORD FROM AND TO LONG ADDRESS
NO OPERATION
REGISTER SWAP

Figure 53 Instruction Prefetch Example, Memory Contents

The sequence we shall illustrate consists of the power-up
reset, the execution of NOP, BRA, SUB, the taking of an
interrupt, and the execution of the MOVE.W xxx. L to yyy.L.

The order of operations described within each microroutine is
not exact, but is intended for illustrative purpose only.

158

HD68000,HD68000Y

Microroutine Operation Location Operand

Reset Read 0 SSP High
Read 2 SSP Low
Read 4 PC High
Read 6 PC Low
Read (PC) NOP
Read +(PC) BRA
<begin NOP>

NOP Read +(PC) ADD
<begin BRA>

BRA PC=PC+d
Read (PC) SUB
Read +(PC) DISP
<begin SUB>

SUB Read +(PC) CMP
Read DISP(AO) <sre>
Read +(PC) SGE
<begin CMP> <take INT>

INTERRUPT Write -(SSP) PC Low
Read <INT ACK> Vector #
Write -(SSP) SR
Write -(SSP) PC High
Read (VR) PC High
Read +(VR) PC Low
Read (PC) MOVE
Read +(PC) xxx High
<begin MOVE>

MOVE Read +(PC) xxx Low
Read +(PC) yyy High
Read xxx <sre>
Read +(PC) yyy Low
Write yyy <dest>
Read +(PC) NOP
Read +(PC) SWAP
<begin NOP>

Figure 54 Instruction Prefetch Example

• DATA PREFETCH
Normally the HD68000 prefetches only instructions and not

data. However, when the MOVEM instruction is used to move
data from memory to registers, the data stream is prefetched in

MOVE TWO
LONGWORDS

MOVEM.L A, DO/D1 INTO REGISTERS

A DC.W 1 WORD 1
B DC.W 2 WORD 2
C DC.W 3 WORD3
D DC.W 4 WORD4
E DC.W 5 WORD 5
F DC.W 6 WORD6

Figure 55 MOVEM Example, Memory Contents

159

order to optimize performance. As a result, the processor reads
one extra word beyond the higher end of the source area. For
example, the instruction sequence in Figure S5 will operate as
shown in Figure 56.

Assume Effective Address Evaluation is Already Done

Microroutine Operation Location Other Operations

MOVEM Read A
Prepare to Fill DO

Read B A-+DOH
Read C B -+DOL

Prepare to Fill D1
Read D C-+D1H
Read E D -+D1L

Detect Register List Complete

Figure 56 MOVEM Example, Operation Sequence

HD68000,HD68000Y---

On -. Add •• Sl ..
Operation M # -

Mea B s:D'l d ~ 2 6
Idd()glls "~ I M 1 d,
AIID B'. s:(}1 d ~
Add d:{Jl , 2 ,
BInary 1 5"Dl d ~

d'Dl S ~ 1 8
AlIDA • H41 , 2 8
Add Address 1 d'M S 2 8
AIIDI B'W s'lmm d 4 8
Add Immed 1 s'lmm d ~ 6 16 - B'W s:lmm3 d 2 4
Add QUick 1 s"lmm3 d 2 8
AIIDX BfW s'll1 d 2 4
Md Multi " IMI d,
preClston 1 s=[)1 d, 2 8

s'IMI d
AIID B!W s=D1 d
Loglcal.o'lld d,il'1 s' 2 • 1 s'01 d,

d,1» s' 2 8
NIDI B" s"lmm d, • 8
.\ld Immed 1 s,imm d, 6 16
ASL, ASR B'. count=!)) d, 1 6+",
Arithmetic cQunt=#1-8d= 1 6+'"
911ft l CGlIflloi)! d, 2 8+'"

cQunt=#1-8d, 2 8+'"
Memory W count=l d,
10K B blt#=il1 d ~
Test and bltit=lmrn d,
Cllange 1 bIt:li=tl1 d, 2 <8

bIt#=Jmm d ~ , <12
10111 B bltil:~[)j d,
Test and bitll:~lmm d,
Oear 1 bit:lt=1l1 d, 2 <10

bilit=lmm d ~ , <14
ISET B b/t.t"=[h do
Test and blt1t:=lmm d ~
Set 1 brt#=Dn d, 2 <8

blt#~lmm d, 4 <12
ITST B bII:1i=1l1 d,
&1 Test bIt:li~lmm d,

1 bit it~Dn d, 2 6
brt#=lmm d, , fO

CH. • <40
ClleckReg· d"" '0 2
Isler Agamst (bound) 10
&unds
CIII B'. do 2 4
aear {\Ierand l do 2 6
a ... 8/W dclll s= 2 4
Compare l Hh s= 2 6
Binary
a ... A • d~hl So 2 6
Compare 1 doM So 2 6
Address
CMI'f B'W s,/mm d, , 8
Compare /mm 1 s=lmm d, 6 14
a_ B!W S-(M)" d
Compare l s,(.AIl) + d'
Memory
DIWS • d=1ll s ~ 2 <158
DIvide Signed
DIVU • d:1Jn s, 2 < 140
DIVide
lklSlgned
E", B/W so/)! d, 2 ,
bc\uslveOO 1 s=!)) d, 2 8
Logical
EDRI B/W s=/mm d, 4 8
£Xc\usl~e OR 1 s~lmm d ~ 6 16
Immediate
EXII L s=D'I d, 2 6
uchange s,Pi'I d ~ 2 6
Registers
EXT • do 2 4
Sign Extend l d, 2 4
LEA 1 Hf' " Load Effect
IveAddress
u •• dlsp-lmm , ~
Lmk and
Allocate

Note; Reier to'CondltlO:m Code Complltatool1s"
as for condllion Code

• Word GIlly
<; Ma~lmum value

**;Number of Program Bytes
-;Number of C\OC~ Periods

An

1-

L
2'1 ,

IOOA

~ I
8
8
8

IOOA
IOOA

2' • 2 8

+--tra~

I
'410-

trap

2' 4
2 6

2 6
2 6

CM"
CM"

2 6

4 16

Table 25 Instruction Set

(An) (An) + -(An) diAn) d(An.X;) Abs.W Abs.L d(PC) d(PC.Xn
5-lmmed Opoodo lit Pattorn

=SR/CC

1
2
2
2
2
1
4
6
2
2

2
2
2
2 ,
6

2'
2
4

2 ,
2 ,
2

•
2

2
2
2
2

2
2

,
6

2

2

2
2

4
6

2

- # - # - # - # - # - #
1111 11 - # - # - # - 1432 1111 1114 3211

1100 RRRI OOOOOrrr
2 lB 1100 RRRI 0000 t r r r

11 1 11 2 14 , 16 , lB , 16 6 20 110 I 0001 SSEE EEEE
8 2 8 2 10 , 12 , 14 4 12 6 16 4 12 , 14 4 8 110 I DODO SSee He!
20 2 20 2 22 , 24 , 26 , 14 6 28 110 I DODO 10EE EEEE
14 2 14 2 16 , 18 4 20 , 18 6 22 4 18 , 20 6

"
110 I 0001 IOee eeee

12 2 12 2 14 4 16 , 18 4 16 6 20 4 16 4 18 • 12 110 I MAO 111'1' ttee
14 2 14 2 16 , 18 • 10 4 18 6 22 4 18 4 10 6 I. 110 I MAl llee teet
16 4 16 4 18 6 20 6 22 6 20 8 14 0000 0110 SSEE EEEE
28 6 18 6 30 8 32 8 3' 8 32 10 36
12 2 12 2 14 4 16 4 18 4 16 6 20 0101 QQQO SSEE EEEE
20 2 20 2 22 4 2. 4 26 4 14 6 28

101 RRRI 55000rrr
2 18 10 I RRRI S500lrff

101 RRRI 1000 Urn
2 30 101 RRRI 1000 I rrf

12 2 11 2 I' 4 16 , 18 4 16 6 20 100 0001 SSEE EEEE
8 2 8 2 10 • 12 4 14 4 12 6 16 • 12 4 14 4 8 100 DODO 55ee eeee
10 2 20 2 12 4 14 4 26 • 14 6 28 1000001 1 OEE EEEE
14 2 14 2 16 , 18 • 10 , 18 6 22 4 18 , 10 6 14 100 DODO IDee uee
16 4 16 , 18 6 20 6 22 6 20 8 24 , 20 00000010 SSEE EEEE
2B 6 28 6 30 8 32 8 24 8 32 10 36

IIIO'rrrf SSIOODDD
1110 QQQf SSOO 0000
!! J 0 rrrf 1010 0000
1110 QQQf 1000 0000

12 2' 12 2' 14 4' 16 " 18 4' 16 6' 20 1110 OOOf IIEE EEEE
12 2 12 2 14 , 16 , 18 4 16 6 20 0000 rff 1 a lEE EEEE
16 , 16 , 18 6 2il 6 22 6 20 8 24 0000 1000 OIEE EEEE

0000 rrr J OIEE EEEE
0000 1000 OIEE EEEE

12 2 12 2 14 4 16 4 18 4 17 6 20 0000 rr r I 10EE EEEE
16 4 16 , 18 6 20 6 22 6 20 8 2' 00001000 10EE EEEE

0000rr11 10EE EEEE
0000 1000 f OEE EEEE

12 2 12 2 I. 4 16 4 18 4 16 6 20 0000 rr rI IIEE EEEE
16 4 16 , 18 6 20 6 22 6 20 8 2' 00001000 IIEE EEEE

0000 r r r I 11EE EEEE
0000 1000 IIEE EEEE

8 2 8 2 10 4 12 4 14 4 f2 6 16 4 12 , 14 0000 r r rI OOEE EEEE
12 , 12 • I' 6 t6 6 t8 6 16 8 2il 6 16 6 f8 00001000 OOEE EEEE

0000 r rr 1 OOEE EEEE
00001000 OOEE EEEE

<44 <44 <46 <48 <50 <48 <52 <48 <50 <44 0100 0001 IDee eeee
2 1 4 4 4 6 , , 4

1. 1. '16 18 20 18 22 18 20 ,.
12 2 12 2 I' 4 16 , 18 , 16 6 20 01000010 SSEE EEEE
20 2 20 2 22 • 24 , 26 • 24 6 28
8 2 8 2 10 4 12 4 I'

, 12 6 f6 • 12 • 14 , 8 1011 DODO 55ee eeee
14 2 I. 2 16 , 18 4 2il , 18 6 21 4 18 4 20 6 14

10 2 10 2 12 • 1. • 16 4 12 6 18 , 14 , 16 • 10 1011 AAAO II ee e e e~
14 2 14 2 f6 4 18 , 2il , 18 6 22 , 18 4 20 6 14 1011 MAl II ~ e e ~ ee

12 , 12 , 14 6 16 6 18 6 16 8 20 00001100 SSEE EEEE
20 6 20 6 22 8 24 8 26 8 24 10 28

2 11 1011RRRI 5500 I rrr
2 20

<162 2 <162 2 <164 4 <166 4 <168 4 <166 6 <170 4 <166 4 <168 4 <162 1000 0001 11ee eeee

<144 2 <144 2 <146 4 <148 4 <150 , <148 6 <1524 <148 4 <ISO 4 <J44 1000 DODO Ilee eeee

12 2 12 2 14 4
20 2 20 2 22 ,
16 4 16 , 18 6
28 6 28 6 30 8

, 4

A: Address RegIster **
C:Test Condltlo/l
D,Data Register #
e,SourceEffectlveAddre5s
E:Dest!l1atlon Effective Address

16
24

20
32

8

,
18 4 16 6 20 , 26 4 24 6 28

6 22 6 20 8 24 • 20
8 3' 8 32 10 36

, 12 4 8 6 12 , 8 , 12

Ope ode Bit Pattern Key
I:Dlfectlon,O-Rlght, J-lett R,Destlnatlon Reg,ster
M, Destmatu)l1 fA Mode 5, S'le: 00 - Byte
P,Dlsplacement OJ-Word
Q, Quick Immed,ate Data 10-Long Word
r.Source Reg,ster 11- Another Operallon

V, Vector:

160

10 II r rr I SSEE EEEE

00001010 SSEE EEEE

111000001 0100 0000
1'100 AAAI 0100 IAAA

11000001 1000 IAAA
0100 1000 1000 ODDD
01001000 1100 0000
0100 AAAI Ilee eeee

0100 1110 010 I OAAA

[
In Ihe MOVE Instrllct'On)
01 B~'e
lO Long Word
11 Word

a_tl C
XNZVC

dlO+slO+K'''d *u*u*
d+{)l'~d ••••• liIt-s-Dl
d...-[)J d
liIt"s-i>l
o'\1...-s /Ji! .. _6.

d -t- :If.--d ** •••
d 'tl:--d "''''''''''II'
d-l-s+X ·d .* •••
d<and>D1 d -**00
D'l<and>s [)]
d<and>liI d
Dl<and>s 1))
d<and>1t:--od -**00

~~o *****
~i

-(MI# of d-l. - - *--
-(b"I# 01 d-
(bit):!:*: of d

-(bit)#: of d--Z, ~ ~ * ~ -
O-(b;t)# of d

-(bit)#ofd-Z, --.. -
l-(btl)# old

-(blt)# ofd-Z - ~ * --

If [))<O,or -*UUU
D1>(bound),
then trap

d--+MPU - 0100 ()-od

I»-s -****
M-S -••• *

d-# -....
d-s - ••• *

1l132fsl6-" -*** a
1»(",1
1l132!slr - **·0
1»(",1

d.lJn-d -**00

d. #--d - •• 00

,-d -----
bit 7 bit 8-15
bit 15--blt 16-31 - •• 00
'-M -----

M--ISP) -----
Sp-.M
SP+dlsP-SP

(to be continued)

---HD68000,HD68000Y

On -. II. Mol ••
Operation - # -

ISL, lSI 8,.. count::Ol d, 2 6+211
lolical9llft countdU-8d= 2 6+211

l count:Ol d, 2 8+211
counMtl-8d= 2 8+211

Memory • count-l d,
IIOVI BfW s=DI d' 2 4
Move Data ~'" " 2 4

,,("') d' 2 8
,,(..) + d' 2 8
,,-("') d' 2 10
"d("') d' 4 12
"d("'_X) d, 4 14
s:Mls .• d, 4 12
s=M!s.l d, 6 16
"d(PC) d, 4 12
"d(Pl:X) d, 4 I'
s=lmm d' 4 8

l s=D! d- 2 • s=" d, 2 4
,,("') d, 2 12
,,(..) + ~ 2 12
" ("') d, 2 14
"d("') d, 4 16
"d("'_X) d- • 18
s=AbsW d, 4 16
s=.lbs.l d, 6 20
"d(PC) d, • 16
s=d(PC,X) d- • 18
s=Imm d- 6 12

MOVI • d:CCR " 2 12
Move 10 Con·
ditlonCodes
MOn • d,SR , 2 12
Move 10 'from s,SR d, 2 6
StalusReR·
MIn l s:USP d
Move to'trom d,USP ,
User SP(A7)
_VIA W ... " 2 • Move Address l ... ,- 2 •
MlnM • S:Xn d
Move Multiple
Registers d:Xn ,

l S:Xn d

d~Xn ,
_VIP • s:ill d-

Move "d("') d- • 16
Peripheral l s:[h d-

"d("') d_ • 14
MOVID l s=lmP18 d, 2 • Movt Ollck
IIUIS • d,D! , 2 <70
Multiply
&,.ed
IIUUI • dl>1 " 2 <70
.Multlply
titSlgned
IICO B d, 2 6
Nelale 011111
IIC B'. d, 2 • M!rate.lJinary l d, 2 6
1111 B'W d, 2 4
M!rale Multi· L d, 2 6
pretlSlon
10' B/. d- 2 •
lolltal l d, 2 6
Qlmplement
II B/. s;!)! d,
Inclusive(JI ~1>1 ,- 2 •
lolleal l .1>1 d,

~1>1 " 2 8
Olt 8" Solmm d' 4 8
(l'lmmediate l s:lmm d, 6 16
PIA l " PIlshEffect·
IveAddreSS

"I, III B/. eOllllt,DI d, 2 6+10
ItIllle cOllllt::li1-8d: 2 6+10
without X l count:DI d' 2 8+10

ooool::li1-8 dO' 2 8+10

M " W counl:l d'

Nat.: Ref., to"Condition Code Computilloos"
as for condition Code.

*;WonI onI~
<;Mu+mum v_

I'; Number of PI'OII'- Bytl$
-; Numbir of Clock Periods

•• ;TIII MPU goea through.,. extra

An

-

MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOVEI
MOVEA
MOVEA
MOVEA
MOVEA
MOVEA
MOV£A
MOVEA
MMI
MMI
MOVEA
MOV£A
MOVEA
MOVEA

1 • 1 •
2 • 1 •

(An) (An) + -(An) deAn) d(A.,Xi) Abs.W Abs.L d(PC) d(PC.XI)
s billed
d=SR/CC

- # # - # - # - # - # - # - # - # -

2' 12 2' 12 2' 14 4' 16 4' 18 4' 16 6' 20
2 8 2 8 2 8 4 12 4 ,14 4 12 6 16
2 8 2 8 2 8 4 12 4 14 4 12 6 16
2 12 2 12 2 12 4 16 4 18 4 16 6 20
2 12 2 12 2 12 4 16 4 18 4 16 6 20
2 14 2 14 2 14 4 18 • 20 • 18 6 22

• 16 • 16 • 16 6 20 6 22 6 20 8 24

• 18 4 18 4 18 6 22 6 24 6 22 8 26
4 16 4 16 4 16 6 20 6 22 6 20 8 24
6 20 • 20 6 20 8 24 8 26 8 24 10 28
4 16 4 16 4 16 6 20 6 22 6 20 8 24
4 18 4 18 • 18 6 22 6 24 6 22 8 26
4 12 • 12 4 12 6 16 6 18 6 16 8 20
1 12 2 12 1 12 • 16 4 18 • 16 6 20
2 12 2 12 2 12 4 16 4 18 • 16 6 20
1 20 2 20 2 20 • 24 • 26 4 24 6 28
2 20 2 20 2 20 • 24 4 26 • 24 6 28
2 22 2 22 2 22 • 26 • 28 4 26 6 30
4 24 4 24 4 24 6 28 6 30 6 28 8 32
4 26 • 26 4 26 6 30 6 32 6 30 8 3'
4 24 • 24 4 24 6 28 6 30 6 28 8 32
6 28 • 28 6 28 8 32 8 3' 8 32 10 36
4 24 • 24 4 24 6 28 6 30 6 28 8 32 • 26 • 26 • 26 6 30 6 32 6 30 8 34
6 20 6 20 6 20 8 24 8 26 8 24 10 28
2 16 2 16 2 18 • 10 • 22 4 10 6 24 • 10 • 22 • 16

2 16 2 16 1 18 • 10 • 22 4 10 6 24 • 10 • 22 • 16
2 12 2 12 1 14 • 16 • 18 4 16 6 20

2 8 2 8 2 10 • 11 • 14 4 12 6 16 • 12 • 14 4 8
2 12 2 12 2 I' • 16 • 18 • 16 6 10 • 16 • 18 6 12

• 8 ,'" 4 8l--4n 6 IZ+4n 6 14 .. 4n 6 12"4 8 16+4n

• 12"'411 • 12·411 6 16 .. " 6 18 .. 40 6 16+40 8 10,. 6 16.o-.fn 6 18+4n

48"'&1 4 8"'&1 6 12·8n 614"8n 6 12"'Sn 8 1'"80

•

2

2

2

2
2
2
2

2
2

2
2
1
1
4
6
2

2'

12<& 412tBn 6

•
•

<74 2 <74 1 <76 •
<74 2 <74 1 <76 •

12 2 12 2 14 •
12 2 12 2 14 4
20 2 20 1 22 4
12 2 11 1 14 4
20 2 20 2 12 •
12 2 12 2 14 4
20 2 20 2 22 4

12 2 12 2 14 • 8 2 8 2 10 4
20 2 20 2 22 •
1\ 2 I' 2 16 4
16 • 16 4 18 6
JO 6 JO 6 32 8
14 4

12 2' 12 2' 14 4'

A:AOdress Relister #
C;Test Condition
0; Dati Rqister I'
e;Soun:e £ffactive Address
£;Destination Effeeliv. Address

16"'8/1 6 18 ... 1J1 6 16+& 8 10,& 6 16"'811 6 18+&

16

24

<78 • <8Il • <78 6 <82 • <78 • <8Il 4 <74

<78 • <8Il • <78 6 <82 • <78 4 <8Il 4 <74

16 4 18 • 16 6 20

16 • 18 4 16 6 20
24 • 26 4 24 6 28
16 4 18 • 16 6 20
24 • 26 4 24 6 28

16 4 18 4 16 6 20
14 4 26 4 24 6 28

16 4 18 4 16 6 20
12 • I' 4 12 6 16 • 12 • 14 • 8
24 • 26 4 24 6 28
18 4 10 • 18 6 22 • 18 4 10 6 14
20 6 22 6 20 8 24 4 20
34 8 36 8 34 10 38
18 4 22 4 18 6 22 • 18 4 22

16 4' 18 4' 16 6' 20

Opcode Bit PaHem Key
f: Direction: O-Rithl. I-Left R: Destination Rells.ter
M: Destination fA Mode 5: Size: OO-Byle
P: Displacement OI-Word
Q: QUICk Immediate Data IO-LolII" WlII"d
r:Source Rellstet" ll-AlIOther OperatIon

V: Vector #

nul cycte after a m~tiple reed is done (Tile 1.1 EA+2~.

161

0,. all ',n
111111
5432 1098 76543210

1110 rrrf 5510 IDDD
1110 QQQf 5500 IDDD
1110 rrrf 1010 IDDD
1110 QQQf 1000 IDDD
1110001 f IIEE EEEE
DOSS RRRM MMee U'U'

0100 0100 Ilee teee

01000110 Ilee tete
0[00 0000 IIEE EEEE

0100 1110 0110 IAAA
0100 1110 0110 OAAA

0011 AMO Olee eeee
0010 MAO Olee eeee
01001000 10EE EEEE

a7-.0 d7- dOt
0100 1100 IDee eeee

17- aD d7-dO
0100 1000 IIEE EEEE

a7- aO d7-dOt
0100 1100 Ilee eeee

a7- .0 d7- dO
00000001 1000 lAM
00000001 0000 I AAA
00000001 1100 IAAA
0000 DOD I 0100 IAAA
01110000 QQQQ QQQQ

1100 0001 Ilee eeee

1100 DODO II ee eeee

0100 1000 OOEE EEEE

0100 0100 S5EE EEEE

0100 0000 5SEE EEEE

01000110 S5EE EEEE

10000001 55EE EEEE
1000 DODO SSu !tee
10000001 IDEE EEEE
1000 DODO IDee eeee
0000 0000 S5EE EEEE

0100 1000 01 ee eeee

1110 rrrf 5511 1000

1110 QQQf SSOI IDDD
1I10ud lOll I DOD
1110 QQQf 1001 IDDD
1110 011 f II EE EEEE

(
I" tile MOVE ln5tRlcllOn)
01-Byte
IO-Lone Ward
ll-Word

C I. - e_
XNZVC

~:J5=l-0
••• 0*

O~i
, 'd -.* 0 0

, 'CCR ••• **

, 'SR * ••••
d-MPU -----
SR-"d

iJSI'-o'" -----
'" .usp

,.'" -----
'" ·d -----
s --Xn ••

'" 'd
,

s ··Xn ••

Ill·dbybytes -----
s---Ill by bytes
Ill"'dbybytes
s--B-Ibybytes
tt -1>1 - •• 00

!lOP<S ·rn - •• 00

B-I"'s ·m - •• 00

O~dlO-X ·d .u.u.
O-d ·d •••••
O-d- X "d •••••
-d ·d - •• 00

d<Gr>{)I---d - •• 00
i}\<or>s--Bl
d<Gr>D'l d
OI1<or>s-"'Q,
d<Gr>:Ii d - •• 00

,'·-(SP) -----

~c - •• 00

c'19i:;J

(to be continued)

HD68000,HD68000Y---

On IIn_Dnic II .. Add ••
QJ)eration I # -

RDXR.RDn 8. count,[)l '0 1 6+1n
~tale counl,#\-8(1o 1 6+1n
IhrnughX L counl~D'I '0 1 8+2n

CQulll'#1-8d= 1 8+1n
Memory • count'! '0
SICD 8 S"()) '0 1 6
Subtract S' (In) '0
digits
Scc 8 cc '0 1 64
Sol
Conditionally
SUI B'W s=[), '0
Subtract do!l1 So 1 • Binary L .!l1 '0

"'!l1 So 1 8
SUIA • "'In So 1 8
Subtract L ~,., So 1 8
Mdress
SUll 8. s~lmm " 4 8
Subtract L s,lmm '0 6 16
Immediate
SUI' B W s,lmmJ " 1 4
Subtract L s"lmm3 '0 1 8
~Ick
SUIl 8. $=01

" 1 4
Subtract S' (In) ,
Multiprecisiotl l So!)) , 1 8

s: (hi) ,
SWAP W " 1 4
Swap Regis·
terHalves
TlS 8 , 1 4
Test and Set
Qlerand
TST 8 W , 1 4
Test l '0 1 4
U ...
Lklhnk

I •• 8 dISP'
Branch • dlsp
Conditionally

III B dlsp
Branch • dlsp,
Always
ISR B ~ISpo
Bran ell
to Subroutine • dlsp
alcc • dlspclmm
Decrement

110
Counter. & counter, • I i~ Branchlkltll
Condition
True or
Count= 1

'"' '0
Jump to
,SR '0
Jump to
Subroutme
.OP 1 4
rt~eratlon
RIIIT 1 131
Reset Exter·
nalDevlces
IITI 1 10
Return from
ucephon
In 1 10
Return from
SIIbroutme l

Restore OC
RTt 1 16
Return from
Subroutine
ITO'
LoadSRlStop
TRAP 1 34
Trap

nary
1 34

Trap If 4
OmfiowSet

Noh: Refer to-CoMitlon Code Computations'
as lor conCitlon Code

* Word only
<: Ma~imum value
#;Number of Program Bytes
-:Numbef of Clock Penod$

An

-

SlJlA
1'1 • SJiA

II 8
8
8

SUiA
SUiA

l' 4
1 8

1 12

cc
false
true
false

Trap taken
Trap not
I.kj

(An) (An)+ -(An) d(An)

- # - # - #

l' 12 l' 11 l' 14 4'

1 18

1 11 1 12 1 I' •
1 11 1 11 1 14 4
1 8 1 8 1 10 • 1 20 1 10 1 11 4
1 I. 1 I. 1 16 4
1 11 1 11 1 14 4
1 14 1 14 1 16 4

4 16 4 16 4 18 6
6 28 6 18 6 30 8

1 11 1 11 1 14 4
1 16 1 16 1 11 •

1 18

1 30

1 14 1 14 1 16 4

1 8 1 8 2 10 4
1 11 1 11 1 14 4

Clunt.r Branch , 1 ,es
, 1 no

expired no

1

1

8

16

A: Address Register #
C:TestCondltlon

4

•

0: Data Register #
e;SourceEllectlveAddtess
E:DestlnatlonEffe<:tlveAddress

-

16

16

16
11
14
18
16
18

10
31

16
2'

18

11
16

10

18

d(An,Xi) Abs.W Abs.L d(PC) d(PC.Xi) s Immed Opoodo 1ft ' .. tern
d=SRfC 111111

- # - # # - # - # 54321098 ~654 3210

1110 rr rf SSII DODD
1110 QQQI SSO I DODD
tllO rn f 1011 DODD
1110 QQQI 1001 DODD

4' 18 4' 16 6' 20 1110 0101 I lEE EEEE
1000 RRRI 0000 Orr r
1000 RRRI 0000 Irrr

4 18 • 16 6 20 010 I eeee 1 lEE EEEE

• 18 4 16 6 10 100 I 0001 SSEE EEEE

• I. • 11 6 16 4 11 • 14 4 8 100 I DODO SSee uee
4 16 4 14 6 18 100 I 0001 I DEE EEEE
4 10 4 18 6 11 • 18 4 10 6 14 1001 DODO IOee uee
4 18 4 16 6 10 4 16 4 18 4 11 100 I AAAO llee eeee
4 10 • 18 6 12 4 18 • 10 6 14 1001 AAA! Ilee teet

6 11 6 10 8 14 0000 0[00 SSEE EEEE
8 34 8 31 10 36

4 18 , 16 6 10 0101 QQQI SSEE EEEE
4 16 • 24 6 18

100 I RRRI 5500 Orrr
100! RRRI 5500 1 r rr
1001 RRRI 1000 Orrr
100 I RRRI 1000lrrr
0100 1000 0100 0000

4 20 4 18 6 11 01001010 II EE EEEE

• 14 , 12 6 16 0100 1010 SSEE EEEE
4 18 4 16 6 10

0100 1110 0101 IAAA

bra taken 1 10 0110 ecee pppp pppp
bra not taken 1 8

bra taken , 10
bra not taken 4 14

1 10 0110 0000 pppp pppp
4 10

1 10 0110 0001 pppp pppp

4 10
010 I ecce 1100 1000

4 14 , 10 6 12 4 10 4 14 0100 1110 IIEE EEEE

• 21 • 18 6 ·'0 4 18 4 22 0100 1110 10EE EEEE

0100 1110 01110001

01001110 01110000

0100 1110 01110011

0100 1110 0111 0111

01001110 0111 0101

• 4 0100 1110 0111 0010

01001110 0100 VVVV

0100 1110 0111 0110

Opcode Bit Pattern Key
f,Dlrectlon.O-Rlght.l-left R. Destination Register
M:Oestlllatlon EA Mode S. Slze.OO-Byte
P:Dlsplacement D)-Word
Q. QUICk Immediate Data IO-Long Word lO-lonS Word
r.Source RegIster ll-Another OPt'ratlon

(
III the MOVE IlistructlOIl]
Ol-Byte

ll-Word
V.Vectorlt

162

C...,,, e
XNZVC

r~,; ***0.

~x"J9n1
dlOslOX ·d *U*U*
d-MPU - ~ -- ~

Ilcctrue,l's ·d
Else,Q's ·d
d·r:n ·d •• ***
iii s-+1l1
d!l1·d
Il1 s"{),

'" s ~kl

d:::r: ·d *****
d:t 'd *****
d s X ~d *****

!l1(3116)-~
!l1(150)

-**00

testd ·cc - •• 00
l ... blt7ofd

lestd· ... cc - .*0 0

"'-'SP. -----
(SP) + ~An

I!cctrue ~ ~ -- -
PC+dlsP ... pc

PC+dlsP .. pc - - - ~ -

pc, (SP) - -- ~ -
PC.J-dlsP"'PC

II cc false -----
/)! 1-+1)) & If
[)P< 1.PC+d!sp---PC
Else.r«P

,-pc - ~ ~ --
pc, (SP) , .pc -----

none ~ - - ~ .

assert RESET pm - ~ ---

(SP) + '50 *.**.
(SP) + ,pc

(51') + 'IX:. .****
(SP) + ,pc

(SP) + ,pc ~ .. ~ -

#: "'SR.Walt for *.***
Interrupt
PC-(SSP). - ~ - - -
SIH (SSP)
(Vector) ~PC

IfHIIIeIIPC" -----
,(SSP) SR - iSSpl
(TIlAPVYftIor}'PC
ehe.NOP

--HD68000,HD68000Y

• INSTRUCTION FORMAT SUMMARY instructions according to the op-code map.
This provides a summary of the first word in each instruction

of the instruction set. Table 26 is an operation code (op-code)
map which illustrates how bits 15 through 12 are used to
specify the operations. The remaining paragraph groups the

where, Size; Byte = 00 Sz; Word = 0
Word = 01 Long Word = 1
Long Word = 10

Table 26 Operation Code Map

Bits
Operation 15 thru 12

0000 Bit Manipulation/MOVEP/lmmediate

0001 Move Byte

0010 Move Long

0011 Move Word

0100 Miscellaneous

0101 ADDOISUBOISee/DBee
0110 Bee
0111 MOVEa

1000 OR/DIV/SBCD

1001 SUB/SUBX

1010 (Unassigned)

1011 CMP/EOR

1100 AND/MULIABCD/EXG

1101 ADD/ADDX

1110 Sh itt/Rotate

1111 (Unassigned)

(1) BIT MANIPULATION, MOVE PERIPHERAL, IMMEDIATE INSTRUCTIONS

Dynamic Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 Register I 1 Type Effective Address

Static Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 0 I 0 0 I 1 I 0 0 I 0 Type Effective Address

Bit Type Codes: TST = 00, CHG = 01, CLR = 10, SET = 11

MOVEP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 I 0 0 0 Register Op-Mode 0 I 0 I 1 Register

Op-Mode; Word to Reg = 100, Long to Reg = 101, Word to Mem = 110, Long to Mem = 111

OR Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 I 0 0 I 0 0 I 0 0 Size Effective Address

AND Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 0 0 I 0 I 0 I 0 I 1 0 '"I Size Effective Address

163

HD68000,HD68000Y

SUB Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 0 0 0 0 0 Size Effective Address

ADD Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 0 0 0 0 Size Effective Address

EOR Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 0 0 0 0 Size Effective Address

CMP Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 0 0 0 0 0 Size Effective Address

(2) MOVE BYTE INSTRUCTION

MOVE Bvte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
Register Mode Mode Register

(3) MOVE LONG INSTRUCTION

MOVE Long

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
Register Mode Mode Register

(4) MOVE WORD INSTRUCTION

MOVE Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination 'Source
Register Mode Mode Register

(5) MISCELLANEOUS INSTRUCTIONS

NEGX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 I 0 0 0 0 0 0 Size Effective Address

MOVE fromSR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 Effective Address

CLR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 Size Effective Address

164

~--H068000.H068000Y

NEG

15 14 13 12 11 10 9 8 7 6 5 432 o
o I 1 o I 0 o I 1 I 0 I 0 Size Effective Address

MOVE loCCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o I 1 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 Effective Address

NOT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Size Effective Address

MOVE toSR

15 14 13 12 11 10 9 8 7 6 5 432 o
o I 1 I 0 Effective Address

NBCO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 Effective Address

PEA

15 14 13 12 11 10 9 8 7 6 5 432 o
o I 1 I 0 Effective Address

SWAP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111010101011101010 Register

MOVEM Registers to EA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I Sz Effective Address

EXTW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 11 10 10 11 10 10 10 11 10 10 10 10 Register

EXTL

15 14 13 12 11. 10 9 8 7 6 543 2 o
Register

TST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o I 1 I 0 I 0 I 1 I 0 I 1 I 0 Size Effective Address

TAS

15 14 13 12 11 10 9 8 7 6 543 2 o
Effective Address

165

HD68000,HD68000Y--

MOVEM EA to Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I Sz Effective Address

TRAP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I 0 I 0 Vector

LINK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I 0 I 1 I 0 Register

UNLK

15 14 13 12 11 10 9 8 7 6 543 2 0

Register

MOVE to USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 I 0 I 1 I 1 I 1 I O· I 0 I 1 I 1 I 0 I 0 Register

MOVE from USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111111101011111011 Register

RESET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111111101011111110101010

NOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111111101011111110101011

STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111111101011111110101110

RTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1011101011111110011111110101111

RTS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111111101011111110111011

TRAPV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

10111010111111010111 1 1110111 1 10

166

---HD68000,HD68000Y

RTR
15 14 13 12 11 10 9 8 7 6 5 4 3 2

JSR
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Effective Address

JMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Effective Address

CHK
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Register Effective Address

LEA
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Register Effective Address

(6) ADD QUICK, SUBTRACT QUICK, SET CONDITIONALLY, DECREMENT INSTRUCTIONS

ADDQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Data I 0 Size Effective Address

SUBQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Data I 1 Size Effective Address

Sec
15 14 13 12 11 10 9 8 7 6 5 4 3 2

Condition I 1 I 1 Effective Address

DBee

o

o

o

o

o

o

o

o

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Condition

(7) BRANCH CONDITIONALLY, BRANCH TO SUBROUTINE INSTRUCTION

Bee
15 14 13 12 11 10 9 8

BSR
15 14 13 12

I 0 I 1 I 1 I 0

(8) MOVE QUICK INSTRUCTION

MOVEQ

Condition

11 10 9 8

o I 0 o I 1

15 14 13 12 11 10 9 8

Register I 0

167

7 6 5 4 3

8 bit Displacement

7 6 5 4 3

8 bit Displacement

7 6 5 4 3

Data

Register

2 o

2 o

2 o

HD68000,HD68000Y

(9) OR, DIVIDE, SUBTRACT DECIMAL INSTRUCTIONS

OR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 Register Op-Mode Effective Address

B 'w
Op-Mode

L
000 001 010 On V EA-+Dn
100 101 110 EA V On -+EA

DIVU
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 Register 0 I 1 I 1 Effective Address

DIVS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 Register I 1 I 1 Effective Address

SBCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination
Source Register

Register

RIM (register/memory): register - register = 0, memory - memory = 1

(10) SUBTRACT, SUBTRACT EXTENDED INSTRUCTIONS

SUB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 I 0 I 1 Register Op-Mode Effective Address

Op-Mode
B W L

000 001 010 Dn-EA-+Dn
100 101 110 EA-Dn-+EA
- 011 111 An-EA-+An

SUBX 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination
Source Register

Register

(11) COMPARE, EXCLUSIVE OR INSTRUCTIONS

CMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 I 1 I 1 Register Op-Mode Effective Address

Op-Mode
B W L

000 001 010 Dn-EA
- 011 111 An-EA

CMPM 15 14 13 12 11 10 9 B 7 6 5 4 3 2 0

I 1 0 I 1 Register I 1 Size 0 0 I 1 Register

EOR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 I 1 I 1 Register Size Effective Address

(12) AND, MULTIPLY, ADD DECIMAL, EXCHANGE INSTRUCTIONS

AND 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 0 Register Op-Mode Effective Address

Op-Mode
B W L

000 001 010 On A EA-+Dn
100 101 110 EA A On -+EA

168

MULU
15 14 13 12 11 10 9 8 7 6

0 0 Register 0

MULS
15 14 13 12 11 10 9 8 7 6

0 0 Register

ABCD
15 14 13 12 11 10 9 8 7 6

EXGD
15 14 13 12 11 10 9 8 7 6

Data Register

EXGA
15 14 13 12 11 10 9 8 7 6

Address Register

EXGM
15 14 13 12 11 10 9 8 7 6

Data Register

(13) ADD, ADD EXTENDED INSTRUCTIONS

ADD
15 14 13 12 11 10 9 8 7 6

0 Register Op-Mode

Op-Mode
B W L

000 001 010 On + EA~Dn
100 101 110 EA+ On ~EA

011 111 An + EA~An

ADDX
15 14 13 12 11 10 9 8 7 6

Destination

(14) SHIFT/ROTATE INSTRUCTIONS

Data Register Shifts

15 14 13 12 11 10 9 8 7 6

Count/Register

Memory Shifts

15 14 13 12 11 10 9 8 7 6

I 1 0 0 Tvpe d

Shift Type Codes: AS = 00, LS = 01, ROX = 10, RO = 11
d (direction): Right = 0, Left = 1
i/r (count source): Immediate Count = 0, Register Count = 1

169

HD68000,HD68000Y

5 4 3 2 0

Effective Address

5 4 3 2 0

Effective Address

5 4 3 2 0

Source Register

5 4 3 2 0

Data Register

5 4 3 2 0

Address Register

5 4 3 2 0

Address Register

5 4 3 2 0

Effective Address

5 4 3 2 0

Source Register

5 4 3 2 0

Register

5 4 3 2 0

Effective Address

HD68000,HD68000Y--

.' INSTRUCTION EXECUTION TIMES
The following paragraphs contain listings of the instruction

execution times in terms of external clock (CLK) periods.
In this timing data, it is assumed that both me~ory read and
write cycle times are four clock periods. Any wait states caused
by a longer memory cycle must be added to the total fustruc­
tion time. The number of bus read and write cycles for each
instruction is also included with the timing data. This data is
enclosed in parenthesis following the execution periods and
is shown as: (r/w) where r is the number of read cycles and
w is the number of write cycles.

(NOTE) The number of periods includes instruction fetch and all ap­
plicable operand fetches and stores.

• EFFECTIVE ADDRESS OPERAND CALCULATION
TIMING
Table 27 lists the number of clock periods required to com­

pute an instruction's effective address. It includes fetching
of any extension words, the address computation, and fetch­
ing of the memory operand. The number of bus read and
write cycles is shown in parenthesis as (r/w). Note there are
no write cycles involved in processing the effective address.

• MOVE INSTRUCTION CLOCK PERIODS
Table 28 and 29 indicate the number of clock periods for

the move instruction. This data includes instruction fetch,
operand reads, and operand writes. The number of bus read
and write cycles is shown in parenthesis as: (r/w).

• STANDARD INSTRUCTION CLOCK PERIODS
The number of clock periods shown in Table 30 indicates

the time required to perform the operations, store the results,
and read the next instruction. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number
of clock periods and the number of read and write cycles must
be added respectively to those of the effective address calcula­
tion where indicated.

In Table 30 the headings have the following meanings: An =
address register operand, Dn = data register operand, ea = an
operand specified by an effective address, and M = memory
effective address oper~d.

• IMMEDIATE INSTRUCTION CLOCK PERIODS
The number of clock periods shown in Table 31 includes

the time to fetch immediate operands, perform the operations,
store the results, and read the next operation. The number of
bus read and write cycles is shown in parenthesis as: (r/w).
The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective
address calculation where indicated.

In Table 31, the headings have the following meanings:
= immediate operand, Dn = data register operand, An = ad­
dress register operand, M = memory operand, CCR = condition
code register, and SR = status register.

• SINGLE OPERAND INSTRUCTION CLOCK PERIODS
Table 32 indicates the number of clock periods fOi the

single operand instructions. The number of bus read and write
cycles is shown in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where
indicated.

Table 27 Effective Address Calculation Timing

Addressing Mode Byte, Word Long

Register
On Data Register Direct 0(0/0) 0(0/0)
An Address Register 0 irect 0(0/0) 0(0/0)

Memory
An@ Address Register Indirect 4(1/0) 8(2/0)
An@+ Address Register Indirect with Postincrement 4(1/0) 8(2/0)
An@- Address Register Indirect with Predecrement 6(1/0) 10(2/0)
An@(d) Address Register Indirect with Displacement 8(2/0) 12(3/0)

An@(d,ix)* Address Register Indirect with Index 10(2/0) 14(3/0)
xxx.W Absolute Short 8(2/0) 12(3/0)

xxx.L Absolute Long 12(3/0) 16(4/0) .
PC@(d) Program Counter with Displacement 8{2/0) 12(3/0)
PC@(d, ix)* Program Counter with Index 10(2/0) 14(3/0)
#xxx Immediate 4(1/0) 8(2/0)

• The size of the index register Ox) does not affect execution time.

170

---HD68000.HD68000Y

Table 28 Move Byte and Word Instruction Clock Periods

Source
Destination

Dn An An@ An@+ An@- An@(d) An@(d.ix)* xxx.W xxx.L

Dn 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) 14(2/1) 12(2/1) 16(3/1)
An 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) 14(2/1) 12(2/1) 16(3/1)
An@ 8(2/0) 8(2/0) 12(211) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(4/1)

An@+ 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(4/1)
An@- 10(2/0) 10(2/0) 14(2/1) 14(2/1) 14(2/1) 18(3/1) 20(3/1) 18(3/1) 22(4/1)
An@(d) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(311) 20(4/1) 22(4/1) 20(4/1) 24(5/1)

An@(d, ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(4/1) 24(4/1) 22(4/1) 26(5/1)
xxx.W 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(4/1) 22(4/1) 20(4/1) 24(5/1)
xxx.L 16(4/0) 16(4/0) 20(4/1) 20(4/1) 20(4/1) 24(5/1) 26(5/1) 24(5/1) 28(6/1)

PC@(d) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(4/1) 22(4/1) 20(4/1) 24(5/1)
PC@(d,ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(411) 24(4/1) 22(4/1) 26(5/1)
#xxx 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(4/1)

* The size of the index register Ox) does not affect execution time.

Table 29 Move Long Instruction Clock Periods

Source
Dn An An@ An@+

Destination

An@- An@(d) An@(d,ix)* xxx.W xxx.L

Dn 4(1/0) 4(1/0) 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(3/2)
An 4(1/0) 4(1/0) 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(3/2)
An@ 12(3/0) 12(3/0) 20(3/2) 20(3/2) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(5/2)

An@+ 12(3/0) 12(3/0) 20(3/2) 20(3/2) 20(3/2) 24(4/2) 26(412) 24(4/2) 28(5/2)
An@- 14(3/0) 14(3/0) 22(3/2) 22(3/2) 22(312) 26(4/2) 28(4/2) 26(4/2) 30(5/2)
An@(d) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)

An@(d, ix)* 18(4/0) 18(4/0) 26(4/2) 26(4/2) 26(4/2) 30(5/2) 32(5/2) 30(5/2) 34(6/2)
xxx.W 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)
xxx.L 20(5/0) 20(5/0) 28(512) 28(5/2) 28(5/2) 32(6/2) 34(6/2) 32(6/2) 36(7/2)

PC@(d) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)
PC@(d,ix)* 18(4/0) 18(4/0) 26(4/2) 26(4/2) 26(4/2) 30(5/2) 32(5/2) 30(5/2) 34(6/2)
#xxx 12(3/0) 12(3/0) 20(3/2) 20(3/2) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(5/2)

* The size of the index register Ox) does not affect execution time.

Table 30 Standard I nstruction Clock Periods

Instruction Size op<ea>,An op<ea>.Dn opDn,<M>

ADD
Byte, Word 8(1/0) + 4(1/0)+ 8(1/1) +

Long 6(1/0)+** 6(1/0) + ** 12(1/2) +

Byte, Word - 4(1/0) + 8(1/1) +
AND

6(1/0) + *' 12(1/2) + Long -

Byte, Word 6(1/0) + 4(1/0) + -
CMP

6(1/0) + 6(1/0)+ Long -
DIVS - - 158(1/0) + * -

DIVU - - 140(1/0) + * -

Byte, Word - 4(1/0) ,,* 8(1/1) +
EOR

8(1/0) '** 12(1/2) + Long -
MULS - - 70(1/0) + • -

MULU - - 70(1/0)+* -

Byte, Word - 4(1/0) + 8(1/1) +
OR

6(1/0) + ** 12(1/2) + Long -

SUB
Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +

Long 6(1/0) + ** 6(1/0)+'* 12(1/2) +

+ add effective address calculation time * * total of 8 clock periods for instruction if the effective address is register direct
* indicates maximum value *** only available effective address mode is data register direct

171

HD68000,HD68000Y--

Table 31 Immediation Instruction Clock Periods

Instruction Size

ADDI
Byte, Word

Long

ADDO
Byte, Word

Long

ANDI
Byte, Word

Long

CMPI
Byte, Word

Long

EORI
Byte, Word

Long

MOVEO Long

ORI
Byte, Word

Long

SUB I
Byte, Word

Long

SUBO
Byte, Word

Long

+ add effective address calculation time
* word only

op#, Dn

8(2/0)

16(3/0)

4(1/0)

8(1/0)

8(2/0)

16(3/0)

8(2/0)

14(3/0)

8(2/0)

16(3/0)

4(1/0)

8(2/0)

16(3/0)

8(2/0)

16(3/0)

4(1/0)

8(1/0)

op #, An op#,M op #, CCR/SR

- 12(2/1) + -

- 20(3/2) + -

8(1/0)* 8(1/1) + -

8(1/0) 12(1/2) + -
- 12(2/1) + 20(3/0)

- 20(3/1) + -

8(2/0) 8(2/0) + -
14(3/0) 12(3/0) + -

- 12(2/1) + 20(3/0)

- 20(3/2) + -

-- -

- 12(2/1) + 20(3/0)

20(3/2) + - -

- 12(2/1) + -

- 20(312) + -
8(1/0)* 8(111) + -

8(1/0) 12(112) + -

Table 32 Single Operand Instruction Clock Periods

Instruction Size

CLR
Byte, Word

Long

NBCD Byte

NEG
Byte, Word

Long

NEGX
Byte, Word

Long

NOT
Byte, Word

Long

See
Byte, False

Byte, True

TAS Byte

TST
Byte, Word

Long

+ add effective address calculation time

• SHIFT/ROTATE INSTRUCTION CLOCK PERIODS
Table 33 indicates the number of clock periods for the shift

and rotate instructions. The number of bus read and write
cycles is shown in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where
indicated.

Register Memory

4(1/0) 8(1/1) +

6(1/0) 12(1/2) +

6(1/0) 8(1/1) +

4(1/0) 8(1/1) +
6(1/0) 12(1/2) +
4(1/0) 8(1/1) +

6(1/0) 12(1/2) +

4(1/0) 8(1/1) +

6(1/0) 12(1/2) +

4(1/0) 8(1/1) +
6(1/0) 8(1/1) +

4(1/0) 10(1/1) +

4(1/0) 4(1/0) +

4(1/0) 4(1/0) +

• BIT MANIPULATION INSTRUCTION CLOCK PERIODS
Table 34 indicates the number of clock periods required for

the bit manipulation instructions. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number of
clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation
where indicated.

172

---HD68000,HD68000Y

• CONDITIONAL INSTRUCTION CLOCK PERIODS
Table 35 indicates the number of clock periods required for

the conditional instructions. The number of bus read and write
cycles is indicated in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where
indicated.

• JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK
PERIODS
Table 36 indicates the number of clock periods required for

the jump, jump to subroutine, load effective address, push effec­
tive address, and move multiple registers instructions. The num­
ber of bus read and ~rite cycles is shown in parenthesis as: (r/w).

Table 33 Shift/Rotate Instruction Clock Periods

Instruction Size Register Memory

ASR,ASL
Byte, Word 6 + 2n(1/0) 8(1/1) +

Long 8 + 2n(1/0) -

LSR, LSL
Byte, Word 6 + 2n(1/0) 8(1/1) +

Long 8 + 2n(1/0) -
Byte,Word 6+2n(1/0) 8(1/1) +

ROR, ROL Long 8 + 2n(1/0) -

ROXR,ROXL
Byte, Word 6 + 2n(1/0) 8(1/1) +

Long 8 + 2n(1/0) -

Table 34 Bit Manipulation Instruction Clock Periods

Instruction Size

BCHG
Byte

Long

BCLR
Byte

Long

BSET
Byte

Long

BTST
Byte

Long

+ add effective address calculation time
* indicates maximum value

Dynamic

Register Memory

- 8(1/1) +

8(1/0)* -
- 8(1/1) +

10(1/0)* -

- 8(1/1) +

8(1/0)* -
- 4(1/0) +

6(1/0) -

Static

Register Memory

- 12(2/1) +

12(2/0)* -

- 12(2/1) +

14(2/0)* -
- 12(211) +

12(2/0)* -

- 8(2/0) +

10(2/0) -

Table 35 Conditional Instruction Clock Periods

Instruction Displacement

Bee
Byte

Word

BRA
Byte

Word

BSR
Byte

Word

DBee
CClru.

CCtalo.

CHK -

TRAP -

TRAPV -

+ add effective address calculation time
* indicates maximum value

Trap or Branch Trap of Branch
Taken Not Taken

10(2/0) 8(1/0)

10(2/0) 12(2/0)

10(2/0) -
10(2/0) -
18(2/2) -
18(2/2) -

- 12(2/0)

10(2/0) 14(3/0)

40(5/3) + * 10(1/0) +

34(4/3) -
34(5/3) 4(1/0)

173

HD68000,HD68000Y---

Table 36 JMP, JSR, LEA, PEA, MOMEM Instruction Clock Periods

Instr Size An@ An@+ An@- An@(d) An@(d,ix)* xxx.W xxx.L PC@(d) PC@(d,ix)*

JMP - 8(2/0) - - 10(2/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0)

JSR - 16(2/2) - - 18(2/2) 22(2/2) 18(2/2) 20(3/2) 18(2/2) 22(2/2)

LEA - 4(1/0) - - 8(2/0) 12(2/0) 8(2/0) 12(3/0) 8(2/0) 12(2/0)

PEA - 12(1/2) - - 16(2/2) 20(2/2) 16(2/2) 20(3/2) 16(2/2) 20(2/2)

MOVEM Word 12+4n 12+4n - 16+4n 18+4n 16+4n 20+4n 16+4n 18+4n
(3+n/0) (3+n/0) - (4+n/0) (4+n/0) (4+n/0) (5+n/0) (4+n/0) (4+n/0)

M-+R Long 12+8n 12+8n - 16+8n 18+8n 16+8n 20+8n 16+8n 18+8n
(3+2n/0) (3+2n/0) - (4+2n/0) (4+2n/0) (4+2n/0) (5+2n/0) (4+2n/0) (4+2n/0)

MOVEM Word
8+4n - 8+4n 12+4n 14+4n 12+4n 16+4n - -
(2/n) - (2/n) (3/n) (3/n) (3/n) (4/n) - -

R-+M Long 8+8n - 8+8n 12+8n 14+8n 12+8n 16+8n - -
(2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - -

n is the number of registers to move
* is the size of the index register (ix) does not affect the instruction's execution time

• MULTI-PRECISION INSTRUCTION CLOCK PERIODS
Table 37 indicates the number of clock periods for the multi­

precision instructions. The number of clock periods includes
the time to fetch both operands, perform the operations, store

the results, and read the next instructions. The number of read
and write cycles is shown in parenthesis as: (r/w).

In Table 37, the headings have the following meanings: Dn =
data register operand and M = memory operand.

Table 37 Multi-Precision Instruction Clock Periods

Instruction Size

ADDX
Byte, Word

Long

CMPM
Byte, Word

Long

SUBX
Byte, Word

Long

ABCD Byte

SBCD Byte

• MISCELLANEOUS INSTRUCTION CLOCK PERIODS
Table 38 indicates the number of clock periods for the fol­

lowing miscellaneous instructions. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number of
clock periods plus the number of read and write cycles must be
added to those of the effective address calculation where indi­
cated.

op On, On opM,M

4(1/0) 18(3/1)

8(1/0) 30(5/2)

- 12(3/0)

- 20(5/0)

4(1/0) 18(3/1)

8(1/0) 30(5/2)

6(1/0) 18(3/1)

6(1/0) 18(3/1)

• EXCEPTION PROCESSING CLOCK PERIODS
Table 39 indicates the number of clock periods for exception

processing. The number of clock periods includes the time for
all stacking, the vector fetch, and the fetch of the first instruc­
tion of the handler routine. The number of bus read and write
cycles is shown in parenthesis as: (r/w).

174

---HD68000,HD68000Y

Instruction Size

MOVE from SR -

MOVE toCCR -
MOVE to SR -

Word
MOVEP

Long

EXG -

Word
EXT

Long

LINK -

MOVE from USP -

MOVE to USP -

NOP -
RESET -

RTE -

RTR -

RTS -

STOP -
SWAP -

UNLK -

+ add effective address calculation time

Table 38 Miscellaneous Instruction Clock Periods

Register Memory Register -+ Memory

6(1/0) 8(1/1) + -
12(2/0) 12(2/0) + -
12(2/0) 12(2/0) + -

- - 16(2/2)

- - 24(2/4)

6(1/0) - -
4(1/0) - -
4(1/0) - -

16(2/2) - -
4(1/0) - -
4(1/0) - -
4(1/0) - -

132(1/0) - -
20(5/0) - -
20(5/0 - -
16(4/0) - -
4(0/0) - -
4(1/0) - -

12(3/0) - -

Table 39 Exception Processing Clock Periods

Exception Periods

Reset 34(6/0)

Address Error 50(417)

Bus Error 50(417)

Interrupt 44(5/3)*

Illegal Instruction 34(4/3)

Privileged Instruction 34(4/3)

Trace 34(4/3)

* The interrupt acknowledge bus cycle is assumed to take
four external clock periods.

175

Memory -+ Register

-

-

-
16(4/0)

24(6/0)

-
-

-

-

-

-

-
-

-

-

-

-

-
-

HD68000,HD68000Y--

• APPENDIX
• THE 680008 MASK SET

We implement the specification for HD68000·1O/·12 and
two corrections on the 68000S mask: set. One of these correc·
tions is the bus arbitration logic, and the other is a change to
correct a RTE/RTR microcode problem.

turn, may cause external DMA logic to run a bus cycle at the
same time as the processor cycle, only when those paticuiar
timings are all satisfied. If the DMAC HD68450 is used, this
problem can be avoided. Because the HD68450 negates BR
by one clock after the assertion of BGACK.

(1) Bus Arbitration Logic __ _
For the 68000S mask: set, an internal hardware change is

implemented and a timing specification (tBGKBR) is added.
The problem occurs when bus grant acknowledge (BGACK)

is asserted for only one clock cycle while bus request (BR) is
negated. IF BR is asserted one clock cycle....!!fter BGACK is
negated, the processor asserts bus grant (BG) and address
strobe (AS) at the same time (Refer to Figure 58). This, in

If BR and BGACK meet the asynchronous set·up time
tASI #47, then tBGKBR can be ignored. If BR and BGACK
are asserted asynchronously with respect to the clock, then
BGACK has to be asserted before BR is negated.

Number

C@

Table 40 tBGKBR Specification

4MHz 6MHz 8MHz 10MHz 12.5MHz
Version Version Version Version Version

Item Symbol Test HD68000-4 HD68000-6 HD68000-8 HD68000·10 HD68000·12 Condition HD68000Y4 HD68000Y6 HD68000Y8 HD68000Yl0 HD68000Y12

min I max min 1 max min I max min I max min I max

BGACK "Low" to BR "High" tBGKBR Fig. 57 30 I - 25 I - 20 I - 20 1 - 20 1 -

Strobes
and RtW--------.J

BGACK--+----------~~~----+_

BG-----------------1

CLK

Figure 57 AC Electrical Waveforms - 8us Arbitration

CLK
I

8R / ---......
I

\~--------________ ~i ________ ~-------­
I

BG / ~--------,.\
--------------------~ :\ !\ : :

I I
BGACK

I

AS------------------------------------J/~-----,~L------T_-------- I
Bus Grant Error --.t ti
Fix moves Bus Grant to here ----......

Figure 58 8us Arbitration Timing Diagram Error Sequence

176

Unit

ns

----------------------------HD68000,HD68000Y

68000S Mask Set

Ri>.:

R = Bus Request Internal
A = Bus Grant Acknowledge Internal
G = Bus Grant
T = Three State Control to Bus Control Logic
X = Don't Care

* State machine will not change state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

68000R and 68000 Mask Set

RA

R == Bus Request Internal
A = Bus Grant Acknowledge Internal
G = Bus Grant
T :::: Three State Control to Bus Control Logic
X = Don't Care

* State machine will not change state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

Figure 59 State Diagram of HD68000 Bus Arbitration Unit

To Avoid this problem on 68000R mask set, users are rec·
ommended to choose one of the followings.

1) Negate BR more than one clock after the assertion of
BGACK.

2) Avoid the assertion of BGACK for one clock cycle.
3) Reassert BR more than two clocks later than the nega·

tion of BGACK.
4) Use HD684S0 as DMA controllers.

(2) RTE/RTR Microcode Problem
The error in the microcode only affects the RTR and the

RTE instructions. These two instructions execute correctly
provided there is no bus error.

If there is a bus error on the 2nd, 3rd, or 4th bus cycle of
RTR or RTE, the program counter is lost. The program counter
loads the stack pointer +2 which is the same address as the
access. The results is the program counter containing the stack
pointer. This problem can occur on all HD68000 mask sets
previous to 68000S.

The fix inhibits the loading of the program counter during
this instruction until the 4th bus cycle.

Memory

Bus Cycle
I.~ ~

I \ I I , i

SP ~R SP+2 PCH

SPt4 pel

M~ Mt28 Access Address

Contento!
Progrilm Counter

SP : SP+2 i SP+4 I PCH'PCL : PCH'PCL+2
I, '

: SP+2 ! SP+2 SPt2: PCH'PCL+2
(M+2)- (M+2)- (Mt2)"

, 680005 milsk set

Figure 60 RTE Instruction Bus Cycle

177

...

•

••

