@HITACHI HD68450 DMAC APPLICATION NOTES

IHOVLIH®

SIION NOILYDINddY DVING 6SY89aH WPEERIEANYY

LECTRONICS
ORPORRTION

i k 20151 Bahama Street
Al Chatsworth, California 91311

(213) 644-7596
(818) 700-8700 (818) 341-4411

HD68450 DMAC
(Direct Memory Access Controller)

APPLICATION NOTE

G@HITACHI s

When using this manual, the reader should keep the following in mind:
1. This manual may, wholly or partially, be subject to change without notice.

2. All rights reserved: No one is permitted to reproduce or duplicate, in any
form, the whole or part of this manual without Hitachi’s permission.

3. Hitachi will not be responsible for any damage to the user that may result
from accidents or any other reasons during operation of his unit according
to this manual.

4. This manual neither ensures the enforcement of any industrial properties
or other rights, nor sanctions the enforcement right thereof.

HD68450 DMAC

The HD68450 DMAC is a 16-bit microprocessor that is bus-compatible with
HMCS68000 systems, and has the following features:

® 4 independent DMA channels (programmable priority order)

o Maximum Transfer Rate is 4M Bytes/sec (§MHz)

® Various Multi-Data-Block Transfer Modes: Continue Mode, Array Chaining
Mode, and Linked Array Chaining Mode

e High Reliability of Data Transfer facilitated by Error Detect, Error Interrupt

Vector, and Exception features.

16M-Byte Address Space (same as the HD68000)

Memory-to-1/O Device Transfer, Memory-to-Memory Transfer

Programmable Operation Mode and Transfer Mode

External Transfer Request, Internal Transfer Request (Auto-Request)

Programmable System Bus Bandwidth Utilization

The HD68450 is also applicable in other processor systems (the 8086 system).

1.1
1.2
1.3
1.4
1.5

31
3.2
33
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
44
4.5

CONTENTS

page
HD68450 DMAGC OPerationueuueiineeieranenantenneeneeeeeraneeneeans 1
HD68450 Operating State.........oueeuininteneeneereateneenerenenneneenenns 1
B0 0 0 3 G 57 o T 1
Internal RegiStersuuuiieit it e e e it 5
S gMIAlS ottt e e 7
2 (5 13 T s - A P 8
System EXampleonnitiiiii ittt ettt 10
HD68450 Transfer Operation and Circuit Examples..............c..c.covenen.. 13
FIFO Register OPerationc.oeeenuneeuneeneeenenenaeeneneeseeneocnenes 13
FC Application EXamples.ouiutiiniininiiineeieeenteneieaneneenenns 13
DMAC Interrupt Request Examples..........c.coviieinniiiiiiininiiiiiennns 13
Peripheral Control Line (PCL) Operations...........covveeiiireenenneneenene. 16
Demultiplex Examples for Address/Data Multlplexed Bus........oovvviiiint 17
HIBYTE Application Exampleooiiiiiiiiiiiniiiiiiiiiiieneneenes 17
Low Speed 1/O Device Circuit Example.........c..ooviiieieiniiiniinninen.. 18
High Speed I/ O Device Circuit EXampleouiuiiiineeeeinennenenenss 18
6800 Family Application EXamples.........coouiiiirinienuenrnrnnnneenennnnss 18
Encode Example for EXceptions.ouiiiiiitieneinneeeneenneneeneeannns 18
Priority Circuit Example (Daisy Chaining).............covveeneneninenenenann. 18
8086 System Application Examples.........ouuiiininnierinnenenneneenennenens 18
HD68450 DMAC Control Programocuviiieerinenenenenineenenenenss 39
Basic Control ROULINEoiiiitiiiiiiiii it it eeeneeneaaeenens 39
Transfer Termination Routinecvuiiiiiiiin i iiiiiiiiinenes 39
Continue Mode Program Examplecooiininiininiiiniiiienininens 39
A Program Example in Array Chaining Mode..................cooiiiiiiiinn, 39
A Program Example in Linked Array Chaining Mode 45
Data Sheetsoutiii it e e 49
HD68450, HD68450Y DMAC ... ittt e i 51

1. HD68450 DMAC Operation

1.1 HD68450 Operating State
The HD68450 has internal control registers and performs
required operations through control words written into the regis-
ters by the MPU. The DMAC state is divided into three modes:
1) MPU Mode: A bus master (MPU, DMAC) chip-selects the
DMAC, or the MPU acknowledges the DMAC’s interrupt
request, reading or writing the contents of the DMAC’s
internal registers.
2) DMA Mode: The DMAC owns bus mastership, and is
transferring data or preparing for data transfer.
3) IDLE Mode: The DMAC is waiting for a transfer request or
MPU access, and most of the bus control signals are
three-stated.

In normal operation, the DMAC transfers operands in the fol-
lowing sequence:

(1) Theinitiation phase, in which the MPU sets up control regis-
ters, transfer address, and transfer counts. The DMAC is
enabled to accept transfer request.

(2) The transfer phase; the DMAC receives requests, transfers
data, and writes the transfer status into the error register and
internal status register after completion of the transfer.

(3) The termination phase; the MPU checks the post-transfer
status.

The MPU determines the operation types and checks the
transfer state by writing and reading the contents of the internal
registers.

In addition to normal operations, bus exceptions are also
prepared (see Chapter 1.5 Exceptions).

1.2 Transfer Types

1.2.1 Classification of the transfer modes in terms of request
generation methods.

Transfer modes which the DMAC supports are shown in Table
1.1

The External Request is generated by asserting the REQ pin
(transfer request pin), and has two modes: Cycle Steal Mode
which is edge-sense, and Burst Mode which is level-sense. Auto-
Request is generated internally and the transfer starts by the
DMAC itself. This is suitable where an external device has no
transfer request mechanism (e.g., memory-to-memory transfer),
or where an external device can not determine the timing to make
a transfer request.

If the request generation method of “Auto-Request + External
Request” is used, the DMAC transfers the Ist operand by the

Auto-Request when a certain internal condition is satisfied. The
REQ signal outputted can then inform an external device of the
start of transfer. The 2nd and succeeding operands can be trans-
ferred with External Request.

1.2.2 Block Transfer Classification

The DMAC supports data block transfers by request genera-
tion methods shown in Table 1.1.

In Continue Mode, the DMAC transfers a pair of blocks
without software intervention. It can transfer multi blocks by
giving the next block information (address and word count) to
the DMAC internal registers, and setting CNT bit again during
the transfer of the second block.

In Array Chaining Mode, the MPU prepares for the array table
(transfer address and word count listed in main memory). The
DMAC transfers multi data blocks up to “216 = 64K according to
the order in the array.

Linked Array Chaining Mode is almost the same as Array
Chaining Mode, except the block information in the array need
not be listed in the transfer order sequentially. Instead, linked
address (block information which is going to be transferred next)
is given as a part of the block information.

Examples of array tables are shown in Figure 1.2. The Linked
Array Chaining Mode is more flexible in composing an array
table, to change the order of transfer, or to skip blocks in the
transfer order. For example, when block #2 is skipped in Array
Chaining Mode, block #2 address and word counts must be
replaced by block #3 information in an Array Table, and the
former block #3 must be replaced by block #4, etc.

Linked Array Chaining Mode provides an easy method of
changing only “block #2 information address” in block #1 infor-
mation to “block #3 information address.” When one block
transfer has been completed, the DM AC automatically reads the
next transfer block information to the internal registers. Array
Chaining has 3 word read cycles, whereas Linked Array Chaining
has 5 word read cycles (larger overhead).

In Continue Mode, fewer clock cycles are required to transfer
information between the DMAC interna! registers. The MPU,
however, must write the next block information in those DMAC
internal registers when 3 or more blocks are transferred.

Selection of a suitable mode for multi block transfers should
consider such factors as time, 1/O device speed, and program
developing effort. Table 1.3 shows overhead clock cycles for each
mode:

1.2.3 Transfer Classification by 1/0 Device Type

The DMAC can select a transfer mode as follows: For devices
which are chip-selected with ACK signal, Single Addressing
Mode is used, and an operand is transferred in one bus cycle

@ @

@

® ®

IDLE MODE MPU MODE IDLE MODE * DMA MODE IDLE MODE MPU MODE

Waiting for The MPU is Waiting for Transferring Waiting for The MPU is

the MPU writing transfer data the MPU reading the

access control requests access conteats of
words in the registers.

the registers.

(checking errors)

FIGURE 1.1 HD68450 Operation State

1

TABLE 1.1 Classification of Transfer Modes
in Terms of Request Generation

Cycle Steal Mode
The DMAC transfers a single
operand and relinquishes the
bus after each transfer.

External Request ————— Cycle Steal with Hold Mode
(using an REQ pin) The DMAC transfers a single
operand and relinquishes the
bus after each transfer, but
holds the bus for a specified
period of time after completion
of the single operand transfer.

Burst Mode
The DMAC transfers plural
operands continuously.

Request ————— Auto-Request Limited Rate
Method (not using an The DMAC transfers plural
REQ pin) operands continuously, but

relinquishes the bus during
the operation.

Maximum Rate
The DMAC transfers plural
operands continuously, but
does not relinquish the bus
until the end of the operation.

Auto-Request (only the first
transfer) + External Request
(transfers after the second)

TABLE 1.2 Block Transfer Classification

Single data block transfer The MPU gives transfer
address and transfer
counts to the DMAC
internal registers.

Multi-data block transfer —Continue Mode=~---------The MPU gives transfer
address and transfer

counts to the DMAC
internal registers, and

sets CNT bit to inform

the DMAC of the existence
of the next data block.

— Array Chaining Mode----- The MPU installs an array
table in main memory.

——Linked Array Chaining-—=-The MPU installs a linked
Mode array table in main memory.

Main Memory Main Memory

(*)| Block#2 address (4 bytes)

Block#2 words (2 bytes)
Block#1 address
(4 bytes)

Block#3 information address (4 bytes)

Block{l words

(2 bytes)
Block#2 address Block#1 address
Block#2 words Block#1 words
Block#3 address Block#2 information address (%)

Block#3 words

Block#3 address

Blocki#3 words

-0 - (END)

Array for the
Array Chaining Mode Array for the Linked Array Chaining Mode

FIGURE 1.2 Example of Chaining Mode Array Tables

TABLE 1.3 Overhead Required for Loading Block Information

Transfer Mode Overhead Clock Cycles Note

l. Continue Mode 24 clock cycles Overhead for loading the 2nd
block information

2. Array Chaining 38 clock cycles
Mode
Read Cycle : 4 clock cycles
3. Linked Array 50 clock cycles (NO wait state)

Chaining Mode

TABLE 1.4 Classification of Transfers by 1/O Device Types
——The device chip-selected by ACK.

Single Addressing

L The device chip-selected by ACK and outputs READY to transfer.

——The device chip-selected by decoding address lines (68000-type).

Dual Addressing

The device chip-selected by decoding address lines; synchronous
transfer (6800-type).)

wn
A
amM 2n N
g ﬁ L___J /M E
LS M
2] alla M
gé — MEM DMAC 2 : HE
< FIFO - E
REGIST .
| — /=
_\g - MULTI BUS
DMAC] ONE BUS CYCLE CYCLES
AcK || |
1/0
]I)/O c || DEVICE
EVICE J—— OR
L MEM

OPERAND SIZE = or # I/0 PORT SIZE
OPERAND SIZE = 1/0 PORT SIZE EX) I/0 : 8 BIT PORT, DEVICE—=MEM TRANSFER

(BYTE OR WORD) 1ST CYCLE 1/0—=FIFO 8 BIT READ
2ND CYCLE 1/0—FIF0 8 BIT READ
3RD CYCLE FIFO—»MEM 16 BIT WRITE

Figure 1.3 Single Addressing Mode Figure 1.4 Dual Addressing Mode

(Figure 1.3). In this mode, the DMAC outputs memory address
and ACK signal in the same bus cycle, informing the 1/ O device
of the transfer start, and transfers data between memory and the
device.

Futhermore, when the 1/O device has READY signal to
inform the DMAC of the completion of a transfer, the DMAC
finishes the bus cycle, confirming the READY signal. When the
1/ 0O device is chip-selected by decoding address lines (68000 bus
compatible device), the DMAC requires bus cycles for addressing
to memory and the I/ O device respectively. This transfei mode is
called Dual Addressing, in which the DMAC uses the internal
FIFO register (First In First Out), which temporarily keeps the
operand inputted from the memory or device source, and
transfers it to the destination in the following bus cycles (see
Figure 1.4). The ACK signal is usually outputted when the
DMAC addresses the 1/O device, and not outputted when it
addresses memory. For 68000-type devices, and when the request
is Auto-Request, ACK signal is not outputted. For Single
Addressing, the port size of the I/ O device and operand size must
be the same, whereas in Dual Addressing, they need not be the
same because of the FIFO register. The relative data is shown in
Table 1.5.

Users can independently designate each mode described in
sections 1.2.1 through 1.2.3. For example, users can transfer
multi data blocks (1) in Continue Mode, (2) with request genera-
tion of Cycle Steal with Hold, and (3) by means of single Address-
ing. These operation modes are designated by writing control
words into the DMAC internal registers.

. 1.3 Internal Registers
The DMAC internal registers shown in Figs. 1.5and 1.6 can be
addressed with address lines A1-A7, LDS, and UDS.

DCR is a register to designate an external 1/O device. It
designates the external request generation method, device
type and port size, and PCL, line operation (described further
on).

OC R designates the transfer operation. It designates the data
transfer direction, operand size, chain operation types, and
request generation method.

SCR designates the increment/decrement sequence of both
memory and device (source and destination) addresses.

CCR designates the channel operation. It designates the
operation start, the continuous operation presence, HALT,
abort, and interrupt enable/disable.

CSR has the channel status. It shows the channel operation
completion, block transfer completion, normal termination,
error status, channel active state, and PCL signal line
information.

CER indicates occurrence of error types.
CPR determines the priority of the channel.

MTC is a 16-bit register to hold transfer counts. The block
size (transfer counts) is written when one data block is trans-
ferred. When multi blocks are transferred in Continue Mode
and Chaining Mode, the next block size is automatically
loaded in MTC after completion of the previous block
transfer.

BTCis used in Continue Mode and Array Chaining Mode. In
Continue Mode, the first block size is stored in MTC after
completion of the first block transfer. When more than two
blocks are transferred in this mode, BTC and BAR (described
further on) are rewritten, and CNT bit in CCR is set again
during the second or third block transfer. In Array Chaining
Mode, BTC holds the number of blocks being transferred.

MA R contains the memory address being outputted at each
transfer cycle. In block transfer, the beginning address of the
block is written in MAR as an initial value. The content of
MAR varies according to the contents of OCR and the SIZE
bits (operand size) in SCR after one operand transfer. In
Continue Mode and Chain Modes, MAR is rewritten
according to BAR or the array information in memory when
a block transfer completes.

DARis used to address an I/ O device (or to address memory,
in memory-to-memory transfer). DAR is used only in Dual
Addressing Mode, and changes its content according to SCR
and SIZE bits in OCR.

BAR is used in Continue Mode and Chain Modes. In Con-
tinue Mode, the start address of the 2nd block is written in

TABLE 1.5 Possible Choice of Port Size & Operand Size

Device Operand
Transfer Mode Port Size size Transfer Request
bit 8 16 | 32
8 External Request
OK| OK| OK | Auto-Request
Dual Addressing
16 OK| OK | OK | Auto-Request
16 NG| OK | OK | External Request
Auto-Req+External Req.
Single Addressing 8 OK| NG | NG | External Request
Auto-Request
16 NG | OK | NG

Address Bits

7 0 Register 7 6 5 4 3 2 1 0 Mode
CSR Channel Status Register c ¢c 0 0 0 0 0 O R/W*

CER Channel Error Register c ¢ 0 0 0 0 0 1 R
DCR Device Control Register c ¢ 00 0 1 0 0 R/W
OCR Operation Control Register c ¢ 0 0 0 1 0 1 R/JSW
SCR Sequence Control Register c ¢c 0 0 0 1 1 0 R/W
CCR Channel Control Register c ¢ 0 0 0 1 1 1 R/W
NIV Normal Interrupt Vector c ¢ 1 0 0 1 0 1 R/W
EI1V Error Interrupt Vector c ¢ 1 0 0 1 1 1 R/W
CPR Channel Priority Register c c 1 0 1 1 0o 1 R/JW
MFC Memory Function Codes c ¢ 1 0 1 0 0 1 R/W
DFC Device Function Codes ¢ ¢ 1 1 0 0 0 1 R/W
15 BFC Base Function Codes c ¢ 1 1 1 0 0 1 R/W
MTC Memory Transfer Counter ¢c ¢ 0 0 1 0 1 b R/W
31 BTC Base Transfer Counter c ¢ 0 1 1 0 I b R/SW
MA R Memory Address Register c ¢ 0 0 1 1 s s R/W
DAR Device Address Register c c 01 0 1 s s R/W
BAR Base Address Register c ¢c 0 1 1 1 s s R/WJ

cc:00-Channel #0,01-Channel #1 ss:00-high-order,0l-upper middle

10-Channel

7

v

NOTE:

#2,11-Channel #3

10-lower middle,11-low-order

b 0-high-order,
RO ”
SWrite

General Control Register 111l

1 1

I-low-order

1

FIGURE 1.5 Internal Registers and Address Assignment

COMPOSITION OF REGISTERS

15 8 7 0
00 o1 00o[CSR0 | CERO jo1
02 S—— 03
CHANNEL 0 os] DCRO | OCRO Jos
3E 3F 06 SCRO [CCRO]or
40 41 08 —— 09
0A MTCO ;)
CHANNEL 1 ocl_MARU (H) oD
TE 0E[_MARO (L) o
80 10 o— 11
CHANNEL 2 12 18
14|__DARO _(H) 15
BE| 16L__DARO (L) 17
0 18 BTCO -
1B
CHANNEL 3 NBARO Y i
FE GCR 1EL_BARO (L) ¢
20 21
22 23
24 —— NIVO |25
26| —— [EIVO |27
Each register can be accessed by 28 MFCO_J20
byte, word, and long word. How- 2A —7 2B
ever when STR bit in CCR is set, Zg CERO :?
only byte is possible. 30 [DFCO |5,
32 33
34 35
36 37
s8] —— | BFCO]s9
3A] 3B
3C 3D
3E 3F

FIGURE 1.6 Whole Arrangement of Registers

6

1

is valid only for resetting the

f
one set per channel

register.

R/W }one per DMAC

REGISTER ARRANGEMENT OF CHANNEL 0

BAR. This BAR is used in the same way as BTC. In Chain
Modes, it keeps the address where the information of the next
block is contained.

MFC, DEC and BEC are used with MAR, DAR, and BAR,
respectively. The MFC,, DFC, and BFC are used with the
same purpose as the FC outputted from the MPU.

Since the FC registers in the DMAC can be written, the DMAC
can also transfer data between the supervisor program area (FC=
110) and the user program area (FC = 010).

NOTE: Each register can be accessed by byte, word, and long
word. However, when STR bit in CCR is set, only byte is
possible.

NIV and EIV keep the vector numbers outputted in the vector
number fetch cycle (Interrupt Acknowledge Cycle), which the
MPU performs for the interrupt requested by the DMAC. If no
error (ERR bit of CSR is not set) occurs, the DMAC outputs NIV
contents. When error occurs (ERR = 1), the DMAC outputs EIV
contents. In both cases, the DMAC does not output the vector
address containing software routine for the interrupt process, and
instead outputs the necessary data for the vector address calcula-
tion. Therefore, the contents of NIV and EIV are outputted onto
the lower data bus (D, - D,). This scheme is equivalent to
HMCS68000 bus protocol.

GCR is common to all four channels and determines the
DMAC’s bus use ratio and sample interval in Limited Rate
Auto-Request Mode. During transfer operation in this mode, the
DMAC supervises the bus bandwidth by dividing the transfer
time into the equal time interval called “sample interval.” This
sample interval consists of 2(BT*BR*5) ¢lock cycles. BT and BR
have 2 bits respectively in GCR and a sample interval can be 32 to
2048 clock cycles. The DMAC performs the DMA cycles during
the first 2(87*4 clock cycles in the sample interval, and relin-
quishes the bus in the latter part (see Figure 1.7).

o(BT + BR +5)

SAMPLE INTERVAL

b

oBT +4)

wr

Limited Rate
Auto-Request
Interval

FIGURE 1.7 SAMPLE INTERVAL in Limited Rate
Auto-Request

The DMAC monitors BGACK signal (described later). When
BGACK is asserted, the DMAC starts counting the clock cycle.
The DMAC compares the count with 2BT*9) When the 2(8T*4
clock cycle is in the middle of a bus cycle, the DMAC continues
the operation (overruns) until the end of the bus cycle, and
relinquishes the bus. When the DMAC overruns, it does not
transfer any operands in the subsequent sample interval, because
the Limited Rate Auto-Request Mode has the premise to return
the bus to the MPU. This mechanism enables the MPU bus cycles
even in multi DMAC environment.

In HMCS68000, BGACK signals that a device other than the
MPU is using the bus. Since all system DMAC’s monitor the
common BGACK signal, they each count the BGACK clock
cycles as bus masters, even if only one DMAC is the bus master,
and determine whether to transfer operands in the following
sample interval.

In Maximum Rate Auto-Request Mode, the DMAC takes the
bus mastership and transfers all operands until they are
exhausted. When the higher priority channels request transfer in
this mode, the channel with the Maximum Rate Auto-Request
stops the transfer temporarily, and the higher priority channel is
serviced. The Maximum Rate channel resumes the transfer after
that.

1.4 Signals

HD68450 is bus-compatible with the HMCS68000. Signal
lines are shown in Figure 1.8. The address lines Al through A7
are used to address the DMAC internal registers. A8 through A23
and DO through D15 are time multiplexed.

The 68000 and system bus control signals and bus arbitration
lines are compatible. Chip select (CS) is made by decoding
address lines. Since the DMAC monitors the bus status through
BGACK (Bus Grant Acknowledge) line, the BGACK line is the
input/output.

Figure 1.9 shows the bus arbitration timings. The DMAC
starts data transfer by 16-20 clock cycles after the transfer request
recognition. The interrupt request/acknowledge lines are used
to interrupt the MPU according to the interrupt request from I/ O
devices, or to prepare the vector number ouput by obtaining the
interrupt acknowledge cycle from the MPU. An 1/0O device can
request the DMAC for an interrupt through the PCL line (men-
tioned further on).

The DMAC requests the MPU for an interrupt in the following
cases:

1) When the channel operation completes

2) When the block transfer completes

3) When the PCL lines are asserted

When the DMAC receives IACK signal from the MPU, it
outputs the vector number D0 to D7. The address/data demulti-
plex lines are used to demultiplex the time-multiplexed address/
data bus.

The HIBYTE signal is asserted when the operand size is byte in
Single Addressing Mode, and when the operand is on the upper 8
bits in the data bus; i.e., when the operand in even address is
accessed. This signal is used to switch a byte data position
between the upper data bus and the lower data bus. BEC0-BEC2
are the encoded signals for Exceptions (Refer to Chapter 1.5).
FCO0-FC2 are function code output signals and are compatible
with the HMCS68000 function codes.

An I/0 device in each channel is controlled with REQ, ACK,
and PCL lines. REQ s a transfer request signal which is sensed by
the edge in Cycle Steal Mode, and sensed by the level in Burst
Mode. The ACK signal informs the 1/O device of the transfer
start, and is used for device chip select, or for negating REQ. Itis
usually outputted when the DM AC addresses an 1/ O device, but
it is not outputted when a 68000 compatible device and Auto
request are programmed. By making use of this feature, any
channel can operate Memory-to-Memory transfer without
addressing the 1/O device.

PCL (Peripheral Control Line) isa multiple purposed signal to
control a peripheral device. PCL is designated by the PCL bits
and DTYP bits of DCR, and can be used as status, interrupt,
abort, READY , and (E) enable clock inputs, and as start pulse
output.

Abort input is used to abort the channel operation, and abort
error is recorded in CER. The READY input is used when the
1/0 device has the READY output, and the DMAC completes
the bus cycle after the recognition of the READY signal. The
Enable (E) clock input is used when the device is programmed as a
6800 compatible device, and the data transfer becomes syn-
chronous.

The start pulse is outputted when the STR bit of CCR is set and
the channel is activated. This is a single active low pulse asserted
during four clock cycles which informs the 1/O device of the
transfer start. DONE and DTC signals indicate the transfer com-
pletion. DONE indicates block transfer completion, which is

Vee (2) CLK
il 1

‘ As~A
Address bus Di~nf:/<}:{>
Data bus A ~As <:>
(CS ——
[_s B B
68000 DS~
bus control ups = >
: v R/W]
DTACK <+

Bus arbitration{ BG ———

Interrupt request/{ G —
Recognition

Address/Data UAS <
demultiplex BTE

|

Exception BEC, ———

Function code FC(: -—

| S —10TS

—— ACK,
le———— PCL,

le————— REQ,
———— ACK,
j«——— PCL,

A

| 1/0 device
control

le——— REQ,

|
[P R<>
ke
>

|

HD68450
DMAC

ol
—
~

je—— REQ;

— ACK,

[e——> PCL;,

le—— DONE
Transfer end
signal

DTC

|

Vss (2)

FIGURE 1.8 HD68450 Signal Lines

outputted at the end of each block transfer in Continue Mode,
and when all blocks are completely transferred in Chain Modes.
This signal is asserted at the same time as the last ACK signal of
the transfer. DONE, therefore, is not outputted in the transfer
cycle to the memory in the very last bus cycle when the transfer is
from device to memory Dual Addressing.

DONE is also used as an input signal in order that the 1/O
device informs the DMAC of the transfer completion. The
DMAC monitors the signal during asserting ACK signal. After
the DONE assertion, the DMAC stops data transfer when the
operand transfer is completed, and the channel operation termi-
nates. When the DMAC and /O device simultaneously assert
DONE, the DONE inputted from the device is ignored. The
DMAC outputs DTC whenever it recognizes DTACK. In the
case of a 6800 compatible device, the DMAC detects the trailing
edge of E clock to output DTC. I/ O devices can latch the data by
using the falling edge of the DTC assertion (DTACK is also
useful). The DTC negation indicates the bus cycle completion.
This signal is not outputted when DTACK is not inputted, or if
exceptions are entered, in order that the 1/O device can detect
transfer abnormality.

1.5 Exceptions

To be sure of data transfer, the DMAC can stop the bus cycle
and retry it, or leave the recovery to the other bus master if an
abnormal transfer occurs. The Exceptions are requested by the
external devices and are encoded into 3 signals. BEC0-BEC2, and
inputted into the DMAC. BEC exception conditions are shown
in Table 1.6.

The DMAC samples BEC signals with the rising edge of the
clock and recognizes an exception condition if the BEC signals
remain in the same level for two or more clock cycles. The DMAC
carries out BEC exceptions only when BEC assertion starts

simultaneously, or before DTACK assertion, and the BEC values
remain in the same level for two or more clock cycles. The HALT
exception is not implemented until DTACK input. If BEC’s are
asserted after DTACK, the bus cycle occurs normally.

Halt

When Halt is asserted during DM A transfer, the DMAC relin-
quishes the bus after receiving DTACK, and after normal bus cycle
completion. The DMAC does not arbitrate the bus until HALT is
negated.

Halt is useful in the following cases:

(1) When DMAC turns over the mastership to another bus
master without changing the number of the DMAC’s bus
cycles. Even when the DMAC is using the bus continuously
and does not relinquish it, another bus master can get the
mastership by halting the DMAC. In this case the DMAC
resumes the bus cycle after the bus arbitration (total number
of the DMAC's bus cycles does not change).

(2) When transfer “trace” is performed by executing single step
bus cycle.

Bus error
When an error occurs during transfer, and the DMAC can not
continue the operation or can not get the correct results, Bus error
is asserted to stop the transfer abnormality.
The DMAC Bus error sequence is as follows.
@ stops the transfer and sets COC bit and ERR bit in CSR.
@ checks INT bit in CCR. If INT = |, the DMAC asserts IRQ
signal to interrupt the MPU.
® Keeps the address where the bus error took place and the
transfer count left over in the Address Register and Transfer
Counter respectively in the channel.
@ relinquishes the bus without other channels’ transfer requests.

coe LML LML M Mo

min . 2 clocks

\L—/ 1.5~3.5 clocks
BR 4
®
2~3.5 clocks —45 J
BG (1
3
\® " /‘
b)
BGACK 0 clock~MPUCycCle ® 45
(a)
{f 1 7
BUS cycle MPU cycle o @ DMAC Cycle ® MPU cycle
s 4.5~5.5 clocks —f —
ACK 7w ’ \ —
~——MAX., 12.5 clocks+MPU cycle f
DTC 4¢ ¥ \ /_____
CLK

pigigigigipgigipixigigigigigipgigipgiySgigigigh

e
D

BUS Idle —=f~—DMAC cycle —=+ Tdle ==!FU
cycle

Cycle Steal Mode
(sensed by

rising edge of REQ)

FIGURE 1.9 Bus Arbitration Timing

TABLE 1.6 (BEC) Exception Condition Types

BEC2 BEC1 BECo Exception Applications
Conditions
1 1 1 No exceptions | Usual operation
1 1 0 Halt Used when DMA trnsfer is stopped
temporarily by external circuits.
1 0 1 Bus error Used when a serious system error
occurs. For example, the DMAC bus
cycle does not terminate.
1 0 0 Retry Used when the DMAC bus cycle has not been
carried out correctly, and needs retry.
0 1 1 Relinquish Used when the MPU uses the bus before the
and Retry termination of the DMAC bus cycle,and
when the DMAC cycle must be continued
from the following cycle.
0 1 0 Not used —
0 0 1 Not used E—
0 0 0 Reset Power on reset. System reset.

Bus error is useful in the following cases:

(1) When preventing system dead lock (not receiving DTACK
signal), “a watch dog timer” is used, and the Bus error is
asserted when the time is out. .

(2) When page fault is recognized in virtual memory environ-
ment, Bus error is asserted.

Retry

When Retry is recognized during the DMAC bus cycle, the
DMAC stops the bus cycle and repeats the same bus cycle right
after the negation of the Retry signal. During the whole sequence,
the DMAC holds the bus (OWN and BGACK are kept asserting).

When the DMAC accesses memory or device, and an error is
detected in the transferred operand, external circuitry asserts
Retry to transfer the operand again. For example, when an error
is found through parity information during a bus cycle, or when
DTACK does not return in spite of correct address, Retry can be
performed.

Relinquish and Retry .

When the DMAC recognizes Relinquish and Retry, it sets all
control lines, data bus, and address bus to three state, and
releases the bus temporarily. If the BEC exceptions are negated,
the DMAC outputs BR again to get the bus mastership and
retries the bus cycle in which Relinquish and Retry are asserted.

10

Relinquish and Retry can be used when the MPU service is
necessary to correctly transfer the operand after the bus cycle
starts. If the 1/O device asserts Relinquish and Retry while
requesting an interrupt to the MPU, the DMAC releases the bus
so that the MPU may service the interrupt routine, and negates
Relinquish and Retry—recovering the fault with minimum over-
head. The DM AC obtains the bus again and resumes the transfer.

Reset

When the DMAC recognizes Reset, it relinquishes the bus,
clears GCR, and resets DCR, OCR, SCR, CCR, CSR, CPR, and
CER of all channels. The interrupt vector registers are set to §
OF(HEX), uninitialized interrupt vector number.

2. System Example

HD68450 DMAC in HMCS68000 is shown in Figure 2.1.
Since only basic signals are shown, users are required to add
necessary circuitry to an actual system (See Chapter 3). If whole
address space is managed with a memory management unit
(MMU), the MPU physical address space is the system address
bus. The Circuit example is shown in Figure 2.2. The MMU’s
page fault is encoded to be the DMAC’s Bus error input signal.
Refer to Chapter 3 for further examples of each circuit.

System Data Bus

. Do~Dss N Do ~Dis
K)Data & Address Bus
Interface AsAzy
FDC,
<:> etc. o T oz
EEEEE 7
2| 15| 1=
ou Al e <?E§
REQ, "
Ay ~Aq ‘
s 00, Acig (Ghannel M Ke—H
ete. PCL, oS4
REQ —E
-A—C—‘ri Channel LDS
: #1 UDS
PCT, ups
B HD68 450 R/W
< .
o REG, DII;/[AC DTACK
=) i ACK, [Ghannel pe, g, |3
Egg PCL, I
884
TRQ
REQ;
ACK i‘gnannel TACK T
__| PCLs BEC, ~BEC,
C:> P:;mlled DTC r ‘ Ay ~As
1/0
Device, DONE N System
ete. Q:: Interrupt
[m |O o Control
CLK |leli®@l |12 TZhe
. | (2 4
CPG [CLK I =
3
FCo~FC,
Do~Dys @I:>
Ay ~Agg
AS
HD68000 o
MPU LDS
UDS
R/W
DTACK
PA
VMA
IPL,~IPL, E

Intr.

il

Enc.

System Data Bus

LIS © &
EERRE

L

{ bl

l

HERERVEY
System Address Bus

EERREIEI

11

[11

[

[

Il

[]

11

L
-

FIGURE 2.1 Basic System Configuration

11

Do ~Dis

DS

RW
DTACK

Dec.

= 68000
RS

2RV,

Periphr.

System Control Bus

]
3
w

1
=

B
<!
w

v
v

Dec.

| 3

ZIRY.

=]
l

6800
Periphr.

§

[<]

£+5V +5V

R/W l
AS
~An e
A1~Aays) 3
HD68000 +5V
5
MPU L) PA,~ PA; y
FCo~FC, ¢ MMU
TPL,~TPL, b~ R/W
dAS
N . -
3 n A~Ay)
MAS
A . -
L ; A~A,
Olcireuit OL FCy~FC,
PAg~PA,; e >
R/W v
— 5
AS *
FCo~FC, 3 %
A~Agg—2 S e §:70)
QP +svl é +5V %
OWN 4 FAULT ~
HD68450 1S148)
DMAC il o) «
BEC,p-—dp. ¢p R
3
BEC=-—dp, SP z)
Bmo O“—CDO 4 o] © §
b Z 5 2
ERR 3
op-—-—— n‘:;; < ‘f‘
- o
1p o 3 =
® = §
00]7 a > o
4
Priority
Encoder

FIGURE 2.2 Conceptual Diagram of the

DMAC in virtual address

12

3. HD68450 Transfer Operation and Circuit Examples

3.1 FIFO Register Operation (Data Pack and Unpack)

As shown in Figure 3.1, the DMAC possesses a 3-byte FIFO
(First In First Out) register, which reads and writes an operand in
byte or word unit. The FIFO register makes it possible to operate
on various operand sizes (abbreviated as OP), and to operate on
1/0 devices with various port sizes (data bus bit length, abbre-
viated as P) for memory to I/ O transfer. In these operations, the
transfer mode is Dual Addressing.

In Figure 3.1, 1/ Oisan I/ O device with P=8, and even address.
When the DMAC transfers operands from I/ O-1 to memory 1 to
6, it reads two byte-operands in the first and second bus cycles
from 1/ O-1 into the FIFO, and writes a word operand in the third
bus cycle from FIFO to memory. Thus, the bus efficiency of
DMA transfer is increased with PACK operation (to transfer two
byte-operands as one word). When the transfer is from memory
to 1/0O-1, a word operand is read from memory 1 and 2 into the
FIFO, and is written as two byte-operands into 1/O-1 by
UNPACK operation (one word into two bytes).

3.2 FC Application Examples

The DMAC possesses the following three registers in each
channel:

e MFC (Memory Function Code register)
e DFC (Device Function Code register)
o BFC (Base Function Code register)

In memory access bus cycles in both Single Addressing Mode
and Dual Addressing Mode, the MFC contents are outputted
through FC0-FC2 pins at the same time as address output. In
device access bus cycles in Dual Addressing Mode, the DFC
contents are outputted. In Array Chain and Linked Array Chain
Modes, the BFC contents are outputted in the bus cycles which
load the block information from the Array Table in memory.
Because arbitrary values can be written in those function code
registers, the data transfer between different memory spaces

assigned in a 68000 system (e.g., the supervisor data area or the
user data area) becomes possible in Dual Addressing Mode. (See
Table 3.1)

TABLE 3.1 68000 Function Code Table

Function Code
Classification

FC2 | FC1| FCO

0 0 0 (Unassigned)

0 0 1 User Data

0 1 0 User Program

0 1 1 (Unassigned)

1 0 0 (Unassigned)

1 0 1 Supervisor Data

1 1 0 Super#isor Program

1 1 1 | Interrupt Acknowledge

FC0-FC2=111 indicates the interrupt acknowledge cycle. The
DMAC should not output this code. When IACK input is
asserted during DMA transfer, address error occurs.

3.3 DMAC Interrupt Request Examples

The DMAC can output TRQ to request an interrupt to the
MPU under the conditions shown in Table 3.2. “L™ means TIRQ
assertion. IRQ is asserted as long as those conditions are satisfied.
To negate m(make “H” level), INT bit in CCR must be reset, or
“FF(HEX)” must be written in CSR to reset CSR.

-

N\

e I/0-1
(OP=8, P=8, A=EVEN) ff

e 1/0-2
(OP=8, P=8, A= ODD)

e 1/0-3
___*DMAC OP=38 or 16,P=16)
@|®|e|ok=— => P !
i FIFO ; O\ @®
i @)

. [OHONO)

@|O|e] K=]

Dy~ D,s data busJ/

D,~ D,data bus

~/

<— =

U

© @
©) @
® ©®

¢ Mem.(OP=8 or 16, P=16)

FIGURE 3.1 Data Bus Connection Example
in Dual Addressing Mode

13

+5V

FC2 [R—
FCi TACK
FCo LoV
AS
HD68000 RESET HD68450
MPU DMAC
L.S148 0 L[
;H +5Y]
IPLo o=—0| Ao 3o—< % -
1P, p=—9 A, 4o — IRQ
1PL, o=—""— A 5p—<
6p——
7o——<
EI

5

FIGURE 3.2 Connection Example of TIRQ and TACK

Various transfer examples using FIFO are given in the followings.
Example 1) I/0 (0OP=8, P=8, A=EVEN, (D) to Q))—Memory (@D to ®)

DMAC bus cycle

R-B --- 1 byte read from I/0 (@)
W-B --- 1 byte write to memory (@)
R-B --- 1 byte read from I/0 (Q)
W-B --- 1 byte write to memory (@)
R-B --- 1 byte read from I/0 () *
W-B --- 1 byte write to memory ((®)

% When TC (Transfer word Counter)= 2, and P=8, PACK does not
occur,

Example 2) 1I/0 (OP=8, P=8, A=EVEN, @to@)—-—PMemory (@Dto@®)

DMAC bus cycle
R-B --- 1 byte read from I/0 ()

R-B —-- 1 byte read from I/0 ((d)

W-W --- 1 word write to memory (& @)*
R-B --- 1 byte read from I/0 ()

W-B --- 1 byte write to memory (Q)

R-B --- 1 byte read from I/0 ()

W-B —-- 1 byte write to memory ((D)

% Data inputs in the order which address decreases.

14

Example 3) 1I/0 (0P=8, P=8, A=0DD, D @ O*)—>Memory (D @ @D*)

DMAC bus cycle

R-B
W-B
R-B
W-B
R-B
W-B

-—1

-1

]

i

]
e

* does not

byte
byte
byte
byte
byte
byte

read from 1/0 (@)
write to memory (D)
read from I/0 (@)
write to memory (@)
read from I/0 (@)
write to memory ((D)

count the address

Example 4) Memory (@ to &)—»1/0 (OP=8, P=8, A=EVEN,® to @)

DMAC bus cycle

R-W
W-B
W-B
R-W
W-B
W-B

Example 5) Memory (D

-—1

-—1

-—1

-—1
-—1

-—1

word
byte
byte
word
byte
byte

to @

DMAC bus cycle

R-W
W-B
R-W
w-w
W-B

-—-1
-—1
-—1
-— 1
-— 1

word
byte
word
word
byte

read from memory (@D @)
write to I/0 (@)
write to I/0 (Q))
read from memory (3 @)
write to I/0 ((®)
write to I/0 (@)

)—»1/0 (0P=8, P=16, @ to (®)

read from memory (D @)
write to 1/0 (@)

read from memory (3 @)
write to I/0 (® @

write to 1/0 ((®)

Example 6) Memory ((® to @)—1/0 (0P=8, P=16, D to @)

DMAC bus cycle
-—= 1 byte read from memory (())
——- 1 word read from memory (Q) D)
--- 1 byte write to 1I/0 (@)

--- 1 word write to I/0 (® ®)

Example 7) Memory (D @ @ ©)—1/0 (0P=8, P=16, D @ @ @)

DMAC bus cycle

R-B
R-W
W-B
W-W

R-B
R-B
W-B
W-B
R-B
W-B
R-B
W-B

Example 8) Memory (@D

-—1

]

]

1
[

byte
byte
byte
byte
byte
byte
byte
byte

DMAC bus cycle
-—- 1 word read from memory (@ @) or I/0 (@ @)
-—- 1 word write to I/0 (@ @) or memory (

—-- 1 word read from memory (3 ®) or I/0 (D @)
-—- 1 word write to I/0 (® @) or memory (Q)

R-W
W-W
R-W
W-W

read from memory (@)
read from memory (@)
write to 1/0 (Q)
write to I/0 (@)
read from memory ((D)
write to 1/0 (@)
read from memory (@)
write to 1/0 (@)

to @)e— 1/0 (OP=16 or 32, P=16, D to @)

15

Figure 3.2 shows IRQ/IACK examples in the DMAC and the
MPU system, where the interrupt level of the DMAC is four.
However, this level is arbitrary.

When the multi block transfer is in Continue Mode or in
Chaining Modes, the transfer status needs to be checked between
block transfers in some applications. In Continue Mode, since the
BTC bit is set after the first block transfer completes, the
DMAC can request interrupt according to Table 3.2.

In Chaining Modes the DMAC cannot request interrupt at the
end of each block transfer. Instead, when the last block transfer
completes, interrupt request is possible because the COC bit is
set. In Chaining Modes, if the DMAC needs to request interrupt
at the end of each block transfer, circuits shown in Figure 3.3. are
required. Appropriate values have been written in BFC, MFC,
and DFC, and the PCL signal is formed by decoding the function
codes, to enable the DMAC to request interrupt. (It should be
determined whether the FC’s are used by the Memory Manage-
ment Unit (MMU).

Figure 3.4 shows BG mask example. Because an interrupt hasa
higher priority than a data transfer, BG should be masked in
TIACK cycle.

3.4 Peripheral Control Line (PCL) Operations

PCL pin of each channel can be used for four different func-
tions realized by setting PCL bits and DTYP bits in DCR as
shown in Table 3.3. However, Mode 3 becomes invalid when the
device type is 6800, or ACK type with READY, or 68000-type in
Auto-Request Mode. Similarly, Mode 4 becomes invalid when
the device type is 6800, or ACK type with READY.

In Mode 1, PCT bit in CSR is set when PCL line is asserted
(“H”to“L”). Mode 1 is useful to record a status change ofan 1/ O
device. The timing chart for setting the PCT bit is shown in Figure
3.5.

Mode 2 is the function to interrupt the MPU via the DMAC
from the 1/O device, using the PCL signal change from “H" to
“L™. In this case, the INT bit of CCR should be set. The timing

TABLE 3.2 IRQ Output Condition

CCR CSR _
RQ Output

INT | COC| BTC | NDT | ERR | ACT | PCT*| PCS

0 X X X X X X H

1 0 0 0 0 0 X H

1 1 X X X X X L

1 0 1 0 0 X X L

1 0 0 0 0 1 X L

*: When the PCL function is set on interrupt input.

X: don’t care.

+5V
FCo | LS138
FC DECODH
FC.
+?V BASE ADDRESS ACCESS
AS >—§—c
HD68000 HD68450
MPU L5148 op DMAC
1p—=<
2p—=
5
IPLoo=— Ao ap—<V
IPL,p=—9 A 4po— % N 1
p—=—oJ 5 o
IPL, A2 o IRQ FCL,
70—
EI

!

FIGURE 3.3 Circuit Example to Generate Interrupt at the
end of each block transfer in Chaining Modes

16

BR ol BR
LS161
S HD68450
D Q CLEAR DMAC
LS74 Ep
TACK >———PCcK § ___>(TK CARRY
CL

RESET ’ K
CLK

FIGURE 3.4 BG input Mask example

chart from PCL signal change to IRQ output is shown in Figure
3.5.

Mode 3 is used to ascertain the internal process time interval to
activate channels, since the STR bit of CCR is set. Table 3.4
shows the necessary CLK cycles in Mode 3 from the MPU write
cycle to set STR bit until start pulse output.

Mode 4 aborts the current transfer. This signal is inputted
through PCL,and EXTERNAL ABORT ERROR is recorded in
CER, and ERR bit is set in CSR. Timing is shown in Figure 3.5.

3.5 Demultiplex Examples for Address/Data Multiplexed Bus

As described in Chapter 1.4, OWN, UAS, DBEN, and DDIR
are used for bus demultiplexing. OWN is used for bi-directional
buffer control. Signal application examples are shown in Figure
3.6.

3.6 HIBYTE Application Example (Bus Matching)
Data transfer between devices with different port sizes in Dual
Addressing Mode is described in Chapter 3.1. In Single

TABLE 3.3 Conditions to set PCL functions

DCR OCR
Mode PCL Function Mode

PCL,H | PCL,L |DTYP,H|DTYP,L |REQG,H

1 Status Input 0 0 x X P

2 Status Input with Interrupt 0 1 x X

3 Start Pulse,Negative /8 CLK 1 0 X

1 0
X 0 1
4 Abort Input 1 1 0 X

x :don't care

CIK

4 0 L

J L1 L1 L J L

PCL Input CQ\

J

(Mode 1)

PCT Bit Set ‘Q?\‘V""“'*

(Mode 2) N

PCT Bit Set \ /"——‘\\
\

IRQ Output \

(Mode 4)

PCT Bit Set

ERR Bit Set

FIGURE 3.5 Timings for Mode 1, 2, and 4

17

TABLE 3.4 Clock Cycles from the MPU Write Cycle
to set STR bit to output Start Pulse (Mode 3)

Transfer Mode CLK Numbers*
No Chain 39
Array Chain 59

Link Array Chain 61

*MPU write cycle: 14 clock cycles
DMAC memory read cycle: 4 clock cycles

Addressing Mode, HIBYTE is used for bus matching.

Figure 3.7 gives an example of bus matching between an 8-bit
I/ O device and a 32-bit memory system. As shown, the I/ O device
must be in the lowest byte of the data bus. HIBYTE is outputted
only when even address is accessed, and when the DMAC oper-
ates byte operand in the Single Addressing Mode. See Figure 3.5.

The example shown in Figure 3.8 is between a 16-bit I/ O device
and a 32-bit memory system.

3.7 Low Speed I/0 Device Circuit Example

Figure 3.9 shows a circuit for a low speed 1/O device; e.g.,
floppy disc controller. Figure 3.10 gives the timing chart. Since a
DMA transfer request signal (DRQ) from a low speed 1/ O device
is generated in every DMA transfer cycle, the channel is pro-
grammed to be External Request and Cycle Steal Mode. The data
latch timing in write cycle (memory—device) is the timing when
the write enable signal (WE) changes from “L"—“H". Data on the
data bus is valid only while the data strobe signal (UDS or LDS)
is “L”; therefore, the data latch timing must be made from DTC
assertion timing (“H”—*“L"). This assertion occurs at least 30ns
earlier than the UDS or LDS negation (“L"—“H").

. 3.8 High Speed I/0 Device Circuit Example

FIFO is used as external data buffer in the example shown.
Figure 3.11 shows the application of the DMAC and FIFO.
Figure 3.12 gives the control timing chart in read and write cycles
to FIFO. Since data of several words is continuously transferred
in DMA transfer between FIFO and memory, the external
request mode should be set to Burst Mode. The data write timing
to FIFO is derived from DTC output, and the timing to negate
the Burst request from “L” to “H” is made with up/down counter.

In write cycles to FIFO, the Burst request is negated synchro-
nously with DTC assertion, when the counter number reaches
“the operand number transferred ina burst” (“16” in Figure 3.11).

In read cycles from FIFO, the Burst request is negated syn-
chronously with DTC when the counter number becomes two. In
Burst Mode, the Burst request in both read and write cycles
should be negated before the last transfer starts. In the last DMA
transfer when TC=0 (transfer words counter = 0), DONE is out-
putted at the same timing as ACK. This signal is used to reset the
Burst request.

3.9 6800 Family Application Examples
Since 6800 family devices are given their addresses on 68000

memory, and are used by memory mapping, the transfer mode is

Dual Addressing. The block diagram is shown in Figure 3.13.

Please note:

1) E clock is inputted from the PCL pin, and is used to syn-
chronize 6800 devices and the DMAC.

2) 6800 devices close the data bus at the falling edge of E clock in
read cycle from the 6800 device. The DMAC, however, latches
the data when DTC is asserted. Therefore, the data outputted
from the 6800 device needs to be latched by the external latch.

3) For 6800 device chip select, the address decoder and the
address strobe are used.

18

Figure 3.14 shows an application of HD68A43 (FDC) and
HD68B21 (P1A). The FDC makes a request by setting TxRQ
High. The negated TxRQ is inputted to PCL as READY.

3.10 Encode Example for Exceptions

An Exception request is made by external circuits and is
inputted into the DMAC’s BEC, ~ BEC,. Figure 3.15 indicates an
encode example.

Exception Examples: Figure 3.16 shows the bus cycle time out
error example. The transfer stop example is given in Figure 3.17.

If the DMAC does not have the bus, do not input the bus
Exceptions. Exceptions should be inputted after the AS output
(or UAS negation), as shown in Figure 3.15.

3.11 Priority Circuit Example (Daisy Chaining)

When multi DMAC’s are used, priority circuits like Daisy
Chain are required. In the following example, the DMAC nearer
the MPU has higher priority.

3.12 8086 System Application Examples

Applied in an 8086 system, the HD68450 is superior to other
DMAC alternatives because of the following features:

1) High speed data transfer operation by Single Addressing

Mode

2) Ease of operation for multi block transfer

3) Maximum bus exception utilization

Basic differences between the 8086 system and the HD68450
are as follows:

1) Address bus, data bus

2) Memory Structure

The HD68450 and the 8086 are different in arrangement of
address and data bus. Address bus is connected to the system bus
through LS373 latch. Data bus is connected to the system bus
through LS245, bi-directional transceiver.

BHE ——— BUHE
ADo~AD, — A
> Ay~ Ay
Ays ~Are
system bus
local bus =D Do~Dis

8086
DS LDS
UDS UDS
MDA ¢ N AL~ Ag

Ag /Do‘“'
Az3/ Dys

> Ag~Ass

K—> Do~Dy5

HD68450

The HD68450 and the 8086 have different ways to address
memory. When HD68450 is used in the 8086 system, UDS
(Upper Data Strobe) should be connected to AOand LDS (Lower
Data Strobe) to BHE. For data bus, the upper byte bus and the
lower byte bus must be switched. In this configuration, the 8086
can access the internal registers of the HD68450 by the same
method as memory.

HD68450
DMAC

Do/ As~

UAS
OWN

A ~Aq

e
2
v

[
=}
7]

25152521
Comparator

T

25152521
Comparator

T

LS245

Q0

+5V

Bidirectional
Buffer

Bidi rectionall

LS245 [Ds~Dyz

Buffer

DIR §

ol ©
3 8

DIR

? 5E [DIR

LS245
Bidirectiornl

+5V

&

A
{ OE

LS245

Buffer

R/W

Bidirectional

HIBYTE *

N
4

Buffer

BGACK

¥

+5V

DIR

LS373

Ag ~Ass J

D-type
Latch

O
=

>o

O
=

o]

LS373
D-type

A1p~Az; |

Latch %

LS245

Ar~A7 |

O

+5V

IR 14 : 1
[IDirdirectional 7

Buffer

AN
\4

DIR OOR
DIR LOE

LS245

Address Bus (238 Bits)

=
w

Bidirectional

]
L

(16 Bits)

Data Bus

*1.S245 is used as a buffer for HIBYTE signal.

Buffer

FIGURE 3.6 Demultiplex Examples for Time Multiplexed Bus

19

Control Bus

32 bit memory

31

0
H {MH ML; L

DS
H
L
H
L

, UDS
L

MH -
ML .-

H
L

A
H -0
0
1
1 H

So~S;: select input
(H, MH, ML, L)

_H-BUS R
>
Sop—oCB lij:S A SZIZIB R/W
N OF 0___@—-—< IAIIBYTI;
MH-BUS 1T N !
Sp—ag— S e
Ay 15245 _
OE ACK
ML-BUS > . A,
)
Sp—oC-— UDS DI
2 Issz HIBYTE
Ep— *(:K::EZF<A
L-BUS U , R '
D
- s i
Ssp—oCB o<} 4,
8 Bit
1/0

FIGURE 3.7 Bus Matching (8 bit 1/0-32 bit memory)

32bit memory

31 0
A, UDS IDS
H-~0 L H
MH-~0 H L
ML-1 L H
L1 H L

(H, MH, ML, L)

S»

S.~S; iselect input

Ss

FIGURE 3.8 Bus Matching (16 bit 1/ 0-32 bit memory)

20

_ H-BUS .
- Q —
DS DIT R/W
! 1.S 245 ACK
aN 4 A
MH-BUS N
Ay 15245
OFl—
ML—-BUS IR R
v s 2
b—o(Jg—— UDS
_ L—BUS iy R
v v
>—o<—~< A,
16 Bit
1/0

REQ -] DRQ
ACK p— s
+5V =4
HD68450
DMAC g A7 7 Low Speed
+5 I1/0 Device
+5V b ;
LS74 | 4> Do —dWE
>k Q]
DTC j | S——— I - b
RESET
Ro oo Ao Terinrer,
Address Bus[N Do I_D_ A, | data register]
Data Bus < > Eu
8

* to negate WE when DIC is not outputted

FIGURE 3.9 Low Speed 1/O Device Application

=
=

-
B W

3
[
~—
-]

r~——READ CYCLE—* f=———WRITE CYCLE—"1

FIGURE 3.10 Timing chart of Fig. 3.9

21

MPU : : FIFO

o Do

Q
— ! ¢ <:7
‘QIS DIS

READ cycle

HEM <:> WRITE cycle QZQ

HDC

l FIFO

— N ——

DIS QIS

DMAC C:{)

~J ~/
System Bus Local Bus

* Hard Disc Controller

(a) System Example of FIFO used as HDC Buffers

FIGURE 3.11 FIFO Application Examples

22

R/W

Data In

(write cycle)

Data Outl

(read cycle)

COUNTER
0or 15SET

3
2

&
-

E

=
w

|

c
w

FIFO
CLKA
Dso +§V
D, CLKB ([E y _
4 / 1+5‘F R/W
S225 write
(x4) control % _
Q UNLOADY d DTC
S CLK
OE — ACK
Q read i)
control 31
COUNTER DONE
COUNT ¢ —o<H
TOAD up
If p COUNT('
DOWN
B INITIAL
C LS193 REQ SET HD 68450
D DMAC
Qa —E Ilatch
fimbo)
oo A [Lsud |
CK
R
H5V
RESET %
% +5\F DTAKK
é+5‘fl AS
;6VQ LDS
o UDS
ADDRESS Ay~Aq
FCo~FC, <: As/Dyp~Az3 /Dys
FCo~FC,

(b) Circuit Example Between the DMAC and FIFO

23

-ADDRESS X - H |

FCo~FC, —#—< 45 X The Last Transler
xS — \ , :

Memory 4f L !
Access | Lbs " ' | :
UDS d ' i |
— et 45 . -
o ' \ \ |

| 46 i

Data Out if { I - o

Memory ' > 1 f
Out DTACK \ [1

ACK s \ - [—
FIFO . i ‘
Control DTC s ' eds | K |
1 []
; |
UNT! {4 < — L
== | vt o : (00)r 5 COFDH X R)&
REQ P i ()

4
Generator REQ —\ SET :
1

44
g

(a) Write (MEM—FIFO)

é(]i"z—]}‘%fs 15—~ i X The Last Transfer ?—-—-
| 4 |
e —
AS L : \ " /I \ r'_—:
! 1
Memory DS T | ~\ ,: \ ,-r-——l
Access 4L "
UDS ' ' | Y _ / !
I
if \ |
R/W | 5 . / \ S
Memory {fr i+ \ |
Out DTACK : \ / \ \f
I
' I
!
FIFO Data " : Vsl t+ L
Out Out 1 ., - r— -
FY)
- N, p B ,
FIFO [ACK | = : ;J

Control e 4 |
DTC ; H
(IIM’I'FR 4y i :
RE ou
Y TaY \ | / X
|

Generator
REQ

T3 n
- iy

(b) Read (FIFO~MEM)

FIGURE 3.12 Control Timing Chart of Figure 3.11 (b)

24

E
~ Da"“D7
< Do~Ds > 6800

device

A CS
dec RS

~ |Do~D-: E
< Do~ D+) 6800
device

ecC .| ﬁ

68000 Address Bus

68000 Data Bus
- | >
3‘- w2
>
[]

1D68450
DMAC

DeD D 1Q
o ~D+ oSD BSQ Do~D1) Do~D4

BUS |select|
741,S373 Do~Dis/

N CNTL g As~Aq;
<L Do™~Dss > CKT %
1

DBEN
As~ Az, DDIR

L

FIGURE 3.13 6800 Device Application Example

25

LS 74 . D+type Positive Edge-Trigger F-F A ~As ~L/F
LS 161 : Synchronous 4-bit Binary Counter

el
CS Jo=-
HD68A43
FDC +5V
AKA
E Tx 1
™ TxRa TRD, ENABLE
D CLR
+——dR LS74 Po—W\—+5V LS161
Q P Q
HD68450
DMAC V
ACK,
PCLo
REQo e v
CLK 1{-‘
UAS p—P—] A)
PCL1 t=Q As/Do~Az3/Dss 16 Sy Bus 15 Do—Drs
3 Control o 1
DBEN =~ “Thee G 4
e
ACK,; p— - N
_I (Refer to Fig 3.6) |00~ D7 Q D Do~Dq y
REQ, - & ()
ACK: o
REQ: [O=1— I T"d‘];
R/W| 5
vV fqb_‘
8000 LDS
. Hagu CLK , [- |
. VPA VPA w
ps—} —_—
VMA b VMA || || A
L
oot Ae ||
f=
(B 3
=
HD68B21 E
E PIA _]
Lo cs -
Ro~ R 5 A 1L s
IRQA — +5V 2
CLR 3
IRQB O— LS161 g
¥ 3
=3
+5V 3
o ' 5| 3
CLR al |&
LS161 é" NE
3 MIEE
- = =
a2 38
LU

FIGURE 3.14 Circuit Example of HD68450,
HD68A43 (FDC) and HD68B21 (PI1A)

26

UAS p- o>

HD68450
DMAC 7po- RESET
LS148 gp
5P
BECp—a D, 40— R&R
BECp— D, 30 RETRY
BE Cop——————0] D, 2o BERR
. 1po- HALT
Priority ob
Encoder
prp——oCS

FIGURE 3.15 Exception Encode Example

27

RESET

]

%
]

§4

DS [o g) D = LDS
+5V
HD 68000 |
MPU
b CLK CLR CLR [Binary Counter
4
P A A Qafb— NC
BERR -
> LS393 o
Qe |——o0---
Qo Qp[——0 -~
16
BGACK |o
+5V
UDs po— %
BGACK o
5V
DS o— %}
UASP GD
OWN P————-l
HD68450
El
DMAC N g
LS1438 sb
BECzO————d D, 500
BEC,p—AdD, L1 @)
BECP Do 30 prew
2
10
1] o]

FIGURE 3.16 Bus Cycle Time Out Error Example

RESET

INTERRUPT1
INTERRUPT?2

*
INTERRUPT3 —

Do
ﬂ’ﬂs‘”Azs

Priority
% é ; Encoder
§ 59 0 LS148
1
-4 2 Do O d IPLo
—a3 D, P »=J IPL,
— 4 D, o = IPL,
—ds
qs HD68000
q7 MPU
RES
e
LDS
Priori ty L= CS
ncoder
LS 148
qo A1 ~Aq
— 1
—(2 Do O d BEC,
d 3 D, O d BEC,
— 4 D, O = BEC,
dq s +5V +5V | .
X | | HD68450
96 f DMAC
7
OWN
Fpl o
+5V
*When INTERRUPT3 becomes “H” —3p “L", ; o

DMA transfer is stopped.
And the MPU is interrupted.

29

FIGURE 3.17 Transfer Stop Example

+s5V

AS
BR
BG
BGATK
HD68000 P——— Ag.
MPU & (PRIORITY OUT) (PRIORITY TN
—qD Qp
BOACR 7415879 _— 4)‘:D—:—————
G P9 PRIORITY OUT
7415378
G
o} Q Q
3
G [E & [
§ HD68450 HD68450
DMAC DMAC

*This PRIORITY IN must be grounded.

**QOpen collector buffer.

FIGURE 3.18 Daisy Chain Example

Ay ~Ayg
Ao
BHE
-
SEL Ag~Ayg | SEL Ag~A 4
UPPER (0DD) LOWER (EVEN)
512kX8bi t 512kX8bit
i
Dg~Dis T
Do ~ D1
8086
Ay ~Ags
LDS
ubS '—‘l
SEL Ao~As| | SEL Ao~A)
UPPER (EVEN) LOWER (ODD)
8MX8bijt 8MX8bit
Ds~ D5 iy
Do"' D7
HD68450

The 8086 system allows one word operand whose upper and
lower bytes are located at both contiguous and diagonal position
in memory, as in the figure at the top of page 31. HD68450 does
not allow one word operand (see (2) in the figure). However, if the
operand size is programmed as a byte, and memory count is
programmed as increase in Dual Addressing Mode, the “diag-
onal” position can be supported by the HD68450.

In addition to the Dual Addressing Mode (Chapter 3.1), the
HD68450 supports Single Addressing Mode, in which OP=P
must be satisfied. For one word operand in diagonal position (2),
OP=P=8 is required, and the I/ O device must be connected to the

30

upper byte. When an operand is transferred from the 1/ O device
to the lower byte of memory, HIBYTE signal must be used. See
Chapters 3.5 and 3.6 for circuit examples of HIBYTE.

Figure 3.19 shows an application example of the HD68450 in
the 8086 system, which requires the following circuits:

(1) CS, TACK GENERATOR ... Read/ Write control for
HD68450 internal
registers

8086 bus arbitration
control

Control for form status
input to 8288 from
FCO0-FC2
Synchronizing 8086 and
HD68450 in internal reg-
ister read/write cycles

(2) BUS ARBITER

(3) STATUS GENERATOR.....

(4) RDY GENERATOR

(1) CS, TACK GENERATOR

Figures 3.20 and 3.21 show a circuit example and timing chart
of CS and TACK GENERATOR. CS and TACK are formed from
the IORC, ATOWC, and INTA outputted from 8288. The
read/ write cycle of the 8086 MPU to the HD68450 starts when
CS, —I:_D_S.Ll_)_s, and R/W become valid, and ends when both
DS and UDS become inactive.

Since the HD68450 must output data to the lower byte of the
data bus, both lower bytes of 8086 and HD68450 need to be
directly connected, and the output from 8286 must be masked to
avoid bus conflict.

(2) BUS ARBITER

Figures 3.22 and 3.23 show the bus arbiter circuit and its timing
chart. As long as the HD68450 outputs BR or BGACK, bus
mastership is requested to the MPU, and bus conflict does not
take place. BR becomes inactive one clock after BGACK output,
and the bus request does not become inactive before the
HD68450 becomes bus master.

(3) STATUS GENERATOR

Figures 3.24, 3.25 and 3.26 show the Status Generator circuit
and the DMA read/ write cycle timing charts. This circuit gener-
ates status signals to inform the DMAC’s bus ownership to 8288.
The HD68450 outputs VCO-FC2 in every bus cycle. These values
can be varied by writing different values into MFC, DFC, and

(1

The following examples show various data transfer between memory and I/0

device in Dual Addressing Mode.

Example 1

R-W (®

EFIUZ
===

Memory <-—»
R-W
W-B
R-W
W-W
W-B

Example 2

Example 3
R-B
R-B
W-w
R-B
W-B
k-B
W-B

®e 06
®®e®

NN AN

PP ©6

®e <3

®)

©)

O]

)
)
)

1
1
1
1

Memory «—1/0 (P=16, OP=16, MTC=2)
word read from memory (I/0)
word write to I/0 (memory)
word read from memory (I/0)
word write to I/0 (memory)

<«—»1/0 (P=16, OP=8, MTC=4)

@6 <3

@

/
)
)
)
)
)

N N N N N A N

1
1

ot

1

S T S Y

word read from I/0
byte write to memory
word read from I/0
word write to memory
byte wirte to memory

Memory <«—»1/0 (P~8 OP=8, MTC=4)

byte read from I/0
byte read from 1/0
word write to memory
byte read from I/0
byte write to memory
byte read from 1/0
byte write to memory

31

Mem 1/0
@0 |®@|0
@le] o6
Mem I/0
® ®|®
@[> ®|O®
@

Mem I/0
@O 7 0
S aad OS]

[4

, = —1
i_ ok MV 5| _‘r CLK ymnc
8284 EAD! 5 sV NWTC
T RDY T 3 S: Mr%iﬁc]
T ¥ —{pTR TORC 8US
ALE ATOWC
RDY TNTA
GEN. fod 8288
8086
4 MPU N
o
’ o Tt Y T ;)m
SYSTEM| ey A ~A
RDY ADe~AD: o rq 3 T TIT TIf O T 17 11 I 1 .
A ~Aw) Dha~Au
BHE| Iy v
~—#D»————mrn
NMI D - — H— RD
Lock u - = ook
——
——={ RQGTo STB
- 1= | UG gl g
ER - W
E F Kl f EE |33 SERIAL or
a o 1/0 1/0 10 [T PARALLEL
|| RaM Rom bRa_ACR bRg XX _pTC AR_DTC
STATUS E‘ T’_
GEN. il
@
CLK pe, ﬂ
FC,
¥C, ﬁ
TS| —-]
DTACK TS ——J
TACK] e ——
Y%

7

ARG,

BECL Av~As

BEC;
HD6# 450
DMAC

D>k
AsDe LS373
A /Dy
Are /My~
An/Dis N v

sV -
I o e LA
POTR H b—fme
LS245
oF
DIR
—N Lsz4s
Y
REQ.
ACKo
T
ACK,
REQ;|
ATK;
o

FIGURE 3.19 Application Example of HD68450

in the 8086 System

ce

DMAC SELECT

Ao

+5V

Q

+5V

P
&

T

Q

K

A

FIGURE 3.20 CS and TACK Generator

+
Z W
Q

+5V

-

+5V

[

ol

HD68450
DMAC

c
(=]
(7]

ve

—
o
=]
(@}

CS, TACK
LDS,UDS

R/W

READY

T1 T2 T8 ™ ™ ™ ™ T4 T1
V20 WVe VAL WVA WD S WAL WD A WY G VA
5& | : | 10 | gl
LL | - ' '
I R4 I | 1| I
| | | T
A ff— t .] !
| l
| T
X —t ! i — (Ve \I
? T |
I I
—\ ! 1 | \ !
4 ' !
60 | | I
44 | l [‘
NOTE 1) X, | ! |
37 (|
N——f— , —
| 1 1 1
15 - ! ' |t
| 1 |
I | I !
1 1t = *
| : i -
e ! 1 # ! I k___
1t I) ! |
+—< READ DATA | FROM DMAC)4—
Y NOTE 2) !
— WRITE DATA TO DMAC)
|
!
|

-—— e e e

NOTE 1) Read and INTA cycles, consist of 13 clocks and write cycle consists of 10 clocks.
NOTE 2) DMAC Latches the data at a falling edge of this clock.

FIGURE 3.21 Timing Chart of Fig. 3.20

s i S

CLK
7E BR
741854 A
= 74LS78 5
- J Q|
R— LH CIK ——
1 — K
o CLRQ
i DD =D
BGACK
74802
reiDan
41854 £
74LS5 }4LS78 m(ﬁ
HCIK
K Q
CLR i 74LS 04
Ei) —‘] 74LS04

FIGURE 3.22 Bus Arbitration Circuit

a
]
_—

BGACK I L

FIGURE 3.23 Bus Arbitration Timing

BFC (Memory Function Code register, Device Function Code
register and Base Function Code register). When the values in the
table are written in the registers, 8288 outputs bus commands
synchronizing with the DMAC’s bus cycle, and the DMAC can
address devices on the 8086 system bus.

Figure 3.24 shows the shortest bus cycle, consisting of 5 clock
cycles. DS0-DS2 turn idle when the outputs from LS191 are “3.”
When access to memory or 1/ O device is not in time for the bus

cycle, it is possible to prolong the HD68450 bus cycle by changing
the outputs of LS191 to “4.”

(4) RDY GENERATOR

Figure 3.27 shows the RDY Generator circuit. See Figure 3.21
for the DMAC’s RDY timing. In Figure 3.27, the STEM RDY
signal is used when the 8086 accesses devices other than the
HD68450.

$7 ST S0 8086 STATUS
0 0 O interrupt acknowledge =-====—=————e=- INTA output
0o 0 1 read I/0 port IORC output
0o 1 o0 write I/0 port IOWC, AIOWC output
0 1 1 halt None
1 0 0 code access MRDC output
1 0 1 read memory MRDC output
1 1 0 write memory MWTC, AMWTC output
1 1 1 idle None
CLK
CLK
E +5V
B o)yt ofmms
LS191
omp —oC [
[Qa —
DTACK IN Qs 1
(to Fig. 3.27) tj Qc -
Qp |
[HD68450
5 DMAC
Qa ° b
LS 74
@ ma
RESET
— +5V 5V
DSo=—t73v +5V] ;g“
DS, E+5V sv] !
DS, FC,

FIGURE 3.24 Status Generator

T2

T Tl TI T2 T3 m T4 T1 T1
)
. / J__/_-\ Y/ Ji D AN U AN WY S N
CLK(8MIlz) —/1 o o] | I | ! I
S o————— ‘ 1 N I
AS | T T T t
u 170 | | |] \ |
' , | e] :
FCo~FC, ; — ; X i
D | | "y NoTE 1) | ! L7000 N wore 3 | ! N
» , 1 M
DS,.DS,. DS, T] l N T 4 | | | \ |
| :‘Wj“o 5 15 II | | |)
ALE ' . I I | ' ! _
120 o= 2) | 1 T | | !
Ay~Ass I Ll I ' . | ! X
!) | T t 0 T X
LDS, UDS —4'———1:1 | | I Iy T '
I | !] 100 T] | | \
RD + | I W7 t
I ! ! K |]
| | I-W-I T T 1 :.39-1 | |
DT/R N T T y’_ | | f) T
Il | | G T +— | |
MRDC, TORC + ¢ ﬁ% \ | ‘“’] t T t
| | | IT45 t | | |
| | [| | |
16 1 o
1 | [L ; [|
DEN | ' , 4 \ I o T |
|
I | I | (DATA IN |NOTB)4) 1o :]
10 | T L |
ACK ! | memory access. | DMAC i +
: : *) 1\\ | min, 92 ns.‘\ latches. | 1 | |
| |
R] | |
DTACK ' T | @_fL'“m » [I T ,
| | 'Lr— ho | | !
5T 1 i | ' I ' N
| | | | l !\ ey |/ I I
I [| | I : | |

1/0 latch
timing

NOTE 1) DS2, DS1 and DSOcorrespond to S2, S1, and S0'in the 8086 system, and are from FCO-FC2 of the DMAC. When the DMAC is
used, each bus cycle needs one idle state (T1), and the basic bus cycle consists of five clock cycles.

NOTE 2) OWN and UAS of the DMAC are used, and ALE of the 8288 is not used to latch address A1-A23.

NOTE 3) DS2, DS1, and DS0 are used to terminate the 8288 cycle, and DTACK is used to terminate the DMAC.

NOTE 4) Data latch in Dual Addressing Mode, and from 1/O device in Single Addressing Mode is with the falling edge of DTC.

FIGURE 3.25 HD68450 READ Cycle Timing Chart

37

T2

)
h\
& P 4
P <
\. S G Ny Ny
PN ™]
AT
e N tF--F1t-F-——1-1 (N U R SN S——— P -4 24— - b — — — —} —
h N
— i
» 421
N —~
J 1 O S O 0 Y O LWL
= \J
-\ ‘\
g
”l —_—t -t d - =4 IL‘IN\.H\vl ||||| T]||Lv|[|||whlll|l
o _ .
ez gel ¢
IV N~ %mlﬁ m
172 M -
8 e
m -
g
— - rr——1-1Tt1r - rrt+t 11T |- — 1 m.lllllurll- TJE“LHI -_-
T a
4
.“v,..l —_ 4 N I N O S A B A
e J -
e
RO RN Jlo g |-]---
] fﬁ
Ve
-
- NN—-F - - _ - - -4 - — — 44— — AA llllll F — —— — 4 — - — —
w 1)
~ a %) = W
z S - T S o)
R _&. moog P z l< I~ X 1B o o
z <) a R < - = N . 8] AN < e~
= o R < 1 |2 Ao o < = & Ia
X (3] - =) e a
o & _&. < I W
a

38

, UDS (corresponding A0, BHE) become valid late.

NOTE 2) Data hold time is 10 ns.

NOTE 1) IDS

FIGURE 3.26 HD68450 WRITE Cycle Timing Chart

+5V [
CLK
+5V
s i
e B
RDY Q D oy DTACK
LS74 ___J
YSTEM RDY —
S RCK< OWN
RESET ?
HD68450
DTACK IN DMAC

FIGURE 3.27 RDY Generator Circuit

4. HD68450 DMAC Control Program

4.1 Basic Control Routine

Figure 4.1 shows the flow chart for the DMAC control pro-
gram by the MPU. The flow from START 1 sets the transfer
mode on a channel and does the data transfer operation. Once the
transfer mode is set, it is not necessary to set the mode again, as
long as the data transfer is performed in the same mode. The data
transfer for another data block in the same mode can be operated
according to the flow from START 2.

The device address setting is necessary only for dual address
mode (68000 and 6800 compatible devices). It is not necessary for
devices with ACK, or ACK and READY.

Example 1 is of an HD68000 MPU program based on Figure
4.1. The DMAC:s internal registers are mapped onto addresses
from $1000 to $10FF. This program transfers 2000-word data
from the 1/O device to memory location from address $100000
and up.

When STR (START) bit in CCR is set, the DMAC sets ACT
(Channel Active) bit in CSR, and at the same time resets STR bit
in CCR automatically. After the internal initialization (opera-
tions like configuration error check, etc.), the DMAC can start
the data transfer. REQ signals can be received by the DMAC
while STR bit or ACT bit is set. Therefore, REQ signal can be
accepted even during the internal initialization, but the data
transfer for the request starts only after the initialization
completion.

4.2 Transfer Termination Routine

When the DMAC completes a transfer operation, COC
(Channel Operation Complete) bit in CSR is set. If an error
occurs during the transfer, ERR bit is also set. The MPU can
detect the DM A transfer completion by monitoring the COC bit.
Figure 4.2 is the flow chart for transfer termination. If the MPU
monitors COC bit set, the operation starts from START 1. This
method requires many clock cycles because some MPU read
cycles are associated. Instead, interrupt can be used to shorten the
termination cycles. The DMAC issues interrupt request when
COC bit is set, if INT (Interrupt enable) bit has been set. In order
to enable the interrupt request, the 12th line instruction in
Example 1 should be replaced by MOVE.B #$88, $1007.

In Example 1, since NIV (Normal Interrupt Vector) is set to
$80, the MPU services the interrupt routine shown by vector

39

number $80, unless error has occurred. For this routine, the
program beginning from START 2 in Example 1 is applied. If
error occurs, the MPU services the interrupt routine shown by
vector number $81. The routine starting from START 2in Figure
4.2 is used in this situation.

Error routines should be programmed case by case according
to their applications. For bus error and address error, CER
(Channel Error Register) can determine which address register
caused the error, and the address where the error occurred is kept
in the address register. CER also determines which of the transfer
counters between MTC and BTC caused an error.

_4.3 Continue Mode Program Example

Example 2 shows a program to start Continue Mode, setting
the same operation modes as Example 1. The differences are to
write information of the second data block (3000-word transfer to
memory starting from $20000) in BAR, BTC, and BFC, and to set
CNT (Continue) bit in CCR.

When CNT bit is set, the DMAC renews the transfer informa-
tion of the first block which is specified by MAR, MTC, and
MEFC to that of the second block, at the end of the first block
transfer by setting BTC (Block Transfer Complete) bit, and cop-
ying the data from BAR to MAR, BTC to MTC, and BFC to
MFC. The DMAC resets CNT bit. If the INT (Interrupt) bit is
set, it requests an interrupt to the MPU. If the DMAC receives
transfer request, it starts the second block transfer.

To continue block transfer in this mode, it is necessary for the
MPU to write the next block information in each base register,
and to set CNT bit again by means of monitoring BTC bit, or
receiving interrupt due to BTC. Figure 4.3 shows a flow chart for
the routine executed by BTC interrupt. In this way the DMAC
can transfer multi data blocks continuously in Continue Mode.

The multi block transfer in Continue Mode is usually done by
Cycle Steal Mode because of the MPU access to the DMAC.
Burst Mode or Auto Request Mode is also possible in Continue
Mode if the number of blocks is two. When three or more blocks
are transferred in Continue Mode, caution should be excercised,
because an operation timing error will be caused if the MPU sets
CNT bit after the completion of the second block transfer.

4.4 A Program Example in Array Chaining Mode
In Array Chaining Mode, the MPU forms an array table in
memory which has memory addresses and transfer counts of the

POWER ON

RESET
NOTE 1)
SETTING
DMAC

TRANSFER MODE

RESETTING
STATUS REGISTER

|

SETTING
¢ MEMORY ADDRESS

' NOTE 2)

SETTING
DEVICE ADDRESS

SETTING
TRANSFER COUNTS

SETTING
STR BIT

END

NOTE 1) If the same transfer mode is used from START 1, the
transfer mode setting can be skipped.
NOTE 2) Necessary only for Dual Address Mode.

FIGURE 4.1 Flow Chart of Control Program

40

Example 1: Basic Control Program

Correspondance
Line number Comment to Fig.4.1
1 START 1 EQU *
2 MOVE. W #$A892, $1004 setting DCR, OCR
3 MOVE. B #$04, $1006 " SCR
4 MOVE. B #$80, $1025 " NIV Setting Transfer Mode
5 MOVE. B #$81, $1027 " EIV
6 MOVE. B #$01, $1029 " MFC
7 CLR. B $102D " CPR
8 START 2 EQU *
9 MOVE. B #$FF, $1000 resetting CSR Resetting Status Register
10 MOVE. L #100000, $100C setting MAR Setting Memory Address
11 MOVE. W #2000, $100A " MTC Setting Transfer Counts
12 MOVE. B #$80, $1007 DMAC start routine Setting STR bit
13 RTS returning to

main routine

(NOTE) ® The DMAC internal registers are mapped onto address $1000 through $10FF.
e Channel 0 is used.
e In Dual Addressing Mode, DAR and DFC should be set.

The DMAC transfer mode set in Example 1 is as follows:
® Cycle Steal Mode without Hold

16-bit I/ O Device with ACK

PCL is the Status Input.

Transfer from I/O Device to Memory

Word data transfer

No Chaining

External Request through REQ pin

Counts up Memory Address

FC’s output user data code (FCO=1, FC1=0, FC2=0)

Channel Priority: 0 (the highest priority)

® ® 06 0606 0 0 0 0

41

START1

NOTE: This is necessary only in the case of PCL=ABORT. If PCL=ABORT, and the ABORT is inputted in the final bus cycle which is

terminated by DONE signal from the I/ O device, the ABORT signal is ignored and no error code is recorded in ERR bit, norin CER. PCT
bit should be monitored to determine the ABORT input.

N
START?2
Y
]
N Y !
(NOTE)
Y
1
N Y
CER=$01?
m CONFIGURATION
ERROR Y N
(TO THE NEXT ROUTINE
ROUTINE)

OPERATION

TIMING Y CER= N

ROUTINE $05~8077
ADDRESS
ERROR Y CER= N
ROUTINE $09~$0B

BUS ERROR
ROUTINE
(NOTE)
COUNT ERROR Y N
ROUTINE CER=$10?
ABORT ERROR SOFTWARE
ROUTINE ABORT ERROR
ROUTINE
1 Y
E ND

FIGURE 4.2 Flow Chart of Transfer Termination
(TO THE NEXT ROUTINE)

Example 2: Start Program of Continue Mode

Line number

LCoNOTULH~WN -

(NOTE)

CONT

EQU
MOVE.
MOVE.
MOVE.
MOVE.
CLR.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
RTS

W=

B

W EC W E W

*

#$A892, $1004
#504, $1006
#580, $1025
#$81, $1027
$102D

#SFF, $1000
#5100000, $100C
#2000, $100A
#$01, $1029
#$200000, $101C
#3000, $101A
#3505, $1039
#$c8, $1007

Comment

setting

" SCR

" NIV

" EIV

" CPR
resetting CSR
setting MAR

" MTC

" MFC

" BAR

" BTC

" BFC

DCR, OCR)

.

J

setting transfer
mode

setting the lst
data block

setting the 2nd
data block

" STR, CNT, INT bits
returning to main routine

The DMAC is mapped onto address $1000 through $10FF.

Channel 0 is used.

Modes are the same as those in Example 1.
If the modes are already set, the lines from the 2nd through 6th are not necessary.
The 1st data block is transferred to memory location from address $100000 plus 2000 words. In this

case, FCO=1, FCI1=0, and FC2=0 are outputted.

The 2nd data block is transferred to memory location from address $200000 plus 3000 words. In this

case, FC0=1, FC1=0, and FC2=1 are outputted.

In Dual Addressing Mode, DAR and DFC should be set.

43

<::S TART ::) Starting by interrupt caused
by BTC bit

Resetting
BTC bit

Setting memory address
of the next block in
BAR

Setting transfer counts
of the next block in
BTC

Setting function codes
of the next block in

BFC
Setting CNT
bit
' END) END
(To routine which starts the (returning to main routine)

next continue operation)

FIGURE 4.3 Flow Chart of Continue Mode

44

BT | S—r s

multi blocks. The DMAC transfers the multi data blocks contin-
uously by referring to the array table. The MPU does not have to
access the DMAC in between block transfers in this mode.

The transfer example in Array Chaining Mode is shown in
Figure 4.4. First, the MPU forms an array table for the multi
block transfer. Second, it gives the device address, the number of
blocks being transferred, and the top address of the array table to
the DMAC’s, DAR, BTC, and BAR, respectively. Third, the
DMAC reads the memory address and the transfer count of the
first block from the table into the DMAC’s internal MAR and
MTC, after the MPU sets STR bit in CCR. Fourth, the DMAC
decrements the content of BTC (number of blocks) and starts the
internal initialization process. Finally, the DMAC waits for a
transfer request.

When the transfer of the first block is completed, the DMAC
reads the second block information from the array table, renews
MAR and MTC, and then transfers the second block. The
DMAC repeats these chaining operations until BTC is exhausted
(becomes zero). Example 3 is a program example for the transfer
shown in Figure 4.4.

FCs (Function Codes) are not renewed in Array Chaining
Mode. The contents in BFC are outputted when the DMAC
reads the array table.

4.5 A Program Example in Linked Array Chaining Mode

Linked Array Chaining Mode is similar to Array Chaining
Mode, but differs in the arrangement of the table for block
transfer. In Array Chaining Mode, the array table must be pre-
pared in contiguous space in memory, in the order of the block
transfer. In Linked Array Chaining Mode, the array table does
not have to be contiguous in memory block by block.

Example 3: Program Example in Array Chaining Mode (Cor-
responding to Fig. 4.4)

line number

Figure 4.5 shows a transfer example in Linked Array Chaining
Mode. The information of each block is linked with the linked
address—i.e., the top address from where the information of the
next block is stored. The information of each block can be
distributed anywhere in memory by being linked with the linked
address.

First, the MPU prepares for the linked array table in memory.
Second, it gives the device address and the top address of the
linked array table to the DMAC’s DAR and BAR, respectively.
Third, the DMAC reads the top address of the table designated
by BAR and the memory address, and the transfer counts into
MAR and MTC, respectively, after the MPU sets STR bit in
CCR. Finally, the DMAC waits for a transfer request after
initialization operation.

The DMAC transfers data blocks in the order of Block A,
Block B, and Block C in Figure 4.5. When the DMAC reads “0”
from linked address in the table, it terminates the chaining opera-
tion after the block transfer.

Example 4is a program to execute the Linked Array Chaining
in Figure 4.5. In this mode, BTC is not used. Contents of BFC are
outputted when the DMAC refers to the table, but they are not
renewed.

A linked array table is larger than an array table, but permits
easier editing of the block transfer order. When a block is added
or cancelled in the array table, the data in the table must be
shifted. But in the linked array table, the editing is performed only
by changing the linked address. For example, when Block B is
cancelled in Figure 4.5, the linked address “X"(H)(L) is changed
to the linked address “Y”(H)(L), and transfer counts “C” must be
shifted to the location of the memory address “B”(H)(L) and
transfer counts “B.”

1 ARRAY EQU *
2 MOVE. W #SA89A, $1004 setting OCR,DCR
3 MOVE. B #$04, $1006 " SCR
4 MOVE. B #$80, $1025 " NIV
5 MOVE. B #$81, $1027 " EIV setting transfer
6 MOVE. B #$01, $1029 " MFC mode
7 MOVE. B #$05, $1039 " BFC
8 CLR. B $101D " CPR
9 MOVE. B #SFF, $1000 resetting CSR
10 MOVE. L # table top address, $101C setting BAR
11 MOVE. W #3, $101A " BTC
12 MOVE. B #$80, $1007 " STR bit
13 RTS returning to main routine
(NOTE) e The DMAC is mapped onto address from $1000 through $10FF.
e Channel 0 is used.

e The same modes are set as those in Example 1 except Array Chaining Mode.
e In Dual Addressing Mode, DAR and DFC should be set.

45

array table —=

- table

HD68000O0

M P U

DAR
BAR

BTC

HD6 8 450

D M A C

*

device address

table top address

*

number of blocks
being transferred

* loaded from the array table

address

Bit

memory

top

—| memory address A(H)

15 Bit O
/—_./

memory address A(L)

transfer counts A

memory address B(H)

memory address B(L)

transfer counts B

memory address C(H)

memory address C(L

transfer counts C

/-—_/
/___/

~
——
memory

address]
C

block C

number of
blocks
transfered
(3 in this
example)

transfer
counts C

P
e

133
)
083

]

memory

address
A

block A

transfer
counts A

)

¢
3

memory |
address
B

block B

transfer
(counts B

/\/

/—_/

]
device
address

1/0 device
or
memory

/—_/

FIGURE 4.4 Transfer Example in Array Chaining Mode

46

memory

HD68000

MPU

* loaded from the linked
array table

Bit 1 Bit 0
’1inked address X -»{ memory address B(H)
memory address B(L)
transfer counts B
linked address Y(H)
linked address Y(L)
T =
linked array table —» < linked address Y-»{ memory address C(H)
memory address C(L)
transfer counts C
“All 0" (terminator)
table top address-{ memory address A(H)
memory address A(L)
transfer counts A
linked address X(H)
linked address Y(L)
L
HD68450
DMAC T —
memory
address C —
MAR * block C transfer
counts C
DAR |device address
BAR |table top address
@ '
MTC *
memory
BTC |(not used) address A >
block A transfer
counts A
memory
address B —»
block B transfer
counts B
/\/
device T
address —|
I/0 device
or memory

FIGURE 4.5 Linked Array Chaining Mode Transfer Examples

47

Example 4: Program Example in Linked Array Chaining Mode

(corresponding to Fig. 4.5)

line number
LINKA EQU *
MOVE. W #S$A89E, $1004
MOVE. B #$04, $1006
MOVE. B #$80, $1025
MOVE. B #$81, $1027
MOVE. B #$01, $1029
MOVE. B #$01, $1039
CLR, B $101D
MOVE. B #$FF, $1000

MOVE. L

MOVE. B #$80, $1007
RTS

(NOTE)
L]

#table top address, $101C

comment

setting
setting
setting
setting
setting
setting
setting

OCR, DCR
SCR
NIV
EIV
MEC
BFC
CPR

resetting CSR

setting
setting

BAR
STR bit

returning to
main routine

The DMAC is mapped onto address from $1000 through $10FF.

Channel 0 is used.

Setting Transfer
Mode

The same modes are set as those in example 1 except Linked Array Chaining Mode
In Dual Addressing Mode, DAR and DFC should be set.

48

DATA
SHEETS

HD68450, HD68450Y
DMAC (Direct Memory Access Gontroller)

APRIL

Microprocessor implemented systems are becoming increas-
ingly complex, particularly with the advent of high-performance
16-bit MPU devices with large memory addressing capability. In
order to maintain high throughput, large blocks of data must be
moved within these systems in a quick, efficient manner with
minimum intervention by the MPU itself.

The HD68450 Direct Memory Access Controller (DMAC)
is designed specifically to complement the performance and
architectural capabilities of the HD68000 MPU by providing the
following features:

® HMCS68000 Bus Compatible

® 4 independent DMA Channels

® Memory-to-Memory, Memory-to-Device, Device-to-Memory
Transfers

® MMU Compatible

Array-Chained and Linked-Array-Chained Operations

On-Chip Registers that allow Complete Software Control by

the System MPU

Interface Lines for Requesting, Acknowledging, and

Incidental Control of the Peripheral Devices

Variable System Bus Bandwidth Utilization

Programmable Channel Prioritization

2 Vectored interrupts for each Channel

Auto-Request and External-Request Transfer Modes

+5 Volt Operation

The DMAC functions by transferring a serics of operands
(data) between memory and peripheral device; operand sizes can
be byte, word, or long word. A block is a sequence of opera-
tions; the number of operands in a block is determined by a
transfer count. A single-channel operation may involve the
transfer of several blocks of data between memory and device.

= TYPE OF PRODUCTS

Type No. Bus Timing Packaging

HD68450-4 4MHz

HD68450-6 6MHz

HD68450-8 8MHz DC-64
HD68450-10 10MHz

HD68450Y4 4MHz

HD68450Y6 6MHz

HD68450Y8 8MHz PGA-68
HD68450Y 10 10MHz

1984

—The specifications for HD68450-10 and HD68450Y10 are

preliminary.—

HD68450-4, HD68450-6,
HD68450-8, HD68450-10,

(DC-64)
HD68450Y4, HD68450Y6,
HD68450Y8,
HD68450Y 10,

(PGA-68)

Y stands for Pin Grid
Array Package.

= PROGRAMMING MODEL

7)

(oo]} One Per DMAC

Channel
Status Register

Channel
Error Regrster

Device
Control Register

Operation
Control Register

Sequence
Control Register

Channel
Control Register

Normal
Interrupt Vector

Error
Interrupt Vector

Channet
Priority Register

Function Codes

Device
Function Codes

Base
Function Codes

Memory Transfer Counter

Base Transfer Counter

Memory Address Register

51

Device Address Register

Base Address Register

4 Sets
(One Set Per
Channel)

HD68450,HD68450Y

= PACKAGING INFORMATION (Dimensions in mm)

e DC-64 (SiDE-BRAZED CERAMIC DIP)

32 33

be—22.56 ——f

Ensuosg
Lozo-oas

-.‘

le——22.86 —f

= PIN ARRANGEMENT
e HD68450

REQ,(]
REQ:
REQ,
REQ,[H]

(Top View)

H
3

34 Az2/Dis
33 Az3/Dss

PnNo 1
Index

® PGA-68 (PIN GRID ARRAY PACKAGE)

o HD68450Y

'l
|
3]

()
o
&

OO
I0IC

o

©

\

o
©
o

Jii

il

51 max

8

o
©
o
©

©,
©

000
O)
IS
©

©0)(
o1
O

17

T
Tiwe

-~

[E===rrr

e

54mn

S

<
ol
S
ol
o)
2

94al7l6©4 l4©9
‘@@@@@@

16050403

10]60JOICOICIO10)

64 8

(Bottom View)

R‘gl Function a'g‘ Function :"g. Function ";'g Function
1 N/C 18 PCLy 35 [Aw/Din | 52 | BGACK
2 Awa/Ds | 19 | DTACK || 36 | Aw/Ds | 53 s
3 An/Ds | 20 UDS 37 | Aws/D7 54 Vss
3 Aw/D2 | 21 AS 38 | Aiz2/Ds 55 Vee
5 As/Do | 22 R/W 39 | A«/D: 56 | DONE
6 | A 23 N/C 40 Vss. 57 | iRQ
7 As 24 cS 41 Vee 58 ACKz
8 As 25 CLK a2 As 59 BEC:

9 As 26 TACK | 43 Az 60 BECo
10 N/C 27 ACK3 44 BG 61 FCo
1| B 28 ACKo 45 OWN 62 | Az/Dn
12| UAS 29 BEC: 46 | HIBYTE | 63 | Auws/Dio
13 [DBEN |30 FCz 47| TDDIR [64 [Aw/Ds
14 REQs 31 FCy 48 REQ: 65 | Ais/Ds
15 REQ:2 32 | Axa/Dis | 49 PCLz 66 A

16 REQo 33 | An/Die [50 PCLo 67 oTC

17 PCLs |34 | Az/Diz | 51 N/C 68 ACK:

52

HD68450,HD68450Y

= ABSOLUTE MAXIMUM RATINGS

Item Symbol Value Unit
Supply Voltage Ve -0.3~+7.0 Y,
Input Voltage Vi * -0.3~+7.0 \
Operating Temperature Range Topr 0~+70 °c
Storage Temperature Teg -55 ~ +150 °c

* With respect to Vgg (SYSTEM GND)

(NOTE) Permanent LS| damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions.
If these conditions are exceeded, it could affect reliability of LSI.

® RECOMMENDED OPERATING CONDITIONS

Item Symbol min typ max Unit
Supply Voltage Vee® 4.75 5.0 5.25 \
Vi ¥ 20 -
Input Voltage H Y Vee v
VL -0.3 - 0.8 v
Operating Temperature Topr 0 25 70 °c

* With respect to Vgg (SYSTEM GND)

® ELECTRICAL CHARACTERISTICS
® DC CHARACTERISTICS (Ve =5V 5%, Vgg =0V, Ta=0 ~+70°C, unless otherwise noted.)

Item Symbol Test Condition min typ max Unit
Input “High” Voltage Vin 20 - Vee \
Input “Low” Voltage ViL Vss-0.3 - 0.8 \
CS, IACK, BG, CLK,
Input Leakage Current BEC, ~ BEC, lin - - 10 uA
REQo ~ REQ;

AS, UDS, LDS, R/W, UAS,

Three-State (Off State) e
DTACK, BGACK, OWN, DTC, Iysi - - 10 MA
Input Current HIBYTE, DDIR, DBEN,
FCo ~FC,
Open Drain (Off State) | — ———
Input Current IREQ, DONE lopi - - 20 MA

Ay ~A;,D9~Dys/Ag ~ Ass,
AS, UDS, LDS, R/W, UAS,
DTACK, BGACK, BR, OWN,

Output “High” Voltage m Wg, m' m' Vou lon =-400 A 24 - - \"
ACKo ~ ACK3, PCLoy ~ PCL3,
FCO ~FC,
A; ~ A4, FCo ~FC, Vou loL=3.2mA - - 0.5

Do ~ D[iAg ~A23, AS, UDS,
LDS, R/W,DTACK, BR.
Output “Low” Voltage | OWN, DTC, HIBYTE, DDIR, VoL loL =5.3mA - - 0.5 \Y
DBEN, ACK, ~ACKj, UAS,
PCL, ~PCL3, BGACK

IRQ, DONE Vou loL =89mA - - 0.5
Power Dissipation Pp ;: 3 ;ﬂsﬁéVcc =50V - 14 2.0 w
Capacitance Cin Vin =0V, - - 15 pF

Ta=25°C, f=1MHz

53

HD68450,HD68450Y

LOAD A
+5V

Test 5000
Point

130pF

IREQ, DONE

A, ~ A,, FCo ~FC,

LOAD B
+5V

1.11kQ

Figure 1 Test Loads
® AC ELECTRICAL SPECIFICATIONS (Vgc = 5V 5%, Vgg = OV, Ta= 0~+70°C)

LOAD C
+5V

152074 @

or
Equivalent

Do ~ Dis/As ~ Ass,
R/W, DTACK, BR, OW!
HIBYTE, DDIR, DBEN, ACK, ~ ACK3,

UAS, PCL, ~PCL3, BGACK

IVHZ B B TOMHzZ *
No. ttem symbol | o Tt HBaR4%0%s | HDBERMOVs | BARAR0® | HRERMEOVD, | umit
min max min max min max min max
Frequency of Operation f 2 4 2 6 2 8 2 10 MHz
1 | Clock Period teye 250 500 167 500 126 500 100 500 ns
2 | Clock Width Low teL 15 250 75 250 55 250 45 250 ns
3| Clock Width High [115 250 75 250 55 250 45 250 ns
4 | Clock Fall Time [- 10 10 — 10 — 10 ny
5 | Clock Rise Time ter - 10 = 10 - 10 - 10 ns
6 | Asynchronous Input Setup Time tas| 30 - 25 - 20 - 15 - ns
7 | Datain to DBEN Low tpiDBL [- 0 - 0 - o - ns
8 | DTACK Low to Data Invalid tDTLDI 0 - 0 - 0 - 0 - ns
9 [Address in to AS in Low tAIASL [1] - 0 — 0 - 0 - ns
10 | AS, DS in High to Address in Invalid tSIHAIV 0 — 0 — 0 — 0 = ns
11 | Clock High to DDIR Low tCHDRL — 90 — 80 — 70 — 60 ns
12 | Clock High to DDIR High tCHDRH - 90 - 80 - 70 - 60 ns
13 | DS in High to DDIR High Impedance tDSHDRZ 160 — 140 — 120 - 110 ns
14 [Clock Low to DBEN Low teLDBL - 90 - 80 — 70 — 60 ns
15 | Clock Low to DBEN High tcLDBH — 90 — 80 — 70 — 60 ns
16 | DS in High to DBEN High Impedance tDSHDBZ — 160 — 140 - 120 - 110 ns
17 | Clock High to Data Out Valid (MPU read) tCHDYM — 290 = 230 — 180 — 160 ns
18" | DS in High to Data Out Invalid tosHDZn 0 — 0 — 0 — 0 — ns
19 | DS in High to Data High Impedance tpsHDZ - 160 - 140 - 120 - 110 ns
20 | Clock Low to DTACK Low tcLDTL - 90 - 80 - 70 - 60 ns
21 | DS in High to DTACK High tDSHDTH — 160 — 130 — 110 - 110 ns
22 | DTACK Width High IDTH 10 - 10 - 10 — 10 — ns
23 | DS in High to DTACK High Impedance tDSHDTZ - 220 - 200 — 180 - 160 ns
24 | DTACK Low to DS in High tDTLDSH 0 — 0 - 0 — 0 — ns
25 | REQWidth Low tREQL 2.0 - 2.0 — 2.0 — 2.0 — | clk. per.
26 | REQ Low to BR Low tRELBRL 500 - 334 - 250 - 200 - ns
27 | Clock High to BR Low tCHBRL Fig. 1~ = 90 - 80 - 70 = 60 ns
28 | Clock High to BR High ToneAn Fig.8 = %0 = 80 = 70 = 60 s
29 | BG Low to BGACK Low taGLBL 4.5 - 45 — 45 — 45 — | clk. per.
30 | BR Low to MPU Cycle End (AS in High) tBRLASH 0 — 0 — 0 — 0 — ns
31 | MPU Cycle End (AS in High) to BGACK L_ow tASHBL 45 5.5 45 55 45 55 45 55 | clk. per.
732 | REQ Low to BOACK Low TREQLBL 120 — [120 — [120 — [120 ~ [cik. per.
33 | Clock High to BGACK High tcHBL — 90 - 80 — 70 = 60 ns
34 | Clock High to BGACK High tCHBH _ 90 = 80 _ 70 = 60 ns
35 | Clock Low to BGACK High Impedance tcLez - 120 - 100 - 80 - 70 ns
36 | Clock High to FC Valid teHFCV — 140 — 120 — 100 - 90 ns
37 | Clock High to Address Valid tCHAV — 160 - 140 — 120 — 110 ns
38 | Clock High to Address/FC/Data High Impedance tCHAZxX - 140 - 120 - 100 - 100 ns
39 | Clock High to Address/FC/Data Invalid tCHAZN 0 - 0 - 0 - 0 - ns
40 | Clock Low to Address High Impedance tcLAZ — 140 — 120 ~ 100 — 90 ns
41 | Clock High to UAS Low, teHUL — 90 - 80 - 70 — 60 ns
42 | Clock High to UAS High tCHUH - 90 - 80 - 70 - 60 ns
43 | Clock Low to UAS High Impedance tcLuz - 120 - 100 - 80 - 70 ns
44 | UAS High to Address Invalid TUHAI 50 - 40 - 30 - 20 - ns
45 | Ciock High to AS, DS Low tCHSL P 80 = 70 - 60 - 55 ns
46 | Clock Low to DS Low (write) tcLpsL = 80 - 70 — 60 - 55 ns
47 | Clock Low to AS, DS High toLsH — 90 - 80 - 70 - 60 ns
48 | Clock Low to AS, DS High Impedance teLsz - 120 - 100 - 80 - 70 ns
49 | AS Width Low tASL 545 — 350 — 255 — 195 — ns
50 | DS Width Low tpsL 420 — 265 — 190 - 145 — ns
51 | AS, DS Width High tsH 285 - 180 - 160 — 105 — ns
52 | Address/FC Valid to AS, DS Low tAVSL 50 - 40 — 30 - 20 - ns
63 | AS, DS High to Address/FC/Data Invalid tSHAZ 50 — 40 - 30 — 20 - ns
54 | Clock High to R/W Low tCHRAL — 90 — 80 — 70 — 60 ns
55 | Clock High to R/W High teHRH - 90 - 80 - 70 - 60 ns
* Preliminary (continued)

HD68450,HD68450Y

B3 BMHAz BMHz OMHz *
No. Item Symbol | o et HBERIE0Ys HBERAE0Ys HiBEa4a0vs 1{Be84a0v o Unit
min max min max min max min max
56 | Clock Low to R/W High Impedance tcLRZ - 120 - 100 - 80 - 70 ns
57 | Address/FC Valid to R/W Low TAVAL 100 _ 40 = 20 — 10 — ns
58 | R/W Low to DS Low (write) tRLSL 285 = 170 - 120 - 20 - ns
59 | DS High to R/W High tSHRR 60 = 50 - 40 = 20 — ns
60 | Ciock Low to OWN Low tcLoL = 90 - 80 - 70 — 60 ns
61 | Clock Low to OWN High, TCLOH — 90 — 80 - 70 = 60 ns
62 | Clock High to OWN High Impedance tcHoZ - 120 - 100 - 80 - 70 ns
63 | OWN Low to BGACK Low toLaL 50 - 40 - 30 - 20 - ns
64 | BGACK High to OWN High tBHOH 50 - 40 - 30 - 20 - ns
65 | OWN Low to UAS Low toLuL 50 - 40 — 30 - 20 - ns
66 | Clock High to ACK Low tCHACL - 90 - 80 - 70 — 60 ns
67 | Clock Low to ACK Low tcLACL = 90 — 80. _ 70 = 60 ns
68 | Clock High to ACK High tCHACH — 90 — 80 = 70 — 60 ns
69 | ACK Low to DS Low tACLDSL 230 - 140 - 100 - 80 - ns
70 | DS High to ACK High tOSHACH 50 _ 40 _ 30 — 20 — ns
71 | Clock High to HIBYTE Low tCHHIL - 90 - 80 - 70 - 60 ns
72 | Clock Low to HIBYTE Low tCLHIL - 90 - 80 - 70 - 60 ns
73 | Clock High to HIBYTE High tCHHIH — 90 — 80 — 70 — 60 ns
74 | Clock Low to HIBYTE High Impedance teLHiZ - 120 - 100 — 80 — 70 ns
75 | Clock High to DTC Low tCHOTL _ 90 = 80 _ 70 - 60 ns
76 | Clock High to DTC High tCHDTH Fig. 1 ~ - 90 - 80 - 70 - 60 ns
77 | Clock Low to DTC High Impedance tcLDTZ -8 - 120 — 100 - 80 - 70 ns
78 | DTC Width Low toTCL 230 ~ 147 — 105 - 80 = ns
79 | DTC Low to DS High tDTLDH 95 — 50 - 30 - 20 - ns
80 | Clock High to DONE Low tCHDOL - 90 - 80 - 70 - 60 ns
81 | Clock Low to DONE Low tcLpoL - 90 — 80 — 70 — 60 ns
82 | Clock High to DONE High tCHDOH - 150 - 140 - 130 - 120 ns
83 | Clock Low to DDIR High Impedance tCLORZ = 120 - 100 = 80 = 70 s
84 | Ciock Low to DBEN High Impedance tcLpBZ — 120 — 100 p 80 — 70 ns
785 | DDIR Low to DBEN Low tDRLDBL 50 = 40 - 30 — 20 — ns
86 | DBEN High to DDIR High TOBHDRH 50 ~ 40 — 30 ~ 20 — ns
87 | DBEN Low to Address/Data High Impedance tDBLAZ ~ 17 — 17 — 17 — 17 ns
88 | Clock Low to PCL Low (1/8 clock) tcLPL - 90 - 80 - 70 - 60 ns
89 | Clock Low to PCL High (1/8 clock) teLPH ~ 90 — 80 = 70 = 60 ns
90 | PCL Width Low (1/8 clock) tecLL 4.0 ~ 4.0 - 4.0 = 40 — [cik. per.
91 | DTACK Low to Data In (setup time) toALDI - 320 — 200 — 150 — 115 ns
92 | DS High to Data Invalid (hold time) sHDI 0 - 0 — 0 - [- ns
93 | DS High to DTACK High tSHDAH 0 240 0 160 0 120 0 90 ns
94 | Data Out Valid to DS Low tposL. 0 — 0 — 0 — 0 - ns
95 | Data In to Clock Low (setup time) tpicL 30 — 25 - 15 - 15 - ns
96 | BEC Low to DTACK Low tgECDAL 50 - 50 - 50 - 50 - ns
97 | BEC Width Low teECL 20 — 20 — 20 - 20 — ik per.
98 | Clock High to IRQ Low tCHIRL — 90 — 80 — 70 — 60 ns
99 | Clock High to TRQ High tCHIRH - 150 - 140 - 130 - 120 ns
100 | READY In to DTC Low (Read) tRALDTL 270 — 180 — 145 — 120 — ns
101 | READY In to DS Low (Write) tRALDSL 395 — 240 - 205 — 170 — ns
102 | DS High to READY High tDSHRAH 0 240 0 160 0 120 0 90 ns
"103 | DONE In Low to DTACK Low TOOLDAL 50 = 50 = 50 - 50 = ns
7104 | DS High to DONE In High TOSHDOH 0 240 0 160 0 120 0 90 ns
105 | Asynchronous Input Hold Time TASIH 15 = 5 = 5 = 5 = s

* Preliminary

Figure 2 Input Clock Waveform

55

HD68450,HD68450Y

12 3 4 5 6 28 29 30 31 32 33 34 35 36 1 2 3 4 5 6 7 23 24 25 26 27 28 29 30 :
C“‘K_/___F S [VY VAV VY A S A UV A L/
Ai-A7 MPU READ CYCLE — MPU WRITE CYGLE —
J— I
cs '@)) [_(_cl) \ /
RAW \ [
Uos g I \ f
[1G] . &) @ ® |®
BomR ' P ‘—“L ,—n—-q ® }"}_é
DBEN / = ,—-n_.—._ q’_
. @] X @ @l
/Do~ ") L
A23/D1s T‘ ® e
Data In @® [y @' — -
DTACK 5 7] } \ r@i_

* Data are latched at the end of clock 25.
Figure 3 AC Electrical Waveforms — MPU Read/Write

®

C“J__f\J_\f\Jr\f\J'\f\fW\f\f\f\f_f\J"\fwm
®L @
REQ \ s 4 B
(Falling Edge Pick-up) 5 ;
BR " [
— @ — @ L
g \ ‘ / @
. 8
BGACK) §
. —
BUS Cycle MPU Cycle > 5 2 DMA M’
Cycle
ACK ® | W |
DTC " "_”__—/—\._—

*REQ is sampled at the rising edge of CLK in cycle steal and Burst modes.
**BR isn't asserted while a BEC exception condition exists or DMAC is accessed by MPU.

Figure 4 AC Electrical Waveforms — Bus Arbitration

56

HD68450,HD68450Y

SVAWAT AW AW AW AW AW AWAWAWAW W RWAN
ad PP
BGACK_/_\ H- o I ——————
=
FCo~FC2) ‘: Regd Cycle Write Cycle <
7 i e
Ay —A7——\~,] X - <
Ag/Do~ \ w, X L S
A23/D15 et — A ¢ o \
Uas\ e @ - / T Tu
v L m “6 .
AST \ — H |«
@5 53 |
s\ \ ol |
s\ 5 Py
8 59
R/W-) j‘ | oo
own [- -] = A
OWN -
omR_____) S
|
LLU B — [a az ‘;'jl——
HIBYTE—-———-/_:1 N } 1 f j—_
DTACK / <y \ f
o 3 N S
ACKo e o, 69 @
ACK; ~ —=F \L ™
®2
DONE \ b :} /
iRQ**) ! ”"fi

*DTACK is sampled at the rising edge of CLK. This is different from HD68000.
** This timing is not related to DMA Read/Write (Single Cycle) sequence.

Figure 5 AC Electrical Waveforms — DMA Read/Write (Single Cycle)

57

HD68450,HD68450Y

1 2 3 4 5 6 71°8 1 2 3 4 5 6 1 8 9 10

VAW AWAW AWAWE W AW, _/—_/—_/—\J—\L_ﬂ._/—_
m_j__—_\ ' jE'—__.__
Fcn~FCzD-———(Read Cycle X Write Cycle > C

=
N—
p—
N

A-—A7:>——————< P

Asg/Do~ > (N V4

A23/D1s © N
N

Data In fil gt 4

RS \—————

(]

/
R\
s\ T\ =
s N\

PCL o

BEC'"* !

*Data is latched at the end of clock 7. This timing is the same as HD68000.
** This timing is not related to DMA Read/Write (Dual Cycle) sequence. This timing is only applicable when 1/8 clock pulse mode is selected.
***This timing is applicable when a bus exception occurs.
****|f #6 is satisifed for both DTACK and BEC, #96 may be Ons.
***** | the propagation delay of the external bidirectional buffer LS245 is less than 17nsec, a conflict may occur between the address output of the DMAC and
the system data bus. In this case, the output of DBEN must be delayed externally.

Figure 6 AC Electrical Waveforms — DMA Read/Write (Dual Cycle)

58

HD68450,HD68450Y

1t 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CLK

Ay~ A, x X
XDo ~ XDys __)'_"()—(

H
(
RS

OWN Low

HIBYTE \
DTACK ____/—__\ /

® (o) (102)
PCL(READY) / N / SI:

o
e N/ 5 ./ /"
~

K\\

a .\ /
ACK: / L
ck [\ S S\

1.2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7 AC Electrical Waveforms — DMA Read/Write (Single Cycle with PCL)

59

HD68450,HD68450Y

1 2 3 4 5 6 7 8 1 4 5 6 7 8 9 10
3 ~ 9 clocks
Ay~ A, X) 2) S

).
¢

XDo ~ XDis

N

N

)

RIW / -\ 7

OWN Low

.

1

HIBYTE 2

® ®

N
¢

N

(=

. N

o T\) A

1 2 3 4 5 6 7 8 12 3 4 5 6 7 8 9 10

|
LA

* |f #6 is satisfied for both DTACK and DONE, #103 may be Ons.

Figure 8 AC Electrical Waveforms — DONE Input

(NOTES for Figure 3 through 8)

1) Setup time for the asynchronous inputs BG, BGACK, CS, IACK, AS, UDS, LDS, and R/Wguarantees their recognition at the next
falling edge of the clock. Setup time for BEC, ~ BEC,, REQ, ~ REQ;, PCL, ~ PCL3, DTACK, and DONE guarantees their
recognition at the next rising edge of the clock.

2) Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts.

3) These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not
intended as a functional description of the input and output signals. Refer to other functional descriptions and their related diagrams
for device operation.

60

= SIGNAL DESCRIPTION

The following section identifies the signals used in the
DMAC. In the definitions, “MPU mode” refers to the state
when the DMAC is chip selected by MPU. The term “DMA
mode” refers to the state when the DMAC assumes ownership of
the bus. The DMAC is in the “IDLE mode™ at all other times.
Moreover, the DMA bus cycle refers to the bus cycle that is
executed by the DMAC in the “DMA mode”.

NOTE) In this data sheet, the state of the signals is
described with these words: active or assert, inactive
or negate.

This is done to avoid confusion when dealing with a mixture
of “active-low” and “active-high” signals. The term assert or
assertion is used to indicate that a signal is active or true inde-
pendent of whether that voltage is low or high. The term negate
or negation is used to indicate that a signal is inactive or false.

Veel(2) CLK
Ag~A23/ : >
Do~Ds1s - RE
Ar-A; > Q&(o
_ . o
cs
_AS —
LDS REQ
ubs CK4
R/W PCL1
DTACK
BR REQ?
BG— HD68450 ———ACK:
BGACK DMAC | PCL2
RQ REQ3
TACK ACK3
PCL3
OWN
UAS
HIBYTE
DBEN
DDIR DONE
BECo—
BEC,—
BEC: DTC
FCo
FC1
FC2

i

Vss(2)

Figure 9 Input and Output Signals

® Address/Data Bus (Ag/D, through A,3/D;5)

Input/Output Three-statable

Active-high

These lines are time multiplexed for the address and data
bus. The lines DDIR, DBEN, UAS and OWN are used to con-
trol the demultiplexing of the data and address lines externally.
Demultiplexing is explained in a later section. The bi-directional
data bus is used to transfer data between DMAC, MPU,
memory and 1/O devices.

Address lines are outputs to address memory and 1/O devices.

61

HD68450,HD68450Y

® Address Bus (A, through A,)

Input/Output Three-statable

Active-high

In the MPU mode, the DMAC internal registers are accessed
with these lines and LDS, UDS. The address map for these
registers is shown in Table 1. During a DMA bus cycle, A,-A,
are outputs containing the low order address bits of the location
being accessed.

® Function Code (FC, through FC,)

Output Three-statable

Active-high

These output signals provide the function codes during
DMA bus cycles. They are three-stated except in the DMA bus
cycles. They are used to control the HMCS68000 memories.

® Clock (CLK)

| Input I

This is the input clock to the HD68450, and should never be
terminated at any time. This clock can be different from the
MPU clock since HD68450 operates completely asynchronously.

® Chip Select (CS)

Input
Active low

This input signal is used to chip select the DMAC in “MPU”
mode. If the CS input is asserted during a bus cycle which is
generated by the DMAC, the DMAC internally terminates the
bus cycle and signals an address error. This function protects
the DMAC from accessing its own register.

® Address Strobe (AS)

Input/Output Three-statable

Active low

In the “MPU mode,” this line is an input indicating valid
address input, and during the DMA bus cycle it is an output
indicating a valid address output from the DMAC on the address
bus.

The DMAC monitors these input lines during bus arbitration
to determine the completion of the bus cycle by the MPU or
other bus masters.

® Upper Address Strobe (UAS)

Output Three-statable

Active low

This line is an output to latch the upper address lines on the
multiplexed data/address lines. It is three-stated except in the
“DMA mode”.

® Own (OWN)

Output Three-statable

Active low

HD68450,HD68450Y

This line is asserted by the DMAC during DMA mode, and is
used to control the output of the address line latch. This line
may also be used to control the direction of bi-directional
buffers when loads on AS, LDS, UDS, R/W and other signals
exceed the drive capability. It is three-stated in the “MPU

mode” and the “IDLE mode”

® Data Direction (DDIR)

Outputs Three-statable

Active low (when data direction is input to
the DMAC)

Active high (when the data direction is output
from the DMAC)

This line controls the direction of data through the bidirec-
tional buffer which used to demultiplex the data/address lines.
It is three-stated during the “IDLE mode”

® Data Bus Enable (DBEN)

Output Three-statable

Active low

This line controls the output enable line of bidirectional
buffers on the multiplexed data/address lines. It is a three-stated
during the “IDLE mode”.

® High Byte (HIBYTE)

Output Three-statable

Active low

This line is used when the operand size is a byte in the single
addressing mode. It is asserted when data is present on the upper
eight bits of the data bus. It is used to control the output of the
bidirectional buffers which connect the upper eight bits of the
data bus with the lower eight bits. It is three-stated during the
“MPU mode” and the “IDLE mode.”

® Read/Write (R/W)

Input/Output
Active low (write)
Active high (read)

Three-statable

This line is an input in the “MPU mode” and an output
during the “DMA mode”. It is three-stated during the “IDLE
mode”. It is used to control the direction of data flow.

® Upper Data Strobe (UDS), Lower Data Strobe (LDS)

Input/Output Three-statable

Active low

These lines are extensions of the address lines indicating
which byte or bytes of data of the addressed word are being
addressed. These lines combined corresponds to address line
A, in table 1.

® Data Transfer Acknowledge (DTACK)

Input/Output Three-statable

Active low

62

In the “MPU mode”, this line is an output indicating the
completion of Read/Write bus cycle by the MPU.

In the “DMA mode”, the DMAC monitors this line to deter-
mine when a data transfer has completed. In the event that a
bus exception is requested, except for HALT, prior to or con-
current with DTACK, the DTACK response is ignored and the
bus exception is honored. In the “IDLE mode”, this signal is
three-stated.

® Bus Exception Controls (BEC, through BEC,)

Input
Active low

These lines provide an encoded signal input indicating an
exceptional condition in the DMA bus cycle. See bus exception
section for details.

® Bus Request (BR)

Output
Active low

This output line is used to request ownership of the bus by
the DMAC.

® Bus Grant (BG)

Input
Active low

This line is used to indicate to the DMAC that it is to be the
next bus master. The DMAC cannot assume bus ownership until
both AS and BGACK becomes inactive. Once the DMAC ac-
quires the bus, it does not continue to monitor the BG input.

® Bus Grant Acknowledge (BGACK)

Input/Output Three-statable

Active low

Bus Grant Acknowledge (BGACK) is a bidirectional control
line. As an output, it is generated by the DMAC to indicate that
it is the bus master.

As an input, BGACK is monitored by the DMAC, in limited
rate auto-request mode, to determine whether or not the
current bus master is a DMA device or not. BGACK is also
monitored during bus arbitration in order to assume bus owner-
ship.

® Interrupt Request (IRQ)

Output
Active low

Open drain

This line is used to request an interrupt to the MPU.

® [nterrupt Acknowledge (IACK)

Input
Active low

This line is an input to the DMAC indicating that the current
bus cycle is an interrupt acknowledge cycle by the MPU. The

DMAC responds the interrupt vector of the channel with the
highest priority requesting an interrupt. There are two kinds of
the interrupt vectors for each channel: normal (NIV) or error
(EIV). TACK is not serviced if the DMAC has not generated
IRQ.

® Channel Request (REQ, through REQ;)

Input
Active low or falling edge

These lines are the DMA transfer request inputs from the
peripheral devices.

These lines are falling edge sensitive inputs when the request
mode is cycle steal. They are low-level sensitive when the
request mode is burst.

® Channel Acknowledge (ACK, through ACKj;)

Output
Active low

These lines indicate to the I/O device requesting a transfer
that the request is acknowledged and the transfer is to be per-
formed. These lines may be used as a part of the enable circuit
for bus interface to the peripheral.

® Peripheral Control Line (PCL, through PCL3)

Input/Output Three-statable

Active low

The four lines (PCL, ~ PCL;) are multi-purpose lines which
may be individually programmed to be a START output, an
Enable Clock input, a READY input, an ABORT input, a
STATUS input, or an INTERRUPT input.

® Done (DONE)

Input/Output Open Drain

Active low

As an output, this line is asserted concurrently with the
ACKx timing to indicate the last data transfer to the peripheral
device. As an input, it allows the peripheral device to request a
normal termination of the DMA transfer.

® Device Transfer Complete (DTC)

Output Three-statable

Active low

This line is asserted when the DMA bus cycle has terminated
normally with no exceptions. It may be used to supply the data
latch timing to the peripheral device. In this case, data is valid at
the falling edge of DTC.

= INTERNAL ORGANIZATION

The DMAC has four independent DMA channels. Each chan-
nel has its own set of channel registers. These registers define
and control the activity of the DMAC in processing a channel
operation.

HD68450,HD68450Y

(CSR)

Channel
Status Register
eror Aogmer | (CER)
Contrar Regisier_| (DCR)
control fegsier | (OCR)
Conrror Ragster__| (SCR)
consror Ragiser | (CCR)

ormal
Interrupt Vector | (NIV)

Interrupt Vecror | (EIV)
Priorihy Regiser | (CPR) [07 221 Per
Fundian Godes |(MFC)| "™
function Codes | (DFC)
5 function Codes | (BFC)
L Memory Transfer Counter (MTC)
N] Base Transfer Counter (BTC)
Memory Address Register (MAR)
Device Address Register (DAR)
Base Address Register (BAR)

7 0
CconRipan](GCR) — Ore er
DMAC

Figure 10 Internal Registers

® Register Organization

) The internal register addresses are represented in Table 1.
Address space not used within the address map is reserved for
future expansion. A read from an unused location in the map
results in a normal bus cycle with all ones for data. A write
to one of these locations results in a normal bus cycle but no
write occurs.

Unused bits of the defined registers in Table 1 read as zeros.

Table 1 Internal Register Addressing Assignments
Address Bits

i~
Q
®

Register

Channel Status Register
Channel Error Register
Device Control Register
Operation Control Register
Sequence Control Register
Channel Control Register
Memory Transfer Counter
Memory Address Register
Device Address Register
Base Transfer Counter
Base Address Register
Normal Interrupt Vector
Error Interrupt Vector
Channel Priority Register
Memory Function Codes
Device Function Codes
Base Function Codes
General Control Register

*

He =22 aas00000000000(0
== =20000=2==200000000d
--0~-4-200-=0==000000|W
—2000=4===0==0====00N

~0000-0¥ =V 20000~
B ey I, 7 I N o N N ' [o

IIIﬂNﬂmIDNEIﬂNﬁIIIg

0000000000000 000O0®D
£ggggEgssggsssss

—“00000000000000000(N

cc:00-Channel #0,01-Channel #1,
10-Channel #2,11-Channel #3,

ss :00-high-order, O1-upper middle,
10-lower middle,11-low-order

b: O-high-order, 1-low-order

* see Channel Status Register Section

® Device Control Register (DCR)

The DCR is a device oriented control register. The XRM bits
specifies whether the channel is in burst or cycle steal request
mode. The DTYP bits define what type of device is on the
channel. If the DTYP bits are programmed to be a HMCS6800
device, the PCL definition is ignored and the PCL line is an
Enable clock input. If the DTYP bits are programmed to be a
device with READY, the PCL definition is ignored and the PCL
line is a READY input. The DPS bit defines the port size (eight
orsixteen bits) of the peripheral device. (A port size is the largest
data which the peripheral device can transfer during a DMA bus
cycle.) The PCL bits define the function of the PCL line. If the
DTYP bits are programmed to be HMCS6800 device, or Device
with ACK and READY, these definitions are ignored. The XRM

63

HD68450,HD68450Y

bits are ignored if an auto-request mode (REQG = 00 or 01 in
Operation Control Register) is selected.

7 6 5 4 3 2 1 0

XRM DTYP DPS 0 PCL

XRM (EXTERNAL REQUEST MODE)
00 Burst Transfer Mode
01 (undefined, reserved)
10 Cycle Steal Mode without Hold
11 Cycle Steal Mode with Hold
DTYP (DEVICE TYPE)
00 HD68000 compatible device, explicitly addressed
(dual addressing mode)
01 HD6800 compatible device, explicitly addressed
(dual addressing mode)
10 Device with ACK, implicitly addressed
(single addressing mode)
11 Device with ACK and READY, implicitly addressed
(single addressing mode)
DPS (DEVICE PORT SIZE)
0 8 bit port
1 16 bit port
PCL (PERIPHERAL CONTROL LINE)
00 Status Input
01 Status Input with Interrupt
10 Start Pulse
11 Abort Input
Bit 2 Not Used

® Operation Control Register (OCR)

The OCR is an operation control register. The DIR bit
defines the direction of the transfer. The SIZE bits define the
size of the operand. The CHAIN bits define the type of the
CHAIN mode. The REQG bits definc how requests for transfers
arc generated.

7 6 5 4 3 2 1 0

DIR 0 SIZE CHAIN REQG

DIR (DIRECTION)
0 Transfer from memory to device
(transfer from MAR address to DAR address)
1 Transfer from device to memory
(transfer from DAR address to MAR address)
SIZE (OPERAND SIZE)
00 Byte (8 bits)
01 Word (16 bits)
10 Long Word (32 bits)
11 (undefined, reserved)
CHAIN (CHAINING OPERATION)
00 Chain operation is disabled
01 (undefined, reserved)
10 Array Chaining
11 Linked Array Chaining
REQG (DMA REQUEST GENERATION METHOD)
00 Auto-request at transfer rate limited by General Control
Register (Limited Rate Auto-Request)
01 Auto-request at maximum rate

10 REQ line requests an operand transfer
11 Auto-request the first operand, external request for
subsequent operands
Bit 6 Not Used

® Sequence Control Register (SCR)
The SCR is used to define the sequencing of memory and
device addresses.

7 6 5 4 3 2 1 ‘0

0 0 0 0 MAC DAC

MAC (MEMORY ADDRESS COUNT)
00 Memory address register does not count
01 Memory address register counts up
10 Memory address register counts down
11 (undefined, reserved)

DAC (DEVICE ADDRESS COUNT)
00 Device address register does not count
01 Device address register counts up
10 Device address register counts down
11 (undefined, reserved)

Bits 7, 6, 5, 4 Not Used

@ Channel Control Register (CCR)

The CCR is used to start or terminate the operation of a
channel. This register also determines if an interrupt request is
to be generated. Setting the STR bit causes immediate activa-
tion of the channel; the channel will be ready to accept request
immediately. The STR and CNT bits of the register cannot
be reset by a write to the register. The SAB bit is used to
terminate the operation forcedly. Setting the SAB bit will reset
STR and CNT. Setting the HLT bit will halt the channel opera-
tion, and clearing the HLT bit wil resume the operation. Setting
the start bit must be done by a byte access. Otherwise, a timing
error occurs.

7 6 5 4 3 2 1 0

STR | CNT | HLT | SAB INT 0 0 0

STR (START OPERATION)
0 No operation is pending
1 Start operation
CNT (CONTINUE OPERATION)
0 No continuation is pending
1 Continue operation
HLT (HALT OPERATION)
0 Operation not halted
1 Operation halted
SAB (SOFTWARE ABORT)
0 Channel operation not aborted
1 Abort channel operation
INT (INTERRUPT ENABLE)
0 No interrupts enabled
1 Interrupts enabled
Bits 2, 1, 0 Not Used

® Channel Status Register (CSR)
The CSR is a register containing the status of the channel.

64

7 6 5 4 3 2 1 0
coc | BTC | NDT | ERR | ACT | © PCT | PCS
COC (CHANNEL OPERATION COMPLETE)

Channel operation incomplete
1 Channel operation complete
(BLOCK TRANSFER COMPLETE)
0 Block transfer incomplete
1 Block transfer complete
(NORMAL DEVICE TERMINATION)
0 No normal device termination by DONE input
1 Device terminated operation normally by DONE input
(ERROR BIT)
0 No errors
1 Error as coded in CER
(CHANNEL ACTIVE)
0 Channel not active
1 Channel active

PCT (PCL TRANSITION)
0 No PCL transition occurred
1 PCL transition occurred
PCS (THE STATE OF THE PCL INPUT LINE)
0 PCL “Low”
1 PCL“High”
Bit 2 Not Used

® Channel Error Register (CER)

The CER is an error condition status register. The ERR bit of
CSR indicates if there is an error or not. Bits 0-4 indicate what
type of error occurred.

7 6 5 4 3 2 1 0
0 0 0 ERROR CODE
Error Code

00000 No error

00001 Configuration error

00010 Operation timing error

00101 Address error in MAR

00110 Address error in DAR

00111 Address error in BAR

01001 Bus error in MAR

01010 Buserror in DAR

01011 Buserror in BAR

01101 Count error in MTC

01111 Count error in BTC

10000 External abort

10001 Software abort

Bits 7, 6, 5 Not Used

® Channel Priority Register (CPR)

The CPR is used to define the priority level of the channel.
Priority level O is the highest and priority level 3 is the lowest
priority.

7 6 5 4 3 2 1 0

o} 0 0o 0 0 o} cP

65

HD68450,HD68450Y

CP (CHANNEL PRIORITY)
00 Priority level O

01 Priority level 1

10 Priority level 2

11 Priority level 3

Bit 7 through 2 Not Used

® General Control Register (GCR)

The GCR is used to define what portion of the bus cycles is
available to the DMAC for limited rate auto-request generation.
GCR is also used to specify the hold time for cycle steal mode
with hold.

7 6 5 4 3 2 1 0
0 0 0 0 BT BR
BT (BURST TIME)

The number of DMA clock cycles per burst that the DMAC
allows in the auto-request at a limited rate of transfer is con-
trolled by these two bits. The number is 2(BT+4) (two to the
BT+4 power).

BR (BANDWIDTH RATIO)

The amount of the bandwidth utilized by the auto-request at
a limited rate transfer is controlled by these two bits. The ratio
is 2(BR+1) (two to the BR+1 power).

The hold time for cycle steal mode with hold is defined to
be minimum of 1 sample interval and maximum of 2 sample
intervals. A sample interval is defined to be 2(BT+BR+5) (two
to the BT+BR+5 power) clock cycles.

Bits 7 through 4 Not Used

® Address Registers (MAR, DAR, BAR)

Three 32-bit registers are utilized to implement the Memory
Address Register, Device Address Register, and the Base Address
Register. Only the least significant twenty-four bits are con-
nected to the address output pins. The content of the MAR is
outputted when the memory is accessed in single or dual adress-
ing mode. The content of the DAR is outputted when the
peripheral device is accessed. The contents of the BAR is out-
putted when reading chain information from memory in the
Array Chaining Mode or the Linked Array Chaining Mode. It is
also used to set the top address of the next block transfer in
Continue mode.

® Function Code Registers (MFC, DFC, BFC)

The DMAC has three function code registers per channel:
the Memory Function Code Register (MFC), Device Function
Code Register (DFC), and the Base Function Code Register
(BFC). The contents of these registers are outputted from FC,
through FC, lines when an address is outputted from MAR,
DAR, or BAR, respectively. The BFC is also used to set the
MFC for the transfer of the next data block in the Continue
mode.

7 6 5 4 3 2 1 0

0 0 0 0 0 FC2 FC1 FCO

Bits 3 through 7 Not Used

® Transfer Count Registers (MTC, BTC)
Each channel has two 16-bit counters: the Memory Transfer
Counter (MTC) and the Base Transfer Counter (BTC). The MTC

HD68450,HD68450Y

counts the number of transfer words in one block, and is de-
creased by one for every operand transfer.

The BTC is used to count the number of data blocks in the
Array Chaining Mode. BTC is also used to set the number of
operands to transfer for the next data block in the Continue
Mode.

® Interrupt Vector Registers (NIV, EIV)

Each channel has a Normal Interrupt Vector register and an
Error Interrupt Vector register.

When an interrupt acknowledge cycle occurs, an interrupt
vector is outputted from one of these registers. If the error bit
(CSR) is set for the channel with interrupt pending, then con-
tent of EIV is outputted, otherwise content of NIV is out-
putted.

= OPERATION DESCRIPTION

A DMAC channel operation proceeds in three principal
phases. During the initialization phase, the MPU sets the channel
control registers, supply the initial address and the number of
transfer words, and starts the channel. During the transfer
phase, the DMAC accepts requests for data operand transfers,
and provides addressing and bus controls for the transfers. The
termination phase occurs after the operation is completed.

This section describes DMAC operations. A description of
the MPU/DMAC communication is given first. Next, the transfer
phase is covered, including how the DMAC recognizes requests
and how the DMAC arranges for data transfer. Following this,
the initialization phase is described. The termination phase is
covered, introducing chaining, error signaling, and bus excep-
tions. A description of the channel priority scheme rounds out
the section.

CLK
123456

©® Read/Write of the DMAC Registers by MPU

The MPU reads and writes the DMAC internal registers and
controls the DMA transfer. Figure 11 indicates the timing dia-
gram when the MPU reads the contents of the DMAC register.
The MPU outputs A,-A,3, FCo-FC,, AS, R/W, UDS, and LDS,
and accesses the DMAC internal register. The specific internal
register is selected by Ai-A7 ,'LDS and UDS. The CS and IACK
lines are generated by the external circuit with Ag-A,; and
FCo-FC,. The DMAC outputs data on the data bus, together
with DDIR, DBEN and DTACK. The DDIR and DBEN control
the bidirectional buffer on the bus and the DTACK indicates
that the data has been sent or received by thc DMAC. Read
Cycle is eighteen CLKs. Figure 12 shows the MPU write cycle.
Write cycle is fifteen CLKs.

Note the following points.
(1) The clock reference shown in this figure is the DMAC input

clock.
(2) The DDIR and the DBEN are three-stated at the beginning
which detects CS and the ending of the cycle.

(3) During the MPU read cycle, the DTACK is asserted after
)

the data is valid on the system bus.

During the MPU write cycle, the DDIR line will be driven
low to direct the data buffers toward to DMAC before the
buffers are enabled.

During the MPU write cycle, the DMAC will latch the data
before asserting DTACK. Then it will negate DBEN and
DDIR in the proper order. -

After the MPU cycle and the LDS and the UDS are negated
by the MPU, the DMAC will put DBEN, DDIR and the
address data lines to a high impedance state.

DTACK will once go “High” and then to a high impedance
state after negating LDS and UDS.

(5)

Q)

Q)

2728 29 30 31323334 35 36

A1~Az3
FCo~FC2

AS

/N

cs

R/W

ubDs

LDS

DDIR

DBEN

L7 17

As/Do~A23/D1s -

XDo~XD1s

(External system data bus)

DTACK

Figure 11 MPU Read from DMAC — Word

66

HD68450,HD68450Y

123456 78 222324252627 282930

RW W ——- \
uos L\ J— W__
Los L\ J— W
As/Do~A23/D1s --)
XDo~XD1s C"‘ » «:
(External System Data Bus) -—-
DTACK -— x« T

Figure 12 MPU Write to DMAC — Word

® Bus Arbitration

The DMAC must obtain ownership of the bus in order to transfer (AS is negated), the MPU relinquishes the bus to the DMAC.
data. Figure 13 indicates the DMAC bus arbitration timing. It is The DMAC asserts the bus grant acknowledge (BGACK) to
completely compatible with that of HD68000 MPU. The DMAC indicate that it has the bus ownership. A half clock before
asserts the Bus Request (BR) to request the bus mastership. The BGACK is asserted, the DMAC asserts OWN. OWN is kept
MPU recognizes the request and asserts BG, then it grants the asserted for a half clock after BGACK is negated at the end of the
ownership in the next bus cycle. After the end of the current cycle DMA cycle. BR is negated one clock after BGACK is asserted.

min. 2 clocks
REQ \ 1.5 ~ 3.6 clocks
BR 2~3.5 clocks“\ 45 /7
B8G \ e
(68000 output) . 4= /‘
oWN ~ o —
BGACK 0 clock ~ TMPU Cyele S
MPU I i 5- “ .
BUS Cycle Cycle 4.5 ~ 5.5 clocks MPU
A e ——— DMA Cycle Cycle
CK max. 12.5 clocks + 1TMPU Cycle \ # /
DTC e

* This case assumes that no exception condition exists and DMAC isn‘t accessed by MPU.

Figure 13 DMAC Bus Arbitration Timing

67

HD68450,HD68450Y

® Device/DMAC Communication

Communication between peripheral devices and the DMAC is
accomodated by five signal lines. Each channel has REQ, ACK
and PCL, and the last two lines the DONE and DTC lines, are
shared among the four channels.

(1) Request (REQ) .

The peripheral devices assert REQ to request data transfers.
See the “Requests” section for details.

(2) Acknowledge (ACK)

This line is used to implicitly address the device which is
transferring the data (This device is not selected by address
lines.) It is also asserted when the content of DAR is out-
putted during memory-to-memory transfer except for the auto-
request mode at a limited rate or at the maximum rate.

(3) Peripheral Control Line (PCL)

The function of this line is quite flexible and is determined
by the DCR (Device Control Register).

The DTYP bits of the DCR define what type of device
is on the channel. If the DTYP bits are programmed to be a
HMCS6800 device, the PCL definition is ignored and the PCL
line is an Enable clock (E clock) input. If the DTYP bits are pro-
grammed to be a device with READY, the PCL definition as
ignored and the PCL line is a ready input.

PCL As a Status Input

The PCL line may be programmed as a status input. The
status level of this line can be determined by the PCS bit in the
CSR, regardless of the PCL function determined by the DCR.
If a negative transition occurs and remains stable for a mini-
mum of two clocks, the PCT bit of the CSR is set. This PCT
bit is cleared by resetting the DMAC or the writing “1” to the
PCT bit.

PCL As an Interrupt

The PCL line may be programmed to generate an interrupt
on a negative transition. This enables an interrupt which is re-
quested if the PCT bit of the CSR is set. When using this func-
tion, it is necessary to reset the PCT bit in the CSR before the
PCL bit in the DCR is set to interrupt, in order to avoid
assertion of IRQ line at this time.

PCL As a Starting Pulse

The PCL line may be programmed to output a starting pulse.
This active low starting pulse is outputted when a channel is
activated, and is “Low” for a period of four clock cycles.

PCL As an Abort Input

The PCL line may be programmed to be a negative transition
above input which terminates an operation by setting the ex-
ternal abort error in CER. It is necessary to reset the PCT bit in
the CSR before activating the channel (Setting the ACT bit of
CCR) so that the channel operation is not immediately aborted.
PCL As an Enable Clock (E Clock) Input

If the DTYP bits are programmed to be a HMCS6800 device,
the PCL definition is ignored and the PCL line is an Enable
Clock input. The Enable clock downtime must be as long as five
clock cycles, and must be high for a minimum of three DMAC
clock cycles, but need not be synchronous with the DMAC’s
clock.

PCL As a READY Input

If the DTYP bits are programmed to be a device with
READY, the PCL definition is ignored and the PCL line is a
READY input. The READY is an active low input.

(4) DONE (DONE)

This line is an active low Input/Output signal with an open
drain. It is asserted when the memory transfer count is ex-
hausted in a single block transfer. In the chaining operation,
DONE is asserted only at the last transfer to the peripheral

68

device of the last data block. In the continue mode, DONE is
asserted for each data block. It is asserted and negated in coin-
cident with the ACK line for the last data transfer to the
peripheral device. It is also outputted in coincident with the
ACK line of the last bus cycle, in which the address is outputted
from the DAR, in the memory-to-memory transfer (dual
addressing mode) that uses the ACK line.

The DMAC also monitors the state of the DONE line during
the DMA bus cycle. If the device asserts DONE during ACK
active, the DMAC will terminate the operation after the transfer
of the current operand. If DONE is asserted on the first byte of
2 byte operation or the first word of long word operation, the
DMAC does not terminate the operation until the whole ope-
rand transfer is completed. If DONE is inserted, then the DMAC
terminates the operation by clearing the ACT bit of the CSR,
and setting the COC and NDT bits of the CSR. If both the
DMAC and the device assert DONE, the device termination is
not recognized, but the channel operation does terminate.
DONE is outputted again for the retry exceptions bus cycles.

(5) Data Transfer Complete (DTC)

DTC is an active low signal which is asserted when the actual
data transfer is accomplished. It is also asserted in the bus cycle
when a chain information is read from memory in the Chaining
mode. However, if exceptions are generated and the DMA bus
cycle terminates, DTC is not asserted. DTC is asserted one half
clock before LDS and UDS are negated, and negated one half
clock after LDS and UDS are negated.

® Requests

Requests may be externally generated by circuitry in the
peripheral device, or internally generated by the auto-request
mechanism. The REQG bits of the OCR determine these modes.
The DMAC also supports an operation in which the DMAC
auto-requests the first transfer and then waits for the peripheral
device to request the following transfers.
(1) Auto-request Transfers

The auto-request mechanism provides generation of requests
within the DMAC. These requests can be generated at either of
two rates: maximum-rate and limited-rate. In the former case,
the channel always has a request pending.

The limited rate auto-request functions by monitoring the
bus utilization.

Limited-rate Auto-request

TIME -
Previous Current Next
Sample Interval Sample Interval Sample Interval
| l LRAR
Interval

Figure 14 DMAC Sample Intervals

In the limited-rate auto-request the DMAC devides time into
equal length sample intervals by counting clock cycles. The end
of one sample interval makes the beginning of the next. During
a sample interval, the DMAC monitors by means of BGACK pin
the system bus activity of the DMAC and other bus master
devices. At the end of the sample interval, decision is made
whether or not to perform the channel’s data transfer during
the next sample interval. Namely, based on the activity of
the DMAC or other bus master devices during the current
sample interval, the DMAC allows limited-rate auto-requests for
some initial portion of the next sample interval.

The length of the sample interval, and the portion of the
sample interval during which limited-rate auto-requests can be

made (the limited-rate auto-request interval) are controlled by
the BT and BR bits in the GCR. The length in clock cycles of
the limited-rate auto-request interval is 2(BT+4) (2 raised to the
BT+4 power). For example, if BT equals 2 and the DMA utiliza-
tion of the bus was low during the previous sample interval,
then the DMAC generates the auto-request transfers during the
first 64 clock cycles.

The ratio of the length of the sample interval to the length
of the limited-rate auto-request interval is controlled by the BR
bits. The ratio of the system bus utilization of the MPU to
other bus master devices including he DMAC is 2(BR+1) (2
raised to the BR+1 power). If the fraction of DMA clock cycles
during the sample interval exceeds the programmed utilization
level, the DMAC will not allow limited-rate auto-requests during
the next sample interval.

For example, if BR equals 3, then at most one out of 16
clock cycles during a sample interval can be used by the DMAC
and other bus master devices, and still the DMAC would allow
limited rate auto-request during the next sample interval.
Therefore, from the viewpoint of long period, the ratio of the
system bus utilization of the MPU to I/O devices including the
DMAC is about 16:1. The sample interval length is not a direct
parameter, but it is equal to 2(BT+BR+5) clock cycles. Thus,
the sample interval can be programmed between 32 and 2048

CLK

HD68450,HD68450Y

clock cycles.

The DMAC uses the BGACK to differentiate between the
MPU bus cycle and DMAC or other bus master devices. If
BGACK is active, then the DMAC assumes that the bus is used
by a DMAC or other bus master devices. If it is inactive, then
the DMAC assumes that it is used by the MPU.

Maximum-rate Auto-request

If the REQG bits in the OCR indicate auto-request at the
maximum rate, the DMAC acquires the bus after the start bit is
set and keeps it until the data transfer is completed.

If a request is made by another channel of higher priority,
the DMAC services that channel and then resumes the auto-
request sequence. If two or more channels are sct to equal
priority level and maximum rate auto-request, then the channels
will rotate in a “round robbin” fashion.

If the HMCS68000 compatible device is connected to a
channel, the ACK line is held inactive during an auto-request
operation. Consequently, any channel may be used for the
memory-to-memory transfer with the auto-request function in
addition to the operation of data transfer between memory and
peripheral device with using the REQ pin. Refer to Figure 15
for the timing of the memory-to-memory transfer. In this mode,
the ACK, HIBYTE and DONE outputs are always inactive.

1 23 45 6 7 8 9 1011121314151617 181920 212223 24 2526 272829

FCo~FC2__YIT NI

NI NI

A-A__ XTI X1

NI

Add
Ag/Do~ ress Out Data In

Address OQut

Data Out Address Out Data In

A23/Dis

XDo~XDism—([”

NIl NI LUINIT

HiN—ir

Ih—{n—

(External System Data Bus)
UAS

AST WL

W7/
— N _

w_/z7 W\
1/ // A

uDs m !”

|\ W/ A S /

s W T \\ WY // A\ W A

R/W

\\

Vi

OWN

o0R W\ |

DBEN m tZ’ m

J\Y i

HIBYTE

DTACK m “; Ws

DTC

W/

W/ W T

ACK
CLK

1 23 456 7 8 91011121314151617 1819 20 212223 242526 272829
e 4 I

e

Read One Word !

From Memory

Write One Word

L L

Read One Word

to Memory From Memory

Figure 15 Memory-to-Memory Transfer
Read-Write-Read Cycles

69

'HD68450,HD68450Y

(2) External Requests

If the REQG bits of the OCR indicate that the REQ line
generates requests, the transfer requests are generated exter-
nally. The request line associated with each channel allows the
device to externally generate requests for DMA transfers. When
the device wants an operand transferred, it makes a request by
asserting the request line. The external request mode is deter-
mined by the XRM bits of the DCR, which allows both burst
and cycle steal request modes. The burst request mode allows a
channel to request the transfer of multiple operands using
consecutive bus cycles. Theé cycle steal request mode allows
a channel to request the transfer of a single operand. The

following is the description of the burst and the cycle steal
modes.
Burst Request Recognition

In the burst request mode, the REQ line is an active low
input. The level sampled at the rising edge of the clock. Once
the burst request is asserted, it needs to be held low until the
first DMA bus cycle starts in order to insure at least one data
transfer operation. In order to stop the burst mode transfer
after the current bus cycle, the REQ line has to be negated

one clock before the DTC output clock of this cycle. Refer to
Figure 16 or the burst mode timing.

REQ .
BR . — '\ e
BG .] J\ _ \2
BGACK \ g
BUS — . {
CYCLES
BTC T \W/j
CLK

MPU cycle = Idle —=f=——— DMA cycle ——+— MPU cycle -=f= DMA cycle‘—1—— Idle

or ldle

Figure 16 Burst Mode Request Timing
(Only one channel is active)

Cycle Steal Request Recognition

In the cycle steal request mode, the peripheral device re-
quests the DMA transfer by generating an falling edge at the
REQ line. The REQ line needs to be held “low” for at least 2
clock cycles. In the cycle steal mode, if the REQ line changes
from “High” to “Low” between ACK output and one clock be-
forc the clock that outputs DTC, then the next DMA transfer
is performed without relinquishing the bus. If the bus is not
relinquished, then maximum of 5 idle clocks is inserted between
bus cycles. Refer to Figure 17 for the request timing of the
cycle steal mode. If the XRM bits specify cycle steal with-
out hold, the DMAC will relinquish the bus. If the XRM bits
specify cycle steal with hold, the DMAC will retain ownership.
The bus is not given up for arbitration until the channel opera-

tion terminates or until the device pauses. The device is deter-
mined to have paused if it does not make any requests during
the next full sample interval. The sample interval counter is free
running and is not reset or modified by this mode of operation.
The sample interval counter is the same counter that is used for
Limited Rate Auto Request and is programmed via the GCR.
Figure 18 shows the request timing in the cycle steal bus
hold. If the REQ is inputted during the hold time, the ACK
is outputted after a maximum of 7.5 clock cycles from the
picked-up clock. On the cycle steal with hold mode, the DMAC
will hold the bus even when the transfer count is exhausted and
the last data has been transferred. If DMA transfer is requested
from other channels during this period, they are executed
normally.

REQ \ / -

Mg
Y e WY

B\

J M Hold the bus

\Relinquish the bu /
Lt .

C—

u / ma){. 5 clocks '4 \' - -—J—_——

¥

r——

—r—C

n

—— —

BGACK G
 —" e T
CYCLES
ACK N ’
ﬁe I e J ‘! !'

el

[\W/j

micro cleanup

cycl
MPU cycle ——f=— Idle ~}=———— DMAcycle —-l— MZ:J'?":G

~—}—— DMAcycle

Figure 17 Cycle Steal Mode Request Timing

70

HD68450,HD68450Y

REQ \ /

ck UL LFLFLKUIHJTJWUUTILFUWU‘LILHILFLFU‘LH
—(

-\ —

N Hold the bus

BG T\ \ /

BGACK

o

I max. 7.5 clocks !
S

max. 5 clocks F—Y_ |

BUS

CYCLES —— -___>_”_(< -”)'fj"—C:)—
ACK “ ”)

oTC—- — S W

DONE - 4 T —

e[l UL Ui oo
MPU cycle —f=— Idle ——f= DMA cycle

Figure 18 Cycle Steal Bus Hold Mode Reguest Timing

Request Recognition in Dual-address Transfers

In the following section dual-address transfers is defined.
Dual address transfer is an exception to the request recognition
rules in the previous paragraphs. In the cycle steal request mode,
when there are two or more than transfers between the DMAC
and the peripheral device during one operand transfer, the re-
quest is not recognized until the last transfer between the
DMAC and the I/O device starts.
(3) Mixed Request Generation

A single channel can mix the two request generation
methods. By programming the REQG bits of the OCR to 117,
when the channel is started, the DMAC auto-requests the first
transfer. Subsequent requests are then generated externally by
the device. The ACK and PCL lines perform their normal func-
tions in this operation.

@ Data Transfers

All DMAC data transfers are assumed to be between memory
and the peripheral device. The word “memory” means a 16-bit
HMCS68000 bus compatible device. By programming the DCR,
the characteristics of the peripheral device may be assigned.
Each channel can communicate using any of the following
protocols.

DTYP Device Type
00 HMCS68000 compatible device ; .
01 HMCS6800 compatible device } Dual Addressing
10 DCV¥CC w%th ACK BEART Single Addressing
11 Device with ACK and READY

7

(1) Dual Addressing

HMCS68000 and HMCS6800 compatible devices may be
explicitly addressed. This means that beforc the peripheral
transfers data, a data register within the device must be address-
ed. Because the address bus is used to address the peripheral,
the data cannot be directly transferred to/from the memory
because the memory also requires addiessing. Instead, the data
is transferred from the source to the DMAC and held in an
internal DMAC holding register. A second bus transfer between
the DMAC and the destination is then required to complete
the operation. Because both the source and destination of the
transfer are explicitly addressed, this protocol is called dual-
addressed.
HMCS68000 Compatible Device Transfers

In this operation, when a request is received, the bus is
obtained and the transfer is completed using the protocol as
shown in Figures 19 and 20. Figures 21 through 24 show the
transfer timings. Figure 21 and 24 show the operation when
the memory is the source and the peripheral device is the desti-
nation. Figures 22 and 23 show the transfer in the opposite
direction. The peripheral device is a 16-bit device in Figures 21
and 22, and a 8-bit device in Figures 23 and 24.

HD68450,HD68450Y
DMAC HMCS68000 Device

Address Device
1) Set R/W to Read
2) Place Address on A; ~ Aj;
3) Place Function Codes on
FCo ~FC; _
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe
(UDS) and Lower Data
Strobe (LDS) o
6) Assert Acknowledge (ACK)

Preser!t Data
1) Decode Address
2) Place Data on Do ~D,5
3) Assert Data Transfer
Acknowledgle (DTACK)

Acquire Data

1) Load Data into Holding
Register

2) Assert Device Transfer
Complete (DTC)

3) Negate UDS and LDS

4) Negate AS, ACK and DTC

L

TerminaYe Cycle
1) Remove Data from Do ~ D,

2) Negate DTACK
(]

Start Next Cycle
Figure 19 Word Read Cycle Flowchart HMCS68000 Type Device

DMAC HMCS68000 Device

Address Device

1) Place Address on A; ~ Ay,

2) Place Function Codes on
FCo ~FC,

3) Assert Address Strobe (AS)

4) Set R/W to Write

6) Place Dataon Do ~Dys

6) Assert Acknowledge (ACK)

7) Assert Upper Data Strobe
(UDBS) and Lower Data
Strobe (LDS)

Acceg! Data
1) Decode Address
2) Store Datacn Do ~ D,
3) Assert Data Transfer
Acknowiedgf (DTACK)

Terminate Output Transfer

1) Assert Device Transfer
Complete (DTC)
2) Negate UDSand LDS__ _
3) Negate AS, ACK and DTC
4) Remove Data from Dy ~ D
5) Set R/W to Read
1

Terminate Cycle
1) Negate DTACK
J

Start Next Cycle
Figure 20 Word Write Cycle Flowchart HMCS68000 Type Device
72

oL 2 345 7 9 17011121314151617 181920 212223
FCo~FC2 X1 NI I/
Ar~A7) /1k b/ (/14
As/Do Address Out Data In Address Out Data Out
e e XTI I I
(External Syst. mxgo;xBD‘s) 1Dl 1111111
) Yeem D as W7 W_7 W
AR Y/ WY/
s _ T W i W ____ 7 0
oS W T |\\ Y/ A\
RW A\ I/
OWN
R — W]
BBEN T i n o
HIBYTE
b A\ W[/
DONE \\ i
CLK
2 3456 7 8 910111213141516 17181920 2122 23
—+— Read One Word ——t— Write One Word —t—
From Memory To Device
The Last Transfer
Figure 21 Dual Addressing Mode, Read/Write Cycle,
Destination = 16-bit Device, Word Operand
CLK
12 3456 7 8 910111213141516 1718 1920 2122
FCo~FC2 Y/ X m’—
Ar~A7 I I X
As/Do Address Out Data In___Address Qut Data Qut
~A23/D1s Wl/ ml ﬂ”-_
(External Syster)r(\DS;t)a(%ﬁs) LD—I LDy
UAS W Wy
A I W —
ws W 7 W [
[/ S\ /S \ S // A
RW J\Y /I
OWN
oo W
BN W // A\ o
HIBYTE
BTACK 7\ U
bTC Wl W
S W
o T W]
CLK

12 3456 78 9101112131416161718 1920 2122

——+—— Read One Word ——t+—— Write One Word —{—
From Device To Memorv
The Last Transfer
Figure 22 Dual Addressing Mode, Read/Write Cycle,
Source = 16-bit Device, Word Operand

HD68450,HD68450Y

HD68450,HD68450Y

CLK

FCo~FC2
Ar1~Az

As/Do
~A23/Dis
XDo~XD1s
(External System Data Bus)
UAS
AS
UDbs

CLK

FCo~FC2
Ar~Ar

As/Do
~A23/D1s
XDo~XD1s
(External System Data Bus)
UAS

| 24§
332 3z

F
> Z

O
o
m
2

E
@
<
i
m

9
U|>
3 o
ol x

23
= A

3 5 7 9 111213141516 1718 19 20 2122 2324 25 26 27 28 29

NI NI (/1
(/B X1 X1
Address Out Data In Address Out Address Out Data Out
—L XII
ID—IC m—a——_I———_ID——
J\\—-—/ - W/ W_/7
T J\\ U/ /
7\ i/ I \W_ 7 1
J\Y J/ij
11/ R\ Jiij \\Y i} \\\ N/
2 /" /S
|\ W7
R\

12 346506 78 910111213141516 17181920 2122 2324 25 26 27 28 29 30

——=+—Read One Byte ———+——Read One Byte ——t=—— Write One Word = ——ete——
From Device From Device

To Memory

Figure 23 Dual Addressing Mode, Read/Write Cycle
Source = 8-bit Device, Word Operand

1723 45 6 7 891011121314 151617 18 1920 212223 24 25262728 29 30 31

i /i NI NIL_
NI NI NI NIl
ress Ou ata In ress Ou Address Out Data Out

Address Out Data In Address Out T I

J ./ W77 Wi W _

/S

[/ e\ W/ S\ W | B
L\ N/ /i

I\ S/

Y/ IR\ a

-/

A\

T

T23 4656 7 8 910171273 14151617 181920 212223 24 25 26 27 28 29 3031

—4— Read One Word ————— Write One Byte
From Memory To Device

——t— Write One Byte = —t——

To Device

Figure 24 Dual Addressing Mode, Read/Write Cycle,
Destination = 8-bit Device, Word Operand

74

HMCS6800 Compatible Device Transfers

When a channel is programmed to perform HMCS6800 com-
patible transfers, the PCL line for that channel is defined as an
Enable clock input. The DMAC performs data transfers between
itself and the peripheral device using the HMCS6800 bus proto-
col, with the ACK output providing the VMA (valid memory

HD68450,HD68450Y

address) signal. Figure 25 illustrates this protocol. Refer to
Figure 26 for the read cycle timing and Figure 27 for the write
cycle timing. In Figure 26, the DMAC latches the data at the
falling edge of clock 19, so a latch to hold the data is necessary
as shown in Figure 47.

DMAC (MASTER) HMCS6800 Device
Initiate Cycle
1) Start a normal Read or Write
Cycle
2) Monitor Enable until it is low
3) Assert Acknowledge (ACK)
Transfer gata

1) Wait until Enable is active
2) Transfer the Data

Terminate Cycle

1) The master waits until Enable
goes low.

2) Assert Device Transfer Complete
(DTC) (On a Read cycle the
data is latched as clock goes low
when DTC is asserted.)

3) Negate AS, UDS, (DS, ACK
and DTC ‘

Start Next Cycle

CLK

FCo~FC2

Ar~A7
As/Do

~A23/D1s

XDo~XD1s
(External System Data Bus)

C| C
S 25

|

228

l

9 o
EE
2zl 3

=
-]
<
]
mj

Figure 25 HMCS6800 Cycle Flowchart

111213141516 17 1819 20 21 22

N
X X
Address Out

) ’II/IIIII/III/II/IIII/IIIIIIII/IIII/III_IIIII/////I N
T ——-

|\W/j
—

X

DTACK

34

PCL(E Clock)
CLK

Tl B

—
\w/
JU I S R S—

1 7 8 1

\N

11121314 151617 18 1
Sync on E Clock ' Read One Byte From 6800 Devnce

2122

Figure 26 Dual Addressing Mode, HMCS6800 Compatible

Device, Read Cycle

75

HD68450,HD68450Y

CLK
123 456 7 8 9101112131415161718 192021 22 23 24 2526 27 28
FCo~FC2 X L
Ar~A7 X)C:
Address Out Data Out
Ag/Do
~A23/D1s E
XDo~XD15 —W — [ID—
(External System Data Bus)
UAs \W/j LW/
AS ﬂ “ ﬂ
DS
LDS N “ “
R'W \ Jij
OWN
DIR ”
DBEN ﬂ “ ﬂ
HIBYTE
DTACK
ACK \ i \\ [
oTe Y W

o

[e]
o
m
Q
<)

o

=

1 2345 6 7 8 9 1011121314151617 1819 20 21 22 23 2425 26 27 28
————————=f—— Sync. on E Clock ———=—Wite One Byte To 6800 Device ———o

Figure 27 Dual Addressing Mode, HMCS6800 Compatible
Device, Write Cycle

(2) Single Addressing Mode

Implicitly addressed devices are peripheral devices selected
not by address but by ACK. They do not require addressing of
data register during data transfer. Transfers between memory
and these devices are controlled by the request/acknowledge
protocol. Such peripherals require only one bus cycle to transfer
data, and the DMAC internal holding register is not used. Be-
cause only the memory is addressed during a data transfer and a
transfer done in only on bus cycle, this protocol is called
single-address.
Device with ACK Transfers

Under this protocol, the communication between peripheral
device and the DMAC is performed with a two signal REQ/ACK
handshake. When a request is generated using the request
method programmed in the DMAC’s internal control registers,
the DMAC obtains the bus and responds with ACK. The DMAC
asserts all the bus control signals required for the memory access.
Refer to Figure 28 for the flowchart of the data transfer from
memory to the device with ACK. Figure 29 shows the flowchart
of the data transfer from the device with ACK to memory.
When a request is generated using the request method pro-
grammed in the control registers, the DMAC obtains the bus and
responds with acknowledge. The DMAC asserts all HMCS68000
bus control signals needed for the transfer. When the DMAC
accepts DTACK from memory, it asserts DTC and informs the

76

peripheral device of the transfer termination. Figure 30 and 31
show the transfer timings of the device with ACK: the port size
for the former figure is 8-bit and the latter is 16-bit respectively.

When the transfer is from memory to a device, data is valid
when DTACK is asserted and remains valid until the data
strobes are negated. The assertion of DTC from the DMAC may
be used to latch the data.

When the transfer is from device to memory, data must be
valid on the HMCS68000 bus before the DMAC asserts the data
strobes. The data strobes are asserted one clock period after
ACK is asserted. When the DMAC obtains the bus and starts a
DMA cycle, the tri-state of the OWN line is cancelled a half
clock earlier than other control lines. If the DMA Cycle ter-
minates and the DMAC relinquishes the bus, all the control
signals get tri-stated a half clock before OWN. The DDIR and
DBEN lines are not asserted in the single addressing mode. Four
clocks cycle is the smallest bus cycle for the transfer from
memory to device. Five clocks cycle is the smallest bus cycle for
the transfer from device to memory. If the device port size is 8-
bit, either LDS or UDS is asserted. In the single adressing mode,
Ag-A,; are outputted for only one and a half clock from the
beginning of the DMA bus cycle. Therefore, Ag through A,;
needs to be latched externally just like in the dual addressing
mode.

HD68450,HD68450Y

DMAC Memory ACK Device

Address Memory
1) Set R/ to Read
2) Place Address on A; ~ Aas
3) Place Function Codes on FC, ~ FC,
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (CDS)
6) Assert Acknowle:ige (ACK)

\/

Present’Data
1) Decode Address
2) Place Dataon Do ~Ds
3) Assert Data Transfer Acknowledge

(DTACK)
Acquir'e Data
1) Load Data
J
. \A
Terminate Transfer
1) Assert Device Transfer Complete
(DTC)
2) Negate UDS and LDS
3) Negate AS, ACK and DTC
|
Terminate Cycle
1) Negate DTACK
J
Start Next Cycle
Figure 28 Word from Memory to Device with ACK
DMAC Memory ACK Device

Address Memory
1) Place Address on A, ~ A,3
2) Place Function Codes on FC, ~ FC,
3) Assert Address Strobe (AS)
4) Set RWtoWrite
5) Assert Acknowiel:w (ACK)

Present Data
1) Place Dataon Do ~ D5

Enable D'ata

1) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (LDS)
L

Accept Y)ata
1) Decode Address
2) Load Data
3) Assert Data Transfer Acknowledge
(DTACK)

Terminate Transfer
1) Assert Device Transfer Complete (DTC)
2) Negate UDS and LDS
3) Negate AS, ACKland DTC

Terminate Cycle
1) Negate DTACK
J

Start Next Cycle

Figure 29 Word from Device with ACK to Memory
77

HD68450,HD68450Y

CLK

FCo~FC2
Ar1~A;
Ag/Do~A23/D1s

XDo~XD1s
(External System Data Bus)
UAS

12 3456 7 8 9 1011121314151617181920 21

X X1 X

X NI X—
/- /-

IID—{L D—IL /1)
N W/ W
4 I W\ /.

L\ V/ij
Low
High
High
High
/R aq—— W [
I\ S
|\ U
J— W/

123456 78 9101112131415161718 1920 21
——t—Memory to Device ——f——Device to Memory
Channel 0 Channel 1

Figure 30 Single Addressing Mode with 16-Bit Devices as

Source and Destination (Read-Write Cycles)

CLK

1 3T 5867 970 111213741576 1718 19 20 2122 2324 25
BGACK e\ [N———
FCo~FC2 oo {I[YT HD ——
Arv~A; —{]] m)_—__._

Aa/Do~Aaa/Dis —— ([([

(External System Data Bus)

Uas — U/ N_Jlf E—
A e\)/ —\ | —
DS o J |
s —— 0\ —
AW ————— \ mn—
BDWN —\ [
DDIR et) W
DBEN o/ ——
HBYTE [\“ ﬂg —
DTACK m__ﬂnw—

e T W

12345 7 9 101112131415161718 1920 21222324 25

Idle —t=— Memory to Device —f————— Device to Memory ——— Idle

Channel 0 Channel 1

Figure 31 Single Addressing Mode with 8-Bit Device as

Source and Destination (Read-Write Cycles)

78

Device with ACK and READY Transfers

Under this protocol, the communication between peripheral
device and the DMAC is performed using a three signal
REQ/ACK/READY handshake. The READY input to the
DMAC is provided by the PCL line. The READY line is active
low. When a request is generated using the request method
programmed in the control registers, the DMAC obtains the bus
and asserts ACK to notify the device that the transfer is to take
place. The DMAC waits for READY (PCL input), which is a
response from the device, in addition to DTACK which is a
response from memory.

When the DMAC accepts both signals, it terminates the trans-
fer. Refer to Figures 33 and 34 for the flowcharts of the data
transfer between memory and the device with ACK and
READY. Refer to Figure 35 for the transfer timing of the 8-bit
device. When the data transfer is from memory to a device, data
is valid from the assertion of DTACK to the negation of LDS
and UDS. DTC is asserted a half clock before TDS and UDS are
negated, so this line may be used for latching the data by the
peripheral device. In this case, READY (PCL input) indicates
that the device has received the data. Both DTACK and READY
(PCL input) signals are needed for terminating the DMA cycle.

When the data transfer is from the device to memory, data
must be valid on_the bus before the DMAC asserts LDS and
UDS. Therefore, READY (PCL input) is used as the signal to
indicate that the peripheral device has outputted the data on the
bus. When the DMAC detects PCL (READY input), then it

DMAC

‘Address Memory
1) Set R/W to Read
2) Place Address on A, ~ Az
3) Place Function Codes on FCo ~ FC;
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (LDS)
6) Assert AcknowIeLdge (ACK)

HD68450,HD68450Y

asserts LDS and UDS. After asserting LDS and UDS, the DMAC
terminates the cycle when DTACK signal from the memory is
detected.

___When Array Chain or Link Array Chain is set in Device with
ACK and READY Transfer mode, READY input is also neces-
sary during DMA bus cycles for reading the chain information
from memory. The circuit as shown in Figure 32 may be used
in order to generate READY input when reading the chain
information from memory.

|
|

ACK ACK
PeL DTACK
HD68450 READY
DMAC

Figure 32 READY Circuit When Array or Link Array
Chain is set for Device with ACK and READY

Memory ACK and READY Device

Present'Data

1) Decode Address
2) Place Data on Do ~ D)5
3) Assert Data Transfer

Acknowledge (DTACK)
L

Acquire Lata

1) Load Data
2) Assert READY
]

Terminate Transfer
Assert Device Transfer Complete
(DTC)
2) Negatey_D§ and LDS
3) Negate AS, ACKLand DTC

1

Terminate Cycle

1) Negate DTACK
]

Start Next Cycle

Figure 33 Word from Memory to Device with ACK and READY

79

HD68450,HD68450Y

DMAC

Address Memory

1) Place Address on Ay ~ Aza

Memory ACK and READY Device

2) Place Function Codes on FCo, ~ FC;
3) Assert Address Strobe (AS)

4) Set R/W to Write

5) Assert Acknowle.dge (ACK)

Presént Data
1) Place Data on Dy ~ D, s
2) Assert READY
]

Enable Data

1) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (LDS)

Accep! Data
1) Decode Address
2) Load Data
3) Assert Data Transfer
Acknowledge (DTACK)

Terminate Transfer
1

(DTC)
2) Negate UDS and LDS

3) Negate AS, ACK and DTC
|

Assert Device Transfer Complete

Terminate (!ycle
1) Negate DTACK
J

'
Start Next Cycle

CLK

FCo~FC2
Ar1~A7

As/Do~A23/D15
XDo~XD1s

(External System Data Bus)
UAS

AS

EE

HIBYTE
DTACK

PCL (READY)
DTC

ACKo

ACK1

CLK

Figure 34 Word from Device with ACK and READY to Memory

12 4 56 78 9 10111213141516 17 1819 20 21 22 23 2425 26 27 28

3
XL X (/.
X Y2 - T
> > /-
I Imm—<mm -
W W77 W
A\] \ /]
./ |\ Y/ A
N[
i \} o
Low
High
High
High \\Y /.
1 Jiij \“———%
- W[1
W7 W17
E Jii| -
A\ I/

1 345 7 9 101112131415 16 17 1819 20 21 22 23 2425 26 27 2

————=——Memory to Device ————t——————Device to Memory
Channel 0 Channel 1

Figure 35 Single Addressing Mode with 8-Bit Devices as Source and
Destination with PCL Used as a READY Input (Read-Write Cycles)

80

Operands and Addressing
Three factors enter into how the actual data is handled:
port size, operand size and address sequencing.

Port Size
The DCR is used to program the device port size.

DPS Device Port Size
0 8 bit port
1 16 bit port

The port size is the number of bits of data which the device
can transfer in a single bus cycle. During a DMAC bus cycle,
a 16-bit port transfers 16 bits of data on Dy ~ D;s, while an
8-bit port transfers 8 bits of data, either on Dy ~ D, or on Dg
~ D, s. The memory is always assumed to have a port size of 16.

Operand Size
OCR is used to program the operand size.

HD68450,HD68450Y

SIZE Operand Size
00 Byte
01 Word
10 Long word
11 (undefined, reserved)

The operand size is the number of bits of data to be trans-
ferred to honor a single request. Multiple bus cycles may be
required to transfer the operand through the device port. A
byte operand consists of 8 bits of data, a word operand consists
of 16 bits of data, a long word operand consists of 32 bits of
data. The transfer counter counts the number of operands
transferred.

Table 2 indicates the combinations supported by the DMAC
about the peripheral devices with different port size and
operand sizes in the single and dual addressing mode. In the
single addressing mode, port size and operand size must be the
same. In the dual addressing mode, byte operand cannot be used
when the port size is sixteen and the REQG bit is 10 or 11.

Table 2 Operation Combinations

. . Operand REQG bits
Addressing Device Type Port Byte Word Long Word of OCR
Dual 68000, 6800 8 (@] O O 00,01, 10, 11
Dual 68000, 6800 16 (@] O O 00, 01
Dual 68000, 6800 16 X O O 10, 11
Single with ACK or 8 (@] X X 00,01, 10, 1
ACK & READY 16 X O X 00,01, 10, 11

O ;enable X ;disable

(3) Address Sequencing
The sequence of addresses generated depends upon the port
size, operand size, whether the addresses are to count up, down
or not change and whether the transfer is executed in the single
addressing mode or the dual addressing mode. The memory
address count method and the peripheral device address count
method is programmed using the Memory address count (MAC)
bit and the Device address count (DAC) bit in the Sequence
Control Register (SCR).
(i) Single addressing mode
In the single addressing mode, memory address sequenc-

ing is shown in Table 3. If the operand size is byte, the
memory address increment is one (1). If the operand
size is word, the memory address increment is two (2). If
the memory address register does not count, the
memory address is unchanged after the transfer.

If the memory address counts up, the increment is
added to the memory address; if the memory address
counts down, the increment is subtracted from the
memory address. The memory address is changed after
the operand is transferred.

Table 3 Single Address Sequencing

. . Memory Address Increment
Port Size Operand Size -
+ (increment) = (unchanged) - (decrement)
8 Byte +1 0 -1
16 Word +2 0 -2

81

HD68450,HD68450Y

(ii) Dual addressing mode

In the dual addressing'mode, the operand size need not
match the port size. Thus the transfer of an operand
may require several DMA bus cycles. Each DMA bus
cycle, between memory and DMAC and between DMAC
and the device, is called the operand part and transfers a
portion or all of the operand. The addresses of the
operand parts are in a linear increasing sequence. The
step between the addresses of the operand is two. The
size of the operand parts is the minimum of the port size
and the operand size. The number of the operand part
is the operand size divided by the port size. In the dual
addressing mode, memory is regarded as a device whose
port size is 16-bits.

If the port size is 16 bits, the operand size is byte, and the

request generation method is auto request or auto request at
a limited rate, the DMAC packs consecutive transfers. This
means that word transfers are made from the associated address
with an address increment of two (2). If the initial source ad-
dress location contains a single byte, the first transfer is a byte
transfer to the internal DMAC holding register, and subsequent
transfers from the source are word transfers. If the initial
destination location contains a single byte, the first transfer is
a byte transfer from the internal DMAC holding register, and
any remaining byte remains in the holding register. Likewise,
if either the final source or destination location contains a single
byte, only a byte transfer is done. Packing is not performed
if the address does not count; each byte is transferred by a
separate access to the same location. The dual address sequenc-
ing is shown in Table 4.

Table 4 Dual Address Sequencing

Port Size Operand Size Part Size Opzaagi;art T Address anrement —
8 Byte Byte A +2 0 -2

8 Word Byte A, A+2 +4 0 -4

8 Long Byte A, A+2, A+4, A+6 +8 0 -8

16 Byte Pack A +P 0 -P

16 Word Word A +2 0 -2

16 Long Word A, A+2 +4 0 -4

P = 1 if packing is not done Pack = byte if packing is not done
= 2 if packing is done = word if packing is done

An Example of a Dual Address Transfer

This section contains an example of a dual address transfer
using Table 4 of Dual-Address Sequencing. The table is repro-
duced here as Table 5. The transfer mode of this example is the
following:

1. Device Port size = 8 bits

2. Operand size = Long Word (32 bits)

3. Memory to Device Transfer

4. Source (Memory) Counts up, Destination (Device) Counts

Down
5. Memory Transfer Counter =2

In this mode, a data transfer from the source (memory) is
done according to the 6th row of Table 5, since the port size
of the memory is always 16 bits. A data transfer to the destina-
tion (device) is done according to the 3rd row of Table 5.

Table 6 shows the data transfer sequence.

The memory map of this example is shown in Table 7. The
operand consists of BYTE A through BYTE D in memory
of Table 7. Prior to the transfer, MAR and DAR are set to
00000012 and 00000108 respectively. The operand is trans-
ferred to the 8 bit port device according to the order of transfer
number in Table 6.

Table 5 Dual-Address Sequencing (Table 4)

ddress | t
Row No. | Port Size Operand Size S::r;:;: Operand Part Addresses Address Incremen
+ = -
1 8 BYTE BYTE A +2 0 -2
2 8 WORD BYTE A, A+2 +4 0 -4
® 8 LONG BYTE A, A+2, A+4, A+6 +8 0 -8
*4 *3 %g 7 ¥g *10
4 16 BYTE PACK (BYTE A +P 0 »
or WORD)**
5 16 WORD WORD A +2 0 -2
® 16 LONG WORD A, A+2 +4 0 -4
*2 *1 *6 *9

* Numbers in Table 5 correspond to ones in Table 6 and 7.
** Refer to Address Sequencing on Operand Part Size and PACK.

82

HD68450,HD68450Y

Table 6 An Example of a Data Transfer for One Operand
SRC: Source (Memory), DST Destination (Device), HR: Holding Register (DMAC Internal Reg.)

. DMAC Registers after Transfer
Transfer Address Data Size
No. Data Transfer Output on Bus MAR DAR Comment
0 - - - 00000012 00000108 Initial Register Setting
00000012 WORD 00000014 00000108 Higher order 16 bits of operand is
! SRC~HR *1 *2 fetched.
2 HR - DST 0000010§ BYTE . 00000014 0000010A
3 4 Higher order 16 bits of operand is
3 HR - DST 0000010,:\5 BYTE v 00000014 0000010C transferred.
10
00000014 WORD 00000016 0000010C Lower order 16 bits of operand is
4 SRC~HR *g *2 *g fetched
5 HR - DST 00000109 BYTE . 00000016 0000010E
7 4 Lower order 16 bits of operand is
0000010E BYTE 00000016 00000110 transferred.
6 HR - DST *g *4 *10
6 _ _ _ 00000016 00000110 MAR, DAR are pointing the next
operand addresses when the
transfer is complete.

Mode: Port size = 8, Operand size = Long Word, Memory to Device, Source (Memory) Counts Up, Destination (Device) Counts Down

Table 7 Memory Map for the Example of the Data Transfer

ADDRESS | ADDRESS

00000010 T 00000011

00000012 [~ BYTE A | BYIE B | ovoo013
1

00000014 [BYTE C_ | BYTE D | 00000015
*6 *6

00000016 I 00000017

|

Source (Memory)

® Initiation and Control of Channel Operation
(1) Operation Initiation

To initiate the operation of a channel the STR bit of the
CCR is set to start the operation. Setting the STR bit causes
the immediate activation of the channel, the channel will be
ready to accept requests immediately. The channel initiates
the operation by resetting the STR bit and setting the channel
active bit in the CSR. Any pending requests are cleared, and the
channel is then ready to receive requests for the new operation.
If the channel is configured for an illegal operation, the config-
uration error is signaled, and no channel operation is run. The
illegal operations include the selection of any of the options
marked “(undefined, reserved)”. If the MTC is set to zero in any
operation or BTC is set to zero in the array chaining mode, then
the count error is signaled and the channel is not activated. The
channel cannot be started if any of the ACT, COC, BTC, NDT
or ERR bits is set in the CSR. In this case, the channel signals
the operation timing error.
(2) Operation Continuation (Continue Mode)

83

ADDRESS |
00000106 T 00000107
00000108 BYTE *% | 00000109
0000010A BYTE *g | 00000108
0000010C BYTE *c7: [0000010D
0000010E BYTE *[8> | 0000010F
00000110 | 00000111
]

Destination (Device)

The continue bit (CNT) allows multiple blocks to be trans-
ferred in unchained operations. The CNT bit is set in order
to continue the current channel operation. If an attempt is
made to continue a chained operation, a configuration error
is signaled. The base address register and base transfer counter
should have been previously initialized.

The continue bit may be set as the channel is started or while
the channel is still active. The operation timing error bit is
signaled if a continuation is otherwise attempted.

When the memory transfer counter is exhausted and the con-
tinue bit of the CCR is set, the DMAC performs a continuation
of the channel operation. The base address, base function code,
and base transfer count registers are copied into the memory
address, memory function code, and memory transfer count
registers. The block transfer complete (BTC) bit of the CSR
is set, the continue bit is reset, and the channel begins a new
block transfer. If the memory transfer counter is loaded with
a terminal count, the count error is signaled.

(3) Operation Halting (Halt)

HD68450,HD68450Y

The CCR has a halt bit which allows suspension of the opera-
tion of the channel. If this bit is set, a request may still be
generated and recognized, but the DMAC does not attempt to
acquire the bus or to make transfers for the halted channel.
When this bit is reset, the channe! resumes operation and serv-
ices any request that may have been received while the channel
was halted. However, in the burst request mode, the transfer
request should be kept asserted until the initiation of the first
transfer after clearing the halt bit.

(4) Operation Abort by Software (Software Abort)

Setting the software abort bit (SAB) in the CCR allows the
current operation of the channel to be aborted. In this case, the
ERR bit and the COC bit in the CSR are set and the ACT bit is
reset. The error code for the software abort is set in the CER.
The SAB bit is designed to be reset if the ERR bit is reset. When
the CCR is read, the SAB always reads as zero(0).

(5) Interrupt Enable

The CCR has an interrupt enable bit (INT) which allows the
channel to request interrupts. If INT is set, the channel can
request interrupts. If it is clear, the channel will not request
interrupts.

® Channel Operation Termination

As part of the transfer of an operand, the DMAC decrements
the memory transfer counter (MTC). If the chaining mode is
not used and the CNT bit is not set or the last block is trans-
ferred in the chaining mode, the operation of the channel is
complete when the last operand transfer is completed and the
MTC is zero. The DMAC notifies the peripheral device of the
channel completion via the DONE output.

However, in the continue mode, DONE is outputted at the
termination of every data block transfer. When the channel
operation has been completed, the ACT bit of the CSR is
cleared, and the COC bit of the CSR is set.

The occurrence of errors, such as the bus error, during
the DMA bus cycle also terminates the channel operation. In
this case, the ACT bit in the CSR is cleared, the ERR and the
COC bits are set, and at the same time the code corresponding
to the error that occurred is set in the CER.

(1) Channel Status Register (CSR)

The channel status register contains the status of the channel.
The register, except for ACT and PCS bits, is cleared by writing
a one (1) into each bit of the register to be cleared. Those bits
positions which contain a zero (0) in the write data remain un-
affected. ACT and PCS bits are unaffected by the write opera-
tion.
coc

The channel operation complete (COC) bit is set if the
channel operation has completed. The COC bit must be cleared
in order to start another channel operation. The COC bit is
cleared only by writing a one to this bit or resetting the DMAC.
PCS

The peripheral status (PCS) bit reflects the level of the PCL
line regardless of its programmed function. If PCL is at “High”
level, the PCB bit reads as one. If PCL is at “Low” level, the
PCS bit reads as zero. The PCS bit is unaffected by writing to
the CSR.

PCT

The peripheral control transition (PCT) bit is set, if a falling
edge transition has occurred on the PCL line. (The PCL line
must remain at “low” level for at least two clock cycles.) The
PCT bit is cleared by writing a one to this bit or resetting the
DMAC.

BTC

Block transfer complete (BTC) bit is set when the continue
(CNT) bit of CCR is set and the memory transfer counter
(MTC) is exhausted. The BTC bit must be cleared before the
another continuation is attempted (namely, setting the CNT bit
again), otherwise an operation timing error occurs. The BTC bit
is cleared by writing a one to this bit or resetting the DMAC.
NDT

Normal device termination (NDT) bit is set when the
peripheral device terminates the channel operation by asserting
the DONE line while the peripheral device was being acknowl-
edged. The NDT bit is cleared by writing a one to this bit or re-
setting the DMAC.

ERR

Error (ERR) bit is set if any errors have been signaled. When
the ERR bit is set, the code corresponding to the kind of the
error that occurred is set in the CER. The ERR bit is cleared by
writing a one to this bit or resetting the DMAC.

ACT

The active (ACT) bit is asserted after the STR bit has been
set and the channel operation has started. This bit is remains set
until the channel operation is terminated. The ACT bit is un-
affected by write operations. This bit is cleared by the termi-
nation of the channel or resetting the DMAC.

(2) Interrupts

The DMAC can signal the termination of the channel opera-
tion by generating an interrupt request. The INT bit of the CCR
determines if an interrupt can be generated. The interrupt
request is generated by the following condition.

D INT=1

and
® COC=1o0rBTC=10rERR=10rNDT=10rPCT=1
(the PCL line is an interrupt input)
This may be represented as
IRQ =INT- (COC + BTC + ERR + NDT + PCT*)
(*PCL line is programmed as an interrupt input.)
When the TRQ line is asserted, changing the INT bit from one
to zero to one will cause the TRQ output to change from “low”
to “high” to “low” again. The IRQ should be negated by
clearing the COC, the BTC, the ERR, the NDT and the PCT
bits.

If the DMAC receives IACK from the MPU during asserting
the TRQ, the DMAC provides an interrupt vector. If multiple
channels have interrupt requests, the determination of which
channel presents its interrupt vector is made using the same
priority scheme defined for the channel operations.

The bus cycle in which the DMAC provides the interrupt
vector when receiving an [ACK from the MPU is called the
interrupt acknowledge cycle. The interrupt vector returned to
the MPU comes from either the normal or the error interrupt
vector register. The normal interrupt register is used unless the
ERR bit of CSR is set, in which case the error interrupt vector
register is used. The content of the interrupt vector register is
placed on Dy~ D,, and DTACK is asserted to indicate that the
vector is on the data bus. If a reset occurs, all interrupt vector
registers are set to $OF (binary 00001111), the value of the
uninitialized interrupt vector. The timing of the interrupt
acknowledge cycle is shown in Figure 36. The HD68000 MPU
outputs the interrupt level into A,-A; and A4-A- is held “high”
during the interrupt acknowledge cycle, but the HD68450
DMAC ignores these signals.

84

HD68450,HD68450Y

A16/Dg~A23/D1s

(e

CLK | I | I | I
1 2 3 4 5 30 31 32 33 34 3% 36 37 38
A-nr ——{f] —
A\ /.
n mr—
R/W i
UDS I\ 1/
DDIR /7 -
DBEN s\ e
S

Ag/Do~A15/D7

UL

[D—

?

—_~ (¢ [
(External Syst()e(rr?oDat;(BDL:sF; "_-\/////l
DTACK " m

30 31 32 33 34 3B 36 37 38

Figure 36 MPU IACK Cycle to DMAC

(3) Muitiple Data Block Transfer Operation

When the memory transfer counter (MTC) is exhausted, the
channel operation still continues if the channel is set to the
array chaining mode or the linked array chaining mode and the
chain is not exhausted. The channel operation also continues if
the continue bit (CNT) of the CCR is set. The DMAC provides
the initialization of the memory address register and the
memory transfer counter in these cases so that the DMAC can
transfer the multiple blocks.
Continued Operation

The continued operation is described in the Initiation and
the Control of the Channel Operation section.
Array Chaining

This type of chaining uses an array in memory consisting of
memory addresses and transfer counts. Each entry in the array
is six bytes long and, consists of four bytes of address followed
by two bytes of transfer count. The beginning address of this
array is in the base address register, and the number of entries in
the array is in the base transfer counter. Before starting any
block transfers, the DMAC fetches the entry currently pointed

85

to by the base address register. The address information is
placed in the memory address register, and the count informa-
tion is placed in the memory transfer counter. As each chaining
entry is fetched, the base transfer counter is decremented by
one. After the chaining entry is fetched, the base address
register is incremented to point the next entry. When the
base transfer counter reaches a terminal count of zero, the chain
is exhausted, and the entry just fetched determines the last
block of the channel operation.

An example of the array chaining mode operation and the
memory format for supporting for array chaining is shown
in Figure 37. The array must start at an even address, or the
entry fetch results is an address error. If a terminal count is
loaded into the memory transfer counter or the base transfer
counter, the count error is signaled. Since the base registers may
be read by the MPU, appropriate error recovery information is
available should the DMAC encounter an error anywhere in the
chain. Contents of the BFC is outputted as the function code
when the DMAC is accessing the memory using the base address
register. The value of the function code registers are unchanged
in the array chaining operation.

HD68450,HD68450Y

Array table —

-

HD68450
DMAC
HD68000

MPU MAR *

DAR |peripheral device address

:> BAR [top address of the table
MTC *
BTC number of blocks

being transfered

* to be loaded from the array table

Note: The number of data blocks being
transferred in this example is 3.

memory
Bit 15 /-—__/Bit 0
::‘e) ta:t;ilreess of memory address A(H)
memory address A(L)
transfer count A
memory address B(H)
memory address B(L)
transfer count B
memory address C(H)
memory address C (L)
transfer count C
rd
|
fmemory_,|
address C
transfer
block C count C
<:> memory |
address A
transfer
block A count A
) A
memory
address B
transfer
block B count B
L
/_—
peripheral device
add
ress— peripheral device
or
memory

Figure 37 Transfer Example of the Array Chaining Mode

Linked Array Chaining

This type of chaining uses a list in memory consisting of
memory address, transfer counts, and link addresses. Each entry
in the chain list is ten bytes long, and consists of four bytes of
memory address, two bytes of transfer count and four bytes of
link address. The address of the first entry in the list is in the
base address register, and the base transfer counter is unused.
Before starting any block transfers, the DMAC fetches the
entry currently pointed to by the base address register. The
address information is placed in the memory address register,
the count information is placed in the memory transfer counter,

86

and the link address replaces the current contents of the base
address register. The channel then begins a new block transfer.
As each chaining entry is fetched, the update base address
register is examined for the terminal link which has all 32 bits
equal to zero. When the new base address is the terminal ad-
dress, the chain is exhausted, and the entry just fetched deter-
mines the last block of the channel operation.

An example of the linked array chaining mode operation and
the memory format for supporting it is shown is Figure 38.

In Figure 38, the DMAC transfers data blocks in the order of
Block A, Block B, and Block C. In the linked array chaining

HD68450,HD68450Y

linked array table —

HD68000
MPU

MAR
DAR
BAR
MTC
BTC

HD68450
DMAC

*

peripheral device address

top address of the table

*

(not used)

* to be loaded from the linked array table

Bit

link address X —

link address Y —

top address of

the table —| memory address A(H)
memory address A{L)
transfer count A
link address X (H)

L link address X (L)
/__
/—__A

r memory
A
address C
block C
< : >3 memory
AN
address A
block A
memory
N
address B
block B

peripheral

device address —

memory

15 Bit0

memory address B(H)

memory address B(L)

transfer count B
link address Y (H)
link address Y (L)

memory address C(H)
memory address C(L)

transfer count C

“*All 0" terminator

“All 0" terminator

/——_’
T ~——

peripheral device
or memory

/_/

Figure 38 Transfer Example of the Linked Array Chaining Mode

87

transfer count C

transfer count A

transfer count B

HD68450,HD68450Y

mode, the BTC is not used. When the DMAC refers to the linked
array table, the value of the BFC is outputted as the function
code. The values of the function code registers are unchanged
by the linked array chaining operation.

This type of chaining allows entries to be easily removed or
inserted without having to reorganize data within the chain.
Since the end of the chain is indicated by a terminal link, the
number of entries in the array need not be specified to the
DMAC.

The linked array table must start at an even address in the
linked array chaining mode. Starting the table at an odd address
results in an address error. If “0” is initially loaded to the
MTC, the count error is signaled. Because the MPU can read
all of the DMAC registers, all necessary error recovery informa-
tion is available to the operating system.

The comparision of both chaining modes is shown in Table 8.

Table 8 Chaining Mode Address/Count Information

e y Base Address Base Transfer Completed
Chaining Mo Register Counter When
f data
- address of the number of Base Transfer
Array Chaining blocks being -
array table transferred Count=0
: ddress of the .
Linked Array a Linked
Chaining :'a"é(uid array (unused) Address = 0

(4) Bus Exception Conditions

The DMAC has three lines for inputting bus exception condi-
tions called BECy, BEC,, and BEC,. The priority encoder can
be used to generate these signals externally. These lines are
encoded as shown in Table 9.

Table 9
"BEC, | BEC, | BEC, Exception Condition
1 1 1 No exception condition
1 1 0 Halt
1 0 1 Bus error
1 0 0 Retry
0 1 1 Relinquish bus and retry
0 1 0 (undefined, reserved)
0 0 1 (undefined, reserved)
0 0 0 Reset

88

In order to guarantee, reliable decoding, the DMAC verifies that
the incoming code has been statable for two DMAC clockcycles
before acting on it. The DMAC picks up BEC,-BEC, at the
rising edge of the clock. If BECy-BEC, is asserted to the un-
defined code, the operation of the DMAC does not proceed.
For example, when the DMAC is waiting for DTACK, inputting
DTACK does not result in the termination of the cycle if BEC,-
BEC, is asserted to the undefined code. In addition, when the
transfer request is received, BR is not asserted if the BEC,-
BEC, is not set to no exception condition.

If exception condition, except for HALT, is inputted during
the DMA bus cycle prior to, or in coincidence with DTACK,
the DMAC terminates the current channel operation immediate-
ly. Here coincident means meeting the same set up require-
ments for the same sampling edge of the clock. If a bus excep-
tion condition exists, the DMAC does not generate any bus
cycles until it is removed. However, the DMAC still recognizes
requests.

Halt

The timing diagram of halt is shown in Figure 39. This
diagram shows halt being generated during a read cycle from the
68000 compatible device in the dual addressing mode. If the
halt exception is asserted during a DMA bus cycle, the DMAC
does not terminate the bus cycle immediately. The DMAC
waits for the assertion of DTACK before terminating the
bus cycle so that the bus cycle is completed normally. In
the halted state, the DMAC puts all the control signals to high
impedance and relinquishes the bus to the MPU. The DMAC
does not output the BR until halt exception is negated. When
halt exception is negated, the DMAC acquires the bus again and
proceeds the DMA operation. In order to insure a halt excep-
tion operation, the BEC lines must be set to halt at least until
the assertion of DTC.

If the DMAC has the bus, but is not executing any bus
cycle, the DMAC relinquishes the bus as soon as halt exception
is asserted.

CLK

HD68450,HD68450Y

12 3456 7 8 91011121314151617 181920 21222324 252627 282930313233

A/DBUS XL

i

C|
%

VRS T

—— 7 7

A N N\
s N N\
s W ~——"""_ 7

Jg) W—

i

|

1 2 3 45 6 7 8 91011121314151617 18192021 222324252627 282930313233

] Read

from Device

———— Halt Asserted —————=f=DMA Halted ————— DMA cycle

Other Bus Master Write

d to Memory

and
Rearbitration

Figure 39 Halt Operation

Bus Error

The bus error exception is generated by external circuitry
to indicate the current transfer cannot be successfully com-
pleted and is to be aborted. The recognition of this exception
during a DMAC bus cycle signals the internal bus error con-
dition for the channel for which the current bus cycle is being
run. As soon as the DMAC recognizes the bus error exception,
the DMAC immediately terminates the bus cycle and proceeds
to the error recovery cycle. In this cycle, the DMAC adjusts the

values of the MAR, the DAR, the MTC and the BTC to the
values when the bus error exception occurred. 25 clocks are
required for the error recovery cycle in the single addressing
mode and in the read cycle of the dual addressing mode. 29
clocks are required in the write cycle of the dual addressing
mode. If the DMAC does not have any transfer request in the
other channels after the error recovery cycle, the DMAC relin-
quishes the bus.
The diagram of the bus error timing is shown in Figure 40.

HD68450,HD68450Y

(2]
-
X

12 3 456 7 8 910111213141516171819 3132 33 34 35 36 37

A/D BUS m r—

ML UL L LU L LT
—C—

AR~) —

(BECo~BEC2)*

(TSR gy T
31 32 33 34 35 36 37

123 456 7 8 910111213141516171819

Error
—+— Berr on Write to Device —+———F—- Other Channels***
Recovery Cycie**

* BEC,-BEC; = (101)
** In the single addressing mode and in the read cycle of the dual addressing mode: 25 clocks
in the write cycle of the dual addressing mode: 29 clocks
*** The DMAC keeps the bus because the other channels have requests pending. If other channels
do not have requests, the DMAC relinquishes the bus after the error recovery cycle.

Figure 40 Bus Error Operation

Retry) moved, and thus will not honor any requests until it is removed.
The retry exception causes the DMAC to terminate the However, the DMAC still recognizes requests. The retry timing
present operation and retry that operation when retry is re- is shown in Figure 41.

90

HD68450,HD68450Y

DTACK 1l UL TR AL LA LN A7 \\ 1l

pre L\

ACK ! o W 1/
RETRY

12 34 5 6 7 8 91011121314151617 1819202122 2324 252627 2829 30 31
—— =}~ Write to Device Retry Asserted —————}— Write Cycle Retry ———=f———

* BEC,-BEC, = (001)

Figure 41 Retry Operation

Relinquish and Retry (R&R) the previous operation.
The relinquish and retry exception causes the DMAC to The diagram of the relinquish and retry timing is shown in
relinquish the bus and three-state all bus master controls and Figure 42.

when the exception is removed, rearbitrate for the bus to retry

91

HD68450,HD68450Y

8 91011121314151617 18192021 22 23 24 25 26 27 28 29 30 31

D

CLK
1 3 5 7
A/D BUS)/
UAs ~ WO

1234567 8 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31
Other Master

Read
Relinquish and
Retry Asserted

——

* BEC,-BEC, = (110)

—+

and ——f=— Read Retry ——f—o—

Rearbitration

Figure 42 Relinquish and Retry Operation

Reset
The reset provides a means of resetting and initializing the
DMAC. If the DMAC is bus master when the reset is asserted,
the DMAC relinquishes the bus. Reset clears GCR, DCR, OCR,
SCR, CCR, CSR, CPR, and CER for all channels. The NIV and
the EIV are all set to (OF),, which is the uninitialized interrupt
vector number for the HD68000 MPU. MTC, MAR, DAR, BTC,
BAR, MFC, DFC, and BFC are not affected. In order to insure a
reset, BECo, ~ BEC, must be kept at “Low” level for at least
ten clocks.
(5) Error Conditions
When an error is signaled on a channel, all activity on that
channel is stopped. The ACT bit of the CSR is cleared, and the
COC bit is set. The ERR bit of the CSR is set, and the error
code is indicated in the CER. All pending operations are cleared,
so that both the STR and CNT bits of CCR are cleared.
Enumerated below are the error signals and their sources.
(a) Configuration Error — This error occurs if the STR bit is
set in the following cases.
(i) the CNT bit is set at the same time STR bit in the
chaining mode.
(ii) DTYP specifies a single addressing mode, and the
device port size is not the same as the operand size.

()

©

(iii) DTYP specifies a dual addressing mode, DPS is 16
bits, SIZE is 8 bits and REQG is “10” or “11”.

(iv) an undefined configuration is set in the registers.
The undefined configurations are: XRM =01, MAC
=11, DAC =11, CHAIN =01, and SIZE = 11.

Operation Timing Error — An operation timing error

occurs in the following cases:

(i) when the CNT bit is set after the ACT bit has been
set by the DMAC in the chaining mode, or when
the STR and the ACT bits are not set.

(ii) the STR bit is set when ACT, COC, BTC, NDT or
ERR is set.

(iii) an attempt to write to the DCR, OCR, SCR, MAR,
DAR, MTC, MFC, or DFC is made when the STR
bit or the ACT bit is set.

(iv) an attempt to set the CNT bit is made when the
BTC and the ACT bits are set.

Address Error — An address error occurs in the following

cases:

(i) an odd address is set for word or long word
operands.

(i) CS or TACK is asserted during the DMA bus cycle.

(d) Bus Error — Bus error occurs when a bus error excep-

92

HD68450,HD68450Y

tion is signaled during a DM A bus cycle. and the channel control register. After the successful comple-
(e) Count Error — A count error occurs in the following tion of any transfer, the memory and device address registers
cases: points to the location of the next operand to be transferred and
(i) The STR bit is set when zero is set in the MTC the memory transfer counter contains the number of operands
and the MTC and the chaining mode is not used. yet to be transferred. If an error occurs during a transfer, that
(ii) the STR bit is set when zero is set in BTC for the transfer has not completed and the registers contain the values
array chaining mode. they had before the transfer was attempted. If the channel
(iii) zero is loaded from memory to the BTC or the MTC operation uses chaining, the Base Address Register points to the
in the chaining modes or the continue mode. next chain entry to be serviced, unless the termination occurred
(f) External Abort — External abort occurs if an abort is while attempting to fetch an entry in the chain. In that case,
asserted by the external circuitry when the PCL line is the Base Address Register points to the entry being fetched.
configured as an abort input and the STR or the ACT However, in the case of external abort, there are cases in which
bit is set. the previous values are not recovered.
(g) Software abort — Software abort occurs if the SAB bit
is set when the STR or the ACT bit is set. Bus Exception Operating Flow

The bus exception operating flow in the case of multiple
exception conditions occurring continuously in sequence is

Error Recovery Procedures shown in Figure 43. Note that the DMAC can receive and exe-
If an error occurs during a DMA transfer, appropriate infor- cute the next exception condition. For example, if the retry
mation is available to the operating system (OS) to allow a exception occurs, and next the relinquish and retry exception
software failure recovery operation. The operating system must occurs while the DMAC is waiting for the retry condition to be
be able to determine how much data was transferred, where the cleared, the DMAC relinquishes the bus and waits for the
data was transferred to, an what type of error occurred. exception condition to be cleared. If a bus error occurs during
The information available to the operating system consists of this period, the DMAC executes the bus error exception
the present value of the Memory Address, Device Address and operation.
Base Address Registers, the Memory Transfer and Base Transfer The flow diagram of the normal operation without exception
Counters, the channel status register, the channel error register, operation or errors is shown in Figure 44,
RESETTING
ALL CHANNELS
NON
HLT, BER, RTY, RRT
DTACK & HLT (DTC)
_l IDLE MODE | IDLE MODE
NON | WAITING FOR BER _[orrwone
’_l BEC CLEAR WAITING FOR __r;gTN
BEC CLEAR |——0
TO RETRY

DMAC YIELDS BUS

DMAC OWNS BUS

REQ | REQN l HLT, RRT RRT, HLT RRT, HLT
L_{ DMA MODE DMA MODE BER DMA MODE

NO ACTIVE NON IM_ITINGFCR ‘Q/E_AC'T(':':SA';OR
CYCLE BEC CLEAR TO RETRY
RST : reset
BER, RTY NON :no exception
BER NON HLT :halt
BER : bus error
START RTY :retry
RTY RRT :relinquish and retry
REQ :external request
NON REQN : no external request
DTACK & NON DMA MODE :
BUS CYCLE ACTIV START : bus cycle start

DTACK : DTACK signal asserted

f DTC : DTC signal asserted

DTACK & HLT (DTC)

Figure 43 Bus Exception Flow Diagram

93

HD68450,HD68450Y

External

Reset Transfer

| Request | DMA Mode Waiting for
Any State > Reset All Channels 1 Idle Mode
h Bus Cycle to Start
Bus Cycle Start DTACK & NO No Transfer
EXCEPTION Request
DMA Mode Bus DMA Mode Waiting for dle Mod
™1 Cycle Active = Bus Cycle to Start & Viode

Figure 44 Flow of Normal Operation Without Exception

or Error Condition

® Channel Priorities

Each channel has a priority level, which is determined by the
contents of the Channel Priority Register (CPR). The priority
of a channel is a number from 0 to 3, with O being the highest
priority level. When multiple requests are pending at the DMAC,
the channel with the highest priority receives first service. The
priority of a channel is independent of the device protocol or
the request mechanism for that channel. If there are several
requesting channels at the highest priority level, a round-robin
resolution is used, that is, as long as these channels continue to
have requests, the DMAC does operand transfers in rotation.

Resetting the DMAC puts the priority level of all channels
to “0”, the highest priority level.

® APPLICATIONS INFORMATION

Examples of how to interface HD68450 to a HD68000 based
system are shown in Figure 45 and Figure 46.

Figure 45 shows an example of how to demultiplex the
address/data bus. OWN and UAS are used to control 7418373
for latching the address. DBEN and DDIR are used to control
the bi-directional buffer 74LS245.

Figure 46 shows an example of inter-device connection in
the HMCS68000 system.

+5V
74LS04
- L }
OWN UAs [G OE
G OE
16 16 16
Ag/Do~A23/D1s + ~7/>»1D Q|Q+—» As—~A23 (Address Bus)
74LS373
X2
HD68450 +5V [~
DMAC
8
T < H’A
[8
BBEN g 745245 plet »Do-D;
DDIR DIR
(Data Bus)
8
Nl A
_ 74LS2 8
LS245 Bl&r—» Dg~D1s
DIR

Figure 45 An Example of the Demultiplexed Address Data Bus

94

HD68450,HD68450Y

System Data Bus

Do~Dis N Do~D1s ™ ~ ~
v) Data & Address
Ag~A23
Bus Interface :>
FDC,
etc. w s
Z| |»||-IE IE <
<|>-18la] S ® | Do-~D
gﬂ|g°%; o e e LIS
T 27 L
F__ J A1 ~A23
REQo Ar~A <:
ACKo| Channel #0 2 MEM & MMU
HDC, M — — |xs
PClo Cs AS
etc. - — —_
&S — RS
REQ, iDs | [0S
/; K1t Channel #1 Uos Iy UDs
S5 €L Hpesaso R/W - R/W
g2 REG;) PMAC DTACKR— — DTACK
€ :‘-6’ ACKz} Channel #2 FCo~FC, a2 FCo~FC;
E =S PCL: s Cl sl ERROR
£s - s| |zl |3
SRS REQs [t o 2
ACKs [Channel #3 TACK ‘-D:_q al C< —o Do-D1s
PCLs _ E el |e B
o BECo~BEC; S R >
> DTC 1 P A=A el 1P gé\zlcx
2 o
= g <DONE | 5 System N TACK
© ® |g lg < | Interrupt L] cs
a0 9 LControl — Dec oo 000
CLK o [I— e g RS 68.
e |[= || Periphr.
CPG [CLK e (EY - RES
1RQ
3
FCo~FC: e
“ ~
Do~Drs 2 Kd (& Do~D7
Ar~Az3 3] I
HD68000 S d E Dec. =
MPU == - |AS
LDS —
UDS — 6800
R/W F— R/W Periphr.
DTACK —
VPA - ——J
VMA 1
iPLo~iPL; E —1 E
3 Intr. — I
Enc. 1 [| 1R
—J —J -J

The address bus and the system control bus in each device
are omitted in this Figure.

Figure 46 An Example of Inter-device Connection in
the HMCS68000 System

95

HD68450,HD68450Y

= ATTENTION ON USAGE

(1) How to interface various 6800 type peripheral devices to
the DMAC based system.
When the DMAC is reading data from the 6800 device, the

~1 [

DMAC latches the data when DTC is asserted and not at the
falling edge of E clock. The 74LS373 need to be provided ex-
ternally as shown in Figure 47 so that the data from the 6800
device can be held on the bus for a large period of time until
the DMAC can latch the correct data.

E

Do~D>

Do~D7
6800 Type

Device

@ &l

ecoder

Address,

E

Do~D7y

Do~D>7

i\/V

N

6800 Type
— Device

CS

RS

Decoder

Address

AS

68000 Address Bus
68000 Data Bus

+

1

OE
1D 1
Do~D> §
8D

G

§
8Q
74LS373

Q

§+5v

i

HD68450
DMAC

Do ~ D4
Select
As/Do

Do~D1s

&

~A23/D1s
43

|

Bus Control Logic

1=

BE

P4

1

-

Ag~Az3

o

o1}

o

L

~J

Figure 47 An Example of Connection with 6800 type Peripheral Devices
(channel 2 and 3 are used)

(2) When“external abort”is inputted during the DONE input cycle

When the transfer direction is from the peripheral device to
memory and PCL signal is set to the external abort input mode
in the dual addressing mode, the external abort will be ignored
during the subsequent write cycle from the DMAC’s intemal
holding register to memory if DONE is inputted during the read
cycle from the peripheral device to the DMAC’s internal holding
register.

In this case, the channel status register (CSR) and the
channel error register (CER) show the normal termination
caused by DONE Input. The user is able to examine the PCT
bit and the ERR bit in order to detect the external abort

96

inputted at the timing described above. If PCT = 1, ERR =0,
and NDT = 1, then an external abort has occurred.
(3) Multiple Errors

The DMAC will log the first error encountered in the channel
error resister. If an error is pending in the error register and
another error is encountered the second error will not be logged.
Even though the second error is not logged in the CER, it will
still be recognized internally and the channel will not start.
(4) The use of thick wiring is recommended between Vss of the
HD68450 and the ground of the circuit board. When a socket is
used to install the DMAC on the board, please make sure that
the contact of the Vss pins are made well.

PRECAUTIONS:

1. Extra Data Transfer in the Burst Mode

In certain conditions when two or more channels are active
and the REQ signal for the channel which is transferring in burst
mode has negated, the transfer operation will terminate one data
transfer later than specified in the data sheet. The condition on
which this occurs is shown in Figure 2. Problems may occur in
applications that need to control exact data transfer count using
the REQ line in the burst mode.

(Countermeasure)

When switching the channel of operation using the burst
request signals, negate the REQ signal within the period
bounded by (3) and (4) in Figure 48. (DTC falling edge may be
used for obtaining the timing for the negation of REQ.)

Caution must be taken when this countermeasure is used since
this external circuit will not be compatible with the next mask
version which will have this anomaly fixed.

NOTE 1: If transfer request is asserted in channel 1, before (1)
which is 1 clock before DTC assertion of channel 0, the next bus
cycle should be the bus cycle for channel 1 according to the data
sheet. However, the current DMAC transfers one more data for
channel 0 from 13th clock as shown above, before it changes to
channel 1.

NOTE 2: If channel 1 has higher priority than channel 0, then
NO extra data is transferred even if request for channel 1 is
asserted before (2). In this case, data transfer for channel 1 starts
from the 13th clock as specified in the data sheet.

*The timing in which one extra data is transferred in the burst
mode (the case for changing from channel 0 to channel 1).

1 23 45

ey

|

HD68450,HD68450Y

2. One Byte of Transfer Data is Left in the DMAC
When the DMAC is set to dual addressing mode, port size 8
bits, external request mode, and data transfer from peripheral
device to memory, the last byte of the transfer may be left inside
the DMACs internal register without being transferred to
memory if the transfer is stopped before the transfer count is
exhausted. The last byte that is left inside the DMAC becomes
inaccessible by the MPU.
In this mode, the DMAC transfers data repeating the fol-
lowing bus cycles:
(1) READ BYTE
(Byte is read from the peripheral device to DMAC)
(2) READ BYTE
(Byte is read from the peripheral device to DMAC)
(3) WRITE WORD
(Word is written to memory from DMAC)

If the transfer is terminated after (1) READ BYTE (see
NOTE®), then the byte data that was ready by (1) READ BYTE
bus cycle is not written to memory and is left inside the DMAC'’s
internal holding register. The DMACs internal holding register
cannot be accessed by the MPU, so that it becomes “lost.”

This will not occur when single addressing mode is used. So,
please use the single addressing mode when the transfer needs to
be terminated before the transfer is exhausted.

Note:*The methods to terminate the transfer operation before
the transfer counter becomes zero are (1) assert external
abort using the PCL, (2) set the SAB bit to cause software
abort.

6 7 8 9 10 11 1213 14

=i

BUS
cvcLe #0

#0

S

ACKO

3
————t St

|

[}]¢]

—
A

(Burst)

AT ANV VAN NN §

® NOTE 2

® NOTE |

Figure 48. Extra Data Transfer in the Burst Mode*

97

98

HD68000 (+068000-4, HD68000-6, HD68000-8, HD6B000-10, HDE8000-12)
HDG68000Y (1068000Y4, HD68000Y6, HDG8O00YS, HD68000Y 10, HDGBOOOY12)
MPU (Micro Processing Unit)

Advances in semiconductor technology have provided the
capability to place on a single silicon chip a microprocessor at
least an order of magnitude higher in performance and circuit
complexity than has been previously available. The HD68000
is one of such VLSI microprocessors. It combines rate-of-the-art
technology and advanced circuit design techniques with ccm-
puter sciences to achieve an architecturally advanced 16-bit
miCroprocessor.

The resources available to the HD6800O0 user consist of the
following.

As shown in the programming model, the HD6800O offers
seventeen 32-bit registers in addition to the 32-bit program
counter and a 16-bit status register. The first eight registers
(DO-D7) are used as data registers for byte (8-bit), word
(16-bit), and long word (32-bit) data operations. The second set
of seven registers (AO-A6) and the system stack pointer may be
used as software stack pointers and base address registers. In
addition, these registers may be used for word and long word
address operations. All 17 registers may be used as index
registers.

FEATURES

32-Bit Data and Address Registers

16 Megabyte Direct Addressing Range

56 Powerful Instruction Types

Operations of Five Main Data Types

Memory Mapped 1/0

14 Addressing Modes

Compatible with MC68000L4, MC68000L6, MC68000L8,
MC68000L10 and MC68000L12

= PROGRAMMING MODEL

31 1615 87 0

Do
D1
D2
“loa
D4

D5
TJos
D7

Eight
Data
Registers

1615 0

: A0
1 A1l
' A2 Seven
Address
: A3 Registers
| A4

: AS

|

A6

r_ User Stack Pointer -IA 7 Two Stack
Supervisor Stack Pointer 4 Pointers

Program
Counter

15 87
System Byte Status

User Byte Register

99

— The specification for HD68000-10/-12 and HD68000
Y4/Y6/Y8/Y10/Y 12 are preliminary. —

HD68000-4, HD68000-6, HD68000-8,
HD68000-10, HD68000-12

(DC-64)

HD68000Y4, HD68000Y6,
HD68000Y8, HD68000Y 10,
HD68000Y12

Y stands for Pin Grid
Array Package.
(PGA-68)

HD68000,HD68000Y
8 PACKAGE DIMENSIONS (Unit: mm)
® DC-64 (Side-brazed Ceramic DIP) ® PGA-68 (Pin Grid Array)
g
3
~
2642
[a—TT + o No.1 |
| TN — 7812930 137 T EOMC I IR
| g - R,
>—‘ 57368 65 e
aK
i i
g
- Prm—— o ‘j:_
LSl i gt 4 !
. & i
g — - y
16 o | . 87)
*® pr E %) wlds a7 Q
: -< (el iel Leipln it
51 max 254 min 254s028 e
2 n, :
R s
joe— 5.1max
E 16.4:03 :
]Lo.zo~o.aa
b - 2286 - <
28 30_31_32_33_34_35
7 1
CIOIIOIOI0IO101016)
)©)(©© 1
clo1610]6}e[e1e1610
37368 65383
1019 QEQO;
@; IO}
©©,, HDesoooy ©:©¢
53 QP,
© 5 &7 66@@8
\ Slofe 9100,
101O101C)O1OICIO0)
%@@%@@@@@@°
\ 7
(Bottom View)
Pin No. | Function || Pin No. | Function || Pin No. | Function | Pin No. | Function
1 N/C 18 Ay 35 D, 52 Au
2 DTACK 19 N/C 36 AS 53 Ass
3 BGACK 20 A 37 LDS 54 A
4 BR 21 A 38 BG 55 Vee
5 CLK 22 Ay 39 Vee 56 Vss
6 HALT 23 Ay 40 Vss 57 Ags
7 VMA 24 Az a1 RES 58 Dia
8 E 25 Ax 42 VPA 59 Du
9 BERR 26 An 43 PL; 60 Dy
10 N/C 27 Dy 44 [% 61 Ds
(Top View) " FC, 28 Dy 45 FC, 62 Dy
12 FCo 29 Do 46 N/C 63 Dy
13 A, 30 Dy 47 As 64 UDS
14 Ay 31 D, 48 As €5 RW
15 A, 32 Ds 49 As 66 1PL,
16 As 33 Dy 50 Ao 67 A
17 A, 34 D, - 51 Ay 68 Dy3

100

= ABSOLUTE MAXIMUM RATINGS

HD68000,HD68000Y

Item Symbol Value Unit
Supply Voltage Vee® -0.3~+7.0 \Y
Input Voltage Vi * -03~+7.0 Vv
Operating Temperature Range Topr 0~+70 °c
Storage Temperature Teg -55 ~ +150 °c

* With respect to Vgg (SYSTEM GND)

(NOTE) Permanent LS| damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions.
If these conditions are exceeded, it could affect reliability of LSI.

= RECOMMENDED OPERATING CONDITIONS

Item Symbol min typ max Unit
Supply Voltage Vee 4.75 5.0 5.256 \
\ 20 — \;
Input Voltage " " £C v
VL -0.3 — 0.8 \
Operating Temperature Topr 0 25 70 °c
* With respect to Vgg (SYSTEM GND)
8 ELECTRICAL CHARACTERISTICS
® DC CHARACTERISTICS (Vge =5V 5%, Vg =0V, Ta=0 ~ +70°C, Fig. 1, 2, 3, unless otherwise noted.)
Item Symbol Test Condition min typ max Unit
Input “High” Voltage Vin 20 - Vee \"
Input “Low’’ Voltage ViL Vgs-0.3 - 0.8 A"
BERR, BGACK, B BR, DTACK, _ _ 25
Input Leakage Current 1PL, ~1PL,, VPA, CLK lin @5.25V i} HA
HALT, RES - - 20
AS, A, ~Ay;,D
Three-State (Off State) 17 A Do Dis
Input Current CCMQA FC,, LDS, RW, DS, Irs) @2.4Vv/0.4V - - 20 MA
AS, A ~Ay3,BG, Do ~Dys,
FCo ~FC,, LDS, R/W, UDS, 24 - -
Output “High” Voltage V—N?AT 2 Vou | lon =-400uA \%
E* Vee-0.75 | — —
HALT loL = 1.6mA - - | o5
Output “Low” Voltage |21 ~A2,BG, FCo ~FC, VoL | toL=32mA - - 05 | y
RES loL =5.3mA - - 0.5
T csamn |- |- s
Power Dissipation Pp f=8MHz - - 15 w
= - 0
Capacitance (Package Type Dependent) Cin ;/':“ 1_“2*_‘/; Ta=25°C, - 10.0 | 20.0 pF
* With external pull up register of 470 2
+5 Vv
+5V
152074) & R* =740Q
or
Test P
910Q 2.9k Point Equivalent
RES HALT
CL 152074 ®
or
J/;j 30pF 70pF Equivalent
C__ = 130 pF (Includes all Parasitics)
Figure 1 RES Test Load Figure 2 HALT Test Load R_=6.0kq for AS, A, ~A,, , BG, D, ~D

15 ¢ '
FC,~FC,, LDS, R/W UDS, VMA
*R =122k for A ,~A,,,BG,E,FC,~FC,

Figure 3 Test Loads
101

HD68000,HD68000Y

® AC CHARACTERISTICS (Vgc =5.0V 5%, Vgg = 0V, Ta = 0 ~ +70°C, unless otherwise noted.)

A
Nurmber ttem SYMDOL |t o] e | HDemoie | ipsasoava-| Hosammmio: | iBasogovrz| Unit
min | max | min | max | min | max | min | max | min | max
Frequency of Operation f 20[40[20[60]20]80]|20[100] 20 [125] MHz
@® | Clock Period teye 250|500 | 167 | 500 | 125 | 500 | 100 [500 | 80 {500 | ns
@ | Clock Width “Low” toL 115|250| 75 250 | 55 | 260 | 45 |250| 35 | 250 | ns
® | Clock Width “High” tCH 115|250 | 75 | 250 | 55 | 250 | 45 | 250 | 35 |250| ns
@ | Clock Fall Time tcf — |10} ~-]10| ~-|10| -—}|10| ~ |5 ns
(® | Clock Rise Time tCr - |10 —-|10| —-|10]| —]|]10| — 5 ns
Clock “Low" to Address tCLAV —~|90| - |8 | ~-|70]| ~ |55 | — |55 ns
(A | Clock “High" to FC Valid tCHFCV — |9 | — |80 | - |8)| -~ |60| —|55]| ns
® Clock “High” to /'\ddress/Data High {CHAZx — |120] — l100] — 80| = | 70| — | 60 ns
lmpedanpe (Maximum)
Clock “High™ to Address/FC Invalid (Minimum) tCHAZNn 0 - 0 — o] - (o] — o] - ns
@' | Clock “High” to AS, DS “Low" (Maximum) | tCHSLx — |80 | - |70 — | 60| — | 65 - | 55 ns
@ | Clock “High” to AS, DS*“Low "(Minimum) | tCHSLn o|-|lo|~-|lo|—-]loO0]|~—-]0]~— ns
@? | Address to AS, DS (Read) “Low” /AS Write | tAVSL 66 | — |3 | — (30| — |20 — | 0 | — ns
Q@ A)? | FC Valid to AS, DS (Read) “ Low™ /AS Write | tFCVSL 80| — |70 — |60 — | 50| — | 40 | — ns
®@" | Clock “Low” to AS, DS “High” tCLSH — |90 -8 | -[70]| —|8s5| — |50 ns
®? | AS, DS “High” to Address/FC Invalid tSHAZ 60| — (40| — |30 | — |.20| — | 10| — ns
(@%%| AS, DS Width “Low” (Read)/AS Write tsL 535| — |337| — |240| — [195| — [160| — ns
(14A)* | DS Width “Low" (Write) - 285 — (170 — [115| — | 95 | — | 80 | — ns
®? | AS, DS Width “High” tsH 285 — (180 — [150| — [105| — | 656 | — ns
@ | Clock “High” to AS, DS High Impedance |tCHSZ — |120| — [100| — [80| — | 70| — | 60| ns
®@? | AS, DS “High” to R/W “High” tSHRH 60| — 50| — |40 | — | 20| — |10 | — ns
@' | Clock “High” to R/W “High” (Maximum) | tCHRHx -~ |% | - (8| - |70 — | 60| — | 60 ns
@ | Clock “High” to R/W “High” (Minimum) | tCHRHn (o] — (o] - [o] — 0 — 0 - ns
@ | Clock “High” to R/W “Low” tCHRL —|9% | —-|8| —-|70| — | 60| — | 60 ns
@? | Address Valid to R/W “Low” el | g ; 414 | — (25| — |20 — [0 | -[o || ns
@1A)2 | FC Valid to R/W “Low” tECVRL 80| — |70 —|60| — |50 — 30| —| ns
@2 | R/W “Low"” to DS “Low” (Write) tRLSL 200 — (140 — | 80| — | 50| — | 30| — ns
@ | Clock “Low" to Data Out Valid tcLDO — |9 | — |8)| — 70| — | 55| — | 55| ns
®? | DS “High" to Data Out Invalid tSHDO 60| — |40 | — |30 — | 20| — | 16| — ns
@? | Data Out Valid to DS “Low" (Write) tDOSL 66| — |36 | — (30| — 20| — [15| — | ns
@¢ | Data In to Clock “Low” (Setup Time) tDICL 30| — | 25| — |16 | — |16 | — | 16 | — ns
@? | AS, DS “High” to DTACK “High” tSHDAH 0 {240 O |160| O {120 O [90| O [70 | ns
@ | DS “High” to Data Invalid (Hold Time) tSHDI 0 — 0o - (o] - o] - 0 — ns
@ | AS, DS “High" to BERR “High” tSHBEH o|—-|lo|—-lo|—-—|o|~-10]-— ns
G)?>¢| DTACK “Low" to Data In (Setup Time) tDALDI — |180] — [120] — | 90| — | 65| — [80| ns
@ | HALT and RES Input Transition Time tRHrf O |200{ O [200| O [200| O (200 O [200| ‘ns
® | Clock “High” to BG “Low" tCHGL — | 90 80| — |70 — |60 — [60| ns
® | Clock “High" to BG “High” tCHGH — |90 - |8 | -|[70| -|60| — |50 ns
@® |BR“Low" to BG “Low” tBRLGL 16(30[15[30|15[30[15|30/ 15/ 3.0 |CkPer.
@ | BR “High” to BG “High” tBRHGH 15[30[15[30(15(30[15|30/ 1530 |CkPer.
@ |BGACK “Low” to BG “High” tGALGH 1.5(30[15(30|15|30| 15|30/ 1.5 3.0 |Clk.Per.
@ |56 Low" to Bus High Impedance 6Lz — |120| — |100| — |80 | - | 70| — | 60| ns
(With AS “High”)
@ | BG Width “High” tGH 16 — [15] — 18] — 18] — | 15[— |CkPer.
@ |BGACK Width “Low” tBGL 15 — [16] — |15 — {158 — | 15| — [CIk.Per.
@° | Asynchronous Input Setup Time tASI 30| - |25| —|20| — 20| — | 20| — ns
@ | BERR “Low” to DTACK “Low” (Note 3) | tBELDAL 50| — | 50| — |50 | — | 50| — |50 | — | ns
@ | Data Hold from Clock “High” tCHDO o|—-|o0|—-|O}|—-—ftO|—-]0]~— ns
® | R/W to Data Bus Impedance Change tRLDO 65| — |36 | — 30| — |20 —[10| — | ns
@ | HALT /RES Pulse Width (Note 4) tHRPW 10| —-t100|—-]10]|—-]10] = |10] — [CKkPer.

* Preliminary

102

(to be continued)

HD68000,HD68000Y

Vlmr:l'ozn \;amrrxTi‘::n Vae’fsn)zn Vcnio: l}o%:
Number Item Symbol Test oasooava” | Hosasove: | bssoonra® | Hosasow vo° | Hossoser 12| Uit
Condition | HD68000Y4* | HD6B00OY6* | HD6800DOY8* [HDI
min | max | min | max | min | max | min | max { min | max
@ | Clock “High" to R/W, VMA High Impedance tCHRZ — {120 — |100| — |80 | — [70| — | 60 | ns
@ | Clock “Low” to VMA “Low” tCLVML —|9%| -8} —-|(7]| - |70 — | 70 ns
@ | Clock “Low" to E Transition tCLE — |00 — |8 | — 70| — | 55| — | 45 ns
@ | E Output Rise and Fall Time tErf — | 25| — | 26| — (26| — |25 | — | 25 ns
@ |VMA “Low" to E “High” tVMLEH 325 — |240| — (200 — |150| — | 90 | — ns
@ | AS, DS “High" to VPA “High” tsHVPH | Fig.45,| O [240| 0 [160| O [120| O [90| O | 70 | ns
@ | E “Low" to Address/VMA/FC Invalid tELAI Fig46 [s5 | — [35 | — |30 — (10| —[10] — [ns
@ | E “Low” to AS, DS Invalid tELSI -80| — |-80f — |-80| — |-80| — |-80| — ns
& | E Width “High” tEH 900(— |600| — 1450| — |350| — |280| — ns
& | E Width “Low” tEL 1400 — |900| — [700| — |550| — [440| — ns
& | E Extended Rise Time tCIEHX 80 | — |80 | — (80| — |8 | — |80 — ns
6 | Data Hold from E “Low” (Write) tELDOZ 60| — (40| — | 30| — | 20| — | 16| — ns
* Preliminary

For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the values given in these columns.
Actual value depends on clock period.
If #47 is satisfied for both DTACK and BERR, #48 may be O ns.

(NOTES) 1.

2.

3.

g. After Ve has been applied for 100 ms.
6.

For the mask version 68000 #14 and #14A are one clock period less than the given number.
|f the asynchronous setup time (#47) requirements are satisfied, the DTACK low-to-data setup time (#31) requirement can be ignored.

The data must only satisfy the data-in to clock-low setup time (#27) for the following cycle.

= teye »>

<—tc|_—J [———to——

2.0V 4 \ /
0.8V K.

tor——» e —> |[e—tcsf

Figure 4 Input Clock Waveform

103

HD68000,HDE8000Y

® olgse st s2 s3 s4a 5 ss 87
CLK \'(/ Qﬁ / s / \
O - 5 «®
PE— b))
Av~Ass) SR
—>| l—@® —f| e) il ;
AS w; ® - @
— 0]
CBS/0Ds 7 — -
@
-0
pall
RIN 1@
|
FCo ~FC, X
o
)
Asynchronous
Inputs
(Note 1) ¥
| le—@)—» |
HALT/RES A
\r
la—@32) — [—@3)
)
BERR/BR ¢—-@—>
(Note 2) \
@ — O
DTACK ‘\ @
‘._.@)_—. [@ >
Data n == wn cn cm ww - o= on e o o -n o on == - - i_.

(NOTES) 1. Setup time for the asynchronous inputs BGACK, TPL, ~ TPL, and VPA guarantees their recognition at the next falling edge of the clock.
2. BR need fall at this time only in order to insure being recognized at the end of this bus cycle.
3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

Figure 5 Read Cycle Timing

104

SO S1 S2 s3 S4 S5 S6 S§7 SO
5 e ' e -
CLK / 4 L \ / ___/ _/_
— D
le—®
Ay ~Azs — 10
— b 19 @
()———— T
x
AS / (E) ® L (kg * jz
— -9
-
DS/UDS _]L N @ N - —
[—@—» @—
RIW @ e N @ — |—®
e—(18)—
r—Q—> - ®
Data Out)E i Z-————-—
6A — le——@)
FCo ~FC,)(
A h
svnchronous o | X
1
HALT/RES 4 @
&)
le—
e—G9)
@7 — +—30)
BERR/BR }‘.
DS]
—
DTACK A
@

(NOTE) Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

Figure 6 Write Cycle Timing

105

HD68000,HD68000Y

HD68000,HD68000Y

Strobes / f— ,
and RIW /
- (3) ————t]
BR —
_ /
- € ——

BGACK
N

®

CLK

(NOTES) 1. Setup time for the asynchronous inputs BERR, BGACK, BR, DTACK, IPL, ~TPL,, and VPA guarantees their recognition at the

next falling edge of the clock.

2. Waveform measurements for all inputs and outputs are specified at: logic high = 2.0 volts, logic low = 0.8 volts.
3. These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are
not intended as a functional description of the input an output signals. Refer to other functional descriptions and their related

diagrams for device operation.

Figure 7 AC Electrical Waveforms — Bus Arbitration

® SIGNAL DESCRIPTION

The following paragraphs contain a brief description of the
input and output signals. A discussion of bus operation during
the various machine cycles and operations is also given.

® SIGNAL DESCRIPTION

The input and output signals can be functionally organized
into the groups shown in Figure 8. The following paragraphs
provide a brief description of the signals and also a reference
(if applicable) to other paragraphs that contain more detail
about the function being performed.

/

Vce (2) Addres!
Vssgz) . Bus > A ~A,,
CLK
B 0,~0,,
AS
FC, _RU%—’ Asynchronous
Processor [Fg, | HD68000 [—pmaE—™ Bus
Status FC, MicroprocessoSFaaR Control
HMCS6800 ("= . BR Bus
Peripheral <¥.M-TL ?ﬁ Arbitration
Control —YPA] Control
BERR 1PL,
System Esk o Interrupt
«-BES | —lPLy
Control letPLz__| Control

Figure 8 Input and Output Signals

ADDRESS BUS (A, through A,;)

This 23-bit, unidirectional, three-state bus is capable of
addressing 8 megawords of data. It provides the address for bus
operation during all cycles except interrupt cycles. During
interrupt cycles, address lines A;, A,, and A3 Provide infor-
mation about what level interrupt is being serviced while address
lines A, through A, are all set to a logic high.

DATA BUS (D, through Dys)

This 16-bit, bidirectional, three-state bus is the general
purpose data path. It can transfer and accept data in either
word or byte length. During an interrupt acknowledge cycle,
an external device supplies the vector number on data lines
Do ~ D7 .

ASYNCHRONOUS BUS CONTROL

Asynchronous data transfer are handled using the following
control signals: address strobe, read/write, upper and lower
data strobes, and data transfer acknowledge. These signals
are explained in the following paragraphs.

Address Strobe (AS)
This signal indicates that there is-a valid address on the
address bus.

Read/Write (R/W)

This signal defines the data bus transfer as a read or write
cycle. The R/W signal also works in conjunction with the upper
and lower data strobes as explained in the following paragraph.

106

Upper and Lower Data Strobes (UDS, LDS)

These signals control the data on the data bus, as shown
in Table 1. When the R/W line is high, the processor will read
from the data bus as indicated. When the R/W line is low, the
processor will write to the data bus as shown.

Table 1 Data Strobe Control of Data Bus

UDS | LDS | RW Ds ~ Dis Do~ D,
High High — No valid data No valid data
. Valid data bits Valid data bits
Low Low High 8~ 15 0~7
High | Low | High | Novaliddata | V2liddatabits
Low | High | High | Vald databits | o valid data
Valid data bits | Valid data bits
Low Low Low 8~ 15 0~7
. Valid data bits Valid data bits
High | Low | Low 0~7* 0~7
. Valid data bits | Valid data bits
Low | High | Low 8~ 15 8~ 15*

* These conditions are a result of current implementation and may not
appear on future devices.

Data Transfer Acknowledge (DTACK)

This input indicates that the data transfer is completed.
When the processor recognizes DTACK during a read cycle,
data is latched and the bus cycle terminated. When DTACK
is recognized during a write cycle, the bus cycle is terminated.

An active transition of data transfer acknowledge, DTACK,
indicates the termination of a data transfer on the bus.

If the system must run at a maximum rate determined by
RAM access times, the relationship between the times at which
DTACK and DATA are sampled are important.

All control and data lines are sampled during the HD68000’s
clock high time. The clock is internally buffered, which results
in some slight differences in the sampling and recognition of
various signals. HD68000 allow BERR or DTACK to be recog-
nized in S4, S6, etc., which terminates the cycle*. The DTACK
signal, like other control signals, is internally synchronized to
allow for valid operation in an asynchronous system. If the
required setup time (#47) is met during S4, DTACK will be
recognized during S5 and S6, and data will be captured during
S6. The data must meet the required setup time (#27).

If an asynchronous control signal does not meet the required
setup time, it is possible that it may not be recognized during
that cycle. Because of this, asynchronous systems must not
allow DTACK to precede data by more than parameter #31.

Asserting DTACK (or BERR) on the rising edge of a clock
(such as S4) after the assertion of address strobe will allow
a HD68000 system to run at its maximum bus rate. If setup
times #27 and #47 are guaranteed, #31 may be ingnored.

* The mask version 68000 allowed DTACK to be recognized as early

as S2 (bus state 2).

BUS ARBITRATION CONTROL
These three signals form a bus arbitration circuit to deter-
mine which device will be the bus master device.

HD68000,HD68000Y

Bus Request (BR)

This input is wire ORed with all other devices that could
be bus masters. This input indicates to the processor that
some other device desires to become the bus master.

Bus Grant (BG)

This output indicates to all other potential bus master
devices that the processor will release bus control at the end
of the current bus cycle.

Bus Grant Acknowledge (BGACK)

This input indicates that some other device has become the
bus master. This signal cannot be asserted until the following
four conditions are met:

(1) A Bus Grant has been received

(2) Address Strobe is inactive which indicates that the

microprocessor is not using the bus

(3) Data Transfer Acknowledge is inactive which indicates

that neither memory nor peripherals are using the bus

(4) Bus Grant Acknowledge is inactive which indicates that

no other device is still claiming bus mastership.

INTERRUPT CONTROL (IPL,,PL,, IPL,)

These input pins indicate the encoded priority level of the
device requesting an interrupt. Level seven is the highest priority
while level zero indicates that no interrupts are requested.
The least significant bit is given in IPL, and the most significant
bit is contained in IPL,.

SYSTEM CONTROL

The system control inputs are used to either reset or halt
the processor and to indicate to the processor that bus errors
have occurred. The three system control inputs are explained
in the following paragraphs.

Bus Error (BERR)

This input informs the processor that there is a problem
with the cycle currently being executed. Problems may be a
result of:

(1) Nonresponding devices

(2) Interrupt vector number acquisition failure

(3) Illegal access request as determined by a memory man-

agement unit

(4) Other application dependent errors.

The bus error signal interacts with the halt signal to deter-
mine if exception processing should be performed or the current
bus cycle should be retried.

Refer to BUS ERROR AND HALT OPERATION paragraph
for additional information about the interaction of the bus
error and halt signals.

Reset (RES)

This bidirectional signal line acts to reset (initiate a system
initialization sequence) the processor in response to an external
reset signal. An internally generated reset (result of a RESET
instruction) causes all external devices to be reset and the
internal state of the processor is not affected. A total system
reset (processor and external devices) is the result of external
HALT and RESET signals applied at the same time. Refer to
RESET OPERATION paragraph for additional information
about reset operation.

Halt (HALT)
When this bidirectional line is driven by an external device,

107

HD68000,HD68000Y

it will cause the processor to stop at the completion of the
current bus cycle. When the processor has been halted using
this input, all control signals are inactive and all three-state lines
are put in their high-impedance state. Refer to BUS ERROR
AND HALT OPERATION paragraph for additional information
about the interaction between the halt and bus error signals.

When the processor has stopped executing instructions, such
as in a double bus fault condition, the halt line is driven by the
processor to indicate to external devices that the processor has
stopped.

HMCS6800 PERIPHERAL CONTROL

These control signals are used to allow the interfacing of
synchronous HMCS6800 peripheral devices with the asynchro-
nous HD68000. These signals are explained in the following
paragraphs.

Enable (E)

This signal is the standard enable signal common to all
HMCS6800 type peripheral devices. The period for this out-
put is ten HD6800O clock periods (six clocks low; four clocks
high).

Valid Peripheral Address (VPA)

This input indicates that the device or region addressed is
a HMCS6800 family device and that data transfer should be
synchronized with the enable (E) signal. This input also indi-
cates that the processor should use automatic vectoring for an
interrupt. Refer to INTERFACE WITH HMCS6800 PERIPHER-
ALS.

Valid Memory Address (VMA)
This output is used to indicate to HMCS6800 peripheral

devices that there is a valid address on the address bus and the
processor is synchronized to enable. This signal only responds
to a valid peripheral address (VPA) input which indicates that
the peripheral is a HMCS6800 family device.

PROCESSOR STATUS (FC,, FC,, FC,)

These function code outputs indicate the state (user or
supervisor) and the cycle type currently being executed, as
shown in Table 2. The information indicated by the function
code outputs is valid whenever address strobe (AS) is active.

Table 2 Function Code Outputs

FC, FC, FCo Cycle Type

Low Low Low (Undefined, Reserved)
Low Low High User Data '
Low High Low User Program

Low High High
High Low . Low
High Low High
High High Low
High High High

(Undefined, Reserved)
(Undefined, Reserved)
Superviser Data
Supervisor Program
Interrupt Acknowledge

CLOCK (CLK)

The clock input is a TTL-compatible signal that is internally
buffered for development of the internal clocks needed by the
processor. The clock input shall be a constant frequency.

SIGNAL SUMMARY
Table 3 is a summary of all the signals discussed in the
previous paragraphs.

Table 3 Signal Summary

Signal Name Mnemonic Input/Output Active State Three State
Address Bus A~ A output high yes
Data Bus Do~ Dys input/output high yes
Address Strobe AS output low yes
Read/Write RW output mfer:fx yes
Upper and Lower Data Strobes UDS, LDS output low yes
Data Transfer Acknowledge DTACK input low no
Bus Request BR input low no
Bus Grant BG output low no
Bus Grant Acknowledge BGACK input low no
Interrupt Priority Level 1PL,, TPL,, IPL, input low no
Bus Error BERR input low no
Reset RES input/output low no*
Halt HALT input/output low no*
Enable E output high no
Valid Memory Address VMA output low yes
Valid Peripheral Address VPA input low no
Function Code Output FCo, FC,, FC, output high yes
Clock CLK input high no
Power Input Vee input - -
Ground Vss input - -
* Open drain

108

® REGISTER DESCRIPTION AND DATA ORGANIZATION
The following paragraphs describe the registers and data
organization of the HD68000.

® OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits,
a word equals 16 bits, and a long word equals 32 bits. The
operand size for each instruction is either explicitly encoded
in the instruction or implicitly defined by the instruction
operation. All explicit instructions support byte, word or long
word operands. Implicit instructions support some subset of
all three sizes.

® DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16,
or 32 bits. The seven address registers together with the active
stack pointer support address operands of 32 bits.

DATA REGISTERS

Each data register is 32 bits wide. Byte operands occupy
the low order 8 bits, word operands the low order 16 bits, and
long word operands the entire 32 bits. The least significant bit
is addressed as bit zero; the most significant bit is addressed
as bit 31.

When a data register is used as either a source or destination
operand, only the appropriate low-order -portion is changed;
the remaining high-order portion is neither used nor changed.

ADDRESS REGISTERS

Each address register and the stack pointer is 32 bits wide
and holds a full 32 bit address. Address registers do not support
byte sized operands. Therefore, when an address register is used
as a source operand, either the low order word or the entire
long word operand is used depending upon the operation size.
When an -address register is used as the destination operand, the
entire register is affected regardless of the operation size. If the
operation size is word, any other operands are sign extended
to 32 bits before the operation is performed.

® STATUS REGISTER

The status register contains the interrupt mask (eitht levels
available) as well as the condition codes; extend (X), negative
(N), zero (Z), overflow (V), and carry (C). Additional status
bits indicate that the processor is in a trace (T) mode and/or
in a supervisor (S) state.

Status Register

System Byte User Byte
/\
15 13 10 9 8 4.3 2 10
HNENAAENNBNaNe
| N—— T
Trace Mode Extend
Supervisor Negative
State Interrupt Zero
Mask Overflow

Carry

Unused, read as zero.

HD68000,HDE8000Y

® DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte
having an even address the same as the word, as shown in
Figure 9. The low order byte has an odd address that is one
count higher than the word address. Instructions and multibyte
data are accessed only on word (even byte) boundaries. If a
long word datum is located at address n (n even), then the
second word of that datum is located at address n + 2.

The data types supported by the HD6800O are: bit data,
integer data of 8, 16, or 32 bits, 32-bit addresses and binary
coded decimal data. Each of these data types is put in memory,
as shown in Figure 10.

m BUS OPERATION

The following paragraphs explain control signal and bus
operation during data transfer operations, bus arbitration, bus
error and halt conditions, and reset operation.

® DATA TRANSFER OPERATIONS

Transfer of data between devices involve the following leads:

(1) Address Bus A; through A,3

(2) Data Bus Dy through D,

(3) Control Signals

The address and data buses are separate parallel buses used
to transfer data using an asynchronous bus structure. In all
cycles, the bus master assumes responsibility for deskewing
all signals it issues at both the start and end of a cycle. In
addition, the bus master is responsible for deskewing the ac-
knowledge and data signals from the slave device.

The following paragraphs explain the read, write, and read-
modify-write cycles. The indivisible read-modify-write cycle
is the method used by the HD6800O for interlocked multi-
processor communications.

(NOTE) The terms assortion and negation will be used extensively.
This is done to avoid confusion when dealing with a mixture
of “active-low” and “active-high” signals. The term assert or
assertion is used to indicate that a signal is active or true in-
dependent of whether that voltage is low or high. The term
negate or negation is used to indicate that a signal is inactive or
false.

Read Cycle

During a read cycle, the processor receives data from memo-
ry or a peripheral device. The processor reads bytes of data
in all cases. If the instruction specifies a word (or double word)
operation, the processor reads both bytes. When the instruction
specifies byte operation, the processor uses an internal A, bit to
determine which byte to read and then issues the data strobe
required for that byte. For bytes operations, when the A, bit
equals zero, the upper data strobe is issued. When the Ao bit
equals one, the lower data strobe is issued. When the data is
received, the processor correctly positions it internally.

A word read cycle flow chart is given in Figure 11. A byte
read cycle flow chart is given in Figure 12. Read cycle timing is
given in Figure 13. Figure 14 details word and byte read cycle
operations. Refer to these illustrations during the following
detailed.

109

HD68000,HD68000Y

At state zero (S0) in the read cycle, the address bus (A
through A,;) is in the high impedance state. A function code
is asserted on the function code output line (FC, through FC,).
The read/write (R/W) signal is switched high to indicate a read
cycle. One half clock cycle later, at state 1, the address bus is
released from the high impedance state. The function code
outputs indicate which address space that this cycle will operate
on.
In state 2, the address strobe (AS) is asserted to indicate that
there is a valid address on the address bus and the upper and
lower data strobe (UDS, LDS) is asserted as required. The mem-
ory or peripheral device uses the address bus and the address
strobe to determine if it has been selected. The selected device
uses the read/write signal and the data strobe to place its infor-
mation on the data bus. Concurrent with placing data on the
data bus, the selected device asserts data transfer acknowledge
(DTACK).

Data transfer acknowledge must be present at the processor
at the start of state 5 or the processor will substitute wait states
for states 5 and 6. State S starts the synchronization of the

returning data transfer acknowledge. At the end of state 6
(beginning of state 7) incoming data is latched into an internal
data bus holding register.

During state 7, address strobe and the upper and/or lower
data strobes are negated. The address bus is held valid through
state 7 to allow for static memory operation and signal skew.
The read/write signal and the function code outputs also remain
valid through state 7 to ensure a correct transfer operation. The
slave device keeps its data asserted until it detects the negation
of either the address strobe or the upper and/or lower data
strobe. The slave device must remove its data and data transfer
acknowledge within one clock period of recognizing the nega-
tion of the address or data strobes. Note that the data bus might
not become free and data transfer acknowledge might not be
removed until state O or 1.

When address strobe is negated, the slave device is released.
Note that a slave device must remain selected as long as address
strobe is asserted to ensure the correct functioning of the read-
modify-write cycle.

110

HD68000,HD68000Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000000

Byte 000000 Word,0000 Byte 000001
Word 000002

Byte 000002 L Byte 000003

Z

l\

Word FFFFFE
Byte FFFFFE] Byte FFFFFF

Figure 9 Word Organization in Memory

Bit Data
1 Byte = 8 Bits
7 6 5 4 3 2 1 0

HEEEEEE.

Integer Data

1 Byte = 8 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
" fmss Byte O LSB Byte 1 n+1
n+2 Byte 2 Byte 3 n+3

1 Word = 16 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Imss Word 0 wse| 1
n+2 Word 1 n+3
n+4 Word 2 n+5

1 Long Word = 32 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

n MsB High Order . n+1
= = = LONGWOrd 0 = == = = = o e o o e o e =

n+2 Low Order Lsg| n+3

n+4 n+5
—-———loNgWord 1= = e m m e e e e — ———— - - ———

n+6 n+7

n+8 n+9
b= = =LONgWOrd 2= = = = = == == = = = - ————— = — -

n+10 n+11

Addresses

1 Address = 32 Bits
15 _14 13 12 1110 9 8 7 6 5 4 3 2 1 0

n ms8 High Order n+1
b — = ADAress 0 e e o o o e . - = - - —— - — -

n+2 Low Order Lsg| 3

n+4 n+5
b= = = AJAress 1em == = = = - ———— =]

n+6 n+7

n+8 n+9
e e = cAJAress 2« w cm cm e o o - - - ——— - -]

n+10 n+11

MSB = Most Significant Bit
LSB = Least Significant Bit)
Decimal Data

2 Binary Coded Decimal Digits = 1 Byte
15 14 13 12 11 _10 9 ‘8 7 6 5 4 3 2 1 0

n |MSD gepo BCD1 BCD2 BCD3 n+1

LSD
n+2 BCD4 BCDS BCD6 BCD7 n+3

MSD = Most Significant Digit
LSD = Least Significant Digit

Figure 10 Data Organization in Memory
11

HD68000,HD68000Y

BUS MASTER SLAVE

Address Device

1) Set R/W to Read

2) Place Function Code on FCo ~FC,

3) Place Address on A; ~A;s

4) Assert Address Strobe (AS)__

5) Assert Upper Data Strobe (UDS) or Lower
Data Strobe (LDS)

|

Input Data
1) Decode Address
2) Place Data on Do ~Dss
3) Assert Data Transfer Acknowledge

{DTACK)

|

Acquire Data
1) Latch Data
2) Negate UDS and LDS
3) Negate AS

|

Terminate Cycle
1) Remove Data from Do ~D;s
2) Negate DTACK

l

Start Next Cycle

Figure 11 Word Read Cycle Flow Chart

BUS MASTER SLAVE

Address Device
1) Set R/Wto Read
2) Place Function Code on FCo ~FC,
3) Place Address on A; ~Aa3
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) and Low-
er Data Strobe (LDS) (based on Ao)

Input Data
1) Decode Address
2) Place Data on Do ~D; or Dg ~D;s (based
on UDS or LDS)
3) Assert Data Transfer Acknowledge
(DTACK)

Acquire Data
1) Latch Data
2) Negate UDS or LDS
3) Negate AS

Terminate Cycle
1) Remove Data from Do ~D; or Ds ~Dss
2) Negate DTACK

Start Next Cycle

Figure 12 Byte Read Cycle Flow Chart

SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 w w w w S5 S6 S7

Ay ~Aas D—-(

FCo~FC: X X~

|___— — Read — — -.’.— - — Write — ———|--- — — — SlowRead — — — -——I

Figure 13 Read and Write Cycle Timing Diagram

HD68000,HD68000Y

SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7

ooy F——_______ >

0-0, —C >—(C

FCo ~FC, X) &

X X

*Internal Signal Only

}-— - = —=~ Word Read — — —-I-——-— -0Odd Byte Read - -——~|-—-— Even Byte Read — -——!

Figure 14 Word and Byte Read Cycle Timing Diagram

Write Cycle

During a write cycle, the processor sends data to memory
or a peripheral device. The processor writes bytes of data in
all cases. If the instruction specifies a word operation, the pro-
cessor writes both bytes. When the instruction specifies a byte
operation, the processor uses an internal A, bit to determine
which byte to write and then issues the data strobe required
for that byte. For byte operations, when the Ao bit equals zero,
the upper data strobe is issued. When the A, bit equals one,
the lower data strobe is issued. A word write cycle flow chart is
given in Figure 15. A byte write cycle flow chart is given in
Figure 16. Write cycle timing is given in Figure 13. Figure 17
details word and byte write cycle operation. Refer to these
illustrations during the following detailed discussion.

At state zero (S0) in the write cycle, the address bus (A,
through Aj;) is in the high impedance state. A function code is
asserted on the function code output line (FC, through FC,).

(NOTE) The read/write (R/W) signal remains high until state 2 to pre-
vent bus conflicts with preceding read cycles. The data bus is
not driven until state 3.

One half clock later, at state 1, the address bus is released
from the high impedance state. The function code outputs
indicate which address space that this cycle will operate on.

In state 2, the address strobe (AS) is asserted to indicate
that there is a valid address on the address bus. The memory
or peripheral device uses the address bus and the address strobe
to determine if it has been selected. During state 2, the read/
write signal is switched low to indicate a write cycle. When
external processor data bus buffers are required, the read/write
line provides sufficient directional control. Data is not asserted
during this state to allow sufficient turn around time for ex-
ternal data buffers (if used). Data is asserted onto the data bus
during state 3.

In state 4, the data strobes are asserted as required to indi-
cate that the data bus is stable. The selected device uses the

read/write signal and the data strobes to take its information
from the data bus. The selected device asserts data transfer
acknowledge (DTACK) when it has successfully stored the data.

Data transfer acknowledge must be present at the processor
at the start of state S or the processor will substitute wait states
for states 5 and 6. State 5 starts the synchronization of the
returning data transfer acknowledge.

During state 7, address strobe and the upper and/or lower
data strobes are negated. The address and data buses are held
valid through state 7 to allow for static memory operation and
signal skew. The read/write signal and the function code outputs
also remain valid through state 7 to ensure a correct transfer
operation. The slave device keeps its data transfer acknowledge
asserted until it detects the negation of either the address strobe
or the upper and/or lower data strobe. The slave device must
remove its data transfer acknowledge within one clock period
after recognizing the negation of the address or data strobes.
Note that the processor releases the data bus at the end of state
7 but that data transfer acknowledge might not be removed
until state O or 1. When address strobe is negated, the slave
device is released.

Read-Modify-Write Cycle

The read-modify-write cycle performs a read, modifies the
data in the arithmetic-logic unit, and writes the data back to the
same address. In the HD6800O0 this cycle is indivisible in that
the address strobe is asserted throughout the entire cycle. The
test and set (TAS) instruction uses this cycle to provide mean-
ingful communication between processors in a multiple pro-
cessor environment. This instruction is the only instruction that
uses the read-modify-write cycle and since the test and set in-
struction only operates on bytes, all read-modify-write cycles
are byte operations. A read-modify-write cycle flow chart is
given in Figure 18 and a timing diagram is given in Figure 19.
Refer to these illustrations during the following detailed discus-

113

HD68000,HD68000Y

sions.

At state zero (S0) in the read-modify-write cycle, the address
bus (A; through A,3) is in the high impedance state. A function
code is asserted on the function code output line (FCo through
FC,). The read/write (R/W) signal is switched high to indicate
a read cycle. One half clock cycle later, at state 1, the address
bus is released from the high impedance state. The function
code outputs indicate which address space that this cycle will
operate on.

In state 2, the address strobe (AS) is asserted to indicate that
there is a valid address on the address bus and the upper or
lower data strobe (UDS, LDS) is asserted as required. The mem-
ory or peripheral device uses the address bus and the address
strobe to determine if it has been selected. The selected device
uses the read/write signal and the data strobe to place its infor-
mation on the data bus. Concurrent with placing data on the
data bus, the selected device asserts data transfer acknowledge
(DTACK).

Data transfer acknowledge must be present at the processor
at the start of state 5 or the processor will substitute wait states
for states 5 and 6. State 5 starts the synchronization of the
returning data transfer acknowledge. At the end of state 6
(beginning of state 7) incoming data is latched into an internal
data bus holding register.

During state 7, the upper or lower data strobe is negated.
The address bus, address strobe, read/write signal, and function
code outputs remain as they were in preparation for the write'
portion of the cycle. The slave device keeps its data asserted
until it detects the negation of the upper or lower data strobe.
The slave device must remove its data and data transfer ac-
knowledge within one clock period of recognizing the negation
of the data strobes. Internal modification of data may occur
from state 8 to state 11.

(NOTE) The read/write signal remains high until state 14 to prevent bus

conflicts with the preceding read portion of the cycle and the
data bus is not asserted by the processor until state 15.

In state 14, the read/write signal is switched low to indicate
a write cycle. When external processor data bus buffers are
required, the read/write line provides sufficient directional
control. Data is not asserted during this state to allow sufficient
turn around time for external data buffers (if used). Data is
asserted onto the data bus during state 15. '

In state 16, the data strobe is asserted as required to indicate
that the data bus is stable. The selected device uses the read/
write signal and the data strobe to take its information from the
data bus. The selected device asserts data transfer acknowledge
(DTACK) when it has successfully stored its data.

Data transfer acknowledge must be present at the processor
at the start of state 17 or the processor will substitute wait
states for states 17 and 18. State 17 starts the synchronization

of the returning data transfer acknowledge for the write portion
of the cycle. The bus interface circuitry issues requests for
subsequent internal cycles during state 18.

During state 19, address strobe and the upper or lower data
strobe is negated. The address and data buses are held valid
through state 19 to allow for static memory operation and
signal skew. The read/write signal and the function code outputs
also remain valid through state 19 to ensure a correct transfer
operation. The slave device keeps its data transfer acknowledge
asserted until it detects the negation of either the address strobe
or the upper or lower data strobe. The slave device must remove
its data transfer acknowledge within once clock period after
recognizing the negation of the address or data strobes. Note
that the processor releases the data bus at the end of state 19
but that data transfer acknowledge might not be removed until
state 0 or 1. When address strobe is negated the slave device is
released.

® BUS ARBITRATION

Bus arbitration is a technique used by master-type devices
to request, be granted, and acknowledge bus mastership. In its
simples form, it consists of:

(1) Asserting a bus mastership request.

(2) Receiving a grant that the bus is available at the end of

the current cycle.

(3) Acknowledging that mastership has been assumed.

Figure 20 is a flow chart showing the detail involved in a
request from a single device. Figure 21 is a timing diagram
for the same operations. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that the bus request is negated
at the time that an acknowledge is asserted. This type of oper-
ation would be true for a system consisting of the processor
and one device capable of bus mastership. In systems having
a number of devices capable of bus mastership, the bus request
line from each device is wire ORed to the processor. In this
system, it is easy to see that there could be more that one bus
request being made. The timing diagram shows that the bus
grant signal is negated a few clock cycles after the transition
of the acknowledge (BGACK) signal.

However, if the bus requests are still pending, the processor
will assert another bus grant within a few clock cycles after
it was negated. This additional assertion of bus grant allows
external arbitration circuitry to select the next bus master
before the current bus master has completed its requirements.
The following paragraphs provide additional information about
the three steps in the arbitration process.

114

HD68000,HD68000Y

1)
2)
3)
4)
5)
6)

1)
2)
3)

BUS MASTER SLAVE

Address Device
Place Function Code on FC, ~ FC;
Place Address on A; ~ A,3
Assert Address strobe (AS)
Set R/W to Write
Place Data on Do ~ D)5
Assert Upper Data Strobe (UDS) and
Lower Data Strobe (LDS)

)

Input Data
1) Decode Address
2) Store Dataon Do ~D;s
3) Assert Data Transfer Acknowledge
(DTACK)

!

Terminate Output Transfer
Negate UDS and LDS
Negate AS
Remove Data from Do ~ D5
Set R/W to Read

Terminate Cycle
1) Negate DTACK

'

Start Next Cycle

Figure 15 Word Write Cycle Flow Chart

1)
2)
3)
4)
5)

6

1)
2)

4)

BUS MASTER SLAVE

Address Device
Place Function Code on FC, ~ FC;
Place Address on A;~ A;3
Assert Address Strobe (AS)
Set R/W to Write
Place Data on Dy ~ D, or Dg ~ D,s (according
to Ao)
Assert Upper Data Strobe (UDS) or Lower
Data Strobe (LD3) (based on Ao)

Input Data
1) Decode Address
2) Store Data on D, ~ D, if LDS is asserted
Store Data on Dy ~ D,s if UDS is asserted
3) Assert Data Transfer Acknowledge
(DTACK)

r__I

Terminate Output Transfer
Negate UDS and LDS
Negate AS
Remove Data from Do ~ D, or Dy ~ D5
Set R/W to Read

|_l

Terminate Cycle
1) Negate DTACK

Start Next Cycle

Figure 16 Byte Write Cycle Flow Chart

SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7

CLK
A~ I — —~ -
As* J |
AS

uDs \ /

LDS \ / \ /

R /7 \ /\

=/ —
/7 \ /-

FCo ~FC3 :X X

X D

*Internal Signal Only

|<v — — — Word Write — -— ——in- — -0dd. Byte Write = — - -—l‘ — -Even Byte Write~ — — -—l

Figure 17 Word and Byte Write Cycle Timing Diagram

115

HD68000,HD68000Y

BUS MASTER

SLAVE
Address Device 1
1) Set R/W to Read
2) Place Function Code on FC, ~FC; Input Data

3) Place Address on A; ~A,3

4) Assert Address Strobe (AS) 1) Decode Address

TR 2) Place Data on Do ~D; or Ds ~D
rt Data St S| o 7 8 15
® C:weer ggf: rs":t; (Cg%e) (UDS} or 3) Assert Data Transfer Acknowledge
(DTACK)
Acquire Data

1) Latch Data
2) Negate UDS or LDS
3) Start Data Modification Terminate Cycle

1) Remove Data from Do ~D, or Dg ~D;5
2) Negate DTACK |

'

Start Output Transfer
1) Set R/W to Write

2) Place Data on Do ~D, or Ds ~Dss Input Data
3) Assert Upper Data Strobe (UDS) or Lower 1) Strobe Data on Do ~D; or Dg ~D;s
Data Strobe (LDS) 2) Assert Data Transfer Acknowledge
(DTACK)

1

Terminate Output Transfer

1) Negate UDS or TDS

2) Negate AS

3) Remove Data from Do ~D; or Dg ~D;s
4) Set R/W to Read

Terminate Cycle
1) Negate DTACK
J

Start Next Cycle

Figure 18 Read-Modify-Write Cycle Flow Chart

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11512513514S15516517518S19

CLK
AS Vo

UDS or LDS —'—___—/ ____/—_
RW \ /a
R\ _____/

FCo ~FC; D()(—

Figure 19 Read-Modify-Write Cycle Timing Diagram

116

PROCESSOR REQUESTING DEVICE

Request the Bus
1) Assert Bus Request (BR)

1

Grant Bus Arbitration
1) Assert Bus Grant (BG)

|

Acknowledge Bus Mastership

-

External arbitration determines next bus
master

Next bus master waits for current cycle to
complete

Next bus master asserts Bus Grant
Acknowledge (BGACK) to become new
master .

Bus master negates BR

»

<

2

|

Terminate Arbitration

1) Negate BG (and wait for BGACK to be
negated)

|

Operate as Bus Master
1) Perform Data Transfers (Read and Write
cycles) according to the same rules the pro-
cessor uses.

-

Release Bus Mastership
1) Negate BGACK

|

Re-Arbitrate or Resume Processor
Operation

Figure 20 Bus Arbitration Cycle Flow Chart

CLK

HD68000,HD68000Y

Requesting the Bus

External devices capable of becoming bus masters request
the bus by asserting the bus request (BR) signal. This is a wire
ORed signal (although it need not be constructed from open
collector devices) that indicates to the processor that some
external device requires control of the external bus. The pro-
cessor is effectively at a lower bus priority level that the ex-
ternal device and will relinquish the bus after it has completed
the last bus cycle it has started.

When no acknowledge is received before the bus request
signal goes inactive, the processor will continue processing
when it detects that the bus request is inactive. This allows
ordinary processing to continue if the arbitration circuitry
responded to noise inadvertently.

Receiving the Bus Grant o

The processor asserts bus grant (BG) as soon as possible.
Normally this is immediately after internal synchronization.
The only exception to this occurs when the processor has made
an internal decision to execute the next bus cycle but has not
progressed far enough into the cycle to have asserted the address
strobe (AS) signal. In this case, bus grant will not be asserted
until one clock after address strobe is asserted to indicate to
external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained
network or through a specific priority-encoded network. The
processor is not affected by the external method of arbitration
as long as the protocol is obeyed.

Acknowledgement of Mastership

Upon receiving a bus grant, the requesting device waits
until address strobe, data transfer acknowledge, and bus grant
acknowledge are negated before issuing its own BGACK. The
negation of the address strobe indicates that the previous
master has completed its cycle, the negation of bus grant
acknowledge indicates that the previous master has released
the bus. (While address strobe is asserted no device is allowed
to “break into” a cycle.) The negation of data transfer acknowl-
edge indicates the previous slave has terminated its connection
to the previous master. Note that in some applications data

Ay ~Azs }() e O - r—{

b — X

S\~~~

W e/) — g S—

R/
DTACK \ / \ / \ / \ V4 \ /
Do ~Dis N VN 7) N\ VN
| S—)\ S—— N/ N/ | S
Feo~Fe: X e — X — X
T\ / \ —

R

BGACK \ /

Processor — —-—i—-—— DMA Device —+— — — — — Processor — — — ——‘—-— — — DMA Device = = — —

Figure 21 Bus Arbitration Cycle Timing Diagram
117

HD68000,HD68000Y

transfer acknowledge might not enter into this function. Gen-
eral purpose devices would then be connected such that they
were only dependent on address strobe. When bus grant ac-
knowledge is issued the device is bus master until it negates
bus grant acknowledge. Bus grant acknowledge should not be
negated until after the bus cycle(s) is (are) completed. Bus
mastership is terminated at the negation of bus grant acknowl-
edge.

The bus request from the granted device should be drop-
ped after bus grant acknowledge is asserted. If a bus request
is still pending, another bus grant will be asserted within a few
clocks of the negation of bus grant. Refer to Bus Arbitration
Control section. Note that the processor does not perform
any external bus cycles before it re-asserts bus grant.

® BUS ARBITRATION CONTROL

The bus arbitration control unit in- the HD6800O is im-
plemented with a finite state machine. A state diagram of this
machine is shown in Figure 22. All asynchronous signals to the
HD68000 are synchronized before being used internally. This
synchronization is accomplished in a maximum of one cycle
of the system clock, assuming that the asynchronous input
setup time (#47) has been met (see Figure 23). The input
signal is sampled on the falling edge of the clock and is valid
internally after the next falling edge.

As shown in Figure 22, input signals labeled R and A are
internally synchronized on the bus request and bus grant

RA

R = Bus Request Internal

A = Bus Grant Acknowledge Internal

G = Bus Grant

T = Three-State Control to Bus Control Logic
X = Don't Care

* State machine will not change state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

Figure 22 State Diagram of HD68000 Bus
Arbitration Unit

acknowledge pins respectively. The bus grant output is lebeled
G and the internal three-state control signal T. If T is true, the
address, data, function code line, and control buses are placed
in a high-impedance state when AS is negated. All signals are
shown in positive logic (active high) regardless of their true
active voltage level.

State changes (valid outputs) occur on the next rising edge
after the internal signal is valid.

A timing diagram of the bus arbitration sequence during a
processor bus cycle is shown in Figure 24. The bus arbitration
sequence while the bus is inactive (i.e., executing internal
operations such as a multiply instruction) is shown in Figure 25.

If a bus request is made at a time when the MPU has already
begun a bus cycle but AS has not been asserted (bus state S0),
BG will not be asserted on the next rising edge. Instead, BG will
be delayed until the second rising edge following it’s internal
assertion. This sequence is shown in Figure 26.

® BUS ERROR AND HALT OPERATION

In a bus architecture that requires a handshake from an ex-
ternal device, the possibility exists that the handshake might not
occur. Since different systems will require a different maximum
response time, a bus error input is provided. External circuitry
must be used to determine the duration between address strobe
and data transfer acknowledge before issuing a bus error signal.
When a bus error signal is received, the processor has two
options initiate a bus error exception sequence or try running
the bus cycle again.

Internal Signal Valid
External Signal Sampled —j l

CLK

BR (External)

BR (Internal) \

Asychronous
Input Delay* >

N
l-—

* This delay time is equal to parameter #33, tcHGL-

Figure 23 Timing Relationship of External Asynchronous
Inputs to Interndl Signals

118

HD68000,HD68000Y

Bus three stated Bus rel d from three state and
BG asserted Processor starts next bus cycle
BR valid internal BGACK negated internal

BR sampled BGACK sampled

BR asserted —1 l BGACK negated

SO S1 S2 S3 S4 S5 S6 S7 SO St

f[{

FCo ~FC; J) (X:
RIF "\ _/

DTACK \ / \n__ /S

Do ~Dis —(—__ > _o—

Processor

Alternate Bus Master

| Processor
>
i

Figure 24 Bus Arbitration During Processor Bus Cycle

Bus released from three state and processor starts next bus cycle

BGACK negated
BG asserted and bus three stated
BR valid internal
BR sampled:
BR asserted

SO S1 S2 S3 S4 S5 S6 S7

SO S1 S2 S3 sS4

BR \ /
BG \ /
BGACK \ /
))
e | W —

>
)|
A

Figure 25 Bus Arbitration with Bus Inactive

119

) {
/ | VO —
\)
DTACK \ / \
Processor | Bus Inactive | Alternate Bus Master L Processor
i ™ o

HD68000,HD68000Y

BR asserted
BR sampled

Bus released from three state and
Processor starts next bus cycle

Bus three stated BGACK

BG asserted
BR valid i;ternﬂ ‘

BGACK sampled
BGACK negated

d internal

SO S1 S2 83 S4 S5 S6 S7 SO St

cLK
SO S1 52 S3 S4 S5 56 S7
BR "\ /
8G \
BGACK

Ay ~Aszs —._.—..(»

ETTTTN

ws T\ /-
wso . /™

FCo ~FC X D { xX—
RW _ /
DTACK \ / N/
Processor | Alternate Bus Master | L Processor
il ™
Figure 26 Bus Arbitration During Processor Bus Cycle Special Case
Exception Sequence (3) Reading the bus error vector table entry

When the bus error signal is asserted, the current bus cycle
is terminated. If BERR is asserted before the falling edge of
S4, AS will be negated in S7 in either a read or write cycle.
As long as BERR remains asserted, the data and address buses
will be in the high-impedance state. When BERR is negated,
the processor will begin stacking for exception processing.
Figure 27 is a timing diagram for the exception sequence.
The sequence is composed of the following elements.

(1) Stacking the program counter and status register

(2) Stacking the error information

(4) Executing the bus error handler routine

The stacking of the program counter and the status register
is the same as if an interrupt had occurred. Several additional
items are stacked when a bus error occurs. These items are used
to determine the nature of the error and correct it, if possible.
The bus error vector is vector number two located at address
$000008. The processor loads the new program counter from
this location. A software bus error handler routine is then
executed by the processor. Refer to EXCEPTION PROCESS-
ING for additional information.

120

HD68000,HD68000Y

Re-Running the Bus Cycle

When, during a bus cycle, the processor receives a bus error
signal and the halt pin is being driven by an external device,
the processor enters the re-run sequence. Figure 28 is a timing
diagram for re-running the bus cycle.

The processor terminates the bus cycle, then puts the address
and data output lines in the high-impedance state. The processor
remains ‘“halted,” and will not run another bus cycle until the
halt signal is removed by external logic. Then the processor
will re-run the previous bus cycle using the same address, the

same function codes, the same data (for a write operation), and
the same controls. The bus error signal should be removed at
least one clock cycle before the halt signal is removed.

(NOTE) The processor will not re-run a read-modify-write cycle. This
restriction is made to guarantee that the entire cycle runs cor-
rectly and that the write operation of a Test-and-Set operation
is performed without ever releasing AS. If BERR and HALT
are asserted during a read-modify-write bus cycle, a bus error
operation results.

A ~Azs H

AT\ /~ N \
LDS/UDS \ / N \
R/W N \
DTACK N \
Do ~Dis '—() '\‘ Ao
FCo ~FC; x : : X
BERR \ Ve
HALT '\c
Initiate . . Initiate Bus
|<- Read Response Failure —>|<— Bus Error Detection ->'<- Error-St;ckin'g-

Figure 27 Bus Error Timing Diagram

SO N [s S s S oy Sy

Ay ~Ags }{ IL

(o~

AT\ /

sos 1\ /

R/W

o
S
14
S
\

FCo~FC: __ X X
HALT—_—_\ /
je———-—-- Read-————b‘d-———————Halt-—————->|<--—-——Rerun———>|

Figure 28 Re-Run Bus Cycle Timing Information

121

HD68000,HD68000Y

The processor terminates the bus cycle, then puts the ad-
dress, data and function code output lines in the high-impedance
state. The processor remains ‘“halted,” and will not run another
bus cycle until the halt signal is removed by external logic. Then
the processor will re-run the previous bus cycle using the same
address, the same function codes, the same data (for a write
operation), and the same controls. The bus error signal should
be removed before the halt signal is removed.

Halt Operation with No Bus Error

The halt input signal to the HD68000 perform a Halt/Run/
Single-Step function in a similar fashion to the HMCS6800
halt function. The halt and run modes are somewhat self ex-
planatory in that when the halt signal is constantly active the
processor ‘‘halts” (does nothing) and when the halt signal is
constantly inactive the processor “runs’ (does something).

The single-step mode is derived from correctly timed transi-
tions on the halt signal input. It forces the processor to execute
a single bus cycle by entering the “run” mode until the pro-
cessor starts a bus cycle then changing to the ‘halt” mode.
Thus, the single-step mode allows the user to proceed through
(and therefore debug) processor operations one bus cycle at a
time.

Figure 29 details the timing required for correct single-step
operations. Some care must be exercised to avoid harmful
interactions between the bus error signal and the halt pin
when using the single cycle mode as a debugging tool. This
is also true of interactions between the halt and reset lines
since these can reset the machine.

When the processor completes a bus cycle after recognizing
that the halt signal is active, most three-state signals are put
in the high-impedance state. These include:

(1) Address lines

(2) Data lines

This is required for correct performance of the re-run bus
cycle operation.

While the processor is honoring the halt request, bus arbitra-
tion performs as usual. That is, halting has no effect on bus
arbitration. It is the bus arbitration function that removes the
control signals from the bus.

The halt function and the hardware trace capability allow
the hardware debugger to trace single bus cycles or single in-
structions at a time. These processor capabilities, along with
a software debugging package, give total debugging flexibility.

Double Bus Faults

When a bus error exception occurs, the processor will at-
tempt to stack several words containing information about
the state of the machine. If a bus error exception occurs during
the stacking operation, there have been two bus errors in a row.
This is commonly referred to as a double bus fault. When a
double bus fault occurs, the processor will halt. Once a bus
error exception has occurred, any bus error exception occurring
before the execution of the next instruction constitutes a dou-
ble bus fault.

Note that a bus cycle which is re-run does not constitute a
bus error exception, and does not contribute to a double bus
fault. Note also that this means that as long as the external
hardware requests it, the processor will continue to re-run
the same bus cycle.

The bus error pin also has an effect on processor operation
after the processor receives an external reset input. The pro-
cessor reads the vector table after a reset to determine the ad-
dress to start program execution. If a bus error occurs while
reading the vector table (or at any time before the first instruc-
tion is executed), the processor reacts as if a double bus fault
has occurred and it halts. Only an external reset will start a
halted processor.

p

HALT \

/

Id— — — —Read— — — -+— — — — —Halt— — — —»fe— — — —Read— — —»]

Figure 29 Halt Signal Timing Characteristics

122

+5V

RUN
MODE

SINGLE
STEP

RUN/SINGLE STEP

'HD68000,HD68000Y

+5V

MODE

+5V

SINGLE
STEP

g

WAIT

STEP

HALT
({To Processor).

* OPEN COLLECTOR
DEVICE

I

STEP

ol

—

AS (From Processor)
RESET

Figure 30 Simplified Single-Step Circuit

s THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a
re-run or a bus error condition, DTACK, BERR, and HALT
should be asserted and negated on the rising edge of the
HD68000 clock. This will assure that when two signals are
asserted simultaneously, the required setup time (#47) for
both of them will be met during the same bus state.

This, or some equivalent precaution, should be designed
external to the HD68000. Parameter #48 is intended to ensure
this operation in a totally asynchronous system, and may be
ignored if the above conditions are met.

The preferred bus cycle terminations may be summarized
as follows (case numbers refer to Table 4):

Normal Termination: DTACK occurs first (case 1).

Halt Termination: HALT is asserted at same time, or
precedes DTACK (no BERR) cases 2 and 3.

Bus Error Termination: BERR is asserted in lieu of, at same
time, or preceding DTACK (case 4); BERR negated at same
time, or after DTACK.

Re-Run Termination: HALT and BERR asserted at the
same time, or before DTACK (cases 6 and 7); HALT must be
negated at least 1 cycle after BERR. (Case 5 indicates BERR

may precede HALT which allows fully asynchronous assertion).*

Table 4 details the resulting bus cycle termination under
various combinations of control signal sequences. The nega-
tion of these same control signals under several conditions is
shown in Table 5 (DTACK is assumed to be negated normal-
ly in all cases; for best results, both DTACK and BERR should
be negated when address strobe is negated.)

Example A: A system uses a watch-dog timer to terminate
accesses to un-populated address space. The timer asserts
DTACK and BERR simultaneously after time-out. (case 4)

Example B: A system uses error detection on RAM con-
tents. Designer may (a) delay DTACK until data verified, and
return BERR and HALT simultaneously to re-run error cycle
(case 6), or if valid, return DTACK; (b) delay DTACK until
data verified, and return BERR at same time as DTACK if
data in error (case 4); (c) return DTACK prior to data verifica-
tion, as described in previous section. If data invalid, BERR is
asserted (case 1) in next cycle. Error-handling software must
know how to recover error cycle.

* For the mask version 68000, HALT and BERR must be asserted at
the same time.

123

HD68000,HD68000Y

Table4 DTACK, BERR, HALT Assertion Results

Asserted on Rising
Case No. | Control Signal Edge of State Result
N N+2
DTACK A S
1 BERR NA X Normal cycle terminate and continue.
HALT NA X
DTACK A S
2 BERR NA X Normal cycle terminate and halt. Continue when HALT removed.
HALT A S
DTACK NA A
3 BERR NA NA Normal cycle terminate and halt. Continue when HALT removed.
HALT A S
DTACK X X
4 BERR A S Terminate and take bus error trap.
HALT NA NA
DTACK NA X
5 BERR A S Terminate and re-run®.
HALT NA A
DTACK X X
6 BERR A S Terminate and re-run.
HALT A S
DTACK NA X
7 BERR NA A Terminate and re-run when HALT removed.
HALT A S
Legend: * For the mask version 68000, unpredictable results, no re-run, no error

N — The number of the current even bus state (e.g., S4, S6, etc.)
A — Signal is asserted in this bus state

NA — Signal is not asserted in this state

X — Don’t care

trap; usually traps to vector number O.

S — Signal was asserted in previous state and remains asserted in this state

Table 5 BERR and HALT Negation Results

Conditions of Negated on Rising
Termination in Control Signal Edge of State Results — Next Cycle
Table A N N+2
Bus Error ET'?L—? : g: : Takes bus error trap.
Re-run EE\;?} : or ® Illegal sequence; usually traps to vector number 0.
Re-run FB'%; ® ° Re-runs the bus cycle.
Normal %—“& : or ° May lengthen next cycle.
Normal 3——-—?{.?. . or no.ne If next cycle is started it will be terminated as a bus error.

® RESET OPERATION

The reset signal is a bidirectional signal that allows either the
processor or an external signal to reset the system. Figure 31
is a timing diagram for reset operations. Both the halt and reset
lines must be applied to ensure total reset of the processor.

When the reset and halt lines are driven by an external
device, it is recognized as an entire system reset, including
the processor. The processor responds by reading the reset
vector table entry (vector unumber zero, address $000000)
and loads it into the supervisor stack pointer (SSP). Vector
table entry number one at address $000004 is read next and
loaded into the program counter. The processor initializes
the status register to an interrupt level of seven. No other

registers are affected by the reset sequence.

When a RESET sequence is executed, the processor drives
the reset pin for 124 clock pulses. In this case, the processor
is trying to reset the rest of the system. Therefore, there is
no effect on the internal state of the processor. All of the
processor’s internal registers and the status register are un-
affected by the execution of a RESET instruction. All external
devices connected to the reset line should be reset at the com-
pletion of the RESET instruction.

Asserting the Reset and Halt pins for 10 clock cycles will
cause a processor reset, except when Vg is initially applied
to the processor. In this case, an external reset must be applied
for 100 milliseconds.

124

HD68000,HD68000Y

Plus 5 Volts

v
cc j=— t > 100 Milliseconds —e-|

AES |

AALCT 7]

s

fo— t<4

fe (1)

(NOTES)
1) Internal start-up time 4) PC High read in here
2) SSP High read in here 5) PC Low read in here

X

5) (6)

X X_X
2 @ @

Bus State Unknown: mo(

3) SSP Low read in here 6) First instruction fetched here, All Control Signals Inactive.) (

Data Bus In Read Mode:

Figure 31 Reset Operation Timing Diagram

8 PROCESSING STATES

This section describes the HD68000 which are outside the

normal processing associated with the execution of instructions.
The functions of the bits in the supervisor portion of the status
register are covered: the supervisor/user bit, the trace enable bit,
and the processor interrupt priority mask. Finally, the sequence
of memory references and actions taken by the processor on
exception conditions is detailed.

The HD68000 is always in one of three processing states:
normal, exception, or halted. The normal processing state is
that associated with instruction execution; the memory ref-
erences are to fetch instructions and operands, and to store
results. A special case of the normal state is the stopped state
which the processor enters when a STOP instruction is exe-
cuted. In this state, no further memory references are made.

The exception processing state is associated with interrupts,
trap instructions, tracing and other exceptional conditions.
The exception may be internally generated by an instruction
or by an unusual condition arising during the execution of
an instruction. Externally, exception processing can be forced
by an interrupt, by a bus error, or by a reset. Exception process-
ing is designed to provide an efficient context switch so that
the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic
hardware failure. For example, if during the exception pro-
cessing of a bus error another bus error occurs, the processor
assumes that the system is unusable and halts. Only an external
reset can restart a halted processor. Note that a processor in the
stopped state is not in the halted state, nor vice versa.

PROCESSING STATES

INSTRUCTION
EXECUTION
(INCLUDING STOP)

NORMAL

INTERRUPTS
TRAPS
TRACING ETC.

EXCEPTION

HARDWARE HALT

HALTED DOUBLE BUS FAULT

® PRIVILEGE STATES

The processor operates in one of two states of privilege:
the ‘“user” state or the “supervisor” state. The privilege state
determines which operations are legal, is used by the external
memory management device to control and translate accesses,
and is used to choose between the supervisor stack pointer
and the user stack pointer in instruction references.

The privileges state is a mechanism for providing security
in a computer system. Programs should access only their own
code and data areas, and ought to be restricted from accessing
information which they do not need and must not modify.

The privilege mechanism provides security by allowing
most programs to execute in user state. In this state, the ac-
cesses are controlled, and the effects on other parts of the
system are limited. The operating system executes in the super-
visor state, has access to all resources, and performs the over-
head tasks for the user state programs.

SUPERVISOR STATE

The supervisor state is the higher state of privilege. For
instruction execution, the supervisor state is determined by
the S-bit of the status register; if the S-bit is asserted (high),
the processor is in the supervisor state. All instructions can be
executed in the supervisor state. The bus cycles generated by
instructions executed in the supervisor state are classified as
supervisor references. While the processor is in the supervisor
privilege state, those instructions which use either the system
stack pointer implicitly or address register seven explicitly
access the supervisor stack pointer.

All exception processing is done in the supervisor state,
regardless of the setting of the S-bit. The bus cycles generated
during exception processing are classified as supervisor refer-
ences. All stacking operations during exception processing use
the supervisor stack pointer.

USER STATE

The user state is the lower state of privilege. For instruction
execution, the user state is determined by the S-bit of the status
register; if the S-bit is negated (low), the processor is executing
instructions in the user state.

Most instructions execute the same in user state as in the
supervisor state. However, some instructions which have im-
portant system effects are made privileged. User programs
are not permitted to execute the STOP instruction, or the

125

HD68000,HD68000Y

RESET instruction. To ensure that a user program cannot
enter the supervisor state except in a controlled manner, the
instructions which modify the whole status register are privi-
leged. To aid in debugging programs which are to be used as
operating systems, the move to user stack pointer (MOVE
USP) and move from user stack pointer (MOVE from USP)
instructions are also privileged.

The bus cycles generated by an instruction executed in
user state are classified as user state references. This allows
an external memory management device to translate the ad-
dress and to control access to protected portions of the address
space. While the processor is in the user privilege state, those
instructions which use either the system stack pointer im-
plicitly, or address register seven explicitly, access the use stack
pointer.

PRIVILEGE STATE CHANGES

Once the processor is in the user state and executing instruc-
tions, only exception processing can change the privilege state.
During exception processing, the current setting of the S-bit
of the status register is saved and the S-bit is asserted, putting
the processing in the supervisor state. Therefore, when instruc-
tion execution resumes at the address specified to process the
exception, the processor is in the supervisor privilege state.

USER/SUPERVISOR MODES

TRANSITION ONLY MAY OCCUR
DURING EXCEPTION PROCESSING

TRANSITION MAY BE MADE BY:
RTE; MOVE, ANDI, EORI TO STATUS WORD

REFERENCE CLASSIFICATION

When the processor makes a reference, it classifies the kind
of reference being made, using the encoding on the three func-
tion code output lines. This allows external translation of ad-
dresses, control of access, and differentiation of special pro-
cessor states, such as interrupt acknowledge. Table 6 lists the
classification of references.

Table 6 Reference Classification

Function Code Output Reference Class
FC, FC, FCo
0 0 0 (Unassigned)
0 0 1 User Data
0 1 0 User Program
0 1 1 (Unassigned)
1 0 0 (Unassigned)
1 0 1 Supervisor Data
1 1 [Supervisor Program
1 1 1 Interrupt Acknowledge

® EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing,
a general description of exception processing is in order. The
processing of an exception occurs in four steps, with variations
for different exception causes. During the first step, a tem-
porary copy of the status register is made, and the status register
is set for exception processing. In the second step the exception
vector is determined, and the third step is the saving of the
current processor context. In the fourth step a new context is
obtained, and the processor switches to instruction processing.

EXCEPTION VECTORS

Exception vectors are memory locations from which the
processor fetches the address of a routine which will handle
that exception. All exception vectors are two words in length
(Figure 32), except for the reset vector, which is four words.
All exception vectors lie in the supervisor data space, except
for the reset vector which is in the supervisor program space.
A vector number is an eight-bit number which, when multiplied
by four, gives the address of an exception vector. Vector num-
bers are generated internally or externally depending on the
cause of the exception. In the case of interrupts, during the
interrupt acknowledge bus cycle, a peripheral provides an 8-bit
vector number (Figure 33) to the processor on data bus lines Dy
through D,. The processor translates the vector number into
a full 24-bit address, as shown in Figure 34. The memory
layout for exception vectors is given in Table 7.

As shown in Table 7, the memory layout is 512 words
long (1024 bytes). It starts at address O and proceeds through
address 1023. This provides 255 unique vectors; some of these
are reserved for TRAPS and other system functions. Of the
255, there are 192 reserved for user interrupt vectors. However,
there is no protection on the first 64 entries, so user interrupt
vectors may overlap at the discretion of the systems designer.

KINDS OF EXCEPTIONS

Exceptions can be generated by either internal or external
causes. The externally generated exceptions are the interrupts
and the bus error and reset requests. The interrupts are requests
from peripheral devices for processor action while the bus
error and reset inputs are used for access control and processor
restart. The internally generated exceptions come from instruc-
tions, or from address error or tracing. The trap (TRAP), trap
on overflow (TRAPV), check register against bounds (CHK)
and divide (DIV) instructions all can generate exceptions as
part of their instruction execution. In addition, illegal instruc-
tions, word fetches from odd addresses and privilege violations
cause exceptions. Tracing behaves like a very high priority,
internally generated interrupt after each instruction execution.

EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four identifiable steps. In
the first step, an internal copy is made of the status register.
After the copy is made, the S-bit is asserted, putting the pro-
cessor into the supervisor privilege state. Also, the T-bit is
negated which will allow the exception handler to execute
unhindered by tracing. For the reset and interrupt exceptions,
the interrupt priority mask is also updated.

In the second step, the vector number of the exception is
determined. For interrupts, the vector number is obtained by
a processor fetch, classified as an interrupt acknowledge. For
all other exceptions, internal logic provides the vector number.
This vector number is then used to generate the address of
the exception vector.

126

Word 0

Word 1

New Program Counter (High) A0=0, A1=0
New Program Counter (Low) A0=0, A1=1
Figure 32 Exception Vector Format
D15 D8 D7 DO
fgnored v7|v6|vb|va|v3|v2]vl|vO
Where:

v7 is the MSB of the Vector Number
VO is the LSB of the Vector Number

Figure 33 Peripheral Vector Number Format

HD68000,HD68000Y

A23 A10 A9 AB A7 A6 A5 A4 A3 A2 A1 A0
All Zeroes v7|v6|v5lv4|v3|v2] vi|vOj O | O
Figure 34 Address Translated From 8-Bit Vector Number
Table 7 Exception Vector Assignment
Address }
N;’:&m s) Dec Hox Space Assignment
0 0 000 SP Reset: Initial SSP
- 4 004 SP Reset: Initial PC
2 8 008 SD Bus Error
3 12 00c sSD Address Error
4 16 010 SD IHlegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
1 44 02C SD Line 1111 Emulator
12* 48 030 SD (Unassigned, reserved)
13* 52 034 SD (Unassigned, reserved)
14" 56 038 SD {Unassigned, reserved)
15 60 03C sSD Uninitialized Interrupt Vector
16 ~ 23* :; (0);(: SD (Unassigned, reserved)
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 Q074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
128 080 X
32~47 91 0BF sD TRAP Instruction Vectors
48 ~ 63" 192 aco SD (Unassigned, reserved)
255 OFF ’
256 100
64 ~ 255 1023 3FF sSD User Interrupt Vectors

SP: Supervisor program, SD: Supervisor data

* Vector numbers 12, 13, 14, 16 through 23 and 48 through 63 are reserved for future enhancements by Hitachi.
No user peripheral devices should be assigned these numbers.

127

HD68000,HD68000Y —

The third step is to save the current processor status, ex-
cept for the reset exception. The current program counter
value and the saved copy of the status register are stacked
using the supervisor stack pointer. The program counter value
stacked usually points to the next unexecuted instruction,
however for bus error and address error, the value stacked
for the program counter is unpredictable, and may be incre-
mented from the address of the instruction which caused the

error. Additional information defining the current context is
stacked for the bus error and address error exceptions.

The last step is the same for all exceptions. The new program
counter value is fetched from the exception vector. The pro-
cessor then resumes instruction execution. Then instruction
at the address given in the exception vector is fetched, and
normal instruction decoding and execution is started.

Copy Status

Register
within the
HD68000
Set Mask
Bits to
Interrupt
Level
Obtain Vector
No Number from
An External
Internally Device
Generated
Vector No. Yes
Obtain Auto -
Vector Number Bus Yes Force Spurious
from Interrupt Error Interrupt Vector
Level Oceurs Internally
{ No
Vector No.
x4= [
Vector Address
Illegal
Stack Program _ 2nd
Counter and ofg?]’:?'_ Yes Time (Oth- No
Copied Status ror Oc- er than
Register curs Spur;ous)
? ?
Double
No e Bus END
Fault
Bus
Error or Stack Instruc-
Illegal Ad- Yes tion Register, Bus
dress Ex- Address and Su-
ception per Status Word
?
No
Fetch Vector Yes
Address
Contents
Pre-
vious I1-
legal Ad-
Ear:':r Yes dress or Bus No
Occurs Error has
cc;" Occurred
y (Not Spur-
ious)
?
No
Put Data
in
llegal
Address Yes
25:::;::5: or Bus Error
Occurs
?
Fetch PC+2 No
Contents
Iilegal
Address Yes
or Bus Error

Occurs
?

Figure 35 Exception Processing Sequence (Not Reset)

128

MULTIPLE EXCEPTIONS

These paragraphs describe the processing which occurs
when multiple exceptions arise simultaneously. Exceptions
can be grouped according to their occurrence and priority. The
Group O exceptions are reset, bus error, and address error.
These exceptions cause the instruction currently being executed
to be aborted, and the exeception processing to commence
within two clock cycles. The Group 1 exceptions are trace and
interrupt, as well as the privilege violations and illegal instruc-
tions. These exceptions allow the current instruction to execute
to completion, but preempt the execution of the next instruc-
tion by forcing exception processing to occur (privilege viola-
tions and illegal instructions are detected when they are the
next instruction to be executed). The Group 2 exceptions
occur as part of the normal processing of instructions. The
TRAP, TRAPV, CHK, and zero divide exceptions are in this
group. For these exceptions, the normal execution of an instruc-
tion may lead to exception processing.

Group O exceptions have highest priority, while Group 2
exceptions have lowest priority. Within Group O, reset has

highest priority, followed by address error and then bus error.

Within Group 1, trace has priority over external interrupts,
which in turn takes priority over illegal instruction and privi-
lege violation. Since only one instruction can be executed at
a time, there is no priority relation within Group 2.

The priority relation between two exceptions determines
which is taken, or taken first, if the conditions for both arise
simultaneously. Therefore, if a bus error occurs during a TRAP
instruction, the bus error takes precedence, and the TRAP
instruction processing is aborted. In another example, if an
interrupt request occurs during the execution of an instruction
while the T-bit is asserted, the trace exception has priority,
and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruc-
tion processing commences finally in the interrupt handler
routine. A summary of exception grouping and priority is given
in Table 8.

Table 8 Exception Grouping and Priority

Group Exception Processing
Reset . . .
Exception processing begins

0 Sgggrsrs;:rror within two clock cycles.
Trace

1 Interrupt Exception processing begins
lllegal before the next instruction
Privilege

2 gﬁﬁp TRAPV Exception processing is started by
Zer o'Divi de normal instruction execution

HD68000,HD68000Y

RECOGNITION TIMES OF EXCEPTIONS,
HALT, AND BUS ARBITRATION

END OF A CLOCK CYCLE
RESET

END OF A BUS CYCLE
ADDRESS ERROR
BUS ERROR
HALT
BUS ARBITRATION

END OF AN INSTRUCTION CYCLE
TRACE EXCEPTION
INTERRUPT EXCEPTIONS
ILLEGAL INSTRUCTION
UNIMPLEMENTED INSTRUCTION
PRIVILEGE VIOLATION

WITHIN AN INSTRUCTION CYCLE
TRAP, TRAPV
CHK
ZERO DIVIDE

® EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources, and each exception
has processing which is peculiar to it. The following paragraphs
detail the sources of exceptions, how each arises, and how each
is processed.

RESET

The reset input provides the highest exception level. The
processing of the reset signal is designed for system initiation,
and recovery from catastrophic failure. Any processing in pro-
gress at the time of the reset is aborted and cannot be recovered.
The processor is forced into the supervisor state, and the trace
state is forced off. The processor interrupt priority mask is set
at level seven. The vector number is internally generated to
reference the reset exception vector at location 0 in the super-
visor program space. Because no assumptions can be made about
the validity of register contents, in particular the supervisor
stack pointer, neither the program counter nor the status
register is saved. The address contained in the first two words
of the reset exception vector is fetched as the initial supervisor
stack pointer, and the address in the last two words of the
reset exception vector is fetched as the initial program counter.
Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be pointed
to by the initial program counter.

The RESET instruction does not cause loading of the reset
vector, but does assert the reset line to reset external devices.
This allows the software to reset the system to a known state
and then continue processing with the next instruction.

129

HD68000,HD68000Y

S—>1
T->0
Mask Bits > 7

!

Fetch
Vector
No.0

Bus Error
QOccurs
?

Contents of
Vector No. 0
—> Stack Pointer

!

Fetch
Vector
No. 1

Bus Error
Occurs,
?

No

Contents of

Vector No. 1
—-PC

Fetch PC
Contents Bus Error

Occurs,

Fetch PC+2
Contents

Yes

Double

Fault

to Address Error or Bus Error Exception Processing

Figure 36 Reset Exception Processing

INTERRUPTS

Seven levels of interrupt priorities are provided. Devices
may be chained externally within interrupt priority levels,
allowing an unlimited number of peripheral devices to inter-
rupt the processor. Interrupt priority levels are numbered
from one to seven, level seven being the highest priority. The
status register contains a three-bit mask which indicates the
current processor priority, and interrupts are inhibited for
all priority levels less than or equal to the current processor
priority.

An interrupt request is made to the processor by encoding
the interrupt request level on the interrupt request lines; a
zero indicates no interrupt request. Interrupt requests arriving
at the processor do not force immediate exception processing,

but are made pending. Pending interrupts are detected between
instruction executions. If the priority of the pending interrupt
is lower than or equal to the current processor priority, exe-
cution continues with the next instruction and the interrupt
exception processing is postponed. (The recognition of level
seven is slightly different, as explained in a following paragraph.)

If the priority of the pending interrupt is greater than the
current processor priority, the exception processing sequence
is started. First a copy of the status register is saved, and the
privilege state is set to supervisor, tracing is suppressed, and
the processor priority level is set to the level of the interrupt
being acknowledged. The processor fetches the vector number
from the interrupting device, classifying the reference as an
interrupt acknowledge and displaying the level number of

130

the interrupt being acknowledged on the address bus. If external
logic requests an automatic vectoring, the processor internally
generates a vector number which is determined by the interrupt
level number. If external logic indicates a bus error, the inter-
rupt is taken to be spurious, and the generated vector number
references the spurious interrupt vector. The processor then
proceeds with the usual exception processing, saving the pro-
gram counter and status register on the supervisor stack. The
saved value of the program counter is the address of the instruc-
tion which would have been executed had the interrupt not
been present. The content of the interrupt vector whose vector
number was previously obtained is fetched and loaded into the
program counter, and normal instruction execution commences
in the interrupt handling routine. A flow chart for the interrupt
acknowledge sequence is given in Figure 37, a timing diagram
is given in Figure 38, and the interrupt exception timing se-
quence is shown in Figure 39.

Table 9 Internal Interrupt Level

Level 12 1 10 Interrupt
7 1 1 1 Non-Maskable Interrupt
6 1 1 0
5 1 0 1
4 1 0 0 Maskable Interrupt
3 0 1 1
2 0 1 0
1 0 0 1
0 0 0 0 No Interrupt

(NOTE) The internal interrupt mask level (12, 11, 10) are inverted to the
logic level applied to the pins (TPT, , TPL, , IPLo).

HD68000,HD68000OY

PROCESSOR INTERRUPTING DEVICE

Request Interrupt

|

Grant Interrupt

Compare interrupt level in status register
and wait for current instruction to complete
2) Place interrupt level on A, , Az, A;

3) Set R/W to read

4) Set function code to interrupt acknowledge
5) Assert address strobe (AS)

6) Assert lower data strobe (LDS)

1

|

Provide Vector Number

1) Place vector number of Do ~ D,
2) Assert data transfer acknowledge (DTACK)

|

Acquire Vector Number

1} Latch vector number
2) Negate LDS

3) Negate AS
Release
1) Negate DTACK
Start Interrupt Pr ing

Figure 37 Interrupt Acknowledge Sequence
Flow Chart

/ N \ /
VR __/

- R | pr—
e e— X ——
> O ———(

k\r
D(N
FCo ~ FC: A‘ \
N A
IPLo ~ IPL, t\‘ 7N
A]
Last Bus Cycle of Instruction Stack IACK Cycle 4 Clocks Stack and
1 (Read or Write) | Idle | PCL (Vector Number Acquisition) | . Idle | Vector Fetch
! I T(ssp).l T T

Figure 38 Interrupt Acknowledge Sequence Timing Diagram

HD68000,HD68000Y

Last Bus Cycle 1ACK
(of Instruction Stack Cycle Stack Stack
During Which PCL Status PCH >
Interrupt Was (ssP) (Vector Number (SSP) (SsP)
Recognized) cquisition
Read Read Fetch First Word
Vector Vector of Instruction
High Low of Interrupt
(Age ~ Aas) (Ao ~ Ass) Routine

Figure 39 Interrupt Exception Timing Sequence

Priority level seven is a special case. Level seven interrupts
cannot be inhibited by the interrupt priority mask, thus pro-
viding a “non-maskable interrupt” capability. An interrupt is
generated each time the interrupt request level changes from
some lower level to level seven. Note that a level seven interrupt
may still be caused by the level comparison if the request level
is a seven and the processor priority is set to a lower level by an
instruction.

UNINITIALIZED INTERRUPT

An interrupting device asserts VPA or provides an interrupt
vector during an interrupt acknowledge cycle to the HD68000.
If the vector register has not been initialized, the responding
HMCS68000 Family peripheral will provide vector 15, the
unitialized interrupt vector. This provides a uniform way to
recover from a programming error.

SPURIOUS INTERRUPT

If during the interrupt acknowledge cycle no device responds
by asserting DTACK or VPA, the bus error line should be assert-
ed to terminate the vector acquisition. The processor separates
the processing of this error from bus error by fetching the
spurious interrupt vector instead of the bus error vector. The
processor then proceeds with the usual exception processing.

INSTRUCTION TRAPS

Traps are exceptions caused by instructions. They arise
either from processor recognition of abnormal conditions
during instruction execution, or from use of instructions whose
normal behavior is trapping.

Some instructions are used specifically to generate traps.
The TRAP instruction always forces an exception, and is useful
for implementing system calls for user programs. The TRAPV
and CHK instructions force an exception if the user program
detects a runtime error, which may be an arithmetic overflow
or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DIVU) in-
structions will force an exception if a division operation is
attempted with a divisor of zero.

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS

Illegal instruction is the term used to refer to any of the
word bit patterns which are not the bit pattern of the first
word of a legal instruction. During instruction execution, if
such an instruction is fetched, an illegal instruction exception
occurs.

Word patterns with bits 15 through 12 equaling 1010 or
1111 are distinguished as unimplemented instructions and
separate exception vectors are given to these patterns to per-
mit efficient emulation. This facility allows the operating
system to detect program errors, or to emulate unimplemented
instructions in software.

ILLEGAL INSTRUCTION EXAMPLE
MOVE DO, #$1000

MOVE OP WORD

0011 100111 000 000
MOVE IMMEDIATE DATA REGISTER
WORD REGISTER NUMBER

DIRECT o

PRIVILEGE VIOLATIONS

In order to provide system security, various instructions
are privileged. An attempt to execute one of the privileged
instructions while in the user state will cause an exception.
The privileged instruction are:

STOP AND (word) Immediate to SR
RESET EOR (word) Immediate to SR
RTE OR (word) Immediate to SR
MOVEto SR MOVE USP

TRACING

To aid in program development, the HD68000 includes
a facility to allow instruction by instruction tracing. In the
trace state, after each instruction is executed an exceptions
is forced, allowing a debugging program to monitor the exe-
cution of the program under test.

The trace facility uses the T-bit in the supervisor portion
of the status register. If the T-bit is negated (off), tracing is
disabled, and instruction execution proceeds from instruction
to instruction as normal. If the T-bit is asserted (on) at the
beginning of the execution of an instruction, a trace exception
will be generated after the execution of that instruction is
completed. If the instruction is not executed. either because
an interrupt is taken, or the instruction is illegal or privileged,
the trace exception does not occur. The trace exception also
does not occur if the instruction is aborted by a reset, bus

132

error, or address error exception. If the instruction is-indeed ex-
ecuted and an interrupt is pending on completion, the trace
exception is processed before the interrupt exception. If, during
the execution of the instruction, an exception is forced by that
instruction, the forced exception is processed before the trace
exception.

As an extreme illustration of the above rules, consider the
arrival of an interrupt during the execution of a TRAP instruc-
tion while tracing is enabled. First the trap exception is pro-
cessed, then the trace exception, and finally the interrupt ex-
ception. Instruction execution resumes in the interrupt handler
routine.

TRACE MODE
IET=1

STATUS REGISTER

L]

AFTER EACH

INSTRUCTION MAIN

PROGRAM

RETURN TO
EXECUTE

NEXT
INSTRUCTION

ADDRESS OBTAINED
FROM VECTOR TABLE

TRACE
PROGRAM

-

. If, upon completion of an instruction, T =1,
go to trace exception processing.

. Execute trace exception sequence.

. Execute trace service routine.

. At the end of the service routine, execute
return from exception (RTE).

HBWN

BUS ERROR

Bus error exceptions occur when the external logic requests
that a bus error be processed by an exception. The current bus
cycle which the processor is making is then aborted. Whether
the processor was doing instruction or exception processing,
that processing is terminated, and the processor immediately
begins exception processing.

Exception processing for bus error follows the usual se-
quence of steps. The status register is copied, the supervisor
state is entered, and the trace state is turned off. The vector
number is generated to refer to the bus error vector. Since the
processor was not between instructions when the bus error
exception request was made, the context of the processor is
more detailed. To save more of this context, additional infor-
mation is saved on the supervisor stack. The program counter
and the copy of the status register are of course saved. The value
saved for the program counter is advanced by some amount,
two to ten bytes beyond the address of the first word of the
instruction which made the reference causing the bus error. If
the bus error occurred during the fetch of the next instruction,
the saved program counter has a value in the vicinity of the
current instruction, even if the current instruction is a branch,
a jump, or a return instruction. Besides the usual information,
the processor saves its internal copy of the first word of the
instruction being processed, and the address which was being
accessed by the aborted bus cycle. Specific information about
the access is also saved: whether it was a read or a write, wheth-
er the processor was processing an instruction or not, and the
classification displayed on the function code outputs when

HD68000,HD68000Y

the bus error occurred. The processor is processing an instruc-
tion if it is in the normal state or processing a Group 2 excep-
tion; the processor is not processing an instruction if it is pro-
cessing a Group 0 or a Group.1 exception. Figure 40 illustrates
how this information is organized on the supervisor stack.
Although this information is not sufficient in general to effect
full recovery from the bus error, it does allow software diag-
nosis. Finally, the processor commences instruction processing
at the address contained in the vector. It is the responsibility
of the error handler routine to clean up the stack and determine
where to continue execution.

If a bus error occurs during the exception processing for a
bus error, address error, or reset, the processor is halted, and
all processing cases. This simplifies the detection of catastrophic
system failure, since the processor removes itself from the
system rather than destroy all memory contents. Only the
RESET pin can restart a halted processor.

ADDRESS ERROR

Address error exceptions occur when the processor attempts
to access a word or a long word operand or an instruction at
an odd address. The effect is much like an internally generated
bus error, so that the bus cycle is aborted, and the processor
ceases whatever processing it is currently doing and begins
exception processing. After exception processing commences,
the sequence is the same as that for bus error including the
information that is stacked, except that the vector number
refers to the address error vector instead. Likewise, if an address
error occurs during the exception processing for a bus error,
address error, or reset, the processor is halted. As shown in
Figure 42, an address error will execute a short bus cycle follow-
ed by exception processing.

® INTERFACE WITH HMCS6800 PERIPHERALS

Hitachi’s extensive line of HMCS6800 peripherals are di-
rectly compatible with the HD68000. Some of these devices
that are particularly useful are:

HD6821 Peripheral Interface Adapter

HD6843 Floppy Disk Controller

HD6845S CRT Controller

HD46508 Data Acquisition Unit

HD6850 Asynchronous Communication Interface
Adapter

HD6852 Synchronous Serial Data Adapter

To interface the synchronous HMCS6800 peripherals with
the asynchronous HD68000, the processor modifies its bus
cycle to meet the HMCS6800 cycle requirements whenever an
HMCS6800 device address is detected. This is possible since
both processors use memory mapped 1/O. Figure 44 is a flow
chart of the interface operation between the processor and
HMCS6800 devices.

® DATA TRANSFER OPERATION

Three signal on the processor provide the HMCS6800 inter-
face. They are: enable (E), valid memory address (VMA), and
valid peripheral address (VPA). Enable corresponds to the
E or ¢, signal in existing HMCS6800 systems. The bus fre-
quency is one tenth of the incoming HD6800O clock frequency.
The timing of E allows 1 MHz peripherals to be used with
an 8 MHz HD68000. Enable has a 60/40 duty cycle; that
is, it is low for six input clocks and high for four input clocks.
This duty cycle allows the processor to do successive VPA ac-
cesses on successive E pulses.

HMCS6800 cycle timing is given in Figure 45 and 46. At

133

HD68000,HD68000Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lower Address R/W| UN

Function Code

High
e wm o+ ACCESS AQAress = = am cm cm o o oom = o= = - - - - - - - - - - - -

Low

Instruction Register

Status Register

High

f= == = Program COuUNter = = am mm cm e e o o o o o o o o o o o = ———— - - - - - - o]

Low

R/W (read/write): write = 0, read = 1. I/N (instruction/not): instruction = 0, not = 1

Figure 40 Supervisor Stack Order (Group 0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Lower Address Status Register
High
be = = = = Program Counter = = = = = = = = = - - ---.- - - - -
Higher Address Low
Figure 41 Supervisor Stack Order (Group 1, 2)
SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 'S4 S5 S6 S7 SO St S2 S3 S4 S5
B S
Ay ~Aa; _—'—{ H /\ A‘ |
- N
A§ — [\ / N \
e S A N |
\-
AY
R __ VA N
DTACK \ / \ \
Do ~ Dys .\‘ A ——
Aerr Approx. 8 Clocks | :
}4 Read + W:it a =‘I= ldle | Write Stack ————s»
Figure 42 Address Error Timing
state zero (SO) in the cycle, the address bus is in the high- - During state 2, the address strobe (AS) is asserted to in-

impedance state. A function code is asserted on the function dicate that there is a valid address on the address bus. If the
code output lines. One-half clock later, in state 1 the address bus cycle is a read cycle, the upper and/or lower data strobes
bus is released from the high-impedance state. are also asserted in state 2. If the bus cycle is a write cycle,

134

Do ~ D, {or Dy ~ Dss)
Kﬁ :) Do ~D,
Decode for
HMCS6800
Peripherals
_ Address
Address cs &
Bus CS's
AS cs
HD68000
UPA Block of
VPA HMCS6800
Devices
VMA cs
E E

Figure 43 Connection of HMCS6800 Peripherals

the read/write (R/W) signal is switched to low (write) during
state 2. One half clock later, in state 3, the write data is placed
on the data bus, and in state 4 the data strobes are issued to
indicate valid data on the data bus. The processor now inserts
wait states until it recognizes the assertion of VPA.

The VPA input signals the processor that the address on the
bus is the address of an HMCS6800 device (or an area reserved
for HMCS6800 devices) and that the bus should conform to
the ¢, transfer characteristics of the HMCS6800 bus. Valid
peripheral address is derived by decoding the address bus,
conditioned by address strobe.

After the recognition of VPA, the processor assures that
the Enable (E) is low, by waiting if necessary, and subsequently
asserts VMA. Valid memory address is then used as part of the
chip select equation of the peripheral. This ensures that the
HMCS6800 peripherals are selected and deselected at the
correct time. The peripheral now runs its cycle during the
high portion of the E signal. Figures 45 and 46 depict the best
and worst case HMCS6800 cycle timing. This cycle length is
dependent strictly upon when VPA is asserted in relationship
to the E clock.

During a read cycle, the processor latches the peripheral
data in state 6. For all cycles, the processor negates the address
and data strobes one half clock cycle later in state 7, and the
Enable signal goes low at this time. Another half clock later,
the address bus is put in the high-impedance state. During a
write cycle, the data bus is put in the high-impedance state
and the read/write signal is switched high. The peripheral logic
must remove VPA within one clock after address strobe is
negated.

Figure 47 shows the timing required by HMCS6800 pe-
ripherals, the timing specified for HDCS6800, and the corre-
sponding timing for the HD68000. Two example systems with
HMCS6800 peripherals are showin in Figures 48 and 49. The
system in Figure 48 reserves the upper eight megabytes of
memory for HMCS6800 peripherals. The system in Figure 49
is more efficient with memory and easily expandable, but more
complex.

DTACK should not be asserted while VPA is asserted.
Notice that the HD68000 VMA is active low, contrasted with
the active high HMCS6800 VMA. This allows the processor
to put its buses in the high-impedance state on DMA requests
without inadvertently selecting peripherals.

135

PROCESSOR
Initiate Cycle

1) The processor starts a normal Read or
Write cycle

SLAVE

|

Define HMCS6800 Cycle

1) External hardware asserts Valid Peripheral
Address (VPA)

1

Synchronize With Enable
The processor monitors Enable (E) until it is
low (Phase 1)
The processor asserts Valid Memory Address
(VMA)

1

2

J

Transfer Data

1) The peripheral waits until E is active and
then transfers the data

Terminate Cycle
1) The processor waits until E goes low. (On a
Read cycle the data is latched as E goes
low internally)
2) The processor negates VMA .
3) The processor negates AS, UDS, and LDS

|

Figure 44 HMCS6800 Interface Flow Chart

HD68000,HD68000Y

HD68000,HD68000Y

SO ST S2 S3 S4 w w w wW wW w wW w w w w w S5 S6 S7 SO

CLK T\ Y/ Y /S N/ S S S
—®
A, ~ A >_(
| @
B 4 d
- 3 —®)L
E) e &
—1 @ —sle—® @ :l,f[@
VPA l — — :'_’ ®
__ 8 T 4':_@_ -
UMA ®
Data Out @
Dataln == = = m s s T T T T T T T T T T T T~)'—'
—@—
FCo ~ FC; X X

(NOTE) This figure represents the best case HMCS6800 timing where VPA falls before the third system clock cycle after the falling edge of E.

Figure 45 HMCS6800 Timing — Best Case

S0S1S2S3S4W W WWWW WWWWWWWWWWWWWWWWWWMWWW w S5S687S0

le—(@D
A~ Au:)_* @
BT\ ol
—®
! - @)
E / ! 2 &)
— (@) @ — @)
VPA \ O /
— @ —®
VMA h &—
R/W
(Read) @
Data In A
— @
UDS/LDS
T
(D g =
R/W Write !
@ i ._.J-")
Data Out
UDS/LDS —
up al_rite _\

FCo ~ FCy x K

Figure 46 HMCS6800 Timing — Worst Case

136

HD68000,HD68000OY

HMCs6800* Peripheral*
150 ns »| Type B 70 nsﬂ Type B HMCS6800 E Clock Freq. Type
180 ns. Type A 140 ns Type A 2.0 MHz B
| 270 ns:: Std 140 ns Std 1.5 MHz A
HMCS6800 VMA, R/W l I 1.0 MH2 Std
HMCS6800 Address
Peripheral*

;::e = 320 ns———=1
HMCS6800 Read Data WM //// W Ve

::l t:w ns HMCS6800*
10 ns Peripheral * Type B [:— 180 ns——j ::I 10 ns HMCS6800*
220 ns: 10 ns Peripheral

Peripheral™
Type B 60 ns ——m '
Type A 80 ns——
Std 195 ns—*

HMCS6800 Write Data /W / / / >7
HD68000 Address)—w // >—

= Y4
- |

HDE800O (8 MHz)

fe—200 ns—]
VMA w
Write Data _—_<)_——

HD68000 CLK

* Times are expressed for different device clock frequencies.
Figure 47 HD68000 to HMCS6800 Peripheral Timing Diagram

3.3k

+5V é

Iﬁl

<]
>

Do ~Dis

A <A >
) a
! f
s < 8
[§| 2ol - IS ogllE
> <l < < >y <l <ll«

Az

12| & 2
CS; Cs, CS, RS, RS, €S, €Sy RS CSo
HDE800O HD6821 PIA HD6850 ACIA
Efg o ¢ o
€ E lr E RW iRQ E RW
VPA
+5V
FC,
LA N Y V1)
FC,
P,
PL,
13
RES
E
RIW

Figure 48 HMCS6800 Interface — Example 1
137

8el

+5| 3.3

>3 6800 Address

|

S 1l

VMA N -
v 1 |
Dy~D1s >
I [[T | [1NN
g g
S h-}
: : PR
<
818 [HEHREE
N2
CS; CS: CS RS, RS, CS: CS).CS, RS
HD68000 HD6821 PIA HD6850 ACIA
BERE .5 g . B

s 'E b >
S$$S s s
E; b
LY o
74LS |,
348
— or 1
P da, 128
IPL A | _
L ! NMI
beRES
E
R/IW o

Figure 49 HMCS6800 Interface — Example 2

AO00890H '00089QH

® INTERRUPT OPERATION

During an interrupt acknowledge cycle while the processor
is fetching the vector, if VPA is asserted, the HD68000 will
assert VMA and complete a normal HMCS6800 read cycle as
shown in Figure 50. The processor will then use an internally
generated vector that is a function of the interrupt being serv-
iced. This process is known as autovectoring. The seven auto-
vectors are vector numbers 25 through 31 (decimal).

This operates in the same fashion (but is not restricted to)
the HMCS6800 interrupt sequence. The basic difference is that

HD68000,HD68000Y

there are six normal interrupt vectors and one NMI type vector.
As with both the HMCS6800 and the HD68000’s normal
vectored interrupt, the interrupt service routine can be located
anywhere in the address space. This is due to the fact that
while the vector numbers are fixed, the contents of the vector
table entries are assigned by the user.

Since VMA is asserted during autovectoring, the HMCS6800
peripheral address decoding should prevent unintended ac-
cesses.

SO S2 S4 S6 S8 SO S2 S4 Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw S6

CLK
A ~ A, ————— H —
e (S -
A~ \ / \ - —
uos— .\ / \ —
s\ —\ ——
RW T ____ f
DTACK \ r
D, ~Dis [\
De ~ D, I
FCo ~FC, X Y
TPL, ~PL,
- 1 1
VPR \ e
VMA \ —
,L';g’c'e"s:: r'e—PC Low Stacking—+ Autc T ———

Processing

Figure 50 Autovector Operation Timing Diagram

® DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:

e Bits

® BCD Digits (4-bits)

® Bytes (8-bits)

® Word (16-bits)

® Long Words (32-bits)
In addition, operations on other data types such as memory
addresses, status word data, etc., are provided for in the instruc-
tion set.

The 14 addressing modes, shown in Table 10, includs six

basic types:

® Register Direct

® Register Indirect

©® Absolute

® Immediate

® Program Counter Relative

® Implied
Included in the register indirect addressing modes is the capa-
bility to do postincrementing, predscrementing, offsetting and
indexing. Program counter relative mode can also be modified
via indexing and offsetting.

139

HD68000,HD68000Y

Table 10 Addressing Modes

Mode Generation
Regi Direct Addressing
Data Register Diredt EA =Dn
Address Register Direct EA = An

Ahenl

Data Addressing
Absolute Short
Absolute Long

B |INSTRUCTION SET OVERVIEW

The HD68000 instruction set is shown in Table 11. Some

additional instructions are variations, or subsets, of these and
they appear in Table 12. Special emphasis has been given to
the instruction set’s support of structured high-level languages
to facilitate ease of programming. Each instruction, with few

exceptions, operates on bytes, words, and long words and most

EA = (Next Word)
EA = (Next Two Words)

Program Ci Relative Addressing
Relative with Offset
Relative with Index and Offset

instructions can use any of the 14 addressing modes. Combining
instruction types, data types, and addressing modes, over 1000

useful instructions are provided. These instructions include

EA = (PC) + di6
EA =PC) + (Xn) + ds

Reai 1ndi
F

Register Indirect

Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

Add

traps).
The following paragraphs contain an overview of the form

EA = (An)

EA = (AN), An «<An+N
An < An — N, EA = (An)
EA = (An) +ds6

EA = (An) + (Xn) + ds

Immediate Data Addressing
Immediate
Quick Immediate

DATA = Next Word(s)
inherent Data

Implied Addressing
Implied Register

EA = SR, USP, SP, PC

(NOTES)

EA = Effective Address

An = Address Register

Dn = Data Register

Xn = Address or Data Register used
as Index Register

SR = Status Register

PC = Program Counter

()= Contents of

ds = Eight-bit Offset
(displacement)

djs = Sixteen-bit Offset
(displacement)

N =1 for Byte, 2 for
Words and 4 for Long
Words

<« = Replaces

Data Movement
Integer Arithmetic
Logical

Shift and Rotate

Bit Manipulation
Binary Coded Decimal
Program Control
System Control

signed and unsigned multiply and divide, “quick” arithmetic
operations, BCD arithmetic and expanded operations (through

and structure of the HD68000 instruction set. The instruc-
tions form a set of tools that include all the machine functions
to perform the following operations:

The complete range of instruction capabilities combined

with the flexible addressing modes described previously pro-
vide a very flexible base for program development.

Table 11 Instruction Set

Mnemonic Description Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend EOR Exclusive Or PEA Push Effective Address
ADD Add EXG Exchange Registers RESET Reset External Devices
AND Logical And EXT Sign Extend ROL Rotate Left without Extend
ASL Arithmetic Shift Left JmP Jump ROR Rotate Right without Extend
ASR Avrithmetic Shift Right Jsp Jump to Subroutine ROXL Rotate Left with Extend
Bce Branch Conditionally LEA Load Effective Address ROXR Rotate Right with Extend
BCHG Bit Test and Change LINK Link Stack RTE Return from Exception
BCLR Bit Test and Clear LSL Logical Shift Left RTR Return and Restore
BRA Branch Always LSR Logical Shift Right RTS Return from Subroutine
gggr ::'ta::l:tt:n:uii;uﬁne MOVE Move SBCD Subtract Decimal with Extend
BTST Bit Test MOVEM Move Mu!tiple Registers Sce Set Conditional

MOVEP Move Peripheral Data STOP Stop
CHK Check Register Against Bounds MULS Signed Multiply SuB Subtract
CLR Clear Operand MULU Unsigned Multiply SWAP Swap Data Register Halves
Cmp Compare NBCD Negate Decimal with Extend TAS Test and Set Operand
DBcc Test Condition, Decrement and NEG Negate TRAP Trap

Branch NOP No Operation TRAPV Trap on Overflow

DIVS Signed Divide NOT One's Complement TST Test
bivu Unsigned Divide OR Logical Or UNLK Unlink

140

Table 12 Variations of Instruction Types

HD68000,HD68000Y

Ins}lf:;telon Variation Description lns;[:‘c:on Variation Description
ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEQ Move Quick
ADDI Add Immediate MOVE from SR | Move from Status Register
ADDX Add with Extend MOVE to SR Move to Status Register
AND AND Logical And MOVE to CCR | Move to Condition Codes
ANDI And Immediate MOVE USP Move User Stack Pointer
cmp cMP Compare NEG NEG Negate
CMPA Compare Address NEGX Negate with Extend
CMPM Compare Memory OR OR Logical Or
CMPI Compare Immediate ORI Or Immediate
EOR EOR Exclusive Or suB suB Subtract
EORI Exclusive Or Immediate SUBA Subtract Address
SuBi Subtract Immediate
susQ Subtract Quick
SUBX Subtract with Extend

® ADDRESSING
Instructions for the HD68000 contain two kinds of infor-
mation: the type of function to be performed, and the location
of the operand(s) on which to perform that function. The
methods used to locate (address) the operand(s) are explained
in the following paragraphs.
Instructions specify an operand location in one of three
ways:
Register Specification — the number of the register is given
in the register field of the instruction.
Effective Address — use of the different effective address
modes.
Implicit Reference — the definition of certain instructions
implies the use of specific registers.

® DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage)
is provided by the move (MOVE) instruction. The move instruc-
tion and the effective addressing modes allow both address
and data manipulation. Data move instructions allow byte,
word, and long word operands to be transferred from memory
to memory, memory to register, register to memory, and regis-
ter to memory, and register to register. Address move instruc-
tions allow word and long word operand transfers and ensure
that only legal address manipulations are executed. In addition
to the general move instruction there are several special data
movement instructions: move multiple registers (MOVEM),
move peripheral data (MOVEP), exchange registers (EXG),
load effective address (LEA), push effective address (PEA),
link stack (LINK), unlink stack (UNLK), and move quick
(MOVEQ). Table 13 is a summary of the data movement
operations.

® INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations
of add (ADD), subtract (SUB), multiply (MUL), and divide
(DIV) as well as arithmetic compare (CMP), clear (CLR), and
negate (NEG). The add and subtract instructions are available
for both address and data operations, with data operations
accepting all operand sizes. Address operations are limited
to legal address size operands (16 or 32 bits). Data, address,
and memory compare operations are also available. The clear

141

and negate instructions may be used on all sizes of data oper-
ands.

The multiply and divide operations are available for signed
and unsigned operands using word multiply to produce a long
word product, and a long word dividend with word divisor to
produce a word quotien with a word remainder.

Multiprecision and mixed size arithmetic can be accomplish-
ed using a set of extended instructions. These instructions are:
add extended (ADDX), subtract extended (SUBX), sign extend
(EXT), and negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition
codes as a result of a compare of the operand with zero is also
available. Test and set (TAS) is a synchronization instruction
useful in multiprocessor systems. Table 14 is a summary of
the integer arithmetic operations.

Table 13 Data Movement Operations

Instruction Operand Size Operation

EXG 32 Rx < Ry

LEA 32 EA - An
An->SP@-;

LINK - (SP - An;
SP+d-—>SP

MOVE 8,16, 32 (EA)s > EAd
(EA) = An,Dn

MOVEM 16, 32 An, Dn - EA
(EA) = Dn

MOVEP 16, 32 Dn - EA

MOVEQ 8 #xxx —~> Dn

PEA 32 EA->SP@-

SWAP 32 Dn[31:16] + Dn[15:0]
An - Sp;

UNLK - (SP@+ - An

(NOTES)
s = source @ - = indirect with predecrement

d = destination
[] =bit numbers

@+ = indirect with postdecrement

HD68000,HD68000Y

Table 14 Integer Arithmetic Operations

Instruction | Operand Size Operation
8, 16, 32 Dn + (EA) > Dn
(EA+Dn— EA
ADD (EA) + #xxx - EA
16, 32 AN + (EA) > An
8, 16, 32 Dx + Dy + X - Dx
ADDX 16, 32 Ax@-+Ay@-+ X - Ax@
CLR 8, 16, 32 0-EA
8, 16, 32 Dn - (EA)
(EA) - #xxx
CMP Ax@+ - Ay@+
16, 32 An - (EA)
DIVS 32+:16 Dn/(EA) - Dn
DIVU 3216 Dn/(EA) > Dn
8-> 16 (Dn)g > Dnyg
EXT 16— 32 (Dn) 46 > Dn3,
MULS 16%16>32 | Dns(EA) > Dn
MULU 161632 | Dn+EA)—> Dn
NEG 8, 16,32 0 - (EA)~> EA
NEGX 8, 16, 32 0-(EA)-X - EA
8,16, 32 Dn - (EA) =~ Dn
(EA) -Dn—> EA
Sus (EA) - #xxx > EA
16, 32 An - (EA) > An
Dx - Dy - X = Dx
Susx 816,32 | Ax@--Ay@--X->Ax@
TAS 8 (EA) -0, 1~ EA[7]
TST 8, 16, 32 (EA) -0

(NOTE) [] =bit number

15 14 13 12 11 10 9

® INSTRUCTION FORMAT

Instructions are from one to five words in length, as shown
in Figure 51. The length of the instruction and the operation
to be performed is specified by the first word of the instruction
which is called the operation word. The remaining words
further specify the operands. These words are either immediate
operands or extensions to the effective address mode specified
in the operation word.

® PROGRAM/DATA REFERENCES

The HD6800O separates memory references into two class-
es: program references, and data references. Program refer-
ences, as the name implies, are references to that section of
memory that contains the program being executed. Data refer-
ences refer to that section of memory that contains data.
Generally, operand reads are from the data space. All operand
writes are to the data space.

® REGISTER SPECIFICATION

The register field within an instruction specifies the register
to be used. Other fields within the instruction specify whether
the register selected is an address or data register and how the
register is to be used.

® EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using
the effective address field in the operation word. For example,
Figure 52 shows the general format of the single effective ad-
dress is composed of two 3-bit fields: the mode field, and the
register field. The value in the mode field selects the different
address modes. The register field contains the number of a
register.

The effective address field may require additional informa-
tion to fully specify the operand. This additional information,
called the effective address extension, is contained in the
following word or words and is considered part of the instruc-
tion, as shown in Figure 51. The effective address modes are
grouped into three categories: register direct, memory address-
ing, and special.

7 6 5 4 3 2 1 0

Operation Word
(First Word Specifies Operation and Modes)

Immediate Operand
(1f Any, One or Two Words)

Source Effective Address Extension
(If Any, One or Two Words)

Destination Effective Address Extension
(1f Any, One or Two Words)

Figure 51

15 14 13 12 11 10 9

Instruction Format

5 4 3 2 1 0

X X Effective Address
Mode | Register

Figure 52 Single-Effective-Address Instruction Operation Word General Format

142

REGISTER DIRECT MODES

These effective addressing modes specify that the operand

is in one of the 16 multifunction registers.

EXAMPLE
MPU

$001F00

0000ABCD| DO

owL

MOVE DO, $1F00 OWL +2

Address Register Direct

/,/“_“~\”‘—\\\~__—’

Data Register Direct

The operand is in the data register specified by the effective

address register field.

MEMORY

'\ ABCD

——

/__/

31C0

1F00

L/_\/

The operand is in the address register specified by the effec-

tive address register field.

EXAMPLE
MPU MEMORY
/
00001234] A4 $201000[¥ 1234
owL 3scc
MOVE AG OoWL +2 0020
OVE A4,$201000 . 7000
V_\/

143

COMMENTS
® EA=Dn

® Machine Level Coding

MOVE DO, $1F00

0011 0001 1100 0000

Move

Word Reg #0

Absolute
Short

Data
Register
Direct

COMMENTS
® EA=An

® Machine Level Coding
MOVE A4, $201000

0011 0011 1100 1100
Move Reg #4
Word Absolute
Long
Address
Register
Direct

HD68000,HD68000Y

HD68000,HD68000Y

MPU

/

00001234] A4

MOVE $201000, A4

MEMORY ADDRESS MODES

These effective addressing modes specify that the operand
is in memory and provide the specific address of the operand.

MPU

[

IXXXX1234] DO

00001000 AO

MOVE (A0), DO

EXAMPLE

MEMORY

S —

$201000

N 1234

——

owL

3879

OwWL +2

0020

OowL +4

1000

EXAMPLE

RN

/'\/

COMMENTS

®EA = An
® Address Register Sign Extended
©® Machine Level Coding

MOVE $201000, A4

0011 1000 0111 1001

Move
Word

Reg#4

Absolute
Long

Address
Register
Direct

Address Register Indirect

The address of the operand is in the address register specified
by the register field. The reference is classified as a data refer-

ence with the exception of the jump and jump to subroutine
instructions.

MEMORY

/—_/

$001000

Y1234

——

owL

——

3010

144

COMMENTS
®EA = (An)

® Machine Level Coding
MOVE (A0), DO

0011 0000 0001 0000
i
Move Reg #0
Word ata
Register
Direct
Reg #0 ARI
(Address
Register
Indirect)

Address Register Indirect With Postincrement

The address of the operand is in the address register specified
by the register field. After the operand address is used, it is
incremented by one, two, or four depending upon whether
the size of the operand is byte, word, or long word. If the

HD68000,HD68000Y

address register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to
keep the stack pointer on a word boundary. The reference is
classified as a data reference.

EXAMPLE COMMENTS
® EA = (An); An + M—=An
MPU MEMORY Where An —» Address Register
M —=1,2,0r4
(Depending Whether
Byte, Word’, or
[06000100] $100 AE12 J Long Word
00T A4 ® Machine Level Coding
00000102 /—_/ MOVE (A4) +, $2000
0011 0001 1101 1100
$2000 AE12 -
Reg #4
Move |
% Word Absolute
Short ZARTwith
owL 31DC Increment
OWL +2 2000
MOVE (A4) +,$2000

Address Register Indirect With Predecrement

The address of the operand is in the address register specified
by the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether
the operand size is byte, word, or long word. If the address

register is the stack pointer and the operand size is byte, the
address is decremented by two rather than one to keep the
stack pointer on a word boundary. The reference is classified
as a data reference.

EXAMPLE COMMENTS
® An — M —»An; EA = (An)
MPU MEMORY Where An—»Address Register
M —=1,2,0r4
S~ (Depending Whether
Byte, Word), or
Long Word
00000100] A3 $00FE 1234 N) :
.
g $0100 Machine Level Coding
000000FE| /—\/ MOVE — (A3), $4000
0011 0001 1110 0011
$4000 1234 R
Move with
Word ——L— Predic-
T~ Absolute rement
Short J T
owL 31E3 Reg #3
OWL +2 4000
MOVE - (A3), $4000

145

HD68000,HD68000Y

Address Register Indirect With Displacement

This address mode requires one word of extension. The ad-
dress of the operand is the sum of the address in the address

EXAMPLE

MPU

00001000] AO

MOVE $100(A0), $3000

ADDRESS
CALCULATION:
A0 = 00001000
dis = 00000100
00001100

Address Register Indirect With Index

This address mode requires one word of extension. The
address of the operand is the sum of the address in the address

$1100

$3000

owL
OWL +2
OWL +4

register and the sign-extended 16-bit displacement integer in

MEMORY

/__/

ABCD ~J

N

ABCD -

——

31E8

0100

3000

/\/

the extension word. The reference is classified as a data refer-
ence with the exception of the jump to subroutine instructions.

COMMENTS
® EA=An+d6
Where An —=Pointer Register
di¢ —™16-Bit Displacement
® d;¢ Displacement is Sign Extended
® Machine Level Coding

MOVE $100(A0), $3000

0011 0001 1110 1000
Absolute Reg #0
Short |

Move ARI

Word with

Displacement

eight bits of the extension word, and the contents of the index

register, the sign-extended displacement integer in the low order

EXAMPLE
MPU
000028DC] DO $1000
50002000] A0
$4BEO
MOVE $04(A0, DO), owL
$1000 OWL +2
ADDRESS OWL +4
CALCULATION:
AO = 00002000
DO = 00002BDC
d =00000004
00004BEQ

MEMORY

31F0

146

register. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

COMMENTS
®EA=An+Rx+ds
Where
An —= Pointer Register
Rx —= Designated Index Register,
(Either Address Register or
Data Register)
dy — 8-Bit Displacement
® Rx & ds are Sign Extended
® Rx may be Word or Long Word
Long Word may be Designated with Rx.L
® Machine Level Coding

MOVE $04(A0, DO), $1000

0011 0001 1111 0000
Move Absolute Reg #0
Word Short

ARI
with
Index

0000 0000 0000 0100

DT{Z Word gfset
Reg #0 onstant Zeros

HD68000,HD68000Y

Absolute Short Address

This address mode requires one word of extension. The ad-
dress of the operand is the extension word. The 16-bit address
is sign extended before it is used. The reference is classified
as a data reference with the exception of the jump and jump
to subroutine instructions.

SPECIAL ADDRESS MODE

The special address modes use the effective address register
field to specify the special addressing mode instead of a register
number.

EXAMPLE COMMENTS
® EA = (Next Word)
MPU MEMORY ® 16-Bit Word is Sign Extended
® Machine Level Coding
I N NOT.L $2000
$2000(FFFF 0000 9100 0110 jp11 1090
$2002| 0000 - FFFF L.W.
/\/ Not Instruction g:os?tlute
NOT.L $2000 owt 4688
: OWL +2 2000
EXAMPLE COMMENTS
® EA = (Next Word)
MPU MEMORY ® 16-Bit Word is Sign Extended
$1000 1234 ® Machine Level Coing
;y MOVE $1000, $2000
$2000 1234 % 0011 0001 1111 1000
Move Absolute
Word | Short
T~ Absolute
T~ Short
MOVE $1000, $2000 owL 31F8
OWL +2 1000
OWL +4 2000

147

HD68000,HD68000Y

Absolute Long Address

This address mode requires two words of extension. The
address of the operand is developed by the concatenation of
the extension words. The high-order part of the address is the

first extension word; the low-order part of the address is the
second extension word. The reference is classified as a data
reference with the exception of the jump and jump to sub-
routine instructions.

EXAMPLE COMMENTS
® EA = (Next Two Words)
, MPU MEMORY
$14000 0001 - FFFF ® Machine Level Coding
% NEG $014000
0100 0100 0111 1001
NEG 28 Absolute
Instruction Long
OWL 4479
+ 1
NEG $014000 owL +2 900

OWL +4 4000

Program Counter With Displacement

This address mode requires one word of extension. The
address of the operand is the sum of the address in the program
counter and the sign-extended 16-bit displacement integer in

the extension word. The value in the program counter is the ad-
dress of the extension word. The reference is classified as a pro-
gram reference.

/ EXAMPLE
MPU MEMORY
XXXXABCD]| DO
——
$8000 303A
$8002 1000
MOVE (LABEL), DO
ADDRESS
CALCULATION:
Pe - 0%0e0,
d= 1
00009002 < LABEL > $9002 ABCD

148

COMMENTS

® EA = (PC) + dy¢

® dys is Sign Extended
® Machine Level Coding

MOVE (LABEL), DO

0011 0000 0011 1010
R B PCwith
Move Data i
Word Register Displacement
Direct

Program Counter With Index

This address mode requires one word of extension. This
address is the sum of the address in the program counter, the

sign-extended displacement integer in the lower eight

bits of

the extension word, and the contents of the index register.
The value in the program counter is the address of the extension

word. This reference is classified as a program reference.

EA = (PC) + (Rx) +ds_

(NOTE)

15 14 13 12 11

Extension Word
10 9 8 7 6

5

4

3

2

1

HD68000,HD68000Y

1]

IE)IAl Register IWILl 0o IO I 0 I

Displacement Integer

]

D/A

: Data Register = 0, Address Register = 1

PC Value Instruction
Beginning
Address of } PC +dy ——
Data Table
Data
Table
Desired Data
Location in Table } PC +ds + Rx ———s

EXAMPLE
MPU
XXXX3456] DO $8000
$8002
00001010] AQ
<LABEL>
L-$8012

MOVE (LABEL) (A0), DO

ADDRESS
CALCULATIONS:
PC = 00008002
A0 = 00001010
d = 00000010
00009022

$9022

Register : Index Register Number

w/L : Sign-extented, low order Word integer
in Index Register =0
Long Word in Index Register = 1
COMMENTS
® EA = (PC) + (Rx) +ds
MEMORY Where
PC —=Current Program Counter
/__/ Rx—»Desi d Index Regi
(Either Data or Address Register)
3038 ds —=8-Bit Displacement
® Rx and ds are Sign Extended
8010 ® Rx may be Word or Long Word
Long Word is Designated with Rx.L
% ® Machine Level Coding
MOVE (LABEL) (A0), DO
0011 0000 €011 1011
% Move PC with
Word Index
Data Register
Direct
1 000 0000 00010000
3456 Address 8-Bit Displacement
Register
Register Constant Zeros
Number
L Index Length

149

HD68000,HD68000Y

Immediate Data

This address mode requires either one or two words of ex-
tension depending on the size of the operation.
Byte operation — operand is low order byte of extension

word

Word operation — operand is extension word

Long word operation — operand is in the two extension
words, high-order 16 bits are in the first extension word,
low-order 16 bits are in the second extension word.

MPU

00001000{ A0

\

MOVE #8$1000, AQ

EXAMPLE

MEMORY

/'_/

owL

307C

OWL +2

N\ 1000

EXAMPLE

[00000054] 03

\

MEMORY

/\/

~_

MOVEQ #$5A, D3

owL

150

Extension Word

15 8|7
[000000()0'L

Byte

15 or

I Word

15

F--— - Long Word

COMMENTS

® Data = Next Word(s)

© Data is Sign Extended
for Address Register
but not Data Register

© Machine Level Coding
MOVE #$1000, AO
0011 0000 0111 1100
1

Immediate
Data

Address
Register
Direct

Reg #0

Move
Word

COMMENTS
@ Inherent Data

® Data is Sign Extended to Long Word
® Destination must be a Data Register

® Machine Level Coding

MOVEQ #$5A, D3

0111 011 O 0101 1010
T
Reg #3 Fixed Immediate
Viove Zero Data
Quick

HD68000,HD68000Y

Condition Codes or Status Register
A selected set of instructions may reference the status regis-
ter by means of the effective address field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR
EORI to SR EXAMPLE COMMENTS
® EA = (Next Word)
ORI to CCR MPU MEMORY @ Note: This Example is a Privileged
ORI to SR Instruction
® Machine Level Coding
$1020 0010 MOVE $1020, SR
[H_T_Oly 0100 0110 11111000
/\/
Move to SR Absolute
0010 Short
owL 46F8
MOVE $1020, SR owL +2 1020
/_/

® EFFECTIVE ADDRESS ENCODING SUMMARY
Table 15 is a summary of the effective addressing modes
discussed in the previous paragraphs.

Table 15 Effective Address Encoding Summary

Addressing Mode Mode Register
Data Register Direct 000 register number
Address Register Direct 001 register number
Address Register Indirect 010 register number

Address Register Indirect with o1

Postincrement register number

Address Register Indirect with 100

Predecrement register number

Address Register Indirect with 101

Displacement register number

A?:J:is Register Indirect with 110 register number
Absolute Short 111 000
Absolute Long 1M1 001
Program Counter with Index 11 011
Immediate i 100

® IMPLICIT REFERENCE
Some instructions make implicit reference to the program
counter (PC), the system stack pointer (SP), the supervisor

stack pointer (SSP), the user stack pointer (USP), or the status
register (SR).

SYSTEM STACK

The system stack is used implicitly by many instructions;
user stacks and queues may be created and maintained through
the addressing modes. Address register seven (A7) is the system
stack pointer (SP). The system stack pointer is either the super-
visor stack pointer (SSP) or the user stack pointer (USP), de-
pending on the state of the S-bit in the status register. If the
S-bit indicates supervisor state, SSP is the active system stack
pointer, and the USP cannot be referenced as an address re-
gister. If the S-bit indicates user state, the USP is the active
system stack pointer, and the SSP cannot be referenced. Each
system stack fills from high memory to low memory.

SYSTEM STACK POINTERS

User Stack Supervisor Stack
USP— SSP—={
* *
—’—_/

® Accessed when S =1

® PC is Stacked on
Subroutine Calls in
Supervisor State

® Used for Exception
Processing

® Accessed when S =0

@ PC is Stacked on
Subroutine Calls in
User State

* Increasing Addresses

151

HD68000,HD68000Y

The address mode SP @- creates a new item on the active
system stack, and the address mode SP @+ deletes an item from
the active system stack.

The program counter is saved on the active system stack on
subroutine calls, and restored from the active system stack on
returns. On the other hand, both the program counter and the
status register are saved on the supervisor stack during the
processing of traps and interrupts. Thus, the correct execution
of the supervisor state code is not dependent on the behavior
of user code and user programs may use the user stack pointer
arbitrarily.

In order to keep data on the system stack aligned properly,
data entry on the stack is restricted so that data is always put
in the stack on a word boundary. Thus byte data is pushed on
or pulled from the system stack in the high order half of the
word; the lower half is unchanged.

USER STACKS

User stacks can be implemented and manipulated by employ-
ing the address register indirect with postincrement and pre-
decrement addressing modes. Using an address register (on of
AO through A6), the user may implement stacks which are filled
either from high memory to low memory, or vice versa. The
important things to remember are:

— using predecrement, the register is decremented before its
contents are used as the pointer into the stack,

— using postincrement, the register is incremented after its
contents are used as the pointer into the stack,

— byte data must be put on the stack in pairs when mixed
with word or long data so that the stack will not get
misaligned when the data is retrieved. Word and long
accesses must be on word boundary (even) addresses.

Stack growth from high to low memory is implemented with
An@- to push data on the stack,

An@+ to pull data from the stack.

After eigher a push or a pull operation, register An points to

the last (top) item on the stack. This is illustrated as:

low memory

(free)

An —» top of stack

7 :

bottom of stack

high memory

Stack growth from low to high memory is implemented with
An@+ to push data on the stack,
An@- to pull data from the stack.
After either a push or a pull operation, register An points to
the next available space on the stack. This is illustrated as:

low memory

bottom of stack

7 :

top of stack

An— (free)

high memory

QUEUES

User queues can be implemented and manipulated with the
address register indirect with postincrement or predecrement
addressing modes. Using a pair of address registers (two of A0
through A6), the user may implement queues which are filled
either from high memory to low memory, or vice versa. Because
queues are pushed from one end and pulled from the other, two
registers are used: the put and get pointers.

Queue growth from low to high memory is implemented with

Aput@+ to put data into the queue,
Aget@+ to get data from the queue. _

After a put operation, the put address register points to the
next available space in the queue and the unchanged get address
register points to the next item to remove from the queue.
After a get operation, the get address register points to the next
item to remove from the queue and the unchanged put address
register points to the next available space in the queue. This is
illustrated as:

low memory

last get (free)

Aget ——» next get

.
3
.

last put

Aput——» (free)

high memory

If the queue is to be implemented as a circular buffer, the
address register should be checked and, if necessary, adjusted
before the put or get operation is performed. The address regis-
ter is adjusted by subtracting the buffer length (in bytes).

Queue growth from high to low memory is implemented with

Aput@- to put data into the queue,
Aget@ - to get data from the queue.

After a put operation, the put address register points to the
last item put in the queue, and the unchanged get address
register points to the last item removed from the queue. After a
get operation, the get address register points to the last item
removed from the queue and the unchanged put address register
points to the last item put in the queue. This is illustrated as:

152

low memory

(free)

Aput —» last put

e :

next get

Aget —» last get (free)

high memory

If the queue is to be implemented as a circular buffer, the
get or put operation should be performed first, and then the
address register should be checked and, if necessary, adjusted.
The address register is adjusted by adding the buffer length
(in bytes).

® LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT
are available for all sizes of integer data operands. A similar
set of immediate instructions (ANDI, ORI, and EORI) provide
these logical operations with all sizes of immediate data. Table
16 is a summary of the logical operations.

Table 16 Logical Operations

Instruction Operand Size Operation
Dna(EA) - Dn
AND 8,16, 32 (EA)ADNn - EA
(EA) A #ixxx — EA
Dnv (EA) - Dn
OR 8,16, 32 (EA) vDn— EA
(EA) v #xxx - EA
(EA)e Dy - EA
EOR 8.16.32 (EA) @ #xxx — EA
NOT 8,16, 32 ~ (EA)~ EA

[NOTE] ~ =invert

® SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the
arithmetic instructions ASR and ASL and logical shift instruc-
tions LSR and LSL. The rotate instructions (with and without
extend) available are ROXR, ROXL, ROR, and ROL. All
shift and rotate operations can be performed in either registers
or memory. Register shifts and rotates support all operand
sizes and allow a shift count specified in the instruction of
one to eight bits, or 0 to 63 specified in a data register.

Memory shifts and rotates are for word operands only and
allow only single-bit shifts or rotates. Table 17 is a summary
of the shift and rotate operations.

HD68000,HD680O00Y

Table 17 Shift and Rotate Operations

Instruction Operand Size Operation

ASL 8,16,32 [xicle{=———=o0
ASR 8, 16,32 X/C
LSL 8, 16,32 [xic}e{ +———}=0
LSR 8,16,32 0 X/C
ROL 8,16, 32

ROR 8, 16,32 L ———— L]
ROXL 8,16, 32 ——e
ROXR 8, 16, 32 —

e BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the
following instructions: bit test (BTST), bit test and set (BSET),
bit test and clear (BCLR), and bit test and change (BCHG).
Table 18 is a summary of the bit manipulation operations.
(Bit 2 of the status register is Z.)

Table 18 Bit Manipulation Operations

Instruction Operand Size Operation
BTST 8,32 ~ bit of (EA)>Z
s | sw | G ”
BCLR 8,32 (;f';i‘t’;f:; "z
BeHG 832 ~ vt (EA)~ o of A

® BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded deci-
mal numbers are accomplished using the following instructions:
add decimal with extend (ABCD), subtract decimal with extend
(SBCD), and negate decimal with extend (NBCD). Table 19 is
a summary of the binary coded decimal operations.

Table 19 Binary Coded ‘Decimal Operations

Instruction Operand Size Operation
Dx,, +Dy,, + X = Dx
ABCD 8 Ax@ —;, +Ay@—,, +X— Ax@
Dx,, =Dy, =X — Dx
SB D 10 10
C 8 AX@ ~ o - AY@ - 45 - X > Ax@
NBCD 8 0-(EA),, -X — EA

153

HD68000,HD68000Y

® PROGRAM CONTROL OPERATIONS ® SYSTEM CONTROL OPERATIONS

Program control operations are accomplished using a series System control operations are accomplished by using privi-
of conditional and unconditional branch instructions and return leged instructions, trap generating instructions, and instructions.
instructions. These instructions are summarized in Table 20. that use or modify the status register. These instructions are

The conditional instructions provide setting and branching summarized in Table 21.
for the following conditions:

CC — carry clear LS — low or same .
Table 21 System Control Operations
CS — carry set LT — less than b v pe :
EQ - equal Ml — minus Instruction Operation
F — never true NE — not equal Py
GE — greaterorequal PL — plus rivileged)
RESET Reset external devices
GT - greater than T — always true RTE Return f i
HI _ . VC ~ no Ovefﬂow aturn from exception
high sTOP Stop program execution
LE — less or equal VS — overflow ORI to SR Logical OR to status register
MOVE USP Move user stack pointer
. ANDI to SR Logical AND to status register
Table 20 Program Control Operations EORI to SR Logical EOR to status register
- 5 - MOVE EA to SR Load new status register
Instt‘uctlpn . peration Tl’w G.ﬂ.mi“ﬂ
Conditional TRAP Trap
Bcc Branch conditionally (14 conditions) TRAPV Trap on overflow
8- and 16-bit displacement CHK Check register against bounds
DBcc Test condition, decrement, and branch Status Register
16-bit displacement - ANDI to CCR Logical AND to condition codes
Scc Set byte conditionally (16 conditions) EORI to CCR Logical EOR to condition codes
Unconditional MOVE EA to CCR Load new condition codes
BRA Branch always ORI to CCR Logical OR to condition codes
8-and 16-bit displacement MOVE SR to EA Store status register
BSR Branch to subroutine
8- and 16-bit displacement
e Jump . ® BRANCH INSTRUCTION ADDRESSING
JSR Jump to subroutine
Returns
RTR Return and restore condition codes BRANCH INSTRUCTION FORMAT
RTS Return from subroutine 15 8 7 0
Operation Word Operation Code ‘ 8 bit Displacement
Extension Word 16 bit Displ if 8 bit Displ: =0

RELATIVE, FORWARD REFERENCE, 8-BIT OFFSET

EXAMPLE COMMENTS

o Offset Contained in 8 LSBs of Op Word
MPU MEMORY o Offset is 2's Complement Number
® |f Offset = 0 then Word Offset is Used

/—\M ® Machine Level Coding

BEQ NEXT
[z=1] 0110 0111 0001 1110
L/—\/ Branch ffset
Branch If
$5000 671E Equal
/_/
BEQ NEXT
$5020 Next OP Code
PC + 2 = 5002
d=001E
5020
/-_/

154

HD68000,HD68000Y

RELATIVE, BACKWARD REFERENCE 8-BIT OFFSET

EXAMPLE COMMENTS
® Offset Contained in 8 LSBs
MPU MEMORY of Op Word
® Offset is 2's Complement Number
e |f Offset = 0 then Word
S Offset is Used
® Machine Level Coding
z=0 BNE NEXT
0110 0110 1101 1110
Branch Offset
$4000| Next OP Code Branch If
Not Equal
BNE NEXT $4020 66 DE
PC + 2 = 4022
d = FFDE
4000
/\—/
RELATIVE, FORWARD REFERENCE, 16-BIT OFFSET
EXAMPLE COMMENTS
® Offset in Next Word
MPU MEMORY © 8-Bit Offset Field =0
® 2’s Complement Offset
/‘\/ ® Machine Level Coding
Bcc NEXT
c=0 0110 0100 0000 0000
N
/\/ Branch Zero Offset
O ~~— Branch If
$4000 6400 Carry Clear
$4002 1000
$5002| Next OP Code
Bcc NEXT
PC + 2 = 4002
d =+ 1000
5002
% CONDITION CODES COMPUTATION V — Overflow
This provides a discussion of how the condition codes were C — Carry
developed, the meanings of each bit, how they are computed, X — Extend

and how they are represented in the instruction set details.

® CONDITION CODE REGISTER
The condition code register portion of the status register con-
tains five bits:
N — Negative
Z — Zero

The first four bits are true condition code bits in that they
reflect the condition of the result of a processor operation.
The X-bit is an operand for multiprecision computations. The
carry bit (C) and the multiprecision operand extend bit (X)
are separate in the HD68000 to simplify the programming
model.

155

HD68000,HD68000Y

© CONDITION CODE REGISTER NOTATION
In the instruction set details, the description of the effect on
the condition codes is given in the following form:
Condition Codes: X N z VvV ¢
Where L1 [T 1]
N (negative) set if the most significant bit of the result
is set. Cleared otherwise.
Z (zero) set if the result equals zero. Cleared otherwise.
V (overflow) set if there was an arithmetic overflow. This
implies that the result is not representable
in the operand size. Cleared otherwise.
C (carry) set if a carry is generated out of the most
significant bit of the operands for an addition.
Also set if a borrow is generated in a subtrac-
tion. Cleared otherwise.

X (extend) transparent to data movement. When affect-
ed, it is set the same as the C-bit.
The notational convention that appears in the representation
of the condition code registers is:
% set according to the result of the operation
not affected by the operation

0 cleared
1 set
U undefined after the operation

® CONDITION CODE COMPUTATION

Most operations take a source operand and a destination
operand, compute, and store the result in the destination
location. Unary operations take a destination operand, com-
pute, and store the result in the destination location. Table 22
details how each instruction sets the condition codes.

Table 22 Condition Code Computations

Operations X N z \" Special Definition
ABCD * u ? U ? C = Decimal Carry
Z=Z+-Rm-*..* RO
ADD, ADDI, * * * ? ? V=Sm:Dm- Rm+8m-Dm- Rm
ADDQ C=Sm-Dm+Rm-*Dm+Sm:*Rm
ADDX * * ? ? ? V=Sm+Dm- Rm+8m - Dm* Rm
C =Sm + Dm+Rm * Dm + Sm + Rm
Z=Z:Rm:-..*RO
AND, ANDI, - * * 0 0
EOR, EORI,
MOVEQ, MOVE,
OR, ORI,
CLR, EXT,
NOT, TAS, TST
CHK - * U
Sus, susBl * * * ? ? V=5m:Dm-Rm+Sm-Dm:* Rm
susaQ C=Sm-Dm+Rm:Dm+Sm:Rm
SuBX * * ? ? ? V=8m-Dm- Rm+Sm- Dm- Rm
C=Sm:Dm+Rm*Dm+Sm* Rm
: Z=Z-Rm-..-R0O
CMP, CMPI, - * * ? ? V=8m-Dm-Rm+Sm-:Dm-Rm
CMPM C=Sm:Dm+Rm-Dm+Sm-Rm
DIVS, DIVU -~ * * ? 0 V = Division Overflow
MULS, MULU - . * 0 0
SBCD, NBCD * U ? U ? C = Decimal Borrow
Z=Z+-Rm- .. RO
NEG * * * ? ? V=Dm* Rm,C=Dm+Rm
NEGX * * ? ? ? V=Dm_ Rm,C=Dm+Rm
Z=Z-Rm-..*R0O
BTST, BCHG, - - ? - - Z =Dn
BSET, BCLR
ASL * * * ? ? V=Dm " (Do + ... + Dper)
+Dm -« (Dm-1 + ... + Dmoy)
' C =Dm.r+1
ASL (r=0) - - * 0 0
LSL, ROXL . * * 0 ? C =Dm-r+1
LSR (r=0) - * N 0 0
ROXL (r=0) ~ " " 0 ? c=X
ROL - * M 0 ? C =Dm-r+1
ROL (r=0) - N M 0 0
ASR, LSR, ROXR * * * 0 ? C=D,4
ASR, LSR (r=0) - * M 0 0
ROXR (r=0) - * * 0 ? cC=X
ROR - * * 0 ? C =D/
ROR (r =0) - " " 0 0
— Not affected * General Case: Sm — Source operand most significant bit
U Undefined X=C Dm — Destination operand most significant bit
? Other— see Special Definition N=Rm Rm — Result bit most significant bit
Z=Rm-.. RO n — bit number
r — shift amount

156

® CONDITIONAL TESTS

Table 23 lists the condition names, encodings, and tests
for the conditional branch and set instructions. The test associ-
ated with each condition is a logical formula based on the
current state of the condition codes. If this formula evaluates to

HD68000,HD68000Y

1, the condition succeeds, or is true. If the formula evaluates to
0, the condition is unsuccessful, or false. For example, the T
condition always succeeds, while the EQ condition succeeds
only if the Z bit is currently set in the condition codes.

Table 23 Conditional Tests

Mnemonic Condition Encoding Test
T true 0000 1
F false 0001 0
HI high 0010 c-Z
LS low or same 0011 c+2
cc carry clear 0100 [
CcS carry set 0101 C
NE not equal 0110 z
EQ equal o1 Z
vC overflow clear 1000 v
VS overflow set 1001 \%
PL plus 1010 N
Mi minus 1011 N
GE greater or equal 1100 N:V+N-V
LT less than 1101 N-V+N-V
GT greater than 1110 N.V-Z+N-V-Z
LE less or equal 1111 Z+N*V+N-V

® INSTRUCTION SET
The following paragraphs provide information about the
addressing categories and instruction set of the HD68000.

® ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways
in which they may used. The following classifications will
be used in the instruction definitions.
Data If an effective address mode may be used to refer
to data operands, it is considered a data address-
ing effective address mode.
If an effective address mode may be used to refer
to memory operands, it is considered a memory
addressing effective address mode.
If an effective address mode may be used to refer
to alterable (writeable) operands, it is considered
an alterable addressing effective address mode.
If an effective address mode may be used to refer
to memory operands without an associated size, it
is considered a control addressing effective address
mode.
Table 24 shows the various categories to which each of the
effective address modes belong. Table 25 is the instruction set
summary.

The status register addressing mode is not permitted unless
it is explicitly mentioned as a legal addressing mode.

These categories may be combined so that additional, more
restrictive, classifications may be defined. For example, the
instruction descriptions use such classifications as alterable

Memory

Alterable

Control

memory or data alterable. The former refers to those address-
ing modes which are both alterable and memory addresses, and
the latter refers to addressing modes which are both data and
alterable.

® INSTRUCTION PRE-FETCH

The HD68000 uses a 2-word tightly-coupled instruction
prefetch mechanism to enhance performance. This mechanism
is described in terms of the microcode operations involved.
If the execution of an instruction is defined to begin when the
microroutine for that instruction is entered, some features of
the prefetch mechanism can be described.

1) When execution of an instruction begins, the operation
word and the word following have already been fetched.
The operation word is in the instruction decoder.

2) In the case of multi-word instructions, as each addi-
tional word of the instruction is used internally, a fetch
is made to the instruction stream to replace it.

3) The last fetch from the instruction stream is made when
the operation word is discarded and decoding is started
on the next instruction.

4) If the instruction is a single-word instruction causing a
branch, the second word is not used. But because this
word is fetched by the preceding instruction, it is im-
possible to avoid this superfluous fetch. In the case of
an interrupt or trace exception, both words are not used.

5) The program counter usually points to the last word
fetched from the instruction stream.

157

HD68000,HD68000Y

Table 24 Effective Addressing Mode Categories

Effective Addressing Categories
Address Mode Register Data
Modes Memory Control Alterable

Dn 000 register number X - - X
An 001 register number - - - X
An@ 010 register number X X X X
An@+ 011 register number X X - X
An@ - 100 register number X X - X
An@(d) 101 register number X X X X
An@(d, ix) 110 register number X X X X
xxx.W 111 000 X X X X
xxX. L 11 001 X X X X
PC@(d) m 010 X X X
PC@(d, ix) 1M 011 X X X -
#xxx 11 100 X X - -

The following example illustrates many of the features of
instruction prefetch. The contents of memory are assumed to
be as illustrated in Figure 53.

ORG (o} DEFINE RESTART VECTOR
DC.L INiSSP INITIAL SYSTEM STACK POINTER
DC.L RESTART RESTART SYSTEM ENTRY POINT
ORG INTVECTOR DEFINE AN INTERRUPT VECTOR
DC.L INTHANDLER HANDLER ADDRESS FOR THIS VECTOR
ORG SYSTEM RESTART CODE
RESTART:
NOP NO OPERATION EXAMPLE
BRA.S LABEL SHORT BRANCH
ADD.W DO, D1 ADD REGISTER TO REGISTER
LABEL:
SUB.W DISP(A0), A1 SUBTRACT REGISTER INDIRECT WITH OFFSET
CMP.W D2, D3 COMPARE REGISTER TO REGISTER
SGE.B D7 Scc TO REGISTER
INTHANDLER:
MOVE.W LONGADR1, LONGADR2 MOVE WORD FROM AND TO LONG ADDRESS
NOP NO OPERATION
SWAP.W REGISTER SWAP

Figure 53 Instruction Prefetch Example, Memory Contents

The sequence we shall illustrate consists of the power-up The order of operations described within each microroutine is
reset, the execution of NOP, BRA, SUB, the taking of an not exact, but is intended for illustrative purpose only.
interrupt, and the execution of the MOVE.W xxx.L to yyy.L.

158

® DATA PREFETCH

Microroutine

Reset

NOP

BRA

suB

INTERRUPT

MOVE

Figure 54

Operation

Read

Read

Read

Read

Read

Read

<begin NOP>
Read

<begin BRA>
PC=PC+d
Read

Read

<begin SUB>
Read

Read

Read

<begin CMP>
Write

Read

Write

Write

Read

Read

Read

Read

<begin MOVE>
Read

Read

Read

Read

Write

Read

Read

<begin NOP>

Normally the HD6800O0 prefetches only instructions and not
data. However, when the MOVEM instruction is used to move
data from memory to registers, the data stream is prefetched in

MOVEM. L
bDC.wW
DC.W
DC.W
DC.W
DC.wW
DC.wW

MMOO®>

A, DO/D1

OB WN =

MOVE TWO
LONGWORDS
INTO REGISTERS

WORD 1
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6

Figure 55 MOVEM Example, Memory Contents

159

Location

o ANO

(PC)
+(PC)

+(PC)

(PC)
+(PC)

+(PC)
DISP(AQ)
+(PC)

<take INT>
—(SSP)
<INT ACK>
—(SSP)
—(SSP)

(VR)

+(VR)

(PC)

+(PC)

+(PC)
+(PC)
XXX

+(PC)
yvyy

+(PC)
+(PC)

Operand

SSP High
SSP Low
PC High
PC Low
NOP
BRA

ADD

suB
Disp

CMmP
<src>
SGE

PC Low
Vector #
SR

PC High
PC High
PC Low
MOVE
xxx High

xxx Low
yyy High
<sre>

yyy Low
<dest>

NOP
SWAP

Instruction Prefetch Example

HD68000,HD68000Y

order to optimize performance. As a result, the processor reads
one extra word beyond the higher end of the source area. For
example, the instruction sequence in Figure 55 will operate as
shown in Figure 56.

Assume Effective Address Evaluation is Already Done

Microroutine

MOVEM

Operation
Read
Read
Read

Read
Read

Location

A

O m

mo

Other Operations

Prepare to Fiil DO
A —>DOH
B > DOL
Prepare to Fill D1
C—->D1H
D—->DIL
Detect Register List Complete

Figure 56 MOVEM Example, Operation Sequence

HD68000,HD68000Y

Table 25 Instruction Set

© lgie| Adr. On | An | (An) |(An)+| —(An)| d(An) |d(An.Xi)| Abs.W | Abs.L | d(PC) |d(PC.Xi) ;J;";,’C‘C Opcodo Bit Pattern Sostomn 9:‘:'-
K 1111 11
Operation Mode T~ T[]~ [#] = |#] = |#] = |#] ~ |#] ~ |#] ~ |#] ~ |#] ~ | #] ~ |#] ~ | s432 1008 7834 3210 XNZVe
ASCD B |s:n d:f2f 6 1100 RRR1| 0000 Orrr | dI0+510+X—d *UxU*
Add Digits s=- (M) d: 2| 18 / 1100 RRR1| 0000 lrrr
ADD B/W/[sDn d: A 2| 12 |2f 12 2| 14)4 16 4a) 18 4) 16|62 1101 DDD1 | SSEE EEEE | d+Dn—d LR L LT]
Md d:Dn ssf2f 4 f2¢) a4 {2| 8 f2| 8 12| w0 fa)12]|af14a 4| 12|6f16|a]12[a|14]|af3s 1101 DDDO| SSee eeee | Dn+s—Dn
Binary L [s:n d: ADOA 21 20 |2 20 (22420 |4 268|246 1101 DDDO | JOEE EEEE | d rOn—d
d:Dn ss|2(8 [2) 8)2 142|142 16 418 |a| 0 |4) 18 |6[2 |4] 18|42 [6] 14| 1101 DDDI| l0ee ceee |[On+s—m
ABDA W [d:An s|2f 8 (2| 8 (2122|122 14 |[af16 a| 18 |4] 16 (62 (4] 16 [4] 18 (4 12 1101 AAAO(liece ccee |[Mrs—~m | -=---
Ad Address | L [d:An s{2| 8 (21 8 (2|14 |2 14 2|16 4|18 4] 20 |4]| 18|62 4] 18] 4 6] 14] 110} AAAL| Ilee eeee
ADDI B'W/|s:imm d:|4) 8 MDA 4| 16 |4| 16|4a| 18 |6[2 |6| 22 |6|2]| 8|2 0000 0110 | SSEE EEEE | d+ #—d EE T 1
Add inmed | L [s:imm d:{ 6| 16 | AOA | 6| 28 6| 28 |6| 30 (8|3 (8| M4 (8] 321033
AdDQ B'W/|s:Imm3 d:|2| 4 J2¢) 4 |2 12 f2f 12)2) 14 4] 16 4] 18|4] 16|62 0101 QQQO | SSEE EEEE | d+ #—d TTIT]
Add Quick L |ssimm3 d:l2| 8 |2| 8 |2] 20 |2| 20 |2| 2|42 a6 |al 2% 6|2
ADDX B'W [s:n (2| 4 1101 RRR1) SS00 Orrr | d<s+X~d KK KK
Add Multi- 5= (M) d= 2|18 1101 RRRI | SS00 Irrr
precision L fsn (2| 8 1101 RRR) | 1000 Orrr
s (m) d: 213 1101 RRRI | 1000 brrr
AND B'W|sDn d: 21 12 (2] 12 12| 14 [4] 16[4) 18|8] 16|62 1100 DDD1 | SSEE EEEE | d<and>Dn—d -%%00
Logical And d:0n s:{2] 4 2(8 (2| 8 [2/ 10 (412414 4] 12)6] 16 4] 12 4] 14438 1100 DDDO | SSee eeee | Dn<and>s—0n
L |sshn d: 21 20 12|20 |2| 2 (42 |4a]26 |42 6|28 1100 DDDI | 10EE EEEE | d<and>Dn—d
d:0n s:| 2| 8 2(14 (2| 14 (2|16 (4] 18 |4 2 (4] 18 (622 {4 18 (42 |6] 14| 1100DDDO| I0ee ecee | M<and>s—Dn
ANO! B/W|simm d:{ 4| 8 41 16 |4) 16 4f 18 [6f 2 |6] 22|62/ 8|2 4| 20 | 0000 0010} SSEE EEEE | d<and> #—d -%%00
And Immed. L |sdmm d:| 6| 16 6 8 (6| 28 |63 |8 32 (8|2 |83/ 10]33% N
ASL,ASR |B'W|count:0n d:| 2 (6+2n| 1110 reef | SS10 0DDD
Anthmetic cont=#1~8.¢:| 2 |6+20 1110 qaf | 5500 000D | STETF0 | wxnnx
Shift L |countn d:| 2 |8+2n 1110 rerf| 1010 0DDD . ¢
cont=31~8:| 2 |8+ 20 1110 QQQf | 1000 0DDD ot Lo x
Memory d= 2 12 2+ 12 |2 14 1a*| 16 |4*]| 18 [4*] 16 [6°| 20 1110 000f | | IEE EEEE v
BCHE d: 2(12 (2|12 |2{ 14 (4|16 4|18 4] 1616 20 0000 rrrl | OIEE EEEE | ~(bit) % of d—7, | - - %~ -
Test and d= 4) 16 (4] 16 |4 18 |6f2 |62 |6]2 8|2 0000 1000 | 01EE EEEE | ~(bit) # of d—
Change d={ 2 | <8 0000 rrrl | O)EE EEEE | (bit) # of d
d:| 4 | <12 0000 1000 | 01EE EEEE
BCLR d= 2| 12 |2 12 |2 14 |a]16 |4 184 17([6f2 0000 rrrl | I0EE EEEE
Test and d: 4] 16 {4 16 (4| 18 |6 20 |6 2 (6] 20 |8 24 0000 1000 | 10EE EEEE | ~(bit) # of d—Z, | - -~ %- -
Qear d:1 21 <10 0000 rrrl | 10EE EEEE [0—(bit) # of d
d:| 4 | <14 0000 1000 | 10EE EEEE
BSET d- 2| 12212 (2] 14 4af 16 |4f 18)4]) 16 |6 2 0000 rrrl | | 1EE EEEE | ~(bit) #of d—Z, | - - %- -
Test and d: 4| 16 (4| 16 |4)| 18 |6 20 6| 2 |6] 20 (8|2 0000 1000 | I IEE EEEE | 1—(bit) # of d
Set d:f 2| <8 0000 rrrl| I 1EE EEEE
d:| 4 | <12 0000 1000 | 1 1EE EEEE
8TST d- 2| 8 |2f 8 |2 10 |4)12|4]| 14 (4] 12 (6(16 (4| 12(4] 14 0000 rrrl | O0EE EEEE | ~(bit)# of d—7 | - %~ -
Bit Test d= 4112 |4f 12)4) 14)6) 16)6) 18 |6) 16 8] 220)6 16 |6] 18 0000 ;000 | 00EE EEEE
d=f 2 6 0000 rrrl | O0EE EEEE
bit#:lmm d-| 4 10 0000 1000 | 00EE EEEE
CHK L] <40 | ~trap— <4 <4 <46 <48 <50 <& <5 <48 <50 <44| 0100 DDDI | 10ee eeee |If Dn<O, or EE L)
Check Reg- dn =2 | 2 2 2 4 4 4 6 4 4 4 Dn> (bound),
ister Against 10 | <no— 14 14 " 16 18 20 18 22 18 20 14 then trap
Bounds trap P
CLR B/W 2| 4 20 12 (212 |2 144 16 4] 18 |4] 166 20 0100 0010 | SSEE EEEE g__:r v -0100
Clear Operand | L 2] 6 2120 |22 |2| 24| 24426 |4 24|6]| 28
cwe B/WJ d-Dn 20 4 f2+| 4 | 2| 8 (2| 8 [2| 10 (4] 12 (4| 14 4| 12 (6| 16 (4 12 4] 14 (4] 8 1011 DDDO | SSee eeee | Dh—s - kkokok
Compare L {dDn 20 6 [2f 6 |2| 14 2) 14 [2)16 4| 18 |4l 220 |4 18B|6) 22 |a] 1B |4]20|6|14
Binary :
CMPA W [d:an =120 6 | 2] 6 2] 10 (2(10 {2(12 (4] 14 |4 16 [4(12 (6) 18 4] 14 4] 16 4] 10| 1011 AAAO| llee ceee | A—s SRR
Compare L ldm s={2) 6 [2)| 6 |2| 14 [2] 14 2] 16 |4 18|42 B |6 22 [4] 18|42 |6| 14| 1011 AAAL| llee ceee
Mdress
cMPl B'W|s:Imm d:f 4 OMPA |4 12 |4} 12 |4} 14 |6| 16 |6) 18 [6] 16 [8] 20 0000 1100 | SSEE EEEE | d—# -k kK
Compare Imm.| L |sJmm d={ 6| 14 | CMPA | 6| 20 |6| 20 |6] 22 [8| 24 [8]| 26 |8| 24 [10| 28
CMPM B/W(s:(M)+ d: 2| 1011 RRRY | SS00 lrrr |d—s - RRkk
Compare L |s(M)+ d: 2| 20
Memory
olvs W {dDn s:| 2 {< 15 2 |<162(2 {<162| 2 | <164 4 [<166] 4 [<168| 4 |<166) 6 [<170| 4 | <166 4 | <168 4 [<162| 1000 DDDI | Ilee ceee mzz/;)w—' L]
Divide Signed . Dn(rq,
oIvu W |dDn s:| 2 | <140 2 (<144 2 [<144] 2 |<146] 4 | <148 4 (<150 4 [<148(6 (<152| 4 |<148| 4 | <150| 4 | <144 1000 DDDO | 1lee eeee | Dn32/s16— -k%%(
Divide On(rq)
Unsigned
EOR B/W{s:0n (2| 4 2(1212112 1214 |4} 16 4] 18 4] 16|6] 2 1011 rerl | SSEE EEEE | de h—d -%x%x00
Exclusive R | L |s:Dn d:| 2] 8 21 0|2 20 (2|22 (4|24 |8| % |8 2uf6|2s
Logical
EORI B/W | s:imm d:{ 4| 8 4] 16 14) 16 (4| 18 (6] 20 |6] 22 6] 2 (8] 2 4] 20 | 0000 1010 | SSEE EEEE |de#—d -%x%00
Exclusive OR | L |sdmm d:{ 6| 16 6| 28 |6 28 16| 3 |8| 32 |8 34 |8] 32 (10 3%
Immediate
EXG L fsDn d:\ 2| 6 | 1100 DDDI | 0100 ODDD |se>d [-----
Exchange s-hn d:| 2] 6 |2] 6 1100 AAAL | 0100 1AAA
Registers l 1100 DDD1 | 1000 1AAA
EXT W | 2| 4 0100 1000{ 1000 ODDD | bit 7—=bit 8~15
Sign Extend | L d=f 2} 4 0100 1000 1100 ODDD | bit 15—bit 16~31 | - *%00
LEA L |d:m s= 2| 4 4| 8 |4| 12 |4 8 |6| 12 [4) 8 [4] 12 0100 AAAL | llee eeee |s—Am | -<---
Load Effect-
ive Address
uNK dispdmm - 4| 16 0100 1110{ 0101 0AAA [A——() | ...-.
Link and SP—An
Alocate SP+disp—SP
Note : Refer to"Condition Code Computations™ Opcode Bit Pattern Key
as for condition Code. A; Address Register % 1; Direction; 0—Right, 1—Left R: Destination Register
% Word only Ci Test Condition M: Destination EA Mode S: Size: 00~ Byte In the MOVE Instruction
< Manimum value D;Data Register % P: Displacement 01-Word tox Byte]
#; Number of Program Bytes e Source Effective Address Q: Quick Immediate Data 10—Long Word 10 - Long Word
~; Number of Clock Periods E: Destination Effective Address r: Source Register 11— Another Operation \11 - Word
ViVector &

(to be continued)

160

HD68000,HD68000Y

Mnemoni On An (An) | (An)+ | —(An) | d(An) [d(An,Xi)| Abs.W | Abs.L Opcede Bit Pattern Condition |
Operation [Sims| poer i Soelean Codes
Bl ~ (8]~ [#] ~] - 8] -]~ =]~ s~ 8] ~|#| ~ [#] ~ |#] ~ | 5432 1098 7654 3210 XNZVC
LSL, LSk 2 |6+ P110 recf | SSI1O 1DDD *xx0®
Logical Snft 2 f6+an 1110 qaaf | 5500 1ppp | ¢ —pL3—0
:| 2 8+ 1110 rref | 1010 1DDD | = Left
2 (8+2 1110 QQQf | 1000 1DDD | O ¢
Memory 2+(12 (2¢f 12 [2+| 14(ac| 16 |a+| 18 [a+] 16 |6*| 20 1110 001¢ | |1EE EEEE Rght
Movt 2| 4 MOVEA |21 8 | 2| 8 |2 814 124l ,14{4] 12(6[16 00SS RRRM | MMee eceee |5 +d -*%00
Move Data 2| 4 MOVEA | 2| 8 (2| 8 | 2| B 4| 124 14[4] 12/6] 16
2(8 MOVEA | 2] 12 [2| 12 |2| 12(4| 16| 4| 18(4]| 16 (6] 20
2| 8 MOVEA | 2| 12 2] 12| 2| 12|4]| 16|4a] 18|4] 16]6| 20
2] 10 MOVEA |2 14 [2) 14 |2 Mla) 184 20[{4a] 18[6] 2
41 12 | MOVEA | 4| 16 |8 16 | 4| 1616 20 (6f 2|6 20|8] 2
41 4 MOVEA 1 4] 18 (4| 184 1816 22 |6| 24|6]) 218] 2%
4] 12| MOVEA | 4| 16 4| 16 |4 1616 20 (6(22|6f 20 (8| 24
= Abs | 6] 16 | MOVEA | 6] 20 4| 20 6| 20 (8| 24 (8| 26 (8| 24 (10| 28
5 4 12 | MOVEA | 4] 16 (4| 16 |4 16(6] 20 |6| 2216 20 (8] 24
= 41 14 | MOVEA | 4| 18 (4| 18 4| 18i6f 2 [6| 24[6| 2282
s:imm d:| 4| 8 MOVEA | 4 12 | 4| 12 (4] 12/6] 16 6] 18|6| 16 |8]| 20
L |sn d| 2| 4 MOVEA | 2| 12 |2 12 |2 1204 16 (4| 184 166 2
s:h &) 2| 4 MOVEA | 21 12 2] 12 2| 12|4] 16 |4] 18|4] 16]6] 20
(M) |2 12 MVEA | 2| 20 |2) 20 |2| 20f4] 24 4] 2% |4 24|6]| 28
s=(M)+ ¢ 2| 12 MOVEA | 2 20 | 2| 20 |2 20| 4| 24 |4} 26 |8| 24 | 6| 28
s: (An) d{2] 14 MOVEA [2f 22 {2 22]2) 2|4 26 |4] 28|4] 26 |6] 30
s:d(hn) |4 16 MOVEA | 4| 24 (4| 24 [4| 2416 28 6] 30|6] 28 |8 32
s:d(AnX) d:| 4] 18 MOVEA | 4| 26 | 4| 26 |4 26|6] 30 {6] 32 /6] 30 |8 34
s:AbsW d:| 4 16 | MOVEA | 4| 24 {4 24 (4| 24|6| 28 (6| 30|6] 28[8] 3
s:Abs.L |6 20 MOVEA |6 28 [4| 28 | 6| 288 32 | 8| 34 |8 32 (10| 3
s:d(PC) d| 4| 16 MOVEA | 4| 24 {4| 24 | 4| 24|6| 28 | 6] 30|61 28 |8 32
s:d(PCX) d-| 4| 18 | MOVEA | 4| 26 (4| 26 | 4| 26| 30 6| 3 |6] 30 8] 3
s:imm a| 6] 12 MOVEA | 6| 20 | 6| 20 | 6| 20|8) 24 | 8] 26 | 8| 24 | 10| 28
MOVE W [dOCR ssf 2t 12 2| 16 (2| 162 1B|4a] 20 |4 22 (4] 20 6|2 420 |4 2|48] 1601000100/ !lee eeec|s *CR ok kKK
Move to Con-
dition Codes
Move W |d-SR sl 2| 12 2116 (2] 16 |2 B|a| 20 |4 2 (4] 20 6|24 |4l 20 |4 24 16|01000110| |lee ceee|s Sk EEEL S
Move to 'from s:SR 2] 6 20 12 p2) 12 (2| {4} 164 18|4]| 16 |6]| 2 0100 0000 | |IEE EEEE [d—MPU [-----
Status Reg. SR +d
MOVE L |sUsP d 21 4 0100 L110| 0110 [AAA | USP—An -
Move to from ¢-UsP H 2| 4 0100 1110 0110 0AAA | A ~USP
User SP(AT)
MOVEA W &M s:|2) 4 j2) 4 12} 8 |2| 82 04 12 |4} 14 4] 1216|164 12 4] 14 14| 8 | 0011 AAAO| Olee ecee s> | -----
Move Address| L |d:-An sl2) a2 s 2| 122 122(2 114 16 (4] 18 [4] 16 6] 20 [4] 16 (4] 18 [6] 12| 0010 AAAO| Olee ceee
MOVEM s:Xn d 4 18 + 4n| 418 +4nf 6 [12+4n| 6 |14+4nf 6 12*41 8 [16+4n| 0100 1000 IOEE EEEE [Xo=»d | -----
Move Multiple al-al d7~40t
Registers d:Xn H 4 |12+4n(4 12+ 4| 6 [16+4n 6 [18+4n| 6 16+4a] 8 [20+4n| 6 |16+4n| 6 |18+ 4n 0100 1100 | 10ee eecee |s *Xn**
a7~al d47~d0
L js¥n d 418+8n 4(8+8n| 6 [12+8n| 6 (14+8n| 6 {12+8n| 8 |16+ 8n 0100 1000 !1EE EEEE | Xn +d N
a7~ a0 d7~4d0t
doXn H 4 112+8n] 4 |12 + 8| 6 [16+8n| 6 [18+8h 6 |16+8n 8 |20+8n| 6 |16+8nf 6 [i8+8n 0100 1100 | llee eeee|s *Xn**
a7~ a0 47~do
MovEP W |s:Dn ¢ 4] 16 0000 DDD1 | 1000 1AAA | Dn +d by bytes | ~ - - -~
Move s:d(An) d| 4] 16 0000 DDDI | 0000 1AAA | s ~Dn by bytes
Peripheral L [sDn d- 4| 24 0000 DDD1 | 1100 1AAA | Dn~d by bytes
s:d(Mn) dlal 2 0000 DDDI | 0100 1AAA | s ~Dn by bytes
MOovEQ L [s:imm8 d:| 2| 4 0111 DDDO | QQQQ QQQQ | = +Dn -*%00
Move Quick
MuLS W [d:Dn s 21 <70 2| <m{2] <18 2{<76] 4|<18] 4|<80|4|<8[6|<8|4|<78| 4| <8(4|<74| 1100 DDDI | Jlee eeee [Dnxs +Dn -%k%00
Multiply
Signed
MU W |dDn s:[2| <70 (<7 2| <74 2{<76)4|<78| 4| <80|8|<78|6|<B|4|<78|4|<80|4]|<74] |100DDDO| Ilee eeee |Dnxs *Dn -%x%00
Multiply
Unsigned
nsco B | 2| 6 2f 122|122 14 |4 16]|a]| 18 [a] 16|62 0100 1000 | OOEE EEEE | 0—dl0—-X ~d *U*xUx%
Negate Digit
NEG B'W d| 2] 4 20 12]2 12 2| 44| 16]a] 18 afl 166|220 0100 0100 | SSEE EEEE | 0—d *d koK Kk
Negate Binary | L d:| 2| 6 21 20 t2| 0 (2] 2|42 4| 26 |4] 246|228
NEGX B'W df2) 4 20 122 22| 4|4l 164 184 16|6]2 0100 0000 | SSEE EEEE |0—d-X ~d kKK
Negate Multi- | L d:{ 2| 6 2l 202|220 |22 |4 244264 224|6|28
precision
nor B/W 12y 4 2122 22|14 4] 16|4]1814] 16|62 0100 0110 | SSEE EEEE | ~d *d -*x%00
Logical L |2} 6 202012 20 (2] 2 |4) 22 4] %6 |4] 24628
Complement
or /W | s:Dn d: 20 12 |2 12 |2| 14 |4) 16 4] 18 [4a) 166 20 1000 DDD1 | SSEE EEEE | d<or>Dn —d -x%x00
Inclusive OR d:0n ssl2f 4 20 8 (2} 8 12t w0 |4 12 4] 4|4 12{6]16 4] 1214 14 {al 8 | 1000 DDDO| SSee eceee | M<or>s—Mh
Logical L [sDn d= 2020 |2 0|2 2 (4|2 4] 2[4 24628 1000 DDD{ | 10EE EEEE | d<or>Dn—d
d:Dn s:| 2| 8 20 14 |2 14 (2|16 {4 18 |4 20 4] 18 |62 (4| 184 20]|6] 14| 1000DDDO| I0ee eeee |<or>s—~h
om B'W/|s:Imm |4 8 4| 6|8 6 |4| B{6] 20 6] 2 {6[20|8]22 4| 20 | 0000 0000 | SSEE EEEE | d<or> # —d -%%00
OR Immediate | L |s:Imm d:=| 6 16 6] 3 (6] 3 6] 32 |8] 3 8| 3 |8 34]10] B
PEA L s: 2| 14 4| 18 4| 2 (4] 18 6| 2 4] 18|42 0100 1000 | Olee eeee [s>-(SP) [-----
Push Effect-
ol SStt 1DDD {1 00
ROR, ROL [B/W|count:Dn d:| 2 [6+2n 1110 reef C|-*x
fotate count: 3#1~8 d:| 2 |6+2n
without X L |count:-Dn d:| 2 [8+2n 1110 QQQf | SSO1 1DDD
count: #1~8 d=| 2 {8+2n 1110 reef | 1011 1DDD C.L-C_juﬂ
Memory W | count:1 d: 2% 12 |2*f 12 {2+ 14 (4*| 16 [4*| 18 [a*| 16 [6°| 20 1110 QQQf | 1001 1DDD
1110 011f | 1}EE EEEE
Note : Refer to"Condition Code Computations™ Opcode Bit Pattern Key
s for condition Code. A; Address Register # f : Direction; 0—Right, 1—Left R: Destination Register
* :WMG only C: Test Condition estination EA Mode S: Size; 00— Byte In the MOVE Instruction
< :Maximum value 0: Data Register # 01-Word (ohsm]
#; Number of Program Bytes e: Source Effective Address Q 10—Long Word 10— Long Word
~: Number of Clock Periods E: Destination Effective Address r: Source Register]l;lmﬂltl Operation 11—-Word
V; Vector
* % :The MPU goes through an extra 2
: A+2). .
null reed cycle after a multiple read is done (The last E:). (tO be contlnued)

161

HD68000,HD68000Y

Moamonte o, | Adar. | D0 | An | (An) | (An)+ | -(An) | d(An) [d(AnX)|Abs.W | Abs.L|d(PC) |d(PCX)GTETRY] Opcodo Bit Pattern R L
Operation Mode ol 1o <~ [#] ~ [#] = [=#] = [=] < [#] < [#] ~ |#] ~ |#] ~ |#] ~ |#] ~ | 5432 1098 Y654 3210 XNZVC
ROXR,ROXL (B W|cout:0n d:| 2 [6+2n 1110 rref | SS110DDD l':)-L-C xx0*
Rotate - %1~8d=| 2 [6+ 20 1110 QQQf | SSO1 0DDD Right n =X
through X L d=| 2 8+ HETO reef [1011 0DDD
1~8:| 2 8+ 1110 QaQf | 1001 oppD | ©
Memory W fcount:l d: 20| 12 f2of 12 [2+] 14 [a+| 16 {4+ 18 [av| 16 [6%| 2 1110 010f | I 1EE EEEE | (X< Leftn
s8co B |s 2| 6 1000 RRRI | 0000 Orrr
Subtract s (M) d: 2] 18 1000 RRRI | 0000 Irrr [dI0 s10 X +d *URU®
digits
Sce B |cc |2 (64 2 12 f2) 12 2| 14416 |a] 18|afl16|6]|2 0101 CCCC | I |EE EEEE [d—MPU | _____
Set If cc true.l's +d
Conditionally Eise. 0's =4
sus ‘W|s:0n (5 SBA 2|12 |2| 12 |2 14 |a|16 4|18 a6 |6]|2 1001 DDDI | SSEE EEEE {d-Dn +d AR K
Subtract D s:|2| 4 (2] 4 |2| 8 [2| 8 |2] 10 |4 12 (4|14 [4]| 12 (6|16 (4| 12 (4|14 |4 8 {1001 DDDO | SSee eeee (On s +Dn
Bmary L |sDn d= UBA | 2| 20 |2 20 [2| 22 |4| 24 [4| 26 |4 24 [6]|28 1001 DDDI | 10EE EEEE {d-Dn +d
¢Dn s=|2| 8 [2] 8 (214)2) 14 [2) 16 |4)18 [4]20 4|18 |62 |4) 18 |4]|2 [6] 14 [1001 DDDO | i0ee ecee [Dn s +Dn
SuUBA W |¢h s=02f 8 j2f 8 (2|12 |2 122|184 [4]16 |4]| 18 (4|16 {62 (4] 16 |4f18 |4| 121001 AAAO [Ilee eceee [M's M -
Subtract L |dhn s=[2| 8 | 2] 8 |2| 14 2|14 2|16 |4a|18 (4|2 |4]|18 (6|2 |4 1842 |6| 14 1001 AAAI |llee ceee
Address
susi B W{simm d-(4] 8 UBA | 4] 16 [4] 16 |4 18 | 6|20 |6| 22 [6]| 2 |8 4 0000 0100 | SSEE EEEE [d- 2 +d KKKk
Subtract L |sdmm d=16] 16 SUBA 16| 28 [6) 28 (6] 30 {8 |32 |8 3 |8]32 [10]36
Imm ediate
susa B'W|s:imm3 =12 4 |2+ 4 |2 12 |2 12 2] 14 [4]16 |4| 18 |4]|16 [6]2 0101 QQQ! | SSEE EEEE [d = -d R KKK
Subtract L |sdmm3 =12 8 |2 8 |2 16|2) 16 |2| 22 [4]2 |4 26 |4|2 |6]|28
Quick
susx B'W/|s:Dn d:12| 4 1001 RRRI | SS00 Orrr |ds X +d kKK
Subtract s (M) d- 2118 1001 RRR1 | SS00 Irrr
Multiprecision | L |s:Dn |2 8 1001 RRRI | 1000 Orrr
s (M) d 2 30 1001 RRRI | 1000 Irrr
SWAP L 12| 4 0100 1000 | 0100 0DDD {Dn(3116)— -%x%x00
Swap Regis- Dn(15:0)
ter Halves
8 dl2| 4 2| W |2 4216|418 [a]20 faf18|6] 22 0100 1010 | 1 |EE EEEE [test d *cc -%x%x00
Test and Set 1-bit 70f d
Operand
T BW a2 4 2 2| 8 |2 w0 |a| 12 |a]18 a2 |66 0100 1010 | SSEE EEEE |test d-~cc C %00
Test L d=[2] 4 2012 |2 12 |2 14 |4|16 [a|18 [4]16 |6] 2
UNLK 2012 0100 1110 | 0101 1AAA JAn—SP. | _____
Unlmk (SP) + +an
8cc 8 disp= brataken | 21| 10 | 0110 CCCC | PPPP PPPP Jif cc true. [-----
Branch w disp bra not taken [2 | 8 PC+disp +PC
Conditionally bra taken [4 | 10
bra not taken { 4 | 14°
BRA B disp 2110 {0110 0000 | PPPP PPPP |PC+disp »PC | -~ - -~
Branch w disp= 410
Aways
BSR B disp- 2| 2 | 0110 0001 | PPPP PPPP |PC + (SP). -
Branch - PC+disp-+PC
to Subroutine | W disp: 41
Dice W [disp-imm cc ounter | Branch 0101 CCCC | 1100 1DDD |If cc false. | ===~
Decrement ’ 10 false Ell yes Dn1-Dn &if
Counter. & counter=| 4 |, 12 true =1 no Dnx-1PC+disp ~PC
Branch Until l 14) false expired no Else. NOP
Con dition
True or
Count= 1
e d= 2| 8 4110 j4f 14 |4l 10 (6|12 [a] 10 [4] 14 0100 1110 | I'IEE EEEE [d~C | -=----
Jump to
sr d= 2| 16 4 18 (4| 2 (4] 18 |6[20 4] 184 2 0100 1110 | 10EE EEEE |PC + (SP).d+PC | -~ - -~
Jump to
Subroutine
nor 2| 4 0100 1110 (OF11 0001 [none [-=----
No Operation
RESET 211 0100 1110 | 0111 0000 [assert RESETpn | - ~ - - -
Reset Exter-
nal Devices
RTE 2| 20 0100 1110 [011 0011 [(SP)+ SR EREKK
Return from (sP) + +PC
Exception X
RTR 2|2 0100 1110 {0111 0111 {(SP)+ (. EEEEE
Return from (SP) + -PC
Subroutine /
Restore OC
RTS 2|16 0100 1110 [0111 0101 [(SP)+ *PC | -----
Return from
Subroutine
sTOP 41 4 [01001110 {0111 0010 [£ ~SRWat for EEERK
Load SR/Stop Interrupt
TRAP 21 0100 1110 | 0100 VVVV |PC—-(SSP). -
Trap SR (SSP).
(Vector) *PC
TRAPYV 2 34 {Trap taken 0100 1110 [O111 0110 [V:LenPC~ | - ===~
Trap if 4 |(Trap not -(SSP). SR = (SSP)
Overflow Set taken (TRAPY vector) *PC
| se MO
Note : Refer toCondition Code Computations™ Opcode Bit Pattern Key
as for condition Code. A: Address Register # 1: Direction; 0—Right, 1—Left R: Destination Register
2. Word only CiTest Condition M; Destination EA Mode Size: 00~ Byte In the MOVE Instruction
<: Maximum value 0:Data Register # P: Displacement Word [m ~Byte }
#: Number of Program Bytes e:Source Etfective Address Q: Quick Immediate Data 10-Long Word 10-Long Word
~:Number of Clack Periods E: Destination Effective Address r: Source Register 11-Another Operation \ 11~ Word

Vi Vector 2

162

HD68000,HD68000Y

® INSTRUCTION FORMAT SUMMARY instructions according to the op-code map.

This provides a summary of the first word in each instruction where, Size; Byte =00 Sz; Word =0
of the instruction set. Table 26 is an operation code (op-code) Word =01 Long Word =1
map which illustrates how bits 15 through 12 are used to Long Word = 10

specify the operations. The remaining paragraph groups the

Table 26 Operation Code Map

15 3::3 12 Operation
0000 Bit Manipulation/MOV EP/Immediate
0001 Move Byte
0010 Move Long
0011 Move Word
0100 Miscellaneous
0101 ADDQ/SUBQ/Scc/DBcc
0110 Bee
0111 MOVEQ
1000 OR/DIV/SBCD
1001 SUB/SUBX
1010 (Unassigned)

1011 CMP/EOR

1100 AND/MUL/ABCD/EXG
1101 ADD/ADDX

1110 Shift/Rotate

1M (Unassigned)

(1) BIT MANIPULATION, MOVE PERIPHERAL, IMMEDIATE INSTRUCTIONS

Dynamic Bit
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
LO | 0 | 0 J 0 J Register L‘I T Type Effective Address J
Static Bit
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
I] | 0 | 0] 0 I 1 l 0 | 0 ' 0 I Type Effective Address J
Bit Type Codes: TST =00, CHG =01, CLR =10, SET = 11
MOVEP
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
u [0 l o] l 0 T Register Op-Mode l 0] 0 | 1 | Register 1
Op-Mode; Word to Reg = 100, Long to Reg = 101, Word to Mem = 110, Long to Mem = 111
OR Immediate

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 JoJoJoJoJoJo o] sie Effective Address |

AND Immediate

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJoJoJoJoJo 1 Jo] sie Effective Address

163

HD68000,HD68000Y

SUB Immediate

15 12 1 10 9 8 7 6 5 4 3 2 1

14 13
[oJoJoJoJof[1Jo]o] si Effective Address

ADD Immediate

15 14 12 11 10 9 8 7 6 5 4 3 2 1

o To o]

(=]
—
o
(—
-
-
—
o
—
[
N
o

Effective Address

EOR Immediate

14 13 12 11 10 9 8 7 6 5 4 3 2 1

15
LO I 0 I 0 I 0 I 1 TOT1 [0] Size] Effective Address

CMP Immediate

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

[o JoJoJo 11 JoJo] sie Effective Address

(2) MOVE BYTE INSTRUCTION
MOVE Byte

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

Destination Source
Register] Mode Mode] Register

(3) MOVE LONG INSTRUCTION '
MOVE Long

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

0 o 1 o Destination Source
Register | Mode Mode | Register

(4) MOVE WORD INSTRUCTION
MOVE Word

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

0 0 1 1 Destination "Source
Register | Mode Mode N Register

(5) MISCELLANEQUS INSTRUCTIONS

NEGX
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1
I (4] l 1 | OJ 0 TO [0 | o] l (o] l Size J Effective Address
MOVE from SR
% 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[oJ1 JoJoJoJoJo o1 [1] Effective Address
CLR
15 14 13 12 11 10 9 8 7 6 & 4 3 2 1
[o]1 JoJoJoJo]1[o] sie Effective Address

164

HD68000,HD68000Y

NEG
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 JoJoJoJ1JoJ o] size]| Effective Address
MOVE to CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJ1 JoJoJoJ1JoJo]1 1] Effective Address]
NOT
15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
[o[1 JoJoJo 11 o] see | Effective Address]
MOVE to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o v JoJoJo a1]o]r 1] Effective Address |
NBCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 JoJo]i1JoJoJoJo o] Effective Address]
PEA
5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o 1 JoJo]1JoJo o]ol]1] Effective Address
SWAP
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 [1 JoJoJ1JoJoJo o1 JoJo o] Regste |

MOVEM Registers to EA

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o [+ JoJoJ1Jo o o1 [s] Effective Address]
EXTW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
o J1JoJo[1Jofo o1]oJo]o]o] Regster
EXTL
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 JoJoJ1JoJoJo[1[1]oJoJ o] Restr
TST
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJ1JoJoJ1Jo]1 o] sie Effective Address
TAS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]J1JoJoJ 1 Jo 1o [1] Effective Address]

165

HD68000,HD68000Y

MOVEM EA to Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 JoJo 11 oot [s] Effective Address]
TRAP

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

loJr1JoJo 111 JoJo]1]o]o] Vector
LINK

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o[1 JoJo a1 1 JoJoJ1rJo 1]o]| Regster |
UNLK

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

loJr1JoJo 1 JrJr1JoJoJ1Jo 1]1] Register
MOVE to USP

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lo [1 JoJo i [rJaJoJoJ1[1]o]o] negite |
MOVE from USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

foJrJoJoJaJrlrvJoJo]Ja 1o] 1] Regster |
RESET

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 JoJo[aJr[1JoJol1[a]1r]o]Jo]o]o]
NOP

15 14 13 12 11 10 9 8 7 6 5 4 2 1 o

o T ToTo o T T To o To Tv v ToToTol+]
STOP

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[oJrJoJorJaJrJoJo 1 [aJaJoJo1TJol]
RTE

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o1 JoJolalalaJolola a1 JoJo]1T1]
RTS

15 14 13 12 11 10 9 8 7 6 5 4 2 1 o

lofrJofJoJufrJofoJofrfafrJofJrJofnr]
TRAPV

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

l[oJ 1 JoJolalaaJoJo s Jalalo]as]1]o]

166

HD68000,HD68000Y

RTR

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Co T Lo To T T T To Lo [+ o [+ To o [T+
JSR

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o1 JoJo s [aJr o 1 o] Effective Address]
JMP

5 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

o1 JoJo v [Jor 1] Effective Address]
CHK

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l 0 I 1 [0 l 0 l Register J 1 (1 I 0 l Effective Address J
LEA

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o 1]o o] megsee [0]1 [1] Effective Address]

(6) ADD QUICK, SUBTRACT QUICK, SET CONDITIONALLY, DECREMENT INSTRUCTIONS

ADDQ
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| (o] I 1 I 0 I 1 l Data I 0 [Size I Effective Address J
SuBQ
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 Jo 1] Data [1] sie Effective Address |
Scc
% 14 13 12 1 10 9 8 7 6 & 4 3 2 1 0
[o [1Jo 1] Condition [+]] Effective Address |
DBcc
15 14 13 122 11 10 9 8 7 6 5 4 3 2 1 0
[o [1]o 1] Condition [[JoJo 1] Register |
(7) BRANCH CONDITIONALLY, BRANCH TO SUBROUTINE INSTRUCTION
Bee
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o [+]1]o] Condition | 8 bit Displacement |
BSR

15 14 13 12 1110 9 8 7 6 5 4 3 2 10
[o [+ 1 JoJoJoJo]1] 8 bit Displacement |

(8) MOVE QUICK INSTRUCTION

MOVEQ
12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13
[0]1!1|1! Register]Or Data J

167

HD68000,HD68000Y

(9) OR, DIVIDE, SUBTRACT DECIMAL INSTRUCTIONS

OR 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L1 1o oo [Regster Op-Mode Effective Address

Op-Mode
B L
000 001 010 Dn vV EA—>Dn
100 101 110 EA v Dn >EA

DIVU
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
L 1 l 0 l 0 I (V] I Register l 0 I 1 I 1] Effective Address
DIVS
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 [}
[1 JoJo o] megser [1]1]1] Effective Address
SBCD
15 14 13 12 1N 10 9 8 7 6 5 4 3 2 1 (o]
Destination i
1 0 0 0 X 1 0 0 0 0 |R/M | Source Register
Register

R/M (register/memory): register — register = 0, memory — memory = 1

(10) SUBTRACT, SUBTRACT EXTENDED INSTRUCTIONS

Sus 15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
I 1 I V] J 0 I 1 l Register J Op-Mode Effective Address
Op-Mode
B w L
000 001 010 Dn—EA - Dn
100 101 110 EA-Dn—>EA
- 011 11 An—EA = An
susx %5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 [}] 0 1 Destn?atlon 1 Size 0 0 |R/M | Source Register
Register

R/M (register/memory): register — register = 0, memory — memory = 1

(11) COMPARE, EXCLUSIVE OR INSTRUCTIONS

CMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
u l 0 T1 l 1 l Register Op-Mode [Effective Address
Op-Mode
B W L
000 001 010 Dn—EA
— o011 111 An-EA
CMPM % 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t Jo T 1 T 1] megster [1] sie [0 o [1] Regster
EOR

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
‘ 1 J 0 ‘ 1 ‘ 1 I Register J 1 I Size | Effective Address

(12) AND, MULTIPLY, ADD DECIMAL, EXCHANGE INSTRUCTIONS

AND 9 8 7 6 5 4 3 2 1 0

15 14 13 12 1
I 1] 1 I V] l [}] r Register (Op-Mode Effective Address

Op-Mode
B W L
000 001 010 Dn A EA-Dn
100 101 110 EA A Dn—>EA

168

HD68000,HD68000Y

MULU
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lt 1 Jo o] Register [o [][] Effective Address |
MULS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t 1 Jo o] megser [1]1 1] Effective Address |
ABCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111 0o |o D‘:;;’i‘:t::’" 1 o | o | o | o |RM| sourceRegister
R/M (register/memory): register — register = 0, memory — memory = 1
EXGD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 [1 1 0] 0 1 Data Register L1 J o] l 1 l 1] 0 rO T Data RegisterJ
EXGA
% 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[1] 1] o] o [Addessregister [1 [0 [1 [0 [o | 1 [AddresRegister |
EXGM
% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 o] o] paaRegister [1 [1 [0 Jo o] 1 [AddresRegster |

(13) ADD, ADD EXTENDED INSTRUCTIONS

ADD
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
(1 { 1 L 0 J 1 l Register Op-Mode [Effective Address —l
Op-Mode
B L
000 00t 010 Dn + EA—Dn
100 101 110 EA + Dn > EA
- 011 1M An + EA—> An
ADDX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 Destlr.latlon 1 Size (o] 0 | R/M | Source Register
Register

R/M (register/memory): register — register = 0, memory — memory = 1

(14) SHIFT/ROTATE INSTRUCTIONS

Data Register Shifts

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
r1 r 1] 1 J 0 l Count/Register l d] Size J ilr T Type F Register]
Memory Shifts

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[r v T JoJo twe [oa 1 1] Effective Address
Shift Type Codes: AS =00, LS =01, ROX =10, RO = 11

d (direction): Right =0, Left =1
i/r {count source): Immediate Count = 0, Register Count = 1

169

HD68000,HD68000Y

u INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction
execution times in terms of external clock (CLK) periods.
In this timing data, it is assumed that both memory read and
write cycle times are four clock periods. Any wait states caused
by a longer memory cycle must be added to the total instruc-
tion time. The number of bus read and write cycles for each
instruction is also included with the timing data. This data is
enclosed in parenthesis following the execution periods and
is shown as: (r/w) where r is the number of read cycles and
w is the number of write cycles.

(NOTE) The number of periods includes instruction fetch and all ap-
plicable operand fetches and stores.

® EFFECTIVE ADDRESS OPERAND CALCULATION

TIMING :

Table 27 lists the number of clock periods required to com-
pute an instruction’s effective address. It includes fetching
of any extension words, the address computation, and fetch-
ing of the memory operand. The number of bus read and
write cycles is shown in parenthesis as (r/w). Note there are
no write cycles involved in processing the effective address.

® MOVE INSTRUCTION CLOCK PERIODS

Table 28 and 29 indicate the number of clock periods for
the move instruction. This data includes instruction fetch,
operand reads, and operand writes. The number of bus read
and write cycles is shown in parenthesis as: (r/w).

® STANDARD INSTRUCTION CLOCK PERIODS
The number of clock periods shown in Table 30 indicates

the time required to perform the operations, store the results,
and read the next instruction. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number
of clock periods and the number of read and write cycles must
be added respectively to those of the effective address calcula-
tion where indicated.

In Table 30 the headings have the following meanings: An =
address register operand, Dn = data register operand, ea = an
operand specified by an effective address, and M = memory
effective address operanld.

® IMMEDIATE INSTRUCTION CLOCK PERIODS

The number of clock periods shown in Table 31 includes
the time to fetch immediate operands, perform the operations,
store the results, and read the next operation. The number of
bus read and write cycles is shown in parenthesis as: (r/w).
The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective
address calculation where indicated.

In Table 31, the headings have the following meanings:
= immediate operand, Dn = data register operand, An = ad-
dress register operand, M = memory operand, CCR = condition
code register, and SR = status register.

® SINGLE OPERAND INSTRUCTION CLOCK PERIODS

Table 32 indicates the number of clock periods for the
single operand instructions. The number of bus read and write
cycles is shown in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where
indicated.

Table 27 Effective Address Calculation Timing

Addressing Mode Byte, Word Long

Register
Dn Data Register Direct 0(0/0) 0(0/0)
An Address Register Direct 0(0/0) 0(0/0)

Memory
An@ Address Register Indirect 4(1/0) 8(2/0)
An@ + Address Register Indirect with Postincrement 4(1/0) 8(2/0)
An@ - Address Register Indirect with Predecrement 6(1/0) 10(2/0)
An@(d) Address Register Indirect with Displacement 8(2/0) 12(3/0)
An@(d, ix)* Address Register Indirect with Index 10(2/0) 14(3/0)
xxx. W Absolute Short 8(2/0) 12(3/0)
xxx. L " Absolute Long 12(3/0) 16(4/0)
PC@(d) Program Counter with Displacement 8(2/0) 12(3/0)
PC@(d, ix)* Program Counter with Index 10(2/0) 14(3/0)
#xxx Immediate 4(1/0) 8(2/0)

* The size of the index register (ix) does not affect execution time.

170

Table 28 Move Byte and Word Instruction Clock Periods

HD68000,HD68000Y

Destination
Source —
Dn An An@ An@ + An@ - An@(d) |An@(d,ix) xxx. W xxx. L
Dn 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) 14(2/1) 12(2/1) 16(3/1)
An 4(1/0) 4(1/0) 8(1/1) 8(1/1) 8(1/1) 12(2/1) 14(2/1) 12(2/1) 16(3/1)
An@ 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(4/1)
An@+ 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(4/1)
An@ - 10(2/0) 10(2/0) 14(2/1) 14(2/1) 14(2/1) 18(3/1) 20(3/1) 18(3/1) 22(4/1)
An@(d) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(4/1) 22(4/1) 20(4/1) 24(5/1)
An@(d, ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(4/1) 24(4/1) 22(4/1) 26(5/1)
xxx. W 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(4/1) 22(4/1) 20(4/1) 24(5/1)
xxx. L 16(4/0) 16(4/0) 20(4/1) 20(4/1) 20(4/1) 24(5/1) 26(5/1) 24(5/1) 28(6/1)
PC@(d) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(4/1) 22(4/1) 20(4/1) 24(5/1)
Pc@(d, ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(4/1) 24(4/1) 22(4/1) 26(5/1)
F#Fxxx 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(4/1)
* The size of the index register {ix) does not affect execution time.
Table 29 Move Long Instruction Clock Periods
Source Destination
ou Dn An An@ An@ + An@ - An@(d) |An@(d,ix)* | xxx.W xxx. L
Dn 4(1/0) 4(1/0) 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(3/2)
An 4(1/0) 4(1/0) 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(3/2)
An@ 12(3/0) 12(3/0) 20(3/2) 20(3/2) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(5/2)
An@ + 12(3/0) 12(3/0) 20(3/2) 20(3/2) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(5/2)
An@ - 14(3/0) 14(3/0) 22(3/2) 22(3/2) 22(3/2) 26(4/2) 28(4/2) 26(4/2) 30(5/2)
An@(d) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)
An@(d, ix)* 18(4/0) 18(4/0) 26(4/2) 26(4/2) 26(4/2) 30(5/2) 32(5/2) 30(5/2) 34(6/2)
xxx. W 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)
xxx. L 20(5/0) 20(5/0) 28(5/2) 28(5/2) 28(5/2) 32(6/2) 34(6/2) 32(6/2) 36(7/2)
PC@(d) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(5/2) 30(5/2) 28(5/2) 32(6/2)
Pce(d,ix)* 18(4/0) 18(4/0) 26(4/2) 26(4/2) 26(4/2) 30(5/2) 32(5/2) 30(5/2) 34(6/2)
#xxx 12(3/0) 12(3/0) 20(3/2) 20(3/2) 20(3/2) 24(4/2) 26(4/2) 24(4/2) 28(5/2)
* The size of the index register (ix) does not affect execution time.
Table 30 Standard Instruction Clock Periods
Instruction Size op<ea>, An op<ea>, Dn op Dn, <M >
ADD Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +
Long 6(1/0) + ** 6(1/0) + ** 12(1/2) +
Byte, Word — 4(1/0) + 8(1/1) +
AND Long - 6(1/0) + ** 12(1/2) +
Byte, Word 6(1/0) + 4(1/0) + -
cuP Long 6(1/0) + 6(1/0) + -
DIVS - - 158(1/0) + * -
DIVU - — 140(1/0) + * -
Byte, Word — 4(1/0) *** 8(1/1) +
EOR Long - 8(1/0) *** 12(1/2) +
MULS - - 70(1/0) + * -
MULU - - 70(1/0) + * —
OR Byte, Word — 4(1/0) + 8(1/1) +
Long - 6(1/0) + ** 12(1/2) +
SUB Byte, Word 8(1/0) + 4(1/0) + 8(1/1) +
Long 6(1/0) + ** 6(1/0) + ** 12{(1/2) +

+ add effective address calculation time
* indicates maximum value

LTS

only available effective address mode is data register direct

171

** total of 8 clock periods for instruction if the effective address is register direct

HD68000,HD68000Y

Table 31 Immediation Instruction Clock Periods
Instruction Size op #, Dn op #, An op #,M op #, CCR/SR
ADDI Byte, Word 8(2/0) - 12(2/1) + -
Long 16(3/0) - 20(3/2) + —
Byte, Word 4(1/0) 8(1/0)* 8(1/1) + —
ADDQ
Long 8(1/0) 8(1/0) 12(1/2) + -
e Byte, Word 8(2/0) - 12(2/1) + 20(3/0)
Long 16(3/0) - 20(3/1) + -
CMPI Byte, Word 8(2/0) 8(2/0) 8(2/0) + -
Long 14(3/0) 14(3/0) 12(3/0) + -
EORI Byte, Word 8(2/0) - 12(2/1) + 20(3/0)
Long 16(3/0) - 20(3/2) + -
MOVEQ Long 4(1/0) - - -
ORI Byte, Word 8(2/0) - 12(2/1) + 20(3/0)
Long 16(3/0) - 20(3/2) + -
SUBI Byte, Word 8(2/0) - 12(2/1) + —
Long 16(3/0) — 20(3/2) + —
suBQ Byte, Word 4(1/0) 8(1/0) 8(1/1) + -
Long 8(1/0) 8(1/0) 12(1/2) + -
+ add effective address calculation time
* word only
Table 32 Single Operand Instruction Clock Periods
Instruction Size Register Memory
CLR Byte, Word 4(1/0) 8(1/1) +
- Long 6(1/0) 12(1/2) +
NBCD Byte 6(1/0) 8(1/1) +
NEG Byte, Word 4(1/0) 8(1/1) +
Long 6(1/0) 12(1/2) +
NEGX Byte, Word 4(1/0) 8(1/1) +
Long 6(1/0) 12(1/2) +
NOT Byte, Word 4(1/0) 8(1/1) +
Long 6(1/0) 12(1/2) +
S Byté, False 4(1/0) 8(1/1) +
ce Byte, True 6(1/0) 8(1/1) +
TAS Byte 4(1/0) 10(1/1) +
B
ST yte, Word 4(1/0) 4(1/0) +
Long 4(1/0) 4(1/0) +

+ add effective address calculation time

® SHIFT/ROTATE INSTRUCTION CLOCK PERIODS

Table 33 indicates the number of clock periods for the shift
and rotate instructions. The number of bus read and write
cycles is shown in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where
indicated.

® BIT MANIPULATION INSTRUCTION CLOCK PERIODS

Table 34 indicates the number of clock periods required for
the bit manipulation instructions. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number of
clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation
where indicated.

172

® CONDITIONAL INSTRUCTION CLOCK PERIODS

Table 35 indicates the number of clock periods required for
the conditional instructions. The number of bus read and write
cycles is indicated in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where
indicated.

HD68000,HD68000Y

® JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK
PERIODS
Table 36 indicates the number of clock periods required for
the jump, jump to subroutine, load effective address, push effec-
tive address, and move multiple registers instructions. The num-
ber of bus read and write cycles is shown in parenthesis as: (r/w).

Table 33 Shift/Rotate Instruction Clock Periods

Instruction Size Register Memory
+2n(1/0 1/1) +
ASR, ASL Byte, Word 6+ 2n(1/0) 8(1/1)
Long 8+ 2n(1/0) -
Byt d 6+2n(1/0 8(1/1) +
LSR, LSL yte, Wor n(1/0) (1/1)
Long 8 +2n(1/0) -
Byte, Word 6+ 2n(1/0) 8(1/1) +
ROR, ROL Long 8+ 2n(1/0) -
+2n(1/0 8(1/1) +
ROXR, ROXL Byte, Word 6 +2n(1/0) (1/1)
Long 8+ 2n(1/0) -

Table 34 Bit Manipulation Instruction Clock Periods

i . Dynamic Static
Instruction Size - -
Register Memory Register Memory
BCHG Byte - _ 8(1/1) + - _ 12(2/1) +
Long 8(1/0) - 12(2/0) —
BCLR Byte - _ 8(1/1) + — _ 12(2/1) +
Long 10(1/0) — 14(2/0) -
BSET Byte - 8(1/1) + — _ 12(2/1) +
Long 8(1/0)* - 12(2/0) —
BTST Byte - 4(1/0) + - 8(2/0) +
Long 6(1/0) -~ 10(2/0) —

+ add effective address calculation time
* indicates maximum value

Table 35 Conditional Instruction Clock Periods

Instruction Displacement Trap_[c_:;rklg:‘anch Tff\lpogfrgliz:ch
B Byte 10(2/0) 8(1/0)
ce Word 10(2/0) 12(2/0)
Byte 10(2/0) —
BRA Word 10(2/0) -
BSR Byte 18(2/2) -
Word 18(2/2) -
DBec CCtrue — 12(2/0)
CCfalse 10(2/0) 14(3/0)
CHK - 40(5/3) +* 10(1/0) +
TRAP - 34(4/3) -
TRAPV - 34(5/3) 4(1/0)

+ add effective address calculation time
* indicates maximum value

173

HD68000,HD68000Y

Table 36 JMP, JSR, LEA, PEA, MOMEM Instruction Clock Periods

Instr Size k An@ An@ + An@ - | An@(d) | An@(d,ix)*| xxx.W xxx. L PC@(d) | Pc@(d,ix)*
IMP _ 8(2/0) _ _ 10(2/0) | 14(3/0) | 10(2/0) | 12(3/0) | 10(2/0) 14(3/0)
JSR _ 16(2/2) - — 18(2/2) | 222/2) | 18(2/2) | 20(3/2) | 18(2/2) 22(2/2)
LEA _ 4(1/0) - - 8(2/0) | 12(2/0) | 8(2/0) | 12(3/0) | 8(2/0) 12(2/0)
PEA _ 12(1/2) Z - 16(2/2) | 202/2) | 16(2/2) | 20(3/2) | 16(2/2) 20(2/2)

12+4n 12+4n — 16+4n 18+4n 16+4n 20+4n 16+4n 18+4n
MOVEM | Word | (3.1 0) | (3+n/0) | — (4+n/0) | (4+n/0) | (4+n/0) | (5+n/0) | (4+n/0) | (4+n/0)
M- R Lon 12+8n 12+48n - 16+8n 18+8n 16+8n 20+8n 16+8n 18+8n
9 | (3+2n/0) | (3+20/0) | — | (4+2n/0) | (4+2n/0) | (4+2n/0) | (5+2n/0) | (4+2n/0) | (4+2n/0)
8+4n — 8+4n 12+4n 14+4n 12+4n 16+4n — -
MOVEM | Word @m | - (2/n) (3/n) (3/n) (3/n) @n | - -
8+8n | — 8+8n | 12+8n| 14+8n | 12+8n | 16+8n Z Z
R>M | Long @20 | — @2n) | (3/20)| (@20 | (B20) | @42n) | — -

n is the number of registers to move
* is the size of the index register (ix) does not affect the instruction’s execution time

® MULTI-PRECISION INSTRUCTION CLOCK PERIODS the results, and read the next instructions. The number of read
Table 37 indicates the number of clock periods for the multi- and write cycles is shown in parenthesis as: (r/w).

precision instructions. The number of clock periods includes In Table 37, the headings have the following meanings: Dn =

the time to fetch both operands, perform the operations, store data register operand and M = memory operand.

Table 37 Multi-Precision Instruction Clock Periods

Instruction Size op Dn, Dn opM, M
Byte, Word 4(1/0) 18(3/1)
ADDX
Long 8(1/0) 30(5/2)
Byte, Word - 12(3/0)
CMPM
Long - 20(5/0)
18(3/1
SUBX Byte, Word 4(1/0) 8(3/1)
Long 8(1/0) 30(5/2)
ABCD Byte 6(1/0) 18(3/1)
SBCD Byte 6(1/0) 18(3/1)
© MISCELLANEOUS INSTRUCTION CLOCK PERIODS © EXCEPTION PROCESSING CLOCK PERIODS
Table 38 indicates the number of clock periods for the fol- Table 39 indicates the number of clock periods for exception

lowing miscellaneous instructions. The number of bus read and processing. The number of clock periods includes the time for
write cycles is shown in parenthesis as: (r/w). The number of all stacking, the vector fetch, and the fetch of the first instruc-
clock periods plus the number of read and write cycles must be tion of the handler routine. The number of bus read and write
added to those of the effective address calculation where indi- cycles is shown in parenthesis as: (r/w).

cated.

174

Table 38 Miscellaneous Instruction Clock Periods

HD68000,HD68000Y

Instruction Size Register Memory Register > Memory Memory > Register
MOVE from SR - 6(1/0) 8(1/1) + - —
MOVE to CCR - 12(2/0) 12(2/0) + — —
MOVE to SR - 12(2/0) 12(2/0) + - -
MOVEP Word — — 16(2/2) 16(4/0)

Long - - 24(2/4) 24(6/0)
EXG - 6(1/0) - - -
EXT Word 4(1/0) - - -

Long 4(1/0) - - -
LINK — 16(2/2) - = -
MOVE from USP - 4(1/0) - - -
MOVE to USP — 4(1/0) - - -
NOP - 4(1/0) - - -
RESET - 132(1/0) — = =
RTE — 20(5/0) — - -
RTR - 20(5/0 - — -
RTS — 16(4/0) = - =
STOP - 4(0/0) - - -
SWAP - 4(1/0) - = —
UNLK - 12(3/0) - - -

+ add effective address calculation time

Table 39 Exception Processing Clock Periods

Exception Periods
Reset 34(6/0)
Address Error 50(4/7)
Bus Error 50(4/7)
Interrupt 44(5/3)*
lllegal Instruction 34(4/3)
Privileged Instruction 34(4/3)
Trace 34(4/3)

four external clock periods.

175

* The interrupt acknowledge bus cycle is assumed to take

HD68000,HD68000Y

& APPENDIX
® THE 68000S MASK SET

We implement the specification for HD68000-10/-12 and
two corrections on the 68000S mask set. One of these correc-
tions is the bus arbitration logic, and the other is a change to
correct a RTE/RTR microcode problem.
(1) Bus Arbitration Logic

The problem occurs when bus grant acknowledge (BGACK)
is asserted for only one clock cycle while bus request (BR) is
negated. IF BR is asserted one clock cycle after BGACK is
negated, the processor asserts bus grant (BG) and address
strobe (AS) at the same time (Refer to Figure 58). This, in

turn, may cause external DMA logic to run a bus cycle at the
same time as the processor cycle, only when those paticular
timings are all satisfied. If the DMAC HD68450 is used, this
problem can be avoided. Because the HD68450 negates BR
by one clock after the assertion of BGACK.

For the 68000S mask set, an internal hardware change is
implemented and a timing specification (tggkpr) is added.

If BR and BGACK meet the asynchronous set-up time
tasi #47, then tggkpr can be ignored. If BR and BGACK
are asserted asynchronously with respect to the clock, then
BGACK has to be asserted before BR is negated.

Table 40 tggker Specification

4MHz 6MHz 8MHz 10MHz 12.5MHz
Version Version Version Version Version
Number Item Symbol Co-rll-cei?ttion HD680004 | HD68000-6 | HD68000-8 | HD68000-10 | HD68000-12 | Unit
HD68000Y4 | HD68000Y6 | HD68000Y8 |HD68000Y 10 |{HD6E8000Y 12
min max | min max | min max | min max | min max
@ BGACK “Low’ to BR “High” | tggkBR Fig. 57 30 — 25 - 20 — 20 — 20 — ns
Strobes / \%.—
and R/W
_ N R
T\
3D
—_ 2y
@8 >
BGACK @9 [
A @ ®
BG 1 L /‘_
® @—

Figure 57 AC Electrical Waveforms — Bus Arbitration

L] 1 | L

BGACK \ /

ADDRESS

v
AN

Bus Grant Error ——-—f
Fix moves Bus Grant to here ——‘1

Figure 58 Bus Arbitration Timing Diagram Error Sequence

176

68000S Mask Set

RA

HD68000,HD68000Y

68000R and 68000 Mask Set

R = Bus Request Internal

A = Bus Grant Acknowledge Internal

G = Bus Grant

T = Three State Control to Bus Control Logic
X = Don’t Care

* State machine will not change state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

R = Bus Request Internal
A = Bus Grant Acknowledge Internal

G = Bus Grant
T = Three State Control to Bus Control Logic
X = Don’t Care

* State machine will not change state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

Figure 59 State Diagram of HD68000 Bus Arbitration Unit

To Avoid this problem on 68000R mask set, users are rec-
ommended to choose one of the followings.

1) Negate BR more than one clock after the assertion of

BGACK.

2) Avoid the assertion of BGACK for one clock cycle.

3) Reassert BR more than two clocks later than the nega-
tion of BGACK.
4) Use HD68450 as DMA controllers.
(2) RTE/RTR Microcode Problem

The error in the microcode only affects the RTR and the

RTE instructions. These two instructions execute correctly
provided there is no bus error.

If there is a bus error on the 2nd, 3rd, or 4th bus cycle of
RTR or RTE, the program counter is lost. The program counter
loads the stack pointer +2 which is the same address as the
access. The results is the program counter containing the stack
pointer. This problem can occur on all HD68000 mask sets
previous to 68000S.

The fix inhibits the loading of the program counter during
this instruction until the 4th bus cycle.

Memory

sp SR
PCH

SP+2

SP+4 PCL

Y X

Bus Cycle

L 1

Access Address SP+2 SP+d

X

M+2 SP+2

(M+2)*

Content of

SP+2
Program Counter (M+2)*

f
1 1
! 1
' !
' 1
| '
| 1
! i
| '
' '
' v

'
* ; 68000S mask set

PCH-PCL

PCH-PCL+2

h
)
1
1
'
'
'
'

SP+2

PCH-PCL+2
(M2}

Figure 60 RTE Instruction Bus Cycle

177

@ HITACHI

A World Leader in Technology

Hitachi America, Ltd.

Semiconductor and IC Sales and Service Division
2210 O'Toole Avenue, San Jose, CA 95131
1-408-942-1500

HITACHI #U60 Printed in U.S.A.

