HITACHI MOS LSI HD61885, HD61887

© HITACHI

Single-chip CMOS Speech Synthesis LSI

HD61885 is one chip CMOS speech synthesis LSI based on PARCOR method.

This LSI consists of PARCOR speech synthesizer and ROM (32kbit) which memorizes speech signal information. Besides, D/A converter, keyboard interface, and external ROM interface are included.

■ FEATURES

- Selectable bit rates; (1.25 ~ 9.9 kbit/sec.)
- Utterance duration; 26 sec. max.
- Utterance words: 63 words, max.
- Expansion; Utterance duration and words can be expanded easily by the addition of external ROM (HD44881).

Adding one ROM makes utterance duration 100 second max.

(Expansion of words is not specified.)

Max. 16 ROM's can be connected.

- Variable utterance speed; -25%, 0%, +25%.
 Selectable double or half speed mode.
 (This is determined when speech is analyzed.)
- Low power dissipation by using CMOS process.

Stand-by mode is available.

- Single 5V power supply operation. (Operation range is min. 3.6V.)
- Outline

Plastic DIP - 28 (HD61885)

Plastic Flat - 54 (HD61887)

■ BLOCK DIAGRAM OF SYNTHESIZER

■ SYSTEM BLOCK DIAGRAM

An Application of The Key Input Type

Note: Terminals not specified are used in open.

• An Application of The Key Input Type (external ROM operation)

Note: Terminals not specified are used in open.

An Application of The Key Input Type

Symbol	Function	Remark
MODE	Select Mode	The terminal for selecting key mode operation or MC mode operation. Input "L" level.
PS1 PS2 PS3 PS4 PS5 PS6	Phrase Selection Input Signal	Phrase selection input signal. Internal/external ROM is appointed, and one of 63 phrases can be set up. When "L" is applied to one of these terminals, utterance start signal generates and addressing converter starts. Function of preventing chatter and bounce is included. When input is applied during utterance, utterance stop signal generates and after utterance stop is confirmed, another utterance start signal generates.
STRT BUSD	 Utterance Start Power Off Control (Stand-by) 	Input "H" level for STRT terminal. BUSD terminal is the terminal for selecting power on and off. When input signal "H" for BUSD terminal is applied, internal power supply in the synthesis chip is made to be OFF. When input signal "L" is applied, power supply is ON. In this case the synthesis chip is reset automatically, because the reset terminal is connected to the internal power supply through the internal resistor.

Notes:

- 1. Pull up MOS to Vcc is added to PS1~PS6. While the internal power supply is OFF, (stand-by) Pull up MOS has high impedance.
- 2. Pull up MOS of $\overline{PS1} \sim \overline{PS6}$ can be cut off by metal option.

Key Input

The time from key input to utterance start. The shorter input time than this value is inefective.

The required time to apply the next signal after the key is set free.

The shorter key off (bouncing phenomenon) time makes it impossible to apply next input.

Selecting Phrase

Utterance words, which correspond to the codes specified in PS1~PS6, are programmed in the internal PLA in accordance with the user's appointment.
In this case code "0" ($\overline{PS1} \sim \overline{PS6} = 1$) is inhibited.

Microcomputer Control Type

Note: Terminals not specified are used in open.

• Microcomputer Control Type (external ROM operation)

An Application of the Microcomputer Control Type

Symbol	Function	Remark
MODE	Select Mode	The terminal for selecting key mode operation and microcomputer mode operation. Input "H" level.
PS1 PS2 PS3 PS4 PS4 PS5 PS5 PS6 PS6 PS6 PS6	Phrase Selection Input Signal	Phrase selection input signal. Internal/external ROM is appointed, and one of 63 phrases can be set up. By applying start input, signals of PS1~PS6 are latched and addressing converter starts.
STRT STRT BUSD STRT BUSD STRT STRT	Utterance Start Power OFF Control (Stand-by)	STRT instruction The synthesis chip starts operating by applying "H" level to STRT terminal more than 20µs. (This operation is on the leading edge of signal.) Power OFF instruction. When input "H" level signals are applied to both STRT terminal and BUSD terminal, internal power supply in the synthesis chip is made to be OFF. When input signals "L" are applied to BUSD terminal and STRT terminal, power supply is ON. In this case the synthesis chip is reset automatically, because the reset terminal is connected to the internal power supply through the internal resistor.

Notes:

 Conformable to the note (An Application of The Key Input Type).

2. STRT instruction during utterance makes this utterance

stop and new phrase generate.

3. Usually, utterance stops automatically detecting the End Mark programmed in ROM.

Microcomputer Control Timing Chart

(1) Select phrase & utterance

4.4	Item	Symbol	min.	max.	Unit	Note
	Input Data Set Up Time	tsu	10.0	_	μs	
ACT.	Input Data Hold Time	$t_{ m DH}$	20.0		μs	
27	STRT pulse width	tSTRT	20.0	_	μs	
	STRT pulse interval	tINTV	20.0	_	μs	
0000 0000 0000 0000 0000 0000	BUSY Signal Generation Starting Time	$t_{ m B}$	_	3.5	ms	
	Utterance Output Starting Time	to	2	20	ms	depends upon speech data

(2) Stand-by control

1	La 1 () 1 (April 1 14 16 1 44		
	Item	Symbol	min.	max.	Unit	Remark	Note
	STRT-BUSD Pulse Phase Difference	tSB	10.0	(1000)	μs		1
1.	BUSD-STRT Pulse Phase Difference	$t_{ m BS}$	10.0		μs		
	Stand-by Time	tHLT	(100)		ms		2
	Operation Recovery	tso	_				3

Notes:

- Specification within parenthesis is to prevent utterance generated by STRT signal. The cases that utterance has already finished and that an unvoiced sounds' phrase is selected are exclusive.
- The minimum of the stand-by time is determined by C_R time, so that the reset is effective during recovering time from stand-by. So this value depends upon C_R. This C_R components mute D/A output, while transposing time for stand-by mode and recovering time from stand-by mode.
- Time constant determined by external capacitance (C_R) of the reset terminal.
- When the system is reset, busy signal is "H".
 During this time no instructions can be accepted. Instructions are accepted when Busy signal is "L".

Phrase Edition Type by Microcomputer (More than 63 phrases)

Note: Terminals not specified are used in open.

The Phrase Edition Type by Microcomputer

Symbol	Function	Remark
MODE	Select Mode	The terminal for selecting key mode and microcom. mode. Input "H" level.
PS1 PS2 PS3 PS3 PS4 PS5 PS5 PS6 PS6	Phrase Selection Input Signal	Phrase selection input signal. The appointment of internal/external ROM and the phrase selection signal of internal ROM. Max. 63 kinds of phrases in the internal ROM and one in the external ROM can be set up. By applying the start signal, signals $(\overline{PS1} \sim \overline{PS6})$ are latched and the addressing converter starts.
STRT	PS1∼PS6 Strobe Utterance stop	$\overline{\mathrm{PS1}} \sim \overline{\mathrm{PS6}}$ strobe and the instruction of stopping the utterance.
BUSD	Bus Output Control for ROM	By applying "H" level to the STRT terminal, $\overline{PS1} \sim \overline{PS6}$ are latched, but if the present utterance is continued, it is stopped and a new phrase is uttered.
	Power ON/OFF Control (STRT & BUSD in common)	BUS Hi-Z instruction Make ROM A1~A4 Hi-Z condition, and change ACC to input state. The external ROM direct address mode using the microcomputer is set up by this mode. To make this mode, after the power ON or reset apply BUSD signal before applying the start signal. Power OFF instruction (Stand-by) See the power OFF instruction in the application of the MC control type.
ACS	ROM Address Control	This signal moniters the external ROM address transmission, detects the completion of the address transmission, and generates the utterance start signal automatically. (Utterance starts at ACS 5 pulses.)

Notes:

- See the footnotes (An Application of The Key Input Type) and (An Application of the Microcomputer Control Type).
- ACS must generates 5 pulses accurately by MC. If more than 5 pulses are generated at a time, it will lead misopera-

tion. And ACS must generates when BUSY is "L". The generation under "H" level will lead misoperation.

See the specification of the speech synthesis CMOSROM (HD44881) for the timing chart of the external ROM address transmission.

• Timing Chart in The Case of the External Direct Addressing Mode

Item	Symbol	Min.	Max.	Unit	Note
BUSY-ACS Pulse Interval	$t_{ m BA}$	0.0	_	μs	
ACS-BUSY Pulse Interval	$t_{ m AB}$		3.5	ms	
BUSD Pulse Width	$^{ m t_{M}}$	10.0	_	μs	Reset shall be released.
BUSD-STRT Pulse Interval	$t_{ m BS}$	10.0		μs	same as above

The Function of Terminals Used in Each Mode in Common

Symbol	Function		Remark								
BUSY	Utterance Signal	The output terminal for showing that the utterance is going on. ("H"). This signal is "H" during reset.									
SFRM	Frame Length Set Up	The terminal for changing the frame length. (10ms, 20ms.) "L" 10ms (good speech quality) "H" 20ms Bit rate (speech quality) is determined by combining frame length and bit/Frame.									
Xout Xin	Oscillation	The terminal for oscillation. Using the ceramic resonator. (800kHz)									
RST	Reset	In the case tha 1. Reset the in 2. Mute DAO This reset oper time and Mute tir also prevents the	ternal state. output for a t ation is availa ne are determ	ime. able as recovering ined by the exte							
DAO	D/A Output	The output terminal of D/A converter. Speech is generated through Filter, Amp, and Speaker.									
DRQP	ROM Data Requesting Pulse	The output terminal for requesting the external ROM data.									
FST SLW	Utterance Speed Set Up	Changeable to	the following	conditions by S	LW, FST inpu	t.					
		SLW	L	Н	L	Н					
		FST	L	L	Н	Н					
		Bit/Frame	50	50	50	99					
		Frame Length	Normal	+25%	-25%	Normal					
				slow speed	fast speed						
RDATA	ROM Data Input	The input term	inal for the e	xternal ROM.							
ROMA1 ROMA2 ROMA3 ROMA4	ROM Address Output	The output ter	The output terminal for the external ROM address.								
CPA	ROM Clock	The output ter	minal for the	external ROM d	rive.						
Vec GND	Power Supply +5V 0V	The output terminal for the external ROM drive. +5V power supply terminal. 0V ground terminal.									

• The List of Terminals (HD61885) . . . DIP-28

	Pin No.	Function	Symbol	Power Supply	Clock	In	Out	3-state	Pull Up	Pull Down
41	1	Utterance Signal	BUSY				0			
	2	ROM Data Requesting Pulse	DRQP				0			
	3	ROM Address Control	ACS			0	0	0		
	4		PS1			0			0	
	5		PS2			* O		and the state of t	0	
	6	Phrase Selection Input Signal	PS3			0			0	
ov I'' Justin	7	Thrube beleeved input signal	PS4			0			0	
0 00.	8		PS5			0			0	
200 es	9	J	PS6			0			0	
12.0	10	Select Mode	MODE			0				
100000 100000 100000 100000	11	ROM Data Input	RDATA			0				
	12	Utterance Start	STRT			0				
	13	ROM Output Control	BUSD			0				
200	14	Power Supply (+5V)	v_{CC}	0						
	15	Utterance Speed Set Up	FST	}		0				
	16)	SLW			0		!	internal	
	17	Frame Length Set Up	SFRM			0			power	
	18	Reset	RST			0				→ O
	19	Test	TEST		_	0				Ö
	20	Oscillation	x_{IN}		0	0				
0.00000 0.00000 0.00000 0.00000	21	J	XOUT		0		0			
Marine, Parine, Parine, Parine,	22	D/A Output	DAO				0			
00-00-00 00-00-00 00-00-00 00-00-00 00-00-	23	ROM Clock	CPA		0		0			
00000 00000 00000	24	Power Supply (0V)	GND	0					_	
AAA	25		ROMA1				0	0	•	
	26	ROM Address Output	ROMA2				0	0	•	
2000 p	27		ROMA3				0	0	•	
	28	J	ROMA4				0	0	•	

Notes:

- Phrase Selection Input Signal:
 Pull up MOS is selected by metal option.
 While stand-by mode, pull up MOS is Hi-Z.
- While stand-by mode, pull up MOS is Hi-Z.
 2. Pull up is effective while output Hi-Z or stand-by mode.
 Pull up is Hi-Z while other condition.

● HD61887 (FPP-54) Pin Assignment

Pin#	Terminal	Pin#	Terminal	Pin#	Terminal	Pin#	Terminal	100
1	ROMA4	15	PS5	29	⟨NC⟩	43	⟨NC⟩	100
2	BUSY	16	PS6	30	FST	44	⟨NC⟩	20
3	(NC)	17	⟨NC⟩	31	(NC)	45	DAO	1100
4	(NC)	18	(NC)	32	SLW	46	⟨NC⟩	200
5	DRQP	19	(NC)	33	SFRM	47	CPA	
6	ACS	20	⟨NC⟩	34	(NC)	48	GND	200
7	(NC)	21	MODE	35	RST	49	ROMA1	533136
8	PS1	22	RDATA	36	TEST	50	⟨NC⟩	27
9	PS2	23	⟨NC⟩	37	⟨NC⟩	51	ROMA2	23 1 24
10	(NC)	24	STRT	38	Xin	52	⟨NC⟩	. 2.2.2.3
11	⟨NC⟩	25	BUSD	39	Xout	53	ROMA3	- 30
12	PS3	26	Vec	40	(NC)	54	(NC)	. 5.5.5.5
13	PS4	27	BRATE	41	⟨NC⟩			114434
14	(NC)	28	(NC)	42	(NC)			-000

Notes:

- BRATE is the test terminal for flat package type device, and is to be used in open.
- 2. (NC) indicates NO connection.

■ ELECTRICAL CHARACTERISTICS

• Absolute Maximum Ratings

Rating	Symbol	Value		Unit	Note
Supply Voltage	Vec	− 0.3 ~ +6.7	1661	V	
Terminal Voltage (1)	Vrl	$-0.3 \sim \text{Vcc+0.3}$		V	
Operating Temperature (1)	Topr1	−20 ~ +75		°C	The range of utterance;
Operating Temperature (2)	Topr2	10 ~ +55		°C	guarantee: CPG ±3%
Storage Temperature	Tstg	-55 ~ +125		°C	

• Electrical Characteristics $Vcc = +5V \pm 10\%$, $Ta = -20 \sim +75 ^{\circ}C$ (unless otherwise specified)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Input Voltage	$v_{\rm IL1}$				1.0	v	
	V _{IH1}		Vcc -1.0		_	v	
	$v_{\rm IL2}$		<u></u>		1.0	v	
en de la companya de La companya de la co	v_{IH2}		Vcc -1.0			v	
Pull Up MOS	IPULL	V _{IN} = Vcc	30	-	240	μΑ	RST
		VIN = GND	5	-	100	μΑ	ROMS1~4, ACS
			20	-	100	μΑ	PS1~PS6
Output Voltage	VOL	$I_{OL} = 1.6 mA$	-		0.8	V	Output except DAO
	V _{OH1}	$I_{OH} = 1.0 \text{mA}$	2.4	-1		V	
	v _{OH2}	I _{OH} = 0.1mA	Vcc -0.8			v	
Clock Oscillation Frequency	fep	CPA terminal	194	200	206	kHz	Ta = -10~+55°C
Input Leakage Current	±I _{IN}	$V_{IN} = 0 \sim V_{CC}$			1	μА	applied to the terminal without pull up
D/A Output Voltage	Vos	$R_L = 50 \Omega$	0.25	0.5	rij e g	Vp-p	
Power Dissipation	P_{T}			3.5	-	mW	D/A power dissipation is not included.
Stand-by Current	I_{SC}				10	μΑ	STRT = BUSD = Vcc—0.2V

ullet Electrical Characteristics (Ta = $-10 \sim 55^{\circ}$ C, Vcc = $3.6 \sim 5.5$ V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Terminal
Input Voltage	Уш1		Vcc -0.7			V	
	v_{IL1}				0.7	V	
	V _{IH2}	Section 1	Vcc -0.7		- The Late Care	v.	
	V _{IL2}		-		0.7	V	
Output Voltage	У ОН	-I _{OH} = 50μA	Vcc -0.5			v	
	Vol	$I_{OL} = 50 \mu A$			0.5	v	The state of the s
Pull Up MOS	-Ip	V _{IN} = 0V	10		100	μΑ	PS1~PS6
			2		100	μΑ	ACS, ROMA1~4
	Ip.	V _{IN} = Vcc	30		240	μΑ	RST
Clock Oscillation Frequency	fcp	measured at the CPA terminal	194	200	206	kHz	And the state of t
Input Leakage Current	+Im	$V_{IN} = 0 \sim V_{CC}$			11	μΑ	
D/A Output Voltage		$R_{\rm L}$ = 50 Ω	0.1	0.5		Vр-р	
Power Dissipation	PŢ			3.5		mW	DAO is open
Stand-by Current	Isc		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10	μΑ	STRT = BUSD = Vcc—0.2V

• Fifth Order 1.0 dB Ripple Chebyshev Filter

fQ = 4950Hz

©HITACHI

A World Leader in Technology

Hitachi America, Ltd.

Semiconductor and IC Sales and Service Division 1800 Bering Drive, San Jose, CA 95112 1-408-292-6404