

Hitachi Single-chip Microcomputer

H8/300L Series
Programming Manual

@HITACHI ADE-602-040

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without Hitachi's permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during

operation of the user's unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of

Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other

problems that may result from applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, ltd.

6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the

written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life

support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning

to use the products in MEDICAL APPLICATIONS.

Preface

The H8/300L Series of single-chip microcomputers is built around the high-speed H8/300L

CPU, with an architecture featuring eight 16-bit (or sixteen 8-bit) general registers and a

concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300L instructions. The descriptions apply to

all chips in the H8/300L Series. Assembly-language programmers should also read the

separate HS/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Contents

Section 1. CPU
1.1 Overview

1.1.1 Features

1.1.2 Data Structure 2

1.1.3 Address Space .. 4

1.1.4 Register Configuration ... 5

1.2 Registers 6

1.2. l General Registers... 6

1.2.2 Control Registers 6

1.2.3 Initial Register Values .. 7

1.3 Instructions :... 8

1. 3.1 Types of Instructions.. 8

1.3.2 Instruction Functions ... 9

1.3.3 Basic Instruction Formats .. 20

1.3.4 Addressing Modes and Effective Address Calculation 26

Section 2. Instruction Set ... 31

2.1 Explanation Format ... 31

2.2 Instructions .. 36

2.2.l (1)

2.2.1 (2)

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

2.2.15

ADD (add binary) (byte) ... 36

ADD (add binary) (word) .. 37

ADDS (add with sign extension) .. 38

ADDX (add with extend carry) ... 39

AND (AND logical) .. 40

ANDC (AND control register) .. 41

BAND (bit AND) .. 42

Bee (branch conditionally) .. 43

BCLR (bit clear) .. 46

BIAND (bit invert AND) .. 48

BILD (bit invert load) ... 49

BIOR (bit invert inclusive OR) ... 50

BIST (bit invert store) ... 51

BIXOR (bit invert exclusive OR) .. 52

BLD (bit load) ... 53

BNOT (bit NOT) ... 54

2.2.16 BOR (bit inclusive OR) ... 56

2.2.17 BSET (bit set) .. 57

2.2.18 BSR (branch to subroutine) ... 59

2.2.19 BST (bit store) ... 60

2.2.20 BTST (bit test) ... 61

2.2.21 BXOR (bit exclusive OR) ... 63

2.2.22 (1) CMP (compare) (byte) .. 64

2.2.22 (2) CMP (compare) (word) ... 65

2.2.23 DAA (decimal adjust add) ... 66

2.2.24 DAS (decimal adjust subtract) .. 68

2.2.25 DEC (decrement) ... 70

2.2.26 DIYXU (divide extend as unsigned) ... 71

2.2.27 EEPMOY (move data to EEPROM) ... 73

2.2.28 INC (increment) .. 74

2.2.29 IMP (jump) .. 75

2.2.30 JSR (jump to subroutine) ... 76

2.2.31 LDC (load to control register) ... 77

2.2.32 (1) MOY (move data) (byte) ... 78

2.2.32 (2) MOY (move data) (word) ... 79

2.2.32 (3) MOY (move data) (byte) ... 80

2.2.32 (4) MOY (move data) (word) ... 81

2.2.32 (5) MOY (move data) (byte) ... 82

2.2.32 (6) MOY (move data) (word) ... 83

2.2.33

2.2.34

2.2.35

2.2.36

2.2.37

2.2.38

2.2.39

2.2.40

2.2.41

2.2.42

2.2.43

2.2.44

2.2.45

2.2.46

MULXU (multiply extend as unsigned) .. 84

NEG (negate) ... 85

NOP (no operation) ... 86

NOT (NOT = logical complement) ... 87

OR (inclusive OR logical) ... 88

ORC (inclusive OR control register) ... 89

POP (pop data) .. 90

PUSH (push data) .. 91

ROTL (rotate left) ... 92

ROTR (rotate right) ... 93

ROTXL (rotate with extend carry left) ... 94

ROTXR (rotate with extend carry right) ... 95

RTE (return from exception) ... 96

RTS (return from subroutine) .. 97

2.2.47

2.2.48

2.2.49

2.2.50

2.2.51

2.2.52

2.2.53 (1)

2.2.53 (2)

2.2.54

2.2.55

2.2.56

SHAL (shift arithmetic left) .. 98

SHAR (shift arithmetic right) .. 99

SHLL (shift logical left) .. 100

SHLR (shift logical right) ... 101

SLEEP (sleep) ... 102

STC (store from control register) .. 103

SUB (subtract binary) (byte) ... 104

SUB (subtract binary) (word) .. 105

SUBS (subtract with sign extension) .. 106

SUBX (subtract with extend carry) ... 107

XOR (exclusive OR logical) ... 108

2.2.57 XORC (exclusive OR control register) ... 109

2.3 Operation Code Map ... 110

2.4 List of Instructions ... 112

2.5 Number of Execution States .. 119

Section 3. CPU Operation States ... 127

3.1 Program Execution State ... 128

3.2 Exception Handling States ... 128

3.2.1 Types and Priorities of Exception Handling ... 128

3.2.2 Exception Sources and Vector Table ... 129

3.2.3 Outline of Exception Handling Operation .. 130

3.3 Reset State ... 131

3.4 Power-Down State ... 131

Section 4. Basic Operation Timing .. 133

4.1 On-chip Memory (RAM, ROM) .. .133

4.2 On-chip Peripheral Modules and External Devices .. 134

Section 1. CPU

1.1 Overview

The H8/300L CPU at the heart of the H8/300L Series features 16 general registers of 8 bits

each (or 8 registers of 16-bits each), and a concise, optimized instruction set geared to high­

speed operation.

1.1.1 Features

The H8/300L CPU has the following features.

General register configuration

16 8-bit registers (can be used as 8 16-bit registers)

55 basic instructions

• Multiply and divide instructions

• Powerful bit manipulation instructions

8 addressing modes

• Register direct (Rn)

• Register indirect (@Rn)

• Register indirect with displacement (@(d:16, Rn))

• Register indirect with post-increment/pre-decrement (@Rn+/@ -Rn)

• Absolute address (@aa:8/@aa:l6)

• Immediate (#xx:8/#xx:16)

• Program-counter relative (@(d:8, PC))

• Memory indirect (@@aa:8)

64-kbyte address space

High-speed operation

• All frequently used instructions are executed in 2 to 4 states

• High-speed operating frequency: 5 MHz

Add/subtract between 8/16-bit registers: 0.4 µs

8 x 8-bit multiply: 2.8 µs

16 + 8-bit divide: 2.8 µs

Low-power operation

• Transition to power-down state using SLEEP instruction

1.1.2 Data Structure

The H8/300L CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and

16-bit (word) data.

• Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ... , 7) in a

byte operand.

• All operational instructions except ADDS and SUBS can operate on byte data.

• The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits x 8 bits), and

DIVXU (16 bits+ 8 bits) instructions operate on word data.

• The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in

packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

2

Data Structure in General Registers: Data of all the sizes above can be stored in general

registers as shown in figure 1-1.

Data type Register No. Data format

7 0
1-Bit data RnH l1l6lsl4lsl2l1lol Don't-care I

7 0
1-Bit data RnL I Don't-care l1l6lsl4lsl2l1lol

7 0
Byte data RnH I:: : : : : : : :I Don't-care I

7 Q
Byte data RnL I Don't-care I : : : : : : : : : I

15 0
Word data Rn I : : : : : : : : : : : : : : : : : I

7 13 0
4-Bit BCD data RnH I H·,: I H·,: I Don't-care I

7 43 0
4-Bit BCD data RnL I Don't-care I :upfer: I H,.,; I

RnH: Upper 8 bits of General Register

RnL: Lower 8 bits of General Register

MSB: Most Significant Bit

LSB: Least Significant Bit

Figure 1-1. Register Data Structure

3

Data Structure in Memory: Figure 1-2 shows the structure of data in memory. The
H8/300L CPU is able to access word data in memory (MOV.W instruction), but only if the
word data starts from an even-numbered address. If an odd address is designated, no address

error occurs, but the access is performed starting from the previous even address, with the least
significant bit of the address regarded as 0. * The same applies to instruction codes.
* Note that the LSis in the H8/300L Series also contain on-chip peripheral modules for which

access in word size is not possible. Details are given in the applicable hardware manual.

Data type Address Data format

......_____..
7 0

1-Bit data Address n 1IsisI4_]_3J2I1Io

Byte data Address n
. ' . .
' '

Even address
.
: Upper 8 bits

.L Word data .- Lower 8 bits ' Odd address .L:

Even address
.

CCR ' . .
Byte data (CCR) on stack ' '

~ CCR* ' Odd address .
' '

Even address
.

Upper Bblts .
.L ' Word data on stack ' Odd address Lowers bits .L:

"-----"

CCR: Condition code register.

Note: Word data must begin at an even address. .. Ignored when returned .

Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte is ignored.

1.1.3 Address Space

The H8/300L CPU supports a 64-Kbyte address space (program code+ data). The memory
map differs depending on the particular chip in the H8/300L Series and its operating mode.
See the applicable hardware manual for details.

4

1.1.4 Register Configuration

Figure 1-3 shows the register configuration of the H8/300L CPU. There are 16 8-bit general

registers (ROH, ROL, ... , R7H, R7L), which can also be accessed as eight 16-bit registers (RO

to R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit

condition code register (CCR).

General Registers (Rn)

7 07 0
ROH ROL

R1H R1L
R2H R2L

R3H R3L

R4H R4L

R5H R5L

R6H R6L

R7H (SP) R7L SP: Stack Pointer

Control Registers (CR)

15 0

I PC I Program Counter

76543210

CCR 11u JHl ul NJ zj_ \'..I. c Condition Code Register

L= Carry flag

Overflow flag

Zero flag

Negative flag
Half-carry flag

Interrupt mask bit

User bit

Figure 1-3. CPU Registers

5

1.2 Registers

1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as

address registers, the general registers are accessed as 16-bit registers (RO to R7). When used

as data registers, they can be accessed as 16-bit registers (RO to R7), or the high (ROH to R7H)

and low (ROL to R7L) bytes can be accessed separately as 8-bit registers. The register length

is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and
subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As

indicated in figure 1-4, R7 (SP) points to the top of the stack.

Unused area

Stack area

Figure 1-4. Stack Pointer

1.2.2 Control Registers

The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction

the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant

bit of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the

CPU with an interrupt mask (I) bit and five flag bits: half-carry (H), negative (N), zero (Z),

overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit

configuration of the condition code register is shown below.

6

Bit 7 6 5 4 3 2 0

I u H u N z v c
Initial value 1 * * * * * * *
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

* Not fixed

Bit 7-lnterrupt Mask Bit (I): When this bit is set to 1, all interrupts except NMI are
masked. This bit is set to 1 automatically at the start of interrupt handling.

Bits 6 and 4-User Bits (U): These bits can be written and read by software for its own
purposes using LDC, STC, ANDC, ORC, and XORC instructions.

Bit 5-Half-Carry (H): This bit is used by add, subtract, and compare instructions to indicate
a borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3-Negative (N): This bit indicates the value of the most significant bit (sign bit) of the
result of an instruction.

Bit 2-Zero (Z): This bit is set to 1 to indicate a zero result and cleared to 0 to indicate a
nonzero result.

Bit 1-0verflow (V): This bit is set to 1 when an arithmetic overflow occurs, and cleared to
0 at other times.

Bit 0-Carry (C): This bit is used by:
Add, subtract, and compare instructions, to indicate a carry or borrow at the most
significant bit
Shift and rotate instructions, to store the value shifted out of the most or least significant
bit
Bit manipulation instructions, as a bit accumulator

Note that some instructions involve no flag changes. The flag operations with each instruction
are indicated in the individual instruction descriptions that follow in section 2, Instruction Set.
CCR is used by LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags
are used by the conditional branch instruction (Bee).

1.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the
interrupt mask bit (I) in CCR is set to 1. The other CCR bits and the general registers are not
initialized.

7

The initial value of the stack pointer (R7) is not fixed. To prevent program crashes the stack

pointer should be initialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features:

The H8/300L CPU has a concise set of 55 instructions.

A general-register architecture is adopted.

All instructions are 2 or 4 bytes long.

Fast multiply/divide instructions and extensive bit manipulation instructions are

supported.

Eight addressing modes are supported.

1.3.1 Types of Instructions

Table 1-1 classifies the H8/300L instructions by type. Section 2, Instruction Set, gives detailed

descriptions.

Table 1-1. Instruction Classification

Function Instructions Types

Data transfer MOV, POP*, PUSH* 1

Arithmetic operations ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14

DAA, DAS, MULXU, DIVXU, CMP, NEG

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8

ROTXR

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR 14

BIOR, EXOR, BI XOR, ELD, BILD, EST, BIST

Branch Bee**, JMP, BSR, JSR, RTS 5

System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8

Block data transfer EEPMOV

Total 55

* POP Rn is equivalent to MOV.W @SP+, Rn.

PUSH Rn is equivalent to MOV.W Rn, @-SP.

** Bee is a conditional branch instruction in which cc represents a condition.

8

1.3.2 .Instruction Functions

Tables 1-2 to 1-9 give brief descriptions of the instructions in each functional group.

The following notation is used.

Notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

z Z (zero) bit of CCR

v V (overflow) bit of CCR

c C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#Imm Immediate data

op Operation field

disp Displacement

+ Addition

Subtraction

x Multiplication
-'- Division

/\ AND logical

v OR logical

<B Exclusive OR logical

~ Move

-, Not

:3, :8, : 16 3-bit, 8-bit, or 16-bit length

9

Table 1-2. Data Transfer Instructions

Instruction Size* Function

MOV B/W

POP w

PUSH w

* Size: Operand size

B: Byte

W: Word

(EAs) ~ Rd, Rs ~ (EAd)

Moves data between two general registers or between a general

register and memory, or moves immediate data to a general register.

The Rn,@Rn,@(d:l6, Rn), @aa:l6, #xx:8 or #xx:l6,@-Rn, and

@Rn+ addressing modes are available for byte or word data. The

@aa:8 addressing mode is available for byte data only.

The@-R7 and @R7+ modes require word operands. Do not

specify byte size for these two modes.

@SP+~Rn

Pops a 16-bit general register from the stack.

Equivalent to MOV.W @SP+, Rn.

Rn~@-SP

Pushes a 16-bit general register onto the stack.

Equivalent to MOV.W Rn, @-SP.

10

Table 1-3. Arithmetic Instructions

Instruction Size*

ADD

SUB

ADDX

SUBX

INC

DEC

ADDS

SUBS

DAA

DAS

MULXU

DIVXU

CMP

NEG

B/W

B

B

w

B

B

B

B/W

B

* Size: Operand size

B: Byte

W: Word

Function

Rd ± Rs ---1 Rd, Rd+ #Imm ---1 Rd

Performs addition or subtraction on data in two general registers,

or addition on immediate data and data in a general register.

Immediate data cannot be subtracted from data in a general register.

Word data can be added or subtracted only when both words are in

general registers.

Rd± Rs ± C ---1 Rd, Rd± #Imm ± C ---1 Rd

Performs addition or subtraction with carry or borrow on byte data

in two general registers, or addition or subtraction on immediate data

and data in a general register.

Rd± 1 ---1 Rd

Increments or decrements a general register.

Rd ± 1 ---1 Rd, Rd ± 2 ---1 Rd

Adds or subtracts immediate data to or from data in a general

register. The immediate data must be 1 or 2.

Rd decimal adjust ---1 Rd

Decimal-adjusts (adjusts to packed BCD) an addition or subtraction

result in a general register by referring to the condition code register.

Rd x Rs ---1 Rd

Performs 8-bit x 8-bit unsigned multiplication on data in two

general registers, providing a 16-bit result.

Rd+ Rs ---1 Rd

Performs 16-bit + 8-bit unsigned division on data in two general

registers, providing an 8-bit quotient and 8-bit remainder.

Rd - Rs, Rd - #Imm

Compares data in a general register with data in another general

register or with immediate data. Word data can be compared only

between two general registers.

0-Rd ---1 Rd

Obtains the two's complement (arithmetic complement) of data in a

general register.

11

Table 1-4. Logic Operation Instructions

Instruction Size*

AND B

OR B

XOR B

NOT B

* Size: Operand size

B: Byte

Function

Rd /\ Rs ~ Rd, Rd /\ #Imm ~ Rd

Performs a logical AND operation on a general register and

another general register or immediate data.

Rd v Rs ~ Rd, Rd v #Imm ~ Rd

Performs a logical OR operation on a general register and another

general register or immediate data.

Rd $ Rs ~ Rd, Rd$ #Imm ~ Rd

Performs a logical exclusive OR operation on a general register

and another general register or immediate data.

---.Rd~ Rd

Obtains the one's complement (logical complement) of general

register contents.

Table 1-5. Shift Instructions

Instruction Size*

SHAL

SHAR

SHLL

SHLR

ROTL

ROTR

ROT XL

ROTXR

B

B

B

B

* Size: Operand size

B: Byte

Function

Rdshift ~ Rd

Performs an arithmetic shift operation on general register contents.

Rdshift ~Rd

Performs a logical shift operation on general register contents.

Rd rotate ~ Rd

Rotates general register contents.

Rd rotate through carry ~ Rd

Rotates general register contents through the C (carry) bit.

12

Table 1-6. Bit Manipulation Instructions

Instruction Size*

BSET B

BCLR B

BNOT B

BTST B

BAND B

BIAND B

BOR B

BIOR B

Function

1 -7 (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory to 1. The bit is

specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.

0 -7 (<bit-No.> of <EAd>)

Clears a specified bit in a general register or memory to 0. The bit

is specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.

-.(<bit-No.> of <EAd>) -7 (<bit-No.> of <EAd>)

Inverts a specified bit in a general register or memory. The bit is

specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.

-.(<bit-No.> of <EAd>) -7 Z

Tests a specified bit in a general register or memory and sets or

clears the Z flag accordingly. The bit is specified by a bit number,

given in 3-bit immediate data or the lower three bits of a general

register.

C /\(<bit-No.> of <EAd>) -7 C

ANDs the C flag with a specified bit in a general register or

memory.

C /\[-,(<bit-No.> of <EAd>)] -7 C

ANDs the C flag with the inverse of a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

C v (<bit-No.> of <EAd>) -7 C

ORs the C flag with a specified bit in a general register or memory.

C v [-,(<bit-No.> of <EAd>)l -7 C

ORs the C flag with the inverse of a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

13

Table 1-6. Bit Manipulation Instructions (Cont.)

Instruction Size*

BXOR B

BI XOR B

BLD B

BILD B

BST B

BIST B

* Size: Operand size

B: Byte

Function

C $(<bit-No.> of <EAd>) ~ C

Exclusive-ORs the C flag with a specified bit in a general register

or memory.

C $[-.(<bit-No.> of <EAd>)] ~ C

Exclusive-ORs the C flag with the inverse of a specified bit in a

general register or memory.

The bit number is specified by 3-bit immediate data.

(<bit-No.> of <EAd>) ~ C

Copies a specified bit in a general register or memory to the C flag.

-,(<bit-No.> of <EAd>) ~ C

Copies the inverse of a specified bit in a general register or

memory to the C flag.

The bit number is specified by 3-bit immediate data.

C ~(<bit-No.> of <EAd>)

Copies the C flag to a specified bit in a general register or memory.

-,C ~(<bit-No.> of <EAd>)

Copies the inverse of the C flag to a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

14

Table 1-7. Branching Instructions

Instruction Size

Bee

JMP

BSR

JSR

RTS

Function

Branches if condition cc is true. The branching conditions are as

follows.

Mnemonic Description Condition

BRA (BT) Always (True) Always

BRN (BF) Never (False) Never

BHI High CvZ=O

BLS Low or Same CvZ=l

BCC (BHS) Carry Clear C=O

(High or Same)

BCS (BLO) Carry Set (Low) C=l

BNE Not Equal Z=O

BEQ Equal Z=l

BVC Overflow Clear V=O

BVS Overflow Set V= 1

BPL Plus N=O

BMI Minus N= 1

BGE Greater or Equal NEBV=O

BLT Less Than NEBV=l

BGT Greater Than Z v (NEB V) =0

BLE Less or Equal Z v (NEB V) = 1

Branches unconditionally to a specified address.

Branches to a subroutine at a specified displacement from the current

address.

Branches to a subroutine at a specified address.

Returns from a subroutine.

15

Table 1-8. System Control Instructions

Instruction Size*
RTE

SLEEP

LDC B

STC B

ANDC B

ORC B

XORC B

NOP

* Size: Operand size
B: Byte

Function
Returns from an exception handling routine.
Causes a transition to power-down state.

Rs --7 CCR, #Imm --7 CCR
Moves immediate data or general register contents to the condition

code register.
CCR --7 Rd

Copies the condition code register to a specified general register.

CCR " #Imm --7 CCR
Logically ANDs the condition code register with immediate data.

CCR v #Imm --7 CCR
Logically ORs the condition code register with immediate data.
CCR ® #Imm --7 CCR
Logically exclusive-ORs the condition code register with immediate

data.
PC+ 2 --7 PC
Only increments the program counter.

Table 1-9. Block Data Transfer Instruction

Instruction Size
EEPMOV

Function
if R4L t:. 0 then

repeat @R5+ --7 @R6+

R4L - 1 --7 R4L

until R4L = 0
else next;
Moves a data block according to parameters set in general registers
R4L, R5, and R6.

R4L: size of block (bytes)
R5: starting source address

R6: starting destination address
Execution of the next instruction starts as soon as the block transfer is

completed.
This instruction is for writing to the large-capacity EEPROM provided
on chip with some models in the H8/300L Series. For details see the
applicable hardware manual.

16

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read­

modify-write instructions. They read a byte of data, modify one bit in the byte, then write the

byte back. Care is required when these instructions are applied to registers with write-only

bits and to the 1/0 port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1: BCLR is executed to clear bit 0 in port control register 4 (PCR4) under the

following conditions.

P47: Input pin, Low

P46: Input pin, High

P4s - P4o: Output pins, Low

The intended purpose of this BCLR instruction is to switch P4o from output to input.

Before Execution of BCLR Instruction

P41 P46 P4s P44 P43 P42 P41 P4o

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

PCR4 0 0 1 1 1 1 1

PDR4 0 0 0 0 0 0 0

Execution of BCLR Instruction

BCLR #0 @PCR4 ; clear bit 0 in PCR4

After Execution of BCLR Instruction

P41 P46 P4s P44 P43 P42 P41 P4o

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High

PCR4 1 1 1 1 1 1 0

PDR4 0 0 0 0 0 - 0 0

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PCR4. Since

PCR4 is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit 0 of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to PCR4 to complete the BCLR instruction.

As a result, bit 0 in PCR4 is cleared to 0, making P4o an input pin. In addition, bits 7 and 6 in

PCR4 are set to 1, making P47 and P46 output pins.

Example 2: BSET is executed to set bit 0 in the port 4 port data register (PDR4) under the

following conditions.

P47: Input pin, Low

P46: Input pin, High

P45 - P4o: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level at P4o from Low to

High.

Before Execution of BSET Instruction

P47 P46 P4s P44 P43 P42 P41 P4o

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

PCR4 0 0 1 1 1 1 1 1

PDR4 0 0 0 0 0 0 0

Execution of BSET Instruction

BSET #0 @PDR4 ; set bit 0 in port 4 port data register

18

After Execution of BSET Instruction

P47 P46 P4s P44 P43 P42 P41 P4o

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High

PCR4 0 0 1 1 1 1 1 1

PDR4 0 0 0 () 0 0 1

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47

and P46 are input pins, the CPU reads the level of these pins directly, not the value in the port

data register. It reads P47 as Low (0) and P46 as High (1).

Since P4s to P4o are output pins, for these pins the CPU reads the value in PDR4. The CPU

therefore reads the value of port 4 as H'40, although the actual value in PDR4 is H'80.

Next the CPU sets bit 0 of the read data to 1, changing the value to H'41.

Finally, the CPU writes this value (H'41) back to PDR4 to complete the BSET instruction.

As a result, bit 0 in PDR4 is set to 0, switching pin P4o to High output. However, bits 7 and 6

in PDR4 change their values.

19

1.3.3 Basic Instruction Formats

(1) Format of Data Transfer Instructions

Figure 1-5 shows the format used for data transfer instructions.

15 8 7 0 MOV

op rm rn Rm--7 Rn

15 8 7 0
op rw ro I Rn --7 @Rm, or@Rm --7 Rn

15 8 7 0
op rm rn @(d:16, Rm) --7 Rn, or

disp. Rn --7 @(d:16, Rm)

15 8 7 0

op rm rn @Rm+ --7 Rn, or Rn --7 @-Rm

15 8 7 0

I op rn I abs. I @aa:8 --7. Rn, or Rn --7 @aa:8

15 8 7 0
op rn @aa:16 --7 Rn, or

abs. Rn --7 @aa:16

15 8 7 0

op rn IMM #xx:8 --7 Rn

15 8 7 0
op rn #xx:16 --7 Rn

IMM

15 8 7 0

op rn POP, PUSH

Notation

op: Operation field

rm, rn: Register field

disp: Displacement

abs.: Absolute address

IMM: Immediate data

Figure 1-5. Instruction Format of Data Transfer Instructions

20

(2) Format of Arithmetic, Logic Operation, and Shift Instructions

Figure 1-6 shows the format used for arithmetic, logic operation, and shift instructions.

15 8 7 0

op rm rn ADD, SUB, CMP (Rm)

ADDX, SUBX (Rm)

15 8 7 0

I op rn I ADDS, SUBS, INC, DEC, DAA,

DAS, NEG, NOT

15 8 7 0

I op I rm rn I MULXU, DIVXU

15 8 7 0

op rn IMM I ADD, ADDX, SUBX, CMP

(#xx:8)

15 8 7 0

op rm rn I AND, OR, XOR (Rm)

15 8 7 0

I op rn I IMM I AND, OR, XOR (#xx:8)

15 8 7 0

I op rn I SHAL, SHAR, SHLL, SHLR,

ROTL,ROTR,ROTXL,ROTXR

Notation
op: Operation field

rm, rn: Register field

IMM: Immediate data

Figure 1-6. Instruction Format of Arithmetic, Logic, and Shift Instructions

21

(3) Format of Bit Manipulation Instructions

Figure 1-7 shows the format used for bit manipulation instructions.

15 8 7 0 BSET,BCLR,BNOT,BTST

op IMM rn Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

15 8 7 0

op rm rn Operand: register direct (Rn)
Bit No.: register direct (Rm)

15 8 7 0

op rn 0 0 0 0

I
Operand: register indirect (@Rn)

op IMM 0 0 0 0 Bit No.: immediate (#xx:3)

15 8 7 0

I
op I rn 0 0 0 0

I
Operand: register indirect (@Rn)

op rm 0 0 0 0 Bit No.: register direct (Rm)

15 8 7 0

I
op I abs.

I
Operand: absolute (@aa:8)

op IMM 0 0 0 0 Bit No.: immediate (#xx:3)

15 8 7 0

I
op I abs.

I
Operand: absolute (@aa:8)

op rm 0 0 0 0 Bit No.: register direct (Rm)

15 8 7 0 BAND, BOA, BXOR, BLD, BST

I op I IMM rn I Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

15 8 7 0

op I rn 0 0 0 0

I
Operand: register indirect (@Rn)

op IMM 0 0 0 0 Bit No.: immediate (#xx:3)

15 8 7 0

I
op I abs.

I
Operand: absolute (@aa:8)

op IMM I 0 0 0 0 Bit No.: immediate (#xx:3)

Notation

op: Operation field

rm, rn: Register field

abs.: Absolute address

IMM: Immediate data

Figure 1-7. Instruction Format of Bit Manipulation Instructions

22

15 8 7 0 SIANO, BIOR, BIXOR, BILD, BIST

I op IMM rn I Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

15 8 7 0

op I rn 0 0 0 0 I
Operand: register indirect (@Rn)

op IMM 0 0 0 0 Bit No.: immediate (#xx:3)

15 8 7 0

I op I abs. I Operand: absolute (@aa:8)

op IMM 0 0 0 0 Bit No.: immediate (#xx:3)

Notation

op: Operation field

rm, rn: Register field

abs.: Absolute address

IMM: Immediate data

Figure 1-7. Instruction Format of Bit Manipulation Instructions (Cont.)

23

(4) Format of Branching Instructions

Figure 1 ·8 shows the format used for branching instructions.

15 8 7 0

op . cc disp. I Bee

15 8 7 0

I op I rm 0 0 0 0 I JMP(@Rm)

15 8 7 0

op JMP (@aa:16)
abs.

15 8 7 0

I op I abs. I JMP (@@aa:B)

15 8 7 0

I op I disp. I BSA

15 8 7 0

I op I rm 0 0 0 ol JSR(@Rm)

15 8 7 0

op JSR (@aa:16)
abs.

15 8 7 0

I op I abs. I JSR (@@aa:8)

15 8 7 0

op ATS

Notation

op: Operation field

cc: Condition field

rm: Register field

disp.: Displacement

abs.: Absolute address

Figure 1-8. Instruction Format of Branching Instructions

24

(5) Format of System Control Instructions

Figure 1-9 shows the format used for system control instructions.

15 8 7 0

op RTE, SLEEP, NOP

15 8 7 0

I op rn I LDC, STC (Rn)

15 8 7 0

op IMM I ANDC,ORC,XORC,LDC

(#xx:8)

Notation

op: Operation field

rn: Register field

IMM: Immediate data

Figure 1-9. Instruction Format of System Control Instructions

(6) Format of Block Data Transfer Instruction

Figure 1-10 shows the format used for the block data transfer instruction.

15 8 7 0

op

op EEPMOV

Figure 1-10. Instruction Format of Block Data Transfer Instruction

25

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-10 lists the eight addressing modes and their assembly-language notation. Each

instruction can use a specific subset of these addressing modes.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,

ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOY instruction uses all the addressing modes except program-counter relative (7) and

memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)

addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within

the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct

addressing (1) to identify the bit.

Table 1-10. Addressing Modes

No.

(1)

(2)

(3)
(4)

(5)
(6)
(7)

(8)

Mode

Register direct

Register indirect

Register indirect with 16-bit displacement

Register indirect with post-increment

Register indirect with pre-decrement

Absolute address (8 or 16 bits)

Immediate (3-, 8-, or 16-bit data)

PC-relative (8-bit displacement)

Memory indirect

Notation

Rn

@Rn

@(d:16, Rn)

@Rn+

@-Rn

@aa:8,@aa:16

#xx:3, #xx:8, #xx:16

@(d:8, PC)

@@aa:8

(1) Register Direct-Rn: The register field of the instruction specifies an 8- or 16-bit

general register containing the operand. In most cases the general register is accessed as an 8-

bit register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits x 8

bits), and DIVXU (16 bits+ 8 bits) instructions have 16-bit operands.

(2) Register indirect-@Rn: The register field of the instruction specifies a 16-bit general

register containing the address of the operand.

26

(3) Register Indirect with Displacement-@(d:16, Rn): This mode, which is used only in

MOY instructions, is similar to register indirect but the instruction has a second word (bytes 3

and 4) which is added to the contents of the specified general register to obtain the operand

address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement-@Rn+ or @-Rn:

Register indirect with post-increment---@Rn+

The@Rn+ mode is used with MOY instructions that load registers from memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the

register field of the instruction is incremented after the operand is accessed. The size of

the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a

word operand. For a word operand, the original contents of the 16-bit general register

must be even.

Register indirect with pre-decrement---@-Rn

The @-Rn mode is used with MOY instructions that store register contents to memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the

register field of the instruction is decremented before the operand is accessed. The size of

the decrement is 1 or 2 depending on the size of the operand: I for a byte operand; 2 for a

word operand. For a word operand, the original contents of the 16-bit general register

must be even.

(5) Absolute Address-@aa:8 or @aa:16: The instruction specifies the absolute address of

the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FFxx.

The upper 8 bits are assumed to be I, so the possible address range is H'FFOO to H'FFFF

(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute

addresses.

(6) Immediate-#xx:8 or #xx: 16: The instruction contains an 8-bit operand in its second

byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain

16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.

Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or

fourth byte of the instruction, specifying a bit number.

27

(7) PC-Relative-@(d:S, PC): This mode is used to generate branch addresses in the Bee

and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign­

extended value to the program counter contents. The result must be an even number. The

possible branching range is -126 to +128 bytes (-63 to +64 words) from the current address.

(8) Memory lndirect-@@aa:8: This mode can be used by the JMP and JSR instructions.

The second byte of the instruction code specifies an 8-bit absolute address from H'OOOO to

H'OOFF (0 to 255). Note that the initial part of the area from H'OOOO to H'OOFF contains the

exception vector table. See the applicable hardware manual for details. The word located at

this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W

instruction, the least significant bit is regarded as 0, causing word access to be performed at

the address preceding the specified address. See the memory data structure description in

section 1.1.2, Data Structure.

Effective Address Calculation

Table 1-11 explains how the effective address is calculated in each addressing mode.

Table 1-11. Effective Address Calculation (1)

Addressing mode,
No. instruction format

Register direct Rn

Effective address
calculation

None

Effective
address

3 0 3 0

15 8 7 4 3 o I reg m I I reg n I
I OP I reg m I reg n t-1 ____________ 1......_ __ ___.+

Operands are contained in
registers m and n

2 Register indirect@Rn

15

OP

15 0
.-----~>j~ 16-bit register contents I

7 6 14 3 0 . . 15 0

I reg I I l~---->r-1 -------.

28

Operand is at address
indicated by register

Table 1-11. Effective Address Calculation (2)

Addressing mode,
No. instruction format

3 Register indirect with displacement
@(d:l6, Rn)

Effective address
calculation

15 0

Effective
address

16-bit register contents o

15 7 6 4 3 0

OP reg

disp

4 Register indirect with pre-decrement
@-Rn

15 7 6 4 3 0

OP reg

Register indirect with post-increment
@Rn+

15 76 43 0

OP reg

16-bit displacement

15

15 0
16-bit register contents

* I for a byte operand,
I 1 or 2* I

2 for a word operand

5 Absolute address None
@aa:8

15 87 0

I OP I abs

Absolute address
@aa:l6

15 0

OP

I abs

29

Operand address is sum
of register contents and
displacement

Register is decremented
before operand access

15

Register is incremented
after operand access

15 87

H'FF I
t

Operand address is in range
from H'FFOO to H'FFFF

15

I
t

Any address

0

0

0

I

0

I

Table 1-11. Effective Address Calculation (3)

Addressing mode,
No. instruction format

6 Immediate #xx:8.

15 8 7 0

I OP I IMM I

Immediate#xx:16

15

OP

IMM

7 PC-relative@(d:8, PC)

reg, regm, regn:
op:
disp:
abs:
IMM:

General register
Operation field
Displacement
Absolute address
Immediate data

0

15

Effective address
calculation

None

None

PC contents

H'OO

0

15 0

16-bit memory contents

30

Effective
address

Operand is 1-byte
immediate data

Operand is 2-byte
immediate data

Destination address

15

Destination address

0

0

Section 2. Instruction Set

2.1 Explanation Format

Section 2 gives full descriptions of all the H8/300L Series instructions, presenting them in

alphabetic order. Each instruction is explained in a table like the following:

ADD (add binary) (byte)

Operation

Rd+ (EAs) -j Rd

Assembly-Language Format

ADD. B <EAs>, Rd

Operand Size

Byte

Description

ADD

Condition Code

I H N Z V C

1-1-1 t 1-1 t I t It I t
I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit 7;

otherwise cleared to 0.

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the general register .

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Immediate ADD.B #xx:B, Rd 8 : rd IMM 2
I

Register direct ADD.B Rs, Rd 0 :s rs I rd 2 I
I

31

The parts of the table are explained below.

Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: The instruction is described in symbolic notation. The following symbols are used.

Symbol

Rd

Rs

Rn

<EAd>

<EAs>

PC

SP

CCR

N

z
v
c
disp

+

x

/\

v

Meaning

General register (destination)*

General register (source)*

General register*

Destination operand

Source operand

Program counter

Stack pointer

Condition code register

N (negative) flag of CCR

Z (zero) flag of CCR

V (overflow) flag of CCR

C (carry) flag of CCR

Displacement

Transfer from left operand to right operand; or state transition from left state to

right state.

Addition

Subtraction

Multiplication

Division

AND logical

OR logical

Exclusive OR logical

Inverse logic (logical complement)

() < > Contents of operand effective address

* General registers are either 8 bits (ROH/ROL - R7H/R7L) or 16 bits (RO - R7).

Assembly-Language Format:

The assembly-language coding of

the instruction is given. An

example is:

ADD . B <EAs>, Rd

r:=r- T I T
Mnemonic Size Source Destination

32

The operand size is indicated by the letter B (byte) or W (word). Some instructions have

restrictions on the size of operands they handle.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands

that permit more than one addressing mode. The H8/300L CPU supports the following eight

addressing modes. The method of calculating effective addresses is explained in section 1.3.4,

Addressing Modes and Effective Address Calculation, above.

Notation

Rn

@Rn

@(d:16, Rn)

@Rn+/@-Rn

@aa:8/@aa:16

#xx:8/#xx:16

@(d:8, PC)

@@aa:8

Addressing Mode

Register direct

Register indirect

Register indirect with displacement

Register indirect with post-increment/pre-decrement

Absolute address

Immediate

Program-counter relative

Memory indirect

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because

these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in CCR is indicated. The

following notation is used:

Symbol Meaning

t The flag is altered according to the result of the instruction.

0 The flag is cleared to "O."

The flag is not changed.

* Not fixed; the flag is left in an unpredictable state.

Description: The action of the instruction is described in detail.

33

Instruction Formats: Each possible format of the instruction is shown explicitly, indicating

the addressing mode, the object code, and the number of states required for execution when the

instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol

Imm.

abs.

disp.

rs, rd, rn

Meaning

Immediate data (3, 8, or 16 bits)

An absolute address (8 bits or 16 bits)

Displacement (8 bits or 16 bits)

General register number (3 bits or 4 bits) The s, d, and n correspond to the letters

in the operand notation.

Register Designation: 16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit

registers are indicated by a 4-bit rs, rd, or rn value. Address registers used in the @Rn,

@(disp: 16, Rn), @Rn+, and@-Rn addressing modes are always 16-bit registers. Data

registers are 8-bit or 16-bit registers depending on the size of the operand. For 8-bit registers,

the lower three bits of rs, rd, or rn give the register number. The most significant bit is 1 if the

lower byte of the register is used, or 0 if the upper byte is used. Registers are thus indicated as

follows:

16-Bit register 8-Bit registers

rs, rd, or rn rs, rct, or rn Register

Register 0000 ROH

000 RO 0001 RlH

001 Rl

0 1 1 1 R7H

1 1 1 R7 1000 ROL

100 1 RlL

1 1 1 1 R7L

Bit Data Access: Bit data are accessed as then-th bit of a byte operand in a general register or

memory. The bit number is given by 3-bit immediate data, or by a value in a general register.

When a bit number is specified in a general register, only the lower three bits of the register are

significant. Two examples are shown below.

34

BSET RlL, R2H

RlL don't care

L Bit number = 3

R2H 0 1 1 0 0 1 0 1 I

t
Bit 3 is set to 1

BLD #5, @H'FF02:8

Bit No. 5

H'FF02 0100110

Loaded to C (carry) '------;Jlllo@J
flag in CCR

The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution: The number of states indicated is the number

required when the instruction and any memory operands are located in on-chip ROM or RAM.

If the instruction or an operand is located in external memory or the on-chip register field,

additional states are required for each access. See section 2.5, Number of Execution States.

35

2.2 Instructions

2.2.1 (1) ADD (add binary) (byte)

Operation

Rd+ (EAs) ~Rd

Assembly-Language Format

ADD .B <EAs>, Rd

Operand Size

Byte

Description

ADD

Condition Code

I H N Z V C

1-1-1 t 1-1 t It It It
I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit 7;

otherwise cleared to 0.

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the general register .

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Immediate ADD.B #xx:B, Rd 8 : rd
I

IMM 2

Register direct ADD.B Rs, Rd 0 [8 rs I rd 2 I
I

36

2.2.1 (2) ADD (add binary) (word)

Operation

Rd+Rs ~Rd

Assembly-Language Format

ADD.W Rs, Rd

Operand Size

Word

Description

ADD

Condition Code

I H N Z V C

1-1-1 t 1-1 t I t It I t I

I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit

11; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit

15; otherwise cleared to 0.

This instruction adds word data in two general registers and places the result in the second

general register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands
states

1st byte 2nd byte 3rd byte 4th byte
I

Register direct ADD.W Rs, Rd 0 :9 o:rs:o:rd 2
I I I

37

2.2.2 ADDS (add with sign extension)

Operation

Rd+ 1 ~Rd

Rd+2~Rd

Assembly-Language Format

ADDS #1, Rd

ADDS #2, Rd

Operand Size

Word

Description

ADDS

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction adds the immediate value 1 or 2 to word data in a general register. Unlike the

ADD instruction, it does not affect the condition code flags.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands
states

1st byte 2nd byte 3rd byte 4th byte
I

ioi rd Register direct ADDS #1, Rd 0 I B 0 2 I
I
I I I

Register direct ADDS #2,Rd 0 ,I B 8 :o: rd 2 I
I I I

Note: This instruction cannot access byte-size data.

38

2.2.3 ADDX (add with extend carry)

Operation

Rd+ (EAs) + C---+ Rd

Assembly-Language Format

ADDX <EAs>, Rd

Operand Size

Byte

Description

ADDX

Condition Code

I H N Z V C

1-1-1 t 1-1 t It It I t I

I: Previous value remains unchanged.

H: Set to 1 if there is a carry from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a carry from bit 7;

otherwise cleared to 0.

This instruction adds the source operand and carry flag to the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

'
Immediate ADDX #xx:8, Rd 9 : rd IMM 2

'
Register direct ADDX Rs, Rd 0 iE rs i rd 2

39

2.2.4 AND (AND logical)

Operation

Rd A (EAs) ~ Rd

Assembly-Language Format

AND <EAs>, Rd

Operand Size

Byte

Description

AND

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction ANDs the source operand with the contents of an 8-bit general register and

places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Immediate AND #xx:8, Rd E : rd
I

IMM 2

Register direct AND Rs, Rd 1 ls I
rd 2 rs :

40

2.2.S ANDC (AND control register)

Operation

CCR/\ #IMM----t CCR

Assembly-Language Format

ANDC #xx:S, CCR

Operand Size

Byte

Description

ANDC

Condition Code

I H N Z V C

It It I t

I: ANDed with bit 7 of the immediate data.

H: ANDed with bit 5 of the immediate data.

N: ANDed with bit 3 of the immediate data.

Z: ANDed with bit 2 of the immediate data.

V: ANDed with bit I of the immediate data.

C: ANDed with bit 0 of the immediate data.

This instruction ANDs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including the

nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

'
Immediate ANDC #xx:S, CCR 0 :s IMM 2

41

2.2.6 BAND (bit AND)

Operation

C" (<Bit No.> of <EAd>) ~ C

Assembly-Language Format

BAND #xx:3, <EAd>

Operand Size

Byte

Description

BAND

Condition Code

I H N Z V C

1-1-1-1-1-1-1-ltl

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the specified bit.

This instruction ANDs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified by

3-bit immediate data. The operation is shown schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

The value of the specified bit is not changed.

7 #xx:3

Instruction Formats and Number of Execution States

0

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte

I I I

Register direct BAND #xx:3, Rd 7 I 6 0:1MM: rd I
I I I

I Register indirect BAND #xx:3,@Rd 7 I c o: rd : 0 7 6 I I
I I I I
I

I Absolute address BAND #xx:3,@aa:8 7 I E abs 7 6 I I
I

* Register direct, register indirect, or absolute addressing.

42

No. of

4th byte
states

2
I

o:IMM: 0 6
I I
I

o:IMM: 0 6

2.2.7 Bee (branch conditionally)

Operation

If cc then

PC+ d:8 -t PC

else next;

Assembly-Language Format

Bee d:8
4 Condition code field

(For mnemonics, see the table on the

next page.)

Operand Size

43

Bee

Condition Code

I H N Z V C

l-l-l-l-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

Bee (branch conditionally) Bee

Description

If the specified condition is false, this instruction does nothing; the next instruction is

executed. If the specified condition is true, a signed displacement is added to the address of

the next instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination address

can be located in the range -126to+128 bytes from the address of the Bee instruction.

The applicable conditions and their mnemonics are given below.

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0000 Always (True) Always true

BRN (BF) 0001 Never (False) Never

BHI 0010 High CvZ=O X > Y (Unsigned)

ELS 0011 Low or Same CvZ=l X :;:; Y (Unsigned)

BCC (BBS) 0100 Carry Clear C=O X ::::: Y (Unsigned)
(High or Same)

BCS (BLO) 0 101 Carry Set (Low) c = 1 X < Y (Unsigned)

ENE 0 11 0 Not Equal Z=O X 7' Y (Signed or
unsigned)

BEQ 0 1 1 1 Equal Z=l X = Y (Signed or
unsigned)

BVC 1000 Overflow Clear V=O

BVS 100 1 Overflow Set V=l

BPL 1010 Plus N=O

BMI 1 0 1 1 Minus N=l

BGE 1100 Greater or Equal NffiV=O X :2: Y (Signed)

BLT 1 1 0 1 Less Than NffiV= 1 X < Y (Signed)

BGT 1 1 1 0 Greater Than Z v (N ffi V) = 0 X > Y (Signed)

BLE 1 1 1 1 Less or Equal Z v (N ffi V) = 1 X :;:; Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

44

Bee (branch conditionally) Bee

Instruction Formats and Number of Execution States

Adressing Instruction code No. of
Mn em. Operands

mode 1st byte 2nd byte 3rd byte 4th byte states

PC relative BRA(BT) d:8 4 0 disp. 4

PC relative BRN (BF) d:8 4 1 disp. 4

PC relative BHI d:8 4 2 disp. 4

PC relative BLS d:8 4 3 disp. 4

PC relative BCC (BHS) d:8 4 4 disp. 4

PC relative BCS (BLO) d:8 4 5 disp. 4

PC relative BNE d:B 4 6 disp. 4

PC relative BEQ d:B 4 7 disp. 4

PC relative BVC d:B 4 8 disp. 4

PC relative BVS d:B 4 9 disp. 4

PC relative BPL d:8 4 A disp. 4

PC relative BMI d:8 4 B disp. 4

PC relative BGE d:8 4 c disp. 4

PC relative BLT d:B 4 D disp. 4

PC relative BGT d:B 4 E disp. 4

PC relative BLE d:8 4 F disp. 4

* The branch address must be even.

45

2.2.8 BCLR (bit clear)
Operation

0 -7 (<Bit No.> of <EAd>)

Assembly-Language Format

BCLR #xx:3, <EAd>

BCLR Rn, <EAd>

Operand Size

Byte

Description

BCLR
Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction clears a specified bit in the destination operand to 0. The bit number can be

specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#x~:3 or Rn -i
0 Bit No.

<EAd>*~ Byte data in register or memory I : : : 1, I : : I
0

* Register direct, register indirect, or absolute addressing.

46

BCLR (bit clear) BCLR

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states

1st byte 2nd byte 3rd byte 4th byte

Register direct BCLR #xx:3, Rd 7 2 oi IMMi rd 2
I
I I I Register indirect BCLR #xx:3,@Rd 7 D o: rd : 0 7 I 2 Ol IMMl 0 8

I ' I
I I

Absolute address BCLR #xx:3,@aa:8 7 F abs 7 I 2 Ol IMMl 0 8 I

Register direct BCLR Rn, Rd 6 2
I

rd 2 rn I
I

I I I
I

Register indirect BCLR Rn, @Rd 7 D O: rd : 0 6 2 I 0 8 I rn I
I I

Absolute address BCLR Rn, @aa:8 7 I F abs 6
I

2
I

0 8 I I rn I
I I I

I

47

2.2.9 BIAND (bit invert AND)

Operation

C /\[-, (<Bit No.> of <EAd>)] -t C

Assembly-Language Format

BIAND #xx:3, <EAd>

Operand Size

Byte

Description

BIAND

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1 t I
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the inverse of the specified

bit.

This instruction ANDs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

7 #xx:3 T 0

I : : : ~: : I
Invert

cO/\CJLDc
The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte

I I

Register direct BIAND #xx:3, Rd 7
I

6 1:1M~ rd I
I I

I
I I

I Register indirect BIAND #xx:3,@Rd 7 I c o: rd : 0 7 I 6
I I

: E
I

Absolute address BIAND #xx:3,@aa:8 7 abs 7 I 6 I
I

* Register direct, register indirect, or absolute addressing.

48

No. of

4th byte
states

2

1 IMM 0 6
I

~IMM 0 6

2.2.10 BILD (bit invert load)

Operation

-, (<Bit No.> of <EAd>) ~ C

Assembly-Language Format

BILD #xx:3, <EAd>

Operand Size

Byte

Description

BILD

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1 t I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the inverse of the specified

bit.

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can be

located in a general register or memory. The bit number is specified by 3-bit immediate data.

The operation is shown schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

7 #xx:3l 0

1·~11::1
Invert-De

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte 4th byte

I I

Register direct BILD #xx:3, Rd 7 I 7 1:1MMi rd I
I I

I I
I Register indirect BILD #xx:3,@Rd 7 I c o: rd : 0 7 7 1:1MM: 0 I I

I I I I
I I

Absolute address BILD #xx:3,@aa:8 7 I E abs 7 I 7 1:1MM: 0 I I
I

* Register direct, register indirect, or absolute addressing.

49

No. of
states

2

6

6

2.2.11 BIOR (bit invert inclusive OR)

Operation

C v [--, (<Bit No.> of <EAd>)] ~ C

Assembly-Language Format

BIOR #xx:3, <EAd>

Operand Size

Byte

Description

BIOR

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1 ti
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with the inverse of the specified

bit.

This instruction ORs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

7 #xx:3T 0

I : : : J1: : I
Invert

c[}OLDc

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte

I

1ilMMi Register direct BIOR #xx:3, Rd 7
I

4 rd I
I

BIOR #xx:3,@Rd I c I I I Register indirect 7 o: rd I 0 7 4 I ' I
I I
I I

Absolute address BIOR #xx:3,@aa:8 7 I E abs 7 I 4 I I
I

* Register direct, register indirect, or absolute addressing.

50

No. of

4th byte
states

2

1:1MM: 0 6
I I

I

1JIMM: 0 6

2.2.12 BIST (bit invert store)

Operation

-, C ~ (<Bit No.> of <EAd>)

Assembly-Language Format

BIST #xx:3, <EAd>

Operand Size

Byte

Description

BIST

Condition Code

I H N Z V C

1-1-1-1-1-l-l-l-I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction stores the inverse of the carry flag to a specified bit location in a general register

or memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

The values of the unspecified bits are not changed.

7 #xx:3l 0

1:::1~::1
c0-1nvert

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte 4th byte

I I I

Register direct BIST #xx:3, Rd 6 I 7 1:1MM: rd I
I I I

I I I
I I Register indirect BIST #xx:3,@Rd 7 I D o: rd : 0 6 I 7 1: IMM: 0
I I I
I I I I

Absolute address BIST #xx:3,@aa:8 7 I F abs 6 I 7 1: IMM: 0 I I
I

* Register direct, register indirect, or absolute addressing.

51

No. of
states

2

8

8

2.2.13 BIXOR (bit invert exclusive OR)

Operation

C EB[---, (<Bit No.> of <EAd>)j --t C

Assembly-Language Format

BIXOR #xx:3, <EAd>

Operand Size

Byte

Description

BIXOR

Condition Code

I H N Z V C

1-1-1-1-1-1-l-I t I
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the inverse of the

specified bit.

This instruction exclusive-ORs the inverse of a specified bit with the carry flag and places the

result in the carry flag. The specified bit can be located in a general register or memory. The

bit number is specified by 3-bit immediate data. The operation is shown schematically below.

Bit No. 7 #xx:~ O

<EAd>*---+ Byte data in register or memory I : : : I ~ : : I
Invert

c[]{]LOc
The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands
states

1st byte 2nd byte 3rd byte 4th byte
I I

Register direct BIXOR #xx:3, Rd 7 I 5 1:1MMi rd 2 I
I I

I
I I

I Register indirect BIXOR #xx:3,@Rd 7 c o: rd I 0 7 5 1 IMM: 0 6 I I I
I I I

I I
I Absolute address BIXOR #xx:3,@aa:8 7 E abs 7 I 5 1 IMM: 0 6 I I
I

* Register direct, register indirect, or absolute addressing.

52

2.2.14 BLD (bit load)

Operation

(<Bit No.> of <EAd>) ~ C

Assembly-Language Format

BLD #xx:3, <EAd>

Operand Size

Byte

Description

BLD

Condition Code

I H N Z V C

1-1-1-1-1-l-1-lt I
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the specified bit.

This instruction loads a specified bit into the carry flag. The specified bit can be located in a

general register or memory. The bit number is specified by 3-bit immediate data. The operation

is shown schematically below.

Bit No.

<EAd>* -7 Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mn em. Operands
1st byte 2nd byte 3rd byte

I I

Register direct BLD #xx:3, Rd 7 I 7 o: IMMi rd I
I I

I I

Register indirect BLD #xx:3,@Rd 7 I c o: rd : 0 7 I 7 I I
I I
I I

Absolute address BLD #xx:3,@aa:8 7 I E abs 7 I 7 I I
I

* Register direct, register indirect, or absolute addressing.

53

No. of

4th byte
states

2
I

o: IMM: 0 6
I I
I I

o: IMM: 0 6
I

2.2.15 BNOT (bit NOT)

Operation

--, (<Bit No.> of <EAd>)

~(<Bit No.> of <EAd>)

Assembly-Language Format

BNOT #xx:3, <EAd>

BNOT Rn, <EAd>

Operand Size

Byte

Description

BNOT

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction inverts a specified bit in a general register or memory location. The bit

number is specified by 3-bit immediate data, or by the lower three-bits of a general register.

The operation is shown schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

0

The bit is not tested before being inverted. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

54

BNOT (bit NOT) BNOT

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states

1st byte 2nd byte 3rd byte 4th byte
I

Register direct BNOT #xx:3, Rd 7 1 o: IMM! rd 2
I
I I

I
Register indirect BNOT #xx:3,@Rd 7 D o: rd : 0 7 I 1 o: IMM: 0 8

I I I

Absolute address BNOT #xx:3,@aa:8 7 F abs 7 I 1 o: IMM: 0 8 I
I

Register direct BNOT Rn, Rd 6 1
I

rd 2 rn I
I

I I I I
Register indirect BNOT Rn,@Rd 7 D o: rd: 0 6 I 1 rn I 0 8

I I I

Absolute address BNOT Rn,@aa:8 7 I F abs 6
I

1 rn I 0 8 I ' I
I I I

55

2.2.16 BOR (bit inclusive OR)

Operation

C v (<Bit No.> of <EAd>) ~ C

Assembly-Language Format

BOR #xx:3, <EAd>

Operand Size

Byte

Description

BOR

Condition Code

I H N Z V C

l-l-l-1-1-1-l-lt I
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with the specified bit.

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified

by 3-bit immediate data. The operation is shown schematically below.

Bit No.

<EAd>*--.'> Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte

I I I

Register direct BOR #xx:3, Rd 7 I 4 o: IMM: rd I
I I I

I
Register indirect BOR #xx:3,@Rd 7 I c o: rd : 0 7 4 I I

I
I I

Absolute address BOA #xx:3,@aa:8 7 I E abs 7 I 4 I I
I

* Register direct, register indirect, or absolute addressing.

56

No. of

4th byte
states

2
I I

o: !MM 0 6
I I

o: !MM 0 6
I I

2.2.17 BSET (bit set)

Operation

1 ~(<Bit No.> of <EAd>)

Assembly-Language Format

BSET #xx:3,<EAd>

BSET Rn,<EAd>

Operand Size

Byte

Description

BSET

Condition Code

H N Z V C

l-l-l-l-l-1-1-1-I
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction sets a specified bit in the destination operand to 1. The bit number can be

specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#x~3 or Rn-~
0 Bit No.

<EAd>* __,Byte data in register or memory I : : : 11 I : : I

* Register direct, register indirect, or absolute addressing.

57

BSET (bit set) BSET

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states

1st byte 2nd byte 3rd byte 4th byte
I I

Register direct BSET #xx:3, Rd 7
I

0 o: IMMi rd 2 I
I I

I I I
I

Register indirect BSET #xx:3,@Rd 7 D o: rd : 0 7 I 0 o: IMM: 0 8
I I I

I

Absolute address BSET #xx:3,@aa:8 7 F abs 7 I 0 o: IMM: 0 8 I

Register direct BSET Rn, Rd 6 0
I

rd 2 rn I
I

I I I

Register indirect BSET Rn,@Rd 7 D o: rd : 0 6 I 0 rn I 0 8 I I
I

I
I Absolute address BSET Rn,@aa:8 7 I F abs 6 I 0 rn 0 8 I I

I I I

58

2.2.18 BSR (branch to subroutine)

Operation

PC ~@-SP

PC +d:8 ~PC

Assembly-Language Format

BSR d:8

Operand Size

Description

BSR

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction pushes the program counter (PC) value onto the stack, then adds a specified

displacement to the program counter value and branches to the resulting address. The program

counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching range is

-126to+128 bytes from the address of the BSR instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

PC-relative BSR d:8 5 :s disp 6

59

2.2.19 BST (bit store)

Operation

C ~ (<Bit No.> of <EAd>)

Assembly-Language Format

BST #xx:3, <EAd>

Operand Size

Byte

Description

BST

Condition Code

I H N Z V C

l-l-1-1-1-1-1-1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction stores the carry flag to a specified flag location in a general register or

memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

7 #xx:3

Instruction Formats and Number of Execution States

0

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte

I

oi IMMi Register direct BST #xx:3, Rd 6
I

7 rd I
I I

I
I I I

Register indirect BST #xx:3,@Rd 7 I D o: rd : 0 6 I 7
I I

Absolute address BST #xx:3,@aa:8 7 I F abs 6 I 7 I I
I I

* Register direct, register indirect, or absolute addressing.

60

No. of

4th byte
states

2
I I

o: IMM: 0 8
I I

o: IMM: 0 8
I I

2.2.20 BTST (bit test)

Operation

--, (<Bit No.> of <EAd>) ---1 Z

Assembly-Language Format

BTST #xx:3, <EAd>

BTST Rn, <EAd>

Operand Size

Byte

Description

BTST

Condition Code

I H N Z V C

1-1-1-1-1-1t1-1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Set to 1 when the specified bit is zero;

otherwise cleared to 0.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction tests a specified bit in a general register or memory location and sets or clears

the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the

lower three bits of an 8-bit general register. The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 0 ..--.--.--.--r-'-..--.........,.---.

<EAd>* ~Byte data in register or memory

Test

The value of the specified bit is not altered.

* Register direct, register indirect, or absolute addressing.

61

BTST (bit test) BTST

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states

1st byte 2nd byte 3rd byte 4th byte
I I I

Register direct BTST #xx:3, Rd 7
I

3 0:1MM: rd 2 I
I I I

I I
I I Register indirect BTST #xx:3,@Rd 7 I c o: rd : 0 7 I 3 o: IMM: 0 6
I I I I I

I
I

Absolute address BTST #xx:3,@aa:8 7 E abs 7 I 3 o: IMM: 0 6 I I
I
I I

Register direct BTST Rn, Rd 6
I

3 rn I rd 2 I I
I I

I I

' I Register indirect BTST Rn,@Rd 7 c o: rd I 0 6 I 3 rn 0 6 I I I I
I I I I

Absolute address BTST Rn,@aa:8 7
I

E abs 6
I

3 rn I 0 6 I I I
I I I

62

2.2.21 BXOR (bit exclusive OR)

Operation

C EB (<Bit No.> of <EAd>) ~ C

Assembly-Language Format

BXOR #xx:3, <EAd>

Operand Size

Byte

Description

BXOR

Condition Code

I H N Z V C

l-1-1-1-l-l-l-lt I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the specified bit.

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the

carry flag. The specified bit can be located in a general register or memory. The bit number is

specified by 3-bit immediate data. The operation is shown schematically below.

Bit No.

<EAd>* ~Byte data in register or memory

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands I-------,-·.

1st byte 2nd byte 3rd byte

'
Register direct BXOR #xx:3, Rd 7 5 Oi IMMi rd

' ' I Register indirect BXOR #xx:3,@Rd 7 c o: rd : 0 7 I 5
I

i E
I

Absolute address BXOR #xx:3,@aa:8 7 abs 7 I 5 I

* Register direct, register indirect, or absolute addressing.

63

No. of

4th byte
states

2
I

o: IMM: 0 6
I I
I

o: IMM: 0 6
I I

2.2.22 (1) CMP (compare) (byte)

Operation

Rd- (EAs); set condition code

Assembly-Language Format

CMP. B <EAs>, Rd

Operand Size

Byte

Description

CMP

Condition Code

I H N Z V C

1-1-1 t 1-1 t I t It I t I
I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit

3; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from bit

7; otherwise cleared to 0.

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination

register and sets the condition code flags according to the result. The destination register is not

altered.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mn em. Operands states
1st byte 2nd byte 3rd byte 4th byte

'
Immediate CMP.B #xx:8,Rd A ' rd IMM 2 ' I

Register direct CMP.B Rs, Rd 1
I c I rd 2 ' rs I I

I

64

2.2.22 (2) CMP (compare) (word)

Operation

Rd - Rs; set condition code

Assembly-Language Format

CMP .W Rs, Rd

Operand Size

Word

Description

CMP

Condition Code

I H N Z V C

1-1-1 t 1-1 t It It It I

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit

11; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from bit

15; otherwise cleared to 0.

This instruction subtracts a source register from a destination register and sets the condition

code flags according to the result. The destination register is not altered.

Instruction Formats and Number of Execution States

Addressing Instruction code
Mnem. Operands No. of

mode states
1st byte 2nd byte 3rd byte 4th byte

I I

Register direct CMP.W Rs, Rd 1 :o o: rs : o: rd 2
I I

65

2.2.23 DAA (decimal adjust add)

Operation

Rd (decimal adjust) ~Rd

Assembly-Language Format

DAA Rd

Operand Size

Byte

Description

DAA

Condition Code

I H N Z V C

1-1-1 * I -'-I t I t I * I t I

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to 1 when the adjusted result is

negative; otherwise cleared to 0.

Z: Set to 1 when the adjusted result is zero;

otherwise cleared to 0.

V: Unpredictable.

C: Set to 1 when there is a carry from bit 7;

otherwise left unchanged.

When the result of an addition operation performed by the ADD.B or ADDX instruction on 4-

bit BCD data is contained in an 8-bit general register and the carry and half-carry flags, the

DAA instruction adjusts the result by adding HOO, H'06, H'60, or H'66 to the general register

according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Status before adjustment Value Resulting

C flag Upper nibble H flag Lower nibble added C flag

0 0 - 9 0 0 - 9 H'OO 0
0 0 - 8 0 A-F H'06 0
0 0 - 9 1 0 - 3 H'06 0
0 A-F 0 0 -9 H'60 1
0 9 -F 0 A-F H'66 1
0 A-F 1 0 - 3 H'66 1
1 0 - 2 0 0 - 9 H'60 1
1 0 - 2 0 A-F H'66 1
1 0 - 3 1 0 - 3 H'66 1

66

DAA (decimal adjust add) DAA

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

Register direct DAA Rd 0 i F 0 i rd 2

67

2.2.24 DAS (decimal adjust subtract)

Operation

Rd (decimal adjust) ~Rd

Assembly-Language Format

DAS Rd

Operand Size

Byte

Description

DAS

Condition Code

I H N Z V C

1-1-1 * 1-1 t It I* 1-1
I: Previous value remains unchanged.

H: Unpredictable.

N: Set to 1 when the adjusted result is

negative; otherwise cleared to 0.

Z: Set to 1 when the adjusted result is zero;

otherwise cleared to 0.

V: Unpredictable.

C: Previous value remains unchanged.

When the result of a subtraction operation performed by the SUB.B, SUBX, or NEG

instruction on 4-bit BCD data is contained in an 8-bit general register and the carry and half­

carry flags, the DAA instruction adjusts the result by adding H'OO, H'FA, H'AO, or H'9A to the

general register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Status before adjustment Value Resulting

C flag Upper nibble H flag Lower nibble added C flag

0 0-9 0 0-9 H'OO 0
0 0-8 1 6-F H'FA 0
1 7-F 0 0-9 H'AO 1
1 6-F 1 6-F H'9A 1

68

DAS (decimal adjust subtract) DAS

Instruction Formats and Number of Execution States

Addressing Instruction code
Mnem. Operands No. of

mode states
1st byte 2nd byte 3rd byte 4th byte

I I

Register direct DAS Rd 1 I F 0 I rd 2 I I
I

69

2.2.25 DEC (decrement)

Operation

Rd-1 --:-t Rd

Assembly-Language Format

DEC Rd

Operand Size

Byte

Description

DEC

Condition Code

I H N Z V C

1-1-1-1-lt It It 1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous value in Rd was H'80);

otherwise cleared to 0.

C: Previous value remains unchanged.

This instruction decrements an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mn em. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

i rd Register direct DEC Rd 1 I A 0 2 I
I

70

2.2.26 DIVXU (divide extend as unsigned)

Operation

Rd+ Rs -1 Rd

Assembly-Language Format

DIVXU Rs, Rd

Operand Size

Byte

Description

DIVXU

Condition Code

I H N z v c
1-1-1-1-lt t 1-1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the divisor is negative;

otherwise cleared to 0.

Z: Cleared to 0 when divisor"# O;

otherwise not guaranteed.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction divides a 16-bit general register by an 8-bit general register and places the

result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is

placed in the upper byte. The operation is shown schematically below.

Rd Rs

Dividend Divisor

16 bits 8 bits

Rd

----------(RdH) (Rdl)

~ I Remainder! Quotient

8 bits 8 bits

Valid results (Rd, N, Z) are not assured if division by zero is attempted or an overflow occurs.

Division by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown

on the next page.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I I

Register direct DIVXU Rs, Rd 5 : 1 rs : o: rd 14

71

DIVXU (divide extend as unsigned) DIV XU

Note: DIVXU Overflow

Since the DIVXU instruction performs 16-bit + 8-bit ~ 8-bit division, an overflow will occur

if the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FFFF

+ H'Ol ~ H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is

required.

To perform

DIVXU ROL, Rl: ROL I Divisor

MOV.B #H'OO, R2H R1 I Dividend

CMP.B ROL, RlH

BCC Ll R1 I Remainder Quotient (*1)

DIVXU ROL, Rl (*1)

MOV.B RlL, R2L R1 I Dividend

BRA L2 R2 I H'OO I Dividend (High) I (*2)

Ll MOV.B RlH, R2L (*2)
+

DIVXU ROL, R2 R1 Partial remainder I Dividend (Low) I
MOV.B R2H, RlH (*3)

DIVXU ROL, Rl R2 I Partial remainder I Quotient (High) I (*3)

MOV.B R2L, R2H i
MOV.B RlL, R2L

R1 I I Remainder Quotient (Low)
12 RTS (*4)

R2I Quotient (*4)

72

2.2.27 EEPMOV (move data to EEPROM)

Operation

if R4L =t- 0 then

repeat @R5+ ~ @R6+

R4L-1 ~ R4L

until R4L = 0

else next;

Assembly-Language Format

EEPMOV

Operand Size

Description

EEPMOV

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction moves a block of data from the memory location specified in general register

R5 to the memory location specified in general register R6. General register R4L gives the

byte length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented and

R4L is decremented. When R4L reaches 0, the transfer ends and the next instruction is

executed. No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'OO. R5 and R6 contain the last transfer address

+l.

The memory locations specified by general registers R5 and R6 are read before the block

transfer is performed.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I I I

EEPMOV 7 I B 5 I c 5 I
9 8

I
F 9+4n* - I I I I

I I I I

* n is the initial value in R4L (0 ~ n ~ 255). Although n bytes of data are transferred, memory

is accessed 2(n+ 1) times, requiring 4(n+ 1) states.

73

2.2.28 INC (increment)

Operation

Rd+l~Rd

Assembly-Language Format

INC Rd

Operand Size

Byte

Description

INC

Condition Code

I H N Z V C

1-1-1-1-lt It It 1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous value in Rd was H'7F);

otherwise cleared to 0.

C: Previous value remains unchanged.

This instruction increments an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnern. Operands states
1st byte 2nd byte 3rd byte 4th byte

I I

Register direct INC Rd 0 I A 0 I rd 2 I I
I

74

2.2.29 JMP ijump)

Operation

(EAd) -t PC

Assembly-Language Format

JMP <EA>

Operand Size

Description

JMP

Condition Code

H N Z V C

l-l-l-1-1-1-1-1-I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction branches unconditionally to a specified destination address.

The destination address must be even.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

0 ! rn 1 Register indirect JMP @Rn 5
I

9 0 4 I
I

Absolute address JMP @aa:16 5
I

A 0
I

0 abs. I I 6
I I

Memory indirect JMP @@aa:8 5
I

B abs. 8 I
I

75

2.2.30 JSR (Jump to subroutine)

Operation

PC~@-SP

(EAd) ~PC

Assembly-Language Format

JSR <EA>

Operand Size

Description

JSR

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction pushes the program counter onto the stack, then branches to a specified

destination address. The program counter value pushed on the stack is the address of the

instruction following the JSR instruction. The destination address must be even.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

o: rn i Register indirect JSR @Rn 5 I D 0 6 I
I I

Absolute address JSR @aa:16 5 I E 0
I

0 abs. 8 I I I
I

Memory indirect JSR @@aa:8 5 I F abs. 8 I
I

76

2.2.31 LDC (load to control register)

Operation

(EAs) ~CCR

Assembly-Language Format

LDC <EAs>, CCR

Operand Size

Byte

Description

LDC

Condition Code

I H N Z V C

It ltltltltltltltl

I: Loaded from the source operand.

H: Loaded from the source operand.

N: Loaded from the source operand.

Z: Loaded from the source operand.

V: Loaded from the source operand.

C: Loaded from the source operand.

This instruction loads the source operand contents into the condition code register (CCR). Bits

4 and 6 are loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are

deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Immediate LDC #xx:8, CCR 0 I 7 IMM 2 I
I
I I

Register direct LDC Rs, CCR 0 I 3 0 I rs 2 I I
I

77

2.2.32 (1) MOV (move data) (byte)

Operation

Rs -7 Rd

Assembly-Language Format

MOV .B Rs, Rd

Operand Size

Byte

Description

MOV

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction moves one byte of data from a source register to a destination register and sets

condition code flags according to the data value.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Register direct MOV.B Rs, Rd 0 I c I
rd 2 I rs I

I I

78

2.2.32 (2) MOV (move data) (word)

Operation

Rs -t Rd

Assembly-Language Format

MOV.W Rs, Rd

Operand Size

Word

Description

MOV

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction moves one word of data from a source register to a destination register and

sets condition code flags according to the data value.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I I I

Register direct MOV.W Rs, Rd 0 I D 0: rs :o: rd 2 I
I I I

79

2.2.32 (3) MOV (move data) (byte)

Operation

(EAs) ~Rd

Assembly-Language Format

MOV. B <EAs>, Rd

Operand Size

Byte

Description

MOV

Condition Code

I H N Z v c
1-1-1-1-lt It 01-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction moves one byte of data from a source operand to a destination register and

sets condition code flags according to the data value.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the

stack pointer. See section 3.2.3 for details.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

Immediate MOV.B #xx:8, Rd F rd IMM 2

Register indirect MOV.B @RS, Rd 6 8 o :rs: rd 4
I

Register indirect : I

with displacement MOV.B @(d:16,Rs),Rd 6 E otrs! rd disp. 6

Register indirect I I
I I

with post-increment MOV.B @Rs+, Rd 6 c 0: rs: rd 6
I

Absolute address MOV.B @aa:8, Rd 2 rd abs 4
I I

Absolute address MOV.B @aa:16, Rd 6 :A 0 I rd abs. 6 I

80

2.2.32 (4) MOV (move data) (word)

Operation

(EAs) ~Rd

Assembly-Language Format

MOV. W <EAs>, Rd

Operand Size

Word

Description

MOV

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction moves one word of data from a source operand to a destination register and

sets condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.

MOV.W@R7+, Rd is identical in machine language to POP.W Rd.

Note that the LSis in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

Addressing
mode

Instruction code
Mnem. Operands

Immediate MOV.W #xx:16, Rd

Register indirect MOV.W @RS, Rd

Register indirect

1st byte 2nd byte

7

6

I
I

: 9
I I

0 !o l rd
I ~ I I

: 9 0 rs :o: rd

: ! : :
with displacement MOV.W @(d:16,Rs),Rd 6 : F 0 rs :o: rd

I --!- I I

Register indirect
with post-increment MOV.W @Rs+, Rd 6

Absolute address MOV.W @aa:16, Rd 6 i B o)o! rd

81

3rd byte J 4th byte

IMM

J
disp.

l
abs.

No. of
states

4

4

6

6

6

2.2.32 (5) MOV (move data) (byte)

Operation

Rs~ (EAd)

Assembly-Language Format

MOV. B Rs, <EAd>

Operand Size

Byte

Description

MOV

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction moves one byte of data from a source register to memory and sets condition

code flags according to the data value.

The MOV.B Rs, @-R7 instruction should never be used, because it leaves an odd value in the

stack pointer. See section 3.2.3 for details.

The instruction MOV.B RnH, @-Rn or MOV.B RnL, @-Rn decrements register Rn, then

moves the upper or lower byte of the decremented result to memory.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

MOV.B Rs,@Rd
I

Register indirect 6 I 8 1 rd: rs 4
I

I I

Register indirect Rs, I I

I I

with displacement MOV.B @(d:16,Rd) 6 I E 1 rd: rs disp. 6 I

I I

Register indirect I I
I I

with pre-decrement MOV.B Rs, @-Rd 6 I c 1 rd: rs 6 I

Absolute address MOV.B Rs,@aa:s 3
I

abs 4 ' rs
I

Absolute address MOV.B Rs,@aa:16
I

: rs 6 I A 8 abs. 6 I

82

2.2.32 (6) MOV (move data) (word)

Operation

Rs~ (EAd)

Assembly-Language Format

MOV. W Rs, <EAd>

Operand Size

Word

Description

MOV

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction moves one word of data from a general register to memory and sets condition

code flags according to the data value.

The destination address in memory must be even.

MOV.W Rs, @-R7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @-Rn decrements register Rn by 2, then moves the decremented

result to memory.

Note that the LSis in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

' ' '
Register indirect MOV.W Rs,@Rd 6

I

9 1: rd :o 4 I rs
I ' I

Register indirect Rs,
I I I
I I '
I

1: rd io with displacement MOV.W @(d:16, Rd) 6 I F rs disp. 6 I I

Register indirect
I I ' I I
I I I

with pre-decrement MOV.W Rs, @-Rd 6 I D 1 i rd :o rs 6 I

I I

Absolute address MOV.W Rs, @aa:16 6 I B 8 :o rs abs. 6
'

83

2.2.33 MULXU (multiply extend as unsigned) MULXU

Operation

RdxRs ~Rd

Assembly-Language Format

MULXU Rs, Rd

Operand Size

Byte

Description

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction petforms 8-bit x 8-bit ~ 16-bit multiplication. It multiplies a destination

register by a source register and places the result in the destination register. The source

register is an 8-bit register. The destination register is a 16-bit register containing the data to

be multiplied in the lower byte. (The upper byte is ignored). The result is placed in both bytes

of the destination register. The operation is shown schematically below.

Rd Rs Rd

Don't-care I Multiplicand I x I Multiplier Product

8 bits 8 bits 16 bits

The multiplier can occupy either the upper or lower byte of the source register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I I '
Register direct MULXU Rs, Rd 5 I 0 rs :o: rd 14 I

I

84

2.2.34 NEG (negate)

Operation

0-Rd~Rd

Assembly-Language Format

NEG Rd

Operand Size

Byte

Description

NEG

Condition Code

I H N Z V C

1-1-1 t 1-1 t I t I t I t I
I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit

3; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous contents of the destination

register was H'80); otherwise cleared to

0.

C: Set to 1 when there is a borrow from bit

7 (the previous contents of the

destination register was not H'OO);

otherwise cleared to 0.

This instruction replaces the contents of an 8-bit general register with its two's complement

(subtracts the register contents from HOO).

If the original contents of the destination register was H'80, the register value remains H'80

and the overflow flag is set.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I I

Register direct NEG Rd 1 I 7 8 : rd 2 I
I

85

2.2.35 NOP (no operation)

Operation

PC+2 ~PC

Assembly-Language Format

NOP

Operand Size

Description

NOP

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction only increments the program counter, causing the next instruction to be

executed. The internal state of the CPU does not change.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th by1e

I I

- NOP 0 I 0 0 I 0 2 I I

86

2.2.36 NOT (NOT = logical complement)

Operation

--, Rd~ Rd

Assembly-Language Format

NOT Rd

Operand Size

Byte

Description

NOT

Condition Code

I H N Z v c
1-1-1-1-ltlt 01-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction replaces the contents of an 8-bit general register with its one's complement

(subtracts the register contents from H'FF).

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
' Register direct NOT Rd 1 : 7 0 ' rd 2 '

87

2.2.37 OR (inclusive OR logical)

Operation

Rd v (EAs) -t Rd

Assembly-Language Format

OR <EAs>, Rd

Operand Size

Byte

Description

OR

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction ORs the source operand with the contents of an 8-bit general register and

places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states

1st byte 2nd byte 3rd byte 4th byte

Immediate OR #xx:8, Rd c !
rd IMM 2

I

Register direct OR Rs, Rd 1 4 rs : rd 2
...!.

88

2.2.38 ORC (inclusive OR control register)

Operation

CCR v #IMM ~ CCR

Assembly-Language Format

ORC #xx:S, CCR

Operand Size

Byte

Description

ORC

Condition Code

I H N Z V C

It ltltltltltltltl
I: ORed with bit 7 of the immediate data.

H: ORed with bit 5 of the immediate data.

N: ORed with bit 3 of the immediate data.

Z: ORed with bit 2 of the immediate data.

V: ORed with bit 1 of the immediate data.

C: ORed with bit 0 of the immediate data.

This instruction ORs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are

deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte 4th byte

'
Immediate ORC #xx:8, CCR 0 ' 4 IMM ' '

89

No. of
states

2

2.2.39 POP (pop data)

Operation

@SP+~Rn

Assembly-Language Format

POP Rn

Operand Size

Word

Description

POP

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction pops data from the stack to a 16-bit general register and sets condition code

flags according to the data value.

POP.W Rn is identical in machine language to MOV.W@SP+, Rn.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

' io! rn POP Rd 6 ' D 7 6 - ' '

90

2.2.40 PUSH (push data)

Operation

Rn -t@-SP

Assembly-Language Format

PUSH Rn

Operand Size

Word

Description

PUSH

Condition Code

I H N Z v c
1-1-1-1-lt It 01-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

otherwise cleared to 0.

Z: Set to 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction pushes data from a 16-bit general register onto the stack and sets condition

code flags according to the data value.

PUSH.W Rn is identical in machine language to MOV.W Rn, @-SP.

Instruction Formats and Number of Execution States

Addressing Instruction code
Mnem. Operands No. of

mode states
1st byte 2nd byte 3rd byte 4th byte

'
PUSH Rs 6 ' D F]oi rn 6 - ' '

91

2.2.41 ROTL (rotate left)

Operation

Rd (rotated left) -7 Rd

Assembly-Language Format

ROTL Rd

Operand Size

Byte

Description

ROTL

Condition Code

I H N Z V C

1-1-1-1-lt It Io It I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 7.

This instruction rotates an 8-bit general register one bit to the left. The most significant bit is

rotated to the least significant bit, and also copied to the carry flag.

The operation is shown schematically below.

l MSB LSBJ

DI 11111111
c Bit 7 Bit 0

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

Register direct ROTL Rd 1
I

2 8 rd 2 I I
I I

92

2.2.42 ROTR (rotate right)

Operation

Rd (rotated right)~ Rd

Assembly-Language Format

ROTR Rd

Operand Size

Byte

Description

ROTR

Condition Code

I H N Z V C

1-1-1-1-1 t I t I o I t I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is

rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

L MSB LSBl

111111111 D
Bit7 Bit 0 C

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

ROTA Rd 1 I 3 8 rd 2 Register direct I
I

I
I

93

2.2.43 ROTXL (rotate with extend carry left)

Operation

Rd (rotated with carry left) ~ Rd

Assembly-Language Format

ROTXL Rd

Operand Size

Byte

Description

ROTXL

Condition Code

I H N Z V C

1-1-1-1-lt It Io It I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 7.

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The

carry flag is rotated into the least significant bit of the register. The most significant bit rotates

into the carry flag.

The operation is shown schematically below.

l MSB LSB~
~1111111
c Bit 7 Bit 0

Instruction Formats and Number of Execution States

· Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

Register direct ROTXL Rd 1 ' 2 0 rd 2 I I
I I

94

2.2.44 ROTXR (rotate with extend carry right) ROTXR

Operation

Rd (rotated with carry right) ~ Rd

Assembly-Language Format

ROTXR Rd

Operand Size

Byte

Description

Condition Code

I H N Z V C

1-1-1-1-1 t It Io It I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

This instruction rotates an 8-bit general register one bit to the right through the carry flag. The

least significant bit is rotated into the carry flag. The carry flag rotates into the most

significant bit.

The operation is shown schematically below.

L MSB LSB j
111111111-D

Bit 7 Bit 0 C

Instruction Formats and Number of Execution States

Addressing Instruction code
Mnem. Operands No. of

mode states
1st byte 2nd byte 3rd byte 4th byte

' ' Register direct ROTXR Rd 1 I 3 0 rd I ' 2
I '

95

2.2.45 RTE (return from exception)

Operation

@SP+-t CCR

@SP+-tPC

Assembly-Language Format

RTE

Operand Size

Description

RTE

Condition Code

I H N Z V C

Ii lilililtlililil

I: Restored from stack.

H: Restored from stack.

N: Restored from stack.

Z: Restored from stack.

V: Restored from stack.

C: Restored from stack.

This instruction returns from an exception-handling routine. It pops the condition code

register (CCR) and program counter (PC) from the stack. Program execution continues from

the address restored to the program counter.

The CCR and PC contents at the time of execution of this instruction are lost.

The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8

bits are ignored). This instruction therefore adds 4 to the value of the stack pointer (R7).

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

RTE 5 I 6 7 0 10 -- I I

I I

96

2.2.46 RTS (return from subroutine)

Operation

@SP+~PC

Assembly-Language Format

RTS

Operand Size

Description

RTS

Condition Code

H N Z V C

l-l-l-1-1-l-l-l-I
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction returns from a subroutine. It pops the program counter (PC) from the stack.

Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of this instruction are lost.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

RTS 5 I 4 7 0 - I ' 8 ' I

97

2.2.47 SHAL (shift arithmetic left)

Operation

Rd (shifted arithmetic left) ~ Rd

Assembly-Language Format

SHAL Rd

Operand Size

Byte

Description

SHAL

Condition Code

I H N Z V C

1-1-1-1-1 t It It It I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Receives the previous value in bit 7.

This instruction shifts an 8-bit general register one bit to the left. The most significant bit

shifts into the carry flag, and the least significant bit is cleared to 0.

The operation is shown schematically below.

MSB LSB

D+--1 I I I I I I I l+-a
c Bit 7 Bit 0

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow

(V) flag.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

Register direct SHAL Rd 1 I 0 8 rd 2 I I

I
I

98

2.2.48 SHAR (shift arithmetic right)

Operation

Rd (shifted arithmetic right) -t Rd

Assembly-Language Format

SHAR Rd

Operand Size

Byte

Description

SHAR

Condition Code

I H N Z V C

1-1-1-1-1 t It Io It I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

This instruction shifts an 8-bit general register one bit to the right. The most significant bit

remains unchanged. The sign of the result does not change. The least significant bit shifts into

the carry flag.

The operation is shown schematically below.

MSB LSB

[[1 11 I I 11 1---+D
Bit 7 Bit 0 C

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

' Register direct SHAR Rd 1 I 1 8 rd 2 I I

I
I
I

99

2.2.49 SHLL (shift logical left)

Operation

Rd (shifted logical left) -7 Rd

Assembly-Language Format

SHLL Rd

Operand Size

Byte

Description

SHLL

Condition Code

I H N Z V C

1-1-1-1-lt It Io It I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is

cleared to 0. The most significant bit shifts into the carry flag.

The operation is shown schematically below.

MSB LSB

D+---1 I I I I I I I l+-o
c Bit 7 Bit 0

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow

(V) flag.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

Register direct SHLL Rd 1 I 0 0 rd I I 2
I

I

100

2.2.50 SHLR (shift logical right)
Operation

Rd (shifted logical right) __, Rd

Assembly-Language Format

SHLR Rd

Operand Size

Byte

Description

SHLR
Condition Code

I H N Z v c
1-1-1-1-lt It o I t I

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 0.

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is

cleared to 0. The least significant bit shifts into the carry flag.

The operation is shown schematically below.

MSB LSB

0~111111111~0
Bit 7 Bit 0 C

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

SHLR Rd I 0 rd Register direct 1 I 1 ' 2 ' I '

101

2.2.51 SLEEP (sleep)

Operation

Program execution state ---+power­

down mode

Assembly-Language Format

SLEEP

Operand Size

Description

SLEEP
Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal

state remains unchanged, but the CPU stops executing instructions and waits for an exception­

handling request (interrupt or reset). When it receives an exception-handling request, the CPU

exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (I) bit is set to 1, the power-down mode can be released only by a

nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, see the applicable hardware manual.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I
I

SLEEP 0
I 1 8 0 2 - I I

I
I

102

2.2.52 STC (store from control register)

Operation

CCR~Rd

Assembly-Language Format

STC CCR, Rd

Operand Size

Byte

Description

STC
Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction copies the condition code register (CCR) to a specified general register. Bits 6

and 4 are copied as well as the flag bits.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Register direct STC CCR, Rd 0 I 2 0
I

rd 2 I I
I I

103

2.2.53 (1) SUB (subtract binary) (byte)

Operation

Rd-Rs --7 Rd

Assembly-Language Format

SUB.B Rs,Rd

Operand Size

Byte

Description

SUB

Condition Code

I H N Z V C

1-1-1 t 1-1 t It It It I

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from

bit 3; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from

bit 7; otherwise cleared to 0.

This instruction subtracts an 8-bit source register from an 8-bit destination register and places

the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use

the SUBX.B instruction, first setting the zero flag to 1 and clearing the carry flag to 0.

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR

SUBX #(Imm - 1), Rd

(2) ADD #(0 Imm), Rd

XORC #H'Ol, CCR

Instruction Formats and Number of Execution States

Addressing Instruction code

mode Mnem. Operands
1st byte 2nd byte 3rd byte

I
I

Register direct SUB.B Rs, Rd 1 I 8 rd I rs I

I
I

104

No. of

4th byte
states

2

2.2.53 (2) SUB (subtract binary) (word)

Operation
Rd - Rs --> Rd

Assembly-Language Format

SUB.W Rs, Rd

Operand Size

Word

Description

SUB

Condition Code

I H N Z V C

1-1-1 t 1-1 t I t I t I t I

I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from

bit 11; otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from

bit 15; otherwise cleared to 0.

This instruction subtracts a 16-bit source register from a 16-bit destination register and places

the result in the destination register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

' I

Register direct SUB.W Rs, Rd 1 ' 9 o: rs :a: rd 2 ' ' I ' '

105

2.2.54 SUBS (subtract with sign extension)

Operation

Rd-1 --j Rd

Rd-2 --j Rd

Assembly-Language Format

SUBS #1, Rd

SUBS #2, Rd

Operand Size

Word

Description

SUBS

Condition Code

I H N Z V C

1-1-1-1-1-1-1-1-1
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

This instruction subtracts the immediate value 1 or 2 from word data in a general register.

Unlike the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

i oi rd Register direct SUBS #1, Rd 1 I B 0 2 I
I
I I I

Register direct SUBS #2, Rd 1 I B 8 : o: rd 2 I

106

2.2.55 SUBX (subtract with extend carry)

Operation

Rd - (EAs) - C -t Rd

Assembly-Language Format

SUBX <EAs>, Rd

Operand Size

Byte

Description

SUBX

Condition Code

I H N Z V C

1-1-lt I-It It It It I
I: Previous value remains unchanged.

H: Set to 1 if there is a borrow from bit 3;

otherwise cleared to 0.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Previous value remains unchanged when

the result is zero; otherwise cleared to 0.

V: Set to 1 when an overflow occurs;

otherwise cleared to 0.

C: Set to 1 when there is a borrow from

bit 7; otherwise cleared to 0.

This instruction subtracts the source operand and carry flag from the contents of an 8-bit

general register and places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No.of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

'
Immediate SUBX #xx:8, Rd B ' rd IMM 2 ' '

'
I

Register direct SUBX Rs, Rd 1 ' E rs I rd 2 I I
I I

107

2.2.56 XOR (exclusive OR logical)

Operation

Rd EB (EAs) ~Rd

Assembly-Language Format

XOR <EAs>, Rd

Operand Size

Byte

Description

XOR

Condition Code

I H N Z V C

1-1-1-1-lt It lol-1

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.

This instruction exclusive-ORs the source operand with the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

I

Immediate XOR #xx:8, Rd D I
rd IMM 2 I

I
I

I

Register direct XOR Rs, Rd 1 5 I rd 2 I rs I
I I

108

2.2.57 XORC (exclusive OR control register)

Operation

CCR EB #IMM ~ CCR

Assembly-Language Format

XORC #xx:8, CCR

Operand Size

Byte

Description

XORC

Condition Code

I H N Z V C

It ltltltltltltltl

I: Exclusive-ORed with bit 7 of the

immediate data.

H: Exclusive-ORed with bit 5 of the

immediate data.

N: Exclusive-ORed with bit 3 of the

immediate data.

Z: Exclusive-ORed with bit 2 of the

immediate data.

V: Exclusive-ORed with bit 1 of the

immediate data.

C: Exclusive-ORed with bit 0 of the

immediate data.

This instruction exclusive-ORs the condition code register (CCR) with immediate data and

places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as the

flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code
No. of

mode Mnem. Operands
states

1st byte 2nd byte 3rd byte 4th byte
I

Immediate XORC #xx:8, CCR 0
I

5 IMM 2 I
I

109

2.3 Operation Code Map

Table 2-1 shows the operation code map for instructions of the H8/300L CPU. Only the first

byte (bits 15 to 8 of the first word) of the instruction code is indicated here.

Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 0.

Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 1.

110

Table 2-1. Operation Code Map

~ I
0 1 2 3 4 5 6 7 8 9 A B c D E F

0 NOP SLEEP STC LDC ORC XORC ANDC LDC ADD INC ADDS MOV ADDX DAA

1 ~ ~ ~ ~ OR XOR AND ~ SUB DEC SUBS CMP SUBX DAS
L R L R G

2

MOV

3

4 BRA BRN BHI BLS BCC BCS BNE BEO BVC BVS BPL BMI BGE BLT BGT BLE

5 MULXU DIVXU ~ RTS BSR RTE ~ JMP ~ JSR

6 ~ ~ MOV'

BSET BNOT BCLR BTST
T

~ ~~
T ~

7 ~ MOV ~EEPMOV Bit manipulation instructions
BIXOR BIAND

8 ADD

9 ADDX

A CMP

B SUBX

c OR

D XOR

E AND

F MOV

Note: The PUSH and POP instructions are equivalent in machine language to the MOV instruction. See the descriptions of individual instructions in section 2.2, Instructions, for details.

2.4 List of Instructions

Table 2-2. List of Instructions (1)

Addressing Mode and
Instruction Length (Bytes)

* + rn
'2 c:

0 ~ a: a: <D
<D

cti @
~

a.
'C U)

co ;: c: ~· OS .!!! 0
Q)

><
c:

'C a: OS 'C @, ii. Condition Code
N c: a:

@) ~
OS @) 0

Mnemonic Ci5 Operation >< a: @ @ @ .E I H N z v c z '**
MOV.8 #xx:8, Rd 8 #xx:8 ___, Rd8 2 - - t t 0 - 2

MOV.8 Rs, Rd 8 Rs8 ___, Rd8 2 - - t t 0 - 2

MOV.8@Rs, Rd 8 @Rs16 ___, RdB 2 - - t t 0 - 4

MOV.8 @(d:16, Rs), Rd 8 @(d:16, Rs16) ___, Rd8 4 - - t t 0 - 6

MOV.8@Rs+, Rd 8 @Rs16 ___, RdB 2 - - t t 0 - 6
Rs16+1 ___, Rs16

MOV.8 @aa:B, Rd 8 @aa:8 ___, RdB 2 - - t t 0 - 4

MOV.8@aa:16, Rd 8 @aa:16 ___, RdB 4 - - t t 0 - 6

MOV.8 Rs, @Rd 8 RsB _,@Rd16 2 - - t t 0 - 4

MOV.8 Rs, @(d:16, Rd) 8 RsB _,@(d:16, Rd16) 4 - - t t 0 - 6

MOV.8 Rs, @-Rd 8 Rd16-1 ___, Rd16 2 - - t t 0 - 6
Rs8 _,@Rd16

MOV.8 Rs, @aa:8 8 Rs8 _,@aa:8 2 - - t t 0 - 4

MOV.8 Rs, @aa:16 8 Rs8 ___, @aa:16 4 - - t t 0 - 6

MOV.W #xx:16, Rd w #xx:16 ___,Rd 4 - - t t 0 - 4

MOV.W Rs, Rd w Rs16 ___, Rd16 2 - - t t 0 - 2

MOV. W @Rs, Rd w @Rs16 ___, Rd16 2 - - t t 0 - 4

MOV.W @(d:16, Rs), Rd w @(d:16, Rs16) ___, Rd16 4 - - t t 0 - 6

MOV.W @Rs+, Rd w @Rs16 ___, Rd16 2 - - t t 0 - 6
Rs16+2 ___, Rs16

MOV.W@aa:16, Rd w @aa:16 ___, Rd16 4 - - t t 0 - 6

MOV.W Rs, @Rd w Rs16 ___, @Rd16 2 - - t t 0 - 4

MOV.W Rs, @(d:16, Rd) w Rs16 ___, @(d:16, Rd16) 4 - - t t 0 - 6

MOV.W Rs, @-Rd w Rd16-2 ___, Rd16 2 - - t t 0 - 6
Rs16 ___, @Rd16

MOV.W Rs, @aa:16 w Rs16 _,@aa:16 4 - - t t 0 - 6

POP Rd w @SP___, Rd16 2 - - t t 0 - 6
SP+2 ___,SP

PUSH Rs w SP-2 ___,SP 2 - - t t 0 - 6
Rs16 _,@SP

112

Table 2-2. List of Instructions (2)

------------------- - ···--·- ---- -- --~ --- ---·· -------·-------·------
Addressing Mode and

Instruction Length (Bytes)
* + Ill

'2 c: ~ ~ a: a: IO 0
IO iii @ .. a. u;
;;; iii ~- <a "C .. c: .!!! 0 c: i:i i i.i <a Condition Code GI
~ "C

~ c. N c: a:
@I @, @I .5 0

Mnemonic c;; Operation 'II: a: @J I H N z v c z
ADD.B #xx:B, Rd B RdB+#xx:B --+ RdB 2 - t t t t t 2

ADD.B Rs, Rd B Rd8+Rs8 --+ RdB 2 - t t t t t 2

ADD.WRs, Rd w Rd16+Rs16--+ Rd16 2 - Gl t t t t 2

ADDX.B #xx:B, Rd B RdB+#xx:B+C --+ Rd8 2 - t t ® t t 2

ADDX.B Rs, Rd B RdB+RsB+C --+ Rd8 2 - t t ® t t 2

ADDS.W #1, Rd w Rd16+1--+ Rd16 2 - - - - - - 2

ADDS.W #2, Rd w Rd16+2--+ Rd16 2 - - - - - - 2

INC.B Rd B RdB+ 1 --+ Rd8 2 - - t t t - 2

DAA.B Rd B Rd8 decimal-adjust--+ RdB 2 - * t t * ® 2

SUB.B Rs, Rd B Rd8-Rs8 --+ RdB 2 - t t t t t 2

SUB.W Rs, Rd w Rd16-Rs16--+ Rd16 2 - Gl t t t t 2

SUBX.B #xx:B, Rd B Rd8-#xx:8-C --+ Rd8 2 - t t ® t t 2

SUBX.B Rs, Rd B Rd8-Rs8-C --+ RdB 2 - t t ® t t 2

SUBS.W #1, Rd w Rd16-1--+ Rd16 2 - - - - - - 2

SUBS.W #2, Rd w Rd16-2--+ Rd16 2 - - - - - - 2

DEC.B Rd B RdB-1 --+ Rd8 2 - - t t t - 2

DAS.B Rd B Rd8 decimal-adjust--+ Rd8 2 - * t t * - 2

NEG.B Rd B 0-Rd--+ Rd 2 - t t t t t 2

CMP.B #xx:B, Rd B Rd8-#xx:8 2 - t t t t t 2

CMP.B Rs, Rd B Rd8-Rs8 2 - t t t t t 2

CMP.W Rs, Rd w Rd16-Rs16 2 - Gl t t t t 2

MULXU.B Rs, Rd B Rd8xRs8--+ Rd16 2 - - - - - - 14

DIVXU.B Rs, Rd B Rd16+Rs8--+ Rd16 2 - - @ @ - - 14
(RdH: remainder,
Rdl: quotient)

AND.B #xx:B, Rd B Rd8A#xx:8 --+ Rd8 2 - - t t 0 - 2

AND.B Rs, Rd B Rd8ARS8 --+ Rd8 2 - - t t 0 - 2

OR.B #xx:B, Rd B Rd8v#xx:8 --+ Rd8 2 - - t t 0 - 2

OR.B Rs, Rd B Rd8vRs8 --+ RdB 2 - - t t 0 - 2

XOR.B #xx:B, Rd B Rd8Gl#xx:8 --+ RdB 2 - - t t 0 - 2

XOR.B Rs, Rd B Rd8GlRs8 --+ RdB 2 - - t t 0 - 2

NOT.B Rd B Rd--+ Rd 2 - - t t 0 - 2

113

Table 2-2. List of Instructions (3)

Addressing Mode and
Instruction Length (Bytes)

* c: + UI
r:: ~ ~ a: a:

'° u
'° <.0" <gi ... 0.. ii) ... "O co ':": r:: co ~ Ill .!l! 0 r:: a: ;a Ill Condition Code Q)
>< "O "O

~ ii N >< r:: a:
@ © @ @ .5 c:i

Mnemonic Ui Operation =II: a: @J I H N z v c z
SHAL.B Rd B EHJIIIIII}-o 2 - - t t t t 2

~ bo

SHAR.B Rd B

~
2 - - t t 0 t 2

~ bo

SHLL.B Rd B EHJIIIIII}-o 2 - - t t 0 t 2

b7 bo

SHLR.B Rd B o-{]]J]]Il}@] 2 - - 0 t 0 t 2

~ bo

ROTXL.B Rd B

~lllllllb
2 - - t t 0 t 2

~ bo

ROTXR.B Rd B

rl 1111111 r@h
2 - - t t 0 t 2

~ bo

ROTL.B Rd B

[911111111 b
2 - - t t 0 t 2

b7 bo

ROTR.B Rd B

rllllllllr@l
2 - - t t 0 t 2

~ bo

BSET #xx:3, Rd B (#xx:3 of RdB) <--- 1 2 - - - - - - 2

BSET #xx:3, @Rd B (#xx:3 of @Rd16) <--- 1 4 - - - - - - 8

BSET #xx:3, @aa:B B (#xx:3 of @aa:B) <--- 1 4 - - - - - - 8

BSET Rn, Rd B (RnB of RdB) <--- 1 2 - - - - - - 2

BSET Rn, @Rd B (RnB of @Rd16) <--- 1 4 - - - - - - 8

BSET Rn, @aa:B B (RnB of @aa:B) <--- 1 4 - - - - - - 8
L_________.

114

Table 2-2. List of Instructions (4)

--·------··--·- .. -- -----··-·-···· -··· --·--·----· ---- ··-------- -------·-- - -- - --- ---------- ·- ·-····-- ----- ------------- ,---,
Addressing Mode and

Instruction Length (Bytes)

*
c + rn

c ~ ! a: a:
"' CJ

"' co" @ .. II.. iii ,...
Co "C

Co ':': c ai .,,
.!!! 0 c a:

~
i:j

.,, Condition Code Cl)

~ "C

~ f "' c a:
@j @ @j 0

Mnemonic iii Operation =II: a: @ I H N z v c z
BCLR #xx:3, Rd B (#xx:3 of RdB) <- O 2 - - - - - - 2

BCLR #xx:3, @Rd B (#xx:3 of@Rd16) <- O 4 - - - - - - 8

BCLR #xx:3, @aa:B B (#xx:3 of @aa:B) <- O 4 - - - - - - 8

BCLR Rn, Rd B (RnB of RdB) <- 0 2 - - - - - - 2

BCLR Rn,@Rd B (RnB of @Rd16) <- 0 4 - - - - - - 8

BCLR Rn, @aa:B B (RnB of @aa:B) <- O 4 - - - - - - 8

BNOT #xx:3, Rd B (#xx:3 of RdB) <- 2 - - - - - - 2
(#xx:3 of RdB)

BNOT #xx:3, @Rd B (#xx:3 of @Rd16) <- 4 - - - - - - 8
(#xx:3 of@Rd16)

BNOT #xx:3, @aa:B B (#xx:3 of @aa:B) <- 4 - - - - - - 8
(#xx:3 of @aa:B)

BNOTRn, Rd B (RnB of RdB) <- 2 - - - - - - 2
(RnB of RdB)

BNOTRn,@Rd B (RnB of @Rd16) <- 4 - - - - - - 8
(RnB of@Rd16)

BNOT Rn, @aa:B B (RnB of @aa:B) <- 4 - - - - - - 8
(RnB of @aa:B)

BTST #xx:3, Rd B (#xx:3 of RdB) ~ Z 2 - - - t - - 2

BTST #xx:3, @Rd B (#xx:3 of@Rd16) ~ Z 4 - - - t - - 6

BTST #xx:3, @aa:B B (#xx:3 of @aa:B) ~ Z 4 - - - t - - 6

BTST Rn, Rd B (RnB of Rd8) ~ Z 2 - - - t - - 2

BTST Rn,@Rd B (Rn8 of @Rd16) ~ Z 4 - - - t - - 6

BTST Rn, @aa:B B (RnB of @aa:B) ~ Z 4 - - - t - - 6

BLD #xx:3, Rd B (#xx:3 of RdB) ~ C 2 - - - - - t 2

BLD #xx:3, @Rd B (#xx:3 of@Rd16) ~ C 4 - - - - - t 6

BLD #xx:3, @aa:B B (#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BILD #xx:3, Rd B (#xx:3 of Rd8) ~ C 2 - - - - - t 2

BILD #xx:3, @Rd B (#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BILD #xx:3, @aa:B B (#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BST #xx:3, Rd B C ~ (#xx:3 of RdB) 2 - - - - - - 2

BST #xx:3, @Rd B C ~ (#xx:3 of @Rd16) 4 - - - - - - 8

BST #xx:3, @aa:B B C ~ (#xx:3 of @aa:B) 4 - - - - - - 8

115

Table 2-2. List oflnstructions (5)

Addressing Mode and
Instruction Length (Bytes)

*
~

+ Ill
c: ~ ~ a: U) ~ U)

<ti ~ iii iii ... j co ... ai ftl 0 iG ftl Condition Code GI Branching s
c: i::i ~ ~ ~ a N c: a: @ @ .5 ci

Mnemonic u; Operation Condition a: @J I H N z v c z
BIST #xx:3, Rd 8 C ~ (#xx:3 of Rd8) 2 - - - - - - 2

BIST #xx:3, @Rd B C ~ (#xx:3 of @Rd16) 4 - - - - - - 8

BIST #xx:3, @aa:B B C ~ (#xx:3 of @aa:B) 4 - - - - - - 8

BAND #xx:3, Rd B C"(#xx:3 of Rd8) ~ C 2 - - - - - t 2

BAND #xx:3, @Rd B C"(#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BAND #xx:3, @aa:B B C"(#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BIAND #xx:3, Rd B C"(#xx:3 of Rd8) ~ C 2 - - - - - t 2

BIAND #xx:3, @Rd B C"(#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BIAND #xx:3, @aa:B B C"(#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BOR #xx:3, Rd B Cv(#xx:3 of Rd8) ~ C 2 - - - - - t 2

BOR #xx:a, @Rd B Cv(#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BOR #xx:3, @aa:B B Cv(#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BIOR #xx:3, Rd B Cv(#xx:3 of Rd8) ~ C 2 - - - - - t 2

BIOR #xx:3, @Rd B Cv(#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BIOR #xx:3, @aa:B B Cv(#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BXOR #xx:3, Rd B C©(#xx:3 of Rd8) ~ C 2 - - - - - t 2

BXOR #xx:3, @Rd B C©(#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BXOR #xx:3, @aa:B B C©(#xx:3 of @aa:B) ~ C 4 - - - - - t 6

BIXOR #xx:3, Rd B C©(#xx:3 of Rd8) ~ C 2 - - - - - t 2

BIXOR #xx:3, @Rd B C©(#xx:3 of @Rd16) ~ C 4 - - - - - t 6

BIXOR #xx:3, @aa:a B C©(#xx:3 of @aa:8) ~ C 4 - - - - - t 6

BRA d:B (BT d:8) - PC (--- PC+d:8 2 - - - - - - 4

BRN d:8 (BF d:8) - PC(- PC+2 2 - - - - - - 4

BHI d:B - if condition CvZ=O 2 - - - - - - 4

BLS d:8
is true then

CvZ= 1 2 4 - PC (--- - - - - - -

BCC d:B (BHS d:B) - PC+d:B C=O 2 - - - - - - 4

BCS d:8 (BLO d:B) - else next; C= 1 2 - - - - - - 4

BNE d:8 - Z=O 2 - - - - - - 4

BEQd:B - Z= 1 2 - - - - - - 4

BVC d:8 - V=O 2 - - - - - - 4

BVS d:B - V=1 2 - - - - - - 4

116

Table 2-2. List of Instructions (6)

:!l
Mnemonic iii Operation

Addressing Mode and
Instruction Length (Bytes)

<D
~ "'C

--------~--- ----~-

~------l(O .!!! Condition Code o Branching
Condition ~ &

a. 0
.5 I H N Z V C z

BPL d:B - if condition N = O 2 - - - - - - 4
1-----------t--1 is true then '-------1----1-1----'--'---'-__,_---1_J__._-'-_J___,_----'-l---'----J
1--BM_ld_:_B _____ --+_-~ PC<-- .__N_=_1 __ __,_---1_J__.__,___,___,__2_,___,___,_-----'_-_J_-_,_-----'_-_J_-_,_----'4

BGEd:B - PC+d:B NEllV=O 2 - - - - - - 4
1-----------t--I '-------1----1-1----'--'---'---1----1-l---'--'-_J_-'----1-L--'----J

BLT d:B - else next; NE!lV = 1 2 - - - - - - 4

BGT d:B - Zv(NEBV) = 0 2 - - - - - - 4

BLE d:B - Zv(NEBV) = 1 2 - - - - - - 4

JMP@Rn - PC<--Rn16 2 - - - - - - 4

JMP@aa:16 - PC<-aa:16 4 - - - - - - 6

JMP @@aa:B - PC <---- @aa:B 2 - - - - - - 8

BSRd:B - SP-2-->SP 2 - - - - - - 6

JSR@Rn

JSR@aa:16

JSR@@aa:B

RTS

RTE

SLEEP

LDC #xx:B, CCR

LDC Rs, CCR

STC CCR, Rd

ANDC #xx:8, CCR

ORC #xx:S, CCR

PC -->@SP
PC<- PC+d:B

- SP-2--> SP
PC -->@SP
PC<- Rn16

- SP-2--> SP
PC -->@SP
PC<---- aa:16

SP-2--> SP
PC -->@SP
PC <-@aa:8

- PC <-@SP
SP+2--> SP

- CCR <--@SP
SP+2--> SP
PC<---- @SP
SP+2--> SP

- Transit to sleep mode.

B #xx:B--> CCR

B RsB--> CCR

B CCR--> RdB

B CCRA#xx:B--> CCR

2 ------6

4 ------8

2 ------8

2------8

2tttttt10

2------2

2 t t t t t t 2

2 t t t t t t 2

2 ------2

2 t t t t t t 2

B CCRv#xx:B --> CCR 2 t t t t t t 2
---------------·----~~------ ______ J _____ -- L_____l __ L_______L____ __ ,~_____1_________--L~-~~~~~

117

Table 2-2. List of Instructions (7)

·----

Addressing Mode and
Instruction Length (Bytes)

*
'2 + rn

c:
6 ~ cc cc ID

ID csi @:! ,... D.. u; ,... "Cl
as ,... c: iii <;q" OI .!!! 0 OI Condition Code (II s c: ij cc OI "Cl

~ ii. .!::! c: cc
@) @; @ @) .5 ci

Mnemonic Cl'I Operation cc @ I H N z v c z
XORC #xx:8, CCR B CCREil#xx:8 ~ CCR 2 t t t t t t 2

NOP - PC<---- PC+2 2 - - - - - - 2

EEPMOV - if R4L ;e 0 4 - - - - - - @

Repeat @RS ~ @R6
RS+1 ~RS
R6+1 ~ R6
R4L-1 ~ R4L

Until R4L = O
else next;

Notes: * The number of execution states indicated here assumes that the operation code and operand data are
in on-chip memory. For other cases, refer to section 2.S, Number of Execution States.

CD Set to 1 when there is a carry or borrow at bit 11; otherwise cleared to 0.
~ When the result is 0, the previous value remains unchanged; otherwise cleared to 0.
@ Set to 1 when there is a carry in the adjusted result; otherwise the previous value remains unchanged.
® The number of execution states is 4n + 9, with n being the value set in R4L.
® Set to 1 when the divisor is negative; otherwise cleared to 0.
@ Set to 1 when the divisor is O; otherwise cleared to 0.

118

2.5 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution.

Table 2-3 indicates the number of states required for each cycle (instruction fetch, branch

address read, stack operation, byte data access, word data access, internal operation).

Table 2-4 indicates the number of cycles of each type occurring in each instruction. The total

number of states required for execution of an instruction can be calculated from these two

tables as follows:

Execution states =I x SI + J x SJ+ K x SK+ L x SL+ M x SM+ N x SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is

accessed.

1. BSET #0, @FFOO

From table 2-4:

I= L = 2, J = K = M = N= 0

From table 2-3:

Sr= 2, SL= 2

Number of states required for execution= 2 x 2 + 2 x 2 = 8

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM,

and on-chip RAM is used for stack area.

2. JSR@@ 30

From table 2-4:

I = 2, J = K = 1, L = M = N = 0

From table 2- 3:

Sr= SJ= SK= 2

Number of states required for execution= 2 x 2 + 1 x 2+ 1 x 2 = 8

119

Table 2-3. Number of States Taken by Each Cycle in Instruction Execution

Execution Status Access Location
(instruction cycle) On-Chip Memory On-Chip Peripheral Module

Instruction fetch SI

>< Branch address read SJ

Stack operation SK 2

Byte data access SL 2or 3*

Word data access SM

Internal operation SN 1

* Depends on which on-chip module is accessed. See the applicable hardware manual for

details.

120

Table 2-4. Number of Cycles in Each Instruction

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

ADD ADD.B #xx:8, Rd I

ADD.BRs,Rd I

ADD.WRs,Rd I

ADDS ADDS.W #1/2, Rd I

ADDX ADDX.B #xx:8, Rd I

ADDX.B Rs, Rd I

AND AND.B #xx:8, Rd I

AND.BRs,Rd I

ANDC ANDC #xx:8, CCR I

BAND BAND #xx:3, Rd I

BAND #xx:3, @Rd 2 I

BAND #xx:3, @aa:8 2 I

Bee BRA d:8 (BT d:8) 2

BRN d:8 (BF d:8) 2

BHI d:8 2

BLS d:8 2

BCC d:8 (BHS d:8) 2

BCS d:8 (BLO d:8) 2

BNE d:8 2

BEQ d:8 2

BVC d:8 2

BVS d:8 2

BPL d:8 2

BMI d:8 2

BGE d:8 2

BLT d:8 2

BGT d:8 2

BLE d:8 2

BCLR BCLR #xx:3, Rd I

BCLR #xx:3, @Rd 2 2

BCLR #xx:3, @aa:8 2 2

BCLRRn,Rd I

121

Instruction Branch Stack jByte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

BCLR BCLRRn,@Rd 2 2

BCLR Rn, @aa:8 2 2

BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1

BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1

BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1

BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2

BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1

BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1

BNOT BNOT #xx:3, Rd 1

BNOT #xx:3,@Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOTRn,Rd 1

BNOTRn,@Rd 2 2

BNOT Rn, @aa:8 2 2

BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1

BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSETRn,Rd 1

BSETRn,@Rd 2 2

122

Instruction Branch Stack !Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

BSET BSET Rn, @aa:8 2 2

BSR BSRd:8 2 I

BST BST #xx:3, Rd I

BST #xx:3, @Rd 2 2

BST #xx:3, @aa:8 2 2

BTST BTST #xx:3, Rd I

BTST #xx:3, @Rd 2 I

BTST #xx:3, @aa:8 2 I

BTSTRn, Rd I

BTSTRn,@Rd 2 I

BTST Rn, @aa:8 2 I

BXOR BXOR #xx:3, Rd I

BXOR #xx:3, @Rd 2 I

BXOR #xx:3, @aa:8 2 I

CMP CMP. B #xx:8, Rd I

CMP.BRs,Rd I

CMP.WRs,Rd I

DAA DAA.BRd I

DAS DAS.BRd I

DEC DEC.B Rd I

DIV XU DIVXU.B Rs, Rd I 12

EEPMOV EEPMOV 2 2n+2* I

INC INC.B Rd I

JMP JMP@Rn 2

JMP@aa:l6 2 2

JMP@@aa:8 2 I 2

JSR JSR@Rn 2 I

JSR@aa:l6 2 1 2

JSR@@aa:8 2 1 1

LDC LDC #xx:8, CCR I

LDC Rs, CCR 1

MOY MOV.B #xx:8, Rd 1

MOV.B Rs, Rd 1

MOV.B@Rs, Rd 1 1

123

~nstruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

MOV MOV.B@(d:l6, Rs), Rd 2 1

MOV.B@Rs+, Rd 1 1 2

MOV.B @aa:8, Rd 1 1

MOV.B @aa:l6, Rd 2 1

MOV.B Rs, @Rd 1 1

MOV.B Rs, @(d: 16, Rd) 2 1

MOV.B Rs, @-Rd 1 1 2

MOV.B Rs, @aa:8 1 1

MOV.B Rs,@aa:l6 2 1

MOV.W #xx:l6, Rd 2

MOV.WRs,Rd 1

MOV.W @Rs, Rd 1 1

MOV.W @(d:l6, Rs), Rd 2 1

MOV.W @Rs+, Rd 1 1 2

MOV.W @aa: 16, Rd 2 1

MOV.W Rs, @Rd 1 1

MOV.W Rs,@(d:l6, Rd) 2 1

MOV.W Rs, @-Rd 1 1 2

MOV.W Rs,@aa:l6 2 1

MULXU MULXU.B Rs, Rd 1 12

NEG NEG.BRd 1

NOP NOP 1

NOT NOT.BRd 1

OR OR.B #xx:8, Rd 1

ORB Rs, Rd 1

ORC ORC #xx:8, CCR 1

POP POP Rd 1 1 2

PUSH PUSH Rs 1 1 2

ROTL ROTL.BRd 1

ROTR ROTR.B Rd 1

ROTXL ROTXL.B Rd 1

ROTXR ROTXR.BRd 1

RTE RTE 2 2 2

RTS RTS 2 1 2

124

Instruction Branch Stack !Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

SHLL SHLL.B Rd 1

SHAL SHAL.B Rd 1

SHAR SHAR.B Rd 1

SHLR SHLR.B Rd 1

SLEEP SLEEP 1

STC STC CCR, Rd 1

SUB SUB.B Rs, Rd 1

SUB.WRs,Rd 1

SUBS SUBS.W #1/2, Rd 1

SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1

XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1

XORC XORC #xx:8, CCR I

* n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.

125

Section 3. CPU Operation States

There are three CPU operation states, namely, program execution state, power-down state, and

exception-handling state. In power-down state there are sleep mode, standby mode, and watch

mode. These operation states are shown in figure 3-1. Figure 3-2 shows the state transitions.

For further details please refer to the applicable hardware manual.

State Program execution state Active mode

The CPU executes successive program instructions,
synchronized by the system clock.

Power-down state

A state in which some or all
of the chip functions are
stopped to conserve power.

Exception-handling state

Subactive mode

The CPU executes
successive program
instructions in low­
speed operations,
synchronized by the
subclock.

Sleep mode

Standby mode

Watch mode

A transient state in which.the CPU changes
the processing flow due to a reset or an interrupt.

Figure 3-1. CPU Operation States

127

--1 Low-power modes I

Reset state

Reset
occurs

Reset cleared

Reset occurs

Interrupt
raised

Power-down state ,___ _________ ___,

SLEEP instruction executed

Exception­
handling state

Interrupt Interrupt handling
raised complete

Program
execution state

Note: On the transitions between modes, see the applicable hardware manual.

Figure 3-2. State Transitions

3.1 Program Execution State

In program execution state the CPU executes program instructions in sequence.

3.2 Exception Handling States

Exception-handling states are transient states occurring when exception handling is raised by a

reset or interrupt, and the CPU changes its normal processing flow, branching to a start address

acquired from a vector table. In exception handling caused by an interrupt, PC and CCR

values are saved to the stack, with reference made to a stack pointer (R7).

3.2.1 Types and Priorities of Exception Handling

Exception handling includes processing of reset exceptions and of interrupts. Table 3-1

summarizes the factors causing each kind of exception, and their priorities. Reset exception

handling has the highest priority.

128

Table 3-1. Types of Exception Handling and Priorities

Priority Exception source

High Reset

Interrupt

Low

Timing for start of

Detection timing exception handling

Clock-synchronous Reset exception handling starts as

soon as RES pin changes from low

to high.

End of instruction

execution*

When an interrupt request is made,

interrupt exception handling starts

after execution of the present

instruction is completed.

* Interrupt detection is not made upon completion of ANDC, ORC, XORC, and LDC

instruction execution, nor upon completion of reset exception handling.

3.2.2 Exception Sources and Vector Table

The factors causing exception handling can be classified as in figure 3-3.

For details of exception handling, the vector numbers of each source, and the vector addresses,

see the applicable hardware manual.

Exception source

, Reset

{

External interrupt

Interrupt

Internal interrupt
(interrupt raised by on-chip peripheral module)

Figure 3-3. Classification of Exception Sources

129

3.2.3 Outline of Exception Handling Operation

A reset has the highest priority of all exception handling. After the RES pin goes to low level

putting the CPU in reset state, the RES pin is then put at high level, and reset exception

handling is started at the point when the reset conditions are met. For details on reset

conditions refer to the applicable hardware manual. When reset exception handling is started,

the CPU gets a start address from the exception handling vector table, and starts executing the

exception handling routine from that address. During execution of this routine and

immediately after, all interrupts including NMI are masked.

When interrupt exception handling is started, the CPU refers to the stack pointer (R7) and

pushes the PC and CCR contents to the stack. The CCR I bit is then set to 1, a start address is

acquired from the exception handling vector table, and the interrupt exception handling routine

is executed from this address. The stack state in this case is as shown in figure 3-4.

SP-4

SP-3

SP-2

SP-1

SP(R7)-

SP(R7l-i

SP+ 1

SP+ 2

SP+ 3

SP+4

Prior to start of interrupt
exception handling

-----• After completion of interrupt
Contents exception handling

saved to stack
Notation
PCH: Upper 8 bits of program counter (PC)
PCL: Lower 8 bits of program counter (PC)
CCR: Condition code register
SP: Stack pointer

Notes: * Ignored on return from interrupt.
1. PC shows the address of the first instruction to be executed upon

return from the interrupt.
2. Saving and restoring of register contents must always be done

in word size, and must start from an even-numbered address.

Even-numbered
address

Figure 3-4. Stack State after Completion of Interrupt Exception Handling

130

3.3 Reset State

When the RES pin goes to low level, all processing stops and the system goes to reset state.

The I bit of the condition code register (CCR) is set, masking all interrupts.

After the RES pin is changed externally from low to high level, reset exception handling starts

at the point when the reset conditions are met. For details on reset conditions refer to the

applicable hardware manual.

3.4 Power-Down State

In power-down state the CPU operation is stopped, reducing power consumption. For details

see the applicable hardware manual.

131

Section 4. Basic Operation Timing

CPU operation is synchronized by a clock(<)>). The period from the rising edge of<!> to the next

rising edge is called one state. A memory cycle or bus cycle consists of two or three states.

For details on access to on-chip memory and to on-chip peripheral modules see the applicable

hardware manual.

4.1 On-chip Memory (RAM, ROM)

Two-state access is employed for high-speed access to on-chip memory. The data bus width is

16 bits, allowing access in byte or word size. Figure 4-1 shows the on-chip memory access

cycle.

Bus cycle

T1 state T2 state
~·

Internal address bus ~------A_d_d_re_s_s _____ __.L
Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

\~~-~r
=3~~---{(~~~:_R_ea_d_da_ta~~~t----

\~-~r

Note: A 16-bit data bus is used making possible access to word-size
data in 2 states.

Figure 4-1. On-Chip Memory Access Cycle

133

4.2 On-chip Peripheral Modules and External Devices

On-chip peripheral modules are accessed in two or three states. The data bus width is 8 bits,

so access is made in byte size only. Access to word data or instruction codes is not possible.

Figure 4-2 shows the on-chip peripheral module access cycle.

Bus cycle

T1 state T2 state

Internal address bus ~------A_d...,.dr_e_ss _____ _.t=
Internal read signal

Internal data bus•
(read access)

Internal write signal

Internal data bus*
(write access)

===vr-----l~ ___ R_e_a_d_d_at_a __ ___,:j-----

~l-----j~--~w_r_it_e_da_t_a __ ---1~

(a) Two-state access

Bus cycle

T1 state T2 state T3 state

Internal address bus ~---------Ad_d_re_s_s _________ L
Internal read signal

Internal data bus*
(read access)

Internal write signal

Internal data bus*
(write access)

~r---<~ ______ R_e_a_d_d_at_a ______ __,(----

~r---<~ ______ w_rit_e_d_at_a ______ __,~

(b) Three-state access

Note: An 8-bit data bus is used.

Figure 4-2. On-Chip Peripheral Module Access Cycle

134

H8/300L Series Programming Manual

Publication Date: 1st Edition, December 1991

Published by: Semiconductor and IC Div.

Hitachi, Ltd.

Edited by: Application Engineering Dept.

Hitachi Microcomputer System Ltd.

Copyright rg Hitachi, Ltd., 1991. All rights reserved. Printed in Japan.

HITACHI, LTD. SEMICONDUCTOR AND
INTEGRATED CIRCUITS DIVISION SALES OFFICE

HEAD QUARTERS
Semiconductor & IC Div.
Karukozaka MN Bldg., 2-1, Ageba-cho,
Shinjuku-ku, Tokyo 162, Japan
Tel: Tokyo (03) 3266-9376
Fax: (03) 3235-2375

USA
Headquarters

Hitachi America, Ltd.
Semiconductor & IC Div.
2000 Sierra Point Parkway
Brisbane, CA. 94005-1819
Tel: 415-589-8300
Fax: 415-583-4207

Northwest Regional Office
1900 McCarthy Boulevard
Milpitas, CA. 95131
Tel: 408-954-8100
Fax: 408-954-0499

Southwest Regional Office
18300 Von Karman Avenue, Suite 730
Irvine, CA. 92715
Tel: 714-553-8500
Fax: 714-553-8561

South Central Regional Office
2 Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX. 75240
Tel: 214-991-4510
Fax: 214-991-6151

Mid Atlantic Regional Office
1700 Galloping Hill Road
Kenilworth, NJ. 07033
Tel: 201-245-6400
Fax: 201-245-6071

North Central Regional Office
500 Park Boulevard, Suite 415
Itasca, IL. 60143
Tel: 312-773-4864
Fax: 312-773-9006

Northeast Regional Office
77 Bedford St.
Burlington, MA. 01803
Tel: 617-229-2150
Fax: 617-229-6554

Automotive Regional Office
6 Parklane Boulevard, Suite 558
Dearborn, Ml. 48126
Tel: 313-271-4410
Fax: 313-271-5707

EUROPE (CE)
Headquarters

Hitachi Europe GmbH
Electronic Components Div.
Central Europe Headquarters
Hans-Pinsel-Stra Be 1 OA
8013 Haar bei MOnchen, F. R. Germany
Tel: 089-46140
Fax: 089-463068

Branch Office
Hitachi Europe GmbH
Electronic Components Div.
Central Europe Headquarters
Breslauer StraBe 6
4040 Neuss 1, F. R. Germany
Tel: 02101-15027 to 9
Fax: 02101-10513

Hitachi Europe GmbH
Electronic Components Div.
Central Europe Headquarters
VerkaufsbOro Stuttgart
FabrikstraBe 17
7024 Filderstadt 4, F. R. Germany
Tel: 0711-772011
Fax: 0711-7775116

Hitachi Europe GmbH
Electronic Components Div.
Bureau de representation en France
lmmeuble "Les Gemeaux"
2, Rue Antoine Etex
F-94020 Creteil Cedex, France
Tel: 1-43394500
Fax: 1-43398493

Hitachi Europe GmbH
Electronic Components Div.
00158 Roma
Via Pescosolido, 154, Italy
Tel: 06-4510146, 4510147
Fax: 06-4510148

Hitachi Europe GmbH
Electronic Components Div.
Via L. Rizzo 8
1-20151 Milano, Italy
Tel: 02-33404180
Fax: 02-33404152

EUROPE (NE)
Headquarters

Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: 0628-585000
Fax: 0628-778322

Branch Office
Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Haukadalsgatan 1 O
Box 1062, S-164 21 Kista, Sweden
Tel: 08-751-0035
Fax: 08-751-5073

ASIA
Headquarters

Hitachi Asia Pte. Ltd.
78 Shenton Way #11-01
Singapore 0207
Tel: 221-6131, 7355
Fax: 225-4225, 221-4474

Branch Office
Hitachi Asia Pte. Ltd.
Taipei Branch Office
9th Fl. -1 No.64, Tun-Hwa N. Road
Taipei Financial Center
Taipei, Taiwan
Tel: 02-741-4021to6
Fax: 02-752-1567

ASIA(HK)
Headquarters

Hitachi Asia (Hong Kong) Ltd.
Unit 706, North Tower,
World Finance Centre, Harbour City
Canton Road, Tsimshatsui, Kowloon
Hong Kong
Tel: 852-7359218
Fax: 852-7306071

Branch Office
Hitachi Asia (Hong Kong) Ltd.
Seoul Branch Office
18 Floor Kukje Center Building
191, 2-Ka, Hanggang-Ro
Yongsan-Ku, Seoul, Korea
Tel: 796-3115, 3647 to 8
Fax: 796-2145

Hitachi Asia (Hong Kong) Ltd.
Beijing Office
Room 1412, Beijing Fortune Building,
5 Dong San Huan Bei-lu,
Chaoyang District, Beijing
People's Republic of China
Tel: 501-4351-4
Fax: 501-4350

