‘ semiconductor

¢’

[
-

o
Hitach?

Hitachi Single-chip
Microcomputer

H8/300L Series
Programming
Manual

USER'S M

@& HITACHI

Hitachi Single-chip Microcomputer

H8/300L Series
Programming Manual

@ HITACHI oo

When using this document, keep the following in mind:

1.
2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without Hitachi's permission.

Hitachiwill notbe held responsible for any damage to the user thatmay result from accidents or any other reasons during
operation of the user's unit according to this document.

Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of
Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the
written consent of the appropriate officer of Hitachi's sales company. Such use includes, butis not limited to, use in life
support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.

Preface

The H8/300L Series of single-chip microcomputers is built around the high-speed H8/300L
CPU, with an architecture featuring eight 16-bit (or sixteen 8-bit) general registers and a
concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300L instructions. The descriptions apply to
all chips in the H8/300L Series. Assembly-language programmers should also read the

separate H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Contents

SeCtiON 1. CPU ..ot st ns e 1
Lol OVEIVIEW .eiiiiiiiiieiiiiecitireiteeie st e st eetest e ssve e e e b eesaseeassaessba s ssaessseesneessaennsa sessasasnsassnses 1
Lo 11 FRALUTES .o veeeieireieeetieeeniestrec e e sttesate sttt es e euseeutesteesabestenteseenbassesssaensesaseessnesssens 1
1.1.2 DALA SITUCTUTE «.eovrevienieieeeieienieseteniaeseeetestasseesasessessnsessaensenseassassassssesssassessnsesssans 2
1.1.3 AdAIESS SPACE..c.oiviiiiniiiiiiiiiiiii i e en 4
1.1.4 Register CONfIGUIATIONcciciiiiiiieiiet ettt ettt e e e et e seaess e sbaesanessrans 5
1.2 REGISIEIS ..ouveieiiiie it et stetet et ettt s st b et st e eb et sbe e sttt eate st sansatebae e s et enbessanneen 6
12,1 General REZISIEIS ...cueuierieiniiiiiciiicie sttt sttt et e be e s 6
1.2.2 Control REISIETS ...occiiiiiiiiiiiiiiiiiiii et 6
1.2.3 Initial REIStEr ValuEsccoeiriniiiiiiiiiiiiiicitic ittt 7
1.3 TNSTIUCTIONS 1itviiiiieeiteelieeeteeteentieeetestaestbeeebaestbesabaaesteessbeeanteesneesssan sssenssessssessnsaasssssanssns 8
1.3.1 Types Of INSIIUCHIONS .c.ceuteiitiniitiiesiie ettt ettt st et eb e e esbe e e en 8
1.3.2 InStruction FUNCHIONS ..ccueiiriiiiiniiiiiceit ettt sttt et et eaeet et et e eseeesaneseee s 9
1.3.3 Basic Instruction FOIMALSc.ccociiiiiriiiniieieiie sttt ce e seteeeie e e sesveesaaesese e 20
1.3.4 Addressing Modes and Effective Address Calculationcc.cccceveeveenvcnicncenn. 26
Section 2. INSIIUCHION SEL.......ccoooioiiioiiiiiiieieiiceteeee et 31
2.1 Explanation FOIMat ..ot e snese s 31
2.2 INSITUCHIONS .ooveienieeeieenieeteeiieettenteebeette st e et estentessbesbee et eseea s e bes st esbeeseseebantensearnsaessesessenssens 36
2.2.1(1) ADD (add binary) (DY) ..cceecueeverieirerienierienieneeteeteieeeiiesetiene et e e 36
2.2.1(2) ADD (add binary) (WOTd)......ccoceeeeireeirerieririenteniee e eeeieseererestesteseesesessessenns 37
222 ADDS (add with sign eXIeNSION)c.ceeveeriveerieeeieierieseeriseereeseereeereereeneas 38
223 ADDX (add with eXtend CAITY)ccceriirieeiieieeiiectee e serereaeesaesraessaessaes 39
2.24 AND (AND 10ZICAL) ..etetiiieiie ettt e 40
2.2.5 ANDC (AND cONtrol TEZISET)eoueevienieieiiienicne et ercteeteneesie e seenne e 41
2.2.6 BAND (it AND).ooiiiiiiiiiiie it erieeraereesee st esseresiessesvesrsssassessssssesssssssnseeses 42
2.2.7 Bcec (branch conditionally)c..ccoveieererncenineciiiiieie e ceeevte e sene s 43
2.2.8 BCLR (DIt CLEAT) ..uiivieeiiiiiieriie ettt stieie ettt et eseeae st sesae b aevessenerae s enreeene 46
229 BIAND (Dit InVert AND) .o.iviiiieiieie et enereeeeras e eenstesre e e saeens s enseere 48
2.2.10 BILD (bit invert 1oad) «ooooooviee i 49
2.2.11 BIOR (bit invert inclusive OR)cciioiiiiiniiieieciee e enveeneeas 50
2.2.12 BIST (DIt INVETT STOTE) .eeeuveeireeeiiieniieiireeniaeeieeneressireessesesreersessssassssseesnresssseeas 51
2.2.13 BIXOR (bit invert eXclusive OR)....c.coiiiiiiiieieiiieieciecee e 52
2214 BLD (Dit L0AA) ...eeetiiertiieeeiiie ettt st er e er e eee 53

2.2.15 BNOT (DIt NOT) ..ottt ettt cre e s es e e eaa e 54

2.2.16
22.17
2.2.18
2.2.19
2.2.20
2221
2.222(1)
2222(2)
2223
2224
2.2.25
2.2.26
2227
2.2.28
2.2.29
2.2.30
2231
2.2.32 (1)
2232(2)
2.2.32 (3)
2232 (4)
2.2.32 (5)
2.2.32 (6)
2233
2234
2.2.35
2236
2.2.37
2.2.38
2.2.39
2.2.40
2.2.41
2242
2.2.43
2.2.44
2.2.45
2.2.46

BOR (bit inClusive OR)..oviciiiieiiiiieeiienccncet ettt et seee s s 56

BSET (DIt SBL) .viteeteienierieieiterieeieentestestestestetesteseeseeeeseeearesseeseesaansesssansensenn 57
BSR (branch to SUBIOULINE)......cerevirveeriereireeiieiecre sttt s eaeeseesaees 59
BST (DIt SEOTE) .cuveiieeeieeieiiieeiieteerieseeessteesneensseesneessaassssssnsesssssessasesssnssessasan 60
BTST (Dt teSt).eerrrrrrveveessniersssesssessssssssnnensens ettt 61
BXOR (bit €XCIUSIVE OR)ocviiiiriiriiirienirenieeeereeeesieeaesreessasseesnssessassssesseens 63
CMP (COMPATE) (DY) weeveeverrenierrieiierirrteientenienteetereeststeeessesesseenecveseeameeane s 64
CMP (cOmPare) (WOTA)cvevereereriereerereereneneeanneseeresieessesessesessesseseeneeseones 65
DAA (decimal adjust add).......cccecerveiirienieiirienieierenein et ere e ebesrenens 66
DAS (decimal adjust SUDLIACE) ...c.ccvveieiiniininiiniiiiniiiii i 68
DEC (AECTEMENT).....viiiviiiirieieiieiieeetiesreeereeetreaseteseseassseessesssasssseessrssenssassasses 70
DIVXU (divide extend as unsigned)........ccceeiiviiiiiiiniiniininninnecnconeeenees 71
EEPMOYV (move data to EEPROM)......ccccoconiviiinininieiencncceieseeseeve e 73
INC (INCTEIMEIL) 1ottt ie ettt eeeeet e e e eebae e e eeveeeenseaesssaesessssaasanases 74
TP (JUITIP) .ottt ettt st sttt vttt sbe st st st s sa e e b 75
TSR (JUMP tO SUDTOULINE). ...vervevieiertieirierteiieienicetre st ceeeieseeneneeeseereaeeeenteeeneens 76
LDC (load to cONtrol TEZISLET)coverureuiiiieieireieciietiietieiet et sreeseeeneseeane 71
MOV (Move data) (DY)coeervirriirriereirieireeie et eiesree et eereetveeveenecnees 78
MOV (move data) (WOTA) ...c.eiiviiiiiiiiiiiiiiieeieieiee e eeieeeerresveeseseseveesereasennes 79
MOV (MOVe data) (DY)ceuerurirureerieiineirteie e cresreesrceeeenesieeeeeesrecsnnes 80
MOV (MOove data) (WOTA)cccevirieriiirnieiiieeieeeeeeesiaesreesseesssessrvsesssneesssases 81
MOV (MOVe data) (DYLE)....cceeceerieiterienireierrectentciestereneerenteneeseeseeeseeeesnens 82
MOV (Move data) (WOTA) ..c..cceeiveireiiereeiiecieeieeiesraesreeeesssvesreessaesveeensesvnens 83
MULXU (multiply extend as unsigned)........ccccevereinrnenrerenenenereeneeeecenrenne 84
NEG (Negate).....cccoeverereeevmreereeecnn. e 85
NOP (N0 OPETALION) ...euvivvieeiieieeienterienieneerteecite s ertesseseseebestenbesseesensessesseen 86
NOT (NOT =logical COMPIEMENL).c..coevuirierieienirienierienreeienteresreseeeresieenees 87
OR (inclusive OR 10ZICAL) . .ccuirieriiierieiiieieieteiesieesieieerebesreseeses et enressavas 88
ORC (inclusive OR CONTOl TEISIET) ...eevuirreriieeeieeiie et ceeeeeiteseeesreesaeesevees 89
POP (POP ALA) vttt sttt et e e sreeeras e csae et e e e nes 90
PUSH (Push data)ccoeoeierieniiiiiiiciietcieecieseene e ie s et et sren e enee 91
ROTL (rotate 181) coovieiieiie ettt er e e etr e s erreae e ernraeeens 92
ROTR (TOtate TiZht) .c.evveievieiiicieiiientic ettt sr et s se e e 93
ROTXL (rotate with extend carry 1eft)coceveeriininniieiieneeeneeenanne 94
ROTXR (rotate with extend carry right)c.ccoeevnininininiencnencnceienccen 95
RTE (return from eXCePHON)coceeirciiiieeinieniiiecirtnerc et eeesresee st seceneen 96

RTS (return from SubIOULINE) ...cccoveiiiienieiiiiniieentenniie e ereeeeeesrrecesaressnaens 97

2247 SHAL (shift arithmetic Ieft)cccoeciniiiniiniiincine et seeveneene 98

2.2.48 SHAR (shift arithmetic Tight)........cccoiiiieniniinice e 99
2.2.49 SHLL (shift 1ogical I&ft)....c..ccviirriniiiiieneneiee ettt eveeenens 100
2.2.50 SHLR (shift 10gical TiZht) «..ocvevieiiieiceeete e 101
2.2.51 SLEEP (SIEEP) -uveueeveereiiriiiiiirieiiiserter e ettt sressees et se st sesaesaesrea e enen 102
2.2.52 STC (store from CONtTOl TEZISIET) ...cuviueiverieniieiiiienicie et eneene 103
2.2.53 (1) SUB (subtract binary) (DY)coceeiviertiiiniiiiiniineeie sttt et seaaens 104
2.2.53 (2) SUB (subtract binary) (WOTQ).........eeuereeerueeienieerieniesie e srtee st eseesesesaeennens 105
2.2.54 SUBS (subtract with s1gn €XteNSION) ...c.cecerrueerieriieeieeieecrecnnreeesresseessaesnesns 106
2.2.55 SUBX (subtract with eXtend Carry)......cccccceeeieieeieeie e e 107
2.2.56 XOR (exclusive OR 10ZICAL) ...ooviiiiiiiiieieiiicce e 108
2.2.57 XORC (exclusive OR cONIOl TEZISIET) ...veeeeiiiieiiiiiiieeeeiiie e e e 109
2.3 Operation Code MAPccccoveiiiiiieiiiiieciciee ettt sttt e vttt ectse e e e sseaesnen 110
2.4 List Of INSIIUCHIONS ...cuutiitiiiiitintient et ettt ettt et se e n e ettt eabesabeeubesanens 112
2.5 Number Of EXECULON StALEScciiiieiieiieiieieietiee ettt ettt enbesa e ba e enes 119
Section 3. CPU Operation SAESc.cccoveiieieiiireinieee et ses 127
3.1 Program EXeCution STatecciiiiiiiiiiiiiiiiiiiii ettt e s e 128
3.2 Exception Handling States........ccocoviiiiiiiiiiiiieiiicieciicccie et et 128
3.2.1 Types and Priorities of Exception Handlingcccocooviiiniiiniiiniinii 128
322 Exception Sources and Vector Tablecccocveoiniiiiininiinnccniencneceeneen 129
323 Outline of Exception Handling Operationc.ccecceveveriieencniienienieneens 130
3.3 RESEE STALE ..ottt ettt sttt et ettt et et st et ea ettt sttt ebe et eus 131
3.4 POWET-DOWIN STALE ...c.oiiiiiiiiiiieiieicitii ettt ettt ettt ettt et s et eine s 131
Section 4. Basic Operation Timing.........ccccoooviiniinniiiieeeeeeiiee e 133
4.1 On-chip Memory (RAM, ROM)coiiiiiiiiiiiiiieet ettt 133

4.2 On-chip Peripheral Modules and External Devicesccccocceviivieniniiiinniineciececienes 134

Section 1. CPU

1.1 Overview

The H8/300L CPU at the heart of the H8/300L Series features 16 general registers of 8 bits
each (or 8 registers of 16-bits each), and a concise, optimized instruction set geared to high-

speed operation.

1.1.1 Features
The H8/300L CPU has the following features.

General register configuration
16 8-bit registers (can be used as § 16-bit registers)

55 basic instructions
¢ Multiply and divide instructions
» Powerful bit manipulation instructions

8 addressing modes

» Register direct (Rn)

+ Register indirect (@Rn)

+ Register indirect with displacement (@(d:16, Rn))

» Register indirect with post-increment/pre-decrement (@Rn+/@ —Rn)
» Absolute address (@aa:8/@aa:16)

» Immediate (#xx:8/#xx:16)

» Program-counter relative (@(d:§, PC))

* Memory indirect (@@aa:8)

64-kbyte address space

High-speed operation
« All frequently used instructions are executed in 2 to 4 states
« High-speed operating frequency: 5 MHz

Add/subtract between 8/16-bit registers: 0.4 Us

8 x 8-bit multiply: 2.8 us

16 + 8-bit divide: 2.8 s

Low-power operation
+ Transition to power-down state using SLEEP instruction

1.1.2 Data Structure

The H8/300L CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and

16-bit (word) data.

+ Bit manipulation instructions operate on 1-bit data specified as bitn (n=0, 1,2, ...,7)ina
byte operand.

» All operational instructions except ADDS and SUBS can operate on byte data.

» The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits x 8 bits), and
DIVXU (16 bits + 8 bits) instructions operate on word data.

» The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in
packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

Data Structure in General Registers: Data of all the sizes above can be stored in general
registers as shown in figure 1-1.

Data type Register No. Data format
7 0
1-Bit data RnH {7l6l5]4]3]2]1]0] Dont-care |
7 0
1-Bit data RnL [Dont-care |7]6|5[4[3]2]1]o]
7 L LS L] l0
Byte data RnH (i .. .,.: Dontcare |
7| L] L] ¥ L] LI
Byte data RnL [Dontcare i, [, | :
15
Worddata Rn gllLllll:llllIIALEI
7 43| T IO
4-Bit BCD data RnH [sper | Lower | Dont-care |
7 4
4-BitBCDdata | RnL [Don'tcare | Wsper | Lower

RnH: Upper 8 bits of General Register
RnL: Lower 8 bits of General Register
MSB: Most Significant Bit
LSB: Least Significant Bit

Figure 1-1. Register Data Structure

Data Structure in Memory: Figure 1-2 shows the structure of data in memory. The

HS8/300L CPU is able to access word data in memory (MOV.W instruction), but only if the

word data starts from an even-numbered address. If an odd address is designated, no address

error occurs, but the access is performed starting from the previous even address, with the least

significant bit of the address regarded as 0.* The same applies to instruction codes.

* Note that the LSIs in the H8/300L Series also contain on-chip peripheral modules for which
access in word size is not possible. Details are given in the applicable hardware manual.

Data type Address Data format
T N
7 0
1-Bit data Address n 7l6l5}4[3[2]1]o
Byte data Address n N
w Even address i, Uppersbis
ord data Odd address | fowerseis
Even address N M
Byte data (CCR) on stack 0Odd address l " ocRr |
Even address i Uporgbis
Word data on stack Odd address . Lowerdbis
S

CCR: Condition code register.
Note: Word data must begin at an even address.
*: lgnored when returned.

\Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte is ignored.

1.1.3 Address Space
The H8/300L CPU supports a 64-Kbyte address space (program code + data). The memory

map differs depending on the particular chip in the H8/300L Series and its operating mode.
See the applicable hardware manual for details.

1.1.4 Register Configuration

Figure 1-3 shows the register configuration of the H8/300L CPU. There are 16 8-bit general
registers (ROH, ROL, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (RO
to R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit
condition code register (CCR).

General Registers (Rn)

7 07 0
ROH ROL
R1H R1L
R2H R2L
R3H R3L
R4H R4L
R5H R5L
R6H + ReL
R7H (SP) R7L SP: Stack Pointer

Control Registers (CR)

15
| PC

Program Counter

Condition Code Register
L Carry flag

—— Overflow flag

Zero flag

Negative flag

Half-carry flag

Interrupt mask bit

User bit

Figure 1-3. CPU Registers

1.2 Registers
1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as
address registers, the general registers are accessed as 16-bit registers (RO to R7). When used
as data registers, they can be accessed as 16-bit registers (RO to R7), or the high (ROH to R7H)
and low (ROL to R7L) bytes can be accessed separately as 8-bit registers. The register length
is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and
subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As
indicated in figure 1-4, R7 (SP) points to the top of the stack.

/\—/

Unused area

el
7| suxaen
/////////////////////

Figure 1-4. Stack Pointer
1.2.2 Control Registers
The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction
the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant
bit of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the
CPU with an interrupt mask (I) bit and five flag bits: half-carry (H), negative (N), zero (Z),
overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit
configuration of the condition code register is shown below.

Bit 7 6 5 4 3
Lt vl H] ul| N|

Initial value 1 * * * *

Read/Write R/W R/W R/W R/W R/W R/W R/IW R/W

* Not fixed

¥ N | ™
¥ | < |-
O]

Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, all interrupts except NMI are
masked. This bit is set to 1 automatically at the start of interrupt handling.

Bits 6 and 4—User Bits (U): These bits can be written and read by software for its own
purposes using LDC, STC, ANDC, ORC, and XORC instructions.

Bit 5—Half-Carry (H): This bit is used by add, subtract, and compare instructions to indicate
a borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3—Negative (N): This bit indicates the value of the most significant bit (sign bit) of the
result of an instruction.

Bit 2—Zero (Z): This bit is set to 1 to indicate a zero result and cleared to 0 to indicate a
nonzero result.

Bit 1—Overflow (V): This bit is set to 1 when an arithmetic overflow occurs, and cleared to
0 at other times.

Bit 0—Carry (C): This bit is used by:

* Add, subtract, and compare instructions, to indicate a carry or borrow at the most
significant bit

» Shift and rotate instructions, to store the value shifted out of the most or least significant
bit

» Bit manipulation instructions, as a bit accumulator

Note that some instructions involve no flag changes. The flag operations with each instruction
are indicated in the individual instruction descriptions that follow in section 2, Instruction Set.
CCR is used by LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags
are used by the conditional branch instruction (Bcc).

1.2.3 Initial Register Values
When the CPU is reset, the program counter (PC) is loaded from the vector table and the

interrupt mask bit (I) in CCR is set to 1. The other CCR bits and the general registers are not
initialized.

The initial value of the stack pointer (R7) is not fixed. To prevent program crashes the stack

pointer should be initialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features: ,

« The H8/300L CPU has a concise set of 55 instructions.

» A general-register architecture is adopted.

« Allinstructions are 2 or 4 bytes long.

- Fast multiply/divide instructions and extensive bit manipulation instructions are
supported.

« Eight addressing modes are supported.

1.3.1 Types of Instructions

Table 1-1 classifies the H8/300L instructions by type. Section 2, Instruction Set, gives detailed
descriptions.

Table 1-1. Instruction Classification

Function Instructions Types
Data transfer MOV, POP*, PUSH* 1

Arithmetic operations ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14
DAA, DAS, MULXU, DIVXU, CMP, NEG

Logic operations AND, OR, XOR, NOT

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8
ROTXR
Bitmanipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOCR 14
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST
Branch Bce**, JMP, BSR, JSR, RTS 5
System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8
Block data transfer EEPMOV 1
Total 55

* POP Rn is equivalent to MOV.W @SP+, Rn.
PUSH Rn is equivalent to MOV.W Rn, @-SP.

** Bee is a conditional branch instruction in which cc represents a condition.

1.3.2 Instruction Functions

Tables 1-2 to 1-9 give brief descriptions of the instructions in each functional group.

The following notation is used.

Notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register
N N (negative) bit of CCR
Z (zero) bit of CCR

V (overflow) bit of CCR
C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)
#Imm Immediate data

N

<

op Operation field

disp Displacement
+ Addition
— Subtraction

X Multiplication

Division

AND logical

OR logical
Exclusive OR logical

Lle|<|>

Move
- Not
:3,:8, :16 3-bit, 8-bit, or 16-bit length

Table 1-2. Data Transfer Instructions

Instruction Size* Function

MOV B/W (EAs) —» Rd, Rs — (EAd)

Moves data between two general registers or between a general
register and memory, or moves immediate data to a general register.

The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @—Rn, and
@Rn+ addressing modes are available for byte or word data. The
@aa:8 addressing mode is available for byte data only.

The @-R7 and @R7+ modes require word operands. Do not
specify byte size for these two modes.

POP w @SP+ — Rn
Pops a 16-bit general register from the stack.
Equivalent to MOV.W @SP+, Rn.

PUSH W Rn - @-SP
Pushes a 16-bit general register onto the stack.
Equivalent to MOV.W Rn, @-SP.

* Size: Operand size
B: Byte
W: Word

10

Table 1-3. Arithmetic Instructions

Instruction Size*

Function

ADD B/W Rd +Rs —» Rd, Rd+#Imm — Rd
SUB Performs addition or subtraction on data in two general registers,
or addition on immediate data and data in a general register.
Immediate data cannot be subtracted from data in a general register.
Word data can be added or subtracted only when both words are in
general registers.
ADDX B Rd*Rs*C — Rd, Rdx#Imm+C — Rd
SUBX Performs addition or subtraction with carry or borrow on byte data
in two general registers, or addition or subtraction on immediate data
and data in a general register.
INC B Rd+1 — Rd
DEC Increments or decrements a general register.
ADDS A\ Rd+1 - Rd,Rd+2 —>Rd
SUBS Adds or subtracts immediate data to or from data in a general
register. The immediate data must be 1 or 2.
DAA B Rd decimal adjust — Rd
DAS Decimal-adjusts (adjusts to packed BCD) an addition or subtraction
result in a general register by referring to the condition code register.
MULXU B Rd xRs — Rd
Performs 8-bit x 8-bit unsigned multiplication on data in two
general registers, providing a 16-bit result.
DIVXU B Rd+Rs —Rd
Performs 16-bit + §-bit unsigned division on data in two general
registers, providing an 8-bit quotient and 8-bit remainder.
CMP B/W Rd-Rs, Rd-#Imm
Compares data in a general register with data in another general
register or with immediate data. Word data can be compared only
between two general registers.
NEG B 0-Rd — Rd

Obtains the two’s complement (arithmetic complement) of data in a
general register.

* Size: Operand size
B: Byte
W: Word

11

Table 1-4. Logic Operation Instructions

Instruction Size* Function

AND B Rd A Rs - Rd, Rd A #Imm — Rd
Performs a logical AND operation on a general register and
another general register or immediate data.

OR B Rd v Rs - Rd, Rd v #imm — Rd
Performs a logical OR operation on a general register and another
general register or immediate data.

XOR B Rd @ Rs —» Rd, Rd® #Imm — Rd
Performs a logical exclusive OR operation on a general register
and another general register or immediate data.

NOT B —Rd — Rd
Obtains the one’s complement (logical complement) of general
register contents.

* Size: Operand size
B: Byte

Table 1-5. Shift Instructions

Instruction Size* Function

SHAL B Rd shift — Rd

SHAR Performs an arithmetic shift operation on general register contents.
SHLL B Rd shift — Rd

SHLR Performs a logical shift operation on general register contents.
ROTL B Rdrotate — Rd

ROTR Rotates general register contents.

ROTXL B Rd rotate through carry — Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size
B: Byte

12

Table 1-6. Bit Manipulation Instructions

Instruction Size* Function

BSET B 1 — (<bit-No.> of <EAd>)
Sets a specified bit in a general register or memory to 1. The bit is
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BCLR B 0 — (<bit-No.> of <EAd>)
Clears a specified bit in a general register or memory to 0. The bit
is specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BNOT B —(<bit-No.> of <EAd>) — (<bit-No.> of <EAd>)
Inverts a specified bit in a general register or memory. The bit is
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BTST B —(<bit-No.> of <EAd>) > Z
Tests a specified bit in a general register or memory and sets or
clears the Z flag accordingly. The bit is specified by a bit number,
given in 3-bit immediate data or the lower three bits of a general

register.
BAND B C A (<bit-No.> of <EAd>) - C
ANDs the C flag with a specified bit in a general register or
memory.
BIAND B C A [—(<bit-No.> of <EAd>)] - C

AND:s the C flag with the inverse of a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

BOR B C v (<bit-No.> of <EAd>) —» C
ORs the C flag with a specified bit in a general register or memory.
BIOR B C v [~ (<bit-No.> of <EAd>)] - C

ORs the C flag with the inverse of a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

13

Table 1-6. Bit Manipulation Instructions (Cont.)

Instruction Size*

Function

BXOR B

BIXOR . B

C @ (<bit-No.> of <EAd>) —» C
Exclusive-ORs the C flag with a specified bit in a general register

Or memory.

. C ® [—(<bit-No.> of <EAd>)] - C

Exclusive-ORs the C flag with the inverse of a specified bit in a
general register or memory.
The bit number is specified by 3-bit immediate data.

BLD B

BILD B

(<bit-No.> of <EAd>) —» C

Copies a specified bit in a general register or memory to the C flag.
—(<bit-No.> of <EAd>) - C

Copies the inverse of a specified bit in a general register or
memory to the C flag.

The bit number is specified by 3-bit immediate data.

BST B

BIST B

C — (<bit-No.> of <EAd>)

Copies the C flag to a specified bit in a general register or memory.
—C — (<bit-No.> of <EAd>)

Copies the inverse of the C flag to a specified bit in a general
register or memory.

The bit number is specified by 3-bit immediate data.

* Size: Operand size
B: Byte

14

Table 1-7. Branching Instructions

Instruction Size Function

Bcc - Branches if condition cc is true. The branching conditions are as
follows.
Mnemonic Description Condition
BRA (BT) Always (True) Always
BRN (BF) Never (False) Never
BHI High CvZ=0
BLS Low or Same CvZz=1
BCC (BHS) Carry Clear C=0
(High or Same)
BCS (BLO) Carry Set (Low) C=1
BNE Not Equal Z=0
BEQ Equal Z=1
BVC Overflow Clear V=0
BVS Overflow Set V=1
BPL Plus N=0
BMI Minus N=1
BGE Greater or Equal NeVvV=0
BLT Less Than Nev=1
BGT Greater Than Zv(N®V)=0
BLE Less or Equal Zv(N@eV)=1
JMP — Branches unconditionally to a specified address.
BSR e Branches to a subroutine at a specified displacement from the current
address.
JSR — Branches to a subroutine at a specified address.
RTS - Returns from a subroutine.

15

Table 1-8. System Control Instructions

Instruction Size* Function

RTE — Returns from an exception handling routine.
SLEEP — Causes a transition to power-down state.
LDC B Rs - CCR, #Imm — CCR
Moves immediate data or general register contents to the condition
code register. |
STC B CCR —»Rd
Copies the condition code register to a specified general register.
ANDC B CCR A #Imm — CCR
Logically ANDs the condition code register with immediate data.
ORC B CCR v #lmm — CCR
Logically ORs the condition code register with immediate data.
XORC B CCR @ #Ilmm — CCR
Logically exclusive-ORs the condition code register with immediate
data.
NOP — PC+2 —PC

Only increments the program counter.

* Size: Operand size
B: Byte

Table 1-9. Block Data Transfer Instruction

Instruction Size Function
EEPMOV — if R4L # 0 then
repeat @R5+ —> @R6+
R4L -1 —>R4L
until R4L =0
else next;

Moves a data block according to parameters set in general registers
R4L, RS, and R6.

R4L: size of block (bytes)

RS5: starting source address

R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is
completed.

This instruction is for writing to the large-capacity EEPROM provided
on chip with some models in the H8/300L Series. For details see the
applicable hardware manual.

16

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the
byte back. Care is required when these instructions are applied to registers with write-only
bits and to the 1/O port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1: BCLR is executed to clear bit O in port control register 4 (PCR4) under the
following conditions.

P47 Input pin, Low

P4e: Input pin, High

P45 —P40: Output pins, Low

The intended purpose of this BCLR instruction is to switch P40 from output to input.

Before Execution of BCLR Instruction

P47 P4s P4s P44 P43 P42 P41 P4o

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
PCR4 0 0 1 1 1 1 1 1
PDR4 1 0 0 0 0 0 0 0

Execution of BCLR Instruction

BCLR #0 @PCR4 ;clear bit 0 in PCR4

After Execution of BCLR Instruction
P47 Pds P4s P44 P43 P42 P41 Pdo

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High
PCR4 1 1 1 1 1 1 1 0
PDR4 1 0 0 0 0 0 _ 0 0

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PCR4. Since
PCR4 is a write-only register, it is read as HFF, even though its true value is H'3F.

Next the CPU clears bit O of the read data, changing the value to HFE.
Finally, the CPU writes this value (H'FE) back to PCR4 to complete the BCLR instruction.

As aresult, bit 0 in PCR4 is cleared to 0, making P40 an input pin. In addition, bits 7 and 6 in
PCR4 are set to 1, making P47 and P46 output pins.

Example 2: BSET is executed to set bit O in the port 4 port data register (PDR4) under the
following conditions.

P47: Input pin, Low

P4s: Input pin, High

P45 -P40: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level at P40 from Low to
High.

Before Execution of BSET Instruction

P47 P46 P4s P44 P43 P42 P41 P4o

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
PCR4 0 0 1 1 1 1 1 1
PDR4 1 0 0 0 0 0 0 0

Execution of BSET Instruction

BSET #0 @PDR4 ; set bit 0 in port 4 port data register

18

After Execution of BSET Instruction

P47 Pde¢ Pds P44 P43 P42 P41 Pdo

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
PCR4 0 0 1 1 1 1 1 1
PDR4 0 1 0 0 0 0 0 1

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47
and P4s are input pins, the CPU reads the level of these pins directly, not the value in the port
data register. It reads P47 as Low (0) and P46 as High (1).

Since P45 to P4o are output pins, for these pins the CPU reads the value in PDR4. The CPU
therefore reads the value of port 4 as H'40, although the actual value in PDR4 is H'80.

Next the CPU sets bit 0 of the read data to 1, changing the value to H'41.

Finally, the CPU writes this value (H'41) back to PDR4 to complete the BSET instruction.

As aresult, bit 0 in PDR4 is set to 0, switching pin P40 to High output. However, bits 7 and 6
in PDR4 change their values.

19

1.3.3 Basic Instruction Formats

(1) Format of Data Transfer Instructions
Figure 1-5 shows the format used for data transfer instructions.

15 8 7 0 MOV
| op [m [| Rm— Rn
15 8 7 0
| op I | Rn—> @Rmor@Rm — Rn
15 8 7 0
op [m | @(d:16, Rm) — Rn,or
disp. Rn — @(d:16, Rm)
15 8 7 0
{ op [] n | @Rm+ — Rn,orRn — @-Rm
15 8 7 0
[op 1 ' [abs. | @aa8 — Rn,orRn — @aas8
15 8 7 0
op I M @aa:16 — Rn,or
abs. Rn — @aa:16
15 8 7 0
[op | n | IMM | #xx:8 — Rn
15 8 7 0
op [#xx:16 — Rn
MM
15 8 7 0
I op I w | Pop, PUsH
Notation
op: Operation field
'm: 'n: Register field
disp: Displacement
abs.: Absolute address
IMM: Immediate data

Figure 1-5. Instruction Format of Data Transfer Instructions

20

(2) Format of Arithmetic, Logic Operation, and Shift Instructions
Figure 1-6 shows the format used for arithmetic, logic operation, and shift instructions.

15 8 7 0
| op | rm | rn | ADD, SUB, CMP (Rm)
ADDX, SUBX (Rm)
15 8 7 0
[op | rn] ADDS, SUBS, INC, DEC, DAA,
DAS, NEG, NOT
15 8 7 0
[op [rm [rn] MULXU, DIVXU
15 8 7 0
[op [. [MM] ADD, ADDX, SUBX, CMP
(#xx:8)
15 8 7 0
| op [[] AND, OR, XOR (Rm)
15 8 7 0
I op | 'n I MM I AND, OR, XOR (#xx:8)
15 8 7 0
| op T 1 SHAL, SHAR, SHLL, SHLR,
ROTL, ROTR, ROTXL, ROTXR
Notation
op: Operation field
m "n: Register field
IMM: Immediate data

Figure 1-6. Instruction Format of Arithmetic, Logic, and Shift Instructions

21

(3) Format of Bit Manipulation Instructions

Figure 1-7 shows the format used for bit manipulation instructions.

15 8
| op I mm [ry
15 8
l op I 'm] 'n
15 8
op | n 0000
op I iMm 0000
15 8
op n 0000
op 'm 0000
15 8
op | abs.
op [Mu Jooo0o0
15 8
op abs.
op m | 0000
15 8
I op IV
15 8
op | 'n 0000
op Y 0000
15 8
op | abs.
op] v Jooo0o0
Notation
op: Operation field
"m: 'n: Register field
abs.: Absolute address
IMM: Immediate data

BSET, BCLR, BNOT, BTST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register direct (Rn)
Bit No.: register direct (Rm)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: register direct (Rm)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: register direct (Rm)

BAND, BOR, BXOR, BLD, BST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Figure 1-7. Instruction Format of Bit Manipulation Instructions

22

15 8 7 0

| op [wmm |

15 8 7 0
op | 0000
op [MM 0000

15 8 7 0
op abs.
op | MM] o000

Notation

op: Operation field

m: n: Register field

abs.: Absolute address

IMM: Immediate data

BIAND, BIOR, BIXOR, BILD, BIST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Figure 1-7. Instruction Format of Bit Manipulation Instructions (Cont.)

23

(4) Format of Branching Instructions

Figure 1-8 shows the format used for branching instructions.

15 8 7 0

[op [cc] disp. | Bee

15 8 7 0

I op | m f[oooo | JMP (@Rm)

15 8 7 0
op JMP (@aa:16)
abs.

15 8 7 0

[op | abs. | JMP (@@aa:8)

15 8 7 0

[op | disp. | BSR

15 8 7 0

I op | '/m Jooo o] JSR (@Rm)

15 8 7 0)
op JSR (@aa:16)
abs.

15 8 7 0

I op I abs. | JSR (@@aas)

15 8 7~ 0

| op | RTS

Notation

op: Operation field

cc: Condition field

'm: Register field

disp.: Displacement

abs.: Absolute address

Figure 1-8. Instruction Format of Branching Instructions

24

(5) Format of System Control Instructions

Figure 1-9 shows the format used for system control instructions.

15 8 7 0
L op |
15 8 7 0
[op [™ |
15 8 7 0
[op | IMM |

Notation

op: Operation field
n: Register field
IMM: Immediate data

RTE, SLEEP, NOP

LDC, STC (Rn)

ANDC, ORC, XORC, LDC
(#xx:8)

(6) Format of Block Data Transfer Instruction

Figure 1-9. Instruction Format of System Control Instructions

Figure 1-10 shows the format used for the block data transfer instruction.

15

op

op

EEPMOV

Figure 1-10. Instruction Format of Block Data Transfer Instruction

25

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-10 lists the eight addressing modes and their assembly-language notation. Each
instruction can use a specific subset of these addressing modes.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,
ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and
memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)
addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within
the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct
addressing (1) to identify the bit.

Table 1-10. Addressing Modes

No. Mode Notation
(D Register direct Rn
) Register indirect @Rn
3) Register indirect with 16-bit displacement @(d:16, Rn)
4) Register indirect with post-increment @Rn+
Register indirect with pre-decrement @-Rn
®)] Absolute address (8 or 16 bits) @aa:8, @aa:16
(6) Immediate (3-, 8-, or 16-bit data) #xx:3, #xx:8, #xx:16
@ PC-relative (8-bit displacement) @(d:8, PC)
(8) Memory indirect @@aa:8

(1) Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit
general register containing the operand. In most cases the general register is accessed as an 8-
bit register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits x 8
bits), and DIVXU (16 bits + 8 bits) instructions have 16-bit operands.

(2) Register indirect—@Rn: The register field of the instruction specifies a 16-bit general
register containing the address of the operand.

26

(3) Register Indirect with Displacement—@(d:16, Rn): This mode, which is used only in

MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3

and 4) which is added to the contents of the specified general register to obtain the operand

address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @-Rn:

Register indirect with post-increment—@Rn+

The @Rn+ mode is used with MOV instructions that load registers from memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is incremented after the operand is accessed. The size of
the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a
word operand. For a word operand, the original contents of the 16-bit general register
must be even.

Register indirect with pre-decrement—@—-Rn

The @—-Rn mode is used with MOV instructions that store register contents to memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is decremented before the operand is accessed. The size of
the decrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a
word operand. For a word operand, the original contents of the 16-bit general register
must be even. '

(5) Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of
the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FFxx.
The upper 8 bits are assumed to be 1, so the possible address range is HFF00 to HFFFF
(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute
addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an §-bit operand in its second

byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain

16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.

Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or

fourth byte of the instruction, specifying a bit number.

27

(7) PC-Relative—@(d:8, PC): This mode is used to generate branch addresses in the Bcc
and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-
extended value to the program counter contents. The result must be an even number. The
possible branching range is —126 to +128 bytes (—63 to +64 words) from the current address.

(8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions.
The second byte of the instruction code specifies an §-bit absolute address from H'0000 to
H'00FF (0 to 255). Note that the initial part of the area from H'0000 to H'OOFF contains the
exception vector table. See the applicable hardware manual for details. The word located at
this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W
instruction, the least significant bit is regarded as 0, causing word access to be performed at
the address preceding the specified address. See the memory data structure description in
section 1.1.2, Data Structure.

Effective Address Calculation
Table 1-11 explains how the effective address is calculated in each addressing mode.

Table 1-11. Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address
1 Register direct Rn None
3 0 3 0
15 87 43 0 [regm]| | regn |

oP | regm| regn}

Operands are contained in
registers m and n

2 Register indirect @Rn

15 0
16-bit register contents | 15 0

15 76 |43 0
v Teol] N

Operand is at address
indicated by register

28

Table 1-11. Effective Address Calculation (2)

Addressing mode, Effective address Effective
No. instruction format calculation address
3 Register indirect with displacement
@(d:16, Rn)
15 0
| 16-bit register contents 15 0
15 76 43 0 —]
OoP I reﬂ | 16-bit displacement oper@d address is sum
- ‘ 5 of register contents and
disp displacement
4 Register indirect with pre-decrement
@-Rn
15 0
16-bit register contents
15 76| 43 0 | 2 X 15 0
op | reg | | P]
Register is decremented
before operand access
Register indirect with post-increment
@Rn+
15 0 15 0
16-bit register contents
15 76| 43 0 A Rogistor is i ed
P egister is increment
| opP I re9 I —l after operand access
* 1 for a byte operand,
2 for a word operand
5 Absolute address None
@aa:8
15 87 0
15 87 0 HFF l l
|
OoP abs
I I Operand address is in range
from H'FF00 to HFFFF
Absolute address
@aa:16
15 0 15 0
oP *
abs
Any address

29

Table 1-11. Effective Address Calculation (3)

Addressing mode, Effective address Effective
No. instruction format calculation address
6 Immediate #xx:8. None
15 87 0
Operand is 1-byte
IMM
opP immediate data
Immediate #xx:16 None
15 0
op Operand is 2-byte
IMM immediate data

7 PC-relative @(d:8, PC)

15 0
| PC contents 15
15 87 0 |Sign extensionl disp Destination address
oP I disp I
8 Memory indirect @@aa:8
15 87 0
oP | abs i
15 87 y 0
H'00 |
15 0 15

16-bit memory contents ‘—>|

Destination address

reg, regm, regn: General register

op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

30

Section 2. Instruction Set
2.1 Explanation Format

Section 2 gives full descriptions of all the H8/300L Series instructions, presenting them in
alphabetic order. Each instruction is explained in a table like the following:

ADD (add binary) (byte) ADD

Operation Condition Code

Rd + (EAs) — Rd I H N Z V C

HEHEEHEBEE

Assembly-Language Format
ADD.B <EAs>,Rd

—t

Previous value remains unchanged.

H: Setto 1 when there is a carry from bit 3;

Operand Size otherwise cleared to 0.

Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.

Z: Setto 1 when the result is zero;
otherwise cleared to 0.

V: Setto 1 when an overflow occurs;
otherwise cleared to 0.

C: Setto 1 when there is a carry from bit 7;

otherwise cleared to 0.

Description
This instruction adds the source operand to the contents of an 8-bit general register and places
the result in the general register .

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode ¢ Mnem. | Operands rs\jtg'teosf
i1st byte | 2nd byte | 3rd byte | 4th byte
Immediate ADDB |#xx8,Rd |8 ird IMM 2
Register direct | ADD.B | Rs, Rd 0 I8 |rs | rd 2

31

The parts of the table are explained below.

Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: The instruction is described in symbolic notation. The following symbols are used.

Symbol Meaning

Rd General register (destination)*

Rs General register (source)*

Rn General register*

<EAd> Destination operand

<EAs> Source operand

PC Program counter

SP Stack pointer

CCR Condition code register

N N (negative) flag of CCR

zZ Z (zero) flag of CCR

Vv V (overflow) flag of CCR

C C (carry) flag of CCR

disp Displacement

- Transfer from left operand to right operand; or state transition from left state to
right state.

+ Addition

- Subtraction

X Multiplication

+ Division

A AND logical

v OR logical

@ Exclusive OR logical

- Inverse logic (logical complement)

()< > Contents of operand effective address

* General registers are either 8 bits (ROH/ROL - R7H/R7L) or 16 bits (RO - R7).

Assembly-Language Format:
The assembly-language coding of ADD. B <EAs>, Rd

=7

the instruction is given. An Mnemonic Size Source Destination

example is:

The operand size is indicated by the letter B (byte) or W (word). Some instructions have
restrictions on the size of operands they handle.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands
that permit more than one addressing mode. The H8/300L CPU supports the following eight
addressing modes. The method of calculating effective addresses is explained in section 1.3.4,
Addressing Modes and Effective Address Calculation, above.

Notation Addressing Mode

Rn Register direct

@Rn Register indirect

@(d:16, Rn) Register indirect with displacement

@Rn+/@ —Rn Register indirect with post-increment/pre-decrement
@aa:8/@aa:16 Absolute address

#xx:8/#xx:16 Immediate

@(d:8, PC) Program-counter relative

@@aa:8 Memory indirect

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because
these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in CCR is indicated. The

following notation is used:

Symbol Meaning

1 The flag is altered according to the result of the instruction.
0 The flag is cleared to "0."

— The flag is not changed.

* Not fixed; the flag is left in an unpredictable state.

Description: The action of the instruction is described in detail.

33

Instruction Formats: Each possible format of the instruction is shown explicitly, indicating
the addressing mode, the object code, and the number of states required for execution when the
instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)
abs. An absolute address (8 bits or 16 bits)
disp. Displacement (8 bits or 16 bits)

Is, Id, In General register number (3 bits or 4 bits) The s, d, and n correspond to the letters
in the operand notation.

Register Designation: 16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit
registers are indicated by a 4-bit 1s, rd, or rn value. Address registers used in the @Rn,
@(disp:16, Rn), @Rn+, and @—Rn addressing modes are always 16-bit registers. Data
registers are 8-bit or 16-bit registers depending on the size of the operand. For 8-bit registers,
the lower three bits of 1s, rd, or rn give the register number. The most significant bit is 1 if the
lower byte of the register is used, or 0 if the upper byte is used. Registers are thus indicated as

follows:
16-Bit register 8-Bit registers
Is, I'd, OF I'n Is, I'd, OF I'n Register
Register 0000 ROH
000 RO 0001 R1H
001 R1 : :
: : 0111 R7H
111 R7 1000 ROL
1001 RIL
1111 R7L

Bit Data Access: Bit data are accessed as the n-th bit of a byte operand in a general register or
memory. The bit number is given by 3-bit immediate data, or by a value in a general register.
When a bit number is specified in a general register, only the lower three bits of the register are
significant. Two examples are shown below.

34

BSET R1L, R2H

R1L [don't care 0 1 ll

L—— Bit number =3

R2H |0110010ﬂ

Bit3issetto 1

BLD #5, QH'FF02:8

—BitNo.5

!

H'FF02 10100110
/'\—/
Loaded to C (carry)
flag in CCR

The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution: The number of states indicated is the number
required when the instruction and any memory operands are located in on-chip ROM or RAM.
If the instruction or an operand is located in external memory or the on-chip register field,
additional states are required for each access. See section 2.5, Number of Execution States.

35

2.2 Instructions

2.2.1 (1) ADD (add binary) (byte) ADD
Operation Condition Code
Rd + (EAs) — Rd | H N Z V C

Assembly-Language Format
ADD.B <EAs>,Rd

Operand Size
Byte

=l —lsi=ls]s]s]z]

Previous value remains unchanged.

Set to 1 when there is a carry from bit 3;
otherwise cleared to 0.

Set to'1 when the result is negative;
otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs;
otherwise cleared to 0.

Set to 1 when there is a carry from bit 7,
otherwise cleared to 0.

Description

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the general register .

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. Operands s':ltgigsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B #xx:8,Rd | 8 E rd IMM 2
Register direct | ADD.B | Rs, Rd 0 I8 |rs | rd 2

36

2.2.1 (2) ADD (add binary) (word) ADD
Operation Condition Code
Rd +Rs — Rd I H N Z V C

Assembly-Language Format
ADD.W Rs,Rd

Pt

Operand Size
Word

HEHEREEEE

Previous value remains unchanged.

: Set to 1 when there is a carry from bit

11; otherwise cleared to O.

Set to 1 when the result is negative;
otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

. Set to 1 when an overflow occurs;

otherwise cleared to 0.

: Set to 1 when there is a carry from bit

15; otherwise cleared to 0.

Description

This instruction adds word data in two general registers and places the result in the second

general register.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. Operands ’s\ltg't:sf
1stbyte | 2nd byte | 3rd byte | 4th byte
T T T
Register direct | ADD.W | Rs, Rd 0 19 OE rsiOE rd 2

37

2.2.2 ADDS (add with sign extension) ADDS

Operation Condition Code
Rd+1—Rd N Z V C
Rdr2-Rd I—I—I—I—l——I—I—I—I

Assembly-Language Format

I: Previous value remains unchanged.
ADDS #1, Rd H: Previ 1 X b d
: Previous value remains unchanged.
ADDS #2, Rd . . §
N: Previous value remains unchanged.
X Z: Previous value remains unchanged.
Operand Size) . 8
V: Previous value remains unchanged.
Word . .)
C: Previous value remains unchanged.
Description

This instruction adds the immediate value 1 or 2 to word data in a general register. Unlike the
ADD instruction, it does not affect the condition code flags.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode g Mnem. | Operands gltgié’sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct | ADDS #1, Rd 01 B| 00 2
[1 :
Register direct | ADDS #2, Rd 0, B| 8 i0rd 2
| | |

Note: This instruction cannot access byte-size data.

38

2.2.3 ADDX (add with extend carry) ADDX
Operation Condition Code

Assembly-Language Format
ADDX <EAs>, Rd

Operand Size
Byte

l

HERERRERER

Previous value remains unchanged.

: Set to 1 if there is a carry from bit 3;

otherwise cleared to 0.

: Set to 1 when the result is negative;

otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs;
otherwise cleared to O.

Set to 1 when there is a carry from bit 7;
otherwise cleared to 0.

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode 9 Mnem. Operands g‘éigsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADDX #xx:8,Rd |9 ird IMM 2
Register direct | ADDX Rs, Rd 0 'E | rsird 2

39

2.2.4 AND (AND logical)

AND

Operation

Rd A (EAs) - Rd

Assembly-Language Format

AND <EAs>, Rd

Operand Size
Byte

Condition Code
N Z V C
I~I—I~—I-I¢ [2 o] |
I: Previous value remains unchanged.

otherwise cleared to O.

Set to 1 when the result is zero;

otherwise cleared to 0.

Cleared to O.

: Previous value remains unchanged.
: Set to 1 when the result is negative;

Previous value remains unchanged.

Description

This instruction ANDs the source operand with the contents of an 8-bit general register and

places the result in the general register.

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode & Mnem. | Operands gltg'tg;
1stbyte |2ndbyte | 3rd byte | 4th byte
Immediate AND #xx8,Rd | E ird IMM 2
Register direct | AND Rs, Rd 1 16 rs i rd 2

40

2.2.5 ANDC (AND control register)

ANDC

Operation
CCR A #IMM— CCR

Condition Code

Assembly-Language Format
ANDC #xx:8, CCR

Operand Size
Byte

1 H N Z VvV C

HEHBEEBEEEN

ANDed with bit 7 of the immediate data.
ANDed with bit 5 of the immediate data.
ANDed with bit 3 of the immediate data.
ANDed with bit 2 of the immediate data.
ANDed with bit 1 of the immediate data.
ANDed with bit O of the immediate data.

Description

This instruction ANDs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including the

nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. Operands No. of
states
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ANDC #xx8,CCR| 0 16 IMM 2

41

2.2.6 BAND (bit AND)

BAND

Operation Condition Code
C A (<Bit No.> of <BEAd>) - C N Z V C
|—I—I—I—|—I—|—I |
Assembly-Language Format
BAND #xx:3, <EAd>
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ANDed with the specified bit.
Description

This instruction ANDs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified by

3-bit immediate data. The operation is shown schematically below.

Bit No.
<EAd>*— Byte data in register or memory

7 #xx:3—¢ 0
I

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

g%%?ssmg nem. | Operands Instruction code thig;
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct BAND |#xx:3, Rd 7 i 6 OEIMMg d |’ 2
Register indirect | BAND |#xx:3,@Rd | 7 i Cc Oird i 0 7 é 6 0.IMM| 0 6
Absolute address| BAND |#xx:3,@aa8| 7 i E abs 7 é 6 O.IMM. 0 6

* Register direct, register indirect, or absolute addressing.

42

2.2.7 Bcc (branch conditionally) Bce

Operation Condition Code

If cc then N Z V C
PerdB P I—I—I—I—I—I—I—I—l

else next;

Assembly-Language Format

Bcc d:8
T Condition code field

(For mnemonics, see the table on the

next page.)

Operand Size

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Previous value remains unchanged.

43

Bcc (branch conditionally)

Bee

Description

If the specified condition is false, this instruction does nothing; the next instruction is

executed. If the specified condition is true, a signed displacement is added to the address of

the next instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination address

can be located in the range —126 to +128 bytes from the address of the Bec instruction.

The applicable conditions and their mnemonics are given below.

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0000 Always (True) Always true

BRN (BF) 0001 Never (False) Never

BHI 0010 High CvZ=0 X >Y (Unsigned)

BLS 0011 Low or Same CvZ=1 X <Y (Unsigned)

BCC (BHS) 0100 Carry Clear C=0 X 2Y (Unsigned)

(High or Same)

BCS (BLO) 0101 Carry Set (Low) =1 X <Y (Unsigned)

BNE 0110 Not Equal Z=0 X#Y (Signedor
unsigned)

BEQ 0111 Equal Z=1 X =Y (Signed or
unsigned)

BVC 1000 Overflow Clear | V=0

BVS 1001 Overflow Set V=1

BPL 1010 Plus N=0

BMI 1011 Minus N=1

BGE 1100 Greater or Equal | NeV=0 X2Y (Signed)

BLT 1101 Less Than NeV=1 X <Y (Signed)

BGT 1110 Greater Than Zv(NeV)=0 |X>Y (Signed)

BLE 1111 Less or Equal Zv(NeV)=1 | X<Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

44

Bce (branch conditionally) Bcee
Instruction Formats and Number of Execution States
; Instruction _code
:1(::13: e Mnem. | Operands 1st byte 2nd byte 3rd byte 4th byte hsl?a;:s'
PC relative BRA (BT) d:8 4 0 disp. 4
PC relative BRN (BF) d:8 4 1 disp. 4
PC relative BHI d:8 4 2 disp. 4
PC relative BLS d:8 4 3 disp. 4
PC relative BCC (BHS) d:8 4 4 disp. 4
PC relative BCS (BLO) d:8 4 5 disp. 4
PC relative BNE d:8 4 6 disp. 4
PC relative BEQ d:8 4 7 disp. 4
PC relative BVC d:8 4 8 disp. 4
PC relative BVS d:8 4 9 disp. 4
PC relative BPL d:8 4 A disp. 4
PC relative BMI d:8 4 B disp. 4
PC relative BGE d:8 4 C disp. 4
PC relative BLT d:8 4 D disp. 4
PC relative BGT d:8 4 E disp. 4
PC relative BLE d:8 4 F disp. 4

* The branch address must be even.

45

2.2.8 BCLR (bit clear) BCLR

Operation Condition Code

0 — (<Bit No.> of <EAd>) N Z V C

|—|—|~l—|—|~|—|—J

Assembly-Language Format

BCLR #xx:3, <EAd> I: Previous value remains unchanged.
BCLR Rn, <EAd> \ H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn
BitNo. 7 —l 0
1 LI | 1 T
<EAd>*— Byte data in register or memory Doy Al
I
0

* Register direct, register indirect, or absolute addressing.

46

BCLR (bit clear) BCLR

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct BCLR |#xx:3, Rd 7 E 2 Oé IMME rd 2
Register indirect | BCLR |#xc3@Rd |7 (D |0} 0 | 7 (2 [omw o | 8
Absolute address| BCLR |#xx:3,@aa8 |7 | F abs |7 (2 |oimMi o | 8
Register direct BCLR |Rn, Rd 6 :? 2 m ': rd 2
Register indirect | BCLR |Rn,@Rd | 7 | D llrd o |6 i2 | mio] s
Absolute address| BCLR |Rn, @aa8 | 7 rF abs 6 EZ m j 0 8

47

2.2.9 BIAND (bit invert AND)

BIAND

Operation
C A[= (<Bit No.> of <EAd>)] - C

Condition Code

Assembly-Language Format

N Z V C

I—I—I—I—I—J—I—I¢I

BIAND #xx:3, <EAd> I. Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: .ANDed with the inverse of the specified

bit.

Description

This instruction ANDs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

<EAd>*— Byte data in register or memory L4

Bit No.

7 #xx:3

T T A\

111

o[~

The value of the specified bit is not changed.

Invert

0.

Instruction Formats and Number of Execution States

':%?;:ssmg Mnem. | Operands Instruction code 's\ltgié’;
istbyte | 2nd byte | 3rd byte | 4th byte

Register direct BIAND |#xx:3, Rd 7 26 1ith/|:E rd 2

Register indirect | BIAND |#xx3,@Rd |7 | C ol 0 | 7 6 1§|MM: 0 6

Absolute address | BIAND |#xx:3,@aa:8 | 7 E E abs 7 E 6 1§IMM: 0 6

* Register direct, register indirect, or absolute addressing.

48

2.2.10 BILD (bit invert load) BILD

Operation Condition Code
— (<Bit No.> of <EAd>) » C N Z V C

I—I—I—I—I—I——I—I]

Assembly-Language Format

BILD #xx:3, <EAd>) .
Previous value remains unchanged.

X Previous value remains unchanged.
Operand Size g

Byte Previous value remains unchanged.

Previous value remains unchanged.
Previous value remains unchanged.

<Nz IZ"

Loaded with the inverse of the specified
bit.

Description

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can be
located in a general register or memory. The bit number is specified by 3-bit immediate data.
The operation is shown schematically below.

Bit No.

<EAd>*— Byte data in register or memory D b

] |
41vert—> E C

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode & Mnem. | Operands ’s\ltgieosf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BILD |#xx:3, Rd 7 47 1EIMME rd 2

7 [t o | 6
7 [tmm 0 | 6

cloi! o |7
E abs 7

Register indirect | BILD |#xx:3,@Rd | 7
Absolute address| BILD |#xx:3,@aa8 | 7

* Register direct, register indirect, or absolute addressing.

49

2.2.11 BIOR (bit invert inclusive OR) BIOR
Operation Condition Code
C v [(<Bit No.> of <EAd>)] - C N Z V C
|—|—l~—|—|-—|—l—| t]
Assembly-Language Format
BIOR #xx:3, <EAd>
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the inverse of the specified
bit.
Description

This instruction ORs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

Bit No.
<EAd>*— Byte data in register or memory

The value of the specified bit is not changed.

7 #xx:3—¢ 0
1 1 Ll 1 1
1 11 111 1
]
Invert
T O-0e

Instruction Formats and Number of Execution States

fn%%rgssmg Mnem. | Operands Instruction code gtgigsf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BIOR |#xx:3, Rd 7 ? 4 15 IMME rd 2
Register indirect | BIOR [#xc3@Rd |7 1 C Jol i 0 |7 1 a|iimMi 0 | 6
Absolute address| BIOR |#xx:3,@aa8| 7 EE abs 7 i 4 1IEIMM§ 0 6

* Register direct, register indirect, or absolute addressing.

50

2.2.12 BIST (bit invert store) BIST
Operation Condition Code
— C — (<Bit No.> of <EAd>) N Z V C

(—I—I—I*I—I—I—I—I

Assembly-Language Format
BIST #xx:3, <EAd>

I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction stores the inverse of the carry flag to a specified bit location in a general register
or memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

BitNo. 7 _#X373 0
1 1 1
<EAd>*— Byte data in register or memory Loy I

C:I—> Invert

The values of the unspecified bits are not changed.

Instruction Formats and Number of Execution States

g%%r:ssmg Mnem. | Operands Instruqtlon code sthigSf
1stbyte | 2nd byte 3rd byte | 4th byte

Register direct BIST |[#xx:3, Rd 6 §7 1§IMM§ rd 2

Register indirect | BIST |#xx:3,@Rd | 7 iD o rdi o | 6 7 1§|MM§ 0 8

Absolute address| BIST |#x3.@aa8|7 | F abs | 6 |7 [timm 0| 8

* Register direct, register indirect, or absolute addressing.

51

2.2.13 BIXOR (bit invert exclusive OR)) BIXOR

Operation Condition Code
C @ [(<Bit No.> of <EAd>)] - C N Z V C

C —|—1-]¢]

Assembly-Language Format

BIXOR #xx:3, <EAd> I Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the inverse of the

specified bit.

Description

This instruction exclusive-ORs the inverse of a specified bit with the carry flag and places the
result in the carry flag. The specified bit can be located in a general register or memory. The
bit number is specified by 3-bit immediate data. The operation is shown schematically below.

BitNo. 737y 0
1] 1 1 1
<EAd>*— Byte data in register or memory Ly Ly
Invert
L 0e

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

gcézréessing Mnem. | Operands gg;(gsf
1st byte | 2nd byte 3rd byte | 4th byte

Register direct BIXOR |#xx:3, Rd 7 i 5 1§|MME rd 2

Register indirect | BIXOR |#c3@Rd |7 | C ol i 0 |7 15|t 0| o
Absolute address| BIXOR |#xx3.@aa8 |7 | E abs |7 {5 |t o

* Register direct, register indirect, or absolute addressing.

52

2.2.14 BLD (bit load) BLD
Operation Condition Code
(<Bit No.> of <EAd>) - C N Z V C

I—I—I—I—I—I—I——I t]

Assembly-Language Format

BLD #xx:3, <EAd> I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded with the specified bit.
Description

This instruction loads a specified bit into the carry flag. The specified bit can be located in a
general register or memory. The bit number is specified by 3-bit immediate data. The operation
is shown schematically below.

BitNo, 7 ™37y 0
T 1 1

<EAd>* - Byte data in register or memory L1 L 1

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

r/:%c(ijr:ssmg Mnem. | Operands gltgie?sf
1stbyte | 2nd byte 3rd byte | 4th byte

Register direct BLD #xx:3, Rd 7 §7 OEIMME rd 2

Register indirect | BLD [#xc3@Rd |7 1C [oia ! 0 | 7 | 7 omM 0| 6

Absolute address| BLD |#x3@aa8 |7 | E abs 7 17 ol 0| 6

* Register direct, register indirect, or absolute addressing.

53

2.2.15 BNOT (bit NOT) BNOT

Operation Condition Code
— (<Bit No.> of <EAd>) N Z V C
— (<Bit No.> of <EAd>) |_|_|_|_|_|_|_|_|

Assembly-Language Format

I. Previous value remains unchanged.
BNOT #xx:3, <EAd> . .
H: Previous value remains unchanged.
BNOT Rn, <EAd> . .
N: Previous value remains unchanged.
- Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

This instruction inverts a specified bit in a general register or memory location. The bit
number is specified by 3-bit immediate data, or by the lower three-bits of a general register.
The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 —i 0

<EAd>*— Byte data in register or memory kY
4 InvertX

The bit is not tested before being inverted. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

54

BNOT (bit NOT)

BNOT

Instruction Formats and Number of Execution States

Instruction code

ﬁqcé%r:ssing Mnem. | Operands Q'tgigs'
1st byte 2nd byte | 3rd byte 4th byte
Register direct BNOT |#xx:3, Rd 7 i 1 Oi IMME rd 2
Register indirect | BNOT | #xx:3,@Rd 7 E D Oi rdg 0 7 i 1 Oi IMME 0 8
Absolute address | BNOT |#xx:3,@aa:8 | 7 E F abs 7 §1 0§ IMME 0 8
Register direct BNOT |Rn, Rd 6 ; 1 m E rd 2
Register indirect | BNOT |Rn, @Rd 7 E D i rdEL 0 6 §1 m ; 0 8
Absolute address| BNOT |Rn, @aa:8 7 i abs 6 E 1 m E 0 8

55

2.2.16 BOR (bit inclusive OR) BOR
Operation Condition Code
C v (<Bit No.> of <EAd>) —» C N Z V C
I—I—I—I—I—I~—|—I t
Assembly-Language Format
BOR #xx:3, <EAd>
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the specified bit.
Description

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified

by 3-bit immediate data. The operation is shown schematically below.

Bit No.
<EAd>*— Byte data in register or memory

The value of the specified bit is not changed.

7 #xx :h 0
1 T

-0

Instruction Formats and Number of Execution States

gcicér;assing Mnem. | Operands Instruction code 's\ltgigsf
1stbyte | 2ndbyte |3rdbyte | 4thbyte

Register direct BOR |#xx:3, Rd 7 i OEIMME rd 2

Register indirect | BOR |#xx3.@Rd |7 | C [oid | 0 |7 | 4lomd 0| 6

Absolute address| BOR |#xx:3,@aa8 | 7 i abs 7 E 4 OEIMM: 0 6

* Register direct, register indirect, or absolute addressing.

56

2.2.17 BSET (bit set) BSET

Operation Condition Code
1 — (<Bit No.> of <EAd>) N Z V C

I—I—I—|—|—I—I—I—I

Assembly-Language Format
BSET #xx:3,<EAd>

I: Previous value remains unchanged.
BSET Rn,<EAd> _ . &

H: Previous value remains unchanged.

X N: Previous value remains unchanged.

Operand Size : ‘ g

Z: Previous value remains unchanged.
Byte . .

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn
Bit No. 7 _-\L 0

1 1 T T T
<EAd>*— Byte data in register or memory Coo Al oy

* Register direct, register indirect, or absolute addressing.

57

BSET (bit set) BSET
Instruction Formats and Number of Execution States
,:ggeessing nem. | Operands Instruction code L“t‘;'t :sf
1st byte 2nd byte | 3rd byte 4th byte

Register direct BSET |#xx:3, Rd 7 ; 0 OEIMME rd 2
Register indirect | BSET |#xx3@Rd |7 | D (b0 |7 1o fojmm 8
Absolute address| BSET |#xx:3,@aa8 |7 E F abs 7 5 0 0; IMME 8
Register direct BSET |Rn, Rd 6 ; 0 m i rd 2
Register indirect | BSET [Rn.@Rd |7 {D [0l 0 |6 [0 |m ! 8
Absolute address| BSET |Rn, @aa8 |7 E F abs 6 ; 0 m i 8

58

2.2.18 BSR (branch to subroutine)

BSR

Operation
PC - @-SP
PC+d:8 - PC

Assembly-Language Format
BSR d:8

Operand Size

Condition Code

N Z V C

L—|—|—|—|—|—I—I~I

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Previous value remains unchanged.

Description

This instruction pushes the program counter (PC) value onto the stack, then adds a specified

displacement to the program counter value and branches to the resulting address. The program

counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching range is

—126 to +128 bytes from the address of the BSR instruction.

Instruction Formats and Number of Execution States

Addressin Instruction code
mode 9 Mnem. | Operands stgieo;
1stbyte | 2nd byte | 3rd byte | 4th byte
]
PC-relative BSR d:8 5 15 disp 6

59

2.2.19 BST (bit store) BST

Operation Condition Code
C — (<Bit No.> of <EAd>) N Z V C

I—|—|—|—|—I — -]

Assembly-Language Format
BST #xx:3, <EAd>

I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction stores the carry flag to a specified flag location in a general register or
memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

BitNo. 7 PX37% 0
1 | 1

<EAd>*— Byte data in register or memory .y

o[]—

Instruction Formats and Number of Execution States

g%%fssmg nem. | Operands Instruction code thigg
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BST |#xx:3, Rd 6 i? 0| IMM' rd 2
Register indirect | BST |#3.@Rd |7 (D |0 | 0 |6 | 7 |omu 0 | 8
Absolute address| BST | #xx:3,@aas8 |7 E F abs sﬁi 7 0 IMM. 0 8

* Register direct, register indirect, or absolute addressing.

60

2.2.20 BTST (bit test) BTST

Operation Condition Code
— (<Bit No.> of <EAd>) - Z N Z V C

|—|—I—I—I—I¢ ||

Assembly-Language Format
BTST #xx:3, <EAd>

BTST Rn, <EAd> I Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Set to 1 when the specified bit is zero;
otherwise cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction tests a specified bit in a general register or memory location and sets or clears
the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the
lower three bits of an 8-bit general register. The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 _1

<EAd>*- Byte data in register or memory

The value of the specified bit is not altered.

* Register direct, register indirect, or absolute addressing.

61

BTST (bit test)

BTST

Instruction Formats and Number of Execution States

Instruction code

Addressing No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct BTST |#xx:3, Rd 7 i 3 Og IMME rd 2
Register indirect | BTST |#xca@Rd |7 {C ol | 0 [7 13 [oimMl o | o
Absolute address | BTST | #xx:3,@aa:8 | 7 E E abs 7 : 3 0§!MM§ 0 6
Register direct BTST |Rn, Rd 6 E 3 m % rd 2
Register indirect | BTST [Rn,@Rd |7 {C Jojrd!{ 0 |6 {3 | m [0 | 6
Absolute address| BTST |Rn, @aa8 |7 i E abs 6 i 3 m E 0 6

62

2.2.21 BXOR (bit exclusive OR) BXOR
Operation Condition Code
Co® (<Bit No.> of <EAd>) -C N Z V C

I—I—I~|—I—1—I—l t]

Assembly-Language Format
BXOR #xx:3, <EAd>

I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the specified bit.
Description

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in a general register or memory. The bit number is
specified by 3-bit immediate data. The operation is shown schematically below.

BitNo, 7 X377 0
1 1

T T

<EAd>*— Byte data in register or memory Lo

of Je[]—[]e

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

ﬁ‘]%(étssmg Mnem. | Operands Instruction code gf[gig sf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BXOR | #xx:3, Rd 7 ; 5 0 |MM: rd 2
Register indirect | BXOR |#xc8@Rd |7 |G loi ! 0 |7 {5 dmm o| 6
Absolute address| BXOR | #xx:3,@aa:8 | 7 ?E abs 7 i 5 0§ lMM? 0 6

* Register direct, register indirect, or absolute addressing.

63

2.2.22 (1) CMP (compare) (byte)

CMP

Operation

Rd — (EAs); set condition code

Condition Code

Assembly-Language Format
CcMP.B <EAs>,Rd

Operand Size
Byte

N Z VvV C

f 1—|$|—I¢I¢|¢I¢l

Previous value remains unchanged.

Set to 1 when there is a borrow from bit
3; otherwise cleared to 0.

: Setto 1 when the result is negative;

otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs;
otherwise cleared to 0.

Set to 1 when there is a borrow from bit
7; otherwise cleared to 0.

Description

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination

register and sets the condition code flags according to the result. The destination register is not

altered.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. Operands ,s\igi:é
: 1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate CMP.B #xx:8,Rd | A E rd IMM 2
Register direct | CMPB | Rs, Rd 1 1C|rs | rd 2

64

2.2.22 (2) CMP (compare) (word)

CMP

QOperation
Rd —Rs; set condition code

Assembly-Language Format
CMP.W Rs,Rd

Operand Size
Word

Condition Code

N Z V C

|—|—|¢ |—lelelels]

I: Previous value remains unchanged.

H: Setto 1 when there is a borrow from bit
11; otherwise cleared to 0.

N: Setto 1 when the result is negative;
otherwise cleared to 0.

Z: Setto 1 when the result is zero;
otherwise cleared to 0.

V: Setto 1 when an overflow occurs;
otherwise cleared to 0.

C: Setto 1 when there is a borrow from bit
15; otherwise cleared to O.

Description

This instruction subtracts a source register from a destination register and sets the condition

code flags according to the result. The destination register is not altered.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. Operands Q'tg'té’é
1st byte | 2nd byte 3rd byte | 4th byte
[} I
Register direct | CMP.W Rs, Rd 1 ED .rs . .rd 2

65

2.2.23 DAA (decimal adjust add) DAA

Operation Condition Code

Rd (decimal adjust) — Rd N Z V C

L L]

Assembly-Language Format
D2AA Rd

s

Previous value remains unchanged.

Operand Size H: Unpredictable.
Byte N: Setto 1 when the adjusted result is

negative; otherwise cleared to 0.
Z: Setto 1 when the adjusted result is zero;
otherwise cleared to 0.
Unpredictable.

<

C: Setto 1 when there is a carry from bit 7;
otherwise left unchanged.

Description

When the result of an addition operation performed by the ADD.B or ADDX instruction on 4-
bit BCD data is contained in an 8-bit general register and the carry and half-carry flags, the
DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general register
according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those
stated above.

Status before adjustment Value Resulting
Cflag | Uppernibble | Hflag |Lowernibble | added Cflag
0 0-9 0 0-9 H'00 0
0 0-8 0 A-F H'06 0
0 0-9 1 0-3 H'06 0
0 A-F 0 0-9 H'60 1
0 9 _F 0 A-F H'66 1
0 A—F 1 0-3 H'66 1
1 0-2 0 0-9 H'60 1
1 0-2 0 A-F H'66 1
1 0-3 1 0-3 H'66 1

66

DAA (decimal adjust add) DAA

Instruction Formats and Number of Execution States

. Instruction code
Addre
mode ssing Mnem. | Operands ggigsf
istbyte |2ndbyte | 3rd byte | 4th byte
Register direct DAA Rd 0 'F | 0 ird 2

67

2.2.24 DAS (decimal adjust subtract)

DAS

Operation
Rd (decimal adjust) — Rd

Condition Code

Assembly-Language Format
DAS Rd

Operand Size
Byte

<

N Z VvV C

I H
HEDENROE

Previous value remains unchanged.

Unpredictable.

Set to 1 when the adjusted result is
negative; otherwise cleared to 0.

Set to 1 when the adjusted result is zero;
otherwise cleared to 0.

Unpredictable.

Previous value remains unchanged.

Description

When the result of a subtraction operation performed by the SUB.B, SUBX, or NEG
instruction on 4-bit BCD data is contained in an 8-bit general register and the carry and half-
carry flags, the DAA instruction adjusts the result by adding H'00, HFA, H'AQ, or H'9A to the

general register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Status before adjustment Value Resulting
Cflag | Upper nibble | Hflag | Lowernibble | added Cflag
0 0-9 0 0-9 H'00 0
0 0-8 1 6-F H'FA 0
1 7-F 0 0-9 H'AQ 1
1 6-F 1 6-F H'9A 1

68

DAS (decimal adjust subtract)

DAS

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode 9 Mnem. | Operands ?tgi:sf
i1stbyte | 2nd byte | 3rd byte | 4th byte
]]
Register direct DAS Rd 1T 1F 0 i rd 2

69

2.2.25 DEC (decrement) DEC
Operation Condition Code
Rd-1—-Rd N Z V C

Assembly-Language Format

DEC Rd

Operand Size
Byte

L

s e]

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z: Setto 1 when the result is zero;

otherwise cleared to 0.

V: Set to 1 when an overflow occurs (the

previous value in Rd was H'80);

otherwise cleared to 0.

C: Previous value remains unchanged.

Description

This instruction decrements an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode o Mnem. | Operands sr:ltgigsf
1st byte 2nd byte | 3rd byte | 4th byte
! i
Register direct DEC Rd 1 i A |0 ! 2

70

2.2.26 DIVXU (divide extend as unsigned) DIVXU

Operation Condition Code

i—l—l—l—liTirJJ

Assembly-Language Format
DIVXU Rs,Rd

I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the divisor is negative;

otherwise cleared to 0.
Z: Cleared to 0 when divisor # 0;
otherwise not guaranteed.

<

Previous value remains unchanged.
C: Previous value remains unchanged.

Description

This instruction divides a 16-bit general register by an 8-bit general register and places the
result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is
placed in the upper byte. The operation is shown schematically below.

Rd
—
Rd Rs (RdH) (RdL)
Dividend] + [Divisor J - | Remainder| Quotient
16 bits 8 bits 8 bits 8 bits

Valid results (Rd, N, Z) are not assured if division by zero is attempted or an overflow occurs.
Division by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown

on the next page.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
g Mnem. | Operands No. of
mode states
1st byte | 2nd byte 3rd byte | 4th byte
Register direct DIVXU Rs, Rd 5 5 1 rs ioird 14

71

DIVXU (divide extend as unsigned) DIVXU
Note: DIVXU Overflow
Since the DIVXU instruction performs 16-bit + 8-bit — 8-bit division, an overflow will occur

if the divisor byte is equal to or less than the upper byte of the dividend. For example, HFFFF
+ H'01 — H'FFFF causes an overflow. (The quotient has more than 8 bits.)
Overflows can be avoided by using a subprogram like the following. A work register is

required.
To perform
DIVXU ROL, R1: ROL
MOV.B #H'00, R2H R1| Dividend I
CMP.B ROL, RI1H \'k
BCC L1 R1| Remainder Quotient I (*1)
DIVXU ROL, R1 (*1) ‘
MOV.B R1L, R2L R1 | Dividend —|
BRA L2 R2| H'00 | Dividend (High)l (*2)
L1 MOV.B R1H, R2L (*2) l
DIVXU ROL, R2 R1 | Partial emainder | Dividend (Low) |
MOV.B R2H, RI1H (*3)
DIVXU ROL, Rl R2 | Partial remainder | Quotient (Highﬂ (*3)
MOV.B R2L, R2H f ,;l
MOV.B R1L, R2L - -
F“I Remainder l Quotient (Low)]
L2 RTS (*4)
R2| Quotient | (*4)

72

2.2.27 EEPMOYV (move data to EEPROM) EEPMOV

Operation Condition Code
if R4L # 0 then N Z V C
repeat @R5+ > @R6+ I__l_l_l_l_l__l__l_l
R4L -1 — R4L
until R4L =0
else next; I. Previous value remains unchanged.
H: Previous value remains unchanged.
Assembly-Language Format N: Previous value remains unchanged.
EEPMOV Z: Previous value remains unchanged.
V: Previous value remains unchanged.
Operand Size C: Previous value remains unchanged.
Description

This instruction moves a block of data from the memory location specified in general register
R5 to the memory location specified in general register R6. General register R4L gives the
byte length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented and
R4L is decremented. When R4L reaches 0, the transfer ends and the next instruction is
executed. No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'00. R5 and R6 contain the last transfer address
+1.

The memory locations specified by general registers R5 and R6 are read before the block
transfer is performed.

Instruction Formats and Number of Execution States

Instruction code No. of
Mnem. | Operands states
1stbyte | 2nd byte 3rd byte | 4th byte

Addressing
mode

I T T

]
— EEPMOV 7 1B |5 1 C |5 19 |81 F|on

* n is the initial value in R4L (0 < n < 255). Although n bytes of data are transferred, memory
is accessed 2(n+1) times, requiring 4(n+1) states.

73

2.2.28 INC (increment)

INC

Operation Condition Code
Rd+1—Rd N Z V C
|—|——|—|—l¢ [e [][]
Assembly-Language Format
INC Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Set to 1 when an overflow occurs (the
previous value in Rd was H'7F);
otherwise cleared to 0.
C: Previous value remains unchanged.
Description

This instruction increments an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

; Instruction code
Addressing No. of
mode Mnem. Operands states
1st byte 2nd byte | 3rd byte | 4th byte
]]
Register direct | INC Rd 0 i Al O i rd 2

74

2.2.29 JMP (jump) JMP
Operation Condition Code
(EAd) - PC N Z V C
Assembly-Language Format I__ |_ | — I — l__ I — I—l _I
JMP <EA>
I. Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
- N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction branches unconditionally to a specified destination address.

The destination address must be even.

Instruction Formats and Number of Execution States

Instruction code

gcéc;rsssing Mnem. Operands ggié’é
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | JMP @Rn 5 i 9 Oérné 0 4
Absolute address| JMP | @aat6 | 51 A | 0 | 0 abs. 6
Memory indirect | JMP @@aa8 | 5! B | abs. 8

75

2.2.30 JSR (Jump to subroutine)

JSR

Operation
PC —» @-SP
(EAd) —» PC

Assembly-Language Format

Condition Code
N Z V C

|—I—|—I—|—|~I~—I—|

JSR <EA> I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
— Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction pushes the program counter onto the stack, then branches to a specified

destination address. The program counter value pushed on the stack is the address of the

instruction following the JSR instruction. The destination address must be even.

Instruction Formats and Number of Execution States

g%%fssmg Mnem. | Operands Instruction code gltgieosf
1stbyte | 2nd byte | 3rd byte | 4th byte

Register indirect | JSR @Rn 5 i D Ogrné 0 6

Absolute address | JSR @aa:16 5 . 0 , 0 abs. 8

Memory indirect | JSR @@aa8 | 5 F| abs. 8

76

2.2.31 LDC (load to control register) LDC
Operation Condition Code
(EAs) — CCR N Z V C

Blﬂililxlililil

Assembly-Language Format
LDC <EAs>, CCR

I: Loaded from the source operand.
Operand Size H: Loaded from the source operand.
Byte N: Loaded from the source operand.

Z: Loaded from the source operand.

V: Loaded from the source operand.

C: Loaded from the source operand.
Description

This instruction loads the source operand contents into the condition code register (CCR). Bits
4 and 6 are loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are
deferred until after the next instruction.

Instruction Formats and Number of Execution States

: Instruction code
Addressin

o Mnem. Operands No. of
mode states

1stbyte | 2nd byte 3rd byte | 4th byte
Immediate LDC #xx:8,CCR| 0 E 7 IMM 2
1 T

Register direct LDC Rs, CCR 0,3 0 i rs 2

77

2.2.32 (1) MOYV (move data) (byte) MOV

Operation Condition Code

I—I—|—1—|¢I¢|0|—I

Assembly-Language Format

MOV.B Rs, Rd I. Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Byte otherwise cleared to 0.

Z: Setto 1 when the data value is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.
Description

This instruction moves one byte of data from a source register to a destination register and sets
condition code flags according to the data value.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode 9 Mnem. | Operands gltgigsf
1stbyte | 2nd byte | 3rd byte | 4thbyte
Register direct MOV.B |Rs, Rd 01C |rs g rd 2

78

2.2.32 (2) MOYV (move data) (word)

MOV

Operation Condition Code
Rs —> Rd N Z VvV C
|—I—I—I——|¢ [t lo]]|
Assembly-Language Format ' _
MOV.W Rs, Rd I. Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Word otherwise cleared to 0.
Z: Set to 1 when the data value is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction moves one word of data from a source register to a destination register and

sets condition code flags according to the data value.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands s,:ltgi:sf
i1stbyte | 2nd byte |3rdbyte | 4th byte
]] ™
Register direct |MOV.W | Rs, Rd 0 i D Oirs ioird 2

79

2.2.32 (3) MOY (move data) (byte) MOV

Operation Condition Code
(EAs) > Rd N Z VvV C

I—I—I—I—Rlilol—J

Previous value remains unchanged.

Assembly-Language Format

MOV.B <EAs>,Rd I
H: Previous value remains unchanged.
Operand Size N
Byte

: Set to 1 when the data value is negative;
otherwise cleared to 0.

Z: Setto 1 when the data value is zero;

otherwise cleared to 0.

Cleared to 0.

C: Previous value remains unchanged.

<

Description

This instruction moves one byte of data from a source operand to a destination register and
sets condition code flags according to the data value.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the
stack pointer. See section 3.2.3 for details.

Instruction Formats and Number of Execution States

. Instruction code

Addressin

mode g Mnem. | Operands sthi:sf

‘ 1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate MOV.B |#xx:8, Rd Foird | IMM 2
Register indirect |MOV.B |@RS, Rd 6 {8 |oirs! rd 4
Register indirect ! b
with displacement |MOV.B |@(d:16,Rs),Rd| 6 | E Oirsf rd disp. 6
Register indirect | o
with post-increment{ MOV.B | @Rs+, Rd 6 !C |0irsi rd 6
Absolute address |MOV.B |@aa:8, Rd 2 i rd abs 4
H T

Absolute address |MOV.B |@aa:16, Rd 6 '!A |0 ' rd abs. 6

80

2.2.32 (4) MOYV (move data) (word)

MOV

Operation Condition Code
(EAs) - Rd N 7z v C
LI L]
Assembly-Language Format
MOV.W <EAs> Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Word otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction moves one word of data from a source operand to a destination register and

sets condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.
MOV.W @R7+, Rd is identical in machine language to POP.W Rd.
Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

. Instruction code

Addressin

mode 9 Mnem. Operands 's\ltgigsf

1stbyte | 2nd byte | 3rd byte | 4th byte

Immediate MOV.W | #xx:16, Rd 7 190 0ird IMM 4
Register indirect |MOV.W |@RS, Rd 6 |9 o;rs 101 rd 4
Register indirect E | i l
with displacement |MOV.W |@(d:16,Rs),Rd| 6 ! F Oirs 0'rd disp. 6
Register indirect E E P
with post-increment| MOV.W | @Rs+, Rd 6 | Oirs I0 rd 6
Absolute address |MOV.W |@aa:16, Rd 6 i 0 ;0, rd abs. 6

81

2.2.32 (5) MOYV (move data) (byte)

Operation
Rs — (EAd)

MOV
Condition Code v
N Z V C

ST

Assembly-Language Format
MOV.B Rs, <EAd>

I: Previous value remains unchanged.
H: Previous value remains unchanged.

Operand Size N: Set to 1 when the data value is negative;
Byte otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction moves one byte of data from a source register to memory and sets condition

code flags according to the data value.

The MOV.B Rs, @-R7 instruction should never be used, because it leaves an odd value in the

stack pointer. See section 3.2.3 for details.

The instruction MOV.B RnH, @-Rn or MOV.B RnL, @—Rn decrements register Rn, then
moves the upper or lower byte of the decremented result to memory.

Instruction Formats and Number of Execution States

. Instruction code

Addressin

mode g Mnem. Operands sthi:sf

1stbyte |2ndbyte | 3rd byte | 4th byte

Register indirect |MOV.B |Rs, @Rd 6 18 |1ird! s 4
Register indirect Rs, | b
with displacement |MOV.B |@(d:16,Rd) 6 | E 1ird: rs disp 6
Register indirect ! o
with pre-decrement | MOV.B |Rs, @-Rd 6 | C 1er: rs 6
Absolute address |MOV.B |Rs,@aa:8 3 i rs abs 4
Absolute address |MOV.B |Rs,@aa:16 6 E A | 8 :T rs abs. 6

82

2.2.32 (6) MOYV (move data) (word) MOV

Operation Condition Code

Rs — (EAd) N Z VvV C

I—|—I—|——I¢I¢|0|—I

Assembly-Language Format
MOV.W Rs, <EAd>

I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Word N: Set to 1 when the data value is negative;

otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
Cleared to 0.

C: Previous value remains unchanged.

<

Description

This instruction moves one word of data from a general register to memory and sets condition
code flags according to the data value.

The destination address in memory must be even.

MOV.W Rs, @-R7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @—Rn decrements register Rn by 2, then moves the decremented
result to memory.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

. Instruction code

Addressin

9 Mnem. Operands No. of
mode states
1stbyte |2ndbyte | 3rd byte | 4th byte

Register indirect [MOV.W | Rs, @Rd 6 | 9 [1irdi0irs 4
Register indirect Rs, ! R
with displacement |{MOV.W | @(d:16, Rd) 6 | F [1irdi0jrs disp. 6
Register indirect ! o
with pre-decrement |[MOV.W | Rs, @-Rd 6 ! 11rdi0;rs 6
Absolute address |MOV.W | Rs, @aa:16 6 E 8 iO i rs abs. 6

83

2.2.33 MULXU (multiply extend as unsigned) MULXU
Operation Condition Code

Rd xRs - Rd N Z V C

I—I—I~I—I~|~I—I—I

Assembly-Language Format

MULXU Rs,Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction performs 8-bit x 8-bit — 16-bit multiplication. It multiplies a destination
register by a source register and places the result in the destination register. The source
register is an 8-bit register. The destination register is a 16-bit register containing the data to
be multiplied in the lower byte. (The upper byte is ignored). The result is placed in both bytes
of the destination register. The operation is shown schematically below.

Rd Rs Rd
| Don't-care | Muttiplicand| x I Multiplier] - | Product |
8 bits 8 bits , 16 bits

The multiplier can occupy either the upper or lower byte of the source register.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

Register direct | MULXU Rs, Rd 5 E 0 rs EOErd 14

84

2.2.34 NEG (negate)

NEG

Operation
0-Rd —>Rd

Condition Code

Assembly-Language Format
NEG Rd

forul

Operand Size
Byte

N Z VvV C

|—l—|¢ [fefefe]

Previous value remains unchanged.

Set to 1 when there is a borrow from bit

3; otherwise cleared to 0.

: Set to 1 when the result is negative;

otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs (the
previous contents of the destination
register was H'80); otherwise cleared to
0.

Set to 1 when there is a borrow from bit
7 (the previous contents of the
destination register was not H'00);
otherwise cleared to 0.

Description

This instruction replaces the contents of an 8-bit general register with its two's complement

(subtracts the register contents from H'00).

If the original contents of the destination register was H'80, the register value remains H'80

and the overflow flag is set.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
9 Mnem. Operands No. of
mode states
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct NEG Rd 1 E 7 |8 ird 2

85

2.2.35 NOP (no operation)

NOP

Operation
PC+2 - PC

Condition Code

Asseinbly-Language Format
NOP

Operand Size

O<NZ I

N Z V C

I-I-—I_I—I~I~|—I—I

Previous value remains unchanged.

: Previous value remains unchanged.
: Previous value remains unchanged.

Previous value remains unchanged.
Previous value remains unchanged.

Previous value remains unchanged.

Description

This instruction only increments the program counter, causing the next instruction to be

executed. The internal state of the CPU does not change.

Instruction Formats and Number of Execution States

. Instruction code
Addressing No. of
mode Mnem. | Operands states
1st byte | 2nd byte | 3rd byte 4th byte
T T
e NOP 0 i 0 01 0 2

86

2.2.36 NOT (NOT =

logical complement)

NOT

Operation Condition Code
— Rd - Rd N Z V C
I—I—I——I—I¢ [{o] -]
Assembly-Language Format
NOT Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.
Z: Set to 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction replaces the contents of an 8-bit general register with its one’s complement

(subtracts the register contents from H'FF).

Instruction Formats and Number of Execution States

: Instruction code
Addressin
9 Mnem. Operands No. of
mode states
istbyte | 2nd byte | 3rd byte | 4th byte
! |
Register direct NOT Rd 1 E 7 0! rd 2

87

2.2.37 OR (inclusive OR logical)

OR

Operation
Rd v (EAs) > Rd

Assembly-Language Format

Condition Code
N Z V C

I~I—I—I——|¢I¢|0|—I

OR <EAs>,Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Set to 1 when the result is negative;
Byte otherwise cleared to 0.

Z: Set to 1 when the result is zero;

otherwise cleared to 0.

V: Cleared to 0.

C: Previous value remains unchanged.
Description

This instruction ORs the source operand with the contents of an 8-bit general register and

places the result in the general register.

Instruction Formats and Number of Execution States

Addressin Instruction code
mode g Mnem. Operands: 's\ltgigsf
1st byte 2nd byte 3rd byte 4th byte
]
Immediate OR #xx:8,Rd | C i rd IMM 2
Register direct | OR Rs, Rd 1 E 4 rs i rd 2
1 |

88

2.2.38 ORC (inclusive OR control register)

ORC

Operation

CCR v #IMM — CCR

Assembly-Language Format

ORC #xx:8, CCR

Operand Size
Byte

Condition Code

N Z VvV C

[¢I¢I¢I¢I¢I¢I¢L¢I

ORed with bit 7 of the immediate data.
ORed with bit 5 of the immediate data.
ORed with bit 3 of the immediate data.
ORed with bit 2 of the immediate data.
ORed with bit 1 of the immediate data.
ORed with bit 0 of the immediate data.

Description

This instruction ORs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are

deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressin Instruction code
9 Mnem. | Operands No. of
mode states
1st byte 2nd byte 3rd byte 4th byte
Immediate ORC #xx:8,CCR| 0 | 4 IMM 2

89

2.2.39 POP (pop data)

POP

Operation Condition Code
@SP+ — Rn N Z V C
I—I—l——l—|¢ [2lo]]
Assembly-Language Format
POP Rn
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Word N: Set to 1 when the data value is negative;
otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction pops data from the stack to a 16-bit general register and sets condition code

flags according to the data value.
POP.W Rn is identical in machine language to MOV.W @SP+, Rn.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. | Operands sthig
i1stbyte | 2ndbyte | 3rd byte | 4th byte
— POP Rd 6 | D| 7 i0im 6

90

2.2.40 PUSH (push data)

PUSH

Operation
Rn — @-SP

Assembly-Language Format
PUSH Rn

Operand Size

Condition Code
N Z V C
|—I—|—I—|¢ [e[o]—|
I: Previous value remains unchanged.

H: Previous value remains unchanged.
N: Setto 1 when the data value is negative;

Word
otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction pushes data from a 16-bit general register onto the stack and sets condition

code flags according to the data value.

PUSH.W Rn is identical in machine language to MOV.W Rn, @-SP.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode 9 Mnem. | Operands Lf{gigsf
1stbyte |2ndbyte | 3rdbyte | 4th byte
— PUSH Rs 6 | D| F i0im 6

91

2.2.41 ROTL (rotate left)

ROTL

Operation

Rd (rotated left) - Rd

Assembly-Language Format

ROTL Rd

Operand Size
Byte

Condition Code

N Z VvV C

I—IT—I—IiIiIOI

|

Pt

Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;

otherwise cleared to 0.
Z: Set to 1 when the result is zero;
otherwise cleared to 0.

V: Cleared to 0.

C: Receives the previous value in bit 7.

Description

This instruction rotates an 8-bit general register one bit to the left. The most significant bit is

rotated to the least significant bit, and also copied to the carry flag.

The operation is shown schematically below.

L

Bit 7

C

MSB

LSB I

Bit 0

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. | Operands ’s\ltgigsf
1st byte |2nd byte 3rd byte | 4th byte
Register direct | ROTL Rd 1128 id 2

92

2.2.42 ROTR (rotate right) ROTR

Operation Condition Code
Rd (rotated right) — Rd o H N Z V C
HEEERENER
Assembly-Language Format
ROTR Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the resultis zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.
Description

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is
rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

L MSB LSB_L D

Bit 7 Bito C

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. | Operands 's\ltgigsf
1st byte 2nd byte | 3rd byte | 4th byte
Register direct | ROTR Rd 1138 | 2

93

2.2.43 ROTXL (rotate with extend carry left) ROTXL

Operation Condition Code
Rd (rotated with carry left) - Rd N Z V C
f |—|-—I—|—|¢|¢|o|¢|
Assembly-Language Format
ROTXL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 7.
Description

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The
carry flag is rotated into the least significant bit of the register. The most significant bit rotates
into the carry flag.

The operation is shown schematically below.

N

C Bit 7 Bit 0

MSB LSB

Instruction Formats and Number of Execution States

: ; Instruction code
Addressing -
mode g Mnem. | Operands s'tltgigsf
istbyte | 2nd byte | 3rd byte | 4th byte
Register direct | ROTXL Rd 1120 i 2

94

2.2.44 ROTXR (rotate with extend carry right) ROTXR

Operation Condition Code
Rd (rotated with carry right) — Rd N Z V C

I—I——I—I—IiIHOIH

Assembly-Language Format
ROTXR Rd

—

Previous value remains unchanged.

Operand Size H: Previous value remains unchanged.

N: Setto 1 when the result is negative;

Byte
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.
Description

This instruction rotates an §-bit general register one bit to the right through the carry flag. The
least significant bit is rotated into the carry flag. The carry flag rotates into the most
significant bit.

The operation is shown schematically below.

MSB LSB
L ~[-

Bit 7 Bit 0

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. | Operands ls\ltgi:sf
1stbyte |2ndbyte | 3rdbyte | 4thbyte
Register direct | ROTXR Rd 1130 2

95

2.2.45 RTE (return from exception)

RTE

Operation
@SP+ — CCR
@SP+ — PC

Assembly-Language Format

Condition Code

1 H N Z V C
HEBHBERBRRN

RTE I. Restored from stack.
H: Restored from stack.

Operand Size N: Restored from stack.

o Z: Restored from stack. |
V: Restored from stack.
C: Restored from stack.

Description

This instruction returns from an exception-handling routine. It pops the condition code
register (CCR) and program counter (PC) from the stack. Program execution continues from

the address restored to the program counter.
The CCR and PC contents at the time of execution of this instruction are lost.

The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8
bits are ignored). This instruction therefore adds 4 to the value of the stack pointer (R7).

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands gltg.tgsf
1stbyte |2ndbyte | 3rdbyte | 4thbyte
1 T
— RTE 516|7 !0 10

96

2.2.46 RTS (return from subroutine) RTS
Operation Condition Code
@SP+ — PC N Z V C
Assembly-Language Format | I I | | | | | |
RTS
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
L N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction returns from a subroutine. It pops the program counter (PC) from the stack.

Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of this instruction are lost.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. | Operands states
istbyte |2nd byte | 3rdbyte | 4th byte
' :
— RTS 5 ; 4 7 10 8

97

2.2.47 SHAL (shift arithmetic left) SHAL

Operation Condition Code
Rd (shifted arithmetic left) - Rd I H N Z V C
HEEEAEEE
Assembly-Language Format
SHAL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Set to 1 when the result is zero;
otherwise cleared to 0.
V: Set to 1 when an overflow occurs;
otherwise cleared to 0.
C: Receives the previous value in bit 7.
Description

This instruction shifts an 8-bit general register one bit to the left. The most significant bit
shifts into the carry flag, and the least significant bit is cleared to 0.
The operation is shown schematically below.

MSB LSB

(— —
C Bit 7 Bit 0

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow
(V) flag.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode ° Mnem. | Operands rs\ltgi:st
i1stbyte |2nd byte | 3rdbyte | 4th byte
Register direct | SHAL Rd 1108 ! 2

98

2.2.48 SHAR (shift arithmetic right)

SHAR

Operation
Rd (shifted arithmetic right) — Rd

Assembly-Language Format
SHAR Rd

Operand Size
Byte

Condition Code

N zZ VvV C

L LLTol:]

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;
otherwise cleared to 0.

Z: Setto 1 when the result is zero;

otherwise cleared to 0.

Cleared to 0.

C: Receives the previous value in bit 0.

<

Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit

remains unchanged. The sign of the result does not change. The least significant bit shifts into

the carry flag.

The operation is shown schematically below.

MSB LSB

Bit 7 Bit 0

—[]

C

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. | Operands rs\]tgigsf
1stbyte |2nd byte | 3rdbyte | 4th byte
Register direct | SHAR Rd 1118 ! ord 2

99

2.2.49 SHLL (shift logical left) SHLL

Operation Condition Code
Rd (shifted logical left) — Rd I H N Z V C

I [—l—Tfslslols]

Assembly-Language Format

SHLL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.
Description

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is
cleared to 0. The most significant bit shifts into the carry flag.
The operation is shown schematically below.

MSB LSB

[—
C Bit 7 Bit 0

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow
(V) flag.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
d 9 Mnem. | Operands No. of
mode states
1st byte 2nd byte | 3rd byte | 4th byte
Register direct | SHLL Rd 1100 ' 2

100

2.2.50 SHLR (shift logical right) SHLR

Operation Condition Code
Rd (shifted logical right) — Rd

N Z VvV C
I—I—-I—|—|¢ [2lols]
Assembly-Language Format
SHLR Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 0.
Description

This instruction shifts an §-bit general register one bit to the right. The most significant bit is
cleared to 0. The least significant bit shifts into the carry flag.
The operation is shown schematically below.

MSB LSB

- ~[]

Bit 7 Bit 0

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode 9 Mnem. | Operands rs\jtgigsf
1stbyte |2ndbyte | 3rdbyte | 4th byte
' i
Register direct | SHLR Rd 1 i 1 0 !'rd 2

101

2.2.51 SLEEP (sleep) SLEEP

Operation Condition Code

Program execution state — power- N Z V C
o o

Assembly-Language Format

SLEEP I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
o Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal
state remains unchanged, but the CPU stops executing instructions and waits for an exception-
handling request (interrupt or reset). When it receives an exception-handling request, the CPU
exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (I) bit is set to 1, the power-down mode can be released only by a
nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, see the applicable hardware manual.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode 9 Mnem. | Operands ?tgigsf
1stbyte |2ndbyte | 3rdbyte | 4thbyte
— SLEEP 011|810 2

102

2.2.52 STC (store from control register) STC
Operation Condition Code
CCR - Rd N Z V C

Assembly-Language Format

I—I~|—|—I—J—|—J—I

STC CCR, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction copies the condition code register (CCR) to a specified general register. Bits 6

and 4 are copied as well as the flag bits.

Instruction Formats and Number of Execution States
. Instruction code
Addressin
mode 9 Mnem. | Operands sthigsf
1stbyte |2ndbyte | 3rdbyte | 4th byte
Register direct STC CCR, Rd 0120 ; rd 2

103

2.2.53 (1) SUB (subtract binary) (byte) SUB

Operation Condition Code

Rd-Rs - Rd N Z V C

I—l—lzI—Ji s le e

Assembly-Language Format

SUB.B Rs,Rd
I: Previous value remains unchanged.

Operand Size H: Set to 1 when there is a borrow from

Byte bit 3; otherwise cleared to 0.

N: Setto 1 when the result is negative;
otherwise cleared to 0.

Z: Setto 1 when the result is zero;
otherwise cleared to 0.

V: Setto 1 when an overflow occurs;
otherwise cleared to 0.

C: Setto 1 when there is a borrow from

bit 7; otherwise cleared to 0.

Description

This instruction subtracts an §-bit source register from an 8-bit destination register and places
the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use
the SUBX.B instruction, first setting the zero flag to 1 and clearing the carry flag to 0.

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR (2) ADD #(0 - Imm), Rd
SUBX #(Imm— 1), Rd XORC #H'01, CCR

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. | Operands Sthigsf
1stbyte |2nd byte | 3rdbyte | 4thbyte
Register direct | SUBB | Rs, Rd 1 18| | 2

104

2.2.53 (2) SUB (subtract binary) (word) SUB

Operation Condition Code

Rd - Rs = Rd I H N Z V C

HEEEEEEE

Assembly-Language Format
SUB.W Rs, Rd

I: Previous value remains unchanged.
Operand Size H: Setto 1 when there is a borrow from
Word bit 11; otherwise cleared to 0.

N: Set to 1 when the result is negative;
otherwise cleared to 0.

Z: Set to 1 when the result is zero;
otherwise cleared to 0.

V: Set to 1 when an overflow occurs;
otherwise cleared to 0.

C: Set to 1 when there is a borrow from
bit 15; otherwise cleared to O.

Description
This instruction subtracts a 16-bit source register from a 16-bit destination register and places
the result in the destination register.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 | Mnem.| Operands gt%i:st
1stbyte |2nd byte 3rd byte | 4thbyte
| T
Register direct | SUBW | Rs, Rd 119 |0rsi0rd 2

105

2.2.54 SUBS (subtract with sign extension)

SUBS

Operation
Rd-1—>Rd
Rd-2 - Rd

Assembly-Language Format

Condition Code

N Z V C

I—I—I——I—I—I—I—[—I

SUBS #1, Rd I: Previous value remains unchanged.
SUBS #2, Rd H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Word V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction subtracts the immediate value 1 or 2 from word data in a general register.

Unlike the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode g Mnem. | Operands 's\ltgigsf
1stbyte |2nd byte | 3rdbyte | 4th byte
Register direct | SUBS | #1, Rd 1 0 i0ird 2
Register direct | SUBS | #2, Rd 1! 8 i0ird 2

106

2.2.55 SUBX (subtract with extend carry) SUBX
Qperation Condition Code
Rd - (EAs)- C - Rd I H N Z V C

Assembly-Language Format
SUBX <EAs>, Rd

Operand Size
Byte

RN

—

Previous value remains unchanged.

H: Setto 1 if there is a borrow from bit 3;
otherwise cleared to 0.

N: Set to 1 when the result is negative;
otherwise cleared to 0.

Z: Previous value remains unchanged when
the result is zero; otherwise cleared to 0.

V: Set to 1 when an overflow occurs;
otherwise cleared to 0.

C: Set to 1 when there is a borrow from

bit 7; otherwise cleared to 0.

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit

general register and places the result in the general register.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
9 | Mnem. | Operands No. of
mode states
1st byte | 2nd byte 3rd byte | 4th byte
Immediate SUBX | #xx8,Rd | B | rd IMM 2
; 1
Register direct SUBX Rs, Rd 1+ E rs | rd 2
I l

107

2.2.56 XOR (exclusive OR logical)

XOR

Operation

Rd @ (EAs) - Rd

Assembly-Language Format

XOR <EAs>, Rd

Condition Code
N Z V C

L |—I—I—|¢ |2 o]

I: Previous value remains unchanged.
H: Previous value remains unchanged.

Operand Size
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Set to 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction exclusive-ORs the source operand with the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

. : Instruction code
Add
ressing Mnem. | Operands No. of
mode states
1stbyte |2nd byte | 3rdbyte | 4th byte
Immediate XOR #xx8,Rd | D i rd IMM 2
Register direct | XOR Rs, Rd 115 rs i 2

108

2.2.57 XORC (exclusive OR control register) XORC

Operation Condition Code
CCR @ #IMM — CCR I H N Z V C

Ll lelslelslsls]

Assembly-Language Format

XORC #xx:8, CCR
I: Exclusive-ORed with bit 7 of the

immediate data.

H: Exclusive-ORed with bit 5 of the
immediate data.

N: Exclusive-ORed with bit 3 of the
immediate data.

Z: Exclusive-ORed with bit 2 of the
immediate data.

V: Exclusive-ORed with bit 1 of the
immediate data.

C: Exclusive-ORed with bit 0 of the
immediate data.

Operand Size
Byte

Description

This instruction exclusive-ORs the condition code register (CCR) with immediate data and
places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as the
flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode g Mnem. | Operands gltgigsf
1stbyte |2ndbyte | 3rdbyte | 4th byte
Immediate XORC | #xx8,CCR| 0 | 5 IMM 2

109

2.3 Operation Code Map

Table 2-1 shows the operation code map for instructions of the H8/300L CPU. Only the first
byte (bits 15 to 8 of the first word) of the instruction code is indicated here.

Indicates that the most significant bit of the 2nd byte
Y (bit 7 of 1st word of instruction code) is 0.

lZ}<~ Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 1.

110

LLL

Table 2-1. Operation Code Map

HI Lo 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NOP SLEEP STC LDC ORC XORC ANDC LDC ADD INC ADDS MOV ADDX DAA
SHLL SHLR ROTXL ~"|ROTX| NOT
1 OR XOR AND suB DEC SuUBS CMP SUBX DAS
SHAL SHAR ROTL ROTR! NEG
2
MOV
3
4 BRA BRN BHI BLS BCC BCS BNE BEQ BVC BVS BPL BMI BGE BLT BGT BLE
5 MULXU | DIVXU \ RTS BSR RTE \ JMP JSR
BST
6 \ MOV™
BIST
BSET BNOT BCLR BTST BOR BXOR BAND BLD
7 MOV \ EEPMOV Bit manipulation instructions
BIOR BIXORL~ BIAND BILD
8 ADD
9 ADDX
A cMP
B SUBX
C OR
D XOR
E AND
E MoV

Note: The PUSH and POP instructions are equivalent in machine language to the MOV instruction. See the descriptions of individual instructions in section 2.2, Instructions, for details.

2.4 List of Instructions

Table 2-2. List of Instructions (1)

Addressing Mode and

Instruction Length (Bytes)

*
=2 |5 8
v ©
2 © @ g o ° [
3| || €22 3|2| condition Code | B
K] XlelE|2 c|Z|Q 2 °
Mnemonic o | Operation #m@)@é@@@.s. I|H|N|[Z|V|C|Z
MOV.B #xx:8, Rd B| #xx:8 — Rd8 2 —|—|?|T|0|—2
MOV.B Rs, Rd B | Rs8 —» Rd8 2 —1—|{%(%l0|—]2
MOV.B @Rs, Rd B| @Rs16 — Rd8 2 —|—|t]3|0|—| 4
MOV.B @(d:16, Rs), Rd | B | @(d:16, Rs16) — Rd8 4 —|—|s|t|0|—]|86
MOV.B @Rs+, Rd B| @Rs16 — Rd8 2 —|—{?!%|0|—|6
Rs16+1 — Rs16
MOV.B @aa:8, Rd B | @aa:8 —» Rd8 ——|?|%{0(—(4
MOV.B @aa:16, Rd B| @aa:16 — Rd8 —|—|%1%]0|—|6
MOV.B Rs, @Rd B| Rs8 — @Rd16 2 —|—[{?|%|0|—| 4
MOV.B Rs, @(d:16, Rd) | B| Rs8 — @(d:16, Rd16) 4 —|—|%{t|0|—]|6
MOV.B Rs, @-Rd B| Rd16-1 — Rd16 2 —|—1t]|t|o|—|6
Rs8 — @Rd16
MOV.B Rs, @aa:8 B | Rs8 » @aa:8 — —|t]%|0|—|4
MOV.B Rs, @aa:16 B | Rs8 » @aa:16 ——{t]|%|0|—|6
MOV.W #xx:16, Rd W/ #xx:16 - Rd 4 —l—{t|t|0|—]| 4
MOV.W Rs, Rd W| Rs16 — Rd16 2 —|—|t|t|0|—]2
MOV.W @Rs, Rd W| @Rs16 — Rd16 2 —|—{t|%|0|—| 4
MOV.W @(d:16, Rs), Rd |W| @(d:16, Rs16) — Rd16 4 —|—{t|%|0|—|6
MOV.W @Rs+, Rd W| @Rs16 — Rd16 2 —|—lt[t]o]|—|8
Rs16+2 — Rs16
MOV.W @aa:16, Rd W| @aa:16 — Rd16 4 —|—|?|%|0|—|6
MOV.W Rs, @Rd W| Rs16 — @Rd16 2 —|—{%1sl0|—|4
MOV.W Rs, @(d:16, Rd) |W| Rs16 — @(d:16, Rd16) 4 —|—{?{%|0]|—]6
MOV.W Rs, @-Rd W| Rd16-2 —» Rd16 2 —|—|t|t|0|—|8
Rs16 —» @Rd16
MOV.W Rs, @aa:16 W| Rs16 - @aa:16 4 —|—|3[T|0|—|86
POP Rd W| @SP — Rd16 2 —|—|t|3|0|—
SP+2 — SP
PUSH Rs W/| SP-2 - SP 2 —|—|t|t|o|—|8
Rs16 —» @SP

112

Table 2-2. List of Instructions (2)

Addressing Mode and

Instruction Length (Bytes)

*
SRR g
20121815 w 2|3 oo o
2 § c & L ;‘é S é} = | Condition Code 3
Mnemonic | Operation % |GG Cé) ®|®\ Q| ElI|H|N|Z|V|c|2
ADD.B #xx:8, Rd B | Rd8+#xx:8 — Rd8 2 —| 31331t 2
ADD.B Rs, Rd B | Rd8+Rs8 — Rd8 —| T[T T]2
ADD.W Rs, Rd W| Rd16+Rs16 — Rd16 2 —o[3|32
ADDX.B #xx:8, Rd B | Rd8+#xx:8+C — Rd8 2 —|{IT|@|T]|T}2
ADDX.B Rs, Rd B | Rd8+Rs8+C — Rd8 2 e A
ADDS.W #1, Rd W| Rd16+1 — Rd16 2 —|—|—f—|—]—1 2
ADDS.W #2, Rd W| Rd16+2 — Rd16 2 ——|—|—|—]—1 2
INC.B Rd B| Rd8+1 — Rd8 2 —|—| %1332
DAA.B Rd B | Rd8 decimal-adjust — Rd8 2 —|*|T|t]|*|®]2
SUB.B Rs, Rd B | Rd8-Rs8 — Rd8 2 —| T3t 2
SUB.W Rs, Rd W| Rd16-Rs16 — Rd16 2 —|o|7|13|T|T]2
SUBX.B #xx:8, Rd B | Rd8-#xx:8-C — Rd8 2 —1T|3l@|2|T]2
SUBX.B Rs, Rd B | Rd8-Rs8-C — Rd8 2 —l3|3l@|%|T]2
SUBS.W #1, Rd W/| Rd16-1 — Rd16 2 ——|—]—|—]— 2
SUBS.W #2, Rd W| Rd16-2 — Rd16 2 ——]—] =] —]—] 2
DEC.B Rd B| Rd8-1 — Rd8 2 —|—2f{T|T|—|2
DAS.B Rd B | Rd8 decimal-adjust — Rd8 2 — x|t *|—|2
NEG.B Rd B| 0-Rd —» Rd 2 —| 3|ttt T]2
CMP.B #xx:8, Rd B | Rd8—#xx:8 2 —| T[Tt
CMP.B Rs, Rd B | Rd8-Rs8 2 —| Tt T]2
CMP.W Rs, Rd W| Rd16-Rs16 2 —|o(3t|T]2
MULXU.B Rs, Rd B | Rd8xRs8 — Rd16 2 —|—|—|—|—{—|14
DIVXU.B Rs, Rd B | Rd16+Rs8 — Rd16 2 ——|®|®|—|—|14

(RdH: remainder,

RdL: quotient)

AND.B #xx:8, Rd B | Rd8a#xx:8 — Rd8 2 —|—| 7| T|0|—]2
AND.B Rs, Rd B | Rd8ARs8 — Rd8 2 —|—|T|{T|0]|—]|2
OR.B #xx:8, Rd B | Rd8v#xx:8 — Rd8 2 —|—|3||0]|—|2
OR.B Rs, Rd B | Rd8vRs8 — Rd8 2 —|—{t{tj{0|—]2
XOR.B #xx:8, Rd B | Rd8®#xx:8 — Rd8 2 —|—|3{T]0]—|2
XOR.B Rs, Rd B | Rd8®Rs8 > Rd8 —|—[t]t]o]|—]2
NOT.B Rd B| Rd > Rd —|—]?[t]0]|—|2

113

Table 2-2. List of Instructions (3)

Addressing Mode and
Instruction Length (Bytes)

ar 2
© e ?::}) © g - g
o 3 e i § £ 2/2| condition Code |5
Mnemonic ® Operation 5&@6@@@%2 1[H[N][Z]Vv]c]|2
SHAL.B Rd B 2 —|—=12|t{2|T]2
L [L[T][]}o
by bo
SHAR.B Rd B 2 —i—|?|%]0|]2
A1
b7 bo
SHLL.B Rd B 2 —|—]%|tj0]|T]|2
oL LI][] [f~o
b7 by
SHLR.B Rd B 2 —|—]0o|%]|0|%]|2
o~ [[1[[][1
by bo
ROTXL.B Rd B 2 —|—|?|T|0|F]2
=L [TI[T]]]
b7 bo
ROTXR.B Rd B I:D:D]:[D:Héh 2 —|—|¥1%|0[3]|2
b7 bo
ROTL.B Rd B 2 —|—|%]%|0(%]2
e LTI
b7 by
ROTR.B Rd B 2 —l—|T]%]0|%]|2
~LLT T
by bo
BSET #xx:3, Rd B| (#xx:3 of Rd8) « 1 2 —|—{—=—|—|—] 2
BSET #xx:3, @Rd B (#xx:3 of @Rd16) « 1 4 —|—|—=]—|—|—| 8
BSET #xx:3, @aa:8 B | (#xx:3 of @aa:8) « 1 4 —|—|—=]—=|—]—| 8
BSET Rn, Rd B | (Rn8 of Rd8) « 1 2 —|—=|—=|—]—]|—] 2
BSET Rn, @Rd B | (Rn8 of @Rd16) « 1 4 —|—|—|—|—|—]| 8
BSET Rn, @aa:8 B | (Rn8 of @aa:8) « 1 4 —|—|——|—|—| 8

114

Table 2-2. List of Instructions (4)

Kddressing Mode and
Instruction Length (Bytes)

*
ElE| ls g
HERGHEER o
° 3 Els|E § 5 @ =| Condition Code | ©
Mnemonic 7 Operation ,15_@@@@@@2 i[n[N[Z]v]c|2
BCLR #xx:3, Rd B | (#xx:3 of Rd8) « 0 2 —|—]—]—]—|—] 2
BCLR #xx:3, @Rd B | (#xx:3 of @Rd16) « 0 4 —|—|—|—|—|—] 8
BCLR #xx:3, @aa:8 B | (#xx:3 of @aa:8) « 0 4 —|—|—=|—|—|—| 8
BCLR Rn, Rd B| (Rn8 of Rd8) « 0 2 ||| =] =] 2
BCLR Rn, @Rd B| (Rn8 of @Rd16) « 0 4 —|—|—]—|—|—| 8
BCLR Rn, @aa:8 B | (Rn8 of @aa:8) « 0 4 —|— == —|—] 8
BNOT #xx:3, Rd B | (#xx:3 of Rd8) « 2 ——| =] === 2
(#xx:3 of Rd8)
BNOT #xx:3, @Rd B | (#xx:3 of @Rd16) « 4 — | —|——|—|—] 8
(#xx:3 of @Rd16)
BNOT #xx:3, @aa:8 B | (#xx:3 of @aa:8) « 4 —|—|—|—|—|—] 8
(#xx:3 of @aa:8)
BNOT Rn, Rd B| (Rn8 of Rd8) « 2 — === =]—] 2
(Rn8 of Rd8)
BNOT Rn, @Rd B| (Rn8 of @Rd16) 4 N R R Y O '
(Rn8 of @Rd16)
BNOT Rn, @aa:8 B| (Rn8 of @aa:8) « 4 —_—| =] —|—]—]8
(Rn8 of @aa:8)
BTST #xx:3, Rd B| (#xx:3 of Rd8) — Z 2 — =] 3 | =]=] 2
BTST #xx:3, @Rd B| (#xx:3 of @Rd16) — Z 4 ——|={2l—]—|8
BTST #xx:3, @aa:8 B| (#xx:3 of @aa:8) —» Z 4 —|—|—| |—|—| &
BTST Rn, Rd B| (Rn8 of Rd8) —» Z 2 ——|= 3 |—|—]| 2
BTST Rn, @Rd B| (Rn8 of @Rd16) — Z 4 — ==t |—I—]8
BTST Rn, @aa:8 B| (Rn8 of @aa:8) - Z 4 — ==t |—|—|8&
BLD #xx:3, Rd B | (#xx:30f Rd8) —» C 2 —|—|—|—=]—2]2
BLD #xx:3, @Rd B | (#xx:3 of @Rd16) —» C 4 —|—=|—=|—|—| 1|6
BLD #xx:3, @aa:8 B| (#xx:3 of @aa:8) » C 4 —|—|—{—]|—| % | 6
BILD #xx:3, Rd B| (#xx:3 of Rd8) —» C 2 —|—|=]—=|=] 22
BILD #xx:3, @Rd B| (#xx:3 of @Rd16) — C 4 —|—|—=[=|—=|21l8
BILD #xx:3, @aa:8 B| (#xx:3 of @aa:8) » C 4 ———|={—|1l8
BST #xx:3, Rd B| C — (#xx:3 of Rd8) 2 — =] —|—=—]—] 2
BST #xx:3, @Rd B| C — (#xx:3 of @Rd16) 4 —|—|—|—|—|—| 8
BST #xx:3, @aa:8 B | C — (#xx:3 of @aa:8) 4 —|—|—|—|—]—| 8

115

Table 2-2. List of Instructions (5)

Addressing Mode and
Instruction Length (Bytes)

*

qHAR g

2| €955 sl8] o 2

' 8 . Branching g cElB né; 8| 5| §| 5| _Condition Code g
Mnemonic | Operation | Condition |%|c|®|®|®|®|®|®|E|1|H|N|z|V]c|2
BIST #xx:3, Rd B| C — (#xx:3 of Rd8) 2 —| =] === —] 2
BIST #xx:3, @Rd B| C — (#xx:3 of @Rd16) 4 —|—|—|—|—|—| 8
BIST #xx:3, @aa:8 B| C — (#xx:3 of @aa:8) 4 ||| —=|—]—| 8
BAND #xx:3, Rd B | Ca(#xx:3 of Rd8) —» C 2 —_—=]—=]—|]2
BAND #xx:3, @Rd B | Ca(#xx:3 of @Rd16) - C 4 —|—|—|—=1—] |6
BAND #xx:3, @aa:8 B | CA(#xx:3 of @aa:8) —» C 4 —|—|—]—|—{t]6
BIAND #xx:3, Rd B| Ca(#xx:3 of Rd8) — C 2 —|—|—f{=|—|t]2
BIAND #xx:3, @Rd B| Ca(#xx:3 of @Rd16) — C 4 =] —=]=|—=] 218
BIAND #xx:3, @aa:8 B | Ca(#xx:3 of @aa8) — C 4 —| =] —=|=l—| 1|8
BOR #xx:3, Rd B | Cv(#xx:3 of Rd8) —» C 2 ——|—=]—=]—=] 3] 2
BOR #xx:3, @Rd B | Cv(#xx:3 of @Rd16) - C 4 —|—|—]—|—| 316
BOR #xx:3, @aa:8 B| Cv(#xx:3 of @aa:8) » C 4 —|—|—|—|—| | 6
BIOR #xx:3, Rd B | Cv(#xx:3 of Rd8) — C 2 —|—|=]=]—|1t]2
BIOR #xx:3, @Rd B | Cv(#xx:3 of @Rd16) - C 4 N R O p S I
BIOR #xx:3, @aa:8 B | Cv(#xx:3 of @aai8) » C 4 —|—|—]—=|—{t]s
BXOR #xx:3, Rd B| CoO(#xx:3 of Rd8) —» C 2 ——]—=|—]—| %2
BXOR #xx:3, @Rd B | C®(#xx:3 of @Rd16) —» C 4 —|—|—=]—|—/t|6
BXOR #xx:3, @aa:8 B | Co®(#xx:3 of @aa:8) » C 4 —|—|—|—]—|2%1]6
BIXOR #xx:3, Rd B| Co@#xx:3 of Rd8) —» C 2 — || === 112
BIXOR #xx:3, @Rd B| Co(#xx:3 of @Rd16) - C 4 —|—|—=|=|—=|1t16
BIXOR #xx:3, @aa:8 B | Co(#xx:3 of @aa:8) » C 4 —|—|—|—|—|t|8
BRA d:8 (BT d:8) —| PC « PC+d:8 2 —|—|=|—=|—|—| 4
BRN d:8 (BF d:8) —| PC « PC+2 2 —|—|—=|—|—|—] 4
BHId:8 —| if condition | CvZ =0 2 —| =] =] =] —=|—] 4
BLS d:8 —| glvethen ooz 2 Y Y R
BCC d:8 (BHS d:8) —| PC+d:8 C=0 2 —|—|=|—|—|—| 4
BCS d:8 (BLO d:8) _| elsenext; |5 2 Y D D A
BNE d:8 — Z=0 2 —|—|—|—]—|—| 4
BEQd:8 — Z=1 2 —|—|—|—|—|—] 4
BVC d:8 — V=0 2 === —]| 4
BVS d:8 — V=1 2 —|—|—=|—|—|—] 4

116

Table 2-2. List of Instructions (6)

- T . .Rddressing Mode and
Instruction Length (Bytes)
*
glil s 4
© m. ® e 8 g
S ,“_’ c B o« g E . ‘s
g Branching e Elo|®|8|s|®|a Condition Code o
Mnemonic @ | Operation | Condition || |®|® (éJ ®|®|QE|I|H|N|Z|V|c|2
BPL d:8 —| if condition | N =0 2 || = === 4
) is true then
BMI d:8 = pPc N=1 2 —|—|—=|—]|—|—] 4
BGE d:8 —| PC+d:8 N®V =0 2 — === —]—] 4
BLT d:8 —| elsenext | NGy - 1 2 === 4
BGT d:8 — Zv(N®V) = 0 2 —|—| == —|—]| 4
BLE d:8 — Zv(N®V) = 1 2 —|—|—=|—|—|—] 4
JMP @Rn —| PC « Rn16 2 ——|—| =] —[—| 4
JMP @aa:16 —| PC « aa:16 4 —|—|—|—]—|—| &
JMP @@aa:8 —| PC « @aa:8 2 | —|—|—]—|—] 8
BSRd:8 —| SP-2 -» SP 2 ——| =] —=|—]—| 6
PC - @SP
PC « PC+d:8
JSR @Rn —| SP-2 —» SP 2 —|—|—|—]—|—] &
PC —» @SP
PC « Rn16
JSR @aa:16 —| SP-2 —» SP 4 —|—|—|—]—|—] 8
PC - @SP
PC « aa:16
JSR @@aa:8 SP-2 — SP 2 —|—|—=|—|—|—| 8
PC - @SP
PC « @aa:8
RTS —| PC « @SP 2 [—|—|—|—]—|—| 8
SP+2 — SP
RTE —| CCR « @SP 2121212122210
SP+2 — SP
PC « @SP
SP+2 —» SP
SLEEP —| Transit to sleep mode. 2 | —|—|—|—|—|—] 2
LDC #xx:8, CCR B | #xx:8 - CCR 2 ol ol ol ol ol ol 92
LDC Rs, CCR B| Rs8 —» CCR SRR I BoR o e
STC CCR, Rd B| CCR — Rd8 — || = =] == 2
ANDC #xx:8, CCR B | CCRA#xx:8 —» CCR TiTjefeis|tie
ORC #xx:8, CCR B | CCRv#xx:8 — CCR sleltisists]2

117

Table 2-2. List of Instructions (7)

Addressing Mode and
Instruction Length (Bytes)
*
SERE 8
© c8lele] |, &
2 Z|E|2|%|8|2| condition code |
2 5:5"":“6"%1 onuonoeo_
Mnemonic | Operation £ €68 @ ©|® 6| E[1[H][N[Z]V]c|2
XORC #xx:8, CCR B | CCR®#xx:8 —» CCR 2 T[Tt 2
NOP —| PC « PC+2 2 |—|—|—|—|—|—]| 2
EEPMOV —| ifR4L=0 4| —|—|—|—|—|—|®
Repeat @R5 — @R6
R5+1 - R5
R6+1 - R6
R4L-1 — R4L
Until R4L =0
else next;

Notes: * The number of execution states indicated here assumes that the operation code and operand data are
in on-chip memory. For other cases, refer to section 2.5, Number of Execution States.

Set to 1 when there is a carry or borrow at bit 11; otherwise cleared to 0.

When the result is 0, the previous value remains unchanged; otherwise cleared to 0.

Set to 1 when there is a carry in the adjusted result; otherwise the previous value remains unchanged.
The number of execution states is 4n + 9, with n being the value set in R4L.

Set to 1 when the divisor is negative; otherwise cleared to 0.

Set to 1 when the divisor is 0; otherwise cleared to 0.

[CECECEZNCRC)

118

2.5 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution.
Table 2-3 indicates the number of states required for each cycle (instruction fetch, branch
address read, stack operation, byte data access, word data access, internal operation).

Table 2-4 indicates the number of cycles of each type occurring in each instruction. The total
number of states required for execution of an instruction can be calculated from these two

tables as follows:

Execution states = I X ST+ I x SI+ K xSK+ L X SL+ M x SM + N x SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is
accessed.

1. BSET #0, @FF00
From table 2-4:
I=L=2, J=K=M=N=0
From table 2-3:
Si=2, SL=2
Number of states required for execution = 2x2 +2x2 =8
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM,
and on-chip RAM is used for stack area.

2. JSR @@ 30
From table 2-4:
I=2, J=K=1, L=M=N=0
From table 2-3:
Si=81=8k=2
Number of states required for execution = 2x2+1x2+1x2=8

119

Table 2-3. Number of States Taken by Each Cycle in Instruction Execution

Execution Status Access Location
(instruction cycle) On-Chip Memory On-Chip Peripheral Module
Instruction fetch St
Branch address read Sy
Stack operation Sk 2
Byte data access SL 2 or 3*
Word data access Sm
Internal operation SN 1

* Depends on which on-chip module is accessed. See the applicable hardware manual for
details.

120

Table 2-4.

Number of Cycles in Each Instruction

Instruction

Mnemonic

Instruction
Fetch

Branch
Addr. Read

Stack
Operation

Byte Data
Access

‘Word Data
Access

Internal
Operation

I

J

K

L

M

N

ADD

ADD.B #xx:8,Rd
ADD.B Rs,Rd
ADD.W Rs, Rd

1

ADDS

ADDS.W #1/2,Rd

ADDX

ADDX.B #xx:8, Rd
ADDX.B Rs, Rd

AND

AND.B #xx:8,Rd
AND.B Rs, Rd

ANDC

ANDC #xx:8, CCR

BAND

BAND #xx:3, Rd
BAND #xx:3, @Rd
BAND #xx:3, @aa:8

Bee

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d8
BLS d:8
BCC d:8 (BHS d:8)
BCS d:8 (BLO d:8)
BNE d:8
BEQ d:8
BVC d:8
BVS d:8
BPL d:8
BMI d:8
BGE d:8
BLT d8
BGT d:8
BLE d:8

B NN N NN NN NN

BCLR

BCLR #xx:3,Rd
BCLR #xx:3, @Rd
BCLR #xx:3, @aa:8
BCLR Rn, Rd

—

Lol * T S]

121

Instruction

Mnemonic

Instruction
Fetch

Branch
Addr. Read

Stack
Operation

Byte Data
Access

Word Data
Access

Internal
Operation

J

K

L

M

N

BCLR

BCLR Rn, @Rd
BCLR Rn, @aa:8

I
2
2

2
2

BIAND

BIAND #xx:3,Rd
BIAND #xx:3, @Rd
BIAND #xx:3, @aa:8

BILD

BILD #xx:3,Rd
BILD #xx:3, @Rd
BILD #xx:3, @aa:8

NN =N N

BIOR

BIOR #xx:3,Rd
BIOR #xx:3, @Rd
BIOR #xx:3, @aa:8

BIST

BIST #xx:3, Rd
BIST #xx:3, @Rd
BIST #xx:3, @aa:8

[N e B S

BIXOR

BIXOR #xx:3, Rd
BIXOR #xx:3, @Rd
BIXOR #xx:3, @aa:8

NN

BLD

BLD #xx:3,Rd
BLD #xx:3, @Rd
BLD #xx:3, @aa:8

[R

BNOT

BNOT #xx:3,Rd
BNOT #xx:3, @Rd
BNOT #xx:3, @aa:8
BNOT Rn, Rd
BNOT Rn, @Rd
BNOT Rn, @aa:8

NN = NN

BOR

BOR #xx:3,Rd
BOR #xx:3, @Rd
BOR #xx:3, @aa:8

—

NN

BSET

BSET #xx:3,Rd
BSET #xx:3, @Rd
BSET #xx:3, @aa:8
BSET Rn, Rd
BSET Rn, @Rd

[NCT S

122

Instruction | Branch Stack [Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read |Operation| Access Access [Operation
I J K L M N
BSET BSET Rn, @aa:8 2 2
BSR BSR d:8 2 1
BST BST #xx:3,Rd 1
BST #xx:3, @Rd 2 2
BST #xx:3, @aa:8 2 2
BTST BTST #xx:3,Rd 1
BTST #xx:3, @Rd 2 1
BTST #xx:3, @aa:8 2 1
BTST Rn, Rd 1
BTST Rn, @Rd 2 1
BTST Rn, @aa:8 2 1
BXOR BXOR #xx:3, Rd 1
BXOR #xx:3, @Rd 2 1
BXOR #xx:3, @aa:8 2 1
CMP CMP, B #xx:8, Rd 1
CMP. B Rs, Rd 1
CMP.W Rs, Rd 1
DAA DAABRAd 1
DAS DAS.BRd 1
DEC DEC.BRd 1
DIVXU DIVXU.B Rs, Rd 1 12
EEPMOV [EEPMOV 2 2n+42* 1
INC INC.BRd 1
IMP JMP @Rn 2
JMP @aa:16 2 2
JMP @@aa:8 2 1
JSR JSR @Rn 2 1
JSR @aa:16 2 1 2
JSR @@aa:8 2 1 1
LDC LDC #xx:8, CCR 1
LDC Rs, CCR 1
MOV MOV.B #xx:8, Rd 1
MOV.B Rs, Rd 1
MOV.B @Rs, Rd 1 1

123

Instruction | Branch Stack |Byte Data [Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N
MOV MOV.B @(d:16, Rs),Rd 2 1
MOV.B @Rs+, Rd 1 1 2
MOV.B @aa:8,Rd 1 1
MOV.B @aa:16,Rd 2 1
MOV.B Rs, @Rd 1 1
MOV.B Rs, @(d:16, Rd) 2 1
MOV.B Rs, @-Rd 1 1 2
MOV.B Rs, @aa:8 1 1
MOV.B Rs, @aa:16 2 1
MOV.W #xx:16, Rd 2
MOV.W Rs, Rd 1
MOV.W @Rs, Rd 1 1
MOV.W @(d:16, Rs), Rd 2 1
MOV.W @Rs+, Rd 1 1 2
MOV.W @aa:16, Rd 2 1
MOV.W Rs, @Rd 1 1
MOV.W Rs, @(d:16, Rd) 2 1
MOV.W Rs, @-Rd 1 1 2
MOV.W Rs, @aa: 16 2 1
MULXU |MULXU.BRs,Rd 1 12
NEG NEG.BRd 1
NOP NOP 1
NOT NOT.B Rd 1
OR OR.B #xx:8,Rd 1
OR.B Rs,Rd 1
ORC ORC #xx:8, CCR 1
POP POP Rd 1 1
PUSH PUSH Rs 1 1
ROTL ROTL.B Rd 1
ROTR ROTR.BRd 1
ROTXL |ROTXL.BRd 1
ROTXR |ROTXR.BRd 1
RTE RTE 2 2 2
RTS RTS 2 1

124

Instruction | Branch Stack [Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access [Operation
I J K L M N

SHLL SHLL.B Rd 1
SHAL SHAL.B Rd 1
SHAR SHAR.B Rd 1
SHLR SHLR.BRd 1
SLEEP SLEEP 1
STC STC CCR, Rd 1
SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1
SUBS SUBS.W #1/2,Rd 1
SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1
XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1
XORC XORC #xx:8, CCR 1

* n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.

125

Section 3. CPU Operation States

There are three CPU operation states, namely, program execution state, power-down state, and
exception-handling state. In power-down state there are sleep mode, standby mode, and watch
mode. These operation states are shown in figure 3-1. Figure 3-2 shows the state transitions.
For further details please refer to the applicable hardware manual.

r State J—H Program execution state

Active mode I

The CPU executes successive program instructions,
synchronized by the system clock.

Subactive mode

The CPU executes ;
successive program !

; > - { Low-power modes
instructions in low-

speed operations,
synchronized by the
subclock.

‘(Power-down state Sleep mode } ______ 3

A state in which some or all
of the chip functions are
stopped to conserve power.

Standby mode

Watch mode } """"

_i Exception-handling state

A transient state in which.the CPU changes
the processing flow due to a reset or an interrupt.

Figure 3-1. CPU Operation States

127

Reset cleared

Exception-
handling state

Reset state

Reset occurs

Interrupt
raised

Interrupt
raised

Interrupt handling

Reset complete

occurs

Program
execution state

Power-down state

SLEEP instruction executed

Note: On the transitions between modes, see the applicable hardware manual.

Figure 3-2. State Transitions
3.1 Program Execution State
In program execution state the CPU executes program instructions in sequence.
3.2 Exception Handling States
Exception-handling states are transient states occurring when exception handling is raised by a
reset or interrupt, and the CPU changes its normal processing flow, branching to a start address
acquired from a vector table. In exception handling caused by an interrupt, PC and CCR
values are saved to the stack, with reference made to a stack pointer (R7).
3.2.1 Types and Priorities of Exception Handling
Exception handling includes processing of reset exceptions and of interrupts. Table 3-1

summarizes the factors causing each kind of exception, and their priorities. Reset exception
handling has the highest priority.

128

Table 3-1. Types of Exception Handling and Priorities

Timing for start of

Priority Exception source Detection timing exception handling
High Reset Clock-synchronous ~ Reset exception handling starts as
soon as RES pin changes from low
to high.
Interrupt End of instruction When an interrupt request is made,
execution* interrupt exception handling starts

after execution of the present
Low instruction is completed.

* Interrupt detection is not made upon completion of ANDC, ORC, XORC, and LDC

instruction execution, nor upon completion of reset exception handling.
3.2.2 Exception Sources and Vector Table
The factors causing exception handling can be classified as in figure 3-3.

For details of exception handling, the vector numbers of each source, and the vector addresses,
see the applicable hardware manual.

Reset
Exception source External interrupt

Interrupt

Internal interrupt
(interrupt raised by on-chip peripheral module)

Figure 3-3. Classification of Exception Sources

129

3.2.3 QOutline of Exception Handling Operation

A reset has the highest priority of all exception handling. After the RES pin goes to low level
putting the CPU in reset state, the RES pin is then put at high level, and reset exception
handling is started at the point when the reset conditions are met. For details on reset

- conditions refer to the applicable hardware manual. When reset exception handling is started,
the CPU gets a start address from the exception handling vector table, and starts executing the
exception handling routine from that address. During execution of this routine and

immediately after, all interrupts including NMI are masked.

When interrupt exception handling is started, the CPU refers to the stack pointer (R7) and
pushes the PC and CCR contents to the stack. The CCR I bit is then set to 1, a start address is
acquired from the exception handling vector table, and the interrupt exception handling routine
is executed from this address. The stack state in this case is as shown in figure 3-4.

f\/

SP-4 SP (R7) —=
SP-3 SP+1
SP-2 SP+2
SP -1 SP+3

SP (R7) — SP+4

Prior to start of interrupt ———————— After completion of interrupt

exception handlin Contents exception handlin
P 9 saved to stack P 9

Notation

PCy: Upper 8 bits of program counter (PC)
PCy: Lower 8 bits of program counter (PC)
CCR: Condition code register

SP: Stack pointer

Notes: * Ignored on return from interrupt.
1. PC shows the address of the first instruction to be executed upon
return from the interrupt.
2. Saving and restoring of register contents must always be done
in word size, and must start from an even-numbered address.

Figure 3-4. Stack State after Completion of Interrupt Exception Handling

130

3.3 Reset State

When the RES pin goes to low level, all processing stops and the system goes to reset state.
The I bit of the condition code register (CCR) is set, masking all interrupts.

After the RES pin is changed externally from low to high level, reset exception handling starts
at the point when the reset conditions are met. For details on reset conditions refer to the
applicable hardware manual.

3.4 Power-Down State

In power-down state the CPU operation is stopped, reducing power consumption. For details
see the applicable hardware manual.

131

Section 4. Basic Operation Timing

CPU operation is synchronized by a clock (¢). The period from the rising edge of ¢ to the next
rising edge is called one state. A memory cycle or bus cycle consists of two or three states.
For details on access to on-chip memory and to on-chip peripheral modules see the applicable
hardware manual.

4.1 On-chip Memory (RAM, ROM)

Two-state access is employed for high-speed access to on-chip memory. The data bus width is
16 bits, allowing access in byte or word size. Figure 4-1 shows the on-chip memory access

cycle.

; Bus cycle ;
T, state ; T, state
Internal address bus X Address

Internal data bus* k
(read access) j“(Read data

' '
'

Internal write signal E i\ if
Internal data bus*) . >~
(write access) > (. Write data F

Internal read signal : \ i :/

Note: A 16-bit data bus is used making possible access to word-size
data in 2 states.

Figure 4-1. On-Chip Memory Access Cycle

133

4.2 On-chip Peripheral Modules and External Devices

On-chip peripheral modules are accessed in two or three states. The data bus width is 8 bits,
so access is made in byte size only. Access to word data or instruction codes is not possible.

Figure 4-2 shows the on-chip peripheral module access cycle.

Bus cycle ;

A
\

T, state T, state :

P
-t —}
' i
i
'
i
‘
I
'
V
v
'

S e

?

Internal address bus Address X
Internal read signal : '/
Internal data bus*).
(read access) Read data)

\ r

Write data >*

Internal write signal

Internal data bus*
(write access)

A

(a) Two-state access

Bus cycle

Iy
AN

T, state T, state T, state

|

Internal address bus Address

Internal read signal

i
'
'
'
'
h
L
T
'
.

Internal data bus*

(read access) Read data

Internal write signal

emmosoaeens

T
'
'
'
'
i
'
'
T
'
'
'

Internal data bus*

(write access) Write datal

TTJLJ

(b) Three-state access

Note: An 8-bit data bus is used.

Figure 4-2. On-Chip Peripheral Module Access Cycle

134

H8/300L Series Programming Manual

Publication Date: 1st Edition, December 1991
Published by: Semiconductor and IC Div.
Hitachi, Ltd.
Edited by: Application Engineering Dept.
Hitachi Microcomputer System Ltd.
Copyright ‘C) Hitachi, Ltd., 1991. All rights reserved. Printed in Japan.

HITACHI, LTD. SEMICONDUCTOR AND
INTEGRATED CIRCUITS DIVISION SALES OFFICE

HEAD QUARTERS
Semiconductor & IC Div.
Karukozaka MN Bidg., 2-1, Ageba-cho,
Shinjuku-ku, Tokyo 162, Japan
Tel: Tokyo (03) 3266-9376
Fax: (03) 3235-2375

USA

Headquarters
Hitachi America, Ltd.
Semiconductor & IC Div.
2000 Sierra Point Parkway
Brisbane, CA. 94005-1819
Tel: 415-589-8300
Fax: 415-583-4207

Northwest Regional Office
1900 McCarthy Boulevard
Milpitas, CA. 95131
Tel: 408-954-8100
Fax: 408-954-0499

Southwest Regional Office
18300 Von Karman Avenue, Suite 730
Irvine, CA. 92715
Tel: 714-553-8500
Fax: 714-553-8561

South Central Regional Office
2 Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX. 75240
Tel: 214-991-4510
Fax: 214-991-6151

Mid Atlantic Regional Office
1700 Galloping Hill Road
Kenilworth, NJ. 07033
Tel: 201-245-6400
Fax: 201-245-6071

North Central Regional Office
500 Park Boulevard, Suite 415
ltasca, IL. 60143
Tel: 312-773-4864
Fax: 312-773-9006

Northeast Regional Office
77 Bedford St.
Burlington, MA. 01803
Tel: 617-229-2150
Fax: 617-229-6554

Automotive Regional Office

6 Parklane Boulevard, Suite 558
Dearborn, MI. 48126

Tel: 313-271-4410

Fax: 313-271-5707

EUROPE (CE)
Headquarters

Hitachi Europe GmbH

Electronic Components Div.

Central Europe Headquarters
Hans-Pinsel-StraBe 10A

8013 Haar bei Miinchen, F. R. Germany
Tel: 089-46140 ’

Fax: 089-463068

Branch Office

Hitachi Europe GmbH
Electronic Components Div.
Central Europe Headquarters
Breslauer StraBe 6

4040 Neuss 1, F. R. Germany
Tel: 02101-15027 to 9

Fax: 02101-10513

Hitachi Europe GmbH

Electronic Components Div.
Central Europe Headquarters
Verkaufsbiro Stuttgart
FabrikstraBe 17

7024 Filderstadt 4, F. R. Germany
Tel: 0711-772011

Fax: 0711-7775116

Hitachi Europe GmbH

Electronic Components Div.

Bureau de représentation en France
Immeuble “Les Gemeaux”

2, Rue Antoine Etex

F-94020 Creteil Cedex, France

Tel: 1-43394500

Fax: 1-43398493

Hitachi Europe GmbH
Electronic Components Div.
00158 Roma

Via Pescosolido, 154, Italy
Tel: 06-4510146, 4510147
Fax: 06-4510148

Hitachi Europe GmbH
Electronic Components Div.
Via L. Rizzo 8

1-20151 Milano, ltaly

Tel: 02-33404180

Fax: 02-33404152

EUROPE (NE)
Headquarters
Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: 0628-585000
Fax: 0628-778322

Branch Office
Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Haukadalsgatan 10
Box 1062, S-164 21 Kista, Sweden
Tel: 08-751-0035
Fax: 08-751-5073

ASIA

Headquarters
Hitachi Asia Pte. Ltd.
78 Shenton Way #11-01
Singapore 0207
Tel: 221-6131, 7355
Fax: 225-4225, 221-4474

Branch Office
Hitachi Asia Pte. Ltd.
Taipei Branch Office
9 th FI. =1 No.64, Tun—Hwa N. Road
Taipei Financial Center
Taipei, Taiwan
Tel: 02-741-4021 to 6
Fax: 02-752-1567

ASIA(HK)
Headquarters
Hitachi Asia (Hong Kong) Ltd.
Unit 706, North Tower,
World Finance Centre, Harbour City
Canton Road, Tsimshatsui, Kowloon
Hong Kong
Tel: 852-7359218
Fax: 852-7306071

Branch Office
Hitachi Asia (Hong Kong) Ltd.
Seoul Branch Office
18 Floor Kukje Center Building
191, 2-Ka, Hanggang-Ro
Yongsan-Ku, Seoul, Korea
Tel: 796-3115, 3647 to 8
Fax: 796-2145

Hitachi Asia (Hong Kong) Ltd.

Beijing Office

Room 1412, Beijing Fortune Building,
5 Dong San Huan Bei-lu,

Chaoyang District, Beijing

People’s Republic of China

Tel: 501-4351-4

Fax: 501-4350

@ HITACHI

ADE-602-040(0)

