Y
Hitackd "2

semiconductor .-

SuperH RISC engine:

SH-1/SH-2

- HITACHI

. Programming
: | Manual 1

3rd Edition - i

i
i

SuperH RISC engine

SH-1/SH-2
Programming Manual

HITACHI

When using this document, keep the following in mind:

1.
2.

3.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without Hitachi's permission.

Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons
during operation of the user's unit according to this document.

Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of
Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the
written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life
support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.

Revised Sections and Contents

Page Section Revision Contents
All — Changed SH7000/SH7600 Series into SH-1/SH-2
27 Table 5.7 Branch Instructions Table modified
30-32 Table 5.9 Instruction Set Table modified
47 6.7 BF/S Description added
49 6.8 BRA Description added
50 6.9 BRAF Description modified
51 Description added
53 6.10 BSR Description added
54 6.11 BSRF Description modified
57 6.13 BT/S Description added
63 6.16 CMP/cond Description modified
78 6.25 JMP Description added and modified
79 6.26 JSR Description modified
80 Description added
107 6.38 MUL.L Description modified
120 6.50 RTE Description added
121 6.51 RTS Description added
131 6.59 SLEEP Description modified
139 6.65 SWAP Description modified
155 7.6 Programming Guide Description modified
175 Multiply/Accumulate Instruction (SH-1 CPU) Description modified
181 Multiply/Accumulate Instruction (SH-2 CPU) Description modified
194 Double-Length Multiply/Accumulate Description modified
Instruction (SH-2 CPU)
202 Multiplication Instructions (SH-1 CPU) Description modified
208 Multiplication Instructions (SH-2 CPU) Description modified
215 Figure 7.67 DMULS.L Instruction Immediately Description modified
After Another DMULS.L Instruction

. 220 Double-Length Multiplication Instructions Description modified
229 Unconditional Branch Instructions Description modified
235 Register-MAC Transfer Instructions Description modified
236 Memory-MAC Transfer Instructions Description modified
237 MAC-Register Transfer Instructions Description modified
238 MAC-Memory Transfer Instructions Description modified
243 Address Error Exception Processing Description modified
246 Table A.1 Instrustion Set by Addressing Mode Table modified
251 Table A.6 Destination Operand Only Table modified
255 Table A.18 PC Relative Addressing with Rm Table modified

Page Section Revision Contents

257 Table A.22' Instruction Sets by Format Table modified
260 Table A.26 Indirect Register Addressing Table modified
261 Table A.29 Indirect Register Table modified

Table A.31 PC Relative Addressing with Rm

269, 272, Table A.50 Instruction Set by Instruction Code Table modified
273

276, 277 Table A.51 Operation Code Map Table modified

Introduction

The SuperH RISC engine family incorporates a RISC (Reduced Instruction Set Computer) type
CPU. A basic instruction can be executed in one.clock cycle, realizing high performance
operation. A built-in multiplier can execute multiplication and addition as quickly as DSP.

The SuperH RISC engine has SH-I CPU, SH-2 CPU, and SH-3 CPU cores.

The SH-1 CPU, SH-2 CPU and SH-3 CPU have an instruction system with upward compatibility
at the binary level.

SH-3 CPU MMU support
SH-2 CPU Operation instruction enhancement| 68 instructions
SH-1 CPU 62 instructions

56 basic instructions

Refer to the programming manual for the method of executing the instructions or for the
architecture. You can also refer to this programming manual to know the operation of the pipe
line, which is one of the features of the RISC CPU.

This programming manual describes in detail the instructions for the SH-1 CPU and SH-2 CPU
instructions. For the SH-3 CPU, refer to the separate volume of SH-3 CPU programming manual.

For the hardware, refer to individual hardware manuals for each unit.

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items
and the sections listed within this manual that cover those items.

Table 1 Manual Organization
Category Section Title Contents
Introduction 1. Features CPU features
Architecture (1) 2. Register Types and configuration of general registers,
Configuration control registers and system registers
3. Data Formats Data formats for registers and memory
Introduction to 4. Instruction Instruction features, addressing modes, and
instructions Features instruction formats :

5. Instruction Sets

Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

6. Instruction
Descriptions

Operation of each instruction in alphabetical order

Architecture (2)

7. Pipeline Operation

Pipeline flow, and pipeline flows with operation for
each instruction

Instruction code

Appendixes:
Instruction Code

Operation code map

Table 2 Subjects and Corresponding Sections
Category Topic Section Title
Introduction and CPU features 1. Features

features Instruction features 4.1 RISC-Type Instruction Set
Pipelines 7.1 Basic Configuration of
Pipelines
7.2 Slot and Pipeline Flow
Architecture Register configuration 2. Register Configuration
Data formats 3. Data Formats

Pipeline operation

7. Pipeline Operation

Introduction to
instructions

Instruction features

4. Instruction Features

Addressing modes

4.2 Addressing Modes

Instruction formats

4.3 Instruction Formats

List of
instructions

Instruction sets

5.1 Instruction Set by
Classification

5.2 Instruction Set in
Alphabetical Order

Appendix A.1 Instruction Set by
Addressing Mode

Appendix A.2 Instruction Set by
Instruction Format

Instruction code

Appendix A.3 Instruction Set in
Order by
Instruction Code

Appendix A.4 Operation Code
Map

Detailed
information on
instructions

Detailed information on instruction
operation

6. Instruction Description

7.7 Instruction Pipeline
Operations

Number of instruction execution states

7.3 Number of Instruction
Execution States

Functions Listed by CPU Type

This manual is common for both the SH-1 and SH-2 CPU. However, not all CPUs can use all the
instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type

Item SH-1 CPU SH-2 CPU
Instructions BF/S No Yes
BRAF No Yes
BSRF No Yes
BT/S No Yes
DMULS.L No Yes
DMULU.L No Yes
DT No Yes
MAC.L No Yes
MAC.W*! (MAC)*2 16x 16 +42 - 16 x 16 + 64 — 64
42
MUL.L No Yes
All others Yes Yes
States for multiplication 16 x 16 — 32 Executed in 1-3*3 Executed in 1-3*3states
operation (MULS.W, MULU.W)*2 states
32x32—32(MULL) No Executed in 2—4 *3states
32x32 - 64 No Executed in 2—4 *3states
(DMULS.L, DMULU.L)
States for multiply and 16 x 16 + 42 —» 42 Executed in No
accumulate operation (SH-1, MAC.W) 3/(2)*3 states
16 x 16 + 64 — 64 No Executed in states 3/(2)*3
(SH-2, MAC.W)
32x32+64—64 No Executed in 2—4 states
(MAC.L) 3/(2~4)*3

Notes: 1. MAC.W works differently on different LSIs.

2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the
number in contention with preceding/following instructions).

Contents

SECHION 1 FEAMUIESouevrerrcincriceiceieeseiteasseiesetssess s ssssessssssessse s sssssssssssssasssssnes
Section2 Register Configuration...........ccoccovceevrueeuunnee ceevaereeaseaenneees -
2.1 General REZISIETS.....cccoeiviruirenirueeirescraeeerenisnessessesessessasnsssasanns
2.2 Control REGISIErS.....ceeevereireeerrirerrecrerenssesseesensessseersenees
2.3 System REGiSLErSouuveiuriircniirisenicrecnieesisesnsaens
2.4 Initial Values of Registers
Section 3 Data FOTMALSc.ccuueeecrreeeereeeeeneciseeise et ssse s ssesssssssssesssssssssssasens],
3.1 Data FOrmat in REGISIEISccuiucviruevriiriniireentnteieetenestersnsaentssssesessessssesssassessesessesssesesssssasas
3.2 Data FOrmat in MEMOTYc.coceieuiiruerinuiescrsertresseesistsssesceescssetsscssesneesssesssaseassesssassansenss -
3.3 Immediate Data FOIMAL.........cocvveveriririnireenteteieeresesnsesseiesesessesessestssessssssessessssssssessesasesses
Section 4 INStruction FEALUTESc.ocveueeemincemreireicrieiescsenis e sesessesssessssiaesisees
4.1 RISC-Type INSIIUCLION Stcuccviuieriiniiriieienieiereserericsestesesnestentesesnessesesassessessasessassense -
4.1.1 16-Bit FiXed Length.......cccoceueieereiirieeeeerieeneeceninieecnsesssiecsessessessssesensssssssesens
4.1.2 One INSrUCHON/CYCI ...ccviuvereererrinraeinreesiereiseessesaersessnessesanessessesssssesssssessessenes -
4.1.3 Data Length ..c.ooucvicomiieiineitiicitctentiecntestss sttt sese e et e st esassesnensene
4.1.4 Load-Store ArCHItECIUIE........ccveeeirerieriierieentrencrtreenetenie et aesesessasesenseseanes
4.1.5 Delayed Branch INSTUCHONS........couvuiiiieiieniinreiissesteseneeserenssesssaesecsssesesensen
4.1.6 Multiplication/Accumulation Operation...........cceevvercrereecerentesreneereeseseeniesenne -
41T T Biluiicrcii b et b nes
4.1.8 ImMmediate Data........co.veiiininiiniiiciiiiciitcree st es e e ses
4.1.9 ADSOIULE AQAIESS...cuvenieiriininiiiitititicae ettt st ss e sttt sseeassens
4.1.10 16-Bit/32-Bit DiSplacement.........cccccveevererrreunterereneereninteseesersereesessessesssesesassens
4.2 AdAressing MOGES......ccoveueeereeereirnieisnceecteteeterestetesearetssssesssseseesassssssassesassesssessesassases
4.3 INSrUCHION FOIMALcccovemiirerieiriieaeeieecetectete ettt esesestsassesesaesaasassonstassesasesasansesssensan
Section 5 INSLIUCLION SEL......ocuieiieecireeeceeirese et ensaees .
5.1 Instruction Set by ClasSifiCAtIONc.c.ceveeeerererriniertennieetreeuenitereniesestesessessessesessesesesssseseses
55.1 Data Transfer INSIIUCHIONScccvirevmiriierninniiniientesnescsentresseesssestsesessesesescseneses
5.1.2 Arithmetic INSITUCHONScovvuerueiereeirreeeerteteteerinteeteeeseseereserese et a st esesessaens -
5.13 Logic Operation INSLrUCLIONSc..couercrueeuenirieniereresteineesetsesseeeesessestasssassessens
5.1.4 Shift INSLIUCHONS ...c.cuviuercurieereetcietetrireteetetree st eteeeseseereeerese e e e st s sesesassas .
5.1.5 Branch INSTUCLIONS «...c.veueueeieveeineieiieteieietee sttt steese e ere e e st eae e sa s
5.1.6 System Control INSLIUCHIONS.cueuieirieriririiiii e eseenene
5.2 Instruction Set in Alphabetical Order.........c.coccveeerinieniiiniininecrereriencest et .
Section 6 InsStruction DESCIIPLIONSc.cveueveeereeumerserneesreesreise s sasees
6.1 Sample Description (Name): ClassifiCationc...ccceveeureerrrrennnircseeenreeerenesereeseesensesenen

16
16
21
23
25
26
27
28
29

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43

ADD (ADD Binary): ArithmetiC INStIUCHIONc.ccceuvierierercrenircrecennaeetccssesesseecenenaes . 40
ADDC (ADD with Carry): ArithmetiC INStIUCHONcoveereeueerereerneesrreerenrenersesseseesaessesseness 41
ADDV (ADD with V Flag Overflow Check): Arithmetic InStruction..........cceceeeevrueeruene . 42
AND (AND Logical): Logic Operation INStruCtioncecceceveevuesecevsvesssrnscsussessssesessene . 43
BF (Branch if False): Branch INStrUCtIONcceveevveveereerersrenireneeraerenssssessessesssessessanssens . 45
BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2 CPU).........c.ceceuueee. . 46
BRA (Branch): Branch INStIUCLIONccceeveeveereerenenrensinsresseesseereessessasessesssessessessaassessnsssens 48
BRAF (Branch Far): Branch Instruction (SH-2 CPU)ccccceveererrrenenereersessessaessaeseessenne . 50
BSR (Branch to Subroutine): Branch INStruCtioNcceeveeveeereesreerecenrenseesessesseeseenseesaens 52
BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)ccccceceveeveerercucennne . 54
BT (Branch if True): Branch INStrUCHON........ccc.ceviecreerierericeeesseessreesancressansseessessssasnaessasas 55
BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2 CPU)ccccceceeueeeee . 56
CLRMAC (Clear MAC Register): System Control InStructioncceeceereesuececveseesenees . 58
CLRT (Clear T Bit): System Control INStrUCHONcceuevvriruirenrermnnireririssiiesisesseessesessenes 59
CMP/cond (Compare Conditionally): Arithmetic INStrucCtion........c.ccceeceeereeecrueeercnvencncene 60
DIVOS (Divide Step 0 as Signed): Arithmetic INStruCtion........cocevusueverercrreresesseresnenes . 64
DIVOU (Divide Step 0 as Unsigned): Arithmetic INStrucCtion..........cccceceucrercreeercrueruences 65
DIV1 (Divide Step 1): Arithmetic INStIUCHION......c.covuevivirirecriininriirinisieinsieceisseseseas 66

DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH-2 CPU).... 71
DMULU.L (Double-Length Multiply as Unsigned)
: Arithmetic Instruction (SH-2 CPU).... 73

DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)......ccccevverrerreeruerrerveecennens 75
EXTS (Extend as Signed): Arithmetic INStruCtion..........coccvevievinuesiseninnrenseseeeesreeseennes . 76
EXTU (Extend as Unsigned): Arithmetic INStruction..........ceeeueeerreereeveresneeresueseeneeresneesennes 77
JMP (Jump): Branch INSLrUCHIONcc.ceueveirerurrirnireiiteiicecieneneceenesseseestessesesscssesaesassees 78
JSR (Jump to Subroutine): Branch INStruCtioNcccoveevereirunccrencincnecsinsesesscssesnesannees 79
LDC (Load to Control Register): System Control InStructionceeeeeeeeeereereereerennes . 81
LDS (Load to System Register): System Control InStruCtion..........c.ceeceveeuereerensercsvecrencene 83
MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH-2 CPU) 85
MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU)cocucueuncncenn. . 88
MAC.W (Multiply and Accumulate Word): Arithmetic INStrUCtON. ..e.....cveeverrverrernersaenaens 89
MOV (Move Data): Data Transfer INStIUCHONccceveeerireeereecenenieeeeceneeiseneseeeeenenne 92
MOV (Move Immediate Data): Data Transfer INStructioncceeeeveeveereeeeesreseessesseesnenne 97
MOV (Move Peripheral Data): Data Transfer InStructionc..coceoveevecrincnnivcsnicsennens - 99
MOV (Move Structure Data): Data Transfer InStruction..........cceceeveverrererenerveesesseesaenne . 102
MOVA (Move Effective Address): Data Transfer InStruction............cceveeeeeruerreersuesrecenne . 105
MOVT (Move T Bit): Data Transfer INStrUCHIONcccceeververeuievecrenrenrereesseereesessussressenne . 106
MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)......cccecevivvererucrccrercruecrunes 107
MULS.W (Multiply as Signed Word): Arithmetic INStruCtioncceeevvueeceerurerueneucrescens 108
MULU.W (Multiply as Unsigned Word): Arithmetic InStructionceeceeereeervcreevenenes . 109
NEG (Negate): Arithmetic INStIUCHION «.....couvucruireruecirereiiieieinisinneensesesseseesacssessesnes . 110
NEGC (Negate with Carry): Arithmetic INSEUCHON «..veveeeeeeeeeeeeeeeeeee e seeseeseseseessessseons 111

NOP (No Operation): System Control INStruCtionc.coeueueueeusuecisesisensesersceesesnscsensenn 112

6.44 NOT (NOT—Logical Complement): Logic Operation Instructionccceoeececeerueneenne . 113
6.45 OR (OR Logical) Logic Operation INStruCtIONcccceveeeeeerererrereerereesssenesessesessesseseesesees 114
6.46 ROTCL (Rotate with Carry Left): Shift INStruCtion........cvvevervverceererversrrnesenrensessaesssessaenn 116
6.47 ROTCR (Rotate with Carry Right): Shift INStruCtionc.ccceeeeerererersrnnrercsereererserscnerneenes 117
6.48 ROTL (Rotate Left): Shift INStrUCHION.cecverieeerreeieirreecreeeecteeseessessesseressssssessessesssesnsens 118
6.49 ROTR (Rotate Right): Shift INSIIUCLION ..cevevieuiecierenreseereitreencreeresresseeesessneseeneeseessesnees 119
6.50 RTE (Return from Exception): System Control INStruCtionc.cecereesrererresreseeersaesecnne 120
6.51 RTS (Return from Subroutine): Branch INStruCtion.........ceeueerveevervenrrecerseenesseereessserenennes . 121
6.52 SETT (Set T Bit): System Control INStruCtioncoceceeveeeeeverrereeseeruerecressneseesessesseseeseens . 122
6.53 SHAL (Shift Arithmetic Left): Shift INStruction........cceeeeverveesreereersenesrersesnesreseessesssaesnes 123
6.54 SHAR (Shift Arithmetic Right): Shift INStIUCHON.ccceveeerrreecerciirirecieecrineceeecceeeeenes 124
6.55 SHLL (Shift Logical Left): Shift INStUCHON.cccieeverrrervecrerreanreeseessasussnseessnasssseessecsseaenes 125
6.56 SHLLn (Shift Logical Left n Bits): Shift INStruCtioncccecceecerveereerreereneecerrensrecsrererenenes . 126
6.57 SHLR (Shift Logical Right): Shift INSUCEIONueveererernreerensesiresesisesssesssessesesssenes . 128
6.58 SHLRn (Shift Logical Right n Bits): Shift InStructionccceccvceeeeersrscreesencrscreereencnnes 129
6.59 SLEEP (Sleep): System Control INStrUCHONcoceeereerrrrereeenreeseereesnenseseesessesssessessseesasensens 131
6.60 STC (Store Control Register): System Control INStruction.........c.cc.ceeeeevsrscreescrrscrsencesennes 132
6.61 STS (Store System Register): System Control INStruCtionceeeveeveereecensreereerseesesenens 134
6.62 SUB (Subtract Binary): Arithmetic INStrUCtION......couevueeeerirreiricriiiitirtnenieseeresneseesaes
6.63 SUBC (Subtract with Carry): Arithmetic Instruction
6.64 SUBYV (Subtract with V Flag Underflow Check): Arithmetic Instruction..........ccccccuc... . 138
6.65 SWAP (Swap Register Halves): Data Transfer Instructioncocceceveerercrecerrcrencnne . 139
6.66 TAS (Test and Set): Logic Operation INStruCtionccecevereeeeeseeenininerersnsneeneeeseensveenees 140
6.67 TRAPA (Trap Always): System Control INStruCtionceeceetrertrvcnisiererinisnerenesesseeneneen 141
6.68 TST (Test Logical): Logic Operation INStrUCIONccceeercereerersereeesserennsaecseseesessuesaessennes 142
6.69 XOR (Exclusive OR Logical): Logic Operation InStruction............cecececescreererssesreneeunnes 144
6.70 XTRCT (Extract): Data Transfer INStruCtioncccceeveeeeveereesinreerversrenesieerescnnesesssesssenenes . 146
Section 7 Pipeline OPEIation.........cc.ceueerireirsineensiueresieessnsssessesesssemsessssesssssessesscssssens . 147
7.1 Basic Configuration of Pipelines 147
7.2 Slot and Pipeline Flow.........ccceceveveriemesereincinennnne

7.2.1 INStrucCtion EXECULION....couteviriitiecnerteetice ettt ceneateteres et st snssnsnsenees

7.2.2 S10t SDATINEcueerererrerireeietestrereeeiteeststertsseseete et ssssetstesesesenessesassensentssensesens

7.2.3 Slot Length......ccccovvververvenruereeeeennennes
7.3 Number of Instruction Execution States
7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)...coccovvervceneenneennen. 151

7.4.1 Basic Operation When IF and MA are in Contentioncceeeecveeveceeserncrennnes 151

7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip

ROM/RAM or On-Chip MEmOTYcccvuemreirenercrnensercenersissenesssncssnesessesseeseeseen 152
7.4.3 Relationship Between Position of Instructions Located in On-Chip
ROM/RAM or On-Chip Memory and Contention Between IF and MA............ 153

7.5 Effects of Memory Load Instructions on Pipelines..........cccoeeerveveiirmeecnicesescnescssereneencens 154
7.6 Programming GUIAEccceeeeeectniieeeneemnrinientneeteinsenessseteseiesessssessesesssssisssssssensosessessseos . 155

7.7 Operation Of INStruction PIPELNeS.........coccvrrerermrieinininnnissinnnsisiseisenuesissesssssaeseiosesssesnes 156

7.1 Data Transfer INStIUCLIONSccccccieeeeeirirviiniierieinescsccrnt et sseeeaesesasaesaeanes 163
7.7.2 Arithmetic INStIUCHONS ...cccouvmiireeviurrirencniensniesesassinseesecsis : 166
713 Logic Operation Instructions e e ea b e en e 221
7.7.4 Shift INSLIUCHONS «....couirririiiririrnenircsintsissesiseseesessesesennes eeeertaeaets et staaentene . 224
7.7.5 Branch INStruCtionsccevvervcrcnirensecccrcecenscnsens SR . 225
7.7.6 System Control INSIIUCHONS......cocoeeiivniinsiriieririsiniesissisaesesresssaesesssseesssesssseses 230
7.7.7 EXCepLion ProCeSSING....coveviimriruininiinninsiiiensissisisnssnianssiessesssnmeeeesasseses 242
Appendix A Instruction Codecoccveecevermemccunneeneineeecncerennes cerereenaeeanenes 245
A.1 Instruction Set by Addressing MOdE........ccvevverrcrrireiinineinrntenenirciesenessessseesescsnssessaesaes 245
ALl NOOPEIaNd.......cooeeiiiiiiiriieiisieseitsireisissssissestsssssssesssssssssssssssnesissssssssins . 247
A.1.2 Direct Register AAAIesSing........ccoevieerirvertreeriieriniisensnresseinseseesessossesissssssssesses . 248
A.1.3 Indirect Register AddIessing......coeririreeirisnnissisenesineisiississiiisniseeiessens - 251
A.1.4 Post Increment Indirect Register Addressing R 251
A.1.5 Pre Decrement Indirect Register Addressing........coueevivvivuivevinrinierisnnneiicsennens 252
A.1.6 Indirect Register Addressing with Displacement tvrresersasstsnesnennesanns . 253
A.1.7 Indirect Indexed Register Addressingcoeevverueisinvnisnicsnsrissnsesesescssssens 253
A.1.8 Indirect GBR Addressing with Displacementcccouevvevneeveenenicienncnences 254
A.1.9 Indirect Indexed GBR Addressing......c..cecevereereerenenrineisurssercssissesesessescsessessesees 254
A.1.10 PC Relative Addressing with Displacement...........cceceueruerinriniicrinriesisnsnenssesens - 254
A.1.11 PC Relative Addressing With RN.......ccccovcviiinrnccnninenininnicninenieniies 255
A.1.12 PC Relative AdAresSing.......ccecceueereveceererneeneeseinnisiesstnceasintssessssesesssscesesesssssnces 255
AL13 IMMEIALE ...ttt ettt sse et esr et et s e e ssaesssssnseseen 256
A.2 Instruction Sets by Instruction FOrmatccceeeeveeeniiiinininncinncineinirieenecnenteeecnseeennes . 256
FL NP2 B V0 317y 1 1 | RN 258
A22 DFOMAL.....ciiiiiiiiiececctccctst ettt st se et ssses s e bbb sasne s 259
A23 MFOMMAL ...ttt ettt s st s st se et snesase . 261
A2.4 DM FOIMAL...cooiiiiiiiiieeeecctete ettt sttt s sassaesb s e s 262
A25 MAFOIMAL....oouiiiiiiiiittitntecett ettt st b et esaes . 265
A2.6 nd4Format........cccoceeerumveninernencrerssensensecsescseesnenes 265
NP2 AR 111116 20 041 O . 265
P NP ¢) 2003 1 1 | OO 266
A2.9 dI2FOMMAL..nciiiiiiiiiiriiiieircni st srssse s st s sasesanene 267
A2.10 DAB FOIMAL......couriireirenieeeetreeeeerereeses s eatseseeeseeenesessnsssnsessessesesassssesssenesasnes 267
A.2.11 iFormat..................... rrerteestere e setenesaene . 267
A2.12 DEFOIMAL....ccoeiiiiiiiititccectcctcnt ettt - 268
A3 Instruction Set in Order by Instruction Codecccuevmivrinininirinnniniivnsicnnnisesines - 268
A4 Operation Code Mapccoveemiiieiiiinentieiteetesiteeeisscssestessnssnessessssesssssessssssssssestssns 276

Appendix B Pipeline Operation and Contention.............cceecccececenecscunecsncsenns 279

Section 1 Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in one
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1 and SH-2
CPU features.

Table1l.1 SH-1 and SH-2 CPU Features

Item Feature

Architecture + Original Hitachi architecture
« 32-bit internal data paths

General-register machine -« Sixteen 32-bit general registers
+ Three 32-bit control registers
« Four 32-bit system registers

Instruction set « Instruction length: 16-bit fixed length for improved code efficiency

- Load-store architecture (basic arithmetic and logic operations are
executed between registers)

« Delayed branch system used for reduced pipeline disruption
« Instruction set optimized for C language

Instruction execution time + One instruction/cycle for basic instructions

Address space » Architecture makes 4 Gbytes available

On-chip multiplier + Multiplication operations (16 bits x 16 bits — 32 bits) executed in 1

(SH-1 CPU) to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits + 42 bits — 42 bits) executed in 3/(2)* cycles

On-chip multiplier » Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits

(SH-2 CPU) — 32 bits) or 2 to 4 cycles (32 bits x 32 bits — 64 bits), and

multiplication/accumulation operations executed in 3/(2)*cycles (16
bits x 16 bits + 64 bits — 64 bits) or 3/(2 to 4)* cycles (32 bits x 32

bits + 64 bits — 64 bits)
Pipeline « Five-stage pipeline
Processing states « Reset state

+ Exception processing state
« Program execution state

+ Power-down state

+ Bus release state

Power-down states + Sleep mode
+ Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered RO-R15, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an index
register. Several instructions use RO as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

31 0
RO*' 1. RO functions as an index register in the
R indirect indexed register addressing
mode and indirect indexed GBR
R2 addressing mode. In some instructions,
R3 RO functions as a fixed source register
R4 or destination register.
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer) *2| 2. R15 functions as a hardware stack
pointer (SP) during exception
processing.

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

31 98 76543210
SR| —~—————————- MQiI3I21110 -- STJ SR: Status register

— — | Ly Tbit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTRIL, and
ROTCRI/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow
— S bit: Used by the multiply/accumulate
instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.
—— > Bits 13-10: Interrupt mask bits.

»M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
31 0 Indicates the base address of the indirect
GBR GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

31 0 Vector base register (VBR):
VBR Indicates the base address of the exception
processing vector area.

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The
multiply and accumulate registers store the results of multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
stores program addresses to control the flow of the processing.

31

(SH-1 CPU)

(sign extended)

Multiply and accumulate (MAC)
registers high and low (MACH/L):

MACH

MACL

Store the results of multiply and

31

accumulate operations. In the
0 SH-1 CPU, MACH is sign-extended

(SH-2 CPU)

MACH

to 32 bits when read because only

MACL

the lowest 10 bits are valid. In the
SH-2 CPU, all 32 bits of MACH are

31

valid.

PR

Procedure register (PR): Stores a
return address from a subroutine

31

procedure.

0 Program counter (PC): Indicates the

PC

fourth byte (second instruction) after

the current instruction.

2.4 Initial Values of Registers

Figure 2.3 System Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1 Initial Values of Registers

Classification Register Initial Value
General registér RO-R14 Undefined
R15 (SP) Value of the stack pointer in the vector address table
Control register SR Bits 13—10 are 1111 (H'F), reserved bits are 0, and
other bits are undefined
GBR Undefined
VBR H'00000000
System register MACH, MACL, PR Undefined

PC

Value of the program counter in the vector address
table

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only
a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because
this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

Address m + 1 Address m + 3

Address m | Address m + 2
31y 23 154 7 407

Byte| Byte | Byte I Byte

(

Address 2n—+» Word Word
Address 4n+» Longword
AL Big endian A

Figure 3.2 Byte, Word, and Longword Alignment

SH7604 has a function that allows access of CS2 space (area 2) in little endian format, which
enables memory to be shared with processors that access memory in little endian format (figure
3.3). Byte data is arranged differently for little endian and the usual big endian.

Address m+2 Address m

Address m + 3 | Address m + 1
31y 23 15§ 7 40

Bytel Byte | Byte l Byte

{

Word Word < Address 2n
Longword < Address 4n
L Little endian* A

Note : Only CS2 space of SH7604 can be set.

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and calculated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register. '

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a
memory table. The memory table is accessed by an immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz, in 35 ns at 28.7MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with
longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zero-
extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2 CPU Description Example for Other CPU
MOV.W @(disp,PC),R1 Data is sign-extendedto 32 ADD.W #H'1234,R0
ADD R1,RO bits, and R1 becomes

H'00001234. It is next
""""" - operated upon by an ADD
.DATA.W H'1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).
4.14 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

Table 4.2 Delayed Branch Instructions

SH-1/SH-2 CPU Description Example for Other CPU
BRA TRGET Executes an ADD before ADD.W R1,RO
ADD R1,RO branching to TRGET.

BRA TRGET

4.1.6 Multiplication/Accumulation Operation

SH-1 CPU: 16bit x 16bit — 32-bit multiplication operations are executed in one to three cycles.
16bit x 16bit + 42bit — 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH-2 CPU: 16bit x 16bit — 32-bit multiplication operations are executed in one to two cycles.
16bit x 16bit + 64bit — 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit x 32bit — 64-bit multiplication and 32bit X 32bit + 64bit — 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 TBit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 4.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table4.3 T Bit

SH-1/SH-2 CPU Description Example for Other CPU
CMP/GE R1,R0 T bit is set when RO > R1. The CMP.W R1,RO
BT TRGETO program branches to TRGETO BGE TRGETO
when RO > R1 and to TRGET1
BF TRGET1 when RO < R1. BLT TRGET1
ADD #-1,R0 T bit is not changed by ADD. T SUB.W #1,R0

bit is set when RO = 0. The

CMP, #0,RO
/ER program branches if RO = 0.

BT TRGET

BEQ TRGET

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

Table 44 Immediate Data Accessing

Classification SH-1/SH-2 CPU Example for Other CPU
8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0
16-bit immediate MOV.W @(disp, PC),RO MOV.W #H'1234,R0

.DATA.W H'1234

32-bit immediate MOV.L @(disp, PC),RO MOV.L #H'12345678,R0

.DATA.L H'12345678

Note: The address of the immediate data is accessed by @ (disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 4.5 Absolute Address

Classification SH-1/SH-2 CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1 MOV.B @H'12345678,R0
MOV.B @R1,R0

.DATA.L H'12345678

4.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

Table 4.6 Displacement Accessing

Classification SH-1/SH-2 CPU Example for Other CPU
16-bit displacement MOV.W @(disp, PC),RO MOV.W @(H'1l234,R1),R2
MOV.W @(RO,R1),R2
.DATA.W H'1234
4.2 Addressing Modes

Addressing modes and effectivé address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses

Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. (The operandis —
register the contents of register Rn.)
addressing :
Indirect @Rn The effective address is the content of register Rn. Rn
register
addressing Rn > Rn
Post- @Rn + The effective address is the content of register Rn. A Rn
increment constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a longword executed)
addressing operation.
Byte: Rn + 1
| Ao | B
m Word: Rn + 2
° - Rn
Longword:
An's 4 Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn -1
decrement subtracting a constant from Rn. 1 is subtractedfora — Rn
indirect byte operation, 2 for a word operation, or 4 for a Word: Rn — 2
register longword operation. —Rn
addressing
Longword:
Rn-4 - Rn
(Instruction
executed
with Rn after
calculation)

10

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +
register Rn) (disp). The value of disp is zero-extended, and disp
addressing remains the same for a byte operation, is doubled for
with a word operation, or is quadrupled for a longword Word: Rn +
displace- operation. disp x 2
ment Longword:
Rn + disp x 4
disp Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO
indexed
addressing
©
Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +
GBR GBR) displacement (disp). The value of disp is zero- disp
addressing extended, and remains the same for a byte
with operation, is doubled for a word operation, or is Word: GBR +
displace- quadrupled for a longword operation. disp x 2
ment Longword:
GBR + disp x
disp ‘ GBR 4
(zero-extended) + disp x 1/2/4
Indirect @(Ro, The effective address is the GBR value plus RO. GBR + RO
indexed GBR)
GBR
addressing

GBR + RO

11

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode . Format Effective Addresses Calculation Formula

PC relative = @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +

addressing PC) displacement (disp). The value of disp is zero- disp x 2

with extended, and disp is doubled for a word operation, Longword:

displace- or is quadrupled for a longword operation. For a PC &

ment longword operation, the lowest two bits of the PC are H'FFEFFFFC
masked. +disp x 4

(for longword)

PC + disp x 2
or
i PC&H'FFFFFFFC
disp + disp x 4
(zero-extended)
PC relative disp:8 The effective address is the PC value sign-extended PC + disp x 2
addressing with an 8-bit displacement (disp), doubled, and

added to the PC.

disp
(sign-extended)

PC + disp x 2

disp:12 The effective address is the PC value sign-extended PC + disp x 2
with a 12-bit displacement (disp), doubled, and
added to the PC.

disp
(sign-extended)

PC + dispx 2

12

Table 4.7

Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
PC relative Rn The effective address is the register PC plus Rn. PC + Rn
addressing
(cont)
© PC + RO
Immediate #imm:8 The 8-bitimmediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.
#imm:8 The 8-bitimmediate data (imm) for the MOV, ADD, —
and CMP/EQ instructions are sign-extended.
#imm:8 Immediate data (imm) for the TRAPA instructionis —
zero-extended and is quadrupled.
4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

¢ xxxx: Instruction code

* mmmm: Source register

* nnnn: Destination register

* ijiii: Immediate data

dddd: Displacement

Table 4.8 Instruction Formats
Source Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
XXXX XXXX XXXX XXXX
n format — nnnn: Direct MOVT Rn
register
15 0 Control register nnnn: Direct STS MACH,Rn
xxxx | nnnn | xxoo xxxx or system register
register

13

-Table 4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
n format (cont) Control register nnnn: Indirect pre- STC.L SR, @-Rn
or system decrement
register register
m format mmmm: Direct Control register or 1LDC Rm, SR
register system register
15 mmmm: Indirect Control register or LDC.L @Rm+, SR
xxxx Immmml xxxx xxxx post-increment system register
register
mmmm: -Direct — JMP @Rm
register
mmmm: PC — BRAF Rm
relative using Rm
nm format mmmm: Direct nnnn: Direct ADD Rm, Rn
register register
15 0 mmmm: Direct nnnn: Indirect MOV.L Rm, @Rn
XXXX | nnnn jmmmm| Xxxx register register
mmmm: Indirect MACH, MACL MAC.W
post-increment @Rm+, @Rn+
register (multiply/
accumulate)
nnnn*: Indirect
post-increment
register (multiply/
accumulate)
mmmm: Indirect nnnn: Direct MOV.L @Rm+,Rn
post-increment register
register
mmmm: Direct nnnn: Indirect pre- MOV.L Rm, @-Rn
register decrement
register
mmmm: Direct nnnn: Indirect MOV.L
register indexed register Rm, @(RO,Rn)
md format mmmmdddd: RO (Direct’ MOV.B
15 0 indirect register register) @(disp,Rm), RO
XXXX Xxxx |mmmm{ dddd with
displacement
nd4 format RO (Direct nnnndddd: MOV.B
15 0 register) Indirect register RO, @(disp,Rn)
XXXx Xxxx | nnnn | dddd with displacement
Note: In multiply/accumulate instructions, nnnn is the source register.

14

Table 4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm: Direct nnnndddd: indirect Mov.L
15 0 register register with Rm, @(disp,Rn)
XXxX | nnnn {[mmmm| dddd displacement
mmmmdddd: nnnn: Direct MOV.L
Indirect register register @(disp,Rm),Rn
with
displacement
d format dddddddd: RO (Direct register) Mov.L
15 0 Indirect GBR @(disp,GBR),R0
XXXX XxxX | dddd dddd W.'th
displacement
RO(Direct dddddddd: Indirect Mov.L
register) GBR with RO, @(disp, GBR)
displacement
dddddddd: PC RO (Direct register) mova
relative with @(disp,PC),RO
displacement
dddddddd: PC = — BF label
relative
d12 format dddddddddddd: — BRA label
15 PC relative (label = disp +
xxxx | dddd dddd dddd PC)
nd8 format dddddddd: PC nnnn: Direct MOV.L
15 0 relative with register @(disp,PC),Rn
xx | nnnn | dddd ddg | displacement
i format iiiiiiii: Immediate Indirect indexed AND.B
GBR #imm, @ (RO, GBR)
15 0 iiiiiii: Immediate RO (Direct register) AND #imm, RO
XXXX XXXX | Qiii diii
iiiiiiii: Immediate — TRAPA #imm
ni format iiiiiiii: Immediate nnnn: Direct ADD #imm, Rn
15 register
XXXX | nnnn | i i

15

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

16

Table 5.1 Classification of Instructions

Applicable
Instructions
Operation No. of
Classification = Types Code Function SH-2 SH-1 Instructions
Datatransfer 5 MOV Data transfer 4 v 39
Immediate data transfer
Peripheral module data transfer
Structure data transfer
MOVA Effective address transfer v v
MOVT T-bit transfer v v
SWAP Swap of upper and lower bytes ¢ 4
XTRCT Extraction of the middle of v 4
registers connected
Arithmetic 21 ADD Binary addition v 4 33
operations ADDC Binary addition with carry v v
ADDV Binary addition with overflow v 4
check
CMP/cond Comparison v 4
DIV1 Division v v
DIVOS Initialization of signed division v v
DIVOU Initialization of unsigned v 4
division
DMULS Signed double-length 4
multiplication
DMULU Unsigned double-length 4
multiplication
DT Decrement and test 4
EXTS Sign extension 4 4
EXTU Zero extension v 4
MAC Multiply/accumulate, double- v 4
length multiply/accumulate
operation*1
MUL Double-length muiltiplication v
MULS Signed multiplication v 4
MULU Unsigned multiplication v v
NEG Negation v v
NEGC Negation with borrow 4 4
SuUB Binary subtraction 4 4
SUBC Binary subtraction with borrow ¢ v
SuUBvV Binary subtraction with v v

underflow check

Notes 1. Double-length multiply/accumulate is an SH-2 function.

17

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation No. of
Classification Types Code Function SH-2 SH-1 Instructions
Logic 6 AND Logical AND 4 4 14
operations NOT Bit inversion v v
OR Logical OR v v
TAS Memory test and bit set 4 v
TST Logical AND and T-bit set v v
XOR Exclusive OR v v
Shift 10 ROTL One-bit left rotation 4 v 14
ROTR One-bit right rotation 4 v
ROTCL One-bit left rotation with T bit v v
ROTCR One-bit right rotation with Tbit v v
SHAL One-bit arithmetic left shift v v
SHAR One-bit arithmetic right shift v v
SHLL One-bit logical left shift v 4
SHLLn n-bit logical left shift v v
SHLR One-bit logical right shift v v
SHLRn n-bit logical right shift 4 v
Branch 9 BF Conditional branch, conditional ¢ 4 11
branch with delay*2 (T = 0)
BT Conditional branch, conditional v v
branch with delay*2 (T = 1)
BRA Unconditional branch v v
BRAF Unconditional branch 4
BSR Branch to subroutine procedure ¢ v
BSRF Branch to subroutine procedure ¢
JMP Unconditional branch v v
JSR Branch to subroutine procedure v v
RTS Return from subroutine v v
procedure

Notes 2. Conditional branch with delay is an SH-2 CPU function.

18

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation No. of
Classification Types Code Function SH-2 SH-1 Instructions
System 11 CLRT T-bit clear v 31
control CLRMAC MAGC register clear v v
LDC Load to control register v v
LDS Load to system register 4 v
NOP No operation 4 v
RTE Return from exception v v
processing
SETT T-bit set v 4
SLEEP Shift into power-down mode v 4
STC Storing control register data v/ 4
STS Storing system register data v 4
TRAPA Trap exception processing v v
Total: 62 142

19

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

Table 5.2 Instruction Code Format

Item Format Explanation
Instruction OP.Sz SRC,DEST OP: Operation code
mnemonic Sz: Size

SRC: Source

DEST: Destination

Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction MSB « LSB mmmm: Source register
code nnnn: Destination register
0000: RO
0001: R1
1111: R15
iii: Immediate data
dddd: Displacement
Operation >, « Direction of transfer
summary (xx) Memory operand
M/Q/T Flag bits in the SR
& Logical AND of each bit
| Logical OR of each bit
A Exclusive OR of each bit
~ Logical NOT of each bit
<<n, >>n n-bit left/right shift
Execution Value when no wait states are inserted
cycle
Instruction The execution cycles shown in the table are minimums.
execution The actual number of cycles may be increased:
cycles 1. When contention occurs between instruction fetches

and data access, or

2. When the destination register of the load instruction
(memory — register) and the register used by the next
instruction are the same.

T bit Value of T bit after instruction is executed

— No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

20

5.1.1

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Data Transfer Instructions

Table 5.3 Data Transfer Instructions

Execu-
tion T
Instruction Instruction Code Operation State Bit
MOV #imm, Rn 1110nnnniiiiiiii ilgnm — Sign extension » 1 —
n
MOV.W @(disp,PC),Rn 100lnnnndddddddd (disp x2 + PC) — Sign 1 —
extension — Rn
MOV.L @(disp,PC),Rn 110lnnnndddddddd (disp x4 + PC) = Rn 1 —
MOV Rm, Rn 0110nnnnmmmom001 1 Rm — Rn 1 _
MOV.B Rm,@Rn 001 0nnnnrmmmm0000 Rm — (Rn) 1 —
MOV.W Rm,@Rn 00 10nnnnmmem0 001 Rm — (Rn) 1 —
MOV.L Rm, @Rn 0010nnnnmmrm0010 Rm — (Rn) 1 —
MOV.B @Rm,Rn 0110nnnnmmmm0000 g’tm) — Sign extension —» 1 —
n
MOV.W @Rm,Rn 0110nnnnmmmm0001 gim) — Sign extension » 1 —_
n
MOV.L @Rm,Rn 01 10nnnnmmmm0010 (Rm) — Rn 1 —
MOV.B Rm,@-Rn 00 10nnnnmmmm0100 Rn—1 - Rn, Rm — (Rn) 1 —
MOV.W Rm,@-Rn 00 10nnnnmmmm0101 Rn-2 — Rn, Rm — (Rn) 1 —
MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn—4 — Rn, Rm — (Rn) 1 —
MOV.B @Rm+,Rn 011 0nnnnmmmm0100 (Rm) — Sign extension -» 1 —
Rn,Rm + 1 - Rm
MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — Sign extension -» 1 —
Rn,Rm + 2 - Rm
MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) - Rn,Rm+4 - Rm 1 —
MOV.B RO,@(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO,@(disp,Rn) 10000001nnrndddd RO — (disp x 2 + Rn) 1 —
MOV.L Rm,@(disp,Rn) 000 Innnnmmmmdddd Rm — (disp x4 + Rn) 1 —
MOV.B @(disp,Rm),R0O 100001 00mmmmdddd (disp + Rm) — Sign 1 —_
extension —» RO
MOV.W @(disp,Rm),RO 10000101lmmmmdddd (disp x 2 + Rm) — Sign 1 —
extension — RO
MOV.L @(disp,Rm),Rn 010lnnnnmmmmdddd (disp x4 + Rm) - Rn 1 —
MOV.B Rm,@(RO,Rn) 0000nnnnramm0100 Rm — (RO + Rn) 1 —
MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —

21

Table 5.3

Data Transfer Instructions (cont)

Execu-
tion T
Instruction Instruction Code Operation State Bit
MOV.L Rm,@(RO,Rn) 000 0nnnnmmmm0110 Rm — (RO + Rn) 1 —
MOV.B @(RO,Rm),Rn 000 0nnnnmmmm1 100 (RO + Rm) — Sign 1 —
extension — Rn
MOV.W @(RO,Rm),Rn 0000nnnnmmrm1101 (RO + Rm) — Sign 1 -
extension — Rn
MOV.L, @(RO,Rm),Rn 0000nnnnmmrm1110 (RO + Rm) - Rn 1 —
MOV.B RO,@(disp,GBR) 110000004ddddddd RO — (disp + GBR) 1 —
MOV.W RO,@(disp,GBR) 11000001dddddddd RO — (disp x2 + GBR) 1 —
MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x4+ GBR) 1 —
MOV.B @(disp,GBR),R0 11000100d4ddddddad (disp + GBR) — Sign 1 —
extension —» RO
MOV.W @(disp,GBR),R0 11000101dddddddd (disp x2 + GBR) —» Sign 1 —
extension — RO
MOV.I, @(disp,GBR),R0 11000110dddddddd (disp x4 + GBR) — R0 1 —
MOVA @(disp, PC) ,RO 11000111dddadddad disp x4 + PC - RO 1 —
MOVT Rn 0000nnnn00101001 T—-Rn 1 —
SWAP.B Rm,Rn 011 0nnnnmmmm1 000 Rm — Swap upper and 1 —
lower 2 bytes— Rn
SWAP.W Rm,Rn 0110nnnnmmeml1 001 Rm — Swap upper and 1 —
lower word — Rn
XTRCT Rm,Rn 001 0nnnnmmmm1 101 Center 32 bits of Rmand 1 —
Rn— Rn

22

5.1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Execution
Instruction Instruction Code Operation State T Bit
ADD Rm, Rn 0011lnnnnmmnm1100 Rn + Rm — Rn 1 —
ADD #imm, Rn 01llnnnniiiiiiii Rn+imm — Rn 1 —
ADDC Rm, Rn 001lnnnnmmmm1110 Rn+Rm+T—>Rn, 1 Carry
Carry 5T
ADDV Rm,Rn 001llnnnnmmmm1111 Rn + Rm — Rn, 1 Overflow
Overflow - T
CMP/EQ #imm, RO 10001000iiiiiiii HRO=imm,1—->T 1 Compariso
n result
CMP/EQ Rm,Rn 0011lnnnnmmrm0000 I Rn=Rm, 1 > T 1 Compariso
n result
CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn=Rm with 1 Compariso
unsigned data, 1 > T n result
CMP/GE Rm,Rn 001 lnnnnmmrem0011 If Rn > Rm with 1 Compariso
signed data, 1 > T n result
CMP/HI Rm,Rn 0011lnnnnmmmm0110 If Rn > Rm with 1 Compariso
unsigned data, 1 > T n result
CMP/GT Rm,Rn 001llnnnnmmmm0111 If Rn > Rm with 1 Compariso
signeddata, 1 > T n result
CMP/PL Rn 0100nnnn00010101 KRn>0,1->5T 1 Compariso
n result
CMP/PZ Rn 0100nnnn00010001 IfRn=0,1->T 1 Compariso
n result
CMP/STR Rm,Rn 0010nnnnmmmm1100 If Rn and Rm have an 1 Compariso
equivalent byte, 1 — n result
T
DIV1 Rm, Rn 0011lnnnnmmmm0100 Single-step division 1 Calculation
(Rn/Rm) result
DIVOS Rm,Rn 0010nnnnmmmm0111 MSB of Rn — Q, 1 Calculation
MSB of Rm - M, M A result
Q-T
DIVOU 0000000000011001 0 - M/Q/T 1 0

23

Table 5.4 Arithmetic Instructions (cont)

Instruction

Instruction Code

Operation

Execution
State T Bit

DMULS.L Rm,Rn*2

0011lnnnnmmmml101

Signed operation of
Rn x Rm — MACH,
MACL

32 x 32 — 64 bits

2to41 —

DMULU.L Rm,Rn*>2

0011nnnnmmmmO0101

Unsigned operation
of Rn x Rm — MACH,
MACL

32 x 32 — 64 bits

2 to 4*1 —

0100nnnn00010000

Rn-1 - Rn, when
Rnis 0,1 - T. When
Rnis nonzero,0 - T

1 Compariso

n result

EXTS.B Rm,Rn

0110nnnnmmmm1110

A byte in Rm is sign-
extended —» Rn

EXTS.W Rm,Rn

0110nnnnmmmml1111

A word in Rm is sign-
extended — Rn

EXTU.B Rm,Rn

0110nnnnmmmm1100

A byte in Rm is zero-
extended — Rn

EXTU.W Rm,Rn

0110nnnnmmmm1101

A word in Rm is zero-
extended — Rn

@Rm+, @Rn+

*2

0000nnnnmmmm1111

Signed operation of
(Rn) x (Rm) + MAC
- MAC .

32 x 32 + 64— 64 bits

32t s —

MAC.W @Rm+, @Rn+

0100nnnnmmmm1111

Signed operation of
(Rn) x(Rm) + MAC
— MAC

(SH-2 CPU) 16 x 16 +
64 — 64 bits

(SH-1 CPU) 16 x 16 +
42 — 42 bits

3/(2)* —

MUL.L Rm, Rn*2

0000nnnnmmmmO111

Rn x Rm — MACL,
32 x 32 — 32 bits

204 —

MULS.W Rm,Rn

0010nnnnmmmm1111

Signed operation of
Rn xRm — MAC -

16 x 16 — 32 bits

1 to 3*1 —_

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instructions

24

Table 5.4

Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit
MULU.W Rm,Rn 0010nnnnmmmn1110 Unsigned operation 1 to 3*1 —
of Rn x Rm — MAC
16 x 16 — 32 bits
NEG Rm, Rn 0110nnnnmmmm1011 0-Rm — Rn 1 —
NEGC Rm, Rn 0110nnnnmmmm1010 0-Rm-T — Rn, 1 Borrow
Borrow —» T
SUB Rm, Rn 001 1nnnnmmmm1 000 Rn-Rm — Rn 1 —
SUBC Rm, Rn 0011lnnnnmmmm1 010 Rn-Rm-T — Rn, 1 Borrow
Borrow —» T
SUBV Rm, Rn 0011lnnnnmmmm1 011 Rn—Rm — Rn, 1 Underflow
Underflow —» T
Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)
5.1.3 Logic Operation Instructions
Table 5.5 Logic Operation Instructions
Execution
Instruction Instruction Code Operation State T Bit
AND Rm,Rn 0010nnnnmmmm1001 Rn & Bm — Rn 1 —
AND #imm, RO 11001001iiiiiiii RO & imm — RO 1 —
AND.B #imm,@(RO,GBR) 11001101iiiiiiii (RO+GBR)&imm—> 3 —
(RO + GBR)
NOT Rm,Rn 0110nnnmmmm0111 ~Rm — Rn 1 —
OR Rm, Rn 001 0nnnnmmmm1011 Rnl Rm — Rn 1 —
OR #imm, RO 11001011iiiiiidii RO | imm —» RO 1 —
OR.B #imm,@(RO,GBR) 11001111iiiiiiii (RO + GBR)|imm — 3 —_
(RO + GBR)
TAS.B @Rn 0100nnnn00011011 If(Rn)is0,1 > T;1 > 4 Test
MSB of (Rn) result
TST Rm, Rn 0010nnnnmmm1 000 Rn & Rm; if the resultis 1 Test
0,1-T result
TST #irmm, RO 11001000iiiiiiii RO & imm; if the result 1 Test
is0,1->T result

25

Table 5.5

Logic Operation Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit
TST.B #imm, @(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm; if 3 Test
theresultis0,1 > T result
XOR Rm,Rn 0010nnnnmmmm1010 Rn” Rm — Rn 1 —
XOR #imm, RO 11001010iiiiiiii ROAimm — RO —
XOR.B #imm,@(RO,GBR) 11001110iiiiiiii (RO+GBR)Aimm—» 3 —
(RO + GBR)

5.1.4 Shift Instructions
Table 5.6 Shift Instructions
Instruction Instruction Code Operation Execution State T Bit
ROTL Rn 0100nnnn00000100 T < Rn « MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB—-Rn—»T 1 LSB
ROTCL Rn 0100nnnn00100100 T« Rn&T 1 MSB
ROTCR Rn 0100nnnn00100101 T—Rn->T 1 LSB
SHAL Rn 0100nnnn00100000 T« Rn«0 1 MSB
SHAR Rn 0100nnnn00100001 MSB—>Rn—>T 1 LSB
SHLL Rn 0100nnnn00000000 T« Rn«0 1 MSB
SHLR Rn 0100nnnn00000001 O —=Rn—>T 1 LSB
SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —
SHLR2 Rn 0100nnnn00001001 - Rn>>2 — Rn 1 —
SHLL8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —

. SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —

26

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Execution

Instruction Instruction Code Operation State T Bit

BF label 10001011dddddddd K T=0,dispx2+PC —PC; if T= 3/1*3 —_
1, nop (where label is disp x 2 +
PC)

BF/S label*? 10001111dddddddd Delayed branch, if T =0, disp x2 + 2/1*3 —
PC - PC; if T=1, nop

BT label 10001001dddddddd fT=1,dispx2+PC—-PC; ifT= 3/1 3 —
0, nop (where label is disp + PC)

BT/S label*? 10001101dddddddd Delayed branch,if T =1,dispx2+ 2/1*3 —_
PC — PC; if T =0, nop

BRA label 1010dddddddddddd Delayed branch, disp x2 + PC — 2 —
PC

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm + PC — PC 2 —

BSR 1label 1011dddddddddddd Delayed branch, PC — PR, dispx2 2 —_
+PC - PC

BSRF Rm*? 0000mmmm00000011 Delayed branch, PC — PR,Rm+ 2 —
PC - PC

JMP @Rm 0100mmmm00101011 Delayed branch, Rm — PC 2 —

JSR @Rm 0100mmmm00001011 Delayed branch, PC - PR,Rm > 2 —_
PC

RTS 0000000000001011 Delayed branch, PR — PC 2 —

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

27

5.1.6

System Control Instructions

Table 5.8 System Control Instructions

Execution T

Instruction Instruction Code Operation State Bit
CLRT 0000000000001000 0->T 1 0
CLRMAC 0000000000101000 0 — MACH, MACL 1 —
LDC Rm, SR 0100mmmm00001110 Rm — SR 1 LSB
LDC Rm, GBR 0100mmmm00011110 Rm — GBR 1 —
LDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —
LDC.L @Rm+,SR 0100mmmm00000111 (Rm) -» SR, Rm +4 — Rm 3 LSB
LDC.L @Rm+,GBER 0100mmrm00010111 (Rm) - GBR, Rm+4 >Rm 3 —
LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) -» VBR, Rm+4 —->Rm 3 —
LDS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —_
LDS Rm, MACL 0100mmmm00011010 Rm — MACL 1 —
LDS Rm, PR 0100mmmm00101010 - Rm — PR 1 —
LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) - MACH, Rm + 4 — 1 —
Rm
LDS.L @Rm+,MACL 0100mmam00010110 (Rm) ->MACL, Rm+4 —> 1 —
Rm ,
LDS.L. @Rm+,PR 0100mmram00100110 (Rm) - PR, Rm +4 —» Rm 1 —
NOP 0000000000001001 No operation —
RTE 0000000000101011 Delayed branch, stack area » 4 LSB
PC/SR
SETT 0000000000011000 1T 1 1
SLEEP 0000000000011011 Sleep 3+4 —
STC SR,Rn 0000nnnn00000010 SR - Rn 1 —_—
STC GBR, Rn 0000nnnn00010010 GBR — Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —
STC.L SR,@-Rn 0100nnnn00000011 Rn—4 — Rn, SR — (Rn) 2 —
STC.L GBR,@-Rn 0100nnnn00010011 Rn—4 — Rn, GBR — (Rn) 2 —
STC.L VBER,@-Rn 0100nnnn00100011 Rn—4 — Rn, VBR — (Rn) 2 —
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR - Rn 1 —

28

Table 5.8 System Control Instructions (cont)

Executio T

Instruction Instruction Code Operation n State Bit
STS.L MACH,@-Rn 0100nnnn00000010 Rn—4 — Rn, MACH — (Rn) 1 —
STS.L MACL,@-Rn 0100nnnn00010010 Rn—4 — Rn, MACL — (Rn) 1 —
STS.L PR,@-Rn 0100nnnn00100010 Rn—4 — Rn, PR — (Rn) 1 —
TRAPA #imm 11000011iiiiiiii PC/SR — stack area, (immx 8 —

4 + VBR) - PC

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory — register) is the same as the register

used by the next instruction.

5.2 Imstruction Set in Alphabetical Order
Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.
Table 5.9 Instruction Set
Execu-
tion
Instruction Instruction Code Operation State T Bit
ADD #inm, Rn 0lllnnnniiiiiiii Rn+imm — Rn 1 —
ADD Rm, Rn 001lnnnnmmmm1100 Rn+ Rm — Rn 1 —
ADDC Rm,Rn 001lnnnnmmmm1110 Rn+Rm+ T —>Rn, 1 Carry
Carry » T
ADDV Rm,Rn 001lnmnnmmmm111l Rn+ Rm — Rn, 1 Overflow
Overflow - T
AND #imm, RO 11001001iiiiiiii RO & imm —» RO 1 _
AND Rm, Rn 0010nnnnmmmm1001 Rn & Rm — Rn —
AND.B #imm, @ (RO,GBR) 11001101iiiiijii (RO + GBR) &imm 3 —_
- (RO + GBR)
BF label 10001011dddddddd W T=0,dispx2+ 3/ —
PC—-PC; ifT=1,
nop
BF/S label*? 10001111dddddddd I T=0,disp x2+ 2/ —
PC - PC; ifT=1,
nop

29

Table 5.9

Instruction Set (cont)

Execu-
‘ tion
Instruction Instruction Code Operation State T Bit
BRA label 10104ddddddddddd Delayed branch, 2 —
dispx2+PC —
PC
BRAF Rm*2 0000mmmm00100011 Delayed branch, 2 —
Rm + PC - PC
BSR label 1011dddddddddddd Delayed branch, 2 —_
PC — PR, disp x2
+PC - PC
BSRF Rm*2 0000mmmm00000011 Delayed branch, 2 —
PC — PR, Rm +
PC - PC
BT label 10001001dddddddd fT=1,disp x2+ 3/1*3 —
PC - PC; if T=0,
nop
BT/S label*? 10001101dddddddd fT=1,dispx2+ 2/1*3 —
PC—-PC; ifT=0,
nop
CLRMAC 0000000000101000 0 —- MACH, MACL 1 —
CLRT 0000000000001000 0T 1 0
CMP/EQ #imm,RO 10001000iiiiiiii fRO=imm,1—>T 1 Comparison
result
CMP/EQ Rm,Rn 0011nnnnmmmm0000 fRn=Rm,1->T 1 Comparison
result
CMP/GE Rm,Rn 0011nnnnmmmm0011 If Rn > Rm with 1 Comparison
signeddata, 1 > T result
CMP/GT Rm,Rn 0011nnnnmmmm0111 If Rn > Rm with 1 Comparison
signeddata,1 > T result
CMP/HI Rm,Rn 0011lnnnnmmmm0110 If Rn > Rm with 1 Comparison
unsigned data, result
1-T
CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn > Rm with 1 Comparison
unsigned data, result
1i-T
CMP/PL Rn 0100nnnn00010101 IfRn>0,1->T 1 Comparison
result
CMP/PZ Rn 0100nnnn00010001 fRn>20,1>T 1 Comparison
result

Notes: 2. SH-2 CPU instructions

3. One state when it does not branch

Table 5.9

Instruction

Instruction Set (cont)

Instruction Code

Operation

Execu-
tion
State

T Bit

CMP/STR Rm,Rn

0010nnnnmmmm1100

If Rn and Rm have
an equivalent byte,
15T

Comparison
result

DIVOS

0010nnnnmmmm0111

MSB of Rn — Q,
MSB of Rm — M,
MAQ-ST

Calculation
result

DIVOU

0000000000011001

0 - M/Q/T

0

DIV1 Rm, Rn

0011nnnnmmmm0100

Single-step division
(Rn/Bm)

Calculation
result

DMULS.L Rm,Rn*2

001innnnmmmml101

Signed operation of
Rn x Rm — MACH,
MACL

2 to 4*1

DMULU.L Rm,Rn*2

0011nnnnmmmm0101

Unsigned operation
of Rn x Rm —
MACH, MACL

2to 4+

DT Rn*2

0100nnnn00010000

Rn-1 — Rn, when
Rnis0,1 > T.
When Rn is
nonzero,0 - T

Comparison
result

EXTS.B Rm, Rn

0110nnnnmmmm1110

A byte in Rmis
sign-extended —
Rn ‘

EXTS.W Rm, Rn

0110nnnnmmmm1111

A word in Rm is
sign-extended —
Rn

EXTU.B Rm, Rn

0110nnnnmmmm1100

A byte in Rmis
zero-extended —
Rn

EXTU.W Rm, Rn

0110nnnnmmmm1101

A word in Rm is
zero-extended —
Rn

JMP @Rm

0100mmmm00101011

Delayed branch,
Rm — PC

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

31

Table 5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
JSR @Rm 0100mmmm00001011 Delayed branch, 2 —
PC - PR,Rm -
PC
LDC Rm,GBR 0100mmmm00011110 Rm — GBR 1 —
1LDC Rm, SR 0100mmmm00001110 Rm — SR 1 LSB
LDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —
LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) - GBR, Rm 3 —
+4 - Rm
IDC.L @Rm+,SR 0100mmmm00000111 (Rm) - SR, Rm+ 3 LSB
4 - Rm
LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) - VBR, Rm 3 —
+4 - Rm
LDS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —
LDS Rm,MACL 0100mmmm00011010 Rm — MACL 1 —
DS Rm, PR 0100mmmm00101010 Rm — PR 1 —
IDS.L @Rm+,MACH 0100mmmm00000110 (Rm) —» MACH, 1 —
Rm +4 - Rm
IDS.L @Rm+,MACL 0100mmmm00010110 (Rm) — MACL, 1 —_
Rm +4 - Rm
IDS.L @Rm+,PR 0100mmmm00100110 (Rm) - PR,Rm+ 1 —
4 - Rm
MAC.L @Rm+,@Rn+*2 0000nnnnmmmml111l Signed operation of 3/2to —
(Rn) x(Rm) + MAC 4)*!
— MAC
MAC.W GRm+, @Rn+ 0100nnnnmmmm1111 Signed operation of 3/(2)*' —
(Rn) x(Rm) + MAC '
- MAC
MoV #imm, Rn 1110nnnniiiiiiii imm — Sign 1 —
extension — Rn
MOV Rm,Rn 0110nnnnmmmm0011 Rm — Rn 1 —
Notes: 1. The normal minimum number of execution states (the number in parentheses is the

number of states when there is contention with preceding/following instructions)
2. SH-2instructions

Table 5.9

Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State T Bit

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) — 1 —
Sign extension —
RO

MOV.B @(disp,Rm),RO 10000100mmmmdddd (disp + Rm) — Sign 1 —_
extension — RO

MOV.B @(RO,Rm),Rn 0000nnnnmmmm1100 (RO + Rm) — Sign 1 —
extension — Rn

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) — Sign 1 —
extension — Rn,
Rm+1 - Rm

MOV.B @Rm,Rn 0110nnnnmmmmO0000 (Rm) — Sign 1 —
extension — Rn

MOV.B RO, @(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —

MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —

MOV.B Rm, @(RO,Rn) 0000nnnnmmmm0100 Rm — (RO + Rn) 1 —

MOV.B Rm, @-Rn 0010nnnnmmmm0100 Rn-1 - Rn, Rm—> 1 —
(Rn)

MOV.B Rm, @Rn 0010nnnnmmmm0000 Rm — (Rn) 1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp x4 + GBR) —» 1 —
RO

MOV.L @(disp,PC),Rn 1101nnnndddddddd (dispx 4 + PC) —» 1 —
Rn

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (dispx4+Rm)—» 1 —
Rn

MOV.L @(RO,Rm),Rn 0000nnnnmmmm1110 (RO + Rm) — Rn 1 —

MOV.L GRm+,Rn 0110nnnnmmmm0110 (Rm) ->Rn,Rm+4 1 —
— Rm

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) - Rn 1 —

MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x4 + 1 —
GBR)

MOV.L Rm, @(disp,Rn) 0001nnnnmmmmdddd Rm — (disp x4 + 1 —
Rn)

MOV. Rm, @(RO,Rn) 0000nnnnmmmm0110 Rm — (RO + Rn) 1 —

MOV. Rm, @-Rn 0010nnnnmmmm0110 Rn—4 — Rn, Rm — 1 —
(Rn)

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm — (Rn) 1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (dispx2 +GBR) » 1 —

Sign extension —
RO

33

Table 5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
MOV.W @(disp,PC),Rn 1001nnnndddddddd (dispx2+PC)—» 1 —
Sign extension —
Rn
MOV.W @(disp,Rm),R0 1000010 1mmumdddd (dispx2+RBRm)— 1 —_
Sign extension —
RO
MOV.W @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) —» Sign 1 —
extension — Rn
MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — Sign 1 —
extension — Rn,
Rm +2 — Rm
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) — Sign 1 —
extension — Rn
MOV.W RO, @(disp,GBR) 11000001dddddddad RO — (disp x2+ 1 —
GBR)
MOV.W RO,@(disp,Rn) 10000001nnnndddd RO — (disp x2+ 1 —
Rn)
MOV.W Rm, @(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —
MOV.W Rm, @Rn 0010nnnnmmmm0101 Rn—2 - Rn, Rm—> 1 —
(Rn)
MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm — (Rn) 1 —
MOVA @(disp,PC),R0 11000111dddddddd disp x4+PC—-R0 1 -
MOVT Rn 0000nnnn00101001 T-Rn 1 —_
MUL.L Rm,Rn*2 0000nnnnmmmm0111 RnxBm —>MACL 2to4*! —
MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operationof 1t03*!" —
Rn x Rm —- MAC
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation 1to3*! —
of Rn x Rm — MAC
NEG Rm, Rn 0110nnnnmmmm1011 0—-Rm — Rn 1 —
NEGC Rm, Rn 0110nnnnmmmm1010 0-BRm-T — Rn, 1 Borrow
Borrow - T
NOP 0000000000001001 No operation 1 —
NOT Rm,Rn 0110nnnnmmmm0111 ~Rm — Rn 1 —
OR #imm, RO 11001011iiiiiiii RO | imm — RO 1 —_—
OR Rm, Rn 0010nnnnmmmm1011 RnIRm — Rn 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

34

Table 5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
OR.B #imm, @ (RO, GBR) 11001111iiiidiii (RO +GBR)limm 3 —
— (RO + GBR)
ROTCL Rn 0100nnnn00100100 T«RneT 1 MSB
ROTCR Rn 0100nnnn00100101 T-o>Rn->T 1 LSB
ROTL Rn 0100nnnn00000100 T < Rn « MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB->Rn->T 1 LSB
RTE 0000000000101011 Delayed branch, 4 LSB
stack area —
PC/SR
RTS 0000000000001011 Delayed branch, 2 —
PR - PC
SETT 0000000000011000 1-T 1 1
SHAL Rn 0100nnnn00100000 T«Rn«0 1 MSB
SHAR Rn 0100nnnn00100001 MSB—-Rn->T 1 LSB
SHLL Rn 0100nnnn00000000 T«~Rn«0 1 MSB
SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —_
SHLL8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —_
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —
SHLR Rn 0100nnnn00000001 0->Rn->T 1 LSB
SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —_
SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —_
SHIR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —_
SLEEP 0000000000011011 Sleep 3 —
STC GBR, Rn 0000nnnn00010010 GBR — Rn 1 —
STC SR,Rn 0000nnnn00000010 SR — Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —_
STC.L GBR,@-Rn 0100nnnn00010011 Rn—4 —» Rn, GBR 2 —
— (Rn)
STC.L SR, @-Rn 0100nnnn00000011 Rn-4 - Rn, SR> 2 —_
(Rn)
STC.L VBR,@-Rn 0100nnnn00100011 Rn—4 - Rn, VBR 2 —
— (Rn)
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —

35

Table 5.9

Instruction Set (cont)

Execu-
tion
Instruction Instruction Code Operation State T Bit
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR - Rn 1 —_
STS.L MACH, @-Rn 0100nnnn00000010 Rn—4 — Rn, 1 —
MACH — (Rn)
STS.L MACL, @-Rn 0100nnnn00010010 Rn—4 — Rn, 1 —
MACL — (Rn)
STS.L PR, @-Rn 0100nnnn00100010 Rn-4 —- Rn, PR —> 1 —
(Rn)
SUB Rm, Rn 0011nnnnmmmm1000 Rn—-Rm — Rn 1 —
SUBC Rm, Rn 0011nnnnmmmm1010 Rn-Rm-T — Rn, 1 Borrow
Borrow —» T
SUBV Rm, Rn 0011lnnnnmmmm1011 Rn—Rm — Rn, 1 Under-
Underflow - T flow
SWAP.B Rm,Rn 0110nnnnmmmml1000 Rm — Swap upper 1 —
and lower 2
bytes— Rn
S®P.W Rm,Rn 0110nnnnmmmm1001 Rm — Swap upper 1 —
and lower word—
Rn
TAS.B @Rn 0100nnnn00011011 f(Rn)is0,1->T, 4 Test
1 — MSB of (Rn) result
TRAPA #imm 11000011iiiiiiii PC/SR — stack 8 —
area, (imm x4 +
VBR) - PC
TST #imm, RO 11001000iiiiiiii RO & imm; if the 1 Test
resultis0,1—=T result
TST Rm, Rn 0010nnnnmmmm1000 Rn & Rm; if the 1 Test
resultis0,1 > T result
TST.B #imm, @(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm; 3 Test
if the result is 0, 1 result
->T
XOR #imm, RO 110010104iiiidiiii RO A imm — RO 1 —_
XOR Rm,Rn 0010nnnnmmmm1010 Rn2*Rm — Rn 1 -
XOR.B #imm, @(RO,GBR) 11001110iiiiiiii (RO+GBR)Aimm 3 —
— (RO + GBR)
XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of 1 —

Rm and Rn - Rn

w
()]

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code State T Bit
Assembler input format; A brief description of Displayed in Number of The value of
imm and disp are operation order MSB * states when T bit after the
numbers, expressions, LSB thereis no instruction is
or symbols wait state executed

Description: Description of operation
Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

* Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte (unsigned long Addr);
unsigned short Read_Word(unsigned long Addr);
unsigned long Read_Long (unsigned long Addr);

» Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte (unsigned long Addr, unsigned long Data);
unsigned short Write Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long (unsigned long Addr, unsigned long Data);

* Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4);,
execution starts from an instruction at address O rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot (unsigned long Addr) ;

37

* List registers:

unsigned long R[16];
unsigned long SR,GBR,VBR;
unsigned long MACH,MACL, PR;

unsigned long PC;
¢ Definition of SR structures:

struct SRO {
unsigned long dummy0:22;
unsigned long MO0:1;
unsigned long Q0:1;
unsigned long I0:4;
unsigned long dummyl:2;
unsigned long S0:1;
unsigned long TO0:1;

}:

¢ Definition of bits in SR:

#define M ((*(struct SRO *) (&SR)) .MO)
#define Q ((*(struct SRO *) (&SR)) .Q0)
#define S ((*(struct SRO *) (&SR)) .S0)
#define T ((*(struct SRO *) (&SR)) .TO)

* Error display function:
Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

38

.org Location counter set

.data.w Securing integer word data
.data.l Securing integer longword data
.sdata Securing string data

.align 2 2-byte boundary alignment
.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr

Note:

Notes: 1.

End of repeat expansion of specified number

The SH-series cross assembler version 1.0 does not support the conditional assembler
functions.

In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (x1, X2, x4) according to the
operand size is written. This is done to show clearly the operation of the LSI; see the
assembler notation rules for the actural assembler descriptions.

@(disp:4, Rn): Register indirect with displacement

@(disp:8, GBR): GBR indirect with displacement

@(disp 8, PC): PC relative with displacement

disp:8, disp:12: PC relative

. Among the 16 bits of the instruction code, a code not assigned as an instruction is

treated as a general illegal instruction, and will result in illegal instruction exception
processing, This includes the case where an instruction code for the SH-2 CPU only is
executed on the SH-1 CPU.

Example 1: HFFF [General illegal instruction in both SH-1 and SH-2 CPU]
Example 2: H'3105 (=DMUL.L RO, R1)[Illegal instruction in SH-1 CPU]

If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example 1
BRA Label
data. W H'FFFF ¢« Slotillegal instruction
[H'FFF is fundamentally a general illegal
instruction]

Example 2 RTE
BT/S Label « Slotillegal instruction

39

6.2 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit
ADD Rm,Rn Rm+ Rn - Rn 001 1nnnnmmmm1100 1 —
ADD #imm, Rn Rn + imm — Rn 0lllnmnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The contents
of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m, long n) /* ADD Rm,Rn */
{
R[n]+=R[m];

PC+=2;
}
ADDI(long i,long n) /* ADD #imm,Rn */
{
if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFF00 | (long)i);
PC+=2;
}
Examples:
ADD RO,R1 Before execution RO = H'7FFFFFFF, R1 = H'00000001

After execution R1 = H'80000000

ADD #H'01,R2 Before execution R2 = H'00000000
After execution R2 = H'00000001

ADD #H'FE,R3 Before execution R3 =H'00000001
After execution R3 = HFFFFFFFF

6.3 ADDC (ADD with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

ADDC Rm,Rn Rn+Rm+T—>Rn,carry > T 001lnnnnmmmalll0 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */
{
unsigned long tmp0, tmpl;

tmpl=R[n]+R[m];

tmp0=R[n] ;
R[n]=tmpl+T;
if (tmpO>tmpl) T=1;
else T=0;
if (tmpl>R[n]) T=1;
PC+=2;
}
Examples:
CLRT RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)
ADDC R3,R1 Before execution T =0, R1 = H'00000001, R3 = HFFFFFFFF
After execution T =1, R1 = H'0000000
ADDC R2,RO Before execution T = 1, RO = H'00000000, R2 = H'00000000
After execution T =0, RO = H'00000001

4

6.4 ADDYV (ADD with V Flag Overflow Check): Arithmetic Instruction
Format Abstract : Code , State T Bit

ADDV Rm,Rn Rn + Rm — Rn, overflow —» T 0011lnnnnmmmml111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV (long m, long n) /*ADDV Rm,Rn */
{

long dest,src,ans;

if ((long)R[nl>=0) dest=0;
else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {
if (ans==1) T=1;
else T=0;

}

else T=0;

PC+=2;

}
Examples:

ADDV RO,R1 Before execution RO = H'00000001, R1 = H'7FFFFFFE, T = 0
After execution R1 =H'7FFFFFFF, T =0

ADDV RO,R1 Before execution RO = H'00000002, R1 = H'7FFFFFFE, T =0
After execution R1 =H'80000000, T =1

42

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T Bit

AND Rm,Rn Rn & Rm — Rn 0010nnnnmmmm1001 1 —

AND #imm,RO RO & imm — RO 11001001iiiiiiii 1 —

AND.B #imm,@(RO,GBR) (RO + GBR) & imm — (RO+ 11001101iiiiiiii 3 —
GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.
Operation:

AND(long m,long n) /* AND Rm,Rn */

{
R[n]&=R[m]
PC+=2;

}

ANDI(long i) /* AND #imm,R0O */

{
R[0]&=(0x000000FF & (long)i);
PC+=2;

}

ANDM(long i) /* AND.B #imm,@(RO,GBR) */

{
long temp;
temp= (long)Read_Byte (GBR+R[0]) ;
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0], temp) ;
PC+=2;

}

43

Examples:

AND RO,R1

AND #H'OF, RO

AND.B #H'80,@(RO,GBR)

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO =H'AAAAAAAA, R1 = H'55555555
R1 = H'00000000

RO = H'FFFFFFFF

RO = H'0000000F

@(RO,GBR) = H'AS
@(RO,GBR) = H'80

6.6 BF (Branch if False): Branch Instruction

Format Abstract Code State T Bit
BF label WhenT=0,dispx2+PC — PC; 10001011dddddddd 3n —_
When T =1, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.
Operation:

BF (long d) /* BF disp */
{
long disp:;

if ((Ad&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==0) PC=PC+(disp<<l)+4;
else PC+=2;
}

Example:

CLRT T is always cleared to O
BT TRGET_T Does not branch, because T =0
BF TRGET_F Branches to TRGET_F, because T =0

NOP
NOP « The PC location is used to calculate the
branch destination address of the BF
instruction
TRGET_F: <« Branch destination of the BF instruction

45

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2
CPU)

Class: Delayed branch instruction

Format Abstract Code State T Bit
BF/S label When T =0, disp x2 + PC — PC; 10001111dddddddd 21 —
When T = 1, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF executes the
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is —256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF/S with the BRA instruction or the
like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after is a
branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.
Operation:

BFS(long d) /* BFS disp */
{
long disp;

unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==0) {
PC=PC+(disp<<l)+4;
Delay_Slot (temp+2);
}
else PC+=2;

46

Example:

CLRT T is always O

BT/S TRGET_T Does not branch, because T =0

NOP

BF/S TRGET_F Branches to TRGET, because T =0

ADD RO,R1 Executed before branch

NOP « The PC location is used to calculate the branch destination
address of the BF/S instruction

TRGET_F: <« Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

47

6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRA label dispx2 +PC — PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is —
4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next

instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(long d) /* BRA disp */
{
unsigned long temp;

long disp;
if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF000 | d);
temp=PC;
PC=PC+(disp<<1l)+4;
Delay_Slot(temp+2);
}

Example:

BRA TRGET Branches to TRGET
ADD RO,R1 Executes ADD before branching

NOP « The PC location is used to calculate the branch destination
address of the BRA instruction
TRGET : < Branch destination of the BRA instruction

48

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

49

6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format Abstract | Code State T Bit

BRAF Rm Rm + PC —» PC 0000mmmm00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rm. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRAF(long m) /* BRAF Rm */
{
unsigned long temp;

temp=PC;

PC+=R[m] ;

Delay_Slot(temp+2);
}

Example:

MOV.L #(TRGET-BSRF_PC), RO Sets displacement

BRAF G@RO Branches to TRGET
ADD RO,R1 Executes ADD before branching
BRAF_PC: « The PC location is used to calculate
the branch destination address of
the BRAF instruction
NOP
TRGET : « Branch destination of the BRAF instruction

50

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

51

6.10 BSR (Branch to Subroutine): Branch Instruction
Class: Delayed branch instruction

Format Abstract * Code State T Bit

BSR label PC — PR, disp x2+ PC - PC 1011dddddddddddd 2 -

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before

branching. No interrupts or address errors are accepted between this instruction and the next

instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */
{
long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF000 | d);

PR=PC;

PC=PC+(disp<<1)+4;

Delay_Slot (PR+2);

562

Example:

BSR TRGET Branches to TRGET
MOV R3,R4 Executes the MOV instruction before branching
ADD RO,R1 « The PC location is used to calculate the branch destination

address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

TRGET: <« Procedure entrance
MOV R2,R3
RTS Returns to the above ADD instruction
MOV #1,RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

53

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSRF Rm PC —» PR,Rm + PC —» PC 0000mmmm00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before

branching. No interrupts or address errors are accepted between this instruction and the next

instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:
BSRF(long m) /* BSRF Rm */
{

PR=PC;
PC+=R[m];
Delay_Slot(PR+2);
1
Example:
MOV.L #(TRGET-BSRF_PC),R0 Sets displacement
BRSF @RO Branches to TRGET
MOV R3,R4 Executes the MOV instruction before
branching
BSRF_PC: <« The PC location is used to
calculate the branch destination
with BSRF
ADD RO,R1
TRGET: <« Procedure entrance
MOV R2,R3
RTS Returns to the above ADD instruction
MOV #1,RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

54

6.12 BT (Branch if True): Branch Instruction

Format Abstract Code State T Bit
BT label When T =1, disp x2 + PC — 10001001dddddddd 31 —
PC; ’
When T = 0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.v
Operation:

BT(long d) /* BT disp */
{
long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFO0 | (long)d);
if (T==1) PC=PC+(disp<<1l)+4;
else PC+=2;
}

Example:

SETT T is always 1
BF TRGET_F Does not branch, because T = 1
BT TRGET_T Branches to TRGET_T, because T = 1

NOP
NOP « The PC location is used to calculate the branch destination
address of the BT instruction
TRGET_T: < Branch destination of the BT instruction

55

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2

CPU)
Format Abstract Code State T Bit
BT/S label When T =1, dispx2 +PC — 10001101dddddddd 2/1 —_
PC;
When T =0, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles;
when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */
{
long disp;

unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFFO00 | (long)d);
if (T==1) {
PC=PC+(disp<<1)+4;
Delay_Slot(temp+2);
}
else PC+=2;

56

Example:

SETT T is always 1
BF/S TRGET_F Does not branch, because T = 1
NoP

BT/S TRGET_T Branches to TRGET, because T =1
ADD RO,R1 Executes before branching.

NOP « The PC location is used to calculate the branch destination
address of the BT/S instruction
TRGET_T: « Branch destination of the BT/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

57

6.14 CLRMAC (Clear MAC Register): System Control Instruction
Format Abstract Code State T Bit

CLRMAC 0 — MACH, MACL 0000000000101000 1 —

Description: Clears the MACH and MACL registers.
Operation:

CLRMAC() /* CLRMAC */

{
MACH=0;
MACL=0;

Example:

CLRMAC Initializes the MAC register
MAC.W @RO+, GR1+ Multiply and accumulate operation
MAC.W @RO+, @R1+

58

6.15 CLRT (Clear T Bit): System Control Instruction
Format Abstract Code

State

T Bit

CLRT 0-T 0000000000001000

1

0

Description: Clears the T bit.
Operation:

CLRT() /* CLRT */
{

=() ;
PC+=2;
1
Example:
CLRT Before execution T=1
After execution T=0

59

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format ‘ Abstract Code : State T Bit
CMP/EQ Rm,Rn WhenRn=Rm,1 T 0011nnnnmmmm0000 - 1 Comparison
‘ ' ‘ ' result
CMP/GE Rm,Rn When signed and Rn 2 0011lnnnnmmmm0011 1 Comparison

Rm, 1T result

CMP/GT Rm,Rn When signed and Rn > 0011lnnnnmmmm0111 1 Comparison
Rm, 15T result

CMP/HI Rm,Rn When unsigned and Rn> 0011nnnnmmmm0110 1 Comparison
Bm,1-5T result

CMP/HS Rm,Rn When unsigned and Rn> 0011nnnnmmmm0010 1 Comparison
Rm,1 T result

CMP/PL. Rn WhenRn>0,1-5T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn WhenRn20,1-T 0100nnnn00010001 1 Comparison
‘ result

CMP/STR Rm,Rn When abyte in Rn equals 0010nnnnmmmm1100 1 Comparison
~ abyteinBRm,1 T resuit

CMP/EQ #imm,RO0 When RO =imm,1 =T 10001000iiiiiiii 1 Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to O if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.1 shows the
mnemonics for the conditions.

60

Table 6.1 CMP Mnemonics

Mnemonics Condition
CMP/EQ Rm,Rn IfRn=Rm, T =1
CMP/GE Rm,Rn If Rn > Rm with signed data, T = 1
CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1
CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1
CMP/HS Rm,Rn If Rn > Rm with unsigned data, T = 1
CMP/PL Rn fRn>0,T=1
CMP/PZ Rn fRn20,T=1
CMP/STR Rm,Rn If a byte in Rn equals abytein Rm, T =1
CMP/EQ #imm,RO If RO =imm, T =1
Operation:

CMPEQ(long m, long n) /* CMP_EQ Rm,Rn */

{
if (R[n]==R[m]) T=1;
else T=0;
PC+=2;

}

CMPGE(long m,long n) /* CMP_GE Rm,Rn */
{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;
1

CMPGT (long m,long n) /* CMP_GT Rm,Rn */
{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

61

CMPHI (long m,long n) /* CMP_HI Rm,Rn */
{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;
PC+=2;
.
CMPHS(long m,long n) /* CMP_HS Rm,Rn */
{
if ((unsigned long)R[n]>=(unsigned long)R[m]) T=l{
else T=0;
PC+=2;
}
CMPPL(long n) /* CMP_PL Rn */
{
if ((long)R[n]>0) T=1;
else T=0;
PC+=2;
1

CMPPZ(long n) /* CMP_PZ Rn */
{
if ((long)R[n]>=0) T=1;
else T=0;
PC+=2;

62

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

{

}

CMPIM(long i)

{

unsigned long temp;
long HH,HL,LH,LL;

temp=R[n]"R[m];
HH=(temp>>12)&0x000000FF;
HH=(temp>>8)&0x000000FF;
HH=(temp>>4)&0x000000FF;
LL=temp&0x000000FF;
HH=HH&&HL&&LH&&LL;

if (HH==0) T=1;

else T=0;

PC+=2;

long imm;

/* CMP_EQ #imm,RO */

if ((i&0x80)==0) imm=(0x000000FF & (long i));

else imm=(0xXFFFFFFO0 | (long i));

if (R[0]==imm) T=1;

else T=0;
PC+=2;
}

Example:
CMP/GE RO,R1 RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T Does not branch because T =0
CMP/HS RO,R1 RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T Branches because T = 1
CMP/STR R2,R3 R2 =“ABCD”,R3 = “XYCZ”
BT TRGET_T Branches because T = 1

63

6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State T Bit
DIVOS Rm,Rn MSBof Rn —» Q, MSB of Rm — 0010nnnnmmmm0111 1 Calculation
MMQ-ST result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOS(long m,long n) /* DIVOS Rm,Rn */
{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q);

PC+=2;
}

Example: See DIV1.

64

6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction
Format Abstract Code State T Bit

DIVOU 0 - MQ/T 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOU() /* DIVOU */
{

M=Q=T=0;
PC+=2;
}
Example: See DIV1.

65

6.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code State T Bit
DIVI Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmmm0100 1 Calculation
' result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient

bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a

division, first find the quotient using a DIV1 instruction, then find the remainder as follows:
(Dividend) — (divisor) X (quotient) = (remainder)

with the SH-2 CPU in which a divider is installed as a peripheral function, the remainder can be

found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

66

Operation:

DIV1l(long m,long n) /* DIV1 Rm,Rn */
{
unsigned long tmpO;
unsigned char old_gqg, tmpl;
old_g=Q;
Q=(unsigned char) ((0x80000000 & R[n])!=0);
R[n]l<<=1;

R[n] |=(unsigned long)T;
switch(old_q){
case 0:switch(M){
case 0:tmpO=R[n];
R[n]-=R[m];
tmpl=(R[n]>tmp0);
switch(Q){
case 0:Q=tmpl;
break;
case 1:Q=(unsigned char) (tmpl==0);
break;
}
break;
case 1l:tmpO=R[n];
R[n]+=R[m];
tmpl=(R[n]<tmp0);
switch(Q){
case 0:0=(unsigned char) (tmpl==0);
break;
case 1:Q=tmpl;
break;
}
break;
}

break;

67

case 1l:switch(M){
case 0:tmpO=R[n];
R[n]+=R[m];
tmpl=(R[n]<tmp0);
switch(Q){
case 0:Q=tmpl;
break;
case 1:Q=(unsigned char) (tmpl==0);
break;
}
break;
case 1:tmpO=R[n];
R[n]-=R[m];
tmpl=(R[n]>tmp0);
switch(Q){
case 0:Q=(unsigned char) (tmpl==0);
break;
case 1:Q=tmpl;
break;
}
break;
}
break}
}
T=(Q==M);
PC+=2;

68

Example 1:
R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned

SHLL16 RO Upper 16 bits = divisor, lower 16 bits = 0

TST RO, RO Zero division check

BT ZERO_DIV

CMP/HS RO,R1 Overflow check

BT OVER_DIV

DIVOU Flag initialization

.arepeat 16

DIVl RO,R1 Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 R1 = Quotient
Example 2:

R1:R2 (64 bits)/RO (32 bits) = R2 (32 bits):Unsigned

TST RO, RO Zero division check

BT ZERO_DIV

CMP/HS RO,R1 Overflow check

BT OVER_DIV

DIVOU Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIVl RO,R1

.aendr

ROTCL R2 R2 = Quotient

69

Example 3:

SHLL16
EXTS.W
XOR
Mov
ROTCL
SUBC
DIVOS
.arepeat
DIVl
.aendr
EXTS.W
ROTCL
ADDC

EXTS.W

Example 4:

MOV
ROTCL
SUBC
XOR
SUBC

DIVOS
.arepeat
ROTCL
DIVl
.aendr
ROTCL
ADDC

RO
R1,R1
R2,R2
R1,R3
R3
R2,R1
RO,R1
16
RO,R1

R1,R1

R2,R1

R1,R1

R2,R3
R3

R1,R1
R3,R3
R3,R2

RO,R1
32

RO,R1

R3,R2

R1 (16 bits)/RO (16 bits) = R1 (16 bits):Signed
Upper 16 bits = divisor, lower 16 bits = 0
Sign-extends the dividend to 32 bits

R2=0

Decrements if the dividend is negative
Flag initialization

Repeat 16 times

R1 = quotient (one’s complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1

R1 = quotient (two’s complement)

R2 (32 bits) / RO (32 bits) = R2 (32 bits):Signed

Sign-extends the dividend to 64 bits (R1:R2)
R3=0

Decrements and takes the one’s complement if the dividend is
negative

Flag initialization

Repeat 32 times

R2 = Quotient (one’s complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’s complement)

70

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH-2 CPU)

Format Abstract Code State T Bit
DMULS.L. Rm,Rn With signed, Rn x Rm — 0011lnnnnmmmm1101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,long n) /* DMULS.L Rm,Rn */

{
unsigned long RnL,RnH,RmL,RmH,ResO,Resl,Res2;
unsigned 1long tempO0,templ,temp2, temp3;
long tempm,tempn, fnlmL;

tempn=(long)R[n];
tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]"R[m])<0) fnLml=-1;
else fnImI=0;

templ=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=templ&0x0000FFFF;
RnH=(templ>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

tempO0=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

71

Res2=0
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Resl<<16)&0xFFFF0000;
ResO=tempO+templ;
if (ResO<temp() Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF) +temp3;

if (fnImI<0) {
Res2=~Res2;
if (Res0==0)
Res2++;
else
Res0=(~Res0)+1;
}
MACH=Res2;
MACL=ResO0;
PC+=2;
}

Example:

DMULS RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555

After execution MACH = HFFFFFFFF, MACL = H'FFFF5556
STS MACH, RO Operation result (top)
STS MACL, RO Operation result (bottom)

72

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH-2 CPU)

Format Abstract Code State T Bit
DMULU.L. Rm,Rn Without signed, Rn x Rm — 0011nnnnmmmm0101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU(long m,long n) /* DMULU.L Rm,Rn */

{
unsigned 1long RnL,RnH,RmL,RmH,Res0,Resl,Res2;
unsigned 1long tempO,templ, temp2, temp3;

RnL=R[n]&0x0000FFFF;
RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m] &0x0000FFFF;
RmH=(R[m]>>16)&0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;
templ=(Resl<<16)&0XFFFF0000;
ResO=tempO+templ ;

if (ResO<temp0O) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

73

MACH=Res2;

MACL=ResO0;

PC+=2;
}

Example:
DMULU RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution . MACH = H'00005554, MACL = H'FFFF5556

STS MACH, RO Operation result (top)
STS MACL, RO Operation result (bottom)

74

6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)

Format Abstract Code State T Bit
DT Rn Rn-1 - Rn; 0100nnnn00010000 1 Comparison
When Rnis0,1 - T, result

when Rnis nonzero,0 » T

Description: The contents of general register Rn is decremented by 1 and the result is compared
to 0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to
0.

Operation:

DT(long n) /* DT Rn */
{

R[n]--;
if (R[n]==0) T=1;
else T=0;
PC+=2;
}
Example:
MOV #4,R5 Sets the number of loops.
LOOP:
ADD RO,R1
DT RS Decrements the R5 value and checks whether it has become 0.
BF Loop Branches to LOOP if T=0. (In this example, loops 4 times.)

75

6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code : State T Bit

EXTS.B Rn,Rn Sign-extended Rm from byte — 0110nnnnmmmml110 1 —_
Rn :

EXIS.W Ru,Rn Sign-extended Rm fromword —- 0110nnnnmmmm1111 1 —_
Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is specified, the
bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{
R[(n]=R[m];
if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFO00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{
R[n]=R[m];
if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}

Examples:

EXTS.B RO,R1 Before execution RO = H'00000080

After execution R1 = H'FFFFFF80
EXIS.W RO,R1 Before execution RO = H'00008000
After execution R1 = H'FFFF8000

76

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit
EXTU.B Rm,Rn Zero-extend Rm from byte - Rn 0110nnnnmmmm1100 1 —_
EXTU.W Rm,Rn Zero-extend Rm from word - Rn 0110nnnnmmmm1101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, O is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to bits
16 to 31 of Rn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */
{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;
}

EXTUW(long m,long n) /* EXTU.W Rm,Rn */
{

R[n]=R[m];
R[n]&=0x0000FFFF;
PC+=2;
}
Examples:

EXIU.B RO,R1 Before execution RO = H'FFFFFF80
After execution R1 = H'00000080
EXIUW RO,R1 Before execution RO = H'FFFF8000

After execution R1 = H'00008000

77

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rm Rm — PC 0100mmmm00101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP(long m) /* JMP @Rm */
{
unsigned long temp;

temp=PC;
PC=R[m]+4;
Delay_Slot(temp+2);

}
Example:

MOV.L JMP_TABLE, RO Address of RO = TRGET
JMP €RO Branches to TRGET
MOV RO,R1 Executes MOV before branching
.align 4

JMP_TABLE: .data.l TRGET Jump table

TRGET: ADD #1,R1 « Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

78

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rm PC - PR, Rm - PC 0100mmmm00001011 2 —

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PR. The jump
destination is an address specified by the 32-bit data in general register Rm. The PC points to the
starting address of the second instruction after JSR. The JSR instruction and RTS instruction are
used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long m) /* JSR @Rm */
{

PR=PC;

PC=R[m]+4;

Delay_Slot (PR+2);

79

Example:

MOV.L JSR_TABLE, RO RO = Address of TRGET

JSR €RO Branches to TRGET
XOR R1,R1 Executes XOR before branching
ADD RO,R1 ¢ Return address for when the
subroutine procedure is completed
(PR data)
align 4
JSR_TABLE: .data.l TRGET Jump table
TRGET: NOP « Procedure entrance
MOV R2,R3
RTS Returns to the above ADD instruction
MOV #70,R1 Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

80

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDC Rm, SR Rm — SR 0100mmmm00001110 1 LSB
LDC Rm, GBR Rm — GBR 0100mmmm00011110 1 —
LDC Rm, VBR Rm — VBR 0100mmmm00101110 1 —
LDC.L @Rm+,SR (Rm) - SR, Rm + 4 - Rm 0100mmmm00000111 3 LSB
IDC.L @RrRm+,GBR (Rm) = GBR, Rm +4 - Rm 0100mmmm00010111 3 —
LDC.L @Rm+,VBR (Rm) - VBR, Rm+4 — Rm 0100mmmm00100111 3 —

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors

are accepted.
Operation:

LDCSR(long m) /* LDCva,SR */
{

SR=R[m] &0x000003F3;

PC+=2;

}

LDCGBR(long m) /* LDC Rm,GBR */
{

GBR=R[m] ;

PC+=2;
}

LDCVBR(long m) /* LDC Rm,VBR */
{

VBR=R[m];

PC+=2;

81

LDCMSR(long m) /* LDC.L @Rm+,SR */

: :
SR=Read_Long(R[m])&0x000003F3;
R[m]+=4;
PC+=2;

}

LDCMGBR(1long m)

{
GBR=Read_Long(R[m]);
R(m]+=4;
PC+=2;

}

LDCMVBR(1long m)

{
VBR=Read_Long(R[m]);

R[m]+=4;
PC+=2;
}
Examples:
LDC RO, SR Before execution
After execution
LDC.L @R15+,GBR Before execution

After execution

/* LDC.L @Rm+,GBR */

/* LDC.L @Rm+,VBR */

RO = H'FFFFFFFF, SR = H'00000000
SR = H'000003F3

R15 = H'10000000
R15 = H'10000004, GBR = @H'10000000

82

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDS Rm, MACH Rm — MACH 0100mmmm00001010 —
LDS Rm, MACL Rm — MACL 0100mmmm00011010 —
LDS Rm, PR Rm — PR 0100mmmm00101010 —

IDS.L @Rm+,MACH (Rm) - MACH,BRm+4 — RBRm 0100mmmm00000110
IDS.L @Rm+,MACL (Rm)— MACL, Rm +4 — Rm 0100mmmm00010110
LDS.L G@Rm+,PR (Rm) - PR, Rm +4 —» Rm 0100mmmm00100110

[G G U T U G —y

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH-1 CPU, the lower 10 bits are stored in MACH. For the SH-2 CPU, 32 bits are stored in
MACH.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

MACH=R[m] ;

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU(these 2 lines
else MACH|=0xFFFFFC00; not needed for SH-2 CPU)
PC+=2; '

}
LDSMACL(1long m) /* LDS Rm,MACL */
{
MACL=R[m];
PC+=2;
}

LDSPR(long m) /* LDS Rm,PR */
{

PR=R[m] ;

PC+=2;

83

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{
MACH=Read_Long(R[m]);

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU (these 2 lines
else MACH|=0xFFFFFCO0; not needed for SH-2 CPU)
R[m]+=4;
PC+=2;

}

LDSMMACL(long m) /* LDS.L @Rmt+,MACL */

{
MACL=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}

LDSMPR(long m) /* LDS.L GRm+,PR */

{
PR=Read_Long(R[m]);

R(m]+=4;
PC+=2;
}
Examples:
LDS RO,PR Before execution RO =H'12345678, PR = H'00000000
After execution PR =H'12345678
IDS.L @R15+,MACL Before execution R15 = H'10000000

After execution R15 =H'10000004, MACL = @H'10000000

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction

(SH-2 CPU)
Format Abstract Code State T Bit
MAC.L @Rm+, @Rn+ Signed operation, (Rn) x (Rm) + 0000nnnnmmmm1111 3/(2to —
MAC - MAC 4)

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

{
unsigned long RnL,RnH,RmL,RmH,Res0,Resl,Res2;
unsigned long tempO,templ,temp2,temp3;
long tempm, tempn, fnlmL;

tempn=(long)Read_Long(R[n]);
R[n]+=4;
tempm=(long)Read_Long(R[m]);
R[m]+=4;

if ((long) (tempn~tempm)<0) fnLmL=-1;
else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

templ=(unsigned long)tempn;

temp2=(unsigned long)tempm;

85

RnL=templ&0x0000FFFF;
RnH=(templ>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH= (temp2>>16)&0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0;
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Resl<<16)&0xXFFFF0000;
ResO=tempO+templ;
if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (£nIm<0) {
Res2=~Res2;
if (Res0==0) Res2++;
else Res(O=(~Res0)+1;

}

if(s==1){
Res0=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=(MACH&0x0000FFFF) ;

if(((long)Res2<0)&& (Res2<0xFFFF8000)) {
Res2=0x00008000;
Res0=0x00000000;

}

if(((long)Res2>0)4&& (Res2>0x00007FFF)) {
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

Yi

86

MACH=Res2;
MACL=ResO;
}
else { -
Res0=MACL+Res0;
if (MACL>Res0) Res2++;

Res2+=MACH
MACH=Res2;
MACL=ResO0;

1

PC+=2;

}
Example:
MOVA TBLM, RO Table address
MOV RO,R1
MOVA TBLN, RO Table address
CLRMAC MAC register initialization
MAC.L @RO+, @R1+
MAC.L @RO+, @R1+
STS MACL, RO Store result into RO
align 2

TBLM .data.l H'1234ABCD
.data.l H'5678EF01
TBLN .data.1l H'0123ABCD
.data.l H'4567DEF0

87

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU)

Format Abstract Code State T Bit
MAC.W @Rm+,@Rn+ With signed, (Rn) x (Rm) + MAC 0100nnnnmmmm1111 32 —
- MAC

Description: Multiplies 16-bit operands obtained using the contents of general registers Rm and
Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final result is
stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

88

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
Format Abstract Code State T Bit

MAC.W @Rm+,@Rn+ Signed operation, 0100nnnnmmmm1111 32 —
MAC @Rm+, @Rn+ (Rn) x(Rm) + MAC - MAC

Description: Signed-multiplicates 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by
two.

When the S bit is cleared to 0, the operation is 16 X 16 + 64 — 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 X 16 + 32 — 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH-2 CPU performs a 16 X 16 + 64 — 64 bit multiply and
accumulate operation and the SH-1 CPU performs a 16 X 16 + 42 — 42 bit multiply and
accumulate operation.

Operation:

MACW(long m,long n) /* MAC.W @GRm+, @Rn+*/
{
long tempm, tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n]+=2;
tempm=(long)Read_Word(R[m]);
R[m]+=2;
templ=MACL;
tempm=((long) (short)tempn*(long) (short)tempm) ;

89

if ((long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0 {
src=0;
tempn=0;
}
else {
src=1;
tempn=0xFFFFFFFF;
}
srct=dest;
MACL+=tempm;
if ((long)MACL>=0) ans=0;
else ans=1;
anst+=dest;
if (S==1) {
if (ans==1) {

if (src==0 || src==2)
MACH | =0x00000001; .

if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
else {
MACH+=tempn;
if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0)
MACH&=0x000003FF;
else MACH|=0xFFFFFCO0;

}
PC+=2;

90

For SH-1 CPU (these 2 lines
not needed for SH-2 CPU)

For SH-1 CPU (these 3 lines
not needed for SH-2 CPU)

Example:

TBLM

TBLN

TBLM, RO
RO,R1
TBLN, RO

@RO+, @R1+
@RO+, @R1+
MACL, RO

......

H'1234
H'5678
H'0123
H'4567

Table address
Table address

MAC register initialization

Store result into RO

91

6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State T Bit
MOV Rm,Rn Rm —= Rn 0110nnnommmm0011 1 —
MOV.B Rm, @Rn Rm — (Rn) 0010nnnnmmmm0000 1 —
MOV.W Rm, @Rn Rm — (Rn) 0010nnnnmmmm0001 1 —
MOV.L Rm, @Rn Rm — (Rn) 0010nnnnmmmm0010 1 —
MOV.B @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmmm0000 1 —
MOV.W @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmmm0001 1 —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmm0010 1 —
MOV.B Rm, @-Rn Rn-1 — Rn, Rm — (Rn) 0010nnnnmmmm0100 1 —
MOV.W Rm, @-Rn Rn-2 — Rn, Rm — (Rn) 0010nnnnmmmm0101 1 —
MOV.L Rm,@-Rn Rn -4 — Rn, Rm — (Rn) 0010nnnnmmmm0110 1 —
MOV.B @Rm+,Rn (Rm) — sign extension —- Rn, Rm 0110nnnnmmmm0100 1 -
+1-Rm
MOV.W @Rm+,Rn (Rm) — sign extension — Rn, Rm 0110nnnnmmmm0101 1 —
+2 - Rm
MOV.L @Rm+,Rn (Rm) — Rn, Rm + 4 — Rm 0110nnnnmmmm0110 1 —
MOV.B Rm, @(RO,Rn) Rm — (RO + Rn) 0000nnnnmmmm0100 1 —
MOV.W Rm, @(RO,Rn) Rm — (RO + Rn) 0000nnnnmmmm0101 1 —
MOV.L Rm, @(RO,Rn) Rm — (RO + Rn) 0000nnnnmmmm0110 1 —_
MOV.B €(RO,Rm),Rn (RO + Rm) — sign extension — 0000nnnnmmmm1100 1 —
Rn 0000nnnommmm1101 1 -—
MOV.W @(RO,Rm),Rn gano + Rm) — sign extension — 0000nnnMUIm1110 1 _

MOV.L @(RO,Rm),Rn (RO + Rm) — Rn

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. When the source operand is in
memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

MOV(long m,long n) /* MOV Rm,Rn */
{

R[n]=R[m];

PC+=2;

92

MOVBS (long m,long n) /*
{
Write_Byte(R[n],R[m]);

MOV.B Rm, @Rn

*/

PC+=2;
}
MOVWS(long m,long n) /* MOV.W Rm, @Rn */
{
Write_Word(R[n],R[m]);
PC+=2;
}
MOVLS(long m,long n) /* MOV.L Rm,@Rn */
{
Write Long(R[n],R[m]);
PC+=2;
}
MOVBL(long m,long n) /* MOV.B @Rm,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;
}
MOVWL(long m,long n) /* MOV.W @Rm,Rn */
{
R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;
}
MOVLL(long m,long n) /* MOV.L @Rm,Rn */
{
R[n]=Read_Long(R[m]);
PC+=2;
}

93

MOVBM(long m,long n) /*
{
Write Byte(R[n]-1,R[m]);

R[n]-=1;
PC+=2;
1
MOVWM(long m,long n) /*
{ .
Write Word(R[n]-2,R[m]);
R[n]-=2;
PC+=2;
1
MOVLM(long m,long n) /*
{
Write_Long(R[n]-4,R[m]);
R[n]-=4;
PC+=2;
}

MOV.B Rm, @-Rn */

MOV.W Rm, @-Rn */

MOV.L Rm,@-Rn */

MOVBP(long m,long n) /* MOV.B @Rm+,Rn */

{

R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFFO00;
if (n!=m) R[m]+=1;
PC+=2;

}

MOVWP(long m,long n) /*
{

MOV.W @Rm+,Rn */

R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n] |=0xFFFF0000;
if (n!=m) R[m]+=2;
PC+=2;

94

MOVLP (long m,long n) /* MOV.L @Rm+,Rn */
{

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;
}
MOVBSO(long m,long n) /* MOV.B Rm,@(RO,Rn) */
{
Write_Byte(R[n]+R[0],R[m]);
PC+=2;
}
MOVWSO (long m,long n) /* MOV.W Rm, @(RO,Rn) */
{
Write Word(R[n]+R[0],R[m]);
PC+=2;
}

MOVLSO(long m,long n) /* MOV.L Rm,@(RO,Rn) */
{

Write_Long(R[n]+R[0],R[m]);

PC+=2;
}

MOVBLO (long m,long n) /* MOV.B @(RO,Rm),Rn */
{
R[n]=(long)Read_Byte(R[m]+R[0]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;
}

MOVWLO (long m,long n) /* MOV.W @(RO,Rm),Rn */
{
R[n]=(long)Read_Word(R[m]+R[0]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

95

MOVLLO(long m,long n) /* MOV.L @(RO,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);
PC+=2;

}
Example:

MOV

MOV.W

MOV.B

MOV.W

MOV.L

MOV.B

MOV.W

RO,R1

RO, €R1

@RO,R1

RO, @-R1

@RO+,R1

R1, @(RO,R2)

@(RO,R2),R1

Before execution

After execution

Before execution

After execution

Before execution

After execution

Before execution

After execution

Before execution
After execution

Before execution
After execution

Before execution

After execution

RO = HFFFFFFFF, R1 = H'00000000
R1 = HFFFFFFFF

RO = H'FFFF7F80
@R1 =H'7F80

@RO = H'80, R1 = H'00000000
R1 = H'FFFFFF80

RO = H'AAAAAAAA, R1 = HFFFF7F80
R1 = HFFFFTFTE, @R1 = HAAAA

RO =H'12345670
RO =H'12345674, R1 = @H'12345670

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

96

6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV #imm, Rn imm — sign extension - Rn 1110nnnniiiiiiii 1 —_

MOV.W @(disp,PC),Rn (disp x2 + PC) — sign 1001nnnndddddddd 1 —
extension — Rn

MOV.L @(disp,PC),Rn (dispx 4+ PC) - Rn 1101nnnndddddddd 1 —_

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVI(long i,long n) /* MOV #imm,Rn */

{
if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
else R[n]=(0xXFFFFFF00 | (long)i);

PC+=2;
}
MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */
{

long disp;

97

disp=(0x000000FF & (long)d);
R[n] =(long)Read__Word(PC+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;

PC+=2;
}

MOVLI(long d,long n)

{

long disp;

/* MOV.L @(disp,PC),Rn */

disp=(0x000000FF & (long)d);
R[n]=Read_Long((PC&OXFFFFFFFC)+(disp<<2));

PC+=2;
b
Example:

Address
1000
1002
1004
1006

1008
100A
100C
100E IMM
1010
1012
1014

NEXT

1018

MOV.L
.data.w
.data.w

JMP
CMP/EQ

.align
.data.l

#H'80,R1
IMM, R2
#-1, RO
RO, RO

R13

NEXT
@(4,PC),R3
H' 9ABC
H'1234

@R3

#0,RO

4
H'12345678

R1 = HFFFFFF80
R2 = HFFFF9ABC, IMM means @ (H'08,PC)

« PC location used for address calculation for the
MOV.W instruction

Delayed branch instruction

R3 =H'12345678

Branch destination of the BRA instruction

« PC location used for address calculation for the
MOV.L instruction

98

6.34 MOYV (Move Peripheral Data): Data Transfer Instruction
Format Abstract Code State T Bit

MOV.B @(disp,GBR),R0 (disp + GBR) — sign 11000100dddddddd 1 —
extension — RO

MOV.W @(disp,GBR),R0 (disp x2 + GBR) — 11000101dddddddd 1 —
sign extension — RO

MOV.L @(disp,GBR),R0 (disp x4+ GBR) > R0 11000110dddddddd
MOV.B RO, @(disp,GBR) RO — (disp + GBR) 11000000dddddddd
MOV.W RO, @(disp,GBR) RO — (disp x2 + GBR) 11000001dddddddd
MOV.L RO, @(disp,GBR) RO — (disp x4 + GBR) 11000010dddddddd

[QT G G

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but the
register is fixed to RO.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is a longword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within +1020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(RO,Rn) mode must be used after the GBR data is
transferred to a general register. When the source operand is in memory, the loaded data is stored
in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0O. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ADD #20, Ri
ADD #20, Ri ><: AND #80, RO

Figure 6.1 Using RO after MOV

99

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0O */
{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Byte(GBR+disp);

if ((R[0]1&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFO00;

PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */
[.
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Word(GBR+(disp<<l));
if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else RtO]]=OxFFFFOOOO;
PC+=2;

}

MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */
{
long disp;

disp=(0x000000FF & (long)d);
R[0]=Read_Long(GBR+(disp<<2));
PC+=2;

}

MOVBSG(long d) /* MOV.B RO, @(disp,GBR) */
{
long disp;

100

disp=(0x000000FF & (long)d);
Write_Byte(GBR+disp,R[0]);
PC+=2;

]

MOVWSG(long d) /* MOV.W RO, @(disp,GBR) */
{
long disp;

disp=(0x000000FF & (long)d);
Write_Word (GBR+(disp<<1l),R[0]);
PC+=2;

}

MOVLSG(long d) /* MOV.L RO, @(disp,GBR) */
{
long disp;

disp=(0x000000FF & (long)d);
Write_Long (GBR+(disp<<2),R[0]);
PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 Before execution @(GBR + 8) = H'12345670
After execution RO = @H'12345670

MOV.B RO, @(1,GBR) Before execution RO = H'FFFF7F80
After execution @(GBR + 1) = HFFFF7F80

101

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State T Bit
MOV.B RO, @(disp,Rn) RO — (disp + Rn) 10000000nnnndddd 1 —
MOV.W RO, @(disp,Rn) RO — (disp x2 + Rn) 10000001nnnndddd 1 —
MOV.L Rm,@(disp,Rn) Rm— (disp x4+ Rn) 0001nnnnmmmmdddd 1 —_
MOV.B @(disp,Rm),R0 (disp + Rm) — sign 100001 00mmmmdddd 1 —
extension —» RO
MOV.W @(disp,Rm),R0 (dispx2+ Rm) —sign 10000101mmmmdddd 1 —
extension —» RO (
MOV.L @(disp,Rm),Rn (disp x4+ Rm) - Rn 0101nnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register is fixed. When the data is a byte, the 4-bit displacement is
zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the data is a longword, the 4-bit displacement is zero-extended and
quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too
short to reach the memory operand, the aforementioned @(R0O,Rn) mode must be used. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to a
longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO
" AND #80,R0 ><: ADD #20,R1
ADD #20, Rt AND #80, RO

Figure 6.2 Using RO after MOV

102

Operation:

MOVBS4 (long d,long n) /* MOV.B RO, @(disp,Rn) */
{
long disp;

disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;

}

MOVWS4 (long d,long n) /* MOV.W RO, @(disp,Rn) */
{
long disp;

disp=(0x0000000F & (long)d);
Write Word(R[n]+(disp<<1l),R[0]);
PC+=2;

}

MOVLS4 (long m,long d,long n)
/* MOV.L Rm, @(disp,Rn) */

long disp;

disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;

}

MOVBLA4 (long m,long d) /* MOV.B @(disp,Rm),R0 */
{
long disp;

disp=(0x0000000F & (long)d);
R[0O]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFO00;

PC+=2;

103

MOVWL4 (long m,long d) /* MOV.W @(disp,Rm),R0 */
{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;

}
MOVLL4 (long m,long d,long n)
/* MOV.L @(disp,Rm),Rn */

long disp;

disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));
PC+=2;

}

Examples:

MOV.L @(2,R0),R1 Before execution @(RO + 8) = H'12345670
After execution R1 = @H'12345670

MOV.L RO,@(H'F,R1) Before execution RO = HFFFF7F80
After execution @(R1 + 60) = H'FFFF7F80

104

6.36 MOVA (Move Effective Address): Data Transfer Instruction
Format Abstract Code State T Bit

MOVA @(disp,PC),RO disp x4 + PC— RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register RO. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV A instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),R0 */
{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(PC&OXFFFFFFFC)+(disp<<2);

PC+=2;
}
Example:

Address .org H'1006

1006 MOVA STR, RO Address of STR — RO

1008 MOV.B @RO,R1 R1 =“X" « PC location after correcting the lowest
two bits

100 ADD R4,R5 < Original PC location for address calculation for
the MOVA instruction

.align 4

100C STR: .sdata “XYZP12”

2002 BRA TRGET Delayed branch instruction

2004 MOVA @(0,PC),R0 Address of TRGET + 2 — RO

2006 NOP

105

6.37 MOVT (Move T Bit): Data Transfer Instruction
Format Abstract Code State T Bit

MOVT Rn T—Rn 0000nnnn00101001 1 -

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */
{
R[n]=(0x00000001 & SR);

PC+=2;
1
Example:

XOR R2,R2 R2=0
CMP/PZ R2 T=1
MOVT RO RO=1
CLRT T=0
MOVT R1 R1=0

106

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)
Format Abstract ‘ Code State T Bit

MUL.L Rm,Rn Rn x Rm — MACL 0000nnnnmmmmO0111 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL(long m,long n) /* MUL.L Rm,Rn */
{

MACL=R[n]*R([m];

PC+=2;

}
Example:

MUL.L RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MACL, RO Operation result

107

6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code State T Bit
MULS.W Rm,Rn Signed operation, Rn xRm — 0010nnnnmmmm1111 1to3 —
MULS Rm,Rn MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS (long m,long n) /* MULS Rm,Rn */

{
MACL=((long) (short)R[n]*(long) (short)R[m]);
PC+=2;

}

Example:

MULS RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MACL,RO Operation result

108

640 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
Format Abstract Code State T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm — MAC 0010nnnnmmmm1110 1to3 —
MULU Rm, Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */
{
MACL=((unsigned long)(unsigned short)R[n]
*(unsigned long) (unsigned short)R[m]);
PC+=2;

}

Example:

MULU RO,R1 Before execution RO = H'00000002, R1 = HFFFFAAAA
After execution MACL = H'00015554
STS MACL,RO Operation result

109

6.41 NEG (Negate): Arithmetic Instruction
Format Abstract Code State T Bit

NEG Rm, Rn 0-Rm - Rn 0110nnnnmmmm1011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rm,Rn */
{

R[n]=0-R[m];
PC+=2;
}
Example:
NEG RO,R1 Before execution RO = H'00000001

After execution R1 = H'FFFFFFFF

110

6.42 NEGC (Negate with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

NEGC Rm, Rn 0—-Rm-T—Rn,Borrow - T 0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */
{

unsigned long temp;

temp=0-R[m];
R[n]=temp-T;
if (O<temp) T=1;
else T=0;
if (temp<R([n]) T=1;
PC+=2;

}

Examples:

CLRT Sign inversion of R1 and RO (64 bits)

NEGC R1,R1 Before execution R1 = H'00000001, T=0
After execution R1 = HFFFFFFFF, T =1

NEGC RO,R0O Before execution RO = H'00000000, T =1
After execution RO = HFFFFFFFF, T = 1

111

6.43 NOP (No Operation): System Control Instruction
Format Abstract Code

State T Bit

NOP No operation 0000000000001001

1

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /* NOP */
{

PC+=2;
}

Example:

NOP Executes in one cycle

112

6.44 NOT (NOT—Logical Complement): Logic Operation Instruction
Format Abstract Code State T Bit

NOT Rm,Rn ~Rm — Rn 0110nnnnmmmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */
{

R[n]=~R[m];
PC+=2;
}
Example:

NOT RO,R1 Before execution RO=HAAAAAAAA
After execution R1 =H'55555555

113

6.45 OR (OR Logical) Logic Operation Instruction

Format : Abstract Code State T Bit
OR Rm,Rn RnIRm - Rn 0010nnnnmmmm1011 1 —
OR #imm, RO RO | imm — RO 11001011iiiidiiii 1 -
OR.B #imm,@(RO,GBR) gao +GBR) limm —» (RO+ 11001111iiiiiiii 3 —

. ; BR) ,

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */
{

R[n]|=R[m];

PC+=2;
}

ORI(long i) /* OR #imm,RO */

{
R[0] |=(0x000000FF & (long)i);
PC+=2;

}

ORM(long i) /* OR.B #imm, @(RO,GBR) */
{
long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0], temp);
PC+=2;

114

Examples:

OR RO,R1 Before execution RO =H'AAAAS5555,R1 = H'S5550000
After execution R1 = H'FFFF5555

OR #H'FO, RO Before execution RO = H'00000008
After execution RO = H'000000F8

OR.B #H'50, @(RO,GBR) Before execution @(RO,GBR) = H'A5
After execution @(RO,GBR) =H'F5

116

6.46 ROTCL (Rotate with Carry Left): Shift Instruction
Format Abstract Code State T Bit

ROTCL Rn T—RneT 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

MSB LSB

ROTCL

Figure 6.3 Rotate with Carry Left
Operation:

ROTCL(long n) /* ROTCL Rn */

{
long temp;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

if (temp==1) T=1;

else T=0;
PC+=2;
}
Example:

ROTCL: RO Before execution RO = H'80000000, T =0
After execution RO = H'00000000, T = 1

116

6.47 ROTCR (Rotate with Carry Right): Shift Instruction
Format Abstract Code State T Bit

ROTCR Rn To>Rn->T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTCR r’ !

Figure 6.4 Rotate with Carry Right
Operation:

ROTCR(long n) /* ROTCR Rn */

{
long temp;

if ((R[n]&0x00000001)==0) temp=0;
else temp=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;
PC+=2;
}
Examples:

ROTCR RO Before execution RO = H'00000001, T = 1
After execution RO = H'80000000, T = 1

117

6.48 ROTL (Rotate Left): Shift Instruction
Format o Abstract : Code : State T Bit

ROTL Rn T « Rn « MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL

Figure 6.5 Rotate Left
Operation:

ROTL(long n) /* ROTL Rn */

{
if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xXFFFFFFFE;
PC+=2;

}

Examples:

ROTL RO Before execution RO = H'80000000, T =0
After execution RO =H'00000001,T=1

118

6.49 ROTR (Rotate Right): Shift Instruction
Format Abstract ~ Code State T Bit

ROTR Rn LSB—->Rn->T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTR

Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{
if ((R[n]1&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}
Examples:

ROTR RO Before execution RO = H'00000001, T=0
After executionRO = H'80000000, T = 1

119

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area — PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTE() /* RIE */
{

unsigned long temp;

temp=PC;

PC=Read_Long(R[15])+4;
R[15]+=4;
SR=Read_Long(R[15])&0x000003F3;
R[15]+=4;

Delay_Slot(temp+2);

}

Example:
RTE Returns to the original routine
ADD #8,R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

120

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR - PC 0000000000001011 2 -

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTS() /* RIS */
{

unsigned long temp;

temp=PC;
PC=PR+4;
Delay_Slot (temp+2);
1
Example:
MOV.L TABLE, R3 R3 = Address of TRGET
JSR @R3 Branches to TRGET
NOP Executes NOP before JSR
ADD RO,R1 < Return address for when the subroutine procedure is
completed (PR data)
TABLE: .data.l TRGET Jump table
TRGET: MOV R1,RO « Procedure entrance
RTS PR data — PC '
MOV #12,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

121

6.52 SETT (Set T Bit): System Control Instruction
Format Abstract Code

State T Bit

SETT 15T 0000000000011000

1

1

. Description: Sets the T bit to 1.
Operation:

SETT() /* SETT */
{

=1;

PC+=2;
}

Example:

SETT Before execution T=0
Afterexecution T=1

122

6.53 SHAL (Shift Arithmetic Left): Shift Instruction
Format Abstract Code State T Bit

SHAL Rn T—Rne0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

MSB LSB

SHAL +—0

Figure 6.7 Shift Arithmetic Left
Operation:

SHAL(long n) /* SHAL Rn (Same as SHLL) */
{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;
}

Example:

SHAL RO Before execution RO = H'80000001, T =0
After execution RO = H'00000002, T = 1

123

6.54 SHAR (Shift Arithmetic Right): Shift Instruction
Format Abstract . Code State T Bit

SHAR FRn MSB—-Rn—->T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.8).

LSB

MSB
SHAR I:I

Figure 6.8 Shift Arithmetic Right
Operation:

SHAR(long n) /* SHAR Rn */
{
long temp;

if ((R[n]&0x00000001)==0) T=0;
else T=1;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;

PC+=2;

}
Example:

SHAR RO Before execution RO =H'80000001, T=0
After execution RO =H'C0000000, T = 1

124

6.55 SHLL (Shift Logical Left): Shift Instruction
Format Abstract Code State T Bit

SHLL Rn T«~Rne«0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

MSB LSB

SHLL le—o

Figure 6.9 Shift Logical Left
Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */
{
if ((R[n]&0x80000000)==0) T=0;

else T=1;
R[n]<<=1;
PC+=2;

}

Examples:

SHLL RO Before execution RO = H'80000001, T=0
After execution RO = H'00000002, T = 1

125

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract : Code , State T Bit
SHLL2 Rn Rn<<2 — Rn 0100nnnn00001000 1 -
SHLL8 Rn Rn<<8 — Rn ' 0100nnnn00011000 1 —
SHLL16 Rn Rn << 16 — Rn 0100nnnn00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

MSB LSB

SHLL2

SHLL16

Figure 6.10 Shift Logical Left n Bits
Operation:

SHLL2(long n) /* SHLL2 Rn */

Rlnl<k<=2;
PC+=2;

126

SHLL8(long n) /* SHLL8 Rn */

{
R[n]<<=8;
PC+=2;

1

SHLL16(long n) /* SHLL16 Rn */

{
R[n]l<<=16;
PC+=2;

}
Examples:

SHLL2 RO

SHLL8 RO

SHLL16 RO

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO =H'12345678
RO = H'48D159E0

RO =H'12345678
RO = H'34567800

RO =H'12345678
RO = H'56780000

127

6.57 SHLR (Shift Logical Right): Shift Instruction
Format Abstract Code State T Bit

SHLR Rn 0-Rn->T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

MSB LSB

SHLR 0—

Figure 6.11 Shift Logical Right
Operation:

SHLR(long n) /* SHLR Rn */
{
if ((R[n]&0x00000001)==0) T=0;

else T=1;
R[n]>>=1;
R[n]&=0x7FFFFFFF;
PC+=2;
}
Examples
SHIR RO Before execution RO = H'80000001, T =0

After execution RO = H'40000000, T = 1

128

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit
SHLR2 Rn Rn>>2 — Rn 0100nnnn00001001 1 —
SHLRS Rn Rn>>8 — Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 — Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

SHLR2

SHLR8

SHLR16

Figure 6.12 Shift Logical Right n Bits
Operation:

SHLR2(long n) /* SHLR2 Rn */
{
R[n]>>=2;
R[n]&=0x3FFFFFFF;
PC+=2;

129

SHLR8(long n) /* SHLR8 Rn */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;
1

SHLR16 (long n) /* SHLR16 Rn */

{

R[n]&=0x0000FFFF;

R[n]>>=16;
PC+=2;
}
Examples:
SHLR2 RO
SHLRS RO
SHLR16 RO

Before execution
After execution
Before execution
After execution
Before execution
After execution

RO = H'12345678
RO = H'048D159E
RO = H'12345678
RO = H'00123456
RO = H'12345678
RO = H'00001234

130

6.59 SLEEP (Sleep): System Control Instruction
Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.
Operation:

SLEEP() /* SLEEP */

Wait_for_exception;

}
Example:

SLEEP Transits power-down mode

131

6.60 STC (Store Control Register): System Control Instruction
Class: Interrupt disabled instruction

Format Abstract . Code State T Bit
STC SR,Rn SR —= Rn 0000nnnn00000010 1 —
STC GBR, Rn GBR — Rn : 0000nnnn00010010 1 —
STC VBR, Rn VBR — Rn 0000nnnn00100010 1 —
STC.L SR, @-Rn Rn-4 - Rn, SR — (Rn) 0100nnnn00000011 2 —
STC.L GBR,@-Rn Rn -4 — Rn, GBR — (Rn) 0100nnnn00010011 2 —
STC.L VBR,@-Rn Rn-4 — Rn, VBR - (Rn) 0100nnnn00100011 2 —

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(long n) /* STC SR,Rn */
{

R[n]=SR;

PC+=2;

}

STCGBR(long n) /* STC GBR,Rn */
{

R[n]=GBR;

PC+=2;

}

STCVBR(long n) /* STC VBR,Rn */
{

R[n]=VBR;

PC+=2;

132

STCMSR(long n) /* STC.L SR, @-Rn */

{
R[n]-=4;
Write_Long(R[n],SR);
PC+=2;

}

STCMGBR(long n) /* STC.L GBR, @-Rn */
{

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */
{

R[n]-=4;
Write_Long(R[n],VBR);
PC+=2;
1
Examples
STC SR, RO Before execution RO = H'FFFFFFFF, SR = H'00000000
After execution RO = H'00000000
STC.L GBR,@-R15 Before execution R15 = H'10000004
After execution R15 = H'10000000, @R15 = GBR

133

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STS MACH, Rn MACH - Rn 0000nnnn00001010 1 —
STS MACL,Rn MACL - Rn 0000nnnn00011010 1 —
STS PR,Rn PR — Rn 0000nnnn00101010 1 —
STS.L MACH,@Rn Rn-4-—Rn,MACH — (Rn) 0100nnnn00000010 1 —
STS.L. MACL,@Rn Rn-4-— Rn,MACL —» (Rn) 0100nnnn00010010 1 —
STS.L PR,@-Rn Rn -4 — Rn, PR - (Rn) 0100nnnn00100010 1 —

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors

are accepted.

If the system register is MACH in the SH-1 series, the value of bit 9 is transferred to and stored in
the higher 22 bits (bits 31 to 10) of the destination. With the SH-2 series, the 32 bits of MACH are

stored directly.
Operation:

STSMACH(long n) /* STS MACH,Rn */
{
R[n]=MACH;

if ((R[n]&0x00000200)==0)
R[n]&=0x000003FF;
else R[n]|=0xXFFFFFC00;

PC+=2;
1

STSMACL(long n) /* STS MACL,Rn */
{

R[n]=MACL;

PC+=2;

134

For SH-1 CPU (these 2 lines not

needed for SH-2 CPU)

STSPR(long n) /* STS PR,Rn */
{

R[n]=PR;

PC+=2;
}

STSMMACH(long n) /* STS.L MACH,G-Rn */

{
R[n]—4;

if ((MACH&0x00000200)==0)
Write_Long(R[n],MACH&0x000003FF);

else Write_Long
(R[n],MACH| OxFFFFFCQ0)

For SH-1 CPU

Write Long(R(n], MACH); i ForSH-2CPU

PC+=2;
1

STSMMACL(long n) /* STS.L MACL,@-Rn */

{
R[n]-=4;
Write_Long(R[n],MACL);
PC+=2;

}

STSMPR(long n) /* STS.L PR, @-Rn */
{

R[n]—=4;
Write_Long(R[n],PR);
PC+=2;
1
Example:

STS MACH, RO Before execution

After execution

STS.L PR, @-R15 Before execution

After execution

RO = H'FFFFFFFF, MACH = H'00000000
RO = H'00000000

R15 = H'10000004
R15 = H'10000000, @R15 = PR

135

6.62 SUB (Subtract Binary): Arithmetic Instruction
Format Abstract Code State T Bit

SUB Rm, Rn Rn-Rm — Rn 0011nnnnmmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */
{

R[n]-=R[m];
PC+=2;
}
Example:

SUB RO,R1 Before execution RO =H'00000001, R1 = H'80000000
After execution R1 = H'7FFFFFFF

136

6.63 SUBC (Subtract with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

SUBC Rm,Rn Rn-Rm-T — Rn, Borrow - T 0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. This instruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rm,Rn */
{
unsigned long tmpO,tmpl;

tmpl=R[n]-R[m];

tmpO0=R[n];
R[n]=tmpl-T;
if (tmpO<tmpl) T=1;
else T=0;
if (tmpl<R[n]) T=1;
PC+=2;
}
Examples:
CLRT RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)
SUBC R3,R1 Before execution T =0, R1 = H'00000000, R3 = H'00000001
After execution T = 1, R1 = HFFFFFFFF
SUBC R2,R0 Before execution T = 1, RO = H'00000000, R2 = H'00000000
After execution T = 1, RO = H'FFFFFFFF

137

6.64 SUBYV (Subtract with V Flag Underflow Check): Arithmetic

Instruction
Format Abstract Code State T Bit
SuBV Rm,Rn Rn-Rm — Rn, Underflow - T 0011lnnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
srct+=dest;
R[n]-=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==1) {
if (ans==1) T=1;

else T=0;
}
else T=0;
PC+=2;
1
Examples:

SUBV RO,R1 Before execution RO = H'00000002, R1 = H'80000001
After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE
After execution R3 = H'80000000, T = 1

138

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit

SWAP.B Rm,Rn Rm — Swap upper and lower 0110nnnnmmmml1 000 1 —
halves of lower 2 bytes — Rn

SWAP.W Rm,Rn Rm — Swap upper and lower 0110nnnnmmmm1001 1 —
word — Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits O to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits O to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */
{
unsigned long tempO,templ;

temp0=R[m] &0x££££0000;
templ=(R[m]&0x000000ff)<<8;
R[n]=(R[m]>>8)&0x000000£ff;
R[n]=R[n] |templ|temp0;
PC+=2;

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn */
{
unsigned long temp;
temp=(R[m]>>16)&0x0000FFFF;
R[n]=R[m]<<16;

R[n] |=temp;
PC+=2;
}
Examples

SWAP.B RO,R1 Before execution RO =H'12345678
After execution R1 =H'12347856

SWAP.W RO,R1 Before execution RO= H'12345678
After execution R1 =H'56781234

139

6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit
TaS.B @n When(Rn)is0,1 - T,1 - MSBof (Rn) 0100nnnn00011011 4 Test
results

Description: Reads byte data from the address speciﬁed by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B GRn */

{
long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */
if (temp==0) T=1;

else T=0;

temp | =0x00000080;

Write_Byte(R[n],temp); /* Bus Lock disable */

PC+=2;
1
Example:
_LOOP TAS.B @R7 R7 =1000
BF _LOOP Loops until data in address 1000 is O

140

6.67 TRAPA (Trap Always): System Control Instruction

Format Abstract Code State T Bit
TRAPA #imm PC/SR — Stack area, (immx4+ 11000011iiiiiiii 8 —
VBR) - PC

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the
starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

TRAPA(long i) ,/* TRAPA #imm */
{

long imm;

imm=(0x000000FF & 1i);

R[15]-=4;
Write_Long(R[15],SR);
R[15]-=4;

Write_Long(R[15],PC-2);
PC=Read_Long (VBR+(imm<<2))+4;

}

Example:
Address
VBR+H'80 .data.l 10000000
TRAPA #H'20 Branches to an address specified by data in address VBR +
H'80
TST #0,RO ¢ Return address from the trap routine (stacked PC value)
100000000 XOR RO, RO « Trap routine entrance
100000002 RTE Returns to the TST instruction
100000004 NOP Executes NOP before RTE

141

6.68 TST (Test Logical): Logic Operation Instruction

Format S Abstract Code ' State T Bit

TST Rm,Rn Rn & Rm, when resultis 0010nnnnmmmm1000 1 Test
0,1->T results

TST #imm, RO RO & imm, when resultis 11001000iiiiiiii 1 Test
0,1-T results

TST.B #imm, @(RO,GBR) (RO + GBR) & imm, when 11001100iiiiiiii 3 Test
‘ resultis0,1 - T ‘ results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is O or clears the T bit to O if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:

TST(long m,long n)/* TST Rm,Rn */
{

if ((R[n]J&R[m])==0) T=1;

else T=0;

PC+=2;
}

TSTI(long i) /* TEST #imm,RO */
{
long temp;

temp=R([0] &(0x000000FF & (long)i);
if (temp==0) T=1;
else T=0;
PC+=2;
}

TSTM(long i) /* TST.B #imm, @(RO,GBR) */
{
long temp;

142

temp=(long)Read_Byte (GBR+R[0]);
temps=(0x000000FF & (long)i);
if (temp==0) T=1;

else T=0;
PC+=2;
}
Examples:
TST RO, RO Before execution
After execution
TST #H'80,R0 Before execution
After execution

TST.B #H'A5,@(R0O,GBR) Before execution

After execution

143

RO = H'00000000
T=1

RO = H'FFFFFF7F
T=1

@(RO,GBR) =H'AS5
T=0

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit
XOR Rm,Rn RnARm — Rn 0010nnnnmmmm1 010 1 —
XOR #imm, RO RO A imm —» RO 11001010iiiiiiii 1 —
XOR.B #imm, @(RO,GBR) (RO + GBR) Aimm — (RO 11001110iiiiiiii 3 —

+ GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n)/* XOR Rm,Rn */
{
R[n]”*=R[m];

XORI(long i) /* XOR #imm,R0 */
{
R[0]"=(0x000000FF & (long)i);
PC+=2;
}

XORM(long i) /* XOR.B #imm, @(RO,GBR) */
{
long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp”=(0x000000FF & (long)i);
Write Byte(GBR+R[0],temp);
PC+=2;

144

Examples:

XOR RO,R1

XOR #H'FO, RO

XOR.B #H'A5, @(RO,GBR)

Before execution
After execution

Before execution
After execution

Before execution

After execution

145

RO =H'AAAAAAAA, R1 = H'55555555
R1 = HFFFFFFFF

RO = HFFFFFFFF
RO = HFFFFFFOF

@(RO,GBR) = H'AS
@(RO,GBR) = H'00

6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit
XTRCT Rm,Rn Center 32 bits of Rm and Rn — 0010nnnnmmmm1101 1 —
Rn

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13). ‘

MSB ____ISB MSB____ LSB
Rm - %&i&* . Q\\% - G Rn

Rn

Figure 6.13 Extract
Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */
{

unsigned long temp;

temp=(R[m]<<16)&0xXFFFF0000;
R[n]=(R[n]>>16)&0x0000FFFF;

R[n]|=temp;
PC+=2;

}

Example:

XTRCT RO,R1 Before execution = RO =H'01234567, R1 = H'8O9ABCDEF
After execution R1 = H'456789AB

146

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

7.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

« IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.

ID (Instruction decode) Decodes the instruction fetched.

EX (Instruction execution) Performs data operations and address calculations according to the
results of decoding.

« MA (Memory access) Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

* WB (Write back) Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some
exceptions.

As shown in figure 7.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is
as shown in figure 7.1; some pipelines differ, however, because of contention between IF and MA.
In figure 7.1, the period in which a single stage is operating is called a slot.

> > O O O D D > > > Sot

Instruction 1 IF ID EX MA WB Instruction
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB

—_—

Time

Figure 7.1 Basic Structure of Pipeline Flow

147

7.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

7.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 7.2), with exception of WB and MA. Since WB
is executed immediately after MA, however, some instructions may execute MA and WB within
the same slot.

P —P O O D > > > 4> Sot
Instructon1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 7.2 Impossible Pipeline Flow 1

7.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 7.3).

> O O D D> > > > > > Sot
Instructon1 IF ID EX MA WB
Instructon2 IF ID EX MA WB

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

Figure 7.3 Impossible Pipeline Flow 2

148

7.2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

+ S =(the cycles of the stage with the highest number of cycles of all instruction stages contained
in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.
« The number of execution cycles for each stage:

— IFThe number of memory access cycles for instruction fetch

— ID Always one cycle
— EX Always one cycle
— MA The number of memory access cycles for data access
— WB Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

——> ¢—P 4¢P ¢—p 4> <> : Slot

@ @ 1 @ (1) (1) < Number of
Instruction 1 IF IF ID — EX MA MA MA WB cycles
Instruction 2 IF IF ID EX — — MA WB

Figure 7.4 Slots Requiring Multiple Cycles

149

7.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 7.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using an MOV Rm, Rn that follows instruction 3. (In the case of figure 7.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 7.5 is seven states (5 + 1 + 1).

—> —> —> « > <> <4» : Slot
@ @) @) (4) M

Instructon1 IF IF ID — — MA MA MA WB

Instruction 2 IF IF D — — — —

Instruction 3 F IF — — — ID MA

(Instruction 4: MOV Rm, Rn IF 1D [EX])

Figure 7.5 How Instruction Execution States Are Counted

150

7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

7.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF
and MA stages both try to access memory within the same slot, the slot splits as shown in figure
7.6. When there is a WB, it is executed immediately after the MA ends.

A B C D E F G
“r > D > 4> 4> D> 4> <> Sot

Instruction1 IF ID EX WB MA of instruction 1 and IF of instruction 4

Instruction 2 IF ID EX wB contend at D

Instruction 3 IF ID EX MA of instruction 2 and IF of instruction 5
contend at E

Instruction 4 ID EX

Instruction 5 ID EX

When MA and IF are in contention, the following occurs:

A B C D E F G

“> > > 4—P> «—> 4> <> Sot
Instruction1 IF ID EX wB Split at D
Instruction 2 IF ID — EX WB Split at E
Instruction 3 IF — ID — EX
Instruction 4 — ID EX
Instruction 5 ID EX

Figure 7.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first half
(when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed
simultaneously in the latter half. For example, in figure 7.6 the MA of instruction 1 is executed in
slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

151

74.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the
SH microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a
single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and A0 = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as ‘if’. These ‘if’s always take one state.

‘When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is Al = 1, AO = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 7.7 illustrates
these operations.

162

32 bits >

<> 4> <> > 4> 4> 4> <> <> <> Sot

Instruc-|| Instruc- | -+ Instruction 1 ID EX

tion1 || tion2 Instruction 2 if ID EX

instruc-|| Instruc- | -+ Instruction 3 ID EX

tion3 || tion4 Instruction 4 if ID EX

Instruc-ll Instruc- | -+ Instruction 5 ID EX

tion5 || tion 6 Instruction 6 if ID EX
(On-chip memory

or on-chip cache)

: Bus cycle generated
if : No bus cycle

Fetching from an instruction (instruction 1) located on a longword boundary

“r D D D > D> P> > > <> ; Sot

I:it;u; --- Instruction 2 ID EX
-« Instruction 3 ID EX
Instruc-|| Instruc- X)
tion3 || tion 4 Instruction 4 if ID EX
- Instruction 5 ID EX
Instrue-jj Instruo- | truction 6 i ID EX

tion5 || tion6

: Bus cycle generated
if : No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory

7.43 Relationship Between Position of Instructions Located in On-Chip ROM/RAM or
On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages (‘if” written in lower case) that do not generate bus cycles as explained in
section 7.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when
an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such

slots execute in the number of states the MA requires for memory access, as illustrated in figure
7.8.

‘When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the

153

position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0) because the
MA of the instruction falls in the same slot as ifs that follow.

32 bits >

tion1 || tion2

Instruc-|| Instruc- | ***

tion3 || tion4

Instruc-|| Instruc- | ***

tion5 || tion6

Instruc-|| Instruc- | **

(On-chip memory
or on-chip cache)

Instruction 1
Instruction 2
Instruction 3
Instruction 4

- Instruction 5

Instruction 6

B

A
> 4 4D P —> > > <> <> Sot

if

IF ID — EX
f; — ID EX
ID EX
if ID EX
: Splits

if " : Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

7.5 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus come after the EX stage of the instruction that immediately follows it

(instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. The destination register of load instruction 1 is the same as the destination (not the
source) of instruction 2, so it splits.

‘When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

* When instruction 2 is a load instruction and its destination is the same as that of load

instruction 1.

* When instruction 2 is Mac @Rm+ , @Rn+, and the destination of load instruction 1 are the

same.

154

The number of states in the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, as illustrated in figure 7.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

<+ 4> 4> 4“——» 4> <4» ; St
Load instruction 1 (MOV.W @R0O,R1) IF ID EX WB

Instruction 2 (ADD R1, R2) IF ID —
Instruction 3 IF — ID EX -«
Instruction 4 IF ID o

Figure 7.9 Effects of Memory Load Instructions on the Pipeline

7.6 Programming Guide
To improve instruction execution speed, consider the following when programming:
» To prevent contention between MA and IF, locate instructions that have MA stages so they start

from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and AO = 0) wherever possible.

+ The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

 Locate instructions that use the multiplier nonconsecutively. Also locate nonconsecutively an
access to the MACH or MACL register for fetching the results from the multiplier and an
instruction that uses the multiplier.

155

7.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with a few exceptions. When a slot has split, see section 7.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given

there.

Table 7.1 lists the format for number of instruction stages and execution states:

Table 7.1 Format for the Number of Stages and Execution States for Instructions
Type Category Stage State Contention Instruction
Functional Instruction Number Number Contention that Corresponding instructions
types s are of of occurs represented by mnemonic
catego- stages execu-
rized inan tion
basedon instruc- states
operations tion when
no
conten-
tion
oceurs
Table 7.2 Number of Instruction Stages and Execution States
Type Category Stage State Contention Instruction
Data Register- 3 1 —_ MOV #imm, Rn
?ransfen: register MOV Rm,Rn
instructions transfer
instructions MOVA €(disp,PC),RO
MOVT Rn

SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT Rm,Rn

156

Table 7.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage Contention Instruction
Data Memory 5 « Contention occurs MOV.W @(disp,PC),Rn
.transfeli !oad) if the instruction MOV.L @(disp,PC),Rn
instructions instructions placed
(cont) immediately after MOV.B €Rm,Rn
thisoneusesthe MOV.W @Rm,Rn
same destination MOV.L GRm,Rn
register
- MAcontends with MOV-B CRm/Rn
IF MOV.W @Rm+,Rn
MOV.L @Rm+,Rn
MOV.B @(disp,Rm),RO
MOV.W @(disp,Rm),R0O
MOV.L @(disp,Rm),Rn
MOV.B @(RO,Rm),Rn
MOV.W @(RO,Rm),Rn
MOV.L, @(RO,Rm),Rn
MOV.B @(disp,GBR),R0O
MOV.W @(disp,GBR),R0
MOV.L @(disp,GBR),R0O
Memory 4 * MA contends with MOV.B Rm, @Rn
store IF MOV.W Rm, @Rn
instructions
MOV.L Rm, @Rn
MOV.B Rm, @Rn
MOV.W Rm, @Rn
MOV.L Rm, @Rn
MOV.B RO, @(disp,Rn)
MOV.W RO, @(disp,Rn)
MOV.L Rm, @(disp,Rn)
MOV.B Rm,@(RO,Rn)
MOV.W Rm, @(RO,Rn)
MOV.L Rm, @(RO,Rn)
MOV.B RO, @(disp,GBR)
MOV.W RO, @(disp,GBR)
MOV.L RO, @(disp,GBR)

157

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State - Contention . Instruction
Arithmetic ~ Arithmetic 3 1 — ADD Rm, Rn
instructions instructions ADD #imm, Rn
between
registers ADDC Rm, Rn
(except ADDV Rm, Rn
multiplic- .
ation CMP/EQ #imm,RO
instruc- CMP/EQ Rm,Rn
tions)

CMP/HS Rm,Rn
CMP/GE Rm,Rn
CMP/HI Rm,Rn
CMP/GT Rm,Rn

CMP/PZ Rn
CMP/PL. Rn
CMP/STR Rm,Rn
DIV1 Rm, Rn
DIVOS Rm, Rn
DIVOU

DT Rn*3

EXTS.B Rm, Rn
EXTS.W Rm, Rn
EXTU.B Rm, Rn
EXTU.W Rm, Rn

NEG Rm, Rn
NEGC Rm, Rn
SUB Rm, Rn
SUBC Rm, Rn
SUBV Rm, Rn
Multiply/ 7/8*1 3/(2)*2 - Multiplier contention MAC.W @Rm+, @Rn+
accumulate occurs when an
instructions instruction that uses

the multiplier follows a
MAC instruction

+ MA contends with IF

Notes 1. Inthe SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

3. SH-2 CPU instructions

158

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Arithmetic Double- 9 3/(2to « Multiplier MAC.L @Rm+, @Rn+*3
instructions length 4)*2 contention occurs
(cont) multiply/ when an

accumulate instruction that

instruction uses the multiplier

(SH-2 CPU follows a MAC

only) instruction

+ MA contends with
IF

Multiplic- 6/7*1 11032 « Multiplier MULS.W Rm,Rn

gtlon ' contentlop OCCUrS \uT.W Rm,Rn

instructions when an instruc-

tion that uses the
muiltiplier follows
a MUL instruction

- MA contends with

IF
Double- 9 2t04*2 « Multiplier DMULS.L Rm,Rn*3
leng?h contention occurs o 1 Rm, Rn*3
multiply/ when an s
accumulate instruction that MUL. L Rm, Rn*
instruction uses the multiplier
(SH-2 CPU follows a MAC
only) instruction
» MA contends with
IF
Logic Register- 3 1 — AND Rm, Rn
_operatlgn reg'lster AND #imm, RO
instructions logic
operation NOT Rm, Rn
instructions OR Rm, Rn
OR #imm, RO
TST Rm, Rn
TST #imm, RO
XOR Rm, Rn
XOR #imm, RO

Notes 1. Inthe SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)
3. SH-2 CPU instructions

159

Table 7.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage State © Contention Instruction
Logic Memory logic 6 3 * MAcontends AND.B #imm, @(RO,GBR)
pperatiqn pperatigns with IF OR.B #imm, @ (RO, GBR)
instructions instructions
(cont) TST.B #imm, @(RO,GBR)
XOR.B #imm, @(RO,GBR)
TAS 6 4 * MAcontends TAS.B @Rn
instruction with IF
Shift Shift 3 1 — ROTL Rn
instructions instructions ROTR Rn
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL Rn
SHIR Rn
SHLL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn
Branch Conditional 3 34 — BF label
instructions pranch' BT label
instructions
Delayed 3 211 - BF/S label*3
g‘r’:r?gi?"a‘ BT/S label#3
instructions
(SH-2 CPU
only)
Unconditional 3 2 — BRA label
E;?Sgtions BRAF R+
BSR label
BSRF Rm*3
JMP @Rm
JSR @Rm
RTS

Notes 3. SH-2 CPU instruction

4. One state when there is no branch

160

Table 7.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage Contention Instruction
System System 3 — CLRT
control control
LDC Rm, SR
instructions ALU .
instructions LDC Rm, GBR
DC Rm, VBR
LDS Rm, PR
NOP
SETT
STC SR, Rn
STC GBR, Rn
STC VBR, Rn
STS PR,Rn
LDC.L 5 » Contention occurs IDC.I. @Rm+,SR
instruction When ap IDC.L @Rm+,GBR
instruction that
uses the same LDC.L @Rm+,VBR
destination
register is placed
.immediately after
this instruction
* MA contends with
IF
STC.L 4 + MA contends with STC.I. SR, @Rn
instructions IF STC.L GBR, @&-Rn
STC.L VBR,@-Rn
LDS.L 5 « Contention occurs LDS.L @Rm+,PR
instructions when an
(PR) instruction that
uses the same
destination
register is placed
immediately after
this instruction
« MA contends with
IF
STS.L 4 - MA contends with STS.L. PR, @Rn
instruction IF
(PR)

161

Table 7.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention - Instruction
System Register » 4 1 « Contention occurs CLRMAC
;iqt[gtions ':\rlz:gfer vt mutipler LDS R, MACH
+ MA contends with
(cont) instruction IE LDS Rm, MACL
Memory —» 4 1 « Contention occurs LDS.L @Rm+,MACH
MAC with multiplier IDS.L @Rm+,MACL
Fransfer. - MA contends with
instructions IF
MAC —» 5 1 + Contention occurs STS MACH, Rn
register with multiplier sTS MACL, Rn
?ransfelt Contention occurs
instruction when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction
+ MA contends with
IF
MAC — 4 1 + Contention occurs STS.L MACH, €-Rn
memory with multiplier STS.L MACL, @-Rn
transfer « MA contends with
instruction IF
RTE 5 4 — RTE
instruction
TRAP 9 8 — TRAPA #imm
instruction
SLEEP 3 3 — SLEEP
instruction

162

7.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

¢ MOV #imm, Rn

« MOV Rm, Rn

+ MOVA @(disp, PC), RO
e MOVT Rn

» SWAP.B Rm, Rn
« SWAPW Rm, Rn
* XTRCT Rm, Rn

<> 4> 4> > <> <> Sot
linstruction A__IF__ID__EX|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

163

Memory Load Instructions: Include the following instruction types:

« MOV.W @(disp, PC), Rn
« MOV.L @(disp, PC), Rn
« MOV.B @Rm, Rn

« MOV.W @Rm, Rn

+ MOV.L @Rm, Rn

« MOV.B @Rm+, Rn

¢« MOV.W @Rm+, Rn

« MOV.L @Rm+, Rn

« MOV.B @(disp, Rm), RO
« MOV.W @(disp, Rm), RO
« MOVL @(disp, Rm), Rn
« MOV.B @(RO, Rm), Rn

+ MOV.W @(RO, Rm), Rn

« MOVL @(RO, Rm), Rn

+ MOV.B @(disp, GBR), RO
« MOV.W @(disp, GBR), RO

« MOV.L @(disp, GBR), RO

> > 4> > <> <> Siot
linstructon A IF_ID _EX MB_WB]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.11). If an instruction
that uses the same destination register as this instruction is placed immediately after it, contention
will occur. (See Section 7.5, Effects of Memory Load Instructions on Pipelines.)

164

Memory Store Instructions: Include the following instruction types:

« MOV.B Rm, @Rn

+ MOV.W Rm, @Rn

+ MOV.L Rm, @Rn

« MOV.B Rm, @-Rn

« MOV.W Rm, @-Rn

+ MOV.L Rm, @-Rn

+ MOV.B RO, @(disp, Rn)
+ MOV.W RO, @(disp, Rn)
+ MOV.L Rm, @(disp, Rn)
+ MOV.B Rm, @(RO, Rn)

» MOV.W Rm, @(RO, Rn)

+ MOV.L Rm, @(RO, Rn)

+ MOV.B RO, @(disp, GBR)
« MOV.W RO, @(disp, GBR)
+ MOV.L RO, @(disp, GBR)

4> > > <> 4> <> Sot
[instrucion A IF_ID_EX_ MA]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.12). Data is not returned to
the register so there is no WB stage.

165

7.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types: : :

« ADD Rm, Rn
« ADD #imm, Rn
e ADDC Rm, Rn
¢ ADDV Rm, Rn

« CMP/EQ #imm, RO
« CMP/EQ Rm, Rn
¢ CMP/HS Rm, Rn
+ CMP/GE Rm, Rn
» CMP/HI Rm, Rn
« CMP/GT Rm, Rn
« CMP/PZ Rn

« CMP/PL Rn

« CMP/STR Rm, Rn

« DIV1 Rm, Rn

 DIVOS Rm, Rn

e DIVOU

« DT Rn (SH-2 CPU only)

« EXTS.B Rm, Rn
« EXTS.W Rm, Rn
« EXTUB Rm, Rn
e EXTUW Rm, Rn

* NEG Rm, Rn
¢« NEGC Rm, Rn
« SUB Rm, Rn
« SUBC Rm, Rn
¢« SUBV Rm, Rn

166

> > <> > 4> <> : Sot

[Instruction A

IF_ID EX MA]

Next instruction
Third instruction

F ID EX -
IF ID EX

Figure 7.13 Pipeline for Arithmetic Instructions between Registers Except Multiplication

Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage via the ALU.

167

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

* MACW @Rm+, @Rn+

> > > > > > > <> Sot
[MACW IF_ID EX MA MA mm mm_mm|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of
the MAC.W instruction, when they contend with IF, split the slots as described in section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC.W instruction is located immediately after another MAC.W instruction
When a MULS.W instruction is located immediately after a MAC.W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When an LDS (register) instruction is located immediately after a MAC.W instruction
When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

O YA W N =

168

1.

When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
7.15).

“r > > > D > —> 4> <> <> Sot

| MACW IF ID EX
MAC.W IF —

Third instruction IF — ID EX — MA -

4D D 4> > 4> 4 4> 4> 4> 4> 4> <> Sot
[MACW IF ID EX MA MA mm mm :mm:

Other instruction IF — ID EX MA WB

MAC.W IF ID EX MA: MA mm mm mm -

Figure 7.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 7.16 illustrates a case of this
type. This figure assumes MA and IF contention.

4> > 4> > > > P> P> —P > St
[MACW if ID EX MA MA mm mm "ri‘li‘ri'

MAC.W IF — ID EX MA
MAC.W it — —
MACW IF — ID EX — MA!M—A imm -

Figure 7.16 Consecutive MAC.Ws without Misalignment

169

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 7.17 illustrates a case of this type. This
figure assumes MA and IF contention.

D D D P D D> ——— P 4> > > > <> Sof
WAC.W IF ID EX MA — MA mm

MAC.W if — — ID EX MA:M—A:mm mm mm
Other instruction IF — ID — — EX MA ...
Other instruction if — — ID EX -
Other instruction IF

Figure 7.17 MA and IF Contention

170

When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. When the MULS.W MA and IF contend, the slot is split.

> 4> 4> > <>
[MACW IF ID EX MA MA ‘m
MULS.W IF — ID EX :M—A :mm mm mm

Other instruction IF D EX — — MA ...

> 4 D 4 4 D —p 4P 4> 4> <> <> <> Sot
[MACW IF ID EX MA MA mm imm mm

Other instruction IF — ID EX
MULS.W IF ID EX iM—A :mm mm mm
Other instruction IF D EX — MA -

> 4> > 4> <> 4> <> > D> > 4> <> 4> > Sot
[MACW IF ID EX MA MA mm mm imm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX MA:mm mm mm
Other instruction IF ID EX MA ...

Figure 7.18 MULS.W Instruction Immediately After a MAC.W Instruction

171

When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.19) to create a single slot. The MA of the STS contends with the IF. Figure 7.19
illustrates how this occurs, assuming MA and IF contention.

P D D — P > P 4P P> St

[MACW IF ID EX MA — MA:mm_mm_ mmj
STS f — — ID EX iM———A i WB
Other instruction IF D — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MACW if
STS
Other instruction
Other instruction
Other instruction

Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction

172

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 7.20) to create a single slot. The MA of the STS contends with the IF.
Figure 7.20 illustrates how this occurs, assuming MA and IF contention.

> > > —> >« > 4> 4> <> <> Slot
[MACW IF ID EX MA — MA m

STS.L f — — ID EX: \M——A :WB
Other instruction IF D — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX .ot

> > > AP — P ———P 4> 4> 4> <> 4> <> Sot
[MACW if ID EX MA MA mm imm_mm]

STS.L IF — ID — EX :M—— A :
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction f — — ID EX -

Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

173

5. 'When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.21) to create a single slot. The MA of this LDS contends with IF. Figure 7.21
illustrates how this occurs, assuming MA and IF contention.

> > > —> > < > 4> 4> 4> <> <> Sot
[MACW IF ID EX MA — MA imm mm mm:

LDS if — —
Other instruction
Other instruction f — — — ID EX ‘
Other instruction IF ID EX -

> > D > P — > > > > > > <> Siot

[MACW if
LDS
Other instruction
Other instruction
Other instruction

Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

174

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.22) to create a single slot. The MA of the LDS contends with IF. Figure 7.22
illustrates how this occurs, assuming MA and IF contention.

- > > —> > <« > 4> <> <> <> Slot
[MACW IF ID EX MA — MA :mm mm_ mm:
LDS.L if — — ID EX{M—A
Other instruction IF ID — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

> D > > ——> > > 4> 4> > > Sot

[MACW

LDS.L
Other instruction
Other instruction
Other instruction

if ID EX MA MA mm ‘mm_mm.
f — ID — EX iM—A:
f — ID EX
IF ID — EX MA
if — ID EX -

Figure 7.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

175

Multiply/Accumulate Instruction (SH-2 CPU): Includes the following instruction type:

¢ MACW @Rm+, @Rn+

> 4> O > > > > > Sot
[MACW IF ID EX MA MA mm mm|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 7.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W

instruction, when they contend with IF, split the slots as described in Section 7.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA.

In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W

instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the

following cases:

When a MAC.W instruction is located immediately after another MAC.W instruction
When a MAC.L instruction is located immediately after a MAC.W instruction

When a MULS.W instruction is located immediately after a MAC.W instruction
When a DMULS.L instruction is located immediately after a MAC.W instruction
When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When an LDS (register) instruction is located immediately after a MAC.W instruction
When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

® NN h LD

176

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

> D P D > > > D > > > Sot
[MACW IF ID EX MA MA mm :mm:
MAC.W IF —

Third instruction IF — ID EX MA

Figure 7.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by

MA and IF contention. Figure 7.25 illustrates a case of this type. This figure assumes MA and
IF contention.

B D> > > St
[MACW if ID EX MA MA mm mm]|

MAC.W IF — ID EX MA — MA mm mm
MAC.W if — — ID EX MA MA mm mm
MAC.W IF — ID EX MA MA mm ...

Figure 7.25 Consecutive MAC.Ws with Misalignment

177

When the second MA of the MAC.W instruction contends with IF; the slot will split as usual
Figure 7.26 illustrates a case of this type. This figure assumes MA and IF contention.

P 4P P> —P P <> > <—> 4> <> <> <> Sot

[MACW IF ID EX MA — MA mm mm;|

MAC.W if — — ID EX MA:MA:mm mm
Other instruction IF — ID — EX MA
Other instruction if — ID EX
Other instruction IF

Figure 7.26 MA and IF Contention
2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 7.27).

> > > > D > > > > > > Sot
(MACW IF ID EX MA MA mm imm:
MAC.L IF — ID EX MA (MA

Third instruction IF

— ID EX MA

Figure 7.27 MAC.L Instructions Immediately After a MAC.W Instruction

178

3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.28) to
create a single slot. When one or more instructions not related to the multiplier come between
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

> 4> 4> 4> 4> > 4> 4> 4> 4> 4> 4> <> Sot

[MACW IF ID EX MA MA mm mmj
MULS.W IF — ID EX iM——A:mm mm

Other instruction IF ID EX — MA

[MACW IF ID EX MA MA mm:mmj

Other instruction IF — ID EX
MULS.W IF ID EX :iMAimm mm
Other instruction IF ID EX MA

Figure 7.28 MULS.W Instruction Immediately After a MAC.W Instruction
4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 7.29).

> D > O D D D > > > D> > > > Sot

DMULS.L IF — ID EX MA:MA:mm mm mm mm

Other instruction IF — ID EX MA

Figure 7.29 DMULS.L Instructions Immediately After a MAC.W Instruction

179

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.30) to create a single slot. The MA of the STS contends with the IF. Figure 7.30
illustrates how this occurs, assuming MA and IF contention.

P AP P> > 4> P 4> > 4> > > Sot

[MACW IF ID EX MA — MAmm mm:

STS f — — ID EX:M—A:WB
Other instruction IF D — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX

STS IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX MA
Other instruction if ID EX

Figure 7.30 STS (Register) Instruction Immediately After a MAC.W Instruction

180

When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the memory and the multiplier and writing to memory is added to the STS
instruction, as described later. Figure 7.31 illustrates how this occurs, assuming MA and IF

contention.

P P PP 4> ———p > > > > <> <> Sot

STS.L if — — ID EX:M—A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

STS.L IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

181

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.32) to create a single slot. The MA of this LDS contends with IF. Figure 7.32
illustrates how this occurs, assuming MA and IF contention.

> D > > > 4> > 4> > > Sot

LDS if — —
Other instruction
Other instruction if — — ID EX
Other instruction IF ID EX

D D D D P D D D D > > > Slot

[MAC.W i
LDS IF — ID —
Other instruction if —
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

182

When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.33) to create a
single slot. The MA of the LDS contends with IF. Figure 7.33 illustrates how this occurs,
assuming MA and IF contention.

D D D P P> > P> 4> 4> <> <> Slot

[MACW IF ID EX MA — MA ‘mm mmi|

LDS.L f — — ID EX iM—A":
Other instruction IF D — — EX
Other instruction f — — ID EX
Other instruction IF ID EX

> P 4D > P > > D> > > > > Sot

|MAC.W if ID EX MA MA mm:mm:

LDS.L IF — ID — EX:iMA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.33 LDS.L (Memory) Instruction Inmediately After a MAC.W Instruction

183

Double-Length Multiply/Accumulate Instruction (SH-2 CPU): Includes the following
instruction type:

« MACL @Rm+, @Rn+ (SH-2 CPU only)

> > > > > > > > <> Sot
[MACL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
7.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC.L instruction is located immediately after another MAC.L instruction
When a MAC.W instruction is located immediately after a MAC.L instruction

When a DMULS.L instruction is located immediately after a MAC.L instruction

When a MULS.W instruction is located immediately after a MAC.L instruction

When an STS (register) instruction is located immediately after a MAC.L instruction
When an STS.L (memory) instruction is located immediately after a MAC.L instruction
When an LDS (register) instruction is located immediately after a MAC.L instruction
When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

® NN s LD

184

When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 7.35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

> > P > D> P ————p 4> > > > Sot

[MACL IF ID EX MA MA :
MAC.L IF — ID EX
Third instruction IF —

> O O > D > D D D> <> P> > <> Sot

[MACL IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA wWB
MAC.L IF ID EX MA:MA:mm mm mm mm

Figure 7.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 7.36
illustrates a case of this type, assuming MA and IF contention.

> > > 4> > C— P> —P > ——p 4> <> Sot
[MAC.L if ID EX MA MA mm mm:mm mm:

MAC.L IF —
MAC.L f — — ID EX — MA M———A mm mm mm mm
MAC.L IF — — ID EX — — MA

Figure 7.36 Consecutive MAC.Ls with Misalignment

185

‘When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 7.37 illustrates a case of
this type, assuming MA and IF contention. ‘

> D > —> > >« > 4> <> <> : Slot
|MAC.L IF ID EX MA — :
MAC.L f — — ID
Other intruction IF — D — — — EX
Other intruction f — — — ID
IF

Other intruction

Figure 7.37 MA and IF Contention

186

When a MAC.W instruction is located immediately after a MAC.L instruction

‘When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 7.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructions is

eliminated.
> > > > > > ——p <> > St
[MAC.L IF ID EX MA MA mm:mm mm_ mm:
MAC.W IF — ID EX MAiMA———Aimm mm
Third instruction IF — EX — — MA -
> > > > > > > > > > > Sot
[MACL IF ID EX MA MA mm mm mm :mm:
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF EX MA :MA:mm mm

Figure 7.383 MAC.W Instruction Immediately After a MAC.L Instruction

187

When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second MA
of the DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.39)
to create a single slot. When two or more instructions not related to the multiplier come
between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

> 4> D D D P 4> > > <> <> Sot

[MACL IF ID EX MA MA s i
DMULS.L IF — ID EX : mm mm
Other instruction IF —

D D 4D D D D D > 4 4> > > <> Sot

[MACL IF ID EX MA MA mm mm:mm mm:
Other instruction IF — ID. EX

DMULS.L IF ID EX MA:M—A imm mm mm mm
Other instruction IF — ID — EX MA -

> > > D D D D 4P D > > > > > Sot

[MACLL

IF ID EX MA MA mm mm mm:mm:

Other instruction
Other instruction

DMULS.L
Other instruction

IF — ID EX MA WB
IF ID EX MA WB

IF ID EX MA:MA:mm mm mm mm

IF — ID EX MA -

Figure 7.39 DMULS.L Instruction Immediately After a MAC.L Instruction

188

When a MULS. W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 7.40) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L. and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

189

“—r > > D> >

> > —— > 4> > <> <> Sot

[MAC.L IF ID EX MA MA
MULS.W IF — ID EX
Other instruction IF —

“—r > > > >

[MACL IF ID EX MA MA mm imm_ mm_mm:
Other instruction IF — ID EX
MULS.W IF ID EX: M———A :mm mm
Other instruction IF ID EX — — MA ...
O > D D D P> > > > > St
WAC.L IF ID EX MA MA mm mm imm mm:
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX :M—A imm mm
Other instruction IF ID EX — MA -
P D D P D> D D D D D > > > Sot
[MACL IF ID EX MA MA mm mm mm imm:
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX iMA: mm mm
Other instruction IF ID EX MA ...

Figure 7.40 MULS.W Instruction Immediately After a MAC.L Instruction

190

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as

described later.

‘When the MA of the STS instruction contends with the operating multiplier

(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.41) to create a single slot. The MA of the STS contends with the IF. Figure 7.41
illustrates how this occurs, assuming MA and IF contention.

D C— PP PP aP><> <> Sot

[MAC.L

STS
Other instruction
Other instruction
Other instruction

IF ID EX MA — MA:mm _mm._mm_mm:

f — —

[MAC.L

if ID EX MA MA mmqn

STS
Other instruction
Other instruction
Other instruction

F — ID — EXiM——A
f — ID EX
IF ID — — EX
f — — ID EX -«

Figure 7.41

STS (Register) Instruction Immediately After a MAC.L Instruction

191

When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.42 illustrates how this
occurs, assuming MA and IF contention.

P> 4P P> —P P> ———————— P PP Slot

STS.L f — — ID EX M— A

Other instruction IF D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX -

STS.L
Other instruction it —
Other instruction
Other instruction

Figure 7.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

192

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.43) to create a single slot. The MA of this LDS contends with IF. Figure 7.43
illustrates how this occurs, assuming MA and IF contention.

P O 4> > < > <¢>4>><+>: Sot

Other instruction IF D — — — — EX MA

Other instruction f — — — — ID EX
Other instruction IF ID EX oo

| MACL if
LDS
Other instruction
Other instruction
Other instruction

Figure 7.43 LDS (Register) Instruction Immediately After a MAC.L Instruction

193

When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the memory and the multiplier is added to the LDS
instruction, as described later. When the MA of the LDS instruction contends with the
operating multiplier (mm), the MA is extended until the mm ends (the M—A shown in the
dotted line box in figure 7.44) to create a single slot. The MA of the LDS contends with IF.
Figure 7.44 illustrates how this occurs, assuming MA and IF contention.

> > > —> > < > <P 4> <> <> Slot

LDS.L

Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX oo

[MACL if ID EX MA MA mm:mm mm_ mm:

LDS.L IF — ID — EX{M—A:
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX -

Figure 7.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

194

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

« MULS.W Rm, Rn
« MULUW Rm, Rn

> > > 4> > > > <> Sot
(MULSW IF ID EX MA mm mm mm|
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.45 Multiplication Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when
it contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS.W instruction

When a MULS.W instruction is located immediately after another MULS. W instruction
When an STS (register) instruction is located immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction

SR

When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

195

1.

When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions
does not cause stalls (figure 7.46).

“ D G D D > D > > > > Sot

IMULSW IF ID EX MA mm imm. mm:

MAC.W IF ID EX MA:M—A :mm mm mm

Third instruction IF — ID EX — MA -

P O O O D G GO D> > > > <> Sot

(MULSW IF ID EX MA mm mm imm:

Other instruction IF ID EX MA WB

MAC.W IF ID EX MA:MA:mm mm mm -

Figure 746 MAC.W Instruction Immediately After a MULS.W Instruction

196

When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS. W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS. W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

O D D D 4> > > > > > > Sot

[MULS.W IF

MULS.W
Other instruction

4> 4> > > D P P B D > > > > Sot
[MULSW IF _ID EX MA mm imm_mm: |

Other instruction IF ID EX
MULS.W IF ID EX :M—A:mm mm mm
Other instruction IF ID EX — MA -

B D > D D D D D D D D > > > St
[MULSW IF _ID EX MA mm mm mm:

Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX MA:mm mm mm
Other instruction IF ID EX MA -

Figure 7.47 MULS.W Instruction Immediately After Another MULS.W Instruction

197

When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the slot, as is normal. Figure 7.48 illustrates a case of this type, assuming
MA and IF contention.

> D AP > P 4> 4> > > <> > Sot

[MULSW IF ID EX MA :mm mm_ mm:

MULS.W if ID EX i M——=A :mm mm mm
Other instruction IF D — — — EX MA .-
Other instruction f — — — ID EX -
Other instruction IF ID -

Figure 7.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention)

198

When an STS (register) instruction is located immediately after a MULS.W instruction

‘When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.49) to create a single slot. The MA of the STS contends with the IF. Figure 7.49
illustrates how this occurs, assuming MA and IF contention.

> > > >« > 4> 4> > > > <> Siot
[MULS.W IF
STS
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

D D > P 4 D D D> 4> > > Sot

[MULS.W if ID EX MA mm:mm mm:

STS IF ID — EX:M—A:WB
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 7.49 STS (Register) Instruction Immediately After a MULS.W Instruction

199

4. 'When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 7.50) to create a single slot. The MA of the STS contends with the IF.
Figure 7.50 illustrates how this occurs, assuming MA and IF contention.

P> AP P P P 4> 4P <> > > > Sot

Other instruction
Other instruction
Other instruction

D EX iM———— A
F ID — — — EX MA
f — — — ID EX
IF ID EX -

G D > P > D D > > > > Slot

[MULS.W if

STS.L
Other instruction
Other instruction
Other instruction

if —
IF ID — EX
if — ID EX -

Figure 7.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

200

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 7.51 illustrates how this
occurs, assuming MA and IF contention.

- > > >« > 4> 4> 4> 4> 4> <> Sot
[MULSW IF
LDS
Other instruction EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -
(MULS.W
LDS

Other instruction
Other instruction
Other instruction

Figure 7.51 LDS (Register) Instruction Inmediately After a MULS.W Instruction

201

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.52) to create a single slot. The MA of the LDS contends with IF. Figure 7.52
illustrates how this occurs, assuming MA and IF contention.

> > > > < > 4> 4> <> <> <> <> Sot
[MULSW IF ID EX MAn ;
LDS.L if ID EX:
Other instruction IF ID
Other instruction f — — — ID EX
Other instruction IF ID EX -

D D P P P P> D > > > > <> Sot

(MULSW if ID EX MA mm:

LDS.L IF ID — EX:

Other instruction if — ID

Other instruction ' IF
Other instruction

Figure 7.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

202

Multiplication Instructions (SH-2 CPU): Include the following instruction types:

« MULS.W Rm, Rn
+« MULUW Rm, Rn

4> 4> > 4> 4> 4> <> <> Soot
[MULSW IF ID EX MA mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS.W instruction

When a MAC.L instruction is located immediately after a MULS.W instruction

When a MULS. W instruction is located immediately after another MULS.W instruction
When a DMULS.L instruction is located immediately after a MULS.W instruction

When an STS (register) instruction is located immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction
When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

P NN AL

203

1.

When a MAC.W instruction is located immediately after a MULS.W instruction
The second MA of a MAC.W instruction does not contend with the mm generated by a

preceding multiplication instruction.

> 4 > G D D O D> > > <> Sot

[MULSW IF 1D EX MA mm mm]
MAC.W IF ID EX MA MA mm mm
ID EX MA -

Third instruction IF —

Figure 7.54 MAC.W Instruction Immediately After a MULS.W Instruction

When a MAC.L instruction is located immediately after a MULS.W instruction

2.
The second MA of a MAC.W instruction does not contend with the mm generated by a

preceding multiplication instruction.

P D O O GO O > > > > <> Sot

[MULSW IF ID EX MA mm mm]|
MAC.L IF ID EX MA MA mm mm mm mm
ID EX MA oo

Third instruction IF —

Figure 7.55 MAC.L Instruction Immediately After a MULS.W Instruction

204

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS. W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.56) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS.Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

> D P D P P D D > > > <> Sot

[MULSW IF_ID EX MA:mm.mmj
MULS.W IF ID EX:M—A : mm mm
Other instruction IF ID EX — MA -

[MULS.W IF
Other instruction
MULS.W
Other instruction

Figure 7.56 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 7.57 illustrates a case of this type,
assuming MA and IF contention.

> > > 4> <> > > > > Sot
[MULSW IF ID EX MA:mm_mm:

MULS.W if ID EX:M—A:@ mm mm
Other instruction IF D — — EX MA ...
Other instruction f — — ID EX -
Other instruction IF ID -

Figure 7.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA contention)

205

When a DMULS.L instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it does
not contend with the operating multiplier (mm) generated by the MULS.W instruction.

D O D 4> 4> > D 4D 4> D > P> > Sot
[MULSW IF ID EX MA mm mm | :
DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA ...

Figure 7.58 DMULS.L Instruction Immediately After a MULS.W Instruction

206

When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.59) to create a single slot. The MA of the STS contends with the IF. Figure 7.59
illustrates how this occurs, assuming MA and IF contention.

> 4D D > P > > D > > > Sot

STS if ID EX{M—A: WB
Other instruction IF D — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm imm:

STS IF ID — EX :MA: WB
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX e

Figure 7.59 STS (Register) Instruction Immediately After a MULS.W Instruction

207

When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.60 illustrates how this
occurs, assuming MA and IF contention.

D D D D P 4> D D> > > <> Sot

[MULSW IF ID EX MA:mm mm:

STS.L if ID EX: M————A
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX .o

> > D P P > > > > > > > Sot

[MULSW i ID EX MA mm mm.

STS.L IF ID — EX :MA:
Other instruction f — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 7.60 STS.L (Memory) Instruction Immedigtely After a MULS.W Instruction

208

When an LDS (register) instruction is located immediately after a MULS.W instruction

‘When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

“r > D > P 4> > > > > > Sot
[MULSW IF ID EX MA:mm mm:

LDS if ID EX:M—A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> 4> 4P —> 4> 4> 4> 4> 4> <> 4> <> Sot

[MULSW if ID EX MA mm mmj

LDS IF ID — EX iMA!
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 7.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

209

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 7.62) to create a
single slot. The MA of the LDS contends with IF. Figure 7.62 illustrates how this occurs,
assuming MA and IF contention.

> D D P> P 4> > > > > > Sot
|MULS.W IF ID EX MA

LDS.L if ID EX: :
Other instruction IF D — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX -

D D D —> D D D D D > > > Sot

[MULSW if ID EX MA mm mm:

LDS.L IF ID — EX N

Other instruction if — ID

Other instruction IF
Other instruction

Figure 7.62 LDS.L (Memory) Instruction Inmediately After a MULS.W Instruction

210

Double-Length Multiplication Instructions (SH-2 CPU): Include the following instruction
types:

« DMULS.L Rm, Rn (SH-2 CPU only)
¢« DMULU.L Rm, Rn (SH-2 CPU only)
« MUL.L Rm, Rn (SH-2 CPU only)

> 4> D > D D > > > > > Sot
[DMULSL IF ID EX MA MA mm mm mm mm]|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.63 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
four cycles after the MA ends, regardless of a slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 7.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal. This occurs in the following cases:

When a MAC.L instruction is located immediately after a DMULS.L instruction

‘When a MAC.W instruction is located immediately after a DMULS.L instruction

‘When a DMULS.L instruction is located immediately after another DMULS.L instruction
‘When a MULS.W instruction is located immediately after a DMULS.L instruction

When an STS (register) instruction is located immediately after a DMULS.L instruction
When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
When an LDS (register) instruction is located immediately after a DMULS.L instruction

P NN RN

When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

211

1.

When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 7.64).

- > D D D > P 4> > 4> > Slot
[DMULS.L IF ID EX MA MA mm mm_

MAC.L F — ID EX MA{

Third instruction IF — ID

> > D O O D > > > > 4> > <> Sot
[DMULS.L IF ID EX MA MA mm mm mm :mm]

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MAIMA:mm mm mm mm

Figure 7.64 MAC.L Instruction Immediately After a DMULS.L Instruction

212

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 7.65).

> > > D D > —P 4> > > <> Sot

[DMULS.L IF ID EX MA MA mm: :
MAC.W IF — ID EX MA:

Third instruction IF — ID

> P D D D D D D D> > > > <> Sot

[DMULSL IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MAMA:mm mm

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L Instruction

213

When a DMULS.L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

> D D D D P > D D > > > Sot

[DMULS.L IF fi
DMULS.L IF — ID EX MA i M—— A imm mm mm mm
Other instruction IF — ID EX — — MA ..

D G G D D D D P > D> 4> > <> Sot

[DMULSL IF _ID EX MA MA mm mm.mm mm.
Other instruction IF — ID EX

DMULS.L IF ID EX MA:M—A: mm mm mm mm
Other instruction IF — ID EX — MA -

D > D D D D D> D D D D > > > Sot

[DMULS.L IF ID EX MA MA mm mm mm :mm:|

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

DMULS.L IF ID EX MA:{MA: mm mm mm mm
Other instruction IF — ID EX MA ..

Figure 7.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

214

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.67 illustrates a case of

this type, assuming MA and IF contention.

> 4> 4> <> :Slot

D D D —> <

| DMULS.L IF .
DMULS.L f — EX — ID MAM———Aimm mm mm mm
Other instruction IF D — — — EX
Other instruction f — — — ID EX -«
IF ID e

Other instruction

Figure 7.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

215

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L instruction,
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULS.L instruction and the MULS.W instruction, contention between the
DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and IF contend,
the slot is split.. '

- > D D D> < » 4> <> 4> <> <> Slot
[DMULS.L IF ID EX MA MA:mm._mm.m
MULS.W IF — ID EX:M———— A" mm mm

Other instruction IF D EX — — — MA -

P D O D D O D D D D D > > <> Sot
[DMULS.L IF_ID_EX MA MA mm mm mm :mm;

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EXiMA: MA mm mm
Other instruction - IF ID EX MA -

Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.69 illustrates a case of
this type, assuming MA and IF contention.

“r > > —>

<> 4> <> Sot

MULS.W if — — ID EX:M—m—————— A mmmm
Other instruction IF D — — — — EXMA---
Other instruction f — — — — ID EX -
Other instruction IF ID e

Figure 7.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and MA
Contention)

216

S. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.70) to create a single slot. The MA of the STS contends with the IF. Figure 7.70
illustrates how this occurs, assuming MA and IF contention.

P P PP P PP <P P> St

STS if — —
Other instruction
Other instruction if — — — — ID EX
Other instruction IF ID EX -

STS IF — ID — EX_:M——AWB

Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX

Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

217

When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.71 illustrates how this
occurs, assuming MA and IF contention.

D —> < > 4> 4> <> > > Slot

STS-L
Other instruction F D— — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX

STS L
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction if — — ID EX

Figure 7.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

218

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figure illustrates
how this occurs, assuming MA and IF contention.

P AP PP P p 4P 4> <> <> <> Sot

LDS if — —
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX

LDS IF — ID — EX:M—A:
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX

Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

219

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.73) to create a single slot. The MA of the LDS contends with IF. Figure 7.73
illustrates how this occurs, assuming MA and IF contention.

> —> e > <> 4> 4> <> <> Slot

LDS.L

Other instruction
Other instruction f — — — — ID EX
Other instruction : IF ID EX

LDS.L
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX

Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

220

7.7.3 Logic Operation Instructions
Register-Register Logic Operation Instructions: Include the following instruction types:

« AND Rm,Rn
e AND #imm, RO
¢« NOT Rm,Rn
¢ OR Rm,Rn
¢ OR #imm, RO
e TST Rm,Rn
¢ TST #imm, RO
¢ XOR Rm,Rn
e XOR #imm, RO

> > > > > <> St
linstruction A IF__ID__EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.74 Register-Register Logic Operation Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

221

Memory Logic Operation Instructions: Include the following instruction types:

* AND.B #imm, @(RO, GBR)
*+ ORB #imm, @(RO, GBR)
 TST.B #imm, @(RO, GBR)
* XOR.B #imm, @(RO, GBR)

> > > > > > > > > Sot
linstruction A__IF_ID _EX MA EX_MA]
Next instruction IF — — ID EX

Third instruction IF ID EX

Figure 7.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

222

TAS Instruction: Includes the following instruction type:

« TASB @Rn

> > 4> 4> > 4> > > > Sot
[InstructionA IF_ID EX MA EX MA]
Next instruction F — — — ID EX .-
Third instruction IF ID EX -

Figure 7.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID of the
next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

223

7.74 Shift Instructions

Shift Instructions: Include the following instruction types:

« ROTL Rn
« ROTR Rn
*« ROTCL Rn
¢ ROTCR Rn
e SHAL Rn
* SHAR Rn
* SHLL Rn
+ SHLR Rn
e SHLL2 Rn
« SHLR2 Rn
« SHLL8 Rn
* SHLR8 Rn
« SHLL16 Rn
e« SHLR16 Rn

4> 4> 4> > > 4> > 4> <> Sot
[Instruction A IF_ID__EX]
Next instruction IF ID EX -
Third instruction IF ID EX .-

Figure 7.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.77). The data operation is
completed in the EX stage via the ALU.

224

7.7.5 Branch Instructions
Conditional Branch Instructions: Include the following instruction types:

e BF label
e BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 7.78).

> > > > > > > > > Sot
[Instructon A IF_ID__EX]

Next instruction IF — (Fetched but discarded)
Third instruction IF — (Fetched but discarded)
Branch destination — IF ID EX -
IF ID EX -

Figure 7.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.79).

> > > > > > > > > Sot
[Instructon A IF _ID EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX -

Figure 7.79 Branch Instruction When Condition is Not Satisfied

225

Note: SH-2 always fetches instructions with a long word. Therefore, ""1. When condition is
satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of the
4n address. '

226

Delayed Conditional Branch Instructions (SH-2 CPU): Include the following instruction types:

e BF/S label (SH-2 CPU only)
« BT/S label (SH-2 CPU only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. 'When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch iqstruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 7.80).

> > > <> > 4> <> <> <> Sot
[Instructon A IF 1D EX]

Next instruction IF — ID EX MA WB
Third instruction IF — (Fetched but discarded)
Branch destination IF ID EX -
...... IF ID EX .-

Figure 7.80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.81).

“-> > > > 4> 9> > 4> <> Sot
[Instructon A IF_ID__EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX -

Figure 7.81 Branch Instruction When Condition is Not Satisfied

227

Note:: SH-2 always fetches instructions with a long word. Therefore, "1. When condition is
satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of the
4n address.

228

Unconditional Branch Instructions: Include the following instruction types:

* BRA label

* BRAF Rm (SH-2 CPU only)
« BSR label

» BSRF Rm (SH-2 CPU only)
* JMP @Rm

« JSR @Rm

* RTS

<« O O > > D <> > > Sot
linstructon A IF_ ID EX]

Delay slot IF — ID EX MA WB
Branch destination IF ID EX -
..... IF ID EX .

Figure 7.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of
instruction A.

229

7.7.6 System Control Instructions
System Control ALU Instructions: Include the following instruction types:

e CLRT

« LDC Rm, SR
« LDC Rm, GBR
¢ LDC Rm, VBR
« LDS Rm,PR
* NOP

e SETIT

¢« STC SR,Rn

* STC GBR,Rn
* STC VBR,Rn
« STS PR,Rn

> > > 4> 4> > > 4> <> Sot
[Instructon A IF__ID _EX]|
Next instruction IF ID EX .-
Third instruction IF ID EX -

Figure 7.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is
completed in the EX stage via the ALU.

230

LDC.L Instructions: Include the following instruction types:

« LDCL @Rm+, SR
« LDC.L @Rm+, GBR
« LDCL @Rm+, VBR

> 4> > D > > > > > Sot
Unstruction A IF_ID EX MA EX]
Next instruction F — — ID EX -
Third instruction IF ID EX -

Figure 7.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the
following instruction is stalled for two slots.

231

STC.L Instructions: Include the following instruction types:

* STCL SR,@-Rn
* STCL GBR,@-Rn
e STCL VBR,@-Rn

+“r 4> 4> O D> 9> > > <> Sot
InstrucionA__IF__ID__EX_MA
Next instruction IF — ID EX - "
Third instruction IF ID EX -

Figure 7.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the next
instruction is stalled for one slot.

232

LDS.L Instruction (PR): Includes the following instruction type:
» LDSL @Rm+,PR

<> > > <> > > <> > > Sot
[InstructionA IF__ID EX MA WB|

Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the same as
an ordinary load instruction.

233

STS.L Instruction (PR): Includes the following instruction type:
» STS.LPR, @-Rn

> > > O D> > > > > Sot
[Instructon A IF__ID__EX MA]

Next instruction IF ID EX -

Third instruction IF ID EX -

Figure 7.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as an
ordinary store instruction.

234

Register - MAC Transfer Instructions: Include the following instruction types:

¢« CLRMAC
« LDS Rm, MACH
« LDS Rm, MACL

<+ 4> O 4O 4> 9> D> 9> 4> Sot
[Instructon A IF__ID__EX MA]

Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.88 Register —» MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store

instructions. Since the multiplier contends with the MA, see the section for the SOP instruction,
multiply instruction, and double precision multiply instruction.

235

Memory — MAC Transfer Instructions: Include the following instruction types:

« LDSL @Rm+, MACH
« LDSL @Rm+, MACL

> > D G > P> > <> > Sot
[Instruction A IF__ID EX MA]

Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.89 Memory — MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the SOP

instruction, multiply instruction, and double precision multiply instruction.

236

MAC — Register Transfer Instructions: Include the following instruction types:

+ STS MACH,Rn
« STS MACL,Rn

> 4 > > 4> 4> <> > <> Sot
[Instructon A IF_ID EX MA WB]
Next instruction IF ID EX

Third instruction IF

Figure 7.90 MAC — Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as

ordinary load instructions. Since the multiplier contends with the MA, see the section for the SOP
instruction, multiply instruction, and double precision multiply instruction.

237

MAC — Memory Transfer Instructions: Include the following instruction types: -

« STSL MACH, @-Rn
« STSL MACL,@-Rn

P > > 4> P> P> P> <> <> Sot
[InstructonA IF 1D EX MA]|

Next instruction IF ID EX

Third instruction IF ID EX

Figure 791 MAC — Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). The MA is a stage for
accessing the memory and the multiplier. The MA contends with IF. This makes it the same as = -
ordinary store instructions. Since the multiplier contends with the MA, see the section for the SOP

instruction, multiply instruction, and double precision multiply instruction.

238

RTE Instruction: Includes the following instruction type:

« RTE

4P 4> > 4> > > 4> 4> > Sot
[RTE_IF_ID EX MA MA]

Delay slot IF — — — ID EX -

Branch destination IF ID EX

Figure 7.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs contend with the
IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3

slots. The IF of the branch destination instruction starts from the slot following the MA of the
RTE.

239

TRAP Instruction: Includes the following instruction type:

e TRAPA #mm

P > D D D G O O D O 4 > > Sot
ITRAPA _IF _ID EX EX MA MA MA EX EX]|
Next instruction IF
Third instruction IF
Branch destination IF ID EX -
...... IF ID EX -

Figure 793 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The MAs
contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

240

SLEEP Instruction: Includes the following instruction type:

» SLEEP

> > O > O > 4> > > Sot
|SLEEP IF ID EX|
Next instruction IF

Figure 7.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

241

7.7.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

* Interrupt exception processing

P O O O O G G O O O > > > Sot

Next instruction IF
Branch destination IF ID EX -
...... IF ID .o

Figure 7.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

242

Address Error Exception Processing: Includes the following instruction type:

¢ Address error exception processing

D > O D O GO O D > > > > <> Sot

Next instruction IF
Branch destination IF ID EX -
....... IF ID oo

Figure 7.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the
address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. For details of the
error cause, refer to the appropriate hardware manual.

243

Illegal Instruction Exception Processing: Includes the following instruction type:

« TIllegal instruction exception processing

> O O G O GO O O D 49 D> 4> <> Sot

[llegal instruction :IF ID: EX EX MA MA MA EX EX|
Next instruction IF
(Third instruction IF)

Branch destination IF ID EX .o

...... IF ID -

Figure 7.97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.97). Illegal instruction
exception processing is not a delayed branch. In illegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
as well depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot directly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction
exception handling occurs.

244

Appendix A Instruction Code
See “6. Instruction Descriptions™ for details.

Al Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

245

Table A.1

Instruction Set by Addressing Mode

Types
Addressing Mode Category Sample Instruction SH-2 SH-1
No operand —_ NOP 8 8
Direct register addressing Destination operand only MOVT Rn 18 17
Source and destination ADD Rm, Rn 34 31
operand
Load and store with control LDC Rm, SR 12 12
register or system register STS MACH, Rn
Indirect register Source operand only JMP @Rm 2 2
addressing Destination operand only TAS.B @Rn 1
Data transfer with direct MOV.L Rm, @Rn 6 6
register addressing
Post increment indirect Multiply/accumulate operation MAC.W @Rm+, @Rn+ 2 1
register addressing
Data transfer from direct MOV.L @Rm+,Rn 3 3
register addressing
Load to control register or LDC.L @Rm+, SR 6 6
system register
Pre decrement indirect Data transfer from direct MOV.L Rm, @-Rn 3 3
register addressing register addressing
Store from control registeror STC.L SR, @-Rn 6 6
system register
Indirect register addressing Data transfer with direct MOV.L Rm, @(disp,Rn) 6 6
with displacement register addressing
Indirect indexed register Data transfer with direct MOV.L Rm, @(RO,Rn) 6 6
addressing register addressing
Indirect GBR addressing Data transfer with direct MOV.L R, @(disp,GBR) 6 6
with displacement register addressing
Indirect indexed GBR Immediate data transfer AND.B #imm, @(RO,GBR) 4 4
addressing
PC relative addressing with Data transfer to direct register MOv.L @(disp,PC),Rn 3 3
displacement addressing
PC relative addressing with Branch instruction BRAF Rm 2 0
Rm
PC relative addressing Branch instruction BRA label
Immediate addressing Arithmetic logical operations ADD #imm, Rn 7
with direct register addressing
Specify exception processing TRAPA #imm 1 1
vector
Total: 142 133

246

A.1l.1 No Operand
Table A.2 No Operand

Instruction Code Operation State T Bit
CLRT 0000000000001000 0T 1 0
CLRMAC 0000000000101000 0 —» MACH, MACL 1 —
DIVOU 0000000000011001 0 - M/Q/T 1 0
NOP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, Stack area 4 LSB
— PC/SR
RTS 0000000000001011 Delayed branch, PR — PC 2 —
SETT 0000000000011000 15T 1 1
SLEEP 0000000000011011 Sleep 3 —

247

A.1.2 Direct Register Addressing
Table A.3 Destination Operand Only

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn>0,1->T 1 Comparison result
CMP/PZ Rn 0100nnnn00010001 Rn2>0,1->T 1 Comparison result
DT Rn* 0100nnnn00010000 Rn-1—Rn 1 Comparison result

WhenRnis0,1 > T,
when Rn is nonzero,
0-T

MOVT Rn 0000nnnn00101001 T —Rn 1 —

ROTL Rn 0100nnnn00000100 T « Rn « MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB—-Rn—>T 1 LSB

ROTCL Rn 0100nnnn00100100 T—RneT 1 MSB

ROTCR Rn 0100nnnn00100101 T->Rn->T 1 LSB

SHAL Rn 0100nnnn00100000 T« Rn«0 1 MSB

SHAR Rn 0100nnnn00100001 MSB— Rn —» T 1 LSB

SHLL Rn 0100nnnn00000000 T« Rn«0 1 MSB

SHLR Rn 0100nnnn00000001 0->Rn—>T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —_

SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —

SHLLS8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 _

SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —_

SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —

Note: SH-2 CPU instruction

- Table A4 Source and Destination Operand

Instruction Code Operation State T Bit

ADD Rm,Rn 001llnnnnmmmml100 Rn+ Bm — Rn 1 —

ADDC Rm,Rn 001lnnnnmmmml110 Rn+Rm+T—Rn, 1 Carry
carry » T

ADDV Rm,Rn 001lnnnnmmmml111 Rn + Rm — Rn, 1 Overflow
overflow —» T

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm — Rn 1 —

248

Table A4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit
CMP/EQ Rm,Rn 0011nnnnmmmm0000 WhenRn=Rm,1->T 1 Comparison
result
CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and Rn 1 Comparison
2Bm, 15T result
CMP/GE Rm,Rn 0011nnnnmmmm0011 When signedand Rn> 1 Comparison
Rm,1-T result
CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn 1 Comparison
>BRm, 1T result
CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and Rn > 1 Comparison
Rm,1->T result
CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn 1 Comparison
equals bytes in Rm, 1 result
-T
DIV1 Rm, Rn 0011nnnnmmmm0100 1-step division (Rn + 1 Calculation
Rm) result
DIVOS Rm, Rn 0010nnnnmmmm0111 MSBof Rn - Q,MSB 1 Calculation
of RmM->M,MAQ->T result
DMULS.L Rm,Rn*? 001lnnnnmmmm1101 Signed, Rn x Rm — 2to 41 —
MACH, MACL
DMULU.L Rm,Rn*2 001lnnnnmmmm0101 Unsigned, Rn xRm —» 2to4*! —
MACH, MACL
EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign — extends Rm 1 —
from byte — Rn
EXTS.W Rm,Rn 0110nnnnmmmml111 Sign — extends Rm 1 —_
from word — Rn
EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero — extends Rm 1 —
from byte — Rn
EXTU.W Rm,Rn 0110nnnnmmmml1101 Zero — extends Rm 1 —
from word — Rn
MOV Rm, Rn 0110nnnnmmmmO011 Rm — Rn 1 —
MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn x Rm - MACL 2t04*1 —
MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn xRm — 11031 —
MAC
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn xRm —» 1t03*1 __
MAC
NEG Rm, Rn 0110nnnnmmmml1011 0-Rm - Rn 1 —
NEGC Rm, Rn 0110nnnnmmmm1010 0-BRm-T-Rn, 1 Borrow
Borrow » T
Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

249

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit .

NOT Rm,Rn 0110nnnnmmom011l ~Rm — Rn 1 -

OR Rm, Rn 0010nnnnmmmm1011 RniRm — Rn 1 —_

SUB Rm, Rn 0011nnnnmmmml000 Rn—-Rm — Rn 1 —_

SUBC Rm,Rn 001lnnnnmmmml1010 Rn-Rm-T - Rn, 1 Borrow
Borrow - T

SUBV Rm,Rn 00llnnnnmmmmlOll Rn-Rm - Rn, 1 Underflow
Underflow — T

SWAP.B Rm,Rn 0110nnnnmmmm1000 "Rm > Swap upperand 1 —
lower halves of lower 2
bytes — Rn

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm — Swap upperand 1 —
lower word — Rn

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, whenresultis 1 Test results
0,1-T

XOR Rm,Rn 0010nnnnmmmm1 010 RnARm — Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm and 1 —

Rn — Rn

Table A.S Load and Store with Control Register or System Register

Instruction Code Operation State T Bit
LDC Rm, SR 0100mmmm00001110 Rm — SR 1 LSB
LDC Rm, GBR 0100mmmm00011110 Rm — GBR 1 —
LDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —
1DS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —_
DS Rm,MACL 0100mmmm00011010 Rm — MACL 1 —
LDS Rm, PR 0100mmmm00101010 Rm - PR 1 —_
STC SR,Rn 0000nnnn00000010 SR — Rn 1 —
STC GBR,Rn 0000nnnn00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —_
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR — Rn 1 —

250

A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code Operation State T Bit
JMP GRm 0100mmmm00101011 Delayed branch, Rm — PC 2 —
JSR G@Rm 0100mmmm00001011 Delayed branch, PC — PR, 2 —
Rm - PC
TAS.B @Rn 0100nnnn00011011 When (Rn)is0,1 - T,1 - 4 Test results
MSB of (Rn)
Table A.7 Data Transfer with Direct Register Addressing
Instruction Code Operation State T Bit
MOV.B Rm, €Rn 0010nnnnmmmm0000 Rm — (Rn) 1 —
MOV.W Rm, @Rn 0010nnnnmmmm0001 Rm — (Rn) 1 —_
MOV.L Rm, GRn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) — sign extension - Rn 1 —
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) — sign extension - Rn 1 —
MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) - Rn 1 —
A.14 Post Increment Indirect Register Addressing
Table A.8 Multiply/Accumulate Operation
Instruction Code Operation State T Bit
MAC.L @Rm+,@Rn+*2 0000nnnnmmmml111 Signed, (Rn) x (Rm) + MAC 3Rto4*! —
- MAC
MAC.W @Rm+, @Rn+ 0100nnnnmmmm1111 Signed, (Rn) x (Rm) + MAC 3/(2)*! —

- MAC

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH-2 CPU instruction

251

Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) — sign extension — 1 —
Rn, Rm + 1 - Rm

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign extension — 1 —_
Rn, Rm +2 — Rm

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) - Rn, Rm + 4 - Rm 1 —

Table A.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) — SR, Rm + 4 - Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) - GBR, Rm + 4 - Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) - VBR, Rm + 4 - Rm 3 —_—

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) - MACH,Rm +4 - Rm 1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) — MACL, Rm + 4 - Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) - PR, Rm + 4 - Rm 1 —

A.1.5 Pre Decrement Indirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm, -Rn 0010nnnnmmmm0100 Rn-1— Rn, Rm — (Rn) 1 —

MOV.W Rm, @-Rn 0010nnnnmmmm0101 Rn -2 = Rn, Rm — (Rn) 1 —

MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn -4 — Rn, Rm — (Rn) 1 —

252

Table A.12 Store from Control Register or System Register

Instruction Code Operation State T Bit

STC.L SR, @-Rn 0100nnnn00000011 Rn-4 — Rn, SR — (Rn) 2 —

STC.L GBR, @-Rn 0100nnnn00010011 Rn-4 -Rn,GBR— (Rn) 2 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn-4—-5Rn,VBR— (Rn) 2 —

STS.L MACH, @-Rn 0100nnnn00000010 Rn-4 - Rn, MACH — (Rn) 1 —

STS.L MACL, @Rn 0100nnnn00010010 Rn-4 - Rn, MACL — (Rn) 1 —

STS.L PR, @-Rn 0100nnnn00100010 Rn-4 — Rn, PR — (Rn) 1 —

A.1l.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation State T Bit

MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —

MOV.W RO, @(disp,Rn) 10000001nnnndddd RO — (disp x2 + Rn) 1 —_

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm — (disp x4+ Rn) 1 —

MOV.B @(disp,Rm), RO 100001 00mmmmdddd (disp + Rm) — sign 1 —

extension —» RO
MOV.W @(disp,Rm),R0O 10000101mmmmdddd (disp x2 + Rm) — sign 1 —
extension — RO

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp x4+Rm)—>Rn 1 -—

A.1.7 Indirect Indexed Register Addressing

Table A.14 Indirect Indexed Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@(RO,Rn) 0000nnnnmmmm0100 Rm — (RO + Rn) 1 —

MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —

MOV.L Rm,@(RO,Rn) 0000nnnnmmmm0110 Rm — (RO + Rn) 1 —

MOV.B @(RO,Rm),Rn 0000nnnnmmmm1100 (RO + Rm) — sign 1 —
extension — Rn

MOV.W @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — sign 1 —
extension — Rn

MOV.L @(RO,Rm),Rn 0000nnnnmmmm1110 (RO + Rm) — Rn 1 —

A.1.8 Indirect GBR Addressing with Displacement
Table A.15 Indirect GBR Addressing with Displacement

Instruction Code Operation State T Bit
MOV.B RO, @(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —
MOV.W RO, @(disp,GBR) 11000001dddddddd RO — (disp x2 + 1 —
GBR)
MOV.L RO,@(disp,GBR) 11000010dddddddd RO — (disp x4 + 1 —
v GBR)
MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) — sign 1 —
extension — RO
MOV.W @(disp,GBR),R0 11000101dddddddd (disp x2+ GBR) » 1 —
sign extension — RO
MOV.L @(disp,GBR),R0 110001104ddddddd (disp x4+ GBR) » 1 —
RO
A.19 Indirect Indexed GBR Addressing
Table A.16 Indirect Indexed GBR Addressing
Instruction Code Operation State T Bit
AND.B #imm, @(RO,GBR). 11001101iiiiiiii (RO + GBR) & imm — 3 —_
(RO + GBR)
OR.B #imm, @(RO,GBR) 11001111iiiiiiii (RO+ GBR)!imm— (RO 3 —
+ GBR)
TST.B #imm, @(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm, when 3 Test
resultis0,1 > T results
XOR.B #imm,@(RO,GBR) 11001110iiiiiiii (RO + GBR)*imm — (RO 3 —
+ GBR)
A.1.10 PC Relative Addressing with Displacement
Table A.17 PC Relative Addfessing with Displacement
Instruction Code Operation State T Bit
MOV.W @(disp,PC),Rn 1001lnnnndddddddd (disp x2 + PC) — sign 1 —_
extension — Rn
MOV.L @(disp,PC),Rn 110lnnnndddddddd (disp x4 + PC) — Rn 1 —
MOVA @(disp,PC),R0 11000111dddddddd disp x4 +PC — R0 1 —

254

A.1.11 PC Relative Addressing with Rm

Table A.18 PC Relative Addressing with Rm

Instruction Code Operation State T Bit

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm + PC —» PC 2 —

BSRF Rm*2 0000mmmm00000011 Delayed branch, PC — PR, Rm + PC 2 —

- PC

Notes: 2. SH-2 CPU instruction

A.1.12 PC Relative Addressing

Table A.19 PC Relative Addressing

Instruction Code Operation State T Bit

BF label 10001011dddddddd ~ When T =0, dispx2 + PC - PC; 3/1*3 —
When T =1, nop _

BF/S label*? 10001111dddddddd When T =0, disp x2 + PC — PC; 2/1*3 —
When T =1, nop

BT label 10001001dddddddd When T =1, disp x 2+ PC - PC; 3/1*3 —
When T =0, nop

BT/S label#*? 10001101dddddddd When T =1, disp x2 + PC — PC; 2/1*3 —
When T =0, nop

BRA label 1010dddddddddddd Delayed branch, dispx2 +PC —» 2 —
PC

BSR label 1011dddddddddddd Delayed branch, PC — PR, dispx 2 —

2+PC—->PC

Notes: 2. SH-2 CPU instruction

3. One state when it does not branch

255

A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State T Bit

ADD #imm,Rn 01llnnnniiiiiiii Rn + imm — Rn 1 —

AND #imm,RO 11001001iiiiiiji RO & imm — RO 1 —

CMP/EQ #imm,R0 10001000iiiijiiii When RO=imm,1 > T 1 Comparison

result

MOV #imm,Rn 1110nnnniiiiiiii imm — sign extension —» Rn 1 —

OR #imm,RO 11001011iiiiiiii RO | imm — RO 1 —

TST #imm,RO 11001000iiiiiiii RO & imm, when resultis 0, 1 Test results
1-T

XOR #imm,RO 11001010iiiiiiii RO A imm — RO 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR — Stack area, (mmx4+ 8 —

VBR) —» PC
A.2 Instruction Sets by Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

256

Table A.22 Instruction Sets by Format

Types
Format Category Sample Instruction SH-2 SH-1
0 - NOP 8 8
n Direct register addressing MOVT Rn 18 17
Direct register addressing (store with control STS MACH, Rn 6 6
or system registers)
Indirect register addressing TAS.B @Rn 1 1
Pre decrement indirect register addressing STIC.L SR, @-Rn 6 6
m Direct register addressing (load with control LDC Rm, SR 6 6
or system registers)
PC relative addressing with Rn BRAF Rm 2 0
Direct register addressing JMP @Rm 2 2
Post increment indirect register addressing LDC.L @Rm+, SR 6 6
nm Direct register addressing ADD Rm,Rn 34 31
Indirect register addressing MOV.L Rm, @Rn 6 6
Post increment indirect register addressing MAC.W @Rm+, @Rn+ 2 1
(multiply/accumulate operation)
Post increment indirect register addressing MOV.L @Rm+,Rn 3 3
Pre decrement indirect register addressing MOV.L Rm,@-Rn 3 3
Indirect indexed register addressing MOV.L Rm, @(RO,Rn) 6 6
md Indirect register addressing with MOV.B @(disp,Rm),R0 2 2
displacement
nd4 Indirect register addressing with MOV.B RO, @(disp,Rn) 2 2
displacement
nmd Indirect register addressing with MOV.L Rm,@(disp,Rn) 2 2
displacement
d Indirect GBR addressing with displacement MOV.L RO, @(disp,GBR) 6 6
Indirect PC addressing with displacement MOVA @(disp,PC),RO 1 1
PC relative addressing BF label 4 2
di2 PC relative addressing BRA label 2 2
nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2
i Indirect indexed GBR addressing AND.B #imm, @(RO,GBR) 4 4
Immediate addressing (arithmetic and logical AND #imm, RO 5 5
operations with direct register)
Immediate addressing (specify exception TRAPA #imm 1 1
processing vector)
ni Immediate addressing (direct register ADD #imm, Rn 2 2
arithmetic operations and data transfers)
Total: 142 133

257

A.2.1 0Format

Table A.23 0 Format

Instruction Code Operation State T Bit

CLRT 0000000000001000 0-T 1 0

CLRMAC 0000000000101000 0 — MACH, MACL 1 —

DIVOU 0000000000011001 0 - MQ/T 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack 4 LSB
area — PC/SR

RTS 0000000000001011 Delayed branching, PR —» 2 —_
PC

SETT 0000000000011000 15T 1 1

SLEEP 0000000000011011 Sleep 34 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

258

A2.2

n Format

Table A.24 Direct Register Addressing

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn>0,1-T 1 Comparison result

CMP/PZ Rn 0100nnnn00010001 Rn>0,1-5T 1 Comparison result

DT Rn*2 0100nnnn00010000 Rn-1— Rn; 1 Comparison result
IfRnis0,1 - T,if Rn
is nonzero,0 —» T

MOVT Rn 0000nnnn00101001 T — Rn 1 —

ROTL Rn 0100nnnn00000100 T « Rn « MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB—>Rn->T 1 LSB

ROTCL Rn 0100nnnn00100100 T—Rn&T 1 MSB

ROTCR Rn 0100nnnn00100101 T—->Rn->T 1 LSB

SHAL Rn 0100nnnn00100000 T—Rn&0 1 MSB

SHAR Rn 0100nnnn00100001 MSB—-Rn->T 1 LSB

SHLL Rn 0100nnnn00000000 T« Rn« 0 1 MSB

SHLR Rn 0100nnnn00000001 O —>Rn—>T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —_

SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —

Notes: 2. SH-2 CPU instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit
STC SR,Rn 0000nnnn00000010 SR - Rn 1 —
STC GBR,Rn 0000nnnn00010010 GBR — Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —_
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR — Rn 1 —

259

Table A.26 Indirect Register Addressing

Instruction Code Operation State T Bit
TAS.B @Rn 0100nnnn00011011 When (Rn)is 0,1 > T,1 — 4 Test results
MSB of (Rn)

Table A.27 Pre Decrement Indirect Register

Instruction Code k Operation State T Bit
STC.L SR, @-Rn 0100nnnn00000011 Rn-4 — Rn, SR — (Rn) 2 —
STC.L GBR,@-Rn 0100nnnn00010011 Rn-4—- Rn,GBR— (Rn) 2 —
STC.L VBR,@-Rn 0100nnnn00100011 Rn-4—-Rn,VBR— (Rn) 2 —
STS.L MACH, @-Rn 0100nnnn00000010 Rn -4 — Rn, MACH — (Rn) 1 —
STS.L. MACL, @-Rn 0100nnnn00010010 Rn -4 — Rn, MACL — (Rn) 1 —_
STS.L PR, @-Rn 0100nnnn00100010 Rn -4 — Rn, PR - (Rn) 1 —

260

A2.3 m Format

Table A.28 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit
1DC Rm, SR 0100mmmm00001110 Rm — SR 1 LSB
LDC Rm, GBR 0100mmmm00011110 Rm — GBR 1 —
IDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —
LDS Rm, MACH 0100mmmm00001010 Rm —» MACH 1 —
LDS Rm, MACL 0100mmmm00011010 Rm — MACL 1 —
LDS Rm, PR 0100mmmm00101010 Rm — PR 1 —
Table A.29 Indirect Register
Instruction Code Operation State T Bit
JMP @Rm 0100mmmm00101011 Delayed branch, Rm — PC 2 —
JSR @m 0100mmmm00001011 Delayed branch, PC — PR, 2 —

Rm — PC
Table A.30 Post Increment Indirect Register
Instruction Code Operation State T Bit
LDC.L @Rm+,SR 0100mmmm00000111 (Rm) - SR, RBm + 4 — Rm 3 LSB
LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) —- GBR, Rm + 4 — Rm 3 —
LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) - VBR, Rm + 4 - Rm 3 —
LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) - MACH,Rm+4 - Rm 1 —
LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) - MACL,Rm+4 —->Rm 1 —_
LDS.L @Rm+,PR 0100mmmm00100110 (Rm) - PR,Rm +4 — Rm 1 —
Table A.31 PC Relative Addressing with Rm
Instruction Code Operation State T Bit
BRAF Rm*? 0000mmmm00100011 Delayed branch, Rm + PC — PC —
BSRF Rm*? 0000mmmm00000011 Delayed branch, PC - PR, Rm + PC 2 —_

- PC

Notes: 2. SH-2 CPU instruction

261

A24

nm Format

Table A.32 Direct Register Addressing

Instruction Code Operation State T Bit
ADD Rm, Rn 0011nnnnmmmm1100 Rn + Rm —- Rn 1 —
ADDC Rm, Rn 0011nnnnmmmml110 Rn+Rm+T—Rn,carry 1 Carry
->T
ADDV Rm, Rn 0011nnnnmmmm1111 Rn + Rm — Rn, overflow 1 Overflow
->T
AND Rm, Rn 0010nnnnmmmm1001 Rn & Rm — Rn 1 —
CMP/EQ Rm, Rn 0011nnnnmmmmO000 WhenRn=Rm,1->T 1 Comparison
result
CMP/HS Rm, Rn 0011nnnnmmmmO0010 When unsigned and Rn > 1 Comparison
Rm,1->T result
CMP/GE Rm, Rn 0011nnnnmmmm0011 When signed and Rn > 1 Comparison
Rm,1-T result
CMP/HI Rm, Rn 0011nnnnmmmm0110 When unsigned and Rn > 1 Comparison
Rm,1->T result
CMP/GT Rm, Rn 0011nnnnmmmm0111 When signed and Rn > 1 Comparison
Rm,1 T result
CMP/STR Rm,Rn 0010nnnnmmmml 100 When a byte in Rn equals 1 Comparison
abyteinBRm,1 >T result
DIVl Rm, Rn 0011nnnnmmmm0100 1-step division (Rn + Rm) 1 Calculation
’ result
DIVOS Rm, Rn 0010nnnnmmmmO0111 MSB of Rn —» Q, MSB of 1 Calculation
Rm-M,MAQ->T result
DMULS.L Rm,Rn*? 00llnnnnmmmm1101 Signed, Rn x Rm — 2t0 47 —
MACH, MACL
DMULU.L Rm,Rn*? 00llnnnnmmmm0101 Unsigned, Rn x Rm — 2t0 41 —
MACH, MACL
EXTS.B Rm, Rn 0110nnnnmmmm1110 Sign-extends Rm from 1 —
byte — Rn
EXTS.W Rm, Rn 0110nnnnmmmml111 Sign-extends Rm from 1 —
word — Rn
EXTU.B Rm, Rn 0110nnnnmmmml100 Zero-extends Rm from 1 —
byte — Rn
EXTU.W Rm, Rn 0110nnnnmmmm1101 Zero-extends Rm from 1 —
_ word — Rn
MOV Rm, Rn 0110nnnnmmmm0011 Rm — Rn 1 —
Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

262

Table A.32 Direct Register Addressing (cont)

Instruction Code Operation State T Bit

MUL.L Rm,Rn*? 0000nnnnmmmm0111 Rn x Rm — MACL 2t04*" —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn xRm ->MAC 1t03*! —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn x Rm — 1031 __
MAC

NEG Rm, Rn 0110nnnnmmmm1011 0-Rm - Rn 1 —

NEGC Rm, Rn 0110nnnnmmmm1010 0-Rm~-T - Rn, borrow 1 Borrow
-»T

NOT Rm, Rn 0110nnnnmmmm0111 ~BRm - Rn 1 —

OR Rm, Rn 0010nnnnmmmm1011 RnlIRm — Rn 1 —_

SUB Rm, Rn 0011lnnnommmm1000 Rn-Rm — Rn 1 —

SUBC Rm,Rn 0011lnnnnmmmml010 Rn-Rm-T - Rn, 1 Borrow
borrow - T

SUBV Rm, Rn 0011nnnnmmmml011 Rn - Rm — Rn, underflow 1 Underflow
-T

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm — Swap upper and 1 —
lower halves of lower 2
bytes —» Rn

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm — Swap upper and 1 —
lower word — Rn

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result is 1 Test results
0,17

XOR Rm, Rn 0010nnnnmmmm1010 RnARm — Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rmand 1 —
Rn — Rn

Notes: 1. The normal minimum number of execution cycles.
2. SH-2 CPU instructions

Table A.33 Indirect Register Addressing

Instruction Code Operation State T Bit
MOV.B Rm, @Rn 0010nnnnmmmm0000 Rm — (Rn) 1 —
MOV.W Rm, @Rn 0010nnnnmmmm0001 Rm — (Rn) 1 —_
MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) — sign extension — Rn 1 —
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) — sign extension — Rn 1 —
MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) = Rn 1 —

263

Table A.34 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

MAC.L @Rm+,@Rn+*2 0000nnnnmmmml1ll Signed, (Rn) x (Rm) + 32to —
MAC — MAC 4

MAC.W @Rm+, @Rn+ 0100nnnnmmmm111l Signed, (Rn) x (Rm) + Y —
MAC — MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the

number of cycles when there is contention with preceding/following instructions).

2. SH-2 CPU instruction.

Table A.35 Post Increment Indirect Register

Instruction Code Operation State T Bit
MOV.B €Rm+,Rn 0110nnnnmmmm0100 (Rm) — sign extension — 1 —_
Rn, Rm + 1 - Rm
MOV.W €@Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign extension — 1 -
Rn, Rm + 2 - Rm

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) - Rn, Rm + 4 - Rm 1 —_
Table A.36 Pre Decrement Indirect Register
Instruction Code Operation State T Bit
MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn -1 — Rn, Rm — (Rn) 1 —
MOV.W Rm, @-Rn 0010nnnnmmmm0101 Rn -2 — Rn, Rm — (Rn) 1 —
MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn -4 — Rn, Rm — (Rn) 1 —
Table A.37 Indirect Indexed Register
Instruction Code Operation Cycles T Bit
MOV.B Rm, @(RO,Rn) 0000nnnnmmmm0100 Rm — (RO + Rn) 1 —
MOV.W Rm, @(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —
MOV.L Rm, @(RO,Rn) 0000nnnnmimmm0110 Rm — (RO + Rn) 1 —

. MOV.B @(RO,Rm),Rn 0000nnnnmmmm1 100 (RO + Rm) — sign 1 —

extension — Rn
MOV.W @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — sign 1 —
‘ extension — Rn

MOV.L @(RO,Rm),Rn 0000nnnnmmmm1110 (RO + Rm) — Rn 1 —

264

A.2.5 mdFormat
Table A.38 md Format

Instruction Code Operation State T Bit
MOV.B @(disp,Rm),RO 100001 00mmmmdddd (disp + Rm) — sign 1 —
extension —» RO
MOV.W @(disp,Rm),R0 100001 01mmmmdddd (dispx2+Rm)—» 1 —
sign extension —
RO
A2.6 nd4 Format
Table A.39 nd4 Format
Instruction Code Operation State T Bit
MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO, @(disp,Rn) 10000001nnnndddd RO — (disp x 2+ Rn) 1 —
A.2.7 nmd Format
Table A.40 nmd Format
Instruction Code Operation State T Bit
MOV.L Rm, @(disp,Rn) 0001nnnnmmmmdddd Rm — (disp x4 + Rn) 1 —
MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp x 4+ Rm) — Rn 1 —

265

A.2.8 dFormat

Table A.41 Indirect GBR with Displacement

Instruction Code Operation State T Bit
MOV.B RO, @(disp,GBR) 11000000dddddddd ~ RO — (disp + GBR) 1 —
MOV.W RO, @(disp,GBR) 11000001dddddddd RO — (disp x2 + 1 —
GBR)
MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x4 + 1 —
GBR)
MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) — sign 1 —
extension - RO
MOV.W @(disp,GBR),R0 11000101dddddddd (dispx2+ GBR) —» 1 —
sign extension — RO
MOV.L @(disp,GBR),R0 11000110dddddddd (dispx 4 + GBR) —» 1 —
RO
Table A.42 PC Relative with Displacement
Instruction Code Operation State T Bit
MOVA @(disp,PC),R0O 11000111dddddddd disp x4 + PC — RO 1 —
Table A.43 PC Relative Addressing
Instruction Code Operation State T Bit
BF label 10001011dddddddd When T =0, disp x2 + PC — PC; 31" —
When T =1, nop.
BF/S label*? 10001111dddddddd WhenT =0, disp x2 + PC — PC; 2/1*3 —
When T =1, nop
BT label 10001001dddddddd When T =1, disp x2 + PC — PC; 3/1*3 —
When T =0, nop
BT/S label*? 10001101dddddddd - When T =1,disp x2 + PC — PC; 2/1*3 —

When T = 0, nop

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

266

A2.9 d12 Format
Table A.44 d12 Format

Instruction Code Operation State T Bit

BRA label 1010dddddddddddd Delayed branch, disp x2+ PC—-PC 2 —

BSR label 1011dddddddddddd Delayed branching, PC — PR, dispx2 2 —
+PC->PC

A.2.10 nd8 Format
Table A.45 nd8 Format

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn 100lnnnndddddddd (disp x 2 + PC) — sign 1 —
extension - Rn

MOV.L @(disp,PC),Rn 110lnnnndddddddd (disp x4 + PC) — Rn 1 —

A.2.11 iFormat
Table A.46 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND.B #imm, @(RO,GBR) 11001101iiiiiiii (RO + GBR) & imm — 3 —
(RO + GBR)

OR.B #imm, @(RO,GBR) 11001111iiiiiiii (RO + GBR) limm — 3 —
(RO + GBR)

TST.B #imm, @(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm, 3 Test
whenresultis 0,1 - T results

XOR.B #imm, @(RO,GBR) 11001110iiiiiiii (RO + GBR) A imm — 3 —
(RO + GBR)

267

Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit
AND #imm, RO 11001001iiiiiiii RO & imm — RO 1 —
CMP/EQ #imm,RO 10001000iiiiiiii When RO =imm,1 > 1 Comparison
T results
OR #imm, RO 11001011iiiiiiii RO limm — RO 1 —
TST #imm, RO 11001000iiiiiiii RO & imm, whenresult 1 Test results
is0,1 T
XOR #imm, RO 11001010iiiiiiii ROAimm — RO 1 —_
Table A.48 Immediate Addressing (Specify Exception Processing Vector)
Instruction Code Operation State T Bit
TRAPA #imm 11000011iiiiiiii PC/SR — Stack area, (imm x 4 + —
VBR) - PC
A.2.12 ni Format
Table A.49 ni Format
Instruction Code Operation State T Bit
ADD #imm,Rn 011lnnnniiiiiiii Rn + imm — Rn —
MOV #imm,Rn 1110nnnniiiiiiii imm — sign extension — Rn —
A.3 Instruction Set in Order by Instruction Code
Table A.50 lists instruction codes and execution states in order by instruction code.
Table A.50 Instruction Set by Instruction Code
Instruction Code Operation State T Bit
CLRT 0000000000001000 0T 1 0
NOP 0000000000001001 No operation 1 —
RTS 0000000000001011 Delayed branch, PR —» 2 —
PC
SETT 0000000000011000 15T 1 1
DIVOU 0000000000011001 0 - MQT 1 0

268

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SLEEP 0000000000011011 Sleep 3 —
CLRMAC 0000000000101000 0 - MACH, MACL 1 —
RTE 0000000000101011 Delayed branch, stack 4 LSB
area — PC/SR
STC SR,Rn 0000nnnn00000010 SR - Rn —
BSRF Rm*2 0000mmmm00000011 Delayed branch, PC —» 2 —
PR,Rm + PC - PC
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —
STC GBR, Rn 0000nnnn00010010 GBR — Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —
BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm + 2 —
PC - PC
MOVT Rn 0000nnnn00101001 T—-Rn 1 —
STS PR, Rn 0000nnnn00101010 PR — Rn 1 —
MOV.B Rm, @(RO,Rn) 0000nnnnmmmm0100 Rm — (RO + Rn) 1 —
MOV.W Rm, @(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —
MOV.L Rm, @(RO,Rn) 0000nnnnmmmm0110 Rm — (RO + Rn) 1 —
MUL.L Rm,Rn*?2 0000nnnnmmmmO111 Rn x Rm — MACL 2 —
(to 4)*
MOV.B @(RO,Rm),Rn 0000nnnnmmmm1100 (RO + Rm) — sign 1 —
extension — Rn
MOV.W @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — sign 1 —
extension — Rn
MOV.L @(RO,Rm),Rn 0000nnnnmmmm1110 (RO + Rm) — Rn 1 —
MAC.L @Rm+, @Rn+*2 0000nnnnmmmm1111 Signed, (Rn) x (Rm) + 3/ (2 —
MAC - MAC to 4)*1
MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm — (disp x4 +Rn) 1 —
MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm — (Rn) 1 —
MOV.W Rm, @Rn 0010nnnnmmmm0001 Rm — (Rn) 1 —
Notes: 1. The normal minimum number of execution states (The number in parentheses is the

number of states when there is contention with preceding/following instructions)
2. SH-2 CPU instruction

269

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
MOV.L Rm, @Rn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B Rm, @-Rn 0010nnnnmmmm0100 Rn-1 - Rn,Rm - 1 —
(Rn)
MOV.W Rm, @Rn 0010nnnnmmmm0101 Rn-2 - Rn, Rm —> 1 —_
(Rn)
MOV.L Rm, @Rn 0010nnnnmmmm0110 Rn-4 - Rn,Rm - 1 —
(Rn)
DIVOS Rm,Rn 0010nnnnmmmm0111 MSBof Rh - Q,MSB 1 Calculation
of Rm-M,MAQ— result
T
TST Rm, Rn 0010nnnnmmmm1000 Rn & Rm, when result 1 Test results
is0,1-T
AND Rm, Rn 0010nnnnmmmm1001 Rn & Rm — Rn 1 —
XOR Rm,Rn 0010nnnnmmmm1010 RnARm — Rn 1 —
OR Rm,Rn 0010nnnnmmmm1011 Rn 1 Rm — Rn 1 —_
CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn 1 Comparison
equals a byte in Rm, 1 result
->T
XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm 1 —
and Rn — Rn
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn xRm —» 1t03*1 _
MAC
MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn xRm — 1t03*1 —
MAC
CMP/EQ Rm,Rn 0011nnnnmmmm0000 WhenRn=Rm,1->T 1 Comparison
result
CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and 1 Comparison
Rn>Rm,1 5T resuit
CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn > 1 Comparison
Rm,1->T result
DIVl Rm, Rn 0011nnnnmmmm0100 1-step division (Rn + 1 Calculation
Rm) result
DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned, Rn x Rm — 2to 4*7 —
MACH, MACL
Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

270

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
CMP/HI Rm, Rn 0011nnnnmmmm0110 When unsigned 1 Comparison
and Rn>Rm, 1 result
->T
CMP/GT Rm, Rn 0011nnnnmmmm0111 When signed and 1 Comparison
Rn>Bm,1 T result
SUB Rm, Rn 0011nnnommmm1000 Rn—-Rm — Rn 1 —
SUBC Rm, Rn 0011nnnnmmmm1010 Rn—BRm-T— 1 Borrow
Rn, borrow - T
SUBV Rm, Rn 0011nnnnmmmm1011 Rn-Rm — Rn, 1 Underflow
underflow - T
ADD Rm, Rn 0011nnnnmmmm1100 Rm + Rn - Rn 1 —_
DMULS.I. Rm,Rn*2 0011nnnnmmmm1101 Signed, RnxRm 2to4*!" —
— MACH, MACL
ADDC Rm, Rn 0011lnnnnmmmml110 Rn+Rm+T— 1 Carry
Rn,carry —» T
ADDV Rm, Rn 0011lnnnnmmmml111 Rn + Rm — Rn, 1 Overflow
overflow —» T
SHLL Rn 0100nnnn00000000 T—Rne«0 1 MSB
SHLR Rn 0100nnnn00000001 0->Rn->T 1 LSB
STS.L MACH, @-Rn 0100nnnn00000010 Rn-4 - Rn, 1 —
MACH — (Rn)
STC.L SR, @-Rn 0100nnnn00000011 Rn-4—-Rn,SR 2 —
— (Rn)
ROTL Rn 0100nnnn00000100 T~Rn«<MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB->Rn->T 1 LSB
IDS.L @Rm+ , MACH 0100mmmm00000110 (Rm) — MACH, 1 —
Rm +4 — Rm
LDC.L @Rm+, SR 0100mmmm00000111 (Rm) - SR,Rm 3 LSB
+4 - Rm
SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —
SHLR2 Rn 0100nnnn00001001 Rn>>2 - Rn 1 —
DS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

271

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
JSR @Rm 0100mmmm00001011 Delayed branch, PC 2 —_
- PR, Rm — PC
1DC Rm, SR 0100mmmm00001110 Rm — SR 1 LSB
DT Rn*2 0100nnnn00010000 Rn-1—Rn;ifRnis 1 Comparison
0,1 - T,ifRnis result
nonzero,0 > T
CMP/PZ Rn 0100nnnn00010001 Rn>0,1->T 1 Comparison
result
STS.L. MACL,@-Rn 0100nnnn00010010 Rn -4 — Rn, MACL 1 —
— (Rn)
STC.L GBR, @-Rn 0100nnnn00010011 Rn-4—-5Rn,GBR—> 2 —
(Rn)
CMP/PL Rn 0100nnnn00010101 Rn>0,1->T 1 Comparison
result
ILDS.L. @Rm+,MACL 0100mmmm00010110 (Rm) - MACL,Rm+ 1 —_
4 - Rm
LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) - GBR,Rm+4 3 —
— Rm
SHLL8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —
LDS Rm, MACL 0100mmmm00011010 Rm — MACL 1 — v
TAS.B @Rn 0100nnnn00011011 When (Rn)is 0,1 —» 4 Test results
T,1 — MSB of (Rn)
LDC Rm, GBR 0100mmmm00011110 Rm — GBR 1 —
SHAL Rn 0100nnnn00100000 T—Rn«O 1 MSB
SHAR Rn 0100nnnn00100001 MSB—-Rn—-T 1 LSB
STS.L. PR, @-Rn 0100nnnn00100010 Rn-4 - Rn,PR— 1 —
(Rn)
STC.L. VBR, @-Rn 0100nnnn00100011 Rn-4—-Rn,VBR—> 2 —
(Rn)
ROICL Rn 0100nnnn00100100 T—RnT 1 MSB
ROTCR Rn 0100nnnn00100101 ToRn>T 1 LSB
LDS.L @Rm+,PR 0100mmmm00100110 (Rm) - PR, Rm + 4 1 —_
- Rm
LDC.L @Rm+,VBR 0100mmmm00100111 (Rm)—->VBR,Rm+4 3 —
— BRm
Notes: 2. SH-2 CPU instruction

272

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —
DS Rm, PR 0100mmmm00101010 Rm — PR 1 —
JMP @Rm 0100mmmm00101011 Delayed branch, Rm 2 —
- PC
1DC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —
MAC.W @Rm+, @Rn+ 0100nnnnmmmm1111 Signed, (Rn) x(Rm) 3/(2)*' —
+ MAC - MAC
MOV. @(disp,Rm),Rn 0101lnnnnmmmmdddd (disp + Rm) - Rn 1 —
MOV. @Rm, Rn 0110nnnnmmmmO000 (Rm) — sign 1 —
extension — Rn
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) — sign 1 —
extension — Rn
MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) -> Rn 1 —
MOV Rm, Rn 0110nnnnmmmm0011 Rm — Rn 1 —
MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) — sign 1 —
extension — Rn, Rm
+1—Rm
MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign 1 —
extension — Rn, Rm
+2—-Rm
MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) > Rn,Rm+4 1 —
— Rm
NOT Rm, Rn 0110nnnnmmmm0111 ~Rm — Rn 1 —
SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm — Swap upper 1 —
and lower halves of
lower 2 bytes — Rn
SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm — Swap upper 1 —
and lower word —
Rn
NEGC Rm, Rn 0110nnnnmmmm1010 0-Rm-T—-Rn, 1 Borrow
borrow — T
NEG Rm, Rn 0110nnnnmmmml1011 0-Rm — Rn 1 —
Notes: 1 The normal minimum number of execution states (The number in parentheses is the

number in contention with preceding/following instructions)

273

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero-extends Rm 1 —
from byte — Rn

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero-extends Rm 1 —
from word — Rn

EXTS.B Rm,Rn 0110nnnnmmmml110 Sign-extends Rm 1 —
from byte — Rn

EXTS.W Rm,Rn 0110nnnnmmmmllll Sign-extends Rm 1 —
from word — Rn

ADD #imm, Rn 011lpnnniijiiiii Rn +imm — Rn 1 —

MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —

MOV.W RO, @(disp,Rn) 10000001nnnndddd RO — (disp x2 + 1 —
Rn)

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) — sign 1 —
extension — RO

MOV.W @(disp,Rm),R0 10000101mmmmdddd (dispx2 + Rm) — 1 —
sign extension — RO

CMP/EQ #imm, RO 10001000iiiiiiii When RO = imm, 1 1 Comparison
-T results

BT label 10001001dddddddd When T = 1, disp x 318 —
2 +PC - PG;
When T = 0, nop.

BT/S label* 10001101dddddddd When T =1, disp x 2/1"8 —
2 +PC - PC;
When T =1, nop.

BF label 10001011dddddddad When T = 0, disp x 318 —
2 +PC - PC;
When T = 0, nop

BF/S label* 10001111dddddddd When T = 0, disp x 2/1*8 —
2+ PC — PC;
When T =1, nop

MOV.W @(disp,PC),Rn 100lnnnndddddddd (dispx2 + PC) — 1 —
sign extension — Rn ‘

BRA label 1010dddddddddddd Delayed branch, 2 —
dispx2 + PC—
PC

Notes:

2. SH-2 CPU instruction

3. One state when it does not branch

274

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

BSR label 1011dddddddddddd Delayed branch, PC 2 —
— PR, dispx2 + PC
- PC

MOV.B RO, @(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —

MOV.W RO, @(disp,GBR) 11000001dddddddd RO — (disp x2 + 1 —
GBR)

MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x4 + 1 —
GBR)

TRAPA #imm 11000011iiiiiiii PC/SR — Stack 8 —
area, (imm x4 +
VBR) - PC

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) — sign 1 —
extension — RO

MOV.W @(disp,GBR),R0 11000101dddddddd (dispx2+ GBR) —» 1 —
sign extension — RO

MOV.L @(disp,GBR),RO 11000110dddddddd (disp x4+ GBR) » 1 —
RO

MOVA @(disp,PC),R0O 11000111dddddddd dispx4+PC R0 1 —_

TST #imm, RO 11001000iiiiiiii RO & imm, when 1 Test results
resultis0,1 > T

AND #imm, RO 11001001iiiiiiii RO &imm — RO 1 —

XOR #imm, RO 11001010iiiiiiii ROAimm — RO 1 —

OR #imm, RO 11001011iiiiiiii RO!limm — RO 1 —

TST.B #imm, @(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm, 3 Test results
when resultis 0, 1 —
T

AND.B #imm, @(RO,GBR) 11001101iiiiiiii (RO + GBR) & imm 3 —
— (RO + GBR)

XOR.B #imm, @(RO,GBR) 11001110iiiiiiii (RO+GBR)Aimm — 3 —
(RO + GBR)

OR.B #imm, @(RO,GBR) 11001111iiiiiiii (RO+GBR)!imm— 3 —
(RO + GBR)

MOV.L @(disp,PC),Rn 1101nnnndddddddd (dispx4 + PC) - Rn 1 —

MOV #imm, Rn 1110nnnniiiiiiii imm — sign 1 —

extension - Rn

275

A4

Operation Code Map

Table A.51 is an operation code map.

Table A.51 Operation Code Map

Fx: 0001

Instruction Code Fx: 0000 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

0000 iRn iFx {0000

0000 iRn iFx 0001

0000 :Rn iFx 0010 [STC SR,Rn* |STC GBR,Rn |STC VBR,Rn

0000 :Rm iFx 0011 |BSRF Rm* BRAF Rm*

0000 :Rn iRm i01MD|mov.B MOV.W MOV.L MUL.L
Rm, @(RO,Rn) Rm, @(RO, Rn) Rm, @(RO,Rn) Rm, Rn*

0000 (0000 iFx 1000 |CLRT SETT CLRMAC

0000 :0000 :Fx 1001 |NoP DIVOU

0000 :0000 :Fx 1010

0000 :0000 :Fx 1011 |RTS SLEEP RTE

0000 iRn iFx 1000

0000 iRn iFx 1001 MOVT Rn

0000 :Rn iFx 1010 {STS MACH,Rn |STS MACL,Rn |STS PR,Rn

0000 :Rn :iFx 1011

0000 iRn iFx 11MD| MOV .B MOV.W MOV.L MAC.L
@(RO,Rm),Rn @(RO,Rm),Rn @(RO,Rm),Rn @Rm+, @Rn+*

0001 iRn iRm idisp |MOV.L Rm,@(disp:4,Rn)

0010 :Rn Rm :00MD|MOV.B Rm,@Rn |MOV.W Rm,@Rn [MOV.L Rm, @Rn

0010 :Rn Rm i01MD|Mov.B MOV.W MOV.L DIVOS Rm,Rn
Rm, @-Rn Rm, @-Rn Rm, @-Rn

0010 iRn iRm i10MD|TST Rm,Rn |AND Rm,Rn |XOR Rm,Rn [OR Rm,Rn

0010 iRn Rm {11MD|cMP/STR XTRCT Rm,Rn |MULU.WRm,Rn |MULS.WRm,Rn
Rm, Rn

0011 iRn iRm {00MDj|CMP/EQRm,Rn CMP/HSRm,Rn | CMP/GERm, Rn

0011 :Rn iRm {01MD|DIV1 Rm,Rn |DMULU.L CMP/HIRm,Rn |CMP/GTRm,Rn

Rm, Rn*

0011 iRn iRm i10MD|SUB Rm,Rn SUBC Rm,Rn |SUBV Rm,Rn
0011 iRn Rm :{1iMD|aDD Rm,Rn |DMULS.L ADDC Rm,Rn |ADDV Rm,Rn
Rm,Rn*

0100 :Rn Fx 0000 [SHLL Rn DT Rn* SHAL Rn
0100 iRn iFx 0001 {SHLR Rn CMP/PZ Rn SHAR Rn

276

Table A.51 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 :Rn Fx 0010 |sTS.L STS.L STS.L
MACH, @-Rn MACL, @-Rn PR, @Rn
0100 :Rn Fx 0011 |sTC.L STC.L STC.L
SR, @Rn GBR, @-Rn VBR, @-Rn
0100 iRn Fx 0100 |ROTL. Rn ROTCL Rn
0100 iRn Fx 0101 |[ROTR Rn CMP/PL Rn ROTCR Rn
0100 :Rm iFx 0110 (LDS.L LDS.L LDS.L
@Rm+, MACH @Rm+, MACL @Rm+, PR
0100 :Rm iFx 0111 |LDC.L LDC.L LDC.L
@Rm+, SR @Rm+, GBR @Rm+, VBR
0100 :Rn Fx 1000 | SHLL2 Rn SHLL8 Rn SHLL16 Rn
0100 iRn Fx 1001 | SHLR2 Rn SHLR8 Rn SHLR16 Rn
0100 :Rm iFx 1010 |IDS Rm,MACH |IDS Rm,MACL |LDS Rm, PR
0100 :Rm/ iFx 1011 |JSR @Rm TAS.B @Rn JMP @Rm
Rn
0100 :Rm :Fx 1100
0100 iRm iFx 1101
0100 :Rn Fx 1110 |ILDC Rm,SR |LDC Rm,GBR |LDC Rm, VBR
0100 iRn iRm 1111 |MAC.W @Rm+, @Rn+ '
0101 iRn Rm idisp |MOV.L @(disp:4,Rm),Rn
0110 iRn Rm :0OMD|MOV.B Rm,Rn MOV.W @Rm,Rn |MOV.L @Rm,Rn |MOV Rm,Rn
0110 :Rn Rm :(01MD|MOV.B Rm+,Rn |MWV.W@Rmt,Rn MWV.LE@m+, Rn NOT Rm, Rn
0110 iRn Rm {10MD|swaP.B SWAP.W NEGC Rm,Rn NEG Rm,Rn
Rm, Rn Rm,Rn
0110 iRn Rm :{11MD|EXTU.B Rm,Rn|EXTU.W Rm,Rn |EXTS.B Rm,Rn |EXTS.W Rm,Rn
0111 iRn imm ADD #imm:8,Rn
1000 :00MD:Rn idisp |MWV.B RO, MWV.W RO,
@(disp:4,Rn) @(disp:4,Rn)
1000 :01MDiRm idisp |MOV.B MOV.W
@(disp:4, @(disp:4,
Rm), RO Rm), RO
1000 :10MD: imm/disp |CMP/EQ BT label:8 BF label:8
#imm:8, RO
1000 :11MD: imm/disp BT/S BF/S
label:8* label : 8%

277

Table A.51 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 00111111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

1001 iRn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label:12

1011 disp BSR label:12

1100 :00MD; imm/disp |MOV.B RO, MOV.W RO, MOV.L RO, TRAPA #imm:8
@(disp:8, @(disp:8, @(disp:8,
GBR) GBR) GBR)

1100 i01MD disp MOV.B MOV.W MOV.L MOVA
@(disp:8, @(disp:8, @(disp:8, @(disp:8,
GBR),RO GBR), RO GBR),RO PC),RO

1100 :10MD imm TST AND XOR OR
. #imm:8,RO #imm: 8, R0 #imm:8, RO #imm: 8, RO

1100 :11MD imm TST.B AND.B XOR.B OR.B
#imm:8, #imm:8, #imm:8, #imm:8,
@(RO,GBR) @(RO, GBR) @(RO, GBR) @(RO, GBR)

1101 iRn disp MOV.L @(disp:8,PC),RO

1110 iRn imm MOV #imm:8,Rn

1111

Note: SH-2 CPU instructions

278

Appendix B Pipeline Operation and Contention

The SH-1 and SH-2 CPU is designed so that basic instructions are executed in one state. Two or
more states are required for instructions when, for example, the branch destination address is
changed by a branch instruction or when the number of states is increased by contention between
MA and IF. Table B.1 gives the number of execution states and stages for different types of
contention and their instructions. Instructions without contention and instructions that require 2 or
more cycles even without contention are also shown.

Instructions experience contention in the following ways:
« Operations and transfers between registers are executed in one state with no contention.
» No contention occurs, but the instruction still requires 2 or more cycles.

« Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

— MA contends with IF

— MA contends with IF and sometimes with memory loads as well

— MA contends with IF and sometimes with the multiplier as well

— MA contends with IF and sometimes with memory loads and sometimes with the multiplier

279

Table B.1 Instructions and Their Contention Patterns

Contention State Stage

Instruction

None 1 3

Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers
Shift instruction
System control ALU instruction

Unconditional branche

3/1+3

Conditional branche

SLEEP instruction

RTE instruction

TRAP instruction

w
HDlOIO| W W W

-]

MA contends with IF

Memory store instruction and STS.L
instruction (PR)

2 4 STC.L instruction
3 6 Memory logic operations
4 6 TAS instruction
MA contends with IF and 1 5 Memory load instructions and LDS.L
sometimes with memory loads as instruction (PR)
well 3 5 LDC.L instruction
MA contends with IF and 1 4 Register to MAC transfer instruction,
sometimes with the multiplier as memory to MAC transfer instruction and
well MAC to memory transfer instruction
12to 3 671! Multiplication instruction
3/(2)2 7/8* Multiply/accumulate instruction
3/2to 9 Double-length multiply/accumulate
4)*2 instruction (SH-2 only)
2to42 9 Double-length multiplication instruction
(SH-2 only)
MA contends with IF and 1 5 MAC to register transfer instruction

sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH-2 CPU, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH-1 CPU, multiply/accumulate instructions are
8 stages and muiltiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

280

SH-1/SH-2 Programming Manual

Publication Date: 1st Edition, September 1994
3rd Edition, September 1996
Published by: Semiconductor and IC Div.
Hitachi, Ltd.
Edited by: Technical Documentation Center.

Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

HEAD QUARTERS
Semiconductor & IC Div.
Nippon Bldg., 2-6-2, Ohte-machi,
Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 3270-2111
Fax: (03) 3270-5109

USA

Headquarters
Hitachi America, Ltd.
Semiconductor & IC Div.
2000 Sierra Point Parkway
Brisbane, CA. 94005-1835
Tel: 415-589-8300
Fax: 415-583-4207

Northwest Regional Office
1740 Technology Drive, Suite 500
San Jose, CA 95110
Tel: 408-451-9570
Fax: 408-451-9859

Southwest Regional Office
2030 Main St., Suite 450
Irvine, CA. 92714
Tel: 714-553-8500
Fax: 714-553-8561

South Central Regional Office
2 Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX. 75240
Tel: 214-991-4510
Fax: 214-991-6151

Mid-Atlantic Regional Office
325 Columbia Turnpike, #203
Florham Park, NJ. 07932
Tel: 201-514-2100
Fax: 201-514-2020

North Central Regional Office
500 Park Boulevard, Suite 415
ltasca, IL. 60143
Tel: 312-773-4864
Fax: 312-773-9006

Northeast Regional Office
77 South Bedford St.
Burlington, MA. 01803
Tel: 617-229-2150
Fax: 617-229-6554

HITACHI, LTD. SEMICONDUCTOR AND
INTEGRATED CIRCUITS DIVISION SALES OFFICE

Automotive Regional Office
330 Town Centre Drive, Suite 311
Dearborn, MI. 48126
Tel: 318-271-4410
Fax: 313-271-5707

Pacific Mountain Region
4600 South Ulster St., Suite 700
Denver, CO 80237
Tel: 303-740-6644
Fax: 303-740-6609

Southeast Region
5511 Capital Center Dr., Suite 204
Raleigh, NC 27608
Tel: 919-233-0800
Fax: 919-233-0508

CANADA
Hitachi (Canadian) Ltd.
320 March Road, Suite 602
Kanata, Ontario K2K 1E3 CANADA
Tel: 613-591-1990
Fax: 613-591-1994

EUROPE (CE)
Headquarters
Hitachi Europe GmbH
Electronic Components Group
Continental Europe
Dornacher StraBe 3
D-85622 Feldkirchen
Miinchen
Tel: 089-9 91 80-0
Fax: 089-9 29 30 00

Sales Office
Hitachi Europe GmbH
Electronic Components Div.
North Germany/Benelux
Am Seestem 18; D-40547 Duisseldorf
Postfach 11 05 36; D-40505 Disseldorf
Tel: 0211-52 83-0
Fax: 0211-52 83-779

Hitachi Europe GmbH

Electronic Components Div.
Central Germany
Friedrich-List-StraBe 42

D-70771 Leinfelden-Echterdingen
Tel: 0711-99085-5

Fax: 0711-99085-75

Hitachi Europe GmbH
Electronic Components Div.

South Germany/Austria/Switzerland/East Europe

Dornacher StraBe 3
D-85622 Feldkirchen
Miinchen

Tel: 089-9 91 80-0
Fax: 089-9 29 30 00

Hitachi Europe GmbH

Electronic Components Div.

ltaly

Via Tommaso Gulli 39; 1-20147 Milano
Tel: 02-48 78 61

Fax: 02-48 78 63 91

Via F. D'Ovidio 97; I-00135 Roma
Tel: 06-82 00 18 24
Fax: 06-82 001825

Hitachi Europe GmbH
Electronic Components Div.
Spain

c/Buganvilla, 5; E-28036 Madrid
Tel: 0034-1-7 67 27 82, -92
Fax: 0034-1-38385 11

Hitachi Europe (France) S.A.
Electronic Components Div.

France ’

18 rue Grange Dame Rose; B.P. 134
F-78148 Velizy Cedex

Tel: 01-34 63 05 00

Fax: 01-34 65 34 31

EUROPE (NE)

Headquarters

Hitachi Europe Ltd.

Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park

Lower Cookham Road
Maidenhead

Berkshire SL6 8YA, United Kingdom
Tel: 0628-585000

Fax: 0628-778322

Branch Office

Hitachi Europe Ltd.

Electronic Components Div.
Northern Europe Headquarters
Haukadalsgatan 10

Box 1062, S-164 21 Kista, Sweden
Tel: 08-751-0035

Fax: 08-751-5073

ASIA

Headquarters
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 0104
Tel: 535-2100
Fax: 535-1533

Branch Office
Hitachi Asia Pte. Ltd.
Taipei Branch Office
9 th Fl. -1 No.64, Tun—Hwa N. Road
Taipei Financial Center
Taipei, Taiwan
Tel: 02-741-4021 to 6
Fax: 02-752-1567

ASIA(HK)
Headquarters
Hitachi Asia (Hong Kong) Ltd.
Unit 706, North Tower,
World Finance Centre, Harbour City
Canton Road, Tsim Sha Tsui, Kowloon
Hong Kong
Tel: 27359218
Fax: 27306071

Branch Office
Hitachi Asia (Hong Kong) Ltd.
Seoul Branch Office
18 Floor Kukje Center Building
191, 2-Ka, Hanggang-Ro
Yongsan-Ku, Seoul, Korea
Tel: 796-3115, 3647 to 8
Fax: 796-2145

Hitachi Asia (Hong Kong) Ltd.

Beijing Office

Room 1412, Beijing Fortune Building,
5 Dong San Huan, Bei-lu,

Chaoyang District Beijing

People’s Republic of China

Tel: 501-4351-4

Fax: 501-4350

‘ HITACHI

ADE-602-063B(S)

