
3rd Edition

SuperH RISC engine

SH-1/SH-2
Programming Manual

HITACHI ADE-602-063B

When using this document, keep the following in mind:
1 . This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without Hitachi's permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons
during operation of the user's unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of
Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the

written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life
support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.

Revised Sections and Contents

Page Section

All

27 Table 5.7 Branch Instructions

30-32 Table 5.9 Instruction Set

47 6.7 BF/S

49 6.8 BRA

""5"""0 ___ 6.9 BRAF

51

53 6.10 BSR

54 6.11 BSRF

57 6.13 BT/S

63 6. 16 CMP/cond

78 6.25 JMP

..;.7"""9 ___ 6.26 JSR

80

107

120

121

131

139

155

175

181

194

202

6.38 MULL

6.50 RTE

6.51 RTS

6.59 SLEEP

6.65 SWAP

7.6 Programming Guide

Multiply/Accumulate Instruction (SH-1 CPU)

Multiply/Accumulate Instruction (SH-2 CPU)

Double-Length Multiply/Accumulate

Instruction (SH-2 CPU)

Multiplication Instructions (SH-1 CPU)

Revision Contents

Changed SH7000/SH7600 Series into SH-1/SH-2

Table modified

Table modified

Description added

Description added

Description modified

Description added

Description added

Description modified

Description added

Description modified

Description added and modified

Description modified

Description added

Description modified

Description added

Description added

Description modified

Description modified

Description modified

Description modified

Description modified

Description modified

Description modified

208 Multiplication Instructions (SH-2 CPU) Description modified

215 Figure 7.67 DMULS.L Instruction Immediately Description modified

After Another DMULS.L Instruction

220 Double-Length Multiplication Instructions Description modified

229 Unconditional Branch Instructions Description modified

235 Register-MAC Transfer Instructions Description modified

236 Memory-MAC Transfer Instructions Description modified

237 MAC-Register Transfer Instructions Description modified

238 MAC-Memory Transfer Instructions Description modified

243 Address Error Exception Processing Description modified

246 Table A.1 lnstrustion Set by Addressing Mode Table modified

251 Table A.6 Destination Operand Only Table modified

255 Table A.18 PC Relative Addressing with Rm Table modified

Page Section Revision Contents

257 TableA.22 Instruction Sets by Format Table modified

260 TableA.26 Indirect Register Addressing Table modified

261 TableA.29 Indirect Register Table modified

Table A.31 PC Relative Addressing with Rm

269, 272, TableA.50 Instruction Set by Instruction Code Table modified

273

276,277 Table A.51 Operation Code Map Table modified

Introduction

The SuperH RISC engine family incorporates a RISC (Reduced Instruction Set Computer) type
CPU. A basic instruction can be executed in one clock cycle, realizing high performance
operation. A built-in multiplier can execute multiplication and addition as quickly as DSP.

The SuperH RISC engine has SH-I CPU, SH-2 CPU, and SH-3 CPU cores.

The SH-1 CPU, SH-2 CPU and SH-3 CPU have an instruction system with upward compatibility
at the binary level.

SH-3 CPU MMU support

SH-2 CPU Operation instruction enhancement 68 instructions

SH-1 CPU 62 instructions

56 basic instructions

Refer to the programming manual for the method of executing the instructions or for the
architecture. You can also refer to this programming manual to know the operation of the pipe
line, which is one of the features of the RISC CPU.

This programming manual describes in detail the instructions for the SH-1 CPU and SH-2 CPU
instructions. For the SH-3 CPU, refer to the separate volume of SH-3 CPU programming manual.

For the hardware, refer to individual hardware manuals for each unit.

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items
and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register Types and configuration of general registers,
Configuration control registers and system registers

3. Data Formats Data formats for registers and memory

Introduction to 4. Instruction Instruction features, addressing modes, and
instructions Features instruction formats

5. Instruction Sets Summary of instructions by category and list in
alphabetic order

Detailed information 6. Instruction Operation of each instruction in alphabetical order
on instructions Descriptions

Architecture (2) 7. Pipeline Operation Pipeline flow, and pipeline flows with operation for
each instruction

Instruction code Appendixes: Operation code map
Instruction Code

Table 2 Subjects and Corresponding Sections

Category Topic Section Title

Introduction and CPU features 1. Features
features Instruction features 4.1 RISC-Type Instruction Set

Pipelines 7.1 Basic Configuration of
Pipelines

7.2 Slot and Pipeline Flow

Architecture Register configuration 2. Register Configuration

Data formats 3. Data Formats

Pipeline operation 7. Pipeline Operation

Introduction to Instruction features 4. Instruction Features
instructions Addressing modes 4.2 Addressing Modes

Instruction formats 4.3 Instruction Formats

List of Instruction sets 5.1 Instruction Set by
instructions Classification

5.2 Instruction Set in
Alphabetical Order

Appendix A.1 Instruction Set by
Addressing Mode

Appendix A.2 Instruction Set by
Instruction Format

Instruction code Appendix A.3 Instruction Set in
Order by
Instruction Code

Appendix A.4 Operation Code
Map

Detailed Detailed information on instruction 6. Instruction Description
information on operation 7.7 Instruction Pipeline
instructions Operations

Number of instruction execution states 7.3 Number of Instruction
Execution States

Functions Listed by CPU Type

This manual is common for both the SH-1 and SH-2 CPU. However, not all CPUs can use all the
instructions and functions. Table 3 lists the usable functions by CPU type.

Table3 Functions by CPU Type

Item

Instructions

States for multiplication
operation

States for multiply and
accumulate operation

BF/S

BRAF

BSRF

BT/S

DMULS.L

DMULU.L

DT

MAC.L

MAC.W*1 (MAC)*2

MULL

All others

16 x 16 ~ 32
(MULS.W, MULU.W)*2

32 x 32 ~ 32 (MULL)

32x32~64

(DMULS.L, DMULU.L)

16 x 16 + 42 ~ 42
(SH-1, MAC.W)

16x 16+64~64
(SH-2, MAC.W)

32 x 32 + .64 ~ 64
(MAC.L)

SH-1 CPU

No

No

No

No

No

No

No

No

16x16+42~

42

No

Yes

Executed in 1-3*3
states

No

No

Executed in
3/(2)*3 states

No

No

Notes: 1. MAC.W works differently on different LSls.

SH-2CPU

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

16x16+64~64

Yes

Yes

Executed in 1-3*3states

Executed in 2-4 *3states

Executed in 2-4 *3states

No

Executed in states 3/(2)*3

Executed in 2-4 states
3/(2~4)*3

2. MAC and MAC.Ware the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the
number in contention with preceding/following instructions).

Contents

Section 1 Features

Section 2 Register Configuration... 2
2.1 General Registers.. 2
2.2 Control Registers.. 2
2.3 System Registers.. 3
2.4 Initial Values of Registers.. 4

Section 3 Data Formats... 5
3.1 Data Format in Registers.. 5
3.2 Data Format in Memory... 5
3.3 Immediate Data Format.. 6

Section 4 Instruction Features .. 7
4.1 RISC-Type Instruction Set 7

4.1.1 16-Bit Fixed Length.. 7
4.1.2 One Instruction/Cycle... 7
4.1.3 Data Length 7
4.1.4 Load-Store Architecture.. 7
4.1.5 Delayed Branch Instructions... 7
4.1.6 Multiplication/ Accumulation Operation... 8
4.1.7 TBit.. 8
4.1.8 Immediate Data... 8
4.1.9 Absolute Address.. 9
4.1.10 16-Bit/32-Bit Displacement.. 9

4.2 Addressing Modes.. 10
4.3 Instruction Format.. 13

Section 5 Instruction Set... 16
5.1 Instruction Set by Classification .. 16

5.5.1 Data Transfer Instructions .. 21
5.1.2 Arithmetic Instructions... 23
5.1.3 Logic Operation Instructions.. 25
5.1.4 Shift Instructions... 26
5.1.5 Branch Instructions... 27
5.1.6 System Control Instructions.. 28

5.2 Instruction Set in Alphabetical Order... 29

Section 6 Instruction Descriptions .. 37
6.1 Sample Description (Name): Classification... 37

6.2 ADD (ADD Binary): Arithmetic Instruction.. 40
6.3 ADDC (ADD with Carry): Arithmetic Instruction.. 4I
6.4 ADDY (ADD with Y Flag Overflow Check): Arithmetic Instruction.............................. 42
6.5 AND (AND Logical): Logic Operation Instruction.. 43
6.6 BF (Branch if False): Branch Instruction :.. 45
6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2 CPU) 46
6.8 BRA (Branch): Branch Instruction .. ,.......... 48
6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU).. 50
6.10 BSR (Branch to Subroutine): Branch Instruction.. 52
6.I I BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)................................. 54
6. I 2 BT (Branch if True): Branch Instruction.. 55
6.I3 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2 CPU)........................ 56
6. I 4 CLRMAC (Clear MAC Register): System Control Instruction.. 58
6.I5 CLRT (Clear T Bit): System Control Instruction.. 59
6.I6 CMP/cond (Compare Conditionally): Arithmetic Instruction ,.............. 60
6. I 7 DIYOS (Divide Step 0 as Signed): Arithmetic Instruction.. 64
6.I8 DIYOU (Divide Step 0 as Unsigned): Arithmetic Instruction.. 65
6.I9 DIVI (Divide Step I): Arithmetic Instruction.. 66
6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH-2 CPU).... 7I
6.2I DMULU.L (Double-Length Multiply as Unsigned)

: Arithmetic Instruction (SH-2 CPU).... 73
6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU) , 75
6.23 EXTS (Extend as Signed): Arithmetic Instruction.. 76
6.24 EXTU (Extend as Unsigned): Arithmetic Instruction.. 77
6.25 JMP (Jump): Branch Instruction.. 78
6.26 JSR (Jump to Subroutine): Branch Instruction.. 79
6.27 LDC (Load to Control Register): System Control Instruction.. 8 I
6.28 LDS (Load to System Register): System Control Instruction.. 83
6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH-2 CPU).............. 85
6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-I CPU).......................... 88

· 6.3I MAC.W (Multiply and Accumulate Word): Arithmetic Instruction ... -...... :: 89
6.32 MOY (Move Data): Data Transfer Instruction .. 92
6.33 MOY (Move Immediate Data): Data Transfer Instruction .. 97
6.34 MOY (Move Peripheral Data): Data Transfer Instruction .. 99
6.35 MOY (Move Structure Data): Data Transfer Instruction .. 102
6.36 MOY A (Move Effective Address): Data Transfer Instruction .. 105
6.37 MOVT (Move T Bit): Data Transfer Instruction .. 106
6.38 MULL (Multiply Long): Arithmetic Instruction (SH-2 CPU) .. 107
6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction .. 108
6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 109
6.41 NEG (Negate): Arithmetic Instruction ... _ 110
6.42 NEGC (Negate with Carry): Arithmetic Instruction .. I 11
6.43 NOP (No Operation): System Control Instruction ... _ l I 2

6.44 NOT (NOT-Logical Complement): Logic Operation Instruction 113
6.45 OR (OR Logical) Logic Operation Instruction .. 114
6.46 ROTCL (Rotate with Carry Left): Shift Instruction ... 116
6.47 ROTCR (Rotate with Carry Right): Shift Instruction .. 117
6.48 ROTL (Rotate Left): Shift Instruction .. 118
6.49 ROTR (Rotate Right): Shift Instruction ... 119
6.50 RTE (Return from Exception): System Control Instruction .. 120
6.51 RTS (Return from Subroutine): Branch Instruction ... 121
6.52 SETT (Set T Bit): System Control Instruction ... 122
6.53 SHAL (Shift Arithmetic Left): Shift Instruction .. 123
6.54 SHAR (Shift Arithmetic Right): Shift Instruction .. 124
6.55 SHLL (Shift Logical Left): Shift Instruction .. 125
6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction ... 126
6.57 SHLR (Shift Logical Right): Shift Instruction ... 128
6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction .. 129
6.59 SLEEP (Sleep): System Control Instruction .. 131
6.60 STC (Store Control Register): System Control Instruction .. 132
6.61 STS (Store System Register): System Control Instruction .. 134
6.62 SUB (Subtract Binary): Arithmetic Instruction .. 136
6.63 SUBC (Subtract with Carry): Arithmetic Instruction .. 137
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction 138
6.65 SW AP (Swap Register Halves): Data Transfer Instruction ... 139
6.66 TAS (Test and Set): Logic Operation Instruction .. 140
6.67 TRAP A (Trap Always): System Control Instruction ... 141
6.68 TST (Test Logical): Logic Operation Instruction .. 142
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction .. 144
6.70 XTRCT (Extract): Data Transfer Instruction ... 146

Section 7 Pipeline Operation ... 147
7 .1 Basic Configuration of Pipelines .. 147
7.2 Slot and Pipeline Flow .. 148

7 .2.1 Instruction Execution .. 148
7.2.2 Slot Sharing .. 148
7 .2.3 Slot Length .. 149

7.3 Number of Instruction Execution States .. 150
7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA) 151

7.4.l Basic Operation When IF and MA are in Contention .. 151
7.4.2 The Relationship Between IF and the Location oflnstructions in On-Chip

ROM/RAM or On-Chip Memory ... 152
7.4.3 Relationship Between Position of Instructions Located in On-Chip

ROM/RAM or On-Chip Memory and Contention Between IF and MA 153
7.5 Effects of Memory Load Instructions on Pipelines .. 154
7.6 Programming Guide ... 155

7.7 Operation of Instruction Pipelines .. ; 156
7. 7 .1 Data Transfer Instructions 163
7.7.2 Arithmetic Instructions ... " 166
7. 7 .3 Logic Operation Instructions .. 221 ·
7.7.4 Shift Instructions ... : " 224
7.7.5 Branch Instructions ..•.. " 225
7.7.6 System Control Instructions .. 230
7.7.7 Exception Processing .. 242

Appendix A Instruction Code .. 245
A.1 Instruction Set by Addressing Mode .. 245

A.1.1 No Operand ... " 247
A.1.2
A.1.3
A.1.4
A.1.5
A.1.6
A.1.7
A.1.8
A.1.9
A.1.10
A.1.11
A.1.12
A.1.13

Direct Register Addressing ... " 248
Indirect Register Addressing ... " 251
Post Increment Indirect Register Addressing ... " 251
Pre Decrement Indirect Register Addressing .. 252
Indirect Register Addressing with Displacement .. "" 253
Indirect Indexed Register Addressing .. 253
Indirect GBR Addressing with Displacement .. 254
Indirect Indexed GBR Addressing .. 254
PC Relative Addressing with Displacement ... " 254
PC Relative Addressing with Rn ...•.................... 255
PC Relative Addressing .. 255
Immediate ... " 256

A.2 Instruction Sets by Instruction Format ... " 256
A.2.1 0 Format .. 258
A.2.2 n Format .. 259
A.2.3 m Format ... " 261
A.2.4 nm Format ... 262
A.2.5 md Format ... " 265
A.2.6 nd4 Format .. 265
A.2.7 nmd Format ... " 265
A.2.8 d Format .. 266
A.2.9 d12 Format. ... 267
A.2.10 nd8 Format. ... 267
A.2.11 i Format ... " 267
A.2.12 ni Format ... " 268

A.3 Instruction Set in Order by Instruction Code ... " 268
A.4 Operation Code Map .. 276

Appendix B Pipeline Operation and Contention .. 279

Section 1 Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in one
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1 and SH-2
CPU features.

Table 1.1 SH-1 and SH-2 CPU Features

Item Feature

Architecture • Original Hitachi architecture

• 32-bit internal data paths

General-register machine • Sixteen 32-bit general registers

Instruction set

Instruction execution time

Address space

On-chip multiplier
(SH-1 CPU)

On-chip multiplier
(SH-2 CPU)

Pipeline

Processing states

Power-down states

• Three 32-bit control registers

• Four 32-bit system registers

• Instruction length: 16-bit fixed length for improved code efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language

• One instruction/cycle for basic instructions

• Architecture makes 4 Gbytes available

• Multiplication operations (16 bits x 16 bits ~ 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits+ 42 bits~ 42 bits) executed in 3/(2)* cycles

• Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits
~ 32 bits) or 2 to 4 cycles (32 bits x 32 bits ~ 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits x 16 bits+ 64 bits~ 64 bits) or 3/(2 to 4)* cycles (32 bits x 32
bits + 64 bits ~ 64 bits)

• Five-stage pipeline

• Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

• Sleep mode

• Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered RO-Rl5, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an index
register. Several instructions use RO as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using Rl5.

31

R0*1

R1

R2

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

R13

R14

0
1. RO functions as an index register in the

indirect indexed register addressing
mode and indirect indexed GBR
addressing mode. In some instructions,
RO functions as a fixed source register
or destination register.

R 15, SP {hardware stack pointer) .2 2. R15 functions as a hardware stack
pointer (SP) during exception
processing.

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

2

data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

31 9 8 7 6 5 4 3 2 1 0

SR l ----------- M Q 13 12 11 10 -- ST J SR: Status register

--~----.--- --.- ~ T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTR/L, and
ROTCR/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

~S bit: Used by the multiply/accumulate
instruction.

~----+----+-------i••Reserved bits: Always reads as 0, and should
always be written with 0.

~-----.-Bits 13-10: Interrupt mask bits.

'---------... •M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
3r-1 ______________ ___,o Indicates the base address of the indirect
I GBR I GBR addressing mode. The indirect GBR
~--------------------' addressing mode is used in data transfer

for on-chip peripheral module register
areas and in logic operations.

3~1 _____________ ~0 Vector base register (VBR):
I VBR I Indicate~ the base address of the exception
~--------------------' processing vector area.

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers

(MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The

multiply and accumulate registers store the results of multiply and accumulate operations. The

procedure register stores the return address from the subroutine procedure. The program counter

stores program addresses to control the flow of the processing.

3

31 9 0

(SH-1 CPU) ··········--~~!~~--:~:~-~~-~~---·············l... ~~~-~---·····
MACL

Multiply and accumulate (MAC)
registers high and low (MACH/L):
Store the results of multiply and
accumulate operations. In the

3r'-1 _____________ ___,0 SH-1 CPU, MACH is sign-extended

(SH-2 CPU) I MACH I to 32 bits when read because only
· the lowest 10 bits are valid. In the
.____ ______ M_A_C_L _____ ___.. SH-2 CPU, all 32 bits of MACH are

31 0
PR

valid.

Procedure register (PR): Stores a
return address from a subroutine
procedure.

3r'-1 ______________ _,o Program counter (PC): Indicates the
I PC I fourth byte (second instruction) after
~-------------~ the current instruction.

Figure 2.3 System Registers

2.4 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1 Initial V aloes of Registers

Classification Register Initial Value

General register RO-R14 Undefined

R 15 (SP) Value of the stack pointer in the vector address table

Control register SR Bits 13-10 are 1111 (H'F), reserved bits are 0, and
other bits are undefined

System register

GBR Undefined

VBR H'OOOOOOOO

MACH, MACL, PR Undefined

PC Value of the program counter in the vector address
table

4

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only
a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because
this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

Address m + 1 Address m + 3

Address m lAddress m + 21
131+ 23 15 • 7 Q'l"

Byte I Byte } Byte } Byte

Address2n+ Word l Word

Address4n+ Longword

....<.., Big endian<..,

Figure 3.2 Byte, Word, and Longword Alignment

5

SH7604 has a function that allows access of CS2 space (area 2) in little endian fonnat, which
enables memory to be shared with processors that access memory in little endian fonnat (figure
3.3). Byte data is arranged differently for little endian and the usual big endian.

Address m + 2 Address m

Address m + 31 Address m + 11
n_1 • 23 15 • 7 Q'Y

Byte J Byte J Byte J Byte

Word J Word ..-Address2n

Longword ..-Address4n

,.._. Little endian* ...(..

Note : Only CS2 space of SH7604 can be set.

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and calculated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a
memory table. The memory table is accessed by an immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

6

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz, in 35 ns at 28.?MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with
longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zero­
extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2 CPU Description Example for Other CPU

MOV.W

ADD

@(disp,PC),Rl

Rl,RO

. DATA.W H'l234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next

· operated upon by an ADD
instruction .

ADD.W

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

#H'l234,RO

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

7

Table 4.2 Delayed Branch Instructions

SH-1/SH-2 CPU

BRA

ADD

TRGET

Rl,RO

Description

Executes an ADD before
branching to TRGET.

4.1.6 Multiplication/Accumulation Operation

Example for Other CPU

ADD.W

BRA

Rl,RO

TRGET

SH-1 CPU: 16bit x 16bit ~ 32-bit multiplication operations are executed in one to three cycles.
16bit x 16bit + 42bit ~ 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH-2 CPU: 16bit x 16bit ~ 32-bit multiplication operations are executed in one to two cycles.
16bit x l 6bit + 64bit ~ 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit x 32bit ~ 64-bit multiplication and 32bit x 32bit + 64bit ~ 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 4.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table4.3 TBit

SH-1/SH-2 CPU Description Example for Other CPU

CMP/GE Rl,RO T bit is set when RO~ R1. The CMP.W Rl,RO

BT TRGETO program branches to TRGETO
when RO ~ R1 and to TRGET1

BGE TRGETO

BF TRGETl when RO< R1. BLT TRGETl

ADD #-1,RO T bit is not changed by ADD. T SUB.W #1,RO

CMP/EQ #0,RO bit is set when RO = 0. The BEQ TRGET
program branches if RO = 0.

BT TRGET

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

8

Table 4.4 Immediate Data Accessing

Classification SH-1/SH-2 CPU Example for Other CPU

8-bit immediate MOV #H' 12,RO MOV.B #H' 12 ,RO

16-bit immediate MOV.W @(disp, PC), RO MOV.W #H'l234,RO

.DATA.W H'l234

32-bit immediate MOV.L @(disp, PC), RO MOV.L #H'12345678,RO

.DATA.L H'l2345678

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 4.5 Absolute Address

Classification

Absolute address

SH-1/SH-2 CPU

MOV.L

MOV.B

@(disp,PC),Rl

@Rl,RO

.DATA.L H'l2345678

4.1.10 16-Bit/32-Bit Displacement

Example for Other CPU

MOV.B @H'l2345678,RO

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

9

Table 4.6 Displacement Accessing

Classification SH-1/SH-2 CPU Example for Other CPU

16-bit displacement MOV.W

MOV.W

@(disp, PC) ,RO

@(RO,Rl) ,R2

MOV.W @(H'l234,Rl},R2

.DATA.W H'1234

4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses

Addressing Instruction
Mode Format Effective Addresses Calculation

Direct Rn
register
addressing

Indirect
register
addressing

Post­
increment
indirect
register
addressing

Pre­
decrement
indirect
register
addressing

@Rn

@Rn+

@-Rn

The effective address is register Rn. (The operand is
the contents of register Rn.)

The effective address is the content of register Rn.

Rn Rn

The effective address is the content of register Rn. A
constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a longword
operation.

Rn Rn

Rn+ 1/2/4

1/2/4

The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a word operation, or 4 for a
longword operation.

Rn

Rn -1/2/4
Rn-1/2/4

1/2/4

10

Formula

Rn

Rn

(After the
instruction is
executed)

Byte: Rn+ 1
~Rn

Word: Rn+ 2
~Rn

Longword:
Rn+ 4~ Rn

Byte: Rn-1
~Rn

Word: Rn -2
~Rn

Longword:
Rn-4 ~Rn
(Instruction
executed
with Rn after
calculation)

11

Table 4.7

Addressing
Mode

PC relative
addressing
with
displace-
ment

PC relative
addressing

Addressing Modes and Effective Addresses (cont)

Instruction
Format

@(disp:8,
PC)

disp:8

disp:12

Effective Addresses Calculation

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word operation,
or is quadrupled for a longword operation. For a
longword operation, the lowest two bits of the PC are
masked.

PC

PC+ dispx2
H'F.FFFFFFC or

PC&H'FFFFFFFC
disp

(zero-extended)
+ disp x4

214

The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and
added to the PC.

PC

disp PC+ dispx2
(sign-extended)

2

The effective address is the PC value sign-extended
with a 12-bit displacement (disp), doubled, and
added to the PC.

PC

disp
(sign-extended)

2

PC+ disp x2

12

Formula

Word: PC+
dispx2

Longword:
PC&
H'FFFFFFFC
+ dispx 4

PC+ dispx 2

PC+dispx2

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction
Mode Format Effective Addresses Calculation

PC relative Rn
addressing
(cont)

Immediate #imm:8
addressing

#imm:8

#imm:8

The effective address is the register PC plus Rn.

PC

PC+RO

RO

The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

Immediate data (imm) for the TRAPA instruction is
zero-extended and is quadrupled.

4.3 Instruction Format

Formula

PC+Rn

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

• xxxx: Instruction code

• mmmm: Source register

• nnnn: Destination register

• iiii: Immediate data

• dddd: Displacement

Table 4.8 Instruction Formats

Instruction Formats

0 format

15 0

I xxxx xxxx xxxx xxxx I
n format

15 0

I xxxx I nnnn I xxxx xxxx I

Source
Operand

Control register
or system
register

13

Destination
Operand

nnnn: Direct
register

nnnn: Direct
register

Example

NOP

MOVT Rn

STS MACH,Rn

Table 4.8 Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example

n format {cont) Control register nnnn: Indirect pre- STC.L SR,@-Rn
or system decrement
register register

m format mmmm: Direct Control register or LDC Rrn,SR
register system register

15 0 mmmm: Indirect Control register or LDC.L @Rrn+,SR

I xx xx jmmmmj xxxx xxxx I post-increment system register
register

mmmm:. Direct JMP @Rm
register

mmmm: PC BRAF Rm
relative using Rm

nm format mmmm: Direct nnnn: Direct ADD Rrn,Rn
register register

15 0 mmmm: Direct nnnn: Indirect MOV.L Rm, @Rn

I xx xx nnnn lmmmml xx xx I register register

mmmm: Indirect MACH,MACL MAC.W
post-increment @Rrn+,@Rn+
register {multiply/
accumulate)

nnnn*: Indirect
post-increment
register {multiply/
accumulate)

mmmm: Indirect nnnn: Direct MOV.L @Rrn+,Rn
post-increment register
register

mmmm: Direct nnnn: Indirect pre- MOV.L Rrn,@-Rn
register decrement

register

mmmm: Direct nnnn: Indirect MOV.L
register indexed register Rrn,@(RO,Rn)

md format mmmmdddd: RO (Direct MOV.B

15 0 indirect register register) @(disp,Rrn),RO

1 xxxx xx xx lmmmml dddd I with
displacement

nd4 format RO (Direct nnnndddd: MOV.B

15 0 register) Indirect register RO,@(disp,Rn)

1 xxxx xx xx nnnn 1 dddd 1

with displacement

Note: In multiply/accumulate instructions, nnnn is the source register.

14

Table 4.8 Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example

nmd format mmmm: Direct nnnndddd: Indirect MOV.L

15 0 register register with Rm,@(disp,Rn)

I xxxx nnnn jmmmmj dddd 1
displacement

mmmmdddd: nnnn: Direct MOV.L
Indirect register register @(disp, Rm), Rn
with
displacement

d format dddddddd: RO (Direct register) MOV.L

15 0 Indirect GBR @(disp,GBR),RO

I xx xx xxxx I dddd dddd I with
displacement

RO(Direct dddddddd: Indirect MOV.L
register) GBR with RO,@(disp,GBR)

displacement

dddddddd: PC RO (Direct register) MOVA
relative with @(disp, PC), RO
displacement

dddddddd: PC BF label
relative

d12 format dddddddddddd: BRA label

15 0 PC relative (label = disp +

1 xxxx 1 dddd dddd dddd I PC)

nd8 format dddddddd: PC nnnn: Direct MOV.L

15 0 relative with register @ (disp, PC) , Rn

1 xxxx I nnnn I dddd dddd 1
displacement

i format iiiiiiii: Immediate Indirect indexed AND.B
GBR hrrun,@(RO,GBR)

15 0 iiiiiiii: Immediate RO (Direct register) AND #irrun,RO

1 xxxx xx xx iii i iii i I
iiiiiiii: Immediate TRAP A #irrun

ni format iiiiiiii: Immediate nnnn: Direct ADD #irrun,Rn

15 0 register

I xx xx nnnn J iii i iii i I

15

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

16

Table 5.1 Classification of Instructions

Applicable
Instructions

Operation No.of
Classification Types Code Function SH-2 SH-1 Instructions

Data transfer 5 MOV Data transfer "" "" 39
Immediate data transfer
Peripheral module data transfer
Structure data transfer

MOVA Effective address transfer "" "" MOVT T -bit transfer "" "" SWAP Swap of upper and lower bytes "" "" XTRCT Extraction of the middle of "" "" registers connected

Arithmetic 21 ADD Binary addition "" "" 33
operations ADDC Binary addition with carry "" "" ADDV Binary addition with overflow "" "" check

CMP/cond Comparison "" "" DIV1 Division "" "" DIVOS Initialization of signed division "" "" DIVOU Initialization of unsigned "" "" division

DMULS Signed double-length "" multiplication

DMULU Unsigned double-length "" multiplication

OT Decrement and test "" EXTS Sign extension "" "" EXTU Zero extension "" "" MAC Multiply/accumulate, double- "" "" length multiply/accumulate
operation*1

MUL Double-length multiplication ""
MULS Signed multiplication "" "" MULU Unsigned multiplication "" "" NEG Negation "" "" NEGC Negation with borrow "" "" SUB Binary subtraction "" "" SUBC Binary subtraction with borrow "" "" SUBV Binary subtraction with "" "" underflow check

Notes 1. Double-length multiply/accumulate is an SH-2 function.

17

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Operation No.of
Classification Types Code Function SH-2 SH-1 Instructions

Logic 6 AND Logical AND t/ t/ 14
operations NOT Bit inversion t/ t/

OR Logical OR t/ t/

TAS Memory test and bit set t/ t/

TST Logical AND and T-bit set t/ t/

XOR Exclusive OR t/ t/

Shift 10 ROTL One-bit left rotation t/ t/ 14

ROTA One-bit right rotation t/ t/

ROTCL One-bit left rotation with T bit t/ t/

ROTCR One-bit right rotation with T bit t/ t/

SHAL One-bit arithmetic left shift t/ t/

SHAR One-bit arithmetic right shift t/ t/

SHLL One-bit logical left shift t/ t/

SHLLn n-bit logical left shift t/ t/

SHLR One-bit logical right shift t/ t/

SHLRn n-bit logical right shift t/ t/

Branch 9 BF Conditional branch, conditional t/ t/ 11
branch with delay*2 (T = O)

BT Conditional branch, conditional t/ t/
branch with delay*2 (T = 1)

BRA Unconditional branch t/ t/

BRAF Unconditional branch t/

BSR Branch to subroutine procedure t/ t/

BSRF Branch to subroutine procedure t/

JMP Unconditional branch t/ t/

JSR Branch to subroutine procedure t/ t/

RTS Return from subroutine t/ t/
procedure

Notes 2. Conditional branch with delay is an SH-2 CPU function.

18

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Operation No.of
Classification Types Code Function SH-2 SH-1 Instructions

System 11 CLRT T-bit clear "' "' 31
control CLRMAC MAC register clear "' "'

LDC Load to control register "' "'
LDS Load to system register "' "'
NOP No operation "' "'
RTE Return from exception "' "' processing

SETT T-bit set "' "'
SLEEP Shift into power-down mode "' "'
STC Storing control register data "' "'
STS Storing system register data "' "' TRAP A Trap exception processing "' "'

Total: 62 142

19

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

Table 5.2 Instruction Code Format

Item

Instruction
mnemonic

Instruction
code

Operation
summary

Execution
cycle

Instruction
execution
cycles

T bit

Format Explanation

OP.Sz SRC,DEST OP: Operation code

MSBH LSB

--7, ~

(xx)
M/Q/T
&
I
/\

<<n,>>n

Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

mmmm: Source register
nnnn: Destination register

0000: RO
0001:R1

1111: R15
iiii: Immediate data
dddd: Displacement

Direction of transfer
Memory operand
Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit left/right shift

Value when no wait states are inserted

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory --7 register) and the register used by the next
instruction are the same.

Value of T bit after instruction is executed

No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

20

5.1.1 Data Transfer Instructions

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Table 5.3 Data Transfer Instructions

Execu-
ti on T

Instruction Instruction Code Operation State Bit

MOV #imm,Rn lllOnnnniiiiiiii imm ~ Sign extension ~
Rn

MOV.W @(disp,PC) ,Rn lOOlnnnndddddddd (disp x 2 + PC) ~Sign
extension ~ Rn

MOV.L @(disp,PC),Rn llOlnnnndddddddd (disp x 4 + PC) ~Rn

MOV Rm,Rn OllOnnnnmnunmOOll Rm~Rn

MOV.B Rm,@Rn OOlOnnnnmnunmOOOO Rm~ (Rn)

MOV.W Rm,@Rn 0010nnnnmnunm0001 Rm~ (Rn)

MOV.L Rm,@Rn 0010nnnnmnunm0010 Rm~ (Rn)

MOV.B @Rm,Rn OllOnnnnmnunmOOOO (Rm)~ Sign extension~
Rn

MOV.W @Rm,Rn OllOnnnnmnunmOOOl (Rm) ~Sign extension ~
Rn

MOV.L @Rm,Rn 0110nnnnmnunm0010 (Rm)~ Rn

MOV.B Rm,@-Rn 0010nnnnmnunm0100 Rn-1 ~Rn, Rm~ (Rn) 1

MOV.W Rm,@-Rn 0010nnnnmnunm0101 Rn-2 ~ Rn, Rm ~ (Rn) 1

MOV.L Rm,@-Rn 0010nnnnmnunm0110 Rn-4 ~ Rn, Rm ~ (Rn)

MOV.B @Rm+,Rn 0110nnnnmnunm0100 (Rm) ~Sign extension ~
Rn,Rm+ 1 ~Rm

MOV.W @Rm+,Rn 0110nnnnmnunm0101 (Rm)~ Sign extension~
Rn,Rm +2 ~Rm

MOV.L @Rm+,Rn 0110nnnnmnunm0110 (Rm) ~Rn, Rm+ 4 ~ Rm

MOV.B RO,@(disp,Rn) lOOOOOOOnnnndddd RO~ (disp + Rn)

MOV.W RO,@(disp,Rn) lOOOOOOlnnnndddd RO~ (disp x2 +Rn)

MOV.L Rm,@(disp, Rn) OOOlnnnnmnunmdddd Rm~ (disp x4 +Rn)

MOV.B @(disp,Rm),RO 10000100mmmmdddd (disp +Rm)~ Sign
extension ~ RO

MOV.W @(disp,Rm) ,RO 10000101mmmmdddd (disp x 2 + Rm) ~ Sign
extension ~ RO

MOV.L @(disp,Rm) ,Rn OlOlnnnnmnunmdddd (disp x 4 + Rm) ~ Rn 1

MOV.B Rm,@(RO, Rn) OOOOnnnnmnunmOlOO Rm~ (RO+ Rn) 1

MOV.W Rm,@(RO,Rn) 0000nnnnmnunm0101 Rm~ (RO+ Rn)

21

Table 5.3 Data Transfer Instructions (cont)

Execu-
ti on T

Instruction Instruction Code Operation State Bit

MOV.L Rm,@(RO,Rn) 0000nnnnmmmm0110 Rm -7 (RO + Rn)

MOV.B @(RO,Rm) ,Rn OOOOnnnnmmmmllOO (RO + Rm) -7 Sign
extension -7 Rn

MOV.W @(RO,Rm) ,Rn OOOOnnnnmmmmllOl (RO + Rm) -7 Sign
extension -7 Rn

MOV.L @ (RO, Rm) , Rn OOOOnnnnmmmmlllO (RO + Rm) -7 Rn

MOV.B RO,@(disp,GBR) llOOOOOOdddddddd RO --t (disp + GBR)

MOV.W RO,@(disp,GBR) llOOOOOldddddddd RO -7 (disp x2 + GBR)

MOV.L RO,@(disp,GBR) 11000010dddddddd RO -7 (disp x4+ GBR)

MOV.B @(disp,GBR) ,RO 11000100dddddddd (disp + GBR) --t Sign
extension --t RO

MOV.W @(disp,GBR) ,RO 11000101dddddddd (disp x 2 + GBR) -7 Sign
extension -7 RO

MOV.L @ (disp, GBR) , RO 11000110dddddddd (disp x 4 + GBR) -7 RO

MOVA @(disp,PC),RO llOOOllldddddddd disp x 4 + PC -7 RO

Movr Rn 0000nnnn00101001 T-7 Rn

SWAP.B Rm,Rn OllOnnnnmmmmlOOO Rm -7 Swap upper and
lower 2 bytes-7 Rn

SWAP.W Rm,Rn OllOnnnnmmmmlOOl Rm -7 Swap upper and
lower word -7 Rn

XTRCT Rm,Rn 001onnnrnmimm1101 Center 32 bits of Rm and
Rn-7 Rn

22

5.1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Execution
Instruction Instruction Code Operation State T Bit

ADD Rm,Rn 00llnnnnrnrnmml10 0 Rn+ Rm~ Rn

ADD #irrm, Rn Olllnnnniiiiiiii Rn+ imm~ Rn

ADOC Rm,Rn OOllnnnnrnmmmlllO Rn + Rm + T ~ Rn, Carry
Carry~ T

ADDV Rm,Rn OOllnnnnrnmmmllll Rn+ Rm~ Rn, Overflow
Overflow~ T

CMP/EQ #irrm,RO 10001000iiiiiiii If RO = imm, 1 ~ T Compariso
n result

CMP/EQ Rm,Rn OOllnnnnrnmmmOOOO If Rn = Rm, 1 ~ T Compariso
n result

CMP/HS Rm,Rn 0011nnnnrnmmm0010 If Rn;o:Rm with Compariso
unsigned data, 1 ~ T n result

CMP/GE Rm,Rn OOllnnnnrnmmmOOll If Rn ;o: Rm with Compariso
signed data, 1 ~ T n result

CMP/HI Rm,Rn 0011nnnnrnmmm0110 If Rn > Rm with Compariso
unsigned data, 1 ~ T n result

CMP/GT Rm,Rn OOllnnnnrnmmmOlll If Rn > Rm with Compariso
signed data, 1 ~ T n result

CMP/PL Rn 0100nnnn00010101 If Rn> 0, 1 ~ T Compariso
n result

CMP/PZ Rn 0100nnnn00010001 If Rn ;o: 0, 1 ~ T Compariso
n result

CMP/STR Rm,Rn 0010nnnnrnrnmm1100 If Rn and Rm have an Compariso
equivalent byte, 1 ~ n result
T

DIVl Rm,Rn OOllnnnnrnmmmOlOO Single-step division Calculation
(Rn/Rm) result

DIVOS Rm,Rn 0010nnnnrnmmm0111 MSB of Rn ~a. Calculation
MSB of Rm ~ M, M A result
a~r

DIVOU 0000000000011001 0 ~ M/Q/T 0

23

Table 5.4 Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State TBit

DMULS.L Rm,Rn*2 OOllnnnnmmmmllOl Signed operation of 2 to 4*1

Rn x Rm ~ MACH,
MACL

32 x 32 ~ 64 bits

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned operation 2 to 4*1

of Rn x Rm ~MACH,
MACL

32 x 32 ~ 64 bits

DT Rn*2 0100nnnn00010000 Rn - 1 ~ Rn, when Compariso
Rn is 0, 1 ~ T. When n result
Rn is nonzero, 0 ~ T

EXTS.B Rm,Rn OllOnnnnmmmmlllO A byte in Rm is sign-
extended ~ Rn

EXTS.W Rm,Rn OllOnnnnmmmmllll A word in Rm is sign-
extended ~ Rn

EXTU.B Rm,Rn OllOnnnnmmmmllOO A byte in Rm is zero-
extended ~ Rn

EXTU.W Rm,Rn OllOnnnnmmmmllOl A word in Rm is zero-
extended ~ Rn

MAC.L @Rm+,@Rn+ OOOOnnnnmmmmllll Signed operation of 3/(2 to 4)*1

*2 (Rn) x (Rm) + MAC
~MAC

32 x 32 + 64~ 64 bits

MAC.W @Rm+,@Rn+ OlOOnnnnmmmmllll Signed operation of 3/(2)*1

(Rn) x (Rm) + MAC
~MAC

(SH-2 CPU) 16 x 16 +
64 ~ 64 bits

(SH-1 CPU) 16 x 16 +
42 ~ 42 bits

MUL.L Rm,Rn*2 OOOOnnnnmmmmOlll Rn x Rm ~ MACL, 2 to 4*1

32 x 32 ~ 32 bits

MULS.W Rm,Rn OOlOnnnnmmmmllll Signed operation of 1 to 3*1

RnxRm~MAC ·

16 x 16 ~ 32 bits

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instructions

24

Table 5.4 Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit

MULU.W Rm,Rn OOlOnnnrunmmmlllO Unsigned operation 1 to 3*1

of Rn x Rm -t MAC

16 x 16 -t 32 bits

NEG Rm,Rn 0110nnnrunmmm1011 0-Rm -t Rn

NEGC Rm,Rn 0110nnnrunmmm1010 0-Rm-T -t Rn, Borrow
Borrow -t T

SUB Rm,Rn OOllnnnrunmmmlOOO Rn-Rm -t Rn

SUBC Rm,Rn 0011nnnrunmmm1010 Rn-Rm-T -t Rn, Borrow
Borrow -t T

SUBV Rm,Rn OOllnnnrunmmmlOll Rn-Rm -t Rn, Underflow
Underflow -t T

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table5.5 Logic Operation Instructions

Execution
Instruction Instruction Code Operation State TBit

AND Rm,Rn 0010nnnrunmmm1001 Rn & Rm -t Rn

AND #imm,RO 11001001iiiiiiii RO &imm-t RO

AND.B #imm,@ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm -t 3
(RO+ GBR)

NOT Rm,Rn OllOnnnrunmmmOlll -Rm -t Rn

OR Rm,Rn 0010nnnrunmmm1011 Rn I Rm -t Rn

OR #imm,RO 11001011iiiiiiii RO I imm-t RO

OR.B #imm,@ (RO, GBR) llOOlllliiiiiiii (RO + GBR) I imm -t 3
(RO+ GBR)

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 -t T; 1 -t 4 Test
MSB of (Rn) result

TST Rrn,Rn 0010nnnrunmmm1000 Rn & Rm; if the result is Test
0, 1 -t T result

TST #imm,RO 11001000iiiiiiii RO & imm; if the result Test
is 0, 1 -t T result

25

Table 5.5 Logic Operation Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit

TST.B #irrun,@(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm; if 3 Test
the result is 0, 1+ T result

XOR Rm,Rn 0010nnnnmmmm1010 Rn I\ Rm.....+ Rn

XOR #irrun,RO 11001010iiiiiiii RO I\ imm --+ RO 1

XOR.B #irrun,@(RO,GBR) 11001110iiiiiiii (RO + GBR) I\ imm --+ 3
(RO+ GBR)

5.1.4 Shift Instructions

Table5.6 Shift Instructions

Instruction Instruction Code Operation Execution State T Bit

ROTL Rn 0100nnnn00000100 T f-- Rn f-- MSB MSB

ROTR Rn 0100nnnn00000101 LSB+Rn--+ T LSB

ROT CL Rn 0100nnnn00100100 T f-- Rn f-- T MSB

ROT CR Rn 0100nnnn00100101 T+Rn.....+ T LSB

SHAL Rn 0100nnnn00100000 T f-- Rn f-- 0 MSB

SHAR Rn 0100nnnn00100001 MSB+Rn.....+ T LSB

SHLL Rn OlOOnnnnOOOOOOOO T f-- Rn f--0 MSB

SHLR Rn OlOOnnnnOOOOOOOl 0--+ Rn.....+ T LSB

SHLL2 Rn OlOOnnnnOOOOlOOO Rn<<2+Rn

SHLR2 Rn 0100nnnn00001001 Rn>>2+Rn

SHLL8 Rn 0100nnnn00011000 Rn<<8+Rn

SHLR8 Rn 0100nnnn00011001 Rn>>8+Rn

SHLL16 Rn 0100nnnn00101000 Rn<<16+Rn

SHLR16 Rn 0100nnnn00101001 Rn>>16+Rn

26

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Execution
Instruction Instruction Code Operation State TBit

BF label 10001011dddddddd If T = 0, disp x 2 + PC ~ PC; ifT = 3/1*3
1, nop (where label is disp x 2 +
PC)

BF/S label*2 lOOOlllldddddddd Delayed branch, if T = 0, disp x 2 + 2/1*3
PC ~ PC; if T = 1, nop

BT label 1000100ldddddddd If T = 1, disp x 2 + PC ~ PC; if T = 3/1*3
0, nop (where label is disp + PC)

BT/S label*2 10001101dddddddd Delayed branch, if T = 1, disp x 2 + 2/1*3
PC ~ PC; if T = 0, nop

BRA label 1010dddddddddddd Delayed branch, disp x 2 + PC ~ 2
PC

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm+ PC~ PC 2

BSR label lOlldddddddddddd Delayed branch, PC ~ PR, disp x 2 2
+PC~ PC

BSRF Rm*2 OOOOmmmmOOOOOOll Delayed branch, PC ~ PR, Rm + 2
PC~PC

JMP @Rm 0100mmmm00101011 Delayed branch, Rm ~ PC 2

JSR @Rm 0100mmmm00001011 Delayed branch, PC ~ PR, Rm ~ 2
PC

RTS 0000000000001011 Delayed branch, PR ~ PC 2

Notes: 2. SH-2 CPU instruction

3. One state when it does not branch

27

5.1.6 System Control Instructions

Table5.8 System Control Instructions

Execution T
Instruction Instruction Code Operation State Bit

CLRT 0000000000001000 O~T 0

CLRMAC 0000000000101000 0 ~ MACH, MACL

LDC Rm,SR 0100mmmm00001110 Rm~SR LSB

LDC Rm,GBR 0100mmmm00011110 Rm~GBR

LDC Rm,VBR 0100mmmm00101110 Rm~VBR

LDC.L @Rm+,SR OlOOmmmmOOOOOlll (Rm) ~sR, Rm+4~Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) ~ GBR, Rm + 4 ~ Rm 3

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) ~VBR, Rm+4~Rm 3

LDS Rm,MACH 0100mmmm00001010 Rm~MACH

LDS Rm,MACL 0100mmmm00011010 Rm~MACL

LDS Rm,PR 0100mmmm00101010 Rm~PR

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm)~MACH, Rm+4~

Rm

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) ~ MACL, Rm + 4 ~
Rm

LDS.L @Rm+,PR 0100mmmm00100110 (Rm)~ PR, Rm +4 ~Rm

NOP 0000000000001001 No operation

RTE 0000000000101011 Delayed branch, stack area ~ 4 LSB
PC/SR

SEn"I' 0000000000011000 1~T

SLEEP 0000000000011011 Sleep 3•4

STC SR,Rn 0000nnnn00000010 SR~Rn

STC GBR,Rn 0000nnnn00010010 GBR ~Rn

STC VBR,Rn OOOOnnnnOOlOOOlO VBR~Rn

STC.L SR,@-Rn 0100nnnn00000011 Rn-4~ Rn, SR~ (Rn) 2

STC.L GBR,@-Rn 0100nnnn00010011 Rn-4~ Rn, GBR ~(Rn) 2

STC.L VBR,@-Rn 0100nnnn00100011 Rn-4~ Rn, VBR ~(Rn) 2

STS MACH,Rn 0000nnnn00001010 MACH~Rn

STS MACL,Rn 0000nnnn00011010 MACL~Rn

STS PR,Rn 0000nnnn00101010 PR~Rn

28

Table 5.8 System Control Instructions (cont)

Executio T
Instruction Instruction Code Operation n State Bit

STS.L MACH,@-Rn 0100nnnn00000010 Rn-4~ Rn, MACH ~(Rn)

STS.L MACL,@-Rn 0100nnnn00010010 Rn-4~ Rn, MACL ~(Rn)

STS.L PR,@-Rn 0100nnnn00100010 Rn-4~ Rn, PR~ (Rn)

TRAPA ltimm llOOOOlliiiiiiii PC/SR ~ stack area, (imm x 8
4+ VBR) ~PC

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory ~ register) is the same as the register
used by the next instruction.

5.2 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.

Table 5.9 Instruction Set

Execu-
ti on

Instruction Instruction Code Operation State T Bit

ADD #imm,Rn Olllnnnniiiiiiii Rn+imm~ Rn

ADD Rm,Rn OOllnnnnrmn:nmllOO Rn+ Rm~ Rn

ADDC Rm,Rn OOllnnnnrmn:nmlllO Rn + Rm + T ~ Rn, Carry
Carry~ T

ADDV Rm,Rn OOllnnnnrmn:nmllll Rn+ Rm~ Rn, Overflow
Overflow~ T

AND #imm,RO llOOlOOliiiiiiii RO&imm~ RO

AND Rm,Rn 0010nnnnrmn:nm1001 Rn&Rm~ Rn

AND.B #imm,@ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm 3
~(RO+ GBR)

BF label 1000101ldddddddd lfT = 0, disp x2 + 3/1*3
PC ~ PC; if T = 1,
nop

BF/S label*2 lOOOlllldddddddd If T = 0, disp x 2+ 2/1*3
PC ~ PC; if T = 1,
nop

29

Table 5.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State T Bit

BRA label 1010dddddddddddd Delayed branch, 2
dispx2 +PC~
PC

BRAF Rm*2 0000mmmm00100011 Delayed branch, 2
Rm+PC~PC

BSR label lOlldddddddddddd Delayed branch, 2
PC~ PR, disp x2
+PC~PC

BSRF Rm*2 OOOOmmmmOOOOOOll Delayed branch, 2
PC~ PR, Rm+
PC~PC

BT label 10001001dddddddd If T = 1, disp x 2+ 3/1*3

PC ~ PC; ifT = 0,
nop

BT/S label*2 1000110ldddddddd lfT = 1, disp x 2 + 2/1*3

PC ~ PC; if T = 0,
nop

CLRMAC 0000000000101000 0 ~ MACH, MACL

CLRT 0000000000001000 O~T 0

CMP/EQ #inun,RO 10001000iiiiiiii If RO = imm, 1 ~ T Comparison
result

CMP/EQ Rm,Rn OOllnnnnmmmmOOOO If Rn = Rm, 1 ~ T Comparison
result

CMP/GE Rm,Rn OOllnnnnmmmmOOll If Rn ;:: Rm with Comparison
signed data, 1 ~ T result

CMP/GT Rm,Rn OOllnnnnmmmmOlll If Rn > Rm with Comparison
signed data, 1 ~ T result

CMP/HI Rm,Rn 00llnnnnmmmm0110 If Rn > Rm with Comparison
unsigned data, result
1~T

CMP/HS Rm,Rn 00llnnnnmrnrrun0010 If Rn ~ Rm with Comparison
unsigned data, result
1~T

CMP/PL Rn 0100nnnn00010101 If Rn>O, 1 ~ T Comparison
result

CMP/PZ Rn 0100nnnn00010001 If Rn~ 0, 1 ~ T Comparison
result

Notes: 2. SH-2 CPU instructions

30

3. One state when it does not branch

Table 5.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State T Bit

CMP/STR Rm,Rn OOlOnnnnmmrrunllOO If Rn and Rm have Comparison
an equivalent byte, result
1~T

DIVOS Rm,Rn 0010nnnnmmrrun0111 MSB of Rn~ Q, Calculation
MSBof Rm ~M. result
M"Q~T

DIVOU 0000000000011001 0 ~ M/Q/T 0

DIVl Rm,Rn 0011nnnnmmrrun0100 Single-step division Calculation
(Rn/Rm) result

DMULS.L Rm,Rn* 2 OOllnnnnmmrrunllOl Signed operation of 2 to 4*1

Rn x Rm ~ MACH,
MACL

DMULU.L Rm,Rn* 2 0011nnnnmmrrun0101 Unsigned operation 2 to 4*1

of Rnx Rm~
MACH,MACL

OT Rn* 2 0100nnnn00010000 Rn - 1 ~ Rn, when Comparison
Rn is 0, 1 ~ T. result
When Rn is
nonzero, 0 ~ T

EXTS.B Rm,Rn OllOnnnnmmrrunlllO A byte in Rm is
sign-extended ~
Rn

EXTS.W Rm,Rn OllOnnnnmmrrunllll A word in Rm is
sign-extended ~
Rn

EXTU.B Rm,Rn OllOnnnnmmrrunllOO A byte in Rm is
zero-extended ~
Rn

EXTU.W Rm,Rn 0110nnnnmmrrun1101 A word in Rm is
zero-extended ~
Rn

JMP @Rm 0100mmrrun00101011 Delayed branch, 2
Rm~PC

Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instructions

31

Table 5.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State T Bit

JSR @Rm 0100mmrnm00001011 Delayed branch, 2
PC~PR,Rm~

PC

LDC Rm,GBR 0100mmrnm00011110 Rm~GBR

LDC Rm,SR 0100mmrnm00001110 Rm~SR 1 LSB

LDC Rm,VBR 0100mmrnm00101110 Rm~VBR 1

WC.L @Rm+,GBR 0100mmrnm00010111 (Rm) ~GBR, Rm 3
+4~Rm

LDC.L @Rm+,SR OlOOmmrnmOOOOOlll (Rm) ~ SR, Rm + 3 LSB
4~Rm

WC.L @Rm+,VBR 0100mmrnm00100111 (Rm)~ VBR, Rm 3
+4~Rm

ws Rm,MACH 0100mmrnm00001010 Rm~MACH

ws Rm,MACL 0100mmrnm00011010 Rm~MACL

ws Rm,PR 0100mmrnm00101010 Rm~PR

WS.L @Rm+,MACH 0100mmrnm00000110 (Rm) ~MACH,
Rm+4~Rm

WS.L @Rm+,MACL 0100mmrnm00010110 (Rm)~ MACL,
Rm+4~Rm

WS.L @Rm+,PR 0100mmrnm00100110 (Rm) ~ PR, Rm +
4~Rm

MAC.L @Rm+,@Rn+*2 OOOOnnnnmmrnmllll Signed operation of 3/(2 to
(Rn) x (Rm) + MAC 4)*1
~MAC

MAC.W @Rm+,@Rn+ OlOOnnnnmmrnmllll Signed operation of 3/(2)*1
(Rn) x (Rm) + MAC
~MAC

MOV #imrn,Rn lllOnnnniiiiiiii imm~Sign

extension ~ Rn

MOV Rm,Rn OllOnnnnmmrnmOOll Rm~Rn

Notes: 1. The normal minimum number of execution states (the number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 instructions

32

TableS.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State TBit

MOV.B @(disp,GBR),RO 11000100dddddddd (disp + GBR) ~
Sign extension ~
RO

MOV.B @(disp,Rm),RO 10000100mmrrundddd (disp + Rm) ~Sign
extension ~ RO

MOV.B @(RO, Rm), Rn OOOOnnnnmmrrunllOO (RO + Rm) ~ Sign
extension ~ Rn

MOV.B @Rm+,Rn 0110nnnnmmrrun0100 (Rm) ~Sign
extension~ Rn,
Rm+ 1 ~Rm

MOV.B @Rm,Rn OllOnnnnmmrrunOOOO (Rm)~ Sign
extension ~ Rn

MOV.B RO,@(disp,GBR) llOOOOOOdddddddd RO ~ (disp + GBR)

MOV.B RO,@(disp,Rn) lOOOOOOOnnnndddd RO ~ (disp + Rn)

MOV.B Rm,@(RO,Rn) OOOOnnnnmmrrunOlOO Rm~ (RO+ Rn)

MOV.B Rm,@-Rn 0010nnnnmmrrun0100 Rn-1 ~Rn, Rm~
(Rn)

MOV.B Rm,@Rn OOlOnnnnmmrrunOOOO Rm~ (Rn)

MOV.L @(disp, GBR), RO 11000110dddddddd (disp x 4 + GBR) ~
RO

MOV.L @(disp,PC),Rn llOlnnnndddddddd (disp x 4 + PC) ~
Rn

MOV.L @(disp,Rm) ,Rn OlOlnnnnmmrrundddd (dispx4 +Rm)~
Rn

MOV.L @(RO, Rm), Rn OOOOnnnnmmrrunlllO (RO+ Rm)~ Rn

MOV.L @Rm+,Rn 0110nnnnmmrrun0110 (Rm)~ Rn, Rm + 4
~Rm

MOV.L @Rm,Rn 0110nnnnmmrrun0010 (Rm)~ Rn

MOV.L RO,@(disp,GBR) 11000010dddddddd RO~ (disp x4 +
GBR)

MOV.L Rm,@(disp,Rn) OOOlnnnnmmrrundddd Rm~ (disp x4 +
Rn)

MOV.L Rm,@(RO,Rn) OOOOnnnnmmrrunOllO Rm~ (RO+ Rn)

MOV.L Rm,@-Rn 0010nnnnmmrrun0110 Rn--4 ~Rn, Rm~
(Rn)

MOV.L Rm,@Rn 0010nnnnmmrrun0010 Rm~ (Rn)

MOV.W @(disp,GBR),RO 1100010ldddddddd (disp x 2 + GBR) ~
Sign extension ~
RO

33

Table5.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State TBit

MOV.W @(disp, PC) ,Rn lOOlnnnndddddddd (disp x 2 + PC) ~ 1
Sign extension ~
Rn

MOV.W @(disp,Rm) ,RO 10000101mmmmdddd (disp x 2 + Rm) ~
Sign extension ~
RO

MOV.W @(RO,Rm) ,Rn OOOOnnnnmmmmllOl (RO + Rm) ~ Sign
extension ~ Rn

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm)~ Sign
extension ~ Rn,
Rm+2~ Rm

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) ~Sign
extension ~ Rn

MOV.W RO,@(disp,GBR) llOOOOOldddddddd RO~ (disp x2+
GBR)

MOV.W RO,@(disp,Rn) lOOOOOOlnnnndddd RO~(disp x2+
Rn)

MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0101 Rm~ (RO+ Rn)

MOV.W Rm,@-Rn 0010nnnnmmmm0101 Rn-2 ~Rn, Rm~
(Rn)

MOV.W Rm,@Rn 0010nnnnmmmrn0001 Rm~ (Rn)

MOVA @(disp,PC) ,RO llOOOllldddddddd disp x 4 + PC ~ RO

MOVT Rn 0000nnnn00101001 T~ Rn

MUL.L Rm,Rn* 2 OOOOnnnnmmmmOlll RnxRm~MACL 2 to 4*1

MULS.W Rm,Rn OOlOnnnnmmmmllll Signed operation of 1 to 3*1

Rn xRm ~MAC

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation 1 to 3*1

of Rn x Rm ~MAC

NEG Rm,Rn 0110nnnnmmmm1011 0-Rm ~Rn

NEGC Rm,Rn 0110nnnnmmmm1010 0-Rm-T ~Rn, Borrow
Borrow~ T

NOP 0000000000001001 No operation

NOT Rm,Rn OllOnnnnmmmmOlll -Rm~ Rn

OR hmm, RO 11001011iiiiiiii RO I imm ~RO

OR Rm,Rn 0010nnnnmmmml011 Rn I Rm~ Rn

Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instructions

34

Table5.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State T Bit

OR.B #inun,@ (RO, GBR) llOOlllliiiiiiii (RO + GBR) I imm 3
~(RO+ GBR)

ROTCL Rn 0100nnnn00100100 T~Rn~T MSB

ROTCR Rn 0100nnnn00100101 T~ Rn ~T LSB

RarL Rn 0100nnnn00000100 T~Rn~MSB MSB

RarR Rn OlOOnnnnOOOOOlOl LSB ~Rn~ T LSB

RTE 0000000000101011 Delayed branch, 4 LSB
stack area~
PC/SR

RTS 0000000000001011 Delayed branch, 2
PR~PC

SETI' 0000000000011000 1~T

SHAL Rn OlOOnnnnOOlOOOOO T ~Rn ~o MSB

SHAR Rn OlOOnnnnOOlOOOOl MSB~ Rn ~T LSB

SHLL Rn OlOOnnnnOOOOOOOO T~Rn~o MSB

SHLL2 Rn OlOOnnnnOOOOlOOO Rn<<2 ~Rn

SHLLB Rn OlOOnnnnOOOllOOO Rn<<8 ~Rn

SHLL16 Rn OlOOnnnnOOlOlOOO Rn<<16 ~Rn

SHLR Rn OlOOnnnnOOOOOOOl 0 ~Rn~ T LSB

SHLR2 Rn 0100nnnn00001001 Rn>>2 ~Rn

SHLRB Rn OlOOnnnnOOOllOOl Rn>>8 ~Rn

SHLR16 Rn 0100nnnn00101001 Rn>>16 ~Rn

SLEEP 0000000000011011 Sleep 3

STC GBR,Rn 0000nnnn00010010 GBR ~Rn

STC SR,Rn OOOOnnnnOOOOOOlO SR~Rn

STC VBR,Rn 0000nnnn00100010 VBR~ Rn

STC.L GBR,@-Rn 0100nnnn00010011 Rn-4 ~Rn, GBR 2
~(Rn)

STC.L SR,@-Rn OlOOnnnnOOOOOOll Rn-4 ~Rn, SR~ 2
(Rn)

STC.L VBR,@-Rn 0100nnnn00100011 Rn-4~ Rn, VBR 2
~(Rn)

STS MACH,Rn 0000nnnn00001010 MACH~ Rn

35

Table 5.9 Instruction Set (cont)

Execu-
ti on

Instruction Instruction Code Operation State T Bit

STS MACL,Rn 0000nnnn00011010 MACL~Rn

STS PR,Rn 0000nnnn00101010 PR~Rn

STS.L MACH,@-Rn OlOOnnnnOOOOOOlO Rn-4~ Rn,
MACH~ (Rn)

STS.L MACL,@-Rn 0100nnnn00010010 Rn-4~ Rn,
MACL~ (Rn)

STS.L PR,@-Rn 0100nnnn00100010 Rn-4 ~ Rn, PR ~
(Rn)

SUB Rm,Rn OOllnnnnmmmmlOOO Rn-Rm~ Rn

SUBC Rm,Rn 001lnnnnmmmm1010 Rn-Rm-T ~ Rn, Borrow
Borrow~ T

SUBV Rm,Rn OOllnnnnmmmmlOll Rn-Rm~ Rn, Under-
Underflow ~ T flow

SWAP.B Rm,Rn OllOnnnnmmmmlOOO Rm ~ Swap upper
and lower2
bytes~ Rn

SVAP.W Rm,Rn 0110nnnnmmmm1001 Rm ~ Swap upper
and lower word~
Rn

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 ~ T; 4 Test
1 ~ MSB of (Rn) result

TRAPA #irrun llOOOOlliiiiiiii PC/SR ~ stack 8
area, (imm x 4 +
VBR) ~PC

TST #imm,RO 11001000iiiiiiii RO & imm; if the Test
result is 0, 1 ~ T result

TST Rm,Rn 0010nnnnmmmml000 Rn & Rm; if the Test
result is 0, 1 ~ T result

TSl'.B #:imn,@(.RO,G3R) 11001100iiiiiiii (RO + GBR) & imm; 3 Test
if the result is 0, 1 result
~T

XOR #imm,RO 11001010iiiiiiii RO"imm~RO

XOR Rm,Rn 0010nnnnmmmm1010 Rn" Rm~ Rn

XCR.B #:imn, @(RO ,G3R) 11001110iiiiiiii (RO + GBR) " imm 3
~(RO+ GBR)

XTRCT Rm,Rn 0010nnnnmmmmll01 Center 32 bits of
Rm and Rn~ Rn

36

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code State T Bit

Assembler input format; A brief description of Displayed in Number of The value of
imm and disp are operation order MSB' states when T bit after the
numbers, expressions, LSB there is no instruction is
or symbols wait state executed

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long (unsigned long Addr) ;

• Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

• Starts execution from the slot instruction located at an address (Addr - 4). For Delay_Slot (4);,
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot(unsigned long Addr);

37

• List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

• Definition of SR structures:

struct SRO (

unsigned long durnmy0:22;

unsigned long MO:l;

unsigned long QO:l;

unsigned long I0:4;

unsigned long durnmyl:2;

unsigned long SO:l;

unsigned long TO:l;

} ;

• Definition of bits in SR:

#define M ((*(struct SRO *)(&SR)) .MO)

#define Q ((* (struct SRO *)(&SR)) .QO)

#define S ((*(struct SRO *)(&SR)) .SO)

#define T ((*(struct SRO *)(&SR)) .TO)

• Error display function:

Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4 ; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

38

.org

.data.w

.data.l

.sdata

.align 2

.align 4

.arepeat 16

.arepeat 32

.aendr

Location counter set

Securing integer word data

Securing integer longword data

Securing string data

2-byte boundary alignment

2-byte boundary alignment

16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Note: The SH-series cross assembler version 1.0 does not support the conditional assembler
functions.

Notes: 1. In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (xl, x2, x4) according to the
operand size is written. This is done to show clearly the operation of the LSI; see the
assembler notation rules for the actural assembler descriptions.

@(disp:4, Rn): Register indirect with displacement
@(disp:8, GBR): GBR indirect with displacement
@(disp 8, PC): PC relative with displacement
disp:8, disp: 12: PC relative

2. Among the 16 bits of the instruction code, a code not assigned as an instruction is
treated as a general illegal instruction, and will result in illegal instruction exception
processing, This includes the case where an instruction code for the SH-2 CPU only is
executed on the SH-1 CPU.

Example 1: H'FFF [General illegal instruction in both SH-1 and SH-2 CPU]
Example 2: H'3105 (=DMUL.L RO, Rl)[Illegal instruction in SH-1 CPU]

3. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example 1
BRA Label
. data. W H'FFFF

Example 2 RTE

~ Slot illegal instruction
[H'FFF is fundamentally a general illegal
instruction]

BT/S Label ~Slot illegal instruction

39

6.2 ADD (ADD Binary): Arithmetic Instruction

Format

ADD

ADD

Rrn,Rn

#imm,Rn

Abstract

Rm+ Rn~ Rn

Rn+imm ~Rn

Code

OOllnnnnrnmmmllOO

Olllnnnniiiiiiii

State T Bit

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The contents
of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n} I* ADJ) Rm, Rn *I

R[n]+=R[m];

PC+=2;

ADDI(long i,long n} /* ADD #imm,Rn */

if ((i&Ox80}==0} R[n]+=(OxOOOOOOFF & (long}i};

else R[n]+=(OxFFFFFFOO I (long)i};

PC+=2;

Examples:

ADD RO,Rl Before execution RO= H'7FFFFFFF, RI= H'OOOOOOOI

After execution RI = H'80000000

ADD #H'01,R2 Before execution R2 = H'OOOOOOOO

After execution R2 = H'OOOOOOOI

ADD #H'FE,R3 Before execution R3 = H'OOOOOOOI

After execution R3 = H'FFFFFFFF

40

6.3 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

ADDC Rm,Rn Rn + Rm + T --+ Rn, carry --+ T OOllnnnnmmmmlllO 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m, long n) I* ADDC Rm,Rn */

}

unsigned long tmpO,tmpl;

tmpl=R [n] +R [m] ;

tmpO=R[n];

R[n]=tmpl+T;

if (tmpO>tmpl) T=l;

else T=O;

if (tmpl>R[n]) T=l;

PC+=2;

Examples:

CLRT RO:Rl (64 bits)+ R2:R3 (64 bits)= RO:Rl (64 bits)

ADDC R3,Rl

ADDC R2,RO

Before execution

After execution

Before execution

After execution

T = 0, R 1 = H'OOOOOOOl, R3 = H'FFFFFFFF

T = 1, Rl = H'OOOOOOO

T = 1, RO = H'OOOOOOOO, R2 = H'OOOOOOOO

T = 0, RO= H'OOOOOOOl

41

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code State T Bit

ADUV Rm,Rn Rn+ Rm~ Rn, overflow~ T OOllnnnnrnmmmllll Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to I.

Operation:

ADDV(long m,long n) /*ADUV Rm,Rn */

long dest,src,ans;

if ((long)R[n]>=O) dest=O;

else dest=l;

if ((long)R[m]>=O) src=O;

else src=l;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=O) ans=O;

else ans=l;

ans+=dest;

if (src==O I I src==2)

if (ans==l) T=l;

else T=O;

else T=O;

PC+=2;

Examples:

ADUV RO,Rl

ADUV RO,Rl

Before execution

After execution

Before execution

After execution

RO = H'OOOOOOO I, RI = H'7FFFFFFE, T = 0

RI = H'7FFFFFFF, T = 0

RO = H'00000002, RI = H'7FFFFFFE, T = 0

RI = H'80000000, T = I

42

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T Bit

AND Rm,Rn Rn& Rm~ Rn 0010nnnnmmmm1001

AND #irmn, RO RO&imm~ RO 11001001iiiiiiii 1

AND.B #irmn,@(RO,GBR) (RO + GBR) & imm ~ (RO + 11001101iiiiiiii 3
GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.

Operation:

AND(long m,long n) /* AND Rm,Rn */

R[n]&=R[m]

PC+=2;

ANDI(long i) /* AND #irmn,RO */

R[O]&=(OxOOOOOOFF & (long)i);

PC+=2;

ANDM(long i) /* AND.B #irmn,@(RO,GBR) */

}

long temp;

ternp=(long)Read_Byte(GBR+R[O]);

ternp&=(OxOOOOOOFF & (long)i);

Write_Byte(GBR+R[O],ternp);

PC+=2;

43

Examples:

AND

AND

RO,Rl

#H' OF,RO

Before execution

After execution

Before execution

After execution

AND. B #H' 80,@ (RO, GBRl Before execution

After execution

44

RO= H'AAAAAAAA, Rl = H'55555555

R 1 = H'OOOOOOOO

RO = H'FFFFFFFF

RO= H'OOOOOOOF

@(RO,GBR) = H'A5

@(RO,GBR) = H'80

6.6 BF (Branch if False): Branch Instruction

Format Abstract

BF label When T = 0, disp x 2 + PC -7 PC;
When T = 1, nop

Code

100010lldddddddd

State T Bit

3/1

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is -256 to + 254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(long d) /* BF disp */

}

long disp;

if ((d&Ox80)==0) disp=(OxOOOOOOFF & (long)d);

else disp=(OxFFFFFFOO I (long)d);

if (T==O) PC=PC+(disp<<l)+4;

else PC+=2;

Example:

CLRT T is always cleared to 0
BT TRGET_T Does not branch, because T = 0

BF TRGET_F Branches to TRGET_F, because T = 0

NOP

NOP

TRGET_F:

+-- The PC location is used to calculate the
branch destination address of the BF
instruction

+-- Branch destination of the BF instruction

45

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2
CPU)

Class: Delayed branch instruction

Format Abstract

BF /S label When T = 0, disp x 2 + PC ~ PC;
When T = 1, nop

Code State T Bit

lOOOlllldddddddd 2/1

Description: Reads the T bit, and conditionally branches with delay slot.· If T == 1, BF executes the
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is -256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF/S with the BRA instruction or the
like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after is a
branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

long disp;

unsigned long temp;

temp=PC;

if ((d&Ox80)==0) disp=(OxOOOOOOFF & (long)d);

else disp=(OxFFFFFFOO I (long)d);

if (T==O) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

else PC+=2;

46

Example:

CLRT

BT/S TRGET_T

NOP

BF /S TRGET_F

ADD RO,Rl

NOP

TRGET_F:

Tis always 0

Does not branch, because T = 0

Branches to TRGET, because T = 0

Executed before branch

f- The PC location is used to calculate the branch destination
address of the BF/S instruction

f- Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

47

6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRA label disp x 2 + PC ~ PC 1010dddddddddddd 2

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is -
4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOY instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(long d) /* BRA disp */

unsigned long temp;

long disp;

if ({d&Ox800)==0) disp=(OxOOOOOFFF & d);

else disp=(OxFFFFFOOO I d);

temp=PC;

PC=PC+(disp<<l)+4;

Delay_Slot(temp+2);

Example:

BRA TRGET Branches to TRGET

ADD RO, Rl Executes ADD before branching

NOP f- The PC location is used to calculate the branch destination
address of the BRA instruction

TRGET: f- Branch destination of the BRA instruction

48

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

49

6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRAF Rm Rm+ PC~ PC 0000rmnmm00100011 2

Description: Branches unconditionally. The branch destination is PC+ the 32-bitcontents of the
general register Rm. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRAF(long m) /* BRAF Rm */

unsigned long temp;

temp=PC;

PC+=R[m];

Delay_Slot(temp+2);

Example:

MOV.L #(TRGET-BSRF_PC),RO

BRAF @RO

ADD RO,Rl

BRAF_PC:

NOP

TRGET:

Sets displacement

Branches to TRGET

Executes ADD before branching

f- The PC location is used to calculate
the branch destination address of
the BRAF instruction

f- Branch destination of the BRAF instruction

50

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

51

6.10 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSR label PC --? PR, disp x 2 + PC --? PC lOlldddddddddddd 2

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is-4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */

long disp;

if ((d&OxBOO)==O) disp=(OxOOOOOFFF & d);

else disp=(OxFFFFFOOO I d);

PR=PC;

PC=PC+(disp<<l)+4;

Delay_Slot(PR+2);

52

Example:

BSR TRGET

IDV R3,R4

ADD RO,Rl

Branches to TRGET

Executes the MOV instruction before branching

~ The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

TRGET: ~ Procedure entrance

IDV R2,R3

RTS Returns to the above ADD instruction

IDV #1,RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

53

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSRF Rm PC ~ PR, Rm + PC ~ PC OOOOmmrrunOOOOOOll 2

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC +the 32-bit contents of the general register Rm. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSRF(long m) /* BSRF Rm */
(

PR=PC;

PC+=R[m];

Delay_Slot(PR+2);

Example:

MOV. L # (TRGET- BSRF _PC) 'RO Sets displacement
BRSF @RO Branches to TRGET
MOV R3,R4

BSRF_PC:

TRGET:

ADD RO,Rl

MOV R2,R3
RTS
MOV H,RO

Executes the MOV instruction before
branching
f- The PC location is used to
calculate the branch destination
with BSRF

f- Procedure entrance

Returns to the above ADD instruction
Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

54

6.12 BT (Branch if True): Branch Instruction

Format

BT label

Abstract

When T = 1, disp x 2 + PC ~
PC;
When T = 0, nop

Code

1000100ldddddddd

State T Bit

3/1

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is -256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(long d) /* BT disp */

long disp;

if ({d&Ox80)==0) disp={OxOOOOOOFF & (long)d);

else disp=(OxFFFFFFOO I (long)d);

if (T==l) PC=PC+(disp<<l)+4;

else PC+=2;

Example:

SETT Tis always I

-BF TRGET_F Does not branch, because T = 1

BT TRGET_T Branches to TRGET_T, because T = 1

NOP

NOP

TRGET_T:

f- The PC location is used to calculate the branch destination
address of the BT instruction

f- Branch destination of the BT instruction

55

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2
CPU)

Format

BT/S label

Abstract

When T = 1, disp x 2 + PC ~
PC;
When T = 0, nop

Code State T Bit

10001101dddddddd 2/1

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. IfT- 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is-256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles;
when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

}

long disp;

unsigned long temp;

temp= PC;

if ((d&Ox80)==0) disp=(OxOOOOOOFF & (long)d);

else disp=(OxFFFFFFOO I (long)d);

if (T==l) {

PC=PC+(disp<<l)+4;

Delay_Slot(temp+2);

else PC+=2;

56

Example:

SETT

BF/S

NOP

BT/S

ADD

NOP

TRGET_T:

TRGET_F

TRGET_T

RO,Rl

Tis always I

Does not branch, because T = I

Branches to TRGET, because T = I
Executes before branching.

~ The PC location is used to calculate the branch destination
address of the BT/S instruction

~ Branch destination of the BT/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

57

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Coc:te·

CLRMAC 0 --+ MACH, MACL 0000000000101000

Description: Clears the MACH and MACL registers.

Operation:

}

CLRMAC () /* CLRMAC * /
{

MACH=O;

MACL=O;

PC+=2;

Example:

CLRMAC

MAC.W @RO+,@Rl+

MAC.W @RO+,@Rl+

Initializes the MAC register

Multiply and accumulate operation

58

State T Bit

6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract

CLRT O~T

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

T=O;

PC+=2;

Example:

CLRT Before execution T = 1

After execution T = 0

Code

0000000000001000

59

State T Bit

1 0

6.16 CMP/cond (Compare Conditionally): .Arithmetic Instruction

Format Abstract Code State TBit

CMP/EQ Rm,Rn When Rn =Rm, 1 -,-+ T OOllnnnnnumnmOOOO 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn <!: OOllnnnnnumnmOOll Comparison
Rm, 1 ~T result

CMP/GT Rm,Rn When signed and Rn > OOllnnnnnumnmOlll Comparison
Rm, 1 ~T result

CMP/HI Rm,Rn When unsigned and Rn > OOllnnnnnumnmOllO Comparison
Rm, 1 ~T result

CMP/HS Rm,Rn When unsigned and Rn <?: OOllnnnnnumnmOOlO Comparison
Rm, 1 ~T result

CMP/PL Rn When Rn > 0, 1 ~ T 0100nnnn00010101 Comparison
result

CMP/PZ Rn When Rn <?: 0, 1 ~ T 0100nnnn00010001 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals 0010nnnnnumnm1100 Comparison
a byte in Rm, 1 ~ T result

CMP/EQ #innn,RO When RO = imm, 1 ~ T 10001000iiiiiiii Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.1 shows the
mnemonics for the conditions.

60

Table 6.1 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ~ Rm with signed data, T = 1

CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1

CMP /HI Rm, Rn If Rn > Rm with unsigned data, T = 1

CMP/HS Rm,Rn If Rn ~ Rm with unsigned data, T = 1

CMP/PL Rn If Rn >0, T = 1

CMP/PZ Rn If Rn~ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

CMP/EQ #imm,RO If RO = imm, T = 1

Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

if (R[n]==R[m)) T=l;

else T=O;

PC+=2;

CMPGE(long m,long n) /* CMP_GE Rm,Rn */

if ((long)R[n)>=(long)R[m]) T=l;

else T=O;

PC+=2;

CMPGT(long m,long n) /* CMP_GT Rm,Rn */

if ((long)R[n]>(long)R[m]) T=l;

else T=O;

PC+=2;

61

CMPHI(long m,long n) /* CMP_HI Rrn,Rn */

if ((unsigned long)R[n]>(unsigned long)R[m]) T=l;

else T=O;

PC+=2;

CMPHS(long m,long n) /* CMP_HS Rrn,Rn */

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=l;

else T=O;

PC+=2;

CMPPL(long n) /* CMP_PL Rn */

}

if ((long)R[n]>O) T=l;

else T=O;

PC+=2;

CMPPZ (long n) /* CMP _PZ Rn * /

if ((long)R[n]>=O) T=l;

else T=O;

PC+=2;

62

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

}

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]"R[m];

HH=(temp>>12)&0x000000FF;

HH=(temp>>8)&0x000000FF;

HH=(temp>>4)&0x000000FF;

LL=temp&OxOOOOOOFF;

HH=HH&&HL&&LH&&LL;

if (HH==O) T=l;

else T=O;

PC+=2;

CMPIM(long i) /* CMP~EQ #imm,RO */

}

long imm;

if ((i&Ox80)==0) imm=(OxOOOOOOFF & (long i));

else imm=(OxFFFFFFOO I (long i));

if (R[O]==imm) T=l;

else T=O;

PC+=2;

Example:

CMP/GE

BT

CMP/HS

BT

CMP/STR

BT

RO,Rl

TRGET_T

RO,Rl

TRGET_T

R2,R3

TRGET_T

RO= H'7FFFFFFF, RI= H'80000000

Does not branch because T = 0

RO= H'7FFFFFFF, RI = H'80000000

Branches because T = I

R2 = "ABCD", R3 = "XYCZ"

Branches because T = I

63

6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code

DIVOS Rm,Rn MSB of Rn~ Q, MSB of Rm~ 0010nnnnmmmm0111
M,M .. Q~T

State TBit

Calculation
result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIVl or another instruction that divides for each bit
after this instruction. See the description given with DIVl for more information.

Operation:

DIVOS(long m,long n) /* DIVOS Rm,Rn */

if ((R[n]&Ox80000000)==0) Q=O;

else Q=l;

if ((R[m]&Ox80000000)==0) M=O;

else M=l;

T= ! (M==Q);

PC+=2;

Example: See DIVI.

64

6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

DIVOU 0 ~ M/QfT 0000000000011001 1 0

Description: DIV OU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIVI or another instruction that divides for each bit
after this instruction. See the description given with DIVI for more information.

Operation:

DIVOU()/* DIVOU */

M=Q=T=O;

PC+=2;

Example: See DIVl.

65

6.19 DIVl (Divide Step 1): Arithmetic Instruction

Format Abstract Code

DIVl Rm,Rn 1-step division (Rn + Rm) 0011nnnnil111UlUil0100

State T Bit

Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIVl instruction, then find the remainder as follows:

(Dividend)-(divisor) x (quotient)= (remainder)
with the SH-2 CPU in which a divider is installed as a peripheral function, the remainder can be
found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIVl for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIVl. For the division sequence, see the following examples.

66

Operation:

DIVl(long m,long n) /* DIVl Rm,Rn */

unsigned long tmpO;

unsigned char old_q,tmpl;

old_q=Q;

Q=(unsigned char)((OxBOOOOOOO & R[n])!=O);

R[n]«=l;

R[n]l=(unsigned long)T;

switch(old_q){

case O:switch(M){

case O:tmpO=R[n];

R[n]-=R[m];

tmpl=(R[n]>tmpO);

switch(Q) {

case O:Q=tmpl;

break;

case l:Q=(unsigned char)(tmpl==O);

break;

break;

case l:tmpO=R[n];

R[n]+=R[m];

tmpl=(R[n]<tmpO);

switch(Q) {

case O:Q=(unsigned char)(tmpl==O);

break;

case l:Q=tmpl;

break;

break;

break;

67

case l:switch(M){

case O:tmpO=R[n];

R[n]+=R[m];

tmpl=(R[n]<tmpO);

switch(Q) {

case O:Q=tmpl;

break;

case l:Q=(unsigned char)(tmpl==O);

break;

break;

case l:tmpO=R[n];

R[n] -=R[m];

tmpl=(R[n]>tmpO);

switch(Q) {

case O:Q=(unsigned char)(tmpl==O);

break;

case l:Q=tmpl;

break;

break;

break;

T=(Q==M);

PC+=2;

68

Example 1:

Rl (32 bits) I RO (16 bits) - Rl (16 bits): Unsigned

SHLL16 RO Upper 16 bits - divisor, lower 16 bits• 0

TST RO,RO Zero division check

BT ZERO_DIV

CMP/HS RO,Rl Overflow check

BT OVERJ>IV

DIVOU Flag initialization

.arepeat 16

DIVl RO,Rl Repeat 16 times

.aendr

ROTCL R1

EXTU.W Rl,R2 Rl - Quotient

E:xample2:

Rl:R2 (64 bits)/RO (32 bits) - R2 (32 bits): Unsigned

TST RO,RO Zero division check

BT ZERO_DIV

CMP/HS RO,Rl Overflow check

BT OVER_DIV

DIVOU Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIVl RO,Rl

.aendr

ROTCL R2 R2 == Quotient

69

Example3:

SHLL16

EXTS.W

XOR

MOV

ROTCL

SUBC

DIVOS

.arepeat

DIVl

.aendr

EXTS.W

ROTCL

ADDC

EXTS.W

Example4:

MOV

ROTCL

SUBC

XOR

SUBC

DIVOS

.arepeat

R0rCL

DIVl

.aendr

ROTCL

ADDC

RO

Rl,Rl

R2,R2

Rl,R3

R3

R2,Rl

RO,Rl

16

RO,Rl

Rl,Rl

R1

R2,Rl

Rl,Rl

R2,R3

R3

Rl,Rl

R3,R3

R3,R2

RO,Rl

32

R2

RO,Rl

R2

R3,R2

Rl (I6 bits)/RO (16 bits) - RI (I6 bits):Signed

Upper I6 bits== divisor, lower I6 bits= 0

Sign-extends the dividend to 32bits

R2-0

Decrements if the dividend is negative

Flag initialization

Repeat 16 times

RI =-quotient (one's complement)

Increments and takes the two's complement ifthe MSB of the
quotient is I

RI =-quotient (two's complement).

R2 (32 bits) I RO (32 bits) = R2 (32 bits):Signed

Sign-extends the dividend to 64 bits (Rl:R2)

R3=0

Decrements and takes the one's complement if the dividend is
negative

Flag initialization

Repeat 32 times

R2 =Quotient (one's complement)

Increments and takes the two's complement if the MSB of the
quotient is 1. R2 =Quotient (two's complement)

70

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH-2 CPU)

Format

DMULS.L Rm,Rn

Abstract

With signed, Rn x Rm ~
MACH,MACL

Code State T Bit

OOllnnnnmmrrunllOl 2 to4

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is a signed arithmetic
operation.

Operation:

DMULS(long rn,long n) /* DMULS.L Rm,Rn */

unsigned long RnL,RnH,RmL,RmH,ResO,Resl,Res2;

unsigned long ternp0,ternpl,ternp2,ternp3;

long ternprn,ternpn,fnLrnL;

ternpn=(long)R[n];

ternprn=(long)R[m];

if (ternpn<O) ternpn=O-ternpn;

if (ternprn<O) ternpm=O-ternprn;

if ((long)(R[n]AR[m])<O) fnLrnL=-1;

else fnLrnL=O;

ternpl=(unsigned long)ternpn;

ternp2=(unsigned long)ternpm;

RnL=ternpl&OxOOOOFFFF;

RnH=(ternpl>>l6)&0xOOOOFFFF;

RmL=temp2&0xOOOOFFFF;

RmH=(temp2>>16)&0xOOOOFFFF;

tempO=RmL*RnL;

templ=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

71

Res2=0

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16}&0xFFFFOOOO;

ResO=tempO+templ;

if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0xOOOOFFFF)+temp3;

}

if (fnLmL<O) {

Res2=-Res2;

if (ResO==O)

Res2++;

else

ResO=(-ResO)+l;

MACH=Res2;

MACL=ResO;

PC+=2;

Example:

DMULS RO,Rl Before execution RO= H'FFFFFFFE, RI= H'00005555

After execution MACH= H'FFFFFFFF, MACL = H'FFFF5556

STS MACH, RO Operation result (top)

STS MACL,RO Operation result (bottom)

72

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH-2 CPU)

Format Abstract

DMULU. L Rm, Rn Without signed, Rn x Rm ~
MACH, MACL

Code State T Bit

0011nnnnmmmm0101 2to4

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU{long m,long n) /* DMULU.L Rm,Rn */

unsigned long RnL,RnH,RmL,RmH,ResO,Resl,Res2;

unsigned long temp0,templ,temp2,temp3;

RnL=R[n]&OxOOOOFFFF;

RnH=(R[n]>>16)&0xOOOOFFFF;

RmL=R[m]&OxOOOOFFFF;

RmH=(R[m]>>16)&0xOOOOFFFF;

tempO=RmL*RnL;

templ=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFFOOOO;

ResO=tempO+templ;

if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

73

MACH=Res2;

MACL=ResO;

PC+=2;

Example:

DMlJLU RO I Rl

STS MACH, RO

STS MACL,RO

Before execution RO= H'FFFFFFFE, RI - H'00005555

After execution MACH - H'00005554, MACL == H'FFFF5556

Operation result (top)

Operation result (bottom)

74

6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)

Format

DT Rn

Abstract

Rn-1 ~Rn;
When Rn is 0, 1 ~ T,
when Rn is nonzero, 0 ~ T

Code State

0100nnnn00010000

T Bit

Comparison
result

Description: The contents of general register Rn is decremented by 1 and the result is compared
to 0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero., the T bit is set to
0.

Operation:

DT(long n) /* OT Rn */

R[n]--;

if (R[n]==O) T=l;

else T=O;

PC+=2;

Example:

MOV #4, R5 Sets the number ofloops.

LOOP:

ADD RO,Rl

DT RS Decrements the RS value and checks whether it has become 0.

BF LOOP Branches to LOOP if T =0. (In this example, loops 4 times.)

75

6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code State TBit

Elcr'S.B Rn,Rn Sign-extended Rm from byte --+ OllOnnnrumnmmlllO 1
Rn

Elcr'S.W Rn,Rn Sign-extended Rm from word+ 0110nnnnillll1IlUilllll
Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 3 I of Rn. If word length is specified, the
bit I 5 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

R[n]=R[m];

if ((R[m]&Ox00000080)==0) R[n]&=OxOOOOOOFF;

else R[n]l=OxFFFFFFOO;

PC+=2;

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

R[n]=R[m];

if ((R[m]&Ox00008000)==0) R[n]&=OxOOOOFFFF;

else R[n]i=OxFFFFOOOO;

PC+=2;

Examples:

Elcr'S.B RO I Rl

Elcr'S.W RO, Rl

Before execution

After execution

Before execution

After execution

RO = H'00000080

RI= H'FFFFFF80

RO = H'00008000

RI = H'FFFF8000

76

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format

EXTU.B Rm,Rn

EXTU.W Rm,Rn

Abstract Code

Zero-extend Rm from byte~ Rn OllOnnnnmnunrnllOO

Zero-extend Rm from word~ Rn OllOnnnnmmmrnllOl

State T Bit

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0 is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to bits
16 to 31 of Rn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */

}

R[n]=R(m];

R[n)&=OxOOOOOOFF;

PC+=2;

EXTUW(long m,long n) /* EXTU.W Rm,Rn */

R[n)=R[m);

R[n)&=OxOOOOFFFF;

PC+=2;

}

Examples:

EXIU.B RO,Rl Before execution RO = H'FFFFFF80

After execution Rl = H'00000080

EXIU.W RO,Rl Before execution RO = H'FFFF8000

After execution RI = H'00008000

77

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rm Rm~PC 0100nummn00101011 2

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP(long m) /* JMP @Rm */

unsigned long temp;

temp=PC;

PC=R[m]+4;

Delay_Slot(temp+2);

Example:

JMP_TABLE:

TRGET:

MOV.L

JMP

MOY

JMP_TABLE,RO

@RO

RO,Rl

.align 4

.data.l TRGET

ADD #1,Rl

Address of RO = TR GET

Branches to TRGET

Executes MOV before branching

Jump table

f- Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

78

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rm PC ~ PR, Rm ~ PC 0100rnnumn00001011 2

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PR. The jump
destination is an address specified by the 32-bit data in general register Rm. The PC points to the
starting address of the second instruction after JSR. The JSR instruction and RTS instruction are
used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long m) /* JSR @Rm */

PR=PC;

PC=R[m]+4;

Delay_Slot(PR+2);

79

Example:

JSR_TABLE:

TRGET:

MOV.L

JSR

XOR

ADD

JSR_TABLE,RO

@RO

Rl,Rl

RO,Rl

...........

. align 4

.data.1 TRGET

NOP

MOV R2,R3

RTS

MOV #70,Rl

RO = Address of 1RGET

Branches to TRGET

Executes XOR before branching

~ Return address for when the
subroutine procedure is completed
(PR data)

Jump table

~ Procedure entrance

Returns to the above ADD instruction

Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

80

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

LDC Rm,SR Rm~SR 0100mmmm00001110 LSB

LDC Rm,GBR Rm~GBR 0100mmmm00011110

LDC Rm,VBR Rm~VBR 0100mmmm00101110 1

LDC.L @Rm+,SR (Rm) ~SR, Rm+ 4 ~Rm 0100mmmm00000111 3 LSB

LDC.L @Rm+,GBR (Rm) ~GBR, Rm+ 4 ~Rm 0100mmmm00010111 3

LDC.L @Rm+,VBR (Rm) ~ VBR, Rm + 4 ~ Rm 0100mmmm00100111 3

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR{long m) /* LDC Rm,SR */

SR=R[m]&Ox000003F3;

PC+=2;

LDCGBR(long m) /* LDC Rm,GBR */

GBR=R[m];

PC+=2;

LDCVBR(long m) /* LDC Rm,VBR */

VBR=R[m];

PC+=2;

81

LDCMSR(long m) /* LDC.L @Rm+,SR */

SR=Read_Long(R[m])&Ox000003F3;

R[m]+=4;

PC+=2;

LDCMGBR(long m) /* LDC.L @Rm+,GBR */

GBR=Read_Long(R[m]);

R[m)+=4;

PC+=2;

LDCMVBR(long m) /* LDC.L @Rm+,VBR */

VBR=Read_Long(R[m]);

R[m)+=4;

PC+=2;

Examples:

LDC RO,SR

LDC. 1 @R15+ I GBR

Before execution

After execution

Before execution

After execution

RO= H'FFFFFFFF, SR= H'OOOOOOOO

SR = H'000003F3

RI5 = H'IOOOOOOO

Rl5 = H'l0000004, GBR =@H'IOOOOOOO

82

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

LDS Rm,MACH Rm~MACH 0100mmmm00001010

LDS Rm,MACL Rm~MACL 0100mmmm00011010

LDS Rm,PR Rm~PR 0100mmmm00101010

LDS.L @Rm+,MACH (Rm) ~ MACH, Rm + 4 ~ Rm 0100mmmm00000110

LDS.L @Rm+,MACL (Rm) ~ MACL, Rm + 4 ~ Rm 0100mmmm00010110

LDS.L @Rm+,PR (Rm) ~ PR, Rm + 4 ~ Rm 0100mmmm00100110

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH-I CPU, the lower IO bits are stored in MACH. For the SH-2 CPU, 32 bits are stored in
MACH.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

MACH=R[m];
~ooooooooouoooo1000001010oOooooH0010HoOOoooooooooooOOoH00000001tooooo01110000000000011ooouooo1oo000000011H1oooOlllOOOOoo .. l if ((MACH&Oxooooo200)==O) MACH&=Ox000003FF; ~ For SH-I CPU(these 2 lines

~ else MACH I =OxFFFFFCOO; ~ not needed for SH-2 CPU)
~ .. ,

PC+=2;

LDSMACL(long m) /* LDS Rm,MACL */

MACL=R[m];

PC+=2;

LDSPR(long m) /* LOS Rm,PR */

PR=R[m];

PC+=2;

83

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

MACH=Read_Long(R[m]);
;
i if ((MACH&Ox00000200) ==0) MACH&=Ox000003FF; i For SH-1 CPU (these 2 lines

i else MACH I =OxFFFFFCOO; ! not needed for SH-2 CPU) ...
R[m]+=4;

PC+=2;

LDSMMACL(long m)

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

/* LDS.L @Rm+,MACL */

LDSMPR(long m) /* LDS.L @Rm+,PR */

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

Examples:

LDS RO,PR

LDS.L @Rl5+,MACL

Before execution RO= H'l2345678, PR= H'OOOOOOOO

After execution PR = H' 12345678

Before execution Rl5 = H'lOOOOOOO

After execution R15 = H'l0000004, MACL =@H'lOOOOOOO

84

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
(SH-2 CPU)

Format

MAC.L @Rm+,@Rn+

Abstract Code

Signed operation, (Rn) x (Rm)+ OOOOnnnnmmmmllll
MAC~MAC

State T Bit

3/(2 to
4)

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range ofH'FFFF800000000000 (minimum) to
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

unsigned long RnL,RnH,RmL,RmH,ResO,Resl,Res2;

unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);

R[n]+=4;

tempm=(long)Read_Long(R[m]);

R[m]+=4;

if ((long)(tempnAtempm)<O) fnLmL=-1;

else fnLmL=O;

if (tempn<O) tempn=O-tempn;

if (tempm<O) tempm=O-tempm;

templ=(unsigned long)tempn;

temp2=(unsigned long)tempm;

85

RnL=templ&OxOOOOFFFF;

RnH=(temp1>>16)&0xOOOOFFFF;

RmL=temp2&0xOOOOFFFF;

RrnH=(temp2>>16)&0xOOOOFFFF;

tempO=RrnL*RnL;

templ=RrnH*RnL;

temp2=RrnL*RnH;

temp3=RrnH*RnH;

Res2=0;

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFFOOOO;

ResO=ternpO+ternpl;

if (ResO<ternpO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLrn<O){

Res2=-Res2;

if (ResO==O) Res2++;

else ResO=(-ResO)+l;

if (S==l) {

ResO=MACL+ResO;

if (MACL>ResO) Res2++;

Res2+=(MACH&Ox0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){

Res2=0x00008000;

ResO=OxOOOOOOOO;

if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;

ResO=OxFFFFFFFF;

} ;

86

MACH=Res2;

MACL=ResO;

else

ResO=MACL+ResO;

if (MACL>ResO) Res2++;

Res2+=MACH

MACH=Res2;

MACL=ResO;

PC+=2;

Example:

MOVA TBLM,RO

MOV RO,Rl

MOVA TBLN,RO

CLRMAC

MAC.L @RO+,@Rl+

MAC.L @RO+,@Rl+

STS MACL,RO

...............

. align 2

TBLM .data.I H'l234ABCD

.data.I H'5678EF01

TBLN .data.I H'0123ABCD

.data.I H'4567DEFO

Table address

Table address

MAC register initialization

Store result into RO

87

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU)

Format Abstract Code State T Bit

MAC. w @Rm+, @Rn+ With signed, (Rn) x (Rm) + MAC OlOOnnnnmmmmllll 3/(2)
~MAC

Description: Multiplies 16-bit operands obtained using the contents of general registers Rm and
Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final result is
stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to I, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to I. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

88

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction

Format

MAC.W @Rm+,@Rn+
MAC @Rm+, @Rn+

Abstract

Signed operation,
(Rn) x (Rm) + MAC -7 MAC

Code State T Bit

OlOOnnnnmrrurunllll 3/(2)

Description: Signed-multiplicates 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by
two.

When the S bit is cleared to 0, the operation is 16 x 16 + 64 ~ 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 x 16 + 32 ~ 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH-2 CPU performs a 16 x 16 + 64 ~ 64 bit multiply and
accumulate operation and the SH-1 CPU performs a 16 x 16 + 42 ~ 42 bit multiply and
accumulate operation.

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

long tempm,tempn,dest,src,ans;

unsigned long templ;

tempn=(long)Read_Word(R[n]);

R[n]+=2;

tempm=(long)Read_Word(R[m]);

R[m]+=2;

templ=MACL;

tempm=((long)(short)tempn*(long)(short)tempm);

89

if ((long)MACL>=O) dest=O;

else dest=l;

if ((long)ternpm>=O

src=O;

ternpn=O;

else

src=l;

ternpn=OxFFFFFFFF;

src+=dest;

MACL+=ternpm;

if ((long)MACL>=O) ans=O;

else ans=l;

ans+=dest;

if (S==l) {

if (ans==l) ...
i if (src==O I I src==2) l For SH-1 CPU (these 2 lines

l... ~.:~.!.::'.~.:~.~~-~.?.~.?..:.:J not needed for SH-2 CPU)
if (src==O) MACL=Ox7FFFFFFF;

if (src==2) MACL=Ox80000000;

else

MACH+=ternpn;

if (ternpl>MACL) MACH+=l;
f""""if"···(··(~~~~·(i;(i()'()"(i()"2()'0·;·:·:0)················· l ForSH-1 CPU (these 3 lines

! MACH&=Ox000003FF; ! not needed for SH-2 CPU)

! ~:.~::: .. ~;.~! .. :~.::.:.::..:.~.~.?.! ... !
PC+=2;

90

Example:

J!DVA TBIM,RO Table address

J!DV RO,Rl

MOVA TBLN,RO Table address

CLRMAC MAC register initialization

MAC.W @RO+,@Rl+

MAC.W @RO+,@Rl+

STS MACL,RO Store result into RO

...............

. align 2

TBIM .data.w H'l234

. data. w H'5678

TBLN .data.w H'Ol23

.data.w H' 4567

91

6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV Rm,Rn Rm~Rn 0110nnnnmmrrun0011 1

MOV.B Rm, @Rn Rm~ (Rn) OOlOnnnnmmrrunOOOO

MOV.W Rm,@Rn Rm~ (Rn) 0010nnnnmmrrun0001

MOV.L Rm,@Rn Rm~ (Rn) 0010nnnnmmrrun0010

MOV.B @Rm,Rn (Rm) ~ sign extension ~ Rn OllOnnnnmmrrunOOOO

MOV.W @Rrn,Rn (Rm) ~ sign extension ~ Rn 0110nnnnmmrrun0001

MOV.L @Rrn,Rn (Rm)~ Rn 0110nnnnmmrrun0010

MOV.B Rm,@-Rn Rn - 1 ~ Rn, Rm ~ (Rn) 0010nnnnmmrrun0100

MOV.W Rm,@-Rn Rn-2 ~Rn, Rm~ (Rn) 0010nnnnmmrrun0101

MOV.L Rm,@-Rn Rn-4 ~Rn, Rm~ (Rn) 0010nnnnmmrrun0110

MOV.B @Rm+,Rn (Rm) ~sign extension ~ Rn, Rm 0110nnnnmmrrun0100
+1 ~Rm

MOV.W @Rm+,Rn (Rm) ~sign extension ~ Rn, Rm 0110nnnnmmrrun0101
+2~Rm

MOV.L @Rm+,Rn (Rm) ~ Rn, Rm + 4 ~ Rm 0110nnnnmmrrun0110

MOV.B Rm,@(RO,Rn) Rm~ (RO+ Rn) OOOOnnnnmmrrunOlOO

MOV.W Rm,@(RO,Rn) Rm~ (RO+ Rn) 0000nnnnmmrrun0101

MOV.L Rm,@(RO,Rn) Rm~ (RO+ Rn) 0000nnnnmmmm0110

MOV.B @(RO,Rrn) ,Rn (RO + Rm) ~ sign extension ~ OOOOnnnnmmrrunllOO
Rn 0000nnnnmmrrun1101

MOV.W @(RO,Rrn) ,Rn (RO + Rm) ~ sign extension ~
Rn

OOOOnnnnmmrrunlllO

MOV.L @(RO,Rrn) ,Rn (RO+ Rm)~ Rn

Description: Transfers the source operand to the destination. When the operand ,is stored in
memory, the transferred data can be a byte, word, or longword. When the source operand is in
memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

MOV(long m,long n) /* MOV Rm,Rn */

R[n]=R[m];

PC+=2;

92

MOVBS(long m,long n) /* MOV.B Rm,@Rn */

Write_Byte(R[n],R[m]);

PC+=2;

MOVWS(long m,long n) /* MOV.W Rm,@Rn */

Write_Word(R[n],R[m]);

PC+=2;

MOVLS(long m,long n) /* MOV.L Rm,@Rn */

}

Write_Long(R[n],R[m]);

PC+=2;

MOVBL(long m,long n) /* MOV.B @Rm,Rn */

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&Ox80)==0) R[n]&OxOOOOOOFF;

else R[n]l=OxFFFFFFOO;

PC+=2;

MOVWL(long m,long n) /* MOV.W @Rm,Rn */

R[n]=(long)Read_Word(R[m]);

if ((R[n]&OxBOOO)==O) R[n]&OxOOOOFFFF;

else R[n] l=OxFFFFOOOO;

PC+=2;

MOVLL(long m,long n)

R[n]=Read_Long(R[m]);

PC+=2;

/* MOV.L @Rm,Rn */

93

MOVBM(long rn,long n) /* MOV.B Rrn,@-Rn */

}

Write_Byte(R[n]-1,R[rn]);

R[n]-=1;

PC+=2;

MOVWM(long rn,long n) /* MOV.W Rrn,@-Rn */

}

Write_Word(R[n]-2,R[rn]);

R[n]-=2;

PC+=2;

MOVLM(long rn,long n) /* MOV.L Rrn,@-Rn */

Write_Long(R[n]-4,R[rn]);

R[n]-=4;

PC+=2;

MOVBP(long rn,long n) /* MOV.B @Rrn+,Rn */

R[n]=(long)Read_Byte(R[rn]);

if ((R[n]&Ox80)==0) R[n]&OxOOOOOOFF;

else R[n]i=OxFFFFFFOO;

if (n!=rn) R[rn]+=l;

PC+=2;

MOVWP(long rn,long n) /* MOV.W @Rrn+,Rn */

R[n]=(long)Read_Word(R[rn]);

if ((R[n]&OxBOOO)==O) R[n]&OxOOOOFFFF;

else R[n) i=OxFFFFOOOO;

if (n!=rn) R[rn]+=2;

PC+=2;

94

MOVLP(long m,long n) /* MOV.L @Rm+,Rn */

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;

MOVBSO(long m,long n) /* MOV.B Rm,@(RO,Rn) */

Write_Byte(R[n]+R[O],R[m]);

PC+=2;

MOVWSO(long m,long n) /* MOV.W Rm,@(RO,Rn) */

Write_Word(R[n]+R[O],R[m]);

PC+=2;

MOVLSO(long m,long n) /* MOV.L Rm,@(RO,Rn) */

Write_Long(R[n]+R[O],R[m]);

PC+=2;

MOVBLO(long m,long n) /* MOV.B @(RO,Rm),Rn */

R[n]=(long)Read_Byte(R[m]+R[O]);

if ((R[n]&Ox80)==0) R[n]&OxOOOOOOFF;

else R[n] l=OxFFFFFFOO;

PC+=2;

MOVWLO(long m,long n) /* MOV.W @(RO,Rm),Rn */

R[n]=(long)Read_Word(R[m]+R[O]);

if ((R[n]&Ox8000)==0) R[n]&OxOOOOFFFF;

else R[n] l=OxFFFFOOOO;

PC+=2;

95

MOVLLO{long m,long n) /* MOV.L @(RO,Rm),Rn */

R[n]=Read_Long(R[m]+R[O]);

PC+=2;

Example:

MOV RO,Rl

MOV.W RO,@Rl

MOV.B @RO,Rl

MOV.W RO,@-Rl

MOV.L @RO+,Rl

Before execution RO= H'FFFFFFFF, RI ""H'OOOOOOOO

After execution RI - H'FFFFFFFF

Before execution

After execution

RO - H'FFFF7F80

@RI -H'7F80

Before execution @RO= H'80, RI = H'OOOOOOOO

After execution RI - H'FFFFFF80

Before execution RO == H'AAAAAAAA, RI = H'FFFF7F80

After execution RI = H'FFFF7F7E, @RI = H'AAAA

Before execution RO= H'I2345670

After execution RO== H'I2345674, RI =@H'I2345670

MOV.B Rl,@(RO,R2) Before execution R2 = H'00000004, RO ... H'IOOOOOOO

After execution RI == @H'I0000004

MOV. w @ (RO, R2) , Rl Before execution

After execution

R2 = H'00000004, RO = H'I 0000000

RI =@H'l0000004

96

6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV #imm,Rn imm ~ sign extension ~ Rn lllOnnnniiiiiiii 1

MOV.W @(disp, PC) ,Rn (disp x 2 + PC) ~sign lOOlnnnndddddddd
extension ~ Rn

MOV.L @(disp,PC),Rn (disp x 4 + PC) ~ Rn llOlnnnndddddddd

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B '00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC+ 510 bytes or PC+ 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOY instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVI(long i,long n) /* MOV #inun,Rn */

if ((i&Ox80)==0) R[n]=(OxOOOOOOFF & (long)i);

else R[n]=(OxFFFFFFOO I (long)i);

PC+=2;

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

long disp;

97

disp=(OxOOOOOOFF & (long)d);

R[n]=(long)Read_Word(PC+(disp<<l));

if ((R[n] &Ox8000)==0) R[n] &=OxOOOOFFFF;

else R[n]J=OxFFFFOOOO;

PC+=2;

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

long disp;

disp=(OxOOOOOOFF & (long)d);

R[n]=Read_Long((PC&OxFFFFFFFC)+(disp<<2));

PC+=2;

Example:

Address

1000 MOV #H'80,Rl Rl = H'FFFFFF80

1002 MOV.W IMM,R2 R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #-1,RO

1006 TST RO,RO f- PC location used for address calculation for the
MOV.W instruction

1008 MOVT Rl3

lOOA BRA NEXT Delayed branch instruction

lOOC MOV.L @(4,PC),R3 R3 = H'12345678

lOOE IMM .data.w H'9ABC

1010 .data.w H'l234

1012 NEXT JMP @R3 Branch destination of the BRA instruction

1014 CMP/EQ #0,RO f- PC location used for address calculation for the
MOV.L instruction

.align 4

1018 .data.l H'12345678

98

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV.B @(disp,GBR) ,RO (disp + GBR) ~ sign 11000100dddddddd 1
extension ~ RO

MOV.W @(disp,GBR),RO (disp x 2 + GBR) ~ 11000101dddddddd
sign extension -t RO

MOV.L @(disp,GBR) ,RO (disp x 4+ GBR) ~ RO 11000110dddddddd

MOV.B RO,@(disp,GBR) RO~ (disp + GBR) llOOOOOOdddddddd

MOV.W RO,@(disp,GBR) RO ~ (disp x 2 + GBR) llOOOOOldddddddd

MOV.L RO,@(disp,GBR) RO ~ (disp x 4 + GBR) 11000010dddddddd

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but the
register is fixed to RO.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is a longword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within + 1020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(RO,Rn) mode must be used after the GBR data is
transferred to a general register. When the source operand is in memory, the loaded data is stored
in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always RO. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND

ADD

#80, RO __________. ADD

#20, R1 ____----_. AND

#20,R1

#80,RO

Figure 6.1 Using RO after MOV

99

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR) ,RO */

long disp;

disp=(OxOOOOOOFF & (long)d);

R[O]=(long)Read_Byte(GBR+disp);

if ((R[O]&Ox80)==0) R[O]&=OxOOOOOOFF;

else R[OJl=OxFFFFFFOO;

PC+=2;

MOVWLG(long d) /* MOV.W @(disp,GBR) ,RO */

long disp;

disp=(OxOOOOOOFF & (long)d);

R[O]=(long)Read_Word(GBR+(disp<<l));

if ((R[O]&Ox8000)==0) R[O]&=OxOOOOFFFF;

else R[OJl=OxFFFFOOOO;

PC+=2;

MOVLLG(long d) /* MOV.L @(disp,GBR) ,RO */

long disp;

disp=(OxOOOOOOFF & {long)d);

R[O]=Read_Long(GBR+(disp<<2));

PC+=2;

MOVBSG(long d) /* MOV.B RO, @(disp,GBR) */

long disp;

100

}

disp=(OxOOOOOOFF & (long)d);

Write_Byte(GBR+disp,R[O]);

PC+=2;

MOVWSG(long d) /* MOV.W RO,@(disp,GBR) */

}

long disp;

disp=(OxOOOOOOFF & (long)d);

Write_Word(GBR+(disp<<l),R[O]);

PC+=2;

MOVLSG(long d) /* MOV.L RO,@(disp,GBR) */

long disp;

disp=(OxOOOOOOFF & (long)d);

Write_Long(GBR+(disp<<2),R[O]);

PC+=2;

Examples:

MOV .L @(2,GBR) I RO

MOV.B RO,@(l,GBR)

Before execution

After execution

Before execution

After execution

101

@(GBR + 8) = H'l 2345670

RO =@H'l2345670

RO = H'FFFF7F80

@(GBR + 1) = H'FFFF7F80

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV.B RO,@(disp,Rn) RO --+ (disp + Rn) lOOOOOOOnnnndddd 1

MOV.W RO,@(disp,Rn) RO --+ (disp x 2 + Rn) lOOOOOOlnnnndddd

MOV.L Rm,@(disp,Rn) Rm --+ (disp x 4 + Rn) OOOlnnnnmmmmdddd

MOV.B @(disp,Rm), RO (disp + Rm) --+ sign 10000100mmmmdddd
extension --+ RO

MOV.W @(disp,Rm),RO (disp x 2 + Rm) --+sign 10000101mrrmundddd
extension --+ RO

MOV.L @(disp,Rm),Rn (disp x 4 + Rm) --+ Rn OlOlnnnnmmmmdddd

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register is fixed. When the data is a byte, the 4-bit displacement is
zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the data is a longword, the 4-bit displacement is zero-extended and
quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too
short to reach the memory operand, the aforementioned @(RO,Rn) mode must be used. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to a
longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND

ADD

#80, RO ________,. ADD

#20, R1 __----_. AND
#20,R1

#80,RO

Figure 6.2 Using RO after MOV

102

Operation:

MOVBS4(long d,long n) /* MOV.B RO,@(disp,Rn) */

long disp;

disp=(OxOOOOOOOF & (long)d);

Write_Byte(R[n]+disp,R[O]);

PC+=2;

MOVWS4(long d,long n) /* MOV.W RO,@(disp,Rn) */

}

long disp;

disp=(OxOOOOOOOF & (long)d);

Write_Word(R[n]+(disp<<l),R[O]);

PC+=2;

MOVLS4(long m,long d,long n)

/* MOV.L Rm,@(disp,Rn) */

long disp;

disp=(OxOOOOOOOF & (long)d);

Write_Long(R[n]+(disp<<2),R[m]);

PC+=2;

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),RO */

long disp;

disp=(OxOOOOOOOF & (long)d);

R[O]=Read_Byte(R[m]+disp);

if ((R[O]&Ox80)==0) R[O]&=OxOOOOOOFF;

else R[O]i=OxFFFFFFOO;

PC+=2;

103

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),RO */

}

long disp;

dis~(OxOOOOOOOF & (long)d);

R[O]=Read_Word(R[m]+(disp<<l));

if ((R[O]&Ox8000)==0) R[O]&=OxOOOOFFFF;

else R[O]l=OxFFFFOOOO;

PC+=2;

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

long disp;

dis~(OxOOOOOOOF & (long)d);

R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;

}

Examples:

MOV.L @(2,RO),Rl

MOV.L RO,@(H'F,Rl)

Before execution@(RO + 8) == H'12345670

After execution Rl -@H'12345670

Before execution RO== H'FFFF7F80

After execution @(Rl + 60) - H'FFFF7F80

104

6.36 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code State T Bit

MOVA @ (disp, PC) , RO disp x 4 + PC ~ RO llOOOllldddddddd

Description: Stores the effective address of the source operand into general register RO. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOVA instruction, but the lowest two bits of the PC are corrected to B '00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC) ,RO */

long disp;

disp=(OxOOOOOOFF & (long)d);

R[O]=(PC&OxFFFFFFFC)+(disp<<2);

PC+=2;

}

Example:

Address .org H'1006

1006 MOVA STR,RO

1008 MOV.B @RO,Rl

lOOA ADD R4,RS

.align 4

lOOC STR: . sdata "XYZP12"

Address of STR -7 RO

Rl = "X" f- PC location after correcting the lowest
two bits

f- Original PC location for address calculation for
the MOVA instruction

2002

2004

2006

BRA

MOVA

NOP

TRGET Delayed branch instruction

@co, PC) , RO Address of TR GET + 2 -7 RO

105

6.37 MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code State T Bit

MOVT Rn T~Rn 0000nnnn00101001

Description: Stores the T bit value into general register Rn. When T == l, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

R[n]=(OxOOOOOOOl & SR);

PC+=2;

}

Example:

XOR R2,R2 R2=0

CMP/PZ R2 T=l

MOVT RO RO= 1

CLRT T=O

MOVT R1 Rl =0

106

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)

Format Abstract Code State T Bit

MUL.L Rm,Rn Rn xRm ~MACL OOOOnnnnnunmmOlll 2to4

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL(long m, long n) /* MUL. L Rm, Rn * /

MACL=R[n] *R[m];

PC+=2;

Example:

MUL.L RO,Rl Before execution RO= H'FFFFFFFE, Rl = H'00005555

After execution MACL = H'FFFF5556

STS MACL,RO Operation result

107

6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format

MULS.W Rm,Rn

MULS Rm,Rn

Abstract Code

Signed operation, Rn x Rm ~ 001onnnnmmmmllll
MACL

State T Bit

1to3

Description: Perfonns 16-bit multiplication of the contents.of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn */

MACL=((long)(short)R[n]*(long)(short)R[m]);

PC+=2;

}

Example:

MULS RO,Rl Before execution RO== H'FFFFFFFE, RI = H.'00005555

After execution MACL = H'FFFF5556

STS MACL, RO Operation result

108

6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code State T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm ~MAC 0010nnnnmmrnm1110 1to3
MULU Rm,Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */

MACL=((unsigned long)(unsigned short)R[n]

*(unsigned long)(unsigned short)R[m]);

PC+=2;

Example:

MULU RO,Rl Before execution

After execution

STS MACL' RO Operation result

RO= H'00000002, Rl - H'FFFFAAAA

MACL = H'00015554

109

6.41 NEG (Negate): Arithmetic Instruction

Format Abstract Code State. T Bit

NEG Rm,Rn 0-Rm ~Rn OllOnnnnmmmrnlOll

Description: Takes the two's complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n)

R[n)=O-R[m];

PC+=2;

Example:

/* NEG Rm,Rn */

NEG RO,Rl Before execution RO= H'OOOOOOOl

After execution Rl = H'FFFFFFFF

110

6.42 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

NEGC Rm,Rn 0 - Rm - T ~ Rn, Borrow~ T 0110nnnnrnnunrn1010 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */

unsigned long temp;

temp=O-R[m];

R[n]=temp-T;

if (O<temp) T=l;

else T=O;

if (temp<R[n]) T=l;

PC+=2;

Examples:

CLRT Sign inversion of RI and RO (64 bits)

NEGC Rl, Rl Before execution RI = H'OOOOOOOI, T = 0

After execution

NEGC RO, RO Before execution

After execution

RI =H'FFFFFFFF, T= I

RO = H'OOOOOOOO, T = I

RO = H'FFFFFFFF, T = I

111

6.43 NOP (No Operation): System Control Instruction

Format Abstract Code

NOP No operation 0000000000001001

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

Example:

NOP Executes in one cycle

112

State T Bit

1

6.44 NOT (NOT-Logical Complement): Logic Operation Instruction

Format Abstract Code State T Bit

NOT Rm,Rn -Rm~ Rn 0110nnnrummnm0111

Description: Talces the one's complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

R[n]=-R[m];

PC+=2;

Example:

NOT RO, Rl Before execution RO= H'AAAAAAAA

After execution RI = H'55555555

113

6.45 OR.(OR Logical} Logic Operation Instruction

Format Abstract Code State T Bit

OR Rm,Rn Rn I Rm~Rn 0010nnnnrrunmml011 1

OR lfimm, RO RO I imm ~RO 11001011iiiiiiii 1

OR.B lfimm,@(RO,GBR) (RO+ GBR) I imm ~(RO+ llOOlllliiiiiiii 3
GBR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

R[n]l=R[m];

PC+=2;

ORI (long i) /* OR #imm,RO */

R[O) i=(OxOOOOOOFF & (long)i);

PC+=2;

ORM(long i) /* OR.B #imm,@(RO,GBR) */

long temp;

temp=(long)Read_Byte(GBR+R[O]);

templ=(OxOOOOOOFF & (long)i);

Write_Byte(GBR+R[O],temp);

PC+=2;

114

Examples:

OR RO,Rl Before execution RO= H'AAAA5555, Rl = H'55550000

After execution Rl = H'FFFF5555

OR #H'FO,RO Before execution RO = H'00000008

After execution RO = H'OOOOOOF8

OR.B #H'SO,@(RO,GBR) Before execution @(RO,GBR) = H'A5

After execution @(RO,GBR) = H'F5

115

6.46 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code State T Bit

ROTCL Rn T~Rn ~T 0100nnnn00100100 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

MSB LSB

ROTCL
c[pj.____ __ t:J

Figure 6.3 Rotate with Carry Left

Operation:

ROTCL(long n) /* ROTCL Rn */

long temp;

if ((R[n]&Ox80000000)==0) temp=O;

else temp=l;

R[n]«=l;

if (T==l) R[n]i=OxOOOOOOOl;

else R[n]&=OxFFFFFFFE;

if (temp==l) T=l;

else T=O;

PC+=2;

Example:

ROTCL RO Before execution

After execution

RO = H'80000000, T = 0

RO = H'OOOOOOOO, T = I

116

6.47 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code State T Bit

ROTCR Rn T~ Rn ~T 0100nnnn00100101 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTCR d~-~KPJ
Figure 6.4 Rotate with Carry Right

Operation:

ROTCR(long n) /* ROTCR Rn */

long temp;

if ((R[n]&OxOOOOOOOl)==O) temp=O;

else temp=l;

}

R[n]>>=l;

if (T==l) R[nJl=OxBOOOOOOO;

else R[n]&=Ox7FFFFFFF;

if (temp==l) T=l;

else T=O;

PC+=2;

Examples:

ROTCR RO Before execution

After execution

RO = H'OOOOOOO I, T = I

RO = H'80000000, T = I

117

6.48 ROTL (Rotate Left): Shift Instruction

Format Abstract Code State TBit

ROTL Rn T f- Rn f- MSB 0100nnnn00000100 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL ~~-b
Figure 6.5 Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

if ((R[n]&Ox80000000)==0) T=O;

else T=l;

R[n]«=l;

if (T==l) R[n] i=OxOOOOOOOl;

else R[n]&=OxFFFFFFFE;

PC+=2;

Examples:

ROTL RO Before execution

After execution

RO = H'80000000, T = 0

RO= H'OOOOOOOl, T = 1

118

6.49 ROTR (Rotate Right): Shift Instruction

Format Abstract Code State T Bit

ROTR Rn LSB ~Rn ~T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTR d~-~l 1 .. C!J

Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

if ((R[n]&OxOOOOOOOl)==O) T=O;

else T=l;

R[n)>>=l;

if (T==l) R[n) l=Ox80000000;

else R[n]&=Ox7FFFFFFF;

PC+=2;

Examples:

ROTR RO Before execution RO= H'OOOOOOOl, T = 0

After executionRO = H'80000000, T = 1

119

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area ~ PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTE() /* RTE */

unsigned long temp;

temp=PC;

PC=Read_Long(R[15])+4;

R[l5]+=4;

SR=Read_Long(R[15]}&0x000003F3;

R[15]+=4;

Delay_Slot(temp+2);

Example:

RTE

ADD #8,R14

Returns to the original routine

Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

120

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR~PC 0000000000001011 2

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTS() /* RTS */
{

unsigned long temp;

ternp=PC;

PC=PR+4;
Delay_Slot(ternp+2);

Example:

MOV.L

JSR

NOP

ADD

TABLE,R3
@R3

RO,Rl

TABLE: .data.l TRGET

TRGET: MOV

RTS

MOV

Rl,RO

#12,RO

R3 == Address of TR GET
Branches to TRGET
Executes NOP before JSR
f- Return address for when the subroutine procedure is
completed (PR data)

Jump table

f- Procedure entrance
PRdata~PC

Executes MOY before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

121

6.52 SETT (Set T Bit): System Control Instruction

Format Abstract

SETT 1 --+ T

Description: Sets the T bit to I.

Operation:

SETT() /*SETT */

T=l;

PC+=2;

Example:

SETT Before execution T = 0

After execution T - I

Code

0000000000011000

122

State T Bit

6.53 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code State T Bit

SHAL Rn T f- Rn f- 0 0100nnnn00100000 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

MSB LSB
SHAL 0

Figure 6.7 Shift Arithmetic Left

Operation:

SHAL (long n) /* SHAL Rn (Same as SHLL) * /

if ((R[n]&Ox80000000)==0) T=O;

else T=l;

R[n]«=l;

PC+=2;

Example:

SHAL RO Before execution RO= H'80000001, T = 0

After execution RO = H'00000002, T = 1

123

6.54 SHAR (Shift Arithmetic Right):··shift Instruction

Format Abstract Code State T Bit

SHAR Rn MSB~Rn ~r 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.8).

MSB

SHAR

Figure 6.8 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

long temp;

if ((R[n]&OxOOOOOOOl)==O) T=O;

else T=l;

if ((R[n]&Ox80000000)==0) temp=O;

else temp=l;

R[n]»=l;

if (temp==l) R[n]l=Ox80000000;

else R[n]&=Ox7FFFFFFF;

PC+=2;

Example:

SHAR RO Before execution

After execution

RO= H'80000001, T = 0

RO = H'COOOOOOO, T = 1

124

6.55 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code State T Bit

SHLL Rn T f- Rn f- 0 OlOOnnnnOOOOOOOO 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

MSB
SHLL

Figure 6.9 Shift Logical Left

Operation:

SHLL {long n) /* SHLL Rn (Same as SHAL) * /

if {{R[n]&Ox80000000)==0) T=O;

else T=l;

R[n]<<=l;

PC+=2;

Examples:

SHLL RO Before execution

After execution

RO= H'80000001, T = 0

RO = H'00000002, T = 1

125

LSB
0

6.56 SHLLn (Shift Logical Left nBits): Shift Instruction

Format Abstract Code State T Bit

SHLL2 Rn Rn<<2 ~Rn 0100nnnn00001000

SHLL8 Rn Rn<<8 ~Rn 0100nnnn00011000

SHLL16 Rn Rn<<16 ~Rn 0100nnnn00101000

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

SHLL2

0

SHLL8

0

SHLL16

0

Figure 6.10 Shift Logical Left n Bits

Operation:

SHLL2 (long n) /* SHLL2 Rn * /

R[n)«=2;

PC+=2;

}

126

SHLLB(long n) /* SHLLB Rn */

R[n]«=B;

PC+=2;

SHLL16(long n) /* SHLL16 Rn */

R[n]«=l6;

PC+=2;

Examples:

SHLL2 RO

SHLLB RO

SHLL16 RO

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO= H'12345678

RO= H'48D159EO

RO= H'12345678

RO = H'34567800

RO= H'12345678

RO = H'56780000

127

6.57 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code State T Bit

SHLR Rn o~Rn~T OlOOnnnnOOOOOOOl LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

MSB

SHLR 0

Figure 6.11 Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

if ((R[n]&OxOOOOOOOl)==O) T=O;

else T=l;

R(n]»=l;

R[n]&=Ox7FFFFFFF;

PC+=2;

Examples

SHLR RO Before execution RO - H'8000000 l, T = 0

After execution RO = 8'40000000, T = l

128

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State TBit

SHLR2 Rn Rn>>2~ Rn 0100nnnn00001001

SHLRS Rn Rn>:>8 ~Rn 0100nnnn00011001

SHLR16 Rn Rn>>16 ~Rn 0100nnnn00101001

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

SHLR2

0

SHLR8

0

SHLR16

0

Figure 6.12 Shift Logical Right n Bits

Operation:

SHLR2 (long n) /* SHLR2 Rn * /
{

}

R[n]>>=2;

R[n]&=Ox3FFFFFFF;

PC+=2;

129

SHLR8 (long n) /* SHLR8 Rn * /

R[n]>>"'8;

R[n]&=OxOOFFFFFF;

PC+=2;

SHLR16(long n) /* SHLR16 Rn */

R[n]»=l6;

R[n]&=OxOOOOFFFF;

PC+=2;

Examples:

SHLR2 RO Before execution

After execution

SHLR8 RO Before execution

After execution

SHLR16 RO Before execution

After execution

RO• H' 12345678

RO- H'048D159E

RO - H'l2345678

RO • H'OO 123456

RO• H'12345678

RO - H'OOOO 1234

130

6.59 SLEEP (Sleep): System Control Instruction

Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP()/* SLEEP*/

PC-=2;

Wait_for_exception;

Example:

SLEEP Transits power-down mode

131

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

STC SR,Rn SR----+ Rn OOOOnnnnOOOOOOlO

STC GBR,Rn GBR----+ Rn 0000nnnn00010010

STC VBR,Rn VBR----+ Rn 0000nnnn00100010

STC.L SR,@-Rn Rn - 4 ----+ Rn, SR ----+ (Rn) 0100nnnn00000011 2

STC.L GBR,@-Rn Rn - 4 ----+ Rn, GBR ----+ (Rn) 0100nnnn00010011 2

STC.L VBR,@-Rn Rn - 4 ----+ Rn, VBR ----+ (Rn) 0100nnnn00100011 2

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(long n)

R(n]=SR;

PC+=2;

/* STC SR,Rn */

STCGBR(long n) /* STC GBR,Rn */

R[n]=GBR;

PC+=2;

STCVBR(long n) /* STC VBR,Rn */

R[n]=VBR;

PC+=2;

132

STCMSR(long n) /* STC.L SR,@-Rn */

}

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

STCMGBR(long n) /* STC.L GBR,@-Rn */

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

STCMVBR(long n) /* STC.L VBR,@-Rn */

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

Examples

STC SR,RO

STC.L GBR,@-Rl5

Before execution

After execution

Before execution

After execution

RO - H'FFFFFFFF, SR = H'OOOOOOOO

RO = H'OOOOOOOO

Rl5 = H'I0000004

RIS = H'l0000000,@Rl5 = GBR

133

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

STS MACH,Rn MACH~ Rn 0000nnnn00001010

STS MACL,Rn MACL~Rn 0000nnnn00011010

STS PR, Rn PR~Rn 0000nnnn00101010

STS.L MACH,@-Rn Rn - 4 ~ Rn, MACH ~ (Rn) 0100nnnn00000010

STS.L MACL,@-Rn Rn - 4 ~ Rn, MACL ~ (Rn) 0100nnnn00010010

STS.L PR,@-Rn Rn -4 ~Rn, PR~ (Rn) 0100nnnn00100010

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

If the system register is MACH in the SH-1 series, the value of bit 9 is transferred to and stored in
the higher 22 bits (bits 31to10) of the destination. With the SH-2 series, the 32 bits of MACH are
stored directly.

Operation:

STSMACH(long n) /* STS MACH,Rn */

R[n]=MACH;

!,. ~~n;!:~:!:~:~~~~~200)==0) :_;_

else R[n]i=OxFFFFFCOO;
inooo•o•••••noooooooooooooooooooouoooouoooooooooooo:

PC+=2;

STSMACL(long n) /* STS MACL,Rn */

R[n]=MACL;

PC+=2;

134

For SH- I CPU (these 2 lines not

needed for SH-2 CPU)

STSPR(long n) /* STS PR,Rn */

R[n]=PR;

PC+=2;

STSMMACH(long n) /* STS.L MACH,@-Rn */

R[n]-=4;

•••oo••ooooouooooooo .. 001ouo••••oooooonoooooonooooooooooooooooooooooooooooooooooooouooooooooooooooo
~ if ((MACH&Ox00000200)==0) ~
: :

!,_~ ::~:e;~::~~:~,MACH&Ox000003FF) i l .. l
(R[n],MACHIOxFFFFFCOO)

For SH-I CPU

.. ,
r····~;·1~~=~~·~'(-;(~j··:···~~~)"; .. ········1 For SH-2 CPU
...

PC+=2;

STSMMACL(long n) /* STS.L MACL,@-Rn */

R[n]-=4;

Write_Long(R[n],MACL);

PC+=2;

STSMPR(long n) /* STS.L PR,@-Rn */

R[n]-=4;

Write_Long(R[n],PR);

PC+=2;

Example:

STS MACH, RO Before execution

After execution

STS. L PR, @-Rl5 Before execution

After execution

RO= H'FFFFFFFF, MACH = H'OOOOOOOO

RO = H'OOOOOOOO

Rl5 = H'l0000004

Rl5 = H'IOOOOOOO,@Rl5 =PR

135

6.62 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code State T Bit

SUB Rm,Rn Rn-Rm~ Rn OOllnnnnrrunmmlOOO

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB{long m,long n) /* SUB Rm,Rn */

R[n]-=R[m];

PC+=2;

Example:

SUB RO,Rl Before execution RO= H'OOOOOOOI, RI= H'80000000

After execution RI = H'7FFFFFFF

136

6.63 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

SUBC Rm,Rn Rn - Rm- T ~ Rn, Borrow~ T 0011nnnmrururun1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. This instruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBC{long m,long n) /* SUBC Rm,Rn */

unsigned long tmpO,tmpl;

tmpl=R[n]-R[m);

tmpO=R[n);

R[n)=tmpl-T;

if (tmpO<tmpl) T=l;

else T=O;

if (tmpl<R[n)) T=l;

PC+=2;

Examples:

CLRT RO:Rl(64 bits)-R2:R3(64 bits)= RO:Rl(64 bits)

SUBC R3,Rl Before execution T = 0, RI= H'OOOOOOOO, R3 = H'OOOOOOOl

After execution

SUBC R2, RO Before execution

After execution

T = 1, R l = H'FFFFFFFF

T = 1, RO = H'OOOOOOOO, R2 = H'OOOOOOOO

T = 1, RO = H'FFFFFFFF

137

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic
Instruction

Format Abstract Code State T Bit

SUBV Rm,Rn Rn - Rm~ Rn, Underflow~ T OOllnnnnmnunmlOll 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */

long dest,src,ans;

if ((long)R[n]>=O) dest=O;

else dest=l;

if ((long)R[m)>=O) src=O;

else src=l;

src+=dest;

R[n) -=R[m);

if ((long)R[n]>=O) ans=O;

else ans=l;

ans+=dest;

if (src==l)

if (ans==l) T=l;

else T=O;

else T=O;

PC+=2;

Examples:

SUBV RO,Rl

SUBV R2,R3

Before execution

After execution

Before execution

After execution

RO= H'00000002, RI= H'80000001

RI = H'7FFFFFFF, T = I

R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

R3 = H'80000000, T = I

138

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit

SWAP.B Rm,Rn Rm ~ Swap upper and lower OllOnnnnnunmmlOOO
halves of lower 2 bytes ~ Rn

SWAP.W Rm,Rn Rm ~ Swap upper and lower OllOnnnnmmrnmlOOl
word~ Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

unsigned long tempO,templ;

tempO=R[m]&OxffffOOOO;

templ=(R(m]&Ox000000ff)<<8;

R[n]=(R(m]>>8)&0x000000ff;

R[n]=R[n] ltemplltempO;

PC+=2;

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

unsigned long temp;

temp=(R[m]>>l6)&0x0000FFFF;

R[n]=R[m]«16;

R[n] I =temp;

PC+=2;

Examples

SWAP. B RO, Rl Before execution RO= H'l 2345678

After execution R 1 = H'l 2347856

SWAP. w RO, Rl Before execution RO = H' 12345678

After execution RI= H'56781234

139

6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit

TAS.B @Rn When (Rn} is 0, 1 ~ T, 1 ~ MSB of (Rn} 01oonnnnooo11011 4 Test
results

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B @Rn */

long temp;

temp=(long)Read_Byte(R[n]);

if (temp==O) T=l;

else T=O;

templ=OxOOOOOOBO;

/* Bus Lock enable */

Write_Byte(R[n],temp); /*Bus Lock disable*/

PC+=2;

Example:

_LOOP TAS. B @R7 R7=1000

BF _LOOP Loops until data in address 1000 is 0

140

6.67 TRAPA (Trap Always): System Control Instruction

Format

TRAPA #irrun

Abstract Code

PC/SR~ Stack area, (imm x 4 + llOOOOlliiiiiiii
VBR) ~PC

State T Bit

8

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the
starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

TRAPA (long i) /* TRAPA #inun * /

long inun;

irrun=(OxOOOOOOFF & i);

R[15]-=4;

Write_Long(R[lS],SR);

R[lS]-=4;

Write_Long(R[lS],PC-2);

PC=Read_Long(VBR+(irrun<<2))+4;

Example:

Address

VBR+H'80 .data.I

TRAPA #H'20

TST #0,RO

100000000 XOR

100000002 RTE

100000004 NOP

RO,RO

10000000

Branches to an address specified by data in address VBR +
H'80

f- Return address from the trap routine (stacked PC value)

f- Trap routine entrance

Returns to the TST instruction

Executes NOP before RTE

141

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State TBit

TST Rm,Rn Rn & Rm, when result is 0010nnnnnumnm1000 Test
0, 1 ~ T results

TST #imrn,RO RO & imm, when result is 11001000iiiiiiii Test
0, 1 ~T results

TST.B #imrn,@(RO,GBR) (RO + GBR) & imm, when 11001100iiiiiiii 3 Test
result is 0, 1 ~ T results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:

TST(long m,long n)/* TST Rm,Rn */

if ((R[n]&R[m])==O) T=l;

else T=O;

PC+=2;

TSTI(long i) /* TEST #imrn,RO */

long temp;

temp=R[O]&(OxOOOOOOFF & (long)i);

if (temp==O) T=l;

else T=O;

PC+=2;

TSTM(long i) /* TST.B #imrn,@(RO,GBR) */

long temp;

142

temp=(long}Read_Byte(GBR+R[O]};

temp&=(OxOOOOOOFF & (long}i};

if (temp==O) T=l;

else T=O;

PC+=2;

Examples:

TST RO,RO Before execution

After execution

TST #H'80,RO Before execution

After execution

TST.B #H'A5,@(RO,GBR} Before execution

After execution

143

RO = H'OOOOOOOO

T=l

RO = H'FFFFFF7F

T=l

@(RO,GBR) = H'A5

T=O

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit

XOR Rm,Rn Rn I\ Rm--+ Rn 0010nnnnrrumnm1010 1

XOR #inm,RO RO I\ imm --+ RO 11001010iiiiiiii 1

XOR.B #inm, @(RO,GBR) (RO + GBR) I\ imm --+ (RO 11001110iiiiiiii 3
+GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n)/* XOR Rm,Rn */

R[n]"=R[m];

PC+=2;

XORI(long i) /* XOR #inm,RO */

R[O]"=(OxOOOOOOFF & (long)i);

PC+=2;

XORM(long i) /* XOR.B #imm,@(RO,GBR) */

long temp;

temp=(long)Read_Byte(GBR+R[O]);

temp"=(OxOOOOOOFF & (long)i);

Write_Byte(GBR+R[O],temp);

PC+=2;

144

Examples:

XOR RO,Rl

XOR #H'FO,RO

XOR.B #H'A5,@(R0,GBR)

Before execution RO= H'AAAAAAAA, Rl - H'55555555

After execution Rl = H'FFFFFFFF

Before execution RO = H'FFFFFFFF

After execution RO - H'FFFFFFOF

Before execution @(RO,GBR) = H'A5

After execution @(RO,GBR) = H'OO

145

6.70 XTRCT (Extract): Data Transfer Instruction

Format

XTRCT Rm,Rn

Abstract Code

Center 32 bits of Rm and Rn ~ OOlOnnnnmmmmllOl
Rn

State T Bit

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13).

MSB LSB MSB
Rm

Figure 6.13 Extract

Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */

unsigned long temp;

temp=(R[m]<<l6)&0xFFFFOOOO;

R[n]=(R[n]>>16)&0x0000FFFF;

R[n] I =temp;

PC+=2;

Example:

Rn

XTRCT RO,Rl Before execution RO- H'Ol234567, Rl = H'89ABCDEF

After execution RI - H'456789AB

146

LSB

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

7.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

• IF (Instruction fetch)

• ID (Instruction decode)

Fetches an instruction from the memory in which the program is
stored.

Decodes the instruction fetched.

• EX (Instruction execution) Performs data operations and address calculations according to the
results of decoding.

• MA (Memory access)

• WB (Write back)

Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some
exceptions.

As shown in figure 7.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is
as shown in figure 7.1; some pipelines differ, however, because of contention between IF and MA.
In figure 7 .1, the period in which a single stage is operating is called a slot.

.... : Slot

Instruction 1 IF ID EX MA WB l Instruction
Instruction 2 IF ID EX MA WB stream

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB

...
Time

Figure 7.1 Basic Structure of Pipeline Flow

147

7 .2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below,

7.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 7.2), with exception ofWB and MA. Since WB
is executed immediately after MA, however, some instructions may execute MA and WB within
the same slot.

.-. 1----1~• .-. .-. .-. .-. .-. .-. .-. : Slot

Instruction 1 IF ID EX MA WB

Instruction 2 IF ID EX MA WB

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 7.2 Impossible Pipeline Flow 1

7 .2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 7.3).

.. Slot

Instruction 1 IF ID EX MA WB

Instruction 2 IF ID EX MA WB
Instruction 3 IF ID EX MA WB

Instruction 4 IF ID EX MA WB

Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

Figure 7.3 Impossible Pipeline Flow 2

148

7 .2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

• S == (the cycles of the stage with the highest number of cycles of all instruction stages contained
in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

• The number of execution cycles for each stage:

IF The number of memory access cycles for instruction fetch

ID Always one cycle

EX Always one cycle

MA The number of memory access cycles for data access

WB Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

... ,... : Slot

(2) (2) (1) (3) (1) (1) +Number of

Instruction 1 IF IF ID EX MA MA MA WB
cycles

Instruction 2 IF IF ID EX MA WB

Figure 7.4 Slots Requiring Multiple Cycles

149

7.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 7 .5, the EX stage interval between
instructions I and 2 is five cycles, so the execution time for instruction I is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using an MOY Rm, Rn that follows instruction 3. (In the case of figure 7.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 7.5 is seven states (5 + 1 + 1).

~ . ~ • ~ • ~ Slot

(2) (2) (2) (4) (1) (1)

Instruction 1 IF IF ID IEXI MA MA MA WB

Instruction 2 IF IF ID IEXI
Instruction 3 IF IF ID IEXI MA

(Instruction 4: MOV Rm, Rn IF ID IEXI)

Figure 7.5 How Instruction Execution States Are Counted

150

7 .4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

7.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF
and MA stages both try to access memory within the same slot, the slot splits as shown in figure
7 .6. When there is a WB, it is executed immediately after the MA ends.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

A B C D E F G
IF ID EX !MAI WB

IF ID EX !MAI WB

IF ID EX

[][} ID EX

[][} ID EX

,.. ,.. : Slot

MA of instruction 1 and IF of instruction 4
contend at D

MA of instruction 2 and IF of instruction 5
contend at E

When MA and IF are in contention, the following occurs:

A B c D E F G • : Slot

Instruction 1 IF ID EX !MAI WB Split at D

Instruction 2 IF ID EX !MAI WB Split at E

Instruction 3 IF ID EX

Instruction 4 [][] - ID EX

Instruction 5 [][] ID EX

Figure 7.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first half
(when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed

simultaneously in the latter half. For example, in figure 7 .6 the MA of instruction I is executed in
slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of

memory access cycles for the MA and the number of memory access cycles for the IF.

151

7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the
SH microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a
single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is Al = 0 and AO - 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as 'if'. These 'if's always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is Al -= I, AO= 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 7.7 illustrates
these operations.

152

..._ 32 bits

lnstruc- lnstruc-
tion 1 tion2

lnstruc- lnstruc-
tion3 tion 4

lnstruc- lnstruc-
tion5 tion 6

On-chi memo (p ry
or on-chip cache)

.............................. Slot

···Instruction 1 IJEJ ID EX
Instruction 2 if

··· Instruction 3

Instruction 4

... Instruction 5

Instruction 6

ID

IJEJ
EX
ID

if

EX
ID EX

[][] ID

if

[][] : Bus cycle generated

if : No bus cycle

EX
ID EX

Fetching from an instruction (instruction 1) located on a longword boundary

lnstruc-
tion 3

lnstruc-
tion 5

lnstrucJ
tion 2

lnstruc-
tion 4

lnstruc-
tion 6

··· Instruction 2

··· Instruction 3

Instruction 4

··· Instruction 5

Instruction 6

... ._..._..._.._..._..._._.._.Slot

[][] ID EX
[][] ID EX

if ID EX
[][] ID EX

if ID EX

[][] : Bus cycle generated

if No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 7.7 Relationship Between IF and Location oflnstructions in On-Chip Memory

7.4.3 Relationship Between Position oflnstructions Located in On-Chip ROM/RAM or
On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages ('if' written in lower case) that do not generate bus cycles as explained in
section 7.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when
an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such
slots execute in the number of states the MA requires for memory access, as illustrated in figure
7.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the

153

position when the bottom 2 bits of instruction address are 00 is Al = 0 and AO= 0) because the
MA of the instruction falls in the same slot as ifs that follow.

A B_
~ ~

..._ ..._..._ ..._ ..,.,.,______ ..._..._..._ Slot 32 bits

lnstruc- lnstruc-
tion 1 tion2

lnstruc- lnstruc-
tion 3 tion4

lnstruc- lnstruc-
tion 5 tion 6

On-chi me (p mory
or on-chip cache)

··· Instruction 1 IF

Instruction 2

··· Instruction 3

Instruction 4

··· Instruction 5

Instruction 6

ID

if

EX ~MA WB

ID EX)~~~j WB

IF ID EX
:-11-: - ID .. _ --"

00

00 Splits

Cfj Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot Bis in contention with an IF, so it splits.

EX
ID EX
if ID EX

Figure 7.8 Relationship Between the Location oflnstructions in On-Chip Memory and
Contention Between IF and MA

7 .S Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction I) will thus come after the EX stage of the instruction that immediately follows it
(instruction 2).

When instruction 2 uses the same destination register as load instruction I, the contents of that
register will not be ready, so any slot containing the MA of instruction I and EX of instruction 2
will split. The destination register of load instruction I is the same as the destination (not the
source) of instruction 2, so it splits.

When the destination of load instruction I is the status register (SR) and the flag in it is fetched by

instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

• When instruction 2 is a load instruction and its destination is the same as that of load
instruction I .

• When instruction 2 is Mac@Rm+, @Rn+, and the destination of load instruction I are the
same.

154

The number of states in the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, as illustrated in figure 7.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

.. ~_.:Slot

Load instruction 1 (MOV.W@RO, R1) IF ID EX IMAI WB

Instruction 2 (ADD R1, R2) IF ID IEXI

Instruction 3 IF ID EX

Instruction 4 IF ID

Figure 7.9 Effects of Memory Load Instructions on the Pipeline

7.6 Programming Guide

To improve instruction execution speed, consider the following when programming:

• To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is Al = 0 and AO= 0) wherever possible.

• The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

• Locate instructions that use the multiplier nonconsecutively. Also locate nonconsecutively an
access to the MACH or MACL register for fetching the results from the multiplier and an
instruction that uses the multiplier.

155

7. 7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
states can be calculated.

In the following figures, "Instruction A" refers to the instruction being described. When "IF" is
written in the instruction fetch stage, it may refer to either "IF" or "if'. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with a few exceptions. When a slot has split, see section 7.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 7 .1 lists the format for number of instruction stages and execution states:

Table 7.1 Format for the Number of Stages and Execution States for Instructions

Type Category Stage State Contention Instruction

Functional Instruction Number Number Contention that Corresponding instructions
types s are of of occurs represented by mnemonic

cat ego- stages execu-
rized in an ti on
based on instruc- states
operations ti on when

no
conten-
ti on
occurs

Table 7 .2 Number of Instruction Stages and Execution States

Type category Stage State Contention Instruction

Data Register- 3 MOV #imm,Rn
transfer register
instructions transfer

MOV Rm,Rn

instructions MOVA @(disp, PC), RO

MOVT Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

156

Table 7.2 Number oflnstruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Data Memory 5 • Contention occurs MOV.W @(disp,PC) ,Rn
transfer load if the instruction MOV.L @(disp, PC)' Rn
instructions instructions placed
(cont) immediately after MOV.B @Rm,Rn

this one uses the MOV.W @Rm,Rn
same destination MOV.L @Rm,Rn
register

• MA contends with
MOV.B @Rm+,Rn

IF MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @(disp,Rm) ,RO

MOV.W @(disp,Rm), RO

MOV.L @(disp, Rm), Rn

MOV.B @(RO, Rm), Rn

MOV.W @(RO ,Rm), Rn

MOV.L @(RO,Rm) ,Rn

MOV.B @(disp,GBR) ,RO

MOV.W @(disp,GBR) ,RO

MOV.L @(disp,GBR),RO

Memory 4 • MA contends with MOV.B Rm,@Rn
store IF MOV.W Rm,@Rn
instructions

MOV.L Rm, @Rn

MOV.B Rm, @-Rn

MOV.W Rm,@-Rn

MOV.L Rm, @-Rn

MOV.B RO,@(disp,Rn)

MOV.W RO,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm,@(RO,Rn)

MOV.W Rm,@(RO,Rn)

MOV.L Rm,@(RO,Rn)

MOV.B RO,@(disp,GBR)

MOV.W RO,@(disp,GBR)

MOV.L RO,@(disp,GBR)

157

Table7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic Arithmetic 3 1 ADD Rm,Rn
instructions instructions ADD #imm,Rn

between
registers ADDC Rm,Rn
(except ADDV Rm,Rn
multiplic-

CMP/EQ Hmm, RO a ti on
instruc- CMP/EQ Rm,Rn
tions) CMP/HS Rm,Rn

CMP/GE Rm,Rn

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm,Rn

DIVl Rm,Rn

DIVOS Rm,Rn

DIVOU

DT Rn*3

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

NEGC Rm,Rn

SUB Rm,Rn

SUBC Rm,Rn

SUBY Rm,Rn

Multiply/ 7/8*1 3/(2)*2 • Multiplier contention MAC.W @Rm+,@Rn+
accumulate occurs when an
instructions instruction that uses

the multiplier follows a
MAC instruction

• MA contends with IF

Notes 1. In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

3. SH-2 CPU instructions

158

Table 7.2 Number oflnstruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic Double- 9 3/(2 to • Multiplier MAC.L @Rrn+,@Rn+*3

instructions length 4)*2 contention occurs
(cont) multiply/ when an

accumulate instruction that
instruction uses the multiplier
(SH-2 CPU follows a MAC
only) instruction

• MA contends with
IF

Multiplic- 6/7*1 1 to 3*2 . Multiplier MULS.W Rrn,Rn
ation contention occurs MULU.W Rrn,Rn
instructions when an instruc-

tion that uses the
multiplier follows
a MUL instruction

• MA contends with
IF

Double- 9 2 to 4*2 . Multiplier DMULS.L Rrn,Rn* 3

length contention occurs DMULU.L Rrn,Rn* 3
multiply/ when an
accumulate instruction that MUL.L Rrn,Rn* 3

instruction uses the multiplier
(SH-2 CPU follows a MAC
only) instruction

• MA contends with
IF

Logic Register- 3 AND Rrn,Rn
operation register AND #imm,RO
instructions logic

operation NOT Rrn,Rn

instructions OR Rrn,Rn

OR #irnm,RO

TST Rrn,Rn

TST #irnm,RO

XOR Rrn,Rn

XOR #irnm,RO

Notes 1. In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

3. SH-2 CPU instructions

159

Table 7.2 Number oflnstruction Stages and Execution States (cont)

Type category Stage State Contention Instruction

Logic Memory logic 6 3 • MA contends AND.B #inun,@(RO,GBR)
operation operations with IF OR.B #inun,@(RO,GBR)
instructions instructions
(cont) TST.B #inun,@(RO,GBR)

XOR.B #inun,@(RO,GBR)

TAS 6 4 • MA contends TAS.B @Rn
instruction with IF

Shift Shift 3 1 ROl'L Rn
instructions instructions ROl'R Rn

ROl'CL Rn

ROl'CR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

Branch Conditional 3 3/1*4 BF label
instructions branch BT label

instructions

Delayed 3 2/1*4 BF/S label*3
conditional BT/S label*3
branch
instructions
(SH-2 CPU
only)

Unconditional 3 2 BRA label
branch BRAF Rrn*3
instructions

BSR label

BSRF Rrn*3

JMP @Rm

JSR @Rm

RTS

Notes 3. SH-2 CPU instruction
4. One state when there is no branch

160

Table 7.2 Number oflnstruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System System 3 1 CLRT
control control LDC Rm,SR
instructions ALU

instructions LDC Rm,GBR

LDC Rm,VBR

IDS Rm,PR

NOP

SETT

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STS PR,Rn

LDC.L 5 3 • Contention occurs LDC.L @Rm+,SR
instruction when an LDC.L @Rm+,GBR

instruction that
uses the same LDC.L @Rm+,VBR

destination
register is placed
immediately after
this instruction

• MA contends with
IF

STC.L 4 2 • MA contends with STC.L SR, @-Rn
instructions IF STC.L GBR,@-Rn

STC.L VBR,@-Rn

LDS.L 5 • Contention occurs IDS.L @Rm+,PR
instructions when an
(PR) instruction that

uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

STS.L 4 • MA contends with STS.L PR,@-Rn
instruction IF
(PR)

161

Table 7.2 Number oflnstruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System Register~ 4 • Contention occurs CLRMAC
control MAC with multiplier LOS Rm,MACH
instructions transfer • MA contends with
(cont) instruction IF

LOS Rm,MACL

Memory~ 4 • Contention occurs LOS.L @Rm+,MACH
MAC with multiplier LOS.L @Rm+,MACL
transfer • MA contends with
instructions IF

MAC~ 5 • Contention occurs STS MACH,Rn
register with multiplier STS MACL,Rn
transfer • Contention occurs
instruction when an

instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

MAC~ 4 • Contention occurs STS.L MACH,@-Rn
memory with multiplier STS.L MACL,@-Rn
transfer • MA contends with
instruction IF

RTE 5 4 RTE
instruction

TRAP 9 8 TRAPA #irrun
instruction

SLEEP 3 3 SLEEP
instruction

162

7.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

• MOV

• MOV

•MOVA

• MOVT

• SWAP.B

• SWAP.W

• XTRCT

#imm,Rn

Rm, Rn

@(disp, PC), RO

Rn

Rm, Rn

Rm, Rn

Rm, Rn

._.._.._.._.._.._.:Slot

I Instruction A IF ID EX I
Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

163

Memory Load Instructions: Include the following instruction types:

• MOV.W @(disp, PC), Rn

• MOV.L @(disp, PC), Rn

• MOV.B @Rm,Rn

• MOV.W @Rm, Rn

• MOV.L @Rm, Rn

• MOV.B @Rm+, Rn

• MOV.W @Rm+, Rn

• MOV.L @Rm+, Rn

• MOV.B @(disp, Rm), RO

• MOV.W @(disp, Rm), RO

• MOV.L @(disp, Rm), Rn

• MOV.B @(RO, Rm), Rn

• MOV.W @(RO, Rm), Rn

• MOV.L @(RO, Rm), Rn

• MOV.B @(disp, GBR), RO

• MOV.W @(disp, GBR), RO

• MOV.L @(disp, GBR), RO

._.._.._.._.._.._.:Slot

!Instruction A IF ID EX MB WBI

Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.11). If an instruction
that uses the same destination register as this instruction is placed immediately after it, contention
will occur. (See Section 7.5, Effects of Memory Load Instructions on Pipelines.)

164

Memory Store Instructions: Include the following instruction types:

• MOV.B

• MOV.W

• MOV.L

• MOV.B

• MOV.W

• MOV.L

• MOV.B

• MOV.W

• MOV.L

• MOV.B

• MOV.W

• MOV.L

• MOV.B

• MOV.W

• MOV.L

Rm,@Rn

Rm,@Rn

Rm,@Rn

Rm,@-Rn

Rm,@-Rn

Rm,@-Rn

RO, @(disp, Rn)

RO, @(disp, Rn)

Rm, @(disp, Rn)

Rm, @(RO, Rn)

Rm, @(RO, Rn)

Rm, @(RO, Rn)

RO, @(disp, GBR)

RO, @(disp, GBR)

RO, @(disp, GBR)

._.._.._.._.._.._.:Slot

!Instruction A IF ID EX MAI

Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.12). Data is not returned to
the register so there is no WB stage.

165

7.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

•ADD Rm, Rn

•ADD #imm,Rn

• ADDC Rm, Rn

• ADDV Rm, Rn

• CMP/EQ #imm,RO

• CMP/EQ Rm, Rn

• CMP/HS Rm, Rn

• CMP/GE Rm, Rn

• CMP/HI Rm, Rn

• CMP/GT Rm, Rn

• CMP/PZ Rn

• CMP/PL Rn

• CMP/STR Rm, Rn

• DIVl Rm, Rn

• DIVOS Rm, Rn

• DIVOU

• DT Rn (SH-2 CPU only)

• EXTS.B Rm, Rn

• EXTS.W Rm, Rn

• EXTU.B Rm, Rn

• EXTU.W Rm, Rn

•NEG Rm, Rn

• NEGC Rm, Rn

• SUB Rm, Rn

• SUBC Rm, Rn

• SUBV Rm, Rn

166

._.._.._.._.._.._.:Slot

!Instruction A IF ID EX MAI

Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7 .13 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage via the ALU;

167

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

• MAC.W @Rm+,@Rn+

........................ :Slot

I MAC.W IF ID EX MA MA mm mm mm I
Next instruction

Third instruction

IF ID EX MA WB

IF ID EX MA WB

Figure 7.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC. W instruction is stalled for one slot. The two MAs of
the MAC.W instruction, when they contend with IF, split the slots as described in section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

. 1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MULS.W instruction is located immediately after a MAC.W instruction

3. When an STS (register) instruction is located immediately after a MAC.W instruction

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

168

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
7.15).

.... • +.-: Slot

I MAC.W IF ID EX MA MA mm :)n·rn·.· .-.-rnrrd
MAC.W IF ID EX MA :· ·M:.:.::.=A. ·: mm mm mm

Third instruction IF ID EX MA

.... : Slot

I MAC.W IF ID EX MA MA mm mm ::inrri'I
Other instruction IF ID EX MA WB

MAC.W IF ID EX MA [.M.A.: mm mm mm

Figure 7.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 7 .16 illustrates a case of this
type. This figure assumes MA and IF contention.

_.. _.. _.. _.. _.. _.. --•• _.. f---•• _.. f---••..._: Slot

IMAC.W if ID EX MA MA mm mm jj:i_i:i:H
MAC.W

MAC.W

MAC.W

IF ID EX MA

if
:.~A mm ::r11:r11:::rr.i:m.::

ID EX MA: M-A ·:mm :mm .. miii
IF - ID EX - :MA:: M-A mm·····

························

Figure 7.16 Consecutive MAC.Ws without Misalignment

169

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 7 .17 illustrates a case of this type. This
figure assumes MA and IF contention .

.-. .-. .-. 44f----•• .-. .-. 441-----• .-.-. : Slot

I MAC.W IF ID EX MA

MAC.W if

Other instruction

Other instruction

Other instruction

MA mm :rnrn)iirn.:I
ID EX MA :M::::::A:: mm mm mm

IF ID EX MA

if ID EX

IF

Figure 7.17 MA and IF Contention

170

2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M-A shown in the dotted line box in figure 7.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.Wand MULS.W instructions, MAC.Wand MULS.W contention does not cause
stalling. When the MULS.W MA and IF contend, the slot is split.

._.._.._.._.._._. ~._.._.._.._.._.._.:Slot

I MAC.W IF ID EX MA MA :mm:::rn.:m:::rnrn'i
MULS.W IF ID EX)~(" .·.·.·.·.·.·.·.·.·.·.-... -~.·-·: mm mm mm

Other instruction IF ID EX - - MA

._.._.._.._.._.._. -e ~_.._.._._.:Slot

I MAC.W IF ID EX MA MA mm)ririfJii.niJ
Other instruction

MULS.W

Other instruction

IF ID EX

IF ID EX :::fiii:::::::A:: mm mm mm
IF ID EX - MA

._.._.._.._.._.._.._._.._.._._.:Slot

I MAC.W IF ID EX MA MA mm mm ~mhU
Other instruction IF ID EX MA WB

Other instruction

MULS.W

Other instruction

IF ID

IF

EX MA

ID EX
IF ID

WB

::Mfi..:)mm mm mm
EX MA

Figure 7.18 MULS.W Instruction Immediately After a MAC.W Instruction

171

3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7 .19) to create a single slot. The MA of the STS contends with· the IF. Figure 7 .19
illustrates how this occurs, assuming MA and IF contention .

.-..-..-. ... --.. ._.. :slot

I MAC.W IF ID EX MA MA 'mm:::m:m:::mrrd
STS if ID EX :.·.~······-·.·.·.·.- -.)~ •. ·.-: WB

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX ·····

._.._.._.._. • .. 4 .. ._..._.._.._.._.._..:Slot

I MAC.W if ID EX MA MA mm :.i:i:i.i:i:i.'.-:irirri:I
STS IF - ID EX j}(.:::·.:·~·(j WB

Other instruction if ID EX

Other instruction IF ID EX

Other instruction if ID EX ·····

Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction

172

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M-A shown in the dotted
line box in figure 7 .20) to create a single slot. The MA of the STS contends with the IF.
Figure 7.20 illustrates how this occurs, assuming MA and IF contention .

._. ._. ._. .. ,.i----•• ._. ._.._.._. : Slot

IMAc.w 1F 1D Ex MA MA ~iii.iii_ji:i.riCin.i:i:i::I
srs.L if ID Ex LJ.r.·.·.·.·.·_·_·_·_·_·_·_·_·_·_·_·_·_·_A_:·.: ws

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX······

._. ._. ._. ._. ---i•~ ... ,. ____ • ._. ._. ._. ._. ._. ._.: Slot

I MAC.W if ID EX MA MA mm jjj_ijj_._._mmil
STS.L IF - ID EX [)(:·.:::::·.::·_)).:·_:

Other instruction

Other instruction

Other instruction

if ID EX

IF ID

if

EX

ID EX ·····

Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

173

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.21) to create a single slot. The MA of this LDS contends with IF. Figure 7.21
illustrates how this occurs, assuming MA and IF contention .

............ .. •...... • :s10t

I MAC.W IF ID EX MA MA ~mm:::m:m::miifl
LDS if ID EX :::~c::::::::::::fo..::::

Other instruction

Other instruction

Other instruction

IMAC.W

LDS

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX

.............. "' ~ :s10t

if ID EX MA

IF ID

if

MA mm ~ mr.TI" jiirri=I
EX LM".·.·.·.·.·.·.A.·.·~

ID EX

IF ID

if

EX

ID EX

Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

174

6. When an LOS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LOS instruction, an
MA stage for accessing the memory and the multiplier is added to the LOS instruction, as
described later. When the MA of the LOS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7 .22) to create a single slot. The MA of the LOS contends with IF. Figure 7 .22
illustrates how this occurs, assuming MA and IF contention .

.._. .._. .._. ... ,.,_______,_. ,. • ._..._.._..._..._.: Slot

IMAC.W IF ID EX MA MA ~rnni".".'ii#iC.i:i:i.i:i:U
LDS.L if ID EX l)~.·.·.·.·.·.·.·.·.·.·.·.·.·.·.~.·.·.:

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

Other instruction IF ID EX ·····

IMAC.W

LDS.L

Other instruction

Other instruction

Other instruction

.._..._..._.._.,. •,. •.._..._.._.._.._..._.:Slot

if ID EX MA

if ID

if

MA mm @.i:l:i.".)rimJ
EX j~f".·.·.·.·.·.·~····j

ID EX

IF ID

if

EX MA

ID EX

Figure 7.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

175

Multiply/Accumulate Instruction (SH-2 CPU): Includes the following instruction type:

• MAC.W @Rm+,@Rn+

.-.-. :Slot

IMAC.W IF ID EX MA MA mm mm I
Next instruction IF ID EX MA WB

Third instruction IF ID EX MA WB

Figure 7.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 7.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the slots as described in Section 7.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

l. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MAC.L instruction is located immediately after a MAC.W instruction

3. When a MULS.W instruction is located immediately after a MAC.W instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

5. When an STS (register) instruction is located immediately after a MAC.W instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

176

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC. W instruction does not contend with an mm generated by a
preceding multiplication instruction .

................................. :s10t

IMAC.W IF ID EX MA MA mm ~·mm)I

MAC.W IF ID EX MA CMA~ mm mm

Third instruction IF ID EX MA

Figure 7.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC. Ws may have misalignment of instruction execution caused by
MA and IF contention. Figure 7 .25 illustrates a case of this type. This figure assumes MA and
IF contention .

................. :s10t

IMAC.W if ID EX MA MA mm mm I

MAC.W IF - ID EX MA MA mm mm

MAC.W if - - ID EX MA MA mm mm

MAC.W IF - ID EX MA MA mm

Figure 7.25 Consecutive MAC.Ws with Misalignment

177

When the second MA of the MAC.W instruction contends with IF; the slot will split as usual.
Figure 7 .26 illustrates a case of this type. This figure assumes MA and IF contention .

._.._.._.. ___ .., • .-..-..-.. .., ._.._.._.._.:Slot

IMAC.W IF ID EX MA MA mm !.i:D.i:D.H
MAC.W if ID EX MA f.MA·~ mm mm

Other instruction IF ID EX MA

Other instruction

Other instruction

if ID EX

IF

Figure 7.26 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC. W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 7.27) .

.-..-..-..-..-..-..-..-..-..-. .. :Slot

IMAC.W IF ID EX MA MA mm :·1n-m·.:1.
MAC.L IF ID EX MA ~·.°MA·: mm mm mm mm

Third instruction IF ID EX MA

Figure 7.27 MAC.L Instructions Immediately After a MAC.W Instruction

178

3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS. W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.28) to
create a single slot. When one or more instructions not related to the multiplier come between
the MAC.Wand MULS.W instructions, MAC.Wand MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

.................... ,. ~ :Slot

IMAc.w 1F 1D Ex MA MA iiriiri.·:.f!im::I
MULS.W

Other instruction

IF ID EX UiA:::::::A:\ mm mm
IF ID EX - MA

.. :s1ot

IMAC.W IF ID EX MA MA mm Lf!i.f!iJ
Other instruction IF

MULS.W

Other instruction

ID

IF

EX
ID

IF

EX){l'A.·f mm
ID EX MA

mm

Figure 7.28 MULS.W Instruction Immediately After a MAC.W Instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 7.29) .

.. .,.... ,..:slot

IMAC.W IF ID EX MA MA mm '..iii.ii-;::!
DMULS.L IF ID EX MA :'M.A.': mm mm mm mm

Other instruction IF ID EX MA

Figure 7.29 DMULS.L Instructions Immediately After a MAC.W Instruction

179

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.30) to create a single slot. The MA of the STS contends with the IF. Figure 7.30
illustrates how this occurs, assuming MA and IF contention .

.._. .._. .._. .. ,.,___ __ ., .._. ,. ., .._. .., .._. .._. .._.: Slot

IMAC.W IF ID EX MA MA '.rrirrijjjijjj
STS if ID EX ::M:::::::A:: WB

Other instruction IF ID EX MA

Other instruction
Other instruction

IMAC.W

STS

Other instruction

Other instruction
Other instruction

if ID EX

IF ID EX ····

............. ., ..,._...,..,..,._.._.:Slot

if ID EX MA

IF ID

if

MA mm :·rrlrrd
EX ::MA: WB
ID EX

IF ID EX MA

if ID EX

Figure 7.30 STS (Register) Instruction Immediately After a MAC.W Instruction

180

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the memory and the multiplier and writing to memory is added to the STS
instruction, as described later. Figure 7 .31 illustrates how this occurs, assuming MA and IF
contention.

._. ._. ._. --•• ._. 1-----• ._. ._. ._. ._. ._. ._.:Slot

IMAc.w 1F 1D Ex MA MA forii::r~1rriJ
STS.L if ID EX)(:::::!\::

Other instruction

Other instruction
Other instruction

IF ID

if

EX MA

ID EX

IF ID EX

._.._.._.._._.._.._.._.._.._.._.:Slot

IMAC.W if ID EX MA MA mmj:ii.i:i:i_H
STS.L IF - ID EX J~·A."j

Other instruction if ID EX

Other instruction
Other instruction

IF ID EX

if ID EX ····

Figure 7.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

181

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LOS instruction, an MA stage for accessing the multiplier is added to the LOS instruction, as
described later. When the MA of the LOS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.32) to create a single slot. The MA of this LOS contends with IF. Figure 7.32
illustrates how this occurs, assuming MA and IF contention .

.._. .._. .._. .,.,.f---•., .._. ... ,.f--___ ., .._. .._. .._. .._. .._.: Slot

IMAc.w 1F 10 Ex MA MA imm::ijfoH
LOS if ID EX :M.:::::::J.C

Other instruction

Other instruction
Other instruction

IMAC.W

LOS

Other instruction

Other instruction
Other instruction

IF ID

if

EX MA

ID EX

IF ID EX ····

.._..._..._.._.,. .,._.._.._.._.._.._.._.:Slot

if ID EX

IF -
MA MA

ID

if

mm~mmJ
EX LMA.i
ID EX

IF ID EX

if ID EX ····

Figure 7.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

182

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-A shown in the dotted line box in figure 7.33) to create a
single slot. The MA of the LDS contends with IF. Figure 7 .33 illustrates how this occurs,
assuming MA and IF contention .

..... ,____., • "_._.: Slot

IMAc.w 1F 1D Ex MA MA rmm::.ijjri'H
LDS.L if ID EX);f.:::::·~(j

Other instruction IF ID EX

Other instruction
Other instruction

if ID EX

IF ID EX ····

............. ._. • .,_._.Slot

IMAC.W if ID EX

LDS.L IF

Other instruction

Other instruction
Other instruction

MA MA

ID

if

mm~mmA
EX LMA.:~
ID EX

IF ID EX

if ID EX ····

Figure 7.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

183

Double-Length Multiply/Accumulate Instruction (SH-2 CPU): Includes the following

instruction type:

• MAC.L @Rm+, @Rn+ (SH-2 CPU only)

,..,..,..,..,..,..,..,..,..:Slot

MAC.L IF ID EX MA MA mm mm mm mm

Next instruction

Third instruction

IF - ID EX MA WB

IF ID EX MA WB

Figure 7.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
7.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of .
the MAC.L instruction, when they contend with IF, split the slots as described in Section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

I. When a MAC.L instruction is located immediately after another MAC.L instruction

2. When a MAC.W instruction is located immediately after a MAC.L instruction

3. When a DMULS.L instruction is located immediately' after a MAC.L instruction

4. When a MULS. W instruction is located immediately after a MAC.L instruction

5. When an STS (register) instruction is located immediately after a MAC.L instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

184

1. When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M­
A shown in the dotted line box in figure 7 .35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated .

._.._.._.._.._.._.,. ..,._.._..-..-.:Slot

I MAC.L IF ID EX MA MA mm ::mm::mm:::m:mJ
MAC.L IF ID EX MA)~::::::::::::::!\::mm mm mm mm

Third instruction IF ID EX - - MA

._.._.._.._.._.._.._.._.._.._.._..-..-.:Slot

I MAC.L IF ID EX MA MA mm mm mm :WimJ
Other instruction

Other instruction

MAC.L

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA :.·~.Ajmm mm mm mm

Figure 7.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 7 .36
illustrates a case of this type, assuming MA and IF contention .

..., ..., ..., ..., ..., ,. .., ,. .., ..., .,.,. ____ .., ..., ..., : Slot

I MAC.L if ID EX MA MA mm mmjnm:::m:rid
MAC.L IF

MAC.L

MAC.L

ID

if

EX MA
,•.....

:.~~~ .. :mm
ID EX MA

IF ID

mm mm mm
M A mm
EX MA

Figure 7.36 Consecutive MAC.Ls with Misalignment

185

mm mm mm

When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 7.37 illustrates a case of
this type, assuming MA and IF contention .

.-. .-. .-. 1--__,..,~ .-. .-. ------- .-. .-. .-. : Slot

I MAC.L IF ID EX MA

MAC.L if

Other intruction

Other intruction

Other intruction

ID EX MA C~C::::::::::::A:} mm mm mm mm
IF ID

if
EX
ID
IF

Figure 7 .37 MA and IF Contention

186

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC. W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M­
A shown in the dotted line box in figure 7.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.Land MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

.,..,..,..,..,..,.,. ., .,..,.:Slot

I MAC.L IF ID EX MA MA mm ~:mm:::mm::mmJ
MAC.W IF - ID EX MA ::MA:::::::::::::A:: mm mm

Third instruction IF ID EX - - MA······

.,..,..,..,..,..,..,..,..,..,..,.:Slot

I MAC.L IF ID EX MA MA mm mm mm)ii!ii.~I
Other instruction

Other instruction

MAC.W

IF - ID EX MA WB

IF ID EX MA WB

IF ID EX MA L"MAi mm mm

Figure 7.38 MAC.W Instruction Immediately After a MAC.L Instruction

187

3. When a DMULS;L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second MA
of the DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm),
the MA is extended until the mm ends (the M-Ashown in the dotted line box in figure 7.39)
to create a single slot. When two or more instructions not related to the multiplier come
between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

.............................. 4 ~...._...._...._...._...._:Slot

I MAC.L IF ID EX MA MA mm ::rn:rn:::mm:::n\rilJ
DMULS.L IF ID EX MA U~L:::::::::::.A::: mm mm mm mm

Other instruction IF - ID - - EX MA

...._...._...._...._...._.._..._. 4 ~_:Slot

I MAC.L IF ID EX MA MA mm mm ::m:ri.Crnrn::I
Other instruction

DMULS.L

Other instruction

IF ID EX

IF ID EX MA :)~(~·.·.·.'.'f.\.·: mm mm mm mm

IF ID - EX MA

... :s10t

I MAC.L IF ID EX MA MA mm mm mm JiimJ
Other instruction

Other instruction

DMULS.L

Other instruction

IF - ID

IF

EX
ID

IF

MA WB

EX MA WB

ID EX MA :.MA .. : mm mm mm mm

IF ID EX MA

Figure 7.39 DMULS.L Instruction Immediately After a MAC.L Instruction

188

4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M-A shown in the dotted line box in figure 7.40) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

189

._.._.._.._.._.._.._. o11 .,._.._.._.._.:Slot

I MAC.L IF ID EX MA MA mm ~"ITirri.·.-.i:i:i.m.·.·.·mn'!"."XnmJ
MULS.W IF - ID EX MA [·.·_r;,f.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.°.A·.·_·j mm mm

Other instruction IF ID EX - - - MA

._.._.._.._.._.._.,. .,._.._.._.._..._.:Slot

I MAC.L IF ID EX MA MA mm :mm:::m:r:r:i:::rnrn::I
Other instruction

MULS.W

Other instruction

I MAC.L

Other instruction

Other instruction

MULS.W

Other instruction

IF - ID EX
IF ID EX [)~A.·.·.·.·.·.·.·.·.·.·.·.·.·.·.J\.·.·: mm mm

IF ID EX - - MA

._.._.._.._..._. ._.._.. o11 .,._.._.._.._.._.:Slot

IF ID EX MA

IF - ID

IF

MA

EX

ID

IF

mm mm :mm::m:mJ
MA WB

EX MA WB

ID EX :.M:-:::-:-::-A.: mm mm

IF ID EX - MA

._.._.._.._.._.._.._..._.._.._.._.._.._..._.:Slot

I MAC.L IF ID EX MA MA mm mm mm jj\riJJ
Other instruction IF - ID EX MA WB

Other instruction

Other instruction

MULS.W

Other instruction

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA WB

EX)~J\.: mm mm

ID EX MA

Figure 7.40 MULS.W Instruction Immediately After a MAC.L Instruction

190

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.41) to create a single slot. The MA of the STS contends with the IF. Figure 7.41
illustrates how this occurs, assuming MA and IF contention .

._.._.._... ..._..._.._..-.:Slot

1 MAc.L 1F 1D Ex MA MA =.-rnrn.·:.mm.·:.i'T.i.i~f Jnm.·:1
STS if ID EX)·L:::::::::::::::::::::::.(:ws

Other instruction

Other instruction

Other instruction

I MAC.L

STS

Other instruction

Other instruction

Other instruction

IF ID EX MA

ID EX if

IF ID EX······

.-. .-. .-. .-.__ -------1~ .-. .-. .-. .-. : Slot

if ID EX MA MA

IF ID

if

mm :."CTWri°."."fDm.)i:i.i!d
EX :.)~(.·.·::.·:.·.·.·.··."!\.·.·: WB

ID EX

IF ID EX

if ID EX ······

Figure 7.41 STS (Register) Instruction Immediately After a MAC.L Instruction

191

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.42 illustrates how this
occurs, assuming MA and IF contention .

._.._.._.. ___ .. ._. ~Slot

I MAC.L IF ID EX MA MA ::mrn::mnUnm:mn:d
STS.L if ID EX :::~::::::::::::::::::::::}::

Other instruction IF ID EX MA

Other instruction

Other instruction

if ID EX

IF ID EX······

._.._.._.._. ... • .. ._.._.._.._.._.:Slot

I MAC.L if ID EX MA MA mm Jri"rh ... i:i:i.i:i:ijiirri.H
STS.L IF - ID EX)y(.·.·.·.·.·.·_·_·_·_·_·_·f\.·)

Other instruction

Other instruction

Other instruction

if ID EX

IF ID

if

EX

ID EX ······

Figure 7.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

192

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm}, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.43) to create a single slot. The MA of this LDS contends with IF. Figure 7.43
illustrates how this occurs, assuming MA and IF contention .

.,. .,. .,. .. 4..__---<.,~.,. ---------- .,..,. 4., 4.,: Slot

I MAC.L IF ID EX MA MA)nrn.'."mi:iL.'r:D.i:i\)nrn.:i
LDS if ID EX :)C::::::::::::::::::::.A:::

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX······

............... 41--~ ... 4 :

I MAC.L

LDS

Other instruction

Other instruction

Other instruction

if ID EX MA MA

IF ID

if

mm)n"rn"_'jrjfj(ji:i.i:i:iJ

EX [j •• {_·:.·.·:.·.·.·:.·:.·.·A:::
ID EX

IF ID EX

if ID EX ······

Figure 7.43 LDS (Register) Instruction Immediately After a MAC.L Instruction

193

Slot

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the memory and the multiplier is added to the LDS
instruction, as described later. When the MA of the LDS instruction contends with the
operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the
dotted line box in figure 7.44) to create a single slot. The MA of the LDS contends with IF.
Figure 7.44 illustrates how this occurs, assuming MA and IF contention .

.... ,______, ~-------................. : Slot

I MAC.L IF ID EX MA MA)nnf jjjjjf:~r'D."r'T\jnrrH
LDS.L if ID EX :::~c::::::::::::::::::::A:J

Other instruction

Other instruction

Other instruction

I MAC.L

LDS.L

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX······

................ ~ .,. •_.._.:Slot

if ID EX MA MA mm)nhf."inm.-.·.i:i:i.i:i:iJ
IF ID EX :."."M.·::.·:::.·::.".".".".A:.·:

if ID EX

IF ID EX

if ID EX ······

Figure 7.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

194

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

• MULS.W

• MULU.W

Rm, Rn

Rm, Rn

IMULS.W
Next instruction

Third instruction

................ :
IF ID EX MA mm mm mml

IF ID EX MA WB
IF ID EX MA WB

Figure 7.45 Multiplication Instruction Pipeline

Slot

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when
it contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MULS.W instruction is located immediately after another MULS.W instruction

3. When an STS (register) instruction is located immediately after a MULS.W instruction

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

195

1. When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions
does not cause stalls (figure 7.46) .

._.._.._.._.._.,.. .. .-..-..-..-..-.:Slot

IMULS.W IF ID EX MA mm ::r:i:i:m:::mm:I
MAC.W IF ID EX MA [)~(.'.·.·.·.·.A.°.·j mm mm mm

Third instruction IF ID EX - MA

.-..-..-..-..-..-..-..-..-..-..-..-.:Slot

IMULS.W IF ID EX MA mm mm :.m.ij'f:l
Other instruction IF ID EX MA WB

MAC.W IF ID EX MA :·MA: mm mm mm ·····

Figure 7.46 MAC.W Instruction Immediately After a MULS.W Instruction

196

2. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

.-..-..-..-.4-..-..-..-..-..-..-.:Slot

IMULS.W IF ID EX MA ~mm'.'.'mm.·.·.i:i:i.i:i:iJ

MULS.W IF ID EX L°.fl!i.""""""""""""""~.-.·i mm mm mm
Other instruction IF ID EX - - MA

IMULS.W IF ID EX MA mm)i:i.&.i.'.'.'rrirri:
Other instruction IF ID EX

MULS.W IF ID EX Lr~K""" Ai mm mm mm
Other instruction IF ID EX - MA

.-..-..-..-..-..-..-..-..-..-..-..-..-..-.:Slot

lMULS.W IF ID EX MA mm mm j:i:i.i:i:H
Other instruction IF ID EX MA WB

Other instruction IF ID EX MA WB

MULS.W IF ID EX j~,;A:: mm mm mm
Other instruction IF ID EX MA

Figure 7.47 MULS.W Instruction Immediately After Another MULS.W Instruction

197

When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the slot, as is nonnal. Figure 7.48 illustrates a case of this type, assuming
MA and IF contention .

._.._.._.._. ._.._.._.._.._.._.:Slot

I MULS.W IF ID EX MA ~mm'.'.hi.rii.ji:i.mJ

MULS.W if ID EX L"M·""""""""·-·_ ... _ A_ ... j mm mm mm
Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID

Figure 7.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention)

198

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS

instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in

figure 7.49) to create a single slot. The MA of the STS contends with the IF. Figure 7.49
illustrates how this occurs, assuming MA and IF contention .

IMULS.W

STS

Other instruction

Other instruction

Other instruction

.._. .._. .._. .._. -------- .._. .._. .._. .._. .._. .._.: Slot
IF ID EX

if ID

IF

MA :rnih. irfrii ·.-.i:i:i.i:i:iJ

ID

if

EX MA

ID EX

IF ID EX ·····

.._..._..._."' • • • .._. ._..._.._..._..._..._.:Slot

I MULS.W if ID EX MA mm :mm.·.-.i:i:i.i:i:iJ
STS IF ID EX ·M.: .. :.:.:.:.:.)\··~WB

Other instruction

Other instruction

Other instruction

if ID EX

IF ID

if

EX

ID EX ·····

Figure 7.49 STS (Register) Instruction Immediately After a MULS.W Instruction

199

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M-A shown in the dotted
line box in figure 7.50) to create a single slot. The MA of the STS contends with the IF.
Figure 7.50 illustrates how this occurs, assuming MA and IF contention .

.._. .._. .._. .._. ------- .._. .._. .._. .._. .._. .._.: Slot

IMULS.W IF ID EX MA :rnrnJ1\r'.lf mmd
STS.L if ID EX ::~c.-:.·::::.·:~}~ . .-.-i

Other instruction
Other instruction
Other instruction

IF ID
if

EX MA
ID EX

IF ID EX·····

...................... :
IMULS.W if ID EX MA mm '.mm::mrjfl

STS.L IF ID EX :M:::::::A:::
Other instruction if ID EX
Other instruction IF ID EX
Other instruction if ID EX ·····

Slot

Figure 7.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

200

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 7.51 illustrates how this
occurs, assuming MA and IF contention .

.... ------•_... : Slot

IMULS.W IF ID EX MA mm·.·_wfm.·.-.m.m.~I
LDS if ID EX ··;v;-··············A··:

........................

Other instruction IF ID EX MA

Other instruction if ID EX

Other instruction IF ID EX

............ ,. "',. "'_... :Slot

I MULS.W if ID EX MA mm ji:irif.'.fom.'I
LDS IF ID EX j\{_'_'_'_'_'_'A.·:

Other instruction

Other instruction

Other instruction

if ID EX

IF ID

if

EX

ID EX ·····

Figure 7.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

201

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.52) to create a single slot. The MA oftheLDS contends with IF. Figure 7.52
illustrates how this occurs, assuming MA and IF contention.

+. +. -------- : Slot

I MULS.W IF ID EX MA ~m!TI° ... 'fi:iiii.ji:i.i:i:iJ
LDs.L if 1D Ex L"r~L::.-.·.-·"""·.-.- ... ;.;.·.-:

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX ·····

+. +. ,____.,. 111 ., +. : Slot

I MULS.W if ID EX MA mm ~·mrif'.'.i:i:i.i:i:i.'I
LDS.L

Other instruction

Other instruction

Other instruction

IF ID

if

EX :)~f. 'ii. :
ID EX

IF ID

if

EX
ID EX

Figure 7.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

202

Multiplication Instructions (SH-2 CPU): Include the following instruction types:

• MULS.W

• MULU.W

Rm, Rn

Rm, Rn

..-..-..-..-..-..-..-..-Slot

I MULS.W IF ID EX MA mm mm I
Next instruction IF ID EX MA WB

Third instruction IF ID EX MA WB

Figure 7 .53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

3. When a MULS.W instruction is located immediately after another MULS.W instruction

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

5. When an STS (register) instruction is located immediately after a MULS.W instruction

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

203

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction .

.. :s10t

lMULS.W IF ID EX MA mm mml
MAC.W

Third instruction

IF ID EX MA MA mm mm
IF ID EX MA

Figure 7.54 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction .

...................................... :s10t

lMULS.W IF ID EX MA mm mm I
MAC.L

Third instruction

IF ID EX MA MA mm mm mm mm
IF ID EX MA

Figure 7.55 MAC.L Instruction Immediately After a MULS.W Instruction

204

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.56) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS.Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

._.._.._.._.,. •.-..-..-..-..-..-..-.:Slot

I MULS.W IF ID EX MA ::mm::mnil
MULS.W IF ID EX j~(......... ·.·~fj mm mm

Other instruction IF ID EX - MA

.-..-..-..-..-..-..-..-..-..-..-..-..-.:Slot

I MULS.W IF ID EX MA mm jjj.i:i:d
Other instruction

MULS.W

Other instruction

IF ID EX

IF ID EX LM.A.: mm mm

IF ID EX MA

Figure 7.56 MULS. W Instruction Immediately After Another MULS. W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 7 .57 illustrates a case of this type,
assuming MA and IF contention .

._.._.._.._.,. • .-..-..-..-..-..-.:Slot

IMULS.W IF ID EX MA::mm::mm::I

MULS.W

Other instruction

Other instruction

Other instruction

if ID

IF

EX :-.·~-.............. A ... i
ID

if

mm mm

EX MA

ID EX
IF ID

Figure 7.57 MULS. W Instruction Immediately After Another MULS. W Instruction (IF and
MA contention)

205

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it does
not contend with the operating multiplier (mm) generated by the MULS.W instruction .

... ._.._.._.._.._. :s1ot

I MULS.W IF ID EX MA mm mm I
DMULS.L

Other instruction

IF ID EX MA MA mm mm mm mm
IF ID EX MA

Figure 7.58 DMULS.L Instruction Immediately After a MULS.W Instruction

206

5. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.59) to create a single slot. The MA of the STS contends with the IF. Figure 7.59
illustrates how this occurs, assuming MA and IF contention.

.........._.._.._.._.._.:s10t
1 MuLs.w 1F 1D Ex MA ::m..m..::mm=i

STS if ID EX :}~(·.:·.·_·A.: WB

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID EX ······

.._..._..._._. ._.._.._.._.._.._.._.:s10t
I MULS.W if ID EX MA mm :.rnrnJ

STS IF ID EX '!Vi.A:°: WB

Other instruction if ID EX

Other instruction

Other instruction

IF ID EX

if ID EX

Figure 7.59 STS (Register) Instruction Immediately After a MULS.W Instruction

207

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.60 illustrates how this
occurs, assuming MA and IF contention .

.._. .._. .._. .._. 4 .. ____ ., .._. .._. .._. .._. .._. .._.: Slot

IMULS.W IF ID EX MA ji:im::mm::i
STS.L if ID EX)~f.-.·.·.··.-.·.A;

Other instruction IF ID EX MA

Other instruction if ID EX

Other instruction IF ID EX

.._. .._. .._. "'"'f----1.,•+-+._. .._. .._. .._. .._. .._. .._. : Slot

I MULS.W if ID EX MA mm :mrnJ
STS.L IF ID EX)~A:

Other instruction

Other instruction

Other instruction

if ID EX

IF ID EX

if ID EX ······

Figure 7.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

208

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention .

.-. .-. .-. .-. .. 4,__ ____ ., .-. .-. .-. .-. .-. .-. : Slot

IMULS.W IF ID EX MA ::iur:i:CmriH
LOS if ID Ex rM.·.·.·.:·.·A.·~

Other instruction IF ID EX MA

Other instruction if ID EX

Other instruction IF ID EX

.-..-..-. .. •-..-..-..-..-..-.:Slot

I MULS.W if ID EX MA mm ~mmJ
LOS IF ID EX).:;~.·:

Other instruction

Other instruction

Other instruction

if ID EX

IF ID EX

if ID EX ······

Figure 7.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

209

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-A shown in the dotted line box in figure 7 .62) to create a
single slot. The MA of the LDS contends with IF. Figure 7.62 illustrates how this occurs,
assuming MA and IF contention .

.._....,...,.._.,. ., ._.._....,._....,...,:Slot

IMULS.W IF ID EX MA ::m:r:t:cmm::i
LDS.L if ID EX :}i.·.·.·.·.·_"_"il;·_·:

Other instruction IF ID EX MA

Other instruction if ID EX

Other instruction IF ID EX

.._....,...,,. ., ..., ...,._.._....,...,...,...,:Slot

jMULS.W if ID EX MA mm :.mm·n
LDS.L IF ID EX :·MA·:

Other instruction

Other instruction

Other instruction

if ID EX

IF ID EX
if ID EX

Figure 7.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

210

Double-Length Multiplication Instructions (SH-2 CPU): Include the following instruction
types:

• DMULS.L

• DMULU.L

• MUL.L

Rm, Rn (SH-2 CPU only)

Rm, Rn (SH-2 CPU only)

Rm, Rn (SH-2 CPU only)

............................ :
IDMULS.L IF ID EX MA MA mm mm mm mml

Next instruction IF ID EX MA WB

Third instruction IF 10 EX MA WB

Figure 7.63 Multiplication Instruction Pipeline

Slot

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
four cycles after the MA ends, regardless of a slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 7.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction ofIF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

211

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 7.64) .

._.._.._.._.._.._. ~ •.-..-..-..-.:Slot
DMULS.L IF ID EX MA MA mm : :! .. rnrn .. mm .. mm. .. .

MAC.L IF ID EX MA r.·.~(.·.·.·.·.·.·.·.·.·.·.·.·.·A·.·.·j mm mm mm mm

Third instruction IF ID EX - - MA

._.._.._.._.._.._.._.._.._..-..-..-..-.:Slot

DMULS.L IF ID EX MA MA mm mm mm ~:m:m:::I
Other instruction

Other instruction

MAC.L

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA LMA'} mm mm mm mm

Figure 7.64 MAC.L Instruction Immediately After a DMULS.L Instruction

212

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 7.65) .

._..._..._..._..._..._.... ., ..-..-..-..-:Slot

DMULS.L IF ID EX MA MA mm :itii:i.Cmm:::mmJ
MAC.W IF ID EX MA r.·.t~(_··.·.·.·.·.·.·.·.·.·_)\·.·_·) mm mm

Third instruction IF ID EX - - MA

............ : Slot

DMULS.L IF ID EX MA MA mm mm mm ::moil
Other instruction IF ID EX MA WB

Other instruction IF ID EX MA WB

MAC.W IF ID EX MA i)AA_·j mm mm

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L Instruction

213

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

........................ "" :Slot

DMULS.L IF ID EX MA MA mm ji:\m::mm:::rfo:rJJ
DMULS.L IF ID EX MA (ji,(.·.·.··.··.·.·°A'.·.·j mm mm mm mm

Other instruction IF ID EX - - MA

........................ "" :Slot

DMULS.L IF ID EX MA MA mm mm ~·.rnrn·.·fr1m·.~ I
Other instruction IF ID EX

DMULS.L IF ID EX MA :::M::::'.:A:: mm mm mm mm

Other instruction IF - ID EX MA

.. :s1ot

DMULS.L IF ID EX MA MA mm mm mm :.mm.~ I
Other instruction IF

Other instruction

DMULS.L

Other instruction

ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA WB

EX MA : .. flllA: mm mm mm mm

ID EX MA

Figure 7.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

214

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.67 illustrates a case of
this type, assuming MA and IF contention .

.._. ._. ._. ._. ___ .. ----------- ._. .._. .._. : Slot

DMULS.L IF ID EX MA MA mm ::rnrn::mriCmmJ
DMULS.L if - EX - ID MA :).f.·.·.·.·.·.·_·_·_·_··_··.·")\·_·j mm mm mm mm

Other instruction

Other instruction

Other instruction

IF ID

if
EX
ID EX

IF ID

Figure 7 .67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

215

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L instruction,
the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULS.L instruction and the MULS.W instruction, contention between the
DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and IF contend,
the slot is split. .

._..._..._..._..._.. ._..._..._..._..._..:Slot

DMULS.L IF ID EX MA MA :."ITim."."."m(frjrii'iCi:i:i.i:i:iJ
MULS.W IF ID EX ::M:::::::::::::::::::::::::A::: mm mm

Other instruction

DMULS.L

Other instruction

Other instruction

Other instruction

MULS.W

Other instruction

IF ID EX - MA

._..._..._..._..._..._..._..._..._..._..._..._..._..._..:Slot

IF ID EX MA MA

IF ID EX

IF ID

IF

mm

MA

EX

ID

IF

mm mmj:i:i.i:i:iJ

WB

MA WB
EX MA WB
ID EX :··ti.A:·: MA mm mm

IF ID EX MA

Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.69 illustrates a case of
this type, assuming MA and IF contention .

._.. ._.. ._.. .. ,. __ ., ,._ __________ ._..._..._..._..:Slot

DMULS.L IF ID EX MA MA ~'ri'i'rii»'. ·n;·m'.'.'.iiiii:i.ji:i.rn.'.H
MULS.W if ID EX}~(...................................... /\. .. : mm mm

Other instruction

Other instruction

Other instruction

IF ID
if

EX MA······
ID EX······

IF ID······

Figure 7.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and MA
Contention)

216

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.70) to create a single slot. The MA of the STS contends with the IF. Figure 7.70
illustrates how this occurs, assuming MA and IF contention .

._..._..._.. ... __ .,. ._..._ ______ .,.._..._..._.. .. .,. .. .,.:Slot

1 DMuLs.L 1F 1D Ex MA MA :·mm ... i:ii_n.;..-rnm.·ITim-.:1
STS if - - ID EX :.-~f.·.·.·.·.·.·.·.-.·.·.·.·.··.·.·.·.·_-_·_p;)WB

Other instruction

Other instruction
Other instruction

IF ID EX MA

if - - - - ID EX

IF ID EX

._..._..._..._...._..._..._..._..._..:Slot

I DMULS.L if ID EX MA MA mm)1\r:ii:_-iiim:fiifiij I
STS IF - ID EX }~;;::::::::::::::A::ws

Other instruction

Other instruction
Other instruction

if ID EX

IF ID

if

EX

ID EX ····

Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

217

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. The MA of the STS contends with the IF. Figure 7.71 illustrates how this
occurs, assuming MA and IF contention .

......... 4--.... :s1ot

1 DMuLs.L 1F 1D Ex MA MA rmm.·.mm..-rnm.frim.: I
STS.L if - - ID EX :.°M."."." ·.·.·.-.·.)(

Other instruction IF ID EX MA

Other instruction if - - - - ID EX
Other instruction IF ID EX

........ 4 .. 4 :s1ot

I DMULS.L if ID EX MA MA mmjn:&.ijjfriffTjfTj;j
STS.L IF - ID EX :.·.fiA)~.·j

Other instruction

Other instruction
Other instruction

if ID EX

IF ID
if

EX

ID EX ····

Figure 7.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

218

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figure illustrates
how this occurs, assuming MA and IF contention .

._..._.._...___.. .._.. .,.._..._.._..._..._. Slot

1 oMuLs.L 1F 10 Ex MA MA ffiim ... rr.iri.ljfim.·iii-rr1J
LOS if ID EX)l .. _._ ... _._·_·_·_·_·_·_·_·_·_-_ ... _._._'_j(

IF ID EX MA Other instruction

Other instruction

Other instruction

if - - - - ID EX

IF ID EX ····

.._..._..._..._.. •• .,._.._..._..._..._.Slot

IDMULS.L if ID EX MA MA mm:·:rii.iiijjjijj:ijjijj)j
LOS IF ID EX :.-~(_"_·_·_·_-_-_-_ -.-.-.°A·_":

Other instruction

Other instruction
Other instruction

if ID EX

IF ID

if

EX

ID EX ····

Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

219

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the memory and the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 7.73) to create a single slot. The MA of the LDS contends with IF. Figure 7.73
illustrates how this occurs, assuming MA and IF contention .

._.._.._..._..,...,..._..,..:Slot

iDMuLs.L 1F ID Ex MA MA ~·mm.·.mm'."irifri.mm.!I
LDS.L if - - ID EX j~(.......... ~)~.)

IF ID EX MA Other instruction

Other instruction
Other instruction

if - - - - ID EX
IF ID EX

._.._..,..._. .. ., 111 .,._..,...,..._.._.._.:Slot

jDMULS.L if ID EX MA MA mmjii.iiijfifii:ifiifi:j
LDS.L IF - ID EX \Nf.".".".".".".".".".". .. ".".A°.".~

Other instruction

Other instruction
Other instruction

if - ID EX

IF ID
if

EX

ID EX ····

Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

220

7. 7 .3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

• AND

• AND

•NOT

• OR

• OR

• TST

• TST

•XOR

•XOR

Rm, Rn

#imm,RO

Rm, Rn

Rm, Rn

#imm,RO

Rm, Rn

#imm,RO

Rm, Rn

#imm,RO

.-..-..-..-..-..-.:Slot

!Instruction A IF ID EX I
Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.74 Register-Register Logic Operation Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

221

Memory Logic Operation Instructions: Include the following instruction types:

• AND.B #imm, @(RO, GBR)

• OR.B #imm, @(RO, GBR)

• TST.B #imm, @(RO, GBR)

• XOR.B #imm, @(RO, GBR)

...,. .,. .,.: Slot

I Instruction A IF ID EX MA EX MAI

Next instruction IF ID EX
Third instruction IF ID EX

Figure 7.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

222

T AS Instruction: Includes the following instruction type:

• TAS.B @Rn

.,..,..,..,..,..,..,..,..,.:Slot

I Instruction A IF ID EX MA EX MAI

Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID of the
next instruction stalls for 3 slots. The MA of the T AS instruction contends with IF.

223

7.7.4 Shift Instructions

Shift Instructions: Include the following instruction types:

• ROTL

• ROTR

• ROTCL

• ROTCR

• SHAL

• SHAR

• SHLL

• SHLR

• SHLL2

• SHLR2

• SHLL8

• SHLR8

• SHLL16

• SHLR16

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

.._.._.._.._.._.._.._.._.._:Slot

I Instruction A IF ID EX I
Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7. 77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.77). The data operation is
completed in the EX stage via the ALU.

224

7.7.S Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

• BF label

• BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is perfonned in
the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 7.78) .

I Instruction A

Next instruction

Third instruction

Branch destination

._.._.._.._.._.._.._.._.._.:Slot

IF ID EXl

IF (Fetched but discarded)

IF (Fetched but discarded)

IF ID EX

IF ID EX

Figure 7.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is detennined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.79) .

._.._.._.._.._.._.._.._.._.:Slot

I Instruction A IF ID EX I
Next instruction

Third instruction

IF ID EX

IF ID EX
IF ID EX

Figure 7.79 Branch Instruction When Condition is Not Satisfied

225

Note: SH-2 always fetches instructions with a long word. Therefore, "l. When condition is
satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of the
4n address.

226

Delayed Conditional Branch Instructions (SH-2 CPU): Include the following instruction types:

• BF/S label (SH-2 CPU only)

• BT/S label (SH-2 CPU only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch in,struction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 7 .80) .

.-..-..-..-..-..-..-..-..-.:Slot

/ Instruction A IF ID EX I
Next instruction

Third instruction

Branch destination

IF ID EX MA WB

IF (Fetched but discarded)

IF ID EX

IF ID EX

Figure 7 .80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7 .81) .

...._..._.._:Slot

I Instruction A IF ID EXI
Next instruction IF ID EX
Third instruction IF ID EX

IF ID EX

Figure 7.81 Branch Instruction When Condition is Not Satisfied

227

Note: SH-2 always fetches instructions with a long word. Therefore, "1. When condition is
satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of the
4n address.

228

Unconditional Branch Instructions: Include the following instruction types:

• BRA label

• BRAF Rm (SH-2 CPU only)

• BSR label

• BSRF Rm (SH-2 CPU only)

• JMP @Rm

• JSR @Rm

• RTS

...-..-..-.:Slot

!Instruction A IF ID EXI
Delay slot IF ID EX MA WB

Branch destination IF ID EX
IF ID EX

Figure 7.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of
instruction A.

229

7.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

• CLRT

• LDC Rm,SR

• LDC Rm,GBR

• LDC Rm, VBR

• LDS Rm,PR

•NOP

• SEIT

• STC SR,Rn

• STC GBR,Rn

• STC VBR,Rn

• STS PR,Rn

.................. :s1ot

I Instruction A IF ID EX I
Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is
completed in the EX stage via the ALU.

230

LDC.L Instructions: Include the following instruction types:

• LDC.L

• LDC.L

• LDC.L

@Rm+, SR

@Rm+,GBR

@Rm+,VBR

.,...,...,...,...,...,...,...,...,..:Slot

I Instruction A IF ID EX MA EX I
Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the
following instruction is stalled for two slots.

231

STC.L Instructions: Include the following instruction types:

• STC.L SR, @-Rn

• STC.L GBR, @-Rn

• STC.L VBR, @-Rn

._.._.._.._.._.._.._.._.._.:Slot

I Instruction A IF ID EX MA I
Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the next
instruction is stalled for one slot.

232

LDS.L Instruction (PR): Includes the following instruction type:

• LDS.L @Rm+, PR

...,...,...,...,...,...,...,...,...,:Slot

I Instruction A IF ID EX MA WB I
Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the same as
an ordinary load instruction.

233

STS.L Instruction (PR): Includes the following instruction type:

• STS.LPR, @-Rn

.................................... :s1ot

I Instruction A IF ID EX MA I
Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as an
ordinary store instruction.

234

Register ~ MAC Transfer Instructions: Include the following instruction types:

• CLRMAC

• LDS Rm, MACH

• LDS Rm, MACL

._.._.._.._.._.._.._.._.._.:Slot

I Instruction A IF ID EX MA I
Next instruction IF ID EX

Third instruction IF ID EX

Figure 7.88 Register~ MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store
instructions. Since the multiplier contends with the MA, see the section for the SOP instruction,
multiply instruction, and double precision multiply instruction.

235

Memory-? MAC Transfer Instructions: Include the following instruction types:

• LDS.L @Rm+, MACH

• LDS.L @Rm+, MACL

._.._.._.._.._.._.._.._.._.:Slot

I Instruction A IF ID EX MA I
Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.89 Memory-? MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the SOP
instruction, multiply instruction, and double precision multiply instruction.

236

MAC -+ Register Transfer Instructions: Include the following instruction types:

• STS MACH, Rn

• STS MACL, Rn

.,...,...,...,...,...,...,...,...,..:Slot

I Instruction A IF ID EX MA WB I
Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.90 MAC-+ Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the SOP
instruction, multiply instruction, and double precision multiply instruction.

237

MAC ~ Memory Transfer Instructions: Include the following instruction types:

• STS.L

• STS.L

MACH,@-Rn

MACL,@-Rn

................................... :s10t

I Instruction A IF ID EX MAI

Next instruction

Third instruction

IF ID EX

IF ID EX

Figure 7.91 MAC~ Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). The MA is a stage for
accessing the memory and the multiplier. The MA contends with IF. This makes it the same as
ordinary store instructions. Since the multiplier contends with the MA, see the section for the SOP
instruction, multiply instruction, and double precision multiply instruction.

238

RTE Instruction: Includes the following instruction type:

• RTE

._.._.._.._.._.._.._.._.._.:Slot

!RTE IF ID EX MA MAI

Delay slot

Branch destination

IF ID EX

IF ID EX

Figure 7.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs contend with the
IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3
slots. The IF of the branch destination instruction starts from the slot following the MA of the
RTE.

239

TRAP Instruction: Includes the following instruction type:

• TRAPA #imm

,..,..,..,..,..,..,..,..,..,..,..,..,..:Slot

ITRAPA IF ID EX EX MA MA MA EX EXI
Next instruction IF
Third instruction IF

Branch destination IF ID EX
IF ID EX

Figure 7.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The MAs
contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

240

SLEEP Instruction: Includes the following instruction type:

• SLEEP

.................................... :s1ot
I SLEEP IF ID EX I

Next instruction IF

Figure 7.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

241

7. 7. 7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

• Interrupt exception processing

.................. .,. :s1ot
I Interrupt fff..".".Jtf EX EX MA MA EX MA EX EX I

Next instruction

Branch destination

IF
IF ID EX

IF ID

Figure 7.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

242

Address Error Exception Processing: Includes the following instruction type:

• Address error exception processing

,..,..,..,..,..,..,..,..,..,..,..,..,..:Slot

!Interrupt fff..".".Jtf EX EX MA MA EX MA EX EXI
Next instruction IF

Branch destination IF ID EX

IF ID

Figure 7.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the
address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. For details of the
error cause, refer to the appropriate hardware manual.

243

Illegal Instruction Exception Processing: Includes the following instruction type:

• Illegal instruction exception processing

....................................... :s10t

I Illegal instruction)f. ... '. ..)p·~ EX EX MA MA MA EX EX I
Next instruction

(Third instruction

Branch destination

IF

IF)

IF ID EX

IF ID

Figure 7 .97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.97). Illegal instruction
exception processing is not a delayed branch. In illegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
as well depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot directly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction
exception handling occurs.

244

Appendix A Instruction Code

See "6. Instruction Descriptions" for details.

A.1 Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

245

Table A.1 Instruction Set by Addressing .Mode

Types

Addressing Mode Category Sample Instruction SH-2 SH-1

No operand NOP 8 8

Direct register addressing Destination operand only MOVT Rn 18 17

Source and destination ADD Rm,Rn 34 31
operand

Load and store with control LDC Rm, SR 12 12
register or system register STS MACH, Rn

Indirect register Source operand only JMP @Rm 2 2
addressing Destination operand only TAS.B @Rn

Data transfer with direct MOV.L Rm, @Rn 6 6
register addressing

Post increment indirect Multiply/accumulate operation MAC.W @Rm+,@Rn+ 2
register addressing

Data transfer from direct MOV.L @Rm+,Rn 3 3
register addressing

Load to control register or LDC.L @Rm+,SR 6 6
system register

Pre decrement indirect Data transfer from direct MOV.L Rm, @-Rn 3 3
register addressing register addressing

Store from control register or STC.L SR, @-Rn 6 6
system register

Indirect register addressing Data transfer with direct MOV.L Rm,@(disp,Rn) 6 6
with displacement register addressing

Indirect indexed register Data transfer with direct MOV.L Rm,@(RO,Rn) 6 6
addressing register addressing

Indirect GBR addressing Data transfer with direct MOV.L R,@(disp,GBR) 6 6
with displacement register addressing

Indirect indexed GBR Immediate data transfer AND.B #limn, @(RO I GBR) 4 4
addressing

PC relative addressing with Data transfer to direct register MOV.L @ (disp, PC) , Rn 3 3
displacement addressing

PC relative addressing with Branch instruction BRAF Rm 2 0
Rm

PC relative addressing Branch instruction BRA label 6 4

Immediate addressing Arithmetic logical operations ADD #irnrn,Rn 7 7
with direct register addressing

Specify exception processing TRAPA # imm
vector

Total: 142 133

246

A.1.1 No Operand

Table A.2 No Operand

Instruction Code Operation State TBit

CLRT 0000000000001000 O~T 0

CLRMAC 0000000000101000 0 ~ MACH, MACL

DIVOU 0000000000011001 0 ~ M/Qff 0

NOP 0000000000001001 No operation 1

RTE 0000000000101011 Delayed branch, Stack area 4 LSB
~PC/SR

RTS 0000000000001011 Delayed branch, PR ~ PC 2

SETT 0000000000011000 1~T

SLEEP 0000000000011011 Sleep 3

247

A.1.2 Direct Register Addressing

TableA.3 Destination Operand Only

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn>0, 1 ~ T Comparison result

CMP/PZ Rn 0100nnnn00010001 Rn~0.1 ~ T Comparison result

DT Rn* 0100nnnn00010000 Rn-1 ~Rn Comparison result
When Rn is 0, 1 ~ T,
when Rn is nonzero,
O~T

MOVT Rn 0000nnnn00101001 T~Rn

ROTL Rn 0100nnnn00000100 T~Rn ~MSB MSB

ROTR Rn 0100nnnn00000101 LSB ~Rn ~T LSB

ROTCL Rn 0100nnnn00100100 T~Rn~T MSB

ROTCR Rn 0100nnnn00100101 T~ Rn ~T LSB

SHAL Rn 0100nnnn00100000 T~Rn ~o MSB

SHAR Rn OlOOnnnnOOlOOOOl MSB~ Rn ~T LSB

SHLL Rn OlOOnnnnOOOOOOOO T~Rn ~o MSB

SHLR Rn 0100nnnn00000001 0 ~Rn ~T LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 ~Rn

SHLR2 Rn 0100nnnn00001001 Rn>>2 ~Rn

SHLL8 Rn 0100nnnn00011000 Rn<<8 ~Rn

SHLR8 Rn 0100nnnn00011001 Rn>>8 ~Rn

SHLL16 Rn 0100nnnn00101000 Rn<<16 ~Rn

SHLR16 Rn 0100nnnn00101001 Rn>>16 ~Rn

Note: SH-2 CPU instruction

TableA.4 Source and Destination Operand

Instruction Code Operation State TBit

ADD Rm,Rn OOllnnnnrrunrnmllOO Rn+ Rm~ Rn

ADDC Rm,Rn OOllnnnnrrunrnmlllO Rn + Rm + T ~ Rn, Carry
carry~ T

ADDY Rm,Rn OOllnnnnrrunrnmllll Rn+ Rm~ Rn, Overflow
overflow~ T

AND Rm,Rn 0010nnnnrrunrnm1001 Rn& Rm~ Rn

248

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State TBit

CMP/EQ Rm,Rn OOllnnnnrrunmmOOOO When Rn = Rm, 1 ~ T 1 Comparison
result

CMP/HS Rm,Rn OOllnnnnrrunmmOOlO When unsigned and Rn Comparison
~Rm, 1 ~ T result

CMP/GE Rm,Rn OOllnnnnrrunmmOOll When signed and Rn ~ Comparison
Rm, 1 ~T result

CMP/HI Rm,Rn 0011nnnnrrunmm0110 When unsigned and Rn Comparison
>Rm, 1 ~T result

CMP/GT Rm,Rn OOllnnnnrrunmmOlll When signed and Rn > Comparison
Rm, 1 ~T result

CMP/STR Rm,Rn OOlOnnnnrrunmmllOO When a byte in Rn Comparison
equals bytes in Rm, 1 result
~T

DIVl Rm,Rn OOllnnnnrrunmmOlOO 1-step division (Rn+ Calculation
Rm) result

DIVOS Rm,Rn 0010nnnnrrunmm0111 MSB of Rn ~ Q, MSB Calculation
of Rm ~ M, M " Q ~ T result

DMULS.L Rm,Rn* 2 OOllnnnnrrunmmllOl Signed, Rn x Rm ~ 2 to 4*1

MACH,MACL

DMULU.L Rm,Rn*2 0011nnnnrrunmm0101 Unsigned, Rn x Rm ~ 2 to 4*1

MACH,MACL

EXTS.B Rm,Rn OllOnnnnrrunmmlllO Sign - extends Rm
from byte ~ Rn

EXTS.W Rm,Rn OllOnnnnrrunmmllll Sign - extends Rm
from word ~ Rn

EXTU.B Rm,Rn OllOnnnnrrunmmllOO Zero- extends Rm
from byte~ Rn

EXTU.W Rm,Rn OllOnnnnrrunmmllOl Zero - extends Rm
from word ~ Rn

MOV Rm,Rn 0110nnnnmnnnm0011 Rm~Rn

MUL.L Rm,Rn*2 OOOOnnnnrrunmmOlll Rn xRm~MACL 2 to 4*1

MULS.W Rm,Rn OOlOnnnnrrunmmllll Signed, Rn x Rm ~ 1 to 3*1

MAC

MULU.W Rm,Rn 0010nnnnrrunmmll10 Unsigned, Rn x Rm ~ 1 to 3*1

MAC

NEG Rm,Rn 0110nnnnrrunmml011 0-Rm ~Rn

NEGC Rm,Rn 0110nnnnrrunmm1010 0-Rm-T ~Rn, Borrow
Borrow~ T

Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

249

TableA.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit

NOT Rm,Rn 0110nnnnmnunm0111 -Rm~ Rn 1

OR Rm,Rn 0010nnnnmrnmm1011 Rn I Rm~Rn

SUB Rm,Rn OOllnnnnrnnumnlOOO Rn-Rm~ Rn

SUBC Rm,Rn OOllnnnnrnnumnlOlO Rn - Rm - T ~ Rn, Borrow
Borrow~ T

SUBY Rm,Rn OOllnnnnmrnmmlOll Rn-Rm~ Rn, Underflow
Underflow ~ T

SWAP.B Rm,Rn OllOnnnnrnnumnlOOO Rm ~ Swap upper and
lower halves of lower 2
bytes~ Rn

SWAP.W Rm,Rn OllOnnnnmrnmmlOOl Rm ~ Swap upper and
lower word ~ Rn

TST Rm,Rn 0010nnnnmrnmm1000 Rn & Rm, when result is Test results
0, 1 ~T

XOR Rm,Rn 0010nnnnrnnumn1010 Rn" Rm~ Rn

XTRCT Rm,Rn 0010nnnnmrnmml101 Center 32 bits of Rm and
Rn~Rn

Table A.5 Load and Store with Control Register or System Register

Instruction Code Operation State T Bit

LDC Rm,SR 0100mrnmm00001110 Rm~SR LSB

LDC Rm,GBR 0100mrnmm00011110 Rm~GBR

LDC Rm,VBR 0100mmmm00101110 Rm~VBR

LOS Rm,MACH 0100mmmm00001010 Rm~MACH

LOS Rm,MACL 0100mmmm00011010 Rm~MACL

LOS Rm,PR 0100mmmm00101010 Rm~PR

STC SR,Rn OOOOnnnnOOOOOOlO SR~Rn

STC GBR,Rn 0000nnnn00010010 GBR~ Rn

STC VBR,Rn 0000nnnn00100010 VBR ~Rn

STS MACH,Rn 0000nnnn00001010 MACH~ Rn

STS MACL,Rn 0000nnnn00011010 MACL~ Rn

STS PR, Rn 0000nnnn00101010 PR~Rn

250

A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code Operation

JMP @Rm 0100mmmm00101011 Delayed branch, Rm ~ PC

JSR @Rm 0100mmmm00001011 Delayed branch, PC~ PR,
Rm~PC

State T Bit

2

2

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 ~ T, 1 ~ 4 Test results
MSB of (Rn)

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation

MOV.B Rm,@Rn OOlOnnnnmmmmOOOO Rm~ (Rn)

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm~ (Rn)

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm~ (Rn)

MOV.B @Rm,Rn OllOnnnnmmmmOOOO (Rm) ~sign extension ~ Rn

MOV.W @Rm,Rn OllOnnnnmmmmOOOl (Rm) ~sign extension ~ Rn

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm)~ Rn

A.1.4 Post Increment Indirect Register Addressing

Table A.8 Multiply/Accumulate Operation

Instruction

MAC.L @Rm+, @Rn+* 2

Code

OOOOnnnnmmmmllll

Operation

Signed, (Rn) x (Rm) + MAC
~MAC

State

State

3'(2to4)*1

MAC. W @Rm+, @Rn+ OlOOnnnnmmmmllll Signed, (Rn) x (Rm) + MAC 3/(2)*1
~MAC

T Bit

T Bit

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH-2 CPU instruction

251

Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnrnmmrn0100 (Rm) ~ sign extension ~
Rn, Rm+ 1 ~Rm

MOV.W @Rm+,Rn 0110nnnnmrnmm0101 (Rm) ~sign extension ~
Rn, Rm+2~ Rm

MOV.L @Rm+,Rn 0110nnnnmrnmm0110 (Rm) ~ Rn, Rm + 4 ~ Rm

TableA.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC.L @.Rm+,SR 0100mrrmrrn00000111 (Rm) ~SR, Rm + 4 ~ Rm 3 LSB

LDC.L @Rm+,GBR 0100mrrmrrn00010111 (Rm) ~ GBR, Rm + 4 ~ Rm 3

LDC.L @Rm+,VBR 0100mrrmrrn00100111 (Rm) ~ VBR, Rm + 4 ~ Rm 3

LDS.L @Rm+,MACH 0100mrrmrrn00000110 (Rm) ~ MACH, Rm + 4 ~ Rm

LDS.L @.Rm+,MACL 0100mrrmrrn00010110 (Rm) ~ MACL, Rm + 4 ~ Rm

LDS.L @Rm+,PR 0100mrrmrrn00100110 (Rm) ~ PR, Rm + 4 ~ Rm

A.1.5 Pre Decrement Indirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@-Rn 0010nnnnrnmmrn0100 Rn - 1 ~ Rn, Rm ~ (Rn)

MOV.W Rm,@-Rn 0010nnnnrnmmrn0101 Rn - 2 ~ Rn, Rm ~ (Rn)

MOV.L Rm,@-Rn 0010nnnnmmrrun0110 Rn - 4 ~ Rn, Rm ~ (Rn)

252

TableA.12 Store from Control Register or System Register

Instruction Code Operation

STC.L SR,@-Rn 0100nnnn00000011 Rn - 4 -7 Rn, SR -7 (Rn)

STC.L GBR,@-Rn 0100nnnn00010011 Rn - 4 -7 Rn, GBR -7 (Rn)

STC.L VBR,@-Rn 0100nnnn00100011 Rn - 4 -7 Rn, VBR -7 (Rn)

STS.L MACH,@-Rn 0100nnnn00000010 Rn - 4 -7 Rn, MACH -7 (Rn)

STS.L MACL,@-Rn 0100nnnn00010010 Rn - 4 -7 Rn, MACL -7 (Rn)

STS.L PR,@-Rn 0100nnnn00100010 Rn - 4 -7 Rn, PR -7 (Rn)

A.1.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation

MOV.B RO,@(disp,Rn) lOOOOOOOnnnndddd RO -7 (disp + Rn)

MOV.W RO,@(disp,Rn) lOOOOOOlnnnndddd RO -7 (disp x 2 + Rn)

MOV.L Rm,@(disp,Rn) OOOlnnnnmrrumndddd Rm -7 (disp x 4 + Rn)

MOV.B @(disp,Rm),RO 10000100mrrumndddd (disp +Rm) -7 sign
extension -7 RO

MOV.W @(disp,Rm) ,RO 10000101mrrumndddd (disp x 2 + Rm) -7 sign
extension -7 RO

MOV.L @(disp,Rm),Rn OlOlnnnnmrrumndddd (disp x 4 + Rm) -7 Rn

A.1.7 Indirect Indexed Register Addressing

TableA.14 Indirect Indexed Register Addressing

Instruction Code Operation

MOV.B Rm,@(RO,Rn) OOOOnnnnmrnrrunOlOO Rm -7 (RO + Rn)

MOV.W Rm,@(RO,Rn) 0000nnnnmrnrrun0101 Rm -7 (RO + Rn)

MOV.L Rm,@(RO,Rn) 0000nnnnmrnrrun0110 Rm -7 (RO + Rn)

MOV.B @(RO,Rm) ,Rn OOOOnnnnmrnrrunllOO (RO + Rm) -7 sign
extension -7 Rn

MOV.W @(RO,Rm) ,Rn OOOOnnnnmrnrrunllOl (RO + Rm) -7 sign
extension -7 Rn

MOV.L @(RO, Rm) ,Rn OOOOnnnnmrnrrunlllO (RO + Rm) -7 Rn

253

State TBit

2

2

2

State T Bit

State T Bit

A.1.8 Indirect GBR Addressing with Displacement

TableA.15 Indirect GBR Addressing with Displacement

Instruction Code Operation

MOV.B RO,@(disp,GBR) 11000000dddddddd RO ~ (disp + GBR)

MOV.W RO,@(disp,GBR) 11000001dddddddd RO ~ (disp x 2 +
GBR)

MOV.L RO,@(disp,GBR) 11000010dddddddd RO~ (disp x4+
GBR)

MOV.B @(disp,GBR} ,RO 11000100dddddddd (disp + GBR) ~ sign
extension ~ RO

MOV.W @(disp,GBR) ,RO 11000101dddddddd (disp x 2 + GBR) ~
sign extension ~ RO

MOV.L @(disp,GBR) ,RO 11000110dddddddd (disp x 4 + GBR) ~
RO

A.1.9 Indirect Indexed GBR Addressing

Table A.16 Indirect Indexed GBR Addressing

Instruction Code Operation

AND.B #inun,@(RO,GBR} 11001101iiiiiiii (RO + GBR) & imm ~
(RO+ GBR)

OR.B # inun, @(RO, GBR) 11001111iiiiiiii (RO + GBR) I imm ~ (RO
+ GBR)

TST.B #inun,@(RO,GBR} 11001100iiiiiiii (RO + GBR) & imm, when
result is 0, 1 ~ T

XOR.B #inun,@(RO,GBR} 11001110iiiiiiii (RO + GBR) A imm ~ (RO
+GBR)

A.1.10 PC Relative Addressing with Displacement

Table A.17 PC Relative Addressing with Displacement

Instruction Code Operation

MOV.W @(disp, PC}, Rn lOOlnnnndddddddd (disp x 2 + PC) ~ sign
extension ~ Rn

MOV.L @(disp, PC}' Rn 1101nnnndddddddd (disp x4 +PC)~ Rn

MOVA @(disp, PC}, RO 1100011ldddddddd disp x 4 + PC ~ RO

254

State TBit

1

State T Bit

3

3

3 Test
results

3

State T Bit

1

A.1.11 PC Relative Addressing with Rm

Table A.18 PC Relative Addressing with Rm

Instruction Code Operation

BRAF Rm*2 0000mmrnm00100011 Delayed branch, Rm+ PC~ PC

BSRF Rm*2 OOOOmmrnmOOOOOOll Delayed branch, PC ~ PR, Rm + PC
~PC

Notes: 2. SH-2 CPU instruction

A.1.12 PC Relative Addressing

TableA.19 PC Relative Addressing

Instruction Code Operation

BF label 10001011dddddddd When T = 0, disp x 2 + PC ~ PC;
When T = 1, nop

BF/S label*2 lOOOlllldddddddd When T = 0, disp x 2 + PC ~ PC;
When T = 1, nop

BT label 10001001dddddddd When T = 1 , disp x 2+ PC ~ PC;
When T = 0, nop

BT/S label*2 10001101dddddddd When T = 1, disp x 2 + PC ~ PC;
When T = 0, nop

BRA label 1010dddddddddddd Delayed branch, disp x 2 + PC ~
PC

BSR label lOlldddddddddddd Delayed branch, PC ~ PR, disp x
2+PC~PC

Notes: 2. SH-2 CPU instruction

3. One state when it does not branch

255

State TBit

2

2

State T Bit

3/1*3

2/1*3

3/1*3

2/1*3

2

2

A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register AddreMing

Instruction Code Operation State TBit

ADD #imm,Rn Olllnnnniiiiiiii Rn+ imm-+ Rn 1

AND #imm,RO 1100100liiiiiiii RO &imm-+ RO

CMP/EQ #imm,RO 10001000iiiiiiii When RO = imm, 1 --+ T Comparison
result

MOV #imm,Rn lllOnnnniiiiiiii imm --+ sign extension --+ Rn

OR #imm,RO 11001011iiiiiiii RO I imm-+ RO

TST #imm,RO 11001000iiiiiiii RO & imm, when result is 0, Test results
1--+ T

XOR #imm,RO 11001010iiiiiiii ROAimm-+ RO

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit

TRAPA #imm llOOOOlliiiiiiii PC/SR --+ Stack area, (imm x 4 +
VBR)-+ PC

A.2 Instruction Sets by Instruction Format

8

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

256

Table A.22 Instruction Sets by Format

Types

Format category Sample Instruction SH-2 SH-1

0 NOP 8 8
n Direct register addressing MOVT Rn 18 17

Direct register addressing (store with control STS MACH,Rn 6 6
or system registers)

Indirect register addressing TAS.B @Rn 1
Pre decrement indirect register addressing STC.L SR,@-Rn 6 6

m Direct register addressing (load with control LDC Rm,SR 6 6
or system registers)
PC relative addressing with Rn BRAF Rm 2 0

Direct register addressing JMP @Rm 2 2

Post increment indirect register addressing LDC.L @Rm+,SR 6 6

nm Direct register addressing ADD Rm,Rn 34 31

Indirect register addressing MOV.L Rm,@Rn 6 6
Post increment indirect register addressing MAC.W @Rm+,@Rn+ 2
(multiply/accumulate operation)

Post increment indirect register addressing MOV.L @Rm+,Rn 3 3
Pre decrement indirect register addressing MOV.L Rm,@-Rn 3 3

Indirect indexed register addressing MOV.L Rm,@(RO,Rn) 6 6

md Indirect register addressing with MOV.B @(disp, Rm) ,RO 2 2
displacement

nd4 Indirect register addressing with MOV.B RO,@(disp,Rn) 2 2
displacement

nmd Indirect register addressing with MOV.L Rm,@(disp,Rn) 2 2
displacement

d Indirect GBR addressing with displacement MOV.L RO,@(disp,GBR) 6 6

Indirect PC addressing with displacement MOVA @(disp, PC) ,RO 1 1

PC relative addressing BF label 4 2

d12 PC relative addressing BRA label 2 2

nd8 PC relative addressing with displacement MOV.L @(disp, PC) ,Rn 2 2

Indirect indexed GBR addressing AND.B #imm,@(RO,GBR) 4 4

Immediate addressing (arithmetic and logical AND #imm,RO 5 5
operations with direct register)

Immediate addressing (specify exception TRAPA #imm
processing vector)

ni Immediate addressing (direct register ADD #imm,Rn 2 2
arithmetic operations and data transfers)

Total: 142 133

257

A.2.1 OFormat

TableA.23 OFormat

Instruction Code Operation State TBit

CLRT 0000000000001000 O~T 1 0

CLRMAC 0000000000101000 0 ~ MACH, MACL 1

DIVOU 0000000000011001 0 ~ M/Q/T 0

NOP 0000000000001001 No operation

RTE 0000000000101011 Delayed branching, stack 4 LSB
area·~ PC/SR

RTS 0000000000001011 Delayed branching, PR~ 2
PC

SETT 0000000000011000 1~T

SLEEP 0000000000011011 Sleep 3*4

Notes: 4. This is the number of states until a transition is made to the Sleep state.

258

A.2.2 nFormat

TableA.24 Direct Register Addressing

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn>O, 1 ~ T Comparison result

CMP/PZ Rn 0100nnnn00010001 Rn;:: 0, 1 ~ T Comparison result

IYI' Rn* 2 0100nnnn00010000 Rn -1 ~Rn; Comparison result
If Rn is 0, 1 ~ T, if Rn
is nonzero, 0 ~ T

MOVT Rn 0000nnnn00101001 T~Rn

ROTL Rn OlOOnnnnOOOOOlOO T f- Rn f- MSB MSB

ROTR Rn 0100nnnn00000101 LSB~ Rn ~T LSB

ROT CL Rn Ol00nnnn00100100 T f- Rn f-T MSB

ROT CR Rn 0100nnnn00100101 T ~Rn ~T LSB

SHAL Rn OlOOnnnnOOlOOOOO T f- Rn f- 0 MSB

SHAR Rn 0100nnnn00100001 MSB~ Rn ~T LSB

SHLL Rn OlOOnnnnOOOOOOOO T f- Rn f- 0 MSB

SHLR Rn OlOOnnnnOOOOOOOl 0 ~Rn~ T LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 ~Rn

SHLR2 Rn 0100nnnn00001001 Rn>>2 ~Rn

SH LLB Rn OlOOnnnnOOOllOOO Rn<<B ~Rn

SHLRB Rn 0100nnnn00011001 Rn>>B ~Rn

SHLL16 Rn 0100nnnn00101000 Rn<<16 ~Rn

SHLR16 Rn 0100nnnn00101001 Rn>>16 ~Rn

Notes: 2. SH-2 CPU instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit

STC SR,Rn 0000nnnn00000010 SR~ Rn

STC GBR,Rn 0000nnnn00010010 GBR ~Rn

STC VBR,Rn 0000nnnn00100010 VBR~ Rn

STS MACH,Rn 0000nnnn00001010 MACH~ Rn

STS MACL,Rn 0000nnnn00011010 MACL~Rn

STS PR,Rn 0000nnnn00101010 PR~Rn

259

Table A.26 Indirect Register Addressing

Instruction Code Operation State T Bit

TAS. B @Rn 0100nnnn00011011 When (Rn) is 0, 1 ~ T, 1 ~ 4 Test results
MSB of (Rn)

TableA.27 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

STC.L SR,@-Rn OlOOnnnnOOOOOOll Rn -4 ~Rn, SR~ (Rn) 2

STC.L GBR, @-Rn 0100nnnn00010011 Rn - 4 ~ Rn, GBR ~ (Rn) 2

STC.L VBR,@-Rn 0100nnnn00100011 Rn - 4 ~ Rn, VBR ~ (Rn) 2

STS.L MACH,@-Rn 0100nnnn00000010 Rn - 4 ~ Rn, MACH ~ (Rn)

STS.L MACL,@-Rn 0100nnnn00010010 Rn -4 ~Rn, MACL ~(Rn)

STS.L PR,@-Rn 0100nnnn00100010 Rn - 4 ~ Rn, PR ~ (Rn)

260

A.2.3 m Format

TableA.28 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State TBit

LDC Rm,SR 0100mrrumn00001110 Rm~SR LSB

LDC Rm,GBR 0100mrrumn00011110 Rm~GBR

LDC Rm,VBR 0100mrrumn00101110 Rm~VBR

IDS Rm,MACH 0100mrrumn00001010 Rm~MACH

IDS Rm,MACL 0100mrrumn00011010 Rm~MACL

IDS Rm,PR 0100mrrumn00101010 Rm~PR

TableA.29 Indirect Register

Instruction Code Operation State TBit

JMP @Rm 0100rmrunm00101011 Delayed branch, Rm ~ PC 2

JSR @Rm 0100rmrunm00001011 Delayed branch, PC ~ PR, 2
Rm~PC

TableA.30 Post Increment Indirect Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mrrumn00000111 (Rm) ~ SR, Rm + 4 ~ Rm 3 LSB

LDC.L @Rm+,GBR 0100mrrumn00010111 (Rm) ~ GBR, Rm + 4 ~ Rm 3

LDC.L @Rm+,VBR 0100mrrumn00100111 (Rm) ~ VBR, Rm + 4 ~ Rm 3

IDS.L @Rm+,MACH 0100mrrumn00000110 (Rm) ~ MACH, Rm + 4 ~ Rm

IDS.L @Rm+,MACL 0100mrrumn00010110 (Rm) ~ MACL, Rm + 4 ~ Rm

IDS.L @Rm+,PR 0100mrrumn00100110 (Rm) ~ PR, Rm + 4 ~ Rm

Table A.31 PC Relative Addressing with Rm

Instruction Code Operation State TBit

BRAF Rm*2 0000rmrunm00100011 Delayed branch, Rm + PC ~ PC 2

BSRF Rm*2 OOOOrmrunmOOOOOOll Delayed branch, PC ~ PR, Rm + PC 2
~PC

Notes: 2. SH-2 CPU instruction

261

A.2.4 nm Format

TableA.32 Direct Register Addressing

Instruction Code Operation State TBit

ADD Rm,Rn OOllnnnnmmrrunllOO Rn+ Rm~Rn 1

ADDC Rm,Rn OOllnnnnmmrrunlllO Rn + Rm + T ~ Rn, carry Carry
~T

ADDV Rm,Rn OOllnnnnmmrrunllll Rn + Rm ~ Rn, overflow Overflow
~T

AND Rm,Rn 0010nnnnmmrrun1001 Rn&Rm~Rn

CMP/EQ Rm,Rn OOllnnnnmmrrunOOOO When Rn = Rm, 1 ~ T Comparison
result

CMP/HS Rm,Rn 0011nnnnmmrrun0010 When unsigned and Rn ;;: Comparison
Rm, 1 ~T result

CMP/GE Rm,Rn OOllnnnnmmrrunOOll When signed and Rn ;;: Comparison
Rm, 1 ~T result

CMP/HI Rm,Rn OOllnnnnmmrrunOllO When unsigned and Rn > Comparison
Rm, 1 ~T result

CMP/GT Rm,Rn OOllnnnnmmrrunOlll When signed and Rn > Comparison
Rm, 1 ~T result

CMP/STR Rm,Rn 0010nnnnmmrrun1100 When a byte in Rn equals Comparison
a byte in Rm, 1 ~ T result

DIVl Rm,Rn OOllnnnnmmrrunOlOO 1-step division (Rn + Rm) Calculation
result

DIVOS Rm,Rn 0010nnnnmmrrun0111 MSB of Rn ~ Q, MSB of Calculation
Rm~M.M"Q~T result

DMULS.L Rm,Rn*2 OOllnnnnmmrrunllOl Signed, Rn x Rm ~ 2 to 4*1

MACH,MACL

DMULU.L Rm,Rn*2 00llnnnnmmrrun0101 Unsigned, Rn x Rm ~ 2 to 4*1

MACH,MACL

EXTS.B Rm,Rn OllOnnnnmmrrunlllO Sign-extends Rm from
byte~ Rn

EXTS.W Rm,Rn OllOnnnnmmrrunllll Sign-extends Rm from
word~ Rn

EXTU.B Rm,Rn OllOnnnnmmrrunllOO Zero-extends Rm from
byte~ Rn

EXTU.W Rm,Rn OllOnnnnmmrrunllOl Zero-extends Rm from
word~ Rn

MOV Rm,Rn 0110nnnnmmrrun0011 Rm~Rn

Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

262

TableA.32 Direct Register Addressing (cont)

Instruction Code Operation State TBit

MUL.L Rrn,Rn*2 OOOOnnnnmrmnmOlll Rn xRm~MACL 2 to 4*1

MULS.W Rrn,Rn OOlOnnnnmrmnmllll Signed, Rn x Rm ~ MAC 1 to 3*1

MULU.W Rm,Rn OOlOnnnnmrmnmlllO Unsigned, Rn x Rm ~ 1 to 3*1

MAC

NEG Rm,Rn 0110nnnnmrmnm1011 0-Rm ~Rn

NEGC Rm,Rn 0110nnnnmrmnm1010 0 - Rm - T ~ Rn, borrow Borrow
~T

NOT Rm,Rn OllOnnnnmrmnmOlll -Rm~ Rn

OR Rm,Rn 0010nnnnmrmnm1011 Rn I Rm~Rn

SUB Rrn,Rn OOllnnnnmrmnmlOOO Rn-Rm~ Rn

SUBC Rm,Rn 00llnnnnmrmnm1010 Rn - Rm - T ~ Rn, Borrow
borrow~ T

SUBY Rm,Rn OOllnnnnmrmnmlOll Rn - Rm ~ Rn, underflow Underflow
~T

SWAP.B Rm,Rn OllOnnnnmrmnmlOOO Rm ~ Swap upper and
lower halves of lower 2
bytes~ Rn

SWAP.W Rm,Rn OllOnnnnmrmnmlOOl Rm ~ Swap upper and
lower word ~ Rn

TST Rm,Rn OOlOnnnnmmrnmlOOO Rn & Rm, when result is Test results
0, 1 ~T

XOR Rm,Rn 0010nnnnmmrnm1010 Rn" Rm~ Rn

XTRCT Rm,Rn 0010nnnnmmrnm1101 Center 32 bits of Rm and
Rn~ Rn

Notes: 1. The normal minimum number of execution cycles.
2. SH-2 CPU instructions

Table A.33 Indirect Register Addressing

Instruction Code Operation State T Bit

MOV.B Rrn,@Rn 0010nnnnnunrrun0000 Rm~ (Rn)

MOV.W Rrn,@Rn 0010nnnnnunrrun0001 Rm~ (Rn)

MOV.L Rrn,@Rn 0010nnnnnunrrun0010 Rm~ (Rn)

MOV.B @Rrn,Rn OllOnnnnnunrrunOOOO (Rm) ~sign extension ~ Rn

MOV.W @Rrn,Rn 0110nnnnnunrrun0001 (Rm) ~sign extension ~ Rn

MOV.L @Rrn,Rn 0110nnnnnunrrun0010 (Rm)~ Rn

263

Table A.34 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

OOOOnnnrumnrnmllll Signed, (Rn) x (Rm) + 3/(2 to

MAC~MAC 4)*1
MAC.L @Rm+, @Rn+* 2

MAC. W @Rm+, @Rn+ OlOOnnnnrrmunmllll Signed, (Rn) x (Rm) + 3/(2)*1

MAC~MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH-2 CPU instruction.

TableA.35 Post Increment Indirect Register

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnrrmunm0100 (Rm) ~sign extension ~
Rn, Rm+ 1 ~Rm

MOV.W @Rm+,Rn 0110nnnnrnrnmm0101 (Rm) ~sign extension ~
Rn, Rm +2~ Rm

MOV.L @Rm+,Rn 0110nnnnrrmunm0110 (Rm) ~ Rn, Rm + 4 ~ Rm

Table A.36 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

MOV.B Rm,@-Rn 0010nnnnrrmunm0100 Rn - 1 ~ Rn, Rm ~ (Rn)

MOV.W Rm,@-Rn 0010nnnnrrmunm0101 Rn - 2 ~ Rn, Rm ~ (Rn)

MOV.L Rm,@-Rn 0010nnnrumnrnm0110 Rn - 4 ~ Rn, Rm ~ (Rn)

Table A.37 Indirect Indexed Register

Instruction Code Operation Cycles T Bit

MOV.B Rm,@(RO,Rn) OOOOnnnnrrmunmOlOO Rm~ (RO+ Rn)

MOV.W Rm,@(RO,Rn) 0000nnnnrrmunm0101 Rm~ (RO+ Rn)

MOV.L Rm,@(RO,Rn) OOOOnnnnnimmmOllO Rm~ (RO+ Rn)

MOV.B @(RO,Rrn) ,Rn OOOOnnnnrrmunmllOO (RO + Rm) ~ sign
extension ~ Rn

MOV.W @(RO, Rm), Rn OOOOnnnnrrmunmllOl (RO + Rm) ~ sign
extension ~ Rn

MOV.L @(RO ,Rm) ,Rn OOOOnnnnrrmunmlllO (RO+ Rm)~ Rn

264

A.2.5 md Format

Table A.38 md Format

Instruction

MOV.B @(disp,Rm) ,RO

MOV.W @(disp,Rm) ,RO

A.2.6 nd4 Format

Table A.39 nd4 Format

Instruction

MOV.B RO,@(disp,Rn)

MOV.W RO,@(disp,Rn)

A.2.7 nmd Format

Table A.40 nmd Format

Instruction

MOV.L Rm,@(disp,Rn}

MOV.L @(disp,Rm) ,Rn

Code

10000100mrnmmdddd

10000101mrnmmdddd

Code

lOOOOOOOnnnndddd

lOOOOOOlnnnndddd

Code

OOOlnnnnmrnmmdddd

OlOlnnnnmrnmmdddd

265

Operation

(disp + Rm) ~ sign
extension ~ RO

(disp x 2 + Rm) ~
sign extension ~
RO

Operation

RO~ (disp +Rn)

RO ~ (disp x 2+ Rn)

State

State

Operation State

Rm~ (disp x4 +Rn)

(disp x 4+ Rm) ~ Rn

T Bit

T Bit

T Bit

A.2.8 dFormat

TableA.41 Indirect GBR with Displacement

Instruction Code Operation State T Bit

MOV.B RO,@(disp,GBR) llOOOOOOdddddddd RO ~ (disp + GBR) 1

MOV.W RO,@(disp,GBR) llOOOOOldddddddd RO~ (disp x2 +
GBR)

MOV.L RO,@(disp,GBR) 11000010dddddddd RO~ (disp x 4 +
GBR)

MOV.B @(disp,GBR),RO 11000100dddddddd (disp + GBR) ~ sign
extension ~ RO

MOV.W @(disp,GBR),RO 11000101dddddddd (disp x 2 + GBR) ~
sign extension ~ RO

MOV.L @(disp,GBR) ,RO 11000110dddddddd (disp x 4 + GBR) ~
RO

Table A.42 PC Relative with Displacement

Instruction Code Operation State T Bit

MOVA @(disp,PC),RO llOOOllldddddddd disp x 4 + PC ~ RO

Table A.43 PC Relative Addressing

Instruction Code Operation State T Bit

BF label 10001011dddddddd When T = 0, disp x 2 + PC ~ PC; 3/1 *3

When T = 1, nop

BF/S label* 2 lOOOlllldddddddd When T = 0, disp x 2 + PC ~ PC; 2/1 *3

When T = 1, nop

BT label 10001001dddddddd When T = 1, disp x 2 + PC ~ PC; 3/1*3

When T = 0, nop

BT/S label* 2 10001101dddddddd When T = 1, disp x 2 + PC ~ PC; 2/1 *3

When T = 0, nop

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

266

A.2.9 dl2 Format

Table A.44 d12 Format

Instruction Code Operation State

BRA label 1010dddddddddddd Delayed branch, disp x 2+ PC -? PC 2

BSR label lOlldddddddddddd Delayed branching, PC -? PR, disp x 2 2
+PC-? PC

A.2.10 nd8 Format

Table A.45 nd8 Format

Instruction Code Operation

MOV. W @{disp, PC), Rn lOOlnnnndddddddd (disp x 2 +PC)-? sign
extension -? Rn

MOV.L @(disp,PC) ,Rn llOlnnnndddddddd (disp x 4 + PC) -? Rn

A.2.11 i Format

Table A.46 Indirect Indexed GBR Addressing

Instruction Code Operation

AND.B #inun,@{RO,GBR) 11001101iiiiiiii (RO + GBR) & imm -?
(RO+ GBR)

OR.B #imm, @{RO, GBR) llOOlllliiiiiiii (RO + GBR) I imm -?
(RO+ GBR)

TST.B #imm,@{RO,GBR) 11001100iiiiiiii (RO + GBR) & imm,
when result is 0, 1 -? T

XOR.B #inun,@{RO,GBR) 11001110iiiiiiii (RO + GBR) 11 imm -?
(RO+ GBR)

267

State

State

3

3

3

3

TBit

T Bit

T Bit

Test
results

Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State TBit

AND #imrn,RO 11001001iiiiiiii RO&imm~ RO 1

CMP/EQ #imrn,RO 10001000iiiiiiii When RO = imm, 1 ~ Comparison
T results

OR #imrn,RO 11001011iiiiiiii ROlimm~RO

TST #imrn,RO 11001000iiiiiiii RO & imm, when result Test results
is 0, 1 ~ T

XOR #imrn,RO 11001010iiiiiiii RO" imm ~RO

Table A.48 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State T Bit

TRAPA #imrn llOOOOlliiiiiiii PC/SR ~ Stack area, (imm x 4 + 8

A.2.12 ni Format

Table A.49 ni Format

Instruction Code

ADD Hmrn,Rn Olllnnnniiiiiiii

MOV # imrn, Rn lllOnnnniiiiiiii

VBR) ~PC

Operation

Rn+ imm~ Rn

imm ~ sign extension ~ Rn

A.3 Instruction Set in Order by Instruction Code

State

Table A.50 lists instruction codes and execution states in order by instruction code.

Table A.SO Instruction Set by Instruction Code

Instruction Code Operation State

CLRT 0000000000001000 O~T

NOP 0000000000001001 No operation

RTS 0000000000001011 Delayed branch, PR ~ 2
PC

SETT 0000000000011000 1~T

DIVOU 0000000000011001 0 ~ M/Q/T

268

T Bit

T Bit

0

0

TableA.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

SLEEP 0000000000011011 Sleep 3

CLRMAC 0000000000101000 0 ~ MACH, MACL

RTE 0000000000101011 Delayed branch, stack 4 LSB
area~ PC/SR

STC SR,Rn OOOOnnnnOOOOOOlO SR~Rn 1

BSRF Rm*2 OOOOllUIU!UllOOOOOOll Delayed branch, PC ~ 2
PR, Rm + PC ~ PC

STS MACH,Rn 0000nnnn00001010 MACH~ Rn

STC GBR,Rn 0000nnnn00010010 GBR~ Rn

STS MACL,Rn 0000nnnn00011010 MACL~Rn

STC VBR,Rn 0000nnnn00100010 VBR ~Rn

BRAF Rm*2 0000llUIU!Ull00100011 Delayed branch, Rm + 2
PC~PC

MOVT Rn 0000nnnn00101001 T~Rn

STS PR,Rn 0000nnnn00101010 PR~Rn

MOV.B Rm,@(RO,Rn) OOOOnnnnllUIU!UllOlOO Rm~ (RO+ Rn)

MOV.W Rm,@(RO,Rn) OOOOnnnnllUIU!UllOlOl Rm~ (RO+ Rn)

MOV.L Rm,@(RO,Rn) OOOOnnnnllUIU!UllOllO Rm~ (RO+ Rn)

MUL.L Rm,Rn* 2 OOOOnnnnllUIU!UllOlll Rn x Rm~MACL 2
(to 4)*1

MOV.B @(RO,Rm) ,Rn OOOOnnnnllUIU!UllllOO (RO + Rm) ~ sign
extension ~ Rn

MOV.W @(RO,Rm),Rn OOOOnnnnmnunmllOl (RO + Rm) ~ sign
extension ~ Rn

MOV.L @(RO, Rm), Rn OOOOnnnnmnunmlllO (RO+ Rm)~ Rn

MAC.L @Rm+,@Rn+*2 OOOOnnnnmnunmllll Signed, (Rn) x (Rm) + 3/(2
MAC~MAC to 4)*1

MOV.L Rm,@(disp,Rn) OOOlnnnnmnunmdddd Rm ~ (disp x 4 + Rn) 1

MOV.B Rm,@Rn OOlOnnnnmnunmOOOO Rm~ (Rn)

MOV.W Rm,@Rn 0010nnnnmmnun0001 Rm~ (Rn)

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instruction

269

Table A.SO Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

MOV.L Rm,@Rn 0010nnnrunmmm0010 Rm~ (Rn)

MOV.B Rm,@-Rn 0010nnnnnumnm0100 Rn - 1 ~ Rn, Rm ~
(Rn)

MOV.W Rm,@-Rn 0010nnnnnumnm0101 Rn - 2 ~ Rn, Rm ~
(Rn)

MOV.L Rm,@-Rn 0010nnnrunmmm0110 Rn - 4 ~ Rn, Rm ~
(Rn)

DIVOS Rm,Rn 0010nnnnnumnm0111 MSB of Rn ~ Q, MSB Calculation
of Rm ~ M, M " Q ~ result
T

TST Rm,Rn OOlOnnnnnumnmlOOO Rn & Rm, when result Test results
is 0, 1 ~ T

AND Rm,Rn 0010nnnnnumnm1001 Rn&Rm~ Rn

XOR Rm,Rn 0010nnnrunmmm1010 Rn" Rm~ Rn

OR Rm,Rn 0010nnnrunmmm1011 Rn I Rm~Rn

CMP/STR Rm,Rn 0010nnnrunmmm1100 When a byte in Rn Comparison
equals a byte in Rm, 1 result
~T

XTRCT Rm,Rn 0010nnnrunmmm1101 Center 32 bits of Rm
and Rn~ Rn

MULU.W Rm,Rn 0010nnnrunmmm1110 Unsigned, Rn x Rm ~ 1 to 3*1

MAC

MULS.W Rm,Rn OOlOnnnnnumnmllll Signed, Rn x Rm ~ 1 to 3*1

MAC

CMP/EQ Rm,Rn OOllnnnnnumnmOOOO When Rn = Rm, 1 ~ T Comparison
result

CMP/HS Rm,Rn OOllnnnnnumnmOOlO When unsigned and Comparison
Rn;::: Rm, 1 ~ T result

CMP/GE Rm,Rn OOllnnnnnumnmOOll When signed and Rn ;::: Comparison
Rm, 1 ~T result

DIVl Rm,Rn OOllnnnnnumnmOlOO 1-step division (Rn + Calculation
Rm) result

DMULU.L Rm,Rn* 2 001lnnnnnumnm0101 Unsigned, Rn x Rm ~ 2 to 4*1

MACH,MACL

Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

270

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

CMP/HI Rm,Rn OOllnnnnmmmrnOllO When unsigned Comparison
and Rn> Rm, 1 result
~T

CMP/GT Rm,Rn OOllnnnnmmmrnOlll When signed and Comparison
Rn>Rm, 1 ~T result

SUB Rm,Rn OOllnnnnmmmrnlOOO Rn-Rm~ Rn

SUBC Rm,Rn 0011nnnnmmmrn1010 Rn-Rm-T ~ Borrow
Rn, borrow~ T

SUBV Rm,Rn OOllnnnnmmmrnlOll Rn-Rm~ Rn, Underflow
underflow ~ T

ADD Rm,Rn OOllnnnnmmmrnllOO Rm+ Rn~ Rn

DMULS.L Rm,Rn* 2 OOllnnnnmmmrnllOl Signed, Rn x Rm 2 to 4*1

~MACH, MACL

ADDC Rm,Rn OOllnnnnmmmrnlllO Rn+ Rm+ T ~ Carry
Rn, carry~ T

ADDV Rm,Rn OOllnnnnmmmrnllll Rn+ Rm~ Rn, Overflow
overflow~ T

SHLL Rn OlOOnnnnOOOOOOOO T~Rn ~a MSB

SHLR Rn OlOOnnnnOOOOOOOl 0 ~Rn ~T LSB

STS.L MACH, @-Rn OlOOnnnnOOOOOOlO Rn-4~ Rn,
MACH~ (Rn)

STC.L SR,@-Rn OlOOnnnnOOOOOOll Rn-4 ~Rn, SR 2
~(Rn)

ROTL Rn 0100nnnn00000100 T~ Rn ~MSB MSB

ROTR Rn 0100nnnn00000101 LSB ~Rn~ T LSB

LDS.L @Rm+,MACH OlOOmmmrnOOOOOllO (Rm) ~MACH,
Rm +4~ Rm

LDC.L @Rm+,SR 0100mmmrn00000111 (Rm) ~SR, Rm 3 LSB
+4~Rm

SHLL2 Rn 0100nnnn00001000 Rn<<2 ~Rn

SHLR2 Rn 0100nnnn00001001 Rn>>2 ~Rn

LOS Rm,MACH 0100mmmrn00001010 Rm~MACH

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

271

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

JSR @Rm 0100mrrurun00001011 Delayed branch, PC 2
~PR, Rm~Pc

LDC Rrn,SR 0100mrrurun00001110 Rm~SR LSB

DT Rn* 2 0100nnnn00010000 Rn - 1 ~ Rn; if Rn is Comparison
0, 1 ~ T, if Rn is result
nonzero, 0 ~ T

CMP/PZ Rn 0100nnnn00010001 Rn~ 0, 1 ~ T Comparison
result

STS.L MACL,@-Rn 0100nnnn00010010 Rn - 4 ~ Rn, MACL
~(Rn)

STC.L GBR,@-Rn 0100nnnn00010011 Rn - 4 ~ Rn, GBR ~ 2
(Rn)

CMP/PL Rn 0100nnnn00010101 Rn>O, 1 ~ T Comparison
result

LDS.L @Rrn+,MACL 0100mrrurun00010110 (Rm) ~ MACL, Rm +
4~Rm

LDC.L @Rrn+,GBR 0100mrrurun00010111 (Rm) ~ GBR, Rm + 4 3
~Rm

SHLL8 Rn 0100nnnn00011000 Rn<<8 ~Rn

SHLRB Rn 0100nnnn00011001 Rn>>8 ~Rn

LDS Rrn,MACL 0100mrrurun00011010 Rm~MACL

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 ~ 4 Test results
T, 1 ~ MSB of (Rn)

LDC Rrn,GBR 0100mrrurun00011110 Rm ~GBR

SHAL Rn 0100nnnn00100000 T f-- Rn f-- 0 MSB

SHAR Rn 0100nnnn00100001 MSB~ Rn ~T LSB

STS.L PR,@-Rn 0100nnnn00100010 Rn - 4 ~ Rn, PR ~
(Rn)

STC.L VBR, @-Rn 0100nnnn00100011 Rn - 4 ~ Rn, VBR ~ 2
(Rn)

ROT CL Rn 0100nnnn00100100 T f-- Rn f-- T MSB

ROT CR Rn 0100nnnn00100101 T~Rn ~T LSB

LDS.L @Rrn+,PR 0100mrrurun00100110 (Rm) ~ PR, Rm + 4
~Rm

LDC.L @Rrn+,VBR 0100mrrurun00100111 (Rm) ~ VBR, Rm + 4 3
~Rm

Notes: 2. SH-2 CPU instruction

272

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

SHLL16 Rn 0100nnnn00101000 Rn<<16 ~Rn

SHLR16 Rn 0100nnnn00101001 Rn>>16 ~Rn

LDS Rm,PR 0100mmmm00101010 Rm~PR

JMP @Rm 0100mmmm00101011 Delayed branch, Rm 2
~PC

LDC Rm,VBR 0100mmmm00101110 Rm~VBR 1

MAC.W @Rm+,@Rn+ OlOOnnnnrnmmmllll Signed, (Rn) x (Rm) 3/(2)*1

+MAC~MAC

MOV.L @(disp,Rrn) ,Rn OlOlnnnnmmmmdddd (disp + Rm) ~ Rn

MOV.B @Rm,Rn OllOnnnnrnmmmOOOO (Rm) ~sign
extension ~ Rn

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) ~sign 1
extension ~ Rn

MOV.L @Rm,Rn 0110nnnnmmmrn0010 (Rm)~ Rn

MOV Rm,Rn 0110nnnnmmmm0011 Rm~Rn

MOV.B @Rm+,Rn 0110nnnnmmmrn0100 (Rm)~ sign
extension ~ Rn, Rm
+ 1 ~Rm

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm)~ sign
extension ~ Rn, Rm
+2~Rm

MOV.L @Rm+,Rn 0110nnnnmmmrn0110 (Rm) ~ Rn, Rm + 4
~Rm

NOT Rm,Rn 0110nnnnmmmrn0111 -Rm~ Rn

SWAP.B Rm,Rn OllOnnnnrnmmmlOOO Rm ~ Swap upper
and lower halves of
lower 2 bytes ~ Rn

SWAP.W Rm,Rn 0110nnnnrnmmm1001 Rm ~ Swap upper
and lower word ~
Rn

NEGC Rm,Rn 0110nnnnmmmrn1010 0-Rm-T ~Rn, Borrow
borrow~ T

NEG Rm,Rn 0110nnnnmmmm1011 0-Rm ~Rn

Notes: 1 The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions)

273

Table A.SO Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTU.B Rm,Rn OllOnnnnnunrrunllOO Zero-extends Rm
from byte ~ Rn

EXTU.W Rm,Rn 0110nnnnnunrrunll01 Zero-extends Rm
from word ~ Rn

EXTS.B Rm,Rn OllOnnnnnunrrunlllO Sign-extends Rm
from byte ~ Rn

EXTS.W Rm,Rn OllOnnnnmmnnnllll Sign-extends Rm
from word ~ Rn

ADD #irmn,Rn Olllnnnniiiiiiii Rn+ imm ~Rn

MOV.B RO,@(disp,Rn) lOOOOOOOnnnndddd RO ~ (disp + Rn)

MOV.W RO,@(disp,Rn) lOOOOOOlnnnndddd RO~ (disp x2 +
Rn)

MOV.B @(disp,Rm) ,RO lOOOOlOOnunrrundddd (disp + Rm) ~ sign
extension ~ RO

MOV.W @(disp,Rm) ,RO lOOOOlOlnunrrundddd (disp x 2 + Rm) ~
sign extension ~ RO

CMP/EQ #irmn,RO 10001000iiiiiiii When RO = imm, 1 Comparison
~T results

BT label 10001001dddddddd When T = 1, disp x 3/1*3
2 +PC~ PC;
When T = 0, nop.

BT/S label* 1000110ldddddddd When T = 1, disp x 2/1*3 -
2 +PC~ PC;
When T = 1, nop.

BF label 10001011dddddddd When T = 0, disp x 3/1*3 -
2 +PC~ PC;
When T = 0, nop

BF/S label* lOOOlllldddddddd When T = 0, disp x 2/1*3 -
2+ PC~ PC;
When T = 1, nop

MOV.W @(disp, PC), Rn lOOlnnnndddddddd (disp x 2 + PC) ~
sign extension ~ Rn

BRA label 1010dddddddddddd Delayed branch, 2
dispx2 +PC~
PC

Notes: 2. SH-2 CPU instruction

3. One state when it does not branch

274

Table A.SO Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

BSR label lOlldddddddddddd Delayed branch, PC 2
~PR, disp x2 +PC
~PC

MOV.B RO,@(disp,GBR) llOOOOOOdddddddd RO~ {disp + GBR)

MOV.W RO,@(disp,GBR) llOOOOOldddddddd RO~ {disp x 2 +
GBR)

MOV.L RO,@(disp,GBR) 11000010dddddddd RO~{disp x4+
GBR)

TRAPA #inm llOOOOlliiiiiiii PC/SR ~ Stack 8
area, {imm x 4 +
VBR) ~PC

MOV.B @(disp,GBR) ,RO 11000100dddddddd {disp + GBR) ~ sign
extension ~ RO

MOV.W @(disp,GBR) ,RO 11000101dddddddd {disp x 2 + GBR) ~
sign extension ~ RO

MOV.L @(disp,GBR), RO 11000110dddddddd {disp x 4 + GBR) ~
RO

MOVA @(disp,PC) ,RO llOOOllldddddddd disp x4 +PC~ RO

TST Hmm, RO 11001000iiiiiiii RO & imm, when Test results
result is 0, 1 ~ T

AND #imm,RO 11001001iiiiiiii RO&imm~ RO

XOR #inm,RO 11001010iiiiiiii RO"imm~RO

OR #inm,RO 11001011iiiiiiii RO I imm~RO 1

TST.B #inm,@(RO,GBR) 11001100iiiiiiii {RO + GBR) & imm, 3 Test results
when result is 0, 1 ~
T

AND.B #inm,@(RO,GBR) 11001101iiiiiiii {RO + GBR) & imm 3
~{RO+ GBR)

XOR.B #inm,@(RO,GBR) 11001110iiiiiiii {RO + GBR) " imm ~ 3
{RO+ GBR)

OR.B Hmm, @(RO,GBR) llOOlllliiiiiiii {RO + GBR) I imm ~ 3
{RO+ GBR)

MOV.L @(disp, PC) ,Rn llOlnnnndddddddd {disp x 4 + PC) ~ Rn

MOV #imm,Rn lllOnnnniiiiiiii imm~sign

extension ~ Rn

275

A.4 Operation Code Map

Table A.51 is an operation code map.

Table A.SI Operation Code Map

Instruction Code Fx:OOOO

MSB LSB MD:OO

0000 Rn Fx 1.0000
0000 Rn Fx ~0001

0000 Rn Fx ~0010 STC SR,Rn*

0000 Rm Fx l0011 BSRF Rm*

0000 Rn Rm ~01MD MOY.B
Rm, @(RO,Rn)

0000 0000 Fx 1000 CLRT

0000 0000 Fx 1001 NOP

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS

0000 Rn Fx 1000

0000 Rn Fx 1001

0000 Rn Fx 1010 STS MACH,Rn

0000 Rn Fx 1011

0000 Rn Fx 11MD MOY.B
@(RO,Rm) ,Rn

Fx:0001

MD:01

STC GBR,Rn

MOY.W
Rm,@(RO,Rn)

SETT

DIYOU

SLEEP

STS MACL,Rn

MOY.W
@(RO,Rm) ,Rn

0001 Rn Rm disp MOY.L Rm,@(disp:4,Rn)

0010 Rn Rm OOMD MOY.B Rm,@Rn MOY.W Rm,@Rn

0010 Rn Rm !01MD MOY.B MOY.W
Rm,@-Rn Rm,@-Rn

0010 Rn Rm 110MD TST Rm,Rn AND Rm,Rn

0010 Rn Rm !11MD CMP/STR XTRCT Rm,Rn
Rm,Rn

0011 Rn Rm ~OOMD CMP /EQ Rm I Rn

0011 Rn Rm 01MD DIYl Rm,Rn DMULU.L
Rm,Rn*

0011 Rn Rm 10MD SUB Rrn,Rn

0011 Rn Rm 11MD ADD Rm,Rn DMULS.L
Rrn,Rn*

0100 : Rn Fx : 0000 SHLL Rn OT Rn*

0100 lRn Fx l0001 SHLR Rn CMP/PZ Rn

276

Fx:0010 Fx:0011-1111

MD: 10 MD: 11

STC VBR,Rn

BRAF Rm*

MOY.L MUL.L
Rm,@(RO,Rn) Rm,Rn*

CLRMAC

RTE

MOVT Rn

STS PR, Rn

MOY.L MAC.L
@(RO,Rm) ,Rn @Rm+,@Rn+*

MOY.L Rm,@Rn

MOY.L DIYOS Rm,Rn
Rm,@-Rn

XOR Rm,Rn OR Rm,Rn

MULU .WRm,Rn MULS.WRm,Rn

CMP /HS Rm, Rn CMP/GERm,Rn

CMP/HIRm,Rn CMP /GT Rm, Rn

SUBC Rrn,Rn SUBY Rm,Rn

ADDC Rrn,Rn ADDY Rm,Rn

SHAL Rn

SHAR Rn

Table A.51 Operation Code Map (cont)

Instruction Code Fx:OOOO Fx:0001 Fx:0010 Fx: 0011-1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0100 Rn Fx 10010 STS.L STS.L STS.L
MACH,@-Rn MACL,@-Rn PR,@-Rn

...;_

0100 Rn Fx 10011 STC.L STC.L STC.L
SR, @-Rn GBR, @-Rn VBR,@-Rn

0100 Rn Fx jo100 ROTL Rn ROT CL Rn

0100 Rn Fx jo101 ROTR Rn CMP/PL Rn ROT CR Rn

0100 Rm Fx 10110 LDS.L LDS.L LOS.L
@Rm+,MACH @Rm+,MACL @Rm+,PR

0100 Rm Fx l 0111 LDC.L LDC.L LOC.L
@Rm+,SR @Rm+,GBR @Rm+,VBR

0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16Rn

0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16Rn

0100 Rm Fx 1010 LOS Rm,MACH LOS Rm,MACL LOS Rm,PR

0100 Rm/ Fx 1011 JSR @Rm TAS.B @Rn JMP @Rm
Rn

0100 Rm Fx 1100

0100 Rm Fx 1101

0100 Rn Fx 1110 LDC Rm,SR LDC Rm,GBR LDC Rm,VBR

0100 Rn Rm 1111 MAC.W @Rm+,@Rn+

0101 Rn Rm ,disp MOV.L @(disp:4,Rm) ,Rn

0110 Rn Rm jooMD MOV.B Rm,Rn MOV.W @Rm,Rn MOV.L @Rm,Rn MOV Rm,Rn

0110 Rn Rm j01MD MOV.B Rm+,Rn MJl. w @RT\+' Rn MJl. L@RTI+, Rn NOT Rm,Rn

0110 Rn Rm 110MD SWAP.B SWAP.W NEGC Rm,Rn NEG Rm,Rn
Rm,Rn Rm,Rn

0110 Rn Rm j11MD EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn

0111 Rn imm ADD #imrn:B,Rn

1000 OOMDlRn ldisp MJl.B RO, MJl.W RO,
@(disp:4,Rn) @(disp:4,Rn)

--,-

ldisp 1000 01MD!Rm MOV.B MOV.W
@(disp:4, @(disp:4,
Rm), RO Rm) ,RO

1000 10Mo1 imm/disp CMP/EQ BT label:B BF label:B
#irrun:8,RO

1000 11Mo1 imm/disp BT/S BF/S
label:B* label:B*

277

Table A.51 Operation Code Map (cont)

Instruction Code Fx:OOOO Fx:0001 Fx:0010 Fx: 0011-1111

MSB LSB MD:OO MD: 01 MD: 10 MD: 11

1001 Rn disp MOV.W @(disp: 8, PC), Rn

1010 disp BRA label:l2

1011 disp BSR label:l2

1100 OOMDI imm/disp MOV.B RO, MOV.W RO, MOV.L RO, TRAPA #irnm:8
@(disp:8, @(disp:8, @(disp: 8,
GBR) GBR) GBR)

1100 01MDi disp MOV.B MOV.W MOV.L MOVA
@(disp:8, @(disp:8, @(disp:8, @(disp:8,
GBR) ,RO GBR) ,RO GBR) ,RO PC) ,RO

1100 10Moj imm TST AND XOR OR
#inun:8,RO #inun:8,RO #inun:8,RO #inun:8,RO

1100 11Mol imm TST.B AND.B XOR.B OR.B
#inun:8, #imrn:8, #inun:8, #imrn:8,
@(RO,GBR) @(RO,GBR) @(RO,GBR) @(RO,GBR)

1101 Rn disp MOV.L @(disp: 8, PC), RO

1110 Rn imm MOV #imrn:8,Rn

1111 ...
Note: SH-2 CPU instructions

278

Appendix B Pipeline Operation and Contention

The SH-1 and SH-2 CPU is designed so that basic instructions are executed in one state. Two or
more states are required for instructions when, for example, the branch destination address is
changed by a branch instruction or when the number of states is increased by contention between
MA and IF. Table B.l gives the number of execution states and stages for different types of
contention and their instructions. Instructions without contention and instructions that require 2 or
more cycles even without contention are also shown.

Instructions experience contention in the following ways:

• Operations and transfers between registers are executed in one state with no contention.

• No contention occurs, but the instruction still requires 2 or more cycles.

• Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

MA contends with IF

MA contends with IF and sometimes with memory loads as well

MA contends with IF and sometimes with the multiplier as well

MA contends with IF and sometimes with memory loads and sometimes with the multiplier

279

Table B.1 Instructions and Their Contention Patterns

Contention State Stage Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers

Shift instruction

System control ALU instruction

2 3 Unconditional branche

3/1 *3 3 Conditional branche

3 3 SLEEP instruction

4 5 RTE instruction

8 9 TRAP instruction

MA contends with IF 4 Memory store instruction and STS.L
instruction (PR)

2 4 STC.L instruction

3 6 Memory logic operations

4 6 TAS instruction

MA contends with IF and 5 Memory load instructions and LDS.L
sometimes with memory loads as instruction (PR)
well 3 5 LDC.L instruction

MA contends with IF and 4 Register to MAC transfer instruction,
sometimes with the multiplier as memory to MAC transfer instruction and
well MAC to memory transfer instruction

1to3 6/7*1 Multiplication instruction
*2

3/(2)*2 7/8*1 Multiply/accumulate instruction

3/(2 to 9 Double-length multiply/accumulate
4)*2 instruction (SH-2 only)

2 to 4*2 9 Double-length multiplication instruction
(SH-2 only)

MA contends with IF and 5 MAC to register transfer instruction
sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH-2 CPU, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH-1 CPU, multiply/accumulate instructions are
8 stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

280

SH-1 /SH-2 Programming Manual

Publication Date:

Published by:

1st Edition, September 1994
3rd Edition, September 1996
Semiconductor and IC Div.
Hitachi, Ltd.

Edited by: Technical Documentation Center.
Hitachi Microcomputer System Ltd.

Copyright© Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

HITACHI, LTD. SEMICONDUCTOR AND
INTEGRATED CIRCUITS DIVISION SALES OFFICE

HEAD QUARTERS
Semiconductor & IC Div.
Nippon Bldg., 2-6-2, Ohte-machi,
Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 3270-2111
Fax: (03) 3270-5109

USA
Headquarters

Hitachi America, Ltd.
Semiconductor & IC Div.
2000 Sierra Point Parkway
Brisbane, CA. 94005-1835
Tel: 415-589-8300
Fax: 415-583-4207

Northwest Regional Office
1740 Technology Drive, Suite 500
San Jose, CA 95110
Tel: 408-451-9570
Fax: 408-451-9859

Southwest Regional Office
2030 Main St., Suite 450
Irvine, CA. 92714
Tel: 714-553-8500
Fax: 714-553-8561

South Central Regional Office
2 Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX. 75240
Tel: 214-991-4510
Fax: 214-991-6151

Mid-Atlantic Regional Office
325 Columbia Turnpike, #203
Florham Park, NJ. 07932
Tel: 201-514-2100
Fax: 201-514-2020

North Central Regional Office
500 Park Boulevard, Suite 415
Itasca, IL. 60143
Tel: 312-773-4864
Fax: 312-773-9006

Northeast Regional Office
77 South Bedford St.
Burlington, MA. 01803
Tel: 617-229-2150
Fax: 617-229-6554

Automotive Regional Office
330 Town Centre Drive, Suite 311
Dearborn, Ml. 48126
Tel: 313-271-4410
Fax: 313-271-5707

Pacific Mountain Region
4600 South Ulster St., Suite 700
Denver, CO 80237
Tel: 303-740-6644
Fax: 303-740-6609

Southeast Region
5511 Capital Center Dr., Suite 204
Raleigh, NC 27608
Tel: 919-233-0800
Fax: 919-233-0508

CANADA
Hitachi (Canadian) Ltd.
320 March Road, Suite 602
Kanata, Ontario K2K 1 E3 CANADA
Tel: 613-591-1990
Fax: 613-591-1994

EUROPE (CE)
Headquarters

Hitachi Europe GmbH
Electronic Components Group
Continental Europe
Dornacher StraBe 3
D-85622 Feldkirchen
Munchen
Tel: 089-9 91 80-0
Fax: 089-9 29 30 00

Sales Office
Hitachi Europe GmbH
Electronic Components Div.
North Germany/Benelux
Am Seestem 18; D-40547 Dusseldorf
Postfach 11 05 36; D-40505 Dusseldorf
Tel: 0211-52 83-0
Fax: 0211-52 83-779

Hitachi Europe GmbH
Electronic Components Div.
Central Germany
Friedrich-List-StraBe 42
D-70771 Leinfelden-Echterdingen
Tel: 0711-99085-5
Fax: 0711-99085-75

Hitachi Europe GmbH
Electronic Components Div.
South Germany/Austria/Switzerland/East Europe
Dornacher StraBe 3
D-85622 Feldkirchen
Munchen
Tel: 089-9 91 80-0
Fax: 089-9 29 30 00

Hitachi Europe GmbH
Electronic Components Div.
Italy
Via Tommaso Gulli 39; 1-20147 Milano
Tel: 02-48 78 61
Fax: 02-48 78 63 91

Via F. D'Ovidio 97; 1-00135 Roma
Tel: 06-82 00 18 24
Fax: 06-82 00 18 25

Hitachi Europe GmbH
Electronic Components Div.
Spain
c/Buganvilla, 5; E-28036 Madrid
Tel: 0034-1-7 67 27 82, -92
Fax: 0034-1-3 83 85 11

Hitachi Europe (France) S.A.
Electronic Components Div.
France
18 rue Grange Dame Rose; B.P. 134
F-78148 Velizy Cedex
Tel: 01-34 63 05 00
Fax: 01-34 65 34 31

EUROPE (NE)
Headquarters

Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: 0628-585000
Fax: 0628-778322

Branch Office
Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Haukadalsgatan 10
Box 1062, S-164 21 Kista, Sweden
Tel: 08-751-0035
Fax: 08-751-5073

ASIA
Headquarters

Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 0104
Tel: 535-2100
Fax: 535-1533

Branch Office
Hitachi Asia Pte. Ltd.
Taipei Branch Office
9th Fl. -1 No.64, Tun-Hwa N. Road
Taipei Financial Center
Taipei, Taiwan
Tel: 02-741-4021 to 6
Fax: 02-752-1567

ASIA(HK)
Headquarters

Hitachi Asia (Hong Kong) Ltd.
Unit 706, North Tower,
World Finance Centre, Harbour City
Canton Road, Tsim Sha Tsui, Kowloon
Hong Kong
Tel: 27359218
Fax: 27306071

Branch Office
Hitachi Asia (Hong Kong) Ltd.
Seoul Branch Office
18 Floor Kukje Center Building
191,2-Ka,Hanggang-Ro
Yongsan-Ku, Seoul, Korea
Tel: 796-3115, 3647 to 8
Fax: 796-2145

Hitachi Asia (Hong Kong) Ltd.
Beijing Office
Room 1412, Beijing Fortune Building,
5 Dong San Huan, Bei-lu,
Chaoyang District Beijing
People's Republic of China
Tel: 501-4351-4
Fax: 501-4350

