o
Hitackd "2
semiconductor

-

Hitachi Microcomputer
Development Environment System

SH Series C Compller

HSO7OOCLCU4S

SPNDTD000SH 4o)idwo) D saLdS HS

2nd Edition

HITACHI

‘I
=
2
-



Hitachi Microcomputer

Development Environment System

SH Series C Compiler
HS0700CLCUA4S

User’s Manual

HITACHI




When using this document, keep the following in mind:

1.
2.

3.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved : No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without Hitachi's permission.

Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons
during operation of the user's unit according to this document.

.- Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of

Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
MEDICAL APPLICATIONS : Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the
written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life
support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.




Preface

This manual explains the facilities and operating procedures for the SH series C compiler. Please
read this manual and the related manuals listed below before using the C compiler to fully
understand the system. The C compiler translates source programs written in C into relocatable
object programs or assembly source programs for Hitachi superH RISC engine family
microcomputers (SH1, SH2, SH3, and SH3E).

Features of this compiler system are as follows:

1.
2.

4.

generates an object program that can be written to ROM to be installed in a user system.
supports an optimization option that increases execution speed of object programs or
minimizes program size.

supports a debugging-information output function for a C source level debugging or C source
analysis using a debugger .

selects an assembly source program or relocatable object program and outputs it.

This manual consists of four parts and appendixes. The information contained in each part is
summarized below.

1.

PART I OVERVIEW AND OPERATIONS
The overview sections cover C compiler functions and developing procedures.

The operation sections cover how to invoke the compiler, how to specify optional functions,
and how to interprete listings created by the C compiler.

. PARTII C PROGRAMMING

This part explains the limitations of the C compiler and the special factors in object program
execution which should be considered when creating a program.

. PARTIII SYSTEM INSTALLATION

This part explains the object program being written in ROM and memory allocation when
installing an object program generated by the C compiler on a system. In addition,
specifications of the low-level interface routine must be made by the user when using C
language standard I/O library and memory management library.

. PART IV ERROR MESSAGES

This part explains the error messages corresponding to compilation errors and the standard
library error messages corresponding to run time errors.



This manual describes the SH C compiler that operates on UNIX*', or MS-DOS*? that runs
(operates) on the IBM-PC*’ and PC compatibles. In this manual, compilers functioning on a
UNIX system are referred to as UNIX version and compilers functioning on an MS-DOS system
are referred to as PC systems.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[1 Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while
pressing the key that follows.

Notes: 1. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

2. MS-DOS is an operating system administrated by Microsoft Corporation.
3. IBM PC is a registered trademark of International Business Machines Corporation.



Related Manuals: Refer to the following manuals together with the SH Series C Compiler
when creating a program using the C compiler.

SH Series Cross Assembler User’s Manual

SH Series Simulator/Debugger User’s Manual
Integrated Manager User’s Manual

H Series Linkage Editor User’'s Manual

H Series Librarian User’s Manual

E7000 SH7032, SH7034 Emulator User’s Manual
E7000 SH7604 Emulator User’s Manual

E7000 SH7708 Emulator User’s Manual

Refer to the following manuals for details on the SH instruction execution:
SH7000 Series Programming Manual
SH7000/SH7600 Series Programming Manual

SH7700 Series Programming Manual






Contents

PartI OVERVIEW AND OPERATIONS.......ccoiiiiiiiiiiie i 1
Section 1 OVEIVIEW ..ottt 3
Section 2 Developing Procedures ..............cocoviiiiiiiiiii 5
Section 3 C Compiler EXecution ............c.oooiiiiiiiiiiiniiiii 7
3.1 How to Invoke the C Compiler..........cocoouiiiiiiiiiiiiiiiiiiii e, 7
3.1.1 Compiling Programs.............coouieiiiiiiiiiiiiiniiiiiiiiii e 7
3.1.2 Displaying Command Line Format and Compiler Options...........c........o.coo. 7
3.1.3 € Compiler OPiONS.....ccevuritiurieeietraereeieeeiiee et e ee e e e e e ereens 8
3.1.4 Compiling Multiple C Programs...........cceuuuiiirieimiiineiiiiiiiieeeineeeeeeieeeanen 8
3.2 NaMUNE FIlES . .uuuiiiiiieiii ittt e e e et e aa e et e eebe e e easeeaeaaiaeens 9
3.3 COMPIIET OPHIONS....iiiiiniieiiiien ettt ettt e eeetetiiseeeeatian e e ebenetaeseeenanseernanns 10
3.4 Option CombBINAtIONS .. .. .viiiti it iiiii ettt e e ettt e e e e r e eaeeens 20
3.5 Correspondence to Standard LibIaries ............ueeeeererinimiiereiiiiineeeeeiieeeeeneeeeniaeeenns 21
3.6 C Compiler LiStINES .....eeeeriiiiierimiiereeieeeiee ettt eeeeeteteesanreinaeneeensnanes 23
3.6.1 Structure of C Compiler LiStNgS.....ccceeeeeereerieriiiiiiiiiiie e eeeeniiine e 23
3.6.2  SOUICE LISHIG. c.uieiirineeeiiiiieeeetiee e e e eetitee e e e ee e e e e e e e eeena e s e snaaeereeas 24
3.6.3  ObJECt LiSHIMZ .. eeeruinneeiiieiiereeeeiie e eeeeeciee e e ettt e e e e ecen e e eence e e eeneennaes 26
3.6.4 Statistics InfOrmation ..........ccceeuemiieiiiieiiiiiniiiiiiii e 28
3.6.5 Command Line Specification ...........cccoviiiiiiiiiiioiiiiiiini e 29
3.7 C Compiler Environment Variables..........oceiuuueerimiuriermirriiieeiiieeneeieeeeeeeeereneeenn 30
3.8 Implicit Declaration by OPtion.........cccoeeevieiiiiremmiiieiiiiiiieeeeeeeieereiiiee e eceeinaen 31
Part I CPROGRAMMING.......coitiitiiiiiii i 33
Section 1 Limits of the C Compiler..........ccooeeieiiiiiiiiiiiiiiiiiiiii . 35
Section 2 Executing a C Program ............ccociiiiiiiiiiiiiiiiiiiiiiin e, 37
2.1  Structure of Object PrOZIAMS ........ccvuuuiieimmuerireaririieneeeciiieie e 38
2.2 Internal Data Representation. ... ....veuueeruiinrerieeeereiierinereneeiieerneeneaneenreaereeainnes 41
2.2.1  Scalar-Type Data.........c.eoviiiiimiiciiiiiiiiiiiiiee e 4?2
2.2.2 Combined-Type Data.........cccoeiveiiiiiiiiiiiiiiiiiiiiiiiie et 43
2.2.3 Bt FIelds ccoooeeeeeiieiiiieii e 45
2.2.4 Memory Allocation of Little Endian..........c..ccoooeivieiiiiiiiiii. 48
2.3 Linkage with Assembly Programs.............cceeiiiiiiiiiiiiiiiniii 50
2.3.1 External Identifier Reference.............ccccoeviiniiiiiiiiiiiiii, 50

2.3.2  Function Call INterface......ovuivnininiiiiiieeee et e 52



Section 3 Extended Specifications ..............c.coooiiiiiiiiiiiii 61

3.1

3.2

33

3.4

35
3.6

3.7

3.8

3.9

INterrupt FUNCHONS .....uuiiiiiii i ittt 61
311 DESCIIPHOMN ..t ettt e e e et ere et e e e e ettt s e eeeeeeeeaaeeaanan 61
3.1.2  EXPlanation....cc..ocoveiiiiiiiiiiieiiiiiiee e et e et e e et e e e e e e e 63
T O B (0] (-2 OSSPSR 65
Intrinsic FUNCHONS .....ceuviiiiiiiiii e ere e 66
3.2.1  Intrinsic FUNCHONS ....couiiiiiiiiiiiiiiiici e e 66
3.2.2  DESCTIPHON ... eiitieeiiiiiieeieiii ettt e ettt e e e ee e e e et e e e e et e e eeeaeateeaeaesnnns 66
3.2.3 Intrinsic Function Specifications..............uuuuerivriiiieiiireeceiiiei e e, 66
3,204 INOEES ...uniiii ittt ettt ettt e e ettt e e eaan 71
325 EXaMPIe...cooiiiiiiii e 72
3.2.6 Dividing <machine.n> ......co..uiiiiiiiiiiiiiiiiii e 73
Section Change FUNCHON. .........coiiiiiiiiiiiiiiie ettt e eeee s 74
3301 DESCIIPHON ...ceeeiiiiiiii e e 74
3.3.2  EXPlanation.........coovuieiiiiiiiiiiiiiiee ittt 74
3303 NOEES cceieeniteiie et ettt ettt e ettt e e et e e e e ee et e e eeaaaaa e eeeenans 74
3304 EXAMPIC...oimuiiiiiiiiiiiii ettt e e et e eeeaen 74
Single-Precision Floating-Point Library ..........cccoouuuiiiiiiiniiiiiiiiiiiiiiiieiciriiie e, 75
3.4.1  DESCTIPHON ...ceviieiiieiiiiee ettt ettt e e eeeeter e e s e ettt et e eeeeeeeene 75
342 NOES...ouiiiiiiiiiiie ettt e e e ettt s e e e e e s e 75
Japanese Description in String Literals........c.coeuuueriieiiiiieiiiiiiieiiiiieeeeciiieereeeeieens 77
Inline FUNCHON . ..ccviiriiiiiieie ittt e e e e e eeeeeeeenrenaaes 78
CTCCT0 B 1w o oL o LSOO PUPPON 78
3.6.2  EXPIanation......cccocoiiiiiiiiiiiiiieetececr e 78
306.3  NOES..eiiiiiiiiiiiii et et e e ettt et e e s e e e e e e e eeeneneaan 78
3.6.4  EXAMDIE....ooieiiiiiiee ettt ettt e e te e e e e aeaeeeaens 78
Inline Expansion in Assembly Language ...........ccoevuemumimieiiiiiiiiimiiiiiiiieeeeneeeeeeieee. 79
3.7.1  DESCIIPON ...ceveuiieriiiii ittt ettt e ettt e e et e e e eeteeeeeenaeeeeeaere e eaeeannns 79
3.7.2  EXPlanation...........coooiiiiiiiiiiiiii e 79
373 NOES ..o ettt ettt e e e s e s e e reeeeaaas 79
374  EXAMPDIE .ceuunniiiiiieieeciiie ettt ettt e et et et e e te e e e aeenaans 80
Specifying Two-byte Address Variables ............cooeverimumiiniriiiiiiiiiiiiiicieieieneceieeenn. 81
3.8.1  DESCIIPHON ..eeieieiriiinieeeeeretteniiie e e eeeeeeeeerenininie s e e e eeeeeeaeranenaaaenesaeeaaens 81
3.8.2  EXPlanation..........cccooeiiiiiiiiiiiiiii i 81
383 NOUES ...eveeee it eeiii ettt e e e e e et s eeean s 81
Specifying GBR Base Variables .........c..cooiuiiiimiiiiiiiiiiiiiiiiiiciiciiicecicec e 82
3.9.1  DESCIIPUOM ...eeviieeeieiiie ettt ettt e e e e ettt e e e et e eeee et e e eereaen e e eeeennns 82
3.9.2  EXPlanation.......ceueeeiemnniuiieiiie i e et et ettt e e e e 82

IR G T A (0 7S 82



3.10 Register Save and Recovery CONMrol..........ccoviiiiiiiiiniiiiiiiiiiiiiiiiiieeeeeeeeeeieeseeee e 33

J10.1 DESCIIPHON ..c.vveiiii e ettt e e e e e e e e e e e et e e e eeeeeeeeaeaearsatnneeeeeanes 33
3.10.2 EXPlanAtion ..c.c.oiiiiiiiieiiiiiie ettt e e ettt e e e ettt e e et e e e e e e ab e ee s e e e aaan 33
BUL0.3 NOES. .eeu ettt ettt ettt ettt e e et e e et e ee s e e e e b e aaen 33
3.10.4 EXAMPIE. .oeiiiiiniiiiiiii ettt et e e e et e e et e 34
3.11 Global Variable Register AlIOCAON ........uuuuiieiiieiiieeeiiiie e eeeee e ee e eeeenaes 84
31101 DESCIIPHION ..ccuueiiieeiii it ettt e ettt e e 384
3.11.2 EXPlanation ........oovuiiiiniiiiiii ettt e e 34
BUL 1.3 NS e eeti ettt et e 35
31104 EXAMPIE...oiiiiiiiiiiie i e 85
Section 4 Notes on Programming...........cocveiiiiiiniiiiiiiiiiiiiinae. 87
4.1 COING NOES ...eeieeiiineeeiiiie e et eiee e et et e e e e e e ettt e e e e eeaateeeesaetn e eeabeeanaeeeebeneaaannnns 87
4.1.1 float Type Parameter FUNCHON. «.....cecvetiiiiiiriieiii e 87
4.1.2 Program Whose Evaluation Order is Not Regulated ..............c.c.....cooeaiil. 87
4.1.3  Overflow Operation and Zero DiviSiOn............ccceuuiiviieeniireiirinirieiieneeeennns 88
4.1.4  Assignment to const Variables ...........cooceeiuiiiiiiiiiiiiiiii e 89
4.1.5 Precision of Mathematical Function Libraries..........cc.cccoueviiiiiiiiniiiininn. 89
4.2  Notes on Programming Development ........c....coiiuiiiiiiiiiiiiiiiiiiiiiienicc e eeaeee 90
Part I SYSTEM INSTALLATION. ...ttt 93
Section 1 Overview of System Installation...............c.cooeiiiiiiiiiiin... 95
Section 2 Allocating MemoOry AT€as.........couveeuineieinineiiiiiiaieeinenenn. 97
2.1 Static Area AlIOCALION. ..ccuuueeeeeeiiieeeiiiiee ettt e e e ee ettt e e e e e eeaans 97
2.1.1 Datato be Allocated in StatiC Ar€a........couvereurrrnrrnneineeeneeeneeeneeeneeneeeneenen. 97
2.1.2  Static Area Size Calculation...........cccoeuuiiiminiiiinieiiniiiiiiiiiieie e 97
2.1.3 ROM and RAM AllOCAtOMN. . .ceuuuiiiiie ettt eeeia e eaie et et eeceneeenie e e ereneees 100
2.1.4 Initialized Data Area AIlOCAtON .......coeeiruniiiinniiriiieeeie e erie e eeea e 100

2.1.5 Memory Area Allocation Example and Address Specification at Program
LANKAGE. ..t eeeieeee ettt ettt ettt et erea e 100
2.2 Dynamic Area AllOCAtION ........eeeererrrimmumiiiiiiieriieiereeeeeteeeeeiennereeeeeeeeeennannaeees 102
2.2.1  DYDAMUC ATAS ... .uueeieeinieeeeieiieeee e e e e ettt e e e ettt e e e e et e e e et eeeenn e eeneaas 102
2.2.2  Dynamic Area Size Calculation ............cocueeiiiiiiiiirreiiiiiiiiiiiiiiiiineeaes 102
2.2.3  Rules for Allocating Dynamic Area.........c..c.oooveuvrviiiniiiiiniiiniiiiieeann. 105
Section 3 Setting the Execution Environment. ..., 107
3.1  Vector Table Setting (VEC_TBL) ....eeeettuieeeeeeeieiiieiee et eeeceeine e eeecee 108
3.2 Initialization (_ _INTT).u.cn it e et et e et e et e e et e e e et e e e e eeaaas 109

3.3 Section Initialization (_ _INITSCT) ...ccvuuiiiiiiiieeeiieeeiie ettt eaee e 110



Section 4 Setting the C Library Function Execution Environment................ 113

4.1  Vector Table Setting (VEC_TBL)......ccotutuiirieiiiiiiiie it 115
4.2 Initializing Registers (_ _INIT)......oriiiiimiiiiiiiiiiiin e, 115
4.3 Initializing Sections (_ _INITSCT)...ccceumiririimiiiiieieiiir e, 115
4.4  Initializing C Library Functions (_ _INITLIB)......cccceiiiiiiiiiiiiiiie i, 116
4.4.1 Creating Initialization Routine (_INIT_IOLIB) for Standard I/O
Library FUNCHON .........iiiiiiiii ittt et e 117
4.4.2 Creating Initialization Routine (_INIT_OTHERLIB) for Other
Library FUNCHON ........uiiiiiiiieiiiiie et et 119
4.5 Closing Files (L _CLOSEALL).....c.cctttttmmiiretieiree ettt eeee e 120
4.6  Creating Low-Level Interface ROUUNES .........ccuuuiviiiiiiiiiieiiiiiiieieeciieeeecre e, 121
4.6.1 Concept Of /O OPETAtONS ......u.uueeiirerirrerereeiriiierierereeeeerertaenneeaeaeenens 122
4.6.2 Low-Level Interface Routine Specifications...........ccccouuuvemmeieciiieemmreeenueenneees 123
Part IV ERROR MESSAGES.. ...t 131
Section 1 EITor MeSSageS. .. .uuueneieeerinieeeteaiareiteieetenneneeeeneaeeeneananens, 133
Section 2 C Standard Library Error Messages .........cccovveeviiiieiuenennenennne. 153
APPENDIX .. .ottt e e et 157
Appendix A Language and Standard Library Function Specifications
of the CCompiler......c.ovvieiniiiiiiiiiie e, 159
A.1 Language Specifications of the C Compiler..........ccoeeueeerirriiiimiiieciiiiiiiiicr e, 159
A.1.1 Compilation SpecifiCations ...........ceceereemuiemmmmmuririieerieeeeiiierniicieeeeeeeenees 159
A.1.2  Environmental SPeCifications .............cceereersuesieeeseessieneeeneeneeeneeeneeennas 159
AL3 Tdentifiers ..ooueenniiiiiii it e 160
A 1.4 CharaCterS......uuuieeiiiiiiiiieiiiien e eeeeetetteeneeeae st ereseeeeeeeeenmrenaeeneeenennenes 161
ALLS  INEEET..ceuiiieiiiieiii ettt ettt ettt s ee e e e e e e eeeeaantraan s eeseaeerannens 162
A.1.6 Floating-Point NUMDETS.........ccccuuiiiiiimiiiiiieiiiiieee e ee e 163
A.1.7  Arrays and POINLETS. ......vuuueeiieniiiiiieuneiuiieeiieeeeeieeerneeeersiennnesanenessenaseens 164
AL REZISIEI..ceieinieiiiiie ittt ettt e e et e e e e etet e e sese et e e e s e e e eeaaans 164
A.1.9 Structure, Union, Enumeration, and Bit Field Types .....cccccceeeeruuieirniereennnnn. 165
DN B (OO T 11 T USSR 165
AT T1 DeCIarations .....c.uuuiieiniiiieiiiineiiin et e cetaee e e et e eanin e s ennnas 166
ALLLT2 Statement ..o...oviiiiiiii ittt cee e eeaaaas 166



A.2  C Library Function Specifications............cc.uuuuriiiiminieiieeeiiiiiiiiiiinisieees e eeeeiiiann 168

A2 L stddeflh ..o 168
A2.2 0 ASSEITN Louiiiiiii i e e 168
A23 CtYPe. R 168
A2.4 math. B 169
A25  SeUMP.Naeeii e 169
A2.6 0 SEAION oo 170
AT SIINE N e 171
A28 BITNON ..o e 172
A.2.9 Libraries that are Not Supported by the SH C Compiler................ccceeenineen. 173
A.3  Floating-Point Number Specifications .............cceuuuiriiiiiiiieiiiiin e e 174
A.3.1 Internal Representation of Floating-Point Numbers .............cccccciveeniinneeenn.. 174
A 3.2 IO oo et e 176
A.3.3 double and long double.........coooiuiiiiiiiiiiiiiiii e 177
A.3.4 Floating-point Operation Specifications ...............veeeereeereiieiereeeinnnnaneeeenann. 179
Appendix B Parameter Allocation Example.............c.ccooviiiiiiiiiiiinana.... 183
Appendix C Usage of Registers and Stack Area ..............coveveeiiinnna... 187
Appendix D Creating Termination Functions................c.cooeveiiiininninenn... 189
D.1 Creating Library onexit FUNCHON ........cocotiimiiiiiiiiiiiiiie it 189
D.2  Creating eXit FUNCHON ...c...oiiiiiiiiiiiiiiieiiiei e ettt e e e e e 190
D.3  Creating AbOrt ROULINE. ......ccoveiiiiiiiiiiiiiiieiiiieiiteie et e e et 192
Appendix E Examples of Low-Level Interface Routine ............................ 193
AppendiXx F ASCIICodes. .. ...ouiuininiiieiiiiiie e 199

A X o 201



Figures

Part I

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8

Part II

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Part III

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6

Appendix
Figure A.1
Figure C.1

C Compiler FUNCHOMS ...uvvuiereeeeiieieiiiiiiiiiesee e e e e ee e e eeeeee et eeaeeaiee s 3
Relationship between the C Compiler and Other Software..........ccccccocoveerennnn.. 5
Source Listing Output for show = noinclude, noexpansion............ccc...ccouueen.n.. 24
Source Listing Output for show = include, expansion...............cccevvunerernnnnnnnn. 25
Object Listing Output for show = source, 0bject ........ceeveerreerirriiiriiireeeninnenn.. 26
Object Listing Output for show = nosource, 0bject..........cccceerreriiiiiiniiiiiiinian. 27
Statistics INfOrmation..........couvuviiiiiiiiie i e 28
Command Line Specification...........ceuevuumuiuiiinnriieieiiiiiiiiieiiiiie et 29
Allocation and Deallocation of a Stack Frame..........c...o.cooiiiiiviiiiiniieininnanan. 52
Parameter Area AllOCAtiON. .........iviuuiriiiiiiiiiiiiii ittt eneas 57
Example of Allocation to Parameter Registers ............c.ooeviuimeiiiiniiiiiinnnnnnn, 59
Return Value Setting Area Used When Return Value Is Written to Memory ....... 60
Stack Processing by an Interrupt Function ...........cccocoevviiiiiiinniiiiin . 64
Section Size Information ............cccuuerriiiiiininireiiici 97
Static Area AIlOCAON ....ccceermuueieieriniieeeettuiieeeretiieeeeetiriere st e eenaseeeeanes 101
Nested Function Calls and Stack Size............ccovvuuiiiiiiiiinniniiiiiniiin 104
Program Configuration (No C Library Function is Used)............ccoeveiiiiinnnnnnnes 107
Program Configuration When C Library Functions are Used.............ccceceunneeen.e 113
FILE-TYPE Data....c.ouuiiiiiiiiiniiiiiiieeee ettt et e e e e e eeena e 119
Structure for the Internal Representation of Floating-Point Numbers................. 174

Usage of Registers and Stack Ar€a...........cccccevvvviiiiniiiiinieininiiiiiiiieiiiinee. 187



Tables

Part I

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 1.6
Table 1.7
Table 1.8

Part IT
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Table 2.12
Table 2.13

Part III
Table 3.1
Table 3.2

Standard File Extensions Used by the C Compiler................oveeeeeiiinerinnnie.. 9
ORO0) 11 o111 Q0] o181 PR 10
Macro Names, Names, and Constants Specified by the Define Option............... 15
Option COMDBINALIONS ......ueiiiiiiiiieeeiiiieeeeiiiieeereeieeeeeetnitiaeee e et ereaeaeeanas 20
Correspondence between Standard Libraries and Compile Options..................... 22
Structure and Contents of C Compiler Listings .................... e 23
Environment Vanables..............coooiiiniiiiiiiin i 30
IMPlicit DeCIaration. ......cc.uuuiiitieiiiieeer e e e e e et et e e e e e et e e e eeees 31
Limits of the C Compiler..........ccoiiuuiiiiiiiiiiiiiiciii et 35
Memory Area Types and Characteristics ..........veeieruineeeeiumiiineeeeeeiieeeeieeeennn 39
Internal Representation of Scalar-Type Data ..............ccooiiiiimiiiiiiicniiiiin e 42
Internal Representation of Combined-Type Data............ccocevuiiiineeeenniiennnnaenn.. 43
Bit Field Member Specifications...........veuvivniiineeinieie e eee e 45
Rules on Changes in Registers After a Function Call ............cccooocoiinin. 53
General Rules on Parameter Area Allocation ................oooiiiiiinnniiiiiiinnn.. 58
Return Value Type and Setting Area..........ccovieiuiviiiniimiieeieiiiiiiiiiieieeneeenens 60
Interrupt SPeCifiCAtIONS ......uueieuinciniiiiiee it e e eenaae 62
Intrinsic FUNCHONS .......ooviiiiiiiiiiiiii e 67
Function List of Single-Precision Floating-Point Library............ccc.c.ccoo.ooo. 76
Default Settings of Japanese Code ...........ccuueereriiiniiiiimiimieireeniiiieii s 77
TroubleshOOtINg ......coviiiiiiiiiiiiiiii et et 90
Stack Size Calculation Example ..........ccoooouiiiiiiiiiiiiiiiiiiiiiicecieeean 104
Low-Level Interface ROUHNES .......c.oouiiiiiiimiiiiiiiiiiniiiiie et 121



Appendix
Table A.1
Table A.2
Table A.3
Table A.4
Table A.S
Table A.6
Table A.7
Table A.8
Table A.9
Table A.10
Table A.11
Table A.12
Table A.13
Table A.14
Table A.15
Table A.16
Table A.17
Table A.18
Table A.19
Table A.20
Table A.21
Table A.22
Table A.23
Table A.24
Table A.25
Table A.26
Table A.27

Compilation SpecifiCations...........ccceiururimimiimiiiin ettt eeeerreni e, 159
Environmental SpecifiCatIONS .........ccccuuiiiviriiiiiireerineieeiiitee e eee e e, 159
Identifier SPECIfICAtIONS ........uvueiiieiiiiieeiiiiiiin e e 160
Character SPeCIfICAtIONS. ...c..uuuenieiiiiiieeeeiiiii et eeaen s 161
Integer SPeCIfiCAtIONS .. .cvuuuniiiitie it 162
Integer Types and Their Corresponding Data Range............ccccoceeeeiinniiinnnnnn. 162
Floating-Point Number Specifications.............ccoeeviviiiiiiiiiiiiiiiinin 163
Limits on Floating-Point Numbers..............ccoooeeiiiiiniii i, 163
Array and Pointer Specifications..........c.cooviviiiiiiiiiiniiiiin 164
Register Specifications........coveeuiiieiiiiiiiiiiiiiiie e 164
Specifications for Structure, Union, Enumeration, and Bit Field Types.............. 165
Qualifier Specifications .......c..ceeeveeeiiiiiiiiiiiiiiieee e 165
Declaration SpecifiCationS .........uiiiiuirieuuiiriiieeiie et ereiiere e e 166
Statement SPECIfICAtONS. ..c..uuvmeniieiiiiiieeiiiiir et 166
Preprocessor Specifications ..............cooiviiiiiiiiiiiininiii e 167
stddef.h Specifications.......c.cuuvueiiieiiiiiiiiiiiii 168
assert.h Specifications..............oooiiiiiiiiiiiii 168
ctype.h SPeCIfICAtIONS ....cevvvueueiiiiiiiiiiiiiiiii e 168
Set of Characters that Returns True...........couceviiiiiiiiiiiiiiiiiiin e 169
math.h Specifications..........euueiiiiiiniiiiii 169
setjmp.h Specifications .........ccocviiimiiiiiiiiiiiiiii 169
stdio.h SPeCIfICAIONS ..ceeuuniieneiiiiiiiiieiiiiiic it 170
Infinity and Not a NUmber ........ccocciiiiiiiiiiiiiiiii e 171
string.h SpecifiCations.........eueuviiirimiiiiiiiiiiiiiiii e 171
errnO.h SPECIfICAONS. .eeeeeeieieieeiiiiiee ettt eeraa e eeaaene 172
Libraries that are Not Supported by the SH C Compiler ................cccoeeeiie. 173

Types of Values Represented by Floating-Point Numbers ...............cccccceeeii. 175



PARTI
OVERVIEW AND OPERATIONS






Section 1 Overview

The SH series C compiler converts source programs written in C to SH series relocatable object
programs or assembly source programs.

The C compiler supports the SH1, SH2, SH3, and SH3E microcomputers (collectively referred to
as SH).

Figure 1.1 shows C compiler functions.

R
N

SH series N SH relocatable

C compiler g object program
v
C source /—\
program A

SH assembly source
program

N~

Figure 1.1 C Compiler Functions

A standard library file (a group of C language level functions that is used in C language program
as standard) is also provided in addition to the C compiler.

HITACHI 3




4 HITACHI



Section 2 Developing Procedures

Figure 1.2 shows the relationship between the C compiler package and other software for program
development. The C compiler package indudes the software enclosed by the dotted line.

C
source

file
creation

User .
include SH series
C compiler
‘3

Assembly
source
program

assembly
source

Routine
created

load
module

Target system

SH series
lator/debi
b

Notes:

4

Standard
include
file

et T

1. Assembly source programs are output depending on option specification.
2. The standard include file defines C library functions and their macro names in order to use C library functions.
3. Debug information can also be added depending on option specification.
4. A function group, consisting of C library functions and run time routines, is used as standard in the C program.

(Refer to section 2.1, Static Area Allocation, in part 1ll, SYSTEM INSTALLATION.)

‘2

Software
included in
the package

Figure 1.2

Relationship between the C Compiler and Other Software

HITACHI 5




6 HITACHI



Section 3 C Compiler Execution

This section explains how to invoke the C compiler, specify C compiler options, and interpret C
compiler listings.

3.1 How to Invoke the C Compiler

The format for the command line used to invoke the C compiler is as follows.

shc[A<option>...] [A<file name>[A<option>...]...]

The general operations of the C compiler are described below.

3.1.1 Compiling Programs

shcAtest.c (RET)

The C source program test.c is compiled.

3.1.2 Displaying Command Line Format and Compiler Options

shc (RET)

The command line format and the list of the compiler options are displayed on the screen.

HITACHI 7



3.1.3 C Compiler Options

Insert minus (-) before options (debug, listfile, and show). Slash (/) can also be inserted in
place of minus (-) for PC. When multiple options are specified, separate them with a space (A).
The following shows the options for UNIX and PC. Also when multiple suboptions are specified,
separate them with a comma (,).

shcA-debugA-listfileA-show=noobject, expansionAtest.c (RET)

In PC, when multiple suboptions are specified, they can be enclosed in parentheses (()).

shcA/debugA/listfileA/show= (noobject, expansion)Atest.c(RET)

3.1.4 Compiling Multiple C Programs
Several C source programs can be compiled by a single command.

Example 1: Specifying multiple programs

shcAtestl.cAtest2.c (RET)

Example 2: Specifying options for all C source programs

shcA-listfileAtestl.cAtest2.c (RET)

The listfile option is valid for both testl.c and test2.c.

Example 3: Specifying options for particular C source programs

shcAtestl.cAtest2.cA-listfile (RET)

The listfile option is valid for only test2.c. Options specified for particular C source programs
have priority over those specified for all C source programs.

8 HITACHI



3.2 Naming Files

A standard file extension is automatically added to the name of a compiled file when omitted. The
standard file extensions used by the C compiler and related software are shown in table 1.1. For
details on naming files, refer to the user's manual of the host computer because naming rules vary
according to each host computer.

Table 1.1 Standard File Extensions Used by the C Compiler

File Extension Description

c Source program file written in C
h Include file

lis, Ist Listing file*

obj Relocatable object program file
src Assembly source program file
lib Library file

abs Absolute load module file

rel Relocatable load module file
map Linkage map listing file

Note: The listing file extension is lis on UNIX systems and Ist on PC systems.

HITACHI 9



3.3 Compiler Options

Table 1.2 shows C compiler option formats, abbreviations, and defaults. Characters underlined
indicate the minimum valid abbreviation. Bold characters indicate default assumptions.

Table 1.2 C Compiler Options

Item Format Suboption Specification
CPU type cpu= sh1 | SH1 object is generated.
sh2 | SH2 object is generated.
sh3 | SH3 object is generated.
sh3e SH3E object is generated.
Optimization optimize = 0| Object without optimization
is output.
1 Object with optimization is
output.
Optimization speed Optimization in both speed
select and size.
nospeed Optimization in balance
between execution speed
and execution size is
selected.
size Optimization in program
size is selected.
Debugging debug Output
information nodebug No output
Listings and show= source | nosource I Source list  yes/no
formats object | noobject | Objectlist  yes/no
statistics | nostatistics | Statistics information
yes/no
include | noinclude | List after include expansion
yes/no
expansion | noexpansion | List after macro expansion
yes/no
width = <numeric value> | Maximum characters per
line:
0,80 to 132
length = <numeric value> Maximum lines per page:
0, 40 to 255
Default:
w = 132,
| = 66

10 HITACHI



Table 1.2 C Compiler Options (cont)

Item Format Suboption Specification

Listing file listfile [ = <list file name>) Output

nolistfile No output

Object file objectfile = <object file name> Output

Object program code = machinecode | Program in machine

format language is output.

asmcode Assembly source program
is output.

Macro name define = <macro name> = <name> | <name> is defined as
<macro name>.

<macro name> = <constant>|  <constant> is defined as
<macro name>.

<macro name> <macro name> is assumed
to be defined.

Include file include = <path name> Include file destination path
name is specified (multi-
specification is possible).

Section name section = program = <section name> | Program area section name
is specified.

const = <section name> | Constant area section
name is specified.
data = <section name> | Initialized data area section
name is specified.
bss =<section name> Non-initialized data area
section name is specified.
Default:
p=P, c¢=C,
d=D, b=B

Help message help Output

Position pic = o | Position independent code

independent is not generated.

code 1 Position independent code
is generated.

Area of string string = const | String literal is output to

literal to be constant section (C).

output data String literal is output to

initialized data section (D).

HITACHI 11



Table 1.2 C Compiler Options (cont)

Item

Format

Suboption

Specification

Comment nesting

comment =

nest |

Permits comment (/* */)
nesting.

nonest

Does not permit comment
(/* */) nesting.

Japanese code
select in string
literals

euc

Selects euc code.

sjis

Selects sjis code.

Subcommand file
select

subcommand =

<file name>

Includes command option
from a file specified by
<file name>.

Division
operation

division =

cpu |

Uses cpu's division
instruction.

peripheral |

Uses a divider (with
masking interruption).

nomask

Uses a divider (without
masking interruption).

Memory bit order

big |

Specifies maximum big
endian.

little

Specifies little endian.

Inline expansion
specification

Specifies inline
expansion.

<numeric value>

Specifies the maximum
size of a function to
expand where the function
is called.

noinline

Default header
file

preinclude =

<file name>

Includes contents of a
specified file at the
beginning of compilation
units.

MACH and MACL
registers

macsave =

Does not guarantee
contents of MACH and
MACL registers at function
call.

Guarantees contents of
MACH and MACL registers
at function call.

12 HITACHI



Table 1.2 C Compiler Options (cont)

Item Format Suboption Specification
Information message Outputs information
message output message.
nomessage Does not output
information message.
Label 16-byte align16 Labels placed immediately
alignment after an unconditional

branch instruction other
than a subroutine call in a
program section must be
aligned in 16 bytes.

noalignié Does not place labels
aligned in 16 bytes.
Double type to double = float Treats double type (double
single precision precision floating point

number) as float type
(single precision floating
point number) as object.

Japanese outcode = euc | Selects euc code.
character
conversion
sjis Selects sjis code.
ABS16 abs16 = run | Assumes all execution
declaration routines to have been
declared with #pragma
abs16.
all Generates all label
addresses in 16 bits.
Loop unroll loop Optimizes loop unrolling.
noloop Does not optimize loop
unrolling.
Inline expansion  nestinline = <numeric value> Specifies the number of

times to expand nested
inline functions.

EXTS and EXTU  rtnext Creates a sign-extension
creation at data or zero-extension
return instruction for the upper

bytes when returning a
value to a program by the
return statement.

nortnext Does not create a sign-
extension or zero-
extension instruction.

HITACHI 13



=cpu = sh1 | sh2 | sh3 [ sh3e
This option specifies a target CPU. A library to be linked differs according to a
CPU. For details, refer to section 3.5, Correspondence to Standard Libraries in
part I, OVERVIEW AND OPERATIONS.

—optimize =0 | 1
This option specifies compiler optimization.
optimize = 0 disables compiler optimization.

optimize = 1 enables compiler optimization.

—speed, —nospeed

This option specifies speed optimization. When a speed option is specified,
program is executed faster but program size may increase. When nospeed is
specified but size option is not specified, optimization is performed in program
execution speed and program size.

=size
This option specifies optimization in object size.
—debug, —nodebug

This option specifies whether or not to output debugging information which is
necessary for C source level debugging.

—show = source | nosource | object | noobject | statistics | nostatistics | include | noinclude
| expansion | noexpansion | width = <numeric value> | length = <numeric value>

This option specifies the output format of a list file. This option is valid when a
listfile option is specified.
show = width =0 One line ends at a carriage code.
show =length=0  The maximum number of lines is not specified;
therefore, pagination is not performed.

=listfile [=<listfile name>], =nolistfile
This option specifies whether a list file is output. When a file name is not
specified, a file that has the same name as the source file with a standard
extension lis/Ist is generated.

—objectfile = <objectfile name>
This option specifies an object file name to be output.

14 HITACHI



—code = machinecode | asmcode
This option specifies whether the compiler outputs an object file in a machine
language or an assembler source file.

—define = <macro name> = <name> | <macro name> = <constant> | <macro name>
This option enables a macro definition at the beginning of a source program.
Table 1.3, describes macro names, names, and constants which can be specified
using this option.

Table 1.3 Macro Names, Names, and Constants Specified by the Define Option

Item Description

Macro name A string literal beginning with a letter or an underscore followed by zero or
more letters, underscores, and numbers.

Name A string literal beginning with a letter or an underscore followed by zero or
more letters, underscores, and numbers.

Constant Decimal constant: A string literal of one or more numbers (O to 9),
or a string literal of one or more numbers
followed by a period (.) followed by zero or
more numbers.

Octal constant: A string literal that begins with a zero followed
by one or more numbers (0 to 7).

Hexadecimal constant: A string literal that begins with a zero followed
by an x, then followed by one or more numbers
or alphabetical letters (A to F).

—include = <path name>
This option specifies a directory where an include file is searched for. For details
on how to search, refer to Appendix A.1.13, Preproccessor.

—section = | program = <section name> | const = <section name> | data = <section name> | bss =
< section name >
This option changes section names in object programs. Section names when
this option is omitted are program area section P, constant area section C,
initialized data area section D, and non-initialized data area section B.

—help

This option displays a list of compiler options. Once this option is specified,
the other option(s) will be disabled.

HITACHI 15



—pic=011
When pic = 1 is specified, a program section after linking can be allocated to any
address and executed. A data section can only be allocated to an address specified
at linking. When using this option as a position independent code, a function
address cannot be specified as an initial value. Note that if cpu = SH1 is
specified, pic = 1 is ignored. A library to be linked varies according to
the cpu, pic, endian, or double option. For details, refer to section 3.5,
Correspondence to Standard Libraries in part I, OVERVIEW AND
OPERATIONS.

Example
extern int £ ();

int (*fp) () = £; <— Cannot be specified
—string = const | data

When string = const is specified, string literals are output to constant area section
(default is C). When string = data is specified, string literals are output to
initialized data area section (default is D).

—comment = nest | nonest
This option specifies whether or not to permit comment /* */ nesting.

Example
/* comment
int a; /* nestl [* nset2 */ */

*/

When comment = nest is specified, an underlined section is treated as a nested
comment and the outermost comment is enforced.

When comment = nonest is specified, a comment is treated to end by nest2*/.
Therefore, a section after nest2*/ is treated as an error.

—euc
This option selects euc for the Japanese code for string literals in C program.
When this option is omitted, euc or sjis is selected according to the host
computer. For details, refer to section 3.5, Japanese Description in String
Literals in part II, C Programming.

=sjis

This option selects sjis for the Japanese code for string literals in C program.
When this option is omitted, euc or sjis is selected according to the host
computer. For details, refer to section 3.5, Japanese Description in String
Literals in part II, C Programming.

16 HITACHI



—subcommand = <file name>

This option assumes contents of a specified file name as an option. This option
can be specified in a command line more than once. In a subcommand file, an
parameters must be delimited by a space, a carriage return, or a tab. Contents in
a subcommand file will be expanded to an area specified by a subcommand in a
command line parameter. A subcommand option cannot be specified in a
subcommand file.

Example: The following examples are the same as shc —debug —cpu=sh2 test.c.

Command line
shc —sub=test.sub test.c

Contents of test.sub
—debug
—cpu=sh2

—division = ¢pu | peripheral | pomask
This option selects an execution routine for an integer division in a C source
program. This option can be combined with a suboption in the cpu option.
However, only the SH2 can execute an object program that specifies peripheral or
nonmask as suboption.

1.

cpu: specifies an execution routine which uses the DIV1
instruction

2. peripheral: specifies an execution routine using a divider

3.

(15 is set to interrupt mask level)

nomask:  specifies an execution routine using a divider
(no change in interrupt mask level)

Note the following before specifying a peripheral or nomask option.

1.
2.

Zero division is not checked or errno is not set.

If nomask is specified and an interrupt occurs during operation of a
divider and the divider is used in an interrupt routine, the correct
operation is not guaranteed.

. An overflow interrupt is not supported.

4. Results after operation such as zero division or overflow depend on the

divider specifications. Some of them may be different from those when
a cpu suboption is specified.

HITACHI 17



—endian = big | little
This option can be combined with a suboption in a cpu option. However, only
the SH3 or SH3E can execute an object program for little endian. The library to
be linked depends on endian, cpu, pic, and double options. For details, refer to
section 3.5, Correspondence to Standard Libraries in part [, OVERVIEW AND
OPERATIONS.

—inline, —inline = <numeric value>, —noinline
This option specifies whether to expand a function automatically at the statement
where the function is called. The value specified in suboption <numeric value>
indicates the maximum number of nodes of a function (the total number of
characters of operators and variables excluding the declaration field) to expand
where the function is called. The default of speed option specification is inline =
20. The default when nospeed, size, or optimize = 0 option is specified noinline.

—preinclude = <file name>
This option includes file contents at the beginning of compilation units.

—macsave =011
This option specifies whether contents of the MACH or MACL registers are
guaranteed before and after a function call.
macsave = 0 does not guarantee the contents of the MACH or MACL registers
before and after a function call. macsave = 1 guarantees the contents of MACH
and MACL registers before and after a function call. A function that is compiled
using macsave = 1 cannot call a function that is compiled using macsave = 0.
However, the opposite is possible.

—nessage, nomessage
This option specifies information message output. nomessage option does not
output information message.

—alignl6, noalign16
This option aligns all labels placed immediately after an unconditional branch
instruction other than subroutine calls in a program section in 16 bytes.
noalign16 option does not place labels aligned in 16 bytes.

—double = float
This option treats double type declaration/cast (double precision floating point
number) as float type declaration/cast (single precision floating point number)
before generating object.

18 HITACHI



—outcode = guc | sjis
This option selects euc for the Japanese character code when outcode = euc is
specified, and sjis when outcode = sjis is specified.

=abs16 = run | all
This option assumes all execution routines to have been declared with #pragma
abs16 when abs16 = run is specified, and generates all label addresses in 16 bits
when abs16 = all is specified.

:LQOP’ —MLQOP
This option specifies whether to optimize loop unrolling.
The loop option performs loop unrolling. The noloop option does not perform
loop unrolling.

—nestinline = <numeric value>
This option specifies the number of times to expand the inline function. Up to
16 times can be specified. When this option is not specified (default), the inline
function is expanded once (nestinline=1).

—-rtnext, —nortnext

This option performs sign extension or zero extension after setting a value in
RO, which is the place to set the return value, in a return statement of a function
that returns a (unsigned) char type or (unsigned) short type (see section 2.2.3 in
part II, C PROGRAMMING) to a program. This enables type conversion for a
return value before the actual value is returned to a program. If a prototype is
declared at the caller, this option is not required. The nortnext option does not
perform sign extension or zero extension.

HITACHI 19



3.4 Option Combinations

If a pair of conflicting options or suboptions are specified for a file, only one of them is considered
valid. Table 1.4 shows such option combinations.

Table 1.4 Option Combinations

Valid Option Invalid Option
nolist show
code = asmcode* debug”

show = object

help All other options
cpu = shi pic=1
optimize =0 loop

Note: When debug option is specified during assembly source output, a .LINE directive is
embedded in the output code. A .LINE directive gives C language source line information to
a debugger. After that, C language source lines are displayed for debugging. However, C
language level debugging is not performed for variable values.

20 HITACHI



3.5 Correspondence to Standard Libraries

There are 22 types of standard library combinations. Link a library listed in table 1.5 according to
the combination of a cpu, pic, endian, or double option.

shclib.lib (for SHI)

shenpic.lib (for SH2, not for position independent code)

shepic.lib (for SH2, for position independent code)

shc3npb.lib (for SH3, not for position independent code, big endian)

shc3pb.lib (for SH3, for position independent code, big endian)

she3npl.lib (for SH3, not for position independent code, little endian)

she3pl.lib (for SH3, for position independent code, little endian)

shcenpb.lib (for SH3E, not for position independent code, big endian)

shcepb.lib (for SH3E, for position independent code, big endian)

shcenpl.lib (for SH3E, for position independent code, little endian)

shcepl.lib (for SH3E, for position independent code, little endian)

shclibf.lib (for SH1, double = float option specification)

shenpicf.lib (for SH2, not for position independent code, double = float option specification)
shepicf.lib (for SH2, for position independent code, double = float option specification)
shc3npbf.lib (for SH3, not for position independent code, big endian, double = float option
specification)

she3pbf.lib (for SH3, for position independent code, big endian, double = float option
specification)

she3nplf.lib (for SH3, not for position independent code, little endian, double = float option
specification)

she3plf.lib (for SH3, for position independent code, little endian, double = float option
specification)

shcenpbf.lib (for SH3E, not for position independent code, big endian, double = float option
specification)

shcepbf.lib (for SH3E, for position independent code, big endian, double = float option
specification)

shcenplf.lib (for SH3E, not for position independent code, little endian, double = float option
specification)

sheeplf.lib (for SH3E, for position independent code, little endian, double = float option
specification)

HITACHI 21



Table 1.5 Correspondence between Standard Libraries and Compile Options

double specification None

endian specification endian = big endian = little

pic specification pic = 0 pic = 1 pic = 0 pic = 1
cpu = shi shclib.lib — -_ —

cpu = sh2 shenpic.lib shcpic.lib — —

cpu = sh3 shc3npb.lib shc3pb.lib shc3npl.lib shc3pl.lib
cpu = sh3e shcenpb.lib shcepb.lib shcenpl.lib shcepl.lib
double specification double = float

endian specification endian = big endian = little

pic specification pic =0 pic = 1 pic =0 pic = 1
cpu = sh1 shclibf.lib —_ — _

cpu =sh2 shcnpicf.lib shcpicf.lib — —

cpu = sh3 shc3npbf.lib shc3pbf.lib shc3nplf.lib she3plf.lib
cpu = sh3e shcenpbf.lib shcepbf.lib shcenplf.lib shceplf.lib

22 HITACHI



3.6 C Compiler Listings

This section describes C compiler listings and their formats.

3.6.1 Structure of C Compiler Listings
Table 1.6 shows the structure and contents of C compiler listings.

Table 1.6 Structure and Contents of C Compiler Listings

Option Specification

List Structure Contents Method*' Default

Source listing Listing consists of show=[no]source No output
source programs
Source program listing after (show=[nolinclude)** No output
include file and macro expansion (show=[no]expansion)

Object listing Machine language generated by show=[no]object Output
the C compiler and assembly
code

Statistics Total number of errors, number show=[no]statistics Output

of source program lines, size of
each section (byte), and number

of symbols
Command line File names and options specified — Output
specification in the command line

Notes: 1. All options are valid when listfile is specified.
2. The option enclosed in parentheses is only valid when show = source is specified.

HITACHI 23



3.6.2 Source Listing

The source listing can be output in two ways. When show = noinclude, noexpansion is
specified, the unpreprocessed source program is output. When show = include, expansion is
specified, the preprocessed source program is output. Figures 1.3 and 1.4 show examples of these
output formats. Bold characters in figure 1.4 show the differences.

*xnexkr**AX® SOURCE LISTING ******%wksws
FILE NAME: m0260.c
Seq File Line [ S e e B L L P LRy e iatals Bl
1 m0260.c 1 #include "header.h"
4 m0260.c 2
5 m0260.c 3 int sum2(void)
6 m0260.c 4 ( int j;
7 m0260.c 5
8 m0260.c 6 #ifdef SMALL
9 m0260.c 7 j=SML_INT;
10 m0260.c 8 #else
11  m0260.c 9 j=LRG_INT;
12 m0260.c 10 #endif
13  m0260.c 11
14 mo260.c 12 return j;/* continuel23456789012345678901234567
()] 2 A3) +2345678901234567890 */
(Y]
15 m0260.c 13 }

Figure 1.3 Source Listing Output for show = noinclude, noexpansion

24 HITACHI



*xawxrkxkrx* SOURCE LISTING ***tesaansss
FILE NAME: m0260.c
Seq File Line [ D B i B e L
1 m0260.c 1 #include "header.h"
2  header.h 1 #define SML_INT 1
3 header.h 2 #define LRG_INT 100 4)
4 m0260.c 2
5 m0260.c 3 int sum2 (void)
6 m0260.c 4 { int j;
7 m0260.c 5
8 m0260.c 6 #ifdef SMALL
9 m0260.c 77X j=SML_INT;
10 m0260.c 8 (5) #else
11  m0260.c 9 E j=100;
12 m0260.c 10 (6) #endif
13 m0260.c 11
14 mo260.c 12 return j;/* continuel23456789012345678901234567
[0)] ?2) 3) +2345678901234564890 */
)
15 m0260.c 13 }

Figure 1.4  Source Listing Output for show = include, expansion

Description:

(1) Listing line number

(2) Source program file name or include file name
"(3) Line number in source program or include file

(4) Source program lines resulting from an include file expansion when show = include is
specified.

(5) Source program lines that are not to be compiled due to conditional compile directives such as
#ifdef and #elif being marked with an X when show = expansion is specified.

(6) Source program lines containing a macro expansion #define directives being marked with an
E when show = expansion is specified.

(7) If a source program line is longer than the maximum listing line, the continuation symbol (%)
is used to indicate that the source program line is extended over two or more listing lines.

HITACHI 25



3.6.3 Object Listing

The object listing can be output in two ways. When show = source, object is specified, the
source program is output. When show = nosource, object is specified, the source program is
not output.

Figures 1.5 and 1.6 show examples of these listings.

dede e de ke ko Wk ok OBJ'ECT LISTING AR 2R AR R R 22
FILE NAME: m0251.c
SCT QFFSET  CODE C LABEL  INSTRUCTICN QOPERAND COMMENT
)] @ 3) () )
m0251.c 1 extern int multipli(int);
m0251.c 2
m0251.¢c 3 int multipli(int x)
P 00000000 _multipli: ;function: multipli
iframe size=16 (7)
;used runtime librarv name:
i muli ®
00000000 4F22 STS.L PR,R15
00000002 TFF4 ADD #-12,R15
00000004 1F42 MOV.L R4,@(8,R15)
m0251.c 4 {
m0251.¢c 5 int i;
m0251.c 6 int j;
m0251.¢c 7
m0251.c 8 j=1;
00000006 E201 MOV #1,R2
00000008 2F22 MOV.L R2,@R15
m0251.¢c 9 for(i=1;i<=x;i++)(
0000000A  E301 MOV #1,R3
0000000C 1F31 MOV.L R3,@(4,R15)
0000000E  A009 BRA L213
00000010 0009 NOP
00000012 L214:
m0251.c 10 j*=i;
00000012  50F1 MOV.L @(4,R15),R0
00000014 61F2 MoV @R15,R1
00000016 D30A MOV.L L216+2,R3 ;— muli
00000018  430B JSR @RrR3

Figure 1.5 Object Listing Output for show = source, object

26 HITACHI



*kxkkkktrewx OBJECT LISTING ****+ranrnan

FILE NAME: m0251.c

SCT  QFFSET  CODE C LABEL  INSTRUCTION QPERAND

Q) (2) 3) (O]

P :File mQ251.c Line 3
00000000 _multipli: (6)
00000000 4F22 STS.L PR, @R15
00000002 TFF4 ADD #-12,R15
00000004 1F42 MOV.L R4,@(8,R15)

;File m0251.c ,Line 4
;File m0251.c ,Line 8

00000006 E201 MOV #1,R2
00000008 2F22 MOV.L R2,@R15
;File m0251.c ,Line 9
0000000A  E301 MOV #1,R3
0000000C  1F31 MOV.L R3,@(4,R15)
0000000E  A009 BRA L213
00000010 0009 NOP
00000012 L214:

;File m0251.c ,Line 9
;File m0251.c ,Line 10

00000012 S0F1 MOV.L @(4,R15),RO
00000014 61F2 MOV.L @R15,R1
00000016 D30A MOV.L L216+2,R3
00000018 430B JSR @R3

COMMENT
)
:block
;function: multipli

;frame size=16 (7)

;used runtime library name:
imuld ®)
;block

;expression statement

; for

;block
;expression statement

;_ _muli

Figure 1.6 Object Listing Output for show = nosource, object

Description:
(1) Section attribute (P, C, D, and B) of each section

(2) Offset address relative to the beginning of each section
(3) Contents of the offset address of each section
(4) Assembly code corresponding to machine language

(5) Comments corresponding to the program (only output when not optimized; however, labels are

always output)

(6) Line information of the program (only output when not optimized)

(7) Stack frame size in bytes (always output)
(8) Routine name that is being executed

HITACHI 27




3.6.4 Statistics Information

Figure 1.7 shows an example of statistics information.

*xxxxrkx STATISTICS INFORMATIQN ****xx*x

*xxkkxkdk* ERROR INFORMATION ** %% %% %% (])
NUMBER OF ERRORS:

NUMBER OF WARNINGS:

NUMBER OF INFORMATIONS: 0

#***¥4xs SOURCE LINE INFORMATION ****x¥ww @

COMPILED SOURCE LINE: 13

#%*%*x4x% SECTION SIZE INFORMATION *****#** )]

PROGRAM SECTION(P) : 0x000044 Byte(s)
CONSTANT SECTION(C) : 0x000000 Byte(s)
DATA SECTION(D) : 0x000000 Byte(s)
BSS SECTION(B) : 0x000000 Byte(s)

TOTAL PROGRAM SIZE: 0x000044 Byte(s)

wwknkwkkkxx [ABRE], TNFORMATION ***kishknrs (4)

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 1
NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1
NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 6

Figure 1.7  Statistics Information

28 HITACHI



Description:

(1) Total number of messages by the level

(2) Number of compiled lines from the source file
(3) Size of each section and total size of sections

(4) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels

Note: NUMBER OF INFORMATIONS in messages by the level ((1) above) is not output when
message option is not specified. Section size information (3) and label information (4) are
not output if an error-level error or a fatal-level error has occurred or when option
noobject is specified. In addition, section size information (3) is output (indicated as
““1”) or not output (indicated as “0”) according to its specification when option code =
asmcode is specified.

3.6.5 Command Line Specification

The file names and options specified on the command line when the compiler is invoked are
displayed. Figure 1.8 shows an example of command line specification information.

*** COMMAND PARAMETER ***

-listfile test.c

Figure 1.8 Command Line Specification

HITACHI 29




3.7 C Compiler Environment Variables

Environment variables to be used by the compiler are listed in table 1.7.

Table 1.7 Environment Variables

Environment
Variable

Explanation in Use

SHC_LIB

Specifies a directory at which compiler load module and system include
file exists.

SHC_INC

Specifies a directory at which a system include file exists. More than
one directory can be specified by dividing directories using commas. A
system include file is searched for at a directory specified using an
include option specified directory, SHC_INC-specified directory, and
system directory (SHC_LIB) in this order.

SHC_TMP

Specifies a directory where the compiler generates a temporary file.
This environment variable is required for a PC. For UNIX, a directory
indicated in TMPDIR is specified when this environment variable is
specified. If SHC_TMP or TMPDIR is not specified, a temporary file is
generated in /usr/tmp.

SHCPU

Specifies CPU type by compiler —cpu option using environment
variables. The following is specified:

SHCPU=SH1 (same as —cpu=sh1)

SHCPU=SH2 (same as —cpu=sh2)

SHCPU=SHDSP (same as —cpu=sh2)

SHCPU=SH3 (same as —cpu=sh3)

SHCPU=SH3E (same as —cpu=sh3e)
An errorwill occur if anything other than the above is specified.
Specifying lower case characters will also generate an error.
When the specification of CPU by SHCPU environment variable and
—cpu option differs, a waming message is displayed. —cpu option
has priority to SHCPU specification.

30 HITACHI



3.8 Implicit Declaration by Option

Using —cpu, —pic, —endian, or ~double option results in an implicit #define declaration. See
the following.

Table 1.8 Implicit Declaration

Option Implicit Declaration

—cpu = sh1 #define _SH1 (including default)
—cpu = sh2 #define _SH2

—cpu = sh3 #define _SH3

—cpu = sh3e #define _SH3E

—pic #define _PIC

—endian = big #define _BIG (including default)
—endian = little #define _LIT

—double = float #define _FLT

The following shows an specification example.
Example:

#ifdef _BIG

#ifdef _SH1
...... Valid when —cpu = sh1 —endian = big option is specified
...... (Also valid when no option is specified for —cpu or —endian)

...... Valid when —cpu = sh2 option is specified
#endif
#ifdef _SH3
#ifdef _BIG
...... Valid when —cpu = sh3 —endian = big option is specificed
#endif
#ifdef _LIT
...... Valid when —cpu = sh3 —endian = little option is specified

Rules: 1. If no option is specified (default), #define _SH1 or #define _BIG is set.
2. The implicit #define declaration is specified as #undef in the source file.

HITACHI 31



32 HITACHI



PARTII
C PROGRAMMING






Section 1 Limits of the C Compiler

Table 2.1 shows the limits on source programs that can be handled by the C compiler. Source
programs must fall within these limits. To edit and compile efficiently, it is recommended to split
the source program into smaller programs (approximately two ksteps) and compile them

separately.

Table 2.1 Limits of the C Compiler

Classification Item Limit
Invoking the C Number of source programs that can be compiled at one None*'
compiler time
Total number of macro names that can be specified using  None
the define option
Length of file name (characters) 128
Source programs Length of one line (characters) 4096
Number of source program lines in one file 65535
Number of source program lines that can be compiled None
Preprocessing Nesting levels of files in an #include directive 30
Total number of macro names that can be specified in a None
#define directive
Number of parameters that can be specified using a 63
macro definition or a macro call operation
Number of expansions of a macro name 32
Nesting levels of #if, #ifdef, #ifndef, #else, or 32
#elif directives
Total number of operators and operands that can be 512
specified in an #if or #elif directive
Declarations Number of function definitions 512
Number of internal labels*? 32767
Number of symbol table entries*® 24576
Total number of pointers, arrays, and functions that 16
qualify the basic type
Array dimensions 6

HITACHI 35



Table 2.1 Limits of the C Compiler (cont)

Classification Item Limit

Statements Nesting levels of compound statements 32

Nesting levels of statement in a combination of repeat 32
(while, do, and for) and select (if and switch)

statements
Number of goto labels that can be specified in one 511
function
Number of switch statements 256
Nesting levels of switch statements 16
Number of case labels 511
Nesting levels of for statements 16
Expressions Number of parameters that can be specified using a 63
function definition or a function call operation
Total number of operators and operands that can be About 500
specified in one expression
Standard library Number of files that can be opened at once in open 20
function
Notes: 1. For PC, the number of command line that can be compiled at one time is limited to 127
characters.

2. Aninternal label is internally generated by the C compiler to indicate a static variable
address, case label address, goto label address, or a branch destination address
generated by if, switch, while, for, and do statements.

3. The number of symbol table entries is determined by adding the following numbers:
Number of external identifiers
Number of internal identifiers for each function
Number of string literals
Number of initial values for structures and arrays in compound statements
Number of compound statements
Number of case labels
Number of goto labels

36 HITACHI



Section 2 Executing a C Program

This section covers object programs which are generated by the C compiler. In particular, this
section explains the items necessary for the linkage of the C program with an assembly program,
or when incorporating a program into an SH system.

2.1 Structure of Object Programs: This section discusses the characteristics of memory
areas used for C programs and standard library functions.

2.2 Internal Data Representation: This section explains the internal representation of data
used by a C program. This information is required when data is shared among C programs,
hardware, and assembly programs.

2.3 Linkage with Assembly Programs: This section explains the rules for variables and
function names that can be mutually referenced by multiple object programs. This section also
discusses how to use registers, and how to transfer parameters and return values when a C program
calls a function. This information is required for C program functions calling assembly program
routines or vice versa.

Refer to respective hardware manuals for details on SH hardware.

HITACHI 37



2.1 Structure of Object Programs

This section discusses the characteristics of memory areas used by a C program or standard library
function in terms of the following items.

1. Section

Composed of memory areas which are allocated statically by the C compiler. Each section has
a name and type. A section name can be changed by the compiler option section.

2. Write Operation

Indicates whether write operations are enabled or disabled at program execution.
3. Initial Value

Shows whether there is an initial value when program execution starts.
4. Alignment

Restricts addresses to which data is allocated.

Table 2.2 shows the types and characteristics of those memory areas.

38 HITACHI



Table 2.2 Memory Area Types and Characteristics

Memory

Area Section Section Write Initial

Name Name™ Type Operation Value Alignment Contents

Program P code Disabled Yes 4 bytes” Stores machine

area codes.

Constant C data Disabled Yes 4 bytes Stores const

area data.

Initialized D data Enabled Yes 4 bytes Stores initial

data area value.

Non- B data Enabled No 4 bytes Stores data

initialized whose initial

data area values are not
specified.

Stack area @ — — Enabled No 4 bytes Required for
program
execution.
Refer to section
2.2 Dynamic
Area Allocation,
in part Ill,
SYSTEM
INSTALLATION.

Heap area — — Enabled No — Used by a
library function
(malloc,
realloc, or

calloc). Refer
to section 2.2
Dynamic Area
Allocation, in
part lll SYSTEM
INSTALLATION.

Notes: 1. Section name shown is the default generated by the C compiler when a specific name is
not specified by the compiler —section option.

2. Becomes 16 bytes when —align16 option is specified.

HITACHI 39



Example:

This program example shows the relationship between a C program and the sections
generated by the C compiler.

Program area main() {...}

int a=1;
char b;

. Constant area c
const int c=0;
main(}{ Initialized data area a
} o

Non-initialized data area b
file.c
C program Area to be generated by the compiler and
data to be stored in it.

40 HITACHI




2.2  Internal Data Representation

This section explains the internal representation of C language data types. The internal data
representation is determined according to the following four items:

1. Size
Shows the memory size necessary to store the data.
2. Alignment

Restricts the addresses to which data is allocated. There are three types of alignment; 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which data is
allocated to an even byte address, and 4-byte alignment in which data is allocated to an address
indivisible by four.

3. Datarange
Shows the range of scalar-type data.
4. Data allocation example
Shows how the elements of combined-type data are allocated.

HITACHI 41



2.2.1

Scalar-Type Data

Table 2.3 shows the internal representation of scalar-type data used in C.

Table 2.3 Internal Representation of Scalar-Type Data

Data Range
Size Alignment Minimum Maximum

Data Type (bytes) (bytes) Sign Value Value

char (signed 1 1 Used -2 (-128) 2’-1(127)

char)

unsigned char 1 1 Unused 0 2° -1 (255)

short 2 2 Used —2'% (-32768) 2%~ 1(32767)

unsigned short 2 2 Unused 0 2'® — 1 (65535)

int 4 4 Used -2 (-2147483648) 2% -1
(2147483647)

unsigned int 4 4 Unused 0 221
(4294967295)

long 4 4 Used —2% (—2147483648) 2% -1
(2147483647)

unsigned long 4 4 Unused O 22 -1
(4294967295)

enum 4 4 Used 2% (-2147483648) 2% -1
(2147483647)

float Used —oo0 +o0

double 8" 4 Used — o0 400

long double

Pointer 4 4 Unused 0 22 -1
(4294967295)

Note: The size of double type is 4 bytes if ~double=float option is specified.

42 HITACHI



2.2.2 Combined-Type Data

This part explains the internal representation of array, structure, and union data types. Table 2.4
shows the internal data representation of combined-type data.

Table 2.4 Internal Representation of Combined-Type Data

Data Type Alignment

(bytes) Size (bytes) Data Allocation Example
Array Maximum array Number of array elements ~ int a[10];
element alignment x element size Alignment: 4 bytes
Size: 40 bytes
Structure*' Maximum structure  Total size of members*' struct {
member alignment int a, b;

}
Alignment: 4 bytes
Size: 8 bytes

Union Maximum union Maximum size of union {
member alignment member*? int a,b;
}
Alignment: 4 bytes
Size: 4 bytes

HITACHI 43



In the following notes, a rectangle indicates four bytes.

Note 1:
When allocating a member of a structure type, an empty area may be created between a
member and the previous member to adjust the alignment of a data type of the member.

struct {
char a;
int b;}z;
za !
z.b

When a structure has a four-byte alignment, and the last member ends at the first, second or
third byte, the remaining bytes are included in a structure type area.

struct {
int a;
char b; }x;
X.a
xb :

Note 2:
When a union has a four-byte alignment, and the maximum value of the member size is not a
multiple of four, the remaining bytes up to a multiple of four are included in the union type
area.

union {
int a;
char b [7];}w;

w.b[O]w.b[1]w.b[2]w.b[3]

w.b[4]w.b[5]w.b[6]

44 HITACHI!



2.2.3 Bit Fields
A bit field is a member of a structure. This part explains how bit fields are allocated.
Bit field members: Table 2.5 shows the specifications of bit field members.

Table 2.5 Bit Field Member Specifications

Item Specifications

Type specifier allowed for bit fields char, unsigned char, short, unsigned short,
int, unsigned int, long, and unsigned long

How to treat a sign when data is extended A bit field with no sign (unsigned is specified for
to the declared type*' type): Zero extension*?

A bit field with a sign (unsigned is not specified for
type): Sign extension*®

Notes: 1. To use a member of a bit field, data in the bit field is extended to the declared type.
One-bit field data with a sign is interpreted as the sign, and can only indicate 0 and —1.
To indicate 0 and 1, bit field data must be declared with unsigned.

2. Zero extension: Zeros are written to the high-order bits to extend data.

3. Sign extension: The most significant bit of a bit field is used as a sign and the sign is
written to all higher-order bits to extend data.

HITACHI 45



Bit field allocation: Bit field members are allocated according to the following five rules:

1. Bit field members are placed in an area beginning from the left, that is, the most significant
bit.

Example: a1 0
struct bl{ o [aixbi _____— ]
int a:2; ﬁ;-gd
int b:3;
yx;

2. Consecutive bit field members having type specifier of the same size are placed in the same
area as much as possible.

Example: 3 0
struct bl{ o |yaly.b! ]
long a:2; L'z-M's_J
unsigned int b:3;
Yy

3. Bit field members having type specifier with different sizes are allocated to the following areas.

Example: 31 0
struct bl{ [ za @ |
int a:5; Y
= 5
char b:4;
| zb 1 l
}z; =

4. If the number of remaining bits in the area is less than the next bit field size, though type
specifier indicate the same size, the remaining area is not used and the next bit field is allocated
to the next area.

Example: 31 24 16

struct b2{ o [valTwi ~
\W—/ w—l
char a:5; 5 4
char b:4;

v

46 HITACHI



5. If a bit field member with a bit field size of 0 is declared, the next member is allocated to the

next area.

Example:
31 24 16
struct b2{ o | wa Siwe| |
char a:5; =
char :0; ° ’
char c:3;
Yw;

HITACHI 47



2.2.4 Memory Allocation of Little Endian

Memory is allocated to a data array using a little endian as follows.

One-byte data (char and unsigned char type): The order of bits in one-byte data for a big
endian and a little endian is the same.

Two-byte data (short and unsigned short type): The upper byte and the lower byte will
be reversed in two-byte data for a big endian and a little endian.

Example: When a two-byte data 0x1234 is allocated in an address 0x100:

big endian: address 0x100: Ox12 little endian: address 0x100: 0x34
address 0x101: 0x34 address 0x101: 0x12

Four-byte data (int, unsigned int, long, unsigned long, and float type): The
upper byte and the lower byte will be reversed in four-byte data for a big endian and a little endian.

Example: When a four-byte data 0x12345678 is allocated in an address 0x100:

big endian: address 0x100: 0x12 little endian: address 0x100: 0x78
address 0x101: 0x34 address 0x101: 0x56
address 0x102: 0x56 address 0x102: 0x34
address 0x103: 0x78 address 0x103: 0x12

Eight-byte data (double type): The order of eight-byte data will be reversed for a big endian
and a little endian.

Example: When a four-byte data 0x123456789abcdef is allocated in an address 0x100:

big endian: address 0x100: 0x01 little endian: address 0x100: Oxef

48 HITACHI

address 0x101: 0x23
address 0x102: 0x45
address 0x103: 0x67
address 0x104: 0x89
address 0x105: Oxab
address 0x106: Oxcd
address 0x107: Oxef

address 0x101: Oxcd
address 0x102: Oxab
address 0x103: 0x89
address 0x104: 0x67
address 0x105: 0x45
address 0x106: 0x23
address 0x107: 0x01



Combined-Type Data: Members of combined-type data will be allocated in the same way as

that of a big endian. However, the order of byte data of each member will be reversed according to

the rule of data size.

Example: When the following function exists in address 0x100:

struct {
short a;
int b;

}z= {0x1234,

big endian:

0x56789abc} ;

address 0x100: 0x12
address 0x101: 0x34
address 0x102: empty area
address 0x103: empty area
address 0x104: 0x56
address 0x105: 0x78
address 0x106: 0x9a
address 0x107: Oxbc

little endian:

address 0x100: 0x34
address Ox101: Ox12
address 0x102: empty area
address 0x103: empty area
address Ox104: Oxbc
address 0x105: 0x9a
address 0x106: 0x78
address 0x107: 0x56

Bit field: Bit fields will be allocated in the same way as a big endian. However, the order of
byte data in each area will be reversed according to the rule of data size.

Example: When the following function exists in address 0x100:

struct {

long a:16;
unsigned int b:15;
short c:5

Yy= (1, 1, 1};

big endian: address 0x100: 0x00

address 0x101: 0x01
address 0x102: 0x00
address 0x103: 0x02
address 0x104: 0x08
address 0x105: 0x00
address 0x106: empty area
address Ox107: empty area

little endian:

address 0x100: 0x02
address 0x101: 0x00
address 0x102: 0x01
address 0x103: 0x00
address 0x104: 0x00
address 0x105: 0x08
address 0x106: empty area
address 0x107: empty area

HITACHI 49



2.3 Linkage with Assembly Programs

The C compiler supports intrinsic functions such as access to the SH microcomputer registers as.
Refer to section 3.2, Intrinsic Functions, in part II, C PROGRAMMING, for details on intrinsic
functions. However, processes that cannot be written in C, such as the multiply and accumulate
operation using the MAC instruction, should be written in assembly language and afterwards
linked to the C program.

This section explains two key items which must be considered when linking a C program to an
assembly program:

* External identifier reference
* Function call interface

2.3.1 External Identifier Reference

Functions and variable names declared as external identifiers in a C program can be referenced or
modified by both assembly programs and C programs. The following are regarded as external
identifiers by the C compiler:

* A global variable which has a storage class other than static
* A variable name declared in a function with storage class extern
* A function name whose storage class is other than static

When variable names which are defined as external identifiers in C programs, are used in assembly
programs, an underscore character (_) must be added at the beginning of the variable name (up to
250 characters without the leading underscore).

50 HITACHI



Example 1: An external identifier defined in an assembly program is referenced by a C program

In an assembly program, symbol names beginning with an underscore character (_) are declared

as external identifiers by an .EXPORT directive.

In a C program, symbol names (with no underscore character (_) at the head) are declared as

external identifiers.

Assembly program (definition)

C program (reference)

.EXPORT _a, _b
.SECTION D,DATA,ALIGN=4
a: .DATA.L 1
b: .DATA.L 1
.END

extern int a,b;

Example 2: An external identifier defined in a C program is referenced by an assembly program

In a C program, symbol names (with no underscore character (_) at the head) are defined as

external identifiers.

In an assembly program, external references to symbol names beginning with an underscore

character (_) are declared by an .IMPORT directive.

C program (definition)

Assembly program (reference)

int a;

A_a:

. IMPORT _a

.SECTION P,CODE,ALIGN=2
MOV.L A_a,Rl

MOV.L @R1,RO

ADD #1,RO

RTS

MOV.L RO, @R1

.ALIGN 4

.DATA.L _a

.END

HITACHI 51




2.3.2 Function Call Interface

When either a C program or an assembly program calls the other, the assembly programs must be
created using rules involving the following:

1. Stack pointer

2. Allocating and deallocating stack frames

3. Registers

4. Setting and referencing parameters and return values

Stack Pointer: Valid data must not be stored in a stack area with an address lower than the
stack pointer (in the direction of address H’0), since the data may be destroyed by an interrupt
process.

Allocating and Deallocating Stack Frames: In a function call (right after the JSR or the
BSR instruction has been executed), the stack pointer indicates the lowest address of the stack used
by the calling function. Allocating and setting data at addresses greater than this one must be done
by the calling function.

After the called function deallocates the area it has set with data, control returns to the calling
function usually with the RTS instruction. The calling function then deallocates the area having a
higher address (the return value address and the parameter area).

After function call and after
control returns from a function

* Lower address

: Area allocated by the called function
(during function call)

: Area deallocated by the called function
(after control returns from a function)

7| : Area deallocated by the calling function

SP —W- 555555555
- Ret

* Upper address

Figure 2.1  Allocation and Deallocation of a Stack Frame

52 HITACHI




Registers: Some registers change after a function call, while some do not. Table 2.6 shows
how registers change according to the rules.

Table 2.6 Rules on Changes in Registers After a Function Call

Item

Registers Used in a
Function

Notes on Programming

Registers whose
contents may change

ROto R7, FROto FR11",
FPUL", and FPSCR*

If registers used in a function
contain valid data when a
program calls the function, the
program must push the data onto
the stack or register before
calling the function. The data in
registers used in called function
can be used freely without being
saved.

Registers whose
contents may not
change

R8 to R15, MACH, MACL, PR, and
FR12 to FR15"

The data in registers used in
functions is pushed onto the
stack or register before calling
the function, and popped from
the stack or register only after
control returns from the function.
Note that data in the MACH and
MACL registers are not
guaranteed if the option
macsave=0 is specified.

Note: Indicates a register for SH3E floating point.

HITACHI 53



The following examples show the rules on register changes.

* A subroutine in an assembly program is called by a C program

Assembly program (called program)

.EXPORT _sub

.SECTION P,CODE,ALIGN=4
_sub: MOV.L R14,@-R15

MOV.L R13,@-R15

ADD #-8,R15

ADD #8,R15

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

.END

C program (calling program)

Data in those registers needed by the called
function is pushed onto the stack.

Function processing

(Since data in registers RO to R7 is pushed onto
a stack by the calling C program, the assembly
program can use them freely without

having to save them first.)

Register data is popped from the stack.

extern void sub();

£()
{
sub();

54 HITACHI



A function in a C program is called by an assembly program

C program (called program)

void sub()
(

Assembly program (calling program)

.IMPORT _sub
.SECTION P,CODE,ALIGN=2

STS.L PR, @-R15
MOV.L R1,@(1,R15)

Mov R3,R12
MOV.L A_sub, RO
JSR @RO

NOP

LDS.L @R15+, PR

A_sub: .DATA.L _sub
.END

}

The called function name prefixed with (_) is
declared by the .IMPORT directive.

Store the PR register (return address storage
register) when calling the function.

If registers RO to R7 contain valid data,

the data is pushed onto the stack or stored

in unused registers.

Calls function sub.

The PR register is restored.

Address data of function sub.

HITACHI 55



Setting and Referencing Parameters and Return Values: This section explains how
to set and reference parameters and return values. The ways of setting and referencing parameters
and return values for each function depend on whether or not the type of the parameter or the return
value is declared explicitly. A prototype function declaration is used to declare parameters and
returns values explicitly.

This section first explains the general rules concerning parameters and return values, and then how
the parameter area is allocated, and how areas are established for return values.

* General rules concerning parameters and return values
— Passing parameters

A function is called only after parameters have been copied to a parameter area in registers
or on the stack. Since the calling function does not reference the parameter area after
control returns to it, the calling function is not affected even if the called function modifies
the parameters.

— Rules on type conversion

Type conversion may be performed automatically when parameters are passed or a return
value is returned. The following explains the rules on type conversion.

Type conversion of parameters whose types are declared:

Parameters whose types are declared by prototype declaration are converted to the
declared types.

Type conversion of parameters whose types are not declared:

Parameters whose types are not declared by prototype declaration are converted according
to the following rules.

char, unsigned char, short, and unsigned short type parameters are converted to
int type parameters.

float type parameters are converted to double type parameters.

Types other than the above cannot be converted to another type.

Return value type conversion:

A return value is converted to the data type returned by the function.

56 HITACHI



Example:

(1) 1long f£( );
long £( )
{ float x;
return x; <+ The return value is converted to long by a
prototype declaration.

(2) wvoid p ( int,... );
£()
{ char c;
P (1.0, ¢ )

} c is converted to int because a type is not
declared for the parameter.
1.0 is converted to int because the type of
the parameter is int.

¢ Parameter area allocation

Parameters are allocated to registers, or when this is impossible, to a stack parameter area.
Figure 2.2 shows the parameter area allocation. Table 2.7 lists rules on general parameter area
allocation.

Stack

Lower
- address
SP

Parameter storage registers

/ R4 FR4

RS FR5

R6 / FR6
R7 / FR7

FR8

Return value address

N\

Parameter
area

FR9
% Parameter area / FR10

FR11

(When CPU is SH3E)

Figure 2.2 Parameter Area Allocation

HITACHI 57




Table 2.7 General Rules on Parameter Area Allocation

Parameters Allocated to Registers

Parameter Parameters

Storage Registers Target Type Allocated to a Stack

R4 to R7 char, unsigned char, (1) Parameters whose types are other
short, unsigned short, int, than target types for register passing
unsigned int, long, (2) Parameters of a function which has
unsigned long, float (when been declared by a prototype
CPU is not SH3E), and pointer declaration to have variable-number

parameters™
FR4to FR11" float (when CPU is SH3E) (8) Other parameters are already

allocated to R4 to R7.

Notes: 1. Indicates a register for SH3E floating point.

2. If a function has been declared to have variable-number parameters by a prototype
declaration, parameters which do not have a corresponding type in the declaration and
the immediately preceding parameter are allocated to a stack.

Example:

int £2(int,int,int,int,...);

f2(a,b,c,x,y,z); «——X,Y, and z are allocated to a stack.

58 HITACHI



* Parameter allocation
— Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting with the smallest numbered register. Figure 2.3
shows an example of parameter allocation to registers.

f(char a,int b)
{

31 87 0

R4 Not guaranteed

V]

R5 b

Figure 2.3 Example of Allocation to Parameter Registers

— Allocation to a stack parameter area

Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type or union type, parameters are
allocated using 4-byte alignment. Also, the area size for each parameter must be a
multiple of four bytes. This is because the SH stack pointer is incremented or decremented
in 4-byte units.

Refer to appendix B, Parameter Allocation Example, for examples of parameter allocation.

* Return value writing area

The return value is written to either a register or memory depending on its type. Refer to table
2.8 for the relationship between the return value type and area.

When a function return value is to be written to memory, the return value is written to the area
indicated by the return value address. The caller must allocate the return value setting area in
addition to the parameter area, and must set the address of the former in the return value address
area before calling the function (see figure 2.4). The return value is not written if its type is
void.

HITACHI 59




Table 2.8 Return Value Type and Setting Area

Return Value Type

Return Value Area

char, unsigned char, short, unsigned short,
int, unsigned int, long, unsigned long, float,

and pointer

RO: 32 bits

(The contents of the upper three bytes
of char, or unsigned char and the
contents of the upper two bytes of
short or unsigned short are not
guaranteed.)

However, when the —rtnext option is
specified, sign extension is performed
for char or short type, and zero
extension is performed for unsigned
char or unsigned short type.

FRO: 32 bits

(When cpu is SH3E, and the return value
is float type.)

double, long double, structure, union

Return value setting area (memory)

Stack

SP—>
Return value

address area

/T\ Lower address

Parameter
area

\1/ Upper address

Return value
setting area
(allocated by the
calling side)

Figure 2.4

60 HITACHI

Memory

Return Value Setting Area Used When Return Value Is Written to




Section 3 Extended Specifications

This section describes C compiler extended specifications:

interrupt functions

intrinsic functions

section change function
single-precision floating-point library
Japanese description in string literals
inline function

inline expansion in assembly language
specifying two-byte address variable
specifying GBR base variable
register save and recovery control
global variable register allocation

3.1 Interrupt Functions

3.1.1 Description

#pragma interrupt (function name [(interrupt specifications)]

[, function name [(interrupt specifications)]])

A preprocessor directive (#pragma) specifies an external (hardware) interrupt function. The
following section describes how to create an interrupt function. Since the interrupt operation of
SH3 and SH3E differ from that of the SH1 and SH2, interrupt handlers are necessary.

HITACHI 61



Table 2.9 lists interrupt specifications.

Table 2.9 Interrupt Specifications

Item Form Options Specifications
Stack switching  sp= <variable>|  The address of a new stack is specified with a variable
specification &<variable>| or a constant.

<constant> <variable>: Variable value
&<variable>: Variable (pointer type) address
<constant>: Constant value

Trap-instruction  tn= <constant>  Termination is specified by the TRAPA instruction
return <constant>: Constant value
specification (trap vector number)

62 HITACHI



3.1.2 Explanation

#pragma interrupt declares an interrupt function. An interrupt function will preserve register
values before and after processing (all registers used by the function are pushed onto and popped
from the stack when entering and exiting the function). The RTE instruction directs the function
to return. However, if the trap-instruction return is specified, the TRAPA instruction is executed
at the end of the function. An interrupt function with no specifications is processed in the usual
procedure. The stack switching specification and the trap-instruction return specification can be
specified together.

Example:
extern int STK[100];

int “*ptr = STK + 100;
#pragma interrupt ( f(sp=ptr, tn=10) )

(a) ®)
Explanation:
(a) Stack switching specification: ptr is set as the stack pointer used by interrupt
function f.

(b) Trap-instruction return specification:  After the interrupt function has
completed its processing, TRAPA #H'10 is executed. The SP at the beginning
of trap exception processing is shown in figure 2.5. After the previous PC and
SR (status register) are popped from the stack by the RTE instruction in the
trap routine, control is returned from the interrupt function.

HITACHI 63



Lower address 1

ptr——

Upper address ¢

Lower address
sp

Upper address ‘

Immediately after interrupt

During interrupt function
processing

STK[O] STKIO]
STK[99] STK[99]
sp
Previous PC Previous PC
Previous SR Previous SR

Just after the interrupt function
has completed processing
(Immediately before the TRAPA
instruction is issued)

—
P Previous PC

Previous SR

Figure 2.5

64 HITACHI

Stack Processing by an Interrupt Function




3.1.3 Notes

1. Only global functions can be specified for an interrupt function definition and the storage class
specifier must be extern. Even if storage class static is specified, the storage class is handled
as extern.

The function must return void data. The return statement cannot have a return value. If
attempted, an error is output.
Example:

#pragma interrupt(£l(sp=100),£2)

VoL FL() (] rrrrr e @

int £2(0) (..} ..oooiiiiiiiiii e ®)

Description: (a) is declared correctly.
(b) returns data that is not void, thus (b) is declared incorrectly. An error
is output.

2. A function declared as an interrupt function cannot be called within the program. If attempted,
an error is output. However, if the function is called within a program which does not declare
it to be an interrupt function, an error is not output but correct program execution will not be
guaranteed.

Example (An interrupt function is declared):
#pragma interrupt(£1)
void fl(void) {...}
int £2(0){ £1();} - oo @

Description: Function f1 cannot be called in the program because it is declared as an
interrupt function. An error is output at (a).

Example (An interrupt function is not declared):
int £1();

int £2(){ £1();} ~-- ®)

Description: Because function f1 is not declared as an interrupt function, an object for
extern int f1(); is generated. If function f1 is declared as an interrupt function
in another file, correct program execution cannot be guaranteed.

HITACHI 65



3.2 Intrinsic Functions

The C compiler provides the intrinsic functions for the SH microcomputer, which (functions) are
described below.

3.2.1 Intrinsic Functions
The following functions can be specified by intrinsic functions.

» Setting and referencing the status register

» Setting and referencing the vector base register

* T/O functions using the global base register

» System instructions which do not compete with register sources in C

3.2.2 Description

<machine.h>, <umachine.h>, or <smachine.h> must be specified when using intrinsic functions.

3.2.3 Intrinsic Function Specifications

Table 2.10 lists intrinsic functions.

66 HITACHI



Table 2.10 Intrinsic Functions

No Item Function Specification Description
1 Status Setting the status void set_cr(int cr) Sets cr (32 bits) in
register  register the status register
(SR)
2 Referencing to the int get_cr(void) Refers to the status
status register register
3 Setting the interrupt  void set_imask(int mask) Sets mask (4 bits) in
mask the interrupt mask (4
bits)
4 Referencing to the int get_imask(void) Refers to the
interrupt mask interrupt mask (4
bits)
5 Vector Setting the vector void set_vbr (void **base) Sets **base (32
base base register bits) in VBR
6  register  peferencingtothe  void **get_vbr (void) Refers to VBR
(VBR) vector base register
7 Global Setting GBR void set_gbr(void *base) Sets *base (32 bits)
base in GBR
8 zggB';‘)e' Referencing to G<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>