
hyperstone El-32/El-16
32-Bit-Microprocessor

User's Manual

~- hyperstone
.., lectron1cSGmbH

Specifications and information in this document are subject to change
without notice and do not represent a commitment on the part of
hypeistone electronics GmbH. hypeistone electronics GmbH reserves
the right to make changes to improve functioning. Although the
information in this document has been carefully reviewed, hypeistone
electronics GmbH does not assume any liability arising out of the use of
the product or circuit described herein.

hypeistone electronics GmbH does not authorize the use of the
hypeistone microprocessor in life support applications wherein a failure
or malfunction of the microprocessor may directly threaten life or cause
injury. The user of the hypeistone microprocessor in life support
applications assumes all risks of such use and indemnifies hypeistone
electronics GmbH against all damages.

hyperstone is a registered trademark of hyperstone electronics GmbH.

For further information please contact:

~ .. hypersfone
'-" lectron1cSGmbH

Am Seerhein 8
78467 Konstanz
Germany

Phone (++49) 7531 I 9803-0
Fax (++49)7531 /51725

©Copyright 1990, 1996 hyperstone electronics GmbH

Revision 03/96

TABLE OF CONTENTS

Table of Contents

1. Architecture

1.1. Introduction .. 1-1
1.2. Block Diagram ... 1-6
1.3. Global Register Set .. 1-7

1.3.1. Program Counter PC .. 1-8
1.3.2. Status Register SR ... 1-9
1.3.3. Floating-Point Exception Register FER .. 1-12
1.3.4. Stack Pointer SP .. 1-12
1.3.5. Upper Stack Bound UB ... 1-12
1.3.6. Bus Control Register BCR. .. 1-12
1.3.7. Timer Prescaler Register TPR ... 1-12
1.3.8. Timer Compare Register TCR ... 1-13
1.3.9. Timer Register TR ... 1-13
1.3.10. Watchdog Compare Register WCR ... 1-13
1.3.11. Input Status Register ISR ... 1-13
1.3.12. Function Control Register FCR ... 1-13
1.3.13. Memory Control Register MCR .. 1-13

1.4. Local Register Set .. 1-14
1.5. Privilege States ... 1-15
1.6. RegisterDataTypes ... 1-16
1.7. Memory Organization .. 1-17
1.8. Stack ... 1-19
1.9. Instruction Cache ... 1-24
1.10. On-Chip Memory (IRAM) ... 1-26

2. Instructions General

2.1. Instruction Notation ... 2-1
2.2. Instruction Execution ... 2-2
2.3. Instruction Formats .. 2-3

2.3.1. Table of Immediate Values .. 2-5
2.3.2. Table of Instruction Codes ... 2-6
2.3.3. Table of Extended DSP Instruction Codes .. 2-7

2.4. Entry Tables ... 2-8
2.5. Instruction Timing ... 2-12

3. Instruction Set

3.1. Memory Instructions .. 3-1
3.1.1. AddressModes .. 3-2
3.1.2. Load Instructions ... 3-6
3.1.3. Store Instructions ... 3-8

3.2. Move Word Instructions .. 3-10
3.3. Move Double-Wordinstruction ... 3-10
3.4. Logical Instructions ... 3-11
3.5. Invert Instruction .. 3-12
3.6. Mask Instruction .. 3-12
3. 7. Add Instructions ... 3-13

TABLE OF CONTENTS

3.8. Sumlnstructions .. 3-15
3.9. Subtractinsti-uctions .. 3-16
3.10. Negatelnstructions .. 3-17
3.11. Multiply Word Instruction ... 3-18
3.12. Multiply Double-Word Instructions .. 3-18
3.13. Divide Instructions .. 3-19
3.14. Shift Left Instructions .. 3-20
3.15. Shift Right Instructions .. 3-21
3.16. Rotate Left Instruction ... 3-22
3 .17. Index Move Instructions .. 3-23
3.18. Check Instructions ... 3-24
3.19. No Operation Instruction ... 3-24
3.20. Compare Instructions ... 3-25
3.21. Compare Bit Instructions ... 3-26
3.22. Test Leading Zeros Instruction .. 3-26
3.23. Set Stack Address Instruction .. 3-27
3.24. Set Conditional Instructions .. 3-27
3.25. Branch Instructions .. 3-29
3.26. Delayed Branch Instructions .. 3-30
3.27. Call Instruction .. 3-32
3.28. Trap Instructions .. 3-33
3.29. Frame Instruction ... 3-35
3.30. Return Instruction .. 3-37
3.31. Fetch Instruction .. 3-39
3.32. Extended DSP Instructions .. 3-40
3.33. Software Instructions ... 3-42

3.33.1. Do Instruction .. 3-43
3.33.2. Floating-Point Instructions .. 3-44

4.Exceptions

4.1. Exception Processing ... 4-1
4.2. Exception Types .. 4-2

4.2.1. Reset .. 4-2
4.2.2. Range, Pointer, Frame and Privilege Error.4-2
4.2.3. Extended Overflow .. 4-2
4.2.4. Parity Error .. 4-3
4.2.5. Interrupt ... 4-3
4.2.6. Trace Exception ... 4-3

4.3. Exception Backtracking ... 4-4

5. Timer

5.1. Overview .. 5-1
5 .1.1. Timer Prescaler Register TPR ... 5-1
5.1.2. Timer Register TR ... 5-1
5.1.3. Timer Compare Register TCR. .. 5-2

TABLE OF CONTENTS iii

6. Bus Interface

6.1. Bus Control General .. 6-1
6.1.1. SRAM and ROM Bus Access .. 6-1
6.1.2. DRAMBusAccess .. 6-2
6.1.3. 1/0 Bus Access ... 6-2

6.2. 1/0 Bus Control .. 6-3
6.3. Bus Control Regist~r BCR ... 6-4
6.4. Memory Control Register MCR .. 6-8

6.4.1. Output Voltage ... 6-9
6.4.2. Input Threshold .. 6-9
6.4.3. Power Down .. 6-9
6.4.4. IRAM Refresh Test. ... 6-10
6.4.5. IRAM Refresh Rate ... 6-10
6.4.6. Entry Table Map .. 6-10
6.4.7. MEMx Bus Hold Break: ... 6-10

6.5. Input Status Register ISR ... 6-11
6.6. Function Control Register FCR ... 6-12
6. 7. Watchdog Compare Register WCR ... 6-14
6.8. I03 Control Modes .. 6-14

6.8.1. I03Standard Mode ... 6-14
6.8.2. Watchdog Mode ... 6-14
6.8.3. I03Tirning Mode ... 6-14
6.8.4. I03Timerlnterrupt Mode ... 6-15

6.9. Bus Signals ... ~ 6-16
6.9.1. Bus Signals for the El-32 Processor .. 6-16
6.9.2. Bus Signals for the El-16 Processor .. 6-17
6.9.3. Bus Signal Description .. 6-18

6.10. Bus Cycles ... 6-23
6.10.1. SRAM and ROM Single-Cycle Read Access 6-23
6.10.2. SRAM Single-Cycle Write Access .. 6-23
6.10.3. SRAM and ROM Multi-Cycle Read Access 6-24
6.10.4. SRAM Multi-Cycle Write Access ... 6-24
6.10.5. 1/0 Read Access ... 6-25
6.10.6. 1/0 Write Access .. 6-26
6.10.7. DRAM Access ... 6-27
6.10.8. DRAM Refresh (CAS before RAS Refresh) 6-28

6.11. DC Characteristics ... 6-29
6.12. AC Characteristics ... 6-31

6.12.1. Processor Clock ... 6-31
6.12.2. DRAM RAS Access .. 6-32
6.12.3. DRAM Fast Page Mode Access .. 6-33

6.12.3.1. Multi-Cycle Access ... 6-33
6.12.3.2. Single-Cycle Access .. 6-34

6.12.4. DRAM CAS-Before-RAS Refresh .. 6-36
6.12.5. SRAM Access .. 6-37

6.12.5.1. Multi-Cycle Access ... 6-37
6.12.5.2. Single-Cycle Access .. 6-39

6.12.6. 1/0 Access ... 6-40

iv TABLE OF CONTENTS

7. Mechanical Data

7.1. hyperstone El-32N, 160-Pin PQFP-Package .. 7-1
7.1.1. Pin Configuration - View from Top Side .. 7-1
7.1.2. Pin Cross Reference by Pin Name ... 7-2
7.1.3. Pin Cross Reference by Location .. 7-3

7.2. hyperstone El-32T, 144-Pin TQFP-Package .. 7-4
7.2.1. Pin Configuration - View from Top Side .. 7-4
7.2.2. Pin Cross Reference by Pin Name ... 7-5
7.2.3. Pin Cross Reference by Location .. 7-6

7.3. hyperstone El-16T, 100-Pin TQFP-Package .. 7-7
7.3.1. Pin Configuration - View from Top Side .. 7-7
7.3.2. Pin Cross Reference by Pin Name ... 7-8
7.3.3. Pin Cross Reference by Location .. 7-9

7.4. Package-Dimensions .. 7-10

ARCHITECTURE 1-1

1. Architecture

1.1. Introduction
The hyperstone E1-32 and hyperstone E1-16 microprocessors present a new class of
microprocessors: The combination of a high-performance RISC microprocessor with an
additional powerful DSP instruction set and on-chip microcontroller functions. The high
throughput is not achieved by raw clock speed, it is due to a sophisticated novel
architecture, combining the advantages of RISC and DSP technology.

The speed is obtained by an optimized combination of the following features:

D The most recent stack frames are kept in a register stack, thereby reducing data memory
accesses to a minimum by keeping almost all local data in registers.

o Pipelined memory access allows overlapping of memory accesses with execution.

o 4 KByte on-chip memory.

o On-chip instruction cache omits instruction fetch in inner loops and provides prefetch.

D Variable-length instructions of 16, 32 or 48 bits provide a large, powerful instruction
set, thereby reducing the number of instructions to be executed.

D Primarily used 16-bit instructions halve the memory bandwith required for instruction
fetch in comparison to conventional RISC architectures with fixed-length 32-bit
instructions, yielding also even better code economy than conventional CISC
architectures.

o Regular instruction set allows hardwiring of control logic at low component count.

o Most instructions execute in one cycle.

D Pipelined DSP instructions.

o Parallel execution of ALU and DSP instructions.

D Single-cycle halfword multiply-accumulate operation.

o Fast Call and Return by parameter passing via registers.

D An instruction pipeline depth of only two stages - decode/execute - provides
branching without insertion of wait cycles in combination with Delayed Branch
instructions.

o Range and pointer checks are performed without speed penalty, thus, these checks need
no longer be turned off, thereby providing higher runtime reliability.

D Separate address and data buses provide a throughput of one 32-bit word each cycle.

The features noted above contribute to reduce the number of idle wait cycles to a bare
minimum. The processor is designed to sustain its execution rate with a standard DRAM
memory.

The low power consumption is of advantage for mobile (portable) applications or in
temperature-sensitive environments.

In the current version, the hyperstone E 1-32 and hyperstone E 1-16 microprocessors are
implemented in a 0.8 µm-CMOS-process.

1-2 CHAPTER 1

1.1. Introduction (continued)

Most of the transistors are used for the on-chip memory, the instruction cache, the register
stack and the multiplier, whereas only a smallnumber is required for the control logic.

Due to their low system cost, the hypetStone E1 -32 and E1 -16 microprocessors are very well
suited for embedded-systems applications requiring high performance and lowest cost. To
simplify board design as well as to reduce system costs, the hypetStone E1-32 and E1-16

already come with integrated periphery, such as a timer and memory and bus control logic.
Therefore, complete systems with the hypetStone microprocessor can be implemented with
a minimum of external components. To connect any kind of memory or 1/0, no glue logic
is necessary. It is even suitable for systems where up to now microprocessors with 16-bit
architecture have been used for cost reasons. Its improved performance compared to
conventional microcontrollers can be used to software-substitute many external peripherals
like graphics controllers or DSPs.

The software development tools include an optimizing C compiler, assembler, source-level
debugger with profiler as well as a real-time kernel with an extremely fast response time.
Using this real-time kernel, up to 31 tasks, each with its own virtual timer, can be
developed independently of each other. The synchronization of these tasks is effected
almost automatically by the real-time kernel. To the developer, it seems as if he has up to
31 hypetStone microprocessors to which he can allocate his programs accordingly. Real­
time debugging of multiple tasks is assisted in an optimized way.

The following description gives a brief architectural overview:

Registers:

o 32 global and 64 local registers of 32 bits each

o 16 global and up to 16 local registers are addressable directly

Flags:

D Zero(Z), negative(N), carry(C) and overflow(V) flag

D Interrupt-mode, interrupt-lock, trace-mode, trace-pending, supervisor state, cache-mode
and high global flag

Register Data Types:

D Unsigned integer, signed integer, signed short, signed complex short, 16-bit fixed-point,
bitstring, IEEE-754 floating-point, each either 32 or 64 bits

External Memory:

D Address space of 4 Gbytes, divided into five areas

o Separate 1/0 address space

D Load/Store architecture

D Pipelined memory and 1/0 accesses

o High-order data located and addressed at lower address (big endian)

D Instructions and double-word data may cross DRAM page boundaries

ARCHITECTURE

1.1. Introduction (continued)

On-chip Memory:

D 4 KByte internal (on-chip) memory

Memory Data Types:

D Unsigned and signed byte (8 bit)

D Unsigned and signed halfword (16 bit), located on halfword boundary

D Undedicated word (32 bit), located on word boundary

o Undedicated double-word (64 bit), located on word boundary

Runtime Stack:

D Runtime stack is divided into memory part and register part

1-3

D Register part is implemented by the 64 local registers holding the most recent stack
frame(s)

D Current stack frame (maximum 16 registers) is always kept in register part of the stack

D Data transfer between memory and register part of the stack is automatic

o Upper stack bound is guarded

Instruction Cache:

o An on-chip instruction cache reduces instruction memory access substantially

Instructions General:

o Variable-length instructions of one, two or three halfwords halve required memory
bandwidth

o Pipeline depth of only two stages, assures immediate refill after branches

O Register instructions of type "source operator destination=> destination" or
"source operator immediate=> destination"

o All register bits participate in an operation

O Immediate operands of 5, 16 and 32 bits, zero- or sign-expanded

o Large address displacement of up to 28 bits

o Two sets of signed arithmetical instructions: instructions set or clear either only the
overflow flag or trap additionally to a Range Error routine on overflow

n DSP instructions operate on 16-bit integer, real and complex fixed-point data and 32-hit
integer data into 32-bit and 64-bit hardware accumulators

Instruction Summary:

n Memory instructions pipelined to a depth of two stages, trap on address register equal to
zero (check for invalid pointers)

1·4 CHAPTER 1

1.1. Introduction (continued)
O Memory address modes: register address, register postincrement, register + dis­

placement (including PC relative), register postincrement by displacement (next
address), absolute, stack address, 1/0 absolute and 1/0 displacement

o Load, all data types, bytes and halfwords right adjusted and zero- or sign-expanded,
execution proceeds after Load until data is needed

o Store, all data types, trap when range of signed byte or halfword is exceeded

o Move, Move immediate, Move double-word

o Logical instructions AND, AND not, OR, XOR, NOT, AND not immediate, OR
immediate, XOR immediate

o Mask source and immediate => destination

o Add unsigned/signed, Add signed with trap on overflow, Add with carry

o Add unsigned/signed immediate, Add signed immediate with trap on overflow

o Sum source + immediate => destination, unsigned/signed and signed with trap on
overflow

o Subtract unsigned/signed, Subtract signed with trap on overflow, Subtract with carry

o Negate unsigned/signed, Negate signed with trap on overflow

o Multiply word * word => low-order word unsigned or signed, Multiply word * word =>
double-word unsigned and signed

o Divide double-word by word => quotient and remainder, unsigned and signed

o Shift left unsigned/signed, single and double-word, by constant and by content of
register, Shift left signed by constant with trap on loss of high-order bits

o Shift right unsigned and signed, single and double-word, by constant and by content of
register

o Rotate left single word by content of register

o Index Move, move an index value scaled by 1, 2, 4 or 8, optionally with bounds check

0 Check a value for an upper bound specified in a register or check for zero

o Compare unsigned/signed, Compare unsigned/signed immediate

o Compare bits, Compare bits immediate, Compare any byte zero

D Test number of leading zeros

O Set Conditional, save conditions in a register

o Branch unconditional and conditional (12 conditions)

O Delayed Branch unconditional and conditional (12 conditions)

n Call subprogram, unconditional and on overflow

'1 Trap to supervisor subprogram, unconditional and conditional (I 1 conditions)

:1 Frame, structure a new stack frame, include parameters in frame addressing, set frame
length, restore reserve frame length and check for upper stack bound

'1 Return from subprogram, restore program counter, status register and return-frame

ARCHITECTURE 1-5

1.1. Introduction (continued)
o Software instructions, call an associated subprogram and pass a source operand and the

address of a destination operand to it

o DSP Multiply instructions:
signed and/or unsigned multiplication =:} single and double word product

o DSP Multiply-Accumulate instructions:
signed multiply-add and multiply-subtract =:} single and double word product sum and
difference

o DSP Halfword Multiply-Accumulate instructions:
signed multiply-add operating on four halfword operands =:} single and double word
product sum

o DSP Complex Halfword Multiply instruction:
signed complex halfword multiplication =:} real and imaginary single word product

o DSP Complex Halfword Multiply-Accumulate instruction:
signed complex halfword multiply-add =:} real and imaginary single word product sum

o DSP Add and Subtract instructions:
signed halfword add and subtract with and without fixed-point adjustment =:} single
word sum and difference

O Floating-point instructions are architecturally fully integrated, they are executed as
Software instructions by the present version. Floating-point Add, Subtract, Multiply,
Divide, Compare and Compare unordered for single and double-precision, and Convert
single {:::} double are provided.

Exceptions:

o Pointer, Privilege, Frame and Range Error, Extended Overflow, Parity Error, Interrupt
and Trace mode exception

O Watchdog function

o Error-causing instructions can be identified by backtracking, thus allowing a very
detailed error analysis

Timer:

o Two multifunctional timers

Bus Interface:

O Separate address bus of 26 (E1-32) or 22 (E1-16) bits and data bus of up to 32 (E1-32) or
16 bits (E1-16) provide a throughput of four or two bytes at each clock cycle

o Data bus width of 32, 16 or 8 bits, individually selectable for each external memory
area.

O Up to seven vectored interrupts

O Configurable VO pins

O Internal generation of all memory and I/O control signals

1-6

1.2. Block Diagram

nl ~ l
Register Set

64 Local

26 Global

X Y PC

4~-, X-Decode j·ef•w!

j+-ww Y-Decode I'~'

Instruction
Cache t-!·t•i
Control

Instruction

Cache

CHAPTER 1

Load
Decode

_i c_____, b. ~
===iJ Instruction

T i
I

x y

ALU

Barrel shifter

Z W A

LJ[

Store Data
Pipeline

'l-
32 12 -rt -1 ~

4 +­
(Z 4 kByte

RAM

Dat;;--Bus Parity .__ __ __.

Figure 1.1: Block Diagram

x y
DSP

Execution
Unit

Hardware­
Multiplier

Decode

Instruction
I ,+,.I· mmw$ Execution

Control Unit

1

rMemory Address _, .
Pipeline

~---1
11

Power
26 Down+

...t- (22) Reset

'v [Watchdo~ Control

Address I +
Bus T I

Bus Interface
Control Unit

.... 1 Bus Pipeline
Control

Internal
Timer

I
Interrupt
control

'v

~
Control

Bus

ARCHITECTURE 1-7

1.3. Global Register Set

The architecture provides 32 global registers of 32 bits each. These are:

GO Program Counter PC

G 1 Status Register SR

G2 Floating-point Exception Register FER

G3 .. G 15 General purpose registers

G16 .. G17 Reserved

G 18 Stack Pointer SP

G 19 Upper stack Bound UB

G20 Bus Control Register BCR (see section 6. Bus Interface)

G21 Timer Prescaler Register TPR (see section 5. Timer)

G22 Timer Compare Register TCR (see section 5. Timer)

G23 Timer Register TR (see section 5. Timer)

G24 Watchdog Compare Register WCR (see section 6. Bus Interface)

G25 Input Status Register ISR (see section 6. Bus Interface)

G26 Function Control Register FCR (see section 6. Bus Interface)

G27 Memory Control Register MCR (see section 6. Bus Interface)

G28 .. G31 Reserved

Registers GO .. G 15 can be addressed directly by the register code (0 .. 15) of an instruction.
Registers Gl8 .. G27 can be addressed only by a MOY or MOVI instruction with the high
global flag H set to 1.

1-8

GO

G1

G2

G3

G15

G16

G17

G18

G19

G20

G21

G22

G23

G24

G25

G26

G27

G28

G31

31

Program Counter PC

Status Register SR

Floating-Point Exception Register FER

General Purpose Registers G3 .. G15

Reserved

Reserved

Stack Pointer SP

Upper Stack Bound UB

Bus Control Register BCR

Timer Prescaler Register TPR

Timer Compare Register TCR

Timer Register TR

Watchdog Compare Register WCR

Input Status Register ISR

Function Control Register FCR

Memory Control Register MCR

G28 .. G31 Reserved

Figure 1.2: Global Register Set

1.3.1. Program Counter PC

CHAPTER 1

0

Jo

0 0

0 0

GO is the program counter PC. It is updated to the address of the next instruction through
instruction execution. Besides this implicit updating, the PC can also be addressed like a
regular source or destination register. When the PC is referenced as an operand, the value
'upplied is the address of the first byte after the instruction which references it, except
when referenced hy a delay instruction with a preceding delayed branch taken (see section
3.26. Delayed Branch Instructions).

Placing a result in the PC has the effect of a branch taken. Bit zero of the PC is always
zero, regardless of any value placed in the PC.

ARCHITECTURE 1·9

1.3.2. Status Register SR

G 1 is the status register SR. Its content is updated by instruction execution. Besides this
implicit updating, the SR can also be addressed like a regular register. When addressed as
source or destination operand, all 32 bits are used as an operand. However, only bits 15 .. 0
of a result can be placed in bits 15 .. 0 of the SR, bits 31..16 of the result are discarded and
bits 31 .. 16 of the SR remain unchanged. The full content of the SR is replaced only by the
Return Instruction. A result placed in the SR overrules any setting or clearing of the
condition flags as a result of an instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FP FL

Frame Pointer

Figure 1.3: Status Register SR (bits 31 .. 16)

ILC

Trace-Mode Flag

Trace Pending Flag

Supervisor State Flag

Instruction-Length Code

Frame Length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

L FAM FTE

Carry Flag

Zero Flag

Negative Flag

Overflow Flag

Cache-Mode Flag

High Global Flag

Reserved

Interrupt-Mode Flag

Floating-Point Trap Enable

Floating-Point Rounding Mode

Interrupt-Lock Flag

Figure 1.4: Status Register SR (bits 15 .. 0)

1-10 CHAPTER 1

1.3.2. Status Register SR (continued)

The status register SR contains the following status information:

C Bit zero is the carry condition flag C. In general, when set it indicates that the
unsigned integer range is exceeded. At add operations, it indicates a carry out
of bit 31 of the result. At subtract operations, it indicates a borrow (inverse
carry) into bit 31 of the result.

Z Bit one is the zero condition flag Z. When set, it indicates that all 32 or 64
result bits are equal to zero regardless of any carry, borrow or overflow.

N Bit two is the negative condition flag N. On compare instructions, it indicates
the arithmetic correct (true) sign of the result regardless of an overflow. On all
other instructions, it is derived from result bit 31, which is the true sign bit
when no overflow occurs. In the case of overflow, result bit 31 and N reflect
the inverted sign bit.

V Bit three is the overflow condition flag Y. In general, when set it indicates a
signed overflow. At the Move instructions, it indicates a floating-point NaN
(Not a Number).

M Bit four is the cache-mode flag M. Besides being set or cleared under program
control, it is also automatically cleared by a Frame instruction and by any
branch taken except a delayed branch. See section 1.9. Instruction Cache for
details.

H Bit five is the high global flag H. When H is set, denoting GO .. G15 addres­
ses G16 .. G31 instead. Thus, the registers G18 .. G27 may be addressed by
denoting G2 .. Gll respectively.
The H flag is effective only in the first cycle of the next instruction after it was
set; then it is cleared automatically.
Only the MOY or MOYI instruction issued as the next instructions must be
used to copy the content of a local register or an immediate value to one of the
high global registers. The MOY instruction may be used to copy the content of
a high global register (except the BCR, TPR, FCR and MCR register, which
are write-only) to a local register. With all other instructions, the result may be
invalid.
If one of the high global registers is addressed as the destination register in user
state (S = 0), the condition flags are undefined, the destination register remains
unchanged and a trap to Privilege Error occurs.

Reserved Bit six is reserved for future use. It must always be zero.

I Bit seven is the interrupt-mode flag I. It is set automatically on interrupt entry
and reset to its old value by a Return instruction. The I flag is used by the
operating system; it must be never changed by any user program.

FTE Bits 12 .. 8 are the floating-point trap enable flags (see section 3.33.2. Floating­
Point Instructions).

FRM Bits 14 . .13 are the floating-point rounding modes (see section 3.33.2. Floating­
Point Instructions).

ARCHITECTURE 1-11

1.3.2. Status Register SR (continued)

L Bit 15 is the interrupt-lock flag L. When the L flag is one, all Interrupt, Parity
Error and Extended Overflow exceptions regardless of individual mode bits are
inhibited. The state of the L flag is effective immediately after any instruction
which changed it. The L flag is set to one by any exception.
The L flag can be cleared or kept set in any or on return to any privilege state
(user or supervisor). Changing the L flag from zero to one is privileged to
supervisor or return from supervisor to supervisor state. A trap to Privilege
Error occurs if the L flag is set under program control from zero to one in user
or on return to user state.

The following status information can be changed only internally or replaced by the saved
return value of the SR via a Return instruction:

T Bit 16 is the trace-mode flag T. When both the T flag and the trace pending
flag P are one, a trace exception occurs after every instruction except after a
Delayed Branch instruction. The T flag is cleared by any exception.
Note: The T flag can only be changed in the saved return SR and is then
effective after execution of a Return instruction.

P Bit 17 is the trace pending flag P. It is automatically set to one by all in­
structions except by the Return instruction, which restores the P flag from bit
17 of the saved return SR.
Since for a Trace exception both the P and the T flag must be one, the P flag
determines whether a trace exception occurs (P = 1) or does not occur
(P = 0) immediately after a Return instruction which restored the T flag to
one.
Note: The P flag can only be changed in the saved SR. No program except the
trace exception handler should affect the saved P flag. The trace exception
handler must clear the saved P flag to prevent a trace exception on return, in
order to avoid tracing the same instruction in an endless loop.

S Bit 18 is the supervisor state flag S (see section 1.5. Privilege States). It is set
to one by any exception.

ILC Bits 20 and 19 represent the instruction-length code ILC. It is updated by
instruction execution. The ILC holds (in general) the length of the last in­
struction: ILC values of one, two or three represent an instruction length of
one, two or three halfwords respectively. After a branch taken, the ILC is
invalid. The Return instruction clears the ILC.
Note: Since a Return instruction following an exception clears the ILC, a
program must not rely on the current value of the ILC.

FL Bits 24 .. 21 represent the frame length FL. The FL holds the number of usable
local registers (maximum 16) assigned to the current stack frame.
FL= 0 is always interpreted as FL= 16.

FP Bits 31..25 represent the frame pointer FP. The least significant six bits of the
FP point to the beginning of the current stack frame in the local register set,
that is, they point to LO.
The FP contains bit 8 .. 2 of the address at which the content of LO would be
stored if pushed onto the memory part of the stack.

1-12 CHAPTER 1

1.3.3. Floating-Point Exception Register FER

G2 is the floating-point exception register. All bits must be cleared to zero after Reset.
Only bits 12 .. 8 and 4 .. 0 may be changed by a user program, all other bits must remain
unchanged.

31 13 12 11 10 9 8 7 6 5 4 3 2 0

[=1
Reserved Reserved for Operating System

Floating-Point Actual Exceptions Floating-Point Accrued Exceptions

Figure 1.5: Floating-Point Exception Register

1.3.4. Stack Pointer SP

G 18 is the stack pointer SP. The SP contains the top address + 4 of the memory part of the
stack, that is the address of the first free memory location in which the first local register
would be saved by a push operation (see section 3.29. Frame Instruction for details). Stack
growth is from low to high address.

Bits one and zero of the SP must always be cleared to zero. The SP can be addressed only
via the high global flag H being set. Copying an operand to the SP is a privileged
operation.

1.3.5. Upper Stack Bound UB

G 19 is the upper stack bound UB. The UB contains the address beyond the highest legal
memory stack location. It is used by the Frame instruction to inhibit stack overflow.

Bits one and zero of the UB must always be cleared to zero. The UB can be addressed only
via the high global flag H being set. Copying an operand to the UB is a privileged
operation.

1.3.6. Bus Control Register BCR

G20 is the write-only bus control register BCR. Its content defines the options possible for
bus cycle, parity and refresh control. The BCR can be addressed only via the high global
flag H being set. Copying an operand to the BCR is a privileged operation. The BCR
register is described in detail in the bus interface description in section 6.

1.3.7. Timer Prescaler Register TPR

G2 l is the write-only timer prescaler register TPR. It adapts the timer clock to different
processor clock frequencies. The TCR can be addressed only via the high global flag H
being set. Copying an operand to the TPR is a privileged operation. The TPR is described
in the timer description in section 5.

ARCHITECTURE 1-13

1.3.8. Timer Compare Register TCR

G22 is the timer compare register TCR. Its content is compared continuously with the
content of the timer register TR. The TCR can be addressed only via the high global flag H
being set. Copying an operand to the TCR is a privileged operation. The TCR is described
in the timer description in section 5.

1.3.9. Timer Register TR

G23 is the timer register TR. Its content is incremented by one on each time unit. The TR
can be addressed only via the high global flag H being set. Copying an operand to the TR
is a privileged operation. The TR is described in the timer description in section 5.

1.3.10. Watchdog Compare Register WCR

G24 is the watchdog compare register WCR. The WCR can be addressed only via the high
global flag H being set. Copying an operand to the WCR is a privileged operation.The
WCR is described in the bus interface description in section 6.

1.3.11. Input Status Register ISR

G25 is the read-only input status register ISR. The ISR can be addressed only via the high
global flag H being set. The ISR is described in the bus interface description in section 6.

1.3.12. Function Control Register FCR

G26 is the write-only function control register FCR. The FCR can be addressed only via
the high global flag H being set. Copying an operand to the FCR is a privileged operation.
The FCR is described in the bus interface description in section 6.

1.3.13. Memory Control Register MCR

G27 is the write-only memory control register MCR. The MCR can be addressed only via
the high global flag H being set. Copying an operand to the MCR is a privileged operation.
The MCR is described in the bus interface description in section 6.

1-14 CHAPTER 1

1.4. Local Register Set
The architecture provides a set of 64 local registers of 32 bits each. The local registers 0 .. 63
represent the register part of the stack, containing the most recent stack frame(s).

31 0

0

LO

L15 LocalHegisterL 15

63

Figure 1.6: Local Register Set 0 .. 63

The local registers can be addressed by the register code (0 .. 15) of an instruction as
LO .. LI 5 only relative to the frame pointer FP; they can also be addressed absolutely as part
of the stack in the stack address mode (see section 3.1. l. Address Modes).

The absolute local register address is calculated from the register code as:

absolute local register address:= (FP + register code) modulo 64.

That is, only the least significant six bits of the sum FP + register code are used and thus,
the absolute local register addresses for LO .. Ll5 wrap around modulo 64.

The absolute local register addresses for FP + register code + I or FP + FL + offset
are calculated accordingly.

ARCHITECTURE 1-15

1.5. Privilege States
The architecture provides two privilege states, determined by the supervisor state flag S:
User state (S = 0) and supervisor state (S = 1).

The privilege state may be used by an external memory management unit to control
memory and I/O accesses. The operating system kernel is executed in the higher privileged
supervisor state, thereby restricting access to all sensitive data to a highly reliable system
program. The following operations are also privileged to be executed only in the supervisor
or on return from supervisor to supervisor state:

D Copying an operand to any of the high global registers

o Changing the interrupt-lock flag L from zero to one

D Returning through a Return instruction to supervisor state

Any illegal attempt causes a trap to Privilege Error.

The S flag is also saved in bit zero of the saved return PC by the Call, Trap and Software
instructions and by an exception. A Return instruction restores it from this bit position to
the S flag in bit position 18 of the SR (thereby overwriting the bit 18 returned from the
saved return SR).

If a Return instruction attempts a return from user to supervisor state, a trap to Privilege
Error occurs (S = 1 is saved).

Returning from supervisor to user state is achieved by clearing the S flag in bit zero of the
saved return PC before return. Switching from user to supervisor state is only possible by
executing a Trap instruction or by exception processing through one of the 64 supervisor
subprogram entries (see section 2.4. Entry Tables).

Note: Since the Return instruction restores the PC first to enable the instruction fetch to
start immediately, the restored S flag must also be available immediately to prevent any
memory access with a false privilege state. The S flag is therefore packed in bit zero of the
saved return PC.

The state of the S flag can be signalled at the IO 1 pin in each memory or 1/0 cycle.

1-16

1.6. Register Data Types

31

31

31

IMSB

31

MSB

31

islMSB

32 Bits

Bitstring

High-Order 32-Bits

Low-Order 32-Bits

Double-Word Bitstring

32-Bit Magnitude

Unsigned Integer

High-Order 32-Bit Magnitude

Low-Order 32-Bit Magnitude

Unsigned Double-Word Integer

31-Bit Magnitude

Signed Integer, Two's Complement

High-Order 31-Bit Magnitude

Low-Order 32-Bit Magnitude

Signed Double-Word Integer, Two's Complement

31 15

lslMSB LSB islMSB

Two Signed Shorts

31 15

islMSB Real Part LSB islMSB Imaginary Part

Complex Signed Short

31

I sis-Bit Exponent! MSB 23-Bit Fraction

Single Precision Floating-Point Number

11-Bit Exponent MSB High-Order 20-Bit Fraction

Low-Order 32-Bit Fraction

Double Precision Floating-Point Number

0

LSB I

0

LSB

0

LSB I

0

LSB

0

0

LSB

0

LSB I

0

LSBI

0

LSB I

0

LSB

S = sign bit, MSB = most significant bit, LSB = least significant bit

Figure 1.7: Register Data Types

Register:

n

n

n+1

n

n

n+1

n

n

n+1

n

n

n

n

n+1

CHAPTER 1

ARCHITECTURE 1-17

1.7. Memory Organization
The architecture provides a memory address space in the range of 0 .. 232 - 1
(0 .. 4 294 967 295) 8-bit bytes. Memory is implied to be organized as 32-bit words. The
following memory data types are available (see figure 1.8)

o Byte unsigned (unsigned 8-bit integer, bitstring or character)

O Byte signed (signed 8-bit integer, two's complement)

o Halfword unsigned (unsigned 16-bit integer or bitstring)

o Halfword signed (signed 16-bit integer, two's complement)

o Word (32-bit undedicated word)

o Double-Word (64-bit undedicated double-word)

Besides the memory address space, a separate 1/0 address space is provided. In the 1/0
address space, only word and double-word data types are available.

Words and double-words must be located at word boundaries, that is, their most significant
byte must be located at an address whose two least significant bits are zero. Halfwords
must be located at halfword boundaries, their most significant byte being located at an
address whose least significant bit is zero. Bytes may be located at any address.

The variable-length instructions are located as contiguous sequences of one, two or three
halfwords at halfword boundaries.

Memory- and 1/0-accesses are pipelined to an implied depth of two addresses.

Note: All data is located high to low order at addresses ascending from low to high, that is,
the high order part of all data is located at the lower address. This scheme should also be
used for the addressing of bit arrays. Though the most significant bit of a word is numbered
as bit position 31 for convenience of use, it should be assigned the bit address zero to
maintain consistent bit addressing in ascending order through word boundaries.

1-18 CHAPTER 1

1.7. Memory Organization (continued)

Figure 1.8 shows the location of data and instructions in memory relative to a binary
address n = ... xxxOO (x = 0 or 1). The memory organization is big-endian.

I I
I 31 01

I
Byte n Byte n + 1 Byte n + 2 Byte n + 3

I
I I

I Halfword n Halfword n + 2
I
I

Byte n Byte n + 1 Halfword n + 2 I
I

Halfword n Byte n + 2 Byte n + 3 I
I

Word n I

High-Order Word n of Double-Word
~------------------~

Low-Order Word n + 4 of Double-Word

I
I
I

2nd ;struction Halfword(opt.) J
!----------------- - - - - - - - -

1st Instruction Halfword

3rd Instruction Halfword (opt.)

! t-= Preceding Instruction = --11----1 s_t_ln_s_tr_u_ct_io_n_H_a_lfw_o_rd __ ---1

2nd Instruction Halfword (opt.) 3rd Instruction Halfword (opt.)
-------- --------

!
I

Figure 1.8: Memory Organization

At all data types, the most significant bit is located at the higher and the least significant bit
at the lower bit position.

ARCHITECTURE 1-19

1.8. Stack

A runtime stack, called stack here, holds generations of local variables in last-in-first-out
order. A generation of local variables, called stack frame or activation record, is created
upon subprogram entry and released upon subprogram return.

The runtime stack provided by the architecture is divided into a memory part and a register
part. The register part of the stack, implemented by a set of 64 local registers organized as a
circular buffer, holds the most recent stack frame(s). The current stack frame is always kept
in the register part of the stack. The frame pointer FP points to the beginning of the current
stack frame (addressed as register LO). The frame length FL indicates the number of
registers (maximum 16) assigned to the current stack frame. The stack grows from low to
high address. It is guarded by the upper stack bound UB.

The stack is maintained as follows:

D A Call, Trap or Software instruction increments the FP and sets FL to six, thus creating
a new stack frame with a length of six registers (including the return PC and the return
SR).

D An exception increments the FP by the value of FL and then sets FL to two.

D A Frame instruction restructures a stack frame to include (optionally) passed parameters
by decrementing the FP and by resetting the FL to the desired length, and restores a re­
serve of 10 local registers for the next subprogram call. If the required number of
registers + 10 do not fit in the register part of the stack, the contents of the differential
(required+ 10 - available) number of local registers are pushed onto the memory part of
the stack. A trap to Frame Error occurs after the push operation when the old value of
the stack pointer SP exceeded the upper stack bound UB.

o A Return instruction releases the current stack frame and restores the preceding stack
frame. If the restored stack frame is not fully contained in the register part of the stack.
the content of the missing part of the stack frame is pulled from the memory part of the
stack.

For more details see the descriptions of the specific instructions.

When the number of local registers required for a stack frame exceeds its maximum length
of 16 (in rare cases), a second runtime stack in memory may be used. This second stack is
also required to hold local record or array data.

The stack is used by routines in user or supervisor state, that is, supervisor stack frames arc
appended to user stack frames, and thus, parameters can be passed between user and
supervisor state. A small stack space must be reserved above UB. UB can then he set to a
higher value by the Frame Error handler to free stack space for error handling.

1-20 CHAPTER 1

1.8. Stack (continued)

Because the complete stack management is accomplished automatically by the hardware,
programming the stack handling instructions is easy and does not require any knowledge of
the internal working of the stack.

The following example demonstrates how the Call, Frame and Return instructions are
applied to achieve the stack behaviour of the register part of the stack shown in the figures
1.9 and 1.10.

A currently activated function A has a frame length of FL= 13. Registers LO .. L6 are to be
retained through a subsequent call, registers L7 .. L12 are temporaries. A call to function B
needs 2 parameters to be passed. The parameters are placed by function A in registers L 7
and L8 before calling B. The Call instruction addresses L9 as destination for the return PC
and return SR register pair to be used by function B on return to function A.

On entry of function B, the new frame of B has an implicit length of FL= 6. It starts
physically at the former register L9 of frame A. However, since the frame pointer FP has
been incremented by 9 by the Call instruction, this register location is now being addressed
as LO of frame B. The passed parameters cannot be addressed because they are located
below the new register LO of frame B. To make them addressable, a Frame instruction
decrements the frame pointer FP by 2. Then, parameter 1 and 2 passed to B can be
addressed as registers LO and L1 respectively. Note that the return PC is now to be
addressed as L2 !

The Frame instruction in B specifies also the new, complete frame length FL= 11
(including the passed parameters as well as the return PC and return SR pair). Besides, a
new reserve of 10 registers for subsequent function calls and traps is provided in the
register stack. A possible overflow of the register stack is checked and handled
automatically by the Frame instruction. A program needs not and must not pay attention to
register stack overflow.

At the end of function B, a Return instruction returns control to function A and restores the
frame A. A possible underflow of the register stack is handled also automatically; thus, the
frame A is always completely restored, regardless whether it was wholly or partly pushed
into the memory part of the stack before (in the case when B called other functions).

In the present example with the frame length of FL= 13, any suitable destination register
up to L13 could be specified in the Call instruction. The parameters to be passed to the
function B would then be placed in Ll 1 and Ll2. It is even possible to append a new frame
to a frame with a length of FL= 16 (coded as FL= 0 in the status register SR): the
destination register in the Call instruction is then coded as LO, but interpreted as the
register past L15.

See also sections 3.27. Call instruction, 3.29. Frame instruction and 3.30. Return
instruction for further details.

Note: With an average frame length of 8 registers, ca. 7 .. 8 Frame instructions succeed a
pulling Return instruction until a push occurs and 7 .. 8 Return instructions succeed a
pushing Frame instruction until a pull occurs. Thus, the built-in hysteresis makes pushing
and pulling a rare event in regular programs!

ARCHITECTURE

1.8. Stack (continued)

Program Example:

A: FRAME L13, L3

code of function A

MOV L7, L5
MOVI LS, 4
CALL L9, 0, B

MOVI LO, 20
RET PC, L3

B: FRAME Lll, L2

code of function B

RET PC, L2

set frame length FL = 13, decrement FP by 3
parameters passed to A can be addressed
in LO, Ll, L2

copy L5 to L7 for use as parameterl
set LB = 4 for use as parameter2
call function B,
save return PC, return SR in L9, LlO

set LO = 20 as return parameter for caller
return to function calling A,
restore frame of caller

set frame length FL = 11, decrement FP by 2
passed parameterl can now be addressed in LO
passed parameter2 can now be addressed in Ll

return to function A, frame A is restored by
copying return PC and return SR in L2 and L3
of frame B to PC and SR

1-22 CHAPTER 1

1.8. Stack (continued)

Figure 1.9 shows the creation and release of stack frames in the register part of the stack.

Return from B Call B

PC := ret. PC for B; PC := branch address;
SR := ret. SR for B; ret. PC for B := old PC;
-- returns preceding stack frame ret. SR for B :=old SR;
if stack frame contained FP := FP + reg.code
in local registers then of ret. PC;

next instruction; FL := 6;
else -- reg.code of ret. PC= 9

pull contents of differential words
from memory part of the stack;

LO

L1

L2

L3

L4
current

L5 length
L6 of

L7
frame A
FL= 13

LB

L9

L10

L11

L12

L13

FP+FL

FP+FL

parameters

for

frame A

rel. PC for A

rel. SR for A

parameters

forframe B

ret. PC for B LO

L2

L3

L4

L5

before Call and
after Return

after CALL L9, O, dest;

Figure 1.9: Stack frame handling (register part)

current
length
of
frame B
FL= 6

Frame in B

FP := FP - code of source reg.;
FL:= code of dest.reg.;
if available registers ::o:

(required + 10) registers then
next instruction

else
push contents of
differential number of
registers to memory
part of stack;
-- code of source reg. = 2
-- code of dest. reg. = 11

New
FP

FP+FL

parameters

for

frameA

rel. PC for A

rel. SR for A

Jl_~~ameters LO

for frame B L 1

ret PC for B L2

-~~hSRfor~ L3

L4
m~ cc~,~~_,_,,,_

reserved L5

maximum L7
-·~<-"····------------.. --, . ..,,,,,

nymber of LB

variables L9

L10

after FRAME L 11, L2

current
length
of
frame B
FL= 11

ARCHITECTURE

1.8. Stack (continued)

before Frame Instruction for frame X

register part memory part
of the stack of the stack

A and X I I

A

overlap modulo 64

words ~~
to be space I

pushed L required _J

FP

rest of frame A

various
frames

space· .
available:for x
-~-

additional
X I space for X I

L~quired _J

pushed number
of words

according to
space required

for frame X

before Return Instruction to frame A

require
[words for A

A . d

words
to be
pulled

FP

rest of frame A

~~
~--~<:;=:J

x

various
frames

t-------1
words
to be

overwritten

pulled number
of words

completes
stack frame A!

= available part of a frame

SP

Figure 1.1 O: Stack frame pushing and popping

A

1-23

after Frame Instruction for frame X

register part
of the stack

rest of frame A

various
frames

memory part
of the stack

stack
space

appended
<:;=:J

SP

after Return Instruction to frame A

frame
word!!
pulled

restqlframe A

various
frames

~ I space I
L_!ree~_J

1-24 CHAPTER 1

1.9. Instruction Cache
The instruction cache is transparent to programs. A program executes correctly even if it
ignores the cache, whereby it is assumed that the instruction code is not modified in the
local range contained in the cache.

The instruction cache holds a total of up to 128 bytes (32 unstructured 32-bit words of
instructions). It is implemented as a circular buffer which is guarded by a look-ahead
counter and a look-back counter. The look-ahead counter holds the highest and the look­
back counter the lowest address of the instruction words available in the cache. The cache­
mode flag Mis used to optimize special cases in loops (see details below). The cache can
be regarded as a temporary local window into the instruction sequence, moving along with
instruction execution and being halted by the execution of a program loop.

Its function is as follows:

The prefetch control loads unstructured 32-bit instruction words (without regard to instruc­
tion boundaries) from memory into the cache. The load operation is pipelined to a depth of
two stages (see section 3.1. Memory Instructions for details of the load pipeline). The look­
ahead counter is incremented by four at each prefetch cycle. It always contains the address
of the last instruction word for which an address bus cycle is initiated, regardless of
whether the addressed instruction word is in the load pipeline or already loaded into the
instruction cache.

The prefetched instruction word is placed in the cache word location addressed by bits 6 .. 2
of the look-ahead counter. The look-back counter remains unchanged during prefetch
unless the cache word location it addresses with its bits 6 .. 2 is overwritten by a prefetched
instruction word. In this case, it is incremented by four to point to the then lowest­
addressed usable instruction word in the cache. Since the cache is implemented as a
circular buffer, the cache word addresses derived from bits 6 .. 2 of the look-ahead and look­
back counter wrap around modulo 32.

The prefetch is halted:

O When eight words are prefetched, that is, eight words are available (including those
pending in the load pipeline) in the prefetch sequence succeeding the instruction word
addressed by the program counter PC through the instruction word addressed by the
look-ahead counter. Prefetch is resumed when the PC is advanced by instruction
execution.

o In the cycle preceding the execution cycle of a memory instruction or any potentially
branch-causing instruction (regardless of whether the branch is taken) except a forward
Branch or Delayed Branch instruction with an instruction length of one halfword and a
branch target contained in the cache. Halting the prefetch in these cases avoids filling
the load pipeline with demands for lower priority (compared to data) or potentially
unnecessary instruction words. The prefetch is also halted during the execution cycle of
any instruction accessing_ memory or I/0.

ARCHITECTURE 1-25

1.9. Instruction Cache (continued)

The cache is read in the decode cycle by using bits 6 .. 1 of the PC as an address to the first
halfword of the instruction presently being decoded. The instruction decode needs and uses
only the number (1, 2 or 3) of instruction halfwords defined by the instruction format.
Since only the bits 6 .. 1 of the PC are used for addressing, the halfword addresses wrap
around modulo 64. Idle wait cycles are inserted when the instruction is not or not fully
available in the cache.

At an explicit Branch or Delayed Branch instruction (except when placed as delay
instruction) with an instruction length of one halfword, the location of the branch target is
checked. The branch target is treated as being in the cache when the target address of a
backward branch is not lower than the address in the look-back counter and the target
address of a forward branch is not higher than two words above the address in the look­
ahead counter. That is, the two instruction words succeeding the instruction word
addressed by the content of the look-ahead counter are treated by a forward branch as being
in the cache. Their actual fetch overlaps in most cases with the execution of the branch
instruction and thus, no cycles are wasted. When the branch target is in the cache, the look­
back counter and the look-ahead counter remain unchanged.

When a branch is taken by a Delayed Branch instruction with an instruction length of one
halfword to a forward branch target not in the cache and the cache mode flag M is enabled
(!),the look-back counter and the look-ahead counter remain unchanged. Wait cycles are
then inserted until the ongoing prefetch has loaded the branch target instruction into the
cache.

Any other branch taken flushes the cache by also placing the branch address in the look­
back and the look-ahead counter. Prefetch then starts immediately at the branch address.
Instruction decoding waits until the branch target instruction is fully available in the cache.

The cache mode flag M (bit four of the SR) can be set or cleared by logical instructions. It
is automatically cleared by a Frame instruction and by any branch taken except a branch
caused by a Delayed Branch or Return instruction; a Delayed Branch instruction leaves the
M flag unchanged and a Return instruction restores the M flag from the saved status
register SR.

Note: Since up to eight instruction words can be loaded into the cache by the prefetch, only
24 instruction words are left to be contained in a program loop. Thus, a program loop can
have a maximum length of 96 or 94 bytes including the branch instruction closing the loop,
depending on the even or odd halfword address location of the first instruction of the loop
res pee ti vel y.

A forward Branch or Delayed Branch instruction with an instruction length of one
halfword into up to two instruction words succeeding the word addressed by the look­
ahead counter treats the branch target as being in the cache and does not flush the cache.
Thus, three or four instruction halfwords, depending on the odd or even halfword address
location of the branch instruction respectively, can always he skipped without flushing the
cache.

1-26 CHAPTER 1

1.9. Instruction Cache (continued)
Enabling the cache-mode flag M is only required when a program loop to be contained in
the cache contains a forward branch to a branch target in the program loop and more than
three (or four, see above) instruction halfwords are to be skipped. In this case, the enabled
M flag in combination with a Delayed Branch instruction with an instruction length of one
halfword inhibits flushing the cache when the branch target is not yet prefetched.

Since a single-word memory instruction halts the prefetch for two cycles, any sequence of
memory instructions, even with interspersed one-cycle non-memory instructions, halts the
prefetch during its execution. Thus, alternating between instruction and data memory pages
is avoided. If the number of instruction halfwords required by such a sequence is not
guaranteed to be in the cache at the beginning of the sequence, a Fetch instruction
enforcing the prefetch of the sequence may be used. A Fetch instruction may also be used
preceding a branch into a program loop; thus, flushing the cache by the first branch
repeating the loop can be avoided.

A branch taken caused by a Branch or Delayed Branch instruction with an instruction
length of two halfwords always flushes the instruction cache, even if the branch target is in
the cache. Thus, branches can be forced to bypass the cache, thereby reducing the cache to
a prefetch buffer. This reduced function can be used for testing.

The last nine words of a memory block (except at the highest ROM memory block)
must not contain any instruction to be executed, otherwise the prefetch could overrun
the memory limit.

1.10. On-Chip Memory (IRAM)
4 KBytes of memory are provided on-chip. The on-chip-memory (IRAM) is mapped to the
hex address COOO 0000 of the memory address space and wraps around modulo 4K up to
DFFF FFFF. The IRAM is implemented as dynamic memory, needing refresh. The refresh
rate must be specified in the MCR bits 18 .. 16 (see section 6.4. Memory Control Register
MCR) before any use (default is refresh disabled). The number given in MCR(18 .. 16)
specifies the refresh rate in CPU clock cycles; e.g. 128 specifies a refresh cycle
automatically inserted every 128 clock cycles. Each refresh cycle refreshes 16 bytes, thus,
256 refresh cycles are required to refresh the whole IRAM. A high refresh rate does not
degrade performance since the refresh cycles are inserted on idle IRAM cycles whenever
possible.

An access to the IRAM bypasses the access pipeline of the external memory. Thus,
pending external memory accesses do not delay accesses to the IRAM. The IRAM can
hold data as well as instructions. Instruction words from the IRAM are automatically
transferred to the instruction cache on demand; these transfers do not interfere with
external memory accesses. Besides bypassing of the external memory pipeline, memory
instructions accessing the IRAM behave exactly alike those accessing external memory.
The minimum delay for a load access is one cycle; that is, the data is not available in the
cycle after the load instruction. One or more wait cycles are automatically inserted if the
target register of the load is addressed before the data is loaded into the target register.

Attention: For selection between an internal and external memory access, bits 31 .. 29 of the
specified address register are used before calculation of the effective address. Therefore,
the content of the specified address register must point into the IRAM address range. The
IRAM address range boundary must not be crossed when a displacement is being added.

INSTRUCTIONS GENERAL 2-1

2. Instructions General

2.1. Instruction Notation
In the following instruction-set presentation, an informal description of an instruction is
followed by a formal description in the form:

Format Notation Operation

Format denotes the instruction format.

Notation gives the assembler notation of the instruction.

Operation describes the operation in a Pascal-like notation with the following symbols:

Ls denotes any of the local registers LO .. L15 used as source register or as source
operand. At memory Load instructions, Ls denotes the load destination register.

Ld denotes any of the local registers LO .. Ll5 used as destination register or as
destination operand.

Rs denotes any of the local registers LO .. Ll5 or any of the global registers GO .. G15
used as source register or as source operand. At memory Load, see Ls.

Rd denotes any of the local registers LO .. Ll5 or any of the global registers GO .. G 15
used as destination register or as destination operand.

Lsf, Ldf, Rsf and Rdf denote the register or operand following after (with a register address
one higher than) Ls, Ld, Rs and Rd respectively.

imm, const, dis, lim, rel, adr and n denote immediate operands (constants) of various
formats and ranges.

Operand(x) denotes a single bit at the bit position x of an operand.
Example: Ld(31) denotes bit 31 of Ld.

Operand(x .. y) denotes bits x through y of an operand.
Example: Ls(4 .. 0) denotes bits 4 through 0 of Ls.

ExpressionA denotes an operand at a location addressed by the value of the expression.
Depending on the context, the expression addresses a memory location or a local
register.
Example: LdA denotes a memory operand whose memory address is the operand
Ld. (FP + FLr denotes a local register operand whose register address is
FP +FL.

signifies the assignment symbol, read as "is replaced by".

11 signifies the concatenation symbol. It denotes concatenation of two operand
words to a double-word operand or concatenation of bits and bitstrings.
Examples: LdllLdf denotes a double-word operand, 16 zerosllimml denotes
expanding of an immediate halfword by 16 leading zeros.

=, "F-, > and < denote the equal, unequal, greater than and less than relations.
Example: The relation Ld = 0 evaluates to one if Ld is equal to zero, otherwise
it evaluates to zero.

2-2 CHAPTER 2

2.2. Instruction Execution

On instruction execution, all bits of the operands participate in the operations, except on
the Shift and Rotate instructions (whereat only the 5 least significant bits of the source
operand are used) and except on the byte and halfword Store instructions.

Instructions are executed by a two-stage pipeline. In the first stage, the instruction is
fetched from the instruction cache and decoded. In the second stage, the instruction is
executed while the next instruction in the first stage is already decoded.

On register instructions executing in one or two cycles, the corresponding source and
destination operand words are read from their registers and evaluated in each cycle in
which they are used. Then the result word is placed in the corresponding destination
register in the same cycle. Thus, on all single-word register instructions executing in one
cycle, the source operand register and the destination operand register may coincide
without changing the effect of the instruction. On all other instructions, the effect of a
register coincidence depends on execution order and must be examined specifically for
each such instruction.

The content of a source register remains unchanged unless it is used coincidentally as a
destination register (except on memory Load instructions).

Some instructions set or clear condition flags according to the result and special conditions
occuring during their execution. The conditions may be expressed by single bits, relations
or logical combinations of these. If a condition evaluates to one (true), the corresponding
condition flag .is set to one, if it evaluates to zero (false), the corresponding condition flag
is cleared to zero. Unless specified otherwise, a trap to Range Error occurs after the flags
and the destination are updated.

All instructions may use the result and any flags updated by the preceding instruction. A
time penalty occurs only if the result of a memory Load instruction is not yet available
when needed as destination or source operand. In this case one or more (depending on the
memory access time) idle wait cycles are enforced by a hardware interlock.

An instruction must not use any local register of the register sequence beginning with LO
beyond the number of usable registers specified by the current value of the frame length FL
(FL= 0 is interpreted as FL= 16). That is, the value of the corresponding register code
(0 .. 15) addressing a local register must be lower than the interpreted value of the FL
(except with a Call or Frame instruction or some restricted cases). Otherwise, an exception
could overwrite the contents of such a register or the beginning of the register part of the
stack at the SP could be overwritten without any warning when a result is placed in such a
register.

Double-word instructions denote the high-order word (at the lower address). The low-order
word adjacently following it (at the higher address) is implied.

"Old" denotes the state before the execution of an instruction.

INSTRUCTIONS GENERAL 2-3

2.3. Instruction Formats
Instructions have a length of one, two or three halfwords and must be located on halfword
boundaries. The following formats are provided:

Format Configuration

15 8 7 4 3 0

LL I OP-code I Ld-code I Ls-code

15 8 7 4 3 0

LL ext OP-code l Ld-code l Ls-code

OP-code extension

15 9 8 7 4 3 0

LR OP-code Is I Ld-code I Rs-code I

15 10 9 8 7 4 3 0

RR I OP-Code Id Is I Rd-code I Rs-code I

15 9 8 7 4 3 0

Ln I OP-code I n I Ld-code I n I

15 10 9 8 7 4 3 0

Rn I OP-Code Id I n I Rd-code I n I

15 8 7 0

PCadr I OP-code I adr-byte I

15 8 7 6 1 0

PC rel I OP-code lol low-rel Isl

15 8 7 6 1 0

PC rel OP-code l1l high-rel

Is low-rel

Table 2.1: Instruction Formats, Part 1

Ls-code encodes LO .. L 15 for Ls
Ld-code encodes LO .. L 15 for Ld

Ls-code encodes LO .. L 15 for Ls
Ld-code encodes LO .. L15 for Ld
OP-code extension encodes the
EXTEND instructions

s = O: Rs-code encodes GO .. G15 for Rs
s = 1: Rs-code encodes LO .. L 15 for Rs

Ld-code encased LO .. L 15 for Ld

s = O: Rs-code encodes GO .. G15 for Rs
s = 1: Rs-code encodes LO .. L 15 for Rs
d = O: Rd-code encodes GO .. G15 for Rd
d = 1: Rd-code encodes LO .. L 15 for Rd

Ld-code encodes LO .. L 15 for Ld
n: Bit 8//bits 3 .. 0 encode n = 0 .. 31

d = 0: Rd-code encodes. GO .. G15 for Rd
d = 1: Rd-code encodes LO .. L 15 for Rd
n: Bit 8//bits 3 .. 0 encode n = 0 .. 31

adr = 24 ones's//adr-byte(7 .. 2)//00

S: sign bit of rel
rel = 25 S//low-rel//O
range -128 .. 126

S: sign bit of rel
rel = 9 S//high-rel//low-rel//O
range -8 388 608 .. 8 388 606

2-4

2.3. Instruction Formats (continued)

Format

LRconst

RRconst

RRdis

Rimm

RRlim

Configuration

15 14 9 8 7 4 3 0

OP-code s Ld-code Rs-code

e S const1

L ____ -~n~2- ____ _J

15 14 10 9 8 7 4 3 0

OP-code d s Rd-code Rs-code

e S const1

L _____ c~n~ _____ _J

15 14 10 9 8 7 4 3 0

OP-code d s Rd-code Rs-code

e SD D dis1

L _____ ~is~ _____ _J

15 10 9 8 7 4 3 0

I OP-code I d I n I Rd-code I n I
~-----~~------i
L-----~~-----_J

15 14 10 9 8 7 4 3 0

OP-code d s Rd-code Rs-code

e XXX lim1

L - - - - - ~m~ - - - - - _J

Table 2.2: Instruction Formats, Part 2

CHAPTER2

s = 0: Rs-code encodes GO .. G15 for Rs
s = 1: Rs-code encodes LO .. L 15 for Rs

Ld-code encodes LO .. L 15 for Ld
S: Sign bit of cons!
e = O: const = 18 S//const1

range -16 384 .. 16 383
e = 1: const = 2 S//const1 //const2

range -1073741 824 .. 1073741 823

s = 0: Rs-code encodes GO .. G15 for Rs
s = 1: Rs-code encodes LO .. L 15 for Rs
d = O: Rd-code encodes GO .. G15 for Rd
d = 1: Rd-code encodes LO .. L 15 for Rd
S: Sign bit of const
e = O: const = 18 S//const 1

range -16 384 .. 16 383
e = 1: const = 2 S//const1//const2

range -1 073 741 824 .. 1 073 741 823

s = O: Rs-code encodes GO .. G15 for Rs
s = 1: Rs-code encodes LO .. L 15 for Rs
d = O: Rd-code encodes GO .. G15 for Rd
d = 1: Rd-code encodes LO .. L 15 for Rd
S: Sign bit of dis
e = O: dis = 20 S//dis1

range -4 096 .. 4 095
e = 1: dis= 4 S//dis1//dis2

range -268 435 456 .. 268 435 455
DD: 0-code, 013 .. 012 encode data

types at memory instructions

d = O: Rd-code encodes GO .. G15 for Rd
d = 1: Rd-code encodes LO .. L15 for Rd
n: Bit 8//bits 3 .. 0 encode n = 0 .. 31

see Table 2.3. Encoding of
Immediate Values for encoding of
imm

s = O: Rs-code encodes GO .. G15 for Rs
s = 1: Rs-code encodes LO .. L 15 for Rs
d = 0: Rd-code encodes GO .. G15 for Rd
d = 1: Rd-code encodes LO .. L 15 for Rd
XXX: X-code, X14 .. X12 encode Index

instructions
e = O: lim = 20 zeros//lim1

range 0 . .4 095
e = 1: lim = 4 zeros//lim1//lim2

range 0 .. 268 435 455

INSTRUCTIONS GENERAL 2-5

2.3.1. Table of Immediate Values

n immediate value imm Comment

0 .. 16 0 .. 16 at CMPBI, n = 0 encodes ANYBZ
at ADDI and ADDSI n = 0 encodes CZ

17 imm1//imm2 range = 0 .. 232-1 or -231 .. 231 -1

18 16 zeros//imm1 range = 0 .. 65 535

19 16 ones//imm1 range= -65 536 .. -1

20 32 bit 5 = 1, all other bits= O

21 64 bit 6 = 1 , all other bits = O

22 128 bit 7 = 1 , all other bits = O

23 231 bit 31 = 1, all other bits= o

24 -8

25 -7

26 -6

27 -5

28 -4

29 -3

30 -2

31 231_1 at CMPBI and ANDNI
bit 31 = 0, all other bits = 1

31 -1 at all other instructions using imm

Table 2.3: Encoding of Immediate Values

Note: 2° 1 provides clear, set and invert of the floating-point sign bit at ANDNL ORI and
XORI respectively.

2"-1 provides a test for floating-point zero at CMPBI and extraction of the sign bit at
ANDNI.

See CMPBJ for ANYBZ and ADDI, ADDS! for CZ.

;;;t
O"
CD
I\)

~
-I
Ill
O"
CD
~
:::i
~
2
Sl
5·
:::i

0
0
0.
ct>

"'

I OP-code Bits 15 .. 12

! 0 1 2 3

0

2

3

4

5

6

7

8

9

A

B

c
D

E

F

CHK, CHKZ, NOP

XMx, XMxZ

CMP

CMPB

SUBC

ADDC

CMPI

CMPBI

SHRDI SHRD] SHR

LDxx.D/NIOD/IOA

SHRI

MULU

FADD] FADDD FSUB j FSUBD

LDW.R LDD.R

DBV] DBNV DBE l DBNE

BV j BNV BE 1 BNE

OP-code Bits 11 .. B

4 5 6 7 8 9 A B

MOVD, RET DIVU

MASK SUM

MOV ADD

ANDN OR

NOT SUB

AND NEG

MOVI ADDI

ANDNI ORI

SARDI SARD 1 SAR SHLDI SHLD 1 SHL

LDxx.N/S STxx.D/A/IOD/IOA

SARI SHU

MULS SETxx, SETADR, FETCH

FMUL I FMULD FDIV I FDIVD FCMP] FCMPD FCMPU }cMPUD

LDW.P LDD.P STW.R STD.R

DBC J DBNC DBSE 1 DBHT DBN] DBNN DBLE 1 DBGT

BC l BNC BSE J BHT BN] BNN BLE 1 BGT

c D E F

DIVS

SUMS

ADDS

XOR

SUBS

NEGS

ADDS!

XORI

RESERVED TESTLZ j ROL

STxx.N/S

RESERVED

MUL

FCVT] FCVTD EXTEND] DO

STW.P STD.P

DBR 1 FRAME CALL

BR 1 TRAPxx, TRAP

I\)

~
!'>
-I
DI
C"
ii'
0 -:I
UI -... c:
() -o·
::I

0
0 c.
CD
UI

I~

()
I
)>

~
m
:n

"'

INSTRUCTIONS GENERAL 2-7

2.3.3. Table of Extended DSP Instruction Codes

The Extended DSP instructions are specified by a 16-bit OP-code extension succeeding the
instruction op-code for the EXTEND instruction. See section 3.32. Extended DSP
Instructions.

Instruction OP·code
extension (hex)

EMUL 0100

EMU LU 0104

EMULS 0106

EMAC 010A

EMA CD 010E

EMSUB 011A

EMSUBD 011 E

EH MAC 002A

EHMACD 002E

EHCMULD 0046

EHCMACD 004E

EHCSUMD 0086

EHCFFTD 0096

Table 2.5: Extended DSP Instruction Codes

2-8 CHAPTER2

2.4. Entry Tables
Spacing of the entries for the Trap instructions and exceptions is four bytes. These entries
are intended to each contain an instruction branching to the associated function. The entries
for the TRAPxx instructions are the same as for TRAP. Table 2.6 shows the trap entries
when the entry table is mapped to the end of memory area MEM3 (default after Reset):

Address (Hex) Entry Description

FFFF FFOO TRAP 0

FFFF FF04 TRAP 1

FFFF FFCO TRAP 48 102 Interrupt -- priority 15

FFFF FFC4 TRAP 49 101 Interrupt -- priority 14

FFFF FFC8 TRAP 50 INT 4 Interrupt -- priority 13

FFFF FFCC TRAP 51 INT3 Interrupt -- priority 11

FFFF FFDO TRAP 52 INT2 Interrupt -- priority 9

FFFF FFD4 TRAP 53 INT1 Interrupt -- priority 7

FFFF FFD8 TRAP 54 103 Interrupt -- priority 5

FFFF FFDC TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 10, 12

FFFF FFEO TRAP 56 Reserved -- priority 17 (lowest)

FFFF FFE4 TRAP 57 Trace Exception -- priority 16

FFFF FFE8 TRAP 58 Parity Error -- priority 4

FFFF FFEC TRAP 59 Extended Overflow -- priority 3

FFFF FFFO TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2

FFFF FFF4 TRAP 61 Reserved -- priority 1

FFFF FFF8 TRAP 62 Reset -- priority O (highest)

FFFF FFFC TRAP 63 Error entry for instruction code of all ones

Table 2.6: Trap entry table mapped to the end of MEM3

INSTRUCTIONS GENERAL 2-9

2.4. Entry Tables (continued)
Table 2.7 shows the trap entries when the entry table is mapped to the beginning of
memory areas MEMO, MEMl, MEM2 or IRAM. xis 0, 4, 8 or C corresponding to the
mapping to MEMO, MEMI, MEM2 or IRAM respectively.

Address (Hex) Entry Description

xOOO 0000 TRAP 63 Error entry for instruction code of all ones

xOOO 0004 TRAP 62 Reserved -- priority 0 (highest)

xOOO 0008 TRAP 61 Reserved -- priority 1

xOOO OOOC TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2

xOOO 0010 TRAP 59 Extended Overflow -- priority 3

xOOO 0014 TRAP 58 Parity Error -- priority 4

xOOO 0018 TRAP 57 Trace Exception -- priority 16

xOOO 001C TRAP 56 Reserved -- priority 17 (lowest)

xOOO 0020 TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 1 O, 12

xOOO 0024 TRAP 54 103 Interrupt -- priority 5

xOOO 0028 TRAP 53 INT1 Interrupt -- priority 7

xOOO 002C TRAP 52 INT2 Interrupt -- priority 9

xOOO 0030 TRAP 51 INT3 Interrupt -- priority 11

xOOO 0034 TRAP 50 INT4 Interrupt -- priority 13

xOOO 0038 TRAP 49 101 Interrupt -- priority 14

xOOO 003C TRAP 48 102 Interrupt -- priority 15

xOOO OOF8 TRAP 1

xOOO OOFC TRAP 0

Table 2.7: Trap entry table mapped to the beginning of MEMO, MEM1, MEM2 or IRAM

2-10 CHAPTER 2

2.4. Entry Tables (continued)

Table 2.8 below shows the addresses of the first instruction of the emulator code associated
with the floating-point instructions when the trap entry tables are mapped to the end of
memory area MEM3. Spacing of the entries for the Software instructions FADD .. DO is 16
bytes.

Address (Hex) Entry Description

FFFF FEOO FADD Floating-point Add, single word

FFFF FE10 FADDD Floating-point Add, double-word

FFFF FE20 FSUB Floating-point Subtract, single word

FFFF FE30 FSUBD Floating-point Subtract, double-word

FFFF FE40 FMUL Floating-point Multiply, single word

FFFF FESO FMULD Floating-point Multiply, double-word

FFFF FE60 FDIV Floating-point Divide, single word

FFFF FE70 FDIVD Floating-point Divide, double-word

FFFF FEBO FCMP Floating-point Compare, single word

FFFF FE90 FCMPD Floating-point Compare, double-word

FFFF FEAO FCMPU Floating-point Compare Unordered, single word

FFFF FEBO FCMPUD Floating-point Compare Unordered, double-word

FFFF FECO FCVT Floating-point Convert single word ~ double-word

FFFF FEDO FCVTD Floating-point Convert double-word =} single word

FFFF FEEO Reserved

FFFF FEFO DO Do instruction

Table 2.8: Floating-Point entry table mapped to the end of MEM3

INSTRUCTIONS GENERAL 2-11

2.4. Entry Tables (continued)

Table 2. 9 below shows the addresses of the first instruction of the emulator code associated
with the floating-point instructions when the trap entry tables are mapped to the beginning
of memory areas MEMO, MEMl, MEM2 or IRAM. xis 0, 4, 8 or C corresponding to the
mapping to MEMO, MEMl, MEM2 or IRAM respectively.

Address (Hex) Entry Description

xOOO 010C DO Do instruction

xOOO 011C Reserved

xOOO 012C FCVTD Floating-point Convert double-word ~ single word

xOOO 013C FCVT Floating-point Convert single word ~ double-word

xOOO 014C FCMPUD Floating-point Compare Unordered, double-word

xOOO 015C FCMPU Floating-point Compare Unordered, single word

xOOO 016C FCMPD Floating-point Compare, double-word

xOOO 017C FCMP Floating-point Compare, single word

xOOO 018C FDIVD Floating-point Divide, double-word

xOOO 019C FDIV Floating-point Divide, single word

xOOO 01AC FMULD Floating-point Multiply, double-word

xOOO 01BC FMUL Floating-point Multiply, single word

xOOO 01CC FSUBD Floating-point Subtract, double-word

xOOO 01DC FSUB Floating-point Subtract, single word

xOOO 01 EC FADDD Floating-point Add, double-word

xOOO 01FC FADD Floating-point Add, single word

Table 2.9: Floating-Point entry table mapped to the beginning of MEMO, MEM1, MEM2 or IRAM

2-12

2.5. Instruction Timing
The following execution times are given in number of processor clock cycles.

All instructions not shown below: 1 cycle

Move Double-Word: 2 cycles

Shift Double-Word: 2 cycles

Test Leading Zeros: 2 cycles

Multiply word:
when both operands are in the range of -21s .. 21s_ 1: 4 cycles
all other cases: 5 cycles

Multiply double-word signed:
when both operands are in the range of -21s .. 21s_ 1: 5 cycles
all other cases: 6 cycles

Multiply double-word unsigned:
when both operands are in the range of 0 .. 216-1: 4 cycles
all other cases: 6 cycles

Divide unsigned and signed: 36 cycles

Branch instructions when branch not taken: 1 cycle
when branch taken and target in on-chip cache: 2 cycles
when branch taken and target in memory : 2 + memory read latency cycles
(see next page)

Delayed Branch instructions when branch not taken: 1 cycle
when branch taken and target in on-chip cache: 1 cycle

CHAPTER2

when branch taken and target in memory: 1 + memory read latency cycles exceeding
(delay instruction cycles - 1)

Call and Trap instructions when branch not taken: 1 cycle
when branch taken: 2 + memory read latency cycles

Software instructions: 6 + memory read latency cycles exceeding 4 cycles

Frame when not pushing words on the stack: 3 cycles
additionally when pushing n words on the stack: memory write latency cycles
+ n * bus cycles per access

Return:

write latency = cycles elapsed until write access cycle of first word stored
(minimum = 1 at a non-RAS access and no pipeline congestion)

4 + memory read latency cycles exceeding 2 cycles
additionally when pulling n words from the stack: memory RAS latency
+ n * bus cycles per access
(RAS latency applies only at n > 2, otherwise RAS latency is always 0)
-- RAS latency = RAS precharge cycles + RAS to CAS delay cycles

INSTRUCTIONS GENERAL 2-13

2.5. Instruction Timing (continued)
Fetch instruction:

when the required number of instruction halfwords are already prefetched in the
instruction cache: 1 cycle
otherwise
1 + (required number of halfwords - number of halfwords already prefetched)/2
* bus cycles per access

Memory word instructions, non-stack address mode:
1 cycle

Memory word instructions, stack address mode:
3 cycles

Memory double-word instructions:
2 cycles

For timing calculations, double-word memory instructions are treated like a sequence of
two single-word memory instructions.

Idle wait cycles are transparently inserted when a memory instruction has to wait for
execution because the two-stage address pipeline is full.

Instruction execution proceeds after the execution of a Load instruction until the data
requested is needed (that is, the register into which the data is to be loaded is addressed) by
a further instruction.

The cycles executed between the memory instruction cycle requesting the data and the first
cycle at which the data are available are called read latency cycles. These read latency
cycles can be filled with instructions which do not need the requested data. When, after the
execution of these optional fill instruction cycles, the data is still not available in the cycle
needing it, idle wait cycles are inserted until the data is available. The idle wait cycles are
inserted transparently to the program by an on-chip hardware interlock. The read latency is:

On an IRAM access:
read latency = 1 cycle

On a non-RAS external memory or 1/0 access:
read latency = address setup cycles + access cycles + 1

On a RAS memory access:
read latency = RAS precharge cycles + RAS to CAS delay cycles +

access cycles + 1

Additional cycles are also inserted and add to the latency when the address pipeline is
congested, these cycles must then also be taken into calculation.

A switch from an external memory or 1/0 read access to an immediately succeeding write
access inserts one additional bus cycle.

Extended DSP instructions:

The instruction issue time is always 1 cycle. After the issue of an Extended DSP
instruction, execution of non-Extended-DSP instructions proceeds while the Extended DSP
instruction is executed in the multiply/accumulate unit.

2-14 CHAPTER2

2.5. Instruction Timing (continued)
Latency cycles are defined as the interval between instruction issue and the result being
available in the register G 15 or register pair G 14//G 15. The latency cycles indicate as well
the number of cycles available for instructions not using the result which can be inserted
between the Extended DSP instruction and the first instruction using the result. When less
than the number of latency cycles are used by these instructions, the execution of the
instruction using the result is delayed until the result is available in G 15orG14//G 15.

When an Extended DSP instruction which uses the internal hardware multiplier (EMUL,
... , EHCMACD) succeeds an Extended DSP instruction which also uses the internal
hardware multiplier after less than latency - 1 cycles, the issue of the succeeding Extended
DSP instruction is delayed until latency - 1 cycles are finished. An Extended DSP
instruction succeeding the EHCSUMD or EHCFFTD instruction after less than the latency
cycles for these two instructions is always delayed until the EHCSUMD or EHCFFTD
instruction is finished.

The latency cycles are as follows:

EMUL instruction:
when both operands are in the range of -21s .. 21s_1: 1 cycle
all other cases: 3 cycles

EMULU instruction:
when both operands are in the range of0 .. 216-1: 2 cycles
all other cases: 4 cycles

EMULS instruction:
when both operands are in the range of -21s .. 21s_1: 3 cycles
all other cases: 4 cycles

EMAC instruction:
when both operands are in the range of -21s .. 21s_1: 2 cycles
all other cases: 3 cycles

EMACD instruction:
when both operands are in the range of -21s .. 21s-1: 3 cycles
all other cases: 4 cycles

EMSUB instruction:
when both operands are in the range of -21s .. 21s_1: 2 cycles
all other cases: 3 cycles

EMSUBD instruction:
when both operands are in the range of -21s .. 21s_1: 3 cycles
all other cases: 4 cycles

EHMAC instruction: 2 cycles

EHMACD instruction: 4 cycles

EHCMULD instruction: 4 cycles

EHCMACD instruction: 4 cycles

EHCSUMD instruction: 2 cycles

EHCFFTD instruction: 2 cycles /

INSTRUCTION SET 3-1

3. Instruction Set

3.1. Memory Instructions
The memory instructions load data from memory in a register Rs (or a register pair
Rs//Rsf) or store data from Rs (or Rs//Rst) to memory using the data types byte
unsigned/signed, halfword unsigned/signed, word or double-word. Since I/O devices are
also addressed by memory instructions, "memory" stands here interchangeably also for I/O
unless memory or I/O address space is specifically denoted.

The memory address is either specified by the operand Rd or Ld, by the sum Rd plus a
signed displacement or by the displacement alone, depending on the address mode.
Memory accesses to words and double-words ignore bits one and zero of the address,
memory accesses to halfwords ignore bit zero of the address, (since these operands are
located at word or halfword boundaries respectively, these address bits are redundant).

If the content of any register Rd except SR is zero, the memory is not accessed and a trap
to Pointer Error occurs (see section 4. Exceptions). Thus, uninitialized pointers are
automatically checked.

Load and Store instructions are pipelined to a total depth of two word entries for Load and
Store, thus, a double-word Load or a double-word Store instruction can be executed
without halting the processor in a wait state. (The address pipeline provides a.depth of two
addresses common to load and store).

Double-word memory instructions enter two separate word entries into the pipeline and
start two independent memory cycles. The first memory cycle, loading or storing the high­
order word, uses the address specified by the address mode, the second cycle uses this
address incremented by four and also places it on the address bus.

Accessing data in the same DRAM memory page by any number of succeeding memory
cycles is performed in page mode.

Memory instructions leave all condition flags unchanged.

3-2 CHAPTER 3

3.1.1. Address Modes

Register Address Mode:

Notation: LDxx.R, STxx.R -- xx: word or double word data type

The content of the destination register Ld is used as an address into memory address space.

Postincrement Address Mode:

Notation: LDxx.P, STxx.P -- xx: word or double-word data type

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of a word or double-word
memory instruction by 4 or 8 respectively, regardless of any exception occuring. In the
case of a double-word data type, Ld is incremented by 8 at the first memory cycle.

Displacement Address Mode:

Notation: LDxx.D, STxx.D -- xx: any data type

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the absolute address mode.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd+ dis.

Note: Specification of the PC for Rd provides addressing relative to the address of the first
byte after the memory instruction.

Absolute Address Mode:

Notation: LDxx.A, STxx.A -- xx: any data type

The displacement dis is used as an address into memory address space. Rd must denote the
SR to differentiate this mode from the displacement address mode; the content of the SR is
not used.

In the case of all data types except byte, address bit zero is supplied as zero.

Note: The displacement provides absolute addressing at the beginning and the end (MEM3
area) of the memory.

INSTRUCTION SET 3-3

1/0 Displacement Address Mode:

Notation: LDxx.IOD, STxx.IOD -- xx: word or double-word data type

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into 1/0 address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the 1/0 absolute address mode.

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Execution of a memory instruction with 1/0 displacement address mode does not disrupt
any page mode sequence.

Note: The 1/0 displacement address mode provides dynamic addressing of peripheral
devices.

When on a load instruction only a byte or halfword is placed on the (lower part) of the data
bus, the higher-order bits are undefined and must be masked out before the loaded operand
is used further.

1/0 Absolute Address Mode:

Notation: LDxx.IOA, STxx.IOA -- xx: word or double-word data type

The displacement dis is used as an address into 1/0 address space.

Rd must denote the SR to differentiate this mode from the 1/0 displacement address mode;
the content of the SR is not used.

Address bits one and zero are supplied as zero.

Execution of a memory instruction with 1/0 address mode does not disrupt any page mode
sequence.

Note: The 1/0 absolute address mode provides code efficient absolute addressing of
peripheral devices and allows simple decoding of 1/0 addresses.

When on a load instruction only a byte or a halfword is placed on the (lower part) of the
data bus, the higher-order bits are undefined and must be masked out before the loaded
operand is used further.

3-4 CHAPTERS

Next Address Mode:

Notation: LDxx.N, STxx.N -- xx: any data type

The content of the destination register Rd is used as an address into memory address space,
then Rd is incremented by the signed displacement dis regardless of any exception
occuring. At a double-word data type, Rd is incremented at the first memory cycle.

Rd must not denote the PC or the SR.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd+ dis.

Stack Address Mode:

Notation: LDW.S, STW.S -- only word data type

The content of the destination register Rd is used as stack address, then Rd is incremented
by dis regardless of any exception occurred.

A stack address addresses memory address space if it is lower than the stack pointer SP;
otherwise bits 7 .. 2 of it (higher bits are ignored) address a register in the register part of the
stack absolutely (not relative to the frame pointer FP).

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Rd must not denote the PC or the SR.

Note: The stack address mode must be used to address an operand in the stack regardless of
its present locatfon either in the memory part or in the register part of the stack. Rd may be
set by the Set Stack Address instruction.

INSTRUCTION SET 3-5

Address Mode Encoding:

The encoding of the displacement and absolute address mode types of memory instructions
is shown in table 3.1:

LDxx.D/A/IOD/IOA STxx.D/A/IOD/IOA

D-code dis(1) dis(O) Rd does not Rd denotes SR Rd does not Rd denotes SR
denote SR denote SR

0 x x LDBS.D LOBS.A STBS.D STBS.A

1 x x LDBU.D LDBU.A STBU.D STBU.A

2 x 0 LDHU.D LDHU.A STHU.D STHU.A

2 x 1 LDHS.D LDHS.A STHS.D STHS.A

3 0 0 LDW.D LOW.A STW.D STW.A

3 0 1 LDD.D LDD.A STD.D STD.A

3 1 0 LDW.IOD LDW.IOA STW.IOD STW.IOA

3 1 1 LDD.IOD LDD.IOA STD.IOD STD.IOA

Table 3.1: Encoding of Displacement and Absolute Address Mode

The encoding of the next and stack address mode types of memory instructions is shown in
table 3.2:

With the instructions below, Rd must not denote the PC or the SR

D-code dis(1) dis(O) LDxx.N/S STxx.N/S

0 x x LDBS.N STBS.N

1 x x LDBU.N STBU.N

2 x 0 LDHU.N STHU.N

2 x 1 LDHS.N STHS.N

3 0 0 LDW.N STW.N

3 0 1 LDD.N STD.N

3 1 0 Reserved Reserved

3 1 1 LDW.S STW.S

Table 3.2: Encoding of Next and Stack Address Mode

3-6 CHAPTER3

3.1.2. Load Instructions

The Load instructions transfer data from the addressed memory location into a register Rs
or a register pair Rs//Rsf.

In the case of data types word and double-word, one or two words are read from memory
and transferred unchanged into Rs or Rs//Rsf respectively.

In the case of byte and halfword data types, up to one word (depending on bus size) is read
from memory, the byte or halfword addressed by bits one and zero or bit one of the
memory address respectively is extracted, right adjusted, expanded to 32 bits and placed in
Rs. Unsigned bytes and halfwords are expanded by leading zeros; signed bytes and
halfwords are expanded by leading sign bits.

Execution of a Load instruction enters the register address of Rs, memory address bits one
and zero and a code for the data type into the load pipeline, places the memory address
onto the address bus and starts a memory cycle. A double-word Load instruction enters the
register address of Rsf and the same control information into the load pipeline as a second
entry, places the memory address incremented by four onto the address bus and starts a
second memory cycle.

After execution of a Load instruction, the next instructions are executed without waiting
for the data to be loaded. A wait is enforced only if an instruction uses a register whose
register address is still in the load pipeline. The data read from memory is placed in the
register whose register address is at the head of the load pipeline, its pipeline entry is then
deleted.

Rs must not denote the PC, the SR, G14 or G15; these registers cannot be loaded
from memory.

INSTRUCTION SET 3-7

3.1.2. Load Instructions (continued)

Format Notation

LR LDxx.R Ld, Rs

LR LDxx.P Ld, Rs

RRdis LDxx.D Rd, Rs, dis

RRdis LDxx.A 0, Rs, dis

RRdis LDxx.IOD Rd, Rs, dis

RR dis LDxx.IOA 0, Rs, dis

RRdis LDxx.N Rd, Rs, dis

RRdis LDxx.S Rd, Rs, dis

Operation Data Type xx

Rs:= Ld"; W,D
[Rsf := (Ld + 4)";]

-- register address mode

Rs:= Ld"; Ld := Ld +size; -- size= 4 or 8 W,D
[Rsf :=(old Ld + 4)";]

-- postincrement address mode

Rs := (Rd + dis)";
[Rsf :=(Rd+ dis+ 4)";]

-- displacement address mode

Rs:= dis";
[Rsf :=(dis+ 4)";]

-- absolute address mode

Rs := (Rd +dis)";
[Rsf := (Rd+ dis+ 4)";]

-- 1/0 displacement address mode

Rs:= dis";
[Rsf :=(dis+ 4)";]

-- 1/0 absolute address mode

Rs := Rd"; Rd := Rd + dis;
[Rsf :=(old Rd+ 4)";]

-- next address mode

Rs := Rd"; Rd := Rd + dis;
-- stack address mode

BU,BS,HU,HS,W,D

BU,BS,HU,HS,W,D

W,D

W,D

BU,BS,HU,HS,W,D

w

The expressions in brackets are only executed at double-word data types.

Data Type xx is with:

BU: byte unsigned;

BS: byte signed;

HU: halfword unsigned;

HS: halfword signed;

W: word;

D: double-word;

3-8 CHAPTER3

3.1.3. Store Instructions

The Store instructions transfer data from the register Rs or the register pair Rs//Rsf to the
addressed memory location.

In the case of data types word or double-word, one or two words are placed unchanged
from Rs or Rs//Rsf respectively onto the data bus to be stored in the memory.

In the case of byte and halfword data types, the low-order byte or halfword is placed onto
the data bus at the byte or halfword position addressed by bits one and zero or bit one of
the memory address respectively; it is implied to be merged (via byte write enable) with
the other data in the same memory word.

In the case of signed byte and signed halfword data types, any content of Rs exceeding the
value range of the specified data type causes a trap to Range Error. The byte or halfword is
stored regardless of a Range Error.

If Rs denotes the SR, zero is stored regardless of the content of SR (or of SR//02 at
double-word).

Execution of a Store instruction enters the contents of Rs, memory address bits one and
zero and a code for the data type into the store pipeline, places the memory address onto
the address bus and starts a memory cycle. A double-word Store instruction enters the
contents of Rsf and the same control information into the store pipeline as a second entry,
places the memory address incremented by four onto the address bus and starts a second
memory cycle.

After execution of a Store instruction, the next instructions are executed without waiting
for the store memory cycle to finish. The data at the head of the store pipeline is put on the
data bus on demand from the on-chip memory control logic and its pipeline entry is
deleted.

When Rsf denotes the same register as Rd (or Ld) at double-word instructions with next
address or postincrement address mode, the incremented content of Rsf is stored in the
second memory cycle; in all other cases, the unchanged content of Rs or Rsf is stored.

INSTRUCTION SET 3-9

3.1.3. Store Instructions (continued)

Format Notation

LR STxx.R Ld, Rs

LR STxx.P Ld, Rs

RRdis 8Txx.D Rd, Rs, dis

RRdis STxx.A 0, Rs, dis

RRdis 8Txx.IOD Rd, Rs, dis

RRdis STxx.IOA 0, Rs, dis

RRdis 8Txx.N Rd, Rs, dis

RRdis 8Txx.8 Rd, Rs, dis

Operation Data Type xx

Ld" := Rs; W,D
[(Ld + 4)" := Rsf;]

-- register address mode

Ld" := Rs; Ld := Ld +size; -- size= 4 or 8 W,D
[(old Ld + 4)" := Rsf;]

-- postincrement address mode

(Rd + dis)" := Rs;
[(Rd+ dis+ 4)" := Rsf;]

-- displacement address mode

dis":= Rs;
[(dis+ 4)" := Rsf;]

-- absolute address mode

(Rd+ dis)":= Rs;
[(Rd +dis + 4)" := Rsf;]

-- 1/0 displacement address mode

dis":= Rs;
[(dis+ 4)" := Rs!;]

-- 1/0 absolute address mode

Rd" := Rs; Rd := Rd + dis;
[(old Rd+ 4)" := Rsf;]

-- next address mode

Rd" := Rs; Rd := Rd + dis;
-- stack address mode

8U,88,HU,H8,W,D

8U,88,HU,H8,W,D

W,D

W,D

8U,B8,HU,H8,W,D

w

The expressions in brackets are only executed at double-word data types.

In the case of signed byte and halfword data types, a trap to Range Error occurs when the
value of the operand to be stored exceeds the value range of the specified data type; the
byte or halfword is stored regardless of a Range Error.

Data Type xx is with:

BU: byte unsigned;

BS: byte signed;

HU: halfword unsigned;

HS: halfword signed;

W: word;

D: double-word;

3-10 CHAPTER3

3.2. Move Word Instructions

The source operand or the immediate operand is copied to the destination register and the
condition flags are set or cleared accordingly.

Format Notation

RR MOV Rd, Rs

Rimm MOVI Rd, imm

Operation

Rd:= Rs;
Z :=Rd= O;
N := Rd(31);
V := undefined;

Rd:= imm;
Z :=Rd= O;
N := Rd(31);
V:=O;

3.3. Move Double-Word Instruction

The double-word source operand is copied to the double-word destination register pair and
the condition flags are set or cleared accordingly. The high-order word in Rs is copied first.

When the SR is denoted as a source operand, the source operand is supplied as zero
regardless of the content of SR//G2. When the PC is denoted as destination, the Return
instruction RET is executed instead of the Move Double-Word instruction.

Format Notation

RR MOVD Rd, Rs

RR MOVD Rd, 0

RR RET PC, Rs

Operation

if Rd does not denote PC and Rs does not denote SR then
Rd:= Rs;
Rdf := Rsf;
Z := Rd//Rdf = O;
N := Rd(31);
V := undefined;

if Rd does not denote PC and Rs denotes SR then
Rd :=0;
Rdf := O;
z := 1;
N := O;
V := undefined;

if Rd denotes PC then
execute the RET instruction;

INSTRUCTION SET 3-11

3.4. Logical Instructions

The result of a bitwise logical AND, AND not (ANDN), OR or exclusive OR (XOR) of the
source or immediate operand and the destination operand is placed in the destination
register and the Z flag is set or cleared accordingly. At ANDN, the source operand is used
inverted (itself remaining unchanged).

All operands and the result are interpreted as bitstrings of 32 bits each.

Format Notation Operation

RR AND Rd, Rs Rd := Rd and Rs; -- logical AND
Z:= Rd=O;

RR ANON Rd, Rs Rd := Rd and not Rs; -- logical AND with source
Z :=Rd= O; used inverted

RR OR Rd, Rs Rd := Rd or Rs; -- logical OR
Z :=Rd= O;

RR XOR Rd, Rs Rd := Rd xor Rs; -- logical exclusive OR
Z :=Rd= O;

Rimm ANDNI Rd, imm Rd := Rd and not imm; -- logical AND with imm
Z :=Rd= O; used inverted

Rimm ORI Rd, imm Rd := Rd or imm; -- logical OR
Z :=Rd= O;

Rimm XORI Rd, imm Rd := Rd xor imm; -- logical exclusive OR
Z :=Rd= O;

Note: ANDN and ANDNI are the instructions complementary to OR and ORI: Where OR
and ORI set bits, ANDN and ANDNI clear bits at bit positions with a "one" bit in the
source or immediate operand, ihus obviating the need for an inverted mask in most cases.

3-12 CHAPTERS

3.5. Invert Instruction
The source operand is placed bitwise inverted in the destination register and the Z flag is
set or cleared accordingly.

The source operand and the result are interpreted as bitstrings of 32 bits each.

Format Notation

RR NOT Rd, Rs

3.6. Mask Instruction

Operation

Rd:= not Rs;
Z :=Rd= O;

The result of a bitwise logical AND of the source operand and the immediate operand is
placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bitstrings of 32 bits each.

Format Notation

RRconst MASK Rd, Rs, canst

Operation

Rd := Rs and canst;
Z :=Rd= O;

Note: The Mask instruction may be used to move a source operand with bits partly masked
out by an immediate operand used as mask. The immediate operand const is constrained in
its range by bits 31 and 30 being either both zero or both one (see format RRconst). If these
bits are required to be different, the instruction pair MOVI, AND may be used instead of
MASK.

INSTRUCTION SET 3-13

3.7. Add Instructions

The source operand, the source operand + C or the immediate operand is added to the
destination operand, the result is placed in the destination register and the condition flags
are set or cleared accordingly.

At ADD, ADDC and ADDI, both operands and the result are interpreted as either all
signed or all unsigned integers. At ADDS and ADDSI, both operands and the result are
signed integers and a trap to Range Error occurs at overflow.

Format Notation

RR ADD Rd, Rs

RR ADDS Rd, Rs

RR ADDC Rd, Rs

Operation

Rd:= Rd+ Rs;
Z :=Rd= O;
N := Rd{31);
V := overflow;
C :=carry;

Rd:= Rd+ Rs;
Z :=Rd= O;
N := Rd(31);
V := overflow;
if overflow then

trap ~ Range Error;

Rd := Rd + Rs + C;
Z := Z and (Rd = O);
N := Rd(31);
V := overflow;
C :=carry;

-- signed or unsigned Add

-- sign

-- signed Add with trap

-- sign

-- signed or unsigned Add
with carry

-- sign

When the SR is denoted as a source operand at ADD, ADDS and ADDC, C is added
instead of the SR. The notation is then:

Format Notation

RR

RR

RR

ADD Rd, C

ADDS Rd, C

ADDC Rd, C

Operation

Rd:= Rd+ C; -- signed or unsigned Add C

Rd:= Rd+ C; -- signed Add C with trap

Rd:= Rd+ C;

The flags and the trap condition are treated as defined by ADD, ADDS or ADDC.

3-14 CHAPTER 3

3.7. Add Instructions (continued)

Format Notation

Rimm ADDI Rd, imm

Rimm ADDSI Rd, imm

Operation

Rd := Rd + imm;
Z :=Rd= O;
N := Rd(31);
V := overflow;
C :=carry;

Rd := Rd + imm;
Z :=Rd= O;
N := Rd(31);
V := overflow;
if overflow then

trap ~ Range Error;

-- signed or unsigned Add

-- sign

-- signed Add with trap

-- sign

The following instructions are special cases of ADDI and ADDSI differentiated by n = 0
(see section 2.3.1. Table oflmmediate Values):

Format Notation

Rimm ADDI Rd, CZ

Rimm ADDSI Rd, CZ

Operation

Rd := Rd + (C and (Z = O or Rd(O))); -- round to
even

Rd := Rd + (C and (Z = 0 or Rd(O))); -- round to
even

The flags and the trap condition are treated as defined by ADDI or ADDSI.

Note: At ADDC, Z is cleared if Rd i= 0, otherwise left unchanged; thus, Z is evaluated
correctly for multi-precision operands.

The effect of a Subtract immediate instruction can be obtained by using the negated 32-bit
value of the immediate operand to be subtracted (except zero). At unsigned, C = 0 indicates
then a borrow (the unsigned number range is exceeded below zero).

At "round to even", C is only added to the destination operand if Z = 0 or Rd(O) is one. The
Z flag is assumed to be set or cleared by a preceding Shift Left instruction. "Round to
even" provides a better averaging of rounding errors than "add carry".

"Round to even" is equivalent to the "round to nearest" Floating-Point rounding mode and
may he used to implement it efficiently.

INSTRUCTION SET 3-15

3.8. Sum Instructions
The sum of the source operand and the immediate operand is placed in the destination
register and the condition flags are set or cleared accordingly. At SUM, both operands and
the result are interpreted as either all signed or all unsigned integers. At SUMS, both
operands and the result are signed integers and a trap to Range Error occurs at overflow.

Format Notation

RRconst SUM Rd, Rs, canst

RRconst SUMS Rd, Rs, canst

Operation

Rd := Rs + canst;
Z :=Rd= O;
N := Rd(31);
V := overflow;
C :=carry;

Rd := Rs + canst;
Z :=Rd= O;
N := Rd(31);
V := overflow;
if overflow then

trap =) Range Error;

-- signed or unsigned Sum

-- sign

-- signed Sum with trap

-- sign

When the SR is denoted as a source operand at SUM and SUMS, C is added instead of the
SR. The notation is then:

Format Notation Operation

RRconst SUM Rd, C, canst Rd := C + canst; -- signed or unsigned Sum C

RRconst SUMS Rd, C, canst Rd := C + canst; -- signed Sum C

The flags are treated as defined by SUM or SUMS. A trap cannot occur.

Note: The effect of a Subtract immediate instruction can be obtained by using the negated
32-bit value of the immediate operand to be subtracted (except zero). At unsigned, C = 0
indicates then a borrow (the unsigned number range is exceeded below zero).

The immediate operand is constrained to the range of const. The instruction pair MOY,
ADDI or MOY, ADDSI may be used where the full integer range is required.

3-16 CHAPTER3

3.9. Subtract Instructions

The source operand or the source operand + C is subtracted from the destination operand,
the result is placed in the destination register and the condition flags are set or cleared
accordingly.

At SUB and SUBC, both operands and the result are interpreted as either all signed or all
unsigned integers. At SUBS, both operands and the result are signed integers and a trap to
Range Error occurs at overflow.

Format Notation

RR SUB Rd, Rs

RR SUBS Rd, Rs

RR SUBC Rd, Rs

Operation

Rd:= Rd - Rs;
Z:= Rd=O;
N := Rd(31);
V := overflow;
C :=borrow;

Rd:= Rd- Rs;
Z := Rd=O;
N := Rd(31);
V := overflow;
if overflow then

trap ~ Range Error;

Rd := Rd - (Rs + C);
Z := Z and (Rd = O);
N := Rd(31);
V := overflow;
C :=borrow;

-- signed or unsigned Subtract

-- sign

-- signed Subtract with trap

-- sign

-- signed or unsigned Subtract
with borrow

-- sign

When the SR is denoted as a source operand at SUB, SUBS and SUBC, C is subtracted
instead of the SR. The notation is then:

Format Notation

RR

RR

RR

SUB Rd, C

SUBS Rd, C

SUBC Rd, C

Operation

Rd:= Rd-C;

Rd:= Rd-C;

Rd:= Rd-C;

-- signed or unsigned Subtract C

-- signed Subtract C with trap

The flags and the trap condition are treated as defined by SUB, SUBS or SUBC.

Note: At SUBC, Z is cleared if Rd *' 0, otherwise left unchanged; thus, Z is evaluated
correctly for multi-precision operands.

INSTRUCTION SET 3-17

3.10. Negate Instructions
The source operand is subtracted from zero, the result is placed in the destination register
and the condition flags are set or cleared accordingly.

At NEG and NEGS, the source operand and the result are interpreted as either both signed
or both unsigned integers. At NEGS, the source operand and the result are signed integers
and a trap to Range Error occurs at overflow.

Format Notation Operation

RR NEG Rd, Rs Rd := - Rs; -- signed or unsigned Negate
Z :=Rd= O;
N := Rd(31); -- sign
V := overflow;
C :=borrow;

RR NEGS Rd, Rs Rd := - Rs; -- signed Negate with trap
Z :=Rd= O;
N := Rd(31); -- sign
V := overflow;
if overflow then

trap ~ Range Error;

When the SR is denoted as a source operand at NEG and NEGS, C is negated instead of
the SR. The notation is then:

Format Notation Operation

RR NEG Rd, C Rd :=-C;

RR NEGS Rd, C Rd:= - C;

-- signed or unsigned Negate C
if C is set then

Rd := -1;
else

Rd :=0;

-- signed Negate C
if C is set then

Rd:= -1;
else

Rd:= O;

The flags are treated as defined by NEG or NEGS. A trap cannot occur.

3-18 CHAPTER3

3.11. Multiply Word Instruction
The source operand and the destination operand are multiplied, the low-order word of the
product is placed in the destination register (the high-order product word is not evaluated)
and the condition flags are set or cleared according to the single-word product.

Both operands are either signed or unsigned integers, the product is a single-word integer.

Note that the low-order word of the product is identical regardless of whether the operands
are signed or unsigned.

The result is undefined if the PC or the SR is denoted.

Format Notation

RR MUL Rd, Rs

Operation

Rd := low order word of product Rd * Rs;
Z := singleword product = O;
N := Rd(31);

-- sign of singleword product;
-- valid for signed operands;

V := undefined;
C := undefined;

3.12. Multiply Double-Word Instructions
The source operand and the destination operand are multiplied, the double-word product is
placed in the destination register pair (the destination register expanded by the register
following it) and the condition flags are set or cleared according to the double-word
product.

At MULS, both operands are signed integers and the product is a signed double-word
integer. At MULU, both operands are unsigned integers and the product is an unsigned
double-word integer.

The result is undefined if the PC or the SR is denoted.

Format Notation

RR MULS Rd, Rs

RR MULU Rd, Rs

Operation

Rd//Rdf := signed doubleword product of Rd * Rs;
Z := Rd//Rdf = O;

-- doubleword product is zero
N := Rd(31);

-- doubleword product is negative
V := undefined;
C := undefined;

Rd//Rdf := unsigned doubleword product of Rd * Rs;
Z := Rd//Rdf = O;

-- doubleword product is zero
N := Rd(31);
V := undefined;
C := undefined;

INSTRUCTION SET 3-19

3.13. Divide Instructions
The double-word destination operand (dividend) is divided by the single-word source
operand (divisor), the quotient is placed in the low-order destination register (Rdf), the
remainder is placed in the high-order destination register (Rd) and the condition flags are
set or cleared according to the quotient.

A trap to Range Error occurs if the divisor is zero or the value of the quotient exceeds the
integer value range (quotient overflow). The result (in Rd//Rdf) is then undefined. At
DIVS, a trap to Range Error also occurs and the result is undefined if the dividend is
negative.

At DIVS, the dividend is a non-negative signed double-word integer, the divisor, the
quotient and the remainder are signed integers; a non-zero remainder has the sign of the
dividend.

At DIVU, the dividend is an unsigned double-word integer, the divisor, the quotient and
the remainder are unsigned integers.

The result is undefined if Rs denotes the same register as Rd or Rdf or if the PC or the SR
is denoted.

Format Notation

RR DIVS Rd, Rs

RR DIVU Rd, Rs

Operation

if Rs= O or quotient overflow or Rd(31) = 1 then
-- dividend is negative
Rd//Rdf := undefined;
Z := undefined;
N := undefined;
v := 1;
trap=} Range Error;

else
remainder Rd, quotient Rdf := (Rd//Rdf) I Rs;
Z := Rdf = O; -- quotient is zero
N := Rdf(31); -- quotient is negative
V:=O;

if Rs = O or quotient overflow then
Rd//Rdf := undefined;
Z := undefined;
N := undefined;
v := 1;
trap =} Range Error;

else
remainder Rd, quotient Rdf := (Rd//Rdf) I Rs;
Z := Rdf = O; -- quotient is zero
N := Rdf(31);
v :=0;

3-20

3.14. Shift Left Instructions
The destination operand is shifted left by a number of bit positions specified

at SHLI, SHLDI by n = 0 .. 31 as a shift by 0 .. 31;

at SHL, SHLD by bits 4 .. 0 of the source operand as a shift by 0 .. 31.

The higher-order bits of the source operand are ignored.

The destination operand is interpreted

CHAPTER 3

at SHL and SHLI as a bitstring of 32 bits or as a signed or unsigned integer;

at SHLD and SHLDI as a double-word bitstring of 64 bits or as a signed or
unsigned double-word integer.

All Shift Left instructions insert zeros in the vacated bit positions at the right.

The double-word Shift Left instructions execute in two cycles. The low-order operand in
Ldf is shifted first. At SHLD, the result is undefined if Ls denotes the same register as Ld
orLdf.

Format Notation Operation

Rn SHU Rd, n Rd := Rd « by n; --

Ln SHLDI Ld, n Ld//Ldf := Ld//Ldf « by n; --

LL SHL Ld, Ls Ld := Ld « by Ls(4 .. 0); --

LL SHLD Ld, Ls Ld//Ldf := Ld//Ldf « by Ls(4 .. 0); --

The condition flags are set or cleared by all Shift Left instructions as follows:

Z := Ld = O or Rd = O on single-word;
Z := Ld//Ldf = 0 on double-word;
N := Ld(31) or Rd(31);
V := undefined
C := undefined;

Note: The symbol « signifies "shifted left".

insert

0 .. 31 zeros

0 .. 31 zeros

0 .. 31 zeros

0 .. 31 zeros

INSTRUCTION SET

3.15. Shift Right Instructions
The destination operand is shifted right by a number of bit positions specified

at SARI, SARDI, SHRI, SHRDI by n = 0 .. 31 as a shift by 0 .. 31.

3·21

at SAR, SARD, SHR, SHRD by bits 4 .. 0 of the source operand as a shift by 0 .. 31.

The higher-order bits of the source operand are ignored.

The destination operand is interpreted

at SAR and SARI as a signed integer;

at SARD and SARDI as a signed double-word integer;

at SHR and SHRI as a bitstring of 32 bits or as an unsigned integer;

at SHRD and SHRDI as a double-word bitstring of 64 bits or as an unsigned
double-word integer.

All Shift Right instructions which interpret the destination operand as signed insert sign
bits, all others insert zeros in the vacated bit positions at the left.

The double-word Shift Right instructions execute in two cycles. The high-order operand in
Ld is shifted first. At SARD and SHRD, the result is undefined if Ls denotes the same
register as Ld or Ldf.

Format Notation Operation insert

Rn SARI Rd, n Rd:= Rd» by n; .. 0 .. 31 sign bits

Ln SARDI Ld, n Ld//Ldf := Ld//Ldf » by n; .. 0 .. 31 sign bits

LL SAR Ld, Ls Ld := Ld » by Ls(4 .. 0); .. 0 .. 31 sign bits

LL SARO Ld, Ls Ld//Ldf := Ld//Ldf »by Ls(4 .. 0); .. 0 .. 31 sign bits

Rn SHRI Rd, n Rd := Rd » by n; -- 0 .. 31 zeros

Ln SHRDI Ld, n Ld//Ldf := Ld//Ldf »by n; ·- 0 .. 31 zeros

LL SHR Ld, Ls Ld := Ld » by Ls(4 .. 0); -- 0 .. 31 zeros

LL SHAD Ld, Ls Ld//Ldf := Ld//Ldf »by Ls(4 .. 0); .. 0 .. 31 zeros

The condition flags are set or cleared by all Shift Right instructions as follows:

Z := Ld = O or Rd = O on single-word;
Z := Ld//Ldf = O on double-word;
N := Ld(31) or Rd(31);
C := last bit shifted out is "one";

Note: The symbol » signifies "shifted right".

3-22 CHAPTER 3

3.16. Rotate Left Instruction
The destination operand is shifted left by a number of bit positions and the bits shifted out
are inserted in the vacated bit positions; thus, the destination operand is rotated. The
condition flags are set or cleared accordingly. Bits 4 .. 0 of the source operand specify a
rotation by 0 .. 31 bit positions; bits 31..5 of the source operand are ignored.

The destination operand is interpreted as a bitstring of 32 bits.

Format Notation

LL ROL Ld, Ls

Operation

Ld := Ld rotated left by Ls(4 .. 0);
Z := Ld = O;
N := Ld(31);
V := undefined;
C := undefined;

Note: The condition flags are set or cleared by the same rules applying to the Shift Left
instructions.

INSTRUCTION SET 3-23

3.17. Index Move Instructions
The source operand is placed shifted left by 0, 1, 2 or 3 bit positions in the destination
register, corresponding to a multiplication by 1, 2, 4 or 8. At XM1..XM4, a trap to Range
Error occurs if the source operand is higher than the immediate operand lim (upper bound).

All condition flags remain unchanged. All operands and the result are interpreted as
unsigned integers.

The SR must not be denoted as a source nor as a destination, nor the PC as a destination
operand; these notations are reserved for future expansion. When the PC is denoted as a
source operand, a trap to Range Error occurs if PC :2: Jim.

X-code Format Notation Operation

0 RRlim XM1 Rd, Rs, lim Rd:= Rs* 1;
if Rs > lim then

trap=:> Range Error;

RRlim XM2 Rd, Rs, lim Rd:= Rs* 2;
if Rs > lim then

trap =:> Range Error;

2 RRlim XM4 Rd, Rs, lim Rd:= Rs* 4;
if Rs > lim then

trap =:> Range Error;

3 RRlim XM8 Rd, Rs, lim Rd:= Rs* 8;
if Rs > lim then

trap =:> Range Error;

4 RRlim XX1 Rd, Rs, 0 Rd := Rs * 1; -- Move without flag change

5 RRlim XX2 Rd, Rs, 0 Rd:= Rs* 2;

6 RRlim XX4 Rd, Rs, 0 Rd:= Rs* 4;

7 RRlim XX8 Rd, Rs, 0 Rd:= Rs* 8;

Note: The Index Move instructions move an index value scaled (multiplied by 1, 2, 4 or 8).
XM1..XM4 check also the unscaled value for an upper bound, optionally also excluding
zero. If the lower bound is not zero or one, it may be mapped to zero by subtracting it from
the index value before applying an Index Move instruction.

3-24

3.18. Check Instructions
The destination operand is checked and a trap to Range Error occurs

at CHK if the destination operand is higher than the source operand,

at CHKZ if the destination operand is zero.

CHAPTER3

All registers and all condition flags remain unchanged. All operands are interpreted as
unsigned integers.

CHKZ shares its basic OP-code with CHK, it is differentiated by denoting the SR as source
operand.

Format Notation

RR CHK Rd, Rs

RR CHKZ Rd, 0

Operation

if Rs does not denote SR and Rd > Rs then
trap ~ Range Error;

if Rs denotes SR and Rd = O then
trap ~ Range Error;

When Rs denotes the PC, CHK traps if Rd~ PC. Thus, CHK, PC, PC always traps. Since
CHK, PC, PC is encoded as 16 zeros, an erroneous jump into a string of zeros causes a trap
to Range Error, thus trapping some address errors.

Note: CHK checks the upper bound of an unsigned value range, implying a lower bound of
zero. If the lower bound is not zero, it can be mapped to zero by subtracting it from the
value to be checked and then checking against a corrected upper bound (lower bound also
subtracted). When the upper bound is a constant not exceeding the range of Jim, the Index
instructions may be used for bounds checks.

CHKZ may be used to trap on uninitialized pointers with the value zero.

3.19. No Operation Instruction
The instruction CHK, LO, LO cannot cause any trap. Since CHK leaves all registers and
condition flags unchanged, it can be used as a No Operation instruction with the notation:

Format Notation Operation

RR NOP no operation;

Note: The NOP instruction may be used as a fill instruction.

INSTRUCTION SET 3-25

3.20. Compare Instructions
Two operands are compared by subtracting the source operand or the immediate operand
from the destination operand. The condition flags are set or cleared according to the result;
the result itself is not retained. Note that the N flag indicates the correct compare result
even in the case of an overflow.

All operands and the result are interpreted as either all signed or all unsigned integers.

Format Notation

RR CMP Rd, Rs

Rimm CMPI Rd, imm

Operation

result := Rd - Rs;
Z :=Rd= Rs;
N := Rd < Rs signed;
V := overflow;
C := Rd < Rs unsigned;

result := Rd - imm;
Z:= Rd= imm;
N := Rd < imm signed;
V := overflow;
C := Rd < imm unsigned;

-- result is zero
-- result is true negative

-- borrow

-- result is zero
-- result is true negative

-- borrow

When the SR is denoted as a source operand at CMP, C is subtracted instead of SR. The
notation is then:

Format Notation

RR CMP, Rd, C

Operation

result := Rd - C;
Z :=Rd= C;
N := Rd < C signed;
V := overflow;
C := Rd < C unsigned;

-- result is zero
-- result is true negative

-- borrow

3-26 CHAPTER3

3.21. Compare Bit Instructions
The result of a bitwise logical AND of the source or immediate operand and the destination
operand is used to set or clear the Z flag accordingly; the result itself is not retained.

All operands and the result are interpreted as bitstrings of 32 bits each.

Format Notation Operation

RR CMPB Rd, Rs Z := (Rd and Rs) = O;

Rimm CMPBI Rd, imm Z := (Rd and imm) = O;

The following instruction is a special case of CMPBI differentiated by n = 0 (see section
2.3.1. Table oflmmediate Values):

Format Notation

Rimm CMPBI Rd, ANYBZ

Operation

Z := Rd(31 .. 24) = O or Rd(23 .. 16) = O or
Rd(15 .. 8) = 0 or Rd(7 .. 0) = O;

-- any Byte of Rd = 0

3.22. Test Leading Zeros Instruction
The number of leading zeros in the source operand is tested and placed in the destination
register. A source operand equal to zero yields 32 as a result. All condition flags remain
unchanged.

Format Notation Operation

LL TESTLZ Ld, Ls Ld := number of leading zeros in Ls;

INSTRUCTION SET 3-27

3.23. Set Stack Address Instruction
The frame pointer FP is placed, expanded to the stack address, in the destination register.
The FP itself and all condition flags remain unchanged. The expanded FP address is the
address at which the content of LO would be stored if pushed onto the memory part of the
stack.

The Set Stack Address instruction shares the basic OP-code SETxx, it is differentiated by
n = 0 and not denoting the SR or the PC.

n Format Notation Operation

0 Rn SETADR Rd Rd := SP(31 .. 9)//SR(31 .. 25)//00 +carry into bit 9
-- SR(31 .. 25) is FP
-- carry into bit 9 := (SP(B) = 1 and SR(31) = 0)

Note: The Set Stack Address instruction calculates the stack address of the beginning of the
current stack frame. LO .. L15 of this frame can then be addressed relative to this stack
address in the stack address mode with displacement values of 0 .. 60 respectively.

Provided the stack address of a stack frame has been saved, for example in a global
register, any data in this stack frame can then be addressed also from within all younger
generations of stack frames by using the saved stack address. (Addressing of local
variables in older generations of stack frames is required by all block oriented
programming languages like Pascal, Modula-2 and Ada.)

The basic OP-code SETxx is shared as indicated:

D n = 0 while not denoting the SR or the PC differentiates the Set Stack Address
instruction.

D n = 1..31 while not denoting the SR or the PC differentiates the Set Conditional
instructions.

D Denoting the SR differentiates the Fetch instruction.

D Denoting the PC is reserved for future use.

3.24. Set Conditional Instructions
The destination register is set or cleared according to the states of the condition flags
specified by n. The condition flags themselves remain unchanged.

The Set Conditional instructions share the basic OP-code SETxx, they are differentiated by
n = 1 .. 31 and not denoting the SR or the PC.

3-28 CHAPTER3

3.24. Set Conditional Instructions (continued)

Format is Rn

n Notation or

Reserved

2 SET1 Rd

3 SETO Rd

4 SETLE Rd

5 SETGT Rd

6 SETLT Rd

7 SETGE Rd

8 SETSE Rd

9 SETHT Rd

10 SETST Rd

11 SETHE Rd

12 SETE

13 SETNE

14 SETV Rd

15 SETNV Rd

16 Reserved

17 Reserved

18 SET1M Rd

19 Reserved

20 SETLEM Rd

21 SETGTM Rd

22 SETLTM Rd

23 SETGEM Rd

24 SETSEM Rd

25 SETHTM Rd

26 SETSTM Rd

27 SETHEM Rd

28 SETEM

29 SETNEM

30 SETVM Rd

31 SETNVM Rd

Alternative

SETN Rd

SETNN Rd

SETC Rd

SETNC Rd

SETZ

SETNZ

SETNM Rd

SETNNM Rd

SETCM Rd

SETNCM Rd

SETZM

SETNZM

Operation

Rd:= 1;

Rd:=O;

if N = 1 or Z = 1 then Rd := 1 else Rd := O;

if N = 0 and Z = O then Rd := 1 else Rd := O;

if N = 1 then Rd := 1 else Rd := O;

if N = O then Rd := 1 else Rd := O;

if C = 1 or Z = 1 then Rd := 1 else Rd := O;

if C = 0 and Z = 0 then Rd := 1 else Rd := O;

if C = 1 then Rd := 1 else Rd := O;

if C = 0 then Rd := 1 else Rd := O;

if Z = 1 then Rd := 1 else Rd := O;

if Z = o then Rd := 1 else Rd := O;

if V = 1 then Rd := 1 else Rd := O;

if V = 0 then Rd := 1 else Rd := O;

Rd:= -1;

if N = 1 or Z = 1 then Rd := -1 else Rd := O;

if N = O and Z = O then Rd:= -1 else Rd:= O;

if N = 1 then Rd:= -1 else Rd:= O;

if N = 0 then Rd:= -1 else Rd:= O;

if C = 1 or Z = 1 then Rd:= -1 else Rd:= O;

if C = 0 and Z = O then Rd := -1 else Rd := O;

if C = 1 then Rd:= -1 else Rd:= O;

if C = o then Rd:= -1 else Rd:= O;

if Z = 1 then Rd:= -1 else Rd:= O;

if Z = 0 then Rd:= -1 else Rd:= O;

if V = 1 then Rd:= -1 else Rd:= O;

if V = O then Rd:= -1 else Rd:= O;

INSTRUCTION SET 3-29

3.25. Branch Instructions
The Branch instruction BR, and any of the conditional Branch instructions when the
branch condition is met, place the branch address PC +rel (relative to the address of the
first byte after the Branch instruction) in the program counter PC and clear the cache-mode
flag M; all condition flags remain unchanged. Then instruction execution proceeds at the
branch address placed in the PC.

When the branch condition is not met, the M flag and the condition flags remain un­
changed and instruction execution proceeds sequentially.

Besides these explicit Branch instructions, the instructions MOY, MOVI, ADD, ADDI,
SUM, SUB may denote the PC as a destination register and thus be executed as an implicit
branch; the M flag is cleared and the condition flags are set or cleared according to the
specified instruction. All other instructions, except Compare instructions, must not be used
with the PC as destination, otherwise possible Range Errors caused by these instructions
would lead to ambiguous results on backtracking.

Format is PCrel

Notation or alternative Operation Comment

BLE rel if N = 1 or Z = 1 then BR; -- Less or Equal signed

BGT rel if N = O and Z = O then BR; -- Greater Than signed

BLT rel BN rel if N = 1 then BR; -- Less Than signed

BGE rel BNN rel if N = 0 then BR; -- Greater or Equal signed

BSE rel if C = 1 or Z = 1 then BR; -- Smaller or Equal unsigned

BHT rel if C = 0 and Z = 0 then BR; -- Higher Than unsigned

BST rel BC rel if C = 1 then BR; -- Smaller Than unsigned

BHE rel BNC rel if C = O then BR; -- Higher or Equal unsigned

BE rel BZ rel if Z = 1 then BR; -- Equal

BNE rel BNZ rel if Z = O then BR; -- Not Equal

BV rel if V = 1 then BR; -- oVerflow

BNV rel if V = 0 then BR; -- Not overflow

BR rel PC := PC + rel; M := O;

Note: rel is signed to allow forward or backward branches.

3-30 CHAPTERS

3.26. Delayed Branch Instructions
The Delayed Branch instruction DBR, and any of the conditional Delayed Branch in­
structions when the branch condition is met, place the branch address PC + rel (relative to
the address of the first byte after the Delayed Branch instruction) in the program counter
PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the ·PC by the delay instruction
references the delayed-branch target address.

In the case of an Error exception caused by a delay instruction succeeding a delayed branch
taken, the location of the saved return PC contains the address of the first byte of the delay
instruction. The saved ILC contains the length (1 or 2 halfwords) of the Delayed Branch
instruction. In the case of all other exceptions following a delay instruction succeeding a
delayed branch taken, the location of the saved return PC contains the branch target address
of the delayed branch and the saved ILC is invalid.

The following restrictions apply to delay instructions:

The sum of the length of the Delayed Branch instruction and the delay instruction must not
exceed three halfwords, otherwise an arbitrary bit pattern may be supplied and erroneously
used for the second or third halfword of the delay instruction without any warning.

The Delayed Branch instruction and the delay instruction are locked against any exception
except Reset.

A Fetch or any branching instruction must not be placed as a delay instruction. A
misplaced Delayed Branch instruction would be executed like the corresponding non­
delayed Branch instruction to inhibit a permanent exception lock-out.

INSTRUCTION SET 3-31

3.26. Delayed Branch Instructions (continued)

Format is PCrel

Notation or alternative Operation Comment

DBLE rel if N = 1 or Z = 1 then DBR; -- Less or Equal signed

DBGT rel if N = O and Z = O then DBR; -- Greater Than signed

DBLT rel DBN rel if N = 1 then DBR; -- Less Than signed

DBGE rel DBNN rel if N = 0 then DBR; -- Greater or Equal signed

DBSE rel if C = 1 or Z = 1 then DBR; -- Smaller or Equal unsigned

DBHT rel if C = O and Z = O then DBR; -- Higher Than unsigned

OBST rel DBC rel if C = 1 then DBR; -- Smaller Than unsigned

DBHE rel DBNC rel if C = 0 then DBR; -- Higher or Equal unsigned

DBE rel DBZ rel if Z = 1 then DBR; -- Equal

DBNE rel DBNZ rel if Z = 0 then DBR; -- Not Equal

DBV rel if V = 1 then DBR; -- overflow

DBNV rel if V = 0 then DBR; -- Not oVerflow

DBR rel PC := PC + rel;

Note: rel is signed to allow forward or backward branches.

Attention: Since the PC seen by the delay instruction depends on the delayed branch
taken or not taken, a delay instruction after a conditional Delayed Branch instruction
must not reference the PC.

3-32 CHAPTERS

3.27. Call Instruction
The Call instruction causes a branch to a subprogram.

The branch address Rs + const, or const alone if Rs denotes the SR, is placed in the
program counter PC. The old PC containing the return address is saved in Ld; the old
supervisor-state flag S is also saved in bit zero of Ld. The old status register SR is saved in
Ldf; the saved instruction-length code ILC contains the length (2 or 3) of the Call
instruction.

Then the frame pointer FP is incremented by the value of the Ld-code (Ld-code = 0 is
interpreted as Ld-code = 16) and the frame length FL is set to six, thus creating a new stack
frame. The cache-mode flag M is cleared. All condition flags remain unchanged. Then
instruction execution proceeds at the branch address placed in the PC.

The value of the Ld-code must not exceed the value of the old FL (FL = 0 is interpreted as
FL= 16), otherwise the beginning of the register part of the stack at the SP could be
overwritten without any warning. Bit zero of const must be 0.

Rs and Ld may denote the same register.

Format Notation

LRconst CALL Ld, Rs, canst
or CALL Ld, O, canst

Operation

if Rs denotes not SR then
PC := Rs + canst;

else
PC:= canst;

Ld := old PC(31 .. 1)//old S;
-- Ld-code O selects L 16

Ldf := old SR;
FP := FP + Ld code;

-- Ld-code O is treated as 16
FL:=6;
M :=0;

Note: At the new stack frame, the saved PC is located in LO and the saved SR is located in
Ll.

A Frame instruction must be executed immediately after a Call instruction, otherwise an
Interrupt, Parity Error, Extended Overflow or Trace exception could separate the Call from
the corresponding Frame instruction before the frame pointer FP is decremented to include
(optionally) passed parameters. After a Call instruction, an Interrupt, Parity Error,
Extended Overflow or Trace exception is locked out for one instruction regardless of the
interrupt lock flag L.

INSTRUCTION SET 3-33

3.28. Trap Instructions
The Trap instructions TRAP and any of the conditional Trap instructions when the trap
condition is met, cause a branch to one out of 64 supervisor subprogram entries (see
section 2.4. Entry Tables).

When the trap condition is not met, instruction execution proceeds sequentially.

When the subprogram branch is taken, the subprogram entry address adr is placed in the
program counter PC and the supervisor-state flag S is set to one. The old PC containing the
return address is saved in the register addressed by FP + FL; the old S flag is also saved in
bit zero of this register. The old status register SR is saved in the register addressed by
FP +FL+ 1 (FL= 0 is interpreted as FL= 16); the saved instruction-length code ILC
contains the length (1) of the Trap instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag Lis set to one. All condition flags remain unchanged. Then
instruction execution proceeds at the entry address placed in the PC.

The trap instructions are differentiated by the 12 code values given by the bits 9 and 8 of
the OP-code and bits 1 and 0 of the adr-byte (code= OP(9 .. 8)//adr-byte(l..O)). Since
OP(9 .. 8) = 0 does not denote Trap instructions (the code is occupied by the BR
instruction), trap codes 0 .. 3 are not available.

3-34 CHAPTER3

3.28. Trap Instructions (continued)

Format is PCadr

Code Notation

4 TRAPLE trapno

5 TRAPGT trapno

6 TRAPL T trapno

7 TRAPGE trapno

8 TRAPSE trapno

9 TRAPHT trapno

10 TRAPST trapno

11 TRAPHE trapno

12 TRAPE trapno

13 TRAPNE trapno

14 TRAPV trapno

15 TRAP trapno

Operation

if N = 1 or Z = 1 then execute TRAP else execute next instruction;

if N = O and Z = O then execute TRAP else execute next instruction;

if N = 1 then execute TRAP else execute next instruction;

if N = O then execute TRAP else execute next instruction;

if C = 1 or Z = 1 then execute TRAP else execute next instruction;

if C = 0 and Z = 0 then execute TRAP else execute next instruction;

if C = 1 then execute TRAP else execute next instruction;

if C = 0 then execute TRAP else execute next instruction;

if Z = 1 then execute TRAP else execute next instruction;

if Z = O then execute TRAP else execute next instruction;

if V = 1 then execute TRAP else execute next instruction;

PC:= adr;
s := 1;
(FP + FL)" :=old PC(31 .. 1)//old S;
(FP +FL+ 1)" :=old SR;
FP := FP +FL; -- FL= 0 is treated as FL= 16
FL:= 6;
M :=0;
T:=O;
L := 1;

trapno indicates one of the traps 0 .. 63.

Note: At the new stack frame, the saved PC is located in LO and the saved SR is located in
LI; L2 .. L5 are free for use as required.

A Frame instruction must be executed before executing any other Trap, Call or Software
instruction or before the interrupt-lock flag L is beeing cleared, otherwise the beginning of
the register part of the stack at the SP could be overwritten without any warning.

INSTRUCTION SET 3-35

3.29. Frame Instruction
A Frame instruction restructures the current stack frame by

a decrementing the frame pointer FP to include (optionally) passed parameters in the local
register addressing range; the first parameter passed is then addressable as LO;

a resetting the frame length FL to the actual number of registers needed for the current
stack frame.

It also restores the reserve number of 10 registers in the register part of the stack to allow
any further Call, Trap or Software instructions and clears the cache mode flag M.

The frame pointer FP is decremented by the value of the Ls-code and the Ld-code is placed
in the frame length FL (FL= 0 is always interpreted as FL= 16). Then the difference
(available number of registers) - (required number of registers + 10) is evaluated and
interpreted as a signed 7-bit integer.

If the difference is not negative, all the registers required plus the reserve of 10 fit into the
register part of the stack; no further action is needed and the Frame instruction is finished.

If the difference is negative, the content of the old stack pointer SP is compared with the
address in the upper stack bound UB. If the value in the SP is equal or higher than the
value in the UB, a temporary flag is set. Then the contents of the number of local registers
equal to the negative difference evaluated are pushed onto the memory part of the stack,
beginning with the content of the local register addressed absolutely by SP(7 .. 2) being
pushed onto the location addressed by the SP. After each memory cycle, the SP is
incremented by four until the difference is eliminated. A trap to Frame Error occurs after
completion of the push operation when the temporary flag is set.

All condition flags remain unchanged.

3-36

3.29. Frame Instruction (continued)

Format Notation

LL FRAME Ld, Ls

Operation

FP := FP - Ls code;
FL := Ld code;
M :=0;
difference(6 .. 0) := SP(S .. 2) + (64- 10) - (FP +FL);

-- FL = 0 is treated as FL = 16
-- difference is signed, difference(6) = sign bit
-- 64 = number of local registers
-- 10 =number of reserve registers

if difference ;?: 0 then
continue at next instruction;
-- Frame is finished

else
temporary flag := SP ;?: UB;
repeat

memory SPA:= register SP(7 .. 2)A;
-- local register ~ memory

SP:= SP+ 4;
difference := difference + 1 ;

until difference = O;
if temporary flag = 1 then

trap ~ Frame Error;

CHAPTERS

Note: Ls also identifies the same source operand which must be denoted by the Return
instruction to address the saved return PC.

Ld (LO is interpreted as L16) also identifies the register in which the return PC is being
saved by a Trap or Software instruction or by an exception; therefore only local registers
with a lower register code than the interpreted Ld-code of the Frame instruction' may be
used after execution of a Frame instruction.

The reserve of 10 registers is to be used as follows:

D A Call, Trap or Software instruction uses six registers.

o A subsequent exception, occurring before a Frame instruction is executed, uses another
two registers.

D Two registers remain in reserve.

Note that the Frame instruction can write into the memory stack at address locations up to
37 words higher than indicated by the address in the UB. This is due to the fact that the
upper bound is checked before the execution of the Frame instruction.

Attention: The Frame instruction must always be the first instruction executed in a
function entered by a Call instruction, otherwise the Frame instruction could be separated
from the preceding Call instruction by an Interrupt, Parity Error, Extended Overflow or
Trace exception (see section 3.27. Call instruction).

INSTRUCTION SET 3-37

3.30. Return Instruction
The Return instruction returns control from a subprogram entered through a Call, Trap or
Software instruction or an exception to the instruction located at the return address and
restores the status from the saved return status.

The source operand pair Rs//Rsf is placed in the register pair PC//SR. The program counter
PC is restored first from Rs. Then all bits of the status register SR are replaced by Rsf,
except the supervisor flag S, which is restored from bit zero of Rs and except the
instruction length code ILC, which is cleared to zero.

If the return occurred from user to supervisor state or if the interrupt-lock flag L was
changed from zero to one on return from any state to user state, a trap to Privilege Error
occurs. Exception processing saves the restored contents of the register pair PC//SR; an
illegally set S or L flag is also saved.

Then the difference between frame pointer FP - stack pointer SP(8 .. 2) is evaluated and
interpreted as a signed 7-bit integer. If the difference is not negative, the register pointed to
by FP(S .. O) is in the register part of the stack; no further action is then required and the
Return instruction is completed.

If the difference is negative, the number of words equal to the negative difference are
pulled from the memory part of the stack and transferred to the register part of the stack,
beginning with the contents of the memory location SP - 4 being transferred to the local
register addressed absolutely by bits 7 .. 2 of SP - 4. After each memory cycle, the SP is
decremented by four until the difference is eliminated.

The Return instruction shares its basic OP-code with the Move Double-Word instruction. It
is differentiated from it by denoting the PC as destination register Rd.

The PC or the SR must not be denoted as a source operand; these notations are reserved for
future expansion.

3-38

3.30. Return Instruction (continued)

Format Notation

RR RET PC, Rs

Operation

old S := S;
old L := L;
PC:= Rs(31 .. 1)//0;
SR := Rsf(31 .. 21)//OO//Rs(O)//Rsf(17 .. 0);

-- ILC := O;
-- S := Rs(O);

if old S = O and S = 1 or
S = O and old L = O and L = 1 then

trap => Privilege Error;
difference(6 .. 0) := FP - SP(8 .. 2);

-- difference is signed, difference(6) =sign bit
if difference 2 0 then

continue at next instruction;
-- RET is finished

else
repeat

SP:= SP- 4;
register SP(7 .. 2)A :=memory SPA;

-- memory => local register
difference :=difference + 1;

until difference = O;

CHAPTER 3

INSTRUCTION SET 3-39

3.31. Fetch Instruction

The instruction execution is halted until a number of at least n/2 + 1 (n = 0, 2, 4 .. 30)
instruction halfwords succeeding the Fetch instruction are prefetched in the instruction
cache. Since instruction words are fetched, one more halfword may be fetched. The
number n/2 is derived by using bits 4 .. 1 of n, bit 0 of n must be zero.

The Fetch instruction must not be placed as a delay instruction; when the preceding branch
is taken, the prefetch is undefined.

The Fetch instruction shares the basic OP-code SETxx, it is differentiated by denoting the
SR for the Rd-code (see section 2.3. Instruction Formats).

n Format Notation Operation

0 Rn FETCH Wait until 1 instruction halfword is fetched;

30 Rn FETCH 16 Wait until 16 instruction halfwords are fetched

Note: The Fetch instruction supplements the standard prefetch of instruction words. It may
be used to speed up the execution of a sequence of memory instructions by avoiding
alternating between instruction and data memory pages. By executing a Fetch instruction
preceding a sequence of memory instructions addressing the same data memory page, the
memory accesses can be constrained to the data memory page by prefetching all required
instructions in advance.

A Fetch instruction may also be used preceding a branch into a program loop; thus,
flushing the cache by the first branch repeating the loop can be avoided.

3-40 CHAPTER3

3.32. Extended DSP Instructions
The extended DSP functions use the on-chip multiply-accumulate unit. Single word results
always use register G 15 as destination register, while double-word results are always
placed in Gl4 and G15. The condition flags remain unchanged.

Format Notation

LL ext EMUL Ld, Ls

LLext EMULU Ld, Ls

LLext EMULS Ld, Ls

LLext EMAC Ld, Ls

LL ext EMACD Ld, Ls

LL ext EMSUB Ld, Ls

LLext EMSUBD Ld, Ls

LL ext EHMAC Ld, Ls

LL ext EHMACD Ld, Ls

LL ext EHCMULD Ld, Ls

LLext EHCMACD Ld, Ls

LLext EHCSUMD Ld, Ls

LLext EHCFFTD Ld, Ls

Operation

G15 := Ld *Ls;
-- signed or unsigned multiplication, single word product

G14//G15 := Ld *Ls;
-- unsigned multiplication, double word product

G14//G15 := Ld *Ls;
-- signed multiplication, double word product

G15 := G15 + Ld *Ls;
-- signed multiply/add, single word product sum

G14//G15 := G14//G15 + Ld *Ls;
-- signed multiply/add, double word product sum

G15 := G15 - Ld *Ls;
-- signed multiply/subtract, single word product difference

G14//G15 := G14//G15 • Ld *Ls;
•• signed multiply/subtract, double word product difference

G15 := G15 + Ld(31..16) * Ls(31..16) + Ld(15 .. 0) * Ls(15 .. 0);
•• signed halfword multiply/add, single word product sum

G14//G15 := G14//G15 + Ld(31..16) • Ls(31..16) +
Ld(15 .. 0) * Ls(15 .. 0);

•• signed halfword multiply/add, double word product sum

G14 := Ld(31..16) * Ls(31..16) - Ld(15 .. 0) * Ls(15 .. 0);
G15 := Ld(31..16) * Ls(15 .. 0) + Ld(15 .. 0) • Ls(31..16);
-- halfword complex multiply

G14 := G14 + Ld(31..16) * Ls(31..16) • Ld(15 .. 0) * Ls(15 .. 0);
G15 := G15 + Ld(31 .. 16) * Ls(15 .. 0) + Ld(15 .. 0) * Ls(31 .. 16);
•• halfword complex multiply/add

G14(31..16) := Ld(31..16) + G14;
G14(15 .. 0) := Ld(15 .. 0) + G15;
G15(31..16) := Ld(31..16) • G14;
G15(15 .. 0) := Ld(15 .. 0) • G15;
•• halfword (complex) add/subtract
•• Ls is not used and should denote the same register as Ld

G14(31..16) := Ld(31..16) + (G14 » 15);
G14(15 .. 0) := Ld(15 .. 0) + (G15 » 15);
G15(31..16) := Ld(31..16)- (G14 » 15);
G15(15 .. 0) := Ld(15 .. 0) • (G15 » 15);
•• halfword (complex) add/subtract with fixed-point

adjustment
•• Ls is not used and should denote the same register as Ld

INSTRUCTION SET 3-41

3.32. Extended DSP Instructions (continued)

The instructions EMAC through EHCFFfD can cause an Extended Overflow exception
when the Extended Overflow Exception flag is enabled (FCR(l6) = 0). Note that this
overflow occurs asynchronously to the execution of the Extended DSP instruction and any
succeeding instructions.

Attention: A new Extended DSP instruction can be started before the Extended Overflow
exception trap is executed!

An Extended DSP instruction is issued in one cycle; the processor starts execution of the
next instructions before the Extended DSP instruction is finished. The execution of
succeeding non-Extended-DSP instructions is only stopped and wait cycles are inserted
when an instruction addresses G 15 or G 14//G 15 respectively before a preceding Extended
DSP instruction placed its result into G 15 or G 14//G 15. Thus, DSP programs can place
Load/Store or loop administration instructions into the slot cycles between issue of an
Extended DSP instruction and availability of its result. See also section 2.5. Instruction
Timing.

3·42 CHAPTERS

3.33. Software Instructions

The Software instructions cause a branch to the subprogram associated with each Software
instruction. Its entry address (see section 2.4. Entry Tables), deduced from the OP-code of
the Software instruction, is placed in the program counter PC. Data is saved in the register
sequence beginning at register address FP + FL (FL = 0 is interpreted as FL .= 16) in
ascending order as follows:

o Stack address of the destination operand

o High-order word of the source operand

o Low-order word of the source operand

o Old program counter PC, containing the return address and the old S flag in bit zero

o Old status Register SR, ILC contains the instruction-length code (ILC = 1) of the
software instruction

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag Lis set to one. All condition flags remain unchanged.

Instruction execution then proceeds at the entry address placed in the PC.

Ls or Lsf and Ld may denote the same register.

\Format Notation

LL see specific
instructions

Operation

PC := 23 ones//O//OP(11 .. 8)//4 zeros;
(FP + FL)A := stack address of Ld;
(FP +FL+ 1)A :=Ls;
(FP + FL + 2)A := Lsf;
(FP + FL+ 3)A := old PC(31 .. 1)//old S;
(FP + FL+ 4)A :=old SR;
FP := FP +FL; ·· FL= 0 is treated as FL= 16
FL:= 6;
M :=0;
T:=O;
L := 1;

Note: At the new stack frame, the stack address of the destination operand can be
addressed as LO, the source operand as Ll//L2, the saved PC as L3 and the saved SR as L4;
LS is free for use as required.

A Frame instruction must be executed before executing any other Software instruction,
Trap or Call instruction or before the interrupt-lock flag L is beeing cleared, otherwise the
beginning of the register part of the stack at SP could he overwritten without any warning.

INSTRUCTION SET 3-43

3.33.1. Do Instruction

The Do instruction is executed as a Software instruction. The associated subprogram is
entered, the stack address of the destination operand and one double-word source operand
are passed to it (see section 3.33. Software Instructions for details).

The halfword succeeding the Do instruction will be used by the associated subprogram to
differentiate branches to subordinate routines; the associated subprogram must increment
the saved return program counter PC by two.

Format Notation Operation

LL DO xx ... Ld, Ls execute Software instruction;

"xx ... " stands for the mnemonic of the differentiating halfword after the OP-code of the Do
instruction.

The Do instruction must not be placed as delay instruction since then xx... cannot be
located.

Note: The Do instruction provides very code efficient passing of parameters to routines
executing software implemented extensions of the instruction set.

Branching to unimplemented subordinate routines with the interrupt-lock flag L set to one
must be excluded by bounds checks of the differentiating halfword at runtime; out-of-range
values cannot be securely excluded at the assembly level.

The L flag must be cleared when the execution of a subordinate routine exceeds the regular
interrupt latency time.

Application Note: The definition of subprograms entered via the Do instruction is reserved
for system implementations. The values assigned to the differentiating halfword xx ... after
the OP-code of the Do instruction must be in ascending and contiguous order, starting with
zero. This order enables fast range checking for an upper bound and also avoids unused
space in the differentiating branch table.

3-44 CHAPTER3

3.33.2. Floating-Point Instructions

The Floating-Point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions. The following description
provides a general overview of the architectural integration.

The basic instructions use single-precision (single-word) and double-precision (double­
word) operands. Floating-Point instructions must not be placed as delay instructions (see
3.26. Delayed Branch Instructions).

Except at the Floating-Point Compare instructions, all condition flags remain unchanged to
allow future concurrent execution.

The rounding modes FRM are encoded as:

SR(14) SR(13) Description

0 0 Round to nearest

0 1 Round toward zero

1 0 Round toward - infinity

1 1 Round toward + infinity

The floating-point trap enable flags FTE and the exception flags are assigned as:

floating-point accrued actual exception type
trap enable FTE exceptions exceptions

SR(12) G2(4) G2(12) Invalid Operation

SR(11) G2(3) G2(11) Division by Zero

SR(10) G2(2) G2(10) Overflow

SR(9) G2(1) G2(9) Underflow

SR(8) G2(0) G2(8) Inexact

The reserved bits G2(31..13) and G2(7 .. 5) must be zero.

A floating-point Not a Number (NaN) is encoded by bits 30 .. 19 =all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN from a non-NaN.

In the case of an operand word containing a NaN, bit zero= 0 differentiates a quiet NaN,
bit zero = 1 differentiates a signalling NaN; the bits 18 .. l may be used to encode further
information.

INSTRUCTION SET

3.33.2. Floating-Point Instructions (continued)

Format Notation

LL FADD Ld, Ls

LL FADDD Ld, Ls

LL FSUB Ld, Ls

LL FSUBD Ld, Ls

LL FMUL Ld, Ls

LL FMULD Ld, Ls

LL FDIV Ld, Ls

LL FDIVD Ld, Ls

LL FCVT Ld, Ls

LL FCVTD Ld, Ls

LL FCMP Ld, Ls

LL FCMPD Ld, Ls

LL FCMPU Ld, Ls

LL FCMPUD Ld, Ls

Operation

Ld := Ld +Ls;

Ld//Ldf := (Ld//Ldf) + (Ls//Lsf);

Ld := Ld - Ls;

Ld//Ldf := (Ld//Ldf) - (Ls//Lsf);

Ld := Ld *Ls;

Ld//Ldf := (Ld//Ldf) * (Ls//Lsf);

Ld := Ld I Ls;

Ld//Ldf := (Ld//Ldf) I (Ls//Lsf);

Ld := Ls//Lsf; -- Convert double =:> single

Ld//Ldf := Ls; -- Convert single =:> double

result := Ld - Ls;
Z := Ld = Ls and not unordered;
N := Ld < Ls or unordered;
C := Ld < Ls and not unordered;
V := unordered;
if unordered then

Invalid Operation exception;

result := (Ld//Ldf) - (Ls//Lsf);
Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
N := (Ld//Ldf) < (Ls//Lsf) or unordered;
C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
V := unordered;
if unordered then

Invalid Operation exception;

result := Ld - Ls;
Z := Ld = Ls and not unordered;
N := Ld < Ls or unordered;
C := Ld < Ls and not unordered;
V := unordered; -- no exception

result := (Ld//Ldf) - (Ls//Lsf);
Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
N := (Ld//Ldf) < (Ls//Lsf) or unordered;
C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
V := unordered; -- no exception

3-46 CHAPTER3

3.33.2. Floating-Point Instructions (continued)

A floating-point instruction, except a Floating-point Compare, can raise any of the
exceptions Invalid Operation, Division by Zero, Overflow, Underflow or Inexact. FCMP
and FCMPD can raise only the Invalid Operation exception (at unordered). FCMPU and
FCMPUD cannot raise any exception.

At an exception, the following additional action is performed:

o Any corresponding accrued-exception flag whose corresponding trap-enable flag is zero
(not enabled) is set to one; all other accrued-exception flags remain unchanged.

o If a corresponding trap-enable flag is one (enabled), any corresponding actual-exception
flag is set to one; all other actual-exception flags are cleared. The destination remains
unchanged.
In the present software version, the software emulation routine must branch to the
corresponding user-supplied exception trap handler. The (modified) result, the source
operand, the stack address of the destination operand and the address of the floating­
point instruction are passed to the trap handler. In the future hardware version, a trap to
Range Error will occur; the Range Error handler will then initiate re-execution of the
floating-point instruction by branching to the entry of the corresponding software
emulation routine, which will then act as described before.

The only exceptions that can coincide are Inexact with Overflow and Inexact with
Underflow. An Overflow or Underflow trap, if enabled, takes precedence over an Inexact
trap; the Inexact accrued-exception flag G2(0) must then be set as well.

INSTRUCTION SET 3-47

3.33.2. Floating-Point Instructions (continued)

The table below shows the combinations of Floating-Point Compare and Branch in­
structions to test all 14 floating-point relations:

relation Compare Branch Branch exception
on true on false if unordered

= FCMPU BE BNE --
?t:. FCMPU BNE BE --
> FCMP BGT BLE x

;:: FCMP BGE BLT x

< FCMP BLT BGE x

$ FCMP BLE BGT x

? FCMPU BV BNV --

t:. FCMP BNE BE x

<=> FCMP -- -- x

?> FCMPU BHT BSE --
?;:: FCMPU BHE BST --
?< FCMPU BLT BGE --
?::;; FCMPU BLE BGT --
?= FCMPU BE,BV BST, BGT --

The symbol ? signifies unordered.

Note: At the test<=> (ordered), no branch after FCMP is required since the result of the
test is an Invalid Operation exception occurred or not occurred.

EXCEPTIONS 4-1

4. Exceptions

4.1. Exception Processing
Exceptions are events which redirect the flow of control to a supervisor subprogram
associated with the type of exception, that is, a trap occurs as a response to the exception.
(See a detailed description of exceptions further below.) If exceptions coincide, the
exception with the highest priority takes precedence over all exceptions with lower
priority.

Processing of an exception proceeds as follows:

The entry address (see section 2.4. Entry Tables) of the associated subprogram is placed in
the program counter PC and the supervisor-state flag S is set to one. The old PC is saved in
the register addressed by FP +FL; the old S flag is also saved in bit zero of this register.
The old status register SR is saved in the register addressed by FP + FL + 1 (FL = 0 is
interpreted as FL= 16); the saved instruction-length code ILC contains (in general, see
section 4.3. Exception Backtracking) the instruction-length code of the preceding
instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to two,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag Lis set to one. All condition flags remain unchanged.

Operation

PC :=entry address of exception subprogram;
s := 1;
(FP + FL)" :=old PC(31 .. 1)//old S;
(FP + FL + 1)" := old SR;
FP := FP +FL; -- FL= 0 is treated as FL= 16
FL:= 2;
M :=0;
T:=O;
L := 1;

Note: At the new stack frame, the saved PC can be addressed as LO and the saved SR as
Ll. Since FL= 2, no other local registers are free for use.

A Frame instruction must be executed before the interrupt-lock flag L is cleared, before
any Call, Trap, Software instruction or any instruction with the potential to cause an
exception is executed. Otherwise, the beginning of the register part of the stack at the SP
could be overwritten without any warning.

An entry caused by an exception can be differentiated from an entry caused by a Trap
instruction by the value of FL: FL is set to two by an exception and set to six by a Trap
instruction.

4-2 CHAPTER4

4.2. Exception Types
The following exception are types ordered by priorities, Reset has the highest priority. In
case of coincidential exceptions, higher-priority exceptions overrule lower-priority
exceptions.

4.2.1. Reset

A Reset exception occurs on a transition of the RESET# signal from low to high or as a
result of a watchdog overrun. It overrules all other exceptions and is used to start execution
at the Reset entry.

The load and store pipelines are cleared and all bits of the BCR, FCR and MCR are set to
one; all other registers and flags, except those set or cleared explicitly by the exception
processing itself, remain undefined and must be initialized by software.

Note: The frame pointer FP can only be set to a defined value by restoring it from the FP in
the return SR through a Return instruction.

4.2.2. Range, Pointer, Frame and Privilege Error

These exceptions share a common entry since they cannot occur coincidentally at the same
instruction. The error-causing instruction can be identified by backtracking.

A Range Error exception occurs when an operand or result exceeds its value range.

A Pointer Error is caused by an attempted memory access using an address register (Rd or
Ld) with the content zero. The memory is not accessed, but the content of the address
register is updated in case of a postincrement or next address mode.

A Frame Error occurs when the restructuring of the stack frame reaches or exceeds the
upper bound UB of the memory part of the stack. No further Frame instruction must be
executed by the error routine for Pointer, Frame and Privilege Error before the UB is set to
a higher value and thus, an expanded stack frame fits into the higher stack bound.

A Privilege Error occurs when a privileged operation is executed in user or on return to
user state (see section 1.5. Privilege States for details).

4.2.3. Extended Overflow

An Extended Overflow condition is raised on an overflow caused by an add or subtract
operation as part of the execution of one of the Extended instructions EMAC through
EHCFFTD when the Extended Overflow exception is enabled. The Extended Overflow
exception is enabled by clearing bit 16 of the function control register FCR to zero.

When the Extended Overflow exception is blocked by a higher-priority exception or by the
L flag being set, the Extended Overflow condition is saved internally; the exception trap
occurs then when the blocking is released.

The Extended Overflow condition is cleared by the exception trap or by setting FCR(l6) to
one (disabled).

EXCEPTIONS 4-3

4.2.3. Extended Overflow (continued)

The Extended Overflow exception trap occurs asynchronously to the causing instruction;
thus, the causing instruction cannot be identified by backtracking. Usually, there is only
one instruction in a loop which can cause an Extended Overflow exception; thus, a handler
can identify that instruction. When a second Extended Overflow condition is raised before
the first one caused a trap, it is ored and only one trap is taken.

4.2.4. Parity Error

A Parity Error exception can be enabled individually for each of the memory areas
MEMO .. MEM3. When enabled, a parity error on an access to the corresponding memory
area causes a Parity Error exception.

When the Parity Error exception is blocked by a higher-priority exception or by the L flag
being set, the Parity Error condition is saved internally, the exception trap occurs then
when the blocking is released.

The Parity Error condition is cleared only by the exception trap; it is not cleared by setting
any of the disable bits 31 .. 28 in the BCR after a Parity Error condition is saved internally.

The Parity Error exception trap occurs asynchronously to the causing memory instruction.
Since memory accesses are pipelined, a Parity Error exception cannot be related to a
specific memory instruction.

4.2.5. Interrupt

An Interrupt exception is caused by an external interrupt signal, by the timer interrupt or by
an 103 Control Mode. Since the interrupt-lock flag Lis set by the exception processing, no
further interrupts can occur until the L flag is cleared. The interrupt exception processing
sets also the interrupt-mode flag I to one. See also sections 2.4. Entry Tables, 5. Timer and
6.9. Bus Signals.

The I flag is used by the operating system, it must not be cleared by the interrupt handler.
A Return instruction restores the old value from the saved SR automatically.

4.2.6. Trace Exception

A Trace exception occurs after each execution of an instruction except a Delayed Branch
instruction when the trace mode is enabled (trace flag T = 1) and the trace pending flag Pis
one. After a Call instruction, a Trace exception is suppressed until the next instruction is
executed regardless of the trace mode being enabled; the T flag is not affected.

The P flag in the saved return status register SR must be cleared by the trace handler to
prevent tracing the same instruction again.

The instruction preceding the Trace exception cannot be backtracked since only potentially
error-causing instructions can and need be backtracked.

4-4 CHAPTER4

4.3. Exception Backtracking

In the case of a Pointer, Frame, Privilege and Range Error exception caused by a delay
instruction succeeding a delayed branch taken, the location of the saved PC contains the
address of the delay instruction and the saved instruction length code ILC contains the
length of the Delayed Branch instruction (in halfwords).

In the case of all other exceptions, the location of the saved PC contains the return address,
that is, the address of the instruction which would have been executed next if the exception
had not occurred. The saved ILC contains the length of the last instruction except when the
last instruction executed was a branch taken; a Return instruction clears the ILC and thus,
the saved ILC after a Return instruction contains zero.

An exception caused by a Pointer, Frame, Privilege or Range Error, except following a
Return instruction, can be backtracked. For backtracking, the content of the adjusted saved
ILC is subtracted from the address contained in the location of the saved PC.

If the backtrack-address calculated in this way points to a Delayed Branch instruction, the
error-causing instruction is a delay instruction with a preceding delayed branch taken and
the address contained in the location of the saved PC points to the address of this delay
instruction.

If the backtrack-address calculated does not point to a Delayed Branch instruction, it points
directly to the error-causing instruction. This instruction is then either not a delay
instruction or a delay instruction with the preceding delayed branch not taken.

The error-causing instruction can then be inspected and the cause of an error analyzed in
detail.

In the case of a Privilege Error, the ILC must be tested for zero to single out an exception
caused by a Return instruction before backtracking. Thus, an exception caused by a Return
instruction can be identified. However, it cannot be backtracked to the instruction address
of the Return instruction because the return address saved does not succeed the address of
the Return instruction. All other branching instructions cannot be backtracked either. Since
these instructions cause no errors, backtracking is not required.

The stack address of a local register denoted by a backtracked instruction can be calculated
according to the following formula:

stack address of preceding stack frame := stack address of
current stack frame - (((FP - saved FP) modulo 64) • 4);

-- bits 5 .. 0 of the difference (FP - saved FP) are used zero-expanded
-- * 4 converts word difference => byte difference
-- the stack address of the current stack frame is provided by the

Set Stack Address instruction
stack address of local register := stack address of preceding
stack frame+ (local register address code * 4);

-- * 4 converts local register word offset => byte offset

Note: Backtracking allows a much more detailed analysis of error causes than a more
differentiated trapping could provide. Exception handlers can get more information about
error causes and the precise messages required hy most programming languages can he
easily generated.

TIMER 5-1

5. Timer

5.1. Overview
The on-chip timer is controlled via three registers:

Timer prescaler register TPR G2 l

Timer register TR G23

Timer compare register TCR G22

G21..G23 can be addressed only via the high global flag H by a MOV or MOVI
instruction. The content of G21 (timer prescaler register) cannot be read.

5.1.1. Timer Prescaler Register TPR

The write-only TPR adapts the timer clock to different processor clock frequencies. Only
bit positions 23 .. 16 are used, all other bits are reserved and must be zero on a move to the
TPR.

The TPR operates from the processor clock input CLKIN and divides the processor clock
according to:

frequency of timer clock :=frequency of processor clock divided by (n+2)

n is the value to be loaded into the TPR at the bit positions 23 .. 16, it is calculated according
to the formula:

n = (time unit * frequency of processor clock) - 2

time unit is the basic time interval for the timer operation

n must be in the range of 2 .. 255.

5.1.2. Timer Register TR

The TR is a 32-bit register which is incremented by one on each time unit modulo 232. Its
content can be used as the lower word of a double-word integer, representing the time
inclusive date.

The TPR and the TR should be set only once on system initialization, whereby the
following instruction sequence must be observed strictly (interrupts must be locked out):

FETCH 4
ORI SR,
MOV TPR,
ORI SR,
MOV TR,

$20
Lx

$20
Ly

set H-flag
load prescaler register from local register x
set H-flag
load timer register from local register y

Note: The Fetch instruction is necessary to prevent insertion of idle cycles during the
prescripted instruction sequence.

5-2 CHAPTERS

5.1.3. Timer Compare Register TCR

The content of the TCR is compared continuously with the content of the timer register
TR. An unsigned modulo comparison is performed according to:

result(31 .. 0) := TR(31 .. 0) - TCR(31 .. 0)

On result(31) = 0, the TR is higher than or equal to the TCR.

When the timer interrupt is enabled (FCR(23) = 0) and the value in the TR is higher than or
equal to the value in the TCR, a timer interrupt is generated. This interrupt is cleared by
loading the TCR with a value higher than the current content of the TR.

Timer interrupts can be masked out by FCR(23) = 1; FCR(23) is set to one on Reset. The
timer interrupt disable bit FCR(23) does not affect the timer and compare function.

A delay time in the TCR is calculated according to the formula:

TCR :=current content of TR + number of delay time units

The maximum number of delay time units allowed for this calculation is 231 -1.

For example:

TR(31..0) hex FFFF FFOO

delay time units (= 1000) = hex 0000 03E8

TCR(31..0) hex 0000 02E8

Since the modulo comparison is an unsigned operation, only unsigned arithmetic must be
used for calculations with timer and timer compare values. Do not use the N or C flag to
test for the result of the comparison TR - TCR, use only result bit 31 !

BUS INTERFACE 6-1

6. Bus Interface

6.1. Bus Control General
The processor provides on-chip all functions for controlling memory and peripheral
devices, including RAS-CAS multiplexing, DRAM refresh and parity generation and
checking. The number of bus cycles used for a memory or VO access is also defined by the
processor, thus, no external bus controllers are required. All memory and peripheral
devices can be connected directly, pin by pin, without any glue logic.

The memory address space is divided into five partitions as follows:

Address (hex) Address Space Memory Type

0000 0000 .. 3FFF FFFF Address Space MEMO ROM, SAAM, DRAM

4000 0000 .. 7FFF FFFF Address Space MEM1 ROM, SAAM

8000 0000 .. BFFF FFFF Address Space MEM2 ROM, SAAM

COOO 0000 . .DFFF FFFF Address Space IRAM Internal RAM (IRAM)

EOOO 0000 .. FFFF FFFF Address Space MEM3 ROM, SAAM

Table 6.1: Memory Address Spaces

The bus timing, refresh control and parity error disable for memory access is defined in the
bus control register BCR. The bus timing for VO access is defined by address bits in the
VO address.

On a memory or VO access, the address bus signals are valid through the whole access. On
a memory access, the chip select signal for the selected memory area MEMO .. MEM3 is
switched to low through the whole access. On a write access to memory or VO, the data
bus and the parity signals are also activated and the write enable signal WE# is switched to
low through the whole access.

A bus wait cycle is inserted automatically to guarantee a minimum of one idle cycle
between the end of an output enable signal (OE#, IORD#, CASx# at read) and the
beginning of a subsequent write access. After a DRAM read access with an access time > 2
cycles, an additional bus wait cycle is inserted.

6.1.1. SRAM and ROM Bus Access

On a one-cycle SRAM or EPROM read access, the output enable signal OE# is switched to
low during the second half of the access cycle; on a multi-cycle read access, OE# is
switched to low after the first access cycle and remains low through the rest of the
specified access cycles. On a SRAM write access, the write enable signals WEO# .. WE3#
corresponding to the bytes to be written are switched to low analogous to the OE# signal
for single and multiple access cycles.

For memory area MEM2, an address setup cycle preceding the access cycles can be
specified. For MEMO .. MEM3, bus hold cycles can be specified. Bus hold cycles are
additional cycles succeeding the access cycles where neither OE# nor WEO# .. WE3# is low
but all other bus signals are asserted. The bus hold cycles can be specified to be skipped or·
enforced. (see section 6.4.7. MEMx Bus Hold Break).

6-2 CHAPTER6

6.1.2. DRAM Bus Access

A DRAM access to the same DRAM page as addressed by the previous DRAM access is
executed as fast page mode access. See bus control register BCR(17 .. 16) for the access
time and low-cycles of the CASx# signals. CASO# .. CAS3# signals enable the
corresponding memory bytes 0 .. 3.

A RAS access occurs when the DRAM page is different from the previously accessed
DRAM page. The RAS# signal is switched to high for the number of specified precharge
cycles. The high-order row address bits are multiplexed to the bit positions of the low­
order column address bits according to the specified page size after the first bus cycle until
the end of the specified RAS-to-CAS delay cycles. After the RAS-to-CAS delay cycles, the
column address bits are available on the low-order bit positions and the CAS access cycle
begins.

The row address bits are available at the high-order bit positions for the whole DRAM
access. After a DRAM access, the addressed DRAM page is being available for fast page
mode accesses to the same page until either a new DRAM page is addressed, the processor
is released to another bus master for DMA or a DRAM refresh takes place.

See also section 6.10. Bus Cycles.

Note: The multiplexed row address bits are not in any specific order.

6.1.3. 1/0 Bus Access

The bus timing for an 1/0 access is specified by bits 10 .. 3 of the 1/0 address.

On an 1/0 access, the 1/0 read strobe IORD# or the 1/0 write strobe IOWR# is switched
low for a read or write access respectively after the first access cycle and remains low for
the rest of the specified access cycles. The beginning of the IORD# or IOWR# signal can
be delayed by more than one cycle by specifying additional address setup cycles preceding
the access cycles. The beginning of the next bus access can be delayed by specifying bus
hold cycles succeeding the access cycles. Bus hold cycles are required by many 1/0 devices
due to the time required to switch from driving the data bus to threestate.

When an 1/0 device requires R/W# direction and data strobe control, IORD# can be
specified (by address bit 10 = 1) as data strobe. WE# is then used as R/W# signal.

BUS INTERFACE 6-3

6.2. 1/0 Bus Control

With I/O addresses, address setup, access and bus hold time can be specified by bits in the
I/O address as follows:

25

Reserved (must be 0)

1/0 Address and/or 1/0 Chip Select
E1-16: 6 Bits
E1-32: 10 Bits

1/0 Register Address

Reserved for System Peripheral

Reserved (must be 0)

Peripheral Device Control Mode
0 = IORD# I IOWR# Strobe Control
1 = R/W# I Data Strobe Control

21 15 131211 10 9 8 7

Address Setup Time before Read or Write Access
00 = 0 cycles
01 = 2 cycles
10 = 4 cycles
11 = 6 cycles

Access Time for Read or Write Access
000 = 2 cycles
001 = 4 cycles
010 = 6 cycles
011 = 8 cycles
100 = 1 0 cycles
101 = 12 cycles
110 = 14 cycles
111 = 16 cycles

Bus Hold Time after Read or Write Access
when Access Time less or equal 8 cycles:
00 = reserved
01 = 1 cycles
10 = 2 cycles
11 = 3 cycles
when Access Time greater 8 cycles:
00 = reserved
01 = 5 cycles
10 = 6 cycles
11 = 7 cycles

Reserved for Internal Use (must be 0)

Figure 6.1: 1/0 Bus Control

5 4 3 2 0

Reserved bits must always be supplied as zero when specifying an I/O address in a
program.

6-4 CHAPTERS

6.3. Bus Control Register BCR
Global register G20 is the write-only bus control register BCR. The BCR defines the
parameters (bus timing, refresh control, page fault and parity error disable) for accessing
external memory located in address spaces MEMO .. MEM3.

All bits of the BCR are set to one on Reset. They are intended to be initialized according to
the hardware environment.

The parity checks can be enabled or disabled separately for each of the four address spaces
MEMO .. MEM3.

Bits Name Description

31 Mem3ParityDisable Parity check disable for address space MEM3
1 =disabled
O =enabled

30 Mem2ParityDisable Parity check disable for address space MEM2
1 =disabled
O =enabled

29 Mem1 ParityDisable Parity check disable for address space MEM1
1 =disabled
0 =enabled

28 MemOParityDisable Parity check disable for address space MEMO
1 =disabled
O =enabled

27 .. 24 Mem3Access Access time for address space MEM3
1111 = 16 clock cycles
111 o = 15 clock cycles
1101 = 14 clock cycles
1100 = 13 clock cycles
1011 = 12 clock cycles
1010 = 11 clock cycles
1001 = 10 clock cycles
1000 = 9 clock cycles
0111 = 8 clock cycles
011 O = 7 clock cycles
0101 = 6 clock cycles
0100 = 5 clock cycles
0011 = 4 clock cycles
001 O = 3 clock cycles
0001 = 2 clock cycles
0000 = 1 clock cycle

BUS INTERFACE 6-5

6.3. Bus Control Register BCR (continued)

Bits Name Description

23 Mem3Hold(2) Bus hold time code for address space MEM3 (see table 6.3)

22 .. 20 Mem2Access Access time for address space MEM2
111 = 8 clock cycles
11 O = 7 clock cycles
101 = 6 clock cycles
100 = 5 clock cycles
011 = 4 clock cycles
01 O = 3 clock cycles
001 = 2 clock cycles
000 = 1 clock cycle

19 .. 18 Mem1Access Access time for address space MEM1
11 = 4 clock cycles
1 O = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle

17 .. 16 Memo Access Access time for address space MEMO
11 = 4 clock cycles (CASx# low in cycles 3 and 4)
1 O = 3 clock cycles (CASx# low in cycles 2 and 3)
01 = 2 clock cycles (CASx# low in cycle 2)
00 = 1 clock cycle (GASx# low in second half of cycle)

15 Mem1Hold Bus hold time for address space MEM1
1 = 1 clock cycle
O = O clock cycles

14 Mem2Setup Address setup time for address space MEM2
1 = 1 clock cycle
O = O clock cycles

13 .. 12 Refresh Select Refresh rate select (GAS before RAS refresh)
00 =Refresh every 512 clock cycles
01 = Refresh every 256 clock cycles
10 = Refresh every 128 clock cycles
11 = Refresh disabled

11 .. 10 RasPrecharge RAS precharge time for address space MEMO
(when MEMO is a DRAM type)
11 = 4 clock cycles
10 = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle
Bus hold time for address space MEMO
(when MEMO is not a DRAM type)
11 = 3 clock cycles
1 O = 2 clock cycles
01 = 1 clock cycle
00 = O clock cycles

9 .. 8 RasToGas RAS to GAS delay time
11 = 4 clock cycles
1 O = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle

6-6 CHAPTER 6

6.3. Bus Control Register BCR (continued)

Bits Description

7 reserved, must be 1

6 .. 4 PageSizeCode Page size code (see table 6.4)

3 .. 2 Mem3Hold(1 .. 0) Bus hold time code for address space MEM3 (see table 6.3)

1..0 Mem2Hold Bus hold time for address space MEM2
11 = 3 clock cycles
10 = 2 clock cycles
01 = 1 clock cycle
00 = O clock cycles

Table 6.2: Bus Control Register BCR

The bus hold time for address space MEM3 is specified by bits 23 and 3 .. 2 in the BCR as
follows:

BCR(23) BCR(3.-2) Bus Hold Time

1 11 7 clock cycles

1 10 6 clock cycles

1 01 5 clock cycles

1 00 4 clock cycles

0 11 3 clock cycles

0 10 2 clock cycles

0 01 1 clock cycle

0 00 O clock cycles

Table 6.3: Bus Hold Time for MEM3

BUS INTERFACE 6-7

6.3. Bus Control Register BCR (continued)

The DRAM type used and the physical page size of the DRAM are specified by bits 6 . .4 in
the BCR. Table 6.4 shows the encoding of BCR(6 .. 4) and the associated column address
ranges for memory areas with bus sizes of 32, 16 and 8 bits.

Column Address Range

BCR(6 .. 4) 32-bit Bus Size 16-bit Bus Size 8-bit Bus Size

000 A15 .. A2 A15 .. A1 A15 .. AO

001 A14 .. A2 A14 .. A1 A14 .. AO

010 A13 .. A2 A13 .. A1 A13 .. AO

011 A12 .. A2 A12 .. A1 A12 .. AO

100 A11..A2 A11..A1 A11..AO

101 A10 .. A2 A10 .. A1 A10 .. AO

110 A9 .. A2 A9 .. A1 A9 .. AO

111 A8 .. A2 A8 .. A1 A8 .. AO

Table 6.4: Column Address Ranges

6-8 CHAPTER 6

6.4. Memory Control Register MCR
Global register G27 is the write-only memory control register MCR. The MCR controls
additional parameters for the external memory, the internal memory refresh rate, the
mapping of the entry table and the processor power management. All bits of the MCR are
set to one on Reset. They must be initialized according to the hardware environment and
the desired function. The reserved bits must not be changed when the MCR is updated.

Bits

31..26

25

24

23

22 PowerDown

21 MEMOMemoryType

20 IRAMRefreshTest

19

18 .. 16 I RAM Refresh Rate

15

14 .. 12 EntryTableMap

11 MEM3BusHoldBreak

10 MEM2BusHoldBreak

9 MEM1 BusHoldBreak

8 MEMOBusHoldBreak

Description

reserved

1 = Rail-to-Rail
0= Reduced

1 = Input threshold according to VDD=5.0V
o = Input threshold according to VDD=3.3V

reserved

1 = Processor is active
O = Processor is in power-down mode

1 =Non-DRAM
O=DRAM

1 = Normal Mode
0 =Test Mode

reserved

111 = Disabled
11 O = Refresh every 2 clock cycles
101 = Refresh every 4 clock cycles
100 = Refresh every 8 clock cycles
011 = Refresh every 16 clock cycles
010 =Refresh every 32 clock cycles
001 =Refresh every 64 clock cycles (recommended refresh rate)
000 = Refresh every 128 clock cycles

reserved

111 = MEM3
110 = reserved
101 = reserved
100 = reserved
011 = Internal RAM (IRAM)
010= MEM2
001 = MEM1
000= MEMO

1 = Break Disabled
0 = Break Enabled

1 = Break Disabled
0 = Break Enabled

1 = Break Disabled
O = Break Enabled

1 = Break Disabled
O = Break Enabled

BUS INTERFACE 6-9

6.4. Memory Control Register MCR (continued)

Bits Name Description

7 .. 6 MEM3BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

5 . .4 MEM2BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

3 .. 2 MEM1 BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

1..0 MEMOBusSize 11 = 8 bit
10 = 16 bit
01 =reserved
00 = 32 bit

Table 6.5: Memory Control Register MCA

6.4.1. Output Voltage

Bit 25 of the MCR controls the voltage of the output signals. The default setting is rail-to
rail. At a supply voltage of 5V, MCR(25) must be cleared to reduce the high-output signal
in order to save on switching power consumption.

6.4.2. Input Threshold

Bit 24 of the MCR controls the input threshold voltage. The default setting is for a supply
voltage of 5V. MCR(24) must be cleared for a supply voltage of 3.3V.

6.4.3. Power Down

Bit 22 of the MCR controls the power-down mode. The default setting is processor active.
To switch the processor to power-down mode MCR(22) must be cleared. The switch to
power-down is initiated by a transition from MCR(22) = 1 to MCR(22) = O; thus,
MCR(22) must be restored to one for at least one cycle before a new switch to power-down
mode can occur.

In power-down mode, only the logic for the timer, 103Control modes, interrupt and refresh
is being clocked, all other clocks are disabled. The switch to power-down mode is delayed
until the memory pipeline is empty. The processor is activated temporarily for refresh and
bus arbitration cycles and is switched back to processor active by any interrupt or on Reset.
Note that MCR(22) is not switched back to one by an interrupt.

6-10 CHAPTER 6

6.4.4. IRAM Refresh Test

Bit 20 of the MCR specifies the internal RAM (IRAM) refresh test. The default setting is
normal mode, MCR(20) = 0 specifies refresh test mode.

6.4.5. IRAM Refresh Rate

Bits 18 .. 16 of the MCR specify the IRAM refresh rate in number (2 .. 128) of processor
cycles. The default setting is disabled.

6.4.6. Entry Table Map

Bits 14 .. 12 of the MCR map the entry table (see section 2.4. Entry Table) to one of the
memory areas MEMO .. MEM3 or to the IRAM. With a mapping to MEM3 (default setting),
the entry table is mapped to the end of MEM3, with all other settings, the entry table is
mapped to the beginning of the specified memory area.

6.4.7. MEMx Bus Hold Break

Bits 11..8 specify a memory bus hold break for MEM3 .. MEMO respectively. The default
setting is disabled. With enabled, bus hold cycles are skipped when the next memory access
addresses the same memory area. Regularly, the bus hold break should be enabled; it must
only be left disabled to accomodate (rare) SRAMs or ROMs which need all specified cycles
before a new access can be started (e.g. for charge restore).

BUS INTERFACE 6-11

6.5. Input Status Register ISR
Global register G25 is the read-only input status register ISR. The ISR reflects the input
levels at the pins 101..103 as well as the input levels at the four interrupt pins INT1..INT4
and contains the EventFlag and the EqualFlag. In the present version reserved bits are read
as zeros.

The input levels are not affected by the polarity bits in the FCR register, they reflect always
the true signal level at the corresponding pins with a latency of 2 .. 3 cycles, a l signals high
level.

Bits Name Description

31..9 ~ reserved

8 EventFlag Set to 1 in 103Timing Mode when 103Level is equal to 103Polarity
Cleared to Oby FCR(13) = 1 or write to the WCR

7 Equal Flag Set to 1 in 103Timing or 103Timerlnterrupt Mode when
WCR(15 .. 0) = TR(15 .. 0)
Cleared to Oby FCR(13) = 1 or write to the WCR

6 103Level Reflects the signal level at the 103 Pin
1 = High Level
O =Low Level

5 102Level Reflects the signal level at the 102 Pin
1 = High Level
0 =Low Level

4 101Level Reflects the signal level at the 101 Pin
1 = High Level
O =Low Level

3 lnt4Level Reflects the signal level of interrupt input INT4
1 = High Level
0 =Low Level

2 lnt3Level Reflects the signal level of interrupt input INT3
1 = High Level
O =Low Level

1 lnt2Level Reflects the signal level of interrupt input INT2
1 = High Level
O =Low Level

0 lnt1Level Reflects the signal level of interrupt input INT1
1 = High Level
O =Low Level

Table 6.6: Input Status Register ISR

6-12 CHAPTER 6

6.6. Function Control Register FCR
Global register G26 is the write-only function control register FCR. The FCR controls the
polarity and function of the 1/0 pins I01..I03 and the interrupt pins INT1..INT4, the timer
interrupt mask and priority, the bus lock and the Extended Overflow exception. All bits of
the FCR are set to one on Reset. They must be initialized according to the hardware
environment and the desired function. The reserved bits must not be changed when the
FCR is updated.

Each of the four interrupt pins INT1..INT4 can cause a processor interrupt when the
corresponding interrupt mask bit is cleared. The corresponding polarity bit determines
whether the signal at the interrupt pin must be low (polarity bit = 0) or high (polarity
bit= 1) to cause an interrupt. Additionally, the internal timer interrupt can be enabled or
disabled separately.

Each of the 1/0 pins IO 1..103 can be either used as input or interrupt signal (IOxDirection
= 1) or as output (IOxDirection = 0). See section 6.9.3 Bus Signal Description for details.

Bits

31

30

29

28

27

26

25

24

23

22

21..20

19 .. 18

17

16

Name

INT4Mask

INT3Mask

INT2Mask

INT1Mask

INT4Polarity

INT3Polarity

INT2Polarity

INT1 Polarity

TINTDisable

Bus Lock

EOVDisable

Description

1 =Interrupt INT4 Disabled
O =Interrupt INT4 Enabled

1 = Interrupt INT3 Disabled
0 = Interrupt INT3 Enabled

1 = Interrupt INT2 Disabled
0 = Interrupt INT2 Enabled

1 = Interrupt INT1 Disabled
0 = Interrupt INT1 Enabled

1 = Non-Inverted (Interrupt on High Level)
O = Inverted (Interrupt on Low Level)

1 = Non-Inverted (Interrupt on High Level)
O = Inverted (Interrupt on Low Level)

1 = Non-Inverted (Interrupt on High Level)
O = Inverted (Interrupt on Low Level)

1 = Non-Inverted (Interrupt on High Level)
O = Inverted (Interrupt on Low Level)

1 =Timer Interrupt Disabled
O =Timer Interrupt Enabled

reserved

11 = Priority 6 (higher than Priority of INT1)
10 = Priority 8 (higher than Priority of INT2)
01 = Priority 1 O (higher than Priority of INT3)
00 =Priority 12 (higher than Priority of INT4)

reserved

OMA Access (see also section 6.9.3. ACT signal):
1 = Non-Locked
O = Locked out

Extended Overflow Exception:
1 =Disabled
O =Enabled

BUS INTERFACE

6.6. Function Control Register FCR (continued)

Bits

15 .. 14

13 .. 12 103Control

11

10 103Direction

9 103Polarity

8 103Mask

7

6 102Direction

5 102Polarity

4 102Mask

3

2 101 Direction

101 Polarity

0 101Mask

Description

reserved

103 Control State:
11 = 103Standard Mode
1 o = Watchdog Mode
01 = 103Timing Mode
00 = 103Timerlnterrupt Mode

reserved

1 =Input
O =Output

1 = Non-Inverted
O =Inverted

On Input:
1 = 103 Interrupt Disabled
0 = 103 Interrupt Enabled
On Output:
1 = 103 Output reflects 103Polarity
O =Reserved

reserved

1 =Input
O =Output

1 = Non-Inverted
O =Inverted

On Input:
1 = 102 Interrupt Disabled
o = 102 Interrupt Enabled
On Output:
1 = 102 Output reflects 102Polarity
O =Reserved

reserved

1 =Input
0 =Output

1 = Non-Inverted
O =Inverted

On Input:
1 = 101 Interrupt Disabled
0 = 101 Interrupt Enabled
On Output:
1 = 101 Output reflects 101 Polarity
O = Output reflects Supervisor Flag XOR NOT 101 Polarity

Table 6.7: Function Control Register FCR

6-13

6-14 CHAPTERS

6.7. Watchdog Compare Register WCR
Global register G24 is the watchdog compare register WCR. Only bits 15 .. 0 are used, bits
31..16 are reserved, they must be zero on a move to the WCR. In the present version, bits
31..16 are read as zero. The WCR is used by the 103 control modes (see section 6.8. 103
Control Modes).

6.8. 103 Control Modes
Additionally to the standard use like IOI and 102 (see section 6.9.3. Bus Signal
Description), there are special control modes in combination with the 103 pin. These
control modes are specified by FCR(13) and FCR(12).

On all 103 control modes, the watchdog compare register WCR must be set before the
control mode is specified in the FCR, otherwise the EqualFlag could be set erroneously.

The EqualFlag and the EventFlag are being cleared on all 103 control modes by either
setting FCR(13) to one or a move to the watchdog compare register WCR.

6.8.1. 103Standard Mode

FCR(13) = I, FCR(12) = 1 specifies I03Standard mode.

Standard use of 103 without any additional 103 control functions. See section 6.9.3.
signals 101..103.

6.8.2. Watchdog Mode

FCR(13) = 1, FCR(l2) = 0 specifies Watchdog mode.

A Reset exception occurs when WCR(15 .. 0) = TR(15 .. 0). The standard use of 103 is not
affected.

6.8.3. 103Timing Mode

FCR(13) = 0, FCR(12) = 1 specifies the I03Timing mode.

On 103Direction = Input:

When input signal I03Level = I03Polarity, the EventFlag ISR(8) is set and the current
contents of the TR(15 .. 0) is copied to the WCR. Thus, the time of the event indicated by
the 16 low-order bits of the TR is captured in the WCR. When WCR(15 . .Q) = TR(15 . .Q)
before the EventFlag is set, the EqualFlag ISR(7) is set. Either flag set causes an interrupt
when the 103 interrupt is enabled.

Note: The EventFlag and the EqualFlag can be used to distinguish between an input signal
transition and a timeout. The EventFlag can be set even after the EqualFlag (but not vice
versa) during the interrupt latency time; thus, when the EventFlag is set, WCR(l5 .. 0)
contains always the time when the input reached the level specified by 103Polarity. Note
that the EventFlag is immediately set on entering I03Timing mode when the input signal is
already on the specified level. WCR(l5 .. 0) must be set on a value different from the value
of the TR(l5 .. 0), otherwise the EqualFlag is set immediately. The maximum span for the
timeout is 216_1 ticks of the TR.

BUS INTERFACE 6-15

103Direction = Output:

When WCR(l5 . .Q) = TR(l5 .. 0), the EqualFlag is set and an interrupt occurs when the 103
interrupt is enabled. Additionally, an internal toggle latch is toggled. The 103 output signal
is high when the value of the toggle latch and l03Polarity are not equal, otherwise low.
Thus, each toggling causes a transition of the 103 output signal. The toggle latch is cleared
by setting FCR(13) to I.

Note: This mode can be used to create an arbitrary output signal sequence by just updating
the WCR. When the program switches to 103Standard mode after the end of a signal
sequence and the toggle latch remained set to 1, FCR(13) must be set to 1 and 103Polarity
be inverted coincidentally in the same move to FCR to avoid a transition of the 103 output
signal. The 103 interrupt must also be disabled in the same move to FCR to avoid an
interrupt from the output signal.

6.8.4. 103Timerlnterrupt Mode

FCR(l3) = 0, FCR(l2) = 0 specifies the l03Timerlnterrupt mode.

Additionally to the standard use of 103, the condition WCR(l5 . .Q) = TR(l5 .. 0) sets the
EqualFlag lSR(7) and causes an 103 interrupt regardless of the I03Mask in FCR(8).

Note: When the 103 interrupt is disabled, the 103Timerlnterrupt mode can be used
independently of the use of 103 as input or output. When the 103 interrupt is enabled, the
l03Timerlnterrupt mode can be used as a timeout for the 103 interrupt. The EqualFlag can
then be used to distinguish between timeout and an 103 interrupt.

6-16 CHAPTER 6

6.9. Bus Signals

6.9.1. Bus Signals for the E1-32 Processor

The following table is an overview of the bus signals of the hyperstone E1-32

microprocessor. For a detailed description of the function of the bus signals refer to section
6.9.3. Bus Signal Description.

The signal states are defined as I= input, 0 =output and Z =three-state (inactive).

States Pin count Signal Name Description

I 1 XTAL1/CLKIN External Crystal, optionally Clock Input

0 1 XTAL2 External Crystal

0 1 CLKOUT Clock Output

O/Z 26 A25 .. AO Address Bus

0/1 32 031 .. 00 Data Bus

0/1 4 DPO .. DP3 Parity bits

O/Z 1 RAS# DRAM RAS signal I Chip Select for MEMO

O/Z 4 CASO# .. CAS3# DRAM CAS signal for bytes 0 .. 3

OIZ 1 WE# Write Enable for DRAM and R/W# for 1/0

O/Z 3 CS1# .. CS3# Chip Select for MEM1 .. MEM3

O/Z 4 WEO# .. WE3# Write Enable for SAAM bytes 0 .. 3

O/Z 1 OE# Output Enable for SRAMs and EPROMs

O/Z 1 IORD# 1/0 Read Strobe, optionally 1/0 Data Strobe

O/Z 1 IOWR# 1/0 Write Strobe

0 1 RQST Bus Request Output

I 1 GRANT# Bus Grant Input

0 1 ACT Active as Bus Master

I 4 INT1 .. INT4 Interrupt Inputs

0/1 3 101 . .103 Programmable Input I Output

I 1 RESET# Reset Input

16 NC No Connect (not for E1 -32T)

26 VDD Power Supply Voltage

26 GND Ground

Total: 160 (144 for E1-32T)

Table 6.8: Bus Signals for the E1-32 Processor

BUS INTERFACE 6-17

6.9.2. Bus Signals for the E1-16 Processor

The following table is an overview to the bus signals of the hype/Stone E1-16

microprocessor. For detailed description of the function of the bus signals refer to section
6.9.3. Bus Signal Description.

The signal states are defined as I= input, 0 =output and Z =three-state (inactive).

States Pin count Signal-Names Description

I 1 XTAL1/CLKIN External Crystal, optionally Clock Input

0 1 XTAL2 External Crystal

0 1 CLKOUT Clock Output

O/Z 22 A21 .. AO Address Bus

0/1 16 015 .. DO Data Bus

0/1 2 DPO .. DP1 Parity bits

O/Z 1 RAS# DRAM RAS signal I Chip Select for MEMO

O/Z 2 CASO# .. CAS1# DRAM GAS signal for bytes 0 .. 1 I 2 .. 3

OIZ 1 WE# Write Enable for DRAM and R/W# for 1/0

OIZ 3 CS1# .. CS3# Chip Select for MEM1 .. MEM3

O/Z 2 WEO# .. WE1# Write Enable for SAAM bytes 0 .. 1 I 2 .. 3

O/Z 1 OE# Output Enable for SRAMs and EPROMs

O/Z 1 IORD# 1/0 Read Strobe, optionally 1/0 Data Strobe

O/Z 1 IOWR# 1/0 Write Strobe

0 1 RQST Bus Request Output

I 1 GRANT# Bus Grant Input

0 1 ACT Active as Bus Master

I 4 INT1 . .INT4 Interrupt Inputs

0/1 3 101 . .103 Programmable Input I Output

I 1 RESET# Reset Input

16 VDD Power Supply Voltage

18 GND Ground

Total: 100

Table 6.9: Bus Signals for the E1-16 Processor

6-18 CHAPTER 6

6.9.3. Bus Signal Description

The following section describes the bus signals for both the hype!Stone E1-32 and E1-16
microprocessor in detail.

In the following signal description, the signal states are defined as I = input, 0 = output and
Z =three-state (inactive).

States Names Use

I XT ALl/CLKIN Input for quartz crystal. When the clock is generated by an

0 XTAL2

0 CLKOUT

O/Z A25 .. AO

Oil D31..DO

external clock generator, XTALl is used as clock input. The
clock signal is used undivided.

Output for quartz crystal. XT AL2 is not connected when an
external clock generator is used.

Clock signal output. CLKOUT has the same cycle time as the
internal clock. It can be used to supply a clock signal to
peripheral devices.

The address bits A25 .. AO represent the address bus. An active
high bit signals a "one". AO is the least significant bit. With the
E1-16, only A22 .. AO are connected to the address bus pins.

Data bus. The signals D31..DO (D15 .. DO with the E1-16)
represent the bidirectional data bus; active high signals a "one".
At a read access, data is transferred from the data bus to the
register set or to the instruction cache only at the cycle
corresponding to the last actual read access cycle, thus inhibiting
garbled data from being transferred.
At a write access, the data bus signals are activated during the
address setup, write and bus hold cycle(s).
A halfword or byte to be written is multiplexed from its right­
adjusted position in a register to the addressed halfword or byte
position. Thus, no external multiplexing of data signals is
required.
On a 32-bit wide memory area, byte addresses 0, 1, 2 and 3
correspond to D31..D24, D23 .. Dl6, Dl5 .. D8 and D7 .. DO
respectively.
On a 16-bit wide memory area, byte address 2 and 3 in the first
access and byte addresses 0 and 1 in the second access
correspond to Dl5 .. D8 and D7 .. DO respectively.
On a 8-bit wide memory area, byte addresses 3 .. 0 correspond to
D7 .. DO in succeeding accesses.

BUS INTERFACE 6-19

6.9.3 Bus Signal Description (continued)

States Names

Oil DPO .. DP3

O/Z RAS#

Use

Data Parity signals. DPO .. DP3 represent the bidirectional parity
signals; active high indicates a "one". With the E1-32, DPO, DPl,
DP2 and DP3 correspond to D31..D24, D23 .. D16, D15 .. D8 and
D7 .. DO respectively. With the E1-16, DPO and DPl correspond
to D15 .. D8 and D7 .. DO respectively.
At a write access, all data parity signals are activated during the
address setup, write and bus hold cycles.
At a read access, the corresponding data parity signals are
evaluated at the last read access cycle when parity checking for
the addressed memory area is enabled.
Parity "odd" is used, that is, the correct parity bit is "one" when
all bits of the corresponding byte are "zero".

Row Address Strobe. Active low indicates row address strobe
asserted.
RAS# is activated high and then again low when the processor
accesses a new page in the DRAM address space, that is when
any of the (high order) RAS address bits is different from the
RAS address bits of the last DRAM access. RAS# is left lbw
after any own DRAM access.
RAS# is activated high, low and then high by a refresh cycle.
When the bus is granted to another bus master, the processor
starts the next DRAM access as a RAS access.
At any non-RAS address cycle, RAS# is left unchanged, thus, a
previously selected DRAM page is not affected.
When a SRAM is placed in memory area MEMO, RAS# is used
as the chip select signal for this SRAM.

O/Z CASO# .. CAS3# Column Address Strobe. Active low indicates column address
strobe asserted. CASO# .. CAS3# are only used by a DRAM for
column access cycles and for "CAS before RAS" refresh.
With the E1-32, CASO# .. CAS3# correspond tu the column
address enable signals for D31..D24, D23 .. Dl6, DIS .. D8 and
D7 .. DO respectively.
With the E1-16, CASO# and CAS 1# correspond to the column
address enable signals for Dl5 .. D8 and D7 .. DO respectively.

6-20 CHAPTER6

6.9.3 Bus Signal Description (continued)

States Names

O/Z WE#

O/Z CS1# •• CS3#

O/Z WEO# •• WE3#

OIZ OE#

O/Z IORD#

O/Z IOWR#

0 RQST

Use

Write Enable. WE# is signaled in the same cycle(s) as address
signals. Active low indicates a write access, active high indicates
a read access.
WE# is intended to be used as DRAM Write Enable and as
R/W# for I/O access when IORD# is specified as data strobe
(see IORD#).
Note: WE# can also be used to control bus transceivers when
peripheral devices or slow memories must be separated from the
processor data bus in order to decrease the capacitive load of the
processor data bus.

Chip Select. Chip select is signaled in the same cycle(s) as the
address signals. Active low of CS 1 # .. CS3# indicates chip select
for the memory areas MEM1..MEM3 respectively.
Note: RAS# is used as chip select for a non-DRAM memory in
MEMO.

SRAM Write Enable. Active low indicates write enable for the
corresponding byte, active high indicates write disable.
With the E1-32, WEO# .. WE3# correspond to the write enable
signals for D31..D24, D23 .. D16, D15 .. D8 and D7 .. DO
respectively.
With the E1-16, WEO# and WEl# correspond to the write enable
signals for Dl5 .. D8 and D7 .. DO respectively.

Output Enable for SRAMs and EPROMs. OE# is active low on
a SRAM or EPROM read access.

110 Read Strobe, optionally I/O data strobe. The use of IORD#
is specified in the I/O address. Bit 10 = 0 specifies 1/0 read
strobe, bit 10 = I specifies I/O data strobe. When specified as
I/O read strobe, IORD# is low on I/O read access cycles, high on
all other cycles. When specified as I/O data strobe, IORD# is
low on any I/O access cycles, high on all other cycles.
Note: When IORD# is specified as I/O data strobe, WE# can be
used as R/W# signal.

I/O Write Strobe. When specified as I/O write strobe by 1/0
address bit 10 = 0, IOWR# is active low on 1/0 write access
cycles.

RQST signals the request for a memory or I/O access. RQST is
high from the beginning of the request until the requested access
is completed.

BUS INTERFACE 6-21

6.9.3 Bus Signal Description (continued)

States Names

GRANT#

0 ACT

INT1 . .INT4

Use

Bus Grant. GRANT# is signaled low by an (off-chip) bus arbiter
to grant access to the bus for memory and 1/0 cycles. When
Grant# is switched from low to high during an access, the bus is
only released to another bus master after completion of the
current access. The GRANT# signal supplied by a bus arbiter
may be asynchronous to the clock; it is synchronized on-chip to
avoid metastability. For systems with a single bus master,
GRANT# must be tied low.
Note: GRANT# is recommended to be kept low by the bus
arbiter on the bus master with the last access; thus, any
subsequent access by the same bus master saves the
synchronisation time.

Active as bus master. ACT is signalled high when GRANT# is
low and it is kept high during a current bus access. Since
GRANT# is asynchronous, ACT follows GRANT# with a delay
of 2 .. 3 cycles. ACT is also kept high on a bus lock (FCR(17)
= 0) from the beginning of the first access after FCR(17) is

cleared to zero until the bus lock is released by setting FCR(17)
to one.
Note: When ACT transits from high to low, the address and data
bus are switched to threestate (inactive). All bus control signals
marked O/Z are driven high and then switched to threestate.
These signals are kept high by an on-chip resistor (ca. 1 MQ)
tied on-chip to Vee.

Interrupt Request. A signal of a specified level on any of the
INT1..INT4 interrupt request pins causes an interrupt exception
when the interrupt lock flag L is zero and the corrsponding
INTxMask bit in FCR is not set. The INTxPolarity bits in FCR
specify the level of the INTx signals: INTxPolarity = 1 causes
an interrupt on a high input signal level, INTxPolarity = 0
causes an interrupt on a low input signal level. INT1..INT4
may be signalled asynchronously to the clock; they are not
stored internally.
A transition of INT l .. INT4 is effective after a minimum of three
cycles. The response time may be much higher depending on the
number of cycles to the end of the current instruction or the
number of cycles until the interrupt lock flag L is cleared.
Note: The signal level of INT1..INT4 can be inspected in
ISR(O) .. ISR(4). Thus, with the corresponding INTxMask bit
set, INT1 .. INT4 can be used just as input signals.

6-22 CHAPTERS

6.9.3 Bus Signal Description (continued)

States Names

Oil 101 .. 103

I RESET#

Use

General Input-Output. I01..I03 can be individually configured
via IOxDirection bits in the FCR as either input or output pins.
When configured as input, IO 1..I03 can be used like
INT1..INT4 for additional interrupt or input signals.
When configured as output, the IOxPolarity bit in FCR specifies
the output signal level. IOxPolarity = 1 specifies a high level,
IOxPolarity = 0 specifies a low level. An output signal at IOI or
I02 cannot cause an interrupt regardless of the corresponding
IOxMask bit; however, it can be inspected as IOxLevel in ISR
(e.g. for testing).
The supervisor flag S can be switched to the IO 1 pin by
configuring IO 1 as an output and clearing the IO 1 mask.
IOlPolarity = 1 switches S non-inverted to IOI (high when
S = 1), IOlPolarity = 0 switches S inverted to IOI.
I03 can be used for various control functions, see section 6.8.
I03 Control Modes.

Reset processor. RESET# low resets the processor to the initial
state and halts all activity. RESET# must be low for at least two
cycles. On a transition from low to high, a Reset exception
occurs and the processor starts execution at the Reset entry (see
section 2.4. Entry Tables, Table 2.6.). The transition may occur
asynchronously to the clock.

BUS INTERFACE

6.1 O. Bus Cycles

6.10.1. SRAM and ROM Single-Cycle Read Access

CLK

Chip Select

Address Bus

WEO# .. WE3#

OE#

Data Bus
(read data)

Figure 6.2: SAAM and ROM Single-Cycle Read Access

6.10.2. SRAM Single-Cycle Write Access

CLK

Chip Select

Address Bus

WEO# .. WE3#

OE#

Data Bus

Figure 6.3: SAAM Single-Cycle Write Access

6-23

6·24 CHAPTER 6

6.10.3. SRAM and ROM Multi-Cycle Read Access

CLK

Chip Select

Address Bus

r----t----------t-----1---+---+----+---+········
WEO# .. WE3#

OE#

Data Bus

Address
setup time
0 .. 1 cycles

Access time
2 .. 16 cycles

Figure 6.4: SRAM and ROM Multi-Cycle Read Access

6.10.4. SRAM Multi-Cycle Write Access

CLK

Chip Select

Address Bus

WEO# .. WE3#

,.-----+----"········

,...__,_____..

Bus hold
time

0 .. 7 cycles

r---+---f----+········

+----!---+--+--+---+-------+--+----+---+·········
OE#

Data Bus

Address
setup time
0 .. 1 cycles

Figure 6.5: SRAM Multi-Cycle Write Access

Access time
2 .. 16 cycles

Bus hold
time

0 .. 7 cycles

BUS INTERFACE 6-25

6.10.5. 1/0 Read Access

CLK

,.-----------------------+---'------------- -----·
Chip Select

Address Bus

-----+---+------+---+--+---+---+--~--+-------- -----·
WE#

IORD#

Data Bus

Address
setup time
0 .. 6 cycles

Figure 6.6: 1/0 Read Access

Access time
2 .. 16 cycles

~------------- -----·

>----...------------ -----·

Bus hold
time

1 .. 7 cycles

6-26 CHAPTER 6

6.10.6. 1/0 Write Access

CLK

f-,-.___+--+---1--.......... -+---'---+---'---t-.--······-- -----·
Chip Select

Address Bus

WE#

+--+---+--+---+r---+---+l---+---+-r---1--,....---,.---···-- -----·

\---i-----t----~----- I IORD#

IOWR#

Data Bus

Address
setup time
0 .. 6 cycles

Figure 6.7: 1/0 Write Access

I i I

----1---- -----t-----f--.---+---'----------·--- -··--·

Access time
2 .. 16 cycles

Bus hold
time

1 .. 7 cycles

Note: If IORD# is used as 1/0 data strobe. IORD# instead of IOWR# is activated low.

BUS INTERFACE

6.10.7. DRAM Access

CLK

Address Bus
high order bits -

Address Bus -
low order bits -

RAS#

CASO# .. CAS3#

Page Fault
(102)

Data Bus

WE#

Data Bus
(read data)

WE#

Data Bus
(write data)

RAS precharge time
1 . .4 cycles

Figure 6.8: DRAM Access

row addre s

RAS to CAS delay time CAS access CAS access
1 . .4 cycles time time

1 . .4 cycles 1 . .4 cycles

at read access

at write access

6-27

I
I

)..----Ix:
Note: The window for PGFLT acceptance is the last cycle of the RAS-to-CAS delay time.

6-28 CHAPTER6

6.10.8. DRAM Refresh (CAS before RAS Refresh)

CLK

Address Bus

RAS#

CAS#

RAS precharge time RAS to CAS delay time CAS access
1..4 cycles 1 .. 4 cycles time

1..4 cycles

Figure 6.9: DRAM Refresh

BUS INTERFACE

6.11. DC Characteristics

Absolute Maximum Ratings

Case temperature Tc under Bias:
extended temperature range on request

Storage Temperature:

Voltage on any Pin with respect to ground:

D.C. Parameters

Supply Voltage V cc:

Case Temperature T CASE:

Symbol Parameter Min

VIL Input LOW Voltage -0.3

V1H Input HIGH Voltage 2.0

Vol Output LOW Voltage

VoH Output HIGH Voltage 2.4

Ice Power Supply Current
(5V) at Vee= 5V

CLK= 50 MHz

CLK= 25 MHz

Power Down Current
at Vee= 5V

CLK = 50 MHz

CLK= 25 MHz

Ice Power Supply Current
(3.3V) at Vee= 3.3V

CLK= 33 MHz

CLK= 25 MHz

Power Down Current
at Vee= 3.3V

CLK= 33 MHz

CLK = 25 MHz

6-29

0°c to +85°C

-65°C to + l 50°C

-0.5V to V cc + 0.5V

5V ± 0.25V or 3.3V ± 0.30V

0°c to +85°C

Max Units Notes

+0.8 v except CLKIN

Vcc+0.3 v except CLKIN

0.45 v at4mA

v at 1mA

typ. typical program

190 mA with usage of IRAM
165 mA without usage of IRAM

105 mA with usage of IRAM
80 mA without usage of IRAM

typ. IRAM DRAM
Refresh Refresh

17.5 mA disabled disabled
25.0 mA enabled disabled
29.0 mA enabled enabled

8.5 mA disabled disabled
13.5 mA enabled disabled
17.5 mA enabled enabled

typ. typical program

77 mA with usage of IRAM
64 mA without usage of IRAM

55 mA with usage of IRAM
46 mA without usage of IRAM

typ. IRAM DRAM
Refresh Refresh

7.2 mA disabled disabled
10.0 mA enabled disabled
11.5 mA enabled enabled

5.5 mA disabled disabled
7.7 mA enabled disabled

10.0 mA enabled enabled

6-30 CHAPTER 6

6.11. DC Characteristics (continued)

Symbol Parameter Min Max Units Notes

lu Input Leakage Current ±20 µA

ILO Output Leakage Current ±20 µA

CcLK Clock Capacitance 10 pF

CADR Output Capacitance 15 pF
A12 .. AO

C110 Input/output Capacitance 10 pF
all other signals

Table 6.1 O: DC Characteristics

BUS INTERFACE 6-31

6.12. AC Characteristics
The formulas for the AC-characteristics are based on a load capacity of 30 pF on the
concerned signals. To get the real timing values, the actual capacitive load must be taken
into account. This is done by the addition or subtraction of load dependent delay times,
labelled as LitN or Litp respectively (see table 6.11. Load Dependent Delay Times).

Note that only the difference between 30 pF and the actual capacity load must be used for
the calculation of the Lit values. All signals except CLKIN are referenced to 1.4V. The AC­
characteristics are based on TcAsE = 0 to 85°C, V cc= SV ± 0.25V (unless otherwise noted).

LitN 60 ps/pF

Litp 40 ps/pF

Table 6.11: Load Dependent Delay Times

Note: All signals (except the clock signal itself) are referenced to the corresponding driving
signal, not to the clock input as is usual. This method eliminates the varying delay times
between output signals relative to the clock input signal and allows more precise bus
timing definitions, resulting in faster bus cycles.

6.12.1. Processor Clock

CLKIN

tcLKWH tcLKWL

Figure 6.10: Processor Clock

Vee Symbol Description Min Time (ns) Max Time (ns)

5V±0.25V tcLK CLK period 20 1000

tcLKWH CLK high time 8 -

tcLKWL CLK low time 8 -

3.3V±0.30V tcLK CLK period 30 1000

tcLKWH CLK high time 12 -

tcLKWL CLK low time 12 -

Table 6.12: Processor Clock Times

Note: CLKIN timing is referenced to Yccf2.

6·32 CHAPTER 6

6.12.2. DRAM RAS Access

Address Bus _
(high order bits) ~ x==
WE# _____/\..___~~~~~~~~~~~~~~~~~-

Address Bus
(low order bits)-

undefined

RAS#

I.
GASO# .. GAS3#

Figure 6.11: DRAM RAS Access

Symbol Description

t1 Row Address A 12 .. AO setup time
to RAS# (min.)

12 Row Address A12 .. AO hold time
after RAS# (min.)

!3 RAS# pulse width high
(RAS# precharge) (min.)

!4 RAS# low before end of
GASO# .. GAS3# (min.)

row address

J
column address

Formula

(number of RAS precharge cycles - 1) x tcLK
+ tcLKWH + 0.5 ns + i'itN (a) . i'itp (b)

Note:
(a) refers to capacitive load on signal RAS#
(b) refers to capacitive load on signals A12 .. AO

(number of RAS to GAS delay cycles -1) x tcLK
+ tcLKWL - 1.1 ns + i'ltp (a) - i'ltN (b)

Note:
(a) refers to capacitive load on signals A 12 .. AO
(b) refers to capacitive load on signal RAS#

(number of RAS precharge cycles) x tcLK

(number of RAS to GAS delay cycles
+ access cycles - 1) x tcLK
+ tcLKWL - 2.5 ns + i'ltN (a) - i'ltN (b)

Note:
(a) refers to capacitive load on signals GASO# .. GAS3#
(b) refers to capacitive load on signal RAS#

BUS INTERFACE 6-33

6.12.3. DRAM Fast Page Mode Access

A12 .. AO
WE#

CASO# ..
CAS3#

031 . .DO
DPO .. DP3

031 . .DO
DPO .. DP3

I

~
t1

t4

..

Figure 6.12: DRAM Fast Page Mode Access

6.12.3.1. Multi-Cycle Access

Symbol Description

t1a Column address A12 .. AO
setup time to CASO# .. CAS3#

t1b WE# setup time
to CASO# .. CAS3#

t2a Column address A12 .. AO
hold time after CASO# .. CAS3#
low(min.)

t2b WE# hold time after
CASO# .. CAS3# low (min.)

column address

_., + tz _..J
t3

\ _;1
t5 __,.

t5 ty
I

write data

Formula

(number of GAS inactive cycles) x tcLK
- 0.1 ns + i'>tN (a) - i'>tp (b)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signals A 12 .. AO

(number of GAS inactive cycles) x tcLK
-1.1 ns + i'>tN (a) - t.tN (b)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signal WE#

(number of GAS active cycles) x tcLK
- 0.5 ns + i'>tp (a) - i'>tN (b)

Note:
(a) refers to capacitive load on signals A12 .. AO
(b) refers to capacitive load on signals CASO# .. CAS3#

(number of GAS active cycles) x tcLK
- 0.1 ns + i'>tN (a) - t.tN (b)

Note:
(a) refers to capacitive load on signal WE#
(b) refers to capacitive load on signals CASO# .. CAS3#

S-34 CHAPTERS

6.12.3.1. Multi-Cycle Access (continued)

Symbol Description Formula

t3 Column address A 12 .. AO valid (number of access cycles) x tcLK
before end of CASO# .. CAS3# - 0.1 ns + AtN (a)- Atp (b)
(min)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signals A12 .. AO

t4 CASO# .. CAS3# pulse width high (number of CAS inactive cycles) x tcLK - 0.1 ns
(CAS precharge) (min.)

!5 CASO# .. CAS3# pulse width low (number of CAS active cycles) x tcLK - 1.4 ns
(min.)

ts Write data 031 .. 00, OPO .. OP3 (number of CAS inactive cycles) x tcLK
setup time to CASO# .. CAS3# - 1.2 ns + AtN (a) -AtN (b)
(min.)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signals 031 .. 00,

OPO .. OP3

!7 Write data 031 .. 00, OPO .. OP3 (number of CAS active cycles) x tcLK
hold time after CASO# .. CAS3# - 0.1 ns + AtN (a) - AtN (b)
low (min.)

Note:
(a) refers to capacitive load on signals 031 .. 00,

OPO .. OP3
(b) refers to capacitive load on signals CASO# .. CAS3#

ta Read data 031 .. 00, OPO .. OP3 O ns
setup time to end of
CASO# .. CAS3# (min.)

tg Read data 031 .. 00, OPO .. OP3 O ns
hold time (min.) Note:

Read data is sampled by the skew-compensated
CASO# .. CAS3# signals and latched internally

6.12.3.2. Single-Cycle Access

Symbol Description Formula

t1a Column address A12 .. AO setup tcLKWH - 1.0 ns + AtN (a) - Atp (b)
time to CASO# .. CAS3# (min.)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signals A12 .. AO

t1b WE# setup time to tcLKWH - 1.9 ns + AtN (a) - AtN (b)
CASO# .. CAS3# (min.)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signal WE#

BUS INTERFACE 6-35

6.12.3.2. Single-Cycle Access (continued)

Symbol Description Formula

t2a Column address A12 .. AO hold tcLKWL + 0.1 ns + ~tp (a) - ~tN (b)
time after CASO# .. CAS3# low

Note:
(min.)

(a) refers to capacitive load on signals A12 .. AO
(b) refers to capacitive load on signals CASO# .. CAS3#

t2b WE# hold time after tcLKWL + 0.5 ns + ~tN (a) - ~tN (b)
CASO# .. CAS3# low (min.)

Note:
(a) refers to capacitive load on signal WE#
(b) refers to capacitive load on signals CASO# .. CAS3#

t3 Column address A12 .. AO valid tcLK - 0.1 ns + ~tN (a) - ~tp (b)
before end of CASO# .. CAS3#

Note:
(min.)

(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signals A12 .. AO

t4 CASO# .. CAS3# pulse width high tcLKWH - 0.9 ns
(GAS precharge) (min.)

ts CASO# .. CAS3# pulse width low tcLKWL - 0.9 ns
(min.)

ta Write data 031 .. 00, OPO .. OP3 tcLKWH - 2.1 ns + ~tN (a) - ~tN (b)
setup time to CASO# .. CAS3#

Note:
(min.)

(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signals 031 .. 00,

OPO .. OP3

17 Write data 031 .. 00, OPO .. OP3 tcLKWL + 0.5 ns + ~tN (a) - ~tN (b)
hold time after CASO# .. CAS3#

Note:
low(min.)

(a) refers to capacitive load on signals 031 .. DO,
OPO .. OP3

(b) refers to capacitive load on signals CASO# .. CAS3#

ta Read data 031 .. 00, OPO .. OP3 O ns
setup time to end of
CASO# .. CAS3# (min.)

lg Read data 031 .. 00, DPO .. DP3 O ns
hold time (min.) Note:

Read data is sampled by the skew-compensated
CASO# .. CAS3# signals and latched internally

6-36 CHAPTER 6

6.12.4. DRAM CAS-Before-RAS Refresh

RAS# = __/ } I

{
t1 ~1 .. tz

} CASO# .. CAS3#

Figure 6.13: DRAM GAS-Before-RAS Refresh

Symbol Description Formula

t1 CASO# .. CAS3# setup time (min.) at precharge time = 1 cycle:
tcLKWH + 1.4 ns + LltN (a) - LltN (b)

at precharge time > 1 cycle:
tcLK + tcLKWH + 1.4 ns + LltN (a) - LltN (b)

Note:
(a) refers to capacitive load on signal RAS#
(b) refers to capacitive load on signals CASO# .. CAS3#

t2 CASO# .. CAS3# hold time (min.) (number of RAS to CAS delay cycles +
access cycles -1) x tcLK
+ tcLKWL - 2.5 ns + LltN (a) - LltN (b)

Note:
(a) refers to capacitive load on signals CASO# .. CAS3#
(b) refers to capacitive load on signal RAS#

BUS INTERFACE

6.12.5. SAAM Access

CSO# .. CS3# - ~ ~

A25 .. AO -1.--t-1--.--------l .. ---t-5-~;-

'

WEO# .. WE3#

031 . .DO
OPO . .DP3

::::::::::::::::::)(~ _______ w_r_ite_d_at_a ______ ~)E:::

OE#

031 . .DO
OPO . .DP3

Figure 6.14: SAAM Access

t t
1

.. 7• .. s.

-----<(X read data)---

6-37

Note: If Mem 0 is not a DRAM type memory, the signal pin RAS# is used as chip select
CSO#.

6.12.5.1. Multi-Cycle Access

Symbol Description Formula

t1a A25_.A 13, CSO# .. CS3# setup (number of setup cycles+ 1) x tcLK
time to WEO# . .WE3#, OE# (min.) - 3.2 ns + i'.tp (a) - titN (b)

t1b Address A 12 .. AO setup time to (number of setup cycles + 1) x tcLK
WEO# . .WE3#, OE# (min.) -2.3 ns + i'.tp (a) - i'.tp (b)

Note:
(a) refers to capacitive load on signals WEO# .. WE3#,

OE#
(b) refers to capacitive load on signals A25 .. AO,

CSO# .. CS3#

6-38 CHAPTER 6

6.12.5.1. Multi-Cycle Access (continued)

Symbol Description ,., Formula

t2a A25 .. A13, CSO#"CS3# valid (number of setup cycles +access cycles) x tcLK
before end of WEO# . .WE3#, OE# - 2.6 ns + Atp (a) - AtN (b)
(min.)

t2b A 12 .. AO valid before end of (number of setup cycles +access cycles) x tcLK
WEO# .. WE3#, OE# (min.) - 1.7 ns + Atp (a) - Atp (b)

Note:
(a) refers to capacitive load on signals WEO# .. WE3#,

OE#
(b) refers to capacitive load on signals A25 .. AO,

CSO# .. CS3#

t3 031 .. 00, OPO .. OP3 valid before (number of setup cycles + access cycles) x t CLK
end of WEO# .. WE3# (min.) - 2.7 ns + Atp (a) - AtN (b)

Note:
(a) refers to capacitive load on signals WEO# . .WE3#
(b) refers to capacitive load on signal 031 .. 00,

OPO .. OP3

t4 WEO# .. WE3#, OE# pulse width (number of access cycles -1) x tcLK - 0.5 ns
low(min.)

tsa A25 .. A 13, CSO# .. CS3# hold time (number of bus hold cycles) x tcLK
after WEO# . .WE3#, OE# (min.) + 1.0 ns + AtN (a) -Atp (b)

tsb A 12 .. AO hold time after (number of bus hold cycles) x tcLK
WEO# .. WE3#, OE# (min.) + 0.7 ns + Atp (a) - Atp (b)

Note:
(a) refers to capacitive load on signals A25 .. AO,

CSO# .. CS3#
(b) refers to capacitive load on signals WEO# . .WE3#,

OE#

t5 031 . .DO, OPO .. OP3 hold time (number of bus hold cycles) x tcLK
after WEO# . .WE3# + 1.1 ns + AtN (a) -Atp (b)

Note:
(a) refers to capacitive load on signals 031 .. 00,

OPO .. OP3
(b) refers to capacitive load on signals WEO# .. WE3#

t7 Read data 031 .. 00, OPO .. OP3 O ns
setup time to end of OE# (min.)

ta Read data 031 . .DO, OPO .. OP3 O ns
hold time (min.)

Note:
Read data is sampled by the skew-compensated OE#
signal and latched internally

BUS INTERFACE 6-39

6.12.5.2. Single-Cycle Access

Symbol Description Formula

t1a A25 .. A 13, CSO# .. CS3# setup (number of setup cycles) x tcLK + tcLKWH
time to WEO# .. WE3#, OE# (min.) - 4.1 ns + Atp (a) - AtN (b)

t1b A12 .. AO setup time to (number of setup cycles) x tcLK + tcLKWH
WEO# .. WE3#, OE# (min.) - 3.2 ns +Alp (a) - Atp (b)

Note:
(a) refers to capacitive load on signals WEO# .. WE3#,

OE#
(b) refers to capacitive load on signals A25 .. AO,

CSO# .. CS3#

l2a A25 .. A 13, CSO# .. CS3# valid (number of setup cycles + 1) x tcLK
before end of WEO# .. WE3#, OE# - 2.6 ns +Alp (a) - AtN (b)
(min.)

t2b A 12 .. AO valid before end of (number of setup cycles + 1) x tcLK
WEO# .. WE3#, OE# (min.) -1.7 ns + Atp (a) - Atp (b)

Note:
(a) refers to capacitive load on signals WEO# .. WE3#,

OE#
(b) refers to capacitive load on signals A25 .. AO,

CSO# .. CS3#

!3 031 .. 00, OPO .. OP3 valid before (number of setup cycles + 1) x tcLK
end of WEO# ... WE3# (min.) - 2.8 ns + Atp (a) - AtN (b)

Note:
(a) refers to capacitive load on signals WEO# .. WE3#
(b) refers to capacitive load on signals 031 .. 00,

OPO .. OP3

!4 WEO# .. WE3#, OE# pulse width tcLKWL + 0.5 ns
low (min.)

Isa A25 .. A 13, CSO# .. CS3# hold time (number of bus hold cycles) x tcLK
after WEO# .. WE3#, OE# (min.) + 1.1 ns + AtN (a) -Atp (b)

tsb A12 .. AO hold time after (number of bus hold cycles) x tcLK
WEO# .. WE3#, OE# (min.) + 0.7 ns + Atp (a) - Atp (b)

Note:
(a) refers to capacitive load on signals A25 .. AO,

CSO# .. CS3#
(b) refers to capacitive load on signals WEO# .. WE3#,

OE#

!5 031 .. 00, OPO .. OP3 hold time (number of bus hold cycles) x tcLK
after WEO# .. WE3# (min.) + 1.2 ns + AtN (a) - Atp (b)

Note:
(a) refers to capacitive load on signals 031 .. DO,

OPO .. OP3
(b) refers to capacitive load on signals WEO# ... WE3#

6-40 CHAPTERS

6.12.5.2 Single-Cycle Access (continued)

Symbol Description Formula

t1 Read data 031 .. 00, OPO .. OP3 O ns
setup time to end of OE# (min.)

ta Read data 031 .. 00, OPO .. OP3 0 ns
hold time (min.) Note:

Read data is sampled by the skew-compensated OE#
signal and latched internally

6.12.6. 1/0 Access

A25 .. A13
WE# ~__,X~------------------------__,X.__~

IOWR#,
IORO#

031 .. 00

031 .. 00
~ -----<(X read data)---

Figure 6.15: 1/0 Access

Symbol Description Formula

t, A25 .. A 13, WE# setup time (number of setup cycles + 1) x tcLK
before IOWR#, IORO# (min.) - 1.1 ns + titN (a) - titN (b)

Note:
(a) refers to capacitive load on signals IOWR#,

IORO#
(b) refers to capacitive load on signals A25 .. A13

t2 A25 .. A 13, WE# hold time after (number of bus hold cycles) x tcLK
IOWR#, IORO# (min.) - 0.5 ns + titN (a) - titN (b)

Note:
(a) refers to capacitive load on signals A25 .. A 13
(b) refers to capacitive load on signals IOWR#,

IORO#

t3 IOWR#, IORO# pulse width low (number of access cycles - 1) x tcLK
(min.) - 2.0 ns

BUS INTERFACE 6-41

6.12.6 1/0 Access (continued)

Symbol Description Formula

t4 Write data 031 .. 00 setup time (number of setup cycles+ access cycles) x tcLK
to end of IOWR# (or IORO# - 1.0 ns + AtN (a) - AtN (b}
if used as data strobe) (min.)

Note:
(a) refers to capacitive load on signal IOWR#

(IORO#)
(b} refers to capacitive load on signals 031 .. 00

t5 Write data 031 .. 00 hold time (number of bus hold cycles) x tcLK
(min) + 0.1 ns + AtN (a) -AtN (b}

Note:
(a) refers to capacitive load on signals 031 .. 00
(b) refers to capacitive load on signal IOWR#

(IORO#)

ta Read data 031 .. 00 setup time to O ns
end of IORO# (min.)

ty Read data 031..00 hold time 0 ns
(min.) Note:

Read data is sampled by the skew-compensated
IORO# signal and latched internally

MECHANICAL DATA

7. Mechanical Data

7.1. hype1Stone E1-32N, 160-Pin PQFP-Package

7.1.1. Pin Configuration - View from Top Side

vcc
GND

NC
NC

WE#
GND
A13
ACT
vcc
GND
A14

CASO#
vcc

WE1#
WEO#
GND

A4
A5
A6

vcc
A7
AB

A22
VCC
GND
A23
A24

GND
A25
A15
A16
vcc
GND
A17
A18

VCC
NC
NC

GND
vcc

~~~~~~~~~~~g~~~~~s~osm~~~~~~~mgm~~~~~~~~ 
121- - - - - - - - - - - - - - - - - - - - -
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160. 

hyperstone 
E1-32N 

Figure 7.1: hype/Stone E1-32N, 160-Pin PQFP-Package 

7-1 

80 vcc 
79 GND 
78 NC 
77 NC 
76 VCC 
75 GRANT# 
74 RESET# 
73 GND 
72 vcc 
71 DP3 
70 DP2 
69 019 
68 GND 
67 020 
66 021 
65 GND 
64 vcc 
63 DO 
62 01 
61 02 
60 vcc 
59 03 
58 04 
57 05 
56 GND 
55 022 
54 023 
53 vcc 
52 024 
51 06 
50 GND 
49 vcc 
48 07 
47 DB 
46 GND 
45 09 
44 NC 
43 NC 
42 GND 
41 VCC 



7-2 CHAPTER 7 

7.1.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

A0 ................... 97 05 ..................... 57 GN0 .................. 65 NC .................. 124 
A1 ................... 98 06 ..................... 51 GN0 .................. 68 NC .................. 157 
A2 ................... 99 07 ..................... 48 GN0 .................. 73 NC .................. 158 
A3 ................. 100 08 ..................... 47 GN0 .................. 79 OE# ................ 113 
A4 ................. 137 09 ..................... 45 GN0 .................. 82 RAS# ................ 11 
AS ................. 138 010 ................... 36 GN0 .................. 90 RESET# ........... 74 
A6 ................. 139 011 ................... 35 GN0 .................. 96 ROST ............... 89 
A7 ................. 141 012 ................... 34 GN0 ................ 108 vcc .................... 1 

AB ................. 142 013 ................... 33 GN0 ................ 119 vcc .................. 13 
A9 ................... 20 014 ................... 31 GN0 ................ 122 vcc .................. 24 
A10 ................. 21 015 ................... 30 GN0 ................ 126 vcc .................. 32 
A11 ................. 22 016 ................. 103 GN0 ................ 130 vcc .................. 40 
A12 ................. 23 017 ................. 102 GN0 ................ 136 vcc .................. 41 
A13 ............... 127 018 ................. 101 GN0 ................ 145 vcc .................. 49 
A14 ............... 131 019 ................... 69 GN0 ................ 148 vcc .................. 53 
A15 ............... 150 020 ................... 67 GN0 ................ 153 vcc .................. 60 
A16 ............... 151 021 ................... 66 GN0 ................ 159 vcc .................. 64 
A17 ............... 154 022 ................... 55 GRANT# ........... 75 vcc .................. 72 
A18 ............... 155 023 ................... 54 INT1 .................. 85 vcc .................. 76 
A19 ................. 12 024 ................... 52 INT2 .................. 86 vcc .................. 80 
A20 ................. 14 025 ................... 29 INT3 .................. 87 vcc .................. 81 
A21 ................. 15 026 ................... 27 INT4 .................. 88 vcc .................. 93 
A22 ............... 143 027 ................... 26 101 .................... 91 vcc ................ 104 
A23 ............... 146 028 ................... 25 102 .................. 105 vcc ................ 112 
A24 ............... 147 029 ................... 19 103 ...................... 5 vcc ................ 120 
A25 ............... 149 030 ................... 18 IOR0# ............. 114 vcc ................ 121 
ACT ............... 128 031 ................... 17 IOWR# ................ 6 vcc ................ 133 
CASO# .......... 132 OP0 ................... 94 NC ....................... 3 vcc ................ 140 
CAS1# .......... 109 OP1 ................... 95 NC ...................... .4 vcc ................ 156 
CAS2# .......... 110 OP2 ................... 70 NC ..................... 37 vcc ................ 160 
CAS3# .......... 111 OP3 ................... 71 NC ..................... 38 vcc ................ 129 
CLKOUT ......... 92 GN0 .................... 2 NC ..................... 43 vcc ................ 144 
CS1# ................. 9 GN0 .................. 10 NC ..................... 44 vcc ................ 1s2 
CS2# ................. 8 GN0 .................. 16 NC ..................... 77 WE# ................ 125 
CS3# ................. 7 GN0 .................. 28 NC ..................... 78 WEO# .............. 135 
00 ................... 63 GN0 .................. 39 NC ..................... 83 WE1# .............. 134 
01 ................... 62 GN0 .... , ............. 42 NC ..................... 84 WE2# .............. 115 

02 ................... 61 GN0 .................. 46 NC ................... 117 WE3# .............. 116 

03 ................... 59 GN0 .................. 50 NC ................... 118 XTAL1/CLKIN.107 

04 ................... 58 GN0 .................. 56 NC ................... 123 XTAL2 ............ 106 



MECHANICAL DATA 7-3 

7.1.3. Pin Cross Reference by Location 

Location Signal Location Signal Location Signal Location Signal 

1 ...... vcc 41 ...... vcc 81 ....... vcc 121 ....... vcc 
2 ...... GND 42 ...... GND 82 ....... GND 122 ....... GND 

3 ...... NC 43 ...... NC 83 ....... NC 123 ....... NC 
4 ...... NC 44 ...... NC 84 ....... NC 124 ....... NC 

5 ...... 103 45 ...... 09 85 ....... INT1 125 ....... WE# 
6 ...... IOWR# 46 ...... GND 86 •..... .INT2 126 ....... GND 
7 ...... CS3# 47 ...... 08 87 ....... INT3 127 ....... A13 
8 ...... CS2# 48 ...... 07 88 ....... INT4 128 ....... ACT 
9 ...... CS1# 49 ...... vcc 89 ....... RQST 129 ....... vcc 

10 ...... GND 50 ...... GND 90 ....... GND 130 ....... GND 
11 ...... RAS# 51 ...... 06 91 ....... 101 131 ....... A14 

12 ...... A19 52 ...... 024 92 ....... CLKOUT 132 ....... CASO# 

13 ...... vcc 53 ...... vcc 93 ....... vcc 133 ....... vcc 
14 ...... A20 54 ...... 023 94 ....... DPO 134 ....... WE1# 

15 ...... A21 55 ...... 022 95 ....... DP1 135 ....... WEO# 
16 ...... GND 56 ...... GND 96 ....... GND 136 ...•... GND 

17 ...... 031 57 ...... 05 97 ....... AO 137 ....... A4 
18 ...... 030 58 ...... 04 98 ....... A1 138 ....... A5 
19 ...... 029 59 ...... 03 99 ....... A2 139 ....... A6 
20 ...... A9 60 ...... vcc 100 ....... A3 140 ....... vcc 
21 ...... A10 61 ...... 02 101 ....... 018 141 ....... A7 
22 ...... A11 62 ...... 01 102 ....... 017 142 ....... A8 

23 ...... A12 63 ...... DO 103 ....... 016 143 ....... A22 

24 ...... vcc 64 ...... vcc 104 ....... vcc 144 ....... vcc 
25 ...... 028 65 ...... GND 105 ....... 102 145 ....... GND 
26 ...... 027 66 ...... 021 106 ....... XTAL2 146 ....... A23 

27 ...... 026 67 ...... 020 107 ....... XTAL1/CLKIN 147 ....... A24 
28 ...... GND 68 ...... GND 108 ....... GND 148 ....... GND 
29 ...... 025 69 ...... 019 109 ....... CAS1# 149 ....... A25 
30 ...... 015 70 ...... DP2 110 ....... CAS2# 150 ....... A15 
31 ...... 014 71 ...... DP3 111 ....... CAS3# 151 ....... A16 
32 ...... vcc 72 ...... vcc 112 ....... vcc 152 ....... vcc 
33 ...... 013 73 ...... GND 113 ....... OE# 153 ....... GND 

34 ...... 012 74 ...... RESET# 114 ....... IORD# 154 ....... A17 
35 ...... 011 75 ...... GRANT# 115 ....... WE2# 155 ....... A18 
36 ...... 010 76 ...... vcc 116 ....... WE3# 156 ....... vcc 
37 ...... NC 77 ...... NC 117 ....... NC 157 ....... NC 
38 ...... NC 78 ...... NC 118 ....... NC 158 ....... NC 
39 ...... GND 79 ...... GND 119 ....... GND 159 ....... GND 

40 ...... vcc 80 ...... vcc 120 ....... VCC 160 ....... vcc 



7-4 

7.2. hypetStone E1-32T, 144-Pin TQFP-Package 

7.2.1. Pin Configuration - View from Top Side 

vcc 
GNO 
010 
011 
012 
013 

VCC 
014 
015 
025 

GNO 
026 
027 
026 
vcc 
A12 
A11 
A10 

A9 
029 
030 
031 

GNO 
A21 
A20 
vcc 
A19 

RAS# 
GNO 
CS1# 
CS2# 
CS3# 

IOWR# 
103 

GNO 
vcc 

~B~~~s~sg~m~~~~~~;g~~~~~~ra~~~~~~~~~~ 
109- - - - - - - - -
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 

hyperstone 
E1-32T 

Figure 7.2: hype/Stone E1-32T, 144-Pin TQFP-Package 

CHAPTER7 

vcc 
GNO 
INT1 
INT2 
INT3 
INT4 
ROST 
GNO 
101 
CLKOUT 
vcc 
OPO 
OP1 
GNO 
AO 
A1 
A2 
A3 
018 
017 
016 
VCC 
102 
XTAL2 
XTAL 1/CLKIN 
GNO 
CAS1# 
CAS2# 
CAS3# 
VCC 
OE# 
IORD# 
WE2# 
WE3# 
GNO 
vcc 



MECHANICAL DATA 7-5 

7.2.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

A0 ................... 58 01 ..................... 89 GN0 .................... 6 RAS# ............... 136 

A1 ................... 57 02 ..................... 90 GN0 .................. 11 RESET# ............ 77 

A2 ................... 56 03 ..................... 92 GN0 .................. 14 RQST ................ 66 

A3 ................... 55 04 ..................... 93 GN0 .................. 23 vcc ..................... 1 

M ................... 22 05 ..................... 94 GN0 .................. 29 vcc ..................... 3 

A5 ................... 21 06 ................... 100 GN0 .................. 33 vcc ..................... 7 

A6 ................... 20 07 ··················· 103 GN0 .................. 35 vcc ................... 15 

A7 ................... 18 08 ................... 104 GN0 .................. 38 vcc ................... 19 

A8 ................... 17 09 ................... 106 GN0 .................. 47 VCC ................... 26 

A9 ................. 127 010 ................. 111 GN0 .................. 59 vcc ................... 30 

A10 ............... 126 011 ................. 112 GN0 .................. 65 VCC ................... 36 

A11 ............... 125 012 ................. 113 GN0 .................. 71 VCC ................... 37 

A12 ............... 124 013 ................. 114 GN0 .................. 74 VCC .................. .43 

A13 ................. 32 014 ................. 116 GN0 .................. 78 vcc ................... 51 

A14 ................. 28 015 ................. 117 GN0 .................. 83 VCC ................... 62 

A15 ................... 9 016 ................... 52 GN0 .................. 86 VCC ................... 72 

A16 ................... 8 017 ................... 53 GN0 .................. 95 vcc ................... 73 

A17 ................... 5 018 ................... 54 GN0 ................ 101 vcc ................... 75 

A18 .................. .4 019 ................... 82 GN0 ................ 105 vcc ................... 79 

A19 ............... 135 020 ................... 84 GN0 ................ 107 vcc ................... 87 
A20 ............... 133 021 ................... 85 GN0 ................ 110 VCC ................... 91 

A21 ............... 132 022 ................... 96 GN0 ................ 119 VCC ................... 98 

A22 ................. 16 023 ................... 97 GN0 ................ 131 vcc ................. 102 

A23 ................. 13 024 ................... 99 GN0 ................ 137 vcc ................. 108 

A24 ................. 12 025 ................. 118 GN0 ................ 143 VCC ................. 109 

A25 ................. 10 026 ................. 120 GRANT# ........... 76 VCC ................. 115 

ACT ................ 31 027 ················· 121 INT1 .................. 70 VCC ................. 123 
CASO# ............ 27 028 ................. 122 INT2 .................. 69 vcc ................. 134 

CAS1# ........... .46 029 ................. 128 INT3 .................. 68 vcc ................. 144 

CAS2# ........... .45 030 ................. 129 INT4 .................. 67 WE# .................. 34 
CAS3# ............ 44 031 ................. 130 101 .................... 64 WEO# ................ 24 

CLKOUT ......... 63 OPO ................... 61 102 .................... 50 WE1# ................ 25 

CS1# ............. 138 OP1 ................... 60 103 .................. 142 WE2# ............... .40 

CS2# ............. 139 OP2 ................... 81 IOR0# ............... 41 WE3# ................ 39 

CS3# ............. 140 OP3 ................... 80 IOWR# ............ 141 XTAL 1/CLKIN .... 48 
00 ................... 88 GN0 .................... 2 OE# ................... 42 XTAL2 ............... 49 



7-6 CHAPTER 7 

7.2.3. Pin Cross Reference by Location 

Location Signal Location Signal Location Signal Location Signal 

1 ...... vcc 37 ...... vcc 73 ...... vcc 109 ....... vcc 
2 ...... GNO 38 ...... GNO 74 ...... GNO 110 ....... GNO 

3 ...... VCC 39 ...... WE3# 75 ...... VCC 111 ....... 010 

4 ...... A18 40 ...... WE2# 76 ...... GRANT# 112 ....... 011 
5 ...... A17 41 ...... IORO# 77 ...... RESET# 113 ....... 012 
6 ...... GNO 42 ...... OE# 78 ...... GNO 114 ....... 013 

7 ...... vcc 43 ...... vcc 79 ...... vcc 115 ....... vcc 
8 ...... A16 44 ...... CAS3# 80 ...... OP3 116 ....... 014 

9 ...... A15 45 ...... CAS2# 81 ...... OP2 117 ....... 015 

10 ...... A25 46 ...... CAS1# 82 ...... 019 118 ....... 025 

11 ...... GNO 47 ...... GNO 83 ...... GNO 119 ....... GNO 

12 ...... A24 48 ...... XTAL 1/CLKIN 84 ...... 020 120 ....... 026 

13 ...... A23 49 ...... XTAL2 85 ...... 021 121 ....... 027 

14 ...... GNO 50 ...... 102 86 ...... GNO 122 ....... 028 
15 ...... vcc 51 ...... vcc 87 ...... vcc 123 ....... vcc 
16 ...... A22 52 ...... 016 88 ...... 00 124 ....... A12 

17 ...... AS 53 ...... 017 89 ...... 01 125 ....... A11 

18 ...... A7 54 ...... 018 90 ...... 02 126 ....... A10 

19 ······ vcc 55 ...... A3 91 ...... VCC 127 ....... A9 

20 ...... A6 56 ...... A2 92 ...... 03 128 ....... 029 

21 ...... AS 57 ...... A1 93 ...... 04 129 ...... .030 

22 ...... A4 58 ...... AO 94 ...... 05 130 ....... 031 

23 ...... GNO 59 ...... GNO 95 ...... GNO 131 ....... GNO 

24 ...... WEO# 60 ...... OP1 96 ...... 022 132 ....... A21 

25 ...... WE1# 61 ...... OPO 97 ...... 023 133 ....... A20 
26 ...... vcc 62 ...... vcc 98 ...... vcc 134 ....... vcc 
27 ...... CASO# 63 ...... CLKOUT 99 ...... 024 135 ....... A19 

28 ...... A14 64 ...... 101 100 ...... 06 136 ....... RAS# 

29 ...... GNO 65 ...... GNO 101 ...... GNO 137 ....... GNO 

30 ...... vcc 66 ...... ROST 102 ...... VCC 138 ....... CS1# 

31 ...... ACT 67 ...... INT4 103 ...... 07 139 ....... CS2# 

32 ...... A13 68 ...... INT3 104 ...... 08 140 ....... CS3# 

33 ...... GNO 69 ...... INT2 105 ...... GNO 141 ....... IOWR# 

34 ...... WE# 70 ...... INT1 106 ...... 09 142 ....... 103 

35 ...... GNO 71 ...... GNO 107 ...... GNO 143 ....... GNO 

36 ...... vcc 72 ...... vcc 108 ...... vcc 144 ....... vcc 



MECHANICAL DATA 

7.3. hype/Stone E1-16T, 100-Pin TQFP-Package 

7 .3.1. Pin Configuration - View from Top Side 

D10 
011 
012 
013 

VCC 
014 
015 

GNO 
vcc 
A12 
A11 
A10 
A9 

GNO 
A21 
A20 
vcc 
A19 

RAS# 
GNO 

CS1# 
CS2# 
CS3# 

IOWR# 
103 

hype1Stone 
E1-16T 

Figure 7.3: hyperstone E1-16T, 100-Pin TQFP-Package 

50 
49 
48 
47 
46 
45 
44 
43 
42 
41 
40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 

7-7 

INT1 
INT2 
INT3 
INT4 
ROST 
GNO 
101 
CLKOUT 
GNO 
AO 
A1 
A2 
A3 
vcc 
102 
XTAL2 
XTAL 1/CLKIN 
GNO 
CASO# 
CAS1# 
vcc 
OE# 
IORO# 
WEO# 
WE1# 



7-8 CHAPTER? 

7.3.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

AO .................. .41 CLKOUT ........... 43 GN0 .................. 17 OE# .................. 29 
A1 .................. .40 CS1# ................. 96 GN0 .................. 20 RAS# ................ 94 
A2 ................... 39 CS2# ................. 97 GN0 .................. 24 RESET# ........... 53 

A3 ................... 38 CS3# ................. 98 GN0 .................. 33 ROST ............... 46 

A4 ................... 16 00 ..................... 61 GN0 .................. 42 VCC .................... 1 
AS ................... 15 01 ..................... 62 GN0 ................. .45 vcc .................... s 
A6 ................... 14 02 ..................... 63 GN0 .................. 54 vcc .................. 10 

A7 ................... 12 03 ..................... 65 GN0 .................. 58 vcc .................. 13 

AB ................... 11 04 ..................... 66 GN0 .................. 59 VCC .................. 18 

A9 ................... 88 05 ..................... 67 GN0 .................. 68 VCC .................. 21 
A10 ................. 87 06 ..................... 69 GN0 .................. 70 vcc .................. 30 
A11 ................. 86 07 ..................... 72 GN0 .................. 74 VCC .................. 37 
A12 ................. 85 08 ..................... 73 GN0 .................. 83 VCC .................. 51 
A13 ................. 23 09 ..................... 75 GN0 .................. 89 VCC .................. 55 

A14 ................. 19 010 ................... 76 GN0 .................. 95 VCC .................. 60 
A15 ................... 7 011 ................... 77 GRANT# ........... 52 vcc .................. 64 

A16 ................... 6 012 ................... 78 INT1 .................. 50 VCC .................. 71 

A17 ................... 3 013 ................... 79 INT2 ................. .49 VCC .................. 80 
A18 ................... 2 014 ................... 81 INT3 ................. .48 VCC .................. 84 

A19 ................. 93 015 ................... 82 INT4 ................. .47 VCC .................. 92 
A20 ................. 91 OP0 ................... 57 101 .................... 44 WE# .................. 25 
A21 ................. 90 OP1 ................... 56 102 .................... 36 WEO# ................ 27 

ACT ................. 22 GN0 .................... 4 103 .................. 100 WE1# ................ 26 
CASO# ............ 32 GN0 .................... 8 IOR0# ............... 28 XTAL1/CLKIN ... 34 
CAS1# ............ 31 GN0 .................... 9 IOWR# .............. 99 XTAL2 .............. 35 



MECHANICAL DATA 7-9 

7.3.3. Pin Cross Reference by Location 

Location Signal Location Signal Location Signal Location Signal 

1 ...... vcc 26 ...... WE1# 51 ....... VCC 76 ....... 010 

2 ...... A18 27 ...... WEO# 52 ....... GRANT# 77 ....... 011 

3 ...... A17 28 ...... IORD# 53 ....... RESET# 78 ....... 012 
4 ...... GND 29 ...... OE# 54 ....... GND 79 ....... 013 

5 ...... vcc 30 ...... vcc 55 ....... vcc ao ....... vcc 
6 ...... A16 31 ...... CAS1# 56 ....... DP1 81 ....... 014 

7 ...... A15 32 ...... CASO# 57 ....... DPO 82 ....... 015 

8 ...... GND 33 ...... GND 58 ....... GND 83 ....... GND 

9 ...... GND 34 ...... XTAL 1/CLKIN 59 ....... GND 84 ....... vcc 
10 ...... vcc 35 ...... XTAL2 60 ....... vcc 85 ....... A12 

11 ...... AB 36 ...... 102 61 ....... DO 86 ....... A11 

12 ...... A7 37 ...... vcc 62 ....... 01 87 ....... A10 

13 ...... vcc 38 ...... A3 63 ....... 02 88 ....... A9 

14 ...... A6 39 ...... A2 64 ....... VCC 89 ....... GND 

15 ...... AS 40 ...... A1 65 ....... 03 90 ....... A21 

16 ...... A4 41 ...... AO 66 ....... 04 91 ....... A20 

17 ...... GND 42 ...... GND 67 ....... 05 92 ....... vcc 
18 ...... vcc 43 ...... CLKOUT 68 ....... GND 93 ....... A19 

19 ...... A14 44 ...... 101 69 ....... 06 94 ....... RAS# 

20 ...... GND 45 ...... GND 70 ....... GND 95 ....... GND 

21 ...... vcc 46 ...... ROST 71 ....... VCC 96 ....... CS1# 

22 ...... ACT 47 ...... JNT4 72 ....... 07 97 ....... CS2# 

23 ...... A13 48 ...... INT3 73 ....... 08 98 ....... CS3# 

24 ...... GND 49 ...... INT2 74 ....... GND 99 ....... JOWR# 

25 ...... WE# 50 ...... INT1 75 ....... 09 100 ....... 103 



7-10 CHAPTER? 

7.4. Package-Dimensions 

Figure 7.4: hypeistone E1-32N, E1-32T, E1-16T Package-Outline 

Symbol Term Definition 

A1 Standoff height Height from ground plane to bottom edge of package 

A2 Package height Height of package itself 

E,D Overall length & width Length and width including leads 

D1, E1 Package length & width Length and width of package 

L Length of flat lead section Length of flat lead section 

p Lead pitch Lead pitch 

b Lead width Width of a lead 

e Lead angle Angle of lead versus seating plane 



MECHANICAL DATA 7-11 

7.4. Package-Dimensions (continued) 

hyperstone E 1-32N, 160-Pin PQFP-Package 

Symbol Dimensions in Millimeters Dimensions in Inches 

Min. Norn. Max. Min. Norn. Max 

A1 0.25 0.36 0.47 (0.010) (0.014) (0.018) 

A2 3.20 3.40 3.60 (0.126) (0.134) (0.142) 

E,O 31.20 31.90 32.15 (1.228) (1.256) (1.266) 

E1, 01 27.90 28.00 28.10 (1.098) (1.102) (1.106) 

L 0.63 0.88 1.03 (0.025) (0.035) (0.041) 

p 0.65 (0.0256) 

b 0.22 0.29 0.38 (0.009) (0.012) (0.015) 

8 oo 70 (00) (70) 

hyperstone E1-32T, 144-Pin TQFP-Package 

Symbol Dimensions in Millimeters Dimensions in Inches 

Min. Norn. Max. Min. Norn. Max 

A1 0.05 0.10 0.15 (0.002) (0.004) (0.006) 

A2 1.35 1.40 1.45 (0.053) (0.055) (0.057) 

E,O 21.80 22.00 22.20 (0.858) (0.866) (0.874) 

E1, 01 19.90 20.00 20.10 (0.783) (0.787) (0.791) 

L 0.45 0.60 0.75 (0.018) (0.024) (0.030) 

p 0.50 (0.0197) 

b 0.17 0.22 0.27 (0.007) (0.009) (0.011) 

8 oo 70 (00) (70) 



7-12 CHAPTER? 

7.4. Package-Dimensions (continued) 

hyperstone E1-16T, 100-Pin TQFP-Package 

Symbol Dimensions in Millimeters Dimensions in Inches 

Min. Norn. Max. Min. Norn. Max 

A1 0.05 0.10 0.15 (0.002) (0.004) (0.006) 

A2 1.35 1.40 1.45 (0.053) (0.055) (0.057) 

E,D 15.80 16.00 16.20 (0.622) (0.630) (0.638) 

E1, 01 13.90 14.00 14.10 (0.547) (0.551) (0.555) 

L 0.45 0.60 0.75 (0.018) (0.024) (0.030) 

p 0.50 (0.0197) 

b 0.17 0.22 0.27 (0.007) (0.009) (0.011) 

fJ oo 7° (00) (?°) 


