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This document provides a detailed technical
description of the PPC 603e MCM. It is in-
tended as a first source of information for
both hardware and software designers.
Where appropriate, other documents are
referenced.
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 International Business Machines Corporation, 1997. Printed in the United States of America 1997. All
Rights reserved.

Note to US Government Users—Documentation related to restricted rights—Use, duplication, or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM Microelectronics, PowerPC, PowerPC 601, PowerPC 603, PowerPC 603e, PowerPC 604, RISCWatch,
and AIX are trademarks of the IBM corporation. IBM and the IBM logo are registered trademarks of the IBM
corporation. Other company names and product identifiers are trademarks of the respective companies.

This document contains information which is subject to change by IBM without notice. IBM assumes no re-
sponsibility or liability for any use of the information contained herein. Nothing in this document shall operate
as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. The
products described in this document are not intended for use in implantation or other direct life-support ap-
plications where malfunction may result in physical harm or injury to persons. INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION ”AS IS” WITHOUT WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW DISCLAIMERS OF EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS;
THEREFORE, THIS STATEMENT MAY NOT APPLY TO YOU.

Contacts

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6531
Tel: (800) PowerPC

http://www.chips.ibm.com
http://www.ibm.com
ftp://ftp.austin.ibm.com/pub/PPC_support

Dale Elson, Applications Engineer
IBM PowerPC Embedded Processor Solutions
elson@austin.ibm.com

ESD Warning
The planar and MCM contain CMOS devices which are very susceptible to ElectroStatic
Discharge (ESD). DO NOT remove them from the antistatic bags until you have connected
yourself to an acceptable ESD grounding strap. Work in a static free environment and be
sure any person or equipment coming into contact with the cards do not have a static
charge. The cards are particularly susceptible until they are placed in a properly designed
enclosure. Bench work should be done by persons connected to ESD grounding straps.
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IBM 100 MHz PPC 603e MCM AGREEMENT

BEFORE READING THE REST OF THE DOCUMENT, YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS
AND CONDITIONS. OPENING THE PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND  CONDI-
TIONS.  IF YOU DO NOT AGREE  WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE UNOPENED TO
YOUR IBM SALES OFFICE.

International Business Machines Corporation (”IBM”) agrees to provide you an 100 MHz PPC 603e MCM  in return for your promise to use
reasonable efforts to develop a system based on the technology in the MCM.  The MCM contains documentation and software listed below:

Documentation
IBM27-82660 PowerPC to PCI Bridge and Memory Controller User’s Manual
PowerPC 603e RISC Microprocessor Hardware Specification 
PowerPC 603e RISC Microprocessor Technical Summary
IBM 64K x 18 Burst SRAM (IBM041814PQK) Data Sheet
Texas Instruments 3.3V ABT 16-Bit Bus Transceivers with 3-State Output (SN54LVTH16245A, SN54LVTH16245A) Data Sheet
Integrated Device Technology BiCMOS StaticRAM 240K (16K x 15-Bit) Cache-Tag RAM for PowerPC and RISC Processors 
    (IDT71216) Data Sheet
Motorola Low Voltage PLL Clock Driver (MPC970/D) Data Sheet

LICENSE TO SOFTWARE
The software is licensed not sold.  IBM, or the applicable IBM country organization, grants you a license for the software only in the country
where you received the software.  Title to  the physical software and documentation (not the information contained in such documentation)
transfers to you upon your acceptance of these terms and conditions. The term ”software” means the original and all whole or partial copies
of it, including modified copies or portions merged into other programs.  IBM retains title to the software. IBM owns, or has licensed from
the owner, copyrights to the software provided under this agreement.  The terms of this Agreement apply to all of the hardware, software
and documentation provided to you as part of the 100 MHz PPC 603e MCM.

With regard to the software provided hereunder, it is understood and agreed that you intend to use the software solely for the purpose of
designing PowerPC compatible products, testing your designs, and making your own independent determination of whether you wish to
eventually manufacture PowerPC compatible products commercially.  In accordance with this understanding, IBM hereby grants you the
rights to:  a) use, run, and copy the software, but only make such number of copies and run on such number of machines as are reasonably
necessary for the purpose of designing PowerPC compatible products and testing such designs; and b) copy the software for the purpose
of making one archival or backup copy.

With regard to any copy made in accordance with the foregoing license, you must reproduce any copyright notice appearing thereon. With
regard to the software provided hereunder, you may not:  a) use, copy, modify or merge the software, except as provided in this license;
b) reverse assemble or reverse compile it; or c) sell, sublicense, rent. lease, assign or otherwise transfer it. In the event that you no longer
wish to use the software, you will return it to IBM.

LICENSE TO DESIGN DOCUMENTATION

With regard to the design documentation provided hereunder, it is understood that you intend to use such documentation solely for the pur-
pose of designing your own PowerPC compatible products, testing your designs, and making your own independent determination of wheth-
er you wish to eventually manufacture PowerPC compatible products commercially.  In accordance with this understanding, IBM hereby
grants you the right to:  a) use the design documentation for the purpose of designing PowerPC compatible products and testing such de-
signs; b) make derivative works of the design documentation for the purpose of designing PowerPC compatible products, and testing such
designs; and c) make copies of the design documentation and any such derivative works, but only such numbers as are reasonably neces-
sary for designing PowerPC compatible products and testing such designs.

With regard to any copy made in accordance with the forgoing license, you must reproduce any copyright notice appearing  thereon. With
regard to the design  documentation provided hereunder, you may  not:  a) use, copy, modify, or merge the design documentation as provided
in this license; or b) sell, sublicense, rent, lease, assign, or otherwise transfer it.

In the event you no longer wish to use the design documentation or any derivative versions thereof, you must return them to IBM.

DISCLAIMER OF WARRANTY
IBM does not represent or warrant that the 100 MHz PPC 603e MCM (which may contain prototype items):  a) meets any particular require-
ments; b) operates uninterrupted; c) is error free; or d) is non–infringing of any patent, copyright, or other intellectual property right of any
third party. IBM makes no representation or warranty regarding the performance or compatibility that may be obtained from the use of the
MCM or that the MCM is adequate for any use.  The MCM may contain errors and may not provide the level of completeness, functionality,
support, performance, reliability, or ease of use available with other products, whether or not similar to the MCM.  IBM does not represent
or warrant that errors or other defects will be identified or corrected.

THE 100 MHz PPC 603e MCM IS PROVIDED ”AS IS” WITH ALL FAULTS, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
MCM IS WITH YOU.

Some jurisdictions do not allow exclusion of implied warranties, so the above exclusions may not apply to you.
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LIMITATION OF REMEDIES
IBM’s entire cumulative liability and your exclusive remedy for damages for all causes, claims or actions wherever and whenever asserted
relating in any way to the subject matter of this agreement including the contents of the 100 MHz PPC 603e MCM and any components
thereof, is limited to twenty five thousand dollars ($25,000.00) or its equivalent in your local currency and is without regard to the number
of items in the MCM that caused the damage.  This limitation will apply, except as otherwise stated in this Section, regardless of the form
of the action, including negligence. This limitation will not apply to claims by you for bodily injury or damages to real property or tangible
personal property. In no event will IBM be liable for any lost profits, lost savings, or any incidental damages or economic consequential dam-
ages, even if IBM has been advised of the possibility of such damages, or for any damages caused by your failure to perform your responsibi-
lities. In addition, IBM will not be liable for any damages claimed by you based on any third party claim. Some jurisdictions do not allow these
limitations or exclusions, so they may not apply to you.

RISK OF LOSS
You are responsible for all risk of loss or damage to the 100 MHz PPC 603e MCM upon its delivery to you.

IBM TRADEMARKS AND TRADE NAMES
This Agreement does not give you any rights to use any of IBM’s trade names or trademarks. You agree that should IBM determine that
any of your advertising, promotional, or other materials are inaccurate or misleading with respect to IBM trademarks or trade names, that
you will, upon written notice from IBM, change or correct such materials at your expense.

NO IMPLIED LICENSE TO IBM INTELLECTUAL PROPERTY
Notwithstanding the fact that IBM is hereby providing design information for your convenience, you expressly understand and agree that,
except for the rights granted under sections 1 and 2 above, no right or license of any type is granted, expressly or impliedly, under any pat-
ents, copyrights, trade secrets, trademarks, or other intellectual property rights of IBM.  Moreover, you understand and agree that in the
event you wish to be granted any license beyond the scope of the expressly stated herein, you will contact IBM’s Intellectual Property Licens-
ing and Services Office (currently located at 500 Columbus Avenue, Thornwood, N.Y.), or such other IBM offices responsible for the licens-
ing of IBM intellectual property, when you seek the license.

YOUR ASSUMPTION OF RISK
You shall be solely responsible for your success in designing, developing, manufacturing, distributing, and marketing any product(s), or
portion(s), where use of all or any part of the 100 MHz PPC 603e MCM is involved.  You are solely responsible for any claims, warranties,
representations, indemnities and liabilities you undertake with your customers, distributors, resellers or others, concerning any product(s)
or portion(s) of product(s) where use of all or any part of the MCM is involved.  You assume the risk that IBM may introduce other Reference
Design that are somehow better than the MCM which is the subject of this Agreement.  Furthermore, you accept sole responsibility for your
decision to select and use the MCM; for attainment or non-attainment of any schedule, performance, cost, reliability, maintainability, quality,
manufacturability or the like, requirements, or goals, self–imposed by you or accepted by you from others, concerning any product(s) or
portion(s) of product(s), or for any delays, costs, penalties, charges, damages, expenses, claims or the like, resulting from such non-attain-
ment, where use of all or any part of the MCM is involved.

GENERAL
In the event there is a conflict between the terms of this Agreement and the terms printed or stamped on any item or any ambiguities with
respect thereto, including documentation, contained in the 100 MHz PPC 603e MCM, the terms of this Agreement control to the extent IBM
is afforded  greater protection thereby. IBM may terminate this Agreement if you fail to comply with the terms and conditions of this Agree-
ment. Upon termination of this Agreement, you must destroy all copies of the software and documentation. You are responsible for payment
of any taxes, including personal property taxes, resulting from this Agreement. Neither party may bring an action hereunder, regardless of
form, more than one (1) year after the cause of the action arose. If you acquired the MCM in the United States, this Agreement is governed
by the laws of the State of New York.  In the event of litigations, trial shall be in New York without a jury.  If you acquired the MCM in Canada,
this Agreement is governed by the laws of the Province of Ontario; otherwise, this Agreement is governed by the laws of the country in which
you acquired the MCM. All obligations and duties which, by their nature, survive termination or expiration of this Agreement, shall remain
in effect beyond termination or expiration of this Agreement, and shall bind IBM, you and your successors and assigns. If any section or
paragraph of this Agreement is found by competent authority to be invalid, illegal or unenforceable in any respect for any reason, the validity,
legality, and enforceability of any such section or paragraph in every other respect, and the remainder of this Agreement, shall continue
in effect so long as it still expresses the intent of the parties.  If the intent of the parties cannot be preserved, the parties will attempt to renegoti-
ate this Agreement and failing renegotiation, this Agreement will then be terminated. The headings in this Agreement shall not affect the
meaning or interpretation of this Agreement in any way. No failure by IBM in exercising any right, power or remedy under this Agreement
shall serve as a waiver of any such right, power or remedy.  Neither this Agreement nor any activities hereunder will impair any right of IBM
to develop, manufacture, use or market, directly or indirectly, alone or with others, any products or services competitive with those offered
or to be offered by you; nor will this Agreement or any activities hereunder require IBM to disclose any business planning information to
you. You agree to comply with all applicable government laws and regulations. Any changes to this Agreement must be in writing and signed
by the parties.
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About This Book

This document is designed for engineers and system designers who are interested in implementing PowerPC
systems that use the 100 MHz PPC 603e MCM. The material requires a detailed understanding of computer
systems at the hardware and software level.

Power management is beyond the scope of this document. This document was written by Dale Elson.

Reference Material:
Understanding of the relevant areas of the following documents is required for a good understanding of the
100 MHz PPC 603e MCM:

� PowerPC 603e RISC Microprocessor User’s Manual, IBM document MPR603EUM-01

� PowerPC 603e Hardware Specification, IBM document MPR603EHS-01

� PowerPC 603e Technical Summary, IBM document MPR603TSU-04
� IBM27-82660 PowerPC to PCI Bridge User’s Manual, IBM document number MPR660UMU–01

� PCI Local Bus Specification, Revision 2.1, available from the PCI SIG

� PowerPC Reference Platform Specification, Version 1.1, IBM document MPRPRPPKG

� The Power PC Architecture, second edition, Morgan Kaufmann Publishers
(800) 745–7323, IBM document MPRPPCARC–02

� Intel 82378ZB System I/O (SIO) Data Book, Intel order number 290473-004.

The following documents are useful as sources of tutorial and supplementary information about the MCM.

� PowerPC System Architecture, Tom Shanley, Mindshare Press (800) 420-2677.

� IBM27-82650 PowerPC to PCI Bridge User’s Manual, IBM document number MPR650UMU–01

Document Conventions:
The terms 660 and 660 bridge refer to the IBM27-82660.

The terms 660 UM and 660 User’s Manual refer to the current version of the IBM27-82660 PowerPC to PCI
Bridge User’s Manual.

The terms 603e UM and 603e User’s Manual refer to the IBM PowerPC 603e RISC Microprocessor User’s
Manual.

Kilobytes, megabytes, and gigabytes are indicated by a single capital letter after the numeric value. For exam-
ple, 4K means 4 kilobytes, 8M means 8 megabytes, and 4G means 4 gigabytes.

The terms DIMM and SIMM are often used to mean DRAM module.

Hexadecimal values are identified (where not clear from context) with a lower-case letter h at the end of the
value. Binary values are identified (where not clear from context) with a lower-case letter b at the end of the
value.

In identifying ranges of values from and to are used whenever possible. The range statement from 0 to 2M
means from and including zero up to (but not including) two megabytes. The hexadecimal value for the range
from 0 to 64K is: 0000h to FFFFh.

The terms asserted and negated are used extensively. The term asserted indicates that a signal is active
(logically true), regardless of whether that level is represented by a high or low voltage. The term negated
means that a signal is not asserted. The # symbol at the end of a signal name indicates that the active state
of the signal occurs with a low voltage level.
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Section 1
Introduction
This document provides a detailed technical description of the 100 MHz PPC 603e Multi-
Chip Module (MCM), and is intended to be used by hardware, software, test, and simulation
engineers as a first source of information. Software developers should read through the
entire document because information relevant to their tasks may be located in hardware
sections.

1.1 The MCM
The MCM consists of the CPU, L2, PCI Bridge, Memory Controller and master clock ele-
ments of a PowerPC system. The chips that provide this function are all packaged on a
single ceramic substrate.
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1.2 100 MHz PPC 603e MCM
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Figure 1-1.   MCM Block Diagram
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The MCM (see Figure 1-1) is compliant with the PowerPC Reference Platform Specifica-
tion Version 1.1, and the PCI Local Bus Specification, revision 2.0/2.1 (see Section 5.5) for
host bridges.

The MCM uses the PowerPC 603e� RISC microprocessor. The IBM27-82660 Bridge chip-
set (660 Bridge or 660) interfaces the CPU to the PCI bus and DRAM memory, and provides
L2 cache control. The tagRAM and 512K SRAM components are also included on the
MCM. The MCM also includes a master clock generator. For a list of the specific dice pack-
aged within the MCM, see Table 1-1.

Table 1-1.  MCM Dice

Die Part Number Vendor

PowerPC 603e Processor IBM

663 Buffer IBM

664 Controller IBM

Clock Driver MPC970 Motorola

Tag RAM IDT1216 Integrated Device Technology

Buffer SCBS143F Texas Instruments

Synchronous Burst SRAM IBM
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1.2.1 The CPU
The MCM uses a PowerPC 603e (PID6–603e) at CPU bus speeds up to 66MHz. See the
PowerPC 603e Technical Summary, Users Manual, and Hardware Specifications for more
information. The MCM:

� Runs at 3:2 CPU_core:CPU_bus speed ratio up to 99:66 MHz. Consult your IBM
representative for available choices of CPU and operating frequency.

� Supports one level of address bus pipelining. Most data writes are posted.
� Reports precise exceptions via TEA#, and reports imprecise exceptions  via MCP#.
� Operates the 603e in 64-bit data bus mode.
� Supports bi-endian operation.
� Supplies an ESP connector for RISCWatch debugging and monitor systems.
� Runs in DRTRY# mode.

1.2.2 L2 Cache
The MCM contains a complete L2. The controller is located inside the 660 Bridge. The L2:
� Uses 512K SRAM and a 16K x 15 synchronous tagRAM.
� Is unified, write-thru, direct-mapped, look-aside.
� Caches system memory from 0 to 1G.
� Maintains coherence for 32-byte blocks, the PowerPC 60X coherence unit.
� Supplies data to the CPU on burst read hits and snarfs the data on CPU burst read/

write misses. The L2 is not updated during a PCI transaction.
� Ignores CPU single-beat reads, and invalidates on CPU bus single-beat write hits.
� Snoops PCI to memory transactions, invalidates on PCI write hits. The L2 does not

supply data to the PCI on read hits.

1.2.3 System Memory Interface
The MCM memory controller, located in the 660, provides the system DRAM memory inter-
face as required by the PowerPC Architecture�. System memory can be accessed from
both the CPU bus and the PCI bus. The system memory interface:
� Has a 72-bit wide data path – 64 data bits and 8 bits of optional ECC or parity data
� Supports page mode and EDO (hyper-page mode) DRAM
� Supplies 8 RAS# outputs, 8 CAS# outputs, and 2 WE# outputs, for up to 8 SIMM banks
� Supports 8-byte, 168-pin and 4-byte, 72-pin SIMMs for up to 1G of DRAM
� Allows mixed use of different size SIMMs, including mixed 4-byte and 8-byte SIMMs
� Includes full refresh support, including refresh counter and programmable timer
� Implements burst-mode memory address generation for both CPU and PCI bursts
� Implements both little-endian and big-endian addressing and byte swapping modes
� Provides row and column address multiplexing for 10x10 thru 12x12 RxC DRAMs

1.2.4 The PCI Interface
The MCM allows CPU to PCI access and PCI busmaster to system memory access (with
snooping), and handles all PCI related system memory and cache coherency issues.

The MCM supplies a 32-bit PCI host bridge interface that is:
� Compliant with the PCI Specification, revisions 2.0 and 2.1 (see Section 5.5)
� 3.3v and 5v signalling environment compliant.
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� Operates up to 33MHz, at 1/2 of the CPU bus frequency.
� Supports a tertiary IO bus bridge, including support for ISA masters.
� Allows system memory block locking by PCI busmasters
� Supports type 0 and type 1 PCI configuration cycles

1.2.5 System Clocks
The MCM uses a Motorola� MPC970 PLL clock generator to provide the clocks required
by the MCM components, and six clocks for system use. A 16.5 MHz quartz crystal (seed
clock) provided by the user is used as an input to the clock generator. It then produces the
system and PCI clocks.

1.2.6 MCM Performance

Minimum Cycle Times For Pipelined CPU to Memory Transfers at 66 MHz

Responding Device Read Write

L2 (9ns Synchronous SRAM) –2–1–1–1 Snarf

L2 (15ns Asynchronous SRAM) –3–2–2–2 Snarf

Page DRAM  (70ns) Pipelined –4–4–4–4 –3–3–4–4

EDO DRAM (60ns) Pipelined –5–3–3–3 –3–3–3–3

Typical PCI to Memory Performance at 66 MHz CPU Clock and 33MHz PCI Clock

Read 8-1-1-1 -1-1-1-1  7-1-1-1 -1-1-1-1  7-1-1-1 -1-1-1-1  ...  7-1-1-1 -1-1-1-1

Write 5-1-1-1 -3-1-1-1  3-1-1-1 -3-1-1-1  3-1-1-1 -3-1-1-1  ...  3-1-1-1 -3-1-1-1
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1.3 MCM Technology Overview
The IBM Multi-Chip Module (MCM) is shown in Figure 1-2. The MCM consists of a 45mm
x 45mm cofired dark ceramic substrate upon which are mounted eleven unpackaged semi-
conductor dice (chips), capacitors, and resistors. The top of the substrate and the chips are
completely covered by an aluminum cap, which is non-hermetically sealed to the substrate.
A thermally conductive grease fills the area between the cap and the chips. The MCM is
electrically connected to the circuit board (planar) by solder columns.

Figure 1-2.  MCM C

Cap Chips

Ceramic Substrate

Solder Columns

Thermal Grease

1.3.1 Chip Attachment to MCM
All die on the MCM are attached to the ceramic substrate using IBM’s C4-based flip chip
attachment technology. In this technology, C4 solder balls provide an interconnection be-
tween the die and the substrate. For those vendor die originally designed for wire bond
base interconnection, additional processing steps were applied to allow the C4 intercon-
nection. Figure 1-3 shows a typical wire–bond die. In wire bond technology, the wafer is
sliced into individual dies, each die is attached to a wire frame, and (for each chip pad) one
end of a wire is bonded to the chip pad, and the other end is bonded to the package pin.
The MCM uses the ”flip–chip” process. An additional metalization layer is added to the chip,
the chip is ”flipped” over, and C4 balls are used to connect the chip pads to the MCM sub-
strate pads.
Unpackaged die have a much smaller footprint than packaged die.  This reduces the overall
size of the MCM circuitry and allows the MCM a much smaller footprint than would be re-
quired by the same circuitry implemented on a planar in discrete packages.

Figure 1-3.  Chip Wire Bond and Flip Chip Connection
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Wire Bond IO Pad Connection
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Flip Chip IO Pad Connection

Solder Balls

Redistribution Layer
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Figure 1-4 shows chips mounted to the MCM substrate. Figure 1-4 also illustrates the inter-
nal structure of the MCM substrate. The MCM acts as the circuit board between the various
chips. Structures analogous to printed circuit board traces and vias form the electrical inter-
connections between the various MCM chips. The trace lengths on the MCM are much
shorter than are achievable on a planar. This means that signal propagation (flight times)
between the devices are minimized, which can allow faster operating frequencies than can
be achieved on a planar. The impedance of the various nets can be more precisely con-
trolled, which contributes to high signal quality and low noise.

Figure 1-4.  MCM Flip Chips and Internal Wiring

Chips

Substrate

Solder Columns

MCM

1.3.2 Substrate Attachment to the Planar
Figure 1-5 shows how solder columns are used to connect the MCM to the planar. Each
column is attached to the MCM by an eutectic solder joint. The solder at this point melts
at a higher temperature than the solder used for the column itself. The MCM is then sol-
dered to the planar, again using an eutectic solder. The solder column process is robust,
and offers a lower impedance. It is also one of the higher density interconnection methods.

Figure 1-5.  MCM Solder Columns
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For more information on solder columns, assembly, and rework, see ”Ceramic Ball and Col-
umn Grid Array Surface Mount Assembly and Rework”, IBM document number APD–
SBSC–101.0.
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1.4 Incorporating the MCM into a System Design
The MCM captures, in one ceramic package, all key components of a PowerPC system
design that resides on a CPU’s local bus. The MCM’s primary ports of interface to the rest
of a system are the PCI bus and the system memory (DRAM) port. Other signals that con-
nect the MCM to a system fall into the following groups:
� Processor PLL configuration
� MPC 970 configuration
� Signal nets broken at the MCM level for test purposes and need to be reconnected

on the planar
� RISCWatch interface
� 60X bus signals requiring pullup/pulldown connections at the planar
� L2 cache configuration and presence detect
� Clock nets broken at the MCM level to allow net length matching with planar resident

clock nets
� ROM control signals
� Local bus signals used for control functions by the planar.

Understanding all of these groups is vital to the use of the MCM. Pay particular attention
to those signals broken at the MCM level and which are reconnected at the planar. Those
nets are associated with MCM I/O pairs, the names of which are prefaced by the letter ”X.”
When applying the MCM to a system design, it is recommended that the designer review
the schematics for both the MCM (see Section 13) and the example planar (see Appendix
F). Although the example planar is a specific design implementation of the MCM, most
MCM interface signals are used in a manner that would be common to any PowerPC sys-
tem design. A review of the planar schematics and MCM and planar component data
sheets (see Appendix G) will quickly answer most questions concerning how to interface
with the MCM I/O.
Note that it is not intended for the user to interface with all of the MCM I/O. Section 2 con-
tains I/O listings that distinguish between signals intended for application use and those
broken out only for manufacturing purposes.
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Section 2
Signal Descriptions
This section describes the connectivity of the 100 MHz PPC 603e MCM. Tables are used
extensively for this purpose (see Table 2-1 and the following paragraphs for an explana-
tion).
The terms asserted and active indicate that a signal is logically true, regardless of the volt-
age level. The terms negated, inactive, and deasserted mean that a signal is logically false.
The # symbol at the end of a signal name indicates that the active or asserted state of the
signal occurs with a low voltage level. Otherwise the signal is active at a high voltage level.

Table 2-1.  Example Signal Table

Signal Name MCM Nodes Description
AACK# R08 R1.A02

U1.28
U2.109

pu
I/O
I/O

CPU bus address acknowledge. The CPU bus target (660 or external CPU
bus target) asserts AACK# to signal the end of the current address tenure.
660 also asserts AACK# for one clock to signal the end of a broadcast snoop
cycle.
AACK# is an input to the 664 when a CPU bus target claims the current
transaction by means of L2_CLAIM#. AACK# is always an input to the CPU.

The Signal Name  column contains the name of the signal. In the Example Signal Table
(Table 2-1), the AACK# signal is shown.
The MCM column shows which pin(s) (solder columns) of the MCM connect to the signal.
The AACK# net is connected to column R08 of the MCM.
The Nodes  columns show the internal MCM devices and pins to which the signal connects.
The left column shows the device and pin number, in device.pin format. The right column
shows whether the signal is an input or output of the device. An I indicates that the signal
is an input to the device. An O indicates that the signal is an output from that device. A pu
indicates that the resistor to which the signal is connected is a 10k pullup resistor.
AACK# connects to R1 pin A02, which is a 10k pullup resistor. AACK# also connects to U1
pin 28 and U2 pin 109, both of which are I/Os.

2.1 Pin Descriptions
The following sections contain information about the connectivity and function of the MCM
pins. See the 660 User’s Manual (660 UM), the 603e User’s Manual (603e UM), and the
SRAM, Tag, and buffer data sheets for more information.
Note that the MCM I/O pins make a connection to every net on the MCM. This was only
done to aid in the manufacturing test of the MCM. Of the 1089 I/O pins that the MCM pro-
vides, only 296 signals are needed by the user to interface with the MCM. These signals
are listed in Table 2-2.



Section 2 — Signals
Preliminary

2–2 G5220297-00

Table 2-2.  User Supplied Signals

Type Signal
PCI PCI_AD0:9

PCI PCI_PAR

PCI PCI_AD10:31

PCI PCI_IRDY#

PCI PCI_LOCK#

PCI PCI_PERR#

PCI PCI_SERR#

PCI PCI_STOP#

PCI PCI_TRDY#

PCI PCI_AD_OE#

PCI PCI_C/BE0:3#

PCI PCI_CLK_IN

PCI PCI_DEVSEL#

PCI PCI_EXT_SEL

PCI PCI_OL_OPEN

PCI PCI_OUT_SEL

PCI –664_PCI_REQ#

PCI PCI_FRAME_664#

MEMORY MA0:11

MEMORY MDP0:10

MEMORY MD10:63

MEMORY MCE0:7

MEMORY MRE0:7

MEMORY MWE0:1

MISC. FUNCTION TEA#

MISC. FUNCTION DRTRY#

MISC. FUNCTION ROM_OE#

MISC. FUNCTION ROM_WE#

MISC. FUNCTION INT_60X#

MISC. FUNCTION MCP_60X#

MISC. FUNCTION SRAM_OE#

MISC. FUNCTION PLL_CFG0:3

MISC. FUNCTION ROM_LOAD

MISC. FUNCTION 60X_AVDD

MISC. FUNCTION QACK_60X

MISC. FUNCTION QREQ_60X

MISC. FUNCTION X_INT_60X#

MISC. FUNCTION X_MCP_60X#

MISC. FUNCTION X_SRAM_OE#

MISC. FUNCTION INT_TO_664

MISC. FUNCTION X_PCLK_60X

MISC. FUNCTION X_TAG_BCLK

MISC. FUNCTION SRESET_60X#

MISC. FUNCTION TAG_ADDR_13

MISC. FUNCTION TAG_DATA_11

MISC. FUNCTION IGN_PCI_AD31

MISC. FUNCTION X_SRAM_BCLK0:3

MISC. FUNCTION X_663_CPU_CLK

tMISC. FUNCTION X_664_CPU_CLK

Type Signal
.MISC. FUNCTION X_CPU_RDL_OPEN

MISC. FUNCTION NMI_FROM_ISABRDG

MISC. FUNCTION POWER_GOOD/RESET

MISC. FUNCTION HRESET#

RW TCK

RW TDI

RW TDO

RW TMS#

RW CKSTP_OUT#

RW_P_UP TRST#

P_UP TT0:3

P_UP SHD#

P_UP SMI#

P_UP TAG_CS2

P_UP TT2_664

P_UP DBG_60X#

P_UP L2_CLAIM#

P_UP 663_TEST#

P_UP 664_TEST#

P_UP TAG_MATCH

P_UP BG_MASTER#

P_UP SRAM_ADSP#

P_UP TAG_PWRDN#

P_UP MWS_P2MRXS

P_UP 664_STOP_CLK_EN#

P_DOWN TT4

P_DOWN GBL#

P_DOWN SRAM_CS#

P_DOWN TAG_CS1#

P_DOWN OE_245_B

P_DOWN DIR_245_A

P_DOWN DIR_245_B

P_DOWN TAG_SFUNC

P_DOWN CRS_C2PWXS

P_DOWN 663_MIO_TEST

P_DOWN 664_MIO_TEST

CLK XTAL1:2

CLK FRZ_CLK

CLK FRZ_DATA

CLK PCLK_60X

CLK TAG_BCLK

CLK CLK_EXT_FB

CLK CLK_FB_SEL

CLK CLK_PLL_EN

CLK SRAM_BCLK0:3

CLK CLK_COM_FRZ

CLK CLK_REF_SEL

CLK CLK_TTL_CLK

CLK CLK_VCO_SEL
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Type Signal
CLK 663_CPU_CLK

CLK 664_CPU_CLK

CLK CLK_BCLK_DIV0:1

CLK CLK_FRZ_STROBE

CLK CLK_MPC601_CLKS

CLK CLK_MR/TRISTATE

Type Signal
CLK 664_PCI_CLK

CLK CLK_PCI_DIV0:1

CLK USER_PCICLK0:6

DAISEY DAISY01:20

PWR VSS

PWR VDD1:3

2.1.1 Clock Subsystem

Table 2-3.  Clock Signals  
Signal Name MCM Nodes 1 Description  (See MPC970 data sheet for more information.)

663_CPU_CLK G04 U4.38 O MPC970 2x_PCLK output. These IOs are the (nominally
66MH ) CPU b l k  X_663_CPU_CLK F05 U3.157 I The CPU bus clock input of the 663.

y
66MHz) CPU bus clocks.
They are intended to be used

664_CPU_CLK G30 U4.42 O MPC970 BCLK0 output.
They are intended to be used
in pairs, where the CLOCK

  X_664_CPU_CLK H29 U2.121 I The CPU bus clock input of the 664.
in pairs, where the CLOCK
output is connected on the
planar to the X CLOCK inp tPCLK_60X E18 U4.34 O MPC970 PCLK_EN output. planar to the X_CLOCK input.
The MPC970 drives the

  X_PCLK_60X D19 U1.212 I The SYSCLK input of the CPU.
The MPC970 drives the
CLOCK outputs, and the

SRAM_BCLK0 W30 U4.44 O MPC970 BCLK1 output.
CLOCK outputs, and the
normal consumer of that clock
is connected to the X CLOCK  X_SRAM_BCLK0 Y29 U7.51 I The CPU bus clock input of SRAM

bank 0.

is connected to the X_CLOCK
input. A series termination
resistor and/or EMC

SRAM_BCLK1 AE30 U4.46 O MPC970 BCLK2 output.
resistor and/or EMC
components can be used as

  X_SRAM_BCLK1 AF29 U8.51 I The CPU bus clock input of SRAM
bank 1.

components can be used as
determined by the application.

SRAM_BCLK2 AG04 U4.48 O MPC970 BCLK3 output.

  X_SRAM_BCLK2 AF05 U9.51 I The CPU bus clock input of SRAM
bank 2.

SRAM_BCLK3 AA04 U4.50 O MPC970 BCLK4 output.

  X_SRAM_BCLK3 Y05 U10.51 I The CPU bus clock input of SRAM
bank 3.

TAG_BCLK N30 U4.36 O MPC970 BCLK_EN output.

  X_TAG_BCLK P29 U5.69 I The CLK input of the TAG.

664_PCI_CLK J30 U4.18 O MPC970 PCI_CLK1 output. Normally connected to PCI_CLK_IN. This
clock is intended to be run at one half of the CPU bus frequency. See
the PCI Bus section.

PCI_CLK_IN K29 U2.123 I 660 PCI_CLK input. Normally connected to 664_PCI_CLK.

USER_PCICLK1 AE01 U4.16 O MPC970 PCI_CLK0 output. These User PCI Clock outputs
i t d d f PCIUSER_PCICLK2 N01 U4.21 O MPC970 PCI_CLK2 output. are intended for use as PCI

clocks on the planar They are
USER_PCICLK3 C01 U4.23 O MPC970 PCI_CLK3 output.

clocks on the planar.  They are
nominally one half the

USER_PCICLK4 A11 U4.25 O MPC970 PCI_CLK4 output.
nominally one half the
frequency of the CPU bus
clock See the PCI B sUSER_PCICLK5 A14 U4.29 O MPC970 PCI_CLK5 output. clock. See the PCI Bus
section

USER_PCICLK6 E33 U4.32 O MPC970 PCI_CLK6 output.
section.

Clock Control  (See MPC970 data sheet for more information.)

CLK_601_CLKS K27 U4.40 I MPC970 input. Tie to GND for normal operation.

CLK_BCLK_DIV0 C16 U4.31 I MPC970 input. Tie to GND for normal operation.

CLK_BCLK_DIV1 B17 U4.27 I MPC970 input. Tie to GND for normal operation.

CLK_COM_FRZ A18 U4.6 I MPC970 input. Pull high or allow to float for normal operation.

CLK_EXT_FB A17 U4.14 I MPC970 input. Pull high or allow to float for normal operation.

CLK_FB_SEL A15 U4.9 I MPC970 input. Pull high or allow to float for normal operation.

CLK_FRZ_STB F33 U4.4 I MPC970 input. Pull high or allow to float for normal operation.

CLK_MR/3S A16 U4.2 I MPC970 input. Pull high or allow to float for normal operation.

CLOCK

X_CLOCK

MPC970

Consumer
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Table 2-3.  Clock Signals (Continued)
Signal Name Description  (See MPC970 data sheet for more information.)Nodes 1MCM
CLK_PCI_DIV0 B21 U4.20 I MPC970 input. Pull high or allow to float for normal operation.

CLK_PCI_DIV1 C20 U4.26 I MPC970 input. Tie to GND for normal operation.

CLK_PLL_EN D33 U4.7 I MPC970 input. Pull high or allow to float for normal operation.

CLK_REF_SEL B13 U4.8 I MPC970 input. Pull high or allow to float for normal operation.

CLK_TTL_CLK A26 U4.11 I MPC970 input. Pull high or allow to float for normal operation.

CLK_VCO_SEL A13 U4.52 I MPC970 input. Tie to GND for normal operation.

FRZ_CLK B11 U4.3 I MPC970 input. Can be connected to the ISA clock for use, or pulled
high.

FRZ_DATA A22 U4.5 I MPC970 input. Pull down to GND for normal operation.

XTAL1 U30 U4.12 I/O MPC970 crystal connection.

XTAL2 T29 U4.13 I/O MPC970 crystal connection.
1. The following lists the names for the various nodes:

U1 = PPC 603e
U2 = 664
U3 = 663
U4 = MPC970 Clock Driver

U5 = IDT Tag RAM
U6 = ”245 Buffer Chip
U7 – U10 = SRAMs

2.1.2 CPU Bus

Table 2-4.  CPU Bus Signals  

Signal Name MCM Nodes Description

A[0:31] (I/O) U1,
U2,
U5,
U6

I/O
I/O
I
I

CPU address bus. Represents the physical address of the current
transaction. Is valid from the bus cycle in which TS# is asserted through
the bus clock in which AACK# is asserted.
The CPU drives A[0:31] during transactions mastered by the CPU. The
660 drives A[0:31] while broadcasting CPU address bus snoop cycles in
response to a PCI to memory transaction.
The CPU and 660 snoop A[0:31] during transactions initiated by other
CPU bus agents.

AACK# R08 R1.A02
U1.28
U2.109

pu
I/O
I/O

CPU bus address acknowledge. The CPU bus target (660 or external
CPU bus target) asserts AACK# to signal the end of the current address
tenure. 660 also asserts AACK# for one clock to signal the end of a
broadcast snoop cycle.
AACK# is an input to the 664 when a CPU bus target claims the current
transaction by means of L2_CLAIM#. AACK# is always an input to the
CPU.

ABB# R30 R1.A01
U1.36

pu
I/O

CPU bus Address Bus Busy. While asserted, the address bus is busy. The
660 does not touch this signal.

AP0
AP1
AP2
AP3

AJ30
AH29
AG30
AE28

R1,U1
same
same
same

pu
I/O

CPU bus Address Parity. One bit of odd (see DP[0:7]) parity per byte. AP0
maps to A[0:7], AP1 maps to A[8:15], AP2 maps to A[16:23], and AP3
maps to A[24:31]. The 660 does not check address parity.

APE_60X# AA18 R1.F03
U1.218

pu
O

CPU Address Parity Error output. The CPU signals address parity errors
using this open drain output. The 660 does not touch this signal.

ARTRY# P07 R1.A03
U1.32
U2.110

pu
I/O
I/O

CPU bus Address Retry. ARTRY# is asserted by a CPU bus device (either
the target or a snooping master) to signal that the current address tenure
needs to be rerun at a later time.
The 660 samples ARTRY# (during broadcast snoops and transactions by
CPU busmasters) on the second clock after TS# is sampled active. 660
will only assert ARTRY# on the clock after it asserts AACK# (during a PCI
retry).
See the 603e User’s Manual for more information.

BG_664# F11 U2.134 O 660 CPU_GNT1# – 660 asserts to grant the address bus to CPU1, the
MCM CPU.
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Table 2-4.  CPU Bus Signals (Continued)

Signal Name DescriptionNodesMCM
BG_60X# F09 R1.B01

U1.27
pu
I

CPU BG# – CPU address bus grant input. Normally connected to
BG_664#.

BG_MASTER# N20 U2.135 O 660 CPU_GNT2# – 660 asserts to grant the bus to a second CPU
busmaster.

BR_60X# F03 R1.A05
U1.219

pu
O

CPU BR# – The CPU asserts this output to request the CPU address bus.
Normally connected to  BR_664#.

BR_664# D03 U2.127 I 660 CPU_REQ1# – 660 CPU bus request input for CPU1, the MCM CPU.

BR_MASTER# AG01 R1.H05
U2.128

pu
I

660 CPU_REQ2# – 660 CPU bus request input for CPU2, a second CPU
busmaster.

CI_60X# L10 R1.J02
U1.237

pu
O

CPU Cache Inhibit output. Asserted to indicate that a single-beat
transaction should not be cached. See 603e UM.

CKSTP_IN# W16 R1.D02
U1.215

pu
I

CPU ChecKSToP INput. When this signal is asserted, the CPU will enter
checkstop.

CKSTP_OUT# AJ02 R1.J01
U1.216

pu
O

CPU ChecKSToP OUTput. The CPU asserts this open drain output to
indicate that it has detected a checkstop condition and has entered the
checkstop state.

CSE0 M09 U1.225 O CPU Cache Set Element 0 output. See 603e UM.

CSE1 C12 U1.150 O CPU Cache Set Element 1 output. See 603e UM.
D[0:63] U1,

U3,
SRAM

I/O
I/O
I/O

The 64-bit CPU data bus. D0 is the MSbit. D[0:31] connect to CPU DH[0:31].
D[32:63] connect to CPU DL[0:31]. D[0:63] also connect to the 660
CPU_DATA[0:63], and to the SRAM.

DBB# C08 R1.C04
U1.145

pu
I/O

CPU Data Bus Busy signal. The CPU that validly asserts DBB# is the
current CPU busmaster. The 660 does not touch this signal.

DBDIS# K21 R1.A04
U1.153

pu
I

CPU Data Bus DISable input. See 603e UM.

DBG_60X# G08
(I/O)

U1.26
U2.140

I
O

CPU bus Data Bus Grant. 660 asserts DBG# (while ARTRY# is inactive)
to signal that the requesting CPU may take ownership of the CPU data
bus. DBG# is input-only on the CPU. External agents must not drive this
signal.

DBWO_60X# N16 R1.D05
U1.25

pu
I

CPU Data Bus Write Only input. Asserted to allow the CPU to run the data
tenure of a write out of order. See 603e UM.

DP[0:7] U1,
U3,

SRAM

I/O
I/O
I/O

CPU Data Parity bus. DP0 maps to D[0:7], DP1 maps to D[8:15], ... DP7 maps to
D[56:63]. Odd parity is used; an odd number of bits (including the parity bit) are
driven high.

DPE_60X# AC18
(I/O)

R1.F02
U1.217
U2.133

pu
O
I

CPU Data Parity Error. The CPU checks data parity and reports any data
beat with bad parity two CPU bus clocks after the TA# for that data beat.
DPE# is output-only on the CPU, and input-only on 660. 660 samples
DPE# to detect L2 parity errors.

DRTRY# AJ01 R1.H01
U1.156

pu
I

CPU Data Retry input. When asserted, means that the CPU must
invalidate the data from the previous read data beat. DRTRY# is also
sampled at the negation of HRESET# to set the DRTRY# mode. See the
application section for details.

GBL# A12 U1.1
U2.120

I/O
O

Global. This signal is asserted during snoop operations to indicate that CPU
busmasters must snoop the transaction. 660 does not monitor GBL#.

HRESET# E32 R1.D04
U1.214

pu
I

CPU Hard RESET input. Initiates hardware reset operations. See 603e
UM for more information.
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Table 2-4.  CPU Bus Signals (Continued)

Signal Name DescriptionNodesMCM

L2_CLAIM# AL01 U2.132 I 660 CPU_BUS_CLAIM# input. This signal is asserted by an external CPU
bus target to claim a CPU bus memory transaction. It inhibits the 660 from
driving AACK, TA#, TEA#, and the CPU data bus lines. L2_CLAIM#
connects only to 660.
L2_CLAIM# is sampled by the 660 on the second CPU_CLK after TS# is
sampled active. CPU bus targets can only map to system memory space
(0 to 2G) and only to memory space that is not cached by the 660 L2. The
660 L2 caches as much of the space from 0 to 2G as is populated by
DRAM. So, if 8M is installed starting at 0, L2_CLAIM# can be asserted
from 8M to 2G. If the internal L2 is disabled, then the entire 0 to 2G
memory space can be claimed by L2_CLAIM#.

MCP_60X# R16 R1.H02
U1.186

pu
I

CPU MCP# Machine Check Pin input. The CPU enters either a machine
check interrupt operation or a check stop state, depending on the state
of the machine.

  X_MCP_60X# H27 U2.138 O 660 MCP# Machine Check Pin output. The 660 drives this pin to notify the
CPU of a system error from a source which may not be affiliated with the
current transaction. The 660 asserts MCP# in the event of a catastrophic
or unrecoverable system error. The 660 asserts MCP# for two CPU bus
cycles.

PLL_CFG0
PLL_CFG1
PLL_CFG2
PLL_CFG3

D25
B27
A27
C28

U1.213
U1.211
U1.210
U1.208

I
I
I
I

CPU Phase Lock Loop Configuration Inputs. See the 603e UM for more
information. Normally set to PLL_CFG[0:3] = 1100 for 99MHz CPU core
and 66MHz CPU bus operation.

QACK_60X# D17 R1.E03
U1.235

pu
I

CPU Quiesce Acknowledge input. Indicates that the other CPU bus
agents have ceased any bus activity that the CPU has to snoop. QACK#
is sampled at the negation of HRESET# to select 32-bit mode. Drive
QACK# low during HRESET# with an open collector gate to select 64-bit
mode. See the applications section for details.

QREQ_60X# C18 U1.31 O CPU QREQ# Quiescence Request output. The CPU is requesting a low
power mode. See the 603e UM.

RSRV_60X# G16 U1.232 O Represents the state of the Reservation bit. See 603e UM.
SHD# D27 U2.141 I/O 660 Shared output. The function of this pin is to restore the SHD# net to a high state

after it has been asserted. This pin is not used, and should be weakly pulled up.

SMI# AL02 R1.F05
U1.187

pu
I

CPU System Management Interrupt. The CPU initiates an interrupt if
MSR[EE] is set (603e), else it ignores the input. Active low, level sensitive,
unlatched.

SRESET# D31 U1.189 I CPU Soft RESET input. Async falling edge sensitive. Initiates reset
exception. See 603e UM for more information.

TA# AA16
(I/O)

R1.C05
U1.155
U2.111

pu
I
I/O

CPU bus Transfer Acknowledge. TA# signals that the data is valid. For
every CPU clock that TA# is asserted, a data beat completes. For a
single-beat cycle, TA# is only one clock.

TBEN_60X# L16 R1.E01
U1.234

pu
I

CPU Time Base Enable input. See 603e UM. Leave this input pulled high
for normal operation.

TBST# U10 R1.C03
U1.192
U2.144

pu
I/O
I/O

Transfer burst. TBST# indicates a burst transfer of four 64-bit
double-words on the 60X CPU bus.
The 664 does not assert TBST# during PCI to memory snoop cycles.

TC0
TC1

G28
L30

U1.224
U1.223

O
O

CPU Transfer Code outputs. See the 603e UM.

TEA# N10
(I/O)

R1.D01
U1.154
U2.137

pu
I
O

CPU bus Transfer Error Acknowledge. Assertion of TEA# terminates the
current data tenure, and causes a machine check exception (or
checkstop) in the CPU. The 664 asserts TEA# in the event of a
catastrophic or unrecoverable system error.
TEA# can be masked by setting the mask TEA# bit in the bridge control
registers.
If XATS# is asserted, the 660 asserts TEA# regardless of the state of
MASK_TEA#.
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Table 2-4.  CPU Bus Signals (Continued)

Signal Name DescriptionNodesMCM

TLBISYNC# J16 R1.E02
U1.233

pu
I

CPU TLBI sync input. See 603e UM.

TS# L08 R1.B02
U1.149
U2.143

pu
I/O
I/O

CPU bus transfer start. TS# is asserted low for one CPU bus clock to
signal a valid address on the address bus to start a transaction.
TS# is an input to the 664 when a CPU busmaster initiates a CPU bus
transaction.
TS# is an output of the 664 when it initiates a snoop cycle on behalf of a
PCI busmaster accessing system memory.

TSIZ0
TSIZ1
TSIZ2

L06
N06
R06

R1,
U1,
U2

pu
O
I/O

CPU bus Transfer Size in number of bytes. The TSIZ lines are valid with
the CPU address lines.

TT0
TT1
TT2
TT3
TT4

A19
B19
A20
A21
A23

U1,U2
U1,U2
U1
U1,U2
U1,U2

I/O CPU bus TT[0:4] Transfer Type. Indicates the type of transaction currently
in progress. The TT lines are valid with the CPU address lines. TT2
connects only to the CPU. Normally connect TT2 to TT2_664.

TT2_664 C14 U2.153 I/O 660 TT2. Connect to TT2.

WT_60X# D15 R1.H03
U1.236

pu
O

CPU Write Through output. Asserted to indicate that a single–beat
transaction is write-through.

XATS# K07 R1.B03
U2.129

pu
I

CPU bus eXtended Address Transfer Start for PIO operations, which are
not supported by the 660. If XATS# is asserted, the 660 generates a TEA#
error to the CPU (regardless of the setting of MASK_TEA#). The 603e
CPU does not have an XATS# output. This pin is not normally connected.

2.1.3 PCI Bus

Table 2-5.  PCI Bus Signals  

Signal Name MCM Nodes Description
664_PCI_REQ# AF01 U2.58 O 660 PCI_REQ# PCI bus request. The 660 asserts PCI_REQ# to the PCI

bus arbiter to request the PCI bus.

CPU_GNT_664# AG02 U2.54 I 660 PCI_GNT# PCI bus grant input. PCI_GNT# is driven by the PCI bus
arbiter in response to the 660 asserting PCI_REQ# to request the PCI
bus.

PCI_AD[31:0] U2, U3 I/O 660 PCI multiplexed Address–Data bus. A PCI bus transaction consists
of an address phase followed by one or more data phases. The address
tenure is defined as one PCI bus clock in duration and is coincident with
the clock in which PCI_FRAME# is first asserted. After the first clock, the
PCI_AD pins carry data. The PCI_AD lines are driven by the initiator dur-
ing the address phase, and by the originator of the data (initiator or target)
during the data phases.

PCI_C/BE[3:0]# V01
W02
W01
Y01

U2.6
U2.5
U2.4
U2.3

I/O
I/O
I/O
I/O

660 C (bus command) and BE (byte enable) multiplexed lines. During a
PCI address phase C[3:0] carry the bus command. During a PCI data
phase, PCI_C/BE[3:0]# are active low byte enables; BE0# enables
AD[7:0], BE1# enables AD[8:15], BE2# enables AD[16:23], and BE3# en-
ables AD24:31].
The initiator drives C/BE[3:0]#. If no bus transaction is in progress, then
the current PCI busmaster must drive the PCI_C/BE[3:0]# pins.

PCI_DEVSEL# AA02 U2.204 I/O 660 PCI device select. PCI_DEVSEL# is driven by a PCI target that is
claiming the current transaction.
The 660 claims PCI memory transactions from 0 to 2G within the installed
DRAM space.

PCI_FRAME# AC01 U2.200 I/O 660 PCI Frame. The current PCI busmaster drives PCI_FRAME#.
PCI_FRAME# signals the beginning of the address tenure on the PCI bus
and the duration of the data tenure. PCI_FRAME# is deasserted to signal
the final data phase of the transaction.
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Table 2-5.  PCI Bus Signals (Continued)

Signal Name DescriptionNodesMCM
PCI_IRDY# AB01 U2.201

U3.167
I/O 660 PCI initiator ready. PCI_IRDY# is driven by the current PCI busmas-

ter. Assertion of PCI_IRDY# indicates that the PCI initiator is ready to
complete this data phase.

PCI_LOCK# AE04 U2.53 I 660 PCI lock. This signal is used to allow PCI masters to establish a re-
source lock of one cache line of system memory. The 660 never asserts
LOCK# as a master, but it honors PCI busmaster locks of system memory.

PCI_PAR AH01 U2.7 I/O 660 PCI parity. Even parity across AD[31:0] and the C/BE[3:0]# lines.
PCI_PAR is valid one PCI bus clock after either an address or data tenure.
The PCI device that drove the PCI_AD lines is responsible for driving
PCI_PAR. The 660 checks and drives PCI parity.

PCI_PERR# U01 U2.10 I/O 660 PCI parity error. PCI_PERR# is asserted by the PCI device receiving
the data. PCI_PERR# is sampled on the second PCI clock after the
PCI_AD lines are sampled.

PCI_SERR# U02 U2.71 O 660 PCI system error. PCI_SERR# is asserted for one PCI clock when a
catastrophic failure is detected while the 660 is a PCI target. PCI_SERR#
is not monitored by the 660. The 660 asserts PCI_SERR# for certain PCI
bus errors.

PCI_STOP# AA01 U2.203 I/O 660 PCI stop. The target of the current PCI transaction can assert
PCI_STOP# to indicate that the PCI target wants to end the current trans-
action. Data transfer can still take place if the target also asserts
PCI_TRDY#, but that is the final data tenure.

PCI_TRDY# AC02 U2.02
U3.168

I/O 660 PCI target ready. The target of the current PCI transaction drives
PCI_TRDY# to indicate that the PCI target is ready. Data transfer occurs
when both PCI_TRDY# and PCI_IRDY# are asserted.

2.1.4 DRAM

Table 2-6.  DRAM Signals  

Signal Name MCM Nodes Description

MA[11:0] U2 O 660 multiplexed Memory address. MA[11] is the most significant bit.

MCE[7:0]# U2 O 660 CAS[7:0]# Column address selects. CAS[0]# selects memory byte 
lane 0.

MD[63:0] I/O 660 MEM_DATA[63:0] Memory data bus.  MD[63:56] is always called
memory byte lane 7 and is accessed using CAS[7]#.
MEM_DATA[7,15,...63] are always the most significant bit in their memory
byte lane.
In BE mode, MEM_DATA[63:56] is steered to/from CPU_DATA[56:63]. In
LE mode, MEM_DATA[63:56] is steered to/from CPU_DATA[0:7].

Most Mem
MEM Signif. Byte Corresponding CPU Data [ ] in:
DATA Bit Lane CAS# BE mode LE mode
63:56 63 7 7 56:63 0:7
55:48 55 6 6 48:55 8:15
47:40 47 5 5 40:47 16:23
39:32 39 4 4 32:39 24:31
31:24 31 3 3 24:31 32:39
23:16 23 2 2 16:23 40:47
15:8 15 1 1  8:15 48:55
 7:0 7 0 0  0:7 56:63

MDP[7:0] U3 I/O 660 MEM_CHECK[7:0] Memory ECC/parity bus. MDP[0] is always the
memory check bit for memory byte lane 0 (MD[7:0]). ECC or even parity
is generated and written on memory write cycles when enabled. ECC or
even parity across eight bytes is checked on memory read cycles when
enabled.
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Table 2-6.  DRAM Signals (Contnued)

Signal Name DescriptionNodesMCM

MRE[7:0]# U2 O 660 RAS[7:0]# Row Address Selects.

MWE0#
MWE1#

M33
N33

U2.176
U2.175

O
O

660 WE[1:0]# DRAM Write Enables. WE[1]# and WE[0]# are the same
and are used  to avoid the need for external buffers.

2.1.5 L2

Table 2-7.  L2 Signals  

Signal Name MCM Nodes Description
ABUF[13:28] U6

SR
O
I

Buffered CPU A[13:28], for the SRAM.

DIR_245_A G22 U6A.1
U6A.24

I
I

SRAM address buffer A Direction input. Pull low for normal operation.

DIR_245_B L22 U6B.1
U6B.24

I
I

SRAM address buffer B Direction input. Pull low for normal operation.

OE_245_B# D29 U6A.25
U6A.48
U6B.25
U6B.48

I
I
I
I

SRAM address buffer (A & B) Output Enable input. Pull low for normal operation.

SRAM_ADS#/
ADDR0

N22 U2.124
SR.2

O
I

660 SRAM ADdress Strobe. Enables latching of new address for the burst SRAM.

SRAM_ADSP# AK03 SR.1 I SRAM ADSP# input. Pull high for normal operation.

SRAM_ALE U22 U2.119 O 660 SRAM Address Latch Enable. This signal is always high when burst SRAMs
are used. This signal is not used on the MCM.

SRAM_CNT_EN
#/
ADDR1

R22 U2.125
SR.52

O
I

660 SRAM CouNT ENable. Enables incrementing of burst address for the burst
SRAM.

SRAM_CS# AD29 SR.5 I SRAM Chip Select. Pull to GND for normal operation.

SRAM_OE# AA22 SR.50 I SRAM Output Enable input.

  X_SRAM_OE# G26 U2.117 O 660 SRAM Output Enable output. Connect to SRAM_OE# for normal operation.

SRAM_WE# W22 U2.114
SR.3,4

O
I

660 SRAM Write Enable.

TA_GATES N24 U5.23,2
7,28

I TAG TT1, TAH, & TAIN# tied together and pulled high with 2 resistors. Leave pulled
high for normal operation.

TAG_ADDR_13 L26 U5.33 I TAG A13. Pull high for 256K L2. Connect to A13 for 512K L2.

TAG_A_IN AC04 U6A I/O SRAM buffer spare inputs. Pull to GND or Vdd for normal operation.

TAG_CLR# AC22 U2.116
U5.70

O
I

660 Tag RAM clear. When asserted, all tags are forced to the invalid state. See the
L2 Invalidate BCR.

TAG_CS1# C33 U5.75 I TAG CS1# Pull this pin to GND for normal operation.

TAG_CS2 H31 U5.76 I TAG CS2. Pull this pin high for normal operation.

TAG_DATA_11 M27 U5.65 I TAG D13. Connect to A13 for 256K L2. Pull high for 512K L2.

TAG_DTY P25 U5.34 O TAG DTY/S3 output. Not used by MCM.

TAG_MATCH K31 U5.50
U2.142

O
I

TAG match indication (cache hit). This signal is asserted for a cache hit. It is an
active high, open drain output of the tag RAM. Pull this signal to 3.3v with a 200 ohm
(nominal) resistor.

TAG_PWRDN# M31 U5.77 I TAG Power down mode control. Pull this pin high for normal operation.

TAG_SFUNC C32 U5.22 I TAG Status Bit Function Control input. Pull to GND for normal operation.

TAG_TA# N28 U5.51 O TAG TA# output. Not used by MCM.

TAG_VALID AC20 U2.115
U5.80

O
I

660 Tag valid bit. The 660 asserts TAG_VALID to mark the current block valid in
the tag. It is negated during tag writes in response to PCI write hits, etc.

TAG_VLD L28 U5.54 O TAG VLD/S1 output. Not used by MCM.
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Table 2-7.  L2 Signals (Continued)

Signal Name DescriptionNodesMCM
TAG_WE# AA20 U2.114

U5.73,7
4

O
I

660 Tag RAM write enable. Asserted to write to the Tag RAM.

TAG_WT J28 U5.47 O TAG WT/S3 output. Not used by MCM.

TAG_WT_DTY_I
N

L24 U5.5,6
R1.G04

I
pu

TAG DTY/S2 input tied to WT/S3 input and pulled high. Leave pulled high for normal
operation.

TAOE# P31 U5.23,2
7,28
R1, R1

I
pu
pu

TAG TAOE#, OE_STAT#, and OE_TAG# signals wired together & pulled up. Leave
pulled up for normal operation.

2.1.6 System Interface

Table 2-8.  System Interface Signals  

Signal Name MCM Nodes Description

IGN_PCI_AD31 AD01 U2.57 I 660 Ignore PCI_AD[31] input. This signal is required when the Intel�
SIO is the PCI master, because it does not latch ISA_MASTER on
posted ISA writes to 0 to 16M. IGN_PCI_AD31 is used to allow ISA
busmasters to access system memory when the SIO is used as the ISA
bridge. The 664 expects the memory address to appear in the range of
0 to 16M (it actually works over the entire 0-2G range) during the
address phase when IGN_PCI_AD31 is asserted and then maps the
access to system memory at 0 to 16M. It is usually generated by ANDing
all of the active PCI bus grants (see note 1). IGN_PCI_AD31 must be
valid on the PCI clock before FRAME# is sampled active.

664_STOP_CLK_
EN#

B29 R1.F04
U2.151

pu
I

660 input. Prepares the 660 for stopping the CPU_CLK during power
management. This feature is not supported. Leave this pin pulled high
for normal operation.

Exceptions

INT_TO_664 B31 U2.55 I 660 INT_REQ Interrupt request input. The 660 synchronizes this signal
from the interrupt controller to the CPU bus clock and passes it through
to the CPU as an interrupt.

INT_60X# U16 R1.D03
U1.188

pu
I

CPU INT# Interrupt input. The CPU initiates an interrupt if MSR[EE] is
set (603e), else it ignores the input. Active low, level sensitive,
unlatched.

  X_INT_60X# F31 U2.139 O 660 INT_CPU# CPU interrupt output. The 660 asserts INT_CPU# to
signal the CPU to run an interrupt cycle. The software is expected to
eventually run a  PCI interrupt acknowledge transaction to get the
interrupt vector. 660 can assert INT_CPU# in response to an INT_REQ
input. Normally connected to INT_60X#

NMI_FROM_
ISABRDG

A31 U2.56 I 660 NMI_REQ input. Non–maskable interrupt request. When detected
active (normally from the ISA bridge), an error is reported to the CPU.

POWER_GOOD/
RESET#

A28 U2.156 I 660 Power–On–RESET#. While this pin is low, all latches in the 664
enter a pre–defined state. Clocking mode is re-sampled, and ROM write
lockout is cleared.

ROM

ROM_OE# V31 U2.47 O 660 ROM output enable. ROM_OE# enables direct-attached ROM.
This signal is always high during remote ROM operation.

ROM_WE# T31 U2.60 O 660 ROM write enable. Write enable for flash ROM for direct-attach
ROM. This signal is always high during remote ROM operation.

GNT   0
.
.

GNT   n
IGN_PCI_AD31
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Table 2-8.  System Interface Signals (Continued)

Signal Name DescriptionNodesMCM

Daisy Chain

Daisy01 E04, D05 The DAISYxx columns are arranged in pairs which are connected to
h th F l D i 01 i t f l E04 d D05Daisy02 E06, D07

g
each other. For example, Daisy01 consists of columns E04 and D05,
which are connected to each other

Daisy03 E08, D09
which are connected to each other.

Daisy04 E10, D11

Daisy05 E12, D13

Daisy06 E30, F29

Daisy07 E28, F27

Daisy08 E26, F25

Daisy09 E24, F23

Daisy10 E22, F21

Daisy11 AK05, AK07

Daisy12 AKO9, AK11

Daisy13 AK13, AK15

Daisy14 AK17, AK19

Daisy15 AK21, AK23

Daisy16 AD03, AF03

Daisy17 Y03, AB03

Daisy18 T03, V03

Daisy19 M03, P03

Daisy20 H03, K03

Power & Ground

60X_AVDD B02 U1.209 603e Analog VDD. Bypass as recommended in the 603e
documentation.

VDD1

VDD2

VDD3

VSS  (GND)

2.1.7 660 InterChip Communication
These signals provide communication between the 663 and the 664. They are generally
not intended for use by the system. Note that CPU_RDL_OPEN  requires a resistor or other
delay component between the 663 and the 664. For more information, see Section 2 of the
660 User’s Manual.

Table 2-9.  InterChip Communication Signals  

Signal Name MCM Nodes Description
663_CPU_PAR_
ERR#

G18 U2.192
U3.174

I
O

660 CPU_PAR_ERR# signal. CPU Data Bus Parity Error. When as-
serted, this signal indicates a parity error on the CPU data bus during
a write cycle.

AOS_RR_MMRS W20 U2.69
U3.166

O
I

660 All Ones Select/ROM Remote/Mask MEM_RD_SMPL signal. This
signal is used to force the data bus to 64 one-bits.
While ROM_LOAD is asserted, this signal is used to determine the
location of the ROM.
When the PCI is burst reading memory, MASK_MEM_RD_SMPL is
asserted after the first MEM_RD_SMPL, and stays asserted until the
PCI–to–MEM read latch is empty.
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Table 2-9.  InterChip Communication Signals (Continued)

Signal Name DescriptionNodesMCM
C2P_WRL_OPEN AA14 U2.61

U3.154
O
I

660 CPU–to–PCI Write Latch Open signal. When asserted, the
CPU–to–PCI write latch accepts new data on each CPU_CLK. When
deasserted, the CPU–to–PCI write latch holds its current contents.

CPU_DATA_OE# J14 U2.197
U3.146

O
I

660 CPU Data Output Enable signal. When asserted, the 663 drives the
CPU_DATA bus on the next CPU_CLK.

CPU_RDL_OPEN G12 U2.50 O 664 CPU Read Latch Open output. When asserted, the CPU read latch
accepts new data on each CPU_CLK. When deasserted, the CPU read
latch holds its current contents.
This signal is asserted when data is to be sampled from memory or the
PCI.
When sampling data from memory, this signal is also active on the fol-
lowing CPU_CLK to allow ECC corrections to occur if necessary. If no
ECC corrections occur,  the same data is provided by the MEM read
ECC correction logic.

  X_CPU_RDL_
   OPEN

G10 U3.148 I 663 CPU Read Latch Open input. See the 660 User’s Manual for more
information.
Add a 200� (nominal) series resister to the CPU_RDL_OPEN net
between the 664 and the 663. During a CPU to memory read, if (at the
663) CPU_RDL_OPEN goes low before MEM_RD_SMPL goes low,
then the 663 may provide incorrect data to the CPU. The Table shows
the minimum required interval between the falling edge of
MEM_RD_SMPL and the falling edge of CPU_RDL_OPEN.

Case 663 664 
Requires Supplies

1 Worst Case Process, Temperature, & VDD > 1.8ns 1.3ns
2 Best Case Process, Worst Case Temp. & VDD > 0.2ns 0.5ns
3 Best Case Process, Temperature, & VDD > 0.1ns 0.3ns

The worst practical case occurs while the 664 is at Case 2 (provides .5ns
difference) and the 663 is at Case 1 (requires 1.8ns difference). This re-
quires that a minimum delay of 1.3ns be added to the CPU_RDL_OPEN
signal. A delay of 2.4ns is recommended to allow a conservative margin
of error.  (Delay = RC = 200� * 12pf = 2.4ns). Note that this assumes
the CPU_RDL_OPEN and MEM_RD_SMPL nets are both about three
inches long and that the resister is close to the 664. A different resister
value or an R-C combination may be required if the length or capaci-
tance of the two nets are significantly different, or if the resister
placement differs significantly.

CRS_C2PWXS A29 U2.65
U3.151

O
I

660 CPU Read Select/CPU-to-PCI Write Crossover Select signal.
When the CPU read latch is sampling data, this signal controls the CPU
read multiplexer.
When the CPU-to-PCI write latch is sampling data, this signal controls
the CPU-to-PCI write crossover. Pull down with a 1K (nominal) resistor
to select (during reset) direct-attach ROM.

DUAL_CTRL_REF N12 U2.205
U3.170

O
I

660 Control Signal Mux Select signal. For 663 inputs that have two func-
tions this signal selects the function. This signal is generated by dividing
CPU_CLK by two. This is a useful first point to check when debugging
a ”dead” system.

ECC_LE_SEL L12 U2.2
U3.149

O
I

660 ECC Select/Little-Endian Select signal. This signal indicates use of
ECC or byte parity when DUAL_CTRL_REF is high and indicates use
of little-endian or big-endian mode when DUAL_CTRL_REF is low.

MEM_BE[3:0] U2. U3 O, I 660 Memory Byte Enables signal. The eight BEs for read-modify-write
memory cycles are multiplexed on MEM_BE[3:0].
When not running a read-mod-write cycle MEM_BE[3:0] should indicate
all data lanes are enabled—MEM_RMW_BE[7:0]# all asserted low.

MEM_DATA_OE# L14 U2.196
U3.145

O
I

660 Memory Data Output Enable signal. When asserted, the 663 drives
the MEM_DATA bus on the next CPU_CLK.
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Table 2-9.  InterChip Communication Signals (Continued)

Signal Name DescriptionNodesMCM
MEM_ERR#
(663_MEM_ERR#)

J20 U2.194
U3.171

I
O

660 Memory Error signal.  When asserted, indicates an uncorrectable
multi-bit or parity error has occurred during a memory read. This signal
is only valid on the third CPU_CLK after MEM_RD_SMPL is asserted.

MEM_RD_SMPL J12 U2.49
U3.161

O
I

660 Memory Read Sample signal. This signal is used by the ECC logic
to determine when to sample ECC results. This signal is also used by
the PCI read extension latch and the PCI-to-MEM read latch to load new
data.

MEM_WRL_OPEN AC14 U2.51
U3.150

O
I

660 Memory Write Latch Open signal. When asserted, the MEM write
latch accepts new data on each CPU_CLK. When deasserted, the MEM
write latch holds its current contents.

MWS_P2MRXS C30 U2.66
U3.152

O
I

660 Memory write select/PCI-to-memory read crossover select signal.
When the memory write latch is sampling data, this signal controls the
memory write multiplexer. Pull up with 10K � (nominal) resistor to select
(during reset) 603e in 3:2 core:bus clock mode.

PCI_AD_OE# N14 U2.195
U3.144

O
I

660 PCI Data Output Enable signal. While asserted, the 663 drives the
PCI_AD bus. Note: This is an asynchronous input to the 663.

PCI_EXT_SEL U14 U2.67
U3.153

O
I

660 PCI Read Extension Select/PCI Write Extension Select signal.
When the PCI is reading from memory, this signal controls the PCI read
extension multiplexer.

PCI_OL_OPEN W14 U2.64
U3.165

O
I

660 PCI Other Latches Open signal. This signal controls the latch en-
ables for the PCI-to-MEM read latch, the PCI read extension latch, and
the PCI write extension latch.

PCI_OUT_SEL R14 U2.68
U3.169

O
I

660 PCI Output Select signal. When asserted, memory data is routed
to the PCI output bus, else CPU data is routed to the PCI output bus.
This signal is asynchronous.

ROM_LOAD U20 U2.70
U3.160

O
I

660 ROM Load signal. This signal is used to load data from a ROM one
byte at a time until eight bytes are received, then pass the eight bytes
to the CPU.

663_SBE# G20 U2.193
U3.175

I
O

660 SBE# Single-Bit Error signal.  When asserted, indicates a correct-
able single-bit error has occurred on the memory data bus. This signal
is valid only on the CPU_CLK following the assertion of
MEM_RD_SMPL. If the memory is not in ECC mode, this signal is unde-
fined.

2.1.8 Test Signals

Table 2-10.  Test Signal Descriptions  

Signal Name MCM Nodes Description

CPU Test Signals

LSSD_MODE# R18 R1.E04
U1.205

pu
I

CPU LSSD test input. Leave this input pulled high during normal
operation.

L1_TST_CLK# N18 R1.E05
U1.204

pu
I

CPU LSSD test input. Leave this input pulled high during normal
operation.

L2_TST_CLK# L18 R1.F01
U1.203

pu
I

CPU LSSD test input. Leave this input pulled high during normal
operation.

60X_CLK_OUT J18 U1.221 O CPU system CLocK OUTput. CLK_OUT is a clock test output.

TDO C26 U1.198 O CPU JTAG serial scan output.

TMS A24 R1.J03
U1.200

pu
I

CPU JTAG TAP controller mode input. Leave this input pulled high during
normal operation.

TDI A25 R1.J05
U1.199

pu
I

CPU JTAG serial scan input. Leave this input pulled high during normal
operation.

TCK B25 R1.J04
U1.201

pu
I

CPU JTAG scan clock input. Leave this input pulled high during normal
operation.
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Table 2-10.  Test Signal Descriptions (Continued)

Signal Name DescriptionNodesMCM

TRST# C24 R1.H04
U1.202

pu
I

CPU JTAG TAP controller reset. Most systems will assert this signal while
either HRESET# or TRST# (from the RISCWatch connector) are
asserted. See the applications section.

660 Test Signals
663_MIO_TEST A30 U3.156 I Chip level test. Deassert low for normal operation. Do not casually assert

this signal
664_MIO_TEST K05 U2.154 I

this signal.

663_TEST# G14 U3.155 I Test mode. Pull to logic high during normal operation. Do not casually as-
t thi i l664_TEST# J04 U2.155 I

g g g y
sert this signal.

2.2 Net Names and MCM Nodes
2.2.1 Complete Pin List for MCM

Table 2-11 matches version 5.0 of the schematic. Note that, while all nets on the MCM are
brought to the MCM I/O, only a subset is intended for customer use (see Table 2-2). The
rest of the I/O signals can be left floating.

Table 2-11.  Pin List With Net Names and MCM Nodes

Pin1 Net Name2 MCM Nodes 3

A03 PCI_AD20 U2.24,U3.44

A04 PCI_AD21 U2.23,U3.45

A05 PCI_AD23 U2.21,U3.47

A06 PCI_AD24 U2.20,U3.48

A07 PCI_AD26 U2.18,U3.50

A08 PCI_AD27 U2.15,U3.51

A09 PCI_AD29 U2.13,U3.63

A10 PCI_AD30 U2.12,U3.64

A11 USER_PCICLK4 U4.25

A12 GBL# U1.1,U2.120

A13 CLK_VCO_SEL U4.52

A14 USER_PCICLK5 U4.29

A15 CLK_FB_SEL U4.9

A16 CLK_MR/
TRISTATE

U4.2

A17 CLK_EXT_FB U4.14

A18 CLK_COM_FRZ U4.6

A19 TT0 U1.191,U2.150

A20 TT2 U1.185

A21 TT3 U1.184,U2.126

A22 FRZ_DATA U4.5

A23 TT4 U1.180,U2.136

A24 TMS# R1.J03,U1.200

A25 TDI R1.J05,U1.199

A26 CLK_TTL_CLK U4.11

A27 PLL_CFG2 U1.210

A28 POWER_GOOD/RE-
SET#

U2.156

A29 CRS_C2PWXS U2.65,U3.151

Pin1 Net Name2 MCM Nodes 3

A30 663_MIO_TEST U3.156

A31 NMI_FROM_
ISABRDG

U2.56

B02 60X_AVDD U1.209

B03 PCI_AD18 U2.28,U3.42

B04 VSS

B05 PCI_AD22 U2.22,U3.46

B06 VDD1

B07 PCI_AD25 U2.19,U3.49

B08 VSS

B09 PCI_AD28 U2.14,U3.62

B10 VDD1

B11 FRZ_CLK U4.3

B12 VSS

B13 CLK_REF_SEL U4.8

B14 VDD1

B15 VSS

B16 VSS

B17 CLK_BCLK_DIV1 U4.27

B18 VSS

B19 TT1 U1.190,U2.152

B20 VDD1

B21 CLK_PCI_DIV0 U4.20

B22 VSS

B23 NC

B24 VDD1

B25 TCK R1.J04,U1.201

B26 VSS
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Pin1 Net Name2 MCM Nodes 3

B27 PLL_CFG1 U1.211

B28 VDD1

B29 664_STOP_CLK_EN# R1.F04    U2.151

B30 VSS

B31 INT_TO_664 U2.55

B32 VDD1

C01 USER_PCICLK3 U4.23

C02 PCI_AD17 U2.29,U3.41

C03 NC, DEPOP

C04 PCI_AD19 U2.25,U3.43

C05 NC, DEPOP

C06 NC

C07 NC, DEPOP

C08 DBB# R1.C04,U1.145

C09 NC, DEPOP

C10 PCI_AD31 U2.11,U3.65

C11 NC, DEPOP

C12 603E_CSE0# U1.150

C13 NC, DEPOP

C14 TT2_664 U2.153

C15 NC, DEPOP

C16 CLK_BCLK_DIV0 U4.31

C17 NC, DEPOP

C18 QREQ_60X# U1.31

C19 NC, DEPOP

C20 CLK_PCI_DIV1 U4.26

C21 NC, DEPOP

C22 VSS

C23 NC, DEPOP

C24 TRST# R1.H04,U1.202

C25 NC, DEPOP

C26 TDO U1.198

C27 NC, DEPOP

C28 PLL_CFG3 U1.208

C29 NC, DEPOP

C30 MWS_P2MRXS U2.66,U3.152

C31 NC, DEPOP

C32 TAG_SFUNC U5.22

C33 TAG_CS1# U5.75

D01 PCI_AD16 U2.30,U3.40

D02 VSS

D03 BR_664# U2.127

D04 VDD1

D05 DAISY01 J1.E04

D06 VSS

D07 DAISY02 J1.E06

D08 VDD1

Pin1 Net Name2 MCM Nodes 3

D09 DAISY03 J1.E08

D10 VSS

D11 DAISY04 J1.E10

D12 VDD1

D13 DAISY05 J1.E12

D14 VSS

D15 WT_60X# R1.H03,U1.236

D16 VDD1

D17 QACK_60X# R1.E03,U1.235

D18 VDD1

D19 X_PCLK_60X U1.212

D20 VSS

D21 NC

D22 VDD1

D23 NC

D24 VSS

D25 PLL_CFG0 U1.213

D26 VDD1

D27 SHD# U2.141

D28 VSS

D29 OE_245_B U6A.25A,U6A.48A,
U6B.25B,U6B.48B

D30 VDD1

D31 SRESET_60X# U1.189

D32 VSS

D33 CLK_PLL_EN U4.7

E01 PCI_AD14 U2.32,U3.20

E02 PCI_AD15 U2.31,U3.21

E03 NC, DEPOP

E04 DAISY01 J1.D05

E05 NC, DEPOP

E06 DAISY02 J1.D07

E07 NC, DEPOP

E08 DAISY03 J1.D09

E09 NC, DEPOP

E10 DAISY04 J1.D11

E11 NC, DEPOP

E12 DAISY05 J1.D13

E13 NC, DEPOP

E14 NC

E15 NC, DEPOP

E16 NC

E17 NC, DEPOP

E18 PCLK_60X U4.34

E19 NC, DEPOP

E20 NC

E21 NC, DEPOP
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Pin1 Net Name2 MCM Nodes 3

E22 DAISY10 J1.F21

E23 NC, DEPOP

E24 DAISY09 J1.F23

E25 NC, DEPOP

E26 DAISY08 J1.F25

E27 NC, DEPOP

E28 DAISY07 J1.F27

E29 NC, DEPOP

E30 DAISY06 J1.F29

E31 NC, DEPOP

E32 HRESET# R1.D04,U1.214

E33 USER_PCICLK6 U4.32

F01 PCI_AD13 U2.33,U3.19

F02 VDD1

F03 BR_60X# R1.A05,U1.219

F04 VSS

F05 X_663_CPU_CLK U3.157

F06 VDD1

F07 MEM_BE1 U2.207,U3.162

F08 VSS

F09 BG_60X# R1.B01,U1.27

F10 VDD1

F11 BG_664# U2.134

F12 VSS

F13 NC

F14 VDD1

F15 NC

F16 VSS

F17 NC

F18 VSS

F19 NC

F20 VDD1

F21 DAISY10 J1.E22

F22 VSS

F23 DAISY09 J1.E24

F24 VDD1

F25 DAISY08 J1.E26

F26 VSS

F27 DAISY07 J1.E28

F28 VDD1

F29 DAISY06 J1.E30

F30 VSS

F31 X_INT_60X# U2.138

F32 VDD1

F33 CLK_FRZ_STROBE U4.4

G01 PCI_AD11 U2.35,U3.17

G02 PCI_AD12 U2.34,U3.18

Pin1 Net Name2 MCM Nodes 3

G03 NC, DEPOP

G04 663_CPU_CLK U4.38

G05 NC, DEPOP

G06 MEM_BE3 U2.1,U3.164

G07 NC, DEPOP

G08 DBG_60X# U1.26,U2.140

G09 NC, DEPOP

G10 X_CPU_RDL_OPEN U3.148

G11 NC, DEPOP

G12 CPU_RDL_OPEN U2.50

G13 NC, DEPOP

G14 663_TEST# U3.155

G15 NC, DEPOP

G16 #RSRV_60X U1.232

G17 NC, DEPOP

G18 663_CPU_PAR_ERR# U2.192,U3.174

G19 NC, DEPOP

G20 663_SBE# U2.193,U3.175

G21 NC, DEPOP

G22 DIR_245_A U6A.1A,U6A.24A

G23 NC, DEPOP

G24 NC

G25 NC, DEPOP

G26 X_SRAM_OE# U2.117

G27 NC, DEPOP

G28 TC0 U1.224

G29 NC, DEPOP

G30 664_CPU_CLK U4.42

G31 NC, DEPOP

G32 MCE6# U2.168

G33 MCE7# U2.165

H01 PCI_AD10 U2.3, U3.16

H02 VSS

H03 DAISY20 J1.K03

H04 VDD1

H05 MEM_BE0 U2.206,U3.161

H06 VSS

H07 NC

H08 VDD1

H09 NC

H10 VSS

H11 NC

H12 VDD1

H13 NC

H14 VSS

H15 NC

H16 VDD1
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Pin1 Net Name2 MCM Nodes 3

H17 NC

H18 VDD1

H19 NC

H20 VSS

H21 NC

H22 VDD1

H23 NC

H24 VSS

H25 NC

H26 VDD1

H27 X_MCP_60X# U2.138

H28 VSS

H29 X_664_CPU_CLK U2.121

H30 VDD1

H31 TAG_CS2 U5.76

H32 VSS

H33 MCE5# U2.169

J01 PCI_AD9 U2.37,U3.15

J02 NC

J03 NC, DEPOP

J04 664_TEST# U2.155

J05 NC, DEPOP

J06 MEM_BE2 U2.208,U3.163

J07 NC, DEPOP

J08 NC

J09 NC, DEPOP

J10 NC

J11 NC, DEPOP

J12 MEM_RD_SMPL U2.49,U3.147

J13 NC, DEPOP

J14 CPU_DATA_OE# U2.197,U3.146

J15 NC, DEPOP

J16 TLBISYNC# R1.E02,U1.233

J17 NC, DEPOP

J18 60X_CLK_OUT U1.221

J19 NC, DEPOP

J20 663_MEM_ERR# U2.194,U3.171

J21 NC, DEPOP

J22 NC

J23 NC, DEPOP

J24 NC

J25 NC, DEPOP

J26 VSS

J27 NC, DEPOP

J28 TAG_WT U5.47

J29 NC, DEPOP

J30 664_PCI_CLK U4.18

Pin1 Net Name2 MCM Nodes 3

J31 NC, DEPOP

J32 MCE3# U2.171

J33 MCE4# U2.170

K01 PCI_AD8 U2.38,U3.14

K02 VDD1

K03 DAISY20 J1.H03

K04 VSS

K05 664_MIO_TEST U2.154

K06 VDD1

K07 –XATS R1.B03,U2.129

K08 VSS

K09 NC

K10 VDD1

K11 NC

K12 VSS

K13 NC

K14 VDD1

K15 NC

K16 VSS

K17 NC

K18 VSS

K19 NC

K20 VDD1

K21 DBDIS# R1.A04,U1.153

K22 VSS

K23 NC

K24 VDD1

K25 NC

K26 VSS

K27 CLK_MPC601_CLKS U4.40

K28 VDD1

K29 PCI_CLK_IN U2.123

K30 VSS

K31 TAG_MATCH U2.142mU5.50

K32 VDD1

K33 MCE2# U2.172

L01 PCI_AD6 U2.40,U3.12

L02 PCI_AD7 U2.39,U3.13

L03 NC, DEPOP

L04 ABUF24 U7.22,U8.22,U9.22,
U10.22,U6B.41B

L05 NC, DEPOP

L06 TSIZ0 R1.K05,U1.197,
U2.145

L07 NC ,DEPOP

L08 TS# R1.B02,U1.149,
U2.143

L09 NC, DEPOP
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Pin1 Net Name2 MCM Nodes 3

L10 CI_60X# R1.J02,U1.237

L11 NC, DEPOP

L12 ECC_LE_SEL U2.2,U3.149

L13 NC, DEPOP

L14 MEM_DATA_OE# U2.196,U3.145

L15 NC, DEPOP

L16 TBEN_60X# R1.E01,U1.234

L17 NC, DEPOP

L18 L2_TST_CLK# R1.F01,U1.203

L19 NC, DEPOP

L20 NC

L21 NC, DEPOP

L22 DIR_245_B U6B.1B,U6B.24B

L23 NC, DEPOP

L24 TAG_WT_DTY_IN R1.G04,U5.5,U5.6

L25 NC, DEPOP

L26 TAG_ADDR_13 U5.33

L27 NC, DEPOP

L28 TAG_VLD U5.54

L29 NC, DEPOP

L30 TC1 U1.223

L31 NC, DEPOP

L32 MCE0# U2.174

L33 MCE1# U2.173

M01 PCI_AD5 U2.41,U3.11

M02 VSS

M03 DAISY19 J1.P03

M04 VDD1

M05 ABUF23 U7.21,U8.21,U9.21,
U10.21,U6B.40B

M06 VSS

M07 NC

M08 VDD1

M09 CSE U1.225

M10 VSS

M11 NC

M12 VDD1

M13 NC, DEPOP

M14 VSS

M15 NC, DEPOP

M16 VDD1

M17 NC, DEPOP

M18 VDD1

M19 NC, DEPOP

M20 VSS

M21 NC, DEPOP

M22 VDD3

Pin1 Net Name2 MCM Nodes 3

M23 NC

M24 VSS

M25 NC

M26 VDD3

M27 TAG_DATA_11 U5.65

M28 VSS

M29 NC

M30 VDD3

M31 TAG_PWRDN# U5.77

M32 VSS

M33 MWE0# U2.176

N01 USER_PCICLK2 U4.21

N02 PCI_AD4 U2.42,U3.10

N03 NC, DEPOP

N04 ABUF22 U7.7,U8.7,U9.7,
U10.7,U6B.38B

N05 NC, DEPOP

N06 TSIZ1 R1.K01,U1.196,
U2.146

N07 NC, DEPOP

N08 NC

N09 NC, DEPOP

N10 TEA# R1.D01,U1.154,
U2.137

N11 NC, DEPOP

N12 DUAL_CTRL_REF U2.205,U3.170

N13 NC, DEPOP

N14 PCI_AD_OE# U2.195,U3.144

N15 NC, DEPOP

N16 DBWO_60X# R1.D05,U1.25

N17 NC, DEPOP

N18 L1_TST_CLK# R1.E05,U1.204

N19 NC, DEPOP

N20 BG_MASTER# U2.135

N21 NC, DEPOP

N22 SRAM_ADS/ADDR0 U2.124,U7.2,U8.2,
U9.2,U10.2

N23 NC, DEPOP

N24 TA_GATES R1.G03,R1.G05,
U5.23,U5.27,U5.28

N25 NC, DEPOP

N26 A22 U1.160,U2.99,U5.13,
U6B.11B

N27 NC, DEPOP

N28 TAG_TA# U5.51

N29 NC, DEPOP

N30 TAG_BCLK U4.36

N31 NC, DEPOP

N32 MDP7 U3.195
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N33 MWE1# U2.175

P01 PCI_AD3 U2.43,U3.239

P02 VDD1

P03 DAISY19 J1.M03

P04 VSS

P05 ABUF21 U7.6,U8.6,U9.6,
U10.6,U6B.37B

P06 VDD1

P07 ARTRY# R1.A03.U1.32,
U2.110

P08 VSS

P09 NC

P10 VDD1

P11 NC

P12 VSS

P13 NC, DEPOP

P14 VDD1

P15 NC, DEPOP

P16 VSS

P17 NC, DEPOP

P18 VSS

P19 NC, DEPOP

P20 VDD1

P21 NC, DEPOP

P22 VSS

P23 NC

P24 VDD1

P25 TAG_DTY U5.34

P26 VSS

P27 A30 U1.144,U2.107

P28 VDD1

P29 X_TAG_BCLK U5.69

P30 VSS

P31 TAOE# R1.G01,R1.G02,
U5.66,U5.67,U5.68

P32 VDD1

P33 MD63 U3.140

R01 PCI_AD1 U2.59,U3.237

R02 PCI_AD2 U2.46,U3.238

R03 NC, DEPOP

R04 ABUF20 U7.49,U8.49,U9.49,
U10.49,U6B.36B

R05 NC, DEPOP

R06 TSIZ2 R1.K02,U1.195,
U2.147

R07 NC, DEPOP

R08 AACK# R1.A02,U1.28,
U2.109

R09 NC, DEPOP

Pin1 Net Name2 MCM Nodes 3

R10 NC

R11 NC, DEPOP

R12 NC

R13 NC, DEPOP

R14 PCI_OUT_SEL U2.68,U3.169

R15 VDD1

R16 MCP_60X# R1.H02,U1.186

R17 VDD1

R18 LSSD_MODE# R1.E04,U1.205

R19 VDD1

R20 NC

R21 NC, DEPOP

R22 SRAM_CNT_EN/
ADDR1

U2.125,U7.52,U8.52,
U9.52,U10.52

R23 NC, DEPOP

R24 A10 U1.170,U2.84,U5.57

R25 NC, DEPOP

R26 A13 U1.12,U2.87,
U6B.23B

R27 NC, DEPOP

R28 A27 U1.23,U2.104,
U6A.9A

R29 NC, DEPOP

R30 ABB# R1.A01,U1.36

R31 NC, DEPOP

R32 MD61 U3.138

R33 MD62 U3.139

T01 PCI_AD0 U2.48,U3.236

T02 VSS

T03 DAISY18 J1.V03

T04 VDD1

T05 ABUF19 U7.48,U8.48,U9.48,
U10.48,U6B.35B

T06 VSS

T07 NC

T08 VDD1

T09 NC

T10 VSS

T11 NC

T12 VDD1

T13 NC, DEPOP

T14 VSS

T15 NC, DEPOP

T16 VDD1

T17 NC, DEPOP

T18 VDD1

T19 NC, DEPOP

T20 VSS
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T21 NC, DEPOP

T22 VDD3

T23 A26 U1.158,U2.103,U5.7,
U6B.5B

T24 VSS

T25 A9 U1.7,U2.83,U5.56

T26 VDD3

T27 A18 U1.165,U2.93,U5.21,
U6B.16B

T28 VSS

T29 XTAL2 U4.13

T30 VDD3

T31 ROM_WE# U2.60

T32 VSS

T33 MD60 U3.133

U01 PCI_PERR# U2.10

U02 PCI_SERR# U2.71

U03 NC, DEPOP

U04 ABUF18 U7.47,U8.47,U9.47,
U10.47,U6B.33B

U05 NC, DEPOP

U06 ABUF28 U7.26,U8.26,U9.26,
U10.26,U6B.47B

U07 NC, DEPOP

U08 NC

U09 NC, DEPOP

U10 TBST# R1.C03,U1.192,
U2.144

U11 NC, DEPOP

U12 NC

U13 NC, DEPOP

U14 PCI_EXT_SEL U2.67,U3.153

U15 VDD1

U16 INT_60X# R1.D03,U1.188

U17 VDD1

U18 NC

U19 VDD1

U20 ROM_LOAD U2.70,U3.160

U21 NC, DEPOP

U22 SRAM_ALE U2.119

U23 NC, DEPOP

U24 A8 U1.174,U2.82,U5.55

U25 NC, DEPOP

U26 A17 U1.15,U2.92,U5.29,
U6B.17B

U27 NC, DEPOP

U28 A25 U1.22,U2.102,U5.8,
U6B.6B

U29 NC, DEPOP

U30 XTAL1 U4.12

Pin1 Net Name2 MCM Nodes 3

U31 NC, DEPOP

U32 MD58 U3.131

U33 MD59 U3.132

V01 PCI_C/BE0# U2.6

V02 VSS

V03 DAISY18 J1.T03

V04 VDD2

V05 ABUF17 U7.33,U8.33,U9.33,
U10.33,U6B.32B

V06 VSS

V07 ABUF27 U7.25,U8.25,U9.25,
U10.25,U6A.40A

V08 VDD2

V09 NC

V10 VSS

V11 DP7 U1.50,U3.137,
U10.20

V12 VDD2

V13 NC, DEPOP

V14 VSS

V15 NC, DEPOP

V16 VDD2

V17 NC, DEPOP

V18 VDD2

V19 NC, DEPOP

V20 VSS

V21 NC, DEPOP

V22 VDD3

V23 A31 U1.37,U2.108

V24 VSS

V25 A7 U1.6,U2.81,U5.46

V26 VDD3

V27 A16 U1.166,U2.91,U5.30,
U6A.11A

V28 VSS

V29 A24 U1.159,U2.101,U5.9,
U6B.8B

V30 VDD3

V31 ROM_OE# U2.47

V32 VSS

V33 MD57 U3.130

W01 PCI_C/BE2# U2.4

W02 PCI_C/BE1# U2.5

W03 NC, DEPOP

W04 ABUF16 U7.32,U8.32,U9.32,
U10.32,U6A.38A

W05 NC, DEPOP

W06 ABUF15 U7.31,U8.31,U9.31,
U10.31,U6A.37A

W07 NC, DEPOP
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W08 ABUF14 U7.30,U8.30,U9.30,
U10.30,U6B.27B

W09 NC, DEPOP

W10 DP4 U1.46,U3.77,U9.46

W11 NC, DEPOP

W12 NC

W13 NC, DEPOP

W14 PCI_OL_OPEN U2.64,U3.165

W15 VDD2

W16 CKSTP_IN# R1.D02,U1.215

W17 VDD2

W18 NC

W19 VDD2

W20 AOS_RR_MMRS U2.69,U3.166

W21 NC, DEPOP

W22 SRAM_WE# U2.118,U7.3,U7.4,
U8.3,U8.4,U9.3,
U9.4,U10.3,U10.4

W23 NC, DEPOP

W24 A6 U1.175,U2.80,U5.45

W25 NC, DEPOP

W26 A15 U1.13,U2.90,U5.31,
U6A.12A

W27 NC, DEPOP

W28 A23 U1.21,U2.100,U5.12,
U6B.9B

W29 NC, DEPOP

W30 SRAM_BCLK0 U4.44

W31 NC, DEPOP

W32 MDP6 U3.214

W33 MD56 U3.123

Y01 PCI_C/BE3# U2.3

Y02 VDD2

Y03 DAISY17 J1.AB03

Y04 VSS

Y05 X_SRAM_BCLK3 U10.51

Y06 VDD2

Y07 NC

Y08 VSS

Y09 DP1 U1.40,U3.219,U7.20

Y10 VDD2

Y11 DP6 U1.48,U3.116,
U10.46

Y12 VSS

Y13 NC, DEPOP

Y14 VDD2

Y15 NC, DEPOP

Y16 VSS

Y17 NC, DEPOP

Pin1 Net Name2 MCM Nodes 3

Y18 VSS

Y19 NC, DEPOP

Y20 VDD2

Y21 NC, DEPOP

Y22 VSS

Y23 NC

Y24 VDD2

Y25 A5 U1.5,U2.77,U5.40

Y26 VSS

Y27 A14 U1.168,U2.89,U5.32,
U6B.22B

Y28 VDD2

Y29 X_SRAM_BCLK0 U7.51

Y30 VSS

Y31 MA11 U2.177

Y32 VDD2

Y33 MD55 U3.121

AA01 PCI_STOP# U2.203

AA02 PCI_DEVSEL# U2.204

AA03 NC, DEPOP

AA04 SRAM_BCLK3 U4.50

AA05 NC, DEPOP

AA06 ABUF26 U7.24,U8.24,U9.24,
U10.24,U6B.44B

AA07 NC, DEPOP

AA08 NC

AA09 NC, DEPOP

AA10 DP3 U1.42,U3.34,U8.20

AA11 NC, DEPOP

AA12 NC

AA13 NC, DEPOP

AA14 C2P_WRL_OPEN U2.61,U3.154

AA15 NC, DEPOP

AA16 TA# R1.C05,U1.155,
U2.111

AA17 NC, DEPOP

AA18 APE_60X# R1.F03,U1.218

AA19 NC, DEPOP

AA20 TAG_WE# U2.114,U5.73U5.74

AA21 NC, DEPOP

AA22 SRAM_OE# U7.50,U8.50,U9.50,
U10.50

AA23 NC, DEPOP

AA24 A4 U1.176,U2.76,U5.39

AA25 NC, DEPOP

AA26 NC

AA27 NC, DEPOP
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AA28 A21 U1.17,U2.98,U5.14,
U6B.12B

AA29 NC, DEPOP

AA30 A29 U1.30,U2.106

AA31 NC, DEPOP

AA32 MD53 U3.118

AA33 MD54 U3.119

AB01 PCI_IRDY# U2.201,U3.167

AB02 VSS

AB03 DAISY17 J1.Y03

AB04 VDD2

AB05 ABUF13 U7.29,U8.29,U9.29,
U10.29,U6B.26B

AB06 VSS

AB07 D2 U1.113,U3.178,
U7.38

AB08 VDD2

AB09 DP0 U1.38,U3.196,U7.46

AB10 VSS

AB11 DP5 U1.47,U3.95,U9.20

AB12 VDD2

AB13 NC, DEPOP

AB14 VSS

AB15 NC, DEPOP

AB16 VDD2

AB17 NC, DEPOP

AB18 VDD2

AB19 NC, DEPOP

AB20 VSS

AB21 NC, DEPOP

AB22 VDD2

AB23 NC

AB24 VSS

AB25 A3 U1.3,U2.75,U5.37

AB26 VDD2

AB27 A12 U1.169,U2.86,U5.63

AB28 VSS

AB29 A20 U1.164,U2.97,U5.15,
U6B.13B

AB30 VDD2

AB31 MA10 U2.178

AB32 VSS

AB33 MD52 U3.113

AC01 PCI_FRAME_664# U2.200

AC02 PCI_TRDY# U2.202,U3.168

AC03 NC, DEPOP

Pin1 Net Name2 MCM Nodes 3

AC04 TAG_A_IN U6A.2A,U6A.3A,
U6A.5A,U6A.6A,
U6A.8A,U6A.13A,
U6A.14A,U6A.16A,
U6A.17A,U6A.19A,
U6A.20A,U6A.22A,
U6A.23A

AC05 NC, DEPOP

AC06 ABUF25 U7.23,U8.23,U9.23,
U10.23,U6B.43B

AC07 NC, DEPOP

AC08 D3 U1.110,U3.179,
U7.39

AC09 NC, DEPOP

AC10 DP2 U1.41,U3.3,U8.46

AC11 NC, DEPOP

AC12 NC

AC13 NC, DEPOP

AC14 MEM_WRL_OPEN U2.51,U3.150

AC15 NC, DEPOP

AC16 NC

AC17 NC, DEPOP

AC18 DPE_60X# R1.F02,U1.217,
U2.133

AC19 NC, DEPOP

AC20 TAG_VALID U2.115,U5.80

AC21 NC, DEPOP

AC22 TAG_CLEAR# U2.116,U5.70

AC23 NC, DEPOP

AC24 A2 U1.178,U2.74,U5.35

AC25 NC, DEPOP

AC26 A11 U1.11,U2.85,U5.61

AC27 NC, DEPOP

AC28 A19 U1.16,U2.96,U5.16,
U6B.14B

AC29 NC, DEPOP

AC30 A28 U1.151U2.105,
U6B.2B

AC31 NC, DEPOP

AC32 MD50  U3.111

AC33 MD51 U3.112

AD01 IGN_PCI_AD31 U2.57

AD02 VDD2

AD03 DAISY16 J1.AF03

AD04 VSS

AD05 D5 U1.108,U3.186,
U7.41

AD06 VDD2

AD07 D11 U1.92,U3.207,U7.13

AD08 VSS

AD09 D17 U1.84,U3.221,U8.35
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AD10 VDD2

AD11 D23 U1.76,U3.2,U8.45

AD12 VSS

AD13 D29 U1.68,U3.31,U8.15

AD14 VDD2

AD15 D35 U1.139,U3.57,U9.39

AD16 VSS

AD17 D41 U1.129,U3.79,U9.9

AD18 VSS

AD19 D47 U1.118,U3.94,U9.19

AD20 VDD2

AD21 D53 U1.101,U3.107,
U10.41

AD22 VSS

AD23 D59 U1.57,U3.126,
U10.13

AD24 VDD2

AD25 A1 U1.2 ,U2.73

AD26 VSS

AD27 NC

AD28 VDD2

AD29 SRAM_CS# U7.5,U8.5,U9.5,
U10.5

AD30 VSS

AD31 MA9 U2.179

AD32 VDD2

AD33 MD49 U3.109

AE01 USER_PCICLK1 U4.16

AE02 PCI_LOCK# U2.53

AE03 NC, DEPOP

AE04 D4 U1.109,U3.185,
U7.40

AE05 NC, DEPOP

AE06 D10 U1.93,U3.199,U7.12

AE07 NC, DEPOP

AE08 D16 U1.85,U3.220,U8.34

AE09 NC, DEPOP

AE10 D22 U1.78,U3.1,U8.44

AE11 NC, DEPOP

AE12 D28 U1.71,U3.27,U8.14

AE13 NC, DEPOP

AE14 D34 U1.140,U3.56,U9.38

AE15 NC, DEPOP

AE16 D40 U1.130,U3.78,U9.8

AE17 NC, DEPOP

AE18 D46 U1.119,U3.89,U9.18

AE19 NC, DEPOP

AE20 D52 U1.102,U3.106,
U10.40

Pin1 Net Name2 MCM Nodes 3

AE21 NC, DEPOP

AE22 D58 U1.56,U3.125,
U10.12

AE23 NC, DEPOP

AE24 A0 U1.179,U2.72

AE25 NC, DEPOP

AE26 NC

AE27 NC, DEPOP

AE28 AP3 R1.B04,U1.226

AE29 NC, DEPOP

AE30 SRAM_BCLK1 U4.46

AE31 NC, DEPOP

AE32 MDP5 U3.234

AE33 MD48 U3.108

AF01 664_PCI_REQ# U2.58

AF02 VSS

AF03 DAISY16 J1.AD03

AF04 VDD2

AF05 X_SRAM_BCLK2 U9.51

AF06 VSS

AF07 D9 U1.94,U3.198,U7.9

AF08 VDD2

AF09 D15 U1.87,U3.218,U7.19

AF10 VSS

AF11 D21 U1.80,U3.229,U8.41

AF12 VDD2

AF13 D27 U1.72,U3.26,U8.13

AF14 VSS

AF15 D33 U1.141,U3.55,U9.35

AF16 VDD2

AF17 D39 U1.131,U3.70 ,U9.45

AF18 VDD2

AF19 D45 U1.123,U3.88 ,U9.15

AF20 VSS

AF21 D51 U1.105,U3.105,
U10.39

AF22 VDD2

AF23 D57 U1.55,U3.124,U10.9

AF24 VSS

AF25 D63 U1.64,U3.136,
U10.19

AF26 VDD2

AF27 NC

AF28 VSS

AF29 X_SRAM_BCLK1 U8.51

AF30 VDD2

AF31 MA8 U2.180

AF32 VSS
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AF33 MD47 U3.102

AG01 BR_MASTER# R1.H05,U2.128

AG02 CPU_GNT_664#  U2.54

AG03 NC, DEPOP

AG04 SRAM_BCLK2 U4.48

AG05 NC, DEPOP

AG06 D8 U1.97,U3.197,U7.8

AG07 NC, DEPOP

AG08 D14 U1.89,U3.210,U7.18

AG09 NC, DEPOP

AG10 D20 U1.81,U3.228,U8.40

AG11 NC, DEPOP

AG12 D26 U1.73,U3.25,U8.12

AG13 NC, DEPOP

AG14 D32 U1.143,U3.54,U9.34

AG15 NC, DEPOP

AG16 D38 U1.133,U3.69,U9.44

AG17 NC, DEPOP

AG18 D44 U1.124,U3.87,U9.14

AG19 NC, DEPOP

AG20 D50 U1.106,U3.104,
U10.38

AG21 NC, DEPOP

AG22 D56 U1.52,U3.117,U10.8

AG23 NC, DEPOP

AG24 D62 U1.63,U3.135,
U10.18

AG25 NC, DEPOP

AG26 NC

AG27 NC, DEPOP

AG28 NC

AG29 NC, DEPOP

AG30 AP2 R1.B05,U1.227

AG31 NC, DEPOP

AG32 MD45 U3.100

AG33 MD46 U3.101

AH01 PCI_PAR U2.7

AH02 VDD2

AH03 NC

AH04 VSS

AH05 D1 U1.114,U3.177,
U7.35

AH06 VDD2

AH07 D7 U1.98,U3.188,U7.45

AH08 VSS

AH09 D13 U1.90,U3.209,U7.15

AH10 VDD2

AH11 D19 U1.82,U3.227, U8.39

Pin1 Net Name2 MCM Nodes 3

AH12 VSS

AH13 D25 U1.74,U3.24,U8.9

AH14 VDD2

AH15 D31 U1.66,U3.33,U8.19

AH16 VSS

AH17 D37 U1.134,U3.68, U9.41

AH18 VSS

AH19 D43 U1.125,U3.86,U9.13

AH20 VDD2

AH21 D49 U1.107,U3.99,U10.35

AH22 VSS

AH23 D55 U1.51,U3.115,U10.45

AH24 VDD2

AH25 D61 U1.62,U3.134,U10.15

AH26 VSS

AH27 NC

AH28 VDD2

AH29 AP1 R1.C01, U1.230

AH30 VSS

AH31 MA7 U2.181

AH32 VDD2

AH33 MD44 U3.93

AJ01 DRTRY# R1.H01, U1.156

AJ02 CKSTP_OUT# R1.J01, U1.216

AJ03 NC, DEPOP

AJ04 D0 U1.115,U3.176,U7.34

AJ05 NC, DEPOP

AJ06 D6 U1.99,U3.187,U7.44

AJ07 NC, DEPOP

AJ08 D12 U1.91,U3.208,U7.14

AJ09 NC, DEPOP

AJ10 D18 U1.83,U3.226,U8.38

AJ11 NC, DEPOP

AJ12 D24 U1.75,U3.4,U8.8

AJ13 NC, DEPOP

AJ14 D30 U1.67,U3.32,U8.18

AJ15 NC, DEPOP

AJ16 D36 U1.135,U3.67,U9.40

AJ17 NC, DEPOP

AJ18 D42 U1.126,U3.80,U9.12

AJ19 NC, DEPOP

AJ20 D48 U1.117,U3.98,U10.34

AJ21 NC, DEPOP

AJ22 D54 U1.100,U3.114,U10.44

AJ23 NC, DEPOP

AJ24 D60 U1.58,U3.127,U10.14
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AJ25 NC, DEPOP

AJ26 NC

AJ27 NC, DEPOP

AJ28 NC

AJ29 NC, DEPOP

AJ30 AP0 R1.C02,U1.231

AJ31 NC, DEPOP

AJ32 MD42 U3.91

AJ33 MD43 U3.92

AK01 NC

AK02 VSS

AK03 SRAM_ADSP# U7.1,U8.1,U9.1,U10.1

AK04 VDD2

AK05 DAISY11 J1.AK07

AK06 VSS

AK07 DAISY11 J1.AK05

AK08 VDD2

AK09 DAISY12 J1.AK11

AK10 VSS

AK11 DAISY12 J1.AK09

AK12 VDD2

AK13 DAISY13 J1.AK15

AK14 VSS

AK15 DAISY13 J1.AK13

AK16 VDD2

AK17 DAISY14 J1.AK19

AK18 VDD2

AK19 DAISY14 J1.AK17

AK20 VSS

AK21 DAISY15 J1.AK23

AK22 VDD2

AK23 DAISY15 J1.AK21

AK24 VSS

AK25 NC

AK26 VDD2

AK27 NC

AK28 VSS

AK29 NC

AK30 VDD2

AK31 MA6 U2.184

AK32 VSS

AK33 MD41 U3.90

AL01 L2_CLAIM# U2.132

AL02 SMI# R1.F05,U1.187

AL03 NC, DEPOP

AL04 MRE0# U2.164

AL05 NC, DEPOP

Pin1 Net Name2 MCM Nodes 3

AL06 MRE1# U2.163

AL07 NC, DEPOP

AL08 MRE2# U2.162

AL09 NC, DEPOP

AL10 MRE3# U2.161

AL11 NC, DEPOP

AL12 MRE4# U2.160

AL13 NC, DEPOP

AL14 MRE5# U2.159

AL15 NC, DEPOP

AL16 MRE6# U2.158

AL17 NC, DEPOP

AL18 MRE7# U2.157

AL19 NC, DEPOP

AL20 MA0 U2.190

AL21 NC, DEPOP

AL22 MA1 U2.189

AL23 NC, DEPOP

AL24 MA2 U2.188

AL25 NC, DEPOP

AL26 MA3 U2.187

AL27 NC, DEPOP

AL28 MA4 U2.186

AL29 NC, DEPOP

AL30 MA5 U2.185

AL31 NC, DEPOP

AL32 MDP4 U3.37

AL33 MD40 U3.83

AM02 VDD2

AM03 MD1 U3.182

AM04 VSS

AM05 MD4 U3.189

AM06 VDD2

AM07 MD7 U3.194

AM08 VSS

AM09 MD9 U3.201

AM10 VDD2

AM11 MD12 U3.206

AM12 VSS

AM13 MD15 U3.213

AM14 VDD2

AM15 MD17 U3.222

AM16 VSS

AM17 MD20 U3.225

AM18 VSS

AM19 MD23 U3.233

AM20 VDD2
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Pin1 Net Name2 MCM Nodes 3

AM21 MD25 U3.6

AM22 VSS

AM23 MD28 U3.29

AM24 VDD2

AM25 MD31 U3.36

AM26 VSS

AM27 MD33 U3.59

AM28 VDD2

AM29 MD36 U3.74

AM30 VSS

AM31 MD39 U3.81

AM32 VDD2

AN03 MD0 U3.180

AN04 MD2 U3.183

AN05 MD3 U3.184

AN06 MD5 U3.190

AN07 MD6 U3.193

AN08 MDP0 U3.141

AN09 MD8 U3.200

AN10 MD10 U3.202

AN11 MD11 U3.203

Pin1 Net Name2 MCM Nodes 3

AN12 MD13 U3.211

AN13 MD14 U3.212

AN14 MDP1 U3.122

AN15 MD16 U3.215

AN16 MD18 U3.223

AN17 MD19 U3.224

AN18 MD21 U3.231

AN19 MD22 U3.232

AN20 MDP2 U3.103

AN21 MD24 U3.5

AN22 MD26 U3.7

AN23 MD27 U3.28

AN24 MD29 U3.30

AN25 MD30 U3.35

AN26 MDP3 U3.82

AN27 MD32 U3.58

AN28 MD34 U3.60

AN29 MD35 U3.73

AN30 MD37 U3.75

AN31 MD38 U3.76

Notes:
1.1077 pins are listed.
2.The net name is the net name from the MCM schematics (see Section 13). Use it when referring to a net. Many

pin sites are not populated with a solder column. These sites are indicated with DEPOP in the Net Name
column. NC in the Net Name column means that the MCM makes no connection to that site.

3.The MCM Nodes indicate the pins of the devices that the MCM pin is connected to. For example, U2.24 repre-
sents pin 24 of device U2.
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Section 3
CPU and Level Two Cache
This section discusses topics that are directly related to the CPU, CPU bus, and Level Two
(L2) cache, including how the 660 bridge decodes CPU initiated transfers as a function of
the transfer type and address range. For more information, refer to the 660 User’s Manual.

The 100 MHz PPC 603e MCM supports CPU bus speeds up to 66MHz, and PCI bus
speeds up to 33MHz. The MCM is initially configured with a CPU_core:CPU_bus:PCI bus
frequency ratio of  99:66:33 MHz. This accomplished by setting the configuration bits for
the MPC970 clock driver via off MCM pullups.

3.1 CPU Busmasters
The MCM uses a single PowerPC 603e CPU, and an internal L2 cache; thus, there are only
two busmasters on the CPU bus: the CPU and the 660. CPU bus arbitration is greatly sim-
plified, and the multi-processor capabilities of the 660 are not used. The remaining arbitra-
tion on the CPU bus is between the CPU and the snoop broadcasting logic in the 660. Since
the 660 parks the CPU bus on CPU1 (the 603e) whenever the bus is idle, CPU latency is
minimized.

One level of address bus pipelining is supported, and most data writes are posted. Precise
exceptions are reported via TEA#, and imprecise exceptions are reported via MCP#. PIO,
or programmed I/O transactions (XATS# type) are not supported.

The MCM is not currently specified for use with external CPU busmasters. For more in-
formation on the CPU bus protocol, see the 603e User’s Manual. For more information on
the multiprocessor capabilities of the 660, see the 660 User’s Manual. For MCM applica-
tions involving external CPU bus agents, please contact IBM PowerPC Embedded Proces-
sor Systems Application Engineering.

3.1.1 603e CPU
The MCM operates the 603e in 64-bit data bus mode. The 660 will not operate in 32-bit
mode.

The MCM is configured for DRTRY# mode, and should not be configured for no-DRTRY#
mode. In DRTRY# mode, data is assumed to have been speculatively presented to the
CPU, and so is held for one clock in the 603e BIU before being presented to the CPU core
data consumers.

The MCM runs at 3:2 603e internal clock to bus clock ratio at 99MHz:66MHz. CPU
PLL_CFG[0:3] is set to 1100. The 603e may be run at 1:1 core:bus ratio, and the frequency
of the CPU bus clock can be varied. See Section 7, Clocks, for more information.
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3.2 System Response by CPU Bus Transfer Type
All access to the rest of the system is provided to the CPU by the 660. Table 3-1 shows the
660 decoding of CPU bus transfer types. Based on TT[0:3], the 660 responds to CPU bus-
master cycles by generating a read transaction, a write transaction, or an address-only re-
sponse. The 660 ignores TT[4] when it evaluates the transfer type.

The bridge decodes the target of the transaction based on the address range of the transfer
as shown in Table 3-2. The transfer type decoding shown in Table 3-1 combines with the
target decoding to produce one of the following operations:

� System memory reads and writes

� PCI I/O reads and writes

� PCI configuration reads and writes

� PCI interrupt acknowledge reads

� PCI memory reads and writes

� System ROM reads and writes

� Various bridge control register (BCR) reads and writes.
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Table 3-1.  TT[0:3] (Transfer Type) Decoding by 660 

TT[0:3] 60X Operation
60X Bus
Transac-

tion

660 Operation For CPU to
Memory Transfers

660 Operation For CPU to PCI
Transactions

0000 Clean block or lwarx Address
only

Asserts AACK#. No other response. No PCI transaction.

0001 Write with flush SBW(1)
or burst

Memory write operation. PCI write transaction.

0010 Flush block or stwcx Address
only

Asserts AACK#. No other response. No PCI transaction.

0011 Write with kill SBW or
burst

Memory write operation. L2
invalidates addressed block.

PCI write transaction.

0100 sync or tlbsync Address
only

Asserts AACK#. No other response. No PCI transaction.

0101 Read or read with
no intent to cache

SBR(1)
or burst

Memory read operation. PCI read transaction.

0110 Kill block or icbi Address
only

Asserts AACK#. L2 invalidates
addressed block.

Asserts AACK#. No other
response.

0111 Read with intent to
modify

Burst Memory read operation. PCI read transaction.

1000 eieio Address
only

Asserts AACK#. No other response. No PCI transaction.

1001 Write with flush
atomic,
stwcx

SBW Memory write operation. PCI write transaction.

1010 ecowx SBW Asserts AACK# and TA# if the transaction is not claimed by another
60X bus device. No PCI transaction. No other response.

1011 Reserved Asserts AACK#. No other response. No PCI transaction.

1100 TLB invalidate Address
only

Asserts AACK#. No other response. No PCI transaction.

1101 Read atomic, lwarx SBR or
burst

Memory read operation. PCI read transaction.

1110 External control in,
eciwx

Address
only

660 asserts all ones on the CPU data bus. Asserts AACK# and TA#
if the transaction is not claimed by another 60X bus device. No PCI
transaction. No other response.

1111 Read with intent to
modify atomic,
stwcx

Burst Memory read operation. PCI read transaction.

Note:
1. SBR means Single-Beat Read, and SBW means Single-Beat Write

Transfer types in Table 3-1 that have the same response are handled identically by the
bridge. For example, if the address is the same, the bridge generates the same memory
read transaction for transfer types 0101, 0111, 1101, and 1111.

The 660 does not generate PCI or system memory transactions in response to address
only transfers. The bridge does drive all-ones onto the CPU bus and signals TA# during an
eciwx if no other CPU bus agent claims the transfer.
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References in the remainder of this document to a CPU read, assume one of the transfer
types in Table 3-1 that produce the read response from the 660. Likewise, references to
a CPU write refer to those transfer type that produce the write response.

3.3 System Response by CPU Bus Address Range
The 660 determines the target of a CPU busmaster transaction based on the CPU bus ad-
dress range as shown in Table 3-2. The acronym BCR means bridge control register.

Table 3-2.  660 Address Mapping of CPU Bus Transactions 

CPU Bus Address
Other
Conditions Target Transaction Target Bus Address Notes

0 to 2G
0000 0000h to 7FFF
FFFFh

System Memory 0 to 2G
0000 0000h to 7FFF
FFFFh

(1)(2)

2G to 2G + 8M
8000 0000h to 807F
FFFFh

Contiguous
Mode

PCI I/O Transaction, BCR
Transaction, or
PCI Configuration
(T 1) T ti

0 to 8M
0000 0000h to 007F
FFFFh

(3)

Non-Contiguous
Mode

(Type 1) Transaction 0 to 64K
0000 0000h to 0000
FFFFh

(4)

2G + 8M to 2G + 16M
8080 0000h to 80FF
FFFFh

PCI Configuration
(Type 0) Transaction

PCI Configuration Space
0080 0000h to 00FF
FFFFh

2G + 16M to 3G – 8M
8100 0000h to BF7F
FFFFh

PCI I/O Transaction 16M to 1G – 8M
0100 0000h to 3F7F
FFFFh

3G – 8M to 3G
BF80 0000h to BFFF
FFFFh

BCR Transactions
and PCI Interrupt
Ack. Transactions

1G – 8M to 1G
3F80 0000h – 3FFF
FFFFh

(3)(6)

3G to 4G – 2M
C000 0000h to FFDF
FFFFh

PCI Memory
Transaction

0 to 1G – 2M
0000 0000h to 3FDF
FFFFh

4G – 2M to 4G
FFE0 0000h to FFFF
FFFFh

Direct Attach ROM
Read, Write, or
Write
Lockout

BCR Transaction 0 to 2M
0000 0000h to 001F
FFFFh
(ROM Address Space)

(2)

Remote ROM PCI Memory Transaction to I/O
Bus Bridge

1G – 2M to 1G
3FE0 0000h to 3FFF
FFFFh

(2)

Notes:
1. System memory can be cached. Addresses from 2G to 4G are not cacheable.
2. Memory does not occupy the entire address space.
3. Registers do not occupy the entire address space.
4. Each 4K page in the 8M CPU bus address range maps to 32 bytes in PCI I/O space.
5. Registers and memory do not occupy the entire address space. Accesses to unoccupied addresses result in all one-

bits on reads and no-ops on writes.
6. A memory read of BFFF FFF0h generates an interrupt acknowledge transaction on the PCI bus.

3.3.1 Address Mapping for Non-Contiguous I/O
Figure 3-1 shows the address mapping that the 660 performs in non-contiguous mode. The
I/O map type register (address 8000 0850h) and the bridge chip set options 1 register (in-
dex BAh) control the selection of contiguous and non-contiguous I/O. In non-contiguous
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mode, the 8M address space of the 60X bus is compressed into 64K of PCI address space,
and the 60X CPU cannot create PCI I/O addresses from 64K to 8M.

In non-contiguous I/O mode, the 660 partitions the address space so that each 4K page
is remapped into a 32-byte section of the 0 to 64K ISA port address space, so that 60X CPU
protection attributes can be assigned to any of the 4K pages. This provides a flexible mech-
anism to lock the I/O address space from change by user-state code. This partitioning
spreads the ISA I/O address locations over 8M of CPU address space.

In non-contiguous mode, the first 32 bytes of a 4K page are mapped to a 32-byte space
in the PCI address space. The remainder of the addresses in the 4K page are mirrors into
the the same 32-byte PCI space. Each of the 32 contiguous port addresses in each 4K page
has the same protection attributes in the CPU.

Figure 3-1.  Non-Contiguous PCI I/O Address Transformation
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The three least-significant address bits are unmunged during the transformation if little-endian mode is selected.
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For example, in Figure 3-2, 60X CPU addresses 8000 0000h to 8000 001Fh are converted
to PCI I/O port 0000h through 001Fh. PCI I/O port 0020h starts in the next 4K page at 60X
CPU address 8000 1000h.
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ISA I/O    60X Address

0000 8000 0000
0001 8000 0001
0002
  .
  .

8000 0002
4K Page    . 

. 

. 
001E 8000 001E
001F 8000 001F 60X Addresses

 8000 0020 to 8000 0FFF
Are Wrapped and Should

0020 8000 1000 Not Be Used.
0021
  .
  .

8000 1001
4K Page . 

. 

Figure 3-2.  Non-Contiguous PCI I/O Address Translation

3.3.2 Address Mapping for Contiguous I/O
In contiguous I/O mode, CPU addresses from 2G to 2G + 8M generate a PCI I/O cycle on
the PCI bus with PCI_AD[29:00] unchanged. The low 64K of PCI I/O addresses are for-
warded to the ISA bus unless claimed by a PCI agent.

Memory page protection attributes may only be assigned by 4K groups of ports, rather than
by 32-port groups as in the non-contiguous mode.  This is the power-on default mode.
Figure 3-3 gives an example of contiguous I/O partitioning.

ISA I/O    60X Address

0000 8000 0000
0001 8000 0001
0002 8000 0002

.    . 

.    . 

.    . 
001E 8000 001E
001F 8000 001F

Contiguous 603/604

 addresses (No gaps)
0020 8000 0020
0021 8000 0021

.    . 

.    . 

.    . 

.    . 
FFFE 8000 FFFE
FFFF 8000 FFFF

Figure 3-3.  Contiguous PCI I/O Address Translation

3.3.3 PCI Final Address Formation
The 660 maps 60X CPU bus addresses from 2G to 4G as PCI transactions, error address
register reads, or ROM reads and writes. The 660 manipulates 60X bus addresses from
2G to 4G to generate PCI addresses as follows:

� PCI_AD[31:30] are set to zero.

� PCI_AD[2:0] are unmunged if little-endian mode is selected.

� After unmunging, PCI_AD[1:0] are set to 00b except for PCI I/O cycles.
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3.4 CPU to Memory Transfers
The system memory address space is from 0 to 2G. Physical memory does not occupy the
entire address space. When the CPU reads an unpopulated location, the 660 returns all-
ones and completes the transfer normally. When the CPU writes to an unpopulated loca-
tion, the Bridge signals normal transfer completion to the CPU but does not write the data
to memory. The memory select error bit in the error status 1 register (bit 5 in index C1h)
is set in both cases.

All CPU to memory writes are posted and can be pipelined.

The 660 supports all CPU to memory bursts, and all single-beat transfer sizes and align-
ments that do not cross an 8-byte boundary, which includes all memory transfers initiated
by the 603/604 CPU.

3.4.1 LE Mode
The bridge supports all transfer sizes and alignments that the CPU can create in LE mode;
however, all loads or stores must be at natural alignments in LE mode (or the CPU will take
an alignment exception). Also, load/store multiple word and load/store string word instruc-
tions are not supported in the CPU in LE mode.

3.5 CPU to PCI Transactions
Since all CPU to PCI transactions are CPU memory mapped, software must in general uti-
lize the EIEIO instruction which enforces in-order execution, particularly on PCI I/O and
configuration transactions. Some PCI memory operations can be sensitive to order of ac-
cess also. See the 660 User’s Manual.

All addresses from 2G to 4G (including ROM space) must be marked non-cacheable. See
the PowerPC Reference Platform Specification. The MCM supports all PCI bus protocols
during CPU to PCI transactions.

The MCM supports all CPU to PCI transfer sizes that do not cross a 4-byte boundary, and
it supports 8-byte CPU to PCI writes that are aligned on an 8-byte boundary. The bridge
does not support CPU bursts to the PCI bus.

When the 660 decodes a CPU access as targeted for the PCI, the 660 requests the PCI
bus. Once the SIO grants the PCI bus to the 660, the bridge initiates the PCI cycle and re-
leases the bus.

CPU to PCI transactions that the PCI target retries, cause the 660 to deassert its
PCI_REQ# (the Bridge follows the PCI retry protocol). The Bridge stays off of the PCI bus
for two PCI clocks before reasserting PCI_REQ# (or FRAME#, if the PCI bus is idle and
the PCI_GNT# to the Bridge is active).

3.5.1 CPU to PCI Read
If the CPU to PCI cycle is a read, a PCI read cycle is run. If the PCI read cycle completes,
the data is passed to the CPU and the CPU cycle is ended. If the PCI cycle is retried,  the
CPU cycle is retried. If a PCI master access to system memory is detected before the PCI
read cycle is run then the CPU cycle is retried (and no PCI cycle is generated).
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3.5.2 CPU to PCI Write

If the CPU to PCI cycle is a write,  a PCI write cycle is run. CPU to PCI I/O writes are not
posted, as per the PCI Local Bus Specification version 2.1. If the PCI transaction is retried,
the Bridge retries the CPU.

CPU to PCI memory writes are posted, so the CPU write cycle is ended as soon as the data
is latched. If the PCI cycle is retried, the Bridge retries the cycle until it completes.

3.5.2.1 Eight-Byte Writes to the PCI (Memory and I/O)

The 660 supports 1-byte, 2-byte, 3-byte, and 4-byte transfers to and from the PCI. The 660
also supports 8-byte memory and I/O writes (writes only, not reads) to the PCI bus. When
an 8-byte write to the PCI is detected, it is not posted initially. Instead the CPU waits until
the first 4-byte write occurs,  then the second 4-byte write is posted. If the PCI retries on
the first 4-byte transfer or a PCI master access to system memory is detected before the
first 4-byte transfer, then the CPU is retried. If the PCI retries on the second 4-byte transfer,
then the 660 retries the PCI write.

3.5.3 CPU to PCI Memory Transactions

CPU transfers from 3G to 4G–2M are mapped to the PCI bus as memory transactions.

3.5.4 CPU to PCI I/O Transactions

CPU transfers from 2G+16M to 3G–8M are mapped to the PCI bus as I/O transactions. In
compliance with the PCI specification, the 660 master aborts all I/O transactions that are
not claimed by a PCI agent.

3.5.5 CPU to PCI Configuration Transactions

The MCM allows the CPU to generate type 0 and type 1 PCI configuration cycles. The CPU
initiates a transfer to the appropriate address. The 660 decodes the cycle and generates
a request to the PCI arbiter in the SIO. When the PCI bus is acquired, the 660 enables its
PCI_AD drivers and drives the address onto the PCI_AD lines for one PCI clock before it
asserts PCI_FRAME#. Predriving the PCI_AD lines for one clock before asserting
PCI_FRAME# allows the IDSELs to be resistively connected to the PCI_AD[31:0] bus at
the system level.

The transfer size must match the capabilities of the target PCI device for configuration
cycles. The MCM supports 1-, 2-, 3-, and 4-byte transfers that do not cross a 4-byte bound-
ary.

Address unmunging and data byte swapping follow the same rules as those for system
memory with respect to BE and LE modes of operation. Address unmunging has no effect
on the CPU address lines which correspond to the IDSEL inputs of the PCI devices.

The generation of PCI configuration cycles is via the 660 indexed Bridge Control Registers
(BCR). This configuration method is described in section 4 of the 660 User’s Manual. The
IDSEL assignments and their respective PCI_AD lines are shown in Table 3-3. The ad-
dresses used for configuration are assigned as shown in Table 3-3.
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Table 3-3.  CPU to PCI Configuration Mapping 
Device IDSEL Line 60X Address (1) PCI Address 

PCI to ISA Bridge A/D 11 8080 08XXh 080 08XX

PCI slot 1 A/D 12 8080 10XXh 080 10XX

PCI slot 2 A/D 13 8080 20XXh 080 20XX

PCI slot 3 A/D 14 8080 40XXh 080 40XX

PCI slot 4 A/D 15 8080 80XXh 080 80XX

PCI slot 5 A/D 16 8081 00XXh 081 00XX

PCI slot 6 A/D 17 8082 00XXh 082 00XX

PCI slot 7 A/D 18 8084 00XXh 084 00XX

PCI slot 8 A/D 19 8088 00XXh 088 00XX

PCI slot 9 A/D 20 8090 00XXh 090 00XX

PCI slot 10 A/D 21 80A0 00XXh 0A0 00XX

PCI slot 11 A/D 22 80C0 00XXh 0C0 00XX

Notes:
1. This address is independent of contiguous I/O mode.

3.5.6 CPU to PCI Interrupt Acknowledge Transaction

Reading the interrupt acknowledge address (BFFF FFF0h) causes the bridge to arbitrate
for the PCI bus and then to execute a standard PCI interrupt acknowledge transaction. The
system interrupt controller in the ISA bridge claims the transaction and supplies the 1-byte
interrupt vector. There is no physical interrupt vector BCR in the bridge. Other PCI busmas-
ters can initiate interrupt acknowledge transactions, but this may have unpredictable ef-
fects.

3.5.7 PCI Lock

The 660 does not set PCI locks when acting as the PCI master. The  PCI_LOCK# signal
in the 660 supports resource locking of one 32-byte cache sector (block) of system
memory. Once a PCI lock is established, the block address is saved. Subsequent accesses
to that block from other PCI busmasters or from the CPU bus are retried until the lock is
released.

The bridge generates a flush-sector snoop cycle on the CPU bus when a PCI busmaster
sets the PCI lock. The flush-sector snoop cycle causes the L1 and L2 caches to invalidate
the locked block, which prevents cache hits on accesses to locked blocks. If the L1 contains
modified data, the PCI cycle is retried and the modified data is pushed out to memory.

Note: The 60X processors do not have bus-locking functions. Instead, they use the load
reserve and store conditional instructions (lwarx and stwcx) to implement exclusive access.
To work with the lwarx and stwcx instructions, the 660 generates a flush-sector operation
to the CPU in response to the PCI read that begins a PCI lock.

3.6 CPU to BCR Transfers
The 660 can be extensively programmed by means of the Bridge Control Registers (BCR).
See the 660 User’s Manual for a description of the operation and programming of the 660
BCRs.
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3.7 L2
The MCM contains an L2 cache controller (located inside the 660), 512K of synchronous
SRAM, and a 16K x 15 synchronous tagRAM. This forms a unified, write-thru, direct-
mapped, look-aside level 2 cache (L2) that caches CPU memory space from 0 to 1G.

The L2 directory contains 8K entries with one tag per entry. The cache line (block) size is
32 bytes, the PowerPC 60X coherence unit. The L2 maintains coherence for the 32-byte
block and neither operates on nor maintains the status of smaller units of memory.

Typical L2 read performance is 3-1-1-1, followed by -2-1-1-1 on pipelined reads. For more
information on the operation and capabilities of the L2, see the 660 User’s Manual.

3.7.1 Cache Response to CPU Bus
The L2 supplies data to the CPU bus on burst read hits and snarfs the data (updates the
SRAM data while the memory controller is accessing the DRAM) on CPU burst read/write
misses. It snoops PCI to memory transactions, and it invalidates on PCI write hits. The L2
does not supply data to the PCI on read hits.

Table 3-4.  L2 Cache Responses to CPU Bus Cycles 

TT[0:3] Type CPU Bus Cycle Cache Hit Action Cache Miss
Action

0000 Clean sector Ignore Ignore

0001 Single Write with flush Invalidate Ignore

Burst Write with flush Snarf Snarf

0010 Flush sector Invalidate Ignore

0011 Single Write with kill Invalidate Ignore

Burst Write with kill Snarf Snarf

0101 Single Read Ignore Ignore

Burst Read Claim cycle and supply data Snarf

0110 Kill sector Invalidate Ignore

0111 Always Burst RWITM Claim cycle and supply data Ignore

1000 Reserved Ignore Ignore

1001 Always Single Write with flush atomic Invalidate Ignore

1010 External control out Ignore Ignore

1011 Reserved Ignore Ignore

1100 TLB invalidate Ignore Ignore

1101 Single Read atomic Ignore Ignore

Burst Read atomic Claim cycle and supply data Snarf

1110 External control in Ignore Ignore

1111 Always Burst RWITM Atomic Claim cycle and supply data Ignore

The L2 ignores CPU bus single-beat reads, and invalidates on CPU bus single-beat write
hits. Table 3-4 shows the actions taken by the L2 cache based on transfer type and single-
beat or burst mode.

The CPU cache inhibit (CI#) signal is not used because cache-inhibited bus operations are
always single-beat. The 660 does not use TT[4]. Accesses to populated memory are
snooped by L2 regardless of the state of GBL#. The 660 only uses GBL# as an output.
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3.7.2 Cache Response to PCI Bus
The L2 maintains coherency during PCI to memory transactions as shown in Table 3-5. The
L2 does not supply data to the PCI bus. The L2 is not updated during a PCI transaction.

Table 3-5.  L2 Operations for PCI to Memory Transactions, 603 Mode

PCI Bus
T ti

CPU Bus Broadcast Snoop L2 Operation
Transaction Operation TT[0:4] L2 Hit L2 Miss

Memory Read Single-Beat Read 01010 Ignore Ignore

Memory Write Single-Beat Write with Flush 00010 Invalidate Block Ignore

Initiate Lock (Read) Single-Beat Write with Flush 00010 Invalidate Block Ignore

3.7.3 L2 Configuration
The L2 controller does not require any software configuration to set the size or organization
of the tag and data SRAM. The connection to the CPU address bus determines the size
of the tag RAM and data SRAM. Bridge Control Register D4 bit 3 should be set to 1 to select
”burst” as the SRAM type.

3.7.4 L2 Organization
The L2 directory contains 8K entries with one tag per entry. The cache line (block) size is
32 bytes, the PowerPC 60X coherence unit. The L2 maintains coherence for the 32-byte
block and neither operates on nor maintains the status of smaller units of memory. All of
the tags together are sometimes called the cache directory.

The L2 uses only A[2:31] to store and access L2 data. A[0:1] are not used or saved in the
cache directory because the MCM only caches the lowest 1G of the address space. A[0:1]
must equal 00 for the MCM to access the directory.

3.7.5 Other L2 Related BCRs
See Table 3-6.

Table 3-6.  Other L2 Related BCRs

Bridge Control Register Index R/W Bytes

Error Enable 2 Index C4 R/W 1

Error Status 2 Index C5 R/W 1

Bridge Chip Set Options 3 Index D4 R/W 1

System Control 81C 8000 081C R/W 1

L2 Invalidate 8000 0814 R

L2 Error Status 8000 0842 R

L2 Parity Error Read and Clear 8000 0843 R

Cache Status Index B1h R/W
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Figure 3-4.  L2 Mapping of System Memory – 512K Configuration
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The L2 considers the 1G of cacheable system memory to be
logically organized into 4K pages. Every member of a given
page has the same address tag, which in this case is defined
as bits A[2:13] of the address.

Each page consists of 8K blocks of memory, where each
block consists of one 32-byte doubleword of memory. A block
is referred to within the page by the index, which is defined as
bits A[14:26] of the address.

Thus each block of memory in the 0 to 1G range has a tag,
A[2:13], which ranges from 0 to 4K–1, and an index, A[14:26],
which ranges from 0 to 8K–1. All of the blocks that have the
same index are said to be in the same congruence class, or
set. Each block in a given set has a unique tag. Some map-
ping examples:

1G–256K

768K–32

1G–32

Index Tag
0 0 0

256K
256K+32

768K–32

0 1

8K–1 2

11

Line Memory Address

768K+32

512K+32

512K–32

A[0:31]

A[2:13]

A[14:26]

Figure 3-5 shows how the MCM maps the SRAM to main memory using the index and tag
fields of the address. Notice that there are 8k tags and 8k 32-byte blocks in the SRAM, and
that the main memory is divided up into 4k pages, each one of which is composed of 8k
blocks.

When an address is presented to the cache directory for snooping, the MCM uses the index
to select which directory location to access, by presenting A[14:26] to the tagRAM address
inputs. The tagRAM then compares the tag in that location (the A[2:13] of the previous
cacheable access to that location) to the tag ( A[2:13] ) of the current transaction. If there
is a match, and the tag is marked ”valid,” then there is a cache hit (signalled by
TAG_MATCH).
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Figure 3-5.  SLC L2 Cache Directory – 512K Configuration
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Suppose the CPU requests a burst store to location 512K (8 0000h), which is initially invalid
(either stale or never accessed). The index is A[14:26], which is 0h, so the accessed ta-
gRAM location is 0h. The tag currently on the address bus is A[2:13], which equals 2. So
the MCM stores 2h into tagRAM location 0h. The valid bit is set for that location.

While the CPU is accessing other blocks of memory with different low order addresses, oth-
er locations in the tagRAM are being accessed; however, if the CPU again accesses a block
of memory with this same low order address, then this tagRAM location will again be ac-
cessed, and the tag stored therein will be compared against A[2:13] of the current access.
If they are the same, then there is a cache hit.

3.7.6 SRAM
The MCM uses four IBM041814 synchronous 64K x 18 SRAMs to implement the SRAM
portion of the L2. Figure 3-6 shows the basic connectivity of the MCM SRAM. These are
synchronous devices, and each SRAM consumes one of the MPC970 clocks. In burst op-
eration, the address of the data for the initial beat of the burst is latched into the SRAM; the
address of the data for the next beat of the burst is incremented internally under the control
of the ADV# input (SRAM_CNT_EN#).

� Each SRAM is connected to two CPU bus data bytes and the associated two CPU
bus parity lines.

� ABUF[13:28] are a buffered copy of CPU A[13:28]. The SRAMs are arranged in par-
allel, so that an 8-byte doubleword is addressed during each access; thus,
ABUF[28] is connected to A0 of the SRAM.

� The 660 asserts SRAM_WE# to write into the SRAM and asserts SRAM_OE# to
read data out of the SRAM.

� The 660 asserts SRAM_ADS# to signal the initial beat of the burst.
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� Pull SRAM_CS# low for normal operation. Pull SRAM_ADSP# high for normal op-
eration.

Figure 3-6.  Synchronous SRAM, 512K L2
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SRAM_BCLKs 0 1 2 3

SRAMSRAMSRAM

32k x 18
SRAMs

3.7.7 TagRAM
The MCM uses an IDT71216 synchronous 16K x 15 cache tagRAM to implement the tags
of the L2. Figure 3-7 shows the basic connectivity of the MCM SRAM. The tagRAM is a
synchronous device, and so consumes one of the MPC970 clocks.

� CPU address lines A[14:26] form the index of the directory entry. Pull
TAG_ADDR_13 high for normal operation.

� CPU address lines A[2:13] form the tag of the directory entry. Tie TAG_DATA_11 to
A13 for normal operation.

� During tagRAM writes, the valid bit associated with the index is set to match the
TAG_VALID input.

� During tagRAM reads, the TAG_MATCH output is released to the active high (open–
drain) state only when A[2:13] matches the contents of tagRAM location A[14:26],
and the Valid bit for that location is set to 1. If the the Valid bit is 0 (invalid) or the
address stored in the tag does not match the current value of A[2:13], then the
TAG_MATCH output is driven low.

Figure 3-7.  Synchronous TagRAM, 512K L2
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Section 4
DRAM
The memory controller in the 660 bridge controls the system memory DRAM. The system
memory can be accessed from both the CPU bus and the PCI bus. Much of the information
in this section has been drawn from the 660 User’s Manual.

4.1 Features and Supported Devices
� Supports memory operations for the PowerPC Architecture�
� Data bus path 72 bits wide—64 data bits and eight bits of optional ECC or parity data
� Eight SIMM sockets supported
� Eight RAS# outputs, eight CAS# outputs, and two write-enable outputs
� Supports industry-standard 8-byte (168-pin) SIMMs of 8M, 16M, 32M, 64M, and

128M that can be individually installed for a minimum of 8M and a maximum of 1G
� Supports industry-standard 4-byte (72-pin) SIMMs of 4M, 8M, 16M, 32M, 64M, and

128M that must be installed in pairs for a minimum of 8M and a maximum of 1G
� Mixed use of different size SIMMs, including mixed 4-byte and 8-byte SIMMs
� Full refresh support, including refresh address counter and programmable DRAM

refresh timer
� Burst-mode memory address generation logic

32-byte CPU bursts to memory

Variable length PCI burst to memory

� Little-endian and big-endian addressing and byte swapping modes
� Provides row and column address multiplexing for DRAM SIMMs requiring the fol-

lowing addressing:

SIMM type SIMM size Addressing

72-pin 4 Meg 10 x 10

8 Meg 10 x 10

16 Meg 11 x 11

32 Meg 11 x 11

64 Meg 12 x 12

168-pin 8 Meg 10 x 10

16 Meg 11 x 10

32 Meg 12 x 10 or 11 x 11

64 Meg 12 x 11

128 Meg 12 x 12
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4.1.1 SIMM Nomenclature
The term SIMM is used extensively to mean DRAM memory module, without implying the
physical implementation of the module, which can be a SIMM, DIMM, or other package.

4.1.1.1 DRAM Timing
The memory controller timing parameters are programmable to allow optimization of tim-
ings based on speed of DRAM, clock frequency, and layout topology. Timing must be pro-
grammed based on the slowest DRAM installed.
� Support for fast page-mode DRAMs
� Support for extended-data-out (EDO) DRAM (hyper-page mode)
� If 70ns DRAM is used in a system with the CPU bus at 66MHz, the minimum access

times for initial (not pipelined) CPU to memory transfers with page mode and EDO
DRAM are as follows:

Transfer EDO DRAM Page Mode DRAM Note

Initial Read Burst 10–3–3–3 11–4–4–4 CPU clocks for 32 bytes

Initial Write Burst 5–3–3–3 5–4–4–4 CPU clocks for 32 bytes

� In the same system, the times for a pipelined burst following a read are as follows:

Transfer EDO DRAM Page Mode DRAM Note

Page Hit Read –5–3–3–3 –5–4–4–4 CPU clocks for 32 bytes

Page Hit Write –3–3–3–3 –3–3–4–4 CPU clocks for 32 bytes

� In the same system, the times for a pipelined burst following a write are as follows:

Transfer EDO DRAM Page Mode DRAM Note

Page Hit Read –9–3–3–3 –11–4–4–4 CPU clocks for 32 bytes

Page Hit Write –5–3–3–3 –6–3–4–4 CPU clocks for 32 bytes

� Other minimum memory timings are as follows:
PCI to memory read at 66MHz CPU and 33MHz PCI

8-1-1-1 -1-1-1-1  7-1-1-1 -1-1-1-1  7-1-1-1 -1-1-1-1 ... 7-1-1-1 -1-1-1-1
PCI to memory write at 66MHz CPU and 33MHz PCI

5-1-1-1 -3-1-1-1  3-1-1-1 -3-1-1-1  3-1-1-1 -3-1-1-1 ... 3-1-1-1 -3-1-1-1

4.1.1.2 DRAM Error Checking
The 660 supports either no parity or one bit per byte parity DRAM SIMMs, in which one par-
ity bit is associated and accessed with each byte. The 660 is BCR programmable to support
either no parity, even parity, or ECC data error detection and correction. ECC is implement-
ed using standard parity SIMMs. All installed SIMMs must support the selected error check-
ing protocol.
Systems without error checking cost the least. Parity checking mode allows a standard lev-
el of error protection with no performance impact. ECC mode allows detection and correc-
tion of all single-bit errors and detection of all two-bit errors. ECC mode adds one CPU clock
to the latency of CPU to memory reads, and does not effect the timing of 8-byte and 32-
byte writes

4.2 DRAM Performance
4.2.1 Memory Timing Parameters
Most memory controller timing parameters can be adjusted to maximize the performance
of the system with the available resources. This adjustment is done by programming vari-
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ous memory controller BCRs. Figure 4-1 shows the various programmable memory timing
variables. These variables control the number of CPU_CLKs between various events. The
actual amount of time between the events shown will also be affected by various other fac-
tors such as clock to output delays. The CPU_CLK signal shown is not meant to be contigu-
ous, as the number of clocks between various events is programmable.

Figure 4-1.  CPU to Memory Transfer Timing Parameters

RPW

CP CP

RP

RCD

ASC

CPW

ASC

CPW

Row Column ColumnColumnMA(11:0)

RASn#

CASm#

CPU_CLK

RAH

Table 4-1 shows the function, location, and section references for the variables shown in
Figure 4-1.

Table 4-1.  Memory Timing Parameters

Variable Function BCR Section

ASC Column Address Setup (min) Memory Timing Register 2 4.2.1.2

CP CAS# Precharge Memory Timing Register 2 4.2.1.2

CPW CAS# Pulse Width (Read & Write) Memory Timing Register 2 4.2.1.2

RAH Row Address Hold (min) Memory Timing Register 1 4.2.1.1

RCD RAS# to CAS# Delay (min) Memory Timing Register 2 4.2.1.2

RP RAS# Precharge Memory Timing Register 1 4.2.1.1

RPW RAS# Pulse Width Memory Timing Register 1 4.2.1.1

Note that ASC, RAH, and RCD are minimums. if RAH + ASC does not equal RCD, then
the larger value will be used such that:
� If RCD < RAH + ASC, then the actual RCD will be stretched to equal RAH + ASC.
� If RCD > RAH + ASC, then the actual RAH will be stretched to equal RCD – ASC.

4.2.1.1 Memory Timing Register 1

Index A1 Read/Write Reset to 3Fh

This BCR determines the timing of RAS# signal assertion for memory cycles. RAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 4.2.1.
Bits 1:0 These bits control the number of CPU clocks for RAS# precharge.
Bits 4:2 These bits control the minimum allowed RAS# pulse width except on refresh.

For refresh, the RAS# pulse width is hard-coded to three PCI clocks.
Bit  5 This bit controls the number of CPU clocks that the row address is held follow-

ing the assertion of RAS#.
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D0D1D2D3D4D5D6D7A1h

Row Address Hold Time (RAH)

RAS precharge (RP)
00 = 2 CLK
01 = 3 CLK
10 = 4 CLK
11 = 5 CLK

RAS pulse width min (RPW)

0 = 1 CLK

RESERVED

000 = reserved  100 = 5 CLK
001 = reserved  101 = 6 CLK
010 = reserved  110 = 7 CLK
011 = 4 CLK     111 = 8 CLK

1 = 2 CLK

4.2.1.2 Memory Timing Register 2

Index A2 Read/Write Reset to AEh

This BCR determines the timing of CAS# signal assertion for memory cycles. CAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 4.2.1.

D0D1D2D3D4D5D6D7A2h

CAS Pulse Width Write (CPWW)

00 = reserved
01 = 2 CLK
10 = 3 CLK
11 = reserved

CAS Pulse Width Reads/Write (CPW)
00 = 1 CLK
01 = 2 CLK
10 = 3 CLK
11 = Reserved

reserved

00 = 1 CLK
01 = 2 CLK
10 = reserved
11 = reserved

0 = 1 CLK
1 = 2 CLK

RAS to CAS Delay (RCD)

CAS Precharge (CP)

Column Address Setup (ASC)

4.2.1.3 RAS# Watchdog Timer BCR

Index B6 Read/Write Reset to 53h

This BCR limits the maximum RAS# active pulse width. The value of this BCR represents
the maximum amount of time that any RAS# can remain active in units of eight CPU bus
clocks. The timer (down-counter) associated with this BCR is reloaded on the assertion of
any RAS# line. On expiration of the timer, the 660 drops out of page mode to deassert the
RAS# lines.
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In response to the RESET# signal, this register is reset to 53h. This value results in a maxi-
mum RAS# active time of just under 10us at 66MHz. This is the value required by most
4-byte and 8-byte SIMMs. The value of the BCR must be reprogrammed if the CPU bus
frequency is not 66MHz or a different RAS# pulse width is required.

4.2.1.4 DRAM Timing Calculations
The memory controller of the 660 features programmable DRAM access timing. DRAM tim-
ing is programmed into Memory Timing Register 1 (MTR1) and Memory Timing Register
2 (MTR2). See section 4.2.1 for an explanation of the format of these BCRs. All memory
controller outputs are switched on the rising edge of the CPU clock, with the exception of
signal assertion during refresh operations, which is timed from the PCI clock. The RAS#
Watchdog Timer Register, the Refresh Timer Divisor Register and the Bridge Chipset Op-
tions 3 (BCO3) BCRs also have an effect on DRAM timing.
The values programmed into these registers are a function of the clock frequencies, the
timing requirements of the memory, the amount of memory installed (capacitive loading),
the mode of operation (EDO vs. standard), the timing requirements of the 660, the type and
arrangement of buffering for the MA (memory address) signals, the clock skew between
the 663 and the 664, and the net lengths of the signals to/from the memory (flight time). The
calculations below ignore the factors of clock skew and flight time.

This section discusses the timing calculations that are appropriate to 660 memory control-
ler design. The timing recommendations in this section apply to all MCM configurations.
Because the MCM uses synchronous SRAM, it is not affected by the 660 DRAM special
case timing restrictions.
Each of the nine equations below lists a register or register bits that govern a memory timing
parameter. An equation is then provided for calculating the required value based on the
timing requirements of the memory and the 660. MTR1[1:0] refers to Memory Timing
Register 1 bits 1:0. See Figure 4-1 and Table 4-1.

1. MTR1[1:0] – RAS# precharge (RP). The critical path that determines the RAS#
precharge requirement is RAS# rising to RAS# falling. The minimum RAS# pre-
charge time supplied by the 660 must exceed the minimum precharge time re-
quired by the DRAM. Make:

RAS# precharge (RP) > Trp min * DRAM min RAS# precharge. . . . . . . . . . . . 

2. MTR1[4:2] – RAS# pulse width (RPW). The critical path that determines the
RAS# pulse width requirement is RAS# falling to RAS# rising. The minimum
RAS# pulse width supplied by the 660 must exceed the minimum RAS# pulse
width required by the DRAM plus 5ns. Make:

RAS# pulse width (RPW) > Tras min * DRAM min RAS# pulse width. . . . . . . 
+ 5ns * pulse width shrinks (note 1). . . . . . . . . . . 

3. MTR2[6:5] – CAS# precharge (CP). The critical path that determines the CAS#
precharge requirement is CAS# rising to CAS# falling. The minimum CAS# pre-
charge time supplied by the 660 must exceed the minimum precharge time re-
quired by the DRAM. Make:
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CAS# precharge (CP) > Tcp min * DRAM min CAS# precharge. . . . . . . . . . . 

4. MTR2[3:2] – CAS# pulse width (CPW). The critical path that determines the
CAS# pulse width requirement is the data access time from CAS# plus the setup
time into the 663. Thus the minimum CAS# pulse width provided by the 660 must
exceed the minimum CAS# pulse width required by the DRAM, plus these fac-
tors. Note that the 663 samples memory data on the clock that CAS# is
deasserted for standard DRAM and on the clock after CAS# is deasserted for
EDO DRAM. Make:

CAS# pulse width (CPW) > T CAS# fall max * CAS# active out if 664
(+ 1 CLK if EDO) + Tcac * DRAM data access from CAS#. . . . . . . . . 

+ MD setup max * MEM_DATA setup into 663
The factor (+ 1 CLK if EDO) is included in the equation only if EDO DRAM is used.
Note that CPW must be set to 3 or fewer clocks.

5. MTR2[7] – Column Address Setup (ASC). There are two critical paths that
determine the Col addr setup requirement. The minimum column address setup
time supplied by the 660 must exceed both constraints. The first is Tasc of the
memory. Make:

 a) Col Addr Setup (ASC) > Tasc min * DRAM min col addr setup time
+ T MA max * MA[11:0] valid out of 664. . . 
+ T 244 max * Buffer delay. . 
– T CAS# max * CAS# active out of 664. 

The second critical path is the data access time from MA plus the setup time into the
663. Make:

b) Col addr setup (ASC)
    + CAS# pulse width (CPW) > T MA max * MA[11:0] valid out of  664. . . . . . . 
    (+ 1 CLK if EDO) + T 244 max * Buffer delay. . . . . 

+ Taa min * DRAM data valid from col. . . . . . . 
   addr valid

+ MD setup max * MEM_DATA setup into . 
   663

6. MTR2[1:0] – RAS# to CAS# delay. The minimum RAS# to CAS# delay provided
by the 660 must exceed the timing of the critical path that determines the RAS#
to CAS# delay, which is the data access time from RAS# plus the setup time into
the 663. Make:

RAS# to CAS# delay (RCD)
+ CAS# pulse width (CPW) > T RAS# fall max * max 660 RAS# fall time . . 

   (note 1)
(+ 1 CLK if EDO) + Trac min * DRAM data access from . . . . . . . 

   RAS#
+ MD setup max/ * MEM_DATA setup into . 

   663+

7. MTR1[5] – Row address hold time. The row address hold time must be set to the
RAS#–to–CAS# delay minus the Column address setup. The timing for the row
address hold time can also be calculated as follows. Make:
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Row addr hold (RAH) > Trah min * DRAM min row addr hold. . . . . . . . . . . . . . 
+ T244 min * Buffer delay. . . . . . . . . . . . . . . . 
+ T MA max * MA[11:0] valid out of 664. . . . . . . . . . . . . . . 
–  T RAS# fall max * max 660 RAS# fall time . . . . . . . . . 

   (note 1)

Note 1:  The 664 drivers that drive the RAS# and CAS# signals are slower falling
than rising.  This causes active high pulse widths to grow by 0 to 5ns and active low
pulse widths to shrink by 0 to 5ns.

8. Refresh Timer Divisor. The refresh timing divisor is clocked by the PCI clock.
The required value is calculated as follows:

Refresh rate = period(Tref) / period(PCI clock)

9. RAS# watchdog timer. The RAS# watchdog timer must be set to limit the max
RAS# pulse width:

RAS# watchdog timer = Tras max / [period(CPU clock) * 8].

4.2.1.5 DRAM Timing Examples
This section presents example DRAM timing calculations based on the equations found in
Section 4.2.1.4. Except as noted in Section 4.2.1.4, the timing recommendations in this
section apply to all 660 configurations.
In the equations below, first the capactive loads are calculated based on the quantity and
types of SIMMs and the buffers used.  Next, the timing characteristics are calculated based
on the capacitive loads.  Finally, the timing requirements and register values are caculated.

4.2.1.6 70ns DRAM Calculations
Ex 1: Assume 70ns standard DRAM memory, four 72–pin DRAM SIMMs, a CPU bus cycle
time of 15ns (66.7Mhz), and MA[11:0] buffered by an FCT244 (four SIMMs per driver).
Capacitive loads:
                 RAS# = 2*62pf + 30pf = 154pf
                 CAS# = 2*62pf + 30pf = 154pf
                 MA (to buffer) = 30pf
                 MA (to memory) = 4*161pf + 40pf = 684pf
Timing Characteristics:
                RAS# = 13.2ns + .025*(154pf–50pf) = 16ns
                CAS# = 13.3ns + .025*(154pf–50pf) = 16ns
                MA to buffer  = 13.6ns + .025*(30pf–50pf) = 13ns
                MA to memory = 4.6ns + .007(684pf–50pf) = 9ns
                663 memory data input setup = 6ns
664 Output timings are at 50pf.  For loads greater than 50pf, 0.025ns/pf are added.
Timing Requirements and register value calculations:

1. 4 CLK * 15ns > 50ns
60ns > 50ns MTR1[1:0]=10. . . . . . . . . . . . . . 

2. 5 CLK * 15ns > 70ns + 5ns
75ns > 75ns MTR1[4:2]=100. . . . . . . . . . . . . . 
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3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00. . . . . . . . . . . . . . 

4. 3 CLK * 15ns > 16ns + 20ns + 6ns
45ns > 42ns MTR2[3:2]=10. . . . . . . . . . . . . . 

5. a.1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
15ns > 6ns

 b.(1 + 3)CLK *15ns > 13ns + 9ns + 35ns + 6ns
  60ns > 63ns MTR2[7]=0   (see Note 2). . . . . . . . 

6. (3 + 3)CLK * 15ns > 16ns + 70ns + 6ns
90ns > 92ns MTR2[1:0]=10 (see Note 2). . 

7. 2 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
30ns > 11ns MTR1[5]=1. . . . . . . . . . . . . . 

Results: Memory Timing Register 1 (index A1h) = 32h
Memory Timing Register 2 (index A2h) = 0Ah

Note 2:   The timing analysis above includes two timing violations (path #5b is
violated by 5% and path #6 is violated by 2%).  More conservate system designers
may wish to use the values MTR1=32h, MTR2=0Eh to ensure all timing
requirements are met under all worst–case conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

4.2.1.7 60ns DRAM Calculations
Ex 2: Same assumptions as above, but with 60ns DRAM

1. 3 CLK * 15ns > 40ns
45ns > 40ns MTR1[1:0]=01. . . . . . . . . . . . . . 

2. 5 CLK * 15ns > 60ns + 5ns
75ns > 65ns MTR1[4:2]=100. . . . . . . . . . . . . . 

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00. . . . . . . . . . . . . . 

4. 3 CLK * 15ns > 16ns + 15ns + 6ns
45ns > 37ns MTR2[3:2]=10. . . . . . . . . . . . . . 

5. a.1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
15ns > 6ns

b.(1 + 3)CLK * 15ns >13ns + 9ns + 30ns + 6ns
60ns > 58ns MTR2[7]=0. . . . . . 

6. (2 + 3)CLK * 15ns > 16ns + 60ns + 6ns
75ns > 82ns MTR2[1:0]=01 (see Note 3). . . . . . 

7. 1 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
15ns > 11ns  MTR1[5]=0. . 

Results:  Memory Timing Register 1 (index A1h) = 11h 
Memory Timing Register 2 (index A2h) = 09h
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Note 3:   The timing analysis above includes one timing violation (path #6 is violated
by 9%).  More conservate system designers may wish to use the values MTR1=31h
MTR2=0Ah to ensure all timing requirements are met under complete worst–case
conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

4.2.1.8 50ns DRAM Calculations
Ex 3: Same assumptions as above, but with 50ns DRAM

1. 2 CLK * 15ns > 30ns
30ns > 30ns MTR1[1:0]=00. . . . . . . . . . . . . . 

2. 4 CLK * 15ns > 50ns + 5ns
60ns > 55ns MTR1[4:2]=011. . . . . . . . . . . . . . 

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00. . . . . . . . . . . . . . 

4. 2 CLK * 15ns > 16ns + 13ns + 6ns
30ns > 35ns MTR2[3:2]=01 (see note 4). . . . . . . . . . . . . . 

5. a.1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
 15ns > 6ns

b. (1 + 2)CLK * 15ns >13ns + 9ns + 25ns + 6ns
45ns >53ns MTR2[7]=0   (see note 4). . . . . . . . 

6. (3 + 2)CLK * 15ns > 16ns + 50ns + 6ns
 75ns > 72ns MTR2[1:0]=10. . . . . . 

7. 2 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
30ns > 11ns MTR1[5]=1. . . . . . . . . . . . . . 

Results: Memory Timing Register 1 (index A1h) = 2Ch
Memory Timing Register 2 (index A2h) = 06h

Note 4:   The timing analysis above includes two timing violations (path #4 is violated
by 14% and path #5b is violated by 15%).  More conservate system designers may
wish to use the values MTR1=0Ch, MTR2=09h to ensure all timing requirements are
met under complete worst–case conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

4.2.1.9 60ns EDO DRAM Calculations
Ex 4: Same assumptions as above, except using 60ns EDO DRAM

1. 3 CLK * 15ns > 40ns
45ns > 40ns MTR1[1:0]=01. . . . . . . . . . . . . . 
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2. 5 CLK * 15ns > 60ns + 5ns
75ns > 65ns MTR1[4:2]=100. . . . . . . . . . . . . . 

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00. . . . . . . . . . . . . . 

4. (2 + 1)CLK * 15ns >16ns + 15ns + 6ns
45ns > 37ns MTR2[3:2]=01. . . . . . . . . . . . . . 

5. a.1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
15ns > 6ns

b. (1 + 2 + 1)CLK * 15ns > 13ns + 9ns + 30ns + 6ns
 60ns > 58ns MTR2[7]=0. . . . . . . . 

6. (2 + 2 + 1)CLK * 15ns > 16ns + 60ns + 6ns
75ns > 82ns MTR2[1:0]=01 (see Note 5). . . . . . . . . . . . . . 

7. 1 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
15ns > 11ns MTR1[5]=0. . . . . . . . . . . . . . 

Results: Memory Timing Register 1 (index A1h) = 11h
Memory Timing Register 2 (index A2h) = 05h

Note 5:   The timing analysis above includes one timing violation (path #6 is violated
by 9%).  More conservate system designers may wish to use the values MTR1=31h,
MTR2=06h to ensure all timing requirements are met under complete worst–case
conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

4.2.1.10 Aggressive Timing Summary
Table 4-2 contains a summary of recommended general case aggressive page mode
DRAM timing, the required control register settings, and the resulting performance of the
memory controller. Aggressive timings may generate slight violations of certain worst case
timing constraints. In many cases, these violations are of only theoretical interest, since the
conditions required to produce the violations are of such low probability.

The top section of Table 4-2 shows the settings of the memory controller BCRs. The next
section of the table shows access times from the memory controller idle state, which it en-
ters when it is not servicing a read or write request. The other two sections of the table show
access times during back to back burst transfers. The middle section of the table shows
access times for the second of any pair of back to back transfers where the first transfer
is a read. The lowest section of the table shows access times for the second of any pair
of back to back transfers where the first transfer is a write.
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Table 4-2.  Page Mode DRAM Aggressive Timing Summary (1)

Transfer 70ns Page
Aggressive

60ns Page
Aggressive

50ns Page
Aggressive

Note

Memory Timing Register 1 32 11 2C

Memory Timing Register 2 0A 09 06

Bridge Chipset Options 3 08 08 08

Initial Read Burst 11-4-4-4 10-4-4-4 10-3-3-3

Initial Write Burst 5-4-4-4 5-3-4-4 5-4-3-3

For a pipelined burst transfer immediately following a read:

Page Hit Read -4-4-4-4 -4-4-4-4 -4-3-3-3

Page Hit Write -3-3-4-4 -3-3-4-4 -3-3-3-3

Page Miss and Bank Miss Read -8-4-4-4 -7-4-4-4 -7-3-3-3 (2)

Page Miss and Bank Hit Read -10-4-4-4 -8-4-4-4 -7-3-3-3 (3)

Page Miss and Bank Miss Write -3-3-4-4 -3-3-4-4 -3-3-3-3 (2)

Page Miss and Bank Hit Write -3-5-4-4 -3-3-4-4 -3-3-3-3 (3)

For a pipelined burst transfer immediately following a write:

Page Hit Read -11-4-4-4 -10-4-4-4 -8-3-3-3

Page Hit Write -6-3-4-4 -5-3-4-4 -4-3-3-3

Page Miss and Bank Miss Read -14-4-4-4 -13-4-4-4 -11-3-3-3 (2)

Page Miss and Bank Hit Read -16-4-4-4 -14-4-4-4 -11-3-3-3 (3)

Page Miss and Bank Miss Write -6-6-4-4 -6-5-4-4 -5-5-3-3 (2)

Page Miss and Bank Hit Write -6-8-4-4 -6-6-4-4 -6-5-3-3 (3)

Notes:
1. Refresh Rate set to 0208h. RAS# watchdog timer BCR set to 53h.
2. The RAS# of the new bank is high and has been high (precharging) for the minimum RAS# high time. The

bridge places the address on the address lines and asserts RAS#.
3. The access is a page miss, but within the same bank, so the RAS# line must be sent high for at least the

minimum RAS# high (precharge) time. The bridge also places the new address on the address lines and
asserts RAS#.

Table 4-3 contains a summary of recommended general case aggressive EDO DRAM tim-
ing, the required control register settings, and the resulting performance of the memory
controller.
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Table 4-3.  EDO DRAM Aggressive Timing Summary (1)

Transfer 70ns EDO
Aggressive

60ns EDO
Aggressive

50ns EDO
Aggressive

Note

Memory Timing Register 1 32 11 2C

Memory Timing Register 2 06 05 02

Bridge Chipset Options 3 0C 0C 0C

Initial Read Burst 11-3-3-3 10-3-3-3 10-2-2-2

Initial Write Burst 5-4-3-3 5-3-3-3 5-4-2-2

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-3-3-3 -5-3-3-3 -5-2-2-2

Page Hit Write -3-3-3-3 -3-3-3-3 -3-2-2-2

Page Miss & Bank Miss Read -8-3-3-3 -7-3-3-3 -7-2-2-2 (2)

Page Miss & Bank Hit Read -10-3-3-3 -8-3-3-3 -7-2-2-2 (3)

Page Miss & Bank Miss Write -3-3-3-3 -3-3-3-3 -3-3-2-2 (2)

Page Miss & Bank Hit Write -3-5-3-3 -3-3-3-3 -3-3-2-2 (3)

For a pipelined burst transfer immediately following a write:

Page Hit Read -9-3-3-3 -9-3-3-3 -7-2-2-2

Page Hit Write -5-3-3-3 -5-3-3-3 -4-2-2-2

Page Miss & Bank Miss Read -12-3-3-3 -11-3-3-3 -10-2-2-2 (2)

Page Miss & Bank Hit Read -14-3-3-3 -12-3-3-3 -10-2-2-2 (3)

Page Miss & Bank Miss Write -5-5-3-3 -5-4-3-3 -4-5-2-2 (2)

Page Miss & Bank Hit Write -5-7-3-3 -5-5-3-3 -4-5-2-2 (3)

Notes:  See Table 4-2 for notes.

4.2.1.11 Conservative Timing Summary
Table 4-4 contains a summary of recommended general case conservative page mode
DRAM timing. The table also shows the resulting performance of the memory controller.
These conservative timings may be too conservative for many applications. These timings
meet all of the worst case timing constraints for the systems described in the examples sec-
tions above.
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Table 4-4.  Page Mode DRAM Conservative Timing Summary (1)

Transfer 70ns Page
Conservative

60ns Page
Conservative

50ns Page
Conservative

Note

Memory Timing Register 1 32 31 0C

Memory Timing Register 2 0E 0A 09

Bridge Chipset Options 3 08 08 08

Initial Read Burst 12-5-5-5 11-4-4-4 10-4-4-4

Initial Write Burst 5-4-5-5 5-4-4-4 5-3-4-4

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-5-5-5 -4-4-4-4 -4-4-4-4

Page Hit Write -3-3-5-5 -3-3-4-4 -3-3-4-4

Page Miss and Bank Miss Read -9-5-5-5 -8-4-4-4 -7-4-4-4 (2)

Page Miss and Bank Hit Read -11-5-5-5 -9-4-4-4 -7-4-4-4 (3)

Page Miss and Bank Miss Write -3-3-5-5 -3-3-4-4 -3-3-4-4 (2)

Page Miss and Bank Hit Write -3-5-5-5 -3-4-4-4 -3-3-4-4 (3)

For a pipelined burst transfer immediately following a write:

Page Hit Read -15-5-5-5 -11-4-4-4 -11-4-4-4

Page Hit Write -6-3-5-5 -6-3-4-4 -5-3-4-4

Page Miss and Bank Miss Read -17-5-5-5 -14-4-4-4 -13-4-4-4 (2)

Page Miss and Bank Hit Read -19-5-5-5 -15-4-4-4 -13-4-4-4 (3)

Page Miss and Bank Miss Write -6-6-5-5 -6-6-4-4 -6-5-4-4 (2)

Page Miss and Bank Hit Write -6-9-5-5 -6-7-4-4 -6-5-4-4 (3)

Notes:  See Table 4-2 for notes.

Table 4-5 contains a summary of recommended general case aggressive EDO DRAM tim-
ing, the required control register settings, and the resulting performance of the memory
controller.
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Table 4-5.  EDO DRAM Conservative Timing Summary (1)

Transfer 70ns EDO
Conservative

60ns EDO
Conservative

50ns EDO
Conservative

Note

Memory Timing Register 1 32 31 0C

Memory Timing Register 2 0A 06 05

Bridge Chipset Options 3 0C 0C 0C

Initial Read Burst 12-4-4-4 11-3-3-3 10-3-3-3 (2)

Initial Write Burst 5-4-4-4 5-4-3-3 5-3-3-3

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-4-4-4 -5-3-3-3 -5-3-3-3 (2)

Page Hit Write -3-3-4-4 -3-3-3-3 -3-3-3-3

Page Miss & Bank Miss Read -9-4-4-4 -8-3-3-3 -7-3-3-3 (1,3)

Page Miss & Bank Hit Read -11-3-3-3 -9-3-3-3 -7-3-3-3 (1,4)

Page Miss & Bank Miss Write -3-3-4-4 -3-3-3-3 -3-3-3-3 (3)

Page Miss & Bank Hit Write -3-5-4-4 -3-4-3-3 -3-3-3-3 (4)

For a pipelined burst transfer immediately following a write:

Page Hit Read -12-4-4-4 -9-3-3-3 -9-3-3-3 (2)

Page Hit Write -6-3-4-4 -5-3-3-3 -5-3-3-3

Page Miss & Bank Miss Read -15-4-4-4 -12-3-3-3 -11-3-3-3 (2,3)

Page Miss & Bank Hit Read -17-4-4-4 -13-3-3-3 -11-3-3-3 (2,4)

Page Miss & Bank Miss Write -6-6-4-4 -5-5-3-3 -5-4-3-3 (3)

Page Miss & Bank Hit Write -6-8-4-4 -5-6-3-3 -5-4-3-3 (4)

Notes:  See Table 4-2 for notes.

4.2.1.12 Page Hit and Page Miss

PowerPC CPU bus memory transfers have the following characteristic behavior. When a
CPU issues a memory access followed immediately by another memory access, the se-
cond access is typically from the same page of memory. On the other hand, if the second
memory access does not immediately follow the first one (so that the CPU bus goes idle)
then the second memory access is typically a page miss. Thus the majority of memory ac-
cesses following a bus idle condition are page misses. 660 memory performance is opti-
mized by assuming that a CPU to memory transfer from bus idle will be a page miss.

When neither the CPU or the PCI is accessing memory, the memory controller goes to the
idle state, and all RAS# lines are precharged (deasserted). Deasserting the RAS# lines at
idle begins to satisfy the minimum RAS# precharge time requirement. Assuming that the
first access out of idle will be a page miss, this technique allows the memory controller to
reduce the time required for the initial beat of the burst DRAM read or write access by three
CPU clocks. If the initial access is a page hit, this technique results in an increase in access
time of two CPU clocks. A net gain is realized whenever the system is experiencing more
page misses from bus idle than page hits from bus idle.

For the first beat of pipelined transactions, the memory controller checks the MA[11:0]
memory address for a page hit. If the address is within the same 8K memory page as the
previous memory access it is a page hit, the row address currently latched into the DRAM
is considered valid, and the bridge accesses the DRAM using CAS# cycles. On page mis-
ses, the bridge latches the new row address into the DRAMs before it accesses the DRAM
using CAS# cycles.
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On CPU to memory bursts, only the address of the first beat of the burst is checked for page
hits, because the following three beats are always within the same memory page.
On PCI to memory bursts, the address of each data phase of the burst is checked for page
hits.

4.2.1.13 CPU to Memory Access Pipelining
CPU to memory accesses are pipelined, with the result that during a series of back-to-back
CPU to memory accesses, all transfers following the initial transfer are faster. The informa-
tion from the address tenure of the subsequent transfers is processed by the bridge while
the data tenure of the preceding transfer is still active.
Considering a series of CPU to memory read transfers using 60ns EDO DRAM, the initial
burst requires 10-3-3-3 CPU clocks. If this transfer is followed immediately (back-to-back)
by another CPU to memory transfer, the required cycle time is -5-3-3-3. As long as the
transfers are back-to-back, they are pipelined, and can be retired at this pipelined rate.

4.2.1.14 Extended Data Out (EDO) DRAM
The 660 is designed to support hyper-page-mode DRAM, sometimes called extended data
out (EDO) DRAM. Information about the operation of the 660 with EDO DRAM is distributed
throughout this section.

4.3 System Memory Addressing

4.3.1 DRAM Logical Organization
The DRAM system implemented by the 660 is logically arranged as shown in Figure 4-2.
Each block shown in Figure 4-2 is a 9 bit DRAM composed of 8 data bits and 1 parity (or
check) bit that is accessed whenever the 8 data bits are accessed. The RAS# (aka MRE#)
lines strobe in the row address. The CAS# (aka MCE#) lines strobe in the column address.
For a block to activate (from idle) for either a read or a write, both the RAS# and CAS# line
to it must be activated in the proper sequence. After the initial access, the device can deliver
data in fast page mode with only CAS# strobes.
The CAS# lines can be thought of as byte enables, and the RAS# lines as bank enables.
The WE# signal goes to all (each of) the devices in the memory array. The OE# of each
DRAM device is tied active. This signal is not required to be deasserted at any time, since
the DRAMs only enable their output drivers when so instructed by the RAS#/CAS#
protocol.
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Figure 4-2.  DRAM Logical Implementation
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4.3.1.1 SIMM Topologies
Table 4-6 shows the various memory module (SIMM) topologies that the 660 supports.
Each memory bank can be populated with any supported SIMM.

Table 4-6.  Supported SIMM Topologies
SIMM type Size Depth Width Banks Addressing Addressing Mode (1)
4-Byte Wide

(72 i )
4 Meg 1M 4 bytes 1 + 1 empty 10 x 10 2y

(72-pin) 8 Meg 1M 4 bytes 2 10 x 10 2
16 Meg 4M 4 bytes 1 + 1 empty 11 x 11 2
32 Meg 4M 4 bytes 2 11 x 11 2
64 Meg 16M 4 bytes 1 + 1 empty 12 x 12 3

8-Byte Wide
(168 i )

8 Meg 1M 8 bytes 1 10 x 10 2y
(168-pin) 16 Meg 2M 8 bytes 1 11 x 10 2

32 Meg 4M 8 bytes 1 11 x 11 or 
12 x 10

2

64 Meg 8M 8 bytes 1 12 x 11 3
128 Meg 16M 8 bytes 1 12 x 12 3

Note:
1. See BCR(A4 to A7) in Section 4.3.1.6

The 660 supports the 168-pin 8-byte SIMMs shown in Table 4-6, which are each arranged
as a single bank of 8-byte-wide DRAM. Each SIMM requires a single RAS# line. These
SIMMs do not have to be installed in pairs.
The 660 also supports the 72-pin 4-byte SIMMs shown in Table 4-6, which are each ar-
ranged as two banks of 4-byte-wide DRAM, only one bank of which may be accessed at
a given time. Each bank requires a RAS# line, and each bank is addressed by the same
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address lines. These SIMMs must be installed in pairs (of identical devices), since it is nec-
essary to use two (72-pin) 4-byte SIMMs to construct an 8-byte-wide memory array. Since
each 72-pin 4-byte SIMM consists of two banks, this pair of SIMMs also requires two RAS#
lines. The 660 addresses a given SIMM based on the value of the associated memory bank
addressing mode BCR.

4.3.1.2 Row and Column Address Generation
The 660 formats the row and column addresses presented to the DRAM based on the orga-
nization of the DRAM. In memory bank addressing mode 2, the bridge is configured to ad-
dress devices that require 12x10, 11x11, 11x10, or 10x10 bit (row x column) addressing.
In memory bank addressing mode 3, the bridge is configured to address devices that re-
quire 12x12 or 12x11 bit (row x column) addressing (no other addressing modes are cur-
rently available).
Table 4-7 and Table 4-8 show which CPU address bits are driven onto the memory address
bus during CPU to memory transfers. Table 4-9 and Table 4-10 show which PCI_AD ad-
dress bits are driven onto the memory address bus during PCI to memory transfers. These
address line assignments are not affected by the endian mode of the system. The addres-
sing mode is selected using the memory bank addressing mode BCRs (see Section
4.3.1.6). The addressing mode of each bank of memory is individually configurable.

Table 4-7.  Row Addressing (CPU Addressing)

Memory Bank
Addressing Mode

Addressing Mode BCR MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10,
10x10, 11x11

010
(Mode 2)

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

12x12, 12x11 011
(Mode 3)

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

Table 4-8.  Column Addressing (CPU Addressing)

Memory Bank
Addressing Mode

Addressing Mode BCR MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10,
10x10, 11x11

010 A
5

A
7

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

12x12, 12x11 011 A
5

A
6

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

Table 4-9.  Row Addressing (PCI Addressing)

Memory Bank
Addressing Mode

Addressing Mode BCR MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10,
10x10, 11x11

010 AD
24

AD
23

AD
22

AD
21

AD
20

AD
19

AD
18

AD
17

AD
16

AD
15

AD
14

AD
13

12x12, 12x11 011 AD
24

AD
23

AD
22

AD
21

AD
20

AD
19

AD
18

AD
17

AD
16

AD
15

AD
14

AD
13

Table 4-10.  Column Addressing (PCI Addressing)

Memory Bank
Addressing Mode

Addressing Mode BCR MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10,
10x10, 11x11

010 AD
26

AD
24

AD
12

AD
11

AD
10

AD
9

AD
8

AD
7

AD
6

AD
5

AD
4

AD
3

12x12, 12x11 011 AD
26

AD
25

AD
12

AD
11

AD
10

AD
9

AD
8

AD
7

AD
6

AD
5

AD
4

AD
3
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In the case of 10x10 addressing, MA[9:0] are connected to the DRAM modules. In the case
of 11x10 or 11x11, connect MA[10:0], and in the case of 12x11 or 12x12, connect MA[11:0]
to the DRAM modules.

4.3.1.3 DRAM Pages

The 660 uses an 8K page size for DRAM page-mode determination.

4.3.1.4 Supported Transfer Sizes and Alignments

The 660 supports all CPU to memory transfer sizes and alignments that do not cross an
8-byte boundary.

4.3.1.5 Unpopulated Memory Locations

Physical memory does not occupy the entire address space assigned to system memory
in the memory map. While the Memory Select Error Enable bit = 0:

� When the CPU reads an unpopulated location, the bridge returns all-ones, and com-
pletes the transfer normally.

� When the CPU writes to an unpopulated location, the bridge signals normal transfer
completion to the CPU, but does not write the data to memory.

The memory select error bit in the error status 1 register (index C1h) is set in both cases.
Gaps are not allowed in the DRAM memory space, but empty (size=0) memory banks are
allowed. While the Memory Select Error bit =1, a read or write to an unpopulated memory
location is reported to the initiator as an error.

4.3.1.6 Memory Bank Addressing Mode BCRs

Index A4 to A7 Read/Write Reset to 44h (each BCR)

This array of four 8-bit, read/write BCRs defines the format of the row and column addres-
sing of each DRAM memory bank.

D0D1D2D3D4D5D6D7

Reserved

1xx = reserved

Reserved

011 = 12x11, 12x12
1xx = reserved

011 = 12x11, 12x12

12x10, 11x10, 10x10, 11x11010 =

010 =12x10, 11x10, 10x10, 11x11

Even Bank Addressing Mode

Odd Bank Addressing Mode

Mode 2
Mode 3

Mode 2
Mode 3

00x =reserved

00x =reserved

Register Bits Memory Bank Bits Memory Bank

A4h 3:0 0 7:4 1

A5h 3:0 2 7:4 3

A6h 3:0 4 7:4 5

A7h 3:0 6 7:4 7
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4.3.1.7 Memory Bank Starting Address BCRs

Index 80 to 87h Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight extended starting address registers) contains
the starting address for each memory bank. Each pair of registers maps to the correspond-
ing RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 84h and 8Ch.
The eight least-significant bits of the bank starting address are contained in the starting ad-
dress register, and the most-significant bits come from the corresponding extended starting
address register. The starting address of the bank is entered with the least significant 20
bits truncated. These BCRs must be programmed in conjunction with the ending address
and extended ending address registers.
Program the banks in ascending order, such that (for n = 0 to 6) the starting address of bank
n+1 is higher than the starting address of bank n. Each bank must be located in the 0 to
1G address range. See section 4.3.1.12.

D0D1D2D3D4D5D6D7

A27 of start address (128MB+)

A26 of start address (64MB+)

A25 of start address (32MB+)

A23 of start address (8MB+)

A24 of start address (16MB+)

A22 of start address (4MB+)

A21 of start address (2MB+)

A20 of start address (1MB+)

4.3.1.8 Memory Bank Extended Starting Address BCRs

Index 88 to 8F Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight starting address registers) contains the start-
ing address for each memory bank. These BCRs contain the most-significant address bits
of the starting address of the corresponding bank.

D0D1D2D3D4D5D6D7

A28 of start address (256MB+)

Reserved

A29 of start address (512MB+)

4.3.1.9 Memory Bank Ending Address BCRs

Index 90 to 97h Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight extended starting address registers) contains
the ending address for each memory bank. Each pair of registers maps to the correspond-
ing RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 94h and 9Ch.
The eight least-significant bits of the bank ending address are contained in the ending ad-
dress register, and the most-significant bits come from the corresponding extended ending
address register. The ending address of the bank is entered as the address of the next high-
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est memory location minus 1, with the least significant 20 bits truncated. Each bank must
be located in the 0 to 1G address range. These BCRs must be programmed in conjunction
with the ending address and extended ending address registers. See section 4.3.1.12.

D0D1D2D3D4D5D6D7

A27 of end address (128MB+)

A26 of end address (64MB+)

A25 of end address (32MB+)

A23 of end address (8MB+)

A24 of end address (16MB+)

A22 of end address (4MB+)

A21 of end address (2MB+)

A20 of end address (1MB+)

4.3.1.10 Memory Bank Extended Ending Address BCR

Index 98 to 9F Read/Write Reset to 00 (each BCR)

This array of eight 8-bit, read/write registers (along with the eight ending address registers)
contains the ending address for each memory bank. These BCRs contain the most-signifi-
cant address bits of the ending address of its bank.

D0D1D2D3D4D5D6D7

A28 of end address (256MB+)

Reserved

A29 of end address (512MB+)

4.3.1.11 Memory Bank Enable BCR

Index A0 Read/Write Reset to 00h

This BCR contains a control enable for each bank of memory. Each bank of memory must
be enabled for proper refreshing. For each bit, a 0 disables that bank of memory and a 1
enables it.

This register must be programmed in conjunction with the starting address and ending ad-
dress registers. If a bank is disabled by this register, the corresponding starting and ending
address register entries become don’t cares.

4.3.1.12 Memory Bank Configuration Example

In the example memory bank configuration shown in Figure 4-3, the eight memory banks
are populated by different size and organization devices. For convenience, this example
shows the bridge configured to address each memory bank in order with no gaps in the
populated address range but this is not required. Any bank can be placed in any (1MB
aligned) non-populated address range from 0 to 1G.
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D0D1D2D3D4D5D6D7A0h

Enable Bank 7

Enable Bank 6

Enable Bank 5

Enable Bank 4

Enable Bank 3

Enable Bank 2

Enable Bank 1

Enable Bank 0

Table 4-11.  Example Memory Bank Addressing Mode Configuration

Bank SIMM
Type

SIMM
Depth

SIMMs
Per
Bank

SIMM Bank
Topology

SIMM
Size

Row x
Col

BCR
()

Bits
()

Mode

0 8-Byte 1M 1 8B x 1M x 1 bank 8M 10 x 10 A4 3:1 2

1 4-Byte 4M 2 4B x 4M x 2 bank 32M 11 x 11 A4 7:5 2

2 4-Byte 4M 2 4B x 4M x 2 bank 32M 11 x 11 A5 3:1 2

3 8-Byte 8M 1 8B x 8M x 1 bank 64M 12 x 11 A5 7:5 3

4 none — — — 0M — A6 3:1 —

5 4-Byte 4M 2 4B x 4M x 2 bank 32M 11 x 11 A6 7:5 2

6 8-Byte 16M 1 8B x 16M x 1 bank 128M 12 x 12 A7 3:1 3

7 8-Byte 4M 1 8B x 4M x 1 bank 32M 11 x 11
12 x 10

A7 7:5 2

4.3.1.13 Memory Bank Enable BCR
Program indexed BCR A0h (memory bank enable) to EFh to enable all banks except # 4.

4.3.1.14 Memory Bank Addressing Mode
As shown in Table 4-11, memory bank 0 (connected to RAS0#) contains an 8-byte x 1M
SIMM (8M) with one bank (one RAS# line). It is addressed with 10 row and 10 column bits.
Program bits 3:1 of indexed BCR A4h with 010b (mode 2).
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Figure 4-3.  Example Memory Bank Configuration

4.3.1.15 Starting and Ending Addresses
 As shown in Table 4-12, program indexed BCR 80h with 00h to configure address bits
27:20 of the bank 0 starting address. Program indexed BCR 88h with 00h to configure ad-
dress bits 29:28. Also program indexed BCR 90h with 00h to configure address bits 27:20
of the bank 0 ending address, and program indexed BCR 98h with 07h to configure address
bits 29:28.
The next two physical SIMM units are 4-byte x 4M x 2 bank (16M x 2 bank = 32M) SIMMs,
used side by side to achieve 8-byte width. They form banks 1 and 2, each of which is 8-byte
x 4M (32M). Note that bank 7 is also 32M, populated by an 8-byte x 8M (32M) SIMM. Using
the same configuration, banks 1 and 2 could also be implemented using two 8-byte x 4M
(32M) SIMMs. Bank 3 is configured to the same size as bank 1 plus bank 2 and is imple-
mented using a single 8-byte x 8M (64M) SIMM.
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Bank 4 is not populated, so set memory bank enable BCR bit D4 to 0. The data in the start-
ing, extended starting, ending, and extended ending address BCRs for bank 4 is ignored.
Note that empty memory banks are allowed, but that gaps in the DRAM space are not al-
lowed.
For proper operation, program the bridge to execute memory accesses at the speed of the
slowest device. If ECC or parity is selected, all devices must support the capability. And if
the bridge is programmed to utilize hyper-page mode, all devices must support extended-
data out transfers.

Table 4-12.  Example Memory Bank Starting and Ending Address Configuration

SIMM Starting Extended Base Ending Extended Base

Bank Size Address BCR Data BCR Data Address BCR Data BCR Data

0 8M 0000 0000 88 00 80 00 007F FFFF 98 00 90 07

1 32M 0080 0000 89 00 81 08 027F FFFF 99 00 91 27

2 32M 0280 0000 8A 00 82 28 047F FFFF 9A 00 92 47

3 64M 0480 0000 8B 00 83 48 087F FFFF 9B 00 93 87

4 0M Don’t Care 8C xx 84 xx Don’t Care 9C xx 94 xx

5 32M 0880 0000 8D 00 85 88 0A7F FFFF 9D 00 95 A7

6 128M 0A80 0000 8E 00 86 A8 127F FFFF 9E 01 96 27

7 32M 1280 0000 8F 01 87 28 147F FFFF 9F 01 97 47

4.4 Error Checking and Correction
The 660 provides three levels of memory error checking—no checking, parity checking,
and error checking and correction (ECC). If no memory checking is enabled, the system
can be configured to use lower-cost, non-parity DRAM.
While the system is configured for parity checking, the 660 performs as follows:
� Uses odd parity checking
� Detects all single bit errors
� Allows full-speed memory accesses

While the system is configured for ECC, the 660 performs as follows:
� Uses an H–matrix and syndrome ECC protocol
� Uses the same memory devices and connectivity as for parity checking
� Detects and corrects all single-bit errors
� Detects all two-bit errors
� The first beat of CPU to memory reads requires one additional CPU clock cycle
� CPU to memory burst writes and 8-byte single-beat writes are full-speed
� CPU to memory single-beat writes of less than eight bytes are implemented as read-

modify-write (RMW) cycles
� PCI to memory reads are full-speed
� PCI to memory writes are full-speed while data can be gathered into 8-byte groups

before being written to memory. Single beat or ungatherable writes require a read-
modify-write cycle

4.4.1 Memory Parity
While the 660 memory controller is configured for memory parity checking, the bridge im-
plements an odd parity generation and checking protocol, generating parity on memory
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writes and checking parity on memory reads. One parity bit is associated with each data
byte and is accessed with it. When a parity error is detected during CPU to memory reads,
the error is reported by means of TEA# or MCP#. When a parity error is detected during
PCI to memory reads, the error is reported by means of PCI_SERR#.
The 660 detects all single-bit parity errors, but may not detect multi-bit parity errors. Also,
an even number of parity errors will not be detected. For example, an event which causes
a parity error in bytes 0, 1, 2, 3, 4, and 5 will not be detected.

4.4.1.1 ECC Overview
While ECC is enabled, the 660 uses the ECC logic to detect and correct errors in the trans-
mission and storage of system memory data. The bridge implements the ECC protocol us-
ing the same connectivity and memory devices as parity checking.
While neither parity or ECC is enabled, the bridge executes memory writes of less than
eight bytes in response to busmaster requests to write less than eight bytes of data. The
bridge always (whether parity, ECC or neither is enabled) reads data from memory in 8-byte
groups, even if the busmaster is requesting less than eight bytes.
While parity is enabled, the bridge also executes memory writes of less than eight bytes
in response to busmaster requests to write less than eight bytes of data, since writing a byte
to memory also updates the associated parity bit. During memory writes, the bridge gener-
ates one parity bit for each byte of data and stores it with that byte of data. This parity bit
is a function only of the data byte with which it is associated. During memory reads, the in-
tegrity of the data is parity checked by comparing each data byte with its associated parity
bit.
However, when ECC is enabled the bridge reads from and writes to system memory only
in 9-byte groups (as a 72-bit entity), even though the busmaster may be executing a less-
than-8-byte read or write. There is one byte of ECC check byte information for eight bytes
of data. During memory writes, the eight check bits are generated as a function of the 64
data bits as a whole, and the check bits are stored with the data bits as a 72-bit entity. During
memory reads, all 72 bits are read, and the eight check bits are compared with the 64 data
bits as a whole to determine the integrity of the entire 72-bit entity.
In ECC mode, single-bit errors are corrected. When a multi-bit error is detected during CPU
to memory reads, the error is reported by means of TEA# or MCP#. When a multi-bit ECC
error is detected during PCI to memory reads, the error is reported by means of
PCI_SERR#. Note that the DRTRY# function of the CPU is not used, even when the 660
is in ECC mode (the Bridge will not assert DRTRY#).
Only the data returned to the CPU (or PCI) is corrected for single-bit errors. The corrected
data is not written into the DRAM location.

4.4.1.2 ECC Data Flows
While ECC is enabled, the 660 always reads eight data bytes and one check byte from
memory during CPU and PCI reads. During busmaster 8-byte writes to memory, the bridge
writes eight data bytes and one check byte to memory. When the busmaster writes less
than eight data bytes to memory, it is possible for each check bit to change due to a write
to any one of the eight data bytes. The Bridge then executes a read-modify-write (RMW)
cycle—reading all eight data bytes from memory, modifying the appropriate bytes with the
new data, recalculating all of the check bits, and writing the new data and check bits to
memory.
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4.4.1.3 Memory Reads

Figure 4-4 shows a simplified data flow in a 660 system during CPU to memory read trans-
fers. Figure 4-5 shows the simplified data flow during PCI to memory reads. The data and
check bits flow from system memory into the bridge where the checking logic combines the
data with the check bits to generate the syndrome. If there is a single-bit error in the data,
the correction logic corrects the data and supplies it to the requesting agent. If there is a
multiple-bit error in the data, the bridge signals an error to the requesting agent.

Note that the structure of the bridge as shown in Figure 4-4 through Figure 4-8 is consider-
ably simplified and does not show the posted write buffers and other internal details.

Figure 4-4.  CPU Read Data Flow

CPU

660 Bridge

System
Memory Correct

Check/ TEA# or MCP#

Data(64)

Check(8)

Data(64)

Figure 4-5.  PCI Read Data Flow

660 Bridge

System
Memory Correct

Check/ PCI

Data(64)

Check(8)

Data(32)

PCI_AD_PAR
PCI_SERR#,

4.4.1.4 Eight-Byte Writes

Figure 4-6 shows the simplified data flow in a 660 system during 8-byte CPU to memory
writes. The data flows from the CPU into the bridge and out onto the memory data bus. The
bridge generates the check bits based on the eight bytes of data, and stores them in
memory with the data.

Figure 4-6.  CPU 8-Byte Write Data Flow

CPU Check
Bit

Generator

660 Bridge

System
Memory

Data(64)

Check(8)

Data(64)

Figure 4-7 shows the simplified data flow in a 660 based system during gathered PCI to
memory 8-byte writes. During the first of the two gathered data phases (A), the data flows
from the PCI bus into a 4-byte hold latch in the bridge. On the next data phase (B), the next
4–bytes of PCI data flows into the bridge, where it is combined with the data from the pre-
vious data phase. The 8-byte data then flows onto the memory data bus. The bridge gener-
ates the check bits based on the 8-byte data, and stores them in memory with the data.
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Figure 4-7. PCI 8-Byte Write Data Flow
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Note that if either or both of the two gathered PCI data phases is a write of less than 4 bytes,
the two data phases will still be gathered, and then the bridge will execute a RMW cycle,
filling in the unwritten bytes (in the group of 8 bytes) with data from those locations in
memory. The same write case while ECC is disabled does not cause a RMW cycle; the
bridge merely writes only the indicated bytes, leaving the write enables of the unaccessed
bytes deasserted.

Figure 4-8. PCI or CPU Read-Modify-Write Data Flow
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4.4.1.5 Less-Than Eight-Byte Writes
Figure 4-8 shows the simplified data flow during a CPU or PCI busmaster to memory write
of less than eight bytes, during which the bridge executes a RMW cycle. In Figure 4-8(A),
the bridge reads in the data and check bits from the addressed memory locations and
places this data (corrected as necessary) in a register. In Figure 4-8(B), this data is modi-
fied by the bridge, which replaces the appropriate memory data bytes with write data from
the busmaster. The bridge then recomputes all of the check bits and writes the new data
and check bits to memory.

4.4.1.6 Memory Performance In ECC Mode
Enabling ECC mode on the 660 affects memory performance in various ways, depending
on the transaction type. The effect is the same for both EDO and page mode DRAMs.
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4.4.1.7 CPU to Memory Read in ECC Mode
ECC mode adds one CPU_CLK to single–beat CPU to memory read transfers and to the
first beat of CPU to memory burst read transfers. The other beats of the burst are
unaffected. During the extra CPU_CLK, the 663 holds the data while checking (and if
necessary, correcting) it.
The 660 does not use the DRTRY# function, even while in ECC mode. In no–DRTRY#
mode, during memory reads the 604 uses the data bus data internally as soon as it samples
TA# active. The 660 supports this mode by presenting correct(ed) data to the before driving
TA# valid. The Bridge does not speculatively present data to the CPU (using TA#) and then
assert DRTRY# if there is a data error.
By allowing the 604 to run in no–DRTRY# node, the 660 enables the 604 to use data from
the L2 cache at the full speed of the L2 cache, without requiring the 604 to insert an
additional (internal to the 604) one CPU clock delay on reads.
In DRTRY# mode, during memory reads the 604 holds the data internally for one CPU clock
after sampling TA# active. This delay is inserted by the 604 to allow DRTRY# to be sampled
before the data is used. Thus during CPU to memory reads in ECC mode while a 604 is
in DRTRY# mode, the 660 inserts a one CPU clock delay to check/correct the data, and
then the 604 adds a one CPU clock delay to check for DRTRY#. Thus two CPU clocks are
added to single–beat CPU to memory read transfers and to the first beat of CPU to memory
burst read transfers.

4.4.1.8 CPU to Memory Write in ECC Mode
ECC mode adds no additional clock cycles to 8-byte CPU to memory write transfers. Note
that all CPU bursts are composed of 8-byte beats. CPU to memory writes of less than eight
bytes are handled as RMW cycles, which usually require four additional CPU clocks as
compared to 8-byte writes.

4.4.1.9 PCI to Memory Read in ECC Mode
ECC mode adds no additional clock cycles to PCI to memory read transactions.

4.4.1.10 PCI to Memory Write in ECC Mode
ECC mode has a complex effect on PCI to memory writes. During PCI to memory writes,
the bridge attempts to gather adjacent 4-byte data phases into 8-byte memory writes. In
response to conditions during a given data phase, the bridge either gathers, writes 8 bytes,
or read-modify-writes, as shown in Table 4-13. Gather and 8-byte write operations incur no
performance penalties, but RMW cycles add from two to four (usually three) PCI clock
cycles to the transaction time. The consequences of ECC mode delays on PCI to memory
write bursts are minor and are best understood from a few examples. The following exam-
ples assume page hits and no snoop hits.
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Table 4-13.  Bridge Response to Various PCI Write Data Phases

Bridge
Operation

Conditions Description of Operation

Gather This data phase is not the last data phase, and
This is a 4-byte transfer (BE[3:0]#=0000), and
This data phase is to the lower 4-byte word.

The bridge latches the four bytes from this data
phase into the low four bytes of a hold register.

Eight-Byte
Write

The previous data phase caused a gather, and
This is a 4-byte transfer, and
This data phase is to the upper 4-byte word.

The bridge combines the (high) four bytes from
this data phase with the (low) four bytes from the
previous data phase, and writes all eight bytes to
memory.

Read-
Modify-
Write

This is a single phase transaction, or
This is the first data phase and 
is to the upper 4-byte word, or
This is the last data phase and 
is to the lower 4-byte word, or
This is a less-than-4-byte transfer.

The bridge Reads eight bytes from memory,  mo-
difies the data by replacing the appropriate four
bytes with the data from this data phase, and then
writes all eight bytes to memory.

Best case (see Table 4-14) is a burst starting on a low word (memory address is 0 mod 8),
composed of an even number of data phases, in which all data phases transfer four bytes
of data. Notice that the first data phase is gathered and the second data phase causes an
8-byte memory write. The following pairs of data beats follow the same pattern. No page
misses, snoop hits, or data beats of less than 4 bytes are encountered. This case adds no
PCI clock cycles to the best-case transaction time.

Table 4-14.  Bridge Response to Best Case PCI Write Burst  

Data
Phase

Word Bridge
Operation

Special Conditions Performance Impact

n (last) High 8-byte Write None None

n –1 Low Gather None None

... ... ... ... ...

4 High 8-byte Write None None

3 Low Gather None None

2 High 8-byte Write None None

1 (first) Low Setup + Gather None None

Table 4-15 shows a case where the first data phase is to a high word (memory address is
4 mod 8), and is composed of an odd number of data phases in which all data phases trans-
fer four bytes of data. Here the total effect is to add three PCI clocks to the transaction time,
which is shown during the first data phase in Table 4-15.

Table 4-15.  Bridge Response to Case 2 PCI Write Burst

Data
Phase

Word Bridge
Operation

Special Conditions Performance Impact

n (last) High 8-byte Write None None

n –1 Low Gather None None

... ... ... ... ...

3 High 8-byte Write None None

2 Low Gather None None

1 (first) High Setup + RMW None Add 3 PCI clocks
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Table 4-16.  Bridge Response to Various PCI Write Bursts  

Row Data
Phase

Word Bridge
Operation

Special Conditions Performance Impact

12 n (last) Low RMW None Add 3 PCI clocks

11 n – 1 High 8-byte Write None None

10 n – 2 Low Gather None None

9 ... ... ... ... None

8 4 High RMW None Add 3 PCI clocks

7 3 Low RMW Less than 4-byte transfer Add 3 PCI clocks

6 ... ... ... ... None

5 10 High RMW Less than 4-byte transfer Add 3 PCI clocks

4 9 Low Gather None None

3 ... ... ... ... None

2 2 High 8-byte Write None None

1 1
(first)

Low Setup + Gather None None

Table 4-16 shows the effect of several conditions on the transaction time. Rows 1 through
6 show the effects of a less-than-4-byte transfer at the high word location that occurs during
a burst. The term None in the column titled Performance Impact in row 6 indicates that there
are no residual performance penalties due to the events of rows 1 through 5.

Rows 7 through 9 show the effect of a less-than-4-byte transfer at the low word location that
occurs during a burst. The term None in the column titled Performance Impact in row 9 indi-
cates that there are no residual performance penalties due to the events of rows 7 and 8.

Rows 10 through 12 show the effect of a burst that ends at a low word location. The total
performance impact from this burst is to add 12 PCI clocks to the transaction time.

Note that the performance penalty for single data phase PCI writes is three additional PCI
clocks, whether the destination is the high word or the low word.

4.4.1.11 Check Bit Calculation

The 660 generates the check bits based on Table 4-17 (which is shown using little-endian
bit numbering).

Table 4-17.  Check Bit Calculation

CB
(x)

Data Bits. CB(x) = XOR of Data Bits (0 is LSb)

0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,33,34,35,39,41,42,43,47,49,50,51,55,57,58,59,63

1 8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31,32,34,35,38,40,42,43,46,48,50,51,54,56,58,59,62

2 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35,37,40,41,43,45,48,49,51,53,56,57,59,61

3 0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,32,33,34,36,40,41,42,44,48,49,50,52,56,57,58,60

4 1,2,3,7,9,10,11,15,17,18,19,23,25,26,27,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47

5 0,2,3,6,8,10,11,14,16,18,19,22,24,26,27,30,40,41,42,43,44,45,46,47,56,57,58,59,60,61,62,63

6 0,1,3,5,8,9,11,13,16,17,19,21,24,25,27,29,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63

7 0,1,2,4,8,9,10,12,16,17,18,20,24,25,26,28,32,33,34,35,36,37,38,39,48,49,50,51,52,53,54,55
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4.4.1.12 Syndrome Decode

The syndrome consists of an 8-bit quantity which is generated by the 660 as it is comparing
the 8 data bytes to the check byte. This syndrome contains the results of the comparison,
as shown in Table 4-18, where:

ne    means that no error has been detected.

cbx   means that check bit x is inverted (a single-bit error).

dx    means that data bit x is inverted (a single-bit error).

blank means that a multiple bit error has occurred.

Based on the information in the syndrome, the 660 corrects all single-bit errors and signals
an error to the requesting agent on multiple-bit errors.

Table 4-18.  Syndrome Decode

S0
S1
S2
S3

S7 S6 S5 S4

0
0
0
0

1
0
0
0

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0  0  0  0 ne cb0 cb1 cb2 cb3

0  0  0  1 cb4 d8 d24 d0 d16

0  0  1  0 cb5 d9 d25 d1 d17

0  0  1  1 d40 d41 d42 d44 d43 d45 d46 d47

0  1  0  0 cb6 d10 d26 d2 d18

0  1  0  1

0  1  1  0 d56 d57 d58 d60 d59 d61 d62 d63

0  1  1  1 d12 d28 d4 d20

1  0  0  0 cb7 d11 d27 d3 d19

1  0  0  1 d32 d33 d34 d36 d35 d37 d38 d39

1  0  1  0

1  0  1  1 d13 d29 d5 d21

1  1  0  0 d48 d49 d50 d52 d51 d53 d54 d55

1  1  0  1 d14 d30 d6 d22

1  1  1  0 d15 d31 d7 d23

1  1  1  1

4.5 DRAM Refresh
The memory controller provides DRAM refresh logic for system memory. The memory con-
troller supports CAS#-before-RAS# refresh only, which provides lower power consumption
and lower noise generation than RAS#-only refresh. In this refresh mode, MA[11:0] are not
required. Refresh of the odd banks of memory  is staggered from the refresh of the even
banks of memory to further reduce noise (see Figure 4-9).

During refresh,

� WE[1:0] are driven high.
� MEM_DATA[63:0] are tri-stated.
� MA[11:0] continue to be driven to their previous state.
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Figure 4-9.  DRAM Refresh Timing Diagram
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Refresh requests are generated internally by dividing down the PCI_CLK. The divisor value
is programmed in the refresh timer divisor register. This register is initialized to 504, a value
that provides a refresh rate of 15.1us when PCI_CLK rate is 33MHz. For other PCI_CLK
frequencies, the refresh rate register must be properly configured before accessing system
memory.
Refresh continues to occur even if CPU_CLK is stopped.

4.5.1 Refresh Timer Divisor Register

Index D0 to D1 Read/Write Reset to F8 (D0) and 01 (D1)

The refresh timer register is a 16-bit BCR that determines the memory refresh rate. Typical
refresh rates are 15.1 to 15.5 microseconds. If all DRAM in the system supports extended
(slow) refresh,  the refresh rate can be slower. The refresh timer is clocked by the PCI clock
input to the 664 Controller. The reset value of 01F8h provides a refresh rate of 15.1 micro-
seconds while the PCI clock is 33MHz. (01F8h equals 504 times 30ns equals 15.12us.) Bits
3–11 of the timer allow timer values from 8 to 4096.

D0D1D2D3D4D5D6D7D0h

Hardcoded to 0

Refresh Timer Value LSBs.

Bits 7:3 Refresh timer (7:3) : These are the five least-significant bits of the refresh tim-
er value.

D8D9D10D11D12D13D14D15D1h

Refresh Timer Value MSBs.

Hardcoded to 0

Bits 11:8 Refresh timer (11:8) : These are the four most-significant bits of the refresh
timer value.



Section 4 — DRAM
Preliminary

4–32 G5220297-00

4.6 Atomic Memory Transfers
The 660 supports atomic memory transfers by supporting the CPU reservation protocol
and the PCI lock protocol.

4.6.1 Memory Locks and Reservations
The 660 supports the lwarx and stwcx atomic memory update protocol by broadcasting
snoop cycles to the CPU bus during PCI to memory transactions. The bridge does not
otherwise take any action, nor does it enforce an external locking protocol for CPU busmas-
ters. See Section 4.6.2.
PCI busmasters can lock and unlock a 32-byte block of system memory in compliance with
the PCI specification. This block can be located anywhere within the populated system
memory space, aligned on a 32-byte boundary. Only a single lock may be in existence at
any given time. The bridge does not implement complete bus locking. See Section 4.6.3.

4.6.2 CPU Reservation
The CPU indicates a reservation request by executing a memory read atomic
(TT[0:3]=1101). If there is no PCI lock on the addressed block of memory, the bridge allows
the transfer, but takes no other action. If there is a PCI lock on that block, the bridge termi-
nates the CPU transfer with ARTRY#, does not access the memory location, and takes no
other action.
The CPU removes a reservation by executing a memory read with intent to modify atomic
(TT[0:3]=1111) or a memory write with flush atomic (TT[0:3]=1001). The bridge treats these
accesses as a normal memory transfers.

4.6.3 PCI Lock
The bridge responds to the PCI lock request protocol in compliance with the PCI specifica-
tion. If an agent requests a lock, and no PCI lock is in effect, the lock is granted. Once a
PCI lock is granted, no other PCI locks are granted until the current lock is released.
The 660 prevents CPU busmasters and other PCI busmasters from reading or writing with-
in a block of memory which is locked by a PCI busmaster. CPU busmaster accesses to a
locked block are retried with ARTRY#. PCI busmaster accesses to a locked block are re-
tried with the PCI bus retry protocol. PCI and CPU busmaster accesses to other areas of
system memory are unrestricted.
PCI to memory transactions cause the bridge to broadcast a snoop cycle to the CPU bus.
When a PCI agent is granted a memory block lock, the bridge broadcasts a write with flush
(TT[0:3]=0001) cycle on the CPU bus, which causes the L1 and L2 caches to invalidate that
sector (if there is an address match). This insures that there will not be a cache hit during
a CPU bus accesses to a memory block which is locked by a PCI agent.

4.6.4 PCI Lock Release
The bridge responds to the PCI lock release protocol in compliance with the PCI Specifica-
tion. If an agent releases the lock that it owned, the bridge releases the lock. The bridge
generates a normal snoop cycle on the CPU bus.
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4.7 DRAM Module Loading Considerations
The 660 directly drives up to eight 168 pin DRAM modules, which typically exhibit an input
capacitance of less than 20pf. Table 4-19 shows some maximum input capacitance num-
bers that are typical of the various DRAM modules on the market. System designers may
wish to buffer MA[11:0] (and perhaps WE#) if the system design requires the use of more
than two banks of 72 pin SIMMs (more than one pair of 2-sided 72 pin SIMMs).

Table 4-19.  Typical DRAM Module Maximum Input Capacitance

SIMM Type SIMM Size Maximum Input Capacitance

Address WE#
72-pin 4 Meg 50pf 50pf

8 Meg 90pf 95pf

16 Meg 80pf 95pf

32 Meg 160pf 190pf

168-pin 8M, 16M,
32M,128M

13pf 13pf

64M 18pf 18pf

4.8 Related Bridge Control Registers
Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes

Memory Parity Error Status 8000 0840 R 1

Single-Bit Error Counter Index B8 R/W 1

Single-Bit Error Trigger Level Index B9 R/W 1

Bridge Options 2 Index BB R/W 1

Error Enable 1 Index C0 R/W 1

Error Status 1 Index C1 R/W 1

Single-Bit ECC Error Address Indx CC – CF R/W 4

Bridge Chip Set Options 3 Index D4 R/W 1
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Section 5
PCI Bus
The MCM includes a 32-bit PCI bus interface that runs at frequencies up to 33MHz. The
MCM PCI interface is a host PCI bridge that is compliant with the PCI Specification, revi-
sions 2.0 and 2.1 (see Section 5.5) for the 3.3v and 5v signalling environments.

The MCM PCI bus interface is designed to run at one half of the CPU bus frequency.

PCI bus activity initiated by the CPU is discussed in section 3. This section describes PCI
bus transactions initiated by a (non-660-bridge) PCI busmaster. PCI busmasters can initi-
ate arbitrary length read and write bursts to system memory.

Whenever a PCI busmaster accesses system memory, the 660 broadcasts a snoop cycle
onto the CPU bus. See the 660 User’s Manual CPU Bus section for details.

The MCM supports ISA Master operations to system memory.
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5.1 PCI Transaction Decoding
When a PCI busmaster initiates a transaction on the PCI bus, the transaction either misses
all of the targets and is master aborted, or it is claimed by a PCI target. The target can be
either MCM system memory (via the 660) or another PCI target.

5.1.1 PCI Transaction Decoding By Bus Command
Table 5-1 shows the response of the 660 and other agents to various PCI bus transactions
initiated by a PCI busmaster other than the 660. The 660 ignores (No response) all PCI bus
transactions except PCI memory read and write transactions, which it decodes as possible
system memory accesses.

Table 5-1.  MCM Response to PCI_C[3:0] Bus Commands
C[3:0] PCI Bus 

Command
Can a PCI busmaster
Initiate this Transaction?

660 Response to the
Transaction

Can Another PCI Target
Claim the Transaction?

0000 Interrupt
Acknowledge

No. Only the 660 is allowed
to initiate.

None Yes. The ISA bridge is
intended to be the target.

0001 Special Cycle Yes None Yes

0010 I/O Read Yes None Yes

0011 I/O Write Yes None Yes

0100 Reserved No. Reserved None n/a

0101 Reserved No. Reserved None n/a

0110 Memory Read Yes System memory read Yes, if no address conflict.

0111 Memory Write Yes System memory write. Yes, if no address conflict.

1000 Reserved No. Reserved None n/a

1001 Reserved No. Reserved None n/a

1010 Configuration Read No. Only 660. None Yes

1011 Configuration Write No. Only 660. None Yes

1100 Memory Read
Multiple

Yes System memory read Yes, if no address conflict.

1101 Dual Address Cycle Yes None Yes

1110 Memory Read Line Yes System memory read Yes, if no address conflict.

1111 Memory Write and
Invalidate

Yes System memory write Yes, if no address conflict.

PCI busmasters are not able to access the boot ROM or the BCRs in the 660.

PCI busmasters can not initiate transactions to the CPU bus. CPU bus devices can, howev-
er, initiate transfers to the PCI bus. Large amounts of data are typically moved between the
PCI bus and memory by bursts initiated by a PCI busmaster.

See Section 8.1.3 and the PCI specification for information on PCI Interrupt Acknowledge
transactions.

5.1.2 PCI Memory Transaction Decoding By Address Range
When a PCI busmaster transaction is decoded by bus command as a system memory read
or write, the 660 checks the address range. Table 5-2 shows the address mapping of PCI
busmaster memory accesses to system memory. This is the mapping that the 660 uses
when it decodes the bus command to indicate a system memory access.
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Table 5-2.  Mapping of PCI Memory Space, Part 1
PCI Bus Address Other Conditions Target Cycle Decoded Target 

Address
Notes

0 to 2G IGN_PCI_AD31
Deasserted

Not Decoded N/A No Response.

IGN_PCI_AD31
Asserted

System Memory * 0 to 2G Snooped by caches.

2G to 4G System Memory * 0 to 2G Snooped by caches.

*  Memory does not occupy this entire address space. Accesses to unoccupied space are not decoded.

Unless the IGN_PCI_AD31 signal is asserted, PCI memory accesses in the 0 to 2G ad-
dress range are ignored by the 660. There is no system memory access, no snoop cycle,
and the 660 does not claim the transaction. When the IGN_PCI_AD31 signal is asserted,
the 660 maps PCI memory accesses from 0 to 2G directly to system memory at 0 to 2G.
PCI memory accesses from 2G to 4G are mapped to system memory from 0 to 2G.

PCI memory accesses that are mapped to system memory cause the 660 to claim the
transaction, access system memory, and arbitrate for the CPU bus and broadcast a snoop
operation on the CPU bus. A detailed description of the snoop process is presented in the
660 User’s Manual.

Table 5-3 gives a more detailed breakdown of the MCM response to PCI memory transac-
tions in the 0 to 2G range. Note that the preferred mapping of PCI memory, so that it can
be accessed both by the CPU and by PCI busmasters, is from 16M to 1G–2M.

Table 5-3.  Mapping of PCI Memory Space, Part 2
PCI Bus Address Target Resource System Memory Address Snoop Address

2G to 4G System memory (1) 0 to 2G 0 to 2G

1G–2M to 2G Reserved (2) No system memory access.
Th 660 i PCI

No snoop.

16M to 1G–2M PCI Memory

y y
The 660 ignores PCI memory
transactions in this range.

0 to 16M PCI/ISA Memory (3)
transactions in this range.

Notes:
1. The 660 maps PCI busmaster memory transactions in the 2G to 4G range to sys-

tem memory, and the CPU is unable to initiate PCI memory transactions to this ad-
dress range, so do not map devices to this PCI memory address range.

2. The CPU (thru the 660) can not access the 1G–2M to 2G address range, so do
not map PCI devices herein unless the CPU will not access them.

3. Transactions initiated on the PCI bus by the ISA bridge on behalf of an ISA bus-
master only (IGN_PCI_AD31 asserted for an SIO), are forwarded to system
memory and broadcast snooped to the CPU bus from 0 to 16M. If this is not an ISA
busmaster transaction, then the 660 ignores it. Note that the 660 will also forward
PCI transactions from 16M to 2G if IGN_PCI_AD31 is asserted during an ISA-
bridge-mastered transaction, and that this capability is not normally used.

5.1.3 PCI I/O Transaction Decoding

The 660 initiates PCI I/O transactions on behalf of the CPU. Other PCI busmasters are also
allowed to initiate PCI I/O transactions. Table 5-4 shows the MCM mapping of PCI I/O
transactions. The 660 ignores PCI I/O transactions.
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PCI/ISA I/O is mapped to PCI I/O space from 0 to 64K. The ISA bridge subtractively de-
codes these transactions (and also PCI memory transactions from 0 to 16M). Other devices
may actively decode and claim these transactions without contention.

PCI I/O is assigned from 16M to 1G–8M.

Table 5-4.  Mapping of PCI Master I/O Transactions
PCI Bus Address Target Resource Other System Activity

1G–8M to 4G Reserved (1) The 660 ignores I/O transactions initiated by PCI busmasters.

16M to 1G–8M PCI I/O devices

g y

8M to 16M Reserved (1)

64K to 8M Reserved (2)

0 to 64K PCI/ISA I/O

Note:
1. The CPU (thru the 660) can not access this address range, so do not map PCI de-

vices herein unless the CPU will not access them.
2. In contiguous mode, the CPU (thru the 660) can create PCI I/O addresses in the

64K to 8M range. In non–contiguous mode, the CPU can only access PCI address-
es from 0 to 64K.

5.1.4 ISA Master Considerations
In systems that implement IGN_PCI_AD31 and use an Intel SIO, memory transactions pro-
duced on the PCI bus (by the SIO on behalf of an ISA master) are forwarded to system
memory at the corresponding address (0 —16M).

If ISA masters are utilized and the SIO is programmed to forward their cycles to the PCI
bus, then no other PCI device (e.g. video) is allowed to be mapped at the same addresses
because contention would result.

The SIO contains registers to control which ranges of ISA addresses are forwarded to the
PCI bus.

The 660 samples IGN_PCI_AD31 during PCI busmaster memory transactions from 0 to
2G. If IGN_PCI_AD31 is negated, the 660 ignores the transaction, and if IGN_PCI_AD31
is asserted, the 660 forwards the transaction to system memory. In theory, the
IGN_PCI_AD31 signal can be used by any PCI agent for this purpose, but to ensure PR–P
compliance, this signal should be asserted only while the ISA bridge is initiating a PCI to
memory transaction on behalf of an ISA master. One way to generate IGN_PCI_AD31 is
to AND together the PCI_GNT# signals of all of the PCI agents except the SIO and the 660.
This will assert IGN_PCI_AD31 (during a PCI transaction) only while either the 660 or the
SIO is the initiator (and the 660 knows when it is the initiator).
The required connectivity of IGN_PCI_AD31 prevents the SIO from initiating peer to peer
PCI memory transactions in the 0 to 2G range. ISA masters cannot access any PCI
memory. The SIO is allowed to initiate PCI memory transactions from 2G to 4G, and other
PCI transaction types (I/O &etc.).



Section 5 — PCI BusPreliminary

5–5G5220297-00

5.2 PCI Transaction Details
Further details of the MCM implementation of various PCI transactions, are found in the
660 User’s Manual.

5.2.1 Memory Access Range and Limitations
PCI memory reads and writes by PCI busmasters are decoded by the 660 to determine if
they access system memory. PCI memory reads and writes to addresses from 2G to 4G
on the PCI bus are mapped by the 660 as system memory reads and writes from 0G to 2G.
These PCI to memory transactions are checked against the top_of_memory variable to de-
termine if a given access is to a populated bank. The logic of the 660 does not recognize
unpopulated holes in the memory banks. PCI accesses to unpopulated locations below the
top_of_memory are undefined.
PCI accesses to system memory are not limited to 32 bytes. PCI burst-mode accesses are
limited only by the size of memory, PCI bus latency restrictions, and the PCI disconnect
counter.

5.2.2 Bus Snooping on PCI to Memory Cycles
Each time a PCI (or ISA) busmaster accesses memory, (and once again for each time a
PCI burst crosses a cache block boundary) the 660 broadcasts a snoop operation on the
CPU bus. If the CPU signals an L1 snoop hit by asserting ARTRY#, the 660 retries the PCI
transaction. The ISA bridge then removes the grant from the PCI agent, who (according
to PCI protocol) releases the bus for at least one cycle and then arbitrates again.  Mean-
while, the 660 grants the CPU bus to the CPU, allowing it to do a snoop push. Then the PCI
agent again initiates the original transaction.

During the transaction, the 660 L2 cache is monitoring the memory addresses. The L2
takes no action on L2 misses and read hits. If there is an L2 write hit, the L2 marks that block
as invalid, does not update the block in SRAM, and does not affect the PCI transaction. L2
operations have no effect on PCI to memory bursts.

5.2.3 PCI to PCI Peer Transactions
Peer to peer PCI transactions are supported consistent with the memory maps of Table 5-1,
Table 5-2, Table 5-3, and Table 5-4, which together show the ranges of different bus com-
mand transactions that are supported. If the ISA_MASTER signal is used with the Intel SIO,
then the SIO is not allowed to perform peer to peer PCI memory transactions in the 0 to
2G range. No other transaction types are affected.

5.2.4 PCI to System Memory Transactions
Single and burst transfers are supported. Bursts are supported without special software
restrictions. That is, bursts can start at any byte address and end on any byte address and
can be of arbitrary length.

As per the PCI specification, the byte enables are allowed to change on each data phase.
This has no practical effect on reads, but is supported on writes. The memory addresses
linearly increment by 4 on each beat of the PCI burst. All PCI devices must use only linear
burst incrementing.

In ECC mode, PCI to memory transactions that result in less than 8-byte writes, cause the
memory controller in the 660 to execute a read-modify-write operation, during which 8 by-
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tes of memory data are read, the appropriate bytes are modified, the ECC byte is modified,
and then the resulting 8-byte doubleword is written to memory.

5.2.5 PCI to Memory Burst Transfer Completion
PCI to memory burst transfers continue to normal completion unless one of the following
occurs:
� The initiating PCI busmaster disconnects. The 660 handles all master disconnects

correctly.
� The 660 target disconnects on a 1 M boundary. The 660 disconnects on all 1M

boundaries.
� The 660 target disconnects because the PCI disconnect timer has timed out.
� The CPU retries the snoop cycle that the 660 broadcast on the CPU bus. In this case,

the 660 target retries the PCI busmaster. (Note that L2 hits do not affect the PCI to
memory transaction. Read hits have no effect on the L2, and write hits cause the L2
to invalidate the block.)

� The 660 will target disconnect the PCI busmaster if the refresh timer times out. In
this case, the 660 will disconnect at the end of the current data phase for writes, or
at the end of the current cache block, for reads.

5.2.6 PCI to Memory Access Sequence
When a PCI access is decoded as a system memory read or write, the memory and CPU
bus are requested and, when granted, a snoop cycle to the CPU bus and a memory cycle
to system memory are generated. If the processor indicates a snoop hit in the L1 cache
(ARTRY# asserted), then the memory cycle is abandoned and the PCI cycle is retried. The
CPU then does a snoop push. The L2 cache does not need to do a snoop push because
it is write-through, and, therefore, system memory always contains the result of all write
cycles. See Section 3 for more L2 information.

5.2.7 PCI to Memory Writes
During PCI to memory burst writes, the 660 performs data gathering before initiating the
cycle to the memory controller. The data gathering involves combining two PCI write cycles
into one memory write cycle if the address of the first write cycle is even.
Minimum initial write access time to 70ns DRAM when the CPU bus is 66MHz and the PCI
bus is 33MHz is 5-1-1-1 -3-1-1-1 PCI clocks for 4-4-4-4 -4-4-4-4 bytes of data (14 PCI
clocks for 32 bytes of data). Subsequent data phases of the same burst are generally serv-
iced at -3-1-1-1 -3-1-1-1 (12 PCI clocks for 32 bytes of data), giving a peak burst write rate
of 32 bytes in 12 PCI clocks, or about 85MBps with a 33MHz PCI clock. This scenario holds
while the RAS# timer (10us typical) does not time out, the burst remains within the same
4K memory page, and no refresh is requested (15us typ).

5.2.7.1 Detailed Write Burst Sequence Timing
The detailed write sequence is affected by several factors, such as refresh requests,
memory arbitration delays, page and/or bank misses, and cache boundary alignment.
Table 5-5 shows the details of the various sequences that a PCI to memory burst write will
experience, depending on the address (relative to a cache block boundary) of the first data
phase of the transaction. The starting address of the numbering sequence shown on the
top row was arbitrarily chosen as xx00, and could be any 32–byte aligned boundary. The
times shown in Table 5-5 are in PCI clock cycles, and do not include any cycles that the PCI
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master spends acquiring the PCI bus from the PCI bus arbiter. The initial data phase is
timed from the assertion of FRAME# to the PCI clock at which the PCI master samples
TRDY# active. Subsequent data phase times are from the PCI clock at which the previous
TRDY# was sampled active to the PCI clock at which the current TRDY# is sampled active.
All the numbers shown in Table 5-5 are for parity (or none) operation. The numbers are also
correct for ECC mode operation as long as all the writes are gather-store pairs. Incurring
a RMW operation costs 3 PCI_CLKs.

Table 5-5.  PCI to Memory Write Burst Sequence Timing

 S                                 S
00  04  08  0C  10  14  18  1C    20  24  28  2C  30  34  38  3C  40  ...
 W   1   1   1   Y   1   Z   1     X   1   Z   1   Z   1   Z   1   X  ...
     W   1   1   Y   1   Z   1     X   1   Z   1   Z   1   Z   1   X  ...
         W   1   1   1   Y   1     X   1   Z   1   Z   1   Z   1   X  ...
             W   1   1   Y   1     X   1   Z   1   Z   1   Z   1   X  ...
                 W   1   1   1     G   1   Z   1   Z   1   Z   1   X  ...
                     W   1   1     G   1   Z   1   Z   1   Z   1   X  ...
                         W   1     G   1   Z   1   Z   1   Z   1   X  ...
                             W     G   1   Z   1   Z   1   Z   1   X  ...
                                   W   1   1   1   Y   1   Z   1   X  ...
S indicates a cache block boundary at 0 mod 32. Snoops are broadcast to the CPU bus when a PCI burst crosses
one of these boundaries.

W is a function of a 1.5 PCI clock snoop delay and memory arbitration delays. If the CPU is accessing memory when
the PCI agent begins the memory write burst, the 660 waits until the CPU completes the current CPU access before
allowing the PCI to memory write to proceed. If the RAS# watchdog timer has timed out, the memory controller will
precharge the RAS# lines, and if the refresh timer has timed out, the memory controller will do a refresh operation.

W (min) = 5 This occurs when the memory controller is idle and no refresh or
RAS# timeout occurs.

W (typ) = 6 or 7 This occurs if the memory controller is in the middle (beat 3 of 4) of
serving  a CPU burst transfer when the PCI burst starts, and no
refresh or RAS# timeout occurs.

W (max) = 23 This occurs when CPU1 is just starting a burst transfer to memory,
followed by CPU2 starting a burst transfer to memory, after which a
refresh happens to be required.

X is a function of snoop delays only. Whenever the memory access crosses a cache block boundary, the Bridge
broadcasts a snoop cycle on the CPU bus. (Due to the posted write buffer structure, delays incurred by crossing a
page boundary here do not show up until later in the sequence.)

X = 3 Always. (The only benefit to disabling PCI snooping or enabling pre–snooping is to reduce this
delay to 1. Otherwise neither function increases performance.)

Y is a function of memory latency. This page and/or bank miss delay can only be incurred at a page boundary, but
shows up here due to the posted write buffer structure. The Bridge has a 4 x 4 posted PCI write buffer, which allows it
to accept data phases from the PCI bus while the memory controller is busy servicing page misses. This minimizes
the transfer delays caused by these memory overhead functions.

Y (typ) = 1 This occurs for a page hit with no refresh. This is also the minimum.
Y (mid) = 2 This occurs for a page miss with no refresh.
Y (max) = 4 This occurs for a refresh (which also forces a page miss).

Z is a function of a subset of the W factors (RAS# timeouts and refresh operations). This delay is only incurred due to
a RAS# timeout or refresh request that has occurred since the last W, Y, Z, or G.

Z (typ) = 2 to 3 This occurs for no refresh and no RAS# timeout.
Z (max) = 3 to 4 This occurs for either a RAS# timeout or a refresh operation.

G is the combination of X and Y, and is equal to the longer of X and Y.
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5.2.8 PCI to Memory Reads
During PCI to memory burst reads, the 660 performs memory pre-fetching when it initiates
cycles to the memory controller. The pre-fetching involves loading or pre-loading 32 bytes
from the memory for eight 4-byte PCI read cycles. Pre-fetching is only done within the same
cache line.
Minimum initial read access time from 70ns DRAM when the CPU bus is 66MHz and the
PCI bus is 33MHz, is 8-1-1-1 -1-1-1-1 PCI clocks for 4-4-4-4 -4-4-4-4 bytes of data (15 PCI
clocks for 32 bytes of data). Subsequent data phases of the same burst are generally serv-
iced at -7-1-1-1 -1-1-1-1 (14 PCI clocks for 32 bytes of data), giving a peak burst read rate
of 32 bytes in 14 PCI clocks, or about 73MBps with a 33MHz PCI clock. This scenario holds
while the RAS# timer (10us typical) does not time out and no refresh is requested (15us
typ).

5.2.8.1 Detailed Read Burst Sequence Timing
The actual detailed read sequence is affected by several factors, such as the speed of the
DRAM, refresh requests, memory arbitration delays, page and/or bank misses, and cache
boundary alignment. Table 5-6 shows the details of the various sequences that a PCI to
memory burst read will experience, depending on the address (relative to a cache block
boundary) of the first data phase of the transaction. The starting address of the numbering
sequence shown on the top row was arbitrarily chosen as xx00, and could be any 32–byte
aligned boundary. The times shown in Table 5-6 are in PCI clock cycles, and do not include
any cycles that the PCI master spends acquiring the PCI bus from the PCI bus arbiter. The
initial data phase is timed from the assertion of FRAME# to the PCI clock at which the PCI
master samples TRDY# active. Subsequent data phase times are from the PCI clock at
which the previous TRDY# was sampled active to the PCI clock at which the current TRDY#
is sampled active.
All the numbers shown in Table 5-6 are for ECC, parity, or no-error-checking operation.
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Table 5-6.  PCI to Memory Read Burst Sequence Timing

 S                                 S
00  04  08  0C  10  14  18  1C    20  24  28  2C  30  34  38  3C  40  ...
 N   1   1   1   1   1   1   1     M   1   1   1   1   1   1   1   M  ...
     N   1   1   1   1   1   1     M   1   1   1   1   1   1   1   M  ...
         N   1   1   1   1   1     M   1   1   1   1   1   1   1   M  ...
             N   1   1   1   1     M   1   1   1   1   1   1   1   M  ...
                 N   1   1   1     M   1   1   1   1   1   1   1   M  ...
                     N   1   1     M   1   1   1   1   1   1   1   M  ...
                         N   1     M   1   1   1   1   1   1   1   M  ...
                             N     M   1   1   1   1   1   1   1   M  ...
                                   N   1   1   1   1   1   1   1   M  ...

S indicates a cache block boundary at 0 mod 32. Snoops are broadcast to the CPU bus when a PCI burst crosses
one of these boundaries.

N is the number of PCI clocks required from the assertion of FRAME# until the master samples the first TRDY# (from
the 660) active, and is a function of snoop and memory arbitration delays. If the CPU is accessing memory when the
PCI agent begins the memory read burst, the 660 waits until the CPU completes the current CPU access before
allowing the PCI to memory read to proceed. If the RAS# watchdog timer has timed out, the memory controller will
precharge the RAS# lines, and if the refresh timer has timed out, the memory controller will do a refresh operation.

N (min) = 5 This occurs when the memory controller is idle and no refresh or
RAS# timeout occurs, and the access produces a page hit.

N (typ) = 8 or 9 This occurs if the memory controller is in the middle (beat 3 of 4) of
serving  a CPU burst transfer when the PCI burst starts, and no
refresh or RAS# timeout occurs.

N (max) = 26 This occurs when CPU1 is just starting a burst transfer to memory,
followed by CPU2 starting a burst transfer to memory, after which a
refresh happens to be required.

M is a function of a 2-clock snoop delay and other delays caused by bridge overhead functions. Whenever the
memory access crosses a cache block boundary, the Bridge broadcasts a snoop cycle on the CPU bus.

M (typ) = 6 or 7 Unless a refresh or RAS# timeout occurs.
M (typ) = 7 or 8 This occurs for a refresh or RAS# timeout.

The memory controller, running at its own speed, requests up to 4, 8-byte memory reads
(into 8, 4-byte buffers in the 663) while the PCI target engine of the 660 is servicing the
memory read transaction. Under worst case conditions (slow memory, etc.), the memory
controller just keeps up with the PCI bus, and N goes up. Under better conditions, the
memory controller gets ahead of the PCI read process, and N decreases.

5.2.9 PCI BE# to CAS# Line Mapping
Table 5-7 shows which CAS# lines are activated when a PCI master writes memory. Note
that CAS[0]# refers to byte addresses 0 mod 8, CAS[1]# refers to byte addresses 1 mod
8, etc.. For read cycles, eight bytes of memory data are read on each access, but the master
receives only the desired 4 bytes. The bytes are read or written to memory independently
of BE or LE mode (the endian mode byte swappers are situated between the CPU and the
rest of the system, not between the PCI and the rest of the system).
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Table 5-7.  Active CAS# Lines – PCI to Memory Writes, BE or LE Mode
PCI_
AD[2]

Byte Enables BE[ ]# Column Address Selects CAS[ ]#
AD[2] 3 2 1 0 0 1 2 3 4 5 6 7

0 1 1 1 1

0 1 1 1 0 X

0 1 1 0 1 X

0 1 1 0 0 X X

0 1 0 1 1 X

0 1 0 1 0 X X

0 1 0 0 1 X X

0 1 0 0 0 X X X

0 0 1 1 1 X

0 0 1 1 0 X X

0 0 1 0 1 X X

0 0 1 0 0 X X X

0 0 0 1 1 X X

0 0 0 1 0 X X X

0 0 0 0 1 X X X

0 0 0 0 0 X X X X

1 1 1 1 1

1 1 1 1 0 X

1 1 1 0 1 X

1 1 1 0 0 X X

1 1 0 1 1 X

1 1 0 1 0 X X

1 1 0 0 1 X X

1 1 0 0 0 X X X

1 0 1 1 1 X

1 0 1 1 0 X X

1 0 1 0 1 X X

1 0 1 0 0 X X X

1 0 0 1 1 X X

1 0 0 1 0 X X X

1 0 0 0 1 X X X

1 0 0 0 0 X X X X

Notes:  
X = active. Blank = inactive.   Byte enables would normally represent contiguous addresses. This table shows what
would happen for all cases.
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5.3 Bus Arbitration Logic
The MCM requires an external PCI arbiter such as may be supplied in the ISA bridge. The
660 sends a CPU/660 bus request to the PCI bus arbiter to request ownership of the PCI.
The 660 receives a PCI bus grant from the PCI bus arbiter. The 660 follows the PCI specifi-
cation for host bridges. The PCI arbiter typically parks the PCI bus on the 660.
The 100 MHz PPC 603e MCM example planar uses the Intel SIO as the PCI bus arbiter.
The PCI arbiter sees the 660 as one of several PCI agents. The order of priority for PCI
arbitration is programmable, and is initially set to be:

1. 660 (the SIO normally parks the bus on the 660)
2. PCI slot 1
3. PCI slot 2
4. PCI slot 3

For more information on arbitration, see Section 9 on planar initialization, and see the PCI
Arbitration Controller section of the SIO data book. See the example planar schematics for
the connection of the various PCI requests and grants.

There may be concurrency of cycles on the ISA bus (caused by DMA or ISA masters) with
PCI or CPU transactions as long as the ISA bus operations are not forwarded to the PCI
bus. Forwarding of ISA bus operations must wait for the ISA bridge to grant the PCI bus
to its ISA interface.
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5.4 PCI Lock
The MCM 660 does not set PCI locks, but does honor them. Also see Section 4.6.

5.4.1 PCI Busmaster Locks
The  PCI_LOCK# signal is an input-only to the 660. The 660 provides resource locking of
one 32-byte cache sector (block) of system memory. Once a PCI busmaster sets a lock on
a 32-byte block of system memory, the 660 saves the block address. Subsequent accesses
to that block from other PCI busmasters or from the CPU bus are retried until the lock is
released.
The bridge generates a write-with-flush snoop cycle on the CPU bus when a PCI busmaster
sets the PCI lock. The write-with-flush snoop cycle causes the L1 and L2 caches to invali-
date the locked block, which prevents cache hits on accesses to locked blocks. If the L1
contains modified data (as indicated by a CPU retry), the PCI cycle is retried and the modi-
fied data is pushed out to memory.

5.4.2 CPU Bus Locking
The 660 does not set PCI locks when acting as the PCI busmaster.
The 60X processors do not have bus-locking functions. Instead, they use the load reserve
and store conditional instructions (lwarx and stwcx) to implement exclusive access by set-
ting a reservation on a memory block. To work with the lwarx and stwcx instructions, the
660 snoops all PCI accesses to system memory, which allows the CPU that is holding the
reservation to detect a violation of the reservation. In addition, the 660 generates a write-
with-flush operation on the CPU bus in response to the PCI read that begins a PCI lock.
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5.5 PCI 2.1 Compliance
The MCM contains a highly programmable system component, the 660 bridge. The 660
can be programmed to meet a wide range of application requirements. Along with this flexi-
bility comes the ability to shoot oneself in the foot. This section discusses ways to program
the 660 to ensure compliance with the PCI 2.1 specification.

5.5.1 PCI Target Initial Latency
The 2.1 PCI specification allows host bridges a Target Initial Latency (TIL) of 32 PCI clocks
under certain conditions. When the 660 is in 2:1 CPU:PCI clock mode, and is used with one
busmaster on the CPU bus, the TIL is a maximum of 32 PCI clocks.

However, when the 660 is used in 2:1 CPU:PCI clock mode with two busmasters on the
CPU bus, it is possible to configure the 660 memory controller to operate the DRAM slowly
enough that the TIL exceeds 32 PCI clocks. Program the memory controller for the fastest
settings that are consistent with good design practice.

5.5.2 Transaction Ordering Rules
Transaction ordering requirements were added to the PCI specification between revs 2.0
and 2.1. The PCI 2.1 specification states that writes from a given master must be visible
(by any other agent in the system) as completing in the order in which they were initiated.
This requirement is intended to implement the Producer–Consumer model contained in
Appendix E of the PCI 2.1 specification.

5.5.2.1 The Problem
There is a theoretical case in which the 660 does not comply with the PCI
Producer–Consumer model (Appendix E, Summary of PCI Ordering Rules, Item 5b). Note
that to date (6/20/96) there have been no know actual occurrances of this case with the 660.
It was recently discovered during a comprehensive review of the PCI 2.1 specification. IBM
is not aware of any existing hardware/software combination that produces a situation
where this case can be observed.

For the following discussion, please refer to the PCI 2.1 specification sections 3.2.5 and
Appendix E. Assume that the CPU is the Producer, and that it is producing the final 4 bytes
of a data set by initiating a PCI memory write (via the 660) to a particular PCI agent (the
Consumer). Assume that the 660 posts the write, and that before the posted write
completes on the PCI bus (for instance if it is retried), the CPU writes the flag to system
memory.

Meanwhile, the PCI agent is polling the flag by periodically reading the system memory
location. Assume that the PCI agent reads the flag as set, meaning that the data set transfer
is complete. At this point, the possibility exists that the PCI agent has not allowed the CPU
to PCI (data set) write to complete. If so, then the two CPU transactions have completed
out of order, and the flag will indicate that the data transfer has completed, when in fact it
has not.

To prevent this, the PCI 2.1 spec requires the bridge to react to the PCI to memory read
request by pulling all posted writes through the bridge before completing the read. In other
words, when the PCI agent initiates the read (polls the flag), the bridge is to retry (or delay)
the read until the posted CPU to PCI memory write (the data set transfer) has completed.
This has the effect of ”pulling” the writes through the bridge before the read is executed.
The 660 does not implement this function.
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Note that PCI devices (such as SCSI, Ethernet, and Token Ring adaptors) that poll the flag
in system memory typically also consume the data set by initiating PCI to system memory
reads. These devices are not affected.
Also, PCI devices (such as graphics adaptors and non–PCI busmasters) that receive the
data set as a PCI memory target typically receive indication that the data is ready (the flag)
as a PCI I/O or PCI memory target; they do not poll system memory for the flag. These
devices are also not affected.
5.5.2.2 Solution 1: Add a dummy CPU to PCI write:
Design the device drivers to cause the CPU BIU to execute an access to the PCI bus (of
any type) after the data set is written (posted into the 660 by the CPU write to the PCI target)
and before the CPU BIU executes the write that sets the flag in system memory. This
solution forces the data set write to complete on the PCI bus before the flag write is initiated
on the CPU bus. (Remember to insert eieio instructions before and after the dummy write.)
This produces the following sequence:

1. The CPU initiates a CPU to PCI write to produce the final part of the data set. The
CPU address tenure completes, and the PCI write is posted.

2. Some time later, the 660 initiates this transaction on the PCI bus. The transaction
takes an unknown amount of time to complete. If the transaction is retried on the PCI
bus, the 660 will continue to reinnitiate the transaction until it completes.

3. After (1) and before (4), the CPU initiates a dummy CPU to PCI write to flush the
posted write buffer. The 660 does not allow this second CPU to PCI write to complete
on the CPU bus (by being written into the 660 posted write buffer) until the first CPU
to PCI transaction (the data set write) actually completes on the PCI bus. This
prevents the following transaction (the flag write) from completing before the data
set write completes.

4. The CPU initiates the CPU to memory flag write.
5.5.2.3 Solution 2: Change the flag write procedure:
Design the device drivers such that the Consumer receives the flag in some way that
ensures that the data set write completes before the flag write completes. One way to do
this is to cause the CPU to write the flag to the PCI agent using a PCI IO or memory write,
instead of a CPU to memory write.
� If the flag write is a PCI memory write, then as in item 3 in option 1, this flag write

forces the preceeding data set write to complete before the flag write completes.
� If the flag write is a PCI IO write, then the 660 will not post the flag write, which forces

the data set write(s) to complete on the PCI bus before the flag write is initiated on
the PCI bus.

5.5.2.4 Solution 3: Change the data set write procedure:
Design the device drivers such that the Consumer receives data set some way other than
as a PCI memory target (such as an as an I/O target or a PCI busmaster).
� While the Consumer is receiving the data set as a PCI IO target, the 660 does not

post the IO writes, and so each write completes in order, even if some are retried.
This technique forces the data set writes to complete before the flag write
completes.

� If the Consumer is receiving the data set by initiating PCI to memory reads, and is
receiving the flag by initiating a PCI to memory read, then as long as the CPU
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initiates the data set writes to memory before the CPU initiates the flag write to
memory, then the ordering of the transactions will be preserved.

5.6 Related Bridge Control Registers
Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes

Memory Controller Misc 8000 0821 R/W 1

PCI/BCR Configuration Address 8000 0CF8 R/W 4

PCI/BCR Configuration Data 8000 0CFC R/W 4

PCI Type 0 Configuration Addresses
IBM27–82650 Compatible

8080 08xx
thru
80C0 00xx

R/W 4

PCI Vendor ID Index 00 – 01 R 2

PCI Device ID Index 02 – 03 R 2

PCI Command Index 04 – 05 R/W 2

PCI Device Status Index 06 – 07 R/W 2

Revision ID Index 08 R 1

PCI Standard Programming Interface Index 09 R 1

PCI Subclass Code Index 0A R 1

PCI Class Code Index 0B R 1

PCI Cache Line Size Index 0C R 1

PCI Latency Timer Index 0D R 1

PCI Header Type Index 0E R 1

PCI Built-in Self-Test (BIST) Control Index 0F R 1

PCI Interrupt Line Index 3C R 1

PCI Interrupt Pin Index 3D R 1

PCI MIN_GNT Index 3E R 1

PCI MAX_LAT Index 3F R 1

PCI Bus Number Index 40 R 1

PCI Subordinate Bus Number Index 41 R 1

PCI Disconnect Counter Index 42 R/W 1

PCI Special Cycle Address BCR Index 44 –45 R 2

Error Enable 1 Index C0 R/W 1

Error Status 1 Index C1 R/W 1

Error Enable 2 Index C4 R/W 1

Error Status 2 Index C5 R/W 1

PCI Bus Error Status Index C7 R/W 1

CPU/PCI Error Address Index C8 – CB R/W 4
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Section 6
ROM
The MCM implements a 2M ROM space from 4G–2M to 4G (on the CPU bus) by means
of the 660 bridge. The 660 provides two boot ROM device access methods which minimize
pin and package count while still allowing a byte-wide Flash� ROM device to source 8-byte
wide data.
The ROM mode is indicated to the 660 on the strapping pin configuration bits during power-
on-reset (POR). See section 8.3.2.2.
The ROM access method used by the example planar is referred to as the direct-attach
ROM mode; the ROM attaches directly to the 660 (MCM) using the PCI_AD lines. This
mode is required when using the Intel� SIO ISA bridge (as the example planar does) be-
cause the SIO does not support mapping of the ROM to the ISA bus. The direct-attach
mode also supports ROM device writes and write-protect commands.
The example planar uses an AMD AM29F040-120 Flash� ROM to contain the POST and
boot code. This is a 512K device located at 4G–2M. It is recommended that Vital Product
Data (VPD) such as the motherboard speed and native I/O complement be programmed
into in this device. It is possible to program the Flash before or during the manufacturing
process.
The other ROM access method (remote ROM mode – see section 6.2) attaches the ROM
device to an external PCI agent which supports the PowerPC Reference Platform ROM
space map and access protocol. CPU busmaster transfers to ROM space are forwarded
to the PCI bus and claimed by the PCI agent, which supplies the ROM device data. This
PCI device is typically a PCI to ISA bridge. The ROM device attaches to the ISA bridge
through the ISA bus lines, thereby saving a PCI bus load. The 660 supplies write-protect
capability in this mode.
At power-on, the 603/604 CPU comes up in BE Mode with the L1 cache disabled, and be-
gins fetching instructions (using 8-byte single beat reads) at address FFF0 0100 (4G – 1M
+ 100h). The example planar logic also resets to BE mode.

6.1 Direct-Attach ROM Mode
The ROM device attaches to the 660 by means of control lines and the PCI_AD[31:0] lines.
When a CPU busmaster reads from the ROM, the 660 masters a BCR transaction, during
which it reads the ROM and returns the data to the CPU. CPU writes to the ROM and ROM
write-protection operations are also forwarded to the ROM device.
ROM accesses flow from the CPU bus to the 660. As shown in Figure 6-1, the data and
address flow from the 660 to the ROM over the PCI_AD lines. ROM control flows from the
660 to the ROM over control lines that are not a part of the PCI bus.
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Although connected to the PCI_AD lines, the direct-attach ROM is not a PCI agent. The
ROM and the PCI agents do not interfere with each other because the ROM is under 660
control, and the 660 does not enable the ROM except during ROM cycles. The 660 ac-
cesses the ROM by means of BCR transactions. Other PCI devices cannot read or write
the ROM because they cannot generate BCR transactions.

Figure 6-1.  ROM Connections
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6.1.1 ROM Reads

When a CPU busmaster reads from memory addresses mapped to ROM space, the 660
arbitrates for the PCI bus and then masters a BCR transaction on the PCI bus. During this
transaction, the 660 reads the ROM eight times, accumulates the data, and returns the
double-word to the CPU. The 660 then completes the PCI transaction and releases the PCI
bus.

The 664 drives the address of the required byte over PCI_AD[23:0] to the ROM address
pins. The ROM drives back the data on PCI_AD[31:24], where it is received by the 663.

This ROM read discussion assumes that the system is in big-endian mode. For the effects
of little-endian mode operation on ROM reads, see Section 6.1.1.3.

6.1.1.1 ROM Read Sequence

Figure 6-2 is a timing diagram of a CPU to ROM read transaction. This case assumes that
the PCI bus is parked on the CPU, so that the 660 has a valid PCI bus grant when the CPU
starts the CPU bus transfer.

Initially, the CPU drives the address and address attributes onto the CPU bus and asserts
TS#. The 660 decodes the CPU transfer as a ROM read transaction. It is possible for TS#
to be asserted across either a rising or falling edge of PCI_CLK. The 660 must only assert
(and negate) PCI bus signals on the rising edge of PCI_CLK, so if TS# is asserted across
a rising edge of PCI_CLK, the 660 waits one CPU_CLK to synchronize to the PCI bus.

The 660 initiates a BCR transaction by asserting PCI_FRAME# on the rising edge of
PCI_CLK. Note that the 660 is driving PCI_AD[23:0] with the ROM address of byte 0 of the
8-byte aligned double-word. The 660 leaves PCI_AD[31:24] tri-stated, and asserts
ROM_OE# to enable the ROM to drive the data onto these bits. On the next PCI_CLK, the
660 negates PCI_FRAME# and asserts PCI_IRDY#.

The ROM drives the requested data onto its data pins, across PCI_AD[31:24], and into the
660. Seven PCI_CLKs after the 660 asserts PCI_FRAME#, it sends ROM_LOAD low. On
the next clock, the 660 latches in the ROM data on PCI_AD[31:24], sends ROM_LOAD#
high, and increments the ROM address on PCI_AD[23:0]. The byte from the ROM is
latched into a byte shift register, which accumulates the bytes in an 8-byte double-word.
The contents of the shift register move through the 660 and onto the CPU data bus.
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Figure 6-2.  ROM Read Timing Diagram
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The ROM then drives the next data byte onto PCI_AD[31:24]. Seven PCI_CLKs after it ne-
gated ROM_LOAD for the previous byte, the 660 again negates ROM_LOAD, and also
shifts the previous byte of ROM data to the next position. On the next PCI_CLK, the 660
sends ROM_LOAD high and increments the ROM address on PCI_AD[23:0]. This pattern
is repeated until all eight bytes have been loaded into the shift register.

After the last byte has been latched into the 660 by the falling edge of ROM_LOAD, the 660
completes the PCI transaction by deasserting PCI_IRDY#. It also negates ROM_OE# to
clear the PCI bus. After the last byte of data has had time to propagate through onto the
CPU data bus, the 660 signals TA# to the CPU. Table 6-1 shows the data and address flow
during the transaction.
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On a single-beat transfer, the CPU asserts and negates AACK# concurrently with TA#. For
a burst transfer, the 660 asserts TA# for four CPU_CLKs to return four identical double-
words to the CPU. This is the only difference between single-beat and burst ROM reads.
Also note that PCI_DEVSEL#, PCI_TRDY#, PCI_STOP#, and ROM_WE# are negated
throughout the transaction.

Table 6-1.  ROM Read Data and Address Flow
ROM

Access
#

ROM Data Byte ROM Address
PCI_AD[23:0]

ROM Data
PCI_AD[31:24]

CPU_DATA[0:63]
After Shift
(BE Mode)

CPU_DATA[0:63]
After Shift
(LE Mode)

1 Byte 0 XX XXX0h a — —

2 Byte 1 XX XXX1h b — —

3 Byte 2 XX XXX2h c — —

4 Byte 3 XX XXX3h d — —

5 Byte 4 XX XXX4h e — —

6 Byte 5 XX XXX5h f — —

7 Byte 6 XX XXX6h g — —

8 Byte 7 XX XXX7h h abcd efgh hgfe dcba

6.1.1.2 Address, Transfer Size, and Alignment
During ROM reads, system ROM is linear-mapped to CPU memory space from 4G – 2M
to 4G (FFE0 0000h to FFFF FFFFh). This address range is translated onto PCI_AD[23:0]
as 0 to 2M (0000 0000h to 001F FFFFh). Since the CPU begins fetching instructions at
FFF0 0100h after a reset, the most convenient way to use a 512K device as system ROM
with the CPU is to use it from 4G – 512K to 4G. Connecting PCI_AD[18:0] to ROM_A[18:0]
with no translation implements this. With this connection, the system ROM is aligned with
4G – 2M, but with alias addresses every 512K up to 4G. Other size devices can also be
implemented this way.
The CPU read address need not be aligned on an 8-byte boundary. A CPU read from any
ROM address of any length that does not cross an 8–byte boundary, returns all eight bytes
of that double-word from the ROM. For example, the operations shown in Table 6-1 could
have been caused by a CPU memory read to  FF80 0100h, FF80 0101h, or FF80 0105h.

6.1.1.3 Endian Mode Considerations
In little-endian mode, the address munging done by the CPU has no effect because
PCI_AD[2:0] are forced to 000 during the address phase by the 660 at the beginning of the
transaction. However, in little-endian mode the byte swapper is enabled, so the bytes of
ROM data returned to the CPU are swapped as shown in the last column of Table 6-1.

6.1.1.4 4-Byte Reads
The 660 handles 4-byte ROM reads (and all ROM reads of less than 8 bytes) as if they were
8-byte reads. All 8 bytes are gathered by the 660, and all 8 bytes are driven onto the CPU
data bus.

6.1.2 ROM Writes
The 660 decodes a CPU store word instruction to CPU address FFFF FFF0h as a ROM
write cycle. (Note that the 660 treats any access from FFE0 0000h to FFFF FFFE, with
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CPU_A[31]=0, as an access to FFFF FFF0.) The three low-order bytes of the CPU data
word are driven onto the ROM address lines, and the high-order byte is driven onto the
ROM data lines. For example, a store word instruction with data = 0012 3456h writes 56h
to ROM location 00 1234h. Only single-beat, four-byte write transfers (store word) are sup-
ported. A ROM write is considered to be a BCR operation. The ROM write BCR is detailed
in Section 6.3.1.

The ROM write discussion assumes that the system is in big-endian mode. For the effects
of little-endian mode operation on ROM reads, see Section 6.1.2.3. In direct-attach mode,
the ROM is attached to the 660 as shown in Figure 6-3.

Figure 6-3.  ROM Connections
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6.1.2.1 ROM Write Sequence

This case assumes that the PCI bus is parked on the CPU. Initially, the CPU drives the ad-
dress and address attributes onto the CPU bus and asserts TS#. The 660 decodes the CPU
transfer as a ROM write transaction, which is a BCR transaction.

The 660 initiates a BCR transaction by asserting PCI_FRAME# on the rising edge of
PCI_CLK. Note that the 660 is driving PCI_AD[23:0] with the ROM address and
PCI_AD[31:24] with the ROM data. On the next PCI_CLK, the 660 negates PCI_FRAME#
and asserts IRDY#. Four PCI_CLKs after the 660 asserts PCI_FRAME#, it asserts
ROM_WE# for two PCI_CLKs.

The 660 completes the PCI transaction by deasserting PCI_IRDY#. The 660 signals TA#
and AACK# to the CPU to signal transfer completion to the CPU. Also note that PCI_DEV-
SEL#, PCI_TRDY#, PCI_STOP#, and ROM_OE# are negated throughout the transaction.

6.1.2.2 Write Protection

Write protection for direct-attach ROM is provided through the ROM lockout BCR (see Sec-
tion 6.3.2). ROM write-lockout operations are compatible with the 650 bridge.

When a CPU busmaster writes any data to memory address FFFF FFF1h, the 660 locks
out all subsequent ROM writes until the 660 is reset. In addition, flash ROM devices can
have the means to permanently lock out sectors by writing control sequences. Flash ROM
specifications contain details. Note that the 660 treats any access from FFE0 0001 to FFFF
FFFF, with CPU_A[31]=1, as an access to FFFF FFF1.

6.1.2.3 Data Flow In Little-Endian Mode

Figure 6-4 and Table 6-2 show the flow of CPU Data through the 660 to the ROM while the
system is in little-endian mode. Note that the CPU Data bus is labeled in big-endian order,
the PCI bus is labeled in little-endian order, and the 660 is labeled to match (and the bit
significance within the bytes is maintained).
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Figure 6-4.  ROM Data and Address Flow In Little Endian Mode
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When the CPU executes a store word instruction to FFFF FFF0h, the contents of the source
register appear on CPU_DATA[32:63]. CPU_ADDR[29] is 1 (after the CPU munges the ad-
dress), so the 660 selects CPU data byte lanes 4 through 7 as the source of the data. The
system is in little-endian mode, so the buffer swaps the data bytes. If the register data is
AB012345h, then ABh is written to address 012345h of the ROM. Only single-beat, four-
byte write transfers (store word) are supported.

Table 6-2.  ROM Write Data Flow in Little-Endian Mode

CPU Register CPU DATA[0:63] Content PCI_AD[31:0] ROM Signal

MSB 32:39 ROM Data 31:24 D[7:0]

40:47 ROM Address high byte 23:16 A[23:16]

48:55 ROM Address mid byte 15:8 A[15:8]

LSB 56:63 ROM Address low byte 7:0 A[7:0]

6.1.2.4 Data Flow In Big-Endian Mode
Figure 6-5 and Table 6-3 show the flow of CPU Data through the 660 to the ROM while the
system is in big-endian mode. Note that the CPU Data bus is labeled in big-endian order,
the PCI bus is labeled in little-endian order, and the 660 is labeled to match (and the bit
significance within the bytes is maintained).
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Figure 6-5.  ROM Data and Address Flow In Big Endian Mode
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When the CPU executes a store word instruction to FFFF FFF0h, the contents of the source
register appear on CPU_DATA[0:31]. CPU_ADDR[29]=0, so the 660 selects CPU data
byte lanes 0 through 3 as the source of the data. The system is in big-endian mode, so the
buffer does not swap the data bytes. If the register data is 452301ABh, then ABh is written
to address 012345h of the ROM. Only single-beat, four-byte write transfers (store word)
are supported.

Table 6-3.  ROM Write Data Flow in Big-Endian Mode

CPU Register CPU DATA[0:63] Content PCI_AD[31:0] ROM Signal

MSB 0:7 ROM Address low byte 7:0 A[7:0]

8:15 ROM Address mid byte 15:8 A[15:8]

16:23 ROM Address high byte 23:16 A[23:16]

LSB 24:31 ROM Data 31:24 D[7:0]

6.2 Remote ROM Mode
In a system that uses the remote ROM mode, the ROM device attaches to a PCI agent.
When a CPU busmaster reads from memory addresses mapped to ROM space, the 660
arbitrates for the PCI bus and then masters a memory read transaction on the PCI bus. The
PCI agent claims the transaction and supplies the ROM device data. CPU writes to the
ROM and ROM write-protection operations are also forwarded to the PCI agent.
As shown in Figure 6-6, the ROM access flows from the CPU to the 660 over the CPU bus,
from the 660 to the PCI agent over the PCI bus, and from the PCI agent to the ROM device.
The ROM device attaches to the PCI agent, not to the PCI_AD lines, so a PCI bus load is
saved by the remote ROM method.
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Figure 6-6.  Remote ROM Connections
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6.2.1 Remote ROM Reads
For remote ROM reads, the 660 arbitrates for the PCI bus, initiates eight single-byte PCI
accesses, releases the PCI bus, and completes the CPU transfer. The eight single bytes
of ROM data are assembled into a double-word in the 663 and passed to the CPU.
Figure 6-7 shows the beginning of the operation, including the first two PCI transactions.
Figure 6-8 shows the last part of the operation, including the last two PCI transactions.
During and following reset, compliant PCI agents are logically disconnected from the PCI
bus except for the ability to respond to configuration transactions. These agents have not
yet been configured with necessary operational parameters. PCI agents capable of the re-
mote ROM access protocol reset with the ability to respond to remote ROM accesses be-
fore being fully configured. The CPU begins reading instructions at FFF0 0100h before it
can configure the PCI devices.
The ROM read discussion assumes that the system is in big-endian mode.

6.2.1.1 Remote ROM Read Sequence
In response to a CPU bus read in the 4G – 2M to 4G address range, the 660 requests the
PCI bus from the PCI arbiter. When the PCI bus is granted (or if the bus is already parked
on the CPU), the 660 initiates a series of PCI memory-read transactions as shown in
Table 6-4 for a CPU read from FFE0 0000h to FFFF FFFF. Note that the last column in
Table 6-4 shows the effect of little-endian mode operation. See Section 6.2.1.4.
The address of the first transaction is the low-order byte of the double-word pointed to by
the CPU address (see Section 6.2.1.2). The 660 expects the low-order byte of ROM data
in the 8-byte double-word to be returned on PCI byte lane 0, PCI_AD[7:0]. As shown in The
660 then masters seven more PCI read transactions, each time receiving back one byte
of ROM data and driving it onto the CPU data bus as shown in Table 6-4. Note that the byte
enables are incrementing within each 4-byte word pointed to by the PCI address.



Section 6 — ROMPreliminary

6–9G5220297-00

Figure 6-7.  Remote ROM Read – Initial Transactions
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At the completion of the eighth PCI read, the 660 drives the assembled double-word onto
the CPU data bus. The 660 then signals completion of the transfer to the CPU.
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Figure 6-8.  Remote ROM Read – Final Transactions
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Remote ROM reads are not pipelined. The 660 does not assert AACK# to the CPU until
the end of the remote ROM read sequence. The 660 asserts PCI_REQ# throughout the
entire remote ROM read sequence.
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Table 6-4.  Remote ROM Read Sequence, CPU Address = FFFX XXX0
PCI

Access
#

PCI Bus Read Memory
Address PCI_AD[31:0]

Byte Enables
PCI_C/BE[3:0]#

ROM
Addr

ROM
Data

Big Endian
CPU_DATA

[0:63]

Little Endian
CPU_DATA

[0:63]

1 FFFX XXX0h 1110 0 a — —

2 FFFX XXX0h 1101 1 b — —

3 FFFX XXX0h 1011 2 c — —

4 FFFX XXX0h 0111 3 d — —

5 FFFX XXX4h 1110 4 e — —

6 FFFX XXX4h 1101 5 f — —

7 FFFX XXX4h 1011 6 g — —

8 FFFX XXX4h 0111 7 h abcd efgh hgfe dcba

6.2.1.2 Address, Transfer Size, and Alignment

The initial PCI address generated during the remote ROM read sequence is formed by co-
pying the high-order 29 bits of the CPU address, and forcing the three low order bits
PCI_AD[2:0] to 000b. This generates a base address that is aligned on an 8-byte boundary.
While reading the lower 4 bytes, the 660 indicates which byte it is requesting using the PCI
byte enables C/BE[3:0]#. After the first four bytes of ROM data are read, the 660 increments
the address on the PCI_AD lines by 4 before executing the second four PCI reads.

The CPU read address need not be aligned on an 8-byte boundary. A CPU read from any
address (in ROM space) of any length that does not cross an 8–byte boundary within a
double-word returns all eight bytes of that double-word data from the ROM. For example,
the operations shown in Table 6-4 could have been caused by a CPU memory read to
FFF0 0100h, FFF0 0101h, or FFF0 0105h.

Errors occurring during remote ROM reads are handled as usual for the error type. No spe-
cial rules are in effect.

6.2.1.3 Burst Reads

The 660 supports burst reads in remote ROM mode. The 660 supports a pseudo burst
mode, which supplies the same eight bytes of data (from the ROM) to the CPU on each
beat of a 4-beat CPU burst.

A burst ROM read begins with the 660 executing a single-beat ROM read operation, which
assembles eight bytes of ROM data into a double-word on the CPU data bus. For a burst
ROM read, the 660 asserts TA# for four CPU_CLK cycles, with AACK# asserted on the
fourth cycle. The same data remains asserted on the CPU data bus for all four of the data
cycles.

For a single-beat read, the 660 asserts TA# and AACK# for one CPU_CLK cycle, and the
CPU completes the transfer.

6.2.1.4 Endian Mode Considerations

In little-endian mode, the address munging done by the CPU has no effect because
PCI_AD[2:0] are forced to 000 during the address phase by the 660 at the beginning of the
transaction. However, in little-endian mode the byte swapper is enabled, so the bytes of
ROM data returned to the CPU are swapped as shown in the last column of Table 6-4.
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6.2.1.5 4-Byte Reads

The 660 handles 4-byte ROM reads (and all ROM reads of less than 8 bytes) as if they were
8-byte reads. All 8 bytes are gathered by the 660, and all 8 bytes are driven onto the CPU
data bus.

6.2.2 Remote ROM Writes

While the 660 is configured for remote ROM operation, the 660 forwards all CPU to ROM
write transfers to the PCI bus as memory writes. The PCI agent that is controlling the re-
mote ROM acts as the PCI target during CPU to ROM write transfers, executes the write
cycle to the ROM, and may provide ROM write-protection.

6.2.2.1 Write Sequence

A CPU busmaster begins a remote ROM write transaction by initiating a one-byte, single-
beat memory write transfer to CPU bus address range 4G – 2M to 4G (FF80 0000h to FFFF
FFFFh).

The 660 decodes the CPU transfer, arbitrates for the PCI bus, and initiates a memory write
PCI transaction to the same address in the 4G – 2M to 4G address range.

The PCI agent that is controlling the remote ROM (such as the PCI to ISA Bridge), claims
the transaction, manages the write cycle to the ROM device, and signals TRDY#.

The 660 then completes the PCI transaction, and signals AACK# and TA# to the CPU. Note
that remote ROM writes are neither posted or pipelined.

6.2.2.2 Write Protection

Write protection can be provided by the PCI agent that controls the ROM. In addition, some
flash ROM devices can have the means to permanently lock out sectors by writing control
sequences. The 660 also has a write lockout in the Bridge Chipset Options 2 register (bit
0 of index BBh).

6.2.2.3 Address, Size, Alignment, and Endian Mode

In remote ROM mode, CPU memory writes from 4G – 2M to 4G cause the 660 to generate
PCI bus memory write transactions to 4G – 2M to 4G. The 660 does not allow CPU masters
to access the rest of the PCI memory space from 2G to 4G.

In remote ROM mode, PCI busmaster memory write transactions from 4G – 2M to 4G are
ignored by the 660. However, the PCI agent that controls the ROM responds to these trans-
actions. In contrast, in direct-attach ROM mode, the 660 forwards PCI busmaster memory
transactions from 2G to 4G (to populated memory locations) to system memory from 0 to
2G.

Remote ROM writes must be one-byte, single-beat transfers.

The endian mode of the system has no net effect on a ROM write because the transfer size
is one byte. The address is munged by the CPU and unmunged by the 660. The data comes
out of the CPU on the byte lane associated with the munged address, and then is swapped
by the 660 to the byte lane associated with the unmunged address. Thus a ROM write in
little-endian mode puts the data byte in the same ROM location as does the same ROM
write in big-endian mode.
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Figure 6-9.  Remote ROM Write
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6.3 Related Bridge Control Registers
The two BCRs most closely related to the ROM system are the ROM write BCR and the
ROM lockout register. Writes to the ROM are accomplished through the ROM write BCR.
Write-protection is provided by means of the ROM lockout BCR.

6.3.1 ROM Write Bridge Control Register

Direct Access FFFF FFF0h Write Only Reset NA

This 32-bit, write-only register is used to program the ROM in direct-attach ROM systems
(see section 6.1.2). This register must be written by means of a 4-byte transfer. Bits are
shown with little-endian labels.
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D24D25D26D27D28D29D30D31

D16D17D18D19D20D21D22D23

D8D9D10D11D12D13D14D15

D0D1D2D3D4D5D6D7

MSb LSb

Table 6-5

Table 6-5

Table 6-5

Table 6-5

Table 6-5.  ROM Write BCR Contents

BCR Byte Content in Little-Endian System Content in Big-Endian System

MSB ROM Data ROM Address low byte

ROM Address high byte ROM Address mid byte

ROM Address mid byte ROM Address high byte

LSB ROM Address low byte ROM Data

6.3.2 Direct-Attach ROM Lockout BCR
Direct Access FFFF FFF1h Write Only Reset NA

After it has been written once, this 8-bit, write-only register prevents direct-attach ROM
writes.

D0D1D2D3D4D5D6D7FFFF FFF1h

Any Value

Bits 7:0 Writing any value to the register prevents all future writes to a ROM that is connected directly
to the 660 through the PCI_AD lines.

6.3.3 Remote ROM Lockout Bit
The ROM write-protect bit for remote ROM is in the Bridge Chipset Options 2 register (index
BBh). While enabled, writes to the remote ROM are forwarded to the PCI memory space.
While disabled, writes to the remote ROM are treated as no-ops and an error is signalled.
After the first time that the bit is set to 0, it cannot be set back to 1.

Index BBh Read/Write Reset to 4Fh

D0D1D2D3D4D5D6D7BBh

Flash Write enable
0 = Disabled
1 = Enabled

Other Functions

Bit 0 Flash write enable: When the ROM is remotely attached, this bit controls write access to the flash
ROM address space (4G – 2M to 4G). When enabled, writes to this space are forwarded to the
PCI memory space at the same address. When disabled, writes to this space are treated as no-
ops and an error is signalled. After the bit is set to 0 (disabled), it cannot be reset to 1 (enabled).
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6.3.4 Other Related BCRs
Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes

Error Enable 1 Index C0 R/W 1

Error Enable 2 Index C4 R/W 1
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Section 7
Clocks

The 100 MHz PPC 603e MCM provides a separate clock signal for each CPU bus and PCI
bus agent in the system. The clock signals are generated by a Motorola� MPC970. The
MPC970 inputs are brought off of the MCM to allow maximum programming flexibility. See
the data sheet for more information on MPC970 programming, capabilities, and character-
istics. See Figure 7-1.

Figure 7-1.  MCM Clocks
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Control
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PCI Bus Clocks

MPC970

CPU Clock
Consumers

PCI Clock
Consumer

8

6 PCI Clock
Consumers

CPU
Bus
Clocks
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The example planar configures the MPC970 to produce 8 CPU bus clocks, all of which are
consumed by the MCM components. When required, additional CPU bus clocks can be
generated using a ’zero delay’ clock repeater such as the Motorola MPC930 PLL, using
one of the supplied CPU clocks as the seed clock.

The planar also configures the MPC970 to produce seven PCI bus clocks, two of which are
consumed by the MCM components. The other PCI clocks are available for use on the pla-
nar. The MPC 970 is configured to interface with a 16.5 MHz crystal. An oscillator internal
to the component then produces the root frequency used to create all clock outputs.
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7.1 CPU Clock Physical Design Rules
The MCM and the example planar were physically designed with careful attention to the
fact that, at PowerPC operating frequencies, the circuit board itself becomes a component
that materially affects circuit behavior. Clock nets are the most critical wiring on the board.
Their wiring requirements should be given priority over the requirements of other groups
of signals. The following design rules are helpful in designing low-noise and low-skew clock
nets:
1. Clock nets are to have a minimum number of vias.
2. No clock wires may be routed closer than one inch to the edge of the board. Consider

adding EMC caps to the far end of the clock trace.
3. Clock nets should not have more than two nodes. Daisy chains, stubs, and star fanouts

are not allowed.
4. Clock nets are to be routed as much as possible on internal signal planes.
5. Route a ground trace as a shield in the adjacent wiring channel on both sides of the clock

trace. It is a good practice to periodically (every inch or so) connect these shield traces
to the ground plane. Completely surround the clock trace with shield traces. Avoid im-
pedance bumps.

6. Series (source) termination resistors are required. Choose them according to the
MPC970 data sheet recommendations and place them as close as possible to the clock
source pin of the MCM.

7. To minimize clock skew on the planar, design the circuit board such that the combined
length (MCM plus planar) of each of the clocks is the same. In other words, determine
the required total length of the longest clock trace, and then make all of the other traces
the same total length (see Figure 7-2).

Inside the MCM, the PCI clock traces run about 1 inch, and the CPU clock traces run
about 3.5 inches. Thus the planar runs of the clocks should be adjusted accordingly.

Suppose in Figure 7-2, one of the PCI clocks planar runs is initially the longest, at 8.5
inches. Added to the about 1 inch of MCM run, the total length is about 9.5 inches. Cor-
rect design will then stretch all of the other PCI clock lines to 8.5 inches. The required
planar run length of the CPU lines is then 9.5 – 3.5 = 6 inches. See Table 7-1 and
Table 7-2.

Table 7-1.  Clock Net Lengths  

Net Length Type Name Net Topology

13.7500 CLK XTAL1 J1.U30 U4.12

11.7071 CLK XTAL2 J1.T29 U4.13

32.5000 CLK FRZ_CLK J1.B11 U4.3

18.6036 CLK FRZ_DATA J1.A22 U4.5

8.5866 CLK PCLK_60X J1.E18 U4.34

66.3536 CLK TAG_BCLK J1.N30 U4.36

29.9142 CLK CLK_EXT_FB J1.A17 U4.14

27.0000 CLK CLK_FB_SEL J1.A15 U4.9

27.5000 CLK CLK_PLL_EN J1.D33 U4.7

67.5000 CLK SRAM_BCLK0 J1.W30 U4.44
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Table 7-1.  Clock Net Lengths (Continued)

Net Length Net TopologyNameType

66.5000 CLK SRAM_BCLK1 J1.AE30 U4.46

9.1624 CLK SRAM_BCLK2 J1.AG04 U4.48

8.6624 CLK SRAM_BCLK3 J1.AA04 U4.50

22.6036 CLK CLK_COM_FRZ J1.A18 U4.6

29.6036 CLK CLK_REF_SEL J1.B13 U4.8

24.4571 CLK CLK_TTL_CLK J1.A26 U4.11

28.0000 CLK CLK_VCO_SEL J1.A13 U4.52

1.7500 CLK 663_CPU_CLK J1.G04 U4.38

63.6036 CLK 664_CPU_CLK J1.G30 U4.42

24.1036 CLK CLK_BCLK_DIV0 J1.C16 U4.31

22.2500 CLK CLK_BCLK_DIV1 J1.B17 U4.27

26.3536 CLK CLK_FRZ_
STROBE

J1.F33 U4.4

14.8536 CLK CLK_MPC601_
CLKS

J1.K27 U4.40

25.3536 CLK CLK_
MR/TRISTATE

J1.A16 U4.2

61.8536 CLK 664_PCI_CLK J1.J30 U4.18

20.6036 CLK CLK_PCI_DIV0 J1.B21 U4.20

20.0607 CLK CLK_PCI_DIV1 J1.C20 U4.26

38.1036 CLK USER_PCICLK1 J1.AE01 U4.16

29.5000 CLK USER_PCICLK2 J1.N01 U4.21

42.8536 CLK USER_PCICLK3 J1.C01 U4.23

31.1036 CLK USER_PCICLK4 J1.A11 U4.25

25.4571 CLK USER_PCICLK5 J1.A14 U4.29

29.7500 CLK USER_PCICLK6 J1.E33 U4.32

Table 7-2.  Clock Net Calculations

Net MCM Run Total Run Required Planar Run Tolerance (Inch)
CPU Clocks 3.5 (nom) x x – 3.5 1

664_PCI_CLK 1 (nom) x x – 1 1

PCI_CLK[4:1] 1 (nom) x x – 1 1

In our experience, a maximum clock trace length skew of two inches is acceptable. It is the
responsibility of the designer to determine the appropriate amount of allowed clock trace
length variation for the individual application.
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Figure 7-2.  MCM Clocks
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The allowed skew of the PCI_CLK at any point in the system to the CPU_CLK at the 660
Bridge is +/– 2ns, as shown in Figure 7-3.

Figure 7-3.  CPU_CLK to PCI_CLK Skew

max max

CPU_CLK
at 660

at 60X

2ns 2ns

PCI_CLK

If the design rules laid out in Section 7.1 are followed, the requirements are met.
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7.2 Clock Freezing
Some of the PCI clocks may not be required. In this case, the ability of the MPC970 to stop
(freeze) the unused clocks is useful to reduce run-time power consumption and EMI emis-
sions.
The MPC970 can freeze any set of output clocks in the low state, while allowing the other
clocks to continue running. The freeze command is given to the MPC970 via a two wire
synchronous serial interface that originates in the system EPLD. See the clock freeze regis-
ter description in the System EPLD section for more information on activating this feature.
Firmware can read the presence detect bits of the PCI slots to determine which devices
are present. For PCI slots which are not populated, firmware can disable the clocks for
those slots.
This function can also be used by power management functions to further reduce power
consumption of the motherboard by freezing the clocks of devices which have been placed
in a power managed mode.
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Section 8
Exceptions
This section contains information on interrupts, errors, resets, and test modes. Some of the
functionality of each area is implemented on the MCM, and some of that functionality is lo-
cated on the planar. To simplify the material, both the MCM and the planar parts of each
system are presented in this section.

8.1 Interrupts
8.1.1 Planar Interrupt Handler
Example planar interrupts are handled primarily by the interrupt controller in the ISA bridge,
the 660, the CPU, and the firmware.
There are two 8259 type interrupt controllers located in the ISA bridge. These controllers
receive and prioritize example planar interrupts, which can be asserted by motherboard
logic, PCI devices, or ISA devices. The interrupt controller then asserts an interrupt to the
660.
The interrupt controller is programmed to handle both ISA and PCI interrupts using the cor-
rect protocols, under software control. Much of the operation of the interrupt controller is
programmable. See the SIO data book for more information.

8.1.2 MCM (660) INT_REQ and INT_CPU#
The 660 features two interrupt inputs, INT_REQ and NMI_REQ.
As shown in Figure 8-1, the 660 inverts INT_REQ and passes it thru to the CPU as
INT_CPU#. While the 660 is in 601 error reporting mode, it also uses INT_CPU# to report
certain error conditions, but this function is not used by the MCM.
The only reason that the 660 connects to INT_CPU# is to be able to use it in reporting errors
to the 601 CPU. When the bridge is not in 601 error reporting mode, the path though the
660 from INT_REQ to INT_CPU# is functionally an inverting latch. The CPU does not need
the interrupt to be synchronized to the CPU clock, and typical interrupt controllers feature
programmable output polarity, so if the target system is not using a 601, then the interrupt
can be wired around the 660, without being connected to the 660. In this case, tie the
INT_REQ input inactive. This could have been done on the example planar; the current
connectivity illustrates the use of the 660 pins.
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Figure 8-1.  Conceptual Block Diagram of INT Logic
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8.1.3 Interrupt Acknowledge Transactions
To perform an interrupt acknowledge operation, the CPU initiates a single-byte read to ad-
dress BFFF FFF0. This causes the 660 to arbitrate for the PCI bus and then to initiate a
single-byte PCI Interrupt Acknowledge transaction with PCI_C/BE[0]# active.
PCI_C/BE[0]# is active regardless of the endian mode of the 660. The PCI Interrupt
Acknowledge transaction that the 660 generates is similar to those generated by x86 to PCI
bridges. The interrupt controller (eg SIO) then claims the transaction and supplies the
single-byte interrupt vector on PCI byte lane 0. The 660 then returns the vector to the CPU
on the correct byte lane.
There is no physical interrupt vector BCR in the bridge. Other PCI busmasters can initiate
interrupt acknowledge transactions.

8.1.4 NMI_REQ
The 660 considers the NMI_REQ input to be an error indicator. Note that in Figure 8-1,
there is no logical connection between NMI_REQ and INT_CPU, except through the error
handling logic. See section 8.2.7.1 for more information on NMI_REQ.

8.1.5 Interrupt Handling

Figure 8-2.  Interrupt Handling
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As shown in Figure 8-2, the 100 MHz PPC 603e MCM interrupts are routed to the interrupt
controller located inside the ISA bridge. When a device signals an interrupt (which is not
masked in the interrupt controller), then for error sources, the interrupt controller is pro-
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grammed to assert NMI_REQ. If the input to the interrupt controller signals an interrupt,
then:

1. The ISA bridge asserts INT_REQ to the 660.

2. The 660 asserts INT_CPU# to the CPU.

3. The CPU recognizes the interrupt signal (INT#) immediately (or as soon as the
MSR(EE) interrupt enable bit in the CPU is set to 1), saves its state, and then takes a
precise external interrupt exception, branching to either 500h or FFF0 0500h, depend-
ing upon the Exception Prefix (EP) bit in the MSR. The MSR(EE) bit is automatically
set to 0 at this time.

4. The code at the vector location requests a single-byte read of memory address BFFF
FFF0h.

5. In response to the read, the 660 arbitrates for the PCI bus and then generates an inter-
rupt acknowledge transaction on the PCI bus.

6. The ISA bridge decodes and claims the PCI interrupt acknowledge transaction, and
returns the 8-bit vector which has been preprogrammed for the active interrupt, and
then negates the interrupt output.

7. The 660 accepts the interrupt vector on the PCI bus, returns it to the CPU, and signals
TA# to terminate the CPU transfer normally.

Since the CPU does not require that the interrupt signal (INT_CPU#) be deactivated be-
tween interrupts, another interrupt is allowed to occur as soon as software sets the
MSR(EE) bit back to 1. For this reason, software should enable interrupts as soon as pos-
sible after receiving the vector. Note that the load instruction that fetches the interrupt vector
is subject to out-of-order execution; eieio as required. After servicing the interrupt, execute
a return from interrupt (RFI) instruction to return to the program that was interrupted. For
more information on interrupts, see the Exceptions section of the 603 User’s Manual.
Note that other PCI busmasters can initiate interrupt acknowledge transactions, but this
may have unpredictable effects.

8.1.6 Planar Interrupt Assignments
In general, program ISA interrupts as edge sensitive. Program PCI interrupts as level sensi-
tive. Interrupts are assigned to priority levels per ISA conventions. Table 8-1 shows the in-
terrupt assignments of the planar. IRQ[0:7] connect to the master controller, and IRQ[8:15]
connect to the cascaded controller. Figure 8-3 shows the connection of the PCI interrupts.
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Table 8-1.  Mapping of PCI Memory Space, Part 1
SIO IRQ # Connects to Priority Assignment or (Comment)

0 no pin 1 Timer 1 Counter 0 (Internal to SIO).

1 Sys I/O EPLD 2 Keyboard

2 no pin (3-10) Cascade from controller 2

3 ISA IRQ3 11 (COM 2 or COM 4)

4 ISA IRQ4 12 (COM 1 or COM 3)

5 ISA IRQ5 13 (Parallel LPT 1 or 2)

6 ISA IRQ6 14 (Floppy)

7 ISA IRQ7 15 (Parallel LPT 2 or 3)

8# RTC 3 TOD (aka Real Time Clock)

9 ISA IRQ9 4

10 ISA IRQ10 5 (Audio)

11 ISA IRQ11 6

12/M ISA IRQ12 7 (Mouse)

13/FERR — 8 Pulled up.

14 ISA IRQ14 9 (IDE)

15 ISA IRQ15 10

PIRQ2# PCI_INTC# See Figure 8-3.

PIRQ1# PCI_INTB# See Figure 8-3.

PIRQ0# PCI_INTA# See Figure 8-3.

Figure 8-3.  PCI Interrupt Connections
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8.1.7 Scatter-Gather Interrupts
Where possible, set up the scatter-gather function to use the ISA bridge end of process
(EOP output) indicator for the termination of ISA bus DMA in which scatter-gather is
employed. The planar is initially configured to use this scheme. The EOP signal from the
ISA bridge is used as the terminal count (ISA_TC) signal on the ISA bus.
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8.2 Errors
Errors are handled primarily by the 660, the CPU, and the firmware. The errors are reported
to the CPU or the PCI and status information is saved in the 660 register set so that error
type determination can be done by the CPU.  There are two methods which the MCM (660)
uses to report errors to the CPU, the TEA# method, and the MCP# method. Errors related
to a PCI bus transaction are reported to the PCI by means of the PCI_PERR# or the
PCI_SERR# signals.
Errors that are detected while the CPU is running a cycle that can be terminated immediate-
ly are reported using TEA#. Errors reported in this way are a direct result of the CPU transfer
that is currently in progress. For example, when the 660 detects a transfer size error, it ter-
minates the CPU transfer with TEA# instead of with TA#.
Errors that are detected while a CPU transfer is not in progress, and errors that occur be-
cause of a CPU transfer but which are detected too late to be reported using TEA#, and
errors that are not a direct result of the current CPU transfer, are reported using MCP#. For
example, memory parity errors occurring while a PCI busmaster is accessing memory are
reported using MCP#.
There are three separate data error checking systems in the 660; CPU bus, memory, and
PCI bus. The 660 does not generate or check CPU address bus parity.
Each error that can be detected has an associated mask. If the error is masked, then the
detection of that error condition is disabled. There are also assertion masks for the MCP#,
TEA#, and PCI_SERR# signals that prevent reporting of any error by means of that signal
(these masks do not affect the detection of the error).
Once an error is detected and the appropriate status, address, and control information is
saved, the detection of all subsequent error detection is disabled until the current error is
reset. For more information on error handing, see the 660 User’s Manual.

8.2.1 CPU Bus Related Errors

8.2.1.1 CPU Bus Error Types
� Errors Reported With TEA# (cycle still active)

� CPU bus unsupported transfer type
� CPU bus unsupported transfer size
� CPU bus XATS# asserted

� Errors Reported With MCP# (cycle has ended)
� CPU data bus parity error
� CPU bus write to locked flash
� CPU bus memory select error
� Memory parity error during CPU to memory transfer
� Memory single-bit ECC error trigger exceeded during CPU to memory transfer
� Memory multi-bit ECC error during CPU to memory transfer
� L2 cache parity error
� PCI bus data parity error (660 is PCI busmaster) during CPU to PCI transaction
� PCI target abort received (660 is PCI busmaster) during CPU to PCI transaction
� PCI master abort generated (660 is PCI busmaster) during CPU to PCI transaction.
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8.2.1.2 CPU Bus Error Handling Protocol
If the error is masked, do not detect the error.
If the error is detected, perform the following steps:
1. Set status bit indicating error type.
2. Set status bit indicating error during CPU cycle.
3. Save CPU address and control bus values.
4. Report error to the CPU. (Reported by means of TEA# if the CPU cycle is still active or

by means of MCP# if the CPU cycle has ended.)
PCI bus data parity errors also cause PCI_PERR# to be asserted.
There is a status bit (PCI Status Register bit 15) that is set whenever any type of PCI bus
parity error is detected. The setting of this status bit is not maskable.

8.2.2 PCI Bus Related Errors

8.2.2.1 PCI Bus Error Types
During a PCI to memory transaction (in which the 660 is the PCI target):
� PCI bus address parity error
� PCI bus data parity error
� PCI memory select error
� Memory parity error
� Memory single–bit ECC error trigger exceeded
� Memory multi-bit ECC error

8.2.2.2 PCI Bus Error Handling Protocol
If the error is masked, the 660 does not detect the error. If the error is detected, perform
the following steps.
1. Set status bit indicating error type.
2. Set status bit indicating error during PCI cycle.
3. Save PCI address and control bus values.
4. Report error to the PCI. If the error is a PCI bus data parity error then report by means

of PCI_PERR#. If the error is not a data parity error then report by means of PCI_SERR#.
5. If the PCI cycle is still active (not the last data phase), then target abort the cycle.
The 660 can be enabled to report PCI bus data parity errors with PCI_SERR#. This method
should only used if it is determined that PCI_PERR# is not supported by some (or all) of
the PCI masters in the system.

8.2.2.3 PCI Bus Data Parity Errors
While the 660 is the PCI busmaster (during CPU to PCI transactions):
� During reads, the 660 monitors the PCI_AD (and C/BE# and PCI_PAR) lines to de-

tect data parity errors during the data phases. If an error is detected, the 660 asserts
PCI_PERR#. Unless masked, the 660 will report the error to the CPU bus using
MCP#. This error does not cause the 660 to alter the PCI transaction in any way.

� During writes, the 660 monitors PCI_PERR# to detect data parity errors that are de-
tected by the target. Unless masked, the 660 will report the error to the CPU bus
using MCP#. This error does not cause the 660 to alter the PCI transaction in any
way.
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While the 660 is the PCI target (during PCI to memory transactions):
� During reads, the 660 does not monitor PCI_PERR#, and so will not detect a data

parity error.
� During writes, the 660 monitors the PCI_AD (and C/BE# and PCI_PAR) lines to de-

tect data parity errors during the data phases. If an error is detected, the 660 asserts
PCI_PERR#. The 660 will not report the error to the CPU bus. This error does not
cause the 660 to alter the PCI transaction in any way.

8.2.3 CPU Bus Transaction Errors

8.2.3.1 CPU Bus Transfer Type or Size Error
This error is generated when the CPU generates a bus operation that is not supported by
the 660 (see Table 8-2). An error is not generated if the cycle is claimed by another CPU
device (CPU_BUS_CLAIM# asserted).

Table 8-2.  Invalid CPU Bus Operations
TT[0:4] Operation

1000x Reserved

1011x Reserved

Only the following transfer sizes are supported. Other transfer sizes are not supported.
� 1-byte to 8-byte single-beat reads or writes to memory within an 8-byte boundary
� Burst reads or writes to memory (32 bytes, aligned to double-word)
� 1-byte to 4-byte single-beat reads or writes to the PCI bus that do not cross a 4-byte

boundary
� 8-byte single-beat writes to the PCI bus within an 8-byte boundary
� All accesses not to memory or PCI with sizes of 1 to 4 bytes within a 4-byte boundary
� ROM reads support the same sizes as memory.

Transfer type and size errors can be controlled by the indexed register set. The mask is at
register C0h bit 0. If an error is detected, status bits at register C1h bits 1:0 are set to 10.
Register C7h bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved
in register C8h. The CPU control is saved in register C3h and the CPU number is saved
in register C7h bit 5. Transfer type and size errors are reset by writing a 1 to register C1h
bit 0 or register C1h bit 1. The indexed register set uses the same mask and error reset bits
for XATS# that it uses for unsupported transfer types.
Transfer type and size errors can also be controlled by the 650-compatible register set. The
mask cannot be controlled by means of this register set. If an error is detected, the status
bit at 8000 0844h bit 0 is cleared. The address is saved at BFFF EFF0h. This error can be
reset by reading BFFF EFF0h. Note that the 650-compatible register set does not differenti-
ate between XATS# errors and unsupported transfer type errors.

8.2.3.2 CPU Bus XATS# Asserted Error
This error is generated when the CPU asserts the XATS# signal.
The XATS# error can be controlled by the indexed register set. The mask is at register C0h
bit 0. If an error is detected, the status bits at register C1h bits 1:0 are set to 01. Register
C7h bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in regis-
ter C8h. The CPU control is saved in register C3h and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register C1h bit 0 or register C1h bit 1.



Preliminary
Section 8 — Exceptions

8–8 G5220297-00

The indexed register set uses the same mask and error reset bits for XATS# and for unsup-
ported transfer types.
This error can also be controlled by the 650-compatible register set. The mask cannot be
controlled by means of this register set. If an error is detected, the status bit at 8000 0844h
bit 0 is cleared. The address is saved at BFFF EFF0h. This error can be reset by reading
BFFF EFF0h. The 650-compatible register set does not differentiate between XATS# er-
rors and unsupported transfer type errors.

8.2.3.3 CPU to Memory Writes
During CPU to memory writes, the CPU drives data parity information onto the CPU data
bus. Correct parity is then generated in the 660 and written to DRAM memory along with
the data. The L2 SRAM is updated (when required) with the data and the parity information
that the CPU drove onto the CPU data bus.
During CPU to memory writes, the 660 checks the data parity sourced by the CPU, and
normally reports any detected parity errors via TEA#.

8.2.3.4 CPU to Memory Reads
The MCM is initially configured to check memory data using parity. However, the 660 can
be programmed to execute an error checking and correction (ECC) algorithm on the
memory data, by generating ECC check bits during memory writes, and checking-correct-
ing the data during memory reads. ECC can be implemented using normal parity DRAM.
Note that for each memory read operation, eight bytes of memory are read, and parity on
eight bytes is checked regardless of the transfer size. Therefore, all of memory must be
initialized (at least up to the end of any cache line that can be accessed). For the same rea-
sons, memory must be initialized while ECC memory data error checking is in use.
When the CPU reads from memory, the data and accompanying parity information can
come from either the L2 SRAM or from DRAM memory. If the data is sourced from the L2,
the parity information also comes from the L2.
If the data is sourced by memory, the parity information also comes from memory. The L2
SRAM is updated (when required) using the data and parity from memory.
During CPU to memory reads, the 660 samples the DPE# output of the CPU to determine
parity errors, and reports them back to the CPU via MCP#. The particular memory read data
beat will be terminated normally with TA#.

8.2.3.5 CPU Data Bus Parity Error
This error is generated when a parity error on the CPU data bus is detected during a transfer
between the CPU and the 660. The full CPU data bus is always checked for parity regard-
less of which bytes lanes actually carry valid data. The parity is odd, which means that an
odd number of bits, including the parity bit, are driven high. The 660 directly checks the par-
ity during CPU write cycles. The 660 detects CPU bus parity errors by sampling the DPE#
signal from the CPU during CPU read cycles.
This error is also generated when an L2 cache data parity error (see section 8.2.3.6) is de-
tected.
CPU_DPAR[0] indicates the parity for CPU_DATA[0:7]. CPU_DPAR[1] indicates the parity
for CPU_DATA[8:15] and so on.
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This error can be controlled by the indexed register set. The mask is at register C4h bit 2.
If an error is detected, the status bit at register C5h bit 2 is set. Register C7h bit 4 is cleared
to indicate an error on a CPU cycle. The CPU address is saved in register C8h, the CPU
control is saved in register C3h, and the CPU number is saved in register C7h bit 5. This
error can be reset by writing a 1 to register C5h bit 2.
This error cannot be controlled by means of the 650-compatible register set.

8.2.3.6 L2 Cache Parity Error
This error is generated when a parity error is detected during a CPU read from the L2 cache.
The parity is checked by the CPU which drives DPE# to the 660. When this error is de-
tected, the 660 indicates both this error and a CPU bus data parity error.
This error can be controlled by the indexed register set. The mask is at register C4h bit 3.
If an error is detected, the status bit at register C5h bit 3 is set. Register C7h bit 4 is cleared
to indicate error on a CPU cycle. The CPU address is saved in register C8h. The CPU con-
trol is saved in register C3h and the CPU number is saved in register C7h bit 5. This error
can be reset by writing a 1 to register C5h bit 3.
This error can also be controlled by means of a register in the 650-compatible register set.
The mask cannot be controlled by means of this register set. If an error is detected, the sta-
tus bits at 8000 0842h bit 0 and 8000 0843h bit 0 is cleared. The address is not saved in
a 650-compatible register (register BFFF EFF0h is undefined). This error can be reset by
reading 8000 0843h.

8.2.3.7 CPU Bus Write to Locked Flash
This error is generated when the CPU attempts to write to flash memory when write to flash
ROM has been disabled (locked out). If the flash ROM is directly attached to the 660 (see
configuration strapping), CPU writes to FFFF FFF0h are detected as an error if writing has
been locked out by means of 660 compatible register FFFF FFF1h (see note in Sections
6.1.2 and 6.1.2.2). If the flash is remotely attached then CPU writes to the 4G – 2M to 4G
address space are detected as an error if writing has been locked out by means of register
BBh bit 0.
This error can be controlled by the indexed register set. The mask is at register C4h bit 0.
If an error is detected, the status bit at register C5h bit 0 is set. Register C7h bit 4 is cleared
to indicate error on a CPU cycle. The CPU address is saved in register C8h. The CPU con-
trol is saved in register C3h and the CPU number is saved in register C7h bit 5. This error
can be reset by writing a 1 to register C5h bit 0.
This error cannot be controlled by means of the 650-compatible register set.

8.2.4 CPU to PCI Bus Transaction Errors

8.2.4.1 PCI Bus Data Parity Error While PCI Master
This error is generated when a PCI bus data parity error is detected during a CPU to PCI
transaction. The 660 checks parity during read cycles and samples PCI_PERR# during
write cycles. The bridge asserts PCI_PERR# if a parity error is detected on a read cycle.
The PCI bus uses even parity, which means that an even number of bits including the parity
bit are driven high.
This error can be controlled by the indexed register set. The mask is at register 04h bit 6.
If an error is detected, the status bit at register 06h bit 8 is set. Register C7h bit 4 is cleared
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to indicate an error on a CPU cycle. The CPU address is saved in register C8h. The CPU
control is saved in register C3h and the CPU number is saved in register C7h bit 5. This
error can be reset by writing a 1 to register 06h bit 8.
When this error is detected, the status bit at register 06h bit 15h is set, regardless of the
state of the mask at register 04h bit 6. The status bit at register 06h bit 15 is set by all types
of PCI bus parity errors. This bit is cleared by writing a 1 to register 06h bit 15.
This error cannot be controlled by means of the 650-compatible register set.
Unless masked, the 660 will report this error to the CPU as a PCI bus data parity error while
PCI master, using MCP#.

8.2.4.2 PCI Target Abort Received While PCI Master
This error is generated when a target abort is received on the PCI bus during a cycle which
is mastered by the 660 for CPU access to the PCI bus. The CPU cycle is terminated with
a TEA#, the Error Address register is held, and the Illegal Transfer Error register is set.
This error can be controlled by the indexed register set. The mask is at register C0h bit 7.
If an error is detected, the status bit at register 06h bit 12 is set. Register C7h bit 4 is cleared
to indicate an error on a CPU cycle. The CPU address is saved in register C8h. The CPU
control is saved in register C3h and the CPU number is save in register C7h bit 5. This error
can be reset by writing a 1 to register 06h bit 12.
This error cannot be controlled by means of the 650-compatible register set.

8.2.4.3 PCI Master Abort Detected While PCI Master
This error is generated when a master abort is detected on the PCI bus during a cycle which
is mastered by the 660 for CPU access to the PCI bus. Master aborts occur when no target
claims a PCI memory or I/O cycle—PCI_DEVSEL# is never asserted.
The 660 master aborts if no agent responds with DEVSEL# within eight clocks after the
start of a CPU to PCI cycle. The cycle is ended with a TEA# response to the CPU, all 1’s
data is returned on reads, the Illegal Transfer Error register is set, and the Error Address
register is held.
Note that some operating systems intentionally access unused addresses to determine
what devices are located on the PCI bus. These operating systems do not expect an error
to be generated by these accesses. When using such an operating system it is necessary
to leave this error masked.
This error can be controlled by the indexed register set. The mask is at register C4h bit 4.
If an error is detected, the status bit at register 06h bit 13 is set. Register C7h bit 4 is cleared
to indicate an error on a CPU cycle. The CPU address is saved in register C8h. The CPU
control is saved in register C3h and the CPU number is saved in register C7h bit 5. This
error can be reset by writing a 1 to register 06h bit 13.
This error cannot be controlled by means of the 650-compatible register set.

The 660 also checks for bus hung conditions. If a CPU to PCI cycle does not terminate with-
in approximately 60 usec. after the PCI is owned by the CPU, the cycle is terminated with
TEA#. This is true for all CPU to PCI transaction types except configuration transactions.
This feature may be disabled via a 660 control register.
In the case of configuration cycles that do not receive a DEVSEL# (no device present at
that address), the PCI cycle is master aborted, and TA# (normal response) is returned.
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Write data is thrown away and all 1’s are returned on read cycles. No error register is set
and no address is captured in the error address register.

8.2.5 PCI to Memory Transaction Errors

8.2.5.1 PCI to Memory Writes

During PCI to memory writes, the 660 generates the data parity that is written into DRAM
memory. The bridge also checks the parity of the data, and asserts PCI_PERR# if it detects
a data parity error.

8.2.5.2 PCI to Memory Reads

During PCI to memory reads, the 660 checks the parity of the memory data, and then gen-
erates the data parity that is driven onto the PCI bus. If there is a parity error in the data/par-
ity returned to the 660 from the DRAM, the bridge drives PCI_PAR incorrectly to propagate
the parity error (and also reports the error to the CPU via MCP#). The data beat with the
bad parity is not target aborted because doing so would slow all data beats for one PCI clock
(TRDY# is generated before the data is known good). However, if the agent is bursting and
there is another transfer in the burst, the next cycle is stopped with target abort protocol.

During PCI to memory reads, the 660 also samples the PCI_PERR# signal, which other
agents can be programmed to activate when they detect a PCI parity error.

8.2.5.3 Out of Bounds PCI Memory Accesses

If a PCI busmaster runs a cycle to a system memory address above the top of physical
memory, no one will respond, and the initiator master aborts the cycle. The initiating bus-
master must be programmed to notify the system of master aborts as needed. The system
logic does not notify the CPU.

8.2.5.4 PCI Address Bus Parity Error While PCI Target

This error is generated when a parity error is detected during the address phase of a PCI
access where the 660 is the PCI target of a PCI access to system memory.

This error can be controlled by the indexed register set. The mask is at register 04h bit 6.
This error does not have an explicit status bit to indicate its occurrence. However, the  fol-
lowing status bits are set:

� Register 06h bit 14 is set to indicate that PCI_SERR# has been asserted. This bit
is cleared by writing a 1 to register 06h bit 14. (BCR04 b8 must be 1 to enable SERR#
assertion due to PCI bus address parity errors.)

� Register 06h bit 11 is set to indicate signalled target abort if the cycle was target
aborted. This bit is cleared by writing a 1 to register 06h bit 11.

� Register 06h bit 15 is set to indicate a PCI bus parity error regardless of the state
of the mask at register 04h bit 6. Note that  this bit is set by all types of PCI bus parity
errors. This bit is cleared by writing a 1 to register 06h bit 15.

Register C7h bit 4 is set to indicate an error on a PCI cycle. The PCI address is saved in
register C8h. The PCI control is saved in register C7h.

This error cannot be controlled by means of the 650-compatible register set.
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8.2.5.5 PCI Bus Data Parity Error While PCI Target
This error is generated when a PCI bus data parity error is detected during a PCI to memory
write transaction. The PCI bus uses even parity, which means that an even number of bits
including the parity bit are driven high.
This error can be controlled by means of the registers in the indexed register set. The mask
is at register 04h bit 6. This error does not have an explicit status bit to indicate its occur-
rence. However, the  following status bits are set:
� Register 06h bit 11 is set to indicate signalled target abort if the cycle was target

aborted. This bit is cleared by writing a 1 to register 06h bit 11.
� Register 06h bit 15 is set to indicate a PCI bus parity error regardless of the state

of the mask at register 04h bit 6. Note that  this bit is set by all types of PCI bus parity
errors. This bit is cleared by writing a 1 to register 06h bit 15.

� Register 06h bit 14, which indicates PCI_SERR#, is set if the mask at register C0h
bit 6 is disabled (cleared). Note that the mask at register C0h bit 6 allows the 660
to signal PCI_SERR# in addition to PCI_PERR# for this error. This bit is cleared by
writing a 1 to register 06h bit 14.

Register C7h bit 4 is set to indicate an error on a PCI cycle. The PCI address is saved in
register C8h. The PCI control is saved in register C7h.
This error cannot be controlled by means of the 650-compatible register set.
During PCI to memory reads, the 660 does not monitor PCI_PERR# to detect data parity
errors. Therefore this error is never generated during PCI to memory reads.
This error is not reported to the CPU.

8.2.5.6 Errant Masters
Both PCI and ISA masters can access certain planar and ISA bridge registers. For exam-
ple, various control registers such as the I/O Map Type register, the BE/LE mode bit, the
Memory Control registers, etc. are accessible. Faulty code in the PCI or ISA masters can
defeat password security, read the NVRAM, and cause the system to crash without recov-
ery. Take care when writing device drivers to prevent these events.

8.2.6 Memory Transaction Errors

8.2.6.1 Memory Select Error
This error is generated if a device addresses the system memory space (CPU addresses
from 0 to 2G and PCI addresses from 2G to 4G) when memory is not present at that ad-
dress. The 660 only claims PCI accesses by asserting PCI_DEVSEL# when the access
is to an address where memory is present.
The 660 disconnects PCI burst cycles at 1M boundaries. This ensures that a PCI master
cannot begin a transfer at an address where memory is present and then burst (increment-
ing the address) to an address where memory is not present; therefore, the memory select
error is never generated on PCI accesses to system memory.
The memory select error can be controlled by the indexed register set. The mask is at regis-
ter C0h bit 5. If an error is detected, the status bit at register C1h bit 5 is set. Register C7h
bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in register
C8h. The CPU control is saved in register C3h and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register C1h bit 5.



Section 8 — ExceptionsPreliminary

8–13G5220297-00

This error cannot be controlled by means of the 650-compatible register set.

8.2.6.2 System Memory Parity Error
When memory is being operated in parity mode, this error is generated if a parity error is
detected during a read from system memory. Memory parity is odd, which means that an
odd number of bits including the parity bit are driven high.
MEM_CHECK[0] indicates the parity for MEM_DATA[7:0]. MEM_CHECK[1] indicates the
parity for MEM_DATA[15:8] and so on.
The system memory parity error can be controlled by the indexed register set. The mask
is at register C0h bit 2. If an error is detected, the status bit at register C1h bit 2 is set.
If the parity error occurred while the CPU was accessing memory, then register C7h bit 4
is cleared to indicate the error occurred during a CPU cycle. The CPU address is saved
in register C8h. The CPU control is saved in register C3h and the CPU number is saved
in register C7h bit 5.
If the parity error occurred while the PCI was accessing memory, then register C7h bit 4
is set to indicate the error occurred during a PCI cycle. The PCI address is saved in register
C8h. The PCI control is saved in register C7h.
This error can be reset by writing a 1 to register C1h bit 2. Note that register locations listed
above are used to indicate single-bit ECC errors if the memory is being operated in ECC
mode.
This error can also be controlled by means of the register in the 650-compatible register
set. The mask cannot be controlled by means of this register set. If an error is detected,
the status bit at 8000 0840h bit 0 is cleared. The address is saved at BFFF EFF0h. This
error can be reset by reading BFFF EFF0h.

8.2.6.3 System Memory Single-Bit ECC Error
When memory is being operated in ECC mode, single-bit errors are detected and cor-
rected. Since single-bit errors are corrected, generally no error reporting is necessary. But
when a single-bit error is detected, the single–bit error counter register (register B8h) is in-
cremented and the system memory address is saved in the single-bit ECC error address
register (register CCh). If the count in the single-bit error counter register exceeds the value
in the single-bit error trigger level register (B9h), the 660 generates a single–bit ECC trigger
exceeded error.
The trigger exceeded error can be controlled by the indexed register set. The mask is at
register C0h bit 2. If an error is detected, the status bit at register C1h bit 2 is set.
If the error occurs while the CPU is accessing memory, register C7h bit 4 is cleared  to indi-
cate the error occurred during a CPU cycle. The CPU address is saved in register C8h. The
CPU control is saved in register C3h and the CPU number is save in register C7h bit 5.
If the error occurs while the PCI is accessing memory, register C7h bit 4 is set  to indicate
the error occurred during a PCI cycle. The PCI address is saved in register C8h. The PCI
control is saved in register C7h.
This error can be reset by writing a 1 to register C1h bit 2. Note that register locations listed
above are used to indicate memory parity errors if the memory is being operated in parity
mode.
This error cannot be controlled by means of the 650-compatible register set.
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8.2.6.4 System Memory Multi-Bit ECC Error
When memory is being operated in ECC mode, this error is generated if a multi-bit ECC
error (uncorrectable) is detected during a read from system memory.
The multi-bit ECC error can be controlled by the indexed register set. The mask is at regis-
ter C0h bit 3. If an error is detected, the status bit at register C1h bit 3 is set.
If the error occurs while the CPU is accessing memory, then register C7h bit 4 is cleared
to indicate the error occurred during a CPU cycle. The CPU bus address is saved in register
C8h. The CPU control is saved in register C3h, and the CPU number is saved in bit 7 of
register C7h.
If the error occurs while the PCI is accessing memory, then register C7h bit 4 is set to indi-
cate the error occurred during a PCI cycle. The PCI address is saved in register C8h. The
PCI control is saved in register C7h.
This error can be reset by writing a 1 to register C1h bit 3.
This error cannot be controlled by means of the 650-compatible register set.

8.2.7 SERR, I/O Channel Check, and NMI Errors
The PCI bus defines a signal called SERR# which any agent can pulse. This signal is to
report error events within the devices, not bus parity errors. The signal is wired to the ISA
bus bridge on the planar. The ISA bus signal IOCHCK is also wired to the ISA bridge. If ei-
ther of these lines activate, the ISA bridge asserts NMI to the 660 unless the condition is
masked by a register within the ISA bridge. The NMI signal causes the 660 to generate an
interrupt to the CPU, and to assert MCP# to the CPU. The ISA bridge contains status regis-
ters to identify the NMI source. Software may interrogate the ISA bridge and other devices
to determine the source of the error.

8.2.7.1 NMI_REQ Asserted Error
This error is generated when the NMI input is sampled asserted by the 660. External logic
can assert this signal for any type of catastrophic error it detects. The external logic should
also assert this signal if it detects PCI_SERR# asserted. The 660 does not treat NMI_REQ
as an interrupt, but as an error indicator.
NMI is handled somewhat differently from the bus related error sources.
� There are no 660 BCRs associated with NMI_REQ. The external logic that asserted

NMI to the 660 provides mask and status information.
� The NMI_REQ input contains no edge detection logic. The 660 has no memory of

any previous state of NMI_REQ.
� In general, the assertion of NMI_REQ has no effect on any other processes in the

660.
� MCP# is generally asserted continuously while NMI_REQ is sampled valid, howev-

er:
� If an error was detected before the NMI_REQ was detected, then the error handling

logic will not sample the NMI_REQ input (and thus will not detect it) until the previous
error is cleared using the appropriate BCRs.
� If the NMI_REQ is deasserted before the previous error is cleared, the

NMI_REQ will be lost.
� If NMI_REQ is still asserted when the previous error is cleared, then the

NMI_REQ will be sampled asserted, and MCP# will begin to be asserted.
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� The 660 will not assert MCP# while NMI_REQ is active unless MCP# assertion is en-
abled in BCR(BA) bit 0. As before, if NMI_REQ is active when MCP# assertion is en-
abled, then MCP# will be asserted.

� Unlike with the bus related error sources, when the 660 samples NMI_REQ valid, it
does not disable further error detection. Thus PCI and CPU bus related errors will still
be detected and handled in the normal fashion. However, if the detected bus related
error causes MCP# to be asserted (for 2 CPU clocks) then at the end of the second
CPU clock, MCP# will be and remain deasserted until the current error is cleared us-
ing the appropriate BCRs, even if NMI_REQ is still asserted.

8.2.8 Error Reporting Protocol
In general, when the 660 recognizes an error condition, it sets various status BCRs, saves
address and control information (for bus related errors), disables further error recognition
(until the current error is cleared), and reports the error to either the CPU or PCI bus.
Unless otherwise noted, the 660 takes no further error handling action, but relies on the
CPU/software or PCI agent to take the next step in the error handling procedure. The 660
continues to react appropriately to CPU and PCI bus traffic, the state of the memory control-
ler is unchanged, current and pipelined CPU and PCI transactions are unaffected, and the
behavior and state of the 660 is unaffected.
For example, if a memory parity error is reported to the CPU using MCP#, and the CPU
does not respond to the MCP#, then the 660 will in all ways continue to behave as if the
MCP# had not been asserted. However, various BCRs will contain the error status and ad-
dress information, and further error recognition will be disabled until the CPU resets the
error in the 660 BCRs.

8.2.8.1 Error Reporting With MCP#
The following errors are reported to the CPU using MCP#:
� NMI errors,
� Errors that occur because of a CPU transfer but which are detected too late to be

reported using TEA#, and
� Errors that are not a direct result of the current CPU transfer.

The 660 reports an error with MCP# by asserting MCP# to the CPU bus for 2 CPU clocks.
The 660 does not itself take any other action. All current and pipelined CPU and PCI bus
transactions are unaffected. The state of the memory controller is unaffected. The asser-
tion of MCP# does not cause any change in the behavior or state of the 660.

8.2.8.2 Error Reporting With TEA#
CPU bus related errors that are detected while the CPU is running a cycle that can be termi-
nated immediately are reported using TEA#. Errors reported in this way are a direct result
of the CPU transfer that is currently in progress. For example, when the 660 detects a trans-
fer size error, it terminates the CPU transfer with TEA# instead of with TA#.
The 660 reports an error with TEA# by asserting TEA# to the CPU in accordance with the
PowerPC bus protocol. The data beat on which TEA# is asserted becomes the final data
beat. The 660 does not itself take any other action. All other current and pipelined CPU and
PCI bus transactions are unaffected. The state of the memory controller is unaffected. The
assertion of TEA# does not cause any other change in the behavior or state of the 660.
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8.2.8.3 Error Reporting With PCI_SERR#
The 660 asserts PCI_SERR# for one PCI clock when a non-data-parity error (system error)
is detected and the 660 is a PCI target. As is the case with the other error reporting signals,
the 660 may perform various operations in response to a detected error condition, but it
does not automatically perform further actions just because it asserts PCI_SERR#

The 660 does not monitor PCI_SERR# as driven by other PCI agents. PCI_SERR# is not
an input to the 660.

8.2.8.4 Error Reporting With PCI_PERR#
The 660 asserts PCI_PERR# for one PCI clock to report PCI bus data parity errors that
occur while the 660 is receiving data; during PCI to memory writes and CPU to PCI reads.
The 660 asserts PCI_PERR# in conformance to the PCI specification.

8.2.9 Error Status Registers
Error status registers in the 660 may be read to determine the types of outstanding errors.
Errors are not accumulated while an error is outstanding; however, there will be one TEA#
or MCP# for each error that occurs. For example, if an illegal transfer error causes a TEA#,
a memory parity error can occur while the CPU is processing the code that handles the
TEA#. The second error can occur before the error status registers are read. If so, then the
second error status is not registered, but the MCP# from the memory parity error is as-
serted.

8.2.10 Error-Related Bridge Control Registers

Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes

System Control 81C 8000 081C R/W 1

Memory Parity Error Status 8000 0840 R 1

L2 Error Status 8000 0842 R 1

L2 Parity Error Read and Clear 8000 0843 R 1

Unsupported Transfer Type Error 8000 0844 R 1

System Error Address BFFF EFF0 R 4

PCI Command Index 04 – 05 R/W 2

PCI Device Status Index 06 – 07 R/W 2

Single-Bit Error Counter Index B8 R/W 1

Single-Bit Error Trigger Level Index B9 R/W 1

Bridge Options 1 Index BA R/W 1

Error Enable 1 Index C0 R/W 1

Error Status 1 Index C1 R/W 1

CPU Bus Error Status Index C3 R 1

Error Enable 2 Index C4 R/W 1

Error Status 2 Index C5 R/W 1

PCI Bus Error Status Index C7 R/W 1

CPU/PCI Error Address Index C8 – CB R/W 4

Single-Bit ECC Error Address Indx CC – CF R/W 4

Bridge Chip Set Options 3 Index D4 R/W 1
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8.2.11 Special Events Not Reported as Errors
� A PCI to memory cycle at any memory address above that programmed into the top

of memory register.

The 660 ignores this cycle and the initiator master aborts. No data is written into system
memory on writes, and the data returned on reads is indeterminate. The busmaster
must be programmed to respond to a target abort by alerting the host.

� CPU to PCI configuration cycles to which no device responds with a DEVSEL# sig-
nal within 8 clocks (no device at this address)

The data returned on a read cycle is all 1’s and write data is discarded. This allows soft-
ware to scan the PCI at all possible configuration addresses, and it is also consistent
with the PCI specification.

� A CPU read of the IACK address having a transfer size other than 1, or having other
than 4–byte alignment.

These conditions return indeterminate data. The ISA bridge requires the byte enables,
CBE#3:0, to be 1110 in order to place the data on the correct byte lane (0). Accesses
other than one byte at the address BFFF FFF0h are undefined.

� A read of the IACK address when no interrupt is pending

A DEFAULT 7 vector is returned in this case. This is the same vector that is returned
on spurious interrupts.

� Parity error in Flash/ROM.

Parity is not stored in the Flash ROM. Therefore the memory parity error signal and the
DPE signal are ignored during ROM reads. The Flash or ROM should include CRC with
software checking to insure integrity.

� Write to Flash with TSIZ other than 4.

This will cause indeterminate data to be written into the Flash at an indeterminate ad-
dress.

� Caching ROM space.

An L1 or CB–L2 cast out will cause indeterminate results.

� Running any cycle to the PCI configuration space with an undefined address.

Some of these could potentially cause damage. See the warning under the PCI configu-
ration cycle section.

� Accessing any ISA device with the wrong data size for that device.

Indeterminate results will occur.
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8.3 Resets
The RESET# pin of the 664 must be asserted to initialize the 660 before proper operation
commences. The 663 does not have a reset pin. Since the operation of the 663 is controlled
by the 664, the entire 660 bridge will be properly initialized by the proper assertion of
RESET#.

8.3.1 CPU Reset
For information of CPU SRESET# and HRESET#, see the 603e user manual.

8.3.2 660 Reset
The entire 660 is reset to the correct initial state by the proper assertion of the RESET# input
of the 664 (POWER_GOOD/RESET#). The following rules must be followed to ensure cor-
rect operation:
1. RESET# must be asserted for at least eight CPU consecutive CPU clocks. This is the

minimum RESET# pulse width.
2. Both the CPU and PCI clocks must be running properly during the entire reset interval.
3. Bus activity on the PCI bus must not begin until at least 4 CPU clocks after the deasser-

tion of  RESET#.
4. Bus activity on the CPU bus also must not begin until at least 4 CPU clocks after the

deassertion of  RESET#.
5. Assertion and deassertion of RESET# can be asynchronous for normal operation, but

if deterministic operation is required, see section 8.3.2.3.
All 660 outputs reach their reset state by the second CPU clock after RESET# is first
sampled active. The rest of the minimum RESET# pulse width is used by the 660 to initialize
internal processes, including setting internal registers and determining the CPU to PCI
clock ratio.
Except as noted in section 8.3.2.1, all 660 outputs maintain their reset state until an external
stimulus (CPU bus activity) forces them to change.

8.3.2.1 Reset State of 660 Pins
The following symbols are used in Table 8-3 and Table 8-4:
— means the signal is an input. The signal does not have a required state during

reset.
Z means that the pin is tristate (hi–Z) during reset,
U means the state of the pin during reset is undefined,
1 means that the pin is driven to a logic 1 state (hi)
0 means that the pin is driven to a logic 0 state (low)



Section 8 — ExceptionsPreliminary

8–19G5220297-00

Table 8-3.  664 Pin Reset State

664 Signal State

AACK# Z

AOS_RR_MMRS 1

ARTRY# Z

C2P_WRL_OPEN 1

CAS[7:0]# 1

CPU_ADDR[0:31] Z

CPU_BUS_CLAIM
#

—

CPU_CLK —

CPU_DATA_OE# 1

CPU_GNT1# 1

CPU_GNT2# 1

CPU_PAR_ERR# —

CPU_RDL_OPEN 1

CPU_REQ1# —

CPU_REQ2# —

CRS_C2PWXS Z

DBG# 0

DPE# —

DUAL_CTRL_REF 1

ECC_LE_SEL 1

GBL# Z

IGN_PCI_AD31 —

INT_CPU# INT_REQ#

INT_REQ —

MA[11:0] 1

MCP# Z

664 Signal State

MEM_BE[3:0] 1

MEM_DATA_OE# 1

MEM_ERR# —

MEM_RD_SMPL 1

MEM_WRL_OPEN 0

MIO_TEST 0

MWS_P2MRXS Z

NMI_REQ —

PCI_AD[31:0] Z

PCI_AD_OE# 1

PCI_C/BE[3:0]# Z

PCI_CLK —

PCI_DEVSEL# Z

PCI_EXT_SEL 1

PCI_FRAME# Z

PCI_GNT# —

PCI_IRDY# Z

PCI_LOCK# —

PCI_OL_OPEN 1

PCI_OUT_SEL 1

PCI_PAR Z

PCI_PERR# Z

PCI_REQ# 1

PCI_SERR# Z

PCI_STOP# Z

PCI_TRDY# Z

RAS[7:0]# 1

664 Signal State

RESET# 0

ROM_LOAD 0

ROM_OE# 1

ROM_WE# 1

SBE# —

SHD# Z

SRAM_ADS# 0

SRAM_ALE 1

SRAM_CNT_EN# 1

SRAM_OE# 1

SRAM_WE# 1

STOP_CLK_EN# —

TA# 1

TAG_CLR# 0

TAG_MATCH Z

TAG_VALID 1

TAG_WE# 1

TBST# Z

TEA# 1

TEST# 1

TS# Z

TSIZE[0:2] Z

TT[0:4] Z

WE[1:0]# 1

XATS# —

Notes : During reset, INT_CPU# is driven to the inverse of INT_REQ. Drive TEST# continuously high and MIO_TEST
continuously low for correct operation.

Table 8-4.  663 Pin Reset State

663 Signal State

AOS_RR_MMRS —

C2P_WRL_OPEN —

CPU_CLK —

CPU_DATA[00:63] Z

CPU_DATA_OE# —

CPU_DPAR[0:7] Z

CPU_PAR_ERR# U

CPU_RDL_OPEN —

CRS_C2PWXS —

DUAL_CTRL_REF —

ECC_LE_SEL —

663 Signals State

MEM_BE[0:1] —

MEM_BE[2:3] —

MEM_CHECK[0:7] Z

MEM_DATA[63:0] Z

MEM_DATA_OE# —

MEM_ERR# U

MEM_RD_SMPL —

MEM_WRL_OPEN —

MIO_TEST 0

MWS_P2MRXS —

663 Signals State

PCI_AD[31:0] Z

PCI_AD_OE# —

PCI_EXT_SEL —

PCI_IRDY# —

PCI_OL_OPEN —

PCI_OUT_SEL —

PCI_TRDY# —

ROM_LOAD —

SBE# U

TEST# 1

Note:  For correct operation, TEST# must always be driven high and MIO_TEST must always be driven low.
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8.3.2.2 660 Configuration Strapping
There are two strapping options for 660 system configuration information which is required
before the processor can execute (and which, therefore, cannot be programmed into the
660). Configuration strapping is accomplished by attaching a pullup or pulldown resister
to the specified 664 output pin. During reset, the 664 tri-states these outputs, allowing them
to assume the level to which they are strapped. When RESET# is deasserted, the 664
reads in the value from these pins.
Table 8-5 shows the strapping options and their associated pins. Pullup resistors should
be 10K ohms to 20K ohms. Pull down resistors should be 500 ohms to 2K ohms.
In Table 8-5, 603(e) refers to either a 603 or a 603e.

Table 8-5.  Configuration Strapping Options

Function Pull Up/Down Pin

Location of ROM Up = Remote ROM — Down = Direct-Attach ROM CRS_C2PWXS

603(e) in 1:1 or 3:2
CPU core:bus mode

Down = 603(e) not in 1:1 or 3:2  mode, or 601 or 604. Up = 603(e) in 1:1
or 3:2 CPU core:bus mode.

MWS_P2MRXS

8.3.2.3 660 Deterministic Operation (Lockstep Applications)
If fully deterministic operation of the chipset following RESET# is required, then the
following items must be considered:
� When RESET# is deasserted, some outputs transition to a different but stable state. This results in

requirement #3 in Section 8.3.2, that neither CPU or PCI bus activity is allowed to begin during the first
four CPU clocks after the deassertion of RESET#.

� When RESET# is deasserted, the refresh counter begins (and continues) to run, counting the interval
between refresh cycles to the memory. There are two ways to start the refresh timer deterministically:
Meet the following timing requirements for RESET#, so that the clock cycle upon which RESET# is

deasserted is known:
� Setup > 4.2ns relative to a rising PCI clock edge.
� Hold  > 0ns relative to a rising PCI clock edge.

Write to the Refresh Timer Divisor Register (index D1–D0) and the Suspend Refresh Timer Register
(index D3–D2) to reset the refresh counters. If this is done before any DRAM accesses occur,
then no bus activity will have been affected by the unknown state of the counters before this
point.

� When RESET# is deasserted, the DUAL_CTRL_REF signal begins toggling. The phase of this toggling
never effects any bus operations, and therefore need not be known for deterministic operation of the 660.
However, if it is still desirable to control the phase of DUAL_CTRL_REF, then the following timing
requirements must be met for the deassertion of RESET#:
� Setup > 4.4ns relative to a rising CPU clock edge.
� Hold > 0ns relative to a rising CPU clock edge.

8.4 Test Modes

8.4.1 CPU Test
The three test pins of the 603e (LLSD_MODE#, L1_TST_CLK#, & L2_TST_CLK#) are only
supported for use during internal factory testing. They are not supported for customer use.
Refer to the RISCWatch documentation for use of the JTAG port for debugging and diag-
nostic purposes.

8.4.2 660 Test
Tie the MIO_TEST input of both the 663 and the 664 low during normal operation. IBM does
not support any use of MIO test mode by external customers.
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MIO test mode is enabled on the 663 (asynchronously) by asserting MIO_TEST to the 663.
MIO test mode is enabled on the 664 (asynchronously) by asserting MIO_TEST to the 664.
IBM uses LSSD test mode to verify the switching levels of the inputs of the 663 and the 664.
The TEST# and MIO_TEST pins of the 663 and 664 are intended for use by the IBM
manufacturing process only. The inclusion of the following information in this section is the
total extent to which IBM supports the use of these pins by external customers.

8.4.2.1 LSSD Test Mode
Tie the TEST# input of both the 663 and the 664 high during normal operation. Do not allow
these signals to be casually asserted. Caution is advised in the use of LSSD test mode.
LSSD test mode is enabled on the 663 (asynchronously) by asserting TEST# to the 663.
In the same way, LSSD test mode is enabled on the 664 (asynchronously) by asserting
TEST# to the 664. In LSSD test mode, the 663 and 664 pins shown in Table 8-6 are rede-
fined to become LSSD test mode pins. These pins have LSSD functions only while the 663
(or 664) is in LSSD test mode. Otherwise the pins perform normally. IBM uses LSSD test
mode to verify the logical operation of the 663 and the 664.

Table 8-6.  LSSD Test Mode Pin Definitions

Test Pin Name 664 Pin 664 Pin Normal Name 663 Pin 663 Pin Normal Name

TEST_ACLK# 194 MEM_ERR# 149 ECC_LE_SEL

TEST_BCLK# 129 XATS# 170 DUAL_CTRL_REF

TEST_CCLK# 133 DPE# 163 MEM_BE[2]

SCAN_IN 192 CPU_PAR_ERR# 145 MEM_DATA_OE#

SCAN_OUT 47 ROM_OE# 174 CPU_PAR_ERR#

RI# 56 NMI_REQ 161 MEM_BE[0]

DI# 151 STOP_CLK_EN# 162 MEM_BE[1]

In LSSD test mode, never assert more than one of TEST_ACLK#, TEST_BCLK#,
TEST_CCLK#, and RESET# at the same time, as this may damage the device by provok-
ing excessive internal current flows.
In LSSD test mode, the DI# pin controls the drivers of the 663 (and the 664). Assertion of
the DI# pin asynchronously causes all of the 663 (or 664) output drivers (push–pull,
tri–state, open–driver, or bi–directional) to be tristated.
In LSSD test mode, the RI# pin controls the receivers of the 663 (and the 664). Assertion
of RI# causes all of the 663 (or 664) inputs to report a certain pattern to the internal logic.
This has no effect on the external operation of the device that can be used by an external
customer.
The 660 must be reset properly after leaving LSSD test mode in order to assure correct
normal mode operation.
No further information on the use of the 660 test pins is expected to be released.
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Section 9
Set Up and Registers
The following subsections represent activities carried out early in the boot firmware. On the
MCM, all initialization registers are contained in the 603e nd the 660 bridge controller chips.

9.1 CPU Initialization
The 603 CPU exits the reset state with the L1 cache disabled and bus error checking dis-
abled.

All memory pages 2G to 4G must be marked as non-cacheable.

The Segment Register T bit, bit 0, defaults to 0 which is the normal storage access mode.
It must be left in this state for the hardware to function. Direct store (PIO) segments are not
supported.

Set the bit that controls ARTRY# negation, HID0[7], to 0 to enable the precharge of
ARTRY#. It may be necessary set HID0[7] to 1 to disable the precharge of ARTRY# for 100
MHz PPC 603e MCM configurations having a CPU bus agent (such as an added L2) that
drives the ARTRY# line. Software must set this bit before allowing any CPU bus traffic to
which the CPU agent might respond. Note that PCI to memory transactions cause the 660
bridge to broadcast snoop operations on the CPU bus.

HID0 bit 0, Master Checkstop Enable, defaults to 1 which is the enabled state. Leave it in
this state so that checkstops can occur.

MCM errors are reported through the 660 by way of the TEA# and MCP# pins. Because
of this, the bus error checking in the CPU must be disabled by setting HID0 bits 2 and 3 to
zero.

9.2 660 Bridge Initialization
Before DRAM memory operations can begin, the software must:

1. Read the SIMM presence detect and SIMM type registers.
2. Set up and check the memory-related registers in the 660 (see the 660 Bridge User’s

Manual).
3. Program the timer in the ISA bridge register which controls ISA refresh timing. In SIO

compatible bridges it should be programmed to operate in Mode 2 with an interval
of approximately 15 usec.

4. Make sure 200 usec has elapsed since starting the refresh timer so that sufficient
refresh cycles have occurred to properly start the memory. This will be hidden if
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approximately 120 Flash accesses occur after the timer is started and before the
memory initialization starts.

5. Initialize all of memory so that all parity bits are properly set. (The CPU may cache
unnecessary data; hence, all of memory must be initialized.) The 660 does not re-
quire reconfiguration when port 4Dh in the ISA bridge is utilized to reset the native
I/O and the ISA slots.

6. Read the L2 cache presence detect bits and set register xx for 512K of synchro-
nous SRAM cache.

9.3 PCI Configuration Scan
The 660 bridge in the MCM enables the software to implement a scan to determine the
complement of PCI devices present. This is because the system returns all ones rather
than an error when no PCI device responds to initialization cycles. The software may read
each possible PCI device ID to determine devices present.

Table 9-1.  Configuration Address Assignments

Device IDSEL Line 60X Address* PCI Address 

ISA bus bridge (SIO) A/D 11 8080 08XXh 080 08XX

PCI Slot 1 A/D 12 8080 10XXh 080 10XX

PCI Slot 2 A/D 13 8080 20XXh 080 20XX

PCI Slot 3 A/D 14 8080 40XXh 080 40XX

Note : *This address is independent of contiguous I/O mode.

Software must use only the addresses specified. Using any addresses that causes more
than one IDSEL to be asserted (high) can cause bus contention, because multiple PCI
agents will be selected.

In systems that contain the Intel SIO chip, it must be configured prior to any other PCI bus
agent. The SIO PCI arbiter is automatically enabled upon power-on reset. During power-on
reset, the SIO drives the A/D(31:0), C/BE#(3:0), and PAR signals on the PCI bus.

9.3.1 Multi-Function Adaptors
The 660 supports multi-function adapters. It passes, unmodified, the address of the load
or store instruction that causes a PCI configuration cycle. The only exception is that the
three low-order bits are unmunged in little endian mode, and the two low-order address bits
are set to zero in either endian mode; therefore, addresses may be selected with non-zero
CPU address bits (21:23)—corresponding to PCI bits (10:8)—to configure multi-function
adaptors. For example, to configure device 3 in slot 1, use address 80C0 03XXh. To config-
ure device 7 in slot 2, use address 8084 07XXh.

9.3.2 PCI to PCI Bridges
The 660 supports both Type 0 and Type 1 configuration cycles.

9.3.3 Indexed BCR Summary
Table 9-2 contains a summary listing of the indexed BCRs in the 660. Access to these regis-
ters is described in the 660 Bridge User’s Manual. The values shown in the Set To column
are for reference only, and may not apply to a particular application.

Table 9-2.  660 Bridge Indexed BCR Listing  

Bridge Control Register Index R/W Bytes Set To (1)

PCI Vendor ID Index 00 – 01 R 2 1014h

PCI Device ID Index 02 – 03 R 2 0037h
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Table 9-2.  660 Bridge Indexed BCR Listing (Continued)

Bridge Control Register Set To (1)BytesR/WIndex

PCI Command Index 04 – 05 R/W 2 —

PCI Device Status Index 06 – 07 R/W 2 —

Revision ID Index 08 R 1 02h

PCI Standard Programming Interface Index 09 R 1 0

PCI Subclass Code Index 0A R 1 0

PCI Class Code Index 0B R 1 06h

PCI Cache Line Size Index 0C R 1 0

PCI Latency Timer Index 0D R 1 0

PCI Header Type Index 0E R 1 0

PCI Built-in Self-Test (BIST) Control Index 0F R 1 0

PCI Interrupt Line Index 3C R 1 0

PCI Interrupt Pin Index 3D R 1 0

PCI MIN_GNT Index 3E R 1 0

PCI MAX_LAT Index 3F R 1 0

PCI Bus Number Index 40 R 1 0

PCI Subordinate Bus Number Index 41 R 1 0

PCI Disconnect Counter Index 42 R/W 1 0

PCI Special Cycle Address BCR Index 44 –45 R 2 0

Memory Bank 0 Starting Address Index 80 R/W 1 Memory

Memory Bank 1 Starting Address Index 81 R/W 1 Memory

Memory Bank 2 Starting Address Index 82 R/W 1 Memory

Memory Bank 3 Starting Address Index 83 R/W 1 Memory

Memory Bank 4 Starting Address Index 84 R/W 1 Memory

Memory Bank 5 Starting Address Index 85 R/W 1 Memory

Memory Bank 6 Starting Address Index 86 R/W 1 Memory

Memory Bank 7 Starting Address Index 87 R/W 1 Memory

Memory Bank 0 Ext Starting Address Index 88 R/W 1 Memory

Memory Bank 1 Ext Starting Address Index 89 R/W 1 Memory

Memory Bank 2 Ext Starting Address Index 8A R/W 1 Memory

Memory Bank 3 Ext Starting Address Index 8B R/W 1 Memory

Memory Bank 4 Ext Starting Address Index 8C R/W 1 Memory

Memory Bank 5 Ext Starting Address Index 8D R/W 1 Memory

Memory Bank 6 Ext Starting Address Index 8E R/W 1 Memory

Memory Bank 7 Ext Starting Address Index 8F R/W 1 Memory

Memory Bank 0 Ending Address Index 90 R/W 1 Memory

Memory Bank 1 Ending Address Index 91 R/W 1 Memory

Memory Bank 2 Ending Address Index 92 R/W 1 Memory

Memory Bank 3 Ending Address Index 93 R/W 1 Memory

Memory Bank 4 Ending Address Index 94 R/W 1 Memory

Memory Bank 5 Ending Address Index 95 R/W 1 Memory

Memory Bank 6 Ending Address Index 96 R/W 1 Memory

Memory Bank 7 Ending Address Index 97 R/W 1 Memory
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Table 9-2.  660 Bridge Indexed BCR Listing (Continued)

Bridge Control Register Set To (1)BytesR/WIndex

Memory Bank 0 Ext Ending Address Index 98 R/W 1 Memory

Memory Bank 1 Ext Ending Address Index 99 R/W 1 Memory

Memory Bank 2 Ext Ending Address Index 9A R/W 1 Memory

Memory Bank 3 Ext Ending Address Index 9B R/W 1 Memory

Memory Bank 4 Ext Ending Address Index 9C R/W 1 Memory

Memory Bank 5 Ext Ending Address Index 9D R/W 1 Memory

Memory Bank 6 Ext Ending Address Index 9E R/W 1 Memory

Memory Bank 7 Ext Ending Address Index 9F R/W 1 Memory

Memory Bank Enable Index A0 R/W 1 Memory

Memory Timing 1 Index A1 R/W 1 0001 0010

Memory Timing 2 Index A2 R/W 1 1000 1010

Memory Bank 0 & 1 Addressing Mode Index A4 R/W 1 Mode 2

Memory Bank 2 & 3 Addressing Mode Index A5 R/W 1 —

Memory Bank 4 & 5 Addressing Mode Index A6 R/W 1 —

Memory Bank 6 & 7 Addressing Mode Index A7 R/W 1 —

Cache Status Index B1 R/W 1 —

Refresh Cycle Definition Index B4 R 1 —

Refresh Timer B5 (Not used – see Indexed BCR D0) Index B5 R 1 —

RAS Watchdog Timer Index B6 R/W 1 53h

PCI Bus Timer (Not used) Index B7 R 1 0

Single-Bit Error Counter Index B8 R/W 1 0

Single-Bit Error Trigger Level Index B9 R/W 1 0

Bridge Options 1 Index BA R/W 1 07h

Bridge Options 2 Index BB R/W 1 5Fh

Error Enable 1 Index C0 R/W 1 EDh

Error Status 1 Index C1 R/W 1 0

Error Simulation 1 Index C2 R/W 1 0

CPU Bus Error Status Index C3 R 1 14h

Error Enable 2 Index C4 R/W 1 04h

Error Status 2 Index C5 R/W 1 04h

Error Simulation 2 Index C6 R/W 1 0

PCI Bus Error Status Index C7 R/W 1 0Fh

CPU/PCI Error Address Index C8–CB R/W 4 —

Single-Bit ECC Error Address Index CC – CF R/W 4 —

Refresh Timer Divisor Index D0 – D1 R/W 2 0180h

Suspend Refresh Timer Index D2 – D3 R/W 2 01F8h

Bridge Chip Set Options 3 Index D4 R/W 1 88h

Notes:
1. In this column, a long dash — means that the initialization firmware does not write to this register. The register

is either not used, not written to, or the value of it depends on changing circumstances.
If the word Memory appears, please refer to the System Memory section of the 660 User’s Manual.

2. The initialization firmware sets the Memory registers depending on the information reported by the DRAM
presence detect registers.
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Section 10
System Firmware

10.1 Introduction
The firmware on the 100 MHz PPC 603e MCM planar handles three major functions:

� Test the system in preparation for execution,
� Load and execute an executable image from a bootable device, and
� Allow user configuration of the system.

Section 10.2 briefly discusses the power on system test function.

Section 10.3 details a structure for boot records which can be loaded by the system firm-
ware.

Section 10.4 describes the system configuration utility.

This information is included for reference only. Some of the information in this section con-
cerns the example planar rather than the MCM.

To obtain a copy of the commented source code of the firmware on diskette, contact
your IBM representative. This material is available free of charge with a signed li-
cense agreement.

10.2 Power On System Test
The Power On System Test (POST) code tests those subsystems of the reference board
which are required for configuration and boot to ensure minimum operability. Tests also as-
sure validity of the firmware image and of the stored system configuration.

10.2.1 Hardware Requirements
In addition to the reference board, the firmware requires the following peripherals to be
installed as adapter cards:

� Serial Port 1 Address: 0x3F8 (COM1:) Interrupt: IRQ 4
� Serial Port 2 Address: 0x2F8 (COM2:) Interrupt: IRQ 3
� Floppy Controller Address: 0x3F0 (Primary Floppy) Mode: PC/AT or

           PS/2
� IDE Controller Address: 0x1F0 (Primary IDE)

10.3 Boot Record Format
The firmware will attempt to boot an executable image from devices specified by the user.
See Section 10.4 for details on specifying boot devices and order.
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The PowerPC Reference Platform Specification details a structure for boot records which
can be loaded by the system firmware. This specification is described in the following sec-
tions.

10.3.1 Boot Record
The format of the boot record is an extension of the PC environment. The boot record is
composed of a PC compatibility block and a partition table. To support media interchange,
the PC compatibility block may contain an x86-type program. The entries in the partition
table identify the PowerPC Reference Platform boot partition and its location in the media.

The layout of the boot record must be designed as shown in Figure 10-1. The first 446 bytes
of the boot record contain a PC compatibility block, the next four 16-byte entries make up
a partition table totalling 64 bytes, and the last 2 bytes contain a signature.

Figure 10-1.  Boot Record

0x1DE

0x1EE

0x1FE

0x1CE
Partition Entry 1

Partition Entry 2

Partition Entry 3

Partition Entry 4

0x55 0xAA

PC Compatibility
Block

0 0

0x1BE 446

462

478

494

510

10.3.1.1 PC Partition Table Entry
To support media interchange with the PC, the PowerPC Reference Platform defines the
format of the partition table entry based on that for the PC. This section describes the format
of the PC partition table entry, which is shown in Figure 10-2.

Figure 10-2.  Partition Table Entry
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Partition Begin

Partition End

Beginning Sector

Number of Sectors

Head Sector CylBoot Ind

CylHead SectorSys Ind

Low Word (LE)

Low Word (LE)

High Word (LE)

High Word (LE)

LE = Little-Endian
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� Partition  Begin The beginning address of the partition in head, sector, cylinder
notation.

� Partition End The end address of the partition in cylinder, head, sector nota-
tion.

� Beginning Sector The number of sectors preceding the partition on the disk. That
is, the zero-based relative block address of the first sector of
the partition.

� Number of Sectors The number of sectors allocated to the partition.

The subfields of a partition table entry are defined as follows:

� Boot Ind Boot Indicator. This byte indicates if the partition is active. If the
byte contains 0x00, then the partition is not active and will not
be considered as bootable. If the byte contains 0x80, then the
partition is considered active.

� Head An eight-bit value, zero-based.

� Sector A six-bit value, one-based. The low-order six bits are the sector
value. The high-order two bits are the high-order bits of the
10-bit cylinder value.

� Cyl Cylinder. The low-order eight-bit component of the 10-bit cylin-
der value (zero-based). The high-order two bits of the cylinder
value are found in the sector field.

� Sys Ind System Indicator. This byte defines the type of the partition.
There are numerous partition types defined. For example, the
following list shows several:

0x00 Available partition
0x01 DOS, 12-bit FAT
0x04 DOS, 16-bit FAT
0x05 DOS extended partition
0x41 PowerPC Reference Platform partition.

10.3.1.2 Extended DOS Partition

The extended DOS partition is used to allow more than four partitions in a device. The boot
record in the extended DOS partition has a partition table with two entries, but does not con-
tain the code section. The first entry describes the location, size and type of the partition.
The second entry points to the next partition in the chained list of partitions. The last parti-
tion in the list is indicated with a system indicator value of zero in the second entry of its
partition table.

Because of the DOS format limitations for a device partition, a partition which starts at a
location beyond the first 1 gigabyte is located by using an enhanced format shown in
Figure 10-3.
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Figure 10-3.  Partition Table Entry Format for an Extended Partition

LE = Little-Endian
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12

Partition Begin

Partition End

Beginning Sector

Number of Sectors

Boot Ind

Sys Ind

–1

–1

–1

–1

–1

–1

32–bit start RBA (zero–based) (LE)

32–bit RBA count (one–based) (LE)

–1 = All ones in the field.
RBA = Relative Block Address in units of 512 bytes.

10.3.1.3 PowerPC Reference Platform Partition Table Entry
The Power PC Reference Platform partition table entry (see Figure 10-4) is identified by
the 0x41 value in the system indicator field. All other fields are ignored by the firmware ex-
cept for the Beginning Sector and Number of Sectors fields. The CV (Compatible Value –
not shown) fields must contain PC-compatible values (i.e. acceptable to DOS) to avoid con-
fusing PC software. The CV fields, however, are ignored by the firmware.

Figure 10-4.  Partition Table Entry for PowerPC Reference Platform

LE = Little-EndianRBA = Relative Block Address in units of 512 bytes.
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Partition Begin

Partition End

Beginning Sector
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Boot Ind

Sys Ind

32–bit start RBA (zero–based) (LE)

32–bit RBA count (one–based) (LE)

Head Sector Cyl

Head Sector Cyl

The 32-bit start RBA is zero-based. The 32-bit count RBA is one-based and indicates the
number of 512-byte blocks. The count is always specified in 512-byte blocks even if the
physical sectoring of the target devices is not in 512-byte sectors.

10.3.2 Loading the Load Image
This section describes the layout of the PowerPC 0x41 type partition and the process of
loading the load image.
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Figure 10-5.  PowerPC Reference Platform Partition

PC Compatibility
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The layout for the 0x41 type partition is shown in Figure 10-5. The PC compatibility block
in the boot partition may contain an x86-type program. When executed on an x86 machine,
this program displays a message indicating that this partition is not applicable to the current
system environment.

The second relative block in the boot partition contains the entry point offset, load image
length, flag field, operating system ID field, ASCII partition name field, and the reserved1
area. The 32-bit entry point offset (little-endian) is the offset (into the image) of the entry
point of the PowerPC Reference Platform boot program. The entry point offset is used to
allocate the Reserved1 space. The reserved1 area from offset 554 to Entry Point – 1 is re-
served for implementation specific data and future expansion.
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The 32-bit load image length (little-endian) is the length in bytes of the load image. The load
image length specifies the size of the data physically copied into the system RAM by the
firmware.

The flag field is 8 bits wide. The MSb in the field is allocated for the Open Firmware flag.
If this bit is set to 1, the loader requires Open Firmware services to continue loading the
operating system.

The second MSb is the endian mode bit. If the mode bit is 0, the code in the section is in
big-endian mode. Otherwise, the codes is in little-endian mode. The implication of the en-
dian mode bit is different depending on the Open Firmware flag. If the Open Firmware flag
is set to 1, the mode bit indicates the endian mode of the code section pointed to by the
load image offset, and the firmware has to establish the hardware endian mode according
to this bit. Otherwise, this bit is just an informative field for firmware.

The OS_ID field and partition name field are used to identify the operating system located
in the partition. The OS_ID field has the numeric identification value of the operating system
located in the partition. The 32 byes of partition name field must have the ASCII notation
of the partition name. The name and OS_ID can be used to provide to a user the identifica-
tion of the boot partition during the manual boot process.

Once the boot partition is identified by the PowerPC Reference Platform boot partition table
entry, the firmware:

� Reads into memory the second 512-byte block of the boot partition

� Determines the load image length for reading in the boot image up to but not includ-
ing the reserved2 space

� Allocates a buffer in system RAM for the load image transfer (no fixed location)

� Transfers the load image into system RAM from the boot device (the reserved2
space is not loaded).

The load image must be fully relocatable, as it may be placed anywhere in memory by the
system firmware. Once loaded, the load image may relocate itself anywhere within system
RAM.

10.4 System Configuration
This section describes the utilities in the system firmware which allow the system to be cus-
tomized. These utilities allow viewing of the system configuration, as well as the ability to
change I/O device configurations, console selection, boot devices, and the date and time.
These functions are described in the following sections.

10.4.1 System Console
The system console can be either a screen-oriented video display or a line-oriented serial
terminal. The example screens shown in this section show the S3 video/keyboard inter-
face. When using a serial terminal, the configuration utilities will prompt for numeric input
for each prompt instead of using the arrow keys. All choices and options are the same as
for the screen-oriented menus.

The configuration of the reference board as shipped is set for S3 video / Keyboard console.
In the case that either the video adapter or the keyboard fails the power-on test, the system
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console will default to serial port 1. The baud rate for the serial console is specified in the
configuration menus. The value as shipped is 9600 baud.

10.4.2 System Initialization
The logo screen, shown in Figure 10-6, is displayed at power-on. The logo screen is active
while the system initializes and tests memory and performs a scan of the SCSI bus to deter-
mine what SCSI devices are installed.

                PowerPC 603/604 Reference Board System Firmware                 
               (C) Copyright 1994 IBM Corp.  All Rights Reserved.                
                                                                                
                                                                                
                                                                                
                                                                                
                ######                                  ######   #####          
               #     #   ####   #    #  ######  #####  #     # #     #          
              #     #  #    #  #    #  #       #    # #     # #                 
             ######   #    #  #    #  #####   #    # ######  #                  
            #        #    #  # ## #  #       #####  #       #                   
           #        #    #  ##  ##  #       #   #  #       #     #              
          #         ####   #    #  ######  #    # #        #####                
                                                                                
                        PowerPC 603/604 Reference Board                        
                                                                                
Press C during memory test for configuration utilities                          
                                                                                
Testing 8192K of memory:  8192 KB OK                                            
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
 

Figure 10-6.  System Initialization Screen

While the logo screen is displayed, pressing the ’C’ key on the console will enter the system
configuration utility. The configuration menu will also be entered if there is no bootable de-
vice present, or if the configuration stored in the system non-volatile RAM is not initialized
or is corrupt.
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10.4.3 Main Menu
Figure 10-7 shows the main menu for the system configuration utility. Selections on the
menu are highlighted by using the up and down arrow keys on the keyboard, and are cho-
sen with the Enter key. Each choice is detailed in the following sections.

Figure 10-7.  Configuration Utility Main Menu

        PowerPC 603/604 Reference Board System Firmware
       (C) Copyright 1994 IBM Corp. All Rights Reserved.
                                        
                                        
                              Main Menu 
                                        
                                        
                                        
   System Configuration Menu                         
   Run a Program                               
   Reprogram Flash Memory                           
                                        
   Save and exit                               
   Exit without saving                            
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        

 Press ↑ ↓  to select item                           
 Press Enter to perform action
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10.4.3.1 System Configuration Menu
Figure 10-8 shows the System Configuration menu, which has choices to display and
change the default state of the reference board on boot. Each menu item is discussed in
the following sections.

Figure 10-8.  System Configuration Menu

                  PowerPC 604 Reference Board System Firmware                  
               (C) Copyright 1994 IBM Corp.  All Rights Reserved.               
                                                                                
                                                                                
                           System Configuration Menu                            
                                                                                
                                                                                
                                                                                
System Information                                                         
Configure I/O Devices                                                      
View SCSI Devices                                                          
Set Boot Devices                                                           
Set Date and Time                                                          
                                                                                
Previous Menu                                                              
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                

                                                                                
                                                                                
Press ↑ ↓  to select item                                                      
Press Enter to perform action
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System Information
The system configuration option shows the hardware configuration of the system at power-
up—including processor, installed options, and firmware revision level. A sample screen
is shown in Figure 10-9.

Figure 10-9.  System Information Screen

        PowerPC 603/604 Reference Board System Firmware        
        (C) Copyright 1994 IBM Corp. All Rights Reserved.        
                                        
                                        
               System Configuration               
                                        
                                        
                                       
System Processor    PowerPC 604                    
Installed Memory    8 MB                        
Second-Level Cache   Not Installed                   
Upgrade Processor    Not Installed                   
Boot Firmware Revision 1.0                        
                                        
Go to Previous Menu                            
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        

Press ↑ ↓  to select item                           
Press Enter to perform action
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Configure I/O Devices

The configure I/O devices option allows the customization of system I/O ports and the sys-
tem console. The menu is shown in Figure 10-10. Options are highlighted by using the up
and down arrow keys on the keyboard and are changed with the left and right arrow keys.
Options on the menu are discussed below.

Figure 10-10.  Device Configuration Screen

        PowerPC 603/604 Reference Board System Firmware        
        (C) Copyright 1994 IBM Corp. All Rights Reserved.        
                                        
                                        
               Device Configuration               
                                        
                                        
                                        
Select Console Device    [S3 Video / Keyboard]             
Set Serial Port 1 Speed   [ 9600 Baud]                  
Set Serial Port 2 Speed   [ 9600 Baud]                  
                                        
Go to Previous Menu                            
                                        
   

                                      
                                        
                                        
                                        
                                        

Press ↑  ↓  to select item                           
Press ← → to change item

Any changes made in I/O device configuration are saved when the Save and Exit option
on the main menu is selected. Exiting the system configuration utility in any other manner
will cause device configuration changes to be lost.

Select Console Device

The console selection box allows the selection of an option for the system console

� Serial Port 1 or 2 Console input and output will be transmitted and received
through a serial port on an adapter card. Console input and out-
put will be transmitted and received at the baud rate selected
with Serial Port Speed.

� S3 Video/Keyboard Console output will be displayed on a video monitor connected
to an S3 PCI video adapter; console input will be received from
a keyboard connected to the keyboard connector on the refer-
ence board



Preliminary
Section 10 — Firmware

10–12 G5220297-00

Set Serial Port 1 or 2 Speed
The serial port speed selection box sets the speed of each serial port. Baud rates for the
two serial ports are independent. If a serial port is used as the system console, set this value
to match the baud rate of the terminal.

View SCSI Devices
The SCSI devices screen shows the devices found on the SCSI bus during power-on initial-
ization. The string shown is the SCSI device’s response to the SCSI inquiry command. Ac-
cording to the SCSI specification, this data comprises the manufacturer’s ID, device model
number, and device revision level. A sample screen is shown in Figure 10-11.

Figure 10-11.  SCSI Devices Screen

        PowerPC 603/604 Reference Board System Firmware        
        (C) Copyright 1994 IBM Corp. All Rights Reserved.        
                                        
                                        
                 SCSI Devices                 
                                        
                                        
                                        
SCSI Device 0    None                         
SCSI Device 1    None                         
SCSI Device 2    None                         
SCSI Device 3    None                         
SCSI Device 4    None                         
SCSI Device 5    None                         
SCSI Device 6    IBM MXT-540SL H                    
                                        
Previous Menu                               

                                        
                                        
                                        
                                        
                                        
                                        
Press ↑ ↓  to select item                           
Press Enter to perform action
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Set Boot Devices
The boot devices menu allows the user to select which devices are queried for boot images
and in what order they are selected for boot. Allowable selections are one of the two floppy
disk drives, any of six SCSI drive ID numbers, either of two IDE disk drives, or no device
selected. The default configuration is shown in Figure 10-12. In this configuration, the sys-
tem will attempt to find a boot image on the first floppy disk drive. If this fails, the system
will attempt to boot from the SCSI device programmed to SCSI ID 6. If this fails, the system
will attempt to boot from IDE drive zero (master).

Figure 10-12.  Boot Devices Screen

        PowerPC 603/604 Reference Board System Firmware        
        (C) Copyright 1994 IBM Corp. All Rights Reserved.        
                                        
                                        
               Boot Device Selection               
                                        
                                        
                                        
Set Boot Device 1    [Floppy 1   ]                  
Set Boot Device 2    [SCSI ID 6  ]                  
Set Boot Device 3    [IDE Drive 0 ]                  
Set Boot Device 4    [None     ]                  
                                        
Go to Previous Menu                            
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        

Press ↑  ↓  to select item                           
Press ← → to change item

If the system fails to find a valid boot image (as discussed in Section 10.3) on any of the
selected boot devices, or if no boot device is selected, the user will be prompted to enter
the configuration menu to select a valid boot device.

Any changes made in boot device selection is saved when the Save and Exit option on the
main menu is selected. Exiting the system configuration utility in any other manner will
cause boot device changes to be lost.
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Set Date and Time
The set date and time screen allows the date and time stored in the battery-backed real
time clock to be updated. The screen is shown in Figure 10-13. To change the time, the left
and right arrow keys are used to select the digit to modify, and the digit is then typed over
with the number keys. The date or time will be updated when Enter or either the up or down
arrow is pressed. Changing the date or time is immediate, and is not affected by either the
Save and Exit or Exit Without Saving options on the main menu.

Figure 10-13.  Set Date and Time Screen

        PowerPC 603/604 Reference Board System Firmware        
        (C) Copyright 1994 IBM Corp. All Rights Reserved.        
                                        
                                        
                Set Date and Time                
                                        
                                        
                                        
Set Date  [03/01/94]                           
Set Time  [11:30:00]                           
                                        
Go to Previous Menu                            
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        

                                        
Press ↑ ↓  to select item                           
Enter data at cursor
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10.4.3.2 Run a Program
The Run a Program option on the main menu loads and executes a program from a FAT
(DOS) disk or from a CD-ROM in ISO-9660 format. The program is loaded at location
0x00400000 (4 MB) and control is passed with a branch to the first address.

All boot devices specified in the Boot Devices Menu will be searched in order for FAT and
CD-ROM file systems, and the first matching file on a boot device will be loaded.

The Run a Program screen is shown in Figure 10-14. To run a program, enter the file name
in the Specify Program Filename field and select the Run the Program option.

Figure 10-14.  Run a Program Screen

        PowerPC 603/604 Reference Board System Firmware     
       (C) Copyright 1994 IBM Corp. All Rights Reserved.  
                                        
                                        
                           Run a Program
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10.4.3.3 Reprogram Flash Memory
The PowerPC 603/604 reference board stores its system firmware in a reprogrammable
flash memory on the system board. The reprogram flash memory option on the main menu
allows the reprogramming of the flash device with a DOS-formatted diskette. This allows
future revisions of the system firmware to be provided on diskette without the need for re-
moval of the device from the board.

If done improperly, reprogramming the flash memory can cause the system to become un-
usable until external means are available to reprogram the device. Use this option with
care.

All boot devices specified in the Boot Devices Menu will be searched in order for FAT and
CD-ROM file systems, and the first matching file on a boot device will be loaded.

The Reprogram the Flash Memory screen is shown in Figure 10-15. To reprogram the
flash, enter the file name in the Specify Image Filename field and select the Reprogram the
Memory option.

Figure 10-15.  Reprogram the Flash Memory Screen
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10.4.3.4 Exit Options
The two exit options at the bottom of the main menu leave the system configuration utility.
The two options are:

� Save and Exit Saves any changes made in the Configure I/O Devices and Set
Boot Devices screens, and restarts the system.

� Exit without Saving Proceeds with the boot process as if the configuration utility
had not been entered. Any changes made in Configure I/O De-
vices or Set Boot Devices are lost.

10.4.4 Default Configuration Values
When the PowerPC 603/604 reference board is shipped from the factory, it has the follow-
ing default configuration:

� Console Device S3 Video / Keyboard
� Serial Port 1 9600 Baud
� Serial Port 2 9600 Baud
� Boot Devices Device 1 - Floppy 1

Device 2 - SCSI ID 6
Device 3 - IDE Drive 0

These default values also take effect whenever the system configuration in system nonvol-
atile RAM becomes corrupted.
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Section 11
Endian Mode Considerations
Data represented in memory or media storage is said to be in big endian (BE) order when
the most significant byte is stored at the lowest numbered address, and less significant by-
tes are at successively higher numbered addresses.

Data is stored in little endian (LE) order when it is stored with the order of bytes reversed
from that of BE order. In other words, the most significant byte is stored at the highest num-
bered address. The endian ordering of data never extends past an 8-byte group of storage.

The 100 MHz PPC 603e MCM normally operates with big endian (BE) byte significance,
which is the native mode of the PowerPC 603e CPU. Internally, the CPU always operates
with big endian addresses, data, and instructions, which is ideal for operating systems such
as  AIX�, which store data in memory and on media in big endian byte significance. In BE
mode, neither the CPU nor the 660 Bridge perform address or data byte lane manipulations
that are due to the endian mode. Addresses and data pass ’straight through’ the CPU bus
interface and the 660.

The CPU also features a mode of operation designed to efficiently process code and oper-
ating systems such as WindowsNT�, which store data in memory and on media in LE byte
significance. The MCM also supports this mode of operation.

When the MCM is in little endian mode, data is stored in memory with LE ordering. The 660
has hardware to select the proper bytes in the memory and on the PCI bus (via address
transforms), and to steer the data to the correct CPU data lane (via a data byte lane swap-
per). Also, see the 603e CPU and 660 Bridge User’s Manuals.

Table 11-1 summarizes the operation of the MCM in the two different modes.

Table 11-1.  Endian Mode Operations
Mode What the 603e Does What the 660 Does

Big Endian (BE) No munge, no shift No unmunge, no swap

Little Endian (LE) Address Munged & Data Shifted Address Unmunged & Data Swapped

In BE mode, the CPU emits the address unchanged, and does not shift the data. This is
the native mode of the 603e CPU. In BE mode, the 660 passes the address and data
through to the target without any changes (that are due to endian mode).

In LE mode, the CPU transforms (munges) the three least significant address bits, and
shifts the data on the byte lanes to match the munged address. In LE mode, the 660 un-
munges the address and swaps the data on the byte lanes.
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11.1 What the 603e CPU Does

11.1.1 The 603e Address Munge
The 603e CPU assumes that the significance of memory is BE. When it operates in LE
mode, it internally generates the same effective address as the LE code would generate.
Since it assumes that the memory is stored with BE significance, it transforms (munges)
the three low order addresses when it activates the address pins. For example, in the 1-byte
transfer case, address 7 is munged to 0, 6 to 1, 5 to 2, and so on. Table 11-2 shows the
address transform rules for the allowed LE mode transfer sizes.

Table 11-2.  603e LE Mode Address Transform
Transfer Size Address Transform

8 None

4 Physical Address[29:31] XOR 100 => A[29:31]

2 Physical Address[29:31] XOR 110 => A[29:31]

1 Physical Address[29:31] XOR 111 => A[29:31]

11.1.2 The 603e Data Shift
The data transfer occurs on the byte lanes identified by the address pins and transfer size
(TSIZ) pins in either BE or LE mode. In LE mode, the CPU shifts the data from the byte lanes
pointed to by the unmunged address, over to the byte lanes pointed to by the munged ad-
dress. This shift is linear in that it does not rotate or alter the order of the bytes, which are
now in the proper set of byte lanes. Note that the individual bytes are still in BE order.

11.2 What the 660 Bridge Does
While the MCM is operating properly, data is stored in system memory in the same endian
mode as the mode in which the CPU operates. That is, the byte significance in memory is
BE in BE mode and it is LE in LE mode. Because of this, hardware is included in the 660
that (in LE mode) will swap the data bytes to the correct byte lanes, and that will transform
(or un-munge) the address coming from the 603e.

11.2.1 The 660 Bridge Address Unmunge
In LE mode, the 660 unmunges address lines A[29:31]. This unmunge merely applies the
same XOR transformation to the three low-order address lines as did the CPU. This effec-
tively reverses the effect of the munge that occurs within the CPU. For example, if the CPU
executes a one-byte load coded to access byte 0 of memory in LE mode, it will munge its
internal address and emit address A[29:31] = 7h. The 660 will then unmunge the 7 on
A[29:31] back to 0, and use this address to access memory.

11.2.2 The 660 Bridge Data Swapper
The 660 contains a byte swapper. As shown in Figure 11-1, the byte swapper is placed be-
tween the CPU data bus and the memory and PCI data busses. This allows the byte lanes
to be swapped between the CPU bus and the PCI bus, or between the CPU bus and
memory, but not between the PCI bus and memory. Thus, when a PCI busmaster accesses
memory, the MCM does not change either the address or the data location to adjust for en-
dian mode. In either mode, data is stored or fetched from memory at the address presented
on the PCI bus.
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The 660 cannot tell the endian mode of the CPU directly, and so cannot automatically
change endian mode to match the CPU. There is a control bit located in ISA I/O space (port
0092) that the CPU can write to in order to set the endian mode of the motherboard.

Figure 11-1.  Endian Mode Block Diagram

1=DO,0=PASS

Byte Swap
and

UnmungeCPU

Memory

PCI Bus

Port 92

Address

Data

LE Mode Bit

In BE mode, the 660 byte swapper is off, and data passes through it with no changes. In
LE mode, the byte swapper is on, and the order of the byte lanes is rotated (swapped) about
the center. As shown in Table 11-3, the data on CPU byte lane 0 is steered to memory byte
lane 7, the data on CPU byte lane 1 is steered to memory byte lane 6, and so on. During
reads, the data flows in the opposite direction over the same paths.

Table 11-3.  660 Bridge Endian Mode Byte Lane Steering
CPU Byte Lane BE Mode Connection LE Mode Connection

CPU byte lane 0 (MSB) Memory byte lane 0,  PCI lane 0 Memory byte lane 7,  PCI lane 7*

CPU byte lane 1 Memory byte lane 1,  PCI lane 1 Memory Byte lane 6,  PCI lane 6*

CPU byte lane 2 Memory byte lane 2,  PCI lane 2 Memory byte lane 5,  PCI lane 5*

CPU byte lane 3 Memory byte lane 3,  PCI lane 3 Memory byte lane 4,  PCI lane 4*

CPU byte lane 4 Memory byte lane 4,  PCI lane 4* Memory byte lane 3,  PCI lane 3

CPU byte lane 5 Memory byte lane 5,  PCI lane 5* Memory byte lane 2,  PCI lane 2

CPU byte lane 6 Memory byte lane 6,  PCI lane 6* Memory byte lane 1,  PCI lane 1

CPU byte lane 7 (LSB) Memory byte lane 7,  PCI lane 7* Memory byte lane 0,  PCI lane 0

Note:  * In this table, PCI byte lanes 3:0 refer to the data bytes associated with PCI_C/BE[3:0]# when the third least
significant bit of the target PCI address (PCI_AD[29]) is 0, as coded in the instruction. PCI byte lanes [7:4] refer to the
data bytes associated with PCI_C/BE[3:0]# when PCI_AD[29] is a 1.



PreliminarySection 11 — Endian

11–4 G5220297-00

11.3 Bit Ordering Within Bytes
The LE convention of numbering bits is followed for the memory and PCI busses, and the
CPU busses are labeled in BE nomenclature. The various busses are connected to the 660
with their (traditional) native significance maintained (BE for CPU, and LE for PCI and
memory), so that MSb connects to MSb and so on. The bit paths between the CPU and
memory data busses are shown in Table 11-4 for both BE and LE mode operation.

Table 11-4.  660 Bit Transfer

CPU_DATA[ ] BE Mode
MEM_DATA[ ]

LE Mode
MEM_DATA[ ]

0 7 63

1 6 62

2 5 61

3 4 60

4 3 59

5 2 58

6 1 57

7 0 56

8 15 55

9 14 54

10 13 53

11 12 52

12 11 51

13 10 50

14 9 49

15 8 48

16 23 47

17 22 46

18 21 45

19 20 44

20 19 43

21 18 42

22 17 41

23 16 40

24 31 39

25 30 38

26 29 37

27 28 36

28 27 35

29 26 34

30 25 33

31 24 32

CPU_DATA[ ] BE Mode
MEM_DATA[ ]

LE Mode
MEM_DATA[ ]

32 39 31

33 38 30

34 37 29

35 36 28

36 35 27

37 34 26

38 33 25

39 32 24

40 47 23

41 46 22

42 45 21

43 44 20

44 43 19

45 42 18

46 41 17

47 40 16

48 55 15

49 54 14

50 53 13

51 52 12

52 51 11

53 50 10

54 49 9

55 48 8

56 63 7

57 62 6

58 61 5

59 60 4

60 59 3

61 58 2

62 57 1

63 56 0
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11.4 Byte Swap Instructions
The Power PC architecture defines both word and halfword load/store instructions that
have byte swapping capability. Programmers will find these instructions valuable for deal-
ing with the BE nature of this architecture. For example, if a 32-bit configuration register
of a typical LE PCI device is read in BE mode, the bytes will appear out of order unless the
”load word with byte swap” instruction is used. The byte swap instructions are:

� lhbrx (load half word byte-reverse indexed)

� lwbrx (load word byte-reverse indexed)

� sthbrx (store half word byte-reverse indexed)

� stwbrx (store word byte-reverse indexed)

The byte-reverse instructions should be used in BE mode to access LE devices and in LE
mode to access BE devices.

11.5 603e CPU Alignment Exceptions In LE Mode
The CPU does not support a number of instructions and data alignments in the LE mode
that it supports in BE mode. When it encounters an unsupportable situation, it takes an in-
ternal alignment exception (machine check) and does not produce an external bus cycle.
See the latest 603e CPU documentation for details. Examples include:

� LMW instruction

� STMW instruction

� Move assist instructions (LSWI, LSWX, STSWI, STWX)

� Unaligned loads and stores.
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11.6 Single-Byte Transfers
Figure 11-2 is an example of byte write data a at address xxxx xxx0.

Figure 11-2.  Example at Address xxxx xxx0
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Figure 11-3.  Example at Address xxxx xxx2
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Figure 11-3 is an example of byte write data a at address xxxx xxx2.

For single byte accesses to memory in BE mode, Table 11-5 applies.

Table 11-5.  Memory in BE Mode
 603e          603e    BYTE     BYTE    MEM BYTE     CAS

 A31 30 29      add     LANE    LANE*    LANE      ACTIVE

 0  0  0       0       0  MSB   0        0           0

 1  0  0       1       1        1        1           1

 0  1  0       2       2        2        2           2

 1  1  0       3       3        3        3           3

 0  0  1       4       4        4        4           4

 1  0  1       5       5        5        5           5

 0  1  1       6       6        6        6           6

 1  1  1       7       7  LSB   7        7           7

      NOT MUNGED                             SWAP      NOT UNMUNGED
                             OFF

Note: * At the CPU side.
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For single byte accesses to memory in LE mode, Table 11-6 applies.

Table 11-6.  Memory in LE Mode
                            663

   603e         603e    BYTE  BYTE     MEM BYTE    CAS

   A31  30 29     add     LANE  LANE*      LANE     ACTIVE

 0   0  0       0       0 MSB 0          7        7

 1   0  0       1       1     1          6        6

 0   1  0       2       2     2          5        5

 1   1  0       3       3     3          4        4

 0   0  1       4       4     4          3        3

 1   0  1       5       5     5          2        2

 0   1  1       6       6     6          1        1

 1   1  1       7       7 LSB 7          0        0

       MUNGED                              SWAP    UNMUNGED
             ON

Note: * At the CPU side.

For single byte accesses to PCI in BE mode, Table 11-7 applies.

Table 11-7.  PCI in BE Mode

 603e      603e     BYTE BYTE      PCI BYTE      A/D**   BE#

 A31 30 29     add      LANE LANE       LANE         2 1 0   3 2 1 0

                                                (0=active byte enable)

 0  0  0      0       0 MSB 0         0           0 0 0   1 1 1 0

 1  0  0      1       1     1         1           0 0 1   1 1 0 1

 0  1  0      2       2     2         2           0 1 0   1 0 1 1

 1  1  0      3       3     3         3           0 1 1   0 1 1 1

 0  0  1      4       4     4         0           1 0 0   1 1 1 0

 1  0  1      5       5     5         1           1 0 1   1 1 0 1

 0  1  1      6       6     6         2           1 1 0   1 0 1 1

 1  1  1      7       7 LSB 7         3           1 1 1   0 1 1 1

   NOT MUNGED                       SWAP           NOT UNMUNGED
              OFF

Note: ** AD[0:1] set to 00 for all PCI transactions except I/O cycles.
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For single byte accesses to PCI in LE mode, Table 11-8 applies.

Table 11-8.  PCI in LE Mode

                            663*

  603e       603e    BYTE  BYTE    PCI BYTE      A/D **    BE#

 A31 30 29     add     LANE  LANE     LANE        2 1 0     3 2 1 0

                                                (0=active byte enable)

 0   0  0      0       0 MSB 0        3          1 1 1     0 1 1 1

 1   0  0      1       1     1        2          1 1 0     1 0 1 1

 0   1  0      2       2     2        1          1 0 1     1 1 0 1

 1   1  0      3       3     3        0          1 0 0     1 1 1 0

 0   0  1      4       4     4        3          0 1 1     0 1 1 1

 1   0  1      5       5     5        2          0 1 0     1 0 1 1

 0   1  1      6       6     6        1          0 0 1     1 1 0 1

 1   1  1      7       7 LSB 7        0          0 0 0     1 1 1 0

MUNGED                           SWAP             UNMUNGED
              ON

Notes:
*At the CPU side.
**AD[0:1] set to 00 for all PCI transactions except I/O cycles.



PreliminarySection 11 — Endian

11–10 G5220297-00

11.7 Two-Byte Transfers
Figure 11-4 gives an example of double byte write data ab at address xxxx xxx0.

Figure 11-4.  Double Byte Write Data ab at Address xxxx xxx0
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Table 11-9 and Table 11-10 illustrate all cases that can occur. The columns of Table 11-9
have these meanings:

� The first column indicates target address (e.g. the address of the byte coded into
a store half-word instruction).

� The next two columns show the state of the address pins for BE mode.

� The next two columns show the state of the address pins for the same target data
when the machine is in LE mode.

� The remaining columns show the CASs and the PCI byte enables associated with
the target data.

� The notes indicate which combinations either do not occur at the pins because of
internal exceptions, or are not supported externally.
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For 2-byte transfers, Table 11-9 holds:

Table 11-9.  Two Byte Transfer Information
PROG     BE MODE         LE MODE      BE OR LE    BE OR LE     BE OR LE

 TARG   603e      BE     (x or w 110)   Target     CAS# 0:7     PCI CBE#

ADDR    add    a29:31     Add a29:31     bytes     0      7    AD2 3210

 0      0      000       6   110       0–1       0011 1111    0   1100

 1      1      001       7 E 111       1–2     E 1001 1111    0 E 1001

 2      2      010       4   100       2–3       1100 1111    0   0011

 3      3      011       5 E 101       3–4     E 1110 0111    1 E PPPP

 4      4      100       2   010       4–5       1111 0011    1   1100

 5      5      101       3 E 011       5–6     E 1111 1001    1 E 1001

 6      6      110       0   000       6–7       1111 1100    1   0011

 7      N      NNN       1 E 001       NNN     E NNNN NNNN    N E NNNN

Notes:  
N= not emitted by 60X because it crosses 8 bytes (transforms to 2 singles in BE, machine CH in LE) 
P= not allowed on PCI (crosses 4 bytes) 
E= causes exception (does not come out on 603e bus) in LE mode

Table 11-10 contains the same information as found in Table 11-9, but it is arranged to show
the CAS and PCI byte enables that activate as a function of the address presented at the
pins of the 603e and as a function of BE/LE mode.

Table 11-10.  Rearranged Two-Byte Transfer Information
2 BYTE XFERS         BE           BE          LE            LE

60X ADDRESS PINS   CAS#0:7     PCI CBE#     CAS#0:7      PCI  CBE#

                0       7    A2  3210      0      7      AD2  3210

0  000           0011  1111    0   1100     1111 1100    1    0011

1  001           1001  1111    0   1001   E NNNN NNNN    N  E NNNN

2  010           1100  1111    0   0011     1111 0011    1    1100

3  011           1110  0111    0   PPPP   E 1111 1001    1  E 1001

4  100           1111  0011    1   1100     1100 1111    0    0011

5  101           1111  1001    1   1001   E 1110 0111E   0  E PPPP

6  110           1111  1100    1   0011     0011 1111    0    1100

7  111           NNNN  NNNN    N   NNNN   E 1001 1111E   0  E 1001

Notes:
N= not emitted by 60X because it crosses 8 bytes (transforms to 2 singles in BE, machine CH in LE) 
P= not allowed on PCI (crosses 4 bytes) 
E= causes exception (does not come out on 603e bus) in LE mode
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11.8 Four-Byte Transfers
Figure 11-5 gives an example of Word (4-BYTE) Write of 0a0b0c0dh AT ADDRESS xxxx
xxx4.

Figure 11-5.  Word (4-Byte) Write of 0a0b0c0dh at Address xxxx xxx4
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Table 11-11 and Table 11-12 illustrate the cases that can occur. The columns of Table 11-11
have these meanings:

� The first column indicates the target address (e.g. the address of the byte coded into
a store word instruction).

� The next two columns show the state of the address pins for BE mode.

� The next two columns show the state of the address pins for the same target data
when the machine is in LE mode.

� The remaining columns show the CASs and the PCI byte enables associated with
the target data.

� The notes indicate which combinations either do not occur at the 603e pins because
of internal exceptions, or are not supported externally.

Table 11-11.  Four-Byte Transfer Information
PROG      BE MODE       LE MODE      BE OR LE     BE OR LE       BE OR LE

TARG      603e BE     (x or w 100)    Target      CAS# 0:7       PCI CBE#

ADDR     add  a29:31   add a29:31      bytes      0       7     AD2 3210

 0        0   000      4   100        0–3        0000 1111      0   0000

 1        1   001      5  E 101       1–4      E 1000 0111      0 E PPPP

 2        2   010      6  E 110       2–5      E 1100 0011      0 E PPPP

 3        3   011      7  E 111       3–6      E 1110 0001      1 E PPPP

 4        4   100      0   000        4–7        1111 0000      1   0000

 5        5   NNN      1  E NNN       N–N        NNNN NNNN      1 E NNNN

 6        6   NNN      2  E NNN       N–N        NNNN NNNN      1 E NNNN

 7        7   NNN      3  E NNN       N–N        NNNN NNNN      1 E NNNN

Notes:
N= not emitted by 60X because it crosses 8 bytes (transformed into 2 bus cycles) 
P= not allowed on PCI (crosses 4 bytes) 
E= causes exception (does not come out on 603e bus) in LE mode
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Table 11-12 contains the same information as found in Table 11-11, but it is arranged to
show the CAS and PCI byte enables that activate as a function of the address presented
at the pins of the 603e and as a function of BE/LE mode.

Rearranging Table 11-12 for 4-byte transfers:

Table 11-12.  Rearranged Four-Byte Transfer Information
4 BYTE XFERS        BE            BE          LE            LE

60X ADDRESS PINS   CAS#0:7      PCI CBE#      CAS#0:7    PCI CBE#

                  0      7      A2  3210       0       7    AD2  3210

 0  000           0000 1111      0   0000      1111 0000    0   0000

 1  001           1000 0111      0   PPPP    E NNNN NNNN    0 E NNNN

 2  010           1100 0011      0   PPPP    E NNNN NNNN    0 E NNNN

 3  011           1110 0001      0   PPPP    E NNNN NNNN      E NNNN

 4  100           1111 0000      1   0000      0000 1111    1   0000

 5  101           NNNN NNNN      1   NNNN    E 1000 0111    1 E PPPP

 6  110           NNNN NNNN      1   NNNN    E 1100 0011    1 E PPPP

 7  111           NNNN NNNN      1   NNNN    E 1110 0001    1 E PPPP

Notes:
N= not emitted by 60X because it crosses 8 bytes (transformed into 2 bus cycles) 
P= not allowed on PCI (crosses 4 bytes) 
E= causes exception (does not come out on 603e bus) in LE mode
X= not supported in memory controller (crosses 4-byte boundary

11.9 Three byte Transfers
There are no explicit Load/Store three-byte instructions; however, three-byte transfers oc-
cur as a result of unaligned four-byte loads and stores as well as a result of move multiple
and string instructions.

The TSIZ=3 transfers with address pins = 0, 1, 2, 3, 4, or 5 may occur in BE. All of the other
TSIZ and address combinations produced by move multiple and string operations are the
same as those produced by aligned or unaligned word and half-word loads and stores.

Since move multiples, strings, and unaligned transfers cause machine checks in LE mode,
they are not of concern in the BE design.
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11.10 Instruction Fetches and Endian Modes
Most instruction fetching is with cache on. Therefore memory is fetched eight bytes wide.
Figure 11-6 shows the instruction alignment.

Example: 8 byte instruction fetch I1=abcd, I2=efgh at address xxxx xxx0 

Figure 11-6.  Instruction Alignment Example
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It is possible to fetch instructions with 4 byte aligned transfers when the cache is turned off.
In that case, the 603e does not munge the address in LE mode. The memory controller
does not differentiate between instruction and data fetches, but the unmunger is ineffective
because the memory is always read 8 byte wide, and data is presented on all 8 byte lanes.
If the unmunger were used, the wrong instruction would be read. The net result is illustrated
in Figure 11-7.

Example: 4 byte instruction fetch, I2=efgh at address xxxx xxx4 

Figure 11-7.  Wrong Instruction Read When Unmunger is used
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11.11 Changing BE/LE Mode 
There are two BE/LE mode controls. One is inside the 603e CPU and the other is a register
bit on the motherboard. The 603e CPU interior mode is not visible to the motherboard hard-
ware. The BE mode bit referred to in this document is the register bit on the motherboard.
It is a bit in I/O space which is memory mapped just like other I/O registers. It defaults to
BE mode.

The 603e CPU always powers up in the BE mode and begins fetching to fill its cache. Con-
sequently, at least the first of the ROM code must be BE code. It is beyond the scope of
this document to define how the system will know to switch to LE mode; however, great care
must be made during the switch in order to synchronize the internal and external mode bits,
to flush all caches, and to avoid executing extraneous code.

The following process switches the system from BE to LE mode when used in this system:

1. Disable L1 caching.
2. Disable L2 caching.
3. Flush all system caches.
4. Turn off interrupts immediately after a timer tick so no timer interrupts will occur dur-

ing the next set of cycles.
5. Mask all interrupts.
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6. Set the CPU state and the motherboard to LE (see Figure 11-8). Note that CPU is
now in LE mode. All instructions must be in LE order.

7. Put interrupt handlers and CPU data structures in LE format.
8. Enable caches.
9. Enable Interrupts.
10.Start the LE operating system initialization.

Figure 11-8 shows the instruction stream to switch endian modes.

Figure 11-8.  Instruction Stream to Switch Endian Modes

x mfspr R2,1008 ;Load the HDO register

;Instructions to set the Little-Endian bit in R2

0 sync

4 sync

8 sync

C mtspr 1008,R2 ;Moves to HID0 register

10 sync

14 sync

18 sync

1c sync

20 Store to external Endian control port (X8000 0092)

;The above instruction must be on a double word boundary

;So the following instruction is executed first (due to pipeline)

24 eieio

; To this point all instructions are in Big Endian format

; The following instructions look the same in either Endian mode

28 X38010138

2C X38010138

... ;Enough of these instructions must be executed

... ;to guarantee the above store has occurred.

;

;before any memory or I/O cycles are listed.

xx X38010138
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11.12 Summary of Bi-Endian Operation and Notes
� When the 603e CPU is in BE mode, the memory is in BE mode, and data flowing

on the PCI is in BE order so that it is recorded on the media in BE order. Byte 0 is
the most significant byte.

� When the 603e CPU is in LE mode, the memory is in LE mode, and data flowing on
the PCI is in LE order so that it is recorded on the media in LE order. Byte 0 is the
least significant byte.

� The PCI bus is addressed in the same manner that memory is when the 603e CPU
runs a cycle. The unmunging in LE mode changes the effective low-order address
bits (the byte enables and A/D 2). On all but I/O cycles, the two low-order A/D lines
are set to zero. On PCI I/O cycles, A/D 1,0 are also transformed by the unmunge
operation

� No translations are made when PCI accesses memory so that the byte with address
0 on the PCI flows to byte 0 in memory — 1 to 1, 2 to 2, and so on. For example,
if BE0# and BE1# are active and A/D 2 is a 0, then memory byte lanes 0 and 1 are
addressed (cas 0 and cas 1 active on writes).

� Note that the LE devices which interpret data structures in the memory require that
their control data be arranged in LE order even in BE mode. For example, SCSI
scripts in memory must always be arranged in LE order because that is what the
device expects.

� Devices such as video may require the bytes to be swapped unless these devices
have byte swap capability.
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Section 12
Electromechanical

12.1 MCM Electrical
The electrical characteristics of the MCM IOs are obtained by reference to the electrical
characteristics of the individual devices to which a given IO is connected. The ratings of the
MCM IOs, including the package effects, are better than or equal to the ratings of the indi-
vidual devices. Please refer to the appropriate sections in the following documents:
� IBM27-82660 User’s Manual
� PowerPC 603e (PID6–603e) Hardware Specifications
� TI 74LVT16245 Data Sheet
� IBM IBM041814 SRAM Data Sheet
� IDT IDT71216 TagRAM Data Sheet
� Motorola MPC970 Data Sheet.

The conditions under which the MCM operates must not exceed the Absolute Maximum
Ratings of any of the individual devices.

The AC and DC Electrical Specifications, and Timing Specifications of each IO is affected
by the combined characteristics of the devices that are attached to that net. For example,
the characteristics of the PCI_AD lines are the sum of the characteristics of the 663 and
the 664. The characteristics of the memory lines are those stated in the 660 User’s Manual.
The characteristics of the CPU bus lines are the sum of the characteristics of all of the at-
tached devices.

For the specifications in the individual documents to apply, the MCM must be operated with-
in the Recommended Operating Conditions of each of the individual devices.
12.1.1 AC Electrical Characteristics
The single-chip module (SCM) data sheets for the die packaged in the MCM are contained
in Appendix G. As a first approximation, it is accurate to use AC characteristics  (setup and
hold) specifications from the SCM data sheets when doing a system timing analysis of the
MCM. The MCM package contains both the semiconductiors and the wiring network inter-
connecting them.
Overall, a system timing budget is much improved by the density of the wiring; however,
when referenced from the package I/O, MCM AC characteristics differ (in theory) from
those listed in the SCM data sheets. Actually, such differences are less than 0.5 nanosec-
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onds due to the short net lengths in the MCM ceramic substrate and to the extremely small
paracitic capacitances of flip chip packaging.

In order to adjust SCM AC characteristics to values appropriate to the MCM package, sub-
tract out the SCM package delay component of a timing parameter then add back in the
corresponding delay for the MCM.

Example//??//

Package modeling information that allows such an analysis is found in Section 12.1.2. Note
that the dynamic interfaces between the MCM and a system planar consist of the PCI port
and the system memory port. Both interfaces are contained within the 660 bridge compo-
nents. For this reason, only a paper model of the 660 SCM package is included here for
use in package delay comparison.

12.1.2 SCM Package Delay Modeling
Figure 12-1 is a paper electrical model of the quad flatpack package that houses the 660
bridge die. Typical delays attributed to this package are //??// nanoseconds.

Figure 12-1.  QFP Package

12.1.3 MCM Package Delay Modeling
To provide information needed to correctly model the MCM package, a paper model of the
MCM package has been included in Figure 12-1. In this model, a transmission line is used
to model the effects of a net trace in ceramic. The length of this transmission line is different
for each signal that is considered. Refer to Table 12-1 for a listing of the net lengths for all
MCM signals to which the user is expected to interface.
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12.1.4 MCM Net Electrical Model
Figure 12-1 shows a typical electrical model of the major nets on the MCM. This model ap-
plies to the PCI, DRAM, and clock net groups. The segment labeled C shows the effects
of the chip IO pad. The Redistribution segment shows the effects of the redistribution meta-
lization that is added to the chips to produce flip-chips. The Ceramic Vias segments show
the effects of vias in the MCM ceramic substrate. The Routed Signal segment shows the
effects of trace lengths in the ceramic. The Solder Column segment shows the effects of
the solder columns. For net lengths see Table 12-1.

Figure 12-1.  MCM Net Electrical Model
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Table 12-1.  MCM Primary I/O  
Net Length Type Name Net Topology

63.0000 pci PCI_AD0 J1.T01 U2.48 U3.236

44.2500 pci PCI_AD1 J1.R01 U2.59 U3.237

50.6036 pci PCI_AD2 J1.R02 U2.46 U3.238

47.5000 pci PCI_AD3 J1.P01 U2.43 U3.239

42.1036 pci PCI_AD4 J1.N02 U2.42 U3.10

41.0000 pci PCI_AD5 J1.M01 U2.41 U3.11

42.3536 pci PCI_AD6 J1.L01 U2.40 U3.12

39.9571 pci PCI_AD7 J1.L02 U2.39 U3.13

40.1036 pci PCI_AD8 J1.K01 U2.38 U3.14

49.7500 pci PCI_AD9 J1.J01 U2.37 U3.15

58.8536 pci PCI_PAR J1.AH01 U2.7

40.1036 pci PCI_AD10 J1.H01 U2.36 U3.16

46.9571 pci PCI_AD11 J1.G01 U2.35 U3.17

36.1036 pci PCI_AD12 J1.G02 U2.34 U3.18

55.0000 pci PCI_AD13 J1.F01 U2.33 U3.19

39.8536 pci PCI_AD14 J1.E01 U2.32 U3.20

46.9571 pci PCI_AD15 J1.E02 U2.31 U3.21

47.9571 pci PCI_AD16 J1.D01 U2.30 U3.40

48.6036 pci PCI_AD17 J1.C02 U2.29 U3.41

44.2500 pci PCI_AD18 J1.B03 U2.28 U3.42

47.5000 pci PCI_AD19 J1.C04 U2.25 U3.43

50.6036 pci PCI_AD20 J1.A03 U2.24 U3.44

49.4571 pci PCI_AD21 J1.A04 U2.23 U3.45

46.8536 pci PCI_AD22 J1.B05 U2.22 U3.46

51.0000 pci PCI_AD23 J1.A05 U2.21 U3.47

41.3536 pci PCI_AD24 J1.A06 U2.20 U3.48

44.2071 pci PCI_AD25 J1.B07 U2.19 U3.49

47.6036 pci PCI_AD26 J1.A07 U2.18 U3.50

47.6036 pci PCI_AD27 J1.A08 U2.15 U3.51

46.4571 pci PCI_AD28 J1.B09 U2.14 U3.62

43.7500 pci PCI_AD29 J1.A09 U2.13 U3.63

47.5000 pci PCI_AD30 J1.A10 U2.12 U3.64

42.2071 pci PCI_AD31 J1.C10 U2.11 U3.65

73.5000 pci PCI_IRDY# J1.AB01 U2.201 U3.167

49.1036 pci PCI_LOCK# J1.AE02 U2.53

72.6036 pci PCI_PERR# J1.U01 U2.10

52.8536 pci PCI_SERR# J1.U02 U2.71

56.1036 pci PCI_STOP# J1.AA01 U2.203

64.9571 pci PCI_TRDY# J1.AC02 U2.202 U3.168

44.3536 pci PCI_AD_OE# J1.N14 U2.195 U3.144

46.1036 pci PCI_C/BE0# J1.V01 U2.6

53.6036 pci PCI_C/BE1# J1.W02 U2.5

48.2071 pci PCI_C/BE2# J1.W01 U2.4

49.2500 pci PCI_C/BE3# J1.Y01 U2.3

12.5000 pci PCI_CLK_IN J1.K29 U2.123

54.3536 pci PCI_DEVSEL# J1.AA02 U2.204
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Table 12-1.  MCM Primary I/O (Continued)
Net Length Net TopologyNameType

41.6036 pci PCI_EXT_SEL J1.U14 U2.67 U3.153

62.2071 pci PCI_OL_OPEN J1.W14 U2.64 U3.165

50.2071 pci PCI_OUT_SEL J1.R14 U2.68 U3.169

52.8536 pci 664_PCI_REQ# J1.AF01 U2.58

55.5000 pci PCI_FRAME_664# J1.AC01 U2.200

42.2500 memory MA0 J1.AL20 U2.190

20.2500 memory MA1 J1.AL22 U2.189

36.3536 memory MA2 J1.AL24 U2.188

36.0000 memory MA3 J1.AL26 U2.187

32.7500 memory MA4 J1.AL28 U2.186

32.3536 memory MA5 J1.AL30 U2.185

31.1036 memory MA6 J1.AK31 U2.184

28.6036 memory MA7 J1.AH31 U2.181

29.8536 memory MA8 J1.AF31 U2.180

25.6036 memory MA9 J1.AD31 U2.179

39.8536 memory MD0 J1.AN03 U3.180

36.5000 memory MD1 J1.AM03 U3.182

45.7500 memory MD2 J1.AN04 U3.183

50.0000 memory MD3 J1.AN05 U3.184

54.5000 memory MD4 J1.AM05 U3.189

53.3536 memory MD5 J1.AN06 U3.190

53.2500 memory MD6 J1.AN07 U3.193

45.1036 memory MD7 J1.AM07 U3.194

39.5000 memory MD8 J1.AN09 U3.200

38.7500 memory MD9 J1.AM09 U3.201

22.5000 memory MA10 J1.AB31 U2.178

20.2500 memory MA11 J1.Y31 U2.177

35.0000 memory MDP0 J1.AN08 U3.141

43.2500 memory MDP1 J1.AN14 U3.122

48.6036 memory MDP2 J1.AN20 U3.103

52.0000 memory MDP3 J1.AN26 U3.82

58.2500 memory MDP4 J1.AL32 U3.37

65.5000 memory MDP5 J1.AE32 U3.234

61.0000 memory MDP6 J1.W32 U3.214

53.8536 memory MDP7 J1.N32 U3.195

54.1036 memory MD10 J1.AN10 U3.202

45.3536 memory MD11 J1.AN11 U3.203

41.2500 memory MD12 J1.AM11 U3.206

42.7500 memory MD13 J1.AN12 U3.211

43.1036 memory MD14 J1.AN13 U3.212

44.3536 memory MD15 J1.AM13 U3.213

46.2500 memory MD16 J1.AN15 U3.215

65.8536 memory MD17 J1.AM15 U3.222

45.6036 memory MD18 J1.AN16 U3.223

47.2500 memory MD19 J1.AN17 U3.224

45.7500 memory MD20 J1.AM17 U3.225
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Table 12-1.  MCM Primary I/O (Continued)
Net Length Net TopologyNameType

51.3536 memory MD21 J1.AN18 U3.231

52.1036 memory MD22 J1.AN19 U3.232

70.2500 memory MD23 J1.AM19 U3.233

51.1036 memory MD24 J1.AN21 U3.5

48.5000 memory MD25 J1.AM21 U3.6

50.2500 memory MD26 J1.AN22 U3.7

50.5000 memory MD27 J1.AN23 U3.28

48.7500 memory MD28 J1.AM23 U3.29

52.6036 memory MD29 J1.AN24 U3.30

52.3536 memory MD30 J1.AN25 U3.35

50.0000 memory MD31 J1.AM25 U3.36

52.8536 memory MD32 J1.AN27 U3.58

50.1036 memory MD33 J1.AM27 U3.59

51.9571 memory MD34 J1.AN28 U3.60

54.2500 memory MD35 J1.AN29 U3.73

53.0000 memory MD36 J1.AM29 U3.74

56.8536 memory MD37 J1.AN30 U3.75

59.6036 memory MD38 J1.AN31 U3.76

56.2500 memory MD39 J1.AM31 U3.81

58.8536 memory MD40 J1.AL33 U3.83

57.7500 memory MD41 J1.AK33 U3.90

56.0000 memory MD42 J1.AJ32 U3.91

56.3536 memory MD43 J1.AJ33 U3.92

57.6036 memory MD44 J1.AH33 U3.93

54.2500 memory MD45 J1.AG32 U3.100

56.0000 memory MD46 J1.AG33 U3.101

54.3536 memory MD47 J1.AF33 U3.102

52.9571 memory MD48 J1.AE33 U3.108

54.5000 memory MD49 J1.AD33 U3.109

49.8536 memory MD50 J1.AC32 U3.111

51.1036 memory MD51 J1.AC33 U3.112

50.7500 memory MD52 J1.AB33 U3.113

50.2500 memory MD53 J1.AA32 U3.118

49.8536 memory MD54 J1.AA33 U3.119

54.5000 memory MD55 J1.Y33 U3.121

49.8536 memory MD56 J1.W33 U3.123

49.8536 memory MD57 J1.V33 U3.130

53.3536 memory MD58 J1.U32 U3.131

60.7500 memory MD59 J1.U33 U3.132

45.5000 memory MD60 J1.T33 U3.133

56.8536 memory MD61 J1.R32 U3.138

48.6036 memory MD62 J1.R33 U3.139

53.2500 memory MD63 J1.P33 U3.140

10.2500 memory MCE0# J1.L32 U2.174

10.5000 memory MCE1# J1.L33 U2.173

13.3536 memory MCE2# J1.K33 U2.172
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Table 12-1.  MCM Primary I/O (Continued)
Net Length Net TopologyNameType

6.6036 memory MCE3# J1.J32 U2.171

9.5000 memory MCE4# J1.J33 U2.170

7.5000 memory MCE5# J1.H33 U2.169

4.7500 memory MCE6# J1.G32 U2.168

7.5000 memory MCE7# J1.G33 U2.165

64.7500 memory MRE0# J1.AL04 U2.164

67.3536 memory MRE1# J1.AL06 U2.163

65.1036 memory MRE2# J1.AL08 U2.162

60.6036 memory MRE3# J1.AL10 U2.161

57.0000 memory MRE4# J1.AL12 U2.160

54.2500 memory MRE5# J1.AL14 U2.159

52.1036 memory MRE6# J1.AL16 U2.158

53.8536 memory MRE7# J1.AL18 U2.157

13.8536 memory MWE0# J1.M33 U2.176

12.6036 memory MWE1# J1.N33 U2.175

38.7950 funct. TEA# J1.N10 R1.D01 U1.154 U2.137

46.2857 funct. DRTRY# J1.AJ01 R1.H01 U1.156

19.2500 funct. ROM_OE# J1.V31 U2.47

17.5000 funct. ROM_WE# J1.T31 U2.60

39.4691 funct. INT_60X# J1.U16 R1.D03 U1.188

40.7150 funct. MCP_60X# J1.R16 R1.H02 U1.186

81.0192 funct. SRAM_OE# J1.AA22 U7.50 U8.50 U9.50,
U10.50

10.2020 funct. PLL_CFG0 J1.D25 U1.213

16.6744 funct. PLL_CFG1 J1.B27 U1.211

17.1617 funct. PLL_CFG2 J1.A27 U1.210

15.3550 funct. PLL_CFG3 J1.C28 U1.208

53.8536 funct. ROM_LOAD J1.U20 U2.70 U3.160

32.4704 funct. 60X_AVDD J1.B02 U1.209

27.2459 funct. QACK_60X# J1.D17 R1.E03 U1.235

4.2367 funct. QREQ_60X# J1.C18 U1.31

4.2367 funct. X_INT_60X# J1.F31 U2.139

4.2367 funct. X_MCP_60X# J1.H27 U2.138

4.2367 funct. X_SRAM_OE# J1.G26 U2.117

19.0000 funct. INT_TO_664 J1.B31 U2.55

8.5866 funct. X_PCLK_60X J1.D19 U1.212

5.6036 funct. X_TAG_BCLK J1.P29 U5.69

21.9935 funct. SRESET_60X# J1.D31 U1.189

7.3536 funct. TAG_ADDR_13 J1.L26 U5.33

6.0000 funct. TAG_DATA_11 J1.M27 U5.65

52.1036 funct. IGN_PCI_AD31 J1.AD01 U2.57

4.6624 funct. X_SRAM_BCLK0 J1.Y29 U7.51

5.1624 funct. X_SRAM_BCLK1 J1.AF29 U8.51

9.1624 funct. X_SRAM_BCLK2 J1.AF05 U9.51

8.6624 funct. X_SRAM_BCLK3 J1.Y05 U10.51

1.7500 funct. X_663_CPU_CLK J1.F05 U3.157
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Table 12-1.  MCM Primary I/O (Continued)
Net Length Net TopologyNameType

10.1036 funct. X_664_CPU_CLK J1.H29 U2.121

8.6036 funct. X_CPU_RDL_
OPEN

J1.G10 U3.148

22.2500 funct. NMI_FROM_
ISABRDG

J1.A31 U2.56

7.2071 funct. POWER_
GOOD/RESET#

J1.A28 U2.156

7.2071 funct rw HRESET# J1.E32 R1.D04 U1.214

35.6584 rw TCK J1.B25 R1.J04 U1.201

41.2051 rw TDI J1.A25 R1.J05 U1.199

14.6846 rw TDO J1.C26 U1.198

34.9543 rw TMS# J1.A24 R1.J03 U1.200

58.3719 rw CKSTP_OUT# J1.AJ02 R1.J01 U1.216

58.3719 rw p_up TRST# J1.C24 R1.H04 U1.202

29.4987 p_up TT0 J1.A19 U1.191 U2.150

27.6398 p_up TT1 J1.B19 U1.190 U2.152

15.3133 p_up TT2 J1.A20 U1.185

28.0788 p_up TT3 J1.A21 U1.184 U2.126

5.3536 p_up SHD# J1.D27 U2.141

51.7310 p_up SMI# J1.AL02 R1.F05 U1.187

11.6036 p_up TAG_CS2 J1.H31 U5.76

21.5000 p_up TT2_664 J1.C14 U2.153

35.9554 p_up DBG_60X# J1.G08 U1.26 U2.140

70.1036 p_up L2_CLAIM# J1.AL01 U2.132

21.8536 p_up 663_TEST# J1.G14 U3.155

49.6036 p_up 664_TEST# J1.J04 U2.155

30.8536 p_up TAG_MATCH J1.K31 U2.142 U5.50

22.0000 p_up BG_MASTER# J1.N20 U2.135

56.1497 p_up SRAM_ADSP# J1.AK03 U7.1 U8.1 U9.1,
U10.1

5.0000 p_up TAG_PWRDN# J1.M31 U5.77

48.1036 p_up MWS_P2MRXS J1.C30 U2.66 U3.152

40.9072 p_up 664_STOP_
CLK_EN

J1.B29 R1.F04 U2.151

30.7884 p_down TT4 J1.A23 U1.180 U2.136

24.5780 p_down GBL# J1.A12 U1.1 U2.120

43.8399 p_down SRAM_CS# J1.AD29 U7.5 U8.5 U9.5,
U10.5

19.5000 p_down TAG_CS1# J1.C33 U5.75

72.1036 p_down OE_245_B J1.D29 U6A.25A U6A.48A U6B.25B,
U6B.48B

32.2071 p_down DIR_245_A J1.G22 U6A.1A U6A.24A

43.6036 p_down DIR_245_B J1.L22 U6B.1B U6B.24B

20.7500 p_down TAG_SFUNC J1.C32 U5.22

52.6036 p_down CRS_C2PWXS J1.A29 U2.65 U3.151

39.1036 p_down 663_MIO_TEST J1.A30 U3.156

49.2500 p_down 664_MIO_TEST J1.K05 U2.154

13.7500 clk XTAL1 J1.U30 U4.12
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Table 12-1.  MCM Primary I/O (Continued)
Net Length Net TopologyNameType

11.7071 clk XTAL2 J1.T29 U4.13

32.5000 clk FRZ_CLK J1.B11 U4.3

18.6036 clk FRZ_DATA J1.A22 U4.5

8.5866 clk PCLK_60X J1.E18 U4.34

66.3536 clk TAG_BCLK J1.N30 U4.36

29.9142 clk CLK_EXT_FB J1.A17 U4.14

27.0000 clk CLK_FB_SEL J1.A15 U4.9

27.5000 clk CLK_PLL_EN J1.D33 U4.7

67.5000 clk SRAM_BCLK0 J1.W30 U4.44

66.5000 clk SRAM_BCLK1 J1.AE30 U4.46

9.1624 clk SRAM_BCLK2 J1.AG04 U4.48

8.6624 clk SRAM_BCLK3 J1.AA04 U4.50

22.6036 clk CLK_COM_FRZ J1.A18 U4.6

29.6036 clk CLK_REF_SEL J1.B13 U4.8

24.4571 clk CLK_TTL_CLK J1.A26 U4.11

28.0000 clk CLK_VCO_SEL J1.A13 U4.52

1.7500 clk 663_CPU_CLK J1.G04 U4.38

63.6036 clk 664_CPU_CLK J1.G30 U4.42

24.1036 clk CLK_BCLK_DIV0 J1.C16 U4.31

22.2500 clk CLK_BCLK_DIV1 J1.B17 U4.27

26.3536 clk CLK_FRZ_
STROBE

J1.F33 U4.4

14.8536 clk CLK_MPC601_
CLKS

J1.K27 U4.40

25.3536 clk CLK_
MR/TRISTATE

J1.A16 U4.2

61.8536 clk 664_PCI_CLK J1.J30 U4.18

20.6036 clk CLK_PCI_DIV0 J1.B21 U4.20

20.0607 clk CLK_PCI_DIV1 J1.C20 U4.26

38.1036 clk USER_PCICLK1 J1.AE01 U4.16

29.5000 clk USER_PCICLK2 J1.N01 U4.21

42.8536 clk USER_PCICLK3 J1.C01 U4.23

31.1036 clk USER_PCICLK4 J1.A11 U4.25

25.4571 clk USER_PCICLK5 J1.A14 U4.29

29.7500 clk USER_PCICLK6 J1.E33 U4.32

3.0000 daisy DAISY01 J1.D05

3.0000 daisy DAISY01 J1.E04

2.5000 daisy DAISY02 J1.D07

2.5000 daisy DAISY02 J1.E06

2.5000 daisy DAISY03 J1.D09

2.5000 daisy DAISY03 J1.E08

2.5000 daisy DAISY04 J1.D11

2.5000 daisy DAISY04 J1.E10

2.5000 daisy DAISY05 J1.D13

2.5000 daisy DAISY05 J1.E12

2.5000 daisy DAISY06 J1.E30

2.5000 daisy DAISY06 J1.F29
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Table 12-1.  MCM Primary I/O (Continued)
Net Length Net TopologyNameType

3.0000 daisy DAISY07 J1.E28

3.0000 daisy DAISY07 J1.F27

2.5000 daisy DAISY08 J1.E26

2.5000 daisy DAISY08 J1.F25

3.2500 daisy DAISY09 J1.E24

3.2500 daisy DAISY09 J1.F23

4.3536 daisy DAISY10 J1.E22

4.3536 daisy DAISY10 J1.F21

3.0000 daisy DAISY11 J1.AK05

3.0000 daisy DAISY11 J1.AK07

3.0000 daisy DAISY12 J1.AK09

3.0000 daisy DAISY12 J1.AK11

3.2500 daisy DAISY13 J1.AK13

3.2500 daisy DAISY13 J1.AK15

4.0000 daisy DAISY14 J1.AK17

4.0000 daisy DAISY14 J1.AK19

3.0000 daisy DAISY15 J1.AK21

3.0000 daisy DAISY15 J1.AK23

3.0000 daisy DAISY16 J1.AD03

3.0000 daisy DAISY16 J1.AF03

3.0000 daisy DAISY17 J1.Y03

3.0000 daisy DAISY17 J1.AB03

3.0000 daisy DAISY18 J1.T03

3.0000 daisy DAISY18 J1.V03

3.0000 daisy DAISY19 J1.M03

3.0000 daisy DAISY19 J1.P03

3.0000 daisy DAISY20 J1.H03

3.0000 daisy DAISY20 J1.K03

3.0000 daisy DAISY20 J1.K03
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12.2 MCM Thermal
Figure 12-2 contains a simplified drawing of the construction of the MCM. The individual
devices are mounted to the ceramic substrate, which is mounted to the circuit board by sol-
der columns. The cap covers the devices and the top of the substrate, and is filled with a
thermal grease. The cap is non-hermetically sealed to the substrate.

As shown in Figure 12-3, the major heat flow path is from the devices to the thermal grease,
to the aluminum cap, and to ambient. A heat sink can be attached to the cap if required.

Figure 12-2.  MCM Thermal Paths

Cap

Chips

Substrate

Thermal Grease

Solder Columns

Figure 12-3.  MCM Heat Flows

Actual Heat Flow

Heat Flow for Rj-c

Ceramic Substrate

12.2.1 Chip Thermal Requirements

Table 12-2 shows many of the thermal specifications of the chips in the MCM. The values
given for non-IBM products are superceded by any values found in the manufacturers’ data
sheets.

At a typical power dissipation, the difference between the temperature of the center of the
chip and the temperature of the center of the MCM cap was measured (see Figure 12-3).
The thermal resistance values from chip junction to MCM cap (Rj-c) shown in Table 12-2
were derived from these measurements:

R(j-c) = [T(chip) – T(cap)] / Power(chip),

and do not change significantly over the operating range of the MCM. Rj-c describes the
thermal resistance along the path from the center of the device to the center of the MCM
cap. This specification can be used with the MCM to simplify thermal calculations.
Table 12-3 shows the same data as Table 12-2, but for the expected maximum power dis-
sipation of the MCM. All references to the MCM cap in Table 12-2 and Table 12-3 refer to
the center of the MCM cap.
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Table 12-2.  Thermal Specifications for MCM Chips, Typical Pd
Parameter 603e 663 664 ’245 MPC

970
SRAM Tag

RAM
Maximum Junction Temperature  ( °C) 105 85 85 85 70 70 70

Thermal Resistance, Junction to MCM Cap ( ° C/W) 1.22 .1 .88 11.6 4.24 .55 .53

Power Dissipation, Typical (W) 3.2 .5 1 .2 .7 .7 .5

Junction Temp Rise Above Cap ( °C) 3.9 .05 .88 2.3 3.0 .39 .27

Maximum Allowed Cap Temperature at Typical Pd ( °C) 101 85 84.1 82.7 67 69.6 69.7

Typical MCM Total Pd = 9 W

Table 12-3.  Thermal Specifications for MCM Chips, Maximum Pd
Parameter 603e 663 664 ’245 MPC

970
SRAM Tag

RAM
Maximum Junction Temperature  ( °C) 105 85 85 85 70 70 70

Thermal Resistance, Junction to MCM Cap ( ° C/W) 1.22 .1 .88 11.6 4.24 .55 .53

Power Dissipation, Maximum (W) 4 .6 1.3 .2 .83 1 1

Junction Temp Rise Above Cap ( °C) 4.9 .06 1.1 2.3 3.5 .55 .53

Maximum Allowed Cap Temperature at Max Pd ( °C) 100 85 83.9 82.7 66.5 69.5 69.5

Maximum MCM Total Pd = 12 W

12.2.2 MCM Cooling Requirements
Table 12-2 and Table 12-3 show the typical and maximum total power dissipation of the
MCM. Additionally, the tables show that the MCM cap must be maintained below 67°C at
typical Pd and 66°C at maximum Pd to ensure that all of the chips are adequately cooled.

There are other factors, such as heat spreading and alternate heat conduction pathways,
that tend to reduce the cooling requirements. Treatment of these complex MCM topics is
beyond the scope of this document.

The total power entering the MCM cap from the chips is the sum of the power dissipation
of each individual chip. This power must be removed from the MCM while ensuring that the
temperature of the center of the MCM cap does not exceed the value derived in Section
12.2.1 for various operating conditions. Table 12-4 shows the required total thermal resis-
tance from the cap of the MCM to ambient at various ambient temperatures.

Table 12-4.  Required Maximum Thermal Resistance, Cap to Ambient
Ambient Temperature At Typical Pd At Maximum Pd

65 °C 0.10 0.08

60 °C 0.67 0.50

55 °C 1.20 0.92

50 °C 1.80 1.33

45 °C 2.33 1.75

40 °C 2.88 2.17

35 °C 3.44 2.60

30 °C 4.00 3.00

25 °C 4.55 3.40
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12.2.3 Cooling Recommendations
Table 12-5 shows the thermal resistance from the MCM cap to ambient at various airflows.

Table 12-5.  Thermal Resistance From Cap to Ambient – No Heat Sink 
Air Flow (Linear Feet Per Minute) �c–a (Thermal Resistance, Cap to Ambient)

50 15.45 ° C/W

100 12.7 ° C/W

200 9.7 ° C/W

300 8.5 ° C/W

400 7.7 ° C/W

500 7.4 ° C/W

600 7.1 ° C/W

700 6.9 ° C/W

Comparison of Table 12-4 with Table 12-5 shows that a heat sink will be required to meet
the MCM maximum cooling requirement.

12.2.3.1 Thermal Resistance From Cap to Heat Sink

Table 12-6 shows the thermal resistance from the MCM cap to a heat sink for two different
cases. Each case assumes a 45mm x 45mm heat sink (the same size as the MCM cap),
with 100% coverage of a thermally conductive adhesive between the cap and the heatsink.

Table 12-6.  Thermal Resistance From Cap to Heat Sink 
Parameter Chromerics T405

Reworkable Adhesive
AI Epoxy 7655

Non-Reworkable
Thermal  Conductivity (K, Watts per meter–deg Kelvin) .4 W/mk 1.06 W/mK

Thickness 0.14 mm 0.1 mm

�c–hs (Thermal Resistance, Cap to Heat Sink) 0.18 ° C/W 0.05 ° C/W

12.2.3.2 Thermal Resistance From Heat Sink to Ambient

Table 12-7 shows the required heat sink performance at various ambient temperatures, us-
ing a value of .1°C/W for the thermal resistance from the MCM cap to the heat sink, 100%
coverage, and 45mm x 45mm heat sink base.

Table 12-7.  Required Maximum Thermal Resistance, Cap to Ambient
Ambient Temperature At Typical Pd At Maximum Pd

65 °C n/a n/a

60 °C 0.57 0.40

55 °C 1.10 0.82

50 °C 1.70 1.23

45 °C 2.23 1.65

40 °C 2.78 2.07

35 °C 3.34 2.50

30 °C 3.90 2.90

25 °C 4.45 3.30

High performance passive heatsinks with good forced air flow and typical fansinks are able
to perform to these specifications.
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12.3 MCM Mechanical Drawings

12.3.1 MCM with Cap
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12.3.3 MCM Solder Columns
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12.3.4 MCM Component Placement
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Section 13
MCM Schematics
This section contains the schematics of the Odyssey MCM. For schematics of the planar,
see Appendix F.

The schematics are numbered separately from the rest of the MCM technical specification.
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13.1  Component Placement






















































