PowerPC

The IBM27-82650
PowerPC to PCI Bridge

User’s Manual

PowerPC to PCI Bridge,
Memory Controller, Arbiter,
ROM Controller, and System
Resource Manager

Introducing the 650°Bridge, with the 653 Buffer
and 654 Controller, as a complete solution for
interfacing PowerPC 60X microprocessors to
the PCl local bus.

..ll

The IBM27-82650
PowerPC to PCI Bridge

User’s Manual

PowerPC to PCI Bridge,
Memory Controller, Arbiter,
ROM Controller, and System
Resource Manager

© Copyright IBM Corporation, 1994. All rights reserved.
Note to US Government Users—Documentation related to restricted rights—Use, duplication,
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark, and IBM Microelectronics, PowerPC, PowerPC 601, PowerPC
603, PowerPC 604, PowerPC Architecture, and RiscWatch are trademarks of International Busi-
ness Machines Corp. Intel is a registered trademark of Intel Corporation. Other company names
and product identifiers are trademarks of the respective companies.

This document contains preliminary information about version 2.0 of the chip set and is subject
to change by IBM without notice. IBM assumes no responsibility or liability for any use of the in-
formation contained herein. Nothing in this document shall operate as an express or implied li-
cense or indemnity under the intellectual property rights of IBM or third parties. The products de-
scribed in this document are not intended for use in implantation or other direct life support
applications where-malfunction may result in physical harm or injury to persons. NO WARRAN-
TIES OF ANY KIND, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS
DOCUMENT.

ii

The IBM27-82650
PowerPC to PCI Bridge

User’s Manual

Optional

60X CPU L2 Cache
A
HOST BUS
/\ Control o
I \ ' Address 1
IR
Data o
\V4 o
System Control
and Status Control
IBM27-82654 IBM27-82653
PCl/Memory 1. Addr. Address/Data
ROM Control Controlier RAS/CAS " DRAM Data Buffer
Write Enable System
Memory |

PCI BUS [\
- Control
h \ 1\ [A o
‘ ' Address/Data \
- \ / [[)

\ Y i

> System ROM i y SCSlor 1/O Bridge Additional
(Flash or EPROM) Graphics Video LAN Controller PC Bus PCI Device(s)

ISA, EISA, MicroChannel PC Bus

IBM 650 Bridge Chip Set in a Typical Configuration

The IBM 650 Bridge Chip Set

The 1BM27-82650 PCI Bridge Chip Set.

PowerPC ™ to PCI Local Bus Bridge and Memory Controller

® Used in the PowerPC Reference @ System Memory (DRAM) Controller

Platform Reference Implementation e 64-Bit Data Path for System Memory
® Directly Supports 8M and 32M 8-Byte
® Supports the PowerPC 601, 603, and SIMMs

604 (60X) Microprocessors
e Big- and Little-Endian Address Modes
e Up to 66MHz 60X CPU Bus Clock

o Interfaces the 60X CPU Host Bus to the

Supports up to 256M of System Memory
Memory Configuration Registers

70ns SIMMs Supported

System Memory Parity Generation and

Checking
PCI Local Bus (level 2.0) e Supports 60X CPU Burst Reads and
e Up to 33MHz PCI Local Bus Clock Rate Writes of System Memory
e Enables Industry-Standard PCI Devices e PCI Burst Reads and Writes to System
o Integrated Arbiter, up to Six PCI Devices Memory

e One Load PCiB
ne Load on us ® Companion L2 Cache Controller Chip

® Support for Optional L2 Cache e The IBM27-82681-66
o Write-Back and Write-Through Policy e 44-Pin PLCC Package
® Snoops PCI to System Memory e 256K or 512K Bytes
Addresses

® 3.3V or 3.6V Power Supply
® ISA Master to System Memory Support ¢ 5V-Compatible I/0’s

® Direct Support for 8-Bit Flash/EPROM ® 304-Pin and 160-Pin Quad Flatpacks

The IBM27-82650 PCI Bridge chip set (the 650 Bridge) provides an interface that can connect a
PowerPC 60X CPU to high-performance, PCI (Peripheral Component Interconnect) devices like
graphics, LAN, and SCSI controllers. The PCI bus standard defines an environment for high-
speed, local bus operations. The 650 Bridge chip set provides the necessary control and commu-
nications logic to connect a PowerPC 60X CPU to PCl-compliant devices through the PCI bus.

The 650 Bridge chip set is comprised of the IBM27-82653 Address/Data Buffer (the 653 Buffer)’
and the IBM27-82654 PCIl/Memory controller (the 654 Controller). The 650 Bridge supports the
PowerPC 601, 603, and 604 microprocessor chips. The 650 Bridge supports both the L1 memory
cache of the 60X CPU and an optional L2 cache. Either cache can use write-through or write-back
modes of operation.

The 650 Bridge performs the following distinct functions:

PCIl and 60X CPU Bus Arbitration Logic
System Memory (DRAM) Controller—up to 256M

- Memory-Mapping of CPU Addresses to PCI Transactions
60X CPU to 32-bit PCI Local Bus Bridge
Supports the PowerPC Memory Coherence Model
System ROM Controller (Including Flash ROM Writes)
Parity Error and System Error Detection and Reporting

e & o ¢ o o o

Table of Contents

About This Book

T 1= 3 T XXii
Document Organizationvveeriieeeanserertrvursnnnnnnansrnrsss XXii
Reference Materialcooeceeriiiiiiineernnnnanrernnnsrrrrnsnnnnns XXii
Document ConveNntionS .« vvvvvvrsnernnrerrnssssnnsosnannannnnnansnssn xxiii
Acronyms and Abbreviations i rerreeraa ey xxiii -
Section 1
650 Bridge Architectural Overview e, 1
1.1 Summary of 650 Bridge Features e 2
1.1.1 B0X MiCroprocessor SUPPOM oo vvtri it iaaa e enaans 2
1.1.2 Central Arbiter ... o e 2
1.1.3 Memory Controller o i e 2
1.1.4 PowerPC Local Busoiiiiiiii i e e 3
1.15 PCIEXPansion Bus e i 3
1.1.6 Address Translation Logic e 4
1.1.7 L2 Cache SUPPOmto e, 4
1.1.8 System ROM Controllerouineerei it ii i, . 4
1.1.9 Interrupt and Exception LOGICvovvnriiii i 4
Section 2
The PCI Bus and 60X CPU Background Reviewcoviiiiiiinnnnnanns 5
2.1 The PClLocal Bus Reviewot e 5
2.1.1 PClLocalBus Referencesccoviiiiiiiiiiiiinnnnnnnn e 5
21.2 PCl Local Bus OVEIVIEWo i 5
21.3 PCISIgnalso 6
214 PClMastersand Targets ..ot 7
215 PCl Arbitration e 7
2.1.6 Basic Transfer Control i e 7
2.1.7 PCIBus CoOMMaNAsttt ittt et e 8
21.8 Termination of PCICyclest e i 8
2.2 PowerPC B0OX CPUREVIEWo i 8
2.21 601 CPUReferenceso e 9
222 PowerPC 60X CPU Overview e 9
223 CPU1t0650Bridge Signalst i 9
224 CaChe (L) . e e e 1
2.25 SystemInterface ...l e 11
2.2.6 TT[0:3] (Transfer TYPE) ... u ittt ittt et e e eeeaaes 11
2.2.7 Pipelining and Spilit Transactionsccoiiiiiiiiiiiiiiannnnn. 12
2.2.8 Big-Endian and Little-Endian Modes of Operation 12
2.2.9 PIO or I/O Controller Operation (XATS#), 13

vii

The 650 Bridge Chip Set

Section 3

650 Bridge Pin DesCrptionscccviiieniioiennnncinannaansnaaaaennnnenns
3.1 653 Buffer Pin Descriptions

3.1.1 . 653 Buffer to 60X CPU Bus Interface Signals

3.1.2 653 Buffer to PCI Bus Interface Signals

3.1.3 653 Buffer to System Memory Interface Signais . .

3.1.4 653 Buffer to External Logic and System Interface Signals
3.2 654 Controller Pin Descriptions

3.2.1 654 Controller to 60X CPU Bus Interface Signals .

3.2.2 654 Controller to PCI Bus Interface Signals

3.2.3 654 Controller to System Memory (DRAM) Interface Signals
3.2.4 654 Controller to ROM (Flash or EPROM) Signals

3.2.5 654 Controller to L2 Cache Signals

3.2.6 654 Controller to Test Signals

3.2.7 654 Controller to External Logic and System Interface Signals
3.3 Signals Between the 653 Buffer and 654 Controller

Section 4

650 Bridge Theory of Operation

4.1 650 Bridge Mapping of 60X CPU Bus Addresses ..

4.11 Address Mapping for Non-Contiguous I/O

41.2 Address Mapping for Contiguous I/O

413 PCI Final Address Formation

4.2 650 Bridge Mapping of PCI Device Addresses

43 650 Bridge Bus Transactions

4.3.1 CPU to Memory Read—Single-Beat, Page Hit, XCAS=0
4.3.2 CPU to Memory Read—Single-Beat, Page Hit, XCAS =1
4.3.3 CPU to Memory Read—Single-Beat, Page Miss, XCAS =1
4.3.4 CPU to Memory Read—Burst, Page Miss, XCAS =1
4.3.5 CPU to Memory Write—Single-Beat, Page Hit, XCAS =0
4.3.6 CPU to Memory Write—Single-Beat, Page Hit, XCAS =1 e
4.3.7 CPU to Memory Write—Single-Beat, Page Miss, XCAS =1
4.3.8 CPU to Memory Write—Burst, Page Miss, XCAS=1
4.3.9 CPU to PCIWrite—XADIO =1

4.3.10 CPU to PCI Write Additional Timing Examples ...

4.3.11 CPUtoPCIReadcoceuinnn.

4.3.12 PCIl to Memory Read—Single-Beat, Page Hit

4.3.13 PCl to Memory Read—Burst, Page Hit Then Miss

4.3.14 PCI to Memory Write—Burst, Page Miss Then Hit

15
15
17
17
17
18
18
19
21
22
22
23
23
23
25

29
29
29

.30

31
31
32
32
34
35
36
38
40
41
42
44
46
49
50
52
54

viii

The 650 Bridge Chip Set

Section 5

The 650 Bridge Functional Description
The 650 Bridge Arbiter
Arbitration Descriptiono
The Arbitration Fairness Mechanism
The Timeout Counter
Support for System Memory (DRAM) Refresh
Support for Cache Snoopingcoviiiiniii
BusParkingcoiiiiiii e
650 Bridge Programmability
Programming the 650 Bridge Memory Controller
Memory Controller Configuration
SIMM Mapping Registerso,
SIMM Starting Address Registers
SIMM Starting Address Rules ...,
SIMM Top-of-Memory Logic ..o,
SIMM Register Programming Rules
Reading the SIMM Registers
SIMM Starting Address Example #1
SIMM Starting Address Example #2
Programming The System Setup Register
The Bus Speed Setting in the System Setup register

5.1
5.1.1
51.2
5.1.3
514
5.1.5
5.1.6
5.2
5.21
5.2.1.1
5.2.1.2
5213
521.4
5215
5.2.1.6
5.21.7
521.8
5.2.1.9
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5224
5.2.25
5226
5.2.2.7
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5234
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.51
5.3.5.2
5.3.5.3

The XCAS (Extended CAS#) Setting in the System Setup register

The Timer Enable Setting in the System Setup register ..
The ARSTR Setting in the System Setup register
The XADIO Setting in the System Setup register
The Count[2:0] Counter in the System Setup register

Bus Speed and XCAS Settings in the System Setup register
Accessing the SIMM Registers and the System Setup Register

SIMM Register and Setup Register Writes
SIMM Register and Setup Register Reads
Register Reads in the Example System
Register Writes in the Example System
Programming the Flash ROM Lock-Out Bit (W/O)
Little-Endian and Big-Endian Addressing Considerations . ..
60X CPU Addressing in Big-Endian Mode
60X CPU Address Munging in Little-Endian Mode
650 Bridge Address Unmunging in Little-Endian Mode
Byte Swapping for Endian Compatibility

Unmunging and Byte Swapping for System Memory or PCI Writes

An Example of a One-Byte Little-Endian Store Instruction
An Example of a Two-Byte Little-Endian Store Instruction
An Example of a Four-Byte Little-Endian Store Instruction

55
55
56
56
56
56
56
57
57
57
57
57
58
59
59
59
60
60
60
61
61
61
61
62
62
62
62
62
65
67
68
68
68
68
68
68
69

70

70
71
71
72

ix

The 650 Bridge Chip Set

5.3.54
5.3.6
5.3.6.1
5.3.6.2
5.3.6.3
5.3.7
5.3.8
5.3.9
54
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.91
5.4.9.2
5.4.10
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
55.1.4
5.5.1.5
5.5.2
5.5.2.1
5.5.2.2
5.5.3
5.5.3.1
55.3.2
5.5.3.3
5.5.3.4
5.5.3.5
5.5.3.6
5.5.3.7
5.5.4
5.5.5
5.5.6
5.5.6.1

An Example of an Eight-Byte Little-Endian Store Instruction
Unmunging and Byte Swapping for System Memory and PCl Reads
An Example of a Two-Byte Little-Endian Load Instruction
An Example of a Four-Byte Little-Endian Load Instruction
An Example of an Eight-Byte Little-Endian Load Instruction
Instruction Fetches in Little-EndianMode e
LE_MODE_REQ# Assertion on the 654 Controller
Exceptions in Little-EndianModeo i
Memory Controller Operationccouiiiiinreiriiii i ininnnnnn.
System Memory Timing et e e e e e
60X CPU to System Memory Burst-Mode Counting
PCl to System Memory Burst Mode Transferso..t.
System Memory Parity Generation and Checking
RAS# and CAS# Address Assignmentsoiirirennnnnnnnn
RAS[7:0}# Line Selectionof SIMM Slots oL,
RAS Timeout Counter ...
60X CPU to System Memory CAS[7:0]# Generation
PCl to System Memory CAS[7:0}# Generation
PCI Read from System Memoryc.oiiiiiiiiiiiiiiiiiinn
PCiWrite to SystemMemory 0 it
System Memory Control Signals—BE_PAR_EN# and LE_PAR_EN#
The 60X CPUBUSCYCIES . ..o
Data Transfers onthe 60X CPUBUSciiiiniiiiiiiiiiiiiiiie e
Transfer Start (TS#) and Transfer Acknowledge (TA# and TEA#)
60X CPU Transfer Types—TT[0:3] o oot
CPU Address-Only ACCESSo v vii i e
ECIWXand ECOWXo i [P
CPU Address Alignmentsooo.... e,
60X CPU to System Memory (DRAM) Cyclescooiiinit,
60X CPU to System Memory TSIZ[0:2] and TBST# Encoding
Summary of CPU Read and Write System Memory Characteristics
60X CPUtOPCICyclescoviiiienneann.. P,
Valid 60X CPUto PCl Transactionsccovieennnannniniann..
Termination Responses for 60X CPU to PCI Transactions

PCI Target Retry .

PCl_C/BE[3:0]#—PCl Bus Command/Byte Enable Generation
60X CPUto PClBusCommandsccoiiiiiiiinnnnnn. e

PCI Byte Enables

Transfer Size Parameters forthe PCIBus T
60X CPU to PCI Interrupt Acknowledge Cycles
60X CPU to Read Error Address Cyclest
60X CPU to System ROMCycles ...,

ROM Addressing

73

73
74
74
75
75
76
76
76
76
77
77
78
78
78
78
79
81
81
81
82
82
82
82
83
84

- 84

84
84
84
85
85
86
86
86
86
86
87
88
88
88
88
89

The 650 Bridge Chip Set

5.5.6.2 ROM Access Data Sizes and Alignmentsc.c.ccooa... 89
5.5.6.3 Single-BeatROMReadsottt 89
5.5.6.4 Burst ROM Readsc.oiiiiiii i e 89
5.5.6.5 Programming the ROM Boot For 601 BurstReads 90
5.5.6.6 60X CPU to Flash ROM Write Cycles ..., 90
5.5.6.7 Effect of Endian Mode on ROMWrites ...t 90
55.6.8 Flash ROM Protectionottt iiii e ... 90
5.5.7 60X CPU to System ROM Detailed Operation 91
5.5.7.1 ROM Write Detailed Operationccoviiiiiiiiiiiiiinan.n. 91
5.5.7.2 ROM Read Detailed Operation -, 95
5.6 The PCl to 650 Bridge Transactionsccoviiiiiiinnninnnnnnn.. 98
5.6.1 PClto SystemMemory Cycles ...ttt 98
5.6.1.1 /O Bridge to System Memory i e 98
5.6.1.2 ISA Master Memory Addressingccoiiiiiiiiiineinennnn... 98
5.6.1.3 ISAMaster Signal Timing ...t 98
5.6.14 PCl to System Memory (DRAM) PCI_C/BE[3:0]# Bus Commands 99
5.6.1.5 Snoop Cycle Control Signals on the 60X CPU HostBus 100
57 L2 Secondary Cache Protocol i 101
5.7.1 L2 Caching for 60X CPU Accesses to SystemMemory 101
5.7.2 Cache Snooping for PCl to System Memory Accesses 102
5.7.2.1 Restoring ARTRY# ettt et 102
5.7.2.2 Arbitrationon Cache Hits 102
5.7.3 Error Checking forthe L2Cacheco.iiiiiieiineiiinnnnnns 102
5.7.4 Additional L2 Cache Informationo .. 102
5.7.5 Example of a PCI to Memory Read Transaction With Cache Hit 103
5.7.6 Example of a CPU to Memory Read Transfer With Page Miss and

L2Cache Hit ... e e 105
5.8 The System ErrorHandler e i 106
5.8.1 TEA# Error Reportingr ittt i e et e e 106 -
5.8.2 Interrupt Reportingot e 106
5.8.3 Saving Memory Parity Error Addressesccoviiiiiiiiii.. 108
5.8.4 Data Parity Error (DPE_ERR#) 108
5.8.5 L= L) (=Y G I o T30 = (o 108
5.8.6 llegal PClOperations ciiiiiiiiiiiiiiiiiiiieeiennnns 109
5.8.7 Non-Maskable Interrupt (NMI_REQ) i 109
Section 6
Electrical Characteristicsooiiiiiiiiiiiii e st iensnan i ras 111
6.1 Absolute Maximum Ratings R s 111
6.2 Recommended Operating Conditions it 112
6.2.1 Signal And Temperature Rangesccieiiriiiinnrenennnnnn. 112
6.2.2 Power Dissipation ..ottt e 112
6.2.3 Thermal CharacteristiCs it e i et e e e 113

xi

The 650 Bridge Chip Set

6.3 Common CharacteristiCsooviiiiii it 114
6.4 Package/Pin Electrical Characteristics, 114
6.4.1 653 Buffer Model s 114
6.4.2 654 Controller Model ...t i e s 115
6.5 653 Buffer DC Characteristics By Signalcccviiiiiinen... 116
6.6 654 Controller DC Characteristics By Signalciiat. 118
6.7 OUtPUE V—I CUIVES ... ittt e 122
6.7.1 PCI Local Bus Compatible Driversc.c.oeiiiiiiiiienan. 122
6.7.1.1 Pull Up Curves, PCI Drivers, P/IL=A i 122
6.7.1.2 Pull Up Curves, PCI Drivers, PIL=B i 123
6.7.1.3 Pull Up Curves, PCI Drivers, PIL=C i 123
6.7.1.4 Pull Down Curves, PCl Drivers, P/lL=A,B,andC 124
6.7.2 TTL Driver Output CUIVES ..ot 124
6.7.2.1 Pull Down Curves, TTL Driver, IOL = 4mA, P/L=A 125
6.7.2.2 Pull Down Curves, TTL Driver, IOL = 4mA,P/L=B 125
6.7.2.3 Pull Down Curves, TTL Driver, IOL= 4mA,P/L=C 126
6.7.2.4 Pull Up Curves, TTL Driver, IOL = 4mA,P/L=A,B,andC 126
6.7.2.5 Pull Down Curves, TTL Driver, IOL = 6mA,P/L=A 127
6.7.2.6 Pull Down Curves, TTL Driver, IOL = 6mA,P/L=B 127
6.7.2.7 Pull Down Curves, TTL Driver, IOL= 6mA,P/L=C 128
6.7.2.8 Pull Up Curves, TTL Driver, IOL = 6mA, P/L=A,B,andC 128
6.7.2.9 Pull Down Curves, TTL Driver, IOL= 8mA,P/L=A 129
6.7.2.10 Pull Down Curves, TTL Driver, IOL= 8mA,P/L=B 129
6.7.2.11 Pull Down Curves, TTL Driver, IOL = 8mA,PIL=C 130
6.7.2.12 Pull Up Curves, TTL Driver, IOL = 8mA, P/L=A,B,andC 130
6.7.2.13 Pull Down Curves, TTL Driver, IOL = 12mA,P/L=A 131
6.7.2.14 Pull Down Curves, TTL Driver, IOL= 12mA,P/L=B 131
6.7.2.15 Pull Down Curves, TTL Driver, IOL = 12mA,PL=C 132
6.7.2.16 Pull Up Curves, TTL Driver, IOL = 12mA,P/L=A,B,andC 132
6.7.2.17 Pull Up Curves, TTL Driver, IOL = 24mA, P/L=A P, 133
6.7.2.18 Pull Up Curves, TTL Driver, IOL = 24mA,P/L=B 133
6.7.2.19 Pull Up Curves, TTL Driver, IOL = 24mA,P/L=C 134
6.7.2.20 Pull Down Curves, TTL Driver, IOL = 24mA, P/IL=A,B,andC 134
Section 7

LI 11137 - 135
71 Timing Conventionsoout it e e 135
711 BoardDelays e e 135
71.2 Terms and Definitionsot i i e e e e 135
71.21 SignalRange Nameso i e 135
7122 Signal Group Names i i 135
7123 Timing Diagram and Timing Chart Definitions 136

xii

The 650 Bridge Chip Set

7.1.3 Transaction Clock Cycle Nomenclature
7.1.4 Signal Switching Levels for Timing Analysis
7.1.5 Input Setup Time e
7.1.6 Input Hold Time ot et
717 Output Hold Time ... i e
7.1.8 Output Valid Delay Times e
7.1.9 Output Tri-State Hold Time i e
7.1.10 Output Tri-State Delay Time e
7.2 Clock Considerationsiuiiiiiit i eiieaaanns
7.21 Clock SwitchingLevelsc it e
7.2.2 The CPU_CLK ... e e
7.2.3 The 654 Controller Clock andthe 601 Clocks
7.24 CPU_CLKto PCILCLKSKEWoiiiiiii i iie e
7.2.4.1 Clocking In2:1 Modet e e e
7.24.2 ClockingIn1:1Mode
7.3 Power-On Considerationso,
7.4 654 Controller Timingt i e
7.41 654 Controller Synchronous Input Timing Characteristics
742 654 Controller Synchronous Output Timing Characteristics
7.4.3 - Asynchronous Signalsinthe 654t
7.4.3.1 AACKH
7.4.3.2 ALL_ONES SEL# ..ot e e e
7433 CAS 70 ..o e e
7434 CPU_ADDR _SEL# ... e e e e
7435 CPU_DATA SEL# ... e e e
7.4.3.6 ERR_ADDR_SEL# ... e e e
7437 MEM_DATA _OFE# . . o e e e
7.4.3.8 MEM_DATA _SEL#
7.4.3.9 PCIL_C/BE[B:0J# .. oot
7.4.3.10 P L PAR . e
7.4.3.11 T o e e e e
7.4.3.12 WE1:0] .o e e
7.5 653 Buffer Timing Tables i it iiiiiiinnas
7.6 Detailed Timing Diagrams it
Section 8

The 650 Bridge PinListsccoiiiiiiiiiii it iiiiai et irasnnnrrannnannnens
8.1 853 Buffer Pin Lists ... e
8.1.1 653 Buffer Numeric PinList
8.1.2 653 Buffer Alphabetic PinListingccooiiiiiii i
8.2 654 Controller Pin Listscoiiiii e et
8.2.1 654 Controller Numeric PinListo it
8.2.2 654 Controller Alphabetic PinList i it

136
136
137
137
137
138
138
138
140
140
140
140
142
142
143
143
144
144
147
150
150
150
150
150
150
151
151
151
151
151
152
152
153
160

203
203
203
214
225
225
230

xiii

The 650 Bridge Chip Set

Section 9 v
650 Bridge Mechanical Drawingscccieeceaaaeaaaaaeanaanunnnannnss 235
9.1 653 Buffer Quad Flat Pack Component Detail 235
9.2 653 Buffer Quad Flat Pack Component Footprint 236
9.3 654 Controller 160-Pin Flat Pack Component Detail 237
9.4 654 Controller 160-Pin Flat Pack Component Footprint 238
- Appendixes:
Appendix A
Initialization and Setup Requirements ...ttt inaas 239
A1 Processor Initializationt 239
A1 Cache SetUp 239
Al2 PlO SetUP . ettt e e e 239
A1.3 ARTRY# Precharge i e iaan 239
Al14 Checkstop Enable i e 239
A15 BUS Error Checksttt e 240
A2 Initialization of the IBM 82650 Bridge ChipSet 240
A3 VO Bridge SetUP - . . i et 240
A4 PCI Memory Address Assignmentoiiiiiiiiiiiiiiiiann.. 240
A5 PCIl Configuration'Scanccciiiiiiiii i iiiaiinaaann, 240
Appendix B
Example Implementation e 241
Appendix C
653 Buffer Details of Operationcccciiiiiiiicciinnnrecnnnns reaaaas - 265
CA1 653 Buffer Highlightso i i 265
c.2 653 Buffer Pin Descriptions ...ttt i e 265
C.21 60X CPUBus Interface Signals i, 267
c.22 System Memory Interface Signals 267
c.23 PCIBus Interface Signalsccoiiiiiiiiii i iiieiie e 268
C.24 654 Controller Interface Signals ... 268
c25 External Logic and System Interface Signals 270
C3 The 653 Buffer e e 271
C.3.1 Architectural Overview Showing Address and Data Flow 271
C3.2 Two High-order PCI Address Bits—NO_TRANS Pin 274
C.33 Two Low-Order PCl Address Bits 274
C.34 Contiguous /O Pin ... e 274
C.35 60X t0o ROMRead Cyclescoviiiiiiii i i 275
C.3.6 60X to ROM Write Cycles—Address and DataFlow 276

xiv

The 650 Bridge Chip Set

C.3.7
C.3.8
C.3.9
C.3.10
C.3.11
C.3.12
C4
C.4.1
Cc4.2
C.4.3
C4.4
C.4.5
C4.6
C.4.7
c48
C.4.9
C5
C.5.1
C.5.2
C.5.3
C.54
C.55
C.5.6
C.5.7
C.5.8
C.5.9
C.5.10
C.5.11
C.5.12
C.5.12.1
C.5.12.2
C.5.12.3
C5.124
C.5.13
C5.14
C.5.15
C.5.16
C.5.17
C.5.18
C.5.19
C.5.20
C.5.21
C.5.22

Error AddressLatchcccvvviinnnn... e
Refresh Address Generationcccoiiiiiiiiiiiineereeeeenennn.
AlL_ONEs GENEratorcoiii it it e
Page Hit Generationcoi it
Special Considerations it i i

Warm Reset

Detailed Analysis of AddressandDataFlow
60X to Memory Cycle Address Flow—Read orWrite
60X to Memory Cycle Data Flow—Writeona..
60X to Memory Cycle DataFlow—Read
60X to PCI Cycle Address Flow—Read orWrite
60X to PCI Cycle Data Flow—Writeooa...
60X to PCICycle DataFlow—Readcciiiiinnn..
PCI Bus Master Cycles Address Flow—Read or Write
PCl to Memory Cycles Data Flow—Writecco....
PCI to Memory Cycles DataFlow—Read

653 Buffer Detailed

Internal Descriptionsttt

PCLAD TransCeiversoii ittt ettt e eaeeans
PCIlAddress LatCh ...t e
PCl to 60X CPU Address Translationcccoviiiiiiinnnnnn.
PCIBUISt COUNEr ..ottt e et i
60X CPU Address Bus TransCeIVErScviiiin it iiiin s
60X CPU Address UnMungerttt
60X CPUAddressHoldLatch ...t
BOX CPU BUrst Countert e e e iee e
Page Hit Comparator i et

Refresh Counter

Address Multiplexerco it e
60X CPU to PCI Address Translationccoviiiiinn..
A[1:0] Translation—PCI Bus Special Requirements
A[4:2] Non-Translation i iiiiniiieannns
A[31:30] Translation—System Address Map Implementation

A[29:5] Translation—PCl/ISA I/O Page Mapping ,

ROM Read Burst Countercoiiiniiiiiiiiae i,
Error Address Latch i i it
Row/Column Address Multiplexer i,

Page Hold Latch
PCI Data Latch .
PCI Data Doubler

..

ROM Data Shift Registerooiiiiiiii i i iiiie i
Error Address Doubler i ..
60X CPU Byte Lane Swapper—InputSidecociviennnn..

Data Multiplexer

276
276
276
277
277
277
277
277
277
278
278
278
279
279
280
280
280
280
281
281
282

.284

284
285
285
287
288
288
289
290
290
290
291
292
204
294
294
294
295
295
296
296
299

XV

The 650 Bridge Chip Set

C.5.23 PCl Address/Data Select Delay Flopo oiiiiiiii i
C.5.24 PCl DataMultiplexer...................... A
C.5.25 PCIl Address/Data Multiplexerc.c.ovenii it it e e ieaa
C.5.26 PCl Parity Generator i e
C5.27 60X CPU Data Byte Lane Swapper—Output Side
C.5.28 Memory Data Parity Generatorot
C.5.29 Memory Data Parity Checker i
Appendix D

Addresses of Sales Officesvviiiiiiiiiiiii ittt iiia e iie e e
D.1 US A e e e
D.2 BUIOPE .. e
D.3 JaDaN L e e e e
Tables:

2-1 PCI Signals inthe 850 Bridge o PR
2-2 PClBus Commands ...t i
2-3 60X CPU Signals Connected to the 650 Bridge
2—4 TT[0:3]—Transfer Type Codesccovvvueennnn. e
2-5 Big-Endian and Little-Endian Data Storage eevuerneennnn..
3-1 653 Buffer to 60X CPUBus Interface ...,
3-2 653 Bufferto PCIBus Interface ...ttt
3-3 653 Buffer to System Memory Interface l
3-4 653 Buffer to External Logic and System Interface
3-5 654 Controller to 60X CPU Bus Interfacet
3-6 654 Controller to PCI Bus INterfaceouveeerneeenneinanin...
3-7 654 Controller to System Memory (DRAM) Interface
3-8 654 Controllerto ROM or Flash Signals ... iiias.
3-9 654 Controllerto L2 Cache Signals o ..
3-10 654 Controllerto TestSignals ...
3-11 654 Controller to External Logic and System Interface
3-12 Signals Between the 653 Buffer and the 654 Controller
4—1 650 Bridge Mapping of 60X CPU Bus Addresses
4-2 650 Bridge Mapping of PCl Device Addresses ...t
5-1 SIMM Mapping Register Selectionl
5-2 SIMM Mapping Register Starting Addressescc.ovevinenn...
5-3 Example #1 SIMM Mapping Register Setup cooiiiiiiiiiin.
5-4 Example #2 SIMM Mapping Register Setup cccvevierneen....
5-5 System Setup Register Settings i
5-6 SIMM Register Access TimingChart
5-7

CPU_ADDRI[29:31] Munging for Little-Endian Mode

300

300

301
301
303
303

305
305
305
305

11
12
17
17
17
18
19
21
22
22
23
23
23
25
28
31
58
58
60
60
62
65
69

xvi

The 650 Bridge Chip Set

5-8 Three Low-Order Address BitUnmungeo .. 69
59 Endian Formats from the Byte Swapper L. 70
5-10 DRAM Memory Timings .. i..viuiit ittt ittt e e et e ieiiieeeas 77
5-11 RAS and CAS Address Assignmentsc.oiiiinneriiinnnnnnns 78
5-12 CASI7:0}# Assertion for 60X CPU Writes to System Memory 80
5-13 CAS[7:0]# Assertion for PCI Writes to System Memory 81
5-14 TT[0:3}—Transfer Type Codes on the 60X CPUHostBus 83
5-15 654 Controller Transfer Sizes Fromthe 60X CPU 84
5-16 60X CPU to System Memory Size Alignment 85
5-17 60X CPUto PCIBusCommandscoviiiiiiiiiinieninenannn. 87
5-18 PCI Byte Enables for PCI_C/BE[3:0]#ccoiiiiiiiiiiiiennn. 87
5-19 ROM Write Data Flow in Big-EndianModeco.... 93
5-20 ROM Write Data Flow in Little-EndianMode 93
5-21 PCl Bus Commands from PCIMasters, 100
5-22 Cache and 650 Bridge Action Table 101
5-23 System Error Reporting . ..o e 107
8-1 653 Buffer Numeric PinListo i i 203
8-2 653 Buffer Alphabetic PinList o o i i i 214
8-3 654 Controller Numeric PinListo i, 225
84 654 Controller Alphabetic PinList oot 230
C-1 653 Buffer Signals—60X CPU Bus'Interface 267
C-=2 653 Buffer Signals—System Memory Interface 267
C-3 653 Buffer Signals—PCl Bus Interface 268
C+4 653 Buffer Signals—654 Controller Interface 268
C-5 653 Buffer Signals—External Logic and System Interface 270
C-6 Low Order PCl Address Bit Settingscccoviiiiiiin ... - 274
Cc-7 PCI to 60X CPU and System Memory Address Translation 279
Cc-8 PCI to 60X CPU and System Memory Address Translation 282
Cc-9 Unmunging Address Bits in Little-Endian Mode 285
C-10 Address Multiplexer Source Selection Priority 289
C-11 60X CPU To PCI Address Translation—High Order 290
c-12 Memory Row and Column Address Generation 294
C-13 Data Multiplexer Source Selection Priority. oiiiiiiiiienn. 299

xvii

The 650 Bridge Chip Set

Figures:

1-1 IBM 650 Bridge Chip Set in a Typical System Configuration 1
3-1 650 Bridge Pin Connectionsc..oiiiiiii i e - 16
41 Non-Contiguous PCI I/O Address Transformation 30
4-2° CPU to Memory Read, Single-Beat, Page Hit, XCAS = 0 Timing Diagram ... 33
4-3 CPU to Memory Read, Single-Beat, Page Hit, XCAS = 1 Timing Diagram ... 34
4-4 CPU to Memory Read, Single-Beat, Page Miss, XCAS = 1 Timing Diagram . 35
4-5 CPU to Memory Read, Burst, Page Miss, XCAS = 1 Timing Diagram 37
4-6 CPU to Memory Write, Single-Beat, Page Hit, XCAS = 0 Timing Diagram ... 39
4-7 CPU to Memory Write, Single-Beat, Page Hit, XCAS = 1 Timing Diagram ... 40
4-8 CPU to Memory Write, Single-Beat, Page Miss, XCAS = 1 Timing Diagram . 41
4-9 CPU to Memory Write, Burst, Page Miss, XCAS = 1 Timing Diagram 43
4-10 Timing of PCLOE# e e 44
4-11 CPU to PCI Write, XADIO =1 Timing Diagram 45
4-12 CPU to PCI Write, XADIO = 0, Offbeat TS# Timing Diagram 47
4-13 CPU to PCI Write, XADIO = 1, Target Retry Timing Diagram 48
4-14 CPU to PCI Read Timing Diagram 49
4-15 PCI to Memory Read, Single-Beat, Page Hit Timing Diagram 51
4-16 PCI To Memory Burst Read Transaction, P 52
4-17 PCI to Memory Read, Burst, Page Hit Then Miss Timing Diagram 53
4-18 PCI to Memory Write, Burst, Page Miss Then Hit Timing Dlagram 54
5-1 The System Setup Registero.i ittt it 61
5-2 650 Register Access Pathway in the Example System [P 63
5-3 654 Setup Register Data Paths and Steering Logic 63
5-4 650 Register Write Timing Diagram, 64
5-5 650 Register Read Timing Diagram ..., 66
56 Byte Swapper Operation for Example of a Store Byte Instruction 71
5-7 Byte Swapper Operation for Example of a Store Half-Word Instruction 72
5-8 Byte Swapper Operation for Example of a Store Word Instruction 72
5-9 Byte Swapper Operation for a Store Floating-Point Double Instruction 73
5-10 Byte Swapper Operation for Example of a Load Half-Word Instruction 74
5-11 Byte Swapper Operation for Example of a Load Word Instruction 75
5-12 Byte Swapper Operation for Example of Load Floating-Point Instruction 75
5-13 ROM ConNnectionst eens 88
5-14 CPU to ROM Write Address and DataFlows 91
5-15 CPU to ROM Write Timing Diagramt 92
5-16 Timing Diagram, CPUto ROM Readt 94
5-17 CPU to ROM Read Address and Data Flows 95
5-18 Timing Diagram, CPU to ROM Read, Continuedcc.couat. 96
5-19 ISA Master Signal Timing - . ..ottt e e i eeiie e 99
5-20 PCIl to Memory Read — Cache Hit Timing Diagram 104
5-21 CPU to Memory Read — Page Miss, Cache Hit Timing Diagram e 105

xviii

The 650 Bridge Chip Set

522
61
6-2
6-3

6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
624
6-25
6-26
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16

Error Address External Support Gate i

653 Package/Pin Electrical Model
654 Package/Pin Electrical Model
Pull Up Curves, PCl Drivers, PIL=A.
Pull Up Curves, PCl Drivers, P/L=B.
Pull Up Curves, PCI Drivers, PL=C.
Pull Down Curves, PCI Drivers, P/L = A, B, and C.

Pull Down Curves, TTL Driver, IOL = 4mA, P/L=A
Pull Down Curves, TTL Driver, IOL = 4mA, P/L=B
Pull Down Curves, TTL Driver, IOL= 4mA, P/L=C

Pull Up Curves, TTL Driver, IOL= 4mA,P/L=A,B,andC

Pull Down Curves, TTL Driver, IOL = 6mA, P/L = A
Pull Down Curves, TTL Driver, IOL = 6mA, P/L=B
Pull Down Curves, TTL Driver, IOL = 6mA, P/L=C

Pull Up Curves, TTL Driver, IOL= 6mA, P/L=A,B,andC

Pull Down Curves, TTL Driver, IOL = 8mA, P/L=A
Pull Down Curves, TTL Driver, IOl.= 8mA, P/L=B
Pull Down Curves, TTL Driver, IOL= 8mA, P/L=C

Pull Up Curves, TTL Driver, IOL= 8mA,P/L=A,B,andC
Pull Down Curves, TTL Driver, IOL = 12mA,P/L=A,
Pull Down Curves, TTL Driver, IOL = 12mA,PL=B
Pull Down Curves, TTL Driver, IOL= 12mA,PL=C
Pull Up Curves, TTL Driver, IOL= 12mA,P/L=A,B,andC

Pull Up Curves, TTL Driver, IOL = 24mA, P/L=A
Pull Up Curves, TTL Driver, IOL = 24mA, P/L=B
Pull Up Curves, TTL Driver, IOL = 24mA, P/L=C

Pull Down Curves, TTL Driver, IOL = 24mA, P/L=A,B,andC

CPU_CLK Cycle Nomenclature
PCI_CLK Cycle Nomenclature
Switching Levelsc. .. L.
Signal Timing Conventions
CPU_CLKTimingoovviiiiaan .. e
CPU_CLKTIMING . .oovvv i
CPU_CLK Phase Relationships at 66MHz
CPU_CLK Phase Relationships at 33MHz

Timing Diagram, CPU_CLK to PCI_CLK Skew, 2:1 Mode [
Timing Diagram, CPU_CLK to PCI_CLK Skew, 1:1Mode

Timingof PCI_PAR ot

PCI Bus Master Transaction—Address Latch Operation

CPU to PCI Read—PCI Data Latch Operation
CPU to PCI Write—PCI Address/Data MUX
CPU To Memory Read — Single, Page Hit, XCAS=1
CPU To Memory Read — Single, Page Hit, XCAS=0

108

“ 114

115
122
123
123
124
125
125
126
126
127
127
128
128
129
129
130
130
131
131
132
132
133
133
134
134
136
136
137
139
140
141
141
142
143
143
152
159
159
159
161
162

Xix

The 650 Bridge Chip Set

7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-55
91
9-2
9-3
9-4

CPU To Memory Read — Single, Page Miss, XCAS=1 o
CPU To Memory Read — Single, Page Miss, XCAS=0
CPU To Memory Read — Burst, Page Hit, XCAS=1
CPU To Memory Read — Burst, Page Hit, XCAS=0 [P
CPU To Memory Read — Burst, Page Miss, XCAS=1
CPU To Memory Read — Burst, Page Miss, XCAS=0ccovuunn.
CPU To Memory Read — Single, Page Hit, L2 Cache Hit
CPU To Memory Read — Single, Page Miss, L2 Cache Hit
CPU To Memory Read — Burst, Page Hit, L2 Cache Hit
CPU To Memory Read — Burst, Page Miss, L2 Cache Hit
CPU To Memory Write — Single, Page Hit, XCAS=1
CPU To Memory Write — Single, Page Hit, XCAS=0
CPU To Memory Write — Single, Page Miss, XCAS=1
CPU To Memory Write — Single, Page Miss, XCAS=0 P
CPU To Memory Write — Burst, Page Hit, XCAS=1c.oouat.
CPU To Memory Write — Burst, Page Hit, XCAS=0
CPU To Memory Write — Burst, Page Miss, XCAS=1ccoviunn.
CPU To Memory Write — Burst, Page Miss, XCAS=0
PCI To Memory Read — Single, Page Hit i,
PCl To Memory Read — Single, Page Missc.iiiiia.t.
PCl To Memory Read — Burst, Page Hit oot
PCI To Memory Read — Burst, Page Hit ThenMiss
PCI To Memory Read — Burst, Page Miss Then Hit
PCl To Memory Read — Page Hit, Cache Hit
PCI To Memory — Cache Hit With Arbiter Switch
PCI To Memory Write — Single, Page Hit ...,
PCI To Memory Write — Single, Page Miss ...,
PC1 To Memory Write — Burst, Page Hitoo o oL,
PCl To Memory Write — Burst, Page Hit ThenMiss
PCl To Memory Write — Burst, Page Miss Then Hit
PCI To Memory Write — Page Hit, Cache Hit........... e
PCl To Memory Write — Page Miss, Cache Hitcovviinn.

CPU To PCI Write — XADIO=0 . ..

CPU To PCI Write — XADIO=0, Fast PCI Target Response

- CGPU To PCI Write — XADIO=0,Offbeat TS#t
CPU To PCI Write — XADIO=1 ...

CPU To PCI Write — XADIO=1, TargetRetrycovvaiii ..

CPUToPCIRead

CPU To PCI Read — Target Retry

653 Buffer Quad Flat Pack Component Detail
653 Buffer Quad Flat Pack Component Footprint

160-PinFlatPack

160-Pin Flat Pack Pad Locations

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
235
236
237
238

XX

The 650 Bridge Chip Set

C—
C-2
C-3
CcH4
C-5
C-6
Cc—7
Cc-8
Cc-9
C-10
C-11
Cc-12
C-13
C-14
C-15
C-16
C-17
C-18
C-19
C-20
C-21
c-22
c-23
C-24
C-25
C-26
c-27
c-28
C-29
C-30
C-31
C-32
C-33
C-34

653 Buffer Pin Attachments .

653 Buffer Address Flow Functional Diagram e
653 Buffer Data Flow Functional Diagramccovveeiiiinnnnn. ..
Non-Contiguous PCI I/O Address Transformation

60X to ROM PCI_AD Flow ..
PCI_AD Transceivers
PCl Address Latch
PCIBurst Counter

Combination Latch/Counter—PCIl BurstCounterc.covvvvveven...
Latch/Counter Flow Diagram—PCI Burst Counter
60X CPU Address Bus TransCeiVerSvvoviiinrine i ineeannnnn.

60X CPU Burst Counter

Combination Latch/Counter—CPU Burst Counter
Latch/Counter Flow Diagram—CPU BurstCounter

Page Hit Comparator.......
Refresh Counter
Address Multiplexer

60X CPU To PCl Address Translatorouviiiii i,
60X CPU To PCI Address Translation—PCI/ISAIO

ROM Read Burst Counter ..

Combination Latch/Counter—ROM Read Burst Counter
Latch/Counter Flow Diagram—ROM Read Burst Counter

PClDatalatch
PCIl Data Doubler
ROM Data Shift Register ...

60X CPU Data Byte Lane Swapper—InputSide
CPU Data Byte Lane Swapper Operation—Input Side

Data Multiplexer

PCI Delay Flop, Data Multiplexer, and Address/Data multiplexer.

PCI Parity Generator

60X CPU Data Byte Lane Swapper—OutputSide
60X CPU Data Byte Lane Swapper Operation—OQutput Side
Memory Data Parity Generator

Memory Data Parity Checker

266
272
273
275
276
281
281
282
283
283
284
285
286
287
287

- 288

289
290
291
292
202
293
295
295
295
296
298
299

300

301
301
302
303
303

About This Book

Audience:

This book is designed for engineers and system designers who are interested in implementing
PowerPC systems with a PCI bus. The material requires an understanding of computer systems

at the hardware Ievel

Document Organization:

Section 1 — An architectural overview of the 650 Bridge with detailed lists of the features

and functions of the 650 Bridge chip set.
Section 2 — A background review of the PCI Bus and 60X CPU.

Section 3 — 653 Buffer and 654 Controller pin description tables arranged in functional
groups with a separate table for all the interconnections between the two chips.

Section 4 — Theory of operations, including basic timing diagrams.

Section 5 — A functional description of the 650 Bridge. ‘

Section 6 — Electrical characteristics of the chip set.

Section 7 — Detailed timing diagrams and tables. }

Section 8 — Alphabetic and numeric pin lists for the 653 Buffer and 654 Controller.
Section 9 — Mechanical drawings.

Appendix A — Initialization and setup requirements.
Appendix B — Example implementation schematics.
Appendix C — 653 Buffer details of operation.
Appendix D — Addresses of sales offices.

~ Reference Material:

PowerPC 601 RISC Microprocessor User’s Manual IBM document number
MPR601UMU-02

PowerPC 601 RISC Microprocessor Hardware Specifications, I1BM document number
MPR601HSU-02

PCI Local Bus Specification, Revision 2.0, April 30, 1993, available from the PCI SIG
PCI System Design Guide, Revision 1.0, September 1993, available from the PCI SIG
32MB SIMM Engineering Specification, IBM document number MMDS08DSU-00
8MB SIMM Engineering Specification, 1BM document number MMDS06DSU-00
PowerPC Reference Platform Specification, Version 1.0, June 20, 1994

The IBM27-82681-66 PowerPC L2 Cache Controller User’s Guide, IBM document
number MPRCL2UMU-01

xxii

The 650 Bridge Chip Set

Document Conventions:
Kilobytes, megabytes, and gigabytes are indicated by a single capital letter after the numeric val-
ue. For example, 4K means 4 kilobytes, 8M means 8 megabytes, and 4G means 4 gigabytes.

Fractional time values are identified with the terms ms, us, and ns, which represent milliseconds,
microseconds, and nanoseconds respectively.

Hexadecimal values are identified with a lower-case letter h at the end of the value. For example,
001Fh means a 16-bit hexadecimal value of 1F. The letters A through F in the hexadecimal num-
bering system are always capitalized.

Binary values are identified with a lower-case letter b at the end of the value. For example,'01 01b
means a 4-bit binary value of 0101 (decimal five).

Inidentifying ranges of values fromand to are used whenever possible. The range statement from
0 to 2M means from zero up to (but not including) two megabytes. The hexadecimal value for the
range from 0 to 64K is: 0000h to FFFFh. This method is used in preference to constantly adding
a — 1term to the end of range statements.

The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with alow voltage level. When the # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active, regardless of whether that level is represented by a high or low voltage. The term ne-
gated means that a signal is inactive. The term deasserted is also used to indicate a signal that
is negated.

The names of signals are in all upper-case letters. For example, TS#, AACK#, and PCI_CLK are
all signal names.

Signals with more than one pin are identified with square brackets and numbers after the pin
names. For example, PCI_AD[31:0] and TT[0:2] are signals with multiple pins. The # symbol that
indicates that a signal is asserted low appears after the square brackets. For example, CAS[7:0]#.

Individual pins within a multi-pin signal group are identified with the pin number within the group
in square brackets after the pin name. For example, PCI_AD[5].

Multiple-pin signals that have the first number larger than the second number (PCI_AD[31:0] for
example) are little-endian signals. Multiple-pin signals that have the first number smaller than the
second number (TT[0:2] for example) are big-endian signals.

Acronyms and Abbreviations:
In this document, the term 60X CPU refers to the PowerPC 601, 603, and 604 microprocessors.

The term 1/O Bridge refers to a PCl master that serves to connect the PCl bus to a PC standard
bus like the ISA, EISA, or MicroChannel buses.

The term RAS refers to the row address select lines of the memory controller.

The term CAS refers to the column address select lines of the memory controller.

The term write-back means the same as copy-back in reference to a mode of cache operation.
The acronym PIO refers to 1/0 controller interface operations on the 60X CPU bus. |

xxiii

The 650 Bridge Chip Set

Xxiv

Optional
60X CPU L2 Cache

HOST BUS
/\ Control

- ¥ >

Address

Y

System Control
and Status

Data

Control

IBM27-82654

IBM27-82653
PCl/Memory [Address/Data

ROM Control Controller RAS/CAS Buffer

Write Enable

DRAM
System
Memory |-

PCI Bué /\
- l l l Address/Data l -
\/ ‘

| A ‘ Yy v

Control

> System ROM PCI PCI PCI
(Flash or EPROM) DEVICE DEVICE DEVICE

Figure 1-1. IBM 650 Bridge Chip Set in a Typical System Configuration

Section 1

650 Bridge Architectural Overview

The IBM27-82650 PCI Bridge chip set {the 650 Bridge) provides an interface that can connect
a PowerPC 60X CPU to high-performance PCI (Peripheral Component Interconnect) devices like
graphics, LAN, and SCSI controllers. The PCI bus standard defines an environment for high-
speed local bus operations. The 650 Bridge chip set provides the necessary control and commu-
nications logic to connect a PowerPC 60X CPU to PCl-compliant devices through the PCI bus.

The 650 Bridge chip set is comprised of the IBM27-82653 Address and Data Buffer (the 653 Buff-
er) and the IBM27-82654 PCI and Memory Controller (the 654 Controlier). The 650 Bridge sup-
ports the PowerPC 601™, PowerPC 603™, and PowerPC 604 ™ microprocessor chips. Within
this document, the three microprocessor chips (601, 603, and 604) are referred to generically as
the 60X CPU. The 650 Bridge supports both the L1 memory cache of the 60X CPU and an optional
L2 cache. Either cache can use write-through or write-back modes of operation.

Local bus standards like PCI and the VL-Bus have evolved to answer the need for higher perfor-
mance I/O operations on microcomputer systems. The 650 Bridge provides an interface mecha-
nism between PowerPC CPUs and the PCI bus. This interface allows system designers to take
advantage of the standard PCI controllers that are available for many i/O applications.

The 650 Bridge Chip Set

Figure 1—1 shows a typical PowerPC to PCl system. The address, data, and control signals from
the 60X CPU host bus are connected to the 650 Bridge. An optional L2 (level 2) cache can also
be connected to the host bus. (The L1 cache resides in the 60X microprocessor.) The 650 Bridge
is connected to the PCllocal bus (address/data and control signals) and also to the DRAM system
memory and ROM devices. Communication between the 60X CPU and its I/O devices and sys-
tem memory is managed by the 650 Bridge.

1.1 Summary of 650 Bridge Features

This section summarizes the features of the 650 Bridge—including the central arbiter, the memory
controller, the PowerPC local bus, the PCI expansion bus, the address translation logic, the L2
cache, the ROM controller, and the interrupt and exception logic.

The 650 Bridge operates from 3.0V to 3.78V, allowing either 3.3V or 3.6V power sources.

1.1.1 60X Microprocessor Support
The 650 Bridge supports the PowerPC 601, 603, and 604 microprocessors as follows:

¢ PowerPC 601
» Supports all 601 external clocking modes
» Supports CPU bus speed up to 66MHz
¢ PowerPC 603
» Supports all CPU clock multiplier modes except 1:1
¢ Supports CPU bus speed up to 66MHz (Without 1:1 mode, 66MHz:66MHz is not al-
lowed, 66MHz:33MHz is allowed, 80MHz:40MHz is allowed.)
» Supports 64-bit mode of the 603 CPU -
* PowerPC 604
» Supports all CPU clock multiplier modes
e Supports CPU bus speed up to 66MHz

1.1.2 - Central Arbiter
* DRAM refresh support
» Prioritized arbitration among the following devices:
1. DRAM refresh (highest priority)

2. 60X CPU
" 3. L2 write-back cache
4. 1/O bridge

5. Five PCl masters (priority 5 to 9)

Support for ISA bus masters when an ISA I/O bridge is installed on the PCl bus
Operates CPU bus and PCl bus as a single-bus system

Implements a fairness algorithm _

Has a 63-count PCI bus latency timer to prevent lockup due to inoperative PCI devices
During idle periods, the PCl bus grant is parked on the 60X CPU

3 Memory Controller
Supports memory operations for the PowerPC Architecture™
Eight RAS outputs, eight CAS outputs, and two write-enable outputs
The memory is eight-bytes wide (plus eight parity bits)
Fast page-mode is supported

:
e o o o,

The 650 Bridge Chip Set

e o o o o o I,

1.1.

®* o ® o o

Supports industry-standard 70ns SIMMs
» Directly supports 168-pin eight-byte 8M, 16M, and 32M SIMMs
» Supports 72-pin four-byte 4M, 8M, 16M, and 32M SIMMs
Mixed use of 8M and 32M eight-byte SIMMs
Memory configurations available from 8M to 256M
Empty SIMM sockets are allowed at any position in the eight socket array
Provides row-address and column-address multiplexing for SIMMs requiring:
10, 11, or 12 row by 9 column
10, 11, or 12 row by 10 column
11 row by 11 column
Combined 12 row by 10 column and 11 row by 11 column
Non-interleaved memory access operation
Memory refresh address counter
» Auto-increment on every refresh cycle
» Auto-wrap at end of page
» Outputs multiplexed to memory address lines
Burst-mode memory address generation logic
* 32-byte CPU bursts to and from memory
+ Any length PCI burst to and from memory
Generates even parity, one bit per byte
Checks parity eight-bytes wide on all memory reads
Little-endian and big-endian addressing modes
ISA master to DRAM access
Optimized Timing is as follows:
CPU to memory write hit or read hit at 66MHz—7-5-5-5 (CPU bus cycles)
CPU to memory write hit or read hit at 50MHz, 40MHz, and 33MHz—6-4-4-4
PCI to memory read hit at 33MHz—5-3-4-3 (PCI bus cycles)
PCI to memory write hit at 33MHz—5-4-4-4
See Table 5-10 for more details on memory timing

4 PowerPC Local Bus

64-bit CPU data bus

32-bit CPU address bus

CPU can operate in big-endian or little-endian mode _

Logic to swap byte lanes and translate addresses for big-endian and little-endian modes
Synchronous CPU bus speed support up to 66MHz

PCI bus clock can be equal to or half the speed of CPU bus clock—up to 33MHz

5 PCI Expansion Bus

650 Bridge chip set (653 Buffer and 654 Controller) presents one load to PCl bus
PCI bus frequency 20 MHz to 33 MHz (maximum of PCI 2.0 specification)

» PCl bus frequency can be equal to or one-half the frequency of the CPU bus clock
32-bit multiplexed PCI address and data path ,
Support for I/O Bus Bridge (ISA, EISA, MicroChannel)

Support for ISA bus master access to system memory when an I/O bridge is installed
PCI to DRAM access—with L1 and L2 cache snooping

Supports all 60X to PCl transfers that do not cross a four-byte boundary

The 650 Bridge Chip Set

1.1

1

1.1

.6 Address Translation Logic

Support for memory mapping 60X address space into PCI spaces

¢ PCI1/O reads and writes

¢ PCl memory reads and writes

¢ PCI configuration reads and writes

¢ PClinterrupt acknowledge reads

Support for reverse translation of PCl addresses for snoops and PCI to memory access
Support for contiguous ISA I/O and non-contiguous ISA 1/0 mappings (non-contiguous
I/O allows operating systems to memory-protect 32-byte blocks of ISA I/0 space) .
Forces the PCI_AD bits{1:0] to 00b during the address phase of all PCl transactions ex-
cept PCI I/O transactions

Support for low-order address translation (unmunging) in little-endian mode

Inputs for translation override

A7 L2 Cache Support

L2 write-through or write-back cache support

Handshakes with IBM27-82681-66 PowerPC L2 Cache Controller

Snoop cycles to CPU generated for PCI reads and writes of system memory
Parity checking on read cycles

Allows timing of burst read hits up to 3-1-1-1

.8 System ROM Controller

» Supports up to 8M of 8-bit ROM, flash, or EPROM connected to PCI_AD lines

11

» Conversion buffers support 8-bit to 64-bit conversion
Logic for flash write

Write lock-out support

Single-beat (one-byte to eight-byte) read cycle
Single-beat (one-byte) write cycle

Pseudo burst-mode (32-byte) read cycle
Approximately 1.7us read cycle time at 66MHz

.9 Interrupt and Exception Logic

¢ Interrupt pass-through to CPU

Non-maskable interrupt (NMI) support
The following types of errors are reported:
» CPU or PCI system memory read parity errors
* lllegal transfers:
The CPU attempts an illegal size, type, or alignment transfer.
A PCI device target aborts to the CPU
A missing or unresponsive PCI device
A PCI bus hangup condition
¢ L2 cache parity errors
Readable error address register
Drives CPU data lines to all one-bits on out-of-range memory reads
PCI configuration cycles return all one-bits when no device responds
Retimes the soft reset input to meet the 60X specifications

Section 2

The PCI Bus and 60X CPU Background Review

The material in this section reviews the PCl local bus specifications and the 60X CPU features
and functions. This material is intended for readers who are not familiar with the PCI specification
or the operation of the 60X CPU.

2.1 The PCI Local Bus Review

This section provides a review of the operation of the PCl local bus. The PCl local bus standard
defines a high-performance, 32-bit or 64-bit local bus with multiplexed address and data lines. The
PCl local bus standard has been defined by the PCI SIG (Special Interest Group), a computer-
industry standards group. The PCI local bus provides an interconnect mechanism between pe-
ripheral controllers, like graphics controllers and SCSI controllers, and host computer systems.

2.11 PCI Local Bus References

The PCI Local Bus Specification, Production Version, Revision 2.0, dated April 30, 1993 contains
the detailed information necessary for a full understanding of the PCI bus standard. The 650
Bridge provides the signals that are necessary to interact with devices that conform with the PCI
standard as described in the specification. Implementing a PowerPC to PCI system with the 650
Bridge requires a full understanding of the PCI standard.

2.1.2 PCI Local Bus Overview

The PCl bus can be either a 32-bit or a 64-bit multiplexed address/data bus implementation. The
650 Bridge is a 32-bit implementation. The 32-bit multiplexed address and data lines can encode
addresses in the range of 0 to 4G (0000 0000h to FFFF FFFFh). During data phases, the 32-bit
bus can transfer four bytes per phase. A PCl bus transactlon consists of an address phase fol-
lowed by one or more data phases.

The PCI bus can operate in single-beat or burst mode. The beginning address of a transfer can
be followed by a variable number of consecutive 32-bit data words. Burst data transfer can occur
at the rate of 32 bits per PCl bus clock cycle. The maximum PCI clock rate of 33MHz can support
up to 132M bytes per second burst transfer rates.

The 650 Bridge Chip Set

21.3

PCI Signals

Table 2—1 shows the standard PCl signals that are interfaced directly with the 650 Bridge chip set.
The column labeled PCI Signal Name contains the signal name that is used in the PCI standard
document. The column labeled 650 Bridge Signal Name contains the 650 Bridge signal name for
the PCl signal. The PCI Local Bus Specification document describes all the possible PCl signals.

The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. When the # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms assert and negate are used extensively. The term assertindicates that a signal is ac-
tive, regardless of whether that level is represented by a high or low voltage. The term negate
means that a signal is inactive. The term deasserted is also used to indicate a signal that is ne-

gated.
Table 2-1. PCI Signals in the 650 Bridge
PCI 650 Bridge)
Family Signal Name Signal Name Description
Address/Data AD[31:00] PCI_AD[31:00] | Address and data bus, 32 bits multiplexed.
C/BE[3:0]# PCI_C/BE[3:0]# | C (bus command) and BE (byte enable) multiplexed lines.
An address phase is a bus command, a data phase is BE.
PAR PCI_PAR Parity bit for PCI_AD and PCI_C/BE# combined, even par-
ity bit for the combination of 36 bits.
Arbitration REQ# I0_BRDG_REQ# [ISA or EISA PCI bus request, input to arbiter.
GNT# 10_BRDG_GNT# | ISA or EISA PCI bus grant, output from arbiter.
REQ# PCI_REQ[1:5)# | Five PClbus request lines, input to arbiter.
GNT# PCI_GNT[1:5]# [Five PCl bus grant lines, output from arbiter.
Interface Control FRAME# PCI_FRAME# | PCl frame, asserted by the current master to indicate the
beginning and duration of a bus access.
TRDY# PCI_TRDY# PClI target ready, asserted by the target device to indicate
its completion of the current data phase of a transaction.
IRDY# PCI_IRDY# PCl initiator ready, asserted by the master device to indi-
cate completion of the current data phase of a transaction.
When PCI_TRDY# and PCI_IRDY# are asserted on the
same bus clock cycle, the current data phase is complete.
STOP# PCI_STOP# PClI stop, asserted by a target to stop a transaction.
DEVSEL# PCI_DEVSEL# | PCI device select, asserted by a device that claims the
address range and bus command of a cycle on the PCl bus.
System CLK PCI_CLK PCI clock; provides the timing for PCI transactions (up to
33MHz).
- RST# RESET# Reset, initializes PCI registers, signals, and sequencers.

The 650 Bridge Chip Set

214 PCI Masters and Targets

The PCI bus standard uses a master and target architecture. Master devices can gain control of
the bus and then direct other devices to perform reads, writes, configuration operations, and other
types of transactions. Masters on the PCl bus use dedicated REQ# and GNT# lines to gain control
of the bus. Targets on the PCl bus do not use REQ# and GNT# lines. Targets are selected by a
range of addresses within the various types of PCI transactions.

A PCI master device requests the bus by asserting its REQ# line. When the GNT# line for the
requesting master device is asserted, the master device can then take control of the PCI bus to
communicate with other master or target devices on the PCl bus. An arbiter (which the 650 Bridge
provides) is necessary to manage the REQ# and GNT# activity on the PCI bus.

215 PCI Arbitration

Since there can be more than one PCI master device on the PCl bus, and since each master de-
vice has its own independent REQ# and GNT# lines, there must be an arbitration mechanism for
any PCI bus implementation. The 650 Bridge incorporates arbitration logic for DRAM refresh
cycles, the 60X CPU, the L2 cache, an I/O bridge (ISA, EISA, MicroChannel), and up to five other
PCl master devices. The 650 Bridge arbitration logic ensures PCl latency requirements and allo-
cates host and PCI bus accesses according to a priority and fairness algorithm.

21.6 Basic Transfer Control
After PCI_REQ# and PCI_GNT#, the fundamentals of all PCl data transfers are controlled with
the following five signals:

. 1. PCI_FRAME#—which is asserted by the master to indicate the beginning and
end of a PCI bus transaction.
2. PCIl_DEVSEL#—PCI device select, when asserted, indicates that the device that is
driving PCI_DEVSEL# has decoded its address as the target of the current address.
3. PCI_IRDY#—initiator ready, deasserted by the master to force wait states.
4. PCI_TRDY#—target ready, deasserted by the target to force wait states.

5. PCI_STOP#—PCI stop is asserted by a target to stop a transaction.

The PCl bus is idle when both PCI_FRAME# and PC|_IRDY# are deasserted. The first clock edge
on which PCl_FRAME# is asserted is the address phase. The 32-bit address and 4-bit bus com-
mand code (PCI_C/BE[3:0]#) are asserted (see Section 2.1.7) on the PCl bus during the address
phase.

Target devices have up to three PCI bus cycles after PCI_FRAME# is asserted to recognize an
address and respond by asserting PCI_DEVSEL#. If no device asserts PCl_DEVSEL# within
three clocks of PCI_FRAME# a device using subtractive decode can claim the transaction by as-
serting PCl_DEVSEL#. A PCI device that provides ISA, EISA, or MicroChannel bus logic usually
uses subtractive decoding for device selection.

One or more data phases follow the address phase. The master is required to assert its IRDY#
signal when it is ready to receive or when it is providing valid data. The target asserts its TRDY
signal when it is ready to receive or when it is providing valid data. When PCI_TRDY# and
PCI_IRDY# occur on the same bus cycle, the current data phase is concluded.

When the last data phase begins, the master deasserts PCI_FRAME# to indicate the last 32-bit
transfer. For single-cycle transfers, PCl_FRAME# is deasserted on the first data phase.

The 650 Bridge Chip Set

21.7 PCI Bus Commands

During the address phase of a PClI transaction, the PCI_C/BE[3:0]# signals encode bus com-
mands. (During the data phase on the PCl bus, the PCi_C/BE[3:0]# signals are byte enables for
the four bytes on the PCI_AD[31:00] address/data bus.) Table 2-2 shows the 16 possible PClbus
commands. During the address phase on the PCI bus these bus commands determine the action
that is to be taken by the target of the address phase.

Table 2-2. PCI Bus Commands -

PCI_C/BE[3:0]# |Command Type
0000b Interrupt Acknowledge
0001b Special Cycle
0010b I/0 Read
0011b I/O Write
0100b Reserved
0101b Reserved
0110b Memory Read
0111b Memory Write

- 1000b Reserved
1001b Reserved
1010b Configuration Read
1011b Configuration Write
1100b Memory Read Multiple
1101b Dual Address Cycle
1110b Memory Read Line
1111b Memory Write and Invalidate

2.1.8 Termination of PCI Cycles
PCl transactions can be terminated in the following non-standard ways:
¢ Master abort—The master deasserts FRAME# then deasserts IRDY#

» Target abort—The target asserts PCl_STOP# with PCI_DEVSEL# deasserted
» Target retry or disconnect—The target asserts both PCI_STOP# and PCI_DEVSEL#

2.2 PowerPC 60X CPU Review

This section provides a review of the operation of the 60X CPU as it relates to the 650 Bridge and
the PCl local bus. The 650 Bridge links the PowerPC 601, 603, or 604 (60X) microprocessors to
a 32-bit implementation of the PCI local bus and to system memory. The 650 Bridge connects
to the 60X CPU host bus and communicates with the 60X CPU through the 60X CPU host bus
transaction types.

The 650 Bridge Chip Set

2.2.1 601 CPU References

The PowerPC 601 RISC Microprocessor User’s Manual, MPR601UMU-02 and the PowerPC 601
RISC Microprocessor Hardware Specifications, MPR601HSU-02 contain detailed information re-
garding the operational and electrical characteristics of the 601 microprocessor.

2.2.2 PowerPC 60X CPU Overview

The PowerPC 60X microprocessors implement the 32-bit portion of the PowerPC architecture,
which provides 32-bit effective addresses, integer data types of 8-bits, 16-bits, and 32 bits, and
32-bit and 64 bit floating-point data types. The 60X CPU has a 32-bit address bus and a 64-bit
data bus. The 60X CPU system interface protocol allows multiple masters to compete for the 60X
CPU host bus, but the 650 Bridge implements a uni-processor topology. The 650 Bridge commu-
nicates with the 60X CPU in conformance with the system interface (host bus) protocol.

The 60X CPU is a register-oriented microprocessor. All computation and data manipulation com-
mands are performed in the internal registers of the CPU. An internal (L1) cache minimizes
memory reads and writes for frequently accessed system memory data.

The 60X CPUs are superscalar microprocessors that are capable of issuing and retiring multiple
instructions per clock. Instructions can complete out of order, but the 60X CPUs make execution
appear sequential. The 60X CPUs use three types of execution units—an integer unit (IU), a
branch processing unit (BPU), and a floating-point unit (FPU). Most integer instructions execute
in one clock cycle. The FPU is pipelined so that a single-precision multiply-add instruction can be
issued every clock cycle. The BPU features static branch prediction and performs condition regis-
ter (CR) look-ahead.

223 CPU to 650 Bridge Signals

Table 2-3 shows the 60X CPU signals that are interfaced directly with the 650 Bridge chip set.
The column labeled User’s Manual Signal Name contains the signal name that is used in the Pow-
erPC 601 RISC Microprocessor User’s Manual. The column labeled 650 Bridge Signal Name con-
tains the 650 Bridge signal names that are used for the 60X CPU signals.

See Section 2.1.3 for a description of the signal naming conventions used in this document.

Table 2-3. 60X CPU Signals Connected to the 650 Bridge

User’s Manual | 650 Bridge
Family Signal Name Signal Name { Description

Arbiter BR# CPU_REQ# | Bus request from the 60X CPU. This signal indicates that the 60X
CPU wants control of the host bus.

BG# CPU_GNT# | Bus grant to the 60X CPU. The 650 Bridge arbiter grants control of
the host bus to the 60X CPU with this signal. The arbiter parks the
host bus on the 60X CPU (asserts this signal) when no other
masters are requesting a bus.

Transfer TT[0:3] TT[0:3] 60X CPU bus transfer type. TT[4] is not used in the 650 Bridge and
Attributes should be negated—pulled low. See Table 2—4 for TT[0:3] codes.
TSIZ[0:2] TSI1Z[0:2] 60X CPU bus transfer size—number of bytes. The 650 Bridge
supports transfers of 1, 2, 3, 4, 8, and 32 bytes (1, 2, 3, or 4 on the
PCl bus).

TBST# TBST# Indicates a burst transfer of four 8-byte double words on the 60X -
' . CPU bus. Burst transfers by the 60X CPU are only allowed to
system memory, not to the PCI bus.

The 650 Bridge Chip Set

Table 2-3. 60X CPU Signals Connected to the 650 Bridge (Continued)

Family

User’s Manual
Signal Name

650 Bridge
Signal Name

Description

Address
Transfer
Start

TS#

TS#

60X CPU bus transfer start. TS# is asserted by the current bus
master when the address on the CPU_ADDR[31:00] lines is valid.

XATS#

XATS#

Extended address transfer start. When asserted, this signal
indicates that the 60X CPU is performing I/O controller interface
operations (PIO). If the T-bit in the 60X CPU segment register is set
it indicates that addresses in the range of the segment register are
I/0 controller interface accesses.

The 650 Bndge does not support PIO operations from the 60X CPU.
If this signal is asserted, the 650 Bridge generates an error to the
60X CPU with TEA#.

Address

A[0:31]

CPU

ADDRI[00:31]

60X CPU address bus. Of the 32 bits on the bus, the 654 Controller
decodes 60X CPU addresses using CPU_ADDR[00:08], [19],
[29:31], where [31] is the least-significant bit. By analyzing these
bits, the 654 Controller can determine if the CPU is addressing
system memory, PCi memory, PCI I/O space, PCl interrupt
acknowledge space, system ROM, or PCI configuration space.

The 653 Buffer uses all 32 bits of the CPU_ADDR address lines.

Address
Termination

AACK#

AACK#

60X CPU bus address acknowledge.

ARTRY#

ARTRY#

60X CPU bus address retry. This signal can indicate that the 60X
CPU or the L2 cache has detected a condition where a snooped
address must be retried. ARTRY# is also asserted by the 650
Bridge during target-retry terminations on the PCI bus.

Data
Transfer

DHI[0:31]

- CPU

DATA[0:31]

32 bits of the 64-bit 60X CPU data bus. 0 = most-significant bit.

DL[0:31]

CPU_
DATA[32:63]

32 bits of the 64-bit 60X CPU data bus. 63 = least-significant bit.

DPE#

DPE#

Data Parity Error from 60X CPU. The 60X CPU asserts DPE# two
CPU bus clocks after each TA# if data parity is invalid.

Data
Termination

TA#

TA#

60X CPU bus transfer acknowledge. The 650 Bridge asserts TA# to
indicate that a data transfer has completed successfully. The 650
Bridge asserts TA# for one CPU clock for a single beat data transfer
transaction. For a four-beat burst transaction, the 650 Bridge
asserts TA# at the conclusion of each of the four data transfer
phases.

TEA#

TEA#

60X CPU bus transfer error acknowledge. The 650 Bridge asserts
this signal instead of TA# to terminate 60X CPU bus cycles and
report error conditions such as—an NMI (non-maskable interrupt),
memory access out-of-range error, transfer type error, transfer size
error, PCI target abort, or a parity error from system memory.

60X CPU
Control

INT#

INT_CPU#

60X CPU Interrupt. Asserted by the 650 Bridge to signal the 60X
CPU to run an interrupt cycle.

SRESET#

SRESET_
CPU#

This signal is a soft reset—the 60X CPU warm boots when
SRESET_CPU# is asserted. SRESET_CPU# is asserted by
asserting SRESET_REQ# on the 654 Controller chip.

10

The 650 Bridge Chip Set

2.2.4 Cache (L1)
The 60X CPUs contain an L1 cache that can implement a write-back policy. The caches in the
three 60X CPUs operate differently. The following discussion relates only to the 601 CPU.

The 601 CPU contains a 32-Kbyte, eight-way set-associative, unified (instruction and data)
cache. The cache sector size is eight 32-bit words within a cache line of 64 bytes. The cache is
designed to conform to a write-back policy, but the 60X CPUs allow control of cacheability, write
policy, and memory coherency at the page and block level. The cache uses a least-recently-used
(LRU) replacement policy.

The instruction unit provides the cache with the address of the next instruction to be fetched. In
the case of a cache hit, the cache returns the requested instruction and as many of the instructions
following it as can be placed in the eight-word instruction queue up to the cache sector boundary.
If the queue is empty, as many as eight 32-bit words can be loaded into the queue in parallel.

The cache tag directory has one address port dedicated to instruction fetch and load/store ac-
cesses and one port dedicated to snooping transactions on the system interface (host bus).
Therefore snooping does not require extra clock cycles unless a snoop hit that requires a cache
status update occurs.

225 System Interface

The 60X CPU system interface (host bus) has 64 data lines and 32 address lines plus various
control lines. An external arbiter (the 650 Bridge) controls access to the host bus. The arbiter can
grant host bus access to the 60X CPU when memory reads or writes are requested. When PCI
transactions are being processed, the arbiter can direct the host bus to perform snoops of ad-
dresses on the host bus. :

Because the 60X CPU has an L1 cache, the predominant type of transaction for most applications
is burst memory operations, where four beats of 64-bit double words are transferred after a single
address phase. These bursts are linear within a cache sector. That is, wherever the burst begins
within the 32-byte cache sector, it fills the 32-byte sector in a circular fashion.

2.2.6 TT[0:3] (Transfer Type)

The TT[0:3] signals are transfer type codes for the 60X CPU host bus. These signals are asserted
with TS# (transfer start) and the CPU_ADDR[00:31] address lines at the beginning of a bus trans-
action on the 60X CPU host bus. Table 2—-4 shows the 16 possible transfer type codes and their
60X CPU descriptions.

Table 2—4. TT[0:3]—Transfer Type Codes
TT[0:3] 60X Bus Mnemonic
0000b Clean sector
0001b Write with flush
0010b Flush sector
0011b Write with kill
0100b Sync
0101b Read
0110b Kill sector

1

The 650 Bridge Chip Set

Table 2—4. TT[0:3]—Transfer Type Codes (Continued)
TT[0:3] 60X Bus Mnemonic '
0111b Read with intent to modify

10000 — (Reserved)

1001b Write with flush atomic

1010b External control out (ecowx)—not supported
1011b — (Reserved)

1100b TLB invalidate

1101b Read atomic

1110b External control in (eciwx)—not supported
1111b Read with intent to modify atomic

2.2.7 Pipelining and Split Transactions

The 60X address and data buses can be independent to support pipelining and split transac’uons
however, the 650 Bridge does not use pipelining and split transactions. During 60X host bus burst
transactions, AACK# is asserted by the 650 Bridge with the last TA# in order to keep the 60X CPU
from pipelining addresses.

2.2.8 Big-Endian and Little-Endian Modes of Operatlon

The 60X CPU powers up and resets in big-endian (BE) mode. In this mode of operation, the most-
significant byte of any data format using multiple bytes is the lowest numbered byte. For example,
a four-byte integer with the value 01020304h is stored at address 1000h with the 01h in address
1000h and the 02h in address 1001h, etc. In little-endian mode the 01h of the previous example
is stored at 1003h, the 02h is stored at 1002h, etc.

Table 2—-5 shows examples of big-endian and little-endian data storage. In the case of the integer
and shortinteger fields, the bytes are byte reversed. However, a string is stored in the same fash-
ion in both big-endian and little-endian modes because strings are treated as individual bytes and
there is no difference in big-endian and little-endian addressing at the byte level.

Table 2-5. Big-Endian and Little-Endian Data Storage

Big-Endian Data Format Little-Endian Data Format
Data description - 00 |01]|02|03|04|05|06|07 00|01 [02]03|04]|05]06]07
4-byte integer—01020304h | 01 | 02 | 03 | 04 04 |03 |02|01
2-byte short integer—1122h | 11 | 22 22 |11
String—ABCDEF A | B C D | E F A | B c|D]E|F
Asingle byte—31h- 31 31
A single byte—66h) » ; 66 66
8-byte double word— 11 |22 |33 |44 |55 |66 |77 |88 | 88 |77 | 66 |55 |44 |33 |22 |11
1122334455667788h

12

The 650 Bridge Chip Set

In little-endian mode, instruction fetches use byte-swapping logic within the 32-bit instruction.
Byte 0 becomes byte 3, byte 1 becomes byte 2, and so on. The four bytes within a 32-bit instruc-
tion word are reversed.

When it is in big-endian mode, the 60X CPU addresses system memory as if it is organized with
big-endian byte significance. However, when it is in little-endian mode, the 60X CPU addresses
system memory in an intermediate form that is neither big-endian nor little-endian. The 650 Bridge
translates the addressing that the 60X CPU uses in little-endian mode to produce a true little-en-
dian memory mapping. The 650 Bridge provides the address manipulation and byte swapping that
is required to support system memory as exactly little-endian representation in little-endian mode
and exactly big-endian in big-endian mode. Therefore, data is maintained in system memory by
the 650 Bridge in the same endian order as the media on which it resides, hard disk for example.

The 60X CPU defaults to big-endian mode at power-on or reset. The 650 Bridge defaults to the
setting of the LE_ MODE_REQ# signal at power-on or reset. The endian mode can be switched
as required. '

2.29 PIO or I/O Controller Operation (XATS#)

The 650 Bridge does not support the PIO I/O controller interface bus protocol. PIO operations
on the 60X CPU host bus are indicated by the assertion of the XATS# signal. The 650 Bridge re-
sponds to the assertion of XATS# with TEA# to indicate a host bus transfer error.

13

The 650 Bridge Chip Set

14

Section 3

650 Bridge Pin Descrlptlons

Figure 3—1 shows how the 653 Buffer and 654 Controller are connected to the 60X CPU bus, the
PCl bus, DRAM, ROM, the L2 cache, and external logic. Figure 3—1 also shows the interconnec-
tions between the 653 Buffer and the 654 Controller. The following tables describe groups of sig-
nals that connect to the 653 Buffer and 654 Controller.

The tables in Section 3.2 describe the pins that connect the 653 Buffer with the 60X CPU, the PCI
bus, system memory (DRAM), and external logic. The tables in Section 3.2 describe the pins in
the 654 Controller. The tables in Section 3.3 describe the pins that interconnect the 653 Buffer
and the 654 Controller.

Section 8.1 and Section 8.2 contain numeric and alphabetic lists of the pins in the 653 Buffer and
654 Controller respectively. Pin numbers are included in these tables.

3.1 653 Buffer Pin Descriptions

The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. When the # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active, regardless of whether that level is represented by a high or low voltage. The term ne-
gated means that a signal is inactive. The term deasserted is also used to indicate a signal that
is negated.

The following terms are used to describe the signal type:
in Input is a standard input-only signal.
out Output is a standard active driver
/O Bi-directional

15

The 650 Bridge Chip Set

—— 60X CPU —
CPU_ADDR[0:31]

CPU_DATA[0:63]
TSIZ[0:2]

PCI

PCI_AD[31:0]

PCI_CLK

DRAM

MEM_ADDR{[11:0]
MEM_ADDRO_B

MEM_DATA[63:0]
MEM_PAR[7:0]

External —

CONTIG_IO
DRAMXSHI/X10LO

TMTMNCW LA

L_ERR_ADDR#

PCI
I0_BRDG_GNT# L2 Cache
IO_BRDG_REQ# L2-CACHE_GNT#
PCI_C/BE[3:0}# L2_CACHE_REQ#
PCI_CLK L2_CLAIM#
PCI_DEVSEL# L2_PRESENT#
PCI_FRAME#
PCI_GNT[1:5]#
PCI_IRDY#
PCI_PAR e 60X CPU —
PCI_REQ[1:5}# AACK#
PCI_STOP# ARTRY#
PCI_TRDY# CPU_ADDR][0:8],
; CPU_ADDR[19],
: CPU_ADDR[29:31]
— Interconnects — CPU CLK
ADDRHI/DATALO CPU_GNT#
ALL_ONES_SEL# 6 CPU_REQ#
BURST_CLK# DPE#
CPU_ADDR_OE# 5 INT_CPU#
CPU_ADDR_SEL# 4 SRESET _CPU#
CPU_DATA_OE# TA#
CPU_DATA SEL# C TBST#
ERR_ADDR_SEL# TEA#
L_PCI_DATA# o TS#
{E_MODE_SEL# N TSIZ[0:2]
MEM_DATA_OE# T TT[0:3]
MEM_DATA_SEL# R XATS#
MEM_PAGE_HIT# 0
MEM_PAR_GOOD >
NO_TRANS L _[.DRAM
PCI_AD_PAR - L »| CAS[7:0J#
L »|RAS[7:0]#
PCI_OE# E | o|wEHoi
PCI_SEL# R [1:0]
RASHI/CASLO
REFRESH_SEL#
ROM_SEL# — ROM
ROM_CS#
ROM_OE#
ROM_WE#
External
BE_PAR_EN#
DPE_ERR# — Test
I0_BRDG_HOLD# DI
10_BRDG_IRQ RI#
ISA_MASTER# TEST#
LE_MODE_REQ#
LE_PAR_EN#
MASK_TEA#
MC_SETUP#
MEM_PAR_ERR#
NMI_REQ
REFRESH_REQ#
RESET#
SRESET_REQ#
TT_ERR#

Figure 3—1. 650 Bridge Pin Connections

16

The 650 Bridge Chip Set

3.1.1 653 Buffer to 60X CPU Bus Interface Signals
Table 3—1 describes the signals that interface the 653 Buffer to the 60X CPU bus.

Table 3—1. 653 Buffer to 60X CPU Bus Interface

Signal Name | Type |Description

CPU_ADDR[0:31] /0 | The 60X CPU address bus, bit 0 = most-significant bit (MSB). All buses connected to
the 650 Bridge, except the 60X buses, use little-endian nomenclature.

CPU_DATA[0:63] /0 The 64-bit 60X CPU data bus, bit 0 = MSB. CPU_DATA[0:31] connect to the 60X CPU
signals DH[0:31]. CPU_DATA[32:63] connect to the 60X CPU signals DL[0:31].

TSIZ[0:2] in 60X CPU bus transfer size—number of bytes. The 650 Bridge supports transfers of 1,
2,3, 4,8, and 32 bytes (1, 2, 3, or 4 to the PCl bus).

3.1.2 653 Buffer to PCI Bus Interface Signals
Table 3—2 describes the signals that interface the 653 Buffer to the PCI bus.

Table 3-2. 653 Buffer to PCl Bus Interface

Signal Name | Type | Description

PCI_AD[31:0] /0 PCladdress anddatabus. The 32-bit PCl_AD bus is a multiplexed address and data bus.
The PCI_AD bus is numbered in little-endian order.
PCI_CLK in PClI clock. The PCI clock signal—up to 33MHz. The rising edge of the PCI_CLK signal

at the 653 Buffer must be synchronized to the rising edge of CPU_CLK within -1.0ns to
+1.0ns. The PCI_CLK can be the same frequency or half the frequency of the CPU clock.
The PCI clock at the 653 Buffer may or may not be the same physical signal line as the
PCI clock at the 654 Controller. See Section 7.2 for clocking details.

3.1.3 653 Buffer to System Memory Interface Signals
Table 3—-3 describes the signals that interface the 653 Buffer to system memory.

Table 3—-3. 653 Buffer to System Memory Interface

Signal Name | Type | Description

MEM_ADDRI[11:0] out | Memory address bus. MEM_ADDR is 12 bits, multiplexed, and little-endian. While the
654 Controller asserts RASHI/CASLO high, the MEM_ADDR lines contain row
addresses selected from the internal address bus of the 653 Buffer. While
RASHI/CASLO is low, the MEM_ADDR lines contain the column addresses.

MEM_ADDRO_B out | A duplicate of MEM_ADDRI[0]. (Required by some SIMMSs.)
MEM_DATA[63:0] /0 64-bit memory data bus. MEM_DATA[63] is the most significant bit.
MEM_PAR[7:0] /O | 8-bit memory parity bus. MEM_PAR([7] is the most significant bit. Bit 7 corresponds to

MEM_DATA[63:56]. Even parity is generated and written on memory write cycles..
System memory is always read in eight-byte double words, regardiess of the transfer
size requested. Parity across eight bytes is checked on all memory read cycles.

17

The 650 Bridge Chip Set

3.14 653 Buffer to External Logic and System Interface Signals
Table 3—4 describes the signals that are used to interface the 653 Buffer to the rest of the system
via external logic, command bit storage elements, the test interface, power, and ground.

Table 3-4. 653 Buffer to External Logic and System Interface

Signal Name

Type

Description

CONTIG_IO

in

Contiguous I/O. External logic asserts CONTIG_IO high to enable direct mapping of
addresses from 2G to 2G + 8M. When CONTIG_IO is driven low, it enables
non-contiguous addressing inthe 2G to 2G + 8M address range. Non-contiguous I/0
is a mapping of the low 32 bytes of each 4k page of CPU memory space to 32 bytes
of PCI/ISA I/O space. See Section 4.1.1 and 4.1.2.

This signal should only be changed between 60X to PCI I/O cycles. .

DRAMX9H{/X10LO

DRAM type. DRAMX9HI/X10LO is asserted high for addressing DRAMs with nine
column address bits (X9 mode), low for X10 mode. This signal is used to format the
addresses presented to the DRAMs.

L_ERR_ADDR#

Latch error address. The address on the 653 Buffer internal address bus is latched
into the 653 error address register while L_ERR_ADDR#is asserted. This signal can
be derived by external logic from the 654 Controller signals TT_ERR#,
MEM_PAR_ERR# and, optionally, any. other signal indicating an error condition
requiring the address to be latched. L_ERR_ADDR# must be held asserted to hold
the contents of the latch. Any signal used with TT_ERR# and MEM_PAR_ERR# to
derive L_ERR_ADDR# must also be held until after the latch is read.

This diagram illustrates support logic needed to latch the address of memory parity
errors or transfer type errors.

TT_ERR# External

MEM_PAR_ERR# ——— Gate
from 654 to 653

L_ERR_ADDR#

TEST#

Test mode. Pull to logic high during normal operation. Assert TEST#,
L_ERR_ADDR#, and ERR_ADDR_SEL# to tri-state the outputs.

3.2 654 Controller Pin Descriptions
The following tables describe the signals connected to the 654 Controller chip.

See Section 3.1 for a description of the signal naming conventions used in this document.
The following terms are used to describe the signal type:

in Input is a standard input-only signal.

out Output is a standard active driver

1/0 Bi-directional

s/o/d Sustained open drain input/output

t/s Tri-state is a bi-directional, tri-state input/output signal

s/t/s Sustained tri-state is an active low tri-state signal owned and driven by one agent at a

- time. The agent that drives the s/t/s pin low must drive it high for at least one clock before

letting it float. A new agent cannot drive the pin any sooner than one clock after the pre-
vious owner tri-states it. An external pull-up is required to sustain the inactive state.

18

The 650 Bridge Chip Set

3.21 654 Controller to 60X CPU Bus Interface Signals
Table 3—5 shows the 654 Controller signals that communicate with the 60X CPU.

Table 3-5. 654 Controller to 60X CPU Bus Interface

654 Controller
Signal Name

Signal
Type

Description

AACK#

/O

CPUbus address acknowledge. During hostbus transactions initiated by the 60X CPU,
the 654 Controller asserts AACK# with the last TA# (transfer acknowledge). This
prevents the 60X CPU from pipelining addresses.

During a transaction initiated by the 60X CPU on the PCI bus or during PCl to system
memory transactions, AACK# can be asserted on target initiated terminations and on
cache snoop hits. See the discussion of these events in the ARTRY# description.

ARTRY#

- 1/O

CPU bus address retry. During a transaction initiated by the 60X CPU on the PCl bus,
the PCltargetcanassert PCl_STOP#tothe 654 Controller (targetinitiated termination).
If PCI_STOP# and PCI_DEVSEL# are asserted together by the target (a target retry),
the 654 Controller then asserts AACK# on one CPU clock followed by ARTRY# on the
next CPU clock. This sequence allows the 60X CPU to retry the transaction. If
PCI_STOP# is asserted without PCI_DEVSEL# (a target abort), the 654 Controller
asserts TEA# to signal a PCl target abort and does not assert ARTRY#.

During PCI to system memory cycles, the 654 Controller asserts TS# on the second
CPU clock after PCI_FRAME# is asserted on the PCI bus. Then the 654 Controller
asserts AACK# on the CPU clock after TS#, initiating L1 and L2 cache snoops of the
addressthathas been setonthe 80X CPU hostbus by the 653 Buffer. Both the 60X CPU
and a write-back L2 can assert ARTRY# on the CPU clockimmediately after AACK# to
signal a snoop hit. Whenthe 654 Controller senses ARTRY# asserted on the CPU clock
following AACK#, itasserts the PCl_STOP#signal andthe PCI_DEVSEL#signalonthe
next PCI bus clock to signal a target retry. The PCI device must back off the PCl bus
(and retry), and the 654 Controller then grants the 60X CPU host bus to the 60X CPU
or the L2 cache for a writeback to system memory. The 654 Controller arbiter resolves
simultaneous cache hitsinthe L1 and L2 caches. (The write-back cache uses aprotocol
that guarantees coherency.)

CPU_ADDR[0:8],
[19,
[29:31]

CPU address bus. Of the 32 bits on the CPU address bus, the 654 Controller uses
CPU_ADDR[0:8],[19], [29:31], where [0] is the most significant bit. By analyzing these
bits, the 654 Controller can determine if the CPU is addressing system memory, PCl
memory, PCI /O space, PCl interrupt acknowledge space, the error address register,
system ROM, or PCI configuration space.

The 654 Controller also monitors changes in the state of CPU_ADDR([19] (driven by the
653 Buffer) to detect the crossing of a DRAM page during PCI bursts to memory.

The 653 Buffer uses all 32 bits of the CPU_ADDR address lines.

CPU_CLK

CPU bus clock. 40MHz, 50MHz, or 66MHz.

CPU_GNT#

CPUbus grant. Bus grant to the 60X CPU, grants control ofthe hostbus tothe 60X CPU.
The arbiter parks the host bus on the 60X CPU (CPU_GNT# is asserted regardless of
CPU_REQ#) when no other masters are requesting a bus.

CPU_REQ#

CPU bus request. Bus request from the 60X CPU, indicates that the 60X CPU wants
control of the host bus. The 654 Controller arbiter controis the host bus grant through
CPU_GNT#.

DPE#

Data parity error. The 654 Controller checks DPE# two clocks after each TA# when an
L2 cache asserts L2_CLAIM# and provides read data. If DPE# is active, the 654
Controller asserts DPE_ERR# low for two clocks. L2 error addresses are not saved.

19

The 650 Bridge Chip Set

Table 3-5. 654 Controller to 60X CPU Bus Interface (Continued)

654 Controller
Signal Name

Signal
Type

Description

INT_CPU#

out

CPU Interrupt. INT_CPU# is asserted to signal the processor of an external interrupt
or under some error conditions like memory or L2 cache parity errors.

SRESET_CPU#

“out

During normal mode the SRESET_CPU# signal is a soft reset—the 60X CPU warm
boots when SRESET_CPU# is asserted.

The 654 Controller asserts SRESET_CPU# when SRESET_REQ# activates. The 654
Controller asserts SRESET_CPU# for two cycles of REFRESH_REQ# (at least 15us)
to ensure the required minimum assertion time for SRESET_CPU#to the 60X CPU (10
CPU clocks).)

TA#

/0

CPU bus transfer acknowledge. The 654 Controller asserts TA# to indicate that a data
transfer has completed successfully. The 654 Controller asserts TA# for one CPU clock
for a single beat data transfer transaction. For a four-beat burst transaction, the 654
Controller asserts TA# at the conclusion of each of the four data transfer cycles.

TBST#

/0

Transfer burst. TBST# indicates a burst transfer of four 64-bit double-words on the 60X
CPU bus. Burst transfers by the 60X CPU are only allowed to system memory, not to
the PClbus. The 650 Bridge does support PCiburst reads and writes of systemmemory
by PCl devices.

The 654 Controller drives TBST# inactive during PCI to memory snoop cycles.

TEA#

out

CPUbustransfer error acknowledge. If MASK_TEA#is notasserted, the 654 Controller
asserts TEA# for a PCl bus error, a non-maskable interrupt (NMI), transfer type error,
transfer size error, or a parity error from system memory. See Section 5.8.

If XATS# is asserted for a PIO cycle, the 654 Controller asserts TEA# regardless of the
condition of MASK_TEA#.

TS#

110

CPU bus transfer start. TS# is asserted by the current bus master when the address on
the CPU_ADDRJ[00:31] lines and the address attribute lines are valid.

During PCImemory cycles, the 654 Controller asserts TS# to start snoop cycles onthe
second CPU clock after PCI_FRAME# is asserted on the PCI bus and then asserts
AACK# on the next CPU clock. This initiates L1 and L2 cache snooping of the address
of PCI memory cycles. See ARTRY# for an explanation of the snoop hit process.

Note: All PCI memory transactions produce snoop cycles on the 60X CPU bus. The
memory model for the 650 Bridge only allows system memory to be mapped inthe 0to
2G range, therefore snoops from 2G to 4G are never cache hits.

TSIZ[0:2]

110

CPU bus transfer size—number of bytes. The 650 Bridge supports transfers of 1, 2, 3,
4, 8, and 32 bytes. The 654 Controller asserts TEA# for unaligned transfers of 2, 3, or
4 bytes that cross a double-word boundary, and also asserts TEA# for attempted
transfers of 5, 6, or 7 bytes. See Section 5.8.

TSIZ[0:2] is ignored when TBST# is asserted for 32-byte bursts.

TT[0:3]

/0

CPU bus transfer type. TT[4] is not used and should be negated—pulled low.

XATS#

Extended address transfer start. When asserted this signal indicates that the 60X CPU
is performing I/O controller interface (P1O) operations. Ifthe T-bitin a 60X CPU segment
register is set, it indicates that addresses in the range of that segment register are 1/O
controller interface accesses.

If XATS# is asserted, the 654 Controller generates a TEA# error to the 60X CPU
(regardless of the setting of MASK_TEA#).

20

The 650 Bridge Chip Set

3.2.2

654 Controller to PCI Bus Interface Signals

Table 3—6 shows 654 Controller signals that are related to the operation of the PCI bus devices.

Table 3-6. 654 Controller to PCI Bus Interface

654 Controller
Signal Name

Signal
Type

Description

I0_BRDG_GNT#

out

I/0 bridge bus grant. System bus grant to the 1/O bridge.

I0_BRDG_REQ#

in

1/0 bridge request. PCl bus request line from the I/O bridge subsystem. The I/O bridge
request has the highest priority of the PClinitiators. (The arbiter grants the bus to DRAM
refresh requests, the 60X CPU, and the L2 cache before any PCl initiators.)

PCI_C/BE[3:0}#

ts

C (bus command) and BE (byte enable) multiplexed lines. During a PCl address phase
thisisabuscommand. Duringa PCldataphase PCI_C/BE[3:0}# are byte enables—one
bit for each of the four bytes on the PCl bus.

PCI_CLK

PCl bus clock. When the CPU bus clock is 40, 50, or 66MHz, PCI_CLK is one-half the
frequency of the CPU bus clock. (The maximum PCI bus clock is 38MHz.) When the
CPU bus clock is 38MHz or 25MHz, PCI_CLK is equal to the CPU bus clock. The 654
Controller PCI_CLK must be synchronous to CPU_CLK within —0.5 to +4.0 nsecs.

The PCl clock at the 653 Buffer may or may not be the same physical signal line as the
PCl clock at the 654 Controller. See Section 7.2 for clocking details.

PCl_DEVSEL#

sit/s

PCI device select. PCI_DEVSEL# is asserted by a device to claim a PCl| address.
PCI_DEVSEL# can go active within three PCI clocks of PCI_FRAME# (or four if
subtractive decode is used).

The 650 Bridge asserts PCI_DEVSEL# when it claims a PCI memory cycle—the
address is within physical memory and there is no hitin L1 or L2 cache.

PCI_FRAME#

s/t/s

PCl frame. Asserted by the current master to indicate the beginning and duration of a
PCl bus access.

PCI_GNT[1:5]#

out

PCI bus grants. Five PCI bus grant lines corresponding to PCl_REQ[1:5]#.

PCI_IRDY#

s/t/s

PClinitiatorready. PCI_IRDY#indicates the bus masterisready to complete the current
data phase of a transaction. A data phase is complete on any PCI clock where both
PCI_IRDY# and PCI_TRDY# are asserted. During a write, PCI_IRDY# indicates that
the master has placed valid data on the PCI_AD bus. During a read PCI_IRDY#
indicatesthatthe masteris preparedto acceptdata. During 60X to PClcycles, this signal
is generated independent of the state of PCI_TRDY#.

PCI_PAR

t/s

PCiparity. PClbus parity bitfor PCl_AD[31:00] and PCI_C/BE[3:0}# combined,aneven
parity bit for the 36 bits of PCI_AD[31:0] and PCI_C/BE[3:0]}#. (This bit plus the thirty-six
PCI bits equals an even number of bits.)

The 653 Buffer calculates the parity for PCI_AD[31:0] and passes itto the 654 Controller
as PCI_AD_PAR. Whenthe 650 drives the PCI_AD and PCI_C/BE lines on PCl cycles,
the 654 combines PCI_AD_PAR with PCI_C/BE[3:0] to generate PCI_PAR.

The 650 Bridge does not check PCI_PAR on incoming transactions.

PCI_REQ[1:5}#

PClbus requests. Five PClbusrequestlines. PCI_REQ[1]is the highest priority among '
the five request lines.

21

The 650 Bridge Chip Set

Table 3-6. 654 Controller to PCI Bus Interface (Continued)

654 Controller
Signal Name

Signal
Type

Description

PCI_STOP#

sfit/s

PCl stop. A PCl target uses this signal to end the current transaction with target retry
ortargetabort. Fortarget retry, PCI_STOP#and PCI_DEVSEL# are assertedtogether.
For target abort, PCI_STOP# is asserted by itself. After a target retry, the initiator can
retry the cycle at a later time.

The 654 Controller asserts PCI_STOP# and PCI_DEVSEL# (target retry) for a snoop
hit on a PCl to system memory transaction to allow a cache write-back operation.

PCI_TRDY#

sit's

PCltargetready. APCltargetuses PCI_TRDY#tosignalthatitis ready fordatatransfer.
A PCI transaction ends when PCt_TRDY# and PC|_IRDY# are asserted together.
During a PCl read from system memory, the 654 Controller asserts PCI_TRDY# when
memory data s valid. During a PCl write to system memory, the 654 Controller waits for
PCI_IRDY# to be asserted and then asserts PCI_TRDY# when it has completed the
write cycle.

3.2.3

654 Controller to System Memory (DRAM) Interface Signals

Table 3-7 shows the 654 Controller signals that communicate with the DRAM memory chips.

Table 3-7. 654 Controller to System Memory (DRAM) Interface

654 Controller Signal
Signal Name Type | Description

CASI[7:0}# /0 Column address selects.
The CAS[7:0}# lines are also used to read and write system logic data during the setup
of the 650 Bridge.

RASI[7:0]# out Row address selects.

WE[1:0]# out DRAM write enables. Two identical signals to meet loading requirements.

3.24 654 Controller to ROM (Flash or EPROM) Signals

Table 3-8 shows 654 Controller signals that are related to the operation of the system ROM.

Table 3-8. 654 Controller to ROM or Flash Signals

654 Controller Signal
Signal Name Type | Description
ROM_CS# out ROM chip select.
ROM_OE# out ROM output enable. _
ROM_WE# out ROM write enable. Write enables for flash ROM.

22

The 650 Bridge Chip Set

3.2.5

654 Controller to L2 Cache Signals

Table 3—9 shows the 654 Controller signals that communicate with the optional L2 cache.

Table 3-9. 654 Controller to L2 Cache Signals

654 Controller Signal
Signal Name Type | Description
L2_CACHE_GNT# out L2 cachebusgrant. The 654 Controllerasserts L2_CACHE_GNT#to grantthe 60X bus

to the L2 cache for a write-back operation. Note that since the 650 Bridge is designed
as a single-bus system, when the L2 is doing a write-back operation, the PCI bus
remains idle (parked on the 654 Controller).

L2_CACHE_REQ#

L2 cache bus request. Asserted by a write-back L2 cache to perform a write-back
operation. This signal is not used by write-through cache designs.

L2_CLAIM#

L2 claim. The L2 cache asserts L2_claim#to indicate a read or write hitin the L2 cache.
The 650 Bridge backs off of system memory and lets the L2 cache provide or receive
datawhen L2_CLAIM#is asserted. The cache must assert L2_CLAIM# by the second
clock period after that in which TS# is asserted, and L2_CLAIM# must be held until
AACK# is asserted.

Awrite-through L2 cache only asserts L2_CLAIM# on read hits. A write-back L2 cache
can assert L2_CLAIM# on read and write hits.

L2_PRESENT#

L2 cache present. Mustbe continuously asserted to indicate thatan L2 cache is present
in the system.

3.2.6

654 Controller to Test Signals

" Table 3-10 shows the 654 Controller test signals.

Table 3-10. 654 Controller to Test Signals

654 Controller Signal
Signal Name Type [Description

Dl# in Driverinhibit. (Pulltologic high during normal system operation.) Assert Di#with TEST#
to tri-state the outputs.

Ri# in Receiver inhibit. (Pull to logic high during normal system operation.) Assert RI# to gate
off inputs while in test mode.

TEST# in Test mode. (Pull to logic high during normal system operation.)Assert TEST# with Di#
to tri-state the outputs.) ‘

3.2.7 654 Controller to External Logic and System Interface Signals

Table 3—11 shows 654 Controller signals that are connected to host system devices.

Table 3—11. 654 Controller to External Logic and System Interface

654 Controller Signal
Signal Name Type | Description
BE_PAR_EN# out Big-endian parity enable. The 654 Controller asserts BE_PAR_EN# when reading
memory in big-endian mode. The system can use this signal to enable an external buffer
to route big-endian-ordered parity to the 60X data parity signals. (See LE_PAR_EN#.)
DPE_ERR# out Data parity error. DPE_ERR# is a qualified data parity error for L2 cache parity errors.
It is a pulse two CPU clocks wide. External logic must latch this signal.

23

The 650 Bridge Chip Set

Table 3—11. 654 Controller to External Logic and System Interface (Continued)

654 Controller
Signal Name

Signal
Type

Description

IO_BRDG_HOLD#

in

I/Obridge hold. I/0 bridge memory operation request froman ISA bus device. When this
signal is asserted, the 654 arbiter will not remove grant from the 1/O bridge subsystem
unless PCI_FRAME# is asserted or the I0_BRDG_REQ# is removed.

I0_BRDG_HOLD# is an asynchronous input.

I0_BRDG_IRQ

Interrupt from 1/O bridge subsystem. This signal is passed through to the CPU as an
interrupt on INT_CPU#. As a result of the assertion of INT_CPU#, the 60X should
requesta PClinterruptacknowledge transactiontowhich the 654 Controllerwillrespond
by running a PCl interrupt acknowledge cycle to read an interrupt vector.

ISA_MASTER#

ISA master. In response to ISA_MASTER#, the 654 Controller asserts NO_TRANS to
the 653 Buffer to allow PCI transactions from ISA masters to directly address system
memory from 0to 16Mwithoutthe usual address remapping. This function supports ISA
bridges that do not allow remapping of ISA address space within PCl address space.

ISA_MASTER# is an asynchronous input.

LE_MODE_REQ#

Little-endian mode request. External logic asserts and holds LE_ MODE_REQ# to
request the selection of little-endian mode. In response, the 654 Controller asserts
LE_MODE_SEL# to the 653 Buffer to enable little-endian addressing.

LE_MODE_SEL# is changed only when the buses are not busy.

Note:LE_ MODE_REQ#and LE_MODE_SEL# are external to the CPU and are not the
same as the internal CPU endian mode bit.

LE_MODE_REQ# is an asynchronous input. k

LE_PAR_EN#

out

Little-endian parity enable. The 654 Controller asserts LE_PAR_EN# when reading
memory in little-endian mode. The system can use this signal to enable an external
buffer to route little-endian-ordered parity to the 60X data parity signals. (See
BE_PAR_EN#.)

MASK_TEA#

Mask TEA#. When external logic asserts MASK_TEA#, all 60X CPU host bus cycles
(except XATS#cycles) terminate with TA#, regardless of error conditions. MASK_TEA#
can be used for diagnostic purposes.

If XATS# is asserted for PIO operations, a TEA# error is always asserted, regardless
of the setting of MASK_TEA#.

MASK_TEA# is an asynchronous input.

MC_SETUP#

Memory controller setup. External logic asserts MC_SETUP# to select setup of the
controller registers through the CAS[7:0]# lines. Read and write operations are
supported. Datashould be gatedto or fromthe CAS#lineswhenMC_SETUP#is active.

MC_SETUP# is an asynchronous input.

MEM_PAR_ERR#

out

| Memory parity error. The 654 Controller asserts MEM_PAR_ERR# to indicate that a

qualified memory parity error was detected. MEM_PAR_ERR# remains asserted until
the conclusion of a 60X bus cycle which the bridge decodes as a read error address.

MEM_PAR_ERR# is speculatively asserted during CPU or PCI reads of system
memory. The MEM_PAR_ERR# signal becomes valid one CPU clock after TA# is
sampled valid or one PCI clock after TRDY# is sampled valid.

24

The 650 Bridge Chip Set

Table 3-11.

654 Controller to External Logic and System Interface (Continued)

654 Controller
Signal Name

Signal
Type

Description

NMI_REQ

in

Non-maskableinterruptrequest. The 60X CPUdoes nothave anon-maskableinterrupt.
However, the 654 Controllerasserts INT_CPU#whenNMI_REQis asserted. Asaresult
of the assertion of INT_CPU#, the 60X software should issue a byte load instruction at
the specific address that the 654 Controller decodes a request for a PCI interrupt
acknowledge cycle. The 654 Controller responds by asserting TEA#instead of running
aPClinterruptacknowledge cycle, andthe 654 returns FFh asthe result ofthe byte load.

NMI_REQ is an asynchronous input.

REFRESH_REQ#

DRAM refresh request. External logic asserts REFRESH_REQ# to request a DRAM
refresh cycle. The 654 arbiter treats REFRESH_REQ# as the highest priority bus
request. The 654 asserts REFRESH_SEL# to the 653 Buffer when the bus is available.

REFRESH_REQ# is an asynchronous input.

RESET#

System reset. Power good when deasserted (high), power-on-reset (POR) condition
when asserted. RESET# must be held low for at least 10us after power is stable and
clocks are running normally.

RESET# is an asynchronous input.

SRESET_REQ#

Softreset request (warm boot). The 654 Controller asserts SRESET_CPU# to the 60X
CPUinresponseto SRESET_REQ#. Toguaranteethe minimumassertiontime, the 654
Controller asserts SRESET _CPU# for two assertions of REFRESH_REQ#.
SRESET_REQ# should be a pulse of from 100ns minimum to 4ms maximum.

SRESET_CPU# is an'asynchronous input.

TT_ERR#

out

Transfer type error. The 654 Controller asserts TT_ERR# if an unsupported transfer
type or alignment is detected or if XATS# is asserted. TT_ERR# remains asserted until
the conclusion of a 60X bus cycle which the bridge decodes as a read error address.

3.3 Signals Between the 653 Buffer and 654 Controller
Table 3—12 shows the signals that interconnect the 654 Controller with the 653 Buffer.

Table 3-12. Signals Between the 653 Buffer and the 654 Controller

654 Controller 653 654
Signal Name Type Type [Description
ADDRHI/DATALO in out Address high/data low. The 654 Controller asserts ADDRHI/DATALO (high)

to put the 653 Buffer in a PCl address cycle and negates ADDRHI/DATALO
low to put the 653 Buffer in a PCl data cycle. (The PCI_AD[31:00] bus is a
multiplexed address and data bus.)

This signal has two uses—during 60X CPU initiated cycles to the PCI bus,
the negation transition (signalling the end of the address tenure) occurs
exactly one PClclockcycle earlierthanwhenthe datatenure begins. The 653
Buffer delays driving data to the PCI_AD bus for one PCI cycle.

During PCl-initiated cycles to system memory, the 653 Buffer latches the
PCI_AD bus as an address on each PCl|_CLK rising edge while
ADDRHI/DATALO remains asserted high. When ADDRHI/DATALO is
negated, the last address remains in the PCl address latch in the 653 Buffer.

25

The 650 Bridge Chip.Set

Table 3—-12.

Signals Between the 653 Buffer and the 654 Controller (Continued)

654 Controller
Signal Name

653
Type

654
Type

Description

ALL_ONES_SEL#

in

out

All-ones select, asserted by the 654 Controller to the 653 Buffer to place all
one-bits on the 653 Buffer internal data bus. ALL_ONES_SEL# is used
during PCl configuration read transactions to return 64 one-bits to the CPU
data bus when no PCl device responds and during system memory reads
that are out-of-range.

BURST_CLK#

out

Burst clock. Based on other control signals, BURST_CLK# clocks the shifts
inthe ROM shift register, clocks the ROM burst counter, clocks the PCl burst
counter during PCl master cycles, or clocks the CPU burst counter (all within
the 653 Buffer).

CPU_ADDR_OE#

out

CPU address output enable. The 654 Controller asserts CPU_ADDR_OE#
to enable the 653 Buffer to assert PCl-initiated addresses on 'the 60X CPU
address bus. The 654 Controlier asserts TS# when the address is valid,
allowing the L1 and L2 caches to snoop memory cycles.

CPU_ADDR_SEL#

out

CPU address select. The 654 Controller asserts CPU_ADDR_SEL# to
enable the 653 Buffer to receive addresses from the 60X bus. The 654
Controller asserts this signal during power-on-reset (POR). After power up,
this signal mustbe asserted and deasserted by the 654 Controller before any
bus cycles are initiated. This initializes the CPU burst counter wnthln the 653
Buffer.

CPU_DATA_OE#

out

CPU data output enable. The 654 Controller asserts CPU_DATA_OE#
during CPU read cycles to enable the 653 Buffer to assert data onto the 60X
bus.

CPU_DATA_SEL#

out

CPU dataselect. The 654 Controllerasserts CPU_DATA SEL# during CPU
write cycles to enable the 653 Buffer to receive data (byte-swapped in
little-endian mode) from the 60X bus.

ERR_ADDR_SEL#

out

Error address select. The 654 Controller asserts ERR_ADDR_SEL# to
enable the 653 Buffer to drive a 32-bit error address from the error address
register onto both halves of the 64-bit 60X CPU data bus. MEM_PAR_ERR#
and TT_ERR# are deactivated coincidently with the rising edge of this signal.

L_PCI_DATA#

out

Latch PCl data. While L_PCI_DATA# is not asserted and the PCI_CLK is
low, the PCI data latch is transparent to the PCI_AD bus. When data is
required from the PCI bus (during a CPU to PCl read or a PCl bus master
to system memory write), the 654 Controller asserts this signal following the
rising edge of the PCI_CLK for the current data phase. This latches the
current data phase data into the PCI data latch. The 4-byte data is then
placed on both halves of the 8-byte 653 Buffer internal data bus.

LE_MODE_SEL#

out

Little-endian mode select. In response to LE_MODE_REQ#, the 654
Controller asserts LE_MODE_SEL# to set the 653 Buffer to little-endian
mode of operation. This signal is switched between bus cycles.

MEM_DATA_OE#

out

Memory data output enable. While MEM_DATA_OE# is asserted, the 653
Buffer drives the 64-bit internal data bus and its eight parity signals onto the
memory data bus and the memory parity bus. MEM_DATA_OE#is asserted
by the 654 Controller during memory write cycles.

MEM_DATA_SEL#

out

Memory data select. MEM_DATA_SEL4# is asserted by the 654 Controller
during a memory read transaction. When MEM_DATA_SEL# is asserted,
the 653 Buffer uses the memory data bus as the source for the current
transaction.

26

The 650 Bridge Chip Set

Table 3—12. Signals Between the 653 Buffer and the 654 Controller (Continued)

654 Controller
Signal Name

653
Type

654
Type

Description

MEM_PAGE_HIT#

out

in

Memory page hit. The 653 Buffer asserts MEM_PAGE_HIT# to indicate an
equal compare on the RAS address. This signal is valid one CPU_CLK after
the assertion of TS#.

MEM_PAGE_HIT# is not asserted for forced page hits that occur after
refresh cycles and PCI I/O cycles. The 650 Bridge internally sets a forced
page condition for these situations. ‘

MEM_PAR_GOOD

out

Memory parity good. Negated by the 653 Buffer to indicate a parity error on
a read of system memory. This is an unqualified decode of the 64 memory
data lines. The 654 Controller samples this line appropriately.

NO_TRANS

out

No translation mode. The 654 Controller asserts NO_TRANS high when a
memory read or write cycle runs on the PCl bus on behalf of an ISA master.
NO_TRANS disables the address remapping within the 653 Buffer so that
ISA masters that cannot remap the 0 to 16M address range can directly
access memory in the 0 to 16M address range.

When NO_TRANS is asserted, all address remapping in the 653 Buffer is
disabled.

PCI_AD_PAR

out

PCl address and data parity. The 653 Buffer generates an even parity bit
across the PCI_AD[31:0] lines. This is an unqualified signal that s only-valid
when the PCI_AD bus is valid. The 654 Controller combines PCI_AD_PAR
with PCI_C/BE[3:0] to generate PCI_PAR, the PCI parity bit.

PCI_OE#

out

PCI output enable. While PCI_OE# is asserted, the 653 Buffer drives the
internal address or data buses onto the PCI_AD bus. PCl_OE# is asserted
whenever the CPU or L2 is the bus master except during the data phase of
reads from the PCI. See the ADDRHI/DATALO signal.

PCI_SEL#

out

PCl select. The 654 Controller asserts PCIl_SEL# to enable the 653 Buffer
to receive addresses and data from the PCI bus during PCI master cycles to
system memory or CPU reads from the PCI. PCI_SEL# is asserted for the
duration of the cycle.)

RASHI/CASLO

out

RAS or CAS select. The 654 Controller asserts RASHI/CASLO high for a
RAS cycle and negates RASHI/CASLO low for a CAS cycle. This signal is
asserted during any PCI I/O and configuration cycles, following a DRAM
memory page miss, and during DRAM refresh cycles.

REFRESH_SEL#

out

DRAM refresh selection. After REFRESH_REQ# is asserted externally, the
654 Controller asserts REFRESH_SEL# as soon as the current CPU or PCI
bus cycle concludes in order to initiate a refresh cycle. In response to
REFRESH_SEL#, the 653 Buffer places a refresh address on the memory
addressbus. The 653 Bufferincrementsits internal row address on therising
edge of this signal.

ROM_SEL#

out

ROM select. The 654 Controller asserts ROM_SEL# to signal the 653 Buffer |
that a ROM cycle is in progress.

27

8¢

Table 4-1. 650 Bridge Mapping of 60X CPU Bus Addresses

60X CPU Other Target Cycle

Address Range Conditions Target Cycle Decoded Address Range Comment

Oto 2G System Memory 0to 2G Cacheable by L1 and L2

2G to 2G + 8M CONTIG_IO deasserted | PCI I/O Cycle 0 to 64K Non-contiguous 1/0. 32 bytes of each 4K

(ISA, EISA, or MicroChannel)

(64K to 8M not acces-
sible)

memory page in this 8M address space are
mapped to 32 bytes in the 64K PC I/O space.
See Section 4.1.1 and Section 4.1.2

CONTIG_IO asserted | PCI I/O Cycle 0to 8M Contiguous /0. CONTIG_IO is a pin on the
(ISA, EISA, or MicroChannel) 653 Buffer chip. See Section4.1.1 and 4.1.2
2G + 8M to 2G + 16M PCI Configuration Cycle 8Mto 16M PCI_AD[1:0] forced to 00b
2G + 16M to 3G - 8M PCI I/O Cycle 16Mto 1G—8M PCI_ADI[1:0] flow through
3G ~8Mto 3G CPU_ADDR[19] =0 Read Error Address Register | None No PCl cycle
CPU_ADDR[19] =1 PCI Interrupt Acknowledge 1G-8Mto 1G PCI_ADI1:0] forced to 00b
3G to 4G - 8M PCI Memory Cycle 0to1G-8M PCI_ADI[1:0] forced to 00b
Note: CPU space 4G — 16M to 4G — 8M is
reserved in PowerPC Reference Platform
Specification.
4G -8M 10 4G Read cycle ROM Read 1G-8Mto 1G System ROM (Can be EPROM, EEPROM,
(0 to 8M in ROM) or flash ROM)
Write cycle ROM Write Port N/A Flash ROM write port (address coded in

(CPU_ADDR[31] = 0)

data field)

Write cycle
(CPU_ADDRI[31] = 1)

Flash ROM Lock-Out Port

N/A

Write to this range of addresses locks out
flash ROM writes until RESET# (No PCI
cycle)

1es diyD ebpug 059 UL

Section 4

650 Bridge Theory of Operation

This section describes the theory of operation of the 650 Bridge. This section includes basic timing
diagrams with narrative descriptions.

Section 4.1 describes the memory and device mapping that the 650 Bridge applies to 60X bus
addresses. The 60X CPU can address system memory (DRAM), PCI devices, and other func-
tions by loading (reading) or storing (writing) data to specific address ranges.

Section 4.2 describes the mapping the 650 Bridge applies to memory reads and writes initiated
by PCI devices.

Section 4.3 contains timing diagrams and descriptions of basic cycles that can be generated by
the 60X CPU and PCI devices. Section 7 contains comprehensive, detailed timing diagrams.

4.1 650 Bridge Mapping of 60X CPU Bus Addresses

The 650 Bridge maps the 60X address space as shown in Table 4—1. The 654 Controller decodes
the nine most-significant bits of the 60X bus address (CPU_ADDR][0:8]) to determine the basic
type of transaction the 60X CPU is requesting.

In general, the range of the CPU_ADDR[0:8] signals serves to identify the target of a 60X CPU
transaction. Other conditions can modify the type of cycle within an address range as follows:

« External logic asserts or deasserts the CONTIG_IO signal to select contiguous or non-
contiguous PCI I/0 addressing in the first 8M of PCI I/O addresses. Sections 4.1.1 and
4.1.2 discuss non-contiguous and contiguous PCI I/0 addressing.

» For mapping purposes, CPU_ADDR[19] is used to differentiate between PCI interrupt
acknowledge transactions and error address register read transactions.

e For mapping purposes, CPU_ADDR[31] determines whether a ROM write cycle is ad-
dressed to the ROM write port or the ROM write lock-out port.

411 Address Mapping for Non-Contiguous 1/0

Figure 4—1 illustrates the address mapping the 650 Bridge performs in non-contiguous mode
(CONTIG_IOis deasserted) for addresses from 2G to 2G + 8M. After the 60X bus address reach- -
es the internal bus of the 653 Buffer, the 0 to 8M addresss space is compressed into 64K of PCI
addresses from 0 to 64K.

If LE_MODE_SEL# is asserted, CPU_ADDR[29:31] are unmunged when they reach [2:0] on the
653 internal address bus. Note that the 653 internal bus is numbered in little-endian order. Mung-
ing and unmunging are described in Section 5.3 along with other endian-related operations.

If they are not claimed by a PCl agent, all PCI I/O transactions with PCl addresses from 0 to 64K
are claimed by the 1/O bridge. In non-contiguous 1/0 mode the 60X CPU cannot create PCI /O
addresses from 64K to 8M.

29

The 650 Bridge Chip Set

31— Forced to zero 31 —
6 30 | > 30
5 29— 29
28 28
3 27 27
26 m, 26
1 25 25
n 24 24 P
t 23 23 C
22 22 |
e 21 21
r 20 20
n 19 19 |
a 18 18 /
I 17 17 o)
16 16
15 15
A 14 14 A
d 13 13 d
d 12 12 d
11 11
r 10 10 ;
e 09 . 09
s 08 Discarded 08 s
07 07 s
S 06 06
05 05
B 04 04
03 03
u 02 > 02
S 01 01
— 00 00 —»
A31 to A30 are forced to 00b. A29 to A12 are shifted to A22-A5. A11 to A5 are discarded. A4 to AQ pass through un-
changed. (On the input side A2 to'AO are unmunged in LE mode.) A29 to A23 are set to zero.

Figure 4-1. Non-Contiguous PCI I/O Address Transformation

In non—contiguous I/0 mode, the 650 Bridge partitions the 2G to 2G + 8M address space so that
the first 32 bytes of each 4K page are remapped into the 0 to 64K ISA port address space. There-
fore, 60X CPU protection attributes can be assigned to any of the 4K pages. This provides a flex-
ible mechanism to lock the 1/0 from change by user-state code. This partitioning spreads the ISA
1/O address locations over 8M of 60X CPU address space.

In non-contiguous mode, the unused byte addresses within each 4K page are not available. Each
of the 32 contiguous port addresses in each 4K page has the same protection attributes in the
60X CPU.

For example, 60X CPU addresses 8000 0000h to 8000 001Fh are converted to I/O bridge port
addresses 0000h through 001Fh. I/O bridge port 0020h starts in the next 4K page at 60X CPU
address 8000 1000h.

4.1.2 Address Mapping for Contiguous I/0 -

In contiguous I/O mode (CONTIG_IO asserted), a 60X CPU address from 2G to 2G + 8M causes
a PCI 1/O cycle to run on the PCI bus with PCI_AD[29:00] unchanged except for the unmunging
of the three low-order address bits. If not claimed by another PCI agent, the addresses from 0
to 64K may be claimed by the I/O bridge. -

30

The 650 Bridge Chip Set

4.1.3 PCI Final Address Formation

The 650 Bridge maps 60X bus addresses from 2G to 4G as PCl transactions, error address regis-
ter reads, or ROM reads and writes. The 650 Bridge manipulates 60X bus addresses from 2G
to 4G to generate PCl addresses as follows:

e PCI_AD[31:30] are set to zero.
* PCI_AD[2:0] are unmunged if LE_ MODE_SEL# is asserted. See Section 5.3.
* After unmunging, PCI_AD[1:0] are set to 00b for all PCI cycles except PCI I/O cycles.

4.2 650 Bridge Mapping of PCl Device Addresses

Table 4-2 shows the mapping of memory read and write cycles from the PCI bus to system
memory and PCI memory. Of the transactions that can be initiated by PCl masters, the 650 Bridge
only recognizes PCI memory reads and writes. The 650 Bridge ignores PCI I/O, PCI configura-
tion, and PCl interrupt acknowledge transactions that are initiated by PCl devices on the PCl bus.

The 650 Bridge broadcasts the remapped address of all PCI memory read and write transactions
so that they can be snooped by the L1 and L2 caches. By definition, the PowerPC Reference Plat-
form Specification maps system memory only from 0 to 2G, therefore memory addresses from
2@ to 4G must not be cacheable and will not cause snoop hits even though they are broadcast.

When the ISA_MASTER# signal is asserted, the 650 Bridge maps PCI memory reads and writes
from O to 16M directly to system memory at 0 to 16M. If the ISA_MASTER# signal is not asserted,
PCI memory reads and writes in this address range are ignored by the 650 Bridge.

The 60X CPU can generate PCl memory reads and writes in the range of 0 to 1G — 8M. The best
range of addresses to locate PCl memory that can be addressed by both PCI devices and the
60X CPU is from 16M to 1G — 16M.

Table 4-2. 650 Bridge Mapping of PCI Device Addresses

PCI Cycles And Addresses 650 Bridge Maps as:
Type Of PCl Bus Target Of 60X Bus
PCl Cycle Address Address Address Comments

Memory 0to 16M System 0to 16M ISA masters only (ISA_MASTER#

Memory asserted). Snooped.
PCI 0to 16M ISA_MASTER# not asserted.
Memory Bridge ignores except for snoop.
16Mto 1G — 16M PCI 2G + 16M to 3G~ 16M | Bridge ignores except for snoop.

Memory

1G-16Mto 1G-8M Reserved 3G -16Mto 3G —8M | Architecture reserves this area.
Bridge ignores except for snoop.

1G-8Mto 2G Unavailable 3G -8Mto 4G 650 Bridge cannot create these
memory addresses on the PCI
bus. Do not map PCl memory here
unless the 60X CPU will never ac-
cess it. Bridge ignores except for
snoop.

2G t0 4G System 0to2G Snooped.
Memory

31

The 650 Bridge Chip Set

4.3 650 Bridge Bus Transactions

The following timing diagrams show examples of bus transactions in a 601 system where the CPU
bus clock (CPU_CLK) is running at 66MHz, synchronous to and in phase with the 601 internal
clock (P_CLOCK).

The CPU_REQ# signal is not generally shown in the timing diagrams. When the bus is not being
used by another device or being requested by a higher priority device, the 650 Bridge arbiter re-
sponds to the CPU_REQ# signal from the 60X CPU by asserting CPU_GNT#.

Unless shown separately, TSIZ[0:2], TT[0:4], and TBST# are asserted and negated with
CPU_ADDR. ‘

Section 7 contains detailed timing diagrams and timing conventions. Section 7 also contains tim-
ing diagrams for many different varieties of the basic transactions shown in this section.

Final determination of the exact operation of the 650 Bridge should be made from the detailed
timing diagrams in Section 7.

4.31 CPU to Memory Read—Single-Beat, Page Hit, XCAS =0

Figure 4-2 shows a singie-beat system memory (DRAM) read with a page hitand XCAS = 0. (See
Section 5.2.2.2.) The 60X CPU can initiate a read of system memory by executing a /oadinstruc-
tion with an address range of 0G to 2G. See Table 4—1. The 650 Bridge arbiter sends CPU_GNT#
low in cycle 0 to grant the bus to the 60X CPU. The state of this signal during the rest of this transfer
‘has no effect on this transfer, and so is shown as unknown. Likewise, the state of TBST#, the
CPU_ADDR group (address and attributes), TS#, MEM_PAGE_HIT#, and MEM_ADDR are not
initially known.

In cycle 1, the 60X CPU asserts TS#, CPU_ADDR][0:31], TT[0:3], and TSIZ[0:2], and drives
TBST# inactive. In response, the 650 Bridge evaluates the address, transfer type, and TBST#
signal to determine that the CPU is requesting a single-beat read of system memory.

During cycle 2, the 653 Buffer asserts MEM_PAGE_HIT# to indicate that the row address of the
memory read matches the previous row address. As a result of this signal, the 654 Controller
leaves RASHI/CASLO low, therefore RAS# stays low and the 650 Bridge does not update the row
address inthe DRAM. Also during cycle 2, the 654 Controller asserts CPU_ADDR_SEL#to select
the CPU address for use during this transfer. This address is processed inside the 653 Buffer, and
propagates through to the memory controller, which selects the column address and drives it onto
the MEM_ADDR lines during cycle 3. AACK# and TA# stay tri-stated until cycle 4 to avoid conten-
tions with an L2 cache in the event of a cache hit.

During cycle 4, the 654 Controller asserts the CAS[7:0]# lines to begin a CAS# read access, as-
serts MEM_DATA_SEL# to select the memory data bus as the source of the data for this transfer,
and asserts CPU_DATA_OE# to enable the 653 Buffer to drive the data onto the CPU data bus.
The 654 Controller also asserts BE_PAR_EN# (if the system is in big-endian mode) or
LE_PAR_EN# (in little-endian mode) to enable one of the external parity buffers.

The MEM_DATA signals become valid and propagate through the 653 Buffer to the CPU_DATA

lines. Since XCAS = 0, the CAS# lines are asserted for a total of three CPU_CLK cycles. They
- are active for two cycles before TA# is asserted, then the 654 Controller asserts TA# and AACK#
during cycle 6, and the 60X completes the transaction. The 654 then negates the remaining con-
trol outputs.

32

The 650 Bridge Chip Set

0 1. 2 3.4 5 6 7 .8
CPU_CLK __/__/'"_/___/—_/__/—_/__/__./
CPUGNT# _\ [

TBST# _—— ‘-—‘-—C:

CPU_ADDR D——(' E— e e

TS#H _F—— ./ . (T

AACK# — N\ TTT—

TA# ' : - L —__

MEM_PAGE_HIT# ——— Hit, E—

CPU_ADDR_SEL# — . . \ S
RASHI/CASLO ; . : ‘ . .

BURST_CLK# ' ' ' '

MEM_ADDR) NZZ1— ‘) —C .
RAS# ' ‘ ' |

CAS# . . . N\ N aare—

MEM_DATA_SEL# ' - ‘ N\ : N

MEM_DATA - - ‘ J/////A) D—-‘

CPU_DATA j j , l zzzzzzzzx_—_:x:)——

CPU_DATA_OE# .) , —\ / —

WE# ' - ' '

B/LE_PAR_EN# - : a

CPU_DATA_SEL# . ‘
MEM_DATA_OE#

Figure 4-2. CPU to Memory Read, Single-Beat, Page Hit, XCAS = 0 Timing Diagram

33

The 650 Bridge Chip Set

4.3.2 CPU to Memory Read—Single-Beat, Page Hit, XCAS = 1
Figure 4-3 shows a single-beat system memory (DRAM) read with a page hitand XCAS =1.(See -
Section 5.2.2.2.) This transfer is identical to the XCAS = 0 transfer shown in Figure 4—2 during
cycles 0 through 5. Since XCAS = 1, the CAS[7:0}# signals are extended for one clock and all
subsequent signals occur one clock later. This could also be thought of as adding an additional
fifth cycle to the CAS# read access. '

0 1 2 3 4 5 6 7 8 9
CPU_CLK, __/_'__/__/__/_'_/__/___/—'_/__/—__
CPUGNT# _\ ' [— '
TBSTH D j S
CPU_ADDR —)——(- . ' , ‘ Dy
TS >—— | j —C
AACK# . : . _— /S
TA# ' : 4 ! L U A
MEM_PAGE_HIT# ' — Hit — ' ' ' ‘ '
CPU_ADDR_SEL# . . : : —
RASHI/CASLO ' ' ' : ' ' ' ! '
BURST_CLK#
MEM_ADDR - . WZ74 ' . ' —
o |
‘ CAS# . ‘ . ~_. . Y e
MEM_DATA_SEL# ‘ ' ' N ! S A
MEM_DATA 777777 ' g S
CPU_DATA , 227777 . Z2)—|
' CPU_DATA_OE# ‘ —___ : : A A
WE# ‘
B/LE_PAR_EN# ' . - N : ! : -
CPU_DATA_SEL# ‘ —
MEM_DATA_OE# ' . ‘ .

Figure 4-3. CPU to Memory Read, Single-Beat, Page Hit, XCAS = 1 Timing Diagram

34

The 650 Bridge Chip Set

4.3.3 CPU to Memory Read—Single-Beat, Page Miss, XCAS = 1

Figure 4—4 shows a single-beat system memory read with a page miss and XCAS equals 1. This
transfer is identical to the page hit transfer shown in Figure 4-3 during cycles 0 through 2. During
cycle 2, the 653 Buffer negates MEM_PAGE_HIT# to indicate that the row address of the memory
read does not match the previous row address.

Beginning in cycle 3, the 650 Bridge inserts a RAS# access before the CAS# read access that
begins in cycle 4 during a page hit. The 654 Controlier sends RASHI/CASLO high to cause the
653 Buffer to select the row address to drive onto the MEM_ADDR lines. The 654 Controller sends
RASH# high for 4 cycles, and then asserts a RAS# line to latch the row address into the DRAM.

In cycle 8, the 654 Controller sends RASHI/CASLO low to cause the 653 Buffer to drive the col-
umn address onto the MEM_ADDR lines. The address propagates to the DRAM during cycle 9.

In cycle 10, the 654 Controller asserts the selected CAS# lines to begin the CAS# read access.
The rest of the transfer follows the page hit timing found in Figure 4-3.

0.1,2,3,4,5 6,7,8,9 10,11 12,13 14,15
CPU_CLK, __/__/__./__/__/__/__/__/__/_\J__/—_/—_/__/__/_\J
CPUGNT# D\« [.
TBSTH >—__ ' '~ ' = /‘—C
CPU_ADDR D—C, E— E— >
TS# D/ ' I — —C
AACK# et T\
TA# ———————— ' — T\
MEM_PAGE_HIT# 7,1 % . : . :
CPUADDR SEL# — T T\ . ~ .« . + . « . o T

RASHI/CASLO o S ‘ ' \
BURST_CLK# —) —
RAS# / T\
MEM_ADDR) o4 Tow W7 col ™ X
cast T — —— B a—
MEM_DATA_SEL# . T\ s Y Zrma
MEM_DATA ' ' : ' : 7274 ‘ 00—
-

/T

A

CPU_DATA —————————¢Zq NZZZZZ]
CPU_DATA_ OE# \ . .
WEtE T o T T
B/LE_PAR_EN# ' ' ' ' N\
CPU DATA SEL# — — —
MEMDATAOEt — &+

Figure 4-4. CPU to Memory Read, Single-Beat, Page Miss, XCAS = 1 Timing Diagram

35

The 650 Bridge Chip Set

4.3.4 CPU to Memory Read—Burst, Page Miss, XCAS =1

Figure 4-5 shows a burst read from system memory with an initial page miss and XCAS = 1. The
operations performed by the 650 Bridge are identical to those in Figure 4—4 during cycles 0
through 11. The 654 Controller leaves the data and address path control signals
(CPU_ADDR_SEL#, MEM_DATA_SEL#, and CPU_DATA_OE#) asserted, effectlvely stretching
the transfer to accomodate the three exira beats of the burst.

In cycle 12, the 654 Controller begins a burst read, which is executed three times, once each for
beats 1, 2, and 3, of the 4-beat burst (the beats are numbered 0 through 3). In this read, the 654
Controller asserts BURST_CLK# for one cycle to increment the column address presented to the
DRAM (via the CPU Address Counter in the 653 Buffer) from the beat 0 (initial) address to the
beat 1 address. Atthis time, the DRAM data from the beat 0 column address is still becoming valid
on the MEM_DATA lines and propagating through the 653 Buffer to the CPU_DATA lines.

In cycle 13 the 654 Controller asserts TA# for one cycle, and the 60X CPU latches in the data.
In cycle 14, the 654 Controller deasserts CAS# for one cycle. As CAS# is sent low again, the beat
1 address is latched into the DRAM, and the burst cycle begins over again.

Cycles 26 through 30 are identical to Figure 4—4 cycles 11 through 15.

36

LE

weabeiq Buiwil | = SYOX ‘sSiiy abed ‘1sing ‘peay Alowsp 0} NdD "S- 2inbi4

0 1 2 3 4 5 6 7 8 910 111213 15 17181920212223242526272829

CPU_CLK V\/V\/V\f\/\/V\/V\/\/\/V\/V\/V\/V\/\/\/V\/V\/VV\
CPUGNT¥ N [T
TBST# }—\ R R R S R S S S A A A R . -
CPU_ADDR }—(S i —

T T T T T T T T T I T T | | v

St~
AACK#__'_#|IIIII1IIIII\;/V__'

' i N t ' ' . ') ' | ' , i , 1 , ' . ' , | . | . ! , ' . 1

TA# ————, "/ . .\ O\

MEM PAGE HI'r# I/ \I [[1 [] 1 ' I ' [| [[
MlSS ! l ' | ! ' ! i ! 1 ! 1 ! ' ' ' ! ! | ! 1 " | ! | !
CPU_ADDR_SEL# D\ L — — T AN

RASHI/CASLO___/—'—_'_\""""I'1"..,'1'

BURST_CLK# . . S W 2T N e U A

RAS# __/—_\ I o C . o
MEM_ADDR —MM——J——W——L)L\I 0 ' ')C
CAS# — T . N T~
MEM_DATA_SEL# —“—‘“L o _ e /._
MEM_DATA ——
CPU_DATA

WE#[1 1 1 1 1 1} 1 1 1 1 1 Iﬁl
B/LE_PAR _EN# ~ + ., + ., ., ' . I N R S R N R &
CPUDATASEL¥ —

MEM_DATA_OE# v v 0 r

198 diyo ebpug 069 8yl

The 650 Bridge Chip Set

435 CPU to Memory Write—Single-Beat, Page Hit, XCAS = 0
The 60X CPU can initiate a write of system memory by executing a store instruction with an ad-
dress range of 0G to 2G. See Table 4-1. :

Figure 4—6 shows a single-beat system memory write with a page hit and XCAS = 0. The initial
operations performed by the 650 Bridge during cycles 0 and 1 are identical to those in Figure 4—2.
Note that the state of CPU_DATA_SEL# can not be determined from this transfer alone—it may
have been negated by the previous transaction or it may be under asynchronous control of TT[1].
See Section 7.4.3.

In cycle 1, the 60X CPU asserts TS#, CPU_ADDR[0:31], TT[0:3], and TSIZ[0:2], and drives
TBST# inactive. In response, the 650 Bridge evaluates the address, transfer type, and TBST#
signal to ‘determine that the CPU is requesting a single-beat write of system memory.

During cycle 2, the 653 Buffer asserts MEM_PAGE_HIT# to indicate that the row address of the
memory read matches the previous row address. As a result of this signal, the 654 Controller
leaves RASHI/CASLO iow, RAS# stays low, and the 650 Bridge does not update the row address
in the DRAM. '

Also during cycle 2, the 654 Controller asserts CPU_ADDR_SEL#, CPU_DATA_SEL# (if it is not
already asserted), MEM_DATA_OE#, and WE# to select the CPU as the source of the address
and data for the transfer, enable the memory data bus drivers, and prepare the DRAM for a write
cycle. The 653 Buffer processes the address and propagates it to the memory controller which
selects the column address and drives it to the MEM_ADDR lines during cycle 3.

The CPU_DATA is expected to become valid at least by cycle 2, and is then propagated through
the 653 Buffer to the MEM_ADDR lines during cycle 3.

AACK# and TA# stay tri-stated until cycle 4 to avoid contentions with an L2 cache in the event
of a cache hit.

During cycle 4, the 654 Controller asserts the CAS[7:0}# lines to begin a CAS# write access.

During cycle 6, the 654 Controller asserts TA# and AACK# for one cycle, and the 60X CPU com-
pletes the memory write. The 654 Controller nagates the various control lines during cycle 7, with
the exception of CPU_DATA_SEL#, which is still under asynchronous control as long as the 60X
CPU has the bus grant.

38

The 650 Bridge Chip Set

0o . 1.2 .3 .4 .5 .6 .17, 8
cUCik©, . ./ S\ S

CPU_GNT#(C) __\ [
TBST# (C) ___:)—/ —
CPU_ADDR (©) __}———_ — — .' S
TS#(C) __———\ - ' 5 ‘ N
AACK# (C) . ; J—___/—\—
TA# (C) ’__—___/__—\—
MEM_PAGE_HIT# (C) T\ Hit [
CPU_ADDR_SEL# (C) . T\ —
RASHI/CASLO (C) ' ! ! ;
BURST_CLK# (C) : - : :
MEM_ADDR (B) 77/ ' ¢
o L
CAS#(C) ' T\ ! [T
CPU_DATA_SEL# (C) ' N\ ! ! /_—_
CPU_DATA (B) {)——-—
MEM_DATA (B) JIV//,I_ , A Fr
MEM_DATA_OE# (C) . ' —
WE# (C) 1\ [

MEM_DATA_SEL# '

CPU_DATA_OE#

Figure 4-6. CPU to Memory Write, Single—Beat, Page Hit, XCAS = 0 Timing Diagram

39

The 650 Bridge Chip Set

436 CPU to Memory Write—Single-Beat, Page Hit, XCAS = 1
Figure 4—7 shows a single-beat system memory write with a page hit and XCAS =1.

The operations performed by the 650 Bridge are identical to those in Figure 4—6 during cycles 0
through 3, and as usual AACK# and TA# stay tri-stated until cycle 4.

However, since XCAS = 1, the 654 Controller does not assert the CAS[7:0]# lines to begin a CAS#
access until cycle 5. The CAS# write begins one cycle later than it does when XCAS = 0 but it
is otherwise unchanged. Cycles 6 through 9 of this XCAS = 1 transfer are identical to cycles 5
through 8 of the XCAS = 0 transfer.

o.1 2 3 4 5 6 7 8 9
CPUCLK.” ./ ./ ./ ./ \/ [\ [\
CPUGNT# _\ [: ' ' :

TBSTH . L ,_,.—C:

CPU_ADDR __——(" ‘ - i T

™ — T

AACK# ' : ‘ e - T —

TA# —
MEM_PAGE_HIT# —\ Hit — . . . : .

CPU_ADDR_SEL# T\ R A
RASHI/CASLO , . . . , . . .
BURST_CLK# ' l . . .

MEM_ADDR N4 ol : 71
RASH ‘ ' ' ' ' '

CASH# , - | —

CPU_DATA_SEL# ' —\ : : ;o

CPU_DATA A dwordd D——
MEM_DATA ') 771 —dwordd —C

MEM_DATA_OE# —\ | I A

WE# : O\ ; : ; | [
MEM_DATA_SEL# ' ‘ ' '
CPU_DATA_OE# |

Figure 4-7. CPU to Memory Write, Single-Beat, Page Hit, XCAS = 1 Timing Diagram

40

The 650 Bridge Chip Set

4.3.7 CPU to Memory Write—Single-Beat, Page Miss, XCAS =1

Figure 4-8 shows a single-beat system memory write with a page miss and XCAS = 1. This trans-
fer is identical to the one shown in Figure 4—7 during cycles 0 through 2—AACK# and TA# stay
tri-stated until cycle 4. During cycle 2, the 653 Buffer negates MEM_PAGE_HIT# to indicate that
the row address of the memory write does not match the previous row address.

Beginning in cycle 3, the 650 Bridge inserts a RAS# access before the CAS# write access that
would begin in cycle 4 during a page hit. This RAS# access is the same as the one executed during
read miss transfers. The 654 Controller sends RASHI/CASLO high to cause the 653 Buffer to
select the row address to drive onto the MEM_ADDR lines. The 654 Controller sends RAS# high
for 4 cycles, and then asserts a RAS# line to latch the row address into the DRAM.

In cycle 8, the 654 Controller sends RASHI/CASLO low to cause the 653 Buffer to select the col-
 umn address to drive onto the MEM_ADDR lines. This address propagates through to the DRAM
during cycle 9.

In cycle 10, the 654 Controller asserts the selected CAS# lines to begin the CAS# write access.
The rest of the transfer follows the page hit timing found in Figure 4—7.

0.1,2.3,4.5 6.7,8.9,10 11,12.13,14 15,
CPUCLK'_/‘_F_/‘_/‘_/‘_/'\J’_/‘\J‘_F_/‘\I_/‘_F_/‘\J

CPU_GNT# N\ [— . : o
™ST$ r——0W_ .+ ' . e~
CPU_ADDR D— — - ——C
TS# H - —C
AACK# —— T
TA# " A Y e
MEM_PAGE_HIT# Mtss -
CPU_ADDR_SEL# —ﬁ S —
RASHI/CASLO ______/ T —
- BURST_CLK# . T (
MEM_ADDR ! WL /T 10w] N A column__ | X
RAS# e [' A :
e
CPU_DATA_SEL# "\ [—
CPU_DATA O—¥4 \ 2 ——
MEM_DATA 7 w77
MEM_DATA_OE# ~— N~—0 - S
e N
MEM DATA SEL¥ — . .
CPU_DATA_OF# 3 T

rr

I

Figure 4-8. CPU to Memory Write, Single-Beat, Page Miss, XCAS = 1 Timing Diagram

41

The 650 Bridge Chip Set

438 CPU to Memory Write—Burst, Page Miss, XCAS =1

Figure 4-9 shows a burst write to system memory with an initial page miss and XCAS = 1. The
operations performed by the 650 Bridge are identical to those in Figure 4—8 during cycles 0
through 12. The 654 Controller leaves the data and address path control signals asserted, effec-
tively stretching the transfer to accomodate the three extra beats of the burst.

In cycle 13, the 654 Controller begins a burst write, which is executed three times, once each for
beats 1, 2, and 3, of the 4-beat burst (the beats are numbered 0 through 3). In this write, the 654
Controller asserts BURST_CLK# for one cycle to increment the column address presented to the
- ‘DRAM (via the CPU Address Counter in the 653 Buffer) from the beat O (initial) address to the
beat 1 address. The 654 Controller aiso asserts TA# for one cycle to signal the 60X CPU that the
previous data has been written.

In cycle 14, the 654 Controller deasserts CAS# for two cycles. As CAS# is sent low again, the
beat 1 address is latched into the DRAM, and the burst write cycle begins over again.

42

%4

‘weabeig fuiwil | = SYOX ‘ssin abed ‘1sing ‘@ium Aowspy 01 NdD “6— 84nbiy

01234567889 101112131415161718192021222324252627282930

CPU_CLK \/\/\/\f\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/V\/V\/V\/V\/

CPU_GNT# . FQ -

TBST# J— = ' T -
CPU_ADDR —~__ . e — ST
TS# HJ . I , K . I) ' , ' | ' ’ ! , ! I ' I ! I T T T I T . uc

AACK# ————" . . . T\

™w—— .\ T N\

MEM_PAGE_HIT# /o : .] ‘ ; ; -
. Miss— . ; ; ; ; ; ; ; ; ; T

CPU_ADDR_SEL# . \. l S
C

RASHUCASLO_ /™~ "\ ' ' ettt
BURST CLK¢ . . .\ o\

MEM_ADDR — . ‘)(Illlrovlv ‘ . ' Icolb . ' ' Iccl)12l ' /J LR ’ '
RAS# o /7 T N\ SRR
st —————————_ /N
CPU_DATA_SEL# N B - A

CPUDATA)——M T — M datal data? — daa3 . N
MEMDATA:Q—(A dataO WA _danl WA _dawr WA a3 N

1 l ! ! ' 1 ' t 1]]

MEMDATAOE#—_\""-"""' L

1 ' t ' ' ' | ' ' ' ' ' '

WE# LL : . I L l il ‘ L I L L I L Il ‘ il I il ‘ il I L I l‘) !

MEM_DATA_SEL# ' ! ' ' o E K [T

CPU_DATA_OE# ., -« . « . « . .«

les diyp abpug 069 8y L

The 650 Bridge Chip Set

4.3.9 CPU to PCI Write—XADIO =1

The 60X CPU can initiate a PCI write transaction by executing a store instruction with an address
range of 2G to 4G. The exact type of PCl transaction is determined by the specific address range
within 2G to 4G. See Table 4-1.

Figure 4—11 shows a CPU to PClI bus write transaction while XADIO = 1. During CPU to PCl trans-
actions, the logic that controls the CPU interface operates in substantially the same manner as
it does during CPU to memory transfers.

References 1o cycle x refer to the CPU_CLK cycle labled x. The following are specific notes for
Figure 4—11 and following figures as applicable:

1. PCI_OE# is clocked by the rising edge of CPU_CLK (see Figure 4-10). PCI_OE#
only changes state on a rising edge of the CPU_CLK on which the PCI_CLK is also
rising. The signals (PCI_signal) that the PC! Specification defines relative to the PCI
clock are handled the same way.

CPU_CLK - »
— Timing

, No Change
PCI CLK L1 Allowed

PCI_OE#, X ><
PCI_signal
‘ Figure 4-10. Timing of PCI_OE#

2. PCIl_OE# enters this transaction deasserted if a PCl bus master has been in control
of the PCI bus and the 650 is transferring PCI bus mastership to the CPU bus for this
transaction. If the CPU bus mastered the previous transaction (or the bus was idle),
then PCI_OE# has been asserted and is still asserted during PCI_CLK 0.

3. PCI_OE# is asserted while the 650 needs to drive address or data onto the PCI_AD
bus. This occurs during CPU bus to PCI transaction address phases, CPU to PCI
write transaction data phases, and while no PCI bus master is driving the PCI_AD bus
(but not during turn-around cycles). Thus during this write transaction PCI_OE# is
negated by the rising edge of PCI_CLK 6 only if the 650 grants the bus to a PCl bus
master at the conclusion of this transaction. If the bus is not immediately granted to a
PCI bus master, PCl_OE# remains asserted.

4. PCI_FRAME#, PCI_IRDY#, and PCI_C/BE[3:0}# enter this transaction tri-stated if a
PCI bus master has been in control of the PCI bus and the 650 is transferring bus
mastership to the CPU bus for this transaction. In this case, PCI_FRAME# and
PCI_IRDY# are output enabled and driven high during CPU_CLK cycle two. If the
CPU bus mastered the previous transaction (or the bus was idle), then these signals
enter this transaction already output enabled and driven high.

5. If the arbiter transfers bus mastership from the 60X to a PCI bus master at the con-
clusion of this transaction, then the 650 tri-states PCI_FRAME#, PC| IRDY#, and
PCI1_C/BE[3:0}# on the rising edge of PCI_CLK on which PCI_TRDY# (or
PCI_STOP#) are sampled valid. If the bus is not immediately granted to a PCI bus
master, these signals remain driven (output enabled) by the 650.

44

S 4
o1avX ‘eliM 19d 01 NdD “LL—t ainbiy

weibelq bulwiy i

o, 1, 2,3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
o i) SAWAWAWAWAWAWVAWAWVAWAWAWAWVAWAWAWAWAWA WA

CPU_GNT# _/ . . _ . ‘ _ I ! ,

CPU_ADDR _)——_ - -

™" —~— R)

AACK# . — ‘ , . | [:

TA# ' ' — ‘ ' ' ' ' ‘ ‘ ' ' : b

CPU_DATA ————Vl . ‘ . . —C

CPU_ADDR_SEL# — "~ __ L N L N R AL

CPU_DATA SEL# 1\ | , | /a—
~ PCI_SEL# S T S D — .

ADDRHIDATALO™ ———\ = —

L_PCI_DATA# ' : ' | ! . 1 : . | ' | . ; . . ,
CPU_ADDR_OE#

CPU_DATA OE# . .
PCLOE# D@ ' L Gy

e Re? S e N e N e N e N e W e N e N e
PCI_AD WA _Adr X Dam ' WA
C/BE[3:0]# _(4) ! - XCommahdX ‘Byte Enable] ! X (5) !
FRAME# BorHLG 7 S L '. o HG
RDY# 35 or @) / ‘ . : ' &5
TRDY# [target] 35 or AT j : : — N
DEVSEL# [target] 3S or Hi [\ 'See PCI Specification ' T —
- STOP# [target] 38 or Hi) ' —7 Sec P Splecification: : — —~—

1es diyo abpug 069 8yl

The 650 Bridge Chip Set

4.3.10 CPU to PCI Write Additional Timing Examples

Figure 4—12 shows a 60X CPU to PCI write with XADIO = 0, during which TS# is asserted across
the falling edge of PCI_CLK rather than across the rising edge of PCI_CLK. Most of the timing
- diagrams show TS# asserted across a rising edge of PCI_CLK, but it is equally likely that TS#
will be asserted across a falling edge of PCI_CLK. When this happens, the 650 Bridge responds
by stretching the transaction, effectively adding a CPU_CLK wait cycle after CPU_CLK 3 to syn-
chronize the transaction to PCI_CLK. The rest of the transaction remains unchanged.

Figure 4—13 shows a 60X CPU to PCl write with XADIO = 1, during which the target device asserts
atarget retry (PCI_STOP# and PCI_DEVSEL# asserted together). A PCI device can target retry
atransaction for various reasons. Following a target retry, the initiating device can retry the trans-
action.

46

Ly

olavX ‘@lIM 10d 01 NdD "ZL—t ainbig

weubejq Buiwy] #S1 12910 ‘0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CPU_CLK T\ NN NN
e e ————————————
CPU_ADDR)— - . . ‘ - . i) x . : >—C

AACK# - - :J | | | - | ; __/ - ‘—

TA# . - i ! ' ' ' ! ' ' ' ' _'f —
CPUDATA —m @~

CPU_ADDR_SEL# ' AN ! ' ' ' ! ' ' ' ' ' ! ' S

CPUDATASEL# 1\ Y S——
PCI_SEL# — —
spoRmpAALO T\
L_PCI_DATA# ~ T T
CPU_ADDR_OE# |
CPU_DATA_OE# ™ —
pLOB¥F ___ N 0000000000000l
SRS S U e VL e N e U e N N/ W e N e
PCL_AD WA AdG X____ Daa, ' ' . 74
C/BE[3:0]# ' XCommandX_ ' Byte Enable ') Gl ‘
FRAME# 3Sor B 7/ ./ _3SorHi
IRDY# 3SorHi 7 ' ' _ ' ! ' V4 | ——
- TRDY# [target] 3Sor A : : : : T T ——
DEVSEL# [target] 3S o HI ' ' AN ' ' ' T
STOP# [target] 3S or Hi ‘ I / ;

1os diyo 9bplg 059 suL

14

welﬁe!a Buiwyy Aney j1ebae) ‘L

0lavX “@lIM 10d 01 NdO "€1— ainbiy

0 1 2

3

4 5

6

7

8 .9 10,

12

13

14 15 16 17 18

CPU_CLK, '\J‘\J‘_/'_/'\J‘\f_f_/’\J’_/'\J‘_/’_/‘_/‘\J‘_F_/‘\J‘\f

CPU_GNT# \ [/

CPU_ADDR _)— —C
TS# o ——__/ ‘ ‘ ' ' ' ' o
AACK# 7 __/ ‘———
ARTRY# . ' : : —
TA# ———— T . T T
CPU_DATA —————€1_ A S S S D
CPU_ADDR_SEL# _—"\ - ' - HVAE
CPU_DATA_SEL# __\ s ’ ’ . ' . ' . | . /—
PCI_SEL# — ‘ * - ' - » '
ADDRHI/DATALO ~™—— —__ ‘ - R e—
L_PCI_DATA# — ' L B
CPU_ADDR_OE# — . -
CPU_DATA_OE# — - . ST ‘ .
OB TN
PCLCLK ~__/ Y 7 N/ g N S L e L e) e N
PCI_AD MZ1_Adar X Data XZ1
C/BE[3~0]# k xgnmmmx e e ' - X ’
' FRAME# ES&LHL_/ \ : / ' ' ' “N\3SorHi
IRDY# S orfi 7 N | N ——
TRDY# [target] 3S or i)) :) | : T N—
DEVSEL# [target] 3S or Hi ' ' ' ' A S—

STOP# [target] 3S or Hi

188 diyp 8bpug 059 8yl

The 650 Bridge Chip Set

4.3.11 CPU to PCI Read

Figure 4-14 shows a 60X CPU to PCl read. The 60X CPU can initiate a PCI read transaction by
executing a loadinstruction with an address range of 2G to 4G. The exacttype of PCl transaction
is determined by the specific address range within 2G to 4G. See Table 4—1. Note that the 654
deasserts PCI_SEL# one PCI_CLK after it samples PCI_TRDY# or PCI_STOP# asserted.

J J Q __/ J
- 11 -1 1 -td - |- oo AU R I G = - -
= . = g
st 1Ll
\O
2 M o MX
o N 2
[~} >
S O B N e O \ O s e I e o e IO I A ey 6
- \
o I e ~ O
< NN ~ m\
o
[V}
- ~ HE E EE
- - . 1o rt oo r ot g |5] |8 18 |8
= K H O H Q ¥ ¥k %%%%
S EPYFfZBEBEEEECSSO8g 2588k
_ < ; Lo A M < 5 = 9@ B a2 s s
522 < pEEPSJBERETEE sz
CC@ CADnD_ P_A_m_ @) mﬂm
| - > w0
= a - B o7
5 > o o A
o © <

Figure 4-14. CPU to PCl Read Timing Diagram

49

The 650 Bridge Chip Set

4.3.12 PClto Memory Read—Single-Beat, Page Hit

During PCI to memory transactions, the 650 Bridge updates the PCl address latch in the 653 Buff-
er on eachrising edge of the PCI_CLK while ADDRHI/DATALOQ is high, so in Figure 4-15, the PCI
address latch is updated on PCI_CLK 1. Also on PCI_CLK 1, the 650 Bridge samples
PCI_FRAME# active, which starts the 650 Bridge PCI target cycle (assuming that the PCI bus
master is addressing system memory).

The 654 Controller sends ADDRHI/DATALO low on PCI_CLK 1 to hold the PCI address in the
latch. PCI_TRDY#, PCI_DEVSEL#, and PCI_STOP# have been tri-stated since the beginning
of the cycle; on PCI_CLK 2, the 650 asserts PCI_DEVSEL# to claim the transaction, and drives
PCI_STOP# and PCI_TRDY# high. The 654 Controller asserts PCI_OE# on PCI_CLK 2 to en-

able the PCI_AD drivers in the 653 Buffer (the cycle between PCI_CLKs 1 and 2 is aturn—around
cycle (TAC) for the PCI_AD lines, and some control lines).

The 654 Controller begins a CAS# read to the memory. This CAS# read is similar to that used
when the CPU is reading system memory. The 653 Buffer drives valid data onto the PCI_AD lines
in time to meet the required PCI data setup times for PCI_CLK 5, so the 654 Controller asserts
PCI_TRDY# on PCI_CLK 4. The 654 Controller then negates PCI_TRDY#, PCI_DEVSEL#, and
PCI_STOP#, and negates PCI_OE# to tri-state the PCI_AD lines. The 654 Controller tri-states
PCI_TRDY#, PCI_DEVSEL#, and PCI_STOP# on PCI_CLK 6 (see notes 1 and 2).

The 650 Bridge generates a snoop cycle on the 60X CPU bus for each PCI to system memory
transaction. In this transaction (Figure 4-15), CPU_ADDR_OE# has been asserted (see note 1),
so the 653 Buffer is driving the (translated) PCl address onto the CPU address lines. The 654
Controller asserts TS# for one CPU_CLK cycle, followed by asserting AACK# for one CPU_CLK
cycle, in compliance with 60X CPU bus snoop cycle requirements. Should either the L1 or L2
caches detect a cache hit, it must assert ARTRY# so that itis sampled valid at least by the second
CPU_CLK after it samples TS# valid, or it is not recognized.

These notes refer to Figure 4—15 and to following figures as appropriate.

1. During PCIl to memory transactions, the 654 Controller drives PCI_SEL#,
CPU_ADDR_OE#, and AACK# depending on two factors—the state of the transac-
tion engine and the state of the arbiter engine. Depending on the status of the system
on the rising edge of the PCI_CLK on which the 654 tri-states PCI_TRDY# (in this
case PC!_CLK 6), the arbiter either removes the grant from the current PCI bus mas-
ter or that bus master retains mastership of the system. If the PCI bus master retains
the grant, the 654 leaves PCI_SEL# and CPU_ADDR_OE# low, and continues to
drive AACK# high into the next cycle. If the PCI bus master is losing the grant, then
(on the rising edge of the PCl_CLK on which the 654 tri-states PCI_TRDY#) the 654
drives PCI_SEL# and CPU_ADDR_OE# high, and tri-states AACK#. See Table 4-3.

Table 4-3. Effects of Arbiter on Three Signals

Signal PCI Retains System Mastership |PCl Loses System Mastership
PCI_SEL# Remains driven low. Is driven high. ‘
|CPU_ADDR_OE# [Remains driven low. Is driven high.
| AACK# Remains driven high. Is tri-stated.

50

The 650 Bridge Chip Set

2. During PCI to memory read transactions, ADDRHI/DATALO is deasserted on the
PCI_CLK that the 654 Controller tri-states PCI_TRDY# (in this case PCI_CLK 6). Dur-
ing PCI to memory writes, the 654 deasserts ADDRHI/DATALO one PCI_CLK earlier.

3. ISA master devices can access system memory from 0 to 16M with a direct address
of 0 to 16M. See Section 5.6.1.2 and Section 5.6.1.3.

1 2 3 4 5 6 7
PCICIK. ™ __/__ /" /—\ /M /—\
C/BE[3:0# X Tmd__X BE X
PCI_AD [PCI] —(Adr ——JIAC '
FRAME# ~_____ * [' ' ' '
IRDY# _"'""\ ' : /
TRDY# : " i WY ey N
DEVSEL# — . T
STOP# - —/ ' TN—
PCI_SEL# ' | ‘ oy
ADDRHI/DATALO — \ . ‘ . : D A0 N
MEM_DATA_SEL# ' ' i W ' T
MEM_PAGE_HIT# ' —\ Hit /= — ' '

CPUCLK. A/ S\ S\ S\ S\ S\ S\ S

T T T T T T T T T T T T T
! ' ! 1 ! | ! 1

BURST_CLK# '

1 ' | ' ' f | \ |

RASHI/CASLO : : : : : :
MEM_ADDR _X — . .) ¢
RAS# ! ! | 4 ' | 1 | | . | .
CAS# [! ' ! | [) ¢ ! | [
MEM_DATA : ‘ , - : A : . N w :) —
PCI_OE# ' ‘ ' T\ : ! ' ! A
PCI_AD . - 77277777 6 \NY — ————
CPU_ADDR_OFE# ‘ ‘ ' ‘ ' ' : ' ‘ ' 40)
CPU_ADDR _____X____ Snoop Address XD
TS# | ! | \ | ’ 1 ! 1 ' ' t \!.[\!
AACK# T) 1 \ I ' ‘ 1) T T \ !1I!
ARTRY# y ‘ Snoop . ‘ . . . ; . | .
B/LE_PAR_EN# ‘ " ‘ : —\) \ ‘ \ X o

Figure 4-15. PCI to Memory Read, Single-Beat, Page Hit Timing Diagram

51

The 650 Bridge Chip Set

4.3.13 PCIl to Memory Read—Burst, Page Hit Then Miss ’

When a PCI bus master is reading from system memory in burst-mode, a page miss can occur
at any point in the transaction. Figure 4—17 shows this type of page hit and page miss activity.
During PCI to memory reads, each data phase requests up to four bytes from the 650 bridge, but
the 650 Bridge always reads eight bytes from the memory subsystem (see Figure 4-16). During
burst reads that start on an eight-byte boundary (PCI_ADI[2] = 0 during the address phase), the
650 Bridge performs the following steps:

1. Reads eight bytes from memory (and generates a snoop cycle to the 60X bus),
Delivers the lower four bytes to the PCI for the first data phase,

Delivers the upper four bytes to the PCI for the second data phase,

Reads another eight bytes from memory (and generates a snoop cycle),
Delivers the lower four bytes to the PCI for the third data phase,

Delivers the upper four bytes to the PCI for the fourth data phase,

Repeats steps 4., 5., and 6. as required.

NoO ok WD

With a 2:1 CPU bus to PCI bus clocking mode, this process yields burst read performance (as-
suming no page misses) of 5-4-3-4-3—4-3—, etc.

During burst reads that start on a four-byte but not an eight-byte boundary (PCI_AD[2] = 1 during
the address phase), the 650 Bridge performs the following steps:

1. Reads eight bytes from memory (and generates a snoop cycle to the 60X bus),
Delivers the upper four bytes to the PClI for the first data phase,

Reads another eight bytes from memory (and generates a snoop cycle),
Delivers the lower four bytes to the PClI for the second data phase,

Delivers the upper four bytes to the PCI for the third data phase,

Repeats steps 3., 4., and 5. as required.

With a 2:1 CPU bus to PCI bus clocking mode, this process yields burst read performance (as-
suming no page misses) of 5—4—-4-3-4-3—-4-3—, efc.)

Il A

PCI_ADI[2]=0 (Address Phase) PCl_AD[2]=1 (Address Phase)

From From
r7654 3210|<—Memory {7654 3210]'_Memory

To PCI [765 4} > To PCI | 1st Data Phase

[7654 3270 {omory

| 7654 |' — To PCI 3210 To PCI | 2nd Data Phase

[7654 32710 Momory

L i) .
To PCI | 765 4| > To PCI 3rd Data Phase

[7654 32710 [iomoy

— To PCI 3210 To PCI 4th Data Phase

g

76

Figure 4-16. PCIl To Memory Burst Read Transaction

52

€<

wesbeig Buiwy] ssip uayl HH abed ‘1sing ‘peay Alowap 0} |Dd "LL—+ 2inbig

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PCL_CLK __/___/‘_/__/__/__/__/—_/__/__/'_/__/__ﬂ_/__/__
C/BE[3:0]# Xmd X BE X BE X
PCI_AD [PCI] <G@i—TAC ' : ' ‘ ' ' ' ' ' '
FRAME# ___, K . VAR . . I . . ;
IRDY# ~ "\ ' : ! ! ! : ' ' : ' ' Y e

TRDY# ——

DEVSEL# —————

STOP# —-—-’

PCI_SEL# . . . , , , , , , . , , L —
ADDRHI/DATALO ™ ___ - . - . . ! . ‘ , . —
—

MEM_DATA_SEL# —‘—'\ ' : ' - | | | ;
MEM_PAGE_HIT# \Hlt/ ' , —

CPU_CLK \4

BURSTCIK¢ —T——— T "\

RASHI/CASLO ! I ! ' ! ' ! ' ! ' ! ! 1 ! i A - T \ ' t | | | ! f ! |
MEM_ADDR ~ X (Column Address) : N W Al WAt At —

CASE ™"\ . . S S —— . . . S
MEM_DATA L : :
PCI OFE# _ l ' l ! ' ' ! ' ! ! i ! ' ! ' ! I ' /-.—i—.—

1D T

CPU_ADDR_OE# ;

CPUADDR:X_S_mnAddms.s -
TS# N\ —

AACK# NS N
ARTRY# oo 8moop 0t ot 8moOp vt

B/LE_PAR EN# | . | . | \u L

les diyD ebpug 059 ayL

The 650 Bridge Chip Set

4.3.14 PCI to Memory Write—Burst, Page Miss Then Hit

During PCl to memory writes, the 650 Bridge asserts WE# on PCI_CLK 2 to begin the DRAM write
operation, and asserts MEM_DATA_OE# on PC|_CLK 2 to enable the 653 Buffer to drive data
onto the MEM_DATA bus.

In Figure 418, the 653 Buffer negates MEM_PAGE_HIT# on PCI_CLK 2 to signal a page miss
to the 654 Controller, which then begins a RAS# access. This RAS# access is similar to the one
that the 654 Controller executes during a 60X CPU to memory page miss. After the RAS# access
completes, the 654 Controller executes CAS# writes, which are also similar to those executed
by the 654 during 60X CPU to memory writes.

- CEEASHIRTT TIEIC T LY RPP
© ESSSTOISTESRT A ENAST THT
") B A A R e
_\A - |- -§ - - - -1 - 1-
-
= 41 -1 S - e e TR LR
BN S =) 2
«~CH || || B TR E IBSPE
SR A T N (3 NEOA 18T
=51 RN A [THUS g
s - 1- e - |- - - -
o . | -:FV_\. -] g__g- ->A~r/=)
< (> IN=IAm IAT LT
o0 - - —'\. -1 - |- - - - -
]
~ - - - LS - - -k
-\. - 4 -1 - 1=
O ~ - —\— - -
_\‘ d -1 -
v - - —'\- -1 -1- |-
.\ -1 - |- Jd -1 - 1=
<t - - - —\- -1 - 1- -1 -1- ¢t
- JNE 14T 1L fe
=1 - - - g1 - o)
~CH S /! RS S)3_;,
_\ - - g -1 - |-
- - -1~ 4 -1- 4 - 4 _'\ - - A1 -1- 1-
P ~
Y ET o s ow % w0 ok % O % HF R LR o ko
s,z%gésatggaqﬁgga 53,58,825)%
- T~ > HI | < < v < &
a2 k& Eméoéga g s RESE S <=
o5 a s & O 2 | 0 a5
5 2 2 X %V’E 5Q|E<U
& x J R A ~
A I g &
< 3

Figure 4-18. PCI to Memory Write, Burst, Page Miss Then Hit Timing Diagram

54

Section 5
The 650 Bridge Functional Description

This section describes in detail all the possible operations the 650 Bridge can perform in its role
as PCl bridge, bus arbiter, memory controller, and system resource manager.

Section 5.1 describes how the 650 Bridge controls the PCl local bus and the 60X CPU host bus
by means of an arbiter that allocates bus access based on priority and fairness algorithms.

Section 5.2 describes the programmability of the 650 Bridge, including the SIMM mapping regis-
ters and the system setup register.

Section 5.3 describes little-endian and big-endian addressing theory and the implementation of
this theory in the 650 Bridge.

Section 5.4 describes the operation of the memory controller including RAS# and CAS# logic for
both big-endian and little-endian addressing modes.

Section 5.5 describes the 60X CPU bus transactions that the 650 Bridge can service.
Section 5.6 describes the PCI to 650 Bridge transactions.
Section 5.7 describes the operation of the optional L2 cache.

Section 5.8 describes system errors and the methods that can be used to access and report errors
and exceptions.

5.1 The 650 Bridge Arbiter
The 650 Bridge arbiter allocates 60X CPU bus and PCl local bus cycles. If two or more masters
are requesting the bus, their requests are latched and then granted in the following order:

» DRAM refresh requests (up to three refresh requests can be queued, in addition
to one refresh in progress.)

60X CPU bus requests (instruction fetches, system memory, ROM; and PCl)
L2 cache to 60X CPU bus requests (snoop hits on write-back cache or castouts)
I/0 Bridge (a special PCI device)

PCI bus requests (up to five additional request and grant lines)

Once abus has been granted to a device, the 650 Bridge evaluates the bus transaction and gener-
ates the responses required for each type of bus transaction. :

55

The 650 Bridge Chip Set

5.1.1 Arbitration Description

The 650 Bridge provides control for the PCl local bus as a PCl initiator and as a PCl target. The
Bridge also interacts with the 60X CPU bus as both a slave and to master snoop cycles. For the
purpose of arbitration, the system is treated as a single bus system. Arbitration is designed to
ensure that only one master may control the buses at any time, with fairness as well as a timeout
counter that assists in maintaining the PCI bus latency.

The 654 Controller provides the arbitration for the 60X CPU and PCI bus as a single bus system.
Either the 60X CPU bus or the PCI bus can execute a cycle at any given time.

5.1.2 The Arbitration Fairness Mechanism

The 650 Bridge uses a bus request queue to implement a fixed priority with fairness algorithm that
minimizes access latency on the PCl bus. When the bus request queue is empty, the 650 Bridge
queues all the currently active bus requests. The arbiter grants all the queued requests in priority
order before reloading the queue again. The bus request queue mechanism ensures that lower-
priority devices are not locked out by very busy high-priority devices.

DRAM refresh is an exception to fairness. See Section 5.1.4.

- 513 The Timeout Counter

All masters must be given access to the bus within the maximum latency limits of the system. A
6-bit timeout counter assists in meeting the latency limits. When the bus is granted and another
master requests the bus, the timeout counter is started (based on PCI_CLK). The timeout counter
operation is suspended when I0_BRDG_HOLD# is active until the I/O bridge device drives
PCI_FRAME#.

If the timeout counter counts out before a device completes ifs tenure on the bus, the 650 Bridge
removes the bus grant for the device.

5.14 Support for System Memory (DRAM) Refresh

System memory refresh can only occur when the two system buses are idle. The RE-
FRESH_REQ# signal from an external device acts as a high-level bus request, removing the -
grant from the current master. When the current master deasserts PCI_FRAME# and completes
its PCl cycle, the 650 Bridge initiates refresh cycles. When refresh has been completed, all pend-
ing bus requests are granted in the same order as before the refresh was started. Up to seven
refreshes can be queued in addition to the currently operating refresh cycle.

Each time the REFRESH_REQ# signal activates, a request counter within the 650 Bridge is in-
cremented. As soon as the current bus master releases control, the 650 Bridge generates refresh
cycles until the request counter is decremented to zero. Refresh cycles take approximately 16
CPU clock cycles each and their timing is independent of the duration of the REFRESH_REQ#
signal. No other bus cycles are initiated while the refresh cycles are active. The maximum count
of the request counter is seven. Refresh does not obey the fairness rule. Refresh is always
granted ahead of any other requests as soon as the bus is available. ,

The device that generates REFRESH_REQ# must be programmed for arefresh interval appropri-
ate to the DRAM used in the system.

5.1.5 Support for Cache Snooping
For PCI to system memory cycles, the 654 Controller masters the 60X CPU bus to run a snoop
cycle (to maintain cache coherency in the L1 cache in the 60X CPU and the optional L2 cache).

56

The 650 Bridge Chip Set

If the 60X CPU or the L2 cache asserts ARTRY# because of a snoop hit, the 654 Controller termi-
nates the current PCI operation with target retry (PCl_STOP# and PC|_DEVSEL# are asserted)
and the current master of the PCI bus immediately relinquishes the bus grant. The 654 Controller
then grants the bus to the 60X CPU or the L2 cache to do a write-back to system memory. When
the write-back is completed, normal priority scheduling resumes, starting with the master that lost
the bus grant due to the snoop hit (if it is requesting the bus).

5.1.6 Bus Parking
During cycles when the system buses are idle and no masters are requestmg either bus, the 654
Controller arbiter parks the bus on the 60X CPU (asserts CPU_GNT#) and enables the PCI_AD,
PCI_C/BE[3:0}#, and PCI_PAR drivers (in conformance with the PCI Specification, revision 2.0).

Parking the bus on the 60X CPU allows the 60X CPU to drive the bus with zero clock delays, as
described in the PCIl Specification.

5.2 650 Bridge Programmability

The 650 Bridge has internal registers that are programmable. The 650 Bridge memory controller
requires programming for memory configuration for any memory array other than the 8M default.
The 650 Bridge setup register can also be programmed for various optional modes of operation.

The memory registers and system setup register cannot be programmed or read without corrupt-
ing system memory (DRAM). For this reason, these registers should be programmed before sys-
tem memory is initialized.

5.2.1 Programming the 650 Bridge Memory Controller

The 650 Bridge directly supports 8M and 32M, 70ns page-mode parity 168 -pin SIMMs. The 650
Bridge also supports, with buffers, 4M, 8M, 16M, and 32M 72-pin industry-standard parity SIMMSs.
A maximum of eight SIMMs can be configured for a maximum system memory of 256M. Fast
page mode is supported. One RAS per logical SIMM is supported. The W|dth of the memory is
eight bytes.

System memory (DRAM) is configured within the 650 Bridge by eight SIMM reglsters——-seven
SIMM mapping registers and one SIMM top-of-memory register.

5.2.1.1 Memory Controller Configuration

External logic asserts MC_SETUP# during a PCI I/O read or write cycle for memory controller
configuration. Register selection and configuration data are accessed through the CAS# lines.
See Section 5.2.3.

5.2.1.2 SIMM Mapping Registers

The memory controller within the 654 Controller contains seven SIMM mapping registers and a
SIMM top-of-memory register. Each SIMM mapping register indicates the starting address of that
SIMM modulo 8M. The SIMM mapping register information controls the assertion of the RAS#
line corresponding to a memory address. Each SIMM mapping register consists of the following
eight bits:

- MR[7:5]—The encoded address bits, the three most-significant bits in the byte
MR[4:0]—The starting address bits, the five low-order bits in the byte

The encoded address bits MR[7:5] indicate the address of the register to be accessed. Each of
these addresses corresponds to a SIMM register as shown in Table 5-1.

57

The 650 Bridge Chip Set

SIMM register 000b is the top-of-memory register. Each of the other seven SIMM registers is a
SIMM mapping register, associated with the like-numbered SIMM siot.

The numbering of SIMM slots begins with slot 0. Since slot 0 starts with memory address
00000000h, there is no necessity for a SIMM mapping register to indicate the starting address
for the first SIMM slot.

Table 5-1. SIMM Mapping Register Selection

Address Bits
MR[7:5] Register Name

000b | Top-of-Memory Register

001b SIMM Mapping Register 1
010b SIMM Mapping Register 2
011b SIMM Mapping Register 3
100b [SIMM Mapping Register 4
101b SIMM Mapping Register 5
110b SIMM Mapping Register 6
111b SIMM Mapping Register 7

5.2.1.3 SIMM Starting Address Registers

Beginning with SIMM slot 1 (the second SIMM slot), each of the SIMM mapping registers contains
the starting address for its SIMM slot, modulo 8M. For example, the value of MR[4:0] in SIMM
mapping register 1 is 00001b if there is an 8M SIMM in slot 0 (see Table 5-2). If there is a 32M
SIMM in slot 0, the value of MR[4:0] in SIMM mapping register 1 is 00100b.

Table 5-2. SIMM Mapping Register Starting Addresses

MR[4:0] Starting Address MR[4:0] Starting Address
00000 oM 10000 128M
00001 8M 10001 136M
00010 16M 10010 144M
00011 24M 10011 152M
00100 ‘ 32M 10100 160M
00101 40M 10101 168M
00110 48M 10110 176M
00111 56M 10111 184M
01000 64M 11000 192M
01001 72M 11001 200M
01010 80M 11010 208M
01011 88M 11011 216M

58

The 650 Bridge Chip Set

Table 5-2. SIMM Mapping Register Starting Addresses (Continued)

MR[4:0] Starting Address MR[4:0] Starting Address
01100 96M 11100 224M
01101 104M 11101 232M
01110 112M 11110 240M
01111 120M 11111 248M

5.21.4 SIMM Starting Address Rules
The starting address for a slot is used with the starting address for the next slot to determine the
SIMM to be activated. The formula for activating RAS[n] is as follows:

RAS, = SA, = Address < SA,.,

where:

+ RASIn] is the RAS signal for SIMM slot n.

¢ SA, is the contents of the SIMM starting address register for SIMM slot n.

* SA,.,1 is the contents of the SIMM starting address register for SIMM slot n+1.

» Address is the input address of the memory to be accessed.

* One and only one RAS[7:0]# line can be asserted for a memory read or write cycle.

5.21.5 SIMM Top-of-Memory Logic

The eight bits of the SIMM top-of-memory register are encoded like the SIMM starting address
registers. The MR[7:5] address bits for the SIMM top-of-memory register are set to 000b to ad-
dress the top of memory register. See Table 5-1.

Program register bits MR[4:0] to represent the address of the top of system memory minus 8M.
Any memory access with an effective address above the address plus 8M generates an out-of-
range memory access. An out-of-range memory read asserts ALL_ONES_SEL# to the 653 Buff-
er to output 64 one-bits on the data bus with normal TA# termination. For PCI bus transactions,
an out-of-range memory error terminates the current PCIl fransaction with a target abort
(PCI_DEVSEL# deasserted and PCI_STOP# asserted).

Any address greater than or equal to 256M is hard decoded by the 654 Controller as out-of-range.

Notice that the SIMM top-of-memory register serves as SIMM mapping register 8 for SIMM map-
ping register 7. The SIMM top-of-memory register provides the next slot comparison that is neces-
sary to activate SIMM slot 7.

5.2.1.6 SIMM Register Programming Rules
SIMM starting address registers must be programmed in ascending order. For example, do not
program slot 3 with a lower starting address than slot 2.

Missing or defective SIMMs are programmed out by making the start address of the missing or
defective slot the same as the next slot. For example, if SIMM starting address registers 2 and
3 both have 01001b (72M) then SIMM slot 2 is inactive.

The seven SIMM registers are cleared to all zeros on power-on-reset . The SIMM top-of-memory
register is cleared on power-on-reset to all zeros, indicating one 8M SIMM installed.

59

The 650 Bridge Chip Set

5.2.1.7 Reading the SIMM Registers

When the SIMM registers are read, the MR[7:5] bits indicate the register that has been decoded
by the current read cycle. The MR[7:5] bits are incremented sequentially on each read, but soft-
ware must not expect the first read to access register address 000b.

5.2.1.8 SIMM Starting Address Example #1
Table 5-3 shows the values of the SIMM registers if there is a 32M SIMM in slot 0 and two 8M
SIMMs in slots 1 and 2. '

Using Table 5-3 and following the rule from Section 5.2.1.4, an application address of 42M is
greater than the starting address in mapping register 1, but it is also greater than the address in
mapping register 2, so mapping register 1 is not a hit. Then 42M is greater than the starting ad-
dress in mapping register 2 and less than the starting address in mapping register 3, so SIMM
slot 2 (mapping register 2) is selected.

Table 5-3. Example #1 SIMM Mapping Register Setup

Mapping Register Value of MR[4:0] | Comment

Mapping register 1 00100b Starting address 32M, SIMM slot 0 is 32M.
Mapping register 2 00101b Starting address 40M, SIMM slot 1 is 8M.
Mapping register 3 00110b Starting address 48M, SIMM slot 2 is 8M.
Mapping register 4 00110b Starting address 48M, SIMM slot 3 is empty.
Mapping register 5 00110b Starting address 48M, SIMM siot 4 is empty.
Mapping register 6 00110b Starting address 48M, SIMM slot 5 is empty.
Mapping register 7 00110b Starting address 48M, SIMM slot 6 is empty.
Top-of-memory register 00101b 40M, top-of-memory minus 8M

5.2.1.9 SIMM Starting Address Example #2
Table 5-4 shows the value of the SIMM registers for a configuration with an 8M SIMM in slot 0,
a 32M SIMM in slot1, an 8M SIMM in slot 2, no SIMM in slot 3, and a 32M SIMM in slot 4.

Using Table 5—4 and following the rule from Section 5.2.1.4, an address of 60M is greater than
the starting address in mapping register 1, but it is also greater than the address in mapping regis-
ter 2, so mapping register 1 is not a hit. Mapping registers 2 and 3 are disqualified based on the
same logic. Then 60M is greater than the starting address in mapping register 4 and less than
the starting address in register 5, so SIMM slot 4 (mapping register 4) is selected and RAS[4]#
is asserted.

Table 5-4. Example #2 SIMM Mapping Register Setup

Mapping Register

Value of MR[4:0]

Comment

Mapping register 1 00001b Starting address 8M, SIMM slot 0 is 8M.
Mapping register 2 00101b Starting address 40M, SIMM slot 1 is 32M.
Mapping register 3 00110b Starting address 48M, SIMM slot 2 is 8M.

60

The 650 Bridge Chip Set

Table 5-4. Example #2 SIMM Mapping Register Setup (Continued)

Mapping Register Value of MR[4:0] | Comment

Mapping register 4 00110b Starting address 48M, SIMM slot 3 is empty.
Mapping register 5 01010b Starting address 80M, SIMM slot 4 is 32M.
Mapping register 6 01010b Starting address 80M, SIMM slot 5 is empty.
Mapping register 7 01010b Starting address 80M, SIMM slot 6 is empty.
Top-of-memory register 01001b 1 72M, top-of-memory minus 8M

5.2.2 Programming The System Setup Register

Figure 5—1 shows the system setup register. Access to the system setup register uses the same
technique and data paths as accessing the SIMM mapping registers (See Section 5.2.3), by as-
serting MC_SETUP#, but with CPU_ADDR[31] high.

Most Least
Significant | 7| 6| 5[4 (3] 2| 1| 0| Significant
Bit Bit

Bus speed (Read-Only)
XCAS (Read/Write)
Timer enable (Read/Write)

ARSTR (Read/Write)
XADIO (Read/Write)
Count][2:0]
Figure 5-1. The System Setup Register

5.2.2.1 The Bus Speed Setting in the System Setup register

Bus speed is used to indicate the speed difference between the local and PCI buses. This bit is
a read-only bit. It is set two processor clocks after power-on-reset (POR). If the processor clock
is twice as fast as the PClI clock, this bit is set high. If the processor clock is equal to the PCl clock,
it is low.

5222 The XCAS (Extended CAS#) Setting in the System Setup register

XCAS extends the timing of the CAS[7:0]# lines by one additional 60X CPU bus clock cycle in
order to propagate memory data through the 653 Buffer to the 60X CPU data bus at 66MHz with
worst-case delays. This bit is read-write and set to 1 (extended) at POR The XCAS bit can be
programmed to 0 for systems with slower CPU bus speeds.

5.2.23 The Timer Enable Setting in the System Setup register

The timer enable bit controls the internal 60us timeout counter used for master abort on PCI
cycles where the bus hangs. This bit is read-write and set to 1 (timer enabled) following power-on-
reset.

61

The 650 Bridge Chip Set

5.2.2.4 The ARSTR Setting in the System Setup register

ARSTR enables the 654 to precharge ARTRY# (drive it high for one CPU_CLK cycle before trisa-
taing it) on the CPU bus after a snoop hit event has occurred. This bit is read-write and set to 1
(precharge enabled) at power-on-reset. Normally only one CPU bus device is allowed to prechar-
ge ARTRY#.

5.2.25 The XADIO Setting in the System Setup register

. XADIO is used to delay asserting PCI_IRDY# by one PCI clock during CPU write access to PCI.
This bit is read-write and set to 1 (delay PCI_IRDY#) at power-on-reset. Some systems may be
able to program this bit to. 0 for slightly better performance.

5.2.2.6 The Count[2:0] Counter in the System Setup register
Count[2:0] is a 3-bit internal counter that changes state for each access to the SIMM mapping
registers. These bits are read-only. The power-on state is 000b.

5.2.2,7 Bus Speed and XCAS Settings in the System Setup register
Table 5-5 shows the possible settings for BusSpeed and recommended XCAS for various clock
speeds. (Using 70ns, 168-pin SIMMs.)

Table 5-5. System Setup Register Settings

60X CPU LocalBus | PClBus Bus Speed XCAS
25MHz 25MHz 0 don’t care
33MHz 33MHz 0 don't care
40MHz 20MHz 1 ‘ 0
50MHz 25MHz 1 0
66MHz 33MHz 1 1

5.2.3 'Accessing the SIMM Registers and the System Setup Register

The SIMM mapping registers and the system setup register are located inside the 654 Controller,
which is not connected to any data bus. Read and write data is passed to and from the 654 Con-
troller registers over the CAS[7:0}# lines. Figure 5-2 shows how this data path is implemented
in the example system, and Figure 5-3 shows the data paths and steering logic inside the 654.
(Note that there is a minimum time delay required from any change in MC_SETUP# to the initia-
tion of any memory or PCI bus transaction.)

62

The 650 Bridge Chip Set

DRAM || (D) XBUS toCAS# Path
® Ig(%sisﬁé?s CAS Buffer XBUS
\ & __CAS# <] DATA
< x<Ip
oz N
T XBFR
650 CTRL
eox |8OX BUS Ipridge MC_SETUP# L-DCLC k7o0R
CPU
PCI Bus I/0 | 1SA Bus
Bus
’ | Bridge
(A) Memory (B) PCI (C)ISABus:
Cycle Transaction Cycle

Figure 5-2. 650 Register Access Pathway in the Example System

IMR[7:5]] MR[4:0]
cast701[7]6]5 |43]2t [o

FF' , (l . |
Write
Lol L Reod [4[3[2[1]ok"

Write |Qp System
MUX [@B » Setup
Read QC_] . 'TTT' Register
TTT 76543210
CBA E
C'/‘I\TR ' 0 0{0|o0 Top of Mem
1 olof1 SIMM1 Map
- 2 0j1]0 SIMM2 Mop
MC_SETUP# £ 3 Ji SIMM3 Mop
CPU_ADDRL311 4 11010 SIMM4 Map
S 1]0j1 SIMMS Map
[1]1]0 SIMM6é Map
7 1j1]1 SIMM7 Map

Figure 5-3. 654 Setup Register Data Paths and Steering Logic

63

¥9

wesbe|q Buiwi] I 191169y 059 “t—S 9inbi4

CPU_ADDR: : 1} - 1 1 1 1 1 1 1 1) 1 1 i 1 1 1 :])
TS#ID 1 [o T T T T T T T T T T T 1 T T T T T %
AACK#—1— = o T VAR
TA# —— L A ans
CPU_DATA———.——(]]]]]) l] [l t ' ']] ‘ L —
— 60X CPU Bus Transfer —
| st —.——n—(| | l | t ! | PCI Bus Transaction ! !)" ‘
—
| 1 I | I i) i i | | oo] | R l ‘ | i 1 | |
X CPU_CLK Periods "
) | | 1 ' 01 ' 1| 1 21 i 3\ i 41 1 1 1 [1 | § ! 1 |
PCI_CLK : .
PCL_AD X Addr " X Data ' ' X
C/BE[3:01# X Cmd “Byte Bnable D G
FR AME #‘ as IIJ 7 \ | Y T T T ™\
IRDY# _3S or{Hi / ! | o\ ' : , ' . /\ .
TRDY#‘: 1 1 t J w
DEVSEL# _3S or|Hi 1 . + subtractive decode \ \ ; . ; / TN
ISA_DATA ‘ . X Dam ' '
‘ ‘ . , . , , ‘ , tme6 | , .
CAS[701# ____1 __)r— - y - ; - ; { Data X ;
' 1 ! 1 ! 1 l_tmcs_. 1 !
‘ | | tmcl - - - :II tmc4 - > , |
MC_SETUP# | . . . | C\ / . .

108 diyo 9bpug 059 ayL

The 650 Bridge Chip Set

5.2.3.1

SIMM Register and Setup Register Writes

In the example system, writing to the top of memory register requires the following steps (example
system specific information is shown in italics);

1.

7.
8.
9.

In Figure 5-4 cycles 0 and 1, the 60X begins a store byte instruction to the correct
address, with the register data in the low-order byte (see Figure 5-2 (A)). The 650
decodes the transfer and begins pacing the 60X CPU via the CPU bus. The 654 also

. tri-states the CAS# lines, sends RASHI/CASLO high and deasserts the RAS# lines.

In Figure 5—4 cycle 4, the 650 begins a PCI bus single-beat memory write transaction,
to the I/O bus bridge. The I/O bus bridge decodes and claims the transaction (PCI
subtractive decode protocol) in cycle 12 and paces the 650 via the PCI bus (see
Figure 5-2 (B)).

The I/O bus bridge begins an ISA bus memory write cycle, and controls the XBFR
buffers (see Figure 5-2 (C)).

The external logic decodes the ISA bus cycle, sets the direction of the CAS# buffer,
and asserts MC_SETUP# (see Figure 5-2 (D)), which also causes the CAS# buffer to
drive the data onto CAS[7:0}#.

Inside the 650 (see Figure 5-3), decode logic causes the read/write MUX to pass
CASJ7:5}# to the register selector which is enabled by MC_SETUP# and :
CPU_ADDRI[31] both being low. This enables the selected register to latch in the data
from CAS[4:0}#. The data is latched on the rising edge of MC_SETUP#.

The I/O bus bridge then completes the ISA bus cycle with no wait states. The
deassertion of MC_SETUP# disables the 654 setup register steering logic and turns
off the CAS# buffer. Note that the memory controller leaves RAS#[7:0] high at the end
of this operation.

The I/O bus bridge then asserts TRDY# to complete the PCI bus transaction.

The 650 completes the PCI bus transaction and signals AACK# and TA#.

The 60X CPU then completes the 60X CPU bus transfer.

Table 5-6 contains the timing information referenced by the timing diagrams.

Table 546. SIMM Register Access Timing Chart

Symbol |Description Value
tmc1 Setup, CPU_ADDR valid to MC_SETUP# fall 0 Min
tmec2 Delay, MC_SETUP# fall to CAS[7:0}# valid : 3 CPU_CLK Max
tmc3 Output hold, MC_SETUP# rise to CAS[7:0]# invalid 2 CPU_CLK Max
tmc4 Minimum pulse width, MC_SETUP# 5 CPU_CLK Min
tmce5 Setup, CAS[7:0]# data valid to MC_SETUP# fall 4 CPU_CLK Min
tmc6 Input hold, MC_SETUP# rise to CAS[7:0]# invalid 0 Min

65

99
weibeiq Bunuil peay Jeysibay 069 'G—G ainbiy

Cycle0,1 2,3 4,5 6,7 ,8,9 10, 11 12,13, ., . . .

e s AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAWAVAVAWAWAWAN

! ! " L . L . ! . ! L ! L ! i i . !

CPUADDRI—(-
TS D}— . /7 o —
e
TA# S Y A
L_PCI_DATA# n e — — ﬂ ' e
‘CPU_DATA
— R ‘60X CPU Bus Transfer —
| ‘ G ' ‘ K ' ' ! - PCI Bus Transaction 1 p——————

} : : I I l : : ‘ : C ISABus Cvcle ' J‘I ' : '

I R R T R S B RY |._._,_.|XCPU_CLKPenods ,
PCI_CLK, __F'_/__/__j__/—_/__/__/—_/—_/—_/—

PCILAD____ T ' X " Address *) . N \\\\\\\\\\\\
C/BE[3:0} ' X Cind X Bvie Emable , . X ——
FRAME# 3Soffli 7 ____ /a— | ' ' N —
IRDY#:_j_s_QIH_{_/ —\ ' s e——
TRDY#: ' T ' - ' ' . I Y 2
DEVSEL# IS or{FL . ibactve decode\ . S
: ' ' . ' : : CAS to ISA . ' '
ISA_DATA'Z ' ' x ' ' ' ' X ' -
CCASITOW | — : e ' — _|tme2 { :m_._
- - tmcl - - - , ; .

MC_SETUP#, ‘ . '. . , . N ‘

195 diy) 9bpug 059 8y L

The 650 Bridge Chip Set

5.2.3.2 SIMM Register and Setup Register Reads
Reading the 654 Controller registers is similar to writing to them. There are two major differences:

» The buffers are turned around to transmit data to the CPU.

e During writes to the SIMM registers (and all accesses to the system setup regis-
ter), the accessed register is uniquely specified. When reading the SIMM regis-
ters, a 3-bit counter identifies the accessed register.

In Figure 5-3, the read/write MUX is shown passing the output of the 3 bit counter to the register
selector during read operations. The value of the counter determines which register is selected.
The state of the counter can not be set directly.

The identity of the register is hardwired into the upper three bits of each register. When the register
is read, three of the bits identify the register, and the other five bits contain the data. The 3-bit
counter is incremented at the end of each register read transaction. Performing eight reads from
the registers yields the data from all of the memory registers. This counter is set to zero during
power-on reset.

In the example system, reading a SIMM register requires the following steps:

1. In Figure 5-5 cycles 0 and 1, the 60X CPU begins a load byte instruction to the cor-
rect address (see Figure 5-2 (A)). The 650 decodes the transfer and begins pacing
the 60X CPU via the CPU bus. The 654 Controller tri-states the CAS# lines, sends
RASHI/CASLO high and deasserts the RAS# lines.

2. InFigure 5-5 cycle 4, the 650 Bridge begins a PCI bus single- beat memory read
transaction to the 1/0 bus bridge. The 1/O bus bridge decodes and claims the transac-
tion (PCI subtractive decode protocol) in cycle 12 and paces the 650 via the PCl bus
(see Figure 5-2 (B)).

3. The I/O bus bridge begins an ISA bus memory read cycle, and controls the XBFR
buffers (see Figure 5-2 (C)).

4. The external logic decodes the ISA bus cycle, points the CAS# buffer toward the
XBUS, and asserts MC_SETUP# (see Figure 5-2 (D)), which also causes the CAS#
buffer to drive the data onto the XBUS.

5. Inside the 650 (see Figure 5-3) decode logic causes the read/write MUX to pass the
output of the 3-bit counter to the register selector which is enabled by MC_SETUP#
and CPU_ADDR[31] both being low. This selects and enables one of the registers to
drive its contents onto CAS[7:0]# (see Figure 5-5 delay tmc2). Note that CAS[7:5]#
contain the register ID bits, and CAS[4:0}# contain the register data.

6. The contents of CAS[7:0]# now flow thru the CAS Buffer and the XBFR (see delay
CAS to ISA), and onto the ISA bus data lines. The 1/O bus bridge then latches the
data and completes the ISA bus cycle with no wait states.

7. The I/O bus bridge then places the data on the PCI_AD lines (see delay ISA to PCl),
and signals TRDY# to the 650 Bridge. External logic negates MC_SETUP#, disabling
the 654 setup register steering logic and turning off the CAS# buffer. Note that the
memory controller leaves RAS#[7:0] high at the end of this operation.

8. The 650 completes the PCI bus transaction, supplies the data to the 60X CPU, and
signals AACK# and TA#.

9. The 60X CPU then completes the 60X CPU bus transfer.

67

The 650 Bridge Chip Set

5.2.3.3 Register Reads in the Example System

In the example system, reading a SIMM register starts with a 60X CPU load byte operation
(TT[0:3] = 0101, TSIZ[0:2] = 001) to 60X bus address 8000 0820h. This produces a PCI bus
single-beat I/O read transaction (C/BE#[3:0] = 0010), to the 1/O bus bridge (PCl address =
0000 0820h), which produces an ISA bus I/O read cycle to ISA bus address 0820h.

5.2.34 Register Writes in the Example System

In the example system, writing to a SIMM register starts with a 60X CPU store byte operation
(TT[0:3] = 0001, TSIZ[0:2] = 001) to 60X bus address 8000_0820h. This produces a PCI bus
single-beat I/O write transaction (C/BE#[3:0] = 0011), to the I/O bus bridge (PCI address =
0000_0820h), which produces an ISA bus I/O write cycle to ISA bus address 0820h. (Note that
the example system address of the System Setup Register is 8000 0821h.)

5.2.4 Programming the Flash ROM Lock-Out Bit (W/O)

Wiriting to an address in the range of 4G — 8M to 4G (FF80 0001h to FFFF FFFFh) with the low-or-
der bit of the CPU address set to 1 turns on the FLASH lock-out bit. Once this bit is set (to 1),
subsequent ROM write attempts are locked out and TA# is asserted to terminate the cycles. No
error indication is given. This bit can only be cleared with a power-on-reset. The initial state of the
lockout bit is unlocked (0).

5.3 Little-Endian and Big-Endian Addressing Considerations

Internally, the 60X CPU always operates with big-endian addresses, data, and instructions. A
mode bit can be set in the 60X CPU that enables a little-endian addressing mode for CPU bus
activity. The 650 Bridge works with the little-endian mode addresses on the 60X CPU bus to pro-
duce a true little-endian memory and I/O map.

In big-endian mode the most-significant byte of a data field is stored in the lowest numbered ad-
dress of the field. In little-endian mode the most-significant byte of a data field is stored in the high-
est numbered address of the field. The 650 Bridge supports both big-endian and little-endian ad-
dressing modes. Munging in the 60X CPU combined with byte swapping and unmunging in the
650 Bridge allows data addressing in main memory and on the PCl bus in true little-endian format.

When the 60X CPU is attempting to access system memory (DRAM), the 654 Controller decodes
TBST#, TSIZ[0:2], CPU_ADDRJ29:31], and LE_MODE_SEL# to determine the proper CAS#
lines to assert for the memory transfer. For 60X CPU cycles to a PCl target, the value of PCI_C/
BE[3:0]# is based on TSIZ[0:2], CPU_ADDR[29:31], and LE_MODE_SEL# to determine the PCI
byte enables to be asserted.

The PowerPC 601 RISC Microprocessor User’s Manual, MPR601UMU-02, contains a discussion
of the implications of endian modes from the perspective of the 60X CPU.

5.3.1 60X CPU Addressing in Big-Endian Mode ‘

When the 60X CPU is operating in big-endian mode, all addresses and data pass through the 650
Bridge without byte swapping or unmunging: The system memory representation and the PCl bus
representation of data is big-endian.

5.3.2 60X CPU Address Munging in Little-Endian Mode

When the 60X CPU is operating in little-endian mode, CPU_ADDR][29:31] is munged as shown
in Table 5-7. A different XOR value is used for one-byte, two-byte, and four- byte transfers. Eight--
byte transfers do not munge or unmunge CPU_ADDR[29:31].

68

The 650 Bridge Chip Set

The combinations in Table 5-7 that are marked n/a are unaligned transfers that cause alignment
exceptions in the 60X CPU and therefore do not generate 60X bus cycles.

Table 5-7. CPU_ADDR[29:31] Munging for Little-Endian Mode

CPU_ADDR[29:31] 1-byte 2-bytes 4-bytes 8-bytes
before munge XOR 111 XOR 110 XOR 100 (no change)
000 111 110 100 000
001 ' 110 n/a n/a n/a
010 101 100 n/a n/a
011 100 n/a n/a n/a
100 011 010 000 n/a
101 010 n/a n/a n/a
110 001 000 n/a n/a
111 000 n/a n/a n/a

5.3.3 650 Bridge Address Unmunging in Little-Endian Mode
The 653 Buffer unmunges the address produced by the 60X processor as shown in Table 5-8.

Note that the unmunge of the three low-order CPU address lines is the same when the CPU ad-
dresses the PCI as it is when the CPU addresses system memory or ROM. In the cases of
memory and ROM the transform has no effect in the 653 Buffer. A similar transform in the 654 -
Controller determines which bytes are addressed during memory writes and which byte enables
are asserted during PCI transactions.

Table 5-8. Three Low-Order Address Bit Unmunge

TSIZ[0:2] | Big-Endian Mode Little-Endian Mode
000 none none '
001 none XOR 3 low-order bits with 111
010 ~ none XOR 3 low-order bits with 110
011 none N/A
100 none XOR 3 low-order bits with 100
101 none N/A ‘
110 none N/A
111 none N/A

69

The 650 Bridge Chip Set

5.3.4 Byte Swapping for Endian Compatibility

The 653 Buffer uses a byte swapper to reverse the order of bytes read or written by the CPU when
the 650 is in little-endian mode. The action of the byte swapper combined with the unmunging of
the low-order bits of the effective address, results in data storage in system memory in true little-
endian order. (Also see Section 5.3.8.)

The storage location of single byte loads and stores is unaffected by the endian selection. A single
byte written or read to address 0000 1013h always goes to that memory location, regardiess of
the current endian mode.

In little-endian mode, transfers of half-words, words, and double-words result in a reversal of the
bytes within the half-word, word, or double-word. Table 5-9 illustrates this byte swapping. As
shown in the table, the bits within individual bytes are not swapped. The byte swapper examples
in Table 5-9 are reversible—output from the 60X CPU (store instructions) is exactly reversed or
swapped back for input (load instructions).

Table 5-9. Endian Formats from the Byte Swapper

Data in the 60X CPU

Big-Endian Output

Little-Endian Output

ABCDh ABCDh CDABh
1234 5678h 1234 5678h 7856 3412h
1234 5678 9ABC DEFOh 1234 5678 9ABC DEFOh

FODE BC9A 7856 3412h

5.3.5 Unmunging and Byte Swapping for System Memory or PCI Writes

The 650 Bridge is designed to implement a memory model that stores big-endian and little-endian
data in system memory or to the PClI bus in an exact representation of the required endian mode.
Little-endian data is stored in little-endian mode and big-endian data is stored in big-endian mode.
Therefore, data read from or written to external media, like disk drives, does not require any extra
manipulation. The following examples in this section illustrate the process of little-endian data ma-
nipulation.

The 60X CPU and the 650 Bridge cooperate through munging, byte swapping, and unmunging
to organize the system memory in little-endian mode. In little-endian mode, the 60X CPU munges
the three low-order address bits to send the bytes to the correct byte lanes in the byte swapper
in the 650 Bridge. The byte swapper then swaps the eight-byte CPU data bus. The byte swap
restores the data to the byte lanes where it was prior to the munge, and the unmunge restores
the correct address for the memory write.

The sequence of operations is as follows:

1. The address is munged by the 60X CPU to place the data in the correct byte lanes for
the byte swapper. '

2. The byte swapper swaps the data, placing the reversed bytes back at their original
address range.

3. The unmunger restores the address to its original value so that the swapped bytes
can be accessed from the output side of the byte swapper.

70

The 650 Bridge Chip Set

5.3.5.1 An Example of a One-Byte Little-Endian Store Instruction

In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian. mode can only occur within an eight-byte double word. If the
system is in little-endian mode, a one-byte store instruction executed by the 60X CPU can cause
the following steps to occur:

The 60X CPU executes a store byte instruction—store 31h to 010b.
The effective address is XOR'd with 111b to—store 31h to 101b.

The 650 Bridge swaps the bytes as shown in Figure 5-6.

The 650 Bridge XOR’s the effective address with 111b to 010b.

The 654 Controller asserts CAS[2]# (see Table 5-12) or PCI_C/BE[2]# (see
Table 5—18 in Section 5.5.3.6).

6. The byte 31h is written to 010b.

oD~

Note that the same instruction executed in big-endian mode also writes to 010b. Single byte reads
and writes are stored in exactly the same addresses in big-endian and little-endian modes.

Byte ,
Munged Swapper © MEM_DATA Unmunged
CPU_ADDR CPU_DATA —0 or PCI_DATA Address

101b = 31h - = 2 » 31h > 010b

O—=2NDWHOIO N
w

Figure 5-6. Byte Swapper Operation for Example of a Store Byte Instruction

5.3.5.2 An Example of a Two-Byte Little-Endian Store Instruction

In the following example, the addresses of data only refer to the low-order three bits of an address

because byte swaps in little-endian mode can only occur within an eight-byte double word. If the

system is in little-endian mode, a two-byte store instruction executed by the 60X CPU can cause
- the following steps to occur:

The 60X CPU executes a store half-word instruction—store 3132h to 010b.
The effective address is XOR'd with 110b to—store 3132h to 100b.

The 650 Bridge swaps the bytes as shown in Figure 5-7.

The 650 Bridge XOR’s the effective address with 110b to 010b.

The 654 Controller asserts CAS[2]# and CAS[3]# (see Table 5-12) or PCI_C/BE[3]#
and PCI_C/BE[2]# (see Table 5-18 in Section 5.5.3.6). .

6. The two bytes 32h and 31h are written to 010b and 011b respectively.

AL

Note that the same instruction executed in big-endian mode also writes to 010b and 011b, but the
two bytes are written in big-endian mode—31h and 32h respectively.

7

The 650 Bridge Chip Set

Byte
Munged Swapper MEM_DATA Unmunged
CPU_ADDR CPU_DATA / —= 0 or PCI_DATA Address
6 — 1 ,
101b + 32h > |5 —————» 2| —— 32h ——— 010b
100b —— 3th —= |4 > 3 > 31h = 011b
§ — =14
2 ——= 5
{ —— 6
0 — 7

Figure 5-7. Byte Swapper Operation for Example of a Store Half-Word Instruction -

5.3.5.3 An Example of a Four-Byte Little-Endian Store Instruction

In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-endian mode, a four-byte store instruction executed by the 60X CPU can cause
the following steps to occur:

1. The 60X CPU executes a store word instruction—store 31323334h to 100b.

2. The effective address is XOR’d with 100b to—store 31323334h to 000b.

3. The 650 Bridge swaps the bytes as shown in Figure 5-8.

4. The 650 Bridge XOR'’s the effective address with 100b to 100b.

5. The 654 Controller asserts CAS[4]#, CAS[5]#, CAS[6]# and CASI[7}# (see
Table 5—12) or PCI_C/BE[3]# through PCI_C/BE[0]# (see Table 5—18 in Section
5.5.3.6).

6. The four bytes 34h, 33h, 32h, and 31h are written to 100b, 101b, 110b, and 111b re-
spectively.

Note: The data doubler within the 653 Buffer places the four-byte output on both halves of the
64-bit output bus so that the PCI_C/BE[3:0] gets the data regardless of which four-byte word is
addressed. See Appendix C.

Note that the same instruction executed in big-endian mode also writes to 100b through 111b, but
the four bytes are written in big-endian mode—31h, 32h, 33h, and 34h respectively.

Byte
7 Swapper 0
Munged g ; MEM_DATA Unmunged
CPU_ADDR CPU_DATA 4 — 3 or PCI_DATA Address
011b —— 34h > |3 » 4| —— 34h. —— 100b
010b » 33h »> 12 —owp» 5| —— 33h —— 101D
001l ——=32h — |1 — o g — 32h — 110b
000b ——— 31h + |0 -7 *> 31h > 111b

Figure 5-8. Byte Swapper Operation for Example of a Store Word Instruction

72

The 650 Bridge Chip Set

5.3.5.4 An Example of an Eight-Byte Little-Endian Store Instruction

In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-endian mode, an eight-byte store instruction executed by the 60X CPU can
cause the following steps to occur:

1. The 60X CPU executes a store floating-point double instruction—

store 31323334 35363738h to 000b.
2. The effective address is not XOR'd for an eight byte store—

store 31323334 35363738h to 000b.

3. The 650 Bridge swaps the bytes as shown in Figure 5-9.

4. The 650 Bridge does not XOR the effective address—000b.

5. The 654 Controller asserts all of CAS[7:0]# (see Table 5-12). This transaction cannot
occur on the PCI bus because PCI can only accept up to four-byte transfers.

6. The eight bytes 38h, 37h, 36h, 35h, 34h, 33h, 32h, and 31h are written to 000b

through 111b respectively.

Note that the same instruction executed in big-endian mode also writes to 000b through 111b, but
the eight bytes are written in big-endian mode—31h, 32h, 33h, 34h, 35h, 36h, 37h, and 38h re-
spectively.

Byte Memory

CPU_ADDR CPU_DATA Swapper MEM_DATA Address
111b » 38h > |7 > 0 = 38h —— = 000b
110b » 37h » |6 _ > 1 » 37h ——» 001b
101lb — 36h > |5 > 2| — 36h ——= 010b
100b ——» 35h > |4 » 3| — 35h — 011b
011lb — 34h = |3 > 4 » 34h = 100b
010b » 33h =2 o5 »= 33h = 101b
001b —— 32h > |1 —» 5| — 32h —— 110b
000b + 31h = [0 » 7| — 31th — 111b

Figure 5-9. Byte Swapper Operation for a Store FIoating-Point Double Instruction

5.3.6 . Unmunging and Byte Swapping for System Memory and PCl Reads

For 60X CPU system memory reads in little-endian mode, the munging and byte swapping occur
exactly as they do for system memory writes. (See Section 5.3.5.) The 650 Bridge reads eight
bytes from system memory regardless of the size of the transfer, therefore CAS[7:0}# is always
0000 0000b for a 60X CPU system memory read. PCl reads are a maximum of four bytes aligned
in a word (the The data doubler within the 653 Buffer places the four-bytes on both halves of the
64-bit bus (see Appendix C). The TSIZ[0:2] and CPU_ADDR][29:31] signals determine the byte
lanes that are accessed by the CPU.

The following examples apply equally whether the read data is directly from system memory or
from a cache or from PCI. In each case, the bytes are swapped before they reach the 60X CPU.
In the case of cached data, the bytes were swapped at the time the data cache was originally
stored in the cache. This means that cached data is byte-swapped, including instruction fetches.

73

The 650 Bridge Chip Set

5.3.6.1 An Example of a Two-Byte Little-Endian Load Instruction

. Inthe following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-endian mode, a two-byte load instruction executed by the 60X CPU can cause
the following steps to occur:

The 60X CPU executes a two-byte load instruction—load half-word at 010b.
The effective address is XOR’d with 110b to—10ad half-word at 100b.

The system memory is read based on CPU_ADDR[0:28]. CAS[7:0}# is all asserted.
The 650 Bridge swaps the bytes as shown in Figure 5-10.

The two bytes are in big-endian order as 31h and 32h.

opLN=

Note that the same instruction executed in big-endian mode also reads addresses 010b and 011b,
but the two bytes are read unswapped from 010b and 011b in big-endian mode—31h and 32h
respectively—because the data is stored in memory in big-endian mode (the byte swapper is not
active when the 650 Bridge is in big-endian mode). Cached data is read correctly because the
64-bit double-words are byte swapped as they are loaded into the cache.

Memory Byte

Address DATA Swapper

000b —» Xxh »>|0 > 7 Munged

001b » xxh > |1 -6 CPU_ADDR CPU_DATA
010b ~= 32h > 2 5| — 101b ——= 32h
011b » 31h |3 — 4| — 100b — 31h
100b » xxh >4 — » 3
101b » xxh > 5 > 2

" 110b = xxh > | 6 > 1
111b > xxh >7 ———» 0

Figure 5-10. Byte Swapper Operation for Example of a Load Half-Word Instruction

5.3.6.2 An Example of a Four-Byte Little-Endian Load Instruction

~ Inthe following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the

system is in little-endian mode, a four-byte load instruction executed by the 60X CPU can cause

the following steps to occur:

The 60X CPU executes a four-byte load instruction—load word at 100b.

The effective address is XOR’d with 100b to—1o0ad word at 000b.

The system memory is read based on CPU_ADDR][0:28]. CAS[7:0}# is all asserted.
The 650 Bridge swaps the bytes as shown in Figure 5—11.

The four bytes are in big-endian order as 31h, 32h, 33h, and 34h.

arOND

Note that the same instruction executed in big-endian mode also reads 100b through 111b but
the bytes are stored and therefore read back in big-endian order.

74

The 650 Bridge Chip Set

Memory Byte

Address MEM_DATA Swapper
000b —» xxh » |0 > 7
001b = xxh -1 -6
010b & xxh |2 > 5
01l ——» xxh —— |3 — » 4
100b ———34h —=|4 — 3
101b = 33h > |5 - 2
110b > 32h >|6 -1
111b *> 31h >|7 ——— 0

Munged
CPU_ADDR CPU_DATA
— 011lb —— 34h
—— 010b —— 33h
—= 001b —— 32h
— 000b —— 31h

Figure 5-11. Byte Swapper Operation for Example of a Load Word Instruction

5.3.6.3 An Example of an Eight-Byte Little-Endian Load Instruction

In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
systemis in little-endian mode, an eight-byte load instruction executed by the 60X CPU can cause
the following steps to occur:

1. The 60X CPU executes an eight-byte load floating-point double instruction—

o wn

load double word at 000b.
The effective address is not XOR'd—l1o0ad double word at 000b.
The system memory is read based on CPU_ADDR][0:28]. CAS[7:0}# is all asserted.
The 650 Bridge swaps the bytes as shown in Figure 5-12.
The eight bytes are in big-endian order as 31h, 32h, 33h, 34h, 35h, 36h, 37h, 38h.

Note that the same instruction executed in big-endian mode also reads 000b through 111b but
the data bytes do not move throught the swapper.

CPU_ADDR CPU_DATA
111b — & 38h

110b —— 37h

101b —— . 36h

100b — » 35h
011 —= 34h

Memory Byte

Address MEM_DATA Swapper
000b » 38h »|0 > 7 >
001b » 37h > | 1 > 6 >
010b » 36h »|2 5| —
011b » 35h >3 - 4 -
100b ———» 34h — |4 > 3 >
101b + 33h = |5 2| —»
110b » 32h >16 > 1| —
111b - 31h -7 — 0| —

010b — 33h
001b —— 32h
000b ——— 31h

Figure 5-12. Byte Swapper Operation for Example of Load Floating-Point Instruction

53.7 Instruction Fetches in Little-Endian Mode
Instruction fetches in little-endian mode work transparently to byte swap mstructlon words as the

60X CPU requires.

75

The 650 Bridge Chip Set

5.3.8 LE_MODE_REQ# Assertion on the 654 Controller

It is the responsibility of the system designer and programmer to ensure that the endian mode
of the processor is synchronized with the endian mode of the 650 Bridge. The system designer
must provide a means for the programmer to assert LE_ MODE_REQ# to the 654 Controller so
the 654 Controller can assert LE. MODE_SEL# to the 653 Buffer.

The 654 Controller samples LE_ MODE_REQ# continuously, but it changes LE_ MODE_SEL#
only between bus transactions, while the bus is idle. This allows the LE_MODE_REQ# signal to
be the output of an I/0O port and guarantees that the endian selection will not change during the
bus cycle that writes to the port.

The programmer must perform the code steps necessary to cause LE_MODE_REQ# to be as-
serted when the 60X CPU is switched to little-endian mode. LE_ MODE_SEL# is switched in re-
sponse to LE_MODE_REQ# when both the 60X bus and PCl bus are idle.

5.3.9 Exceptions in Little-Endian Mode

In little-endian mode, the 60X CPU does not support a number of instructions and data alignments
that are allowed in big-endian mode. When the 60X CPU encounters one of these instructions
in little-endian mode, it takes an internal alignment exception and does not produce an external
bus cycle.

Some of the instructions that may not be supported in little-endian mode are as follows:

Unaligned loads and stores

LMW instruction

STMW nstruction

Move assist instructions (LSWI, LSWX, STSWI, STWX)

Check the documentation for your 60X CPU to determine the instructions that are not supported
in little-endian mode on your machine.

5.4 Memory Controller Operation

The memory controller supports the 60X CPU and PCI devices in both single-cycle and burst-
mode accesses. The access time to system memory varies based on the setting of the bus speed
and XCAS bits of the system setup register (see Section 5.2.2).

5.4.1 System Memory Timing

Table 5-10 shows the bus clock cycles for a variety of page hit and page miss scenarios. The first
number in each column is the number of cycles for a single 64-bit read or write cycle counted from
the assertion of TS# or PClI_FRAME#. The second, third, and fourth numbers are the number of
cycles for each phase of a burst transaction. Processor to memory performance is measured in
processor clocks. PCI to memory performance is measured in terms of the PCI clock.

In the column titled Bus Speed and Extended CAS, the bus is either 100% for when the CPU and
PCI buses are running at the same rate, or 50% for when the PCI bus is running at half the rate
of the CPU bus. The X under XCAS means that XCAS has no effect when the bus speed is 100%.
See Sections 5.2.2.1 and 5.2.2.2.

A page miss to memory always occurs after a DRAM refresh cycle, after a PCI1/O or PCl configu-
ration cycle, after the RAS timeout, and after a memory access outside the current 4K page

76

The 650 Bridge Chip Set

boundary. During PCIl burst accesses to system memory, the 654 Controller samples
CPU_ADDR([19] two 60X CPU clocks after asserting BURST_CLK# to the 653 Buffer to deter-
mine whether a page miss has occurred.

Table 5-10. DRAM Memory Timings

CPU to Memory (in CPU clocks) PCIl to Memory (in PCI clocks)
Bus Speed and
Extended CAS DRAM Page Hit DRAM Page Miss DRAM Page Hit DRAM Page Miss
Bus XCAS Write Read Write Read Write Read Write Read
100% X 5-3-3-3 |5-3-3-3 |10-3-3-3|10-3-3-3 | 8-7-7-7 }8-3-6-3 |12-7-7-7 | 12-3-6-3
50% 0 6-4-4-4 |6-44-4 |12-444|1244-4|5444 |5-3-43 [8444 |8-34-3
50% 1 7-5-5-5 |7-5-5-5 |13-5-5-5|13-5-5-5 | 5—4-4-4 |5-3-4-3 |8-4-4-4 |8~3-4-3

5.4.2 60X CPU to System Memory Burst-Mode Counting

60X CPU bursts to and from system memory use a linear count within a 32-byte cache sector.
These bursts are initiated by the L1 cache for the purpose of filling or writing a 32-byte cache sec-
tor. The memory cycle can begin with any 8-byte double-word within a 32-byte aligned cache sec-
tor. (A cache sector always begins with an address that is a multiple of thirty-two.) After the first
cycle of the burst, subsequent 8-byte double-words are transferred within a circular address range
for the 32-byte cache sector. For example:

1. The 60X CPU requests a burst read beginning at address 0000 0010h.

2. The 650 Bridge transfers eight bytes from system memory address 0000 0010h.
3. The 650 Bridge increments the address to 0000 0018h and transfers eight bytes.
4. The 650 Bridge increments the address to 0000 0000h and transfers eight bytes.
5. The 650 Bridge increments the address to 0000 0008h and transfers eight bytes.

Notice that in step 4 the 650 Bridge incremented the address within the 32-byte sector. The 60X
CPU expects burst transfers to and from system memory to follow this logic.

5.4.3 PCI to System Memory Burst Mode Transfers
PCl bursts to system memory count sequentially from the beginning address of the burst and can
continue indefinitely. v

PCI bursts to and from system memory (DRAM) are supported without special restrictions. PCI
bursts can start at any byte address and end at any byte address. The 650 Bridge arbitration logic
ensures that the PCI device does not hog the bus.

The memory controller monitors CPU_ADDR[29] and the byte enable signals on PCI_C/BE[3:0]#
to determine the bytes to transfer. The memory controller samples CPU_ADDR][19] two 60X CPU
clocks after asserting BURST_CLK# to the 653 Buffer to determine whether a page miss has oc-
curred. The 653 Buffer places the translated PCl address on the 60X address bus during this op-
eration.

The PCI specification allows the PCI_C/BE[3:0}# byte enables to change on each data phase.
PCI devices use this feature of the PCl specification on the first or last transfer of a burst. The
memory address increments by four on each beat of the PCI burst, therefore all intermediate
beats of a burst contain four bytes of data.

77

The 650 Bridge Chip Set

5.4.4 System Memory Parity Generation and Checking
The 653 Buffer continuously generates parity for the memory data lines. The parity bits are
latched and written when the 653 Buffer writes data to memory.

The 653 Buffer continuously checks parity on the memory data lines, driving MEM_PAR_GOOD
continuously based on the current data. The 654 Controller samples MEM_PAR_GOOD at the
appropriate time in the memory read cycle to verify parity and assert MEM_PAR_ERR# if a valid
error occurs.

The parity of data read from the L2 cache is checked by means of the DPE# signal from the 60X
CPU. See Section 5.7.3.

5.4.5 RAS# and CAS# Address Assignments -

When the 654 Controller asserts CPU-ADDR_SEL# to the 653 Buffer, the address presented to
the memory address output pins depends on the input signals DRAMX9HI/X10LO and RASHVI/
CASLO. If RASHI/CASLO is low then a CAS# address is presented and if it is high a RAS# ad-
dress is presented. Table 5-11 shows the MEM_ADDR][12:0] values that are asserted from the
653 Buffer internal address bus (which is numbered in little-endian order), dependlng onthevalue
of DRAMX9HI/X10LO and RASHI/CASLO.

DRAMX9HI/X10LO provides support for X9 and X10 memory SIMMs. This signal comes from
system logic or a strapping pin. The 650 Bridge does not control or dynamically switch this signal.

Table 5-11. RAS and CAS Address Assighments

DRAMX9HI/ | RASHI/ | Cycle
X10LO CASLO | Type |Internal address gated to MEM_ADDR[12:0]
1 1 RAS |ADDR[23:12]
1 0 CAS |0, 0,0ADDR[11:3]
0 1 RAS |ADDRJ[24:13]
0 0 CAS |0, ADDR[24], ADDR[12:3]

5.4.6 RAS[7:0}# Line Selection of SIMM Slots

Section 5.2.1.2 explains how the SIMM memory registers are configured to control assertion of
the RASI7:0J# lines. Each SIMM slot has a corresponding RAS[7:0]# line. RAS[7]# corresponds
to SIMM slot 7. RAS[0]# corresponds to SIMM slot 0, etc.

Section 5.2.1.4 discusses the SIMM starting address rules. See Section 5.2.1.8 for examples of
how the SIMM slots are selected based on the SIMM starting address registers.

5.4.7 RAS Timeout Counter

The 654 Controller has an internal counter that controls the maximum time that any RAS# line
is active. Each time any RAS# line is asserted, the counter is reset and begins to count. When
the timeout is reached, the memory controller deasserts the active RAS# between cycles. The
timeout periods are as follows:

¢ When the PCl and CPU clock periods are the same—224 CPU bus clocks
« When the PCI clock period is twice the CPU clock period—400 CPU bus clocks

If the system clocks are to be run more slowly, it is necessary to consider the maximum RAS active
time specification for the DRAMs used in the system.

78

The 650 Bridge Chip Set

5.4.8 60X CPU to System Memory CAS[7:0]# Generation

" Table 5-12 shows the CASI[7:0}# lines that are asserted for a 60X CPU write to memory based
on TSIZ[0:2], LE_MODE_SEL#, and CPU_ADDR[29:31]. A 60X CPU read from system memory
is always eight bytes, therefore CAS[7:0]# is always 0000 0000b for a 60X CPU memory read.

In Table 5-12 the column titted CPU_ADDR[29:31] Before Unmunge is the address that comes
from the CPU before any unmunging by the 650 Bridge. In little-endian mode, the column titled
Internal ADDRJ[2:0] After Unmunge is the result in the 653 Buffer of the unmunging operation, and
the CAS# assertion in little-endian mode matches the unmunged address (see Section 5.3).

The following notes apply to Table 5-12.

1. Does not occur on 60X bus because 60X bus cycles never span a double word.
2. Causes alignment exception internally in the 60X and does not occur on the 60X bus.
3. Not supported by the 650 Bridge—causes a transfer type error.

All entries that do not contain values in Table 5-12 are non-word-aligned transfers that generate
transfer type errors or internal CPU exceptions. For example, TSIZ[0:2] settings of 101b, 110b,
and 111b (five, six, and seven bytes) are not allowed. Transfers of five, six, -or seven bytes can
only come from non-double-word aligned double floating-point instructions, so non-double-word
aligned double floating-pointinstructions are not supported. Note that floating-point load and store
instructions must be word-aligned in 603 and 604 CPUs as specified in the PowerPC Architecture.

Without exception all alignments of word or half-word loads and stores as well as all move multiple
and string instructions to memory are supported in big-endian mode. Programmers should note
that unaligned move multiple instructions are not supported on 603 or 604 CPUs.

Alltransfers must be at natural alignments in little-endian mode or the 60X CPU generates internal
alignment exceptions. Also, move multiple and string instructions are not supported in the 60X
CPU in little-endian mode.

Note that most instruction execution is from the 60X CPU internal cache, and cache misses al-
ways cause memory to be read or written in burst mode. Therefore, alignment restrictions only
apply to non—cached data. As long as the data and instructions are in cached pages, any align-
ments which the 60X CPU supports are allowed by the 650 Bridge.

79

The 650 Bridge Chip Set

Table 5-12. CAS[7:0]# Assertion for 60X CPU Writes to System Memory

CPU_ADDR[29:31] Big-Endian Internal ADDR[2:0] Little-Endian
TSIZ[0:2] Before Unmunge CAS[7:0]# After Unmunge CASI[7:0]#
001b 000 11111110 111 01111111
()?Ongl:{tfb) 001 11111101 110 10111111
010 11111011 101 11011111
o1 11110111 100 11101111
100 11101111 011 11110111
101 11011111 010 11111011
110 10111111 001 11111101
11 01111111 000 11111110
010b 000 11111100 110 00111111
()‘(“(’)°Rb¥}%i) 001 11111001 @
010 11110011 100 11001111
011 11100111 @)
100 11001111 010 11110011
101 10011111 @)
110 00111111 000 11111100
111 (1) @)
011b 000 11111000 (2)
three bytes 001 11110001 @
010 11100011 @)
011 11000111 @
100 10001111 2
101 00011111 @)
110 (1) @)
/ 111 1) @)
100b 000 11110000 100 00001111
(%E%gi) 001 11100001 @)
010 11000011 (@)
011 10000111 (2) }
100 00001111 000 11110000
101 1) @)
110 (1) @)
111 (1) (2)
101b XXX (3) (2
110b XXX (3) 2
111b XXX (3) 2)
000b XXX 00000000 XXX 00000000
eight bytes not applicable not applicable

80

The 650 Bridge Chip Set

5.4.9 PCI to System Memory CAS[7:0]# Generation

The PCI specification allows the PCI_C/BE[3:0]# byte enables to change on each data phase.
The memory controller asserts the CAS[7:0}# signals based on CPU_ADDR[29] (PCI_AD[2]) and
PCI_C/BE[3:0}# during each data phase of the PCI burst access to system memory.

PCI reads and writes to system memory are independent of big-endian and little-endian mode.
Neither munging or unmunging or byte swapping have any effect on PCl to system memory trans-
actions. Therefore, the endian mode of the PCl device is preserved in the memory representation
of the data from that device. .

For a PCI burst transfer to system memory, the memory controller detects crossings of DRAM
page boundaries and initiates the proper RAS and CAS memory cycles.

5.4.9.1 PCI Read from System Memory

A PCl read from system memory always reads eight bytes even though the PCI device may be
reading less than eight bytes, therefore CAS[7:0}# is always 00000000b for a PCl read from sys-
tem memory. PCI_ADI[2] determines whether the high or low 32-bit word of the memory data bus
is transferred to the PCI_AD[31:0] bus. PCI_C/BE[3:0] then determines which of the four bytes
from system memory the PCI device actually reads.

5.4.9.2 PCl Write to System Memory

For a PCl write to system memory, PCI_AD[2] serves to identify whether the bytes fall within the
high or low 32-bit word of the 64-bit memory data bus. The 653 Buffer actually asserts the 32-bit
PCI_AD lines on both the high and low halves of the memory data bus. The CAS[7:0]# values
then determine the bytes that are actually written to system memory. Table 5-13 shows the
. CAS{7:0]# settings for PCI writes to system memory.

Table 5-13. CAS[7:0]# Assertion for PCI Writes to System Memory

PCLAD[2]=0 PCI_AD[2] = 1

PCI_C/BE[3:0]# CAS[7:0}# CAS[7:0]#
1111 * 11111111 1111111
1110 11111110 11101111
1101 11111101 11011111
1100 11111100 11001111
1011 11111011 10111111
1010 * 11111010 10101111
1001 11111001 10011111
1000 11111000 10001111
0111 11110111 01111111
0110 * 11110110 | 01101111
0101 * 11110101 01011111
0100 * 11110100 01001111

81

The 650 Bridge Chip Set

Table 5-13. CAS[7:0]#‘ Assertion for PCI Writes to System Memory (Continued)

PCI_AD[2] =0 PCI_AD[2] = 1
PCI_C/BE[3:0]# CAS[7:0# ‘CAS[7:0]#
o011 11110011 ~ 00111111
0010 * 11110010 00101111
0001 11110001 00011111
0000 11110000 00001111

* These byte enables are not normally produced by PCI devices.

5.4.10 System Memory Control Signals—BE_PAR_EN# and LE_PAR_EN#

The parity control signals—BE_PAR_EN# and LE_PAR_EN#—are asserted during a valid
memory read cycle based on the state of LE_ MODE_SEL#. These signals can be used to gate
the parity bits from memory to the proper CPU data parity lines. BE_PAR_EN# is asserted during
big-endian mode and LE_PAR_EN# is asserted during little-endian mode. Appendix B shows an
- example of how to arrange these connections.

5.5 The 60X CPU Bus Cycles

The 654 Controller and 653 Buffer provide the control bridge for the 60X CPU to access system
memory (DRAM), system ROM, the error address register, and PCl devices on the PCl bus. 60X
CPU addresses from 0 to 256M access system memory in 1-byte to 8-byte single-beat transfers
or 32-byte burst transfers. (System memory is actually mapped from 0 to 2G, butthe 650 Control-
ler can only map up to eight 32M SIMMs so the maximum memory address is 256M.)

60X CPU addresses from 2G to 3G can be translated to PCI I/O, PCI configuration, or. PCl inter-
rupt acknowledge transactions on the PCI bus in the range of 0 to 1G. 60X CPU addresses from
3G to 4G can be translated to PCI memory transactions on the PCI address bus in the range of
0 to 1G. All accesses to PCl space must be single-cycle accesses with sizes of 1, 2, 3, or 4 bytes
that do not cross a 32-bit word boundary.

Table 4-1 shows the mapping the 650 Bridge performs for addresses from the 60X CPU. The
table lists all the possible transactions that can occur as a result of the 60X CPU asserting an ad-
dress and transfer type TT[0:3] on the CPU bus.

5.5.1 Data Transfers on the 60X CPU Bus
This section describes 60X CPU operations that are common whether the target is system
memory, PCI, or ROM.

5.5.1.1 Transfer Start (TS#) and Transfer Acknowledge (TA# and TEA#)

A 60X bus device cannot assert transfer start (TS#) until the 654 Controller grants the address
bus (either CPU_GNT# or L2_CACHE_GNT# is asserted). The 654 Controller does not support
pipelining bus transactions—AACK# is not asserted until the last TA#. However, pipelining by an
L2 cache is supported by allowing assertion of AACK# one processor clock prior to the last TA#.

Successful completion of the 60X transaction results in a transfer acknowledge (TA#) asserted
to the CPU. Unsuccessful completion (parity error, illegal transfer size, or illegal alignment) results
in a transfer error acknowledge (TEA#). See Section 5.8 for error conditions.

82

The 650 Bridge Chip Set

5.5.1.2 60X CPU Transfer Types—TT[0:3]
Table 5-14 shows all the possible transactions, based on TT[0:3], that the 60X CPU can assert
on the host bus. As the table shows, only two of these transactions can be initiated by the 650

Bridge when it masters the CPU bus for snoop cycles.

The 650 Bridge ignores TT[4], the XFERDAT signal.

The individual TT[0:3] transfer type signals are decoded as follows:

« TTI[O0], special operations. The 654 Controller decodes this signal and TT[2] for two spe-
cial instructions—eciwx and ecowx. The 650 asserts 64 one-bits on the 60X CPU data
bus for eciwx.

e TT[1], read operations. The 654 Controlier initiates a read operation when this signal is
asserted (set to 1), a write operation when it is deasserted (set to 0).

» TT[2], invalidate caches. This signal is interpreted with TT[0] to initiate special cycles for
the eciwx and ecowx 60X CPU instructions.

« TT[3], address-only operations. When TT[3] is deasserted (set to 0) the cycle is address-
only and the 654 Controller responds with AACK#.

Table 5-14. TT[0:3]—Transfer Type Codes on the 60X CPU Host Bus

: 650 Can
TT[0:3] [60X Bus Mnemonic 650 Bridge Operation ‘ Initiate?
0000b | Clean sector Address only, the 650 asserts AACK# N
0001b | Write with flush Write cycle Y
0010b | Flush sector Address only, the 650 asserts AACK# N
0011b | Write with kill Write cycle N
0100b |sync Address only, the 650 asserts AACK# N
0101b | Read Read cycle Y
0110b | Kill sector Address only, the 650 asserts AACK# N
0111b | Read with intent to modify Read cycle N
1000b |— (Reserved) Address only, the 650 asserts AACK# N
1001b | Write with flush atomic Write cycle ' N
1010b | External control out (ecowx) The 650 asserts AACK#and TA# (This instructionis not N
supported by the 650 Bridge)
1011b | — (Reserved) Write cycle N
1100b | TLBinvalidate Address only, the 650 asserts AACK# N
1101b | Read atomic Read cycle N
1110b | External control in (eciwx) 650 asserts 64 one-bits on data bus, AACK#, and TA# N
(This instruction is not supported by the 650 Bridge)
1111b | Read with intent to modify atomic Read cycle N

83

The 650 Bridge Chip Set

5.5.1.3 CPU Address-Only Access
A 60X address-only access is normally terminated by the assertion of AACK#. No error is gener-
ated for address-only transactions. No memory or PCl cycles are generated.

5.5.1.4 ECIWXand ECOWX

The 650 Bridge does not support these transaction types. it does not produce an exception, and
terminates the cycles by asserting AACK# and TA#. On an eciwx transaction, the 650 Bridge as-
serts 64 one-bits on the CPU data bus.

5.5.1.5 CPU Address Alignments

The 60X family of processors supports both big-endian and little-endian addressing modes. The
654 Controller also supports these two addressing modes. When the processor accesses system
memory, the 654 Controller decodes TBST#, TSIZ[0:2], CPU_ADDR[29:31], and
LE_MODE_SEL# to determine which CAS# lines to assert. During processor-mastered cycles
to a PCl target, decode is based on TSIZ[0:2], CPU_ADDR[29:31], and LE_MODE_SEL# to de-
termine the PCI_C/BE[3:0] byte enables that must be asserted.

The 654 Controller supports 1, 2, 3, 4, 8-byte, and burst accesses as shown in Table 5-15.
Table 5-15. 654 Controller Transfer Sizes From the 60X CPU

Transfer Size | To Memory To PCI
1-byte supported supported
2-byte supported cannot cross a 4-byte boundary
3-byte supported cannot cross a 4-byte boundary (the

60X CPU does not produce 3-byte
transfers in little-endian mode)

4-byte supported cannot cross a 4-byte boundary
8-byte supported no 8-byte transfers
32-byte burst | supported no burst

5.5.2 60X CPU to System Memory (DRAM) Cycles

System memory (DRAM) reads and writes can be initiated by the 60X CPU and by PCI devices.
All system memory reads and writes by the 60X CPU are snooped by the L2 cache. System
memory reads and writes by PCl devices are snooped by both the L1 and L2 caches.

The 60X CPU initiates system memory reads and writes by mastering the host bus and asserting
TT[0:3], the transfer type, TTSIZ[0:2], the transfer size, TBST#, the transfer burst signal, and
CPU_ADDR[00:31] for the required address.

5.5.2.1 60X CPU to System Memory TSIZ[0:2] and TBST# Encoding

The 654 Controller supports single-beat transfers to system memory of 1, 2, 3, 4, and 8 bytes as
well as 32-byte burst transfers. Transfers to PCl targets must be four bytes or less (no burst trans-
fers from the 60X CPU to the PCI bus are allowed). Table 5-16 shows the valid TBST# and
TSI1Z[0:2] encodings for 60X CPU to system memory cycles.

lllegal combinations of TSIZ[0:2] and CPU_ADDR[29:31] are detected and an error cycle is gen-
erated as defined in Section 5.8.

84

The 650 Bridge Chip Set

Table 5-16. 60X CPU to System Memory Size Alignment

TBST# '[I'OSIZZ] Size Big-Endian Support Little-Endian Support
1 001 | 1byte |All accesses supported All accesses supported
1 010 |2byte |All accesses supported All accesses supported
1 011 |3 byte |All accesses supported Not generated by CPU
1 100 |4byte |Allaccesses supported All accesses supported
1 101 |5byte | Notsupported. TT_ERR# asserted | Not generated by CPU.
1 110 |6byte | Notsupporied. TT_ERR# asserted | Not generated by CPU.
1 111 |7 byte | Not supported. TT_ERR# asserted | Not generated by CPU.
1 000 |8byte | Double-word aligned Double-word aligned
0 xxxX |32byt | Supported Supported

5.5.2.2 Summary of CPU Read and Write System Memory Characteristics

The following characteristics apply to 60X CPU reads and writes of system memory.

5.5.3

Valid addresses range from 0 to 256M (top of real memory is programmable).
Memory accesses above top-of-memory terminate with TA#—no error is generated.
On a read above top-of-memory, 64 one-bits are returned.

The CPU can read or write system memory in single-beat mode.

e Transfer sizes of 1, 2, 3, 4, or 8 bytes are supported.

The CPU can read or write system memory in burst mode.

e Transfer size of 32 bytes is supported (four beats of eight bytes).

¢ Each eight-byte beat must be double-word aligned.

Successful completion of a memory cycie results in a TA# asserted to the CPU.

Unsuccessful completion (parity error or illegal transfer size) results in a TEA# and an
error bit is asserted as follows:

e MEM_PAR_ERR# is asserted for a parity error.
e TT_ERR# is asserted for size and alignment errors.
e The error address is latched in the 653 Buffer.

60X CPU to PCI Cycles

60X addresses from 2G to 3G are translated to addresses on the PCl address bus in the range
of 0 to 1G. 60X addresses from 3G to 4G are also translated to addresses on the PCl address
bus in the range of 0 to 1G. When transfer start (TS#) is asserted with an address in the PCI ad-
dress range, the 654 Controller initiates a PCI transaction on the PCI bus in conformance with
the PCI standard described in the PC/ Local Bus Specification, Revision 2.0.

85

The 650 Bridge Chip Set

During the address phase, the 654 Controller asserts the remapped PCIl address onto
PCI_AD[31:0] with PCI_FRAME# and a PC| bus command based on the 60X transfer type. Dur-
ing the data phase (after the target asserts PCI_DEVSEL#), the 654 Controller deasserts
PCI_FRAME#, asserts PCI_IRDY#, and drives the byte enables based on the 60X address and
the current endian mode.

5.5.3.1 Valid 60X CPU to PCI Transactions
A 60X transfer to PC| address space must be a single-beat transfer of one to four bytes that does
not cross a word boundary. The following 60X CPU to PCI transactions are possible.

» CPU read or write PCI configuration space (type 0 only)
» CPU read or write PCI I/O space ‘

e CPU read or write PCl memory

e CPU read of PCl interrupt acknowledge vector

5.5.3.2 Termination Responses for 60X CPU to PCI Transactions
Successful completion terminates with a TA#. Unsuccessful completion results in a TEA# for the
following cases:

* PCi Master abort due to system timeout (no PCI_TRDY# response within 60us after
PCI_DEVSEL#)

» PCl master abort—no target responds with a PCI_DEVSEL# to the current PCI bus
transaction initiated by the 654 Controller. Except on PCI configuration cycles where a
read returns 64 one-bits and a write terminates with no error.

« PCl target abort—target responds to the current PCl bus transaction, initiated by the 654
Controller, by deasserting PC|_DEVSEL# and assertlng PCI_STOP#.

5.5.3.3 PCI Target Retry
If a PCl target responds with a target retry (PCI_DEVSEL# and PCI_STOP# asserted) to the cur-
rent PCl bus transaction, the 654 Controller asserts address retry (ARTRY#) on the 60X CPU bus.

5.5.34 PCI_C/BE[3:0]#—PCI Bus Command/Byte Enable Generation

The bus commands and byte enables for the PCl bus are multiplexed on four lines of the PCl bus
(PCI_C/BE[3:0]#). During the address phase of the PCI bus (ADDRHI/DATALO asserted high),
the bus command for the current transaction is asserted. During the data phase of the PCl bus
(ADDRHI/DATALO negated low), the byte enables for the current data transfer are asserted.

5.5.3.5 60X CPU to PCI Bus Commands

The 654 Controller generates bus commands based on a decode of CPU_ADDR][0:8] and, for PCI
interrupt acknowledge or read error address, CPU_ADDR[19]. The 654 Controller maps address-
es on the 60X CPU host bus from 0 to 2G as system memory (DRAM) reads and writes. Address-
es from 2G to 4G are mapped as PCI cycles, system ROM reads and writes, or memory parity
error address reads. The four PCI cycles are as follows:

e PCI Interrupt Acknowledge

e PCI /O

. PCI Memory

« PCI Configuration (type 0 only)

86

The 650 Bridge Chip Set

Table 5-17 shows the PCI bus commands that the 654 Controller asserts on the PCI_C/BE[3:0}#
lines during the address phase of a CPU to PCl bus transaction. The value of TT[1], a CPU trans-
fer type bit, determines whether the PCl cycle is a read or a write.

Table 5-17. 60X CPU to PCl Bus Commands

60X Address PCI Cycle' (R1;2511=]1) PCI_C/BE[3:0]#
2Gto 2G + 8M I/O Cycle - 1 0010

0 0011
2G + 8M to 2G + 16M | Configuration Cycle 1 1010

0 1011
2G + 16M to 3G - 8M [1/O Cycle 1 0010

0 0011
3G-8Mto 3G Interrupt Acknowledge 1 0000
(CPU_ADDR[19] = 1) ' 0 not allowed
3G to 4G - 8M Memory Cycle 1 0110

0 0111

5.5.3.6 PCI Byte Enables

During the data phase of the PCI bus transaction, the 654 Controller individually asserts the
PCI_C/BE[3:0]#lines to enable each of the four corresponding bytes of the PCi_AD bus. To deter-
mine the byte enables, the 654 Controller decodes the CPU transfer size, TSIZ[0:2], the lower
two bits of the CPU address, CPU_ADDR[30:31], and the endian mode select, LE_ MODE_SEL#.

One- to four-byte transfers are supported and decoded as shown in Table 5-18. A byte lane is
enabled when its PCI_C/BE[3:0]# line is zero. In Table 5-18, xxxx indicates an illegal transfer at-
tempt. The 654 Controller supports one-byte to four-byte transfers to the PCl bus that do not cross
a 32-bit word boundary. ;

Table 5-18. PCI Byte Enables for PC|_C/BE[3:0}#

CPU_ADDRI[30:31] ~CPU_ADDR[30:31]
Big-Endian Mode (LE_MODE_SEL#=1) | Little-Endian Mode (LE_MODE SEL#..O)
TSIZ[0:2] 00 01 10 11 00 01 10 11
oo1(1) [11101 1101 1011 0111 0111 1011 1101 1110
010 (2) 1100 1001 0011 XXXX 0011 10012 1100 XXXX2
011 (3) 1000 0001 XXXX XXXX 00012 10002 XXXX2 XXXX2
100 (4) 0000 XXXX XXXX XXXX 0000 X002 XXXX2 XXXX2

1) All entries are PCI_C/BE[3:0}#. Bytes are enabled by 0 in PCI_C/BE[3:0]#.
2) Does not occur from 60X CPU.

87

The 650 Bridge Chip Set

5.5.3.7 Transfer Size Parameters for the PCI Bus ,
The 654 Controller supports 1-, 2-, 3-, and 4-byte accesses to the PCl bus as follows:

 All single-byte accesses are supported.

» Two-byte and three-byte accesses that do not cross word (32-bit) boundaries.
« Four-byte accesses that are word-aligned (32-bits) to the PCI bus.

» Eight-byte accesses are not allowed to the PCI space.

5.5.4 60X CPU to PCI Interrupt Acknowledge Cycles

When the 60X CPU executes a memory read from 3G — 8M to 3G with CPU_ADDR[19] = 1, the
654 Controller generates a PCl interrupt acknowledge transaction, and then returns the interrupt
vector that is asserted on the PCI bus by the interrupt controller.

In the event of an asynchronous system error (NMI_REQ# and some L2 cache data parity errors)
the 654 Controller generates an interrupt to the CPU. When the CPU reads the interrupt acknowl-
edge address (BFFF FFFOh), the 654 Controller terminates the cycle with a TEA# (if
MASK_TEA# is not asserted) and asserts 64 one-bits onto the CPU data bus. In this case, no
PCI interrupt acknowledge cycle is generated. See Section 5.8.

5.5.5 60X CPU to Read Error Address Cycles

When the 60X CPU executes a memory read from 3G — 8M to 3G with CPU_ADDR[19] = 0, the
654 Controller asserts ERR_ADDR_SEL# to the 653 Buffer to return the address that was saved
when the system error occurred. This access also resets TT_ERR# and MEM_PAR_ERR# sig-
nals.

The read error address cycle does not produce-a PCI transaction.

5.5.6 60X CPU to System ROM Cycles

The 650 Bridge implements a boot ROM access system which minimizes pin and package count
while still allowing the use of byte-wide devices on an 8-byte data bus. The 650 Bridge design is
optimized for a 120ns flash memory device, but any EEPROM, non-volatile RAM, EPROM,
PROM, ROM, PCMCIA, or combination of devices meeting the timing requirements can be de-
signed in at the system level. A method is provided for writing flash ROM or other read/write de-
vices. System ROM can contain the POST and BOOT code and vital product data for the system.

Figure 5-13 shows how system ROM addresses and data are transferred over the PCI_AD[31:0]
lines. Although connected to the PCI_AD lines, the system ROM is not a PCl agent. The 654 Con-
troller keeps the ROM from interfering with PCI bus transactions by deasserting the ROM control
signals during PCl transactions. Also, the 654 arbiter will not grant the bus to any PCI agent while
ROM cycles are.in progress. The 654 Controller does not assert any PCI control signals
(FRAMEH#, etc.) during system ROM transfers and therefore no PCI devices are affected by the
system ROM activity. PCl bus masters are unable to access the system ROM.

SystemRROM
[23:0]
653 PCI_ADI[31:0] Address 652
Buffer i [31:24] ‘ Control Controller
<—» Data

Figure 5-13. ROM Connections

88

The 650 Bridge Chip Set

5.5.6.1 ROM Addressing
During ROM reads, system ROM is linearly mapped to CPU memory space from 4G-8M to 4G |
(FF80 0000h to FFFF FFFFh). Since the 60X CPU begins fetching instructions at FFFQ 0100h
after a reset, the most convenient way to use a 512k device as system ROM with the 60X CPU
is to use it from 4G—1M (FFFO 0000h) to 4G. This is implemented by connecting PCI_AD[18:0]
to ROM_A[18:0] with no translation, which places the ROM 0 address at CPU memory addresses
FF80 0000h, FF88 0000h, FF90 0000h,..., FFF0 0000, FFF8 0000h. Connected like this, the sys-
tem ROM is aligned with 4G — 8M, but with alias addresses every 512K up to 4G.

Writing to flash ROM is a specialized cycle. A CPU memory write to any even address in the range
4G — 8M 1o 4G initiates a ROM write cycle.

5.5.6.2 ROM Access Data Sizes and Alignments

ROM read cycles ignore transfer size (TSIZ[0:2]) and alignment (CPU _ADDR[29:31]). The 653
Buffer begins by forcing the low-order three bits of the address to 000b, then reads the ROM eight
times, incrementing the ROM address by one for each read. The eight bytes read from ROM are
accumulated into a single 64-bit double word which is then driven onto the CPU data bus.

Only 4-byte memory write cycles (store word) are supported to the ROM. One of these bytes is
used as data, and the other three are used as address information. Burst writes are not supported.

5.5.6.3 Single-Beat ROM Reads

If TBST# is not asserted during the ROM read cycle, the 650 Bridge executes a single-beat ROM
read operation. This operation delivers eight bytes of ROM data to the CPU. The 650 begins by
reading ROM data starting at the address to which the CPU memory access has been mapped.
The 650 places that byte into a shift register that reads out onto the 60X data bus. The 650 then
increments the value of the ROM address lines, and shifts that byte into the shift register; which
pushes the first byte over one byte. The 650 continues this pattern until 8 bytes have been read
out of the ROM and driven onto the 60X data bus. The 654 Controller then asserts AACK# and
TA# for one CPU_CLK cycle and the 60X CPU completes the transfer.

5.5.6.4 Burst ROM Reads ,

The PowerPC 601 microprocessor begins instruction fetching in burst mode after a reset (the 603
CPU and 604 CPU do not come up with burst mode enabled). To support burst mode, the 650
Bridge operates in a pseudo burst mode, which supplies the same eight bytes of data (from the
ROM) to the CPU on each beat of a 4-beat burst.

- A burst ROM read begins with the 654 Bridge executing a single-beat ROM read operation, which
assembles eight bytes of ROM data into a double word on the CPU data bus. For a single-beat
read, the 650 Bridge then asserts TA# and AACK# for one CPU_CLK cycle, and the 60X CPU
completes the transfer. For a burst ROM read however, the 654 Bridge asserts TA# for four
CPU_CLK cycles, with AACK# asserted on the fourth cycle. The same data remains asserted on
the CPU data bus for all four of the data cycles.

89

The 650 Bridge Chip Set

5.5.6.5 Programming the ROM Boot For 601 Burst Reads

To construct the bootstrap portion of the code that is required for use with the 601 CPU pseudo
burst mode ROM reads described in Section 5.5.6.4, the first part of the system ROM can be
coded as follows:

Instruction 1

Branch to lnstructlon 2
No-op

No-op

No-op

No-op

No-op

No-op

Instruction 2

Branch to instruction 3
6 No—ops

Instruction 3

Branch to instruction 4
etc.

The six no-op instructions serve as filler for the unexecuted phases of the burst reads of the sys-
tem ROM. The no-op codes are not transferred during the burst read, only the first two instructions
(64 bits) are read and then passed four times to the 601 CPU during a startup burst read of system
ROM.

When enough instructions have been executed, the bootstrap code can turn off the 601 cache,
and the remaining ROM data can be read contiguously as single-beat reads.

5.5.6.6 @ 60X CPU to Flash ROM Write Cycles

The 650 Bridge decodes a CPU store word to any even address from 4G — 8M to 4G (ex. FFFF
FFF0) as a flash ROM write cycle. The three low-order bytes of the CPU data word are driven
onto the ROM address lines, and the upper byte is driven onto the ROM data lines. Only single
beat, four-byte write transfers (store word) are supported—bursts are not supported. For exam-
ple, a store word instruction with data=00ABCDEF would write EF to ROM location 00ABCD.

5.5.6.7 Effect of Endian Mode on ROM Writes

Writes to flash ROM can be performed while the system is in either big-endian or little-endian
mode. During ROM writes, the data byte swapper and the address unmunger are controlled ac-
cording to endian mode, but the address unmunging (in little-endian mode) has no effect on the
placement of the data because the CPU_ADDR[29:31] bits are ignored. Therefore software must
~ reverse the byte significance of the data and addresses encoded into the store instructions for
little-endian mode. In little-endian mode, the data must be aligned at CPU_DATA[24:31] and the
address (byte swapped) at CPU_DATA[00:23] before the store word instruction is executed.

5.5.6.8 Flash ROM Protection

The 650 Bridge decodes a CPU write to any odd address from 4G — 8M to 4G as a flash ROM

write lockout cycle. For example; a write to FFFF FFF1h locks out subsequent flash ROM writes.

Writing any data to this port address locks out all flash ROM writes until the power is turned off

and back on. In addition, flash ROM devices can have the means to permanently lock out sectors
by writing control sequences. Flash ROM specifications contain details.

92

The 650 Bridge Chip Set

5.5.7 60X CPU to System ROM Detailed Operation

As shown in Figure 5-14 and Figure 517, the address and address attribute signals in the exam-
ple system (see Appendix B) flow from the 60X CPU into the 654 Controller, which decodes these
signals and issues the appropriate control signals. The data flow during writes is from the CPU,
through the 653 Buffer, and onto the PCI_AD lines to the ROM. During reads, the data flow is from
the ROM onto the PCI_AD lines, through the 653 Buffer into the CPU. The address flow during
ROM reads is from the CPU, through the 653 Buffer, and onto the PCI_AD lines to the ROM. Dur-
ing writes, the address from the CPU does not flow to the ROM—the ROM address is encoded
in the data that the CPU writes to ROM space, as explained below.

The following discussion assumes that the system is operating in big-endian mode, which is typi-
cally the case during ROM transfers. Differences in the operation of the system in little-endian
mode are noted but not usually detailed in the example operations. A full understanding of the 653
Buffer is also helpful—see Appendix C.

654 C (Control) C
Controller
C c 653 .
Buffer ROM
Address A29_ | 1] Address A
60X 63:32 Fi{ PCI_AD[23:01
CPU | Dota 310 2 Data D
13| PCI_ADL31:24]
1> CPU Address Unmunger 3 Input side CPU Data
2> PCI Data Multiplexor Byte Lane Swopper

Figure 5-14. CPU to ROM Write Address and Data Flows

5.5.7.1 ROM Write Detailed Operation .

A flash memory (ROM) write operation occurs as the result of a 60X CPU store word instruction
to any CPU bus location in the address range FF80 0000h through FFFF FFFEh while A31 = 0.
For example, FF80 0010h writes to ROM, but FF80 0011h does not. As shown in Figure 5-14,
during a ROM write in the example system the 653 Buffer does not forward the information from
the CPU bus address lines to the ROM address lines. Instead, the information from the CPU data
bus is splitinto two fields. The upper byte is written into the ROM as data, and the low-order three
bytes are used to address the ROM.

As shown in Figure 5—14, the data from the CPU flows into the 653 Buffer, into the input side CPU
data byte lane swapper, which reverses the byte order in little-endian mode, but does not affect
the byte order in big-endian mode. This CPU data is sent to the PCI output multiplexers. Since
this is not a PCI cycle, the multiplexers are set to drive the PCI bus only with the data taken from
the CPU bus (there is no address phase). Four bytes of the eight-byte CPU data bus are selected
to be driven onto the PCI_AD bus, and the ordering of the selected bytes depends on CPU ad-
dress bit A[29] (big-endian) and the endian mode of the system (see Table 5—19 and Table 5-20).

91

The 650 Bridge Chip Set

CPU CLKW\]W\I_/'\f\f\f\f\f\f\f\f\f\f\f_/'\f_

/ I

1

CPU_GNT# ' _

CPU ADDR—(. L

TS# \ |/ '
AACK#: —

TA#

TBST# / .
CPU_ADDR_SEL# \ '

CPU_DATA _, SEL# \
ROM_SEL# \ :

ADDRHIDATALG \ .
ROM cs# .

ROM_ WE#

8

PCLAD[31:0]_* X7/

ROM_OE# . . « . .«

PCI_SEL# . |, . |

Figure 5-15. CPU to ROM Write Timing Diagram

Figure 5—15 shows the signals involved in a ROM write operation. The CPU initiates the transfer
by asserting TS#. The 654 Controller decodes the required operation and asserts
CPU_ADDR_SEL#and CPU_DATA_SEL# on the CPU_CLK that TS# was sampled valid. On the
next CPU_CLK, the 654 Controller asserts ROM_SEL# and ADDRHI/DATALO to the 653 Buffer
and asserts ROM_CS#. These signals open the appropriate data and address pathways in the
653 Buffer and select the ROM. The 654 Controller asserts ROM_WE# from the sixth to the tenth
CPU_CLKcycle after TS#, and then asserts AACK# and TA# to the CPU on cycle 15 to end the

transfer.

92

The 650 Bridge Chip Set

Table 5-19. ROM Write Data Flow in Big-Endian Mode

CPU store word to x—x x0x0b in big-endian
Mode. Not munged CPU A[29] = 0. Not unmunged
pci_addr_out[2] = 0. 653 after swapper data bus
[31:0] selected for output to PCI_AD[31:0].

CPU store word to x—x x1x0b in big-endian
Mode. Not munged CPU A[29] = 1. Not unmunged
pci_addr_out{2] = 1. 653 after swapper data bus
[63:32] selected for output to PCI_ADI[31:0].

CPU DATA After PCI_AD ROM CPU DATA After PCI_AD ROM
Swapper Signal Swapper Signal
0:7 7:0 7:0 A[7:0] 0.7 7:0 not used not used
8:15 15:8 15:8 A[15:8] 8:15 15:8 not used not used
16:23 23:16 23:16 A[23:16] 16:23 23:16 not used not used
24:31 31:24 31:24 D[7:0] 24:31 31:24 not used not used
32:39 - 39:32 not used not used 32:39 39:32 7:0 A[7:0]
40:47 47:40 not used not used 40:47 47:40 15:8 A[15:8]
48:55 55:48 not used not used 48:55 55:48 23:16 A[23:16]
56:63 63:56 not used not used 56:63 63:56 31:24 D[7:0]

Table 5-20. ROM Write Data Flow in Little-Endian Mode

CPU store word to x—x x0x0b in little-endian
Mode. Munged CPU A[29] = 1. Unmunged
pci_addr_out[2] = 0. 653 after swapper data bus
[31:0] selected for output to PCI_AD[31:0].

CPU store word to x—x x1x0b in little-endian
Mode. Munged CPU A[29] = 0. Unmunged
pci_addr_out[2] = 1. 653 after swapper data bus
[63:32] selected for output to PCI_ADI[31:0].

CPU DATA After PCI_AD ROM CPU DATA After PCI_AD ROM

Swapper Signal . Swapper Signal
0:7 63:56 not used not used 0:7 63:56 31:24 D[7:0] -
8:15 55:48 not used not used 8:15 55:48 23:16 A[23:16]

16:23 47:40 not used not used 16:23 47:40 15:8 A[15:8]

24:31 39:32 not used not used 24:31 - 39:32 7:0 A[7:0]
32:39 31:24 31:24 D[7:0] 32:39 31:24 not used not used
40:47 23:16 23:16 A[23:16] 40:47 23:16 not used not used
48:55 15:8 15:8 A[15:8] 48:55 15:8 not used not used
56:63 7:0 7:0 A[7:0] 56:63 7:0 not used not used

93

v6

peay WOH 01 NdO ‘weabeiqg Buiwi) ~91~g aunbiy

[13CPU_CLK ——{«14 CPU_CLK »} 14 CPU_CLK »}e 14 CPU_CLK
CPUCLK////f////////////////////////////////

TBST# \
CPU_ADDR‘-—-L ‘
TS#— /"

 AACK#—————/"

TA#I : i :) : e
CPU_ADDR_SEL# . __.
CPU_DATA_OE# . . . | ,\ -

ROMCS#__\ .

ROMOE#———\:

ROM_SEL# \ ..‘I.‘.I".I.I.’.‘.I,I.]}
BURST_CLK#:-:*:':':':'1':':'\:J':':':v:‘i'i‘\J‘i'
pciappor "~ "~ MY x—x'0000b | AN x—%0001b AN x—x0010b M\k—x pomJ

PCLOE# ' ' [

PCI_AD[31:24]

SN 72)
cupAA—— (. . X . X
, XXXX—XXXX—XXXX—XXXX aaxx—x—x bbaa—x—x - ccbb—aaxx

198 diyD abpug 059 8yl

The 650 Bridge Chip Set

5.5.7.2 ROM Read Detailed Operation

Figure 5—16 and Figure 5—18 show a complete ROM read timing diagram. A ROM read operation
occurs as the result of a CPU memory read to CPU bus address range 4G — 8M to 4G. Once the
650 Bridge has detected the correct combination of CPU address and address attribute signals,
it starts the ROM read engine, doing eight one-byte reads from the ROM, stacking up the eight
bytes in a shift register, and then transfering the eight-byte double word to the CPU, all of which
takes 117 CPU_CLK cycles for a single-beat CPU transfer. If the operation is a four-beat burst
read transfer, such as a 601 CPU does at power up, the same eight-byte double word is trans-
fered four times to the CPU, which takes three more CPU_CLK cycles for a total of 120 clock
cycles.

Figure 5-16 shows the signals involved in a ROM read operation starting at ROM address x—x
0000b, which is initiated as the CPU begins a memory read from a CPU bus address mapped to
ROM space (4G — 8M to 4G) by asserting TS#. The 654 Controller asserts ROM_CS# and
ROM_OE# to the ROM, and asserts CPU_ADDR_SEL#, CPU_DATA_OE#, and ROM_SEL# to
the 653. ' ‘

As shown in Figure 5-17, during a ROM read in the example system (see Appendix B), the ad-
dress information flows into the 653 Buffer, which flows the address through the CPU address
unmunger, the ROM read burst counter, and the CPU burst counter. The address then flows out
of the 653 Buffer onto PCI_AD[23:0], and then to the ROM. The unmunger operates normally,
but does not actually affect the address presented to the ROM, due to the operation of the ROM
read burst counter, as discussed below. The CPU burst counter is also not used, since only one
eight-byte double word is actually accessed, even during a four-beat CPU burst.

As shown in Figure 5—17, during a ROM read in the example system, the data flows from the ROM
onto the PCI_AD[31:24] lines and into the 653 Buffer, where it is stacked up in the ROM data shift
register, sent through the output side CPU data byte lane swapper (where it is byte—reversed in
little-endian mode), and then sent out of the 653 Buffer to the CPU on the CPU bus data lines.

654 C (Controb) c
Controller
c ' C 653
Ad Buffer rud ROM
ress ress
60X ' ‘ L 3 PCI_AD[23:01 A
CPU Data Data
[S]_E PCI_ADL31:241] D
1> CPU Address Unmunger 4> ROM Data Shift Register
2> CPU Burst Counter S Output Side CPU Data
3> ROM Read Burst Counter Byte Lane Swapper

Figure 5-17. CPU to BOM Read Address and Data Flows

95

92

penuRuo) ‘pesy NOH 01 NdD ‘welbelg BujwiL "gL—G ainbi4

~}+ 14 CPU_CLK |+ 14 CPU_CLK = 14 CPU_CLK +}+ 14 CPU_CLK+]

ek [SSSTTSS TIPS i rrrrrs

TBST# _

CPU_ADDR '

TS#

AACK# '

TA#

CPU_ADDR_SEL# .«

CPU_DATA_OE#_,

"ROM_CS# _.

ROM_OE#_:

ROMSEL# ' ' ' ' ' 0 o
’BURST_CLK#"\;/"""_'/x'l'n‘\;/'.'.I._-/,-‘.l.\j

pcLADR3:0] " N x—x0100 'x—'xj01'o1f)L\lj x—x 0110} x=x 0111 ¥ %—x1000%C

wwwwwEﬁTw

PCI_OE#

PCL_AD[31: M]N)h\\\\\{ ee m_}&\\\\‘l hh

cPupatA X XX D G G ¢

ccbb—aaxx—x—yx_ ddcc—bbaa—x—x ffee—ddcc—bbaa—x—x hhgg—ffee—ddcc—bba

eedd—ccbb—aaxx—x—x ggff-eedd—ccbb—aaxx

19g diyn ebpug 059 ayL

The 650 Bridge Chip Set

In the 653, the CPU address lines are chosen as the source of the address which flows into the
ROM burst counter. Here the three least-significant address bits [2:0] are forced to 000b (making
the operation of the unmunger ineffective), and are driven onto PCI_AD[23:0] (which are con-
nected to the address lines of the ROM in the example system). This address and the ROM control
lines access a single byte of ROM data, which flows onto PCI_AD[31:24] and into the 653 Buffer,
at the input of the ROM read shift register. At this point the shift register and the CPU data lines
contain no useful information, as shown in Figure 5-16 on CPU_DATA by XXXX—XXXX—XXXX—
xxxx(h).

After waiting for the ROM data to stablize, the 654 Controller asserts ROM/BURST_CLK# for one
CPU_CLK cycle. This causes the 653 Buffer to latch the ROM data byte from PCI_AD[31:24] into
the ROM data shift register, shuffle all the other data bytes in the shift register down one byte posi-
tion, and place the new byte on the internal data bus in byte lane 0—the most-significant byte lane.
This data flows through the output side CPU data byte lane swapper (which will swap the byte
lanes around if the system is in little-endian mode, but no swapping is done in big-endian mode).
So, in big-endian mode, the data byte from ROM location x—x 0000b now appears on
CPU_DATA[0:7], the most significant byte. The other CPU data bytes contain no useful informa-
tion. This is shown in Figure 5—16 on CPU_DATA as aaxx—Xxxx—xxxx—xxxx, where aa is the byte
of data from ROM location x—x 0000b.

This initial assertion of ROM/BURST_CLK# also latches the CPU address into the ROM read
burst counter and increments bits [2:0] to 001b. This address flows out to the ROM. After waiting
for the ROM data to settle out, the 654 Controller again asserts ROM/BURST_CLK#, latching the
data from ROM location x—x 0001b (shown here as bb) onto CPU byte lane 0, shuffling all the
other bytes down, and incrementing the ROM address. CPU_DATA[0:63] now contains bbaa—
XXXX—XXXX—XXXX. This process continues for a total of eight ROM/BURST_CLK# pulses, after
which CPU_DATA[0:63] contains hhgg—ffee—ddcc—bbaa, the 8 bytes of data from the ROM. (Tim-
ing diagram Figure 5-16 is continued as Figure 5—-18).

For a single-beat CPU read transfer, the 654 Controller then completes the transfer by asserting
AACK# and TA# to the 60X CPU for one CPU_CLK cycle, and deasserting the 653 Buffer and
ROM control signals which returns the system to the bus idle state.

For a burst-mode read transfer, after the eighth ROM/BURST_CLK#, the 654 Controller asserts
TA# for four CPU_CLK cycles (rather than for just one CPU_CLK cycle) while holding the same
data on the CPU data bus, and asserts AACK# for one cycle on the fourth TA#. This transfers
the same eight bytes to the 60X CPU on each beat of the burst transfer. No additional data is read
from the ROM. The CPU transfer is completed on the fourth cycle as the 654 Controller asserts
TA# for the fourth CPU_CLK cycle and asserts AACK#. The 654 Controller then returns the sys-
tem to the bus idle state by deasserting the 653 Buffer and ROM control signals.

97

The 650 Bridge Chip Set

5.6 The PCI to 650 Bridge Transactions
A read operation always returns a 64-bit double-word since system memory is a double-word bus
(eight-byte data bus). PCI_AD[2] is used to select between the high-order and low-order words
within this double-word. Memory parity is checked based on a full double word. (A parity error can
occur if all of memory is not initialized prior to access.)

A PCl device can assert PCI_FRAMEH# to initiate an address phase after the 654 Controller grants
the address bus (either IO_BRDG_GNT# or one of the five PCI_GNT lines) to the PCI device.
Successful completion of the PCl transaction results in a target ready (PCI_TRDY#) asserted to
the PCI device. Unsuccessful completion (memory out-of-range, parity error) results in a target
abort (PCI_DEVSEL# deasserted and PCI_STOP# asserted), and an. error bit is asserted—
MEM_PAR_ERR# for a parity error.

If a parity error occurs during a PCI read of system memory, the 654 Controller asserts TRDY#,
then drives incorrect (inverted) parity onto the PCI_PAR line on the PCI clock after TRDY#, and
then target aborts (PCI_DEVSEL# deasserted and PCl_STOP# asserted). The 654 Controller
asserts the MEM_PAR_ERR# signal and generates an interrupt to the 60X CPU. All subsequent

. PCl transactions to system memory from any agent are terminated with a target abort until after

the 60X reads the error address register.

5.6.1 PCI to System Memory Cycles
« A PCl address from 2G to 2G + 256M translates to system memory from 0 to 256M.

» PCl memory read cycles from 0G to 2G translate to 3G to 4G. These cycles cause snoop
cycles but no hits because the 3G to 4G address range is reserved as non-cacheable.

« Single or burst transfers are supported (PCI 2.0 specification.compliant).
» From one to four bytes per beat are allowed (controlled by PCl byte enables).

5.6.1.1 I/0O Bridge to System Memory
» Supported by the 650 Bridge chip set if I/O bridge support exists.

* ISA_MASTER# pin allows special translation for ISA master addresses from 0 to 16M
on the PCl bus.

5.6.1.2 ISA Master Memory Addressing '

The 650 Bridge forwards PCI memory cycles which are the the result of an ISA bus master opera-
tion to system memory. The ISA bridge asserts ISA_MASTER# and |IO_BRDG_HOLD# to the
650 Bridge to indicate ISA bus master operations.

Note: If the DMA produces an address in the 0 to 2G range without asserting ISA_MASTER#,
a PCI cycle runs, but the 650 Bridge does not forward it to system memory because the address
range is not 2G to 4G.

56.1.3 ISA Master Signal Timing
Figure 5—19 shows the timing relationships for ISA master operations.

98

The 650 Bridge Chip Set

5
0
L

S [V
I0_BRDG_ HOLD# K ' L\
[}

|._|(1>)

[
ISA_MASTER# , \
) v

@'
FRAME#' \ }

TRDY#'

v
0
'
IO_BRDG_GNT#: [

)
—

1 1

$]

1 1

1]

!]

]]

3.

- -]- -]- -] -

NO_TRANS,

Figure 5-19. ISA Master Signal Timing

Notes for Figure 5-19:

1. 10_BRDG_HOLD# and ISA_MASTER# must be sampled asserted on the same clock
for the 650 Bridge to recognize an ISA master transaction pending condition.

2. These transactions are mastered by the 650 Bridge or by a PCI bus master other
than the I/0 bus bridge.

3. When the ISA master transaction pending condition is recognized, the 650 responds
to the next PCI transaction mastered by the I/O bus bridge as a PCI transaction on
behalf of an ISA bus master. The 650 asserts NO_TRANS to disable the address
translation that normally inverts the most significant address bit when a PCI bus mas-
ter accesses system memory.

4. The arbiter grants the system to the 1/0O bus bridge.

5. This PCl transaction is mastered by the I/O bus bridge for the ISA bus master that
has ISA bus mastership.

5.6.1.4 PCI to System Memory (DRAM) PCI_C/BE[3:0}# Bus Commands

Table 5-21 shows the PCI bus command decoding. When a PCI master has the PCI bus grant
and asserts PClI_FRAME#, the 654 Controller decodes PCI_C/BE[3:0]# to determine if the PCI
device is trying to access system memory. The 654 Controller maps PCl memory cycles with ad-
dresses in the range of 2G to 4G as system memory (DRAM) reads and writes. The 650 Bridge
only responds to PCl memory read and write cycles. All other cycles initiated by PCI devices on
the PClI bus are ignored by the 650 Bridge.

If amemory cycle is decoded, the 654 Controller must determine if the translated memory address
is in the range, from 0 to 2G, of system memory (DRAM). PCI devices address system memory
with addresses from 2G to 4G. The 653 Buffer inverts PCI_AD[31] to remap PCI addresses in
the 2G to 4G-range to 0 to 2G.

99

The 650 Bridge Chip Set

The 654 Controller decodes the PCl bus address from the 60X CPU bus after the address is trans-
lated by the 653 Buffer (PCI_AD[31] is inverted). The 654 Controller initiates system memory
(DRAM) cycles with snooping for addresses on the 60X CPU bus from 0 to 2G. For a 60X CPU
bus address from 2G to 4G, the 654 Controller aborts the memory cycle. In this case, the snoop
cycle is-always a miss because addresses from 2G to 4G are reserved as not cacheable. (They
must be marked non-cacheable in the 60X CPU).

Table 5-21. PCI Bus Commands from PCl Masters

PCI_C/BE[3:0}# |PCI Transaction Decoded as:
0000 Interrupt Acknowledge none
0001 Special Cycle none
0010 IO Read none
0011 I/O Write none
0100 Reserved none
0101 Reserved A none
0110 Memory Read ' memory read
0111 Memory Write memory write
1000 Reserved none
1001 Reserved none
1010 Configuration Read none
1011 Configuration Write none
1100 Memory Read Multiple memory read
1101 Dual Address Cycle none
1110 Memory Read Line memory read
1111 Memory Write and Invalidate | memory write

5.6.1.5 Snoop Cycle Control Signals on the 60X CPU Host Bus

The 654 Controller maintains cache coherency with the L1 and L2 caches by running snoop cycles
on the 60X CPU bus for every PCl read or write to system memory, including burst transactions.
Section 5.7 describes the processing of snoop cycles in detail. To execute a snoop cycle, the 654
Controller asserts the following 60X CPU bus control signals:

e TBST#is negated

¢ TSIZ[0:2] (transfer size) is set to binary 100 (four bytes or one word).

e TT[0:3] (transfertype) is setto 0101b for snooping aread to system memory and to 0001b
for snooping a write to system memory.
The 60X CPU and a write-back L2 cache respond to a cache snoop hit by asserting ARTRY#.
See Section 5.7 for a complete description of the processing of snoop cycles. The 650 Bridge
asserts atarget retry on the PCI bus when a cache device asserts ARTRY# for a cache hit. After

100

The 650 Bridge Chip Set

the cache completes its writeback, the 650 Bridge grants the bus to the original PCl device to retry
the target retried transfer (if it is requesting the bus).

5.7 L2 Secondary Cache Protocol

The L2 cache provides two different services—caching for 60X CPU accesses to system memory
and snooping for PCI to system memory accesses. Table 5-22 shows the actions the L1 and L2
caches and the 650 Bridge can take when the 60X CPU reads or writes system memory and when
a PCl device reads or writes system memory.

Table 5-22. Cache and 650 Bridge Action Table

Transfer | L1 Action L2 Action 650 Bridge Action
CPU to | Any action taken by the L1 does | No bus action. (The L2 can | Paces transfer.
Memory | nothave an effect on the 60X bus, [invalidate, snarf, update, etc.) Accesses DRAM.
Transfer |because the L1 activity takes - -
place completely within the 60X | Claims transfer with L2_CLAIM#. | Does not pace the transfer.
CPU. Paces the transfer. Does not access DRAM.
Supplies (or receives) the data.
Backs off transfer with ARTRY#. | Does not pace the transfer.
Asserts bus request. Does not access DRAM.
Arbitrates.
PCi to | No bus action No bus action. Paces transfer.
Memory Accesses DRAM.
Transfer
Backs off transfer with ARTRY#. | No bus action. Does not pace the transfer.
Asserts bus request. Does not access DRAM.
Arbitrates.
No bus action. Backs off transfer with ARTRY#. | Does not pace the transfer.
Asserts bus request. Does not access DRAM.
Arbitrates.
Backs off transfer with ARTRY#. | Backs off transfer with ARTRY#. | Does not pace the transfer.
Asserts bus request. Asserts bus request. Does not access DRAM.
Arbitrates.
5.7.1 L2 Caching for 60X CPU Accesses to System Memory

60X CPU reads or writes of system memory are serviced by the 650 Bridge unless L2_CLAIM#
is asserted (with L2_PRESENT# asserted) on the second CPU clock after the assertion of TS#
(transaction start) by the 60X CPU. When the 654 Controller senses L2_CLAIM# asserted, it
drops the 650 Bridge completely out of the servicing of the transaction, and the L2 cache takes
over driving the data, AACK#, and TA# lines to complete the cycle to the 60X CPU.

The L2_CLAIM# signal must be held asserted by the L2 cache throughout the remainder of the.
memory transaction, until the L2 asserts AACK# and TA# at the end of the transaction. The L2
Cache can assert AACK# one clock prior to the final TA# or during the same clock of the final TA#.

The L2_CLAIM# signal can be asserted before the second CPU clock after TS# is asserted by
the 60X CPU, but the 650 Bridge only samples the signal on the second CPU clock.

101

The 650 Bridge Chip Set

5.7.2 Cache Snooping for PCI to System Memory Accesses

On PCI to memory cycles, the 654 Controller masters the 60X bus to drive the required snoop
cycles to the 60X and L2. During PCI to system memory cycles, the 60X CPU and the L2 cache
assert ARTRY# (rather than L2_CLAIM#) for a cache hit. The 654 Controller drives AACK# active
one CPU bus clock after it asserts TS# and then samples ARTRY# the next CPU bus clock.

To execute a snoop cycle, the 654 Controller drives the following 60X CPU bus control signals:

» TSIZ[0:2] (transfer size) is set to binary 100 (four bytes or one word).

e TT[0:3] (transfer type) is setto 0101b for snooping a read to system memory and to 0001b
for snooping a write to system memory.

« TBST# is deasserted

5.7.2.1 Restoring ARTRY#

If the setup bit ARSTR is set to one when the 654 Controller samples ARTRY# active on the se-
cond clock after TS#, the 654 Controller drives ARTRY# inactive the second clock after AACK#
is inactive and then tri-states its buffer. This is required because neither the L2 nor the 60X can
restore ARTRY# since they both can be driving it and one is a 3.3V or 3.6V part and the other can
be a 5.0V part. If ARSTR is not set, the device that asserts ARTRY# must deassert ARTRY# one
clock after AACK# is asserted.

5.7.2.2 Arbitration on Cache Hits

The 654 Controller samples L2_CACHE_REQ# and CPU_REQ# the clock after ARTRY# is as-
serted by either the 60X or the L2 or both. If only one request is active, the 654 Controller grants
the bus to that requester (or refresh) before granting the bus to another master.

If both the 60X and L2 bus request lines are active, the 654 Controller grants the bus to the 60X
first. If after the end of the cycle, the L2_CACHE_REQ# is still active, then bus mastership is
granted to the L2. (A well-behaved write-back L2 updates during the 60X write and drops its bus
request.)

5.7.3 Error Checking for the L2 Cache

L2 cache designs store 64 data bits plus the 8 parity bits from the 60X CPU bus. When the L2
cache supplies data, it asserts both the 64 data bits and the 8 parity bits on the CPU bus. The
650 Bridge uses the DPE# signal from the 60X CPU to determine if there has been a parity error
in the data supplied by the L2 cache.

The 654 Controller samples DPE# from the 60X CPU two clocks after each TA# is asserted by
the L2 (L2_CLAIM# was asserted) to determine if the L2 data has good parity. If the 654 Controller
samples DPE# asserted, TEA# is asserted if the cycle is still in progress on the bus. (If DPE#
occurs after the cycle completes, the 654 asserts INT_CPU#.)

5.74 Additional L2 Cache Information

‘There is an exception to snooping the 60X CPU bus on every PCIl to memory cycle. It occurs dur-
ing a burst transaction when the PCI access is the most-significant word within a double-word
boundary of system memory. A snoop is not necessary in this case because the cache sector has
already been snooped by the low-order word within the double-word boundary.

The 654 Controller does not assert TA# during snoop cycles because these cycles are being run
only to snoop the 60X CPU and L2 cache for addresses that a PCI master is running to system
memory.

102

The 650 Bridge Chip Set

A write-back L2 cache can execute 32-byte burst read or write cycles on the 60X CPU bus in the
same manner as the 60X. The 654 Controller grants permission to the L2 cache to master the
bus (L2_CACHE_GNT# is asserted) before the L2 cache can initiate a 60X cycle with TS#.

5.75 Example of a PCI to Memory Read Transaction With Cache Hit

The PCI to memory read transaction shown in Figure 5-20 is identical to the one shown in
Figure 4—15 up to PCI_CLK 2. To signal a cache hit, either the L1 or L2 cache asserts ARTRY#
sothat the 654 Controller samples it asserted on PCI_CLK 3. At this point, the 654 Controlier gen-
erates a PCl target retry, shuts down the memory controller, and begins an arbiter switch.

The 654 Controller generates a PCI target retry by asserting STOP# on PCI_CLK 3 (DEVSEL#
remains asserted from PCI_CLK 2). On PCI_CLK 4, the 654 Controller negates DEVSEL# and
STOP# (TRDY# was not yet asserted). A well behaved PCl bus master will also remove FRAME#
and IRDY# by PCI_CLK 4. The 654 Controller also negates PCI_OE# on PCI_CLK 4 to disable
the PCI_AD bus drivers in the 653 Buffer.

To shut down the memory controller, the 654 negates MEM_DATA_SEL# on PCI_CLK 4.

During PCI to memory write transactions with page hit and cache hit, WE# and MEM_DATA_OE#
are negated on PCI_CLK 3, before the CAS# access sequence begins. During PCl to memory
write transactions with page miss and cache hit, RAS# and RASHI/CASLO are driven high on
the CPU_CLK foIIowing PCIl_CLK 2—a cache hit on PCI_CLK 3 causes them to be left high. This
also forces a page miss on the next memory access.

To begin the arbiter switch, the 654 Controller removes the grant from the PCI bus master by
PCI_CLK 4. Meanwhile, the cache that signaled a cache hit (L1 or L2 or both) asserts its bus re-
quest signal. On the CPU_CLK following PCI_CLK 5, the arbiter grants the bus to the requestmg
cache.

Since the current bus master is losing the bus grant, PCI_SEL# and CPU_ADDR_OE# are driven
high and AACK# is tri-stated on PCI_CLK 5.

The following notes refer to Figure 5-20:

1. These signals are sourced by the responding cache, L1 or L2.

2. During PCI to memory transactions during which there is a cache hit by the L1 or L2 -
cache, the responding cache must assert ARTRY# on the CPU_CLK after it samples
TS# active, or the cache hit condition will not be recognized.

103

The 650 Bridge Chip Set

PCI_CLK (C)
C/BE[3:0}# (C)
PCL_AD (C) [PCI]
 ERAME# (C)
IRDY# (C)

TRDY# (C)

DEVSEL# (C)

STOP#

PCI_SEL# (C)
ADDRHI/DATALO (C)
MEM_DATA_SEL# (C)
MEM_PAGE_HIT# (C)
CPU_CLK (C)
BURST_CLK# (C)
RASHI/CASLO (C)
MEM_ADDR (B)
RAS# (C)

CASH# (C)
'MEM_DATA (B)
PCL_OE# (C)

PCLAD (B) [B]
CPU_ADDR_OE# (C)
CPU_ADDR (B)
 TS#EO)[C
AACK# (C) [C]
ARTRY# (C) [Lx]

PCI_GNT# (C) (1)
Lx_REQ# (C) (1)

Lx_GNT# (C) (1)
TS# (C) [Lx]

. ! 2 3 4 3 6
I\ / \ / __/ \ /S \
—GdEs 2 j I Z
D\ +_[single or burst : / N

) [— ' | e

| | | ' | A

T T\ \ ' 3 Y AR

N W— A
I . ;—\ I“Iit [: , I

13 I [| [] [1 [- x 1 | 1 I

'3S L ! .) I ! !) i ! L ! 1

T . —

1 | 1 i |‘ | T | | : | ' /_-T_l |

I. XShicop Address ' ———

[' » ' t _l__/ | 1 [! | ! ;l_l 1

v 1 T T \ | / Shoop T T T T ;—_‘ 1

! ! ! ! ! | I‘Illt I ! ! ! . !) |

' ' ' . SR ' ! ' Arbiter switch

! t) | ' \ [\ | LX Wmte Bapk | —re—
T l T / ' !) ! 1

1 | ' ' 1 \ | \ ' | 1 ' ' 1 ! /-I—_

! | : 1 1 1 ! | ‘ i : i—_-:'—/ '

! 1 v 1 v 1 ' 1 " 1 ! | ' \—l—/_

Figure 5-20. PCI to Memory Read — Cache Hit Timing Diagram

104

The 650 Bridge Chip Set

5.7.6 Example of a CPU to Memory Read Transfer With Page Miss and L2 Cache Hit
The single-beat CPU to memory read transfer shown in Figure 5-21 is typical of a CPU to memory .
read with page miss during cycles 0 through 2. By cycle 3 however, the L2 has driven L2_CLAIM#
active. During cycle 3, the example L2 drives the requested data onto the 60X data bus, and as-

~ serts TA# and AACK# for one cycle, completing the transfer. If this was a burst transfer, the exam-
ple L2 would have kept TA# active for three more cycles while delivering three more beats of data.

Since a page miss occured on this transfer, RAS# and RASHI/CASLO were sent high in cycle
3. These two signals are left high. The 654 Controller leaves AACK# and TA# tri-stated, and does
not assert CPU_DATA_OE#. ,

0, 1, 2 . 3 . 4 . 5
CPUCLK(©O)/ _'/ _ ./ \ [\ /
CPU_GNT#(©)) T\, [—))
TBST# (C) ' _____)———/ - ' N———
CPU_ADDR (C), :)——(:vahd)——:
™SHO T —— [, —
L2_CLAIM# [L2] (C) - - ' - [
AACK# [L2] (C) | ' N e S
TA# [L2] (€)' T — ' I\ —
CPU_DATA [L2] (B) - - —
CPU_ADDR_SEL# (C) - S e
MEM_PAGE_HIT# (C) ' ' T s\
RASHI/CASLO (C) | o
MEM_ADDR (B)' WZ77771 X
RAS# (C). - : — -
CASH(©)' - : :

MEM_DATA_SEL# (C)
MEM_DATA (B) 3S

CPU_DATA_OE# (C)'

B/LE_PAR_EN#, : . , —
654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

Figure 5-21. CPU to Memory Read — Page Miss, Cache Hit Timing Diagram

105

The 650 Bridge Chip Set

5.8 The System Error Handler

Table 5-23 summarizes the 654 Controller responses to system errors. ‘The 654 Controller as-
serts TT_ERR#, DPE_ERR#, MEM_PAR_ERR#, or ALL_ONES_SEL# in response to an illegal
operation or error condition.

~ The 654 Controller asserts TT_ERR# to report transfer type errors. In response to an error ad-
dress read transaction from the 60X CPU (a load word instruction in the range 3G — 8M to 3G with
CPU_ADDR][19] equal to 0), the 654 asserts ERR_ADDR_SEL#to read out the transfer type error
address. TT_ERR# is asserted by the 654 until the processor performs an error address read
transaction.

The 654 Controller asserts MEM_: PAR_ERR# to report memory parity errors. In response to an
error address read transaction from the 60X CPU, the 654 asserts ERR_ADDR_SEL# to read
out the parity error address. MEM_PAR_ERR# is asserted by the 654 until the processor per-
forms an error address read transaction.

The 654 Controller does not report an out-of-bounds memory access from the processor as an
error. (Memory reads return 64 one-bits.) The 654 stops out-of-bounds PCl to memory cycles with
a target abort protocol.

5.8.1 TEA# Error Reporting

The 654 Controller asserts TEA# (transfer error acknowledge) instead of TA# (transfer acknowl-
edge) when various conditions are detected. TEA# can be masked by the MASK_TEA# signal.
When MASK_TEA# is asserted, TA# overrides TEA# in all circumstances except the PIO cycle
error (when XATS# is asserted). MASK_TEA# can be useful for debugging system errors.

TEA#is asserted to terminate a 60X CPU cycle instead of TA# under the following circumstances:

» Onillegal transfer type errors including PIO cycles (XATS# is asserted)

» DPE# data parity errors from the L2 cache—if the error is on the first beat of a burst
(INT_CPU# is used for the second, third, and fourth beats. See Section 5.8.2)

* Memory parity errors reported by the 653 Buffer on CPU accesses to system memory
» PCIl target aborts
» PCI target timeouts—no response within 60us of PCI_DEVSEL# with PCI at 33MHz

* No PCI_DEVSEL# from a PCI target within seven PCI clocks from the assertion of
PCI_FRAME# (except on PCI configuration cycles) '

« lllegal transfer sizes and alignments of 60X CPU cycles
* As the response to a PCl Interrupt acknowledge cycle from the 60X CPU following any
of the conditions in Section 5.8.2 '

5.8.2 Interrupt Reporting
The 654 Controller asserts the interrupt signal, INT_CPU#, to the 60X CPU to initiate a cycle so
~ that TEA# can be reported based on the following circumstances:

» When DPE# is asserted by the CPU (two clocks after TA#) on the second, third, or fourth
beats of a CPU burst read of an L2 cache.

« Memory parity error on PCl bus mastered cycle. (All subsequent PCI accesses to
memory are target aborted.)

+ Non-maskable interrupt from the 1/O bridge.

106

The 650 Bridge Chip Set

INT_CPU# is asserted until the processor initiates a read transaction with the PCI interrupt ac- '
knowledge address. ALL_ONES_SEL# is driven during the interrupt acknowledge cycle, which
causes all one-bits to be read as the address, along with TEA# (if MASK_TEA# is deasserted).

Table 5-23. System Error Reporting

3-Byte transfer with A29-31 = 110, 111

4-Byte transfer with
A29-31 =101, 110, 111

5, 6, or 7-Byte transfer

8-Byte transfer with A29-31 not = 000

654 Controller Error Status
Activity Description Response Signals Asserted
601-Initiated Memory Out-of-Range Read TA#, ALL_ONES_SEL# none
Transactions - -
Memory Out-of-Range Write TA# (no write occurs) none
2-Byte transfer with A29-31 = 111 TEA# TT_ERR#

Parity Error from 653 Buffer

TEA#

MEM_PAR_ERR#

Processor/L2 DPE#

TEA# (or INT_CPU#)

DPE_ERR# (pulsed)

PIO Cycle: XATS# asserted

TEA#

TT_ERR#

ecowx TA# none
eciwx TA#, ALL_ONES_SEL# none
601 to PCI Master Abort (except Config.) TEA#, TT_ERR#
ALL_ONES_SEL# (read)
Configuration R/W Master Abort TA#, none
ALL_ONES_SEL# (read)
Target Abort TEA# TT_ERR#
Target Retry ARTRY# none
PClto Memory | Master Abort none none
Memory out-of-bounds Target abort, INT_CPU# TT_ERR#

Parity Error

Drive PCI_PAR invalid on
current cycle. Target abort
all following cycles until a
read of the error address
register, INT_CPU#.

MEM_PAR_ERR#

NMI Non-maskable interrupt INT_CPU# none

Interrupt Due to above error conditions and NMI | TEA# no change
Acknowledge

Cycle

Read Error Due to above error conditions TA#, ERR_ADDR_SEL# Deassert TT_ERR# and
Address Latch MEM_PAR_ERR#

107

The 650 Bridge Chip Set

5.8.3 Saving Memory Parity Error Addresses

Memory parity generation and checking is supported within the 653 Buffer and controlled by the
654 Controller in conjunction with transfer type errors as shown in Figure 5-22. The 653 Buffer
has an internal register that stores the address on memory parity errors. Each processor or PCl
to memory access latches the address onto the error address register within the 653 Buffer as
long as the signal L_ERR_ADDR# is asserted. On a memory access with a parity error from the
653 Bridge (MEM_PAR_GOOD deasserted), MEM_PAR_ERR# is asserted low to inhibit latching
new addresses into the 653 Buffer error address register by means of the support gate shown

in Figure 5-22.
TT_ERR# L_ERR_ADDR# (To 653)
MEM_PAR_ERR# - i
(From 654)

Figure 5-22. Error Address External Support Gate

MEM_PAR_ERR# remains asserted until the end of the cycle that the 60X CPU accesses the
contents of the 653 Buffer error address register. The 654 Controller asserts ERR_ADDR_SEL#
to the 653 Buffer when the 60X CPU reads the error address register. The stored error address
is then read back to the CPU.

The 653 Buffer asserts the error address register on both words of the double-word 60X CPU data
bus so that reads of either word get the error address. At the end of the error address read cycle,
MEM_PAR_ERR#, TT_ERR# and ERR_ADDR_SEL# are all deasserted.

The 654 Controller does not report an out-of-bounds memory access from the processor, but it
does stop an out-of-bounds PCl to system memory cycle with the target abort protocol.

5.84 Data Parity Error (DPE_ERR#)
The 654 Controller asserts DPE_ERR# in response to a data parity error (DPE#) from an L2 cache
access. DPE_ERR# is asserted for two 60X CPU bus clocks for each data parity error detected.

5.8.5 Transfer Type Error
The 654 Controller asserts TT_ERR# to report transfer type errors. TT_ERR# is asserted until
the 60X CPU accesses the error address register within the 653 Buffer.

Transfer type error (TT_ERR#) cycles include:

¢ PIO cycles—XATS# asserted (not masked by MASK_TEA#)
* A 60X CPU transfer size of five, six, or seven bytes to system memory or PCI

» AB0XCPU transfer size of two, three, or four bytes crossing a word boundary when target
is PCI or system memory

¢ A 60X CPU transfer size of five to eight bytes when target is PCI

¢ A 60X CPU burst when the target is PCI

¢ A PCl target abort

¢ No PCI_DEVSEL# from target—except on PCI configuration cycles

+ A PCl target system time-out—if no response 60us (33MHz PCI) after PCI_DEVSEL#

108

The 650 Bridge Chip Set

The 654 Controller does not report an out-of-bounds memory access from a PCl master to system
memory, but it does stop an out-of-bounds PCI cycle to system memory with target abort protocol.

On detection of a transfer-type error, the 654 Controiler asserts TT_ERR# to inhibit latching new
addresses into the 653 Buffer error address register (see Figure 5-22). TT_ERR# remains as-
serted until the end of the cycle when the 60X CPU reads the error address register.

The 654 Controller asserts ERR_ADDR_SEL# to the 653 Buffer when the 60X CPU reads the
error address register. The 653 Buffer asserts the error address register on both words of the 60X
CPU data bus. At the end of the error address read cycle, TT_ERR# and ERR_ADDR_SEL# are
deasserted.

5.8.6 lllegal PCI Operations
If the PCI bus runs a cycle to an out-of-bounds system memory address, the 654 Controller uses
the target abort protocol to stop the PCI cycle.

5.8.7 Non-Maskable Interrupt (NMI_REQ)

The 654 Controller asserts INT_CPU# in response to NMI_REQ. When the 60X CPU drives a
PCl interrupt acknowledge transaction back in response to INT_CPU#, the 654 Controller im-
mediately asserts TEA# and 64 one-bits on the CPU data bus without generating a PCl interrupt
acknowledge transaction. An interrupt acknowledge cycle that is immediately terminated by
TEA# is the result of one of the conditions listed in Section 5.8.2.

109

The 650 Bridge Chip Set

110

Section 6
Electrical Characteristics

Unless otherwise noted, all specifications in this section apply to both the 653 Buffer and to the
654 Controller. '

6.1 Absolute Maximum Ratings

Stresses in excess of those listed in Table 6—1 may damage and/or decrease the reliability of the
650 Bridge. Additionally, stressing the 650 Bridge in excess of the conditions listed as Recom-
mended Operating Conditions is neither intended nor supported. All voltages are referenced to
ground (Vgs) ‘

Table 6—1. Absolute Maximum Ratings, 650 Bridge

Symbol |Parameter Min | Max [Units
Tjst Junction Temperature, Storage -40 125 |degC
Tip Junction Temperature, Power Applied -25 100 |degC
Vbp Supply Voltage 2.7 3.9 \

Vi DC Voltage Applied to Any Input : -5 5.5 v

Vo DC Voltage Applied to Any Output (Output Tri-stated) - -5 55 \
ESD Withstand 2.2 — kv
Latchup current 100 —_— mA

111

The 650 Bridge Chip Set

6.2 Recommended Operating Conditions
This section lists the conditions under which the 650 Bridge is intended to operate.

6.2.1 Signal And Temperature Ranges
Table 6-2. Recommended Operating Conditions, 650 Bridge

Symbol | Parameter Min | Max Units Notes
Vpp | Supply Voltage -1 30138 v
\ DC Voltage Applied to Any Input Pin -5155 v (1)
Vo DC Voltage Applied to Any Output Pin -5 |55 v (2)
Top Junction Temperature, Operating 10 | 85 deg C

Notes For Table 6-2:

1) Allowed range of DC voltage applied to any I/O pin in input mode or to any input pin. The pins
shown as Type = PCI may conduct excess current if forced above Vpp + 1.5v.

2) Allowed range of DC voltage applied to any output pin while the output is tri-stated. The pins
shown as Type = PCI may conduct excess current if forced above Vpp + 1.5v.

6.2.2 Power Dissipation

Neither the 653 Buffer nor the 654 Controller are expected to require a heat sink, when used in
the manner described in this manual. However, thermal management is-a complex discipline, and
the application is the responsibility of the designer.

Table 6-3 lists the power supply current and power dissipation under various conditions for the
653 Buffer and the 654 Controller.

Table 6-3. Power Dissipation (See Note 1)

Parameter Current Power |Notes
(mA) (mW)

Typ | Max | Typ | Max | Notes
Power Supply Current — System quiescent. 653 143.7| — | 157 | — (2)
654 [80| — | 29 | — 2
Power Supply Current — Memory accesses with 17653 [480| — [173 | — 3)
PCl bus idle. 654 | 19 | — 68 | — @)
Power Supply Current — Worst case activity. 653 | 59 | 118 (212 | 425 | (4)
' 654 | 63 | 126 [227 | 454 | (4)

Notes for Table 6-3: :

1) 60X CPU bus running at 66MHz, PCI bus running at 33MHz and 3.3v, L2 Cache installed, 5
PClloads, 8 DRAM loads, 653 Buffer and 654 Controller at Vpp = 3.6v. This data assumes that
the 650 Bridge is connected in a manner similar to that shown in the example system.

2) 60X CPU executing from L1 cache, DRAM refresh enabled, PCI bus idle.

3) 60X CPU executing repeated burst memory transfers. .

112

The 650 Bridge Chip Set

4) A mix of instruction fetches and PCI accesses with addresses broadcast to the CPU bus for
snooping

5) The 653 Buffer is supplied in a 304 pin Ceramic (C4) Quad Flat Pack

6) The 654 Controller is supplied in a 160 pin Plastic Quad Flat Pack

6.2.3 Thermal Characteristics

Table 6—4 shows typical thermal resistances associated with the 653 Buffer and the 654 Control-
ler. Each row shows data for a given air flow condition at the chip package. The row titled Convec-
tion shows data for the chip package in free air with no forced air cooling, with the package
mounted horizontally on the upper surface of a PCB. The other rows show data for a variety of
forced air flow conditions. The values shown do not include a significant amount of heat flow
through the pins of the chip, either to or from the PCB.

From Table 63, the worst case power dissipation of either the 653 Buffer or the 654 Controller
is less than .5 W. Using Ty(max) = 85 deg C, and T = 50 deg C;

Ty—Ta 86C-50C
B®j-a (max) = = = 70 deg C/W
Pd S5W

Examination of Table 6—4 shows that neither the 653 Buffer or the 654 Controller require a heat
sink, even with worst case power dissipation, to maintain a junction temperature of less than 85
deg C in free air at 50 deg C ambient..

Table 6-4. Typical Thermal Resistance, Junction to Ambient, No Heat Sink

Airflow Oj—a, 653 Buffer Oj-a, 654 Controller Units
Convection 334 ' 54 deg C/W
.25 M/s (50fpm) 29.7 47 deg C/W
.5 M/s (100fpm) 26.8 : 44 ' deg C/W
1 M/s (200fpm) 24.0 40 | deg C/W

113

The 650 Bridge Chip Set

6.3 Common Characteristics
The specifications shown in Table 6-5 are common to both the 653 Buffer and the 654 Controller.

Table 6-5. 650 Bridge Common Characteristiés (See Note 1)

Symbol | Parameter Type | Min | Max | Units | Notes
A Input Low Voltage All — .8 v 2
Vih__ | Input High Voltage Al |20 = | v B
I Input Leakage Current All — 1 uA (2)
VoL |Output Low Voltage TTL | — | .40 v 3

B PCI | — | 55| v @)

Von | Output High Voltage TTL |24 | — | v | @
' PCl | 24 | — v (3)

loss | Output Tri-state Leakage Current TTL | — | 10 uA (3)
' ' Pcl [— [70 | vA | (3

Notes for Table 6-5:

1) Over Recommended Operating Conditions.

2) Values apply to each I/O pin in input mode and to each input pin.
3) Values apply to each output pin and to each I/O pin in output mode.

6.4 Package/Pin Electrical Characteristics

6.4.1

653 Buffer Model

The electrical model of the effects of package and pin parasitic effects on the 653 Buffer is shown
in Figure 6—1. The ranges of values shown are nominal only, are not guaranteed, and vary from
pin to pin. The lower values are typical of pins that are located on the side of the package and
which are closest to the chip. The higher values are typical of corner pins. Note that the C1 capaci-
tance is the value shown for DPC (Die Pad Capacitance) in Table 6—6 (which is due to the I/O
book). C2 represents a distributed capacitance, and L1 represents a lumped loop inductance
which includes the effects of inductance from the driver book to the power supply pins.

Chi
Pin

V

Die
Pad R1 L1
| — 1
| E— —
.7q 10 .8Q 18nH to 24nH
—_— C1
Die Pad
Capacitance

— C2

2.7pfto
V

3.7pf

Figure 6-1. 653 Package/Pin Electrical Model

114

The 650 Bridge Chip Set

6.4.2 654 Controller Model

The electrical model of the effects of package and pin parasitic effects on the 654 Controlier is
shown in Figure 6-2. The values shown are nominal values only, are not guaranteed, and vary
from pin to pin. Values lower than nominal are typical of pins located on the side of the package
and which are closest to the chip. Values higher than nominal are typical of corner pins. Typical
ranges are proportionally similar to those shown for the 653. Note that the total output capacitance
of the die pad is derived by adding the value shown in Figure 6—2 (which is due to the package)
to the value shown for DPC (Die Pad Capacitance) in Table 6—7 (which is due to the I/O book).

Die Wire Bond Lead Frame Chip
Pad R L1 R2 L2 Pin
L___F—1 il | { ;

.75Q 3nH 750 17nH

p— 0) 074 —_—C3
.39pF 33pF 1.9pF

\V/ \V/ A/

Figure 6-2. 654 Package/Pin Electrical Model

115

The 650 Bridge Chip Set

6.5 653 Buffer DC Characteristics By Signal

Table 6-6. 653 Buffer DC Characteristics By Sighal (See Note 1)

Signal Pin | 1/O Book, Type | P/L loL loH DPC (4)
Pad (2) (3) (2) | (mA) | (mA) | Min Max
ADDRHI/DATALO 75 I CBJD,BO TTL A — —_ .80 .95
ALL_ONES_SEL# 10 I CBSX,B0 TTL A — —_ .80 .95
BURST_CLK# 73 I CBJD,BO TTL A — — .80 .95
CONTIG_IO 34 I CBJE,BO TTL F _ — .80 95
CPU_ADDR I/0 | CBNS,11 TTL c 6 4 3.4 4.0
[0:2, 21:22]
CPU_ADDR I/l0 | CBNS,10 TTL C 12 8 3.7 4.3
[12, 23:31] :
CPU_ADDR I/0 | CBNS,11 TTL B 6 4 29 35
[3:11, 13:20]
CPU_ADDR_OE# 159 I CBJE,BO TTL F — — .80 .95
CPU_ADDR_SEL# 158 I CBJE,BO TTL F — — .80 .95
CPU_DATA [0:63] I/0 | CBNS,10 TTL B 12 8 3.2 3.8
CPU_DATA_OE# 192 I CBJE,BO TTL F — — .80 .95
CPU_DATA_SEL# 168 I CBJD,B0 TTL A — — .80 .95
DRAMX9HI/X10LO 65 I CBJD,B0 TTL A — — .80 .95
ERR_ADDR_SEL# 223 I CBSZ,B0 TTL A — — .80 .95
GND (35 pins) —_ —_ —_ — — — — —
L_ERR_ADDR# 6 I CBSY,B0 TTL A —_ _ .80 .95
L_PCI_DATA# 67 I CBJD,BO TTL A — — .80 .95
LE_MODE_SEL# 262 [CBJE,BO TTL F — - .80 .95
MEM_ADDR [11:0] 0 CBNO,JO | TTL | C 12 8 35 4.1
MEM_ADDRO_B 247 0 CBNO,10 TTL c 12 8 3.5 4.1
MEM_DATA [63:0] I/0 | CBNS,10 TTL B 12 8 3.2 3.8
MEM_DATA_OE# 7 1 CBJE,BO TTL F _ — .80 95
MEM_DATA_SEL# 72 | CBJD,BO TTL A — — .80 .95
MEM_PAGE_HIT# 64 0 CBNO,11 TTL c 6 4 3.2 3.8
MEM_PAR [7:0] /O | CBNS,10 TTL c 12 8 3.7 4.3
MEM_PAR_GOOD 71 o} CBNQ,10 TTL c 12 8 35 4.1
NO_TRANS 43 I CBJD,BO TTL A — — .80 .95
PCI_AD [31:0] O | CBUK,10 PCI B 6 6 3.1 37

116

The 650 Bridge Chip Set

Table 6-6. 653 Buffer DC Characteristics By Signal (See Note 1) (Continued)

Signal Pin | I/O Book, | Type | P/L | loL loH DPC (4)
Pad (2) 3) (2) | (mA) | (mA) | Min | Max
PCI_AD_PAR 63 O | cBNOj2 | TTL [4 4 29 35
PCI_CLK 70 I CBJD,B0 TTL A — — .80 .95
PCI_OE# 11 I CBJE,BO TTL F — - .80 .95
PCI_SEL# 74 ! CBJD,BO TTL A — — .80 .95
RASHI/CASLO 203 i CBJD,BO TTL A — — .80 .95
REFRESH_SEL# 76 I CBJD,BO TTL A —_ — .80 .95
ROM_SEL# 66 [CBJE,BO TTL F — — .80 95
TEST# 222 I cBswpB3 | TTL A — — .80 .95
TSIZ [0:2] I CBJD,BO TTL A — — .80 .95
Vbp (27 pins) Vbb — — — — — — —
Notes for Table 6-6:

1) Values apply over recommended operating conditions.

2) The Book, Pad, and P/L (performance level) define the I/0 pin driver/receiver type, characteris-
tics, and speed. More information on these items is contained in the IBM CMOS4LP Logic Prod-
ucts Databook (8/93), Document Number ADCC4LDBU—-01.

3) See Section 6.3, Common Characteristics.

4) Die Pad Capacitance. The equivalent capacitance to ground of the die pad attachment as a
function of the I/O book circuitry. To model the electrical path from the I/O book to the circuit board
pad, see Section 6.4.

117

The 650 Bridge Chip Set

6.6 654 Controller DC Characteristics By Signal
Table 6-7. 654 Controller DC Characteristics By Signal
Signal Pin | VO | Book, |Type |P/L | loL | lon DPC (4) POR
' Pad (3) | (2) | (3) |(mA) |(mA) | Min | Max | (5)

Processor Signals

AACK# 113 | /O |CBND,10 | TTL c 24 18 3.6 4.4
ARTRY# 112 | ¥O | CBND,10 | TTL c 24 18 3.6 4.4 Z
CPU_ADDR | | CBJEBO | TTL — — .80 .95

[0:8, 19, 29-31]

CPU_GNT# 133 O |CBMZ13 | TTL C 24 18 3.6 4.4 0
CPU_REQ# 126 | 1 |CBJEBO | TTL F — — .80 .95 1
DPE# 139 | CBJE,BO | TTL F — —_— .80 .95 1
INT_CPU# 83 | O |CBNQ,17 | TTL B 8 6 2.7 3.3 1
MASK_TEA# 77 I | CBJE,BO | TTL F — — .80 .95 X
SRESET_CPU# 37 O |CBNQ,16 | TTL B 8 6 2.7 3.3 1
TA# 134 | /O | CBND,10 | TTL o} 24 18 3.6 4.4 z
TBST# 127 | | |CBNU,216 | TTL B — — 3.7 43 1
TEA# 135 | O [CBMZ13 | TTL c 24 18 3.6 4.4 Z
TS# 132 | /0 | CBND,10 | TTL c 24 18 3.6 4.4 Z
TSiZ[0:2] O | CBNU,16 | TTL B 6 2.9 35 z
TT[0,2,3] I/0 | CBNU,16 | TTL B 8 6 2.9 35 z
TT1] 122 | 110 | CBNU,16 | TTL c 8 6 3.7 4.3 z
XATS# 125 | | |CBJEBO | TTL F — — .80 .95 1
L2 Cache Signals

L2_ CACHE_GNT# | 114 | © CBNQ,BO TTL o] 4 4 29 35 1
L2 CACHE_REQ# [109 | | |CBJEBO | TTL F — — .80 .95 1
L2_CLAIM# 124 | CBJE,BO | TTL F — — .80 .95 1
L2_PRESENT# 82 | CBJE,BO | TTL F — — .80 .95 1
PCI Sideband Signals (Incident Wave)

PCI_CLK 129 | CBUM,10 | PCI B — — 3.1 3.7 RUN
PCI_GNTI[1:5]# O |CBNQ27 | TTL 8 6 3.5 4.1 1
PCI_REQ[1:5]# | | CBUM,10 | PCI B — — 3.1 37 1
PCI Bus Signals (Reflected Wave)

PCI_C/BE[3:0}# I/0 | CBUM,10 [PCI 6 8 3.1 37
PCI_DEVSEL# | 28 /10 | CBUM,10 | PCI B 3.1 3.7

118

The 650 Bridge Chip Set

Table 6-7. 654 Controlier DC Characteristics By Signal (Continued)

Signal Pin | VO | Book, | Type [P/L | loL | lon DPC(4) |POR
Pad (3) | (2) | (3) [(mA) [(mA) | Min | Max | (5)

PCI_FRAME# 29 /0 | CBUM,10 | PCI B 6 6 3.1 3.7 Z
PCI_IRDY# 52 IO | CBUM,10 | PCI B 6 6 3.1 3.7 V4
PCI_PAR 53 O CBUI,10 PCI c 6 6 2.8 .34 X
PCI_STOP# 16 /0 | CBUM,10 | PCI B 6 6 3.1 3.7 z
PCI_TRDY# 27 /0 | CBUM,10 | PCI B 6 6 3.1 3.7 z
/0 Bus and I/O Bridge Signals
I0_BRDG_GNT# 7 O |CBNQ,17 | TTL C 8 6 3.5 41 1
I0_BRDG_HOLD# 45 I CBUM,10 | PCI B — — 3.1 3.7 1
10_BRDG_IRQ 32 | CBJE,BO | TTL F — - .80 .95 0
10_BRDG_REQ# 39 I- | CBUM,10 | PCI B — — 3.1 37 1
ISA_MASTER# 79 | CBJE,BO | TTL F —_ — .80 .95 X
NMI_IRQ 12 ! CBJEBO [TTL | F — | — .80 .95
Test Signals
Dl# 117 | CBJE,BO | TTL B —_— — .80 .95 1
RI# 75 | CBJE,BO | TTL E — — .80 .95 1
TEST# 136 I CBJE,BO | TTL F — — .80 .95 1
DRAM Memory Subsystem Signals
BE_PAR_EN# 84 O |CBNQ,17 | TTL B 8 6 2.7 33 1
CASI[7:0}# /0 | CBNU,10 | TTL c 12 8 3.7 4.3 1
LE_PAR_EN# 85 O |CBNQ,17 | TTL B 8 6 2.7 3.3 1
RAS[7:0}# O | CBNQ,13 | TTL C 12 8 35 41 1
WE[1:0}# o |cBNQi3 | TTL C 12 8 35 4.1 1
Boot ROM Device Signals
ROM_CS# 74 O |CBNQ,17 | TTL B 8 6 2.7 3.3 1
ROM_OE# 73 O |CBNQ,17 | TTL B 8 6 27 3.3 1
ROM_WE# 72 O |CBNQ,17 | TTL 8 6 27 | 83 1
653 Buffer Signals
ADDRHI/DATALO 147 | O |CBNQ,15| TTL o] 4 4 29 35 1
ALL_ONES_SEL# 2 O |CBNQ,i5| TTL o] 4 4 2.9 35 1
BURST_CLK# 8 O | CBNQ,15 | ;TTL Cc 4 4 2.9 35. 1
CPU_ADDR_OE# 144 | O |CBNQ,15| TTL C 4 4 29 3.5 1

119

The 650 Bridge Chip Set

Table 6-7. 654 Controller DC Characteristics By Signal (Continued) .

Signal Pin | VO | Book, |Type [P/L}| loL | loH DPC (4) POR
Pad (3) | (2) | (3) [(mA) | (mA) | Min | Max | (5)

CPU_ADDR_SEL# | 159 O |CBNQ,15 | TTL C 4 4 29 3.5 1
CPU_DATA_OE# 145 | O |CBNQ,15| TTL C 4 4 29 3.5 1
CPU_DATA_SEL# 158 O |CBNQ,15| TTL C 4 4 2.9 3.5 1
DPE_ERR# 43 O | CBNQ,17 | TTL B 8 6 2.7 3.3 1
ERR_ADDR_SEL# | 76 O | CBNQ,17 | TTL B 8 6 2.7 3.3 1
L_PCI_DATA# 146 O |CBNQ,15| TTL .| C 4 4 2.9 3.5 1
LE_MODE_SEL# 92 O | CBNQ,<17 | TTL B 8 6 27 3.3 1
MEM_DATA_OE# 154 O |CBNQ,15| TTL C 4 4 2.9 3.5 1
MEM_DATA_SEL# | 153 O | CBNQ,15| TTL C 4 4 29 35 1
MEM_PAGE_HIT# | 149 | CBJE,BO | TTL F — — .80 .95 1
MEM_PAR_ERR# 42 O |CBNQ,17 | TTL B 8 6 27 3.3 1
MEM_PAR_GOOD | 155 | CBJE,BO | TTL F — —_ .80 .95 X
NO_TRANS 13 O |CBNQ15| TTL | C 4 4 ‘2.9 3.5 0
PCI_AD_PAR 152 | CBJE,BO | TTL F —_ — .80 .95 X
PCI_OE# 148 O | CBNQ,15 TTL C 4 4 2.9 3.5 1
PCI_SEL# 157 O |CBNQ,15 | TTL C 4 4 2.9 3.5 1
RASHI/CASLO 156 O |[CBNQ,15| TTL C 4 4 2.9 3.5 1
REFRESH_SEL# 9 O |CBNQ,15| TTL C 4 4 29 35 1
ROM_SEL# 14 O |CBNQ,15| TTL C 4 4 2.9 3.5 1
TT_ERR# 44 O |CBNQ,17 | TTL B 8 6 2.7 3.3 1
System Interface and Miscellaneous Signals
CPU_CLK 142 | CBJE,BO | TTL F — — .80 .95 RUN
LE_MODE_REQ# 150 | CBJE,BO | TTL F — — .80 .95 X
MC_SETUP# 46 | CBJEBO | TTL F — — .80 .95 1
REFRESH_REQ# 87 I CBJE,BO | TTL F — —_ .80 .95 1
RESET# 86 i CBJE,BO | TTL F — —_— .80 .95 —
SRESET_REQ# 89 i CBJE,BO | TTL F — — .80 .95 1

Notes for Table 6-7:

1) Values apply over recommended operating conditions.

2) See Section 6.3.

120

The 650 Bridge Chip Set

3) The Book, Pad, and P/L (performance level) define the I/O pin driver/receiver type, characteris-
tics, and speed. More information on these items is contained in the IBM CMOS4LP Logic Prod-
ucts Databook (8/93), Document Number ADCC4LDBU--01.

4) Die Pad Capacitance. The equivalent capacitance to ground of the die pad attachment as a
function of the I/0 book circuitry. To model! the electrical path from the I/O book to the circuit board
pad, see Section 6.4.

5) For inputs, this state must be held on the input during the inputs required interval of the POR
sequence (the letter X indicates a don’t care). For outputs, the 653 Buffer will drive this state onto
the output pin during the outputs valid interval of the POR sequence (the symbol Z indicates that
the output is tri-stated during POR). The 650 Bridge power on conditions are designed to be con-
sistent with conditions produced by properly functioning 60X CPU, PCl bus agents, L2 cache, and
other system components.

121

The 650 Bridge Chip Set

6.7 Output V—I Curves

6.7.1 PCI Local Bus Compatlble Drivers

Inputs and outputs (drives) in the PCI group have input/output characterlstlcs that comply with
the DC specifications of both the 3.3v and 5v signalling environments defined for PCI Local Bus
components in the PCI Local Bus Specification, Revision 2.0. These signals are identified in the
DC Characteristics Tables as type PCl.

The following tables show V-I curves for the PCI bus output drivers contained in the 650 Bridge
chipset. The curves labeled WC show driver characteristics of a worst case process variation de-
vice operating at 85 deg C with Vpp = 3v. The curves labeled BC show driver characteristics of
a best case process variation device operating at 10 deg C with Vpp = 3.6v. The curves labeled
NOM show driver characteristics of a nominal process device operating at 25 deg C with Vpp =
3.3v. ’

6.7.1.1 Pull Up Curves, PCI Drivers, P/L = A

4

L VOH

3k

: BC

o NOM

. wC

2F

1F

[Ion
0 10 20 30 40 50 60 70 80 90 100 120 140 160

Figure 6-3. Pull.Up Curves, PCI Drivers, P/L = A.

122

The 650 Bridge Chip Set

6.7.1.2 Pull Up Curves, PCI Drivers, PL=B

4
Von
3 BC
2
1
Ion
0 10 20 30 40 50 60 70 80 90 100 120 140 160
Figure 6—4. Pull Up Curves, PCI Drivers, P/L = B.
6.7.1.3 Pull Up Curves, PCl Drivers, P/IL=C
Ion

T | L " " 1 " " A N N I

0 10 20 30 40 50- 60 70 80 90 100 120 140 160 180 200

Figure 6-5. Pull Up Curves, PCI Drivers, P/L =C.

123

The 650 Bridge Chip Set

6.7.1.4 Pull Down Curves, PCI Drivers, P/L = A, B, and C
4

WG NOM BC

320

0 20 40 60 80 100 120l 160 200 240 280
oL

Figure 6-6. Pull Down Curves, PCI Drivers, P/L = A, B, and C.

6.7.2 TTL Driver Output Curves

Inputs and outputs (drives) in the TTL group have input/output characteristics that comply with
common TTL switching levels, as shown in Table 6-5. The following tables show V-I curves for
the TTL output drivers contained in the 650 Bridge chipset. The curves labeled WC show driver
characteristics of a worst case process variation device operating at 85 deg C with Vpp = 3v. The
curves labeled BC show driver characteristics of a best case process variation device operating
at 10 deg C with Vpp = 3.6v. The curves labeled NOM show driver characteristics of a nominal
process device operating at 25 deg C with Vpp = 3.3v.

124

The 650 Bridge Chip Set

6.7.2.1 Pull Down Curves, TTL Driver, lo. = 4mA, P/L = A

4r
- Vour

Lour

YR ST TN TN W SN Y W SN O SN S NUOT YU TN SH WY YT VOO S ST S |

0 10 20 30 40 50

Figure 6-7. Pull Down Curves, TTL Driver, lg. = 4mA,P/L=A

6.7.2.2 Pull Down Curves, TTL Driver, lo. = 4mA, P/L =B

4
Vour

Figure 6-8. Pull Down Curves, TTL Driver, lg_. = 4mA,P/L=B

125

The 650 Bridge Chip Set

6.7.2.3 Pull Down Curves, TTL Driver, lop. = 4mA,P/L=C
4

Vour

Figure 6-9. Pull Down Curves, TTL Driver, lg. = 4mA,P/L=C

6.7.2.4 Pull Up Curves, TTL Driver, lo. = 4mA,P/L=A,B,and C
“F
F Vout

0 10 20 30 40 50 60 70

Figure 6-10. Pull Up Curves, TTL Driver,lo. = 4mA,P/L=A,B,and C

126

The 650 Bridge Chip Set

6.7.25 Pull Down Curves, TTL Driver, Io. = 6mA, P/L = A

4
-Vour
3
-WC NOM v BC
2
1
Lour
0 10 20 30 40 50 60 70 80
. Figure 6-11. PuII Down Curves, TTL Driver, lg. = 6mA, P/L= A
. 6.7.2.6 Pull Down Curves, TTL Driver, Ig. = 6mA,P/L=B
4
Vour
3
WC NOM BC
2
1
» Tour
0 10 20 30 40 50 60 70 80

Figure 6-12. Pull Down Curves, TTL Driver, lg. = 6mA, P/L =B

127

The 650

Bridge Chip Set
6.7.2.7 Pull Down Curves, TTL Driver, lg. = 6mA,P/L=C
4r
F VouTt
3F
. wC NOM BC
2F
1t
Lout
0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Figure 6-1 3. Pull Down Curves, TTL Driver, lo= 6mA,PL=C
6.7.2.8 Pull Up Curves, TTL Driver, lo. = 6mA, P/L=A,B,and C
4

0

F Vout

10 20 30 40 50 60 70 80 90 100 110

Figure 6-14. Pull Up Curves, TTL Driver, lo. = 6mA, P/L=A, B,and C

128

The 650 Bridge Chip Set

6.7.2.9 Pull Down Curves, TTL Driver, lg_. = 8mA, P/L= A

4

Vour
3

wWC NOM BC
2
1
Lout

T]

0 10 20 30 40 50 60 70 80 90 - 100 110 120
Figure 6-15. Pull Down Curves, TTL Driver, lg. = 8mA,P/L= A
6.7.2.10 Pull Down Curves, TTL Driver, Io. = 8mA, P/L=B

4

Vour
3

wWC NOM BC
2
£
Lout

T |

0

10 20 30 40 50 60 70 80 9 100 110 120

Figure 6-16. Pull Down Curves, TTL Driver, lg. = 8mA, P/L =B

129

The 650 Bridge Chip Set

6.7.2.11 Pull Down Curves, TTL Driver, Ig_.= 8mA,P/L=C

4

Vour

Lour
1 2 1 " 2 2 . N 2 N N N o\ N M N []
0 100 , 200

Figure 6—17. Pull Down Curves, TTL Driver, lo. = 8mA,P/L=C

6.7.2.12 Pull Up Curves, TTL Driver, lg. = 8mA,P/L=A,B,andC

Yourt

0 10 20 30 40 50 60 70 8 90 100 110 120 130 140

Figure 6-18. Pull Up Curves, TTL Driver, lg. = 8mA,P/L=A,B,and C

130

The 650 Bridge Chip Set

6.7.2.13 Pull Down Curves, TTL Driver, oL = 12mA, P/L = A
4 _

Vour

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 6-19. Pull Down Curves, TTL Driver, lg_ = 12mA,P/L= A

6.7.2.14 Pull Down Curves, TTL Driver, lg. = 12mA,P/L=B

4
Your

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

(=]

Figure 6-20. Pull Down Curves, TTL Driver, o = 12mA,P/L=B

131

The 650 Bridge Chip Set

6.7.2.15 Pull Down Curves, TTL Driver, lg. = 12mA,P/L=C

4
Vour

wC NOM BC

Lour
0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 6-21. Pull Down Curves, TTL Driver, Ig. = 12mA,P/L=C

6.7.2.16 Pull Up Curves, TTL Driver, lo. = 12mA,P/L=A,B,andC

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Figure 6-22. Pull Up Curves, TTL Driver, g, = 12mA,P/L=A,B,and C

132

The 650 Bridge Chip Set

6.7.2.17 Pull Up Curves, TTL Driver, lo. = 24mA, P/L = A

Lout
1 " " " L 2 i " (] 2 2 " 2 2 ' ' " "]
0 100 200
Figure 6-23. Pull Up Curves, TTL Driver, lg. = 24mA,P/L = A
6.7.2.18 Pull Up Curves, TTL Driver, lg. = 24mA, P/L =B
4
Vour
3
BC
2
1
. ~ouy

0 100 200

Figure 6—24. Pull Up Curves, TTL Driver, lg. = 24mA,P/L=B

133

The 650 Bridge Chip Set

6.7.2.19 Pull Up Curves, TTL Driver, lg. = 24mA,P/L=C

4
Your

BC

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 6—-25. Pull Up Curves, TTL Driver, lg. = 24mA,P/L=C

6.7.2.20 Pull Down Curves, TTL Driver, oL = 24mA,P/L=A,B,and C

4r
r Vour

0

Figure 6-26. Pull Down Curves, TTL Driver, lo. = 24mA,P/L=A,B,and C

134

Section 7
Timings

Unless otherwise indicated, all specifications in this section apply equally to the 653 Buffer and
the 654 Controller.

7.1 Timing Conventions

7.1.1 Board Delays

Unless otherwise indicated, all timing specifications refer to events at the pins of the chip under
discussion. In systems operating at speeds typical of the 60X family, propagation delays from
point to point on a circuit board can be significant. The timing diagrams make no assumptions
about board delays. No board or system propagation delays have been included in the timing dia-
grams or in the timing charts. The timing diagrams assume that there is zero propagation delay
from pins on the 654 to pins on the 653, and to pins on the DRAMSs, and to pins on the 60X, and
to the PCI bus. For example, the delay from BURST_CLK# fall (at the 654 Controller pin) to
MEM_ADDR valid (at the 653 Buffer pin) is shown as tmab, and this time is called out in the timing
tables. However, tmabdoes not include the time required for BURST_CLK# to travel from the 654
Controller to the 653 Buffer. Likewise, the delay imposed upon TBST# between the 60X CPU and
the 654 Controller is neither specified nor included in any of the timing information presented. Al-
low for delays between components while constructing timing diagrams for the design of an actual
system.

7.1.2 Terms and Definitions -

7.1.2.1. Signal Range Names
Signal range names used without range indicators refer to the entire group of signals. For exam-
ple, CPU_DATA refers to the 653 signals CPU_DATA[0:63]. Ranges are expressed as [most-sig-
nificant bit : least-significant bit]. -

7.1.2.2 Signal Group Names

Some signals are referred to in a group in the timing dlagrams For example, CPU_ADDR refers
to 60X address and address transfer attribute signals. Particular signals in the group may be
shown separately for emphasis (TBST#, for example).

135

The 650 Bridge Chip Set

©7.1.23 Timing Diagram and Timing Chart Definitions
Table 7—1 shows the terms that are used in this section to describe signals.

Table 7-1. Timing Diagram and Timing Chart Definitions

Term Definition
inorl Input only pin S
| outorO : Output only pin. Output driver is totem-pole unless otherwise noted.
o] Input/output pin, tri-state capable unless otherwise noted.
CLK : The rising edge of CPU_CLK.
asserted/active In the logic TRUE state.
deasserted/inactive/ { In the logic FALSE state.
negated A
valid The voltage of the signal is above V| or below V| . Valid does not imply
that the signal is TRUE or asserted or active.

7.1.3 Transaction Clock Cycle Nomenclature

Following the 601 convention, CPU_CLK cycles are labeled according to the cycle number. A
rising edge of CPU_CLK is referred to by using the numbers of the cycles on either side of it. The
rising edge labeled A in Figure 7—1 is called the 1/2 rising edge of CPU_CLK.

CPU_CLK

Figure 7-1. CPU_CLK Cycle Nomenclature

Figure 7-2 shows the nomenclature used in the PCI Specification to refer to the rising edges of
PCI_CLK. During a defined PCI transaction, each rising edge of the PCI clock is numbered
(PCI_FRAME# is asserted on PCI_CLK rising edge 1, which is also called PC!_CLK 1).

PCl_CLK

Figure 7-2. PCI_CLK Cycle Nomenclature

7.1.4 Signal Switching Levels for Timing Analysis

Figure 7-3 shows typical timing analysis signal switching levels, where Vy and V| (see validin
Table 7-2) are the valid logic levels used for all input and output signals except CPU_CLK. Unless
otherwise indicated, all input and output signal (not clock) switching specifications refer to the

136

The 650 Bridge Chip Set

pointin time at which the signal crosses one of these levels. These levels are used for timing anal-
ysis only, and do not imply anything about the DC characteristics of the device.

Input 6r : - Vi
Output Valid Valid
Signal - ‘ - '

Figure 7-3. Switching Levels

Table 7-2. Valid Logic High and Low Levels for 650 Bridge Timing Specifications

Level Name Symbol Voltage
Logic High Level . VH 2v
Logic Low Level '3 .8v
Midpoint Voltage VM 1.5v

7.1.5 Input Setup Time

‘Input setup time is the amount of time that an input sngnal is required to be stable at a valid logic
level immediately prior to an event. Input setup time (T)g in Figure 7—4) from a signal to the clock
is measured from the point in time at which the input becomes valid to the the pointin time at which
the clock rising edge crosses the VM level. Input setup time from a signal to an input strobe is
measured from the point in time at which the input becomes valid to the the point in time at which
the strobe becomes active (its active edge crosses the valid logic level in the active-going direc-
tion).

7.1.6 . Input Hold Time

Input hold time is the amount of time that an input signal is required to remain stable at a valid
logic level immediately following an event. Input hold time (T4 in Figure 7—4) from the clock to
an input signal is measured from the point in time at which the clock rising edge crosses the VM
level to the point in time at which the input goes invalid (crosses the valid logic level in the invalid-
going direction). Input hold time from an input strobe to an input signal is measured from the point
in time at which the strobe becomes active (its active edge crosses the valid logic level in the ac-
tive-going direction) to the point in time at which the input goes invalid.

7.1.7 Output Hold Time

Output hold time is the amount of time that an output signal remains stable at a valid logic level
immediately following an event which may cause the output to change state. Output hold time
(Ton in Figure 7-4) from the clock is measured from the point in time at which the rising edge of
the clock crosses the VM level to the point in time at which the output signal becomes invalid
(crosses the valid logic level in the invalid-going direction). Output hold time from an input strobe
is measured from the point in time at which the strobe becomes active (its active edge crosses
the valid logic level in the active-going direction) to the point in time at which the output signal be-
comes invalid.

137

The 650 Bridge Chip Set

7.1.8 Output Valid Delay Times

Output valid delay time is the amount of time required for an output signal to change to a stable
valid state following an event. Output valid delay time (Tgp in Figure 7—4) from the clock is mea-
sured from the point in time at which the rising edge of the clock crosses the VM level to the point
in time at which the output signal becomes valid (crosses the valid logic level in the valid-going
direction). Output valid delay time from an input strobe is measured from the pointin time at which
the strobe becomes active (its active edge crosses the valid logic level in the active-going direc-
tion) to the point in time at which the output signal becomes valid.

7.1.9 Output Tri-State Hold Time

Output tri-state hold time is the amount of time that an output signal remains driven to a valid logic
level immediately following an event which may cause the output to tri-state (go to a high—imped-
ance state). Output tri-state hold time (T3gp in Figure 7—4) from the clock is measured from the
point in time at which the rising edge of the clock crosses the VM level to the point in time at which
the output signal becomes invalid (is no longer guaranteed to be actively driven to a valid logic
level). Output hold time from an input strobe is measured from the point in time at which the strobe
becomes active (its active edge crosses the valid logic level in the active-going direction) to the
point in time at which the output signal becomes invalid. Note that this specification deals with the
time that the output driver remains active following an event which may turn it off. The actual out-
put signal may remain valid for some time after this, depending on other conditions.

7.1.10 Output Tri-State Delay Time

Output valid delay time is the amount of time required for an output signal driver to turn off (go
to a high impedance state) following an event. Output valid delay time (T3gp in Figure 7—4) from
the clock is measured from the point in time at which the rising edge of the clock crosses the VM
level to the point in time at which the output signal driver turns off (is no longer driving the output).
Output valid delay time from an input strobe is measured from the point in time at which the strobe
becomes active (its active edge crosses the valid logic level in the active-going direction) to the
point in time at which the output signal driver turns off. Note that this specification deals with the
time that it takes the output driver to stop driving the output signal line following an event which
may turn it off. The actual output signal may remain valid for some time after this, depending on
other conditions. :

138

The 650 Bridge Chip Set

Input
Strobe

CPU_CLK

Input
Signal

Output
Signal

Output
. Signal

Output
Signal

Output
Signal

VH Active
| Vi (and Valid)
2 YM
. VH
>< Valid | |
le——fe—
Tis TiH
VH
Valid |y |
ToH
Vv
){ H Valid
v
Top
_ Vi High-Z
Valid | |
P
TasH
| High-Z
valid |

T3sp

Figure 7-4. Signal Timing Conventions

139

The 650 Bridge Chip Set

7.2 Clock Considerations

To maintain synchronization between the 654 Controller and the 601 CPU, certain constraints are
placed on the relationship between 2X_PCLK and CPU_CLK. There are also constraints placed
on the relationship between PCI_CLK and CPU_CLK.

7.2.1 Clock Switching Levels
Unless otherwise indicated, all references to CPU_CLK clock timing refer to the point in time at
which the CPU_CLK crosses the VM level. See Figure 7—4, Table 7-2, and Figure 7-5.

7.2.2 The CPU_CLK

The CPU_CLK is shown (at the CPU_CLK pin of the 654 Controller) in Figure 7-5, where TcH
is the time that CPU_CLK is high, and T¢ is the time that CPU_CLK is low. The duty cycle of
- CPU_CLKis shownin Table 7-3 as Tp(cPU_CLK): If the period of CPU_CLK s 15ns, then Tgy may
range from 5.25ns to 9.75ns.

cPU_CLK VM M M

™ TcH TeL —™
e Tk ————*

Figure 7-5. CPU_CLK Timing

In general, 654 Controller inputs are sampled on the rising edge of CPU_CLK, and outputs are
updated on the rising edge of CPU_CLK.

Table 7-3. CPU_CLK Timing Constraints

Symbol | Description Min | Max | Units | Note
TD(CPU_CLK) CPU_CLK Duty cycle Tou/(TcH + ToL) 35 65 % %))
Ts(ex—cPu) Allowed skew of 2X_PCLK wrt CPU_CLK -1 +1 ns 2)

Notes for Table 7-3.
1) 10°C < Ty < 85°C, 3.0v < Vpp < 3.8v. See Figure 7-5.
2) 10°C < T < 85°C, 3.0v < Vpp < 3.8v. See Figure 7-6.

7.2.3 The 654 Controller Clock and the 601 Clocks

Nominally, each CPU_CLK rising edge is exactly aligned with a rising edge of 2X_PCLK. The fal-
ling edge of CPU_CLK is not defined with respect to 2X_PCLK. It is defined by the duty cycle
constraint. Figure 7—6 shows the required relationship between the 2X_PCLK (a 601 signal) at
the pin of the CPU, and CPU_CLK at the pin of the 654. Note that the allowed skew Tsiox—cpu),
is shown as +1ns in Table 7-3.

140

The 650 Bridge Chip Set

2X_PCLK YARA
@ 601 A/ {'/ | \—/——
ins | 1ns

max | max '
CPU_CLK /
@ 654 / \

Figure 7-6. CPU_CLK Timing

When the CPU_CLK is running at 66MHz, as shown in Figure 7-7, the 601 BCLK_EN# signal
must be tied low, and CPU_CLK must be in phase with the 601 PCLK_EN# signal. As shown in
Figure 7-8, when CPU_CLKis running at 33MHz, BCLK_EN# runs at 66MHz, and the phase rela-
tionships between all three clocks must be maintained. In each case, CPU_CLK is required to
up-transition on the 2X_PCLK up-transition indicated by the arrow. This is the 2X_PCLK edge on
which the 601 samples inputs and issues outputs. Enforcing these constraints synchronizes the
654 Controller to the 601 CPU.

2X_PCLK
133MHz \
Qualified —
CPU_CLK | \
66MHz Not
Qualified
PCLK_EN# \ /
66MHz ? |
BCLK_EN# (stays low) b

Figure 7-7. CPU_CLK Phase Relationships at 66MHz

141

The 650 Bridge Chip Set

2X_PCLK
133MHz -

Qualified Qualified

66MHz \ .__/____/_—_< / \
PCLK_EN#
BCLK_EN# \
33MHz ____| /
CPU_CLK
33MHz |

Figure 7-8. CPU_CLK Phase Relationships at 33MHz

7.24 CPU_CLK to PCI_CLK Skew

The 654 Controller is clocked by the CPU_CLK signal. The 654 also receives a PCI_CLK signal,
which it treats as a signal input as opposed to a clock. These signals are typically generated in
two different chips and travel two different paths to the 654. This implementation typically gener-
ates some skew between the two signals. This skew must not exceed Tcpcs, the allowed
CPU_CLK to PCI_CLK skew specification shown in Table 7—4. Tcpcs is independent of
CPU_CLK speed and is measured at the pins of the 654 Controller.

Table 7-4. PCI_CLK Timing Constraints

‘| Symbol Description Min | Max | Units | Note
Tcpes @ 3.6v | Allowed skew of PCI_CLK wrt CPU_CLK -5 4 ns (1)
Tcpes @ 3.3v | Allowed skew of PCl_CLK wrt CPU_CLK -5 | 33 ns 2

Notes for Table 7—4.

1) 10°C < T < 85°C, 3.4v < Vpp < 3.8v. See Figure 7-9 and Figure 7-10.
2) 10°C < Ty < 85°C, 3.0v < Vpp < 3.6v. See Figure 7-9 and Figure 7-10.

7.24.1 Clocking In 2:1 Mode

In 2:1 clocking mode (see Figure 7-9) the CPU_CLK is running at twice the speed of the
PCI_CLK. (The time scale shown is for reference only, for a system running with a 66MHz
CPU_CLK and a 33MHz PCI_CLK.) PCI_CLK is required to change state on the rising edge of
CPU_CLK. Tcpcs applies to both the rising and the falling edges of PCI_CLK. '

142

The 650 Bridge Chip Set

Ons Sns 10ns 15ns 20ns 25ns

|FIIII||III|IIIllIIII|IIII|III
CPU_CLK ___ / \

' /
|_tcpcs_.| L_tcpcs_'l
PCI_CLK | 4 X \

Figure 7-9. Timing Diagram, CPU_CLK to PCl_CLK Skew, 2:1 Mode

7.2.4.2 Clocking In 1:1 Mode

In 1:1 clocking mode (see Figure 7-10), the CPU_CLK is running at the same speed as the
PCI_CLK. (The time scale shown is for reference only, for a system running with a 33MHz
CPU_CLK and a 33MHz PCI_CLK.) PCI_CLK is required to be in phase with CPU_CLK and to
change state when CPU_CLK changes state. Tcpcs applies to both the rising and the falling edges
of PCI_CLK.

Ons 10ns 20ns 30ns © 40ns 50ns
| [I | | [I T | | (I I I | I [| [I I | I
CPU_CLK _ ‘ / \ ' /
) |___tepes | |__tepes |
PCI_CLK
i 4 \ Il \ | 4

Figure 7-10. Timing Diagram, CPU_CLK to PCI_CLK Skew, 1:1 Mode

7.3 Power-On Considerations
The 650 Bridge is designed to impose no additional power-on-reset or power supply behavior
constraints on a system that contains. a 60X CPU and a PCI bus. The 650 works properly ina
system designed to correctly support the 60X CPU and the PCI bus.

The 654 Controller requires RESET#to be asserted at power-on for a minimum of 1us past power-
good, and for aminimum of 10 CPU_CLK cycles past the pointin time at which CPU_CLK s stable
and within specification. The inputs to the 654 Controller are not required tobe in any special state
during the reset period, but the 654 will start to respond to control inputs immediately following
the deassertion of RESET#. This design fully supports a properly functioning 60X CPU, L2 cache,
and PCl agents.

The 653 Buffer requires no reset signal, as itis controlled by the 654 Controlier. When used with-
out the 654 Controller, the only requirement is for the designer to arrange for the
CPU_ADDR_SEL# signal to be asserted and then deasserted during the power-on reset se-
guence.

143

The 650 Bridge Chip Set

7.4 654 Controller Timing

7.4.1 654 Controller Synchronous Input Timing Characteristics
Table 7-5. 654 Controller Input Timing Characteristics By Signal
654 I/ 3.3v Vpp System (2) 3.6V Vpp System (1) Note
Input Signal ° Setup Time Hold Time Setup Time Hold Time
(ns) Min (3) | (ns) Min (4) (ns) Min (3) | (ns) Min (4)
Processor Signals
AACK# I/0 20 20 0.2 2.0
ARTRY# 1/0 29 20 0.25 2.0
CPU_ADDRI0] I 0.6 2.0 1.1 2.0
CPU_ADDR{1] I 6.9 2.0 8.5 2.0
CPU_ADDR(2] I 6.7 2.0 8.2 2.0
CPU_ADDR(3] 1 6.2 2.0 7.7 2.0
CPU_ADDR(4] I 6.6 2.0 77 2.0
CPU_ADDRY5] I 6.2 2.0 7.7 2.0
CPU_ADDR[6] I 6.6 20 8.1 2.0
CPU_ADDR[7] I 6.6 2.0 8.1 2.0
CPU_ADDR[8] I 6.6 2.0 8.1 2.0
CPU_ADDR[19] I 34 20 3.9 20 5)
CPU_ADDR[29] I 6.2 2.0 7.7 2.0
CPU_ADDRI[30] I 6.8 2.0 8.1 2.0
CPU_ADDRI[31] I 73 2.0 8.8 2.0
CPU_REQ# I 1.7 2.0 1.3 2.0
DPE# I 1.3 2.0 1.0 2.0
MASK_TEA# I 13 20 1.3 2.0
TA# /0 0 2.0 0 2.0
TBST# I 6.8 2.0 5.9 2.0
TS# /0 15 20 1.0 2.0
TSIZ[0] /0 7.4 2.0 8.8 2.0
TSIZ[1] I/0 7.1 20 8.4 2.0
TSIZ[2] /0 7.2 2.0 8.8 2.0
TT[0] /0 0.9 2.0 1.4 2.0
TT[1] I/0 5.0 2.0 6.1 2.0

144

The 650 Bridge Chip Set

Table 7-5. 654 Controller Input Timing Characteristics By Signal (Continued)

654 I/ 3.3v Vpp System (2) 3.6v Vpp System (1) Note

Input Signal o Setup Time Hold Time Setup Time Hold Time
(ns) Min (3) (ns) Min (4) (ns) Min (3) | (ns) Min (4)

TTR2] I/0 0.9 2.0 1.3 2.0

TTI3] 1/0 6.4 20 8.0 20

XATS# I 1.6 2.0 1.0 2.0

L2 Cache Signals

L2_CACHE_REQ# [I 27 2.0 2.3 2.0

L2_CLAIM# I 2.5 2.0 22 2.0

L2_PRESENT# I 3.6 2.0 3.0 2.0

PCI Sideband Signals (Incident Wave)

PCI_CLK I See Section 7.2.4. See Section 7.2.4.

PCI_REQ[1:5]# I 70 | 0 7.0 0

PCI Bus Signals (Reflected Wave)

PC|_C/BE[3:0)# I/O0 7.0 0 7.0 0

PCI_DEVSEL# I/O0 8.0 0 7.0 0

PCI_FRAME# 1/0 7.0 0 7.0 0

PCI_IRDY# I/O 7.0 0 7.0 0

PCI_STOP# /O 7.0 0 7.0 0

PCI_TRDY# 1/O 7.0 0 7.0 0

1/0 Bus and 1/0 Bridge Signals

I0_BRDG_HOLD# I 0 2.0 0 2.0

I0_BRDG_IRQ 1 0.5 2.0 0.5 2.0

I0_BRDG_REQ# I 7.0 0 7.0 0

ISA_MASTER# I 0 2.0 0 2.0

NMI_IRQ I 7.9 2.0 6.4 2.0

653 Buffer Signals

MEM_PAGE_HIT# | 1 3.1 2.0 2.3 . 2.0

MEM_PAR_GOOD | I 0.8 2.0 0.7 20

PCI_AD_PAR I 0 2.0 0 2.0

145

The 650 Bridge Chip Set

Table 7-5. 654 Controller Input Timing Characteristics By Signal (Continued)

654 i 3.3v Vpp System (2) 3.6v Vpp System (1) Note
Input Signal o

Setup Time Hold Time Setup Time Hold Time
(ns) Min (3) | (ns)Min (4) | (ns) Min (3) (ns) Min (4)

System Interface and Miscellaneous Signals ,
LE_MODE_REQ# I 0.8 2.0 0.3 2.0

REFRESH_REQ# I ‘ 0 2.0 0 2.0
SRESET_REQ# I 0 2.0 0 2.0

Notes for Table 7-5.

1) 10°C < Ty < 85°C, 3.4v < Vpp < 3.8v.

2) 10°C < Ty <85°C, 3.0v < Vpp < 3.6v.

3) From signal valid to CPU_CLK rise.

4) From CPU_CLK rise to signal invalid.

5) Fast logic path chosen to accomodate delays imposed on A19 during PCI bus master transac-
tions that are broadcast (A19 goes through the 653 Buffer) to the CPU bus for snooping. A19
is used to detect page misses during PC! to memory burst transactions.

6) TEST#, RI#, and DI# timing is not specified. '

146

The 650 Bridge Chip Set

7.4.2 654 Controller Synchronous Output Timing Characteristics

Table 7-6. 654 Controller Output Timing Characteristics By Signal

654 _ I/ 3.3v Vpp System (2) 3.6v Vpp System (1)
Output Signal | O Output | Output | Output | Output | Output | Output
Hold Tri-state Valid Hold Tri-state Valid
Time (3) | Delay (4) | Delay (5) | Time (3) | Delay (4) | Delay (5)
(ns) Min | (ns) Max | (ns) Max | (ns) Min { (ns) Max | (ns) Max
Processor Signals
AACKi## 110 2.2 10.8 10.5 2.1 10.3 9.2
ARTRY# 110 2.4 10.4 10.4 2.3 9.3 9.3
CPU_GNT# o) 25 NA 9.7 2.4 NA 8.7
INT_CPU# o) 3.3 NA 15.1 3.0 NA 12.7
SRESET_CPU# e} 3.3 NA 14.9 3.0 NA 12.6
TA# o) 2.2 10.7 10.1 2.0 10.2 9.1
TBST# I/0 3.6 15.6 15.6 3.3 * 145 14.5
TEA# 10 25 “NA 9.6 2.3 NA 8.6
TS# /0 2.2 12.2 8.6 2.0 10.9 7.8
TS1Z[0:2] o] 3.6 15.6 15.6 3.3 145 14.5
TT[O] lle} 3.6 15.7 15.7 3.3 14.5 14.4
TT[1] IO 2.8 14.9 13.4 2.4 13.2 1.9
TT[2] I/O 3.8 15.7 15.7 3.4 145 14.4
TT[3] 110 3.6 , 15.7 15.7 33 145 14.4
L2 Cache Signals
L2_CACHE_GNT# J o) | 2.8 j NA | 14.0 i 2.4 | NA | 12.7
PCI Sideband Signals (Incident Wave)
PCL_GNT[1:5}# - | 0 | 2.5 | NA] 13.0 l 2.0 | NA | 120
PCI Bus Signals (Reflected Wave))
PCI_C/BE[3:0}# I/0 2.0 13.0 12.1 2.0 11.5 11.0
PCI_DEVSEL# /0 2.0 1.3 11.8 2.0 10.1 1.0
PCI_FRAME# e} 2.0 12.8 1.5 2.0 1.4 1.0
PCI_IRDY# f o 2.0 26.7 1.5 2.0 23.1 11.0
PCI_PAR ¢} 2.0 13.0 12.3 2.0 1.5 1.0
PCI_STOP# o] 2.0 1.2 12.2 2.0 10.0 11.0
PCI_TRDY# 110 2.0 1.3 12.0 2.0 10.0 11.0

147

The 650 Bridge Chip Set

Table 7-6. 654 Controller Output Timing Characteristics By Signal (Continued)

654 I 3.3v Vpp System (2) 3.6v Vpp System (1)
Output Signal | O Output | Output | Output | Output | Output | Output
Hold Tri-state Valid Hold Tri-state Valid

Time (3) | Delay (4) | Delay (5) | Time (3) | Delay (4) | Delay (5)
(ns) Min | (ns) Max | (ns) Max | (ns) Min | (ns) Max | (ns) Max

I/0 Bus and I/O Bridge Signals

ioBrRoGGNT# o | 25 | Na | 127 | 20 [NA | 120
DRAM Memory Subsystem Signais

BE_PAR_EN# (0] 3.5 NA 15.7 341 NA 13.9
CAS[7:0}# le} 2.4 NA . 12.3 2.3 NA 10.8
LE_PAR_EN# (0] 3.5 NA 15.7 3.1 NA 13.9
RAS[7:0]# 0] 2.5 NA 12.4 2.3 NA 10.9
WE1 :0# o) 2.9 NA 17.2 2.6 NA 15.0
Boot ROM Device Signals

ROM_CS# o) 3.7 NA 16.5 3.4 NA 13.9
ROM_OE# O‘ 3.4 NA 15.7 3.1 NA 13.2
ROM_WE# O 34 NA 15.6 3.1 NA 13.5
653 Buffer Signals

ADDRHI/DATALO o} 3.2 NA 16.0 2.8 NA 14.3
ALL_ONES_SEL# O 3.0 NA 15.0 2.7 NA 13.5
BURST_CLK# O 3.0 NA 14.8 2.6 NA 13.3
CPU_ADDR_OE# 0] 3.0 NA 14.6 2.6 NA 13.2
CPU_ADDR_SEL# | O 3.1 NA 15.0 2.7 NA 135
CPU_DATA_OE# o 2.9 NA 15.0 25 NA 13.5
CPU_DATA_SEL# 0] 3.0 NA 15.0 . 2.6 NA 13.5
DPE_ERR# O 34 NA 15.4 3.1 NA 13.0
ERR_ADDR_SEL# | O 3.7 NA 16.1 3.3 NA 13.8
L_PCI_DATA# o 2.8 NA 13.9 24 NA 12.5
LE_MODE_SEL# 0] 34 NA 15.4 3.1 NA 13.0
MEM_DATA_OE# o] 3.2 NA 18.2 2.8 NA 16.2
MEM_DATA_SEL# O 3.0 NA 18.8 26 NA 16.8
MEM_PAR_ERR# | O 3.6 NA 15.5 32 NA 13.7
NO_TRANS 0 3.0 NA 15.0 2.6 NA 13.5
PCI_OE# o} 3.1 NA 16.7 2.7 - NA 15.0

148

The 650 Bridge Chip Set

Table 7-6. 654 Controller Output Timing Characteristics By Signal (Continued)

654 _ I/ 3.3v Vpp System (2) 3.6v Vpp System (1)
Output Signal | O Output Output Output Output Output Output
Hold Tri-state Valid Hold Tri-state Valid
Time (3) | Delay (4) | Delay (5) | Time (3) | Delay (4) | Delay (5)
(ns) Min | (ns) Max | (ns) Max | (ns) Min | (ns) Max | (ns) Max
PCI_SEL# o) 3.3 NA 16.0 2.9 NA 14.4
RASHI/CASLO 0 3.0 NA 15.7 26 NA 14.1
REFRESH_SEL# o] 29 NA 14.3 25 NA 12.9
ROM_SEL# o] 3.1 NA 14.9 2.7 NA 13.4
TT_ERR# o) 3.4 NA 15.3 2.8 NA 12.9

Notes for Table 7-6.

1) 10°C < Ty < 85°C, 3.4v < Vpp < 3.8v

2) 10°C < Ty < 85°C, 3.0v < Vpp < 3.6v.

3) Minimum output delay from CPU_CLK rising edge to signal invalid. See Section 7.1.7. Values
shown reflect fastest process variables, VDD = max (3.6v for Vpp = 3.3v nominal, or 3.8v for
Vpp = 3.6v nominal), and T; = 10°C. This value applies to signals that are being driven to a
new logic level by the CPU_CLK rising edge and to signals that are being tri-stated by the
CPU_CLK rising edge (synchronous output disables).

4) Maximum output delay from CPU_CLK rising edge to signal tri-state (output driver turned off).
Value shown reflects low Vpp (3v for Vpp = 3.3v nominal, or 3.4v for Vpp = 3.6v nominal), T
= 85°C and slowest process variables. Value derived by placing two of the same type of drivers
in contention, gating one off (on the rising edge of CPU_CLK), and determining the time re-
quired for the other driver to drive the line to a valid logic level.

5) Maximum output delay from CPU_CLK rising edge to signal valid. Value shown is slowest of
up-transition from Ov to 2v or down-transition from low Vpp (3v for Vpp = 3.3v nominal, or 3.4v
for Vpp = 3.6v nominal) to .8v, and reflects T; = 85°C and slowest process variables.

NA) These outputs are never synchronously tri-stated.

149

The 650 Bridge Chip Set

7.4.3 Asynchronous Signals in the 654 ‘

The 654 Controller generally operates as a synchronous state machine. However, there are
asynchronous paths from some of the 654 inputs to some of the 654 outputs. Some of these paths
are provided to speed up system operation by allowing the bridge to enable pathways before they
are officially selected by a qualifying clock edge. In all cases, these asynchronous paths are be-
nign as long as the 60X CPU and other system components are operating properly. The following
sections describe these asynchronous paths in detail. The effects of the test inputs (TEST#, DI#,
and RI#) are not included in this section. .

7.4.3.1 AACK#
Asynchronously affected by—L2 PRESENT#.

The 654 Controller drives AACK# continuously while .2 PRESENT# is high. If L2 PRESENT#
is low, then AACK# is normally (at bus idle) tri-stated. During CPU mastered transactions, AACK#
is output enabled during CPU_CLK cycle 4. After it is driven low for one cycle at the end of the
transfer, it is driven high for one cycle, and then tri-stated. During snoop cycles (PCl bus master
to memory transactions) AACK# is output enabled only while CPU_ADDR_OE# is asserted.
AACK(# is enabled during address-only CPU cycles.

7.4.3.2 ALL_ONES_SEL#
Asynchronously affected by—CPU_ADDR]J0:8,19,29:31], TBST#, TSIiZ[0:2], TT[0:3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_CLK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi-
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.3 CAS[7:0}#
Asynchronously affected by—MC_SETUP#, TT[1].

The 654 Controller normally asserts and negates these signals on the rising edge of CPU_CLK.
There is an asynchronous path to these signals from TT[1] which must remain stable during trans-
actions in order to guarantee that these signals do not glitch. This condition is normally satisfied
if the 60X CPU is operating correctly. For the relationship between CAS[7:0]# and MC_SETUP#
see Section 5.2.3.

7.4.3.4 CPU_ADDR_SEL#
Asynchronously affected by—RESET#.

While RESET# is asserted, the 654 Controller forces CPU_ADDR_SEL# high. While RESET#
is high, CPU_ADDR_SEL# is asserted and negated on the rising edge of CPU_CLK. This output
is continuously output enabled.

7.4.3.5 CPU_DATA_SEL#
Asynchronously affected by—TT[1].

The 654 controls CPU_DATA_SEL# by gating it (controlling its assertion & negation) with TT[1]
while the CPU has control of the bus. In other words, CPU_DATA_SEL# is controlled asynchro-
nously by TT[1] while the CPU has a valid bus grant. At the end of a CPU mastered transaction
during which CPU_GNT# is removed from the CPU, CPU_DATA_SEL# is negated on the rising
edge of the CPU_CLK on which AACK# is negated. This output is continuously output enabled.

150

The 650 Bridge Chip Set

7.4.3.6 ERR_ADDR_SEL#
Asynchronously affected by—CPU_ADDRI0: 8]

The 654 Controller normally asserts and negates this output on the rising edge of CPU_CLK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi-
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.7 MEM_DATA_OE#
Asynchronously affected by—CPU_ADDR]J[0:8,29:31], TBST#, TSIZ[0:2], TT[1,3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_CLK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi-
tion is normally satisfied if the 60X CPU is operatlng correctly. This output is continuously output
enabled.

7.4.3.8 MEM_DATA_SEL#
Asynchronously affected by—CPU_ADDRJ[0:8,29:31], L2_CLAIM#, TBST#, TSIZ[0:2], TT[1,3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_CLK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi-
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.9 PCI_C/BE[3:0]#
Asynchronously affected by—CPU_ADDR[30,31], TSIZ[1:2], TT[1].

The 654 Controller normally asserts and negates these outputs on the rising edge of CPU_CLK
that corresponds to a rising edge of the PCI_CLK. There are asynchronous paths to this output
from the inputs shown above. These inputs must remain stable during transactions in order to
guarantee that this output does not glitch. This condition is normally satisfied if the 60X CPU is
operating correctly. This output is continuously output enabled.

7.43.10 PCI_PAR
Asynchronously affected by—PCI_AD_PAR, MEM_PAR_GOOD, TT[1].

PCI_PAR is generated asynchronously from the PCI_AD_PAR and MEM_PAR_GOOD signals
and is also affected by the type of transaction occurring in the system. Figure 7—6 shows the 654
Controller asserting PCI_PAR on the rising edge of PCl_CLK following the data phase from which
it is generated. During CPU to PCI write data phases and PCI to memory read data phases,
PCI_PAR specifications meet or exceed those required by the PCl specification. The state of this
output at other times is not specified, but is designed to be benign.

151

The 650 Bridge Chip Set

PCI_CLK

12ns Max —be—si lest— 0ns Min
PCI_PAR {(valid Parity))))—

PCI_AD Valid Data

Figure 7-11. Timing of PCI_PAR

7.4.3.11 TA#
Asynchronously affected by—L2_PRESENT#.

The 654 Controller drives TA# continuously while L2_PRESENT# is high. If L2 PRESENT# is
fow then TA# is normally (at bus idle) tri-stated. During CPU mastered transactions, TA# is output
enabled during CPU_CLK cycle 4. After it is driven low for one cycle with AACK# at the end of
the transfer, it is driven high for one cycle, and then tri-stated. During snoop cycles (PCl bus mas-
ter to memory transactions) TA# stays tri-stated.

7.4.3.12 WE[1:0]
Asynchronously affected by—CPU_ADDRJ[0:8,29:31], TBST#, TSIZ[0:2], TT[1,3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_CLK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi-
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

152

The 650 Bridge Chip Set

7.5 653 Buffer Timing Tables
Table 7-7. 653 Buffer Timing Tables

Des [CPU Interface (see Notes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v

. Min | Max | Min | Max

(ns) | (ns) | (ns) | (ns)
i CPU_ADDR, TSIZ setup to CPU_ADDR_SEL# fall 6 2 —_ 2 —
2 CPU_ADDR, TSIZ hold from CPU_ADDR_SEL# fall 6 3 — 3 —
t3 | CPU_ADDR valid from CPU_ADDR_OE# fall 47 3 21 2 17
t4 | CPU_ADDR float from CPU_ADDR_OE# rise 7 3 21 3 17
tda | CPU_ADDR held valid from CPU_ADDR_OE# rise 7 3 21 3 17
t5,5a | CPU_ADDR valid (CPU snoop) from PCI_AD valid (addr phase) 16 3 17 2 14
t74 | CPU_ADDR valid from PCI_SEL# fall (CPU snoop) 17 3 19 3 16
t74a | CPU_ADDR held valid from PCI_SEL# rise (CPU snoop) 17 3 19 3 16
t75 | CPU_ADDR valid from BURST_CLK# fall (CPU snoop) ; 17 4 19 4 17
176 | CPU_ADDR valid from NO_TRANS rise/fall (CPU snoop) 17 4 17 3 14
t6 | CPU_DATA valid from MEM_DATA valid 8 4 16 4 13
t7 | CPU_DATA valid from MEM_DATA_SEL# fall 9 4 |19] 4 | 16
t7a | CPU_DATA held valid from MEM_DATA_SEL# rise 9 4 19 4 16
t8 | CPU_DATA valid from CPU_DATA_OE# fall 4,10 4 19 5 20
t8a | CPU_DATA held valid from CPU_DATA_OE# rise 10 4 19 4 16
t9 | CPU_DATA float from CPU_DATA_OEH# rise 10 4 19 4 | 16
t11 | CPU_DATA valid from PCI_AD valid (data phase) 25 4 18 4 15
t12 | CPU_DATA valid from ERR_ADDR_SEL# fall 11 4 20 4 17
113 | CPU_DATA valid from ALL_ONES_SEL# 5 5 20 4 17
t14 |L_ERR_ADDR# setup to CPU_ADDR_SEL# 8 — 8 —
t15 |L_ERR_ADDR# hold from CPU_ADDR_SEL# 1 — | 1 —
Des [Memory Interface (seeNotes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v

Min | Max | Min | Max

(ns) | (ns) | (ns) | (ns)
t21 | MEM_ADDR valid from CPU_ADDR valid 13 | 4 16 3 14
t22 | MEM_ADDR valid from CPU_ADDR_SEL# fall 16 4 21 4 | 19
t23 | MEM_ADDR valid from RASHI/CASLO change 1 18 4 16 3 14
t23a | MEM_ADDR held valid from RASHI/CASLO change 18 4 16 3 14
t24 | MEM_ADDR valid from BURST_CLK# fall 14 -5 19 4 16

153

The 650 Bridge Chip Set

Des [Memory Interface (see Notes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v

: Min | Max | Min | Max

(ns) | (ns) | (ns) | (ns)
t25 | MEM_ADDR valid from PCI_AD valid 17 4 17 3 14
t26 | MEM_ADDR valid from BURST_CLK# fall 15 5 19 4 16
t77 | MEM_ADDR valid from PCI_SEL# fall 17 4 19 4 16
t77a | MEM_ADDR held valid from PCI_SEL# rise 17 4 19 4 16
t78 | MEM_ADDR valid from DRAMX9HI/X10LO rise/fall 18 4 17 3 15
t78a | MEM_ADDR valid from DRAMX9HI/X10LO rise/fall 22 4 17 3 15
t79 | MEM_ADDR valid from NO_TRANS rise/fall 17 | 4 [17] 3 | 15
t27 | MEM_ADDR valid (row address) from REFRESH_SEL# fall - 22 4 20 3 17
t27a | MEM_ADDR held valid (row addr) from REFRESH_SEL# rise 22 4 20 3 17
t80 | REFRESH_SEL# rise to valid & stable new refresh address 22 4 20 3 17
t81 | REFRESH_SEL# high time (for correct counter operation) 22 6 — 6 —
t82 | REFRESH_SEL# low time (for correct counter operation) 22 6 — 6 —
t82 | REFRESH_SEL# period (for correct counter operation) 22 27 — 27 —
t28 | MEM_PAGE_HIT# valid from CPU_ADDR valid 16 3 15 3 13
t28a | MEM_PAGE_HIT# valid from CPU_ADDR_SEL# fall 6 4 17 4 15
t29 | MEM_PAGE_HIT# valid from RASHI/CASLO rise (row addr) 18 4 16 3 14
t30 | MEM_PAGE_HIT# valid from PCI_AD valid 17 4 16 3 13
183 | MEM_PAGE_HIT# valid from PCI_SEL# fall 17 4 18 4 15
t31 | MEM_PAGE_HIT# valid from ADDRHI/DATALO rise 4 19 7 17
t32 | MEM_PAGE_HIT# valid from BURST_CLK# fall 21 5 21 5 18
t84 | MEM_PAGE_HIT# valid from DRAMX9HI/X10LO rise/fall 18 4 15 3 13
133 MEM__DATA valid from CPU_DATA valid 13 4 16 4 13
t34 | MEM_DATA valid from CPU_DATA_SEL# fall 13 4 18 4 15
t35 | MEM_DATA valid from MEM_DATA_OE# fall 412 | 5 21 4 17
t35a | MEM_DATA held valid from MEM_DATA_OE# rise 12 5 21 4 17
t36 | MEM_DATA float from MEM_DATA_OE# rise 12 5 21 4 17
t37 | MEM_DATA valid from PCI_AD valid 23 4 16 3 13
t85 | MEM_DATA valid from PCI_SEL# fall 23 4 18 4 15
t86 | MEM_PAR (out) valid from PCI_SEL# fall 23 4 18 4 16
t38 | MEM_PAR (out) valid from CPU_DATA valid 13 4 16 | 3 14

154

The 650 Bridge Chip Set

Des | Memory Interface (see Notes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v

Min | Max | Min | Max

(ns) | (ns) | (ns) | (ns)
t87 | MEM_PAR (out) valid from CPU_DATA_SEL# valid 13 4 19 4 16
t38a | MEM_PAR (out) valid from PCI_AD valid (data phase) 23 3 17 3 14
t39 | MEM_PAR (out) valid from MEM_DATA_OE# fall 419 | 4 18 3 15
t39a | MEM_PAR (out) held valid from MEM_DATA_OE# rise 19 4 18 3 15
t40 | MEM_PAR (out) float from MEM_DATA_OE# rise 19 4 18 3 15
t4ta | MEM_PAR_GOOD valid from MEM_PAR (in) valid 20 3 16 3 13
t41b | MEM_PAR_GOOD valid from MEM_DATA (in) valid 20 3 16 3 13
t88 | MEM_PAR_GOOD valid from MEM_DATA_SEL# fall 20 3 13 3 11
t88a | MEM_PAR_GOOD forced high from MEM_DATA_SEL# rise 3 13 3 11

Des | PCI Interface (see Notes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v

Min | Max | Min | Max

| (ns) | (ns) | (ns) | (ns)
t51 | PCI_AD valid (addr phase) from CPU_ADDR valid 26 4 17 4 15
t89 | PCI_AD valid (addr phase) from CPU_ADDR_SEL# fall 26 4 22 4 19
t52 | PCI_AD valid (data phase) from CPU_DATA valid 24 4 13 3 12
153 | PCI_AD valid (data phase) from CPU_DATA_SEL# fall | 24 4 16 4 14
t90 | PCI_AD valid from PCI_SEL# fall 25 4 20 4 17
t90a | PCI_AD held valid from PCI_SEL# rise 25 4 20 4 17
t54 | PCI_AD valid from PCI_OE# fall 4,27 3 13 3 11
t54a | PCI_AD held valid from PCI_OE# rise 27 3 13 3 11
t55 | PCI_AD float from PCI_OE# rise 27 3 13 3 11
191 | PCI_AD valid (data phase) from ERR_ADDR_SEL# 4 17 4 15
t92 | PCI_AD valid (address phase) from NO_TRANS rise/fall 26 4 18 4 14
t106 | PCI_AD valid (data phase) from MEM_DATA valid 3 12 3 11
t56 | PCI_AD_PAR valid (address phase) from CPU_ADDR valid 26 5 29 5 21
t57 | PCI_AD_PAR valid (addr phase) from CPU_ADDR_SEL# fall 26 6 33 5 25
158 | PCI_AD_PAR valid (data phase) from CPU_DATA valid 26 5 | 25 5 18
t59 | PCI_AD_PAR valid (data phase) from CPU_DATA_SEL# fall 26 5 27 5 20
193 | PCI_AD_PAR valid (data phase) from MEM_DATA valid 29 4 19 4 16
t94 | PCI_AD_PAR valid from PCI_AD valid 5 25 4 22
tA1 | PCI_SEL# setup to PCI_CLK rise (address phase) 30 2 — 2 —

155

The 650 Bridge Chip Set

Des | PCI Interface (see Notes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v
Min | Max | Min | Max
(ns) | (ns) | (ns) | (ns)
tAx | PCI_SEL# hold from PCI_CLK rise (address phase) 30 2 — 2 —
t112 | PCI_AD valid from BURST_CLK# fall (2nd 4-byte of 8-byte read) 3 12 3 12
t60 | ADDRHI/DATALO setup to PCI_CLK rise or fall 2 — 2 —
t61 | ADDRHI/DATALO hold from PCI_CLK rise or fall 2 — 2 —
t62 | PCI_AD setup to PCI_CLK rise (all cycles, all phaées) 0 —_ 0 —
t63 | PCI_AD hold from PCI_CLK rise (all cycles, all phases) 4 — 3 —_
tB2 | L_PCi_DATA# setup to PCI_CLK rise or fall 31 1 — 0 —
tB1 | L_PCI_DATA# hold from PCI_CLK rise or fall 31 2 — 1 —
tC1 | ADDRHI/DATALO low setup to PCI_CLK rise (data phase) 32 2 — 1 —
tC2 | ADDRHI/DATALO low hold from PCI_CLK rise (data phase) 32 2 — 0 —
tC3 | PCI_CLK to PCI_AD (output data phase) valid 32 4 21 4 18
164 |L_PCI_DATA# setup to PCI_CLK 1 -— 1 —_—
t65 | L_PCI_DATA# hold from PCI_CLK 2 — 1 —_
t66 | PCI_AD valid (data phase) from MEM_DATA valid 29 3 12 3 11
t67 | PCI_AD valid (data phase) from MEM_DATA_SEL# fall 29 4 16 4 14
Des | ROM Engine (see Notes 1,2,3) Note | Vpp=3.3v | Vpp=3.6v
Min | Max | Min | Max
(ns) | (ns) | (ns) | (ns)
t68 | PCI_AD[23:0] valid (ROM address) from ROM_SEL# fall 4, 4 20 3 17
R/W
t68a | PCl_AD[23:0] held valid (ROM address) from ROM_SEL# rise R/W 4 20 4 17
69 | PCI_AD[23:0} valid (ROM address) from BURST CLK# fall read 5 19 4 16
t70 | PCI_AD[31:24] setup to BURST_CLK# fall read | 17 — 15 —
t71 | PCI_AD[31:24] hold from BURST_CLK# fall read | O — 0 —
110 | CPU_DATA valid (last byte) from BURST_CLK# fall (ROM_SEL#low) | read | 5 21 5 17
195 | CPU_DATA valid from ROM_SEL# fall read 4 19 4 16
t95a | CPU_DATA held valid from ROM_SEL# rise read 4 19 4 16
Des | System Interface (see Notes1,2,3) Note | Vpp=3.3v | Vpp=3.6v
Min | Max | Min | Max
(ns) | (ns) | (ns) | (ns)
196 | ALL_ONES_SEL# fall to PCI_AD valid (all 1's) 33 4 17 4 14
t97 | ALL_ONES_SE! # fall to MEM_DATA valid 4 19 4 16

156

The 650 Bridge Chip Set

Des [System Interface (see Notes1,2,3) Note | Vpp=3.3v | Vpp=3.6v

Min | Max | Min | Max

(ns) | (ns) | (ns) | (ns)
198 | BURST_CLK# high pulse width 6 — 6 —
199 | BURST_CLK# low pulse width 6 — 6 —
t107 | BURST_CLK# period 27 — 27 —
t100 | CONTIG_IO rise or fall to PCI_AD valid (address phase) — 13 — 12
1101 | CPU_ADDR setup to L_ERR_ADDR# fall 34 4 — 3 —
1102 | CPU_ADDR_SEL# fall to L_ERR_ADDR# fall 34 8 —_ 8 —
1103 | PCI_AD setup to L_ERR_ADDR# fall 34 4 — 4 —
1104 | PCI_SEL# fall to L_ERR_ADDR# fall 34 5 — 5 —
1105 | REFRESH_SEL# fall to L_ERR_ADDR# fall 34 6 — 6 —
t72 { Any PCIl, memory, or bridge activity setup to LE_ MODE_SEL# 35 30 — 30 —
t73 | Any PCI, memory, or bridge activity hold to LE_MODE_SEL# 35 30 — 30 —

Notes:

1. For the times given for Vpp = 3.3v the following applies:

Up transitions are from 0 to 2v.
Slowest times are given for 3.0v Vpp, 85 deg C ambient, and slowest process variables.

Down transitions (unless noted) are from 3.0v to .8v.

Fastest times are given for 3.6v Vpp, 0 deg C ambient, and fastest process variables.

Down transitions (unless noted) are from 3.6v to .8v.
2. For the times given for Vpp = 3.6v the following applies:

Up transitions are from 0 {o 2v.
Down transitions (unless noted) are from 3.6v to .8v.
Slowest times are given for 3.42v Vpp, 85 deg C ambient, and slowest process variables.

Fastest times are given for 3.6v Vpp, 0 deg C ambient, and fastest process variables.
3. All times are given for a 50pF capacitive load on each pin.

4. Bus valid from output enable active times are given for the siowest of:

0 N O O

(a) driving the bus down from 5.25v to .8v, or

(b) driving the bus up from Ov to 2v.

9. CPU or PCI to memory read.

10. CPU read.

11. CPU to error address latch read.
12. CPU or PCI to memory write.
13. CPU to memory write.

. CPU to PCI configuration read with master abort, CPU interrupt acknowledge cycles.
. CPU mastered transactions.

. CPU snoop of PCI bus master transaction.
. CPU to memory read.

157

The 650 Bridge Chip Set

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.

CPU to memory burst.

PCI to memory burst.

CPU to memory transaction.

PCI to memory transaction.

Memory access.

Memory write.

Memory read.

PCI BM burst transfer

Memory refresh operation.

PCI to memory write.

CPU to PCI write.

CPU to PCl read.

CPU to PCl transaction.

CPU to PClI transaction address phase or PCl to memory read first data phase.
CPU to PCl read address to data phase transition or CPU to PCI write at end of data phase.
PCI to memory read.

PCI Bus Master address transaction address phase, showing the operation of the 653 Buffer
PCIl address-latch. See Figure 7—12.

CPU to PCl read. PCI data latch operation. See Figure 7-13.

CPU to PCI write. PCI address/data MUX delay flip—flop operation. See Figure 7-14. With
XADIO=1, the data is driven onto the PCl_AD lines 2 PCl_CLKs before IRDY# is sampled
valid, yielding a maximum allowed PCI compliant specification of 1 PCI_CLK + 11ns.

PCl interrupt acknowledge address phase, etc..

Error address latch setup time from event to valid error address.

Including beginning any activity from either the CPU or a PCI bus master that involves a data

or address path, or a data or address path control signal (CPU_ADDR_SEL#,
MEM_DATA_SEL#, PCI_SEL#, etc.) in the 650 Bridge.

158

~ The 650 Bridge Chip Set

4 latch closed };ggg latch closed —*

closes latch holds

tAl
latch
t60 — 162 _t60_.| closed

PCICLK [T\ — 1.
PCL_SEL# —— \
161
ADDRHI/DATALO y /
t63 "I
PCI_AD holding X open X J holding

Figure 7-12. PCI Bus Master Transaction—Address Latch Operation

PCL_CLK ——/ \ /

| tB1 tB2__|
L_PCI_DATA# \
t63 '
‘ |,_t62___'|
PCI_AD X valid X invalid

CPU_DATA holding X open X holding

Figure 7-13. CPU to PCl Read—PClI Data Latch Operation

PCI_CLK N~/ — _/
ll: 7t61 =II
ADDRHI/DATALO TS L\, L L\ /
Delayed AHI/DLO , \
tC3 ol
+
PCL_AD Address W7 777777777 KData_—

Figure 7-14. CPU to PCl Write—PCl Address/Data MUX

159

The 650 Bridge Chip Set

7.6 Detailed Timing Diagrams | :
This section contains timing diagrams of transactions and operations that can occur in the system.

Unless otherwise indicated, all timing specifications refer to events at the pins of the chip under
discussion. Signals whose names are followed by a (C) are shown as if they were measured at
the pin of the 654 Controller. Signal names followed by a (B) are shown as if they were measured
at the pin of the 653 Buffer.

The source of some signals shown in the timing diagrams is indicated inside square brackets. For
example, some signal names are followed by an [L2], and these signals are sourced by the L2
cache. They are based on the performance of an L2 cache built around an IBM27-82681-66 L2
Cache Controller chip. Some signal names are followed by a [target], and they are sourced by
a PCl agent acting as a target. All signals shown that are sourced by a device other than the 650
Bridge are supplied for reference only, and they are not intended to specify the operation of the
referenced device. '

Some physical signal nets can be driven by more than one device. For example TA# can be driven
by both the L2 cache controller and the memory controller during the same transaction. In this
case the timing diagram line labeled TA# (C) [MC] shows the effects of the drivers in the memory
controller (in the 654) on the TA# signal net (as measured at the pin of the 654 Controller); as if
no other drivers were connected to the net. The timing diagram line labeled TA# (C) [L2] shows -
the effects of the drivers in the L2 cache on the TA# signal net (as measured at the pin of the 654
Controller), as if no other drivers were connected to the net. In this way, the activity of the various
agents is fully described, and interactions between the drivers can be freely evaluated by the de-
signer. The effects of the various drivers on the signal net can be derived by inspection.

160

191

SVOX ‘UH abed ‘albuis — peay Aiowspy 01 NdD °Si—2 @inbiy

l:

0 1

2

.3

' 5

6 . 7

&8 . 9

CPUCKO /N /T /M /T

CPUGNT#(C) "—\ '/

T

TBST#(C) ~—D—— , . —
CPU_ADDR (C) '~)—— ' ' >——<:
TSHC) ~—m__ : : : —
AACK# (C) | . - , : .
TA# (C) : : _/'_'L
MEM_PAGE_HIT# (C) ‘ Hit . . —
CPU_ADDR_SEL# (C) ' N ’ ' ' I 2nnm |
RASHI/CASLO (C) | | | '
BURST_CLK# (C) * ’ . ' . ' .
: - . .
MEM_ADDR (B) ') AN ' ' L X
RAS#(C) ' | ' | '
CAS# (C) . . ! . N A —
MEM_DATA_SEL# (C) ' ‘ ' . S A
MEM_DATA (B) m Data —
' ' ' ’ i o
| | — 3 oy
CPU_DATA (B) : € ata o—
CPU_DATA_OE# (C) i . . , . -
WE# (C) k . . .
B/LE_PAR_EN# : : ‘ : \ /T

CPU_DATA_SEL#

MEM_DATA_OE# .

19s diyD 9bpug 059 auL

091

0=SVOX ‘UH abed ‘e|buis — peay A1owsy ol NdD 91— ainbig4

., 0 2 . 3 4 ., 6 7 8
CPUCLK©) _/ \“~/ \/ \/ _/ /- —/ \u

CPUGNT#F(OT N\ [‘ ,) , ,

TBST#(Q) y————"" - . —

CPU_ADDR (€)™ }—— () l -) S

TS# (O D——— / [; "

AACK# (C) ' — I A

TA# () ' — N S
MEM_PAGE_HIT# (C) \ Hit' 7 . - 1

CPU_ADDR_SEL# (C) . ' Y s
RASHI/CASLO (C), ' ' ' ' :
BURST_CLK# (C) - .
MEM_ADDR (B} ' SN colurmn address . —C
RAS# (C) ' : ! : !

CAS#(C) ' ' ’ S

MEM_DATA_SEL# (C) ' . _ ‘ A

MEM_DATA (B; NN ¢ :Data ')——

CPU_DATA (B) : : N Daz HESS)——

CPU_DATA_OFE# (C) T\ . Y2
WE# (C) : , ,' , : : :

B/LE_PAR_EN# ' T\ ' YA

CPU_DATA_SEL#

MEM_DATA_OE#

188 diyp ebpug 059 8yt

4 5

6

7 8"

. 9 10 11 1213 14" 15
CPU_CLK (© L/ \/ /S

€91
SYOX ‘ssi abed ‘a|fuis — peay Alowsy 0L NdD “L1—L ainbiy

!

CPUGNT#(C) T\ . /[~ — ,
TBST# (C) D——"" , — . .

CPU_ADDR (O) D—rA — <

TSHO) D——m . [T T T T T T T

AACK# (€) '————————— : : : N —

TA# (©) L/ —
MEM_PAGE_HIT# (C) ' 4V ——

CPUADDR SELA(C) — " .. _ . . oo Y s

RASHI/CASLO (C) ' ‘ ' VA ' . T\ ! ' ! !

BURST CLK#() — [:

RAS# (C) - ' . 2 e - . —\ . . - . : . - .
. - T L3y . ! 23 o . ! . ' . - .

MEM_ADDR (B) ' . '

cASHO) T N . S
MEM_DATA_SEL# (C) ' . ' N . ' . : . ' . Y anam

MEM_DATA (B) , : :

: 7 | .
o ' C B ' T | I C 19 -
CPU_DATA (B) ' - NN IS Data — [HEO)—

CPUDATA_OE#(©) . . .
WE# (C) ' — — ' ' ‘ - ' , — . .
BLEPAREN¢ . ., . ‘ .
CPU_DATA_SEL# '~ ' ' . ‘ - 1
MEM_DATA_OE# . . .+ . . . —

198 diyD ebplg 069 8yL

1211

0=SVOX ‘ssily abed ‘a|buis — peay Alows|y 01 NdD °8L—L b4

CPU_GNT# (C) '\

TBST# (C) « y——v
CPU_ADDR (€)'

AACK# (C) |
TA# (C)
MEM_PAGE_HIT# (C) .
CPU_ADDR_SEL# (C)
RASHI/CASLO (C) -
BURST_CLK# (C)
RAS# (C) -
MEM_ADDR (B) |
CAS# (C) -
MEM_DATA_SEL# (C) |
MEM_DATA (B) '
CPU_DATA (B)
CPU_DATA_OE# (C) '
WE# (C) |
B/LE_PAR_EN#
CPU_DATA_SEL# -

.0 .1 ,2 .3 4.5 ,6 7,8 .9 10 11 12 13 K6 14 .
CPUCIKO "/ \J/ /S S\ SS S\ S\ S\ SN\ S\ S\ S\ S
)) 7T D S g

TSHO D——_ /" ' - D
—_— — —

: /Miss\: ! . !) ! ! . ! -
R N _/ 3

S e e e T S S
I e e e N R S S S
R, \\. ST A \NN R 7 G

— N e

: — NS D) —

- O O O S
————— .~

MEM_DATA_OE#

1es diyo ebpug 059 SuL

$91

SVOX ‘UH obed ‘1sing — peay Atows|y 01 NdD 61— ainbiy

L

0.

CPU_GNT# (C) _\ /"

TBST# (C) %
CPU_ADDR (€)' D>——C

TS# (C) :>~x_/

AACK# (C)
TA# (C) .
MEM_PAGE_HIT# (C)

CPU_ADDR_SEL# (C) —_, \

RASHI/CASLO (C).

BURST_CLK# (C)

MEM_ADDR (B),
RASH# (C)

CAS#(C) |
MEM_DATA_SEL# (C):
MEM_DATA (B)

CPU_DATA (B)'
CPU_DATA_OE# (C):
WE# (C) '
B/LE_PAR_EN#
CPU_DATA_SEL# '
MEM_DATA_OE#

12.3, 4.5 6.7, 8.9 1011 1213 14 15 1617 18 19 20 21 22 23 24
CPUCLK(C)W\J\/\/\/\JWWVW\/W\/\/\/\./\[\/‘\N

By —————

, ‘ \ !/

22 L 24 L 24 Ly oy |

. I AN :col O MNI __coll)i\ ool 2 YC =73

N /N SN M\

I ! ! \ ! | ! ! . | l

| |) ! :? I—|—§ data 0 ' t6 , data 1I | 6 | ‘qata 2 ‘ 21 I_l.dat.ta 3;4 |

B T e T e A el

' ! | \ ! ! ! ' | , , , . I | I I : :
e . S

1o diy 8bpug 059 8yl

991

0.1,2.3 4.5 6.7 8.9 ,10.11,12,13, 14,15 16.17,18. 19 20.

CPU_CLK (C). __/__/_\/__/_\N\J-\Mf\N\/_\f\N_/_\N_f_

CPU_GNT# (C) l VAR ' , : : (;
TBSTH) D+ e

CPU_ADDR (C) D———— ' vald ‘ ' '

TS# (C) }L/ —_—

AACK# () '————— ST —)

TAHQ) — T\ T\ T T T

MEM_PAGE_HIT# (C)' \ Hit /
CPU_ADDR_SEL# (C) ™\ L T

RASHI/CASLO (O) | I l I I I :
BURST_CLK#(C):— © . A N 2 N 2 N A
MEM_ADDR (B) ' YN :colé D\l ol I ' N I0012: ') AN ‘ ool 3 ——

—_—
X

RASH(C) ' e o

castO T\ /. /. .

MEM DATA SEL#(C) — ~ "\ e
MEM_DATA (B) ' - ' -

CPU_DATA (B) ' —— ' BNV N LD NN AN D' \NNN WD NN | N gy —

1es diyD abpug 059 auL

SVOX ‘NH abed ‘ising — peoy Alowsp 01 NdD "02—L 2inbi4

0:

CPUDATA OE¥ () —~ . . .
WE#(@©) ' ' ~ —
B/LE_PAR__EN#: , \ ' ' ' ! ' W
CPU_DATA_SEL# ' —] K — .
MEM_DATA_OE# | — — ' . .

L91
L=SVOX ‘ssIlN ebed ‘)sing — peay Alowapy 01 NdD ‘12-L aunbiy

0.1,2.3.4.5.6.7 89,1011 121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CPUCLK(C)\/\/\/\/V\/\/\/V\/\/VVVV\/\/\/\/\N\N\NV\/\/VV\/
CPU_GNT# (O)'"\ ' /™

TBST#(C))ﬁ:'i':'Z..'.4.;.'.'..'.,'.
CPU_ADDR (C) Y- . — , . ‘
O~ T <

AACK# (C) 1 . — T

WO ——— . S\ A A
MEM_PAGE_HIT# (C), J - S S S
CPU_ADDR_SEL# (C) ——'\ =, e e e e e
RASHUCASLO©) _. |/ ————~ . o
BURST CLK#(©) 1T N\ . —

rast© |

CAS# (C)| ! ! ' ' ' '
MEM_DATA_SEL# (C)' AN .

MEM_DATA (B) ——————— 0
R T |_|°data_'0 @ I_.Ddata_tl » quatu I
CPU_DATA (B) — N1 OSSN OSSN OESSHY
CPUDATAOE#(C)—\ T S S S S S S S S T R S N S N SN S T
WE# (©)' — T
B/LE_PAR_EN#, —_— . s
CPU_DATA_SEL#'

MEM_ADDR (B) —_— —iow AN ol 0 XN ol T NN col 7

MEM_DATA_OE#, . |, | | . : l | I : l !

les diy0 ebpug 069 euL

891
SVOX ‘ssIN abed ‘sing — peay Aiowsy 01 NdD "Zg—L inbiy

0

0.1,2.3.4.5,6.7,8.9,10 11 12 13 14 15 16 17,18 19,20 21, 22, 23 24 25, 26,
CPUCLK<C)V\/\/\/\f\/V\/W\/\/\/\f\f\/\f\f\f\/\/\/\f\f\N\-

CPU_GNT# (C) '\ [

TBST# () D= D e, . ,_C
CPU_ADDR (€) Yy ey
TS#O) D>—2/ /==
AACK# (©) _____/ —_—
MEM_PAGE_HIT# (C), T /MISST — —
CPU_ADDR SEL#(©)' ™ __ S
RASHI/CASLO (C) / . ST R R S ' BN
BURST_CLK# () ™ , ' T\ S I

RAS# (C) _—__/_—\ S L L L S S R ' .
MEM_ADDR (B) —— ¥, fow, — NNl 0 Xeol T XN el 2 N s X

CASHOC) ™ —
MEM_DATA_SEL# (O, ™~ . . . \L . .
MEM_DATA (B) '———————— . . ‘

CPU_DATA () — L M ORGSO DRSSO~
CPUDATAOE#(C)__""'—’\ R A

WE#(@C), + L e e R

B/LE_PAR_EN# ™ e S S o

CPU_D AT A__SEL # i T) T ! T ! T | I - | T | T B ¥ | T | v | T | T

MEM_DATA OE# —

198 diyD 8bpug 059 8y L

The 650 Bridge Chip Set

CPU_CLK (C)
CPU_GNT# (C)
TBST# (C)
CPU_ADDR (C)

TS# (C)

L2_CLAIM# [L2] (C)
AACK# [1.2] (C)

TA# [L2] (C)
CPU_DATA [L2] (B)
CPU_ADDR_SEL# (C)
MEM_PAGE_HIT# (C)
RASHI/CASLO (C)

MEM_ADDR (B)

RAS# (C)

CAS# (C)
MEM_DATA_SEL# (C)
MEM_DATA (B)
CPU_DATA_OE# (C)

B/LE_PAR_EN#

. 0 \ . , 3 . 4 . 5
I/ / S\ o/ _

1 \ [} | | 1 1

(- ~valid - ——(

| . . L U

O — .

| Z i —(

'] |] (/)

| Z) Hit [~ I

| - . - X

654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

Figure 7-23. CPU To Memory Read - Single, Page Hit, L2 Cache Hit

169

The 650 Bridge Chip Set

. 0o . , 2 . 3 . 5
CPU_CLK O/ __ /S S Y 7\
CPU_GNT# (C) A\
TBSTH © S
CPU_ADDR (C)’) — . Salid : —_
HO T ———_ [D e S
L2_CLATM# [L2] ©). ' — —\ .
AACK# [L2] (C) : T
TA#[L2](©) —}— ’_____/__\—
CPU_DATA [L2] (B)' : T —
CPU_ADDR_SEL# (C): ' A . /T
MEM_PAGE_HIT# (). 7/ Vi -
RASHI/CASLO (C) ' [
MEM_ADDR (B) i . WZ2777] X
RAS# (C)' ' /
CAS# (C) |

MEM_DATA_SEL# (C) :

MEM_DATA (B) ' 38

CPU_DATA_OE# (C)

B/LE_PAR_EN#,

654 does not enable TA#, AACK
654 does not assert CPU_DATA_OE#

Figure 7-24. CPU To Memory Read - Single, Page Miss, L2 Cache Hit

170

The 650 Bridge Chip Set

ceucik© [\ S S\

CPU_GNT# (C)

TBST# (C)

CPU_ADDR (C)

TS# (C)

L2_CLAIM# [L2] (C)

AACK# [L2] (C) . — T T\ [

TA# [L2] (C)

CPU_DATA [L2] (B)

CPU_ADDR_SEL# (C)

MEM_PAGE_HIT# (C)

RASHI/CASLO (C)

MEM_ADDR (B)

RAS# (C)

CAS# (C)

MEM_DATA_SEL# (C)

MEM_DATA (B) 'sg— ' '

CPU_DATA_OE# (C) - :
B/LE_PAR_EN# : ! :
654 does not enable TA#, AACK#

654 does not assert CPU_DATA_OE#

Figure 7-25. CPU To Memory Read — Burst, Page Hit, L2 Cache Hit

171

The 650 Bridge Chip Set

CPU_CLK (C)
CPU_GNT# (C)
TBST# (C)
CPU_ADDR (C)

TS# (O)

L2_CLAIM# [L2] (C)
AACK# [L2] (C)

TA# [L2] (C)
CPU_DATA [L2] (B)
CPU_ADDR_SEL# (C)
MEM_PAGE_HIT# (C)
RASHI/CASLO (C)
MEM_ADDR (B)

RAS# (C)

CAS# (C) .

MEM_DATA_SEL# (C)
MEM_DATA (B)
CPU_DATA_OE# (C)

B/LE_PAR_EN#

>
S — e en—
— o\ . .
—_— T
I T AN A
— O I X2 X I
—_— .
Y A - W
EESEESE—
I /77 R S
S S e
3S ' '

654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

Figure 7-26. CPU To Memory Read — Burst, Page Miss, L2 Cache Hit

172

The 650 Bridge Chip Set

CPUGNTF© —\ . [
TBSTH(©) ' ——rs . , N
CPU_ADDR (C) _}—" ' . - . —
TS# (C) ___)———-_/ ' ' —
AACK# (C) | I I - ./ —
TA#(C) | —— T\ —
MEM_PAGE_HIT# (C) ' ' ™\ Hit /7 ' ' ' ; :
CPU_ADDR_SEL# (C) ‘ ! : : Vs
RASHI/CASLO (C) .
BURST_CLK# (C) | .
S It (L
MEM_ADDR (B) - A - - ' X
RASHO e
CAS#(C) | — L B r—
CPU_DATA_SEL# (C) ' —\ ' ' ' ' Y
CPU_DATA (B) i : j ' " ' SR—
T ey T
: LB : ' 33
R = R R i
MEM_DATA (8) ', 77)
MEM_DATA_OE# (C) ' . T\ - ' A
WE#(©) ' — ! : L
'MEM_DATA_SEL# |

CPU_DATA_OE#

Figure 7-27. CPU To Memory Write — Single, Page Hit, XCAS=1

173

The 650 Bridge Chip Set

’ ' O [1 ' 2 ! 3 ' 4 ' 5 ' 6 ! 7 .‘ 8
cuck©/ S S S S\

CPU_GNT# (C) _\ [.

TBST# (C) ___)———f —

CPU_ADDR (C) —(J ')—(:

e B N N e e

AACK# (C) l — I s I J_-—_I.___'_/_l._\—

TA# (C) | ’_—___/—'\—

MEM_PAGE_HIT# (C) | T\ Hit [) |

CPU_ADDR_SEL# (O) . T\ —
RASHI/CASLO (C) ' ! ! ! ;
BURST_CLK# (C) . : : : '
MEM_ADDR (B) | ')}I’///I ' ’ X
mwo L

CAS# (C) " R T\ ' [

CPU_DATA_SEL# (C) ' . ' ! /—_

| CPU_DATA (B) {)——

' MEM_DATA (B) ' . WZZ2 . , D

MEM_DATA_OE# (C) . T\ —

WE# (C) * ' P : : BV A
MEM_DATA_SEL# ' - -
CPU_DATA_OE# |

Figure 7-28. CPU To Memory Write — Single, Page Hit, XCAS=0

174

SLI
SVOX ‘ssiiN abed ‘a|buig — apim Atowel 0L NdD 62— 2anbi4

L

0.1,2.3 4.5 6.7 8.9 10,11 12.13 14,15

CPU_CLK (O/_/\/\ /NS
CPU_GNT# (Q) ™\ ' /[' . : : ; ; ; : . :

[O 1 1 1 1 [[
t | 1 | ' ! ! !

TBST# (C) :F 1 ! 1 ! 1 ! 1 ! ¥ ! I ! 1 ¥-1—-C
CPUADDR(C) Dt (T~ —————————————————\ [~

O D——_ T T
AACK# (O) L , - — , - , - , . , N s
MO e t——— Z T

MEM_PAGE_HIT# (C) . s . , . . . , . : . : . :
CPU_ADDR_SEL# (C) ™1\ ' . ' . ' , - , . _ . . .

RASHI/CASLO (C): , ' ./ \
BURST_CLK# (C) . . i_ . . — . . — .
SR [- :[I o
| ') , | C L gy , . , | , |
MEM_ADDR (B) , \ \ XM\ row \ N\) column:] X:
RAS# (C) ' ' YA] \ '] '] ! ' ! !

CAS# (C)I 1 . 1 I 1) 1 . 1 .] \ : 1 ' J/ 1
CPUDATASEL#(C) "\ ' . ' . e

CPU_DATA(B) '——* 1 ¢
1 ' I._t33 » 1 ' 0 ' 0 t I_t3 3 1

< [. -5

MEMDATAB) — Oy, — Y 1O~
MEM_DATA_OE# (C) '™\ __ ' ' !) ' ' ' L) B g
WEAO T\ . . e
MEM_DATA_SEL# (C) ' - ' ' - ' - : !
CPUDATA OEC) —— 0/

1os diyo abpug 059 @yl

9L1

SVOX ‘ssiy abed ‘albuis — alum Aiowap oL NdD 08— 2nBi4

0:

0.1 .2.3 .45 .6 .7.,8.9.10.11.12.13 .14

CPU_GNT# (C)

TBST# (C)

CPU_ADDR (C) \ el . : . : ;
HO D—— . .
AACK# (C) ' ' ! M - - -

TA# (C)

MEM_PAGE_HIT# (C) '
CPU_ADDR_SEL#(C) ' " \ ' '

S/

RASHI/CASLO (C) , , e) . . T\ . . . o

BURSTCLK#(O) '
MEM_ADDR (B) ' ' — RNy __tow - D \N\ 5 ' dolumn ' X
RAS# () e TN e |
CAS# (C) ' ' ; . \ | ' Y A
CPU_DATA_SEL# (O) —————\ : , . . I /—
CPUDATA®)) ———————————————————————— '

MEM_DATA_SEL# (C) '

1 ' | ' [! 1 ! | ! ' | ' ! 1

CP U_DATA_OE# (C) ll ¥ | ¥) 3 1 [i ! b 1 ‘| ! 1

1eg diyD abpug 059 dYL

LLY
SVYOX ‘UH abed ‘1sing — ayum Alowsy 01 NdD "1e—L aunbiy4

8

0.1.2,.3.4,.5.6,7.8.,9,1011 1213 14,1516 17 18 19 20 21, 22 23 24
CPUCLK(C)f\f\j\/\/W\f\/\/V\f\N\f\/\J\f\f\/V\f\f\f\J_

CPU_GNT# (C) _\

TBST# (C) }——\ L

- T T T ™ T T T T L T T

CPU_ADDR (C) :)_("

TS# (C) D~
AACK# (C) :

TA# (C)

MEM_PAGE_HIT# (C) '~ \ Hiy

CPU_ADDR_SEL# (C) ——'\.

RASHI/CASLO (C) '

BURST_CLK# (C) .

MEM_ADDR (B)

RAS# (C)

CAS#(@©C) '
CPU_DATA_SEL# (C) :

CPU_DATA (B) ')————

MEM_DATA (B) j)—.——,—
MEM_DATA_OE# (C) '——“‘\ '

WE# (C) | \

MEM_DATA_SEL# '

1 \ I ’
' '] 1 1 1 1 1 1 [} t 1 L i 1 b 1 1 | ‘ 1 1
' ' 1 ~ ' ’ 1 ' 1 1 \ l ‘ 1 1 1 | ~ 1 ’ 1 I 1 1 1 1} 1
22 [t24L__,|. S v I T # 3 EEE S T S S S
1 ¥ m ¢01 11 1 O x: I 1 g (’:01 3 i I 1 XT 1
— /
| 0 XI l |1 O [X| 'Qallalz 1 b X Idatal?) 1 1 >
1 ' t33 II ' 1 1 I 1 ' 1 ' 1 ' ' ' 1 ' ' ' ' 1 |
1 1 t34 Il [} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
' t35 | t3|3 1 I- 1 t$3 1 1 1 t|33 | 1 ' t3§ _7_4I
| | h | data ' ' data 2 ! ! datar3 ¢
1 ' i ' ' | ' ' | ' 1 | ' 1 | , ' 1 /——— .
' | 1 ' 1 ! ' |. | 1 | | | | |) A '

CPU_DATA_OE# ., , .

189S diyp ebpug 069 oyl

The 650 Bridge Chip Set

o

'

1

[

1

|
—
—.

'

T

'

1

|

'

|

'

1

'

—/
L
'col_Q 1\\]]

—\ Hit/~

[
0
>
o
i)é\\l.
.
— .
O\

©
©
©
®)
©
®B)
®B)
©

TBST# (C)
E_HIT# (C)

,0.1,2.3,4.5,6.7,8.9,10.11,12.13,14.15,16. 17, 18. 19,20
S Y AVAN
——C
/=
\ : ' 1

SN S

A

¢ol_1: ”51 ' tol_2: AN 1 ¢ol_3: ! X)

/ [l \ W . : / ' \ : ; : / [
S LY
X' datda2 X data 3 r—

Y data2 data 3 :

!] / [

' ‘ J 1

AACK# (C)

CPU_GNT#
CPU_ADDR
CPU_DATA
MEM_DATA

CPU_ADDR_SEL#

BURST_CLK#
MEM_ADDR

RASHI/CASLO (C)

CPU_DATA_SEL#
MEM_DATA_OE#

MEM_PAG]

Figure 7-32. CPU To Memory Write — Burst, Page Hit, XCAS=0

178

The 650 Bridge Chip Set

00.1,2.3,4.5,6.7,8.9,101112131415161718192021222324252627282930

© NN\NANNNANANANNANNANNNNANNANNANANNANANNANNNNNN

CPU_CLK
CPU_GNT#

A/

5
n
- - - -
S
- x| -
Q.
|
- - -l -
3
S
SO I
o
—

,P,6 -
on
-
4 F - -] -
<
-m--w-
]

49 - - - -
X_ -
o
11 -2 |-
N
- II2I
3 E
B[
- - - -
- &
- - k|-
o
N
4 F - - =1 -
= IE
5 - - H-

<
J98F - - -] -
e
11 -2 []-
0
-]
B < R W
K =
..... -
o
o Bl e -
_,\tBB}

' N

—/\

©
TBST# (C)

©

CPU_ADDR

.......... IR -}
||||| \..Wunﬂl--a.m
...... S el
.Hw_-_-- SIRE
cCggcgoggogg 8 9
F & EER9E 23
B O F B "5 2 DM
p (I <
W oy QO |
GDMS =
£ 9 9 & &
_A_M =
S M
W_P
Q

©

CPU_DATA_SEL#

B)
B)

CPU_DATA

MEM_DATA
MEM_DATA_OE#

©

WE# (C)

MEM_DATA_SEL#

©

CPU_DATA_OE#

_OE# (O)

Figure 7-33.

CPU To Memory Write — Burst, Page Miss, XCAS=1

179

081

0=SVOX ‘ssiN abed ‘1sing - ajLp Alowdpy o1 NdD "ve—2 24nbi4

0.1,.2,3,.4.5.67,8.9,1011,121314151617 18192021 22 2324 2526
CPUCLK(C)/\/\/\/\/\/\/\/\/\/\N\/\/\/\/\/\/V\/\N\/V\/W_

CPU_GNT#(C) \ . /"~

TBST# (C) '~

TS#(C) J—__/

CPU_ADDR (C))

AACK# (C) '—

MEM_PAGE_HIT# (C)

CPU_ADDR_SEL# (C) \

RASHI/CASLO (C) : /

" BURST_CLK# (C) '

MEM_ADDR (B) + +

CAS# (C) '

CPU_DATA_SEL#(C) .~ + .\

CPU_DATA (B) '

MEM_DATA () _)——]

MEM_DATA_OE# (C) , -\

WE# (C) __“\

MEM_DATA_SEL# (C)
CPU_DATA_OE# (C) : ,

:::::::::::::f::::i:::’Z—C
I .)_,_C
=<

TA#(©) e T T T T T\ T T T\
I A L

' e N N
'“I'OW' — o Nl 0 Y ol T+ Y col 2 T N cdd 3 X

Y e N N A
T
I S T S T N S S R S S A R S S A S SRR ATR

' T Gm0 X d@mil . X_dm2 X _dm3 —

' data0 ' " "t "ttt RN datal RN data2 W dda 3™ Q)

R S S S S e

~a~

198 diyo ebpug 059 auL

The 650 Bridge Chip Set

. i ? 3 4 6 7
PCLCIK(C) /™ \/ / \/ /[
C/BE[3:0M (©) ' XCmd - Fnables . X .
PCLAD (C) [PCT] —{AGdrss }—125
FRAME# (C)) _/
IRDY#(C) | \ . ; . / . ,
TRDY#(C) —/ -
DEVSEL# (C) . \ : . /'——\—
STOP# — ' . \—
PCI_SEL# (C) ; . ; [
ADDRHI/DATALO (C) ' ' \ 3 ()N
MEM_DATA_SEL# (C) \ . s /.
MEM_PAGE_HIT# (C) . | . P{it / | : : : I : : :]
CPUCLKC) Y/ \ S\ SV S\ S\
BURST CLK#©) | . . |
RASHI/CASLO@C) '_| v v | v e e e
. N R S
MEM_ADDR®) —DeZ ——— 1
RAS#C) | . o
cast© 1 . . .| - @ oI
MEM_DATA (B) - - ' T)~
PCLOBKC) T \L___. ' | Y Se—
o B ey sy
PCI_AD (B) [B] . ——— —7L W4
CPU_ADDR_OE# (C) ' : ' : ' : ' : ' : ' : S AscAmm
.
CPU_ADDR (B) . NZJ Snoop Address ' ') 74 Al
TSHCC) T T T\ T T e
AMCKHO T T W
ARTRYEC) T smoop.
BLE_PAR EN#(C) .~ \._ . . . N

Figure 7-35. PCI To Memory Read - Single, Page Hit

181

(4]

SsI abed ‘ajfuis — peay Alowap 0] |Dd "9€-Z ainbi4

.] 2 3 4 3 6 7 8 9 10
PCLCLK O/ 4/ [/ _ /£ [S /1 A ot /1 \ ,
C/BE[3:01# (C) X Cmd + XByic Enables : : T : . X . :
PCI_AD (O) [PCI] '—B&r——I14G - : ' : :
FRAME#(C) '"™___' /

RDY#(C) T\ " : ' L/ '
 TRDY#(O) . — Z . Z ~
DEVSEL# (C) , . — . S —

STOP# — - . - - . . TN——

PCI_SEL# (C) ' ! ! ! ! ! ' ' Y a—
ADDRHI/DATALO (C) "1\ ' ' ' : ' ' ' 2
MEM_DATA_SEL# (C): \ /—'
MEM_PAGE_HIT# (C) ,—f——— 7 Miss\ — — ; -
CPU_CLK (C) MY/ A A A A A { { { { '
BURST_CLK# (C) ! ' ! [! ' ! ' ' ' ' ! ! ['] ¢ ['
RASHI/CASLO©C) '_| + *+ .+ ¢ IV ™\ ' I R B ' '
t25 _d_.| 1 1 ' t2,3 |_|_.' ' [123 I_._.l ' 1 f 0 ' ' ' '

MEM_ADDR (B) ' —DASNI" PR . ENIRow Address r OQONColuma Address 1+ X

RAS# (C)] ' 1 ' ' Ve T T ' ' ' ' 1 1 '] f '

C AS# (C) ! T - T . T L T T ' 1 '] ' /—n—'
MEM_DATA (B) '—————— L S P G 3 ——

PCI_OE# (C) , X \ N ' Y, ; X
T 167 L " "

' ' ' ' ' ' 154 Lo ! ' ' ' t66 t55 ' ' ' '
PCI_AD (B) [B] ' . t —aNT T] T ! l&ﬁ@@—‘——
CPU ADDROER(QC)'_| + ' '+ * » * + T Ty —
) v L5 "I ' : ')])]] '] ' ' v ' [Y) '

CPU_ADDR (B) '— €SI SHoop Address _+ T 7+ 7 T T — T

TS#(C) '™ 7 T\ /T - ; ' ; =

e B e
ARTRY#(©Q), ™, . Smoopr + T .
B/LE_PAR_EN# (C) ')) ' o\t . ' ' N 3 ' ! v /.

195 diyo obpug 059 8yl

€81

HH abed ‘1sing — peay Alowa| 0L |o& *,€-L ainbi4

1 2

3

4

&)

¢

7

8

9

10 11 12 13

PCI_CLK (C) mmmm

C/BE[3:0}# (C) . XCmd XByic Enables

L XBE

LARE

—_— ! X ! —

PCL_AD (C) [PC]] —m TAC
FRAME# (C) ‘.

IRDY# (C) '

TRDY# (C) -
DEVSEL# (C)

STOP# (C) +—
PCI_SEL# (C) *

ADDRHI/DATALO (C) ']

MEM_DATA_SEL# (C) '

MEM_PAGE_HIT# (C) |

CPU_CLK (C)

BURST_CLK# (C)

'RASHI/CASLO (C) '
123
MEM_ADDR (B) ,]
RAS# (C)
CAS# (C) !
MEM_DATA (B) ' : 3
PCI_OE# (C) :‘ | .
o t657 —" Yoz Lo e Ly 66 I_;|t55 |_,| o
PCI_AD (B) [B] ' - {S : B\:/te T0 \:/te ‘2 S——)ﬁ . %—
CPU_ADDR_OE# (C) st — — T Y l t4{:',|__'
CPU_ADDR (B) MSnmnAddmss ' ' NG SHOOp [Shooh Address ™ W&
TS#(C) ' N ' ‘ ' ‘ : N\ ' ~—
B T S S S S,
ARTRY#(C), ™7, ' Snoop ' ' ' L vt 8poop 4 !
B/LE_PAR EN#(C) — T . L . . L ST

18s diyn abpug 059 ayL

P8I

SSIIN uayL HH abed ‘ising — peay Alowsy 0L |9d 8-/ 21nbi4

2 3

4

5 6

7

8

12

PCI_CLK /__/__/__/__/__/__/__/__/—_/__/__/__/__/__/__/__

C/BE[3:0]# (C) D(L_,.Xlipg?ehnable,s

PCI_AD (C) [PCI] —Addr>
FRAME# (C) Y

IRDY# (C) T—___. .

13 14 15
T T X T ;

TRDY# (C) -
DEVSEL# (C) '

STOP# '
PCI_SEL# (C) '

ADDRHI/DATALO (C) '

MEM_DATA_SEL# (C)

MEM_PAGE_HIT# (C) |

CPU_CLK (C) N

BURST_CLK# (C) .

RASHI/CASLO (C)
125
MEM_ADDR (B) .
RAS#WC) o o o o e o v b
CAS# (C) T T L ™ ! ! t to 1 amna N e
MEM_DATA (B) '+t ———(Dalg ___ [>——)
PCLOE#(C) T———— '|' |~ " v
N IR 'I_t67 -t66 L. R
: o L K%Y Banie RN L L
PCI_AD (B) [B] '+——1— 1 {g"_-u 1yard MI—— MDA
croaporosno) bk
CPU_ADDR (B)' :)asnmn Address i i _)lgmmgp_m
TS#(C) ' _/) Y)
AACKHO) —— N/ N\
ARTRY# (C) , T Smoop)

B/LE_PAR_EN# (C) .=+ ., o+ .\«

195 diyo abpug 059 ayl

S81

MH uay] ssip abed ‘ising — peay Alowdy OL |Dd 66— 3.nbi4

1

2 3 4 5

6 7

8 9 10 1 12

13 14 15 16

PCI_CLK /__f__/__/'_f__/_\J_L/__/_\JW_/_\J__/__/_L/__

C/BE[3:0]# (C) W
PCL_AD (C) [PCI] -m TAC

FRAME# (C) | h

iy

IRDY# (C) 7
TRDY# (C) -
DEVSEL# (C) H
STOP# '
PCI_SEL# (C) '

ADDRHI/DATALO (C) ']

MEM_DATA_SEL# (C)

MEM_PAGE_HIT# (C) |

CPU_CLK (C)..

BURST_CLK# (C)

RASHI/CASLO (C) ' L/
' ' -t23 I_l- ' ' .t23 L,,,.I 1 ' 1 ' ' ,t24l ' ' 1 ,t24 __,_q ' ' ' ' 1 N ' ' '
MEM_ADDR (B) - ﬁm_.__J_)&.anAddmss)leQmmn_Addmss DT DRI —
RAS# (C) v ! ' T T\ L T S T T L T I E T T S S S N
CAS# (C) ! ’ * ' * * \ ' ! ! ! ' ' ' ! ' ! ' ! '-P—H, ' ' ' ' ' [Jy—
MEM_DATA (B) : - :] - 1 - ' - ' 1 - 14@3‘-(‘% T | : = ' -] 1
PCI_OE# (C) , T, . O\ = - | . — . | itk
t
N l_._t54“.’ o 1 -t66 EI ' t112' "y 46 LI 66 Lq L‘| oo
' PCL_AD (B) [B] "t (YT NMMMf .
' ' ' ' ' 1 ' 1 ' yte 0 '
CPU_ADDR_OE# (C) .| e ' - BN A R A e
_q ! 1 ! 1 ' ' 1 " ' ! |t7 1 1 1 xt78 H ' ' !] ' M ¢ Lq
- CPU_ADDR (B) Dumgmm T T N S A [T
TS#(C) ' AN A ——— AN amm <
AACK# (C) ' ' : f ' ' 1 ‘ 1 ' ' ' 1 ' T 1 ‘ |4l ' ' : i
ARTRY# (C) ' 1 SDOO ' | 1 [' ' ' ' ' 1 ' ' '
1 p 1 1 1 1 1 1 [1 ' S b ' [1
BAEPAR EN#(C) T N e 0 e e P —

19s diyp #bpug 059 dyL

The 650 Bridge Chip Set

PCI_CLK (C)
C/BE[3:0# (C)
PCI_AD (C) [PCT]

FRAME# (C)
IRDY# (C)

TRDY# (C)
DEVSEL# (C)

STOP#

PCI_SEL# (C)
ADDRHI/DATALO (C)
MEM_DATA_SEL# (C)
MEM_PAGE_HIT# (C)
CPU_CLK (C)
BURST_CLK# (C)
RASHI/CASLO (C)
MEM_ADDR (B)
RASH# (C)

CAS# (O)

MEM_DATA (B)
PCL_OE# (C)

PCI_AD (B) [B]
CPU_ADDR_OE# (C)
CPU_ADDR (B)

TS# (C) [C]

AACK# (C) [C]
ARTRY# (C) [Lx]

PCI_GNT# (C) (1)
Lx_REQ# (C) (1)
Lx_GNT# (C) (1)

TS# (C) [Lx]

. } B 3 4 ? ¢

I\ / _/ \ / \ / \ / \ /i \
I TAC ' - ' :

T\ +_/single or burst ' . T N—
|ﬁ 1 ! ' /—_-‘—______l

i : ' 4 : 1 : '

) S " ! ! f—m

. . - 1
T\] '] Y 2
ﬁ |— e

I ; — Hit / + + f y
VA U 2 U N WV NV W N 2 N A WV NV NV A WY o W
|l,] | | 1 ' I 1 X ' ' ! '

'3S . ! Il ! L ! 'l ! L : L i ! |
S - Z .

' ' F54|_' ' t155 ' 1

' f] f V ' ' ' ' i ' /',——-: '

' ¥Snoop Address : : — '

' | ' ' \ / . ' ' [' [\—l_-" '

' 1 v 1 v \ ' , ShOOp 0 ' T A N T t

! L LIS ! S I‘Illt S L !) 1 ! 1

' ' ' ' C AR/ ' ' ! ' Arbiter switch

' , : ,) . ' . , Lx Wiite Back ————
! ' ' ' [T | ' [' ' r
S e

: [' 1 J [' [' t J ' ' \—a—/_

Figure 7-40. PCI To Memory Read — Page Hit, Cache Hit

186

L8T

UOUMS J8)GIY YHM HH 3ydeD — Alowse 01 [0d "L 8inbiy

1 2 3 4 5 6
PCI_CLK (C) /__/__/__/__F_/_\I_/_\J_\J_\J—_F\I_/v

‘C/BE[3:01# (C) XCmd XByic Enables, X—— | . . , ,

FRAME# (C) ' __' /single or burst "/ TN— . . | \ . . . ,
IRDY# (C) —\ ' ' /—1
1 \ 1 1] 1 1] 1 1] 1

TRDY# (C) ' ———————— 0

S TOP# ——/—\——'_/——x Ll ! 1 1 1 I 1 1 I

PCI SEL# (C) ! ! ! ! / 1 t ' ' i ‘| ' ' '

ADDRHI/DATALO(C)__\| f. ' | r/_“ ' - ' ' L | ' ' 1 .

L |. LanteBack -'l I' L2Wr1teBack ..l .
CPU CLK(C)/V\/\/\[\/VV\/\/VV\NV\NV\/\/\/\/\/\/\/\/\/\/\/\

CPU_ADDR _ OE#' o

! 1 ! 1 U 1 ! [U 1 ! i U 1 ! ' ! 1 1 ' 1 J 1 ! 1 '

CPU_ADDR (B) .___ XSnoop Address Fiom PCL, _+])T(From. L2 o
TS# (C) [C] I : ' ‘ .u l . - 1] 1 1) 1 1 1 1] 1
y ! 1 ! 1 !] ! [' 1 N T T T 1 ! t T T 1 i 1
AACK# (O) [C] « '/ Snoo
L L Hi I L L ' ' ') 1 ' ' ' 1 ' 1 ' 1 ' 1 ' 1

ARTRY# (C) '
TA#% (C) [C] —

FeLa [

CPU_REQ#' ' ' ' AL NE! ' ' ! ' 1 WA ' ' | ' ' '] ! ' ' [' ' ' !

1 | | | 1 |) ' ' | | f 1) | f | | 1 \] ' 1 ' ' ' 1 f '

CPU_GNT#
TS# (C) [60X_L1] '

1 ' 1 ' ' 1 1 ' ' 1 | ' ' ' 1 | ' ' 1 | ' ' | ' ' ' ' ' |

L2_CACHE_REQ# , |

L2 CACHE_ GNT# ™~ T\

TS# (C) [L2] : T

18s diyp ebpug 059 8yL

The 650 Bridge Chip Set

PCI_CLK (C)
C/BE[3:0]# (C)
PCI_AD (C) [Addr]
FRAME# (C)

IRDY# (C)

TRDY# (C)

DEVSEL# (C)

STOP# (C)

PCI_SEL# (C)
ADDRHI/DATALO (C)
MEM_PAGE_HIT# (C)
CPU_CLK (C)

WE# (C)
BURST_CLK# (C)
RASHI/CASLO (C)

MEM_ADDR (B)
RAS# (C)

CAS# (C)

PCI_AD (B) [Dat]
MEM_DATA_OE# (C)

MEM_DATA (B)
CPU_ADDR_OE# (C)

CPU_ADDR (B)
TS#(C)
AACK# (C)
ARTRY# (C)

V2R Y AR Y A VY A WY A VY A VY A W
:MBV& Eri'ables ' . : ' -
—(Addr , ‘
e
T , , . Y . '
—
' \ ' - I A S

: : s : : : — |
\ . , , . . —
T I | — :
' ' \ Hit / . : ; .
[A L S
M/ N\\N\ N\
) Y
B =X
.::X/] Column Address , A !) x:
T
:__'._:(:Data' . ' . y T : ; :
=
o e T P
; ; ¢/ /] 'Data,]) -HZ}_.__—-—.‘
S S
I G
W Z1_Snoop Address .)) . E:
S S S S =
—— =
' 'Slnoop' ’ ' ' ; .

Figure 7-42. PCI To Memory Write —- Single, Page Hit

188

The 650 Bridge Chip Set

PCICLK©) [\/ ./ /. /[
C/BE[3:0# (C) 'XCind XByte Enables : ' X—
PCI_AD (C) [Addr] —Addr) - . ; ; : . :
FRAME# (C) ") /T ' ' . '
IRDY# (C) U ' : ' . ' /_"_
TRDY# (C) ' — ' ' ' ' NS
DEVSEL# (C) \ , , AN s
STOP# (C) : O ' - - ' -
PCL_SEL# (C) ' ' ' ' ' ' ' i —
ADDRHI/DATALO (C) - . - . - . - .
MEM_PAGE_HIT# (C)

0N d SO AVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAW

wEFRO [, L e T
BURST_CLK#(C) " [. -+ .+ ' . + .+ + . + .« + . + . . .
RASHY/CASLOGC) |~ " /.~ ' =

s B
MEM_ADDR B) |~ -).V Row Addfess : N A Column Addréss . N

RAS#(C) : : /—‘\ . . f ; :

cass,© [T o\ [
PCI_AD (B) [Dat] O)———|—

MEM_DATA_OE# (C) [' AN ! : /_'—
IR R
MEM_DATA @) A~

CPU_ADDR_OE# (C) , - Wi

CPU_ADDR (B) Snoop Address .+, WA

TS# (C) : '] ' : I] I 1 l 1 ' 1 I 1 I 1 l 1 '
AACK#©) . « . o\
ARTRY# (C) ' " Snoop ' ‘ ' . ' . ' ' . '

- Figure 7-43. PCI To Memory Write — Single, Page Miss

189

061

UH obed ‘i1sing — ayiM Atows o) 10d “¥i—L @anbid

1

?

3

4

»

6

7

8

9 10 11

12

13 14

PCI_CLK (C) /__/__/__/__/__/__/__/__/__/__/__/__/__/__/__

C/BE[3:0]# (C)
PCI_AD (C) [Addr]
FRAME# (C) "\

"XBE '

"XBE T

IRDY# (C)

DEVSEL# (C) '

STOP# (C) +———

PCI_SEL# (C)

ADDRHI/DATALO (C) '] \

MEM_PAGE_HIT# (C) |

CPU_CLK (C) N
WE# (C) T

BURST_CLK# (C) '

RASHI/CASLO (C) |
25

MEM_ADDR (B)]
RAS# (C),

CAS# (C) T,
PCI_AD (B) [Dat] '~
MEM_DATA_OE# (C) '

MEM_DATA (B) ——

CPU_ADDR_OE# (C)s' '
t

CPU_ADDR (B) !

TS#(C) '™

AACK# (C)

S
|-_l\| Il [} [l | [l 1 [} 1 1 i |/._
TRDY# () '4———" '/ T T —
L D e e e —————L L 20
n \ , \ , \ \ \ , \ \ , I;
1) Ll 1 ' 1 ' 1 1 1 | 1 ! l/-—
1 ! 1 1 1 1 ! 1 Ll ! 1 l/——
N
v N0 N R
T YA . YA : S
———Data™ T Tl TXDPata” * T~ T T TXDatar T T T y——t——
g <~ N % O 1]
|‘.|.|||.1||.| |l|'|||l|l|l/|_
—"’"""t78"""l .t78_._,|....'..,‘.tL.|
Snoop Address .~ M\ Snggp Addmss AYSnoop Address +
'iiI.Z,IjiZZ.I.IJIII.ZIZ.Z\—J
¢o,oWmoep ., §moQp , ., ., ., o, SMOQP ., ., .,

ARTRY# (C) ,

1es dyD abplg 059 8yl

T6l

SSIW usyL IH obed ‘isang — s Atowdly oL [0d *Gt—2 8inbiy

2

3

o0

7

8

9

10 11 12

13 14

15

161

PCLCLK (©) /M\/M\/M\ MM
C/BEL30M (€) YCmINEE B @R T @ T
PCLAD (C) [Addr] '~&ddp— e
FRAME# (©) |\ -
IRDY# (C) .—-'\ ; ; . : . : . . . } . . , . Y
TRDY# (C) '—————r” N__/ i ' o ' N/ ' N/
DEVSELH(C) '——n
STOPHO) ——— . o T o —
PCI_SEL# (C) . ' . ' : ' : ' : ' : ' . ' , ! ' A
ADDRHI/DATALO (C) '~ __ ' ! : ' ! ' ' ' ! ' ' ' ' e
MEM_PAGE HIT# (€)' ——— Xy —————— 7~y —
/

CPUCLK(C)lff/f/f/f/

ffff/f/f/f/f//////f

GRS

f/fJ
WE#(C) ™ TTT\L e
BURST Gk) e e, e
RASHI/CASLO (C) .____ Y e N
MEM_ADDR (B) ' M Columd Addréss " YY" + '~ JRow'AddreSs)JCblumn' Y Col Address' T T ¢ ; X
RASKCO - N
CASFO " e T e T e
PCI_AD (B) [Dat] '———Qa " YOa T T T T YDam T T
MEMDATAOE#(O ™ ——~\'_' ' ' ' ' '
MEM_DATA (B) ,————(SDalz .)(:upam' — o 0——
CPU_ADDR OE# (C) '+ ' 4t ot v v [T
CPU_ADDR (B) :)(]_Sng_gp_Addlms_)Ianoon Addiess : ' ISToop Address D G
O, TN T
AACKA#(C) T\ T\ T\
ARTRY# (C): . Snoop ‘ Snoop T T ' . I:Sno'op .:.:.l.

185 diyo abpug 059 8y

<61

MH uayy ssin obed ‘1sing — aliM Atowap o) |Dd "9t—L ainbi4

L2 3 4 5 6 7 8% 9 10 11 12 3B 14 15 16 17
PCICLK(C)F\J_\J__/_\IL/_\I\J_\IU__FU_\I\I\J__/__M

C/BE[3:01# (C) ' XCmdXByié Enable T EE G ; X
PCLAD (C) [Addr] '~A88)——————— : e : e ﬂ
FRAME# (C) _:: ; : ; : . ; . : . [Van . - . T
roY#CO — ' ' ' 0 v v T
TROV#(C) ——— . A /T —
DEVSEL#(C) »m—————_ © o e e
'STOP# (C) '—— ' ' ' ' ' ' ~—

PCL SEL#(C) ‘ . L . -7
ADDRHIDATALO(C) ™\ .+ & e e e T
MEM_PAGE_HIT# (C) ' S — :\HliPI — :\Pfi}'; —

CPUCLK(C)/////////fff//f///fff//.///////f///f/./

WE#(C) '™ TNt e e T
BURST_CLK#(C) —— NS
RASHI/CASLO (©) . o+ /T \ . .

MEM_ADDR (B) ' >(| -)ﬂng'Ad@gSs)ﬁlggglumn)k | Columh Address: - NN Column Address' ¢

1 !
1 Yoo v L | [T R SR
! :

RAS# (C) ' ST\ '

CAS# (C) | : :

PCI_AD (B) [Dat] -—'——-‘-(m;a

MEM_DATA_OE# (C) ' _

MEM_DATA (B) ————NDat'a)Nnmé . : NData O
CPU_ADDR_OE#(C)-.-,'--wl--'.--'.-l'.'.',-.'.-.'.l/ﬁ
CPU_ADDR (B))qmmm — T WSISnoop Address — SISnoop Address —
SHO T NS N T T
AACK#(C) ™+ 7 7+ N\ T T T N\ N\ T
ARTRY# (C): j , " :Sno'opl ' j) T ') ISLno'op: — . ' :Sno'opI -

— S .

19s diyp abpug 059 ayL

The 650 Bridge Chip Set

. 1 2 3 4 3 6

PCICIK(C) /[__/ \ / /" /M /— /"
C/BE[3:0]# (C) '_XCmd___ XByie Enables ~ X —
PCI_AD (C) [PCI] s TAC:
FRAME# (C) "\ [“single or burst] L/ b N—
RDY#(C) "™\ T
TRDY# (C) | . — . . T N—
DEVSEL# (C) ' ' — ' S
STOP# '
PCI_SEL# (C) _ . . . Y

ADDRHI/DATALO (C) —“\ ' L/

MEM_PAGE_HIT# (C) , — Hit [~ ' , '

CPUCLKO) N\ S\ S /S

WE# (C) ' '

BURST_CLK# (C) ,

RASHI/CASLO (C) ! ' ! ’ '

MEM_ADDR (B) X

RASH(O) ', o+

CAS# (C) ' — :

PCI_AD (B) [Dat]

N~

MEM_DATA_OE# (C) ' ' ' ['
MEM_DATA (B)
CPU_ADDR_OE# (C) . ' . !)

CPU_ADDR (B)

TS#(O) [C]

! 1 ! I

AACK# (C) [C] [' ' '

[\ S — 1

ARTRY# (C)

biter Swit
A BAe

PCL_GNT¥# (C) _

Lx REQ#(C) — 7 T\

Lx_GNT# (C)

TS# (C) [Lx] | - -

Figure 7-47. PCl To Memory Write — Page Hit, Cache Hit

193

The 650 Bridge Chip Set

: 1 3 4 3 6
PCICLKO /™ _/ \/ \/ /™
C/BE[3:01# (O D(de_XB)LE_EnaleS A —
PCI_AD (C) [PCT] —m TAC
FRAME# (C) '™\ +_/single or burst) -/ T —
RDY#(C) .\ S
TRDY# (C) ; — . . N———
DEVSEL# (C) ' ' — ' S
STOP# | I —
PCI_SEL# (C) ! ; : ; Y
ADDRHI/DATALO (C) "‘—__\ : / . '
MEM_PAGE_HIT# (C) : /Mlss\ :
CPU_CLK (C) /"_/__/__/"_/"_/__/__/__/__/__/__F_/__F_
WE# (C) ' ‘ A WY A ' ' '
BURST_CLK# (C) | .
RASHI/CASLOC) '___. v v [o 7 I A
MEM_ADDR (B) X oy
RASKO . o
CASHQ) — T/,
PCLAD (B) [Dat] ————— D
MEMDATA OB#(C) — " \.__ . /————————————— |
| Co o OEy ey L
MEM_DATA (B) . . 71— N2 . . : |
CPUADDROE#(C) '___* ' vt v v v v
CPU_ADDR (B) | XSHoop A:ddresgl ' ' ' 1—
TSHOCl ™~ .\ T ———
MO T T
ARTRY#(©) o A Y T ammeswin
-, Lx Write—Bac
PCLGNT#(C) [T
Lx REQ§(CO) — +~ T+ ' o« o oo+ o
e
TSH (C) [60X_L1] —— : : : . —

Figure 7-48. PCI To Memory Write — Page Miss, Cache Hit

194

S61

0=0IavX — @M 10d 0L NdO "6v—L a.nbid4

0 1 2 3 4 5 6 7 8 9 10,11 12,13 14,15 16,17 18

CPU_CIK (C) /'\J‘_/'_F_/'_/'_/'_f\f_F\f\J'_/'_f\J'\J'\J'_/'_/'_
CPU_GNT# '™\ /

CPU_ADDR (€) ——— , , , . . - . —C
™HEO D
AACKH(©) et
TA#(C) | - . . — , . , . , . . , . , N\ —
CPU_DATA(B) '— -+ . . . - : . Y
CPUADDR SEL#(CQ) ——~__ .~ ' U o oot
CPU DATA SEL#(C) T\ © .« o+ .«
PCLSEL#(C) '~ . . : *
ADDRHIDATALO C) —————_, o g
L_PCL_DATA# (C) — - : - . ; —_—
CPUADDR OB#(C) ——(——— ——— ———— ———
CPUDATACE¢(C) —— T 0 & 0 0 &
omo e L e
PCI_CLK (©) /—__/" N N N\ N\
| s el ' ; s '
PCLAD (B) ‘ AN il ' ' . '
C/BE[3:0} (O) '@ XCd Gy T . . —E——
FRAME# (C) '3SorFidd) ' ' ' : : : ' -
ST
IRDY# (C) 3SorHi g4'2 7) \ . : - | /-‘]-(jé:—
TRDY# (C) [target] 3Sor HI . - . - . . N\ —
DEVSEL# (C) [target] '3Sor I —\See PCI Specification ' ' I A N
STOP (C) [target] | ISOFHI —T5es PCI:Speciﬁcatioln — ——

les diyp obpug 059 YL

The 650 Bridge Chip Set

CPU_GNT#
CPU_ADDR (C)
TS# (C)
AACK# (C)

TA# (C)

CPU_DATA (B)

CPU_ADDR_SEL# (C)
CPU_DATA_SEL# (C)
PCI_SEL# (C)
ADDRHI/DATALO (C)
L_PCI_DATA# (C)
CPU_ADDR_OE# (C)
CPU_DATA_OE# (C)
PCI_OE# (C)

PCI_CLK (C)

PCI_AD (B)
C/BE[3:01# (C)

FRAMEH# (C)

IRDY# (C)
TRDY# (C) [target]
DEVSEL# (C) [target]

STOP# (C) [target]

0 1 2

3 4

5

6 7 8 ., 9 10

cPu_cLk © M\ M\

\ - i : I : : : I : I
—
— |
—_— ﬁ . —
—_— T
T ——— e
—\ .
. .
— T
—_
o Y e e L e VLY e WS e o VS
: t54_# !_tc3_,| | 155
\ . W/} Address Y//)Data W/A \
f) X Cmd—— YEEE_— X)
| 1 ' d f
"3S or Hi 7 ' T\ t:'“’,—- '
:BSorHi ____/___\-—
Bt mr—— g
IS or T — 7 ——_

Figure 7-50. CPU To PCI Write — XADIO=0, Fast PCI Target Response

196

L61

#S1189GH0 ‘0=0IQVX — 8}IM 10d 0L NdD "LS-Z anbiy

0 1 2 3 4 5 6 7 8 9 10, 11 12, 13 14, 15 16, 17 18

CPU_CLK © N\ /NN AN
CPUGNT# N\ ' — — 7 ——/—————/—————
CPU_ADDR (C) :D—:-—(' : ' : l : l : I : l : I : ‘)—:—('
TS#(C) " D—m ' / ' - - - ' - (T
AACKECQ) o ———— ' —
TA#QC) m—— . —
CPU_DATA (B) '—— (e,
CPU_ADDR_SEL#(C) «— T+ \ ' ' ! . ! ' ' ! ' ! ') ! A
CPUDATASEL#(C) ———— '~ '+~ = e
PCI_SEL# (C) : i :] : T : i : [: g : T : 0 : R :
ADDRHI/DATALO (C) '™ e N
L_PCI DATA#(C) ———————————————————— —————

CPU_ADDR_OE# (C) '

CPU_DATA_OE# (C) | T T ——
POLOBAQ —————\ ' .
e NP SN e U I e U e U e U U s) e U e U
‘ t54 : 1C3 Ly . . . o155 L
PCI_AD (B) ' Address] W\ Data ' ' ' ')\ I
C/BE[3:0}# (C) | ' ' YCid ™ XByie Eable ' ' X '
FRAME# (C) '3SorHi_ " /7 ' ' /! C ' ' \3S or Hi]

1 ' ' ' ' ' t | tapd |_.| \
IRDY# (C) 1 3S or Hi T 7 A T \ 1] ' 1 h
TRDY# (C) [target] \3SorHi |, . . . o . N /.

DEVSEL# (C) [target] '3 or H1__° T T \ ') ! : T

STOP# (C) [target] 3§ or L) - 7 — . . , ~—

1es diyo obpug 059 ayL

861

0IavX — MM [9d OL NdD "2S—L ainbig4

l_'—'

CPU_CLK (C)
CPU_GNT#
CPU_ADDR (C)

TS# (C)

AACK# (C)

TA# (C)
CPU_DATA (B)
CPU_ADDR_SEL# (C)
CPU_DATA_SEL# (C)
PCL_SEL# (C)
ADDRHI/DATALO (C)
L_PCL DATA# (C)
CPU_ADDR_OE# (C)
CPU_DATA_OE# (C)
PCL OE# (C)
PCL_CLK (C)

PCI_AD (B)
C/BE[3:0]# (C)
FRAME# (C)

IRDY# (C)

TRDY# (C) [target]
DEVSEL# (C) [target]
STOP# (C) [target]

9

, 0,1, 2 3 4 5 6,7,6 8, 10,11 12,13 14,15 16 , 17 18
s —
':>—'_(L ! ! ! ! ! 1 ! ! ! ! ! I ! 1 !)_l_C
:D_:_;:/ | \ | N |) ' f ' ' i ' ' ' 1 :

. - - - - S/) \] \ \ \ \ } , \ , \ \ , / . N
' ! ! ! S T T T T T T N\ ' T N
S D S g
l'_l\ ' 1 ! ' ! 1 ! 1 ' 1 ! 1 !) ¢ /I_—
e Y A
- . e
e U O S S S L N s
e e e e e e e e
. t54 ' tC3 [,) ' \ | 55 |

' " AN\ IAddress Data ' " ' ' ' '

: ' —XCod ——XBie Enable ' ' ' N

IS orf / TN ' /S ! ' " \3S or Hi'

' ' ' ' ' ' ' ' tapd ﬂ '
"3SorHi / \ ' ' ' :

oA — : : : U e
'3Sorfi ' S ‘ : : S —
:3SorH1 I ' ‘ / : : : : : : N—

1eg diyo ebpug 089 oYL

661

Aney 1ebiel ‘L=01QVX — @M 10d OL NdD "€5—Z ainbi4

0 1 2

l ! ' ! ' ! 1

3

4 5 6

7

8

9

10, 11
SN SONAWAWAWAWAWAWAWAWAWAWAWAWAWEWAWEWEWEWEWAN

12

13

14 -15 16 , 17 18

CPU_GNT# '\ ' /T ' ' : : ' ‘ ' '
CPU_ADDR () D—oro(r tm — L
THO) D T T T T (T
AACK# (C) : : S N\ S
ARTRYY ———e
TA# (C) 1—t L e S S B S B e G
CPU_DATA (B) '——————(' : ' : ' —C
CPU_ADDR_SEL#(C) — . . .« . . . oo
CPUDATA SEL#(C) —\ ' ' .+ e
POLSELKO
ADDRHIDATALO(C) ™ T\« ' e
L_PCI_DATA# (C) '™ —_ —
CPUADDR OE#(C) —————————————————— —
CPUDATAOE#(C) —
pLOBVCO —— N
PCICLKO) M /T Yy 2 3 Yy
S 54 . tC3 || - |) \ t55 .
PCI_AD (B) «— O Addiess Dt . . . N
C/BE[3:0}# (C) ' ; Cmd ; X
FRAME# (C) IS orHi— —\ ' _/ ' '
. ‘ . . tapd o
IRDY#(C) 3Sorfi /7 , , oo\ f—
TRDY# (C) [target] '3SorHi ' ' ' ' ' ' ' N—
DEVSEL# (C) [target] '3SorT \ ' - . L —
STOP# (C) [target] ':3s - : — _._/ﬂ

1es diyp #bpug 059 8yL

007

peay 12d 01 NdD "S- ainbiy

CPU_GNT# (C)
CPU_ADDR (C) ,
TS# (C)

AACK# (C) |

TA# (C)

CPU_DATA (B)

CPU_ADDR_SEL# (C) '

CPU_DATA_SEL# (C)
PCL_SEL# (C)
ADDRHI/DATALO (C)
L_PCI_DATA# (C)

CPU_ADDR_OE# (C)

CPU_DATA_OE# (C)
PCI_OE# (C)

PCI.CLK®B) /" __[\

PCI_AD (B)

C/BE[3:00# (C) |

FRAME# (C)

IRDY# (C)
TRDY# (C) [target]
DEVSEL4# (C) [target]

0,1 ,2,3,4,5,6, 8 10 . 14,15 16,17 18
CPU_CLK (C)f_/__/_\J_\J__/—\J_\f\fL/—_/__/_\/_\f\J__/__f_/_\J__
_\
1 i ! [y ! 1 ! !)]] ! ! '] ~_
1 K 1 ' 1 ' | ' ! ' \ ! / o N—
' 1 | [1 _t|8 _.'u ' 1 ' ' .tll t9 —l-’l
— : S———— ' — PENISA O —
_.'—__I_\ ' ' ' ' ! ! ! ! ' ! ! /.._l_.._
1] 1l /]]]] ' 1 | 1 1 1 ' \ 11
' T T \ ! | ! 1 1 ' t |()/-—
1 ' [' 1 ' 1 \ S / ' 1
' T 1 v T T T T 1 T T 1 T \HOldJ
' 1 1 ' 1 \ ! | ! t ! ' t | ' /-|——_
:_‘—_\ : : : : /] 1 1 ‘ ¥
i 1 | 1 Oi 1 1I [2| ' 4| 1 6. 1 7I
I A\ A N N { /.
t ' t55 ,l ' ' . Latch)
! ' Address \" { : " X Daa ——
, ' Cind_— e ' o
'350‘1{1 | 7 T \ I ! / ' | U \3S QI.}I.]")
1 ' l | ' ' | tapd |_4 1
BSod 7 __ : : N
3SorHi . . . - - TN/
"o ' ' ' ' ' T —
.3S or Hi) ' . . : N—

STOP# (C) [target]

195 diyp ebpug 059 8yl

10T

Anoy 196181 — peay [9d OL NdD "SS-Z 2inbBld

0,1.2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 18,
CPU_CLK (©) /NN NN
CPUGNTE(C) X ' forT—T—T—————
crupooR 0 ST e

THO) Ds T ("
AACK# (C) '— e ————————————————_ /T
o e

TA# Q) \—— ———

, , . , 8 "‘|' . , . , , . , t11 19 _,_,| ,
CPU_DATA (B) ,——— s~/ WM DO—

CPU_ADDR_SEL# (C) ™"\ B D

CPU_DATA_SEL# (C) '—————7 - R S——
PCLSEL# (C) —— —T—\ , , L |

ADDRHI/DATALO (C) ™™= ——\ e

L_PCL_DATA# (C) '™ — ~ |
CPU_ADDR_OE# (C) : ' : : | : : : ' : ' : ' : : ' :)
CPU_DATA_OE# (C) ——— N, L

POOEHO —— N~ . . T ——
PCLCK® M\ /T M Y T M M MO M
Cowlg. TELgT
PCL_AD (B) . : NS, (; : T
C/BE[3:0# (C) ' XCmd__ XByte Enable —
FRAME# (C) Rorfi 7 —\ ' _/ ' IHj
. tapd of
IRDY# () Tarfi7 , —\ N———

TRDY# (C) [target] IS OrE— . - —
DEVSEL# (C) [target] '3S or I \ : ' ' Y A S—

STOP# (C) [target] | IS GrHT— : —7— : : -~ S

leg diyo 8bpug 059 ayL

The 650 Bridge Chip Set

202

Section 8

The 650 Bridge Pin Lists
This section contains alphabetic and numeric pin lists for the 653 Buffer and the 654 Controller.

8.1 653 Buffer Pin Lists
8.1.1 653 Buffer Numeric Pin List
Table 8-1. 653 Buffer Numeric Pin List

Pin # Signal Name
1 MEM_PAR (0)
2 MEM_PAR (1)
3 MEM_PAR (2)
4 [MEM_PAR (3)
5 MEM_PAR (4)
6 L_ERR_ADDR#
7 MEM_DATA_OE#
8 Vbp
9 GND
10 ALL_ONES_SEL#
11 PCI_OE#
12 MEM_PAR (5)
13 MEM_PAR (6)
14 MEM_PAR (7)
15 Voo
16 PCI_AD (0)

203

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
17 PCI_AD (1)
18 PCI_AD (2)
19 GND

20 PCI_AD (3)
21 PCI_AD (4)
22 PCI_AD (5)
23 PCI_AD (6)
24 Vo

25 GND

26 PCI_AD (7)
27 PCI_AD (8)
28 PCI_AD (9)
29 GND '
30 PCI_AD (10)
31 PCI_AD (11)
32 Vop .
33 PCI_AD (12)
34 CONTIG_IO
35 PCI_AD (13)
36 PCI_AD (14)
37 PCI_AD (15)
38 Vop

39 GND

40 PCI_AD (16)
41 PCI_AD (17)
42 PCI_AD (18)
43 NO_TRANS
44 PCI_AD (19)
45 Vop

204

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
46 PCI_AD (20)
47 PCI_AD (21)
48 GND
49 PCI_AD (22)
50 PCI_AD (23)
51 PCI_AD (24)
52 Vbp
53 GND
54 PCI_AD (25)
55 PCI_AD (26)
56 PCI_AD (27)
57 PCI_AD (28)
58 GND
59 PCI_AD (29)
60 PCI_AD (30)
61 PCI_AD (31)
62 Vop
63 PCI_AD_PAR
64 MEM_PAGE_HIT#
65 DRAMX9HI/X10LO
66 ROM_SEL#
67 L _PCI_DATA#
68 VDD

.69 GND
70 PCI_CLK
71 MEM_PAR_GOOD
72 MEM_DATA_SEL#
73 BURST_CLK#
74 PCI_SEL#

205

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
75 ADDRHI/DATALO
76 REFRESH_SEL#
77 CPU_DATA (63)
78 CPU_DATA (62)
79 CPU_DATA (61)
80 CPU_DATA (60)
81 CPU_DATA (59)
82 CPU_DATA (58)
83 CPU_DATA (57)
84 CPU_DATA (56)
85 CPU_DATA (55)
86 Vbp
87 GND
88 CPU_DATA (54)
89 CPU_DATA (53)
90 CPU_DATA (52)
91 CPU_DATA (51)
92 CPU_DATA (50)
93 CPU_DATA (49)
94 Voo -

95 GND
96 CPU_DATA (48)
97 CPU_DATA (47)
98 CPU_DATA (46)
99 CPU_DATA (45)
100 CPU_DATA (44)
101 CPU_DATA (43)
102 Vop
103 GND

206

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin# |Signal Name
104 CPU_DATA (42)
105 CPU_DATA (41)
106 CPU_DATA (40)
107 CPU_DATA (39)
108 CPU_DATA (38)
109 GND
110 CPU_DATA (37)
111 CPU_DATA (36)
112 CPU_DATA (35)
113 CPU_DATA (34)
114 Vob
115 GND
116 CPU_DATA (33)
117 CPU_DATA (32)
118 CPU_ADDR (0)
119 CPU_ADDR (1)
120 CPU_ADDR (2)
121 CPU_ADDR (3)
122 CPU_ADDR (4)
123 CPU_ADDR (5)
124 CPU_ADDR (6)
125 CPU_ADDR (7)
126 Vbp
127 GND
128 CPU_ADDR (8)
129 CPU_ADDR (9)
130 CPU_ADDR (10)
131 CPU_ADDR (11)
132 CPU_ADDR (12)

207

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Contmued)

Pin # Signal Name
133 CPU_ADDR (13)
134 GND
135 CPU_ADDR (14)
136 CPU_ADDR (15)
137 CPU_ADDR (16)
138 CPU_ADDR (17)
139 CPU_ADDR (18)
140 CPU_ADDR (19)
141 CPU_ADDR (20)
142 1 Vpp
143 GND
144 CPU_ADDR (21)
145 . |CPU_ADDR (22)
146 CPU_ADDR (23)
147 CPU_ADDR (24)
148 CPU_ADDR (25)
149 CPU_ADDR (26)
150 ‘CPU_ADDR (27)
151 CPU_ADDR (28)
152 CPU_ADDR (29)
153 CPU_ADDR (30)
154 CPU_ADDR (31)
155 TSIZ (2)

156 TSIZ (1)

157 TSIZ (0)

158 CPU_ADDR_SEL#
159 CPU_ADDR_OE#
160 Vpp

161 ~ |GND

208

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
162 CPU_DATA (31)
163 CPU_DATA (30)
164 CPU_DATA (29)
165 CPU_DATA (28)
166 CPU_DATA (27)
167 CPU_DATA (26)
168 CPU_DATA_SEL#
169 GND
170 CPU_DATA (25)
171 CPU_DATA (24)
172 CPU_DATA (23)
173 CPU_DATA (22)
174 CPU_DATA (21)
175 CPU_DATA (20)
176 Vpp
177 GND
178 CPU_DATA (19)
179 CPU_DATA (18)
180 CPU_DATA (17)
181 CPU_DATA (16)
182 GND
183 CPU_DATA (15)
184 CPU_DATA (14)
185 CPU_DATA (13)
186 CPU_DATA (12)
187 CPU_DATA (11)
188 CPU_DATA (10)
189 CPU_DATA (9)
190 Vbbp

209

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin# Signal Name
191 GND
192 CPU_DATA_OF#
193 CPU_DATA (8)
194 CPU_DATA (7)
195 CPU_DATA (6)
196 CPU_DATA (5)
197 CPU_DATA (4)
198 GND
199 CPU_DATA (3)
200 CPU_DATA (2)
201 CPU_DATA (1)
202 CPU_DATA (0)
203 RASHI/CASLO
204 Voo
205 GND ,
206 MEM_DATA (0)
207 MEM_DATA (1)
208 MEM_DATA (2)
209 MEM_DATA (3)
210 |MEM_DATA (4)
211 MEM_DATA (5)
212 Vbp
213 GND
214 MEM_DATA (6)
215 MEM_DATA (7)
~ 216 MEM_DATA (8)
217 MEM_DATA (9)
218 |MEM_DATA (10)
219 MEM_DATA (11)

210

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
220 Vbp
221 GND
222 TEST#
223 ERR_ADDR_SEL#
224 MEM_DATA (12)
225 MEM_DATA (13)
226 MEM_DATA (14)
227 GND
228 MEM_DATA (15)
229 MEM_DATA (16)
230 MEM_DATA (17)
231 MEM_DATA (18)
232 MEM_DATA (19)
233 MEM_DATA (20)
234 MEM_DATA (21)
235 MEM_DATA (22)
236 MEM_DATA (23)
237 MEM_DATA (24)
238 Vbp
239 GND
240 MEM_DATA (25)
241 MEM_DATA (26)
242 MEM_DATA (27)
243 MEM_DATA (28)
244 MEM_DATA (29)
245 MEM_DATA (30)
246 MEM_DATA (31)
247 MEM_ADDRO_B
248 MEM_ADDR (0)

211

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
249 MEM_ADDR (1)
250 - |MEM_ADDR (2)
251 MEM_ADDR (3)
252 MEM_ADDR (4)
253 MEM_ADDR (5)
254 Vbb
255 GND
256 MEM_ADDR (6)
257 MEM_ADDR (7)
258 MEM_ADDR (8)
259 MEM_ADDR (9)
260 MEM_ADDR (10)
261 MEM_ADDR (11)
262 LE_MODE_SEL#
263 MEM_DATA (32)
264 MEM_DATA (33)
265 MEM_DATA (34)
266 Vbp
267 GND
268 MEM_DATA (35)
269 MEM_DATA (36)
270 MEM_DATA (37)
271 MEM_DATA (38)
272 MEM_DATA (39)
273 GND
274 MEM_DATA (40)
275 MEM_ DATA (41)
276 MEM_DATA (42)
277 MEM_DATA (43)

212

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin # Signal Name
278 Vbp

279 GND

280 MEM_DATA (44)
281 MEM_DATA (45)
282 MEM_DATA (46)
283 MEM_DATA (47)
284 MEM_DATA (48)
285 MEM_DATA (49)
286 Vop

287 GND

288 MEM_DATA (50)
289 MEM_DATA (51)
290 MEM_DATA (52)
291 MEM_DATA (53)
292 MEM_DATA (54)
293 MEM_DATA (55)
294 Vbp

295 GND

296 MEM_DATA (56)
297 MEM_DATA (57)
298 MEM_DATA (58)
299 MEM_DATA (59)
300 MEM_DATA (60)
301 GND

302 MEM_DATA (61)
303 MEM_DATA (62)
304 MEM_DATA (63)

213

The 650 Bridge Chip Set

8.1.2 653 Buffer Alphabetic Pin Listing

Table 8-2. 653 Buffer Alphabetic Pin List

Signal Name . Pin #
ADDRHI/DATALO ' 75
ALL_ONES_SEL# 10
BURST_CLK# ' 73
CONTIG_IO 34
CPU_ADDR (0) 118
CPU_ADDR (1) 119
CPU_ADDR (2) 120
CPU_ADDR (3) ‘ 121
CPU_ADDR (4) ' 122
CPU_ADDR (5) 123
CPU_ADDR (6) 124
CPU_ADDR (7) _ 125
CPU_ADDR (8) 128
CPU_ADDR (9) 129
CPU_ADDR (10) 130
CPU_ADDR (11) ‘ 131
CPU_ADDR (12) 132
CPU_ADDR (13) : 133
CPU_ADDR (14) ‘ 135
CPU_ADDR (15) 136
CPU_ADDR (16) 137
CPU_ADDR (17) 138
CPU_ADDR (18) 139
CPU_ADDR (19) 140
CPU_ADDR (20) 141
CPU_ADDR (21) 144
CPU_ADDR (22) ' 145
CPU_ADDR (23) 146

214

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
CPU_ADDR (24 147
CPU_ADDR (25 148
CPU_ADDR (26 149
CPU_ADDR (27 150
CPU_ADDR (28 151
CPU_ADDR (29) 152
CPU_ADDR (30) 153
CPU_ADDR (31) 154
CPU_ADDR_OE# 159
CPU_ADDR_SEL# 158
CPU_DATA (0) 202
CPU_DATA (1) 201
CPU_DATA (2) 200
'CPU_DATA (3) 199
CPU_DATA (4) 197
CPU_DATA (5) 196
CPU_DATA (6) 195
| CPU_DATA (7) 194
CPU_DATA (8) 193
CPU_DATA (9) 189
CPU_DATA (10) 188
CPU_DATA (11) 187
CPU_DATA (12) 186
CPU_DATA (13) 185
CPU_DATA (14) 184
CPU_DATA (15) 183
CPU_DATA (16) 181
CPU. DATA (17) 180
CPU_DATA (18) 179

The 650 Bridge Chip Set

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
CPU_DATA (19) ' 178
CPU_DATA (20) , 175
CPU_DATA (21) _ 174
CPU_DATA (22) , 173
CPU_DATA (23) 172
| CPU_DATA (24) 171
CPU_DATA (25) | 170
CPU_DATA (26) 167
CPU_DATA (27) . 166
CPU_DATA (28) 165
CPU_DATA (29) 164
CPU_DATA (30) , 163
CPU_DATA (31) 162
CPU_DATA (32) 117
‘CPU_DATA (33) 116
CPU_DATA (34) 113
CPU_DATA (35) 112
CPU_DATA (36) ‘ 111
CPU_DATA (37) ' 110
CPU_DATA (38) 108
CPU_DATA (39) 107
CPU_DATA (40) 106
CPU_DATA (41) 105
CPU_DATA (42) ’ 104
CPU_DATA (43) ‘ 101
CPU_DATA (44) 100
CPU_DATA (45)) - 99
CPU_DATA (46) . - 98
CPU_DATA (47) 97

216

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
CPU_DATA (48) 96
CPU_DATA (49) 93
CPU_DATA (50) 92
CPU_DATA (51) 91
CPU_DATA (52) 90
CPU_DATA (53) 89
CPU_DATA (54) 88
CPU_DATA (55) 85
CPU_DATA (56) 84
CPU_DATA (57) 83
CPU_DATA (58) 82
CPU_DATA (59) 81
CPU_DATA (60) 80
CPU_DATA (61) 79
CPU_DATA (62) 78
CPU_DATA (63) 77
CPU_DATA_OE# 192
CPU_DATA_SEL# 168
DRAMXSHI/X10LO 65
ERR_ADDR_SEL# 223
GND 9
GND 19
GND 25
GND 29
GND 39
GND 48
GND 53
GND 58
GND - 69

217

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
GND 87
GND 95
GND | 103
|GND 109
GND , | 115
GND 127
GND 134
GND ‘ 143
GND 161
GND 169
GND 177
GND 182
GND ’ 191
GND , 198
GND 205
GND , 213
GND 221
GND ‘ 227
GND 1 239
GND 255
GND , 267
GND 273
GND 279
GND 287
GND - 295
GND 301
L_ERR_ADDR# , G
L_PCI_DATA# 67
LE_MODE_SEL# 262

218

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
MEM_ADDR (0) 248
MEM_ADDR (1) 249
MEM_ADDR (2) 250
MEM_ADDR (3) 251
MEM_ADDR (4) 252
MEM_ADDR (5) 253
MEM_ADDR (6) 256
MEM_ADDR (7) 257
MEM_ADDR (8) 258
MEM_ADDR (9) 259
MEM_ADDR (10) 260
MEM_ADDR (11) 261
MEM_ADDRO_B 247
MEM_DATA (0) 206
MEM_DATA (1) 207
MEM_DATA (2) 208
MEM_DATA (3) 209
MEM_DATA (4) 210
MEM_DATA (5) 211
MEM_DATA (6) 214
MEM_DATA (7) 215
MEM_DATA (8) 216
MEM_DATA (9) 217
MEM_DATA (10) 218
MEM_DATA (11) 219
MEM_DATA (12) 224
MEM_DATA (13) 225
MEM_DATA (14) 226
) - 228

MEM_DATA (15

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name A Pin #
MEM_DATA (16) 229
MEM_DATA (17) 230
MEM_DATA (18) | 231
MEM_DATA (19) 232
MEM_DATA (20) 233
MEM_-DATA (21) | 234
MEM_DATA (22) 235
MEM_DATA (23) 236
MEM_DATA (24) 237
MEM_DATA (25) 240
MEM_DATA (26) 241
MEM_DATA (27) 242
MEM_DATA (28) 243
MEM_DATA (29) 244
MEM_DATA (30) | 245
MEM_DATA (31) 248
MEM_DATA (32) 263
MEM_DATA (33) | 264
MEM_DATA (34) 265
MEM_DATA (35) - 268
MEM_DATA (36) 269
MEM_DATA (37) 270
MEM_DATA (38) 271
MEM_DATA (39) 272
MEM_DATA (40) 274
MEM_DATA (41) 275
MEM_DATA (42) 276
MEM_DATA (43) 277
MEM_DATA (44) 280

220

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
MEM_DATA (45) 281
MEM_DATA (46) 282
MEM_DATA (47) 283
MEM_DATA (48) 284
MEM_DATA (49) 285
MEM_DATA (50) 288
MEM_DATA (51) 289
MEM_DATA (52) 290
MEM_DATA (53) 291
MEM_DATA (54) 292
MEM_DATA (55) 293
MEM_DATA (56) 296
MEM_DATA (57) 297
MEM_DATA (58) 298
MEM_DATA (59) 299
MEM_DATA (60) 300
MEM_DATA (61) 302
MEM_DATA (62) 303
MEM_DATA (63) 304
MEM_DATA_OE# 7
MEM_DATA_SEL# 72
MEM_PAGE_HIT# 64
MEM_PAR (0) 1
MEM_PAR (1) 2
MEM_PAR (2) 3
MEM_PAR (3) 4
MEM_PAR (4) 5
MEM_PAR (5) 12
MEM_PAR (6) 13

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
MEM_PAR (7) 14
MEM_PAR_GOOD : 71
NO_TRANS 43
PCI_AD (0) 16
PCI_AD (1) 17
PCI_AD (2) 18
PCI_AD (3) ‘ 20
PCI_AD (4) : 21
PCI_AD (5) 22
PCI_AD (6) 23
| PCI_AD (7) 26
PCI_AD (8) 27
| PCI_AD (9) 28
PCI_AD (10) 30
PCI_AD (11) 31
PCI_AD (12) ' 33
PCI_AD (13) 35
PCI_AD (14) 36
PCI_AD (15) - 37
PCI_AD (16) 40
PCI_AD (17) 41
PCI_AD (18) 42
PCI_AD (19) 44
PCI_AD (20) 46
PCI_AD (21) | 47
PCI_AD (22) 49
PCI_AD (23) 50
PCI_AD (24) 51
PCI_AD (25) 54

222

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin #
PCI_AD (26) 55
PCI_AD (27) 56
PCI_AD (28) 57
PCI_AD (29) 59
PCI_AD (30) 60
PCLAD (31) 61
PCI_AD_PAR 63
PCI_CLK 70
PCI_OE# 1
PCl_SEL# 74
RASHI/CASLO 203
REFRESH_SEL# 76
ROM_SEL# 66
TEST# 222
TSIZ (0) 157
| TSIZ (1) 156
TSIZ (2) 155
Vop 8
Vbbp 15
VoD 24
Vpp 32
Vbp 38
Vbp 45
Vbp 52
Vbp 62
Vbp 68
Vbp 86
Voo 94
VoD 102

223

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin#
Vbp 114
Vop . 126
Vbb 142
Vbb 160
Vbb 176
VoD 190
Vbp 204
Vob 212
Vob 220
Vpb 238
Vpp 254
Vob 266
Vpb 278
Vob 286
Vbp 294

224

The 650 Bridge Chip Set

8.2 654 Controller Pin Lists

8.2.1 654 Controller Numeric Pin List

Table 8-3. 654 Controller Numeric Pin List

Pins

Signal Description

001,010,015,020,
030,041,047,051,
060,070,081,090,
100,110,115,121,
130,140

Voltage: 3.3V

019,099

RESERVED

011,021,031,040,
050,061,071,
080,091,101,111,
120,128,131,
141,143,151,160

Ground

002

ALL_ONES_SEL#

003 PCI_GNT[2]#
004 PCI_GNT[5]#
005 PCI_GNT[4]#
006 PCI_GNT[1]#
007 IO_BRDG_GNT#
008 BURST_CLK#
009 REFRESH_SEL#
012 NML_IRQ

013 NO_TRANS
014 ROM_SEL#

016 PCI_STOP#
017 PCI_C/BE[1]#
018 PCI_C/BE[O}#
022 CASI[OJ#

023 CAS[1]#

024 CAS[2J#

025 CAS[3]#

225

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description

026 WE[1]# _

027 PCI_TRDY#

028 PCI_DEVSEL#

029 PCI_FRAME#

032 IO_BRDG_IRQ
1033 PCI_REQI[5}#

034 PCI_REQ[4}#

035 PCI_REQ[3}#

036 PCI_REQ[2}#

037 SRESET_CPU#

038 PCI_REQ[1}#

039 I0_BRDG_REQ#

042 MEM_PAR_ERR#

043 ' DPE_ERR#

044 TT_ERR#

045 I0_BRDG_HOLD#

046 MC_SETUP#

048 - | PCI_C/BE[3}#

049 PCI_C/BE[2}#

052 PCI_IRDY#

053 PCI_PAR

055 WE[0}#

056 CAS[71#

057 CAS|6]#

058 CAS[5}#

059 CAS[4}#

062 RAS[7}#

063 ' RAS[6]#

226

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description
064 RAS[E[#

065 RAS[4J#

066 RAS[3J#

067 RAS[2J#

068 RAS[1]#

069 RAS[OJ#

072 ROM_WE#

073 ROM_OE#

074 ROM_CS#

075 Ri#

076 ERR_ADDR_SEL#
077 MASK_TEA#

078 RESERVED

079 ISA_MASTER#
082 L2 PRESENT#
083 INT_CPU#

084 BE_PAR_EN#
085 LE_PAR_EN# .
086 RESET#

087 REFRESH_REQ#
088 PCL_GNT[3}#

089 SRESET_REQ#
092 LE_MODE_SEL#
093 CPU_ADDR[29]
094 CPU_ADDRI30]
095 CPU_ADDRIg]
096 CPU_ADDR[7]
097 CPU_ADDRI6]

227

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description
098 | CPU_ADDRI[5]
102 CPU_ADDR[4]
103 CPU_ADDRI[3]
104 CPU_ADDR[2]
105 CPU_ADDR[1]
106 CPU_ADDRI[0]
107 CPU_ADDR[19]
108 CPU_ADDR[31]
109 L2_CACHE_REQ#
112 ARTRY#

113 AACK#

114 L2 CACHE_GNT#
116 TSIZ[2]

117 Di#

118 TSIZ[1]

119 TSIZ[0]

122 TT[1]

123 TT[3]

124 L2_CLAIM#

125 XATS#

126 CPU_REQ#

127 TBST#

129 PCI_CLK

132 TS#

133 CPU_GNT#

134 TA#

135 ' TEA#

136 TEST#

228

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Déscription

137 TT[O]

138 TT[2]

139 DPE#

142 CPU_CLK

144 CPU_ADDR_OE#
(145 CPU_DATA_OE#

146 L_PCI_DATA#

147 ADDRHI/DATALO

148 PCI_OE#

149 MEM_PAGE_HIT#

150 LE_MODE_REQ

152 PCI_AD_PAR

153 MEM_DATA_SEL#

154 MEM_DATA_OE#

155 MEM_PAR_GOOD

156 RASHI/CASLO

157 PCI_SEL#

158 CPU_DATA_SEL#

159 CPU_ADDR_SEL#

229

The 650 Bridge Chip Set

8.2.2 654 Controller Alphabetic Pin List
Table 8—4. 654 Controller Alphabetic Pin List

Signal Description : Pins
AACK# 113
ADDRHI/DATALO 147
ALL_ONES _SEL# : 002
ARTRY# 112
BE_PAR_EN# 084
BURST_CLK# 008
CAS[0J# ‘ 022
CAS[1]# : 023
CAS[2}# 024
CAS[3# 025
CAS[4}# 059
CAS[5J# ; 058
CAS[6]# 057
CAS[7}# 056
CPU_ADDRI[0] 106
CPU_ADDR[1] - 105
CPU_ADDR|2] 104
CPU_ADDRI[3] : 103
CPU_ADDR[4] 102
CPU_ADDRI[5] , ‘ 098
CPU_ADDR][6] 097
CPU_ADDR[7] 096
CPU_ADDR][8] 095
CPU_ADDR][19] | 107
CPU_ADDR[29] ‘ 093
CPU_ADDR[30] 094
CPU_ADDR[31] 108

230

The 650 Bridge Chip Set

Table 8—4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins
CPU_ADDR_OE# 144
CPU_ADDR_SEL# 159
CPU_CLK 142
CPU_DATA_OE# 145
CPU_DATA_SEL# 158
CPU_GNT# 133
CPU_REQ# 126
Dl# 117
DPE# 139
DPE_ERR# 043
ERR_ADDR_SEL# 076

Ground

011,021,031,040,050,
054,061,071,080,091,
101,111,120,128,131,
141,143,151,160

INT_CPU# 083
IO_BRDG_GNT# 007
|0_BRDG_HOLD# 045
|0_BRDG_IRQ 032
IO_BRDG_REQ# 039
ISA_MASTER# 079
L_PCI_DATA# 146
L2 CACHE_GNT# 114
L2 CACHE_REQ# 109
L2_CLAIM# 124
L2_PRESENT# 082
LE_MODE_REQ 150
LE_MODE_SEL# 092
LE_PAR_EN# 085

231

The 650 Bridge Chip Set

Table 8-4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins
MASK_TEA# 077
MC_SETUP# 046
MEM_DATA_OE# ~ _ 154
MEM_DATA_SEL# 153
MEM_PAGE_HIT# - | 149
MEM_PAR_ERR# 042
MEM_PAR_GOOD 155
NMI_IRQ 012
NO_TRANS 013
PCI_AD_PAR 152
PCI_C/BE[0]# 018
PCI_C/BE[1]# 017
PCI_C/BE[2}# 049
PCI_C/BE[3]# 048
PCI_CLK ' 129
PCI_DEVSEL# 028
PCI_FRAME# 029
PCI_GNT[1]# 006
PCI_GNT[2}# 003
PCI_GNT[3)# ' 088
PCI_GNT[4]# 005
PCI_GNT[5]# ‘ 004
PCI_IRDY# 052
PCl_OE# 148
PCI_PAR 053
PCI_REQ[1}# ' 038
PCI_REQ[2}# ' 036
PCI_REQ[3}# 035

232

The 650 Bridge Chip Set -

Table 8-4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins
PCI_REQ[4]# 034
PCI_REQ[5}# 033
PCI_SEL# 157
PCI_STOP# 016
PCI_TRDY# 027
RAS[OJ# 069
RAS[1}# 068
RAS[2J# 067
RAS[3]# 066
RAS[4]# 065
RAS[5]# 064
RAS[B}# 063
RAS[7]# 062
RASHI/CASLO 156
REFRESH_REQ# 087
REFRESH_SEL# 009
RESERVED 019,099
RESERVED 078
RESET# 086
RI# 075
ROM_CS# 074
ROM_OE# 073
ROM_SEL# 014
ROM_WE# 072
SRESET_CPU# 037
SRESET_REQ# 089
TA# 134
TBST# 127

233

The 650 Bridge Chip Set

Table 8-4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins

TEA# 135

TEST# 136

TS# 132

TSIZ[0] 119

TSIZ[1] 118

TSIZ[2] 116

TT[O] 137

TT[1] 122

TT[2] 138

TT[3] 123

TT_ERR# 044 .

Voltage: 3.3V 001,010,015,020,030,
041,047,051,054,060,
070,081,090,100,110,
115,121,130,140

WE[0]# 055

WE[1]# 026

XATS# 125

234

Section 9
650 Bridge Mechanical Drawings

9.1 653 Buffer Quad Flat Pack Component Detail

QUAD FLAT PACK 304 LEADED (0.5 mm PITCH)
[COMPONENT DETAIL |

L O 42.6 |
1.677 DETAIL A
L.
Q|3 {
|
Ol - \
’N
B =
o™ =

LEELEE LI LR BRI EEE UL DR LR L LD T L L DL

;;
0.16 § 4.5 MAX l
.006 177
& CENTROID
wn
o

3.8 | 1] 0.25 MIN
.150 ! T o10

DETAIL A

Figure 9-1. 653 Buffer Quad Flat Pack Component Detail

235

The 650 Bridge Chip Set

9.2 653 Buffer Quad Flat Pack Component Footprint

FRONT SIDE

I 0.2794

QUAD FLAT PACK 304 LEADED (0.5 mm PITCH)
[COMPONENT FOOTPRINT|

.011
{PAD)
18.89
T4y !
2|8 3L
al™ —é— Rl
=+ |~ ~| .
o Ol e
o s
' ol <g
nwl|o o| 3 —
1% 2X) 1.07 | E w8,
Y1 s . 042 | —-Ba
TOOLING HOLE w|Bh
NON-PLATED , \ [
228 1
\ \ *'
I 229 304%—7[
21.59
® CENTROID I-—-——-—— 850 v 1.03
SMT _SPACING_(PITCH) FROM PAD CENTERLINE
» SPACING IS TO NEAREST 0.013 mm (.0005 [n)
PAD| SPACING[1] |PAD| SPACING[T] |PAD] SPACING[1] |[PAD| SPACING[i]
1 | 0.000 (.0000) |22 [10.503 (.4135) |43 |21.006 (.8270) | 64 [31.496 (1.2400)
2 | 0.495 (.0195) [23]10.998 (.4330) | "+ |21.501 (.8465) | 65 |32.004 (1.2600)
3| 1.003 (.0395) |24]11.506 (.4530) |45 |21.996 (.8660) |66 |32.459 (1.2795
4 | 1.498 (.0590) |25[12.002 (.4725) |46 |22.504 (.8860) | 67 [32.995 (1.2990
5| 1.994 (.0785) |26 |12.497 (.4920) |47 |23.000 (.9055) |68 |33.503 (1.3190)
6 | 2.502 (.0985) |27 [13.005 (.5120) |48 |23.495 (.9250) |69 |33.998 (1.3385
7 | 2.997 (.1190) | 28]13.500 (.5315) |49 [24.003 (.9450) |70 |34.506 (1.3585
8 | 3.505 (.1380) | 29[13.995 (.5510) |50 |24.498 (.9645) | 71 [35.001 (1.3780
9 | 4.001 (.1575) |30]14.503 (.5710) |51 |25.006 (.9845) |72 [35.457 (1.3975) |
10| 4.496 (.1770) |31 [14.999 (.5905) |52 |25.502 (1.00407| 73 |36.005 (1.4175)
11] 5.004 (.1970) |32]15.494 (.6100) |53 |25.997 (1.0235) | 74 |36.500 (1.4370)
12] 5.499 (.2165) |33 [16.002 (.6300) |54 |26.505 (1.0435) |75 |36.995 (1.4565)
13| 5.994 (,2360) | 3416.497 (.6495) |55 [27.000 (1.0630)| 76 |37.503 (1.4765)
4| 6.502 (.2560) | 35[17.005 (.6695) |56 |27.496 (1.0825
5] 6.998 (.2755) |36 [17.501 (.6890) |57 |28.004 (1.1025
16 7.506 (.2955) |37 [17.996 (.7085) |58 [28.499 (1.1220
17] 8.001 (.3150) |38 |18.504 (.7285) |59 |28.99% (1.1415
18] 8.496 (.3345) |39]18.999 (.7480) |60 [29.502 (1.1615
19] 9.004 (.3545) |40 [19.495 (.7675) |61 |29.997 (1.1810
20| 9.450 (.3740) | 41 [20.003 (.7875) |62 [30.505 (1.2010
21| 9.995 (.3935) |42]20.498 (.8070) |63 |31.000 (1.2205)
MAY92

Figure 9-2. 653 Buffer Quad Flat Pack Component Footprint

236

The 650 Bridge Chip Set

9.3 654 Controller 160-Pin Flat Pack Component Detail

SMALL PITCH FLAT PACKS
160 PIN (0.65 (.0256) PITCH)
PLASTIC AND CERAMIC

0.65 PITCH L L 0.3 % 0.1
.0256 ' ’t H .0l2 + .o0u4

31.19 £ 0.25

1.228 £ .010
28 £ 0.2

T
IO

b 5]

1.102 £+ .008

160

4.5 MAX
77

0.15 + 0.05
.006 + ,002
0.25 MIN ?{\

.010

0.8 £ 0.15 |
.032 + .006 t

Figure 9-3. 160-Pin Flat Pack

237

The 650 Bridge Chip Set

9.4 654 Controller 160-Pin Flat Pack Compohent Footprint

SMALL PITCH

(F.P.)

PAD LOCATIONS

- SMT

2

PAD SPACING (PITCH)

COMPONENT

(O.65mm PITCH)

U

FOOTPRINT IS FOR 160 LEAD FLAT PACK (SQUARE)
2.032 | FRONT SIDE _3.05
.080 | .120
A N
SR S
% H 0.41 %j_ 040
% (PAD) %
= =
wlo “EE% EEE
g RE EE% 'EEE R
= y ® = "5
A= = 8-
= =
= |2 12.878 | =
= S ‘ .5070 =
= =

FROM PAD CENTER LINE

* SPACING IS TO NEAREST 0.013 mm (.0005 in)
PAD # SPACING PAD # SPACING PAD # SPACING

i 0.000 (.0000) 5 9.106 (.3585) 29 8.199 (.7165)
2 0.648 (.0255) 6 9.754 (.3840) 30 8.847 (.7420)
3 1.295 (.0510) 7 0.401 (.4095) 31 9.494 (.7675)
4 1.956 (.0770) 8 049 (.4350) 32 20.155 (.7935)
5 2.603 ~ (.1025) 9 .697 (.4605) 33 20.803 (.8190)
6 3.251 (.1280) 20 12.344 (.4860) 34 21.45 (.8445)| .
7 3.899 (.1535) 21 3.005 (.5120) 35 22.098 (.8700)
8 4.547 (.1790) 22 3.652 (.5375) 36 22.746 (.8955)
9 5.194 (.2045) 23 4.3 (.5630) 37 23.406 (.9215)
10 5.842 (.2300) 24 14.948 (.5885) 38 24.054 (.9470)
11 6.502 (.2560) 25 15.596 (.6140) 39 24.701 (.9725)
2 7.15 (.2815) 26 6.256 (.6400) 40 25.349 (.9980)
3 7.798 (.3070) 27 6.904 (.6655)

4 8.445 (.3325) 28 7.551 .(.6910)

"~ 0CT90
QFP160A

REMAINING PADS (3 SIDES) ARE A REPLICATION OF THIS SPACING

&) cenTROID

Figure 9-4. 160-Pin Flat Pack Pad Locations

238

Appendix A
Initialization and Setup Requirements

A.1 Processor Initialization
The 601 processor comes up with the cache enabled and bus error checking disabled. The 603

and 604 processors come up with the cache disabled.

A.11 Cache Setup
The L1 and L2 caches must be managed in such a way as to purge any lines that are cached

during the early part of the boot process so that cast—outs of these lines cannot occur afterward.
All memory pages 2G to 4G must be marked as non-cacheable.

The high priority snoop request function must be enabled (set to 1) by software before running any
code that could cause L1 or L2 cache hits on snoops. This bit is HIDO-bit 31. The 60X CPU always
asserts the HP_SNP_REQ pin, and it depends on the high priority snoop push to function in order
to prevent potential livelocks or deadlocks when 60X to PCI cycles are retried by the target.

The L1 cache should be managed in such a way that no cast—outs with the ROM addresses can
occur. (Instructions and possibly data are cached from when the 601 first turns on until the L1 is
disabled.)

A.1.2 PIO Setup
The segment register T bit, bit 0, defaults to 0 which is the normal storage access mode. lt mustbe

ieft in this state for the hardware to function. Direct store (PIO) segments are not supported.

A.1.3 ARTRY# Precharge
The bit that controls ARTRY# negation, HID0(29), should be set to 0 to enable the precharge of

ARTRY# for example system configurations which do not have a device inserted at the upgrade
socket or for configurations using the IBM 256/512K write through L2 cache card.

It may be necessary set HIDO(29) to 1 to disable the precharge of ARTRY# for example system
configurations having a device such as a write-back L2 cache which drives the ARTRY# line. See
the specifications for the device inserted at the upgrade socket for details. The bit should be cor-
rectly set prior to running any cycles which can be snooped.

A1.4 Checkstop Enable
HIDO bit 0, Master Checkstop Enable, defaults to 1 WhICh is the enabled state. It should be left in

this state so that checkstops can occur.

239

The 650 Bridge Chip Set

A.1.5 Bus Error Checks
All error checking is implemented externally usmg the TEA pin, so the bus error checks should

always be left disabled. These error checks are controlled by bits 21, 22, and 23 of register HIDO.
MSRbit 19, the Machine Check Enable bit, defaults to 1 which is the enabled state. It should be left
in this state so that the TEA error checking mechanism can function.

A.2 Initialization of the IBM 82650 Bridge Chip Set
Before DRAM memory operations can begin, software must:

» Read the SIMM presence detect and SIMM type registers.
+ Set up and check the registers in the memory controller.

The memory controller SIMM programming register, port 0820 in the example system, is used to
access the 654 Controller internal registers to program the starting address of each SIMM and the
top of memory. The Memory Controller Timing register, port 0821 in. the example system, is used
to access the 654 Controller system setup register. Settings for the system setup register are ex-
plained in Section 5.2.2.

A.3 1/O Bridge Setup
Program the timer in the Intel SIO register which controls-ISA refresh timing. This is counter 1 in

the SIO timer section; it should be programmed to operate in Mode 2 with an interval of approxi-
mately 15 usec. This timer controls the refresh interval.

Make sure 200 usec has elapsed since starting the timer so that sufficient refresh cycles have
occurred to properly start the memory. This will be hidden if approximately 120 ROM accesses
occur after the timer is started and before the memory initialization starts.

Initialize all of memory so that all parity bits are properly set. The processor may cache unneces-
sary data, therefore all of memory must be initialized.

Note: The 650 Bridge does not require reconfiguration when port 4Dh in the SIO chip is utilized to
reset the native I/O and the ISA slots. '

A4 PCl Memory Address Assignment

Software should not map any PCl memory at PCl addresses which ISA masters can create—-ad-
dresses from 0 to 16M. Contention will occur between a device with PCl memory mapped at that
address and the ISA master cycles.

A.5 PCI Configuration Scan
The example system allows a software scan to determine the configuration of PCl devices. This is

because the system returns 64 one-bits rather than an error when no PCI device responds to ini-
tialization cycles. Software can read each possible PCl device ID to determine devices present.

‘ *WARNING**
Using some addresses can cause bus contention on the example system, because multiple PCI
slots could be selected. For example, using any 60X address with both CPU_ADDR[19] and
CPU_ADDRJ[20] = 1 causes both the SIO and SCSI to be selected, possibly resulting in damage.

240

Appendix B
Example Implementation

This section contains schematics for an example system. The schematics illustrate the imple-
mentation of a 650 Bridge chip set with a PowerPC 601 microprocessor. The example system
design includes provision for an L2 cache or an upgrade microprocessor. Eight SIMM slots allow
up to 256M of system memory to be installed, in 8M or 32M sizes and in any configuration in the
eight slots.

The example system uses an Intel I/0 bridge chip for ISA bus support. The I/O bridge also pro-
vides refresh timing and an X-bus interface for various system support functions.

241

wit

e I

IBM MICROELECTRONICS

Jwer PO oJ1

PROCESSOR
COMPLEX

THIS SCHEMATIC IS A FRAGMENT OF A TYPICAL SYSTEM SCHEMATIC. ITS PURPOSE IS TO ILLUSTRATE
HOW TO CONNECT THE 65@ CHIP SET IN A TYPICAL APPLICATION. THERE ARE A LARGE NUMBER OF
WIRES THAT HAVE NO SOURCES OR LOADS WITHIN THESE PAGES BECAUSE THEY CONNECT TO UNSHOWN
PARTS OF THE DESIGN. ONLY ENOUGH IS SHOWN TO ILLUSTRATE THE BASIC STRUCTURE OF A SYSTEM.

THIS DOCUMENT CONTAINS PRELIMINARY INFORMATION AND IS SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM ASSUMES NO
RESPONSIBILITY OF LIABILITY FOR ANY USE OF THE INFORMATION CONTAINED HEREIN. NOTHING IN THIS DOCUMENT SHALL
OPERATE AS AN EXPRESS OR IMPLIED LICENSE OR INDEMNITY UNDER THE INTELLECTUAL PROPERTY RIGHTS OF IBM OR THIRD
PARTIES. NO WARRANTY OR GUARANTEE IS GIVEN CONCERNING ANY INFORMATION CONTAINED IN THIS DOCUMENT.

COPYRIGHT IBM CORPORATION 19394

ALL RIGHTS RESERVED

* TRADE MARKS OF IBM CORP. -

1B

©6/1/94

£l

VISION

A

DRWNG PART NUMBER

SHEET l 0F22

s l

4

1

1es diyD ebpug 059 8yt

€ve

8 7 l 6 I 5 I 4 l 3 I 2 l 1
SYSTEM STATUS
IBM
ERROR STATUS 10/D
MC.SET UP INTF 2
- EPLD
P20 SYSTEM CONTROL
XCUR
cAs
USED FOR SET UP)
pa XD-BUS -
3.6V <—
REGULATOR BUFFER
PRESENCE/SIZE
P22
Ps
XCUR
CONTROL
CONTROL P18
) 68X _CONTROL
IBM 601
RISCWATCH IBM 82654 q
o
we SA BUS
PP 10-12 =
: BUS 15A BU
)
DATA
8237818 CONTROL
ADDRESS
ADDR/DATA Sto
DATA PP 17-19
ol 2 1BM 82653 MEM
g B ADDRESS ADDRESS { LE MODE, ETC TO 654
zZ| z PP 679
ol O
UI O
x| o DATA |
gl - PARITY 4 SIMM
S 2
PARITY |
L2 ! SIMM
UPGRADE/L2 SOCKET .
e o BN
[X
BUF FROM 654 a 29F@40
o5 £ B ROM/FLASH
CLOCKS . oy
PP 13-14
0
ADJUST PARITY I B M BLOCK DIAGRAM
PER ENDIAN MODE UP TO EIGHT SIMMS DRAWING TZEIREVISION] DRWNG PART NUMBER
PP 3-4 06/01/94 B a
seer 2 oF 22
8 | 7 6 l 5 I 4 3 . I 2 | 1

1es diyD ebpug 069 8yl

18

+5V +SV +5V

135,
18
o8
45

S
155
135

2
160

8
5

3
86
168

S

=)
129

83}

4 ¢4
m - < w

X X H=H U

10F 2 10F 2 1 0F 2 e (R Ry) g ST ON
00 e} e}
jrely (MEMORY DATR)

Do7 . MIPCT . BT sapco mm0s

uet] (MEMORY PARITY)

o
S
24
)

N]Ei i

i
!

i

i
I

m -4 < W o
m4d <o @
m -4 < w O

fe=)

8

B

i

g
52
1B
8

X X H U
g
S
SRR LIS
585,
55
X X = U
=1
2
o~
i

X X = U

o

SR
TRl
&l

Eeee) o L

198 diyp ebpug 069 ey

I BM MEMORY SIMMS

DRAWING

I— TZE[REVISION| DRWNG PART NUMBER
ee/01/% || |

- SHEET3 OF 22

3 T 2 | 1

5 4

+5U
T
X X X
> 5
g:) g:» Kl
2 0F 2 2 0F 2 20F 2 2 0F 2
CEo CED o) cEo CEl cEo
CEL CEL o
cE2 CE2 ce2
CE3 CE3 CE3
CE4 CE4 CE4
CES CES &
CE8 CEB CE6
Ce? CE? &
d

& 18
R
mm
N oo

b
EB
XX W M4 <w

& 18
A8
N S

g
g
XTXIXHW MA<D @

XXX MA<om @
XX=HWM MA<IO @

BO 122 B
27, 27
_,?643 WE2)
75_¢|PDL 7s_¢|PDL PDL
552 | P2 5570 PD2 PD2
2 s 9IER3 4 1%=3|Pe3 bR
CMEMORY. (317 o|PBS (57 9|PDS PDS
ADDRESS) 57_2|PD6 57_2|PO6 PD6
s L1 PbS
0o [IN)-UACLL. . @
A0 ag 3 (|ro A8
e 2 =R &
%83 a5 1[5 A3
5 2| A4 A4 35 o|Ad Al
2|AS a5 5 2lAS aAs
ESR I A6 35 |AG 2 |RE
= & =i ’
17 2|AS a3 172109 A
38 2|nl0 A10 % 2 |A10 Alo
18 2 1ALL ALl 18 p|ALl ALl
o
a2 [T-HHEDK : (PRESENCE/SIZE)>
BN @ pry e
az [IRyMHELK
CWRITE>
MEMORY SIMMS

DRAWING IZEJREVISION | DRWNG PART NUMBER
6/81/94| 5| o

SHEET 4 OF22

8 | 7 [5 5 2 | 3 I > l T

1es diyo abpug 059 8yL

W

0 [T NPT, .9

10K

+5V

10K

X X Y X b4 X
) 9 5] 8 8 15
=1 - - - - -

N

a2 [T MPAR_24@_BE_OF%
(BIG ENDIAN)

(MEMORY
PARITY)>

B gmytReer..0

ABT240

A3~ Y| 12 @

o |

A1 Y 16 2

'S

Ao Yo 18 3

2082> m PD4_RDx
(SIMM SIZE>

(X D BUS) .

19A7¢» 2002y

2022 [T PDS_RDx
(SIMM PRESENCE)>

(CPU PARITY CORRECTED
FOR ENDIAN MODE>

ana: MPAR._24@A_LE_OE%
> I (LITTLE ENDIAN)

MSB

BT O g 118205 16020

PARITY AND SIMM TYPE
BUFFERS

DRANING 6/@1/94 IZEREVISION | DRWNG PART NUMBER

Bl A

SHEET 5 0F22

] 2 | 1

198 diyp abpug 059 ayL

o
~
o
o
|
IS
j
:
j

LyT

87
s @Dl

(681 ADDR, MSB @, LSB 31)

wec @on1ABD.
(MEMORY ADDRESS)
B T} MACLL . &>

(MEMORY ADDRESS>

TEST 22

o (BT ¢B63.. 9
16026) 202 _|60X_]
(CPU DATAs MSB = @) 201 _1E@X_]

h2a_L
248 163 2L 174 16@X_D21
- h22 173
162 |25 (27| 68x_D23
243 (22 (711 6pX D24
62X_D25

MEM_PAGE_HITx

98¢

SD_PAR_ERRX

e
82653 e L17] %X_DE?

i B o IBM27-82653
60X_D39
LIXXXXXXXX 25 | 6pX_D41 6 0F 6

LS5 e |6ox D63 v
Rl = I BM IBM27-82653

(5 &5 dax D37
[Sa 82 60x_058 GND DRAING TZEJREVISION| DRMNG PART NUMBER

ks . 22
&5 en 02 06,0194 g
] Q

N63 77 168X D63 LSB

SHEET 6 0F22

8 | 7 | 6 I 5 I 4 I 3 I 2 | 1

les diyp abpug 059 syl

8¥C

i 2

Do (FrY-—tIET D>

IBM27-82653

(MEM DATAs MSB 63,

(MEMORY PARITY)

8O (FT - RO D2

TBM27-82653
1
CONTG_10 34_{CONTG_TO
VI _ADDR_SEL 156 4 CPU_ADDR-SEL
¢ AL DATA_SELX 168/ CPU_DATA_SEL
¢ EOI_ADDR_OE* 15504 CPU_ADDR_OE
{— EPI_DATA_OEX 192/< CPU_DATA_OE
NO_TRANS | Vg TRAN
151 [Ras31e]
[Bitbe — s s
ESEL 262 LE_MODE_SEL
T-SECK %0 pCT. SEL
_OE% {PCI_0E
_PCI_CIR PCI_CLK
[_BCI_DATAX L_PCI_DA
CI_AD_SELx ADDRHT _DATAL
= B
MEM_DATA_OEX 7 | MEM_DATA_
_DATA_SELX 724 MEM_DATA_SEL
REF_CYCLEX %ERE SH_SEL
R CYCLEX 3 EL
ROM_CLRZBURSTH KE] 5T_CLK
-604L_ERR_ADDR
2234 ERR_ADDR_SEL.
10 ALLZONES_SEl

60X_TT_ERR¥
g MEM_PAR_ERR* Fos)

o2 TR ERR-ADDR_SELX

o, [Ty ABORTDATASFLx

17¢2¢

(PCI ADDR/DATA, MSB 31, LSB &>

s @Ot} ND_AD_PAR

IBM27-82653
4076

haL_6L_|PCI_AD31MSB|
PCI_AD32
22 59_IPCI_AD29
fa3 S7 | —~AD28
27 %6 | —AD27
& S5 |PCI_AD26
VEESES
3 S8 -AD23

e

)

ST hLhbbbheoin)

BRnRIBARN:

ARA3AaAA%AT

PART: MD(63:56>

ARRaRAan

PARG: MD(7:@>

[B

IBM27-82653

8383883883838 BAB8R3BER8AZ83888
l:’ [

(EVEN PARITY>

T 05,01 .,94 Sréﬁ

REVISION] DRWNG PART NUMBER
A

SHEET ? OF22

-

| 1

1es diyo 8bpug 059 8yL

6¥¢

8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
IBM27-82654
1LOF 3
m POWER_GOOD/RESET* asc RESETx RESERVED |78
= ND'PCE' L 1o]PCI LK
CPUZGLK 22
1}3 Dl — AN TS-B0Lx g5y teceo isbeo
Ciez 1) . T14
us |vs1ze Hzl‘ 22 | 2 (BD 10820 15020
oo e Le 15121 T3 Ea_a'ﬂ
< 1SC2¢> 10A20) 22
113 AACK_BA1%
1520 1or0 Ty JEST 601 2 ST Y TATots o
15C2¢ 18020 e AN 1124 ARTRY INT gﬂ égs TER, z 1182¢ 15€2¢
LSB (31> TT_ o p— 1208¢ 15Ca¢
Py e T
ERR P42 TBEC 28BTC
33 -
C. _%ﬁ;* 17B2<>
TRDY P27 = €3
I8DY IRDYx L
. STOP 416 A2 PCISTOP* 1720
15B20> 10C2¢> 6DBC> DEVSEL X 17820
C/BE3 han 33 1782¢>
102> 1201 (YR DPE5DL%) | -8 S C A -
Rt e Ca ke " :
AN]
200> mﬁ-fﬁﬂ* 77 | MASK_TEA =0 v
43.6V == PCLPAR — O e
T 4 1 2187
Q“ X 21B7¢
4 YCLER age
> /BURST 3 7B8¢
125 CPU_REQ R E:]
354 T0_BRDG_REQ Pita o
384 PCT_REGT GNT 1% 17e8¢
109 CACHE _REQ GNTL [
PCI_REQ4
s sk
554 PCI_REG3 ZGNT3 {88
17 [IRD-S10-TEIRER: —*%Q 10_BRIG_HOLD T _cou sape 15220
-
ISA_MASTERX 5 1on rpsTeR o 2l 05 h
LE_MODE _SEL (82 o8¢
191 INT.FROM_STO 32 |10_BRDG_IRQ NO_TRANS M13 8
1981> @TK 12 INAT_TRG
CPU_ADDR_SEL 08¢
CPU_DATA_SEL. p4i58 0B
%8 i1k 152_{PCT_AD_PAR CPU_DATA_GE (<id5 708¢
1scls E3 88 SRESET_REQ CPU_ADDR_OF ({144 cac
PCI_SEL (IST 708
PCE.{ 148 e8¢
ADDRHE_DATALO M147 08¢
L. 1] A L6 08¢
120 81 F
121 80 (ALL SERIES RESISTORS MUST BE PLACED
AS CLOSE AS POSSIBLE>
82654
IBM27-82654
CENTRAL CONTROL PORTION
[DRING IZE[REUISION| DRWNG FART NUMBER
L=RXXKRKX 06/01/94 | A
160 r) m
1)
SET g OF o

| 2 | L

198 diy9 9bpug 069 8yL

174

8 | 7 6 | 5 | 2] 1
+3.8V
X
15
3
IBM27-82654
20F3
REFRESH_SEL
PAR.
LEZPARCEN
174 DI
[754 RI
[1364 TEST
BBL> MEM_PAGE_HITx 149 PAGE_HIT
1782) ST En RESH. REQ
19c1> LITICE7BIGK TS84 LE_MODE_REQ
15B2> T2 _PRESENTX 82| 2 PRESENT
1588 To-CACHE _ALTK 12442 CLAIM
200> SEL_CRS/POX 45, ETUP
ep1> [TR)—S0-PAR_ERRY 155_|MEM_PAR_GOOD
LDAT
MEM_DATA SEL
45V
= <%l =
uDD
SU_CLMp |19
SUZCCMP [0
IBM27-82654 -
30F 3
PINS 19 AND 99 RESERVED
GND I IBM27-82654
inlagl-d-i doalelds MEMORY PORTION
|| N
1 | DEEIRG IZEREVISION| DRWNG PART NUMBER
©v6/81/94 | g A
GND R
SHEET 9 OF 22
8 | 7 6 | 3 I 2 | i

1es diyD ebpug 059 8yL

1sT

5 7 I 5 s | 4 | 3 | 2 | 1
+3.6V
,‘L M L vl vl vl vl x THESE RESISTORS NEED TO BE PLACED BETWEEN CPU AND CONNECTOR
0 D 8 5 B 8 B
—LOES A4S 8S 2SS S S S 4
ADDRESS ¢ ¢ & " " ¢
CONTROL
BB {224
AACK AACK_EaLx a2 15620
ARTRY (221 ARIRY_BOIX B> 1502¢
SHD SHO 15¢2¢>
BR[H218 BR_6@X% 152> BB
BG ()28 BG.EOXK (7] o>
TS 226 TS_6BLx 150205 82>
XATS % XﬁTiM% 15T2> BC7C
B> CFT 08015820 BcTe
LSB A3Llss 31
[T I —
[- ——
Apl 60 284
A 58 271
[= —
I —
A4 55 24
ok = —
228 153 B B —F]
[T —T
229 M e 204
152 Alg
Al8
AL7
Al
6 A
ALa 4
LIXXXXXXXX
304 s : SPECIAL_OPERATIONS
: READ/-WRITE
1 6 MSB : INVALIDATE OPERATIONS
: MEMORY,/-ADDRESS ONLY
: RESERVED (ALKAYS 8>
"% 8126 15DR¢s
TT4l28 | 4
TT3 [244 3
TT2[28 2
sl
170 [-228
L0l @ iy 1502
TCL [ast L
TCB [2: .
NI P4 2 8070 156> 08¢
S172(.237 2
elzilee L TBST_6B1x% a7 15020
F C1coux 15c2c
TBST (1236 —B8L% 15¢2
o [—i iR =
CI 216 |
WT P14
GBL {23
IBM25-TPCEB1-66-1
csEa | 212 v
CSET [rait Ei
C5ge [Cais DRAWING SIZEREVISION| DRWNG PART NUMBER
@95,01,94 | B| A
GND SHEET{ &) OF >
8 | 7 | & 5 4 3 ' 2] 1

leg diy0 ebpug 059 ayL

(414

7 S I | 2 l 1
+3.6V
IBM 601
_20F5
|68l DATA BUS| y
B (22 $
DRTRY 292 -
+3. 6V
16M 521 DBG 300 DBG_6@X% 1502¢
4 0F S M
TA e TA_62Lk acas
yss1 uonL TEA 8@ TEABOLX oco
uss2 VDl
333 o3 D022 pryscso 16m0
unD4 |25 3L
uDD5 1 88 304
vDng (8L 29
Uss7 vDD? 3 - —T
uDD8 S v
i} T — 24
uss1e UDD1e &
USS11 VDI L 66 24
vssi2 vpDi2 E7)
SS513 UDp13 91 22
USS14 UDBi4 T =
SS1S VDD1S 2 94 294 GND
Uss16 UDD1 [S5 19
USS17 UDD17 8l g7 184
Uss18 vDD18 7198 171
USs19 ubD1g [— [99 164
Uss2e uD [183 154

2 UDD22
US523 vDD23
4 UDD24
US55 vDD25
UsSs27 vbD27
usSz8 VDI
UsS23 D!
Uss3a D
VSS31 UDD3L
uss32 Ul
USS33 UDD;
VUS534 UDD34
USS35 vDD35
US536 VDD36
D37
uDD38
USS3g uDDp39
U549 D48

US542 D42
U5543 D43
USS44 UDD44
US545 UDD
US545 UDD4S
uS547 UDD47
U5548 UDD48
U5549 D49
] b=}
1 D51
USS52 DDS2
US553 D53
USS54 D54
US555
U5555 UDD
SS57 UDDS?
UsSS8 VDDS8
USS53 UDDS

-

f
SRR

=
333383
[orale
Jus]
=l
L iv]

62X.062
60; L

-~

151 5
1224 4
1553
15 2
126 1
122 6]

.- E—
201

222 |

23 |
190 63

o

@

N

DECL. @ Ty sao 1sa20

229

304

228 153

152

601

7

1 76

IBM25-TPC6B1-66-1

[BM

—DRAUITG. IZEJREVISION| DRWNG PART NUMBER

06/81/94(5| 4

SEETI] 22

I 2 | !

18s diyp 9bpug 059 8y L

1 5°14

8 | 7 I 3 | 3 I 4 3 | 2 1
ESP_RUN_ BREAKPOINTX
+3.8V +3.60 +3.6V | +3.6V
T IBM 681
S M ¥
8 30F 5 5 x 13
< 1 5 -
+3.6V
«> [Ny INT.6@1% R - CKSTP_OUT
CKSTP_IN
w2 [Ty SRESET_681% 264y SRESET
POWER_GOOD/RESET 601L_HRESET Ee) RUNNSTOP
o — &80 FRESET
ESP_HDWR_RESETX jF 28 +3. §V+Eﬁ &v
‘o b
8o B2 DPE
3¢ S
RTC_681 2r3 |RTC
231
won OED BCLK_EN_6@L 271 BOLK_EN FED
RSRU (254
I, 2X_PCLK_601 262 |2x_PCLK ‘e
= [IRy— PCLK_601 285 PCLK_EN T'
ey |_299{BscAn_EN quIESC_REQ | 256 %3
<
S
+3. B3, B3, 6V [297 DEWO
uce ;E XT ¥ —_— g
82 82 § GND
OSCILLATOR - > I 1K RESERVEDL | 208,
1 JEN out |Ls | A 282SYS_QUIESC
I RESERVED2 | 287
7. 81258MHZ A2 |RESUE
e RESERVED3 | 208
+5V I ESP_SCAN.DATA SC_DRIVE |218
—_— ESP_SHIFT.CLK
GND ESP_SCAN_IN ESP_OCS.OVERRIDE 275{FSP_EN
13,89 HP_SNP_REQ 2.
: T Eal 184 |scan CTL
RISCWATCH CONNECTOR] 50F 5 105 |scan_sIN
H SCAN_OUT |78 veyvey
TSTER2 | 246 167_|SCAN_CLK B>
1al| uce <
TST03 |247 +3.68V
0CS OVERRILE (1S TSTes |_2ss I T
DR RESETI2 4 ToTes |14 AKX —
L& | +RUN/-BREAKPOINT RESET_INTERRUPT 3 TSTE? | IS VoS GND
L 1jcHeEck_sTop CNTL/SCAN_DATA | 4 TsTEE | A7 6X_PRESENTY _(Try] isme>
8_|SCAN_OUT SHIFT_CLOCK [5 TST@S |13 sox,mssr:mm‘m>
SCAN_IN| 7 T5T10 | 394 (THESE SIGNALS
RESERVEDL | 12 TsT1L| 8 DISABLE THE 601>
3 |eNDL RESERUED2 | _13 5 TSTI12 #
11 {eND2 FSERVEDS | 16 TST13 [7]
123 45 6 78 — 18K
= TST14| 18 M
9 111213 141516 GND s
— VIEW FROM TOP fRONT. TSTIS
GND TST16] 4
CONNECTOR IS KEYED. 12K
CABLE HAS PLUG IN POSITION 1@. TSTi7 | 8 Ao
1
T5T18| 583 Af—
TST19} ™
Tstep 3, AR
Vv IBM25-TPCEB1-66-1
| o . .
TST22 M _DRANING IZE[REVISION | DRWNG PART NUMBER
B6/01/94 | B a
ESP_SCAN_OUT
SHEET; — OF
% TRADE MARK OF IBM CORP 12722
8 | 7 | 3 3 4 | 3 | 2 | 1

19s diyo abpug 059 auL

1414

8] 7 | 3 | | 3 | 2 | 1
CRYSTAL IBM25JP-CLK@1
13. 16MHZ
XTALL
2_{pIN2 L 3 Ix1
£ .o
-] 510 : 2XPCLOCKZ] 38
3 pmna T |4 AN 2 | x2 2 2X_PCLK 6L
XTALZ) 45U 45U 2XPCLOCK1] 3L —AN OL_[oOTy 12ce
68PF | 66PF g POLOCK4| 22
- 18K 10K
T T PCLOCK3] 19
= = v « lucon Pq.ocxzw_xs -
GND GND = 13 PCLK 681
< 65 _|UCO_B POLOCKL M EB1 _ T 1acac
1sc2¢ 14c8¢< (OOT} FULL _SPEED BCLOCKSE| .46
3 63 | BCLK_CNTL.
(POPULATE RI66 FOR 33 112 2 [45y BCLOCK?_48 »
CPU BUS DESIGNS) Hee T sq TST-IN® BCLOCKE| 52 —_AA 6BX_CLK_pmy 1act tsac
: 688 |rmaM—9 Wiz
ey ZS e | AN 640y TST-IN BOLOCKS|_SL M5 L2BCLK B myry 1sct 1sec
o3
a 1eK BCLOCK4|_S3. Y L2 BOLK_L 1 1582
[J_ A s8] INHIBIT_IO W —D - ¢
=3 oK BCLOCK3] 54 Yy NORTH_BCLK_ oy e
1KS Gp b WA————67() TST_IN2 Reag VY DO_NOT_POP LK EN. 0L
b4 BCLOCKL 56 "= AA. =5 501y 12cac
BOLOCK1) S8 YN PLL_BCLK_IN
1582> [Try-BBX-PRESENTY 3 | CLK_OUT_EN2 Vv oD 14ce¢
TST_0UTe) 6
3 | CLK_OUT_ENL p.
TST_0UTL| 7 R138 So
35 | CLK_OUT_END (FOR 33 MHZ DESIGN
25 | RCLPF POPULATE R138 AND
¥ REMOVE R239>
B 15K 109
NC —
— GND
GND
USSLPF
9 168 61
10 50 —
° uoD
ClLK@1
uDD_PLL
GND
15
26 44 5
27 43 33
uDD4 [4L
| — 43
=
CONFIGURED FOR e
FOR S@MHZ AND 66MHZ 6@X BUS SPEEDS '
PHDETOUT | 24
I B M IBM2STP-CLKA1
| IRAWING - ISIZE[REVISION| DRWNG PART NUMBER

06/81/94 5| A

SHEETl 3 OoF 22

I

188 diyo ebpug 0G9 8yL

SST

8 l 7 I 3 l s l 4 l 2 l i
+5U 5V
Frren quﬂﬁﬁ#
IWNRN
ASV
4493B-66
4 FEC FOUT3A |4
1381> [TR)— PLL-BCLICIN 44| RFF FOUT2A [A2 PCI_SLOT2_CLK
RESET FOUTLA [13 2. —SCST-
1908 [TF)—FULL_SPEED 36 | DIUSEL FOUTEA [1S A PCT 5011 CLK]
oUT3 W SN_PCI_CLR] o8¢
PHSEL L FouT2 A —_RD_PCI_TIRI P 75
37| PHSEL® F%é ; PCI_SI0_CLK
AN
22 [tesTN W o 7ee
+5V
] = |eN AG3.,0) X2FouT [19
24 3 FOUT 20
23 |EN X2, FFOUT FILTER |3L
LOCK
.91
DGND
l)é(’ %1’ £ o 4TPF
P23 &
Y o9 n 2.7
= GND
GND N
Ra (JUMPER PINS 1-2 FOR 6@X = PCI FREQUENCY)>
AN 2 |8
R 5 (JUMPER PINS 2-3 FOR 68X = 2 X PCI FREQUENCY)
=N 3 L®
o
®
a
1
= 6 40
GND 7 0 39
44938
DRAWING TZEJREVISION| DRWNG PART NUMBER
06/01/94 | g
29 A
17
* TRADEMARK OF ADUANCED MICRO CIRCUITS CORP 18 28 SHEET) 4 OF 5D
8 | 7 | & | 5] 4 I 2 | 1

195 diyD obpug 059 ayL

95T

UPGRADE CONN
1 OF 3

10K
AN
\4
16K
AN
\4
10K

+5V

1P
1@K

HISIVAV-NN)] B 1enacsresc
TBST_681%
251,

L2_TYP
2007¢
g : e
= 10A2>
ﬁGEL‘.SB‘li_‘ 105>
ARTRY_EBI%
SHD_E £3

8C70 10A20>
2007¢

> 1802¢
8C7¢s 18020,
1omR0

BR L2 o
mu@@ T
= 8c2>
TEA_601%
PORER. Gooé%ﬁsn_‘* =
¢ E3
SRESET_EO1% 9kH gy

298>
K 12B1< 1388¢ 20C7¢
13C1> 134
D, 13C1> 13¢4
13C1> 134

1281¢

LSB(31»

UPGRADE CONN

A3l
L< B ep8o> 10¢20 6C7¢

GND sV

30F 3

MSB<@)»

198 diyn abpug 059 ayL

60X_A2
BUS_CLK_SPEEDA
BUS_CLK_SPEEDL

B M UPGRADE CONNECTOR

DRPIING
v6/01/94

ISIZEIREVISION [DRWNG PART NUMBER
A

I
o

o)
4
=]

SHEET1~5 0F22

l 7 I 5 | 5] 4 3 I 2 | 1

LST

[& maxw [~ maxw | v moa<w | 0 maxw |

'.n. M-ty Im M=ty Tm M—<w Tq mM—t~<m]

[T

3
m
|

UPGRADE CONN
20F 3

~ B@X D31
—50

BEe

3
CELETEEE T

D2, Ery B0
1<

«CPU DATA MSB-2>

(CPU PARITY)

DPCP.. @ BTy ses 11m200

DPE_BOLK [Ty 1anuecec

[BM

UPGRADE CONNECTOR

ISI.
SR 06,01 /94

vid
B

IREVISION

A

DRWNG PART NUMBER

SHEETl 6 OF 22

1

18s diyo abpug 059 8uL

8ST

*
82378ZB
LoF 3 MSB AD3L| le2 3t
AD30 | 1656 32 4
AD29 [167 20]
AD28 [(1ea™ 26]
- AD27 [165 27]
AD26 | 118 26 1
AD2S [1 2]
AD24 [_112_24 4
AD23 [114— 23]
g Abet e/
> - A0S (BT
Se D3P 11920} 210 T80
9 ADIQ 120 1o] PCI A/D>
ADLE 121 1e]
ADL7 12211
ADLE (123 ¢
ADIS (1381t .
ADL4 [159 12
ADL3
% CPUREQ 8pit
202 PCI_IDSELCLY 101 1 IDSEL AD1O
3 133 LOCK ADS
MACK ADB
142 PCI_SIO_CLK 90 PCICLK AD7?
=GOOD/RESETX 163 PCIRST ADS
ez _ST0_GNTx 504 REQB/SIOGNT ADS [151
S8 4REQL AD4
PCT_SERRX 13414 SERR AD3
[AD2
ADL
LSB AD®
X"
E24 REFRESH I1SA.REFRESHX
C/BED D scae
e C/BE3 PCLCARRSI X (AT sc2
o VS PCI.DEVSELX ac20
LU?RRME PCI_FRAMEX a2
GNTB/SIOREQ PCT STORFOx
/R o PCI_II hoid
Méﬁgg RDZQL< §I > ac20
MEMREG
: k- e R
TROY PCI_TRIV% G0
SIO_MEMREQx% 8B7¢

REQL IS HIGH DURING RESET

1es diyp abpug 059 ayL

SO SIO DRIVES AD,C/BE, PAR : M

WHEN PCIRESET ASSERTED SIO-PCI PORTION

[DRAING TZEREVISION| DRWNG PART NUMBER
06/01/94 5| A

* TRADEMARK OF INTEL CORP

FEET 7 922

8 I 7] 3 | 5 | FEE— 3 | 2 | 1

+SV

Er

vee
OSCILLATOR

—EN
14. 3181MHZ

GND

el PNwuor Zz
S RERRER

ol

65T

GND

4 2
14. 31BI18MHZ fyyry
193 AN
AAIE
20 AND
191
200 ANAD
AN
190023, . 17 D
(ISA SIGNALS)

I1SA_MEMCS16% Y8:193

ISA_MEMRX
A'A'm
3 f‘é XIOMK {70y o
A2 Y3 S XIORX
15A.BWSK W20 aecrc
g o L v{7 o
Ao :(Yo 9 1
Toe
§ 20C7<
244 (X BUS)
2 8 A3 N Y3l 12 2
3 6 A2 I Y4 14 3
4 4 Ay ;]: Yi| 16 4
-1 2_|As i Yol 18 S
o
GND
2619, 0 2ac
10 8:104
ISA_SBHEX
W
SDCZ..O D i
150 SEMRX
T5A_SMEFINX
A TEA_CLK ﬁ
vy
22
I BM SI0-1SA PORTION
—_— ISIZEJREVISION| DRWNG PART NUMBER
86/81/94[5| q
SHEETlB OF 22
| 4

| 1

198 diyD ebpug 059 9yl

097

E PCI_SLOTL_INTX

- PCI_SLOT2_INTx

DISKCHG
RQL3 71 | IRQL3/FERRK 82376ZB
S 4 IRas 30F 3 ALT_A2D LITTLE/BIGK
ROI3 39| IRQL2/M T RST ALT_RESETH (WA i
2082> RGIL 37_|IRQIL EC R 2007
RO1E | 1RG1G 2e07¢
2082) R 184 1TRGY 200%
R K 172, %Egg 20C7¢
R plii INT_FROM_SIO -
— 11 IR0S TIHE
ROZ 1R04
o 1o|1Ras UBUSTR o
2000 L_IRQL 168 | TRQL BATC
169 S
Y
%
GND GND
(ISR DATAY
SCTL® . (PTy e
(XD BUS»

2D 51 (P mermdBELin 2.

I B M SIO-PART 3

DRERING. E[REVISION| DRWNG PART NUMBER

06/01/94 (5| A

SHEETlg 0#'22

I 2 I :

18g diyo ebpug 069 ayL

19T

8 | 7 | 6 | 5 | 4 3 2 T n
+5v
o
s respn]
ECSADDRA s | Fcsa oL L4 L maL
ey ECSADDRL = Eedl LR IRQL_gyTy 1687c
=2 Empy *
19C:
e - > ACTEL “EP1810
ssca [T L2118 2 o coec
s PCI_SLOTI_PRESENT L2 ChGE d5eK
éfs T2_PRESENTRK T 8 PCI_gtTé
. i =
FUSE_GD
IBM I,/0 INTERFACE
IRQL s | n
JRQLLIN. 5] IRQII_IN CNTG_10 |29 CONTG_I0 08¢
o R 2 b e
i = SCBC 20R8¢
49 7 [M62
A2 (XD BUS)
iea20> [TR)- SAKB) Al X2 .2 O sc 1are>

J—

(Al

%’JEHM:B’; 1

=

WRD De
SET L2_MISS_INH DEs L_CACHE_INHk 158
L2 PRESENT L2 UPDATE_INH 883— T2_CACHE _DIo% | 158
o RS ol NTorD P e —Tooe o
s - 08¢
IRQI.IN IRQL1 [43 R 19c7¢
IO0W IRGS [(88 @ 157
o b Srea
RD_PD4] scac
_PDS 38 “PDS_RDX "} sBac
L2_FLUSHX
FDD_CS L2_TAG_CLEAR {54 S
DPE_ERR KYBD_CS (18
PR eRR FREc R ”QZa
- TC_WR 1438
RTC_ASA 146
RTC_ASI 135
RTC_WER P31
RTC_OER 422
FU [£13
MEDIA |44

DENSITY_RD¥ o

2 III—E%

F245
A ™ B7
@6 B
As B
Aq B4
— 1) Ba]
A2 B2
AL B1
Ae Be|
(CAS>
4nsc oc20 (BT MCECT. . @ oRE :I: BI\/I I,0 INTERFACE EPLD
| _DRAWING
1> UBUSTR _j § -DRAMING. IZE[REVISION| DRUNG PART NUMBER
‘ m:m SEL_cas/PD 06,021,894 B| A
2002
TRADEMARK OF ACTEL CORP SEETHp F oo
8 | 7 | 3 i 3 | 4 3 | 2 | 1

18s diyp abpug 059 8yL

9T

PCI_IDSEL<4> m
PCI_IDSEL<(3> @

PCLIDSEL(® pyyr,
PCI_IDSEL(1) m1m<
+5V
POPULATE R334 FOR EPROM
POPULATE R345 FLASH
4 DO_NOT_POP - EQBFG“U M
s> [Ty ROMMER M AV~ éa L |pyg " RO
R345 R334 18 117 38_|A17
16 2_1AlS
15 3 71A15
F244 - 29 |14
28 _|A13
14 17 183 N Yal 3 4 _1A12
2 1A11 DQv7 | 2L
13 15_lA2 Y2 5 2] 23 1A10 DG | 20 38
3 26 A9 DeS [19 294
12 13 iA1 Yy 7 27_{A8 Do4 | 18 281
A7 D3 [17 274
11 11 |Pe Yo 9 A Do2 | 1S 261
AS DQi| 14 25
o A2 D08 (524
A3
18 _1n2
B 1L_{Al
12_|AO
GND
ROM_CS% 2ACE
862> 2404 01
g “ROM_OEX FLASHWE_ALB Esx Ve
USS
ol
e
GND -
(PCI A/D>
1rc2e 7080 (BT~ SRR

1eg diyD obpug 059 syl

I BM FLASH ROM + ID SEL

[DRAHING TZEREVISION] DRKNG PART NUMBER

v6/01,94 | B| A

SHEETEl OF 22

[T = : - = 1 = .1

€97

3 | 2 | 1
+3.6V
45V =
C(IN> OuUT»
MIERSSS
3 € ¢ 2
N B
T
4
N>
.
332 s §<’
W
2222R
1 3
B C
. BISUF £
An—lL 3
LA '\
249 :|
TorP coL GHO
3| pp LTHBIC® el o AM—1
121
sl e o7 5J_
o T GND-S GND-F N4 8
® %3
ml Wl
GND
I B M 3.6 REG
[G IZEREVISION| DRING PART NUMBER
06/01/34 Bl A
SPEETEE) OF 22
6 3 | 4 | 3 | 2 | 1

1eg diyo abpug 059 ayL

The 650 Bridge Chip Set

264

Appendix C
653 Buffer Details of Operation

C.1

653 Buffer Highlights

« Companion chip to IBM27-82654 PCI Bridge Controller

Address and data buffer/multiplexer for CPU, memory, and PCI buses
64-bit CPU data bus

32-bit CPU address bus

» 64-bit memory data bus

» 12-bit memory address bus

e 32-bit PCI multiplexed address and data bus

Generates PCI parity for the PCI_AD lines

Presents one load to the PCI_AD lines

OHz to 33MHz PCI bus frequency

Low power

 Static operation (no clock for most C|rcu:ts)

* Less than 400mW active power

3.3V or 3.6V power supply (timings differ)

5V TTL-compatible /0

PCI drivers are compliant with PCI Specification, Revision 2.0
304-pin quad flat pack, 0.8 micron IBM CMOS4LP technology

C.2 653 Buffer Pin Descriptions

The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. When the # symbol is not present after the signal name, the signal

is asserted with a high voltage level.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active, regardless of whether that level is represented by a high or low voltage. The term ne-
gated means that a signal is inactive. The term deasserted is also used to indicate a signal that

is negated.

The following terms are used to describe the signal type:

in. Input is a standard input-only signal.
out Output is a standard active driver
/0 Bi-directional

265

The 650 Bridge Chip Set

604 503
- Controller , CPU Bus
CPU_DATA_DOE# U CPU_DATAL0:63]
CPU_ADDR_DE# Inbarfoce CPU_ADDRL0:31]
LE_MODE_SEL# TSIZI0:2]
31| M RIOM
BURST _CLK# = SU Addrooe
ROM_SEL# @ S Dato
ol X
ADDRHI/DATALO] PCI Bus
PCI_OE# PCI_ADI31:01
- NO_TRANS IntF;r[‘:FI(lce PCI_CLK
L_PCI_DATA# -
PCI_AD_PAR : [CONTIG_ID
‘ M. REGISTER BIT
U
v V DRAM
RASHL/CASLD MEM_ADDRI11:0]
' MEM_PARL7:0]
MEM_DATA_DE# ¢ MEM_DATAL63:0]
MEM_PAR_GOOD Memory - '
MEM_PAGE_HIT# Control [DRAMXSHL/X10LD |
REGISTER BIT
L _ERR_ADDR# (X
ALL ONES_SEL#
CPU_DATA_SEL# ‘ SYSTEM PCB
PCI_SEL# MUX TEST#
CPU_ADDR_SEL# Control : — Vip
FRR_ADDR_SEL# GND
REFRESH. SEL#
MEM DATA SEL#) ¥ Via external
- - | logic.

Figure C-1. 653 Buffer Pin Attachments

266

The 650 Bridge Chip Set

C.2.1 60X CPU Bus Interface Signals
Table C—1 describes the signals that interface the 653 Buffer to the 60X CPU bus.

Table C-1. 653 Buffer Signals—60X CPU Bus Interface

Signal Name

Type

Description

CPU_ADDRJ0:31]

/0

The 60X CPU address bus. The pin names of the 653 Buffer match the big-endian 60X
CPU bus names, but these signals are renumbered in little-endian order as they pass
through the 653 Buffer transceivers as cpu_addr_in[31:0] (inputs), and
cpu_addr_out[31:0] (outputs). All internal 653 Buffer buses use little-endian
nomenclature. See Section C.5.5.

CPU_DATA[0:63]

/0

The 64-bit60X CPU data bus. The 653 Buffer pins are numbered in big-endian 60X CPU
bus order. CPU_DATA[0:31] connect to the 60X CPU signals DH[0:31].
CPU_DATA[32:63] connect to the 60X CPU signals DL[0:31].

The names of these signals are changed at the CPU data byte lane swappers (see
Section C.5.21), but the significance of the bits within each byte is unchanged (for
example D3h remains D3h). This bit renumbering matches the names of the 60X CPU
data lines to the names of the PCI bus and memory data lines.

Ifthe system is operating in little-endian mode (LE_MODE_SEL# is asserted), the byte
order is reversed by the swappers as data leaves or enters the 60X CPU from memory
or the PCl bus. If the 60X CPU is in big-endian mode, there is no byte reordering.

TSIZ[0:2]

60X CPU bus transfer size—number of bytes. The 650 Bridge supports transfers of 1,
2, 3, 4, 8, and 32 bytes. When the system is operating in big-endian mode
(LE_MODE_SEL#is asserted), the 653 Buffer unmunges addresses generated by the

CPU based on the transfer size. See Section C.5.6.

C.2.2 System Memory Interface Signals
Table C-2 describes the signals that interface the 653 Buffer to system memory.

Table C-2. 653 Buffer Signals—System Memory Interface

Signal Name | Type |Description

MEM_ADDR[11:0] out Memory address bus, 12 bits, multiplexed, little-endian. While RASHI/CASLO is
high, the MEM_ADDR lines contain row addresses selected from the internal data
bus. While RASHI/CASLOis low, these lines contain the column addresses selected
from the internal data bus.

MEM_ADDRO_B out A duplicate of MEM_ADDRI[0]. (Required by some SIMMs.)

MEM_DATA[63:0] 1{e] 64-bit memory data bus, with bit 63 = most significant bit. These signals are
numbered in little-endian order.

MEM_PAR[7:0] l{e] 8-bit memory parity bus, bit 7 = most significant bit. Bit 7 corresponds to
MEM_DATA[63:56). Even parity is generated and written on memory write cycles.
Parity is checked on memory read cycles. .

267

The 650 Bridge Chip Set

C.23

PCI Bus Interface Signals

Table C-3 describes the signals that interface the 653 Buffer to the PCI bus.

Table C-3. 653 Buffer Signals—PCIl Bus Interface

Signal Name | Type |Description
PCI_ADI[31:0] 110 PCI address and data bus, 32 bits, multiplexed address and data. The PCI_AD bus is
numbered in little-endian order.
PCI_CLK in PCl clock. PCI_CLKis used in the 653 Buffer to time the PCl data hold and address hold
(demultiplexer) latches and the PCI Address/Data output multiplexer.
C.24 654 Controller Interface Signals

Table C—4 describes the signals that interface the 653 Buffer to the 654 Controller.

Table C-4. 653 Buffer Signals—654 Controller Interface

Signal Name

Type

Description

ADDRHI/DATALO

in

PCl address and data bus phase indicator, driven high by the 654 Controller to
prepare the 653 Buffer for a PCl address phase, and driven low to prepare the 653
Buffer for a PCI data phase. (The PCI_AD bus is a multiplexed address/data bus).

ALL_ONES_SEL#

All ones select, asserted by the 654 Controller to the 653 Buffer to place all one-bits
on the 653 Buffer internal data bus. ALL_ONES_SEL# is used during PCI
configuration read transactions to return 64 one-bits to the CPU data bus when no
PCI device responds. See Section C.5.22.

CPU_ADDR_OE#

CPU address output enable. While asserted, the 653 Buffer drives the internal
address bus tothe 60X CPU addressbus. This allows snooping during PCl accesses
to system memory.

CPU_ADDR_SEL#

CPU address select. While CPU_ADDR_SEL# is asserted or no other address
select input is active, the 653 Buffer uses the 60X CPU address bus as the source
of address information for a transaction. The CPU address hold latch is held
transparent, the CPU burst counter (see Section C.5.8) is enabled to count, and the
address MUX places the address from the CPU (viablocks 6, 7,and 8) onthe internal
data bus. After power up, this signal must be asserted and deasserted by the 654
Controller before any bus cycles are initiated to initialize the CPU burst counter.

CPU_DATA_OE#

CPU data output enable. While CPU_DATA_OE# is asserted, the 653 Buffer drives
the contents of the 653 Buffer internal data bus onto the 60X CPU data bus.
CPU_DATA_OE# is asserted by the 654 Controller during CPU to system memory
reads and CPU to PCl reads.

CPU_DATA_SEL#

CPU data select. While CPU_DATA_SEL# is asserted or no other data select input
is active, the 653 Buffer uses the 60X CPU data bus as the source of the data for a
transaction. The data MUX (see Section C.5.22) places the data (byte-swapped in
little-endian mode) from the CPU data bus onto the internal data bus for transmission
to the PCI bus or system memory.

ERR_ADDR_SEL#

Error address select. While ERR_ADDR_SEL# s asserted, the contents of the error
address latch (Section C.5.14) are placed on the internal data bus by the data MUX
(Section C.5.22), forthe CPU data bus. The 32-bit address is driven onto both halves
of the 64-bit 60X CPU data bus.

268

The 650 Bridge Chip Set

Table C—4. 653 Buffer Signals—654 Controller Interface (Continued)

Signal Name

Type

Description

L_PCI_DATA#

in

LatchPCldata. WhileL_PCI_DATA#is notassertedandthe PCI_CLKis low, the PCI
data latch is transparent to the PCI_AD bus. When datais required from the PCl bus
(during a CPU to PCl read or a PC! bus master to system memory write), the 654
Controller asserts this signal following the rising edge ofthe PCI_CLK for the current
data phase. This latches the current data phase data into the PCl data latch. The
4-byte data is then duplicated as an 8-byte quantity, and placed on both halves of the
8-byte internal data bus. See Section C.5.14.

LE_MODE_SEL#

Little-endian mode select. LE_ MODE_SEL#is asserted by the 654 Controller to set
the 653 Buffer to little-endian mode. While LE_ MODE_SEL#is asserted, CPU data
byte lanes are swapped (see Section C.5.21) and the CPU addresses are unmunged
(see SectionC.5.6). While LE_ MODE_SEL#isnegated, the CPU sourceddatais not
swapped and CPU-sourced addresses are not unmunged. This signal can only be
changed between bus cycles.

MEM_DATA_OE#

Memory data output enable. While MEM_DATA_OE# is asserted, the 653 Buffer
drives the 64-bit internal data bus and its eight parity signals onto the memory data
bus and the memory parity bus. MEM_DATA_OE# is asserted by the 654 Controller
during memory write cycles.

MEM_DATA_SEL#

Memory data select. MEM_DATA_SEL# is asserted by the 654 Controller during a
memoryreadtransaction. When MEM_DATA_SEL#is asserted, the 653 Bufferuses
the memory data bus as the source for the current transaction. The data MUX
(Section C.5.22) places the memory data onto the internal data bus for the PCl bus
or CPU data bus.

MEM_PAGE_HIT#

out

Memory page hit. The page hit comparator (see Section C.5.9) compares the
address onthe 60X CPU address bus to the address of the previous memory access
(from any source) in the page hold latch (see Section C.5.16). The 654 Controller
uses this signal to detect DRAM page hits.

MEM_PAR_GOOD

out

Memory parity good. This is an unqualified parity check output from the 653 Buffer.
Itis derived from the current contents of the memory data and memory parity buses.
This signal becomes valid one delay time (t41) following the assertion of valid data
and parity signals by the system DRAM. Additionally MEM_PAR_GOOD is forced
high while the MEM_DATA_SEL# input is high

NO_TRANS

No translation. NO_TRANS forces no translation of the two most-significant bits of
the address from the CPU or PCl buses. During most cycles mastered by the 60X
CPU (see Section C.5.12) or a PCIl bus master (see Section C.5.3) address bits
[31:30] are translated to implement the system memory maps. To defeat this
translationduring PCl bus master cyclesinitiated by the /0 bus bridge foran ISAbus
master, the 654 Controller asserts NO_TRANS to the 653 Buffer.

PCI_AD_PAR

out

PCl address/data parity, even parity across the PCI_AD[31:0] lines only. This is an
unqualified signal that is only valid when the PCI_AD bus is valid. The 654 Controller
combines PCI_AD_PAR with PCI_C/BE[3:0] to generate PCI_PAR, the PCl even
parity bit. . ’

PCI_OE#

PCI output enable. While PCI_OE# is asserted, the 653 Buffer drives the internal
address or data buses onto the PCI_AD bus. PCI_OE# is asserted whenever the
CPU has busmastership except during the data phase of reads from the PCI. Also
see the ADDRHI/DATALO signal.

269

The 650 Bridge Chip Set

Table C—4. 653 Buffer Signals—654 Controller Interface (Continued)
Signal Name | Type |Description

PCI_SEL# in PCi select. While PCI_SEL# is asserted by the 654 Controller, the 653 Buffer treats
the PCI bus as the source of addresses and data. While asserted it allows the
following operations:

During PCI bus master transactions, addresses of PCI bus master transactions to
system memory are latched into the PCl address latch (see Section 9:4.1). The PCI
burst counter (see Section C.5.4) is enabled to operate on these addresses during
PClbursts. The address MUX places these PCl sourced addresses onto the internal
address bus.

During PClbus master writes to system memory and during 60X CPU reads from the
PCl bus, the 654 Controller causes data sourced by the PCI_AD bus to be placed
onto the 653 Buffer internal data bus by the data MUX (Section C.5.22) by asserting
PCI_SEL#.

RASHI/CASLO in RAS# high, CAS# low. While RASHI/CASLO is driven high, the 653 Buffer asserts
the row (RAS#) address onto the memory address lines, and the page hold latch is
transparent. Thefallingedge of RASHI/CASLO latches the row addressinto thepage
hold latch. While RASHI/CASLO is low, the column (CAS#) address is driven onto
the memory address lines.

REFRESH_SEL# in Refresh cycle select. Configures the 653 Buffer to accomplisha DRAMrefresh cycle.
While low, the 653 Buffer places the refresh counter address on the internal address
bus. Then the row/column address MUX places this row address on the memory ad-
dress bus (RASHI/CASLO mustbe high). Thenthe 654 Controller strobes the RAS#
lines to refresh the DRAMSs. The rising edge of REFRESH_SEL# increments the re-
fresh counter. :

BURST_CLK# in ROM and burst counter clock. While ROM_SEL# is active (during ROM accesses)
the falling edge of BURST_CLK# incremenits the ROM read burst counter (see
Section C.5.13) and shifts the data in the ROM read shift register (see Section
C.5.19). While CPU_ADDR_SEL#isactive (during60X CPUmasteredtransactions)
the CPU burst counter (see Section C.5.8) is clocked. While PCI_SEL# is active or |
if ADDRHI/DATALO is low (during PCI bus mastered transactions) the PCI burst
counter (see Section C.5.4) is clocked.

ROM_SEL# in ROMselect. The 654 Controller asserts ROM_SEL#during a ROM burstread cycle.

C.2.5 External Logic and System Interface Signals
Table C-5 describes the signals that are used to interface the 653 Buffer to the rest of the system
via external logic, command bit storage elements, and the test interface.

Table C-5. 653 Buffer Sighals—External Logic and System Interface

Signal Name | Type |Description

CONTIG_IO ‘ in Contiguous I/0. CONTIG_IO is asserted high by external logic to enable direct
mapping of addresses from 2G to 2G + 8M. When CONTIG_IO is driven low, it
enables non-contiguous addressing in the 2G to 2G + 8M address range.
Non-contiguous I/O is a mapping of the low 32 bytes of each 4kB page of CPU
memory space to 32 bytes of PCI/ISA 10 space. See Section C.3.4.

DRAMXSHI/X10LO in DRAM type, asserted high for addressing DRAMs with 9 column address bits (x9
mode), low for x10 mode. This signal is used by the refresh counter (Section C.5.10)
and the row/column address MUX (Section C.5.15) to format the addresses

presented to the DRAMs.

270

The 650 Bridge Chip Set

Table C-5. 653 Buffer Signals—External Logic and System Interface (Continued)

Signal Name | Type | Description

L_ERR_ADDR# in Latch error address. The address on the 653 Buffer internal address bus is latched
into the 653 error address latch on the falling edge of L_ERR_ADDR#, which can be
derived by external logic from the 654 Controller signals TT_ERR#,
MEM_PAR_ERR# and, optionally, any other signal indicating an error condition
requiring the address to be latched. L_ERR_ADDR# must be held asserted to hold
the contents of the latch. Any signal used with TT_ERR#and MEM_PAR_ERR# to
derive L_ERR_ADDR# must also be held until after the latch is read. See Section
C.5.14.

TEST# in IBM LSSD test mode input. Tie to Vpp with a 10k ohm resistor during normal
operation.

C.3 The 653 Buffer

The IBM 27-82653 (653 Buffer) is one part of the IBM 27-82650 PowerPC™ 60X CPU to PCI
Bridge Chip Set. The 653 Buffer interconnects the 60X CPU 32-bit address and 64-bit data buses
with the PCI 32-bit multiplexed address-data bus. The 653 Buffer also generates the address and
data buses to DRAM memory. This chip operates under the control of the IBM 27-82654 chip (654
Controller) which decodes all cycle types and asserts output signals to the 653 Buffer to select
address and data paths.

Most timing in the 650 Bridge is controlled by the 654 Controller. Output timings of the 653 Buffer
are usually combinatorial—they are measured from a data or address input or a path control sig-
nal, not a clock. Switching the PCI_AD line outputs from the address phase to the data phase is
an exception—it is measured from the PCI clock. PCl addresses and data are latched with the
PCI clock because the PCI standard specifies zero hold time on inputs.

Although the 653 Buffer is used primarily in conjunction with the 654 Controller, it could be used
with a different controller in order to design a bridge for a different 64-bit processor. Or it could
be used to design a special-application bridge for a PowerPC processor.

This document describes the address and data paths and the control signals in two levels of detail.
In the first level, enough detalil is presented to enable a designer to utilize the chip with the 654
Controller. The second level of detail is for designers who need a much deeper understanding of
the paths and control signals in order to design a controller or to make a special adaptation.

C.3.1 Architectural Overview Showing Address and Data Flow

This section gives an overview of the architecture of the 653 Buffer. Figure C—2 is a block diagram
of the address flow within the 653 Buffer. Figure C-3 is a block diagram of the data flow within
the 653 Buffer. These diagrams explain function and are not intended to show the actual internal
chip construction. For example, there are no three-state devices in the 653 Buffer except at the
off-chip drivers.

The discussions in this section refer to the block diagrams. Address and data flows are illustrated
in reference to functional cycles. Note that the address and data portions interconnect so that the
diagrams together describe the complete 653 Buffer chip. Within this section, references to por-
tions of the block diagrams use a block number within brackets, like [x], to refer to the portion of
the diagram with the corresponding number.

271

LT

weibeiq Jeuojloung Mmojd4 ssalppy Jayng €59 2-0 2.nbi4

MEM_PAGE_HIT# O<—

QO
I

[5]

—{TYPE
DRAMX9HI/X10LO C‘ﬁ,—L>
12, J]1] Al23421 |{ [31:0]
REFRESH_SEL# % llé':) a WETE
Other A=0

REFRESH COUNTER

See Section C.5.x for data on box

PCI_AD3124] pci_ad_in[311241 PCI_SEL#
pci_ad_out[31i24] CPU_ADDR_SEL# j,]D:»EIPEN
PCI_OE# ROM_SEL# RST/CNT_EN
ROM_SEL# | BURST_CLK# 0> CL/INC
- (401 L&C @l pci_addr_out
PCI_AD[230] pci_ad_out[23:0]) B15] b — — _T 3101
pci_ad_in[230] CPU-PCI ADDRESS D _LaT_G
:) ROM READ
PCI-CPU TRANSLATE \
PCI ADDR ADDRESS PCI ADD NO_TRANS >——————————(JTRANS BURST
LATCH BURST [31:30] COUNTER
[29:0] CONTIG_IN >————|——dISA_I/0
pci_ad_in[31:0] D @ ddl [2951
N QT fddress N, OUTH
E] 31301 y Decoder) = =
PCI_CLK 1103 [31:01 [0
ADDRHI/DATALD o)oPEN ma L LAy u_adgr, [2C8M %o N DuT—
TRANS D L& 0 CPU-00r 12G+16M or FORCEOD
! PCI_SEL# 9 PEN LTl b el I FYP
NO_TRANS O—>-1-5 ch_ssuﬁ ONT_EN
ADDRHI/DATALD -
BURST_CLK# O—>1 GpCL/INC L _ERR_ADDR# oPEN | ERROR ADDRESS
L_ERR_ADDRE O—> REFRESH_SEL# >—— LATCH
: CPU_ADDR_SEL# T err_addr
CPU CPU ADDRESS CPU BURST PCI_SEL# [310]
CONTIG_I0 O—> ADDRESS HOLD LATCH COUNTER ADDRHI/DATALD >
' UNMUNGE BURST_CLK# >—Cb>CL/INC SELECT
CPU_ADDR_SEL# O—> L2 | CNT_EN LUFIE INTERNAL
LE_MODE_SEL# O—>L2——dEN L[IPEN 141 Loboeén 13103 5&, ADDRESS ~ ROW/COLUMN
~ISh 3 D L& O ADDRESS MUX
TSIZI0R) O—>————F+——SIZE 1315, 200 17 42 Y BUS
2o, © L AT i ateater)
5 ~——{IN_0OuT] D @ ADDRESS 2431 % 1] 0] 0,00,A01133 (& MEM_ADIR
' 13131 0] 1] Al24131 |f 11101
CPU_ADIR (oM 3101 : Mux [o] o[opesareal]
[0:311 .
cpu_addr_in DRAMXSHI/X10LD)
- RASHI/CASLD
[31:01] cpu_oddr_out [31:0]
; £ OPEN PAGE
CPU_ADDR_OE#
PAGE HIT st
COMPARATOR L3012) 1 g
130421 — [30421 130121
RASHI/CASLD O—> A B

108 diyD 8bpug 059 8yl

€LT

‘wesbe|q [euonouny moj4 ejeq 194ng €69 ‘-9 2inbi4

ERR_ADDR_SEL#O—>

ALL_ONES_SELEO—> ADDRHI/DATALD o delayed PCI ADD/
CPU_DATA_SEL#O—> PCI_CLK a/d sel y;LDATA MUX
MEM_DATA_SEL#CO—> ! !
PCI pci_addr_out 310 (3100 pci_ad_out
DATA [21
LATCH
pel_ad_n > 310 TR N 6332 | 25 | PCI AD
_ad_in -]
2 [310] PARITY
POLOLO————ope GEN
L_PCI_DATAMO— PCI DATA EVEN
[31:24] BYTE MUX (360 PARITY <OPCI_AD_PAR
pci_ad_in 7 [63:56] PR GEN
ROM_SEL#———a 7 6 (551481 oooo
BURST_CLK#y—————> [} 5 1471401 e
M 4 [39:32) wBENIL
RDM DATA M 3 [31:2. d d g % 2 ’E
SHIFT | [o | 293833
H — G oo B‘IE 5:” 2a 16301 (0631, pu data_out
REGISTER 1 [158] CELTIOE Pu_data_
0 [7:01 w] E LE BE
ROM_DATA %7 25 seoa o 0 [071MSB
B >0 use 1_\ / 1 [815]
err o % B M uanun 25| o o 3 e oo DT
B Tl L1l G| taazer aH Y Lfs goas BYTE LANE
i ! u . SWAPPER
64 P 1471401 5 S [4047)
all_ones — 2 {§—I [55:481 6] 6 [48:551
7'$— MSBI63561 7' —— 7 [56631LSB
[63:0]) BYTE| syap |BYTE
LE_MIDE_SEL# DATA MUX LE_MODE_SEL#>— _——3
MSB 071 0 0 [701LSB t6301
18151 1 1 [158) mem_data_out
CPU DATA peeq 2 2 [2316]
BYTE LANE tfe43n1 3 3 (3241 VN
SWAPPER [3239] 4 4 [39:32] 16301 PARITY 70, e por_out
[40:471 5 5 [47:400 N
148551 6 6 (55483
LSB 156631 7 7 [63561MSB MEM DATA PAR GEN
CPU_DATA > (0631 BYTE
10631 64 ‘ MEM_DATA_SEL#
cpu_data_out
CPU_DATA_DE# 64 MEMORY DATA
MEM_DATA < N mem_data_in [63:0] PARITY CHECK
T630] &4, nen_data_in DATA
mem_data_out BAD + OMEM_PAR_GOOD
MEM_DATA_DE# PAR
mem_por_out
102) mem_par_in [7:01 mem_par_in

MEM_PAR
[7:01 o<

See Section C.5.x for data on box

19s diyo abpug 059 oyt

The 650 Bridge Chip Set

- C.3.2 Two High-order PCI Address Bits—NO_TRANS Pin

The CPU-PCI ADDRESS TRANSLATE block [12] on Figure C-2 receives its inputs from the in-
ternal address bus. During 60X to PCI cycles, this address corresponds to the address emitted
by the 60X processor. If NO_TRANS is low, the two high-order signals are forced to 00b. This
function supports the memory mapping scheme of the PowerPC Hardware Reference Platform.
(All types of PCI transactions have addresses in the range of 0 to 1G.

Note that this address translation only occurs when the 60X CPU accessés the PCI bus and it
can be defeated by the NO_TRANS input pin.

C.3.3 Two Low-Order PCI Address Bits

In order to conform to the requirements of the PCI revision 2 specification, the low-order two ad-
dress bits are set to 00b in certain circumstances by the CPU-PCI address translate block [12]
on Figure C—2. This block [12] decodes the input address from the CPU (cpu_addr_in[31:23]) and
modifies these two bits as shown in Table C-6.: ‘

The controller drives the 653 Buffer inputs so that the output of this block is driven to the PCL_ AD
lines only during the address phase of a PCl cycle.

Table C-6. Low Order PCI Address Bit Settings

Input 60X Output at block [12] '
Address of bits[1:0] | Cycles Supported at the 653 Buffer
Oto 2G Same as input :Broadcast of system memory address to AD
ines
2Gto 2G + 8M Same as input PCI /O
2G + 8M to 2G + 00b PCI Configuration
16M
2G + 16M to 3G - Same as input PCI 1/O
3G to 4G - 8M ~ 00b PCIl Memory ‘
4G —-8M 10 4G - 00b* Transmission of ROM address using AD lines

* Set to 00D, this increments during ROM read operation.

C.3.4 Contiguous I/O Pin
When the CONTIG_IO pin is high, 60X CPU addresses in the 2G to 2G + 8M address range are
mapped directly as PCI I/O transactions from 0 to 8M. (See Table C-6.)

When the CONTIG_IO pin is low, non-contiguous I/O is activated. Non-contiguous I/O is an op-
tional mode of operation where the memory-mapped address space corresponding to the 64K
ISA address space can be remapped to the 8M region from 2G to 2G + 8M. Within this 8M region
each 32 bytes of ISA address space is assigned to a different 4K page of CPU address space
so that protection attributes can be assigned to the 32 ISA addresses. Figure C—4 shows the ad-
dress transformation that occurs when the CONTIG_IO pin is low, activating non-contiguous 1/O.

The CPU-PCI ADDRESS TRANSLATE block [12] decodes the address on the internal address
bus (which corresponds to the CPU input address for 60X to PCI cycles). When the address is
in the range from 2G to 2G+8M and CONTIG_IO is low, this block shift-translates its output as.
shown in Figure C—4.

274

The 650 Bridge Chip Set

If CONTIG_lO is high, the shift-translate illustrated above does not occur and all inputs (29:0) are
passed to the outputs. This mode supports operating systems that do not require 1/O port protec-
tion. The two high-order and two low-order outputs are controlled as explained in Section C.3.2
and Section C.3.3 respectively.

—»31 ————— Depends on NO_TRANS ———31 —~

6 C 30— (See Section C.3.2) T30

5 29 —— 29
28 28

3 27 27
26 : Forcedtozero | 26

| 25 : 25
24 24 P

n 23 L 23 c

t 22 —_— 22 "

e 21 . 21

r 20 20

n 19 19 I
18 . 18 /

a 17 17

| 16 16 0
15 15

A 14 14 A
13 13

d 12 — | 12 g

d 11— 11

r 10 _ 10 r
09 : 09 e

e o8 | Discarded o8 :

S 07 , 07

s 06 06 s
05 — : ———05

B | M J

u 02 . —— 02

s 01 ———— Dependsoncpu_addr_in[31:23] o3

—00 ———— (See Section C.3.3) — 00 —»
A31 to A30 are passed subject to NO_TRANS. A29 to A12 are shifted to A22-A5. A11 to A5 are discarded. (On the
input side A2 to AO are unmunged in LE mode.) A29 to A23 are set to zero, and A1 to A0 may be forced to zero.

Figure C—4. Non-Contiguous PCI /0O Address Transformation

C.35 60X to ROM Read Cycles A
Figure C-5 shows how the 653 Buffer supports 8-bit ROM, EPROM, or flash devices connected
to the AD bus. ‘ ‘

The AD bus driver/ receivers [1] are split into two groups so that the address can be driven to the
ROMdevice on PCI_AD[23:0] while data is received on PCI_AD{31:24]. Address flow is generally
the same as described for CPU to memory address except that only PCI_AD[23:0] are driven from
the internal address bus. Also, the low-order address bits latched into the ROM read burst counter
[13], are initially set to 000b regardless of the state of the input address lines.

Receivers for AD[24:31] are active in this case. When the controller has allowed enough time for
ROM read data to be valid, it must pulse BURST_CLK# low. This low-going edge clocks the data
into ROM data shift register [19] on Figure C—2 and shifts all previous data bytes down one stage.

275

The 650 Bridge Chip Set

The same edge also increments the rom read burst counter [13] of Figure C—2 by a count of one
in order to present a new address to the ROM. ‘

After eight pulses on BURST_CLK#, 64 bits of data have been collected in [19]. These data bits
are passed through multiplexer [22] to the internal data bus, through byte swap [27] and to the
CPU data bus at [100]. The controller must not activate PCI_FRAME# or other PCI control lines
during ROM read or write.

: [23:00] Address
PCI_AD[31:00] -—

l ROM

[31:24] Data

" Figure C-5. 60X to ROM PCI_AD Flow

C.3.6 60X to ROM Write Cycles—Address and Data Flow

A flash memory or other writeable device must be connected as shown in the ROM read explana-
tion. The data and the address must be encoded in the data field of the 4-byte store instruction
which the controller decodes as a ROM write cycle. The address lines are immaterial to the 653
Bufferin this case. The 32 bits of data (either the high or low half of the 60X data bus is meaningful
depending on the write address) propagates through byte swapper [21] to the internal address
bus. The controller must activate CPU_DATA_SEL#, not ROM_SEL#, in order to propagate the
data field to the internal data bus.

The meaningful 32 bits (selected by pci_addr_out[2]) propagate through [24] and [25] to the
PCI_AD lines at [1]. All 32 bits must be enabled to drive the AD lines in this case.

C.3.7 Error Address Latch

This register, which is shown on Figure C—2, can be used to support the trapping of certain errors
such as amemory parity error or an unsupported alignment. The register is normally open. When
the controller senses an error it can change the state of L_ERR_ADDR# so that the address cur-
rently on the internal address bus is held. Later when the CPU runs a read cycle at some desig-
nated address, the controller can activate ERR_ADDR_SEL# at multiplexer [22] in order to pro-
vide the trapped address to the CPU.

C.3.8 Refresh Address Generation

The REFRESH counter is shown at block [10] of Figure C-2. The controller activates RE-
FRESH_SEL# approximately every 15 usec when there is no other bus activity. The output of the
refresh counter flows through multiplexer [11] to the internal address bus and to the ROW/COL-
UMN multiplexer [15]. When the controller changes REFRESH_SEL# to high, the 12-bit refresh
counter increments. The counter wraps to zero following a maximum count. ‘

C.3.9 All_Ones Generator
The 653 Buffer has an all_ones generator shown as an input to block [22] on Figure C—-2. This
device drives all of the internal data lines to a logical high voltage. It is useful in situations such

276 -

The 650 Bridge Chip Set

as when the CPU tries to read a memory address which is out-of-range. Activating
ALL_ONES_SEL# provides all one-bits as a response to a CPU or PCl read.

C.3.10 Page Hit Generation
The 653 Buffer contains logic, shown on blocks [9] and [16] of Figure C—2, to compare an incom-
ing memory 4K (or 8K if DRAMX9HI/X10LO is low) page address with the last page address. Each
time a new row address is output to the memory, it is latched into the PAGE HOLD latch [16] when
the controlier drives RASHI/CASLO to the low state. Bits (30:12) are saved. Hence, the 650 sup-
ports system memory up to 2G.

Whenever the CPU presents a new address at the address input pins, the comparator [9] indi-
cates if the new address compares to the page address in the hold latch [16]. In the case of a new
PCI memory address, the comparator works in the same way because the controller enables the
incoming PCl address to be broadcast to the CPU address for snooping.

C.3.11 Special Considerations

Following power up, the 653 Buffer input CPU_ADDR_SEL# must be asserted and deasserted
at least once to initialize the CPU burst counter to a known state. The 654 Controller performs
this task.

All of the pins of the 653 Buffer will be tri-stated following the assertion of a TTL low state on the
TEST#, DIt# (L_ERR_ADDR#), and DI2# (ERR_ADDR_SEL#) inputs. Refer to the IBM LSSD
Test Procedure Specification (CMOS4LP book).

C.3.12 Warm Reset

The 653 Buffer provides an input and output pin to synchronize and hold a warm boot reset to the
CPU. External logic asserts SRESET_REQ# to request a warm reset and the 654 Controller re-
sponds by asserting SRESET_CPU# to the 60X CPU. o

C.4 Detailed Analysis of Address and Data Flow

C.41 60X to Memory Cycle Address Flow—Read or Write

60X addresses enter the chip at [5] on Figure C-2. The pins are named to correspond to 60X no-
menclature, but internally the signals are named with little-endian notation. The three low-order
signals are applied to the address translate [6] where they transformed in little-endian mode or
unchanged in big-endian mode. This is explained in Section 5.3.3.

The address enters the CPU burst counter[8]. The purpose of this counter is to increment bits 4:3
(60X A[27:28]) during CPU burst cycles. These two bits can start at any value and only these two
bits are incremented when the BURST_CLK# input falls. This implements CPU sequential burst-
mode addressing with the starting address on any 8-byte boundary.

C.4.2 60X to Memory Cycle Data Flow—Write

60X data is presented simultaneously with the addresses and it flows to byte lane swapper [21]
on Figure C—3. The naming convention on the pins is big-endian in order to correspond o the 60X
convention, but signals in the interior of the chip are named with little-endian conventions. The
byte lane swapper swaps lanes in little-endian mode and passes the data lines without swap in
big-endian mode. In all cases the swapper maintains the significance of bits within a byte. The
operation of the swapper is explained in Section C.5.21.

The 64 bits of write data flows to the internal data bus when the 654 Controller activates
CPU_DATA_SEL# at multiplexer [22] and the data signals are applied to the memory drivers
[101]. Note that eight bits of parity are generated at [28] and output along with the data.

277

The 650 Bridge Chip Set

Cc43 60X to Memory Cycle Data Flow—Read

During a memory read cycle the memory data is input at receivers [101] and applied to data multi-
plexer [22]. The assertion of 654 Controller signal MEM_DATA_SEL# selects this memory data,
and the multiplexer places it onto the internal data bus. The 64 bits of data are applied to byte lane
swapper [27]. In little-endian mode the lanes are swapped as read data is passed through and
in big-endian mode no swap is made. In all cases the significance of bits within each byte is main-
tained. The operation of the swapper is explained more fully in Section C.5.21.

The output of the swapper is connected to the CPU bus drivers at [100] on Figure C-3. The incom-
ing data and parity are compared in MEMORY DATA PARITY CHECK [29] block to produce the
unqualified output signal MEM_PAR_GOOD.

C.4.4 60X to PCI Cycle Address Flow—Read or Write .

60X addresses enter the chip at [5]. The pins are named to correspond to 60X nomenclature, but
internal signals are named with little-endian notation. The three low-order signals are applied to
the address translate [6] where they are transformed in little-endian mode or unchanged in big- en-
dian mode.

This transformation is explained in Section 5.3.3. Note that the same transform applies whether
the address is for 60X to memory or 60X to PCI cycles.

The address enters the CPU burst counter [7]. BURST_CLK# is not activated by the 654 Control-
ler since the 654 does not support 60X bursts to PCI so the output is the same as the CPU input
address. multiplexer {11] is gated by CPU_ADDR_SEL# in this case so that the address flows to
the internal address bus.

The CPU address on the internal address bus is applied to the ROM READ BURST counter [13].
In this case the counter is open because CPU_ADDR_SEL#is active and all 32 bits flow through.
The outputs are applied to the PClI ADDRESS/DATA multiplexer [25] on Figure C-3. This multi-
plexer is controlled by flip flop [23] which is in a hlgh state during the address phase of a 60X to
PCl cycle.

The external controller places the ADDRHI/DATALO input in a high state prior to the beginning
of a 601 to PCl cycle. The controller must change the ADDRHI/DATALO input to low prior to the
rising edge of the PCI clock that terminates the address phase so that flip flop [25] can toggle
multiplexer [25] to the data state.

C.45 60X to PCI Cycle Data Flow—Write

60X datais presented at the receivers[5] at the same time that addresses are presented. The data
flows to byte lane swapper [21] on Figure C-3. The operation of the swapper is explained in Sec-
tion C.5.21. Note that the same transformation is applied whether the 60X CPU accesses memory
or the PCl bus.

The 64 bits of write data flow to the internal data bus when CPU_DATA_SEL# is asserted to multi-
plexer [22]. This data flows to the PCI data multiplexer [24], which passes either the high or low
32 bits of data to the PCI Address/Data MUX. If pci_address_out[2] is high, data bits [63:32] are
passed; if pci_address_out[2] is low, data bits [31:0] are passed. Note that the value of this internal
address bit is the result of the endian-mode low-order address transformation so it represents the
actual target PCIl address in either endian mode.

The output of multiplexer [24] connects to multiplexer [25]. During the data phase of 60X to PCI
write transactions, multiplexer [25] is gated by flip flop [23] to pass the output of the PCI data multi-

278

The 650 Bridge Chip Set

plexer [25]. Flip flop [23] was explained in Section C.4.4. These outputs are connected to parity
generator[26] and to the PCI driver/receivers at [1]. AD parity is passed to the companion chip
so that it can generate PCI_PAR.

C4.6 60X to PCI Cycle Data Flow—Read

During the data phase of a 60X to PCl read cycle, the read data is received at driver/receivers
[1] on Figure C-2 and passed to the PCl data latch [17] on Figure C—3. Datais latched at the rising
edge of the PCl clock and held when the controller activates L_PCI_DATA#. The 32 bits of latched
data are replicated into 64 bits in order to drive the 64-bit data multiplexer [22]. The same data
is present on the low-order 32 bits and the high-order 32 bits.

On this cycle the controller activates PCI_SEL# in order to gate the replicated PCI read data
through data multiplexer [22] to the internal data bus. The internal data bus connects to byte lane
swapper [27]. .

In little-endian mode the lanes are swapped as read data is passed through. In big-endian mode
no swap is made. In all cases the significance of bits within each byte is maintained. The operation
of the swapper is explained more fully in Section C.5.21.

C4.7 PCI Bus Master Cycles Address Flow—Read or Write
This section describes the address flow when the controller grants the PCl bus to a master other
than itself. For example when a SCSI agent becomes PCI bus master.

The PCI_AD lines [1] carry address information on the first clock(s) of a PCI cycle. This address
is latched at the PCI ADDR latch [2] on Figure C—2 with the rising edge of the PCl clock. The con-
troller must assert PCI_SEL# low and have ADDRHI/DATALQ in a high state. It then must change
ADDRHI/DATALO to a low state to hold the address in [1], and it must hold the address in [2]
throughout the PCI to memory cycle.

The two high-order PCl address bits are modified by PCI-CPU address translate block [3] in order
to reverse the translation that occurs when the CPU accesses the PCl bus. This translation, which
can be omitted by asserting NO_TRANS, is shown in Table C—7. (MSB means most-significant
bit.) , ,

Table C-7. PCI to 60X CPU and System Memory Address Translation

60X CPU Address 60X CPU Address
PCI Address (Source) NO_TRANS =0 NO_TRANS =1
MSB MSB MSB
A31 | A30 RANGE A0 | At RANGE A0 | A1 RANGE
0 0 0to1G 1 1 3G to 4G 0 0 0Gto 1B
0 1 1Gto 2G 1 1 3Gto 4G 0 1 1G to 2G
1 0 2Gto 3G 0 0 0Gto 1G 1 0 2Gt0 3G
1 1 3G to 4G 0 1 1G to 2G 1 1 3G to 4G

The PCl address islatched in PCl ADDRESS BURST counter [4]. This counter passes bits (1:0).
The rest of the bits beginning with bit 2 are incremented when the controller changes
BURST_CLK# to low. The controller drives BURST_CLK# low when the snoop or the memory

279

The 650 Bridge Chip Set

no longer needs the address during PCl burst cycles. The PCI address is gated through the AD-
DRESS multiplexer [11] when PCI_SEL# is low. The PCl address on the internal address bus is
presented on the memory address lines in the same way as was explained in Section C.4.1.

The PCI address can also be presented to the 60X bus for bus snooping by activating
CPU_ADDR_OE# at block [5]. In the normal mode of operation, the 654 Controller does not acti-
vate a memory r/w cycle if the high-order PCI address bit is zero when it is on the PCI bus (set
to one after the translate). Snooping devices normally ignore the cycle if the highest order CPU
address line is one. PCl bus masters access system memory with PCl memory transactions ad-
dressed from 2G to 4G. These transactions are mapped to system memory and the 60X CPU
bus as transfers in the 0 to 2G range.

C.4.8 PCI to Memory Cycles Data Flow—Write
This section describes the data flow on write cycles when the controller grants the PCl bus to a
‘master other than itself. For example when a SCSI agent becomes PCl bus master.

The PCl data is latched at PCI DATA latch [18] on the rising edge of PCI_CLK. The 32 bits of data

-are replicated on both the high and low portions of the input to 64-bit multiplexer [22]. They are
enabled onto the internal data bus by PCI_SEL#. The 64 bits, along with parity, are output to the
memory when the controller activates MEM DATA_OE# at [102] on Figure C-3.

There is no byte swap or low-order address translation in the path from PCI either to or from
memory. So the data order on the PCI and the memory are the same.

C4.9 PCI to Memory Cycles Data Fliow—Read
This section describes the data flow on read cycles when the controller grants the PCI bus to a
master other than itself. For example when a SCSI agent becomes PCI bus master.

When the controller recognizes a PCl to memory read, it must activate MEM_DATA_SEL# so that
data memory data entering the receivers at [101] on Figure C-3 can be gated through multiplexer
[22] to the internal data bus. From this point, 32 bits (high or low) are selected at multiplexer [24]
and flow through multlplexer [25] to PCI_AD drivers [1] on Figure C-2.

C.5 653 Buffer Detailed Internal Descriptions

This section contains detailed explanations of the operation of each part of the 653 Buffer shown
in Figure C—2 and Figure C-3, which show the function of the 653 Buffer but not its actual internal
construction. The number of each subsection matches the block number of each part shown in
the figures.

C.5.1 PCI_AD Transceivers

The PCI_AD output drivers are enabled in two different groups (see Figure C—6) to allow the
PCI_AD lines to be used to access the boot ROM device during ROM cycles. The upper byte (
AD[31:24])is enabled by PCI_OE#, and the lower three bytes (AD[23:0]) are enabled whenever
either PCI_OE# or ROM_SEL# goes active low. ;

280

The 650 Bridge Chip Set

PCI_AD |~ o .
ADDRESS — glp 30543 pci_od_in [31:24]
pci_ad_outl[31:24]
Boot é 653 PCI_OE#
ROM — Buffer ROM_SEL #
Device =) - ‘
(Al
, < pci_od_out [23:0]
PCI_AD| ~
DATA k— C‘_/ (5307 > pci_od_in [23:0]

Figure C-6. PCI_AD Transceivers

C.5.2 PCI Address Latch
The purpose of the PCl address hold latch is to capture the address information from the PCl bus
during the address phase of a PCI transaction. This function is accomplished using a hold latch.

PCI ADDR
LATCH

o od in To PCI-CPU
P "[31761>-———D Q—> Address

PCI_CLK Translator
ADDRHI/DATALO: OPEN
PCI_SEL#>

Figure C-7. PCI Address Latch

The hold latch (see Figure C-7) is a level sensitive, transparent D-latch. Addresses appearing
on the D inputs are transferred to the Q outputs while the OPEN input is active high. Addresses
appearing on the D inputs one setup time before the high to low transition of the OPEN input is
held on the Q outputs until the OPEN input is again returned high.

The PCI address hold latch derives the OPEN signal from three other signals. The contents of
the PCI_AD lines flow through this latch while PCI_SEL# is active low and ADDRHI/DATALO is
high and PCI_CLK is low. In normal operation the combination of PCI_SEL# low and
ADDRHI/DATALOQ high indicates that a PCl address phase is in progress, and the PCI_CLK tran-
sition from low to high latches the data. ADDRHI/DATALO would then be negated before the
PCI_CLK again went low.

C.5.3 PCI to 60X CPU Address Translation v

The purpose of the PCI to 60X CPU address translation block [3] is to map PCI addresses from
PCIl bus masters onto system memory and 60X CPU address space. This translation affects the
upper two address lines [31:30] when NO_TRANS is inactive. When NO_TRANS is active high
(ISA master cycles), no translation takes place.

281

The 650 Bridge Chip Set

PCI address bits 29:0 bypass this translation block and are not affected by this transiation.

Table C-8. PCI to 60X CPU and System Memory Address Translation

60X CPU Address (BE) - 60X CPU Address (BE)
PCl Address (Source) NO_TRANS =0 NO_TRANS =1
A31 | A30 RANGE A0 | A1 RANGE A0 | A1 RANGE
0 0 0to 1G 1 | 3G to 4G 0 0 0Gto 1B
0 1 1Gto 2G 1 1 3G to 4G 0 1 1Gto 2G
1 0 2G to 3G 0 0 0Gto 1G 1 0 2Gto 3G
1 1 3G to 4G 0 1 1G to 2G 1 1 3G to 4G

C.5.4 - PCI Burst Counter

The PCI burst counter (see Figure C—8) supports PCl burst accesses to system memory by latch-
* ing in the initial address and incrementing it for each succeeding data phase of the burst. This is
implemented using a combination latch/counter (see Figure C-9). There are two paths through
the latch/counter—the latch-only path and the latch and counter path.

PCI Bus Address - o
[%EIChli(ilt 8c<>I ?3?]8] D LAT 9__]/[31:0] Address
eere : D L&C Q MUX
PCI_SEL# >—E:—)CO>DPEN

° —

ADDRHI/DATALO >—
BURST_CLK# >—C>CL/INC

Figure C-8. PCI Burst Counter

Assume that the initial state of the latch/counter is CLOSED. A high to low transition of PCl_SEL#
(on the OPEN# input) causes the latches to open (become transparent). This is the OPEN state
~ (see Figure C-10). The OPEN#input is edge sensitive only.

While the CNT_EN#(CouNT_ENable) input is asserted, the CL/INC# (active falling edge CLose/
INCrement) input is enabled, otherwise it is ignored. CNT_EN# is- asserted whenever either
PCI_SEL# or ADDRHI/DATALO is low.

282

The 650 Bridge Chip Set

PCI’ Address (101 —4=A1 D Q
OPEN# O>0OPEN Latch-Onl
PCI_SEL# >—L—|CNT_EN# __EEL N o Y
ADDRHL/DATALD >—LA T 1o *
BURST _CLK# >—] I ol]
e Latch & Count Path
'PCT Address [31:2] —— —|—|—p a— D Q
—O>OPEN ——C>0OPEN
L dcL EN ——dCNT_EN
L O>Close {DLY}O> INC

Figure c-9. Combination Latch/Counter—PCl Burst Counter

While the CNT_EN#input is asserted, sending BURST_CLK# (connectedto CL/INC#) from high

to low causes all the latches to close, and then causes the count on bits [31:2] to increment by
one. Thus the address appearing on inputs [1:0] one setup time before the falling edge of
BURST_CLK# appears on outputs [1:0]. One plus the address appearing on inputs [31:2] one
setup time before the falling edge of BURST_CLK# appears on outputs [31:2].

Dpén Latches

CNT_EN# lo and
Latch BURST_CLK# v
OPEN

Close Latches
Increment Counter

PCI_SEL#©

CNT_EN# (o and
BURST_CLK# &

Increment

PCI_SEL#
ADDRHI/DATALO ?—DO-‘CNT—EN#

Counter

Figure C-10. Latch/Counter Flow Diagram—PCI Burst Counter

283

The 650 Bridge Chip Set

Successive high to low transitions of BURST_CLK# continue to increment bits [31:2] and have
no effect on bits [1:0]. The CL/INC# input is edge sensitive only. Any high to low transition of the
OPEN# input returns the device to the open (transparent) state.

C.5.5 60X CPU Address Bus Transceivers

The internal nomenclature of the 653 Buffer is little-endian, while the 60X CPU bus is labeled in
big-endian sequence. Since the 653 Buffer internal structure uses little-endian nomenclature, the
60X CPU signals were renamed in little-endian sequence to minimize confusion. This allows all
of the 653 Buffer to be discussed using the same nomenclature.

For example, in Figure C—11, A0 on the 60X CPU bus (and the 653 Buffer pin) corresponds to
cpu_addr_in[31] and cpu_addr_out[31] in the 653 Buffer. A31 on the 60X CPU bus corresponds
to cpu_addr_in[0] and cpu_addr_out{[0] in the 653 Buffer.

MSk 0 & 317 MSb
1 &

—> 30
30 ¢«— 1
31 ¢« 0
CPU_ADDR ~ [31:0] | ddr_in
[0:31] . L -2 -
[0:31] [31:0]

Cpu_addr_out
CPU_ADDR_OE#

Figure C—11. 60X CPU Address Bus Transceivers

C.5.6 60X CPU Address UnMunger

The 60X CPU address unmunger is used to support big-endian and little-endian operation of the
system. When LE_MODE_SEL# is asserted, the 653 Buffer unmunges the three least significant
address bits from the 60X CPU bus to the memory bus or PCI bus (see Table C-9). The unmunge
by the 653 Buffer is identical to the munge operation performed by the 60X CPU. Addresses which
have been munged and then unmunged are identical to addresses that have not been manipu-
lated. k

284

The 650 Bridge Chip Set

Table C-9. Unmunging Address Bits in Little-Endian Mode

Lowest Order Unmunged Three Lowest Order Address Bits [2:0]
Address Bits
Before 1-Byte Transfer (XOR | 2-Byte Transfer (XOR 4-Byte Transfer 8-Byte Transfer
Unmunge with 111) with 110) (XOR with 100) (No Change)
000 111 110 100 000
001 110
010 101 100
oM 100
100 011 010 000
101 010
110 001 000 ---
11 000

C.5.7 60X CPU Address Hold Latch

The 60X CPU address hold latch [7] is transparent while CPU_ADDR_SEL# is high. Addresses
appearing on the D inputs one setup time before the high to low transition of CPU_ADDR_SEL#
is held on the Q outputs until CPU_ADDR_SEL# is again returned high.

C.5.8 60X CPU Burst Counter

The 60X CPU burst counter (see Figure C-12) supports 60X CPU bus (60X or L2) smgle -beat
transfers and four-beat burst transfers to system memory by latching in the initial address and
(for bursts) incrementing it for each succeeding beat of the burst. This is discussed in terms of
the 60X CPU, and works the same way for transfers mastered by the L2 cache. The burst counter
is implemented using a combination latch/counter (see Figure C—13) which is very similar to the
latch-counter described in Section C.5.4. There are two paths through the latch/counter: the latch-
only path, and the latch and counter path.

BURST_CLK# >———c>CL/INc | CPU BURST

CPU_ADDR_SEL # >—E€ CNT_EN CHOUNTER
[4:3] P> UPEN [31:0]

D L&C Qj——%
[31:5, 2:0] }ﬁ CAT O
CPU Address (LE>

Unmunged as reqg’d.

Figure C-12. 60X CPU Burst Counter

During a single-beat transfer, up to 8 bytes of data are transferred by the 60X CPU, as determined
by a decode of the three lowest order address bits and TSI1Z[0:2)]. During each beat of a burst
transfer (TBST# asserted) 8 bytes are transferred. Internal address bits [2:0] (LE) flow through

285

The 650 Bridge Chip Set

the latch-only path of the burst counter. The value of these bits is controlled by the 60X CPU. Bits
[31:5] also flow through the latch-only section. They are not incremented by the counter because
any given 60X CPU burst transfer must not cross a 32-byte boundary.

‘CPU" Address D Q
PSS, 0] | EEENgN# O>OPEN | Latch-Only
CPU_ADDR_SEL# L iNCE —QCL_EN Path (LAT)
BURST_CLK# —|—C>ClLose
‘CPU’ [i%ogress —|——p Q D QH—
‘ Logch —CO>0PEN ———C>0OPEN
count | ——OCL_EN ———QCNT_EN
Path L——O>ClLose >INC

(L&CD

Figure C-13. Combination Latch/Counter—CPU Burst Counter

Since the 60X CPU burst is composed of four beats, a two-bit counter is required to support the
burst. Bits [4:3] flow through the latch and counter path. The 60X CPU can initiate a burst at any
value of bits [4:3]. The count sequence is 00, 01, 10, 11, 00, 01, and so on (the counter is linear
and wraps).

To track the operation of the device, assume that the initial state of the latch/counter is CLOSED.
The highto low transition of CPU_ADDR_SEL# (on the OPEN#input) causes the latches to open
(become transparent). This is the OPEN state (see Figure C—14).

While the CPU_ADDR_SEL#is asserted (on CNT_EN#), the CL/INC#inputis enabled, so chang-
ing BURST_CLK# from high to low causes all the latches to close, and then causes the count on
bits [4:3] to increment by one. Thus the address appearing on inputs [2:0] and [31:5] one setup
time before the falling edge of BURST_CLK# appears on outputs [2:0] and [31:5]. One plus the
address appearing on inputs [4:3] one setup time before the falling edge of BURST_CLK# ap-
pears on outputs [4:3].

286

The 650 Bridge Chip Set

CPU_ADDR_SEL# lo and
Lotch BURST_CLK# ©
OPEN
N
Close Latches

Increment Counter

Open Latches

CPU_ADDR_SEL# ¢

CPU_ADDR_SEL# lo ond
BURST_CLK# &

Increment
Counter

Figure C—14. Latch/Counter Flow Diagram—CPU Burst Counter

Successive high to low transitions of BURST_CLK# on CL/INC# continue to increment bits [4:3]
with no effect on bits [2:0] and [31:5]. Any high to low transition of CPU_ADDR_SEL# (on the
OPEN#input) returns the device to the open (transparent) state.

C.5.9 Page Hit Comparator

The 12-bit page hit comparator is used to support fast accesses to memory locations in the same
page of DRAM as the previous DRAM access. Bits [30:12] of the previous page address, stored
in the page hold latch, are compared to bits [30:12] of the current address coming from the
cpu_addr_jn bus. MEM_PAGE_HIT# is unqualified and is only guaranteed to be valid one delay
time after the inputs to the comparator are valid. ‘

PAGE HIT

COMPARATOR '
. Last Page
cpu_addr_iny I 9
[30:12] A : B [30:12] Address From
DRAMX9HI/X10LO >——TYPE Page Hold
- MEM_PAGE_HIT# &O———(O= Latch

Figure C-15. Page Hit Comparator

The page hit comparator operates with two different sets of address lines, depending on the value -
of DRAMX9HI/X10LO. When DRAMX9HI/X10LO is high, the device expects a 4K page size. Ad-
dressing within a 4K page requires address lines [11 :0]. Address lines [30:12] are then compared
- to determine page hits.

287

The 650 Bridge Chip Set

When DRAMX9HI/X10LO is low, the device expects an 8K page size. Addressing within an 8K
page requires address lines [12:0]. Address lines [30:13] are then compared to determine page
hits. Address line [31] is not used by the page hit comparator because all system memory must
be mapped below 2G, so A31 is always low.

C.5.10 Refresh Counter
The refresh counter is used to determine the row address for refresh operatlons The refresh
counter is.composed of a 12-bit counter and some steering logic (see Figure C-16). '

The value of the 12-bit counter on power up is indeterminate. The counter increments on the rising
edge of the REFRESH_SEL# input. The count sequence (decimal)is 0, 1, ..., 4095, 0, 1, ... etc.,
and is not affected by any other input.

REFRESH COUNTER

To

REFRESH_SEL# O—pUP o 12 [t Are3ded [l ol o
12k /0] AL24:13] U
DRAMXSHI/X10LD O TOther A=0

Figure C-16. Refresh Counter

When DRAMXSHI/X10LO is high, the memory controller is in X9 mode. When DRAMX9HI/X10LO
is low it is in x10 mode. The 12-bit refresh address produced by the 12-bit counter is placed on
the internal address bus with zero-fill, depending on the value of DRAMX9HI/X10LO, as follows:

A A A A A A A A A

31 27 23 19 15 11 7 3 0---- Address Line
[| | | | | | | |
abcd_efgh_ijkl---- 12-bit refresh address
0000 0000 abcd efgh ijkl 0000 0000 0000---- Refresh address placed on

internal bus, x9 Mode

0000 000a bcde fghi jk10 0000 0000 0000---- Refresh address placed on
internal bus, x10 Mode

C.5.11 Address Multiplexer

The address multiplexer places a 32-bit address on the 653 Buffer internal address bus This ad-
dress comes from one of three sources—the PCI Burst Counter, the 60X CPU Burst Counter, or
the Refresh Counter (see Figure C—17).

288

The 650 Bridge Chip Set

REFRESH_SEL#
CPU_ADDR_SEL# >—m
PCI_SEL# >——

ADDRHI/DATALO
: @)

Internal
ADDRESS SOURCE SLEDLGEI%T Address
PCI Burst Counter; I\I}l : Bus
CPU Burst Counter &
Refresh Counter 'f}

Figure C—17. Address Multiplexer

Only one of the address sources is selected at any time. In general, the refresh address select
has the highest priority, the 60X CPU address select has second priority, and the PCI address
select has third priority (see Table C-10). In the table (which exactly describes the operation of
the multiplexer), note that the PCI address select signal (from_pci#), is an internal signal that is
asserted low whenever PCl_SEL# is low or ADDRHI/DATALO is low.

PC|_SEL#— o ‘
ADDRHI/DATALO———) from_pci#

Table C-10. Address Multiplexer Source Selection Priority

CPU_ADDR_SEL# from_pci# REFRESH_SEL# Selected Address Source
0 0 0 Refresh Counter
0 0 1 CPU Burst Counter
0 1 0 Refresh Counter
0 1 1 CPU Burst Counter
1 0 0 Refresh Counter
1 0 1 PCI Burst Counter
1 1 0 Refresh Counter
1 1 1 CPU Burst Counter

C.5.12 60X CPU to PCI Address Translation

Addresses sourced by the 60X CPU or the L2 cache are transmitted to the PCI bus after going
through a translation block (Note that the addresses pass through the ROM read burst counter
unchanged during PCl transactions). The address information comes to the translation block via
the internal address bus A[31:0] (see Figure C—18). The address lines are processed in four
groups—bits A[1:0], bits A[4:2], bits A[29:5], bits A[31:30]. Operations on each group are inde-
pendent of operations on the other groups.

289

The 650 Bridge Chip Set

'NO_TRANS : JTRANS |[[12]
P uth ROV Resd]
CONTIG_ IO >— —disA_1/0 | ﬁ nggf&fr |
. Address A 29sl) (.. || EPMEr s
Decoder : (1,01 _I_N _ QU_T__/
Cpu_addr 2G+8M to ——— 1IN OUTH nci_addr out
31237 2G*16M or —|————FORCEO0Q ,
—nEe 3G to 4G [4:2]
Internoal Address Bus>—

Figure C-18. 60X CPU To PCI Address Translator

C.5.12.1 A[1:0] Translation—PCIl Bus Special Requirements

Address bits A[1:0] are forced to 00b to meet the special requirements of the PCi bus during CPU
to PCI configuration transactions (CPU address range 2G+8M to 2G+16M), and during CPU to
PCI memory transactions (CPU address range 3G to 4G). The 653 Buffer detects accesses to
these address ranges by internally decoding the 8 highest order CPU address lines (from
cpu_addr_in[31:23] (LE)). No pin or register control of this translation is provided. It is hardwired.

Note that system ROM space is mapped to CPU address range 4G-8M to 4G. There is no prob-
lem with A[1:0] being forced to "00’ during ROM reads because the ROM read burst counter forces
A[2:0] to 000’ at the start of a ROM read; thereafter the state of A[1:0] is determined by the burst
counter. During ROM writes, the address appearmg on the ROM address lines comes from the
CPU data bus via the 653 Buffer.

.C.5.12.2 A[4:2] Non-Translation

Address bits A[4:2] pass through the translator with no change under any conditions. Note that
A[2:0] will have been unmunged upstream at the 60X CPU Address Unmunger if the system is
operating in little-endian mode.

C.5.12.3 A[31:30] Translation—System Address Map Implementation

The 653 Buffer allows pin control of the high order address mapping function from the 60X CPU
bus to the PCI bus. While NO_TRANS is high, the address mapping function is dlsabled and
A[31:30] are passed through unchanged (see Table C-11).

While NO_TRANS is low, this mapping function is enabled, and address bits A[31:30] are trans-
lated as shown in Table C-11.

Table C-11. 60X CPU To PCI Address Translation——High Order

A[31:30] from-CPU
NO_TRANS (Little-Endian CPU Address PCI_AD[31:30] PCI Address
0 0o 0G to 1G 00 . 0Gto1G
0 01 1Gto 2G 01 1G to 2G
0 10 2G to 3G 00 0Gto 1G

290

The 650 Bridge Chip Set

Table C—11. 60X CPU To PCI Address Translation—High Order (Continued)

A[31:30] from CPU
NO_TRANS (Little-Endian) CPU Address PCI_ADI[31:30] PCI Address
0 11 : 3G to 4G 00 0Gto 1G
1 00 0G to 1G 00 0G to 1G
1 01 1G to 2G . 01 1G to 2G
1 10 2G to 3G 10 2G to 3G
1 11 3G to 4G 11 3Gto 4G .

C.5.12.4 A[29:5] Translation—PCl/ISA I/O Page Mapping

The 653 Buffer also allows pin control of the PCI/ISA IO mapping function, which concerns bits
A[29:5] (see Figure C—19). Address bits A[29:5] are passed through the translator unchanged
while CONTIG_IO is high, which maps the 60X CPU addresses into PCI space at 1:1 (for these
bits). Operation in ISA contiguous mode is straightforward, the address space is contiguous.
However, this mode allows protection attributes to be assigned to ISA ports only as is allowed by
the 1:1 mapping to memory space—each 4k-byte page of ports has definable attributes that apply
to all of the ports in that page.

A3l A27 A23 AI9 AIS All A7 A3 AC
| l . | | | .
vuts rgpo nmlk jihg fedc [ba98 7634 3210 cpu_addr_in

ML—¢ l e

vul00 0000 Oftsr gpon mlk, ihgf edc4 3210 pci_addr_out

(to ROM Cntro

Figure C-19. 60X CPU To PCI Address Translation—PCVISA 10

While CONTIG_IO is low, bits A[29:5] are translated as shown in Figure C—19. This translation
implements the mapping of 4k-byte pages in 60X CPU memory space onto 32-byte port groups
in PCI/ISA space. This mapping allows protection attributes to be assigned to each group of 32
ports as a separate page. In this 'ISA non-contiguous mode’, the lowest 32 bytes in each 4k-byte
page of CPU memory space is mapped to a 32 byte group of ports in ISA I/O space. (The other
32 byte groups in each 4k-byte page are shadowed to the same 32-byte port group.) While CON-
TIG_IO is low:

1) Internal address bits A[31:30] are not affected by this block of the translator. These bits may
have been translated by the high order bit translator (see Section C.5.12.3).

2) Address bits [29:23] going out of the- translator (to the PCI bus ROM counter) are set to

~0000000b.

3) Internal address bits A[29:12] are passed to address bits [22:5] from the translator.
4) Internal address bits A[11:5] are not used, and are not passed through.
5) Address bits A[4:0] are always passed through unchanged.

291

The 650 Bridge Chip Set

C.5.13 ROM Read Burst Counter .

The ROM read burst counter (see Figure C—20) is part of the boot ROM system, which provides
the 60X CPU with read access to bytewide EPROM, EEPROM, or Flash memory devices. During
a ROM read, the ROM burst counter and the ROM data shift register (see Section C.5.19) are
used to stack up 8 bytes of 1-byte wide ROM data into an 8-byte wide doubleword, which is sent
to the 60X CPU. The 653 Buffer also supports 32-byte (4 beat x 8 bytes/beat) burst reads from
ROM. Details of these operations are found in the 654 Controlier data sheet. Note that the 650
Bridge also supports writes to ROM space as described in Section C.3.6 and in the 654 Controller
data sheet.

PCI_SEL#®
CPU_ADDR_SEL# > [OPEN
ROM_SEL# GRST/CNT_EN

BURST_CLK#> > CL/INC

Lt - [4'0] H
pci_oddr_out
Internal >_|CPU to PCI (:[31:5] D L& @ [31:0]
Address | Address

Bus Translator !

|
[ERR S bl -

Figure C—-20. ROM Read Burst Counter

The ROM read burst counter is a combination latch/counter, similar to the 60X CPU and PCl burst
counters. Of the two paths through the device, the latch-only path works identically, but the latch
and counter section is somewhat different.

The counter is able to count through 32 byte locations, so the five lowest order address bits [4:0]
go through the latch and count section of the device, while bits [31:5] go through the latch-only
section (see Figure C-21).

‘CPU’ Address [31:5] |
PCI_SEL# SPENE D Q
CPU_ADDR_SEL# st ot BN TP OPEN | Latch-Only
ROM_SEL# e —QCL_EN | Path (LAT>
BURST_CLK# —|—a>Close
‘CPU’ Address [4:0] —|—1—D Q
Lagch ' L—O>0OPEN
Count L QRESET/CNT_EN
Path L O>COUNT
(L&C)

Figure C-21. Combination Latch/Counter—ROM Read Burst Counter

292

The 650 Bridge Chip Set

To track the operation of the device, assume that the initial state of the latch/counter is CLOSED.
A falling edge of PCI_SEL# or CPU_ADDR_SEL# or ROM_SEL# (producing a falling edge on
. the OPEN#input) causes the latches to open, making the device transparent to all 32 bits (which
is the sole function of this device during PCl and normal 60X CPU cycles). This is the OPEN state
(see Figure C-22). The OPEN# input is edge sensitive only.

During ROM read cycles, the falling edge of CPU_ADDR_SEL# causes thelatches to open, mak-
ing the device transparent to all 32 bits. When the 654 Controller asserts ROM_SEL#, its falling
edge forces bits [2:0] to 000b (this function is not found in the other counters). At this point, the
654 Controller strobes one byte of data out of ROM location ’x----x x000’ into the ROM Data Shift
Register (see Section C.5.19).

While ROM_SEL# is low, the latches in the latch—only path are enabled and the counter is en-
abled, so the next falling edge of BURST_CLK# latches bits [31:3] and increment bits [2:0] to 001.
Next the 654 Controller strobes one byte of data out of ROM location 001 into the ROM data shift
register. The 654 Controller continues to cycle BURST_CLK# and strobe data out of the ROM
and into the shift register until eight bytes are read. The latch/counter’s CL/INC# input is edge
sensitive only.

Since the latch/counter is now closed, any high to low transition of PCI_SEL# or
CPU_ADDR_SEL#or ROM_SEL# (onthe OPEN#input) returnsthedewcetotheopen (transpar-
ent) state.

Although the 654 Controller implements an 8-byte transfer during both single-beat and burst
transactions, the 653 Buffer is capable of four-beat transfers. After the end of the first beat (count-
er states 0 through 7), the Controller asserts TA# to the 60X CPU to transfer the 8 bytes of data
stored in the ROM shift register. Then the Controller would shift another 8 bytes into the shift regis-
ter (counter states 8 through 15), TA# the 60X CPU agaln and so on until all 32 bytes were trans-

ferred
ROM_SEL# lo and
"/ Latch BURST_CLK# %
OPEN
Close Latches
Open Latches Soeot Coumton
PCI_SEL# OPEN# ©
CPU_ADDR_SEL#
ROM_SEL #
ROM_SEL# lo and
BURST_CLK# % Increment
Counter

Figure C-22. Latch/Counter Flow Diagram—ROM Read Burst Counter

293

The 650 Bridge Chip Set

C.5.14 Error Address Latch :
The error address laich is intended to allow system diagnostics to trap accesses to addresses
that cause exceptions. Control of the latch resides in the 654 Controller, and can be enhanced
by additional logic.

The latch, shown as block [14] in Figure C-2, is implemented as a hold latch, a level-sensitive,
transparent D-latch. The address on the internal address bus of the 653 Buffer flows through to
the err_adadrlines as long as L_ ERR_ADDR# is high. The address on the internal address bus
one setup time before L ERR_ADDR# goes low is held in the latch.

Note that L ERR_ADDR# is asserted low to latch the error address, and must be held low to pre-
serve the error address. The latch again becomes transparent (and the error address is lost) when
L_ERR_ADDR# is negated.

C.5.15 Row/Column Address Multiplexer '

The row/column address multiplexer places the required address information onto the memory
address lines in the proper format, under pin control. While RASHI/CASLO is high, the multiplexer
places the row address on the memory address lines. While RASHI/CASLO is low, the multiplexer
places the column address on the memory address lines. While DRAMX9HI/X10LO is high, ad-
dresses appropriate to DRAMs having 9 column address bits (10x9, 11x9, or 12x9 RxC) are se-
lected. While DRAMX9HI/X10LO is low, addresses appropriate to DRAMs having 10 column ad-
dress bits (10x10, 11x10, or 12x10 RxC) are selected. Additionally, an 11th column address bit
is generated, which is identical to the 12th row bit. This is useful for 11x11 addressing, or for
12x10/11 addressing, where 12x10 and 11x11 addressing is used together, such as for an 8M
SIMM.

Table C—12. Memory Row and Column Address Generation

Typ | DRAMX9 | RASHI/ | R/C | MA1 |MA1 | MA | MA |MA | MA |MA [MA | MA | MA | MA | MA
e HI’X10L | CAS- 1 ‘0] 9 8 7 6 5 4 3 2 1 0
(o] LO A
9 col 1 1 row | A23 | A22 | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12
9 1 0 col 0 0 0 |A11 JA10| A9 | A8 | A7 | A6 | A5 | A4 | A3
col
10 0 1 row | A24 | A23 | A22 | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13
col
10 0 0 col 0 A24 1A12 | A11 |A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3
col

C.5.16 - Page Hold Latch »

The page hold latch is used to store the page address of the previous DRAM memory access for
comparison against the page address of the next DRAM memory access. Addresses flow through
the page hold latch while RASHI/CASLO# is high. An address appearing on the D inputs one set-
up time before the high to low transition of RASHI/CASLO# is held on the Q outputs until
RASHI/CASLO# is again returned high. Also see Section C.5.9.

C.5.17 PCI Data Latch
The purpose of the PCI data latch is to capture the data from the PCI bus during the data phase
of a PCl transaction. This function is accomplished using a hold latch.

The holdlatch (see Figure C-23) is a level sensitive, transparent D-latch, as described in Section
C.5.2. The latch is closed while L_PCI_DATA# is low and while PCI_CLK is high. Data on the

294

The 650 Bridge Chip Set

PCI_AD bus flows through the latch only while L_PCI_DATA# is high and PCI_CLKiis low. To cap-
ture the PCI_AD bus data, the 654 Controller sends L_PCI_DATA# high to indicate a data phase,
and the PCI_CLK transition from low to high latches the data. L_PCI_DATA# would then be sent
low before the PCI_CLK again went low.

ci_od_in 3c 'PCI :% I
pci_ _—' D Q——F——Data i DATA
[31:01 'Doubler MUX

]
PCI_CLK oen |)
L _PCI_DATA# : D

Figure C-23. PCI Data Latch

C.5.18 PCI Data Doubler '

To support the transmission of data from the 4-byte wide PCI_AD bus to the 8-byte wide CPU bus,
the PCI data doubler places the 4-byte data from the PCI_AD bus onto internal address lines
[31:0]. It also places an identical copy of the 4-byte data on lines [63:32].

" PCI | 32 o, To
| Dato —oo 4 p°4 DATA
| Latch | 735 MUX

Figure C-24. PCI Data Doubler

C.5.19 ROM Data Shift Register

The ROM data shift register works with the ROM read burst counter (see Section C.5.13) to read
8 bytes of bytewide data out of the boot ROM device and transfer it to the CPU bus as 8-byte wide
data. The data on the upper byte of the PCI_AD lines connects to the shift register bytewide data
input (see Figure C-25).

At BYTE
pci_od_in [3lcd] , — 7 [63:36]
ROM_SEL # o —6 [55:48]
BURST _CLK# o> 5 [47:401]
M 4 [39:32]
RUM DATA X 3 [31:24]
SHIFT v —2 [23116]
REGISTER | [, - Mt [158]
0 [7'0]/ _DTQO-tQ
ROM_DATA ca e

Figure C-25. ROM Data Shift Register

295

The 650 Bridge Chip Set

When ROM_SEL# is active, shifting is enabled. The bytes are shifted following the falling edge
of BURST_CLK# in the following order (bit order is preserved):

1. Byte 1 is shifted into byte 0. Previous contents of byte 0 are lost.
Byte 2 is shifted into byte 1.
Byte 3 is shifted into byte 2.
Byte 4 is shifted into byte 3.
Byte 5 is shifted into byte 4.
Byte 6 is shifted into byte 5.
Byte 7 is shifted into byte 6.

PCI_ADI[31:24] are shifted into byte 7.
Note that data on PCI _AD[31:24] is not on the internal data lines until shifted into byte 7.

C.5.20 Error Address Doubler
The error address trapping system is designed to capture addresses at which exceptions oc-
curred. This requires getting the address information from the 4-byte wide address bus onto the
8-byte wide data bus. Maximum system flexibility was achieved by using the error address dou-
bler to place the error address on both the high 4 bytes and the low 4 bytes of the data bus.

NGk owD

0

To
LE_MODE_SEL# 1 630 o e
MUX
BE gy1e] swep LE
MSB[0:7] 0 ——> 10 [7:01LSB
(8151 1|+ 11 [15:8]
CPU DATA [ige3] er\ /—/8 [23:16]
BYTE LANE r(e4:311 31— suap 3 [3L24]
SWAPPER [32:39] 4| 14 [39:32]
[40:47] S|~ 15 [47:40]
[48:55] 6|~ 16 [55:481]
LSBI5663] 7|4 —> 7 [63:561MSB
CPU_DATA i~ [063] BYTE
[0:63] b

Figure C-26. 60X CPU Data Byte Lane Swapper—Input Side

C.5.21 60X CPU Byte Lane Swapper—Input Side

The 650 Bridge bi-endian operation support allows the 60X CPU to operate with either big-endian
or little-endian code and data storage formats. The 60X CPU data byte lane swappers (see
Figure C-26) implement the data byte reordering required to achieve bi-endian operation.

The internal nomenclature of the 653 Buffer is little-endian, while the 60X CPU bus is labeled with
big-endian nomenclature. Since the 653 Buffer internal structure uses little-endian nomenclature,
the 60X CPU signals are renamed on the inside of the 653 Buffer in little-endian sequence to mini-
mize confusion.

296

The 650 Bridge Chip Set

Figure C—26 shows that the 60X CPU data bus retains its big-endian nomenclature from the 653
Buffer pins up to the input side of the swapper. As the data bytes go through the swapper onto
the 653 Buffer internal address bus (by way of the data multiplexer) there is in all cases a bit-wise
reversal of the numbering of the bits within the byte. (See Figure C-27.)

The reversal in bit-wise nomenclature is only a name change—there is no change in the signifi-
cance of the bits. For example, a byte that has a value of A3h on the 60X CPU bus has the same
value inside the 653 Buffer, and it has the same value (A3h) when it gets out of the 653 Buffer.

When the 60X CPU is operating in big-endian mode, the signal LE_MODE_SEL# is negated
(high). The data on byte 0 is placed on byte 0 of the internal address bus. Byte 1 is placed on byte
1 of the internal address bus. Byte 2 goes to internal byte 2, ..., byte 7 goes to internal byte 7.

When the 60X CPU is operating in little-endian mode, the signal LE_MODE_SEL# is asserted
low. The swapper is on. The data on byte 0 is placed on byte 7 of the internal address bus. Byte
1 is placed on byte 6 of the internal address bus. Byte 2 goes to internal byte 5, ..., byte 7 goes
to internal byte 0.

297

The 650 Bridge Chip Set

CPU_DATA

MSk 0 |

INTERNAL DATA BUS
LE_MODE

_SEL#

Byte 0

LSB

»—xFU(,O—bU'IO\\n

Bytel,ﬁ?

16
Byte 223

16
Byte 3) 31

=1

0 LSb

31 124
32| Byte 4 Byte 4f3g9
39 REE
40 | Byte 5 ByteSJZZ
17| 1 40
ﬁélﬁytee Byte6J%§
55 [148
56 | 63 MSk
57 62
58 61
59 | Byte 7 Byte'7) 60
60 59
€0 ("LsB MSB | 23
62 57
LSk 63| 56

B

|

yte 7 60
MSB

LE_MODE

SEL =0

63 MSh
62
61

59
58
57
56

Byte 6 5:5
48
By
40

te 5 427

—
2
[

Figure C-27. CPU Data Byte Lane Swapper Operation—Input Side

298

The 650 Bridge Chip Set

C.5.22 Data Multiplexer

The 653 Buffer data multiplexer (see Figure C—28) selects one of six sources for the data appear-
ing on the internal data bus—the PCI data latch (doubled), the ROM data shift register, the error
address latch (doubled), the all_ones register (which contains FFFF FFFF FFFF FFFFh), the in-
put side CPU data byte lane swapper, and the memory data bus. Exactly one of the sources is
selected at any given time. If more than one source select line is active, the source is selected
according to Table C-13.

S
TR
L) O L L
SRR
il S PR
HHSEES O
T T aw
S A e B
o0& Ja
O Ll<<TOX <t
TITTTIY. %
DATA MUX |SELECT LOGIC| g
PCI Data (Lotched & x2> &PI\T'T : : o
ROM Data (B-byte wide) P T T
Error Address (Latched & x2> & T Z
All_Ones (64 1's) B | %
CPU Data (Possibly Swapped) TS —
Memory Data J> =
' —

Figure C-28. Data Multiplexer

Table C-13. Data Muiltiplexer Source Selection Priority.

Data Source Enable Signal Priority
Error Address (x2) ERR_ADDR_SEL# 0 (Top)
CPU Data CPU_DATA_SEL#) 1
All_Ones ALL_ONES_SEL# 2
ROM Data : : ROM_SEL# 3
Memory Data MEM_DATA_SEL# 4
PCl Data (x2) PCI_SEL# 5

C.5.23 PCIl Address/Data Select Delay Flop

The ADDRHI/DATALO signal is switched by the 654 Controller in advance of the transition from
PCI address phase to PCI data phase, in order to achieve the minimum clock to output time on
the AD lines. The PCI address/data multiplexer (see Section C.5.24) uses this signal to switch
the PCl bus between address and data information, so it is delayed until the PCI_CLK makes the
low to high transition that signals the start of a data phase. This delay is implemented (see

299

The 650 Bridge Chip Set

Figure C—29) by a simple positive-edge-triggered D flipflop, which is clocked by PCI_CLK. Thus
the 653 Buffer only switches the PCI_AD lines from address to data immediately following the
positive edge of PCI_CLK.

Following the last data phase of the current transaction, the 654 Controller switches ADDRHI/DA-
TALO from high to low to prepare the 653 Buffer address/data multiplexer for another PCl address
phase. As above, the multiplexer actually switches the source of the PCI_AD lines immediately
following the positive transition of PCI_CLK. This transition usually occurs while the PCI_AD lines
are tri-stated for a PCI bus turnaround cycle.

PCI ADD/
ADDRHI/DATALO D Q
PCI_CLK S 23ldoyseeoll DATA MUX
pci_addr_out (310 (3101 pci_ad_out
[31:0] ltaj gj '
[63:32]
Internal >__[‘ >
Data Bus [31:0] ig
PCI DATA

MUX

Figure C-29. PCI Delay Flop, Data Multiplexer, and Address/Data multiplexer.

C.5.24 PCI Data Multiplexer

During data flows from system memory to the PCI bus (PCl to memory reads) or from the 60X
CPU to the PCI bus (CPU to PCI writes), the 653 Buffer places the 8-byte data from one of the
above sources on its internal data bus (in response to the appropriate data select control signals
from the 654 Controller). If pci_addr_out[2] (from the transaction master via the relevant transla-
tion stages) is low, internal data bits [31:0] are routed to PCI_AD([31:0] during the current data
phase. If pci_addr_out[2] is high, internal data bits [63:32] are routed to PC1_AD[31:0] during the
current data phase. The PCI data multiplexer implements this routing. The output of the PCl data
multiplexer goes to the PCIl address/data multiplexer. (See Section C.5.25.)

C.5.25 PCI Address/Data Multiplexer

The PCI_AD bus is a multiplexed bus. Each transaction can have an address phase and one or
more data phases. The PCl address/data multiplexer routes the address information to the
PCI_AD bus during the address phase, and routes the data information to the PCI_AD bus during
the data phase(s). The multiplexer control line is the delayed ADDRHI/DATALO signal from the
654 Controller (see Section C.5.23). The address information enters the multiplexer on the
pci_addr_outlines. This address can be the (possibly unmunged, translated, and/or burstincrem-
ented) contents of the CPU address bus, or the refresh address (possibly translated), or the ROM
byte address from the ROM read burst counter. The data information enters the multiplexer from

300

The 650 Bridge Chip Set

the PCI data multiplexer (see Section C.5.24), and can have come from the CPU (possibly byte
swapped), the memory, or the all_ones generator. The output of the multiplexer flows onto the
pci_ad_out[31:0] lines, which go to the-off-chip drivers for the PCI_AD lines.

C.5.26 PCI Parity Generator

The PCI_AD bus requires an even parity signal (PAR) to be generated over AD[31:0] and C/
BE#[3:0] such that the total number of 1’s on AD[31:0], C/BE#[3:0], and PAR is an even number.
The PCI parity generator inside the 653 Buffer generates an even parity signal (PCl_AD_PAR)
for the PCI_ADI[31:0] lines only (see Figure C—-30). This signal and the C/BE#[3:0] lines are used
by the 654 Controller to generate the PCI PAR signal.

PCI AD
PARITY
GEN

EVEN
—PARITY <>PCI_AD_PAR
: GEN

pci_ad_out
[31:0]

Figure C-30. PCI Parity Generator

C.5.27 60X CPU Data Byte Lane Swapper—Output Side

The 60X CPU data byte lane swapper on the output side of the data multiplexer (see Figure C-31)
performs the same operation as the swapper on the input side of the multiplexer (see Section
C.5.21). Like address munging and unmunging, the byte lane swap is its own inverse.

Dgrlt‘thPBnL?Sl [63:0] [0:6371 cpu_dato_out
LE ‘ BE
LSB[70] 0pM———>_|-0 [071MSB
[15:8] 1] 11 [815]
[2316] 2 —2 116231 CPU DATA
! N d !
[31:24]1 3 S\/AP 3 [24:31] BYTE | ANE
[39:321 4 M 4 [32:39]
[47:401 S5 s 40471 SWAPPER
[55:481 6 16 [48:55]
MSBL63:56] 7 '—> -7 [S6:63]1LSB
BYTE| <wap |BYTE
LE_MODE_SEL# >————S)

Figure C-31. 60X CPU Data Byte Lane Swapper—Output Side

301

The 650 Bridge Chip Set

Data that has been through a swapper twice on the same setting is the same as data that has
not been swapped. For example, during a memory write and read from the same location when
the 60X CPU is in big-endian mode (LE_MODE_SEL#= 1), data flows out of the 60X CPU through
the input side swapper, producing the data arrangement shown in Figure C—-27 under
LE_MODE_SEL# = 1.

INTERNAL. CPU_DATA_OUT
DATA BUS LE_MODE LE_MODE
: _SEL# =1 _SEL# = 0
7 0 MSb 56
6 1 57
S . 2 58
4 yte 0 Byte 0} 3 Byte 759
3 4 > <p 60
S (LsB MSB | 2 LSB) &f
1 6 62
LSk 0| 7 | 63 LSb
15;@yte 1 Byte J? Byte 6 428
s [- 15 55
833—L Byte 2 Byte eﬁ? Byte 5 40
16 | 123 147
31] Byte 3 Byte 324 _ Byte)32
24 [1 31 35
3891 Byte 4 Byte 4,r388 Byte 3) 24
32 [39 31
437—@yte S Byte '5J-40 Byte 2 136
40 47 23
55 | Byte 6 Byte 6) 48 Byte1) §

48 [|55 | 15
MSb 63| 56 0 MSk
62 57 1
61 . 58 - g

60 (Byte 7 Byte 7) 39 yte 0

29 (MSB LSB | 60 S RE
58 61 5
57 62 ~ 6
56 | | 63 LSh 7

Figure C-32. 60X CPU Data Byte Lane Swapper Operation—Output Side

302

The 650 Bridge Chip Set

This is the arrangement of the data on the 653 Buffer internal data bus and in system memory.
A subsequent read of the memory by the 60X CPU (still in big-endian mode) brings the data onto
the internal data bus in the same arrangement. The data passes through the output side swapper
on the way to the 60X CPU, and is swapped back.

Details of the output side swap operation from the internal data bus to the 60X CPU are shown
in Figure C—32, under LE_MODE_SEL# = 1. The operation of the swappers (the 60X CPU in little-
endian mode) is in Figure C—27 and Figure C-32 under LE_MODE_SEL# = 0.

C.5.28 Memory Data Parity Generator

The memory data parity generator (shown in Figure C—33) generates even byte parity for the
eight bytes of data going to the system memory DRAMs.

EVEN
DIQE?A%?A[S (63:01 PARITY L70] mem_par_out
GEN [28]

MEM DATA PAR GEN

Figure C-33. Memory Data Parity Generator

C.5.29 Memory Data Parity Checker v

The memory data parity checker (shown in Figure C—34) checks for even parity across the
memory data and parity lines on a 1 bit per byte basis during memory operations. The output sig-
nal (MEM_PAR_GOOD) is not valid at all times. While there is no memory cycle running,
MEM_PAR_GOOD has no meaning, and the 654 Controller uses MEM_DATA_SEL# to force it
high. During memory cycles, MEM_PAR_GOOD is only valid one setup time after the data on both
the memory data and parity lines is valid.

MEMORY DATA

MEM_DATA_SEL# PARITY CHECK

mem_data_in >—DATA

[63:0] BAD MPAR_GOOD
mem_por_in > PAR

[7:0]

Figure C-34. Memory Data Parity Checker

303

The 650 Bridge Chip Set

304

Appendix D
Addresses of Sales Offices

D1 USA .

IBM Microelectronics, Mail Stop A25/862-1
PowerPC Marketing

1000 River Street

Essex Junction, VT 05452-4299

Tel: (800) PowerPC [(800) 769-3772]
Fax: (800) PowerFax [(800) 769-3732]

D.2 Europe

IBM Microelectronics

La Pompignane BP 1021

34006 Montpellier

France

Tel: (83) 6713-5757 (Francais)
(33) 6713-5756 (ltaliano)

IBM Microelectronics

Postfach 72 12 80

30532 Hannover

Germany

Tel: (49) 511 516 3444 (English)
(49) 511 516 3555 (Deutsche)

D.3 Japan

IBM

800 Ichimiyake
Yasu-cho, Yasu-gun
Shiga-ken, Japan 520-23
Tel: (81) 775-87-4745
Fax: (81) 775~-87-4735

305

The 650 Bridge Chip Set

- 306

© IBM Corporation 1994
All rights reserved.

PowerPC is a trademark and the IBM logo is a
registered trademark of the IBM Corporation.

USA: .

-

“IBM Microelectronics Division . s

11400 Burnet Rd.

Austin, TX 78758

Tel: (800) PowerPC [(800) 769-3772]
Fax: (800) PowerFax [(800) 769-3732]

EUROPE:

IBM Microelectronics

La Pompignane BP 1021

34006 Montpellier

France

Tel: (33) 6713-5757 (Francais)
(83) 6713-5756 (ltaliano)

IBM Microelectronics

Postfach 72 12 80

30532 Hannover

Germany

Tel: (49) 511 516 3444 (English)
(49) 511 516 3555 (Deutsche)

JAPAN:

IBM

800 Ichimiyake
Yasu-cho, Yasu-gun
Shiga-ken, Japan 520-23
Tel: (81) 775-87-4745
Fax: (81) 775-87-4735

Printed in the United States of America, 7-94

IBM Order Number: =5
MPR650UMU-01

<||I
"Il
©)

