

The IBM27-82650
PowerPC to PCI Bridge

User's Manual
PowerPC to PCI Bridge,

Memory Controller, Arbiter,
ROM Controller, and System

Resource Manager

--...------= =-=~-~-- -. ---- -----------~-.-

© Copyright IBM Corporation, 1994. All rights reserved.
Note to US Government Users-Documentation related to restricted rights-Use, duplication,
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark, and IBM Microelectronics, PowerPC, PowerPC 601, PowerPC
603, PowerPC 604, PowerPC Architecture, and RiscWatch are trademarks of International Busi­
ness Machines Corp. Intel is a registered trademark of Intel Corporation. Other company names
and product identifiers are trademarks of the respective companies.

This document contains preliminary information about version 2.0 of the chip set and is subject
to change by IBM without notice. IBM assumes no responsibility or liability for any use of the in­
formation contained herein. Nothing in this document shall operate as an express or implied li­
cense or indemnity under the intellectual property rights of IBM or third parties. The products de­
scribed in this document are not intended for use in implantation or other direct life support
applications where malfunction may result in physical harm or injury to persons. NO WARRAN­
TIES OF ANY KIND, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS
DOCUMENT.

ii

The IBM27-82650
PowerPCto PCI Bridge

User's Manual

iii

System ROM
(Flash or EPROM)

60X CPU

RAS/CAS

Write Enable

Graphics Video

Control

Address

Data

Control

DRAM
System
Memory

SCSI or
LAN Controller

Control

Address/Data

Optional
L2 Cache

I/O Bridge
PC Bus

ISA, EISA, MicroChannel PC Bus

IBM 650 Bridge Chip Set in a Typical Configuration

iv

Additional
PCI Device(s)

The IBM 650 Bridge Chip Set

The IBM27-82650 PCI Bridge Chip Set-
PowerPC ™ to PCI Local Bus Bridge and Memory Controller

• Used in the PowerPC Reference
Platform Reference Implementation

• Supports the PowerPC 601, 603, and
604 (60X) Microprocessors
• Big- and Little-Endian Address Modes
• Up to 66MHz 60X CPU Bus Clock

• Interfaces the 60X CPU Host Bus to the
PCI Local Bus (level 2.0)
• Up to 33MHz PCI Local Bus Clock Rate
• Enables Industry-Standard PCI Devices
• Integrated Arbiter, up to Six PCI Devices
• One Load on PCI Bus

• Support for Optional L2 Cache
• Write-Back and Write-Through Policy
• Snoops PCI to System Memory

Addresses

• ISA Master to System Memory Support

• Direct Support for 8-Bit Flash/EPROM

• System Memory (DRAM) Controller
• 64-Bit Data Path for System Memory
• Directly Supports 8M and 32M 8-Byte

SIMMs
• Supports up to 256M of System Memory
• Memory Configuration Registers
• 70ns SIMMs Supported
• System Memory Parity Generation and

Checking
• Supports 60X CPU Burst Reads and

Writes of System Memory
• PCI Burst Reads and Writes to System

Memory

• Companion L2 Cache Controller Chip
• The IBM27-82681-66
• 44-Pin PLCC Package
• 256K or 512K Bytes

• 3.3V or 3.6V Power Supply

• 5V-Compatible 110's
• 304-Pin and 160-Pin Quad Flatpacks

The IBM27-82650 PCI Bridge chip set (the 650 Bridge) provides an interface that can connect a
PowerPC 60X CPU to high-performance, PCI (Peripheral Component Interconnect) devices like
graphics, LAN, and SCSI controllers. The PCI bus standard defines an environment for high­
speed, local bus operations. The 650 Bridge chip set provides the necessary control and commu­
nications logic to connect a PowerPC 60X CPU to PCI-compliant devices through the PCI bus.

The 650 Bridge chip set is comprised of the IBM27-82653 Address/Data Buffer (the 653 Buffer)·
and the IBM27-82654 PCI/Memory controller (the 654 Controller). The 650 Bridge supports the
PowerPC 601,603, and 604 microprocessor chips. The 650 Bridge supports both the L 1 memory
cache of the 60X CPU and an optional L2 cache. Either cache can use write-through or write-back
modes of operation.

The 650 Bridge performs the following distinct functions:

• PCI and 60X CPU Bus Arbitration Logic
• System Memory (DRAM) Controller-up to 256M
• Memory-Mapping of CPU Addresses to PCI Transactions
• 60X CPU to 32-bit PCI Local Bus Bridge
• Supports the PowerPC Memory Coherence Model
• System ROM Controller (Including Flash ROM Writes)
• Parity Error and System Error Detection and Reporting

v

vi

Table of Contents

About This Book
Audience .. .
Document Organization
Reference Material
Document Conventions .. .
Acronyms and Abbreviations .. .

Section 1
650 Bridge Architectural Overview .. .
1.1 Summary of 650 Bridge Features :
1.1 .1 60X Microprocessor Support .. .
1 .1 .2 Central Arbiter .. .
1 .1 .3 Memory Controller .. .
1 .1 .4 PowerPC Local Bus ,
1.1.5 PCI Expansion Bus .. .
1.1.6 Address Translation Logic .. .
1 .1 .7 L2 Cache Support
1 .1 .8 System ROM Controller .. .
1.1 .9 Interrupt and Exception Logic

Section 2
The PCI Bus and 60X CPU Background Review
2.1 The PCI Local Bus Review
2.1 .1 PCI Local Bus References
2.1 .2 PCI Local Bus Overview
2.1.3 PCI Signals .. .
2.1.4 PCI Masters and Targets
2.1.5 PCI Arbitration .. .
2.1.6 Basic Transfer Control
2.1 .7 PCI Bus Commands
2.1 .8 Termination of PCI Cycles .. .
2.2 PowerPC 60X CPU Review .. .
2.2.1 601 CPU References .. .
2.2.2 PowerPC 60X CPU Overview
2.2.3 CPU to 650 Bridge Signals
2.2.4 Cache (L 1)
2.2.5 System Interface .. .
2.2.6 TT[0:3] (Transfer Type) .. .
2.2.7 Pipelining and Split Transactions
2.2.8 Big-Endian and Little-Endian Modes of Operation
2.2.9 PIO or 1/0 Controller Operation (XATS#)

vii

xxii
xxii
xxii
xxiii
xxiii

1
2
2
2
2
3
3
4
4
4
4

5
5
5
5
6
7
7
7
8
8
8
9
9
9

11
11
11
12
12
13

The 650 Bridge Chip Set

Section 3
650 Bridge Pin Descriptions ... 15
3.1 653 Buffer Pin Descriptions ... 15
3.1.1 653 Buffer to 60X CPU Bus Interface Signals 17
3.1.2 653 Buffer to PCI Bus Interface Signals 17
3.1.3 653 Buffer to System Memory Interface Signals 17
3.1.4 653 Buffer to External Logic and System Interface Signals. 18
3.2 654 Controller Pin Descriptions . 18
3.2.1 654 Controller to 60X CPU Bus Interface Signals. 19
3.2.2 654 Controller to PCI Bus Interface Signals. 21
3.2.3 654 Controller to System Memory (DRAM) Interface Signals. 22
3.2.4 654 Controller to ROM (Flash or EPROM) Signals. 22
3.2.5 654 Controller to L2 Cache Signals .. 23
3.2.6 654 Controller to Test Signals. 23
3.2.7 654 Controller to External Logic and System Interface Signals 23
3.3 Signals Between the 653 Buffer and 654 Controller 25

Section 4
650 Bridge Theory of Operation .. 29
4.1
4.1.1
4.1.2
4.1.3
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14

650 Bridge Mapping of 60X CPU Bus Addresses
Address Mapping for Non-Contiguous I/O
Address Mapping for Contiguous I/O
PCI Final Address Formation

650 Bridge Mapping of PCI Device Addresses
650 Bridge Bus Transactions

CPU to Memory Read-Single-Beat, Page Hit, XCAS = 0
CPU to Memory Read-Single-Beat, Page Hit, XCAS = 1
CPU to Memory Read-Single-Beat, Page Miss, XCAS = 1
CPU to Memory Read-Burst, Page Miss, XCAS = 1
CPU to Memory Write-Single-Beat, Page Hit, XCAS = 0
CPU to Memory Write-Single-Beat, Page Hit, XCAS = 1
CPU to Memory Write-Single-Beat, Page Miss, XCAS = 1
CPU to Memory Write-Burst, Page Miss, XCAS = 1
CPU to PCIWrite-XADIO = 1
CPU to PCI Write Additional Timing Examples
CPU to PCI Read
PCI to Memory Read-Single-Beat, Page Hit
PCI to Memory Read-Burst, Page Hit Then Miss
PCI to Memory Write-Burst, Page Miss Then Hit

viii

29
29

.30
31
31
32
32
34
35
36
38
40
41
42
44
46
49
50
52
54

The 650 Bridge Chip Set

Section 5
The 650 Bridge Functional Description 55
5.1 The 650 Bridge Arbiter ... 55
5.1.1 Arbitration Description .. 56
5.1 .2 The Arbitration Fairness Mechanism . 56
5.1.3 The Timeout Counter ... 56
5.1 .4 Support for System Memory (DRAM) Refresh . 56
5.1 .5 Support for Cache Snooping . 56
5.1.6 Bus Parking ... 57
5.2 650 Bridge Programmability. 57

.5.2.1 Programming the 650 Bridge Memory Controller 57
5.2.1 .1 Memory Controller Configuration 57
5.2.1.2 SIMM Mapping Registers 57
5.2.1.3 SIMM Starting Address Registers. 58
5.2.1.4 SIMM Starting Address Rules 59
5.2.1.5 SIMM Top-of-Memory Logic , . 59
5.2.1.6 SIMM Register Programming Rules 59
5.2.1.7 Reading the SIMM Registers. 60
5.2.1.8 SIMM Starting Address Example #1 60
5.2.1.9 SIMM Starting Address Example #2 . 60
5.2.2 Programming The System Setup Register. 61
5.2.2.1 The Bus Speed Setting in the System Setup register 61
5.2.2.2 The XC AS (Extended CAS#) Setting in the System Setup register 61
5.2.2.3 The Timer Enable Setting in the System Setup register 61
5.2.2.4 The ARSTR Setting in the System Setup register 62
5.2.2.5 The XADIO Setting in the System Setup register. 62
5.2.2.6 The Count[2:0] Counter in the System Setup register. 62
5.2.2.7 Bus Speed and XCAS Settings in the System Setup register 62
5.2.3 Accessing the SIMM Registers and the System Setup Register 62
5.2.3.1 SIMM Register and Setup Register Writes 65
5.2.3.2 SIMM Register and Setup Register Reads 67
5.2.3.3 Register Reads in the Example System . 68
5.2.3.4 Register Writes in the Example System. 68
5.2.4 Programming the Flash ROM Lock-Out Bit (WID) 68
5.3 Little-Endian and Big-Endian Addressing Considerations 68
5.3.1 60X CPU Addressing in Big-Endian Mode 68
5.3.2 60X CPU Address Munging in Little-Endian Mode 68
5.3.3 650 Bridge Address Unmunging in Little-Endian Mode. 69
5.3.4 Byte Swapping for Endian Compatibility . 70
5.3.5 Unmungingand Byte Swapping for System Memory or PCI Writes 70
5.3.5.1 An Example of a One-Byte Little-Endian Store Instruction 71
5.3.5.2 An Example of a Two-Byte Little-Endian Store Instruction 71
5.3.5.3 An Example of a Four-Byte Little-Endian Store Instruction. 72

ix

The 650 Bridge Chip Set

5.3.5.4
5.3.6
5.3.6.1
5.3.6.2
5.3.6.3
5.3.7
5.3.8
5.3.9
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.9.1
5.4.9;2
5.4.10
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.1.5
5.5.2
5.5.2.1
5.5.2.2
5.5.3
5.5.3.1
5.5.3.2
5.5.3.3
5.5.3.4
5.5.3.5
5.5.3.6
5.5.3.7
5.5.4
5.5.5
5.5.6
5.5.6.1

An Example of an Eight-Byte Little-Endian Store Instruction
Unmunging and Byte Swapping for System Memory and PCI Reads

An Example of a Two-Byte Little-Endian Load Instruction
An Example of a Four-Byte Little-Endian Load Instruction
An Example of an Eight-Byte Little-Endian Load Instruction

Instruction Fetches in Little-Endian Mode
LE_MODE_REQ# Assertion on the 654 Controller
Exceptions in Little-Endian Mode

Memory Controller Operation .. .
System Memory Timing
60X CPU to System Memory Burst-Mode Counting
PCI to System Memory Burst Mode Transfers
System Memory Parity Generation and Checking
RAS# and CAS# Address Assignments
RAS[7:0]# Line Selection of SIMM Slots
RAS Timeout Counter
60X CPU to System Memory CAS[7:0]# Generation
PCI to System Memory CAS[7:0]# Generation

PCI Read from System Memory
PCI Write to System Memory :

System Memory Control Signals-BE_PAR_EN# and LE_PAR_EN#
The 60X CPU Bus Cycles

Data Transfers on the 60X CPU Bus
Transfer Start (TS#) and Transfer Acknowledge (TA# and TEA#)
60X CPU Transfer Types-TT[0:3]
CPU Address-Only Access .. .
ECIWX and ECOWX
CPU Address Alignments

60X CPU to System Memory (DRAM) Cycles
60X CPU to System Memory TSIZ[0:2] and TBST# Encoding
Summary of CPU Read and Write System Memory Characteristics

60X CPU to PCI Cycles .. .
Valid 60X CPU to PCI Transactions
Termination Responses for 60X CPU to PCI Transactions
PCI Target Retry
PCLC/BE[3:0]#-PCI Bus Command/Byte Enable Generation
60X CPU to PCI Bus Commands
PCI Byte Enables ... : .. .
Transfer Size Parameters for the PCI Bus

60X CPU to PCllnterrupt Acknowledge Cycles
60X CPU to Read Error Address Cycles
60X CPU to System ROM Cycles

ROM Addressing .. .

x

73
73
74
74
75
75
76
76
76
76
77
77
78
78
78
78
79
81
81
81
82
82
82
82
83
84
84
84
84
84
85
85
86
86
86
86
86
87
88
88
88
88
89

The 650 Bridge Chip Set

5.5.6.2
5.5.6.3
5.5.6.4
5.5.6.5
5.5.6.6
5.5.6.7
5.5.6.8
5.5.7
5.5.7.1
5.5.7.2
5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.1.5
5.7
5.7.1
5.7.2
5.7.2.1
5.7.2.2
5.7.3
5.7.4
5.7.5
5.7.6

5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7

ROM Access Data Sizes and Alignments
Single-Beat ROM Reads .. .
Burst ROM Reads
Programming the ROM Boot For 601 Burst Reads
60X CPU to Flash ROM Write Cycles
Effect of Endian Mode on ROM Writes
Flash ROM Protection .. .

60X CPU to System ROM Detailed Operation
ROM Write Detailed Operation
ROM Read Detailed Operation

The PCI to 650 Bridge Transactions
PCI to System Memory Cycles

1/0 Bridge to System Memory
ISA Master Memory Addressing
ISA Master Signal Timing
PCI to System Memory (DRAM) PCLC/BE[3:0]# Bus Commands
Snoop Cycle Control Signals on the 60X CPU Host Bus

L2 Secondary Cache Protocol .. .
L2 Caching for 60X CPU Accesses to System Memory
Cache Snooping for PCI to System Memory Accesses

Restoring ARTRY#
Arbitration on Cache Hits

Error Checking for the L2 Cache
Additional L2 Cache Information
Example of a PCI to Memory Read Transaction With Cache Hit
Example of a CPU to Memory Read Transfer With Page Miss and
L2 Cache 'Hit

The System Error Handler
TEA# Error Reporting .. .
Interrupt Reporting .. .
Saving Memory Parity Error Addresses
Data Parity Error (DPE_ERR#)
Transfer Type Error .. .
Illegal PCI Operations
Non-Maskable Interrupt (NMLREQ)

Section 6

89
89
89
90
90
90
90
91
91
95
98
98
98
98
98
99

100
101
101
102
102
102
102
102
103

105
106
106 '
106
108
108
108
109
109

Electrical Characteristics .. 111
6.1 Absolute Maximum Ratings .. 111
6.2 Recommended Operating Conditions 112
6.2.1 Signal And Temperature Ranges 112
6.2.2 Power Dissipation . 112
6.2.3 Thermal Characteristics . .. 113

xi

The 650 Bridge Chip Set

6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.7.1
6.7.1.1
6.7.1.2
6.7.1.3
6.7.1.4
6.7.2
6.7.2.1
6.7.2.2
6.7.2.3
6.7.2.4
6.7.2.5
6.7.2.6
6.7.2.7
6.7.2.8
6.7.2.9
6.7.2.10
6.7.2.11
6.7.2.12
6.7.2.13
6.7.2.14
6.7.2.15
6.7.2.16
6.7.2.17
6.7.2.18
6.7.2.19
6.7.2.20

Common Characteristics .. .
Package/Pin Electrical Characteristics ;

653 Buffer Model .. .
654 Controller Model .. .

653 Buffer DC Characteristics By Signal
654 Controller DC Characteristics By Signal
Output V-I Curves

PCI Local Bus Compatible Drivers
Pull Up Curves, PCI Drivers, P/L = A
Pull Up Curves, PCI Drivers, P/L = B
Pull Up Curves, PCI Drivers, P/L = C
Pull Down Curves, PCI Drivers, P/L = A, B, and C

TTL Driver Output Curves .. .
Pull Down Curves, TTL Driver, IOL = 4mA, P/L = A
Pull Down Curves, TTL Driver, IOL = 4mA, P/L = B
Pull Down Curves, TTL Driver, IOL = 4mA, P/L = C
Pull Up Curves, TTL Driver, IOL = 4mA, P/L = A, B, and C
Pull Down Curves, TTL Driver, IOL = 6mA, P/L = A
Pull Down Curves, TTL Driver, IOL = 6mA, P/L = B
Pull Down Curves, TTL Driver, IOL = 6mA, P/L = C .. :
Pull Up Curves, TTL Driver, IOL = 6mA, P/L = A, B, and C
Pull Down Curves, TTL Driver, IOL = 8mA, P/L = A
Pull Down Curves, TTL Driver, IOL = 8mA, P/L = B
Pull Down Curves, TTL Driver, IOL = 8mA, P/L = C
Pull Up Curves, TTL Driver, IOL = 8mA, P/L = A, B, and C
Pull Down Curves, TTL Driver, IOL = 12mA, P/L = A
Pull Down Curves, TTL Driver, IOL = 12mA, P/L = B
Pull Down Curves, TTL Driver, IOL = 12mA, P/L = C
Pull Up Curves, TTL Driver, IOL = 12mA, P/L = A, B, and C
Pull Up Curves, TTL Driver, IOL = 24mA, P/L = A
Pull Up Curves, TTL Driver, IOL = 24mA, P/L = B
Pull Up Curves, TTL Driver, IOL = 24mA, P/L = C
Pull Down Curves, TTL Driver, IOL = 24mA, P/L = A, B, and C

Section 7

114
114
114
115
116
118
122
122
122
123
123
124
124
125
125
126
126
127
127
128
128
129
129
130
130
131
131
132
132
133
133
134
134

Timings .. 135
7.1 Timing Conventions. 135
7.1.1 Board Delays. .. 135
7.1 .2 Terms and Definitions. 135
7.1.2.1 Signal Range Names. 135
7.1.2.2 Signal Group Names . 135
7.1 .2.3 Timing Diagram and Timing Chart Definitions. 136

xii

7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7..1.8
7.1.9
7.1.10
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.4.1
7.2.4.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.3.1
7.4.3.2
7.4.3.3
7.4.3.4
7.4.3.5
7.4.3.6
7.4.3.7
7.4.3.8
7.4.3.9
7.4.3.10
7.4.3.11
7.4.3.12
7.5
7.6

The 650 Bridge Chip Set

Transaction Clock Cycle Nomenclature
Signal Switching Levels for Timing Analysis
Input Setup Time
Input Hold Time
Output Hold Time
Output Valid Delay Times"
Output Tri-State Hold Time
Output Tri-State Delay Time .. .

Clock Considerations
Clock Switching Levels .. .
The CPU_CLK .. .
The 654 Controller Clock and the 601 Clocks
CPU_CLK to PCLCLK Skew

Clocking In 2:1 Mode
Clocking In 1:1 Mode

Power-On Considerations
654 Controller Timing .. .

654 Controller Synchronous Input Timing Characteristics
654 Controller Synchronous Output Timing Characteristics
Asynchronous Signals in the 654

AACK#
ALL_ONES_SEL#
CAS[7:0]# .. .
CPU_ADDR_SEL# .. .
CPU_DATA_SEL#
ERR_ADDR_SEL# .. .
MEM_DATA_OE# .. ' .. .
MEM_DATA_SEL#
PCI_C/BE[3:0]#
PCI_PAR
TA# .. .
WE[1 :0] .. .

653 Buffer Timing Tables .. .
Detailed Timing Diagrams

136
136
137
137
137
138
138
138
140
140
140
140
142
142
143
143
144
144
147
150
150
150
150
150
150
151
151
151
151
151
152
152
153
160

Section 8
The 650 Bridge Pin Lists... 203
8.1 653 Buffer Pin Lists 203
8.1.1 653 Buffer Numeric Pin List. .. 203
8.1.2 653 Buffer Alphabetic Pin Listing 214
8.2 654 Controller Pin Lists. 225
8.2.1 654 Controller Numeric Pin List 225
8.2.2 654 Controller Alphabetic Pin List ,.................................... 230

xiii

The 650 Bridge Chip Set

Section 9
650 Bridge Mechanical Drawings .. 235
9.1 653 Buffer Quad Flat Pack Component Detail 235
9.2 653 Buffer Quad Flat Pack Component Footprint 236
9.3 654 Controller 160-Pin Flat Pack Component Detail .. 237
904 654 Controller 160-Pin Flat Pack Component Footprint 238

Appendixes:

Appendix A
Initialization and Setup Requirements .. 239
A.1 Processor Initialization ... 239
A.1 .1 Cache Setup .. 239
A.1.2 PIO Setup. 239
A.1 .3 ARTRY# Precharge .. 239
A.1 A Checkstop Enable . 239
A.1.5 Bus Error Checks .. 240
A.2 Initialization of the IBM 82650 Bridge Chip Set 240
A.3 I/O Bridge Setup. 240
AA PCI Memory Address Assignment 240
A.5 PCI Configuration Scan .. 240

Appendix B
Example Implementation

AppendixC
653 Buffer Details of Operation
C.1 653 Buffer Highlights .. .
C.2 653 Buffer Pin Descriptions .. .
C.2.1 60X CPU Bus Interface Signals
C.2.2 System Memory Interface Signals
C.2.3 PCI Bus Interface Signals .. .
C.2A 654 Controller Interface Signals
C.2.5 External Logic and System Interface Signals
C.3 The 653 Buffer
C.3.1 Architectural Overview Showing Address and Data Flow
C.3.2 Two High-order PCI Address Bits-NO_ TRANS Pin
C.3.3 Two Low-Order PCI Address Bits
C.3.4 Contiguous 1/0 Pin ~
C.3.5 60X to ROM Read Cycles .. .
C.3.6 60X to ROM Write Cycles-Address and Data Flow

xiv

241

265
265
265
267
267
268
268
270
271
271
274
274
274
275
276

C.3.7
C.3.8
C.3.9
C.3.10
C.3.11
C.3.12
C.4
C.4.1
C.4.2
C.4.3
C.4.4
C.4.S
C.4.B
C.4.7
C.4.8
C.4.9
C.S
C.S.1
C.S.2
C.S.3
C.S.4
C.5.S
C.S.B
C.5.7
C.5.8
C.5.9
C.5.10
C.5.11·
C.5.12
C.5.12.1
C.5.12.2
C.5.12.3
C.5.12.4
C.5.13
C.5.14
C.5.15
C.5.16
C.5.17
C.5.18
C.5.19
C.5.20
C.5.21
C.5.22

The 650 Bridge Chip Set

Error Address Latch
Refresh Address Generation .. .
All_Ones Generator
Page Hit Generation
Special Considerations .. .
Warm Reset .. .

Detailed Analysis of Address and Data Flow
BOX to Memory Cycle Address Flow-Read or Write
BOX to Memory Cycle Data Flow-Write
BOX to Memory Cycle Data Flow-Read
BOX to PCI Cycle Address Flow-Read or Write
BOX to PCI Cycle Data Flow-Write
BOX to PCI Cycle Data Flow-Read
PCI Bus Master Cycles Address Flow-Read or Write
PCI to Memory Cycles Data Flow-Write
PCI to Memory Cycles Data Flow-Read

6S3 Buffer Detailed Internal Descriptions
PCLAD Transceivers .. .
PCI Address Latch ;
PCI to BOX CPU Address Translation
PCI Burst Counter
BOX CPU Address Bus Transceivers
BOX CPU Address UnMunger
BOX CPU Address Hold Latch
BOX CPU Burst Counter .. .
Page Hit Comparator .. .
Refresh Counter .. .
Address Multiplexer
BOX CPU to PCI Address Translation

A[1 :0] Translation-PCI Bus Special Requirements
A[4:2] Non-Translation
A[31 :30] Translation-System Address Map Implementation
A[29:5] Translation-PCI/ISA I/O Page Mapping

ROM Read Burst Counter .. .
Error Address Latch
Row/Column Address Multiplexer
Page Hold Latch .. .
PCI Data Latch
PCI Data Doubler
ROM Data Shift Register
Error Address Doubler'
BOX CPU Byte Lane Swapper-Input Side ;
Data Multiplexer .. .

xv

27B
27B
27B
277
277
277
277
277
277
278
278
278
279
279
280
280
280
280
281
281
282
284
284
285
285
287
288
288
289
290
290
290
291
292
294
294
294
294
295
295
29B
29B
299

The 650 Bridge Chip Set

C.5.23
C.5.24
C.5.25
C.5.26
C.5.27
C.5.28
C.5.29

PCI Address/Data Select Delay Flop , 299
PCI Data Multiplexer. 300
PCI Address/Data Multiplexer. .300
PCI Parity Generator ... 301
60X CPU Data Byte Lane Swapper-Output Side 301
Memory Data Parity Generator. 303
Memory Data Parity Checker .. 303

Appendix D
Addresses of Sales Offices.. 305
D.1 USA... 305
D.2 Europe. 305
D.3 Japan. 305

Tables:
2-1
2-2
2-3

, 2-4
2-5
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
4-1
4-2
5-1
5-2
5-3
5-4
5-5
5-6
5-7

PCI Signals in the 650 Bridge
PCI Bus Commands
60X CPU Signals Connected to the 650 Bridge
TT[0:3]-Transfer Type Codes
Big-Endian and Little-Endian Data Storage
653 Buffer to 60X CPU Bus Interface
653 Buffer to PCI Bus Interface
653 Buffer to System Memory Interface
653 Buffer to External Logic and System Interface
654 Controller to 60X CPU Bus Interface
654 Controller to PCI Bus Interface ;
654 Controller to System Memory (DRAM) Interface
654 Controller to ROM or Flash Signals
654 Controller to L2 Cache Signals
654 Controller to Test Signals
654 Controller to External Logic and System Interface
Signals Between the 653 Buffer and the 654 Controller
650 Bridge Mapping of 60X CPU Bus Addresses
650 Bridge Mapping of PCI Device Addresses
SIMM Mapping Register Selection
SIMM Mapping Register Starting Addresses
Example #1 SIMM Mapping Register Setup ,
Example #2 SIMM Mapping Register Setup
System Setup Register Settings
SIMM Register Access Timing Chart
CPU_ADDR[29:31] Munging for Little-Endian Mode

xvi

6
8
9

11
12
17
17
17
18
19
21
22
22
23
23
23
25
28
31
58
58
60
60
62
65
69

The 650 Bridge Chip Set

5-8 Three Low-Order Address Bit Unmunge 69
5-9 Endian Formats from the Byte Swapper 70
5-10 DRAM Memory Timings ... 77
5-11 RAS and CAS Address Assignments 78
5-12 CAS[7:0]# Assertion for 60X CPU Writes to System Memory 80
5-13 CAS[7:0]# Assertion for PCI Writes to System Memory 81
5-14 TT[0:3]-Transfer Type Codes on the 60X CPU Host Bus 83
5-15 654 Controller Transfer Sizes From the 60X CPU 84
5-16 60X CPU to System Memory Size Alignment 85
5-17 60X CPU to PCI Bus Commands 87
5-18 PCI Byte Enables for PCLC/BE[3:0]# 87
5-19 ROM Write Data Flow in Big-Endian Mode . 93
5-20 ROM Write Data Flow in Little-Endian Mode. 93
5-21 PCI Bus Commands from PCI Masters. 100
5-22 Cache and 650 Bridge Action Table 101
5-23 System Error Reporting ... 107
8-1 653 Buffer Numeric Pin List .. 203
8-2 653 Buffer Alphabetic Pin List .. 214
8-3 654 Controller Numeric Pin List ", ,..... 225
8-4 654 Controller Alphabetic Pin List , , .. ,.................. 230
C-1 653 Buffer Signals-60X CPU Bus Interface ... , "... 267
C-2 653 Buffer Signals-System Memory Interface , ,." ,',.. 267
C-3 653 Buffer Signals-PCI Bus Interface ... , .. , ,., "...... 268
C-4 653 Buffer Signals-654 Controller Interface ", , ".. 268
C-5 653 Buffer Signals-External Logic and System Interface " "..... 270
C-6 Low Order PCI Address Bit Settings .. , , , , , , " 274
C-7 PCI to 60X CPU and System Memory Address Translation , , , , 279
C-8 PCI to 60X CPU and System Memory Address Translation . , , 282
C-9 Unmunging Address Bits in Little-Endian Mode , ... "........ 285
C-10 Address Multiplexer Source Selection Priority ., , , , , , , . . 289
C-11 60X CPU To PCI Address Translation-High Order '" .. , . , , 290
C-12 Memory Rowand Column Address Generation , , , . , , , .. , . , , . . 294
C-13 Data Multiplexer Source Selection Priority. .,", ,." ,',.... 299

xvii

The 650 Bridge Chip Set

Figures:
1-1
3-1
4-1
4-2 -
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21

IBM 650 Bridge Chip Set in a Typical System Configuration
650 Bridge Pin Connections .. .
Non-Contiguous PCI 1/0 Address Transformation
CPU to Memory Read, Single-Beat, Page Hit, XCAS = 0 Timing Diagram .. .
CPU to Memory Read, Single-Beat, Page Hit, XCAS = 1 Timing Diagram .. .
CPU to Memory Read, Single-Beat, Page Miss, XCAS = 1 Timing Diagram .
CPU to Memory Read, Burst, Page Miss, XCAS = 1 Timing Diagram
CPU to Memory Write, Single-Beat, Page Hit, XCAS = 0 Timing Diagram .. .
CPU to Memory Write, Single-Beat, Page Hit, XCAS = 1 Timing Diagram .. .
CPU to Memory Write, Single-Beat, Page Miss, XCAS = 1 Timing Diagram .
CPU to Memory Write, Burst, Page Miss, XCAS = 1 Timing Diagram
Timing of PCI_OE#
CPU to PCI Write, XADIO = 1 Timing Diagram
CPU to PCt Write, XADIO = 0, Offbeat TS# Timing Diagram
CPU to PCI Write, XADIO = 1, Target Retry Timing Diagram
CPU to PCI Read Timing Diagram
PCI to Memory Read, Single-Beat, Page Hit Timing Diagram
PCI To Memory Burst Read Transaction
PCI to Memory Read, Burst, Page Hit Then Miss Timing Diagram
PCI to Memory Write, Burst, Page Miss Then Hit Timing Diagram
The System Setup Register .. .
650 Register Access Pathway in the Example System
654 Setup Register Data Paths and Steering Logic
650 Register Write Timing Diagram
650 Register Read Timing Diagram
Byte Swapper Operation for Example of a Store Byte Instruction
Byte Swapper Operation for Example of a Store Half-Word Instruction
Byte Swapper Operation for Example of a Store Word Instruction
Byte Swapper Operation for a Store Floating-Point Double Instruction
Byte Swapper Operation for Example of a Load Half-Word Instruction
Byte Swapper Operation for Example of a Load Word Instruction
Byte Swapper Operation for Example of Load Floating-Point Instruction
ROM Connections .. .
CPU to ROM Write Address and Data Flows
CPU to ROM Write Timing Diagram
Timing Diagram, CPU to ROM Read
CPU to ROM Read Address and Data Flows
Timing Diagram, CPU to ROM Read, Continued
ISA Master Signal Timing .. .
PCI to Memory Read - Cache Hit Timing Diagram
CPU to Memory Read - Page Miss, Cache Hit Timing Diagram

xviii

16
30
33
34
35
37
39
40
41
43
44
45
47
48
49
51
52
53
54
61
63
63
64
66
71
72
72
73
74
75
75
88
91
92
94
95
96
99

104
105

5-22
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-S
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-1S
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-S
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16

The 650 Bridge Chip Set

Error Address External Support Gate
653 Package/Pin Electrical Model
654 Package/Pin Electrical Model "
Pull Up Curves, PCI Drivers, P/l = A.
Pull Up Curves, PCI Drivers, P/l = B.
Pull Up Curves, PCI Drivers, P/l = C.
Pull Down Curves, PCI Drivers, P/l = A, B, and C.
Pull Down Curves, TTL Driver, IOl = 4mA, P/l = A
Pull Down Curves, TTL Driver, IOl = 4mA, P/l = B
Pull Down Curves, TTL Driver, IOl = 4mA, P/l ::: C
Pull Up Curves, TTL Driver, IOl = 4mA, P/l = A, B, and C
Pull Down Curves, TTL Driver, IOl = 6mA, P/l = A
Pull Down Curves, TTL Driver, IOl = 6mA, P/l = B ,
Pull Down Curves, TTL Driver, IOl = 6mA, P/l = C
Pull Up Curves, TTL Driver, IOl = 6mA, P/l = A, B, and C
Pull Down Curves, TTL Driver, IOl = SmA, P/l = A
Pull Down Curves, TTL Driver, IOl = SmA, P/l = B
Pull Down Curves, TTL Driver, IOl = SmA, P/l = C
Pull Up Curves, TTL Driver, IOl = SmA, P/l = A, B, and C
Pull Down Curves, TTL Driver, IOl = 12mA, P/l = A
Pull Down Curves, TTL Driver, IOl = 12mA, P/l = B
Pull Down Curves, TTL Driver, IOl = 12mA, P/l = C
Pull Up Curves, TTL Driver, IOl = 12mA, P/l = A, B, and C
Pull Up Curves, TTL Driver, IOl = 24mA, P/l = A
Pull Up Curves, TTL Driver, IOl = 24mA, P/l = B
Pull Up Curves, TTL Driver, IOl =' 24mA, P/l = C
Pull Down Curves, TTL Driver, IOl = 24mA, P/l = A, B, and C
CPU_ClK Cycle Nomenclature
PCI_ClK Cycle Nomenclature
Switching levels
Signal Timing Conventions
CPU_ClK Timing '
CPU_ClK Timing
CPU_ClK Phase Relationships at 66MHz
CPU_ClK Phase Relationships at 33MHz
Timing Diagram, CPU_ClK to PCLClK Skew, 2:1 Mode
Timing Diagram, CPU_ClK to PCLClK Skew, 1:1 Mode
Timing of PCI_PAR
PCI Bus Master Transaction-Address latch Operation
CPU to PCI Read-PCI Data latch Operation
CPU to PCI Write-PC I Address/Data MUX
CPU To Memory Read - Single, Page Hit, XCAS=1
CPU To Memory Read - Single, Page Hit, XCAS=O

xix

10S
114
115
122
123
123
124
125
125
126
126
127
127
12S
12S
129
129
130
130
131
131
132
132
133
133
134
134
136
136
137
139
140
141
141
142
143
143
152
159
159
159
161
162

The 650 Bridge Chip Set

7-17 CPU To Memory Read - Single, Page Miss, XCAS=1 163
7-18 CPU To Memory Read - Single, Page Miss, XCAS=O 164
7-19 CPU To Memory Read - Burst, Page Hit, XCAS=1 165
7-20 CPU To Memory Read - Burst, Page Hit, XCAS=O 166
7-21 CPU To Memory Read - Burst, Page Miss, XCAS=1 167
7-22 CPU To Memory Read - Burst, Page Miss, XCAS=O 168
7-23 CPU To Memory Read - Single, Page Hit, L2 Cache Hit 169
7-24 CPU To Memory Read - Single, Page Miss, L2 Cache Hit 170
7-25 CPU To Memory Read - Burst, Page Hit, L2 Cache Hit 171
7-26 CPU To Memory Read - Burst, Page Miss, L2 Cache Hit 172
7-27 CPU To Memory Write - Single, Page Hit, XCAS=1 173
7-28 CPU To Memory Write - Single, Page Hit, XCAS=O 174
7-29 CPU To Memory Write - Single, Page Miss, XCAS=1 175
7-30 CPU To Memory Write - Single, Page Miss, XCAS=O 176
7-31 CPU To Memory Write - Burst, Page Hit, XCAS=1 177
7-32 CPU To Memory Write - Burst, Page Hit, XCAS=O 178
7-33 CPU To Memory Write - Burst, Page Miss, XCAS=1 179
7-34 CPU To Memory Write - Burst, Page Miss, XCAS=O 180
7-35 PCI To Memory Read - Single, Page Hit. 181
7-36 PCI To Memory Read - Single, Page Miss 182
7-37 PCI To Memory Read - Burst, Page Hit. 183
7-38 PCI To Memory Read - Burst, Page Hit Then Miss. 184
7-39 PCI To Memory Read - Burst, Page Miss Then Hit. 185
7-40 PCI To Memory Read - Page Hit, Cache Hit 186
7-41 PCI To Memory - Cache Hit With Arbiter Switch 187
7-42 PCI To Memory Write - Single, Page Hit. 188
7-43 PCI To Memory Write - Single, Page Miss 189
7-44 PCI To Memory Write - Burst, Page Hit. 190
7-45 PCI To Memory Write - Burst, Page Hit Then Miss. 191
7-46 PCI To Memory Write - Burst, Page Miss Then Hit. 192
7-47 PCI To Memory Write - Page Hit, Cache Hit. 193
7-48 PCI To Memory Write - Page Miss, Cache Hit. 194
7-49 CPU To PCI Write - XADIO=O 195
7-50 CPU To PCI Write - XADIO=O, Fast PCI Target Response 196
7-51 CPU To PCI Write - XADIO=O, Offbeat TS# . 197
7-52 CPU To PCI Write - XADIO=1 ... 198
7-53 CPU To PCI Write - XADIO=1, Target Retry. 199
7-54 CPU To PCI Read ... 200
7-55 CPU To PCI Read - Target Retry 201
9-1 653 Buffer Quad Flat Pack Component Detail 235
9-2 653 Buffer Quad Flat Pack Component Footprint 236
9-3 160-Pin Flat Pack. 237
9-4 16Q-Pin Flat Pack Pad Locations ,......... 238

xx

C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8
C-9
C-10
C-11
C-12
C-13
C-14
C-15
C-16
C-17
C-18
C-19
C-20
C-21
C-22
C-23
C-24
C-25
C-26
C-27
C-28
C-29
C-30
C-31
C-32
C-33
C-34

The 650 Bridge Chip Set

653 Buffer Pin Attachments .. .
653 Buffer Address Flow Functional Diagram
653 Buffer Data Flow Functional Diagram
Non-Contiguous PCI I/O Address Transformation
60X to ROM PCLAD Flow
PCLAD Transceivers
PCI Address Latch .. .
PCI Burst Counter .. .
Combination Latch/Counter-PC I Burst Gounter
Latch/Counter Flow Diagram-PCI Burst Counter
60X CPU Address Bus Transceivers
60X CPU Burst Counter
Combination Latch/Counter-CPU Burst Counter
Latch/Counter Flow Diagram-CPU Burst Counter
Page Hit Comparator .. .
Refresh Counter .. .
Address Multiplexer
60X CPU To PCI Address Translator
60X CPU To PCI Address Translation-PCI/ISA 10
ROM Read Burst Counter
Combination Latch/Counter-ROM Read Burst Counter
Latch/Counter Flow Diagram-ROM Read Burst Counter
PC I Data Latch
PCI Data Doubler
ROM Data Shift Register .. .
60X CPU Data Byte Lane Swapper-Input Side
CPU Data Byte Lane Swapper Operation-Input Side
Data Multiplexer .. .
PCI Delay Flop, Data Multiplexer, and Address/Data multiplexer
PCI Parity Generator .. .
60X CPU Data Byte Lane Swapper-Output Side
60X CPU Data Byte Lane Swapper Operation-Output Side
Memory Data Parity Generator
Memory Data Parity Checker

xxi

266
272
273
275
276
281
281
282
283
283
284
285
286
287
287
288
289
290
291
292
292
293
295
295
295
296
298
299
300
301
301
302
303
303

About This Book

Audience:
This book is designed for engineers and system designers who are interested in implementing
PowerPC systems with a PCI bus. The material requires an understanding of computer systems
at the hardware level.

Document Organization:

Section 1 - An architectural overview of the 650 Bridge with detailed lists of the features
and functions of the 650 Bridge chip set.

Section 2 - A background review of the PCI Bus and 60X CPU.

Section 3 - 653 Buffer and 654 Controller pin description tables arranged in functional
groups with a separate table for all the interconnections between the two chips.

Section 4 - Theory of operations, including basic timing diagrams.

Section 5 - A functional description of the 650 Bridge.

Section 6 - Electrical characteristics of the chip set.

Section 7 - Detailed timing diagrams and tables.

Section 8 - Alphabetic and numeric pin lists for the 653 Buffer and 654 Controller.

Section 9 - Mechanical drawings.

Appendix A - Initialization and setup requirements.

Appendix B - Example implementation schematics.

Appendix C - 653 Buffer details of operation.

Appendix 0 - Addresses of sales offices.

Reference Material:

• PowerPC 601 RISC Microprocessor User's Manual, IBM document number
MPR601 UMU-02

• PowerPC 601 RISC Microprocessor Hardware Specifications, IBM document number
MPR601 HSU-02

• PCI Local Bus Specification, Revision 2.0, April 30, 1993, available from the PCI SIG

• PCI System Design Guide, Revision 1 .0, September 1993, available from the PCI SIG

• 32MB SIMM Engineering Specification, IBM document number MMDS08DSU-00

• 8MB SIMM Engineering Specification, IBM document number MMDS06DSU-00

• PowerPC Reference Platform Specification, Version 1.0, June 20, 1994

• The IBM27-82681-66 PowerPC L2 Cache Controller User's Guide, IBM document
number MPRCL2UMU-01

xxii

The 650 Bridge Chip Set

Document Conventions:
Kilobytes, megabytes, and gigabytes are indicated by a single capital letter after the numeric val­
ue. For example, 4K means 4 kilobytes, 8M means 8 megabytes, and 4G means 4 gigabytes.

Fractional time values are identified with the terms ms, us, and ns, which represent milliseconds,
microseconds, and nanoseconds respectively.

Hexadecimal values are identified with a lower-case letter h at the end of the value. For example,
001 Fh means a 16-bit hexadecimal value of 1 F. The letters A through F in the hexadecimal num­
bering system are always capitalized.

Binary values are identified with a lower-case letter b at the end of the value. For example, 0101 b
means a 4-bit binary value of 0101 (decimal five).

In identifying ranges of values from and to are used whenever possible. The range statement from
o to 2M means from zero up to (but not including) two megabytes. The hexadecimal value for the
range from 0 to 64K is: OOOOh to FFFFh. This method is used in preference to constantly adding
a - 1 term to the end of range statements.

The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. When the # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active, regardless of whether that level is represented by a high or low voltage. The term ne­
gated means that a signal is inactive. The term deasserted is also used to indicate a signal that
is negated.

The names of signals are in all upper-case letters. For example, TS#, AACK#, and PCLCLK are
all signal names.

Signals with more than one pin are identified with square brackets and numbers after the pin
names. For example, PCLAD[31 :0] and TT[0:2] are signals with multiple pins. The # symbol that
indicates that a signal is asserted low appears after the square brackets. For example, CAS[7:0]#.

Individual pins within a multi-pin signal group are identified with the pin number within the group
in square brackets after the pin name. For example, PCLAD[5].

Multiple-pin signals that have the first number larger than the second number (PCLAD[31 :0] for
example) are little-end ian signals. Multiple-pin signalsthat have the first number smaller than the
second number (TT[0:2] for example) are big-endian signals. .

Acronyms and Abbreviations:
In this document, the term 60X CPU refers to the PowerPC 601, 603, and 604 microprocessors.

The term I/O Bridge refers to a PCI master that serves to connect the PCI bus to a PC-standard
bus like the ISA, EISA, or MicroChannel buses.

The term RAS refers to the row address select lines of the memory controller.

The term CAS refers to the column address select lines of the memory controller.

The term write-back means the same as copy-back in reference to a mode of cache operation.

The acronym PIO refers to I/O controller interface operations on the 60X CPU bus.

xxiii

The 650 Bridge Chip Set

xxiv

System Control
and Status

ROM Control

PCI BUS

System ROM
(Flash or EPROM)

60X CPU

RAS/CAS

Write Enable

PCI
DEVICE

Control

Address.

Data

Control

DRAM
System
Memory

PCI
DEVICE

Control

Address/Data

Optional
L2 Cache

PCI
DEVICE

Figure 1-1. IBM 650 Bridge Chip Set in a Typical System Configuration

Section 1
650 Bridge Architectural Overview
The IBM27-82650 PCI Bridge chip set (the 650 Bridge) provides an interface that can connect
a PowerPC 60X CPU to high-performance PCI (Peripheral Component Interconnect) devices like
graphics, LAN, and SCSI controllers. The PCI bus standard defines an environment for high­
speed local bus operations. The 650 Bridge chip set provides the necessary control and commu­
nications logic to connect a PowerPC 60X CPU to PCI-compliant devices thro.ugh the PCI bus.

The 650 Bridge chip set is comprised of the IBM27-82653 Address and Data Buffer (the 653 Buff­
er) and the IBM27-82654 PCI and Memory Controller (the 654 Controller). The 650 Bridge sup­
ports the PowerPC 601 TM , PowerPC 603 TM , and PowerPC 604 TM microprocessor chips. Within
this document, the three microprocessor chips (601,603, and 604) are referred to generically as
the 60X CPU. The 650 Bridge supports both the L 1 memory cache of the 60X CPU and an optional
L2 cache. Either cache can use write-through or write-back modes of operation.

Local bus standards like PCI and the VL-Bus have evolved to answer the need for higher perfor­
mance 1/0 operations on microcomputer systems. The 650 Bridge provides an interface mecha­
nism between PowerPC CPUs and the PCI bus. This interface allows system designers to take
advantage of the standard PCI controllers that are available for many I/O applications.

1

The 650 Bridge Chip Set

Figure 1-1 shows a typical PowerPC to PCI system. The address, data, and control signals from
the 60X CPU host bus are connected to the 650 Bridge. An optional L2 (level 2) cache can also
be connected to the host bus. (The L 1 cache resides in the 60X microprocessor.) The 650 Bridge
is connected to the PCllocal bus (address/data and control signals) and also to the DRAM system
memory and ROM devices. Communication between the 60X CPU and its I/O devices and sys­
tem memory is managed by the 650 Bridge.

1.1 Summary of 650 Bridge Features
This section summarizes the features of the 650 Bridge-including the central arbiter, the memory
controller, the PowerPC local bus, the PCI expansion bus, the address translation logic, the L2
cache, the ROM controller, and the interrupt and exception logic.

The 650 Bridge operates from 3.0V to 3.7SV, allowing either 3.3V or 3.6V power sources.

1.1.1 60X Microprocessor Support
The 650 Bridge supports the PowerPC 601,603, and 604 microprocessors as follows:

• PowerPC 601
• Supports all 601 external clocking modes
• Supports CPU bus speedup to 66MHz

• PowerPC 603
• Supports all CPU clock multiplier modes except 1 :1
• Supports CPU bus speed up to 66MHz (Without 1:1 mode, 66MHz:66MHz is not al­

lowed, 66MHz:33MHz is allowed, SOMHz:40MHz is allowed.)
• Supports 64-bit mode of the 603 CPU

• PowerPC 604
• Supports all CPU clock multiplier modes
• Supports CPU bus speed up to 66MHz

1.1.2 Central Arbiter
• DRAM refresh support
• Prioritized arbitration among the following devices:

1 . DRAM refresh (highest priority)
2. 60X CPU
3. L2 write-back cache
4. I/O bridge
5. Five PCI masters (priority 5 to 9)

• Support for ISA bus masters when an ISA I/O bridge is installed on the PCI bus
• Operates CPU bus and PCI bus as a single-bus system
• Implements a fairness algorithm
• Has a 63-count PCI bus latency timer to prevent lockup due to inoperative PCI devices
• During idle periods, the PCI bus grant is parked on the 60X CPU

1.1.3 Memory Controller
• Supports memory operations for the PowerPC Architecture TM

• Eight RAS outputs, eight CAS outputs, and two write-enable outputs
• The memory is eight-bytes wide (plus eight parity bits)
• Fast page-mode is supported

2

The 650 Bridge Chip Set

• Supports industry-standard 70ns SIMMs
• Directly supports 168-pin eight-byte 8M, 16M, and 32M SIMMs
• Supports 72-pin four-byte 4M, 8M, 16M, and 32M SIMMs

• Mixed use of 8M and 32M eight-byte SIMMs
• Memory configurations available from 8M to 256M
• Empty SIMM sockets are allowed at any position in the eight socket array
• Provides row-address and column-address multiplexing for SIMMs requiring:

10,11, or 12 row by 9 column
10, 11, or 12 row by 10 column
11 row by 11 column
Combined 12 row by 10 column and 11 row by 11 column

• Non-interleaved memory access operation
• Memory refresh address counter

• Auto-increment on every refresh cycle
• Auto-wrap at end of page
• Outputs multiplexed to memory address lines

• Burst-mode memory address generation logic
• 32-byte CPU bursts to and from memory
• Any length PCI burst to and from memory

• Generates even parity, one bit per byte
• Checks parity eight-bytes wide on all memory reads
• Little-endian and big-endian addressing modes
• ISA master to DRAM access
• Optimized Timing is as follows:

• CPU to memory write hit or read hit at 66MHz-7-5-5-5 (CPU bus cycles)
• CPU to memory write hit or read hit at 50MHz, 40MHz, and 33MHz-6-4-4-4
• PCI to memory read hit at 33MHz-5-3-4-3 (PCI bus cycles)
• PCI to memory write hit at 33MHz-5-4-4-4
• See Table 5-10 for more details on memory timing

1.1.4 PowerPC Local Bus
• 64-bit CPU data bus
• 32-bit CPU address bus
• CPU can operate in big-endian or little-end ian mode
• Logic to swap byte lanes and translate addresses for big-endian and little-endian modes
• Synchronous CPU bus speed support up to 66MHz
• PCI bus clock can be equal to or half the speed of CPU bus clock-up to 33MHz

1.1.5 PCI Expansion Bus
• 650 Bridge chip set (653 Buffer and 654 Controller) presents one load to PCI bus
• PCI bus frequency 20 MHz to 33 MHz (maximum of PCI 2.0 specification)

• PCI bus frequency can be equal to or one-half the frequency of the CPU bus clock
• 32-bit multiplexed PCI address and data path
• Support for 1/0 Bus Bridge (lSA, EISA, MicroChannel)
• Support for ISA bus master access to system memory when an 1/0 bridge is in$talled
• PCI to DRAM access-with L 1 and L2 cache snooping
• Supports all 60X to PCI transfers that do not cross a four-byte boundary

3

The 650 Bridge Chip Set

1.1.6 Address Translation Logic
• Support for memory mapping 60X address space into PCI spaces

• PC I I/O reads and writes
• PCI memory reads and writes
• PCI configuration reads and writes
• PCI interrupt acknowledge reads

• Support for reverse translation of PCI addresses for snoops and PCI to memory access
• Support for contiguous ISA I/O and non-contiguous ISA I/O mappings (non-contiguous

I/O allows operating systems to memory-protect 32-byte blocks of ISA I/O space)
• Forces the PCI_AD bits[1 :0] to OOb during the address phase of all PCI transactions ex­

cept PCI I/O transactions
• Support for low-order address translation (unmunging) in little-endian mode
• Inputs for translation override

1.1.7 L2 Cache Support
• L2 write-through or write-back cache support
• Handshakes with IBM27-82681-66 PowerPC L2 Cache Controller
• Snoop cycles to CPU generated for PCI reads and writes of system memory
• Parity checking on read cycles
• Allows timing of burst read hits up to 3-1-1-1

1.1.8 System ROM Controller
• Supports up to 8M of 8-bit ROM, flash, or EPROM connected to PCLAD lines

• Conversion buffers support 8-bit to 64-bit conversion
• Logic for flash write
• Write lock-out support
• Single-beat (one-byte to eight-byte) read cycle
• Single-beat (one-byte) write cycle
• Pseudo burst-mode (32-byte) read cycle
• Approximately 1.7us read cycle time at 66MHz

1.1.9 Interrupt and Exception Logic
• Interrupt pass-through to CPU
• Non-maskable interrupt (NMI) support
• The following types of errors are reported:

• CPU or PCI system memory read parity errors
• Illegal transfers:

The CPU attempts an illegal size, type; or alignment transfer
A PCI device target aborts to the CPU
A missing or unresponsive PCI device
A PCI bus hangup condition

• L2 cache parity errors
• Readable error address register
• Drives CPU data lines to all one-bits on out-of-range memory reads
• PCI configuration cycles return all one-bits when no device responds
• Retimes the soft reset input to meet the 60X specifications

4

Section 2
The PCI Bus and 60X CPU Background Review
The material in this section reviews the PCllocal bus specifications and the 60X CPU features
and functions. This material is intended for readers who are not familiar with the PCI specification
or the operation of the 60X CPU.

2.1 The PCI Local Bus Review
This section provides a review of the operation of the PCllocal bus. The PCllocal bus standard
defines a high-performance, 32-bit or 64-bit local bus with multiplexed address and data lines. The
PCI local bus standard has been defined by the PCI SIG (Special Interest Group), a computer­
industry standards group. The PCI local bus provides an interconnect mechanism between pe­
ripheral controllers, like graphics controllers and SCSI controllers, and host computer systems.

2.1.1 PCI Local Bus References
The PCI Local Bus Specification, Production Version, Revision 2.0, dated April 30, 1993 contains
the detailed information necessary for a full understanding of the PCI bus standard. The 650
Bridge provides the signals that are necessary to interact with devices that conform with the PCI
standard as described in the specification. Implementing a PowerPC to PCI system with the 650
Bridge requires a full understanding of the PCI standard.

2.1.2 PCI Local Bus Overview
The PCI bus can be either a 32-bit or a 64-bit multiplexed address/data bus implementation. The
650 Bridge is a 32-bit implementation. The 32-bit multiplexed address and data lines can encode
addresses in the range of 0 to 4G (0000 OOOOh to FFFF FFFFh). During data phases, the 32-bit
bus can transfer four bytes per phase. A PCI bus transaction consists of an address phase fol­
lowed by one or more data phases.

The PCI bus can operate in single-beat or burst mode. The beginning address of a transfer can
be followed by a variable number of consecutive 32-bit data words. Burst data transfer can occur
at the rate of 32 bits per PCI bus clock cycle. The maximum PCI clock rate of 33MHz can support
up to 132M bytes per second burst transfer rates.

5

The 650 Bridge Chip Set

2.1.3 PCI Signals
Table 2-1 shows the standard PCI signals that are interfaced directly with the 650 Bridge chip set.
The column labeled PCI Signal Name contains the signal name that is used in the PCI standard
document. The column labeled 650 Bridge Signal Name contains the 650 Bridge signal name for
the PCI signal. The PCI Local Bus Specification document describes all the possible PCI signals.

The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. When the # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms assert and negate are used extensively. The term assert indicates that a signal is ac­
tive, regardless of whether that level is represented by a high or low voltage. The term negate
means that a signal is inactive. The term deasserted is also used to indicate a signal that is ne­
gated.

Table 2-1. PCI Signals in the 650 Bridge

PCI 650 Bridge
Family Signal Name Signal Name Description

Address/Data AD[31 :00] PCLAD[31 :00] Address and data bus, 32 bits multiplexed.

C/BE[3:0]# PCL C/BE[3 :0]# C (bus command) and BE (byte enable) multiplexed lines.
An address phase is a bus command, a data phase is BE.

PAR PCLPAR Parity bit for PCLAD and PCLC/BE# combined, even par-
ity bit for the combination of 36 bits.

Arbitration REQ# IO_BRDG_REQ# ISA or EISA PCI bus request, input to arbiter.

GNT# IO_BRDG_GNT# ISA or EISA PCI bus grant, output from arbiter.

REQ# PCLREQ[1 :5]# Five PCI bus request lines, input to arbiter.

GNT# PCLGNT[1 :5]# Five PCI bus grant lines, output from arbiter.

Interface Control FRAME# PCLFRAME# PCI frame, asserted by the current master to indicate the
beginning and duration of a bus access.

TRDY# PCLTRDY# PCI target ready, asserted by the target device to indicate
·its completion of the current data phase of a transaction.

IRDY# PCURDY# PCI initiator ready, asserted by the master device to indi-
cate completion of the current data phase of a transaction.
When PCI TRDY# and PCI IRDY# are asserted on the
same bus clock cycle, the current data phase is complete.

STOP# PC LSTOP# PCI stop, asserted by a target to stop a transaction.

DEVSEl# PCLDEVSEl# PCI device select, asserted by a device that claims the
address range and bus command of a cycle on the PCI bus.

System ClK PCLClK PCI clock, provides the timing for PCI transactions (up to
33MHz).

RST# RESET# Reset, initializes PCI registers, signals, and sequencers.

6

The 650 Bridge Chip Set

2.1.4 PCI Masters and Targets
The PCI bus standard uses a master and target architecture. Master devices can gain control of
the bus and then direct other devices to perform reads, writes, configuration operations, and other
types of transactions. Masters on the PCI bus use dedicated REQ# and GNT# lines to gain control
of the bus. Targets on the PCI bus do not use REQ# and GNT# lines. Targets are selected by a
range of addresses within the various types of PCI transactions.

A PCI master device requests the bus by asserting its REQ# line. When the GNT# line for the
requesting master device is asserted, the master device can then take control of the PCI bus to
communicate with other master or target devices on the PCI bus. An arbiter (which the 650 Bridge
provides) is necessary to manage the REQ# and GNT# activity on the PCI bus.

2.1.5 PCI Arbitration
Since there can be more than one PCI master device on the PCI bus, and since each master de­
vice has its own independent REQ# and GNT# lines, there must be an arbitration mechanism for
any PCI bus implementation. The 650 Bridge incorporates arbitration logic for ,DRAM refresh
cycles, the 60X CPU, the L2 cache, an liD bridge (ISA, EISA, MicroChannel), and up to five other
PCI master devices. The 650 Bridge arbitration logic ensures PCllatency requirements and allo­
cates host and PCI bus accesses according to a priority and fairness algorithm.

2.1.6 Basic Transfer Control
After PCLREQ# and PCLGNT#, the fundamentals of all PCI data transfers are controlled with
the following five signals:

1. PCLFRAME#-which is asserted by the master to indicate the beginning and
end of a PCI bus transaction.

2. PCLDEVSEL#-PCI device select, when asserted, indicates that the device that is
driving PCLDEVSEL# has decoded its address as the target of the current address.

3. PCLIRDY#-initiator ready, deasserted by the master to force wait states.
4. PCL TRDY#-target ready, deasserted by the target to force wait states.

5. PCLSTOP#-PCI stop is asserted by a target to stop a transaction.

The PCI bus is idle when both PCLFRAME# and PCLIRDY# are deasserted. The first clock edge
on which PCLFRAME# is asserted is the address phase. The 32-bit address and 4-bit bus com­
mand code (PCLC/BE[3:0]#) are asserted (see Section 2.1.7) on the PCI bus during the address
phase.

Target devices have up to three PCI bus cycles after PCLFRAME# is asserted to recognize an
address and respond by asserting PCLDEVSEL#. If no device asserts PCLDEVSEL# within
three clocks of PCLFRAME# a device using subtractive decode can claim the transaction byas­
serting PCLDEVSEL#. A PCI device that provides ISA, EISA, or MicroChannel bus logic usually
uses subtractive decoding for device selection.

One or more data phases follow the address phase. The master is required to assert its IRDY#
signal when it is ready to receive or when it is providing valid data. The target asserts its TRDY
signal when it is ready to receive or when it is providing valid data. When PCLTRDY# and
PCLIRDY# occur on the same bus cycle, the current data phase is concluded.

When the last data phase begins, the master deasserts PCLFRAME# to indicate the last 32-bit
transfer. For single-cycle transfers, PCLFRAME# is deasserted on the first data phase.

7

The 650 Bridge Chip Set

2.1.7 PCI Bus Commands
During the address phase of a PCI transaction, the PCLC/BE[3:0]# signals encode bus com­
mands. (During the data phase on the PCI bus, the PCLC/BE[3:0]# signals are byte enables for
the four bytes on the PCLAD[31 :00] address/data bus.) Table 2-2 shows the 16 possible PCI bus
commands. During the address phase on the PCI bus these bus commands determine the action
that is to be taken by the target of the address phase.

Table 2-2. PCI Bus Commands

PCI_C/BE[3:0]# Command Type

OOOOb Interrupt Acknowledge

000lb Special Cycle

0010b I/O Read

00llb I/O Write

0100b Reserved

0101b Reserved

0110b Memory Read

0111b Memory Write

. 1000b Reserved

1001b Reserved

1010b Configuration Read

1011b Configuration Write

1100b Memory Read Multiple

1101b Dual Address Cycle

1110b Memory Read Line

l111b Memory Write and Invalidate

2.1.8 Termination of PCI Cycles
PCI transactions can be terminated in the following non-standard ways:

• Master abort-The master deasserts FRAME# then deasserts IRDY#
• Target abort-The target asserts PCLSTOP# with PCLDEVSEL# deasserted
• Target retry or disconnect-The target asserts both PCLSTOP# and PCI_DEVSEL#

2.2 PowerPC 60X CPU Review
This section provides a review of the operation of the 60X CPU as it relates to the 650 Bridge and
the PCllocal bus. The 650 Bridge links the PowerPC 601 , 603, or 604 (60X) microprocessors to
a 32-bit implementation of the PCI local bus and to system memory. The 650 Bridge connects
to the 60X CPU host bus and communicates with the 60X CPU through the 60X CPU host bus
transaction types.

8

The 650 Bridge Chip Set

2.2.1 601 CPU References
The PowerPC 601 RISC Microprocessor User's Manual, MPR601 UMU-02and the PowerPC 601
RISC Microprocessor Hardware Specifications, MPR601 HSU-02contain detailed information re­
garding the operational and electrical characteristics of the 601 microprocessor.

2.2.2 PowerPC 60X CPU Overview
The PowerPC 60X microprocessors implement the 32-bit portion of the PowerPC architecture,
which provides 32-bit effective addresses, integer data types of 8-bits, 16-bits, and 32 bits, and
32-bit and 64 bit floating-point data types. The 60X CPU has a 32-bit address bus and a 64-bit
data bus. The 60X CPU system interface protocol allows multiple masters to compete forthe 60X
CPU host bus, but the 650 Bridge implements a uni-processor topology. The 650 Bridge commu­
nicates with the 60X CPU in conformance with the system interface (host bus) protocol.

The 60X CPU is a register-oriented microprocessor. All computation and data manipulation com­
mands are performed in the internal registers of the CPU. An internal (L 1) cache minimizes
memory reads and writes for frequently accessed system memory data.

The 60X CPUs are superscalar microprocessors that are capable of issuing and retiring multiple
instructions per clock. Instructions can complete out of order, but the 60X CPUs make execution
appear sequential. The 60X CPUs use three types of execution units-an integer unit (IU), a
branch processing unit (BPU), and a floating-point unit (FPU). Most integer instructions execute
in one clock cycle. The FPU is pipelined so that a single-precision multiply-add instruction can be
issued every clock cycle. The BPU features static branch prediction and performs condition regis­
ter (CR) look-ahead.

2.2.3 CPU to 650 Bridge Signals
Table 2-3 shows the 60X CPU signals that are interfaced directly with the 650 Bridge chip set.
The column labeled User's Manual Signal Name contains the signal name that is used in the Pow­
erPC 601 RISC Microprocessor User's Manual. The column labeled 650 Bridge Signal Name con­
tains the 650 Bridge signal names that are used for the 60X CPU signals.

See Section 2.1 .3 for a description of the signal naming conventions used in this document.

Table 2-3. 60X CPU Signals Connected to the 650 Bridge

User's Manual 650 Bridge
Family Signal Name Signal Name Description

Arbiter BR# CPU_REQ# Bus request from the 60X CPU. This signal indicates that the 60X
CPU wants control of the host bus.

BG# CPU_GNT# Bus grant to the 60X CPU. The 650 Bridge arbiter grants control of
the host bus to the 60X CPU with this signal. The arbiter parks the
host bus on the 60X CPU (asserts this signal) when no other
masters are requesting a bus.

Transfer TT[0:3] TT[0:3] 60X CPU bus transfer type. TT[4] is not used in the 650 Bridge and
Attributes should be negated-pulled low. See Table 2-4 for TT[0:3] codes.

TSIZ[0:2] TSIZ[0:2] 60X CPU bus transfer size-number of bytes. The 650 Bridge
supports transfers of 1,2,3,4,8, and 32 bytes (1,2,3, or 4 on the
PCI bus).

TBST# T8ST# Indicates a burst transfer of four 8-byte double words on the 60X
CPU bus. Burst transfers by the 60X CPU are only allowed to
system memory, not to the PCI bus.

9

The 650 Bridge Chip Set

Table 2-3. 60X CPU Signals Connected to the 650 Bridge (Continued)

User's Manual 650 Bridge
Family Signal Name Signal Name Description

Address TS# TS# 60X CPU bus transfer start. TS# is asserted by the current bus
Transfer master when the address on the CPU_ADDR[31 :00] lines is valid.
Start

XATS# XATS# Extended address transfer start. When asserted, this signal
indicates that the 60X CPU is performing I/O controller interface
operations (PIO). If the T-bit in the 60X CPU segment register is set
it indicates that addresses in the range of the segment register are
I/O controller interface accesses.

The 650 Bridge does not support PIO operations from the 60X CPU.
If this signal is asserted, the 650 Bridge generates an error to the
60X CPU with TEA#.

Address A[0:31] CPU 60X CPU address bus. Of the 32 bits on the bus, the 654 Controller
ADDR[00:31] decodes 60X CPU addresses using CPU_ADDR[OO:OB], [19],

[29:31], where [31] is the least-significant bit. By analyzing these
bits, the 654 Controller can determine if the CPU is addressing
system memory, PCI memory, PCII/O space, PCI interrupt
acknowledge space, system ROM, or PCI configuration space.

The 653 Buffer uses all 32 bits of the CPU_ADDR address lines.

Address AACK# AACK# 60X CPU bus address acknowledge.
Termination

ARTRY# ARTRY# 60X CPU bus address retry. This signal can indicate that the 60X
CPU or the L2 cache has detected a condition where a snooped
address must be retried. ARTRY# is also asserted by the 650
Bridge during target-retry terminations on the PCI bus.

Data DH[0:31] CPU 32 bits of the 64-bit 60X CPU data bus. a = most-significant bit.
Transfer DATA[0:31]

DL[0:31] CPU 32 bits of the 64-bit 60X CPU data bus. 63 = least-significant bit.
DATA[32:63]

DPE# DPE# Data Parity Error from 60X CPU. The 60X CPU asserts DPE# two
CPU bus clocks after each TA# if data parity is invalid.

Data TA# TA# 60X CPU bus transfer acknowledge. The 650 Bridge asserts TA# to
Termination indicate that a data transfer has completed successfully. The 650

Bridge asserts TA# for one CPU clock for a single beat data transfer
transaction. For a four-beat burst transaction, the 650 Bridge
asserts TA# at the conclusion of each of the four data transfer
phases.

TEA# TEA# 60X CPU bus transfer error acknowledge. The 650 Bridge asserts
this signal instead of TA# to terminate 60X CPU bus cycles and
report error conditions such as-an NMI (non-maskable interrupt),
memory access out-of-range error, transfer type error, transfer size
error, PCI target abort, or a parity error from system memory.

60XCPU INT# INT_CPU# 60X CPU Interrupt. Asserted by the 650 Bridge to signal the 60X
Control CPU to run an interrupt cycle.

SRESET# SRESET_ This signal is a soft reset-the 60X CPU warm boots when
CPU# SRESET_CPU# is asserted. SRESET_CPU# is asserted by

asserting SRESET _REQ# on the 654 Controller chip.

10

The 650 Bridge Chip Set

2.2.4 Cache (L 1)
The 60X CPUs contain an L 1 cache that can implement a write-back policy. The caches in the
three 60X CPUs operate differently. The following discussion relates only to the 601 CPU.

The 601 CPU contains a 32-Kbyte, eight-way set-associative, unified (instruction and data)
cache. The cache sector size is eight 32-bit words within a cache line of 64 bytes. The cache is
designed to conform to a write-back policy, but the 60X CPUs allow control of cacheability, write
policy, and memory coherency at the page and block level. The cache uses a least-recently-used
(LRU) replacement policy.

The instruction unit provides the cache with the address of the next instruction to be fetched. In
the case of a cache hit, the cache returns the requested instruction and as many of the instructions
following it as can be placed in the eight-word instruction queue up to the cache sector boundary.
If the queue is empty, as many as eight 32-bit words can be loaded into the queue in parallel.

The cache tag directory has one address port dedicated to instruction fetch and load/store ac­
cesses and one port dedicated to snooping transactions on the system interface (host bus).
Therefore snooping does not require extra clock cycles unless a snoop hit that requires a cache
status update occurs.

2.2.5 System Interface
The 60X CPU system interface (host bus) has 64 data lines and 32 address lines plus various
control lines. An external arbiter (the 650 Bridge) controls access to the host bus. The arbiter can
grant host bus access to the 60X CPU when memory reads or writes are requested. When PCI
transactions are being processed, the arbiter can direct the host bus to perform snoops of ad­
dresses on the host bus.

Because the 60X CPU has an L 1 cache, the predominant type of transaction for most applications
is burst memory operations, where four beats of 64-bit double words are transferred after a single
address phase. These bursts are linear within a cache sector. That is, wherever the burst begins
within the 32-byte cache sector, it fills the 32-byte sector in a circular fashion.

2.2.S TT[O:3] (Transfer Type)
The TT[0:3] signals are transfer type codes for the 60X CPU host bus. These signals are asserted
with TS# (transfer start) and the CPU_ADDR[00:31] address lines at the beginning of a bus trans­
action on the 60X CPU host bus. Table 2-4 shows the 16 possible transfer type codes and their
60X CPU descriptions.

Table 2-4. TI[O :3]-Transfer Type Codes

TT[O:3] SOX Bus Mnemonic

OOOOb Clean sector

OOOlb Write with flush

OOlOb Flush sector

OOllb Write with kill

OlOOb Sync

OlOlb Read

OllOb Kill sector

11

The 650 Bridge Chip Set

Table 2-4. TT[O:3]-Transfer Type Codes (Continued)

TT[O:3] 60X Bus Mnemonic

0111b Read with intent to modify

1000b - (Reserved)

1001b Write with flush atomic

1010b External control out (ecowx)-not supported

1011b - (Reserved)

1100b TLB invalidate

1101b Read atomic

1110b External control in (eciwx)-not supported

ll11b Read with intent to modify atomic

2.2.7 Pipelining and Split Transactions
The 60X address and data buses can be independent to support pipelining and split transactions;
however, the 650 Bridge does not use pipelining and splittransactions. During 60X host bus burst
transactions, AACK# is asserted by the 650 Bridge with the lastTA# in order to keep the 60X CPU
from pipelining addresses.

2.2.8 Big-Endian and Little-Endian Modes of Operation
The 60X CPU powers up and resets in big-endian (BE) mode. In this mode of operation, the most­
significant byte of any data format using multiple bytes is the lowest numbered byte. For example,
a four-byte integer with the value 01 020304h is stored at address 1 OOOh with the 01 h in address
1000h and the 02h in address 1001 h, etc. In little-end ian mode the 01 h of the previous example
is stored at 1 003h, the 02h is stored at 1 002h, etc. .

Table 2-5 shows examples of big-endian and little-endian data storage. In the case of the integer
and short integer fields, the bytes are byte reversed. However, a string is stored in the same fash­
ion in both big-endian and little-end ian modes because strings are treated as individual bytes and
there is no difference in big-endian and little-endian addressing at the byte level.

Table 2-5. Big-Endian and Little-Endian Data Storage

Big-Endian Data Format Little-Endian Data Format

Data description 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

4-byte integer-01 020304h 01 02 03 04 04 03 02 01

2-byte short integer-1122h 11 22 22 11

String-ABCDEF A B C D E F A B C D E F

A single byte-31 h 31 31

A single byte-66h 66 66

8-byte double word- 11 22 33 44 55 66 77 88 88 77 66 55 44 33 22 11
1122334455667788h

12

The 650 Bridge Chip Set

In little-endian mode, instruction fetches use byte-swapping logic within the 32-bit instruction.
Byte 0 becomes byte 3, byte 1 becomes byte 2, and so on. The four bytes within a 32-bit instruc­
tion word are reversed.

When it is in big-endian mode, the 60X CPU addresses system memory as if it is organized with
big-endian byte significance. However, when it is in little-end ian mode, the 60X CPU addresses
system memory in an intermediate form that is neither big-endian nor little-endian. The 650 Bridge
translates the addressing that the 60X CPU uses in little-endian mode to produce a true little-en­
dian memory mapping. The 650 Bridge provides the address manipulation and byte swapping that
is required to support system memory as exactly little-endian representation in little-endian mode
and exactly big-endian in big-endian mode. Therefore, data is maintained in system memory by
the 650 Bridge in the same endian order as the media on which it resides, hard disk for example.

The 60X CPU defaults to big-end ian mode at power-on or reset. The 650 Bridge defaults to the
setting of the LE_MODE_REQ# signal at power-on or reset. The endian mode can be switched
as required,

2.2.9 PIO or I/O Controller Operation (XATS#)
The 650 Bridge does not support the PIO I/O controller interface bus protocol. PIO operations
on the 60X CPU host bus are indicated by the assertion of the XATS# signal. The 650 Bridge re­
sponds to the assertion of XATS# with TEA# to indicate a host bus transfer error.

13

The 650 Bridge Chip Set

14

Section 3
650 Bridge Pin Descriptions
Figure 3-1 shows how the 653 Buffer and 654 Controller are connected to the 60X CPU bus, the
PCI bus, DRAM, ROM, the L2 cache, and external logic. Figure 3-1 also shows the interconnec­
tions between the 653 Buffer and the 654 Controller. The following tables describe groups of sig­
nals that connect to the 653 Buffer and 654 Controller.

The tables in Section 3.2 describe the pins that connect the 653 Buffer with the 60X CPU, the PCI
bus, system memory (DRAM), and external logic. The tables in Section 3.2 describe the pins in
the 654 Controller. The tables in Section 3.3 describe the pins that interconnect the 653 Buffer
and the 654 Controller.

Section 8.1 and Section 8.2 contain numeric and alphabetic lists of the pins in the 653 Buffer and
654 Controller respectively. Pin numbers are included in these tables.

3.1 653 Buffer Pin Descriptions
The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. When the # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active, regardless of whether that level is represented by a high or low voltage. The term ne­
gated means that a signal is inactive. The term deasserted is also used to indicate a signal that
is negated.

The following terms are used to describe the signal type:
in Input is a standard input-only signal.
out Output is a standard active driver
I/O Bi-directional

15

The 650 Bridge Chip Set

60XCPU

CPU_ADDR[0:31]
CPU_DATA[0:63]
TSIZ[0:2]

6
PCI 5

PCLAD[31 :0] 3
PCLCLK

B
DRAM U

MEM_ADDR[11 :0] F
MEM_ADDRO_B F MEM_DATA[63:0]
MEM_PAR[7:0] E

R
External

CONTIG_IO
DRAMX9H I/X1 OLO
L_ERR_ADDR#

Interconnects
ADDRHI/DATALO
ALL ONES SEL#

BURST_CLK#
CPU ADDR OE#
CPU -ADDR -SEL#
CPU DATA - OE#
CPU -DATA -SEL#
ERR -ADDR-SEL#

L PCI DATA#
LE -MoiSE SEL#
MEM DATA OE#
MEM -DATA -SEL#
MEM-PAGE-HIT#
MEM-PAR GOOD

NO TRANS
PCI-AD PAR

PCIOE#
PCI-SEL#

RAS HVCAS LO
REFRESH_SEL#

ROM_SEL#

PCI
10_BRDG_GNT#
10_BRDG_REQ#
PCLC/BE[3:0]#
PCLCLK
PCLDEVSEL#
PCLFRAME#
PCLGNT[1 :5]#
PCURDY#
PCI_PAR
PCI_REQ[1 :5]#
PCI_STOP#
PCI_TRDY#

L2 Cache

L2-CACHE GNT#
L2 CACHE-REQ#
L2-CLAIM#-
L2=PRESENT#

60XCPU
AACK#
ARTRY#
CPU_ADDR[0:8],
CPU_ADDR[19],
CPU_ADDR[29:31]
CPU CLK
CPU=GNT#
CPU_REQ# 6

5
4

14-----.t DPE#
INT_CPU#

C
0
N
T
R
0

SRESET_CPU#
TA#
TBST#
TEA#
TS#
TSIZ[0:2]
TT[0:3]
XATS#

L
L
E
R

DRAM
14----'1 CAS[7:0]#
1-----., RAS[7:0]#
1-----.'WE[1:0]#

External
BE_PAR_EN#
DPE_ERR#
10_BRDG_HOLD#
10_BRDG_IRQ
ISA_MASTER#
LE_MODE_REQ#
LE_PAR_EN#
MASK_TEA#
MC_SETUP#
MEM_PAR_ERR#
NMLREQ
REFRESH_REQ#
RESET#
SRESET_REQ#
TT_ERR#

ROM
ROM CS#
ROM=OE#
ROM_WE#

Test

DI#
RI#
TEST#

Figure 3-1. 650 Bridge Pin Connections

16

The 650 Bridge Chip Set

3.1.1 653 Buffer to 60X CPU Bus Interface Signals
Table 3-1 describes the signals that interface the 653 Buffer to the 60X CPU bus.

Table 3-1. 653 Buffer to 60X CPU Bus Interface

Signal Name Type Description

CPU_ADDR[0:31] 1/0 The 60X CPU address bus, bit a = most-significant bit (MSB). All buses connected to
the 650 Bridge, except the 60X buses, use little-endian nomenclature.

CPU_DATA[0:63] 1/0 The 64-bit 60X CPU data bus, bit 0= MSB. CPU_DATA[0:31] connect to the 60X CPU
signals DH[0:31]. CPU_DATA[32:63] connect to the 60X CPU signals Dl[0:31].

TSIZ[0:2] in 60X CPU bus transfer size-number of bytes. The 650 Bridge supports transfers of 1,
2, 3, 4, 8, and 32 bytes (1, 2, 3, or 4 to the PCI bus).

3.1.2 653 Buffer to PCI Bus Interface Signals
Table 3-2 describes the signals that interface the 653 Buffer to the PCI bus.

Table 3-2. 653 Buffer to PCI Bus Interface

Signal Name Type Description

PCLAD[31 :0] 1/0 PCI address and data bus. The 32-bit PCLAD bus is a multiplexed address and data bus.
The PCLAD bus is numbered in little-end ian order.

PCLClK in PCI clock. The PCI clock signal-up to 33MHz. The rising edge of the PCI_ClK signal
at the 653 Buffer must be synchronized to the rising edge of CPU_ClK within -1.0ns to
+ 1.0ns. The PCLClKcan bethe same frequency or halfthefrequency of the CPU clock.
The PCI clock at the 653 Buffer mayor may not be the same physical signal line as the
PCI clock at the 654 Controller. See Section 7.2 for clocking details.

3.1.3 653 Buffer to System Memory Interface Signals
Table 3-3 describes the signals that interface the 653 Buffer to system memory.

Table 3-3. 653 Buffer to System Memory Interface

Signal Name Type Description

MEM_ADDR[11 :0] out Memory address bus. MEM_ADDR is 12 bits, multiplexed, and little-endian. While the
654 Controller asserts RASHI/CASlO high, the MEM_ADDR lines contain row
addresses selected from the internal address bus of the 653 Buffer. While
RASHI/CASlO is low, the MEM_ADDR lines contain the column addresses.

MEM_ADDRO_B out A duplicate of MEM_ADDR[O]. (Required by some SIMMs.)

MEM_DATA[63:0] 1/0 64-bit memory data bus. MEM_DATA[63] is the most significant bit.

MEM_PAR[7:0] I/O 8-bit memory parity bus. MEM_PAR[7] is the most significant bit. Bit 7 corresponds to
MEM_DATA[63:56]. Even parity is generated and written on memory write cycles.
System memory is always read in eight-byte double words, regardless of the transfer
size requested. Parity across eight bytes is checked on all memory read cycles.

17

The 650 Bridge Chip Set

3.1.4 653 Buffer to External Logic and System Interface Signals
Table 3-4 describes the signals that are used to interface the 653 Buffer to the rest of the system
via external logic, command bit storage elements, the test interface, power, and ground.

Table 3-4. 653 Buffer to External Logic and System Interface

Signal Name Type Description

CONTIG_IO in Contiguous 1/0. External logic asserts CONTIG_IO high to enable direct mapping of
addresses from 2G to 2G + 8M. When CONTIG_IO is driven low, it enables
non-contiguous addressing in the 2G to 2G + 8M address range. Non-contiguous 1/0
is a mapping of the low 32 bytes of each 4k page of CPU memory space to 32 bytes
of PCI/ISA 1/0 space. See Section 4.1.1 and 4.1.2.

This signal should only be changed between 60X to PCII/O cycles.

DRAMX9HI/X10LO in DRAM type. DRAMX9HI/X1 OLO is asserted high for addressing DRAMs with nine
column address bits (X9 mode), low for X1 a mode. This signal is used to format the
addresses presented to the DRAMs.

L_ERR_ADDR# in Latch error address. The address on the 653 Buffer internal address bus is latched
into the 653 error address register while L_ERR_ADDR# is asserted. This signal can
be derived by external logic from the 654 Controller signals TT _ERR#,
MEM_PAR_ERR# and, optionally, any other signal indicating an error condition
requiring the address to be latched. L_ERR_ADDR# must be held asserted to hold
the contents of the latch. Any signal used with TT _ERR# and MEM_PAR_ERR# to
derive L_ERR_ADDR# must also be held until after the latch is read.

This diagram illustrates support logic needed to latch the address of memory parity
errors or transfer type errors.

TT_ERR# ~ L_ERR_ADDR#
MEM_PAR_ERR# Gate

from 654 to 653

TEST# in Test mode. Pull to logic high during normal operation. Assert TEST#,
L_ERR_ADDR#, and ERR_ADDR_SEL# to tri-state the outputs.

3.2 654 Controller Pin Descriptions
The following tables describe the signals connected to the 654 Controller chip.

See Section 3.1 for a description of the signal naming conventions used in this document.

The following terms are used to describe the signal type:

in Input is a standard input-only signal.
out Output is a standard active driver
1/0 Bi-directional
slold Sustained open drain input/output
tis Tri-state is a bi-directional, tri-state input/output signal
sltls Sustained tri-state is an active low tri-state signal owned and driven by one agent at a

.. time. The agent that drives the s/t/s pin low must drive it high for at least one clock before
letting it float. A new agent cannot drive the pin any sooner than one clock after the pre­
vious owner tri-states it. An external pull-up is required to sustain the inactive state.

18

The 650 Bridge Chip Set

3.2.1 654 Controller to 60X CPU Bus Interface Signals
Table 3-5 shows the 654 Controller signals that communicate with the 60X CPU.

Table 3-5. 654 Controller to 60X CPU Bus Interface

654 Controller Signal
Signal Name Type Description

AACK# 1/0 CPU bus address acknowl~dge. During host bus transactions initiated by the 60X CPU,
the 654 Controller asserts AACK# with the last TA# (transfer acknowledge). This
prevents the 60X CPU from pipelining addresses.

During a transaction initiated by the 60X CPU on the PCI bus or during PCI to system
memory transactions, AACK# can be asserted on target initiated terminations and on
cache snoop hits. See the discussion of these events in the ARTRY# description.

ARTRY# 1/0 CPU bus address retry. During a transaction initiated by the 60X CPU on the PCI bus,
the PCI target can assert PCLSTOP#tothe 654Controller(target initiated termination).
If PC LSTOP# and PCLDEVSEL# are asserted together by the target (a target retry),
the 654 Controller then asserts AACK# on one CPU clock followed by ARTRY# on the
next CPU clock. This sequence allows the 60X CPU to retry the transaction. If
PCLSTOP# is asserted without PCLDEVSEL# (a target abort), the 654 Controller
asserts TEA# to signal a PCI target abort and does not assert ARTRY#.

During PCI to system memory cycles, the 654 Controller asserts TS# on the second
CPU clock after PCI FRAME# is asserted on the PCI bus. Then the 654 Controller
asserts AACK# on the CPU clock after TS#, initiating L 1 and L2 cache snoops of the
address that has been set on the 60X CPU host bus by the 653 Buffer. Both the 60X CPU
and a write-back L2 can assert ARTRY# on the CPU clock immediately after AACK# to
signal a snoop hit. When the 654 Controller senses ARTRY# asserted on the CPU clock
following AACK#, it asserts the PC LSTOP# signal and the PCLDEVSEL# signal on the
next PCI bus clock to signal a target retry. The PCI device must back off the PCI bus
(and retry), and the 654 Controller then grants the 60X CPU host bus to the 60X CPU
or the l2 cache for a writeback to system memory. The 654 Controller arbiter resolves
simultaneous cache hits in the l1 and l2 caches. (The write-back cache uses a protocol
that guarantees coherency.)

CPU_ADDR[O:8], in CPU address bus. Of the 32 bits on the CPU address bus, the 654 Controller uses
[19], CPU_ADDR[0:8], [19], [29:31], where [0] is the most significant bit. By analyzing these
[29:31] bits, the 654 Controller can determine if the CPU is addressing system memory, PCI

memory, PCI 1/0 space, PCI interrupt acknowledge space, the error address register,
system ROM, or PCI configuration space.

The 654 Controller also monitors changes in the state of CPU_ADDR[19] (driven by the
653 Buffer) to detect the crossing of a DRAM page during PCI bursts to memory.

The 653 Buffer uses all 32 bits of the CPU_ADDR address lines.

CPU_ClK in CPU bus clock. 40MHz, 50MHz, or 66MHz.

CPU_GNT# out CPU bus grant. Bus grant to the 60X CPU, grants control of the host bus to the 60X CPU.
The arbiter parks the host bus on the 60X CPU (CPU_GNT# is asserted regardless of
CPU_REQ#) when no other masters are requesting a bus.

CPU_REQ# in CPU bus request. Bus request from the 60X CPU, indicates that the 60X CPU wants
control of the host bus. The 654 Controller arbiter controls the host bus grant through
CPU_GNT#.

DPE# in Data parity error. The 654 Controller checks DPE# two clocks after each TA# when an
l2 cache asserts l2_ClAIM# and provides read data. If DPE# is active, the 654
Controller asserts DPE_ERR# low for two clocks. l2 error addresses are not saved.

19

The 650 Bridge Chip Set

Table 3-5. 654 Controller to 60X CPU Bus Interface (Continued)

654 Controller Signal
Signal Name Type Description

INT_CPU# out CPU Interrupt. INT _CPU# is asserted to signal the processor of an external interrupt
or under some error conditions like memory or L2 cache parity errors.

SRESET_CPU# out During normal mode the SRESET_CPU# signal is a soft reset-the 60X CPU warm
boots when SRESET_CPU# is asserted.

The 654 Controller asserts SRESET CPU# when SRESET REQ# activates. The 654
Controller asserts SRESET _CPU# for two cycles of REFRESH_REQ# (at least 15us)
to ensure the required minimum assertion time for SRESET _CPU#to the 60X CPU (10
CPU clocks).

TA# I/O CPU bus transfer acknowledge. The 654 Controller asserts TA# to indicate that a data
transfer has completed successfully. The 654 Controller asserts TA# for one CPU clock
for a single beat data transfer transaction. For a four-beat burst transaction, the 654
Controller asserts TA# at the conclusion of each of the four data transfer cycles.

TBST# I/O Transfer burst. TBST # indicates a burst transfer of four 64-bit double-words on the 60X
CPU bus. Burst transfers by the 60X CPU are only allowed to system memory, not to
the PCI bus. The 650 Bridge does support PCI burst reads and writes of system memory
by PCI devices.

The 654 Controller drives TBST# inactive during PCI to memory snoop cycles.

TEA# out CPU bus transfer error acknowledge. If MASK_ TEA# is not asserted, the 654 Controller
asserts TEA# for a PCI bus error, a non-maskable interrupt (NMI), transfer type error,
transfer size error, or a parity error from system memory. See Section 5.8.

If XATS# is asserted for a PIO cycle, the 654 Controller asserts TEA# regardless of the
condition of MASK_ TEA#.

TS# I/O CPU bus transfer start. TS# is asserted by the current bus master when the address on
the CPU_ADDR[00:31] lines and the address attribute lines are valid.

During PCI memory cycles, the 654 Controller asserts TS# to start snoop cycles on the
second CPU clock after PCI FRAME# is asserted on the PCI bus and then asserts
AACK# on the next CPU clock. This initiates L 1 and L2 cache snooping of the address
of PCI memory cycles. See ARTRY# for an explanation of the snoop hit process.

Note: All PCI memory transactions produce snoop cycles on the 60X CPU bus. The
memory model for the 650 Bridge only allows system memory to be mapped in the a to
2G range, therefore snoops from 2G to 4G are never cache hits.

TSIZ[0:2] I/O CPU bus transfer size-number of bytes. The 650 Bridge supports transfers of 1 , 2, 3,
4, 8, and 32 bytes. The 654 Controller asserts TEA# for unaligned transfers of 2, 3, or
4 bytes that cross a double-word boundary, and also asserts TEA# for attempted
transfers of 5,6, or 7 bytes. See Section 5.8.

TSIZ[0:2] is ignored when TBST# is asserted for 32-byte bursts.

TT[0:3] I/O CPU bus transfer type. TT[4] is not used and should be negated-pulled low.

XATS# in Extended address transfer start. When asserted this signal indicates that the 60X CPU
is performing I/O controller interface (PIO) operations.lfthe T-bit in a 60X CPU segment
register is set, it ind,icates that addresses in the range of that segment register are I/O
controller interface accesses.

If XATS# is asserted, the 654 Controller generates a TEA# error to the 60X CPU
(regardless of the setting of MASK_ TEA#).

20

The 650 Bridge Chip Set

3.2.2 654 Controller to PCI Bus Interface Signals
Table 3-6 shows 654 Controller signals that are related to the operation of the PCI bus devices.

Table 3-6. 654 Controller to PCI Bus Interface

654 Controller Signal
Signal Name Type Description

10_BRDG_GNT# out 110 bridge bus grant. System bus grant to the 110 bridge.

10_BRDG_REQ# in 110 bridge request. PCI bus request line from the 110 bridge subsystem. The I/O bridge
request has the highest priority ofthe PCI initiators. (The arbiter grants the bus to DRAM
refresh requests, the 60X CPU, and the L2 cache before any PCI initiators.)

PCLC/BE[3:0]# tis C (bus command) and BE (byte enable) multiplexed lines. During a PCI address phase
this isabuscommand. During a PCI data phase PCLC/BE[3:0]# are byte enables-one
bit for each of the four bytes on the PCI bus.

PCLCLK in PCI bus clock. When the CPU bus clock is 40,50, or 66MHz, PCLCLK is one-half the
frequency of the CPU bus clock. (The maximum PCI bus clock is 33MHz.) When the
CPU bus clock is 33MHz or 25M Hz, PCI_CLK is equal to the CPU bus clock. The 654
Controller PCLCLK must be synchronous to CPU_CLK within -0.5 to +4.0 nsecs.

The PCI clock at the 653 Buffer mayor may not be the same physical signal line as the
PCI clock at the 654 Controller. See Section 7.2 for clocking details.

PCLDEVSEL# sltls PCI device select. PCI_DEVSEL# is asserted by a device to claim a PCI address.
PCI_DEVSEL# can go active within three PCI clocks of PCLFRAME# (or four if
subtractive decode is used).

The 650 Bridge asserts PCLDEVSEL# when it claims a PCI memory cycle-the
address is within physical memory and there is no hit in L 1 or L2 cache.

PCLFRAME# sltls PCI frame. Asserted by the current master to indicate the beginning and duration of a
PCI bus access.

PCLGNT[1 :5]# out PCI bus grants. Five PCI bus grant lines corresponding to PCLREQ[1 :5]#.

PCURDY# sltls PClinitiatorready.PCURDY#indicatesthebusmasterisreadyto completethe current
data phase of a transaction. A data phase is complete on any PCI clock where both
PCURDY# and PCL TRDY# are asserted. During a write, PCURDY# indicates that
the master has placed valid data on the PCLAD bus. During a read PCURDY#
indicates thatthe master is prepared to accept data. During 60X to PC I cycles, this signal
is generated independent of the state of PCL TRDY#.

PCLPAR tis PC I parity. PC I bus parity bit for PC L AD[31 :00] and PC L C/BE[3 :0]# combi ned, an even
parity bit for the 36 bits of PC L AD[31 :0] and PC L C/B E[3 :0]#. (This bit pi us the th irty-six
PCI bits equals an even number of bits.)

The 653 Buffer calculates the parity for PCLAD[31 :0] and passes itto the 654 Controller
as PCLAD _PAR. When the 650 drives the PCI_AD and PCLC/BE lines on PCI cycles,
the 654 combines PCLAD_PAR with PCLC/BE[3:0] to generate PCLPAR.

The 650 Bridge does not check PCLPAR on incoming transactions.

PCLREQ[1 :5]# in PCI bus requests. Five PCI bus request lines. PCLREQ[1] is the highest priority among
the five request lines.

21

The 650 Bridge Chip Set

Table 3-6. 654 Controller to PCI Bus Interface (Continued)

654 Controller Signal
Signal Name Type Description

PC LSTOP# s/Vs PCI stop. A PCI target uses this signal to end the current transaction with'target retry
or target abort. For target retry, PCLSTOP# and PCLDEVSEL# are asserted together.
For target abort, PCLSTOP# is asserted by itself. After a target retry, the initiator can
retry the cycle at a later time.

The 654 Controller asserts PCLSTOP# and PCLDEVSEL# (target retry) for a snoop
hit on a PCI to system memory transaction to allow a cache write~back operation.

PCLTRDY# s/Vs PCI target ready. A PCI target uses PCL TRDY#to signal that it is ready for data transfer.
A PCI transaction ends when PCLTRDY# and PCURDY# are asserted together.
During a PCI read from system memory, the 654 Controller asserts PCL TRDY# when
memory data is valid. During a PCI write to system memory, the 654 Controller waits for
PCURDY# to be asserted and then asserts PCLTRDY# when it has completed the
write cycle.

3.2.3 654 Controller to System Memory (DRAM) Interface Signals
Table 3-7 shows the 654 Controller signals that communicate with the DRAM memory chips.

Table 3-7. 654 Controller to System Memory (DRAM) Interface

654 Controller Signal
Signal Name Type Description

CAS[7:0]# 1/0 Column address selects.

The CAS[7:0]# lines are also used to read and write system logic data during the setup
of the 650 Bridge.

RAS[7:0]# out Row address selects.

WE[1:0]# out DRAM write enables. Two identical signals to meet loading requirements.

3.2.4 654 Controller to ROM (Flash or EPROM) Signals
Table 3-8 shows 654 Controller signals that are related to the operation of the system ROM.

Table 3-8. 654 Controller to ROM or Flash Signals

654 Controller Signal
Signal Name Type Description

ROM_CS# out ROM chip select.

ROM_OE# out ROM output enable.

ROM_WE# out ROM write enable. Write enables for flash ROM.

22

The 650 Bridge Chip Set

3.2.5 654 Controller to L2 Cache Signals
Table 3-9 shows the 654 Controller signals that communicate with the optional L2 cache.

Table 3-9. 654 Controller to L2 Cache Signals

654 Controller Signal
Signal Name Type Description

L2_CACHE_GNT# out L2cache bus grant. The 654 Controller asserts L2_CACHE_ GNT#to grantthe 60X bus
to the L2 cache for a write-back operation. Note that since the 650 Bridge is designed
as a single-bus system, when the L2 is doing a write-back operation, the PCI bus
remains idle (parked on the 654 Controller).

L2_CACHE_REQ# in L2 cache bus request. Asserted by a write-back L2 cache to perform a write-back
operation. This signal is not used by write-through cache designs.

L2_CLAIM# in L2 claim. The L2 cache asserts L2 claim# to indicate a read orwrite hit in the L2 cache.
The 650 Bridge backs off of system memory and lets the L2 cache provide or receive
data when L2_CLAIM# is asserted. The cache must assert L2_CLAIM# by the second
clock period after that in which TS#is asserted, and L2_CLAIM# must be held until
AACK# is asserted.

A write-through L2 cache only asserts L2_CLAIM# on read hits. A write-back L2 cache
can assert L2_CLAIM# on read and write hits.

L2_PRESENT# in L2 cache present. Must be continuously asserted to indicate that an L2 cache is present
in the system.

3.2.6 654 Controller to Test Signals
Table 3-:-10 shows the 654 Controller test signals.

Table 3-10. 654 Controller to Test Signals

654 Controller Signal
Signal Name Type Description

01# in Driverinhibit.(Pulitologichighduringnormalsystemoperation.}AssertDI#withTEST#
to tri-state the outputs.

RI# in Receiver inhibit. (Pull to logic high during normal system operation.) Assert RI#to gate
off inputs while in test mode.

TEST# in Test mode. (Pull to logic high during normal system operation.}Assert TEST# with 01#
to tri-state the outputs.

3.2.7 654 Controller to External Logic and System Interface Signals
Table 3-11 shows 654 Controller signals that are connected to host system devices.

Table 3-11. 654 Controller to External Logic and System Interface

654 Controller Signal
Signal Name Type Description

BE_PAR_EN# out Big-endian parity enable. The 654 Controller asserts BE_PAR_EN# when reading
memory in big-end ian mode. The system can use this signal to enable an external buffer
to route big-end ian-ordered parity to the 60X data parity signals. (See LE_PAR_EN#.)

DPE_ERR# out Data parity error. DPE_ERR# is a qualified data parity error for L2 cache parity errors.
It is a pulse two CPU clocks wide. External logic must latch this signal.

23

The 650 Bridge Chip Set

Table 3-11. 654 Controller to External Logic and System Interface (Continued)

654 Controller Signal
Signal Name Type Description

10_BRDG_HOLD# in 1/0 bridge hold. 1/0 bridge memory operation requestfroman ISA bus device. When this
signal is asserted, the 654 arbiter will not remove grant from the 1/0 bridge subsystem
unless PCLFRAME# is asserted or the 10_BRDG_REQ# is removed.

10_BRDG_HOLD# is an asynchronous input.

IO_BRDG_IRQ in Interrupt from 1/0 bridge subsystem. This signal is passed through to the CPU as an
interrupt on INT_CPU#. As a result of the assertion of INT_CPU#, the 60X should
request a PCI interrupt acknowledge transaction to which the 654 Controllerwill respond
by running a PCI interrupt acknowledge cycle to read an interrupt vector.

ISA_MASTER# in ISA master. In response to ISA_MASTER#, the 654 Controller asserts NO_TRANS to
the 653 Buffer to allow PCI transactions from ISA masters to directly address system
memory from 0 to 16M withoutthe usual address remapping. This function supports ISA
bridges that do not allow remapping of ISA address space within PCI address space.

ISA_MASTER# is an asynchronous input.

LE_MODE_REQ# in Little-endian mode request. External logic asserts and holds LE_MODE_REQ# to
request the selection of little-endian mode. In response, the 654 Controller asserts
LE_MODE_SEL# to the 653 Buffer to enable little-end ian addressing.

LE_MODE_SEL# is changed only when the buses are not busy.

Note: LE_MODE_REQ# and LE_MODE_SEL# are external to the CPU and are notthe
same as the internal CPU endian mode bit.

LE_MODE_REQ# is an asynchronous input.

LE_PAR_EN# out Little-endian parity enable. The 654 Controller asserts LE_PAR_EN# when reading
memory in little-endian mode. The system can use this signal to enable an external
buffer to route little-end ian-ordered parity to the 60X data parity signals. (See
BE_PAR_EN#.)

MASK_TEA# in Mask TEA#. When external logic asserts MASK_ TEA#, all 60X CPU host bus cycles
(exceptXATS#cycles)terminatewithTA#,regardlessoferrorconditions.MASK_TEA#
can be used for diagnostic purposes.

If XATS# is asserted for PIO operations, a TEA# error is always asserted, regardless
of the setting of MASK_ TEA#.

MASK_ TEA# is an asynchronous input.

MC_SETUP# in Memory controller setup. External logic asserts MC_SETUP# to select setup of the
controller registers through the CAS[7:0]# lines. Read and write operations are
supported. Datashould be gated to orfrom the CAS# lines when MC.:...SETUP#isactive.

MC_SETUP# is an asynchronous input.

MEM_PAR_ERR# out Memory parity error. The 654 Controller asserts MEM_PAR_ERR# to indicate that a
qualified memory parity error was detected. MEM_PAR_ERR# remains asserted until
the conclusion of a 60X bus cycle which the bridge decodes as a read error address.

MEM_PAR_ERR# is speculatively asserted during CPU or PCI reads of system
memory. The MEM_PAR_ERR# signal becomes valid one CPU clock after TA# is
sampled valid or one PCI clock after TRDY# issampled valid.

24

The 650 Bridge Chip Set

Table 3-11. 654 Controller to External Logic and System Interface (Continued)

654 Controller
Signal Name

NMLREQ

RESET#

Signal
Type Description

in Non-maskable interrupt request. The 60X CPU does not have a non-maskable interrupt.

in

in

in

out

However, the 654 Controller asserts INT _ CPU#when NMI_REQ is asserted. As a result
of the assertion of INT _CPU#, the 60X software should issue a byte load instruction at
the specific address that the 654 Controller decodes a request for a PCI interrupt
acknowledge cycle. The 654 Controller responds by asserting TEA# instead of running
a PCI interrupt acknowledge cycle, and the 654 returns FFh as the result ofthe byte load.

NMI_REQ is an asynchronous input.

DRAM refresh request. External logic asserts REFRESH_REQ# to request a DRAM
refresh cycle. The 654 arbiter treats REFRESH_REQ# as the highest priority bus
request. The 654 asserts REFRESH_SEL#to the 653 Buffer when the bus is available.

REFRESH_REQ# is an asynchronous input.

System reset. Power good when deasserted (high), power-on-reset (POR) condition
when asserted. RESET# must be held low for at least 1 Ous after power is stable and
clocks are running normally.

RESET# is an asynchronous input.

Soft reset request (warm boot). The 654 Controller asserts SRESET _CPU#to the 60X
CPU in response to SRESET _REQ#. Toguaranteethe minimum assertion time, the654
Controller asserts SRESET_CPU# for two assertions of REFRESH_REQ#.
SRESET _REQ# should be a pulse of from 100ns minimum to 4ms maximum.

SRESET _CPU# is an asynchronous input.

Transfer type error. The 654 Controller asserts TT _ERR# if an unsupported transfer
type or alignment is detected or if XATS# is asserted. TT _ERR# remains asserted until
the conclusion of a 60X bus cycle which the bridge decodes as a read error address.

3.3 Signals Between the 653 Buffer and 654 Controller
Table 3-12 shows the signals that interconnect the 654 Controller with the 653 Buffer.

Table 3-12. Signals Between the 653 Buffer and the 654 Controller

654 Controller 653 654
Signal Name Type Type Description

ADDRHI/DATALO in out Address high/data low. The 654 Controller asserts ADDRHI/DATALO (high)
to putthe 653 Buffer in a PCI address cycle and negates ADDRHI/DATALO
low to put the 653 Buffer in a PCI data cycle. (The PCLAD[31 :00] bus is a
multiplexed address and data bus.)

This signal has two uses-cluring 60X CPU initiated cycles to the PCI bus,
the negation transition (signalling .the end of the address tenure) occurs
exactly one PCI clock cycle earlier than whenthe data tenure begins. The 653
Buffer delays driving data to the PCLAD bus for one PCI cycle.

During PCI-initiated cycles to system memory, the 653 Buffer latches the
PCLAD bus as an address on each PCLCLK rising edge while
ADDRHI/DATALO remains asserted high. When ADDRHI/DATALO is
negated, the last address remains in the PCI address latch in the 653 Buffer.

25

The 650 Bridge Chip. Set

Table 3-12. Signals Between the 653 Buffer and the 654 Controller (Continued)

654 Controller 653 654
Signal Name Type Type Description

ALL_ONES_SEL# in out All-ones select, asserted by the 654 Controller to the 653 Buffer to place all
one-bits on the 653 Buffer internal data bus. ALL ONES SEL# is used
during PCI configuration read transactions to return 64 one~its to the CPU
data bus when no PCI device responds and during system memory reads
that are out-of-range.

BURST_CLK# in out Burst clock. Based on other control signals, BURST _CLK# clocks the shifts
in the ROM shift register, clocks the ROM burst counter, clocks the PCI burst
counter during PCI master cycles, or clocks the CPU burst counter (all withi n
the 653 Buffer).

CPU_ADDR_OE# in out CPU address output enable. The 654 Controller asserts CPU_ADDR_OE#
to enable the 653 Buffer to assert PCI-initiated addresses on the 60X CPU
address bus. The 654 Controller asserts TS# when·the address is valid,
allowing the L 1 and L2 caches to snoop memory cycles.

CPU_ADDR_SEL# in out CPU address select. The 654 Controller asserts CPU ADDR SEL# to
enable the 653 Buffer to receive addresses from the 60X bus:-The 654
Controller asserts this signal during power-on-reset (POR). After power up,
this signal must be asserted and deasserted by the 654 Controller before any
bus cycles are initiated. This initializes the CPU burst counter within the 653
Buffer.

CPU_DATA_OE# in out CPU data output enable. The 654 Controller asserts CPU_DATA_OE#
during CPU read cycles to enable the 653 Buffer to assert data onto the 60X
bus.

CPU~DATA_SEL# in out CPU data select. The 654 Controller asserts CPU_DATA_SEL#during CPU
write cycles to enable the 653 Buffer to receive data (byte-swapped in
little-endian mode) from the 60X bus.

ERR_ADDR_SEL# in out Error address select. The 654 Controller asserts ERR ADDR SEL# to
enable the 653 Buffer to drive a 32-bit error address from the error address
register onto both halves of the 64-bit 60X CPU data bus. MEM_PAR_ERR#
and TT _ERR# are deactivated coincidently with the rising edge of this signal.

L_PCLDATA# in out Latch PCI data. While L PCI DATA# is not asserted and the PCI ClK is
low, the PCI data latch is transparent to the PCLAD bus. Whendata is
required from the PCI bus (during a CPU to PCI read or a PCI bus master
to system memory write), the 654 Controller asserts this signal followi ng the
rising edge of the PCLCLK for the current data phase. This latches the
current data phase data into the PCI data latch. The 4-byte data is then
placed on both halves of the 8-byte653 Buffer internal data bus.

lE_MODE_SEl# in out Little-endian mode select. In response to lE_MODE_REQ#, the 654
Controller asserts LE_MODE_SEL# to set the 653 Buffer to little-endian
mode of operation. This signal is switched between bus cycles.

MEM_DATA_OE# in out Memory data output enable. While MEM_DATA_OE# is asserted, the 653
Buffer drives the 64-bit internal data bus and its eight parity signals onto the
memory data bus and the memory parity bus. MEM_DATA_ OE# is asserted
by the 654 Controller during memory write cycles.

MEM_DATA_SEl# in out Memory data select. MEM_DATA_SEl# is. asserted by the 654 Controller
during a memory read transaction. When MEM_DATA_SEL# is asserted,
the 653 Buffer uses the memory data bus as the source for the current
transaction.

26

The 650 Bridge Chip Set

Table 3-12. Signals Between the 653 Buffer and the 654 Controller (Continued)

654 Controller 653 654
Signal Name Type Type Description

MEM_PAGE_HIT# out in Memory page hit. The 653 Buffer asserts MEM_PAGE_HIT#to indicate an
equal compare on the RAS address. This signal is valid one CPU_CLK after
the assertion of TS#.

MEM_PAGE_HIT# is not asserted for forced page hits that occur after
refresh cycles and PCI 1/0 cycles. The 650 Bridge internally sets a forced
page condition for these situations.

MEM_PAR_GOOD out in Memory parity good. Negated by the 653 Buffer to indicate a parity error on
a read of system memory. This is an unqualified decode of the 64 memory
data lines. The 654 Controller samples this line appropriately.

NO_TRANS in out No translation mode. The 654 Controller asserts NO_TRANS high when a
memory read or write cycle runs on the PCI bus on behalf of an ISA master.
NO_TRANS disables the address remapping within the 653 Buffer so that
ISA masters that cannot remap the 0 to 16M address range can directly
access memory in the 0 to 16M address range.

When NO_TRANS is asserted, all address remapping in the 653 Buffer is
disabled.

PC LAD_PAR out in PCI address and data parity. The 653 Buffer generates an even parity bit
across the PCLAD[31 :0] lines. This is an unqualified signal that is onlyvalid
when the PCI AD bus is valid. The 654 Controller combines PCI AD PAR
with PCLC/BE[3:0] to generate PCLPAR, the PCI parity bit. - -

PCLOE# in out PCI output enable. While PCLOE# is asserted, the 653 Buffer drives the
internal address or data buses onto the PCI AD bus. PCI OE# is asserted
whenever the CPU or L2 is the bus master except during the data phase of
reads from the PCI. See the ADDRHI/DATALO signal.

PCLSEL# in out PCI select. The 654 Controller asserts PCLSEL# to enable the 653 Buffer
to receive addresses and data from the PCI bus during PCI master cycles to
system memory or CPU reads from the PCI. PCLSEL# is asserted for the
duration of the cycle.

RASH I/CASLO in out RAS or CAS select. The 654 Controller asserts RASHI/CASLO high for a
RAS cycle and negates RASHI/CASLO low for a CAS cycle. This signal is
asserted during any PCI 1/0 and configuration cycles, following a DRAM
memory page miss, and during DRAM refresh cycles.

REFRESH_SEL# in out DRAM refresh selection. After REFRESH_REQ# is asserted externally, the
654 Controller asserts REFRESH_SEL# as soon as the current CPU or PCI
bus cycle concludes in order to initiate a refresh cycle. In response to
REFRESH_SEL#, the 653 Buffer places a refresh address on the memory
address bus. The 653 Buffer increments its internal row address on the rising
edge of this signal.

ROM_SEL# in out ROM select. The 654 Controller asserts ROM_SEL#to signal the 653 Buffer
that a ROM cycle is in progress.

27

N
OQ

60XCPU
Address Range

Oto 2G

2G to 2G + 8M

2G + 8M to 2G + 16M

2G + 16M to 3G - 8M

3G-8M to 3G

3G to 4G-8M

4G-8M to 4G

Table 4-1. 650 Bridge Mapping of 60X CPU Bus Addresses
Other Target Cycle

Conditions Target Cycle Decoded Address Range Comment

System Memory Oto 2G Cacheable by L 1 and L2

CONTIG_IO deasserted PCII/O Cycle o to 64K Non-contiguous 1/0. 32 bytes of each 4K
(ISA, EISA, or MicroChannel) (64K to 8M not acces- memory page in this 8M address space are

sible) mapped to 32 bytes in the 64K PC 1/0 space.
See Section 4.1.1 and Section 4.1 .2

CONTIG_IO asserted PCII/O Cycle Ot08M Contiguous 1/0. CONTIG_IO is a pin on the
(ISA, EISA, or MicroChannel) 653 Buffer chip. See Section 4.1.1 and 4.1.2

PCI Configuration Cycle 8M to 16M PCLAD[1 :0] forced to OOb

PCII/O Cycle 16M to 1G -8M PCLAD[1 :0] flow through

CPU_ADDR[19] = 0 Read Error Address Register None No PCI cycle

CPU_ADDR[19] = 1 PCI Interrupt Acknowledge 1G -8M to 1G PCLAD[1 :0] forced to OOb

PCI Memory Cycle o to 1G - 8M PCLAD[1 :0] forced to OOb
Note: CPU space 4G - 16M to 4G - 8M is
reserved in PowerPC Reference Platform
Specification.

Read cycle ROM Read 1G -8M to 1G System ROM (Can be EPROM, EEPROM,
(0 to 8M in ROM) or flash ROM)

Write cycle ROM Write Port N/A Flash ROM write port (address coded in
(CPU_ADDR[31] = 0) data field)

Write cycle Flash ROM Lock-Out Port N/A Write to this range of addresses locks out
(CPU_ADDR[31] = 1) flash ROM writes until RESET# (No PCI

cycle)

-f
::::J
CD
(j)
01
o
gJ
a:
co
CD

o
::::J
is'
CJ)
CD --

Section 4
650 Bridge Theory of Operation
This section describes the theory of operation of the 650 Bridge. This section includes basic timing
diagrams with narrative descriptions.

Section 4.1 describes the memory and device mapping that the 650 Bridge applies to 60X bus
addresses. The 60X CPU can address system memory (DRAM), PCI devices, and other func­
tions by loading (reading) or storing (writing) data to specific address ranges.

Section 4.2 describes the mapping the 650 Bridge applies to memory reads and writes initiated
by PCI devices.

Section 4.3 contains timing diagrams and descriptions of basic cycles that can be generated by
the 60X CPU and PCI devices. Section 7 contains comprehensive, detailed timing diagrams.

4.1 650 Bridge Mapping of 60X CPU Bus Addresses
The 650 Bridge maps the 60X address space as shown in Table 4-1. The 654 Controller decodes
the nine most-significant bits of the 60X bus address (CPU_ADDR[0:8]) to determine the basic
type of transaction the 60X CPU is requesting.

In general, the range of the CPU_ADDR[0:8] signals serves to identify the target of a 60X CPU
transaction. Other conditions can modify the type of cycle within an address range as follows:

• External logic asserts or deasserts the CONTIG_IO signal to select contiguous or non­
contiguous PCI liD addressing in the first 8M of PCI liD addresses. Sections 4.1.1 and
4.1.2 discuss non-contiguous and contiguous PCI liD addressing.

• For mapping purposes, CPU_ADDR[19] is used to differentiate between PCI interrupt
acknowledge transactions and error address register read transactions.

• For mapping purposes, CPU_ADDR[31] determines whether a ROM write cycle is ad-
dressed to the ROM write port or the ROM write lock-out port.

4.1.1 Address Mapping for Non-Contiguous 1/0
Figure 4-1 illustrates the address mapping the 650 Bridge performs in non-contiguous mode
(CONTIG_IO is deasserted) for addresses from 2G to 2G + 8M. After the 60X bus address reach­
es the internal bus of the 653 Buffer, the a to 8M addresss space is compressed into 64K of PCI
addresses from a to 64K.
If LE_MODE_SEL# is asserted, CPU_ADDR[29:31] are unmunged when they reach [2:0] on the
653 internal address bus. Note that the 653 internal bus is numbered in little-endian order. Mung­
ing and unmunging are described in Section 5.3 along with other endian-related operations.
If they are not claimed by a PCI agent, all PCIIIO transactions with PCI addresses from a to 64K
are claimed by the liD bridge. In non-contiguous liD mode the 60X CPU cannot create PCIIiO
addresses from 64K to 8M.

29

The 650 Bridge Chip Set

6
5
3

n
t
e
r
n
a
I

A
d
d
r
e
s
s

B
u
s

31 ------, Forced to zero ~ I
30 r-----~==~~~----~~.------

29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11 .
10
09
08
07
06
05 .

Forced to zero

Discarded

~~ li-----~~I
00 ~ ~. -----

31
30
29
28
27
26
25
24 P
23 C
22 I
21
20
19 I
18 I
17 0
16
15
14 A
13 d
12 d
11
10 r
09 e
08 s
07
06

S

05
04
03
02
01
00

A31 to A30 are forced to OOb. A29 to A 12 are shifted to A22-A5. A 11 to A5 are discarded~ A4 to AO pass through un­
changed. (On the input side A2 to AO are unmunged in LE mode.) A29 to A23 are set to zero.

Figure 4-1. Non-Contiguous PCII/O Address Transformation

In non-contiguous liD mode, the 650 Bridge partitions the 2G to 2G + 8M address space so that
the first 32 bytes of each 4K page are remapped into the 0 to 64K ISA port address space. There­
fore, 60X CPU protection attributes can be assigned to any of the 4K pages. This provides a flex­
ible mechanism to lock the liD from change by user-state code. This partitioning spreads the ISA
liD address locations over 8M of 60X CPU address space.

In non-contiguous mode, the unused byte addresses within each 4K page are not available. Each
of the 32 contiguous port addresses in each 4K page has the same protection attributes in the
60X CPU.

For example, 60X CPU addresses 8000 OOOOh to 8000 001 Fh are converted to liD bridge port
addresses OOOOh through 001 Fh. liD bridge port 0020h starts in the next 4K page at 60X CPU
address 8000 1 OOOh.

4.1.2 Address Mapping for Contiguous 1/0
In contiguous liD mode (CONTIG_IO asserted), a 60X CPU address from 2G to 2G + 8M causes
a PCIIIO cycle to run on the PCI bus with PCLAD[29:00] unchanged except for the unmunging
of the three low-order address bits. If not claimed by another PCI agent, the addresses from 0
to 64K may be claimed by the liD bridge ..

30

The 650 Bridge Chip Set

4.1.3 PCI Final Address Formation
The 650 Bridge maps 60X bus addresses from 2G to 4G as PCI transactions, error address regis­
ter reads, or ROM reads and writes. The 650 Bridge manipulates 60X bus addresses from 2G
to 4G to generate PCI addresses as follows:

• PCLAD[31 :30] are set to zero.
• PCLAD[2:0] are unmunged if LE_MODE_SEL# is asserted. See Section 5.3.
• After unmunging, PCLAD[1 :0] are set to OOb for all PCI cycles except PCI 1/0 cycles.

4.2 650 Bridge Mapping of pel Device Addresses
Table 4-2 shows the mapping of memory read and write cycles from the PCI bus to system
memory and PCI memory. Of the transactions that can be initiated by PCI masters, the 650 Bridge
only recognizes PCI memory reads and writes. The 650 Bridge ignores PCIIIO, PCI configura­
tion, and PCI interrupt acknowledge transactions that are initiated by PCI devices on the PCI bus.

The 650 Bridge broadcasts the remapped address of all PCI memory read and write transactions
so that they can be snooped by the L 1 and L2 caches. By definition, the PowerPC Reference Plat­
form Specification maps system memory only from a to 2G, therefore memory addresses from
2G to 4G must not be cacheable and will not cause snoop hits even though they are broadcast.

When the ISA_MASTER# signal is asserted, the 650 Bridge maps PCI memory reads and writes
from a to 16M directly to system memory at a to 16M. If the ISA_MASTER# signal is not asserted,
PCI memory reads and writes in this address range are ignored by the 650 Bridge.

The 60X CPU can generate PCI memory reads and writes in the range of a to 1 G - 8M. The best
range of addresses to locate PCI memory that can be addressed by both PCI devices and the
60X CPU is from 16M to 1G -16M.

Table 4-2. 650 Bridge Mapping of PCI Device Addresses

PCI Cycles And Addresses 650 Bridge Maps as:

Type Of PCIBus Target Of 60X Bus
PCI Cycle Address Address Address Comments

Memory o to 16M System o to 16M ISA masters only (ISA_MASTER#
Memory asserted). Snooped.

PCI o to 16M ISA MASTER# not asserted.
Memory Bridge ignores except for snoop.

16M to 1G -16M PCI 2G + 16M to 3G - 16M Bridge ignores except for snoop.
Memory

1 G - 16M to 1 G - 8M Reserved 3G - 16M to 3G - 8M Architecture reserves this area.
Bridge ignores except for snoop.

1G -8M to 2G Unavailable 3G - 8M to 4G 650 Bridge cannot create these
memory addresses on the PCI
bus. Do not map PCI memory here
unless the 60X CPU will never ac-
cess it. Bridge ignores except for
snoop.

2G to 4G System Ot02G Snooped.
Memory

31

The 650 Bridge Chip Set

4.3 650 Bridge Bus Transactions
The following timing diagrams show examples of bus transactions in a 601 system where the CPU
bus clock (CPU_ClK) is running at 66MHz, synchronous to and in phase with the 601 internal
clock (P _CLOCK).

The CPU_REQ# signal is not generally shown in the timing diagrams. When the bus is not being
used by another device or being requested by a higher priority device, the 650 Bridge arbiter re­
sponds to the CPU_REQ# sign~1 from the 60X CPU by asserting CPU_GNT#.

Unless shown separately, TSIZ[0:2], TT[0:4], and TBST# are asserted and negated with
CPU_ADDR.

Section 7 contains detailed timing diagrams and timing conventions. Section 7 also contains tim­
ing diagrams for many different varieties of the basic transactions shown in this section.

Final determination of the exact operation of the 650 Bridge should be made from the detailed
timing diagrams in Section 7.

4.3.1 CPU to Memory Read-Single-Beat, Page Hit, XCAS = 0
Figure 4-2 shows a single-beat system memory (DRAM) read with a page hit and XCAS = o. (See
Section 5.2.2.2.) The 60X CPU can initiate a read of system memory by executing a loadinstruc­
tion with an address range of OG to 2G. See Table 4-1. The 650 Bridge arbiter sends CPU_GNT#
low in cycle 0 to grant the bus to the 60X CPU. The state of this signal during the rest of this transfer
has no effect on this transfer, and so is shown as unknown. Likewise, the state of TBST#, the
CPU_ADDR group (address and attributes), TS#, MEM_PAGE_HIT#, and MEM~DDR are not
initially known.

In cycle 1, the 60X CPU asserts TS#, CPU_ADDR[0:31], TT[0:3], and TSIZ[0:2], and drives
TBST# inactive. In response, the 650 Bridge evaluates the address, transfer type, and TBST#
signal to determine that the CPU is requesting a single-beat read of sy~tem memory.

During cycle 2, the 653 Buffer asserts MEM_PAGE_HIT# to indicate that the row address of the
memory read matches the previous row address. As a result of this signal, the 654 Controller
leaves RASHIICASlO low, therefore RAS# stays low and the 650 Bridge does not update the row
address in the DRAM. Also during cycle 2, the 654 Controller asserts CPU_ADDR_SEL#to select
the CPU address for use during this transfer. This address is processed inside the 653 Buffer, and
propagates through to the memory controller, which selects the column address and drives it onto
the MEM_ADDR lines during cycle 3. AACK# and TA# stay tri-stated until cycle 4 to avoid conten­
tions with an L2 cache in the event of a cache hit.

During cycle 4, the 654 Controller asserts the CAS[7:0]# lines to begin a CAS# read access, as­
serts MEM_DATA_SEL# to select the memory data bus as the source of the data for this transfer,
and asserts CPU_DATA_OE# to enable the 653 Buffer to drive the data onto the CPU data bus.
The 654 Controller also asserts BE_PAR_EN# (if the system is in big-endian mode) or
lE_PAR_EN# (in little-endian mode) to enable one of the external parity buffers.

The MEM_DATA signals become valid and propagate through the 653 Buffer to the CPU_DATA
lines. Since XCAS = 0, the CAS# lines are asserted for a total of three CPU_ClK cycles. They
are active for two cycles before TA# is asserted, then the 654 Controller asserts TA# and AACK#
during cycle 6, and the 60X completes the transaction. The 654 then negates the remaining con­
trol outputs.

32

The 650 Bridge Chip Set

o , 1 2 , 3 4,5,6,7,8,
CPU_CLK
CPU_GNT#_~~ __ ~/~~ ________ ~ ______ ~ ________ ~ __ __

TBST#~ ~
, ,

CPU_ADDR ==>)-~-{~=~=~=::::=::::::=:::::J~---1~
TS#

AACK#------------------~--~--~~

TA#----~--~--~--~-'~--~--~

MEM_PAGE_HIT# :===~===::~::'...l.,----;H_it....J-.Ir-::~~~~~;-~~~-;..J..._-_-_-_--"-""7"'-_-_ -_ -_..J...'7"" -_ -_ -_-"--:

CPU_ADDR_SEL# ,~ ____________________ ~/

RASHI/CASLO ___ ~ __ ---:.-__ ~ ____:....-__ --.,;.... __ ---..; ____ ~ __ ---:.-__;

BURST_CLK#

MEM_ADDR-__________ -A~~7~7~J~----------------~x~-!----
RAS# _____ --~--------__ ------__ ----__ --~--~
CAS# , ,'----"-____ ..J...-_....i.--J/ ,

MEM_DATA_SEL#---~-~-~--~'~'~ ________ ~/

MEM_DATA---~-~--~--~' ~f~7~/l7Z27~7~Jt:==~~
I I I I I

CPU_DATA '2'777(71IJj~

CPU_DATA_OE#

WE#

BILE_PAR_EN#

CPU_DATA_SEL#

MEM_DATA_OE#

, '~~ ____ ~ __ ~-J/

,~-----------~~

Figure 4-2. CPU to Memory Read, Single-Beat, Page Hit, XCAS = 0 Timing Diagram

33

The 650 Bridge Chip Set

4.3.2 CPU to Memory Read-Single-Beat, Page Hit, XCAS = 1
Figure 4-3 shows a single-beat system memory (DRAM) read with a page hit and XCAS = 1. (See
Section 5.2.2.2.) This transfer is identical to the XCAS = 0 transfer shown in Figure 4-2 during
cycles 0 through 5. Since XCAS = 1, the CAS[7:0]# signals are extended for one clock and all
subsequent signals occur one clock later. This could also be thought of as adding an additional
fifth cycle to the CAS# read access.

0 , 1 2 , 3 4 , 5 6 , 7 8 , 9
CPU_CLK.

CPU_GNT# ~
,

L , , , ,
, , , , , , , , ,

TBST# :::J I , c: , , , , , , , , ,

CPU _ADDR :::J (, , , , , , ,) I c:
TS# :::J

, ,
I

! ! I

" c: " , , , , , , , , ,
AACK# , , , , , \ I , '--, , ,

TA#
, , , i , i '----:.-J i '--
, Hit I

, ,
I

,
MEMYAGE_HIT# ~ L , , , ,

CPU_ADDR_SEL# , , \ ,
i

,
i

,
i I ,

RASHI/CASLO
, , , , , , , , ,
, , , , , , , , ,

BURST_CLK# , , , , , , , , ,

MEM_ADDR , ,)fli~ , , , , , X
,

, , , , , , , , ,

RAS#
i , i , i , i , I

CAS# , , , , \ , , I ,

MEM_DATA_SEL# , , \
, , , , I , , , ,

V/U:ZZ~
,

I
,

MEM_DATA , ,),
, , ,

CPUJ)ATA , , (ZZZZZZZZZI I)(ZZ)-

CPU_DATA_OE# I i \
, , , , I , , , , , , , , ,

WE# , , , , , , , , ,

B/LE':"PAR_EN# , , , , \ , , , , , f
"

, , , ,

CPU _DATA_SEL# , , , , , , , , ,

MEM_DATA_OE# , , , , , , , , ,

Figure 4-3. CPU to Memory Read, Single-Beat, Page Hit, XC AS = 1 Timing Diagram

34

The 650 Bridge Chip Set

4.3.3 CPU to Memory Read-Single-Beat, Page Miss, XCAS = 1
Figure 4-4 shows a single-beat system memory read with a page miss and XCAS equals 1. This
transfer is identical to the page hit transfer shown in Figure 4-3 during cycles 0 through 2. During
cycle 2, the 653 Buffer negates MEM_PAGE_HIT# to indicate that the row address of the memory
read does not match the previous row address.

Beginning in cycle 3, the 650 Bridge inserts a RAS# access before the CAS# read access that
begins in cycle 4 during a page hit. The 654 Controller sends RASHI/CASLO high to cause the
653 Buffer to select the row address to drive onto the MEM_ADDR lines. The 654 Controller sends
RAS# high for 4 cycles, and then asserts a RAS# line to latch the row address into the DRAM.

In cycle 8, the 654 Controller sends RASHI/CASLO low to cause the 653 Buffer to drive the col­
umn address onto the MEM_ADDR lines. The address propagates to the DRAM during cycle 9.

In cycle 10, the 654 Controller asserts the selected CAS# lines to begin the CAS# read access.
The rest of the transfer follows the page hit timing found in Figure 4-3.

o I 1 2 I 3 4 I 5 6 I 7 8 I 9 I 10 I 11, 12 I 13 I 14 I 15 I
CPU_CLK.

CPU_GNT# ~~_'~/~, ____ ~ ______ ~ ____ ~ ____ ~ ____ ~~ __ ~ __ ~

TBST#~ __ ' ______________________________ ------'-~
I I I

CPU_ADDR ~~ __ ~~ __ ~~ __ ~~ __ ~~ ____ ~ __ ~~I_~

TS# ~ I I '---.--C
AACK# ~
TA#--~~--~~~--~~--~~--~~~--~I ~

I I

CPU_ADDR_SEL# I \~_' ________________________________ --J~

RASHI/CASLO _~ __ ~/

BURST_CLK#

RAS# I I I

\~------~----~----~--

I \~~I ____ ~ ____ ~ ____ ~ ____ ~

MEM_ADDR _________ ~ru7~~~ __ ~ir~ow~ __ _Jw~2~~~i __ ~CQ~I_i ________ c:=:
CAS# \~~~ __ ~~'~~

MEM_DATA_SEL# I \ I ~

MEM_DATA --~~--~--~~----~----~--~'2727~7~)r:::::~~

CPU_DATA ~7;t ~77777~ ~
CPU_DATA_OE# \~~~ __ ~~ __ ~~ __ ~~ __ ~ __ ~~

WE#

B/LE_PAR_EN#

CPU_DATA_SEL#

MEM_DATA_OE#

\~_'------------'~~

Figure 4-4. CPU to Memory Read, Single-Beat, Page Miss, XCAS = 1 Timing Diagram

3S

The 650 Bridge Chip Set

4.3.4 CPU to Memory Read-Burst, Page Miss; XCAS = 1
Figure 4-5 shows a burst read from system memory with an initial page miss and XCAS = 1. The
operations performed by the 650 Bridge are identical to those in Figure 4-4 during cycles 0
through 11. The 654 Controller leaves the data and address path control signals
(CPU_ADDR_SEL#, MEM_DATA_SEL#, and CPU_DATA_OE#) asserted, effectively stretching
the transfer to accomodate the three extra beats of the burst.

In cycle 12, the 654 Controller begins a burst read, which is executed three times, once each for
beats 1,2, and 3, of the 4-beat burst (the beats are numbered 0 through 3). In this read, the 654
Controller asserts BURST _CLK# for one cycle to increment the column address presented to the
DRAM (via the CPU Address Counter in the 653 Buffer) from the beat 0 (initial) address to the
beat 1 address. At this time, the DRAM data from the beat 0 column address is still becoming valid
on the MEM_DATA lines and propagating through the 653 Buffer to the CPU_DATA lines.

In cycle 13 the 654 Controller asserts TA# for one cycle, and the 60X CPU latches in the data.
In cycle 14, the 654 Controller deasserts CAS# for one cycle. As CAS# is sent low again, the beat
1 address is latched into the DRAM, and the burst cycle begins over again.

Cycles 26 through 30 are identical to Figure 4-4 cyoles 11 through 15.

36

."
cS'
c:
"'I
CD

t
!J1
0
"C
c: -0
:s:
CD
3
0
"'I

'<
:0
CD
CD
Q.

CD
c:
"'I ~
til -....l :+
"C
CD cc
CD

:s:
iii'
~
><
0
l>
CJ)

II
-I
3'
5'
cc
c
Dr cc
"'I
CD
3

o I 23 4 5 6 7 8 9101112131415161718192021222324252627282930
I I I t I I I I I J I I I I I I I I I I I I I r I

CPU_CLK

CPU_GNT#\~~:~/ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~

TBST# ~ , ~

CPU_ADDR H i ~
, , '

TS# ~, , '-7-G
AACK# ,I '~

r-_;..... __ ;..,I I I I

TA# I ,V ,V V, ,~

MEM_PAGE_HIT#~'\~' __ ___

, , Miss '
CPU ADDR_SEL# ~ i ~

RASHI/CASLO ' I ,\...: __ _

BURST_CLK#

RAS#
_________ 'J/ ' ' \~_, __ ___

MEM_ADDR ' ¢' :row N: c~lO: isJ: col~ (Sl' 'coi2 isJi col~ : x::
CAS# \ ' f'\ n f'\ ' '"

MEM_DATA_SEL# \ ' r
. ,

MEM_DATA i "'-1 dataO ~~ datal' ~ data2 >----f\l data3 '~
'6: S $)(~ , , , , , , , , ,

CPU_DATA 3SSSSSSSVataO~atlal~ata2~data~ ~
I I I I I r I I I I r I I I

CPU_DATA_OE# , \ ' r,--,

WE#

B/LE_PAR_EN# \ ' ,.,

CPU_DATA_SEL#

MEM_DATA_OE#

--I :r
CD
m
01
o
~
a: co
CD
()
:r
"6"
W
~

The 650 Bridge Chip Set

4.3.5 CPU to Memory Write-Single-Beat, Page Hit, XCAS = 0
The 60X CPU can initiate a write of system memory by executing a store instruction with an ad­
dress range of OG to 2G. See Table 4-1.

Figure 4-6 shows a single-beat system memory write with a page hit and XCAS = O. The initial
operations performed by the 650 Bridge during cycles 0 and 1 are identical to those in Figure 4-2.
Note that the state of CPU_DATA_SEL# can not be determined from this transfer alone-it may
have been negated by the previous transaction or it may be under asynchronous control of TT[1].
See Section 7.4.3.

In cycle 1, the 60X CPU asserts TS#, CPU_ADDR[0:31], TT[0:3], and TSIZ[0:2], and drives
TBST# inactive. In response, the 650 Bridge evaluates the address, transfer type, and TBST#
signal to determine that the CPU is requesting a single-beat write of system memory.

During cycle 2, the 653 Buffer asserts MEM_PAGE_HIT# to indicate that the row address of the
memory read matches the previous row address. As a result of this signal, the 654 Controller
leaves RASHI/CASLO low, RAS# stays low, and the 650 Bridge does not update the row address
in the DRAM.

Also during cycle 2, the 654 Controller asserts CPU_ADDR_SEL#, CPU_DATA_SEL# (if it is not
already asserted), MEM_DATA_OE#, and WE# to select the CPU as the source of the address
and data for the transfer, enable the memory data bus drivers, and prepare the DRAM for a write
cycle. The 653 Buffer processes the address and propagates it to the memory controller which
selects the column address and drives it to the MEM_ADDR lines during cycle 3.

The CPU_DATA is expected to become valid at least by cycle 2, and is then propagated through
the 653 Buffer to the MEM_ADDR lines during cycle 3.

AACK# and TA# stay tri-stated until cycle 4 to avoid contentions with an L2 cache in the event
of a cache hit.

During cycle 4, the 654 Controller asserts the CAS[7:0]# lines to begin a CAS# write access.

During cycle 6, the 654 Controller asserts TA# and AACK# for one cycle, and the 60X CPU com­
pletes the memory write. The 654 Controller nagates the various control lines during cycle 7, with
the exception of CPU_DATA_SEL#, which is still under asynchronous control as long as the 60X
CPU has the bus grant.

38

The 650 Bridge Chip Set

0 1 2 3 4 5 6 7 8
CPU_CLK (C).

CPU_GNT# (C) ~ L

TBST# (C) :J , , c:::
CPU_ADDR (C) :J C

TS# (C) :J , I , C
AACK#(C)

,
\ I '----

TA# (C)
, \ I '----

I

MEM_PAGE_HIT# (C) ~ lfit L

CPU_ADDR_SEL# (C) , I
RASHI/CASLO (C)

BURST_CLK# (C)
I

X MEM_ADDR (B) W../J
RAS# (C)

CAS# (C) I \ I

CPU_DATA_SEL#(C) , L

CPU_DATA (B) (I

MEM_DATA (B) 17m: :0-
MEM_DATA_OE# (C) \ I

WE#(C) \ I
MEM_DATA_SEL#

CPU_DATA_OE#

Figure 4-6. CPU to Memory Write, Single-Beat, Page Hit, XCAS = 0 Timing Diagram

39

The 650 Bridge Chip Set

4.3.6 CPU to Memory Write-Single-Beat, Page Hit, XCAS = 1
Figure 4-7 shows a single-beat system memory write with a page hit and XCAS = 1.

The operations performed by the 650 Bridge are identical to those in Figure 4-6 during cycles 0
through 3, and as usual AACK# and TA# stay tri-stated until cycle 4.

However, since XCAS = 1 , the 654 Controller does not assert the CAS[7:0]# lines to begin a CAS#
access until cycle 5. The CAS# write begins one cycle later than it does when XCAS = 0 but it
is otherwise unchanged. Cycles 6 through 9 of this XCAS = 1 transfer are identical to cycles 5
through 8 of the XCAS = 0 transfer.

0 1 2 3 4 5 6 7 8 9
CPU_CLK

CPU_GNT# ~ L
TBST# ::J " C

CPU_ADDR ::J C
TS# ::J I C

AACK# ~ L-

TA# i ~ '--

MEM_PAGE_HIT# ~ Hit I

CPU_ADDR_SEL# \ I
RASHI/CASLO

BURST_CLK#

MEM_ADDR)(2221 colo,)I'//JI

RAS#

CAS# \ I
CPU_DATA_SEL# ~ L '

CPU_DATA CZ71 a~O(~Q :~:
MEM_DATA V77J, , dWQrdo ~ ,

MEM_DATA_OE# , I

WE# , I
MEM_DATA_SEL#

CPU_DATA_OE#

Figure 4-7. CPU to Memory Write, Single-Beat, Page Hit, XCAS = 1 Timing Diagram

40

The 650 Bridge Chip Set

4.3.7 CPU to Memory Write-Single-Beat, Page Miss, XCAS = 1
Figure 4-8 shows a single-beat system memory write with a page miss and XC AS = 1 . This trans­
fer is identical to the one shown in Figure 4-7 during cycles ° through 2-AACK# and TA# stay
tri-stated until cycle 4. During cycle 2, the 653 Buffer negates MEM_PAGE_HIT# to indicate that
the row address of the memory write does not match the previous row address.

Beginning in cycle 3, the 650 Bridge inserts a RAS# access before the CAS# write access that
would begin in cycle 4 during a page hit. This RAS# access is the same as the one executed during
read miss transfers. The 654 Controller sends RASHI/CASLO high to cause the 653 Buffer to
select the row address to drive onto the MEM_ADDR lines. The 654 Controller sends RAS# high
for 4 cycles, and then asserts a RAS# line to latch the row address into the DRAM.

In cycle 8, the 654 Controller sends RASHI/CASLO low to cause the 653 Buffer to select the col­
umn address to drive onto the MEM_ADDR lines. This address propagates through to the DRAM
during cycle 9.

In cycle 10, the 654 Controller asserts the selected CAS# lines to begin the CAS# write access.
The rest of the transfer follows the page hit timing found in Figure 4-7.

o 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11, 12, 13 , 14, 15 ,
CPU_CLK.

CPU_GNT# ~~-'~/~'----~--~~----~----~----~----~----~

TBST# ~--'-------------------------------------' ~
CPU ADDR ~------------------------------------~~

- TS# ~--, --.:....-----.:..-----.:..-----.:..-----.:..-----..:.......� ~

AACK# ,~
TA# ____ ~--__ ~JI~, --~,-~--~~--,-~~-~

MEM_PAGE_HIT# 1 I . \ 1 ___ ...J Mlss~-----------------------------, ---,........1.---.-.-
CPU_ADDR_SEL# \~~----~----~----~----~----~--~! .

RASHI/CASLO _.........----.,._....,......,/
BURST_CLK#
MEM_ADDR -~----~~y~7-7~1~I=m=w~I--~--~V~7--A-,--~I=cQ=lu=m=n~I----~-~

RAS# _____ ' ...J/ \ 1

CAS# \\.------:----'-'~
CPU_DATA_SEL# ==:==~I~~\...,.....~--...,.....-,--...,.....-,--...,.....-,--...,.....-,--...,.....-,~~~'--~'

CPU_DATA ~~,1--,1~'~7;~1=====:=====:====~====~=====:===~
MEM_DATA ____ ~ __ ~.~7~7~11 ____ ~ ____ ~ ____ ~ ____ ~ ____ ~1~~

MEM_DATA_OE# \ 1 1 r---r
WE# -~~~\~~ ____ ~----~----~----~----~--'~~

MEM_DATA_SEL#
CPU_DATA_OE# ---

Figure 4-8. CPU to Memory Write, Single-Beat, Page Miss, XCAS = 1 Timing Diagram

41

The 650 Bridge Chip Set

4.3.8 CPU to Memory Write-Burst, Page Miss, XCAS = 1
Figure 4-9 shows a burst write to system memory with an initial page miss and XCAS = 1. The
operations performed by the 650 Bridge are identical to those in Figure 4-8 during cycles 0
through 12. The 654 Controller leaves the data and address path control signals asserted, effec­
tively stretching the transfer to accomodate the three extra beats of the burst.

In cycle 13, the 654 Controller begins a burst write, which is executed three times, once each for
beats 1, 2, and 3, of the 4-beat burst (the beats are numbered 0 through 3). In this write, the 654
Controller asserts BURST _ ClK# for one cycle to increment the column address presented to the
-DRAM (via the CPU Address Counter in the 653 Buffer) from the beat 0 (initial) address to the
beat 1 address. The 654 Controller also asserts TA# for one cycle to signal the 60X CPU that the
previous data has been written.

In cycle 14, the 654 Controller deasserts CAS# for two cycles. As CAS# i,s sent low again, the
beat 1 address is latched into the DRAM, and the burst write cycle begins over again.

42

."
cO'
t: a
;
n
'tJ
c: -0
:s:
(I)

3
0
~
:e
""I
::.

.SD
m
t:

~
~

""I
tn
~

'tJ
D)

CQ
CD

:s:
iii'
~
>< n » en
II
......
-I
3'
5'

CQ

c
~'

OJ
3

o 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

CPU_CLI\:

CPU_GNT#\: /: :.

TBST# ~ , ' r-C
CPU_ADDR}.,....(, ~

TS#~ ~
AACK# " ,~

TA# " ,V' 0 V: ~
MEM PAGE HIT# -, '/'\~ '~

- - ,MISS,

CPU_ADDR_SEL#~" , ,G
RASHI/CASLO I' , \,-:-_~_---.-_____ ---:-_---.-_---:-_......,....._~_~_-:--_-:------:

BURST_CLK# I\JI I'Ll, 1\J1

MEM_ADDR VJ'row. WeolD vi coil . W c~12 ~' coB . ~

RAS# '/' '_'~ __ ~ __ ~~~~~ __ ~ __ ~ __ ~~~~~~

CAS# ,\ 'h :h' 'h :G
CPU DATA SEL# ~ , , r:=

- - I I I I I I I

CPU_DATA~' dataO ,»1, datal ,»1, data2' ,>13, data3 ,~

MEM_DATA ~ ~ataO: '>fA :datal: va 'dat~2' £;r :data3: ~
I I J I I I I I I I I I

MEM DATA_OE# ~ , , '"

WE#~: :~ , ,

MEM_DATA_SEL#

CPU_DATA_OE#

~
::J'"
CD
0')
01
o

~ c:
co
CD
()
::J'"
"6"
en
sa

The 650 Bridge Chip Set

4.3.9 CPU to PCI Write-XADIO = 1
The 60X CPU can initiate a PCI write transaction by executing a store instruction with an address
range of 2G to 4G. The exact type of PCI transaction is determined by the specific address range
within 2G to 4G. See Table 4-1.

Figure 4-11 shows a CPU to PCI bus write transaction while XADIO = 1. During CPU to PCI trans­
actions, the logic that controls the CPU interface operates in substantially the same manner as
it does during CPU to memory transfers.

References to cycle x refer to the CPU_ClK cycle labled x. The following are specific notes for
Figure 4-11 and following figures as applicable:

1. PCLOE# is clocked by the rising edge of CPU_ClK (see Figure 4-10). PCLOE#
only changes state on a rising edge of the CPU_ClK on which the PCLClK is also
rising. The signals (PCLsignal) that the PCI Specification defines relative to the PCI
clock are handled the same way.

PCI_ClK

PCLOE#,

PCLsignal

-----'

x
Figure 4-10. Timing of PCI_OE#

2. PCLOE# enters this transaction deasserted if a PCI bus master has been in control
of the PCI bus and the 650 is transferring PCI bus mastership to the CPU bus for this
transaction. If the CPU bus mastered the previous transaction (orthe bus was idle),
then PCLOE# has been asserted and is still asserted during PCLClK O.

3. PCLOE# is asserted while the 650 needs to drive address or data onto the PCLAD
bus. This occurs during CPU bus to PCI transaction address phases, CPU to PCI
write transaction data phases, and while no PCI bus master is driving the PCLAD bus
(but not during turn-around cycles). Thus during this write transaction PCLOE# is
negated by the rising edge of PCLClK 6 only if the 650 grants the bus to a PCI bus
master at the conclusion of this transaction. If the bus is not immediately granted to a
PCI bus master, PCLOE# remains asserted.

4. PCLFRAME#, PCLIRDY#, and PCLC/BE[3:0]# enter this transaction tri-stated if a
PCI bus master has been in control of the PCI bus and the 650 is transferring bus
mastership to the CPU bus for this transaction. In this case, PCLFRAME# and
PCLIRDY# are output enabled and driven high during CPU_ClK cycle two. If the
CPU bus mastered the previous transaction (or the bus was idle), then these signals
enter this transaction already output enabled and driven high.

5. If the arbiter transfers bus mastership from the 60X to a PCI bus master at the con­
clusion of this transaction, then the 650 tri-states PCLFRAME#, PCLIRDY#, and
PCLC/BE[3:0]# on the rising edge of PCLClK on which PCLTRDY# (or
PCLSTOP#) are sampled valid. If the bus is not immediately granted to a PCI bus
master, these signals remain driven (output enabled) by the 650.

44

."
cO·
c::::

"'" CD

t
...&.
...&.

0
'"C
c: -0
'"C
Q

=E
"'" ... =+ VI JD
>< » c
0
II
...&.

::!
~.
::J

(Q

C
Di"

(Q

"'" Q)

3

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CPU_CLK

CPU_GNT#_~~~/_~ __ ~~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~~ __ ~ __ ~

CPU_ADDR ~ }---;--C

TS#~ ~
AACK# I ~

TA# I ~

CPU_DATA , t1 ~
CPU_ADDR_SEL# ' \ ~

CPU _DATA_SEL# \ I

PCCSEL#

ADDRHIIDATALO

L_PCCDATA#

CPU_ADDR_OE#

CPU_DATA_OE#

\ I

PCCOE# : \(0 (2)' , (3y :
' __ ' ()I __ ' 1: __ ' ,.,1 __ ' ~' __ ' LlI __ ' ,\' __ ' r:. 1 __ ' 7' __

PCCCLI\

PCCAD n ,Addr X Data >VIIL....&.A&...-..--_

C/BE[3:0]# (4) - --:::XCOmmaildX ,Byte Ena.ble XJ5C

FRAME# 3S or Hi (4) I \ I \ 3S or Hi (5)

IRDY# 3S or Hi (4) I \ ' Il1e5) ,

TRDY# [target] 3S or Hi , \ I '-

DEVSEL# [target] 3S or Hi \ ,See PCI Specification' , I '-
,

STOP# [target] 3S or Hi I ,See PCI Specification, '-

--f
::J'"
CD
0>
01 o
~
a:
co
CD
()
::J'"
"5"
(j)
ga.

The 650 Bridge Chip Set

4.3.10 CPU to PCI Write Additional Timing Examples
Figure 4-12 shows a 60X CPU to PCI write with XADIO = 0, during which TS# is asserted across
the falling edge of PCLClK rather than across the rising edge of PCLClK. Most of the timing
diagrams show TS# asserted across a rising edge of PCLClK, but it is equally likely that TS#
will be asserted across a falling edge of PCLClK. When this happens, the 650 Bridge responds
by stretching the transaction, effectively adding a CPU_ClK wait cycle after CPU_ClK 3 to syn­
chronize the transaction to PCLClK. The rest of the transaction remains unchanged.

Figure 4-13 shows a 60X CPU to PCI write with XADIO = 1 , during which the target device asserts
a target retry (PCLSTOP# and PCLDEVSEl# asserted together). A PCI device can target retry
a transaction for various reasons. Following a target retry, the initiating device can retry the trans­
action.

46

"11
cS'
C
""I
CD

t
~

0
-a
c: -0
-a
Q

:e
""I
;:;:
~
><

~ »
.....;J c

5
II

P
0 --c:::r
CD
I» --I en
=It:
-I
3'
:i"
co
c
Dr
co
""I
I»
3

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CPU_CL~

CPU_GNT#_=,~~/ _____ ~ ____ ~ ______ ~ ____ ~ ______ ~ ____ ~ ______ ~ ____ ~ ___

CPU_ADDR J---r-< }---r--(.....L....-__

TS#~ ~'-__
, ,

AACK# I ~'----

TM I ~~--

CPU_DATA IA ------ - }--;--{\.......-_

CPU_ADDR_SEL# , \ I

CPU _DATA_SEL# \ I
PCCSEL# ------------

ADDRHIIDATALO

L_PCCDATA#

CPU_ADDR_OE#

CPU_DATA_OE#

\ I

PCCOE# (

PCCCLK

C/BE[3:0]# XCommandX' Byte Enable X __________ _

FRAME# 3S or Hi I \ r ~n_ \ 3S or Hi

IRDY# 3S or Hi

TRDY# [target] 3S or Hi

/ \ ' 1'",-1 _______ _

\ I, '''---

DEVSEL# [target] 3S or Hi' - u_---,- \ ' ,..,--- ,'-----L. __ _

STOP# [target] 3S or Hi I I "

-I :::r
CD
m
01
o
gJ
0.: co
CD
()
:::r -a0

(J)

$.

"T1
ce'
e
"'I
CD
.I::ao
I
~

0
"tJ
c: -0
"tJ
Q
:e
"'I
::;:
.!D
>< » c

". (5
QQ

II

~
"'I

CQ
CD -::D
CD -"'I '<
-I
3'
S'

CQ

c
iir

CQ
"'I
Q)

3

CPU_ADDR

TS#

AACK#

ARTRY#

TA#

CPU_DATA

CPU _ADDR_SEL#

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

:J---,--< ~

~ ~
,

I ~

r--'\-

/ ' ,~-------

fA, '>----r---G::
\ I

CPU_DATA_SEL# \ , , I

PCCSEL#

ADDRHIIDATALO

L_PCCDATA#

CPU_ADDR_OE#

CPU_DATA_OE#

PCCOE#

PCCCLK

\ I

\ I

PCCAD)40 Addr X Data)(I..o£/:.....JI.....-__ _

C/BE[3:0]# Xcommanc1X Byte Enable -XI...-_-----" __ _

FRAME# 3S wHi ' / \ / '. \ 3S Of Hi

\ I '1.L1_........--__

TRDY# [target] 3S or Hi '----

DEVSEL# [target] 3S or Hi \ ' I '--

STOP# [target] 3S or Hi I \ I '--

--I
::::r
CD
0'>
01
o
OJ
~

a:
to
.CD
()
::::r
-6"
(j)

~

o 2 3 4 5 6 7 8 9 10, 11 , 12 , 13 , 14 , 15 , 16 , 17

CPU_CL~

CPU_GNT#~ __ ~{~~~ __ ~~ __ ~~ __ ~~ __ ~~ __ ~~ __ ~~ __ ~~~

CPU_ADDRJ----(, , >---C

TS#~ ~

."
AACK# I ,~

cO"
s::: TA# I ~
'""'I
CD

t
~

CPU_DATA SAM~

CPU_ADDR_SEL# \ ~

0
"tJ

CPU_DATA_SEL# ' { , , ~

c: - PCCSEL# \ f
0 .,. "tJ

\0 Q
::0

ADDRHIIDATALO ' \ ' I

L_PCCDATA# \ f
CD
Q)
Co CPU_ADDR_OE#

-t
§" CPU_DATA_OE# \ ~

5"
co PCCOE# ' \ ' , I ' 'CO
c
Dr PCCCLI):
co
'""'I
Q) PCCAD X'2J Addr ~ X Data C
3

CIBE[3:0]# ' XCommanl 'Byte Enable X ' ------------r--
FRAME#3S or Hi : I , \ r : '3S or~i

IRDY#3S or Hi ' I ' \ ' 11u.1 __ _

, \ I '--TRDY# [target]3S or Hi , ,

, I ,'--DEVSEL# [target]3S or Hi '\ .

STOP# [target]-3-S -or-H=i~----~-------!...-7/-":""---....!...---"";""'--""':""'--~----:-''--

g- w· ~ ::TI~
Dl a..co(Q eM
ooCOO C "

~mS.CD=
;::l""" _.

(J) ~.c5 t
-U~Dl""""'O
Q~o-~"tJ
1 c-Sl)::J'"C:
(J)'< Q.. 0 -m r-+ S· :E 0
rco::J'"(J)(f)"tJ
=1:1:: ~Sl>O
o-'BcO)­
~ 00::0
CO~~rXCD
-u=h~ D)

Q o·:e ~ Co
1 Dl ~ Oa..::J'"C
r~DlO
ACO~-U
a~~O
m"""a..:::;­
"",,~CD(l)
~ (Q 00 Sl>
(J)coooP-
Dl:Ei»-I 3 _. ~ ::J'"

"C g. (Q (l)
CD S· co 0)

00",0 0

-uG)~X
Or-+G)O
1- 0 r-+ -U
-I..J:lo. 0C
:OG)..J:lo.O o. G)Sl>
-<. (J)" ~
=1:1:: co ;! s·
ococoa:
""" ::-I co Dl -uDlxr-+
02:Dlco
1_ CO 9. Dl
(J)..J:lo.r-+""O

-I
1 '< 0

......... "C -
O. (l)"""
-uz oco
=l:l::O-

Sll
r-+-ua..

~COO~ (J) r-+ - Sll
co ::J'" ~ ~
""" Dl Dl (J)
m:::~Dl a..::::r009. . co Dl _.

m9.g
01 - .
.... 0 c­
...-~'<

-;
:::r
CD
0)
01
o
~
0.:
co
CD

o
:::r "5.
en
~

The 650 Bridge Chip Set

4.3.12 pel to Memory Read-Single-Beat, Page Hit
During PCI to memory transactions, the 650 Bridge updates the PCI address latch in the 653 Buff­
eron each rising edge of the PCLClKwhileADDRHl/DATAlO is high, so in Figure 4-15, the PCI
address latch is updated on PCLClK 1. Also on PCLClK 1, the 650 Bridge samples
PCLFRAME# active, which starts the 650 Bridge PCI target cycle (assuming that the PCI bus
master is addressing system memory).

The 654 Controller sends ADDRHI/DATAlO low on PCLClK 1 to hold the PCI address in the
latch. PCLTRDY#, PCLDEVSEl#, and PCLSTOP# have been tri-stated since the beginning
of the cycle; on PCLClK 2, the 650 asserts PCLDEVSEl# to claim the transaction, and drives
PCLSTOP# and PCLTRDY# high. The 654 Controller asserts PCLOE# on PCLClK 2 to en­
able the PCLAD drivers in the 653 Buffer (the cycle between PCLClKs 1 and 2 is a turn-around
cycle (TAC) for the PCLAD lines, and some control lines). '

The 654 Controller begins a CAS# read to the memory. This CAS# read is similar to that used
when the CPU is reading system memory. The 653 Buffer drives valid data onto the PCLAD lines
in time to meet the required PCI data setup times for PCLClK 5, so the 654 Controller asserts
PCL TRDY# on PCL ClK 4. The 654 Controller then negates PCL TRDY#, PCLDEVSEl#, and
PC LSTOP#, and negates PCLOE# to tri-state the PCLAD lines. The 654 Controller tri-states
PCLTRDY#, PCLDEVSEl#, and PCLSTOP# on PCLClK 6 (see notes 1 and 2).

The 650 Bridge generates a snoop cycle on the 60X CPU bus for each PCI to system memory
transaction. In this transaction (Figure 4-15), CPU_ADDR_OE# has been asserted (see note 1),
so the 653 Buffer is driving the (translated) PCI address onto the CPU address lines. The 654
Controller asserts TS# for one CPU_ClK cycle, followed by asserting AACK# for one CPU_ClK
cycle, in compliance with 60X CPU bus snoop cycle requirements. Should either the l1 or l2
caches detect a cache hit, it must assert ARTRY# so that it is sampled valid at least by the second
CPU_ClK after it samples TS# valid, or it is not recognized.

These notes refer to Figure 4-15 and to following figures as appropriate.

1. During PCI to memory transactions, the 654 Controller drives PCLSEl#,
CPU_ADDR_OE#, and AACK# depending on two factors-the state of the transac­
tion engine and the state of the arbiter engine. Depending on the status of the system
on the rising edge of the PCLClK on which the 654 tri-states PCLTRDY# (in this
case PCLClK 6), the arbiter either removes the grant from the current PCI bus mas­
ter or that bus master retains mastership of the system. If the PCI bus master retains
the grant, the 654 leaves PCLSEl# and CPU_ADDR_OE# low, and continues to
drive AACK# high into the next cycle. If the PCI bus master is losing the grant, then
(on the rising edge of the PCLClK on which the 654 tri-states PCLTRDY#) the 654
drives PCLSEl# and CPU_ADDR_OE# high, and tri-statesAACK#. See Table 4-3.

Table 4-3. Effects of Arbiter on Three Signals

Signal pel Retains System Mastership pel Loses System Mastership

PCLSEl# Remains driven low. Is driven high.

CPU_ADDR_OE# Remains driven low. Is driven high.

. AACK# Remains driven high. Is tri-stated .

50

The 650 Bridge Chip Set

2. During PCI to memory read transactions, ADDRHI/DATALO is deasserted on the
PCLCLK that the 654 Controller tri-states PCLTRDY# (in this case PCLCLK 6). Dur­
ing PCI to memory writes, the 654 deasserts ADDRHI/DATALO one PCLCLK earlier.

3. ISA master devices can access system memory from 0 to 16M with a direct address
of 0 to 16M. See Section 5.6.1.2 and Section 5.6.1.3.

2 3 4 5 6
PCCCLK.

7

CIBE[3:0]# :::x........".=-:--J'--________ -:--_____ --:---', _____ _
TAC'

PC CAD [PCI] ---<[]AWd:wdrc:::::J----1£~----;----_;_~----;-----;----

\ I

\ I
, I

CAS# , \ ' , I '

MEM_DATA --,-~--,-~--_,--~--,-~tl~,Ss:::~::::::~,:(:}--­

PCCOE# \ ' I I I

PCCAD --~-~--~--~--~f~7~7~7ZZ727~7~7~~H~~S~SIj==':::J--~------

CPU_ADDR_OE# _____ ~ __ ---~--~----~---~----~~/~(I~,)-.--, ' ,

CPU_ADDR __ ~_X,~ __ --~$=n=oo~p~A=d=dr~y=ss~--~------~------~-----~
TS#

AACK#

ARTRY#

BILE_PAR_EN#

I~I

Snoop,

, \ (1,)

\ (I')

\~~, --~-~~-~--~--~,~I ,

Figure 4-15. PCI to Memory Read, Single-Beat, Page Hit Timing Diagram

51

The 650 Bridge Chip Set

4.3.13 PCI to Memory Read-Burst, Page Hit Then Miss
When a PCI bus master is reading from system memory in burst-mode, a page miss can occur
at any point in the transaction. Figure 4-17 shows this type of page hit and page miss activity.
During PCI to memory reads, each data phase requests up to four bytes from the 650 bridge, but
the 650 Bridge always reads eight bytes from the memory subsystem (see Figure 4-16). During
burst reads that start on an eight-byte boundary (PC'-AD[2] = 0 during the address phase), the
650 Bridge performs the following steps:

1. Reads eight bytes from memory (and generates a snoop cycle to the 60X bus),
2. Delivers the lower four bytes to the PCI for the first data phase,
3. Delivers the upper four bytes to the PCI for the second data phase,
4. Reads another eight bytes from memory (and generates a snoop cycle),
5. Delivers the lower four bytes to the PCI for the third data phase,
6. Delivers the upper four bytes to the PCI for the fourth data phase,
7. Repeats steps 4., 5., and 6. as required.

With a 2:1 CPU bus to PCI bus clocking mode, this process yields burst read performance (as­
suming no page misses) of 5-4-3-4-3-4-3-, etc.

During burst reads that start on a four-byte but not an eight-byte boundary (PC'-AD[2] = 1 during
the address phase), the 650 Bridge performs the following steps:

1. Reads eight bytes from memory (and generates a snoop cycle to the 60X bus),
2. Delivers the upper four bytes to the PCI for the first data phase,
3. Reads another eight bytes from memory (and generates a snoop cycle),
4. Delivers the lower four bytes to the PCI for the second data phase,
5. Delivers the upper four bytes to the PCI for the third data phase,
6. Repeats steps 3., 4., and 5. as required.

With a 2:1 CPU bus to PCI bus clocking mode, this process yields burst read performance (as­
suming no page misses) of 5-4-4-3-4-3-4-3-, etc ..

PC,-AD 2 =1 Address Phase

: 7654

: 715 41

3 2 1 o!:: ~~~Ory
To PCI 1 st Data Phas

7654 From
Memory

To PCI To PCI 2nd Data Phas

From
Memory

To PCI To PCI 3rd Data Phas

17 654 3 11 O~~~~Ory
To PCI 13 2 1 0 To PCI 4th Data Phas

Figure 4-16. PCI To Memory Burst Read Transaction

52

."
to'
e
(;J

t
:"'I
"tJ
Q -0

s:
(I)

3
0
~
::D
(I)
D)

P-
OJ

Ol w
e
""l
tn
~

"tJ
D)

(Q
(I)

::I:
=+
-I
::::T
(I)
::::I

s:
iii'
tn
-I
3'
S'

(Q

c
iU'

(Q
""l
D)

3

2 3 4 5 6 7 8 9 10 11 12 13 14 15

PCCCLK.
CIBE[3:0]# X£iiid:X RF '--_.....IR;u:F:...-_______________ .A-__ _

PCCAD [PCI]~.........,!.;TA!..!;;t~----------------------------
FRAME#"'\ ,/

IRDY#~ '/

TRDY# ' I '---.:...J ~

DEVSEL# ' ~
STOP# I '---

PCCSEL# 'C=
ADDRHIIDATALO ' \ ',---

MEM_DATA_SEL# \ ,---

MEM_PAGE_HIT# __ ~~~~~~~~~-~~~-~

CPU_CLI\

BURST_CLK# I \...2../ I

RASHI/CASLO ',',' I ' \,-_' ________ _
~'I' I I I I I I I

MEM_ADDR (Co urnn Address))1)/1 >£21 Column Address
I I I I

RAS# r-~--~--~_,--~--r_-+--,_--~_,--~~---+--,_~-' , ~~~~r_-+--'_~---r----~--~

CAS# '\' ,~, '\ ,~

MEM_DATA IA ' i)() 00 fA ' i)()-

PCCOE# \' ('

---------~-----"--~~--~' , PCCAD ()17'A dl/j ')f' , r!~:' =>~---..:.-, " ,_,. __ , . ,/'1,)ILl , ,

CPU_ADDR_OE# c=
CPU _ADDR:::::UC 'SUOQP Address' ,)12'71, SmQQP Address c:

TS#

AACK#

~' '\..:....I' ~

V V c:
ARTRY# Snoop' Snoop' ,---

B/LE_PAR_EN# , \ ,

~ :::r
CD
0>
01
o
gJ
a:
co
CD

a
::::T
-5-
en
m.

The 650 Bridge Chip Set

4.3.14 PCI to Memory Write-Burst, Page Miss Then Hit
During PCI to memory writes, the 650 Bridge asserts WE# on PCL ClK 2 to begin the DRAM write
operation, and asserts MEM_DATA_OE# on PCLClK 2 to enable the 653 Buffer to drive data
onto the MEM_DATA bus.

In Figure 4-18, the 653 Buffer negates MEM_PAGE_HIT# on PCLClK 2 to signal a page miss
to the 654 Controller, which then begins a RAS# access. This RAS# access is similar to the one
that the 654 Controller executes during a 60X CPU to memory page miss. After the RAS# access
completes, the 654 Controller executes CAS# writes, which are also similar to those executed
by the 654 during 60X CPU to memory writes.

t'
.-<

\0
.-<

tr)
.-<

""'" .-<

M
.-<

M
.-<

.-<

.-<

0
.-<

0'1

00

t'

\0

tr)

""'"
M

M

-

~ '*I: 'i:'

~ ~
.......... "'CI
9. "'CI

~I M co::!
'--' ~ < ~ 0 ~ u Ee. ~ u 5

U
~

- - - -

" ~
", ,,­
".­,,­
......,­,,­
~­,,­
......,­,,­
".­
".­
......,­,,­
~­,,­
......,­,,­
".-,,­
......,­,,­
".­,,­
......,­,,-

00".
..... " -

......,

" ~
" I ------------.

~ ~ ~ ~ 0 E! ~ ~ ~ ~ ~ ~ 0 0
CIl ~

:1 ~I ~ ~ CIl
~ E-- :> 1 <r:

~ 0 ~ g 0 E-- d U
CIl ::c: ~

~ ::;EI 0
0 ~

< ::;E

~
~
U
E--I
CIl
~
~
I=Q

-§-
-8

- -CIl

-§-
-8

- -CIl

-§-
-8

- -ell

- - - - -
0 ~ =1:1: =1:1: Cd
~ 0 CIl CIl ~

~ cJ CIl 0 ~ <
~I g 0

5 ::c:
CIl ~

::;E u < ~
~

~ :< ~ ~ =1:1: ~ =1:1:

o ~ 0 CIl ~ 0 0 E-- U
:<1 0 ~I

~I
< ~ H ::;EI 0 < < <r: ~ 0 ~

~I ::;E <I U
~

~ ~
::;E u

Figure 4-18. PCI to Memory Write, Burst, Page Miss Then Hit Timing Diagram

54

Section 5
The 650 Bridge Functional Description

This section describes in detail all the possible operations the 650 Bridge can perform in its role
as PCI bridge, bus arbiter, memory controller, and system resource manager.

Section 5.1 describes how the 650 Bridge controls the PCllocal bus and the 60X CPU host bus
by means of an arbiter that allocates bus access based on priority and fairness algorithms.

Section 5.2 describes the programmability of the 650 Bridge, including the SIMM mapping regis­
ters and the system setup register.

Section 5.3 describes little-endian and big-end ian addressing theory and the implementation of
this theory in the 650 Bridge.

Section 5.4 describes the operation of the memory controller including RAS# and CAS# logic for
both big-endian and little-endian addressing modes.

Section 5.5 describes the 60X CPU bus transactions that the 650 Bridge can service.

Section 5.6 describes the PCI to 650 Bridge transactions.

Section 5.7 describes the operation of the optional L2 cache.

Section 5.8 describes system errors and the methods that can be used to access and report errors
and exceptions.

5.1 The 650 Bridge Arbiter
The 650 Bridge arbiter allocates 60X CPU bus and PCllocal bus cycles. If two or more masters
are requesting the bus, their requests are latched and then granted in the following order:

'. DRAM refresh requests (up to three refresh requests can be queued, in addition
to one refresh in progress.)

• 60X CPU bus requests (instruction fetches, system memory, ROM, and PCI)
• L2 cache to 60X CPU bus requests (snoop hits on write-back cache or castouts)
• liD Bridge (a special PCI device)
• PCI bus requests (up to five additional request and grant lines)

Once a bus has been granted to a device, the 650 Bridge evaluates the bus transaction and gener­
ates the responses required for each type of bus transaction.

I

55

The 650 Bridge Chip Set

5.1.1 Arbitration Description
The 650 Bridge provides control for the PCllocal bus as a PCI initiator and as a PCI target. The
Bridge also interacts with the 60X CPU bus as both a slave and to master snoop cycles. For the
purpose of arbitration, the system is treated as a single bus system. Arbitration is designed to
ensure that only one master may control the buses at any time, with fairness as well as a timeout
counter that assists in maintaining the PCI bus latency.

The 654 Controller provides the arbitration for the 60X CPU and PCI bus as a single bus system.
Either the 60X CPU bus or the PCI bus can execute a cycle at any given time.

5.1.2 The Arbitration Fairness Mechanism
The 650 Bridge uses a bus request queue to. implement a fixed priority with fairness algorithm that
minimizes access latency on the PCI bus. When the bus request queue is empty, the 650 Bridge
queues all the currently active bus requests. The arbiter grants all the queued requests in priority
order before reloading the queue again. The bus request queue mechanism ensures that lower­
priority devices are not locked out by very busy high-priority devices.

DRAM refresh is an exception to fairness. See Section 5.1.4.

5.1.3 The Timeout Counter
All masters must be given access to the bus within the maximum latency limits of the system. A
6-bit timeout counter assists in meeting the latency limits. When the bus is granted and another
master requests the bus, the timeout counter is started (based on PCLCLK). The timeout counter
operation is suspended when IO_BRDG_HOLD# is active until the I/O bridge device drives
PCLFRAME#.

If the timeout counter counts out before a device completes its tenure on the bus, the 650 Bridge
removes the bus grant for the device.

5.1.4 Support for System Memory (DRAM) Refresh
System memory refresh can only occur when the two system buses are idle. The RE­
FRESH_REQ# signal from an external device acts as a high-level bus request, removing the'
grant from the current master. When the current master deasserts PCLFRAME# and completes
its PCI cycle, the 650 Bridge initiates refresh cycles. When refresh has been completed, all pend­
ing bus requests are granted in the same order as before the refresh was started. Up to seven
refreshes can be queued in addition to the currently operating refresh cycle.

Each time the REFRESH_REQ# signal activates, a request counter within the 650 Bridge is in­
cremented. As soon as the current bus master releases control, the 650 Bridge generates refresh
cycles until the request counter is decremented to zero. Refresh cycles take approximately 16
CPU clock cycles each and their timing is independent of the duration of the REFRESH_REQ#
signal. No other bus cycles are initiated while the refresh cycles are active. The maximum count
of the request counter is seven. Refresh does not obey the fairness rule. Refresh is always
granted ahead of any other requests as soon as the bus is available.

The device that generates REFRESH_REQ# must be programmed for a refresh interval appropri-
ate to the DRAM used in the system. .

5.1.5 Support for Cache Snooping
For PCI to system memory cycles, the 654 Controller masters the 60X CPU bus to run a snoop
cycle (to maintain cache coherency in the L 1 cache in the 60X CPU and the optional L2 cache).

56

The 650 Bridge Chip Set

If the 60X CPU or the L2 cache asserts ARTRY# because of a snoop hit, the 654 Controller termi­
nates the current PCI operation with target retry (PCLSTOP# and PCLOEVSEL# are asserted)
and the current master of the PCI bus immediately relinquishes the bus grant. The 654 Controller
then grants the bus to the 60X CPU or the L2 cache to do a write-back to system memory. When
the write-back is completed, normal priority scheduling resumes, starting with the master that lost
the bus grant due to the snoop hit (if it is requesting the bus).

5.1.6 Bus Parking
During cycles when the system buses are idle and no masters are requesting either bus, the 654
Controller arbiter parks the bus on the 60X CPU (asserts CPU_GNT#) and enables the PCLAD,
PCLC/BE[3:0]#, and PCLPAR drivers (in conformance with the PCI Specification, revision 2.0).

Parking the bus on the 60X CPU allows the 60X CPU to drive the bus with zero clock delays, as
described in the PCI Specification.

5.2 650 Bridge Programmability
The 650 Bridge has internal registers that are programmable. The 650 Bridge memory controller
requires programming for memory configuration for any memory array other than the 8M default.
The 650 Bridge setup register can also be programmed for various optional modes of operation.

The memory registers and system setup register cannot be programmed or read without corrupt­
ing system memory (DRAM). For this reason, these registers should be programmed before sys­
tem memory is initialized.

5.2.1 Programming the 650 Bridge Memory Controller
The 650 Bridge directly supports 8M and 32M, 70ns page-mode parity 168-pin SIMMs. The 650
Bridge also supports, with buffers, 4M, 8M, 16M, and 32M 72-pin industry-standard parity SIMMs.
A maximum 6f eight SIMMs can be configured for a maximum system memory of 256M. Fast
page mode'is supported. One RAS per logical SIMM is supported. The width of the memory is
eight bytes.

System memory (DRAM) is configured within the 650 Bridge by eight SIMM registers-seven
SIMM mapping registers and one SIMM top-of-memory register.

5.2.1.1 Memory Controller Configuration
External logic asserts MC_SETUP# during a PCI liD read or write cycle for memory controller
configuration. Register selection and configuration data are accessed through the CAS# lines.
See Section 5.2.3.

5.2.1.2 SIMM Mapping Registers
The memory controller within the 654 Controller contains seven SIMM mapping registers and a
SIMM top-ot-memory register. Each SIMM mapping register indicates the starting address of that
SIMM modulo 8M. The SIMM mapping register information controls the assertion of the RAS#
line corresponding to a memory address. Each SIMM mapping register consists of the following
eight bits:

MR[7:5]-The encoded address bits, the three most-significant bits in the byte

MR[4:0]-The starting address bits, the five low-order bits in the byte

The encoded address bits MR[7:5] indicate the address of the register to be accessed. Each of
these addresses corresponds to a SIMM register as shown in Table 5-1.

57

The 650 Bridge Chip Set

SIMMregister OOOb is the top-of-memory register. Each of the other seven SIMM registers is a
SIMM mapping register, associated with the like-numbered SIMM slot.

The numbering of SIMM slots begins with slot O. Since slot 0 starts with memory address
OOOOOOOOh, there is no necessity for a SIMM mapping register to indicate the starting address
for the first SIMM slot.

Table 5-1. SIMM Mapping Register Selection

Address Bits
MR[7:5] Register Name

OOOb Top-of-Memory Register

001b SIMM Mapping Register 1

010b SIMM Mapping Register 2

011b SIMM Mapping Register 3

100b SIMM Mapping Register 4

f01b SIMM Mapping Register 5

110b SIMM Mapping Register 6

111 b SIMM Mapping Register 7

5.2.1.3 SIMM Starting Address Registers
Beginning with SIMM slot 1 (the second SIMM slot), each of the SIMM mapping registers contains
the starting address for its SIMM slot, modulo 8M. For example, the value of MR[4:0] in SIMM
mapping register 1 is 00001 b if there is an 8M SIMM in slot 0 (see Table 5-2). If there is a 32M
SIMM in slot 0, the value of MR[4:0] in SIMM mapping register 1 is 001 OOb.

Table 5-2. SIMM Mapping Register Starting Addresses
MR[4:0] Starting Address MR[4:0] Starting Address

00000 OM 10000 128M

00001 8M 10001 136M

00010 16M 10010 144M

00011 24M 10011 152M

00100 32M 10100 160M

00101 40M 10101 168M

00110 48M 10110 176M

00111 56M 10111 184M

01000 64M 11000 192M

01001 72M 11001 200M

01010 80M 11010 208M

01011 88M 11011 216M

58

The 650 Bridge Chip Set

Table 5-2. SIMM Mapping Register Starting Addresses (Continued)
MR[4:0] Starting Address MR[4:0] Starting Address

01100 96M 11100 224M

01101 104M 11101 232M

01110 112M 11110 240M

01111 120M 11111 248M

5.2.1.4 SIMM Starting Address Rules
The starting address for a slot is used with the starting address for the next slot to determine the
SIMM to be activated. The formula for activating RAS[n] is as follows:

RASn = SAn ~ Address < SAn+1

where:

• RAS[n] is the RAS signal for SIMM slot n.

• SAn is the contents of the SIMM starting address register for SIMM slot n.

• SAn+1 is the contents of the SIMM starting address register for SIMM slot n+ 1.

• Address is the input address of the memory to be accessed.

• One and only one RAS[7:0]# line can be asserted for a memory read or write cycle.

5.2.1.5 SIMM Top-ot-Memory Logic
The eight bits of the SIMM top-of-memory register are encoded like the SIMM starting address
registers. The MR[7:5] address bits for the SIMM top-of-memory register are set to OOOb to ad­
dress the top of memory register. See Table 5-1 .

Program register bits MR[4:0] to represent the address of the top of system memory minus 8M.
Any memory access with an effective address above the address plus 8M generates an out-of­
range memory access. An out-of-range memory read asserts ALL_ON ES_SEL# to the 653 Buff­
er to output 64 one-bits on the data bus with normal TA# termination. For PCI bus transactions,
an out-of-range memory error terminates the current PCI transaction with a target abort
(PCLDEVSEL# deasserted and PCLSTOP# asserted).

Any address greater than or equal to 256M is hard decoded by the 654 Controller as out-ot-range.

Notice that the SIMM top-of-memory register serves as SIMM mapping register 8 for SIMM map­
ping register 7. The SIMM top-of-memory register provides the next slot comparison that is neces­
sary to activate SIMM slot 7.

5.2.1.6 SIMM Register Programming Rules
SIMM starting address registers must be programmed in ascending order. For example, do not
program slot 3 with a lower starting address than slot 2.

Missing or defective SIMMs are programmed out by making the start address of the missing or
defective slot the same as the next slot. For example, if SIMM starting address registers 2 and
3 both have 01001 b (72M) then SIMM slot 2 is inactive.

The seven SIMM registers are cleared to all zeros on power-on-reset. The SIMM top-of-memory
register is cleared on power-on-reset to all zeros, indicating one 8M SIMM installed.

59

The 650 Bridge Chip Set

5.2.1.7 Reading the SIMM Registers
When the SIMM registers are read, the MR[7:5] bits indicate the register that has been decoded
by the current read cycle. The MR[7:5] bits are incremented sequentially on each read, but soft­
ware must not expect the first read to access register address OOOb.

5.2.1.8 SIMM Starting Address Example #1
Table 5-3 shows the values of the SIMM registers if there is a 32M SIMM in slot 0 and two 8M
SIMMs in slots 1 and 2.

Using Table 5-3 and following the rule from Section 5.2.1.4, an application address of 42M is
greater than the starting address in mapping register 1, but it is also greater than the address in
mapping register 2, so mapping register 1 is not a hit. Then 42M is greater than the starting ad­
dress in mapping register 2 and less than the starting address in mapping register 3, so SIMM
slot 2 (mapping register 2) is selected.

Table 5-3. Example #1 SIMM Mapping Register Setup

Mapping Register Value of MR[4:0] Comment

Mapping register 1 OOlOOb Starting address 32M, SIMM slot 0 is 32M.

Mapping register 2 OOlOlb Starting address 40M, SIMM slot 1 is 8M.

Mapping register 3 OOllOb Starting address 48M, SIMM slot 2 is 8M.

Mapping register 4 OOllOb Starting address 48M, SIMM slot 3 is empty.

Mapping register 5 OOllOb Starting address 48M, SIMM slot 4 is empty.

Mapping register 6 OOllOb Starting address 48M, SIMM slot 5 is empty.

Mapping register 7 OOllOb Starting address 48M, SIMM slot 6 is empty.

Top-of-memory register OOlOlb 40M, top-of-memory minus 8M

5.2.1.9 SIMM Starting Address Example #2
Table 5-4 shows the value of the SIMM registers for a configuration with an 8M SIMM in slot 0,
a 32M SIMM in slot1 , an 8M SIMM in slot 2, no SIMM in slot 3, and a 32M SIMM in slot 4.

Using Table 5-4 and following the rule from Section 5.2.1.4, an address of SOM is greater than
the starting address in mapping register 1 , but it is also greater than the address in mapping regis­
ter 2, so mapping register 1 is not a hit. Mapping registers 2 and 3 are disqualified based on the
same logic. Then 60M is greater than the starting address in mapping register 4 and less than
the starting address in register 5, so SIMM slot 4 (mapping register 4) is selected and RAS[4]#
is asserted.

Table 5-4. Example #2 SIMM Mapping Register Setup

Mapping Register Value of MR[4:0] Comment

Mapping register 1 OOOOlb Starting address 8M, SIMM slot 0 is 8M.

Mapping register 2 OOlOlb Starting address 40M, SIMM slot 1 is 32M.

Mapping register 3 OOllOb Starting address 48M, SIMM slot 2 is 8M.

60

The 650 Bridge Chip Set

Table 5-4. Example #2 SIMM Mapping Register Setup (Continued)

Mapping Register Value of MR[4:0] Comment

Mapping register 4 0Ol10b Starting address 48M, SIMM slot 3 is empty.

Mapping register 5 01010b Starting address 80M, SIMM slot 4 is 32M.

Mapping register 6 01010b Starting address 80M, SIMM slot 5 is empty.

Mapping register 7 01010b Starting address 80M, SIMM slot 6 is empty.

Top-of-memory register 01001b . 72M, top-of-memory minus 8M

5.2.2 Programming The System Setup Register
Figure 5-1 shows the system setup register. Access to the system setup register uses the same
technique and data paths as accessing the SIMM mapping registers (See Section 5.2.3), byas­
serting MC_SETUP#, but with CPU_ADDR[31] high.

Most
Significant
Bit

17161514J31211101
Le ast

gnificant Si
Bit

Bus speed (Read-Only)
XC AS (Read/Write)

Timer enable (Read/Write)

ARSTR (Read/Write)

XADIO (Read/Write)

Count[2:0]

Figure 5-1. The System Setup Register

5.2.2.1 The Bus Speed Setting in the System Setup register
Bus speed is used to indicate the speed difference between the local and PCI buses. This bit is
a read-only bit. It is set two processor clocks after power-on-reset (POR). If the processor clock
is twice as fast as the PCI clock, this bit is set high. If the processor clock is equal to the PCI clock,
it is low.

5.2.2.2 The XCAS (Extended CASt) Setting in the System Setup register
XCAS extends the timing of the CAS[7:0]# lines by one additional 60X CPU bus clock cycle in
order to propagate memory data through the 653 Buffer to the 60X CPU data bus at 66MHz with
worst-case delays. This bit is read-write and set to 1 (extended) at POR. The XCAS bit can be
programmed to 0 for systems with slower CPU bus speeds.

5.2.2.3 The Timer Enable Setting in the System Setup register
The timer enable bit controls the internal 60us timeout counter used for master abort on PCI
cycles where the bus hangs. This bit is read-write and set to 1 (timer enabled) following power-on­
reset.

61

The 650 Bridge Chip Set

5.2.2.4 The ARSTR Setting in the System Setup register
ARSTR enables the 654 to precharge ARTRY# (drive it high for one CPU_ClK cycle before trisa­
taing it) on the CPU bus after a snoop hit event has occurred. This bit is read-write and set to 1
(precharge enabled) at power-on-reset. Normally only one CPU bus device is allowed to prechar­
ge ARTRY#.

5.2.2.5 The XADIO Setting in the System Setup register
" XADIO is used to delay asserting PCLIRDY# by one PCI clock during CPU write access to PCI.

This bit is read-write and set to 1 (delay PCLIRDY#) at power-on-reset. Some systems may be
able to program this bit to 0 for slightly better performance.

5.2.2.6 The Count[2:0] Counter in the System Setup register
Count[2:0] is a 3-bit internal counter that changes state for each access to the SIMM mapping
registers. These bits are read-only. The power-on state is OOOb.

5.2.2.7 Bus Speed and XC AS Settings in the System Setup register
Table 5-5 shows the possible settings for BusSpeed and recommended XCAS for various clock
speeds. (Using 70ns, 168-pin SIMMs.)

Table 5-5. System Setup Register Settings

60X CPU Local Bus PCIBus Bus Speed XCAS

25MHz 25MHz 0 don't care

33MHz 33MHz 0 don't care

40MHz 20MHz 1 0
50MHz 25MHz 1 0

66MHz 33MHz 1 1

5.2.3 "Accessing the SIMM Registers and the System Setup Register
The SIMM mapping registers and the system setup register are located inside the 654 Controller,
which is not connected to any data bus. Read and write data is passed to and from the 654 Con­
troller registers over the CAS[7:0]# lines. Figure 5-2 shows how this data path is implemented
in the example system, and Figure 5-3 shows the data paths and steering logic inside the 654.
(Note that there is a minimum time delay required from any change in MC_SETUP# to the initia­
tion of any memory or PCI bus transaction.)

62

The 650 Bridge Chip Set

(El CAS# 10 DRAM W (D) XBUS toCAS# Path

CAS Buffer XBUS
RegiSlerS~ ~' "

CAS# I t><I I DATA II I~ ~D
~~

I I "'r-- XBFR

~ CTRL 650 LOGIC
60X

60X Bus Bridge MC_SETUP# I' ADDR
'I'

CPU r---

PCI Bus I/O ISA Bus
Bus

II Bridge I
(A) Memory (B) PCI (C) ISA Bus

Cycle Transaction Cycle

Figure 5-2. 650 Register Access Pathway in the Example System

. MR[7:5] MR[4:0]
CAS[710J 7 6 5 4131211 0

I 1 ..-JF;" "'rite I
J.,-1-1 Rea.oI 1413121110~E
"'rite QA SysteM

MUX QBhl Setup

Rea.oI QC 1'1't
Register

TTT n E 765443210 I C~TR I . C B A 0 .~ 0 0 0 Top of MeM
~ 0 y 1 o 1 SIMM1 Ma.p

2 ~ 0 1 0 SIMM2 Ma.p

MCSETUP# -~ 3 ~ 0 1 1 SIMM3 Ma.p

CPU_ADDR[31J - - •
E 4 ~ 1 o 0 SIMM4 Ma.p

5 ~ 1 o 1 SIMMS Ma.p
6 ~ 1 1 0 SIMM6 Ma.p

L:j-:-
7 ~ 1 1 1 SIMM7 Ma.p

Figure 5-3. 654 Setup Register Data Paths and Steering Logic

63

"T1
to"
e:
""" CD

~
m
U1
0

:x:J
(I)

CC

!!
(I)

0\ """ ~ :E
~" -CD

=!
~"
::::J

CC

c
iii"

CC

""" m
3

Cycl~ 0 ,

CPU_CLI)::

2 , 3 , 4 , 5 , 6 ,7 8, 9 , 10, 11 , 12, 13

CPU_ADDR'"'\. ~
oJ , , , , '--'

TS# ~ ~
, , , , , , , , , , ,

,

AACK# ,

, , , , ,

TA#
,

CPU_DATA , , , , , , , , , , , , , , , , , ,
,
,

60X CPU Bus Transfer
, ,

,
, , , , , , , , , ,PCl ,Bus ;:['ransacti(!)n , , , ,

, , , , , , , , , , , , , , , , , ,
lSA Bus Cycle

, , , , , , , , , , , , , , , ,

PCCCL~

1 , I , 1 , I , 1 , I .. ' 1 , K' 1 , I , 1 , I ,
j.-X CPU CL Periods ~

~
, , 01 , I' , i ' 3' '41 ,,- 1 " I", 1 ,

,

PCCAD
,

~ Addr 'X Data
, , ,

'X
, , , , , , , , , , , ,

C/BE[3:0]# , X Cmd X ,Bvte En(j.ble , , , X ,

FRAME#
,

3S or !Hi I
,

I \
, , , , , , , , , , , ,

IRDY# 3S or Hi I , , , , , , , , , , 1\ ,

TRDY# \ 'I
, , , , , , , , , , , ,

DEVSEL# 3S or Hi , , ' subtractiiVe decode \ , , , , , ,

lSA DATA X Data - , , , , , , ,

tmc6'~
,

, , , , , , , , , , ,

CAS[7:0]#, , , , , , , , Data X
, , , , , ,

: -I
,

L
tmc5

, ,

, , , tmcl , , , tmc4 , , ,
MC_SETUP#, , \ I

-I :::r
CD
0>
01
o
~
a:
co
CD
()
:::r -CO
m
~

The 650 Bridge Chip Set

5.2.3.1 SIMM Register and Setup Register Writes
In the example system, writing to the top of memory register requires the following steps (example
system specific information is shown in italics);

1. In Figure 5-4 cycles 0 and 1, the 60X begins a store byte instruction to the correct
address, with the register data in the low-order byte (see Figure 5-2 (A)). The 650
decodes the transfer and begins pacing the 60X CPU via the CPU bus. The 654 also

, tri-states the CAS# lines, sends RASHI/CASlO high and deasserts the RAS# lines.
2. In Figure 5-4 cycle 4, the 650 begins a PCI bus single-beat memory write transaction,

to the I/O bus bridge. The I/O bus bridge decodes and claims the transaction (PCI
subtractive decode protocol) in cycle 12 and paces the 650 via the PCI bus (see
Figure 5-2 (8)).

3. The 110 bus bridge begins an ISA bus memory write cycle, and controls the X8FR
buffers (see Figure 5-2 (C)).

4. The external logic decodes the ISA bus cycle, sets the direction of the CAS# buffer,
and asserts MC_SETUP# (see Figure 5-2 (D)), which also causes the CAS# buffer to
drive the data onto CAS[7:0]#.

5. Inside the 650 (see Figure 5-3), decode logic causes the read/write MUX to pass
CAS[7:5]# to the register selector which is enabled by MC_SETUP# and
CPU_ADDR[31] both being low. This enables the selected register to latch in the data
from CAS[4:0]#. The data is latched on the rising edge of MC_SETUP#.

6. The I/O bus bridge then completes the ISA bus cycle with no wait states. The
deassertion of MC_SETUP# disables the 654 setup register steering logic and turns
off the CAS# buffer. Note that the memory controller leaves RAS#[7:0] high at the end
of this operation.

7. The 110 bus bridge then asserts TRDY# to complete the PCI bus transaction.
8. The 650 completes the PCI bus transaction and signals AACK# and TA#.
9. The 60X CPU then completes the 60X CPU bus transfer.

Table 5-6 contains the timing information referenced by the timing diagrams.

Table 5-6. SIMM Register Access Timing Chart

Symbol Description Value

tmc1 Setup, CPU_ADDR valid to MC_SETUP# fall o Min

tmc2 Delay, MC_SETUP# fall to CAS[7:0]# valid 3 CPU_ClK Max

tmc3 Output hold, MC_SETUP# rise to CAS[7:0]# invalid 2 CPU_ClK Max

tmc4 Minimum pulse width, MC_SETUP# 5 CPU_ClK Min

tmc5 Setup, CAS[7:0]# data valid to MC_SETUP# fall 4 CPU_ClK Min

tmc6 Input hold, MC_SETUP# rise to CAS[7:0]# invalid o Min

65

"11
cO"
c
"'" CD

cr
?'
0)
U'I
0

:::D
CD cc
iii" -CD

~ "'" ~ :::D
CD
Q)
c..
-I
3"
S"
cc
c
;"
cc
"'" Q)

3

Cycly 0

CPU_CLI\'

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10, 11 " 12 , 13

CPU_ADDR~ , ~

TS#,

AACK#

TA#'

L_PCCDATA#'

. CPU_DATA'

PCCCL~I

PCCAD'

C/BE[3:0]:M

FRAME#!

IRDY#,

TRDY#'

DEVSEL#

ISA_DATA'

CAS [7:0]#:

MC_SETUP#,

nable

subtr

tITlcl

nata'

60X CPU Bus Transfe , , ,

, PCI Bus rrransaction

OAS to ISA

tmc2

, \ /

--i
:::r
CD
0>
01 o
gJ
a: co
CD
()
:::r
is"
(/)

~

The 650 Bridge Chip Set

5.2.3.2 SIMM Register and Setup Register Reads
Reading the 654 Controller registers is similar to writing to them. There are two major differences:

• The buffers are turned around to transmit data to the CPU.
• During writes to the SIMM registers (and all accesses to the system setup regis­

ter), the accessed register is uniquely specified. When reading the SIMM regis­
ters, a 3-bit counter identifies the accessed register.

In Figure 5-3, the readlwrite MUX is shown passing the output of the 3 bit counter to the register
selector during read operations. The value of the counter determines which register is selected.
The state of the counter can not be set directly.

The identity of the register is hardwired into the upper three bits of each register. When the register
is read, three of the bits identify the register, and the other five bits contain the data. The 3-bit
counter is incremented at the end of each register read transaction. Performing eight reads from
the registers yields the data from all of the memory registers. This counter is set to zero during
power-on reset.

In the example system, reading a SIMM register requires the following steps:

1. In Figure 5-5 cycles 0 and 1, the 60X CPU begins a load byte instruction to the cor­
rect address (see Figure 5-2 (A)). The 650 decodes the transfer and begins pacing
the 60X CPU via the CPU bus. The 654 Controller tri-states the CAS# lines, sends
RASHI/CASLO high and deasserts the RAS# lines.

2. In Figure 5-5 cycle 4, the 650 Bridge begins a PCI bus single-beat memory read
transaction to the liD bus bridge. The liD bus bridge decodes and claims the transac­
tion (PCI subtractive decode protocol) in cycle 12 and paces the 650 via the PCI bus
(see Figure 5-2 (B)).

3. The I/O bus bridge begins an ISA bus memory read cycle, and controls the XBFR
buffers (see Figure 5-2 (C)).

4. The external logic decodes the ISA bus cycle, points the CAS# buffer toward the
XBUS, and asserts MC_SETUP# (see Figure 5-2 (D)), which also causes the CAS#
buffer to drive the data onto the XBUS.

5. Inside the 650 (see Figure 5-3) decode logic causes the readlwrite MUX to pass the
output of the 3-bit counter to the register selector which is enabled by MC_SETUP#
and CPU_ADDR[31] both being low. This selects and enables one of the registers to
drive its contents onto CAS[7:0]# (see Figure 5-5 delay tmc2). Note that CAS[7:5]#
contain the register ID bits, and CAS[4:0]# contain the register data.

6. The contents ofCAS[7:0]# now flow thru the CAS Buffer and the XBFR (see delay
CAS to ISA), and onto the ISA bus data lines. The liD bus bridge then latches the
data and completes the ISA bus cycle with no wait states.

7. The liD bus bridge then places the data on the PCLAD lines (see delay ISA to PCI),
and signals TRDY# to the 650 Bridge. External logic negates MC_SETUP#, disabling
the 654 setup register steering logic and turning off the CAS# buffer. Note that the
memory controller leaves RAS#[7:0] high at the end of this operation.

8. The 650 completes the PCI bus transaction, supplies the data to the 60X CPU, and
signals AACK# and TA#.

9. The 60X CPU th~n completes the 60X CPU bus transfer.

67

The 650 Bridge Chip Set

5.2.3.3 Register Reads in the Example System
In the example system, reading a SIMM register starts with a 60X CPU load byte operation
(TT[0:3] = 0101, TSIZ[0:2] = 001) to 60X bus address 8000 0820h. This produces a PCI bus
single-beat I/O read transaction (C/BE#[3:0] = 0010), to the I/O bus bridge (PCI address =
0000 0820h), which produces an ISAbus I/O read cycle to ISA bus address 0820h.

5.2.3.4 Register Writes in the Example System
In the example system, writing to a SIMM register starts with a 60X CPU store byte operation
(TT[0:3] = 0001, TSIZ[0:2] = 001) to 60X bus address 8000_0820h. This produces a PCI bus
single-beat I/O write transaction (C/BE#[3:0] = 0011), to the I/O bus bridge (PCI address =
0000_0820h), which produces an ISA bus I/O write cycle to ISA bus address 0820h. (Note that
the example system address of the System Setup Register is 8000 0821 h.)

5.2.4 Programming the Flash ROM Lock-Out Bit (W/O)
Writing to an address in the range of 4G - 8M to 4G (FF80 0001 h to FFFF FFFFh) with the low-or­
der bit of the CPU address set to 1 turns on the FLASH lock-out bit. Once this bit is set (to 1),
subsequent ROM write attempts are locked out and TA# is asserted to terminate the cycles. No
error indication is given. This bit can only be cleared with a power-on-reset. The initial state of the
lockout bit is unlocked (0).

5.3 Little-Endian and Big-Endian Addressing Considerations
Internally, the 60X CPU always operates with big-endian addresses, data, and instructions. A
mode bit can be set in the 60X CPU that enables a little-end ian addressing mode for CPU bus
activity. The 650 Bridge works with the little-endian mode addresses on the 60X CPU bus to pro­
duce a true little-endian memory and I/O map.

In big-endian mode the most-significant byte of a data field is stored in the lowest numbered ad­
dress of the field. In little-endian mode the most-significant byte of a data field is stored in the high­
est numbered address of the field. The 650 Bridge supports both big-endian and little-end ian ad­
dressing modes. Munging in the 60X CPU combined with byte swapping and unmunging in the
650 Bridge allows data addressing in main memory and on the PCI bus in true little-endian format.

When the 60X CPU is attempting to access system memory (DRAM), the 654 Controller decodes
TBST#, TSIZ[0:2], CPU_ADDR[29:31], and LE_MODE_SEL# to determine the proper CAS#
lines to assert for the memory transfer. For 60X CPU cycles to a PCI target, the value of PCLC/
BE[3:0]# is based on TSIZ[0:2], CPU_ADDR[29:31], and LE_MODE_SEL# to determine the PCI
byte enables to be asserted.

The PowerPC 601 RISC Microprocessor User's Manual, MPR601 UMU-02, contains a discussion
of the implications of endian modes from the perspective of the 60X CPU.

5.3.1 60X CPU Addressing in Big-Endian Mode
When the 60X CPU is operating in big-endian mode, all addresses and data pass through the 650
Bridge without byte swapping or unmunging; The system memory representation and the PCI bus
representation of data is big-en.dian.

5.3.2 60X CPU Address Munging in Little-Endian Mode
When the 60X CPU is operating in little-end ian mode, CPU_ADDR[29:31] is munged as shown
in Table 5-7. A different XOR value is used for one-byte, two-byte, and four-byte transfers. Eight­
byte transfers do not munge or unmunge CPU_ADDR[29:31].

68

The 650 Bridge Chip Set

The combinations in Table 5-7 that are marked n/a are unaligned transfers that cause alignment
exceptions in the 60X CPU and therefore do not generate 60X bus cycles.

Table 5-7. CPU_ADDR[29:31] Munging for Little-Endian Mode

CPU_ADDR[29:31] l-byte 2-bytes 4-bytes a-bytes
before munge XOR 111 XOR 110 XOR 100 (no change)

000 111 110 100 000

001 110 n/a n/a n/a

010 101 100 n/a n/a

011 100 n/a n/a n/a

100 011 010 000 n/a

101 010 n/a n/a n/a

110 001 000 n/a n/a

111 000 n/a n/a n/a

5.3.3 650 Bridge Address Unmunging in Little-Endian Mode
The 653 Buffer unmunges the address produced by the 60X processor as shown in Table 5-8.

Note that the unmunge of the three low-order CPU address lines is the same when the CPU ad­
dresses the PCI as it is when the CPU addresses system memory or ROM. In the cases of
memory and ROM the transform has no effect in the 653 Buffer. A similar transform in the 654 .
Controller determines which bytes are addressed during memory writes and which byte enables
are asserted during PCI transactions.

Table 5-8. Three Low-Order Address Bit Unmunge

TSIZ[0:2] Big-Endian Mode Little-Endian Mode

000 none none

001 none XOR 3 low-order bits with 111

010 none XOR 3 low-order bits with 110

011 none N/A

100 none XOR 3 low-order bits with 100

101 none N/A

110 none N/A

111 none N/A

69

The 650 Bridge Chip Set

5.3.4 Byte Swapping for Endian Compatibility
The 653 Buffer uses a byte swapper to reverse the order of bytes read or written by the CPU when
the 650 is in little-endian mode. The action of the byte swapper combined with the unmunging of
the low-order bits of the effective address, results in data storage in system memory in true little­
endian order. (Also see Section 5.3.8.)

The storage location of single byte loads and stores is unaffected by the endian selection. A single
byte written or read to address 0000 1 013h always goes to that memory location, regardless of
the current endian mode.

In little-endian mode, transfers of half-words, words, and double-words result in a reversal of the
bytes within the half-word, word, or double-word. Table 5-9 illustrates this byte swapping. As
shown in the table, the bits within individual bytes are not swapped. The byte swapper examples
in Table 5-9 are reversible-output from the 60X CPU (store instructions) is exactly reversed or
swapped back for input (load instructions).

Table 5-9. Endian Formats from the Byte Swapper

Data in the 60X CPU Big-Endian Output Little-Endian Output

ABCDh ABCDh CDABh

12345678h 12345678h 78563412h

12345678 9ABC DEFOh 1234 5678 9ABC DEFOh FODE BC9A 7856 3412h

5.3.5 Unmunging and Byte Swapping for System Memory or PCI Writes
The 650 Bridge is designed to implement a memory model that stores big-endian and little-end ian
data in system memory or to the PCI bus in an exact representation of the required endian mode.
Little-endian data is stored in little-end ian mode and big-end ian data is stored in big-endian mode.
Therefore, data read from or written to external media, like disk drives, does not require any extra
manipulation. The following examples in this section illustrate the process of little-endian data ma­
nipulation.

The 60X CPU and the 650 Bridge cooperate through munging, byte swapping, and unmunging
to organize the system memory in little-endian mode. In little-endian mode, the 60X CPU munges
the three low-order address bits to send the bytes to the correct byte lanes in the byte swapper
in the 650 Bridge. The byte swapper then swaps the eight-byte CPU data bus. The byte swap
restores the data to the byte lanes where it was prior to the munge, and the unmunge restores
the correct address for the memory write.

The sequence of operations is as follows:

1. The address is munged by the 60X CPU to place the data in the correct byte lanes for
the byte swapper.

2. The byte swapper swaps the data, placing the reversed bytes back at their original
address range.

3. The unmunger restores the address to its original value so that the swapped bytes
can be accessed from the output side of the byte swapper.

70

The 650 Bridge Chip Set

5.3.5.1 An Example of a One-Byte Little-Endian Store Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-endian mode, a one-byte store instruction executed by the 60X CPU can cause
the following steps to occur:

1. The 60X CPU executes a store byte instruction-store 3lh to OlOb.
2. The effective address is XOR'd with 111b to-store 3lh to 10lb.
3. The 650 Bridge swaps the bytes as shown in Figure 5-6.
4. The 650 Bridge XOR's the effective address with 111b to OlOb.
5. The 654 Controller asserts CAS[2]# (see Table 5-12) or PCLC/BE[2]# (see

Table 5-18 in Section 5.5.3.6).
6. The byte 31 h is written to 01 Ob.

Note that the same instruction executed in big-endian mode also writes to 01 Ob. Single byte reads
and writes are stored in exactly the same addresses in big-endian and little-endian modes.

Byte
MEM DATA Unmunged

or PCLDATA Address
Munged Swapper

CPU_ADDR . CPU_DATA 7 .. 0
6 • 1

101b --..... 31h ----I ... 5 • 2 ----.. 31 h ------I... 010b
4 • 3
3 • 4
2 • 5
1 • 6
o • 7

Figure 5-6. Byte Swapper Operation for Example of a Store Byte Instruction

5.3.5.2 An Example of a Two-Byte Little-Endian Store Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-end ian mode can only occur within an eight-byte double word. If the
system is in little-end ian mode, a two-byte store instruction executed by the 60X CPU can cause

. the following steps to occur:

1. The 60X CPU executes a store half-word instruction-store 3132h to OlOb.
2. The effective address is XOR'd with 110b to-store 3l32h to lOOb.
3. The 650 Bridge swaps the bytes as shown in Figure 5-7.
4. The 650 Bridge XOR's the effective address with 110b to OlOb.
5. The 654 Controller asserts CAS[2]# and CAS[3]# (see Table 5-12) or PCLC/BE[3]#

and PCLC/BE[2]# (see Table 5-18 in Section 5.5.3.6).
6. The two bytes 32h and 31 h are written to 01 Ob and 011 b respectively.

Note that the same instruction executed in big-endian mode also writes to 01 Ob and 011 b, but the
two bytes are written in big-endian mode-31 hand 32h respectively.

71

The 650 Bridge Chip Set

Byte

MEM_DATA Unmunged
or PCLDATA Address

Munged
Swapper

CPU_ADDR CPU_DATA 7 .. 0
6 .. 1

101b • 32h .. 5 • 2
----1.~ 32h • 01 Ob

100b • 31h .. 4
• 3

---.. 31h • 011b
3 • 4
2 .. 5
1

• 6
0 • 7

Figure 5-7. Byte Swapper Operation for Example of a Store Half-Word Instruction

5.3.5.3 An Example of a Four-Byte Little-Endian Store Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-end ian mode, a four-byte store instruction executed by the 60X CPU can cause
the following steps to occur:

1. The 60X CPU executes a store word instruction-store 3l323334h to lOOb.
4. The effective address is XOR'd with 100b to-store 3l323334h to OOOb.
3. The 650 Bridge swaps the bytes as shown in Figure 5-8.
4. The 650 Bridge XOR's the effective address with 1 OOb to lOOb.
5. The 654 Controller asserts CAS[4]#, CAS[5]#, CAS[6]# and CAS[7]# (see

Table 5-12) or PCLC/BE[3]# through PCLC/BE[O]# (see Table 5-18 in Section
5.5.3.6).

6. The four bytes 34h, 33h, 32h, and 31 h are written to 100b, 101 b, 11 Ob,and 111 b re-
spectively.

Note: The data doubler within the 653 Buffer places the four-byte output on both halves of the
64-bit output bus so that the PCLC/BE[3:0] gets the data regardless of which four-byte word is
addressed. See Appendix C.

Note that the same instruction executed in big-end ian mode also writes to 1 OOb through 111 b, but
the four bytes are written in big-endian mode-31 h, 32h, 33h, and 34h respectively.

Byte

7
Swapper

0 ..
6 .. 1

Munged 5 .. 2 MEM_DATA Unmunged
CPU_ADDR CPU_DATA

4 • 3
or PCLDATA Address

011 b • 34h • 3 • 4 • 34h. • 100b
010b • 33h • 2 • 5 • 33h • 101b
001b • 32h • 1

• 6
• 32h • 110b

OOOb • 31h ~ 0 • 7
• 31h • 111 b

Figure 5-8. Byte Swapper Operation for Example of a Store Word Instruction

72

The 650 Bridge Chip Set

5.3.5.4 An Example of an Eight-Byte Little-Endian Store Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-endian mode, an eight-byte store instruction executed by the 60X CPU can
cause the following steps to occur:

1. The 60X CPU executes a store floating-point double instruction-
store 31323334 35363738h to OOOb.

2. The effective address is not XOR'd for an eight byte store--:-
store 31323334 35363738h to OOOb.

3. The 650 Bridge swaps the bytes as shown in Figure 5-9.
4. The 650 Bridge does not XOR .the effective address-o a Ob .
5. The 654 Controller asserts all of CAS[7:0]# (see Table 5-12). This transaction cannot

occur on the PCI bus because PCI can only accept up to four-byte transfers.
6. The eight bytes 38h, 37h, 36h, 35h, 34h, 33h, 32h, and 31 h are written to OOOb

through 111 b respectively.

Note that the same instruction executed in big-endian mode also writes to OOOb through 111 b, but
the eight bytes are written in big-endian mode-31 h, 32h, 33h, 34h, 35h, 36h, 37h, and 38h re­
spectively.

Byte Memory
CPU_ADDR CPU_DATA Swapper MEM_DATA Address

111 b .. 38h .. 7 ~ 0 .. 38h .. OOOb
110b .. 37h ~ 6 .. 1 .. 37h .. 001b
101b .. 36h .. 5 .. 2 .. 36h .. 010b
100b .. 35h .. 4 .. 3 .. 35h .. 011b
011b • 34h .. 3 • 4 • 34h .. 100b
010b .. 33h .. 2 .. 5 .. 33h .. 101b
001b • 32h • 1 .. 6 .. 32h .. 110b
OOOb • 31h • 0 .. 7 .. 31h .. 111 b

Figure 5-9. Byte Swapper Operation for a Store Floating-Point Double Instruction

5.3.6· Unmunging and Byte Swapping for System Memory and PCI Reads
For 60X CPU system memory reads in little-end ian mode, the munging and byte swapping occur
exactly as they do for system memory writes. (See Section 5.3.5.) The 650 Bridge reads eight
bytes from system memory regardless of the size of the transfer, therefore CAS[7:0]# is always
0000 OOOOb for a 60X CPU system memory read. PCI reads are a maximum of four bytes aligned
in a word (the The data doubler within the 653 Buffer places the four-bytes on both halves of the
64-bit bus (see Appendix C). The TSIZ[0:2] and CPU_ADDR[29:31] signals determine the byte
lanes that are accessed by the CPU.

The following examples apply equally whether the read data is directly from system memory or
from a cache or from PCl,ln each case, the bytes are swapped before they reach the 60X CPU.
In the case of cached data, the bytes were. swapped at the time the data cache was originally
stored in the cache. This means that cached data is byte-swapped, including instruction fetches.

73

The 650 Bridge Chip Set

5.3.6.1 An Example of a Two-Byte Little-Endian Load Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-end ian mode, a two-byte load instruction executed by the 60X CPU can cause
the following steps to occur:

1. The 60X CPU executes a two-byte load instruction-load half-word at OlOb.
2. The effective address is XOR'd with 110b to-load half-word at lOOb.
3. The system memory is read based on CPU_ADDR[0:28]. CAS[7:0]# is all asserted.
4. The 650 Bridge swaps the bytes as shown in Figure 5-10.
5. The two bytes are in big-endian order as 31 hand 32h.

Note that the same instruction executed in big-end ian mode also reads addresses 01 Ob and 011 b,
but the two bytes are read unswapped from 01 Ob and 011 b in big-endian mode-31 hand 32h
respectively-because the data is stored in memory in big-endian mode (the byte swapper is not
active when the 650. Bridge is in big-end ian mode). Cached data is read correctly because the
64-bit double-words are byte swapped as they are loaded into the cache.

Memory
Address

OOOb
001b
010b
011b
100b
101b
110b
111 b

DATA
---•• xxh
---.~ xxh
---.~ 32h
---.~ 31h
---•• xxh
---•• xxh
---•• xxh
---•• xxh

Byte
Swapper

---.~ 0 • 7
---..1 ~6
------.. 2 ~ 5
---'·3 .4
---'·4 .3
---..5 .2
---'·6 ~1

---'·7 .0

Munged
CPU_ADDR CPU_DATA

--.. 101b ~ 32h
--.~ 100b ~ 31h

Figure 5-10. Byte Swapper Operation for Example of a Load Half-Word Instruction

5.3.6.2 An Example of a Four-Byte Little-Endian Load Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-end ian mode can only occur within an eight-byte double word. If the
system is in little-end ian mode, a four-byte load instruction executed by the 60X CPU can cause
the following steps to occur:

1. The 60X CPU executes a four-byte load instruction-load word at lOOb.
2. The effective address is XOR'd with 100b to-load word at OOOb.
3. The system memory is read based on CPU_ADDR[0:28]. CAS[7:0]# is all asserted.
4. The 650 Bridge swaps the bytes as shown in Figure 5-11 .
5. The four bytes are in big-end ian order as 3th, 32h, 33h, and 34h.

Note that the same instruction executed in big-endian mode also reads 100b through 111 b but
the bytes are stored and therefore read back in big-end ian order.

74

The 650 Bridge Chip Set

Memory
Address

OOOb
001b
010b
011b
100b
101b
110b
111b

MEM_DATA
• xxh
• xxh
• xxh
• xxh
• 34h
• 33h
.. 32h
• 31h

• 0
• 1
• 2
• 3
• 4
• 5
• 6
• 7

Byte
Swapper

.. 7

• 6
• 5

Munged

• 4
CPU_ADDR CPU_DATA

.. 3 • 011b • 34h

.. 2 • 010b • 33h

• 1 • 001b • 32h
.. 0 • OOOb • 31h

Figure 5-11. Byte Swapper Operation for Example of a Load Word Instruction

5.3.6.3 An Example of an Eight-Byte Little-Endian Load Instruction
In the following example, the addresses of data only refer to the low-order three bits of an address
because byte swaps in little-endian mode can only occur within an eight-byte double word. If the
system is in little-endian mode, an eight-byte load instruction executed by the 60X CPU can cause
the following steps to occur:

1 . The 60X CPU executes an eight-byte load floating-point double instruction-
load double word at OOOb.

2. The effective address is not XOR'd-load double word at OOOb.
3. The system memory is read based on CPU_ADDR[O:28]. CAS[7:0]# is all asserted.
4. The 650 Bridge swaps the bytes as shown in Figure 5-'-12.
5. The eight bytes are in big-end ian order as 31 h, 32h, 33h, 34h, 35h, 36h, 37h, 38h.

Note that the same instruction executed in big-endian mode also reads OOOb through 111 b but
the data bytes do not move throught the swapper.

Memory Byte
CPU_ADDR CPU_DATA Address MEM_DATA Swapper

OOOb • 38h • 0 .. 7 .. 111 b • 38h
001b .. 37h .. 1

• 6 • 110b • 37h
010b • 36h • 2 • 5 • 101b • 36h
011b • 35h .. 3 .. 4 • 100b • 35h
100b • 34h • 4

• 3 • 011b • 34h
101b • 33h .. 5 .. 2 • 010b .. 33h
110b • 32h • 6 • 1 • 001b • 32h
111 b • 31h • 7 .. 0 • OOOb • 31h

Figure 5-12. Byte Swapper Operation for Example of Load Floating-Point Instruction

5.3.7 Instruction Fetches in Little-Endian Mode
Instruction fetches in little-endian mode work transparently to byte swap instruction words as the
60X CPU requires.

75

The 650 Bridge Chip Set

5.3.8 LE_MODE_REQ# Assertion on the 654 Controller
It is the responsibility of the system designer and programmer to ensure that the endian mode
of the processor is synchronized with the endian mode of the 650 Bridge. The system designer
must provide a means for the programmer to assert LE_MODE_REQ# to the 654 Controller so
the 654 Controller can assert LE_MODE_SEL# to the 653 Buffer.

The 654 Controller samples LE_MODE_REQ# continuously, but it changes LE_MODE_SEL#
only between bus transactions, while the bus is idle. This allows the LE_MODE_REQ# signal to
be the output of an 1/0 port and guarantees that the endian selection will not change during the
bus cycle that writes to the port.

The programmer must perform the code steps necessary to cause LE_MODE_REQ# to be as­
serted when the 60X CPU is switched to little-endian mode. LE_MODE_SEL# is switched in re­
sponse to LE_MODE_REQ# when both the 60X bus and PCI bus are idle.

5.3.9 Exceptions in Little-Endian Mode
In little-end ian mode, the 60X CPU does not support a number of instructions and data alignments
that are allowed in big-endian mode. When the 60X CPU encounters one of these instructions
in little-end ian mode, it takes an internal alignment exception and does not produce an external
bus cycle.

Some of the instructions that may not be supported in little-endian mode are as follows:

Unaligned loads and stores
LMW instruction
STMW instruction
Move assist instructions (LSWI, LSWX, STSWI, STWX)

Check the documentation for your 60X CPU to determine the instructions that are not supported
in little-endian mode on your machine.

5.4 Memory Controller Operation
The memory controller supports the 60X CPU and PCI devices in both single-cycle and burst­
mode accesses. The access time to system memory varies based on the setting of the bus speed
and XCAS bits of the system setup register (see Section 5.2.2).

5.4.1 System Memory Timing
Table 5-10 shows the bus clock cycles for a variety of page hit and page miss scenarios. The first
number in each column is the number of cycles for a single 64-bit read or write cycle counted from
the assertion of TS# or PCLFRAME#. The second, third, and fourth numbers are the number of
cycles for each phase of a burst transaction. Processor to memory performance is measured in
processor clocks. PCI to memory performance is measured in terms of the PCI clock.

In the column titled Bus Speed and Extended CAS, the bus is either 1000/0 for when the CPU and
PCI buses are running at the same rate, or 50% for when the PCI bus is running at half the rate
of the CPU bus. The X under XCAS means that XCAS has no effect when the busspeed is 100%.
See Sections 5.2.2.1 and 5.2.2.2.

A page miss to memory always occurs after a DRAM refresh cycle, after a PCII/O or PCI configu­
ration cycle, after the RAS timeout, and after a memory access outside the current 4K page

76

The 650 Bridge Chip Set

boundary. During PCI burst accesses to system memory, the 654 Controller samples
CPU_ADDR[19] two 60X CPU clocks after asserting BURST _CLK# to the 653 Buffer to deter­
mine whether a page miss has occurred.

Table 5-10. DRAM Memory Timings

CPU to Memory (in CPU clocks) PCI to Memory (in PCI clocks)
Bus Speed and
Extended CAS DRAM Page Hit DRAM Page Miss DRAM Page Hit DRAM Page Miss

Bus XCAS Write Read Write Read Write Read Write Read

100% X 5-3-3-3 5-3-3-3 10-3-3-3 10-3-3-3 8-.7-7-7 8-3-6-3 12-7-7-7 12-3-6-3

50% 0 6-4-4-4 6-4-4-4 12-4-4-4 12-4-4-4 5-4-4-4 5-3-4-3 8-4-4-4 8-3-4-3

50% 1 7-5-5-5 7-5-5-5 13-5-5-5 13-5-5-5 5-4-4-4 5-3-4-3 8-4-4-4 8-3-4-3

5.4.2 60X CPU to System Memory Burst-Mode Counting
60X CPU bursts to and from system memory use a linear count within a 32-byte cache sector.
These bursts are initiated by the L 1 cache for the purpose of filling or writing a 32-byte cache sec­
tor. The memory cycle can begin with any 8-byte double-word within a 32-byte aligned cache sec­
tor. (A cache sector always begins with an address that is a multiple of thirty-two.) After the first
cycle of the burst, subsequent 8-byte double-words are transferred within a circular address range
for the 32-byte cache sector. For example:

1. The 60X CPU requests a burst read beginning at address 0000 0010h.

2. The 650 Bridge transfers eight bytes from system memory address 0000 001 Oh.

3. The 650 Bridge increments the address to 0000 0018h and transfers eight bytes.

4. The 650 Bridge increments the address to 0000 OOOOh and transfers eight bytes.

5. The 650 Bridge increments the address to 0000 0008h and transfers eight bytes.

Notice that in step 4 the 650 Bridge incremented the address within the 32-byte sector. The 60X
CPU expects burst transfers to and from system memory to follow this logic.

5.4.3 PCI to System Memory Burst Mode Transfers
PCI bursts to system memory count sequentially from the beginning address of the burst and can
continue indefinitely.

PCI bursts to and from system memory (DRAM) are supported without special restrictions. PCI
bursts can start at any byte address and end at any byte address. The 650 Bridge arbitration logic
ensures that the PCI device does not hog the bus.

The memory controller monitors CPU_ADDR[29] and the byte enable signals on PCI_C/BE[3:0]#
to determine the bytes to transfer. The memory controller samples CPU_ADDR[19] two 60X CPU
.clocks after asserting BURST _CLK# to the 653 Buffer to determine whether a page miss has oc­
curred. The 653 Buffer places the translated PCI address on the 60X address bus during this op­
eration.

The PCI specification allows the PCLC/BE[3:0]# byte enables to change on each data phase.
PCI devices use this feature of the PCI specification on the first or last transfer of a burst. The
memory address increments by four on each beat of the PCI burst, therefore all intermediate
beats of a burst contain four bytes of data.

77

The 650 Bridge Chip Set

5.4.4 System Memory Parity Generation and Checking
The 653 Buffer continuously generates parity for the memory data lines. The parity bits are
latched and written when the 653 Buffer writes data to memory.

The 653 Buffer continuously checks parity on the memory data lines, driving MEM_PAR_GOOD
continuously based on the current data. The 654 Controller samples MEM_PAR_GOOD at the
appropriate time in the memory read cycle to verify parity and assert MEM_PAR_ERR# if a valid
error occurs.

The parity of data read from the l2 cache is checked by means of the DPE# signal from the 60X
CPU. See Section 5.7.3.

5.4.5 RAS# and CASt Address Assignments
When the 654 Controller asserts CPU-ADDR_SEl# to the 653 Buffer, the address presented to
the memory address output pins depends on the input signals DRAMX9HI/X1 OlO and RASHII
CASlO. If RASHI/CASlO is low then a CAS# address is presented and if it is high a RAS# ad­
dress is presented. Table 5-11 shows the MEM_ADDR[12:0] values that are asserted from the
653 Buffer internal address bus (which is numbered in little-endian order), depending on the value
of DRAMX9HI/X1 OlO and RASHI/CASlO.

DRAMX9HI/X10l0 provides support for X9 and X10 memory SIMMs. This signal comes from
system logic or a strapping pin. The 650 Bridge does not control or dynamically switch this signal.

Table 5-11. RAS and CAS Address Assignments

DRAMX9HII RASHII Cycle
X10LO CASLO Type Internal address gated to MEM_ADDR[12:0]

1 1 RAS ADDR[23:12]

1 0 CAS 0, 0, 0 ADDR[11 :3]

0 1 RAS ADDR[24:13]

0 0 CAS 0, ADDR[24], ADDR[12:3]

5.4.6 RAS[7:0]# Line Selection of SIMM Slots
Section 5.2.1.2 explains how the SIMM memory registers are configured to control assertion of
the RAS[7:0]# lines. Each SIMM slot has a corresponding RAS[7:0]# line. RAS[7]# corresponds
to SIMM slot 7. RAS[O]# corresponds to SIMM slot 0, etc.

Section 5.2.1.4 discusses the SIMM starting address rules. See Section 5.2.1.8 for examples of
how the SIMM slots are selected based on the SIMM starting address registers.

5.4.7 RAS Timeout Counter
The 654 Controller has an internal counter that controls the maximum time that any RAS# line
is active. Each time any RAS# line is asserted, the counter is reset and begins to count. When
the timeout is reached, the memory controller deasserts the active RAS# between cycles. The
timeout periods are as follows:

• When the PCI and CPU clock periods are the same-224 CPU bus clocks
• When the PCI clock period is twice the CPU clock period-400 CPU bus clocks

If the system clocks are to be run more slowly, it is necessary to consider the maximum RAS active
time specification for the DRAMs used in the system.

78

The 650 Bridge Chip Set

5.4.8 SOX CPU to System Memory CAS[7:0]# Generation
. Table 5-12 shows the CA8[7:0]# lines that are asserted for a 60X CPU write to memory based

on TSIZ[0:2], LE_MODE_8EL#, and CPU_ADDR[29:31]. A 60X CPU read from system memory
is always eight bytes, therefore CA8[7:0]# is always 0000 OOOOb for a 60X CPU memory read.

In Table 5-12 the column titled CPU_ADDR[29:31] Before Unmunge is the address that comes
from the CPU before any unmunging by the 650 Bridge. In little-endian mode, the column titled
Internal ADDR[2:0] After Unmunge is the result in the 653 Buffer of the unmunging operation, and
the CAS# assertion in little-endian mode matches the unmunged address (see Section 5.3).

The following notes apply to Table 5-12.

1. Does not occur on 60X bus because 60X bus cycles never span a double word.
2. Causes alignment exception internally in the 60X and does not occur on the 60X bus.
3. Not supported by the 650 Bridge-causes a transfer type error.

All entries that do not contain values in Table 5-12 are non-word-aligned transfers that generate
transfer type errors or internal CPU exceptions. For example, T8IZ[0:2] settings of 101 b, 11 Ob;
and 111 b (five, six, and seven bytes) are not allowed. Transfers of five, six, or seven bytes can
only come from non-double-word aligned double floating-point instructions, so non-double-word
aligned double floating-point instructions are not supported. Note that floating-point load and store
instructions must be word-aligned in 603 and 604 CPUs as specified in the PowerPC Architecture.

Without exception all alignments of word or half-word loads and stores as well as all move multiple
and string instructions to memory are supported in big-endian mode. Programmers should note
that unaligned move multiple instructions are not supported on 603 or 604 CPUs.

All transfers must be at natural alignments in little-end ian mode orthe 60X CPU generates internal
alignment exceptions. Also, move multiple and string instructions are not supported in the 60X
CPU in little-end ian mode.

Note that most instruction execution is from the 60X CPU internal cache, and cache misses al­
ways cause memory to be read or written in burst mode. Therefore, alignment restrictions only
apply to non-cached data. As long as the data and instructions are in cached pages, any align­
ments which the 60X CPU supports are allowed by the 650 Bridge.

79

The 650 Bridge Chip Set

Table 5-12. CAS[7:0]# Assertion for 60X CPU Writes to System Memory

CPU_ADDR[29:31] Big-Endian Internal ADDR[2:0] Little-Endian
TSIZ[O:2] Before Unmunge ·CAS[7:0]# After Unmunge CAS[7:0]#

001b 000 11111110 111 01111111
one byte 001 11111101 110 10111111

(XOR 111b)
010 11111011 101 11011111

011 11110111 100 11101111

100 11101111 011 11110111

101 11011111 010 11111011

110 10111111 001 11111101

111 01111111 000 11111110

010b 000 11111100 110 00111111
two bytes 001 11111001 (2)

(XOR 110b)
010 11110011 100 11001111

011 11100111 (2)

100 11001111 010 11110011

101 10011111 (2)

110 00111111 000 11111100

111 (1) (2)

011b 000 11111000 (2)
three bytes 001 11110001 (2)

010 11100011 (2)

011 11000111. (2)

100 10001111 (2)

101 00011111 (2)

110 (1) (2)
/

111 (1) (2)

100b 000 11110000 100 00001111
four bytes 001 11100001 (2)

(XOR 100b)
010 11000011 (2)

011 10000111 (2)

100 00001111 000 11110000

101 (1) (2)

110 (1) (2)

111 (1) (2)

101b xxx (3) (2)

110b xxx (3) (2)

111 b xxx (3) (2)

OOOb xxx 00000000 xxx 00000000
eight bytes not applicable not applicable

80

The 650 Bridge Chip Set

5.4.9 PCI to System Memory CAS[7:0]# Generation
The PCI specification allows the PCLC/BE[3:0]# byte enables to change on each data phase.
The memory controller asserts the CAS[7:0]# signals based on CPU_ADDR[29] (PCLAD[2]) and
PCLC/BE[3:0]# during each data phase of the PCI burst access to system memory.

PCI reads and writes to system memory are independent of big-endian and little-endian mode.
Neither munging or unmunging or byte swapping have any effect on PCI to system memory trans­
actions. Therefore, the endian mode of the PCI device is preserved in the memory representation
of the data from that device.

For a PCI burst transfer to system memory, the memory controller detects crossings of DRAM
page boundaries and initiates the proper RAS and CAS memory cycles.

5.4.9.1 PCI Read from System Memory
A PCI read from system memory always reads eight bytes even though the PCI device may be
reading less than eight bytes, therefore CAS[7:0]# is always OOOOOOOOb for a PCI read from sys­
tem memory. PCLAD[2] determines whether the high or low 32-bit word of the memory data bus
is transferred to the PCLAD[31 :0] bus. PCI_C/BE[3:0] then determines which of the four bytes
from system memory the PCI device actually reads.

5.4.9.2 PCI Write to System Memory
For a PCI write to system memory, PCLAD[2] serves to identify whether the bytes fall within the
high or low 32-bit word of the 64-bit memory data bus. The 653 Buffer actually asserts the 32-bit
PCLAD lines on both the high and low halves of the memory data bus. The CAS[7:0]# values
then determine the bytes that are actually written to system memory. Table 5-13 shows the
CAS[7:0]# settings for PCI writes to system memory.

Table 5-13. CAS[7:0]# Assertion for PCI Writes to System Memory

PCLAD[2] = 0 PCLAD[2] = 1
PCI_C/BE[3:0]# CAS[7:0]# CAS[7:0]#

1111 * 11111111 11111111

1110 11111110 11101111

1101 11111101 11011111

1100 11111100 11001111

1011 11111011 10111111

1010* 11111010 10101111

1001 11111001 10011111

1000 11111000 10001111

0111 11110111 01111111

0110 * 11110110 01101111

0101 * 11110101 01011111

0100 * 11110100 01001111

81

The 650 Bridge Chip Set

Table 5-13. CAS[7:0]#.Assertion for PCI Writes to System Memory (Continued)

PCLAD[2] = 0 PCI_AD[2] = 1
PCI_C/BE[3:0]# CAS[7:0]# ··CAS[7:0]#

0011 11110011 00111111

0010 * 11110010 00101111

0001 11110001 00011111

0000 11110000 00001111

* These byte enables are not normally produced by PCI devices.

5.4.10 System Memory Control Signals-BE_PAR_EN# and LE_PAR_EN#
The parity control signals-BE_PAR_EN# and LE_PAR_EN#-are asserted during a valid
memory read cycle based on the state of LE_MODE_SEL#. These signals can be used to gate
the parity bits from memory to the proper CPU data parity lines. BE_PAR_EN# is asserted during
big-endian mode and LE_PAR_EN# is asserted during little-endian mode. Appendix B shows an
example of how to arrange these connections.

5.5 The 60X CPU Bus Cycles
The 654 Controller and 653 Buffer provide the control bridge for the 60X CPU to access system
memory (DRAM), system ROM, the error address register, and PCI devices on the PCI bus. 60X
CPU addresses from 0 to 256M access system memory in 1-byte to 8-byte single-beat transfers
or 32-byte burst transfers. (System memory is actually mapped from 0 to 2G, butthe 650 Control­
ler can only map up to eight 32M SIMMs $0 the maximum memory address is 256M.)

60X CPU addresses from 2G to 3G can be translated to PCIIIO, PCI configuration, or PCI inter­
ruptacknowledge transactions on the PCI bus in the range of 0 to 1 G. 60X CPU addresses from
3G to 4G can be translated to PCI memory transactions on the PCI address bus in the range of
o to 1 G. All accesses to PCI space must be single-cycle accesses with sizes of 1,2,3, or 4 bytes
that do not cross a 32-bit word boundary.

Table 4-1 shows the mapping the 650 Bridge performs for addresses from the 60X CPU. The
table lists all the possible transactions that can occur as a result of the 60X CPU asserting an ad­
dress and transfer type TT[0:3] on ,the CPU bus.

5.5.1 Data Transfers on the SOX CPU Bus
This section describes 60X CPU operations that are common whether the target is system
memory, PCI, or ROM.

5.5.1.1 Transfer Start (TS#) and Transfer Acknowledge (TA# and TEA#)
A 60X bus device cannot assert transfer start (TS#) until the 654 Controller grants the address
bus (either CPU_GNT# or L2_CACHE_GNT# is asserted). The 654 Controller does not support
pipelining bus transactions-AACK# is not asserted until the last TA#. However, pipelining by an
L2 cache is supported by allowing assertion of AACK# one processor clock prior to the last TA#.

Successful completion of the 60X transaction results in a transfer acknowledge (TA#) asserted
to the CPU. Unsuccessful completion (parity error, illegal transfer size, or illegal alignment) results
in a transfer error acknowledge (TEA#). See Section 5.8 for error conditions.

82

The 650 Bridge Chip Set

5.5.1.2 60X CPU Transfer Types-TI[O :3]
Table 5-14 shows all the possible transactions, based on TT[0:3], that the 60X CPU can assert
on the host bus. As the table shows, only two of these transactions can be initiated by the 650
Bridge when it masters the CPU bus for snoop cycles.

The 650 Bridge ignores TT[4], the XFERDAT signal.

The individual TT[0:3] transfer type signals are decoded as follows:

• TT[O], special operations. The 654 Controller decodes this signal and TT[2] for two spe­
cial instructions-eciwx and ecowx. The 650 asserts 64 one-bits on the 60X CPU data
bus for eciwx.

• TT[1], read operations. The 654 Controller initiates a read operation when this signal is
asserted (set to 1), a write operation when it is deasserted (set to 0).

• TT[2], invalidate caches. This signal is interpreted with TT[O] to initiate special cycles for
the eciwx and ecowx 60X CPU instructions.

• TT[3], address-only operations. When TT[3] is deasserted (set to 0) the cycle is address­
only and the 654 Controller responds with AACK#.

Table 5-14. TI[O:3]-Transfer Type Codes on the 60X CPU Host Bus
650 Can

TT[0:3] 60X Bus Mnemonic 650 Bridge Operation Initiate?

OOOOb Clean sector Address only, the 650 asserts AACK# N

OOOlb Write with flush Write cycle Y

OOlOb Flush sector Address only, the 650 asserts AACK# N

OOllb Write with kill Write cycle N

OlOOb sync Address only, the 650 asserts AACK# N

OlOlb Read Read cycle y

OllOb Kill sector Address only, the 650 asserts AACK# N

Oilib Read with intent to modify Read cycle N

lOOOb - (Reserved) Address only, the 650 asserts AACK# N

lOOlb Write with flush atomic Write cycle N

lO10b External control out (ecowx) The 650 asserts AACK# and TA# (This instruction is not N
supported by the 650 Bridge)

lOllb - (Reserved) Write cycle N

1100b TLB invalidate Address only, the 650 asserts AACK# N

l10lb Read atomic Read cycle N

1110b External control in (eciwx) 650 asserts 64 one-bits on data bus, AACK#, and TA# N
(This instruction is not supported by the 650 Bridge)

llllb Read with intent to modify atomic Read cycle N

83

The 650 Bridge Chip Set

5.5.1.3 CPU Address-Only Access
A 60X address-only access is normally t~rminated by the assertion of AACK#. No error is gener­
ated for address-only transactions. No memory or PCI cycles are generated.

5.5.1.4 ECIWX and ECOWX
The 650 Bridge does not support these transaction types. It does not produce an exception, and
terminates the cycles by asserting AACK# and TA#. On an eciwxtransaction, the 650 Bridge as­
serts 64 one-bits on the CPU data bus.

5.5.1.5 CPU Address Alignments
The 60X family of processors supports both big-endian and little-endian addressing modes. The
654 Controller also supports these two addressing modes. When the processor accesses system
memory, the 654 Controller decodes TBST#, TSIZ[0:2], CPU_ADDR[29:31], and
LE_MODE_SEL# to determine which CAS# lines to assert. During processor-mastered cycles
to a PCI target, decode is based on TSIZ[0:2], CPU_ADDR[29:31], and LE_MODE_SEL# to de­
termine the PCLC/BE[3:0] byte enables that must be asserted.

The 654 Controller supports 1, 2, 3, 4, 8-byte, and burst accesses as shown in Table 5-15.

Table 5-15. 654 Controller Transfer Sizes From the 60X CPU

Transfer Size To Memory ToPCI

1-byte supported supported

2-byte supported cannot cross a 4-byte boundary

3-byte supported cannot cross a 4-byte boundary (the
60X CPU does not produce 3-byte

transfers in little-endian mode)

4-byte supported cannot cross a 4-byte boundary

8-byte supported no 8-byte transfers

32-byte burst supported no burst

5.5.2 60X CPU to System Memory (DRAM) Cycles
System memory (DRAM) reads and writes can be initiated by the 60X CPU and by PCI devices.
All system memory reads and writes by the 60X CPU are snooped by the L2 cache. System
memory reads and writes by PCI devices are snooped by both the L 1 and L2 caches.

The 60X CPU initiates system memory reads and writes by mastering the host bus and asserting
TT[0:3], the transfer type, TTSIZ[0:2], the transfer size, TBST#, the transfer burst signal, and
CPU_ADDR[00:31] for the required address.

5.5.2.1 60X CPU to System Memory TSIZ[O:2] and TBST#Encoding
The 654 Controller supports single-beattransfers to system memory of 1 , 2, 3, 4, and 8 bytes as
well as 32-byte burst transfers. Transfers to PCI targets must be four bytes or less (no burst trans­
fers from the 60X CPU to the PCI bus are allowed). Table 5-16 shows the valid TBST# and
TSIZ[0:2] encodings for 60X CPU to system memory cycles.

Illegal combinations of TSIZ[0:2] and CPU_ADDR[29:31] are detected and an error cycle is gen­
erated as defined in Section 5.8.

84

The 650 Bridge Chip Set

Table 5-16. 60X CPU to System Memory Size Alignment

TBST# TSIZ Size Big-Endian Support Little-Endian Support
[0:2]

1 001 1 byte All accesses supported All accesses supported

1 010 2 byte All accesses supported All accesses supported

1 011 3 byte All accesses supported Not generated by CPU

1 100 4 byte All accesses supported All accesses supported

1 101 5 byte Not supported. TT _ERR# asserted Not generated by CPU.

1 110 6 byte Not supported. TT _ERR# asserted Not generated by CPU.

1 111 7 byte Not supported. TT _ERR# asserted Not generated by CPU.

1 000 8 byte Double-word aligned Double-word aligned

0 xxx 32 byt Supported Supported

5.5.2.2 Summary of CPU Read and Write System Memory Characteristics
The following characteristics apply to 60X CPU reads and writes of system memory.

• Valid addresses range from 0 to 256M (top of real memory is programmable).

• Memory accesses above top-of-memory terminate with TA#-no error is generated.

• On a read above top-of-memory, 64 one-bits are returned.

• The CPU can read or write system memory in single-beat mode.

• Transfer sizes of 1, 2, 3, 4, or 8 bytes are supported.

• The CPU can read or write system memory in burst mode.

• Transfer size of 32 bytes is supported (four beats of eight bytes).

• Each eight-byte beat must be double-word aligned.

• Successful completion of a memory cycle results in a TA# asserted to the CPU.

• Unsuccessful completion (parity error or illegal transfer size) results in a TEA# and an
error bit is asserted as follows:

• MEM_PAR_ERR# is asserted for a parity error.

• TT _ERR# is asserted for size and alignment errors.

• The error address is latched in the 653 Buffer.

5.5.3 60X CPU to PCI Cycles
60X addresses from 2G to 3G are translated to addresses on the PCI address bus in the range
of 0 to 1 G. 60X addresses from 3G to 4G are also translated to addresses on the PCI address
bus in the range of 0 to 1 G. When transfer start (TS#) is asserted with an address in the PCI ad­
dress range, the 654 Controller initiates a PCI transaction on the PCI bus in conformance with
the PCI standard described in the PCI Local Bus Specification, Revision 2.0.

85

The 650 Bridge Chip Set

During the address phase, the 654 Controller asserts the remapped PCI address onto
PCLAD[31 :0] with PCLFRAME# and a PCI bus command based on the 60X transfer type. Dur­
ing the data phase (after the target asserts PCLDEVSEL#), the 654 Controller deasserts
PCLFRAME#, asserts PCLIRDY#, and drives the byte enables based on the 60X address and
the current endian mode.

5.5.3.1 Valid 60X CPU to PCI Transactions
A 60X transfer to PCI address space must be a single-beat transfer of one to four bytes that does
not cross a word boundary. The following 60X CPU to PCI transactions are possible.

• CPU read or write PCI configuration space (type 0 only)

• CPU read or write PCIIiO space

• CPU read or write PCI memory

• CPU read of PCI interrupt acknowledge vector

5.5.3.2 Termination Responses for 60X CPU to PCI Transactions
Successful completion terminates with a TA#. Unsuccessful completion results in a TEA# for the
following cases:

• PCI Master abort due to system timeout (no PCLTRDY# response within 60us after
PCLDEVSEL#)

• PCI master abort-no target responds with a PCLDEVSEL# to the current PCI bus
transaction initiated by the 654 Controller. Except on PCI configuration cycles where a
read returns 64 one-bits and a write terminates with no error.

• PCI target abort-target responds to the current PCI bus transaction, initiated by the 654
Controller, by deasserting PCLDEVSEL# and asserting PCLSTOP#.

5.5.3.3 PCI Target Retry
If a PCI target responds with a target retry (PCLDEVSEL# and PCLSTOP# asserted) to the cur­
rent PCI bus transaction, the 654 Controller asserts address retry (ARTRY#) on the 60X CPU bus.

5.5.3.4 PCI_C/BE[3:0]#-PCI Bus Command/Byte Enable Generation
The bus commands and byte enables for the PCI bus are multiplexed on four lines of the PCI bus
(PCLC/BE[3:0]#). During the address phase of the PCI bus (ADDRHI/DATALO asserted high),
the bus command for the current transaction is asserted. During the data phase of the PCI bus
(ADDRHI/DATALO negated low), the byte enables for the current data transfer are asserted.

5.5.3.5 60X CPU to PCI Bus Commands
The 654 Controller generates bus commands based on a decode of CPU_ADDR[0:8] and, for PCI
interrupt acknowledge or read error address, CPU_ADDR[19]. The 654 Controller maps address­
es on the 60X CPU host bus from 0 to 2G as system memory (DRAM) reads and writes. Address­
es from 2G to 4G are mapped as PCI cycles, system ROM reads and writes, or memory parity
error address reads. The four PCI cycles are as follows:

• PCI Interrupt Acknowledge

• PCII/O

• PCI Memory

• PCI Configuration (type 0 only)

86

The 650 Bridge Chip Set

Table 5-17 shows the PCI bus commands that the 654 Controller asserts on the PCLC/BE[3:0]#
lines during the address phase of a CPU to PCI bus transaction. The value of TT[1], a CPU trans­
fer type bit, determines whether the PCI cycle is a read or a write.

Table 5-17. 60X CPU to PCI Bus Commands

TT[1]
60XAddress PCI Cycle (Read=1) PCL C/BE[3 :0]#

2G to 2G + 8M liD Cycle 1 0010

0 0011

2G + 8M to 2G + 16M Configuration Cycle 1 1010

0 1011

2G + 16M to 3G - 8M liD Cycle 1 0010

0 0011

3G - 8M to 3G Interrupt Acknowledge 1 0000

(CPU_ADDR[19] = 1) 0 not allowed

3G to 4G -8M Memory Cycle 1 0110

0 0111

5.5.3.6 PCI Byte Enables
During the data phase of the PCI bus transaction, the 654 Controller individually asserts the
PCL C/BE[3:0]# lines to enable each of the four corresponding bytes of the PCLAD bus. To deter­
mine the byte enables, the 654 Controller decodes the CPU transfer size, TSIZ[0:2], the lower
two bits of the CPU address, CPU_ADDR[30:31], and the endian mode select, LE_MODE_SEL#.

One- to four-byte transfers are supported and decoded as shown in Table 5-18. A byte lane is
enabled when its PCLC/BE[3:0]# line is zero. In Table 5-18, xxxx indicates an illegal transfer at­
tempt. The 654 Controller supports one-byte to four-byte transfers to the PCI bus that do not cross
a 32-bit word boundary.

Table 5-18. PCI Byte Enables for PCLC/BE[3:0]#

CPU_ADDR[30:31] . CPU_ADDR[30:31]
Big-Endian Mode (LE_MODE_SEL#=1) Little-Endian Mode (LE_MODE_SEL#=O)

TSIZ[0:2] 00 01 10 11 00 01 10 11

001 (1) 11101 1101 1011 0111 0111 1011 1101 1110

010 (2) 1100 1001 0011 xxxx 0011 1001 2 1100 xxxx2

011 (3) 1000 0001 xxxx xxxx 0001 2 10002 xxxx2 xxxx2

100 (4) 0000 xxxx xxxx xxxx 0000 xxxx2 xxxx2 xxxx2

1) All entries are PCLC/BE[3:0]#. Bytes are enabled by 0 in PCLC/BE[3:0]#.

2) Does not occur from 60X CPU.

87

The 650 Bridge Chip Set

5.5.3.7 Transfer Size Parameters for the PCI Bus
The 654 Controller supports 1-, 2-, 3-, and 4-byte accesses to the PCI bus as follows:

• All single-byte accesses are supported.
• Two-byte and three-byte accesses that do not cross word (32-bit) boundaries.
• Four-byte accesses that are word-aligned (32-bits) to the PCI bus.
• Eight-byte accesses are not allowed to the PCI space.

5.5.4 60X CPU to PCI Interrupt Acknowledge Cycles
When the 60X CPU executes a memory read from 3G - BM to 3G with CPU_ADDR[19] = 1, the
654 Controller generates a PCI interrupt acknowledge transaction, and then returns the interrupt
vector that is asserted on the PCI bus by the interrupt controller.

In the event of an asynchronous system error (NMLREQ# and some L2 cache data parity errors)
the 654 Controller generates an interrupt to the CPU. When the CPU reads the interrupt acknowl­
edge address (BFFF FFFOh), the 654 Controller terminates the cycle with a TEA# (if
MASK_ TEA# is not asserted) and asserts 64 one-bits onto the CPU data bus. In this case, no
PCI interrupt acknowledge cycle is generated. See Section 5.B.

5.5.5 60X CPU to Read Error Address Cycles
When the 60X CPU executes a memory read from 3G - BM to 3G with CPU_ADDR[19] = 0, the
654 Controller asserts ERR_ADDR_SEL# to the 653 Buffer to return the address that was saved
when the system error occurred. This access also resets TT _ERR# and MEM_PAR_ERR# sig­
nals.

The read error address cycle does not produce a PCI transaction.

5.5.6 60X CPU to System ROM Cycles
The 650 Bridge implements a boot ROM access system which minimizes pin and package count
while still allowing the use of byte-wide devices on an B-byte data bus. The 650 Bridge design is
optimized for a 120ns flash memory device, but any EEPROM, non-volatile RAM, EPROM,
PROM, ROM, PCMCIA, or combination of devices meeting the timing requirements can be de­
signed in at the system level. A method is provided for writing flash ROM or other read/write de­
vices. System ROM can contain the POST and BOOT code and vital product data for the system.

Figure 5-13 shows how system ROM addresses and data are transferred overthe PCLAD[31 :0]
lines. Although connected to the PCLAD lines, the system ROM is not a PCI agent. The 654 Con­
troller keeps the ROM from interfering with PCI bus transactions by deasserting the ROM control
signals during PCI transactions. Also, the 654 arbiter will not grant the bus to any PCI agent while
ROM cycles are in progress,. The 654 Controller does not assert any PCI control signals
(FRAME#, etc.) during system ROM transfers and therefore no PCI devices are affected by the
system ROM activity. PCI bus masters are unable to access the system ROM.

PCI_AD[31 :0]
[23:0]

System ROM

Address
653 Control 654

Buffer [31 :24] Controller
Data

Figure 5-13. ROM Connections

88

The 650 Bridge Chip Set

5.5.6.1 ROM Addressing
During ROM reads, system ROM is linearly mapped to CPU memory space from 4G-BM to 4G
(FFBO OOOOhto FFFF FFFFh). Since the 60X CPU begins fetching instructions at FFFO 01 OOh
after a reset, the most convenient way to use a 512k device as system ROM with the 60X CPU
is to use it from 4G-1 M (FFFO OOOOh) to 4G. This is implemented by connecting PCLAD[1B:0]
to ROM_A[1B:0] with no translation, which places the ROM 0 address at CPU memory addresses
FFBO OOOOh, FFBB OOOOh, FF90 OOOOh, ... , FFFO 0000, FFFB OOOOh. Connected like this, the sys­
tem ROM is aligned with 4G - BM, but with alias addresses every 512K up to 4G.

Writing to flash ROM is a specialized cycle. A CPU memory write to any even address in the range
4G - BM to 4G initiates a ROM write cycle.

5.5.6.2 ROM Access Data Sizes and Alignments
ROM read cycles ignore transfer size (TSIZ[0:2]) and alignment (CPU_ADDR[29:31]). The 653
Buffer begins by forcing the low-order three bits of the address to oobb, then reads the ROM eight
times, incrementing the ROM address by one for each read. The eight bytes read from ROM are
accumulated into a single 64-bit double word which is then driven onto the CPU data bus.

Only 4-byte memory write cycles (store word) are supported to the ROM. One of these bytes is
used as data, and the other three are used as addressinformation. Burst writes are not supported.

5.5.6.3 Single-Beat ROM Reads
If TBST# is not asserted during the ROM read cycle, the 650 Bridge executes a single-beat ROM
read operation. This operation delivers eight bytes of ROM data to the CPU. The 650 begins by
reading ROM data starting at the address to which the CPU memory access has been mapped.
The 650 places that byte into a shift register that reads out onto the 60X data bus. The 650 then
increments the value of the ROM address lines, and shifts that byte into the shift register; which
pushes the first byte over one byte. The 650 continues this pattern until B bytes have been read
out of the ROM and driven onto the 60X data bus. The 654 Controller then asserts AACK# and
TA# for one CPU_ClK cycle and the 60X CPU completes the transfer.

5.5.6.4 Burst ROM Reads
The PowerPC 601 microprocessor begins instruction fetching in burst mode after a reset (the 603
CPU and 604 CPU do not come up with burst mode enabled). To support burst mode, the 650
Bridge operates in a pseudo burst mode, which supplies the same eight bytes of data (from the
ROM) to the CPU on each beat of a 4-beat burst.

A burst ROM read begins with the 654 Bridge executing a single-beat ROM read operation, which
assembles eight bytes of ROM data into a double word on the CPU data bus. For a single-beat
read, the 650 Bridge then asserts TA# and AACK# for one CPU_ClK cycle, and the 60X CPU
completes the transfer. For a burst ROM read however, the 654 Bridge asserts TA# for four
CPU_ClK cycles, with AACK# asserted on the fourth cycle. The same data remains asserted on
th~ CPU data bus for all four of the data cycles.

89

The 650 Bridge Chip Set

5.5.6.5 Programming the ROM Boot For 601 Burst Reads
To construct the bootstrap portion of the code that is required for use with the 601 CPU pseudo
burst mode ROM reads described in Section 5.5.6.4, the first part of the system ROM can be
coded as follows:

Instruction 1
Branch to instruction 2
No-op
No-op
No-op
No-op
No-op
No-op
Instruction 2
Branch to instruction 3
6 No-ops
Instruction 3
Branch to instruction 4
etc.

The six no-op instructions serve as filler for the unexecuted phases of the burst reads of the sys­
tem ROM. The no-op codes are not transferred during the burst read, only the first two instructions
(64 bits) are read and then passed four times to the 601 CPU during a startup burst read of system
ROM.

When enough instructions have been executed, the bootstrap code can turn off the 601 cache,
and the remaining ROM data can be read contiguously as single-beat reads.

5.5.6.6 60X CPU to Flash ROM Write Cycles
The 650 Bridge decodes a CPU store word to any even address from 4G - 8M to 4G (ex. FFFF
FFFO) as a flash ROM write cycle. The three low-order bytes of the CPU data word are driven
onto the ROM address lines, and the upper byte is driven onto the ROM data lines. Only single
beat, four-byte write transfers (store word) are supported-bursts are not supported. For exam­
ple, a store word instruction with data=OOABCDEF woutd write EF to ROM location OOABCD.

5.5.6.7 Effect of Endian Mode on ROM Writes
Writes to flash ROM can be performed while the system is in either big-endian orlittle-endian
mode. During ROM writes, the data byte swapper and the address unmunger are controlled ac­
cording to endian mode, but the address unmunging (in little-end ian mode) has no effect on the
placement of the data because the CPU_ADDR[29:31] bits are ignored. Therefore software must
reverse the byte significance of the data and addresses encoded into the store instructions for
little-endian mode. In little-end ian mode, the data must be aligned at CPU_DATA[24:31] and the
address (byte swapped) at CPU_DATA[00:23] before the store word instruction is executed.

5.5.6.8 Flash ROM Protection
The 650 Bridge decodes a CPU write to any odd address from 4G - 8M to 4G as a flash ROM
write lockout cycle. For example; a write to FFFF FFF1 h locks out subsequent flash ROM writes.
Writing any datato this port address locks out all flash ROM writes until the power is turned off
and back on. In addition, flash ROM devices can have the means to permanently lockout sectors
by writing control sequences. Flash ROM specifications contain details.

90

The 650 Bridge Chip Set

5.5.7 60X CPU to System ROM Detailed Operation
As shown in Figure 5-14 and Figure 5-17, the address and address attribute signals in the exam­
ple system (see Appendix B) flow from the 60X CPU into the 654 Controller, which decodes these
signals and issues the appropriate control signals. The data flow during writes is from the CPU,
through the 653 Buffer, and onto the PCLAD lines to the ROM. During reads, the data flow is from
the ROM onto the PCLAD lines, through the 653 Buffer into the CPU. The address flow during
ROM reads is from the CPU, through the 653 Buffer, and onto the PCLAD lines to the ROM. Dur­
ing writes, the address from the CPU does not flow to the ROM-the ROM address is encoded
in the data that the CPU writes to ROM space, as explained below.

The following discussion assumes that the system is operating in big-endian mode, which is typi­
cally the case during ROM transfers. Differences in the operation of the system in little-endian
mode are noted but not usually detailed in the example operations. A full understanding of the 653
Buffer is also helpful-see Appendix C.

C

654
Controller

r---~...., AoIoIress

60X
CPU Do.to.

C (Control)
~--------------------------~C

AoIoIress
...-t-------------~A

PCI_AD[2310J

Do.to.
'-t-------------~D

PCI_AD[31124J

ROM

1) CPU AoIoIress UnMunger
2) PCI Do. to. Multiplexor

3) Input side CPU Do. to.
Byte Lo.ne Swo.pper

Figure 5-14. CPU to ROM Write Address and Data Flows

5.5.7.1 ROM Write Detailed Operation
A flash memory (ROM) write operation occurs as the result of a 60X CPU store word instruction
to any CPU bus location in the address range FF80 OOOOh through FFFF FFFEh while A31 = O.
For example, FF80 0010h writes to ROM, but FF80 0011 h does not. As shown in Figure 5-14,
during a ROM write in the example system the 653 Buffer does not forward the information from
the CPU bus address lines to the ROM address lines. Instead, the information from the CPU data
bus is split into two fields. The upper byte iswritten into the ROM as data, and the low-order three
bytes are used to address the ROM.

As shown in Figure 5-14, the data from the CPU flows into the 653 Buffer, into the input side CPU
data byte lane swapper, which reverses the byte order in little-endian mode, but does not affect
the byte order in big-endian mode. This CPU data is sent to the PCI output multiplexers. Since
this is not a PCI cycle, the multiplexers are set to drive the PCI bus only with the data taken from
the CPU bus (there is no address phase). Four bytes of the eight-byte CPU data bus are selected
to be driven onto the PCLAD bus, and the ordering of the selected bytes depends on CPU ad­
dress bit A[29] (big-endian) and the endian mode of the system (see Table 5-19 and Table 5-20).

91

The 650 Bridge Chip Set

CPU_GNT#~~_' __ '~/_, ______________________________________ ___

CPU_ADDR
TS#~--~ , ~~~~~~--~~~~~--~~~~~--~~-

,\...J ,
AACK~--~~~~~~--~~~~~~--~~~~~~, ~

,

TA#'-------------------------" ~

,-"'"--~-'....., , r
CPU_ADDR_SEL~ , \~ __ ~ __________ ~ __________ --__ --__ ----~.

CPU_DATA_SELIf: \ ' : I

, \~-' ------~------------------------~' ~ ,

ADDRHIIDATALO , \'--,_~_...:....-_ __:...__~_---.;.. _ ____: __ ~__J' ~

ROM_CS~--~~~~:~\~ ________ ~--__ ~ __ ~ ____ ~ __ ~ __ ~' ~

ROM_WElt

PCCAD[31:0] ______J[1L2..L)1..L-_' ______________________ ~' C

PCCSEL'M

Figure 5-15. CPU to ROM Write Timing Diagram

Figure 5-15 shows the signals involved in a ROM write operation. The CPU initiates the transfer
by asserting TS#. The 654 Controller decodes the required operation and asserts
CPU_ADDR_SEl# and CPU_DATA_SEl# on the CPU_ClK that TS# was sampled valid. On the
next CPU_ClK, the 654 Controller asserts ROM_SEl# and ADDRHI/DATAlO to the 653 Buffer
and asserts ROM_CS#. These signals open the appropriate data and address pathways in the
653 Buffer and select the ROM. The 654 Controller asserts ROM_WE# from the sixth to the tenth
CPU_ClK cycle after TS#, and then asserts AACK# and TA# to the CPU on cycle 15 to end the
transfer.

92

The 650 Bridge Chip Set

Table 5-19. ROM Write Data Flow in Big-Endian Mode

CPU store word to x-x xOxOb in big-end ian CPU store word to x-x x1 xOb in big-end ian
Mode. Not munged CPU A[29] = o. Not unmunged Mode. Not munged CPU A[29] = 1. Not unmunged

pcLaddr_out[2] = O. 653 after swapper data bus pcLaddr_out[2] = 1. 653 after swapper data bus
[31 :0] selected for output to PCLAD[31 :0]. [63:32] selected for output to PCLAD[31 :0].

CPU DATA After PCLAD ROM CPU DATA After PCI_AD ROM
Swapper Signal Swapper Signal

0:7 7:0 7:0 A[7:0] 0:7 7:0 not used not used

8:15 15:8 15:8 A[15:8] 8:15 15:8 not used not used

16:23 23:16 23:16 A[23:16] 16:23 23:16 not used not used

24:31 31 :24 31 :24 D[7:0] 24:31 31 :24 not used not used

32:39 39:32 not used not used 32:39 39:32 7:0 A[7:0]

40:47 47:40 not used not used 40:47 47:40 15:8 A[15:8]

48:55 55:48 not used not used 48:55 55:48 23:16 A[23:16]

56:63 63:56 not used not used 56:63 63:56 31 :24 D[7:0]

Table 5-20. ROM Write Data Flow in Little-Endian Mode

CPU store word to x-x xOxOb in little-endian CPU store word to x-x x1 xOb in little-endian
Mode. Munged CPU A[29] = 1. Unmunged Mode. Munged CPU A[29] = o. Unmunged

pcLaddr_out[2] = O. 653 after swapper data bus pcLaddr_out[2] = 1. 653 after swapper data bus
[31 :0] selected for output to PCLAD[31 :0]. [63:32] selected for output to PCLAD[31 :0].

CPU DATA After PCLAD ROM CPU DATA After PCLAD ROM
Swapper Signal Swapper Signal

0:7 63:56 not used not used 0:7 63:56 31 :24 D[7:0]

8:15 55:48 not used not used 8:15 55:48 23:16 A[23:16]

16:23 47:40 not used not used 16:23 47:40 15:8 A[15:8]

24:31 39:32 not used not used 24:31 39:32 7:0 A[7:0]

32:39 31 :24 31 :24 D[7:0] 32:39 31 :24 not used not used

40:47 23:16 23:16 A[23:16] 40:47 23:16 not used not used

48:55 15:8 15:8 A[15:8] 48:55 15:8 not used not used

56:63 7:0 7:0 A[7:0] 56:63 7:0 not used not used

93

I.. 13 CPU_ClK ·1· 14 CPU_ClK + 14 CPU_ClK + 14 CPU_Cl

CPU_CL~ -I I 1 I 1 I 1 I 1 I I I 1 I 1 J 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 J 1 I 1 I J
TBST#

CPU_ADDR'

TS#

,ill I AACK#
____ ~ ____ ~ __ 'JI I --~-,--~

c
~

CD ______________ J,.----,--
«11 TA#

I -en

~ I CPU_ADDR_SEL~ \~'~~~~~---~~---~~~---~~---~~~---~~-
S'

I\~:---~~---~~---~~--~~---~~--~---~~---~~
cc
21 CPU_DATA_OE~
D)

\,C
cc
~

~ ~I ROM_CS#,

0

~I ROM_OE#
0

~I s: ROM_SEL#

:a
ml a. 'BURST_CLK#

PCCAD[23:0], : I : 'W' : x~x'OOpOb: I ': '~' x~x 0P01b: t3: x~~ 001:0b' ~x~x 0011
I I I I I I I t I I I I I I I

PCCOE#' ,
I

PCCAD[31:24]: I : I : ~~~ ~a: :~ :bb: :~ :cc: :&~

CPU_DATA ' , : (: : X : : X : : X :----'--_
xxxx-xxxx-xxxx-xxxx aaxx-x-x bbaa-x-x ccbb-aaxx

-i
~
CD
m
01 o
gJ
0:

<0
CD
()
~

is"
en
~

The 650 Bridge Chip Set

5.5.7.2 ROM Read Detailed Operation
Figure 5-16 and Figure 5-18 show a complete ROM read timing diagram. A ROM read operation
occurs as the result of a CPU memory read to CPU bus address range 4G"": 8M to 4G. Once the
650 Bridge has detected the correct combination of CPU address and address attribute signals,
it starts the ROM read engine, doing eight one-byte reads from the ROM, stacking up the eight
bytes in a shift register, and then transfering the eight-byte double word to the CPU, all of which
takes 117 CPU_ClK cycles for a single-beat CPU transfer. If the operation is a four-beat burst
read transfer, such as a 601 CPU does at power up, the same eight-byte double word is trans­
fered four times to the CPU, which takes three more CPU_ClK cycle$ for a total of 120 clock
cycles.

Figure 5-16 shows the signals involved in a ROM read operation starting at ROM address x-x
OOOOb, which is initiated as the CPU begins a memory read from a CPU bus address mapped to
ROM space (4G - 8M to 4G) by asserting TS#. The 654 Controller asserts ROM_CS# and
ROM_OE# to the ROM, and asserts CPU_ADDR_SEl#, CPU_DATA_OE#, and ROM~SEl# to
the 653.

As shown in Figure 5-17, during a ROM read in the example system (see Appendix B), the ad­
dress information flows into the 653 Buffer, which flows the address through the CPU address
unmunger, the ROM read burst counter, and the CPU burst counter. The address then flows out
of the 653 Buffer onto PCLAD[23:0], and then to the ROM. The unmunger operates normally,
but does not actually affect the address presented to the ROM, due to the operation of the ROM
read burst counter, as discussed below. The CPU burst counter is also notused, since onlyone
eight-byte double word is actually accessed, even during a four-beat CPU burst.

As shown in Figure 5-17, during a ROM read in the example system, the data flows from the ROM
onto the PCLAD[31 :24] lines and into the 653 Buffer, where it is stacked up in the ROM data shift
register, sent through the output side CPU data byte lane swapper (where it is byte-reversed in
little-endian mode), and then sent out of the 653 Buffer to the CPU on the CPU bus data lines.

C

654
Controller

r---:"'-....., Ael eire ss

60X
CPU Do.to.

C (Control)
~------------------------~C

Aelelress
~------------~A

PCI_AD[2310J

Do.to.
~~------------~D

PCI_AD[31124J

ROM

1) CPU Aelelress UnMunger 4) ROM Do. to. Shift Register
2) CPU Burst Counter 5) Output Siele CPU Do. to.
3) ROM Reo.eI Burst Counter Byte Lo.ne Swo.pper

Figure 5-17. CPU to ROM Read Address and Data Flows

95

"T1
c.Q"
c c;
V'
...I.

!»
::!
3
:;"

(Q

c
Dr

(Q

;;
~3

\0 0
~ "'0

c:
0
:xl
0
s:
:xl
CD
S»
.P-
o
0
3-
:;"
c
CD
c.

+ 14CPU_CLK+ 14CPU_CLK+ 14CPU_CLK+ 14CPU_CLK1

CPU_CLK I I I I I I I I I I I I I I I J I I I I J II I I I I I I I I J I I I I J 1

TBST# ~

CPU_ADDR :r
TS#

AACK# ,-- 1 v-r--:
1 1 1

TA#

CPU_ADDR_SEL# :~

CPU_DATA_OE#~'~~ __ ~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~~--J
1

. ROM_CS# ,0
ROM_OE# __ __J

ROM_SEL# __ ~------~--__ --__ --__ --__ --__ --__ --__ --__ --__ --__ --__ --__ ----------J
IJ3URST_CLK# 1

PCCAD[23:0]~~{ Ix~xI01:00' *,,' ~~X:01'01:~:· x~xI01~O' ~' ~~X:01~1: f{ x~x 110pO'(:
I I I I I I I I I I I I I I I I I I I

PCCOE#

PCCAD[31:24]i§J :dd: : &~ :e~ : ~~ : ff: : ~~ :gg: ~~: :hh: : : X : : :

CPU_DATA : 1 : X : 1 : X : . X ! 1 : X : 1 : X': ~
ccbb-aaxx-x--x ddcc-bbaa-x--x ffee-ddcc-bbaa-x--x hhgg-ffee-ddcc-bba

eedd-ccbb-aaxx-x--x ggff-eedd-ccbb-aaxx

-I
:T
CD
Q')
c.n o
~
a:
co
CD
()
:T
-0"
(J)

~

The 650 Bridge Chip Set

In the 653, the CPU address lines are chosen as the source of the address which flows into the
ROM burst counter. Here the three least-significant address bits [2:0] are forced to OOOb (making
the operation of the unmunger ineffective), and are driven onto PC'-AD[23:0] (which are con­
nected to the address lines of the ROM in the example system). This address and the ROM control
lines access a single byte of ROM data, which flows onto PCI_AD[31 :24] and into the 653 Buffer,
at the input of the ROM read shift register. At this point the shift register and the CPU data lines
contain no useful information, as shown in Figure 5-16 on CPU_DATA by xxxx-xxxx-xxxx­
xxxx(h).

After waiting for the ROM data to stablize, the 654 Controller asserts ROM/BU RST _ ClK# for one
CPU_ClK cycle. This causes the 653 Buffer to latch the ROM data byte from PC'-AD[31 :24] into
the ROM data shift register, shuffle all the other data bytes in the shift register down one byte posi­
tion, and place the new byte on the internal data bus in byte lane O-the most-significant byte lane.
This data flows through the output side CPU data byte lane swapper (which will swap the byte
lanes around if the system is in little-endian mode, but no swapping is done in big-endian mode).
So, in big-endian mode, the data byte from ROM location x-x OOOOb now appears on
CPU_DATA[0:7], the most significant byte. The other CPU data bytes contain no useful informa­
tion. This is shown in Figure 5-16 on CPU_DATA as aaxx-xxxx-xxxx-xxxx, where aa is the byte
of data from ROM location x-x OOOOb.

This initial assertion of ROM/BURST _ClK# also latches the CPU address into the ROM read
burst counter and increments bits [2:0] to 001 b. This address flows out to the ROM. After waiting
for the ROM data to settle out, the 654 Controller again asserts ROM/BURST _ClK#, latching the
data from ROM location x-x 0001 b (shown here as bb) onto CPU byte lane 0, shuffling all the
other bytes down, and incrementing the ROM address. CPU_DATA[0:63] now contains bbaa­
xxxx-xxxx-xxxx. This process continues for a total of eight ROM/BURST_ClK# pulses, after
which CPU_DATA[0:63] contains hhgg-ffee-ddcc-bbaa, the 8 bytes of data from the ROM. (Tim­
ing diagram Figure 5-16 is continued as Figure 5-18).

For a single-beat CPU read transfer, the 654 Controller then completes the transfer by asserting
AACK# and TA# to the 60X CPU for one CPU_ClK cycle, and deasserting the 653 Buffer and
ROM control signals which returns the system to the bus idle state.

For a burst-mode read transfer, after the eighth ROM/BURST _ClK#, the 654 Controller asserts
TA# for four CPU_ClK cycles (rather than for just one CPU_ClK cycle) while holding the same
data on the CPU data bus, and asserts AACK# for one cycle on the fourth TA#. This transfers
the same eight bytes to the 60X CPU on each beat of the burst transfer. No additional data is read
from the ROM. The CPU transfer is completed on the fourth cycle as the 654 Controller asserts
TA# for the fourth CPU_ClK cycle and asserts AACK#. The 654 Controller then returns the sys­
tem to the bus idle state by deasserting the 653 Buffer and ROM control signals.

97

The 650 Bridge Chip Set

5.6 The pel to 650 Bridge Transactions
A read operation always returns a 64-bit double-word since system memory is a double-word bus
(eight-byte data bus). PCLAD[2] is used to select between the high-order and low-order words
within this double-word. Memory parity is checked based on a full double-word. (A parity error can
occur if all of memory is not initialized prior to access.)

A PCI device can assert PCLFRAME# to initiate an address phase after the 654 Controller grants
the address bus (either 10_BRDG_GNT# or one of the five PCLGNT lines) to the PCI device.
Successful completion of the PCI transaction results in a target ready (PCLTRDY#) asserted to
the PCI device. Unsuccessful completion (memory out-of-range, parity error) results in a target
abort (PCI_DEVSEL# deasserted and PCLSTOP# asserted), and an· error bit is asserted­
MEM_PAR_ERR# for a parity error.

If a parity error occurs during a PCI read of system memory, the 654 Controller asserts TRDY#,
then drives incorrect (inverted) parity onto the PCLPAR line on the PCI clock after TRDY#, and
then target aborts (PCLDEVSEL# deasserted and PCLSTOP# asserted). The 654 Controller
asserts the MEM_PAR_ERR# signal and generates an interrupt to the 60X CPU; All subsequent
PCI transactions to system memory from any agent are terminated with a target abort until after
the 60X reads the error address register.

5.6.1 PCI to System Memory Cycles
• A PCI address from 2G to 2G + 256M translates to system memory from 0 to 256M.

• PCI memory read cycles from OG to 2G translate to 3G to 4G. These cycles cause snoop
cycles but no hits because the 3G to 4G addres~ range is reserved as non-cacheable.

• Single or burst transfers are supported (PCI 2.0 specification compliant).

• From one to four bytes per beat are allowed (controlled by PCI byte enables).

5.6.1.1 1/0 Bridge to System Memory
• Supported by the 650 Bridge chip set if 1/0 bridge support exists.

• ISA_MASTER# pin allows special translation for ISA master addresses from 0 to 16M
on the PCI bus.

5.6.1.2 ISA Master Memory Addressing
The 650 Bridge forwards PCI memory cycles which are the the result of an ISA bus master opera­
tion to system memory. The ISA bridge asserts ISA_MASTER# and IO_BRDG_HOLD# to the
650 Bridge to indicate ISA bus master operations. .

Note: If the DMA produces an address in the 0 to 2G range without asserting ISA_MASTER#,
a PCI cycle runs, but the 650 Bridge does not forward it to system memory because the address
range is not 2G to 4G.

5.6.1.3 ISA Master Signal Timing
Figure 5-19 shows the timing relationships for ISA master operations.

98

The 650 Bridge Chip Set

FRAME#'

~ (~)---I.----t
,,----.---.....----.----,;

1

TRDY#'
------f-----------"ll (4) 1,--.-________ _

IO_BRDG_GNT#,

1 '--------1 _(3)1_ -----..... [;---1..._.:...--\1

NO_TRANS I'_--L-_.&..----L_.....I..----L_ __ I----'-_...L..---..L--If. \1......-.......... _

Figure 5-19. ISA Master Signal Timing

Notes for Figure 5-19:
1. 10_BRDG_HOLD# and ISA_MASTER# must be sampled asserted on the same clock

for the 650 Bridge to recognize an ISA master transaction pending condition.
2. These transactions are mastered by the 650 Bridge or by a PCI buscmaster other

than the 1/0 bus bridge.
3. When the ISA master transaction pending condition is recognized, the 650 responds

to the next PCI transaction mastered by the 1/0 bus bridge as a PCI transaction on
behalf of an ISA bus master. The 650 asserts NO_TRANS to disable the address
translation that normally inverts the most significant address bit when a PCI bus mas­
ter accesses system memory.

4. The arbiter grants the system to the 1/0 bus bridge.
5. This PCI transaction is mastered by the 1/0 bus bridge for the ISA bus master that

has ISA bus mastership.

5.6.1.4 PCI to System Memory (DRAM) PCI_C/BE[3:0]# Bus Commands
Table 5-21 shows the PCI bus command decoding. When a PCI master has the PCI bus grant
and asserts PCLFRAME#, the 654 Controller decodes PCLC/BE[3:0]# to determine if the PCI
device is trying to access system memory. The 654 Controller maps PCI memory cycles with ad­
dresses in the range of 2G to 4G as system memory (DRAM) reads and writes. The 650 Bridge
only responds to PCI memory read and write cycles. All other cycles initiated by PCI devices on
the PCI bus are ignored by the 650 Bridge.

If a memory cycle is decoded, the 654 Controller must determine if the translated memory address
is in the range, from 0 to 2G, of system memory (DRAM). PCI devices address system memory
with addresses from 2G to 4G. The 653 Buffer inverts PCLAD[31] to remap PCI addresses in
the 2G to 4G· range to 0 to 2G.

99

The 650 Bridge Chip Set

The 654 Controller decodes the PC I bus address from the 60X CPU bus after the address is trans­
lated by the 653 Buffer (PCLAD[31] is inverted). The 654 Controller initiates system memory
(DRAM) cycles with snooping for addresses on the 60X CPU bus from 0 to 2G. For a 60X CPU
bus address from 2G to 4G, the 654 Controller aborts the memory cycle. In this case, the snoop
cycle is always a miss because addresses from 2G to 4G are reserved as not cacheable. (They
must be marked non-cacheable in the 60X CPU).

Table 5-21. PCI Bus Commands from PCI Masters

PCL C/BE[3 :0]# PCI Transaction Decoded as:

0000 Interrupt Acknowledge none

0001 Special Cycle none

0010 1/0 Read none

0011 1/0 Write none

0100 Reserved none

0101 Reserved none

0110 Memory Read memory read

0111 Memory Write memory write

1000 Reserved none

1001 Reserved none

1010 Configuration Read none

1011 Configuration Write none

1100 Memory Read Multiple memory read

1101 Dual Address ,Cycle none

1110 Memory Read Line memory read

1111 Memory Write and Invalidate memory write

5.6.1.5 Snoop Cycle Control Signals on the 60X CPU Host Bus
The 654 Controller maintains cache coherency with the L 1 and L2 caches by running snoop cycles
on the 60X CPU bus for every PCI read or write to system memory, including burst transactions.
Section 5.7 describes the processing of snoop cycles in detail. To execute a snoop cycle, the 654
Controller asserts the following 60X CPU bus control signals:

• TBST# is negated
• TSIZ[0:2] (transfer size) is set to binary 100 (four bytes or one word).

• TT[0:3] (transfer type) is set to 01 01 b for snooping a read to system memory and to 0001 b
for snooping a write to system memory.

The 60X CPU and a write-back L2 cache respond to a cache snoop hit by asserting ART RY#.
See Section 5.7 for a complete description of the processing of snoop cycles. The 650 Bridge
asserts a target retry on the PCI bus when a cache device asserts ARTRY# for a cache hit. After

100

The 650 Bridge Chip Set

the cache completes its writeback, the 650 Bridge grants the bus to the original PCI device to retry
the target retried transfer (if it is requesting the bus).

5.7 L2 Secondary Cache Protocol
The L2 cache provides two different services-caching for 60X CPU accesses to system memory
and snooping for PCI to system memory accesses. Table 5-22 shows the actions the L 1 and L2
caches and the 650 Bridge can take when the 60X CPU reads or writes system memory and when
a PC I device reads or writes system memory.

Table 5-22. Cache and 650 Bridge Action Table
Transfer L1 Action L2 Action 650 Bridge Action

CPU to Any action taken by the L 1 does No bus action. (The L2 can Paces transfer.
Memory not have an effect on the SOX bus, invalidate, snarf, update, etc.) Accesses DRAM.
Transfer because the L 1 activity takes

place completely within the SOX Claims transfer with L2_CLAIM#. Does not pace the transfer.
CPU. Paces the transfer. Does not access DRAM.

Supplies (or receives) the data.

Backs off transfer with ARTRY#. Does not pace the transfer.
Asserts bus request. Does not access DRAM.

Arbitrates.

PCI to No bus action No bus action. Paces transfer.
Memory Accesses DRAM.
Transfer

Backs off transfer with ARTRY#. No bus action. Does not pace the transfer.
Asserts bus request. . Does not access DRAM.

Arbitrates.

No bus action. Backs off transfer with ARTRY#. Does not pace the transfer.
Asserts bus request. Does not access DRAM.

Arbitrates.

Backs off transfer with ARTRY#. Backs off transfer with ARTRY#. Does not pace the transfer.
Asserts bus request. Asserts bus request. Does not access DRAM.

Arbitrates.

5.7.1 L2 Caching for 60X CPU Accesses to System Memory
60X CPU reads or writes of system memory are serviced by the 650 Bridge unless L2_CLAIM#
is asserted (with L2_PRESENT# asserted) on the second CPU clock after the assertion of TS#
(transaction start) by the 60X CPU. When the 654 Controller senses L2_CLAIM# asserted, it
drops the 650 Bridge completely out of the servicing of the transaction, and the L2 cache takes
over driving the data, AACK#, and TA# lines to complete the cycle to the 60X CPU.

The L2_CLAIM# signal must be held asserted by the L2 cache throughout the remainder of the
memory transaction, until the L2 asserts AACK# and TA# at the end of the transaction. The L2
Cache can assert AACK# one clock prior to the final TA# or during the same clock of the final TA#.

The L2_CLAIM# signal can be asserted before the second CPU clock after TS# is asserted by
the 60X CPU, but the 650 Bridge only samples the signal on the second CPU clock.

101

The 650 Bridge Chip Set

5.7.2 Cache Snooping for PCI to System Memory Accesses
On PCI to memory cycles, the 654 Controller masters the 60X bus to drive the required snoop
cycles to the 60X and L2. During PCI to system memory cycles, the 60X CPU and the L2 cache
assert ARTRY# (rather than L2_ CLAIM#) for a cache hit. The 654 Controller drives AACK# active
one CPU bus clock after it asserts T8# and then samples ARTRY# the next CPU bus clock.

To execute a snoop cycle, the 654 Controller drives the following 60X CPU bus control signals:

• TSIZ[0:2] (transfer size) is set to binary 100 (four bytes or one word).

• TT[0:3] (transfer type) is set to 01 01 bfor snooping a read to system memory and to 0001 b
for snooping a write to system memory.

• TBST# is deasserted

5.7.2.1 Restoring ARTRY#
If the setup bit AR8TR is set to one when the 654 Controller samples ARTRY# active on the se­
cond clock after TS#, the 654 Controller drives ARTRY# inactive the second clock after AACK#
is inactive and then tri-states its buffer. This is required because neither the L2 nor the 60X can
restore ARTRY# since they both can be driving it and one is a 3.3V or 3.6V part and the other can
be a 5.0V part. If ARSTR is not set, the device that asserts ARTRY# must deassert ARTRY# one
clock after AACK# is asserted.

5.7.2.2 Arbitration on Cache Hits
The 654 Controller samples L2_CACHE_REQ# and CPU_REQ# the clock after ARTRY# is as­
serted by either the 60X or the L2 or both. If only one request is active, the 654 Controller grants
the bus to that requester (or refresh) before granting the bus to another master.

If both the 60X and L2 bus request lines are active, the 654 Controller grants the bus to the 60X
first. If after the end of the cycle, the L2_CACHE_REQ# is still active, then bus mastershipis
granted to the L2. (A well-behaved write-back L2 updates during the 60X write and drops its bus
request.)

5.7.3 Error Checking for the L2 Cache
L2 cache designs store 64 data bits plus the 8 parity bits from the 60X CPU bus. When the L2
cache supplies data, it asserts both the 64 data bits and the 8 parity bits on the CPU bus. The
650 Bridge uses the DPE# signal from the 60X CPU to determine if there has been a parity error
in the data supplied by the L2 cache.

The 654 Controller samples DPE# from the 60X CPU two clocks after each TA# is asserted by
the L2 (L2_ CLAIM# was asserted) to determine if the L2 data has good parity. If the 654 Controller
samples DPE# asserted, TEA# is asserted if the cycle is still in progress on the bus. (If DPE#
occurs after the cycle completes, the 654 asserts INT _CPU#.)

5.7.4 Additional L2 Cache Information
There is an exception to snooping the 60X CPU bus on every PCI to memory cycle. It occurs dur-

o ing a burst transaction when the PCI access is the most-significant word within a double-word
boundary of system memory. A snoop is not necessary in this case because the cache sector has
already been snooped by the low-order word within the double-word boundary.

The 654 Controller does not assert TA# during snoop cycles because these cycles are being run
only to. snoop the 60X CPU and L2 cache for addresses that a PCI master is running to system
memory.

102

The 650 Bridge Chip Set

A write-back l2 cache can execute 32-byte burst read or write cycles on the 60X CPU bus in the
same manner as the 60X. The 654 Controller grants permission to the L2 cache to master the
bus (L2_CACHE_GNT# is asserted) before the l2 cache can initiate a 60X cycle with TS#.

5.7.5 Example of a PCI to Memory Read Transaction With Cache Hit
The PCI to memory rea9 transaction shown in Figure 5-20 is identical to the one shown in
Figure 4-15 upto PCLClK 2. To signal a cache hit, either the L 1 or L2 cache asserts ARTRY#
.so that the 654 Controller samples it asserted on PCL ClK 3. At this point, the 654 Controller gen­
erates a PCI target retry, shuts down the memory controller, and begins an arbiter switch.

The 654 Controller generates a PCI target retry by asserting STOP# on PCLCLK 3 (DEVSEl#
remains asserted from PCLCLK 2). On PCLCLK 4, the 654 Controller negates DEVSEL# and
STOP#(TRDY#was not yet asserted). A well behaved PCI bus master will also remove FRAME#
and IRDY# by PCLCLK 4. The 654 Controller also negates PCLOE# on PCLCLK 4 to disable
the PCLAD bus drivers in the 653 Buffer.

To shut down the memory controller, the 654 negates MEM_DATA_SEL# on PCLCLK 4.

During PCI to memory write transactions with page hit and cache hit, WE# and MEM_DATA_OE#
are negated on PCLCLK 3, before the CAS# access sequence begins. During PCI to memory
write transactions with page miss and cache hit, RAS# and RASHI/CASlO are driven high on
the CPU_CLK following PCLCLK 2-a cache hit on PCLClK 3- causes them to be left high. This
also forces a page miss on the next memory access.

To begin the arbiter switch, the 654 Controller removes the grant from the PCI bus master by
PCLCLK 4. Meanwhile, the cache that signaled a cache hit (L 1 or L2 or both) asserts its bus re­
quest signaL On the CPU_ClK following PCLCLK 5, the arbiter grants the bus to the requesting
cache. .

Since the current bus master is losing the bus grant, PCLSEl# and CPU_ADDR_OE# are driven
high and AACK# is tri-stated on PCLClK 5.

The following notes refer to Figure 5-20:

1. These signals are sourced by the responding cache, L 1 or L2.
2. During PCI to memory transactions during which there is a cache hit by the L 1 or L2

cache, the responding cache must assert ARTRY# on the CPU_ClK after it samples
TS# active, or the cache hit condition will not be recognized.

103

The 650 Bridge Chip Set

PCCCLK(C)

C/BE[3:0]# (C) '::XCwd XRyte Enables 1 X

PCCAD (C) [PCI] --<Address
TAC'

1

FRAME#(C) 1\
1 'single OF hurst 1 7 "

IRDY# (C) \ 1 , "
TRDY#(C)

,
"

DEVSEL# (C) , "
STOP# \ , "

PCCSEL# (C) ,
ADDRHIIDATALO (C) 1 \ 1 ,
MEM_DATA_SEL# (C) \ I
MEM_PAGE_HIT# (C) \ ~it ,

CPU_CLK (C)

BURST_CLK# (C)

RASHI/CASLO (C) 1

MEM_ADDR(B) '::X~ __________________________ ~x~ ______ ~ __
RAS#(C)

CAS# (C)

MEM_DATA (B)

PCCOE# (C)

PCCAD (B) [B]

CPU_ADDR_OE# (C)

CPU_ADDR (B)

TS# (C) [C]

AACK# (C) [C]

ARTRY# (C) [Lx]

PCCGNT# (C) (1)

Lx_REQ# (C) (1)

Lx_GNT# (C) (1)

TS# (C) [Lx]

--7-~~--~(~~=======(j~-----
___ �-JI 1

xsdoop Xdares~ ~ ___ ~~~,~~~~~,--------~--~----~--~--~---J, 1

~r~--~----~--~--~----~~"----~

~Siioop
1 ,I; 1

\ <f) \ Hit I
I,

1 'Arbiter switch I

~x Wr,ite Bapk r--":""""---......

L,J
--~--~~--~--~_T~~--~~--~----~I ~

Figure 5-20. PCI to Memory Read - Cac~e Hit Timing Diagram

104

The 650 Bridge Chip Set

5.7.6 Example of a CPU to Memory Read Transfer With Page Miss and L2 Cache Hit
The single-beat CPU to memory read transfer shown in Figure 5-21 is typical of a CPU to memory
read with page miss during cycles 0 through 2. By cycle 3 however, the L2 has driven L2_CLAIM#
active. During cycle 3, the example L2 drives the requested data onto the 60X data bus, and as­
serts TA# and AACK# for one cycle, completing the transfer. If this was a burst transfer, the exam-

. pie L2 would have kept TA# active for three more cycles while delivering three more beats of data.

Since a page miss occured on this transfer, RAS# and RASHI/CASLO were sent high in cycle
3. These two signals are left high. The 654 Controller leaves AACK# and TA# tri-stated, and does
not assert CPU_DATA_OE#.

o I 1 2 3 4 5
CPU_CLK (C) I

CPU_GNT#(C):_~ __ ~~ ____ ~/ __ ~ ______ ~ ______ ~ ______ ~ ______ __

TBST# (C) I =::J~~--rl ----,--------;-~""'"------(c=
I

CPU_ADDR (C) I =::J)----.---C====~C===}_~----1c=

TS# (C) : =::J , c=
L2_CLAIM# [L2] (C) I \~--------------~----~

I

AACK# [L2] (C) I ------;---~------r--'______'_ _ ___1

TA# [L2] (C) I =::J~~---....!...--.....r----'---'------,

CPU_DATA [L2] (B) I ------'-------r------'-----<===J--...J....---­
CPU_ADDR_SEL# (C)

MEM_PAGE_HIT# (C) I ____ ~-----....J
I

RASHI/CASLO (C) I _______ .1.....-_____ --'

MEM_ADDR (B) I x==
I--------~--~--~~~------~

RAS# (C) I _____________ --'

CAS#(C)'-------------~--------------~---------------

MEM_DATA_SEL# (C) I ------------~-------------___r_---------------

I

MEM~DATA(B),~3S~--~------~----------------~ __ ----~-------

CPU_DATA_OE# (C) I -----"----------'--------....;....,.------~------~--------

B~E_PAR_EN#,-----~--------------~--------------~--------

654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

Figure 5-21. CPU to Memory Read - Page Miss, Cache Hit Timing Diagram

105

The 650 Bridge Chip Set

5.8 The System Error Handler
Table 5-23 summarizes the 654 Controller responses to system errors. The 654 Controller as­
serts TT _ERR#, DPE_ERR#, MEM_PAR_ERR#, or ALL_ONES_SEL# in response to an illegal
operation or error condition.

The 654 Controller asserts TT _ERR# to report transfer type errors. In response to an error ad­
dress read transaction from the 60X CPU (a load word instruction in the range 3G - BM to 3G with
CPU_ADDR[19] equal to 0), the 654 asserts ERR_ADDR_SEL# to read out the transfer type error
address. TT ~ERR# is asserted by the 654 until the processor performs an error address read
transaction.

The 654 Controller asserts MEM_PAR_ERR# to report memory parity errors. In response to an
error address read transaction from the 60X CPU, the 654 asserts ERR_ADDR_SEL# to read
out the parity error address. MEM_PAR_ERR# is asserted by the 654 until the processor per­
forms an error address read transaction.

The 654 Controller does not report an out-of-bounds memory access from the processor as an
error. (Memory reads return 64 one-bits.) The 654 stops out-of-bounds PCI to memory cycles with
a target abort protocol.

5.8.1 TEA# Error Reporting
The 654 Controller asserts TEA# (transfer error acknowledge) instead of TA# (transfer acknowl­
edge) when various conditions are detected. TEA# can be masked by the MASK_ TEA# signal.
When MASK_ TEA# is asserted, TA# overrides TEA# in all circumstances except the Pia cycle
error (when XATS# is asserted). MASK_ TEA# can be useful for debugging system errors.

TEA# is asserted to terminate a 60X CPU cycle instead of TA# under the following circumstances:

• On illegal transfer type errors including Pia cycles (XATS# is asserted)

• DPE# data parity errors from the L2 cache-if the error is on the first beat of a burst
(INT _CPU# is used for the second, third, and fourth beats. See Section 5.B.2)

• Memory parity errors reported by the 653 Buffer on CPU accesses to system memory

• PCI target aborts
• PCI target timeouts-no response within 60us of PCLDEVSEL# with PCI at 33MHz
• No PCLDEVSEL# from a PCI target within seven PCI clocks from the assertion of

PCLFRAME# (except on PCI configuration cycles)

• Illegal transfer sizes and alignments of 60X CPU cycles
• As the response to a PCllnterrupt acknowledge cycle from the 60X CPU following any

of the conditions in Section 5.B.2 .

5.8.2 Interrupt Reporting
The 654 Controller asserts the interrupt signal, INT _CPU#, to the 60X CPU to initiate a cycle so

. that TEA# can be reported based on the following circumstances:

• When DPE# is asserted by the CPU (two clocks after TA#) on the second, third, or fourth
beats of a CPU burst read of an L2 cache.

• Memory parity error on PCI bus mastered cycle. (All subsequent PCI accesses to
memory are target aborted.)

• Non-maskable interrupt from the 1/0 bridge.

106

The 650 Bridge Chip Set

INT _CPU# is asserted until the processor initiates a read transaction with the PCI interrupt ac­
knowledge address. ALL_ONES_SEL# is driven during the interrupt acknowledge cycle, which
causes all one-bits to be read as the address, along with TEA# (if MASK_ TEA# is deasserted).

Table 5-23. System Error Reporting

654 Controller Error Status
Activity Description Response Signals Asserted

601-lnitiated Memory Out-of-Range Read TA#, ALL_ONES_SEL# none
Transactions

Memory Out-of-Range Write TA# (no write occurs) none

2-Byte transfer with A29-31 = 111 TEA# TT_ERR#

3-Byte transfer with A29-31 = 11 0, 111

4-Byte transfer with
A29-31 = 101,110,111

5,6, or 7-Byte transfer

8-Byte transfer with A29-31 not = 000

Parity Error from 653 Buffer TEA# MEM_PAR_ERR#

Processor/L2 DPE# TEA# (or INT _CPU#) DPE_ERR# (pulsed)

PIO Cycle: XATS# asserted TEA# TT_ERR#

ecowx TA# none

eciwx TA#, ALL_ONES_SEL# none

601 to PCI Master Abort (except Config.) TEA#, TT_ERR#
ALL_ONES_SEL# (read)

Configuration RIW Master Abort TA#, none
ALL_ONES_SEL# (read)

Target Abort TEA# TT_ERR#

Target Retry ARTRY# none

PCI to Memory Master Abort none none

Memory out-of-bounds Target abort, INT_CPU# TT_ERR#

Parity Error Drive PCLPAR invalid on MEM_PAR_ERR#
current cycle. Target abort
all following cycles until a
read of the error address
register, INT _CPU#.

NMI Non-maskable interrupt INT_CPU# none

Interrupt Due to above error conditions and NMI TEA# no change
Acknowledge
Cycle

Read Error Due to above error conditions TA#,ERR_ADDR_SEL# Deassert TT ERR# and
Address Latch MEM_PAR_ERR#

107

The 650 Bridge Chip Set

5.8.3 Saving Memory Parity Error Addresses
Memory parity generation and checking is supported within the 653 Buffer and controlled by the
654 Controller in conjunction with transfer type errors as shown in Figure 5-22. The 653 Buffer
has an internal register that stores the address on memory parity errors. Each processor or PCI
to memory access latches the address onto the error address register within the 653 Buffer as
long as the signal L_ERR_ADDR# is asserted. On a memory access with a parity error from the
653 Bridge (MEM_PAR_GOOD deasserted), MEM_PAR_ERR# is asserted low to inhibit latching
new addresses into the 653 Buffer error address register by means of the support gate shown
in Figure 5-22.

Figure 5-22. Error Address External Support Gate

MEM_PAR_ERR# remains asserted until the end of the cycle that the 60X CPU accesses the
contents of the 653 Buffer error address register. The 654 Controller asserts ERR_ADDR_SEL#
to the 653 Buffer when the 60X CPU reads the error address register. The stored error address
is then read back to the CPU.

The 653 Buffer asserts the error address register on both words of the double-word 60X CPU data
bus so that reads of either word get the error address. At the end of the error address read cycle,
MEM_PAR_ERR#, TT _ERR# and ERR_ADDR_SEL# are all deasserted.

The 654 Controller does not report an out-of-bounds memory access from the processor, but it
does stop an out-of-bounds PCI to system memory cycle with the target abort protocol.

5.8.4 Oata·Parity Error (OPE_ERR#)
The 654 Controller asserts DPE_ERR# in response to a data parity error (DPE#) from an L2 cache
access. DPE_ERR# is asserted for two 60X CPU bus clocks for each data parity error detected.

5.8.5 Transfer Type Error
The 654 Controller asserts TT _ERR# to report transfer type errors. TT _ERR# is asserted until
the 60X CPU accesses the error address register within the 653 Buffer.

Transfer type error (TT _ERR#) cycles include:

• PIO cycles-XATS# asserted (not masked by MASK_TEA#)

• A 60X CPU transfer size of five, six, or seven bytes to system memory or PCI

• A 60X CPU transfer size of two, three, or four bytes crossing a word boundary when target
is PCI or system memory

• A 60X CPU transfer size of five to eight bytes when target is PCI

• A 60X CPU burst when the target is PCI

• A PCI target abort

• No PCLDEVSEL# from target-except on PCI configuration cycles

• A PCI target system time-out-if no response 60us (33MHz PCI) after PCLDEVSEL#

108

The 650 Bridge Chip Set

The 654 Controller does not report an out-of-bounds memory access from a PCI master to system
memory, but it does stop an out-of-bounds PCI cycle to system memory with target abort protocol.

On detection of a transfer-type error, the 654 Controller asserts TT _ERR# to inhibit latching new
addresses into the 653 Buffer error address register (see Figure 5-22). TT _ERR# remains as­
serted until the end of the cycle when the 60X CPU reads the error address register.

The 654 Controller asserts ERR_ADDR_SEL# to the 053 Buffer when the 60X CPU reads the
error address register. The 653 Buffer asserts the error address register on both words of tt)e 60X
CPU data bus. At the end of the error address read cycle, TT _ERR# and ERR_ADDR_SEL# are
deasserted.

5.8.6 Illegal pel Operations
If the PCI bus runs a cycle to an out-of-bounds system memory address, the 654 Controller uses
the target abort protocol to stop the PCI cycle.

5.8.7 Non-Maskable Interrupt (NMI_REQ)
The 654 Controller asserts INT _CPU# in response to NMLREQ. When the 60X CPU drives a
PCI interrupt acknowledge transaction back in response to INT _CPU#, the 654 Controller im­
mediately asserts TEA# and 64 one-bits on the CPU data bus without generating a PCI interrupt
acknowledge transaction. An interrupt acknowledge cycle that is immediately terminated by
TEA# is the result of one of the conditions listed in Section 5.8.2.

109

The 650 Bridge Chip Set

110

Section 6
Electrical Characteristics

Unless otherwise noted, all specifications in this section apply to both the 653 Buffer and to the
654 Controller.

6.1 Absolute Maximum Ratings
Stresses in excess of those listed in Table 6-1 may damage and/or decrease the reliability of the
650 Bridge. Additionally, stressing the 650 Bridge in excess of the conditions listed as Recom­
mended Operating Conditions is neither intended nor supported. All voltages are referenced to
ground (Vss).

Table 6-1. Absolute Maximum Ratings, 650 Bridge

Symbol Parameter Min Max Units

Tjst Junction Temperature, Storage -40 125 deg C

Tjp Junction Temperature, Power Applied -25 100 deg C

VDD Supply Voltage 2.7 3.9 V

Vi DC Voltage Applied to Any Input -.5 5.5 V

Vo DC Voltage Applied to Any Output (Output Tri-stated) . -.5 5.5 V

ESD Withstand 2.2 - kV

Latchup current 100 - mA

111

The 650 Bridge Chip Set

6.2 Recommended Operating Conditions
This section lists the conditions under which the 650 Bridge is intended to operate.

6.2.1 Signal And Temperature Ranges

Table 6-2. Recommended Operating Conditions, 650 Bridge

Symbol Parameter Min Max Units Notes

Voo Supply Voltage 3.0 3.8 v

VI DC Voltage Applied to Any Input Pin -.5 5.5 v (1)

Vo DC Voltage Applied to Any Output Pin -.5 5.5 v (2)

Top Junction Temperature, Operating 10 85 deg C

Notes For Table 6-2:
1) Allowed range of DC voltage applied to any 1/0 pin in input mode or to any input pin. The pins

shown as Type = PCI may conduct excess current if forced above Voo + 1.Sv.
2) Allowed range of DC voltage applied to any output pin while the output is tri-stated. The pins

shown as Type = PCI may conduct excess current if forced above Voo + 1.5v.

6.2.2 Power Dissipation
Neither the 653 Buffer nor the 654 Controller are expected to require a heat sink, when used in
the manner described in this manual. However, thermal management is'a complex discipline, and
the application is the responsibility of the designer.

Table 6-3 lists the power supply current and power dissipation under various conditions for the
653 Buffer and the 654 Controller.

Table 6-3. Power Dissipation (See Note 1)

Parameter Current Power Notes
(mA) (mW)

Typ Max Typ Max Notes

Power Supply Current - System quiescent. 653 43.7 - 157 - (2)

654 8.0 - 29 - (2)

Power Supply Current - Memory accesses with 653 48.0 - 173 - (3)
PCI bus idle. 654 19 68 - (3) -

Power Supply Current - Worst case activity. 653 59 118 212 425 (4)

654 63 126 227 454 (4)

Notes for Table 6-3:
1) 60X CPU bus running at 66MHz, PCI bus running at 33MHz and 3.3v, L2 Cache installed, 5

PClloads, 8 DRAM loads, 653 Buffer and 654 Controller at Voo = 3.6v. This data assumes that
the 650 Bridge is connected in a manner similar to that shoyvn in the example system.

2) 60X CPU executing from L 1 cache, DRAM refresh enabled, PCI bus idle.
3) 60X CPU executing repeated burst memory transfers.

112

The 650 Bridge Chip Set

4) A mix of instruction fetches and PCI accesses with addresses broadcast to the CPU bus for
snooping

5) The 653 Buffer is supplied in a 304 pin Ceramic (C4) Quad Flat Pack
6) The 654 Controller is suppli.ed in a 160 pin Plastic Quad Flat Pack

6.2.3 Thermal Characteristics
Table 6-4 shows typical thermal resistances associated with the 653 Buffer and the 654 Control­
ler. Each row shows data for a given air flow condition at the chip package. The row titled Convec­
tion shows data for the chip package in free air with no forced air cooling, with the package
mounted horizontally on the upper surface of a PCB. The other rows show data for a variety of
forced air flow conditions. The values shown do not include a significant amount of heat flow
through the pins of the chip, either to or from the PCB.

From Table 6-3, the worst case power dissipation of either the 653 Buffer or the 654 Controller
is less than .5 W. Using TJ(max) = 85 deg C, and TA = 50 deg C;

85 C -50 C
8j-a (max) = ---- -----= 70 deg C/W

Pd .5W

Examination of Table 6-4 shows that neither the 653 Buffer or the 654 Controller require a heat
sink, even with worst case power dissipation, to maintain a junction temperature of less than 85
deg C in free air at 50 deg C ambient. .

Table 6-4. Typical Thermal Resistance, Junction to Ambient, No Heat Sink

Airflow Hj-a, 653 Buffer 8j-a, 654 Controller Units

Convection 33.4 54 deg C/W

.25 Mis (50fpm) 29.7 47 deg C/W

.5 Mis (1 OOfpm) 26.8 44 deg C/W

1 Mis (200fpm) 24.0 40 deg C/W

113

The 650' Bridge Chip Set

6.3 Common Characteristics
The specifications shown in Table 6-5 are common to both the 653 Buffer and the 654 Controller.

Table 6-5. 650 Bridge Common Characteristics (See Note 1)

Symbol Parameter Type Min Max Units Notes

VIL I nput Low Voltage All - .8 v (2)

VIH Input High Voltage All 2.0 - v (2)

IlL Input Leakage Current All - 1 uA (2)

VOL Output Low Voltage TTL - .40 v (3)

PCI - .55 v (3)

VOH Output High Voltage TTL 2.4 - v (3)

PCI 2.4 - v (3)

1038 Output Tri-state Leakage Current TTL - 10 uA (3)

PCI - 70 uA (3)

Notes for Table 6-5:
1) Over Recommended Operating Conditions.
2) Values apply to each liD pin in input mode and to each input pin.
3) Values apply to each output pin and to each liD pin in output mode.

6.4 Package/Pin Electrical Characteristics
6.4.1 653 Buffer Model
The electrical model of the effects of package and pin parasitic effects on the 653 Buffer is shown
in Figure 6-1. The ranges of values shown are nominal only, are not guaranteed, and vary from
pin to pin. The lower values are typical of pins that are located on the side of the package and
which are closest to the chip. The higher values are typical of corner pins. Note that the C 1 capaci­
tance is the value shown for DPC (Die Pad Capacitance) in Table 6-6 (which is due to the liD
book). C2 represents a distributed capacitance, and L 1 represents a lumped loop inductance
which includes the effects of inductance from the driver book to the power supply pins.

Die Chip
Pad R1 L1 Pin

DI-----r-------1c:=JI-------Ic:=JI-----r------ID

1 . .70 to .80 18nH to 24nH ·1'
. C1 C2

T Die Pad T 2.7pf t.o V Capacitance V 3.7pf

Figure 6-1. 653 PackagelPin Electrical Model

114

The 650 Bridge Chip Set

6.4.2 654 Controller Model
The electrical model of the effects of package and pin parasitic effects on the 654 Controller is
shown in Figure 6-2. The values shown are nominal values only, are not guar~nteed, and vary
from pin to pin. Values lower than nominal are typical of pins located on the side of the package
and which are closest to the chip. Values higher than nominal are typical of corner pins. Typical
ranges are proportionally similar to those shown for the 653. Note that the total output capacitance
of the die pad is derived by adding the value shown in Figure 6-2 (which is due to the package)
to the value shown for DPC (Die Pad Capacitance) in Table 6-7 (which is due to the 1/0 book).

Die
Pad

Wire Bond

R1 L1

.75Q 3nH

C1

~.39PF

Lead Frame

R2 L2

.75Q 17nH

C2

~.33PF

Figure 6-2. 654 PackagelPin Electrical Model

115

Chip
Pin

C3

~1.9PF

The 650 Bridge Chip Set

6.5 653 Buffer DC Characteristics By Signal

Table 6-6. 653 Buffer DC Characteristics By Signal (See Note 1)

Signal Pin I/O Book, Type P/L IOL IOH DPC (4)

Pad (2) (3) (2) (mA) (mA) Min Max

ADDRHI/DATALO 75 I CBJD,BO TIL A - - .80 .95

ALL_ON ES_SEL# 10 I CBSX,BO TTL A - - .80 .95

BU RST_C LK# 73 I CBJD,BO TTL A - - .80 .95

CONTIG_IO 34 I CBJE,BO TTL F - - .80 .95

CPU ADDR I/O CBNS,11 TTL C 6 4 3.4 4.0
[0:2,21 :22]

CPU ADDR I/O CBNS,10 TTL C 12 8 3.7 4.3
[12,23:31]

CPU ADDR I/O CBNS,11 TTL B 6 4 2.9 3.5
[3:11-;-13:20]

CPU_ADDR_OE# 159 I CBJE,BO TTL F - - .80 .95

CPU_ADDR_SEL# 158 I CBJE,BO TTL F - - .80 .95

CPU_DATA [0:63] I/O CBNS,10 TTL B 12 8 3.2 3.8

CPU_DATA_OE# 192 I CBJE,BO TTL F - - .80 .95

CPU_DATA_SEL# 168 I CBJD,BO TTL A - - .80 .95

DRAMX9HI/X10LO 65 I CBJD,BO TTL A - - .80 .95

ERR_ADDR_SEL# 223 I CBSZ,BO TTL A - - .80 .95

GND (35 pins) - - - - - - - -
L_ERR_ADDR# 6 I CBSY,BO TTL A - - .80 .95

L_PCLDATA# 67 I CBJD,BO TTL A - - .80 .95

LE_MODE_SEL# 262 I CBJE,BO TTL F - - .80 .95

MEM_ADDR [11 :0] 0 CBNO,10 TTL C 12 8 3.5 4.1

MEM_ADDRO_B 247 0 CBNO,10 TTL C 12 8 3.5 4.1

MEM_DATA [63:0] I/O CBNS,10 TTL B 12 8 3.2 3.8

MEM_DATA_OE# 7 I CBJE,BO TTL F - - .80 .95

MEM_DATA_SEL# 72 I CBJD,BO TTL A - - .80 .95

MEM_PAGE_HIT# 64 0 CBNO,11 TTL C 6 4 3.2 3.8

MEM_PAR [7:0] I/O CBNS,10 TIL C 12 8 3.7 4.3

MEM_PAR_GOOD 71 0 CBNQ,10 TIL C 12 8 3.5 4.1

NO_TRANS 43 I CBJD,BO TTL A - - .80 .95

PCLAD [31 :0] I/O CBUK,10 PCI B 6 6 3.1 3.7

116

The 650 Bridge Chip Set

Table 6-6. 653 Buffer DC Characteristics By Signal (See Note 1) (Continued)

Signal Pin I/O Book, Type P/L IOL IOH OPC (4)

Pad (2) (3) (2) (rnA) (rnA) Min Max

PC '-AD_PAR 63 0 CBNO,12 TTL C 4 4 2.9 3.5

PC,-CLK 70 I CBJD,BO TTL A - - .80 .95

PC,-OE# 11 I CBJE,BO TTL F - - .80 .95

PC,-SEL# 74 I CBJD,BO TTL A - - .80 .95

RASHI/CASLO 203 I CBJD,BO TTL A - - .80 .95

REFRESH_SEL# 76 I CBJD,BO TTL A - - .80 .95

ROM_SEL# 66 I CBJE,BO TTL F - - .80 .95

TEST# 222 I CBSW,B3 TTL A - - .80 .95

TSIZ [0:2] I CBJD,BO TTL A - - .80 .95

Voo (27 pins) Voo - - - - - - -

Notes for Table 6-6:

1) Values apply over recommended operating conditions.

2) The Book, Pad, and P/L (performance level) define the I/O pin driver/receiver type, characteris­
tics, and speed. More information on these items is contained in the IBM CMOS4LP Logic Prod­
ucts Databook (8/93), Document Number ADCC4LDBU-01.

3) See Section 6.3, Common Characteristics.

4) Die Pad Capacitance. The equivalent capacitance to ground of the die pad attachment as a
function of the I/O book circuitry. To model the electrical path from the I/O book to the circuit board
pad, see Section 6.4.

117

The 650 Bridge Chip Set

6.6 654 Controller DC Characteristics By Signal

Table s..:.7. 654 Controller DC Characteristics By Signal

Signal Pin 1/0 Book, Type P/L IOL IOH OPC (4) POR

Pad (3) (2) (3) (rnA) (rnA) Min Max (5)

Processor Signals

AACK# 113 I/O CBND,10 TTL C 24 18 3.6 4.4 Z

ARTRY# 112 1/0 CBND,10 TTL C 24 18 3.6 4.4 Z

CPU ADDR I CBJE,BO TTL F - - .80 .95 X
[0:8,19,29-31]

CPU_GNT# 133 0 CBMZ,13 TTL C 24 18 3.6 4.4 0

CPU_REQ# 126 I CBJE,BO TTL F - - .80 .95 1

DPE# 139 I CBJE,BO TTL F - - .80 .95 1

INT_CPU# 83 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

MASK_TEA# 77 I CBJE,BO TTL F - - .80 .95 X

SRESET_CPU# 37 0 CBNQ,16 TTL B 8 6 2.7 3.3 1

TA# 134 I/O CBND,10 TTL C 24 18 3.6 4.4 Z

TBST# 127 I CBNU,16 TTL B - - 3.7 4.3 1

TEA# 135 0 CBMZ,13 TTL C 24 18 3.6 4.4 Z

TS# 132 I/O CBND,10 TTL C 24 18 3.6 4.4 Z

TSIZ[0:2] I/O CBNU,16 TTL B 8 6 2.9 3.5 Z

TT[0,2,3] I/O CBNU,16 TTL B 8 6 2.9 3.5 Z

TT[1] 122 I/O CBNU,16 TTL C 8 6 3.7 4.3 Z

XATS# 125 I CBJE,BO TTL F - - .80 .95 1

L2 Cache Signals

L2_CACHE_GNT# 114 0 CBNQ,BO TTL C 4 4 2.9 3.5 1

L2_CACHE_REQ# 109 I CBJE,BO TTL F - - .80 .95 1

L2_CLAIM# 124 I CBJE,BO TTL F - - .80 .95 1

L2_PRESENT# 82 I CBJE,BO TTL F - - .80 .95 1

PCI Sideband Signals (Incident Wave)

PCLCLK 129 I CBUM,10 PCI B - - 3.1 3.7' RUN

PCLGNT[1 :5]# 0 CBNQ,17 TTL C 8 6 3.5 4.1 1

PCLREQ[1 :5]# I CBUM,10 PCI B - - 3.1 3.7 1

PCI Bus Signals (Reflected Wave)

PCL C/BE[3 :0]# I/O CBUM,10 PCI B 6 6 3.1 3.7 Z

PCLDEVSEL# 28 I/O CBUM,10 PCI B 6 6 3.1 3.7 Z

118

The 650 Bridge Chip Set

Table 6-7. 654 Controller DC Characteristics By Signal (Continued)

Signal Pin 1/0 Book, Type P/L 10L 10H DPC (4) POR

Pad (3) (2) (3) (mA) (mA) Min Max (5)

PCLFRAME# 29 I/O CBUM,10 PCI B 6 6 3.1 3.7 Z

PCURDY# 52 I/O CBUM,10 PCI B 6 6 3.1 3.7 Z

PCLPAR 53 0 CBUI,10 PCI C 6 6 2.8 .3.4 X

PC LSTOP# 16 I/O CBUM,10 PCI B 6 6 3.1 3.7 Z

PCLTRDY# 27 I/O CBUM,10 PCI B 6 6 3.1 3.7 Z

I/O Bus and I/O Bridge Signals

10_BRDG_GNT# 7 0 CBNQ,17 TTL C 8 6 3.5 4.1 1

10_BRDG_HOLD# 45 I CBUM,10 PCI B - - 3.1 3.7 1

10_BRDG_IRQ 32 I CBJE,BO TTL F - - .80 .95 0

10_BRDG_REQ# 39 I CBUM,10 PCI B - - 3.1 3.7 1

ISA_MASTER# 79 I CBJE,BO TTL F - - .80 .95 X

NMURQ 12 I CBJE,BO TTL F - - .80 .95 0

Test Signals

DI# 117 I CBJE,BO TTL B - - .80 .95 1

RI# 75 I CBJE,BO TTL E - - .80 .95 1

TEST# 136 I CBJE,BO TTL F - - .80 .95 1

DRAM Memory Subsystem Signals

BE_PAR_EN# 84 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

CAS[7:0]# I/O CBNU,10 TTL C 12 8 3.7 4.3 1

LE_PAR_EN# 85 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

RAS[7:0]# 0 CBNQ,13 TTL C 12 8 3.5 4.1 1

WE[1:0]# 0 CBNQ,13 TTL C 12 8 3.5 4.1 1

Boot ROM Device Signals

ROM_CS# 74 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

ROM_OE# 73 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

ROM_WE# 72 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

653 Buffer Signals

ADDRHI/DATALO 147 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

ALL_ONES_SEL# 2 0 CBNQ,15 TTL C 4 4 2~9 3.5 1

BURST_CLK# 8 0 CBNQ,15 ,TTL C 4 4 2.9 3.5 1

CPU_ADDR_OE# 144 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

119

The 650 Bridge Chip Set

Table 6-7. 654 Controller DC Characteristics By Signal (Continued)

Signal Pin 1/0 Book, Type P/L IOL IOH DPC (4) POR

Pad (3) (2) (3) (rnA) (rnA) Min Max (5)

CPU_ADDR_SEL# 159 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

CPU_DATA_OE# 145 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

CPU_DATA_SEL# 158 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

DPE_ERR# 43 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

ERR_ADDR_SEL# 76 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

L_PCLDATA# 146 0 CBNQ,15 TTL. C 4 4 2.9 3.5 1

LE_MODE_SEL# 92 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

MEM_DATA_OE# 154 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

MEM_DATA_SEL# 153 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

MEM_PAGE_H IT# 149 I CBJE,BO TTL F - - .80 .95 1

MEM_PAR~ERR# 42 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

MEM_PAR_GOOD 155 I CBJE,BO TTL F - - .80 .95 X

NO_TRANS 13 0 CBNQ,15 TTL C 4 4 2.9 3.5 0

PCLAD_PAR 152 I CBJE,BO TTL F - - .80 .95 X

PCLOE# 148 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

PCLSEL# 157 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

RASHI/CASLO 156 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

REFRESH_SEL# 9 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

ROM_SEL# 14 0 CBNQ,15 TTL C 4 4 2.9 3.5 1

TT_ERR# 44 0 CBNQ,17 TTL B 8 6 2.7 3.3 1

System Interface and Miscellaneous Signals

CPU_CLK 142 I CBJE,BO TTL F - - .80 .95 RUN

LE_MODE_REQ# 150 I CBJE,BO TTL F - - .80 .95 X

MC_SETUP# 46 I CBJE,BO TTL F - - .80 .95 1

REFRESH_REQ# 87 I CBJE,BO TTL F - - .80 .95 1

RESET# 86 I CBJE,BO TTL F - - .80 .95 -

SRESET_REQ# 89 I CBJE,BO TTL F - - .80 .95 1

Notes for Table 6-7:

1) Values apply over recommended operating conditions.

2) See Section 6.3.

120

The 650 Bridge Chip Set

3) The Book, Pad, and P/L (performance level) define the 1/0 pin driverlreceiver type, characteris­
tics, and speed. More information on these items is contained in the IBM CMOS4LP Logic Prod­
ucts Databook (8/93), Document Number ADCC4LDBU-01.

4) Die Pad Capacitance. The equivalent capacitance to ground of the die pad attachment as a
function of the 1/0 book circuitry. To model the electrical path from the 1/0 book to the circuit board
pad, see Section 6.4.

5) For inputs, this state must be held on the input during the inputs required interval of the POR
sequence (the letter X indicates a don't care). For outputs, the 653 Buffer will drive this state onto
the output pin during the outputs valid interval of the POR sequence (the symbol Z indicates that
the output is tri-stated during POR). The 650 Bridge power on conditions are designed to be con­
sistent with conditions produced by properly functioning 60X CPU, PCI bus agents, L2 cache, and
other system components.

121

The 650 Bridge Chip Set

6.7 Output V-I Curves

6.7.1 PCI Local Bus Compatible Drivers .
Inputs and outputs (drives) in the PCI group have input/output characteristics that comply with
the DC specifications of both the 3.3v and 5v signalling environments defined for PCI Local Bus
components in the PCI Local Bus Specification, Revision 2.0. These signals are identified in the
DC Characteristics Tables as type PCI.

The following tables show V-I curves for the PCI bus output drivers contained in the 650 Bridge
chipset. The curves labeled WC show driver characteristics of a worst case process variation de­
vice operating at 85 deg C with Voo = 3v. The curves labeled BC show driver characteristics of
a best case process variation device operating at 10 deg C with Voo = 3.6v. The curves labeled
NOM show driver characteristics of a nominal process device operating at 25 deg C with Voo =
3.3v.

6.7.1.1 Pull Up Curves, PCI Drivers, P/L'= A

1

o 10 20 30 40 50 60 70 80 90 100 120 140

Figure 6-3. Pull Up Curves, PCI Drivers, P/L = A.

122

The 650 Bridge Chip Set

6.7.1.2 Pull Up Curves, PCI Drivers, P/L = B

3

o 10 20 30 40 50 60 70 80 90 100 120 140 160

Figure 6-4. Pull Up Curves, PCI Drivers, P/L = B.

6.7.1.3 Pull Up Curves, PCI Drivers, P/L = C

3

2

1

o 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200

Figure 6-5. Pull Up Curves, PCI Drivers, P/L = C.

123

The 650 Bridge Chip Set

6.7.1.4 Pull Down Curves, PCI Drivers, P/L = A, B, and C

4

3

VOL

2

o 20 40 60 80 100 120 160
IOL

200 240 280

Figure 6-6. Pull Down Curves, PCI Drivers, P/L = A, B, and C.

6.7.2 TTL Driver Output Curves
Inputs and outputs (drives) in the TTL group have inpuVoutput characteristics that comply with
common TTL switching levels, as shown in Table 6-5. The following tables show V-I curves for
the TTL output drivers contained in the 650 Bridge chipset. The curves labeled we show driver
characteristics of a worst case process variation device operating at 85 deg e with VDD = 3v. The
curves labeled Be show driver characteristics of a best case process variation device operating
at 10 deg e with VDD = 3.6v. The curves labeled NOM show driver characteristics of a nominal
process device operating at 25 deg e with "DD = 3.3v.

124

6.7.2.1

4

3

2

o

6.7.2.2

4

3

2

1

o

The 650 Bridge Chip Set

Pull Down Curves, TTL Driver, IOL = 4mA, P/L = A

30 40

Figure 6-7. Pull Down Curves, TTL Driver, IOL = 4mA, P/L = A

Pull Down Curves, TTL Dr,iver, IOL = 4mA, P/L = B

VOUT

10 20 30 40

Figure 6-8. Pull Down Curves, TTL Driver, IOL = 4mA, P/L = B

125

50

lOUT

50

The 650 Bridge Chip Set

6.7.2.3 Pull Down Curves, TTL Driver, IOl = 4mA, P/L = C

4

3

2

1

o

Figure 6-9. Pull Down Curves, TTL Driver, IOl = 4mA, P/L = C

6.7.2.4 Pull Up Curves, TTL Driver, IOl = 4mA, P/L = A, B, and C

4

3

2

1

o 10 20 30 40 50 60 70

Figure 6-10. Pull Up Curves, TTL Driver, IOl = 4mA, P/L = A, B, and C

126

6.7.2.5

4

3

2

o

6.7.2.6

4

3

2

1

o

The 650 Bridge Chip Set

Pull Down Curves, TTL Driver, IOL = 6mA, P/L = A

. V OUT

. Figure 6-11. Pull Down Curves, TTL Driver, IOL = 6mA, P/L = A

Pull Down Curves, TTL Driver, IOL = 6mA, P/L = B

10 20 30 40 50 60 70

Figure 6-12. Pull Down Curves, TTL Driver, IOL = 6mA, P/L = B

127

80

The 650 Bridge Chip Set

6.7.2.7 Pull Down Curves, TTL Driver, IOL = 6mA, P/L = C

4

3

2

1

lOUT

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 6-13. Pull Down Curves, TTL Driver, IOL = 6mA, P/L = C

6.7.2.8 Pull Up Curves, TTL Driver, IOL = 6mA, P/L = A, B, and C

4 VOUT

3

2

1

o 10 20 30 40 50 60 70 80 90 100 110

Figure 6-14. Pull Up Curves, TTL Driver, IOL = 6mA, P/L = A, B, and C

128

The 650 Bridge Chip Set

6.7.2.9 Pull Down Curves, TTL Driver, IOL = SmA, P/L = A

4

3

2

1

o 10 20 30 40 50 60 70 80 90 . 100 110 120

Figure 6-15. Pull Down Curves, TTL Driver, IOL = SmA, P/L = A

6.7.2.10 Pull Down Curves, TTL Driver, IOL = SmA, P/L = B

4
VOUT

3

2

1

o 10 20 30 40 50 60 70 80 90 100 110 120

Figure 6-16. Pull Down Curves, TTL Driver, IOL = SmA, P/L =. B

129

The 650 Bridge Chip Set

6.7.2.11 Pull Down Curves, TTL Driver, lOt = 8mA, PIL = C

4

3

2

1

lOUT

o 100 200

Figure 6-17. Pull Down Curves, TTL Driver, IOL = 8mA, PIL = C

6.7.2.12 Pull Up Curves, TTL Driver, IOL = 8mA, PIL = A, B, and C
4

3

2

1

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Figure 6-18. Pull Up Curves, TTL Driver, IOL = 8mA, PIL = A, B, and C

130

The 650 Bridge Chip Set

6.7.2.13 Pull Down Curves, TTL Driver, IOL = 12mA, P/L = A
4

VOUT

3

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 6-19. Pull Down Curves,TTL Driver, IOL = 12mA, P/L = A

6.7.2.14 Pull Down Curves, TTL Driver, IOL = 12mA, P/L = B

4
VOUT

3

1

lOUT

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 6-20. Pull Down Curves, TTL Driver, IOL = 12mA, P/L = B

131

The 650 Bridge Chip Set

6.7.2.15 Pull Down Curves, TTL Driver, IOL = 12mA, P/L = C

4

3

1

o 20 40 60 80 100 120 140 160 180 200 220 240

Figure 6-21. Pull Down Curves, TTL Driver, IOL = 12mA, P/L = C

6.7.2.16 Pull Up Curves, TTL Driver, IOL = 12mA, P/L = A, B, and C'

4

3

1

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Figure 6-22. Pull Up Curves, TTL Driver, IOL = 12mA, P/L = A, B, and C

132

The 650 Bridge Chip Set

6.7.2.17 Pull Up Curves, TTL Driver, IOL = 24mA, P/L = A

4

Be

100

Figure 6-23. Pull Up Curves, TTL Driver, IOL = 24mA, P/L = A

6.7.2.18 Pull Up Curves, TTL Driver, IOL = 24mA, P/L = B

4

3

2

1

100
Figure 6-24. Pull Up Curves, TTL Driver, IOL = 24mA, P/L = B

133

-lOUT

200

-lOUT

200

The 650 Bridge Chip Set

6.7.2.19 Pull Up Curves, TTL Driver, IOL = 24mA, P/L = C
4

3

20 40 60 80 100 120 140 160 180 200 220 240

Figure 6-25. Pull Up Curves, TTL Driver, IOL = 24mA, P/L = C

6.7.2.20 Pull Down Curves, TTL Driver, IOL = 24mA, P/L = A, B,and C

4
VOUT

400

Figure 6-26. Pull Down Curves, TTL Driver, IOL = 24mA, P/L = A, B, and C

134

Section 7
Timings

Unless otherwise indicated, all specifications in this section apply equally to the 653 Buffer and
the 654 Controller. .

7.1 Timing Conventions
7.1.1 Board Delays
Unless otherwise indicated, all timing specifications refer to events at the pins of the chip under
discussion. In systems operating at speeds typical of the 60X family, propagation delays from
point to point on a circuit board can be significant. The timing diagrams make no assumptions
about board delays. No board or system propagation delays have been included in the timing dia­
grams or in the timing charts. The timing diagrams assume that there is zero propagation delay
from pins on the 654 to pins on the 653, and to pins on the DRAMs, and to pins on the 60X, and
to the PCI bus. For example, the delay from BURST_ClK# fall (at the 654 Controller pin) to
MEM_ADDR valid (at the 653 Buffer pin) is shown as tmab, and this time is called out in the timing
tables. However, tmabdoes not include the time required for BURST _ClK# to travel from the 654
Controller to the 653 Buffer. Likewise, the delay imposed upon TBST# between the 60X CPU and
the 654 Controller is neither specified nor included in any of the timing information presented. Al­
low for delays between components while constructing timing diagrams for the design of an actual
system.

7.1.2 Terms and Definitions·

7.1.2.1 ' Signal Range Names
Signal range names used without range indicators refer to the entire group of signals. For exam­
ple, CPU_DATA refers to the 653 signals CPU_DATA[O:63]. Ranges are expressed as [most-sig­
nificant bit: least-significant bit].

7.1.2.2 Signal Group Names
Some signals are referred to in a group in the timing diagrams. For example, CPU_ADDR refers
to 60X address and address transfer attribute signals. Particular signals in the group may be
shown separately for emphasis (T8ST#, for example).

135

The 650 Bridge Chip Set

7.1.2.3 Timing Diagram and Timing Chart Definitions
Table 7-1 shows the terms that are used in this section to describe signals.

Table 7-1. Timing Diagram and Timing Chart Definitions

Term Definition

in or I Input only pin

out or 0 Output only pin. Output driver is totem-pole unless otherwise noted.

I/O Input/output pin, tri-state capable unless otherwise noted.

ClK The rising edge of CPU_ClK.

asserted/active In the logic TRUE state.

deasserted/inactive/ In the logic FALSE state.
negated

valid The voltage of the signal is above VH or below VL. Valid does not imply
that the signal is TRUE or asserted or 'active.

7.1.3 Transaction Clock Cycle Nomenclature
Following the .601 convention, CPU_ClK cycles are labeled according to the cycle number. A
rising edge of CPU_ClK isref~rred to by using the numbers of the cycles on either side of it. The
rising edge labeled A in Figure 7-1 is called the 1/2 rising edge of CPU_ClK.

o 1 2 3

A~

Figure 7-1. CPU_ClK Cycle Nomenclature

Figure 7-2 shows the nomenclature used in the PCI Specification to refer to the rising edges of
PCLClK. During a defined PCI transaction, each rising edge of the PCI clock is numbered
(PCLFRAME# is asserted on PCI_ClK rising edge 1, which is also called PCLClK 1).

o 2 3

PCLClK
-----'

Figure 7-2. PCI_ClK Cycle Nomenclature

7.1.4 Signal Switching levels for Timing Analysis
Figure 7-3 shows typical timing analysis signal switching levels, where VH and VL (see valid in
Table 7-2) are the valid logic levels used for all input and output signals except CPU_ClK. Unless
otherwise indicated, all input and output signal (not clock) switching specifications refer to the

136

The 650 Bridge Chip Set

point in time at which the signal crosses one of these levels. These levels are used for timing anal­
ysis only, and do not imply anything about the DC characteristics of the device.

Inputor· X
Output Valid " :alid
Signal .------

'-------

Figure 7-3. Switching Levels

Table 7-2. Valid Logic High and Low Levels for 650 Bridge Timing Specifications

Level Name Symbol Voltage

Logic High Level VH 2v

Logic Low Level VL ,8v

Midpoint Voltage VM 1.Sv

7.1.5 Input Setup Time
,Input setup time is the amount of time that an input signal is required to be 'stable at a valid logic
level immediately prior to an event. Input setup time (TIS in Figure 7-4) from a signal to the clock
is measured from the point in time at which the input becomes valid to the the point in time at which
the clock rising edge crosses the VM level. Input setup time from a signal to an input strobe is
measured from the point in time at which the input becomes valid to the the point in time at which
the strobe becomes active (its active edge crosses the valid logic level in the active-going direc­
tion).

7.1.6, Input Hold Time
Input hold time is the amount of time that an input signal is required to remain stable at a valid
logic level immediately following an event. Input hold time (TIH in Figure 7-4) from the clock to
an input signal is measured from the point in time at which the clock rising edge crosses the VM
level to the point in time at which the input goes invalid (crosses the valid logic level in the invalid­
going direction). Input hold time from an input strobe to an input signal is measured from the point
in time at which the strobe becomes active (its active edge crosses the valid logic level in the ac­
tive-going direction) to the point in time at which the input goes invalid~

7.1.7 Output Hold Time
Output hold time is the amount of time that an output signal remains stable at a valid logic level
immediately following an event which may cause the output to change state. Output hold time
(TOH in Figure 7-4) from the clock is measured from the point in time at which the rising edge of
the clock crosses the VM level to the point in time at which the output signal becomes invalid
(crosses the valid logic level in the invalid-going direction). Output hold time from an input strobe
is measured from the point in time at which the strobe becomes active (its active edge crosses
the valid logic level in the active-going direction) to the point in time at which the output signal be­
comes invalid.

137

The 650 Bridge Chip Set

7.1.8 Output Valid Delay Times
Output valid delay time is the amount of time required for an output signal to change to a stable
valid state following an event. Output valid delay time (Too in Figure 7-4) from the clock is mea­
sured from the point in time at which the rising edge of the clock crosses the VM level to the point
in time at which the output signal becomes valid (crosses the valid logic level in the valid-going
direction). Output valid delay time from an input strobe is measured from the point in time at which
the strobe becomes active (its active edge crosses the valid logic level in the active-going direc­
tion) to the point in time at which the output signal becomes valid.

7.1.9 Output Tri-State Hold Time
Output tri-state hold time is the amount of time that an output signal remains driven to a valid logic
level immediately following an event which may cause the output to tri-state (go to a high-imped­
ance state). Output tri-state hold time (T 3SH in Figure 7-4) from the clock is measured from the.
point in time at which the rising edge of the clock crosses the VM level to the point in time at which
the output signal becomes invalid (is no longer guaranteed to be actively driven to a valid logic
level). Output hold time from an input strobe is measured from the point in time at which the strobe
becomes active (its active edge crosses the valid logic level in the active-going direction) to the
point in time at which the output signal becomes invalid. Note that this specification deals with the
time that the output driver remains active following an event which may turn it off. The actual out­
put signal may remain valid for some time after this, depending on other conditions.

7.1.10 Output Tri-State Delay. Time
Output valid delay time is the amount of time required for an output signal driver to turn off (go
to a high impedance state) following an event. Output valid delay time (T 3SD in Figure 7-4) from
the clock is measured from the point in time at which the rising edge of the clock crosses the VM
level to the point in time at which the output signal driver turns off (is no longer driving the output).
Output valid delay time from an input strobe is measured from the point in time at which the strobe
becomes active (its active edge crosses the valid logic level in the active-going direction) to the
point in time at which the output signal driver turns off. Note that this specification deals with the
time that it takes the output driver to stop driving the output signal line following an event which
may turn it off. The actual output signal may remain valid for some time after this, depending on
other conditions.

138

d~~~~1 Valid I ~~]X
---------~ ~---

O~~~~I I)<[~~ Valid

----------~ .

Output

Signal Valid ~~J>
rT3SH .. 1

Output I >
Signal ______ v_a_li_d_. ~

T3sD

High-Z

High-Z

Figure 7-4. Signal Timing Conventions

139

The 650 Bridge Chip Set

The 650 Bridge Chip Set

7.2 Clock Considerations
To maintain synchronization between the 654 Controller and the 601 CPU, certain constraints are
placed on the relationship between 2X_PClK and CPU_ClK. There are also constraints placed
on the relationship between PCLClK and CPU_ClK.

7.2.1 Clock Switching levels
Unless otherwise indicated, all references to CPU_ClK clock timing refer to the point in time at
which the CPU_ClK crosses the VM level. See Figure 7-4, Table 7-2, and Figure 7-5.

7.2.2 The CPU ClK
The CPU_ClK is shown (at the CPU_ClK pin of the 654 Controller) in Figure 7-5, where T CH
is the time that CPU_ClK is high, and T CL is the time that CPU_ClK is low. The duty cycle of
CPU_ClK is shown in Table 7-3 as T D(CPU_CLK)' If the period of CPU_ClK is 15ns, then T CH may
range from 5.25ns to 9.75ns.

VM

b
Figure 7-5. CPU_ClK Timing

In general, 654 Controller inputs are sampled on the rising edge of CPU_ClK, and outputs are
updated on the rising edge of CPU_ClK.

Table 7-3. CPU_ClK Timing Constraints

Symbol Description Min Max Units Note

T D(CPU_CLK) CPU_ClK Duty cycle TCH/(TcH + T.cd 35 65 0/0 (1)

TS(2X-CPU) Allowed skew of 2X_PClK wrt CPU_ClK -1 +1 ns (2)

Notes for Table 7-3.
1) 10°C:::; T J :::; 85°C, 3.0v :::; VDD :::; 3.8v. See Figure 7-5.
2) 10°C:::; T J :::; 85°C, 3.0v :::; VDD :::; 3.8v. See Figure 7-6.

7.2.3 The 654 Controller Clock and the 601 Clocks
Nominally, each CPU_ClK rising edge is exactly aligned with a rising edge of 2X_PClK. The faI­
ling edge of CPU_ClKis not defined with respect to 2X_PClK. It is defined by the duty cycle
constraint. Figure 7-6 shows the required relationship between the 2X_PClK (a 601 signal) at
the pin of the CPU, and CPU_ClK at the pin of the 654. Note that the allowed skew T S(2X-CPU),
is shown as ±1 ns in Table 7-3.

140

The 650 Bridge Chip Set

Figure 7-6. CPU_ClK Timing

When the CPU_ClK is running at 66MHz, as shown in Figure 7-7, the 601 BClK_EN# signal
must be tied low, and CPU_ClK must be in phase with the 601 PClK_EN# signal. As shown in
Figure 7-8, when CPU_elK is running at 33MHz, BClK_EN# runs at 66MHz, and the phase rela­
tionships between all three clocks must be maintained. In each case, CPU_ClK is required to
up-transition on the 2X_PClK up-transition indicated by the arrow. This is the 2X_PClK edge on
which the 601 samples inputs and issues outputs. Enforcing these constraints synchronizes the
654 Controller to the 601 CPU.

CPU_ClK

66MHz

PClK_EN#

66MHz

Not
Qualified

(stays low)

Qualified

Figure 7;....7. CPU_ClK Phase Relationships at 66MHz

141

The 650 Bridge Chip Set

133MHz

66MHz
PClK_EN#

BClK_EN#
33MHz

/ \ / CPU_ClK
33MHz

Figure 7-8. CPU_ClK Phase Relationships at 33MHz

7.2.4 CPU ClK to PCI ClK Skew
The 654 Controller is clocked by the CPU_ClK signal. The 654 also receives a PCLClK signal,
which it treats as a signal input as opposed to a clock. These signals are typically generated in
two different chips and travel two different paths to the 654. This implementation typically gener­
ates some skew between the two signals. This skew must not exceed Tcpcs, the allowed
CPU_ClK to PCI_ClK skew specification shown in Table 7-4. Tcpcs is independent of
CPU_ClK speed and is measured at the pins of the 654 Controller.

Table 7-4. PCI_ClK Timing Constraints

Symbol Description Min Max Units Note

Tcpcs@3.6v Allowed skew of PCLClK wrt CPU_ClK -.5 4 ns (1)

Tcpcs@3.3v Allowed skew of PCLClK wrt CPU_ClK -.5 3.3 ns (2)

Notes for Table 7-4.
1) 1 DoC:::;; TJ:::;; 85°C, 3.4v:::;; Voo:::;; 3.8v. See Figure 7-9 and Figure 7-10.
2) 1 DoC:::;; TJ:::;; 85°C, 3.0v :::;; Voo:::;; 3.6v. See Figure 7-9 and Figure 7-10.

7.2.4.1 Clocking In 2:1 Mode
In 2:1 clocking mode (see Figure 7-9) the CPU_ClK is running at twice the speed of the
PCLClK. (The time scale shown is for reference only, for a system running with a 66MHz
CPU_ClK and a 33MHz PCLClK.) PCLClK is required to change state on the rising edge of
CPU_ClK. Tcpcs applies to both the rising and the falling edges of PCLClK.

142

The 650 Bridge Chip Set

Ons 5ns IOns 15ns 20ns 25ns

I

I \ I
L!cpc~ L!cpc~

PCCCLK A , , ~

Figure 7-9. Timing Diagram, CPU_ClK to PCLClK Skew, 2:1 Mode

7.2.4.2 Clocking In 1:1 Mode
In 1:1 clocking mode (see Figure 7-10), the CPU_ClK is running at the same speed as the
PCLClK. (The time scale shown is for reference only, for a system running with a 33MHz
CPU_ClK and a 33MHz PCLClK.) PCLClK is required to be in phase with CPU_ClK and to
change state when CPU_ClK changes state. Tcpcs applies to both the rising and the falling edges
of PCLClK.

Ons IOns 20ns 30ns 40ns 50ns

I

CPU_CLK\ I \ I

PCCCLK

L-tcPc4 L-.!cPcs-tj

~ , , ~ ~ ,
Figure 7-10. Timing Diagram, CPU_ClK to PCLClK Skew, 1:1 Mode

7.3 Power-On Considerations
The 650 Bridge is designed to· impose no additional power-on-reset or power supply behavior
constraints on a system that contains, a 60X CPU and a PCI bus. The 650 works properly in a
system designed to correctly support the 60X CPU and the PCI bus.

The 654 Controller requires RESET#to be asserted at power-on for a minimum of 1 us past power­
good, and for a minimum of 10 CPU_ClKcycles past the point in time at which CPU_ClK is stable
and within specification. The inputs to the 654 Controller are not required to be in any special state
during the reset period, but the 654 will start to respond to control ,inputs immediately following
the deassertion of RESET#. This design fully supports a properly functioning 60X CPU, l2 cache,
and PCI agents.

The 653 Buffer requires no reset signal, as it is controlled by the 654 Controller. When used with­
out the 654 Controller, the only requirement is for the designer to arrange for the
CPU_ADDR_SEl# signal to be asserted and then deasserted during the power-on reset se­
quence.

143

The 650 Bridge Chip Set

7.4 654 Controller Timing

7.4.1 654 Controller Synchronous Input Timing Characteristics

Table 7-5. 654 Controller Input Timing Characteristics By Signal

654 1/ 3.3v V DD System (2) 3.6v VDD System (1) Note
Input Signal 0

Setup Time Hold Time Setup Time Hold Time
(ns) Min (3) (ns) Min (4) (ns) Min (3) (ns) Min (4)

Processor Signals

AACK# I/O .20 2.0 0.2 2.0

ARTRY# I/O 2.9 2.0 0.25 2.0

CPU_ADDR[O] I 0.6 2.0 1.1 2.0

CPU_ADDR[1] I 6.9 2.0 8.5 2.0

CPU_ADDR[2] I 6.7 2.0 8.2 2.0

CPU_ADDR[3] I 6.2 2.0 7.7 2.0

CPU_ADDR[4] I 6.6 2.0 7.7 2.0

CPU_ADDR[5] I 6.2 2.0 7.7 2.0

CPU_ADDR[6] I 6.6 2.0 8.1 2.0

CPU_ADDR[7]' I 6.6 2.0 8.1 2.0

CPU_ADDR[8] I 6.6 2.0 8.1 2.0

CPU_ADDR[19] I 3.4 .20 3.9 .20 (5)

CPU_ADDR[29] I 6.2 2.0 7.7 2.0

CPU_ADDR[30] I . 6.8 2.0 8.1 2.0

CPU_ADDR[31] I 7.3 2.0 8.8 2.0

CPU_REQ# I 1.7 2.0 1.3 2.0

DPE# I 1.3 2.0 1.0 2.0

MASK_TEA# I 1.3 2.0 1.3 2.0

TA# I/O a 2.0 a 2.0

TBST# I 6.8 2.0 5.9 2.0

TS# I/O 1.5 2.0 1.0 2.0

TSIZ[O] I/O 7.4 2.0 8.8 2.0

TSIZ[1] I/O 7.1 2.0 ' 8.4 2.0

TSIZ[2] I/O 7.2 2.0 8.8 2.0

TT[O] I/O 0.9 2.0 1.4 2.0

TT[1] I/O 5.0 2.0 6.1 2.0

144

The 650 Bridge Chip Set

Table 7-5. 654 Controller Input Timing Characteristics By Signal (Continued)

654 II 3.3v Voo System (2) 3.6v Voo System (1) Note
Input Signal 0

Setup Time Hold Time Setup Time Hold Time
(ns) Min (3) (ns) Min (4) (ns) Min (3) (ns) Min (4)

TT[2] I/O 0.9 2.0 1.3 2.0

TT[3] I/O 6.4 2.0 8.0 2.0

XATS# I 1.6 2.0 1.0 2.0

L2 Cache Signals

L2_CACHE_REQ# I 2.7 2.0 2.3 2.0

L2_CLAIM# I 2.5 2.0 2.2 2.0

L2_PRESENT# I 3.6 2.0 3.0 2.0

PCI Sideband Signals (Incident Wave)

PCLCLK I See Section 7.2.4. See Section 7.2.4.

PCLREQ[1 :5]# I 7.0 0 7.0 0

PCI Bus Signals (Reflected Wave)

PCLC/BE[3:0]# I/O 7.0 0 7.0 0

PCLDEVSEL# I/O 8.0 0 7.0 0

PCLFRAME# I/O 7.0 0 7.0 0

PCURDY# I/O 7.0 0 7.0 0

PC LSTOP# I/O 7.0 0 7.0 0

PCLTRDY# I/O 7.0 0 7.0 0

1/0 Bus and 1/0 Bridge Signals

IO_BRDG_HOLD# I 0 2.0 0 2.0

IO_BRDG_IRQ I 0.5 2.0 0.5 2.0

IO_BRDG_REQ# I 7.0 0 7.0 0

ISA_MASTER# I 0 2.0 0 2.0

NMURQ I 7.9 2.0 6.4 2.0

653 Buffer Signals

MEM_PAGE_HIT# I 3.1 2.0 2.3 2.0

MEM_PAR_GOOD I 0.8 2.0 0.7 2.0

PC LAD_PAR I 0 2.0 0 2.0

145

The 650 Bridge Chip Set

Table 7-5. 654 Controller Input Timing Characteristics By Signal (Continued)

654 . II 3.3v Vee System (2) 3.6v Vee System (1) Note
Input Signal 0 Setup Time Hold Time Setup Time Hold Time

(ns) Min (3) (ns) Min (4) (ns) Min (3) (ns) Min (4)

System Interface and Miscellaneous Signals

LE_MODE_REQ# I 0.8 2.0 0.3 2.0

REFRESH_REQ# I 0 2.0 0 2.0

SRESET_REQ# I 0 2.0 0 2.0

Notes for Table 7-5.
1) 1 aoc :::;; TJ :::;; 85°C, 3.4v:::;; VDD:::;; 3.8v.
2) 1 aoc :::;; T J :::;; 85°C, 3.av :::;; VDD :::;; 3.6v.
3) From signal valid to CPU_ClK rise.
4) From CPU_ClK rise to signal invalid. ,
5) Fast logic path chosen to accomodate delays imposed on A 19 during PCI bus mastet transac­

tions that are broadcast (A 19 goes through the 653 Buffer) to the CPU bus for snooping. A 19
is used to detect page misses during PCI to memory burst transactions.

6) TEST#, RI#, and DI# timing is not specified. .

146

The 650 Bridge Chip Set

7.4.2 654 Controller Synchronous Output Timing Characteristics

Table 7-6. 654 Controller Output Timing Characteristics By Signal

654 II 3.3v V DD System (2) 3.6v VDD System (1)
Output Signal 0

Output Output Output Output Output Output
Hold Tri-state Valid Hold Tri-state Valid

Time (3) Delay (4) Delay (5) Time (3) Delay (4) Delay (5)
(ns) Min (ns) Max (ns) Max . (ns) Min (ns) Max (ns) Max

Processor Signals

AACK# I/O 2.2 10.8 10.5 2.1 10.3 9.2

ARTRY# I/O 2.4 10.4 10.4 2.3 9.3 9.3

CPU_GNT# 0 2.5 NA 9.7 2.4 NA 8.7

INT_CPU# 0 3.3 NA 15.1 3.0 NA 12.7

SRESET_CPU# 0 3.3 NA 14.9 3.0 NA 12.6

TA# I/O 2.2 10.7 10.1 2.0 10.2 9.1

TBST# I/O 3.6 15.6 15.6 3.3 ' 14.5 14.5

TEA# 0 2.5 'NA 9.6 2.3 NA 8.6

TS# I/O 2.2 12.2 8.6 2.0 10.9 7.8

TSIZ[O:2] I/O 3.6 15.6 15.6 3.3 . 14.5 14.5

TT[O] I/O 3.6 15.7 15.7 3.3 14.5 14.4

TT[1] I/O 2.8 14.9 13.4 2.4 13.2 11.9

TT[2] I/O 3.8 15.7 15.7 3.4 14.5 14.4

TT[3] I/O 3.6 15.7 15.7 3.3 14.5 14.4

L2 Cache Signals

L2_CACHE_GNT# 0 2.8 NA 14.0 2.4 NA 12.7

PCI Sideband Signals (Incident Wave)

PCLGNT[1 :5]# 0 2.5 NA 13.0 2.0 NA 12.0

PCI Bus Signals (Reflected Wave)

PCLC/BE[3:0]# I/O 2.0 13.0 12.1 2.0 11.5 11.0

PCLDEVSEL# I/O 2.0 11.3 11.8 2.0 10.1 11.0

PCLFRAME# I/O 2.0 12.8 11.5 2.0 11.4 11.0

PCURDY# I/O 2.0 26.7 11.5 2.0 23.1 11.0

PC LPAR 0 2.0 13.0 12.3 2.0 11.5 11.0

PC LSTOP# I/O 2.0 11.2 12.2 2.0 10.0 11.0

PCLTRDY# 1/0 2.0 11.3 12.0 2.0 10.0 11.0

147

The 650 Bridge Chip Set

Table 7-6. 654 Controller Output Timing Characteristics By Signal (Continued)

654 II 3.3v VDD System (2) 3.6v VDD System (1)
Output Signal 0 Output Output Output Output Output Output

Hold Tri-state Valid Hold Tri-state Valid
Time (3) Delay (4) Delay (5) Time (3) Delay (4) Delay (5)
(ns) Min (ns) Max (ns) Max (ns) Min (ns) Max (ns) Max

1/0 Bus and 1/0 Bridge Signals

IO_BRDG_GNT# 0 2.5 NA 12.7 2.0 NA 12.0

DRAM Memory Subsystem Signals

BE_PAR_EN# 0 3.5 NA 15.7 3.1 NA 13.9

CAS[7:0]# I/O 2.4 NA 12.3 2.3 NA 10.8

LE_PAR_EN# 0 3.5 NA 15.7 3.1 NA 13.9

RAS[7:0]# 0 2.5 NA 12.4 2.3 NA 10.9

WE[1 :0]# 0 2.9 NA 17.2 2.6 NA 15.0

Boot ROM Device Signals

ROM_CS# 0 3.7 NA 16.5 3.4 NA 13.9

ROM_OE# 0 3.4 NA 15.7 3.1 NA 13.2

ROM_WE# 0 3.4 NA 15.6 3.1 NA 13.5

653 Buffer Signals

ADDRHI/DATALO 0 3.2 NA 16.0 2.8 NA 14.3

ALL_ON ES_SEL# 0 3.0 NA 15.0 2.7 NA 13.5

BURST_CLK# 0 3.0 NA 14.8 2.6 NA 13.3

CPU_ADDR_OE# 0 3.0 NA 14.6 2.6 NA 13.2

CPU_ADDR_SEL# 0 3.1 NA 15.0 2.7 NA 13.5

CPU_DATA_OE# 0 2.9 NA 15.0 2.5 NA 13.5

CPU_DATA_SEL# 0 3.0 NA 15.0 2.6 NA 13.5

DPE_ERR# 0 3.4 NA 15.4 3.1 NA 13.0

ERR_ADDR_SEL# 0 3.7 NA 16.1 3.3 NA 13.8

L_PCLDATA# 0 2.8 NA 13.9 2.4 NA 12.5

LE_MODE_SEL# 0 3.4 NA 15.4 3.1 NA 13.0

MEM_DATA_OE# 0 3.2 NA 18.2 2.8 NA 16.2

MEM_DATA_SEL# 0 3.0 NA 18.8 2.6 NA 16.8

MEM_PAR_ERR# 0 3.6 NA 15.5 3.2 NA 13.7

NO_TRANS 0 3.0 NA 15.0 2.6 NA 13.5

PCLOE# 0 3.1 NA 16.7 2.7 NA 15.0

148

The 650 Bridge Chip Set

Table 7-6. 654 Controller Output Timing Characteristics By Signal (Continued)

654 II 3.3v V DD System (2) 3.6v VDD System (1)
Output Signal 0

Output Output Output Output Output Output
Hold Tri-state Valid Hold Tri-state Valid

Time (3) Delay (4) Delay (5) Time (3) Delay (4) Delay (5)
(ns) Min (ns) Max (ns) Max (ns) Min (ns) Max (ns) Max

PCLSEL# 0 3.3 NA 16.0 2.9 NA 14.4

RASHI/CASLO 0 3.0 NA 15.7 2.6 NA 14.1

REFRESH_SEL# 0 2.9 NA 14.3 2.5 NA 12.9

ROM_SEL# 0 3.1 NA 14.9 2.7 NA 13.4

TT_ERR# 0 3.4 NA 15.3 2.8 NA 12.9

Notes for Table 7-6.
1) 10°C ~ TJ ~ 85°C, 3.4v ~ Voo ~ 3.8v
2) 1 O°C ~ TJ ~ 85°C, 3.0v ~ Voo ~ 3.6v.
3) Minimum output delay from CPU_ClK rising edge to signal invalid. See Section 7.1.7. Values

shown reflect fastest process variables, VDD = max (3.6v for Voo = 3.3v nominal, or 3.8v for
Voo = 3.6v nominal), and TJ = 10°C. This value applies to signals that are being driven to a
new logic level by the CPU_ClK rising edge and to signals that are being tri-stated by the
CPU_ClK rising edge (synchronous output disables).

4) Maximum output delay from CPU_ClK rising edge to signal tri-state (output driver turned off).
Value shown reflects low Voo (3v for Voo = 3.3v nominal, or 3.4v for Voo = 3.6v nominal), TJ
= 85°C and slowest process variables. Value derived by placing two of the same type of drivers
in contention, gating one off (on the rising edge of CPU_ClK), and determining the time re­
quired for the other driver to drive the line to a valid logic level.

5) Maximum output delay from CPU_ClK rising edge to signal valid. Value shown is slowest of
up-transition from Ov to 2v or down-transition from low Voo (3v for Voo = 3.3v nominal, or 3.4v
for Voo = 3.6v nominal) to .8v, and reflects TJ = 85°C and slowest process variables.

NA) These outputs are never synchronously tri-stated.

149

The 650 Bridge Chip Set

7.4.3 Asynchronous Signals in the 654
The 654 Controller generally operates as a synchronous state machine. However, there are
asynchronous paths from some of the 654 inputs to some of the 654 outputs. Some of these paths
are provided to speed up system operation by allowing the bridge to enable pathways before they
are officially selected by a qualifying clock edge. In all cases, these asynchronous paths are be­
nign as long as the 60X CPU and other system components are operating properly. The following
sections describe these asynchronous paths in detail. The effects of the test inputs (TEST#, DI#,
and RI#) are not included in this section.

7.4.3.1 AACK#
Asynchronously affected by-l2_PRESENT#.

The 654 Controller drives AACK# continuously while l2_PRESENT# is high. If l2_PRESENT#
is low, then AACK# is normally (at bus idle) tri-stated. During CPU mastered transactions, AACK#
is output enabled during CPU_ClK cycle 4. After it is driven low for one cycle at the end of the
transfer, it is driven high for one cycle, and then tri-stated. During snoop cycles (PCI bus master
to memory transactions) AACK# is output enabled only while CPU_ADDR_OE# is asserted.
AACK# is enabled during address-only CPU cycles.

7.4.3.2 ALL ONES SEL#
Asynchronously affected by-CPU_ADDR[O:8, 19,29:31], TBST#, TSIZ[O:2], TT[O:3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_ClK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi­
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.3 CAS[7:0]#
Asynchronously affected by-MC_SETUP#, TT[1].

The 654 Controller normally asserts and negates these signals on the rising edge of CPU_ClK.
There is an asynchronous path to these signals from TT[1] which must remain stable during trans­
actions in order to guarantee that these signals do not glitch. This condition is normally satisfied
if the 60X CPU is operating correctly. For the relationship between CAS[7:0]# and MC_SETUP#
see Section 5.2.3.

7.4.3.4 CPU AD DR SEL#
Asynchronously affected by-RESET#.

While RESET# is asserted, the 654 Controller forces CPU_ADDR_SEl# high. While RESET#
is high, CPU_ADDR_SEl# is asserted and negated on the rising edge of CPU_ClK. This output
is continuously output enabled.

7.4.3.5 CPU DATA SEL#
Asynchronously affected by-TT[1].

The 654 controls CPU_DATA_SEl# by gating it (controlling its assertion & negation) with TT[1]
while the CPU has control of the bus. In other words, CPU_DATA_SEl# is controlled asynchro­
nously by TT[1] while the CPU has a valid bus grant. At the end of a CPU mastered transaction
during whichCPU_GNT# is removed from the CPU, CPU_DATA_SEl# is negated on the rising
edge of the CPU_ClK on which AACK# is negated. This output is continuously output enabled.

150

The 650 Bridge Chip Set

7.4.3.6 ERR_ADDR_SEL#
Asynchronously affected by-CPU_ADDR[O:8].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_ClK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi­
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.7 MEM_DATA_OE#
Asynchronously affected by-CPU_ADDR[O:8,29:31], TBST#, TSIZ[O:2], TT[1 ,3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_ClK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi­
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.8 MEM_DATA_SEL#
Asynchronously affected by-CPU_ADDR[O:8,29:31], l2_ClAIM#, TBST#, TSIZ[O:2], TT[1 ,3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_ClK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi­
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

7.4.3.9 PCLC/BE[3:0]# .
Asynchronously affected by-CPU_ADDR[30,31], TSIZ[1 :2], TT[1].

The 654 Controller normally asserts and negates these outputs on the rising edge of CPU_ClK
that corresponds to a rising edge of the PCLClK. There are asynchronous paths to this output
from the inputs shown above. These inputs must remain stable during transactions in order to
guarantee that this output does not glitch. This condition is normally satisfied if the 60X CPU is
operating correctly. This output is continuously output enabled.

7.4.3.10 PCLPAR
Asynchronously affected by-PC LAD_PAR, MEM~PAR_GOOD, TT[1].

PCI_PAR is generated asynchronously from the PCLAD_PAR and MEM_PAR_GOOD signals
and is also affected by the type of transaction occurring in the system. Figure 7-6 shows the 654
Controller asserting PCLPAR on the rising edge of PCI_ClK following the data phase from which
it is generated. During CPU to PCI write data phases and PCI to memory read data phases,
PCLPAR specifications meet or exceed those required by the PCI specification. The state of this
output at other times is not specified, but is designed to be benign.

151

The 650 Bridge Chip Set

PCLClK
_-----I

12ns Max ~ I...- Ons Min

PCLPAR ____ ---«« Valid parity»>)--

PCLAD ---« Valid Data)>-------
Figure 7-11. Timing of pel_PAR

7.4.3.11 TA#
Asynchronously affected by-l2_PRESENT#.

The 654 Controller drives TA# continuously while l2_PRESENT# is high. If l2_PRESENT# is
low then TA# is normally (at bus idle) tri-stated. During CPU mastered transactions, TA# is output
enabled during CPU_ClK cycle 4. After it is driven low for one cycle with AACK# at the end of
the transfer, it is driven high for one cycle, and then tri-stated. During snoop cycles (PCI bus mas­
ter to memory transactions) TA# stays tri-stated.

7.4.3.12 WE[1 :0]
Asynchronously affected by-CPU_ADDR[O:8,29:31], T8ST#, TSIZ[O:2], TT[1 ,3].

The 654 Controller normally asserts and negates this output on the rising edge of CPU_ClK.
There are asynchronous paths to this output from the inputs shown above. These inputs must
remain stable during transactions in order to guarantee that this output does not glitch. This condi­
tion is normally satisfied if the 60X CPU is operating correctly. This output is continuously output
enabled.

152

The 650 Bridge Chip Set

7.5 653 Buffer Timing Tables

Table 7-7. 653 Buffer Timing Tables

Des CPU Interface (See Notes 1 ,2,3) Note Voo= 3.3v Voo= 3.6v
Min Max Min Max
(ns) (ns) (ns) (ns)

t1 CPU_ADDR, TSIZ setup to CPU_ADDR_SEL# fall 6 2 - 2 -

t2 CPU_ADDR, TSIZ hold from CPU_ADDR~SEL# fall 6 3 - 3 -

t3 CPU_ADDR valid from CPU_ADDR_OE# fall 4,7 3 21 2 17

t4 CPU_ADDR float from CPU_ADDR_OE# rise 7 3 21 3 17

t4a CPU_ADDR held valid from CPU_ADDR_OE# rise 7 3 21 3 17

t5,5a CPU_ADDR valid (CPU snoop) from PCI_AD valid (addr phase) 16 3 17 2 14

t74 CPU_ADDR valid from PCLSEL# fall (CPU snoop) 17 3 19 3 16

t74a CPU_ADDR held valid from PCLSEL# rise (CPU snoop) 17 3 19 3 16

t75 CPU_ADDR valid from BURST _CLK# fall (CPU snoop) 17 4 19 4 17

t76 CPU_ADDR valid from NO_TRANS rise/fall (CPU snoop) 17 4 17 3 14

t6 CPU_DATA valid from MEM_DATA valid 8 4 16 4 13

t7 CPU_DATA valid from MEM_DATA_SEL# fall 9 4 19 4 16

t7a CPU_DATA held valid from MEM_DATA_SEL# rise 9 4 19 4 16

t8 CPU_DATA valid from CPU_DATA_OE# fall 4,10 4 19 5 20

t8a CPU_DATA held valid from CPU_DATA_OE# rise 10 4 19 4 16

t9 CPU_DATA float from CPU_DATA_OE# rise 10 4 19 4 16

t11 CPU_DATA valid from PCLAD valid (data phase) 25 4 18 4 15

t12 CPU_DATA valid from ERR_ADDR_SEL# fall 11 4 20 4 17

t13 CPU_DATA valid from ALL_ONES_SEL# 5 5 20 4 17

t14 L_ERR_ADDR# setup to CPU_ADDR_SEL# 8 - 8 -

t15 L_ERR_ADDR# hold from CPU_ADDR_SEL# 1 - 1 -

Des Memory Interface (See Notes 1,2,3) Note Voo= 3.3v Voo= 3.6v
Min Max Min Max
(ns) (ns) (ns) (ns)

t21 MEM_ADDR valid from CPU_ADDR valid 13 4 16 3 14

t22 MEM_ADDR valid from CPU_AD'DR_SEL# fall 16 4 21 4 19

t23 MEM_ADDR valid from RASHI/CASLO change 18 4 16 3 14

t23a MEM_'ADDR held valid from RASHI/CASLO change 18 4 16 3 14

t24 MEM_ADDR valid tram BURST_CLK# fall 14 5 19 4 16

153

The 650 Bridge Chip Set

Des Memory Interface (See Notes 1,2,3) Note Voo= 3.3v Voo= 3.6v

,Min Max Min Max
(ns) (ns) (ns) (ns)

t25 MEM_ADDR valid from PC,-AD valid 17 4 17 3 14

t26 MEM_ADDR valid from BURST_ClK# fall 15 5 19 4 16

t77 MEM_ADDR valid from PC,-SEl# fall 17 4 19 4 16

t77a MEM_ADDR held valid from PC,-SEl# rise 17 4 19 4 16

t78 MEM_ADDR valid from DRAMX9HIIX10l0 rise/fall 18 4 17 3 15

t78a MEM_ADDR valid from DRAMX9HI/X1 OlO rise/fall 22 4 17 3 15

t79 MEM_ADDR valid from NO_TRANS rise/fall 17 4 17 3 15

t27 MEM_ADDR valid (row address) from REFRESH_SEl# fall 22 4 20 3 17

t27a MEM_ADDR held valid (row addr) from REFRESH_SEl# rise 22 4 20 3 17

t80 REFRESH_SEl# rise to valid & stable new refresh address 22 4 20 3 17

t81 REFRESH_SEl# high time (for correct counter operation) 22 6 - 6 -

t82 REFRESH...,...SEl# low time (for correct counter operation) 22 6 - 6 -

t82 REFRESH_SEl# period (for correct counter operation) 22 27 - 27 -

t28 MEM_PAGE_HIT# valid from CPU_ADDR valid 16 3 15 3 13

t28a MEM_PAGE_HIT# valid from CPU_ADDR_SEl# fall 6 4 17 4 15

t29 MEM_PAGE_HIT# valid from RASHI/CASlO rise (row addr) 18 4 16 3 14

t30 MEM_PAGE_HIT# valid from PC,-AD valid 17 4 16 3 13

t83 MEM_PAGE_HIT# valid from PC,-SEl# fall 17 4 18 4 15

t31 MEM_PAGE_HIT# valid from ADDRHI/DATAlO rise 4 19 7 17

t32 MEM_PAGE_HIT# valid from BURST_ClK# fall 21 5 21 5 18

t84 MEM_PAGE_HIT# valid from DRAMX9HI/X1 OlO rise/fall 18 4 15 3 13

t33 MEM_DATA valid from CPU_DATA valid 13 4 16 4 13

t34 MEM_PATA valid from CPU_DATA_SEl# fall 13 4 18 4 15

t35 MEM_DATA valid from MEM_DATA_OE# fall 4,12 5 21 4 17

t35a MEM_DATA held valid from MEM_DATA_OE# rise 12 5 21 4 17

t36 MEM_DATA float from MEM_DATA_OE# rise 12 5 21 4 17

t37 MEM_DATA valid from PC,-AD valid 23 4 16 3 13

t85 MEM_DATA valid from PC,-SEl# fall 23 4 18 4 15

t86 MEM_PAR (out) valid from PC,-SEl# fall 23 4 18 4 16

t38 MEM_PAR (out) valid from CPU_DATA valid 13 4 16 3 14

154

The 650 Bridge Chip Set

Des Memory Interface (See Notes 1,2,3) Note Voo = 3.3v Voo= 3.6v

Min Max Min Max
(ns) (ns) (ns) (ns)

t87 MEM_PAR (out) valid from CPU_DATA_SEL# valid 13 4 19 4 16

t38a MEM_PAR (out) valid from PCI_AD valid (data phase) 23 3 17 3 14

t39 MEM_PAR (out) valid from MEM_DATA_OE# fall 4,19 4 18 3 15

t39a MEM_PAR (out) held valid from MEM_DATA_OE# rise 19 4 18 3 15

t40 MEM_PAR (out) float from MEM_DATA_OE# rise 19 4 18 3 15

t41a MEM_PAR_GOOD valid from MEM_PAR (in) valid 20 3 16 3 13

t41 b MEM_PAR_GOOD valid from MEM_DATA (in) valid 20 3 16 3 13

t88 MEM_PAR_GOOD valid from MEM_DATA_SEL# fall 20 3 13 3 11

t88a MEM_PAR_GOOD forced high from MEM_DATA_SEL# rise 3 13 3 11

Des PCllnterface (See Notes 1,2,3) Note Voo= 3.3v Voo= 3.6v

Min Max Min Max
(ns) (ns) (ns) (ns)

t51 PCLAD valid (addr phase) from CPU_ADDR valid 26 4 17 4 15

t89 PCLAD valid (addr phase) from CPU_ADDR_SEL# fall 26 4 22 4 19

t52 PCLAD valid (data phase) from CPU_DATA valid 24 4 13 3 12

t53 PCLAD valid (data phase) from CPU_DATA_SEL# fall 24 4 16 4 14

t90 PCLAD valid from PCLSEL# fall 25 4 20 4 17

t90a PCLAD held valid from PCLSEL# rise 25 4 20 4 17

t54 PCLAD valid from PCLOE# fall 4,27 3 13 3 11

t54a PCLAD held valid from PCLOE# rise 27 3 13 3 11

t55 PCLAD float from PCLOE# rise 27 3 13 3 11

t91 PCLAD valid (data phase) from ERR_ADDR_SEL# 4 17 4 15

t92 PCLAD valid (address phase) from NO_TRANS rise/fall 26 4 18 4 14

t106 PCLAD valid (data phase) from MEM_DATA valid 3 12 3 11

t56 PCLAD_PAR valid (address phase) from CPU_ADDR valid 26 5 29 5 21

t57 PCLAD_PAR valid (addr phase) from CPU_ADDR_SEL# fall 26 6 33 5 25

t58 PCLAD_PAR valid (data phase) from CPU_DATA valid 26 5 25 5 18

t59 PCLAD_PAR valid (data phase) from CPU_DATA_SEL# fall 26 5 27 5 20

t93 PCLAD_PAR valid (data phase) from MEM_DATA valid 29 4 19 4 16

t94 PCLAD_PAR valid from PCLAD valid 5 25 4 22

tA1 PCLSEL# setup to PCLCLK rise (address phase) 30 2 - 2 -

155

The 650 Bridge Chip Set

Des PCllnterface (See Notes 1 ,2,3) Note Voo= 3.3v Voo= 3.6v

Min Max Min Max
(ns) (ns) (ns) (ns)

tAx PCLSEL# hold from PCLCLK rise (address phase) 30 2 - 2 -
t112 PC LAD valid from BURST _CLK# fall (2nd 4-byte of 8-byte read) 3 12 3 12

t60 ADDRHI/DATALO setup to PCLCLK rise or fall 2 - 2 -

t61 ADDRHIIDATALO hold from PCLCLK rise or fall 2 - 2 -

t62 PCLAD setup to PCLCLK rise (all cycles, all phases) 0 - 0 -
t63 PCLAD hold from PCLCLK rise (all cycles, all phases) 4 - 3 -
tB2 L_PCLDATA# setup to PCLCLK rise or fall 31 1 - 0 -
tB1 L_PCLDATA# hold from PCLCLK rise or fall 31 2 - 1 -
tC1 ADDRHI/DATALO low setup to PCLCLK rise (data phase) 32 2 - 1 -
tC2 ADDRHI/DATALO low hold from PCLCLK rise (data phase) 32 2 - 0 -

tC3 PCLCLK to PCLAD (output data phase) valid 32 4 21 4 18

t64 L_PCLDATA# setup to PCLCLK 1 - 1 -
t65 L_PCLDATA# hold from PCLCLK 2 - 1 -
t66 PCLAD valid (data phase) from MEM_DATA valid 29 3 12 3 11

t67 PCLAD valid (data phase) from MEM_DATA_SEL# fall 29 4 16 4 14

Des ROM Engine (See Notes 1,2,3) Note Voo = 3.3v Voo= 3.6v

Min Max Min Max
(ns) (ns) (ns) (ns)

t68 PCLAD[23:0] valid (ROM address) from ROM_SEL#fall 4, 4 20 3 17
RIW

t68a PCLAD[23:0] held valid (ROM address) from ROM_SEL# rise RIW 4 20 4 17

t69 PCLAD[23:0] valid (ROM address) from BURST _CLK# fall read 5 19 4 16

t70 PCI_AD[31 :24] setup to BURST_CLK# fall read 17 - 15 -

t71 PCLAD[31 :24] hold from BURST _CLK# fall read 0 - 0 -
t10 CPU_DATA valid (last byte) from BURST_CLK# fall (ROM_SEL# low) read 5 21 5 17

t95 CPU_DATA valid from ROM_SEL# fall read 4 19 4 16

t95a CPU_DATA held valid from ROM_SEL# rise read 4 19 4 16

Des System Interface (See Notes 1 ,2,3) Note Voo= 3.3v Voo= 3.6v

Min Max Min Max
(ns) (ns) (ns) (ns)

t96 ALL_ON ES_SEL# fall to PCLAD valid (all 1 's) 33 4 17 4 14

t97 ALL_ONES_SEL# fall to MEM_DATA valid 4 19 4 16

156

The 650 Bridge Chip Set

Des System Interface (See Notes 1 ,2,3) Note Voo= 3.3v Voo= 3.6v

Min Max Min Max
(ns) (ns) (ns) (ns)

t98 BURST _CLK# high pulse width 6 - 6 -

t99 BURST_CLK# low pulse width 6 - 6 -

t107 BURST_CLK# period 27 - 27 -

t100 CONTIG_IO rise or fall to PCLAD valid (address phase) - 13 - 12

t101 CPU_ADDR setup to L_ERR_ADDR# fall 34 4 - 3 -

t102 CPU_ADDR_SEL# fall to L_ERR_ADDR# fall 34 8 - 8 -

t103 PCLAD setup to L_ERR_ADDR# fall 34 4 - 4 -

t104 PCLSEL# fall to L_ERR_ADDR# fall 34 5 - 5 -

t105 REFRESH_SEL# fall to L_ERR_ADDR# fall 34 6 - 6 -

t72 Any PCI, memory, or bridge activity setup to LE_MODE_SEL# 35 30 - 30 -

t73 Any PCI, memory, or bridge activity hold to LE_MODE_SEL# 35 30 - 30 -

Notes:

1. For the times given for VDD = 3.3v the following applies:
Up transitions are from 0 to 2v.
Slowest times are given for 3.0v VDD, 85 deg C ambient, and slowest process variables.

Down transitions (unless noted) are from 3.0v to .8v.
Fastest times are given for 3.6v VDD, 0 deg C ambient, and fastest process variables.

Down transitions (unless noted) are from 3.6v to .8v.

2. For the times given for VDD = 3.6v the following applies:
Up transitions are from 0 to 2v.
Down transitions (unless noted) are from 3.6v to .8v.
Slowest times are given for 3.42v VDD, 85 deg C ambient, and slowest process variables.
Fastest times are given for 3.6v VDD, 0 deg C ambient, and fastest process variables.

3. All times are given for a 50pF capacitive load on each pin.

4. Bus valid from output enable active times are given for the slowest of:
(a) driving the bus down from 5.25v to .8v, or
(b) driving the bus up from Ov to 2v.

5. CPU to PCI configuration read with master abort, CPU interrupt acknowledge cycles.

6. CPU mastered transactions.

7. CPU snoop of PCI bus master transaction.

8. CPU to memory read.

9. CPU or PCI to memory read.

10. CPU read.

11. CPU to error address latch read.

12. CPU or PCI to memory write.

13. CPU to memory write.

157

The 650 Bridge Chip Set

14. CPU to memory burst.

15. PCI to memory burst.

16. CPU to memory transaction.

17. PC I to memory transaction.

18. Memory access.

19. Memory write.

20. Memory read.

21. PCI BM burst transfer

22. Memory refresh operation.

23. PCI to memory write.

24. CPU to PCI write.

25. CPU to PCI read.

26. CPU to PCI transaction.

27. CPU to PCI transaction address phase or PCI to memory read first data phase.

28. CPU to PCI read address to data phase transition or CPU to PCI write at end of data phase.

29. PCI to memory read.

30. PCI Bus Master address transaction address phase, showing the operation of the 653 Buffer
PCI address latch. See Figure 7-12. .

31. CPU to PCI read. PCI data latch operation. See Figure 7-13.

32. CPU to PCI write. PCI address/data MUX delay flip-flop operation. See Figure 7-14. With
XADIO=1, the data is driven onto the PCLAD lines 2 PCLCLKs before IRDY# is sampled
valid, yielding a maximum allowed PCI compliant specification of 1 PCLCLK + 11 ns.

33. PCI interrupt acknowledge address phase, etc ..

34. Error address latch setup time from event to valid error address.

35. Including beginning any activity from either the CPU or a PCI bus master that involves a data
or address path, or a data or address path control signal (CPU_ADDR_SEL#,
MEM_DATA_SEL#, PCI_SEL#, etc.) in the 650 Bridge.

158

The 650 Bridge Chip Set

latch closed latch latch closed ~ open

tAl
closes latch holds

PCCCLK

PCCSEL#

ADDRHI/DATALO

I

't6O
\

~t62----.

~

~t6l--4

latch
-t604 close d

\

~
t63l.j

PCCAD ________ ~h~o~ld=m~g ______ ~X~ __ ~o.p~en~_JX~ ______ ~h~ol~dm~g~ __ __

Figure 7-12. PCI Bus Master Transaction-Address Latch Operation

PCCCLK-----1/

L_PCCDATA#

\~-----~/ '----

t63 ihtBTtBU
I---t62

PCCAD------------.. x"r --y-a lid.....------,.X invalid

CPU_DATA __________ ~h~ol~ili~ng~_JX,~ ____ o~pe_n ___ _Jx~ __ ~h~o~ld=m~g ____ __

Figure 7-13. CPU to PCI Read-PCI Data Latch Operation

PCCCLK/ \\-_______ ...1/ \\-_____ ...1/

....-1. ---+-1_t6l--"~I--____
ADDRHIIDATALO \ \ \ \ \ \ \ \ j
Delayed AHIIDLO ----------------....,.-----+ \

tC3L.._~_-_-_-_-_-_-_-_-_-_-_-_-_-.:_..._t·-I---

PCCAD Address

Figure 7-14. CPU to PCI Write-PC I Address/Data M'UX

159

The 650 Bridge Chip Set

7.6 Detailed Timing Diagrams
This section contains timing diagrams of transactions and operations that can occur in the system.

Unless otherwise indicated, all timing specifications refer to events at the pins of the chip under
discussion. Signals whose names are followed by a (C) are shown as if they were measured at
the pin of the 654 Controller. Signal names followed by a (B) are shown as if they were measured
at the pin of the 653 Buffer.

The source of some signals shown in the timing diagrams is indicated inside square brackets. For
example, some signal names are followed by an [L2], and these signals are sourced by the L2
cache. They are based on the performance of an L2 cache built around an IBM27-82681-66 L2
Cache Controller chip. Some signal names are followed by a [target], and they are sourced by
a PCI agent acting as a target. All signals shown that are sourced by a device other than the 650
Bridge are supplied for reference only, and they are not intended to specify the operation of the
referenced device.

Some physical signal nets can be driven by more than one device. For example TA# can be driven
by both the L2 cache controller and the memory controller during the same transaction. In this
case the timing diagram line labeledTA# (C) [MC] shows the effects of the drivers in the memory
controller (in the 654) on the TA# signal net (as measured at the pin of the 654 Controller); as if
no other drivers were connected to the net. The timing diagram line labeled TA# (C) [L2] shows
the effects of the drivers in the L2 cache on the TA# signal net (as measured at the pin of the 654
Controller), as if no other drivers were connected to the net. In this way, the activity of the various
agents is fully described, and interactions between the drivers can be freely evaluated by the de­
signer. The effects of the various drivers on the signal net can be derived by inspection.

160

."
cS'
C
""t
CD

jI
!J1
0
"tI
C

c}
3:
CD
3
0
""t

"""""
'<
:D 0\
CD """"" m c.
I

~
::::J
cc
ID
"tI
m
cc
CD
::z:
F
><
0 » en
II

o 1 2 345 6 7 8 9
CPU_CLK(C)

CPU_GNT#(C) I_~~~~~/~ ______ ~ __________ ~ ____________________ ~ __ ___
1

TBST# (C) ,::J " , c:
CPU_ADDR (C) I::J (c:

TS#(C) '~_j " ~
AACK#(C) :-' ~

TA# (C) 1 • 1 1 1

\ ,

MEM_PAGE_HIT# (C) 1 \ ~it I

CPU_ADDR_SEL# (C) 1 ~~--~----------~------------~---------J 1

RASHI/CASLO (C) 1------:--4-----'--1--:.....---'------"----""-----.:.---"""'----..:....--""""--

BURST_CLK# (C) 1

MEM_ADDR (B) '=------,---=::::~I
RAS# (C) ,

~ ____ ~ __ ~X _' __ -

CAS# (C) 1 \ /

MEM_DATA_SEL# (C) 1 \ r
I

B/LE_PAR_EN# \ r-
CPU_DATA_SEL# 1

MEM_DATA_OE#

~
:::J'"
CD
0')
01 o
~
0:

<C
CD
()
:::J'"
-0"
00
m.

"T1
cS'
c ...
(I)

jI
..a.

~

0
"U
c:
~
3:
(I)

3
0 ...
'<
:D

I-' (I)
Q'\ Q)
N Q.

I
en
:i"

CC

Ii
"U
Q)

CC
(I)

:::E:
;+
><
0
l> en
II
Q

o 1 2 3 4 5 6 7 8
CPU_CLK(G)

CPU_GNT# (C~~ /

" TBST# (C) =:J ,,..-:------~---;----_r__--__;_----,-------.,, c::
CPU_ADDR (C),=:J valid c::

TS# (Cj=:J " / " c::
AACK#(C) , \ I ~

TA# (C), I \ / '---

MEM_PAGE_HIT# "(C) \ Hit ' / -, - ---,- -,

CPU_ADDR_SEL# (C) \ /

RASHI/CASLO (C~'----.---------r-------""'-----__ r-______ _

BURST_CLK# (C)

MEM_ADDR (B~ ~ ;column ad~ess X'-_---
RAS#(C) ____________________________ ~ ____________________ ~ ____ _

CAS#(Cj \ /

MEM_DATA_SEL# (C) ----,-----\ ~

MEM_DATA(B) ~L~,~D~a~taL-~ _____ J_-----

CPU_DATA (B) '(SSSSI Data ~
, "

CPU_DATA_OE# (C) \ I
,

WE#(C),------.-------....:------~~-----.....!-------!....---

B/LE_PAR_EN# \ ,--

CPU_DATA_SEL#.

MEM_DATA_OE# ,

-I =s­
CD
m
0'1
o
~ a: co
CD

o
=s-
-5"
W
~

" cC'
C
""'l
CD

j-I
......
:"I
0
"'0
c:
cj
!:
CD
3
0

-<
~ ::IJ 0\ CD ~ Q)

Q.

I
so.
::l
cc
JD
"'0
Q)
cc
CD

!:
in'
gJ

><
0 » en
II

o 1 2 3 4 5 6 7 8 9 10 ' 11 12 ' 13 14 ' 15
CPU_CLK (C) ,

CPU_GNT# (C)

TBST# (C)

CPU_ADDR (C)

TS# (C)

AACK# (C)

TA# (C)

:-~~~_/~~-~--~-~-~-~-~--~-~-~-~-~--~-~-~
,~ ~

:~ h-<
I ~

,
I ~

I ~

MEM_PAGE_HIT# (C) ,

CPU_ADDR_SEL# (C) \ /

RASHI/CASLO (C) , ,-, - I \'-______________ _

_J
BURST_CLK# (C)

RAS# (C)
Lt23 .J Lt2:3 .J

MEM_ADDR (B) ,"----~-.......... ---,.)(SSI row }&.: ~~SJ;--:---........ -co...,lr-o~-........ -~~X~~-

CAS# (C) : \ /

MEM_DATA_SEL# (C) , , \ ' I

MEM_DATA (B) I t7 S I' Data ~
~8 ---I : Ct6 ~ t~ --I '

CPU_DATA (B) , ~SSt ~SSI Data ~
CPU_DATA_OE# (C),

WE# (C) ,

\ /

,
BILE_PAR_EN# \ /,

CPU_DATA_SEL# '

MEM_DATA_OE#

-I
::J'"
CD
0>
01 o
~
0:

<0
CD
()
~

-6"
en
~

""""" Q'\ ...

" cO·
c ...
CD

j-I
...A.

~
(')
"tI
C

c}
s:
CD
3 o
~
::IJ
CD
m c.
I
~
:::J
cc
~
"tI
m
cc
CD

s:
iii"
~
><
(')
l>
en
II
o

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CPU_CLK(C) ,

CPU_GNT#(C):_~~ ___ I_~ ______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ______ ~ __ _

TBST#(C) ,~ '-----C
CPU_ADDR (C) ':J----T-< ! valid ~

, ,

TS# (C) ,~ '-----C
, ,

AACK#(C) I ~

TA#(C) , I ~
, ,

MEMYAGE_HIT# (C) , I Miss \\...--l-_--.:.. __ .i..--_-.:..-_....J..._----:. __ .J....-___ --L... ___ ----'

CPU_ADDR_SEL# (C)

RASHI/CASLO (C)

BURST_CLK# (C)

RAS# (C)

MEM_ADDR (B)

CAS# (C) ,

MEM_DATA_SEL# (C)

I
,-----,----~------------~----~----~----~------~----~-----r----~------~J

--------~----~I \~ ____ ~ ________ ~ ________ ~ __ _

_______ -.J1 \~-------------------

- __ -"-__ --.. ____ ...I----Jm row M :column: X'-,: ___I

\ I

-\ , , I

MEM_DATA (B) , ISSSSI<' Data }------!
,

CPU_DATA (B) , ISSS1 ~~'IIr"'"S-rSlT""''=D-at~a ~

CPU_DATA_OE# (C) ,

WE# (C)

B/LE_PAR_EN#

CPU _DATA_SEL#

MEM_DATA_OE#

\ I

\ r-:

--i
~
CD
m
01 o
~ c:

co
CD
()
:::r
-5"
(/)

~

"T1
cO'
C
""I
CD

jI
-4

!D
0
"tJ
C

c}
:s::
CD
3
0

"""""
-<

'" Ul II
C'D
D)
Q.

I
to
c
""I
t/)
~

"tJ
Q)

(Q
CD
::J:
F
><
0
l>
en
II
-4

0,12,34,5 6 ,7 8, 9 10, II, 12 13, 14, IS, 16 17, 18 19,20, 21, 22 23,24

CPU_ADDR(C)'B ' ~

TS# (C) :J--r-0 ' , ~
AACK# (C), I ~

TA#(C) I V \...J V ~
MEM_PAGE_HIT# (C} ___ ~_H it/'_ ____________________________ _

CPU_ADDR_SEL# (C)' \ r
, ,

RASHI/CASLO (C) ' __ --'--+--_--'--_--'--__ --'--__ --'--_--'--__;.... __ ~ _ __'__ __ __'__ __ .:......_ _ ____:...._

BURST_CLK# (C)'

, t22 ~ : t24 L,.j , , t2~ Y " t24 l.,.j :, ,
MEM_ADDR(B),)f0I, coLO N col ~,col,2 }(Sl" col,3 , ~

RAS#(C)' _______________________________ __
,

CAS# (C) \ ~ n ~ G
MEM_DATA_SEL# (C} \ ' , ~

MEM_DATA (B)

CPU_DATA (B) , (sj >tssSsKsi' ~ ~' IG
CPU_DATA_OE# (C), \ ' , ~

WE#(C) ,

B/LE_PAR_EN# , , \ ' r:
CPU _DATA_SEL# '

MEM_DATA_OE# ,

-I
:::y
CD
0'>
01 o
gJ
a:
co
CD
()
=r-
-0"
m
~

."
cS'
t:
""I
CD
......
~
?
(')
"'tJ
c:
~
:s:
CD
3
0
""I
'<
:IJ I-" CD 0\ D) 0\
Q.

I
to
t:
""I
til -
"'tJ
D)
cc
CD
:J:
F
><
(')
l> en
II
0

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I
CPU_CLK (C).I

CPU _ GNT# (C) I_~--,--£../--:--"""---:---r----:---"""---:----r----:----'----:-~r----:--"""---:---r-------r---"""""T
TBST# (C) I~ I "....c

CPU_ADDR (C) '~ valid ~
I I I I

TS#(C) I~ I I '--r-C
AACK#(C)

TA# (C)

MEM_PAGE_HIT# (C)

I ~
I I

---I----r--...I...---r-'~---;---:,....,'L.J I I ~ I 'L.J I I

--,",,"",

CPU_ADDR_SEL# (C) I \ I I ~

RASHI/CASLO (C)

BURST_CLK# (C) I I~·I I~~--- I~I

MEM_ADDR (B) isJ 'col 0 ~ col '1)f\SJ col i)(VI c~l 3 C
I I I I I I I I

RAS#(C) ' _______________________________ ___

CAS#(C) \ n n n G
MEM_DATA_SEL# (C) I I \ I ~

MEM_DATA(B) [S)(' data 0 ~' data ~' data, 2 ~' data 3 h
i I i I i I , I

CPU_DATA_OE# (C) \ I

WE# (C) I

B/LE_PAR_EN# \ I I,

CPU_DATA_SEL# I

MEM_DATA_OE#

--I
:::::r
CD
CJ)
(J"J
o
gJ
a:
co
CD
()
:::::r
-C'
en ga.

."
cS'
I:
""t
CD

~

0
"'0
c:
~
3:
CD
3
0
~

~ :0
~ CD

m c.
I
m
c:
""t
tn
~

"'0
m
(Q
CD

3:
iii'
tn

><
0
l=-en
II

, 0, I, 2, 3, 4, 5, 6, 7, 8, 9, 10 Il 12 1314 15 16 17, 18 lQ 20 2l 2223 24252627, 28 2Q 30
CPU_CLK (C).'

CPU_GNT# (C) '.....1"\-;-' ,,-/_' ---:-_~_-:---~_---:-_~_-:--_-:----~_---:-_--:--_~_:------:-_--:
I I I I I

TBST# (C) ,~ , ~

CPU_ADDR (C)'~' }--o-C

TS#(C):-r0 S
AACK#(C) , " ,~

, , " V'-7 TA# (C) , , , V V , Y ,,'
MEM_PAGE_HIT# (C), . , ,/M··~~'-~'"--':""'-..!..-~...!...-~...!.-"":"'-....!....."":""'.....i--"";"".....!---':""......!.--";"'---l..--";"---i.~----i.-"";--"----";"---"';

ISS

CPU_ADDR_SEL# (C)' \' , ("""'"
I ,

RASHI/CASLO (C)" I' I
BURST_CLK# (C),

,
RAS# (C) , ,I 'I

CAS# (C) , \ ' , f7\ , ' r,\ , , f7\ , ' ~

MEM_DATA_SEL# (C)' \ ' , r--
I ,

MEM_DATA (B) , ' , ' ,I, , ' , ' , ~00...1.., __

t7
t8

CPU_DATA (B)

WE# (C)'

B~EYAR_EN#, \' 0

CPU_DATA_SEL# '

MEM_DATA_OE# ,

--I
:::J"
CD
0>
CJ1 o
gJ
c:

<C
CD
()
:::J" -a.
m
~

" to·
e
"'" CD

j-I
N
!'l
0
"'C
c:
(}
3C
CD
3
0
"'" '<
l::J

""""
CD

Q'\ m
Q(l Co

I
OJ
e
"'" tn
?+
"'C m cc
CD

3C
iii"
9'
><
0 » en
II
0

0, 1 , 2 , 3 , 4 , 5 , 6, 7 , 8, 9, 10, II, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,22, 23, 24,25,26,
CPU_CLK (C).'

CPU_GNT# (C) :"\~ /I....~_~_---:" __ ~_~_---:" __ ~_~_---:" __ ~_~_---:"--";"_~

TBST#(C)'~ , ' r-C
CPU_ADDR (C) '~ ~ , ,

TS#(C) '~ '---C
,

AACK# (C) , I ~

TA# (C) , , ILl' LI ' , \.J ' , ~
I I I I I

MEM_PAGE_HIT# (C) ,-,-" -----:r" \.'-'--' _---'''''--_ _--1-__ ...I....-_ __!...._---'i.....-_....!....-~___!.._.___;_..!..._....:.....___!....___..:...___!____.:
MISS

CPU_ADDR_SEL# (C) ,-" 1-' --,-.,\ ' , r
RASHljCASLO (C) , ' I ' , \~'_.:....-_......:...-_---.:...._----: __ ~_.....:....-_----:.. __ :........-_....:..-_

,
BURST_CLK#(C), --v

RAS# (C), ' I ' ' \,-_, _____ ----:.. _______ ~_~_~ __ :....__

MEM_ADDR (B): ~ row,' >tSl ~ol 0 >(st, col' 1 }(s1 , col' 2 ~ col ,3 C
(

CAS# (C), , \ ' fT\ ' , fT\ ' , f7\ ' , ~

MEM_DATA_SEL# (C), \ , , r,--,
MEM_DATA (B) ,--...:....---...:..--.:-..--'-------.:.-

CPU_DATA_OE# (C)' \ ' ~

WE#(C) ,

BILE_PAR_EN# '\ r,
CPU_DATA_SEL# '

MEM_DATA_OE#

-I
::T
CD
0>
0'1 o
~ a: co
CD
()
::T
-5'
en
~

The 650 Bridge Chip Set

o 1 2 3 4 5

,
CPU_GNT# (C) ,=--, I

TBST# (C) '::::)~_~--J'''''------'''-----~_~~ c:::: ,

c:::: CPU_ADDR (C) '::::)~-..I...---{=~==::=~liL==)------L.-~

654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

"
/
/
/

/

Figure 7-23. CPU To Memory Read - Single, Page Hit, L2 Cache Hit

169

c::::

'------

'------

The 650 Bridge Chip Set

o I 1 2 3 4 5

I

CPU_GNT# (C) I ~_----l"--''':''\ _----<'r....----.:. _______ ---:.. _______ _
TBST# (C) : :::J~-----J,,.--"'----~----'---'-------:-----(c::

CPU_ADDR (C) : :::J c::
TS# (C) I :::JI-------..,"---_----Ir--r-------;--~-~~C

L2_CLAIM# [L2] (C) I \~--------------~----~
I

AACK# [L2] (C) I -----,------;'------r"--'---L._~

TA# [L2] (C) : :::J~~--.......:...-----';-~-1

CPU_DATA [L2] (B) I -----------------------------(

CPU_ADDR_SEL# (C) I

MEM_PAGE_HIT# (C) I

--------------~--~
I

RASHI/CASLO (C) I ______ :--_____________ .:.....-__ -1

MEM_ADDR(B)

RAS# (C) I ---r-----------------,....----I
CAS# (C) I

MEM_DATA_SEL# (C)

'--

'--

MEM_DATA(B)'~3S~--~------~------~--------------~-----­

CPU_DATA_OE# (C) I -----"""--------.,--------'O""--------r--------""----_-

B/LE_PAR_EN# I

654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

Figure 7-24. CPU To Memory Read - Single, Page Miss, L2 Cache Hit

170

The 650 Bridge Chip Set

0 1 2 3 4 5 6 7 8
CPU_CLK (C)

CPU_GNT# (C) ,\ L ,
TBST# (C) ,:] " ,

CPU_ADDR (C) ::]
TS# (C) ::] \ I "

L2_CLAIM# [L2] (C)
, \ ~ I

AACK# [L2] (C) , ,
\ I \

TA# [L2] (C) ,:] ,
\ I '----.

, ,

2
,

CPU_DATA [L2] (B) x,x X 0 X I X X) ,

CPU_ADDR_SEL# (C) \ I
MEM_PAGE_HIT# (C) ~ Hit L

RASHI/CASLO,{C) ,

MEM_ADDR (B) , fZ2a ,X

RAS# (C) ,

CAS# (C)

MEM_DATA_SEL# (C)

MEM_DATA (B)
, I I

3S ,

CPU_DATA_OE# (C) ,

BILE_PAR_EN# ,

654 does not enable TA#, AACK#
654 does not assert CPU _DATA_ OE#

Figure 7-25. CPU To Memory Read - Burst, Page Hit, L2 Cache Hit

171

The 650 Bridge Chip Set

CPU_CLK(C)

CPU_GNT# (C)

TBST# (C)

CPU_ADDR (C)

TS# (C)

L2_CLAIM# [L2] (C)

AACK# [L2] (C)

TA# [L2] (C)

CPU_DATA [L2] (B)

CPU_ADDR_SEL# (C)

MEM_PAGE_HIT# (C)

RASHI/CASLO (C)

MEM_ADDR (B)

RAS# (C)

CAS# (C)

MEM_DATA_SEL# (C)

MEM_DATA (B)

CPU_DATA_OE# (C)

BILE_PAR_EN#

0 1 2 3 4 5

,
,\ L

::J ,
::J talid

':J \ /
, , (1) , ~

'(2) : \

':J , \(2) ,
,

, (3)
,

I (x'X X Q X 1 X ,

\
, I !fit ~

/
I VZA ,

, /
,

. i

,
3S

,

654 does not enable TA#, AACK#
654 does not assert CPU_DATA_OE#

6 7

,

,

/
/ \

/
2 X :2 ,

/

X
,

Figure 7-26. CPU To Memory Read - Burst, Page Miss, L2 Cache Hit

172

8

'---

0 1
CPU_CLK(C)

,
CPU_GNT# (C) ,\ L

':] TBST# (C)
,

,

CPU_ADDR (C) ':]1-----< , ,

TS# (C)

AACK#(C) ,

TA# (C)

,
,

MEM_PAGE_HIT# (C)

CPU_ADDR_SEL# (C)

RASHI/CASLO (C)

,
,
,
,
,
,

,
,
,

,
,

,
,

,
,
,
,
,
,

2

,
, I , ,
,

, ,
, ,

\ Hit
,
, , ,

, ,
, ,
,
, ,

, '- t22
t21

The 650 Bridge Chip Set

3 4 5 6 7 8 9

, C
, , , ,

, , , , , "
,

, , , , , ,
, , , , , ,
, , , ,

~ , , , , ,

/ , , ,
, , , , , / , , , , , ,

, , , , , ,
, , ,
, , , , , ,
, , , , , ,
, , , , , ,

MEM_ADDR(B) ' ____ ~-------J~.~Z~~-------~------~--------~X,~,----
RAS#(C)

CAS# (C)

CPU_DATA_SEL# (C) ,

\'--------.;.---~/
\ L

CPU_DATA(B) '----~--~-t~----~--~--~--~~--~~

Lt3~' L r34 ' ' t33--.1
t35 , 't36--1

MEM_DATA (B) :==:===:::+-f~~v.~~Z~:A""'-: ---..;.-------t-F-';c:J-
MEM_DATA_OE# (C) , , ' /

WE# (C) , \~------------------------~/

Figure 7-27. CPU To Memory Write - Single, Page Hit, XCAS=1

173

The 650 Bridge Chip Set

0 1 2 3 4 5 6 7 8
CPU_CLK (C)

1

CPU_GNT# (C) I~ L

TBST# (C) ::J I ,
C

CPU_ADDR (C) ':J c:
1

TS# (C) I:J /
, c: ,

AACK# (C) 1
I \ / '----

TA#(C) 1
I \ I '----

1 1

MEM_PAGE_HIT# (C) 1 ~ Hit / ,

CPU_ADDR_SEL# (C) 1 \ I
RASHI/CASLO (C) 1

BURST_CLK# (C) 1

1 1

X MEM_ADDR (B) 1 ~
RAS# (C)

CAS# (C) 1
1 \ I

CPU_DATA_SEL#(C) 1 \ L

CPU_DATA(B) 1 (1

MEM_DATA (B) YzzA: : E:J-
MEM_DATA_OE# (C) 1 \ I

WE#(C) 1 \ I
MEM_DATA_SEL# 1

1

CPU_DATA_OE# 1

Figure 7-28. CPU To Memory Write - Single, Page Hit, XCAS=O

174

""'" ~

."
cO'
e
Cil

~
!D
o
"tJ
c:
cj
!:
CD
3 o
~
:e ...
if
1
en
:i" cc
~
"tJ
Q)
cc
CD

s:
iir
Y'
>< o » en
II

o 1 2 3 4 5 6 7 8 9 10 , 11 12 , 13 14 , 15 ,
CPU_CLK (C)I,

CPU_GNT# (C) '_~....l.........,.......L, ___,..... ___,..... ___ ~ ___ ~ ___ --:--___ --:-___ --:-__

TBST# (C) :::r--r---' ~
CPU_ADDR (C) ,:J----!---{ ~

TS#(C) ,

AACK#(C) ,

TA# (C) ,

MEM_PAGE_HIT# (C)

CPU_ADDR_SEL# (C)

RASHI/CASLO (C)

BURST_CLK# (C) ,

, I

~ ~

'Miss \

"
,

, ,
"I

t22 ~
tld

MEM_ADDR (B) , ___ ---!...___,' . Lt2,j --I
, ~ row ,~~Ir-~--~--~'~~~--~--~

RAS# (C) . ' ~::3 c;olurnn. C' I ' ' "

-:'

\
CAS#(C) \ I

CPU_DATA_SEL#(C) ,) , I

CPU_DATA (B) ,

Lt33~' , L' ,
~ , 83~

rt35 , rt36 ~
MEM_DATA (B) ---~I ~>t;Sj, I ~

MEM_DATA_OE# (C) , \ Ir-~--
WE#(C)

MEM_DATA_SEL# (C) ,

CPU_DATA_OE# (C)

\ /

-l
:::r
CD
0>
01
o
~ a:

(Q
CD
(')
::T
-0"
en
~

."
cO'
c
CD

jI
w
~

0
"tJ
c:
~
s::
CD
3
0
~
=E

'""'" "'":J ::;
c:l"\ CD

I
CJ)
s·

(Q

JD
"tJ
Q)
(Q
CD

s::
iii'
~
><
0
l>
CJ)
II
C

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CPU_CLK (C)

,
CPU_GNT# (C) ,~ /

. TBST# (C) '~ ~ , , ,
CPU_ADDR (C) ,~ }---C

TS# (C) :~ ~
AACK#(C) 'I ~

,
TA#(C) , I ~

MEM_PAGE_HIT# (C) -- / M,ss \\...._--"""-_--'---_-""""""--_---'--_----'

CPU_ADDR_SEL#(C) , '---T- \ / I

RASHI/CASLO(C) , , " ,--~,-__ ,-;" ___ ~ __ ---";,,,_,:,,,,-_

BURST_CLK# (C)

MEM_ADDR (B) ,)(\$j tow >I\SS column' C
RAS# (C) ---~-~-~~/ \~~--~----~--~--~--~~--~---
CAS# (C) , \ /

CPU_DATA_SEL# (C) \ /
,

CPU_DATA (B) ,=:J (,) ,
MEM_DATA (B) '~ ~

MEM_DATA_OE# (C) , \ /

WE# (C) \ /

MEM_DATA_SEL# (C) ,

CPU_DATA_OE# (C) ,

-f.
::;
CD
Q')
01 o
gJ
0:

<C
CD
()
::;
-0"
en
~

."
to'
e
""t
CD

~
W

0
'tJ
c:
c}
3:
CD
3
0

~ -<
......:i :e:i

""t
::;
CD
I
m
e
""t
(J)
,rt'

'tJ
Q)

CQ
CD
::I:
F
><
0 » en
II

, 0, 1,2, 3 , 4 , 5 , 6, 7 , 8 , 9 ,10. II, 12 13, 14, 15,16 17,18 19,20. 21. 22 23, 24
CPU_CLK (C)

CPU_GNT# (C)

TBST# (C)

CPU_ADDR (C)

TS# (C)

AACK#(C)

TA# (C)

'"'\.'

I~' 'r--C:

:8;:::::::::::::::::::::~
,~, 'r--C:
-~~~~~~~~~~~~~~~~~' , I

, ,
--~----~--~--*-/I~----~--~,~~ , , ~ , , ~ , , ~

MEM_PAGE_HIT# (C)' : : \ ~iy: : . :
CPU_ADDR_SEL# (C) , , \ ' ~

RASHI/CASLO (C)

BURST_CLK# (C) ,
,t22~, ,t24~, ,t24~, ,t24~,

MEM_ADDR (B)' N 'co] Q ~ coIf)(Sl,l Co] 2 >c;: ... SI,...,;-c:""""o 1-:::3--:----.,..--:-' ~

RAS#(C)

CAS# (C) '\' '~ '/' '\' '/' '\' 'r-'
CPU_DATA_SEL# (C) ,) c-:

CPU_DATA (B) ,

'. , ,
t33 t33 , ,

MEM_DATA (B) , data J rlata 2

MEM_DATA_OE# (C) , \ ' r--
WE# (C) , , \ , , ~

MEM_DATA_SEL#

CPU_DATA_OE# ,

--I
::::J
CD
0>
CJ1
o

~
a.:
co
CD
()
::::J
-0"
(f)

~

."
cS'
c ...
CD

fI w
~

0
"U
c:
c}
s:
CD
3
0
~

~ :e
....:J
QC

...
;:;
CD
I

OJ
c
c;;

,!'4'

"U
m

CQ
CD
::E:
F=
><
0
l=-en
II
0

, 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,·20
CPU_CLK(C)

CPU_GNT# (C) '_~..l.-'....J/~...:.....-__ ~ __ ..:..-__ .:.-__ ~ __ ~_--...,;. __ ---.,;. __ ~ __ ---.,;.

TBST#(C) :~ , ~

CPU_ADDR (C) :~: ' , : : >--7-C
TS# (C) '~ ~

I I I I

AACK# (C) ,I LJ7'-
, ,

TA# (C) , I 'LJ 'LJ 'LJ ~
MEM_PAGE_HIT# (C) ' ___ :....'I_H_it..L.1---!.,., __ -!... __ ---l.. __ ----! ___ !....-.....:...._..!....---.:..._..l..-.---.:..._....l...----.:._...!....._

CPU_ADDR_SEL# : \ , ~

RASHI/CASLO (C)

BURST_CLK# (C) , --, , .. _, '""L...J 'LJ 'LJ
, , ,

---..." "'''IIf'''''Ir---~--=-~~' c:

RAS#(C)

CAS#(C) \ 8 8 8 ~
CPU_DATA_SEL#(C) , \ ~

CPU_DATA (B) 'J ' <:' dat40' X': datal X' : data2 X' : data3 ~
I I I I

MEM_DATA(B) '=:J 't'J, data 0 '~' data I' 'N' data 2 , '»lS' data 3 , ,)6-

MEM_DATA_OE# (C) , , \ ' ,,-

WE#(C) , \ , r.-

~
~
CD
0'>
0'1 o
OJ ...,
a:

<0
CD

o
~

-0"
(J)

S

'TI
cO'
c: ...
CD

j-I
W
~

0

" c:
c}
3:
CD
3
0 ...
'<

"""" :e:a
\C ...

::;:
CD
I
m
c: ...
0
~

" D)
CQ
CD

3:
iii'
~
><
0 »
CJ)
II

,0, 1,2,3,4,5,6,7, 8, 9,101l12131415161718192021222324252627282930
CPU_CLK(C)

CPU _GNT# (C) '"\.-..10..;-: ""-I_-:--_-:--_:--~:-------:'-----:-----:-----:-----:-----:----:----:----:----:--
TBST#(C) ,~ , ~

CPU_ADDR (C) ')--!-< , }--L-C

TS# (C) ,

AACK# (C) ,---1.4-..---1.----../1--;----;----;----;----;----;----;----;----;---;----;----;---;---;---;--;---;--;---;--;---;--;-"""7"'

TA#(C)

MEM_PAGE_HIT# (C), 'I' IMi~~~~' _----:. __ =---_...:.-_....:.-_.....:..._----:. __ =---_...:.-_....:.-_.....:..._--=-__ =---_..:....-

CPU_ADDR_SEL# (C)

RASHI/CASLO (C), . J ' I .,
. .1

BURST_CLK# (C) ,

MEM_ADDR (B)

RAS#(C) , ' , 'I' \~' ______________________ _

CAS#(C) \ ~ ~ ~ r:-
CPU _DATA_SEL# (C) '---:-"""'T\ ' , r=

, I ' CPU_DATA (B) --~~~~~~~~~~~-

.'
, t33

MEM_DATA (B) ,

WE# (C) , , \ ' ~

MEM_DATA_SEL# (C)

CPU_DATA_OE# (C) ,

-I
::J'"
CD
m
01
o

~ a:
<0
CD
()
::r
-6"
(J)

$.

."
cO'
c
"'" CD

~
~

0
"tJ
c:
cj
s:
CD
3
0
"'" '<
:e

~ "'" QC) ;:::;
Q CD

I
l'D
c
"'" tJ)
~

"tJ
Q)
cc
CD

s:
iii'
gJ

><
0 »
C/)
II
0

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 1 t 12 13 14 15 16 17, 18 19. 20 21 22 23 24 25 26
CPU_CLK(C)

CPU_GNT# (C) :~ 1~==~~~~~~---l~~.!.....-2--...!.....-~--..!.---.!...-..!..---.!.-----2!......-~.!..-.2....-....!..-~~~
TBST# (C) '~ I I r-c

I I I I

CPU_ADDR (C) IJ--{ I I ~

TS#(C):~' ~

AACK# (C) I I I I \.Y"-2
I I I

TA# (C) I I ~ \.:..J \..J ~
MEM_PAGE_HIT# (C) . : 7 '. \ : : : :

]\1\88
CPU_ADDR_SEL# (C) ,--=--, ---", \ I ~

RASHI/CASLO (C) I I / , \\...1....1 --'-_!....-..L....-....:......--l....----i._I-..:..---1---:...---L_:....-...r..-....:---'-____ ---'

BURST_CLK# (C) V, ,V, IV,
MEM_ADDR (B) , I)('i pow, I}ISI colON Icol '1 'N' coli 2 ' ~ I I col 3 I 'x:::::

RAS#(C) I \
~~~--~~~~--~~~~--~~ 

CAS# (C) I \ I r\ I I r\ I I /\ I I r--' 
CPU_DATA_SEL#(C) I I \ I I c-! 

I I I ; I , : ' : I : I : I : I : I I I CPU_DATA(B) ,) (dataO X datal X data 2 X data 3 ~ 

MEM_DATA (B) I ==:J' I 1\.1' (lata 0 I '~ I data 1 ')(9' data 1 't'l' data 3 I ~ 

MEM_DATA_OE# (C) \ I I ~ 

~~' \ '~ 
I I 

MEM_DATA_SEL# (C) I 

CPU_DATA_OE# (C) I 

--I 
:::T 
(1) 

0'> 
01 
o 
~ a: co 
(1) 

() 
:::T 
"6' 
en 
~ 



The 650 Bridge Chip Set 

7 
PCCCLK (C) 

C/BE[3:0]# (C) ::::X.,;:;;;C~m~d---r--Jl.XB~Y..I..=t;::;..e .=En~a::;.:;:;b~le.:;:..s _---,-___ -:--__ -r-...JX"-_---: __ -----, 

TAc' 
PCCAD (C) [PCI] 

FRAME#(C) 

IRDY# (C) 

TRDY#(C) 

DEVSEL# (C) 

STOP# 

PCCSEL# (C) 

ADDRHIIDATALO (C) 

MEM_DATA_SEL# (C) 

MEM_PAGE_HIT# (C) 

CPU_CLK(C) 

BURST_CLK# (C) 

RASHI/CASLO (C) 

MEM_ADDR (B) 

RAS# (C) 

CAS# (C) 

MEM_DATA (B) 

PCCOE#(C) 

PCCAD (B) [B] 

CPU_ADDR_OE# (C) 

,--(Address. ) i i i 

'---. , 
1 , , , , , , , , 

, , \ , , , , I , , 
, , , , 

I 
, 

\ , , , , , , , , 

, , , , , I , 
, , , , 
, , , , , , , , 
, , , , /(1) , 
, 

\ 
, , , , 

1(2) 
, 

, , , , , , , , 
, , , \ , , , 
, Hit I 

r ' I , , ' I , , ' I , , ' I 

~ .: , , , , , , , , 
, , , , , , , , , , , , , , , 
, , , , , , , , , , , , , , , 
, 

f-tJ5~ 
, , , , , , , , , , , , , 

, 
r/J X , , , , , , , , 

, , , , , , , , , , , , , , , 
, , , , , , , , , , , 
, , , , \ 1 , , , , , , , , 
, , , , , , 
, , , , , , , , , , , 
, , , , I , , , , , 

Lt5i~ i55~ , , , , , 
_t?7 

, , 
t66~ 

, , , 
, , , , , , , ' , ' , , , , 
, , , , , '/J II'.JI Iv , , , 

'1 , , , , , , , , , , , , , 
I'~Y 

,~, , ~ 
CPU _ADDR (B) ,::::xz.....,..,.; ~Sn-o-oV"""-A-:-d";"";dr-'-e-ss---'-: --'-----'---'-----'---'------'--------.~ 

, 
... t25 

, , , , , , , , , , , 
Lt4 

, 

TS# (C) , , 'L-.I' ' ,(I) 

AACK# (C) , , W ' ,(1~ 

ARTRY#(C) 

BILE_PAR_EN# (C) , 
Snoop, 

, \~~,-~-~~-~-~~,~/ , 

Figure 7-35. PCI To Memory Read - Single, Page Hit 

181 



'"T1 
to' 
c 
""I 
C'D 

jI 
w 
~ 

'tJ 
Q 

-a 
3: 
C'D 
3 
0 

""""" -< QC 
N :tI 

C'D 
D) 
a. 
I 
en 
5' 
co 
Ii 
'tJ 
D) 

CO 
C'D 

3: 
iii' 
en 

~ ~ 4 5, c;> 7, ~ 9, 19 
PCCCLK (C) I 

PCCAD (C) [PCI] -< Adar I ) .... ..L ... ~ I I I I I I I I 

FRAME#(C) ~ 
I 

/ 
I I' I I I I I I I 

IRDY# (C) \. / 
I I I I I I I I I I 

TRDY#(C) 
I I I I 

\. / 
I I I I I 

DEVSEL#(C) I I / I I 

STOP# I I I I I I I 

PCCSEL#(C) I I I I I I I I I / I 

ADDRHIIDATALO (C) 
I I I I I I I I 

\. / 
I I I I I I I I 

MEM_DATA_SEL# (C) ~ / 
I I I I I I I I I I 

MEM_PAGE_HIT# (C) 
• • 

/'N{iss'-
I I I • I • 

, 
I 

CPU_CLK(C) ~ ~ • 
BURST_CLK# (C) • • • • • • • • • • • • • • • • • • • • 

RASHI/CASLO (C) 
t 

• • • 
I • / • • '" • • • • • I • • • • 

5 ---.j • • • tZ3 -w..... • • • t23 L-....j • • • • I 
• 

I • • 
MEM_ADDR (B) -)1.."-. I I »... '\I !<.ow Andress. • ~ Uolumli AddTess I I X • -

RAS# (C) • I • • • /' • • " 
I I • • • • • • • I • 

CAS# (C) I • I • I • \. / 

MEM_DATA (B) 
I • • • • • • • I • I • I • • • • Uata 
• I • • • 

I • • • I • I • • • • I • • 
PCCOE#(C) • • '- / • • • • ~t<i7 .::q t~~ 

• 

• I • I • tj4. I • • • • • • t66 ~ 
I 

• • 
PCCAD (B) [B] "-, • • • 

, ",-luam JW.. 
I 

CPU_ADDR_OE# (C) 

CPU~ADDR (B) 

• • I I I I I I I I I • • I • • I I 
/ 

.... t5 
., . 

!.j • N L.j 
'=XSj Shoop Address I >tSJ:::! 

TS# (C) \ I • ,'-___ _ 

· , AACK# (C) Y '----; 
ARTRY# (C) • Snoop. 

B/LE_PAR_EN# (C) • \. / 

-of 
~ 
CD 
(J') 
CJ1 o 
gJ 
a: 
to 
CD 
() 
~ 

"5" 
w 
~ 



"T1 
cS' 
c: .. 
CD 

~ 
:--I 
"'C 
Q 
(} 
s:: 
CD 

"""' 3 QC 
~ 0 

~ 
:lJ 
CD 
CD a. 
I 

OJ 
c: ... 
til 
~ 

"'C 

~I 
% 
;::;:' 

f ~ 
PCCCLK(C) 

CIBE[3:0]# (C) :J<Ciiia:!:)(~B~Yt~e~E~;n~ah~l~eS~'::::~~=====XnE:~::::~::::~~)(]~[~~:~~:~:~~:~::~:~~(~:~~;~:~ 
PCCAD (C) [PCI] '-<DdLJ~T;.:..:f\~C:""'-~~_-:-_~ ______ L....-_~_--1-======:::=~=~ 

FRAME# (C) I-J I I ~ 

IRDY#(C) 

TRDY#(C) 

DEVSEL# (C) I 

STOP# (C) I 

PCCSEL# (C) I 

ADDRHI/DATALO (C) I 

MEM_DATA_SEL# (C) I 

I 

MEM_PAGE_HIT# (C) I 

CPU_CLK(C) 

BURST_CLK# (C) I 

RASHI/CASLO (C) I 

t2~ 

MEM_ADDR (B) I 

RAS#(C) I 

CAS# (C) I 

MEM_DATA (B) I 

PCCOE#(C) 

I I I I Lt5~~ I II 
I 

'1112 
PCCAD (B) [B] 

L..J I ~ 
I I I ~ 

AACK# (C) '--I I I I I 
I I \....../ c;:::::::, 

I I 

ARTRY# (C) I 5noop Snodp r:--. 
B/LE_PAR_EN# (C) I I \'-!...-"'-...!..-......L...---!....--....---!..----'_!...-....L..-...!.............L...-......!----I..---!..----'_!...-~...l._......L_ ______ 

-I 
:::r 
CD 
0> 
CJ1 o 
9? 
c:: 
co 
CD 

a 
:::r 
-0" 
(J) 

~ 



"T1 
cO' 
I: 
"" CD 

~ w 
!» 
"tJ 
Q 

~ 
s: 
CD 
3 
0 

-< 
:rJ 

""""" 
CD 

00 Q) 

.&;;;.. Q. 

I 
m 
I: 

"" CD 
~ 

"tJ 
Q) 
cc 
CD 
:J: 
;:::;: 
-I 
:::T 
CD 
::::J 

s: 
iii' 
CD 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PCCCLK 

C/BE[3:0]# (C) :~.a.Ii~~~'Hif;;a..u.:nwah.I.LI't;""I'l's,-----:--T""' wu.;....~-~---:----,------:--.,..----:-----r--~ 10.....---,--_....., 

PCI AD (C) [PCI] ~---------------~------~-:------:--­
- FRAME# (C) '.J 

IRDY#(C) 

TRDY# (C) , , '\ 

DEVSEL# (C) , , I 

STOP# ' '" 
PCCSEL# (C) , , /" 

ADDRHI/DATALO (C) , " ' I 

MEM_DATA_SEL# (C) 

MEM_PAGE_HIT# (C) , >-,7 I I , I 'lVJ,l1)-~; .... , ---.-____ -_ ......... __ .....-_ ......... -....-.....-_+_....,...__. 

CPU_CLK(C) 

BURST_CLK# (C) , 

RASHl/CASLO (~1s I ' I ' .A' I ' .A>\ 
, t2~ 

MEM_ADDR(B),~·~~~~~~~~~~ __ ~~~~ __ ~~~~~~~~~~~~~ __ ~~~ 

RAS# (C) '4...!.-----:---L-----:---!---..,;~i....-:....-!""'O"":.....-l....-...:......r-l....-...:.....-.l....-~ 
CAS#(C) , 

MEM_DATA (B): I' ' , ' , : I' : ~ ; I ja~a , I ;)' , 'c 
PCCOE#(C) 

PCCAD (B) [B] 

G ~ ~ 
AACK#(C) 

_...:..._.;........:._..;'""\ ' , , , y y ,'7=1 
ARTRY#(C) , 

B/LE_PAR_EN# (C) , Sno~\ : Snoop , ::~~~~~~~~~~~~~~~~'~ 

-I 
::r 
CD 
0> 
01 o 
gJ 
c: co 
CD 
() 
::r 
-5" 
en 
$. 



." 
eS' 
c ... 
CD 

~ 
W 
~ 

"'0 
Q 

~ 
3: 
CD 
3 
0 ... 
'< 

~ ::lJ QO 
CD Ul Q) 
a. 
I 
m 
c ... en 
:+ 
"'0 
Q) 

CQ 
CD 

3: 
iii' en 
~ 
::T 
CD 
:::::I 

::I: 
::;: 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
PCCCLK 

CIBE[3:0]# (C) ')(Ciillb<"-IBJ.JytloW.e..&.;E ....... na""hLLlole~s ___ ~\I..l,I;;""""-~ _________________ "--__ _ 

PCCAD (C) [PCI] '-<ilimb~T~'A~C..:...-----------------------------
FRAME# (C) '.J ' 

IRDY# (C) " 

DE~~~~~~:~I--~~:~;--~--~~--~--~'~'~ ,~ 
STOP#'· ," "~ 

PCCSEL# (C) '-+1 ______________________________ -'--_ 

ADDRHI/DATALO (C) , 

MEM_DATA_SEL# (C) 

MEM_PAGE_HIT# (C) I I, I . I ' 

CPU_CLK(CL 

BURST_CLK# (C) , 

M::~~;2; ;~~p: ' :a~ ~R~ Ad~sS1(,n'JJmn AMress, 'F' ", Fo:o.uwn A@®S, " , ~ 
CAS# (C) 

MEM_DATA (B): I' , : I' , : .(fht~ 7·6 : I ' : I ' ~: ' : .(~yte, /-1) , > 
PCCOE#(C) , 

,t66 
PCCAD (B) [B] '1-l------1.--....L-tt~~=~::J:=MiIme:!El~!±B;~m::~=b:>it:J:=~it:~~---I 

CPU_ADDR_OE#(C)'1~~~~~~~~~~~--~~~~~~~~~~~~~~~~~~== t4 
CPU_ADDR (B) '...J" \lin",,' QYSflE'N 1 . I f' II",! "U"'l' "'hl.n"·q'Q\HflY"iJ ~ 

TS#(C) i Vii Vi \0:::: 
", 0 '~ AACK# (C) ---'--'----V , " , " 

ARTRY# (C), Snoop' Snobp' r;--. 
B/LE_PAR.:.-EN# (C) , "'-!-' .......... .....!.-....o...-....l-.........-.!--.............J!-......--...!.____'_........!...--'----L... ___ .....!........o...-....l-.........-.!--~i..........I.___.:..____'_____o..J 

--I 
:::r 
CD 
0> 
0'1 
o 
~ 
0: 

<C 
CD 
(') 
:::r 
is' 
CJ) 

~ 



The 650 Bridge Chip Set 

PCCCLK (C) 

CIBE[3:0]# (C) 'J:eC~middC:=XXjBlEy~te~EniiiaiIhili]eis======:::JC==::>----i 

1 ~~~I )-~TA~C~'~----~----~------~----~ PCCAD (C) [PCI] --<Address 

FRA~E#(C) ,~~ ____ ~~/~Swin~~~]e~QLF~h]~!T~s~t __ ~~ ______ ~ 

IRDY# (C) 1 

TRDY#(C) 

DEVSEL# (C) 

\~. __ ~ ______________ ~r-----,---~ 
I 

STOP# 

PCCSEL#(C) 

ADDRHljDATALO (C) 1 

1 ,~ ________________________________ ~ 

~E~_DATA_SEL# (C) ' ... __ ---: ______ ---J 

~E~_PAGE_HIT# (C) I_----:-_-+-_oooo:-_+-...a.'-=H~, i;.;:.,t 1'--+---:---+---:--+---:---1 

CPV_CLK(C) 

BURST_CLK# (C) 

RASHI/CASLO (C) I----,-------.,-----~--_..,...-----r__---I---_r'_----... 
~M_ADDR (B) IJ~ __________________________ "_X ________ __ 

RAS# (C) 

CAS#(C) 1 

~E~_DATA (B) 

PCCOE#(C) 

PCCAD (B) [B] 

,3S 

CPV_ADDR_OE# (C) 1 _________________________________ 1 -J/ 1 

CPU_ADDR (B) 

TS# (C) [C] 

AACK# (C) [C] 

ARTRY# (C) [Lx] 1 

~Srioop 1 

\ ( )' Hit / 1 ~ 1 

PCCGNT# (C)(I) I---r-~--__ ~-----_r_---__..,...----..J 

Lx_REQ# (C) (1) 1 

1 Arbiter switch 1 

~x Wr,ite Bapk ...--:----....... 

Lx_GNT# (C) (1) L-1 
1 

TS# (C) [Lx] I-~--r-~---,--~---r--~-~"""""":"'"--r-------:---,---.i ~ 

. Figure 7-40 .. PCI To Memory Read - Page Hit, Cache Hit 

186 



"T1 
cC' 
c 
"'" CD. 

1 ..... 
"tJ 
Q 

cj 
s: 
CD 
3 
0 

I-' "'" '< 
I' co 

....;J 
0 
m 
(') 
::r 
CD 
::I: 
;:; 

~ -::r 
l> 
Co 
;:; 
CD 
"'" en 
:§. -(') 
::r 

2 
~ 6 4 1 , 3 , 

PCCCLK(C) 

CIBE[3:0]# (C) :~yte ~nables: : x::==j-- , 
FRAME# (C) '"\ ' /single or burst ' I ' '--

IRDY# (C) '\ ~ 
I I 'I 

TRDY#(C) , " , ~ , 

STOP# 

PCCSEL# (C) , , I ' 

APDRHI/DATALO (C) I \ I , i I 

,....j 
CPU_CLK (C)" 

CPU_ADDR_OE# ' , ~ 

CPU_ADDR (B) ,~noop Address From PCL }---,-{From,60X L~ , }-;-{From,L2, , }--;---, 

TS# (C) [C] LJ ~ 

~----~~~~~~~~~~ ~ AACK# (C) [C] , \.!.J s'noop" , ' , 

ARTRY# (C) ~ , 
TA# (C) [C] , r;-"\ , f) '7\ ' f)....-. 

PCCGNT# I I , 
CPU_REQ#' , \ '\ ' , {, 

CPU_GNT# ,v, 
TS# (C) [60X_Ll] , ~....J.'_'---.l....--..L.-....I....-"""""--l 

L2_ CACHE_REQ# , \ \ C--

L2_CACHE_GNT# ' -, - ---.---, -,----------.-- , ' ~ 
, 

TS# (C) [L2] , , ~",,-:,----::---~--

-; 
::::r 
CD 
(J) 
01 
o 
~ 
a: 
to 
CD 
() 
::::r -Co 
CJ) 

~ 



The 650 Bridge Chip Set 

7, 

PCCCLK(C) 

C/BE[3:0]# (C) ::=XCmd I X Byte E~ables 
PCCAD (C) [Addr] I--{GA~d~dr~I=>-) ---.-----... ' ___ ----..L.'--_------I' 

FRAME#(C) 

IRDY# (C) 

TRDY#(C) 

DEVSEL# (C) 

STOP# (C) 

PCCSEL#(C) 

ADDRHIIDATALO (C) 

MEM_PAGE_HIT# (C) 

CPU_CLK(C) 

WE#(C) 

BURST_CLK# (C) 

RASHI/CASLO (C) 

MEM_ADDR (B) 

RAS# (C) 

I 

I \~ _____ ' _________ ' _________ ' __________ ' ~I 

'_I-_____ ' ___ ...:... __ '~r------' ------.1...' "' I r--...I-"""\.----' 
\'--_---'-~I 

'-!j-----~'------...I-"""\. __ ~'~ _____ ~' _______ ~'.J/r--~'~~---~' 
I I I I 

:-~----~,~------,~, ~---~, ------~:-------~,-----~:~~--~, 
I I 

'_t-___ '--.. 
I \~ _________ ~I~ ________________ ~I 

I \Hit I 
: I I I I I I I I I I I I I I 

r I 
I_~ __ ~I ______ "':I~\ I 

I 

:~~~-t2~15-~--~I---~:-~I---~:--I----~:--~I-~:----~I-~I---~,---:~~, 

1 __ ~J(,~~~~I __ ~~,o~llu~mn~~A~d~Qr(e~S~s_,~ __ ~_~I __ ~ __ ~I_~ ____ ~I_-...:~X,~I 

,-r--,--~,----,----,~---,----~, ---,---~,----,----~,----,----~,----,-~, 

CAS# (C) I I \~~ ___ ' ____ ~ ___ '-JI I 

PCCAD (B) [Dat] 

MEM_DATA_OE# (C) 

MEM_DATA (B) 

CPU_ADDR_OE# (C) 

CPU_ADDR (B) 

TS#(C) 

AACK#(C) 

ARTRY#(C) 

:-~~:--~:--(:=I::::IID~a~ta~I:::::, ::::,:::::,::::,:::::,=r~:----~:----:~~: 
I I \~~ ___ ' ____ ..L.-___ ' ____ ..L.-___ '--'.I I I 

, , LG51 ' , ' , 'L I 

,--;--t?7 I I I I I I t~6--1 I 

1-~,I--~---,I--~--~~/~~21]~ID2a~t~a~I::::~I::~I::::~I::=~~--~~----,r-~ 
I 

'-r-~---r--~----r---~--~--~----r---~--~--__ '--~~/--~~ ..... t'5-.J I I I I I t41 I_I 
,~I..;--,' ~~'!""I"..-~ __ --:-. __ ...:...-_........;._--,--;-t 

1:=:>zJ I Snoop Ado/ess r:a:::::: 
L-.l , I 

I 

I L-J I I ',-__ ....: 

~noopl 

Figure 7-42. pel To Memory Write - Single, Page Hit 

188 



The 650 Bridge Chip Set 

Figure 7-43. pel To Memory Write - Single, Page Miss 

189 



""""" \0 
Q 

." 
to' 
e: 
(iJ 

1 
~ 

"tJ 
Q 

~ 
s: 
CD 
3 
o 
~ 
:e 
""l 
::;' 
CD 
I 

OJ 
e: 
""l 

JL 
"tJ 
Q) 
cc 
CD 
::::E: 
::;' 

f ~ 1 ~ 9 7 ~ 9 Ip 1,1 1,2 ~3 1,4 

PCCCLK (C) 

PCCAD (C) [Addr] '-<&IQb~----------...:...---..:..---...:.----...:---~-~-.!.....--~-~-
,I , 

FRAME#(C) 

IRDY# (C) , 

TRDY# (C) , , Ii, 

DEVSEL# (C) 

STOP# (C) : I I " 

PCCSEL# (C) , I . , 
ADDRHIIDATALO (C) , 

MEM_PAGE_HIT# (C): I . > • ' > • ' > • ' 

CPU_CLK(C) 

WE#(C) , 

BURST_CLK# (C) 

RASHI/CASLO (C) 
t25 

MEM_ADDR (B) 

-RAS# (C), 

CAS# (C) , , ' , ' , ,\., , /, ' " , "", , , /, , , 

PCCAD (B) [Dat] , 'ata' , , XUata' , , XUata' , , 
. I _. . . . I _. . . . I.. . . . . 

MEM_DATA_OE# (C) 

MEM_DATA(B) , I, 1\;" l}tSj I' ' t3~ ~: ~~~~~-L'~"~~X~ ~~~-
CPU ADDR OE# (C) , , 

- - t5 L:j , ,as L:j , ,08 L:;j , , t4 L.! 
CPU_ADDR (B) ':JI;;"SnoopAddi~ss , >lSlSooov Addriiss ' ,>t;:jSnoopAddiess , , >IL: 

TS#(C) , 

AACK#(C) 

ARTRY#(C) , 

T~' '~' '~' \0020::: 
I I I ~ \.J \.J \.J , , , 

~no9P' , . , Snoqp -Sno9P' , . , 

-I ::::r 
CD 
0> 
01 
o 
~ a: 

(Q 
CD 
() 
::::r 
"6" 
(J) 

m. 



." 
cS' 
c 
"'" CD 
...... 
1,' 
?' 
"'C 
Q 

~ 
i: 
CD 
3 
0 
~ 

"""'" :e ~ 

"""'" "'" ::::;: 
CD 
I 
m 
c 
"'" tn 
~ 

"'C 
Q) 
cc 
CD 
:J: 
::::;: 
-I 
~ 
CD 
j 

i: 
iii" 
tn 

f ~ 1 ~ ? 7 ~ 9 1,0 ~1 1,2 ~3 ~4 \5 ~6 \ 7 

PCCCLK(C) 

C/BE[3:0]# (C) I :xcma::xe.;..ytwoe~E"",n .... ah.wolloWe~s ___ ...J w .......... ____ ...;.....-_______ ---J """""'''---________ ....... __ _ 

PCCAD (C) [Addr] '-<AadI>~~-----.,;....---..:---......;....-----.,;---....;......------.,;....---~---

FRAME# (C) :\ I I 

IRDY# (C) 

TRDY#(C) 

DEVSEL# (C) 

STOP# (C) 

1--;'\ ,I 
_--!-_V''''''-~~' '--J ~ ~ 

, '~ 

PCCSEL# (C) , ' r=r 
ADDRHIIDATALO (C) 

~----~--~----~r-~----~--~~--~--------~----~Jiit~ MEM_PAGE_HIT# (C) 
. I , ' , I , ' , I , ' , I Miss 

CPU_CLK (C) .,- .£ f .£ .£ .£ f .£ .£ .£ f .£ .£ .i f .£ .£ .£ f .£ .£ .£ f .£ .£ .£ f .£ .£ .£ f .£ .£ .£ f .£ j 
WE# (C) 

BURST_CLK# (C) 

'\ I " I 

. V 0 
I I I I I I I 

RASHI/CASLO (C) r" "\..o.........J---"---'-_.....---I.. ____ --I... ....... .....L... ................................ ...i-.......... ...J.,;.,,.."""""--' 

MEM_ADDR (B) ':JIiIColumrtAcldr6ss' '" I , )ttRow'Addfe§s)IJc6Iumn' }(jtolurilhAddI'ess' I >C 
RAS#(C) 'II \~' __________________________ ~ __ ~~ 

CAS# (C) I 1\ ,Ii 1\ ,/~ ,\ ,I, 

PCCAD (B) [Dat] '~ata 'XData I IData -') 

MEM_DATA_OE# (C) , \ I ' I 

MEM_DATA(B) , ~Dat~ >\jDat~ (iPat~ ~ 
CPU_ADDR_OE#(C)I~~~~~~~~~~~~~~ __ ~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~-L~ 

CPU_ADDR (B) ')(jSnoQP Address >t5lSnoop Adare~s )tSJSnoop AddreSs C 
I I I I I I I I I I I I I 

TS#(C) , 

AACK#(C) I 

ARTRY#(C) 

-----.. 
,\......I, ,\.....I, ,\....../,'~ 

~no'op , ~noop I ~noop , 

--I ::r 
(1) 

0') 
01 
o 
~ 
a: 

<0 
(1) 

(') 
::r 
"6' 
m 
ga. 



"T1 
cO' 
t: 
""l 
(I) 

1 
!'l 
"tJ 
Q 
(j 
s:: 
(I) 

3 
0 
~ 
:e 

""""" 
""l 

\C ;::::;: 
N CD 

I 
to 
t: 
""l 
(J) 
.r+ 
"tJ 
Q) 

CQ 
CD 

s:: 
iii' 
(J) 

-t 
::r 
CD 
::::I 

::J: 
;::::;: 

PCCCLK(C) 

C/BE[3:0]# (C) 

f ~ 1 ~ ? 7 ? 9 1,0 ~1 1,2 ~3 1,4 ~5 1,6 ~7 

PCCAD (C) [Addr] :@-------------------------------
FRAME# (C) ,\ I 

IRDY# (C) '-----"'\ ' I 

TRDY# (C)' , '----..I ,0 , ~ 
DEVSEL# (C) , " , I"---

STOP#(C) " '~ 

PCCSEL# (C) , ' ~ 

ADDRHIIDATALO (C) ,~ , , . , I ' 

MEM_PAGE_HIT# (C) , : : (1. \ :: : :: ,Hit: :: ,Hit: ::: I, , 'iSS' , , , , , , , , , , , , , , 

CPU _ CLK (C),(.£ .i .£ .£ .£ ./ .£ .£ .£ ./ .£ .£ .£ ./ .£ .£ .£ .i .£ .£ .£ ./ .£ .£ .£ ./ .£ .£ .£ ./ .£ .£ .£ ./ .£ .J 
WE# (C) , , , ' I 

BURST_CLK# (C) 

RASHl/CASLO (C). , 
.' 

,y, :y: 
--~~--~~/, ,\~--~~--~--~----~~--~--~~--~----~----~~~----~----~~ 

MEM_ADDR (B) ':x;t ' )ft Row 'Addre§s>lnCblumn' >t,colulrihAddi'ess' >Nt:olu1ri1iAddi€ss' , >C 
RAS# (C) , I' ,\..,_---.-_--.-_--...-_--.-_-..-_-.--
CAS# (C) , ,\ ,I, ,\ ,I, ,\ ,I, 

PCCAD (B) [Dat] '-----YGats\ ' X(]atli ' XBatli ' ) 

MEM_DATA_OE# (C) " ' I 

MEM_DATA (B) ,NDat~ >tYDat~ *,"jDat~ ~ 
CPU_ADDR_OE#(C) , " 

CPU _ADDR (B) '::Xj Snobp Address )lSI SnOW AddreSs »;1 Snoop AddreSs C 
I I I I I I I I I I I I I I 

TS# (C) , , \J , , \.J , , \.J , ' \:;:: 
AACK#(C) , 

ARTRY#(C) , 
, 

., 

Sno'op Sno'op Snoop 
I I I I I 

-I 
::J'" 
CD 
0> 
01 o 
~ a: co 
CD 
() 
::J'" 
"5' 
(J) 

~ 



The 650 Bridge Chip Set 

PCCCLK (C) 

C~E[3:0]#(C) '~tc~~~d~~X~BEy~~~E~niiilib~leis~~~~~~~~~~~~~ 
I TAC' 

PCCAD (C) [PCI] ,--{QA~d:aidr~esis::::! J---!~~--I"""---';"-~--I"""-----; 

------------~~/~---,' ___ ~~r----~--~ 

\~------------~--------~ 

\,-_' __ ~I 

x 

I , I I I I 

--~~~--~~'?Z71t==~-----------

___ JX,~S~n~,o~o~p~R~d~di~e~s~~---------~----~--J~ 
~r-----~----~--~, __ ~ 

I " 

I '--:-l ~oop I 

---J....---.:...----'----~""t\---'-, ..." ,It {I--'----....;....---;U.l...-b-it-e..:..r -S-w-it...l.c;:-h--~ 
LX WrIte Back ....-____ ..... 1> 

PCCGNT# (C) I~~--'-------r----'""""----r-~-"""--.........,J 

Lx_REQ# (C) I 

Lx_GNT# (C) W 
TS# (C) [Lx] I------~~--__r_--~---,--__:_--~~--___r_--_:_____ri-~ 

Figure 7-47. PCI To Memory Write - Page Hit, Cache Hit 

193 



The 650 Bridge Chip Set 

PCCCLK(C) 

C/BE[3:0]# (C) ',:J:CC:nmiddC:=XXBRy~t~eIEaiDiiab5i]~esL:======:x:===}------! 
TAC' 

PCCAD (C) [PCI] ,--<QA~d:aidr~es~s:::J~~~---_;__--___;_---_;_--___; 

FFU\~E#(C) ,~~ ______ '~/~s~iD~g~]~e~Q"r~b~ll~r~st~ ____________ --J 

IRDY# (C) 

TRDY# (C) I 

DEVSEL# (C) '---...:....---......:.-'-_--.-:.. ___ '--.Jr-----,..~-----! 

STOP# 

PCCSEL# (C) ' __________________ --' 

ADDRHIIDATALO (C) ,~ __ ~ _____ ~ _____ ~--J 

~E~_PAGE_HIT# (C) I_----:'_--+_~--+.....II ~iss\'-+--~--t---:---+---:----t 

CPU_CLK (C) 

WE# (C) 

BURST_CLK# (C) , 

, 
RASHljCASLO (C) '_--L.. ___ L....-__ .....!.'--J/ 

~M_ADDR (B) X -?Zl 

RAS# (C) "_~---'--_.....--~---r'--J/ , 

CAS# (C) , 

PCCAD (B) [Dat] 

~E~_DATA_OE# (C) , , , , / , 
Lq5...j' Lq6...j' 

~~_DATA (B) ,---;---r--~--"""__if2/~Z~J~, =~f-,--~____,_---:------, 

CPU_ADDR_OE# (C) / 

CPU_ADDR(B) ,_~~x~sn~'o~o~p~A~~~ili~e~s~~-~----~-----~-----J~, 
TS# (C) [C] , ~~--;-----:---;---:----;-"'\.'---

AACK# (C) [C] \....:....Jr;S;-:"~o-:-:o=p--,--"""'-----r-....... ""'\.......!..----.: 
, H"t~:....----~-----.:...---ARTRY# (C) ,---.;.------=---"""'T""\ ......;..--" 11 

PCCGNT# (C) , __ -"-""""'---_.__-l.....-__ ---L--_-.J.-..I 
Lx_REQ# (C) , 

, Arbiter Switch ' 
Lx 'Yrite-Bac~k.....,... ___ ..... 

Lx_GNT# (C) '---r-J 
TS# (C) [60X_Ll] ,-~-_r__~---r--_:______,_-~-~---:--_,__~~~, ~ 

Figure 7-48. PCI To Memory Write - Page Miss, Cache Hit 

194 



~ 
~ 
(I) 

"T1 
cO' 
c 
CiJ 

1 
~ 

o 
"tJ 
c: 
~ 
"tJ 
Q 

== "" =:;: 
C'D 
I 
>< » c 
(5 
II 
o 

CPU_CLK(C) 

CPU_GNT# 

CPU_ADDR (C) 

TS# (C) I 

AACK#(C) 

o I 2 I 3 4 I 5 6 I 7 8 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 

TA#(C) I--~+-~~--~~--~--~~--~~--~--~~----~~~ 

CPU_DATA(B) I--~~~<=::~::::~==::~::::~::::::::::::::::~::::J 

CPU_ADDR_SEL# (C) 

CPU_DATA_SEL#(C) I----,'I--~ __________ ~ ____ ~ ______ ~ ____ ~ ______ ~ ____ ~ __ ~ 
PCCSEL# (C) 

ADDRHljDATALO (C) I 

L_PCCDATA# (C) I 

..........:.. __ .....L.... __ ..:......---I. __ .....:.... __ ..L-----""-----'-__ ~ __ "_____:... __ .....J...._I' (6) 

CPU_ADDR_OE# (C) 

CPU_DATA_OE#(C) I 

PCC OE# (C) I_-;---t-~t--;----r---;---r----;---"""T"""--...----r-----;---""'----;-----r----:----T"""""-':-----:----r---
I I 

PCCCLK (C) A I:; t;. 

PCCAD (B) I ,.", >I '."" > >I ,-_....;:!I> ....... __ _ 

C/BE[3:0]# (C) I (4) I XCmd I XByte EnrlhJe X\-(S_) __ _ 

FRAME#(C) 

IRDY# (C) 

TRDY# (C) [target] 

\3S Of Hi' (5) '3S or HI (4) I \ / tapa r-I 
,''''''-+IH(S-t-) ..... '---

I \. -----~-------,r-----~~--------._-------r- i 
I 3S or HI(4, 7 ,_ 

13SorHl ~ / 1'-

DEVSEL# (C) [target] I 35 or HI \ See PCI, Specification I I "--

STOP# (C) [target] 35 or HI 7s PCI S· "fi t" '--
I ee I pecl lca Ion 

-f 
=r 
(1) 

0> 
01 o 
~ c: 

co 
(1) 

() 
::T 
-5" 
C/) 

~ 



The 650 Bridge Chip Set 

o 2 3 4 5 6 7 8 9 10 

CPU_CLK(C) 

CPU_GNT# I~_~ __ -LI ______________________________________ __ 
1 

CPU_ADDR(C) I~~ ______ ~~ ______ ~ ______ ~ __ __ 

TS# (C) 

AACK#(C) I ~ 
I TA# (C) I _______ ~ ______ .....;.........J 

~ 
( 1 ~ 

\ I 
CPU_DATA_SEL# (C) 1 \ I __________ ~ __ ~ ______ ~ ________ ~ __________ ~ ______ .....J 

PCCSEL# (C) 

ADDRHI/DATALO (C) , I 

PCCOE#(C) \ I 
PCCCLK(C) 

1 

t54-+1 ~tC3-+1 t55-+1 

~Aaaress PCCAD (B) , ____ .....:....---1 V~Data ~ 

X·Cmd XBE# X CIBE[3:0]# (C) I _______ ...J..-______ --l-....J'-..;:;;.;;;;;;~____'___',=.~ __ .:..........,'__ ____ ....I._ __ _ 

7 FRAME# (C) 3S or HI ----------"""T'"--I 
, I ~3S or Hi 

tflPdH 
7 IRDY# (C) 1 3S or Hi --------------1 , III 

TRDY# (C) [target] 1 3S or Hi , I '--

\ I '--DEVSEL# (C) [target] 1 3S or HI __ ~------~----------~--------~----~----~-J 
7 '--STOP# (C) [target] 3S or HI 

----------------------~--------------~ 

Figure 7-50. CPU To PCI Write - XADIO=O, Fast PCI Target Response 

196 



." 
cO' 
c ... 
CD 

~ ...... 

0 
"'C 
c: 
~ 
"'C 
Q 

""""" =E \C 
....:J ... 

::;: 
CD 
I 

>< » c 
5 
II 
!=' 
0 --C' 
CD 
Q) -..... 
CJ) 
=It: 

Q ~ 3 4, 5 , 6, 7 , 8, 9 to, 11 12, 13 14, 15 16, 17 18 

CPU_CLK (C) 

CPU_GNT# :_='~~/~ ____ ~ ____ ~ ______ ~ ____ ~ ______ ~ ______ ~ ____ ~ ______ ~ __ 
CPU_ADDR (C) ,:J---.--< }---.---{,....--

TS#(C) '~ ~ , , ,~----

AACK# (C) I ~ _____ _ 

TA# (C) ,I ~-........l.-_ 

CPU_DATA (B) C. }---;---<'--'--_ 

CPU_ADDR_SEL# (C) , 

CPU_DATA_SEL#(C) 

PCCSEL# (C) , 

ADDRHIIDATALO (C) , 

L_PCCDATA# (C) 

CPU_ADDR_OE# (C) , 

CPU_DATA_OE# (C) 

~~ r 
\ I 

\ I 

PCCOE# (C) , , ( 
I ' A' l' ,.,' , I 

PCCCLK (C) 

PCCAD (B) 

CIBE[3:0]# (C) XCmd XByte Enable X'-_---....--

\3S or Hi ~~~~~----.---~\ ' I ' 
FRAME# (C) 'JS!II Hi ' I. tapd r...J 

'~----.---=:-:-----.;rr--"""T'-".,-----.-------,---- , I 1J .. __ ----: IRDY# (C) '3S or Hi I \ ... 
~~~~-~--~-~-~~--~~\ I TRDY# (C)[target] , 38 or Hi I ' 

)[t] ' "' \ ' DEVSEL# (C targe 3S or Hl ...

[] " I STOP# (C) target , 3S or Hl ,

--f
~
CD
0')
01
o
gJ
a: co
CD
()
~

is"
(/)

sa

""'" '.0
QC

."
to"
e:
Cil

~
!'l
(")
"tJ
c:
(j
"tJ
Q

:E
"'" ;:
I

><
~ c o
II

o 2 3 4 5 6 7 8 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18

'~ I

CPU_CLK(C)

CPU_GNT#

CPU_ADDR (C)

TS# (C)

AACK#(C)

TA# (C)

CPU_DATA (B)

CPU_ADDR_SEL# (C)

CPU_DATA_SEL#(C)

PCCSEL# (C)

ADDRHIIDATALO (C)

L_PCCDATA# (C) 1

I:>----r--< >---r--c
'~ ~

CPU_ADDR_OE# (C) 1

CPU_DATA_OE# (C) 1

PCCOE#(C)

PCCCLK(C)

PCCAD (B)

CIBE[3:0]# (C)

I ~

--~--~~--~I ~

~~~============================~ 
1\ ~ 

\ / 

\ I 

_---.....-JXCtlli[- XByte EiijEIe -X'--__ --

FRAME# (C) 1 3S or Hi 1 I -- \ 1 I 

IRDY# (C) 1 3S or Hi I \'-_____ -:--__ ~-----;-_ 

TRDY# (C) [target] 1 3S or Hi ~ '-

DEVSEL# (C) [target] 1 3S or Hi \ 1 I '--

STOP# (C) [target] 1 3S or HI U. I '-

-I 
::J'" 
CD 
0) 
01 o 
~ 
c: 
co 
CD 
() 
::J'" 
:5" 
(f) 

~ 



" cS' 
c: 
CiJ 
j-I 
U1 
~ 

0 
." 
c: 
cj 
." 
Q 

"""'" :e \C 
\C ... 

=+ 
CD 
I 

>< » c 
6 
II 
...I. 
a 

~ ... 
CC 
CD -:a 
CD -~ 

o , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 ,13 14, . 15 16, 17 , 18 , 

CPU_CLK(C) 

,""\ I CPU.;...GNT# 

CPU _ADDR (C) 

TS# (C) 

AACK#(C) 

ARTRY# 

TA# (C) 

CPU_DATA (B) 

:~ >--7--<:= 
,~ ~ 

CPU_ADDR_SEL# (C) , 

CPU_DATA_SEL# (C) , 

PCCSEL# (C) 

ADDRHIIDATALO (C) , 

L_PCCDATA# (C) , 

CPU_ADDR_OE# (C) 

CPU_DATA_OE# (C) , 

PCCOE#(C) 

PCCCLK (C) 

I 

, , ' 
--~----~----~----~----~--~~--~----~----~~ 

, ~ 

I I I I 

( ~ 
i , 

\ / 

\ ' / 

\ ' / 

PCI_AD(B) , ,. > .u~ r-> >. "fils! • 'QQ....::I'L-":""-__ 

CIBE[3:0]# (C) , XCmd XByte Enible X'-____ _ 

FRAME#(C) 

IRDY# (C) 

/ , \3S orHl , 3S or Hi / \'------,r-----...,........ ta~d ~ 

~--~~-r----~------------------,\ I~~-------
,3S or Hi I 

TRDY# (C) [target] '3S or Hi '---

DEVSEL# (C) [target] '3S or Hi \ ' 1- '---
STOP# (C) [target]' - ,3S or Hi I , \ I ~ 

~ 
::J" 
CD 
(J') 
01 o 
OJ .., 
a: co 
CD 

o 
::J" 
"5" 
(J) 

~ 



"11 
ii' 
e: 
"'I 
CD 

~ 
f:a 
0 

N "tJ 
0 c: 
0 -a 

"tJ 
Q 
::a 
CD 
m 
c. 

o 2 , 3 ,4, 5 6 , 7 8 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 

CPU_CLK(C) 

CPU_GNT# (C) 

~~~~~~~~§~~~~~~=;=~~~~ CPU_ADDR (C) ,::>-rl= ~ 

TS#(C)'~ , ~
AACK# (C) 111 -' t9

I , TA# (C) ------r'------r- 18 _I '

CPU_DATA(B) ,

CPU_ADDR_SEL# (C)

CPU_DATA_SEL#(C) ,

PCCSEL# (C) ,
,(1)

ADDRHI/DATALO (C)

L_PCCDATA# (C) ,

CPU_ADDR_OE# (C)
'.

CPU_DATA_OE# (C) ,

PCCOE#(C)

PCCCLK(B)

PCCAD (B)

C/BE[3:0]# (C) , XCmd XaB~yare~E~nW~hbJke::::::~------~====::~~::~~~
FRAME# (C) '3S o~ U~ ~~~I '\ 'I

IRDY# (C) '3S or HI I \ ~~--~~--~--~
TRDY# (C) [target] ,3S or Hi , . \ J "-

DEVSEL# (C) [target] '3S or Hi '\ ' I ''-

STOP# (C) [target] ,3S or Hj I '-

--I :::r
CD
0>
01
o
~ c:

<0
CD

a
:::r
-6"
en
~

."
cO'
c ...
CD
......
6.
~

0

" c:
N

';j

" Q

Q ~

::D
(I)
Q)
a.
I

~ ...
CQ
CD -::D
!. ...
'<

o I ,2, 3 I 4 I 5 6 I 7 8 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I

CPU_CLK(C)

CPU_GNT# (C)

CPU_ADDR (C)

TS# (C)

AACK#(C)

ARTRY#(C)

TA# (C)

I I ! I I

,~, ~
,~, ~

CPU..:.DATA (B)

CPU_ADDR_SEL# (C) I

CPU_DATA_SEL#(C)

PCCSEL#(C)

ADDRHI/DATALO (C) I

L_PCCDATA# (C)

CPU_ADDR_OE# (C) I

CPU_DATA_OE# (C) I

PCCOE# (C)

PCCCLK(B)

PCCAD (B)

~

t~ --II tIl

C/BE[3:0]# (C) I XCmd Xri.Bhy:-:'te=-, DE-=na::'ih:iJ:-e---r-----1-----r-----1-"')....--....!...---

/ I \3S or Hi FRAME# (C) -3S-or...."H=j---'-~/---, '"'""\ tapd ---'

I I ~.~ ___ __

I \ 111.,,_-.--__ IRDY# (C) ,3S or Hj I

TRDY# (C) [target] '3S or Hi I "'---

DEVSEL# (C) [target] I 3S or Hj \ I 1 '--

STOP# (C) [target] I 3S or Hi I I \ / '--

--I
:::J"
CD
0>
01 o
gJ
0.:

<C
CD
()
:::J"
"6"
(J)
ga.

The 650 Bridge Chip Set

202

Section 8
The 650 Bridge Pin Lists
This section contains alphabetic and numeric pin lists for the 653 Buffer and the 654 Controller.

8.1 653 Buffer Pin Lists

8.1.1 653 Buffer Numeric Pin List

Table 8-1. 653 Buffer Numeric Pin List

Pin# Signal Name

1 MEM_PAR (0)

2 MEM_PAR (1)

3 MEM_PAR (2)

4 MEM_PAR (3)

5 MEM_PAR (4)

6 L_ERR_ADDR#

7 MEM_DATA_OE#

8 VDD

9 GND

10 ALL_ON ES_SEL#

11 PCLOE#

12 MEM_PAR (5)

13 MEM_PAR (6)

14 MEM_PAR (7) ~

15 VDD

16 PCLAD (0)

203

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

17 PCLAD (1)

18 PCLAD (2)

19 GND

20 PCLAD (3)

21 PCLAD (4)

22 PCLAD (5)

23 PCLAD (6)

24 Voo
25 GND

26 PCLAD (7)

27 PCLAD (8)

28 PCLAD (9)

29 GND

30 PCLAD (10)

31 PCLAD (11)

32 Voo
33 PCLAD (12)

34 CONTIG_IO

35 PCLAD (13)

36 PCLAD (14)

37 PCLAD (15)

38 Voo
39 GND

40 PCLAD (16)

41 PCLAD (17)

42 PCLAD (18)

43 NO_TRANS

44 PCLAD (19)

45 Voo

204

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

46 PCLAD (20)

47 PCLAD (21)

48 GND

49 PCLAD (22)

50 PCLAD (23)

51 PCLAD (24)

52 VDD

53 GND

54 PCLAD (25)

55 PCLAD (26)

56 PCLAD (27)

57 PCLAD (28)

58 GND

59 PCLAD (29)

60 PCLAD (30)

61 PCLAD (31)

62 VDD

63 PC LAD_PAR

64 MEM_PAGE_HIT#

65 DRAMX9HI/X10l0

66 ROM_SEl#

67 l_PCLDATA#

68 VDD

69 GND

70 PCLClK

71 MEM_PAR_GOOD

72 MEM_DATA_SEl#

73 BURST_ClK#

74 PCLSEl#

205

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

75 ADDRHI/DATALO

76 REFRESH_SEL#

77 CPU_DATA (63)

78 CPU_DATA (62)

79 CPU_DATA (61)

80 CPU_DATA (60)

81 CPU_DATA (59)

82 CPU_DATA (58)

83 CPU_DATA (57)

84 CPU_DATA (56)

85 CPU_DATA (55)

86 Voo
87 GND

88 CPU_DATA (54)

89 CPU_DATA (53)

90 CPU_DATA (52)

91 CPU_DATA (51)

92 CPU_DATA (50)

93 CPU_DATA (49)

94 Voo
95 GND

96 CPU_DATA (48)

97 CPU_DATA (47)

98 CPU_DATA (46)

99 CPU_DATA (45)

100 CPU_DATA (44)

101 CPU_DATA (43)

102 Voo
103 GND

206

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

104 CPU_DATA (42)

105 CPU_DATA (41)

106 CPU_DATA (40)

107 CPU_DATA (39)

108 CPU_DATA (38)

109 GND

110 CPU_DATA (37)

111 CPU_DATA (36)

112 CPU_DATA (35)

113 CPU_DATA (34)

114 Voo
115 GND

116 CPU_DATA (33)

117 CPU_DATA (32)

118 CPU_ADDR (0)

119 CPU_ADDR (1)

120 CPU_ADDR (2)

121 CPU_ADDR (3)

122 CPU_ADDR (4)

123 CPU_ADDR (5)

124 CPU_ADDR (6)

125
.

CPU_ADDR (7)

126 Voo
127 GND

128 CPU_ADDR (8)

129 CPU_ADDR (9)

130 CPU_ADDR (10)

131 CPU_ADDR (11)

132 CPU_ADDR (12)

207

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

133 CPU_ADDR (13)

134 GND

135 CPU_ADDR (14)

136 CPU_ADDR (15)

137 CPU_ADDR (16)

138 CPU_ADDR (17)

139 CPU_ADDR (18)

140 CPU_ADDR (19)

141 CPU_ADDR (20)

142 Voo

143 GND

144 CPU.-:.ADDR (21)

145 CPU_ADDR (22)

146 CPU_ADDR (23)

147 CPU_ADDR (24)

148 CPU_ADDR (25)

149 CPU_ADDR (26)

150 'CPU_ADDR (27)

151 CPU_ADDR (28)

152 CPU_ADDR (29)

153 CPU_ADDR (30)

154 CPU_ADDR (31)

155 TSIZ (2)

156 TSIZ (1)

157 TSIZ (0)

158 CPU_ADDR_SEL#

159 CPU_ADDR_OE#

160 Voo

161 GND

208

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

162 CPU_DATA (31)

163 CPU_DATA (30)

164 CPU_DATA (29)

165 CPU_DATA (28)

166 CPU_DATA (27)

167 CPU_DATA (26)

168 CPU_DATA_SEL#

169 GND

170 CPU_DATA (25)

171 CPU_DATA (24)

172 CPU_DATA (23)

173 CPU_DATA (22)

174 CPU_DATA (21)

175 CPU_DATA (20)

176 Voo
177 GND

178 CPU_DATA (19)

179 CPU_DATA (18)

180 CPU_DATA (17)

181 CPU_DATA (16)

182 GND

183 CPU_DATA (15)

184 CPU_DATA (14)

185 CPU_DATA (13)

186 CPU_DATA (12)

187 CPU_DATA (11)

188 CPU_DATA (10)

189 CPU_DATA (9)

190 Voo

209

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pin# Signal Name

191 GND

192 CPU_DATA_OE#

193 CPU_DATA (8)

194 CPU_DATA (7)

195 CPU_DATA (6)

196 CPU_DATA (5)

197 CPU_DATA (4)

198 GND

199 CPU~DATA (3)

200 CPU_DATA (2)

201 CPU_DATA (1)

202 CPU_DATA (0)

203 RASHI/CASLO

204 VDD

205 GND

206 MEM_DATA (0)

207 MEM_DATA (1)

208 MEM_DATA (2)

209 MEM_DATA (3)

210 MEM_DATA (4)

211 MEM_DATA (5)

212 VDD

213 GND

214 MEM_DATA (6)

215 MEM_DATA (7)

~ 216 MEM_DATA (8)

217 MEM_DATA (9)

218 MEM_DATA (10)

219 MEM_DATA (11)

210

The 650 Bridge Chip Set

Table 8-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

220 Voo
221 GND

222 TEST#

223 ERR_ADDR_SEL#

224 MEM_DATA (12)

225 MEM_DATA (13)

226 MEM_DATA (14)

227 GND

228 MEM_DATA (15)

229 MEM_DATA (16)

230 MEM_DATA (17)

231 MEM_DATA (18)

232 MEM_DATA (19)

233 MEM_DATA (20)

234 MEM_DATA (21)

235 MEM_DATA (22)

236 MEM_DATA (23)

237 MEM_DATA (24)

238 Voo
239 GND

240 MEM_DATA (25)

241 MEM_DATA (26)

242 MEM_DATA (27)

243 MEM_DATA (28)

244 MEM_DATA (29)

245 MEM_DATA (30)

246 MEM_DATA (31)

247 MEM_ADDRO_B

248 MEM_ADDR (0)

211

The 650 Bridge Chip Set

Table B-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

249 MEM_ADDR (1)

250 MEM_ADDR (2)

251 MEM_ADDR (3)

252 MEM_ADDR (4)

253 MEM_ADDR (5)

254 VDD

255 GND

256 MEM_ADDR (6)

257 MEM_ADDR (7)

258 MEM_ADDR (8)

259 MEM_ADDR (9)

260 MEM_ADDR (10)

261 MEM_ADDR (11)

262 LE_MODE_SEL#

263 MEM_DATA (32)

264 MEM_DATA (33)

265 MEM_DATA (34)

266 VDD

267 GND

268 MEM_DATA (35)

269 MEM_DATA (36)

270 MEM_DATA (37)

271 MEM_DATA (38)

272 MEM_DATA (39)

273 GND

274 MEM_DATA (40)

275 MEM..:...DATA (41)

276 MEM_DATA (42)

277 MEM_DATA (43)

212

The 650 Bridge Chip Set

Table B-1. 653 Buffer Numeric Pin List (Continued)

Pint Signal Name

278 Voo
279 GND

280 MEM_DATA (44)

281 MEM_DATA (45)

282 MEM_DATA (46)

283 MEM_DATA (47)

284 MEM_DATA (48)

285 MEM_DATA (49)

286 Voo
287 GND

288 MEM_DATA (50)

289 MEM_DATA (51)

290 MEM_DATA (52)

291 MEM_DATA (53)

292 MEM_DATA (54)

293 MEM_DATA (55)

294 Voo
295 GND

296 MEM_DATA (56)

297 MEM_DATA (57)

298 MEM_DATA (58)

299 MEM_DATA (59)

300 MEM_DATA (60)

301 GND

302 MEM_DATA (61)

303 MEM_DATA (62)

304 MEM_DATA (63)

213

The 650 Bridge Chip Set

8.1.2 653 Buffer Alphabetic Pin Listing

Table 8-2. 653 Buffer Alphabetic Pin List

Signal Name Pin #

ADDRHI/DATAlO 75

All_ONES_SEl# 10

BURST_ClK# 73

CONTIG_IO 34

CPU_ADDR (0) 118

CPU_ADDR (1) 119

CPU_ADDR (2) 120

CPU_ADDR (3) 121

CPU_ADDR (4) 122

CPU_ADDR (5) 123

CPU_ADDR (6) 124

CPU_ADDR (7) 125

CPU_ADDR (8) 128

CPU_ADDR (9) 129

CPU_ADDR (10) 130

CPU_ADDR (11) 131

CPU_ADDR (12) 132

CPU_ADDR (13) 133

CPU_ADDR (14) 135

CPU_ADDR (15) 136

CPU_ADDR (16) 137

CPU_ADDR (17) 138

CPU_ADDR (18) 139

CPU_ADDR (19) 140

CPU_ADDR (20) 141

CPU_ADDR (21) 144

CPU_ADDR (22) 145

CPU_ADDR (23) 146

214

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

CPU_ADDR (24) 147

CPU_ADDR (25) 148

CPU_ADDR (26) 149

CPU_ADDR (27) 150

CPU_ADDR (28) 151

CPU_ADDR (29) 152

CPU_ADDR (30) 153

CPU_ADDR (31) 154

CPU_ADDR_OE# 159

CPU_ADDR_SEL# 158

CPU_DATA (0) 202

CPU_DATA (1) 201

CPU_DATA (2) 200

CPU_DATA (3) 199

CPU_DATA (4) 197

CPU_DATA (5) 196

CPU_DATA (6) 195

CPU_DATA (7) 194

CPU_DATA (8) 193

CPU_DATA (9) 189

CPU_DATA (10) 188

CPU_DATA (11) 187

CPU_DATA (12) 186

CPU_DATA (13) 185

CPU_DATA (14) 184

CPU_DATA (15) 183

CPU_DATA (16) 181

CPU:...-DATA (17) 180

CPU_DATA (18) 179

215

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

CPU_DATA (19) 178

CPU_DATA (20) 175

CPU_DATA (21) 174

CPU_DATA (22) 173

CPU_DATA (23) 172

CPU_DATA (24) 171

CPU_DATA (25) 170

CPU_DATA (26) 167

CPU_DATA (27) 166

CPU_DATA (28) 165

CPU_DATA (29) 164

CPU_DATA (30) 163

CPU_DATA (31) 162

CPU_DATA (32) 117

CPU~DATA (33) 116

CPU_DATA (34) 113

CPU_DATA (35) 112

CPU_DATA (36) 111

CPU_DATA (37) 110

CPU_DATA (38) 108 "

CPU_DATA (39) 107

CPU_DATA (40) 106

CPU_DATA (41) 105

CPU_DATA (42) 104

CPU_DATA (43) 101

CPU_DATA (44) 100

CPU_DATA (45) 99

CPU_DATA (46) 98

CPU_DATA (47) 97

216

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

CPU_DATA (48) 96

CPU_DATA (49) 93

CPU_DATA (50) 92

CPU_DATA (51) 91

CPU_DATA (52) 90

CPU_DATA (53) 89

CPU_DATA (54) 88

CPU_DATA (55) 85

CPU_DATA (56) 84

CPU_DATA (57) 83

CPU_DATA (58) 82

CPU_DATA (59) 81

CPU_DATA (60) 80

CPU_DATA (61) 79

CPU_DATA (62) 78

CPU_DATA (63) 77

CPU_DATA_OE# 192

CPU_DATA_SEl# 168

DRAMX9HI/X10l0 65

ERR_ADDR_SEl# 223

GND 9

GND 19

GND 25

GND 29

GND 39

GND 48

GND 53

GND 58

GND 69

217

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

GND 87

GND 95

GND 103

GND 109

GND 115

GND 127

GND 134

GND 143

GND 161

GND 169

GND 177

GND 182

GND 191

GND 198

GND 205

GND 213

GND 221

GNU 227

GND 239

GND 255

GND 267

GND 273

GND 279

GND 287

GND 295

GND 301

L_ERR_ADDR# 6
,

L_PCLDATA# 67

LE_MODE_SEL# 262

218

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pin#

MEM_ADDR (0) 248

MEM_ADDR (1) 249

MEM_ADDR (2) 250

MEM_ADDR (3) 251

MEM_ADDR (4) 252

MEM_ADDR (5) 253

MEM_ADDR (6) 256

MEM_ADDR (7) 257

MEM_ADDR (8) 258

MEM_ADDR (9) 259

MEM_ADDR (10) 260

MEM_ADDR (11) 261

MEM_ADDRO_B 247

MEM_DATA (0) 206

MEM_DATA (1) 207

MEM_DATA (2) 208

MEM_DATA (3) 209

MEM_DATA (4) 210

MEM_DATA (5) 211

MEM_DATA (6) 214

MEM_DATA (7) 215

MEM_DATA (8) 216

MEM_DATA (9) 217

MEM_DATA (10) 218

MEM_DATA (11) 219

MEM_DATA (12) 224

MEM_DATA (13) 225

MEM_DATA (14) 226

MEM_DATA (15) ·228

219

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

MEM_DATA (16) 229

MEM_DATA (17) 230

MEM_DATA (18) 231

MEM_DATA (19) 232

MEM_DATA (20) 233

MEM~DATA (21) 234

MEM_DATA (22) 235

MEM_DATA (23) 236

MEM_DATA (24) 237

MEM_DATA (25) 240

MEM_DATA (26) 241

MEM_DATA (27) 242

MEM_DATA (28) 243

MEM_DATA (29) 244

MEM_DATA (30) 245

MEM_DATA (31) 246

MEM_DATA (32) 263

MEM_DATA (33) 264

MEM_DATA (34) 265

MEM_DATA (35) 268

MEM_DATA (36) 269

MEM_DATA (37) 270

MEM_DATA (38) 271

MEM_DATA (39) 272

MEM_DATA (40) 274

MEM_DATA (41) 275

MEM_DATA (42) 276

MEM.:...DATA (43) 277

MEM_DATA (44) 280

220

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

MEM_DATA (45) 281

MEM_DATA (46) 282

MEM_DATA (47) 283

MEM_DATA (48) 284

MEM_DATA (49) 285

MEM_DATA (50) 288

MEM_DATA (51) 289

MEM_DATA (52) 290

MEM_DATA(53) 291

MEM_DATA (54) 292

MEM_DATA (55) 293

MEM_DATA (56) 296

MEM_DATA (57) 297

MEM_DATA(58) 298

MEM_DATA (59) 299

MEM_DATA (60) 300

MEM_DATA (61) 302

MEM_DATA (62) 303

MEM_DATA (63) 304

MEM_DATA_OE# 7

MEM_DATA_SEL# 72

MEM_PAGE_HIT# 64

MEM_PAR (0) 1

MEM_PAR (1) 2

MEM_PAR (2) 3

MEM_PAR (3) 4

MEM_PAR (4) 5

MEM_PAR (5) 12

MEM_PAR (6) 13

221

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

MEM_PAR (7) 14

MEM_PAR_GOOD 71

NO_TRANS 43

PCLAD (0) 16

PCLAD (1) 17

PCLAD (2) 18

PCLAD (3) 20

PCLAD (4) 21

PCLAD (5) 22

PCLAD (6) 23

PCLAD (7) 26

PCLAD (8) 27

PCLAD (9) 28

PCLAD (10) 30

PCLAD (11) 31

PCLAD (12) 33

PCLAD (13) 35

PCLAD (14) 36

PCI_AD (15) 37

PCLAD (16) 40

PCLAD (17) 41

PCLAD (18) 42

PCLAD (19) 44

PCLAD (20) 46

PCLAD (21) 47

PCLAD (22) 49

PCLAD (23) 50

PCLAD (24) 51

PCLAD (25) 54

222

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

PCLAD (26) 55 .

PCLAD (27) 56

PCLAD (28) 57

PCLAD (29) 59

PCLAD (30) 60

PCLAD (31) 61

PC LAD_PAR 63

PCLCLK 70

PCLOE# 11

PCLSEL# 74

RASH I/CASLO 203

REFRESH_SEL# 76

ROM_SEL# 66

TEST# 222

TSIZ (0) 157

TSIZ (1) 156

TSIZ (2) 155

Voo 8

Voo 15

Voo 24

Voo 32

Voo 38

Voo 45

Voo 52

Voo 62

Voo 68

Voo 86

Voo 94

Voo 102

223

The 650 Bridge Chip Set

Table 8-2. 653 Buffer Alphabetic Pin List (Continued)

Signal Name Pint

Voo 114

Voo 126

Voo 142

Voo 160

Voo 176

Voo 190

Voo 204

Voo 212

Voo 220

Voo 238

Voo 254

Voo 266

Voo 278

Voo 286

Voo 294

224

The 650 Bridge Chip Set

8.2 654 Controller Pin Lists

8.2.1 654 Controller Numeric Pin List

Table 8-3. 654 Controller Numeric Pin List

Pins Signal Description

001,010,015,020, Voltage: 3.3V
030,041,047,051,
060,070,081,090,
100,110,115,121,
130,140

019,099 RESERVED

011,021,031,040, Ground
050,061,071,
080,091 ,1 ° 1 , 111 ,
120,128,131,
141 ,143,151 ,16O

002 ALL_ON ES_SEL#

003 PCLGNT[2]#

004 PCLGNT[5]#

005 PCLGNT[4]#

006 PCLGNT[1]#

007 IO_BRDG_GNT#

008 BURST_CLK#

009 REFRESH_SEL#

012 NMLIRQ

013 NO_TRANS

014 ROM_SEL#

016 PC LSTOP#

017 PCLC/BE[1]#

018 PC LC/BE[O]#

022 CAS[O]#

023 CAS[1]#

024 CAS[2]#

025 CAS[3]#

225

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description

026 WE[1]#

027 PCLTRDY#

028 PCLDEVSEL#

029 PCLFRAME#

032 IO_BRDG_IRQ

033 PCLREQ[5]#

034 PCLREQ[4]#

035 PCLREQ[3]#

036 PCLREQ[2]#

037 SRESET_CPU#

038 PCLREQ[1]#

039 IO_BRDG_REQ#

042 MEM_PAR_ERR#

043 DPE_ERR#

044 TT_ERR#

045 IO_BRDG_HOLD#

046 MC_SETUP#

048 PCLC/BE[3]#

049 PCLC/BE[2]#

052 PCLIRDY#

053 PCLPAR

055 WE[O]#

056 CAS[7]#

057 CAS[6]#

058 CAS[5]#

059 CAS[4]#

062 RAS[7]#

063 RAS[6]#

226

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description

064 RAS[5]#

065 RAS[4]#

066 RAS[3]#

067 RAS[2]#

068 RAS[1]#

069 RAS[O]#

072 ROM_WE#

073 ROM_OE#

074 ROM_CS#

075 RI#

076 ERR_ADDR_SEL#

077 MASK_TEA#

078 RESERVED

079 ISA_MASTER#

082 L2_PRESENT#

083 INT_CPU#

084 BE_PAR_EN#

085 LE_PAR_EN#.

086 RESET#

087 REFRESH_REQ#

088 PCLGNT[3]#

089 SRESET_REQ#

092 LE_MODE_SEL#

093 CPU_ADDR[29]

094 CPU_ADDR[30]

095 CPU_ADDR[8]

0,96 CPU_ADDR[7]

097 CPU_ADOR[6]

227

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description

098 CPU_ADDR[5]

102 CPU~DDR[4]

103 CPU_ADDR[3]

104 CPU_ADDR[2]

105 CPU_ADDR[1]

106 CPU_ADDR[O]

107 CPU_ADDR[19]

108 CPU_ADDR[31]

109 L2_CACHE_REQ#

112 ARTRY#

113 AACK#

114 L2_CACHE_GNT#

116 TSIZ[2]

117 DI#

118 TSIZ[1]

119 TSIZ[O]

122 TT[1]

123 TT[3]

124 L2_CLAIM#

125 XATS#

126 CPU_REQ#

127 TBST#

129 PCLCLK

132 TS#

133 CPU_GNT#

134 TA#

135 TEA#

136 TEST#

228

The 650 Bridge Chip Set

Table 8-3. 654 Controller Numeric Pin List (Continued)

Pins Signal Description

137 TI[O]
138 TT[2]

139 DPE#

142 CPU_ClK

144 CPU_ADDR_OE#

145 CPU_DATA_OE#

146 l_PCLDATA#

147 ADDRHI/DATAlO

148 PCLOE#

149 MEM_PAGE_HIT#

150 lE_MODE_REQ

152 PC LAD_PAR

153 MEM_DATA_SEl#

154 MEM_DATA_OE#

155 MEM_PAR_GOOD

156 RASHI/CASlO

157 PCLSEl#

158 CPU_DATA_SEl#

159 CPU_ADDR_SEl#

229

The 650 Bridge Chip Set

8.2.2 654 Controller Alphabetic Pin List

Table 8-4. 654 Controller Alphabetic Pin List

Signal Description Pins

AACK# 113

ADDRHI/DATALO 147

ALL_ONES_SEL# 002

ARTRY# 112

BE_PAR_EN# 084

BURST_CLK# 008

CAS[O]# 022

CAS[1]# 023

CAS[2]# 024

CAS[3]# 025

CAS[4]# 059

CAS[5]# 058

CAS[6]# 057

CAS[7]# 056

CPU_ADDR[O] 106

CPU_ADDR[1] 105

CPU_ADDR[2] 104

CPU_ADDR[3] 103

CPU_ADDR[4] .102

CPU_ADDR[5] 098

CPU_ADDR[6] 097

CPU_ADDR[7] 096

CPU_AD~R[8] 095

CPU_ADDR[19] 107

CPU_ADDR[29] 093

CPU_ADDR[30] 094

CPU_ADDR[31] 108

230

The 650 Bridge Chip Set

Table 8-4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins

CPU_ADDR_OE# 144

CPU_ADDR_SEL# 159

CPU_CLK 142

CPU_DATA_OE# 145

CPU_DATA_SEL# 158

CPU_GNT# 133

CPU_REQ# 126

DI# 117

DPE# 139

DPE_ERR# 043

ERR_ADDR_SEL# 076

Ground 011,021,031,040,050,
054,061,071,080,091,
101,111,120,128,131,
141 ,143,151 ,16O

INT_CPU# 083

IO_BRDG_GNT# 007

IO_BRDG_HOLD# '045

IO_BRDG_IRQ 03'2

IO_BRDG_REQ# 039

ISA_MASTER# 079

L_PCLDATA# 146

L2_CACHE_GNT# 114

L2_CACHE_REQ# 109

L2_CLAIM# 124

L2_PRESENT# 082

LE_MODE_REQ 150

LE_MODE_SEL# 092

LE_PAR_EN# 085

231

The 650 Bridge Chip Set

Table 8-4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins

MASK_TEA# 077

MC_SETUP# 046

MEM_DATA_OE# 154

MEM_DATA_SEL# 153

MEM_PAGE_HIT# 149

MEM_PAR_ERR# 042

MEM_PAR_GOOD 155

NMLIRQ 012

NO_TRANS 013

PC LAD_PAR 152

PCLC/BE[O]# 018

PCLC/BE[1]# 017

PCLC/BE[2]# 049

PC LC/BE[3]# 048

PCLCLK 129

PCLDEVSEL# 028

PCLFRAME# 029

PCLGNT[1]# 006

PCLGNT[2]# 003

PCLGNT[3]# 088

PCLGNT[4]# 005

PCLGNT[5]# 004

PCLIRDY# 052

PCLOE# 148

PCLPAR 053

PCLREQ[1]# 038

PCLREQ[2]# 036

PCLREQ[3]# 035

232

The 650 Bridge Chip Set

Table 8-4. 654 Controller Alphabetic Pin List (Continued)

Signal Description Pins

PCLREQ[4]# 034

PCLREQ[5]# 033

PCLSEL# 157

PC LSTOP# 016

PCLTRDY# 027

RAS[O]# 069

RAS[1]# 068

RAS[2]# 067

RAS[3]# 066

RAS[4]# 065

RAS[5]# 064

RAS[6]# 063

RAS[7]# 062

RASHIICASLO 156

REFRESH_REQ# 087

REFRESH_SEL# 009

RESERVED 019,099

RESERVED 078

RESET# 086

RI# 075

ROM_CS# 074

ROM_OE# 073

ROM_SEL# 014

ROM_WE# 072 .

SRESET_CPU# 037

SRESET_REQ# 089

TA# 134

TBST# 127

233

The 650 Bridge Chip Set

Table 8-4. 654 Controller Alphabetic Pin List (Co~tinued)

Signal Description Pins

TEA# 135

TEST# 136

TS# 132

TSIZ[O] 119

TSIZ[1] 118

TSIZ[2] 116

TT[O] 137

TT[1] 122

TT[2] 138

TT[3] 123

TT_ERR# 044

Voltage: 3.3V 001,010,015,020,030,
041,047,051,054,060,
070,081,090,100,110,
115,121,130,140

WE[O]# 055

WE[1]# 026

XATS# 125

234

Section 9
650 Bridge Mechanical Drawings

9.1 653 Buffer Quad Flat Pack Component Detail

QUAD FLAT PACK 304 LEADED (0.5 mm PITCH)
ICOMPONENT DETAIL I

11\
• 0 o • ~

O'

~ CENTROID

I
-e-

I

0.16 _II" .006

Eij~
3.8 I • • II ~. 25 MIN
.150 .010

DETAIL A

1

I
\

DETAIL A

~ Lf.. 5MAXI •• ,
.177

Figure 9-1.653 Buffer Quad Flat Pack Component Detail

235

The 650 Bridge Chip Set

9.2 653 Buffer Quad Flat Pack Component Footprint

QUAD FLAT PACK 30LJ. LEADED (0.5 mm PITCH)
ICOMPONENT FOOTPRINT I

FRONT SIDE
~152 77 1
~ e-

176
153 I 0.2794-• • .011

(PAD)
1.78

I 18.89
.070 I .74-4-
(PAD)

0'\ 0 M LI\ \0 (\I + co ,....
M "': ,.... co . ~ ~ - ,...
[J M -

0'\

~i 0'\ co ~

F~
U\ 0 co ;;t U\ ~2X) 1.07 U\ ~~a: N co .04-2 - . 0

= . -0« TOOLING HOLE C") • 1Jj
NON-PLATED LL..J

228 1
U

~

-~-1 229

® CENTROID I 21.59
1.02 I .850 .04-0

SMT SPACING (PITCH) FROM PAD CENTERLINE
• SPACING IS TO NEAREST 0.013 mm (.0005 fn)

PAD SPACING[IJ PAD SPACING[IJ PAD SPACING[IJ PAD SPACING[IJ
1 0.000 (.0000) 22 10.503 (.4-135) 4-3 21.006 (.8270) 64- 31.4-96 (1.24-00)
2 0.4-95 (.0195) 23 10.998 (.4-330) 4-4- 21.501 (.84-65) 65 32.004- (1 .2600)
3 1.003 (.0395) 24- 11.506 (.4-530) 4-5 21.996 (.8660) 66 32.4-99 (1.2795)
4- 1.4-98 (.0590) 25 12.002 (.4-725) 4-6 22.504- (.8860) 67 32.995 (1.2990)
5 1 .994- (.0785) 26 12.4-97 (.4-920) 4-7 23.000 (.9055) 68 33.503 (1.3190)
6 2.502 (.0985) 27 13.005 (.5120) 4-8 23.4-95 (.9250) 69 33.998 (1.3385)
7 2.997 (.1190) 28 13.500 (.5315) 4-9 24-.003 (.94-50) 70 34-.506 (1.3585)
8 3.505 (.1380) 29 13.995 (.5510) 50 24-.4-98 (.964-5) 71 35.001 (1.3780)
9 4-.001 (.1575) 30 14-.503 (.5710) 51 25.006 (.984-5) 72 35.4-97 (1.3975)
10 4-.4-96 (.1770) 31 14-.999 (.5905) 52 25.502 (1 .004-0) 73 36.005 (1.4-175)
11 5.004- (.1970) 32 15.4-94- (.6100) 53 25.997 (1.0235) 74- 36.500 (1 .4-370)
12 5.4-99 (.2165) 33 16.002 (.6300) 54- 26.505 (1.04-35) 75 36.995 (1.4-565)
13 5.994- (.2360) 34- 16.4-97 (.64-95) 55 27.000 (1.0630) 76 37.503 (1.4-765)
14- 6.502 (.2560) 35 17.005 (.6695) 56 27.4-96 (1.0825)
15 6.998 (.2755) 36 17.501 (.6890) 57 28.004- (1.1025)
16 7.506 (.2955) 37 17.996 (.7085) 58 28.4-99 (1 •. 1220)
17 8.001 (.3150) 38 18.504- (.7285) 59 28.994- (1.14-15)
18 8.4-96 (.334-5) 39 18.999 (.74-80) 60 29.502 (1.1615)
19 9.004- (.354-5) 4-0 19.4-95 (.7675) 61 29.997 (1.1810)
20 9.4-50 (.374-0) 4-1 20.003 (.7875) 62 30.505 (1.2010)
21 9.995 (.3935) 4-2 20.4-98 (.8070) 63 31.000 (1.2205)

~~~ 

Figure 9-2. 653 Buffer Quad Flat Pack Component Footprint 

236 



The 650 Bridge Chip Set 

9.3 654 Controller 160-Pin Flat Pack Component Detail 

Lf\ 0 
C\J 

0 
0 

+1 +1 

(]'I co 
~ C\J 

C\J 

;;; ~ 

Lf\ C\J 
o 0 

o 
o 
+1 +1 

Lf\ ..0 
o o 0 

SMALL PITCH FLAT PACKS 
160 PIN (0065 (00256) PITCH) 

PLASTIC AND CERAMIC 
0.65 PITCH II 0.3 ± 0.1 
.0256 

:z: 
J--i 

::::E 

Lf\ 0 
C\J 

o 
o 

• 

0.8 ± 0.15 ~ 11-= .032 ± .006 

Figure 9-3. 160-Pin Flat Pack 

237 

co o· 
0 

C\J 
+1 

0 
C\J 

+1 0 
~ 

co 
C\J ~ 



The 650 Bridge Chip Set 

9.4 654 Controller 160-Pin Flat Pack Component Footprint 

SMALL PITCH ( FoP 0 ) COMPONENT 
PAD LOCATIONS (Oo65mm PITCH) 

FOOTPRINT IS FOR 160 LEAD FLAT PACK (SQUARE) 
2.032 I FRONT SIDE 1 E 3

.
05 

.080 I ;.1 
.120 

(PAD) 

~~ ~~~~~~m~mm~~~~~~~~~~~~~~~~~m~mmm~ -t~~~Ci~~A 
§ II 0.41 § -- ¢ ~6~~ 
c:::::J =- E c:::::J 

B .016 B 
c:::::J (PAD) c:::::J 
c:::::J c:::::J 
c:::::J c:::::J 
c:::::J c:::::J 
c:::::J c:::::J 
c:::::J c:::::J 
c:::::J c:::::J 

...0 0 
c:::::J c:::::J 
c:::::J c:::::J 

C\J r- c:::::J c:::::J 
C\J c:::::J c:::::J 

...0 c:::::J ' c:::::J C\J c:::::J c:::::J Lf\ -::t C"l ~ c:::::J 0 c:::::J r--c:::::J c:::::J 
,-.. c:::::J c:::::J 0 

c:::::J c:::::J Lf\ X c:::::J c:::::J C\J ~ C\J c:::::J c:::::J 
~ c:::::J c:::::J 

c:::::J co c:::::J 
c:::::J r-- 0 c:::::J 
c:::::J c:::::J 
c:::::J co r-- 12.878 c:::::J 
c:::::J 0 c:::::J 
c:::::J C\J Lf\ .5070 

c:::::J 
c:::::J 

~ 
c:::::J 

c:::::J c:::::J 
c:::::J c:::::J 
c:::::J c:::::J 
c:::::J §~2 c:::::J 
c:::::J 

i-~~~~~~m~mm~~~~~~~~~m~~m~~~~~~~~~~~~ ~~ 
SMT PAD SPACING (PITCH) FROM PAD CENTER LINE 

* SPACING IS TO NEAREST 0.013 mm (.0005 in) 
PAD # SPACING PAD # SPACING PAD # SPACING 

1 0.000 ( .0000) 15 9.106 ( .3585) 29 18.199 (.7165) 
2 0.6t+8 ( .0255) 16 9.75t+ ( • 38t+0) 30 18.8t+7 ( .. 7t+20) 
3 1.295 ( .0510) 17 10.401 ( . t+095) 31 19.t+9t+ (.7675) 
4 1.956 ( .0770) 18 11.0t+9 ( . t+350) 32 20.155 (.7935) 
5 2.603 (.1025) 19 11.697 ( . t+605) 33 20.803 ( .8190) 
6 3.251 (.1280) 20 12.3t+t+ ( • t+860) 34 21.45 ( • 8t+t+5) 
7 3.899 (.1535) 21 13.005 ( .5120) 35 22.098 ( .8700) 
8 4.5t+7 (.1790) 22 13.652 ( .5375) 36 22.7t+6 ( .8955) 
9 5.19t+ ( .20t+5) 23 1t+.3 ( .5630) 37 23.t+06 ( .9215) 

10 5.8t+2 ( .2300) 2t+ 1t+.9t+8 ( .5885) 38 2t+.05t+ (.9t+70) 
11 6.502 ( .2560) 25 15.596 ( .61 t+0) 39 24.701 (.9725) 
12 7.15 ( .2815) 26 16.256 ( • 6t+00) t+o 25.3t+9 ( .9980) 
13 7.798 ( .3070) 27 16.90t+ ( .6655) 
14 8.t+t+5 ( .3325) 28 17.551 ( .6910) 

; 

REMAINING PADS (3 SIDES) ARE A REPLICATION OF THIS SPACING 
OCT90 ® CENTROID QFP160A 

Figure 9-4. 160-Pin Flat Pack Pad Locations 

238 



Appendix A 
Initialization and Setup Requirements 

A.1 Processor Initialization 
The 601 processor comes up with the cache enabled and bus error checking disabled. The 603 
and 604 processors come up with the cache disabled. 

A.1.1 Cache Setup 
The L 1 and L2 caches must be managed in such a way as to purge any lines that are cached 
during the early part of the boot process so that cast-outs of these lines cannot occur afterward. 

All memory pages 2G to 4G must be marked as non-cacheable. 

The high priority snoop request function must be enabled (set to 1) by software before running any 
code that could cause L1.orL2cache hits on snoops. This bit is HIDO-bit31. The 60X CPU always 
asserts the HP _SNP _REO pin, and it depends on the high priority snoop push to function in order 
to prevent potentiallivelocks or deadlocks when 60X to PCI cycles are retried by the target. 

The L 1 cache should be managed in such a way that no cast-outs with the ROM addresses can 
occur. (Instructions and possibly data are cached from when the 601 first turns on until the L 1 is 
disabled.) 

A.1.2 PI.O Setup 
The segment register T bit, bit 0, defaults to 0 which is the normal storage access mode. It must be 
left in this state for the hardware to function. Direct store (PIO) segments are not supported. 

A.1.3 ARTRY# Precharge 
The bit that controls ARTRY# negation, HIDO(29}, should be set to 0 to enable the precharge of 
ARTRY# for example system configurations which do not have a device inserted at the upgrade 
socket or for configurations using the IBM 256/512K write through L2 cache card. 

It may be ,necessary set HIDO(29} to 1 to disable the precharge of ARTRY# for example system 
configurations having a device such as a write-back L2 cache which drives the ARTRY# line. See 
the specifications for the device inserted at the upgrade socketfor details. The bit should be cor­
rectly set prior to running any cycles which can be snooped. 

A.1.4 Checkstop Enable 
HIDO bit 0, Master Checkstop Enable, defaults to 1 which is the enabled state. It should be left in 
this state so that checkstops can occur. 

239 



The 650 Bridge Chip Set 

A.1.5 Bus Error Checks 
All error checking is implemented externally using the TEA pin, so the bus error checks should 
always be left disabled. These error checks are controlled by bits 21,22, and 23 of register HIDO. 
MSR bit 19, the Machine Check Enable bit, defaults to 1 which is the enabled state. It should be left 
in this state so that the TEA error checking mechanism can function. 

A.2 Initialization of the IBM 82650 Bridge Chip Set 
Before DRAM memory operations can begin, software must: 

• Read the SIMM presence detect andSIMM type registers. 
• Set up and check the registers in the memory controller. 

The memory controller SIMM programming register, port 0820 in the example system, is used to 
access the 654 Controller internal registers to program the starting address of each SIMM and the 
top of memory. The Memory Controller Timing register, port 0821 in the example system, is used 
to access the 654 Controller system setup register. Settings for the system setup register are ex­
plained in Section 5.2.2. 

A.3 I/O Bridge Setup 
Program the timer in the Intel SID register which controls ISA refresh timing. This is counter 1 in 
the SID timer section; it should be programmed to operate in Mode 2 with an interval of approxi­
mately 15 usec. This timer controls the refresh interval. 

Make sure 200 usec has elaps~d since starting the timer so that sufficient refresh cycles have 
occurred to properly start the memory. This will be hidden if approximately 120 ROM accesses 
occur after the timer is started and before the memory initialization starts. 

Initialize all of m,emory so that all parity bits are properly set. The processor may cache unneces­
sary data, therefore all of memory must be initialized. 

Note: The 650 Bridge does not require reconfiguration when port 4Dh in the SID chip is utilized to 
reset the native liD and the ISA slots. 

A.4 PCI Memory Address Assignment 
Software should not map any PCI memory at PCI addresses which ISA masters can create-ad­
dresses from 0 to 16M. Contention will occur between a device with PCI memory mapped at that 
address and the ISA master cycles. 

A.5 PCI Configuration Scan 
The example system allows a software scan to determine the configuration of PCI devices. This is 
because the system returns 64 one-bits rather than an error when no PCI device responds to ini­
tialization cycles. Software can read each possible PCI device 10 to determine devices present. 

**WARNING** 
Using some addresses can cause bus contention on the example system, because multiple PCI 
slots could be selected. For example, using any 60X address with both CPU_ADDR[19] and 
CPU_ADDR[20] = 1 causes both the SID and SCSI to be selected, possibly resulting in damage. 

240 



Appendix B 
Example Implementation 

This section contains schematics for an example system. The schematics illustrate the imple­
mentation of a 650 Bridge chip set with a PowerPC 601 microprocessor. The example system 
design includes provision for an L2 cache or an upgrade microprocessor. Eight SIMM slots allow 
up to 256M of system memory to be installed, in 8M or 32M sizes and in any configuration in the 
eight slots. 

The example system uses an Intel I/O bridge chip for ISA bus support. The liD bridge also pro­
vides refresh timing arid an X-bus interface for various system support functions. 

241 



~ 

r-

N 

~ 

I-

IBM MICROELECTRONICS * 

t() COPYRIGHT IBM CORPORATION 1994 
~ ALL RIGHTS RESERUED 

* TRADE MARKS OF IBM CORP. 

I 

I I . 4 I 

POWER PC 601 
PROCESSOR 
COMPLEX 

THIS SCHEMATIC IS A FRAGMENT OF A TYPICAL SYSTEM SCHEMATIC. ITS' PURPOSE IS TO ILLUSTRATE 

HOW TO CONNECT THE 650 CHIP SET IN A TYPICAL APPLICATION. THERE ARE A LARGE NUMBER OF 

WIRES THAT HAUE NO SOURCES OR LOADS WITHIN THESE PAGES BECAUSE THEY CONNECT TO UNSHOWN 

PARTS OF THE DESIGN. ONLY ENOUGH IS SHOWN TO ILLUSTRATE THE BASIC STRUCTURE OF A SYSTEM. 

THIS DOCUMENT CONTAINS PRELIMItmY INFORMATION AND IS SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM ASSUMES NO 

RESPONSIBILITY OF LIABILITY fOR ANY USE Of THE INfORMATION CONTAIt-ED HEREIN. NOTHING IN THIS DOCUMENT SHALL 

OPERATE AS AN EXPRESS OR IMPLIED LICENSE OR INDEMNITY UNDER THE INTELLECTUfl.. PROPERTY RIGHTS OF IBM OR THIRD 

PARTIES. NO WARRANTY OR GUARANTEE IS GI\.£N CONCERNING ANY INfORMATION CONTAINED IN THIS DOCUMENT. 

I I I I 

I 

* 

IBM 
IUf./HW1NG 94 

06/1/ 

1 

I 

ISIZEIREUISION I DRWNG PART NUMBER 

B A 

SHEET 1 OF22 

1 

r-

t-

I-

-I =r 
CD 
0> 
01 
o 
~ a: co 
CD 
() 
=r -a. 
U> 
~ 



8 I 7 6 5 I 4 

5Y5TEM 5TATU5 

ERROR 5TATUS 

D 

ML5ET UP 

CA5 

I--
<u5ED FOR SET UP) 

I '" I RE:U~TOR PRE5ENCE/5IZE , 

C 

Jt 
CONTROL 

N 

~ 

60X_CONTROL 
IBM 601 

I-- I "=,,c<~ IBM 82654 

P 12 f---- per 
PP 10-12 PP 8-9 

BUS 

1 ~ 
B ADDR/DATA 

DATA 

-.l -.l IBM 82653 MEM 0 0 a: a: 
ADDRE55 ADDRE55 l- I- v Z z PP 6.7.9 f----l--0 0 
~ u U 

I 
(\J 

~ 
x 

PARITY 5IMM t-IS) -.l l--ID -f-
~ 5IMM t-f--

I 
L2 

J 
IrRITY;f 5IMM t-l--UPGRADE/L2 50CKET 

PP 15-16 
~ 5IMM .t--

~=~ ,--------,-- 129F~01 A EL-I 
ROM/FLA5H 

CLOCK5 P 5 
P 21 

PP 13-14 

~ 

ADJU5T PARITY 

PER ENDIAN MODE UP TO EIGHT 5IMMS 

PP 3-4 

8 I 7 6 I 5 I 4 

. I 

~ 

IBM 

IO/D 

INTF 

EPLD ~ 

~ 
~ 

XCVR 

I" 

P20 

'-----

~~ 

BUFFER 

P 5 

'---

82378IB 

5IO 

PP 17-19 

T 

3 2 I 1 

5Y5TEM CONTROL 

XD-BUS 

XCVR 

CONTROL 
P 19 

ISA BUS 
DATA , 
CONTROL 

ADDRE55 

LE MODE. ETC TO 654 

IBM BLOCk DIAGRAM 
DRAWING 5IZEIREVI5ION DRWNG PPRT NUMBER 
--- 06/01194 

B A 
SHEET 2 OF 22 

3 2 I 1 

D 

l-

C 

-

B 

l-

A 

--i 
~ 
CD 
0> 
01 o 
~ a: co 
CD 
() 
~ 

-0" 
00 
~ 



N 
~ 
~ 

+5V 

T 
~wl~H~I~I~I~I~lrnlrnl~I~I~I~I~1 

vee 

1 OF 2 
000 000 2 
001 001 3 

002 002 4 
003 003 5 
004 004 7 
005 005 8 
006 006 9 
007 007 10 

POB POB 11 
009 009 13 

0010 0010 14 

0011 0011 15 

0012 0012 16 

0013 D013 17 

0014 0014 19 
0015 0015 20 

0016 0016 21 

P017 8 POl? 22 
001B 001B 52 

0019 0019 53 

0020 0020 55 
0021 0021 56 
0022 

B 
0022 57 

0023 0023 58 
0024 0024 60 

D025 0025 61 
P026 Y P026 62 
0027 0027 63 

002B 002B 65 

0029 0029 66 
0030 T 0030 67 

0031 0031 68 

0032 0032 70 

0033 
E 

0033 71 
0034 0034 72 
P035 P035 73 

D036 0036 82 

0037 0037 83 

D03B 003B 84 

0039 
5 

0039 85 

0040 0040 87 

0041 0041 B8 
0042 0042 B9 

0043 
I 

0043 90 
P044 P044 91 

0045 0045 93 

0046 0046 94 
0047 

M 
0047 95 

D04B 004B 96 

D049 0049 97 

D050 0050 99 

0051 
M 

0051 100 

0052 0052 101 
P053 P053 102 

0054 0054 132 

0055 0055 133 

0056 OQS6 135 

0057 0057 136 

005B 005B 137 

0059 0059 138 

0060 0060 140 

0061 0061 141 

P062 P062 142 

0063 0063 143 

0064 0Q64 145 

0065 0Q65 146 

0066 0Q66 147 

0067 0067 148 

006B D06B 150 
OQ59 OQ59 151 

D070 0070 152 

P071 P07l 153 

VSS 

~~1~9~~~~~9~1~~~~1~ 
-1..... -GNO 

+5V 

T 
~lwl~I~I~I~I~I~I~lmlrnl~I~I~I~I~1 

vee 

1 OF 2 
000 000 2 
001 001 3 

002 002 4 
003 003 5 
004 004 7 
005 005 8 
006 006 9· 
007 007 10 
POB POB 11 
009 009 13 

0010 0010 14 
0011 0011 15 
0012 0012 16 
0013 0013 17 
0014 0014 19 
0015 0015 20 

0016 0016 21 
P017 8 POl? 22 
001B 001B 52 
0019 0019 53 
0020 0020 55 
0021 0021 56 
0022 

B 
0022 57 

0023 0023 58 
0024 OQ24 60 
0025 OQ25 61 
P026 Y P026 62 
0027 0027 63 
002B 002B 65 
0029 0029 66 
0030 T OQ30 67 
0031 0031 68 
0032 0032 70 
0033 

E 
0033 71 

0034 0034 72 
P035 P035 73 
0036 0036 82 
0037 0037 83 
003B OO3B 84 

0039 
5 

0039 85 
0040 0040 87 
0041 0041 B8 
0042 0042 B9 

0043 
I 

0043 90 
P044 P044 91 
0045 0045 93 
0046 0046 94 
0047 

M 
OQ47 95 

004B 004B 96 
0049 0049 97 
0050 OQ50 99 
0051 

M 
0051 100 

0052 0052 101 
P053 PQ53 102 
0054 0054 132 
0055 0055 133 
0056 0056 135 

0057 0057 136 
005B 005B 137 
0059 0059 138 
0Q60 DQ60 140 
0061 0Q61 141 
P062 PQ62 142 
0Q63 0063 143 
OQ64 0Q64 145 
0065 0Q65 146 
0066 0066 147 
0067 0067 148 
006B OO6B 150 
0059 D059 151 
0070 0070 152 
P07l P07l 153 

VSS 

~ ~1991~rnl~~I~I~~~!~~!~1 
.....J..... -

GNO 

+5V 

T 
~~ 

vee 

1 OF 2 
000 000 2 
001 001 3 
002 002 4 
003 003 5 
004 004 7 
005 005 8 
006 006 9 
007 007 10 
POB POB 11 
009 009 13 

0010 OOW 14 
0011 0011 15 
0012 0012 16 
0013 0013 17 

0014 0014 19 
0015 0015 20 

0016 0016 21 
P017 8 PQ17 22 
001B D01B 52 
0019 0019 53 
0020 0020 55 
0021 0021 56 
0022 

B 
0022 57 

0023 0023 58 
OQ24 OQ24 60 
0025 0025 61 
P026 Y P026 62 
0027 D027 63 
002B OO2B 65 
0029 0029 66 
0030 T 0030 67 
0031 0031 68 
0032 0032 70 
0033 

E 
0033 71 

0034 0034 72 
P035 P035 73 
0036 0036 82 
0037 0037 83 
003B 003B 84 
0039 

5 
0039 85 

0040 0040 87 
0041 0041 B8 
0042 0042 B9 
0043 

I 
0043 90 

P044 P044 91 
0045 0045 93 
0046 0046 94 
0047 

M 
0047 95 

004B 004B 96 
0049 0049 97 
0050 D050 99 
0051 

M 
0051 100 

0052 0052 101 
P053 PQ53 102 
0054 0054 132 
0055 0055 133 
0056 0056 135 
0057 0057 136 
005B 005B 137 
0059 0059 138 
0060 0060 140 
0061 0061 141 
P062 P062 142 
0Q63 0063 143 
0Q64 0064 145 
0065 0065 146 
0066 0066 147 
0067 0067 148 
OQ6B 006B 150 
0059 D059 151 
0070 0070 152 
P071 P071 153 

VSS 

~!9m!~!~~~~!~!~!~!~!~~!~1 
7 

GNO 

+5V 

T 
~~ 

vee 

1 OF 2 
000 000 2 
001 001 3 
002 002 4 
003 003 5 
004 004 7 
005 005 8 
D06 006 9 
007 007 10 
POB POB 11 
009 009 13 

0010 0010 14 
0011 0011 15 
0012 0012 16 
0013 0013 17 

0014 0014 19 
0015 0015 20 
0016 0016 21 
POl? 8 P017 22 
001B 001B 52 
0019 0019 53 
D020 0020 55 
0021 0021 56 
0022 

B 
0022 57 

D023 0023 58 
0024 0024 60 
0025 0025 61 
P026 Y P026 62 
0027 0027 63 
002B OO2B 65 
0029 0029 66 
0030 T 0030 67 
0031 0031 68 
0032 0032 70 
0033 

E 
0033 71 

0034 0034 72 
P035 P035 73 
0036 0036 82 
0037 0037 83 
OO3B D03B 84 
0039 

5 
0039 85 

0040 0040 87 
0041 0041 B8 
0042 0042 B9 
0043 

I 
0043 90 

P044 P044 91 
OQ45 0045 93 
0046 0046 94 
0047 

M 
0047 95 

OO4B 004B 96 
0049 0049 97 
0050 0050 99 
0051 

M 
0051 100 

0052 0052 101 
P053 P053 102 
D054 0054 132 
0055 0055 133 
0056 0056 135 
0057 0057 136 
D05B D05B 137 
D059 0059 138 
0060 DQ60 140 
0061 0061 141 
PQ62 PQ62 142 
0063 0063 143 
0064 D064 145 
D065 D065 146 
0066 0066 147 
0067 0067 148 
006B 006B 150 
D059 D059 151 
0070 0070 152 
P07l P071 153 

vss 

~~I~!9~\m!rn!~~fi~~~i~1 
......I..:.: -

GNO 

" 1 --, 
3 
4 
5 
6 
7 

0 
8 
9 
10 
11 
12 
13 
14 
15 

1 
16 
17 
18 
19 
20 
21 
22 
23 

2 
24 

25-
26. 
27 
28. 
29-
30. 
31 

3 

33 
34 
35 
36 
37. 
38 
39 

4 

41 
42 
43 
44 
4S 

41;. 
47 

5 
48. 
49 
50. 
51 
52 

~. 
55. 

6 

57 
58 
59 
60 
61 

62. 
63 

7 

Mn( "" . '" -{]I) 
(MEMORY OATA) 

Mnp(7 . 'n -{]I) 

(MEMORY PARITY) 

IBM MEMORY SIMMS 
~ 

SIZEIREVISION ORWNG PART NUMBER 

06/01/94 B A 

SHEET 3 OF 22 

-I =r 
CD 
0) 
01 o 
gJ 
a: 

<C 
CD 
() 
=r 

-5" 
(J) 

~ 



N 

"'" tit 

f-

f-

t-

I 

9C2>~ 

~ 
9C2>~ 

tIIT_d .. -,J~lL* 

(MEMORY 
ADDRESS) 

(CAS) 

6IJ8>~ 

6I18>~ 

9C2>~ 

9<:2> []!D MWEl* 

(WRITE) 

(RAS) 

122§B0 
27, WE0 
48 WE2 .-----

~ pm 
~ = 
m = 
~ ~ 
77 ~ 

= ~ w ~ 

~ -"33 A0 
1 113 Al 

34 A2 
3114 A3 
4 35 A4 
5115 AS 
6 36 A6 
7116 A7 
8 3? AB 
9117 A9 

1" 36 Al0 
11 118 All 

T 

1 I 

CE0 
CEl 
CE2 
CE3 
CE4 
CES 
CE6 
CE7 

2 OF 2 
28 CE0 CE0 

CEl 
CE2 
CE3 
CE4 
CES 
CE6 
CE7 

2 OF 2 
28 CE0 

8 

108 CEl 
29 CE2 

109 CE3 
46 CE4 

126 CES 
47 CE6 

127 CE7 

B 
RFUl 24 
RFU2 25 
RFU3 39 

Y 
RFU4 1"4 
RFUS 105 
RFU6 1"7 

T 
RFU7 11" 
RFUB 111 
RFU9 119 

RFUl0 41 

E RFUll 42 
RFUl2 5el crlt822 B0 

27 WE0 
48 WE2 RFU13 51 

RFUl4 121 

~: gg~ 
S 

RFUlS 124 
RFUl6 125 

PE 128 

I ~~~t~ : 1 

~
s6- PD4 

3 77 PDS 

~: ~g~ 
58_ PDB 

A0 33 A0 

M -=-
M GND 

Al 13 Al 
A2 34 A2 
A3 14 A3 
A4 35 A4 
AS 15 AS 
A6 36 A6 
A7 16 A7 
AB 37 AB 
A9 17 A9 
Al0 36 Al0 
All 18 All 

8 

108 CEl 
29 CE2 

109 CE3 
46 CE4 

126 CES 
47 CE6 

127 CE7 

0E0 
OE2 

B 
RFUl 24 
RFU2 25 
RFU3 39 

Y 
RFU4 1"4 
RFUS 105 
RFU6 1"7 

T 
RFU7 11" 
RFUB III 
RFU9 119 

RFUl0 41 

E RFUll 42 
RFUl2 5el ~

22 B0 
27 WE0 
48 WE2 RFUl3 51 

RFUl4 121 

~= ~g~ 

1 ~7~_ PD3 4 56 PD4 
5 77 PDS 

~= ~g~ 
58_ PDB 

A0 33 A0 

S 
RFUlS 124 
RFUl6 125 

PE 128 

I 
RFUlB 1 
RFUl9 1 1 

M 
M GND 

Al 13 Al 
A2 34 A2 
A3 14 A3 
A4 35 A4 
AS 15 AS 
A6 36 A6 
A7 16 A7 
AB 3? AB 
A9 17 A9 
Al0 36 Al0 
All 18 All 

I 1 

8 

M 

I 

f>l f>l. ~t ~ ..... ..... 

GND 

~
22 B0 
27 WE0 
48 WE2 

~= gg~ 
PI

~- PD4 
7 77 PDS 

~= ~g~ 
58_ PDB 

A0 33 A0 
Al 13 Al 
A2 34 A2 
A3 14 A3 
A4 35 A4 
AS 15 AS 
A6 36 A6 
A7 16 A7 
AB 3? AB 
A9 17 A9 
Al0 36 Al0 
All 18 All 

8 

B 
Y 
T 

E 

S 
I 
M 
M 

I 

~ 

~~ 

CE0 
CEl 
CE2 
CE3 
CE4 
CES 
CE6 
CE7 

+SV 

RFUI 24 
RFU2 25 
RFU3 39 
RFU4 104 
RFUS 105 
RFU5 107 
RFU7 11" 
RFUB 111 
RFU9 119 

RFUl0 41 
RFUll 42 
RFUl2 50 
RFUI3 51 
RFUI4 121 
RFUIS 124 
RFUI6 125 

PE 128 
RFUIB 130 
RFUI9 131 

A0 
Al 
A2 
A3 
A4 
AS 
A5 
A7 
AB 
A9 
AI0 
All 

GND 

(PRESENCE/S IZE ) 

MEPS? en ~SOO) 

IBM MEMORY SIMMS 
DRAWING ISIZEIREVISION I DRWNG PART NUMBER 

06/01/94 I B A 

SHEET 4 OF22 

I I 

I-

I-

I-

-I 
~ 
CD 
Q') 
01 o 
gJ 
a: 

CO 
CD 
(') 
~ 

-6" 
(J) 

~ 



N 
~ 
Q'\ 

t-

t-

t-

T T I 

~ ~ ~ 

4Al> aID MPD<? 0> 
, 

ABT240 
Y3 12 0 

M5B 

~ 

ABT240 
A:3 "'- nh9 

5 13 IA2~ Yi!h7 

6 15 IAi r-l.. Ylhs 

LfY1~" 
MPAR 240 BE OE* ~ OE . 

(BIG ENDIAN) 

(MEMORY 
PARITn 

~~g aID MQPS? 0> 

aID MPAR 2iEIT~~E °fNriIAN) 

I I 

ABT240 
8 R3J-.... Ysh12 7 L5B 
6 IA2 :t: Y~14 6 

~ 

~ 
~ 

M5B 

4· 

:i :i :i :i :i :i 

~ ~: ~~. ~~ . ~ . ~: 
c " " ~I 

2ffi!2> aID PD4 RD* 

(SIMM SIZE) 

2ffi!2> aID PD5_RD* 

(SIMM PRESENCE) 

I I 

+5V 

T 

I 
~ 

4 

I 1 

----, 
F244 

--, 

Ys 12 0 

Y1 16 2 

Y 18 3 

~ 

(x D BUS) 

~1~7<)20C2> 

~ 
8 IA3- ~ Y31 120 

Y2I 141 

~ 

(CPU PARITY CORRECTED 
FOR ENDI AN MODE) 

IBM PARITY AND SIMM TYPE 

BUFFERS 

DRAWING 06/01 /g4IsI~tEVI~ION I DRWNG PART NUMBER 

SHEET 5 OF22 

I 

I-

I-

I-

--I 
:J" 
CD 
0') 
01 
o 
gJ 
0: 

CC 
CD 
() 
:J" 

-0" 
00 
~ 



TiJg an HC?+ VI? 

(601 ADDR. MSB 0. LSB 311 

MAB0 

(f'EMORY ADDRESS) 

(f'EMORY ADDRESS) 

t~g aID 'Oil J fiG 

(CPU DATA. MSB = 0) 

~ 
~ ....;a 

I I 
248 163 

'''I 1 '" 

82553 

lXXXXXXxx 

0 
304

1 
177 

76 

1BM27-82653 

2OF6 
60X_OO MSB 
60X_Dl 
60X_D3 
60X_D2 
60X_D4 
60X_05 
60X_D6 
60X_D7 
60X_DB 
60X_D9 
60X_Dl0 
60X_Dll 
60X_D12 
60X_Dl3 
60X_Dl4 
60X_Dl5 
60X_Dl6 
60X_D17 
60X_D18 
60X_D19 
60X_D20 
60X_D21 
60X_D22 
60X_D23 
60><-D24 
60X_D25 
60X_D26 
60X_D27 
60X_D28 
60X_D29 
60X_D30 
60X_D31 
60X_D32 
60X_D33 
60X_D34 
60X_D35 
60X_D36 
60X_D37 
60X_D38 
60X_D39 
60X_D40 
60X_D41 
60X_D42 
60X_D43 
60X_D44 
60X_D45 
60X_D46 
60X_D47 
60X_D48 
60X_D49 
60X_D50 
60X_051 
60X_D52 
60X_053 
60X_054 
60X_055 
60X_056 
601<-057 
60X_058 
60X_D59 
60X_D60 
60X_D61 
60X_D62 
60X_D63 LSB 

+5V 

GND 

IBM27-82653 

6 OF 6 

1BM27-82653 

5OF6 

60>CA0 MSB 
60XJU 
60XJl2 
60X-KI 
60X--A4 
60X-AS 
60X-A5 
60X-A7 
60X-AB 
60XJl9 
60X--A10 
60X-All 
60X-A12 
60X-A13 
60X-A14 
60X-A15 
60X-A16 
60X-A17 
60X-A18 

+3.6V 

y 

~ 

=~ TEST~ 
60X_A21 
60XJl22 
60XJl23 
60XJl24 
60XJl25 
60XJl26 
60XJl27 
60XJl28 
60X--A29 
60><-A30 
60X-Kl1 LSB 

k~===i·4i(~MEM.-ADmiLB 261 MEM_ADIRll 
261!1 MEM-ADIR10 

,if 259 MEM.-ADIR9 
258 f'EM-ADIRB 

~§~~3'Z57I3f'EM-ADIR7 256 MEM-ADIR6 
253 MEM.-ADIR5 

4 252 MEtLADIR4 

~'3t:==~~~1:::!~:~~~ 
1:t===~~~~::::!~=~~GOOD 

e. ~ MEM_PAGE...HIT 

MEM_PAGE-Hlh 

SD_PAR_ERR* 

IBM IBM27-82653 
IS1ZEIREV1S1ON I DIM'IG PffiT I'I..JMBER 

06/01/94 I B A 

SHEET 6 OF22 

--I 
::T 
CD 
0> 
tTl o 
W 
a:: co 
CD 
() 
::T 

"5" 
00 
~ 



N ... 
OC 

2OC2) 
8A2) 
8A2) 
8A2) 
8A2) 
8A2) 

<7 

<MEM DATA, MSB 63, LSB 0) 

<MEMORY PARITY> 

IBM27-B2653 

1 OF 6 o. CONTG_IO 
_SE * 158 CPU_ADDR_SEL 

* 168 CPU_DATA_SEL 
_OE* 159 CPU_ADDR_OE 
_0[* 192 CPU_DATA_OE 

43 NO_TRANS 

1_08U70 rn:J"\ TC; . "', ~ tili~T 
1~:) ~ ESEL ~ [~~R3DL5EL 
8A2) * 74 PCLSEL 
8A2):01'* 11 PCLOE 

~~) m* ~ E:M:~ATA 
8A2) * 75 ADDRHLDATALO ~ 

~) :DE * ~ §~~~~9~~:~~OLO ~ 
982) * 7 MEM_DATA_OE 
982) * 72 MEM_DATA_SEL 
902) 76 REFRESH_SEL 
882) 66 ROM-BEL 

+3.6V 

~ 

~ 

882) 73 BURST _CLK 
.6 L_ERR_ADDR 

O~ ~EE §2~§ ilH: I 

<PC! ADDR/DATA, MSB 31, LSB 0) 

IBM27-B2653 

4 0F 6 

PCLAD3lMSB 
PCLAD30 
PCLAD29 
PCLAD2B 
PCLAD27 
PCLAD26 
PCLAD25 
PCLAD24 
PCLAD23 
PCLAD22 
PCLAD2l 
PCLAD20 
PCLADl9 
PCLAOlB 
PCLAOl7 
PCLAOl6 
PCLADl5 
PCLADl4 
PCLAD13 
PCLAOl2 
PCLADll 
PCLADl0 
PCLAD9 
PCLADS 
PCLAD7 
PCLAD6 
PCLAD5 
PCLAD4 
PCLAD3 
PCLAD2 
PCLAOl 

<1ll:l!I ND AD PAR ~~g::~g~p~~B 
<EVEN PARITY) 

IBM27-B2653 

3 OF 6 
63 304 MEM_DATA63 M5B 
62 3113 MEM_DATA62 
61 302 MEM_DATA6l 
60 300 MEM_DATA60 
59 299 MEM_DATA59 
58 298 MEM_DATA5B 
57 'BI MEM_DATA57 

296 MEMJJATA56 
55 293 MEM_DATA55 
54 292 MEM_DATA54 
53 291 MEM_DATA53 
52 290 MEM_DATA52 
51 289 MEM_DATA5l 
58 288 MEM_DATA50 
49 28S MEM_DATA49 
48 284 MEM_DATA4B 
47 283 MEM_DATA47 
46 282 MEM_DATA46 
45 281 MEM_DATA45 
44 280 MEM_DATA44 
43 277 MEM_DATA43 
42 276 MEM_DATA42 
41 275 MEM_DATA4l 
.. 274 MEM_DATA40 
39 272 MEM_DATA39 
38 271 MEM_DATA3B 
37 270 MEM_DATA37 
.36 ~ __ MEM_DATA36 

MEM_DATA35 
MEM_DATA34 
MEM_DATA33 
MEM_DATA32 
MEM_DATA3l 
MEM_DATA30 
MEM_DATA29 
MEM_DATA2B 
MEM_DATA27 
MEM_DATA26 
MEM_DATA25 
MEM_DATA24 
MEM_DATA23 
MEM_DATA22 
MEM_DATA2l 
MEM_DATA20 
MEM_DATAl9 
MEM_DATAlB 
MEM_DATAl7 
MEM_DATAl6 
MEM_DATAl5 
MEM_DATAl4 
MEM_DATA13 
MEM_DATAl2 
MEM_DATAll 
MEM_DATA10 
MEM_DATA9 
MEM_DATAB 
MEM_DATA7 
MEM_DATA6 
MEM_DATA5 
MEM_DATA4 
MEM_DATA3 
MEM_DATA2 

~m:g~t~~ L5B 

( 14 MEM_PAR7 MSB 
6 13 MEM_PAR6 
5 12 MEM_PAR5 
4 5 MEM_PAR4 

4 MEM_PAR3 

PAR?: MD<63: 56) 

1 2 MEM PARl 
2 3 MEM PAR2 I 
• 1 MEM PAR0 LSB PAR0: MDO: 0) 

IBM IBM27-82653 
5IZEIREVISION I DRWNG PART NUMBER 

B A 

SHEET 7 OF22 

-I 
::r 
CD 
0> 
0'1 o 
~ 
a: 

CO 
CD 
() 
::r 
-0" 
en 
sa 



~ 
\C 

120 

1«:2> 
13Cl> 

15C2<> U!IA2() 
15C2< 1002() 

16A2> 1201> 
151)2) 101:2<> 

1502) 1002> 
1?A2) 

81 

19CI> 
1981> 

7A8> 
19C1> 

w~oo : 
~ ~ 

1 ~ 

IBM27-82654 
1 OF 3 

~ POWER GOOD/RESET* 86 RESET* RESERVED ...1!L 

~ ND PCI CU<1 129 
PCLCLK 142 
CPI.LCU< ~ TS 132 

TT0 ~ TTl 122 

1ffit: TSIZ2 TT2 ::TIIT::] 
.,....,...,.TS1Z.{2.L0> 

' 1116 TSIZl TT3 123 
119 TSIZ0 

~ TBST 60b 
RACK 113 22 127 TBST TA 134 

_8RIHl,J;>!!l.* 112 ARTRY TEA 135 

........., LSB (31) ~ INLCPU B3 
60X_A31 
60X--A30 TT_ERR 44 
601CA29 DPE_ERR 43 

~ 60XJU9 I"EM~_ERR 42 

tJ 601CAB 
60X_A7 
60X_A6 
60X-AS 

~ 
60X..A4 FRAME 29 

103 60X-A3 TRDY 27 
(CPlLADDRESS) ~ 60X...A2 IRDY 52 

........... A,'ll . ." MSB (0) illS 60X_Rl STOP 16 
L.!!l.I IIl6 60X-F't0 DEVSEL 28 

C/BE3 48 nm OPE 601* 139 
OPE C/BE2. 49 

* 125 c/BEl 17 

~MFISl< TEA* 
XATS c/BE0 18 

77 MFISl<_TEA 

+~ 
PCLPAR 53 

ROI'LCS 74 
ROM_OE 73 
ROM_WE 72 

~ ~ 

> ~~ ~~> 
ROM_SEL 14 

~~ ~ Ill.JlSLCLK 8 

......... BR 60X* 126 .CPlLREQ CPIJ_GNT 133 

* 39 IO_BRllG_REQ L2_CACl-E_GNT 114 

* 38 PCI...REQl IO_BRllG_GNT 7 
I"t!!Kl;Il-(_~ 109 L2_CACl-E...REQ PCLGNTl 6 

* 34 PCI...REQ4 PCLGNT4 S 
* 33 PCLREQ5 PCLGNT5 4 

""""" 36 PCLREQ2 PCLGNT2 Ik--
3S PCI...REQ3 PCLGNT3 ~ 

~ SIO_I"f]'REQ* 45 
IO_BRDG_HOLD '""'""" SRESET _CPU 37 

......... ISA MASTER* 
ERR.ADDR_SEL 76 

79 
ISAJ1ASTER ALL_ONES_SEL 2 

~ INT .IROM 510 
LE...MODE_SEL 92 

32 IO_BRDG_IRQ N(LTRANS 13 
12 NMLIRQ ......., 

CRLADDR_SEL 159 
CPU_DATA_SEL 158 

....... ND AD PAR 152 PCLAD_PAR CPU_DATA_OE 145 

* 89 SRESET _REQ CPU-ADDR_OE 144 

""""" PCLSEL 157 
PCLOE 148 

ADDRHLDATALO 147 
L-PCLDATA 146 

22 TS 601* 

. TT<4 .. ." 

22 
FlACK 601* 

* 
'22 t.I:L601* 

- * 
60X TT_~ 

33 PCLFRAI"E* 
* 

- * 

* 
33 3 

'33 2 

'33 _0 ~ 

peL-PAR 

ROM CS* 
* 
* 

* 
/ * 

BG_~ 
..!l!; 2* 

* 
* 

* 
.J-'l, 

SRESET 601* 
* 

~ 

60L.ADDR SEL* 
* - * 

* 
* 

* 
* 
* 

* 

...,."..., ec2<> 15D2<) 

~. ......., 

.JI'I"IT\ -=: --"""'" 

<l!n: -, , , , ......., 

...,."... 

"""'" 

15C2<) 1802< 
llD2< 15C2< 
llD2<l5C2< 
12m< 15C2< 

788< 2e87< 
2087< 
7BB< 2£IB'7( 

782() 
7A2() 
7A2() 
7A2() 
782() 
782() 

21B7< 
21B7< 
21C7< 
788< 
788< 

leD2< 1502< 
15D2< 
1788< 

121E1< 1SC2( 
788< 
788< 
7C8< 
7C8< 

7C8< 
7CS< 
7CS< 
7C8< 
7CS< 
7CS< 
7CS< 
7CS< 

(ALL SERIES RESISTORS I1.JST BE PLACED 

AS CLOSE AS POSSIBLE) 

IBM 
06/01/94 

IBM27-82654 
CENTRAL CONTROL PORTION 

IZErISION I IJRI4'iG PART tU18ER 

B A 

Sl-EET 8 OF 2 2 

~ =s­
CD 
m 
01 o 
OJ 
-or a: 

CO 
CD 

o 
=s­

"8" 
en 
~ 



N 
f.It 
~ 

+3.6V 

:.: 
~ 

~
17 or 
75 RI 

136 TEST 

W'I ~",u ,.~ 
~~ ~ll!;F* :£ 

SD_PAR_ERR* 

+5V 

§~:&r;I--~ 

IBM27-B2654 

3 OF 3 

PINS 19 AND 99 RESERVED 

GND 

IBM27-82654 
2 OF 3 

REFRESH_SEL §9 KU" l.. r l..l..t.'" 6 7Ill< 

~:~::~~ : = ~! EE Sf: ::: 

r ~~ ,-- I it I ~ 
(CAS) 

~ ~~ ~ ~ ~ 

~ ,:>4 MEM DATA OE* ~ 7Ill< 
:~ gtr-mW;;~5* ~: 

IBM 
06/01/94 

4 . 

IBM27-B2654 
MEMORY PORTION 

SIZE VISION DRWNG PART NUMBER 

B A 

iSHEET 9 OF 22 

-f :::r­
CD 
m 
01 
o 
gJ 
a: 

CO 
CD 
o 
:::r-

-a" 
en 
~ 



N 
Ul 
~ 

D 

r-

C 

229 

t-

B 304 

-

A 

8 

228 

lXXXXXXXX 

0 

1 

8 

I 7 

153 

152 

77 
75 

I 7 

I 6 I 

~ 
ADDRE55 
CONTROL 

ABB 224 
AACK 29S 

ARTRY 221 
5HD 23S 

BR 219 

BG 298 

T5 226 
XAT5 229 

l5B A31 64 31 
A30 63 30 
A29 62 29 
A28 60 26 
A27 59 27 

I A26 56 26 
A25 56 25 
A24 55 24 

B A23 54 23 
A22 51 22 
A21 50 21 

M A20 49 20 
A19 47 19 
A18 46 18 
Al7 45 17 
A16 43 16 

6 A15 42 15 
A14 41 14 
A13 36 13 

0 A12 35 12 
All 34 11 
A10 32 10 

1 A09 31 9 
A08 30 8 
A07 26 7 
A06 27 6 
A05 26 5 
A04 23 4 
A03 22 3 
A02 21 2 
A01 19 1 

MSB A00 18 0 

.1~0 
AP3 " I AP2 69 
API 66 
AP0 67 

TT4 238 4 
TT3 244 3 A 
TT2 248 2 
TTl 227 1A 
TT0 228 0 

TCI 251 1 J 
Tee 243 0 

TSIZ2 237 2 
TSIZI 232 1 
TSIZ0 241 0/ 

TBST 236 

CI 216 
WT 214 

GBl 233 

C5E2 ,-~12 
C5El r-~i~ C5E0 

I 6 I 

5 I 4 

'> If ' ~ ~ 
;,: ;,: 

~ > ~ ~ ~ @ @ 
.... .... c 

H0: 5PECIAL OPERATION5 
TTl: READ/-WRITE 
H2: INVALIDATE OPERATIONS 
TT3: MEMORY/-ADDRESS ONLY 
TT4: RESERVED (ALWAYS 0) 

~ 
GND 

I I I 
J 

5 I 4 

3 I 2 I 1 

+~r 

THE5E RE5I5TOR5 NEED TO BE PLACED BETWEEN CPU AND CONNECTOR 

RACK 601* .r.n"'I BD2> 15C2<) 
_bI:11* ~8C7<>1SC2( 

* "\..!!U 15C2< > 

BR 60X* ........... 15ll2> 667< 

BG 60X* ';:;;:, B52> ....... 
T5 601* ..(1!D 15020 602> 

* "\...!2.;!;..1 1502> OC7< 

A<31 .0> -(]D600015B20 BC7< 

TT<4 .. 0> ""'"""" BD2<> 15020 
~ 

T~, . ,,, ".,..,.,.. 15<2< ......., 

TSIZ<2 .. 0> BD70 lSC20 7C8( 

T85T 601* -(]D BC70 15<20 

CL601* ".,..,.,.. 15<2< 

- * 15<2< * "'\...E;!;..Il5C2<) 

IBM IBM25-TPC601-66-1 
~ > 

~ 5IZE/REVISION DRWNG PART NUMBER 

-= 06/01/94 B A 

GND 
5HEET10 OF22 

3 I 2 I 1 

D 

r-

C 

r-

B I 

t-

A 

-I ::::r 
(l) 

m 
01 
o 

~ c: 
<C 
(l) 

() 
::::T 

"5" 
en 
~ 



--I 
::r IIlI'1601L 

~r I I I§ 16~5 
DBB 220 

DRTRY 292 

gJ 
+3.6V 

~ 
a: 

IBM 601 (0 

DBG DBG_60X* U 15D2< CD 
4 OF 5 a 

TA 290 8C2> ::r 
6 V551 VDD1 2 TEA 291 BC2> -0" 12 V552 VDD2 11 

20 V553 VDD3 16 
25 V554 VDD4 24 60X_D31 75 31 en 
33 V555 VDD5 29 60X_D30 80 30 

~ 38 V556 VDD6 37 60X_D29 81 29 
39 V557 VDD7 "" 3 60X_D28 52 28 
44 V558 VDD8 48 60X_D27 83 27 
52 V559 VDD9 53 60X_D26 84 26 
57 V5510 VDD10 61 60X_D25 85 25 
55 V5511 VDD11 66 60X_D24 B6 24 
73 V5512 VDD12 76 60X_D23 90 23 
77 V5513 VDD13 79 60X_D22 91 22 
B7 V5514 VDD14 BB 60X_D21 93 21 
89 V5515 VDD15 92 2 60X_D20 94 20 

GND 100 V5516 VDD16 96 60X_Ol9 95 19 
1"" \i5517 VDOl7 101 60X_Ol8 97 18 
109 V5518 VDD18 105 60X_Ol7 9B 17 
114 V5519 VDOl9 113 60X_D16 99 16 
115 V5520 VDD20 116 60x_D15 103 15 
117 V5521 VDD21 120 60X_D14 104 14 
124 V5522 VDD22 128 60X_D13 106 13 
129 V5523 VDD23 133 60X_Ol2 107 12 
137 V5524 VDD24 141 60X_Dll 100 11 
142 V5525 VDD25 146 60X_D10 110 10 
ISO V5526 VDD26 154 60X_D09 111 9 
162 V5527 VDD27 156 60X_D08 112 8 
153 V5528 VDD28 162 60X_D07 118 7 
158 V5529 VDD29 163 60X_D06 119 6 
160 V5530 VDD30 166 60X_D05 121 5 
164 V5531 VDD31 171 o 60X_D04 122 4 
170 V5532 VDD32 174 60X_D03 123 3 

I I 
175 V5533 VDD33 176 60X_D02 125 2 

N 177 V5534 VDD34 179 60X_D01 126 1 

UI 183 V5535 VDD35 89 60X_OO0 127 " N 
190 V5536 VDD36 192 
191 V5537 VDD37 200 DP3 199 
193 V5538 VDD38 20S DP2 201 
196 V5539 VDD39 213 DP1 2<02 
204 V5540 VDD40 218 DP0 21!3 

228 153 20S V5541 VDD41 225 
217 V5542 VDD42 234 
223 V5543 VDD43 2"" 60X_D63 

2291 1152 230 V5544 VDD44 245 60X_D62 
239 V5545 VDD45 249 60X_D61 
242 V5546 VDD46 253 7 60X_D60 
2S2 V5547 VDD47 257 60X_D59 
259 V5548 VDD48 261 

I~=gi~ I:: ~1 263 V5549 VDD49 265 601 266 V5550 VDD50 26B 
267 V5551 VDD51 270 60X_D55 
269 V5552 VDD52 272 60X_D54 
274 V5553 VDD53 276 60X_D53 
27B V5554 VDD54 280 6 60X_D52 
281 V5555 VDD55 2B3 60X_D51 
284 V5556 VDD56 2B6 60X_D50 
2B7 V5557 VDD57 289 60X_D49 
294 V5558 VDD58 293 60X_D48 
301 V5559 VDD59 296 60X_D47 

60X_D46 
60X_D45 

5 60X_D44 

3041 
177 60X_D43 

60X_D42 
60X_D41 

1 60X_D40 
76 

II 
60X-Il39 

GND 
60X_D38 
60X_D37 

4 60X_D36 
60X_D35 

182 34 IBM25-TPC601-66-1 60X_D34 
60X_D33 185 33 
60X_D32 IBB 32 

DP7 194 5IZE REVISION DRWNG PART NUMBER 

DP6 195 06/01/94 B A DP5 197 
DP4 198 

I 

SHEE:T11 OF22 



N 
(It 
W 

D 

-

C 

-

B 

-

A 

8 7 I 6 I 
ESP RUN BREAKPOINH 

8C2>~ INT 601* 

BB2>~ SRESET 601* 

~ POWER GOOD/RESEH - ESP HDWR RESEH InlB 
~ 

13C1> .....",." BClK EN 601 
'-=J' 

1301> 2X PClK 601 

13C1> PClK 601 

f 
VCC 

OSCIllATOR 
1 EN OUT ~ 

7. B1250MHZ 
GND 

+5V 

~ -r-

GND 

RI5CWATCH CONNECtOR 

" VCC 

OCS OVERRIDE :YL-
HDWR_RESET 2 

~ +RUN/-BREAKPOINT RESELINTERRUPT 3 

L-4 CHECICSTOP CNTl/SCAN_DATA 4 

,--------L SCAN_OUT SHIFT _CLOCK 5 

SCAN_IN 7 

RESERVEDl 12 

f 
GNDl RESERVED2 13 

GND2 O'-SERVED3 16 

11 2 3 4 5 5 7 8; I 
9 11 12 13 14 15 15 

VIEW FROM TOP FRONT. 

GND CONNECTOR IS KEYED. 
CABLE HAS PLUG IN POSITION 10. 

ESP SCAN OUT 

* TRADE MARK OF IBM CORP 

B 7 I 6 I 

5 

+3.6V 
-r-

y 

~ > 

+~~V 
y 

~. 

5 

1 4 3 

252 

264 

601 HRESEH 279 

+~.6V+~2V 

y 

~: IS! .... 
RTC 601 273 

271 

282 

28S 

~ 

+~~v+~.~V+~~V ~ 297 

y y 

~ ~.~ -f» f» GND .... > .... 1K 
26el 

1K 277 

ESP SCAN DATA I 
ESP SHIFT ClK 

ESP SCAN· IN I ESP OCS OVERRIDE 275 

r--- 184 
IBM 501 

5 OF 5 
186 

TST02 246 187 

+~~V TST03 247 

TST05 288 
1K 

TST06 14 
1K 

TST07 15 10K 

TST08 17 

TST09 13 

TST10 ~ 

TST11 2-

~ > TST12 ~ 

TST13 2-

~ TST14 
,. 11'lK 

GND T5T15 ..JL 

TST15 ~ 

TST17 9 
11'lK 

TST18 303 1K 

T5T19 .", 

TST20 3 {~ 
TST21~, ,. -= =-

10K -=-
~~ GND 

I 4 3 

1 2 1 1 

+3. 6V +3. 6V +3. 6V 

IBM 601 ~" 
30F5 ~ Y~ ~ 

.... IS! .... 

'"' ==- ~ 2 SRESET CKSTP_IN 2S8 ;>; 
RUI'LNSTOP 7. 

HRESET 

DPE 222 DPE 601* .~ 16A2> OC7< ......., 
RTC 

APE :)231 
BClK_EN 

RSRV :)254 
2X_PCLK +3.6V 
PClK_EN r-

BSCAI'LEN QUIESCREO 256 y> 

~ 
DBWO 

RESERVED 1 206 
SYS_QUIESC 

RESERVED2 = 
RESUME 

RESERVED3 208 

SCDRIVE 210 

ESP_EN 
HP_SNP_REQ 2S0 

SC~CTL 

SCAN_SIN 
SCAN_OUT 78 ~ ~~,> ~ SCAN ClK 

~ f--

~ 
GND 

60X PRESENH -<I!II'SB2> 

50X PRESENT -<I!II'SB2> 

(THESE 5 I GNALS 

DISABLE THE 501 > 

IBM IBM25-TPC601-66-1 

~ SIZEIREVISION DRWNG PART NUMBER 

06/01/94 B A 

SHEET12 OF22 

I 2 I 1 

D 

-

C 

-

B 

-

A 

-I 
;;r 
CD 
0') 
01 o 
OJ 
""" a: 

<0 
CD 
() 
::::r 

-5" 
(/) 

~ 



I BM25JP-CU<01 
~X1 

[_\4 v..! 2\X2 
-L~lJ -I-SV 

Sri TST_IN0 

TSLIN1 

INHIBILIO 

TSLIN2 

ClK_OUT _EN2 

ClK_OULEN1 

ClK_OUT _EN0 

RClPF 

I I 
100, 

iL 
:::J 
f\J ~l.!SS_lPF f\J 
!>I 

lSi 1 --. 
12 
14 
IT 
18 
2I 
23 
30 
~ GND 

To 
43 
47 
52 
57 
59 
6I 
62 

261 ! 44 
2? 43 

=- _+=l 
CONFIGURED FOR 
FOR 50MHZ AND 55MHZ 50X BUS SPEEDS 

GND 

2XPClOCK2~39 

2XPClOCK1 31 a
22 

PClOCK4 22 

PClOCK3 19 

PClOCK2 16 

PClOCK1 13 a
22 

BClOCK8 46 PClK 601 - 12C8< 

BClOCK? 48 ~ 
BClOCK6 5el ,2l I:I7IXf'I_K ~13C115B2( 

BClOCK5 51 a 22 
BClOCK4 53 a a 22 l2 BCLK_ 

BClOCK3 54 ~a 22 l2 BCLK_ 

",0 ~13Cl15B2< 

·".1 ~13C115B2< 

BClOCK2 56 R239 ,Y
a 

DO NOT POP NORTH C\ 

BClOCK1 58 a
Y 22 1 BClK I 

--:LK~BD?( 

:N_601 

"_IN 1:"\F"i"I"\.14C8< 
TSLOUm 6 Y T Pll BCLK 

TSLOUTl 7 

+5V 
9 
10 

NC L!~ 
45 

8 
27 

~ 
44 
60 

+3.6V 

l.!DD_Pll 

PHDETOUT 1 24 

R138 ~!>I 

GND 

(FOR 33 MHZ DESIGN 

POPULATE R138 AND 

REMOVE R239) 

IBM IBM25JP-CLI<01 

SIZEIREl.!ISION I DRWNG PART NUMBER 

06/01/94 1 B I A 

SHEET 13 OF 22 

-I 
-:r 
CD 
0') 
0'1 
o 
gJ 
a: 

CO 
CD 

o 
:::r 

"6" 
en 
~ 



N 
(II 
(II 

PLl_BClK_IN 

FULL_SPEED 

* TRADEMARK OF ADVANCED MICRO CIRCUIT5 CORP 

+5V +5V 

N~C~~3B_66A5V 
~FBClK 
44 REFClK 

FOUT3A ~~ 
FOUT2A 

42 RESET FOUTlA 
38 DIVSEl FOUT0A I 

PHSELl ~g~g~ 
PHSEl0 ~~t~~ 
TESTN 

~ PCI 5LOT2 CLK I 
~~~~~~~ prtill£§ ~: 
I--!§.- VI 22 PCI 510 ClK Elm>

~EN A<3 •. 0) X2FOUT~
GND 24 EN <3 .. 0) HFOUT 20

= EN X2. HFOUT FILTER 31
lOCK 43

DGND

~~~ l'- l'-

ru ru 

f.:t 
47PF 

GND 

l ~. I' : I:! 
3 lW 

1 
GND 

<JUMPER PINS 1-2 FOR 60X = PCI FREQUENCY) 

<JUMPER PINS 2-3 FOR 60X = 2 X PCI FREQUENCY) 

6 
1 

40 
GND 7[J39 

4403B 

17 29 

1B 2B 

IBM 
DRAWING 

06/01/94 

PCI CU< 
ISIZEIREVISIONI DRW-lG PART NUMBER 

B A 

SHEET 14 OF 22 

-I 
=:T 
CD 
0') 
0'1 
o 

~ 
0: 

<0 
CD 
() 
:J" 

-0" 
00 
~ 



N 
(Jl 
Q'\ 

GND 

A47 
A43 
A41 

~ 
iffi 
Ai9 
ill 
A3 
!is 
lIT3 
ii21 
B30 
B34 
;;;w-
oo 
B49 
ffig 
B67 
ii73 
B77 
iii35 
As? 
A6! 
A7I 
e79 
A89 

+3.5V 

';fVUlLniSl 
N{lJru'f"</" 

XW1 -,---

T UPGRADE CONN 

1 OF 3 

C( > C( > C( C( DBG_6I1lX ,~B2 DBG 611lX* ......... 1 

~> ~> ~~ ~ ~~::~~~ ~ ~ 
02> 

BG_L2 537 _ * ! 

'-- XAt§ <><:; Z -'-~~ > 
0C208C7< 

TT4 A25 4 • • '-!ll..J""" 
TT3 B26 3 f+5V 

> 10C2() 
<>10B2(> 

TT2 A26 2 
TTl B27 1 
TTI1l AZ7 0 ~ ~ ~ 

m~I = i 'j ~~: ~.> ~ 
TSIZ0 B29 0 TST70 ~ Ph 

TBST ,~A29 TBST 501* 
L2_CACHE-255 VAS 
L2_CACHE_CB VB8 

CI VB2 * 
WT VA3 * 
~ ~ * 

AACK 831 AF * 
ARTRY 832 * 

~ - * 
BR~t~ ~::. BR L2*--I1lI"I'I'\ 

FULL_SPD VEl 

~ DRt~y ~:: * """"'"' 

1D7< 

~)< 
6A2> 
6A2<> 

12> 10D2< 
7<> 10020 
1D2() 

< 
B> 

I~~ ~ TEA 501: Ie 
HRESET VBS / * 

SREf~~ ~0 < ~ I E '82> 
6A2> 
6A2> 

2OC2> 
2OC2> 
9CB< 

TC1 "",0 < > 

L2=OpEAf~::i~~ ~ z : i ' 

L2=~R~§~~~ ~7 * • 5 

:!:.5V b~::~~gc~~~~§ ~ 50X * ~~) 2OC7< 

BU5_CLK2 B43 
BUS_CLK1 A42 
BUS_CLKI1l 841 

r--- 511lX_A31 823 31 L5B<31 > 
A30 822 30 
A29 A22 29 
A2B A21 28 

~ ~~~ = ~ F"4 :8 "",x PRFSFNT ~ 

~ ~~~ ~i~ ~ 

1<13BB<20C7< 
1>131:4 
1> 13C4 
1>13:4 

:m=:: ~~~ ~i~ ~ 
lNN ~ A21 AIG 21 

=i== ~I~:" ~ 
UPGRADE 0 

GND 5V ~ ~I~:: ;~ Ani .. "'> GD 

d1t= ~I~: i~ 
~ ~Ij ::; 
~ A12 B4 12 

di= ~M:; :~ 
~ ~§ ~6 ~ 
~ ~~ ~:~ ~ 

3 OF 3 

A5 A14 5 
A4 A13 4 
A3 812 3 
A2 Al2 2 

- 5I1lXJ~ =:~ ~ M5B<0> 

BUS_CLK_5PEEDI1l I >,:;VASQE:====1 
BUS_CLK_SPEED1 I) VB4 IBM UPC 

1 ~ 06/01/94 ":~-
PGRADE CONNECTOR 

EVISION I DRWNG PART NUMBER 

A 
GND 

SHEETrs OF22 

--f 
::J'" 
CD 
0) 
01 
o 
~ a: 

CO 
CD 
() 
::J'" 
-5' 
en ga. 



N 
Ut 
-....J 

f-: 

f-: 

H 

I I 

I I 

I I I I 

UPGRADE CONN 

,-1 2 OF 3 
_ 60X_D3i_ 
---E0X_D30_ 
---E0X_D29_ 
---E0X_D28_ 
---E0X_D27 _ 
---E0X_D26_ 

~i?~~) 
(CPU DATA MSB-0) A44 

A45 
B46 29 
~ 
~ 
~ 

~ I =l~~::g~~= 
---E0X_D23_ 
---E0X_D22_ 
---E0X_D2i_ 
---E0X_D20_ 
---E0X_D19_ 
---E0X_D18_ 

~ I =l~~::gt~= 
---E0X_D15_ 
---E0X_Dl4_ 
---E0X_D13_ 

A48 25 
A49 24 

~ ~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

---E0X_Dl2_ Fl59 12 
---E0X_Dfl_ 
---E0X_D10_ 

~ I =l~~::g~§= 
---E0X_D07 _ 
---E0X_D06_ 
---E0X_D05_ 
---E0X_D04_ 
---E0X_D03_ 
---E0X_D02_ 

01---E0X_D0i-L- _ 60X_D00_ 

,- _ 60X_D63_ 
---E0X_D62_ 
---E0X_D6i_ 
---E0X_D60_ 
---E0X_D59_ 
---E0X_D5B_ 
---E0X_D57 _ 

Il60 11 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
P67 0 

B68 63 
~ 
~ 
~ 
~ 
~ 
~ 

7 ---E0X_D56_ A72 56 

~ ---E0X_D55_ 
---E0X_D54_ 
---E0X_D53_ 
---E0X_D52_ 
---E0X_D5i_ 
---E0X_D50_ 
---E0X_D49_ 

6 ---E0X_D4B_ 
~ ---E0X_D47 _ 

---E0X_D46_ 
---E0X_D45_ 
---E0X_D44_ 
---E0X_D43_ 
---E0X_D42_ 
---E0X_D4i_ 

~~ ~. 
~ 
ii75-s2 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

~ I =l~~::gj~= 
---E0X_D38_ 

:: : 
~ 

---E0X_D37 _ ASS "57 
---E0X_D36_ 
---E0X_D35_ 

B86 36 
~ 

---E0X_D34_ B87 34 

B90 
A90 _ 

---E0X_D33_ 
~ I - 60X_D32_ 

OP? _ 
OP6 _ 

B88 33 
~ 

(CPU PARITY) 

~5A2)11B2() 

891 5 
A91 4 OPE bl'll 

a !~ 
DP5 _ 
OP4 _ 
DP3 _ 
OP2 _ 
OPl _ 
OP0 _ 

--~ 

OPE _ 
'--____ '0B3S IBM UPGRADE CONNECTOR 

DRAWING SIZE REVISION DRWNG PART NUMBER 
--06/01/94 B 8 

SHEET16 OF 22 

I I I I 

I-

~ 

~ 

--f 
:J'" 
CD 
0> 
0'1 
o 
~ 
c: co 
CD 
() 
:J'" 
-0' 
en 
~ 



N 
fJI 
QC 

* TRADEMARK OF INTEL CORP 

+5V 

~ 

~ 

GND 

* 823?8ZB 
1 OF 3 MSB AD3l 

AD30 
AD29 
AD28 
AD2? 
AD26 
AD25 
AD24 
AD23 
AD22 
~g~~~ ApSal ph em 21A8(> 7BEI<) 

ADl9 
ADl8 
ADl? 
ADl6 
AD!5 
AD!4 
ADl3 
ADl2 
AD!l 
AD10 

AD9 
ADS 
AD? 
AD6 
AD5 
AD4 
AD3 
AD2 
AD! 

LSB AD0 

(PCI A/D> 

REFRESH 4 C/BE0 147 ISA_REFRESH* 

C/BEl 137 
c/BE2 124 

C~~~~~~t3~~------------------------------------~~~~~~~ 
DEVSEL 128 FLUSHREQ 89 PCLDEVSEL* 

FRAME 125 GNT0/S1OREQ 92 PCLFRAME* 

GNT l/RESUMED 

Mt~g~~~F---l-----------------~---------------------B~ffiID~~ 
MEMREO 87 

PAR 135 
STOP 132 TRDY 127 8C2> 8C20 

8C20 

SIO MEMREO* 

REOl 15 HIGH DURING RE5ET 

50 510 DRIVE5 AD, UBE, PAR 

WHEN PCIRt:5ET ASSERTED IBM SIO-PCI PORTION 

I
SIZEIREVISION I DRWNG PART NUMBER 

06/01/94 B A 

SHEET17 OF22 

-I 
:::T 
CD 
0> 
01 
o 
gJ 
c.: 

CO 
CD 

o 
:::T -Co 
en 
~ 



~ 
~ 

+5V 

VCC 

OSCILLATOR 

1 IEN14.31B1MH~UT~ 

GND 

GND 

ISA_DR07 

B237BZB 
193 

2 OF 3 AEN 
BALE 23 

DACK7 63 
DACK6 S9 
DACK5 50 
DACK3 49 
DACK2 18 
DACK1 48 
DACKI1I 4S 

[OP 20 
IOCHRDY 191 

lOR 200 
lOW 198 

LA23 
LA22 
LA2l 
LA2111 
LA19 
LA1B 
LA17 

MEMCS16 31 
MEMR 203 

55 DRE07 MEMW 204 
61 DRE06 RSTDRV 177 
51 DRE05 
58 DRE03 SA19 197 
57 DRE02 SA1B 199 
56 DREOl SA17 201 
47 DREOI1l SA16 202 

176 10CHK SA15 205 
33 1OCS16 SA14 207 

206 MASTER SA13 3 
80 OSC SA12 5 

188 ZEROWS SAll 6 
5A111l 8 

SAg 10 
SAB 13 
SA7 15 
SA6 17 
SA5 19 
SA4 22 

SA3 24 
SA2 28 
SAl 29 
SAI1I 30 

SBHE 

SOlS 70 15 
S014 69 14 
SD13 68 13 
S012 67 12 
SDll 64 11 
SDll1l 62 10 

SD9 60 9 
SDB 55 8 
SD7 178 7 
SD6 1796 
SD5 180 5 
SD4 185 4 

SD3 186 3 
SD2 187 2 
SD1 i:~ SDI1I 

SMEMR 196 
SMEMW 192 

SYSCLK 166 

l4.31B1BMHZ 

(ISA SIGNAL5) 

9 
18 
17 
16 
15 F244 

14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

(x BUS) F244 

GND 

10 

22 

IBM 
06/01/94 

5IO- I5A PORTION 
SIz[IR[VIS1ON I DRWNG PART NUMBER 

B I A 

SH[[T1B OF 22 

-; 
:::r 
(1) 

0'> 
01 o 
CD ..., 
a.: 
co 
(1) 

() 
::T 

-0" 
en 
~ 



N 
~ = 

PCL5LOTLINT* 

PCL5LOT2_INH 

+5V 

... 1('\1(l'}"tlDlDr--(oOHS)...-I(\j(T)"tU') *" *..-1 *" * *" *" * *1-* * *" 
QOQ[:lQQQQQ...-I.-I.-/ ...... ..;..;ru(\/UfSl....f(\J(I')(I')(I')HH~H 
QQQQQQQt:U:U:U:U:U:U=lQI-OZOOOOI-OZl:.Jl: 
JJJJJJJJJQQQQQQZW o:mrO:ZWHUlUUl 

::>:>:>:::>:::>J!:Jt:r HHHH(jfr OJ-

IRQ13 r-----'-I~!;;-:-l~~3~~~~ERR* 823?8ZB Q.!lll.ll. ~~ 

GND GND 

:~ mgi~ 3 OF 3 ALLA20 L""LI:.JD""'" 9C8< 
39 IRQ12/M AL LRST * SA7< 
37 IRQll ECSADDR2 20D7< 
35 IRQl0 ECSADDRl ECSADDRl 20D7< 

184 IRQg ECSADDR0 
172 IRQB EC5EN 

7 IRQ? IGNNE 
9 'IRQ5 INT 

II IRQ5 SPKR 

;~ I~g~ ~~~§~~ fY.'.'!;!-------------, UBU5TR 
168 IRQl NMI 
169 TEST 

<XD BUS) 

fS)..-I(\J(T)"tlDlDI'-ID 
.-I(lJ(T)"I"l.f}lDI'-OJm-l-t ..... -t-l-l...-l-l-l 
UlUlIllUlUlUlIllUlUlUlUlIllIllIllUlIllIllIll 
UlIllIllUlUlUlIllUlUlUlUlIllIllIllUlUlUlIll 
JJJJJJJJJJJJJJJJJJ 

GND 

F245 
A7 TS B7 117 
As 86 126 
AS 85 135 
A4 B4 144 
AS B3 153 
A2 B2 162 
Ai Bl 171 
Ao Be 180 

<ISA DATA) 

IBM SIO-PART 3 

A I
ISIZEIREVISION I DRWNG PART NUMBER 

06/01/94 B 

SHEET19 OF22 

--f 
::r 
CD 
0> 
01 o 
OJ .., 
c: 

CO 
CD 
() 
::r 

-0" 
00 
$. 



N 
Q\ 

"""" 

* TRADEMARK OF ACTEL CORP 

19C1> 
19C1> 
19C1> 
19C1> 

1BC2> 
1582> 
1582> 
1862> 

8C2> 
8C2> 

+5V 

59 RESD_IN ~ 

r~~EC~S~AD~D~R0~~~~~~~~~~~16§ ECS0 L_IRQ1 4 L IRQ1 '"'"'" 15 ECS1 RFU 10 '-=-' 
14 ECS2 

~ 20 ECSEN ACTEL *EP1810 

'"""" L2 TYPE ~ L2_CACHLCB 

-. f-'l : ~ b~I:~Ei.fIi_255K 
-. ::;C::;. _~ U~ (,CUU 12 PCLSL T2 
'-="" FUSE-GD 

IBM I/O INTERFACE 

f'~3!IR~Q~1Bli..:=====lt~~j~~ I~JfLIN CNTG_IO 29 CONTG 10 HDD_LED SI HDD LIGHT* 
'-="" k~ ~ ~ MC5ET~ 62 7 

3 5eA3 D6616 
.... 54 A2 D5 38 5 (XD BUS) 

IJID SA<5> ,,~~ ~ gj ~ ; XD<7 . .JlL ~ 
f"m') SA<7> I 22 AS D2 36 2 
- 21 A7 D1 25 1 

,..,.. KEYLOCK* 27 PSWRD D0 ~!24~~0~~~~~~~~~~~1 
* 17 RESET L2_MISS_INH 55 L2 CACHE INH* 

* 26 L2_PRESENT L2_UPDATLINH 66 * 
* 28 UP _PROC_PRES MA5K-IEA 41 * 

* 19 lOR DRAM_X9HLX10LO 42 
~ lJ/\1~_ 53 IRQ9_ IN IRQ 11 43 

* 51 row IRQ9 68 
'-" AUD_CS 9 * 

RD_PD4 34 * 
RD_PDS 33 

rTF!) PCB7312 CS OUh sa FDD_CS L2_ TAG_CLEAR 64 L2 FLUSH* ~ 

~ 50X DPE ER~* "; ff~f~~R ~i~~AE~ ~ KYBD CS* ~ 
l..!r:!J Cl-/I-/* 2 PAR_ERR §i~:~ : RT' -~ 

rGtIDl 

~ 
GND 

~ 
7 9 A7 TS B7 11 7 

~~~ ~~:~ ~ 
~; ~~; ~; i; ;

RTCAS0 ~i6 ~~§~~~~~~~~~I-/§_H::~Di<"""EJI RTCAS1 5
RTCWER 31
RTCOER 32
RFU 13

MEDIA 44 DENSITY RD* '"'"'"
'-=-'

r2 4 A2 82 16 2

~~ ~ ~~ :! i~ ~ IBM
orr~~~M~CE«~7.~~· _____ (_CA_S_> __________ ~

rTF!) UBUSTR ~ m ~

1582<
15B2<
BC7<
7ca,
19C7<
19C7<

5C4<
5B4,

~ ?JDlRE

:-:: SEL CAS/PD 06/01/ /94

I/O INTERFACE EPLD

ISIZEIREVISION I DRWNG PART NUMBER

B A

SHEET20 OF 22

-I
::::J"'
CD
0>
01
o
~ a:

(Q
CD
()
::J'"

-0"
en
~

N
~
N

D

-

C

-

B

-

A

8

8

I 7 I

882> IJE} ROM WE*

14

13

12

II

8B2> rn:n ROM CS*
882> L..!l::!J *

(PCl A/D)

17(207880 GD An,"" .~>

1 7 __ I

5 1 5 4

.---
F244

17 AJ y, 3

15 A2 y 5

13 A1 Y1 7

11 A0 Y 9

--, ~
!'l

~
GND

5 I 5 4

3 1 2 I 1

PCl ID5E:L(4) """""
~

PCl ID5EL<3> -mm>
PCl ID5EL<2>

~

PCl ID5EL <1 > 111m"\. 1788(

"'"""'

POPULATE R334 FOR EPROM r POPULATE R345 FLASH
vec

AflJA
ADO_NOT _POP 29FflJ4flJ

FLASH ROM .
R;;4 l 18~ Al8

R345 Al7
~ Al5

~ Al5
Al4

28 Al3
4 Al2

25 All DQ7 ~
~ AH'l DQ5

~ t==* A9 DQ5
A8 DQ4
A7 DQ3 ~ :F+ A5 DQ2 ~ A5 DQl ~ F==t A4 DQ0
A3

~ A2

~ Al
" 12 A0

22 CE
24 OE
31 WE

V55

1
GND

IBM FLASH ROM + ID SEL
~ 5lZEIREVlSION DRWNG PART NUMBER

05/01/94 B A

5HEET21 OF 22

3 I 2 I 1

D

I-

C

l-

B

r-

A

--i
:::J'"
(I)

0'>
01 o
~
0.:

CO
(I)

()
:::J'"

"5"
en
$2.

8 I 7 I 6 I 5

D

!.~

(IN)
f-

C

~~
y

r-
1

N 0. 0151.F

~ II

~ 2~~ 1\ ~

B COI'P COL

~
LTl431C58 REF 8 VDD

t.. 4 RTOP RMID r 7
:J

;T GND-5 GND-F ~.~

r- ~I

A

8 I 7 I 6 I 5

I 4 J

MJE2955

3 :t C 2
E

~.> i
C1J C1J

lSi > ~:>
'<t

2222A

B-t:C
3

E

-
GND

1;1 ~1
(1)
(1)

-=:.=
GND

I 4 I

3 J 2

+~.~v

(OUT>

IBM
~

06/01/94

3 I 2

1 1

3.6 REG

~IZErVISION lJRI.tlG PART !'UMBER

B A

Sl-E
ET22 OF 22

I 1

D

-

C

-

B

-

A

-f
-::J
CD
0>
01
o

~ a:
CO
CD
()
~

"5'
CJ)

~

The 650 Bridge Chip Set

264

Appendix C
653 Buffer Details of Operation

C.1 653 Buffer Highlights
• Companion chip to IBM27-82654 PCI Bridge Controller
• Address and data buffer/multiplexer for CPU, memory, and PCI buses

• 64-bit CPU data bus
• 32-bit CPU address bus
• 64-bit memory data bus
• 12-bit memory address bus
• 32-bit PCI multiplexed address and data bus

• Generates PCI parity for the PCLAD lines
• Presents one load to the PCLAD lines
• OHz to 33MHz PCI bus frequency
• Low power

• Static operation (no clock for most circuits)
• Less than 400mW active power

• 3.3V or 3.6V power supply (timings differ)
• 5V TTL-compatible I/O
• PCI drivers are compliant with PCI Specification, Revision 2.0
• 304-pin quad flat pack, 0.8 micron IBM CMOS4LP technology

C.2 653 Buffer Pin Descriptions
The # symbol at the end of a signal name indicates that the active or asserted state of the signal
occurs with a low voltage level. Whenthe # symbol is not present after the signal name, the signal
is asserted with a high voltage level.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active, regardless of whether that level is represented by a high or low voltage. The term ne­
gated means that a signal is inactive. The term deasserted is also used to indicate a signal that
is negated.

The following terms are used to describe the signal type:
in Input is a standard input-only signal.
out Output is a standard active driver
I/O Bi-directional

265

The 650 Bridge Chip Set

654
Controller

653
BUFFER

CPU Bus
CPU_DATA_DE#
CPU_ADDR_DE#

LE_MDDE_SEL#

) CPU 1--tE(~::;~--t CPU_DATACO:63J

) Interfo.ce l-----+EI<~)~---t CPU_ADDRCO:31J
1-----)3>I------l I---+EI<~)~---t T S I Z CO: 2]

BURST _CLK# I-------::)~ L ~ l ~
RDM_SEL# ,,0 t I " ~ 81 X

-

ROM
~Addre55
~ Do. to.

ADDRHI/DA T ALD I------:)~__t - PC I Bus
PC I _ 0 E # I------:)~__t P C I t-----fE-(--7-::;....1....---; PC I _ A D C 31: 0]

NO_TRANS) Interfo.ce I--IE-/'-----IPCI eLK
L _ P C I _ D A T A # 1-----)3>I------l "'-

PC I _ A D _ PAR I---~(---+-------I I--IE-(-----I CDNTIG_ID
'--------, M, - REGISTER BIT

U DRAM X _
RASHI/CASLD" 1--I--)~--tMEM_ADDR[11:0J

MEM DATA DE#; t-----fE-(--3)------tMEM_PARC7:0J
MEM~PAR_GDDD I---~<---+----t Me M 0 r y t-----tE(~::;~------t MEM_DAT AC63:0J

MEM_PAGE_HIT# I---~<---+----t Control

L _ ERR _ ADD R # i-=*'------=)~-l
ALL_DNES_SEL# I-------=)~-l
CPU_DATA_SEL# I-------=)~__t

PCI_SEL# I-------=)~__t

CPU_ADDR_SEL# I-------:::;~--t
ERR _ ADD R _ S E L # 1------')3>I------l

REF RES H _ S E L # 1-----)3>I------l

MUX
Control

I---+E(:----------l DR A M X 9 H I / X 10 L 0

REGISTER BIT

SYSTEM PCB

IE-(--__t T EST #
IE-(-. ---i VDD

I-----IGND

ME M _ D A T A _ S E L # 1--;)7I-L~-----..-l * Vio. externo.l
logiC.

Figure C-1. 653 Buffer Pin Attachments

266

The 650 Bridge Chip Set

C.2.1 60X CPU Bus Interface Signals
Table C-1 describes the signals that interface the 653 Buffer to the 60X CPU bus.

Table C-1. 653 Buffer Signals-60X CPU Bus Interface

Signal Name Type Description

CPU_ADDR[0:31] 1/0 The 60X CPU address bus. The pin names of the 653 Buffer match the big-endian 60X
CPU bus names, but these signals are renumbered in little-endian order as they pass
through the 653 Buffer transceivers as cpu_addUn[31 :0] (inputs), and
cpu_addr_out[31 :0] (outputs). All internal 653 Buffer buses use little-endian
nomenclature. See Section C.5.5.

CPU_DATA[0:63] 1/0 The 64-bit60X CPU data bus. The 653 Buffer pins are numbered in big-endian 60X CPU
bus order. CPU_DATA[0:31] connect to the 60X CPU signals DH[0:31].
CPU_DATA[32:63] connect to the 60X CPU signals DL[0:31].
The names of these signals are changed at the CPU data byte lane swappers (see
Section C.5.21), but the significance of the bits within each byte is unchanged (for
example D3h remains D3h). This bit renumbering matches the names of the 60X CPU
data lines to the names of the PCI bus and memory data lines.
If the system is operating in little-endian mode (LE_MODE_SEL# is asserted), the byte
order is reversed by the swappers as data leaves or enters the 60X CPU from memory
or the PCI bus. If the 60X CPU is in big-end ian mode, there is no byte reordering.

TSIZ[0:2] in 60X CPU bus transfer size-number of bytes. The 650 Bridge supports transfers of 1 ,
2, 3, 4, 8, and 32 bytes. When the system is operating in big-end ian mode
(LE_MODE_SEL# is asserted), the 653 Buffer unmunges addresses generated by the
CPU based on the transfer size. See Section C.5.6.

C.2.2 System Memory Interface Signals
Table C-2 describes the signals that interface the 653 Buffer to system memory.

Table C-2. 653 Buffer Signals-System Memory Interface

Signal Name Type Description

MEM_ADDR[11 :0] out Memory address bus, 12 bits, multiplexed, little-endian. While RASHI/CASLO is
high, the MEM_ADDR lines contain row addresses selected from the internal data
bus. While RASHI/CASLO is low, these lines contain the column addressesselectecl
from the internal data bus.

MEM_ADDRO_B out A duplicate of MEM_ADDR[O]. (Required by some SIMMs.)

MEM_DATA[63:0] I/O 64-bit memory data bus, with bit 63 = most significant bit. These signals are
numbered in little-endian order.

MEM_PAR[7:0] 1/0 8-bit memory parity bus, bit 7 = most significant bit. Bit 7 corresponds to
MEM_DATA[63:56]. Even parity is generated and written on memory write cycles.
Parity is checked on memory read cycles.

267

The 650 Bridge Chip Set

C.2.3 PCI Bus Interface Signals
Table C-3 describes the signals that interface the 653 Buffer to the PCI bus.

Table C-3. 653 Buffer Signals-PCI Bus Interface

Signal Name Type Description

PCLAD[31 :0] I/O PCI address and data bus, 32 bits, multiplexed address and data. The PCLAD bus is
numbered in little-endian order.

PCLCLK in PCI clock. PCLCLK is used in the 653 Buffer to time the PCI data hold and address hold
(demultiplexer) latches and the PCI Address/Data output multiplexer.

C.2.4 654 Controller Interface Signals
Table C-4 describes the signals that interface the 653 Buffer to the 654 Controller.

Table C-4. 653 Buffer Signals-654 Controller Interface

Signal Name Type Description

ADDRHIIDATALO in PCI address and data bus phase indicator, driven high by the 654 Controller to
prepare the 653 Buffer for a PCI address phase, and driven low to prepare the 653
Buffer for a PCI data phase. (The PCLAD bus is a multiplexed address/data bus).

ALL_ON ES_SEL# in All ones select, asserted by the 654 Controller to the 653 Buffer to place all one-bits
on the 653 Buffer internal data bus. ALL_ONES_SEL# is used during PCI
configuration read transactions to return 64 one-bits to the CPU data bus when no
PCI device responds. See Section C.5.22.

CPU_ADDR_OE# in CPU address output enable. While asserted, the 653 Buffer drives the internal
address bus to the 60X CPU address bus. This allows snooping during PCI accesses
to system memory.

CPU_ADDR_SEL# in CPU address select. While CPU ADDR SEL# is asserted or no other address
select input is active, the 653 Buffer uses the 60X CPU address bus as the source
of address information for a transaction. The CPU address hold latch is held
transparent, the CPU burst counter (see Section C.5.B) is enabled to count, and the
address MUX places the address from the CPU (via blocks 6, 7, and 8) on the internal
data bus. After power up, this signal must be asserted and deasserted by the 654
Controller before any bus cycles are initiated to initialize the CPU burst counter.

CPU_DATA_OE# in CPU data output enable. While CPU_DATA_OE# is asserted, the 653 Buffer drives
the contents of the 653 Buffer internal data bus onto the 60X CPU data bus.
CPU_DATA_OE# is asserted by the 654 Controller during CPU to system memory
reads and CPU to PCI reads.

CPU_DATA_SEL# in CPU data select. While CPU_DATA_SEL# is asserted or no other data select input
is active, the 653 Buffer uses the 60X CPU data bus as the source of the data for a
transaction. The data MUX (see Section C.5.22) places the data (byte-swapped in
little-end ian mode) from the CPU data bus onto the internal data bus for transmission
to the PCI bus or system memory.

ERR_ADDR_SEL# in Error address select. While ERR_ADDR_SEL# is asserted, the contents of the error
address latch (Section C.5.14) are placed on the internal data bus by the data MUX
(Section C.5.22), forthe CPU data bus. The 32-bit address is driven onto both halves
of the 64-bit 60X CPU data bus.

268

The 650 Bridge Chip Set

Table C-4. 653 Buffer Signals-654 Controller Interface (Continued)

Signal Name Type Description

L_PCLDATA# in Latch PCI data. While L_PCLDATA# is not asserted and the PCL CLK is low, the PCI
data latch is transparent to the PCLAD bus. When data is required from the PCI bus
(during a CPU to PCI read or a PCI bus master to system memory write), the 654
Controller asserts this signal following the rising edge ofthe PCLCLK for the current
data phase. This latches the current data phase data into the PCI data latch. The
4-byte data is then duplicated as an a-byte quantity, and placed on both halves of the
a-byte internal data bus. See Section C.5.14.

LE_MODE_SEL# in Little-endian mode select. LE_MODE_SEL# is asserted by the 654 Controller to set
the 653 Buffer to little-end ian mode. While LE_MODE_SEL# is asserted, CPU data
byte lanes are swapped (see Section C.5.21) and the CPU addresses are unmunged
(see Section C.5.6). While LE_MODE_SEL#is negated, the CPU sourced data is not
swapped and CPU-sourced addresses are not unmunged. This signal can only be
changed between bus cycles.

MEM_DATA_OE# in Memory data output enable. While MEM_DATA_OE# is asserted, the 653 Buffer
drives the 64-bit internal data bus and its eight parity signals onto the memory data
bus and the memory parity bus. MEM_DATA_OE# is asserted by the 654 Controller
during memory write cycles.

MEM_DATA_SEL# in Memory data select. MEM_DATA_SEL# is asserted by the 654 Controller during a
memory read transaction. When MEM_DATA_SEL#isasserted, the653 Buffer uses
the memory data bus as the source for the current transaction. The data MUX
(Section C.5.22) places the memory data onto the internal data bus for the PCI bus
or CPU data bus.

MEM_PAGE_HIT# out Memory page hit. The page hit comparator (see Section C.5.9) compares the
address on the 60X CPU address bus to the address of the previous memory access
(from any source) in the page hold latch (see Section C.5.16). The 654 Controller
uses this signal to detect DRAM page hits.

MEM_PAR_GOOD out Memory parity good. This is an unqualified parity check output from the 653 Buffer.
It is derived from the current contents of the memory data and memory parity buses.
This signal becomes valid one delay time (t41) following the assertion of valid data
and parity signals by the system DRAM. Additionally MEM_PAR_GOOD is forced
high while the MEM_DATA_SEL# input is high

NO_TRANS in No translation. NO_TRANS forces no translation of the two most-significant bits of
the address from the CPU or PCI buses. During most cycles mastered by the 60X
CPU (see Section C.5.12) or a PCI bus master (see Section C.5.3) address bits
[31 :30] are translated to implement the system memory maps. To defeat this
translation during PCI bus master cycles initiated by the I/O bus bridge for an ISA bus
master, the 654 Controller asserts NO_TRANS to the 653 Buffer.

PCLAD_PAR out PCI address/data parity, even parity across the PCLAD[31 :0] lines only. This is an
unqualified signal that is only valid when the PCLAD bus is valid. The 654 Controller
combines PCLAD_PAR with PCLC/BE[3:0] to generate PCLPAR, the PCI even
parity bit.

PCLOE# in PCI output enable. While PCI_OE# is asserted, the 653 Buffer drives the internal
address or data buses onto the PCI AD bus. PCI OE# is asserted whenever the
CPU has busmastership except during the data phase of reads from the PCI. Also
see the ADDRHI/DATALO signal.

269

The 650 Bridge Chip Set

Table C-4. 653 Buffer Signals-654 Controller Interface (Continued)

Signal Name Type Description

PCLSEL# in PCI select. While PCLSEL# is asserted by the 654 Controller, the 653 Buffer treats
the PCI bus as the source of addresses and data. While asserted it allows the
following operations:

During PCI bus master transactions, addresses of PCI bus master transactions to
system memory are latched into the PCI address latch (see Section 9A.1). The PCI
burst counter (see Section C.5A) is enabled to operate on these addresses during
PC I bursts. The address M UX places these PC I sourced addresses onto the internal
address bus.

During PCI bus master writes to system memory and during 60X CPU reads from the
PCI bus, the 654 Controller causes data sourced by the PCLAD bus to be placed
onto the 653 Buffer internal data bus by the data MUX (Section C.5.22) by asserting
PCLSEL#.

RASHI/CASLO in RAS# high, CAS# low. While RASHI/CASLO is driven high, the 653 Buffer asserts
the row (RAS#) address onto the memory address lines, and the page hold latch is
transparent. The falling edge of RASH I/CASLO latches the row address into the page
hold latch. While RASHI/CASLO is low, the column (CAS#) address is driven onto
the memory address lines.

REFRESH_SEL# in Refresh cycle select. Configures the 653 Bufferto accomplish a DRAM refresh cycle.
While low, the 653 Buffer places the refresh counter address on the internal address
bus. Then the row/column address MUX places this row address on the memory ad-
dress bus (RASH I/CASLO must be high). Then the 654 Controller strobes the RAS#
lines to refresh the DRAMs. The rising edge of REFRESH_SEL# increments the re-
fresh counter.

BURST_CLK# in ROM and burst counter clock. While ROM_SEL# is active (during ROM accesses)
the falling edge of BURST _CLK# increments the ROM read burst tounter (see
Section C.5.13) and shifts the data in the ROM read shift register (see Section
C.5.19).WhileCPU_ADDR_SEL#isactive(during60XCPUmasteredtransactions)
the CPU burst counter (see Section C.5.B) is clocked. While PCLSEL# is active or .
if ADDRHI/DATALO is low (during PCI bus mastered transactions) the PCI burst
counter (see Section C.5.4) is clocked.

ROM_SEL# in ROM select. The 654 Controller asserts ROM_SEL#during a ROM burst read cycle.

C.2.5 External Logic and System Interface Signals
Table C-5 describes the signals that are used to interface the 653 Buffer to the rest of the system
via external logic, command bit storage elements, and the test interface.

Table C-5. 653 Buffer Signals-External Logic and System Interface

Signal Name Type Description

CONTIG_IO in Contiguous I/O. CONTIG_IO is asserted high by external logic to enable direct
mapping of addresses from 2G to 2G + BM. When CONTIG_IO is driven low, it
enables non-contiguous addressing in the 2G to 2G + BM address range.
Non-contiguous I/O is a mapping of the low 32 bytes of each 4kB page of CPU
memory space to 32 bytes of PCI/ISA 10 space. See Section C.3.4.

DRAMX9HI/X10LO in DRAM type, asserted high for addressing DRAMs with 9 column address bits (x9
mode), lowforx1 0 mode. This signal is used by the refresh counter (Section C.5.1 0)
and the row/column address MUX (Section C.5.15) to format the addresses
presented to the DRAMs.

270

The 650 Bridge Chip Set

Table C-5. 653 Buffer Signals-External Logic and System Interface (Continued)

Signal Name Type Description

L_ERR_ADDR# in Latch error address. The address on the 653 Buffer internal address bus is latched
into the 653 error address latch on the falling edge of L_ERR_ADDR#, which can be
derived by external logic from the 654 Controller signals TT _ERR#,
MEM_PAR_ERR# and, optionally, any other signal indicating an error condition
requiring the address to be latched. L_ERR_ADDR# must be held asserted to hold
the contents of the latch. Any signal used with TT _ERR# and MEM_PAR_ERR# to
derive L ERR ADDR# must also be held until after the latch is read. See Section
C.5.14. - -

TEST# in IBM LSSD test mode input. Tie to VDD with a 10k ohm resistor during normal
operation .

. C.3 The 653 Buffer
The IBM 27-82653 (653 Buffer) is one part of the IBM 27-82650 PowerPCTM 60X CPU to PCI
Bridge Chip Set. The 653 Buffer interconnects the 60X CPU 32-bit address arid 64-bit data buses
with the PCI 32-bit multiplexed address-data bus. The 653 Buffer also generates the address and
data buses to DRAM memory. This chip operates underthe control of the IBM 27-82654 chip (654
Controller) which decodes all cycle types and asserts output signals to the 653 Buffer to select
address and data paths.

Most timing in the 650 Bridge is controlled by the 654 Controller. Output timings of the 653 Buffer
are usually combinatorial-they are measured from a data or address fnput or a path control sig­
nal, not a clock. Switching the PCLAD line outputs from the address phase to the data phase is
an exception-it is measured from the PCI clock. PCI addresses and data are latched with the
PCI clock because the PCI standard specifies zero hold time on inputs.

Although the 653 Buffer is used primarily in conjunction with the 654 Controller, it could be used
with a different controller in order to design a bridge for a different 64-bit processor. Or it could
be used to design a special-application bridge for a PowerPC processor.

This document describes the address and data paths and the control signals in two levels of detail.
In the first level, enough detail is presented to enable a designer to utilize the chip with the 654
Controller. The second level of detail is for designers who need a much deeper understanding of
the paths and control signals in order to design a controller or to make a special adaptation.

C.3.1 Architectural Overview Showing Address and Data Flow
This section gives an overview of the architecture of the 653 Buffer. Figure C-2 is a block diagram
of the address flow within the 653 Buffer. Figure C-3 is a block diagram of the data flow within
the 653 Buffer. These diagrams explain function and are not intended to show the actual internal
chip construction. For example, there are no three-state devices in the 653 Buffer except at the
off-chip drivers.

The discussions in this section refer to the block diagrams. Address and data flows are illustrated
in reference to functional cycles. Note that the address and data portions interconnect so that the
diagrams together describe the complete 653 Buffer chip. Within this section, references to por­
tions of the block diagrams use a block number within brackets, like [x], to refer to the portion of
the diagram with the corresponding number.

271

."
to"
t::
""t
CD

?
!'l
0')
(II
w
m
t:: --CD
""t

» a. a.
""t

N CD
.....:a tb
N tb

."
0" :e
."
t::
::J
n -0"
::J
at
c
i"
cc
""t
Q)

:I

PCI_AD [31,24] ~ pCI_Qd_ln[3I'24]
pCI_Qd_out[31'24]

PCLOE#

ROM_SELlI • IT]
PCCAD [23,0] pcl_Qd_out[23,0]

PCi_Qd_in[23,0]

PCI-CPU
PCI ADDR ADDRESS
LATCH TRANSLATE

[29,0]

ADDRHI:;~T~~~ ~ : tt rBL-J
PCI SEL#~ ; ~

NO_ TRANS 0'--';')>-,.-7-_ --------

PCI ADD
BURST
COUNTER

BURST _CLK# 0) i c:t>

L_ERR_ADDR# 0---7

CONTIG_IO 0---7
CPU

ADDRESS
UNMUNGE

CPU ADDRESS
HOLD LATCH

CPU BURST
COUNTER

~~-----------,.----------rd

LCMODCSEL# 3 EN
TSIZ[o,2J SIZE

CPU_ADDR
[0,31]

CPU_ADDR_OE#

[2,0] IN ~UTI--I ----,---1

[31,3]

cpu_Qddr _In

cpu_Qddr _out

PAGE HIT
COMPARATOR

RASHIICASLO 0---7
,[30,12] IA

MEM_PAGE_HIT# n (d

DRAMX9HI/XIOLO n>---?)~-:---------....-------l

REFRESH_SEL# n) I>

REFRESH COUNTER !ill

[30,12]

PCLSEL# >--------------.
CPU_ADDR_SEL# OPEN

ROM_SEL# RST ICNLEN
BURST _CLK# CL/INC

CPU-PCI ADDRESS
TRANSLATE [g]

NO_ TRANS TRANS
[31,30] IN OUT

CONTIG_IO) IsICi7ti

cpu_Qddr
_In [31,23]

[29,5] IN. OUT

[1,0] IN - OUT
FORCEOO

[4,2]

[4,0] D L8cC pCi_Qcldr _out
[31,S] D - LAT [31,0]

ROM READ
BURST [g]
COUNTER

L_ERR_ADDR#) ERROR ADDRESS
REFRESH SEL# 5l LA TCH

CPU_ADDR_SEL# >---, I--_______ ~ err:..Qddr
PCLSEL# >--. 1 [31,0]

ADDRHI/DATALO

ADDRESS
MUX [ill

INTERNAL
ADDRESS
BUS

ROVI/COLUMN
ADDRESS MUX

1 I ALc;j'lcJ
[24,3] lr 1 0 0,0,0,AUl,3] J~ MEM_ADDR

011 A[24,13] r r ~ [1100]
01 0 0,A24,A[12,3]

DRAMX9HI/XIOLO)>----- --------'
RASHIICASLO)>----- --------1

~

[31,0]

[30,12]

[30,12]

OPEN

[ill
PAGE
HOLD
LATCH

See Section C.S.x for data on box G

--I
::::r
CD
0'>
01 o
gJ
c:

<0
CD

o
::::r

-a"
en
m.

"T1
cO'
C
""t
(I)

?
~
0)
U1 w
a:J
c

== (I)
""t

N 0
......:a

Q,)

w -Q,)

"T1
0'
== "T1
c:::
::::J
(") -0'
::::J
e!-
O
iii'
(Q
""t
Q,)

3

ERR_ADDR_SEL 110---7
ALL_ONES_SELIl0---7
CPU_DATA_SEL#Q---7
MEM_DATA_SELIl0---7

L_PCUATA#'

d . [31.0]
pCI_o. _In

PCULK

[31.24] BYTE
pCI_o.d_in 7 [63.56]
ROM_SEL# 6 [55:48]

BURST _CLK# 5 [47140]

RDM DATA
4 [39'32]
3 [31.24]

SHIFT 2 [23.16]

REGISTER 1 [15.8]

~
0[7.0]

ROM_DATA 64

':l? :&. (.A

err _o.ddr

LE_MODE_SEL#>>--------,

BE BYTE SIJAP
f2i1 MSB [0.7] 0 ,-------7

~ [8.15] 1 \/ CPU DATA [16.23] 2

BYTE LANE [24:31] 3 SIJAP

S'W APPER [32.39] 4 / \
[40.47] 5
[48:55] 6

LSB [56:63] 7 ----7

[63.0]

LE
o [7.0] LSB
1 [15'8]
2 [23'16]
3 [31:24]
4 [39.32]
5 [47:40]
6 [55'48]
7 [63:56] MSB

BYTE

- ~ (cpu_do.to._out

MI?M_do.to._In [63.0]

---+-----«MeM_do.to. out

[7.0] (MeM_po.r _out

MeM_po.r _In [7'0]

64

...J...J...J...J
WWWW
(1)(1)(1)(1)

I I I I
##~(I)<t<t
...J...Ji=lWI-I­
wWi=lz<t<t

• (1), (1), <t1.OIi=lIi=l,
..... ~~...J::J~
uO~...Ja.w
a.~W<tU~

64

DATA MUX
@1

ADDRHIIDAT ALO
PCCCLK

~
PCI ADD/
DATA MUX

pCi_o.ddr _out> __ ",n'v" II) Ii [31'0]) pCi_o.d_out

t:jH
J>Z
-j-j

J>rl
ilJ

tJjZ
CJ>
(/)1

LE_MODE_SEL#>--

[63.32]

[31.0]

PCI DATA
MUX ~

[63.0]

LE
LSB [7.0]

[15.8]
[23.16]
[31.24]
[39.32] 4
[47.40] 5
[55.48] 6

MSB[63.56] 7
BYTE

v
SIJAP

6
SIJAP

PCI AD
PARITY
GEN ~

I----);;>-<OPCCAD_PAR

[0.63]) cpu_do.to._out

BE
o [0.7] MSB
1 [8.15]

2 [16:23] CPU DA T A
3 [24:31] BYTE LANE
4 [32:39]
5 [40.47] S'W APPER ~
6 [48.55]
7 [56:63] LSB

BYTE

~ [63'0]) MeM_do.to._out

[63'0] 1--____ ..:[.:...7 • .:.:0l~) MeM_por _out

MEM_DATA_SEL#>>---,.--------,

MeM_do.to._In

~

MEMDRY DATA
PARITY CHECK

+'>) OMEM_PAR_GOOD

See Section C.S.x for data on box I x

--I
::::r
CD
0'>
01
o
~
a:
co
CD
()
:::T
is'
(J)

~

The 650 Bridge Chip Set

. C.3.2 Two High-order PCI Address Bits-NO_TRANS Pin
The CPU-PCI ADDRESS TRANSLATE block [12] on Figure C-2 receives its inputs from the in­
ternal address bus. During 60X to PCI cycles, this address corresponds to the address emitted
by the 60X processor. If NO_TRANS is low, the two high-order signals are forced to OOb. This
function supports the memory mapping scheme of the PowerPC Hardware Reference Platform.
(All types of PCI transactions have addresses in the range of a to 1 G.

Note that this address translation only occurs when the 60X CPU accesses the PCI bus and it
can be defeated by the NO_T~ANS input pin.

C.3.3 Two Low-Order PCI Address Bits
In order to conform to the requirements of the PCI revision 2 specification, the low-order two ad­
dress bits are set to OOb in certain circumstances by the CPU-PCI address translate block [12]
on Figure C-2. This block [12] decodes the input address from the CPU (cpu_addr_in[31 :23]) and
modifies these two bits as shown in Table C-6.· .

The controller drives the 653 Buffer inputs so that the output of this block is driven to the PCLAD
lines only during the address phase of a PCI cycle.

Table C-6. Low Order PCI Address Bit Settings

Input 60X Output at block [12]
Address of bits[l :0] Cycles Supported at the 653 Buffer

Oto 2G Same as input Broadcast of system memory address to AD
lines

2G to 2G + 8M Same as input PCII/O

2G + 8M to 2G + OOb PCI Configuration
16M

2G + 16M to 3G Same as input PCIIIO

3G t04G -8M OOb PCI Memory

4G-8Mt04G' OOb* Transmission of ROM address using AD lines
Set to OOb, this increments durin g ROM read 0 eration. p

C.3.4 Contiguous I/O Pin
When the CONTIG_IO pin is high, 60X CPU addresses in the 2G to 2G + 8M address range are
mapped directly as PCI 110 transactions from a to 8M. (See Table C-6.)

When the CONTIG_IO pin is low, non-contiguous I/O is activated. Non-contiguous I/O is an op­
tional mode of operation where the memory-mapped address space corresponding to the 64K
ISA address space can be remapped to the 8M region from 2G to 2G + 8M. Within this 8M region
each 32 bytes of ISA address space is assigned to a different 4K page of CPU address space
so that protection attributes can be assigned to the 32 ISA addresses. Figure C-4 shows the ad­
dress transformation that occurs when the CONTIG_IO pin is low, activating non-contiguous I/O.

The CPU-PCI ADDRESS TRANSLATE block [12] decodes the address on the internal address
bus (which corresponds to the CPU input address for 60X to PCI cycles). When the address is
in the range from 2G to 2G+8M and CONTIG_IO is low, this block shift-translates its output as
shown in Figure C-4.

274

The 650 Bridge Chip Set

If CONTIG_IO is high, the shift-translate illustrated above does not occur and all inputs (29:0) are
passed to the outputs. This mode supports operating systems that do not require 1/0 port protec­
tion. The two high-order and two low-order outputs are controlled as explained in Section C.3.2
and Section C.3.3 respectively.

31

6 30

5 29
28

Depends on NO_TRANS
~I

31
30
29
28

(See Section C.3.2)

3 27
26

27
26 Forced to zero

25 25

n 24
23

t 22
e 21

24 P
23 C
22

I 21

r 20

n 19
18

a 17
I 16

20
19 I
18 I
17

0 16
15 15

A 14
13

d 12
d 11

14 A
13 d
12

d 11

--

r 10 10 r

e 09
08

S 07
S 06

09 e
08 s
07
06 S

Discarded

05 05

B 04
03

U 02

04
03
02 ----~-----------~~~I ____ _

Depends on cpu_addr_in[31 :23]
___ -' --~----":"------------i~~I __ _

(See Section C.3.3)
S 01

00
01
00

A31 to A30 are passed subject to NO_TRANS. A29 to A 12 are shifted to A22-A5. A 11 to A5 are discarded. (On the
input side A2 to AO are unmunged in LE mode.) A29 to A23 are set to zero, and A 1 to AO may be forced to zero.

Figure C-4. Non-Contiguous PCI I/O Address Transformation

C.3.S 60X to ROM Read Cycles
Figure C-5 shows how the 653 Buffer supports 8-bit ROM, EPROM, or flash devices connected
to the AD bus.

The AD bus driverl receivers [1] are split into two groups so that the address ca'n be driven to the
ROM device on PCLAD[23:0] while data is received on PCLAD[31 :24]. Address flow is generally
the same as described for CPU to memory address except that only PCLAD[23:0] are driven from
the internal address bus. Also, the low-order address bits latched into the ROM read burst counter
[13], are initially set to OOOb regardless of the state of the input address lines.

Receivers for AD[24:31] are active in this case. When the controller has allowed enough time for
ROM read data to be valid, it must pulse BURST _CLK# low. This low-going edge clocks the data
into ROM data shift register [19] on Figure C-2 and shifts all previous data bytes down one stage.

275

The 650 Bridge Chip Set

The same edge also increments the rom read burst counter [13] of Figure C-2 by a count of one
in order to present a new address to the ROM.

After eight pulses on BURST_CLK#, 64 bits of data have been collected in [19]. These data bits
are passed through multiplexer [22] to the internal data bus, through byte swap [27] and to the
CPU data bus at [100]. The controller must not activate PCLFRAME# or other PCI control lines
during ROM read or write.

PCI_AD[31 :00]
[23:00] Address

A 0

ROM

[31 :24] Data

Figure C-S. 60X to ROM PCI_AD Flow

C.3.6 60X to ROM Write Cycles-Address and Data Flow
A flash memory or other writeable device must be connected as shown in the ROM read explana­
tion. The data and the address must be encoded in the data field of the 4-byte store instruction
which the controller decodes as a ROM write cycle. The address lines are immaterial to the 653
Buffer in this case. The 32 bits of data (either the high or low half of the 60X data bus is meaningful
depending on the write address) propagates through byte swapper [21] to the internal address
bus. The controller must activate CPU_DATA_SEL#, not ROM_SEL#, in order to propagate the
data field to the internal data bus.

The meaningful 32 bits (selected by pci_addr_out[2]) propagate through [24] and [25] to the
PCLAD lines at [1]. All 32 bits must be enabled to drive the AD lines in this case.

C.3.7 Error Address Latch
This register, which is shown on Figure C-2, can be used to support the trapping of certain errors
such as a memory parity error or an unsupported alignment. The register is normally open. When
the controller senses an error it can change the state of L_ERR_ADDR# so that the address cur­
rently on the internal address bus is held. Later when the CPU runs a read cycle at some desig­
nated address, the controller can activate ERR_ADDR_SEL# at multiplexer [22] in order to pro­
vide the trapped address to the CPU.

C.3.B Refresh Address Generation
The REFRESH counter is shown at block [10] of Figure C-2. The controller activates RE­
FRESH_SEL# approximately every 15 usec when there is no other bus activity. The output of the
refresh counter flows through multiplexer [11] to the internal address bus and to the ROW/COL­
UMN multiplexer [15]. When the controller changes REFRESH_SEL# to high, the 12-bit refresh
counter increments. The counter wraps to zero following a maximum count. .

C.3.9 All_Ones Generator
The 653 Buffer has an all_ones generator shown as an input to block [22] on Figure C-2. This
device drives all of the internal data lines to a logical high Voltage. It is useful in situations such

276

The 650 Bridge Chip Set

as when the CPU tries to read a memory address which is out-af-range. Activating
ALL_ONES_SEL# provides all one-bits as a response to a CPU or PCI read.

C.3.10 Page Hit Generation
The 653 Buffer contains logic, shown on blocks [9] and [16] of Figure C-2, to compare an incom­
ing memory 4K (or 8K if DRAMX9HIIX1 OLO is low) page address with the last page address. Each
time a new row address is output to the memory, it is latched into the PAGE HOLD latch [16] when
the controller drives RASHI/CASLO to the low state. Bits (30:12) are saved. Hence, the 650 sup­
ports system memory up to 2G.

Whenever the CPU presents a new address atthe address input pins, the comparator [9] indi­
cates if the new address compares to the page address in the hold latch [16]. In the case of a new
PCI memory address, the comparator works in the same way because the controller enables the
incoming PCI address to be broadcast to the CPU address for snooping.

C.3.11 Special Considerations
Following power up, the 653 Buffer input CPU_ADDR_SEL# must be asserted and deasserted
at least once to initialize the CPU burst counter to a known state. The 654 Controller performs
this task.

All of the pins of the 653 Buffer will be tri-stated following the assertion of a TTL low state on the
TEST#, D11# (L_ERR_ADDR#), and D12# (ERR_ADDR_SEL#) inputs. Refer to the IBM LSSD
Test Procedure Specification (CMOS4LP book).

C.3.12 Warm Reset
The 653 Buffer provides an input and output pin to synchronize and hold a warm boot reset to the
CPU. External logic asserts SRESET _REQ# to request a warm reset and the 654 Controller re­
sponds by asserting SRESET _CPU# to the 60X CPU.

C.4 Detailed Analysis of Address and Data Flow
C.4.1 60X to Memory Cycle Address Flow-Read or Write
60X addresses enter the chip at [5] on Figure C-2. The pins are named to correspond to 60X no­
menclature, but internally the signals are named with·little-endian notation. The three low-order
signals are applied to the address translate [6] where they transformed in little-endian mode or
unchanged in big-end ian mode. This is explained in Section 5.3.3.

The address enters the CPU burst counter[8]. The purpose of this counter is to increment bits 4:3
(60X A[27:28]) during CPU burst cycles. These two bits can start at any value and only these two
bits are incremented when the BURST _CLK# input falls. This implements CPU sequential burst­
mode addressing with the starting address on any 8-byte boundary.

C.4.2 60X to Memory Cycle Data Flow-Write
60X data is presented simultaneously with the addresses and it flows to byte lane swapper [21]
on Figure C-3. The naming convention on the pins is big-end ian in order to correspond to the 60X
convention, but signals in the interior of the chip are named with little-endian conventions. The
byte lane swapper swaps lanes in little-endian mode and passes the data lines without swap in
big-end ian mode. In all cases the swapper maintains the significance of bits within a byte. The
operation of the swapper is explained in Section C.5.21.

The 64 bits of write data flows to the internal data bus when the 654 Controller activates
CPU_DATA_SEL# at multiplexer [22] and the data signals are applied to the memory drivers
[101]. Note that eight bits of parity are generated at [28] and output along with the data.

277

The 650 Bridge Chip Set

C.4.3 60X to Memory Cycle Data Flow-Read
During a memory read cycle the memory data is input at receivers [101] and applied to data multi­
plexer [22]. The assertion of 654 Controller signal MEM_DATA_SEL# selects this memory data,
and the multiplexer places it onto the internal data bus. The 64 bits of data are applied to byte lane
swapper [27]. In little-endian mode the lanes are swapped as read data is passed through and
in big-endian mode no swap is made. In all cases the significance of bits within each byte is main­
tained. The operation of the swapper is explained more fully in Section C.5.21.

The output of the swapper is connected to the CPU bus drivers at [1 00] on Figure C-3. The incom­
ing data and parity are compared in MEMORY DATA PARITY CHECK [29] block to produce the
unqualified output signal MEM_PAR_GOOD.

C.4.4 60X to PCI Cycle Address Flow-Read or Write
60X addresses enter the chip at [5]. The pins are named to correspond to 60X nomenclature, but
internal signals are named with little-endian notation. The three low-order signals are applied to
the address translate [6] where they are transformed in little-endian mode or unchanged in big-en­
dian mode.

This transformation is explained in Section 5.3.3. Note that the same transform applies whether
the address is for 60X to memory or 60X to PCI cycles.

The address enters the CPU burst counter [7]. BURST _CLK# is not activated by the 654 Control­
ler since the 654 does not support 60X bursts to PCI so the output is the same as the CPU input
address. multiplexer [11] is gated by CPU_ADDR_SEL# in this case so that the address flows to
the internal address bus.

The CPU address on the internal address bus is applied to the ROM READ BU RST counter [13].
In this case the counter is open because CPU_ADDR_SEL# is active and all 32 bits flow through.
The outputs are applied to the PCI ADDRESS/DATA multiplexer [25] on Figure C-3. This multi­
plexer is controlled by flip flop [23] which is in a high state during the address phase of a 60X to
PCI cycle.

The external controller places the ADDRHI/DATALO input in a high state prior to the beginning
of a 601 to PCI cycle. The controller must change the ADDRHI/DATALO input to low prior to the
rising edge of the PCI clock that terminates the address phase so that flip flop [25] can toggle
multiplexer [25] to the data state.

C.4.5 60X to PCI Cycle Data Flow-Write
60X data is presented at the receivers[5] at the same time that addresses are presented. The data
flows to byte lane swapper [21] on Figure C-3. The operation of the swapper is explained in Sec­
tion C.5.21. Note that the same transformation is applied whether the 60X CPU accesses memory
or the PCI bus. I

The 64 bits of write data flow to the internal data bus when CPU_DATA_SEL# is asserted to multi­
plexer [22]. This data flows to the PCI data multiplexer [24], which passes either the high or low
32 bits of data to the PCI Address/Data MUX. If pcLaddress_out[2] is high, data bits [63:32] are
passed; if pcLaddress_out[2] is low, data bits [31 :0] are p~ssed. Note that the value of this internal
address bit is the result of the endian-mode low-order address transformation so it represents the
actual target PCI address in either endian mode.

The output of multiplexer [24] connects to multiplexer [25]. During the data phase of 60X to PCI
write transactions, multiplexer [25] is gated by flip flop [23] to pass the output of the PCI data multi-

278

The 650 Bridge Chip Set

plexer [25]. Flip flop [23] was explained in Section C.4.4. These outputs are connected to parity
generator[26] and to the PCI driver/receivers at [1]. AD parity is passed to the companion chip
so that it can generate PCLPAR.

C.4.S SOX to PCI Cycle Data Flow-Read
During the data phase of a 60X to PCI read cycle, the read data is received at driver/receivers
[1] on Figure C-2 and passed to the PCI data latch [17] on Figure C-3. Data is latched at the rising
edge of the PCI clock and held when the controller activates L_PCLDATA#. The 32 bits of latched
data are replicated into 64 bits in order to drive the 64-bit data multiplexer [22]. The same data
is present on the low-order 32 bits and the high-order 32 bits.

On this cycle the controller activates PCLSEL# in order to gate the replicated PCI read data
through data multiplexer [22] to the internal data bus. The internal data bus connects to byte lane
swapper [27].

In little-endian mode the lanes are swapped as read data is passed through. In big-endian mode
no swap is made. In all cases the significance of bits within each byte is maintained. The operation
of the swapper is explained more fully in Section C.5.21.

C.4.7 PCI Bus Master Cycles Address Flow-Read or Write
This section describes the address flow when the controller grants the PCI bus to a master other
than itself. For example when a SCSI agent becomes PCI bus master.

The PCLAD lines [1] carry address information on the first clock(s) of a PCI cycle. This address
is latched at the PCI ADDR latch [2] on Figure C-2 with the rising edge of the PCI clock. The con­
troller must assert PCLSEL# low and have ADDRHI/DATALO in a high state. It then must change
ADDRHI/DATALO to a low state to hold the address in [1], and it must hold the address in [2]
throughout the PCI to memory cycle.

The two high-order PCI address bits are modified by PCI-CPU address translate block [3] in order
to reverse the translation that occurs when the CPU accesses the PCI bus. This translation, which
can be omitted by asserting NO_TRANS, is shown in Table C-7. (MSB means most-significant
bit.)

Table C-7. PCI to 60X CPU and System Memory Address Translation

60X CPU Address SOX CPU Address
PCI Address (Source) NO_TRANS=O NO_TRANS = 1

MSB MSB MSB
A31 A30 RANGE AO A1 RANGE AO A1 RANGE

0 0 o to 1G 1 1 3G to 4G 0 0 OG to 1B

0 1 1G to 2G 1 1 3G to 4G 0 1 1G to 2G

1 0 2G to 3G 0 0 OG to 1G 1 0 2G to 3G

1 1 3G to 4G 0 1 1G to 2G 1 1 3G to 4G

The PCI address is latched in PCI ADDRESS BURST counter [4]. This counter passes bits (1 :0).
The rest of the bits beginning with bit 2 are incremented when the controller changes
BURST_CLK# to low. The controller drives BURST_CLK# low when the snoop or the memory

279

The 650 Bridge Chip Set

no longer needs the address during PCI burst cycles. The PCI address is gated through the AD­
DRESS multiplexer [11] when PCLSEL# is low. The PCI address on the internal address bus is
presented on the memory address lines in the same way as was explained in Section C.4.1.

The PCI address can also be presented to the 60X bus for bus snooping by activating
CPU_ADDR_OE# at block [5]. In the normal mode of operation, the 654 Controller does not acti­
vate a memory r/w cycle if the high-order PCI address bit is zero when it is on the PCI bus (set
to one after the translate). Snooping devices normally ignore the cycle if the highest order CPU
address line is one. PCI bus masters access system memory with PCI memory transactions ad­
dressed from 2G to 4G. These transactions are mapped to system memory and the 60X CPU
bus as transfers in the 0 to 2G range.

C.4.B PCI to Memory Cycles Data Flow-Write
This section describes the data flow on write cycles when the controller grants the PCI bus to a
. master other than itself. For example when a SCSI agent becomes PCI bus master.

The PCI data is latched at PCI DATA latch [18] on the rising edge of PCLCLK. The 32 bits of data
are replicated on both the high and low portions of the input to 64-bit multiplexer [22]. They are
enabled onto the internal data bus by PCLSEL#. The 64 bits, along with parity, are output to the
memory when the controller activates MEM_DATA_OE# at [102] on Figure C-3. .

There is no byte swap or low-order address translation in the path from PCI either to or from
memory. So the data order on the PCI and the memory are the same.

C.4.9 PCI to Memory Cycles Data Flow-Read
This section describes the data flow on read cycles when the controller grants the PCI bus to a
master other than itself. For example when a SCSI agent becomes PCI bus master.

When the controller recognizes a PCI to memory read, it must activate MEM_DATA_SEL# so that
data memory data entering the receivers at [101] on Figure C-3 can be gated through multiplexer
[22] to the internal data bus. From this point, 32 bits (high or low) are selected at multiplexer [24]
and flow through multiplexer [25] to PCLAD drivers [1] on Figure C-2.

C.5 653 Buffer Detailed Internal Descriptions
This section contains detailed explanations of the operation of each part of the 653 Buffer shown
in Figure C-2 and Figure C-3, which show the function of the 653 Buffer but not its ,actual internal
construction. The number of each subsection matches the block number of each part shown in
the figures.

C.5.1 PCI AD Transceivers
The PCLAD output drivers are enabled in two different groups (see Figure C-6) to allow the
PCLAD lines to be used to access the boot ROM device during ROM cycles. The upper byte (
AD[31 :24]) is enabled by PCLOE#, and the lower three bytes (AD[23:0]) are enabled whenever
either PCLOE# or ROM_SEL# goes active low.

280

ADDRESS ~

Boot
ROM
Device

DATA ~

f--l

U
CL

[31:24J

653
Buffer

[23:0J

The 650 Bridge Chip Set

>-----~ pCi_Qd_in [31:24J

pCi_O-d_out [31:24J

'--------.---(pel _ 0 E #

1-----< ROM_SEL#

pCi_O-d_out [23:0J

>-----~ pCi_O-d_in [23:0J

Figure C-6. PCI_AD Transceivers

C.S.2 PCI Address Latch
The purpose of the PCI address hold latch is to capture the address information from the PCI bus
during the address phase of a PCI transaction. This function is accomplished using a hold latch.

pcr ADDR
LATCH·

pCi_O-d_in To PCl -CPU
[31:0J >-------tD QI----~Address

121 TrO-nslO- tor PC I _ C L K)------, L::J

ADDRHl/DAT ALD)-------1

PCl_SEL#)------'

Figure C-7. PCI Address Latch
The hold latch (see Figure C-7) is a level sensitive, transparent D-Iatch. Addresses appearing
on the D inputs are transferred to the Q outputs while the OPEN input is active high. Addresses
appearing on the D inputs one setup time before the high to low transition of the OPEN input is
held on the Q outputs until the OPEN input is again returned high.

The PCI address hold latch derives the OPEN signal from three other signals. The contents of
the PCI_AD lines flow through this latch while PCLSEl# is active low and ADDRHI/DATAlO is
high and PCLClK is low. In normal operation the combination of PCLSEl# low and
ADDRHI/DATAlO high indicates that a PCI address phase is in progress, and the PCI_ClK tran­
sition from low to high latches the data. ADDRHI/DATAlO would then be negated before the
PCLClK again went low.

C.S.3 PCI to 60X CPU Address Translation
The purpose of the PCI to 60X CPU address translation block [3] is to map PCI addresses from
PCI bus masters onto system memory and60X CPU address space. This translation affects the
upper two address lines [31 :30] when NO_TRANS is inactive. When NO_TRANS is active high
(ISA master cycles), no translation takes place.

281

The 650 Bridge Chip Set

PCI address bits 29:0 bypass this translation block and are not affected by this translation.

Table C-8. PCI to 60X CPU and System Memory Address Translation

60X CPU Address (BE) 60X CPU Address (BE)
PCI Address (Source) NO_TRANS = 0 NO_TRANS = 1

A31 A30 RANGE AO A1 RANGE AO A1 RANGE

0 0 o to 1G 1 1 3G to 4G 0 0 OG to 1 B

0 1 1G to 2G 1 1 3G to 4G 0 1 1G to 2G

1 0 2G to 3G 0 0 OG to 1G 1 0 2G to 3G

1 1 3G to 4G 0 1 1G to 2G 1 1 3G to 4G

C.5.4 PCI Burst Counter
The PCI burst counter (see Figure C-8) supports PCI burst accesses to system memory by latch­
ing in the initial address and incrementing it for each succeeding data phase of the burst. This is
implemented using a combination latch/counter (see Figure C-9). There are two paths through
the latch/counter-the latch-only path and the latch and counter path.

PCl Bus Address -
LeA tched & [1:0J
TrClnsleA ted [31:2J

PC I S E L # >-----1-,---.....

ADDRHI/DATALO)-----L-/

BURST_CLK#

D LAT Q~~[3_1_:0_J __ ~

D L&C Q

OPEN

CL/INC

Figure C-8. PCI Burst Counter

To
Address
MUX

Assume that the initial state of the latch/counter is CLOSED. A high to low transition of PCLSEL#
(on the OPEN#input) causes the latches to open (become transparent). This is the OPEN state
(see Figure C-10). The OPEN#input is edge sensitive only.

While the CNT_EN#(CouNT _ENable) input is asserted, the CUINC#(active falling edge CLose/
INCrement) input is enabled, otherwise it is ignored. CNT_EN# is asserted whenever either
PCLSEL# or ADDRHI/DATALO is low.

282

The 650 Bridge Chip Set

'PCI ' Addres

PCI_SEL#

ADDRHI/DAT ALD

BURST_CLK#

'PCI ' Address

s [1:0J

Jo' ,/

"" /

[31:2J

LAT

DPEN#

CNT_EN#

CL/INC# - -

-------- -- --

L8xC
- -

D Q

" ~DPEN LQ tch-Dnly '--'

--C CL_EN PQth

--C ~CLose

LQtch 8x Count PQth
- D Q D Q

-C ~DPEN
,.

>DPEN '--'

l' CL_EN J' CNT_EN '--' '--'

" ~CLose ~ >INC '--'

Figure C-9. Combination Latch/Counter-PCI Burst Counter

I--

While the CNT_EN#input is asserted, sending BURST _CLK# (connected to CUINC#) from high
to low causes all the latches to close, and then causes the count on bits [31 :2] to increment by
one. Thus the address appearing on inputs [1 :0] one setup time before the falling edge of
BURST_CLK# appears on outputs [1 :0]. One plus the address appearing on inputs [31 :2] one
setup time before the falling edge of BURST_CLK# appears on outputs [31 :2].

Open La.tches

PCL_SEL#~

CNT _EN# lo a.nd
BURST _CLK# ~

IncreMent
Counter

PCI SEL#~
ADDRHI/DATALO ~-CNT_EN#

CNT _EN# lo a.nd
BURST _CLK# ~

Close La. tches
IncreMent Counter

Figure C-10. Latch/Counter Flow Diagram-PCI Burst Counter

283

The 650 Bridge Chip Set

Successive high to low transitions of BURST _CLK# continue to increment bits [31 :2] and have
no effect on bits [1 :0]. The CUINC# input is edge sensitive only. Any high to low transition of the
OPEN# input returns the device to the open (transparent) state.

C.S.S 60X CPU Address Bus Transceivers
The internal nomenclature of the 653 Buffer is little-endian, while the 60X CPU bus is labeled in
big-endian sequence. Since the 653 Buffer internal structure uses little-endian nomenclature, the
60X CPU signals were renamed in little-endian sequence to minimize confusion. This allows all
of the 653 Buffer to be discussed using the same nomenclature.

For example, in Figure C-11, AO on the 60X CPU bus (and the 653 Buffer pin) corresponds to
cpu_addrjn[31] and cpu_addr_out[31] in the 653 Buffer. A31 on the 60X CPU bus corresponds
to cpu_addr_in[O] and cpu_addr_out[O] in the 653 Buffer. .

CPU
Figure C-11. 60X CPU Address Bus Transceivers

C.S.6 60X CPU Address UnMunger
The 60X CPU address unmunger is used to support big-end ian and little-endian operation of the
system. When LE_MODE_SEL# is asserted, the 653 Buffer unmunges the three least significant
address bits from the 60X CPU bus to the memory bus or PCI bus (see Table C-9). The unmunge
by the 653 Buffer is identical to the munge operation performed by the 60X CPU. Addresses which
have been munged and then unmunged are identical to addresses that have not been manipu­
lated.

284

The 650 Bridge Chip Set

Table C-9. Unmunging Address Bits in Little-Endian Mode

Lowest Order Unmunged Three Lowest Order Address Bits [2:0]
Address Bits

Before 1-Byte Transfer (XOR 2-Byte Transfer (XOR 4-Byte Transfer a-Byte Transfer
Unmunge with 111) with 110) (XOR with 100) (No Change)

000 111 110 100 000

001 110 --- --- ---
010 101 100 --- ---

011 100 --- --- ---

100 011 010 000 ---

101 010 --- --- ---
110 001 000 --- ---
111 000 --- --- ---

C.S.7 60X CPU Address Hold Latch
The 60X CPU address hold latch [7] is transparent while CPU_ADDR_SEL# is high. Addresses
appearing on the D inputs one setup time before the high to low transition of CPU_ADDR_SEL#
is held on the Q outputs until CPU_ADDR_SEL# is again returned high.

C.S.8 60X CPU Burst Counter
The 60X CPU burst counter (see Figure C-12) supports 60X CPU bus (60X or L2) single-beat
transfers and four-beat burst transfers to system memory by latching in the initial address and
(for bursts) incrementing it for each succeeding beat of the burst. This is discussed in terms of
the 60X CPU, and works the same way for transfers mastered by the L2 cache. The burst counter
is implemented using a combination latch/counter (see Figure C-13) which is very similar to the
latch-counter described in Section C.S.4. There are two paths through the latch/counter: the latch­
only path, and the latch and counter path.

BURST _CLK#)-----{

CPU_ADDR_SEL# >---~~

CPU BURST
COUNTER

CL/INC

CNT_EN

OPEN
~[_4_: 3_J_--I D L ~ C Q I----r[3_1_: O_J_~
[31:5) 2:0J D LAT Q

CPU Address (LE)

UnMunged O-s req'd,

Figure C-12. 60X CPU Burst Counter
During a single-beat transfer: up to 8 bytes of data are transferred by the 60X CPU, as determined
by a decode of the three lowest order address bits and TSIZ[0:2]. During each beat of a burst
transfer (TBST# asserted) 8 bytes are transferred. Internal address bits [2:0] (LE) flow through

285

The 650 Bridge Chip Set

the latch-only path of the burst counter. The value of these bits is controlled by the 60X CPU. Bits
[31 :5] also flow through the latch-only section. They are not incremented by the counter because
any given 60X CPU burst transfer must not cross a 32-byte boundary.

'CPU' Address
[31:5) 2:0J

CPU_ADDR_SEL#

BURST_CLK#

'CPU' Address
[4:3J

I

/

OPEN#

CNT EN# -

CL/INC#

La.-tch
~

Count
Pa.th
(L~C)

-

-- --

- -

D Q

" P. OPEN La. -tch-Only \J

-C CL_EN Pa.-th (LAT)

-C t> CLose

- D Q D Q

L-c vOPEN r- vOPEN '---

" CL_EN r- CNT_EN '---' '---

" t> CLose -[Qffic vINC \J

Figure C-13. Combination Latch/Counter-CPU Burst Counter

f-

Since the 60X CPU burst is composed of four beats, a two-bit counter is required to support the
burst. Bits [4:3] flow through the latch and counter path. The 60X CPU can initiate a burst at any
value of bits [4:3]. The count sequence is 00, 01, 10, 11, 00, 01, and so on (the counter is linear
and wraps).

To track the operation of the device, assume that the initial state of the latch/counter is CLOSED.
The high to low transition of CPU_ADDR_SEL# (on the OPEN#input) causes the latches to open
(become transparent). This is the OPEN state (see Figure C-14).

While the CPU_ADDR_SEL# is asserted (on CNT_EN#) , the CUINC#input is enabled, so chang­
ing BURST _CLK# from high to low causes all the latches to close, and then causes the count on
bits [4:3] to increment by one. Thus the address appearing on inputs [2:0] and [31 :5] one setup
time before the falling edge of BURST _CLK# appears on outputs [2:0] and [31 :5]. One plus the
address appearing on inputs [4:3] one setup time before the falling edge of BURST _CLK# ap­
pears on outputs [4:3].

286

Open La.tches

CPU_ADDR_SEL# lo a.nd
BURST _CLK# ~

IncreMent
Counter

The 650 Bridge Chip Set

CPU_ADDR_SEL# lo a.nd
BURST _CLK# ~

Close La. tches
IncreMent Counter

Figure C-14. Latch/Counter Flow Diagram-CPU Burst Counter

Successive high to low transitions of BURST_CLK# on CUINC# continue to increment bits [4:3]
with no effect on bits [2:0] and [31 :5]. Any high to low transition of CPU_ADDR_SEL# (on the
OPEN# input) returns the device to the open (transparent) state.

C.5.9 Page Hit Comparator
The 12-bit page hit comparator is used to support fast accesses to memory locations in the same .
page of DRAM as the previous DRAM access. Bits [30:12] of the previous page address, stored
in the page hold latch, are compared to bits [30:12] of the current address coming from the
cpu_addrjn bus. MEM_PAGE_HIT# is unqualified and is only guaranteed to be valid one delay
time after the inputs to the comparator are valid. '

PAGE HIT
COMPARATOR

cpu_a.oIdr _in, A B
Lo.st Pa.ge

[30:12J [30:12J Adolress FroM
DRAMX9HI/X10LO TYPE Po.ge Hold

MEM_PAGE_HIT# r- - Lo.tch
'--' -

Figure C-15. Page Hit Comparator

The page hit comparator operates with two different sets of address lines, depending on the value
of DRAMX9HI/X1 OLO. When DRAMX9HI/X1 OLO is high, the device expects a 4K page size. Ad­
dressing within a 4K page requires address lines [11 :0]. Address lines [30:12] are then compared
to determine page hits.

287

The 650 Bridge Chip Set

When DRAMX9HI/X10LD is low, the device expects an 8K page size. Addressing within an8K
page requires address lines [12:0]. Address lines [30:13] are then compared to determine page
hits. Address line [31] is not used by the page hit comparator because all system memory must
be mapped below 2G, so A31 is always low.

C.S.10 Refresh Counter
The refresh counter is used to determine the row address for refresh operations. The refresh
counter is composed of a 12-bit counter and some steering logic (see Figure C-16).

The value of the 12-bit counter on power upis indeterminate. The counter increments on the rising
edge of the REFRESH_SEL# input. The count sequence (decimal) is 0, 1, ... ,4095, 0, 1, ... etc.,
and is not affected by any other input.

REFRESH COUNTER
To

UP Q 12 1 A[23:12J [31:0J
12 b f------/-'-< 1--+-------1 >----~ Add r e 5 5

NUX
DRAMX9HI/X10LO r-----------~ other A=O

Figure C-16. Refresh Counter
When DRAMX9HI/X1 OLD is high, the memory controller is in x9 mode. When DRAMX9HI/X1 OLD
is low it is in x1 0 mode. The 12-bit refresh address produced by the 12-bit counter is placed on
the internal address bus with zero-fill, depending on the value of DRAMX9HIIX1 OLD, as follows:

A A A A A A
31 27 23 19 15 11

I I I I I I

A

7
I

A A
3 0---- Address Line
I I

abed_efgh_ijkl---- 12-bit refresh address

0000 0000 abed efgh ijkl 0000 0000 0000---- Refresh address placed on
internal bus, x9 Mode

0000 OOOa bede fghi jklO 0000 0000 0000---- Refresh address placed on
internal bus, x1 0 Mode

C.S.11 Address Multiplexer
The address multiplexer places a 32-bit address on the 653 Buffer internal address bus. This ad­
dress comes from one of three sources-the PCI Burst Counter, the 60X CPU Burst Counter, or
the Refresh Counter (see Figure C-17).

288

REFRESH_SEL#
CPU_ADDR_SEL#

PCl_SEL#)-------.
ADDRHl/DAT ALO)-----,

ADDRESS SOURCE

PCl Burst Counter
CPU Burst Counter

Refresh Counter

Figure C-17. Address Multiplexer

The 650 Bridge Chip Set

lnternQl
Address
Bus

Only one of the address sources is selected at any time. In general, the refresh address select
has the highest priority, the 60X CPU address select has second priority, and the PCI address
select has third priority (see Table C-10). In the table (which exactly describes the operation of
the multiplexer), note that the PCI address select signal (from_pcill) , is an internal signal that is
asserted low whenever PGLSEL# is low or ADDRHI/DATALO is low.

PCI SEL#--~
ADDRHI/DATALO--~ ,fromJ)Ci#

Table C-10. Address Multiplexer Source Selection Priority
CPU_ADDR_SEL# from_pc;# REFRESH_SEL# Selected Address Source

0 0 0 Refresh Counter

0 0 1 CPU Burst Counter

0 1 0 Refresh Counter

0 1 1 CPU Burst Counter

1 0 0 Refresh Counter

1 0 1 PCI Burst Counter

1 1 0 Refresh Counter

1 1 1 CPU Burst Counter

C.S.12 60X CPU to PCI Address Translation
Addresses sourced by the 60X CPU or the L2 cache are transmitted to the PCI bus after going
through a translation block (Note that the addresses pass through the ROM read burst counter
unchanged during PCI transactions). The address information comes to the translation block via
the internal address bus A[31 :0] (see Figure C-18). The address lines are processed in four
groups-bits A[1 :0], bits A[4:2], bits A[29:5], bits A[31 :30]. Operations on each group are inde­
pendent of operations on the other groups.

289

The 650 Bridge Chip Set

NO_ TRANS)------------{ TRANS [gJ
[31:30J IN OUT ~ ROM -R~~d ~

CONTIG_IO)>-------'------- ----{ ISA_I/O : Burst :1
Address [29:5J IN OUT ~ ~.?~~j;~:: - ~
Decoder

[1:0J
~I~I 2G+8M to I.,------l IN OUT pCi_o.ddr _out

cpu o.uur>-
'[-31:23J 2G+16M or - ------l FORCEOO
In 3G to 4G [4:2J

Interno.l Address Bus

Figure C-18. 60X CPU To PCI Address Translator

C.S.12.1 A[1 :0] Translation-PCI Bus Special Requirements
Address bits A[1 :0] are forced to OOb to meet the special requirements of the PCI bus during CPU
to PCI configuration transactions (CPU address range 2G+8M to 2G+ 16M), and during CPU to
PCI memory transactions (CPU address range 3G to 4G). The 653 Buffer detects accesses to
these address ranges by internally decoding the 8 highest order CPU address lines (from
cpu_addr_in[31 :23] (LE)). No pin or register control of this translation is provided. It is hardwired.

Note that system ROM space is mapped to CPU address range 4G-8M to 4G. There is no prob­
lem with A[1 :0] being forced to '00' during ROM reads because the ROM read burst counter forces
A[2:0] to '000' at the start of a ROM read; thereafter the state of A[1 :0] is determined by the burst
counter. During ROM writes, the address appearing on the ROM address lines comes from the
CPU data bus via the 653 Buffer .

. C.S.12.2 A[4:2] Non-Translation
Address bits A[4:2] pass through the translator with no change under any conditions. Note that
A[2:0] will have been unmunged upstream at the 60X CPU Address Unmunger if the system is
operating in little-end ian mode.

C.S.12.3 A[31 :30] Translation-System Address Map Implementation
The 653 Buffer allows pin control of the high order address mapping function from the 60X CPU
bus to the PCI bus. While NO_TRANS is high, the address mapping function is disabled, and
A[31 :30] are passed through unchanged (see Table C-11).

While NO_TRANS is low, this mapping function is enabled, and address bits A[31 :30] are trans­
lated as shown in Table C-11.

Table C-11. 60X CPU To PCI Address Translation-High Order

NO_TRANS
. A[31 :30] from~u

(Little-End ian CPU Address PCI_AD[31 :30] PCI Address

0 00 OG to 1G 00 OG to 1G

0 01 1G to 2G 01 1G to 2G

0 10 2G to 3G 00 OG to 1G

290

The 650 Bridge Chip Set

Table C-11. 60X CPU To PCI Address Translation-High Order (Continued)

A[31 :30] from CPU
NO_TRANS (Little-End ian) CPU Address PCLAD[31 :30] PCI Address

0 11 3G to 4G 00 OG to 1G

1 00 OG to 1G 00 OG to 1G

1 01 1G to 2G 01 1G to 2G

1 10 2G to 3G 1 0 2G to 3G

1 11 3G to 4G 1 1 3G to 4G

C.5.12.4 A[29:5] Translation-PCI/ISA 1/0 Page Mapping
The 653 Buffer also allows pin control of the PCI/ISA 10 mapping function, which concerns bits
A[29:5] (see Figure C-19). Address bits A[29:5] are passed through the translator unchanged
while CONTIG_IO is high, which maps the 60X CPU addresses into PCI space at 1:1 (for these
bits). Operation in ISA contiguous mode is straightforward, the address space is contiguous.
However, this mode allows protection attributes to be assigned to ISA ports only as is allowed by
the 1 : 1 mapping to memory space-each 4k-byte page of ports has definable attributes that apply
to all of the ports in that page.

A31 A27 A23 A19 A15 All A7 A3 AO
I I I I I I I I I
vuts rqpo nMlk Jihg fedc Ibo98 76~4 3210 cpu_oddr _in

[}Jill [IJ I l±J J@Jl (LE)

~
vulo 0 0000 O~sr qpon MlkJ ihgf edc4 3210 pci_oddr _out

~ (to RDM Cntr)

Figure C-19. 60X CPU To PCI Address Translation-PCI/ISA 10

While CONTIG_IO is low, bits A[29:5] are translated as shown in Figure C-19. This translation
implements the mapping of 4k-byte pages in 60X CPU memory space onto 32-byte port groups
in PCI/ISA space. This mapping allows protection attributes to be assigned to each group of 32
ports as a separate page. In this 'ISA non-contiguous mode', the lowest 32 bytes in each 4k-byte
page of CPU memory space is mapped to a 32 byte group of ports in ISA 1/0 space. (The other
32 byte groups in each 4k-byte page are shadowed to the same 32-byte port group.) While CON­
TIG_IO is low:

1) Internal address bits A[31 :30] are not affected by this block of the translator. These bits may
have been translated by the high order bit translator (see Section C.5.12.3).

2) Address bits [29:23] going out of the translator (to the PCI bus ROM counter) are set to
OOOOOOOb.

3) Internal address bits A[29:12] are passed to address bits [22:5] from the translator.

4) Internal address bits A[11 :5] are not used, and are not passed through.

5) Address bits A[4:0] are always passed through unchanged.

291

The 650 Bridge Chip Set

C.S.13 ROM Read Burst Counter
The ROM read burst counter (see Figure C-20) is part of the boot ROM system, which provides
the 60X CPU with read access to bytewide EPROM, EEPROM, or Flash memory devices. During
a ROM read, the ROM burst counter and the ROM data shift register (see Section C.5.19) are
used to stack up a bytes of 1-byte wide ROM data into an a-byte wide doubleword, which is sent
to the 60X CPU. The 653 Buffer also supports 32-byte (4 beat x a bytes/beat) burst reads from
ROM. Details of these operations are found in the 654 Controller data sheet. Note that the 650
Bridge also supports writes to ROM space as described in Section C.3.6 and in the 654 Controller
data sheet.

PC I _ S E L #)----------,
CPU ADDR_SEL#r---~

ROM_SEL#r-----~~

BURST_CLK#r-------~

.---------,
Inter-neAl ~ CPU to pcr I

Address I Address I

[4:0J

[31:5J ~

OPEN
EN

CL/INC

L~C

Q

Q LAT
I I

L--____ ------'

Bus I TreAnsleA tor I L _________ --l

Figure C-20. ROM Read Burst Counter

pci_eAddr _out
[31:0J

The ROM read burst counter is a combination latch/counter, similar to the 60X CPU and PCI burst
counters. Of the two paths through the device, the latch-only path works identically, but the latch
and counter section is somewhat different.

The counter is able to count through 32 byte locations, so the five lowest order address bits [4:0]
go through the latch and count section of the device, while bits [31 :5] go through the latch-only
section (see Figure C-21).

'CPU' Address [3
PCI_SEL#

CPU ADDR_SEL#
ROM_SEL#

BURST_CLK#

1:5J

~
~

/

'CPU' Address [4 :OJ "-

OPEN#
RST/CNT EN# -

CL/INC#
-

-------- - - - -

- -

Lo.tch
~

Count
Po.th
(L~C)

D Q
~ r> OPEN LeA tch-Only '--'

----c CL_EN Po.th (LAT)

-C r>CLose

- D Q

--C >OPEN
~ RESET/CNT_EN '--'

r > COUNT '--'

Figure C-21. Combination Latch/Counter-ROM Read Burst Counter

292

The 650 Bridge Chip Set

To track the operation of the device, assume that the initial state of the latch/counter is CLOSED.
A falling edge of PCLSEL# or CPU_ADDR_SEL# or ROM_SEL# (producing a falling edge on
the OPEN#input) causes the latches to open, making the device transparent to all 32 bits (which
is the sole function of this device during PCI and normal60X CPU cycles). This is the OPEN state
(see Figure C-22). The OPEN# input is edge sensitive only.

During ROM read cycles, the falling edge of CPU_ADDR_SEL# causes the latches to open, mak­
ing the device transparent to all 32 bits. When the 654 Controller asserts ROM_SEL#, its falling
edge forces bits [2:0] to OOOb (this function is not found in the other counters). At this point, the
654 Controller strobes one byte of data out of ROM location 'x----x xOOO' into the ROM Data Shift
Register (see Section C.5.19).

While ROM_SEL# is low, the latches in the latch-only path are enabled and the counter is en­
abled, so the next falling edge of BURST _CLK# latches bits [31 :3] and increment bits [2:0] to 001.
Next the 654 Controller strobes one byte of data out of ROM location 001 into the ROM data shift
register. The 654 Controller continues to cycle BURST _CLK# and strobe data out of the ROM
and into the shift register until eight bytes are read. The latch/counter's CUINC# input is edge
sensitive only.

Since the latch/counter is now closed, any high to low transition of PCI_SEL# or
CPU_ADDR_SEL#or ROM_SEL# (on the OPEN#input) returns the device to the open (transpar­
ent) state.

Although the 654 Controller implements an a-byte transfer during both single-beat and burst
transactions, the 653 Buffer is capable of four-beat transfers. After the end of the first beat (count­
er states 0 through 7), the Controller asserts TA# to the 60X CPU to transfer the 8 bytes of data
stored in the ROM shift register. Then the Controller would shift another a bytes into the shift regis­
ter (counter states a through 15), TA# the 60X CPU again, and so on until all 32 bytes were trans­
ferred.

Open La.tches

ROM_SEL#loa.nd
BURST _CLK# L

ROM_SEL#lo a.nd
BURST _CLK# L

Close La. tches
Reset Counter

IncreMent
Counter

Figure C-22. Latch/Counter Flow Diagram-ROM Read Burst Counter

293

The 650 Bridge Chip Set

C.S.14 Error Address Latch
The error address latch is intended to allow system diagnostics to trap accesses to addresses
that cause exceptions. Control of the latch resides in the 654 Controller, and can be enhanced
by additional logic.

The latch, shown as block [14] in Figure C-2, is implemented as a hold latch, a level-sensitive,
transparent D-Iatch. The address on the internal address bus of the 653 Buffer flows through to
the err_addr lines as long as l_ERR_ADDR# is high. The address on the internal address bus
one setup time before l_ERR_ADDR# goes low is held in the latch.

Note that L_ERR_ADDR# is asserted low to latch the error address, and must be held low to pre­
serve the error address. The latch again becomes transparent (and the error address is lost) when
L_ERR_ADDR# is negated.

C.S.1S Row/Column Address Multiplexer
The row/column address multiplexer places the required address information onto the memory
address lines in the proper format, under pin control. While RASHIICASLO is high, the multiplexer
places the rowaddress on the memory address lines. While RASH I/CASLO is low, the multiplexer
places the column address on the memory address lines. While DRAMX9HI/X1 OlO is high, ad­
dresses appropriate to DRAMs having 9 column address bits (10x9, 11 x9, or 12x9 RxC) are se­
lected. While DRAMX9HI/X1 OlO is low, addresses appropriate to DRAMs having 10 column ad­
dress bits (1 Ox1 0, 11 x1 0, or 12x1 0 RxC) are selected. Additionally, an 11 th column address bit
is generated, which is identical to the 12th row bit. This is useful for 11 x11 addressing, or for
12x10/11 addressing, where 12x1 0 and 11 x11 addressing is used together, such as for an 8M
SIMM.

Table C-12. Memory Rowand Column Address Generation

Typ DRAMX9 RASH II RIC MA1 MA1 MA MA MA MA MA MA MA MA MA MA
e HI/X10L CAS- 1 o / 9 8 7 6 5 4 3 2 1 0

0 LO

9 col 1 1 row A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12

9 1 0 col 0 0 0 A11 A10 A9 A8 A7 A6 A5 A4 A3
col

10 0 1 row A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13
col

10 0 0 col 0 A24 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3
col

C.S.16 Page Hold Latch
The page hold latch is used to store the page address of the previous DRAM memory access for
comparison against the page address of the next DRAM memory access. Addresses flow through
the page hold latch while RASHI/CASLO# is high. An address appearing on the D inputs one set­
up time before the high to low transition of RASHI/CASlO# is held on the Q outputs until
RASHIiCASlO# is again returned high. Also see Section C.5.9.

C.S.17 PCI Data Latch
The purpose of the PCI data latch is to capture the data from the PCI bus during the data phase
of a PCI transaction. This function is accomplished using a hold latch.

The hold latch (see Figure C-23) is a level sensitive, transparent D-Iatch, as described in Section
C.5.2. The latch is closed while l_PC'-DATA# is low and while PCI_ClK is high. Data on the

294

The 650 Bridge Chip Set

PCLAD bus flows through the latch only while L_PCLDATA# is high and PCLCLK is low. To cap­
ture the PCLAD bus data, the 654 Controller sends L_PCLDATA# high to indicate a data phase,
and the PCLCLK transition from low to high latches the data. L_PCLDATA# would then be sent
low before the PCLCLK again went low.

Figure C-23. PCI Data Latch

C.S.18 PCI Data Doubler
To support the transmission of data from the 4-byte wide PCLAD bus to the a-byte wide CPU bus,
the PCI data doubler places the 4-byte data from the PCLAD bus onto internal address lines
[31 :0]. It also places an identical copy of the 4-byte data on lines [63:32].

r-----...,

: PCI :
I Do. to. I

: Lo. tch :

Figure C-24. PCI Data Doubler

C.S.19 ROM Data Shift Register
The ROM data shift register works with the ROM read burst counter (see Section C.5.13) to read
8 bytes of bytewide data out of the boot ROM device and transfer it to the CPU bus as a-byte wide
data. The data on the upper byte of the PCLAD lines connects to the shift register bytewide data
input (see Figure C-25).

pCi_o.ol_in
RDM_SEL#

BURST_CLK#

[3124J BYTE
"-

:
" / / I h 7 [63:56J

"- r W -v
6 [55:48J '-' (/) I

h

r ~ "" h 5 [47:40J / '--- I
-v

4 [39:32J
ROM DATA I

h

"" h 3 [31:24J _L

SHIFT "" 2 [23:16J
I

h

REGISTER
-v

h 1 [15:8J
~

"" o [7:0J [1I] h
I

64
I

Figure C-2S. ROM Data Shift Register

295

"-
/

·To
Do.to.
MUX

The 650 Bridge Chip Set

When ROM_SEL# is active, shifting is enabled. The bytes are shifted following the falling edge
of BURST _CLK# in the following order (bit order is preserved):

1. Byte 1 is shifted into byte O. Previous contents of byte a are lost.
2. Byte 2 is sHifted into byte 1.
3. Byte 3 is shifted into byte 2.
4. Byte 4 is shifted into byte 3.
5. Byte 5 is shifted into byte 4.
6. Byte 6 is shifted into byte 5.
7. Byte 7 is shifted into byte 6.
R PCLAD[31 :24] are shifted into byte 7.

Note that data on PCLAD[31 :24] is not on the internal data lines until shifted into byte 7.

C.S.20 Error Address Doubler
The error address trapping system is designed to capture addresses at which exceptions oc­
curred. This requires getting the address information from the 4-byte wide address bus onto the
8-byte wide data bus. Maximum system flexibility was achieved by using the error address dou- '
bier to place the error address on both the high 4 bytes and the low 4 bytes of the data bus.

[63:0J To
LE_MDDE_SEL# Do.to.

MUX
BE BYTE SVJAP LE

@J MSB [0:7J 0 \; 0 [7:0J LSB
[8:15J 1 1 [15:8J

CPU DATA [16:23J 2 [23:16J

BYTE LANE [24:31J 3 [31:24J
SVJAP S'WAPPER [32:39J 4

1\
[39:32J

[40:47J 5 [47:40J

[48:55J 6 [55:48J

LSB [56:63J 7 7 [63:56J MSB

CPU_DATA [0:63J BYTE

[0:63J

Figure C-26. 60X CPU Data Byte Lane Swapper-Input Side

C.S.21 60X CPU Byte Lane Swapper-Input Side
The 650 Bridge bi-endian operation support allows the 60X CPU to operate with either big-endian
or little-endian code and data storage formats. The 60X CPU data byte lane swappers (see
Figure C-26) implement the data byte reordering required to achieve bi-endian operation.

The internal nomenclature of the 653 Buffer is little-endiah, while the 60X CPU bus is labeled with
big-end ian nomenclature. Since the 653 Buffer internal structure uses little-endian nomenclature,
the 60X CPU signals are renamed on the inside of the 653 Buffer in little-end ian sequence to mini­
mize confusion.

296

The 650 Bridge Chip Set

Figure C-26 shows that the 60X CPU data bus retains its big-endian nomenclature from the 653
Buffer pins up to the input side of the swapper. As the data bytes go through the swapper onto
the 653 Buffer internal address bus (by way of the data multiplexer) there is in all cases a bit-wise
reversal of the numbering of the bits within the byte. (See Figure C-27.)

The reversal in bit-wise nomenclature is only a name change-there is no change in the signifi­
cance of the bits. For example, a byte that has a value of A3h on the 60X CPU bus has the same
value inside the 653 Buffer, and it has the same value (A3h) when it gets out of the 653 Buffer.

When the 60X CPU is operating in big-endian mode, the signal LE_MODE_SEL# is negated
(high). The data on byte 0 is placed on byte 0 of the internal address bus. Byte 1 is placed on byte
1 of the internal address bus. Byte 2 goes to internal byte 2, ... , byte 7 goes to internal byte 7.

When the 60X CPU is operating in little-endian mode, the signal LE_MODE_SEL# is asserted
low. The swapper is on. The data on byte 0 is placed on byte 7 of the internal address bus. Byte
1 is placed on byte 6 of the internal address bus. Byte 2 goes to internal byte 5, ... , byte 7 goes
to internal byte O.

297

The 650 Bridge Chip Set

CPU DATA
-

MSb 0
1
2
3
4
5
6
7
-

Byte 0 "­
MSB /'

1~
1f~
23~
2{LB II ~ :3 '-
31~
3tl~jI~~_,,"
39~
4{LBlIt~~ ~
47~
4tl~1!~
55~

-
56
57
58
59 Byte 7 "-
60 LSB ./
61
62

LSb 63
-

INTERNAL DATA BUS

Byte 0
LSB

-
7
6
5
4
3
2
1
o LSb

-

~
~2?
~16
,,_BlIte) f 11
~24
,,_Bl~~J3?
~32
,,_BlIt~ ~fy
~40
~5?
~48

r-

63. MSb
62
61

Byte"] 60
MSB 59

58
57
56

L.-

Byte 7
MSB

;--

63 MSb
62
61
60
59
58
57
56

'--

" Byte DfS?
~48
~J4l
~40
,,~ltE;' ~ f 3;"

~32
"jlztE;' :3 f 11
~24
"Jlzte ~f2?
~16

~~s
-

7
6
5

Byte 0 4
LSB 3

2
1
o LSb

L.-

Figure C-27. CPU Data Byte Lane Swapper Operation-Input Side

298

The 650 Bridge Chip Set

C.S.22 Data Multiplexer
The 653 Buffer data multiplexer (see Figure C-28) selects one of six sources for the data appear­
ing on the internal data bus-the PCI data latch (doubled), the ROM data shift register, the error
address latch (doubled), the all_ones register (which contains FFFF FFFF FFFF FFFFh), the in­
put side CPU data byte lane swapper, and the memory data bus. Exactly one of the sources is
selected at any given time. If more than one source select line is active, the source is selected
according to Table C-13.

DATA MUX
pcr DQtQ CLQtched ~ x2)

ROM DQ tQ (8-byte wide) >----+----1

Error Address (LQtched ~ x2)r--+---~

All_Ones (64 1'5) r--+-------i

CPU DQ tQ (Possibly SWQPped) >----+------1

MeMory DQtQ

Figure C-28. Data Multiplexer

Table C-13. Data Multiplexer Source Selection Priority.

Data Source Enable Signal Priority
Error Address (x2) ERR_ADDR_SEL# o (Top)

CPU Data CPU_DATA_SEL# 1

AILOnes ALL_ONES_SEL# 2

ROM Data ROM_SEL# 3

Memory Data MEM_DATA_SEL# 4

PCI Data (x2) PCLSEL# 5

C.S.23 PCI Address/Data Select Delay Flop
The ADDRHIIDATALO signal is switched by the 654 Controller in advance of the transition from
PCI address phase to PCI data phase, in order to achieve the minimum clock to output time on
the AD lines. The PCI address/data multiplexer (see Section C.5.24) uses this signal to switch
the PCI bus between address and data information, so it is delayed until the PCLCLK makes the
low to high transition that signals the start of a data phase. This delay is implemented (see

299

The 650 Bridge Chip Set

Figure C-29) by a simple positive-edge-triggered D flipflop, which is clocked by PCLCLK. Thus
the 653 Buffer only switches the PCLAD lines from address to data immediately following the
positive edge of PCLCLK.

Following the last data phase of the current transaction, the 654 Controller switches ADDRHI/DA­
TALO from high to low to prepare the 653 Buffer address/data multiplexer for another PCI address
phase. As above, the multiplexer actually switches the source of the PCLAD lines immediately
following the positive transition of PCLCLK. This transition usually occurs while the PCLAD lines
are tri-stated for a PCI bus turnaround cycle.

ADDRHI/DAT AlD
PCI_ClK

~
D Q 1-----------,

delCAyed
CA/d sel

pC i _ CA d d r _ 0 u t >--------.,-------H

[31:0J

InternCAl
DCAtO- Bus

[63:32J

[31:0J

pcr DATA
MUX [EJ

pcr ADD/
DATA MUX

Figure C-29. PCI Delay Flop, Data Multiplexer, and Address/Data multiplexer.

C.5.24 PCI Data Multiplexer
During data flows from system memory to the PCI bus (PCI to memory reads) or from the 60X
CPU to the PCI bus (CPU to PCI writes), the 653 Buffer places the 8-bytedata from one of the
above sources on its internal data bus (in response to the appropriate data select control signals
from the 654 Controller). If pcLadd,-out[2] (from the transaction master via the relevant transla­
tion stages) is low, internal data bits [31 :0] are routed to PCLAD[31 :0] during the current data
phase. If pcLaddr_out[2] is high, internal data bits [63:32] are routed to PCLAD[31 :0] during the
current data phase. The PCI data multiplexer implements this routing. The output of the PCI data
multiplexer goes to the PCI address/data multiplexer. (See Section C.5.25.)

C.5.25 PCI Address/Data Multiplexer
The PCLAD bus is a multiplexed bus. Each transaction can have an address phase and one or
more data phases. The PCI address/data multiplexer routes the address information to the
PCLAD bus during the address phase, and routes the datainformation to the PCLAD bus during
the data phase(s). The multiplexer control line is the delayed ADDRHI/DATALO signal from the
654 Controller (see Section C.5.23).The address information enters the multiplexer on the
pcLaddr_out lines. This address can be the (possibly unmunged, translated, and/or burst increm­
ented) contents of the CPU address bus, or the refresh address (possibly translated), or the ROM
byte address from the ROM read burst counter. The data information enters the multiplexer from

300

The 650 Bridge Chip Set

the PCI data multiplexer (see Section C.5.24), and can have come from the CPU (possibly byte
swapped), the memory, or the al'-ones generator. The output of the multiplexer flows onto the
pcLad_out[31 :0] lines, which go to the off-chip drivers for the PC,-AD lines.

C.S.26 PCI Parity Generator
The PC,-AD bus requires an even parity signal (PAR) to be generated over AD[31 :0] and CI
BE#[3:0] such that the total number of 1 's on AD[31 :0], C/BE#[3:0], and PAR is an even number.
The PCI parity generator inside the 653 Buffer generates an even parity signal (PC '-AD _PAR)
for the PC'-AD[31 :0] lines only (see Figure C-30). This signal and the C/BE#[3:0] lines are used
by the 654 Controller to generate the PCI PAR signal.

PCI AD
PARITY
GEN ~

pC~3~~Jout -----711 ~~~I~yl f------>~C> PCI_AD_PAR

Figure C-30. PCI Parity Generator

C.S.27 60X CPU Data Byte Lane Swapper-Output Side
The 60X CPU data byte lane swapperon the output side of the data multiplexer (see Figure C-31)
performs the same operation as the swapper on the input sid.e of the multiplexer (see Section
C.5.21). Like address munging and unmunging, the byte lane swap is its own inverse.

Interno.l [63:0J [0:63J
cpu_oIo.to._out Do.to. Bus

LE BE
LSB [7:0J 0

\)
0 [0:7J MSB

[15:8J 1 1 [8:15J
[23:16J 2 2 [16:23J CPU DATA
[31:24J 3

S\JAP
3 [24:31J BYTE LANE

[39:32J 4

1\
4 [32:39J

S\vAPPER [47:40J 5 5 [40:47J
[55:48J 6 6 [48:55J ~

MSB[63:56J 7 7 [56:63J LSB
BYTE S\JAP BYTE

LE_MDDE SEL#

Figure C-31. 60X CPU Data Byte Lane Swapper-Output Side

301

The 650 Bridge Chip Set

Data that has been through a swapper twice on the same setting is the same as data that has
not been swapped. For example, during a memory write and read from the same location when
the 60X CPU is in big-end ian mode (LE_MODE_SEL# = 1), data flows out ofthe 60X CPU through
the input side swapper, producing the data arrangement shown in Figure C-27 under
LE_MODE_SEL# = 1.

INTERNAL
DATA BUS

-
7
6
5
4 Byte 0
3 LSB /"
2
1

LSb 0 -

l}~~~
2?lJ?~t~2_,-
16~

J~~
3~9~
32~
4? lJ?Lt~~ '-
40~
5?~
48~

-
MSb 63

62
61
60 Byte 7
59 MSB -'
58
57
56

-

LE MODE

r- o MSb
1
2

Byte 0 3
MSB 4

5

'---

6
7

>-~~~-~i]
,-_BLt~J1r
~23

4J:
~3~2
~39
,-_BLt~ ~4~0
~47
~4g8
~55

-
56
57
58

Byte 7 59

LSB ~.~
62
63 LSb

'---

LE_MODE
SEL# = 0 - -

56
57
58

Byte 7 59
/" LSB 60

61
62
63 LSb -

~4g8
~55
,-EY~ e_ 5J 4~ 0

~47
~~~J3~2 
~39 
~2~4 
~31 
'-Ey~~sJ\6 
~23 
,~l'!~~lS~ 
~15 

r-- o MSb 
1 
2 

Byte 0 3 
/" MSB 4 

5 
6 
7 

'---

Figure C-32. SOX CPU Data Byte Lane Swapper Operation-Output Side 

302 



The 650 Bridge Chip Set 

This is the arrangement of the data on the 653 Buffer internal data bus and in system memory. 
A subsequent read of the memory by the 60X CPU (still in big-endian mode) brings the data onto 
the internal data bus in the same arrangement. The data passes through the output side swapper 
on the way to the 60X CPU, and is swapped back. 

Details of the output side swap operation from the internal data bus to the 60X CPU are shown 
in Figure C-32, under LE_MODE_SEL# = 1. The operation of the swappers (the 60X CPU in little­
endian mode) is in Figure C-27 and Figure C-32 under LE_MODE_SEL# = O. 

C.S.28 Memory Data Parity Generator 
The memory data parity generator (shown in Figure C-33) generates even byte parity for the 
eight bytes of data going to the system memory DRAMs. 

EVEN 
Interno.l [63:0J [7:0J "-

Do. t 0. Bus />------------l PAR I T Y r--------7/ Me M _ P 0. r _ 0 U t 
~G_E N_---' 1281 

MEM DATA PAR GEN 
Figure C-33~ Memory Data Parity Generator 

C.S.29 Memory Data Parity Checker 
The memory data parity checker (shown in Figure C-34) checks for even parity across the 
memory data and parity lines on a 1 bit per byte basis during memory operations. The output sig­
nal (MEM_PAR_GOOD) is not valid at all times. While there is no memory cycle running, 
MEM_PAR_GOOD has no meaning, and the 654 Controller uses MEM_DATA_SEL# to force it 
high. During memory cycles, MEM_PAR_GOOD is only valid onesetuptime after the data on both 
the memory data and parity lines is valid. 

MeM_do. to._in 
[63:0J 

MeM_po.r _in 
[7:0J 

DATA 
BAD 

PAR 

MEMORY 
PARITY 

DATA 
CHECK 

MPAR GOOD 

Figure C-34. Memory Data Parity Checker 

303 



The 650 Bridge Chip Set 

304 



Appendix 0 
Addresses of Sales Offices 

0.1 USA 
IBM Microelectronics, Mail Stop A25/862-1 
PowerPC Marketing 
1000 River Street 
Essex Junction, VT 05452-4299 
Tel: (800) PowerPC [(800) 769-3772] 
Fax: (800) PowerFax [(800) 769-3732] 

0.2 Europe 
IBM Microelectronics 
La Pompignane BP 1021 
34006 Montpellier 
France 
Tel: (33) 6713-5757 (Frangais) 

(33) 6713-5756 (Italiano) 

IBM Microelectronics 
Postfach 72 12 80 
30532 Hannover 
Germany 
Tel: (49) 511 516 3444 (English) 

(49) 511 516 3555 (Deutsche) 

0.3 Japan 
IBM 
800 Ichimiyake 
Yasu-cho, Yasu-gun 
Shiga-ken, Japan 520-23 
Tel: (81) 775-87-4745 
Fax: (81)775-87-4735 

305 



The 650 Bridge Chip Set 

306 




